{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "collapsed_sections": [ "c4IvRKVyvJwu", "oE_a6wVuMVmu", "mfL77XTyMrqZ", "1KkMPJ0TG3lx" ] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# **MATE Floats! Coding Notebook** - Day 3\n", "\n", "Created by Ethan C. Campbell for NCAT/MATE/GO-BGC Marine Technology Summer Program\n", "\n", "Wednesday, August 23, 2023" ], "metadata": { "id": "OxvLAQ1SWpeR" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-9O6SthNqtT8" }, "outputs": [], "source": [ "import numpy as np # NumPy is an array and math library\n", "import matplotlib.pyplot as plt # Matplotlib is a visualization (plotting) library\n", "import pandas as pd # Pandas lets us work with spreadsheet (.csv) data\n", "from datetime import datetime, timedelta # Datetime helps us work with dates and times" ] }, { "cell_type": "markdown", "source": [ "## Day 3, Part 1: `datetime` objects" ], "metadata": { "id": "c4IvRKVyvJwu" } }, { "cell_type": "markdown", "source": [ "**How do we track the passage of time in a data set?**\n", "\n", "One option is to count the **time elapsed** since some starting time. For example, we might count the number of seconds, minutes, hours, or days. Instead of only using whole numbers (e.g., 1 hour, 2 hours, 3 hours, 4 hours, etc.), we usually use **fractional times** (units with decimals, like 0.75 hours, 1.0 hours, 1.25 hours, 1.5 hours, etc.).\n", "\n", "As an alternative, we may want to simply track the dates and times themselves. After all, it is important to know what date and what time of day a measurement was taken.\n", "\n", "For this, we use the **`datetime`** package in Python. We have already imported it above using:\n", "\n", "> **`from datetime import datetime, timedelta`**" ], "metadata": { "id": "r7LbUikrvUvF" } }, { "cell_type": "markdown", "source": [ "`datetime` allows us to create a new type of variable called a **`datetime` object**. To do this, we use the following function syntax:\n", "\n", "> **`datetime(YEAR,MONTH,DAY,HOUR,MINUTE,SECOND,MICROSECOND)`**\n", "\n", "For example:" ], "metadata": { "id": "zRtGbU7iwlWs" } }, { "cell_type": "code", "source": [ "current_dt = datetime(2023,8,23,12,0,0,0) # This is 8/23/23 at 12:00:00.0p\n", "current_dt = datetime(2023,8,23,12) # Note: this gives the same result\n", "\n", "print(current_dt)" ], "metadata": { "id": "2f19URekvNpt", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "880fed6a-cf4e-416c-c539-3b7b4e67f805" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2023-08-23 12:00:00\n" ] } ] }, { "cell_type": "markdown", "source": [ "To retrieve part of a datetime from a `datetime` object called `dt`, you can use the following syntax:\n", "\n", "```\n", "dt.year\n", "dt.month\n", "dt.day\n", "dt.hour\n", "dt.minute\n", "dt.second\n", "dt.microsecond\n", "```\n", "\n", "For example:" ], "metadata": { "id": "y34p-U51xrsg" } }, { "cell_type": "code", "source": [ "print(current_dt.year)" ], "metadata": { "id": "Rni5VdTKyIWm", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "a3e5ac63-0cb9-42fd-8ce6-8969f0e39299" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2023\n" ] } ] }, { "cell_type": "markdown", "source": [ "***Try creating your own datetime object. What happens when you subtract one datetime from another?***" ], "metadata": { "id": "UyvOBvlUycq1" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "new_dt = datetime(2023,8,24,current_dt.hour,0)\n", "print(new_dt - current_dt)" ], "metadata": { "id": "tx1cYRfcyhUg", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c4850608-a927-4bdf-8ac3-5b2e711f9b34" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1 day, 0:00:00\n" ] } ] }, { "cell_type": "markdown", "source": [ "The great thing about `datetime` objects is that you can use them just like numbers:\n", "* You can add and subtract them.\n", "* You can put them in lists and arrays.\n", "* `Matplotlib` knows to treat datetimes like numbers in plots." ], "metadata": { "id": "aCycWJMFyKyE" } }, { "cell_type": "markdown", "source": [ "## Day 3, Part 2: Loading sensor time series data" ], "metadata": { "id": "oE_a6wVuMVmu" } }, { "cell_type": "markdown", "source": [ "Up until now, we've been using data that we've typed directly into Python. However, most real-world data is stored in files that we'd like to open using Python.\n", "\n", "The most common type of data file is a **spreadsheet**, which has rows and columns. Generally, the columns will have column labels.\n", "\n", "Spreadsheets are often stored in **comma-separated value (CSV)** format, with the file extension being `.csv`. Data files in this format can be opened using Microsoft Excel or Google Sheets, as well as Python.\n", "\n", "In Python, we use the `pandas` package to work with spreadsheet data. We imported the package earlier using:\n", "\n", "> `import pandas as pd`\n", "\n", "Just like NumPy has arrays, Pandas has two types of objects: `Series` and `DataFrame`. This is what they look like:\n", "![Pandas example.png]()" ], "metadata": { "id": "-ds8ZIbDL1zy" } }, { "cell_type": "markdown", "source": [ "For now, we'll just be applying simple operations to read spreadsheet data using `pandas`. But if you would like to learn more, check out these [lesson slides](https://ethan-campbell.github.io/OCEAN_215/materials/lessons/lesson_9.pdf)." ], "metadata": { "id": "jMxncH-WL1z1" } }, { "cell_type": "markdown", "source": [ "Let's see how we can visualize data from the sensors that you built.\n", "\n", "***First, download two sample data files from Google Drive here:*** https://drive.google.com/drive/folders/18c42CtHgthenSEoPP9WKHEVrC1jn1Dr8?usp=drive_link. They should be named:\n", "* `temp_data_0m.csv` (data from 0 meters depth)\n", "* `temp_data_5m.csv` (data from 5 meters depth)\n", "\n", "Next, we can upload the files to this Google Colab notebook. ***Click the sidebar folder icon on the left, then use the page-with-arrow icon at the top to select the files and upload them.*** NOTE: uploaded files will be deleted from Google Colab when you refresh this notebook!\n", "\n", "We will specify each **filepath** using string variables:" ], "metadata": { "id": "vqsRjtMRu6h_" } }, { "cell_type": "code", "source": [ "filepath_0m = '/content/temp_data_0m.csv'\n", "filepath_5m = '/content/temp_data_5m.csv'" ], "metadata": { "id": "KPV_riICMNLU" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Now, we can load the files using `pandas`:\n", "\n", "> **`pd.read_csv(FILEPATH, ARGUMENTS...)`**\n", "\n", "This function is very customizable using the many optional `ARGUMENTS`, which allow it to handle almost any file. You can find documentation about the arguments [at this link](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html).\n", "\n", "***Let's first take a look at the data file using a simple text editor. Notice the long header. What argument can we use to exclude the header from being loaded?***\n", "\n", "Below, we'll load a data file using ``pd.read_csv()`` and store the data into a new variable.\n", "\n", "We can look at the data using **`display()`** (which is a fancy version of `print()` for DataFrames):" ], "metadata": { "id": "4a4_4izzMJbi" } }, { "cell_type": "code", "source": [ "data_0m = pd.read_csv(filepath_0m)\n", "\n", "display(data_0m)" ], "metadata": { "id": "rE3uBvQx2Fly", "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "outputId": "c976929b-c91e-438a-8ba7-0b2f717896f2" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ " 7/28/2023 11:47 1 28af1394 21.375\n", "0 7/28/2023 11:48 1 28af1394 21.3750\n", "1 7/28/2023 11:49 1 28af1394 21.3750\n", "2 7/28/2023 11:50 1 28af1394 21.3750\n", "3 7/28/2023 11:51 1 28af1394 21.5000\n", "4 7/28/2023 11:52 1 28af1394 21.4375\n", ".. ... .. ... ...\n", "105 7/28/2023 13:38 1 28af1394 21.8750\n", "106 7/28/2023 13:39 1 28af1394 21.8750\n", "107 7/28/2023 13:40 1 28af1394 21.9375\n", "108 7/28/2023 13:41 1 28af1394 21.8750\n", "109 7/28/2023 13:42 1 28af1394 21.8750\n", "\n", "[110 rows x 4 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
7/28/2023 11:47128af139421.375
07/28/2023 11:48128af139421.3750
17/28/2023 11:49128af139421.3750
27/28/2023 11:50128af139421.3750
37/28/2023 11:51128af139421.5000
47/28/2023 11:52128af139421.4375
...............
1057/28/2023 13:38128af139421.8750
1067/28/2023 13:39128af139421.8750
1077/28/2023 13:40128af139421.9375
1087/28/2023 13:41128af139421.8750
1097/28/2023 13:42128af139421.8750
\n", "

110 rows × 4 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "
\n", "
\n" ] }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "***What do you notice?***\n", "\n", "It appears that we'll need to specify a few additional arguments within `pd.read_csv()`.\n", "\n", "* `index_col`: this argument accepts an integer (e.g., 0) and tells `pandas` to convert that column into an index\n", "* `header`: this argument specifies which line of the file to use for column labels (default: `header=0`), or use `header=None` if there are no labels\n", "* `names`: to specify column labels, give a list of strings with each label\n", "* `parse_dates`: to tell Python to translate certain column(s) into `datetime` objects, give it those column names or indices inside a list\n", "\n", "Remember that you can consult the [documentation](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html) if you need more information.\n", "\n", "Below, we will load in the two data files using `pd.read_csv()` with the function arguments above:" ], "metadata": { "id": "4tw33xD32AB0" } }, { "cell_type": "code", "source": [ "data_0m = pd.read_csv(filepath_0m,index_col=0,header=None,names=['Datetime','ID','Serial','Temp'],parse_dates=['Datetime'])\n", "data_5m = pd.read_csv(filepath_5m,index_col=0,header=None,names=['Datetime','ID','Serial','Temp'],parse_dates=['Datetime'])\n", "\n", "display(data_5m)" ], "metadata": { "id": "xzlsdqo4MbHp", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "outputId": "1199b0e7-69b5-44c0-a862-bf84574dd826" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ " ID Serial Temp\n", "Datetime \n", "2023-07-28 10:48:00 1 28fc3097 19.8125\n", "2023-07-28 11:06:00 1 28fc3097 19.5625\n", "2023-07-28 11:08:00 1 28fc3097 19.5625\n", "2023-07-28 11:09:00 1 28fc3097 19.5000\n", "2023-07-28 11:10:00 1 28fc3097 19.5000\n", "2023-07-28 11:11:00 1 28fc3097 19.5625\n", "2023-07-28 11:14:00 1 28fc3097 19.6250\n", "2023-07-28 11:19:00 1 28fc3097 20.3750\n", "2023-07-28 11:31:00 1 28fc3097 19.7500\n", "2023-07-28 11:36:00 1 28fc3097 19.5000\n", "2023-07-28 11:40:00 1 28fc3097 19.6250\n", "2023-07-28 11:45:00 1 28fc3097 20.3125\n", "2023-07-28 11:50:00 1 28fc3097 20.9375\n", "2023-07-28 11:55:00 1 28fc3097 21.0000\n", "2023-07-28 12:00:00 1 28fc3097 21.0000\n", "2023-07-28 12:05:00 1 28fc3097 21.0000\n", "2023-07-28 12:10:00 1 28fc3097 20.9375\n", "2023-07-28 12:15:00 1 28fc3097 21.2500\n", "2023-07-28 12:20:00 1 28fc3097 21.1875\n", "2023-07-28 12:25:00 1 28fc3097 21.0000\n", "2023-07-28 12:30:00 1 28fc3097 21.1875\n", "2023-07-28 12:35:00 1 28fc3097 20.8750\n", "2023-07-28 12:40:00 1 28fc3097 21.1250\n", "2023-07-28 12:45:00 1 28fc3097 20.9375\n", "2023-07-28 12:50:00 1 28fc3097 21.1250\n", "2023-07-28 12:54:00 1 28fc3097 21.2500\n", "2023-07-28 12:59:00 1 28fc3097 21.2500\n", "2023-07-28 13:04:00 1 28fc3097 21.2500\n", "2023-07-28 13:09:00 1 28fc3097 21.1875\n", "2023-07-28 13:14:00 1 28fc3097 21.1875\n", "2023-07-28 13:19:00 1 28fc3097 21.1875\n", "2023-07-28 13:24:00 1 28fc3097 21.1875\n", "2023-07-28 13:29:00 1 28fc3097 21.1875\n", "2023-07-28 13:34:00 1 28fc3097 21.1875\n", "2023-07-28 13:39:00 1 28fc3097 21.2500\n", "2023-07-28 13:44:00 1 28fc3097 21.2500\n", "2023-07-28 13:49:00 1 28fc3097 22.7500" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IDSerialTemp
