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Nomenclature

Do = Outer Diameter of Leg, m
Dy = Inner Diameter of Leg, m
ro = Outer Radius of Leg, m
r; = Inner Radius of Leg, m
F = Upper Joint (Femur) Length, m
T = Lower Joint (Tibia) Length, m
f = Distance from Base of Femur to Center of Mass of Femur, m
t = Distance from Base of Tibia to Center of Mass of Tibia, m
myp = Mass of Spider Body, kg
mp = Mass of Spider Femur, kg
mp = Mass of Spider Tibia, kg
h = Jump Height, m
6 = Bend Angle (with Respect to the Horizontal), rad
¢ = Joint Angle (with Respect to the Vertical), rad
I = Moment of Inertia of Tibia around its Center of Mass, kg-m?

Ir = Moment of Inertia of Femur around its Center of Mass, kg-m?

p = Pressure, Pa
,,:’

Position Vector, m

Velocity Vector, m/s

=
I

Acceleration Vector, m/s?

B
F = Force Vector, N
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1 Abstract

The jumping spider family is the largest among its species, making up about 13% of all spiders. Jumping as a
method of locomotion is advantageous in several ways, especially in rough terrain where rolling or walking might
be difficult. Jumping spiders can jump many times their body length, allowing them to pounce on prey or traverse
great distances relative to their size. They do so by contracting muscles in their upper body (cephalothorax),
decreasing the volume of blood there, and forcing it into the legs, causing an increase in pressure in the extremities.
This pressure increase allows for rapid extension of the spiders’ legs, causing it to catapult into the air. The
primary focus of Arachnabot is to mimic this sequence of events, so that we may gain a better understanding of
the biomechanics involved, and apply this understanding to make better and more versatile robots in the future.

point of rotation

point of rotation

i

membrane

Figure 1: A free body diagram of a spider joint (right), next to a typical joint of the spider leg in the flexed (left)
and extended (middle) positions. Adapted from Zentner [8]

2 Executive Summary

We present preliminary analysis, design, and testing on a single, small, robotic spider leg. Simulations of the
system were first done in MATLAB, and then iterative design was done with Solidworks. We present the results
of tests on several different parts of the spider leg, including the latching system and the leg contraction system.
Fabrication of spider-scale parts proved difficult due to manufacturing and material constraints, but we believe
a viable solution has been found. The leg is meant to imitate an actual spider’s leg, which is able to help the
spider jump around by atypical means that could provide insight and inspiration for a new method of locomotion
in robotics.

2.1 Primary Objective

Our primary goal is to recreate the method by which a spider jumps in a reasonable and economical fashion.
We wish to achieve this goal at the same scale - that of a spider - though different means and designs may be
necessary to do so. The envisioned final product is, quite simply, a robotic, jumping spider.

2.2 Secondary Objectives

In addition to our primary goal, we have a number of more specific secondary goals that we would like to obtain,
many of which will help us reach our primary goal.

e Design a leg no more than 5¢m tall at full extension.
e Reach a maximum jump height of double the leg height at full extension.
e Design a body that weighs less than 30g.

e Create a self-supporting, self-contained system that does not need an external
pressure or control source.

e Use designs and methods that are as simple as possible. Joint Bladden

e Prototype and fabricate as quickly as possible, and worry about efficiency
and optimization later.

Figure 2: The prototype

e Be able to learn and take away knowledge and new experiences from the created using balloons and

project. ribbon mesh with latching
functionality.
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Figure 3: The work presented here is an extension of previous work (shown above) done at the Max Planck
Institute for Intelligent Systems, where a larger-scale leg was demonstrated using a cable tendon, mechanical
tensioning mechanisms, a rigid segmented joint, remote air supply, and remote power supply. This leg is capable
of jumping its own height as configured. [7]

3 Background

A spider’s leg functions very differently from other muscle-powered legs, and is even unique among other insect
species (insects in general require higher limb accelerations that cannot be reached by muscular contraction). A
grasshopper is one insect which has strong leg muscles for its size. However, fleas and locusts, for example, jump
via an elastic instability, storing potential energy in a spring-like system which releases after a certain point is
reached [2]. The spider uses similar snap and latch mechanisms, but its method of energy storage is one-of-a-kind.
Spiders use a very effective hydraulic system to store energy in its hind legs and jump. Because of the insects’
open blood circulatory system, a spiders lacunae, the space between its muscles and its exoskeleton, is filled with
hemolymph [5], it’s “blood.” A jumping spider is able to squeeze muscles in its upper body (it’s cephalothoraz)
to drive hemolymph to its legs, effectively increasing the pressure in its spidery veins. Once this pressure buildup
is high enough, it can snap the legs, causing them to rapidly extend and launch the spider into the air.

Most spiders are able to jump farther horizontally than they are vertically. Because spiders lack mid-air control,
spiders first put a strand of web down before jumping. This helps them control their orientation in the air and
stabilize them so that they can land upright. It can also act as a fail-safe in case they miss their landing targets.
Typically a spider will use its jump as a way to pounce on prey quickly, traverse a gap, or flee. Jumping as a
method of locomotion in robots is advantageous in other ways, especially when the robot is small and everything
is an obstacle: it is less energy-intensive than flying, yet more mancuverable and faster than walking or rolling.

Jumping robots are certainly not new to the scientific community. A lightweight jumping robot developed
by Sandia National Labs uses a chemical combustion process to slam a piston-cylinder setup into the ground,
resulting in a jump height of over 30 feet vertically [3]. The wheeled robot is capable of righting itself after the
jump. A smaller robot developed by Ecole Polytechnique Federale de Lausanne (EFPL) mimics the jump of a
flea and is also capable of self righting [4]. As for our spider, preliminary work was first done by the Max Planck
Institute for Intelligent Systems, albeit with a larger leg and a remote air supply [7]. We hope to recreate the
spider leg on a smaller scale with an on-board air supply.

4 Methods and Analysis

To better understand the system before designing, we first created a model of the spider leg to analyze. We make
some preliminary assumptions that will help simplify the model.

e 2D Cartesian Coordinate System
Movement of the leg will be constrained to the x-y (horizontal and vertical) directions, assuming that none
of the force or pressure acting on the system will be acting in the z-direction (out-of-plane).

e Constant Pressure
The pressure acting on the joint remains constant throughout the motion of the joint (that is, p = py. This
is a best-case scenario, as the pressure acting on the joint is likely to drop as the angle 0 increases. A simple

relation for a linear pressure drop, for example, is p = po(1 — 9%), where the pressure is dependent on the



4 METHODS AND ANALYSIS 6

angle #. In actuality, the pressure drop may be even faster than a linear drop, as the rapidity with which
the pressure force has to be applied and the overall size of a spider means we are considering a very small
timespan relative to most other pneumatic systems.

In addition, we define the constant pressure to be an external force on the system, rather than an internal
force like the forces acting on the hinge. We also define the mass of the body to be an external force.

e Frictionless System
No energy is lost to friction or heat. All of the potential energy stored in the joint by pressurization is
converted into kinetic energy for the jump. Once the jump is complete (robot is off the ground), the kinetic
energy is converted back to potential energy in the form of the system’s maximum height.

e Point Loads
All force act as point loads. For example, the pressure force acts as a point load on the centerline of the
leg, rather than a distributed load on the entire leg cross section.

Figure 4: Problem setup, key locations and distances. (Not to scale)

4.1 Pressure Calculations

We begin with an angular momentum balance on the tibia, or lower leg (Figure 5). We approximate the pressure
as a single point force acting at the center of the tibia (r = 0), parallel to the longitudinal axis of the leg. The
tibia rotates around the point H.

\‘M

Figure 5: Moment Balance on the Tibia
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The moment is given by:

M = i X F
= pAr; (1)
= ponrs

In order to calculate a jump height, we will use Conservation of Energy on the entire system by writing the work
done on the leg in two different ways.

W = mgh (2)

W= " M(6)do (3)
0

We will equate the work done by the moment (Eq. 3) to the potential energy of the system at the height of its
jump (Eq. 2).

o
w :/ pom“? = mgh
0
= poeoﬂ'r? = mgh
This gives us a simple relation for the pressure required to reach the specified height.

_ mgh
Po= Gomr?

Then the force required on the joint to propel the spider into the air is

F=pA

_ 2
= PoTT;

4.2 System Mechanics: Kinematics and Dynamics

The dynamic motion was simulated in MATLAB, using a Differential Algebraic Equaton (DAE) method, result-
ing in 10 equations which track the motion of the center of masses of the bodies, the forces applied to the base
of the tibia, and the forces acting on the joint. Relevant locations and distances are shown in Figure 4.

There are two phases that we are concerned with: Phase 1 is concerned with the motion of the system when it
is still in contact with the ground, and Phase 2 is concerned with the motion of the system when it has in air.
Free body diagrams on each of the two legs for Phase 1 are shown in Figure 6. The free body diagrams are the
same for Phase 2; however, the forces at O and the pressure forces disappear.

