{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": "true" }, "source": [ "

Table of Contents

\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# code for loading the format for the notebook\n", "import os\n", "\n", "# path : store the current path to convert back to it later\n", "path = os.getcwd()\n", "os.chdir(os.path.join('..', 'notebook_format'))\n", "from formats import load_style\n", "load_style()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ethen 2017-12-23 09:28:58 \n", "\n", "CPython 3.5.2\n", "IPython 6.2.1\n", "\n", "scipy 1.0.0\n", "numpy 1.13.3\n", "pandas 0.20.3\n", "sklearn 0.19.1\n", "matplotlib 2.1.0\n" ] } ], "source": [ "os.chdir(path)\n", "\n", "# 1. magic for inline plot\n", "# 2. magic to print version\n", "# 3. magic so that the notebook will reload external python modules\n", "# 4. magic to enable retina (high resolution) plots\n", "# https://gist.github.com/minrk/3301035\n", "%matplotlib inline\n", "%load_ext watermark\n", "%load_ext autoreload\n", "%autoreload 2\n", "%config InlineBackend.figure_format = 'retina'\n", "\n", "import warnings\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import chi2_contingency\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import r2_score, mean_squared_error\n", "\n", "%watermark -a 'Ethen' -d -t -v -p scipy,numpy,pandas,sklearn,matplotlib" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Multicollearity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Many machine learning models have either some inherent internal ranking of features or it is not extremely complicated to generate/access the ranking from the structure of the model. This document discusses the issue of multicollinearity, i.e. how multicollinearity can affect the feature ranking and potential methods that can be used to address them. As we'll be looking at the coefficients of linear regression model for selecting and interpreting features, the next section contains a introduction to this method/algorithm.\n", "\n", "\n", "## Linear Regression\n", "\n", "Unlike a lot of other tutorials, we'll introduce linear regression from a **maximum likelihood** perspective. The principle of maximum likelihood is at the heart of machine learning. It guides us to find the best model in a search space of all models. In simple terms, Maximum Likelihood Estimation (MLE) lets us choose a model (parameters) that explains the data (training set) better than all other models.\n", "\n", "### Maximum Likelihood - Primer\n", "\n", "The process of sampling from a normal distribution is expressed as, $x \\sim \\mathcal{N}(\\mu, \\sigma^{2})$. $x$ is a random variable sampled or generated or simulated from the gaussian distribution. As we sample from this distribution, most samples will fall around the center, near the mean, because of higher probability density in the center.\n", "\n", "\n", "\n", "Let's consider 3 data points, $y1=1,y2=0.5,y3=1.5$, which are independent and drawn from a gaussian with unknown mean $\\theta$ and constant variance of 1. Suppose we now have two choices for $\\theta$: {1, 2.5}. Which one should we choose? Which model $\\theta$ would explain the data better? In general, any data point drawn from a gaussian with mean $\\theta$ and and variance 1, can be written as,\n", "\n", "$$\n", "\\begin{align}\n", "y_i \\sim \\mathcal{N}(\\theta, 1) = \\theta + \\mathcal{N}(0,1)\n", "\\end{align}\n", "$$\n", "\n", "This can be read as $\\theta$ the mean, shifts the center of the standard normal distribution ($\\mu = 0$ and $\\sigma^2=1$) The likelihood of data (y1,y2,y3) having been drawn from $\\mathcal{N}(\\theta,1)$, can be expressed as:\n", "\n", "$$\n", "\\begin{align}\n", "P(y1,y2,y3 \\vert \\theta) = P(y1 \\vert \\theta) P(y2 \\vert \\theta) P(y3 \\vert \\theta)\n", "\\end{align}\n", "$$\n", "\n", "as the data points are assumed to be independent of one another.\n", "\n", "Now, we have two normal distributions defined by $\\theta = 1$ and $\\theta = 2.5$. Let us draw both and plot the data points. In the figure below, notice the dotted lines that connect the bell curve to the data points. Consider the point $y2=0.5$ in the first distribution $\\mathcal{N}(\\mu=1, \\sigma^2=1)$. The length of the dotted line gives the probability of the $y2=0.5$ being drawn from $\\mathcal{N}(\\mu=1, \\sigma^2=1)$. And the same goes for the second distribution $\\mathcal{N}(\\mu=2.5, \\sigma^2=1)$.\n", "\n", "\n", "\n", "Knowing that the likelihood of data (y1,y2,y3) having been drawn from $\\mathcal{N}(\\mu=1,\\sigma^2=1)$ is given by:\n", "\n", "$$\n", "\\begin{align}\n", "P(y1,y2,y3 \\vert \\theta=1) = P(y1 \\vert \\theta=1) P(y2 \\vert \\theta=1) P(y3 \\vert \\theta=1)\n", "\\end{align}\n", "$$\n", "\n", "The individual probabilities in the equation above are equal to the heights of corresponding dotted lines in the figure. We see that the likelihood, computed by the product of individual probabilities of data points given model, is essentially the product of lengths of dotted lines. In this toy example, the likelihood of model $\\theta = 1$ seems to higher than $\\theta = 2.5$, so that's the model we'll be going with." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Maximum Likelihood - Linear Regression\n", "\n", "For linear regression we assume the relationship between our input variable $X$ and our output label $Y$ can be modeled by a linear function.\n", "\n", "$$\n", "\\begin{align}\n", "Y = \\theta_0 + \\theta_1X_1 + \\theta_2X_2 + \\ldots + \\theta_pX_p + \\epsilon\n", "\\end{align}\n", "$$\n", "\n", "The model assumes the label for each observation, $y_i$, is gaussian distributed with mean, $x_i^T\\theta$ and variance, $\\sigma^2$, which can be written as:\n", "\n", "$$\n", "\\begin{align}\n", "y_i &= \\mathcal{N}(x_i^{T}\\theta, \\sigma^{2}) = x_i^{T}\\theta + \\mathcal{N}(0, \\sigma^{2})\\\\\n", "prediction, \\hat{y_i} &= x_i^T\\theta\n", "\\end{align}\n", "$$\n", "\n", "The mean $x_i^{T}\\theta$ represents the best fitted line with all data points varying around that line, and the term $\\epsilon$, captures this varying variance $\\mathcal{N}(0, \\sigma^{2})$.\n", "\n", "\n", "\n", "Now, recall that the formula for the gaussian/normal distribution is:\n", "\n", "$$\n", "\\begin{align}\n", "p(x) = \\frac{1}{\\sigma\\sqrt{2\\pi}}e^{-(x-\\mu)^2/2\\sigma^2}\n", "\\end{align}\n", "$$\n", "\n", "Given that linear regression assumes each point $y_i$ to be gaussian distributed, the process of learning becomes the process of maximizing the product of the individual probabilities:\n", "\n", "$$\n", "\\begin{align}\n", "p(y \\vert X, \\theta, \\sigma)\n", "&= \\prod_{i=1}^{n} p(y_i \\vert x_i, \\theta, \\sigma) \\\\\n", "&= \\prod_{i=1}^{n} (2\\pi\\sigma^2)^{-1/2} e^{-\\frac{1}{2\\sigma^2}(y_i - x_i^T\\theta)^2}\n", "\\end{align}\n", "$$\n", "\n", "Next we rewrite the equation in vector form and due to the fact that the original maximization problem is equivalent to maximizing its log likelihood (log is a monotonic transformation thus does not affect that learned parameters). Thus we take the log to make the derivation later easier.\n", "\n", "$$\n", "\\begin{align}\n", "p(y \\vert X, \\theta, \\sigma)\n", "&= (2\\pi\\sigma^2)^{-n/2} e^{-\\frac{1}{2\\sigma^2}(y - X\\theta)^2} \\\\\n", "&= -\\frac{n}{2}log(2\\pi\\sigma^2) -\\frac{1}{2\\sigma^2}(y-X\\theta)^2\n", "\\end{align}\n", "$$\n", "\n", "Our current interest right now is to solve for the unknown parameter $\\theta$ (we can use similar idea to solve for the unknown $\\sigma$), thus we can further simplify the equation above, to remove all the terms that are not relevant to $\\theta$, and in machine learning problems, we're often interested in minimizing the objective function, thus we negate the negative sign and turn the maximization problem into a minimization one.\n", "\n", "$$\n", "\\begin{align}\n", "L = \\frac{1}{2}(y-X\\theta)^2\n", "\\end{align}\n", "$$\n", "\n", "When introducing linear regression, an alternative way of viewing it is from a least squares perspective. The objective of least squares is to minimize the squared distance between the prediciton and the ground truth. So, we want to minimize the mean squared error: $\\frac{1}{2} (y - X\\theta)^2$. We now see that we can come to the same objective from two different perspective. The following section lists out the derivation for solving $\\theta$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll first expand this equation:\n", "\n", "$$\n", "\\begin{align}\n", "L &= \\frac{1}{2} (y - X\\theta)^2 \\\\\n", " &= \\frac{1}{2} (y - X\\theta)^T(y - X\\theta) \\\\\n", " &= \\frac{1}{2} (y^Ty - 2\\theta^TX^Ty + \\theta^TX^TX\\theta)\n", "\\end{align}\n", "$$\n", "\n", "Using the standard rule of minimization in calculus, if we wish to solve for the weight $\\theta$, we would take the derivative w.r.t. $\\theta$ and set it to zero.\n", "\n", "$$\n", "\\begin{align}\n", "\\frac{\\partial}{\\partial{\\theta}} \\frac{1}{2} (y^Ty - 2\\theta^TX^Ty + \\theta^TX^TX\\theta) &= 0 \\\\\n", "\\frac{1}{2} (2X^Ty - 2X^TX\\theta) &= 0 \\\\\n", "X^Ty - X^TX\\theta &= 0\n", "\\end {align}\n", "$$\n", "\n", "In the steps above, $y^Ty$ vanished as there’s no $\\theta$ dependence, and $\\theta^TX^TX\\theta$ becomes $2X^TX\\theta$ as $\\theta^T\\theta$ is analogous to $\\theta^2$. As the final step, we will perform some rearrangement of the formula:\n", "\n", "$$\n", "\\begin{align}\n", "X^Ty - X^TX\\theta &= 0 \\\\\n", "X^TX\\theta &= X^Ty \\\\\n", "\\theta &= (X^TX)^{-1}X^Ty\n", "\\end {align}\n", "$$\n", "\n", "Matrix calculus can feel a bit handwavy sometimes, if you're not convinced by the derivation above, the following link walks through each individual steps in much more detail. [Blog: The Normal Equation and matrix calculus](https://eli.thegreenplace.net/2015/the-normal-equation-and-matrix-calculus/)\n", "\n", "---\n", "\n", "After solving for the coefficients of the regression model, we can use it for selecting and interpreting features, if all features are on the same scale, the most important features should have the highest coefficients in the model, while features uncorrelated with the output variables should have coefficient values close to zero. This approach can work well when the data is not very noisy (or there is a lot of data compared to the number of features) and the features are (relatively) independent:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear model: 0.984 * X1 + 1.995 * X2 + -0.041 * X3\n" ] } ], "source": [ "# sklearn's LinearRegression may give harmless errors\n", "# https://github.com/scipy/scipy/issues/5998\n", "warnings.filterwarnings(\n", " action = 'ignore', module = 'scipy', message = '^internal gelsd')\n", " \n", "\n", "def pretty_print_linear(estimator, names = None, sort = False):\n", " \"\"\"A helper method for pretty-printing linear models' coefficients\"\"\"\n", " coef = estimator.coef_\n", " if names is None:\n", " names = ['X%s' % x for x in range(1, len(coef) + 1)]\n", "\n", " info = zip(coef, names)\n", " if sort:\n", " info = sorted(info, key = lambda x: -np.abs(x[0]))\n", " \n", " output = ['{} * {}'.format(round(coef, 3), name) for coef, name in info]\n", " output = ' + '.join(output)\n", " return output\n", " \n", "\n", "# A dataset with 3 features\n", "size = 5000\n", "np.random.seed(0)\n", "X = np.random.normal(0, 1, (size, 3))\n", "\n", "# y = X0 + 2 * X1 + noise\n", "y = X[:, 0] + 2 * X[:, 1] + np.random.normal(0, 2, size)\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "print('Linear model:', pretty_print_linear(linear))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see in this example, the model indeed recovers the underlying structure of the data very well, despite quite significant noise in the data. Given that the the predictors are on the same scale, we can compare the coefficients directly to determine variable importance, we can see here that when using linear regression, X2 is the most important predictor for this given dataset. To be explicit, standardized coefficients represent the mean change in the response given one standard deviation change in the predictor.\n", "\n", "\n", "## R-squared\n", "\n", "After fitting our predictive model, we would most likely wish to evaluate its performance and **R-squared** is a statistic that is often used to evaluate a regression model's performance. It takes a value ranging from 0 to 1 and is usually interpreted as summarizing the percent of variation in the response that the regression model is capable of explaining. So a R-squared of 0.65 means the model explains about 65% of the variation in our dependent variable. Given this logic, we prefer our regression models have a high R-squared, since we want the model we've trained to capture the output's variance as much as possible. One way to compute R-squared is the sum of squared fitted-value deviations divided by the sum of squared original-value deviations:\n", "\n", "$$\n", "\\begin{align}\n", "R^{2} = \\frac{\\sum (\\hat{y} - \\bar{\\hat{y}})^{2}}{\\sum (y - \\bar{y})^{2}}\n", "\\end{align}\n", "$$\n", "\n", "- $y$: original reponse variable.\n", "- $\\hat{y}$: predicted value for the reponse variable.\n", "- $\\bar{y}$: The average of reponse variable (pronounced as y bar).\n", "\n", "An alternative form is:\n", "\n", "$$\n", "\\begin{align}\n", "R^2 = 1 - \\frac{RSS}{TSS} = 1- \\frac{\\sum (y - \\hat{y})^2}{\\sum (y - \\bar{y})^2}\n", "\\end{align}\n", "$$\n", "\n", "- RSS: Stands for Residual Sum of Squares or referred to as sum of squared error (the measurement that linear model tries of minimize). This value captures the variance that is left between our prediction and the actual values of the output.\n", "- TSS: Stands for Total Sum of Squares, which measures the total variance in the output variable." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rsquared: 0.551603126683\n", "rsquared: 0.551603126683\n", "rsquared: 0.551603126683\n" ] } ], "source": [ "def rsquared_score(y_true, y_pred):\n", " \"\"\"rsquared evaluation metric\"\"\"\n", " rss = np.sum((y_true - y_pred) ** 2)\n", " tss = np.sum((y_true - np.mean(y_true)) ** 2)\n", " rsquared = 1 - rss / tss\n", " return rsquared\n", "\n", "\n", "y_pred = linear.predict(X)\n", "print('rsquared:', rsquared_score(y, y_pred))\n", "\n", "# we can use scikit-learn's r2_score function\n", "# by passing in the predicted value and the true label\n", "print('rsquared:', r2_score(y, y_pred))\n", "\n", "# or for regression models, the default evaluation\n", "# metric is set to be rsquared and can be accessed\n", "# through the .score method\n", "print('rsquared:', linear.score(X, y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Though widely used, this is actually a measurement that requires some context for it to be a valid evaluation metric. We'll give some examples of why:\n", "\n", "> R-squared can be arbitrarily close to 1 when the model is totally wrong." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rsquared: 0.899545630046\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAcAAALSCAYAAACh57jkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmYXHWV//HP6e500kmnt5CQIIRG\nwSwEhLAFB1RWNWNANpmICqjg9hv5qWyiDqOiYhz0AWccgYgwCPGngCwBhiUIyJgEycKSDQcICcSQ\nkN7S6S3dfX5/3G+RslJbkurq5b5fz1PP7XvvOfd7Ckof6tT3fq+5uwAAAAAAQHyV9HcBAAAAAACg\nf9EcAAAAAAAg5mgOAAAAAAAQczQHAAAAAACIOZoDAAAAAADEHM0BAAAAAABijuYAAAAAAAAxR3MA\nAAAAAICYozkAAAAAAEDM0RwAAAAAACDmaA4AAAAAABBzNAcAAAAAAIg5mgMAAAAAAMQczQEAAAAA\nAGKO5gAAAAAAADFX1t8FoG8tWLDgNUlVktb2cykAAAAAgMKql9Ry0kknHbCnF6I5MPRVmVndiBEj\n6vq7kF3R3t4uSaqoqOjnSoDdx+cYQwGfYwwFfI4xFPA5RjodHR1y94Jci+bA0Ld2xIgRdVOmTOnv\nOnbJ0qVLJUmDrW4gGZ9jDAV8jjEU8DnGUMDnGOmsWrVK7e3tawtxLdYcAAAAAAAg5mgOAAAAAAAQ\nczQHAAAAAACIOZoDAAAAAADEHM0BAAAAAABijuYAAAAAAAAxR3MAAAAAAICYozkAAAAAAEDM0RwA\nAAAAACDmaA4AAAAAABBzNAcAAAAAAIi5gjQHzMx34fXBDNcoN7PLzWy5mbWaWZOZLTSzi83M8qjh\nZDN7wMw2mVmHmb1iZteb2d555I4Psa+E3LfCtU7KI7ck1Lgw1LzVzJaZ2WVmVp5H/pFm9lsz2xDG\nXmdmc83swFy5AAAAAAAUQlmBrvNWjvNVkiokdUl6KfWkmVVJekLSEeFQW4ifEV6zzOwMd+9Od3Ez\n+5aka8Jur6RWSe+W9FVJs83sRHffadyQe2gYe0w41CJpL0kfk/SPZnaVu1+bIXeYpHslzQyHuiT1\nSDosvM4JY7dmyD9f0lxF/x48jL2fpM9J+iczO83dn0iXCwAAAABAoRRk5oC7j8/2kvRyCJ3v7lvS\nXOJmRY2BBkmzJFVKGinpAkkdir6ofzfd2GY2UzsaA9dJqnH3aknTJC2XNFbSfWY2PE1uhaT7FTUG\nlkmaFnJrw7VM0g/N7NQMb/0aRY2BjlDrSEmjwntokHSUpBsz1H1oeN9lku6QtLe710iql/RYuM7d\nZjY2w9gAAAAAABREn685YGaHSXpf2L0tzfnDJX0i7F7o7vM90uPut0m6Mpz7mpmNSzPED8P2D+5+\nqbtvlSR3X6HoS3piFsHFaXK/IGn/EDMr5MjdW9z9UkWzAkzSj9LUPV7SJWH3Cne/LdTs7j5f0mfD\nudmhEZDqe5KGSXpO0vnuvjmM/bqkMyWtl1ST9P4BAAAAAOgTxViQ8Pyw3STpoTTnPxm2a9z9/jTn\nb5LUrOg2gzOTT5jZwdrRePhJaqK7vyFpXtg9L821E8fudPc305xPXHO6mU1KOXeWpOGhtpvSjH2f\nohkTph3vMVF3jXbcivBTd+9JyW2V9MuwOzufNRcAAAAAANhdfdocMLMy7fhifGeGNQNOCNtH013D\n3dsl/Snsnpght1nS4gxlPBK2R5tZZVJto7VjjYNHdsqKLArXlqTUxQkTYz/t7h0Z8hPvKbXu4xTN\nGkiOyVT3BElTMsQAAAAAALDH+nrmwEclJW4FSHdLgUmaHHZXZLnOyrCdmnI8sb/K3Xtz5CaPJUVf\nuBO/yKcdO1xzTY6x86l7Ssqv/4ncjRnWYEjOTTc2AAAAAAAFU6inFWRyQdg+7+7L05yvUrTwniRt\nyHKdxLkJKccnpJzPlpuaPyFDTF+MXRleW/PNdfd2M2tStO5A6tg7MbMl6Y7PnTt3cn19vZYuXZrr\nEgNKW1ubJA26uoFkfI4xFPA5xlDA5xhDAZ9j9LU+mzlgZnWKnjIgpZk1EIxK+rs9y+XawrYy5Xgi\nP5/c1PyBMHa23GxjAwAAAABQMH05c2C2pHJJ3Yoe1Yc+5O5HpDu+YMGCJRUVFdOnTBlcyxYkOqLT\np0/v50qA3cfnGEMBn2MMBXyOMRTwOUY6q1atUnt7rt+c89OXaw4knlLwsLtvyhCzLenviizXGhm2\nrRny88lNzR8IY2fLzTY2AAAAAAAF0yfNATObIumosJvplgJJatGOL8r7ZIlLnPtbyvENKeez5abm\nb8gQ0xdjt7r71qTjOXPNrELRegPpxgYAAAAAoGD6aubABWHbIOmBTEHu7pJWhd2Ds1wvsVr/ypTj\nyU8DyPReErnJY0nS6nAs49jhmpNyjJ1P3atSjidyx5vZmBy56cYGAAAAAKBgCt4cMLNSSZ8Ku/Pc\nvStHyh/D9pQM1xsh6fiwuyBDbrV2zFRIdWrYLnb3d24lCL/kP5dtbEnHhGtnG/v4UGM6ieum5j4j\naXv4++QcdW/Qzs0FAAAAAAAKpi9mDpysHdPls91SkDAvbCeb2cfSnL9I0Rf0dkl/SD7h7islPR92\nL0tNNLN9FC2MKKVfFPHOsD3PzNI9LvDSsF3i7mtSzt0jqVPR1P/Ppxl7lqJZB64d7zFRd7Okh8Lu\n11NnPZjZKElfDLvzwgwLAAAAAAD6RF80BxILEa5097/kCnb3ZZJ+F3ZvNbOZUjQDwcw+I+nH4dzP\nMixseFXYnmVmc8xsdMifquiWhtGSXpV0c5rcGyW9HmLmhxyZ2WgzmyPpzJQxkuveKOn6sDvHzD4d\nZk0ovIdfh3Pz3P2FNGNfrWj2wNHhfe8VcicqajxMlNSU9P4BAAAAAOgTBX2UoZlVSfp42M1n1kDC\nRZLeI+kISQ+aWZukUknDw/n5ir5M78TdHzKz70j6vqLZA183s22SqkLI25JOd/fONLntZna6omn/\n0yWtMLMWSZWKGicu6Sp3fzRD3d+WNE3STEn/JelmM+vRjqcM/EU7ZgCkjv28mV0kaa6kT0v6VBg7\ncRvDNklnufvmDGMDAAAAAHaTu2v15jbd9cImPftGs7q6XeVlpmP2q9bZh4zTpLEjZWb9XWbRFHrm\nwCcUPZ6vV9Jv8k1y9xZJ75d0paLbBFzRlP1Fkr4g6TR3786Sf42i+/sflNSoqKnwqqQbJE1z95ey\n5D6v6Av+DSFnuKQt4VqnuPu1WXK3S5qlqAGwKNTskpZLukLScSlPKUjNv03SsYpmTryl6J/dekm3\nSDrM3Z/IlAsAAAAA2D3dva4f/XGtLn/of/XM2iZ1dnv0JbTb9afXmnT5Q/+rH/1xrbp743OHd0Fn\nDrj7XEW/hO9ObpeiKfS7NY3e3R+X9Phu5m6UdEl47Wpur6LbE27czbGfk3Tu7uQCAAAAAHaNu2vO\nk2u18PVmdfbs/OXfJXV092rh682a8+RaffOE+ljMIOirRxkCAAAAADDgrN7cpkXrWtI2BpJ19rgW\nrWvRms1tRaqsf9EcAAAAAADExt0vblJnd29esZ3dvbr7pXTr4g89NAcAAAAAALGxeH2z8l1JwCUt\nWtfSl+UMGDQHAAAAAACx0dW9a4sMduU5y2CwozkAAAAAAIiN8rJdW1ywvCweX5vj8S4BAAAAAJB0\nzH7Vyrc9YJJmTKzqy3IGDJoDAAAAAIDYOOuQcRqe52yA8jLTWdPG9XFFAwPNAQAAAABAbEweO1Iz\nJlZpeGn2+QPDS03HTqzWpLEji1RZ/6I5AAAAAACIDTPT5R+q17H7V2tEWclOtxiYpOFlpmP3r9bl\nH6qX2a6tUTBYlfV3AQAAAAAAFFNZiembJ9RrzeY23fXiJi1e36Ku7l6Vl5VoxsQqnX3IOE0aO6q/\nyywqmgMAAAAAgNgxM00eN0rfPumA/i5lQOC2AgAAAAAAYo7mAAAAAAAAMUdzAAAAAACAmKM5AAAA\nAABAzNEcAAAAAAAg5mgOAAAAAAAQczQHAAAAAACIOZoDAAAAAADEHM0BAAAAAABijuYAAAAAAAAx\nR3MAAAAAAICYozkAAAAAAEDM0RwAAAAAACDmaA4AAAAAABBzNAcAAAAAAIg5mgMAAAAAAMQczQEA\nAAAAAGKO5gAAAAAAADFHcwAAAAAAgJijOQAAAAAAQMzRHAAAAAAAIOZoDgAAAAAAEHM0BwAAAAAA\niDmaAwAAAAAAxBzNAQAAAAAAYo7mAAAAAAAAMUdzAAAAAACAmKM5AAAAAABAzNEcAAAAAAAg5mgO\nAAAAAAAQczQHAAAAAACIOZoDAAAAAADEHM0BAAAAAABijuYAAAAAAAAxR3MAAAAAAICYozkAAAAA\nAEDM0RwAAAAAACDmaA4AAAAAABBzNAcAAAAAAIg5mgMAAAAAAMQczQEAAAAAAGKO5gAAAAAAADFH\ncwAAAAAAgJijOQAAAAAAQMzRHAAAAAAAIOZoDgAAAAAAEHM0BwAAAAAAiDmaAwAAAAAAxBzNAQAA\nAAAAYo7mAAAAAAAAMVfw5oCZTTKzn5vZGjPbZmbNZrbKzG4xsw9myCk3s8vNbLmZtZpZk5ktNLOL\nzczyGPNkM3vAzDaZWYeZvWJm15vZ3nnkjg+xr4Tct8K1TsojtyTUuDDUvNXMlpnZZWZWnkf+kWb2\nWzPbEMZeZ2ZzzezAXLkAAAAAABRKWSEvZmZflfQTSYkvxq3h78nh1SvpqZScKklPSDoiHGqTVCFp\nRnjNMrMz3L07w5jfknRN2O0NY75b0lclzTazE939pQy5h4axx4RDLZL2kvQxSf9oZle5+7UZcodJ\nulfSzHCoS1KPpMPC65wwdmuG/PMlzVX078DD2PtJ+pykfzKz09z9iXS5AAAAAAAUUsFmDpjZFyRd\nr+jL7o8l7e/uo929QtIESZ+R9Oc0qTcragw0SJolqVLSSEkXSOpQ9EX9uxnGnKkdjYHrJNW4e7Wk\naZKWSxor6T4zG54mt0LS/YoaA8skTQu5teFaJumHZnZqhrd8jaLGQEeodaSkUeE9NEg6StKNGeo+\nNLzvMkl3SNrb3Wsk1Ut6LFznbjMbm2FsAAAAAAAKpiDNATOrl/TTsPtFd7/S3dclzrv7Rne/3d1v\nSck7XNInwu6F7j7fIz3ufpukK8O5r5nZuDRD/zBs/+Dul7r71jDeCkVf0hOzCC5Ok/sFSfuHmFkh\nR+7e4u6XKpoVYJJ+lOb9jpd0Sdi9wt1vCzW7u8+X9NlwbnZoBKT6nqRhkp6TdL67bw5jvy7pTEnr\nJdUkvX8AAAAAAPpMoWYOXKLol/PF7n7zLuR9MmzXuPv9ac7fJKlZ0W0GZyafMLODJb0v7P4kNdHd\n35A0L+yel+baiWN3uvubac4nrjndzCalnDtL0vBQ201pxr5P0suKmgufTD5nZjXacSvCT929JyW3\nVdIvw+7sfNZcAAAAAABgTxSqOZD4Ajwva9TOTgjbR9OddPd2SX8KuydmyG2WtDjD9R8J26PNrDJx\n0MxGa8caB4/slBVZFK4tSamLEybGftrdOzLkJ95Tat3HKZo1kByTqe4JkqZkiAEAAAAAoCD2uDlg\nZu+RlJjyv8zMZoTV/reYWbuZrTazn6TeFhB+EZ8cdldkGWJl2E5NOZ7YX+XuvTlyk8eSoi/ciV/k\n044drrkmx9j51D0l5df/RO5Gd9+SIzfd2AAAAAAAFFQhnlZwUNLfH5L0L5JKJW1VtAr/pPA6z8xO\nSdzbL6lK0cJ7krQhy/UT5yakHJ+Qcj5bbmr+hAwxfTF2ZXhtzTfX3dvNrEnRugOpY6dlZkvSHZ87\nd+7k+vp6LV26NJ/LDBhtbW2SNOjqBpLxOcZQwOcYQwGfYwwFfI7R1wpxW0FN0t9XK7rXfoa7Vyn6\nUjxT0iZFX3LvNrNEQ2JUUl57luu3hW1lyvFEfj65qfkDYexsudnGBgAAAACgoAoxcyC5weCSznD3\nNdI7U/MfNrPPSpqvaAbBmZJ+V4BxkcTdj0h3fMGCBUsqKiqmT5kyuJYuSHREp0+f3s+VALuPzzGG\nAj7HGAr4HGMo4HOMdFatWqX29ly/O+enEDMHWpP+/u9EYyCZuz+oaEaBtGNxv21JIRVZrj8yzTjJ\n+fnkpuYPhLGz5WYbGwAAAACAgipEcyD53vmdGgNpzu0Xti3a8UV5nyx5iXN/yzBuPrmp+RsyxPTF\n2K3uvjXpeM5cM6vQjts1UscGAAAAAKCgCtEcWCkp09MC0nFJcneXtCocOzhLfGK1/pUpx5OfBpDp\nfSRyk8eSpNWJOjKNHa45KcfY+dS9KuV4Ine8mY3JkZtubAAAAAAACmqPmwPu3iZpYdidlCU0cW5t\n0rE/hu0p6RLMbISk48PugpTTidxqSUdlGPPUsF3s7u/cShB+yX8u29iSjgnXzjb28aHGdBLXTc19\nRtL28PfJOereoJ2bCwAAAAAAFFQhZg5I0n+F7UfMbKcGgZn9o6T3ht2Hkk7NC9vJZvaxNNe9SNEX\n9HZJf0g+4e4rJT0fdi9LM+Y+kmaH3TvSXPvOsD3PzNI9LvDSsF2SZh2FeyR1Kpr6//k0Y89S1Axx\n7XiPibqbteOfwddTZz2Y2ShJXwy788IMCwAAAAAA+kyhmgO3KJr+XirpHjM7Woqm5pvZRyT9KsQt\nUlJzwN2XaceTC241s5khr9TMPiPpx+Hcz9x9U5pxrwrbs8xsjpmNDvlTJT0gabSkVyXdnCb3Rkmv\nh5j5IUdmNtrM5ih6qkLyGO9w942Srg+7c8zs02ZWGvJnSvp1ODfP3V9IM/bVimYPHB3e914hd6Ki\nxsNESU1J7x8AAAAAgD5TkOaAu3dLmiVpvaL75RebWYukrZIelrS3oubB2Wl+Cb9I0hJJYyQ9aGbb\nFC1UeJuiFf3nK/oynW7chyR9J+xeJqnRzJolrZA0XdLbkk539840ue2STpe0JcSuCLlN4Vou6Zvu\n/miGt/1tRY2OCkUzJ7aF2h8M7+Uv2jEDIHXs58P77pb0aUmbzKxJUbPi1PD+z3L3zRnGBgAAAACg\nYAo1c0Du/qqkQyT9QFEjoEzRF+ylkr4p6Wh3fzNNXouk90u6UtFtAq5oyv4iSV+QdFpoPmQa9xpF\n9/c/KKlR0nBFswVukDTN3V/Kkvu8pGkh9tWQuyVc6xR3vzZL7nZFDZEvhlo7Q+3LJV0h6biUpxSk\n5t8m6VhFMyfeUtRkWK9oFsZh7v5EplwAAAAAAAqprJAXC/fTfzu8diWvS9EU+t2aRu/uj0t6fDdz\nN0q6JLx2NbdX0e0JN+7m2M9JOnd3cgEAAAAAKJSCzRwAAAAAAACDE80BAAAAAABijuYAAAAAAAAx\nR3MAAAAAAICYozkAAAAAAEDM0RwAAAAAACDmaA4AAAAAABBzNAcAAAAAAIg5mgMAAAAAAMQczQEA\nAAAAAGKO5gAAAAAAADFHcwAAAAAAgJijOQAAAAAAQMzRHAAAAAAAIOZoDgAAAAAAEHM0BwAAAAAA\niDmaAwAAAAAAxBzNAQAAAAAAYo7mAAAAAAAAMUdzAAAAAACAmKM5AAAAAABAzNEcAAAAAAAg5mgO\nAAAAAAAQczQHAAAAAACIOZoDAAAAAADEHM0BAAAAAABijuYAAAAAAAAxR3MAAAAAAICYozkAAAAA\nAEDM0RwAAAAAACDmaA4AAAAAABBzNAcAAAAAAIg5mgMAAAAAAMQczQEAAAAAAGKO5gAAAAAAADFH\ncwAAAAAAgJijOQAAAAAAQMzRHAAAAAAAIOZoDgAAAAAAEHM0BwAAAAAAiDmaAwAAAAAAxBzNAQAA\nAAAAYo7mAAAAAAAAMUdzAAAAAACAmKM5AAAAAABAzNEcAAAAAAAg5mgOAAAAAAAQczQHAAAAAACI\nOZoDAAAAAADEHM0BAAAAAAB6e/u7gn5FcwAAAAAAEEu2caNq6+pUW1enqsMPV9nTT/d3Sf2G5gAA\nAAAAIF66u1V52mmqmTr1nUOl69er4qqr+rGo/kVzAAAAAAAQG8NvuEG148Zp2DPPpDk5vPgFDRBl\n/V0AAAAAAAB9rXTRIlXNnJk1pu3664tUzcBDcwAAAAAAMGTZ22+r5r3vzRnXtHKlfPz4IlQ0MHFb\nAQAAAABg6OntVeW55+ZsDGy99141NjTEujEg0RwAAAAAAAwxw2+6SbV77aVhjz2WMab9yivV2NCg\n7g98oIiVDVzcVgAAAAAAGBJKlyxR1SmnZI3pPvJIbX3wQWnYsCJVNTjQHAAAAAAADGrW2KjqKVNk\nXV1Z45pefFH+rncVqarBhdsKAAAAAACDU2+vRn3mM6p5z3uyNga2/v730boCNAYyojkAAAAAABh0\nym+9VbV77aXy+fMzxrR/7WvRugInnVTEygYnbisAAAAAAAwapS++qKoPfjBrTPchh2jro49Kw4cX\nqarBryAzB8zsAjPzHK/WLPklZnaxmS00syYz22pmy8zsMjMrz2P8I83st2a2wcw6zGydmc01swPz\nyK0ys2vMbJWZtZnZFjNbYGZn5/nezzGzJ0JeW7jONWY2Oo/cg8zsV6HezlD/b83siHzGBgAAAIDY\naGlR9QEH5GwMNC9frq1PPUVjYBcV+raC7ZLeyvLaiZkNk/SApBslzZBUIalU0mGS5kh6xswqMw1o\nZudLWijpXEnjJXVI2k/S5yQtN7MTs+TuK2m5pG9JmiypR1KVpBMl/d7MfpHtzZrZTZJ+J+mEkNcT\nrvOtMPY+WXJPCWN/NtTbHuo/V9IiM/tUtrEBAAAAIBbcNfILX1Btfb1KmpszhrXecYcaGxrUO3Fi\nEYsbOgrdHPizu4/P8HpPhpxrJM1U9KX+AkkjJY2SNEtSg6SjFDUOdmJmh0q6WdHtEXdI2tvdayTV\nS3osXOduMxubJtck3SXpAElrJf2Du4+WNFrS5ZJ6JX3JzC7KMPaXJF0U4i6TVBny/0HS65Lerahx\nkC53fBh7ZKizPtQ9PryPMkm/MrOD0+UDAAAAQByUz5un2jFjNPz3v88Y0/GlL6mxoUHbP/rRIlY2\n9PTrgoThS/IlYfcKd7/N3Xs8Ml/Rr+qSNDs0AlJ9T9IwSc9JOt/dN0uSu78u6UxJ6yXVSLoyTe7p\nko5R9OX+DHf/c8jtcPefSLohMUbqrQ1mNlzSv4bd693939y9M+T/WdIZklzSP5jZrDRjX6lopsF6\nSWeGeuXumySdL2mJpPLw/gAAAAAgVkpWrlRtXZ1GfeUrGWN6DjxQjW++qfYf/KCIlQ1d/f20grMk\nDZfULOmm1JPufp+klyWZpE8mnzOzGkUzDiTpp+7ek5LbKumXYXd2mCmQ7Lywfdzdl6ep7d8UfcEf\nr+g2g2QnSxoXzl+Xpu5lkh5PGSdRd4mkfwq7/xnqTM7tkfTTsPsxM6tKUxsAAAAADD2traqeMkXV\nxx2XNaz5L39Ry7PPShUVRSps6Ovv5sAJYfu0u3dkiHk0bFO/oB+naNZAckyqR8J2gqQpGcZ+RGm4\n+5uSVmQYO5H7UojLNnZq7lRJe2cbWzveT7mi9wkAAAAAQ5e7Rl5yiWonTlTJW2mXq5Mktd5yS7Su\nwHsy3bWO3VXo5sDBZrbCzNrDEwdeMrOfmdkBGeKnhu2KDOclaWXYTkn59T+Ru9Hdt+TITY6XmY2T\nNGYXxp6acnxX6h5rZnulyfWU+t7h7m9L2pRhbAAAAAAYMobdc0+0rsDtt2eM6bzwQjVu2aLtH/94\nESuLl7ICX28vRV+6GxXdU39weH3BzD7v7nemxE8I2w1Zrpk4VxleW/PNdfd2M2tStO7AhKRTyX/n\nM/aElOO7Unci/u2U3MYssyUS+ePSjJ2WmS1Jd3zu3LmT6+vrtXTp0nwuM2C0tbVJ0qCrG0jG5xhD\nAZ9jDAV8jjEUDMXP8cj163XshRdmjekYO1YLb7lFvRUV0rJlRaosngrVHNgg6WpJd0v6q7t3hUX7\nTpL0E0W/ft9mZm+4+9NJeaPCtj3LtduS/k5uDuSTm8ivCbmp4+Y7duqjFHen7l3JzTY2AAAAAAxa\nJR0dmvH5z6ti48ascQt/9Su17b9/kapCQZoD7v6oUu77D6v3P2Rm/6PoaQIHSrpW0vsLMSb+nrsf\nke74ggULllRUVEyfMiV1yYWBLdERnT59ej9XAuw+PscYCvgcYyjgc4yhYKh8jiuuuEIjbr45a8y2\nG29U1znnaHKRahrMVq1apfb2XL8756fPFyR092ZJPwy7M1Luv98WttmWmByZ9Hfyyv755Cbnp8vN\nd+zWlOP9VTcAAAAADDrD5s9XbV1d1sZA5+zZatyyRV3nnFPEypBQ6DUHMlkctibpAO24/36Doin/\n+2TJTZxrdfetScc3pJzfiZlVhOtL0t/S5CbyX8wx9t9Sjm+QdFi2sVPOpRu71sxGZFl3INPYAAAA\nADAolLz2mqqPSDvJ+R29Y8aoeckSqYqnuPen/n6UYWK1/oOzxCRW61+VIXe8mY1Reskr/b/zZAB3\n36wdDYp8xk59qsCu1L05PH0gNdeU4UkEYXbFuAxjAwAAAMDA1tGhqmOPzdkYaPnTn9T817/SGBgA\nitUcOCbp77VJf/8xbI83sxEZck8J2wUpx5+RtD38fXKG3FPDdoN2bi4kxj5FaZjZu7Tjy3/q2Inc\ng80s09MEEmOn5q6SlHhwZ9qxk453KXqfAAAAADAoVFx9tWr32Uela9ZkjNl2ww1qbGhQz8HZfm9F\nMe1xc8DMLMf5KklXht1nw6/2CfdI6lQ09f/zaXJnSZokySXNSz4X1jJ4KOx+3cxKUnJHSfpi2J3n\n7p5y+cRjFU81s/elKf3rin7d/5t2NAMSFkjapOif3zfS1P0+7WhY3JFSd6+k34bdL4c6k3NLJH0t\n7D7g7i1pagMAAACAAaXssceidQV+/vOMMV1nnhmtK/CpTxWxMuSjEDMH9jezRWb2OTObmDhoZuVm\n9hFJ/yPpvZJ6JX0zOdHdN0q6PuzOMbNPm1lpyJ8p6dfh3Dx3fyHN2Fcrmj1wtKRbE4sdhjrukTRR\nUpOkH6fJvU/RWgglkv5gZjNC7nAz+4ak/5sYw927UurulPSvYfdrZvaN8OhGmdmxkv4Qrvs/7j4/\nzdjXSmoJ9d2T+OdmZmMl3SoDNXBfAAAgAElEQVTpKEWzBq5OkwsAAAAAA0bJ+vWqravT6HPPzRjj\nlZVqeu01bZs7V8r++zL6SaEWJDwmvGRmHYpW5K+SNCycb5P0RXd/Ik3utyVNkzRT0n9JutnMerRj\ntf6/aMcMgL/j7s+b2UWS5kr6tKRPmVmLpOoQsk3SWSmzFRK5bmZnS3pa0SKJC82sVdII7fjn8kt3\nT7ucprv/p5kdLukiSf8m6Udm1impMoS8KukTGXI3hrHvVXT7wetm1qzon5lJ6pb0OXdfkS4fAAAA\nAPpdV5dGf/jDKnv++axhLU88oZ7DDitSUdhdhZg58Jakr0r6naQ1ihoB1WH7nKJf7ae6++3pkt19\nu6RZihoAixTdZuCSlku6QtJxKU8pSM2/TdKxYfy3FD0icL2kWyQdlqEhkch9Q9FTB34oabWipsBW\nRbcRfMLdv5Ttjbv7xZLODfGtIX+1pB+EsTdkyX0sjP1rSW+Eut8K72OGu/8m29gAAAAA0F9G/PCH\nqh0/PmtjoO0nP4nWFaAxMCjs8cwBd2+X9PPw2t1r9Eq6Mbx2J/85RV/Sdye3RdK3wmt38n+n6Av9\n7uT+VdJndycXAAAAAIqt7MknNfrMM7PGdH30o9p2++1SSX8/HA+7olC3FQAAAAAAhijbsEE106Zl\njfGyMjWvXi2vqytSVSgkWjkAAAAAgPS2b9foj3wkZ2Og5ZFH1LRpE42BQYzmAAAAAABgJyN++lPV\n7r23yp59NmNM2w9+EK0rcNRRRawMfYHbCgAAAAAA7yj7n//R6FmzssZsP+EEtf7ud1JpaZGqQl+j\nOQAAAAAAkG3apJrJk3PGNa1eLR83rggVoZi4rQAAAAAA4qynR5VnnJGzMbB1/nw1NjTQGBiiaA4A\nAAAAQEwN/8UvVDt2rIY99VTGmPbvfEeNDQ3qfv/7i1gZio3bCgAAAAAgZkqffVZVH/lI1pjtM2ao\n9f77pTK+NsYB/5YBAAAAICZsyxZVT5ok6+3NGte0YoV8woQiVYWBgNsKAAAAAGCo6+3VqPPOU81B\nB2VtDGy9555oXQEaA7FDcwAAAAAAhrDhv/qVavfaS+UPP5wxpv2yy6J1BT70oeIVhgGF2woAAAAA\nYAgqXbZMVSedlDWm+/DDtfXhh6Xy8iJVhYGK5gAAAAAADCHW1KTqadNkbW1Z45peeEG+775FqgoD\nHbcVAAAAAMBQ4K5Rn/2sat797qyNga3/7/9F6wrQGEASmgMAAAAAMMiV/+Y3qh0zRuX33psxpuOr\nX43WFTjllCJWhsGC2woAAAAAYJAqfeklVX3gA1ljeqZMUcuCBdKIEUWqCoMRzQEAAAAAGGxaWlR9\n+OEqaWzMGta8dKl66+uLUxMGNW4rAAAAAIDBwl0jv/xl1dbXZ20MtN5+uxobGmgMIG/MHAAAAACA\nQWD844+r9uSTs8Z0XHyx2q+9tkgVYSihOQAAAAAAA1jJ6tU6KUdToKe+Xi3PPCONHFmkqjDU0BwA\nAAAAgIFo2zZVH3OMSjZsyBrWvHixeg86qEhFYahizQEAAAAAGEjcNfLrX1ftfvtlbQy0zp0brStA\nYwAFwMwBAAAAABgght17ryo/+9msMZ3nn6+2n/5UMitSVYgDmgMAAAAA0M9KXnlF1UcdlTWmY8wY\ntS9bJlVWFqkqxAnNAQAAAADoL+3tqjr+eJW++mrWsEVz52pbfb2m0xhAH2HNAQAAAADoBxVXXaXa\nd70ra2Ng2y9+ocaGBm2rry9eYYglZg4AAAAAQBENe/hhVZ53XtaYznPPVdsvfsG6AigamgMAAAAA\nUAQlr7+u6sMPzxrTW1ur5mXLpKqqIlUFRGgOAAAAAEBf6uzU6JNPVtmKFVnDWp56Sj2HHFKkooC/\nx5oDAAAAANBHRnzve6qdMCFrY2Dbz36mxoYGGgPoV8wcAAAAAIACK3v8cY3+xCeyxnSddpq23XKL\nVMJvtuh/NAcAAACAAnB3rd7cprte2KRn32hWV7ervMx0zH7VOvuQcZo0dqSMxeWGPHvjDdUcemjW\nGB8xQs0rVshra4tUFZAbzQEAAABgD3X3uuY8uVYL17Woq7tXHo53drv+9FqTnl3fohkTq3T5h+pV\nVkKDYEjavl2jP/pRlS1dmjWs5fHH1TN9epGKAvLH/BUAAABgD7iHxsDrzepMagy8c15SR3evFr7e\nrDlPrpV7agQGuxFz5qh2772zNgbafvzjaF0BGgMYoJg5AAAAAOyB1ZvbtGhdizp7sn/p7+xxLVrX\nojWb2zR53KgiVYe+VPbUUxp9xhlZY7o+/GFtu+MO1hXAgEdzAAAAANgDd7+4SZ3dvXnFdnb36u6X\nNulbJx7Qx1WhL9nf/qaagw/OGdf08svyvfYqQkXAnqN9BQAAAOyBxeubd7qVIBOXtGhdS1+Wg77U\n3a3Kj30sZ2Og5eGH1djQQGMAgwrNAQAAAGAPdHXv2hoCXXnOMsDAMvz661U7bpyG/fnPGWPavvvd\naF2BY44pYmVAYXBbAQAAALAHystMnbvQICgv4/e5waR00SJVzZyZNWb7Bz6g1rvuksr4eoXBi08v\nAAAAsAeO2a9af3qtKa9bC0zSjIlVfV0SCsA2b1bNpEk545pWrZLvvXcRKgL6Fm1LAAAAYA+cdcg4\nDc9zNkB5memsaeP6uCLskZ4eVZ5zTs7GwNb77ovWFaAxgCGC5gAAAACwByaPHakZE6s0vNSyxg0v\nNR07sVqTxo4sUmXYVcNvvFG1Y8dq2IIFGWPar7pKjQ0N6j7++CJWBvQ9bisAAAAA9oCZ6fIP1WvO\nk2u1aF2LOrt7/+4WA1M0Y+DYidW6/EP1MsveREDxlS5ZoqpTTska03300dr6wAPSsGFFqgooLpoD\nAAAAwB4qKzF984R6rdncprte3KTF61vU1d2r8rISzZhYpbMPGadJY0f1d5lIYQ0Nqp48WdbdnTWu\n6cUX5e96V5GqAvoHzQEAAACgAMxMk8eN0rdPOqC/S0Euvb0adf75Kn/wwaxhW++6S90nnlikooD+\nxZoDAAAAAGKj/NZbVbvXXlkbA+3f+Ea0rgCNAcQIMwcAAAAADHmlzz+vqhNOyBrT/b73aesjj0jl\n5UWqChg4aA4AAAAAGLKsuVnVhxwia23NGtf8/PPq3W+/IlUFDDzcVgAAAABg6HHXqM9/XjUHHJC1\nMdA6b54aGxpoDCD2aA4AAAAAGFLK77xTtWPGqPyeezLGdHzlK2psaND2D3+4iJUBAxe3FQAAAAAY\nEkpWrlT1ccdljek56CC1PPWUNGJEkaoCBgeaAwAAAAAGt61bVX3kkSrZvDlrWPNzz6n33e8uUlHA\n4MJtBQAAAAAGJ3eN/Od/Vu3++2dtDLTeemu0rgCNASAjmgMAAAAABp1hd9+t2jFjNPyOOzLGdHzu\nc2rcskXbTzutiJUBgxO3FQAAAAAYNEpeflnVM2ZkjenZbz+1/PnP0qhRRaoKGPxoDgAAAAAY+Nra\nVPX+96t03bqsYc2LFqn3ve8tUlHA0MFtBQAAAAAGLndVXHaZavfdN2tjoPXmm6N1BWgMALuFmQMA\nAAAABqRh99+vygsuyBrTed55arvhBsmsOEUBQxTNAQAAAAADSsmrr6r6yCOzxvSOG6fmv/xFGj26\nSFUBQxvNAQAAAAB/x921enOb7nphk559o1ld3a7yMtMx+1Xr7EPGadLYkbK++KW+o0NVH/ygSv/6\n16xhzc88o96pUws/PhBjNAcAAAAAvKO71zXnybVauK5FXd298nC8s9v1p9ea9Oz6Fs2YWKXLP1Sv\nspLCNQgqvvMdjfiP/8gas+3f/11dn/xkwcYEsAMLEgIAAACQFM0YmPPkWi18vVmdSY2Bd85L6uju\n1cLXmzXnybVyT43YdcMeeUS1dXVZGwOdZ5+txi1baAwAfajPmgNmVmlm683Mw+uCLLHlZna5mS03\ns1YzazKzhWZ2seUxX8nMTjazB8xsk5l1mNkrZna9me2dR+74EPtKyH0rXOukPHJLQo0LQ81bzWyZ\nmV1mZuV55B9pZr81sw1h7HVmNtfMDsyVCwAAABTa6s1tWrSuRZ092b/0d/a4Fq1r0ZrNbbs9Vsm6\ndaqtq1Pl7NkZY3z0aDW99prabrqJBQeBPtaXMweukbRvriAzq5L0Z0k/lvQ+SSapQtIMSTdKut/M\nMt7+YGbfkvSYpI9JGiOpU9K7JX1V0otmNi1L7qGSXgqx7w65e4VrPWZmV2bJHSbpgVDjjFBzqaTD\nJM2R9IyZVWbJP1/SQknnShovqUPSfpI+J2m5mZ2YKRcAAADoC3e/uEmd3b15xXZ29+rulzbt+iBd\nXRr9wQ+q+rDDsoa1/PGPanr9dXl19a6PAWCX9UlzwMymS/o/khbnEX6zpCMkNUiaJalS0khJFyj6\nwvwxSd/NMM5MRU0ISbpOUo27V0uaJmm5pLGS7jOz4WlyKyTdr6ihsEzStJBbG65lkn5oZqdmqPsa\nSTNDjReEmkeF99Ag6ShFjYN0dR8a3neZpDsk7e3uNZLqFTU6Rkm628zGZhgbAAAAKLjF65t3upUg\nE5e0aF3LLl1/xA9+oNrx41X24osZY7Zdd50aGxrU87737dK1AeyZgjcHzKxEO74UfylH7OGSPhF2\nL3T3+R7pcffbJCV+uf+amY1Lc4kfhu0f3P1Sd98qSe6+QtGX9FZFMwIuTpP7BUn7h5hZIUfu3uLu\nl0q6V1GD4Edp6h4v6ZKwe4W73xZqdnefL+mz4dzs0AhI9T1JwyQ9J+l8d98cxn5d0pmS1kuqSXr/\nAAAAQJ/r6t61NQS68pxlUPbEE6qtq1PFdddlvtY//qMa335bXRdeuEs1ACiMvpg58M+SjpT0n+6+\nLEdsYkWRNe5+f5rzN0lqVjRl/8zkE2Z2sKLbECTpJ6mJ7v6GpHlh97w0104cu9Pd30xzPnHN6WY2\nKeXcWZKGh9puSjP2fZJeVtRc+LtVU8ysRtGMA0n6qbv3pOS2Svpl2J2dz5oLAAAAQCGUl+3af3qW\nl2X/OmEbNqi2rk6jzz47Y4yXlanpf/9X226/XSphvXSgvxT0f31m9i5J35f0lqRv55FyQtg+mu6k\nu7dL+lPYTb0HP5HbrMy3LzwStkcn3/9vZqMV3cqQHJNqUbi2JKUuTpgY+2l378iQn3hPqXUfp2jW\nQHJMpronSJqSIQYAAAAoqGP2q1a+7QGTNGNiVfqT27dr9Ec+opppGZf/kiS1PPqomjZtktfV7VKd\nAAov40J/u+nnkkZL+rK7N2cLDL+ITw67K7KErlS07sDUlOOJ/VXunmk+08rEcGGs58L+lHAs49ju\n3mtmayQdnWXsXHVL0hQzM9/xnJdE7kZ335IjNxG/MkPcO8xsSbrjc+fOnVxfX6+lS5fmusSA0tYW\nrXw72OoGkvE5xlDA5xhDAZ/j/J1Y2av37t+hfJ5QaCbtO6pHS5c2/t3x+t/8Ru+59dasuS9/+cta\nf2aYGMy/l7zwOUZfK1hzwMxmSTpD0pPu/ps8UqoULbwnSRuyxCXOTUg5PiHlfLbc1PwJGWL6YuzK\n8Nqab667t5tZk6J1B1LHBgAAAPrEiGElqiwvVWtXT9YGgZlUWV6qEcN2TESuWb5cR1x6adbrv33U\nUXr+mmuk0tJClQygQArSHDCzUZL+XdJ2SV/JM21U0t/tWeISD09NfSxgIj+f3NT8/hg70RzIJzeR\nX5Nm7LTc/Yh0xxcsWLCkoqJi+pQpg+vuhERHdPr06f1cCbD7+BxjKOBzjKGAz/Gu6e51zXlyrRat\na1Fnd+/fPb3AFK1LcOzEal1+fL3KSkz21luqyeO/NZvWrFHp2LHi38Lu4XOMdFatWqX29lxfLfNT\nqJkD35M0UdIcd885BR4AAADAwFRWYvrmCfVas7lNd724SYvXt6iru1flZSWaMbFKZx8yTpPGjpJ6\nelT58bM07Omns15v64MPqvvYY4tTPIDdtsfNATM7TNFj/dYrahLka1vS3xVZ4kaGbWuG/HxyU/NT\nx96q9LKNXbOHY2fLzTY2AAAA0KfMTJPHjdK3Tzog7fnh//7vGvkv/5L1Gm1XX63OSy7JGgNg4CjE\nzIHrJZVK+paidQYzTYMfHs71unubpBZFX5RHSdony/UT5/6WcnxDyvlsuan5G1Ji1uzG2DV5jt3q\n7snNh5x1m1lFuH66sQEAAIB+Ubp4sao++tGsMduPO06t99wjlRV67XMAfakQ/4vdP2z/K0fcL8Pr\ndUn17u5mtkrSkZIOzpKXWN0/9XaF5KcBlGR4YkEi1yWtSjq+OhyzMPZOzQEzK5E0KcvYU/Ose1XK\n8cS1xpvZmAxPLJiaJh4AAADoF7Zli2oOOihnXNPKlfLx44tQEYBCK8kd0qf+GLanpDtpZiMkHR92\nF2TIrZZ0VIbrnxq2i939nVsJwi/5iccaph1b0jHh2tnGPj7UmE7iuqm5zyhauFGSTs5R9wbt3FwA\nAAAAiqO3V6NPOSVnY2DrvfeqsaGBxgAwiO1xc8Dd693dMr2SQi8Mx+qTjs0L28lm9rE0l79I0Rf0\ndkl/SBl3paTnw+5lqYlmto+k2WH3jjTXvjNszzOzdI8LTDyHZYm7p84suEdSp6Kp/59PM/YsRbMO\nXDveY6LuZkkPhd2vhxkKybmjJH0x7M5zz+cpswAAAEBhVc2Yodq99lLZkiUZY9qvuEKNDQ3q/sAH\nilgZgL7QrzMH3H2ZpN+F3VvNbKYkmVmpmX1G0o/DuZ+5+6Y0l7gqbM8yszlmNjrkT5X0gKTRkl6V\ndHOa3BsV3eIwWtL8kCMzG21mcySdmTJGct0bFa21IElzzOzTZlYa8mdK+nU4N8/dX0gz9tWKZg8c\nHd73XiF3oqLGw0RJTUnvHwAAACiK8ltuUW1dnUpffjljTPf06WrcuFEdV1xRxMoA9KWBsErIRZLe\nI+kISQ+aWZuiBQ6Hh/PzFX2Z3om7P2Rm35H0fUWzB75uZtskVYWQtyWd7u6daXLbzex0RdP+p0ta\nYWYtkioVNU1c0lXu/miGur8taZqkmYrWW7jZzHq04ykDf9GOGQCpYz9vZhdJmivp05I+FcZO3Maw\nTdJZ7r45w9gAAABAQZWsXavq6dNzxjW98IJ8332LUBGAYurvNQfk7i2S3i/pSkW3CbiiKfuLJH1B\n0mnu3p0l/xpF9/c/KKlRUVPhVUk3SJrm7i9lyX1e0Rf8G0LOcElbwrVOcfdrs+RulzRLUQNgUajZ\nJS2XdIWk41KeUpCaf5ukYxXNnHhL0aMN10u6RdJh7v5EplwAAACgYHp6VFtXl7Mx0Hr77dG6AjQG\ngCGpz2cOpKw7kCmmS9EU+t2aRu/uj0t6fDdzN0q6JLx2NbdX0e0JN+7m2M9JOnd3cgEAAIA9NfqU\nU7KuKZDQ2NBQhGoA9Kd+nzkAAAAAoLjK581TbV1dzsZA49q1NAaAmBgIaw4AAAAAKAJ7803VHHJI\nzrit997LEwiAmKE5AAAAAAx17qodMyZnWOd556nt5z8vQkEABhqaAwAAAMAQVnnWWRr2xz/mjOP2\nASDeWHMAAAAAGIKG3XuvauvqcjYGml55hcYAAGYOAAAAAEOJbdqkmsmTc8Zt/e1v1X3qqUWoCMBg\nQHMAAAAAGAryXFeg6/TTte3Xvy5CQQAGE5oDAAAAwCA36oILVH7//TnjGrdskcyKUBGAwYbmAAAA\nADBIDXvkEVXOnp0zrmn1avm4cUWoCMBgRXMAAAAAGGSsoUE1Bx6YM67117/W9tNPL0JFAAY7mgMA\nAADAIFJbV5czZvtJJ6n1978vQjUAhgqaAwAAAMAgMPIrX9HwefNyxrGuAIDdQXMAAAAAGMDKnnpK\no884I2dc00svyffZpwgVARiKaA4AAAAAA1FLi2rr63OGbfvP/1TXuef2fT0AhjSaAwAAAMAAk8+6\nAt1HH62t//3fRagGQByU9HcBAAAAACIVV16ZV2Og8e23aQwAKChmDgAAAAD9rHTRIlXNnJkzrnnZ\nMvXuv38RKgIQNzQHAAAAgP6ybZtq99svd9h116nrwguLUBCAuKI5AAAAAPSDfG4f6Jk0SS0LFxah\nGgBxx5oDAAAAQBGN+P7381tXYNMmGgMAioaZAwAAAEARlC5frqoTT8wZ17x4sXoPOqgIFQHADjQH\nAAAAgL7U0aHaffbJGdb2/e+r8ytfKUJBALAzmgMAAABAH6mur1dJS0vWmN4JE9S8YkWRKgKA9Fhz\nAAAAACiwin/5F9XW1eVsDDRu3EhjAMCAwMwBAAAAoEDKnn5aoz/+8Zxxzc88o96pU4tQEQDkh+YA\nAAAAsKfyXFeg/aqr1HHppUUoCAB2Dc0BAAAAYA/k81hCr6xU07p1RagGAHYPaw4AAAAAu2HURRfl\n1RhofPNNGgMABjyaAwAAAMAuKH32WdXW1an87ruzxrXefrsaGxqkiooiVQYAu4/bCgAAAIB8bN+u\n2r33zhnWfeih2vrkk31fDwAUEM0BAAAAIId8bh+QFM0UAIBBiNsKAAAAgAxGfuMbeTUGml55hcYA\ngEGNmQMAAABAitKXXlLVBz6QM27bjTeq65xzilARAPQtmgMAAABAQk+PaseOzR02caJali8vQkEA\nUBw0BwAAAACxrgCAeGPNAQAAAMTaiO99L791BVavpjEAYMhi5gAAAABiqeSvf1X1McfkjNt23XXq\nuvDCIlQEAP2H5gAAAADixV21Y8bkDqusVNO6dUUoCAD6H80BAAAAxAbrCgBAeqw5AAAAgCFv/zvv\nzG9dgRdeoDEAIJaYOQAAAIAhq2TdOp108sk549r+9V/V+dWvFqEiABiYaA4AAABg6MlzXQGJWwgA\nQKI5AAAAgCGmZu+9Zdu354xr3LJFMitCRQAw8LHmAAAAAIaE4TffrNq6upyNgebnnotmC9AYAIB3\nMHMAAAAAg5pt3KiaqVNzxrVfeqk6rrqqCBUBwOBDcwAAAACDVr6PJlzw+OOaPn16H1cDAIMXzQEA\nAAAMOtVTp6pk48accY1vv62ly5cXoSIAGNxYcwAAAACDRvm8eaqtq8vZGGh+5ploXYES/nMXAPLB\nzAEAAAAMeNbQoJoDD8wZ13HxxWq/9toiVAQAQwvNAQAAAAxo+a4r0NjQ0MeVAMDQRXMAAAAAA1LV\n+9+v0tWrc8Y1btoklfGftQCwJ7gJCwAAAAPKsPvuU21dXc7GQMtjj0WzBWgMAMAe4/9JAQAAMDC0\ntKi2vj5nWOfs2Wr7j//o+3oAIEZoDgAAAKDfsa4AAPQvbisAAABAv6mcOTOvxkDj3/5GYwAA+hDN\nAQAAABRd2WOPqbauTsMWLcoat3X+/KgpMHx4kSoDgHjitgIAAAAUT1ubavfdN2dY18yZ2vab3xSh\nIACARHMAAAAARcK6AsD/Z+/e4+Ms6/z/vz+T6aRN2qQZSKBo0xR1G6BFLELT9VQo6C6CLhZdj+sR\n3cP3+1VcDRZxddX1UFn94q67KvXA/r6Ai62AICtKtUtdmpaDQIG2ijaHUiChObVNO+lkrt8f9z3t\nMJ3DnWRmMpm8no9HHpP7vq/PfV1TR9r7M9f1uYDyxbICAAAAFFXtu98drK7A3r0kBgBgipAcAAAA\nQFGE779fDdGoInffnbPdgVtv9ZICNTUlGhkAIB3LCgAAAFBYsZgaFizI2+zoypU6+LOflWBAAIB8\nCjJzwMxeaWZfMLOfm9lTZjZkZjEze9rM7jCzv8gTHzGzdjN7xMwOmtmgmW01sw+bmQXo/yIzu9PM\nes3siJn9wcyuN7NTAsSe6rf9gx/7nH+v1QFiQ/4Yt/pjPmBmvzWzT5pZJED8K83sR2a2z++728zW\nm9lL88UCAACUo4ZoNFBiYKC/n8QAAJSRQi0r+JCkayW9QdJL/PsmJJ0m6U2SbjOzDWY2Kz3QzOok\n3S/pq5JeLskkzZHUJuk7kn5qZllnOJjZpyX9UtKlkk6SFJN0uqT/I2mHmS3NEXu2pMf9tqf7sSf7\n9/qlmX0qR+wsSXf6Y2zzx1wl6RxJ6yT9xszm5oh/r6Stkv5S0qmSjkhaKOmDkh4xswuzxQIAAJSb\nmr/922B1BTo7qSsAAGWoUMmBrZKuknSupHnOuXnOuTmSmiV9zW+zRlKmh+0b/Lh+SZdJmiupRtL7\n5D0wXyrpHzN1amaXSPqif/jPkuY75+olLZX0iKRGSXeY2Qkb45rZHEk/lZdQ+K2kpX5sg38vk/Ql\nM3t9lvf8RUmX+GN8nz/mWv899Es6T17iINO4z/bfd1jSTZJOcc7Nl9QiL9FRK2mjmTVm6RsAAKAs\nVD38sBqiUVX/6Ec52x38wQ+8pEBdXYlGBgAYj4IkB5xzNzrn/q9z7mHn3MGU8z3OuXZJyU1q35ca\nZ2avkPQ2//D9zrm7nGfMOXejjicTrjKzpgxdf8l/vc059wnn3AG/3yfkPaQflDcj4MMZYj8iaZHf\n5jI/Rs65YefcJyTdLi9B8OX0QDM7VdJH/cOr/fc/5o/9Lkkf8K+9w08EpPu8pFmSHpT0Xudcn993\nl6S3SOqRNF+ZkykAAABTLx5XQzSquosuytls7IwzNNDfr6NvfnOJBgYAmIhS7VbwgP96Wtr5d/qv\nu51zP80Q911JQ/Km7L8l9YKZnSVvGYJ0fHbCMc65vZJu8Q/fleHeyXM3O+eeznA9ec/lZrYk7doa\nSdX+2L6boe87JP1OXnLhnanXzGy+vBkHkvR159xYWuxBSd/2D98RpOYCAABAKTVEo2poyvS9zQsN\n9Pdr+H/+pwQjAgBMVqmSA3/qv+5JO3+B//qLTEHOucOStviH6Wvwk7FDkrZl6fce//X81PX/ZjZP\n3lKG1DbpOvx7S1J6ccJk3/c5545kiU++p/Rxv1rerIHUNtnGvUDSGVnaAAAAlNSctWsD1RUYfOop\n6goAwDRTtOSAmc01s7PN7Fvyiu5J0r+mXDdJrf7hEzlu9aT/emba+eTxTudcIk9sal+S98Cd/EY+\nY9/+PXfn6TvIuM9I+0Y0fwgAACAASURBVPY/Gfusc25/nthMfQMAAJRU6Mkn1RCNavZ3MpZTOubQ\nt76lgf5+uQAJBABAecm6C8BEmNmL5a2XT3dE0j855/4t5VydvMJ7krQvx22T19L3xFmQdj1XbHr8\ngixtitH3XP/nQNBY59xhMxuUV3cg/15AkszsoUzn169f39rS0qKHH344yG3KxsjIiCRNu3EDqfgc\noxLwOZ7hEgmtfn222szHxU46Sb/5z//0Dsrws8LnGJWAzzGKraDJAUljkp7zf2+QFJEUl1fU71tp\nbWtTfj+c454j/mv6toDJ+CCx6fFT0XcyORAkNhk/P0PfAAAARbc6T6HBpE333lvkkQAASqGgyQHn\n3DOSTpUkMwtJeqmkq+VtRfhBM7skuSsACss5d26m85s2bXpozpw5y884Y3qVLkhmRJcvXz7FIwEm\njs8xKgGf45ln9pe+pDnXXZe33eATT8gtWKDp8Mngc4xKwOcYmezcuVOHD+f73jmYQs8cOMZfs/87\neUmBQUkfl/T/mdkr/WuHUprPyXGrGv/1YNr5ZHyQ2PT49L4PKLNcfc+fZN+5YnP1DQAAUHChP/5R\n9a98Zd52I1/9qmJXXlmCEQEASqloyYE0/yIvOfAK/+chScPyHpRrdeIWh6mS155JO78v7Xqu2PT4\nfWltdiuzXH3PD9j3QedcavIh77jNbI5//0x9AwAAFI5zajjppPzNIhENPvtsCQYEAJgKpdrK8OmU\n318iSc45J2mnf+6sHLHJav1Ppp1P3Q0g2/tIxqb2JUm7/HNZ+/bvuSRP30HGvTPtfDL2VDPL9jdx\n6g4F6X0DAAAUREM0GigxMLB/P4kBAKhwpUoOLE75PXWa/K/914szBZnZbEmv8Q83pV1OxtZLOi9L\nv8nyutucc8eWEvjf5D+Yq29JK/x75+r7Nf4YM0neNz32N5KO+r9nq/STHPc+nZhcAAAAmJTqb35T\nDQG2Gxx65BEN9PdLL9iVGQBQiSadHDCzKrO8f2N80n+NS9qacv4W/7XVzC7NEHelvAf0w5JuS73g\nnHtS0qNp908d12mS3uEf3pTh3jf7r+8ys0zbBX7Cf33IOZe+7OAnkmLypv5/KEPfl8mbdeB0/D0m\nxz0k6W7/8OPpsx7MrFbSX/uHt/gzLAAAACbN9u5VQzSqms99Lme7w5/5jAb6+5Vobi7NwAAAU64Q\nMwcWSnrQzD5gZi9OnjSzkJmdY2Y36fgD9L845waSbZxzv5V0q3/4QzO7xI+tMrO/kvRV/9o3nHO9\nGfq+xn9dY2brzGyeH3+mpDslzZP0R0k3ZIj9jqQuv81dfozMbJ6ZrZP0lrQ+jnHOPSvpev9wnZm9\nx8yq/PhLJP3Av3aLc+6xDH1/Vt7sgfP9932yH9ssL/HQLGkw5f0DAABMSkM0qvlnn5233UB/v45c\ndVUJRgQAKCeFKki4XNL3JMnMjshbOjBPUnVKmx9Kas8Qe6W8OgTnSvqZmY1IqkqJvUvew/QJnHN3\nm9lnJH1B3uyBj5vZIUl1fpPnJb3ZORfLEHvYzN4sb9r/cklPmNmwpLnykiZO0jXOuV9kec/XSloq\n6RJJ/yHpBjMb0/FdBh7Q8RkA6X0/amZXSlov6T2S3u33nVzGcEjSGudcX5a+AQAAApnf3Cw7mH/z\no4H9+1k+AAAzWCFmDuyT9JeSvivpEUlD8qbbH5VXTO97kl7tnHu/cy6eHuycG5b0p5I+JW+ZgJM3\nZb9D0kckvSlTXEr8F+Wt7/+ZpAF5SYU/SvqmpKXOucdzxD4q7wH/m35MtaT9/r0uds59JUfsUUmX\nyUsAdPhjdv6fwdX+e862RaKcczdKWilv5sRz8rY27JH0fUnnOOd+lS0WAAAgn8gPf6iGaDRvYmBo\n2zbqCgAAJj9zwDk3Ku8B99Z8bfPc46ua4DR659y9ku6dYOyzkj7q/4w3NiFvecJ3Jtj3g/ISKwAA\nAAVhvb2a39qat93hj31MR/7hH0owIgDAdFCoZQUAAACYYkF2IJC8ugIAAKQiOQAAADDN1Z1zjqq6\nu/O2G+jrk6qqSjAiAMB0U4iaAwAAAJgCkR//WA3RaN7EwPB//7c3W4DEAAAgC2YOAAAATDM2OKj5\np5+et13sfe/TyNe/XoIRAQCmO5IDAAAA0wh1BQAAxcCyAgAAgGlg3oUXBkoMDDz3HIkBAMC4kRwA\nAAAoY7PuvlsN0ajCjzySs93wPfd4SYFZs0o0MgBAJWFZAQAAQDk6cEANixblbTb6lrfo0Pr1JRgQ\nAKCSkRwAAAAoM9QVAACUGssKAAAAysTcyy8PVldg3z4SAwCAgiI5AAAAMMXCmzerIRrVrP/+75zt\nDtxxh5cUmD27RCMDAMwULCsAAAAIwDmnXX0j2vBYr7bvHdJo3CkSNq1YWK8rljVpSWONzGx8Nz18\nWA0velHeZkcvukgHb711giMHACA/kgMAAAB5xBNO6zZ3amv3sEbjCTn/fCzutGXPoLb3DKutuU7t\nq1oUDgVLEFBXAABQTlhWAAAAkINzfmKga0ixlMTAseuSjsQT2to1pHWbO+VceosXqn3/+4PVFeju\nJjEAACgZkgMAAAA57OobUUf3sGJjuR/6Y2NOHd3D2t03kvF6VUeHGqJRRe64I+d9Dt58s5cUmDt3\nwmMGAGC8SA4AAADksHFHr2LxRKC2sXhCGx/vfeHJo0fVEI2q7pJLcsbGly/XQH+/jv7Zn010qAAA\nTBg1BwAAAHLY1jN0wlKCbJykju7hY8fUFQAATBfMHAAAAMhhNB40NZBsn1DNxz4WKDEwuGcPiQEA\nQFlg5gAAAEAOkbApFjBB8CdP/143Xf/XedsdvOEGHV2zZrJDAwCgYEgOAAAA5LBiYb227BnMubQg\nlBjTtk+9Pu+9xl7yEg0/8EDhBgcAQIGQHAAAAMhhzbImbe8Z1pEsRQkfaF8d6D4sHwAAlDNqDgAA\nAOTQ2lijtuY6VVfZC85/9K5vB0oMDP7udyQGAABlj+QAAABADmam9lUtWrmoXrPDIb3k2U490L5a\n777vxznjDn3jGxro75c7+eQSjRQAgIljWQEAAEAe4ZBp7euaFW1szNs2EY1q6KmnSjAqAAAKh+QA\nAABAHkG2JZSoKwAAmL5YVgAAAJBF7ZVXBkoMDD7+OIkBAMC0RnIAAAAgTejJJ9UQjSqycWPOdiOf\n/7xXV+C000o0MgAAioNlBQAAAEnOqeGkkwI1ZaYAAKCSkBwAAADQOOoK7N8vmeVvCADANMKyAgAA\nMKPNaW8PlBgY3rLFmy1AYgAAUIGYOQAAAGak0J49qj/33LztRi+/XIe+970SjAgAgKlDcgAAAMw4\nbE0IAMALkRwAAAAzRuCkwPPPSyFWXwIAZg7+1gMAABVv9pe+FKyuwD33eLMFSAwAAGYYZg4AAICK\nZfv2af7SpXnbHX3ta3Xw9ttLMCIAAMoTyQEAAFCRqCsAAEBwJAcAAEBFCZwU6O2VwvxTCAAAiZoD\nAACgQsy55ppAiYEDt93mzRYgMQAAwDH8rQgAAKY1e/ZZzT/zzLzt4kuX6sB995VgRAAATD8kBwAA\nwLRFXQEAAAqD5AAAAJh2AicF9u2TZs8u8mgAAJj+qDkAAACmjdlf+1qgxMChb37Tmy1AYgAAgECY\nOQAAAMqeDQxo/kteEqgtSwgAABg/kgMAAKCsUVcAAIDiIzkAAADKUuCkQGenVFdX3MEAAFDhqDkA\nAADKSvX69YESAyP/+I/ebAESAwAATBozBwAAQHk4eFANzc2BmrKEAACAwiI5AAAAphx1BQAAmFok\nBwAAwJQJmhQY3L1brrGxyKMBAGDmouYAAAAouciPfxwoMXD4qqs00N9PYgAAgCJj5gAAACidWEwN\nCxYEasoSAgAASofkAAAAKAnqCgAAUL5IDgAAgKIKXFfgscfkXvziIo8GAABkQs0BAABQFNU33BAo\nMRD7q7/y6gqQGAAAYMowcwAAABTW0aNqOOWUQE1ZQgAAQHkgOQAAAAqGugIAAExPJAcAAMCkBU0K\nDP/ylxo799wijwYAAIwXNQcAAMCEzdq4MVBiwNXWaqC/n8QAAABlipkDAABg/BIJNZx8cqCmLCEA\nAKD8kRwAAADjEriuwP79klmRRwMAAAqBZQUAACCQhmg0UGLgwMaN3mwBEgMAAEwbzBwAAAA5Rbdv\nV8NFFwVqyxICAACmp4LMHDCzZjP7mJndaWbdZhYzswNm9qiZfcXMFuSJj5hZu5k9YmYHzWzQzLaa\n2YfN8n/tYGYX+X33mtkRM/uDmV1vZnk3WTazU/22f/Bjn/PvtTpAbMgf41Z/zAfM7Ldm9kkziwSI\nf6WZ/cjM9vl9d5vZejN7ab5YAACKzjmtvugiveKaa/I2HejvJzEAAMA0NumZA2a2UFKnpNSH+GFJ\ntZLO9n8+bGZrnHO/zhBfJ+lXkpLli0ckzZHU5v9cZmaXO+fiWfr/tKQv+ocJSQclnS7p/0h6h5ld\n6Jx7PEvs2X7fJ6WM+2RJl0p6o5ld45z7SpbYWZJul3SJf2pU0pikc/yft/p9H8wS/15J6+X9b+D8\nvhdK+qCkt5vZm5xzv8oUCwBAsQWuK/D881KIVYoAAEx3hfjbvMp//Zmkt0qKOufqJdXIe3DeI6lB\n0u1mdmqG+BvkJQb6JV0maa4f+z5JR+Q9qP9jpo7N7BIdTwz8s6T5ft9LJT0iqVHSHWZWnSF2jqSf\nyksM/FbSUj+2wb+XSfqSmb0+y/v+ov/+jvhjrZGXELnMfy/nSfpOlnGf7b/vsKSbJJ3inJsvqUXS\nL/37bDSzxix9AwBQFPMXLAiUGDj4ve95MwVIDAAAUBEK8Tf6gKRXOOcudc5tcM4NSJJzbtQ59186\n/gBdJ+kjqYFm9gpJb/MP3++cu8t5xpxzN0r6lH/tKjNrytD3l/zX25xzn3DOHfD7fkLeQ3pyFsGH\nM8R+RNIiv81lfoycc8POuU/ImxVgkr6cHugnOT7qH17tnLvRH7Nzzt0l6QP+tXf4iYB0n5c0S9KD\nkt7rnOvz++6S9BZJPZLmp7x/AACKquqBB9QQjcpisbxtB/r7dfTyy0swKgAAUCqTTg4454acc4/m\nuL5LUod/eG7a5Xf6r7udcz/NEP5dSUPylhm8JfWCmZ0l6eX+4dcy9LtX0i3+4bsy3Dt57mbn3NMZ\nrifvudzMlqRdWyOp2h/bdzP0fYek38lLLrwz9ZqZzdfxpQhfd86NpcUelPRt//AdQWouAAAwGQ3R\nqOre8Ia87agrAABA5SrVXMD9/mtV2vkL/NdfZApyzh2WtMU/vDBL7JCkbVn6vcd/Pd/