Datetime
2023-07-28 10:48:00128fc309719.8125
2023-07-28 11:06:00128fc309719.5625
2023-07-28 11:08:00128fc309719.5625
2023-07-28 11:09:00128fc309719.5000
2023-07-28 11:10:00128fc309719.5000
2023-07-28 11:11:00128fc309719.5625
2023-07-28 11:14:00128fc309719.6250
2023-07-28 11:19:00128fc309720.3750
2023-07-28 11:31:00128fc309719.7500
2023-07-28 11:36:00128fc309719.5000
2023-07-28 11:40:00128fc309719.6250
2023-07-28 11:45:00128fc309720.3125
2023-07-28 11:50:00128fc309720.9375
2023-07-28 11:55:00128fc309721.0000
2023-07-28 12:00:00128fc309721.0000
2023-07-28 12:05:00128fc309721.0000
2023-07-28 12:10:00128fc309720.9375
2023-07-28 12:15:00128fc309721.2500
2023-07-28 12:20:00128fc309721.1875
2023-07-28 12:25:00128fc309721.0000
2023-07-28 12:30:00128fc309721.1875
2023-07-28 12:35:00128fc309720.8750
2023-07-28 12:40:00128fc309721.1250
2023-07-28 12:45:00128fc309720.9375
2023-07-28 12:50:00128fc309721.1250
2023-07-28 12:54:00128fc309721.2500
2023-07-28 12:59:00128fc309721.2500
2023-07-28 13:04:00128fc309721.2500
2023-07-28 13:09:00128fc309721.1875
2023-07-28 13:14:00128fc309721.1875
2023-07-28 13:19:00128fc309721.1875
2023-07-28 13:24:00128fc309721.1875
2023-07-28 13:29:00128fc309721.1875
2023-07-28 13:34:00128fc309721.1875
2023-07-28 13:39:00128fc309721.2500
2023-07-28 13:44:00128fc309721.2500
2023-07-28 13:49:00128fc309722.7500
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "
\n", "
\n" ] }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "## Day 3, Part 3: Plotting sensor time series data" ], "metadata": { "id": "mfL77XTyMrqZ" } }, { "cell_type": "markdown", "source": [ "The data in a `pandas` DataFrame is similar to a NumPy 2-D array, except we use **column labels** to refer to columns and **index** values to refer to rows.\n", "\n", "To retrieve a specific column, we use bracket notation: **`data_frame[COLUMN_LABEL]`**." ], "metadata": { "id": "4HpB3WGDMaUu" } }, { "cell_type": "code", "source": [ "# For example:\n", "data_0m['Temp']" ], "metadata": { "id": "DXx1Vu-KMaUv", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c0ada16a-24aa-4ec6-e073-f44cda054162" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Datetime\n", "2023-07-28 11:47:00 21.3750\n", "2023-07-28 11:48:00 21.3750\n", "2023-07-28 11:49:00 21.3750\n", "2023-07-28 11:50:00 21.3750\n", "2023-07-28 11:51:00 21.5000\n", " ... \n", "2023-07-28 13:38:00 21.8750\n", "2023-07-28 13:39:00 21.8750\n", "2023-07-28 13:40:00 21.9375\n", "2023-07-28 13:41:00 21.8750\n", "2023-07-28 13:42:00 21.8750\n", "Name: Temp, Length: 111, dtype: float64" ] }, "metadata": {}, "execution_count": 40 } ] }, { "cell_type": "code", "source": [ "data_0m.index" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8p6GWywCVs1v", "outputId": "f0b52ad0-7161-451a-e819-eee04215b694" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "DatetimeIndex(['2023-07-28 11:47:00', '2023-07-28 11:48:00',\n", " '2023-07-28 11:49:00', '2023-07-28 11:50:00',\n", " '2023-07-28 11:51:00', '2023-07-28 11:52:00',\n", " '2023-07-28 11:53:00', '2023-07-28 11:54:00',\n", " '2023-07-28 11:55:00', '2023-07-28 11:56:00',\n", " ...\n", " '2023-07-28 13:33:00', '2023-07-28 13:34:00',\n", " '2023-07-28 13:35:00', '2023-07-28 13:36:00',\n", " '2023-07-28 13:37:00', '2023-07-28 13:38:00',\n", " '2023-07-28 13:39:00', '2023-07-28 13:40:00',\n", " '2023-07-28 13:41:00', '2023-07-28 13:42:00'],\n", " dtype='datetime64[ns]', name='Datetime', length=111, freq=None)" ] }, "metadata": {}, "execution_count": 41 } ] }, { "cell_type": "markdown", "source": [ "***Using the data variables for each of the two files, try plotting the two time series (time vs. temperature) using `plt.plot()`.***\n", "\n", "IMPORTANT: instead of referencing the datetime column using `data_0m['Datetime']`, we'll have to reference it using `data_0m.index` since we designated it as the index." ], "metadata": { "id": "cXGIFkQx4jQq" } }, { "cell_type": "code", "source": [ "# Write your code below:\n", "plt.plot(data_0m.index,data_0m['Temp'])" ], "metadata": { "id": "toiPuz2sM3xi", "colab": { "base_uri": "https://localhost:8080/", "height": 448 }, "outputId": "2e3b6497-0289-4b12-ab9e-46a20cca0b5b" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 42 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjUElEQVR4nO3deXhU5dk/8O8syWRhEggwWUiAQIAIAVQEZBGiUBaVTaviUktri9rEltrXhb6oiLap/rT62irWVuH1tbi0GoqoILJE2YJssoctYUtCICEzWSeZmfP7Y+ac2c4kM0OSmZN8P9c1F+TMyck5SU7mnvu5n/tRCYIggIiIiKgLUYf6BIiIiIg6GgMgIiIi6nIYABEREVGXwwCIiIiIuhwGQERERNTlMAAiIiKiLocBEBEREXU5DICIiIioy9GG+gTags1mQ2lpKfR6PVQqVahPh4iIiPwgCAJqamqQkpICtbpjczKdIgAqLS1FWlpaqE+DiIiIgnDu3DmkpqZ26NfsFAGQXq8HYP8GxsXFhfhsiIiIyB8mkwlpaWnS63hH6hQBkDjsFRcXxwCIiIhIYUJRvsIiaCIiIupyGAARERFRl8MAiIiIiLocBkBERETU5TAAIiIioi6HARARERF1OQyAiIiIqMthAERERERdDgMgIiIi6nICCoDy8vIwevRo6PV6GAwGzJ07F0VFRbL7CoKAmTNnQqVSYfXq1S0ed8GCBVCpVG6PGTNmBHJqRERERH4LKAAqKChATk4Odu7ciQ0bNqC5uRnTpk1DXV2d176vv/56QK2tZ8yYgbKyMunx4YcfBnJqRERERH4LaC2wdevWuX28cuVKGAwG7NmzB5MmTZK279+/H6+++ip2796N5ORkv46t0+mQlJQUyOkQERERBeWqaoCMRiMAICEhQdpWX1+P++67D2+++WZAAc2WLVtgMBgwZMgQPProo6isrPS5r9lshslkcnsQdUW1Zgv+VnAKZyvrQ30qRESKEnQAZLPZsGjRIkyYMAFZWVnS9t/+9rcYP3485syZ4/exZsyYgffffx8bN27ESy+9hIKCAsycORNWq1V2/7y8PMTHx0uPtLS0YC+DSNG+PFiGvK+O4S+bToT6VIiIFCWgITBXOTk5OHToELZu3SptW7NmDTZt2oR9+/YFdKz58+dL/x8+fDhGjBiBgQMHYsuWLZgyZYrX/osXL8bjjz8ufWwymRgEUZdU02gBYM8EERGR/4LKAOXm5mLt2rXYvHkzUlNTpe2bNm3CqVOn0L17d2i1Wmi19vjqzjvvRHZ2tt/HHzBgAHr16oWTJ0/KPq/T6RAXF+f2IOqKbDYBAGB1/EtERP4JKAMkCAIee+wx5OfnY8uWLUhPT3d7/umnn8YvfvELt23Dhw/Ha6+9hlmzZvn9dc6fP4/Kykq/C6iJuioLAyAioqAEFADl5ORg1apV+M9//gO9Xo/y8nIAQHx8PKKjo5GUlCRb+Ny3b1+3YCkzMxN5eXmYN28eamtr8fzzz+POO+9EUlISTp06hSeffBIZGRmYPn36VV4eUedmExwBkMAAiIgoEAENgS1fvhxGoxHZ2dlITk6WHh9//HFAX7SoqEiaQabRaHDgwAHMnj0bgwcPxkMPPYRRo0bhu+++g06nC+i4RF2NlRkgIqKgBDwEFii5z3HdFh0djfXr1wd8XCJyBj42ZoCIiALCtcCIFEwMgCxWBkBERIFgAESkYGLtDzNARESBYQBEpGCcBk9EFBwGQEQKJhVBM/4hIgoIAyAiBXP2AbKF+EyIiJSFARCRgkl9gBj/EBEFhAEQkYJJ0+BZA0REFBAGQEQKxk7QRETBYQBEpGBi/x/OAiMiCgwDICIFswoMgIiIgsEAiEjB2AeIiCg4DICIFEzs/8NO0EREgWEARKRgYv8fCzNAREQBYQBEpGCcBk9EFBwGQEQKJjZA5DR4IqLAMAAiUjAbZ4EREQWFARCRglk4C4yIKCgMgIgUjNPgiYiCwwCISMGkImjWABERBYQBEJGCsRM0EVFwGAARKZgzAwQIzAIREfmNARCRgrlmfpgFIiLyHwMgIgVzrf1hLyAiIv8xACJSMNesj2NVDCIi8gMDICIFcw2ALIyAiIj8xgCISMGYASIiCg4DICIFs7IGiIgoKAyAiBTMxllgRERBYQBEpGAWBkBEREFhAESkYG4ZIA6BERH5jQEQkYK5Bj02ZoCIiPzGAIhIwaw21/8zACIi8hcDICIFs7rMfbcwACIi8hsDICIFc+sDxBogIiK/MQAiUjDXpA+HwIiI/McAiEjBuBo8EVFwGAARKRgDICKi4DAAIlIwLoVBRBQcBkBECua+GCoDICIifzEAIlIoz4CHQ2BERP5jAESkUJ59fxgAERH5jwEQkUJ59v1hDRARkf8YABEplGfGhxkgIiL/BRQA5eXlYfTo0dDr9TAYDJg7dy6Kiopk9xUEATNnzoRKpcLq1atbPK4gCHj22WeRnJyM6OhoTJ06FSdOnAjk1Ii6HM+MDztBExH5L6AAqKCgADk5Odi5cyc2bNiA5uZmTJs2DXV1dV77vv7661CpVH4d9+WXX8Ybb7yBt99+G4WFhYiNjcX06dPR2NgYyOkRdSlWq3vAY7EyACIi8pc2kJ3XrVvn9vHKlSthMBiwZ88eTJo0Sdq+f/9+vPrqq9i9ezeSk5NbPKYgCHj99dexZMkSzJkzBwDw/vvvIzExEatXr8b8+fMDOUWiLoMZICKi4F1VDZDRaAQAJCQkSNvq6+tx33334c0330RSUlKrxyguLkZ5eTmmTp0qbYuPj8fYsWOxY8cO2c8xm80wmUxuD6KuxnsafIhOhIhIgYIOgGw2GxYtWoQJEyYgKytL2v7b3/4W48ePl7I5rSkvLwcAJCYmum1PTEyUnvOUl5eH+Ph46ZGWlhbkVRApl2cGiLPAiIj8F9AQmKucnBwcOnQIW7dulbatWbMGmzZtwr59+9rk5HxZvHgxHn/8celjk8nEIIi6HM+aH6uNKSAiIn8FlQHKzc3F2rVrsXnzZqSmpkrbN23ahFOnTqF79+7QarXQau3x1Z133ons7GzZY4nDZBcvXnTbfvHiRZ9DaDqdDnFxcW4Poq7Gqw8Q4x8iIr8FFAAJgoDc3Fzk5+dj06ZNSE9Pd3v+6aefxoEDB7B//37pAQCvvfYaVqxYIXvM9PR0JCUlYePGjdI2k8mEwsJCjBs3LsDLIeo6PPv+cC0wIiL/BTQElpOTg1WrVuE///kP9Hq9VKMTHx+P6OhoJCUlyWZt+vbt6xYsZWZmIi8vD/PmzYNKpcKiRYvw4osvYtCgQUhPT8czzzyDlJQUzJ079+qujqgTYydoIqLgBRQALV++HAC8hrNWrFiBBQsW+H2coqIiaQYZADz55JOoq6vDwoULUV1djYkTJ2LdunWIiooK5PSIuhTPtcA8PyYiIt8CCoCEIN5hyn2O5zaVSoVly5Zh2bJlAR+fqKviEBgRUfC4FhiRQnlO+uJaYERE/mMARKRQ7ARNRBQ8BkBECuXZ94c1QERE/mMARKRQnn1/OARGROQ/BkBECsUiaCKi4DEAIlIo9gEiIgoeAyAihfKs+eEQGBGR/xgAESmU55AXAyAiIv8xACJSKM+Ah0NgRET+YwBEpFBefYCYASIi8hsDICKF8swAsQ8QEZH/GAARKRSnwRMRBY8BEJFCcRo8EVHwGAARKZRXEbTNx45EROSFARCRQnn3AWIERETkLwZARArl3QcoRCdCRKRADICIFMprGjxrgIiI/MYAiEih2AmaiCh4DICIFIprgRERBY8BEJFCec8CYwBEROQvBkBECsU+QEREwWMARKRQnrO+2AmaiMh/DICIFErs+xOhUQHgWmBERIFgAESkUGIGKEJjv405DZ6IyH8MgIgUSqz5idTab2MWQRMR+Y8BEJFCiTU/kRoGQEREgWIARKRQYs1PBAMgIqKAMQAiUiib5xAYa4CIiPzGAIhIoaweQ2CcBk9E5D8GQEQKJQVAzAAREQWMARCRQlmlGiBHHyArAyAiIn8xACJSKDHjwz5ARESBYwBEpFA2zyEw1gAREfmNARCRQnkVQTP+ISLyGwMgIoXyLIK22Gwt7U5ERC4YABEplFcNEOMfIiK/MQAiUigrO0ETEQWNARCRQrETNBFR8BgAESmU2PdHx1lgREQBYwBEpFA2wb0RIgMgIiL/MQAiUijPGiCuBUZE5D8GQEQKJa58wRogIqLAMQAiUih2giYiCl5AAVBeXh5Gjx4NvV4Pg8GAuXPnoqioyG2fhx9+GAMHDkR0dDR69+6NOXPm4NixYy0ed8GCBVCpVG6PGTNmBH41RF2I2PgwktPgiYgCFlAAVFBQgJycHOzcuRMbNmxAc3Mzpk2bhrq6OmmfUaNGYcWKFTh69CjWr18PQRAwbdo0WK3WFo89Y8YMlJWVSY8PP/wwuCsi6iLExodSHyAOgRER+U0byM7r1q1z+3jlypUwGAzYs2cPJk2aBABYuHCh9Hz//v3x4osvYuTIkSgpKcHAgQN9Hlun0yEpKSmQ0yHq0qwefYAEARAEASqVKpSnRUSkCFdVA2Q0GgEACQkJss/X1dVhxYoVSE9PR1paWovH2rJlCwwGA4YMGYJHH30UlZWVPvc1m80wmUxuD6KuxnMxVNdtRETUsqADIJvNhkWLFmHChAnIyspye+6tt95Ct27d0K1bN3z11VfYsGEDIiMjfR5rxowZeP/997Fx40a89NJLKCgowMyZM30Om+Xl5SE+Pl56tBZcEXVG0jR4rfM2tjAAIiLyi0oQgiscePTRR/HVV19h69atSE1NdXvOaDSioqICZWVleOWVV3DhwgVs27YNUVFRfh379OnTGDhwIL755htMmTLF63mz2Qyz2Sx9bDKZkJaWBqPRiLi4uGAuh0hxbv2f73CkzIS3H7gej3ywFwBwZNl0xEQGNLJNRBQyJpMJ8fHxIXn9DioDlJubi7Vr12Lz5s1ewQ8AxMfHY9CgQZg0aRL+/e9/49ixY8jPz/f7+AMGDECvXr1w8uRJ2ed1Oh3i4uLcHkRdjedaYACHwIiI/BXQW0VBEPDYY48hPz8fW7ZsQXp6ul+fIwiCW8amNefPn0dlZSWSk5MDOT2iLsVZA6SRtokzw4iIqGUBZYBycnLwwQcfYNWqVdDr9SgvL0d5eTkaGhoA2Ieu8vLysGfPHpw9exbbt2/HXXfdhejoaNx6663ScTIzM6WMUG1tLZ544gns3LkTJSUl2LhxI+bMmYOMjAxMnz69DS+VqHNxLoXhnPVlYQREROSXgAKg5cuXw2g0Ijs7G8nJydLj448/BgBERUXhu+++w6233oqMjAzcc8890Ov12L59OwwGg3ScoqIiaQaZRqPBgQMHMHv2bAwePBgPPfQQRo0ahe+++w46na4NL5WocxGnwWtdAiD2AiIi8k/AQ2AtSUlJwZdffhnQcaKjo7F+/fpAToOI4MwAadRqaNUqWGwCh8CIiPzEtcCIFEpcC0yjUkGttmeBmAEiIvIPAyAihRJ7/qjV9iAIAKxWBkBERP5gAESkUOI0eI1aBQ0zQEREAWEARKRQYg2Q1jUAYh8gIiK/MAAiUigx2FGrnAGQjRkgIiK/MAAiUijnLDAV1I4aIAtrgIiI/MIAiEihxHofewbIvo0ZICIi/zAAIlIoseePVqOCVm2/lVkDRETkHwZARAolZoDsfYDctxERUcsYABEpkCAIziJotcrZB4gZICIivzAAIlIg1zjHrRM0AyAiIr8wACJSINdAR6NRQStOg2cARETkFwZARArkOttLo3JOg2cNEBGRfxgAESmQxTUD5NIJ2sIMEBGRXxgAESmQ6xCYWydoBkBERH5hAESkQK6BDtcCIyIKHAMgIgVyrfVxnQbPTtBERP5hAESkQK7rgAGQpsGzBoiIyD8MgIgUSAqAHJkfNkIkIgoMAyAiBfLMAGk1HAIjIgoEAyAiBRIDHWkITMoAheyUiIgUhQEQkQKJtT6O+MdlFhgjICIifzAAIlIgm2cRNDNAREQBYQBEpEBWaQjMfguLa4FxKQwiIv8wACJSIGcRNBz/shM0EVEgGAARKZDnNHj2ASIiCgwDICIFEgMgMfBxzIJnBoiIyE8MgIgUSJwGL9b+iLVArAEiIvIPAyAiBRJne0kZILW4nQEQEZE/GAARKZDF0e9HWgqDq8ETEQWEARCRAon9Dr37ADEAIiLyBwMgIgWyeiyFIdYCcS0wIiL/MAAiUiCvTtAcAiMiCggDICIFcq4FJk6DZwBERBQIBkBECmT1yACxCJqIKDAMgIgUyCb4CIBYA0RE5BcGQEQK5LkUBtcCIyIKDAMgIgXyHAITa4G4FhgRkX8YABEpkNdaYJwGT0QUEAZARApk9VoLjEXQRESBYABEpEA2z2nwUgAUslMiIlIUBkBECmSRaoDsHzv7ADECIiLyBwMgIgXynAYvdYLmCBgRkV8CCoDy8vIwevRo6PV6GAwGzJ07F0VFRW77PPzwwxg4cCCio6PRu3dvzJkzB8eOHWvxuIIg4Nlnn0VycjKio6MxdepUnDhxIvCrIeoinLPA7LewltPgiYgCElAAVFBQgJycHOzcuRMbNmxAc3Mzpk2bhrq6OmmfUaNGYcWKFTh69CjWr18PQRAwbdo0WK1Wn8d9+eWX8cYbb+Dtt99GYWEhYmNjMX36dDQ2NgZ/ZUSdmLMPkP1jrgVGRBQYbSA7r1u3zu3jlStXwmAwYM+ePZg0aRIAYOHChdLz/fv3x4svvoiRI0eipKQEAwcO9DqmIAh4/fXXsWTJEsyZMwcA8P777yMxMRGrV6/G/PnzA74oos7Oaxp8B/UBulxrRmOzFak9Ytr16xARtberqgEyGo0AgISEBNnn6+rqsGLFCqSnpyMtLU12n+LiYpSXl2Pq1KnStvj4eIwdOxY7duyQ/Ryz2QyTyeT2IOpKxGnwzk7Q9u3t3Qfojre2Y/pr36K+ydKuX4eIqL0FHQDZbDYsWrQIEyZMQFZWlttzb731Frp164Zu3brhq6++woYNGxAZGSl7nPLycgBAYmKi2/bExETpOU95eXmIj4+XHr6CK6LOSqz10WrEAMh+K7fnEJjNJuBsVT3qmqyorG1qt69DRNQRgg6AcnJycOjQIXz00Udez91///3Yt28fCgoKMHjwYNx9991tWs+zePFiGI1G6XHu3Lk2OzaREoj9ftQdmAFqcmkyZLZwuj0RKVtANUCi3NxcrF27Ft9++y1SU1O9nhczM4MGDcKNN96IHj16ID8/H/fee6/XvklJSQCAixcvIjk5Wdp+8eJFXHvttbJfX6fTQafTBXPqRJ2C2O/Hay2wdpwH7xr0NDEAIiKFCygDJAgCcnNzkZ+fj02bNiE9Pd2vzxEEAWazWfb59PR0JCUlYePGjdI2k8mEwsJCjBs3LpDTI+oyxBogr07Q7ZgBMlussv8nIlKigAKgnJwcfPDBB1i1ahX0ej3Ky8tRXl6OhoYGAMDp06eRl5eHPXv24OzZs9i+fTvuuusuREdH49Zbb5WOk5mZifz8fACASqXCokWL8OKLL2LNmjU4ePAgHnzwQaSkpGDu3Lltd6VEnYg4GqXxmAXWnn2AzM3MABFR5xHQENjy5csBANnZ2W7bV6xYgQULFiAqKgrfffcdXn/9dVy5cgWJiYmYNGkStm/fDoPBIO1fVFQkzSADgCeffBJ1dXVYuHAhqqurMXHiRKxbtw5RUVFXcWlEnZfN12Ko7ZoBYg0QEXUeAQVAQit/XFNSUvDll18GfByVSoVly5Zh2bJlgZwOUZcl1vqoO3A1eNdhL2aAiEjpuBYYkQLZPPoAdUQnaGaAiKgzYQBEpEC+OkG3awDkWgPUwtI2RERKwACISIGsHjVA0mKoHdUHqJkZICJSNgZARApktYqrwbsPgbXnWmDmZpcaICsDICJSNgZARArkqw9Qu06DtzADRESdBwMgIgUSAx1xCQwxEOqoafDMABGR0jEAIlIgaTV4xyKoUg1QO8Ylbp2gm1kETUTKxgCISIHEWh/HYvDSEJilHSMg12EvMzNARKRwDICIFMg5BOa+GGp7xiWsASKizoQBEJECefUB6ohp8KwBIqJOhAEQkQL5XAuMS2EQEfmFARCRAok1QJ7T4LkUBhGRfxgAESmQ1aMGqEOWwnDLAHEWGBEpGwMgIgWSFkOVOkHbt7drH6BmZoCIqPNgAESkQJ4ZIK0jAuqoTtCsASIipWMARKRAUgCkcs8AtetaYK6NEBkAEZHCMQAiUiCvafCOQAhovywQM0BE1JkwACJSIMdi8FLgIw6F2Z9rnwCoyW0WGIugiUjZGAARKZDUCVojEwAxA0RE1CoGQEQKZPGoAeqYAIg1QETUeTAAIlIgX2uBAe03BOY6DZ4ZICJSOgZARAokBjmenaCBjimCZgaIiJSOARCRAolBjlbjPQusI4bAmAEiIqVjAESkQJ5rganVKogxUIcUQVtt7dp0kYiovTEAIlIgz07QgMt6YB0wDR6wB0FERErFAIioFUfLTHhm9SFcqjGH+lQk0lpgLkNf6nZeEd6z7ocBEBEpGQMgola8u7UY/7fzDD7/oTTUpyKRywBpHf+3tUNcYrHavAIr11lhRERKwwCIqBV1Zovbv+GgpSEwSztEQHKzvpgBIiIlYwBE1IrGZvvsp8YwWv5BrPPRuNzB4hCYrR1qgFwDoG46rX1bc/h8P4iIAsUAiKgV4ot/OA35WD1mgQHObFB7JGbEKfARGhWiIjQAmAEiImVjAETUCikACqPeN1IfILXzFta0YxG0GPzptBrotGq3bURESsQAiKgV0hBYGA35SH2AXO5gaRp8OwRAYrYnUquWAiBmgIhIyRgAEbUiLDNAgkwRtLr9+gA5M0BqRDIDRESdAAMgolaI9S/mcCqCtsn1AXJ/ri2J165zywCFz/eDiChQDICIWiFmOhrDJOMhCALEGMe9D5D9dm7PWWA6rYYZICLqFBgAEbVCrP0JlwyQa4bHNQAS/2uxtmMGKEINnZazwIhI+RgAEbUi3GqAXGt81DI1QO2SAWINEBF1MgyAiFogCELY9QFybfTsVgPUjrPA3IbAHN0XzcwAEZGCMQAiaoFr1idcOkG7ZoDcaoA07TcLTFwJPlKrhi5CzACFx/eDiCgYDICIWuAaAIVLBshXDZDUB6g9a4C0aikDxBogIlIyBkBELXAtfA6bGiDXAMhtGnw79gGyOGuAxAxQU5h8P4iIgsEAiKgFrlmfcBnycQ2A1DIZIFu71wBp3LYRESlRQAFQXl4eRo8eDb1eD4PBgLlz56KoqEh6vqqqCo899hiGDBmC6Oho9O3bF7/+9a9hNBpbPO6CBQugUqncHjNmzAjuiojaUDhmgMRZXlqX4Ado707QLtPgmQEiok4goACooKAAOTk52LlzJzZs2IDm5mZMmzYNdXV1AIDS0lKUlpbilVdewaFDh7By5UqsW7cODz30UKvHnjFjBsrKyqTHhx9+GNwVEbUh1+aHTVZbu2RXAiWtBO8rAGrXDJCzBihc+iIREQVDG8jO69atc/t45cqVMBgM2LNnDyZNmoSsrCx8+umn0vMDBw7EH/7wBzzwwAOwWCzQan1/OZ1Oh6SkpABPn6h9eWZ9zBYboiM1ITobO7llMICOCoA0zAARUadwVTVA4tBWQkJCi/vExcW1GPwAwJYtW2AwGDBkyBA8+uijqKysvJpTI2oTnnU/4ZD1kAIgjwxQ+/YB8p4FFi5DgkREwQgoA+TKZrNh0aJFmDBhArKysmT3uXz5Ml544QUsXLiwxWPNmDEDd9xxB9LT03Hq1Cn8/ve/x8yZM7Fjxw5oNN7vts1mM8xms/SxyWQK9jKIWiSXAQo1q8xK8ICzJqg91wKz9wFyLIURBt8LIqJgBR0A5eTk4NChQ9i6davs8yaTCbfddhuGDh2KpUuXtnis+fPnS/8fPnw4RowYgYEDB2LLli2YMmWK1/55eXl4/vnngz11Ir95ZnzCoReQzVcGSBoCa/uv6TYNnhkgIuoEghoCy83Nxdq1a7F582akpqZ6PV9TU4MZM2ZAr9cjPz8fERERAR1/wIAB6NWrF06ePCn7/OLFi2E0GqXHuXPngrkMolZ5rgAfDt2gLWIRtGcNkDQE1vaBibQWWARrgIiocwgoAyQIAh577DHk5+djy5YtSE9P99rHZDJh+vTp0Ol0WLNmDaKiogI+qfPnz6OyshLJycmyz+t0Ouh0uoCPSxSocMwAOWuA3Le3bxG0XA1Q6INBIqJgBZQBysnJwQcffIBVq1ZBr9ejvLwc5eXlaGhoAGAPfsRp8e+++y5MJpO0j9Xq/GOZmZmJ/Px8AEBtbS2eeOIJ7Ny5EyUlJdi4cSPmzJmDjIwMTJ8+vQ0vlShw3jVAoX/Rd/YBcr99nX2A2v5rchYYEXU2AWWAli9fDgDIzs52275ixQosWLAAe/fuRWFhIQAgIyPDbZ/i4mL0798fAFBUVCTNINNoNDhw4AD+93//F9XV1UhJScG0adPwwgsvMMtDIeeZ8fEcEgsFZx8g9+1iANS+naDV7ARNRJ1CwENgLcnOzm51H8/jREdHY/369YGcBlGHaQznafAq+WnwlvYIgFw6QUdqmQEiIuXjWmBELQjLafA+O0Hb/22PafDiyu86rQY6LWeBEZHyMQAiaoFnxsczIxQKVp9rgdlv53Ypgm529gGKZABERJ0AAyCiFnjW/ITDi744y91rGrzjbm7vtcB00hBY6INBIqJgMQAiaoH3NPjQv+hbHBGQZyNETUcthcEMEBF1AgyAiFoQjjVANh9LYUidoNtxKQxdhAY6rWMpDKvNr0kPREThiAEQUQvE2hdxtCk8psHb//W5FlgbZ4AEQZBmfLlmgAQBaG6PpkNERB2AARBRC8SlL/Q6e8eIsJ4G306doF2zXq41QIBzdhgRkdIwACJqgZgBiou2r2cXDkNgPqfBt1MfINcgR6fVSEthAOFRE0VEFAwGQEQtEDM+cVH2ACicpsF7ZoCkTtBtXJfj2g07QqOCWq2SgiBmgIhIqRgAEbVArPmJD6MMkFjjo9XIB0BtPwTmnAGmcgRd0kywMKiJIiIKBgMgohaIL/7hFABJQ2CeGSBVO2WAXAqgRVIvIGaAiEihGAARtUB88Y+LthdBh8UQmK3lafCWNp6ZJWZ5dBEaaRszQESkdAyAiFoQjkNgYg2Qdyfo9ukD5DoEJnJmgEIfEBIRBYMBEFELvIbAwigD5LkWWHv1AZIbAmMGiIiUjgEQUQucQ2DhkwHy2QlaXAqjjXsTOgMgmSEw1gARkUIxACLywbUDspgBCocaILHGx6sPkDQLrG2DEqkLdITrEJg9GGIGiIiUigEQkQ+u2R4xA9QUThkg9/inHTtB24M+1waI7ANERErHAIjIB9fshtgIMRyGwJyzwNxvX60UALXt15ObBSZmg8IhICQiCgYDICIfxMyHWgXE6uwv/uEwBCZ1gva4ezuyD5CYAQqHtdGIiILBAIjIB3EKfFSEBlFizUsYZDys1lb6ALVjJ2iRmA1iBoiIlIoBEJEPri/8UREat22h5LsPkP3f9psG7zILTMoAMQAiImViAETkg+sLv5j9aLYKbV5kHCibr07QqnYqgm6WmQXGGiAiUjgGQEQ+SBmgCLXbi3+os0BWH32AtI6i6LbuBC12e2YNEBF1JgyAiHyQaoC0Grfhn1D3vhFrfDQ+hsDaKwMUqWUGiIg6DwZARD64ZoA0ahUiHI13GkOc9ejwITCZGiAda4CISOEYABH5INW+ODIf4dL9WOzz46sTdNtPg+csMCLqfBgAEfkgZnrEGWBiABDqrIcY4Hguhqppt07QLfUBYgBERMrEAIjIB88MULhMhbc41vryngbf3rPA2AmaiDoPBkBEPnjWvoiBUGOYDIF51gBp2q0GiLPAiKjzYQBE5IO47IWY7YjUhseLvs8iaDED1ObT4L2HwMTvCYfAiEipGAAR+eCZAZKGwEKdAfLZB8hRBN1eQ2BunaDDZ2kQIqJgMAAi8sFz6EcaAgt1I0QffYDaby0wmSJoLWuAiEjZGAAR+WB2WQwVcBYBhzwD5AhwvKbBq9opAyQ3DZ4BEBEpHAMgIh8aPV74o8JkGrw0BOYe/zhngbV5HyDvtcDCpR6KiChYDICIfPBcBFTMAInF0aEiFUFr3G9f5zT4tv16cjVAUgaorb8YEVEHYQBE5IOvafChzgD5XgtMDIDa9vxkp8GL34sQDwcSEQWLARCRD2KmJyrCvQg61MM+zmnw7ts7dC0wx/+ZASIipWIAROSDz2nwYVID5KsTdBvHP1Khs2sNkI4ZICJSOAZARD74nAYf4hogMcOj1cj3AWrLDJDFapOG3GRngTEDREQKxQCIyAcx0+NcDDVMMkA2+QyQuh0CINcAJ1KmBshqE2AJ0yDoZEUtvjlyMdSnQURhigEQkQ+NXouhhsewj9XHUhjSWmBtOA3e9VojNa4ZIGc9ULhmgXJX7cUv3t+N/eeqQ30qRBSGGAAR+RCunaBtgq9O0PZ/2zIDJGa7tGoVtBrvDBAQ+oBQjqmxGcfKawAAe85cCfHZEFE4YgBE5EO4d4L2XgvMeTu3VTdouSnw4tcWa47CMQN0pNQk/f/wBWMIz4SIwlVAAVBeXh5Gjx4NvV4Pg8GAuXPnoqioSHq+qqoKjz32GIYMGYLo6Gj07dsXv/71r2E0tvwHSBAEPPvss0hOTkZ0dDSmTp2KEydOBHdFRG1EevGP8BgCC5e1wHwMgQFttx6Yswu0xuu5cO4FdMgl6DlUygCIiLwFFAAVFBQgJycHO3fuxIYNG9Dc3Ixp06ahrq4OAFBaWorS0lK88sorOHToEFauXIl169bhoYceavG4L7/8Mt544w28/fbbKCwsRGxsLKZPn47Gxsbgr4zoKnl2QJaKoEOdARLk1wJzSQBJw2RXq0lmIVSRcyZY+C2HcdglA3SyohYNTeF3jkQUWtpAdl63bp3bxytXroTBYMCePXswadIkZGVl4dNPP5WeHzhwIP7whz/ggQcegMVigVbr/eUEQcDrr7+OJUuWYM6cOQCA999/H4mJiVi9ejXmz58fzHURXTXnLLDwaoQojjj56gRt36d9h8AAZwaoMcwzQDYBOFpuwvV9e4TwjIgo3FxVDZA4tJWQkNDiPnFxcbLBDwAUFxejvLwcU6dOlbbFx8dj7Nix2LFjh+znmM1mmEwmtwdRW7LaBKm2xSsDFOJp8GJ9j9ZzCMw1AGqjDJCY7YpsIQAKtxqghiYrTl2qBQBckxwHwD0jREQEXEUAZLPZsGjRIkyYMAFZWVmy+1y+fBkvvPACFi5c6PM45eXlAIDExES37YmJidJznvLy8hAfHy890tLSgrwKInlNLkGO1zT4kK8FZv/6nkNgrhkhq7WNa4C03jVA0nIYIf5+eDpaboJNAHp10+GWzN4AWAhNRN6CDoBycnJw6NAhfPTRR7LPm0wm3HbbbRg6dCiWLl0a7JeRtXjxYhiNRulx7ty5Nj0+keswl3MafJisBu+IbbyKoNsjA9TSEJgmPAJCT2Kwk9UnDlkp8QBYCE1E3oIKgHJzc7F27Vps3rwZqampXs/X1NRgxowZ0Ov1yM/PR0REhM9jJSUlAQAuXnTv2Hrx4kXpOU86nQ5xcXFuD6K2JNf/RhcmGSBfnaBVKhXETW03Dd57HTCRuC3cMkCHLtiHu7JS4pHVxx4AFZXXhN15ElFoBRQACYKA3Nxc5OfnY9OmTUhPT/fax2QyYdq0aYiMjMSaNWsQFRXV4jHT09ORlJSEjRs3uh2jsLAQ48aNC+T0iNqMmOVxzXxESbPAQl0ELV8D5LqtrWuA5IbAnBmg8JphJWZ7svrEIbVHNOKitGi2CjhRURPiMyOicBJQAJSTk4MPPvgAq1atgl6vR3l5OcrLy9HQ0ADAGfzU1dXh3XffhclkkvaxukyVzczMRH5+PgD7u9ZFixbhxRdfxJo1a3Dw4EE8+OCDSElJwdy5c9vuSokCINf/Rsx4NIZJBshzCAxwZoUsbVUDZG1hGnxE+NUANVlsOH7RHugMS4mHSqXCMMcw2OELLIQmIqeApsEvX74cAJCdne22fcWKFViwYAH27t2LwsJCAEBGRobbPsXFxejfvz8AoKioyK054pNPPom6ujosXLgQ1dXVmDhxItatW9dq9oiovUhdoGVWQBcXAHVdGqIjSX2AVN4BkBgUtVUfILNMJkwUjjVAxy/WoNkqID46Aqk9ogHYM0E7TlfiUKkRd4MTJojILqAASGjlj2p2dnar+8gdR6VSYdmyZVi2bFkgp0PUbhqlLtAuGSCXYSCzJXQBkK2FDJC0IGpb1wDJzQILwxqgw47hr2EpcVA5vhdiHdAhzgQjkmWx2vDAu4W4aDLjs0fHo0dsZKhPqUNwLTAiGeZm76Ef1/+HciaYmAGSDYA0bZwBsvjuA6QLwxogqQDaEfQAkIbAjpbVtOlCsUSdxapdZ7HzdBWKL9fhzxuOh/p0OgwDICIZZpkMkFqtCothH7HHT0sZoLZbC8z3EFi4Z4BE6b1iEROpQUOzFcWXa0N1akRh6UpdE1792hn0/LPwjNtiwp0ZAyAiGWYfa2A5l8MIYQAkZoBkaoDE5ohtNgTW7HsafDgEg66sNgFHyrwzQBq1SuoIfYiF0ERuXt1QBGNDMzKT9JgxLAk2AXj+88N+lbMoHQMgIhly0+ABZ0YolMM+Uh8gmbtXDIpsbRSTtFwDFF6zwE5fqkVjsw2xkRqk94x1ey4rRQyAWAdEJDpSasKqwrMAgOdmDcOS26+BTqtGYXEVvjhYFuKza38MgIhkOBdCdX/h14XBAqBifY9WJgLStHEfoJZWgw+3DJDY/+ea5DivZUKGiYXQ7AhNBMA+Gen5zw/DJgC3DU/GuIE9kdojBo9mDwQA/PGLo2hoCp/6vvYQ0Cwwoq7C1/RvqRt0CIugLS1lgKQhsLYJSlqsAQqD4UBXcgXQInFJjMOlJgiCIM0QI+oqKmvN+L6kCuJ7oxMVtSgsrkJUhBqLb82U9nt40kD8a/d5XKhuwLK1hzFpUG/pOZVKhRlZ8is0KBEDICIZjT6GfqJCvCK8IAjSHzC5GiBnANQ2X0+uIaQoUhtes8DEws2hLgXQokGJ3RCpVaOm0YJ956pxfd8eHX16RCFjsdpw/z8Kcazcuxv6I5MHIrVHjPRxdKQGv7/1GuSs2osPd53Dh7uca21GatU4/uLMDjnnjsAAiEiGr+JfqRt0iDJArsXN8p2gvfe7GtI0eJmeR2IAFC41QKcu2Wd4DU7Uez0XoVHj9uHJ+GzfBby49gj+/ch4r2Eyos7qn4Vncay8Bt10WgxNdr5BSO0RjUcmD/Ta/9bhSXh48gDsO1Pttj1C27nuGQZARDLErEaUVr4GKFQZINfaHrkASKwLavNO0HKLoWrDpwi6zmxBRY0ZALwKoEVPzczEusPl2Hu2Gqv3X8Ad13sv5EzU2VTVNeHVr4sAAE/PzMQDN/Zr9XNUKhUWz7ymvU8t5FgETSSj0VcGKMRDYK1mgNRt3QeohcVQw6gGqKSyDgCQEBuJ+JgI2X0S46KQe4t9iZ4/fXUMtWZLh50fUai8+nURTI0WXJMch3vH9A316YQVBkBEMnwV/0aF0RCY/Fpg9n9tbR4A+S6CDocMUPFlewDUv2dMi/s9NDEd/XrGoKLGjDc3n+yIUyMKmcOlRqzaZZ/mvnTWUNk3TV0ZAyAiGb6nwYc2A+Q6uatj1gJrYTHUMCqCLhEDoF7yw18inVaDJbcNBQC8+12x9HlEnY0gCHh+zREIAnD7iGSMHdAz1KcUdlgDRCSj9U7QIcoAudYAtTQLzLHfuap6fPz9OdwzOg1pCS1nRwBg+8nL+PxAqTTTrMJkr6uRmwUmZYB8TDmz2gQs33IS5680SNtUKhXmXpsi+8fYWN+MFduLMe+6PugnU8dTWt2Af+0+j4duSkc3nfufruLL9QCAAa0EQAAw9RoDJg3ujW+PX8KLXxzBP346Wna/j3adRZ8e0bjJZRowUVuxWG34+3fFGJkaj/EZvbyer2lsxjvfnsbtI1IwJMm7sN/T8Ys1eH9HCSyOpXKMDc3YVWKf5v77Wzt/PU8wGAARyXB2gvaYBu8IBELVCNHiSAGpVJCdxaTxWArjzc0n8dH35/DhrrP4+09vaHH69+VaMx7+YA9qGr1rY3rKrA4tZYB8fC9WFZ7BK197L6y47lAZNv9XNrrHuB9zyX8O4fMfSnHqUh3+cu91Xp/36tfH8ene8wCA30wd5PacuMZXaxkgwB6EPXv7UEx7rQDfHK1AubERSfFRbvscKTXh6c8OIjZSg73P/ki2BoroaqzcXoKX1h1DN50Wm/5rMgx699/BP3xxFB99fw6f/1CK9b+d1OLvYLPVhtxVe3H8ovdad49OzkBK9+g2P//OgAEQkQznEFh4ZYDEITC57A/grAsSA6AD5+2djyvrmnDvOzvx57uvxW0jkmU/95X1RahptGBwYjfMHpkibc8wdJPNHkmzwGQyQFfqmqTg587rU5Hey/75n+27gNOX6vDahuN4fk6WtH/h6Up8/kMpAODg+WrZ8/vBsf2AzPMllfYMUH8fM8A8ZRi6YXCiHsfKa3DogtErABK/Rl2TFYWnqzBpMLNA1HYu1ZjxP9+cAADUmi14eV0RXrlrpPT8wfNGfLzb3n+npLIe720tkTo0y/lg5xkcv1iLHjEReGhiurQ9PiYS80entdNVKB8DICIZZh8ZIGcn6NBOg/fVw0bMANkEAWaLFccv2hufjUlPwK7iKuSs2ouSyiH4VfZAt27Irn9w/zhvOG7on9DquehayAD9ecNxaYHFl+4cDq2jOvv6vj1w3z8K8UHhWdw3th+GJOlhtQlY+vkR6XNLKuthamxGXJRzNld9k0Xq8+O5nIWxoRlVdU0A7Cu/+2tYSrw9ACo1YurQRLfnXL/GpmMVDICoTf2/9cdQY7agb0IMzlbV4997zuOBG/vh2rTuEAQBSz8/DEEA+vWMwZnKevx10wnceX0fGOKivI5VWWvGaxvsbzb+a/oQ3D+