(a) Tibia (b) Femur

Figure 6: Free Body Diagrams and Associated Vectors for Differential Algebraic Equations

Note that we define all angles 61 and 65 with respect to the horizontal, so that they can be written as:
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., = the x-direction in the non-rotating inertial frame

=0

j’ = the y-direction in the non-rotating inertial frame
i' = cos(01)i + sin(0;)7 (©)
§ = —sin(61)i + cos(61)]

" = cos(0)1 + sin(62)]
§7 = —sin(By)i + cos(62)]
We are interested in 10 unknown quantities revealed by the free-body diagrams: O, Oy, Hy, Hy, @1, 97, %, §r, él,

and 92 We can write 10 equations from linear momentum balance, angular momentum balance, and certain
constraints that will allow us to simultaneously solve the system of equations.

The following distance vectors must be defined. Note that the quantity d in this case refers to the radius of the

legs.

To/ar = —ti

FP/GT = tZA/

Prjor =t — dj’

_‘H/ T i J (7)
TP/GF = —fi”

Fujr = —fi" — dj"

Tpar = fi"

4.2.1 Linear Momentum Balances

A linear momentum balance is written for the tibia, resulting in two equations (one in the x-direction and one

in the y-direction):

ﬁ = m,(_JTGT (8)
Oui+ Oyj —mrgj — Pi' + Hyi+ Hyj = mriri +mrjrj

A linear momentum balance is written for the femur, resulting in two equations (one in the x-direction and one
in the y-direction):
F = de F
9)

—mpgj + Pi" — Hyi — Hyj = mpipi + mpijr)

4.2.2 Angular Momentum Balances

An angular momentum balance is written for the tibia around its center of mass:

2 Myor =3 Hyor (10)
[FO/GT X (Oli + Oyj)} + [FP/GT X (—P’LA’)] + [FH/GT X (H‘L% + Hy.})} = ITGII;

An angular momentum balance is written for the femur around its center of mass:

ZM/GF = Zﬁ/cp (1)

[FB/ar % (—mwg))] + [Fpjar x (—Pi")] + [Fajgr x (—Hyi — Hyj)] = Ipbak
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4.2.3 Constraints

The first constraint defines the motion of point O - namely, that it is 0. This results in two equations (one in the
x-direction and one in the y-direction).

To/F =

1 Ol

zari+yerj + fojer =0
seri+yorj —ti' =0 (12)
dori+ jar) = th]’
:'I;'GT% + yGT; = télj/ — t@%[’
The second constraint defines the motion of the hinge with respect to each of the tibia and femur, namely, that
it is the same motion. This results in two equations (one in the x-direction and one in the y-direction).

TrH/0 = TH/O
rert + yar) + TH/GT = Tt +yarj + TH/GF
reri +yory + ' — dj' = zapi +yarj — fi — dj” (13)
iGTi + yar) + 017 + dbi' = icri + gar) — fO25" + dai”
iari+ jery + t01g — 03 + dbyi’ + d635' = icri +ijgri — [025" + 030" + dfoi” + dO3 "

4.2.4 Equations of Motion

We are left with a system of linear equations, [A]Jx = [b], describing the motion of the spider. For Phase 1, the
system is as follows:

F1 0 1 0 —my 0 0 0 0 0 O,
0 1 0 1 0 —my 0 0 0 0 0,
0 0 -1 0 0 0 —my 0 0 0 H,
0 0 0 -1 0 0 0 —my 0 0 H,
tsin(61) —tcos(01)  dcos(6q) — tsin(61)  dsin(61) + tcos(61) 0 0 0 0 —Ir 0 Zgr
0 0 —dcos(60) — fsin(62)  fcos(f2) — dsin(f2) 0 0 0 0 0 —Ir jer
0 0 0 0 10 0 0 tsin(6y) 0 igr
0 0 0 0 0 1 0 0 —tcos(6h) 0 jar
0 0 0 0 1 0 -1 0 dcos(01) — tsin(6y) —dcos(02) — fsin(6z) 6,
. 0 0 0 0 0 1 0 —1  dsin(01) + tecos(0y  [cos(02) — dsin(02) | | 6, |
i Pcos(61) T
myg — Psin(61)
—Pcos(02)
mpg +mpg — Psin(6s)
0
- mpg feos(62)
ﬂ?%tcos(ﬁl)
—02tsin(0;)
fO3c0s(02) + d6’1 sin(61) — db3sin(02) + t@lcos(ﬁ )
| d62cos(6y) — d62cos(61) + fO2sin(6s) + t62sin(6y)]
For Phase 2, the system is as follows:
[ 1 0 -m¢ 0 0 0 0 0 1 H:]
1 0 —m 0 0 0 0 H,
-1 0 0 0 -my O 0 0 Zer
0 -1 o0 0 -my 0 0 jier
dcos(6h) — tsin(61)  dsin(61) + tcos(6r) 0 0 0 0 —Ir 0 Zar
—dcos(02) — fsin(2) fcos(62) —dsin(f2) 0 0 0 0 0 —Ip Ycr
0 0 1 0 -1 0 deos(6y) —tsin(61) —dcos(f2) — fsin(6s) 601
0 0 0 1 0 -1 dsin(f1) +tcos(61  feos(B2) — dsin(62) | | G, |
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0

mrg
0

mpg +mgg
0
| mafeosths)
f03cos(0s) + db?sin(0y) — db3sin(6s) + t2cos(0;)
| d03cos(0a) — dB3cos(0y) + fO3sin(02) + tO3sin(6y) ]

We can then input these equations into MATLAB.

4.2.5 MATLAB Simulation

Initial conditions are supplied and the solution is animated. The solver accounts for the two flight and ground
phases by including an “Events” system. The first event, Flight, activates when the value of O, changes from
positive to negative, indicating a change in direction of the force “holding” the spider to the ground. At this
point, the solver switches to Phase 2 (where O, Oy, and P no longer act on the system). The second event,
Ground, activates when the body of the spider hits the ground, and stops the solver.

A number of checks were used on the simulation. At all times, the total energy of the system due to kinetic and
potential energy was calculated. Because we took the pressure force and the mass of the body to be external
forces, energy was being added to the system for the entirety of the simulation, as can be seen in Figure 7. We
can check then, that the potential and kinetic energy add up to the energy gained from the pressure and body
mass forces.

0.071
Phase 1 Phase 2
0.06 7
~
P
-
-
-
0.05F L=
1-
¢

2004t Py
= ’
g ;
o L

0.03 ’
w ’

rs
’
0.021 ’
i
+
£
0-01 ” ¢ = = = from Potential and Kinetic Energy
P Total Energy
pe=" . N : ) '
0 0002 0004 0006 0008 0.01 0012 0014
Time (s)
Figure 7: Conservation of Energy Check, with initial conditions 0; = 7, 6, = ‘%“, and p = 60kPa. The orange

line represents the total energy that the system should have at the end of the simulation. It is calculated from
the starting potential energy, the energy added by the pressure force, and the energy added by the force of the
mass of the body. The dotted line represents total potential and kinetic energy. It’s movement does what we
expect it to - that is, gain energy until the force from pressure in Phase 1 is removed, at which point the only
external force acting upon it in Phase 2 is the body mass, which causes it to approach the orange line.

In addition, a number of test cases were checked:

e Pressure =0
When the pressure is reduced to zero, the simulated spider should simply fall to the ground. The simulation
performed as expected.
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e Double Pendulum
When the pressure is reduced to zero, the thickness of the leg is reduced to 0, and the body mass is reduced
to 0, the simulated spider leg should act like a double pendulum system. The simulation performed as
expected.

e Single Pendulum
When the pressure is reduced to zero, the thickness of the leg is reduced to 0, the body mass is reduced
to 0, and the length of the femur is reduced to 0, the simulated spider should act like a simple pendulum.
The simulation performed as expected.

/ N N AW

(a) Note the movement of the top of the femur (the body) traced by the purple line. The spider body clearly moves
forward. However, the body loops around haphazardly, as we did not include a collision system in our simulation, and
the mass of the body is much larger than the mass of the legs. Therefore, it is free to rotate around the joint. The total
horizontal distance jumped was 3.43cm at a pressure of 60kPa, and the total y distance reached was 5.09¢m. Because
cach leg was 2.5¢m in length, this tells us that most of the pressure goes towards propelling the spider forwards, and not
upwards.

0.06

Y Position (m)
o
b

o
o
%]

T

1 1 1 1 1
-0.06 -0.04 -0.02 ] 0.02
X Position (m)

b) At a pressure of 200kPa, the jump distance increased to
5.39c¢m, and the max vertical height was 5.43cm.

Figure 8: Simulations run in MATLAB. Both simulations have initial conditions ¢, = 7, 0o = 37 and a tibia

1
and femur length of 2.5¢m.

The MATLAB simulation shows most of the energy propelling the spider in a horizontal direction, and not the
vertical direction. This matches what we know about how spiders actually jump — most of their movement is
horizontal and not vertical. We can use the motion as a good baseline for what to expect when testing the actual
model. The full MATLAB code is attached in the Appendix.

5 Motivation and Design

One of the biggest challenges of making the design for the leg is achieving the scale set out in our goal. Many
current micro-fabrication techniques are too small and expensive for the size and quantity we need for a prototype.
As such, we focused on limiting most of our fabrication to rapid prototyping methods including Objet printers.

5.1 Joint Design

Previous research by the Max Planck Institute utilized a segmented joint design that encapsulates an internal
bladder[7]. This method is proven to work, but the segments limit the minimum size of the leg due to manufac-
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turing constraints for rapid printing methods.