M5iZPmtk8\nHU9U3HNClKfDv7ckpRcnTPZ9n3PuSJb45HtKH/er5c0aSG2TbdwLJJ2RpQ0AAJMSdGvCX91zD0kB\nAAAqXNGTA2YWlvQq//DxlPMmqdU/fCLHLZ70X89MO5883umcS+SJTe1L8h64k9/IZ+zbv+fuPH0H\nGfcZad/+J2Ofdc7tV2ZPpvye3jcAAJNS98pXBkoKHLruOm269165qvTcPgAAqDST3q0ggL+TdKq8\nnQRuTDlfJ6/wniTtyxGfvJa+HeKCtOu5YtPjF2RpU4y+5/o/B4LGOucOm9mgvLoDObeBTDKzhzKd\nX79+fWtLS4sefvjhILcpGyMjI5I07cYNpOJzjHJT29mptg99KFDbTffeK4nPMSoDn2NUAj7HKLai\nJgf8YnzJgn7/6pxL/Ua8NuX3wzluM+K/zk07n4wPEpsePxV9J5MDQWKT8fMz9A0AwLitvuiiQO2S\nSYFCOXI0oYHDR3Xo6Jick8yk2kiVGmbP0uxZ7HQAAEC5KFpywMwWyKv4P0fSQ5KuLlZfkJxz6cUe\nJUmbNm16aM6cOcvPOGN6lS5IZkSXL18+xSMBJo7PMcpBkOUDkjTw9NPSnDlK/7RO9HMcTzit29yp\nrd3DGo1XyaVcM0nV4ZDamuvUvqpF4RC1d1Fc/PcYlYDPMTLZuXOnDh/O971zMEVJ2ZtZVF6xvcWS\nfi/pjRkK9x1K+X1OjtvV+K8Hs8QHiU2PL4e+c8Xm6hsAgLzmXnZZoMTA4bVrvWKDc/L9tRScc35i\noGtIsXjiBYkBSXKSjsQT2to1pHWbO+VcegsAAFBqBZ85YGb18qrtL5XULeki59xzGZoOy3tQrpV0\nWo5bJq89k3Z+X9r1XLHp8fvS2uxWZrn6nh+w74POuQMp5/OO28zm+PfP1DcAAFmFenpU//KX528o\nFW0Hgl19I+roHlZsLPdDf2zMqaN7WLv7RtTaVJuzLQAAKK6Czhwws1pJd0t6paRn5SUGujO1dd7X\nBDv9w7Ny3DZZrf/JtPOpuwFkex/J2NS+JGmXfy5r3/49l+TpO8i4d6adT8aeamYn5YnN1DcAABk1\nRKOBEgMD/f1F3Zpw445exeLZNhJ6oVg8oY2P9xZtLAAAIJiCJQf8b7vvlPSnkvbLSwz8Pk/Yr/3X\ni7Pcc7ak1/iHm7LE1ks6L8v9X++/bnPOHVtK4H+T/2CuviWt8O+dq+/X+GPMJHnf9NjfSDrq/56t\nOlRy3Pt0YnIBAIAXaIhGAy0hGOjsLGpSIGlbz9AJSwmycZI6uoeLORwAABBAQZIDZhaR9BNJF0ga\nlPR659wTAUJv8V9bzezSDNevlPeAfljSbakX/J0PHvUPP5lhTKdJeod/eFOGe9/sv77LL56Y7hP+\n60POufRlBz+RFJM39f+EPaHM7DJ5sw6cjr/H5LiH5M2ukKSPp8968Gdf/LV/eItjISYAIIuaD384\nUFLgyIc+5CUF6upKMCppND6+v7pGA84yAAAAxTPp5ICZVcl70P4zedv1/blzLtDmm86530q61T/8\noZldkrynmf2VpK/6177hnMs05/Aa/3WNma0zs3l+/JnyZjHMk/RHSTdkiP2OpC6/zV1+jMxsnpmt\nk/SWtD5Sx/2spOv9w3Vm9h7/z0H+e/iBf+0W59xjGfr+rLzZA+f77/tkP7ZZXuKhWV6S5asZYgEA\nM5z19akhGlX1hg152w709+vwunUlGNVxkfD4dh+IhNnSEACAqVaIgoSvkrTG/32WpNvNsv6joMc5\nl74E4EpJL5F0rqSfmdmIpCpJ1f71u+Q9TJ/AOXe3mX1G0hfkzR74uJkdkpT8auR5SW92zsUyxB42\nszfLm/a/XNITZjYsaa68pImTdI1z7hdZ3su18oouXiLpPyTdYGZjOr7LwAM6PgMgve9HzexKSesl\nvUfSu/2+k8sYDkla45zry9I3AGCGCrw1YQmWD2SzYmG9tuwZDLS0wCS1NZdmRgMAAMiuEKn61HvM\nlnRKjp/G9GDn3LC8OgWfkrdMwMmbst8h6SOS3uSci2fr3Dn3RXnr+38maUBeUuGPkr4paalz7vEc\nsY/Ke8D/ph9TLa9ews8kXeyc+0qO2KOSLpOXAOjwx+wkPSLpakmvTtulID3+Rkkr5c2ceE7e1oY9\nkr4v6Rzn3K+yxQIAZp6gdQUGd+6c0sSAJK1Z1qTqgLMBImHTmqVNRR4RAADIZ9IzB5xzm+Ul/idz\nj1F5U+gnNI3eOXevpHsnGPuspI/6P+ONTchbnvCdCfb9oKS/nEgsAGBmmHPttZr9b/+Wt93oZZfp\n0I03lmBE+bU21qituU5bu4ZybmdYXWVa2VyvJY01WdsAAIDSKMSyAgAAUGjDw2poaQnUdKpnCqQz\nM7WvatG6zZ3q6B5WLJ54wRIDkzdjYGVzvdpXtSjHckQAAFAiJAcAACgz06GuQD7hkGntBS3a3Tei\nDTt6ta1nWKPxhCLhkNqa63TFsiYtaayd6mECAAAfyQEAAMpE0KTA0MMPKxFwVsFUMjO1NtXq2tWL\np3ooAAAgD5IDAABMsTmf+5xmf/ObedvFzz9fB37+8xKMaHpxzmlX34g2PNar7XuHNBp3ioRNKxbW\n+zMUali6AABAHiQHAACYKocPq+FFLwrUtJyXEEyleMJp3eZObe32li0kaxvE4k5b9gxqe8+w2prr\n1L6qReEQCQIAALIpxFaGAABgnBqi0UCJgYH+fhIDWTjnJwa6hk4oeih5+wsfiSe0tWtI6zZ3yrns\nOycAADDTkRwAAKCEGqLRQLUFhjdtIimQx66+EW83hBzbJUpSbMypo3tYu/tGSjQyAACmH5YVAABQ\nAtXf+pZqPvOZQG0rJSlQ7FoAG3f0KhZPBGobiye08fFeffpCiiMCAJAJyQEAAIopHldDU1OgppWS\nFJBKUwtgW8/QCUsJsnGSOrqHJ9QPAAAzAcsKAAAokoZoNFBioNLqCiQSCV3786d03x8Hi1oLYDQ+\nvrjRgLMMAACYiUgOAABQYEHrChzYuLGikgKSN2Pgmnv+oIf3HVS+R/HJ1gKIhMc34yAS5p89AABk\nw9+SAAAUSORHPwqUFJC82QLxCy4o8ohKK7l7wCP7DgaOSdYCmIgVC+sVND1gktqa6ybUDwAAMwE1\nBwAAmCzn1HDSSYGaVtpMgVTJ3QMS45jtP5laAGuWNWl7z7COBFguEAmb1iwNVvsBAICZiOQAAACT\nEHimwP790iQq808H49k9INVEawG0NtaorblOW7uGcm5nWF1lWtlcryWNNRPqBwCAmYBlBQAATEDQ\nugIH16/3ZgtUeGJAGt/uAakmWgvAzNS+qkUrF9Vrdjh0whIDk1QdNq1cVK/2VS2T2jYRAIBKx8wB\nAADGIfyLX2je298eqG0lLyHIZLy7B0iTrwUQDpnWXtCi3X0j2rCjV9t6vK0TI+GQ2prrdMWyJi1p\nrJ3w/QEAmClIDgAAENB4ig3ORJGwKTbOBEEhagGYmVqbanXt6sWTug8AADMZywoAAMgj6BKCgb6+\nGZsYkMa3e4Dk/SOEWgAAAJQHkgMAAGQRNCkwsm6dlxSoqirBqMrXmmVNqh5H/YBzTptLLQAAAMoE\nywoAAEhTtW2b6v78zwO1nckzBdIF3T0gZNIrTpurL/3ZS0kMAABQJkgOAACQgroCE5fcPWDd5k51\ndA8rFk+8YPcCk1djYGUzuwcAAFBuSA4AAKBxJAWeeUaqri5o38457eob0YbHerV975BG406RsGnF\nwnq/2n7NtHmQZvcAAACmJ5IDAIAZrf700xUaHMzb7vAnP6kja9cWvP94wmnd5k5t7fYeopPftMfi\nTlv2DGp7z7DamuvUvqpF4dD0SBCwewAAANMPBQkBADNS6Mkn1RCNBkoMDPT3FyUx4JyfGOgaOmEK\nviQ5SUfiCW3tGtK6zZ1ybnzbBAIAAATFzAEAwIxTLnUFdvWNeGvzcxTvk6TYmFNH97B2942otYkp\n+QAAoPCYOQAAmDGCbk040NVVkoKDG3f0KhZPBGobiye08fHeIo8IAADMVCQHAAAVb97rXhcoKRB7\n73u9pMC8eSUYlbStZ+iEpQTZOEkd3cPFHA4AAJjBWFYAAKhYoT17VH/uuYHaTsXWhKPx8dUQGA04\nywAAAGC8SA4AACpSudQVyCUSNsXGkSCIhJnwBwAAioN/ZQAAKkrQugKDv/vdlCYGJGnFwnoF3ZzQ\nJLU11xVzOAAAYAYjOQAAqAjzLr44UFJg9A1v0EB/v9zJJ5dgVLmtWdak6oCzASJh05qlTUUeEQAA\nmKlYVgAAmNast1fzW1sDtZ3qmQLpWhtr1NZcp61dQzm3M6yuMq1srteSxpoSjg4AAMwkzBwAAExb\nDdFooMTAQH9/2SUGJMnM1L6qRSsX1Wt2OHTCEgOTVB02rVxUr/ZVLTILuggBAABgfJg5AACYdoIW\nGxx68EElTj+9yKOZnHDItPaCFu3uG9GGHb3a1jOs0XhCkXBIbc11umJZk5Y01k71MAEAQIUjOQAA\nmDZq3/c+RX7607ztEo2NGtq9uwQjKgwzU2tTra5dvXiqhwIAAGYokgMAgPI3PKyGlpZATctx+QAA\nAEC5IzkAAChrQZcQkBQAAACYOJIDAICyFDQpMLx5s8bOPrvIowEAAKhs7FYAACgrcz71qXHNFiAx\nAAAAMHnMHAAAlIdYTA0LFgRqyhICAACAwiI5AACYctQVAAAAmFosKwAATJmGaDRQYuDA7beTGAAA\nACgikgMAgJKrvv76cc0WiL/2tUUeEQAAwMzGsgIAQOmMjamhsTFQU2YKAAAAlA7JAQBASVBXAAAA\noHyxrAAAUFRB6woc/P73SQwAAABMEZIDAICiiNx007hmCxz9i78o8ogAAACQDcsKAACF5ZwaTjop\nUNNymCngnNOuvhFteKxX2/cOaTTuFAmbViys1xXLmrSksUZmNtXDBAAAKCqSAwCAggk8U2D/fqkM\nHrjjCad1mzu1tXtYo/GEnH8+FnfasmdQ23uG1dZcp/ZVLQqHpn68AAAAxcKyAgDApAWtK3Douuu8\n2QJlkBhwzk8MdA0plpIYOHZd0pF4Qlu7hrRuc6ecS28BAABQOUgOAAAmbNbPfz6uugKjH/hAkUcU\n3K6+EXV0Dys2lvuhPzbm1NE9rN19IyUaGQAAQOmxrAAAMCHTfWvCjTt6FYsnArWNxRPa+HivPn3h\n4iKPCgAAYGqQHAAAjEvgpMBzz0mzZhV5NBO3rWfohKUE2ThJHd3DxRwOAADAlGJZAQAgkKB1BQ63\nt3uzBco4MSBJo/Hx1RAYDTjLAAAAYDpi5gAAIKeqbdtU9+d/HqhtuS4hyCQSNsXGkSCIhMmnAwCA\nykVyAACQ1XSvK5DLioX12rJnMNDSApPU1lxX7CEBAABMGb4GAQCcIOgSgoG9e6dlYkCS1ixrUnXA\n2QCRsGnN0qYijwgAAGDqkBwAABwTNCkQe897vKRATU0JRlUcrY01amuuU3WV5WxXXWVa2VyvJY3T\n970CAADkQ3IAAKCqHTvGtYRg5Prrizyi4jMzta9q0cpF9ZodDik9RWCSqsOmlYvq1b6qRWa5kwgA\nAADTGTUHAGCGq+S6AvmEQ6a1F7Rod9+INuzo1baeYY3GE4qEQ2prrtMVy5q0pLF2qocJAABQdCQH\nAGCGCpoUGPz9CfhBOgAAIABJREFU7+VOOqnIo5k6ZqbWplpdu3rxVA8FAABgyhRkWYGZzTOzN5nZ\nF8zsv8zseTNz/k9rgPiQmX3YzLaa2aCZHTCz35rZJ80sEiD+lWb2IzPbZ2ZHzKzbzNab2UsDxNaZ\n2RfNbKeZjZjZfjPbZGZXBHzvbzWzX/lxI/59vmhm8wLEvszMvuePN+aP/0dmdm6QvgFgIuYvXBgo\nMRA/5xwN9PdXdGIAAAAAnkLNHFgt6baJBJrZLEm3S7rEPzUqaUzSOf7PW83sQufcwSzx75W0Xt57\ncZKGJS2U9EFJbzezNznnfpUl9sWS7pOU/LrooKQ6SRdKutDM/t0597c5xv5dSVf6h3FJRyS1Svq0\npHeY2Wucc/uyxF7sv+9khashSadK+ktJa8zs/c65/5etbwAYr1BXl+pf8YpAbStxCQEAAACyK2RB\nwl5Jd0v6R0kfHkfcF+UlBo5Iep+8h+VaSZdJ6pd0nqTvZAo0s7Ml3SAvMXCTpFOcc/MltUj6pX+f\njWbWmCHWJG2QlxjolPQq59w8SfMktUtKSPobM7syPdaP/xt5iYGEpE9KmuvHv0pSl6TTJd2aJfZU\nv+8af5wt/rhP9d9HWNL3zOysTPEAMF4N0WigxMBAfz+JAQAAgBmoUDMH7nTO3Z48MLOWIEH+Q/JH\n/cOrnXM3ply+y8w+IO/b9XeY2Vedc4+l3eLzkmZJelDSe51zY5LknOsys7dIelLeLIJPSfr7tNg3\nS1oh7+H+cufcI37sEUlfM7PTJH1M0ufN7Ebn3GjKuKslfc4/vN45d13ymnPufjO7XNJDkl5lZpc5\n5+5M6/tT8mYo9Eh6S3JWhHOu158J0SrpXP/9rcnxRwgAOQWtKzD06KNKLFxY5NGUlnNOu/pGtOGx\nXm3fO6TRuFMkbFqxsN4vNFjDDgQAAAC+gswcSD6UT8AaSdXyptR/N8N975D0O3k7Sr0z9ZqZzdfx\npQhfTx+D/8D9bf/wHXbivwDf5b/em0wMpLlO3jKFU+UtM0h1kaQm//o/Zxj3byXdm9ZPctwhSW/3\nD/89fbmE/z6+7h9eamZ1GcYGADnVvepVgRIDifnzNdDfX3GJgXjC6cu/7lT73U/pN52DisWdnKRY\n3GnLnkG13/2UvvzrTsUTbqqHCgAAUBYKuaxgIi7wX+/zv7HP5Bf+a/oD+qvlzRpIbZPuHv91gaQz\nsvR9jzJwzj0t6YksfSdjH/fb5eo7PfZMSafk6lvH309E3vsEgEDsuefUEI2qaufOvG0H+vs19Mc/\nlmBUpeWc07rNndraNaRYPKH0x38n6Ug8oa1dQ1q3uVPOkSAAAACY6uTAmf7rEznaPOm/npH27X8y\n9lnn3P48santZWZNkpLlt4P0fWba+fGMu9HMTs4Q69LGd4xz7nl5NRwy9Q0AGTVEo5p/Rnoe9ESV\nXldgV9+IOrqHFRvL/dAfG3Pq6B7W7r6REo0MAACgfBWq5sBELfBfM1b0T7s21/85EDTWOXfYzAYl\nzU9pr7Tfg/S9IO38eMadbP98WuxAjtkSyfimDH1nZGYPZTq/fv361paWFj388MNBblM2Rka8f6xP\nt3EDqUr1OV590UWB2nXccIMOLV4sVfj/r545ENO7Tgu+2u0POx/TyN7qIo5oeuO/x6gEfI5RCfgc\no9imOjlQ678eztEm9Sud1ORAkNhk/Hw/Nr3foH3PTTs/kXGPJzZX3wAgSVrxwQ9qbldXoLab7r03\nf6MKcWh0fGVwxtseAACgEk11cgAF4pw7N9P5TZs2PTRnzpzlZwSYalxOkhnR5cuXT/FIgIkr2ud4\neFgNLS2BmiaXD8yk/yetXf/bE+oM5GKS7rk4/zaPMxX/PUYl4HOMSsDnGJns3LlThw/n+945mKlO\nDhyS963+nBxtalJ+T63sf8h/zRWbGp8pNl98ptigfRdj3ABmuKBbE1ZyTYF8ImFTLB48PRAJT3X5\nHQAAgKk31cmBffKSA6flaJO8dtA5dyDl/L606ycwszn+/SXpmQyxyfgdefp+Ju38Pknn5Oo77Vqm\nvhvMbHaOugPZ+gYwAwVNChz4z/9U/OKLizyaYJxz2tU3og2P9Wr73iGNxp0iYdOKhfW6YlmTljTW\n6MRdZidvxcJ6bdkzGGj2gElqa2bHWAAAgKn+uiRZrf+sHG2S1frT9+VKxp5qZicps9RK/8d2BnDO\n9el4gcAgfafvKjCecff5uw+kx5qy7ETg727QlKVvADPI3EsvHddsgXJJDMQTTl/+dafa735Kv+kc\nVCzu5CTF4k5b9gyq/e6n9OVfdyqeKPw2gmuWNak64GyASNi0ZmlT/oYAAAAVbqqTA7/2X19jZrOz\ntEn+S3dT2vnfSDrq/56tVPfr/dd9OjG5kOw747+kzexFOv7wn953MvYsM8u2m0Cy7/TYnZKey9V3\nyvlRee8TwEwTi6khGtWs++/P27TctiZ0zmnd5k5t7RpSLJ444Rt8J+lIPKGtXUNat7lTzhU2QdDa\nWKO25jpVV+WelVBdZVrZXK8ljTU52wEAAMwEU50c+ImkmLyp/x9Kv2hml0laIu/fkrekXnPODUm6\n2z/8uJmF0mJrJf21f3iLO/Ffnzf7r683s5dnGNvH5X27/4yOJwOSNknqlffn9/cZxv1yHU9Y3JQ2\n7oSkH/mHf+uPMzU2JOkq//BO59xwhrEBqGAN0agaFuTfxbTckgJJu/pG1NE9rNhY7of+2JhTR/ew\ndveN5Gw3Xmam9lUtWrmoXrPDIaWnCExSddi0clG92le1FGVpAwAAwHRTsOSAmZ2c/JHUkHJpfuq1\n1Id459yzkq73D9eZ2XvMrMq/3yWSfuBfu8U591iGbj8rb/bA+ZJ+6PctM2uWl3holjQo6asZYu+Q\ntE3en8FtZtbmx1ab2d9L+liyD+fcaGqgcy4m6XP+4VVm9vdmVu3Hr5R0m3/f/3HO3ZWh769IGvbH\n9xN/vDKzRkk/lHSevFkDn80QC6BCNUSjgZYQHPqXfynLpEDSxh29isUTgdrG4gltfLy34GMIh0xr\nL2jRukteqtcsnq9qP0lQHQ7ptafP13VvfJmuuXCxwiESAwAAAFJhCxL2ZTm/Ne14saTOlONrJS2V\ndImk/5B0g5mN6Xi1/gd0fAbACzjnHjWzKyWtl/QeSe82s2FJ9X6TQ5LW+DUG0mOdmV0h6T5/TFvN\n7KCk2Tr+5/Jt59wNWfr+dzN7haQrJV0n6ctmFpM012/yR0lvyxL7rN/37fKWH3SZ2ZCkOnlfasUl\nfdA590SmeACVpeZ//29V33RT/oaaHrsQbOsZCryVoJPU0V2cCVJmptamWl27enFR7g8AAFBJpnpZ\ngZxzRyVdJi8B0CFvmYGT9IikqyW9Om2XgvT4GyWtlHSrvLX8cyT1SPq+pHOcc7/KEbtX3q4DX5K0\nS15S4IC8ZQRvc879TZ6xf1jSX/rtD/rxuyT9k9/3vhyxv/T7/oGkvf64n/PfR5tz7v/l6htABUgk\n1BCNBkoMlOsSgkxGx7GNoNc+2CwDAAAAFE/BZg445yY8N9Nfh/8d/2ci8Q/Ke0ifSOywpE/7PxOJ\nv1XeA/1EYn8v6QMTiQUwvQXegWD/fmmarYmPhE2xcSQIIgF3FgAAAEDx8C8yACihoHUFDl91lTdT\nYJolBiRpxcL6E4oA5lJXXVWULQ0BAAAQHMkBACiB2V/9avDZAv39OvKZzxR5RMWzZlmTqscxG2Dw\n8NGibGkIAACA4ApZkBAAkM65cSUFKkFrY43amuv0P11DOppnO0NJOprQsS0NW5tq87YHAABA4TFz\nAACKZPVFF2n1xRfnbTfQ11cxiQHJ2yWgfVWL5s8Onn8u1paGAAAACIbkAAAUWNC6AqNr1nhJgaqq\nEoyqtMIh09CRo4HbF3NLQwAAAOTHsgIAKJDIf/yHaj/2sUBtK2mmQDZHx8bXni0NAQAApg7JAQAo\ngJlWVyAItjQEAACYPviXGABMQtAlBANPPz2jEgPS+LY0NEltzXXFHA4AAAByYOYAAExA0JkCQ62t\nStx/f5FHU1jOOe3qG9GGx3q1fe+QRuNOkbBpxcJ6XbGsSUsaa2SW/7F/zbImbe8Z1pEAywUiYdOa\npU2FGD4AAAAmgOQAAIxD+Be/0Ly3vz1Q20333itJWl7MARVYPOG0bnOntnYPazSeUHJRQCzutGXP\noLb3DKutuU7tq1oUDuVOECS3NNzaNaRYji0Nq6tMK5vrtaSxpoDvBAAAAOPBsgIACKghGg2UGBjo\n75+WSwic8xMDXUOKpSQGjl2XdCSe0NauIa3b3CnnctcTSG5puHJRvWaHQycsMTBJ1WHTykX1al/V\nEmg2AgAAAIqDmQMAkEfQJQSDf/iDXENDkUdTPLv6RtTRPZzzW35Jio05dXQPa3ffiFqbanO2DYdM\nay9o0e6+EW3Y0attPd6MhEg4pLbmOn+ZQu57AAAAoPhIDgBAFkGTAom6Og11dhZ3MCWwcUevYgG3\nE4zFE9r4eK8+feHivG3NTK1Ntbp2df62AAAAmBosKwCANFUPPjiurQkrITEgSdt6hk5YSpCNk9TR\nPVzM4QAAAKCEmDkAACnGkxQoR5PZaWA0HjQ1kGwfbJYBAAAAyh/JAQDQOOoKPPaY3ItfXOTRTMxk\ndxqIhE2xcSQIImEmnwEAAFQK/mUHYEZriEbHNVugXBMDhdhpYMXC+hN2FMjGJLU1101y1AAAACgX\nJAcAzEihp54aV1KgXJcRJE1kp4F0a5Y1qTrgbIBI2LRmadOExgoAAIDyQ3IAwIzTEI2q/vzz87ab\nDkmBpInsNJCutbFGbc11qq7KPX+gusq0srleSxprJjRWAAAAlB+SAwBmjKBLCIa3bJk2SYGkQuw0\nYGZqX9WilYvqNTscOmGJgUmqDptWLqpX+6qWrIUNAQAAMP1QkBBAxQu6fEAq310I8inUTgPhkGnt\nBS3a3TeiDTt6ta3HK24YCYfU1lzn73hQW4ARAwAAoJyQHABQsay3V/NbWwO1na5JgaRC7jRgZmpt\nqtW1qxcXYmgAAACYBkgOAKhI4yk2OJ0557Srb0TzImHF4kcDxbDTAAAAANKRHABQUYImBQ7cfrvi\nr31tkUdTXPGEt33h/V1DGs2zS0EqdhoAAABAOpIDACpCfWurQr0nVuDPZDrNFkjODNjwWK+27x3S\naNwpEjad/+I6HRwd06PPHFRiHOUG2GkAAAAAmZAcADC9HTighkWLAjWdTkkB6fjMgK3dXlHAZA4g\nFnfa0jk07vuFTFrRXMdOAwAAADgByQEA01Yl1xVwzk8MdA0pNo4lA7lUhUwhM1WRFwAAAECa7OWq\nAaBMNUSjgRIDh/71X6dlYkCSdvWNqKN7uGCJAUk6OubU0T2s3X0jBbsnAAAAKgPJAQDTxtxLLx3X\nbIHRd76zyCMqno07ehWLJwp+31g8oY2PB6vNAAAAgJmDZQUAyt/Ro2o45ZRATafrTIF023qGVLg5\nA8c5SR3dw0W4MwAAAKYzkgMAylol1xXIZTRejNRA8t6Fn5EAAACA6Y1lBQDKUtC6Aoc//vGKSwxI\nUiRcvKqBkTD/6QcAAMALMXMAQFmp+V//S9U33xyobSUmBZJWLKzXlj2DBV9aYJLamusKfFcAAABM\ndyQHAJQH59Rw0kmBmlZyUiBpzbImbe8Z1pECLwGIhE1rljYV9J4AAACY/kgOAJhygesK7N8vWfGm\n25eT1sYatTXXaWvXUM7tDE0KPLugusq0srleSxprCjJGAAAAVA4WngKYMkHrCsTe/W5vtsAMSQxI\nkpmpfVWLVi6q1+xwSOnv3CRVh02vO32+vnHpy/TqlnqFsvzxJNuuXFSv9lUtshn05wgAAIBgmDkA\noORmr1unOV/5SqC2M2EJQTbhkGntBS3a3TeiDTt6ta1nWKPxhCLhkNqa63TFsiYtaayVJJ116lw5\n5wK1BQAAANKRHABQUjN1a8KJMjO1NtXq2tWLC9oWAAAASEVyAEBJBE4KPPecNGtWkUcDAAAAIBU1\nBwAUVdC6Akdf9SpvtgCJAQAAAKDkSA4AKIrITTeNawnBwTvvLPKIAAAAAGTDsgIABUddAQAAAGB6\nITkAoGACJwW6uqR584oyBuecdvWNaMNjvdq+d0ijcadI2LRiYb1fsb+GrfwAAACANCQHAExa0KRA\n4pRTNLRz56T6yvXwf/lZjbrjyT5t7fa28XN+TCzutGXPoLb3DKutuU7tq1oUDpEgAAAAAJJIDgCY\nsPC992re294WqG0hlhDEE07rNndmfPi/b8+gftM5KElKuBNjnaQj8YS2dg1p3eZOrb2ghRkEAAAA\ngI/kAIAJKXVdAef8xEDXkGJjGZ7+lTkpkC425tTRPazdfSNqbaotyNgAAACA6Y7dCgCMS9CtCQef\nfLKgBQd39h7S/TkSA+MRiye08fHeAowKAAAAqAzMHAAQSNCZAlLhdyGIJ5z+6VedGi1AYkDylhh0\ndA8X5F4AAABAJWDmAICcqh55ZFxLCAqdGEguJ+g7dLSg9x2NJwp6PwAAAGA6Y+YAgKxKXVcgk119\nI0X5lj8SJjcKAAAAJJEcAHCCoEmBoW3blHjZy4o6lo07ehUr8Lf8Jqmtua6g9wQAAACmM5IDAI6Z\nyroC2WzrGVJhKg0cFwmb1ixtKvBdAQAAgOmLebUAZE8/PaV1BXIZjRc2NVBdZVrZXK8ljTUFvS8A\nAAAwnTFzAJjhyqGuQC6RsCk2zgRByCTn9IIZB+bfa2VzvdpXtcjMCjpOAAAAYDojOQDMUEGTAh/6\nu28qtHKF3td7UK2NtZK8IoEbHuvV9r1DGo07RcKmFQvrdcWyJi1prCnog/eKhfXasmcw8NKCxpqw\nrlm9WLc93qdtPcMajScUCYfU1lznj6+2YGMDAAAAKgXJAWCGqWtrU9Xvfheo7XnrNnm/7DuoR+/8\nvV61qF4hM3X4D93JB/ZY3GnLnkFt7xlWW3Od2le1KBwqTIJgzbImbe8Z1pEARQkjVabPXHS6Wptq\nddYpcwvSPwAAADATkBwAZggbGtL8xYsDtT2WFEiRcNKWziGFzPs9nZN0JJ7Q1q4hrdvcqbUXFGbq\nfmtjjdqa67S1a0ixsezzB6qrTCsXUUsAAAAAmAiSA8AMEHQJQaakQLpMiYFUsTGnju5h7e4bUWvT\n5Kfwm5naV7Vo3eZOdXQPK5YyY0GilgAAAABQCCQHgAoWNCnwNx++Tg++9BUF6zcWT2jj47369IXB\nZirkEw6Z1l7Qot19I9qwo5daAgAAAECBkRwAypRzLmfhvz85eY52P3844/VPf+tqRTffG6ifILMF\nxj12SR3dwwW9p5mptalW164uTMIBAAAAwHEkB4ApkPrgv61nUKNjUkiS87fgyyZZ+G9bz5Dqq8Ma\nPBLX0TF3bJq9OxzTP7/13EBjKEZSINVogAKCAAAAAMoDyQGgxOIJp3WbO3V/15BGUwrsJSQF2a/P\nyUsS9MaPvuD8A+2rA/Vf7KRAUiQcKkk/AAAAACaP5MAUM7NTJa2VdKmkF0kakrRd0v91zpXmKQ5Z\nJb/h//Gjz2nb3iEdHTuxzawqqW1hvd569ila0liTsyCec35ioHNQowX6Yj1oUuAf3vMZ/deyVYXp\nNA+T1NZcV5K+AAAAAEweyYEpZGZnS/qVpJP8U8OSTpaXKHijmV3jnPvKVI1vOnPOaWfvIf3gwWe0\n49mDxyrsm6SXnTxHNbOq9ETvIR3NsDXey06eo9pZVdrZeyjn1nlJR8e8Lf629wxr5SKvYn44lDlB\nsKtvRFu7hgqSGGi/7Xq9detPA7Ud6O/XoU17ZHsGg0xOmLRI2LRmaVMJegIAAABQCCQHpoiZzZH0\nU3mJgd9Keo9z7gkzq5P0D5L+XtKXzOxh59wvpnCoJZO6Dn+JG5Fz0tr1v/WuZWg/q8q0cmG9rji7\n6dje9rt6D+n7D+zTo88eytyHpN89fzjnOH6f53o2sTGn+zsHtW5zp9ZekHlLvY07egMlHHIJJca0\n7VOvD9T2vHWbVB0O6U5Ja5Y1aXvPsI4UuRZAdZW3rWDyfxMAAAAA5Y/kwNT5iKRFkg5Kusw597Qk\nOeeGJX3CzF4i6S8kfVlSxScHkuvwt/r72P9Js3c+12P00TGn+zoHtW3vsNoW1inhnH7TOVSSb8az\nGU14Vfp3942otenErfW29QxN6v4TqSuQLAzY2lijtuY6be0amlSCwuQlZlILISbPR8JeYqB9Vebk\nCAAAAIDyRMWwqfMu//XmZGIgzdf81+VmtqREY5oSyXX4W7uGFJvAt9qxeEJbOge1ZYoTA0mxeEIb\nH+/NeG00PrERPtC+OlBi4Lo3/d0JBQeThQHNTO2rWrRyUb1mh0OayKN7yKTXLq7X1974Ur1m8XxV\n+/epDof02tPn67o3vkzXXLg467IKAAAAAOWJmQNTwMzmSUruN3dPlmYd8ooT1ktaLWl3CYY2JXb1\njaije3hS32YnyiEr4HPyZg9kEgmbYuNIEFzecZeu+ck3ArXNtAtBemHAcMi09oIW7e4b0YYdvdrW\nM6zReEKRcEjzIiHtH4lnTbCETHpNy3xdfYFXU+Ha1XMDvw8AAAAA5Y3kwNQ4Qzr2xe0TmRo45xJm\ntlvS+ZLOLNXApsLGHb0TmjFQzkazvJ8VC+t1357B/DdwTg9cfVGgvnJtTZipMKCZqbWpVteuXpzW\npdOu3kP6wUPP6LFnjhdxDJn08gVz9YHzTtOSxhOXSgAAAACY/sy5MvrKdYYwszdLut0/rHPOHcjS\n7jZ5dQd+4pxbk+eeD2U6v379+taWlpayrgz31H6v+GCqkyPew/Xzo9Nz5YuZ9NKTTvxjP3I0oZ6h\nIzlj//rtbwrUx7dvvl0KZf/zMZPmRqp06rzqQPdD4Y2MjEiSamrK+v+CQE58jlEJ+ByjEvA5Rg4P\nr169+tz8zXJj5sDUSP36NVdp/BH/taLnb1difqo2UpXx/OxZIdXMCmnk6IkzC4ImBR657HJ1vOv9\nMpPkMhdtTCYGTplLYgAAAABAfiQHKoRzLmOmaNOmTQ/NmTNn+RlnnFHqIQX22R8+csI6/A82e1sR\nfq97+k1jrw6bvnbJyzLuViBJy8YSev+tT6r30FFJ0kWPbtaXb/pCoHuft26TQiadE5+rL7zhJfrD\n/sMn1A5oa67TFcuaWAJQBh5++GFJ0vLly6d4JMDE8TlGJeBzjErA5xiZ7Ny5U4cPT2wr9nQkB6bG\noZTf50jKuKxAUnLO0MHiDmdqrVhYry17Bstip4HJioSklc31WtKYfbrXrKqQfvC2M/WZX/xB33nX\nikD3PX/dJkXCIb0u7cE/U+0AAAAAABgvkgNTY1/K76cp+04Ep/mvzxR3OFNrzbImbe8Z1pFpXpQw\nUiX96aL5al/VIrPcW/k1NZ6s7wS458Czz0qRSNYtLQAAAACgEKZntbfpb5eOLxU/K1MDMwtJWuIf\nPlmKQU2V1sYatTXXqboq9wN1LqGJh07arCrT606fr3++9E90zYWLFc4xmIZoVA3RaN57xt79bg30\n90uRSCGHCgAAAAAZMXNgCjjnDpjZg5LOk3SxpJ9kaLZCUr3/e/a96iqAmal9VYvWbe5UR/f4ZxBU\nh01tC+uVcE7/0zV0bAu+bF528hzNjVTpiecOaXTshY3Nv14bqdKTvSMFW8df1dGhuksuCdR2oL9/\nQn0AAAAAwESRHJg6N8tLDrzLzD7vnEtfOvAJ//Uh51y2ZQcVIxwyrb2gRbv7RrRhR68scUjOeQ/r\nZsr4wB+pMq1cVH/sod05p119h/TDB5/Ro88cPBYTMunlC+bqA+edNiVF+oLMFJD+//buPdayqr4D\n+PcHyMzA8JIAIkWnNIggagGlxtpaRYlFpcGmMdZIoKn1j1YhqVrxEWzR+iCEWm1sa+urVdukFatC\nKxa1L4W2PKbKCKUioo4gzjAzPGZEYPWPvS8cLufeuTNw7zlz9+eTrOyz9lrrnjWT3znnnt9de21J\nAQAAYHIkBybnz5KcneSJST5fVa9qra2rqn2SvC3Jy/p+b57UBJdaVT2wwd5VV92eJPnCycft0Pij\nD16d95xy5GJNcYcsOClw883J6mV9t0oAAGDK2XNgQlprW5P8SpINSY5Pcm1VbU6yKckb0u1JcE5r\n7dLJzZKdsdB9Be457bRutYDEAAAAMGFWDkxQa21tVR2b5JwkL0lyWLpkwX8mubC1tqz3Glhudlu3\nLvs95zkL6usSAgAAYJpIDkxYa+2WJGf1hV2UfQUAAIBdmeQAPAILTQpsuuGGtAMPXOTZAAAA7Bx7\nDsBO2Pe44xaUGLj3mc/M7Rs3SgwAAABTzcoB2AG1fn32P/bYBfV1CQEAALCrkByABbKvAAAAsFxJ\nDsB2LDQpsHnt2tx/+OGLPBsAAIBHnz0HYA57v+pVC0oM3H/IIbl940aJAQAAYJdl5QDMUps2Zf8j\njlhQX5cQAAAAy4HkAIywrwAAADBEkgOQHdhX4PLLc/+TnrTIswEAAFha9hxg0Faed97C9hU44IBu\nXwGJAQAAYBmycoBh2ro1Bxx22IK6uoQAAABY7iQHGBz7CgAAADyU5ACDsdCkwJYvfjH3nXDCIs8G\nAABgethzgGVvz499bIdWC0gMAAAAQ2PlAMvXffflgIMOWlBXlxAAAABDJjnAsmRfAQAAgIVzWQHL\nyt6nn76gxMCWSy6RGAAAAOhZOcCysPvXv559n/vc7fZru++eTbfdtgQzAgAA2HVIDrBray0HHHjg\ngrpaKQAAADCe5AC7rAXvK7BhQ1K1yLMBAADYddlzgF3OXmefvaDEwOavfrVbLSAxAAAAMC8rB9hl\n1Pe+l/2f9rTt9vvxy1+euz/4wSWYEQAAwPIgOcAuwa0JAQAAFo/LCphqj7noogUlBm7fsEFiAAAA\nYCdZOcBUWrV+fZ59+unb7bflssty33HHLcGMAAAAli8rB5g6u1977XYTA9te97rcvnGjxAAAAMCj\nwMoBps7NeTCyAAAMYElEQVSqc8+ds+3eZzwjd1x66RLOBgAAYPmTHGDqtBUrHnbunlNPzV0f+Yjb\nEgIAACwCyQGmzta3vz13rV+flbfckhX33JMtV12Vtt9+k54WAADAsiU5wNS5/8gjc9UFFyRJjj/+\n+AnPBgAAYPmzISEAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAM\nnOQAAAAADJzkAAAAAAyc5AAAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAMnOQAAAAADJzkAAAAAAyc\n5AAAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAMnOQAAAAADJzk\nAAAAAAyc5AAAAAAMnOQAAAAADFy11iY9BxbRZZddtqGqHrty5cpJT2WHbN26NUmyatWqCc8Edp44\nZjkQxywH4pjlQBwzzrZt29Ja23jSSScd+Eh/1h6PxoSYaltaa9m6detNk57IjrjpppuenCRr1qy5\nbtJzgZ0ljlkOxDHLgThmORDHzGFNki2Pxg+ycoCpVFVXJklr7YRJzwV2ljhmORDHLAfimOVAHLPY\n7DkAAAAAAyc5AAAAAAMnOQAAAAADJzkAAAAAAyc5AAAAAAPnbgUAAAAwcFYOAAAAwMBJDgAAAMDA\nSQ4AAADAwEkOAAAAwMBJDgAAAMDASQ4AAADAwEkOAAAAwMBJDjBVqupxVfW+qvpWVW2rqlur6nNV\nddKk58YwVNUTqursPu5urqofV9UdVbW2qt5dVYduZ/yeVfXGqrqmqu6sqk1V9bWq+q2qqgU8/wv6\n5/5h/xr4Vv+aOOTR+1cyNFW1uqq+W1WtL2fM01cMM1Wq6qiqen9VXV9Vd1XV5qr6ZlV9uKqeO8cY\nccxUqKrdqurMqvrnqrqtqn7Sx+MVVfWWqtpnnrHimCVVrbVJzwGSJFX1tCRfSnJgf2pLktXpklgt\nyZtba++e0PQYgKo6PMl3kox+4G5JsneS3fv67Ul+tbX25THj900Xwyf0p+5OskeSPfv655Oc1lq7\nd47nf0uSd/TV+5PcmWTfvn5bkue31r6x4/8yhq6q/ijJWSOnzmytfXRMPzHMVKmq1yU5Pw/G4J3p\nYnJlX//L1tpvzhojjpkKVbVXks8lef7I6c3p4mnmd43vpIupG2eNFccsOSsHmApVtSrJZ9MlBq5O\ncmxrbb8kByS5IN0b6B9W1cmTmyUDMJMAuDjJryV5bB+HeyU5Jcm308XkZ6rqcWPGfyjdh/jGJC9N\nl9zaK8kZSbYleUmS3x/3xFV1Sh78EL8gyf79cx+b5JokByX5h6pa8cj+iQxNVR2f5HeSXLGA7mKY\nqVFVr0nyvnRfiN6T5ImttX1aa6uSHJrk9CRfHTNUHDMt3pYuMdCSnJMunvZPl9x6RZJNSZ6Y5C/G\njBXHLL3WmqJMvCQ5O90b5x1JDhvTflHffuWk56os35JkvyRPn6f9yUm29rF47qy24/rzLcmpY8ae\n1bfdneTgMe3X9O2fHtP2U/1royV57aT/n5Rdp6T7I8B/Jbl3VoyeMaavGFampiRZk+SuPmZevQPj\nxLEyNSXdqoCWboXLuPYzRuL1gJHz4liZSLFygGnxyv74ydba98e0n98fj6+qo5ZoTgxMa21za23t\nPO3XJbm8r54wq/nX++P1rbXPjhn+5+mWEq5K8rLRhqp6SpKn99XzZ41La+17ST7VV185ux3m8dok\nz0jywdba1dvpK4aZJmel+yvpFa21D+3AOHHMNJm5tn+u998rRx7vNfJYHDMRkgNMXL8Ry8wXrS/M\n0e3ydG+CSWJzQiZpQ3/cfdb55/XHS8cNaq1tTfJvffX5s5pnxm7O3Eu/Z14bJ1bV6oVNlSGrqsOS\nnJfk1iRvXcAQMcw0mfly9Kl5ez2cOGaa3NQfj5ujfeb331tn/XFMHDMRkgNMg6Pz4KYs147r0Fq7\nP8n1ffWYpZgUzFZVeyT5+b76jZHzle6Sg2SOGO6t64+zY3im/s0+1ucbO/pcMJ/3J9knyetba5vn\n6yiGmSZV9TNJDu6rV1fVs/od1zdU1daquq6qzq+qg2eNE8dMm5lVL2dW1Zuqar/kgbsQvDzJhemW\n979+ZoA4ZpIkB5gGo7eGWz9Pv5m2eW8lB4vot5M8Lt2uvx8bOb9vujsaJDsXw4fOap9v7Ljx8BBV\n9dIkpyX5SmvtrxcwRAwzTY4cefxLSf493eZrj0n3ReqodF+mrumXUM8Qx0ybP0ryJ+m+hL8ryaaq\n2pRu/6K/SXJduj0FRt+nxTETIznANNh75PHWefrd3R8tf2LJ9bfafFdf/UBrbd1I8yON4ZnxCxk7\nbjw8oKr2TvKBJD9Jl9BaCDHMNNl/5PG5Sf43ybNaa/umi51Tkvww3Zeav+9XdSXimCnTWrsv3abb\nv5tuY9ik2/x45jvYPunuHDBKHDMxkgMA21FVhyb5TLqNf65M8nuTnRHM6w+SPCHJhbOSWLCrGP39\ntKW7l/sVSXeZYWvtH5P8Rt9+VGZtyAbTor/t8X+ku53gJ9JtFLg63eqYc5IckeTDVfWuOX8ILCHJ\nAabBXSOPV83Tb2YX1zsXcS7wEFX12HQbAv10khuSvLi1tm1Wt0cawzPjFzJ23HhIklTVz6bb5f27\n6ZIECyWGmSaj8fFPrbXrZ3dorV2cbkVB8uBGxeKYafPxJCemu5XhGa21/2mt3dVa+7/W2ruTvKbv\n98aRS2TEMRMjOcA0GL3u6fHz9Jtp+8EizgUe0G8c9IUkxya5OckLWmu3jum6JQ9+GO9MDK+f1T7f\n2HHjYcb70t1J4y3p9rVaPVpG+q3oz838giiGmSajvxc8LDEwpu3w/iiOmRpVdUySF/bVC8f1aa39\nVbq7IO2W5KX9aXHMxEgOMA2uS7dsMEmeMq5DVe2Wbulg8uAOq7Bo+uu2L0l3j/hb0iUGbh7Xt7XW\nknyzr46N4d7MDsKzY3imfnQf6/ONHX0umO2J/fHjSe4YU2b8aV9fl4hhps66dBu/LlRLxDFT5+iR\nx9+ep9+N/XFNIo6ZLMkBJq61dkeS/+6rL5yj28+l28AlSS5b9EkxaFW1Ksnnkjw7XUb/Ba21G7Yz\n7Mv9cWwMV9XKJL/QV2fH8MzY/ZI8c46ff3J/vKK1dtccfeCREMNMhdba3Um+1lePmqfrTNtNI+fE\nMdNiNMH1hHn6zSR1RxO44piJkBxgWnyyP76y3/xttpn7v1457tpDeLRU1Z5JPp3keUk2JTm5tTbf\nfYZnfKo/PrmqXjKm/dXpPqi3JrlotKHfNG5tX33DmDk9Pskr+uonFjAXBqq1tqa1VnOVka5n9ufW\njJwTw0yTj/fHF1XVwxIEVfXiJE/qq5eMNIljpsXakcevHtehv+3swX31ipEmccxktNYUZeIl3aYp\nN6Vb3nRlkmP68/skeW9/vqX7ojbx+SrLs6S7Vvvv+ljbku7WWTsy/m/7sT9KcsrIzzw93W2DWpJ3\nzjH2lJE4f2+Sffrzx/SviZbkW0lWTPr/Sdl1y0iMnTFHuxhWpqIk2SPJtX3cXJvkxP78bklelO5y\nr5ZuhUHNGiuOlako6fYtaknuS3c75IP786uTnJFudWJLd9nBnrPGimNlyUu1NnOpN0xWVT093dKo\nA/tTW9K9ee6W7k3sza3b2RUWRVX9YpJ/6avbkmyep/t3W2sPWa5XVfsm+VKSE/pTd6f7IF/R1z+f\n7pZc92aMqnprkvP66n3pNiTat6//KMnzWmvfWPA/CGapqpkP/TNbax8d0y6GmRpVdUSSr+TBDQfv\nSBePMxtprkv3R4PvzxonjpkK/WrYy/LQ/QfuSPfHrxm3Jvnl1trVs8aKY5acywqYGq21tel2hf/j\ndJuzrEiXUb04yQslBlgCo++JK5McMk85aPbg1tqWdPsUvCndkr6W5MdJLk93u6JT5/oQ78e/I931\nhRcnuT3da+DGdK+JY32Is9jEMNOktXZjkqcmeWe6RMAe6WLyqnT3iD9xdmKgHyeOmQqttR+k+3J/\ndpJ/TbIxXXJrS7o4Pi/JU2cnBvqx4pglZ+UAAAAADJyVAwAAADBwkgMAAAAwcJIDAAAAMHCSAwAA\nADBwkgMAAAAwcJIDAAAAMHCSAwAAADBwkgMAAAAwcJIDAAAAMHCSAwAAADBwkgMAAAAwcJIDAAAA\nMHCSAwAAADBwkgMAAAAwcJIDAAAAMHCSAwAAADBwkgMAAAAwcJIDAAAAMHD/D3+QsR4O0yLaAAAA\nAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": { "image/png": { "height": 361, "width": 515 } }, "output_type": "display_data" } ], "source": [ "# change default style figure and font size\n", "plt.rcParams['figure.figsize'] = 8, 6\n", "plt.rcParams['font.size'] = 12\n", "\n", "# generate some exponential data and fit a linear regression to it\n", "rstate = np.random.RandomState(1)\n", "x = rstate.exponential(scale = 1 / 0.005, size = 50)\n", "y = (x - 1) ** 2 * rstate.uniform(low = 0.8, high = 1.2, size = 50)\n", "\n", "# scikit-learn model expects a 2d ndarray\n", "# even if the data only contains 1 feature\n", "X = x.reshape(-1, 1)\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "print('rsquared:', linear.score(X, y))\n", "\n", "y_pred = linear.predict(X)\n", "plt.plot(x, y_pred, 'r')\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When checking the R-squared value for this model, it’s very high at about 0.90, but the model is completely wrong as this data follows a nonlinear distribution. Using R-squared to justify the \"goodness\" of our model in this instance would be a mistake. Hopefully one would plot the data first and recognize that a simple linear regression in this case would be inappropriate.