29WnuZMciaCIZjT5rgEJdBC2uA9ZyAGS1CTheXguLTUD3mAh8+Msb8bMJ/QEA/299EZ769IA0e8v1D+7ca1P8Cn4A3zVAR0pN+GfhGQD2BRa1Lk0Ux2f0wsysJFhtgrTi9Ie7zuJomQlxUVr06qaTjuHqaJlJqku6aDKjoqZRek4sZDbodYjV+f+eLquP7xXiXbdtKarw+5hErfnhXDU+2W0fyn19/rW409GP6rk1h2GzCfjP/lLsOXMFMZEafLTwRlyb1h11TVb8ad0x2eO9uuE4TI0WDE2Ow/zRnOYeCAZARDLEDJDnLLCoEK8FJvb38TUEpnHpAyRmMbJS4qFRq/DcrGFYNmcY1Crgk93nsWDFLhjrm93+4D4dQPMzZw2Q83sht8Cip9/fal9xevupSnz8/Tm84mjS9viPBmNUv+4AvFdt9wxSDrsESMV+zgDzNExaH8z9a1msNhwtcx6/pLIepy9511YQBcpms7/ZAIA7ruuD6/v2wFMzhiA2UoMfzlXj/3aeQd5XRwEAOTdnIDk+GktnDwMAfLb3AvaeveJ2vEMXjPhQnOY+exinuQeIARCRDGkV9DBthOhzCMwRGNlsgvTCPqyPs/X9g+P6492fjkZspAbbT1XijuXb3P7getbCtESuBuiLg2UoLK6CTuu+wKKrtIQYPDxpAADg6c8Oorq+GYMTu+GBG/u5BCXuAY9nQHREJgDyZwaYK3HNsDJjIyprzdL2U5fqYLbYEBupwXhHALfpGLNAdPXy913AvrPViI3U4KmZ9vvDEBeFx6bYi/qfW3MYF01m9E2IkWp5rk3rjrtG2bNEzzuyRIDzzYYgALNGpmBMun+ZW3JiDRCRjFBNgzdbrPj1h/swvE88cm8Z5PW8uMSFr3d6apdp8NLq6Cnuq6PfnGnAvx4Zj4f+93ucumQPHlz/4PpLzAA1WwWMz9sIAKiqt9fieC6w6OmR7IH4157zKDPah7LEoTJxWMozKyMGRKP798D3JVfcAiKxC3SgGaBuOi0G9IrF6ct1OFxqkup8xK89NCUOt2QasP1UJTYXVeAXNw0I6PjU+bz6dRE+23sBQpBLzVQ6atVybxmERJd6np9N6I+Pdp2VivmX3HaNW/b5iRlD8NWhcvxw3ogb8zZCq1bBKgi4aDLbV3OfKf9mg1rGDBCRjFBNg995ugrrD1/EG5tOollmdpWYAfIVAIm1QU0W5zBOVp94r/2GpsRhdc4EDO8TD61ahednD/Ma7mtNXJQWyY6MUamxEaXGRjQ229CvZ4zsAouuYiK1eG7WUKhUwOyRKZjg6IMiBmsnK2rR0GT/GbgWc999g31Gi2uRsrMLdGABEAAMc3xvXI8nBo7DUuJxS6YBALCruIpLZ3Rxe85cwV82ncSF6gbp9z3Qh9liQ4ahG34+sb/bsXVaDZ6fkwWNWoWp1xjwI4+ifIM+Cr+bNhgAUFFjRqmxERcdPbp+PWUQp7kHiRkgIhmhmgYvZh+aLDaculSLzKQ4t+etrdQAiRmg4xdrYbbY0E2nRT8fDRAT46Lwn5wJuFLfhJ6O4uNAaDVqfP3bSShxNCEU9e8Vg+jI1oOpGVnJ2PH0FPTq5uwHZIiLQm+9DpdqzDhabsL1fXu4FXOLLwznqhpgrG9GXLTWOQTWO/AAKCslDp//UIrDLjVGUu1Un3gM6N0N/XvGoKSyHltPXMaMrKSAvwYpn81RtA8Ac65NwS8mBp8NHNA7Vranz+TBvbH96VvQIybSbYamaMH4/rhpUC80NDnfGEVFqJFh6Bb0uXR1DICIZDiXgPAxDb6daoDcXogvmHwHQK3UAIl9bIYmx/msFwLsAVMwwY9IHxWB4aneGSZ/ydUcDUuJw5aiSzh8wYjr+/ZwK+buHhOJtIRonKtqwOEyI4Yk6lHTaIFKZR/GC1SWRwbIZhOk+iJxOC57iAErt5dg87EKBkBd1L/3nMeB80bodVosuW0oeuuDv2dakigzzV2kUqmQYWi9IzT5j0NgRB6sNgHNjnbyXouhasUhsPbJALkPxRi9nnf2AZL/fDEwKiq3Dxm5FkArhTgMJg5Fid8H8VrE5w9fMEnZn5T46ICH8AB7sAUAZxy9h85U1aPWbIFOq0ZGb/s7a3EYbHNRRdC1H6RcpsZmvLzePgX9N1MHtVvwQx2PARCRB9fhLa/FUNsxA2RsaMaZSudwkmchMODaB0j+1nWdBg94F0ArgVQIXWa/frEAWpwhJgYth0qNUgAUSANEV91jItHHUT9xpNQkfc8zk/RS/6KxAxIQE6lBRY3Za3YadX5vfHMCl2ubMKB3LB4c1z/Up0NtiAFQiF1xzApQOkEQYGpsbrfjNzZb2y3rAtjf5Ynv7l07G0f6aoToso/FamuTAllx6CXS8cJ7pNQkBTzS1xKnwfsY1fKsDVJiBkgMdIrKa9DQZHUWczsCH6lw+YLRZQZY4MNfImdDRKOzANqlcFyn1UhF2psDmA4fyP1gswmorlfm3wKbTXBrI+DP/i3dL3VmC+qbwqPg/GRFDVZuLwEAPHv7UK+/B6Rs/GmG0JofSnHdCxuwYltxqE/lqn1+oAwjln6Nj78/2+bHttoEzH1zG6b+uaBdgqBvjlzEiKVf471tJQCc2Z0Ijcqr1kauCPrJTw9g1AsbcMIxUylYYvZh0uBeiIpQo67JKr3Ai2yt1AC51vu4DuMoSWqPaMRHR6DZKuCrQ2VSTx5xlpeY1RKnrwPBzQATZbn0HjrsUm/k6uYh9mGwLw+VewWlnixWG55ZfQgjln6N17/xXgxWzlOfHsD1L2zAnjNVgZ5+yD3/+WHc8IdvsPZAaav7nqyowc2vbsHElzbJNpesqmvCLa9uwY/+/G27vqHyhyAIWLb2KCw2AVMyDch2/A5Q58EAKIS2n7xs//dUZYjP5Optcbwz/nDXuTY/9v5zV3CsvAbnrzTgSFnbD0GsP1wOAPjI0VFVDLKiZGZqeE6DrzNbsPYH+4v0f/a3/gLQEvHFfERqd6n4+ZDHkItUA+SzE7Tz/5nJcW7LUCiFSqWShrk+/t7++zQsJV4K7nrrdUiM00EQgG2OeyiYGWCiLJeMklhvlOWROZs+LBGxkRocLTMhf98Fn8eqaWzGQ/+7G/+3074UyF83ncTJipa7SO84VYl/7TkPm2Dv9qskP5yrxvs7z0AQgGWfH2kxs7P95GXMe2s7zlTWo7q+GS+sPeK1z6tfF+GiyYwL1Q14w7FYaKhsPFqBb49fQqRGjSW3Dw3puVD7UN5fx05ErF8Q1zJSsmJHpuKH89UBpcP94dqF97BMYfDVEoOMExW1OFdV72yCGOF9e7hmgARBwNaTl6VOyFfbLdj1xVeqg/G4XnEWmFbjqw+Q85zFISMlEoOSwmJ7RsRzKE/M0IjF6leTARKDrRMVtbhS3wytWoXBie6zbXp200ndev+07pjsC/2F6gbc9fYOFBy/hOgIDYYmx8FiE/DC2iM+i6ctVps0vRqwD7EppdBaXNZBPN2KGjP+uumk7L6ffH8OD763CzWNFoxIjUeERoXNRZew6dhFaZ/DpUas2uXMIK/cXoKTFVeXVQ2W2WLFC1/YA7SfT0wPusaMwhsDoBAShzfOVNVLL2xKJQZxggBsKbrUpsfedMx5PLmFK69GY7PVbehqc1GFzynwrttsgr0ex3WhzCNlJpQbG70+xx8NTVZptfOslHi3YRlXrfYBctku1wBRKYZ5BG/DPIakXJ/XqFVIC2IKvEjsPSTKMHSTnVH2swn90b9nDC7VmPGXTe7ZiYPnjZj75jYcK69Bb70OHz98I966/3pEatQoOH7JZ3D84a6zOFZeg/joCOi0apQaG1F0lUOpHWX1fvuyDjGRGvxhXhYA4L2txW5v6Gw2AS+vO4YnPz0Ai03ArJEp+OThcfj5BHvX8RfWHpXeTDy/5ggEAbh9RDKmZBpgsdmHoEIREL67tRhnKuth0OuQe0tGh3996hgMgEKkzmyROnk2WWworW4I8RkFr7q+CVfqneP1m9tw9exyY6PbwpSHZGZGXY3jF2ukwmLAnsURh7dkM0Au2xqardjsCM5iHI3/gl05/Gi5CTbBPrxjiIty60/j+gLQ6lpgLqfsGUQoiWfA4zkk5VqknNYjGhFXOdTnmi3zFTjqtBo8O8s+FPLe1mIpg/v14XLc/bcduFRjRmaSHqtzJmBEanf07xWLnzuWF1m29ohX88zq+ia8usFeI/S7aYOldcc2H2vbNxDtodZswZ++sk8Nz70lA/eN6YtJg3ujyWrDi47MSWOzFY99tA9vbTkFAHjslgz8zz3XIipCg9xbMtBbr0Px5Tqs2FaCtQfKsKukClERavz+1mvwzO1DEalR49vjl7DxaMeuw1ZubJQyWU/PzEQ3HdvldVYMgELEs7jV82MlEV8IxNfkb49fgkVmGYdgiMGUOFX5+MUaaaHStiBmWMTj7zhVKc3Gkc8AOW+Z/WerUW5qRHSEBj+b0B9A8MNg4lCXGLQMSuyGCI0K1fXNuOASHEtrgbXSCVpuGEdJ0nvFSkGlXDG3a5AS6BpgclyP19LQ4S2Zicge0hvNVvvQ1j++O42HP9iDhmYrJg/ujX89Mk76XQLswYFBr8OZynq8t7XE7Vh/3nAc1fXNyEzS474xfZ39hhSw8Oqbm0+iosaMfj3ta8ipVCo8e/tQaNUqfHO0Ap/tPY/7/r4TXxwoQ4RGhVfuGonfTRsi/X7qoyLw1Az7+lV/2XgCf/jCviDvr7IzkNI92i14fOEL7+CxPb207hjqm6y4vm93zL22T4d9Xep4DG1DxHP5gJLLdbhpUO+AjnG2sh4nKmpwS6ZBtnV6RxGDtxv6JeBERQ2u1Ddjz5krGDug51UfWwwo7hmdhve2FaO6vhnHL9YENLwjCAI2Hq3AsD5xSI53XzNHrLu5fWQyPt9filJjI7Yct78D92yCCNgLdCO1ajRZbFjnKJ6ekNETM4Yl483Np7D15GWYLVa34OlIqQnGhmaMG+j7++G5cKlOq8Eggx5Hykw4dMEkLSwqxpWtrQU2KFEfVGPAcKFRqzA0OQ67z1yRLeZOiY9Cj5gIXKlvvqr6H5Frxqm1361nbh+KrSe+xaZjFdLv5/1j++L52cO8zrObTounZ2bi8U9+wF82nYBGbR+mbGy24gNHobS4EKx9ltFh7Dl7Bcb6ZsTHRPg8h0MXjNh52n3yRFafeNzo4577+nA5zlbVyz4XqGargHe/s89cfea2odLveoahGxaM749/bC3G45/8AMC+XtzffnKD7O/+Hdf1wf/tPIMfzlWjrsmK1B7RWDjJucRE7i0Z+GzveZyprMfiTw9iqJ8ZTbVKhZnDk7zudcCeucrfe95nH6+aRgvy912ASgUsnT2sxS7qpHwMgEKk+LL7zJDTQRRCP/LBHhwpM+GVu0bix6NS2+rUAlbsWFF8oCEWKd2jsHp/KTYXXbrqAMhssUqzfG7JNKCwuBLbTlbicKkxoADom6MV+OX7uzGmfwI+eWSc23NiAXRWSjxqGy34Z+FZfO0IbOQCIACIcgRA4n43ZxowLCVOWsPq++IrmDjI3jemzNiAH7+9HY3NVmz6XbbPbIVz/SnXoZg4HCkz4UipUVqCQfy90fkIbmIi7bf0cAX2//E0IrU7dp+5ghEyP2uVSoXhqd3x7fFLGNgGayGJy3lo1Spck9zy925g72742YT++Pt3xVCpgP++9RopCyJn7rX2F/p9Z6vxxy+PuT136/AkKThIS4jBIEM3nKioxbcnLmHWyBTZ4zVZbLj/H4UwNrhPE9eoVfji1xO9lk/ZePQiFv7fnhavKRiTBvfGlGvcp4b/euogrN5/AZdrm9A3IQYrfjYaA320YlCrVVg6ayjmvbUdgP376Bq0uwaPn+27gM9amH3n6dO957Emd6LXG4Ul+Qex2o/ZmneNSsWI1O5+fz1SJgZAIVLsyAClxEeh1NgY8Eywc1X10pTwP311DNOHJUIf5fsdY3sqdnQv7t8zFknxjgDoWAWenpl5VcfdVVyF+iYrDHodhqXEISslHttOVuLQBRPuGe3/cdYdsgcq35+pQmWtWVr7ymK14ZjLiukxkRr8s/AsLtfah8B8ZVB0ERqg0SLtd/MQA9RqFW4e0huf7D6PTccqpADoT1/Z0+kA8M3Ri/jFTd6LKDZZbNJq556ZiE92n5eCtIqaRrxdcBoAMGtEsuy5/XhUKowNzXhgbD9/vz1h61c3D0SkVu21crboyelDkJmkx5xr5QOFQPTpHo2XfzwCsZFaxPpR8/H4j4agmy4C1/fr3mrmVq1W4bW7r8XyLafchnJidFr8dupgt31vyTTgREUtNh+r8BkAfV9SBWNDM/RRWkxxDJsdK6/BsfIaPL/mCFb9cqwUjJktVixzTDe/oV8PpPZom1XDoyM1eOyWQV5BX1xUBN5bMBpfH76In03o3+o6c9f17YFX7xqJ6oZm2XXW5l7bB6XVDa22EnC18WgFDpea8PH353Df2L7S9t0lVVi9vxQqFXD7iBT4mEiJuOgI/O5HQ/z+eqRcDIBCRHwnf3OmAf8sPIuSysDS066Fxpdr7dNPF996TZueo79KXJYjGJOeALUKKLpYgwvVDW71EIEShxeyh/S294bxWLjSHzabgILj9uOIM9TudGTLTl2qc1sxPTFOJw1vAb4zQK7bM5P0SHFc481DDPhk93lsLqrAs7OGYndJlVtvoM1FFbIB0PGLNWi2CoiPjnB7gRomrYllv96X1xWh1mzByLTuuPN6+YxfYlwUfh+i34O21qubrsUgOqtPfJvOdLv7hjS/942O1OA3Uwf5vX//XrF46ccjWt3v5kwD/vbtaWw5fglWmyA71CneF9OHJeGVu0YCsL8hmvrnAuw4XYl1h8oxc7g9QH5va4k0m2nlz8d0SEHviNTuAWVP7mwhe61Wq5B7i//fZ8BeoL5s7RG88nURbhuejPiYCFgdU/YB4J4b0vCnO1v/WVDnxyLoEBEDHrHw8WxVPZoDKBwWCyUnOlr0v7etWLazansTBMFtPabuMZG4vm8PAFffF0ecTi9+j8Ti1KNlJr/bBhy4YJQyNYB74CgGFkNT7Cumx0RqMc5l2M7XMJNrAHRzpnMIYOKgXojQqFB8uQ6nLtXiuTX2P7jiz2hXcZVs/xix+/CwlDi3d9TXJOuhUtn7q2w4chH/3nMeALB01lDWJnRSo/r1gD5Ki6q6Jvxwvlp2H/F3+BaX3720hBg87KifefGLo2hstuKiqVGart+VZjP9ZFw/DDJ0Q1VdE17faJ9l98nuczh0wQR9lBb/NZ3ZHbJjABQCxvpmVDnWABuTnoCoCDWsNgHnr/g3Fb6hySp1j37m9qG42WVWSke7XNuEWrMFKhWkXixiULDlKgKg4st1KL5chwiNChMdQwz9e8YiNlKDxmab38GeGCj2dZyb6wy1Q6XuM68A9xeVKF81QC6Bkev++qgIjO6fAAB4/OP9OFxq/4P7P/OvRb+eMWi2Cth64rLX8aQCaI9sRkykVqqfePyT/QCAO69PxXWOAJM6nwiNGpMcv+9y98+ZyjqcvlQHrVolDbOKHs3OQEp8FC5UN+BvBael4dfruthspgiNWmpX8P6OM9hdUoX/t74IALBo6mD0amVYjroOBkAhIHZNNuh10EdFSLNYPAujfdlx+jLMFhv6dI/G4MRueOb2obKdVTuCOAOsT/doKTAQg4Jtpy4HvXaXmD0ak54gvXNVq1XSTBB/h8HEd8u/yh6IHjERMDVasOfMFQDOKfCu6z7d7LLej1wfIMCZAYqPjsB1ad3dnhOv/Yfz9vNbNHUwenbTSceVm+IsF4iJxKxXTaMFsZEaPDWD7147O/ENxCaZnlLifTG6fwLiPGr+oiM10jD4m1tOSkt2LJ3V9WYz3TSoN6YNTYTVJuD+fxSiqq4JGYZueHCc8mvjqO0wAAoBsWZGnBEktlkv9pgav+/sFTzxrx+8uguLjdJuzrTXxgzo3U3qrPrkvw/gJ+8WSo8/fHGk1cUbAXtTtv/OP+j2uT99b5e0TpYv4gww11bxmUl6JMdHobHZhh1BrnMmNhS82WMBQmddTOsdoStqGnHAEYjcco0Bkwfb31lvLroEm02QVl93zbz07RmDgY51peT6ALlunzS4t9e0Z9cFE13/4Eo9XorclzqwWG3O1c5l6llctz02ZRAMcVGtXjcpm/h7euiCCRdNHvd+kfPel3P7iGSMSU+Q6tjuviEVIz2C9K5iyW321dvFKe/PzRp61Q0zqXPhb0MISDUzjsyPGAh5zgTL++oY/rXnPJasPihtEwRBehfoGhyIDdcu1zbhuxOXpcffvyvGv/eeb/F8Si7X4Y63tuOfhWfdPrfg+CU895/DLbaiF7NZrgGQSqWSpse+XXAq4Fb2dWYLCk/b14ByrbEB3BeubE2B48VieJ94GPRR0rE2H6vAmap61Jot0GnVUsAjutVRQJocLx9siNtnysxaGdg7FkMcDQhd/+COHZCA6AgNKmrMbstbfLb3AhqbbYiPjpB+H1yNTbfXJA3oHSs1W6TOrbdeh+v6dgcA/M0x6w8A6pssUu+fWzzuC5FKpcLSWcOgVaugj9LiielXNxNTyfr2jMEjjrqo6cMSA+6zRp1f16iKCzNSANTbMwPkDICMjmaCgL2PzZaiCmQPsU+RvVDdAJ1WjfEDnTUA+qgIfProeOw+UyVt23umGv+38wxeXncMM7KSvFLmgH1K7cL3d+NKfTP6dI/Gb6YMQoRWBUEAfp9/EOWmRhwtq/HZhEzKZnm8eD8yeSD+tfs8Cour8OXBctzmY9q2HHGB0X49YzDAo2+O2CfnSKkJNpvQYmpfHP4SA5/Jg3tLM9TEHj7XyDTZy7k5A2PSE6Tgw9Nzs4fhzlGp0tIFrlQqFf7352NwqcYs9ZYB7FmjCRm98M3Ri9h8rAJZfeJhamzGy+uPOb7mQNlrGZ4aj89+NR79EmJ8ZqSo8/nt1MF48L1deH9HCe4dk4ZBiXpsO1mJJosNaQnRPnvrAPai/jW5ExETqXFb46wrWjR1MG7onyDV5hG5YgYoBMS6GTFokAuAvj1xyW2m07K1R9BksUk1JOMG9kR0pPsLYlpCDOZdlyo9nrl9KAb0jsXl2ib8ZaP74o0A8J/9F3D/3wtxpb4ZI1LjkZ8zHnePTsO861Jxx/WpmOAIsFpa28t1Bpir1B4xeGTyQADAH744goYm/2uBNrtkuDz7jAzs3Q2RWjVqzBacu+K7dUCz1Ybvjl92HMf+zs91htrfHZ1s5epuoiI0uGlQb0T6KIKOj47AhIxePhvfJcVHuQU/ItdhMMC+BMDl2iYM6BWLBePTfV7L9X17tNpPhTqXSYN740dDEx0LgtpXk99c5Pu+8DQ0Ja5NlghROrVahUmDe3v9rSQCAgyA8vLyMHr0aOj1ehgMBsydOxdFRUVu+7zzzjvIzs5GXJx9Sm91dXWrx126dClUKpXbIzOzc6ZuPaeNu/5bamyQiobFP3b3jklDr26ROH2pDu/vKJEd/vIlUqvGs7fbZ0Os2FYiNRMTBAFvbDyB33y0H01WG6YPS8THC8fBoHcf8rm5lbWJbDZBCuY8AyDAngUSGz2+XXCq1fMVz80zc+MqQqPGNUn2IaaW6oB2l1xBjdmCnrGRGOnSk0Q85uVa+0K0Hbliuli3se9cNXaXVGHFthIAwDOzhvoMtqjrWnLbNYjUqPHdicvYcOSi842Bj+EvIgpMQH91CwoKkJOTg507d2LDhg1obm7GtGnTUFfnzFzU19djxowZ+P3vfx/QiQwbNgxlZWXSY+vWrQF9vlJU1jWhptE+bbxfT/vU7J6xkdDrtBAEez8gm02Q6ldmj+yDJx3j+K9/cwK7HcNivmoAPGUPMWBKpkF6J2m2WPG7f/2APztWoV44aQCW3z9K9h2S+Id279kruFLX5PX8xZpGNDbboFWrZDvMRkdq8N+32QOwtwtO4XwLGRvRkTITLprMiI7QYGy6fNran4aIYhA1eUhvt6Elz8AxK6XjAqDk+GhckxwHQQB+8f5uWGwCpmQa/Apmqevp1zMWv5xkzww+9ekBlBkbERWhdutVRUTBC6gGaN26dW4fr1y5EgaDAXv27MGkSZMAAIsWLQIAbNmyJbAT0WqRlORdVNrZiDUzKfHOaeMqlQr9e8Xi4AUjii/Xoc5sQWVdE/Q6LW7o3wNj0xPwQeEZaUZThqGb1HPHH0tuH4pvT1zCt8cv4bY3tuJkRS00ahWWzRmG+1tYMqFP92gMSdSj6GINvj1xCXM8eomIM8DSEmK86mhEtw5Pwtj0BBQWV+GPXx7Fm/dd7/a8ZypffJc7IaOnz6Uoslw6JPsqsBYzZZ6B4jXJeiTFRaHc1GhfMT3p6teRCsTNQ3rjaJkJ1fXNiNCosMSRoSOS86vsDPx7z3lcNNkzlhMG9lL0IrdE4eSq8u5Go/0FOSHh6gvMTpw4gZSUFAwYMAD3338/zp4963Nfs9kMk8nk9ghHxZfrcOMfN0rZFnEb4D1klO4yE0wMAm4a3AsRGjXUahWemzVM2lesafFXeq9YPDTRPhviZEUtuum0eG/B6BaDH+lrtTAMJjcDzJNKpbKvqqwCvjxYjvTFX0qP61/YgGPl7j875zRf31kRsRD6uxOX3Y7n+hCDPM+ZHyqVShqKGpyo7/DCYteA7OcT01v83hHF6rRYPNO5tEk2h7+I2kzQAZDNZsOiRYswYcIEZGVlXdVJjB07FitXrsS6deuwfPlyFBcX46abbkJNTY3s/nl5eYiPj5ceaWn+r+HTkf695xzKHe3oxWnbxVIPIPcMTn+XQmgpCHAZGhnVrwcWjO+P6AhNi2vn+JJ7SwYyk/QY0DsWnz46Xuo10hox2Co4fslr+QlfM8A8XZMch19O8l4D60p9M551mWZ/pa4J+85ecXxd33/oM5PiMKB364HDbcOTER/tPfPt3jF9EROpaZNFNAN1Xd8eyOoTh0GGbngswDWOqGuac20KpmQa0KubDjOGdf4sOVFHCXoafE5ODg4dOtQmtTozZ86U/j9ixAiMHTsW/fr1wyeffIKHHnrIa//Fixfj8ccflz42mUxhGQRtcjQsFATg+c8P45OHx3nNABOlOwKi70uqcMoxtJTtEQQ8N2sonrl9qOwCia3pptPii1/fBLXKe9ipJaP69UBclBZX6pux/1w1RvVzLsPgzGa1Phy3eOY1+FV2hhREXa41Y/Zft2JXcRXWHijDrJEpKDh+CTbBfYFROZFaNTb8djKMDc0+91EB6B7jHfwA9sUajyyb0eo5tweNWoXPcyfCJiConyN1PSqVCn9/8AaoArx3iahlQWWAcnNzsXbtWmzevBmpqYFnI1rTvXt3DB48GCdPnpR9XqfTIS4uzu0RbsqMDThaZoJKBURFqPF9yRV8fqBM6vbsmcFI72WvRRGDnxGp8V49PFQq1VW9aGrUqoD/gGo1akwSOyh7DIM5AyD/6mjioyOQEBuJhNhIDE7U49HJGQCAvC+PoqHJ2uLsL08atUo6ltyjR2xk2L5YXO3PkboedRD3LhG1LKAASBAE5ObmIj8/H5s2bUJ6uu/eJVejtrYWp06dQnKy/83zwo24kvm1ad3xq2znC72vYSPPLsDhNDNIPBfX1d2tNgHnquyLt3oO5/nr4ckD0Kd7NEqNjXhz80kUHHdf/Z2IiKi9BBQA5eTk4IMPPsCqVaug1+tRXl6O8vJyNDQ4VzEvLy/H/v37pezNwYMHsX//flRVOTsUT5kyBX/961+lj//rv/4LBQUFKCkpwfbt2zFv3jxoNBrce++9V3t9ISPNQhpiwMJJA5DaIxplxkY0NFuhUau8ZnHFx0Sgh8uQTTgFAZOH9IZKZZ+iLq5LVlrdgCarDZFaNVLifQ9XtSQqQoMltzkXb6yub5ZdYJSIiKitBRQALV++HEajEdnZ2UhOTpYeH3/8sbTP22+/jeuuuw6//OUvAQCTJk3CddddhzVr1kj7nDp1CpcvX5Y+Pn/+PO69914MGTIEd999N3r27ImdO3eid29lrt1itlix7aSjC3Gmwe2FHgDSekTLLsonzgjq1S0SwzuwQV9renXTYYSjmeCK7cXYXFSBzw+UAgD694y5qpWmZ2QlYdyAnhBns8stMEpERNTWAiqC9mdRy6VLl2Lp0qUt7lNSUuL28UcffRTIaYS9XcVVqG+ywqDXSUstTB+WhPEDe2L7qUqfLerTe3XD3rPVmDzYcFVBRXu4ZYgBP5yrxt8KTrst0NjaDLDWqFQqPDd7KG79n+9gE4BbfKxyTURE1Ja4GGo72CSzlpVKpcKf7hiBF784ggU+VvX++cT+MDU2I/eWjI46Vb/dOzYNu89U4Uq9syN0pEaNn0+8+jqwzKQ4LJuThe9LqjAzS7l1X0REpBwqwZ+0TpgzmUyIj4+H0WgMixlh2f9vM0oq6/H2A6MwI4t9O4iIiOSE8vWbxRZtrPhyHUoq6xGhUWHioF6hPh0iIiKSwQCojYnDX2PSE9BNxxFGIiKicMQAqI1tdqn/ISIiovDEFEULLFYb/vDl0YA+Z1exvd+RP92MiYiIKDQYALXAJgArtpUE/HnpvWIxgKt8ExERhS0GQC1Qq4CcmwcG+DkqzMhK4ro9REREYYwBUAu0GjWemJ4Z6tMgIiKiNsYiaCIiIupyGAARERFRl8MAiIiIiLocBkBERETU5TAAIiIioi6HARARERF1OQyAiIiIqMthAERERERdDgMgIiIi6nIYABEREVGXwwCIiIiIuhwGQERERNTlMAAiIiKiLqdTrAYvCAIAwGQyhfhMiIiIyF/i67b4Ot6ROkUAVFNTAwBIS0sL8ZkQERFRoGpqahAfH9+hX1MlhCLsamM2mw2lpaXQ6/VQqVQBfa7JZEJaWhrOnTuHuLi4djrD8MBr7Zy6yrV2lesEeK2dFa/VmyAIqKmpQUpKCtTqjq3K6RQZILVajdTU1Ks6RlxcXKf/hRTxWjunrnKtXeU6AV5rZ8VrddfRmR8Ri6CJiIioy2EARERERF1Olw+AdDodnnvuOeh0ulCfSrvjtXZOXeVau8p1ArzWzorXGl46RRE0ERERUSC6fAaIiIiIuh4GQERERNTlMAAiIiKiLocBEBEREXU5YRUA5eXlYfTo0dDr9TAYDJg7dy6Kiorc9ikvL8dPfvITJCUlITY2Ftdffz0+/fTTFo/77bffYtasWUhJSYFKpcLq1au99vnss88wbdo09OzZEyqVCvv37w/o3E+ePAm9Xo/u3bu7bV+5ciVUKpXbIyoqKmTX2tzcjKeeegrDhw9HbGwsUlJS8OCDD6K0tLTVa9yyZQuuv/566HQ6ZGRkYOXKlV77vPnmm+jfvz+ioqIwduxY7Nq1S3HXWlZWhvvuuw+DBw+GWq3GokWLvPbpLD/XrVu3YsKECejZsyeio6ORmZmJ1157zWu/zvBzdbVt2zZotVpce+21btuXLl3q9XPt3bt3yP4uLV26FJmZmYiNjUWPHj0wdepUFBYWtnp9SrtXg71WJd6rwV6rEu/VYK/VVSD3amZmpt/HBcIsACooKEBOTg527tyJDRs2oLm5GdOmTUNdXZ20z4MPPoiioiKsWbMGBw8exB133IG7774b+/bt83ncuro6jBw5Em+++WaL+0ycOBEvvfRSwOfd3NyMe++9FzfddJPs83FxcSgrK5MeZ86cCdm11tfXY+/evXjmmWewd+9efPbZZygqKsLs2bNbvMbi4mLcdtttuPnmm7F//34sWrQIv/jFL7B+/Xppn48//hiPP/44nnvuOezduxcjR47E9OnTsWHDBkVdq9lsRu/evbFkyRKMHDnS536d4ecaGxuL3NxcfPvttzh69CiWLFmCJUuW4J133pH26Sw/V1F1dTUefPBBTJkyRfb5YcOGuf1chw8fHrK/S4MHD8Zf//pXHDx4EFu3bkX//v0xbdo0XLp0yefnKPFeDfZalXivBnutSrxXg71WUaD36tatW1s9phshjFVUVAgAhIKCAmlbbGys8P7777vtl5CQIPz973/365gAhPz8fJ/PFxcXCwCEffv2+X2eTz75pPDAAw8IK1asEOLj492ek9smJxTXKtq1a5cAQDhz5ozPfZ588klh2LBhbtvuueceYfr06dLHY8aMEXJycqSPrVarkJKSIuTl5bl9Xrhfq6vJkycLv/nNb7y2d5afq5x58+YJDzzwgPRxZ/u53nPPPcKSJUuE5557Thg5cqTbc3LbPIXyOo1GowBA+Oabb3zu01nuVX+u1ZWS79VAr1WkxHs1kGu92nu1NWGVAfJkNBoBAAkJCdK28ePH4+OPP0ZVVRVsNhs++ugjNDY2Ijs7u93PZ8GCBV5fZ9OmTfjXv/7VYgRcW1uLfv36IS0tDXPmzMHhw4e99gnltRqNRqhUKrfhu+zsbCxYsED6eMeOHZg6darb502fPh07duwAADQ1NWHPnj1u+6jVakydOlXax/XrAeF7rf7qDD9XT/v27cP27dsxefJkAJ3v57pixQqcPn0azz33nM9jnThxAikpKRgwYADuv/9+nD171utrAR1/nU1NTXjnnXcQHx/vlu3ojPeqv9fqr3C+V4O9ViXeq4Fca1vcq60J28VQbTYbFi1ahAkTJiArK0va/sknn+Cee+5Bz549odVqERMTg/z8fGRkZLT7OSUnJ8Nms0kfV1ZWYsGCBfjggw98LvY2ZMgQvPfeexgxYgSMRiNeeeUVjB8/HocPH5YWcA3ltTY2NuKpp57Cvffe63YNffv2RXJysvRxeXk5EhMT3T43MTERJpMJDQ0NuHLlCqxWq+w+x44dkz5WwrX6o7P8XEWpqam4dOkSLBYLli5dil/84hcAgMuXL3ean+uJEyfw9NNP47vvvoNWK/+nb+zYsVi5ciWGDBmCsrIyPP/887jppptw6NAh6PX6kFzn2rVrMX/+fNTX1yM5ORkbNmxAr169fF6nku/VQK/VH+F6rwZ7rUq8VwO91ra4V/1yVfmjdvTII48I/fr1E86dO+e2PTc3VxgzZozwzTffCPv37xeWLl0qxMfHCwcOHPDruGjDIbB58+YJTz31lPSxP6nWpqYmYeDAgcKSJUukbaG61qamJmHWrFnCddddJxiNxhaPNWjQIOGPf/yj27YvvvhCACDU19cLFy5cEAAI27dvd9vniSeeEMaMGaOoa3XlK60ud3wl/lxFp0+fFg4cOCC88847QkJCgrBq1SpBEIRO83O1WCzCDTfcICxfvlza5k8K/cqVK0JcXJzwj3/8QxCE0FxnbW2tcOLECWHHjh3Cz3/+c6F///7CxYsXfR5LyfdqoNfqSmn3arDXqsR7NZBrbat71a9z9nvPDpSTkyOkpqYKp0+fdtt+8uRJAYBw6NAht+1TpkwRHn74Yb+O3ZYBUHx8vKDRaKSHWq0WAAgajUZ49913fX7ej3/8Y2H+/PmCIITuWpuamoS5c+cKI0aMEC5fvtzqsW666SavPy7vvfeeEBcXJwiCIJjNZkGj0Xh9vQcffFCYPXu2IAjKuVZX/v5RFQRl/lzlvPDCC8LgwYMFQeg8P9crV65I96b4UKlU0raNGzf6/NwbbrhBePrpp0P6d8lVRkaGV4DjSsn3qqfWrtWV0u5VT4Fcq0gp96qnlq61Le5Vf4VVDZAgCMjNzUV+fj42bdqE9PR0t+fr6+sB2Mc1XWk0GrehqY6yY8cO7N+/X3osW7YMer0e+/fvx7x582Q/x2q14uDBg0hKSgrZtTY3N+Puu+/GiRMn8M0336Bnz56tfs64ceOwceNGt20bNmzAuHHjAACRkZEYNWqU2z42mw0bN27EjTfeqKhrDYZSf65ybDYbzGYzgM7zc42Li8PBgwfd7tdHHnkEQ4YMwf79+zF27FjZz6utrcXJkyexbdu2sPm75PrzkaPUe1VOa9cajHC4V+UEc61KuFdbO29PV3Ovnjp1KrAhUr9DpQ7w6KOPCvHx8cKWLVuEsrIy6VFfXy8Igv0dX0ZGhnDTTTcJhYWFwsmTJ4VXXnlFUKlUwhdffOHzuDU1NcK+ffuEffv2CQCEP//5z8K+ffvcZoxUVlYK+/btk1LFH330kbBv3z6hrKxM2ufpp58WfvKTn/j8OnJDYM8//7ywfv164dSpU8KePXuE+fPnC1FRUcI999wTkmttamoSZs+eLaSmpgr79+93+9pms1k6zk9+8hO3SPr06dNCTEyM8MQTTwhHjx4V3nzzTUGj0Qjr1q2T9vnoo48EnU4nrFy5Ujhy5IiwcOFCoXv37sJPf/pTRV2rIAjScUeNGiXcd999wr59+4TDhw93up/rX//6V2HNmjXC8ePHhePHjwv/+Mc/BL1eL/z3f/93p/y5upJLq//ud78TtmzZIhQXFwvbtm0Tpk6dKkRFRQlxcXEdfp21tbXC4sWLhR07dgglJSXC7t27hZ/97GeCTqdze6feGe7VYK9VEJR3rwZ7rUq8V6/m5+rK33u1V69eQkVFhc/jeAqrAAiA7GPFihXSPsePHxfuuOMOwWAwCDExMcKIESO8pu552rx5s+xxf/rTn0r7rFixQnaf5557Ttrnpz/9qTB58mSfX0cuAFq0aJHQt29fITIyUkhMTBRuvfVWYe/evSG7VnGIT+6xefNm6TiTJ092+/6Ix7722muFyMhIYcCAAW7nKvrLX/4iXe+YMWOEnTt3KvJa5T6nX79+0vOd5ef6xhtvCMOGDRNiYmKEuLg44brrrhPeeustwWq1un39zvJzdSX3R/Wee+4RkpOThcjISKFPnz7CPffcE7LrbGhoEObNmyekpKQIkZGRQnJysjB79mxh165dbsfpDPfq1Vyr0u7VYK9Viffq1fxcXfl7r548ebLF8/WkEgRBABEREVEXElY1QEREREQdgQEQERERdTkMgIiIiKjLYQBEREREXQ4DICIiIupyGAARERFRl8MAiIiIiLocBkBERETU5TAAIiIioi6HARARERF1OQyAiIiIqMthAERERERdzv8HWhNx/GefD9kAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "You may want to use two additional Matplotlib functions:\n", "\n", "* **`plt.gcf().autofmt_xdate()`**: this formats the x-axis datetimes more neatly\n", "* **`plt.xlim([START,END])`**: this sets the lower and upper limits of the x-axis; `START` and `END` can be specified as `datetime` objects (or can be `None`)\n", "\n", "***Try repeating the plot above using these functions:***" ], "metadata": { "id": "mCjTNWcK5Mdi" } }, { "cell_type": "code", "source": [ "# Write your code below:\n", "plt.plot(data_0m.index,data_0m['Temp'])\n", "plt.gcf().autofmt_xdate()" ], "metadata": { "id": "LpXuceDK5fWG", "colab": { "base_uri": "https://localhost:8080/", "height": 416 }, "outputId": "4b0a250a-cb74-40be-c5f7-6a303cd020f6" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGPCAYAAACtR4FsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABni0lEQVR4nO3deXxTVfo/8E+W7nRhSxfaQik7LauILCIqQgGF4oo6Mz9n3C2OqCMzOIqCaB1cxkEdnFEHxq/buBURoYhsgizKTkEqS4FCF+iarmmanN8fyb1N2rR0SZrk5vN+vfrS3qS39zTc5ulznvMclRBCgIiIiMjLqN19AURERETtwSCGiIiIvBKDGCIiIvJKDGKIiIjIKzGIISIiIq/EIIaIiIi8EoMYIiIi8koMYoiIiMgrad19Aa5kNpuRl5eH0NBQqFQqd18OERERtYIQAhUVFYiJiYFa3Xy+RdFBTF5eHuLi4tx9GURERNQOubm5iI2NbfZxRQcxoaGhACw/hLCwMDdfDREREbWGXq9HXFyc/D7eHEUHMdIUUlhYGIMYIiIiL3O5UhAW9hIREZFXYhBDREREXolBDBEREXklBjFERETklRjEEBERkVdiEENEREReiUEMEREReSWnBDHp6ekYM2YMQkNDodPpkJqaiuzsbIfPFUJg+vTpUKlUWL16dYvnveeee6BSqew+UlJSnHHJRERE5OWcEsRs27YNaWlp2L17NzZu3Aij0YipU6eiqqqqyXPfeOONNu1jlJKSgvz8fPnjk08+ccYlExERkZdzSsfezMxMu89XrVoFnU6Hffv2YdKkSfLxgwcP4rXXXsPevXsRHR3dqnMHBAQgKirKGZdJRERECuKSmpjy8nIAQLdu3eRj1dXVuOuuu/D222+3KSjZunUrdDodBg4ciIcffhjFxcVOv14ipfm1sAJZF8rdfRlERC7l9L2TzGYz5s+fjwkTJiApKUk+/vjjj2P8+PGYPXt2q8+VkpKCm2++GQkJCTh16hSefvppTJ8+Hbt27YJGo2nyfIPBAIPBIH+u1+s7NhgiL2Q2C9z+r12oqzdj/7M3INCv6b1CRKQETg9i0tLSkJWVhR07dsjH1qxZg82bN+PAgQNtOtfcuXPl/09OTsawYcOQmJiIrVu34vrrr2/y/PT0dCxevLj9F0+kAEazGWXVRgBAlaGeQQwRKZZTp5PmzZuHtWvXYsuWLYiNjZWPb968GadOnUJERAS0Wi20WkvsdMstt2Dy5MmtPn/fvn3Ro0cPnDx50uHjCxcuRHl5ufyRm5vbofEQeSOTWTj8fyIipXFKJkYIgUcffRQZGRnYunUrEhIS7B7/y1/+gvvuu8/uWHJyMv7+97/jpptuavX3OX/+PIqLi5stCg4ICEBAQEDbB0CkIHZBjGAQQ0TK5ZQgJi0tDR9//DG+/vprhIaGoqCgAAAQHh6OoKAgREVFOSzmjY+Ptwt4Bg0ahPT0dMyZMweVlZVYvHgxbrnlFkRFReHUqVNYsGAB+vXrh2nTpjnjsokUyTaIqTcxiCEi5XLKdNKKFStQXl6OyZMnIzo6Wv743//+16bzZGdnyyubNBoNDh8+jFmzZmHAgAG49957MXr0aGzfvp3ZFqIW1HM6iYh8hNOmk5zxNbbHgoKCsGHDhg5dF5EvMnM6iYh8BPdOIlIYZmKIyFcwiCFSGNbEEJGvYBBDpDC2QYyZ00lEpGAMYogUxnY6qZ7TSUSkYAxiiBTGvtmd2Y1XQkTkWgxiiBTGPohx44UQEbkYgxgihbEr7GUmhogUjEEMkcLYBi5cYk1ESsYghkhhbFckMYghIiVjEEOkMLa9YRjEEJGSMYghUhgTl1gTkY9gEEOkMLb7JZkZxBCRgjGIIVIYNrsjIl/BIIZIYUysiSEiH8EghkhhTFydREQ+gkEMkcLYd+xlEENEysUghkhhWBNDRL6CQQyRwtiuSLKdWiIiUhoGMUQKY5t9MXEHSCJSMAYxRApjstk7idNJRKRkDGKIFMY2+WLmdBIRKRiDGCKFYSaGiHwFgxgihbGviWEQQ0TKxSCGSGFMXJ1ERD6CQQyRwrDZHRH5CgYxRArDZndE5CsYxBApDDMxROQrGMQQKQyDGCLyFQxiiBSGQQwR+QoGMUQKY18Tw20HiEi5GMQQKYxtl15unURESsYghkhh6k22QQyjGCJSLgYxRArDbQeIyFcwiCFSGNsuvWYGMUSkYAxiiBTGxGZ3ROQjGMQQKYx9TQyDGCJSLgYxRApjEgxiiMg3OCWISU9Px5gxYxAaGgqdTofU1FRkZ2c7fK4QAtOnT4dKpcLq1atbPK8QAosWLUJ0dDSCgoIwZcoUnDhxwhmXTKRYbHZHRL7CKUHMtm3bkJaWht27d2Pjxo0wGo2YOnUqqqqqmjz3jTfegEqlatV5ly1bhuXLl+Odd97Bnj17EBISgmnTpqG2ttYZl02kSNwAkoh8hdYZJ8nMzLT7fNWqVdDpdNi3bx8mTZokHz948CBee+017N27F9HR0S2eUwiBN954A8888wxmz54NAPjggw8QGRmJ1atXY+7cuc64dCLFsV2RZNv4johIaVxSE1NeXg4A6Natm3ysuroad911F95++21ERUVd9hw5OTkoKCjAlClT5GPh4eEYO3Ysdu3a5fBrDAYD9Hq93QeRr7HLxJgYxBCRcjk9iDGbzZg/fz4mTJiApKQk+fjjjz+O8ePHy1mVyykoKAAAREZG2h2PjIyUH2ssPT0d4eHh8kdcXFw7R0HkvVgTQ0S+winTSbbS0tKQlZWFHTt2yMfWrFmDzZs348CBA87+dnYWLlyIJ554Qv5cr9czkCGfYxfEcDqJiBTMqZmYefPmYe3atdiyZQtiY2Pl45s3b8apU6cQEREBrVYLrdYSO91yyy2YPHmyw3NJU06FhYV2xwsLC5udjgoICEBYWJjdB5GvYbM7IvIVTglihBCYN28eMjIysHnzZiQkJNg9/pe//AWHDx/GwYMH5Q8A+Pvf/46VK1c6PGdCQgKioqKwadMm+Zher8eePXswbtw4Z1w2kSLV2+ydxA0giUjJnDKdlJaWho8//hhff/01QkND5ZqV8PBwBAUFISoqymH2JD4+3i7gGTRoENLT0zFnzhyoVCrMnz8fS5cuRf/+/ZGQkIBnn30WMTExSE1NdcZlEymSbdxiYgxDRArmlCBmxYoVANBkamjlypW45557Wn2e7OxseWUTACxYsABVVVV44IEHUFZWhokTJyIzMxOBgYHOuGwiRWImhoh8hVOCGNGO4kFHX9P4mEqlwpIlS7BkyZJ2XxuRr2FNDBH5Cu6dRKQwtiuSzAxiiEjBGMQQKYxtgztmYohIyRjEECkMm90Rka9gEEOkMLbTSQxiiEjJGMQQKQwzMUTkKxjEECkMa2KIyFcwiCFSGGZiiMhXMIghUhjWxBCRr2AQQ6QwzMQQka9gEEOkMPU2GybVc9sBIlIwBjFECmObfDGL9m0LQkTkDRjEEClM4+wLp5SISKkYxBApTOOghcusiUipGMQQKUzjIMbM6SQiUigGMUQKYjYLNE68MBNDRErFIIZIQUwOsi4mE4MYIlImBjFECuKoiNdRYENEpAQMYogUxGEQw+kkIlIoBjFECmJb/6JSNT1GRKQkDGKIFMRsE7AEaNVNjhERKQmDGCIFkbIuKhXgp1bbHSMiUhoGMUQKItW/aNUqaDQq6zHun0REysQghkhBpJVIapUKGpUUxLjzioiIXIdBDJGCSD1htGoVNGpLEMOdrIlIqRjEECmIFLBo1Cpo1VImhjUxRKRMDGKIFETaJ0mjVkHNIIaIFI5BDJGCSCuRNGo1MzFEpHgMYogUpN5hTQyDGCJSJgYxRApiO50kBTFsdkdESsUghkhBGqaTVNCw2R0RKRyDGCIFsW12x5oYIlI6BjFECiIFLGquTiIiH8AghkhBHGViOJ1ERErFIIZIQexrYpiJISJlYxBDpCAmm4698t5JgkEMESkTgxgiBZE2e9SoVdByF2siUjinBDHp6ekYM2YMQkNDodPpkJqaiuzsbLvnPPjgg0hMTERQUBB69uyJ2bNn4/jx4y2e95577oFKpbL7SElJccYlEymSFLDYNbszMRNDRMrklCBm27ZtSEtLw+7du7Fx40YYjUZMnToVVVVV8nNGjx6NlStX4pdffsGGDRsghMDUqVNhMplaPHdKSgry8/Plj08++cQZl0ykSFJNjFplM53EmhgiUiitM06SmZlp9/mqVaug0+mwb98+TJo0CQDwwAMPyI/36dMHS5cuxfDhw3HmzBkkJiY2e+6AgABERUU54zKJFE9enaSxKexlTQwRKZRLamLKy8sBAN26dXP4eFVVFVauXImEhATExcW1eK6tW7dCp9Nh4MCBePjhh1FcXOz06yVSCpPtBpAaZmKISNmcHsSYzWbMnz8fEyZMQFJSkt1j//znP9GlSxd06dIF69evx8aNG+Hv79/suVJSUvDBBx9g06ZN+Nvf/oZt27Zh+vTpzU5BGQwG6PV6uw8iXyIvsVZZppQA1sQQkXI5PYhJS0tDVlYWPv300yaP3X333Thw4AC2bduGAQMG4Pbbb0dtbW2z55o7dy5mzZqF5ORkpKamYu3atfj555+xdetWh89PT09HeHi4/HG5LA+R0phtMzHSBpCcTiIihXJqEDNv3jysXbsWW7ZsQWxsbJPHw8PD0b9/f0yaNAlffPEFjh8/joyMjFafv2/fvujRowdOnjzp8PGFCxeivLxc/sjNzW33WIi8Ub1Nx15uAElESueUwl4hBB599FFkZGRg69atSEhIaNXXCCFgMBha/X3Onz+P4uJiREdHO3w8ICAAAQEBrT4fkdKY7Dr22h8jIlIap2Ri0tLS8OGHH+Ljjz9GaGgoCgoKUFBQgJqaGgDA6dOnkZ6ejn379uHcuXPYuXMnbrvtNgQFBWHGjBnyeQYNGiRnZiorK/HUU09h9+7dOHPmDDZt2oTZs2ejX79+mDZtmjMum0hx7IMYtd0xIiKlcUoQs2LFCpSXl2Py5MmIjo6WP/73v/8BAAIDA7F9+3bMmDED/fr1wx133IHQ0FDs3LkTOp1OPk92dra8skmj0eDw4cOYNWsWBgwYgHvvvRejR4/G9u3bmW0hagY3gCQiX+K06aSWxMTEYN26dW06T1BQEDZs2NDhayPyJXKzO7sNILntABEpE/dOIlIQaSWS1i6IcecVERG5DoMYIgWResJobKaTmIkhIqViEEOkIFLAolGroGZNDBEpHIMYIgWR9kmyzcSYGcQQkUIxiCFSEPtmd8zEEJGyMYghUhCTyWZ1koobQBKRsjGIIVIQk+3qJO5iTUQKxyCGSEFMDjaAZBBDRErFIIZIQbgBJBH5EgYxRApitt07yZKIkaeYiIiUhkEMkYLU2wYx1m2spWJfIiKlYRBDpCDcAJKIfAmDGCIFkYIYtaphibWZ00lEpFAMYogURM7EaNjsjoiUj0EMkYLU2+ydpNVwA0giUjYGMUQKIveJUamgZsdeIlI4BjFECmIyN90AkkEMESkVgxgiBalnTQwR+RAGMUQKYrc6yRrEmBnEEJFCMYghUpCGPjFqZmKISPEYxBApiH1NjNruGBGR0jCIIVIQ220HrDEMMzFEpFgMYogUROrOq7XJxLAmhoiUikEMkYLUm2w2gGRNDBEpHIMYIgWxrYnRsE8MESkcgxgiBTEJNrsjIt/BIIZIQRqWWHM6iYiUj0EMkYJIG0Cq7aaTuAEkESkTgxgiBZHiFS1rYojIBzCIIVIQKRPDmhgi8gUMYogUxHZ1klrFmhgiUjYGMUQKYlvYq9VYN4AUDGKISJkYxBApSMO2A9wAkoiUj0EMkYLI00kqFTTW6SQhuPUAESkTgxgiBZGDGE3D3klAQxM8IiIlYRBDpCB2ze6sNTG2x4mIlIRBDJGCSPUvapvpJNvjRERK4pQgJj09HWPGjEFoaCh0Oh1SU1ORnZ1t95wHH3wQiYmJCAoKQs+ePTF79mwcP368xfMKIbBo0SJER0cjKCgIU6ZMwYkTJ5xxyUSKY1v3YtvsDmAmhoiUySlBzLZt25CWlobdu3dj48aNMBqNmDp1KqqqquTnjB49GitXrsQvv/yCDRs2QAiBqVOnwmQyNXveZcuWYfny5XjnnXewZ88ehISEYNq0aaitrXXGZRMpim22xVITwyCGiJRNJYTzK/4uXboEnU6Hbdu2YdKkSQ6fc/jwYQwfPhwnT55EYmJik8eFEIiJicGTTz6JP/3pTwCA8vJyREZGYtWqVZg7d+5lr0Ov1yM8PBzl5eUICwvr2KCIPFxNnQmDF2UCAI4unoaQAC36/OVbAMBPf70eutBAd14eEVGrtfb92yU1MeXl5QCAbt26OXy8qqoKK1euREJCAuLi4hw+JycnBwUFBZgyZYp8LDw8HGPHjsWuXbscfo3BYIBer7f7IPIVtiuQpKkkKRvjyj0gt2ZfxKRlW7DndLHrvgkRkQNOD2LMZjPmz5+PCRMmICkpye6xf/7zn+jSpQu6dOmC9evXY+PGjfD393d4noKCAgBAZGSk3fHIyEj5scbS09MRHh4ufzQXIBEpkclkXxMDwKbhneuimO9/KcS5kmpsyb7ksu9BROSI04OYtLQ0ZGVl4dNPP23y2N13340DBw5g27ZtGDBgAG6//Xan1rcsXLgQ5eXl8kdubq7Tzk3k6WwDlcaZGFfWxNQaLd/XUN98fRsRkStonXmyefPmYe3atfjhhx8QGxvb5HEpQ9K/f39cddVV6Nq1KzIyMnDnnXc2eW5UVBQAoLCwENHR0fLxwsJCjBgxwuH3DwgIQEBAgHMGQ+RlTPLyakBlXV6t7pQgxhK8GOpdOGdFROSAUzIxQgjMmzcPGRkZ2Lx5MxISElr1NUIIGAwGh48nJCQgKioKmzZtko/p9Xrs2bMH48aNc8ZlEymKVBNj26m3MzMxUjBDRNRZnBLEpKWl4cMPP8THH3+M0NBQFBQUoKCgADU1NQCA06dPIz09Hfv27cO5c+ewc+dO3HbbbQgKCsKMGTPk8wwaNAgZGRkALH9Jzp8/H0uXLsWaNWtw5MgR/O53v0NMTAxSU1OdcdlEilJvkjZ/bFharbEGNK5sdidNIzETQ0SdzSnTSStWrAAATJ482e74ypUrcc899yAwMBDbt2/HG2+8gdLSUkRGRmLSpEnYuXMndDqd/Pzs7Gx5ZRMALFiwAFVVVXjggQdQVlaGiRMnIjMzE4GBXCpK1Ji8b5JdEGP/mCvI00nMxBBRJ3NKEHO5VjMxMTFYt25dm8+jUqmwZMkSLFmypEPXR+QLpOkk2yBGmlpyZRAjZWCYiSGizsa9k4gUwnbzR0nDEmvXZ2JYE0NEnY1BDJFCSDUxagdBTOcssWYmhog6F4MYIoUwi+YzMZ1RE8NMDBF1NgYxRApR76Cwt3OWWHN1EhG5B4MYIoUwWTv22gYxapXrtx2orWefGCJyDwYxRAphssYpdpkYjXUDSOdvVm85r1mgjquTiMhNGMQQKYSUbXG4OsnkmiDGNnAxGBnEEFHnYhBDpBANeyfZBDEq19bE2E4h1dabLtsziojImRjEECmE3CdG42B1kouCi1qbnauFAIwuyvgQETnCIIZIIRq2HbDZAFLj2kxM4ykk26CGiMjVGMQQKYS8xLohEdOwOslFGZLGQQvrYoioMzGIIVIIs7ztgE0mxtXTSY0zMVxmTUSdiEEMkUI4anancfEGkI2DFi6zJqLOxCCGSCFMDoMYy39dtQFk4yCGmRgi6kwMYogUwlEQI00tmV0WxNhnXpiJIaLOxCCGSCHkJdaOmt25anVSk8JeZmKIqPMwiCFSCClQUTvcxdo1GRLWxBCROzGIIVIIaQWSo0yMyUWxRdPpJGZiiKjzMIghUgiTqeku1tpOzsQ0DmqIiFyJQQyRQjhaYq12eU0MMzFE5D4MYogUwiwcrU6y/L/rVicxE0NE7sMghqidTl2qhL7W6O7LkNW7YXUSa2KIyJ0YxBC1Q25JNaa8vg33/3evuy9FZjI5aHancu0GkI33TmImhog6E4MYonbILa2GEMC5kmp3X4rM5GA6SePiXaybLrFmJoaIOg+DGKJ2kN68azyouZuphQ0gXVbYa828BPlpADATQ0Sdi0EMUTtIb9aetFeQ3OxO1YnTSdbxRwT7AWAmhog6F4MYonaQ3rxrjWYI4ZoAoa3kTIzGwS7WLrpGqSYmPMgSxDATQ0SdiUEMUTvYTiN5Sqt9hxtASjUxJteuTpKCGE/5WRCRb2AQQ9QOthkHT5lScscGkNLY5SDGQ34WROQbGMQQtYNt4OIpxb311q0FHNXEmF01ndSoJqaWmRgi6kQMYojawTaI8ZQ6EGmTx87MxEjTR8zEEJE7MIghagf7IMYz3rilTR41Ggc1MS7bANI+iGEmhog6E4MYonao8cjpJGthr810kjS1VO+iwl4Da2KIyI0YxBC1gycW9podrU5Su7gmRlpiHewPgKuTiKhzMYghaocaD5xO6uwNIE1mAaM1w8NMDBG5A4MYonYweGRhr4O9k9Su69hrG7yxJoaI3MEpQUx6ejrGjBmD0NBQ6HQ6pKamIjs7W368pKQEjz76KAYOHIigoCDEx8fjj3/8I8rLy1s87z333AOVSmX3kZKS4oxLJuoQT5xOaghiGm7rzg5imIkhos7klCBm27ZtSEtLw+7du7Fx40YYjUZMnToVVVVVAIC8vDzk5eXh1VdfRVZWFlatWoXMzEzce++9lz13SkoK8vPz5Y9PPvnEGZdM1CGeWNjrqNmdtBmkK6aTpKyLv0aNYH+N3TEios6gdcZJMjMz7T5ftWoVdDod9u3bh0mTJiEpKQlffvml/HhiYiJefPFF/OY3v0F9fT202uYvIyAgAFFRUc64TCKn8cQ+MfIGkHbTSZb/ujITE+CnRoBWLX+fepMZWg1nqonI9Vzym0aaJurWrVuLzwkLC2sxgAGArVu3QqfTYeDAgXj44YdRXFzs1Gslag9P7BMjrUCyL+xtCC6cTRp3oJ8GgX4a+ThXKBFRZ3FKJsaW2WzG/PnzMWHCBCQlJTl8TlFREV544QU88MADLZ4rJSUFN998MxISEnDq1Ck8/fTTmD59Onbt2gWNRtPk+QaDAQaDQf5cr9d3bDBEzfDEmhipF4yjJdauCGKkYCXQTw1/m8xLrdGEkACn/2ohImrC6b9p0tLSkJWVhR07djh8XK/XY+bMmRgyZAief/75Fs81d+5c+f+Tk5MxbNgwJCYmYuvWrbj++uubPD89PR2LFy/u0PUTtYYnZmIcrU5Su3CJtZyJ0WqgVqvgr1Wjrt7MTAwRdRqnTifNmzcPa9euxZYtWxAbG9vk8YqKCqSkpCA0NBQZGRnw8/Nr0/n79u2LHj164OTJkw4fX7hwIcrLy+WP3Nzcdo2D6HI8srBXtNDszhWZGGs2KsDP8mtEqovxlKCOiJTPKZkYIQQeffRRZGRkYOvWrUhISGjyHL1ej2nTpiEgIABr1qxBYGBgm7/P+fPnUVxcjOjoaIePBwQEICAgoM3nJWoLIYRHF/Y6bnbn/Gu0zcQAltqYitp6ZmKIqNM4JROTlpaGDz/8EB9//DFCQ0NRUFCAgoIC1NTUALAEMNKS6/fffx96vV5+jsnU8GYwaNAgZGRkAAAqKyvx1FNPYffu3Thz5gw2bdqE2bNno1+/fpg2bZozLpuoXYwmAdvEhqdkHqRNHtWd1eyuvqGwF2Amhog6n1MyMStWrAAATJ482e74ypUrcc8992D//v3Ys2cPAKBfv352z8nJyUGfPn0AANnZ2fLKJo1Gg8OHD+O///0vysrKEBMTg6lTp+KFF15gtoXcqvH0kae8aZusCRBHmRiTC/ZOkjJQgdbpJCmYYSaGiDqL06aTWjJ58uTLPqfxeYKCgrBhw4YOXxuRszXuSusp00lSJsbh6iQX7GLd0CeGmRgicg92pCJqo8aZGE8p7JVqYjQqm9VJKleuTrJmYrT2QQwzMUTUWRjEELVR48yLp2QepBVIWo1NJsb6/2aXTCdJNTH200me8vMgIuVjEEPURo3fpD3lTbvewQaQWlf2iWmmsJeZGCLqLAxiiNqoaWGvZ7xpm1qYTnJFTYyBhb1E5GYMYojaSMq8+FmnajwlE+OoY6+0i7UrVicZ6u37xMiZGA/5eRCR8jGIIWojKWiJCPYH4DmFvSYHNTEaTScU9vpp7P7LTAwRdRYGMURtJL15dw32s35ualULAVeTAhW1zXSSNLXkyl2sue0AEbkLgxiiNmqciTELSxdfdzO1sO2AySycHmg52nYAYCaGiDoPgxiiNpKmj6RMjO0xd3JcE9Pw/85OxtRyA0gicjMGMURtJL15dwnwgxQjeEIxq6MgxnYfJWdvAtlkibWUifGQ1VpEpHwMYojaSMq6BPmrEWR94/aETIwUpGiby8Q4ObZoXNgrZ2Lq3f+zICLfwCCGqI0MNrUgDV1q3Zt9EKJhZ22Ng5oYwPmZmIafg3U6iZkYIupkDGKI2qhWzsRoPKbVvu3qo+aCGGevUGrYdsBa2MtMDBF1MgYxRG1UY/PmLXWrdfd0Un1zQYzKhUFMfaPpJGZiiKiTMYghaiPbWhBPycTYbvCotdk7Sa1WycXHzg5iDI03gJT3TmImhog6B4MYojaqsXnzDvKQIKa5TAzQENQ4u2tvc5kYd9cHEZHvYBBD1Ea1HljYa7vBY+MgRkrMODMTYzSZ5fPJze6YiSGiTsYghqiNpJoPjyrstZlOahTDNGwC6cQgxna8crM7DwnoiMh3MIghaiPb6SRPKey13XJApbKPYqTMjDOnk2wDFak/jPSz4LYDRNRZGMQQtVGt3eokz8g+yJs/Nk7DwH7/JGeRN3/UquWgKUArrU7idBIRdQ4GMURtZNtu31MKe80ONn+UuCKIMTTacsDy/8zEEFHnYhBD1EY1ddZVOdqGPjHuDmLqHeybJNG6JBMjrUxq+BUiZWLqbIp+iYhciUEMURsZbDr2ekomxmTdUsBREKNWSTUxzsuQNO7Wa/n/hl8ndczGEFEnYBBD1Ea2hb0BHrIBpMkaMziaTtJqLMdsG+J1lJyJ0TYEMf4atc3jrIshItdjEEPUBvUmszx1E+RRhb3NZ2Lk1UkmV9TENPwK0WrUchDFuhgi6gwMYojaoNbmzdmTCnulGhSNykEQo3JdTUyAzXQS0DC9xIZ3RNQZGMQQtUFNnU2TN63n9YnRaFpYneTU6aSmNTFAQ88Yd2emiMg3MIghaoNam3oYlUolZ2LcvXNzQ7O7pre0VBPj1GZ30nSS1v77MRNDRJ2JQQxRGzTOQAR6SGGv3OyuaSKmYTrJiTUxzU0nMRNDRJ2JQQxRG0hvzkHyzs2e0SfG3EImxqXTSY0yMQHMxBBRJ2IQQ9QGtY061cqFvW5+02652Z3zN4A0sCaGiDwAgxiiNpAKexs2PbROJ9V5Rk2Mw2Z31rvcuTUxTTv22n7OTAwRdQYGMURtUGvTrRewKWT1lNVJLWRizC7YALJpJsYz+uYQkW9gEEPUBnK3Xq39dJKnFPa2tAGkUzMxzQQxzMQQUWdiEEPUBtJS6oZMjOUWqjcL1Jvcl32QMjHqFnexdubeSdbVSY0Lez08E3OisALT/v4D1h/Jd/elEJETMIghaoPaRu32bTMRtW5stS9tO9BSJsaZMZahvuXCXk/NxHz6cy6yCyuw8scz7r4UInICBjFEbSAV9krTSQFaNaRO/7bdfDubtLmj45oY12Vimk4neUbzv+YcOFcKADh8oQxGN2bOiMg5nBLEpKenY8yYMQgNDYVOp0Nqaiqys7Plx0tKSvDoo49i4MCBCAoKQnx8PP74xz+ivLy8xfMKIbBo0SJER0cjKCgIU6ZMwYkTJ5xxyUTtIr95W6eTVCqVzbJi9wUx0uaOjlcnubImpvF0kvVn4YGZGEO9CVkX9AAsr+Px/Ao3XxERdZRTgpht27YhLS0Nu3fvxsaNG2E0GjF16lRUVVUBAPLy8pCXl4dXX30VWVlZWLVqFTIzM3Hvvfe2eN5ly5Zh+fLleOedd7Bnzx6EhIRg2rRpqK2tdcZlE7VZ48JeAB6xCaSphcLehkyMC5ZYa70nE3MsT486m+zLgdxSN14NETmD1hknyczMtPt81apV0Ol02LdvHyZNmoSkpCR8+eWX8uOJiYl48cUX8Zvf/Ab19fXQaptehhACb7zxBp555hnMnj0bAPDBBx8gMjISq1evxty5c51x6URt0rDEuiH+t7xxG91azGpqYTpJ44IgRlpSHtBMJsYTa2IOnCtr8vnvxrnnWojIOVxSEyNNE3Xr1q3F54SFhTkMYAAgJycHBQUFmDJlinwsPDwcY8eOxa5duxx+jcFggF6vt/sgcia5oNVRJsaNb9wt9YmR9k7qnCXWnpuJ2W+th7kyoZvd50TkvZwexJjNZsyfPx8TJkxAUlKSw+cUFRXhhRdewAMPPNDseQoKCgAAkZGRdscjIyPlxxpLT09HeHi4/BEXF9fOURA5Jhf22rx5B8hdez2hJqb5Xayd2+zO8XSSvJeUB2difj++DwDgbHE1iisN7rsgIuowpwcxaWlpyMrKwqeffurwcb1ej5kzZ2LIkCF4/vnnnfq9Fy5ciPLycvkjNzfXqecnalzYCzQUt7qzJkZandRpze7qHRf2SkGNp2ViLuprcaGsBioVcPWAnuin6wIAOJhb5t4LI6IOcWoQM2/ePKxduxZbtmxBbGxsk8crKiqQkpKC0NBQZGRkwM/Pr9lzRUVFAQAKCwvtjhcWFsqPNRYQEICwsDC7DyJnqnGwe7MndO2VAhS1qvnpJKcW9ja37YCHZmL2W7MwAyND0SVAi1HxEdbjnFIi8mZOCWKEEJg3bx4yMjKwefNmJCQkNHmOXq/H1KlT4e/vjzVr1iAwMLDFcyYkJCAqKgqbNm2yO8eePXswbhyr8cg9Gu+dBHhGHUhLq5OkKSZnZWKEEA0de5sU9rr/Z+GItBJppDV4GRnf1XK8UbEvEXkXpwQxaWlp+PDDD/Hxxx8jNDQUBQUFKCgoQE1NDYCGAKaqqgrvv/8+9Hq9/ByTqeEvtkGDBiEjIwOApf/G/PnzsXTpUqxZswZHjhzB7373O8TExCA1NdUZl03UZo6WFntUYa/GwRJrqSZGOCeIsV2m7C2ZGClYkYKXUdb/Hsotc2qGikhpPP3+cMoS6xUrVgAAJk+ebHd85cqVuOeee7B//37s2bMHANCvXz+75+Tk5KBPnz4AgOzsbLsGeAsWLEBVVRUeeOABlJWVYeLEicjMzLxsFofIVWrrmmZipDdutxb2SkGMg+kkaYpJKv7tKNul5E0Ke6Ul1h6UiTGazDh8vgwA5Gmkfrou6BKgRaWhHr8WVmBwNKeeiRr7cPdZLPo6Cy/OScadV8a7+3IcckoQIy7zF97kyZMv+xxH51GpVFiyZAmWLFnSoesjchZHBa2BcrM7d04nWb53Z2w7IPWIUasAv0aZn0APyEo1ll1QgVqjGWGBWvTtYSno1ahVGB4Xjh9PFuPAuTIGMUSNnL5UiRfWHoNZAIu/OYrxid3Ru3uIuy+rCe6dRNQGUk1MgMdNJ1n+2+IGkE6aTrLdN0nVKPPjiZkYqXh3RHxXu12+pSklFvcS2TObBf785WEY6s1Qqyz3/IIvDju1TYOzMIghaoMaB9NJgR4wnSRnYhzVxDi5Y29tMztY2x4zuHFH78bkepi4CLvjUpHvAQYxRHb+u+sMfj5TihB/DT68byyC/DTYk1OCj/acdfelNcEghqgN5MJev6aZGHe22m+xJkbt7JoYKRvV9NeHJ2yG2ZgUpIzq3dXu+Ig4y+enLlWhvNrY6ddF5InOFldhWaZlA+e/zBiM8Yk98JfpgwAA6euPI7ek2p2X1wSDGKJWMpkF6qxBTJBf0yXW7szEmFuzAaQLppMas83EtKYOztWKKw04U2z5pTsiNsLusW4h/kjoYZnj52aQ5KuKKg04W1wlf/z5y8OoMZpwVd9uuNtazPvbq3rjyoRuqK4z4S9fHbZ7/tniKlTUuu+PAKcU9hL5AttMi21hb4AHFPbKmRgH2w44ewPI1mRiAEsg4yjQ6UxSR97EniEID27aXHNkXARyiqrww69FmDxQ18lXR+RemVkFePijfWj890aQnwbLbhkuZ3HVahWW3TIMKf/4AT+eLMY1r2y1e/6yW4fh9ivcs80PMzFErdTc0mLPKOyVgpimjzl724HmuvU2PuYJdTHHCyoAAMm9wh0+PiM5GgDwwa4zOJpX7vA5REpUXGnAXzOOQAjL77AuAVp0CdAiItgPS2YPRXz3YLvn9+kRgsWzhiIi2E9+rvTReJViZ2ImhqiVpG0F/LVqu1UunlHY28IGkGrnbgDZUBfk+HupVYBZWJdiBzW/tUhnOHmxEgDQPzLU4eNThkRielIU1mcV4KnPD+PreRPg5ygSJFKY5785huKqOgyKCsWaeRPh7yCz2tgdY+JxxxjP6hfDu5WolWod7JsE2GZifGPbgZYyMSqVyqNWKP1aaMnE9Ldu+OjIktlJ6Brsh2P5eqzYeqqzLo3IbTKzCvDNoTxo1Cq8cuvwVgUwnsp7r5yokzlaXg3YNHjzgI69aodBjOW/zqqJMTjYesGWp6xQMpnFZTMxANAzNADPzxoKAHhz8wkcL9B3yvURuUNpVR2eWZ0FAHhwUl8kxzqeavUWnE4iaiVDM/1RAj1gvyBp5VFLmRjbIKao0oAQf22TgKw5py9VotJQDwA4U1QFwPF0EiA1AjQ2m4mpNZpworASAg3XowsNRFS44+1EymuMUKuA0EDHU1Nl1XUI9NM0eV0ulNbAUG+Gv1aN+G7BDr9WMmt4DNYezsfGY4V46vPDyHhkPLQOppXq6s3Q1xrRo0tAi+cjaq9aown6GiN0YY7vB32tESaTQNcQ/1adL6+sBkWVBvnzf/9wGkWVBvTTdcEfr+/vlGt2JwYxRK0kLy3WNpOJcWPmwWSSamIu3+zuYkUtrlm2FV0CtVg+dyTGJXZv8dyf/ZyLBV8ebnK8uZVHclDn4OdhMgv85r092HvWfkmzv0aNLx4eh2GNlkFf1Ndi5ps74KdWYctTk+06JQNAQXktbnh9G4bHReDD+8baPSZNJSX27OLw52JLpVLhxdQk/JRTgiMXyvH5vvMO94p5bk0WPt97Hp89NE7u+EvkLEaTGXf8ezeO5ZXjo/uuwpUJ3eweL62qw4zl21FdZ8LaRyci7jLB+b6zJZj7790wNuoRpVYBr9w6zO2rB52B00lErSRNJwU2M53kERtAOnizlpvdWbv67jpVjBqjCZcqDLj7vd14e8vJZot+L5TVYMnaYwAAXWgAekUEoVdEEBJ7hmDWiBiHXyMFGo4yMe/vOI29Z0vhr1HL54oI9kOdydLWvM7ma4QQeDojC5cqDMgrr8WxvKbTPNtPXEKFoR47ThahvMa+V8UJaSqphXoYW7qwQNw7MQEAsONkUZPHhRDIzCpAvVng8725rTonUVu8s/UUDuWWwWgSWPDFoSa/UxZ/cxT55bUorzFi4VdHWuzFVGs04anPD8NoEuga7Cffb7Fdg/CX6YPkHd29HTMxRK0kt9tvVAQX6AGFvWZx+UyMtP+j1Ia/R5cAFFUa8MqGbPyUU4K/3zEC3WxS1EIILPzqCCoN9RgVH4HPHxp/2YwG0JCJadzB+PSlSrz23a8AgBdSh8qrHIorDZj69x9wvKACb205iSduGAAAWHMoD9//Uih//YFzZU1+8R6w9oEBgEO5ZZg0oKf8+YmLly/qbeyKPpbzHzxX1uSxM8XVKLV29t1wtBAvzDY7nHIiao/sggos33wCABDsr8GZ4mq89l02nrlxCABg47FCrD6YZ914VY0dJ4vw6c+5ze4u/frGX3G6qAq60ABsfPwah32SlIB3IFErNVfYK61Oqqs3O614tq3qW1ydZJ+Jkd74n71xMJbdOgyBfmps+/USZi7fjn1nS+Sv+3zfefzw6yX4a9VYduvwVgUwQEMmxravjskssOALy4ZyV/fvYdcYq3uXACyebSms/eeWkziaV45LFQY8t+YoAKBXRJDddds6YBNsHGgUeLSmqLex4bERUKssGahCfa3dY/ttpsBKquqw+3RJ4y8napd6kxlPfXEIRpPAlME6vH33KADA+z/mYN/ZUpRXG/HXjCMAgPsn9cVT0wYCAF789hfkldU0Od+Bc6V4b/tpAMBLc5IVG8AADGKIWq22mVU5tgWu7to/Sd4A0lEQo2qoiak1mnDM2tRtVHxX3H5FHFanTUDfniHIL6/FHf/ajXd/OI388hq8YJ1GeuKGAejXhmxGgINMzH93nsHes5YN5V6+ZViT3a9nJkcjZWgU6s0CT31+GM+sPoKyaiOGRIfhxTlJAOyDCACoNNQj22Ylke1u1GazwIlCKYhp/bWHBGgxMCoMQNONIaWtCaQf8bqs/Fafl6gl727PweHz5QgL1OLFOcm4dqAOt4yKhRDAU18cwrNfZ+FihQF9e4bg8SkD8PsJCRgVH4FKQ32TaaVaowlPfXEYZgGkjojBlCGRbhyZ63E6iaiVDHJ/lEbTSTZBTa3RjODWLRpok+q6ehRX1jVbyFffQmGvtLO1SQgczSuH0STQo4s/YrtaMhyDosKwZt5EPP3VEaw5lIcX1/2Ct7eeREVtPYbHhuM+a51Ia0mZmKwLevTocglVBhOWbTgOAFg4Y7CcWbGlUqnwQmoSducU41i+Hsfy9dCqVXjltmGI7xYMlTU7clFfK6/aOHy+DGZhyT7VmwUO5pbBbBZQq1W4UFaDGqMJ/ho1el+m+LGxkfER+CVfjwPnypCSFC0flzI9d4yJxyc/ncOGrAIsmTWUU0o+TgiB/efKUF1X366vr6itx9+/t0yzPnvjEERa/30vunEItp+4hNOXqnD6UhVUjYpxl906HDOWb8e2Xy/h7S0nMdy6S/uGowU4ebESPboE4LmbhnZ8gB6OQQxRKzU3naRWq+CvVaOu3ix39XW2p744jPVH8rE6bUKTFTxAQ01MSxtA1puE/EY8Mr6rXTakS4AW/5g7AmP7dsPiNcdQVm2Ev0aNV24b3uY36WDrz+f9HTl4f0eOfHxc3+64q5n5e8DSr2XxrKF47NODAIBHJidiaIylh8UAXSiyCytwILcM04ZGAWgIKq4frMO2Xy+hvMaI00VV6KfrIk8l9e0Z0ubrHxkXgY/3nLObnqquq5e3MHhkciLWZ+WjuKoOP50pwfjEHm06PynLv344jZfXH+/weSYP7IlbR8fKn4cH++HFOcm4/4O9AIA/TEjA6N4Nq5X66brgiRsG4OX1x/GqtdbM1tLUpFYvw/ZmDGKIWkkq7G28zBewFPvW1Ztdssy63mTGluMXYRbA1uxLDoMYudmdquXppIYgpuk5VCoV7h7bG8NjI/D3jb/ipuExGNCGehLJ3CvjcK6k2m51UniQFq/cNsxhMz5bs4bH4Jf8ClysqEXadf3k46N6RyC7sAL7z5XaBDGW6Z0xfbqhtMqIn86U4MC5UvTTdZGLetsyDdbwvSzFvYcvlMFoMsNPo8bh8+UwmQWiwwMR1y0Y04ZE4X97c7HuSD6DGB92orACr1sDiP66Lu3OynUL8cPLNzedZr1hSCTmT+mP05eq8KepA5t83X0TE3DyYiWONlq5d92gnkhJimrXtXgbBjFErVRTZ3lTdtQgLshfA31tvUuWWWcXVqDaet79jeo0JPK2Aw42YpN3sRZC/vqRcc0vr0zqFY737xnT7usdn9gDq9Pa98auUqnwl+mDmhwfGdcVn/yUKwdhQthnlS5VGCxBTG4ZbrsiDr9K9TC6tgdhCd1DEB7kh/IaI47nVyA5Nlz+uUm9YaYnW4KYzKxCLJ6V1OqiZ1IOk1ngqS8Oo85kxrUDe+I/94xpEoQ4w/wpA5p9TKtR49Xbhjv9e3oTTuYStVLDEuvmd292RWFv4xU4jnpDtLgBpDWwKSivRX55LdQqYHicd7UalzJHh89bsiPnSqpRXFUHf40aSb3C5KXXUvGv3COmDUW9ErVahRHW+gIpeGmcwZrQrwfCg/xQVGnAz2e4SskXvb/jNA7mliE0QIuXbk52SQBDl8cghqiVapsp7AVsNoE0Or9XjG32Rar7aEwOYhz8IpWmmKRszqCoMAT7e1cSNrFnF4QGalFrNCO7oEIOKobEhCFAq5GDi18LK1BRa8RJa7feAe0IYoCGjMuBc6XWrI81g2X9Pn4aNaZaV32sO8JVSr7GtufRMzcORnR402J16hwMYjzQyYsVOFdc7e7LcIqcoirklzftY+AMRpMZP58pabbbbEedLa5CbknD6yAFMY6mkwIcdO3df65U3m+oI6TGa9JOs437oQAtd+zVNsrOjOod0eFr6my22ZED50rloEIKNiLDAtErIghmYWlEV1VnglatQu/uIe36flKwciC3DOdLa1BUWQc/jUouNAaAGcmWlUvrswpa/W/w9KVKu39Tl3Motwxl1XWtv3APcvh8md2ePS2pq7fcy/Umx38E1NSZsOtUcYsdajtLSz2PqPMxiPEw+lojbnrzR9y8YqfbGqc5S2lVHW5cvh1z3t5p107eWV7dkI3b3tmFj3465/RzV9QaMeutHzH77R9RZQ1Emts7yXLMfhPIbw/n4+Z/7sTTXx3p0HWUVtXJmZfZwy1t/h3VxZhbURMjaakexpPJU0bnyrDfQYGy9P+f/WzZEiChRwj82lloKS1XPVtcjY3HLF2Dh8SE2+01M6FfD4QFanGpwoD1WQUtns9kFvjH9ydw/evbkPLGD60KZL7Ydx6z3/4R8z4+0K4xuNP6I/mY9daPuHXFzssuPc4tqcZt/9qF297Zhcc/O9TkcSEEHvpwH+58dzfe+P6Eqy651S7X84g6F4MYD5NdUIEaowlFlQacL/XubMyxfD2q6kwo0Nfix1NN96LpCJNZ4Mv9FwAA27IvOfXcAHAotxzlNUaUVNVhS/ZFAM3vnQQ0ZGek53y5/zwAIPNoASpqjU2e31oHrV1qE3qE4LpBOgAtZ2Icrk5qHMQ4WJnkDUZZr3vP6WL8km9ZjWEfxFiCnJ+sNSrtWVklCQ/yk7crWLXzjOX8cRF2z/HXqvH/xvcBYNkYsrTKccakqNKAe1b+hL9//yuEAKrqTPjzl4dbzCoUlNdi8TeWjsU7ThahoLy22ed6mpKqOjyzOguAZauGVzc0Xf4r+f5YIW58cwcOWf+df3MoD5mNmgh+vvc8tv1qucfftnZ0dpezxVWX7XlEnYtBjIeRdt61/H+lG6+k42zHst7JdQN7z5TIqeqDuaVOTzPbdmtdf8TyV3ZzeydZjjXsn6SvNWL7Ccsv3bp6MzYfv9jh6xgZHyEv/c0u0MvZIYmpFdsOAEBEsB8SerRvisXdpAxSXnkt6s1C3pBSfrxRcNae5dV23896vnPWrImj4G/edf3QX9cFRZV1ctBh66ecEsxcvh3bTxQh0E+NP6cMQpCfBjtPFePjZjKIQgj8NeMIKmobXuPGb+ye7Pk1R1FcVYfIsAAAwMqdOdjbqPjZaDIjfd0vuO+DvSivMWJ4XATuGmvpIfTM6oaA0LZzdGRYgNzR2djMtJMrma3TSLVG82V7HlHnYRDjYU7YBC5SrwtvJa0QAYDvjhU69RePbTFlUWUdckucW3djO2Wz+fhF1NSZGqaTHGxfL2ViDEYTvj9WCKOpIajqSOGntF/QyPiuiAwLREx4IMwCOHS+zO55phZrYhqOjYyL8Nr0d3iwHxJ7NgRgI+PtxzI0Jgz+NtNH7VmZZGtUo80mG38OWHoGvXLbcKhVwOqDefLUk9kssGLrKdz57m4U6g3op+uCNfMm4uHJifK+Ny99+4vDbOvqgxew6fhF+GvUmDvGUm+x7kjL01WeYsPRAqw5lAeNWoV3f3cFbh1taZ1vefO3/BGQX16DO/+9G//6wbK3zx8mJODzB8fhuZuGYEBkQ0AohMDTXx1BhaEeI+IisGbeREQE++FYvh7vbD3V6WP7aM9Z7MkpQbC/BstuvXzPI+ocDGI8zEmbN/6TXp6Jsb3+smojdp0qdsp5zWYh1yAESMWuuY77p7SHEEIOHgK0atQYTdiSfbHFwl5pxVJNnUkOWm6wrl7Zmn2pSeakNcxmIRf1SlMpI3tLq2bK7J7bUmGv7TFHb8TexHYX68ZjCdBqMLRXmPx5R6aTGn+vHl0C5G0aGhsRF4H7J/UFAPw14wjOFlfhvg/24m+Zx2EyC6SOiMHXaRPk67lnfB9c0bsrqupMTfa9uaivxfNrLJmHx6b0x6PX9wcA/Hy2BBf1nj2lVFZdh79mWKaRHpjUF8NiI/DszCHQhQbgdFEVXt/4q3Wj0R3Ye7YUoQFarLh7FBbdNAT+WrUlILy1ISB88rND2JJ9ydI5+tZhiAwLxPPWNvrLN59AdkHn/ZGXW1KNdGtX3j+nDGp2+w/qfN61ztIH2E7B2GYyWstsFth0/CKuTOiG8CD37VwqhMCv1kzSyPgIHDhXhnVH8jFpQM8On3vfuVJcrDAgNECLWSNi8NGec9h/thSzR/Rq03nOFlehuKquyZthTlGVpe2+Vo27xsZj5Y9nsO5IfsMSaweFvVIX36JKA3741VL/8+TUAThRWIEzxdXYfPwibrIW5gKWfjJbsy/hmgE9HWZ2AODkpUpUGOoR5KfBQOsb4Mi4CHx7OL/J5oTSBpCXm04a6fVBTAS+2Hfe+v9NxzIyrisOnCuDRq1Cn3auTJL003VBlwAtKg31TbI+jT0+ZQA2HivE6UtVuO61bTCZBfy1aiyeNRRzx8TZfa1arcKyW4dh+j8s00xLv/0FiT0tWaN1R/JRXmNEUq8wPDCpL/w0aoyIi8DB3DJkHi3A78b1afYaquvqseFogdyUEbBsATEjOVpe2WbrQlkNtv96Cc5aP7Dpl0IUVVqyTo9Zg6/wYD+8NCcZ932wF+9uP413t5+GEJas2T/vHtVk9dhwa0D4r22n8dUBS83bY1P6yzuRzx4Rg7WH8/H9L4V44rODuHts71ZfX2LPEIzt293hY3tOF+PUpaatCyQZB86jus6EKxO64bdXtf57kusxiPEg5dVGXKxoWJJ48mKlvKFda322Nxd/+eqI5Zf9Q+Pd1km0qLIOZdVGqFXAvGv74d7/7sWGowV4ITWp3StGJLaZjrF9u+OjPefkzElrmcwCd727B/nlNVj/2CQMjGr4q13KciT3CkfqiF5Y+eMZbD5+US6aDfJ30CfGmp1Zn1WAOpMZfXuGYGBkKKYnR2PF1lNYdyTfLoj50+eH8c2hPDw8ORF/TmnaodZyHZZAZVhsuNzOfGR8QyZGCAGVSoX88hp5KbfDLRGsQZI3NrlrbLQ1E+WnUSG5V9OxjO7dFf/5MQd9e4Q4fONuC41ahZHxEdh+ouiyGaxAPw1euXUYbn1nF0xmgT7dg/H23aPslmTb6tuzC56cOgAvrTtut78UYBnbK7cOl++TmcnROJhr+SOgpSDmH5tO4F/bTjc5fuBcKRbPTrI7VlNnwl3v7sZZJ7dyUKuAZTabFALAlCGRmDOyFzKsQcndY+Px7I1Dmg3ebQPC5F7heNCa5QIsHZ1fmpOEn3KKcTRPj6czWr/6T6UC/vfAOFyZ0M3u+K5Txbjz3d2X/fpAPzWW3cJpJE/DIMaDnLxkyVzoQgNQVmNEjdGEC2U1bUpdrj5o+UVx4FwZ/rMjR05zdzapnie+WzCuGdAT3UL8UVJVhz2nSzCxf/v3mjGbhVxoOz05GoOjLcHHsTw9ao2mZn8xNvZTTgkulFnqaL45lIeBUQ37kkhTU6PiIzAsNhy9IoLk5wLN7Z1kOSYFoTOTo6FSqTDTGsRsyb6I6rp6BPtrkZlVgG8O5QEA1hzMw4JpAx3+lb//bJnlOno3vIEm9bLUfRRX1eFcSTXiuwVj4VdHYDQJjIyPQFy3plMe3UL88eeUQega7IfQQPdl55xhUFQYnpk5GD1DAxxO600bGol51/bD+ETHf3G31cLpg9Ffdx6/HXf5v75H9+6Gv98+AicuVuChaxIv+7O+d2JflFQZcfpSQ8ZVpbL0nxkc3TAtlpIUhRfX/YKfckpwqcKAnqEBTc5lNgt8c9Dyb+qqvt0QFugHkzUr+99dZzEjOdouC/HKhmycLa5Gjy7+Tp1inDIk0uH5Fs8eiu4h/riiT1e7ncEdCfTT4F+/GY33tucg7dp+TfYj0oUF4p93j8ZHe862ug3FhbIaHM3TY8EXh7D+sUnyv53qunr8+cvDACzZoeZWG6lUwM2jYtHHS4vilYxBjAeRinoHRYfhor4WxwsqcOJiRauDmEsVBvyU07AK4NXvsnH9YB369uxYgWN7SLU9/XSh0GrUmDY0Ep/8lItvj+R3KIg5kFuKAn0tugRocXX/HgjQqtEzNACXKgw4cqEcY/p0u/xJAKy3We2x7kg+npw6QA4kpOBB2ul5RnIU3t3e8Ney472T7H/RTrf+oh4aE4b4bsE4V1KNLccvYXxid3n5KWD55XrofLncyK3xWAH7pb0BWg2GxIThYG4ZDpwrw89nSrE1+xL8tZa6geamPB6enNjCT8O73Hd184G5VqPGn6Y13SivvYbEhGFRzJBWPz91ZOunNDVqx/tENRbXLRjDY8Nx6Hw5NhwtwG8cTGccOl+GvPJahPhrsOr3V8rB/F++PIxPf87Fgi8PI9P65r33TAlW7rT8e371tuGYPFDX6mtur7BAPzxzY+t/jv0jQ/G3W4c1+/jE/j3a9HtEX2vE1Nd/wJniarz2XbZ8La9syMa5kmrEhAfi0weu8vog3xexsNeDNGxa10WeA27LMusNRwtgFpbph6v794Ch3owFXxx2S9M8qbZHWiEival/d7Sg2a6crSGt0rh+sA6BfhqoVCq56LVxnUhzTDaFwQBwuqgK2dbrra6rx/ECSw+Shs3+7P9ydJTtsT2W0CNEzhCpVCpMT46yXns+lqw9JtcNTBvafNt6fa1RrolqXPshLfXNzCrAEuuy3senDEC/dmx2SN5B6g7c3Eo36fj1gyPt/i0+PXMwosMDcba4Gq9+l41aowkLvjgMIYBbR8d2SgDjCcIC/ZB+czIA4P0fc7DvbCn2nimRewCl3zKMAYyXYhDjQaQpmP66LnKjrRNtCGKkX2QzkqPx8i3DEOKvwd6zpfiv9UbtTNJ1S3vXjEvsjohgPxRX1dlli9rCMpXUMEZJw+Z/Za06z94zlrR8WKAW11gLjdcdtpz3UG45zAKIDg9EVHig5fxxEYix/j/Qcp8YAJieFGWXEZlpvdYNRwuQceAC1CrglVuHIdVaiPzt4fwmfW4O5ZZBCCCuW1CT6QMpuMo8WgB9bT2Gx4bj/qsTWjV28k7Sv/fdp4tR3KiVvxBCDu5nWANmie2b939+zEHaR/txuqgKutAAPDuz9ZkRJbh2kA63jLIs+X7qi0NyMHfb6Fj59wB5HwYxHuSkvPNuqPzmf9JBr5j1R/LtlmIDQHGlAbtPW5Ywz0yORq+IICycMRgAsGzDcby95SRWbD2FFVtP4T87cqBvZRfZXwsr8K9tp+SvlYpUWz0Wa3bAT6PGtCGWX7DftrNvim3K3PaXzkibHYdb0/ROysLcMCQKs0dYim3XWY/JUzg2jc0s2ZRo6zhUTeboAfsuvjMaZW6Se4UjtmuQvAz6/qv7YmR8V0weqEOQnwYXympw5IJ9F1J512QHWwTYXpufRoVltw53eE2kHHHdgpHcK1zeG8rW4fPluFBWg2B/jcPMyuSBOrlfyyZr48WX5iQjPNj3Mg+LbrQu+b5UhdNFVYgMC2jTNBd5Hv7m8xD6WiPyra3F++m6yFMDJy5W2r0x7zhRhIc/2o/b/7XL7i+yDUcLYRaWN0yphuauK+Mxrm931BrNeGVDNv6WeRx/yzyOJWuP4anPD7X4hi+EwAe7zuDG5TuQvv64/LV/yzyORz7aj31nm5+6Ka40oLiqDioV5KWjAORplTUH89q1KaQUPF3XKGU+LDYCGrUKFysM8s+wOZYeM5bzzBwWhSlDIuGvUePkxUr8WtiwO3Lj4kQpMAkP8nd43q7WN4Te3YMxNCbM7jGpwBcA+vYIweM3DABgqa2RthKwDewM9SassRb+jnLQJbZXRBCiwiyZoT9e199uZRUpl3T/rPwxB4b6ho1Gpfvi2kG6ZgvbpX4tAJA6IgZTrD2MfE14sB9enJMsf/7SnGS3tqKgjmMQ4yGkzEVkWADCg/zQu3sw/DQqVNeZ7FbGSKtaSqrq8Nyahjbn0hvzdJt0slqtwhtzR+B343rjttGxuG10LG4ZFQutWoUNRwux9rDjjEhFrRHzPjmARV8fRZ3JjKv6dpO/fpD1DXPt4bxmxyLVcsR1DbYrgr26f08Mj4tAhaEeTzdq8nU5tinzmY1S5kH+GrkGxdHmiLb2nytFod7SY8aygZ8frrYWCNr2X2ncYn507654+eZkvHqb42LDCYk98OeUQXjrzlEOi2sfmdwPD12TiPf+3xV2bzTyTshHCuSfx/JNJ3DyYiV6dPF32PtGpVLh9duHY+H0QXhIQQW71LI7x8SjRxd/nLhYiTc3nQRgvS+koDy5+VU/4cF++M89Y/DI5EQsSU1q9nm+4IYhkXj55mT87ZZkXD/YN4M5JelwEJOeno4xY8YgNDQUOp0OqampyM7OtnvOv//9b0yePBlhYWFQqVQoKyu77Hmff/55qFQqu49Bgy5fye+tTso1JA3TL317WOtirEGB0WTGhmMNBalrD+cjM6sAJVV12HmqYSrJVmRYIJbMTsIrtw3HK7cNx2u3D8cj1/YDADy35miT+fVjeXrMeutHfHs4H1q1Cs/eOASf3H+V/PV/mmpZ+bH+SIG8c3JjJy42FCjb0qhVePXWYfDXqLEl+xK+sm7g2BpSyjzIT4NrBjRNmY+y6Z/Skm9tesxIS6WlqaKP9pxFUWUd/DQqh/095l4Z32whpFqtwsOTE5Ec67gvSHiwH/4yfVCTlWLXDuqJQD81zpVU42ieHkfOl+Mda6+PpalJ6BriOPMzvl8PPHhNYod77pD36Brijxes/V5WbDuFrAvlyLqgR26J5b649jJFukm9wrEgZRDCWMCKuVfG444x3PtICTr8G3Dbtm1IS0vD7t27sXHjRhiNRkydOhVVVQ3dD6urq5GSkoKnn366TeceOnQo8vPz5Y8dO3Z09HI9llTUa7tpXT+pLsYa4Ow6VYyyaiO6h/jLDaCeWZ2Fz/bmwmQWGBoT1qQDpiPzru2HQVGhKKmqwyJrNkcIgU9/Ooc5//wROUVViAkPxGcPjcO9ExPsMgsT+/dAlwAtCvS1zbb6P2ld6dPPwd41/SND8dgUSzfPxd8cbXUr9YapJJ3DJc5S5qSlTIzZLJCZ1dBjRnLDkEj4aVQoqrRsOjckJrzV/WY6KthfK7/5fH3wAp764hBMZoGZw6Iv20+DfM/05GjMTI6GySzwp88P4WtrX6hrB/V0eF8QKV2H+8RkZmbafb5q1SrodDrs27cPkyZNAgDMnz8fALB169a2XZxWi6ioqMs/UQEallc31DfIK5SsAY40ZTQtKQqP3zAAm45fxMmLlfhbpmVPj8YFpc3x16rx6m3DMfttS8bl+kHnseNEkdzm+9qBPfH67SMcZgEC/TSYMliH1QfzsO5IAUb3btqXxdFYbD04qS8yswpw5EI5/ro6C//+7egWW7rbpsxnNPPGLhXAHr2gh6He5LAh3YHcMuSXN/SYkYQH+WFivx7Ykn3Jeq6IZq/FFWYkR2N9VgHe25EDISzN6ZbMGtqp10DeY/Hsodh1uhjHCyrk1gCtvfeJlMbpze7Kyy2rLLp1a13TsZacOHECMTExCAwMxLhx45Ceno74eO9PAf6UU4L88hrMGh4jv3k3rExqyF5IQcCvhZWoN5nlVQkzkqLlNue3rNgp733Sll9kSb3C8dA1ffH2llN44rNDACzTPX+aOhAPTurbYmvt6cnRWH0wD+uP5OOvMwY3ea40nTSgmV2EtRo1XrltGG56cwc2HivEn788jG4hAdZrAGaP6GW3eZ+UMg/0U+PaQY6XQvbuHix3BX7u66OICG4agEn1LlKPmcZjkoIY2w65neG6QToEaNUw1Fv65yyeNRTduzTtykoEWDajfH7WUPzxkwMQwrJJ6eWmkoiUyqlBjNlsxvz58zFhwgQkJXWseGzs2LFYtWoVBg4ciPz8fCxevBhXX301srKyEBrq+C98g8EAg6GhxkOv13foGlyh1mjCH1b9LO91M3tEL1Qa6uXiXds6koZl1pXYfboEJVV16Bbij6v6WgLEkfFdcd/VffHvH05jSHQYEtrYEvuP1/fHd0cLceJiJXShAXjzzpHNbpBm65oBPRHir0FeeS0OnS+za8ZWWlWHImudTWILnYIHRYVh3rX98ffvf8Vne8/bPbb6QB42PD4JXQIs/zylLMx1g3QI9nf8T1alUuGK3l3x3bFCfPpzbovX76gAcuqQSDyjUcNoNsv783SWkAAtrhukw/qsAkwbGokbh/GvamrZTcOisfZQHr47VojrBukQEsDm6+SbnPovPy0tDVlZWU6pXZk+fbr8/8OGDcPYsWPRu3dvfPbZZ7j33nsdfk16ejoWL17c4e/tSluzL8kBzHNrjmJ8Yg/kWQOYnqEBdhmE3t1DoFWrUGmox39+tLQJnzY00q4nyJNTByA6PBDjE9veyj9Aq8GqP1yJdYfzMWdUL/Ro5V//gX4aXDc4Et8cysO6I/l2QYyUhekVEXTZX6yPXJuIQD81Ltlserk+qwAXymqQvu4XvDgn2boqybry6jI1Ik/PGIxEXRcY65vvCBwdEYQpDlYkRAT74z/3jEGlob7Z/VNcadFNQzAiLgJ3jo1vcWqNCLAE7a/ePhyf7DmHWSNiLv8FRArltCBm3rx5WLt2LX744QfExsY667SyiIgIDBgwACdPnmz2OQsXLsQTTzwhf67X6xEXF+f0a+kI20ZxZdVGPLs6C9cPtqSCG6/m8deq0adHCE5erMRma5Oqxm/kAVoNfj+h/d1ae0UEtWuTyJnJUdYgpgBPzxgsv/HKXYebmUqy5adR48Fr7JcIXzdYh7ve3YOP9pzDzORohAf74WxxNQK0armnSnP69Ahpdkfo1ujInk4dFR0e1ORnQdSSsEA//pshn9fh1UlCCMybNw8ZGRnYvHkzEhJc0/68srISp06dQnR083+NBwQEICwszO7Dk9QaTdj0i6WuZWlqErRqFTKPFuA96+aCtnUgEtu6kohgP4xz0u68HTV5oA7B/pZus4fPN3SbPdFoqXhbjU/sgbvHWuqe/vzVYXyx77z1+/VkypyIiOx0OIhJS0vDhx9+iI8//hihoaEoKChAQUEBamoaGrQVFBTg4MGDchblyJEjOHjwIEpKGvbQuf766/HWW2/Jn//pT3/Ctm3bcObMGezcuRNz5syBRqPBnXfe2dFLdpsffr2EqjoTosMDcdeV8XK/FmmFQT9d0+yF7aZ+U4dEekxfkEA/Da61ZkbW2ewI3bB7dft3zl44YzB6RQQht6QGK388A4CrL4iIqKkOvyOuWLEC5eXlmDx5MqKjo+WP//3vf/Jz3nnnHYwcORL3338/AGDSpEkYOXIk1qxZIz/n1KlTKCoqkj8/f/487rzzTgwcOBC33347unfvjt27d6NnT+/dqEvas2d6UjTUapXcr0XSeDqp8TFPeyOXCmS/3HceC786goVfHcGh3DIAjsfSWl0CtPKmdYBlWo2dNYmIqLEO5+db0zr++eefx/PPP9/ic86cOWP3+aefftqBq/I8hnoTvj9mXSJtbZvvr1XjlVuHI/WfP0KtgsM9cJJ6hUOlAroG+7ereNeVJg+0rFIqqqzDJz+dk4/7a9To387pJMmkAT1xxxVx+N/eXFw3UCevVCIiIpLwnaGT7DhRhApDPaLCAu02F0yODccn918Fo8nssLdJQo8Q/OeeMdCFBsBf6xlTSZJgfy3++4cr5S0PJKPiuzol6Fg8eyhG9+6Kyc30hiEiIt/GIKaTSHv2pCRFNWkOd2VCy40BPbmR1RV9uuGKPh1vbOhIoJ8Gt4/xrNVlRETkOTzrT3uFqqs3Y6M8leRZdS1ERETeikFMJ/jxZBEqauuhCw3AFZ3cDZaIiEipOJ3UDh/uPotdp4sv/0Sr7ALLEmpHU0lERETUPgxi2uHw+TJ8ezj/8k9sZNZwtgcnIiJyFgYx7TB7RC8MjQlv09fEdg1yWQEsERGRL2IQ0w4T+vXAhH6e1bOFiIjI17Cwl4iIiLwSgxgiIiLySgxiiIiIyCsxiCEiIiKvxCCGiIiIvBKDGCIiIvJKDGKIiIjIKzGIISIiIq/EIIaIiIi8EoMYIiIi8koMYoiIiMgrKXrvJCEEAECv17v5SoiIiKi1pPdt6X28OYoOYioqKgAAcXFxbr4SIiIiaquKigqEh4c3+7hKXC7M8WJmsxl5eXkIDQ2FSqVq09fq9XrExcUhNzcXYWFhLrpC9/OVcQIcq1JxrMrjK+MEONbmCCFQUVGBmJgYqNXNV74oOhOjVqsRGxvboXOEhYUp/h8W4DvjBDhWpeJYlcdXxglwrI60lIGRsLCXiIiIvBKDGCIiIvJKDGKaERAQgOeeew4BAQHuvhSX8pVxAhyrUnGsyuMr4wQ41o5SdGEvERERKRczMUREROSVGMQQERGRV2IQQ0RERF6JQQwRERF5JQYxRERE5JV8LoipqanBunXrAFx+YyklUfpY+boqU21tLX744QcAyh+rLSWPlfeqMrnrXvWpIOaVV15BSEgIli9fDrPZ3Ob9lLzJm2++ibvuugvPP/88Tp8+reix8nVVpmXLliEsLAwrV66EEELRY/WV15X3qjK59V4VPmDr1q0iNjZW9OnTR3z22WfuvhyXKi4uFikpKaJPnz4iLS1NDBgwQPTr10+8//777r40p+PrqszXdfPmzSIuLo6vq4LwXlXeayqEZ9yrig9iTp06JYYNGyb69u0rHysuLhalpaWitrbWjVfmGt99950YMGCAOH36tHzs7rvvFmPHjhWZmZluvDLn4uuqzNf1559/FvHx8WL06NHyMek1ra+vF0IIYTab3XV5TucLryvvVeW9pkJ4zr2q+OmkmJgYPPjgg6isrMShQ4ewdOlSTJw4EVOmTMHkyZOxc+dOd1+iU5jNZgBAbm4uzGaz3Q6hCxYsQHR0NF577TV3XZ7TCOtcK19XZb2ukn79+uHOO++EVqtFdnY2XnjhBUyZMgXXXnstUlNTFZOW94XXlfeq8l5TW55yryouiHn//fcxfvx4GI1GAEBgYCCmT5+O4cOHY+TIkfjhhx/w7LPP4tFHH4Wfnx+efPJJrF692r0X3U7fffcdtm3bhuLiYqjVlpeyqqoKfn5+KCoqkp83bNgwzJo1C0VFRfjoo4/cdbkdcurUKQCASqWCEELRr2tmZia+/vpr5OTkoL6+HoByX9f33nsPd9xxhzzOiIgI3HTTTdBoNEhOTsaWLVswb9483HzzzThx4gQefPBB7N69281X3T6+cr/yXlXeawp48L3q8lxPJxs6dKhQqVRiwYIF8jGz2SxWr14t/vrXv4ozZ87Ix3NycsQNN9wgfv/734uamhp3XG67ZGVlieTkZNGrVy/Rp08fMXLkSPHOO+8IIYQoLy8XAQEB4q233rL7mrNnz4rrr79ePPHEE8JoNLrjsttl//794oorrhBjx44V+/fvF0IIu1Slkl7XnTt3iqSkJJGYmCiGDBkiBg8eLP75z38KIZT3ugohREVFhYiOjhbh4eHi1VdflY/X19eLN998Uzz77LMiPz9fPn7kyBExZMgQsWTJEvnfgDfwlfuV9yrvVUln3quKCmJOnTolBg8eLJYsWSLCw8PFr7/+Kj9WWloqLl68KH8uzdX94Q9/EJMmTer0a+2IBx98UNxyyy2iqKhIZGVliUceeURERkaK1atXCyGEmD9/voiLixM5OTl2Xzd37lwxc+ZMIYR31BVs3LhRjBw5UkyaNEmMGDFCLF68WJhMJiGEkP+rhNfVbDaL999/X/Tq1Us888wzorS0VJw+fVrcfvvt4s477xSlpaVCCCH+9Kc/KeJ1lRw4cEDExsaK+fPni2HDhomzZ8/Kj+Xn54uCggL5c2lcM2fOFKmpqZ1+rR3hC/cr71Xeq5LOvlcVNZ1kMpkwcOBATJ8+HcOGDcP8+fPlxyIiItCzZ0/5cyEEDAYDCgoK0KdPH69Zw19cXIxPP/0Uqamp6N69O4YOHYpnnnkGN954Ix555BEAwEsvvYS6ujosXrwYBQUF8tcKIaDT6bxmuWq3bt0wYcIEfPLJJ5g4cSI2bdqEzZs3A4B8/Up4Xevr69GtWze8/PLLWLRoEcLCwpCQkICYmBjExsYiIiICAPDcc8/BaDR6/esq0ev1mDlzJmbOnIng4GC89NJL8mNRUVGIjIy0e35ZWRmKiorQu3fvzr7UdvOV+5X3Ku9VW516r7o8TOpE3377rbjyyiuFEEJ8+OGHIjw8XOzatUscOHDALitTV1cnqqqqxN/+9jcxYMAAsWXLFjddcduVlJSIUaNGiddee83ueFZWlujZs6d47rnnhBBCfPPNNyIhIUFcd9114qOPPhIvvvii6NGjh1i7dq0brrp9jEajKC8vF0IIcfLkSTF27FiRlpYmysrKhBBN/5Lx5te1tLRUGAwG+fP/+7//ExEREWLWrFnipZdeEvv27RNCCLFmzRqvf12l1+2DDz4QM2bMEEIIsXTpUjFkyBBx7NgxcfToUVFSUiI/32QyidraWvHSSy+J5ORksXfvXrdcd3v4yv3Ke5X3qhDuuVe9NohxNM/2xRdfiN/+9rdCCMsPf/r06cLPz09ERkaKAwcOCCEs69ofe+wxMXDgQJGQkCA2btzYmZfdLrZjraioEDNmzBD333+/KCwslI8bDAbx3HPPidjYWFFZWSmEsKR477jjDjFhwgQxdOhQr7h5HL2u0rGXX35ZjBkzRnz00UdNnuPtr6utJ554QoSGhopFixaJxYsXixtuuEH06dNHfpP47rvvFPG6vvrqq+Lxxx8XQghx4cIFMWnSJBEcHCyioqLk5anr168XDz30kBg8eLDo27ev2LRpU6ded3v4yv3Ke5X3qifcq14bxAghRHV1td0c6/Lly8WCBQtEXV2duPPOO4VWqxWhoaHimWeekZ9TXFwsnnrqKfHvf//bHZfcJrZ/vdTW1ori4mIhhBCvv/66GDhwoPjqq6/snv/tt9+K4cOHi927d9sdt/3l6akaj1X6C85kMsmP6fV6MWXKFDF37lx5rlm64S5evOi1r6s01rq6OiGEEHl5eXav2aFDh8SAAQOajM2bX1chhHj++efF66+/LmpqasRdd90lNBqN6N69u13WorCwUPz2t78Vb7/9dqded2vZjk/J92tL41TavdqasSrlXm3NWIXw7HvV44OYjIwMUVRU1OR4Tk6OmDhxovjNb34jH/vjH/8oEhMTRUhIiLjmmmvExo0bxV//+lcRFRUlR8ZCeG5B1XvvvSeWLl0qPv74Y7t0ZVZWlrjiiivEs88+Kx+76qqrxO233y4OHTokH9u0aZPQarXi+PHjQgjPHacQlx+rlGaXSL8AP/30UzFy5EixfPlykZOTIx555BGRnZ0thPDc8bZ1rNI4pDHv2rVLhIaGim+++UYI0VAo6YnaMtbZs2eLESNGiNDQUDF58mSxevVqcd9994lx48bJ2QkhPHe8//jHP8QDDzwgnn/+eZGbmysfV9r9erlxKulebetYvflebctYPfle9djC3j179mDkyJG4+eab8d577zV5PD4+HmPHjsXQoUNRU1MDALj66qsRFBSElStX4vvvv8eUKVMwZ84caDQarFy5Uv5aTyuo2rx5M/r164c333wTO3bswCOPPII777xTfnzgwIHo3bs3dDqdPNbFixfjzJkzePrpp3Hy5EmUl5dj48aNuOGGGxAVFQXA88YJtH6sPXr0kHv9AIBGowEA3HHHHejfvz/S09MxcOBAbN++HYGBgR5ZKNfesUrj0Gg0MBqNWL9+Pa655hqMGzcOAOQeI56kLWOtra0FAKSkpKCiogLvvvsuvvvuO8yePRspKSnIz89HRkaG/LWeNt6NGzciMTER7733HrRaLf7zn/9gzpw5KC0tBaCc+7W141TCvdresXrjvdqWsXrFvdrpYVMrnDp1Svy///f/xL333iuefPJJ0b17d3Hq1Cn5cSnqtY0AJXq93u5zg8Fg15fA02zfvl2MGTNGLF68WNTV1Ynq6mrx888/C5VKJfbs2SM/zza1J1m7dq244oorRHx8vOjbt6+Ijo4W3333XWdefpt0ZKxCWF7Lzz//XERHR4u+ffuKL7/8srMuvc06Mtaqqirx448/ig8//FAMHz5c9O/f36MLHzsy1saFn3q9Xvzyyy+dc+HtsHXrVnHNNdfY9b84f/68UKlUdlkWb79fOzJOIbzrXu3IWL3tXu3IWD31XvXIIKa0tFS8//774sCBA8JgMIiBAweKP/zhDy1+jfSD9eT0nSN79+4VKSkpcqMgs9ksSktLRXJystw8qTHbMZaVlYmffvpJfPHFF51yvR3RnrHaqqioEEFBQeLJJ5909aV2WEfGmp+fL5566ikxatSoJulrT9SRsXrqtEJj0nUWFBSIjz/+2G56eseOHWLOnDkOp72F8K77tSPjtOUN96ozxuot96ozxuqp96pHBDGOoj7bCumMjAyh0WjEDz/84PDr9+7dKx599FFx6dIlIYTn/rCFcDzW6upqu89ra2tFVFSU2LlzZ5Pn7tixQ7z00kvN/gXkSVwxVk/t6umssUrNsnJychxmGj2Bs19Xb7tfbYOSV199VQQHB4u4uDiRmJgonnnmGXHixAn5cW+5X10xTm+6V9szVm+9VzvyunriverWCbvt27dj2LBhWLZsGaqqquwek+ZVhRBITU3FlClT8Oyzz8pzdLYOHjyIzz//HOvWrQPgeXPLQMtjDQoKkjcPA4Cff/4ZISEhGDBggLxPheT777/H8uXLPXrTNFeONTAw0LUX30auGmufPn0QEhLi+gG0gavG6m33qzTvf+jQIWzatAnLly/HunXr8Nxzz+HDDz/Ef//7X3nMnn6/unKc3nSvdmSs3navdmSsnnivuiUTYzKZxP/93//Je07odDq7uXNHDh06JLRarfjggw+EEJaIUFq2ptfrxU8//eTy626PtoxVyj699NJLYty4cXZRr7TSo6SkxGPnXDlWjtWXxlpXV2e3AksIIW6++WZx4403yp+XlpZ65Fh9ZZxCcKxKHavELZkYg8GA6upq3Hbbbdi7dy9CQ0Pxj3/8A2VlZc1+zbBhw/DQQw9h6dKl2LJlC2bPno2XX34ZVVVVCA0NxZgxYzpvAG3QlrEKa9vtzZs34/rrr4dKpUJhYSF++9vfYv369TCbzejatSsmT57cuYNoJY6VY/WlsWq1Wvj7+wOwbHlSVVWF6upq9OrVS35ORESER47VV8YJcKxKHavMXdFTbm6uPM/23XffCZVKJdasWdPinFtWVpZQqVRCpVKJq6++WuTl5XXW5XZIW8ZaVlYmRowYIXbt2iVefvllERISIq644gqPbZbUGMfKsfrSWCXV1dXiueeeE8nJyWLXrl2ddakd4ivjFIJjVepYhfCAwl4p/Tx16lQxfvx4cf78+SbPMZlM4ssvvxTBwcEiOTlZ/Pjjj519mU7RmrF+/fXXQqVSieDgYBEbGys2bNjQ2ZfpFByrPY7V+7RmrKtXrxaPPfaYGDBggBg0aJDYsWNHZ19mh/nKOIXgWBtTwlhdFsQYjcZWPU/6QZ85c0aoVCrx1ltvyV8rRY41NTXinXfeEW+88YZrLraDnDFW6bGNGzeK4OBg8d5777nmYjuIY22KY/W9sUq/m44ePSpuv/12jxyrr4xTCI7VESWMtTVcEsS88MILYs6cOeL+++8X+/fvv2zvFukH+9hjj4n4+HiRnZ0tfv31V7F8+XK7HTI9kSvG2txmY+7GsTaPY/W9sUp7I3nislNfGacQHGtLvHmsreXUIObnn38WQ4YMEaNGjRJLly4VgwcPFqNGjbJbd+6I7Q+xe/fuYtiwYUKlUok5c+Z4bH8FZ481NTWVY/UAHCvHautyv5s87Q3AV8YpBMeq1LG2lVODmMcff1zMmTNH/rywsFCoVCpx4MCBy35tVVWV+Oqrr0RISIgYOnSoWL16tTMvzek4Vo61MY7Vc/nKWH1lnEJwrEoda1s5LYi5dOmSSEpKEosXL5aP7du3T8yePVucO3fusl+/ceNG4efnJxYtWuSsS3IZjpVjdYRj9Uy+MlZfGacQHKtSx9oe7Q5ijhw5Yrf/ghBC3HTTTSIpKUm8+eab4sUXXxRBQUGif//+omfPnuKRRx4Re/fuFUI43t9Ir9c3aV3uKThWjpVjtcexup+vjFMIjlWpY3WGNgcxa9euFcOGDRNDhw4ViYmJ4umnn5Z/QBcuXBCLFi0Sd9xxh+jZs6f43//+JwoKCsQXX3whrr76avHQQw95bMGfIxwrx8qxcqyexlfGKQTHqtSxOlOrg5iamhqxaNEiERsbK1555RWxe/du8cYbbwiVSiXWrl1r99zHH39cPPTQQ3bH7r//fjFlyhSP3SjLFsfKsXKsHKun8ZVxCsGxKnWsrtDqIObUqVPiqquuEl999ZUQoqHqOSUlRfzud7+ze+6oUaPEu+++a/e8e++9164wyZNxrBwrx8qxehpfGacQHKsQyhyrK2hbuz1B37598dBDDyElJcXueHBwMLp37w4AqK+vh1arxbhx47B48WL07NkTgwcPxgcffID169fj7bffdu6eCS7CsXKsHCvH6ml8ZZwAxwooc6wu0d7op66uTgghRHJysnjzzTftHispKRHjx48Xffr0Ef369RMjR470ynbGEo7VgmPlWL2Br4zVV8YpBMcqUdpYnaFDS6xPnz4toqOjRW5ubpPHysrKxOnTp5vdBtzbcKwWHKv34lgtlDRWXxmnEByrRGlj7ahWTyc5snPnTkRHRyM2NhYAUFRUhOzsbIwdOxbh4eEIDw9HQkKCUzJG7saxcqzejmNV3lh9ZZwAx6rUsXaUuj1fZDKZAACbNm3CmDFjAADp6enQ6XRYs2YNhBDOu0I341g5Vm/HsSpvrL4yToBjVepYnaVdmRiNRgOj0YisrCz06dMHgwYNQm1tLb755hvMnDnT2dfoVhwrx+rtOFbljdVXxglwrEodq9O0dx7ql19+ESqVSvTo0UMsW7bMCTNbnotjVSaOVZl8Zay+Mk4hOFZqXocKe9966y1RU1PjrGvxaByrMnGsyuQrY/WVcQrBsZJjKiE4yUZERETep12FvURERETuxiCGiIiIvBKDGCIiIvJKDGKIiIjIKzGIISIiIq/EIIaIiIi8EoMYIiIi8koMYoiIiMgrMYghIiIir8QghoiIiLwSgxgiIiLySv8fC4fYbQGS6sUAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "## Day 3, Part 4: Other useful `pandas` functions" ], "metadata": { "id": "1KkMPJ0TG3lx" } }, { "cell_type": "markdown", "source": [ "To select a certain index value of a column, use `.loc[]`:\n", "\n", "> **`data[COLUMN_NAME].loc[INDEX_VALUE]`**\n", "\n", "To select multiple index values, use slicing:\n", "\n", "> **`data[COLUMN_NAME].loc[INDEX_START:INDEX_END]`**\n", "\n", "For example:\n" ], "metadata": { "id": "goG6rxo3G-gb" } }, { "cell_type": "code", "source": [ "# Temperature only, convered to a NumPy array:\n", "data_0m['Temp']" ], "metadata": { "id": "dG-3mgvqGWx8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Select a single value of temperature\n", "data_0m['Temp'].loc[datetime(2023,7,28,11,49)]" ], "metadata": { "id": "fni0Q0dPHbdS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Select a range of temperature measurements\n", "data_0m['Temp'].loc[datetime(2023,7,28,11,49):datetime(2023,7,28,11,51)]" ], "metadata": { "id": "5iNjrVc_GY6E" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "To convert a column from `pandas` format to a NumPy array, use **`.values`**:" ], "metadata": { "id": "4M7kkUrYHicu" } }, { "cell_type": "code", "source": [ "# Pandas format, including the Datetime index:\n", "data_0m['Temp']" ], "metadata": { "id": "UJkZHT9dHqEJ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Temperature only, convered to a NumPy array:\n", "data_0m['Temp'].values" ], "metadata": { "id": "2K9s2ztHHuoo" }, "execution_count": null, "outputs": [] } ] }