Instead, we have chosen to experiment with flexible thin materials to create the pressure containing bladder. As a
starting point, balloon latex was used to make sure our prototype could extend. This is similar to other research
being done with pneumatic joints [5], but using hyperelastic materials usually results in a parasitic loss in the
applied work and limits the maximum pressure that can be applied. To limit the elasticity, adding a lightweight
ribbon around the balloon can be added to help prevent this parasitic loss of power.

4

80 0 1 10
lua..uimwmmumm‘ﬁ

Figure 9: Examples of prototypes developed.

We also explored other alternative, non-hyperelastic materials for the joint. Mylar was an easy material to test
due to it’s ubiquity and ease of creating customized shapes. Mylar has a limited cycle life, but manufacturing
custom shapes is fairly easy with a soldering iron and a knife. Other plastic-lined fabrics also have similar prop-
erties, but they are typically very stiff.

Silicone impregnated fabric, a common technique for strain-limited flexible robots, was another choice we ex-
plored. This material has to be made in the lab, but this allows for some variability in the base cloth. The
material itself is much thicker than mylar with a much greater cycle life than mylar, but it is also much stiffer
and more difficult to create an air seal.

A major benefit of a segmented design is that the bladder was independent of the hinge. The previous 3 materials
discussed require consideration of pneumatic sealing in the flexed and extended positions. Depending on how
the joint is designed, the bladder material has to be bonded to the leg in a systematic way. Since the inner and
outer edges are different lengths when flexing or extending, extra bladder material needs to exist to allow for full
joint movement.

5.2 Latch Design: Mechanical Imbalances

One of the properties of jumping is the rapid release of energy that propels the object. Pressure valves tend to be
fairly large and/or expensive for our application, so instead we are planning on using a latch release mechanism
to provide the instantaneous release of energy. Once the pressure builds up enough, the latch will break open
and release the stored energy.

Ideally, this latch would require a mating force much lower than the de-mating force. The goal would be to have
at least a 1:2 ratio of mate to de-mate force requirement. This would ease the force requirements on our flexing
tendon, allowing for a smaller actuation device.

In prototyping, our material selection was limited to VeroBlue, VeroClear, or Carbon 3D’s RPU. Both VeroBlue
and VeroClear have similar material properties (See Table 1), and Carbon 3D’s material is slightly weaker. The
following equations from Bayer [1] were used as guidelines to design the latches.
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Friction Coefficient p =tan p

Figure 10: Relationship between deflection force, P, and mating force, W.

Latch Deflection, where € is strain, [ is the length of the latch, and h is the thickness of the latch at the root.

el?
=1.09— 14
Yy o (14)

Latch Deflection Force, where b is the width of the latch at the root and E; is the Modulus of Elasticity.

bh? Ee
p="
6 I

(15)

Latch Mating/Unmating Force, where p is the coefficient of friction of the material, and « is the mate/unmate
angle.

t p
w = pittan(a) (16)
1 — ptan(«)
For annular latches, the equations are a bit more complicated.
Latch Deflection, where d is the diameter at the joint.

y=ed (17)

Latch Deflection/Transverse Force, where y = undercut, and X is the geometric factor.
P=ydEX (18)

The Latch Mating/Unmating Force remains the same for both annular and cantilevered latches.

These latch equations give us a lot of freedom to play around with different variables and try different latch
designs. The same result can be reached multiple different ways. Therefore, we tested many different types of
latches in the hopes of finding several that would fit within our application. Due to the rotational motion of the
leg, there are also additional considerations needed to get the latch to work appropriately.

5.3 Solenoid Design

In order to retract the leg after jumping, we needed to develop an actuation method to reset the jump. We
decided on linear actuation over a rotational cam design — specifically, we decided to build a solenoid actuator
because the actuation distance is relatively small. This minimizes the need for a gearbox to reduce the motor
speed, which we think could result in some potential weight savings.

Inertial weight is also a consideration, since the pressure will have to accelerate the solenoid magnet during the
jump. On the contrary, a motor-based design will require the leg to overcome the rotational inertia of any gear
that’s attached to the cable. We also think that the use of moving gears for a release mechanism, similar to those
done in previous studies, would be less reliable in a standalone setting [7].

The purpose of the solenoid was to return the spider leg to the bent position. The goal was to build a solenoid
linear actuator that could pull a string with enough force to bend the leg and latch the joint. Initially we were
trying to design a solenoid that could produce one Newton of force while using the least amount of voltage possi-
ble and not drawing more than 3A of current. We wanted the solenoid to be as small as possible so that it would
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not add too much weight to the PCB when mounted on top. Another factor we had to consider was amount of
power dissipated by the solenoid because if the solenoid dissipated too much energy, then the power source we
were using would cut us off in regards to how much voltage it supplied, and we also ran a high risk of starting a fire.

Our design needs to be small yet powerful; we consulted Schimpf [6] for guidance in designing the dimension
of the solenoid including what AWG of wire we should use, the dimensions of the solenoid, and voltage for the
desired force.

Figure 11: Diagram of the solenoid depicting the variables used. The metal core radius is ¢ and the mid-line of
the wire coils is r,

—V? 2 —ax
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The force can be estimated using the equation below per Schimpf [6]. However, some preliminary testing revealed
this equation did not match predicted force results, thus a simplified form was used.

i (T—°)2 (20)

T 8mg?2 \r,

The derivation is similar to the previous equation except it assumes more ideal conditions to simplify the math.
V' is voltage, I is the length of the solenoid in meters, g is the distance between the iron magnature and the
solenoid in meters, jig is a constant equal to 47 * 1077, rq is the distance from the center of the solenoid to the
first coil, and r, is the radius from the center of the solenoid to the middle coil as shown in Figure 11.

The first solenoid we built was 10mm, had an AWG of 28, and r, equal to 3.5mm where r, was the radius from
the center of the solenoid to the middle of the copper windings as shown in the image above. The next two
solenoids we built were 20mm and 15mm in length, 6 layers of coils, and using the 36 AWG wire.

Once we had decided on the dimensions to fit the amount of force needed to mate the latch, we designed a frame
to fit around the solenoid to ensure that it would not overextend. This frame will ideally be attached to the body
of the spider.

Figure 12: Solenoid Coil Holder for attachment to the spider body. The coil moves back and forth inside the coil
holder to pull the string/tendon.
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6 Methods and Procedure (Testing)

6.1 Fabrication Methods

To expedite the prototyping process, we decided to stick with rapid prototyping techniques to allow for quick,
iterative design. Using a Stratasys Objet30 3-D printer, we were able to quickly print off a few initial designs, to
ensure that certain tolerance built into the leg were appropriate. This particular printer has a layer thickness of
28 microns (0.028 mm) and an accuracy up to 0.1 mm, dependent on the material used and the part geometry.
This also gave us a baseline feel for the scale of our fabrication methods. We also printed components on the
Carbon 3D printer, but results varied dramatically depending on part orientation and support design.

Material Tensile Strength | Elongation at | Modulus of Elas- | Flexural
(MPa) Break (%) ticity (MPa) Strength (MPa)
VeroBlue RGD840 | 50 - 60 15 - 25 2000 - 3000 60 - 70
VeroClear RGD810 | 50 - 65 10 - 25 2000 - 3000 75 - 110
Carbon 3D RPU 43 - 47 20 1700 - 2100 N/A

Table 1: Polyjet Material Properties

Figure 13: Comparison of the Carbon 3D and the Objet print qualities and capabilities. Red components are
Carbon3D prints while the light blue components are Objet prints.

Our preferred material was Stratasys’s Polyjet VeroBlue, though some parts were printed in VeroClear, properties
of which can be found in Table 1. The rigidity and strength of both materials is about the same, although both
came out of the printer encased in support material, which was often difficult to clean off completely.

Printing with the Carbon 3D RPU will require some tuning to get orientations and design accommodations. The
printer had difficulty reliably producing the latch’s ramp and other key features. Due to the curing process, some
of the material also warped making the effective latch mate and de-mate forces lower than intended. However,
the Carbon 3D is capable of printing very small features with some level of success, with small features like the
latch on the tophat working fairly well when the feature is printed correctly.

6.2 Latch Testing

We had previously determined that a demating force of 4N and a mating force of at most half that amount (but
as small as possible) would be necessary for the latch mechanism. Latch design equations show us that there are
multiple ways to achieve this goal, primarily by changing the geometry of the base and angle of mating/demating.
We tested multiple latches to determine which would work best within the spider leg.

A Phidgets Single-Point Load Cell rated for 780 g (7.644 N) was used to test the force required to mate and
demate the latches. Several test latches were attached to a hexagonal piece lined with guide holes - a separate
attachment for the load cell was fabricated and two rods were used to ensure that the guide holes lined up and
the force measured would be in one direction.

The load cell was first connected to a Phidgets PhidgetBridge input, which interpreted the voltage output and
relayed the information to a computer via USB. The load cell was then calibrated with a known weight — we
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(a)  Phidgets  Single-Point
Micro Load Cell (0-780g)

CZL616C
1}

(b) Phidgets PhidgetBridge 4- (¢c) The hexagonal test piece
Input can test up to twelve latches.

(d) Latch Testing Setup, with load cell attachment and test

piece (e) A different load cell attachment for annular latches.

Figure 14: Phidgets kit and accessories for measuring force. The load cell connects to the bridge, which connects
via USB to a computer. A Python script interprets the results.

assumed the calibration was linear and used Phidgets software to perform the calibration. For the linear latch
tests, the calibration was y[g] = 946.2366x[mV] + 5.1854. Then the mass data was converted to force data by
multiplying by the acceleration of gravity, 9.8m/s2. Once the load cell attachment was on the load cell, three tri-
als each were done for both latchment and delatchment, for 18 different latches. The average of these trials were
taken for a value of latchment/delatchment force. At the time of this writing, latch tests are still being conducted.

In addition to the traditional cantilevered latch designs, separate load cell attachments and test latches were
made for testing annular snap joints. The process works much the same — the only difference is in the attachment
and test latches.

Latch 2-6

Foree (N)

Time (s)

Figure 15: Results from one of the latch tests, showing an unmating force in line with our goals (the positive
axis), but a mating force that is not optimal (the negative axis).
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| Latch | Mate Angle (deg) | Mating Force (N) | Unmate Angle (deg) | Unmate Force (N) |
1 30 3.5 90 3.3
2 45 2.8 50 4.1
3 45 2.0 60 2.2
4 15 10.0 45 10.0
5 30 3.25 45 3.8
6 30 2.9 60 3.9

Table 2: Latch Test Results for Latches 1-6. Certain discrepancies are noticeable — however, some of the
differences can be accounted for by the different lengths of the latches, which are not shown here.

After assessing the preliminary latch designs, we decided that linear latches were more adaptable and predictable
for our application. To maintain better latch performance, the latch was arced with a the characteristic ramp at
the end of this arc with a 5 degree angle with respect to the top retainer.

Figure 16: Example of the outer retainer in the latched state. On the left is a leg printed using the Objet Printer,
and to the right is a fully assembled leg with components printed on the Carbon 3D printer.

Depending on where and how the simulated tendon is attached to the leg, the force requirements will vary. From
testing real, physical latch designs, the max force before the transient averaged out to be 1.307N for the top
hole, 1.934N for the 2nd hole from the top, 2.804N for the 3rd hole from the top, and 8.900 N for the bottom hole.

Mating Latch Test - Objet, Top-most Mount
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Figure 17: Results from using the top set of holes of the retainer hinge showing the mating force.
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Mating Latch Test - Objet, 2nd from the Top-most
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Figure 18: Results from using the 2nd set of holes of the retainer hinge showing the mating force.

Mating Latch Test - Objet, 3rd from the Top-most
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Figure 19: Results from using the 3rd set of holes of the retainer hinge showing the mating force.

Mating Latch Test - Objet, Bottom hole
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Figure 20: Results from using the bottom set of holes of the retainer hinge showing the mating force.

An interesting thing to note is that there is a transient after the first peak that happens on nearly every mate
that occurs. We believe this is because the latch has fully mated at this point, causing a rapid dip in the force in
the cable. The following peak is presumably due to the leg joint bottoming out soon after the latch has mated.
As such, the mating force was labeled as the first peak for each test run.
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The de-mating force was also meausred for the leg. The first design used a 90 degree angle that mated flat with
the upper retainer, and this proved to be a very strong latch mechanism. To make it possible to de-mate with
air pressure, a chamfer was added to the upper leg joint to give a small ramp. Ideally, both sides of the leg would
have corresponding surfaces to avoid stress concentrations. On Carbon3D prints, we also noticed that the latch
would occasionally snap off instead of releasing properly.

Figure 21: De-mate test with a 500g weight (4.90N).

6.3 Solenoid Strength

The solenoid used to contract the leg was tested in much the same way that the latches were tested. A load cell
attachment was made and attached to the current coil holder in such a way that the load cell can measure the
force of pulling on the string.

Figure 22: Test rig used to measure the output force of the solenoids

When we tested this solenoid we connected it to the power supply and set the desired voltage to 15V. The
resistance of the solenoid was measured to be 1.17 . Since the resistance was so low, the solenoid dissipated a
large amount of energy when 15V was applied so the power supply automatically cut us off at 3.7V. With 3.7V
across the solenoid we got a force significantly lower than what we desired as shown in the results below.
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Voltage Applied | Current Drawn | Force Measured
(Volts) (Amps) (Newtons)

3.7 3.16 0.11

2.2 1.9 0.04

Table 3: First Solenoid Testing

For the first solenoid we were trying to produce the most amount of force possible using the smallest solenoid
design. Since the resulting solenoid had such a low resistance, the power supply limited us to max 3.7V instead
of the desired 15V. We decided to redesign the solenoid so that it would have a larger resistance and thus allow
for a larger voltage to be applied across the solenoid.

During our testing, the first solenoid could not provide a sufficient force to pull the leg as designed. During
testing, we could only apply 0.11 N, which was not enough to engage the latch. The second and third solenoids
designed were longer to see if we could generate more force and meet our requirements.

Voltage Applied | Current Drawn | Force Measured
(Volts) (Amps) (Newtons)

5 0.27 0.199

10 0.48 0.0.209

Table 4: 15mm Solenoid Testing Results

Voltage Applied | Current Drawn | Force Measured
(Volts) (Amps) (Newtons)

5 0.191 0.215

10 0.350 0.294

15 0.450 0.364

Table 5: 20mm Solenoid Testing Results

The results show that the 20mm solenoid produced the largest amount of force at 15V. Based on the force equa-
tion mentioned earlier, we expected the shorter solenoid to produce the larger force because there is a % term
in the denominator. We could not discern a logical explanation for why our results did not match our predicted
force results based on the force equation from Schimpf, so we decided to use the simplified force equation with
fewer terms to analyze the behavior of the solenoid. However, more importantly, none of the built solenoids with
the Voltage inputs tested generated enough force per the initial estimates and per the actual latch tests.

6.4 Joint Materials and Testing

As discussed earlier, the joint material is, in large part, what makes this design unique. So far, the only viable
materials that are cheap, easily produced, and bond-able to Objet materials are the latex balloons, mylar, and
silicone cloth sheets.

Latex balloons alone were too elastic for our purposes. To combat this hyper-elasticity, a layer of a thin mesh
ribbon was added to surround the balloon after an air-tight seal was created. This restricted the balloon’s ex-
pansion and dramatically improved the pressure capabilities of the joint, going up to 350 kPa absolute pressure
without issue.
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Figure 23: Image of the leg joint using balloons with a ribbon on the outer layer. A rounded triangular section
was used for this design.

With the mylar joint, manufacturing required several stages. First, the backside of the mylar had to be glued
while the joint was in the ”flexed” state. This allows the joint to flex freely during pressure applications. Next,
the joint had to be sealed to create the seam joining the ends of the Mylar. Afterwards, the remaining edges
needed to be glued to the leg while the leg was in the extended position. Lastly, the leg had to be checked for
air leaks which was remedied with additional glue. Each time glue was applied, we had to wait for the glue to
cure before moving to the next step. This is not ideal since it’s hard to guarantee a working, air tight system.

An identical procedure also had to be taken to manufacture the first leg with silicone impregnated sheets. As
seen in Figure 24, the middle leg was manufactured with the same process as the Mylar leg. As an improvement
to this procedure, an external hinge was developed to go around the leg depicted on the right in Figure 24,
making it easier to produce, but still had challenges related to creating the air-tight seal.

Figure 24: Images of the various legs with different joint materials. The left leg has a triangular cross section
with Mylar, the middle leg has a triangular cross section with silicone impregnated cloth, and the right leg has
a circular cross section with silicone impregnated cloth.

During fabrication tests, the joints with silicone impregnated cloth would build up significant thickness around
the overlap, causing integration issues with the outer hinge. The solution with balloons and ribbons maintains
a comparably thin layer with thickness buildup mainly due to super-glue. The mylar joint has the thinnest
material layer overall, but the limited cycle life makes it impractical for this application.

With all of the aforementioned materials, we were able to get desired behaviors with restricted expansion, but
ultimately the balloon with a ribbon attached showed the best performance behaviors and most reliable pressure
retention. Using super glue, we were able to quickly and easily fabricate air-tight sealing joints within a matter
of minutes. The ribbon helped restrict the expansion of the balloon, although the area of ribbon overlap can be
tricky as the balloon can sometimes expand through this spot.

6.5 Leg Assembly Jump Test

In order to verify design requirements and capabilities of the assembly, the jump needs to be performed prior to
completing the design and selection powered components. To do so, an absolute pressure sensor was attached
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Figure 25: Jumping Leg slow-motion. Total jump spans approximately 0.25s. Filmed at 60 frames per second
with images captured at Oth, 1st, 3rd, 8th, 12th, and 15th frames.
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Figure 26: Syringe Compression Check

in-line with the spider leg’s pneumatics. This allowed us to measure the pressures of the system through the
entire jump and determine what the maximum pressure need to de-mate the latch as designed.

With the pressure sensor, we were able to get characteristic data with the syringe compression. Using the ideal
gas law, p; and ps, the volume relationship of Vi and V5 is as follows.

%
P2 _ (_1> (21)
D1 Vo
The following compression tests with a syringe were performed to measure the compression efficiencies. From
the tests, the compression efficiency was fairly good, only dropping to 84.4% at the largest compression checked.

When we ran the tests, the pressure requirements to de-mate the 3mm thick latch ended up requiring, on average,
about 304.84 kPa at close to a 7:1 compression ratio. The compression requirement for air is quite high, and
would need a considerable amount of work done by the pneumatic compression mechanism to produce the desired
pressure.
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Figure 27: Arachnabot leg in its current stage of prototyping

7 Current Prototype

As of this writing, the prototype does not have any electronic components integrated into the system. The
leg itself is currently an alternative design to the previous segmented joint design, but with more potential for
miniaturization.

The PCB has not been designed yet for the jumping spider, thus a dummy, stand in PCB was added to mimic
the end configuration. This worked well, as it allowed for quick addition of components like the pressure sensor
with minimal destruction. A small stand was also created to make the jumping test easier, as it does not interfere
with the movement of the leg during jumping sequences.

The leg was fixed at the top pivot pin to restrict the movement of the joint. When tested without fixing the
top joint, the leg’s extension was too unrestricted, and the pressure force went into pivoting rather than vertical
acceleration. Ideally, this joint would also be pressurized, allowing for more work to be performed by the com-
pressed air.

The payload capabilities for the leg itself should be characterized before determining the final electronic power
requirements. This way, the desired performance characteristics can be achieved while keeping a decent safety
margin on power needs. While not tested yet, it is assumed that the current prototype cannot jump nearly as
high with all the required components mounted. It is also assumed, but remains to be tested, that the de-mate
force requirement can be increased to achieve greater jumping capabilities.

8 Conclusion and Future Work

In order to launch a 30 g, 5 cm tall robot twice its height into the air, several additional items need to be
investigated further on top of the work that has been done.

Ongoing investigations into sleeve design and the joint membrane seal have provided a potentially viable path
forward. We are still looking into the design of the mechanical actuator to squeeze air or fluid into the legs. A
separate actuator will be placed in the body of the spider to bend and flex the legs; currently a solenoid design
is being evaluated to that end. The biggest challenge still to overcome is scaling down the size and weight of the
robot. We are exploring novel fabrication methods towards this goal.

8.1 Dynamics Updates

The simulation is not perfect, and a number of clues point to problems in the model. We would expect, for
example, the energy added to the system in Phases 1 and 2 to be added in a linear fashion because both the
pressure and body mass forces are constant. And yet we can see in Figure 7 that that is not the case — they are
actually quadratic.
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Hip joint
* Freely moving joint

Figure 28: Jumping Robot Proposed Layout

Perhaps the best way to fix that problem would be to change the pressure and body forces to be internal rather
than external. That would involve expanding the model to include the body and the bladder, and accounting
for internal forces between the two systems. Then the calculated energy would be expected to be constant over
the timeframe of the simulation.

The simulation could also use a separate Events class to handle collisions, so that the leg does not bend backwards
upon itself or rotate around its own hinge — the joint design prevents these events from happening in the non-
simulated world.

8.2 Body and PCB Design

To keep the robot’s overall weight down, the PCB will serve as mounts for both the electrical components and
the leg(s). Limited development has been done in this area and further research is required. Based on our
preliminary assessment, the robot will need a pressure sensor, an H-bridge, accelerometer, solenoid(s), a battery,
and an ATMega microcontroller to control and actuate all the known components, as depicted in Figure 77.

While some work was performed on the PCB layout, electrical component placement and PCB trace layouts
still need to be determined. Based on the solenoid testing and the power requirements for a sufficiently strong
solenoid, other alternatives to actuate the leg’s tendon will likely need to be explored for future work.

8.3 Bladder Design

In order to design a mobile system, the robot needs to have a means of building up and lowering internal air
pressure. Spiders do this by contracting muscles within their body. As a future design component, we propose
using a bladder mounted to the body which will be contracted through some mechanical means of action.

One idea which could yield potentially good benefits is the use of switchable magnets. These would only require
small bursts of power to actuate on or off and could provide a quick response time. Foreseeable complications
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with this actuation include the weight of these magnets (effectively multiple solenoids) and the limited effective
distance.

There is still much testing to be done for this particular component, thus it remains to be seen if this is a viable
actuation method for this application. Depending on the dynamics model, required pressures, and the final leg
joint designs, the volume by which the bladder must constrict could be in excess of the 7:1 ratio, a drawback of
pneumatic systems.

Due to the high compression needs, the hydraulics option may need to be explored for this to be viable, as it
is much easier to generate high pressures with minimal volume change, but this will like require high torque or
force actuators.

8.4 Leg Mechanics

The joint design utilizing a balloon with a ribbon has thus far been the best option for the joint bladder design.
The performance of the balloon with cloth results in a very simple fabrication method that yields a strong,
flexible, and thin option that works very well. The pressure limits of this material have not yet been determined,
but this could be explored in future work as part of a means to improve jumping performance.

Silicone impregnated cloths require a lot of care to fabricate, and are not easy to bond to the legs per the flex-
ibility requirement. The lack of consistency with fabrication, added thickness of the material, and insufficient
reliability rule out the silicone impregnated cloth as a better alternative.

In addition to material selection, latch selection also needs to be researched further. Over the past few months,
several latches have been assessed, but there needs to be some fine tuning to get the latch mate and de-mate
forces right to meet the design requirements. Once again, the size of our robot is a restricting factor, as latch
sizes are comparable to the size of the leg.

Material options other than those provided in the Objet Printer have not been explored, but could be investigated
as an alternative to reduce the latch size. Additionally, the Objet material wears out fairly quickly, making it
prone to gradual loss of latching force over multiple actuations.

8.5 Leg Actuation Alternatives

When testing the solenoids with the joint it became clear that the solenoids did not provide enough force to move
the leg any significant distance. Future testing of the solenoids needs to be done; however, it’s likely that a small
enough solenoid that produces the desired force is not possible given the power limitations of the system. Since
the solenoids have such low resistance, they dissipate too much energy which causes the power source to limit the
amount of voltage applied to the solenoid. Even if we were able to obtain a power source that could constantly
supply 15V, we run the risk of frying other circuit components because they do not have a high enough power
rating.

In order to make the solenoid generate the required force, additional coils will likely be needed, and the benefits
over using a motor may be lost. Nitinol wire could be used as an alternative as they can generate a significant
force compared to its weight, but the issue would be during latch de-mating sequence as the air would need to
extend the wire.

8.6 Testing

Progress has been made towards proving the latch design concept, but to make it work per our required perfor-
mance specifications, some additional testing needs to be done.

Extensive solenoid testing was performed with results pointing towards not being an ideal solution. Alternative
linear actuators will need to be explored, and it may even be possible to tie it in with the pneumatic system to
mate the latch.

The testing rig for the actual jumping robot system also needs to be designed. Due to the predicted dynamics
of the jump, there may be a need to restrict lateral movement, so the robot is restricted to vertical movements.
This would allow us to get better measurements of how high the robot is capable of jumping.
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Testing the upper-limit pressure capabilities of the bladder are also mandatory. Since we are considering switch-
able magnets, application duration, forces, manufacturability, and power requirements will all need to be assessed
when testing the bladder. As an extension of the current design, additional segments could be explored to see if
jumping performance is improved or hindered, as spiders have more than 1 joint per leg.

A tethered joint was tested successfully, but the limits of its capability have not been fully explored. Assessing
payload limits, pressure requirements, and power requirements will all need to be done to get the untethered
solution designed correctly.

In order to build a successfully jumpingm un-tethered robot, we will need to develop the aforementioned tests
and any others to vet our designs and make sure we achieve our goal in the coming semesters.
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A Differential Algebraic Equation Derivation in MATLAB
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function spider DAEderive

3See report for math involved
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xtddot ytddot xfddot yfddot Ox Oy Hx Hy P real

DEFINE REFERENCE FRAMES

i=1[100]1;
j = 1010];
k = [0 0 1];
ip = cos(thl)*i + sin(thl)*j; $iprime
Jjp = —-sin(thl)*i + cos(thl)*j; %jprime

ipp = cos(th2)*i + sin(th2)*j; %1 double prime
jpp = -sin(th2)*i + cos(th2)*j; %j double prime

POSITION VECTORS

r ogt = -t*ip;

r pgt = t*ip;

r hgt = t*ip - d*jp;

r_ pgf = -f*ipp;

r_hgf = -f*ipp - d*jpp;
r bgf = f*ipp;

LINEAR MOMENTUM BALANCES

$Tibia




Imbl = Ox*i + Oy*j - mt*g*j - P*ip + Hx*i + Hy*j ==
mt*xtddot*i + mt*ytddot*];

eqnl = 1lmbl(1);

egn2 = 1lmbl (2);

sFemur

Imb2 = P*ipp - Hx*i - Hy*j - mf*g*j - mb*g*j ==
mf*xfddot*i + mf*yfddot*j;

egqn3 = 1lmb2 (1) ;

egqn4 = 1lmb2(2);

ANGULAR MOMENTUM BALANCES

$Tibia about GT

ambl = cross(r_ogt, Ox*i + Oy*j) + cross(r_pgt, -P*ip) +
cross (r_hgt, Hx*i + Hy*j) == It*all*k;

egqnb5 = ambl (3);

$Femur about GF

amb2 = cross(r_pgf, P*ipp) + cross(r_hgf, -Hx*i - Hy*j) +
cross (r_bgf, -mb*g*j) == If*al2*k;

eqné = amb2 (3);

CONSTRAINTS

$Acceleration of O is 0

conl = xtddot*i + ytddot*j == t*all*jp - t*oml*oml*ip;
eqn”7 = conl(1l);
egn8 = conl(2);

$Position of H is Position of H

con2 = xtddot*i + ytddot*j + t*all*jp - t*oml*oml*ip + d*all*ip +
d*oml*oml*jp == xfddot*i + yfddot*j - f*al2*jpp + f*om2*om2*ipp

+ ...

d*al2*ipp + d*om2*om2*jpp;

egqn9 = con2(1l);

eqnl0 = con2(2);

PUT ALL EQUATIONS TOGETHER

[A,b] = equationsToMatrix([egnl, eqn2, eqgn3, eqgnd4, eqnb, eqné6,
eqgn’,

eqn8, eqn9, eqnlO],...

[Ox, Oy, Hx, Hy, xtddot, ytddot, xfddot, yfddot, all, al2]);

$Creates a MATLAB function which returns the matrices A and b when

needed
$(i.e. in the rhs phasel.m function, which uses A and b to solve for

$variables and unknowns until 'flight'

matlabFunction(A, 'file', 'DAE Al'");
matlabFunction(b, 'file', 'DAE bl'");




fprintf ('Done Deriving Phase 1 \n');

$%%% PHASE 2

LINEAR MOMENTUM BALANCES

$Tibia
Imbl = - mt*g*j + Hx*i + Hy*j == mt*xtddot*i + mt*ytddot*j;
egnl = 1lmbl (1) ;

eqn2 = 1lmbl(2);

$Femur

Imb2 = - Hx*i - Hy*j - mf*g*j - mb*g*j == mf*xfddot*i + mf*yfddot*7j;
egn3 = 1lmb2(1);

eqnd = 1mb2(2);

ANGULAR MOMENTUM BALANCES

$Tibia about GT
ambl = cross(r_hgt, Hx*i + Hy*j) == It*all*k;
egnb5 = ambl (3);

sFemur about GF
amb2 = cross(r_hgf, -Hx*i - Hy*j) + cross(r_bgf, -mb*g*j) == If*al2*k;
egné = amb2 (3);

CONSTRAINTS

$Position of H is Position of H
conl = xtddot*i + ytddot*j + t*all*jp - t*oml*oml*ip + d*all*ip +
d*oml*oml*jp == xfddot*i + yfddot*j - f*al2*jpp + f*om2*om2*ipp
+ ...
d*al2*ipp + d*om2*om2*jpp;
egn’7 = conl (1) ;
egn8 = conl (2);

PUT ALL EQUATIONS TOGETHER

[A,b] = equationsToMatrix([egnl, eqn2, egn3, eqgnd4, eqnb, egn6, eqn’,
eqgn8], ...
[Hx, Hy, xtddot, ytddot, xfddot, yfddot, all, al2]);

%$Creates a MATLAB function which returns the matrices A and b when
needed

$(i.e. in the rhs phase2.m function, which uses A and b to solve for
$variables and unknowns until 'ground'

matlabFunction(A, 'file', 'DAE A2'");

matlabFunction(b, 'file', 'DAE b2'");




fprintf ('Done Deriving Phase 2 \n');

end
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B ODE SOLVER IN MATLAB

B ODE Solver in MATLAB

Table of Contents

TIME TO SOLVE .o
INITIAL CONDITIONS ..o e
ODE4S PHASE 1 oottt
ACCUMULATE DATA PHASE 1 oo
ODE4S5 PHASE 2 ..o

function spider solve

VARIABLES AND CONSTANTS in MKS

global g mt mb mf It If t £ d T F D P pP

g = 9.8; $Acceleration of Gravity
[m/s”2]

T = 0.025; %$Length of the tibia
[m]

t =T/2; %$Length to center of mass of the tibia
[m]

F = 0.025; $Length of the femur
[m]

f = F/2; %$Length to center of mass of the femur
[m]

D = 0.00645106; $Diameter of tube
[m]

d = D/2; %$Radius of tube
[m]

mb = 0.030; %Mass of Body
[kgl

mt = 0.0012; $Mass of Tibia
[kgl

mf = 0.0012; $Mass of Femur
[kgl

If = mf*f*x£/12; $Moment of Inertia of Femur around GF
[kgm~2]

It = mt*t*t/12; SMoment of Inertia of Tibia around GT
[kgm”2]

pP = 60000; $Pressure
[Pa]

P = pP*pi*d"2; $Pressure Force
[N]

TIME TO SOLVE
tf = .025; $Final Time [s]




dt = .00005;
tspan = 0:dt:tf;
INITIAL CONDITIONS

thetall = pi/4;
[rad]

theta20 = 3*pi/4;
[rad]

thetaldot0 = 0;
[rad/s]

theta2dot0 = 0;
[rad/s]

xt0 = t*cos(thetall);
[m]

yt0 = t*sin(thetalO);
[m]

xf0 = T*cos(thetall)
[m]

yf0 = T*sin(thetalO)
[m]

xtdot0 = 0;
[m/s]

ytdot0 = 0;
(m/s]

xfdot0 = 0;
[m/s]

yfdot0 = 0;
[m/s]

0x0 = 0; Oy0 = 0; Hx0 = 0;
[N]

$Array of Initial Values
tho

+ f*cos (theta20);

+ f*sin(theta20);

HyO

$Timesteps [s]
SArray of time to solve

%$Initial Angle 1

$Initial Angle 2

$Initial Angular Velocity

$Initial Angular Velocity

$Initial x
$Initial y
$Initial x
sInitial y
$Initial x
$Initial vy
$Initial x
$Initial vy

0;

xtdot0 ytdotO xfdot0 yfdot0 Ox0 Oy0 HxO HyO];

ODE45 PHASE 1

options = odeset ('AbsTol', le-6, 'RelTol', le-6,
$Solve ODE until 'flight' event (in options)
[timel, thl] = ode45(Q@rhs phasel, tspan, thoO,

ACCUMULATE DATA PHASE 1

$The array thl contains all the data solved until

Unpack

$it and organize it.
thetal = thl(:,1);
theta2 = thl(:,2);
omegal = thl(:,3);
omega2 = thl(:,4);

of

of

of

of

velo

velo

velo

velo

'Events’',

options);

"flight'

tibia

tibia

femur

femur

of tibia

of tibia

of femur

of femur

%$Initial force values

[thetalO0 theta20 thetaldot0 theta2dot0 xt0 yt0 xf0 yfO

@flight) ;

--- see flight.m

happens.




4 ’

xt = thl(:,5);
yt = thl(:,6);
xf = thl(:,7)
yf = thl(:,8);
xtdot = thl(:,9
ytdot thl(:,1
1
1

’

xfdot thl(:,
yfdot = thl (:
Ox = thl(:,13

)
Oy = thl(:,14);
Hx = thl(:,15);
Hy = thl(:,16);

pl index = length(timel);
thtraveled = abs(thl (end) - thetalO);

ODEA45 PHASE 2

$If the event @flight is never reached, ignore this section
if timel (end) == tf

time = timel;
else

%New Initial Conditions

%$The ODE solver must solve from the end of the last ODE solve, so we
take

$the output of the last solved ODE and start the new ODE with the end
of

%the last ODE

thetal0 = thetal (end);

theta20 = theta2 (end);

thetaldot0 = omegal (end) ;

theta2dot0 = omegaZ2 (end) ;

xt0 = xt (end)
yt0 = yt(end);
xf0 = xf (end)
yE0 = yf(
xtdot0 = xtdot (end);

ytdot0 = ytdot (end);

xfdot0 = xfdot (end);

yfdot0 yfdot (end) ;

Hx0 = Hx(end);

Hy0 = Hy(end);

tspan2 = timel (end) :dt:tf; %New timespan as well!

$New array of 'initial' wvalues
thO = [thetalO theta20 thetaldotO theta2dot0 xt0 yt0 xf0 yf0
xtdot0 ytdotO xfdotO0 yfdot0 HxO0 HyO];

options2 = odeset ('AbsTol', le-6, 'RelTol', le-6, 'Events', @ground);

$Solve ODE until event 'ground' --- see ground.m
[time2, th2] = ode45(@rhs phase2, tspan2, th0, options2);




ACCUMULATE DATA PHASE 2

$Combine all the data from Phase 1 and Phase 2

thetal = [thetal; th2(:,1)];
theta2 = [theta2; th2(:,2)];
omegal = [omegal; th2(:,3)];
omega2 = [omegaz; th2(:,4)];
xt = [xt; th2(:,5)];

yt = [yt; th2(:,6)]1;

xf = [xf; th2(:,7)1;

vE = [yf; th2(:,8)1;

xtdot = [xtdot; th2(:,9)1;
ytdot = [ytdot; th2(:,10)];
xfdot = [xfdot; th2(:,11)];
yfdot = [yfdot; th2(:,12)]1;
Hx = [Hx; th2(:,13)];

[
Hy = [Hy; th2(:,14)];
time = [timel; time2];

end

DRAW

%x0 1s the position of the end of the tibia

x0 = xt - t*cos(thetal);

y0 = yt - t*sin(thetal);

%$x1 1s the position of P

xl = xt + t*cos(thetal);

yl = yt + t*sin(thetal);

$x2 is the position of the body mass on top of the spider
x2 = xf + f*cos(theta2);

y2 = yf + f*sin(theta2);

$See draw.m
draw (time, x0, y0, x1, yl, x2, y2);
plot (x2,y2) ;




0.07 1
0.06 [
0.05
0.04 1

0.03 1

0.02 | '
0.01 ¢ ' /
I
G . . . ; . ; ;
006 004 D02 0 002 004 0.6

X Position (m)

CHECK IF SOLUTION MAKES SENSE

%Conservation of Energy

%Note that the Pressure force and the mass of the body are EXTERNAL
FORCES

%on our system. We must account for them as such.

Y Position (m)

$Energy at Start
PE tibia = mt*g*yt;
PE femur = mf*g*yf;

$Energy from EXTERNAL FORCES

% Energy from Force of Pressure (Pressure Force * Distance Applied)
E P = P*(max(sqgrt(x1.72 + yl.72)) - min(sgrt(x1.72 + yl."%2)));

% Energy from Force of Body

E body = mb*g*(max(y2)-min(y2)):;

$Energy from Kinetic Energy

KE tibia = 0.5*mt* (xtdot.”2 + ytdot."2);
KE tibia rot = 0.5*It*omegal."2;

KE femur = 0.5*mf* (xfdot.”2 + yfdot.”"2);
KE femur rot = 0.5*If*omega2.”2;

$Energy at Start + Total Energy from Pressure + Total Energy from Body
== Potential Energy + Kinetic Energy




Etot KEPE = KE tibia + KE tibia rot + KE femur + KE femur rot +
+ PE tibia + PE femur;

Etot P = PE_tibia(l) + PE_femur(l) + E P + E_body;

figure () ;

hold on;

plot(time, Etot KEPE, '--', 'LineWidth', 2);

plot(time, Etot P*ones(length(time)), 'LinewWidth',6 2);

xlabel ('Time (s)', 'FontWeight', 'bold');

ylabel ('Energy (J)', 'FontWeight', 'bold');

legend('from Potential and Kinetic Energy', 'Total Energy',
'Location', 'southeast');

fprintf ('The spider jumped a total x-distance of %f ', abs(x2(end)));
fprintf ('\nThe spider jumped a total y-distance of %f ', max(y2)):;
fprintf ('\nThe pressure was %f Pa', pP);

0.07
0.06 -
-
-
-
-
-
0.05 a9
=
!
2004t Y
= r
5 ,
w 0.03r !
!
r
'y
0.02 F
F
Fd
!
o » " == = = from Potential and Kinetic Energy
. * Total Energy
o = == 1 1 I 1 1 1 1
0 0.002 0.004 0.006 0.008 0.0 0.012 0.014
Time (s}

end
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B ODE SOLVER IN MATLAB

B.1 Phase 1 Equations

function thdot = rhs phasel (tspan, th0)
global g mt mb mf It If £t £ d T F D P pP

$Unpack data
thl = th0(1);

th2 = th0(2);
oml = th0(3);
om2 = th0(4);
xt = th0(5);
yt = th0(6);
xf = th0(7);
yf = th0(8);

xtdot = th0(9);
ytdot = thO0(10);
xfdot th0 (11);
yfdot = th0(12)

$Use A and b matrices derived from spider DAEderive.m to solve for X
A = DAE Al(If,It,d,f,mf,mt,t,thl,th2);
b = DAE bl(P,d,f,g,mb,mf,mt,oml,om2,t,thl,th2);

%X contains all the data we need to solve for

X = A\b;

ox = X(1);
Oy = X(2);
Hx = X(3);
Hy X (4);

’

xtddot = X (5);
ytddot = X (6);
)
)

’

xfddot = X (7

yfddot = X(8);
all = X(9);
alz2 = X (10);

%Return data

thdot = [oml om2 all al2 xtdot ytdot xfdot yfdot xtddot ytddot
xfddot yfddot Ox Oy Hx Hy]l';

end
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B ODE SOLVER IN MATLAB

B.2 Phase 2 Equations

function thdot = rhs phase2 (tspan, th0)

global g mt mb mf It If £t £ d T F D P pP

thl = th0(1);
th2 = th0(2);
oml = thO0(3);
om2 = th0(4);
xt = th0(5);
yt = th0(6);
xf = th0(7);
yvf = th0(8);

xtdot = th0(9);
ytdot = th0(10);
xfdot = th0(11);
yfdot = tho0(12)

’

o)

%Use A and b matrices derived from spider DAEderive.m to solve for X
A = DAE A2(If,It,d,f,mf,mt,t,thl,th2);
b = DAE b2(d, f,g,mb,mf,mt,oml,om2, t, thl, th2);

$X contains all the data we need to solve for

X = A\b;

Hx = X (1);

Hy = X(2);
xtddot = X (3);
ytddot = X (4);
xfddot = X (5);
yfddot = X (6);
all = X(7);
al2 = X(8);

$Return data

thdot = [oml om2 all al2 xtdot ytdot xfdot yfdot xtddot ytddot
xfddot yfddot Hx Hy]';

end
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B.3 Flight Event

function [value,isterminal,direction] = flight(t,th)

; $Find when this value (Oy) reaches 0

’

value = th(14)
isterminal = 1; $Stop solving when Oy reaches 0O

direction = 0; %0y can reach 0 from + or - direction
end
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B.4 Ground Event

function [value,isterminal,direction] = ground(t,th)

global £

value = th(8) + f*sin(th(2)); $Find when this value (y of body)
reaches 0

isterminal = 1; $Stop solving when value reaches 0

direction = 0; %$Can reach 0 from + or - direction
end
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C SIMULATION

C Simulation

function draw(t, x0, yO0,

hold on;

x1l, y1, x2, y2)

axis ([-0.075 0.075 -0.01 0.0751);

axis square;

ground = plot([-0.075 0.075], [0 0]);
init = 1;

startl = plot([x0(init) x1(init)],
2);

start2 = plot ([x1(init) x2(init)],

2);

linel = plot([x0(init) x1(init)],

2);

line2 = plot ([x1(init) x2(init)],

2);
for 1 = 1l:length(t)

linel.XData = [x0 (1)
linel.YData = [yO0 (i)
line2.XData = [x1 (1)
line2.YData = [yl (i)
drawnow;

end
xlabel ('X Position (m)',

ylabel ('Y Position (m)',
end
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x1 (1
vyl (i
x2 (1

y2 (i

’

'FontWeight',
'FontWeight',

[yO(init) yl(init)],
[yl(init) y2(init)],
[yO(init) yl(init)],

[yl(init) y2(init)],

'bold");
'bold") ;

'LineWidth',
'Linewidth',
'LineWidth',

'LineWidth',
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D Latch Design in MATLAB

%Calculation of Latch Force
clear all; clc;

$Material : VeroBlue RGD840

sig ts = 55e6; $Tensile Strength (Pa)
max strain = 0.2; $Elongation at Break (%)
E = 2500e606; $Modulus of Elasticity (Pa)
mu = 0.575; $Coefficient of Friction for ABS on
ABS
$Veroblue is NOT ABS but no data is
given
%$Parameters
y = 0.001; $Deflection (m), or Overhang
1 =0.0115; $Length (m)
h = 0.002; $Thickness at Root (m)
b =0.002; $Width at Root (m)
alpha = 15*pi/180; %Mate Angle
alphap = 55*pi/180; %Unmate Angle
%Calculations
eps = y*h/1/1/1.09; %Strain value we want

fprintf('Strain is = %$6.2f%% \n', eps*100);

P = (b*h*h/6)* (E*eps/1); $Deflection Force
fprintf ('The deflection force is = %6.2f N \n', P);

W = P * (muttan(alpha)) / (l-(mu*tan(alpha))); $Mating Force
fprintf ('The mating force is = %$6.2f N \n', W);

Wprime = P * (mu+tan(alphap)) / (1-(mu*tan(alphap))); %$Demating

Force
fprintf ('The demating force is = %6.2f N \n', Wprime);
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E Latch Testing with Python

"wtCopyright 2011 Phidgets Inc.

44

This work is licensed under the Creative Commons Attribution 2.5 Canada License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ca/

__author__="Adam Stelmack"

~_version ="2.1.8"
__date ="14-Jan-2011 2:29:14 PM"
import sys

from time import sleep
import time

from Phidgets.PhidgetException import PhidgetException
from Phidgets.Devices.Bridge import Bridge, BridgeGain
from Phidgets.Phidget import PhidgetLoglLevel

initial time = time.time()
data file = open("data %s.csv" % (time.strftime('%Y%mo%sd-%H%M%S")), 'w')

try:
bridge = Bridge()
except RuntimeError as e:
print("Runtime Exception: %s" % e.details)
print("Exiting....")
exit(1)

def displayDeviceInfo():

print("|------------ [ == m o m e [T ———
print("|- Attached -|- Type -|- Serial No.

print("|------------ R T T T EE T T r T
print("]|- %8s -|- %30s -|- %10d -|- %8d -|" % (bridge.isAttached(), b
print("|------------ [ == m o m e o [

print("Number of bridge inputs: %i" % (bridge.getInputCount()))
print("Data Rate Max: %d" % (bridge.getDataRateMax()))
print("Data Rate Min: %d" % (bridge.getDataRateMin()))
print("Input Value Max: %d" % (bridge.getBridgeMax(0)))
print("Input Value Min: %d" % (bridge.getBridgeMin(0)))
def BridgeAttached(e):

attached = e.device
print("Bridge %i Attached!" % (attached.getSerialNum()))

def BridgeDetached(e):
detached = e.device
print("Bridge %i Detached!" % (detached.getSerialNum()))

def BridgeError(e):
try:
source = e.device

- Version -|")
____________ )

I

I

| ;
idge.getDeviceNan
I

------------ ")



F PRESSURE TESTING WITH ARDUINO (ADDED SPRING 2017, LC848)

F Pressure Testing with Arduino (added Spring 2017, 1c848)

"wtCopyright 2011 Phidgets Inc.

45

This work is licensed under the Creative Commons Attribution 2.5 Canada License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ca/

__author__="Adam Stelmack"

~_version ="2.1.8"
__date ="14-Jan-2011 2:29:14 PM"
import sys

from time import sleep
import time

from Phidgets.PhidgetException import PhidgetException

from Phidgets.Devices.Bridge import Bridge, BridgeGain
from Phidgets.Phidget import PhidgetLoglLevel

initial time = time.time()

data file = open("data %s.csv" % (time.strftime('%Y%mo%sd-%H%M%S")), 'w')
try:
bridge = Bridge()
except RuntimeError as e:
print("Runtime Exception: %s" % e.details)
print("Exiting....")
exit(1)
def displayDeviceInfo():
print("]|------------ [mm e R
print("|- Attached -|- Type -|- Serial No.
print("|------------ R e R I
print("]|- %8s -|- %30s -|- %10d -|- %8d -|" % (bridge.isAttached(), b
print("|------------ R L E TR T [---mmmmme -

print("Number of bridge inputs: %i" % (bridge.getInputCount()))
print("Data Rate Max: %d" % (bridge.getDataRateMax()))
print("Data Rate Min: %d" % (bridge.getDataRateMin()))
print("Input Value Max: %d" % (bridge.getBridgeMax(0)))
print("Input Value Min: %d" % (bridge.getBridgeMin(0)))

def BridgeAttached(e):
attached = e.device
print("Bridge %i Attached!" % (attached.getSerialNum()))

def BridgeDetached(e):
detached = e.device
print("Bridge %i Detached!" % (detached.getSerialNum()))

def BridgeError(e):
try:
source = e.device

- Version -|")
____________ )

I

I

| ;
idge.getDeviceNan
I

------------ ")



print("Bridge %i: Phidget Error %i: %s" % (source.getSerialNum(), e.eCode, e.descri
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))

def BridgeData(e):
source = e.device

data file.write("%f, %f \n" % (time.time()-initial time - 4.05, e.value))

try:

bridge.setOnAttachHandler(BridgeAttached)
bridge.setOnDetachHandler(BridgeDetached)
bridge.setOnErrorhandler(BridgeError)
bridge.setOnBridgeDataHandler(BridgeData)

except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
print("Exiting....")
exit(1)

~

print("Opening phidget object....

try:
bridge.openPhidget()
except PhidgetException as e:

print("Phidget Exception %i: %s" % (e.code, e.details))

print("Exiting....")
exit (1)
print("Waiting for attach....")

try:
bridge.waitForAttach(10000)
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
try:
bridge.closePhidget()
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
print("Exiting....")
exit(1)
print("Exiting....")
exit(1)
else:
displayDeviceInfo()

try:
print("Set data rate to 8ms ...")
bridge.setDataRate(16)
sleep(2)

print("Set Gain to 8...")
bridge.setGain(0, BridgeGain.PHIDGET BRIDGE GAIN 8)
sleep(2)



print("Enable the Bridge input for reading data...")
bridge.setEnabled(0, True)
sleep(2)

except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
try:
bridge.closePhidget()
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))

print("Exiting....")
exit(1)
print("Exiting....")
exit(1)
print("Press Enter to quit....")

chr = sys.stdin.read(1)
print("Closing...")

try:
print("Disable the Bridge input for reading data...")
bridge.setEnabled(0, False)
sleep(2)
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
try:
bridge.closePhidget()
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
print("Exiting....")
exit(1)
print("Exiting....")
exit(1)

try:
bridge.closePhidget ()
except PhidgetException as e:
print("Phidget Exception %i: %s" % (e.code, e.details))
print("Exiting....")
exit(1)
data_file.close()
print("Done.")
exit(0)



G BALLOON JOINT ASSEMBLY PROCEDURE (ADDED SPRING 2017, LC848)

G Balloon Joint Assembly Procedure (added Spring 2017, 1c848)
Compiled 5/22/17 by Lawrence Chen

Arachnabot Fabrication Methodology
The following is a summary of the steps and processes used to fabricate the Arachnabot leg as pictured
in the report.

List of necessary materials
1. 3D Printed Components
a. x1TCJ Lower Leg.stl
b. x1TCJ Lower Retainer.stl
c. x1TCJ Upper Leg.stl
d. x1TCJ Upper Retainer.stl
e. x1TopHat
260 or 160 type balloon, cut to ~40mm in length
Ribbon mesh cut to ~40mm x ~35mm
x2 21.5mm x 14mm pins
Super glue (Loctite 431 was used for these assemblies)
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Figure 1: Materials needed to fabricate the leg assembly.

List of tools
e Sharp knife or scissors

Procedure
1. Insertthe lower leg into the balloon until the balloon covers up the entirety of the sloped face
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2.

Insert the upper leg into the balloon until the balloon covers up the entirety of the sloped face.
Prior to insertion, verify that the air channel is completely vacated and that air can flow freely
from the nipple through the orifice. The final length of the assembly should be roughly 64mm
long. Verify that there is no damage to the balloon’s surface to avoid the possibility of air leaks
in this region.

Apply superglue around the circumference of the balloon border, making sure to cover all of the
edges of the balloon as this will be the primary air-sealing surface.

Figure 2: Areas to apply glue to bond the balloon to the leg.

After waiting for the super glue to cure, test the air sealing capabilities of the joint by pumping
air into the leg. A syringe with some tubing works best. For best verification of air leaks,
submerge the assembly into water and see if air bubbles form around any surfaces when
pressure is applied.

After verification of the air-tight seal for the balloon joint, glue the edge of the ribbon to the flat
surface on the back of the joint. It is not recommended to apply glue where there is only flexible
material, as this will affect the joint’s ability to expand and contract freely. It is important to
keep the fabric weave along and perpendicular to the leg. Diagonal weave patterns have a
harder time preventing the hyper-elastic behavior and will cause the leg to shorten when the
joint expands.

Figure 3: Depiction of fabric weave direction for best performance.
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6. Wrap the ribbon around the joint, applying super glue where the upper and lower leg parts are
under the ribbon/balloon. Trim excess ribbon material, being careful not to cut the underlying
balloon.

Figure 4: Guide to adhering the fabric weave to the assembly.

7. Align the tophat hinge hole to the upper leg hinge hole, and insert a pin through these
components. The pin is oversized and will have some excess length, but this does not impact the

performance of the leg.

8. Align the upper retainer and the lower retainer components then slowly insert a pin through the
hinge. The hinge hole may require some drilling, as the interference fit with the lower joint is
very snug. The pin is installed when it bottoms out and reaches the other side.

Figure 5: Pin insertion for the hinge.

9. Glue the upper leg to the upper retainer such that the middle of the joint and the middle of the
retainer-hinge assembly are aligned. Bend the joint and verify that the leg can latch, observing
where the lower leg must be fixed to allow for proper leg actuation. If the lower leg is too close
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to the hinge, full leg extension is not possible, or the excess balloon material will prevent the leg
from latching completely.

10. Glue the lower leg piece to the retainer-hinge assembly per the test fit in the previous step.

Testing the Assembly
1. Attach a small hose to the barbed fitting on the leg. Attach the other end of the hose to a
syringe.

2. Latch the joint together.

3. Pressurize the assembly and see if the leg jumps/releases.

Troubleshooting the Leg Assembly
e If the leg does not release check the following...

o Verify that air is not leaking when pressure is applied. If a leak is found near a static
component (i.e. ontop of the upper leg piece) then super glue can be applied to attempt
to remedy. If a leak is found in the latex material, then the joint must be re-assembled

o Verify that the balloon inflates when pressure is applied. If it does not, then either the
leg joint is clogged with support material, or there is a leak/crack in the leg.

e If the legis not latching completely...

o Check that the bladder material is not being squeezed when the joint is compressed. If
this is the case, the leg must be reassembled, but with a longer piece of balloon.

o Check the condition of the latch ramp and the upper retainer to make sure that the
features have been resolved as some printers may not reliably do this.

o If the leg is not unlatching when pressure is applied...

o If the design has a 90° contact between the latch and the top retainer, then a small
angle needs to be applied or else the latch ramp will likely break or snap off.

o Measure the pressures being applied to see if they are high enough