\n", "\n", "> We’re better off using Mean Square Error (MSE) or other error-based metric as a measure of prediction error. As R-squared can be anywhere between 0 and 1 just by changing the range of X.\n", "\n", "Let’s demonstrate this statement by first generating data that meets all simple linear regression assumptions and then regressing y on x to assess both R-squared and MSE." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rsquared: 0.939955704786\n", "mse: 0.652556072211\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8kAAALSCAYAAADuqpN1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xt8nGWd///3NZlMZpKSQEuCgE1T\n9WfTSgUK2mQ5mFIpB5dVLO6uoJxEFlgVviqRyqEt9dTg/r4rp12xSEFWZbf96kILrMiXrlWbBOi6\ntNDWgk2T6sIEpJkmk8xkZq7vHzMpaTKT3JPMZA55PR+PPtKZ+557Phluwfdc1/W5jLVWAAAAAABA\ncuW6AAAAAAAA8gUhGQAAAACABEIyAAAAAAAJhGQAAAAAABIIyQAAAAAAJBCSAQAAAABIICQDAAAA\nAJBASAYAAAAAIIGQDAAAAABAAiEZAAAAAIAEQjIAAAAAAAmEZAAAAAAAEgjJAAAAAAAkEJIBAAAA\nAEggJAMAAAAAkODOdQFT5dlnn90nqVJSR45LAQAAAABkXp2kwNKlS+dO5iLTJiRLqjTGzPR6vTNz\nXQjyT39/vyTJ5/PluBJgYriHUQy4j1EMuI9R6Ar5Hh4YGJC1dtLXmU4hucPr9c6cP39+rutAHtq+\nfbskifsDhYp7GMWA+xjFgPsYha6Q7+Fdu3apv7+/Y7LXYU0yAAAAAAAJhGQAAAAAABIIyQAAAAAA\nJBCSAQAAAABIICQDAAAAAJBASAYAAAAAIIGQDAAAAABAAiEZAAAAAIAEQjIAAAAAAAmEZAAAAAAA\nEgjJAAAAAAAkEJIBAAAAAEggJAMAAAAAkEBIBgAAAAAggZAMAAAAAEACIRkAAAAAgARCMgAAAAAA\nCYRkAAAAAAASCMkAAAAAACQQkgEAAAAASCAkAwAAAACQQEgGAAAAACCBkAwAAAAAQAIhGQAAAACA\nBEIyAAAAAAAJhGQAAAAAABLcuS4AAAAAAJA91lrt7g5qw0t+tR/oUThi5XEbLZ5dpUsW1mhedbmM\nMbkuM28QkgEAAACgSEViVi1bOrStM6BwJCabeD4Usdq676DauwJqqK1Uc1Od3C6CssR0awAAAAAo\nStYmAvL+HoWGBeTDxyUNRGLatr9HLVs6ZO3IM6YnQjIAAAAAFKHd3UG1dgYUio4dfkNRq9bOgPZ0\nB6eosvxGSAYAAACAIrRxh1+hSMzRuaFITBt3+rNcUWHISEg2xhxljPkrY8waY8xTxpg3jTE28afe\n4TV8xpibjDG/NsZ0G2MGjDH7E9f7SibqBAAAAIDpoq2rZ9QU61SspNbOQDbLKRiZaty1VNLPJvpi\nY8wCSU9Iek/iqUFJQUm1iT/nSvqHSdYIAAAAANNGOJLeGuOww1HnYpfJ7tZ+SS9Iel7SHyU94ORF\nxpjZkp6TVCPpN5JWSPqNtTZmjKmQtEjSJzNYJwAAAAAUPY/bKJRGUPa4XZKi2SuoQGQqJD9hrf35\n0ANjTF0ar/1nxQPyFknnWWvDQwestX2Stib+AAAAAAAcWjy7Slv3HXQ05dpIaqitlPR2lqvKfxlZ\nk2ytndDXDcaYkyVdmHh4w/CADAAAAACYuOULa1Tmdhb5PG6j5SfVZLmiwpDr7taXJX7+zlq7K6eV\nAAAAAEARqa8uV0NtpcpKzJjnlZUYNdZWaV51+RRVlt9yHZIbEz//yxhztDHmu8aYfcaYkDHmdWPM\n/zHGnJnTCgEAAACgABlj1NxUp8Y5VfK6XRoZlY2kMrdR45wqNTfVyZixw/R0YaxNr+OZo4vG1yTv\nSzycb63dneK81yUdJ+khSWdLeq/ina37JB2dOM1Kutla66i7tTHmxWTPr1u3rr6uro6vRpBUMBjf\nOL28nFsEhYl7GMWA+xjFgPsY+WpgMKa3BwbVF47KWskYqcJTomN8pfIOm5JdBPfw9qVLl542mQtk\nsrv1RAwF4SsUb6P295J+aK0dSATteyV9TNJdxpgXrLX/mZMqAQAAAKCAeUtdOr60LNdlFIRch2TX\nsJ/fstbeP3TAWtthjLlE0u8lzZb0NUnjhmRrbdJvDZ599tkXfT7fovnz50++ahSd7du3S5IWLVqU\n40qAieEeRjHgPkYx4D5GoSvke3jXrl3q7++f9HVyvSa5d9jfvzfyoLV2QNI/JR42GWNKpqQqAAAA\nAMC0lOuQ/KfEzz9ba99Mcc6exE+fpFnZLwkAAAAAMF3lOiTvTPP8zHcZAwAAAAAgIdch+ZeJnzON\nMcemOKc+8fOQpLeyXxIAAAAAYLrKdUj+md5Zl3zTyIPGGK+k6xIP/8NaG5uqwgAAAAAA00/GQrIx\n5tihP5KOGXbo6OHHjDGH39Na+5akbyceNhtjbkgEYxlj5kj6N8U7W4clfSNTtQIAAAAAkEwmt4Dq\nTvH8thGP50rqGPb425LmS/qMpPsk/aMxplfvBO2wpCustf+duVIBAAAAABgt19OtZeM+K+lvJf1f\nxdceV0jqlPSQpFOttT/NYYkAAAAAgGkiYyPJ1lozydc/JumxDJUDAAAAAEDacj6SDAAAAABAviAk\nAwAAAACQQEgGAAAAACCBkAwAAAAAQAIhGQAAAACABEIyAAAAAAAJGdsCCgAAAAAwmrVWu7uD2vCS\nX+0HehSOWHncRotnV+mShTWaV10uYya1oy4yiJAMAAAAAFkSiVm1bOnQts6AwpGYbOL5UMRq676D\nau8KqKG2Us1NdXK7CMr5gOnWAAAAAJAF1iYC8v4ehYYF5MPHJQ1EYtq2v0ctWzpk7cgzkAuEZAAA\nAADIgt3dQbV2BhSKjh1+Q1Gr1s6A9nQHp6gyjIWQDAAAAABZsHGHX6FIzNG5oUhMG3f6s1wRnCAk\nAwAAAEAWtHX1jJpinYqV1NoZyGY5cIiQDAAAAABZEI6kt8Y47HDUGdlFSAYAAACALPC40+tW7XET\nz/IB/xQAAAAAIAsWz66S05hsJDXUVmazHDhESAYAAACALFi+sEZlDkeHPW6j5SfVZLkiOEFIBgAA\nAIAsqK8uV0NtpcpKxh5PLisxaqyt0rzq8imqDGMhJAMAAABAFhhj1NxUp8Y5VfK6XaOmXhtJZW6j\nxjlVam6qkzHprWFGdrhzXQAAAAAAFCu3y2jFkjrt6Q5qww6/2roCCkdi8rhdaqit1CULazSvuiLX\nZWIYQjIAAAAAZJExRvU1Fbpt6dxclwIHmG4NAAAAAEACIRkAAAAAgARCMgAAAAAACYRkAAAAAAAS\nCMkAAAAAACQQkgEAAAAASCAkAwAAAACQQEgGAAAAACCBkAwAAAAAQAIhGQAAAACABEIyAAAAAAAJ\nhGQAAAAAABIIyQAAAAAAJBCSAQAAAABIICQDAAAAAJBASAYAAAAAIIGQDAAAAABAAiEZAAAAAIAE\nQjIAAAAAAAnuXBcAAAAAAJg4a612dwe14SW/2g/0KByx8riNFs+u0iULazSvulzGmFyXWTAIyQAA\nAABQoCIxq5YtHdrWGVA4EpNNPB+KWG3dd1DtXQE11FaqualObhdB2QmmWwMAAABAAbI2EZD39yg0\nLCAfPi5pIBLTtv09atnSIWtHnoFkCMkAAAAAUIB2dwfV2hlQKDp2+A1FrVo7A9rTHZyiygobIRkA\nAAAACtDGHX6FIjFH54YiMW3c6c9yRcWBkAwAAAAABaitq2fUFOtUrKTWzkA2yykahGQAAAAAKEDh\nSHprjMMOR52nO0IyAAAAABQgjzu9btUeN/HPCT4lAAAAAChAi2dXyWlMNpIaaiuzWU7RICQDAAAA\nQAFavrBGZQ5Hhz1uo+Un1WS5ouJASAYAAACAAlRfXa6G2kqVlYw9nlxWYtRYW6V51eVTVFlhIyQD\nAAAAQAEyxqi5qU6Nc6rkdbtGTb02ksrcRo1zqtTcVCdj0lvDPF25c10AAAAAAGBi3C6jFUvqtKc7\nqA07/GrrCigcicnjdqmhtlKXLKzRvOqKXJdZUAjJAAAAAFDAjDGqr6nQbUvn5rqUosB0awAAAAAA\nEgjJAAAAAAAkEJIBAAAAAEggJAMAAAAAkEBIBgAAAAAgge7WAAAAADAGa612dwe14SW/2g/0KByx\n8riNFs+uSmyxVM4exEWEkAwAAAAAKURiVi1bOrStM77/sE08H4pYbd13UO1dATXUVqq5qU5uV3EE\n5ZL+fpk//lH2xBNzXUpOMN0aAAAAAJKwNhGQ9/coNCwgHz4uaSAS07b9PWrZ0iFrR55RYAYHdeIT\nT6jx8stV8aUv5bqanMlISDbGHGWM+StjzBpjzFPGmDeNMTbxp34C1/vHYa/fkokaAQAAACAdu7uD\nau0MKBQdO/yGolatnQHt6Q5OUWUZZq1KN21S5RlnqP5731PZ22+r9Lnn5H7uuVxXlhOZGkleKunf\nJd0m6XxJsyZ6IWPMaZK+kKG6AAAAAGBCNu7wKxSJOTo3FIlp405/livKvJK2Nh11wQWacfnlKnn1\n1SOO+VavlmLOfv9iksk1yX5JL0h6XtIfJT2Q7gWMMS5J31d85sKLkk7LYH0AAAAA4FhbV8+oKdap\nWEmtnYFslpNRrr175VuzRp5Nm5Ietz6fBs89VxoclMrKpri63MpUSH7CWvvzoQfGmLoJXueLigfj\n/y1ppgjJAAAAAHIkHElvjXHY4ahzLpk33pCvpUWeRx6RiUZHHbcul/503nmquOsu2RNOyEGFuZeR\nkGytHf3ppskY825JayT9SdJKSfdM9poAAAAAMFEet1EojaDscedxX+TeXnnvvVfe++6T6etLekr4\n/PO1/VOfUt+cOVo0TQOylF/dre+WdJSkL1trD+W6GAAAAADT2+LZVXK6qZOR1FBbmc1yJmZwUJ6H\nHlLV6afL19KSNCBHFi3SoSeeUN+Pf6y+OXNyUGR+yYt9ko0xF0m6WNIvrbWP5boeAAAAAFi+sEbt\nXQENOJhG7XEbLT+pZgqqcshalW7eLN+dd45qyDUkOneu+m+/XYMf/7hkimOP50ww2djLK7EmeV/i\n4Xxr7e4xzq2Q9Iqkd0laaK39feL59ZKukPSf1tqmNN77xWTPr1u3rr6urq7c6XUwvQSD8Xb95eXc\nIihM3MMoBtzHKAbcx8Xn9UMh9YajGis2GSPN8JToXUflR4Orqp079b4f/EBHv/xy0uPhqirt+8xn\n9Me//EvZ0tIjjhXBPbx96dKlk+ptlQ8jyXdKqpX0zaGADAAAAAD54LgZZVJv6qA8FJCPm5H7gFze\n1aX3Pvigan7966THo2Vl6ly+XPv/5m8UraiY4uoKR05DsjHmFEk3SuqQ9M1MXNNam/Rbg2efffZF\nn8+3aP78+Zl4GxSZ7du3S5IWLVqU40qAieEeRjHgPkYx4D4uTtZa7ekOasMOv9q6AgpHYvK4XWqo\nrdQlC2s0rzq3gdNJx+rwZZep/5ZbdPTxx+voMa5VyPfwrl271N/fP+nr5CwkJ/ZEfkBSiaQvWWsn\n/9sAAAAABcZaq93dQW14ya/2Az0KR6w8bqPFs6sSAaxchvWiOWWMUX1NhW5bOjfXpRzJYcfq/jvu\nUKy+PuVlht+D82xQ1kor1/9u2t6DuRxJvkLShyT9QtJzxpgZI44P1VYy7Fh/JrabAgAAAPJBJGbV\nsqVD2zrjo5NDs3lDEaut+w6qvSughtpKNTfVye2aPiEF4xgclOfRR+Vbu1Yuvz/pKZFFi9R/552K\n/MVfjHmpkffg+2vjz0/nezCXW0AN9RZfJulQkj+XJY6fOey5s6a4RgAAACArrE2Ek/09Cg0LyIeP\nSxqIxLRtf49atnQoGw13UWCsVemmTao84wxVfOUrSQNydO5c9f7whzr0zDPjBmTuweTyaZ9kAAAA\nYNrY3R1Ua2dAoejYwSMUtWrtDGhPd3CKKkM+Kmlt1VEXXKAZl1+edEun2KxZCq5dq8C2bRr8xCcc\nbenEPZhczkKytXaVtdak+iPp4cSp/zns+S25qhcAAADIpI07/Ao52H9XkkKRmDbuTD6tFsXNtXev\nKi6/XJUXXih3e/uo49bnU/9XvqKeF19U6POflzwex9fmHkwuY2uSjTHHDnt4zLC/Hz3i2J+ttc7+\nSQAAAABFqq2rZ9T01lSspNbOQDbLQZ4xfr+8LS0qe/jhcTtW2+OPn9B7cA8ml8nGXd0pnt824vFc\nxbd8AgAAAKatcCS99Z1hhyN+KHC9vfLed5+89947dsfq229XbJLb23IPJpfTfZIBAACA6crjNgql\nEVI8btoJFbUMdqx2inswuYz9lmOtLx7xp8Ph9a5MnN+UqRoBAACAfLF4dpWcbqhjJDXUVmazHOSK\ntSrdvFmVZ56ZkY7V6eAeTG56fBUAAAAA5JnlC2tU5nBkzuM2Wn5STZYrwlQraWuLd6z+7GdVsnfv\nqOMT6VidDu7B5JhuDQAAAORAfXW5Gmor43vUjrEFT1mJUWNtleZVl09hdUiHtVa7u4Pa8JJf7Qd6\nFI5YedxGi2dX6ZKFNZpXXS4zLOC69u6Vb80aeTZtSn49n08DN9yggS9+UarM3ugt92ByhGQAAAAg\nB4wxam6qU8uWjvhetZHYEZ2GjeKjd421VWpuqjsiZCF/RGJWLVs6tK0zoPCwf4ahiNXWfQfV3hVQ\nQ22lmpvqVPpmd9Y7Vqcj2T14xHFNz3uQkAwAAADkiNtltGJJnfZ0B7Vhh19tXfGg5XG71FBbmRiF\nrMh1mUjB2kRATjESayUNRGL63e9f13/96wM6d/OjY3esvuMOxerrs1z1kUbegybWJ2ulsml8DxKS\nAQAAgBwyxqi+pkK3LZ2b61KKVrrToZ3a3R2Mj8CmmKpcEo3o4+1P6dpnHtas3reTnhNZtEj9q1cr\ncsYZab9/pgy/B7dvj9f5xLKTc1ZPrhGSAQAAABStdKZDu13pBeWNO/yjpihLkqxV08u/0d8/tU51\n3V1JXxudO1f9t9+uwY9/POMNuTA5hGQAAAAARcnpdOht+3vUsqVDK5akt+62ratHI6/6wY6X9aXN\n39fJ+19O+prYrFkauPlmha68UvJ4HL8Xpg4hGQAAAEBRGm869JBQ1Kq1M6A93UHV1zhffxuOvHPd\nOf4u/f3T67Rk56+TnjtQWqYfn3WJLv7hN7PasRqTR0gGAAAAUJRSTodOIhSJaeNOv249x/nacI/b\naMbbb+maZx7RJ9o3yx0b/V5R49ITp5+nB5ZdocCs43QxATnvEZIBAAAAFKVk06FTsZJaOwPOL97b\nq9tbH9NZP39Y5eGBpKdsnd+gey/4vP7wrjoZSWfXEpALASEZAAAAQFEaPh3a2fkORp0HB+V59FH5\n1q7VeX5/0lNenj1Pd1/4d9r+3nc6RHvcRstPqkmrHuQGIRkAAABAUfK4jUJpBGWP25X6oLUq3bxZ\nvjVrVLJ3b9JTumadoPvP/5x++cGPHNGxuqzEqLG2SvOqyx3XgtwhJAMAAAAoSotnV2nrvoOOplwb\nSQ0ppkOXtLWpfOVKudvbkx7vrTxa65Z+Vv/6oY9p0F16xDU97nhAbm5Kr3M2coeQDAAAAKAoLV9Y\no/augAYcTKNONh3atXevfGvWyLNpU9LXWJ9PAzfcoPAXvqDFIbe6dvjV1hXfj9njdqmhtlKXLKzR\nvGrnHbORe4RkAAAAAEWpvrpcDbWVKfdJHjJyOrR54w35WlrkeeQRmWh01PnW5VL4ssvU/7WvyZ5w\ngoykekm3LXXeGRv5a4xJ9wAAAABQuIwxam6qU+OcKnndLo2c7GwklbmNGuckpkP39cm7dq2qTj9d\nZQ89lDQgh88/X4Ff/1rB731P9oQTpuT3wNRiJBkAAABA0XK7jFYsqdOe7qA2pJoOfbRHnofXy7d2\nrVwpOlZHFi1S/+rVipxxxtT+AphyhGQAAAAARc0Yo/qaitHToa1V6ZNPynfnnSk7VkfnzlX/7bdr\n8OMfP6JjNYoXIRkAAADAtDNex+rYrFkaaG5W6IorJI9niqtDLhGSAQAAAEwbrldfle/OO8fuWH39\n9Rr40pekyuRbQk01a612dwe14SW/2g/0KByx8riNFs+uSnTPLmd7qQwiJAMAAAAoesbvl/euu1S2\nfr2jjtX5IhKzatnSoW2d8bXUQz26QxGrrfsOqr0roIbaSjU31cntIihnAiEZAAAAQF6b1Ehqb6+8\n990n7333yfT2Jj0lfN556r/jDsXmz8/ib5E+axMBOcUWVlbSQCSmbft71LKlQyuW1DGinAGEZAAA\nAAB5a8IjqZGIPI8+Kt93vlOwHat3dwfV2hkYc49nSQpFrVo7A9rTHVR9TcUUVVe82CcZAAAAQF46\nYiR1WEA+fFxHjqRaa+MdqzdvVuUZZ6jiy19OGpCjdXXqffBBHXrmmbwNyJK0cYdfoUjM0bmhSEwb\ndyb/MgDpYSQZAAAAQF5KdyT1j7/Yqvn/+G2529qSnhebNUsDN9+s0JVXHtGxOl8bY7V19Yz6YiAV\nK6m1M5DNcqYNQjIAAACAvOR0JHWOv0s3PP2gFu7cmvT4WB2r87kxVjjiNCIPne9s1BljIyQDAAAA\nyEvjjaTOPPRnff6XP9In2jbJHRsdEK3LpfCll6r/lluSdqzO98ZYHrdRKI2g7HGzmjYTCMkAAAAA\n8lKqkVRfqF+X/erf9Nn/fEzl4YHkr3XQsTrfG2Mtnl2lrfsOOppybSQ11ObHvs6FjpAMAAAAIC+N\nHEktiUb08fandO0zD2tW79tJXxNZtEj9q1YpcuaZ415/Io2xbj1nrrPiM2D5whq1dwU04KBGj9to\n+Uk1U1BV8SMkAwAAAMhLh0dSrdVHXv6NvvDUOtV1dyU998DM4/XclV/SX956reRwSnS+N8aqry5X\nQ21lyungQ8pKjBprqzSvunwKqytehGQAAAAAeWn5whoFf/VbXff4P+vk/S8nPeftiiqt++hntfmM\ni/Ttv1rgOCBL+d8Yyxij5qY6tWzpiE8LH7ENllF8BLmxtkrNTVO7XrqYEZIBAAAA5B3X3r06fc0a\n/cWmTUmPD5SW6cdnLdcjH/kbRWYcpcY56Y+kFkJjLLfLaMWSOu3pDmrDDr/auuJduD1ulxpqKxNb\nVE3dOunpgJAMAAAAIG8Yv1/elhaVPfywTDQ66njUuLTp9GX6/rIr9WZV9aRGUgulMZYxRvU1Fbpt\n6dSth57OCMkAAAAAcq+3V9777pP33ntl+vqSnvLyaWfpO0uv0p5j58jjdunsSY6k0hgLyRCSAQAA\nAOTO4KA8jz4q39q1cvn9SU+JLFqk/tWrdcIZZ+juDL41jbGQDLtNAwAAAJh61qp082ZVnnmmKr7y\nlaQBOTp3rnoffFCHnnlGkTPOyHgJQ42xGudUyet2aeRkbSOpzG3UOIfGWNMJI8kAAAAAplRJW5vK\nV66Uu7096fHYrFkauPlmha68UvJ4sloLjbEwEiEZAAAAyCJrrXZ3B7XhJb/aD/QoHLHyuI0Wz65K\nBLDyaTNC6Xr1VfnuvFOeFB2rrc+ngRtu0MAXvyhVOm+SNdnPmMZYGI6QDAAAAGRJJGbVsqVD2zrj\no5NDq15DEaut+w6qvSughtpKNTfVye0q3qA8Xsdq63IpfOml6r/lFtkTTkjr2nzGyDTWJAMAAABZ\nYG0ivO3vUWhYeDt8XNJAJKZt+3vUsqVD1jrfr7dg9PbK29KiqtNOk/eHP0wakMPnnafA1q0K3n13\n2gGZzxjZwEgyAAAAkAW7u4Nq7QyM2TVZkkJRq9bOgPZ0B1VfUyRrXyORdzpWv/FG8lMSHasn05Br\nWn/GyBpGkgEAAIAs2LjDr5CD/XclKRSJaePO5NsfFRRrVfrkk6o84wxVfPnLSQNyJjtWT8vPGFnH\nSDIAAACQBW1dPaOm/6ZiJbV2BrJZTtaVtLfLt2qVSltbkx7PRsfq6fYZY2oQkgEAAIAsCEfSW/8a\ndjgimm+y1bHaienyGWNqEZIBAACALPC4jUJphDiPu7BWQhq/X9677lLZ+vUZ71jtVLF/xsgN7hIA\nAAAgCxbPrpLTDYeMpIbazI6yZs1Qx+rTT5f3wQeTBuTBc89V4Fe/mlDH6nQU7WeMnCIkAwAAAFmw\nfGGNyhyOXHrcRstPqslyRZMUicizfr2qPvQh+b7zHZne3tGnLFqkQ48/rt7HHlNswYKsl1R0nzHy\nAiEZAAAAyIL66nI11FaqrGTssc6yEqPG2irNqy6fosrSY2MxvfHjjQqf8qHUHavr6t7pWH3mmVNW\nW7F8xsgvhGQAAAAgC4wxam6qU+OcKnndrlHTgo2kMrdR45wqNTfVyRinE4enUFu7es5cqvovfF7H\n/Wn/qMMHKyr186u+qj//dpsGL75YmuLfoSg+Y+QdGncBAAAAWeJ2Ga1YUqc93UFt2OFXW1dA4UhM\nHrdLDbWVumRhjeZVV4x5DWutdncHteElv9oP9CgcsfK4jRbPrkq8vjzj4W94x+pjkhwfKC3Tj89a\nrkc+8jeKzDhKv/ntn7RiSW5CaCY+Y2A4QjIAAACQRcYY1ddU6Lalc9N+bSRm1bKlQ9s648FvqI9z\nKGK1dd9BtXcF1FBbqeamOrldkw+oxu+Xt6VFZQ8/nLQhV9S4tOn0ZXrg3CvlP7o68aRVa2dAe7qD\nqq/JTRidzGcMjMR0awAAACAPWZsIyPt7FBoWkA8flzQQiWnb/h61bOmQtentGXyE4R2rf/jDpAF5\na/1iXfa/HtA3PnXzOwE5IRSJaeNO/8TfH8gjjCQDAAAAeWh3d1CtnQGFomOH39BkRnIjEXkefVS+\n73xHLn/ykPvy7Hm6+8Jrtf29p6S8jJXU2hlI772BPEVIBgAAAPLQxh1+hSIxR+cOjeTeeo7D6cbW\nqvTJJ+W7806V7N2b9JQDM4/XfRdco19+8COOGnKFHdYK5DtCMgAAAJCH2rp6Rk2xTiWdkdyS9naV\nr1wpd1tb0uOxmTM18NWv6jPu09SXRlzwONyvGMh33MkAAABAHgpH0ltjPN5IruvVV1Vx+eWqPP/8\npAHZ+nzq//KX1bN9u0LXXafT5h47akulVIykhtrKtOoF8hUjyQAAAEAe8riNQmkE5VQjueN1rLYu\nl/yf/Gv980ev0DPBMoX/9TV53EbzqytUWmIUHmdN9FCty0+qcVwrkM8IyQAAAEAeWjy7Slv3HXQ0\n5TrpSG5vr7z33y/vvffK9Pa2+0BxAAAgAElEQVQmfV1o2Xm654LP6ee2WuFATDbxbqGI1e/+p1cu\nI7mMFBujiLISo8baKs2rLnf2iwF5jpAMAAAA5KHlC2vU3hXQgIOGWEeM5DroWB1ZtEjBVau0Jnxi\nfIupaPL3iNn4+kyXkazVEYHdJN63sbZKzU11Mimae1lrtbs7qA0v+dV+oEfhiJXHbbR4dpUuWVij\nedXlKV8L5AIhGQAAAMhD9dXlaqitTITY1EO5h0dyj/WpdPPmMTtWR+vq1H/77Rr8xCe0qzuo1idf\nHXeLqZgkj8voA8dV6BV/UOFITB63Sw21lYmQm3rbqUgssddzZ0DhYXs9hyJWW/cdVHtXQA21lWpu\nqpPbRVBGfshISDbGHCVpiaQPSTo98XNW4vB8a+3uFK/zSvqYpAskfVjSeySVSnpD0jZJ/2St3ZKJ\nGgEAAIBCYoxRc1OdWrZ0xPdLHhYypSNHcr9e0a2jPnZD6o7Vs2Zp4OabFbrySsnjkZTeFlODUatK\nr1tPXHmy4/qtTQTkFCHfShqIxLRtf49atnRoxZLUo9HAVMrUSPJSST+bwOuekPTRYY9DkgYlzU78\n+WtjzPestTdNvkQAAACgsLhdRiuW1GlPd1AbdvjV1hU4YiT3MzN6teDelfJs2pT09dbn08B11+ml\nS6/RY/sG1P7jVw5Pdx6M2qxsMTVkd3cwHu7HGakORa1aOwPa0x1UfU3qUWlgqmRyurVf0guSnpf0\nR0kPOHhNqaS9kn4g6YmhEWdjzHslfVvSpyTdaIz5vbX2/gzWCgAAAEjK/zWzxhjV11TotqVz33nO\n75f3rrtUtn59yo7V4UsvVe/Xvqbv7Alr21b/qOnO6Rpvi6mR0hmpDkVi2rjTr1vPmTv+yUCWZSok\nP2Gt/fnQA2NMncPXfV1Sm7X2iP9lW2tfM8b8jeJTts+R9FVJhGQAAABkVMGtmXXQsTq8bJn6V65U\ntL5e33ku9XTndKXaYiqVtq6erI5UA9mSkZA8MuSm8brfjnHMGmMeUTwkzzXGzLTW/nmiNQIAAADD\nFdSa2aGO1WvXyvXGG0lP6XzvB3TXeZ9TW93J8rSFNP8Pr+oVf5+jfY7Hk3SLqXGE0xytTnekGsiW\nfO9u/dawv5fkrAoAAAAUnYJYM2utSp96Sr7Vq1N2rH7ruBP1vfM+p6c/cLZsIsQP7XOcKUdsMZXG\na9KZ1p3uSDWQLfkekj+S+PmGpDdzWQgAAACKS76vmS15/nn5Vq5UaWtr0uOxmTP1+Mev1j/Wn6s+\nk73/W394i6nq8rRet3h2lbbuO+hoyvVERqqBbDHWTn76xaiLxtck70s8TLkF1DjXOFHSbkkzJK21\n1t7i8HUvJnt+3bp19XV1den9LxvTRjAYlCSVl3OLoDBxD6MYcB9jqr36VlDp/F9hY6T3zRr7/szE\nfew7cEDve/BB1WzdmvR41ONR5yWX6Pef/JQ6oiVp/Q7pMkaa4SnRcTPKlO5M84HBmA4EBhzVZ4z0\n7kqvvKWMJudaEfy7ePvSpUtPm8wF8nIk2RjjlvQvigfkTsU7XQMAAAAZk264zGYYlSTP229r7o9+\npBM2bZIrNnqE27pc+p9ly/SHK65QqLpa3YdCspEJtQZKyZj472mMVOEp0TG+UnknOA3aW+rSDE+J\nesPRMT+7oSA+3QPywGBMb/cPqm8weuQ/A2/ptP9splpehmRJ9yg+1Tos6VJrbY/TF1prk35r8Oyz\nz77o8/kWzZ8/P0Mlophs375dkrRo0aIcVwJMDPcwigH3MabayvW/S2vNbJnbpSeWnTzmORO6j512\nrL7jDvkWLNAHEs9dlGb9YzGSzn7P0RmfTj7UPby1M6DQsO7hQ+/pccencjeflSfdw3PgyA7rJaM+\no7LEnthT1WG9kP9dvGvXLvX390/6OnkXko0x35J0naSopMustb/JcUkAAAAoQjlfM+ugY3Xk1FPV\nv3q1ImeeOepYut2jxzKRxlxOuF1GK5bUaU93UBt2+NXWFd9qy5MIfvF9qCtkrdUuf1/e7lWdLQXV\nYX0ayauQbIy5VdIKxe+Hz1trN+S4JAAAABSp5Qtr1N4V0ICD5l0ZDZEOOlZH58xR/+23a/ATn5Bc\nyafapts9OpWJNuZyyhij+poK3bY0+Sh1we1VnUEF0WF9Gsqbye3GmP8l6RuJhzdaax/KZT0AAAAo\nbvXV5WqorVRZydjBK5MhsqS9XUddeKFmfOYzSQNybOZMBb/1LQVaWzX4yU+mDMhSfCR8MpExPpXX\nqHFOlZqbcjNCecRI6ojp2NLokdRsNB3OpYl0WEf25cVIsjHmekn/f+LhLdbae3JZDwAAAAqDtVa7\nu4MTmqZrjFFzU52zNbOTDJGuV1+Vb80aeZ54Ivnv4fVq4PrrNXDjjVKls2nd6YyEl5ZIJx03Q6/4\ng0mnO+fKdB9JbevqcTTdX4p/YdDaGchmOUjIeUg2xlwh6b7EwzuttWtzWQ8AAAAKQyam6TpdMztR\nxu+X9667VLZ+vUx0dCdq63Ip/OlPq/+WW2RPPDGtaw+NhKdazzqkrCQ+WpyP61nzfa/qbEt3XXnY\n4WeFyclYSDbGHDvs4THD/n70iGN/ttbGEq9ZLulBxb+ou8tauzJT9QAAAKB4ZbLh0XhrZickjY7V\nsQULJvQWUzkSni3TfSQ13XXlnglux4X0ZHIkuTvF89tGPJ4rqSPx97sklST+frkx5vIxrv9Ja+1v\nJ14eAAAAikW+TtM10ahOeOopVf3kJ2N3rF61SpGzzpr0+2V7JDzbpvtIas47rCOpXE+3Hv5VyHHj\nnOvJZiEAAAAoHHk3TTfRsXrx17+uis7OpKc46Vg9EVkZCZ8i030kNWcd1jGmjIVka23a8zestXWZ\nen8AAABMH/k0TbekvV3lK1fK3daW9Hhs5kwN3HyzQlddJXkY9xluuo+kprWuPIvbdOFIxfVVDAAA\nAKaFfJim63r1VVVcfrkqzz8/aUC2Pp/6v/xl9WzfrtDf/R0BOYnlC2tU5nB0uBhHUofWlTfOqZLX\n7Rq1pVc+bNM1HeV6ujUAAACQtlxO03XUsfrSS+Mdq084IWPvW4wYSS38deXFiJAMAACAgpOTaboO\nOla/uXixXr3mGs1bvnzy7zcNFEOH7kwo5HXlxYiQDAAAgIIzpQ2PIhF5Hn1UvrVrU3esXrRI/atW\n6b/Li2+kM9sYSUW+ISQDAACg4DidputxSR+oqdC/vfSG2g8EFI5YedxGi2dXJcJXeerRyUTHat/q\n1SrZuzfpKdG6unc6Vhsjbd+eiV9v2mEkFfmEkAwAAICC42SabmmJdLS3VC/7gwoPOx6KWG3dd1Dt\nXQE11FaqualObteRQbnk+eflW7lSpa2tSd+fjtXvsNZqd3dQG17yq/1AT3pfRAB5iJAMAACAgjTW\nNN3Fs49SXziqna/3JR1ptpIGIjFt29+jli0dWrEkvt7V9dpr8q1ZI8/jjyd9T+vzaeC66zRw441S\nZXFtRzQRkZhVy5YObesMpP1FBJCvCMkAAABIabxRwvcf69OeN/tzNoqYapruLn+fvvbkq2NOxZak\nUNSqtTOg13Z3auFD98U7Vkcio86jY/Vo1iYCcoop76m+iADyHSEZAAAASY03StjW2aMqr1s9oWje\njSJu3OFXyEFTL2+4X5f9coMWfv1f5R0IJj0nvGyZ+u+4Q7EFCzJdZkHb3R2MT3V3+EXEnu6g6mto\nwIX8l7kN4wAAAFA0jhglHLHeV4qPEoaiVv6+wZTHh48iWut8T+NMaOvqGXN7qJJoVBe3btLP1l6u\n636xPmlAjpx6qg79+7+r76c/JSAn4fSLCEkKRWLauNOf5YqAzGAkGQAAAKM4HSUcT65GEcORFHVb\nq7Nf+a2+8NQ6zfV3Jj0lOmeO+m+7TYMXXyy5GFNKZbwvIoazklo7A9ksB8gYQjIAAABGSWeUcDwD\nkZjufHafDoUiU7Zm2eM2Co0Iyiftf0Vf2vx9ndqxM+lrYjNnauCrX413rC4ry3hNxSblFxEpz8/M\n/QRkGyEZAAAAo6QzSujEm32Dh/8+FWuWF8+u0tZ9B2Ul1XZ36YanH9TSHVuTnjvg9ug3F12mRf97\nJR2r05Dsi4ixz2dUHoWBOxUAAACjpDtKmK5sr1levrBG7+o/qOaffU+P/cPnkgbkmDH69w+dr09/\n/Ucq//adBOQ0LZ5dJadfbRhJDbV8vigMjCQDAABglHRHCScqK2uWe3t1yvr79a//eHfKjtW/rl+s\ney+4Rgfe/V41zqnSvOryzLz3NLJ8YY3auwIacDCN2uM2Wn5SzRRUBUweIRkAAACjDJ+unG1DnY9v\nPWfu+CePJRKR59FH5Vu7Vq433kh6yivvnqe7L/y8tr/vVHncRo21VWpuGnv/3vH2is72XtD5qr66\nXA21lSn3SR5SVhL/nPkiAoWCkAwAAIBR0hklnKxJdz62VqVPPSXf6tUq2bs36Slv1Zyou8+7Wk9/\n4GyVetw6u7YyEXDHHr0eb6/oXO4FnWvGGDU31allS0e8E/qIrcCM5PiLCCCfEJIBAAAwitNRwkyZ\naOfjkuefl2/lSpW2tiY9PtSx2nXVVbqprEw3pXHtI/aKTvIZjFxXvWJJ3UR+hYLmdhmtWFKnPd1B\nbdjhV1tX/MsEj9ulBodfRAD5hpAMAACAUZyMEpaWSEd7S9UTih4xyjoRqTofp5rq/LGSg7p28zod\n84snk7/O69XA9ddr4MYbJ9yQy+le0cPXVU9HxhjV11TotqWTnC4P5AlCMgAAAJJyMkr4/mPLkx4/\nqqxEb/UNOgrOqTofJ5vqPPPQn3XNL3+ki9s2yx2LjnqNNUbhT39a/StWyJ544qR+/3T2ih5aV33B\n0ZN6SwB5gJAMAACAlJyMEiY7vsvfp689+aqjNc3uEqmnP6KL1v/u8Ejxh99dqb7BqF5+vU+hqJU3\n3K/LfrVBn93ymCrC/UmvM3juuQquXKnYggXp/ZIppLNX9NC6akIyUPgIyQAAAMg4p2uaXZKiMem/\n/6f3yKZYHT2SpJJoVBc//5SufeZhHXvoz0mvsWv2PMW+sUYnXPTRjP4O6e4VPdF11QDyCyEZAAAA\nGTfemmZJGmoGHUuWRa3V2a/8Vl94ap3m+juTvscfZx6v+87/nJ794Ed0VsVM3ZrR3yD9vaLj66pH\nTwEHUFgIyQAAAMiKsdY0L6gp18tv9CmcZJT5pP2v6Eubv69TO3Ymve7B8kqt++hntbHhIkXcpZIm\nuYVUCunsFf3Ouuq3M14HgKlFSAYAAEDWpFrT/I1n92lwRECe3X1Af//0Oi3dsTXptQbcHv3krOV6\nuOlv1eebccSxbEx1TmevaI/baPlJNQoeICQDhY6QDAAAgCk3vCnWeB2ro8alTacv0wPnXin/0dVJ\nr5dqC6nJcLquuqzEqLG2SvOqy/VfBzJeBoApRkgGAADAlAtHnHWs3lq/WPdd+Hm99q7U3bVTbSE1\nWU72iva44wG5ualOxpiM1wBg6hGSAQAA8pi1Vru7g9rwkl/tB3oOb5G0eHaVLllYo3nV5YUXziIR\nXfL8Zl399PqUHatfefc8fe9j12r7e08Z93JDU52zwcle0fOqK7Ly3gByg5AMAACQpyIxq5YtHdrW\nGQ9mR2yRtO+g2rsCaqitVHNTndyuAgjK1qr06aflW7VKzXv3Jj0l3rH6av3yg02yrvGnUA+f6pwt\nTvaKBlA8CMkAAAB5yNpEQE6xHtZKGojEtG1/j1q2dGjFkvye7lvywgvyrVyp0m3bkh5P1rF6OCMx\n1RnAlCAkAwAA5KHd3cH4OtgxGkZJUihq1doZ0J7uoOpr8m/ar+u11+Rbs0aexx9Pejzk9ujHKTpW\nS5LHJZ30rhma4XGr7QBTnQFkHyEZAAAgD23c4VfI4bZGoUhMG3f6des5+TMd2HR3y3vXXSpbv14m\nEhl13BqjgUsv1T+cfZn+o8836ncdOVJcENPJARQFQjIAAEAeGr5F0nispNbOQDbLca6vT97775f3\nnntkenuTnjL40Y8quGqVYgsW6AZrtZSmWADyCCEZAAAgD4UjTiPy0PnORp2zJhKR59FH5Vu7Vq43\n3kh+yimnqH/1akXOOuvwczTFApBvCMkAAAB5yOM2CqURlD3u8TtBZ4W1Kn3qKflWr1ZJio7V0Tlz\n1H/bbRq8+GLJQcdqAMglQjIAAEAeWjy7Slv3HXQ05dpIaqitzHZJo5Q8/3y8Y3Vra9LjsZkzNfDV\nryp01VVSWdkUVwcAE0NIBgAAyEPLF9aovSugAQfTqD1uo+Un1UxBVXHjday2Xq8Grr9eAzfeKFVO\nfXgHgMkgJAMAAOSh+upyNdRWptwneUhZSbwD9Lzq8qzX5KRjdfjTn1b/LbfIvvvdWa8HALKBRSEA\nAAB5yBij5qY6Nc6pktft0sgNkIykMrdR45z4FknGZHGLpL4+ee+6S1WnnSbvunVJA/LguecqsHWr\ngvfeS0AGUNAYSQYAAMhTbpfRiiV12pOrLZIm2LEaAAoZIRkAACCP5WSLJDpWA5jGCMkAAAA4bNyO\n1cccE+9YffXVdKwGUJQIyQAAAKBjNQAkEJIBAACmMccdq1eskD3xxBxUCABTi5AMAAAwHfX1yXv/\n/fLec49Mb2/SUwbPPVfBlSsVW7BgiosDgNwhJAMAAKRgrdXu7qA2vORX+4EehSNWHrfR4tlVic7S\n5dndeikbnHSsPvVU9a9aRcdqANMSIRkAACCJSMyqZUuHtnXGt12yiedDEaut+w6qvSughtpKNTfV\nye1KHZTzJmg76Fj9p5nH677zr9avFi3Rh8PH6BJ/X2F+EQAAk0BIBgAAGMHaREDe36NQ1I4+Lmkg\nEtO2/T1q2dKhFUvqkgbJTAXtyRqvY/XBiko9uPQz2thwkQbdHimmKa0PAPIJm9oBAACMsLs7qNbO\nQNKAPFwoatXaGdCe7uCoY0cE7WEB+fBxHRm0rR37vSbC9dprqrjySlWed17SgDzoKdMjSy/VJ5p/\npJ+euTwekKewPgDIR4wkAwCAlPJmqvAU27jDr1Ak5ujcUCSmjTv9uvWcuUc8P5GgXV9TMeGah3PS\nsdr/yb/W9R9Yrq4Zs6a8PgDIZ4RkAAAKWDZDbL5MFc6Ftq6eUSO/qVhJrZ2BUc9nImg7ev9h98BL\nr72uS7Zs0OVbfipvqD/p+UMdq1v+x6cD+w5mvT4AKDSEZAAAClQ2Q2ym1uQWqnAkvanF4SRhOBNB\nezxD90D7vre1rPVJ/eQXD6v60FvJzx3Rsbqt/XdZrw8AChEhGQCAApTtEJvLqcL5wOM2CqURlD3u\n0W1eMhG0x2KtVctz++R68ik9tPkHeo+/M+l5f5p5vP7v5V/Uhbd+XqakZMrqA4BCRUgGAKAAZTvE\nTtVU4Xy1eHaVtu476Gik1UhqqK0c9XwmgvZYDvzyN7psxW065Q8vJT1+sPwo/XDpZ7Wh8SKVeL16\n71sDR9wD2a4PAAoVIRkAgAKU7RA7FVOF89nyhTVq7wpowMFn7HEbLT+pZtTzmQjaybhee02+NWv0\nwccfT3p8wO3RT89aroeb/la9vhmSpMFITHc+u0+HQpHD69aP8rgVjgxmvD4AKHSEZAAAClC2Q+x0\nn4pbX12uhtrKlNPZh5SVGDXWVmledfmoY5kI2sON17E6Zow2nXaeHlh2hd44evS13uwbPPz3UMQq\nFBkcdc5k6gOAYkFIBgCgAGU7xE73qbjGGDU31allS0d8WvuIfY6N4p9RY22VmpuSr/fORNCWJPX1\nyXv//fLec49Mb2/SU35dv1j3XnCNXjv+PWn8ls6MWx8AFBlCMgAABSjbITZbU4ULidtltGJJnfZ0\nB7Vhh19tXfEu4h63Sw21lYkttlKv85500I5E5PmXf5Fv7Vq5Xn896Xu8cuL7dc/HrtUL7zt10r+v\nkdL+IgAAihEhGQCAApTtEJvpqcL5ysk+0/U1Fbpt6cSakk0oaFur0qeflm/1apX8/vdJrxudM0c/\n+cS1uuf4Dyvmyswo/qyKUh0KRdP6IgAAihEhGQCAApTtEJuxqcJ5LJv7TA9njHEctEteeEG+lStV\num1b0uOxY47RwFe/qtDVV+s9PRF5nnzV0T3gxKFQVE9ceXJGrgUAhay4FhABADBNDIXYspKxw9tE\nQ+zQVOHGOVXyul0a+S5GUpnbqHFOYU7FPWKf6RHToKXR+0xbm94a8HS5XntNFVdeqcply5IGZOv1\nqv+mmxTYvl2h66+Xysoc3wNOFVvzNQCYqIyEZGPMUcaYvzLGrDHGPGWMedMYYxN/6h283mWMudYY\ns80Yc9AYc8gY81/GmJuNMZ5M1AgAQDGZihA7NFW45cL36ay5R6ss8T5