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Abstract

COVID-19 is an infectious disease which has resulted in an ongoing pandemic.
This paper attempts to model the spread of the disease in the state of Con-
necticut, and formulate a nonlinear closed-loop feedback controller to minimize
the number of infected. A model is first developed and studied. Difficulties in
applying the controller - frequency of policy changes, lagging data, an unpre-
dictable population - are explored.

1 Background

The Coronavirus disease 2019 (COVID-19) has rocked the world since it’s first iden-
tification in Wuhan, China in December 2019. The ongoing pandemic has caused
roughly 165,000 deaths in the USA as of August 15, 2020, roughly 4,500 of which are
from Connecticut, our study of choice. The initial outbreak and subsequent attempts
to control the spread of the virus are the subject of much scrutiny and criticism -
missing data, lack of testing, and transparency are all issues. This pandemic and the
American reaction to it can be considered the first of its kind in the US in terms of
new responses and lasting effects - such as N95 mask usage and social distancing -
both of which are now new standard terms in the American vernacular. The problem
is certainly one that is time-sensitive and incredibly impactful.

There are several difficulties with implementing a closed-loop control, the first of
which is that there are inherent uncertainties when applying such a control to an
unpredictable population. In addition, the lack of a coordinated response, a generally
accepted delay in between COVID infection and reporting, and the unfortunate lack
of adequate testing supplies, all serve to exacerbate the issue. Some experts predict
the actual number of infected is ten times what is reported. Finally, only certain
metrics associated with the virus are tracked (i.e. number of active infected and
recovered), which makes parameter estimation difficult.

Similar studies have attempted to simulate the spread of COVID-19 with the SEIR
model. Olivier and Craig [10], for example, model the virus with a vaccination rate
and assume the rate of infection is a decreasing function of time. Castilho [4] simulates
several different rates of infection to determine which path is most likely. However,
there is little in the way of attempting to truly control the model to drive it towards
a wanted state with specific state policy changes - the closest is Tsay et. al [16].

2 Objective

Despite these challenges and unknowns, this paper will attempt to apply a nonlinear
optimal control strategy to the system existing in the state of Connecticut. So far,
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Figure 1: Current COVID-19 status in the state of Connecticut

the state has done relatively well in controlling the spread of the virus but stands to
benefit from additional knowledge.

In this paper the system shall be modeled, and its open and closed loop characteristics
will be studied. The initial study will be used to estimate model parameters in
Connecticut, set target variables, and choose a suitable method of control. The
objective will be focused on minimizing hospital visits and ultimately driving down the
number of infected, with a consideration for the state’s economy and it’s population’s
well-being.

3 System Modeling and Analysis

3.1 System Model

We can begin our study by looking at the simplest compartmental model in epidemi-
ology - the SIR model. It consists of three compartments, normalized against the
entire population, N:

• S(t): the ratio of Susceptible individuals

• I(t): the ratio of Infected individuals

• R(t): the ratio of Removed individuals. This bucket encompasses both recov-
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Figure 2: Compartments in the SIR Model. Additional compartments, such as ex-
posed, deceased, and vaccinated are often added.

ered and deceased people.

In total, this is a nonlinear time-invariant, non-autonomous system, described by the
following set of differential equations.

Ṡ(t) = βS(t)I(t) (1)

İ(t) = βS(t)I(t)− γI(t) (2)

Ṙ(t) = γI(t) (3)

It has a unique, simplifying characteristic: by knowing R, we know S.

dR

dt
= γI

dR = γIdt

R = γ

∫
Idt+ c1∫

Idt =
R

γ
+ c2

We substitute this result in equation 2, with initial conditions S0 = 1 and R0 = 0:

dS

dt
= −βSI

dS

S
= −βIdt∫

dS

S
= −β

∫
Idt

S = exp

(
−βR
γ

)
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We have effectively turned the three-dimensional system into a two-dimensional sys-
tem. This allows us to study the phase portrait in many different ways. For example,
Figure 3 shows the Susceptible vs Infected phase portrait defined by the differential
equations:

ẋ1 = Ṡ = −βSI (4)

ẋ2 = İ = βSI − γI (5)

The phase portrait in Figure 3 shows, intuitively, initial conditions being driven to-
wards the lower left hand corner of the graph, indicating that as the number of sus-
ceptible individuals drop, the number of infected also tends towards zero. A caveat:
large sections of the phase portrait are not valid in the feasible region considering the
constraints upon the system as a whole, namely, S + I +R = 1. Still the behavior of
the phase portrait is as expected. The behavior of the phase portrait in Figure 4 is
similar - as the number of infected rises, the number of recovered is driven upwards
as well.

Of course, COVID-19 is much more complicated than the simple SIR model. We can
expand our model to include both birth and death rates, δ and µ, respectively, as well
as add an additional bucket, Exposed, which defines the ratio of individuals exposed
to the virus and who may be carriers but may not show symptoms.

Ṡ(t) = δ − βS(t)I(t)− µS(t) (6)

Ė(t) = βS(t)I(t)− σE(t)− µE(t) (7)

İ(t) = σE(t)− γI(t)− µI(t) (8)

Ṙ(t) = γI(t)− µR(t) (9)

Typically, δ and µ are so small (and similar) over the time span of the period of study
(months/years) that they are effectively negligible. Nevertheless, they are useful to
study the system and can help us define a feasible region for the model, which is
simply:

dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
≥ 0

dN

dt
= δ − µN ≥ 0

δ ≥ µN
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Figure 3: Two Dimensional Phase Portrait of Susceptible and Infected

Figure 4: Two Dimensional Phase Portrait of Recovered and Infected
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Figure 5: Compartments in the SEIR Model

Alternatively, if δ = µ (birth and death rates are equal and negligible),

N ≤ 1 (10)

3.2 Parameter Estimation

There are a multitude of issues that make modeling an epidemic difficult, and this
is largely reflected in already existing models of the coronavirus. Early on, different
models suggested a total death count of between 200,000 and 2.2 million [8], repre-
senting a very large spread. Common concerns include trustworthiness of the source
data, under-reporting data, consistency across datasets, and testing rate and avail-
ability. In addition, inconsistencies across counties and cities mean that localized
behavior and laws affect the spread of the virus in different ways in different places.
Any one or a combination of these variables could skew data in large ways, resulting
in false conclusions.

The main sources of data used in this paper are the New York Times [14] and Johns
Hopkins University [3]. In addition, we can estimate initial guess values for SEIR
parameters based on available knowledge from previous papers or public knowledge.
For example, JHU estimates a median incubation period for the virus of 5 days, with
a maximum of 14, which can be used as an initial starting guess for σ. Table 1 shows
a complete list of initial guesses, as well as constants for the state of CT.

In estimating these parameters, we must be cognizant of what Tsay [16] calls ”hidden
states” - those variables which are not measured in practice. The most glaring issue
is that the number of asymptomatic cases is almost impossible to determine, since
those individuals are unlikely to get tested but yet would still be considered part of
the Infectious compartment.

3.2.1 Necessary Assumptions

There are a number of assumptions that must be made about the data and how it is
interpreted in the SEIR model.

1Without interventions. See 3.2.3

6



Name Parameter Initial Guess Source

Average Incubation Period σ 0.2 Johns Hopkins University [9]

Basic Reproduction Number 1 R0 2.5 Centers for Disease Control [13][15]
Case Fatality Rate c 0.022 University College London [18]

CT Hospital Beds b 8798 American Hospital Directory [6]
CT ICU Beds u 674 COVID Act Now [2]

CT Natural Birth Rate δ 2.70× 10−5 Centers for Disease Control [11]
CT Natural Death Rate µ 2.403× 10−5 Centers for Disease Control [7]

CT Population N 3,565,287 United States Census Bureau [17]
Rate of Exposure β 0.175 R0 = β/γ [Ref Sec. 3.2.3]

Rate of Hospitalization h 0.0014 Centers for Disease Control [13]
Rate of Removal γ 0.07 World Health Organization [12]

Symptomaticity Ratio m 0.5 Diamond Princess Cruise Ship [8]

Table 1: Initial Guesses for SEIR Parameters, and Other Constants

1. Age, Gender, and Race are not contributing factors.

In the SEIR model, each variable is a function of time and time only. In other words,
x = x(t). This is particularly dangerous because of the different rates at which
different groups contract and die from the virus. For example, it is well known that
younger individuals are more likely to contract the virus, while older, retirement-age
individuals are more likely to die from it [19]. The SEIR model as a whole makes
no such distinction between individuals of different ages, and while the effect is very
pronounced when looking at just age, the same assumption applies towards gender
and race as well.

2. Testing is sufficient to capture all cases. Testing does not lag.

Testing strategies and patterns must be robust. For example, an increasing number of
cases might suggest an actual increase in virus spread, or it could represent a simple
increase in testing - it would be difficult to distinguish between the two without also
looking at hospital admission rates. Failure to account for these testing strategies can
skew comparisons and ruin conclusions [13]. Testing must first be sufficient enough
to capture nearly all cases of COVID-19 - if it does not, the data being input into the
model is false. At the time of this writing, Connecticut’s positive test rate is very low
[2], suggesting widespread and aggressive testing to detect most new cases. Finally,
publicly available data seem to suggest that there is a large portion of the population
that is asymptomatic and unaware that they are carriers for the disease. It is unlikely
that these individuals will get tested - and yet they are still spreading the disease [8].

3. Implementation of control is instantaneous. There is no time lag
between compartments.

Typically it might take several days to implement policy changes that would affect
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the spread of coronavirus. News and mandates would have to be communicated to
the populace and the population would have to adjust their behavior accordingly.
This would take time and coordination. The control system, however, assumes that
any changes to the control would happen immediately.

3.2.2 Parameter Refinement

Data for the number of infected in the state goes back only until March 3rd, 2020,
and only the first month of data is used, as the infected curve begins to flatten out
due to executive measures taken by CT’s state government (as measured by the daily
percent change in cases approaching less than 3%). The same caveats as explained
in Section 3.2.1 apply - as, at that time, testing was not as available or widespread.

A slightly different method is used for parameter estimation than in Castilho [4], or
Tsay [16]. There are only three parameters to be determined for the control model:
β, σ, and γ. The values for σ and γ given by other literature are accepted and only
β refinement is sought, which we are interested in controlling. It is assumed that
initial conditions on March 3rd do not start at 0, so the initial number of exposed
and infected on March 3rd must also be estimated. In this manner the SEIR model
is simulated for various values of β, e0, and i0. The minimum error state is found as
follows (See Figure 6):

β = 0.42

e0 = 100

i0 = 50

In addition, we wish to know what effect the current restrictions in CT have to do
with limited the spread of COVID. To that end, the first 60 and 150 days are also
used for parameter refinement (these date ranges include the start and continuation
of restrictions). In these cases, β is found to be 0.16 and 0.11, respectively, although
the comparison starts to degrade, especially at 150 days.

3.2.3 Basic Reproductive Number

The basic reproductive number bears special importance; as a descriptive number it
directly relates to the rate spread of the virus. It can be thought of as the expected
number of cases generated by one starter case - therefore, if R0 < 1, then the rate
of spread is decreasing. If R0 > 1, the infection will spread. We can derive R0 from
the SEIR model by comparing the two equilibriums in the SEIR model (Equations
18 and 21) as shown:

8



(a) Infection Rate in the first 30 days of
available data (b) Infection Rate in the first 60 days of avail-

able data

(c) Infection Rate in the first 150 days of
available data

Figure 6: Parameter Refinement at 30, 60, and 150 days yield different values for
rate of spread, β: 0.42, 0.16, and 0.11, respectively. This shows that CT was able
to reduce the infection rate dramatically within the first months of the start of the
infection.
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(µ+ σ)(µ+ γ)

βσ
≥ δ

µ
δβσ

µ(µ+ γ)(µ+ σ)
≤ 1

This leads to Equation 11

R0 =
δβσ

µ(µ+ γ)(µ+ σ)
(11)

And, if δ and µ are equal and negligible:

R0 =
β

γ
(12)

Since R0 is a function of β, β will be one of our primary control variables. If we set
R0 = 1 and γ = 0.07, this relationship allows us to determine what value of β is ideal
to limit the rate of spread.

β = 0.07 (13)

In other words, β needs to be lower than 0.07 in order to eradicate the virus over
time.

3.3 System Stability

Lyapunov’s indirect, or linearization, method suggests that the stability properties
of a nonlinear system in the close vicinity of an equilibrium point are essentially the
same as those of its linearized approximation. We can derive multiple equilibrium
points, each pointing to a specific scenario.

3.3.1 Linearization

The SEIR model can be linearized in a state space format by taking the Jacobian
around the fixed points. Let
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~z = [S − Se, E − Ee, I − Ie, R−Re]
T ,

~v = β

and

~̇z = J~z +K~v

(14)

We also define a linear output matrix ~y such that

~y = ~z (15)

Thus,

J =


−βI 0 −βS 0
βI −σ βS 0
0 σ −γ 0
0 0 γ 0

 (16)

and

K =
[
−SI SI 0 0

]T
(17)

3.3.2 Disease-Free Equilibrium

Disease-free equilibrium (certainly a good thing) occurs when the number of exposed
individuals is 0 (that is, E = 0). Based on the system model, this will cause the I
and R buckets to also be equal to 0. That leaves us with Equation 18 and the fixed
point Equation 19.

dS

dt
= 0 = δ − µS

Se =
δ

µ

Se = 1, δ = µ

(18)

Therefore the fixed point is

P0 = (
δ

µ
, 0, 0, 0) (19)
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This is a trivial solution and again is easily intuited. If there are no individuals
infected, then there is no disease to spread, and the population grows according to
the birth/death rate.

The Jacobian around this fixed point is given by

J =


0 0 −β 0
0 −σ β 0
0 σ −γ 0
0 0 γ 0


Assuming that β, σ, and γ are positive, this Jacobian has two sets of eigenvalues and
eigenvectors:

λ = ±0

λ = ±1

2

(√
4βσ + γ2 − 2γσ + σ2 − γ − σ

) (20)

Using the values derived in Section 3.2, we find that all the eigenvalues are real, with
one positive and one negative, suggesting an unstable saddle node. This would mean
that any perturbation (any introduction of a virus) would cause instability.

3.3.3 Endemic Equilibrium

Disease-free equilibrium is relatively easy to study; there also exists an equilibrium
point that is endemic. In this instance, E being nonzero drives the following equations:

Se =
(µ+ σ)(µ+ γ)

βσ

Ee =
δ

σ + µ
− µ(µ+ γ)

βσ

Ie =
δσ

(µ+ γ)(µ+ σ)
− µ

β

Re =
γδσ

µ(µ+ γ)(µ+ σ)
− γ

β

(21)

If the birth and death rates are treated as negligible and equal, this will lead to
Equation 22.

P0 = (
γ

β
, 0, 0, 1− γ

β
) (22)
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Note that E ends up being equivalent to zero despite the initial opening statement for
endemic equilibrium. Essentially, this fixed point represents a point where the virus
might have existed and a recovered population came into being, but at some point
the virus was eradicated and no new cases exist.

Given our estimated parameters, this would put this fixed point at

P0 = (0.167, 0, 0, 0.833)

The Jacobian around this fixed point is given by

J =


0 0 −γ 0
0 −σ γ 0
0 σ −γ 0
0 0 γ 0


This fixed point has three eigenvalues and eigenvectors:

λ = ±0

λ = −γ − σ
(23)

Similarly, all eigenvalues are real, with two zero and one negative. This suggests that
the equilibrium point is an unstable sink node - any perturbation (a re-introduction
of the virus or a new virus) would lead to instability.

3.3.4 Controllability and Observability

A completely parallel theory on controllability and observability to linear systems
is not feasible, but the linearized system can similarly be studied to give informa-
tion about controllability and observability in the vicinity of equilibria. Using the
state-space defined in 14 around the fixed points, we find the controllability and
observability matrices:

CoDFE =
[
0
]
4x4

(24)

ObDFE =


1 1 1 1
0 0 0 0
0 0 6.93× 10−18 0
0 0 3.47× 10−18 0

 (25)
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Neither matrices are full rank, so the linearized systems is neither controllable (we
cannot reach any final state from any initial state) nor is it fully observable (any state
cannot be completely identified by the outputs).

Similarly, for the other fixed point,

CoEND =
[
0
]
4x4

(26)

ObEND =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 (27)

The lack of full controllability is expected, given that in absolutely no state can you
reverse the virus and force the S, E, and I compartments to be ”replenished” by the
subsequent compartment that an individual has fallen into. Once an individual has
entered a compartment they cannot go backwards - thus, that state can never again
be reached.

Less obvious is lack of full observability. In this case, it is because we have defined
our output ~y to be exactly equal to ~x, without taking into account other controlling
variables such as β.

It follows that the nonlinear system is neither fully controllable nor observable.

4 System Control

4.1 Open-Loop Analysis

Given our initial conditions from Section 3.2, left unchecked and uncontrolled, it
would be very easy for the system to quickly spiral out of control within a year (see
Figure 7) - initial conditions give the virus an R0 number of 6 (where Section 3.2.3
concludes an R0 of 0.07 is necessary to reduce numbers. With a case fatality rate of
(average) 2.2%, that would put the death toll at roughly 78,000 people!

Luckily, the state of CT has handled the situation incredibly well so far, as evidenced
in the same figure. Multiple safety measures and quick action have served to curtail
the spread of the coronavirus. However, while this is good for the health of the
population, CT still has to deal with the many individuals who are out of work or
struggling to make ends meet while most public spaces are closed down, severely
limiting cash flow in the state. In this section, an optimal control model will be
studied and tested in an attempt to balance the reopening of the state with the
continuing threat of COVID-19.
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(a) Left unchecked (no control), 100% of Connecticut’s population
would have contracted the coronavirus within one year (β = 0.42).

(b) CT’s response during the first 60 days of
available data (β = 0.16) would still drive
CT above 10% of the population infected
within the first 6 months.

(c) CT’s current response (β = 0.11) lim-
its the infected population very successfully.
Note that a β of 0.07 is required to bring R0
below 1.

Figure 7: CT’s current actual rate of infection is much lower than it’s rate of infection
in the first 30 and 60 days.
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4.2 Nonlinear Model Predictive Control

4.2.1 Control Parameters

Our target for the nonlinear optimal control will be to limit the number of infected
to 10% of the population, with no overshoot and a response time of one month. In
reality this means that the control will attempt to maximize I given the inequality
constraint:

I(t) ≤ 0.10 (28)

We could have also tried to minimize I given the opposite equality. Initial conditions
as of June 8, 2020 are given by the following:

S0 = 0.969865

E0 = 0.006550

I0 = 0.010616

R0 = 0.013146

The initial conditions chosen were taken from the simulation that most closely matched
the actual infected data (Section 3.2.2), and updated daily from the simulation. This
is because while we can assume that the initial infected population is correct due to
the amount of testing that CT has done (see Section 3.2.1), the same cannot be said
for any of the other variables. The population of exposed may never be captured
fully because those who are asymptotic generally do not get tested, and the number
of recovered is also missing the number of individuals who were asymptomatic and re-
covered without knowing they were infected (See Section 3.2’s discussion on ”hidden
states”).

The primary tool of the control system will be a reduction of the variable β, or the
rate of exposure. Control is tested on a biweekly and monthly basis, since it would
not be reasonable to expect policy changes to be made on a faster timetable. The
dynamic optimization Python library GEKKO [5] is used to optimize the solution
given our setpoint from Equation 28. The prediction horizon is set to one year.

Because there are only a limited amount of control measures available to the state
government, we will later treat β as a discrete variable in the midpoint of the ranges
given in Table 2, roughly based on New Zealand’s Alert System [1]. As evidenced by
Section 3.2, CT is currently somewhere in Level 3 or Level 4, after having started out
in Level 0.
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Level β Measures Taken

0 (0.4, 0.5) No control measures
1 (0.3, 0.4) Intensive Testing for COVID-19

Self-isolation and quarantine required
Contact tracing and record-keeping begins
No restrictions on personal movement or gatherings
Schools and workplaces open

2 (0.2, 0.3) All Level 1 Measures
Physical Distancing of 6 feet when in public, where practical
Gatherings limited to 100 people
Businesses and public venues can open if they comply

3 (0.1, 0.2) All Level 2 Measures
Businesses must work from home where practical
Most public venues are closed
Face masks required
Gatherings limited to 50 people
Inter-regional travel highly limited

4 (0.0, 0.1) All Level 3 Measures
Travel is severely limited
Personal Movement is severely limited to necessities
Gatherings are limited to 10 people

Table 2: β Values

17



(a) Level 0, β = 0.45 (b) Level 1, β = 0.35

(c) Level 2, β = 0.25 (d) Level 3, β = 0.15

(e) Level 4, β = 0.05

Figure 8: System behavior as β increases, according to Table 2. Notice that Level 4
is the only level capable of limiting the number of infected to less than 10% of the
population, eventually reaching disease-free equilibrium.
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4.2.2 Closed Loop Control

The algorithm’s first attempt at closed-loop control was done with continuous β as a
test - it successfully limited the number of infected to below 10% but is illustrative
of some of the issues with the control that need to be corrected.

One such example is β jumping between large values too frequently. Figure 9a, for
example, shows multiple large jumps, as the algorithm seems to ”relax” when the
number of infected drops and ”panic” when the number of infected grows. This is
likely because the algorithm has a severely limited amount of time to drive the number
of infected down, as opposed to Figure 9b, where the only difference is an increase
in the number of days between policy implementation. Such wild jumps would also
likely antagonize the population.

Implementation of the control with discrete values for β can be done in two ways
with GEKKO 2 :

1. Integer Variables with the APOPT Solver

2. Post-Processing the IPOPT Solution

The first method necessitates a conversion between β values and integer values. This
is given by Equation 29.

β =
βM + 0.5

10
(29)

The second method involves rounding the result from the continuous solver to the
nearest discrete value. Figure 10 shows the results from each solver, respectively. The
results are much calmer, with the post-processed IPOPT solver somewhat imitating
it’s continuous counterpart. The integer-confined APOPT solution is the smoothest
solution as expected, since it is explicitly solving for discrete variables.

One thing that is interesting about the discrete solvers is that they do not seem to
be able to drive the system towards the setpoint, possibly because any increase in β
would drive it over the setpoint within the prediction horizon.

2For a description of GEKKO’s solvers, see https://gekko.readthedocs.io/en/latest/globa

l.html?#solver [5]
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(a) Continuous model predictive control of β, implemented every
fifteen days.

(b) Continuous model predictive control of β, implemented every
thirty days.

Figure 9: β is continuous here and successfully keeps the number of infected below
10% but is choppy in both time frames (moreso when control is implemented more
frequently). Implementing the control on longer time frames reduces the choppiness.
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(a) Discrete model predictive control of β with the IPOPT Solver,
Post-Processed

(b) Discrete model predictive control of β with the APOPT Integer
Variable Solver

Figure 10: Discrete values for β reduce the choppiness further and do a better job
limiting the number of infected, but do not seem to point towards reopening.
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Figure 11: An updated model that includes symptomatic cases, hospitalization, and
death.

5 Conclusion

In this paper a mathematical model for the pandemic was introduced and simulated
in Python using the GEKKO optimization suite. A discrete and continuous nonlinear
model predictive control system, implemented every thirty days, was simulated with
the goal of limiting the number of infected under a setpoint. The discrete control
gave smoother fluctuations in β while still maintaining the goal of the control.

Future exploration into this topic can expand upon the initial SEIR model and include
more buckets, such as asymptomatic, vaccinated, deceased, tested, and hospitalized,
such as shown in Figure 11. Control can then be driven towards maximizing ICU
headroom, for example. Another area of exploration would be correlating economic
impact with pandemic cases - for example, by a regression analysis with the number
of weekly jobless claims. Finally, the model itself can improve by taking into account
necessary assumptions listed in Section 3.2.1 - age, gender, race, lagging testing, and
lagging control.
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A Controllability and Observability Matrices in

Python

import c o n t r o l
import numpy

# GLOBAL CONSTANTS
beta = 0.175
de l t a = 2.703 e−5 # Natural Bir th Rate ( unre l a t ed to d i s e a s e )
gamma = 0.07 # Rate o f Removal [ daysˆ−1]
mu = 2.403 e−5 # Natural Death Rate ( unre l a t ed to d i s e a s e )
sigma = 0 .2 # Average Incuba t ion Period [ days ˆ−1]

N = 3.57 e6 # Total Popu la t ion o f CT [ persons ]
c f r = 0.022 # Case Fa t a l i t y Rate [1.4% (NY) − 3%]
R = (0 .175∗ sigma ) /( (mu+gamma) ∗(mu+sigma ) ) # Basic

Reproduction Number

def co n t r o l o b s e rv e ( ) :
J d f e = numpy . matrix ( [

[ 0 , 0 , −beta , 0 ] ,
[ 0 , −sigma , beta , 0 ] ,
[ 0 , sigma , −gamma, 0 ] ,
[ 0 , 0 , gamma, 0 ]

] )

K dfe = numpy . matrix ( [
[ 0 ] ,
[ 0 ] ,
[ 0 ] ,
[ 0 ]

] )

L dfe = numpy . matrix ( [
[ 1 , 1 , 1 , 1 ]

] )

C dfe = c o n t r o l . c t rb ( J dfe , K dfe )
O dfe = c o n t r o l . obsv ( J dfe , L dfe )

rankC dfe = numpy . l i n a l g . matr ix rank ( C dfe )
print ( C dfe )
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rankO dfe = numpy . l i n a l g . matr ix rank ( O dfe )
print ( O dfe )

J end = numpy . matrix ( [
[ 0 , 0 , −gamma, 0 ] ,
[ 0 , −sigma , gamma, 0 ] ,
[ 0 , sigma , −gamma, 0 ] ,
[ 0 , 0 , gamma, 0 ]

] )

K end = numpy . matrix ( [
[ 0 ] ,
[ 0 ] ,
[ 0 ] ,
[ 0 ]

] )

L end = numpy . matrix ( [
[ 1 , 1 , 1 , 1 ]

] )

C end = c o n t r o l . c t rb ( J end , K end )
O end = c o n t r o l . obsv ( J end , L end )

rankC end = numpy . l i n a l g . matr ix rank ( C end )
print ( C end )
rankO end = numpy . l i n a l g . matr ix rank ( O end )
print ( O end )

i f name == ” main ” :
c o n t r o l o b s e rv e ( )
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B Nonlinear Model Predictive Control with GEKKO

in Python

import glob
import math
import matp lo t l i b . pyplot as p l t
import numpy
import os
import pandas
import s c ipy
import s c ipy . i n t e g r a t e
import sympy
from gekko import GEKKO

# GLOBAL CONSTANTS
de l t a = 2.703 e−5 # Natural Bir th Rate ( unre l a t ed to d i s e a s e

)
gamma = 0.07 # Rate o f Removal [ daysˆ−1]
mu = 2.403 e−5 # Natural Death Rate ( unre l a t ed to d i s e a s e

)
sigma = 0 .2 # Average Incuba t ion Period [ days ˆ−1]
N = 3565287 # Total Popu la t ion o f CT [ persons ]
c f r = 0.022 # Case Fa t a l i t y Rate [1.4% (NY) − 3%]
beds = 8798 # Number o f h o s p i t a l beds a v a i l a b l e
i cub = 674 # Number o f ICU beds a v a i l a b l e

def main ( ) :

# Allows me to sw i t ch between d i s c r e t e and cont inuous
be ta e a s i l y

d i s c r e t e = False

# Time to s o l v e
t f = 360 # Fina l Time
dt = 1 # Timestep
t = numpy . arange (0 , t f , dt ) # Time Array
cp = 30 # Contro l Period ( every

30 days )

# | |
# / \ / ‘ | / \
# | ( ) | | ( | | | /
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# \ / \ , | \ |

# Define i n i t i a l v a l u e s f o r ODE so l v e r ( from
parameter es t imat ion . py )

s0 = 0.969865 # Su s c e p t i b l e
e0 = 0.006550 # Exposed
i 0 = 0.010616 # Act ive I n f e c t e d
i s p = 0 .1 # Act ive I n f e c t e d Se tpo in t
r0 = 0.013146 # Recovered
betam0 = 1 # In t e g e r Beta
beta0 = ( betam0 + 0 . 5 ) /10 # Beta

# Pre−c r ea t e arrays to s t o r e r e s u l t s
s = numpy . ones ( len ( t ) ) ∗ s0
e = numpy . ones ( len ( t ) ) ∗ e0
i = numpy . ones ( len ( t ) ) ∗ i 0
i s p = numpy . ones ( len ( t ) ) ∗ i s p
r = numpy . ones ( len ( t ) ) ∗ r0
betam = numpy . ones ( len ( t ) ) ∗ betam0
beta = numpy . ones ( len ( t ) ) ∗ beta0

# | | | |
# / ‘ | / \ | |/ / | |/ / / \
# | ( | | | / | < | < | ( ) |
# \ , | \ | | | \ \ | | \ \ \ /
# | /

# Create GEKKO Model
m = GEKKO( remote=False )
m. time = numpy . arange (0 , t f , dt )

# Define v a r i a b l e s and i n i t i a l va lue f o r GEKKO Model
m. s = m.SV( value=s0 , lb =0, ub=1)
m. e = m.SV( value=e0 , lb =0, ub=1)
m. i = m.CV( value=i0 , lb =0, ub=1)
m. r = m.SV( value=r0 , lb =0, ub=1)

m. s .FSTATUS = 1
m. e .FSTATUS = 1
m. i .STATUS = 1
m. i .FSTATUS = 1
m. i . SPHI = 0 .3
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m. i .SPLO = 0
m. r .FSTATUS = 1

# Beta i s the manipulated v a r i a b l e
i f ( d i s c r e t e ) :

m. betam = m.MV( value=betam0 , lb =0, ub=10,
i n t e g e r=True )

m. betam .STATUS = 1
m. betam .FSTATUS = 0

else :
m. beta = m.MV( value=beta0 , lb =0, ub=1)
m. beta .STATUS = 1
m. beta .FSTATUS = 0

# Define equa t i ons f o r GEKKO Model
i f ( d i s c r e t e ) :

m. Equation ( m. s . dt ( ) == de l t a − ( ( (m. betam + 0 . 5 ) /
10 )∗m. s∗m. i ) − (mu∗m. s ) )

m. Equation ( m. e . dt ( ) == ( ( (m. betam + 0 . 5 ) / 10 )∗m. s
∗m. i ) − ( sigma∗m. e ) − (mu∗m. e ) )

else :
m. Equation ( m. s . dt ( ) == de l t a − (m. beta∗m. s∗m. i ) − (

mu∗m. s ) )
m. Equation ( m. e . dt ( ) == (m. beta∗m. s∗m. i ) − ( sigma∗m. e

) − (mu∗m. e ) )

m. Equation ( m. i . dt ( ) == ( sigma∗m. e ) − (gamma∗m. i ) − (mu∗m
. i ) )

m. Equation ( m. r . dt ( ) == (gamma∗m. i ) − (mu∗m. r ) )

# MODEL OPTIONS
# m. Obj(−m. i ) # Model o b j e c t i v e ( minimize or maximize i )
m. opt ions .IMODE = 6 # CONTROL

i f ( d i s c r e t e ) :
# APOPT i s the on ly s o l v e r t ha t hand les i n t e g e r

va l u e s
m. opt ions .SOLVER = 1 # APOPT (Advanced Process

Optimizer )
# These op t i ons on ly app ly to APOPT
m. s o l v e r o p t i o n s = [ ’ m in lp gap to l 10 ’ ,\

’ minlp maximum iterat ions 50 ’ ,\
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’ m i n l p m a x i t e r w i t h i n t s o l 10 ’ ,\
’ m in lp as n lp 0 ’ ,\
’ minlp branch method 1 ’ ,\
’ m i n l p i n t e g e r t o l 0 .35 ’ ]

else :
m. opt ions .SOLVER = 3 # IPOPT ( I n t e r i o r Point

Optimizer )

# ( ) | | | | ( )

# / | | | | ’ ‘ \ | | | | | | / ‘ | | | | | /
\ | ’ \

# \ \ | | | | | | | | | | | | | | | ( | | | | | | | (
) | | | | |

# | / | | | | | | | | \ , | | | \ , | \ | | | \
/ | | | |

p l t . ion ( )
p l t . show ( )

for ind in range ( len ( t )−1) :
print ( ind , betam [ ind ] , beta [ ind ] )
ts im = [ t [ ind ] , t [ ind +1] ]
i n i t = [ s [ ind ] , e [ ind ] , i [ ind ] , r [ ind ] , betam [ ind

] , beta [ ind ] ]
s o l = sc ipy . i n t e g r a t e . s o l v e i v p ( rhs , tsim , i n i t )

s [ ind +1] = s o l [ ’ y ’ ] [ 0 ] [ − 1 ]
e [ ind +1] = s o l [ ’ y ’ ] [ 1 ] [ − 1 ]
i [ ind +1] = s o l [ ’ y ’ ] [ 2 ] [ − 1 ]
r [ ind +1] = s o l [ ’ y ’ ] [ 3 ] [ − 1 ]

i f ind%cp == 0 :
m. e .MEAS = e [ ind ]
m. i .MEAS = i [ ind ]

try :
m. s o l v e ( d i sp=True )
i f ( d i s c r e t e ) :

betam [ ind +1] = m. betam .NEWVAL
beta [ ind +1] = ( betam [ ind +1] + 0 . 5 ) / 10

else :
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beta [ ind +1] = round(m. beta .NEWVAL) + 0.05
except :

betam [ ind +1] = 1
beta [ ind +1] = 0 .15

else :
betam [ ind +1] = betam [ ind ]
beta [ ind +1] = beta [ ind ]

p l t . c l a ( )
p l t . x t i c k s (numpy . arange (0 , t f , 30) )
p l t . y t i c k s (numpy . arange (0 , 1 , 0 . 05 ) )
p l t . g r i d ( True )
p l t . x l a b e l ( ”Days S ince Sta r t o f S imulat ion ” )
p l t . p l o t ( t , s , ’ g− ’ , l a b e l=’ S u s c e p t i b l e ’ )
p l t . p l o t ( t , e , ’b− ’ , l a b e l=’ Exposed ’ )
p l t . p l o t ( t , i , ’ r− ’ , l a b e l=’ I n f e c t i o u s ’ )
p l t . p l o t ( t , r , ’ k− ’ , l a b e l=’Removed ’ )
p l t . p l o t ( t , beta , ’m− ’ , l a b e l=r ’ $\beta$ ’ )
p l t . l egend ( )
p l t . pause ( 0 . 0001 )

p l t . i o f f ( )
p l t . show ( )

def rhs ( dt , i n i t ) :

# Unpack Arguments
s = i n i t [ 0 ]
e = i n i t [ 1 ]
i = i n i t [ 2 ]
r = i n i t [ 3 ]
betam = i n i t [ 4 ]
beta = i n i t [ 5 ]

# Solve dynamics
sdot = de l t a − ( beta∗ s∗ i ) − (mu∗ s )
edot = ( beta∗ s∗ i ) − (mu∗e ) − ( sigma∗e )
i do t = ( sigma∗e ) − (gamma∗ i ) − (mu∗ i )
rdot = (gamma∗ i ) − (mu∗ r )
betamdot = 0
betadot = 0
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return [ sdot , edot , idot , rdot , betamdot , betadot ]

i f name == ” main ” :
main ( )
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C Parameter Estimation in Python

# Parameter Est imat ion

import matp lo t l i b . pyplot as p l t
import numpy
import os
import pandas
import s c ipy
import s c ipy . i n t e g r a t e

# GLOBAL CONSTANTS
de l t a = 2.703 e−5 # Natural Bir th Rate ( unre l a t ed to d i s e a s e

)
gamma = 0.07 # Rate o f Removal [ daysˆ−1]
mu = 2.403 e−5 # Natural Death Rate ( unre l a t ed to d i s e a s e

)
sigma = 0 .2 # Average Incuba t ion Period [ days ˆ−1]
N = 3565287 # Total Popu la t ion o f CT [ persons ]
c f r = 0.022 # Case Fa t a l i t y Rate [1.4% (NY) − 3%]
beds = 8798 # Number o f h o s p i t a l beds a v a i l a b l e
i cub = 674 # Number o f ICU beds a v a i l a b l e

def es t imate ( ) :

nyt = pandas . r ead c sv ( ’ data / nytimes . csv ’ )
nytct = nyt [ ( nyt . s t a t e == ” Connect icut ” ) ] . copy ( )
nytct [ ’ date ’ ] = pandas . to date t ime ( nytct [ ’ date ’ ] )
nytct [ ’ d i f f e r e n c e ’ ] = nytct [ ’ c a s e s ’ ] . d i f f ( )
nytct [ ’ pct change ’ ] = nytct [ ’ c a s e s ’ ] . pct change ( )
nytct = nytct . r e s e t i n d e x ( )
nytct . index += 0

# ODE VARIABLES
t f = 360
dt = 1
tspan = [ 0 , t f ]
t e v a l = numpy . arange (0 , t f , dt )
t a r g s = [ t f , dt , tspan , t e v a l ]

( betasearch , esearch , i s e a r c h ) = search ( targs , nytct )
# ( betasearch , esearch , i s e a r ch ) = (0 .42 , 100 , 50) #
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Resu l t s f o r t f = 30
# ( be tasearch , esearch , i s e a r ch ) = (0 .16 , 1650 , 950) #

Resu l t s f o r t f = 60
# ( be tasearch , esearch , i s e a r ch ) = (0 .11 , 950 , 1950) #

Resu l t s f o r t f = 150
R = ( betasearch ∗ sigma ) /( (mu+gamma) ∗(mu+sigma ) ) # Basic

Reproduction Number
print ( betasearch , esearch , i s ea r ch , R)

# INITIAL CONDITIONS
e0 = esearch /N # Exposed
i 0 = i s e a r c h /N # Act ive I n f e c t e d
r0 = 0 # Recovered ( e f f e c t i v e l y 0)
s0 = 1−e0−i0−r0 # Su s c e p t i b l e

# INIT
i n i t = [ s0 , e0 , i0 , r0 , betasearch ]
beta = numpy . ones ( t f ) ∗ betasearch

# SOLVE ODE
s o l u t i o n = sc ipy . i n t e g r a t e . s o l v e i v p ( rhs , tspan , i n i t ,

t e v a l=t e v a l )
s o l u t i o n = numpy . c [ numpy . t ranspose ( s o l u t i o n [ ’ y ’ ] ) ]
s e i r = pandas . DataFrame ( data=s o l u t i o n )
s e i r [ ’ date ’ ] = pandas . date range ( s t a r t=’ 3/8/2020 ’ ,

p e r i od s=len ( s e i r ) , f r e q=’D ’ )
s e i r . columns = [ ’ s u s c e p t i b l e ’ , ’ exposed ’ , ’ i n f e c t e d ’ ,

’ r e covered ’ , ’ beta ’ , ’ date ’ ]

p l t . x l a b e l ( ”Days S ince Sta r t o f S imulat ion ” )
p l t . y l a b e l ( ” Port ion o f Populat ion in Compartment” )
p l t . x t i c k s (numpy . arange (0 , t f , 30) )
p l t . y t i c k s (numpy . arange (0 , 1 , 0 . 05 ) )
p l t . g r i d ( True )
p l t . p l o t ( s e i r . index , s e i r [ ’ s u s c e p t i b l e ’ ] , ’ g− ’ , l a b e l=’

S u s c e p t i b l e ’ )
p l t . p l o t ( s e i r . index , s e i r [ ’ exposed ’ ] , ’b− ’ , l a b e l=’

Exposed ’ )
p l t . p l o t ( s e i r . index , s e i r [ ’ i n f e c t e d ’ ] , ’ r− ’ , l a b e l=r ’

In f e c t ed , $\beta$ =0.16 ’ )
p l t . p l o t ( nytct . index , nytct [ ’ c a s e s ’ ] /N, l a b e l=’ Actual

In f e c t ed , per NYT/JHU ’ )
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p l t . p l o t ( s e i r . index , s e i r [ ’ r ecovered ’ ] , ’ k− ’ , l a b e l=’
Recovered ’ )

p l t . p l o t ( s e i r . index , beta , ’m− ’ , l a b e l=r ’ $\beta$ ’ )

# p l t . p l o t ( s e i r [ ’ date ’ ] , s e i r [ ’ i n f e c t e d ’ ] , l a b e l=r ’
Proport ion o f In f ec t ed , Simulated wi th $\ be ta$=0.11 ’)

# p l t . s c a t t e r ( ny t c t [ ’ date ’ ] . head ( t f ) , ny t c t [ ’ cases ’ ] . head
( t f ) /N, l a b e l =’Proport ion o f In f ec t ed , per NYT/JHU ’)

# p l t . g c f ( ) . au to fmt xda te ( )
p l t . l egend ( )
p l t . t i g h t l a y o u t ( )
p l t . show ( )

def rhs ( dt , i n i t ) :

# Unpack Arguments
s = i n i t [ 0 ]
e = i n i t [ 1 ]
i = i n i t [ 2 ]
r = i n i t [ 3 ]
beta = i n i t [ 4 ]

# Solve dynamics
sdot = de l t a − ( beta∗ s∗ i ) − (mu∗ s )
edot = ( beta∗ s∗ i ) − (mu∗e ) − ( sigma∗e )
i do t = ( sigma∗e ) − (gamma∗ i ) − (mu∗ i )
rdot = (gamma∗ i ) − (mu∗ r )

return [ sdot , edot , idot , rdot , 0 ]

def search ( targs , comparison data ) :
t f = ta rg s [ 0 ]
dt = ta rg s [ 1 ]
tspan = ta rg s [ 2 ]
t e v a l = ta rg s [ 3 ]

# SEARCH FOR SMALLEST ERROR IN SIMULATIONS
b a s e e r r o r = 10
for beta in numpy . arange ( 0 . 1 , 0 . 6 , 0 . 01 ) :

for e in numpy . arange (0 , 2000 , 50) :
for i in numpy . arange (0 , 2000 , 50) :

print ( beta , e , i )
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# INITIAL CONDITIONS
e0 = e/N # Exposed
i 0 = i /N # Act ive I n f e c t e d
r0 = 0/N # Recovered
s0 = 1−e0−i0−r0 # Su s c e p t i b l e

# INIT
i n i t = [ s0 , e0 , i0 , r0 , beta ]

# SOLVE ODE
s o l u t i o n = sc ipy . i n t e g r a t e . s o l v e i v p ( rhs ,

tspan , i n i t , t e v a l=t e v a l )
s o l u t i o n = numpy . c [ numpy . t ranspose ( s o l u t i o n [

’ y ’ ] ) ]
s e i r = pandas . DataFrame ( data=s o l u t i o n )
s e i r [ ’ date ’ ] = pandas . date range ( s t a r t=’

3/8/2020 ’ , p e r i od s=len ( s e i r ) , f r e q=’D ’ )
s e i r . columns = [ ’ s u s c e p t i b l e ’ , ’ exposed ’ , ’

i n f e c t e d ’ , ’ r ecovered ’ , ’ beta ’ , ’ date ’ ]

e r r o r = ( ( ( comparison data [ ’ c a s e s ’ ] /N) . head (
t f ) . subt rac t ( s e i r [ ’ i n f e c t e d ’ ] ) ) ∗∗2) .sum( )

i f ( e r r o r < b a s e e r r o r ) :
print ( ”New Minimum Error ” )
b a s e e r r o r = e r r o r
betasearch = beta
e sea rch = e
i s e a r c h = i

return ( betasearch , esearch , i s e a r c h )

i f name == ” main ” :
e s t imate ( )
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D Phase Portrait in Python

import glob
import matp lo t l i b . pyplot as p l t
import numpy
import os
import pandas
import s c ipy
import s c ipy . i n t e g r a t e
import sympy

beta0 = 0.175
gamma0 = 0.07

def dRIdt (x , t=0) :
return numpy . array ( [ gamma0 ∗ x [ 1 ] ,

beta0 ∗ numpy . exp ( (−beta0 /gamma0) ∗
x [ 0 ] ) − (gamma0 ∗ x [ 1 ] ) ] )

def dSIdt (x , t=0) :
return numpy . array ( [ −beta0 ∗ x [ 0 ] ∗ x [ 1 ] ,

beta0 ∗ x [ 0 ] ∗ x [ 1 ] − gamma0 ∗ x [ 1 ]
] )

def dSRdt (x , t=0) :
# return numpy . array ( [ ] )
pass

def phaseRI ( ) :
# see h t t p s :// sc ipy−cookbook . read thedocs . io / i tems /

Lok taVo l t e r raTutor ia l . html
r = numpy . l i n s p a c e (0 , 1 , 50)
i = numpy . l i n s p a c e (0 , 1 , 50)
R, I = numpy . meshgrid ( r , i )
dR, dI = dRIdt ( [R, I ] )
M = (numpy . hypot (dR, dI ) )
M [ M == 0 ] = 1 .
dR /= M
dI /= M
# p l t . qu i v e r (R, I , dR, dI , M, p i v o t =’mid ’)
p l t . s t reamplot (R, I , dR, dI )
p l t . x l a b e l ( ” Recovered ” )
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p l t . y l a b e l ( ” I n f e c t e d ” )
p l t . show ( )

def phaseSI ( ) :
s = numpy . l i n s p a c e (0 , 1 , 50)
i = numpy . l i n s p a c e (0 , 1 , 50)
S , I = numpy . meshgrid ( s , i )
dS , dI = dSIdt ( [ S , I ] )
M = (numpy . hypot (dS , dI ) )
M [ M == 0 ] = 1 .
dS /= M
dI /= M
# p l t . qu i v e r (R, I , dR, dI , M, p i v o t =’mid ’)
p l t . s t reamplot (S , I , dS , dI )
p l t . x l a b e l ( ” S u s c e p t i b l e ” )
p l t . y l a b e l ( ” I n f e c t e d ” )
p l t . show ( )

i f name == ” main ” :
phaseRI ( )
# phaseSI ( )
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E Plotting JHU Data in Python

import matp lo t l i b . pyplot as p l t
import numpy
import os
import pandas
import s c ipy
import s c ipy . i n t e g r a t e
pandas . s e t o p t i o n ( ’ d i sp l ay . max rows ’ , None )
pandas . s e t o p t i o n ( ’ d i sp l ay . max columns ’ , None )

N = 3565287 # Total Popu la t ion o f CT [ persons ]

def exp lo r e ( ) :

i f os . path . i s f i l e ( ’ data / jhuct . pkl ’ ) :
print ( ”Reading saved JHU data ” )
jhuct = pandas . r e a d p i c k l e ( ’ data / jhuct . pkl ’ )

else :
f i l e l i s t = os . l i s t d i r ( ’ data / c s s e ’ )
f i l e l i s t . s o r t ( )
jhuct = pandas . DataFrame ( )
for f i l e in f i l e l i s t :

jhu = pandas . r ead c sv ( ’ data / c s s e / ’ + f i l e )
jhuct = jhuct . append ( jhu [ ( jhu . Prov ince State == ”

Connect icut ” ) ] )
jhuct . t o p i c k l e ( ’ data / jhuct . pkl ’ )

jhuct [ ’ date ’ ] = pandas . to date t ime ( jhuct [ ’ Last Update ’ ] )

p l t . p l o t ( jhuct [ ’ date ’ ] , jhuct [ ’ Confirmed ’ ] /N, ’ g− ’ , l a b e l
=’ Cumulative Cases ’ )

p l t . p l o t ( jhuct [ ’ date ’ ] , jhuct [ ’ Act ive ’ ] /N, ’ r− ’ , l a b e l=’
I n f e c t e d ’ )

p l t . p l o t ( jhuct [ ’ date ’ ] , jhuct [ ’ Deaths ’ ] /N + jhuct [ ’
Recovered ’ ] /N, ’k− ’ , l a b e l=’ Recovered ’ )

p l t . x l a b e l ( ”Date” )
p l t . y l a b e l ( ” Port ion o f Populat ion in Compartment” )
p l t . l egend ( )
p l t . g c f ( ) . autofmt xdate ( )
p l t . t i g h t l a y o u t ( )
p l t . show ( )
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i f name == ” main ” :
exp lo r e ( )
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