lbpfOfs/R+u7H/j99/Zy5\nkxplzZWJ7DOdDaa7W77mZlU2NsqTZEsna4xCl16qnvZ2Ddxxh2xV1TuvHeceSFexNV8DgInK1HTr\npZJ+NpEXGmNKJf1c0oWJp8KSopJOSfz5lDHmHGtt8naOAABMU5NtLOVEOlOFC0m295kel4OO1YPn\nnqvgypWKLViQ8jJj3QNHlZXorT72QQaAdGVyTbJf0guSnpf0R0kPOHzdNxQPyAOSrpP0qKSYpI9J\neljShyR9X9JlGawVAICiUKwhNtuyvc90Sg46VkdOOUX9q1YpcvbZji6Z6h7Y5e/T1xyuWS7k5msA\nkGmZCslPWGt/PvTAGFPn5EXGmHdJujHx8GvW2oeHHd5kjLla8VHmTxtj1lprX8pQvQAAIA8M7y49\nzwZlrbRy/e+O6C6djfXO2d5nehSHHav7b7tNgxdfLGWgY/V0aL4GANmQkZBsrY1O8KXLJZVJ6lGS\nkWdr7b8bY34v6f2SLpVESAYAoEiM7C79/tr485nuLp1MtveZHm7cjtUzZ8Y7Vl91lVRWNuH3GWnS\n+zQDwDSV6y2gliR+/spaO5DinF8oHpLPmZqSAABAth3RXTrJKOfI7tIrlmQ2xGV7n2kp3rHat2ZN\n0oZcUrxj9cD112vgxhulyuysB56KdesAUGxyHZKHOlG8PMY5ryR+zjfGGJvtPRgAAEDWTaS7dH1N\n5sJcNveZNt3d8t51l8rWr5eJREYdt8Yo/OlPq3/FCtkTT0yr7olg3ToApMdkI3Mm1iTvSzycb63d\nneK8tyUdLelL1tp7UpzzccXXJUtSpbX20Djv/WKy59etW1dfV1fHYhskFQzGt/YoL+cWQWHiHsZk\nDAzG9Hb/oPoGo7JWMkaq8JToGG+pvKXZ2Rbofw6F1Bs6crXWsZ54YH0zPPo9Z5SV6PijMjcVWZJe\nPxRSbzj+O6dijDTDU6J3OXhvV3+/ajdu1JzHHpO7vz/pOW9++MN69Zpr1Pee90y0bOQ5/n2MQlcE\n9/D2pUuXnjaZC+R6JHnoK+Hk/yWJG74x4QxJY4ZkAADgjLXSG72jg6K1Um8oqr5wVDM8JTpuRpky\nvVy1L5xeO5N0z3fiuBllUpLff8hQQD5uxtgB2USjOv7pp/WeRx5R2VtvJT0n8P7369Vrr9Xbp5yS\nidIBAFmU65CccdbapN8aPPvssy/6fL5F8+fPn+qSUAC2b98uSVq0aFGOKwEmhnsY6bLW6tvPpV4T\nPKSsxKhxTlXG1wSvWPdfo9YDf662T5L0YOfoadVG0n+ce2rG3n+ItXbi63XT6FgdvfhizXW5xITn\n4se/j1HoCvke3rVrl/pTzORJR65Dcp/i0619Y5wzfJy/N7vlAAAwPeR6TfBUdpcey0TX6+aqYzUA\nIPuy818c5/6U+HnCGOcMHesdbz0yAABwZuMOv0IO9/4NRWLauNOf0fdfPLtKTselJ9pdOhtcf/iD\nKq66SpXLliUNyNbrVf9NNynw4osKXXcdARkAClCuR5JfUbzD9QfGOGeoA/au7JcDAMD00NbV42j7\nIym+HVNrZyCj75/N7tLZYLq75f3ud1X20EN50bEaAJA9uR5Jfi7x8yxjjDfFOecmfj47BfUAADAt\nhNOY6hw/39mos1P11eVqqK1UWcnY48llJUaNtVWaV52jLqt9ffJ+97uqOu00eX/wg6QBefDccxXY\nulXBe+8lIANAEch1SP4/kkKKr0u+ZuRBY8xFkuYp/iX2T6a2NAAAipfHnV4TrkyvCTbGqLmpTo1z\nquR1u0ZNvTaSytzxpmHNTZltGuZIJCLPww+r6kMfku9b35LpHd0WJXLKKTr085+r97HHFFuwIMlF\nAACFKGPTrY0xxw57eMywvx894tifrbUxSbLWvm6M+Z6kZkktxpgeST+21kaNMRdKeijxmp9Ya1/K\nVK0AAEx3i2dXaeu+g46mXGdrTbDbZbRiSd3h7tIm1idrpTKn3aWzwUnH6tpa9d9+uwYvvlhy5Xq8\nAQCQaZlck9yd4vmRXS3mSuoY9vg2SSdJulDSI5J+YIyJ6p2u1s9Lui5zZQIAgHxZEzy8u/T27W9L\nkp5YdnJW3ms843asPuaYeMfqq6+mIRcAFLGcf/1prR2UdJHiQbhV8enXVtLvJH1N0pl0tQYAILMK\nZk3wFHC99poqrrxyzI7VAzfeqMD27Qpdfz0BGQCKXMZGkq21E14slJh+/f3EHwAAIMlaq93dQW14\nya/2Az0KR6w8bqPFs6sSU5HLJ7xWd2hNcMuWjvh+yZHYEVOvjeIjyI21OVoTPAUcdaz+27+Nd6x+\n97tzUCEAIBdyvQUUAABIIhKzatnSoW2dAYWHBdhQxGrrvoNq7wqoobZSzU11crsmFmBHrglu64q/\nlyeXa4KnQl+fvP/0T/LefXfShlySNPjRj6p/5UpFPzDWLpUAgGJESAYAIM9YmwjI+3sUio5urWUl\nDURi2ra/Ry1bOrRiycRHeoevCS56kYg8//Iv8q1dK9frryc/5eST1b9qlSIf+cgUFwcAyBeEZAAA\n8szu7mB8CnSSgDxcKGrV2hnQnu6g6muKcMQ3U+hYDQBIA/8VAAAgz2zc4VfIQddpSQpFYtq405/l\nigpXyQsvaMZf/qVmXAKFl7IAACAASURBVHZZ0oAcO+YYBb/5TQXa2jS4fDkBGQDASDIAAPmmravH\n0f7FUnzqdWtnIJvlFCTXa6/Jt2aNPI8/nvS49XoV+ru/08BNN8lWVU1xdQCAfEZIBgAgz4QjTiPy\n0PnORp2nAzpWAwAmi5AMAECe8biNQmkEZY+bKcJ0rEYuDd+ubZ4Nylpp5frfZWS7NgBTj5AMAECe\nWTy7Slv3HXQ05dpIaqitzHZJ+ctJx+pTTol3rD777CkuDtPB/2Pv3uOjrg78/7/PZDIzCZCBdok3\nErBewAraYl3ArQWC2q6u3Spe2/21VgXttrai/bIidIlKa0u1WttaRUVrL2oLauvWW6XSYgXSitcK\nWDUhoaKJKAmQZJKZOb8/ZoIh+SSZz2Tu83o+HjyAfD4zc4Ij4Z1zzvv0Pa7tyOrYx1N5XBuAzOJb\nzwAA5Ji5UyrlT3B22Oc1mju5Ms0jykHWqvSxx1TxyU9qxIIFjgE5Mn689txxh3Y/9RQBGWmx33Ft\nvc4z33dd+x/XZq27rRQAsoOQDABAjpk0tlzTqyvkLxl81slfYjSjOqiJY8szNLLckHBj9YYNNFYj\nrZI5rg1A7uOrBgAAOcYYo4WzJmjG+KACXo/6RmUjye81mjE+qIWzJhTNXkfPG29oxAUXqOKUU1S6\nfn2/6zYQUMfll6tt0yaFvvIVye/PwihRTDiuDShM7EkGACAHeT1Gi2ZP0NaWdq16uVkbm2L7HX1e\nj6ZXV8TLgEZke5j7FRbVbW9VV9jK5zUpLSxKqLH6/PPVcdVVGW+szsTnj9zFcW1AYSIkAwCQo4wx\nmlQ5QkvmHJrtoTjqW1jUExZSVliUSGP1ySerfelSRT/60eQ/kSSl/fNHzuO4NqAwsdwaAAC4ltbC\nonBYvnvvVfD441X2ne84BuTwxz6m3Q8/rD0PPJCVgExhE6RYcZ67+/mnN5AP+D8VAAC4lpbCImv1\nL+vXq+LEEzXi8stzurGawiZIsePaEo3JRX9cG5BHCMkAAMC1VBcWlTz3nKZeeaWO/da3VLJ1a7/r\nudZYTWETJI5rAwoVe5IBAIBrqSos8rz5psquu06+3/7W+bGBgDovvVShb3xDNhhMbrBpQGETpA+O\na1u/rXXQVQXFelwbkK8IyQAAwLXhFhaZd9+NNVavXDlwY/V556lj0SK96hujVX9tVt32+pxpj6aw\nCdIHx7UtX9sQW37f932u2AzyjOriOq4NyHeEZAAA4JrPaxRyERT3FRa1t8caq3/4w4Ebq086SR1L\nlyp01Efj7dGv51x7dNKfPwpO3+PaTHSvrJX8OXZcG4DEEZIBAIBr06qCWle/K6Elx0bSCYeUy3fv\nvSr73vfk2bHD8b62I47Q6/Pm6dCLL461Rz/dMOAy1r7t0YtmZ3aWzu3nT2FTYet9XNumTe9Lkh45\n5dgsjwpAsgjJAADAtblTKlXX1KbOoZYRW6vZr23Q0hX3qvz11xxviVRXq+Nb39Jfx4+XPB4dquTa\noydVZm62LuHPXxQ2AUC+ISQDAADXEiksOrpxs77x6Ap9/M2XHK9Hx4xR55VXKnTRRZLfL23atO9a\nMu3Ri2sOdf+JJCmVhU3WWm1padeql5pVt701Z/ZdA0CxIiQDADAAwsvAnAqLeqLiuHf/qa8+fpdO\neulPjo+1gYBCl1yizssvH7CxOtfbowf7/KXEC5vCURvfd92Wc/uuAaBYEZIBAHBAeBla38Kira9u\n0xefuFdnbnhE3mik3/29G6vtuHGDPnc+tEf3/fw3NsXeK74EC5usjb/HcnTfNQAUK0IyAAB9EF4S\nZ4zRpBHSshceTKixOnL00Qk9b760R/cubHIr1/ddA0Cx4jwCAAD6SCa8FKVwWL5771Xw+ONV9u1v\nOwbk8LHHavdDD2nPr3+dcECWYu3RiX7bIV/bo5PZdw0ASD9CMgAAfRBehmCtSh9/XBWf/KRGXH65\nPG+/3e+WSHW19txxh3avWaPwzJmuX2LulEr5E5wdztf26Fzfdw0AxYrl1gAA9EF4GVjJ3/6mstpa\nlT77rOP1fo3VSUple3Suyod91wBQjAjJAAD0QXjpz/Pmmyq77jr5fvtbx+uJNFa7kWh79PSqCn32\no2O1bE1D3jWQ58u+awAoNoRkAAD6ILx8wLS0KHDDDfLffbdMONzvupvGareGao8+4+ixevjvLVr0\n+Bt52UA+rSqodfW7Elq1kK/7rgEgHxGSAQDog/Aiae9eBW67LaWN1ckYqD3aWqvrn87vBvK5UypV\n19SmzgRWIuTrvmsAyEeF+61vAACSVAylUQNKpLH6Yx/T7ocfdt1YnUqF0EDes+/aXzJ4eM/nfdcA\nkI8IyQAA9FGU4SXRxuoVK7T7qacU/tSnsjDIDxRCA3nPvusZ44MKeD39jrwykvxeoxnjg1o4K/dm\nwgGgULHcGgCAPhItjZpRXRjhJaHG6m9+U6ELLxxWY3UqFUoD+VD7rmPlYyOyPUwAKCqEZAAAHBRD\neEmksbrz0ksV+sY3UtJYnUqF1EA+0L5rAEB2EJIBABhAoYYX8+67scbqlSsHbqw+/3x1XHVVyhur\nU4UGcgBAuhCSAQAoFu3tCvz0p4M3Vs+Zo47a2qwVciWKBnIAQLoQkgEAKHThsHz33aey735Xnh07\nnG859lh1XHNN1gu5EsXxSQCAdCEkAwBQqKxV6ZNPqqy2ViVbtzreEqmuVse3vqXuM86QPPmzJLmn\ngXygc5J7FFQDOQAgI/LnqyEAAEhYyXPPaeTpp2vk+ec7BuTomDFqX7ZMbRs3qnvu3LwKyBLHJwEA\n0oeZZAAACoinvj7WWP3ww47Xrd+v0KWXqvPyy3OusdqtYmggBwBkHiEZAIACkFBj9XnnqWPRopxt\nrE5GoTaQAwCyh5AMAEA+K6DGagAAcgEhGQCAJFlrtaWlXatealbd9lZ1ha18XqNpVcH4Ut/y9O2F\nTbSxurZW4Zkz0zMGAAAKECEZAIAkhKNWy9c2aH1jbB9sT79yKGy1rn6X6praNL26QgtnTZDXk8Kg\nnGhj9ZIl6j7zzLwr5AIAINv4ygkAgEvWxgPytlaFegXkfdcldYajWr+tVcvXNsjagY8ocqPkb38b\nvLF69Gi1X3ddrLH6rLMIyAAAJIGZZAAAXNrS0q4NjW2Dns8rSaGI1YbGNm1tadekyuRblj1vvhlr\nrP7tbx2vF1JjdapldUk8ACAvEZIBAHBp9cvNCoWjCd0bCke1+pVmLa5x375crI3VqZK1JfEAgLzG\nOiwAAFza2NTab4n1QKykDY1t7l5g714FbrxRwalTFVixwjEgd8+Zo91//rPaf/ITArKDbC2JBwDk\nP2aSAQBwqSvsLlB1JTjrrHBYvl/9KtZY/fbbzrfQWJ2QTC+JBwAUDmaSAQBwyed1tzTX5x3iy621\nKn3iCVWceKJGXH65Y0COVFdrz4oV2r1mDQE5AcksiQcAQGImGQAA16ZVBbWufldCS66NpOnVFQNe\nL/nb31RWW6vSZ591vB4dM0adV16p0EUXSX5/cgMuQmlfEg8AKFiEZAAAXJo7pVJ1TW3qTGCm0uc1\nmju5st/Hh2ysDgQUuuQSGquTlLYl8QCAgkdIBgDApUljyzW9uiJWCjXInld/idGM6qAmji3f9zEa\nqzPD5zUKuQjKQy6JBwAUDb4iAADgkjFGC2dN0IzxQQW8HvXdoWwk+b1GM8YHtXDWhNg5vDRWZ9S0\nqmC//y4DGWpJPACguDCTDABAErweo0WzJ2hrS7tWvdysjU2xs3h9Xo+mV1forCmVOvJfyrVlR5ua\nfnSXau77qcradjo+F43VqZeKJfEAgOJESAYAIEnGGE2qHKElcw7tdy0cierh79+r2XffrBPe2eb4\n+PcqD5b3ulpF5p4peVjclUrDWRIPAChuhGQAAFLM87e/qe3yRbrw1eccr+8qH6WVNf+lR078T33i\nw2O1yJiElwYjMT1L4pevbYidlxyO7td2bRSbQZ5R3WtJPAAAIiQDANLIWqstLe1a9VKz6ra3qits\n5fMaTasK6qwplZo4trygwomnvj7WWP3ww3Lqow55S3X/J8/UPbM/rz1lIyXFjh7a2tKuSZUjMjvY\nIpDIkviJY/lzBwDsj5AMAEiLcNRq+doGrW+MBZOeWbxQ2Gpd/S7VNbVpenWFFs6aIK8nv4Pyvsbq\nu++W6e7udz1qjH5/3Cm6/ZQL9M7o/fe+hsJRrX6lWYtr+i/ZxvANtiQeAAAnhGQAQMpZGw/IA+wH\ntZI6w1Gt39aq5WsbtGh2ni53bW9X4LbbFLj5Zpk9exxv+cvEf9WPT71Yrx90mON1q9hsMgAAyA05\nE5KNMR5JX5L0BUnHShotaa+krZJ+J+kWa+3u7I0QAJCoLS3tsX2ggxQmSVIoYvNzuXEkIt+vfqWy\n735Xnh07HG/ZfMgR+tGp8/XXI6YO+XRdCTQwAwCAzMiJkGyMKZf0iKSaXh9ulVQh6V/jP+YZY2qs\ntW9mYYgAABdWv9ysUILBL6+WG1sr7x/+oPLaWpVs2eJ4S6SqSss+9UX9fsos2QQbq33ewm22LrZ9\n6QCA/JcTIVnStxQLyFbS1ZJ+aq1tNcb4JJ0p6aeSxku6U/sHaQBADtrY1KrB55A/kC/LjUs2bVLZ\n0qUq/ctfHK9HR49W55VXKnTxxWp75i2pfldCz2skTa+uSOFIc0cx7UsHABSOXPnW9efjP99trf2u\ntbZVkqy1Xdba+yUtiF+fbYwZk5URAgAS1hVONCL33J+7y4099fUaceGFqjjpJMeAbP1+dX7962rb\ntEmhr35V8vs1d0ql/AnODvu8RnMnVw59Y57Zb196n+OXpP770q11954BACBdcmUm+YD4z88PcL33\nQZPlkt5P73AAAMPh8xqFXATlXFxuPFRjtTVGXeedp45Fi2THjdvv2qSx5ZpeXTFgcVkPf0nsnN6J\nY8tTPv5sS2ZfOgAAuSBX/lXSEP/54wNcPy7+8zvW2n+mfzgAgOGYVhVUootnc265cXu7AjfeqODU\nqQqsWOEYkLvnzNHuP/1J7T/5Sb+ALMWOHVo4a4JmjA8q4PX0+7Mwkvxeoxnjg1o4K0+bvYeQzL50\nAABygcmF5U3GmCsl3SDnPclnSLpNUlDSF621vxjiuZ5z+vidd945acKECYX3rXqkRHt7bAajvJy3\nCPJTrr2HO7uj2t7WqUS+xBgjjasIKFDq/H3bzu6o3u/o1t7uiKyN3T/CV6IxgdIBH5MME4nowCef\n1EfuuUeBnTsd72k7/HC9Pm+e3j/uOMfrTjq7o3q/s1t7u/qMv6xUgRycQU+V13e2J/Tfv4cx0sFl\nsV/nyvsYSEau/X0MuFUA7+FNc+bMSfwLtYNcWW59s6RDJX1V0vWSrjfGtEoapdhs9wZJ37bW/l/2\nhggASFSg1KORvhLtiQfDgRgjjfSVOIZda6V39oT6PYe10p5QRHu7IhrpK9EBI/0a1kSstfrwxo06\n/I47NHLbNsdbOg44QG9ceKHemT1bSrCxukeg1KODSv3DGGB+cvs9+Bz4nj0AAJJyJCRbayPGmMsl\nvSnpe4qNK9jrllGSxib4XI7fNVizZs1zZWVlU4866qjhDhcFaNOmTZKkqVOHPs8UyEW5+B7uaTbe\n0NjWr7jJKLZveUZ1UAtP7N9sbK3V9U83JLand3xQi2Ynt2S55LnnYo3Vzz7reL13Y/Uhfr8Ocf0K\nxWvpPS+42pfu93p0zTERSbn1PgbcysW/jwE38vk9vHnzZnV0dAz7eXIiJBtjDpT0W8XOQ/6ZpB9I\nekPSQZLOkvS/klYaY4601i7K2kABAAnzeowWzZ6grS3tWvVyszY2xY4B8nk9ml5dET8jd4TjY5Mp\nfZpU6fxcTjz19Sq77jr5Hn7Y8br1+xW65BJ1Xn657OjRCT8vPjCtKqh19bsSOgrsg33p9HICALIv\nJ0KypHsVC8h3WWsv7vXx1yV91xjzz/g9C40xv7DW/j0bgwQAuGOM0aTKEVoy51BXj0um9GlxzdCv\nsa+xeuVKmXC43/XBGqvhztwplapralNnAv8de47Bat9OSAYAZF/WG0OMMR+VdHL8tzc53WOt/bmk\nnYqN9/QMDQ0AkCUbm1oTmoGUYo2PGxrbnK9Zq83Ne/Xd37+qX//X/5N3ysdijdUOAXmoxmq403MM\nlr9k8GXwhXwMFgAgP+XCTHLvTcL1g9z3pqQPS5qQ1tEAALKuy8Ve1tj9/Wcrw1GrG9a8rtGrf6Mr\nH79blW3OjdXdU45R5zW1Cs+alcxQMYCeY7AS2pdeoMdgAQDyUy6E5N7/sqmWtGWA+8bHf96d3uEA\nALLN5zWuSp98fY5SstGoHrnh57r07pt16DvOjdX/HHOg7jz1Iu39z8/pqpkfSfhcZyRuOPvSAQDI\nllwIyS/2+vU8SVf2vcEYc7qkyvhvN2ZiUACA7Emu9Cmm5LnnZBct0YV/c/5ysat8lFbW/JdWnfBZ\ndXt9Cmzf47r4C4lLdl86AADZkvU9ydbaNyU9Gf/t5caY640xlZJkjBlpjLlA0j3x6w2SfpfpMQIA\nMmvulEr5vYl9ieopffLU12vEhReq4uSTFXQIyCFvqX4261yd8T+/0H2fOkvdXl/s4/HiLwAAACk3\nZpIl6QJJaxTbn3yVpKuMMbsVOx+5xzuSzrTWdmV+eACATOopfUrknOSTglF9/MZr5b/nHpnu7n73\nRI3Ro1NP1m2nXKB3xhzQ7/pgxV/pZq3VlpZ2rXqpWXXbW9UVtvJ5jaZVBeNLkcvZqwsAQIblREi2\n1u4wxhwnab6kMyVNlhSU1KbYMVC/l/Qja21L9kYJAMiUREqfRkVD+ubzv9enH/mZPHv2OD7PsxOP\n149OnafXDzps0NdzKv5Kt3DUavnaBq1vjO3T7fn8QmGrdfW7VNfUpunVFVo4a4K8HoIyAACZkhMh\nWZKstR2Sfhj/AQAocgOVPgU8Vl9740/63OoV8jW/4/jYreOO0A//fb7+esTUhF6rb/FXulkbD8gD\nzJRbSZ3hqNZva9XytQ1aNJv2ZwAAMiVnQjIAAH3tV/pkrbx/+IPKa2tVssX5IIRIVZU6vvUt3RH8\nuP62LbEl1H2LvzJhS0t7bIZ8kKXkkhSKWG1obKNYDACADCIkAwCSlqk9tSWbNqmstlalzzzjeD06\nerQ6v/lNhS66SPL7dWbzXm385x51JrCMuqf4K5NWv9ysUIJLvHuKxRbX0A4NAEAmEJIBAEnJxJ5a\nT329ypYtk++hhxyvW79foUsuUefll8uOHr3v426Kv2ZUBzVxbHlS40vWxqbWhI63krJbLAYAQDHK\n+hFQAID8s9+e2j6lWlL/PbXWJhoJY8y776rsqqtUMX26Y0C2xih0/vlq/etf1VFbu19Alj4o/pox\nPqiA16O+Ed1I8nuNZowPauGszO/37Qq7+/PIRrEYAADFiplkAIBradtT296uwG23KXDzzTIDNFZ3\n19Soo7ZWkcmTB32qgYq/fF6PpldXxJeDZ2efr89rFHIRlDNdLAYAQDEjJAMAXEv5ntpIRL777lPZ\n9dfLs2OH4y3hY45RR22twrNmJTzO/Yq/csi0qqDW1e9KaMl1NorFAAAoZoRkAIBrKdtTm2BjdeeS\nJeqaO1fyFMaM6twplaprasvZYjEAAIoZIRkA4Foq9tSWbNqksqVLVfqXvzg+Jjp6tDqvvDLWWB0I\nJDXOXJXrxWIAABQzQjIA5KhMHa+UjOHsqfXU16vsuuvke/hhx3sHaqwuJD3FYsvXNsT2dvcpPzOK\n/RnPqM5OsRgAAMWMkAwAOSgTxysNRzJ7as277ypwww3y3323THd3v/usMeo691x1XH217LhxKR9z\nrsnlYjEAAIoZIRkAcsx+xys5LMXte7zSotkTMj1EV3tqR0VD+vozDyh4wa3DbqwuNLlaLAYAQDEj\nJANAjknmeKVMS2RPrSca0ec2Pan/fupnCr7X4nhPMo3VAAAA6URIBlC0cnXPbzLHK/17hrfuDrqn\n1lqduHmDvvb4nfrI2w2Ojy/ExmoAAFAYCMkAilIu7/lN5nilTIdkyXlP7eFvvqpvPLZCH3/jRcfH\nFHJjNQAAKAyEZABFJ5k9v5mcUU7F8UqZ0rOn9n8/IpX98odF3VgNAAAKAyEZQNFJZs/vpMrMtQwn\nd7xSJH0DGgSN1QAAoNCwEQxA0Ulmz28mTasKKtF5657jlTKuvV2BH/xAwalTFVixwjEgd9fUaPef\n/qT2W28lIAMAgLzBTDKAopPMnt9McnO8ks9rNHdypdq3v5+BkUmKROT71a9U9t3vyrNjh+MtNFYD\nAIB8xkwygKKT63t+e45X8pcMPp/sLzGaUR3UxLHl6R+UtSp94glVnHiiRnzjG44BOVJVpb23367d\nf/wjARkAAOQtQjKAouPzuivhiu35zZye45VmjA8q4PX0W3ptJPm9RjPGB7VwVvpLxUqee04jP/tZ\njTz/fJVs2dLvenT0aLVfd53a6urUdfbZHOkEAADyGsutARSdaVVBravfldCS62zt+XU6XqkrHJXP\n69H06or4Oc7DKxMb6pzoo/a8o/Jly2isBgAARYWQDKDoJLPnNxt6jldaMufQlD/3YOdEv/xyg6bf\n8m0dv/538obD/R5rjVHXeeepY9EiCrkAAEDBISQDKDo9e34HOie5R0b3/GbQQOdE+7s6df4zD+pL\na+/XyM69jo/trqlRR22tIpMnZ2q4AAAAGUVIBlB0evb8Ll/bEDsvuddMqhRbYu3zxgJyJvb8Zlrf\nc6I90YhOe+5JXfLkPTqg9V3Hx9BYnb+GWlY/cWx5wb3HAQAYDkIygKKUiT2/uWrfOdHW6t+2bNTX\nHrtTh79d73jvW2MO0NNfvEynfutSCrny0GDL6tfV71JdU5umV1do4awJ8noIygAASIRkAEUsnXt+\nc9nGplYd1bRFl/1+hT7x5ouO97SWjdLKOV/Qb074T3kCAZ1KQM47Ay2r33ddUmc4qvXbWrV8bYMW\nzS68VRMAACSDkAwAScrHZaye+nr978+u1SkvrnW8HvKW6oF/O0P3zP68dpePkiSZDJ8TjdTou6x+\nIKGI1YbGNm1tadekysJcPQEAgBuEZABIQr4tYzU7dyrw/e/Lf/fdOqW7u9/1qDF6dOpJuu2UL+ud\nMQfsdy3T50QjNfYtq09AKBzV6leatbimuFZVAADghJAMAC7l1TLW9nYFbr9dgZtvltm92/GW9Uce\nrx+dOk//OPiwfteydU40hm9jU2tCZ4FLsffshsa2dA4HAIC8QUgGAJfyYhlrJCLfffep7Prr5dmx\nw/GWrQcfrltOnae6Iz8x4NNk85xoDE9XONGI3HM/y+oBAJAIyQDgWk4vY7VW3j/8QeW1tSrZssXx\nlkhVlR44Y75+WjVDnXbgGe5CPSe6WPi8RiEXQZll9QAAxPAVEQBcytVlrKO2bNHIz35Wo847zzEg\nR0ePVvu116pt40ad/L//remHjlHA61HfmGwk+b1GM8YX5jnRxWJaVbDff9uBsKweAIAPMJMMAC7l\n2jJWT329Ji9bpgPWrnW8bv1+hebPV+eCBbKjR0uK/eVfrOdEF4u5UypV19SmzgTefyyrBwDgA4Rk\nAHApVctYh3uElHn3XQVuuEH+u+9W0KGx2hqjrnPPVcfVV8uOG9f/8UV6TnSxmDS2XNOrKwYsmOvB\nsnoAAPZHSAYAl6ZVBbWufldCS64HWsY6rCOk2tsVuO22WGP1nj2Or9tdU6OO2lpFJk929bmhcBhj\ntHDWBC1f2xArmuv1PpNi702fNxaQWVYPAMAHCMkA4NJwl7EmfYRUAo3V4SlT1FFbq/Ds2bGZ6ua9\nSc9UZ8JwZ9MxOK/HsKweAACXCMkA4NJwl7G6PkKqea8mv/jsoI3VHQccoDcuvFCHXHml5PEMb6Y6\nQ/JhjIWAZfUAALhDSAaAAQw2y3nG0WMlKallrG6OkPpI/auqnPtNjXr1Ocfr0dGj1Xnlldp43HGK\n+nw6xONJfqY6g/JhjAAAoDgRkgHAQSKznNOqRun6fz9MD73S4moZayJHSB2y8y399+N36ZQX1zpe\n79tYHd20ad811zPVLe2aVJnZJbf5MEYAAFCcCMkA0Eeis5wbGttkjNHiGneznIMdITV6zy5dtOYX\nmrvhEZVGwv1fe4jGasndTHUoHNXqV5q1uCazS3HzYYwAAKA4EZIB5K10lT6le5bT6Qgpf1enzn9m\ntb709P0aGWp3fFx3TY06li5VZMqUQZ8/kZnqHlaxJeOZlg9jBAAAxYmQDCAvpbP0Kd2znL2PkPJE\nIzrtuSd16RN3q7Jtp+P92w+dqOCN1ys8a1ZCzz/YTLXz/Yl9rqmUD2MEAADFiZAMIO+ku/Qp3bOc\nc6dUqq6xVce9sl6XPXqHDnunwfG+t8YcoDtOvUinLL5EIw4clfDzO81UD36/J+F7UyVVY+QIKQAA\nkGqEZAB5J93LodM9y3l00xbdvfIqHf5358bq1rJRWjnnC3rkk5/TcYeP1cQDRrp6/t4z1UMxkqZX\nV7h6/lRIxRg5QgoAAKRD5qcPAGCYklkO7YbP6y5QJToT66mv14iLLlLw5JMdA3LIW6p7Z56jM//n\n51pdc46OO3ys4xFSQ5k7pVL+BMfk8xrNnVzp6vlTYbhj3G81QZ8juKT+qwmsdfeNDwAAULyYSQaQ\nd9K9HDrVM7Fm504FbrhB/pUrZbq7+12PGqMnjjtZt558gd4fe9CQR0gNZdLYck2vrhhwOXoPf0ns\nLOeJY8uTep3hGO4YU7WagOXaAACgL0IygLyT7uXQc6dUqq6pTZ0JPG7Qmdj2dgVuv12Bm2+W2b3b\n8Zbumhp11NZq+uTJmu5qlAMzxmjhrAlavrYhFiT7zLSa+LhnVAeTmqnOhTGmolyN5doAAMAJIRlA\n3kl3MdWwZ2IjEfnuu09l118vz44djo8NT5mijtpahWfPdjW2RHk9RotmT9DWlnaterlZG5tiQdDn\n9Qx7pjoXxjjcRVpitwAAIABJREFU1QTpLn8DAAD5i5AMIO+ku5gq6VlOa+V96imV19aqZPNmx+eO\nVFWpc8kSdc2dK3nSWwthjNGkyhFaMifx46kyLdkxDnc1QbrL3wAAQP4iJAPIOylbDj0It7OcJc8/\nr7KlS1X6zDOOzxcdPVqdCxYoNG+eFAi4Hg/2N9zVBOk+CxsAAOQvQjKAvJOpYqpEZjk9DQ0qW7ZM\nvgcfdLxu/X6F5s9X54IFsqNHJzUO9Dfc1QTpLn8DAAD5iyOgAOSdnuXQM8YHFfB61HenqJHk9xrN\nGJ++Yiqzc6fKFi1SxbRpjgHZGqPQueeqra5OHddcQ0BOseEeIZXu8jcAAJC/mEkGkJeyVkyVSGP1\n7NnqqK1VZMqU1L8+JA1/NUG6y98AAED+IiQDyFsZLabKgcZqfGC4R0ilu/wNAADkL0IyAAzGWnn/\n8IdYY/WWLY63RKqq1Ll4sbrOOivtjdX4wHBWE2Si/A0AAOQnQjIADKBk0yaV1dYO3lh9xRUKXXwx\njdVZkuxqgkyVvwEAgPzDlAcA9OGpr9eIiy5SxUknOQZk6/er87LL1LZpk0Jf+xoBOQ/lQvkbAADI\nTcwkA0Cc2blTge9/X/6775bp7u533RqjrnPOUefVVytaVZWFESKVslb+BgAAchohGQBorC5aGS1/\nAwAAeYGQDKB40VgNAACAPnIuJBtjJkr6mqRTJI2TFJb0lqT1kn5mrf1TFocHoBDQWA0AAIAB5FRI\nNsZ8XdL3JfniH9oT//Wk+I+oJEIyioK1Vlta2rXqpWbVbW9VV9jK5zWaVhWM75Usp0woCTRWAwAA\nYDA5E5KNMZdI+qFiQfh7km611jbGrx0o6WRJpdkbIZA54ajV8rUNWt8YKxLqOaAmFLZaV79LdU1t\nml5doYWzJsjrISgnwlNfr7Jly+R76CHH69bvV2jePHVecYXs6NEZHh0AAAByRU6EZGPMBEk/iP/2\nUmvtHb2vW2vflvTzDA8LyApr4wF5gPNbraTOcFTrt7Vq+doGLZrN8TSDSaix+txz1XH11bLjxmVh\nhAAAAMglORGSJX1DUrmkjX0DMlBstrS0a0Njm2NA7i0UsdrQ2KatLe2aVMkxNf0k0lhdUxNrrJ48\nOcODS43eS/In2nZZKy295wWW5AMAAAxDroTkz8d/vi+rowBywOqXmxUKRxO6NxSOavUrzVpcw/E1\n+xRJY3XfJflHVsc+zpJ8AACA4cl6SDbGHCapMv7b540x0yUtlnSCYrPL2yQ9Iun71trm7IwSyJyN\nTa0afA75A1bShsa2dA4nf1gr71NPxRqrN292vCVSVaXOJUvUNXduXjdWZ2pJPuVxAACgGBlrE/3n\neJoGYMxnJD0W/+1SSf8rqUTSbsVCfFn82g5JJ1tr/z7E8z3n9PE777xz0oQJE8pTMmgUnPb2dklS\neXn23yL/eLfd9WOO+JfsjzubRm3dqsPvuEMfeuEFx+vdo0ap/gtf0D8/+1lFfT7He/JJZ3dU29s6\n1fuv73/xxVYfvNu1f/g3RhpXEVCg1N03BayV3tkT0p6uiJy+TBgjjfSV6ICRfpGTkSq59HcxkCze\nx8h3BfAe3jRnzpzjhvMEWZ9JltS7RnappK2Svmyt3WiM8Uj6tKR7JB0kabUxZrK1Npz5YQKp19kd\n1fsd3drbHQsiyYSNYg4ogbfe0mF3360Dn37a8XqktFTbzzhDDeefr/CoURkeXfq839ntGFydWBu7\n/6BSv6vXGCwg9zzvnq6ItCekA0e5e24AAIBclgshuff0hpV0hrV2qyRZa6OSHjPGXCjp/yRNlHSm\npF8P9GTWWsfvGqxZs+a5srKyqUcddVTKBo7CsWnTJknS1KlTM/J6++8nLUl4eXVfRtKnPjJa50wt\nrj3JZudOBW64Qf6VK4dsrK4YN07HZGGM6XT6PS8oFN7/XXNR9V5J0l2N/Uvc/F6PHrng2ISff3Pz\nXt326OvqTGBvfMDr0fJTD6c8DimR6b+LgXTgfYx8l8/v4c2bN6ujo2PYz5MLm/L29Pr14z0BuTdr\n7e8lvRb/7ZyMjApIk/32k/Y6AzkZPq/R3MmVQ99YKDo65L/5ZgWnTlXg9tsdA3L37NnavXat2m+9\ntWCPdOoKu3vXdCVYBNcjmfI4AACAQpELM8lv9fp1v4Dc59qRkqrSOxwgvRI94mko/hKjGdVBTRyb\nnv0iOVXaFInId//9KvvOdwZvrF66VOGamsyMKYt8XtNvJnnw+919P5TyOAAAUMxyISS/KimqxGe1\ns9s0BgyTm1k6J0axkDSjOqiFs5JrLR5K3+OFev6nS+XxQgmFcGnoxupx42KN1WedldeN1W5Mqwpq\nXf2uhP4yNJKmV1e4ev50z1QDAADksqyHZGttuzFmvaR/U2zP8UB6rjWkfVBAGrmZpZMkj5FKSzzq\nCkfl83o0vboiHiLTswc0E8cLJRLCz+rarq/83+3yPfOM43NEg0F1XnmlQhdfLAUC7j7JPDd3SqXq\nmtoS2jOczJL8dM9UAwAA5LKsh+S4exULyZ8xxkzsuy/ZGHOaYkutJenRTA8OSCW3s3TWylXp0nAl\nuhw8FLHa0NimrS3trkqbhgrhB+98S195fKU+/aJzY7X1+xWaN0+dCxbIjhmT8OsWkkljyzW9umLA\nP8MeyS7JT/dMNQAAQC7LlW//r1Rs2XWJpAeNMf8qScYYT/wc5bvi920QIRl5zud1N+ua6Vm6dJc2\nDRTCg3tbdcXvfqLf3PBlx4BsjVHonHPUVlenjmuvLdqALEnGGC2cNUEzxgcV8HrU9x1lJPm9RjPG\nJ7ckf+6USvkTfN8VXXkcAAAoeDkxk2ytDRtjTpe0VtJHJW00xuxWLDT3TIG8KuksaxM9HRTITbk+\nS5fu0qa+Idzf1anzn3lQX1p7v0Z27nV8TPfs2eqorVVkyhRXr1XIvB6jRbMnaGtLu1a93CwT3Str\nY8c9DXdJfrpnqgEAAHJZToRkSbLWvmmMmSLp/0k6Q9KhihV6bZL0G0k/stY6/wsayCPp3k86XOku\nbeoJ4Z5oRKc996QuefIeHdD6ruO9Ww8+XD89/RItvf4iV6/RI6cautPAGKNJlSO0ZM6h2rTpfUnS\nI6cMf2l+z0z18rUNsVn/PkeVZaI8DgAAIFtyJiRLkrW2VdKS+A+gIOX6LF26S5u6uqM6YUudLnvs\nDh3+dr3jPTtGV+qnn7lQj39sTtKN1Zlo6C5kfWeqNza1Zaw8DgAAIJtyKiQDxSDXZ+ncLAeXpFH+\nEp1+zwsJzdKWPP+8blvxTU194wXH52orG6mVNV/Qb074nLpKfZKU8N7Y3jLR0F0Mes9UAwAAFAtC\nMpAFuTxL52Y5uCTt3Ns95Cytp6FBZcuWyffgg5rq8Bwhb6l+fcIZuqfmfLWVf7AHO9k92elu6AYA\nAEDhIiQDWZKrs3SJLgfv0feO3rO0P/7d81q08Tfyr1wp093d77FRY/TYx0/SbZ/+st4ec0C/68nu\nyU6moXtxTW79dwAAAEB2EJIB7Geo5eCJ6N1YHRigsXrjkZ/QLafO02sHH+78HMPYk53uhu5EFXpx\nGAAAQCEiJAPoZ7Dl4KP8Jfstse4tkcbq8JQp2rN0qVbpUDU2tsmkYU92uhu6E0FxGAAAQH4iJANw\nNNBy8NPveaF/QLZ2yMbqyLhx6ly8WF1nny15PFpkbdr2ZKe7oXsoFIcBAADkL0IyAFf6ztIe1bRV\nlz26QscP0FjdWjZKpYv+n0IXXywFAvs+ns492W4aupMtBxsMxWEAAAD5i5AMwJWeWdpDdr6lrzy+\nUp9+8WnH+0LeUj3wb2fovpP/S7/6709mdIxuGrqTLQcbDMVhAAAA+YuQDMCVmmBUR919q85a/zuV\nRsL9rvdurH5nzAH61EdGZ3yMiTZ0D6ccbDC5UhwGAAAA9wjJABLT0SH/7bfrf39wk7x7djvesv7I\nT+jHvRqr/WmYpU3EUA3dqSgHG0wuFIcBAAAgOYRkAIOLROS7/36VXX+9PG+95XjL1oMP1y2nzlPd\nkZ/Y97F0zdImarCG7lSUgw0m28VhAAAASB4hGYAza+V96imV19aqZPNmx1veHnOAbv30l/X4x+bI\nemJBr2eWdnpVhT770bFatqYha2cEp7McbDDZLg4DAABA8gjJAPopef55ldXWqnTdOsfr0WBQnVde\nqYb/PF97X2uTr88s7RlHj9XDf2/RosffGNYZwdZabWlp16qXmrMWtJOR7eIwAAAAJI+QDGAfT0OD\nypYtk+/BBx2vW59Pofnz1blggeyYMZooaUnVh/e/x1pd//TwzwgOR+NnDTe2DStoZ0O2i8MAAACQ\nPEIykKdSOctq3ntPgRtukP+uu2S6u/u/ljHqOvtsdS5erGhV1aDPlYozgq2NB+RhBu1syXZxGAAA\nAJJHSAbyUMpmWeON1YGbb5anzfkYou5Zs9RRW6vIMcckNLZUnBGciqCdbdksDgMAAEDyCMlAnknJ\nLGsCjdXhyZPVUVurcE2Nq/Gl4ozgVATtXJCt4jAAAAAkj5AM5JlhzbIm0FgdGTdOnUuWqOussySP\n+6OJUnFGcCqCNgAAAJAMDucE8kwys6xSrLF65Oc+p1HnnusYkKPBoNpra9VWV6euc85JKiBLsb22\n7u7v/zqpCNoAAABAMphJBvKM21nWxue3aMSvvp1wY/VwpeKMYJ/XKOQiKDsFbQAAACAZhGQgzyQ6\nyxrc26qL1vxCZ63/nUoj4X7XrTHqOuccdV599ZCN1W6k4ozgVARtAAAAIBmEZCDPDDXL6u/q1PnP\nPKgvrb1fIzv3Ot7jtrHajVScEZyKoA0AAAAkgzWKQJ6ZVhWU065fTzSi0//6uFZ//0v66uN3OQbk\n8OTJ2r1qlfY8+GBaArL0wRnBM8YHFfB6+o3VSPJ7jWaMH/iM4J6g7S8ZfH/zYEEbAAAASAYzyUCe\n6TfLaq1O2FKnyx67Q4e/Xe/4mMi4cepcvFhdZ5+ddCGXG8M9I7gnaC9f2xBr8u51FrQUC9o+bywg\nDxS0AQAAgGQQkoEkWWu1paVdq15qVt32VnWFrXxeo2lVwXgILE9LeOu9nPkjDVt02aMrdPwbLzje\n2z5ilLTwmwrNmycFAikfy2CGe0bwcIM2AAAAkAxCMpCEcNRq+doGrW+MBbeeWc5Q2Gpd/S7VNbVp\nenWFFs6aIK8ntUHZGKOrJkiNN31PH//LE473dJWU6tnTztPkG5eq5MMfSunrZ9JwgzYAAADgFnuS\nAZesjQfkba39lgFLsWOXOsNRrd/WquVrG2StuzN/B2N27lTZokX60IzpjgE5aoz+9qnT9Mof/qxj\n7/lhXgdkAAAAIBuYSQZc2tLSHtsnO0hzsySFIlYbGtu0taVdkyqHuSy4o0P+229X2U03yeze7XhL\n98yZ6rjmGh2WpkIuAAAAoBgwkwy4tPrlZoUSOJpIkkLhqFa/0pz8i0Ui8v3ylwoef7zKr73WMSDv\na6x+6KG0NVYDAAAAxYKZZMCljU2t/ZZYD8RKWle/S6ff84K7Yi9r5X3qKZXX1qpk82bHWzLdWA0A\nAAAUA0Iy4FJX2N0e46iNFXpJiRV7lTz/vMpqa1W6bp3z8wWD6lywQKH58wdtrM5W+zYAAACQzwjJ\ngEs+r9kXepPRt9hr0ezYOb+ehgaVLVsm34MPOj/O51No/nx1LlggO2bMoK+RzfZtAAAAIJ+xRhNw\naVpVUKmIlT3FXm+8tl1lV1+timnTHAOyNUahc85RW12dOq69dsiAnM32bQAAACDfMZMMuDR3SqXq\nmtrUmWB510D83SGd+/SDmrzkPgXa9zre0z1rljpqa10VcmWlfRsAAAAoEIRkwKVJY8s1vboiNlM7\nRBB14olGdNpzf9AlT96jA1pbHO8JT56sjtpahWtqXD9/Mu3bi2sOdf06AAAAQCEiJAMuGWO0cNYE\nLV/bEJuxdVjS7MhanbC1Tpc9eocOf7ve8ZZUNFZnpH0bAAAAKFCEZCAJXo/RotkTtLWlXatebtbG\nplhBls/rUXckqmiflDpp+2v6+qMrdPzrzzs+XzQYVOcVVyg0b96gjdWJSHf7NgAAAFDICMlAkowx\nmlQ5Qkvm7L9Uedmaeq2r3yUr6eD3dugrj6/UZ174o+NzdJWU6tnTztPHbqodspArUelq3wYAAACK\nASEZSLG5Uyq1ZUuTvvDEz3X2+t+qNBLud0/UGD3+8TlaeeqFuvK/TpQdk7rirGlVwX0hfTgo9gIA\nAEAxIiQDqdTRoY/9coVW3XiTytr3ON6y4Yjj9KNT52lb9ZGaMT6oiWPLUzqEVLVvSxR7AQAAoPgQ\nkoFUiETku/9+lV1/vTxvveV4y2sHHaZbTpuvuiM/IZ/XaEZ1UAtnpX4p83Dbt3uzkjY0tqVmYAAA\nAEAeICQjL1lrtaWlXatealbd9tbsNTNbK+9TT6m8tlYlmzc73vL+hw/Qjz99of7vmBqV+rz6VHVF\nfIzpWcKcdPv2ALpSMCMNAAAA5AtCMvJOOGq1fG2D1jfGGqV7AqDbZubeQXuibZe10tJ7Xkg4aJc8\n/7zKamtVum6d4/WexmrNm6evBQL62nA+aZfctm8PxudN7igqAAAAIB8RkpFXrI0H5AGWEifazNw3\naB9ZHft4IkHb09CgsmXL5HvwQecx+nwKzZ+vzgULUtZYnYxE2reHfA5J06sr0jI+AAAAIBcRkpFX\ntrS0x5YQD7HXNhSxenZbq/7n0de1uWXvfsux504eq4f+3uI6aJv33lPghhvkv+sume5u59c95xx1\nXn21otXVKfhs08NNsZfPazR3cmUGRgUAAADkBkIykpKtPcGrX25WKME9sl0Rqxd2fNAw3TNLvKGx\nVeGoHXLJcc8RSP9o2qkpD/5CZTfdJLN7t+O93bNmqaO2VpFjjkn4c8mWRIu9/CWxcrFUt28DAAAA\nuYyQDNdStSc4GRubWodVQmUVC8+J8EQjOnn945r47XtVvvMdx3vCkyero7ZW4ZqaYYwqs4Yq9jJS\nWtu3AQAAgFxGSIYrqdoTnKyu8PCONEqItTpha50ue/QOHf52veMt0UMOUceSJeo6+2zJk3/FVoMV\ne01Pc/s2AAAAkMsIyXDFzZ7gDY1t2trSrkmVqQtbPq9RKI1BedL21/T1R1fo+Nefd7ze01gdmjdP\nCgTSNo5MGKjYCwAAAChmhGS44mZPcCgc1epXmrW4JnUhbFpVMOFmZjdGNb+tf73/F7r02T87Xrc+\nn0Lz5qnziiuy2lgNAAAAIL0IyXDFzZ5gK2lDY1tKX99NM3Migntb9eU//lLnPftblUTC/a5HjdHz\nJ/67Dr/lOzndWA0AAAAgNQjJcMXtnuCuFIXZHok2Mw/F3x3Suc88qAuevk+jOvc63rPhiON0++nz\nNX/+qYqmcMk4AAAAgNxFSC5SyR7h5HZPsM+b2lKroZqZh+KJRnTqpj/o0ifu0QGtLY73vHbQYbrl\ntPl64ajjNWM8RyABAAAAxYSQXISGc4STmz3BRtL06oqkxjhUiL9q1ni99m5Hv2bmj1aW6+/v7O1/\nzFO8sfprj96hIwZorN79L2P1/ZMu0hMfm6NSXwlHIAEAAABFiJBcZIZ7hJObPcE+r9HcyZWux+gm\nxPdtZrbW6vqn9//8hmqsbh8xSi+ecZZeOeU0/fHdD+tEjkACAAAAihYhucgM9winRPcE+0uMZlS7\nX6o83BDfezn2tue36sLf36XPvLDG+bV8PoXmz1fXggVqr6/XRyQ98h/HuhovAAAAgMKS2g2jyHnJ\nHOHUW08InTE+qIDXo74LkY0kv9doxvjklionE+L7Kt31vq5bc6fuX37BgAE5dM45aqurU8e113Kk\nEwAAAIB9mEkuMqk4wsnrMVo0e4K2trT32xM8fZhLlYd1DnNHh/wrVihw003ytDkfPdU9c6Y6rrlG\nkWOOSWp8AAAAAAobIbnIpOoIJ2OMJlWO6LcneLiSCvGRiHwPPKCy73xHnrfecrw3PHmyOpYuVXjO\nnJSNFQAAAEDhISQXmWwf4TQUVyHeWh33ynqNmvlVeV991fGW6CGHqGPxYnWdfbZUUpKiUQIAAAAo\nVITkIpOpI5ySlWiIH6qxOhoMqnPBAoXmz5cCgVQPEwAAAECBysmQbIwZKWmzpHHxD33ZWntP9kZU\nODJxhNNwDBXiD35vh77y+Ep95oU/Ol63Pp9C8+ap84orKOQCAAAA4FpOhmRJy/RBQEYKpfsIp+Ea\nKMQH97bqwjW/1Nnrf6vSSNjxsaGzz1bn4sWKVldnYqgAAAAAClDOHQFljJkq6WuSNmZ7LIUo3Uc4\nDVdPiPeXxF7X3x3SF5++Tw997//T559Z7RiQu2fOVNvTT6v99tsJyAAAAACGJadmko0xHkm3x3/7\nFUmbsjicgpXOI5yGqyfEf3/NGxr90Gpd9NhKHdDa4nhvePJkddTWKlxTk+FRAgAAAChUORWSJV0m\n6ROSfmytfT7Ts5jFJF1HOA2btQqseUrfueaaARurQwcdrPC3ltBYDQAAACDlciYkG2MOkXSdpHck\nLcnycJAFJS+8oLLaWpX++c+O1zPdWG2t1ZaWdq16qVl121vVFbbyeY2mVQXjs+3lGV+ODgAAACC9\nciYkS/qRpFGS/tta25rtwSBzPNu2qWzZMvlWr3a8no3G6nDUavnaBq1vjC1F76k4C4Wt1tXvUl1T\nm6ZXV2jhrAnyegjKAAAAQKEw1iZyYm6aB2HM6ZJ+J2mttXZ2r4/3DC7hI6CMMc85ffzOO++cNGHC\nhMxWNWNQ3tZWHfrLX2rc734nT9i5sXrHSSfpzQsuUOeBB6Z1LO3t7ZKk8vLYW+Tt3SHt6YposP89\njJFG+kp04Ch/WscGJKLvexjIR7yPUQh4HyPfFcB7eNOcOXOOG84TZH0m2RgzQtKPJXVL+mqWh4Ne\nOrujer+jW3u7Y2HRGGmEr0RjAqUKlCZfjO4JhVT10EMaf999Kt271/GenVOn6o1587T7iCOSfp1k\ndXZHhwzIkmSttKcros7u6LD+PAAAAADkjqyHZEnXSqqWtNxa69zU5IK11vG7BmvWrHmurKxs6lFH\nHTXclyh4+y81LlHvrBg7IsqT3FLjSES+Bx5Q2Xe+I89bbzm/dryx2lNTo0zG402bYkXqU6dO1bI1\n9Vq3bZcSWWNhJH3qI6O1uCbHCtBQdHq/h4F8xfsYhYD3MfJdPr+HN2/erI6OjmE/T1ZDsjHmY5K+\nIalJsbCMLLM2HpC3tSoU6R8TraTOcFTrt7Vq+doGLZqdwFnK1sq7Zo3KamsHbKx+e3Sl7vz3C7Xr\nP8/U3MkHaaK1WSvF2tjUmlBAlmJ/Hhsa29I5HAAAAAAZlO2Z5B9KKpG0WJIxxowc4D5//FrUWtue\nsdEVoS0t7drQ2OYYkHsLRaw2NLZpa0u7JlUOfKZyyYsvxhqr//Qnx+ttZSN1d80X9OsTPqeuUp9M\n425tfGtvVkuxusLu9ul3haNpGgkAAACATMv2Rsrx8Z/vlbTb4UeP2+K/H/ZybAxu9cvNCiUY+kLh\nqFa/0ux4zbNtm8rnz1fF7NmOAbmrpFS/+NTZOuN/fq5fzDxHXaU+Sf1nqrNRLOfzugvmPm+2/zcC\nAAAAkCrZnklGjhnuUmPz3nsK3Hij/HfdJdPV5fi4J447WT85+QLt+NDAjdWJzlSnw7SqoNbVJ74n\neXp1RbqHBAAAACBDshqSrbUTBruezBFQGJ6klxp3dMi/YoUCN90kT5vzHt3umTP1o9Pm634dmFAA\n7ZmpznQp1twplapralNnAjPqPq/R3MmVGRgVAAAAgExgJhn78XmNQi6CcsBj5fvVrwZtrP7HwYfp\nllPn6/mPHq/uiB3yaKUe2SrFmjS2XNOrKwYsL+vhLzGaUR3UxLF5e4YcAAAAgD4IydhPwkuNrdUJ\nW+v0P0+t1IjG1x1veWd0pW799IV67ONzZD0eyeUstZSdUixjjBbOmqDlaxtiJWbhaL9jsHzeWEBe\nOCuBdm8AAAAAeYOQjP0kstR40vbX9PVHV+j41593vN4+YpTunv15/WrG5/YVciUrW6VYXo/RotkT\ntLWlXatebtbGpjZ1haPyxc+IPmtKpSaOzexeaQAAAADpl9Mh2VrLFF2GDbbU+OD3dugrj6/UZ174\no+Njrc+nHZ//ki4+7D/U4h/oNK/EZbsUyxijSZUjtGROZvdEAwAAAMienA7JyDynpcYVe1t14Zpf\n6uz1v1VpJOz4uNA556jz6qt14z8ierd+V0rGQikWAAAAgEwjJKOfnqXG/2jaqZbv/0gzV6/UqM69\njvd2z5ypjtpaRY49VpK08Y8vJHyE1GAoxQIAAACQDYRk9BeJyP/AAzp+kMbq8OTJ6qitVbimZr+P\nuz1Cqi9KsQAAAABkEyE5R1lrtaWlXatealbd9lZ1ha18XqNpVcF4aVR56gOktfKuWaOy2lp5X33V\n8ZboIYeoY/FidZ19tlRS0u+62yOkPEYqLfFQigUAAAAgJxCSc1A4arV8bYPWN8YalXsiZyhsta5+\nl+qa2jS9ukILZ02Q15OaoFzy4osqq61V6Z/+5Hg9Ggyqc8EChebPlwKBAZ8n4SOkFJs1PvHQ0Vpc\nQzEWAAAAgNyQnfN1MCBr4wF5W2u/83klyUrqDEe1flurlq9tkLXDW97saWxU+fz5qpg92zEgW59P\nnV/9qto2bVLo618fNCBLsSOk/Ake20QxFwAAAIBcw0xyjtnS0h5rlY4MHn5DEasNjW3a2tKuSZXu\nlyab995T4Ac/kP/OO2W6upxfI95YHa2uTvh5BztCqjeKuQAAAADkImaSc8zql5sVCkcTujcUjmr1\nK83uXqCjQ/5bblHF1KkK3HqrY0DunjlTbU8/rfbbbnMVkKUPjpCaMT6ogNejvovBjSS/12jGeIq5\nAAAAAOQeZpJzzMam1oSPULKSNjS2JXZzJCLfr3+tsm9/e+DG6qOP/qCxehjhtecIqa0t7Vr1crM2\nNrVRzAU+UqWVAAASz0lEQVQAAAAgLxCSc4zbI5S6hpp1TkFjdTKMMZpUOUJL5lDKBQAAACB/EJJz\njNsjlHyDlGQN2VhdUaHOK64YsrEaAAAAAIoFITnHuD1CaXp1Rb+Pe7ZtU+Db35Z/1SrHx1mfT6F5\n89R5xRWyY8YMb8AAAAAAUEAIyTlm7pRK1TW1qTOB8q6+RyiZ995T4MYb5b/rroEbq88+W52LF7su\n5AIAAACAYkBIzjFJHaHU0SH/ihUK3HSTPG3ORV7dM2eqo7ZWkWOPTdfQAQAAACDvcQRUjnF1hNKJ\nVfLff7+Cxx+v8muucQzI4aOP1u7f/EZ7HnyQgAwAAAAAQ2AmOQcNeYTS5LE6+qUNKqv5orx//7vj\nc6SjsRoAAAAACh0hOUcNdIRSyYsvquySKwZurA4G1blgAY3VAAAAAJAEQnKecNtYba3Vlua9WvVS\ns+q2t6orbOXzGk2rCuqsKZWaOLZcxvRdzA0AAAAAxY2QnOMSaqw+5xx1Xn31vsbqcNRq+doGrW+M\nLdPuqf8Kha3W1e9SXVObpldXaOGsCfJ6CMoAAAAA0IPirlwVjcp/yy2qmDpVgZ/+1DEgd8+cqban\nn1b7bbftC8jWxgPytlaFegXkHlZSZziq9dtatXxtg6xN5ERmAAAAACgOhORc5fGo9M9/dt1YvaWl\nXRsa2wY9PkqSQhGrDY1t2trSntJhAwAAAEA+IyTnsI7aWtle+4ajhxyivbfeqt1r1yo8Z47ksKd4\n9cvNCoWjCT1/KBzV6leaUzZeAAAAAMh3hOQcFpk8WV3nnadoRYXaa2vVWlenrvPOG/RIp41Nrf2W\nWA/EStrQ2H+mGgAAAACKFcVdOa6jtlYd110n+6EPJXR/V9jdHuOuBGedAQAAAKAYEJJznB071tX9\nPq9RyEVQ9nlZTAAAAAAAPUhIBWZaVVCJHupkJE2vrkjncAAAAAAgrxCSC8zcKZXyJzg77PMazZ1c\nmeYRAQAAAED+ICQXmEljyzW9ukL+ksHnk/0lRjOqg5o4tjxDIwMAAACA3EdILjDGGC2cNUEzxgcV\n8Hr6Lb02kvxeoxnjg1o4a4KMwzFSAAAAAFCsKO4qQF6P0aLZE7S1pV2rXm7WxqY2dYWj8nk9ml5d\nobOmVGri2BHZHiYAAAAA5BxCcoEyxmhS5QgtmXNotocCAAAAAHmD5dYAAAAAAMQRkgEAAAAAiCMk\nAwAAAAAQR0gGAAAAACCOkAwAAAAAQBwhGQAAAACAOEIyAAAAAABxhGQAAAAAAOIIyQAAAAAAxBGS\nAQAAAACIIyQDAAAAABBHSAYAAAAAII6QDAAAAABAHCEZAAAAAIA4QjIAAAAAAHGEZAAAAAAA4gjJ\nAAAAAADEEZIBAAAAAIgjJAMAAAAAEEdIBgAAAAAgjpAMAAAAAEAcIRkAAAAAgDhCMgAAAAAAcYRk\nAAAAAADiCMkAAAAAAMQRkgEAAAAAiCMkAwAAAAAQR0gGAAAAACCOkAwAAAAAQFxOhGRjTLUx5nJj\nzCPGmEZjTMgYs9sY86Ix5rvGmIOyPUYAAAAAQOHzZnsAxpgqSQ2STK8Pt0kaIemY+I/5xpi51tqn\nMz9CAAAAAECxyIWZ5JL4z7+XdLakD1lrg5LKJZ0qqV7SGEkPG2MOzM4QAQAAAADFIBdC8vuSPm6t\n/Q9r7Spr7fuSZK3tstY+plhQ7pRUIemSLI4TAAAAAFDgsh6SrbWt1toXB7m+RdKG+G+Py8yoAAAA\nAADFKOshOUE74z+XDHoXAAAAAADDkPMh+f9v7/6D7CrvOo6/v8mSZBOS0GjSRoew1KlJKqltKDQU\nfwDBDgWp1tRxdEYn0Uqd8QfMWMFO62hFh0rHgVocbQWKqMU/CqJMqe2Yaaw/SNpJUigkQRzYJFZJ\nIjS/yCYhydc/znPhmuze7CbZe+6P92vmzrnnnOfe+WZ4uHs+5znnORExAFxZVp+usxZJkiRJUm+L\nzKy7hpYi4mbgbuAEsCwzt5ym/cbRtt97771LhoaGZk5CieoBhw4dAmDmTLuIupN9WL3AfqxeYD9W\nt+uBPrxp5cqVZ3WbbkePJEfE24A7yuo9pwvIkiRJkiSdjdqfkzyWiFgIPAoMAhuB28bzucwc9azB\n2rVrNw4ODi5funTpuStSPWPTpk0ALF++vOZKpDNjH1YvsB+rF9iP1e26uQ9v3bqVkZGRs/6ejhxJ\njoh5wFeAi4HngBsy83C9VUmSJEmSel3HheSImAt8GbgE2AFcm5m76q1KkiRJktQPOiokR8Qs4HHg\nncCLVAF5R71VSZIkSZL6RceE5IgYBB4D3k31XORrM/O5equSJEmSJPWTjgjJETENeAS4GtgLvCcz\nn6m3KkmSJElSv6k9JEfEVODzwHXAAeC9mbmp3qokSZIkSf2oEx4BdSWwqrw/D3g0IsZquzMzL2tL\nVZIkSZKkvtMJIbl5NHtGeY3Fx0BJkiRJkiZN7SE5M9cBYw4dS5IkSZLULrXfkyxJkiRJUqcwJEuS\nJEmSVBiSJUmSJEkqDMmSJEmSJBW1T9ylM5OZbNtziC88tZuv/9c+jh5Lpg0E77pwLh9YtoDF82fS\n4lFakiRJkqRRGJK70LETyZ3rhnlix36OHjtBlu1HjiX/8sJevr5zPysWzeHWq4YYmGJQliRJkqTx\n8nLrLpNZAvL2fRxpCsiv7QcOHzvBE9v3cee6YTJPbiFJkiRJGoshucts23OI9Tv2c+R46/B75Hiy\nfsd+nt1zqE2VSZIkSVL3MyR3mYe/tZsjx06Mq+2RYyd4+Ondk1yRJEmSJPUOQ3KX2bBz3ymXWI8l\ngfU79k9mOZIkSZLUUwzJXebosYndY3x0nKPOkiRJkiRDcteZNjCx2aqnDfifWJIkSZLGywTVZd51\n4VzGG5MDWLFozmSWI0mSJEk9xZDcZVYtW8D0cY4OTxsIVl2yYJIrkiRJkqTeYUjuMkvmz2TFojlM\nn9p6PHn61OCKRXNZPH9mmyqTJEmSpO5nSO4yEcGtVw1xxUVzmTEw5ZRLrwOYPhBccdFcbr1qiIiJ\n3cMsSZIkSf1soO4CNHEDU4KPXD3Es3sO8YVv7WbDzv0cPXaCaQNTWLFoDh9YtoDF82fVXaYkSZIk\ndR1DcpeKCJYsmMXHVl5cdymSJEmS1DO83FqSJEmSpMKQLEmSJElSYUiWJEmSJKkwJEuSJEmSVBiS\nJUmSJEkqDMmSJEmSJBWGZEmSJEmSCkOyJEmSJEmFIVmSJEmSpMKQLEmSJElSYUiWJEmSJKkwJEuS\nJEmSVBiSJUmSJEkqDMmSJEmSJBWGZEmSJEmSCkOyJEmSJEmFIVmSJEmSpMKQLEmSJElSYUiWJEmS\nJKkwJEuSJEmSVBiSJUmSJEkqDMmSJEmSJBWGZEmSJEmSCkOyJEmSJEmFIVmSJEmSpCIys+4a2mLt\n2rUvRcS8GTNm1F2KOtDIyAgAg4ODNVcinRn7sHqB/Vi9wH6sbtfNffjw4cNk5ssrV678rrP5noFz\nVVAX2J+ZjIyMDNddiDrP8PDwEoChoaFtddcinQn7sHqB/Vi9wH6sbtflfXgI2H+2X9I3I8lSKxGx\nESAzL627FulM2IfVC+zH6gX2Y3U7+7D3JEuSJEmS9BpDsiRJkiRJhSFZkiRJkqTCkCxJkiRJUmFI\nliRJkiSpcHZrSZIkSZIKR5IlSZIkSSoMyZIkSZIkFYZkSZIkSZIKQ7IkSZIkSYUhWZIkSZKkwpAs\nSZIkSVJhSJYkSZIkqTAkqy9FxKKIuCUiHouIHRFxJCIORMSTEfGJiFhYd43SREXE+RGxMyKyvFbX\nXZM0XhGxOCI+HRHPRsQrEbEvIrZGxP0R8aN11ye1EhFTImJNRPxTROyJiFcjYm9EbIiIj0bE7Lpr\nVH+LiNkR8b6IuD0ivhQR/9t0vLBkHJ+fEhE3RcQTpW8fiIjNEfFbETGtHf+GdorMrLsGqa0i4kJg\nOxBNm/cDs4CpZf07wKrM/Gqby5POWETcDdzctGlNZj5QUznSuEXEbwCfBBoHWgeBAWBGWb8vMz9Y\nR23S6UTETOAx4JqmzfuAObx+rLEduCYzn29zeRIAEfGTwN+NsXtpZm5r8dnzgEeB68umo8BxYLCs\nf4Oqfx88R+XWzpFk9aNGEP4i8NPAvMycC8yk+p//BeANwKMR8aZ6SpQmJiKWA78GbKi7FmkiIuJD\nwKeoQvEfARdl5uzMHAQWAr8A/HuNJUqn8ztUATmBjwAXZOYFVCd5fhbYC1wE3FtbhVJlN/A48HHg\npgl87g+ojpEPA6upjplnATcCLwOXAZ85l4XWzZFk9Z2ImAsMZeaTY+xfAmym+uP2e5n58XbWJ01U\nREyhCsfvoPpDtansciRZHS0ihoBnqA64bsrMv6i1IOkMRMR2YBFwf2b+0ij7VwOfK6vzMvM7bSxP\nAiAipmbm8ab1IaqBIWgxklwGjIaB6cDNmfknJ+3/CapR5gTenplPnfPia+BIsvpOZu4bKyCX/duA\n9WX10vZUJZ2VXwfeCfxZZm6uuxhpAm6mCsgbDMjqYm8sy7F+fzc2vZ85ybVIo2oOyBO0iiog7wM+\nO8r3/j3wH1S3FvzcGRfYYQzJ0uheKsupLVtJNYuI7wVuB3YBH6u5HGmiGgdUD9VahXR2hsvyHWPs\nb5xw35WZ3578cqRz6uqy/FpmHh6jzVfK8pox9ncdQ7J0kogYAK4sq0/XWYs0Dp8GZgMfzsx9dRcj\njVdEfB+woKxujogV5YkDL0XESERsi4hPRsSCVt8jdYDGVRBrIuK3y21dRMS0iPgZ4C6qS1E/XFeB\n0ll4a1k+06LNlrJcGhHRol3XMCRLp/pV4E3ACeAva65FGlNE3Ai8H1iXmX9ddz3SBL2l6f1VwL8C\nPw6cRxUoFlOFim9GxA+0vTpp/O4G/pTqctM7gL0RsRcYAf4W2Aa8z99pdanGY1H/u0Wbxr7zy6vr\nGZKlJhHxNqo/cAD3ZOaWVu2lukTELOAe4FWqEztSt7mg6f3vUt3TtiIz51AdZF1PNRPrQuDhcpWP\n1HHKvZ63AL8JHCub5/L6cfZsYH4NpUnnwqyyHGnR5lDTe0Oy1EsiYiHV7HyDVJNs3FZvRVJLv081\nm+pdnsxRl2o+Bkng/Zm5ASAzT2Tml4BfLPsXAz/V5vqkcSmz//4b8MfA3wA/SBUU3kL1SKg3A/dH\nxB1jfomkjmJIloCImEc16cDFwHPADS0mJ5BqFRFvp5oVeCdVWJa60cGm9/+Ymc+e3CAzv0g1wgyw\nsi1VSRP3IHA5cF9mrs7MpzLzlcz8z8z8BPCh0u5Wbx1QF3qlLAdbtGmetf3gmK26iCFZfa9MsPFl\n4BJgB3BtZu6qtyqppU9Rzbz+USAi4vzmV1O76WWbjxxRJ2q+v+2UgDzKvgsnsRbpjETEW4EfK6t3\njdYmM/+K6qkZU4Ab21SadK40fqu/p0Wbxr6DmXlgkutpC0Oy+lq5r/NxqmfMvkgVkHfUW5V0WheV\n5YPAgVFeDX9e1r0cW51oC9UEieOVk1WIdBaWNr1/oUW758tyaPJKkSZF4xii1VUQjRmwt05yLW1j\nSFbfiohB4DHg3VRneK/NzOfqrUqS+kNmHgKeKKuLWzRt7Bue1IKkM9N8omdRi3aNk5s9McqmvvLV\nsvzhiJgxRpvG1RRr21BPWxiS1ZciYhrwCNUD0vcC78nMVs9/kzpGZg5lZoz1amq6pmwbqqtW6TQe\nLMvrIuKUoBwRNwDfX1Yfb1tV0vg92fT+l0drUB7X13je94ZJr0g6tx4BjlA9keCDJ+8s/Xsx1dU+\nD7W3tMljSFbfiYipwOeB66jO6L43MzfVW5Uk9aX7qS7lmwo8EhGXA0TElIi4DrivtFuPIVkdKDOf\np5r4E+CWiLgjIhYAlDkhVgMPlP3DwD+0u0apISK+u/EC3tC064LmfRHxWkbMzBep5kIBuDMifr4c\nSxMR1wOfK/seysyn2vHvaIfI9BYf9ZeI+BHgn8vqYWBfi+Y7M/Oyya9KOnciovHDviYzH6izFul0\nIuLNwDpen5jrAFVobkw4t4Xqap9vt7866fTKIyTX8v/vTz5A9Xzkhl1UJ+U3t7M2qVnT8cHpXJyZ\nw02fO4/qManXl01HgOO8/jv9DWBlr0zaBY4kqz819/sZwBtbvOa3vTpJ6iNlJG4Z8IdUgXiA6rK9\nTVTPmL3cgKxOlpn/A1wK3AJ8DXiZKjzsp+rHtwPLDMjqVpn5KtXM7L9CdWXPEarf6W8CtwE/1EsB\nGRxJliRJkiTpNY4kS5IkSZJUGJIlSZIkSSoMyZIkSZIkFYZkSZIkSZIKQ7IkSZIkSYUhWZIkSZKk\nwpAsSZIkSVJhSJYkSZIkqTAkS5IkSZJUGJIlSZIkSSoMyZIkSZIkFYZkSZIkSZIKQ7IkSZIkSYUh\nWZIkSZKkwpAsSZIkSVJhSJYkSZIkqTAkS5IkSZJUGJIlSZIkSSr+D9zchnzj4GdbAAAAAElFTkSu\nQmCC\n", "text/plain": [ "" ] }, "metadata": { "image/png": { "height": 361, "width": 484 } }, "output_type": "display_data" } ], "source": [ "x = np.linspace(1, 10, 100)\n", "y = 2 + 1.2 * x + rstate.normal(loc = 0, scale = 0.9, size = 100)\n", "X = x.reshape(-1, 1)\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "\n", "y_pred = linear.predict(X)\n", "print('rsquared:', r2_score(y, y_pred))\n", "print('mse:', mean_squared_error(y, y_pred))\n", "\n", "plt.plot(x, y_pred, 'r')\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We repeat the above code, but this time with a different range of x. Leaving everything else the same:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rsquared: 0.113636419988\n", "mse: 0.853185480419\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7oAAALSCAYAAADz1K3uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X9sHGme3/fP011qUpTEnp0ZciTN\nkKIkSqQkNu+iu5zIu/hCrezEvsM6uGh9QAzYWAcBcsk59j8Bc8oOcoDvkkV0gQPDBpzA68vGCeIg\nkewAm1s7vpusAB2sH8jqFmxKIjXUkCJH0gw52iFbEsUmu+vJH93NH+KvblZ1d3XV+wUImiF7qp8h\nq7vrU8/zfL/GWisAAAAAAMIiVu8BAAAAAADgJ4IuAAAAACBUCLoAAAAAgFAh6AIAAAAAQoWgCwAA\nAAAIFYIuAAAAACBUCLoAAAAAgFAh6AIAAAAAQoWgCwAAAAAIFYIuAAAAACBUCLoAAAAAgFAh6AIA\nAAAAQoWgCwAAAAAIFYIuAAAAACBUCLoAAAAAgFBx6j2ASnzyySeTklolTdV5KAAAAAAA/3VJyly6\ndOm4l4M0VNCV1GqMebe5ufndeg+kEm/evJEk7d+/v84jQRRx/qGeOP9QT5x/qCfOP9RTI59/S0tL\nstZ6Pk6jBd2p5ubmd8+cOVPvcVTk3r17kqRGGzfCgfMP9cT5h3ri/EM9cf6hnhr5/Hv48KHevHkz\n5fU47NEFAAAAAIQKQRcAAAAAECoEXQAAAABAqBB0AQAAAAChQtAFAAAAAIQKQRcAAAAAECoEXQAA\nAABAqBB0AQAAAAChQtAFAAAAAIQKQRcAAAAAECoEXQAAAABAqBB0AQAAAAChQtAFAAAAAIQKQRcA\nAAAAECoEXQAAAABAqBB0AQAAAAChQtAFAAAAAIQKQRcAAAAAECoEXQAAAABAqBB0AQAAAAChQtAF\nAAAAAIQKQRcAAAAAECoEXQAAAABAqDj1HgAAAACAnVlrNTa3qGsjs7r7+YKWc1YJx+hCR1LfTrWr\np61Fxph6DxMIDIIuAAAAEGA51+rqjSndms5oOefKFr+ezVndnJzX3ZmMBjpbNTzUJSdG2AUkli4D\nAAAAgWVtMeQ+WVB2Xchd/b6kpZyrW08WdPXGlKx9+xFANDGjCwBAA2M5IxBuY3OLuj2dUTa/c4DN\n5q1uT2c0Preo3vYDNRodEFy+z+gaY3qMMX/fGDNujHltjFkwxjw0xvyhMebf9vv5AACIqpxr9b0f\nT2n4RxP606l5ZXNWVmvLGYd/NKHv/XhKOZcZHqBRXU/PKptzy3psNufq+uhslUcENAZfg64x5m9J\nGpH0NyWdluRKSkjqlfQ3JP01P58PAICoYjkjEA13ZhY2vb63YyXdns5UczhAw/At6Bpj/mNJf0+F\n5dD/raRj1tpD1tr9ko5I+uuS/rVfzwcAQJTtZTkjgMaznKvsJtVymbO/QNj5EnSNMV2S/m7xX3/L\nWvs71trp0vettV9Ya/8Xa+0f+vF8AABEHcsZgWhIOJXtsU841JoFJP9mdP+2pBZJd6y1/8inYwIA\ngG2wnBGIhgsdSZUbdY2kgc7Wag4HaBh+Bd2/Wvz7n/p0PAAAsAOWMwLRcDnVrqYyZ2kTjtHlvvYq\njwhoDJ6DrjHmpKTSK+rPjDEDxpgfGmNeGGPeGGPGjDF/YIzhVQcAgE9YzghEQ29biwY6W9UU3/k1\n3xQ3GuxMqqetpUYjA4LNeK3CaIz5i5L+RfFff1fSfyUpLumlCoWp9he/91zSX7DW3i/jmD/Z6uvf\n//73e7u6uhru1bu4WCgA0tLScENHCHD+oZ44/6rn+cusXmXzZT/+YFNcRw41VXFEwcP5h3ry8/yz\nVvryVVavlvPa6tLdGOlgIq4PDjaJttmQQvH+d+/SpUu/4OUAftzefWfdP/+upEeSBqy1rZIOSvo1\nSbMqVF6+boxxfHhOAAAi7RvN+8q+oDWm8HgAjckY6fChJn3U2qyDTfHV174xhZtYHyWbdfgQIRdY\nz4/QuT4sW0m/Ya0dlyRrrSvpXxhj/kNJ/7ekHkn/vqT/Y6cDWmu3TO+ffPLJT/bv33/+zJkzPgy7\ndu7duydJOn/+fJ1Hgiji/EM9cf5Vj7VW3/txsY/uDi2GmuJGg8eS+iu/1CUTsatgzj/UE+cf6qmR\nz7+HDx/qzZs3no/jx4zuq3X//C9LIXc9a+0fqTDTK0mXfHhOAAAizRij4aEuDR5LqtmJbarKaiQ1\nOYWQOzwUvZALAIg2P2Z0n637500h963vnZbU4cNzAgAQeU7M6MrFLo3PLepaelZ3ZjJazrlKODEN\ndLbq26l29bQdqPcwAQCoOT+C7gNJrsqfHfZW/QoAAKwyxqi3/YA+vnS83kMBACAwPC9dttYuSrpV\n/NeeHR5a+t6U1+cEAAAAAGA7fjXV+yfFv/+iMWZT2DXG/LoKy5Yl6Uc+PScAAAAAAJv4FXT/UIUl\nzHFJ/8wY80uSZIyJFfvs/uPi426LoAsAAICQsdbq4exr/d6fTOpbP/ipPv1qURMvFvX7n0xqbPa1\n7FYNcAFUjS89ba21OWPMtyTdkHRW0h1jzEsVgm+pS/EDSd+2vMoBAAAQIjnX6uqNKd2aLhSEK13s\nWivdnJzX3ZmMBjpbNTzUJSdGBXSgFvya0ZW19jNJKUn/tQqh1lGh8NQ9SVck/ZK19qlfzwcAAADU\nm7XFkPtkQdl1IXf1+5KWcq5uPVnQ1RtTzOwCNeLLjG6JtXZB0sfFPwAAAECojc0t6vZ0Rtn8zgE2\nm7e6PZ3R+Nyiettp+wVUm28zugAAAEDUXE/PKptzy3psNufq+uhslUcEQCLoAgAAAHt2Z2Zh03Ll\n7VhJt6cz1RwOgCKCLgAAALBHy7nK9twulzn7C8Abgi4AAACwRwmnsirKCYfLb6AWeKUBAAAAe3Sh\nI6lyo66RNNDZWs3hACgi6AIAAAB7dDnVrqYyZ2kTjtHlvvYqjwiARNAFAAAA9qy3rUUDna1qiu88\nr9sUNxrsTKqnraVGIwOijaALAAAA7JExRsNDXRo8llSzE9u0jNlIanKMBo8lNTzUJWMq29MLYG+c\neg8AAAAAaGROzOjKxS6Nzy3qWnpWd2YKLYSMkX71xDv6dqpdPW0H6jtIIGIIugAAAIBHxhj1th/Q\nx5eOS5Lu3bsnSfrN88frOSwgsli6DAAAAAAIFYIuAAAAACBUCLoAAAAAgFAh6AIAAAAAQoViVAAA\nAABQZ9Zajc0t6trIrO5+vqDlnFXCMbrQkSxW7m6hPVUFCLoAAAAAUEc51+rqjSndms5oOefKFr+e\nzVndnJzX3ZmMBjpbNTzUJSdG2C0HS5cBAAAAoE6sLYbcJwvKrgu5q9+XtJRzdevJgq7emJK1bz8C\nWyHoAgAAAECdjM0t6vZ0Rtn8zgE2m7e6PZ3R+NxijUbW2Ai6AAAAAFAn19Ozyubcsh6bzbm6Pjpb\n5RGFA3t0AQAAEGgU6UGY3ZlZ2LRceTtW0u3pTDWHExoEXQAAAAQWRXoQdsu5yvbcLpc5+xt1LF0G\nAABAIFGkB1GQcCq7QZNwiHDl4KcEAACAQKJID6LgQkdS5UZdI2mgs7WawwkNgi4AAAACiSI9iILL\nqXY1lTlLm3CMLve1V3lE4UDQBQAAQCBRpAdR0NvWooHOVjXFd57XbYobDXYm1dPWUqORNTaCLgAA\nAAKJIj2IAmOMhoe6NHgsqWYntmkZs5HU5BgNHktqeKiLCuNlouoyAAAAAinhGGUrCLsU6UGjcmJG\nVy52aXxuUdfSs7ozU6gynnBiGuhsLbbROlDvYTYUgi4AAAAC6UJHUjcn58tavkyRHjQ6Y4x62w/o\n40vH6z2UUOC2FwAAAAKJIj0A9oqgCwAAgECiSA+AvSLoAgAAIJAo0gNgr9ijCwAAgMCiSA+AvSDo\nAgAAINAo0gOgUixdBgAAAACECkEXAAAAABAqBF0AAAAAQKgQdAEAAAAAoULQBQAAAACECkEXAAAA\nABAqBF0AAAAAQKgQdAEAAAAAoULQBQAAAACECkEXAAAAABAqBF0AAAAAQKgQdAEAAAAAoULQBQAA\nAACEilPvAQAAAHhhrdXY3KKujczq7ucLWs5ZJRyj3zqe1Tea98laK2NMvYcJAKghgi4AAGhYOdfq\n6o0p3ZrOaDnnyha/ns1Zvcrm9Xo5r+/9eErDQ11yYoRdAIgKli4DAICGZG0x5D5ZUHZdyN34GOnW\nkwVdvTEla7d6BAAgjAi6AACgIY3NLer2dEbZ/M4BNpu3uj2d0fjcYo1GBgCoN4IuAABoSNfTs8rm\n3LIem825uj46W+URAQCCgqALAAAa0p2ZhS2XK2/FSro9nanmcAAAAULQBQAADWk5V9me2+UyZ38B\nAI2PoAsAABpSwqmsinLC4bIHAKKCd3wAANCQLnQkVW7UNZIGOlurORwAQIAQdAEAQEO6nGpXU5mz\ntAnH6HJfe5VHBAAICoIuAABoSL1tLRrobFVTfOd53aa40WBnUj1tLTUaGQCg3gi6AACgIRljNDzU\npcFjSTU7sS2XMRsjDR5LanioS8ZUtqcXANC4nHoPAAAAYK+cmNGVi10an1vUtfSs7sxktJxzlXBi\nOtgU1zf279Nv/tLxeg8TAFBjBF0AANDQjDHqbT+gjy9tDLT37t2r04gAAPXG0mUAAAAAQKgQdAEA\nAAAAoULQBQAAAACECkEXAAAAABAqBF0AAAAAQKhQdRkAGpi1VmNzi7o2Mqu7ny9oOWeVcIwudCT1\n7VS7etpa6B0KAAg9Pg/xNoIuADSonGt19caUbk0X+oba4tezOaubk/O6O5PRQGerhoe65MT4cAcA\nhBOfh9gKS5cBoAFZW/xQf7Kg7LoP9dXvS1rKubr1ZEFXb0zJ2rcfAQBA4+PzENsh6AJAAxqbW9Tt\n6Yyy+Z0/sLN5q9vTGY3PLdZoZAAA1A6fh9gOQRcAGtD19KyyObesx2Zzrq6PzlZ5RAAA1B6fh9gO\nQRcAGtCdmYVNy7O2YyXdns5UczgAANQFn4fYDkEXABrQcq6yPUbLZd7tBgCgkfB5iO0QdAGgASWc\nyqpGJhze7gEA4cPnIbbDbxoAGtCFjqTK/Wg3kgY6W6s5HAAA6oLPQ2yHoAsADehyql1NZd6VTjhG\nl/vaqzwiAABqj89DbMep9wAAoJ6stRqbW9S1kVnd/XxByzmrhGN0oSOpb6fa1dPWImOC11y+t61F\nA52thb6BO7RUaIobDXYm1dPWUsPRAQBQG3weYjvM6AKIrJxr9b0fT2n4RxP606l5ZXNWVlI2Z3Vz\ncl7DP5rQ9348pZwbvObyxhgND3Vp8FhSzU5s07ItI6nJMRo8ltTwUFcgwzoAAF7xeYjtMKMLIJKs\ntbp6Y2rbO8BW0lLO1a0nC7p6Y0pXLgbvw9GJGV252KXxuUVdS8/qzkxGyzlXCSemgc7W4oz0gXoP\nEwCAquLzEFsh6AKIpLG5Rd2ezuy4zEmSsnmr29MZjc8tqrc9eB+Sxhj1th/Qx5eO13soAADUDZ+H\neBtLlwFE0vX0rLJl9tLL5lxdH52t8ogAAADgF4IugEi6M7OgcnfeWkm3pzPVHA4AAAB8RNAFEEnL\nucoKTC2XOfsLAACA+iPoAoikhFNZYalEmT36AAAAUH9cuQGIpAsdyU0tCLZjJA10tlZzOAAAAPAR\nQRdAJF1OtaupzFnahGN0ua+9yiMCAACAXwi6ACKpt61FA52taorvPK/bFDca7Eyqp62lRiMDAACA\nVwRdAJFkjNHwUJcGjyXV7MQ2LWM2kpoco8FjSQ0PdcmYyvb0AgAAoH6ceg8AAOrFiRldudil8blF\nXUvP6s5MRss5VwknpoHOVn071a6etgP1HiYAAAAqRNAFEGnGGPW2H9DHl47XeygIKGutxuYWdW1k\nVnc/X9ByzirhGF3oSBZvhrQw4w8AQMAQdAEA2EbOtbp6Y0q3pguz/aXuy9mc1c3Jed2dyWigs1XD\nQ11yYoRdAACCgj26AABswdpiyH2yoOy6kLv6fUlLOVe3nizo6o0pWfv2IwAAqB1rrR7Ovtbv/cmk\nJl4s6tOvFvWtH/xUv//JpMZmX0fuc4oZXQAAtjA2t6jb0xll8ztfGGTzVrenMxqfW1RvO3u6AQC1\n9/YKpNOdha9HeQUSQRcAgC1cT88qm3PLemw25+r66Ky++83Ne73Z4wsAqKYNK5C2uDn79gqkKxej\n0U2CoAsAwBbuzCxsWq68HSvp9nRm09fZ4wsAqDZWIG2NPboAAGxhOVfZXqblt2Z/2eMLAKiFvaxA\nigKCLgAAW0g4lc2wJpyNH6l7ucMOAECl/FiBFEYEXQAAtnChI6lyo66RNNDZuuFr3GEHANSC1xVI\nYUXQBQBgC5dT7WpyyvuYTDhGl/vaN3yNO+wAgFrwugIprKLxfwkAQIV621o00NmqpvjOFxBNcaPB\nzqR62lo2fJ077ACAWvC6AimsqLoMBBhtSYD6McZoeKhLV29MFfbavlVQyqhwF32wM6nhoc2tGhKO\nUbaCsBuVO+wAAH9dTrXr7kxGS2XcMN1qBVJYEXSBgKItCVB/TszoysUujc8t6lp6VndmCq/HhBPT\nQGdr8YbT1i0aLnQkdXNyvqzly1G6ww4A8FdpBdJ2fXRLtluBFFYEXSCAaPwNBIcxRr3tB/TxpeMV\n/XfcYQcArFetlXpbrUDa8H3tvAIprAi6QADR+BtofNxhBwCUVHul3tsrkIz7WtZKTWWsQAorNgQB\nAURbEqDxle6wDx5LqtmJbSoUYiQ1OUaDx6J1hx0AombDSr236j1Im1fqWVtZMcOS9SuQut9r0an3\nW/TD7/ycvvvN45ELuRIzukAg0ZYECAcve3wBAOHASr36IOgCAURbEiA89rrHFwAQDntZqffdb/KZ\n4RVLl4EAovE3AABAOLBSrz6Y0QUCiLYkAAAA4eDXSr1qVW0OK4IuEEC0JQEAAAiHhGOUrSDsbrVS\nr9pVm8OI9Y5AAJXakjTFd36joi0JAABAsF3oSG6qvL+drVbq1apqc9gQdIEAoi0JAABAOFxOtaup\nzHoqW63U20vVZrB0GQgs2pIAAAA0vtJKvVtPFnYMq9ut1NtL1ea/9I6nIYcCQRcIMNqSAAAANLbS\nSr2rN6YKM7NvLT82KszkDnZuvVJvL1WbCboEXQAAAACoKi8r9fyq2hw1BF0AAAAAqLK9rtTbW9Xm\nfIWjCx9filEZY75jjLG7/Hnlx3MBAAAAQFR4rdocVX5XXV6R9OUOfwAAAAAAZfJatTmq/F66/K+t\ntUM+HxMAgD2z1mpsblHXRmZ19/MFLeesEo7RhY5kcU9UCy26AACBtZeqzX/2eQ0HGFDs0QUAhFbO\ntbp6Y0q3pgtFP0qXB9mc1c3Jed2dyWigs1XDQ11yYoRdAEDweK3aHFUEXQBAKFlbDLnb3AG3kpZy\nrm49WdDVG1O6cpGLAwCoFlbXeOOlanNUEXQBAKE0NrdYuPO9wzIvScrmrW5PZzQ+t6jedi4SAMBv\nrK7xx16rNkeV38Wozhlj7htj3hhjXhpjRo0x/70xht8GAKCmrqdnlS2zl2A25+r66GyVRwQA0bNh\ndc1bS26lzatrrK2sZyywHePHyWSM+Y6k/6n4r1bS15JatTZj/EbSf2St/d/KPN5Ptvr697///d6u\nrq4Wb6OtvcXFRUlSS0vDDR0hwPmHeqrn+TfxYlGVfMQZI3W/x+skTHj/Qz1x/hUsrbj6PLNU1vux\nMdJHrc1q3uf3XFz0hOD8u3fp0qVf8HIAv86iZ5J+V1KfpGZr7XuSDkr6dUkPJO2X9D8bY37Vp+cD\nAGBHld7HZRIBAPz39dJK2e+v1hYeD/jBlxndHZ/AmKSk/09St6Rb1tpf3uuxPvnkk5/s37///Jkz\nZ3wbXy3cu3dPknT+/Pk6jwRRxPmHeqrn+fetH/xU2Vz5n3FNTkw//M7PVXFEqDXe/1BPnH8FvBfX\nRyOffw8fPtSbN28CM6O7LWvtgqT/pvivA8aY96v9nAAAXOhIqtySJkbSQGdrNYcDAJG0XEHILTy+\nvNoKwG5qtQD+TvFvI4nCVACAqrucaleTU97HXMIxutzXXuURAUD0JJzKqignynzfBnbDmQQACKXe\nthYNdLaqKb7zRVZT3GiwM6metoYt2AEAgcXqGtRLrYLuhXX/PFWj5wQARJgxRsNDXRo8llSzE9t0\noWUkNTlGg8eSGh7qkjH0bgQAv7G6BvXi7P6QnRljjN2hopUxplXS7xT/9a61ds7rcwIAUA4nZnTl\nYpfG5xZ1LT2rOzMZLedcJZyYBjpb9e1Uu3raDtR7mAAQWqXVNbeeLCib336/Lqtr4DfPQVfSMWPM\n/y7pH0n6Y2vttCQZYxKSvinpDySdluRKuuLD8wEAUDZjjHrbD+jjS5SIAIBaK62uuXpjSrenM8rm\nXK2Pu0aFmdzBTlbXwF9+BF2psDT5giQZY5YkvZbUKmlf8fuLkn7LWvv/+vR8AAAAABoAq2tQD34E\n3S8l/S1J/5akn5PUJimpQtj9VNInkv6htfaJD88FAAAAoMGwuga15jnoWmvfSPr7xT8AAAAAANQV\n7YUAAAAAAKFC0AUAAAAAhApBFwAAAAAQKgRdAAAAAECoEHQBAAAAAKFC0AUAAAAAhApBFwAAAAAQ\nKgRdAAAAAECoEHQBAAAAAKFC0AUAAAAAhApBFwAAAAAQKgRdAAAAAECoEHQBAAAAAKFC0AUAAAAA\nhApBFwAAAAAQKgRdAAAAAECoEHQBAAAAAKFC0AUAAAAAhIpT7wEAAAAA8MZaq7G5RV0bmdXdzxe0\nnLNKOEYXOpL6dqpdPW0tMsbUe5hAzRB0AQAA6oiAAq9yrtXVG1O6NZ3Rcs6VLX49m7O6OTmvuzMZ\nDXS2anioS06McwnRQNAFAACoEwIKvLK2eA49WVA2bzd/X9JSztWtJwu6emNKVy52ceMEkcAeXQAA\ngDrYEFDWhdzV72tjQLF2c4gBxuYWdXs6s2XIXS+bt7o9ndH43GKNRgbUF0EXAACgDggo8MP19Kyy\nObesx2Zzrq6PzlZ5REAwEHQBAADqgIACP9yZWdi0GmA7VtLt6Uw1hwMEBkEXAACgDggo8MNyrrIl\n7ctl3lwBGh1BFwAAoA4IKPBDwqmssFTC4fIf0cCZDgAAUAcEFPjhQkdS5Z5JRtJAZ2s1hwMEBu2F\nAAAA6uBCR1I3J+fLWr4c9IBCL+D6uZxq192ZjJbKmPFPOEaX+9prMCqg/gi6AIBtcfEKVE9YAgq9\ngOurt61FA52t2/bRLWmKGw12JtXT1lLD0QH1wxoYAMCWcq7V9348peEfTehPp+aVzVlZrV28Dv9o\nQt/78ZRyLr09gb0oBZSm+M7hL8gBhV7A9WeM0fBQlwaPJdXsxDYtYzaSmhyjwWNJDQ91cXMSkUHQ\nBQBswsUrUH1hCCj0Ag4GJ2Z05WKXrv5at/7c8XfUVDyfmpyYfvXEO/rvfv2U/stvHmdGHZHC0mUA\nwCZ7uXjtbT9Qo9EB4VEKKONzi7qWntWdmcLy34QT00Bna3GLQHBfW3vpBfzdbx6v8qiiyRij3vYD\n+vgSP19AIugCALbAxStQO40cUCrtBXxzcl7f+sFP2e8PoOoIugCATSq9eL09nanmcAAEVKW9gF1b\n2OcvUawKQHWxRxcAsEmlF6/LZc7+AgiXSnsBv439/gCqhaALANik0ovXhMPHCRBFFzqSm4po7QXF\nqgD4jaXLAIBNLnQkdXNyvqzly0bSQGdrtYcEIIAq6QW8G/b7Vxd90RE1BF0AwCaVXLwmHKPLfe01\nGBWAoCn1Ar71ZGHXKu27Yb9/9eTcYsu46UJV79Jvin3SCDOCLgBgk3IvXpviRoOdSfW0tdRwdACC\notQL+OqNqUJLsi36bleC/f7+29AXfYv387f3SV+5GMyezUHArHhjIegCADbZ7eLVqDCTO9iZ1PAQ\nF0VAlO3UC3gl78qtIPmy399/9EX3B7PijYegCwDY0k4XrwOdrcW711wMAdi+F/DvfzLJfv86oy/6\nmr3OyDIr3pgIugCAbW138QoA5WC/f/3RF72gnBnZCx2H9O+da9c/H53bEITPtB3Qg9nXWmZWvKGw\nPgQAAABVUdrv3xTfeXaL/f7VQ1/0t2Zkt9hHXpqRvTm5oP/8jz7Vn07NK5uzsioE4Z8+f7VryC0p\nzYqj/gi6AAAAqIrSfv/BY0k1O7FNPXeNpCbHaPAY+/2rhb7o5e9TdiW5Vp4KqoV5VrzRsHQZAAAA\nVcN+//qiL3pl+5T9EMZZ8UZE0AUAAEBVsd+/ftgnXdk+ZT+EcVa8EfFbAAAAAEKKfdKV71P2Iqyz\n4o2IoAsAAACEFPukK9+n7PW5wjgr3ohYugwAAACEWNT3SVeyT9mLMM+KNyKCLgAAABByUd4nXck+\n5b0wKszkDnaGd1a8ERF0AQBAoFlrNTa3qGsjs7r7+YKWc1YJx+hCR7I4E9XChSUCj/O4fkr7lG89\nWdi1xdBu9sWlvg8O6sHsYqRmxRsRQRcAAARWzrW6emNKt6YLSy1Ll6jZnNXNyXndnclooLNVw0Nd\ncmKEBAQT53F9lfYpX70xVeinu+53UFL6sbs75OCmeGEv85WLzNo2AoIuAKCumOXAdqwthoNtZmGs\npKWcq1tPFnT1xhQXnwgkzuNg2G2f8m+ca9P/dX9uyyDM0uTGRNBF3XBxC4BZDuxkbG6xcNG5y1LD\nbN7q9nRG43OL6m1n6SCChfM4OHbbp3ym/UBkC3aFEUEXdcHFLQBmObCb6+lZZcssHpPNubo+Oqvv\nfjN6hXYQbJzHjSPKBbvCiD66qLkNF7db7JF4++LW2to1+QZQO3uZ5UC03JlZKLsdiJV0ezpTzeEA\ne8J5DNQHQRc1x8UtAGlvsxyIluVcZTc6l6vUOgTwgvMYqA+WLqPmWMKDEvZpRxuzHNhNwjHKVhAS\nEg737xE8nMeoNTM/r3d++lMdmphQ061byv72b9d7SHVB0EXNReniliC3PfZpg1kO7OZCR1I3J+fL\n+swwkgY6W6s9JKBinMeoGmtlnj6VMzqq+MiI4qW/p6f1C8WHuEeOEHSBWonKxW0tglw5QTqIKEIE\niVkO7O5yql13ZzJaKuNzIOEwh3ZAAAAgAElEQVQYXe5rr8GogMpwHsMX+bxin36q+OionJERxdNp\nxdNpxX72sx3/s9jz5zJffSX7/vs1GmhwEHQDKswzgVG4uK1FkCs3SP+7SSlopwqtFiAxy4Hd9ba1\naKCzddv30pKmeKG/ZVBv7iHaOI9RscVFxR88UDydlpNOF2ZpHz6UefNmT4eLp9PKXbzo8yCDj6Ab\nQGFf0hmFi9tqB7lKgvTPn8jq8KGmSv8Xqop92pCY5cDujDEaHurS1RtThffUtyr1GxXOjcHOpIaH\nWPmBYOI89kdYJ4HMixeF2dmRkUKoTacVm5iQcfe+otHG43rd0aGX3d1KDg3JPXnSxxE3DoJuwERh\nSWcULm6rHeQqCdKvlvNaWgnW8u8o7dPG9pjlQDmcmNGVi10an1vUtfSs7swUbgInnJgGOluLF7is\n+ECwcR57E4pJIGsVm5kpzM4W99M6IyOKPXvm7bAtLcqfO6dcf7/yqVThz5kzuvfggSTp/Pnzfoy+\nIRF0AyYKSzqjcHFb7SBXSZC2Vvp6aaWi41dbVPZpY2fMcqBcxhj1th/Qx5dY2YHGxXm8Nw05CbSy\notinn27YSxtPpxVbWPB0WPf99wtBtr9fub4+5fv75Z44IcXjPg08XAi6AROFJZ1RuLitdpCrJEhL\n0uvlfEXHr7Yo7NNGeZjlAADsJPCTQK9eFWZn11c+fvhQJpv1dNj88ePK9/Upn0qtztbaw4eDV3gl\nwAi6AROVJZ1hv7itdpCrNEjbyh5edVHYp43yMcsBANhOkCaBzOzshmXH8XRasc8+k/FwoWX37VO+\nt3dt2XF/v3LnzkmtXPt4RdANmCgt6QzzxW21g1ylQTpoN/+isE8bAAB4V5dJINdVbGpqdcmxUwy3\nsS++8HRYe/CgcqVAWwy1+Z4eKZHwPmZsQtANGJZ0hkO1g1wlQVqSDiSCtXcjCvu0AQCAd1WfBMpm\nFR8fX1t2PDIiZ3RU5tWryo7zFvfw4bVlx6X9tMeOSTGu3WuFoBswLOkMh2oHuUqCtDHSN5r3VXT8\naovCPm0AAOCdr5NAmczaXtpSkajxcZmVvRfttMbI7e5Wvq9vLdSmUrLtrEarN4JuwLCkMxyqHeQq\nCdIHE3E17wve3cOw79MGAADe7WkSyFqZ58837KWNp9OKT015GottalL+7NnVGdpcX5/y585JBw96\nOi6qg6AbMCzpDI9qBrlKgvQHB4O7jzvM+7QBAIB3u00Cxdy8Or56ptPPPtW554/168vP1PpbDxT7\n6itPz+smkxsLRKVSck+dkvYFa5UctkfQDRiWdIZLNYNcuUH63r2vfX9uAAAQLdZajc0t6trIrO5+\nvqDlnFXCMbrQkSxec7RU5bp0/SSQXcrq5BeT6nk2oZ5nEzr9bEKnnn2m/StLnp7D/fDDDXtp8/39\ncj/6KHjVPFERgm4AsaQT5WJGFAAAVFvOtbp6Y0q3pgvXpKVJmGzO6ubkvO7OZDTQ2arhoS45MX/C\nofn669Ulx783MqKv79xT2+eTcty9r1SzsZjcU6c2htpUSvbdd30ZM4KFoBtQBBgAAADUm7XFkLvN\ntjoraSnn6taTBV29MaUrFytccWitzNOnG/fSptOKz8xseNiRSse9f39hP21x2XE+lVL+7Flp//4K\nj4RGRdAFAAAAsKWxucXCdrodasdIUjZvdXs6o/G5RfW2b7PyMJdT7NGjtcrHo6OKp9OKfe1tm5X7\n7rsb9tLmUym53d1SPFjtFVFbBF0AAAAAW7qenlW2zN602Zyr66Oz+u43j0uvXyt+//5a5ePRUcUf\nPJBZ8rafNn/s2FqRqFRKuVRK9uhR9tNiE4IuAAAAgC3dmVnYtbXPO6/mdbpYIOrMP32s1iszij1+\nLONlP63jKN/Ts6Hycb6vTzaZ3PMxES0EXQAAAABbWs6ti7nW6ujXX6jn6VrV49PPJvTBgrdWPvbg\nQeXPndtYJKqnR2pu9jh6RBlBFwAAAMBGKyuKj4/rL//Zv9LJmU91+tljnX42oUNLrz0d1v3gA+X7\n+gqhtrSf9vhxKRbzaeBAAUEXAAAAiLJMRvEHD+Sk04UiUem04mNjMsvL+tjDYfMnT67O0JaKRNkP\nPvBt2MBOCLoAGla9mtejtvg9A4BPrJX58kvF0+m1UDs6qvhnn3k67HJ8nx4f7tLjD7t17t/5Zb33\ny7+g/Llz0qFDPg0cqBxBF0BDqkfzetQev2cA2CPXVeyzz1bDbKlPbWxuztNhXzYf0KOj3Xp09KTG\nj3Zr/MNuTbV1Kt6U0OCxpH75Ypfy3HxEABB0ATScqjevRyDwewaAMi0tKT42tjHU3r8v89rjftoj\nR5Tr79dKX5+umcP6o6YPNdXaLrvuvdZISjhGg51JDQ/xPozgIOgCaDi+Nq9HYPF7BoDNzPx8Yblx\nadnxyIjijx7J5HJ7PqY1Rm5394a9tPlUSvb991cf8y1rdXpuUdfSs7ozU1hlk3BiGuhsLW4j4f0X\nwULQBdBw9ty8Hg2F3zOASLNW5ulTOW+H2ulpb4dtblb+7NmNlY/PnpUO7BxUjTHqbT+gjy/xPovG\nQNAF0HDKaV5fYiXdns5UczioEn7PACIjn1dsYmJjkah0WrGf/czTYd133in0pC3O0OZSKbmnTkkO\nEQDhx1kOoOFsaF5f1uPLmxVEsPB7BhBKi4uKP3iwoUBU/MEDmTdvPB0239FRCLXr2vnYDz+U2DOL\niCLoAqiaarWFSThG2QpCUMKhCX0japTfM+2PAGzHWViQc+PGhiJRsYkJGXfvN+ZsPC739Om1Zcel\n/bTvvOPjyIHGR9AFUBXVbAtzoSOpm5PzZS1rNZIGOlsrHT4CoBF+z7Q/AiBJslaxmZnVJcfxdFq/\n8pOfqNljKx/b0qL8uXOFUFucqc2fOSM1N/s0cCC8CLoAfFfttjCXU+26O5PRUhlLVROO0eW+9gpG\nj6AI+u+Z9kdARK2sKP7oUSHQlopEpdOKLSx4Oqz7/vuF2dn+fuX6+pRPpeSePCnF4z4NHIgWgi4A\n31W7LUxvW4sGOlu3DRglTfFCX7+etpayj43gCPrvmfZHQAS8elVYclyqeJxOK/7woczysqfD5o8f\nXysQVZyttYcPs58W8BFBF4Dvqt0Wxhij4aEuXb0xVQga65aMSjSvD4ug/55pfwSEi5mdXV127BRn\namOPH8vYygrjrec6jtwzZ9b20vb3K3funNTKlhqg2gi6AHxXi7YwTszoysUujdO8PtSC/Hum/RHQ\noFxXsamptVBb/Dv2xReeDmsPHlRuXXGo0X379PrYMf0bFy74NHAAlSDoAvBdrdrC0Lw+GoL6e6b9\nEdAAlpcVHxtbDbXxdFrO6KjMy5eeDut+8MHasuNisHW7uqTYWvX3V/fueRw8AC8IugB81yhtYQAv\nOM+BgMlkNu6lTacVHx+XWVnZ8yGtMXJPniyE2vWtfNopcggEHUEXgO8aoS0M4BXnOVAn1sp88cXa\nsuNSsJ2a8nbYpiblz55dbeOT6+tT/tw56eBBf8YNoKYIugB8F/S2MIAfOM+BGsjnFfvsM8VHRtZm\na0dHFfPYn9ZNJjcWiEql5J46Je3b59PAAdQbQReA74LeFgbwA+c54LOlJcUfPNhYJOr+fZnFRU+H\ndT/8cLWFT76/X/n+frkffUQrHyDkCLoAfBf0tjCAHzjPgb0z8/OFQFtcduyk04o9eiSTz+/5mDYW\nk3vq1MZQm0rJvvuujyMH0CgIugCqIshtYQC/cJ4Du7BW5unTtb20peXHMzPeDrt/f2E/7frKx2fO\nSC2snABQQNAFUDVBbQsD+InzHCjK5RT79NPVvrSlP7Gvv/Z0WPfddzfspc2nUnJPnpQcLmMBbI93\nCAAAAFTm9evV/bSrwfbBA5mlJU+HzR87trFIVF+f7NGj7KcFUDGCLgAAALZlvvpqY4GokRHFHj+W\ncXevOL4d6zjK9/RsCLX5vj7ZZNLHkQOIMoIuAACoKmutxuYWdW1kVnc/X9ByzirhGF3oSBb3MbdQ\nrCsIrFXsyZO1vrSlIlHPn3s77MGDyp87t7rsOJ9KKd/bKzU3+zRwANiMoAsAAKom51pdvTGlW9OF\nQl2lytTZnNXNyXndnclooLNVw0NdcmKE3ZpZWVF8fHxTqDUvX3o6rNveXigQtW6m1j1+XIrFfBo4\nAJSHoAsAAKrC2mLI3abXsJW0lHN168mCrt6Y0pWLtGGqipcvFb9/f2Pl44cPZZaXPR02f+LEahuf\nUrC1hw/7NGgA8IagCwAAqmJsbrHQY3iLkLteNm91ezqj8blF9bbTjskL88UXGwtEpdOKf/aZp2Pa\nffuUP3Nmddlxrr9f+bNnpdZWn0YNAP4j6AIAgKq4np5VNldewaKlnKu/88mkXmZz7OEth+sqNjm5\nuvS4FGxjs7PeDtvaWgi0xZnafCql/OnTUiLh08ABoDYIugAAoCruzCxo57ncjb56vbL6z+zhXSeb\nVXxsbHXZsTMyovj9+zKvXnk6rHvkSGF2dl2odY8do5UPgFAg6AIAgKpYzlUSczeL4h5es7CwtuS4\n9Gd8XCaX2/MxrTFyu7s37KXN9/XJtrX5OHIACBaCLgAAqIqEY5T1GHalkO7htVbm2bONBaJGRhSf\nnvZ22OZm5c+e3Vj5+OxZ6UBIfm4AUCaCLgAAqIoLHUndnJyvaPnydrI5V9dHZ/Xdbx734Wg1ls8r\nNjGxtpe2GGxjL154Oqz7zjtr+2iLwdY9dUpyuLwDAN4JgRCz1mppxdXXb1b0rR/8lAIvAGrqcqpd\nd2cyWiqzINVOrKTb0xnvg6q2N28Uf/CgEGpLPWofPJB588bTYfMdHauBtlT52H74IftpAWAbBF0g\npHJuoX9ld35J1mp1+SAFXgDUSm9biwY6W7fto1upZR8Cs5/Mz362WvW4NFsb+/RTGXfv47TxuNzT\npzcWierrk/3GNzyN1VqrsblFXRuZ1d3PF7jxCSD0CLpACFlbCLm3nizo5IdbfF/RK/ACoPaMMRoe\n6tLVG1OFfro519My5oQT821sFbFWsZmZQqBdV/k49vSpt8O2tCh/7tzGUHvmjNTc7NPAC0o3Pm9N\nZ7S87nfAjU8AYVa1oGuMOSjpoaSPil/6G9baH1Tr+QCsGZtbLFxU7jKDsluBF2YAAHjlxIyuXOzS\n+NyirqVndWemELYSTkyHmuJ68XqlrPBrJA10tlZ5tJJyOcUePdpYJCqdVmx+3tNh3fff37CXNt/f\nL/fECSke92ngW1t/43OrzwRufAIIq2rO6P6+1kIugBq6np5VtswlftsVeGEGAIBfjDHqbT+gjy9t\nfJ95OPta/8WPJsraw5twjC73tfs7sFevFL9/X06p4vHoaGE/bTbr6bD5rq5CqF3XzscePlyX/bR+\n3fgEgEZTlaBrjDkv6W9KuiPpQjWeA8D27swslL08cKsCL8wAAKiFcvfwNsWNBjuT6mlr2fNzmdnZ\nDXtp4+m0Yo8fy9i9L6a2jqN8b+9qqM2nUsr19UmtNZh5LpMfNz4BoBH5HnSNMTFJ/2PxX/8TSff8\nfg4AO1uusG/l2wVemAEAUAu77eE1KszkDnYmNTxU5g0111VsakrxdFon/viPdWhiQsnpacW++MLT\nWO3Bg8qtKw6V7+9XvqdHamrydNxq83rjEwAaVTVmdP8zSb8o6R9Ya/+MWR6g9hKOWa2yXN7jNxZ4\nYQYAQK3stId3oLO1WA9gmxtpy8uKj42tztTGR0bkjI7KvHolSTq4xzG5hw8r39dXKBJVXHrsdnVJ\nsToVw/LA641PAGhUvgZdY8yHkn5P0peSPvbz2ADKd6EjqZuT83su8MIMAIBa2m4P7waZTGEvbalI\nVDqt+Pi4zMrKnp/XGiP35Mm1AlGl/bTtPu8FriOvNz4BoFEZ62FvyqaDGfPPJP2GpL9mrf1fi18r\nPUHZVZeNMT/Z6uvf//73e7u6uva+QadOFhcXJUktLQ03dDSopRVXn2cK/XPfTxTuzn+1vPXFizHS\nR63Nat639v1Pv1qs+DlPvc/5jc14/0PFrFXixQsdevxYhyYmdGhiQgcfP1bLs2eeDuvu26dXx4/r\n5cmTetXdXfj75Enl9+/3aeDB9PxlVq+y+bIff7ApriOHgr0cu1Hw/od6CsH5d+/SpUu/4OUAvs3o\nGmO+pULIvVEKuQDqo3lfTAcTcb1a3vnixhjpYCK+IeSWvl7JPTB2KADYE9dVy9OnOlgMtKVwm/DY\nymfl4EG97O7W18eOKXPihLJnzmixs1PWqWaziWD6RvM+vV7Ol/Webkzh8QAQBr684xtjDkj6B5JW\nJP221+NZa7dM75988slP9u/ff/7MmTNen6Km7t0r1OM6f/58nUeCKCm1B9LKU1kr/ePptT1uGwq8\n/LnN7YF+9MlkRUuff/XEO/rN8+zRxWa8/2HV0pLiDx+utvFxRkYKrXxev/Z0WPfDD9eWHRf31Lod\nHTLGaIrzT9Zafe/H21fRL2mKGw0eS+qv/BJV9P3C+x/qqZHPv4cPH+rNmzeej+PXrc2/I6lT0lVr\n7QOfjgnAg1KBl1t3X+jrpRU1ObGyC7xcTrXr7kymfr0tATQ0Mz+/tpe2GGpjjx7J5MtfQvs2G4vJ\nPXVqY6jt65N97z0fRx4+ValsDVSBtVZjc4u6NjKru58vaDlnlXCMLnQki9csLZyfqIjnoGuM+XlJ\nf1vSjAqBF0BAGGPUvC+mI/ua9MPv/FzZ/10te1sCaGDWyjx9WuhLWwy18ZERxWdmvB22uVn5s2eV\n7+8vVD7u61P+7Fmpcfea1ZWnytZADZRWod2aLpybpSuPbM7q5uS87s5kNNDZquGhzavQgO34MaP7\n9yTFJX1XkjHGbFfNv6n4PddaW3mlGwA1wwwAgE1yOcU+/bRQ+bhU9TidVuzrrz0d1n333dVqx6VQ\n63Z3SxHcT1tNZVW2jjBmE+vH2mLI3ebmupW0lHN168mCrt6Y0pWLXHegPH58ihwr/v1Pdnnc/1D8\n80RSlw/PC6CKmAEAImxxUfH799f20qbThf20S0ueDpvv7Fxdcpzv71culZI9epSKdqgrZhPra2xu\nsXBTfYcVZJKUzVvdns5ofG5Rve1cf2B33C4FsC1mAIDwMy9erM7QOqVZ2okJGXf3PfrbsfG48j09\nG0JtPpWSTSZ9HDngHbOJ9Xc9PatsGTVBJCmbc3V9dFbf/SbXJdid56Brre3a6ft76aMLAAB8Zq1i\n09OFULu+SNTz594Oe+CA8ufOre2lTaWUP3NGam72aeBA9TCbWH93ZhbK6vIgFW483J7OVHM4CBFm\ndAEACJuVFcUfPdoQauPptGIZbxeIbnu78n19hVBb3FfrnjghxWK7/8dAADGbWH/LuXJjbunxe19t\ngmgh6AIAUEeei+C8fKn4/fsbKx8/fCizvOxpXPkTJ9aKRBX/tocPezomEDTMJtZfwjHKVhB2Ew43\n1lAegi4AAHVSaREc8+WXio+MrFU+Hh1V7LPPZGxlMyLr2X37lD9zZjXU5lMp5c6dk1pb/fmfBAKM\n2cT6u9CR1M3J+bJuOBhJA528N6E8VQ+61lp27AMA8JadiuAY19VHL56p59mEzvzRY734/Smdfjah\n2Oyst+c8dGh1djafShWKRJ0+LSUSno4LNCpmE+vvcqpdd2cyWirjJkLCMbrc116DUSEMmNEFAKAO\nSkVw3GxWPV9MqefZhE4/e6yeZxM69eyxDiy/8XR898iRTaHWPXaMVj7AOswm1l9vW4sGOlu3rXxd\n0hQ3GuxMqqetpYajQyMj6IYYzc8BYHe1fK80CwuFPbQjI9r3r27pDx890PEvn8hx83sfvzFyu7sL\nS47XVT62bW2+jBkIM2YT688Yo+GhLl29MVWogL1uG4dUuMGQcAohd3iI9k4oH0E3pGh+TtCvBX7G\naHRVe6+0VubZs7W9tMX+tPEnT1Yf8m/uYby2uVn5s2c3Vj4+e1Y6QLsTYC+YTQwGJ2Z05WKXxucW\ndS09qzszhffkhBPTQGdr8ZqC9zlUhqAbQjQ/J+jXAj9jNDrf3ivzecUmJlb70q4WiXrxwtP4FvYf\n0qOjJ/XoaLfGP+zWo6Pd+oe/85clh49uwC/MJgaHMUa97Qf08SXaN8EffFqGUNSbnxP0q4+fMcJg\nT++Vh2KKP3igeDq91s7nwQOZN9720z5/p70QZo8UQu340W59+U77hv20TU6MkAtUAbOJQDjxiRlC\nUW9+HvWgXwv8jBEGu71XJl8vrBaHOv1sQsf/7qTeeTYl4+69vYiNx+WeOqVcf7/+ZfOH+n+aP9T4\n0ZPKtOxc4IYiOEB1MZsIhA9BN4Si3vw86kG/FvgZIwxW3yut1ZGvv9TpZxPqeTahnqcTOv38sQ7P\ne2zl09Ki/Nmza3tpUynlz5yR9u+XJLXNvlb6RxMUwQEAoAoIuiEU9ebnUQ/6tcDPGA0rl1Ps0SM5\n6bT+03/+Jzr17LFOP3us5JuXng7rvv/+apgttfRxT56U4vFt/xuK4NQOhfMAIHoIuiEU9ebnUQ/6\ntcDPGA3h9WvF798v7KUt/XnwQCablST91T0eNt/VtRZqi+187JEjFfenpQhObVgrfe/HFM6LOm52\nANFD0A2hqDc/j3rQrwV+xggaMze3Wu3YKVU9npiQsZXdlFkvF4vrsw+6VotDtfziz+s/+Ot/QWr1\n7z2TIjjV9+WrLIXzIo4uAUA0EXRDKOrNz6Me9GuBnzHqxnUVe/Jkc6h9/tzTYV81tejTIyc0/uEp\nPTp6UuNHuzX5wTGtOAlJUpNj9Ae/dkpq9T90UgSnepZWXL1azlM4L8LoEgBEF0E3hKK+7yvqQb8W\n+BmjJpaXFR8fLyw5HhkptPQZHZV56XE/7QcfrO6l/T9jh/VHiaOaTB6WjW298iCs75VR8PXSisqd\n1KdwXjjRJQCILoJuCEV931fUg34t8DOG7zIZOffvrwbaeDqt+NiYzMrKng9pjZF78qTyfX0bKh/b\n9rUbL3/JtUrfmNKzCL5XRsHr5XzZj6VwXjjRJQCILoJuSEV531fUg34t8DPGnlkr88UXhdnZ0kzt\n6Kjik5PeDptIKH/2rPJ9fcr39yvX16f8uXPSoUM7/ndRfq+Mgkq3aFM4L3zoEgBEF0E3xKK874uL\n1+rjZ4xd5fNqmZnRoYkJ7f/hD1dDbWxuztNh3WRyrS9tsfKxe+qUtG/fno4X5ffKsDOmsrBL4bzw\noUsAEF0EXYQWF6/Vx88Yq5aWFH/4cGORqAcPNPj6tafDukePrrbwyff3K9/fL7ejo+JWPoimA4m4\nXmXLW75M4bxwoksAEF0EXVQNPeuAcDLz82v7aNNpOSMjij16JJMvfz/k22wsJre7e7VIVL64p9a+\n956PI0fUfKN5X9n7dCmcF050CQCii6CLqqBnXXm4GYBAs1bm6dPCXtrSn5ERxWdmvB12//7Cftri\nsuN8X5/yZ89KLRQtg7+a98V0MBFXU9xQOC+i6BIARBdBF76jZ115uBmAQMnlFJuY2FggKp1W7Gc/\n83TY5dZWvezu1oFf+ZXCTG1fX2E/bTzu08CBnX1wsEmDx5KhL5zHjdOt0SUAiC6CLnxHz7rdcTMA\ndbW4qPj9+2t7adNpxR88kFla8nTYfGfnWpGo/n7lUin95IsvJGN0/vx5nwYPVMYYhb5wHjdOt0eX\nACC6CLrwHT3rdsfNANSKefFidclxaQlybGJCxt17ZVEbjyvf07O6j3a1P20yufnBX37pYfSAP8Jc\nOI8bp7ujSwAQTQRd+I6edbvjZgB8Z61i09OFZcfri0Q9f+7tsAcOKH/uXGEvbSnU9vZKzc0+DRyA\nF9w4LU+Yb3YA2BpBF76jZ93uuBkAT1ZWFH/0qBBq1++nzXg7T9y2to0Fovr75Z44IcVotwEEFTdO\nAWBrBF34jp51u+NmAMr26lVhL+36yscPH8osL3s6bP748Q17afOplOzhwz4NGkCtcOMUALZG0IXv\n6Fm3O24GYCvmyy8LS47XhdrYZ5/J2MpujKxn9+1T/syZ1RnaXH9/oZVPa/Red0AYheXGKVWjEQac\nx8FC0IXv6Fm3O24GRJzrKjY5uWEvbXx0VDGPhZvsoUOrLXxWC0X19EiJhE8DB7bGxV39hOHGKVWj\ng4HXsTecx8FD0IXv6Fm3O24GREg2q/jY2Nqy43RazuiozKtXng7rHjmyuuS4tATZ7exkPy1qjou7\n+mr0G6dUjQ4GXsfecB4HE0EXvqNn3e64GRBSmczGvbQjI4qPj8vkcns+pDVGbnf3WpGo0n7a99/3\nceDA3nBxV3+NfuOUqtH1x+vYO87jYCLooiroWbczbgY0OGtlnj8vhNp17XziT554O2xTk/Jnz24M\ntWfPSgei+1pB9XlZrsjFXf01+o1TqkbXH69j7ziPg4mgi6qhZ93OuBnQIPJ5xR4/XttLWyoS9eKF\np8O677yzYdlxrq9P7unTksPbMmrH63JFLu7qr9FvnFI1uv54HXvHeRxMXFEBdcTNgIB580bxhw8V\nHxlZW4L84IHM4qKnw+Y/+mgt1Jb20370kRSwC05Eix/LFbm4C4ZGvnEalqrRjYzXsXecx8FE0AUQ\nSebrr9f20RZb+sQ+/VQmn9/zMW08LvfUqcKy41Ll474+2Xff9XHkgD/8WK7IxV1wNOqN0zBUjW50\nvI694zwOJoIugHCzVrHPP9+4lzadVvzzz70dtqVF+bNnN4baM2ek/ft9GjhQXX4sV+TiDl41etXo\nMOB17B3ncTARdIFt0E+uAeVyij16tLHycTqt2Py8p8O67723tpe2uPzYPXlSisd9GjhQe34sV+Ti\nDl41etXoMOB17B3ncTARdIEt0E+uAbx6pfj9+3JGRwuztaOjhf202aynw+a7ugoztOuCrT1yhP20\nCB0/litycQevGr1qdBjwOvaO8ziYCLrAW+gnFzxmbm51dtYphtrYxISMrexCfT3rOMr39BSWHJeK\nRPX1ySaTPo4cCC4/ltmgVD4AACAASURBVCtycQevGr1qdBjwOvaO8ziYCLrAW+gnV0euq9iTJ6sz\ntKuh9vlzT4e1Bw8qV5qlLf3p7ZWamnwaONB4/FiuyMUd/NDIVaPDgNexPziPg4egC7yFfnI1srys\n+Pj4hiJRzuiozMuXng7rfvCB8qnU6l7afH+/3K4uKUbxDGA9v5YrcnEHPzRq1eiw4HXsD87jYCHo\nAm+hn1wVZDJy7t/f0M4nPjYms7Ky50NaY+SePKl8X99a5eNUSvaDD3wcOBBefi5X5OIOaHy8jhE2\nBF1E1nZVlSvZsybRT24Da2W++GJt2XGp8vHkpLfDJhLKnz272sYnl0opf/asdOiQTwMHoofligCA\nMCPoYs8auf3OTlWVKxXZfnKuq9jjx4Ulx6WZ2tFRxebmvB22tbVQIKoUavv75Z46Je3b59PAAZSw\nXBEAEFYEXexJI7ff2a2qciUi009uaUnxhw83Vj5+8EDm9WtPh3WPHl1bdtzfX9hP29FBKx+ghliu\nCAAII4IuKtbo7XfKrapcjjD2kzPz82tLjkt/xsdl8vk9H9PGYnK7u9eKRBVb+tj33vNx5AAQTo28\nggoA6oWgi4o1evudSqoq76Th+8lZK/P0aWHZcenPyIjiMzPeDtvcXNhPW9pLW9pP29KgPycAqKNG\nXkEFAPVE0EXFGr39TiVVlbfSiAVaTD6v2NjYxlCbTiv2s595Oq77jW+szs6WZmvd7m7J4a0FALxq\n9BVUAFBPXI2iYo3efmd5DwWnmpxY4xRoWVxU/P791crHv3jnjg5+9pniy8ueDpvv7FwNtKVQaz/8\nkP20AFAljb6CCgDqiaCLilUaFIPWfqfSFkJNTkw//M7PVXFEe2devFjtS1uarY1NTMi4az/zpgqP\naeNx5Xt61kJtsViUfecdfwcPANhRo6+gAoB6IuiiYpUGxaC137nQkdTNyfmyZqUDU1XZWsWmp9f2\n0RaDbezZM2+HPXBA+XPnNlY+7u2Vmpt9GjgAYK8afQUVANQTQRcVa8iguM7lVLvuzmS0VMZd8rpU\nVV5ZUfzRo9VAu7qfNuPtAsZtayssOV4Xat3jx6V43KeBAwD81OgrqACgngi6qFjgg+IuettaNNDZ\numsf3ZpUVX71qrCXdn2RqIcPZbzupz1xYjXMju/fr5fd3er783+e/bQA0EAafQUVANQTQRcVC1RQ\n3ANjjIaHunT1xlShyMe6dg1S9aoqm9lZxUdGNoTa2Gefydi914C2+/Ypf+bM2rLjVEq5c+ek1rVZ\n9Bf37hUHQMj9/9u79+g477vO45/vaDKyZVuTppFyaXRxSWMlkVya0rVEaVeOSynpUtg6Lbdz2ALl\nssvuctsV6ybn0G67hGNYWpbugS5laWFpzwEbCoWUFkJNza5lQ9zWchIrSWtZckkj9WJNHFkjj+a3\nfzzPWLI1kmc0zzPPZd6vc3RGc9Hz/Cz/NPN8flcASJKkj6ACgCgRdFG3qIJikLIZ04G9/ZqcW9Ch\niVkdnykEt6pyuazM1NTaRaKef76hMrvt21f2pa1s6bNrl5TLNXRcAEA8JX0EFQBEiaCLTQk1KDaJ\nmWmge5se3tfACpXFotomJ71Qe/q012N7+rTs4sWGyla+7baVUOt/lfv6pAzD0gCgVSR9BBUARImg\ni00LJCgmSaFw9VzaiQm1TU7KLl/e9CGdmcp33nllX9rKEGTX1RVgwQEASZSGEVQAEBWCLnAt52TP\nPbcSaiu9tVNTjR22vV3L99xzpYe2NDSk5XvukbZvD6bcAIDUScMIKgCIAkEXrW15WZkvfWllLq0f\najNf+1pDhy3n8yvzaP1QW77rLinLnxwAoD4tN4IKAALAVTdax6VLanvqqSthNnvqlNqefFK2sNDQ\nYZfvuMMLtJWVj3fvVvmOO1jlGAAAAIgIQRepZN/85lXDjrOnTinzzDOy5eVNH9NlMirfddeaRaLc\nTTcFWHIAAAAAjSLoItmcU+b8+avn0p46pbbz5xs77NatWr733pW5tLt3a/nuu6WtWwMqOAAAAICw\nEHSRHKWSMk8/vWbl48yFCw0dtnzTTVf2pi3t3q3lwUGV77xTamsLqOAAAAAAmomgi3h68UW1PfHE\n1aH2ySdlxWJDh13u61sZdrx7t0qDg3K33858WgAAACBFCLqInH3ta1cvEDUxocyzz8qcu/4Pr8Nl\ns1oeGLhqLu3y4KBcPh9gyQEAAADEEUEXzeOcMlNTVw07zk5MKPPcc40ddvt2lQYHr+qpXd61S2pv\nD6jgAAAAAJKEoItwLC2pbXLy6pWPJyZkL7zQ0GHLt9yyskCUH2rL/f1SJhNMuQEAAAAkHkEXjSsU\n1Pbkk96w48rKx2fOyJaWGjrs8rd8y5Ve2kqwdbfcElChAQAAAKQVQRd1sa9+9cqQ4yuh9stfbuiY\nLpfT8t13a3lw0FsgamhIy/feK+3YEVCpAQAAALQSgi6qK5eV+fKXr5pL2zYxoczsbGOH7ey8eoGo\n3bu1fNdd0g03BFRwAAAAAK2OoAtpcVFtZ85cvfLxE0/IXnyxocOWb7/9qrm0y0NDKvf2spUPAAAA\ngFARdFuMXbhw1arHbRMTanv6aVmptOljukxG5TvvvHqRqKEhuZtvDrDkAADEk3NOZ+YWdOjUrE6c\nn9dSySmXNe3pyevBoW7t6uqQ0cgLAE1F0E0r52Rf+cqVIcdXVj+emWnssFu2aPmee7xQu3u3N6/2\nnnukbdsCKjgAAMlRKjsdPDKlY9MFLZXKquwAXyw5HT17QSdmChru7dTYaL+yGcIuADQLQTcNlpeV\neeaZlWHHlfm03/hGQ4ctv+QlV4YcLw8NqTQ4qPIrXiFlqTZAUtDTBITHOT/knptXcdmtfV7SYqms\nY+fmdfDIlA7s7efvDQCahMSSNAsLanvyyZVQe+qU2p56SnbpUkOHXe7tvWqBqNLgoNzLXsZ8WiDB\n6GmCRGNHmM7MLWh8ulA15K5WXHYany5ocm5BA92MgAKAZiDoxph94xtekK2sfHzqlDLPPisrlzd9\nTNfWpvJdd3nDjlfPp73xxgBLDiBqrdTTRJBbH40d4To8MatiqbbP5GKprMOnZ/XQ/TtDLhUAQCLo\nxoNzykxPr8yj9XtrM//8z40dtqNDy/feuzKXdvduLd99t7RlS0AFBxBXrdLTRJBbXys1dkTl+My8\nNv4LW+EkjU8XwiwOAGAVgm6zXb6stqefvirUtk1MKDM/39BhyzffvDLs2O+lLb/85VJbW0AFx7Xo\nRUKctUJPE0FuY63S2BGlpVKtMbfy+s2PyAIA1IegG6ZyWW0nTuiOT31K2599Vjuee86bT1ssNnTY\n5Z07VxaI8ntr3a23Mp+2iehFQty1Qk8TQW5jrdDYEbVc1lSsI+zmspkQSwMAWI2gG7Idb3+7Oi9e\n3NTPuhtu0PLAwFVzaUuDg1JnZ8ClRD3oRUIStEJPE0FuY63Q2BG1PT15HT17oabfs0ka7uXzGwCa\nhaAbpkxGy/feq+zx49d9qduxQ6XBwSvDj5eHhrS8a5eUyzWhoKgHvUhIglboaSLIbawVGjuitn+o\nWydmClqs4XeXy5r2D3Y3oVQAAImgG7rS0NCaoFu+7TYtDw5etfJxua9PyiTvQrMV0YuEJGiFniaC\n3MZaobEjagNdHRru7Vx3hE9Fe5tppDevXV0dTSwdALQ2gm7ISq97nZ5/9lm9cOeduuVNb/K28unq\nirpYaAC9SEiCVuhpIshtrBUaO6JmZhob7dfBI1PeSJ9VazZI3u81l/VC7tgo01gAoJkIuiG7/D3f\no9Mve5kk6aX33RdxaRAEepGQBK3Q00SQ21grNHbEQTZjOrC3X5NzCzo0MavjM94ihblsRsO9nf4q\n/MmfvsJOAwCShqAL1IleJCRBK/Q0EeQ21gqNHXFhZhro3qaH96Vzmgo7DQBIIq7AgTrt6cmr1o/x\nVuxFQnxUepoOPnCnXrfzRrVnMzJJ7dmMXv/yG/Xrb36F3nX/zsRemFaCXHvbxuVv1SBXaewY6ctr\ni/9/f9XzktqzppG+5DZ2IHxX7TRwTYOZtHanAefqG/UEAGGhRxeoE71ISJI09zS1Qq91o1plWC3C\nw04DAJKKoBuS1XNZdrkFOSf98ke+wFyWFGA4IBAfBLnrS3NjB8LHTgPNwzxoIFgE3RBcO5flrl7v\nceaypAO9SEC8EOSA8LDTQHMwDxoIHkE3YFfNZanS23ftXJYDewlCSUQvEoBWQk9T62KngfBx7QiE\ng6AbMOayBCfuF1b0IgFoBfQ0tTZ2Gggf145AOHg3Cthm5rJgrVLZ6ZHPTmns0Wf1D1MXVCw5Oa1c\nWI09+qwe+eyUSmVWdwSAsLDiLthpIHxcOwLhIOgGjLksjePCCgDiYTM9TUiX/UPdaq+xl5adBjaH\na0cgHATdgDGXpXFcWAFAPNDTBParDh/XjkA4CLoBy2Xrm5/EXJa1uLACgHigpwmVnQZG+vLaks2s\nGcZsktqzppE+dhrYLK4dgXCwGFXA9vTkdfTshZouDJjLUh0XVgAQD/Q0QWKngbBx7QiEg6AbsP1D\n3ToxU9BiDR/2zGWpjgsrAIgHVtxFBTsNhIdrRyAcfCIFjLksjWMIDwDEAyvuAuHj2hEIBwkhYMxl\naRwXVgAQD6y4C4SPa0cgHAxdDsG1c1ms/KKck9qZy1IThvCgwjmnM3MLOnRqVifOz2up5JTLmvb0\n5P2/ow4+8IEQVXqajp2b33AlfHqagMYwDxoIHkE3JKvnspw8+U1J0iff+MqIS5UMXFhBkkplfz/l\nae/DvlITiiWno2cv6MRMQcO9nRob7Vc2Q9iNyvUaI5BslZ6mg0emvG3frtnb3OQ1OI700tMENIp5\n0ECwCLqIHS6s4Jwfctdp7HCSFktlHTs3r4NHpnRgL/UgCrU0Rvz0zqJu2d4eaTnRGHqaAABJRNBF\nLHFh1drOzC14jRwb9OhLUnHZaXy6oMm5BQ10Ux+aqdbGiItLy9LFopxzNEYkGD1NAICkIegitriw\nal2HJ2ZVrHHbqGKprMOnZ/XQ/dSTZqq1McI56eLSMo0RAACgqVh1GUDsHJ+ZV607dzpJ49OFMIuD\nKuppjHBOOnx6NuQSAQAArCDoAoidpVKtMbfy+toCF4JTT2OERGMEAABoLoIugNjJZeuby5mrcZ9P\nBIfGCAAAEGdcHQKInT09edUadU3ScG9nmMVBFTRGAACAOOPKA0Ds7B/qVnuNwSiXNe0fZL/WZqun\nMUKiMQIAADQXQRdA7Ax0dWi4t1PtbRtHqfY2bz/lXV0dTSoZKuppjDATjREAAKCpCLoAYsfMNDba\nr5G+vLZkM2t6Dk1Se9Y00pfX2Gg/+7NGoNbGCDNpe66NxggAANBU7KMLIJayGdOBvf2anFvQoYlZ\nHZ8paKlUVi6b0XBvpx4c6tauLvZljUqlMeLgkSlvP91S+apVmE3esPLtuTbdsr2dxggAANBUBF0A\nsWVmGujepof37Yy6KKiilsaIF2cmoy4mAABoQQRdAMCmXa8x4uRMkwsEAAAg5ugCAAAAAFKGHl0A\nqeWc05m5BR06NasT5+e1VHLKZU17evL+HN8O5o4CAACkEEEXQCqVyk4Hj0zp2LQ3b7SyUFKx5HT0\n7AWdmClouLdTY6P9ymYIuwAAAGkSyNBlM/s2M3uvmf21mT1rZvNmVjSzr5jZn5vZ9wVxHgCohXN+\nyD03v2Y1YElykhZLZR07N6+DR6bk3LWvAAAAQJIF1aP7Tkk/ter+RUllSbdLeoukt5jZYUk/6Jy7\nHNA5E40hlUB4zswteFveLG8cYIvLTuPTBU3OLWigm62KAAAA0iKoxaiOSfp5Sa+WtMM5t8M5t1VS\nr6Rf81+zX9J/Ceh8iVYqOz3y2SmNPfqs/mHqgoolJ6eVIZVjjz6rRz47pVKZXiZgMw5PzKpYKtf0\n2mKprMOnZ0MuEQAAAJopkKDrnPuoc+4DzrmTzrmLqx6fcc6NSfo//kPvCOJ8ScaQSiB8x2fm1/xt\nrcdJGp8uhFkcAAAANFmzthf6R//29iadL7Y2M6QSQH2WSvU1EC3V2PsLAACAZGjWqsvf7t+ebdL5\nYmszQyofun9n1eeZ5wtUl8uainWE3VyWLcUBAADSJLSga2bbJb1c3iJV3+8//MGwzpcUQQ2pDGLr\nFIIy0mpPT15Hz16o6W/NJA33doZdJAAAADSRBTkH1MzukDRT5alFSf/NOfe+Go/zeLXHP/zhDw/0\n9/d3NFDESCwseMOPOzo69MzX6h+K/Iqb1/6Tv/pCUReXlrXRf5+ZtD3Xplt3tK95zjnp+YvrH6Py\ns7dsbxdZN9lW179WsXi5rPOFxQ3/PirMpDs6t2jLDfTqhqEV6x/ig/qHKFH/EKUU1L+T+/bte3Uj\nBwj6ym5Z0vP+15L/WEnSI5L+Z8DnSqR6Q2O11y9eLl835EpemL24tKzFy2uHSm8Uclf/7PMXi/UV\nGIiBLTdktD3Xdt2/t0qDDiEXAAAgXQIduuyce07SrZJkZhlJd0r6JUnvkfTjZvaAc+6JGo5TNb0/\n9thjj2/duvW+u+++O8BSh+/kyZOSpPvuu0+PPna2riGVr3/5jXr7fVfP0X3fY2d19Fx9x1g9z/ep\n2Rf1O48+q8Ua5gpvyWZ08IE72WM0wVbXv1ZSGd4/Pl1Ys8K5yZvHO9Kb19jr1h/ej8a1av1DPFD/\nECXqH6KU5Pr31FNP6dKlSw0fJ7RuDOdc2Tn3tHPuxyX9hrw9df/QD8Ata/9Qt9prXPgmlzXtH+xe\n83ij83zZYxStIJsxHdjbr4MP3KnX7bxR7dmMTFJ7NqPXv/xG/fqbX6F33b+TkAsAAJBCzVp1+bck\n/YKkV/lfVefgtoKBrg4N93Z6++husMVQe5vX27Sra+24+ka3TmGPUbQKM9NA9zY9vK/6yuUAgHRg\ngU0A12pW0P3Kqu+/RS0cdM1MY6P9tQ2pHO2v+qbc6NYp7DEKAADSIoidKACkT7OGEa/uTrnYpHPG\nVqNDKvf05FXr23S1rVNy2fre5NljFAAAxJFzfsg9N7+m80DyRqYtlso6dm5eB49MKcjdRgDEW8M9\numbWJqnsNn7n+M/+bUnSsUbPmQaNDKncP9StEzOFmhaTqjbPlz1GAQBAGpyZW/BGyG0wHUySistO\n49MFTc4tsMAm0CKC6KrrkfRPZvZj/j66krxVl83sW83sjyS903/4t5xz3wzgnC2tMs+3vW3jntn1\n5vkGsSAWAABA1FhgE8B6ghqTep+k35M0Y2aXzGxO0oKkz0v6If81H5E0FtD5Wlplnu9IX15b/GHP\nVz0vqT1rGumrPs+30aAMAAAQByywCWA9QSxG9c+Svl/SPkn/QtJtkl4qaVHSl+QNVf5959z/DeBc\n8FXm+U7OLejQxKyOz3gLMOSyGQ33dvorDFYfmhPEglgAALQKVvSNLxbYBLCehoOuc25J0h/7X2ii\nRub5NhKUAQBoFazoG2+N7kSB4NAghLhp1vZCiCH2GAUAYH1XrehbZbGja1f0PbCXUVDNxgKb8UCD\nEOKIZi0AAIAqNrOiL5qLBTajxxZPiCuCLgAAQBWs6Bt/LLAZPRqEEFcEXQAAgCpY0Tf+Gt2JAo2j\nQQhxxRxdAACAKljRNxlYYDNaNAghrgi6AAAAVbCib3KwwGZ0aBBCXBF0AQBAS1tvW5QduayWSpdZ\n0RfYAA1CiCuCLgAAaFkbbYtSLF2u+Tis6ItWxRZPiCuaVAAAQEu63rYotWJFX7QytnhCXBF0AQBA\nS6p1W5QKVvQF1mKLJ8QVQ5cBIELrzQ3c05P3Vwrt4OIZCEk926JI0ku33aAXisus6AusUtni6eCR\nKa/h6JrRESavJ3eklwYhNBdBFwAistHcwKNnL+jETEHDvZ0aG+1XNsOFARC0erZFkaQXisv65Dte\nGVp5gKRiiyfEEUEXACJw1dzAKsMmnaTFUlnHzs3r4JEpHdhLKzgQNLZFAYLDFk+IG4IuEoshn0iy\nWucGFpedxqcLmpxb0EA3reFAkNgWZQWfqQDShqCLRGLIJ5KunrmBxVJZh0/P6qH7aSUHgsS2KB4+\nUwGkUXqbJpFa19sO4tohn85tdsMIIDz1zA10ksanC2EWB2hJbIvCZyqA9CLoInE2M+QTiBvmBgLR\nY1sUPlMBpBdBF4mzmSGfQNzksvUN/0vz3EAgKpVtUUb68tqSzbTkPrl8pgJIK+boInEY8ok0YG4g\nEA+tvi0Kn6kA0oqgi8RhyCfSYP9Qt07MFLRYQ/1M69xAIC5aeVsUPlMBpBVj4ZA4DPlEGjA3EEAc\n8JkKIK14t0Li7OnJr5lHtR6GfCKumBsIIA74TAWQVgxdRuIw5BNp0epzA1Eb55zOzC3o0KlZnTg/\nr6WSUy5r2tOT9+tIBw0h2DQ+UwGkFUEXiVMZ8nns3PyG2yEw5BNJ0MpzA3F9pbK/x+m01whSeccr\nlpyOnr2gEzMFDfd2amy0X9kMYRf14zMVQFoxdBmJw5BPAK3AOT/knptXcVXIvfK8pMVSWcfOzevg\nkSk5V9+iQoDEZyqA9KJHF4nEkE8AaXdmbkHj04UNe9kkqbjsND5d0OTcgga6ed9D/fhMBZBGBF0k\nFkM+AaTZ4YlZFWvcyqVYKuvw6Vk9dD/vh9gcPlMBpA1DlwEAiKHjM/Nrhiuvx0kany6EWRwAABKF\noAsAQAwtleqbc7tUY+8vAACtgKALAEAM5bL1LfqTy/KRDgBABZ+KAADE0J6e/JoVcNdjkoZ7O8Ms\nDgAAiULQBQAghvYPdau9xl7aXNa0f7A75BIBAJAcBF0AAGJooKtDw72dam/buF+3vc000pvXrq6O\nJpUMAID4I+gCABBDZqax0X6N9OW1JZtZM4zZJLVnTSN9eY2N9susvjm9AACkGfvoAgAQU9mM6cDe\nfk3OLejQxKyOzxS0VCorl81ouLdTDw51a1fXtqiLCQBA7BB0AQCIMTPTQPc2PbxvZ9RFAQAgMQi6\nABBjzjmdmVvQoVOzOnF+Xkslp1zWtKcn7/fmdTBkFQAA4BoEXQCIqVLZ6eCRKR2b9oarOv/xYsnp\n6NkLOjFT0HBvp8ZG+5XNEHYBAAAqWIwKAGLIOT/knptXcVXIvfK8pMVSWcfOzevgkSk5d+0rAAAA\nWhdBFwBi6MzcgsanCyoubxxgi8tO49MFTc4tNKlkAAAA8UfQBYAYOjwxq2KpXNNri6WyDp+eDblE\nAAAAycEcXQCIoeMz82uGK6/HSRqfLoRZnIYsXi7rvX97lsW0AABA0xB0ASCGlkr1zbldqrH3t5lK\nZaevvlDUxaVl/cO5CyymBQAAmoahywAQQ7lsfcEvl43X23llMa2LS8tyTiymBQAAmipeV0YAAEnS\nnp68ao26Jmm4tzPM4tStspjW9fIri2kBAIAwEHQBIIb2D3WrvcZe2lzWtH+wO+QS1YfFtAAAQJQI\nugAQQwNdHRru7VR728b9uu1tppHevHZ1dTSpZLVJ02JaAAAgeQi6ABBDZqax0X6N9OW1JZtZM4zZ\nJLVnTSN9eY2N9sdu5eI0LKYFAACSi1WXASCmshnTgb39mpxb0KGJWR2fKWipVFYum9Fwb6e/Pc+2\nqItZVS5rKtYRduO2mBYAAEg2gi4AxJiZaaB7mx7etzPqotRlT09eR89eqOm1cVxMCwAAJBtN6ACA\nwCV9MS0AAJBsBF0AQOAqi2ldb+pwXBfTAgAAyUbQBQAErrKY1vZcm8yUuMW0AABAsjFHFwAQimzG\ndOuOdi1eLut1O29M1GJaAAAg2Qi6AIBQbbkhk7jFtIAgOed0Zm5Bh07N6sT5eS2VnHJZ056evN/g\n08GoBgAIGEEXAAAgJKWy08EjUzo27Y1oqGy6VSw5HT17QSdmChru7dTYaL+yGcIuAASFOboAAAAh\ncM4PuefmVVwVcq88L2mxVNaxc/M6eGRKztW+9zQAYGMEXQAAgBCcmVvQ+HRBxeWNA2xx2Wl8uqDJ\nuYUmlQwA0o+hywDQwpg7CITn8MSsiqVyTa8tlso6fHpWD93PfHYACAJBFwBaFHMHgXAdn5lfM1x5\nPU7S+HQhzOIAQEth6DIAtCDmDgLhWyrV93ezVGPvLwDg+gi6ANCCmDsIhC+XrW8kRC7LZRkABIV3\nVABoQZuZOwigPnt68qo16pqk4d7OMIsDAC2FoAsALYi5g0D49g91q73GXtpc1rR/sDvkEgFA6yDo\nAkALYu4gEL6Brg4N93aqvW3jft32NtNIb167ujqaVDIASD+CLgC0IOYOAuEzM42N9mukL68t2cya\nYcwmqT1rGunLa2y0n628ACBAbC8EAC1oT09eR89eqGn4MnMHgc3LZkwH9vZrcm5BhyZmdXzG284r\nl81ouLfT3696W9TFBIDUIegCQAvaP9StEzMFLdYwJJm5g0BjzEwD3dv08L6dURcFAFoGQRcANuCc\n05m5BR06NasT5+e1VHLKZU17evJ+T0xHIocbVuYOHjs3v+EWQ8wdBAAASUTQBYB1lMpOB49M6di0\nN9SwEgeLJaejZy/oxExBw72dGhvtVzaTrLBbmTt48MiUt5/uqn+f5A1XzmW9kMvcQQAAkDQEXQCo\nwjk/5K7T4+kkLZbKOnZuXgePTOnA3uSFQeYOAgCAtCLoAkAVZ+YWvJ7ODYb1SlJx2Wl8uqDJuQUN\ndCcvFDJ3EAAApBH7RQBAFYcnZlWsce/YYqmsw6dnQy4RAAAAakXQBYAqjs/M17T1juQNYx6fLoRZ\nHAAAANSBoAsAVSyVao25ldfX1vsLAACA8BF0AaCKXLa+haVyWd5OAQAA4oIrMwCoYk9PXrVGXZM0\n3NsZZnEAAABQB4IuAFSxf6hb7TX20uaypv2D3SGXCAAAALUi6AJAFQNdHRru7VR728b9uu1tppHe\nvHZ1dTSpZAAAALgegi4AVGFmGhvt10hfXluymTXDmE1Se9Y00pfX2Gi/zOqb0wsAAIDwZKMuAADE\nVTZjOrC3X5Nzd/Fn3gAAFgdJREFUCzo0MavjMwUtlcrKZTMa7u3Ug0Pd2tW1LepiAgAA4BoEXQDY\ngJlpoHubHt63M+qiAAAAoEYMXQYAAAAApApBFwAAAACQKgRdAAAAAECqEHQBAAAAAKlC0AUAAAAA\npApBFwAAAACQKgRdAAAAAECqEHQBAAAAAKlC0AUAAAAApApBFwAAAACQKgRdAAAAAECqEHQBAAAA\nAKlC0AUAAAAApApBFwAAAACQKgRdAAAAAECqEHQBAAAAAKlC0AUAAAAApApBFwAAAACQKtmoC4D4\ncs7pzNyCDp2a1Ynz81oqOeWypj09eT041K1dXR0ys6iLCQAAAABXIeiiqlLZ6eCRKR2bLmipVJbz\nHy+WnI6evaATMwUN93ZqbLRf2QxhFwAAAEB8MHQZazjnh9xz8yquCrlXnpe0WCrr2Ll5HTwyJeeu\nfQUAAAAARIceXaxxZm5B49MFFZc3DrDFZafx6YIm5xY00L2tSaUDkoUpAAAAAM1H0MUahydmVSyV\na3ptsVTW4dOzeuj+nSGXCkgepgAAAABEg6HLWOP4zPya4crrcZLGpwthFgdIJKYAAAAARIegizWW\nSvVdcC/V2PsLtJLNTAEAAABAMAi6WCOXrW8IZS5LNQKutZkpAAAAAAgGCQVr7OnJq9aoa5KGezvD\nLA6QSEwBAAAAiA5BF2vsH+pWe429tLmsaf9gd8glApKHKQAAAADRIehijYGuDg33dqq9beN+3fY2\n00hvXru6OppUMiA5mAIAAAAQHa6ssIaZaWy0XyN9eW3JZtYMYzZJ7VnTSF9eY6P97AEKVMEUAAAA\ngOiwjy6qymZMB/b2a3JuQYcmZnV8xtsHNJfNaLi3Uw8OdWtX17aoiwnE1v6hbp2YKWixhiHJTAEA\nAAAIFkEX6zIzDXRv08P7dkZdFCBxKlMAjp2b33CLIaYAAAAABI+hywAQAqYAAAAARCeQHl0z65X0\nVkn7JL1S0i2SliR9WdKnJP2mc+65IM4FAEnBFAAAAIBoNBx0zaxH0pR0VYdFQdI2Sbv9r580s/3O\nuc82ej4ASBKmAAAAADRfEEOX2/zbv5L0Nkk3OefykjokPSDprKSXSPqEmd0awPkAAAAAAFhXEEOX\nvynpVc65L65+0Dm3JOlTZvaApM9L6pT0U5LeE8A5AQTAOaczcws6dGpWJ87Pa6nklMua9vTk/WG1\nHcwdvQ5+hwAAAPHTcNB1zs1L+uIGz58xs3FJo5Je3ej5AASjVHY6eGRKx6a9eaOVdYGLJaejZy/o\nxExBw72dGhvtVzZDUKuG3yEAAEA8NWvV5a/7t20bvgpAUzjnB7Rz8yquCmhXnpe0WCrr2Ll5HTwy\nJefW3x6nVfE7BAAAiK/Qg66ZZSW91r97OuzzAbi+M3MLGp8ubLi/qyQVl53GpwuanFtoUsmSg98h\nAABAfFnYvQxm9rOSPiCpLGnIOfdkDT/zeLXHP/zhDw/09/d3BFzE0C0seBe4HR2JKzpSoFr9e+6F\noi4Wl2s+xvb2Nt22oz3wsiUZv8Pa8P6HKFH/ECXqH6KUgvp3ct++fQ1New21R9fMdkt6xL/7wVpC\nLoDwvbhUe0DbzOtbAb9DAACA+Api1eWqzOw2SZ+QtFXS45J+qdafdc5VTe+PPfbY41u3br3v7rvv\nDqaQTXLy5ElJ0n333RdxSdCKqtW/Ax/+/Jo5pRsxSZ/+zlcFW7CE43dYG97/ECXqH6JE/UOUklz/\nnnrqKV26dKnh44TSo2tmN0n6jKSdkp6R9Gbn3GIY5wJQv1y2vhWAc9lmrVuXHPwOAQAA4ivwKy8z\ny0v6tKRBSdOS3uCcez7o8wDYvD09edUa00zScG9nmMVJJH6HAAAA8RVo0DWzbZIelfRtkr4qL+RO\nB3kOAI3bP9St9hp7GHNZ0/7B7pBLlDz8DgEAAOIrsKBrZlslfVLSt8vbN/cNzrlngjo+gOAMdHVo\nuLdT7W0b90m2t5lGevPa1ZXYFftCw+8QAAAgvgIJumaWk/SnkvZKuiDpjc65J4I4NoDgmZnGRvs1\n0pfXlmxmzRBck9SeNY305TU22i+z+uajtgJ+hwAAAPHV8KrLZtYm6WOS3iTpBUnf7Zw72ehxAYQr\nmzEd2NuvybkFHZqY1fGZgpZKZeWyGQ33durBoW7t6toWdTFjjd8hAABAPAWxvdBrJe33v79B0ic2\n6LmYcc69JoBzAgiAmWmge5se3rcz6qIkFr9DAACA+Aki6K4e/rzF/1oPWwwBAAAAAELVcNB1zh2R\nat5lAwAAAACAUAW+jy4AAAAAAFEi6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIA\nAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoA\nAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIu\nAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWg\nCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVslEXAAAAAIgz\n55zOzC3o0KlZnTg/r6WSUy5r2tOT14ND3drV1SEzi7qYAFYh6AIAAADrKJWdDh6Z0rHpgpZKZTn/\n8WLJ6ejZCzoxU9Bwb6fGRvuVzRB2gbhg6DIAAABQhXN+yD03r+KqkHvleUmLpbKOnZvXwSNTcu7a\nVwCICkEXAAAAqOLM3ILGpwsqLm8cYIvLTuPTBU3OLTSpZACuh6ALAAAAVHF4YlbFUrmm1xZLZR0+\nPRtyiQDUiqALAAAAVHF8Zn7NcOX1OEnj04UwiwOgDgRdAAAAoIqlUn1zbpdq7P0FED6CLgAAAFBF\nLlvfKsq5LJfWQFzw1wgAAABUsacnr1qjrkka7u0MszgA6kDQBQAAAKrYP9St9hp7aXNZ0/7B7pBL\nBKBWBF0AAACgioGuDg33dqq9beN+3fY200hvXru6OppUMgDXQ9AFAAAAqjAzjY32a6Qvry3ZzJph\nzCapPWsa6ctrbLRfZvXN6QUQnmzUBQAAAADiKpsxHdjbr8m5BR2amNXxmYKWSmXlshkN93bqwaFu\n7eraFnUxAVyDoAsAAABswMw00L1ND+/bGXVRANSIocsAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIu\nAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWg\nCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh\n6AIAAAAAUoWgCwAAAABIFYIuAAAAACBVCLoAAAAAgFQh6AIAAAAAUoWgCwAAAABIFXPORV2Gmj32\n2GNfN7ObtmzZEnVR6nLp0iVJ0tatWyMuCVoR9Q9Rov4hStQ/RIn6hygluf4tLi7KOfeNffv2vbSR\n42SDKlCTFJxzunTp0lTUBanH1NTUgCT19/efibosaD3UP0SJ+ocoUf8QJeofopTw+tcvqdDoQRLV\no5tUZva4JDnnXh11WdB6qH+IEvUPUaL+IUrUP0SJ+sccXQAAAABAyhB0AQAAAACpQtAFAAAAAKQK\nQRcAAAAAkCoEXQAAAABAqrDqMgAAAAAgVejRBQAAAACkCkEXAAAAAJAqBF0AAAAAQKoQdAEAAAAA\nqULQBQAAAACkCkEXAAAAAJAqBF0AAAAAQKoQdGtkZjvM7C1m9l4z+5SZfc3MnP81EMDxO83sfWb2\nlJktmNnXzewxM3swiPIj2cKqf2bWZWY/ZWZ/YmZfMrNFM3vRr4cfNLM7g/x3IJnCfv+75lxtZvZP\nq47/7iCPj+RpRv0zs5eZ2a+a2YSZFczsopk9Y2YfM7PvDeIcSKYmXP/9azP7SzN7zswum9kLZvYF\nvz7eEsS/AcllZr1m9nNm9kkzmzazol9HvujXkdsaPP6tZvabq64Bn/fPtS+of0OUzDkXdRkSwcy+\nT9KfrfP03c65Mw0c+w5Jn5O003/ooqQtkrL+/d92zv27zR4fyRdW/TOzy1qpZ5JX93L+lyQtSvox\n59zHN3N8pEOY739VzvVzkt6/6qH3OOfeHdTxkTxh1z8ze5uk35O0w39oQZKTtM2//5hz7g2NnAPJ\nFeLnb0bSH0j64VUPvyCpQ1Kbf/8bkt7knPvHzZwDyWZmPZLOSbJVDxfkvTdV6sg3Je13zn12E8ff\nLenvJL101bG3y+sIdZLe5Zz71c2VPh7o0a3PrKRHJb1H0k8GcUAzM0mH5IXcKUmvdc7tkPeBOyap\nLOnfmtlPBHE+JFrg9U9eyP2cpH8j6Ta/7nVI+g5JX5DX4PIH/pshWlsY9e8qfqPfe+V9sD8fxjmQ\nWKHUPzN7QNLH5X3m/m9JA865bc657ZJulrTfPy9aWxj17ye0EnI/IOkW51ynvM/dN0malnSTpI/7\noRitpxJm/0rS2yTd5JzLy7tOe0DSWUkvkfQJM7u1ngOb2VZJfyEv5H5e0qB/7JdI+u/ywvWvmNkb\ng/iHRIUe3RqZWZtzbnnV/X55FUxqrEWv0lJYlvRq59wXrnn+/ZJ+TtJXJfU555Y2cx4kW4j17/XO\nuc+t81yXpNOSuiV9xDn3o5s5B5IvrPpX5Tx/Jun7JH2vpP8hqU/06La8EN//OiWdkXSbpF9xzj3U\nYFGRQiHWv7+X9HpJf+ecWzNM1MxGJVV66V517fUh0s/M8pL6nXNfXOf5AXkhdYukdzvn3lPHsSuj\npy7Ka+D7yjXPVz6PTzrnXr3Jf0LkaCGq0eo3uYBVWvP+dp03sV+XN3zgVkn3h1QGxFxY9W+9kOs/\nN6eVnozEvsmhcSG+/11hZm+R96H6l865vwj7fEiOEOvfj8oLueclvTukcyDhQqx/lfm3n1/n+cdX\nfb9tndcgxZxz8+uFXP/5M5LG/bv1XqdV8sfHrg25vl/zb+8zs111Hjs2CLrR2+vffrrak37le8K/\nS9BFs33dv23b8FVAA8xsm6QPSrok6T9EXBy0jsqF3iHn3OVIS4JWNOXfvmqd5yvBpSjpydBLg6Sq\n+zrNzHZopX5VzR/yAvS8/31iF6Yi6EbIzLq1MgH8iQ1eWnmDuyfcEgFr/Ev/9nSkpUDavVdSj7zh\no1MRlwUtwMy2SPpW/+7nzWzAzD5uZrP+yqNfNrPf9oepAmH4Xf/2fjN7v39NKDPLmtl3Sfqo//x/\ndc59M5ISItbMLCvptf7deq7T7tbKAldV84dzrixp0r+b2PxB0I3W6iXB/3mD11Wea2gJcaAe/pYa\n3+bf/f0oy4L0MrNXSfqPkp6WdDDi4qB19Eu6wf/+LkknJf2AvCGil+UtEPnTkr7oz5UEAuWcOyzp\nIUnL8tZied7MCvJ2O/hreSsw/6hz7leiKyVi7mfkTW0sa6VhpBYtkz8IutFaPefi0gavW/Bvt4dY\nFuAKM3uZpP/l3/0L59xfR1kepJO/kuiH5A25+vcstocmunHV9wfkbdHxXZK2+6vPv1Ze40unpD8x\ns5uaX0S0gEckvUPSi/79HVoZgrpN0s2suIxq/N0wHvHvftA5V8/w9pbJH/zxALiKmW2X9Al5qy2f\nk/Tj0ZYIKfYzkl4j6Y+dc38TdWHQUjLXfP8jzrnPOH8rCufc/5P0oLyekpslvbP5RUSa+fMkPynp\nD+WtrrxHXsNKv7zRBJ3yFgT6o4iKiJgys9vkXadtlbdo2S9FW6L4IuhG68VV32/d4HUd/u3FEMsC\nVOat/bm8Ictzkr7LOfe1aEuFNDKz2yW9T97wvJ+PuDhoPas/T59wzj127QuccxOS/ta/m9jFWBBb\nvyHpzfJ23fge59wJ59wLzrlzzrkPSXqrvF03fsDMvjvSkiI2/NEln5E3veIZSW92zi3WeZiWyR8E\n3WitHhd/+wavqzz3XIhlQYszs5ykQ/JW974g6Y3OucmNfwrYtEfk9VgclFQws+2rv7SyUEZu1WNA\nUFZ//m70Pld5rifEsqDF+Hs4V/am/0C11zjn/l7e3HHJ21scLc7fV/fTkgYlTUt6g3Pu+U0cqmXy\nB0E3Qv4+pZXesns3eGlltTOWl0co/JX7Pi6vdfmipAfYnB4h6/Nv3yuvV/far17/+QOrHgMC4Y9U\nqecC0YVVFrSkV2hlLu7ZDV73Zf+2P9TSIPb8bfgelTfi7qvyQu70Jg93RivvaVXzhz83vLJ/bmLz\nB0E3ep/1b7+z2pP+okCVSrhmaBXQKP/N7KPyhkldkvQW59yxaEsFAKGrDEvetcFrBvzbqXCLghZT\nXvV977qvWmkQpKGvhZnZVnnzub9d3r65b3DOPbPZ4znnXpD0T/7dqvlD3pzxvP99YvMHQTd6H/Nv\n32hmr6zy/C/IG8L3nFZCMRAIMzN5qyv/kKQlSW91zlHPEDrn3Khzztb7krcQmiS9Z9VjQJD+wL+9\n18zecO2TZjaklbm5jzatVGgFk5KK/vc/Ue0FZnafpPv8u8ebUSjEjz+t7E8l7dXKtLKqe9/WqZI/\nfthf3Opa/8m/fTzJ09gIunUws5srX5JesuqpG1c/d+1S8Gbm/K93Vznsn8t7A8tI+jMzG/Z/pt3M\nflHe3mqS9MtsvdHaQqp/75e3qnJJ0tvZRgjrCan+ATUJo/455z4jqbLa90fN7Dv9xj+Z2Yi8NQsy\n8oaWspd4Cwu6/jnnFrSy7+lbzex3zazH/5kt/j72n5CUlVSQ9JFw/mWIMzNrkxdI3ySvV/+7nXMn\nN/6pKz/bv6r+vaPKSz4kr0F5h6S/NLN7/J/bYWYH5Y3yk6R3NfjPiFQ26gIkzNw6j187zHOnahzm\n5JxzZvagpM/5P3fMzC5K2qKV/5/fcc79bv3FRcoEWv/MrFfSz/p3naQPmdmH1nu9c+7WGsqI9Ar8\n/Q+oQ1j17wfljZYakreS6YKZLcu7+JO8RVve4gcTtK4w6t8vyluD5TvkbV/1TjN7Ud4quJXA/IKk\nt7H7Qct6raT9/vc3SPqE3xZXzYxz7jW1Htg5d8lvUHlM3siBJ8ysIG/P3Iy868J3+Q2CiUXQjQHn\n3Hkz+1Z5+2C9Vd6iAy9I+oKk33bO/UmExUN6rW55vkHSLVEVBACi4Jz7upm9Rl6j3w/IWyQoK+kJ\neSOufsM59/UIi4iUcs5dNLNRST8ir+69Sl5v8SV5owj+RtJvOufOrXsQpN3q67Qt/td66t1iSM65\nL5rZoLxFH/+VpJfJmwN8QtL7q227ljTm740OAAAAAEAqMEcXAAAAAJAqBF0AAAAAQKoQdAEAAAAA\nqULQBQAAAACkCkEXAAAAAJAqBF0AAAAAQKoQdAEAAAAAqULQBQAAAACkCkEXAAAAAJAqBF0AAAAA\nQKoQdAEAAAAAqULQBQAAAACkCkEXAAAAAJAqBF0AAAAAQKoQdAEAAAAAqULQBQAAAACkCkEXAAAA\nAJAqBF0AAAAAQKr8f7XL0q69BEofAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": { "image/png": { "height": 361, "width": 477 } }, "output_type": "display_data" } ], "source": [ "# smaller range for x\n", "x = np.linspace(1, 2, 100)\n", "y = 2 + 1.2 * x + rstate.normal(loc = 0, scale = 0.9, size = 100)\n", "X = x.reshape(-1, 1)\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "\n", "y_pred = linear.predict(X)\n", "print('rsquared:', r2_score(y, y_pred))\n", "print('mse:', mean_squared_error(y, y_pred))\n", "\n", "plt.plot(x, y_pred, 'r')\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "R-squared falls from around 0.9 to around 0.2, but the MSE remains fairly the same. In other words the predictive ability is the same for both data sets, but the R-squared would lead you to believe the first example somehow had a model with more predictive power.\n", "\n", "---\n", "\n", "The problem we just tackled was particularly well suited for a linear model: purely linear relationship between features and the response variable, and no correlations between features. The issue arises when there are multiple (linearly) correlated features (as is the case with very many real life datasets), the model then becomes unstable, meaning small changes in the data can cause large changes in the model (i.e. coefficient values), making model interpretation very difficult.\n", "\n", "For example, assume we have a dataset where the \"true\" model for the data is $Y = X1 + X2$, while we observe $\\hat{Y} = X1 + X2 + \\epsilon$, with $\\epsilon$ being the error term. On top of that let's say $X1$ and $X2$ are linearly correlated such that $X1 \\approx X2$. Ideally the learned model will be $Y = X1 + X2$. But depending on the amount of noise $\\epsilon$, the amount of data at hand and the correlation between $X1$ and $X2$, it could also be $Y = 2X1$ (i.e. using only $X1$ as the predictor) or $Y = −X1 + 3X2$ (shifting of the coefficients might happen to give a better fit in the noisy training set) etc." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear model: -1.291 * X1 + 1.591 * X2 + 2.747 * X3\n", "rsquared: 0.907885896631\n" ] } ], "source": [ "def generate_random_data(size, seed):\n", " \"\"\"Example of collinear features existing within the data\"\"\"\n", " rstate = np.random.RandomState(seed)\n", " X_seed = rstate.normal(0, 1, size)\n", " X1 = X_seed + rstate.normal(0, .1, size)\n", " X2 = X_seed + rstate.normal(0, .1, size)\n", " X3 = X_seed + rstate.normal(0, .1, size)\n", " y = X1 + X2 + X3 + rstate.normal(0, 1, size)\n", " X = np.array([X1, X2, X3]).T\n", " return X, y\n", " \n", "\n", "seed = 5\n", "size = 100\n", "X, y = generate_random_data(size, seed)\n", "\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "print('Linear model:', pretty_print_linear(linear))\n", "print('rsquared:', linear.score(X, y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The coefficients of our fitted linear model sums up to ~3, so we can expect it to perform well. On the other hand, if we were to interpret the coefficients at face value, then according to the model $X3$ has a strong positive impact on the output variable, while $X1$ has a negative one, when in fact all the features are correlated and should have equal effects to the output variable. This multicollearity issue also applies to other methods/algorithms and should be addressed before feeding our data to a machine learning method/algorithm.\n", "\n", "## Variance Inflation Factor\n", "\n", "One of the most widely used statistical measure of detecting multicollinearity amongst numerical variable is the **Variance Inflation Factor (VIF)**. The VIF may be calculated for each predictor by performing a linear regression of that predictor on all the other predictors, i.e. if we wish to calculate the VIF for predictor $x_k$, then we would use that column as the response variable and use all other columns excluding $x_k$ as the input. After fitted the linear regression, we would then obtain the rsquared value, $R^2$, which tells us how much variance in our predictor $x_k$ can be explained by all the other predictors. Lastly the VIF can be computed using:\n", "\n", "$$\n", "\\begin{align}\n", "VIF = \\frac{1}{1 - R^2}\n", "\\end{align}\n", "$$\n", "\n", "It’s called the variance inflation factor because it estimates how much the variance of a coefficient is \"inflated\" because of linear dependence with other predictors. Thus, a VIF of 1.8 tells us that the variance (the square of the standard error) of a particular coefficient is 80% larger than it would be if that predictor was completely uncorrelated with all the other predictors." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def remove_collinearity(X, colnames = None, threshold = 5.0):\n", " \"\"\"\n", " Identify multi-collinearity between the numeric variables\n", " using variance inflation factor (vif)\n", " \"\"\"\n", " if colnames is None:\n", " colnames = ['feature' + str(j) for j in range(1, X.shape[1] + 1)]\n", "\n", " while True:\n", " n_features = X.shape[1]\n", " if n_features == 1:\n", " break\n", "\n", " vif = [compute_vif(X, index) for index in range(n_features)]\n", " max_index = np.argmax(vif)\n", " if vif[max_index] >= threshold:\n", " removed = colnames[max_index]\n", " colnames.remove(removed)\n", " X = np.delete(X, max_index, axis = 1)\n", " else:\n", " break\n", "\n", " return X, colnames\n", "\n", "\n", "def compute_vif(X, target_index):\n", " \"\"\"\n", " Similar implementation as statsmodel's variance_inflation_factor\n", " with some enhancemants:\n", " 1. includes the intercept by default\n", " 2. prevents float division errors (dividing by 0)\n", "\n", " References\n", " ----------\n", " http://www.statsmodels.org/dev/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html\n", " \"\"\"\n", " n_features = X.shape[1]\n", " X_target = X[:, target_index]\n", " mask = np.arange(n_features) != target_index\n", " X_not_target = X[:, mask]\n", "\n", " linear = LinearRegression()\n", " linear.fit(X_not_target, X_target)\n", " rsquared = linear.score(X_not_target, X_target)\n", " vif = 1. / (1. - rsquared + 1e-5)\n", " return vif" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "remaining feature: ['feature3']\n", "Linear model: 3.024 * X1\n", "rsquared: 0.903735567258\n" ] } ], "source": [ "# removing collinearity, thus redundant features\n", "# while still retaining predictive power\n", "X, colnames = remove_collinearity(X)\n", "print('remaining feature:', colnames)\n", "\n", "linear = LinearRegression()\n", "linear.fit(X, y)\n", "print('Linear model:', pretty_print_linear(linear))\n", "print('rsquared:', linear.score(X, y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cramer's V\n", "\n", "Now that we've discussed the method for detecting collinearity amongst numerical variables, we will shift our gears towards categorical variables. **Cramer’s V** is a statistic measuring the strength of association or dependency between two (nominal) categorical variables.\n", "\n", "Suppose $X$ and $Y$ are two categorical variables that are to be analyzed in a some experimental or observational data with the following information: \n", "\n", "- $X$ has $M$ distinct categories or classes, labeled $X_1,\\ldots,X_M$.\n", "- $Y$ has $N$ distinct categories, labeled $Y_1,\\ldots,Y_N$.\n", "- Form a $M\\times N$ contingency table such that cell $(i,j)$ contains the count $n_{ij}$ of occurrences of category $X_i$ in $X$ and category $Y_j$ in $Y$. This would give us $n$ total pairs of observations.\n", "\n", "We start of with the null hypothesis that $X$ and $Y$ are independent random variables, then based on the table and the null hypothesis, the chi-squared statistic $\\chi^2$ can be computed. After that, Cramer's V is defined to be:\n", "\n", "$$\n", "\\begin{align}\n", "V=V(X,Y)=\\sqrt{\\frac{\\chi^2}{n\\operatorname{min}(M-1,N-1)}}\n", "\\end{align}\n", "$$\n", "\n", "Remarks:\n", "\n", "- $0\\leq V\\leq 1$. The closer $V$ is to 0, the smaller the association between the categorical variables $X$ and $Y$. On the other hand, $V$ being close to 1 is an indication of a strong association between $X$ and $Y$. If $X=Y$, then $V(X,Y)=1$.\n", "- In order for $V$ to make sense, each categorical variable must have at least 2 categories.\n", "- If one of the categorical variables is dichotomous, i.e. either $M$ or $N=2$, Cramer's V is equal to the **phi statistic** ($\\Phi$), which is defined to be $\\Phi=\\sqrt{\\frac{\\chi^2}{n}}$.\n", "- Cramer's V is a chi-square based measure of association. The chi-square value depends on the strength of the relationship and sample size, while eliminates the sample size by dividing chi-square by $n$, the sample size, and taking the square root." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
bcatdog
a
chat30
chicken04
\n", "
" ], "text/plain": [ "b cat dog\n", "a \n", "chat 3 0\n", "chicken 0 4" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# generate a correlated categorical variable\n", "# and see if cramer's v method will detect it\n", "df = pd.DataFrame(index = range(1, 8))\n", "df['a'] = ['chicken', 'chicken', 'chicken', 'chicken', 'chat', 'chat', 'chat']\n", "df['b'] = ['dog', 'dog', 'dog', 'dog', 'cat', 'cat', 'cat']\n", "observed = pd.crosstab(df['a'], df['b'])\n", "observed" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def compute_cramersv(observed, correction = False):\n", " \"\"\"\n", " Parameters\n", " ----------\n", " observed : 2d ndarray\n", " The contingency table. The table contains the observed frequencies\n", " (i.e. number of occurrences) for each category.\n", "\n", " correction : bool, default False\n", " If True, and the degrees of freedom is 1, apply Yates’ correction for continuity.\n", " The effect of the correction is to adjust each observed value by 0.5 towards the\n", " corresponding expected value. This is set to False by defualt as the effect of\n", " Yates' correction is to prevent overestimation of statistical significance for small\n", " data. i.e. It is chiefly used when at least one cell of the table has an expected\n", " count smaller than 5. And most people probably aren't working with a data size that's\n", " that small.\n", "\n", " Returns\n", " -------\n", " cramersv : float\n", " \"\"\"\n", " n_obs = observed.sum()\n", " n_row, n_col = observed.shape\n", " chi2 = chi2_contingency(observed, correction = correction)[0]\n", " cramersv = np.sqrt(chi2 / (n_obs * min(n_row - 1, n_col - 1)))\n", " return cramersv\n", "\n", "\n", "correction = False\n", "observed = observed.values\n", "compute_cramersv(observed, correction)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Reference\n", "\n", "\n", "- [Blog: Cramer’s V](http://planetmath.org/cramersv)\n", "- [Blog: Is R-squared Useless?](http://data.library.virginia.edu/is-r-squared-useless/)\n", "- [Blog: Deriving normal equation](https://wiseodd.github.io/techblog/2017/04/14/normal-equation/)\n", "- [Blog: The Principle of Maximum Likelihood](http://suriyadeepan.github.io/2017-01-22-mle-linear-regression/)\n", "- [Blog: The Normal Equation and matrix calculus](https://eli.thegreenplace.net/2015/the-normal-equation-and-matrix-calculus/)\n", "- [Blog: When Can You Safely Ignore Multicollinearity?](https://statisticalhorizons.com/multicollinearity)\n", "- [Blog: Selecting good features – Part II: linear models and regularization\n", "](http://blog.datadive.net/selecting-good-features-part-ii-linear-models-and-regularization/)\n", "- [Blog: How to Identify the Most Important Predictor Variables in Regression Models](http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-most-important-predictor-variables-in-regression-models)\n", "- [Github: Duplicate (and highly correlated) categoricals](https://github.com/JosPolfliet/pandas-profiling/issues/40)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" }, "toc": { "nav_menu": { "height": "12px", "width": "252px" }, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": "block", "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }