{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Statistics Coded: How do women and men use their time - statistics \n", "\n", "**By [Mészáros Mátyás](https://github.com/mmatyi)**\n", "\n", "This noteboook reproduces step by step the figures avialable in the original [Statistics Explaind page](https://ec.europa.eu/eurostat/statistics-explained/index.php?title=How_do_women_and_men_use_their_time_-_statistics) and in the [source excel file](https://ec.europa.eu/eurostat/statistics-explained/images/2/2e/SE_Article_Charts_HETUS_2010_FINAL_06.09.2019.xlsx)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define the year in a variable `yr<-2010` so if i want to rerun the code for a different year we have to change only this line. In addition we will retrieve the EU28 country names which will be used in later steps." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "restatapi: - config file with the API version 1 loaded from GitHub (the 'current' API version number is 1).\n", " - 4 from the 32 cores are used for parallel computing, can be changed with 'options(restatapi_cores=...)'\n", " - 'auto' method will be used for file download, can be changed with 'options(restatapi_dmethod=...)'\n", " - the Table of contents (TOC) was not pre-loaded into the deafult cache ('.restatapi_env').\n", "\n" ] } ], "source": [ "library(restatapi)\n", "library(data.table)\n", "library(ggplot2)\n", "library(chron)\n", "yr<-\"2010\"\n", "eu_ctry_names<-do.call(rbind,lapply(get(\"cc\",envir=.restatapi_env)$EU28,search_eurostat_dsd,dsd=get_eurostat_dsd(\"tus_00age\"),exact_match=TRUE))$name\n", "eu_ctry_names<-gsub(\" \\\\(.*\\\\)\",\"\",eu_ctry_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 1: Mean time spent on daily activities, all individuals by country, (hh:mm; 2008 to 2015)\n", "\n", "\n", "The data is in the *tus_00age* dataset. We use the [restatapi](https://github.com/eurostat/restatapi) package to download the data. We apply filter to the data for the year (`date_filter=yr`) . We also filter for the other values in the graph (`filters=list(unit=\"spent\",age=\"total\",sex=\"total\",acl00=c(\"sleep\",\"eat\",\"^employ\",\" (family|personal) care\",\"^leisure\",\"^study\",\"except travel\"))`. If we use the [REST SDMX](https://ec.europa.eu/eurostat/web/sdmx-web-services/rest-sdmx-2.1) service to get the filtered dataset, then we get no data because all the values are **NaN** (Not a Number) as the values are time spans. In order to get the data we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 0 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>age</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 0 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & age & geo & time & values\\\\\n", " <fct> & <fct> & <fct> & <fct> & <fct> & <fct> & <dbl>\\\\\n", "\\hline\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 0 × 7\n", "\n", "| unit <fct> | sex <fct> | acl00 <fct> | age <fct> | geo <fct> | time <fct> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "\n" ], "text/plain": [ " unit sex acl00 age geo time values" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 144 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>age</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Austria </td><td>2010</td><td>8:31</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Belgium </td><td>2010</td><td>8:36</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>8:26</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Estonia </td><td>2010</td><td>8:50</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Greece </td><td>2010</td><td>8:36</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Spain </td><td>2010</td><td>8:38</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Finland </td><td>2010</td><td>8:35</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>France </td><td>2010</td><td>8:30</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Hungary </td><td>2010</td><td>8:34</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Italy </td><td>2010</td><td>8:32</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Luxembourg </td><td>2010</td><td>8:40</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Netherlands </td><td>2010</td><td>8:26</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Norway </td><td>2010</td><td>8:07</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Poland </td><td>2010</td><td>8:37</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Romania </td><td>2010</td><td>8:52</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Serbia </td><td>2010</td><td>8:21</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>Turkey </td><td>2010</td><td>8:42</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Sleep </td><td>United Kingdom </td><td>2010</td><td>8:22</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Austria </td><td>2010</td><td>1:24</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Belgium </td><td>2010</td><td>1:44</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:43</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Estonia </td><td>2010</td><td>1:21</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Greece </td><td>2010</td><td>2:13</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Spain </td><td>2010</td><td>1:59</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Finland </td><td>2010</td><td>1:23</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>France </td><td>2010</td><td>2:12</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Hungary </td><td>2010</td><td>1:42</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Italy </td><td>2010</td><td>1:57</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Luxembourg </td><td>2010</td><td>1:54</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Eating</td><td>Netherlands </td><td>2010</td><td>1:57</td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Finland </td><td>2010</td><td>6:05</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>France </td><td>2010</td><td>5:03</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Hungary </td><td>2010</td><td>5:00</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Italy </td><td>2010</td><td>4:54</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Luxembourg </td><td>2010</td><td>4:35</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Netherlands </td><td>2010</td><td>5:34</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Norway </td><td>2010</td><td>5:53</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Poland </td><td>2010</td><td>5:02</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Romania </td><td>2010</td><td>4:26</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Serbia </td><td>2010</td><td>5:29</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>Turkey </td><td>2010</td><td>5:27</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Leisure, social and associative life</td><td>United Kingdom </td><td>2010</td><td>5:15</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Austria </td><td>2010</td><td>1:09</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Belgium </td><td>2010</td><td>1:20</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:17</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Estonia </td><td>2010</td><td>1:16</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Greece </td><td>2010</td><td>1:02</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Spain </td><td>2010</td><td>1:10</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Finland </td><td>2010</td><td>1:22</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>France </td><td>2010</td><td>1:23</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Hungary </td><td>2010</td><td>1:03</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Italy </td><td>2010</td><td>1:19</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Luxembourg </td><td>2010</td><td>1:32</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Netherlands </td><td>2010</td><td>1:31</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Norway </td><td>2010</td><td>1:26</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Poland </td><td>2010</td><td>1:06</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Romania </td><td>2010</td><td>0:58</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Serbia </td><td>2010</td><td>1:07</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>Turkey </td><td>2010</td><td>1:04</td></tr>\n", "\t<tr><td>Time spent (hh:mm)</td><td>Total</td><td>Total</td><td>Travel except travel related to jobs</td><td>United Kingdom </td><td>2010</td><td>2:09</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 144 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & age & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Austria & 2010 & 8:31\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Belgium & 2010 & 8:36\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Germany (until 1990 former territory of the FRG) & 2010 & 8:26\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Estonia & 2010 & 8:50\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Greece & 2010 & 8:36\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Spain & 2010 & 8:38\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Finland & 2010 & 8:35\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & France & 2010 & 8:30\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Hungary & 2010 & 8:34\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Italy & 2010 & 8:32\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Luxembourg & 2010 & 8:40\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Netherlands & 2010 & 8:26\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Norway & 2010 & 8:07\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Poland & 2010 & 8:37\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Romania & 2010 & 8:52\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Serbia & 2010 & 8:21\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & Turkey & 2010 & 8:42\\\\\n", "\t Time spent (hh:mm) & Total & Total & Sleep & United Kingdom & 2010 & 8:22\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Austria & 2010 & 1:24\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Belgium & 2010 & 1:44\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Germany (until 1990 former territory of the FRG) & 2010 & 1:43\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Estonia & 2010 & 1:21\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Greece & 2010 & 2:13\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Spain & 2010 & 1:59\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Finland & 2010 & 1:23\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & France & 2010 & 2:12\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Hungary & 2010 & 1:42\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Italy & 2010 & 1:57\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Luxembourg & 2010 & 1:54\\\\\n", "\t Time spent (hh:mm) & Total & Total & Eating & Netherlands & 2010 & 1:57\\\\\n", "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Finland & 2010 & 6:05\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & France & 2010 & 5:03\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Hungary & 2010 & 5:00\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Italy & 2010 & 4:54\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Luxembourg & 2010 & 4:35\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Netherlands & 2010 & 5:34\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Norway & 2010 & 5:53\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Poland & 2010 & 5:02\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Romania & 2010 & 4:26\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Serbia & 2010 & 5:29\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & Turkey & 2010 & 5:27\\\\\n", "\t Time spent (hh:mm) & Total & Total & Leisure, social and associative life & United Kingdom & 2010 & 5:15\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Austria & 2010 & 1:09\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Belgium & 2010 & 1:20\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Germany (until 1990 former territory of the FRG) & 2010 & 1:17\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Estonia & 2010 & 1:16\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Greece & 2010 & 1:02\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Spain & 2010 & 1:10\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Finland & 2010 & 1:22\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & France & 2010 & 1:23\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Hungary & 2010 & 1:03\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Italy & 2010 & 1:19\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Luxembourg & 2010 & 1:32\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Netherlands & 2010 & 1:31\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Norway & 2010 & 1:26\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Poland & 2010 & 1:06\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Romania & 2010 & 0:58\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Serbia & 2010 & 1:07\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & Turkey & 2010 & 1:04\\\\\n", "\t Time spent (hh:mm) & Total & Total & Travel except travel related to jobs & United Kingdom & 2010 & 2:09\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 144 × 7\n", "\n", "| unit <chr> | sex <chr> | age <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Time spent (hh:mm) | Total | Total | Sleep | Austria | 2010 | 8:31 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Belgium | 2010 | 8:36 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Germany (until 1990 former territory of the FRG) | 2010 | 8:26 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Estonia | 2010 | 8:50 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Greece | 2010 | 8:36 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Spain | 2010 | 8:38 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Finland | 2010 | 8:35 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | France | 2010 | 8:30 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Hungary | 2010 | 8:34 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Italy | 2010 | 8:32 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Luxembourg | 2010 | 8:40 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Netherlands | 2010 | 8:26 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Norway | 2010 | 8:07 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Poland | 2010 | 8:37 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Romania | 2010 | 8:52 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Serbia | 2010 | 8:21 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | Turkey | 2010 | 8:42 |\n", "| Time spent (hh:mm) | Total | Total | Sleep | United Kingdom | 2010 | 8:22 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Austria | 2010 | 1:24 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Belgium | 2010 | 1:44 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Germany (until 1990 former territory of the FRG) | 2010 | 1:43 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Estonia | 2010 | 1:21 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Greece | 2010 | 2:13 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Spain | 2010 | 1:59 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Finland | 2010 | 1:23 |\n", "| Time spent (hh:mm) | Total | Total | Eating | France | 2010 | 2:12 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Hungary | 2010 | 1:42 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Italy | 2010 | 1:57 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Luxembourg | 2010 | 1:54 |\n", "| Time spent (hh:mm) | Total | Total | Eating | Netherlands | 2010 | 1:57 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Finland | 2010 | 6:05 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | France | 2010 | 5:03 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Hungary | 2010 | 5:00 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Italy | 2010 | 4:54 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Luxembourg | 2010 | 4:35 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Netherlands | 2010 | 5:34 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Norway | 2010 | 5:53 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Poland | 2010 | 5:02 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Romania | 2010 | 4:26 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Serbia | 2010 | 5:29 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | Turkey | 2010 | 5:27 |\n", "| Time spent (hh:mm) | Total | Total | Leisure, social and associative life | United Kingdom | 2010 | 5:15 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Austria | 2010 | 1:09 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Belgium | 2010 | 1:20 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Germany (until 1990 former territory of the FRG) | 2010 | 1:17 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Estonia | 2010 | 1:16 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Greece | 2010 | 1:02 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Spain | 2010 | 1:10 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Finland | 2010 | 1:22 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | France | 2010 | 1:23 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Hungary | 2010 | 1:03 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Italy | 2010 | 1:19 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Luxembourg | 2010 | 1:32 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Netherlands | 2010 | 1:31 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Norway | 2010 | 1:26 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Poland | 2010 | 1:06 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Romania | 2010 | 0:58 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Serbia | 2010 | 1:07 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | Turkey | 2010 | 1:04 |\n", "| Time spent (hh:mm) | Total | Total | Travel except travel related to jobs | United Kingdom | 2010 | 2:09 |\n", "\n" ], "text/plain": [ " unit sex age acl00 \n", "1 Time spent (hh:mm) Total Total Sleep \n", "2 Time spent (hh:mm) Total Total Sleep \n", "3 Time spent (hh:mm) Total Total Sleep \n", "4 Time spent (hh:mm) Total Total Sleep \n", "5 Time spent (hh:mm) Total Total Sleep \n", "6 Time spent (hh:mm) Total Total Sleep \n", "7 Time spent (hh:mm) Total Total Sleep \n", "8 Time spent (hh:mm) Total Total Sleep \n", "9 Time spent (hh:mm) Total Total Sleep \n", "10 Time spent (hh:mm) Total Total Sleep \n", "11 Time spent (hh:mm) Total Total Sleep \n", "12 Time spent (hh:mm) Total Total Sleep \n", "13 Time spent (hh:mm) Total Total Sleep \n", "14 Time spent (hh:mm) Total Total Sleep \n", "15 Time spent (hh:mm) Total Total Sleep \n", "16 Time spent (hh:mm) Total Total Sleep \n", "17 Time spent (hh:mm) Total Total Sleep \n", "18 Time spent (hh:mm) Total Total Sleep \n", "19 Time spent (hh:mm) Total Total Eating \n", "20 Time spent (hh:mm) Total Total Eating \n", "21 Time spent (hh:mm) Total Total Eating \n", "22 Time spent (hh:mm) Total Total Eating \n", "23 Time spent (hh:mm) Total Total Eating \n", "24 Time spent (hh:mm) Total Total Eating \n", "25 Time spent (hh:mm) Total Total Eating \n", "26 Time spent (hh:mm) Total Total Eating \n", "27 Time spent (hh:mm) Total Total Eating \n", "28 Time spent (hh:mm) Total Total Eating \n", "29 Time spent (hh:mm) Total Total Eating \n", "30 Time spent (hh:mm) Total Total Eating \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE> <U+22EE> \n", "115 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "116 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "117 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "118 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "119 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "120 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "121 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "122 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "123 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "124 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "125 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "126 Time spent (hh:mm) Total Total Leisure, social and associative life\n", "127 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "128 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "129 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "130 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "131 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "132 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "133 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "134 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "135 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "136 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "137 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "138 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "139 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "140 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "141 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "142 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "143 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", "144 Time spent (hh:mm) Total Total Travel except travel related to jobs\n", " geo time values\n", "1 Austria 2010 8:31 \n", "2 Belgium 2010 8:36 \n", "3 Germany (until 1990 former territory of the FRG) 2010 8:26 \n", "4 Estonia 2010 8:50 \n", "5 Greece 2010 8:36 \n", "6 Spain 2010 8:38 \n", "7 Finland 2010 8:35 \n", "8 France 2010 8:30 \n", "9 Hungary 2010 8:34 \n", "10 Italy 2010 8:32 \n", "11 Luxembourg 2010 8:40 \n", "12 Netherlands 2010 8:26 \n", "13 Norway 2010 8:07 \n", "14 Poland 2010 8:37 \n", "15 Romania 2010 8:52 \n", "16 Serbia 2010 8:21 \n", "17 Turkey 2010 8:42 \n", "18 United Kingdom 2010 8:22 \n", "19 Austria 2010 1:24 \n", "20 Belgium 2010 1:44 \n", "21 Germany (until 1990 former territory of the FRG) 2010 1:43 \n", "22 Estonia 2010 1:21 \n", "23 Greece 2010 2:13 \n", "24 Spain 2010 1:59 \n", "25 Finland 2010 1:23 \n", "26 France 2010 2:12 \n", "27 Hungary 2010 1:42 \n", "28 Italy 2010 1:57 \n", "29 Luxembourg 2010 1:54 \n", "30 Netherlands 2010 1:57 \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE>\n", "115 Finland 2010 6:05 \n", "116 France 2010 5:03 \n", "117 Hungary 2010 5:00 \n", "118 Italy 2010 4:54 \n", "119 Luxembourg 2010 4:35 \n", "120 Netherlands 2010 5:34 \n", "121 Norway 2010 5:53 \n", "122 Poland 2010 5:02 \n", "123 Romania 2010 4:26 \n", "124 Serbia 2010 5:29 \n", "125 Turkey 2010 5:27 \n", "126 United Kingdom 2010 5:15 \n", "127 Austria 2010 1:09 \n", "128 Belgium 2010 1:20 \n", "129 Germany (until 1990 former territory of the FRG) 2010 1:17 \n", "130 Estonia 2010 1:16 \n", "131 Greece 2010 1:02 \n", "132 Spain 2010 1:10 \n", "133 Finland 2010 1:22 \n", "134 France 2010 1:23 \n", "135 Hungary 2010 1:03 \n", "136 Italy 2010 1:19 \n", "137 Luxembourg 2010 1:32 \n", "138 Netherlands 2010 1:31 \n", "139 Norway 2010 1:26 \n", "140 Poland 2010 1:06 \n", "141 Romania 2010 0:58 \n", "142 Serbia 2010 1:07 \n", "143 Turkey 2010 1:04 \n", "144 United Kingdom 2010 2:09 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"spent\",age=\"total\",sex=\"total\",acl00=\"^(?!total).*$\",geo=\"be\"),date_filter=2010,label=F,ignore.case=T,exact_match=F,force_local_filter=T,perl=T)\n", "#dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"spent\",age=\"total\",sex=\"total\",acl00=c(\"ac01\",\"ac02\",\"ac03\",\"ac1a\",\"ac1b\",\"ac2$\",\"ac3$\",\"ac4-8$\",\"ac9a\"),geo=\"be\"),date_filter=2010,label=T,ignore.case=T,exact_match=F,force_local_filter=T,perl=T)\n", "#dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"spent\",age=\"total\",sex=\"total\",geo=\"be\"),date_filter=2010,label=T,ignore.case=T,exact_match=F,force_local_filter=T,perl=T)\n", "dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"spent\",age=\"total\",sex=\"total\",acl00=c(\"sleep\",\"eat\",\"^employ\",\" (family|personal) care\",\"^leisure\",\"^study\",\"except travel\")),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T)\n", "dt\n", "dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"spent\",age=\"total\",sex=\"total\",acl00=c(\"sleep\",\"eat\",\"^employ\",\" (family|personal) care\",\"^leisure\",\"^study\",\"except travel\")),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. Before plotting the values, we need to sum the eating and other personal care for each country and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 18 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>acl00</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>Eating and other personal care</td><td>02:14:00</td></tr>\n", "\t<tr><td>Belgium </td><td>Eating and other personal care</td><td>02:37:00</td></tr>\n", "\t<tr><td>Germany </td><td>Eating and other personal care</td><td>02:38:00</td></tr>\n", "\t<tr><td>Estonia </td><td>Eating and other personal care</td><td>02:16:00</td></tr>\n", "\t<tr><td>Greece </td><td>Eating and other personal care</td><td>03:10:00</td></tr>\n", "\t<tr><td>Spain </td><td>Eating and other personal care</td><td>02:50:00</td></tr>\n", "\t<tr><td>Finland </td><td>Eating and other personal care</td><td>02:12:00</td></tr>\n", "\t<tr><td>France </td><td>Eating and other personal care</td><td>03:05:00</td></tr>\n", "\t<tr><td>Hungary </td><td>Eating and other personal care</td><td>02:58:00</td></tr>\n", "\t<tr><td>Italy </td><td>Eating and other personal care</td><td>02:52:00</td></tr>\n", "\t<tr><td>Luxembourg </td><td>Eating and other personal care</td><td>02:50:00</td></tr>\n", "\t<tr><td>Netherlands </td><td>Eating and other personal care</td><td>02:50:00</td></tr>\n", "\t<tr><td>Norway </td><td>Eating and other personal care</td><td>02:20:00</td></tr>\n", "\t<tr><td>Poland </td><td>Eating and other personal care</td><td>02:33:00</td></tr>\n", "\t<tr><td>Romania </td><td>Eating and other personal care</td><td>02:58:00</td></tr>\n", "\t<tr><td>Serbia </td><td>Eating and other personal care</td><td>02:48:00</td></tr>\n", "\t<tr><td>Turkey </td><td>Eating and other personal care</td><td>02:46:00</td></tr>\n", "\t<tr><td>United Kingdom</td><td>Eating and other personal care</td><td>02:21:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 18 × 3\n", "\\begin{tabular}{lll}\n", " geo & acl00 & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Austria & Eating and other personal care & 02:14:00\\\\\n", "\t Belgium & Eating and other personal care & 02:37:00\\\\\n", "\t Germany & Eating and other personal care & 02:38:00\\\\\n", "\t Estonia & Eating and other personal care & 02:16:00\\\\\n", "\t Greece & Eating and other personal care & 03:10:00\\\\\n", "\t Spain & Eating and other personal care & 02:50:00\\\\\n", "\t Finland & Eating and other personal care & 02:12:00\\\\\n", "\t France & Eating and other personal care & 03:05:00\\\\\n", "\t Hungary & Eating and other personal care & 02:58:00\\\\\n", "\t Italy & Eating and other personal care & 02:52:00\\\\\n", "\t Luxembourg & Eating and other personal care & 02:50:00\\\\\n", "\t Netherlands & Eating and other personal care & 02:50:00\\\\\n", "\t Norway & Eating and other personal care & 02:20:00\\\\\n", "\t Poland & Eating and other personal care & 02:33:00\\\\\n", "\t Romania & Eating and other personal care & 02:58:00\\\\\n", "\t Serbia & Eating and other personal care & 02:48:00\\\\\n", "\t Turkey & Eating and other personal care & 02:46:00\\\\\n", "\t United Kingdom & Eating and other personal care & 02:21:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 18 × 3\n", "\n", "| geo <chr> | acl00 <chr> | values <times> |\n", "|---|---|---|\n", "| Austria | Eating and other personal care | 02:14:00 |\n", "| Belgium | Eating and other personal care | 02:37:00 |\n", "| Germany | Eating and other personal care | 02:38:00 |\n", "| Estonia | Eating and other personal care | 02:16:00 |\n", "| Greece | Eating and other personal care | 03:10:00 |\n", "| Spain | Eating and other personal care | 02:50:00 |\n", "| Finland | Eating and other personal care | 02:12:00 |\n", "| France | Eating and other personal care | 03:05:00 |\n", "| Hungary | Eating and other personal care | 02:58:00 |\n", "| Italy | Eating and other personal care | 02:52:00 |\n", "| Luxembourg | Eating and other personal care | 02:50:00 |\n", "| Netherlands | Eating and other personal care | 02:50:00 |\n", "| Norway | Eating and other personal care | 02:20:00 |\n", "| Poland | Eating and other personal care | 02:33:00 |\n", "| Romania | Eating and other personal care | 02:58:00 |\n", "| Serbia | Eating and other personal care | 02:48:00 |\n", "| Turkey | Eating and other personal care | 02:46:00 |\n", "| United Kingdom | Eating and other personal care | 02:21:00 |\n", "\n" ], "text/plain": [ " geo acl00 values \n", "1 Austria Eating and other personal care 02:14:00\n", "2 Belgium Eating and other personal care 02:37:00\n", "3 Germany Eating and other personal care 02:38:00\n", "4 Estonia Eating and other personal care 02:16:00\n", "5 Greece Eating and other personal care 03:10:00\n", "6 Spain Eating and other personal care 02:50:00\n", "7 Finland Eating and other personal care 02:12:00\n", "8 France Eating and other personal care 03:05:00\n", "9 Hungary Eating and other personal care 02:58:00\n", "10 Italy Eating and other personal care 02:52:00\n", "11 Luxembourg Eating and other personal care 02:50:00\n", "12 Netherlands Eating and other personal care 02:50:00\n", "13 Norway Eating and other personal care 02:20:00\n", "14 Poland Eating and other personal care 02:33:00\n", "15 Romania Eating and other personal care 02:58:00\n", "16 Serbia Eating and other personal care 02:48:00\n", "17 Turkey Eating and other personal care 02:46:00\n", "18 United Kingdom Eating and other personal care 02:21:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))]\n", "dt<-dt[,c(\"acl00\",\"geo\",\"values\")]\n", "sdt<-dt[grepl(\"(ating|ther)\",acl00),.(acl00=\"Eating and other personal care\",values=sum(values)),by=geo]\n", "sdt\n", "dt<-rbind(dt[!grepl(\"(ating|ther)\",acl00)],sdt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then plot the data using the *ggplot2* library, and using the color codes of the original figure." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2ATdR/H8V+apOneLdAWihTZG4GHvUHgAZmykb0pULAgypA9pIIVEBAQZKv4\nALJn2UMF2VMBW2SW0t20SZ4/gqG0SZoOOq7v11/J3eX7G3cpH+4uiUyn0wkAAADkf1a53QEA\nAABkD4IdAACARBDsAAAAJIJgBwAAIBEEOwAAAIkg2AEAAEgEwQ4AAEAiCHYAAAASUbCCnZ3c\nSmbWSw1f1wwAAPIrRW53IBf4lihpYyLQ6hf/UrVQ24tP3Mtsena9Ww72K3usqVMk4H7n6PCQ\n3O4IAADIaQUx2G29eLW2o3Vu9+KtSIw8GXj+ifDK7X4AAIDcUBCDXbqqzV2xOTJB5VQ7tzuS\nAbrk2D8Ob5s+YlRkstYhtzsDAAByBcHOCO+WH3TNkYbiwq8e//1emRbv+6nkWamzqXnF/oev\nJmi5QRAAgAKtYH14wkK31zaQyWQN1t42LNFpY7fOD2rXpFYhR1tPn3c/HD77H7X2S39XmUxm\n2Ob0sHIymazT9ecpS+k0L2Uymb1nl1TFR96N/G3l0CLFK73f7r8/Pos3rL13bMOgnh2ql/Wz\ntXN9t2KN4Z8vvxufnG6Hi9Rs2qv/gIEDB/bt1SgrAwcAAPkaZ+zSp9PGjmtW+ssj4TIrlX/F\naqqXt39Y9un+Ayffj1ZnuubT3+b/Z8gKK0evymXLlLR5tRdOLezV4OONWiE8i5WpXtHp2h8X\nlk0b+v23P/5ycWdDdxsz1RrNWtRICCFE3NON360/muleAQCAfK0gBrvu71WytZKlWqhQ+V6+\neMDo9hfnvP/lkXCXMh13h66v7WUrhLi3/8t67T7ekqjJdB9+7jGv4aivNi8c7qF4ddL05Z2v\nGwVttLItteTnX4a0KCmE0CQ8mDOk9eR1Bzs3m/70wuxMtwUAAAqIghjs7t+6mXahwsbE6Tdd\n4kdzzsqslJtObKj972mz4i3GHvxqZ9khRzLdB1Wh/gcWj0yZLn/6aFaSVtd/074hLfz0S+Q2\nxT5dfebKvsJbLs5Z/fiz/oXsMt0cAAAoCAriPXanohJ1aSTF3zW6cezjtZdjkxy8A95/82Ko\nf48FWemDX6eBb54z1M74/Zlc6bHkv34pl8rkDuP7+gshNpx6kpXmAABAQVAQz9hlSGLkESGE\ng2/TVMuVDtULWcsfqzN5Nda5gnPKp5qEP+8lJAvxzFae+hqxXvTd6Mw1BAAACg6CXTq0yUlC\nGD+zqZQZD2Ep6bSJRpfL3/x+E50uWQihsCkxfsyHRrcvUsEt3bYAAEABR7BLh8qlphA/xYad\nEKJVyuXJ8TfDLThdp44+b0krCht/D6X8hS5x+uw5yvTjIgAAgBEF8R67DHEoMrSoShEdtjA0\n8o1zbw92jtfp3vhCYP132kXefuOa6bVlMyxqRqYMetdFkxgeeCg81ZoFHzStXbv27hcJmeg8\nAAAoUAh26ZDJnTYMq6DTJnZq2O/XiFfZ7tHJla367pO/eSnWuZKzEOK3wOn/qLX6JeHHlref\n8ZslV2yFEB+tHiCEWNGx/cbT/2Y7nXrPgu5BOw5ff1LufVdz32MHAAAgCHaWqLvgwIimxZ5f\n2lSrkEe5Gg1qlC3mW3+IptmUaX5OVgpXw2Yley+t6mD98u6aEt4V2nTs0rhmef/Gw9x6rmjn\nbmtJK1615v0Q2Fgd/Wuvun5+pas0adqgbFG31kGbVc41dpxbwn4CAADpIjCkz0rh8fWBOxun\nj2z8XvHwy7+Gqz1Hzv3hxvbPIpO1cpWvYTOlfZXQi3tHdWzorXq8f/feP2NcRwf/8vuqfrXb\ndejQ7j+WNNR54eFffw7p0b65k+bJqbNXtO7l+3zy9bWwkw3M/uwEAACAnizVjWKwlC6ppL3d\nU4/xLx/Mye2uAAAACMEZO0u09HS0trYJffnGhyfCD42+G59ctEP73OoVAABAKgS79M0cWiUp\nKbFz4yF7f/0zVp38PPzuruVBNf+7wkrhNG9q5dzuHQAAwCtcirWALnlhnyYTNpzQpJgrudJz\n/LrQud3K5mK/AAAAUiLYWer5tcPbDl+8/yBc6Va0ZMmS7zVtXtpVldudAgAAeI1gBwAAIBHc\nYwcAACARBDsAAACJINgBAABIBMEOAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACRCkdsd\nyAk6nS4qKsrwVC6X29jYCCHi4uLSfj+zQqFQqVRCiNjY2LSlzK9VKpXW1tY6nS4uLi6ja62t\nrZVKpVarjY+Pz+halUqlUCg0Gk1CQkJG19rY2Mjl8uTk5MTExIyutbW1tbKySkpKUqvVGV1r\nZ2cnk8nUanVSUlJG19rb2wshEhMTk5OTM7RWJpPZ2dkJIRISEjQaTcpVzs7OaUsBAJC/FJRg\nlzIfyGQyhUIhhEhKSkob7KysrPRrk5OT066Vy+WG16ZtSKFQKBSKVM0ZKJVKhUKh1WqNrrW2\nttbHLzNrk5OTja7VRzdT7drY2Jhp19bW1ky7dnZ2Ztq1t7dXKBRJSUlG1zo4OMjlclPhTC6X\nW1lZJSYmmppJmUyWkJBgaq0Qwuhaw86Nj49Pu9awc03NBgAA+RqXYgEAACSCYAcAACARBDsA\nAACJINgBAABIBMEOAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJ\nINgBAABIBMEOAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgB\nAABIBMEOAABAIgh2AAAAEkGwAwAAkAhFjrV0dkvIltALYdHy0uWq9R45sJSj0vzy7HotAABA\nAZFDZ+zubJk8e/OZOh0HTR3Tx/Gv0CmBIRqdueXZ9VoAAICCI0eCnU694Icr/j1ndG5Wu3z1\n+qPnj4p7fHRteIzJ5dn1WgAAgIIkJ4JdQuSRf9SaFk299U9VLnWrOlj/cfiRqeVCiOPDe3bq\nNiFzrwUAACiYcuIeu6S4K0KIsnavb4Ara6fYc+VlUlPjy4UQRRq2aBXnkrnX6l25cuXRo1c5\nT6lUVqtWzbBKoXg1apVKpdOlvnxrWGttbZ12LClfm9G1crlcCCGTyd7SWisrq0ystbKy0m+T\nibUymSzdtQqFIhNr9ZRKZdodZGD+tYZ9kbZRfWXDYyFEYmKiqToAAOQjORHstIlxQggPxeuz\ngx5KuSY20dRyIUTJrh+VzOxr9TZv3rx37179Y1dX1wMHDqTtmIODg+Fx/PcjXz8WQrw5Nba9\nv071WkdHR1PjlclkKdcaKmuNVTbQZGFtshDJptcmCZGUkbVpB6tUKpVKkx9Msba2NoTglNNo\n2BlmKqtUKjPhLOXatDtImBhRRtfa9v5arVab6gMAAPlITgQ7K2tbIUREstZeLtcveZ6kkbtY\nm1qeXa9NJWUyyKisvDbfeXuDLVDTCABAzsuJYKe0ryDEsVvxyUVVr0LYvQSNU3lnU8uz5bWf\nfvppUFCQ/rFOp3v+/LndWx0k8q3nz5+bueALAEA+khMfnlC5NClsLd938on+aXL8zTPR6irN\nCptani2vtbW1dfqXo6Mj/3LDFI4NAIBkyKdNm/a225DJ5KU1V7Zs3OVZsrRt/OMt82eH29WZ\n3q2hlcnl4s8f1//v1/tVK5fOxGvT0ul08fHx1neOvu2RIj9KereREMLOjlO6AIB8T5ZjpytO\nb1q8JfTCwxhF6fK1RowbUNjayszy48N7Lorw/WnzvEy8Ni2tVhsREWG/Z9pbHyTyodhW04QQ\nHh4eud0RAACyKueCXS4i2MEMgh0AQDJy6CfFAAAA8LYR7AAAACSCYAcAACARBDsAAACJINgB\nAABIBMEOAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABI\nBMEOAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABIBMEO\nAABAIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABIBMEOAABA\nIgh2AAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABIBMEOAABAIgh2\nAAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABIBMEOAABAIgh2AAAA\nEkGwAwAAkAiCHQAAgEQQ7AAAACRCkdsdyDnqY3vNrLVu8H4erAwAAGC5AhTsssJ8dAMAAMgL\nCHaQvnRyeatpOdQPAADeMoIdMobrzgAA5Fl8eAIAAEAiCHYAAAASQbADAACQCIIdAACARPDh\nCWQnPloBAEAuIti9klvfVEcSAgAA2YVLsQAAABJBsAMAAJAIgh0AAIBEcI8dpIAf8wUAQBDs\nCqa8+YkNwhkAAFlEsJOsTOckAhYAAPkU99gBAABIREEJdjY2NrndBeRRNjY2Mpkst3sBAEA2\nKCiXYlUqVVxu9yHb5btrpnmzwyqVKjExMbd7AQBANigoZ+xevnyZ211AHvXy5UudTpfbvQAA\nIBsUlGAHAAAgeQXlUmwuypvXHwEAgPRwxg4AAEAiOGOXp3G2DwAAWI4zdgAAABJBsAMAAJAI\ngh0AAIBEEOwAAAAkgmAHAAAgEQQ7AAAAiSDYAQAASATBDgAAQCIIdgAAABJBsAMAAJAIgh0A\nAIBEEOwAAAAkgmAHAAAgEQQ7AAAAiSDYAQAASATBDgAAQCIIdgAAABJBsAMAAJAIgh0AAIBE\nEOwAAAAkgmAHAAAgEQQ7AAAAiSDYAQAASATBDgAAQCIIdgAAABJBsAMAAJAIgh0AAIBEEOwA\nAAAkgmAHAAAgEQQ7AAAAiSDYAQAASATBDgAAQCIIdgAAABJBsAMAAJAIRW53QAo+b3bQzNqp\nB5vlWE8AAEBBxhk7AAAAiSDYAQAASATBDgAAQCK4x+4V7pMDAAD5HWfsAAAAJIJgBwAAIBEE\nOwAAAIngHjtIn/kbKCflWD8AAHjLOGMHAAAgEZyxs4j5Uz4AAAB5AWfsAAAAJIJgBwAAIBFc\nis1lfDEyAADILpyxAwAAkAjO2CFjOMUIAECexRk7AAAAieCMXZ7G6TEAAGA5gl0+RuwDAAAp\nEeyQWm59GzM5FQCALCLYITu9vXBG7AMAIF18eAIAAEAiOGP31vE7swAAIGcQ7CTLTKDkwiUA\nAJJUgIIdZ84kjJ0LAIDgHjsAAADJINgBAABIBMEOAABAIgh2AAAAEpHTH55Y3q+r/bw1vbzs\n9E91yS92rFm25/S1Z/Fyv5JVewwdXN3HLu2rzm4J2RJ6ISxaXrpctd4jB5ZyVJpfDgAAUADl\n4Bk7nfqPg8t2PY9PuSz0ywlrDz5rNzBw1qSAMvJLs8dNe5qkTfW6O1smz958pk7HQVPH9HH8\nK3RKYIhGZ245AABAwZRDZ+wenVgwdtHJWPUboU2nS1xy8nHZoBmt6xQSQpR8d8rODwO+C4v5\n+B2nFBupF/xwxb/nws7NSgghSs636tJn3trwwf19rI0v93XImREBAADkNTkU7Dyq9JkX3FWr\nfhQQODPFYp1WJ5Q2cv0TmdzOSibTaHVCiOPDey6K8P1p87yEyCP/qDXDm3rrt1G51K3qYP3H\n4UcJbe8aXS76lMyZESET+LY5AADeqhwKdgqHQsUchEb9xpVfmcwmsHWpL7/86tTEviWctKFb\nF9oUeq9/MUchRJGGLVrFuQghkuKuCCHK2r2+ea6snWLPlZdJTY0vNzxds2bN+fPn9Y/t7e1n\nz54tRMxbHCHyLWdn56ioqNzuBQAA2SCXf3midv8Je48NnfvJGCGETGbVbdo0L6WVEKJk14/0\nZ960iXFCCA/F60TooZRrYhNNLTc8vXv37rlz5/SPXV1dlUo+VwHjODYAAJKRm8FOow6fMmxs\ndO2ey3o097LVXD/9y/TpI7QzV/Ys72rYxsraVggRkay1l7+6Yvs8SSN3sTa13PDCChUqJCcn\n6x/b2dklJr7OfOCSaEocGwAAycjNYBdxefmV52LjsPb2cpkQolKTniN27P12yfmeS1sYtlHa\nVxDi2K345KKqVwHuXoLGqbyzqeWGF3br1q1bt276x1qtNiIiIodGhfwmOjo6t7sAAED2yM0v\nKLaytha6pEjN64/KvojXWFm/cV1M5dKksLV838kn+qfJ8TfPRKurNCtsanmOdR4AACCvyc1g\n51p2WFUnxaSpS07/cf3PW1d/+W7O2keJXQLeE0L8+eP6Net2CiFkMuvxncrfXvP5od9v/vPn\n1dWTZ9r6Nu7r62hqeS4OBwAAIHfl5qVYK4X7pK9mbVz9/ZovZ0YkWPkUKz3y86+bl3AUQoQf\n3vNLhG+/Pm2FEKW6zwwSi7esmLM8RlG6fIPgcQPkMmFmOQAAQMEk0+mk/3MN+nvsZh/i605g\nxKSmDkIIDw+P3O4IAABZlZuXYgEAAJCNCHYAAAASQbADAACQCIIdAACARBDsAAAAJIJgBwAA\nIBEEOwAAAIkg2AEAAEgEwQ4AAEAiCHYAAAASQbADAACQCIIdAACARBDsAAAAJIJgBwAAIBEE\nOwAAAIkg2AEAAEgEwQ4AAEAiCHYAAAASQbADAACQCIIdAACARBDsAAAAJIJgBwAAIBEEOwAA\nAIkg2AEAAEgEwQ4AAEAiCHYAAAASQbADAACQCIIdAACARBDsAAAAJIJgB+QtX/q7OhTqndu9\nAADkSwQ7IE9LjLg4YWDX98oUdfB8p0nbbkv337V8LQCgoFHkdgcAmKRJ+KttubqHnlm16db7\nfU/13k2bRrb6+fnR+5PrF053LQCgACLYZYM9p66aWduqTvkc6wkk5uLMzgcexw3eeGN599JC\niM8m96tZrPHczqMmP/4h3bUAgAKIS7HA23Jt+9KO9ar4ejqrHFz9y1YbMX15rFZnWPvy5q5e\nHzR719vZyatYreZ9fv71SdoKM765buP2vj63CSFs3Op+O7RM3JMfv38Sl+5aAEABRLAD3orH\np2ZW6Tjy8DPX7kPGTRre413X6KVTh9YedkC/9tHxmf4VP/j5fFzznmPH9G0X89vWLnUqbAuL\nTVlBow7fGZHgWmZ4yoUlB9QQQmy+Hml+7dsdGwAgr+JSLPBW7B32lU7p88cfB/1UciGEELoA\nX+dvf/paLG8hdOqe7WbF2jf4487+UnYKIcSkoA5FirQY1eOXjse6Giqoo89qdTq3al4py6pc\nagqx+um55+oKt82sFQ29c2CMAIC8hmAHvBUd9v3RQtgWeZXqhNAlKWRCp4kTQkSHBR+OTKjz\nzVJ9qhNC2Hg03bpw7kWdfcoK2qTnQgilizLlQiuFixAi8Vmi+bVvZ0wAgLyOYAe8FU6Fi+ju\nXtyx+cLly5f/uHThzIlTf0eqbVyEECLqzlEhRIOWRVJu3zzg4+ZvVrBSuAkhkqKSUi7UaiKF\nENau1ubXZvdoAAD5A8HuFT7Ziux1cEanNtN+1tkVadSqdePmvQZ9suhu38ZjnwohhDZRK4Sw\nlsnMV7B2rCGTySIvRqRcqI66IIRwrepqfm22DgUAkG8Q7CB95lP7pKa1sr3FpJgL/532s2fj\nBTf3B9pbvQpw9/9Nck6lqghx4Pjpp8LPyfCS3xfN3PbCfubnYw1L5KpirV1tjlxfI0Qrw8L7\nW84LIbpUdpOr7M2szfYRAQDyBT4VC2S/pNjfE7W6wo2aGVJdbNiez+9HCaEVQjgV+6S8vfLM\nyNEPEjX6tclx17pPmr5sa+p746YOLBX39Icphx++2iz+1tjga3ae7QcWtk93LQCgAOKMHZD9\nbD27tfAMODyrw+CI3jUqFHl47fR3K3aUKOEQfvPU0E9mzpv56c7vhpXvGlK+ZOP+vZoXVsXu\nXrf0TpL997tHpKpT7fOfGq+pOKf1fyICR1Rwj9+1+qvQKN3noctkFqwFABRAnLEDsp/Myv6n\nX//Xr4nXrrULx3+28NgtTfCJu/uO/Tzgg1pnjx5O1Ore6bz4r1Pftyin275q/txlmzTvdvj5\n/K0e7zimqiO38d999djo7jVP/fjVuDnfRRdvvmTP1cn1CluyFgBQAMl0Ol36W+VzWq02IiJi\n9qEYM9tk5cMTfPAijzO/g45PriWE8PDwyKnuAADwtnDGDgAAQCK4xy6X5cGzfea7ZB6nJwEA\nyEWcsQMAAJAIzthZJCsnsd5eu5weAwAAKXHGDgAAQCIIdgAAABJBsAMAAJAI7rGDFOTWTZAA\nAOQpnLEDAACQCIIdAACARHApFsh+0dHRb6myo2Pq35MFAMCAYAe8FYr/fZLtNZPbz8n2mgAA\nKeFSLAAAgERwxg75A597BQAgXQS7t45EAgAAcgaXYgEAACSCM3YFUd48iZg3ewUAQD7CGTsA\nAACJINgBAABIBJdiJYsrmwAAFDQFKNgRdHKA+UluVad8jvWkANpT27v1mX/SLk/Q6lSy9F+e\nFHvB2qHae3P/OD+hUvZ3zmJT/Jx39Q/9bWqVjL7QW6VofOnJhtJub6NXeYqbUt7jxvOv/V1y\nuyMA8qICFOykh6iKVOwL9dm1pX+qhdZmU92yd91Cmu26tqy2ldJz5MiRxap5vMX+ZTdD53O7\nIwCQVxDsAOmQq/waNmyYydda+4aEhGRvf/IBXdKtK+GlKhbPW6VyTH7sMwCzCsqHJ1xcuGwB\n41xcXGQyCy5V5nMJz48P61DH28NJ5eBWqmrzhTv+EkKM8nEcfufF9W/q2Ht2EUJ4qxQ9b0bo\nH8y7c2lir7bVK/q6+/gPnPGzvkhSzI3Ajk39PBz8ytcas/TIZD/nptvvWdKQmZoJT88NbtOg\nqLu9X7maActOGO28JvHv2QPblfXzsvcoWqdFr/13otJ2XgihUf8z6cPm73g5uPv4D5j+qr42\n+dmScR9WKulj4+BesWGX704/MvQn+MbhOsXcqjQambKtuKcbreR2MQ92d2xWy9PBtXzNJksO\nPchQqbADy9vUKOdmr/LwKfHh2OAErblRmJsZEzNpfIoS7k3t3bqUj4uDh2/jHhMuxyaluztS\n9tnU0ADkOwUl2CUkJOR2F5BHSenY0CQ+OPmmM+f/1K+aUOeDn8LLz1u57djOtX3rRAV1qnYv\nUbPwzuNgf5fSAw49vb8+VakNXQdW/3jlb5fDLm0Z/d3UTl+ExQihGVSh1oaHxb7afGDdgrG3\nvmj/RVh02j4YbchUTV1yZJsyDbf9471w3a618wPDQtqGPIxJU1I7tHKluYcSJ4VsOrptRSOH\n39tUKH/spTpt5/e2a65tGbDr+NHZQ6quntpx8cMYIURw88qT9yQHLV5/6uBPg2pqB9R/d83d\nV4lqacv+9SauDj22LHWDuqRmDYL7Bf/wKOKvJUOqjW357qLrLywspY46Ua3NiOQmAzftP/bN\n9OEnlga1WXbdzChMz7a5mUzTYXW/ClWWXnObt2b3ga0hXr+taNZkRrq7I+XwzQwNQP5SUC7F\nSukfb2QvKR0bsY/X1qu3NuUSB++R0eEhQgjvj8avHDT2A09bIUTlKopPl7b+PUZd3N3ORiaz\nUtra2alSlZK3WtalcmEhhE+9gBqOQYf+ivroyfjvw61+vbKiqoNSiNrVj8c5+g5I2wfjDals\njdbs/Nvg0GjHX49/X8VeKYSoXc/L1aNZqoIv/5r27c3I78O39fK2F0K8V7f+MXePgPmXL86q\nnqrzhZutmzugmRCi3JQfF861PhAWO0D3bVDoo0MRmxq7qIQQ1f7TSLHPc+qw4/32txFC2LTf\nMH9E3bRD0OmSS6z4rm0lXyFEowFfLF27ccrA3QO3PrWkVNS9pU+TNKPHDWvpZSvq1irn4XfT\nwcX8KIzOzHhfBzMzmUrE9fHr76mPR6yu62QthKhwMKxJx3V/J04tqpKbKWLoc0z4IjNDA5C/\nFJRgBxQETsUmv7w/3eiqCZ8EXTp7fP3Ply5dunji8PZ0S73TuZjhsb2VTGjF/a2nbT06VXVQ\n6hc6+PQvZjMkQw2lrflgy037wgP0qU4IoXJp0tbN9s6bBZ+eDFXaldHnISGETO4Q6O88eNt1\nMat6qqZLD65oeOyltBI6EXljj06nbeJqk3Izl9gbQrQRQpToVdLU8PvU8DQ8rtf7nRcT10fe\n0FpSysFnXNfKq9oVLdqsU+em9Rt06dmlg5My3VGknRnzM5lK2PbTNq4t9alOCOFYdNT586P0\nj80UMfTZ/CwByF8KyqVYoCDTJj0Z0tS/XvdxB648K9ewy5Ita9N9ia2tPHWRRK1M9sZfjLSf\ntzXfUNqaMrlMiDeqKNPc76jT6VL9pbKSy3TapLR9dnBSplqidLKRK92jYt4QfiVAv9YxzfYG\naq3O8FgTpxHaBAtLWSk9Nl8IO7VzWW1v3Z6Vn5T0LNJzxrF0R2FktjOyyzRqjUxmk3a5+SKG\nPpsfGoD8hWAHSF/EjdErQx9dvXF+7Vcz+nZpXco9M7fGF+1UMf7ZtmtxyfqncU9+uBOfnMWG\n/LqVin28+tK/d/qro09vfx6fahuvOnWT4q5tfRynf6rTxi66HenTtoIlfXb2H6RNjlhyX23/\nryVDPvpsz8N0X7hyX7jh8eaVt51K9rCw1JPTX0/8dFHNFl2mfrH88O/3z8zz/3H+mEyMIkMz\n6dOmcsKL3RdiDB+Y2FGxYsWDkYkWFsn0LAHIgwh2gHSk/fDEyZMn7yQk27jV0GnVK3/Yd+vB\nX+cObOjRcJoQYv/hc7FanVwmou9eCQt7km7xInVWtXNPaNZqxO7QX88c+t9HTQNL2Spl8jdO\nsJlpyGhNn+bfvGcb2bRRv237Tpw++L9+jdp5OaS+P8S5xIw+/s6D63fdsvf4hdOHpnSrdSLe\nY/HkSkKIdDtv4/bf4Oa+M5p+sGrH4Qun9s4b12rSj2eaNy6U7mBDB7WYu37n+TOHg0c0mXXt\n5dQtXS0sZe32fP7cib3nrjxy9uLB7RuWrvvTpUwH86Mw0fMMzKRX9eXdC/v0nlQAACAASURB\nVOtatRi66+i5i2cOBrYd/FBXv6mLysIimZ4lAHkQ99gB0pH2wxNCiP63Ila9G7h95o3ACb0X\nxKqq1mz06Y6r3ZcNnDJlzL025xuO+3Dh1LFVG558eve7dKpb2W66eiyg16gB7Ro5lXxv2OLT\nvn3K3fZ841MXDj4mGzJaUm7te+RWaEDfcQHdW+g8y7Yb9sPG218u87V7YyOZYtXlC/7DRkwZ\n1OHvWFWlao1+ubSssbNKCGFJ50fvvmoTNGDR2J63HyeVqtxo3dELrVyNXLVMZfeBaTMCJ827\ndL9Q2SrBu28OL+FkYSmX0lMPBEd/vGR626mPbdx9ar4/6HDIJ+ZHYVTGZlJmvfrq6UkDRo/q\n1vypxql6094HV8ySZaRI5mYJQB4k0+mM/09aSrRabURERP0ZZ3O7IwWd+Z8Uy60f0jg+uZYQ\nwsMjO39xITo6WvG/T7KxoF5y+zmOjo7ZXjZd6qgnTxRuhXRXdx+816rdB/pb67RJT/2dvEfc\nfjHe1yHTNX3t8tz/LeOebrT36nk9LqmMbe70Lc/ODIB8gUuxANJh7eTla6fQaeMHdOnUI/in\nPx/HRD25t3hks0e29QN8MpPqDDWzt5/SwMwAyAr+fCDn8OO2+Zq1438u7gzuPTagzMf/aK0d\nS1VrveP8CvM/RAsAyGEEOwCW8m0ZcORagC45XqtI8/0cUmHn2UOn65HbvQCATOJSLICMkUk3\n1QFAfkewAwAAkAiCHQAAgEQQ7AAAACSCD08Ab0Vy+zm53QUAQIFDsAPeCm1g1WyvaRV8Idtr\nAgCkhEuxAAAAEkGwAwAAkAiCHQAAgEQQ7AAAACSCYAcAACARBDsAAACJINgBAABIBMEOkIg9\ntb1lxiTqsqG4m1I+8m5kNhTKe97G0Kb4OVf//GJ2VUuKvSCTyWrMu5ShDdJ9Vc7I3qmwXH4/\nYqPurq/tX9jBq4FhyYrqhfa9SEy1WYamNy8cEjnch9w6/CyRtm/pTk7c41UymexeosZ8ZYId\nIB32hfocTcNaltvdeguWvetWbthp6bVltF0rpefIkSM/rOZhasuUG1j+qlyUW1OaizI65DND\nPrnjMOTc+S36p1p1+IynHVu6qrLSh7xwSOSFPuRZ2TU5/PIEIB1ylV/Dhg1zuxd5jC7p1pXw\nUhWL53Y/Mk9u7RsSEpLRDdJ9Vd6S/3eTcZkdV9w/CS6VmpbzK6J/+ujM+CKjJmW9G7l+SOSz\nwzJnZdfkcMYOKBD8bZVzb/06pF2TCr7upas32nr75a9rg2q/V9XV2fM/ncZFJuuEEHFPN1rJ\n7WIe7O7YrJang2v5mk2WHHqQqo4m8e/ZA9uV9fOy9yhap0Wv/XeihBBnx1R09B5m2Obp78Pl\nCqeb8ckWtiuE0CY/WzLuw0olfWwc3Cs27PLd6Uf65d4qxbw7lyb2alu9oq+7j//AGT8LIUb5\nOA6/8+L6N3XsPbuYGbK3ShF843CdYm5VGo0004RBwvPjwzrU8fZwUjm4larafOGOv9K2ZapI\nwtNzg9s0KOpu71euZsCyE0b7Y7S+EEKTcG9q79alfFwcPHwb95hwOTYpbbveKkXPmxHf1izs\nXm6hoWDUX3NkMtmmp/GGDYy+yky3ww4sb1OjnJu9ysOnxIdjgxO0Gei20V1jyVSk7WTK3WS0\nOTMDT3e3WjKWdOfBzFvDzPwYxmXmiDX6hvrS37XDtWd3NjdUOVbXb3ZgwtFP+pc0Ob26RJlM\nNuvvaENZb5ViwO0XaafXcEiY2n1JMTcCOzb183DwK19rzNIjk/2cm26/l6rPFr6pzcyM+T5Y\nsssyffiZ2d2mjiWj71BT+y6LfTNMjqniQoiXt35u06Cqm51TmWr152+/lrYIwQ6QDk3ig5Nv\nOnP+T8PaFR1mD/x215W/H40r/qBnpbKjrlcNPX/h4a0d/+z+qte+v19tpEtq1iC4X/APjyL+\nWjKk2tiW7y66/iJFC9qhlSvNPZQ4KWTT0W0rGjn83qZC+WMv1RUmjIh9tHz/vzcA7R+73eu9\n4NK2CsvbDW5eefKe5KDF608d/GlQTe2A+u+uufvqD9mGrgOrf7zyt8thl7aM/m5qpy/CYhbe\neRzs71J6wKGn99ebn5ClLfvXm7g69Ngy803oTajzwU/h5eet3HZs59q+daKCOlW7l6hJ1ZbR\nIrrkyDZlGm77x3vhul1r5weGhbQNeRiTtjNG6wudul+FKkuvuc1bs/vA1hCv31Y0azJDCGF0\njP/9skXkrSm345P1T89/ttqxaEB3T1vDBqZmxmi31VEnqrUZkdxk4Kb9x76ZPvzE0qA2y65b\n2m0Tu8aSqUjbyZS7yWhzZgae7m5NdywWzoOpt4aZ+TGMy/QRa/wNNepK+KYy7iU6733x+KQQ\nQpv0dOrfLTq421p4pKWScnpTSrv7hNAMqlBrw8NiX20+sG7B2FtftP8iLNpoTUve1GZmxmwf\n0t9lpl5ryfyY2d3GjyUT71BT+y4rfUvBXPG2DT5rNGT6rr1bP6qmm9ihwpwrEalezKVYQDpi\nH6+tV29tyiUO3iOjw1+d2y82ZUENL1shRPtPKw7dfmDXzG7WMiEK1R5U2P7HU09Fm2JCCJ0u\nucSK79pW8hVCNBrwxdK1G6cM3D3mZE99hZd/Tfv2ZuT34dt6edsLId6rW/+Yu0fA/MsXZw1t\n5Ro4bcPdFiPLadThY04/7niinaEP6bYbE74oKPTRoYhNjV1UQohq/2mk2Oc5ddjxfvvbCCHk\nrZZ1qVxYCOFTL6CGY9Chv6LG+3rbyGRWSls7u3RuObJpv2H+iLpCCPNN6Hl/NH7loLEfeNoK\nISpXUXy6tPXvMeri7naGtkwVaTxiWWi046/Hv69irxRC1K7n5erRLG1njNZ3ejxh/T318YjV\ndZ2shRAVDoY16bju78SpRW3t0o7Rq9aXRRQbxx99uL1VMaFLDNz+oO6q0SmbsDb2KlPd7rTi\nxNMkzehxw1p62Yq6tcp5+N10cLGw28VVtkZ3TeffBqc7FWk7adhNppprb2LgluzWdMfiFr3L\nknkw9dYwMz8px2X0iDX9hqpuYyWzUtja2dkIIZ7+9rH7oLFCiPu7ellypKWSshsppd19Hz0Z\n/3241a9XVlR1UApRu/rxOEffAUZrWvLHxMzMmOnDeF+HlBtk++GXEGF8d5s6lj5YtM/oO9Tp\n4eem9l2m+2Zg6sA4FSCEEO+t3PNx53eEELUbvB9z2n1ht+8/ufLG3wGCHSAdTsUmv7w/3dRa\n90qv/rmS2yoUqnfcFK8+VWFvJRMprj31qeFpeFyv9zsvJq4X4lWwe3oyVGlXRv+3RgghkzsE\n+jsP3nZdzKo+rX/JpvNWipFfPjwc8FL57sLqr4uk227kjT06nbaJq03K3rrE3hCijRDinc7F\nDAtTdTVdJXqV1D8w34TehE+CLp09vv7nS5cuXTxxeHvaaqaKPNhy077wAP3fayGEyqVJWzfb\nO2lebrR+2PbTNq4t9f9mCCEci446f36UqeFYKdwXN/AeOnGnaDUi4vrkq2rH7e390p0EU912\n8BnXtfKqdkWLNuvUuWn9Bl16dungpEz7cjPTknbXWDgVqRh2k6nmTA3ckt2a7lgsnAdh4q1h\nZn5SjssoM2+olJsdmXggcOtSIbJhelNKu/vubz1t69GpqsOr+g4+/YvZDDH6Wkv+mKT7hjLa\nh1Sy/fAztbtNHUum3qF3zO67LL41TB4YAUIIMbyZt2HLnkNLLfxsqxBvBDsuxQJ4g1r7+vtR\nNHEaoU0wPNXpdKn+aFjJZTptkhCi3LjRMeFfhb5M3DwutHiHEAd5Bj6Lq3SykSvdo2LeEH4l\nQL/W1lae6bE4/vsvtPkmhBDapCdDmvrX6z7uwJVn5Rp2WbJlbdpqporI5DIh3hivUpZ6+Kbq\na9QamcxGWKzRwo4R1ybdT9ScCNpapOGS4qr0J8dUt62UHpsvhJ3auay2t27Pyk9KehbpOeOY\nhd3WS7trLJmKtAy7yUxzRgee7m61ZCyWzINe2reG+flxNBEQDcy8oV5vkxw5+Xbdnl52wvLp\n1SVFaV531VQ30u4+baJWJnujP5n+TL0lbyijfbC8SOYOP1O729SxZOodan7fZfGtYcmB8bqy\nVeruEewAvGHlvnDD480rbzuV7GF46lWnblLcta2P4/RPddrYRbcjfdpWEELYFx7Qzk01YfVP\nk29EjJhTK0MtOvsP0iZHLLmvtv/XkiEffbbnYXaMxtImIm6MXhn66OqN82u/mtG3S+tS7kbu\nwTdVxK9bqdjHqy/9e0u1Ovr09ufxqV5rqr5Pm8oJL3ZfiHn12oTnOypWrHgwMvXXlRm4l59T\nVhUfGHpzzKHwPiEtsjL2J6e/nvjpopotukz9Yvnh3++fmef/4/wxFnbbFEumwgwzzRkdeIaO\nHFPFLZkHvbRvjYzOTypm3lAGzy5NsOsVpH9senplQojnSa/Od0U/+DZWk5Ez2/8q2qli/LNt\n1+Je3csY9+SHO//e15hRWZyZzBWx5PAztbtNHUum3qGW7LuM9s3AfPGQvWGGLTcuv+Vavm+q\nlxPsAOlI++GJkydP3knI2J/m0EEt5q7fef7M4eARTWZdezl1S1fDKucSM/r4Ow+u33XL3uMX\nTh+a0q3WiXiPxZMr6ddOHlTq/Md95W4dRxd1zFCLNm7/DW7uO6PpB6t2HL5wau+8ca0m/Xim\neeNCZl4il4nou1fCwp4IIS7M/ezjiQvNbGxJEzZuNXRa9cof9t168Ne5Axt6NJwmhNh/+Fys\nVmdoy1QRn+bfvGcb2bRRv237Tpw++L9+jdp5OaS+y8VUffuq33QvrGvVYuiuo+cunjkY2Hbw\nQ139pi6qVGN8zcr2y7bF9vRp+49Ng+llXM3PjPmxW7s9nz93Yu+5K4+cvXhw+4al6/50KdPB\nwm7Hao1/7bUlU2FyaOabMzbwDB05poonuTxLdx700r41LJ8fo0M2/4bSOz5xz8ixZdOZXpl1\nC1ebLQNn/Xbz/uVTu/q2Di5uk5n7rIrUWdXOPaFZqxG7Q389c+h/HzUNLGWrlGXk7LtBRo+c\nbCliyeFn6rA3dSx5VV9u9B1qyb7LaN8MzBSXWdlcGNJyzvc7fj196IthjWZfj5u7OfXhSrAD\npCP28dp6acz52/jn2kzZfWDaka8ntWjSfsWZ5ODdN4eXcHq9TqZYdflCYB3NlEEd6rbpcyCi\n8i+XrjV2fnU/eNmxgVpNUoWgqZno+ejdVxf2KLxobM/aLXptOGO/7uiFVq7mLlA2HPeh3aWx\nVRsGCSFurv3mqyUbs9iEg0/g9pmDNk7oXblS3TELdg3ecXXTqE6Hp4y5l6BJ2ZbRInJr3yO3\nQtt73gvo3qLziBlOvX/Y2PP9ir52KVs3WT9Rvvrq6V4+90d1a16/bb9rxXofPLVIlmaMKdWa\n3T/+8Z9lR39h9CKW0VcZ7bZL6akHggOvrpretkHNbsM+e1Rl0OGjn6SqZmZajE6yJVNhZmjm\nmzM6cMuPHFPFI/0+S3ce9NK+NSyfH+NDNvuGEkLoNDGfXak0qLB9utO7fm9Imac/NKxcqce4\nRe+vOdW3Sb0Smch2Vrabrh5ra39lQLtGHwUtqrv4dGs3GxvPzHwrckaPnGwpYsnhZ+awN34s\nyayNv0PT23eZ6NtrJopbKb3q1G124chnR5Z91qxp53UXlSuO3u3z5sdNhBAynS47fm8ob9Nq\ntREREfVnnM3tjiAvOj65lhDCwyM7vwk9OjpaG1g1GwvqWQVfcHTM2MkwS2jiXzyMsS3qaRP3\ndKO9V8/rcUllbDPz3/3ovxc7+40/+iK2gbN1htq1vAl11JMnCjdfu9TdG1++/RdX/5eBviK7\nmdo10pDFt0bep999hXRXdx+816rdB/pb67RJT/2dvEfcfjE+TXQwJRNv6lR9yNwhlJcPvwz1\nzVulaHzpyYbSbllpkTN2QEEnt3XN3B/i13TqhMQXK/stcCv/uYWpLnPtWjt5pf37ePO7mWdr\nGf9SBuQYo7sG+YV+9+m08QO6dOoR/NOfj2OintxbPLLZI9v6AT6WpjqRtT8mWTmE8vLhZ3nf\nIu+feZasdZJnNZgR7ABkVdyT721t3Caekc3fNiLnWy9Uq+uRVW1zvl1AYqwd/3NxZ/DzVQFl\niji5Fau88nK5Hee3S/LHpvOgyLsjXYvXdq/cflIG71FOi0uxKOi4FJsNdOqbF68WqVjFScE/\nAkC+p0uO1yqy8D1DyDidJvrRC20RD+esl8qjpy4B5Ccy69JVsz/IAsgVMlJdjpPJHYtk0+kF\nLsUCAABIBMEOAABAIgh2AAAAEkGwAwAAkAg+PAG8FVbBF3K7CwCAAodgB7wVU3c/z/aan7d2\nz/aaAAAp4VIsAACARBDsAAAAJIJgBwAAIBEEOwAAAIkg2AEAAEgEwQ4AAEAiCHYAAAASQbAD\nJGL2Oy6Fqv6SauEvVQs5+03JmQ54qxQ9b0ZYvr2bUj7ybmTa5VP8nKt/fjH7+mWyZtTd9bX9\nCzt4Nchi8aTYCzKZrMa8S8L0oAAgZ/AFxQAKqDNDPrnjMOTc4aFZrGOl9Bw5cmSxah7Z0isA\nyAqCHYACKu6fBJdKTcv5FcliHbm1b0hISLZ0ySK6pFtXwktVLJ5zLQLIP7gUCxQUmsS/Zw9s\nV9bPy96jaJ0WvfbfiRJCCF2iTCab9Xe0YTNvlWLA7RdCiLADy9vUKOdmr/LwKfHh2OAE7asN\ntMnPloz7sFJJHxsH94oNu3x3+tHrJtT/TPqw+TteDu4+/gOm/2yu3RQSnp4b3KZBUXd7v3I1\nA5adMNr5hOfHh3Wo4+3hpHJwK1W1+cIdfxl6O+/OpYm92lav6Ovu4z9wxs8W1vzS37XDtWd3\nNjdUOVY3U9/fVjn31q9D2jWp4Oteunqjrbdf/ro2qPZ7VV2dPf/TaVxkss7QjZSXoc+Oqejo\nPczw9Onvw+UKp5vxyan3SMK9qb1bl/JxcfDwbdxjwuXYpHQHG3zjcJ1iblUajTS/IwAUWAQ7\nQDqSYq+ffNP1f7OCENqhlSvNPZQ4KWTT0W0rGjn83qZC+WMv1aZKqaNOVGszIrnJwE37j30z\nffiJpUFtll3XrwpuXnnynuSgxetPHfxpUE3tgPrvrrn7Kqvtbddc2zJg1/Gjs4dUXT214+KH\nMem2q0uObFOm4bZ/vBeu27V2fmBYSNuQhzFp+zOhzgc/hZeft3LbsZ1r+9aJCupU7V6iRr9q\nQ9eB1T9e+dvlsEtbRn83tdMXYTGW1Bx1JXxTGfcSnfe+eHzSfP0VHWYP/HbXlb8fjSv+oGel\nsqOuVw09f+HhrR3/7P6q176/jc5ehQkjYh8t3/8iUf90/9jtXu8Fl7Z98wqJTt2vQpWl19zm\nrdl9YGuI128rmjWZke5gl7bsX2/i6tBjy8zvCAAFFpdiAel4cTuoXr3UC52KCSHEy7+mfXsz\n8vvwbb287YUQ79Wtf8zdI2D+5YszKxgtlRCx62mSZvS4YS29bEXdWuU8/G46uAghYsIXBYU+\nOhSxqbGLSghR7T+NFPs8pw473m9/GyFE4Wbr5g5oJoQoN+XHhXOtD4TF9k2cb7zdWdX1Dd3f\n1Ss02vHX499XsVcKIWrX83L1aJa2P94fjV85aOwHnrZCiMpVFJ8ubf17jLq4ylYIIW+1rEvl\nwkIIn3oBNRyDDv0V1fm3wenWVNja2VjJrBS2dnY25usXm7KghpetEKL9pxWHbj+wa2Y3a5kQ\nhWoPKmz/46mnok2xtL21LzK0lWvgtA13W4wsp1GHjzn9uOOJdqm2ibg+fv099fGI1XWdrIUQ\nFQ6GNem47u/EqUVVcjOdsWm/Yf6IuunuCAAFFmfsAOnwqrJT96adVbz0q56eDFXaldGnKyGE\nTO4Q6O8ctu26qVIOPuO6VvZsV7To+z2GLli20a5x+w5NiwghIm/s0em0TVxtZP8acflZ9N0b\n+leVHlzxdWeUVkKXfrsPtty0LzxAn8CEECqXJm3dbNP2Z8InQe/cPbN+xeKgkf2a1O2ZctU7\nnV9HK3srmdBaWtPC+u6VXPQP5LYKheodN4UsZVumTOtf8sq8lUKIh4cDXirfXVjdM9UGYdtP\n27i21Kc6IYRj0VHnz58vqpKb70yJXiX1D8zvCAAFFsEOKBB0Ol2q97uVXKbTJqXZLilKoxNC\nWCk9Nl8IO7VzWW1v3Z6Vn5T0LNJzxjEhhNLJRq50j4p5Q/iVAP2rHZyUGW1XJpcJIUu5gVL2\nxlMhhDbpyZCm/vW6jztw5Vm5hl2WbFmbcq2trTzV9pbUtLx+5pQbNzom/KvQl4mbx4UW7xDi\nIE/dAY1aI5PZZLQzjv/OsPkdAaDAItgBBYJXnbpJcde2Po7TP9VpYxfdjvRpW0EfgJ4nvTr1\nFP3g21iNVgjx5PTXEz9dVLNFl6lfLD/8+/0z8/x/nD9GCOHsP0ibHLHkvtr+X0uGfPTZnocZ\nb/cVv26lYh+vvvTvvYDq6NPbn8enKhJxY/TK0EdXb5xf+9WMvl1al3JP51MCltTMSn1L2Bce\n0M5NNWH1T5NvRIyYUyvtBj5tKie82H0hxvCBiR0VK1Y8GJloYWcyuiMAFBAEO6BAcC4xo4+/\n8+D6XbfsPX7h9KEp3WqdiPdYPLmSkFm3cLXZMnDWbzfvXz61q2/r4OI2CiGEtdvz+XMn9p67\n8sjZiwe3b1i67k+XMh2EEDZu/w1u7juj6Qerdhy+cGrvvHGtJv14pnnjQhlu918+zb95zzay\naaN+2/adOH3wf/0atfNySH3vr41bDZ1WvfKHfbce/HXuwIYeDacJIfYfPher1Rlt1JKaWalv\nocmDSp3/uK/crePooo5p13pVX969sK5Vi6G7jp67eOZgYNvBD3X1m7qoLOxMRncEgAKCYAcU\nDDLFqssXAutopgzqULdNnwMRlX+5dK2xs0oIsX5vSJmnPzSsXKnHuEXvrznVt0m9EjYKl9JT\nDwQHXl01vW2Dmt2GffaoyqDDRz/RVxq9++rCHoUXje1Zu0WvDWfs1x290MrVyCXFdNvVk1v7\nHrkV2t7zXkD3Fp1HzHDq/cPGnu9X9LVLWcPBJ3D7zEEbJ/SuXKnumAW7Bu+4umlUp8NTxtxL\n0Bht05KaWalvobJjA7WapApBU42vllmvvnq6l8/9Ud2a12/b71qx3gdPLZJlpDMZ2xEACgaZ\nTpel/5LmC1qtNiIiov6Ms7ndEeRFxyfXEkJ4eGTnzwZER0dP3f08Gwvqfd7a3dHRyLkfGKij\nnjxRuPna5cTn/TXxLx7G2Bb1NJmlov9e7Ow3/uiL2AbO1jnQHwAQfN0JACmxdvLyzam25Lau\nRU191lanTlDHruy3wK3856Q6ADmJYAcA2Szuyff2hQcq7X2/uTAit/sCoGAh2AFANrPz6n3j\n92pFKlZxUpj7mhUAyHYEOwDIbjLr0lWr5nYnABREOR3slvfraj9vTS+vVx9P0yY/27Fq+b7z\nN59Gab2Ll2rXa3CzSoXTvurslpAtoRfCouWly1XrPXJgKUel+eUAAAAFUA5+3YlO/cfBZbve\n/JrQPdM+XnfkebsBgXOnBzX0iw+ZPHJfeGyq193ZMnn25jN1Og6aOqaP41+hUwJDNDpzywEA\nAAqmHDpj9+jEgrGLTsaq3/hhRY06bOXliNpTFrSq7iGEKFmm4j/num766lLLebVfb6RTL/jh\nin/PhZ2blRBClJxv1aXPvLXhg/v7WBtf7uuQMyMCAADIa3Io2HlU6TMvuKtW/SggcKZhYXL8\nneLvvPPfsi7/LpBVcVKdjooVQhwf3nNRhO9Pm+clRB75R60Z3tRbv4XKpW5VB+s/Dj9KaHvX\n6HLR59UvZMfHxyclvfqtHp1OJzP7S5EoyGSyt/Jtjp+3ds/2mgAAmJdDwU7hUKiYg9Co37jy\nq3JutGhRI8PThCe/r34Y49e/tBCiSMMWreJchBBJcVeEEGXtXt88V9ZOsefKy6Smxpcbns6a\nNWvv3r36x66urgcOHHgLw4IUuLu7P3+e/V8mDABAzssrn4r98+zOBV+sTvJrMel9XyFEya4f\n6c+8aRPjhBAeiteJ0EMp18Qmmlqes70GTKr52bFsr3luZoNsrwkAkJLcD3bqqLtrghfu/iOi\nXoehI3q1sLN645qplbWtECIiWWsvl+uXPE/SyF2sTS03vLBfv37t2rV7VcTK6uXLlwIw5uXL\nlwXhh/UAAAVBLge7uH+OjwkITn63+fyV/Ut7GPnJRaV9BSGO3YpPLqp6FeDuJWicyjubWm54\nob+/v7+/v/6x/rdi3/JQkF8Z7sUEACC/y8GvO0lLlzxn/GJV46ErZg03muqEECqXJoWt5ftO\nPtE/TY6/eSZaXaVZYVPLc6jnAAAAeU9unrGLe/z9H9Hqjyo6/nbu7OsO2ZaqXsn1zx/Xh8Y5\n9+vTViazHt+p/IQ1nx8q8nE5l+SdS+fa+jbu6+sokwmjy3NxOAAAALkrN4Nd1J07Qoi1C+am\nXOhUdNL6Jf8JP7znlwjffn3aCiFKdZ8ZJBZvWTFneYyidPkGweMGyGXCzHIAAICC6a18g1de\no7/Hrv6Ms+lvioLn+ORaQggPD49srBkdHf2WPhXr6MhpaQCASbl6jx0AAACyD8EOkIhRPo5+\nrQ5auHFS7AWZTFZj3qW32qW3x5L+uynlI+9GZm+7U/ycq39+MXtrZk6G9mB27W79lKasFnV3\nfW3/wg5efMMikFcQ7ICCyErpOXLkyA+rZecF6JyU3/ufdZbMwLJ33coNO23hxplr+syQT+44\nDDl3fku2VAaQdbn/BcUAcp7c2jckJCRLJXRJt66El6pYPHs6lEHZ0P98LkMzkL3TlbJa3D8J\nLpWalvMrkl3FAWQRZ+wAidMmP1sy7sNKJX1sHNwrNuzy3elH+uXeKkXPmxFCiLADy9vUKOdm\nr/LwKfHh2OAErRBCCF2iTCab9Xe0oY63SjHg9gv9g+Abh+sUc6vSp1eT8wAAIABJREFUaKSZ\n+qYYb04ITeLfswe2K+vnZe9RtE6LXvvvRL1annBvau/WpXxcHDx8G/eYcDk2KVX/E54fH9ah\njreHk8rBrVTV5gt3/GWmdVMbe6sU8+5cmtirbfWKvu4+/gNn/Pxq+6fnBrdpUNTd3q9czYBl\nJzJU09RIc2YGRvk4Dr/z4vo3dew9uxg2/rZmYfdyCw09j/prjkwm2/Q0PqP7UV/tS3/XDtee\n3dncUOVYPaMVALwlBDtA4oKbV568Jzlo8fpTB38aVFM7oP67a+5GGdaqo05UazMiucnATfuP\nfTN9+ImlQW2WXU+35tKW/etNXB16bFm69VMx3Zx2aOVKcw8lTgrZdHTbikYOv7epUP7YS7XQ\nqftVqLL0mtu8NbsPbA3x+m1FsyYzUtWcUOeDn8LLz1u57djOtX3rRAV1qnYvUWOqA2Y23tB1\nYPWPV/52OezSltHfTe30RViMLjmyTZmG2/7xXrhu19r5gWEhbUMexlhY09RIc2wGFt55HOzv\nUnrAoaf31xu2/O+XLSJvTbkdn6x/ev6z1Y5FA7p72mZ0P+qNuhK+qYx7ic57Xzw+mbkKALId\nl2IBKYsJXxQU+uhQxKbGLiohRLX/NFLs85w67Hi//W30GyRE7HqapBk9blhLL1tRt1Y5D7+b\nDi7plrVpv2H+iLqW1E/FVHMv/5r27c3I78O39fK2F0K8V7f+MXePgPmXD/dcu/6e+njE6rpO\n1kKICgfDmnRc93fiVMNvCQohvD8av3LQ2A88bYUQlasoPl3a+vcYdXGVrdEOmNlY3mpZl8qF\nhRA+9QJqOAYd+iuq82+DQ6Mdfz3+fRV7pRCidj0vV49mFtZ0izY+0pybAXc7G5nMSmlrZ6cy\nbOlV68siio3jjz7c3qqY0CUGbn9Qd9XoTOxHPYWtnY2VzEpha2dnk7kKALIdwQ6Qssgbe3Q6\nbRPXN36yzyX2hhCv/rl18BnXtfKqdkWLNuvUuWn9Bl16dungpEy3bIleJS2sn4qp5p6eDFXa\nldFnGiGETO4Q6O88eNv1MIfTNq4t9ZlGCOFYdNT586NS1ZzwSdCls8fX/3zp0qWLJw5vN99z\nMxu/07mY4bG9lUxoxYMtN+0LD9CnOiGEyqVJWzfbO5bVNDXS3J0BK4X74gbeQyfuFK1GRFyf\nfFXtuL29n8j4fkwr6xUAZAsuxQJSpnSykSvdo2LeEH4lwLCBldJj84WwUzuX1fbW7Vn5SUnP\nIj1nGPtqZV1SlOb1l5k7/hv+0q2fiqnmdDpdqj9HVnKZTpukUWtkMuM/JK2nTXoypKl/ve7j\nDlx5Vq5hlyVb1mZ6Y1tbeartZXKZEG/8oI1Slvr3bUzVNDXS3J0BIUSjhR0jrk26n6g5EbS1\nSMMlxVVykfH9mFbWKwDIFgQ7QMqc/QdpkyOW3Ffb/2vJkI8+2/PQsMGT019P/HRRzRZdpn6x\n/PDv98/M8/9x/hghhD7QPE96dWN/9INvYzXaTNRPxVRzXnXqJsVd2/o4Tr+ZThu76HakT9sK\nPm0qJ7zYfSHm1ccFEp7vqFix4sHIREPBiBujV4Y+unrj/NqvZvTt0rqUu7kb9jO0sRDCr1up\n2MerL/37YQV19Ontz+MtrGlqpLk7A0II9/JzyqriA0NvjjkU3iekhX5hRvdjWlmvACBbcCkW\nkI7EF1dPnnzj3rJqtdsEN/f9tOkHnsunVfNQ7/9p8ac/Xt4ZUsiwgbXb8/lzPw93cu3fuIbm\n0dWN6/50KRMghBAy6xauNlsGzuq5bIT18yvTBgUXtzHy58LG7b+m6l+Y+9nGSNcFc8el3N5U\nc84lZvTxXza4flfdV0GlnNXbvhx9It7jwORKXk7Luxf+qVWLoatmD/GxiVoROPihrmNTF1WK\nDtTQaTev/GFfrwZlI2+emjV8mhBi/+FzLTsZ+crcDG0shPBp/s17tiWbNuq3fObQIvJnX08Y\n5OWQehJM1axV4dn8udPTjjQnZ0AuE9F3r4SF+fv6er3usZXtl22LfdCnrc6mwfQyrunuRwtl\nvQKAbEGwA6Tj8dkx9eq9seR6XNLo3VdtggYsGtvz9uOkUpUbrTt6oVWKG6FcSk89EBz98ZLp\nbac+tnH3qfn+oMMhn+hXrd8b0m3ArIaVl79TtWbAmlOVPv9QYSzbmap/c+03X4X5pQp2JpuT\nKVZdvuA/bMSUQR3+jlVVqtbol0vLGjurhBCrr56eNGD0qG7Nn2qcqjftfXDFrJRXQx18ArfP\nvBE4ofeCWFXVmo0+3XG1+7KBU6aMudfmfNquZmhjIYTc2vfIrdCAvuMCurfQeZZtN+yHjbe/\nXOZrZ0nNUb+dPxAck3akOTkDDcd9uHDq2KoNTz69+13KPtea3T++xKdVp/6Y8tqz+ePEElmv\nACDrZDqdLv2t8jmtVhsREVF/xtnc7gjyouOTawkhPDyy8zcMoqOja35m7E61rDk3s4Gjo2O2\nl317xpdv/8XV/+V2LzJDHfXkicLN147/+gLIZ/izBeCtuPndzLO1BuR2LzLJ2snLN7f7AACZ\nQLAD8FYUqtX1yEfv5nYvAKBgIdgBeCtcypLqACCn8XUnAID/s3ffAU2cfRzAf0kIhL2R5QIV\nFXHgqjiDuIrgxoGzripO3K17j4oD90Zxr6Jv1bYOcGsdFQfiHoCbFWYgufePICJcLlSZx/fz\nV3LPPXfPXax++zz3PAcAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATmDwBUCiuz2d/mQEAAEDh\nQbAD/rs/Oo6jNLZwTqr/LqTAj5lcrlOBHxMAAPgEQ7EAAAAAPIFgBwAAAMATCHYAAAAAPIFn\n7Moi7mfOnANNi6wlAAAAUIDQYwcAAADAEwh2AAAAADyBYAcAAADAEwh2AAAAADyByRNZMJ8A\neOD+yU3TFm66FfEwgYyrVHPpP37W+B5NVEVmYlGfh5/WOJoUbwsBAKBQoccOgCden5jo4vmz\nyLXn5oN/n9y/ZWALq196Ne0bFFnc7QIAgKKDHrt8QX8elHzTBm2wcw86uqqf6muz1h1cReEe\no/sHD7hWvA0DAIAigx47AJ4IT5YbVqmcc0vDiYuWzuuj/Ho3ZebHtRN8alexkxiYu7TssePK\nW47tKR/2CEV6Sa9OdPVobGlg6tzIfe2ZV0V0PQAA8N+hx64AoD8PSgK/hpYjt3r30Z08alh/\ntxq2RCQx7TB2bIdcuwW0qbPwXePVq4JrmgsuHg4c3LwqExk9yNGIdXtPIyImw6NFwK/HDh6s\nbnRh1/y27apm3H07rgb+VAMAlEQChmGKuw2FTqlUxsbGNp/HNSDFHc4KT7HEvu+52NKYU7mv\nN9akPRFZWFgU4BllMpn+u5ACPKBKcrlOhoaG6kozU59OH+a3+eDp2HSFcXlnD4823j79+rZ3\nVXXLqyZPLJbsMCo/4UxsitRER1VrXW3LxdY7Hmx/zLr94e4EfSvf3n++3tPWXrV9SwvbmYpl\nMZd8C/zqAADg+6HHjreKK6pCcdHSdVy869TCbQk3z589ffr0g5i4TaOli+tMfXBoWvY+8Q9P\nMozS3VSSs6JJ8sP4h3+xbieyIaL+DS2zNzbrVzluajARgh0AQEmEYAelA8a7uSXFrKrXcs2B\nfx/U0zdu2LpLw9ZdiCgjabS2YYPpz0fOr2ys2k1sJBGJzePiXuZ8ulYg1JbdO8+6nZIOEpFc\n+aVfX5GiIGVaEVwRAAB8AwQ74AN0T0pM2rx+Nn7Sxrun/V2zN8oTI4koQfEllhk7DlVmHl/7\nUj61ZlYUXtq3+9uuyxe2Yt8+vzkR0eY/o737OKq279v82KjK4iK5JgAA+M8Q7KDooNet8Gjp\n1Tzi16DjpGZej6f5tq1vbSiIenxz47xFVg3HL3P4siixxKxjQBv7X1t3stw429VC/tfhVb8e\nuns8sJzEtCLrdsokIgob2naxcmXrKvoXds1f8CBhzZOexXadAADACcEOgCd+XH01zG3F/FW7\nJhxc9lGuXblSZemIwH1TBkq+XtRo7In7ksmDV473ffwuo1qdVjtDb3cwlajbnvKBiOjE37Pn\n+f+yJPxluRp1A05EjnQwKo7rAwAAzTArNkvJnBVbAkcYC6/BxXUreDMrtjCkfNijb+UbkZJR\nXRf/EwgAUAqUob+sS2BIopLaKgAAACiNylCwgwKBJAoAAFBi4ZViAKCWnmUfhmEwDgsAUFog\n2AEAAADwBIIdAAAAAE8g2AEAAADwBB6dgZIC0zIAAAC+E4IdQKFILtepuJsAAABlDoIdQKHQ\ni5hX4MdMqTGjwI8JAAB8gmfsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgC\nwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAPjj/slN3s0b2FsYGFrY1XNrv+Lgle852syKxvXn\n/FtQbQMAgCKAYAfAE69PTHTx/Fnk2nPzwb9P7t8ysIXVL72a9g2KVJWur2pWc8R35TwAACj5\n8EoxAJ6YNmiDnXvQ0VX9VF+bte7gKgr3GN0/eMC14m0YAAAUGfTYAfBEeLLcsErlnFsaTly0\ndF4fJdFoO8ORT+IiNrjpW/YgJl0gECx4LcvezVZHa/DjOCJK+3B9mGeL8ub6FWs2GrP+oqr0\n2jgXQ9sR2Tt/uDVSpGUUmZpZJNcEAAD/DYIdAE/4NbSM3OrdZ/ziyxExqi0S0w5jx44VEi1/\n8i7A0cRp8JkPL4PVVWcy4z2rtzzyxnb5zj+ClvpHBXoFxiQRUa0pfslvN/4Vl67a7a/xIVYN\nApx00dkPAFASIdgB8MTgE+cn9Wr05/rpTWvamVSo1f2n8TtP3VISEZG2rp5EIBCKdfX0dNRV\nf/lH3zCZ4ekLu3w8W7Xq2Gvv5cPpDENE+jY/dzCVzN79lIgU8uhxV955r/YuoksCAID/CMEO\ngCe0dB0X7zr1Qfbp+ukjU3xb6iriNo2W1uq+KJ/VX+2P1LceXFdfrPqqY+LuZaar+jz7pyr3\nlmwmopizYxLEVZfXtyyM9gMAwPcrK8FOSwsjR8COH382kmJWVa1a9XZyhlBs3LB1l2mL1u4K\n2nHu9tmIw79Mf57AVZPJSFQwRCQQCYgEOUvEgqyvNSeMTYpeHZaQvm9CWKUugQYiActxAACg\nBCgrwc7ExKS4mwAllImJiUBQ6pOKxKTN62dPJ228m3OjPDGSiBIUzNf7CojoU4ZqkJZkr7Yk\nK5REVLFXteR328KTM7Lqyq6EfEpVfda3HuxtpjNl2+EZD2P9FjUu1AsBAIDvwYe+ivz4+PGj\nWXG3AUqmjx8/FncTCoCWXs0jfg06Tmrm9Xiab9v61oaCqMc3N85bZNVw/DIHEyISCUj29F5U\nlKO9vVVbU8n+IQt81/tpf7o3e2hAJYkWEdm12dBAt0rrVoM2zv/ZRvRxzZShVgZf/n6YMbRa\no0kDJWZdx5Y3LLaLBAAATcpKjx0A7/24+mrY7nnyfw9PGNqrXdd+89eH1BoReOvibxIhEVHL\nCT564ePrtZxMRMGnAqt/ONiyTu0+E1a23355oHszB4mWSNv+3KOwzpYvxvRu291vnlG/g3t8\n27vY66kOXmO8v1KRUWvyrGK8QAAA0EjAMIzmvUo5pVIZGxtrFn+quBsCJVGsSXsisrCwKMBj\nymQyvYh5BXhAlZQaMwwNi6fDTPZ6lXHFiaFxyS2MtYulAQAAkB9lZSgWAL4RI0+TJ28etMzM\neQ5SHQBACYdgBwBcUt7v0rceIta333Dbr7jbAgAAGiDYAQAXPat+D2+52rjUNdIq9XOHAQB4\nD8EOADgJtJ3q1SvuRgAAQL5gViwAAAAATyDYAQAAAPAEgh0AAAAAT+AZO4BCkVJjRnE3AQAA\nyhwEO4BCITnuVODHTPOKLPBjAgAAn2AoFgAAAIAnEOwAAAAAeALBDgAAAIAnEOwAAAAAeALB\nDgAAAIAnEOwAAAAAeALBDgAAAIAnEOwA+GBfDQsBG6FIr/BOaiYWjXoaX3jHLy2+5z4Uxj2c\nWdG4/px/v+cIGcm3BQJBwyXh6nZIebdVIBC8SFd8z1kAoDAg2AHwQeudx0JDQ0NDQ8+ePkJE\nP6w7ovoaeu6v4m5aEVlf1azmiCv5315aFFT7/9NxhGLLUaNG+bhafP95AaCI4c0TAHxg2dCt\nJRERKTPeEpG5q1vLxuVy78RkPLoXXc2lUhG3rcQpyvtQOu+5SNs+MDCwuFsBAN8CPXYA/Ger\noxXw8KxbBbO6rUYRUdqnCyO6uNlaGOkYmFWr12b5sedEtKWRtXnN5dlVEp8vEggEez+kEpEy\n8+PaCT61q9hJDMxdWvbYceUtx7lYd/5wY7FYSz/4pUy1z4ZOlawaTlUSEZEi7cWsfj9WszMx\nsLCX9plyNzmD4zgpH/YIRXpJr0509WhsaWDq3Mh97ZlXRDTaznDkk7iIDW76lj1yNibX9qK8\nD7nOpbEua2NytV/dQdI+XB/m2aK8uX7Fmo3GrL+YtzG5jqNIf71wiHeNilb6FuXd2vb960ki\na/t9I2O5d054dNSzRT0zPaPqrs2XhjxQbYz6e6Nnw5pm+joWdg4+4wPSlBw3CQAKHoIdQJmw\nrt1PzaZuCzu/noimuHU6HO28ZPOR88eDBrolTu7m+iJd0XFF2/hHMx+nZqr2/2f6NsPyY3pb\n6hJRQJs6M05mTl4VfPn04aGNlIObV93+lCUKqLDubNlg6qEhlf2ko1OVFP23/+i/BIf/niMk\nIkY+qFbddQ/Mlmw/8feBQKubmzzc53Ech4iIyfBoETAo4ODb2Odrh7uOb1d1ZUTc8ifvAhxN\nnAaf+fAyOGdj8m4vsvuQ61wa67I2Jlf7WQ/CZMZ7Vm955I3t8p1/BC31jwr0CoxJytWSr4+j\n/LlO7cVn0n8J3Bt6ZFMrg1uetZzPJ8jVXATXzl4tprcaPvePUwcGuDJTu9RadC9WnnjR1dMv\n033I3r/Ob5g78uK6yZ7rIzhuEQAUOAzFApQJks67l/o1VX22HTBx89DxnSx1iahOXa1f1/14\nK0neufEKG609E0NjQjpUICbdP+RV061jiSgpeuXksLdnYvdKTXSIyPWHVlp/Ws4acWHQX555\nz8Kxs1fgWTe7ym1mt0tdsbZfUERzEx0iio2YGPxCfiF2W1MjbSKqdTrKvevO1+mzTD8Gsh6n\n525imEyHTTu8atsTUavBv60L2jNzyIlxl3wlAoFQrKunp5OzPdq6erm2F819yHWu/NRlbUwl\n8y/tV3cQqd/6MJnhjQu76uqLiahJMytTC49cLcl5HxKez9wSGb8r+khfW30iatC0+XlzizFL\n7/67oH7eS0h4Ppt158tjiIgabD45qXtlImrSon3SFfPlvXb5/e/thwzF2Akj2lnpUtPGNS0q\nRhqYqLs/AFAYEOwAygSHvlWyP0+ZNjn82oXgo+Hh4f9ePBui2ijUMl/Vwvbnqcepg19sxIz7\ncsOQzhWJKP7hSYZRuptKch7NJPkhEUug4dhZKLbafXaxVW1fa+mybT4OqqKokCsS03aqVEdE\nhuVH//PPaCKKUnscGyLq39Aye2OzfpXjpgYT+Zao+5DrXPmpy9qYnNQd5NX+SH3rwapUR0Q6\nJu5eZrpP1N+BD5fCxHrVVUGNiAQiA39H42FHIogt2KndeQwR0UgP2+w9fX+utnz6AQO7kJ51\ntnqXL+/RrXvr5i16+PboYiRW3xYAKHgYigUoEww///uqzHg/vLVjs94T/r73sWbLHmv3B2Xv\n02p519gHv7xMV1ycfMCm5dpKOiIiEhtJRGLzxKSvRN8bw3oW7p2TXz5WEsme/ZusZFRbFHKF\nQCD5r8eRf65ORIoUBSnTStp9yHUujXU5GqPxnghEAiLBV3sKBHmrZ2MYJtff/EKRgFFmfP/O\nAqFEKLbYdzvq8vH1TWyZk5unVbG08Z13nqMxAFDgEOwAypbYh2M3h729//CfoNXzBvb4sZr5\nl6f4zZ0X1dBJ9Q+LHHcmun9gW9VGY8ehyszYtS/l+p+tHT5g+skY1oNz7JyRdLONz4afj16u\nG3+w3dzLqv3tPOukxZ24nZQVFNI+HXNxcTkdn8590s1/Rmefcd/mx0ZV+pS0+5D/26KxMRoP\nUrFXteR328I/TzqRy66EfErlaIyVW9OMlAcH3qWovjLK5JWP4+28an3DzoGnorL33LPxkanz\nwPdX1kz9dWWjtj1m/bbx7K2XV5c4Hlo6Lj+3CAAKCoIdQNkiMWvIKOWbD/756NXz63/v7tNy\nNhH9dfZ6spIhoe4Krwon+3u9kbSYW9308/4dA9rYz2vdaeuxs7cvn1oyocMvh662keZZS0XD\nzsySH71Smv+2rtMPB/43+cr8dsEvZERkVX9jb2umQ9uf/wi9/u/V0/5ew2KY5q1NdLhPGja0\n7eLg4/9cPRvg577gQcKs/T2JSCQg2dN7UVHvczVJ3fZCvQ/5vi2aG5PdfnUHsWuzoYFufOtW\ng478efHK6d8HtfK2MmB5xib7OMYO8/o7Gg9r3nP/qQu3r5yZ2avxxVSLVTNqs7acY2eBUHJ7\neLtFu47duHLmtxGtFkakLN7XRdvs09LFU/st3nzu2r+nQ3av2/nMpHqX/NwiACgoCHYAZYuB\nnX/I/KF7pvSrU7vpuGV/DDt2f+/obmdnjnuRpiCixgt/Sn33rMbY30Q5qow9cX95H+uV432b\ntO27+6r+ztDbHUxZxk85do7c0WvuTaPjh0cQUbmmc7d2tvKTjkxWMiTQ3nb/Sl+7l6N7tWnu\nNehBhX6nL68UaDrpib9nn1vzS1v3zpuuZgaciBzpYERELSf46IWPr9dycq72qNte2PchP7cl\nP43J2X7Wg4i07c89Cuts+WJM77bd/eYZ9Tu4x7e9i33uN458OY5Aa+vd2/5uiplDuzT17P93\nbJ3/hT+QGusQKzU7C8VWbk09bp+bfm79dI/W3Xf+K94U+rS/vYGJ06y/A/zvb53r1aJRrxHT\n39YdejZ0Wj5vEQAUCAHDMJr3KuWUSmVsbKxZ/KnibgiURLEm7YnIwqIgF9mXyWSS404FeECV\nNK9IQ0PDAj9sKZLyYY++lW9ESkZ1XUz8Kly2OlrS8Pe7ncyKuyEA8N+gxw4AAL4S//Lqx0yl\nkQj/QACUPvjvFgAAvoh/Osq0UhPzOp1/KV+mu4cBSikEOwAoNfQs+zAMg3HYQmVcaVHMh/g3\nt46U1xFp3hsAShj8/QgAAF8IRIY2BfnEKQAUKfTYAQAAAPAEgh0AAAAATyDYAQAAAPAEgh0A\nAAAAT2DyBEChSPOKLO4mAABAmYNgB1Dwyvj7IQAAoLhgKBYAAACAJxDsAAAAAHgCwQ4AAACA\nJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgC\nwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDs\nAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4AAACAJxDsAAAAAHgCwQ4A\nAACAJxDsAAAAAHgCwQ4AAACAJ7SK7EzX9gfuD7sdJRM51XTtN2pINUOxavuT0L27T117+OSN\nib1Tl8Hj2rqY5b+uuu0AAAAAZVAR9dg92T9j4b6rbl2HzhrX3/B52Ez/QAVDRPTx9rYJKw5Y\nNu74y+wJbg5J62b730vJzGddddsBAAAAyqYi6bFj5MsO3nP0Xd7dw4GIqiwV9ui/JCh62E/2\nBtsDTtr/OHdkFxcicnGu//bdrxci42vVs9Bc105b3TGL4ooAAAAASp6i6LFLiz/3Rq5o29pW\n9VXHpGk9A+07Z99mJN+5kJDevkfVrP0EokkLFo+oZ0FEF0b6dus1haOuuu1FcDkAAAAAJVNR\n9NhlpNwjohp6Xx6Aq6GndfJegrzNdSKq+PrcjIUnHr/4YFbe4Udfv44N7IjIpmXbDikmHHUz\nWrNvz/56/vz558+fqz7r6Oh4eXlRfGFeJJRaurq6aWlpxd0KAACAAlAUwU6ZnkJEFlpfegct\nxCJFcnpm2iciWrL07x5D+/W11nl4/vDmeaPFG4Lb2ehV6TmgCmdddduzv/7111+nTp1SfTY1\nNe3Vq5eyEC8RSjF9fX0EOwAA4IeiCHZCbV0iis1U6otEqi2fMhQiE22hSERELWbO7OxkQkRO\n1evEXPLZuzq83aIfNNdVsz27opmZmZ2dneqzsbGxQqEQFPJlQimlUCiKuwkAAAAFoyiCnVi/\nFtH5R6mZ5XWyQtiLNIWRs7GWXlWiK27l9bP3bGyjd/5jTH7qqtueXdHf39/f31/1WalUxsbG\nsiyjAkAUFxdX3E0AAAAoGEUxeULHxN1aW/Tnpfeqr5mpkVdl8roe1hLTNoYi4bkniZ93ZM7H\npBhUdshPXXXbi+ByAAAAAEom0ezZswv7HAKByElxb/+ePyyrOOmmvtu/dGG0ntvcXi2FQolj\nwvWgoLM61lZaaZ/O7V1+LDJ10uIhNjqiZ4eCf7/xsl4dJ7V11W5naQDDMKmpqbppTwr7SqE0\nSpVUISI9Pb3ibggAAMD3EjBMEa3qe2Xvqv1ht2OStJycG/tNGGytreosZM4Hrzx66e7r2Izy\nDjV7DB3p5mBMRBdG+q6MtT+8bwlnXbXbc8kaio0/VQSXCaVOrEl7IrKwsNC4JwAAQAlXdMGu\nGCHYAQcEOwAA4I0ieqUYAAAAABQ2BDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsA\nAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAA\nAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAA\nnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwBdJRXoAAAgAElEQVQAAOAJBDsA\nAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAA\nAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAA\nnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJ\nBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCw\nAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsA\nAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOAJBDsAAAAAnkCwAwAAAOCJshLsDAwMirsJUEIZ\nGBgIBILibgUAAEABKCvBDgAAAID3ykqwS0pKKu4mQAmVlJTEMExxtwIAAKAAlJVgBwAAAMB7\nCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFg\nBwAAAMATWsXdAIBCx8SGcxWbtC+qhgAAABQu9NgBAAAA8ASCHQAAAABPINgBAAAA8ASCHQAA\nAABPINgBAAAA8ASCHQAAAABPINgBAAAA8ASCHQAAAABPINgBAAAA8ATePAH8p3wSzFXsMLmo\nGgIAAFC40GMHAAAAwBPosSuLuN+dKjCrXWQtAQAAgAKEHjsAAAAAnkCwAwAAAOAJDMVmwegk\nAAAAlHYIdpAbd8blhgQMAABQjDAUCwAAAMAT6LErdBjkBQAAgKKBYFcAvmfssvCUzFYBAABA\n4cFQLAAAAABPINgBAAAA8ASCHQAAAABP4Bm7fCm859UwtSKfcKMAAAA0Qo8dAAAAAE+UoR47\n/s0S/eYrUj4J/uaTCqv0/ea6AAAAUKjKULArjUpdGC2uAdNSd6MAAAAKA4Id/DfcvX3f05+H\ncAYAAPCd8IwdAAAAAE+gx64A4JE1AAAAKAkQ7LIU3ghjcfmeuFlIMNgKAABQqBDs8qXwQhL/\nAiUAAAAUFzxjBwAAAMATCHYAAAAAPFGGhmJL4DNnkH8YswYAANCoDAU7KOGQvAEAAL4Tgh0U\npOLqV0MoBAAAIAS7Eg55BQAAAPIPkycAAAAAeAI9dlB00AEJAABQqNBjBwAAAMATCHYAAAAA\nPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMAT\nCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFgBwAAAMATCHYAAAAAPIFg\nBwAAAMATCHYAAAAAPKFVZGe6tj9wf9jtKJnIqaZrv1FDqhmKubcXVF0AAACAMqKIeuye7J+x\ncN9Vt65DZ43rb/g8bKZ/oILh2l5QdQEAAADKjiIJdox82cF7jr7zuns0ca7ffOzS0SnvQoOi\nk9RuL6i6AAAAAGVJUQS7tPhzb+SKtq1tVV91TJrWM9C+c/atuu1EdGGkb7deU76tLgAAAEDZ\nVBTP2GWk3COiGnpfHoCroad18l5CRmv27URk07JthxSTb6urEhAQEBYWpvpsbGy8fft2ZaFc\nHJR6pqam8fHxxd0KAACAAlAUwU6ZnkJEFlpfegctxCJFcrq67URUpeeAKt9aVyU2NjY6Olr1\nOSUlRSQSIdgBK5FIVNxNAAAAKBhFEeyE2rpEFJup1P/8L+inDIXIRFvd9gKp26JFi3Llyqk+\nSySS1NRU6vJU9VUkEmlraxNRWloaw+SecJFdmpqamvdauEu1tLTEYjHDMGlpaf+1VCwWa2lp\ncZcqlcr09PS8pdra2iKRiLtUoVDI5fL/WqqjoyMUCjMzMzMyMv5rqUQiEQgE3KUZGRmZmZl5\nS3V1dYmIu1QulysUiv9UKhAIJBJJrtJMtp8SAACgNCqKYCfWr0V0/lFqZnmdrBD2Ik1h5Gys\nbnuB1G3btm3btm1Vn5VKZWxsbHaRtra2KpwlJyfnDXY6Ojqq0pSUlLylEokku27eK9XV1RWL\nxepK9fT0VMGOtVRfX18V3b6hVCAQqMIZa6lQKOQoFYlEIpEoMzOTtVRLS0sV3VhLxWKxUCjM\nyMhgLVVFRrlcnpKSkrdUR0dHIBDI5XLWiKyKfenp6awxNzu65S0VCASq0vT09LwxVygUqoJd\nWloaa5AFAAAo1Ypi8oSOibu1tujPS+9VXzNTI6/K5HU9rNVtL6i6AAAAAGVKUQQ7gUB7Yjfn\nx9vnnLkV+ebZ/W0z5uvaSwfaG6rbTkTPDgVv33n82+oCAAAAlE1F9OaJar3nT6ZV+zct2pik\n5eTcImDCYJGAa3v02ZP/i7Uf1N/rG+oCAAAAlE1F90qxJr3HNumd3+3N1+1u/q11AQAAAMqm\nInqlGAAAAAAUNgQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADg\nCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5A\nsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7AAAAAJ5AsAMAAADgCQQ7\nAAAAAJ5AsAMAAADgibIY7K5cuSKVSqVSaWJiYt7Ss2fPqkrlcnne0hMnTkilUg8PD9YjHzly\nRCqVenl5sZYGBwdLpVIfHx/W0k2bNkml0gEDBrCWrl69WiqV/vzzz6ylS5culUql48aNYy2d\nO3euVCqdNm0aa+m0adOkUum8efNYS8eOHSuVSn/77TfW0qFDh0ql0rVr17KW9uvXTyqVbtu2\njbW0e/fuUql0z549rKWenp5SqfT3339nLXV3d5dKpadOncpbJJfLVT9faGho3tL4+HhV6bVr\n11iPDAAAUKppFXcDioJQKLSwsMj+qq+vL5PJiMjMzMzY2DjXzrq6uqpSc3NzbW3tXKU6Ojoy\nmUxLSyvnAbNpaWnJZDKBQMBRqqenx1Ganp7OWioUCmUymVwuZy0lIplMlpmZyVqqVCplMplS\nqWQtzczM1FhKRKylGRkZMpks1+3NlpaWJpPJRCIRa2lqaqpMJhOLxaylycnJycnJ2trarKVJ\nSUlKpVJHRydvaXp6uqrBurq6eUtFIpGqVF9fX92dBAAAKL3KYo8dAAAAAC8h2AEAAADwRJkY\nis3FwsJC9ZCcWCzOW2ptba0qFQpZUq+tra2HhwdrERFVqFDBw8NDV1eXtbRSpUoeHh55B39V\nHB0dPTw8rKysWEudnJw8PDzs7e1ZS2vWrJmSkuLg4MBa6uLiwjBM9erVWUvr1q2rq6tbq1Yt\n1tL69eubmZnVqFGDtbRRo0b29vZVq1ZlLXVzc6tWrZqjoyNrafPmzRMTEytVqsRa2qpVq/T0\ndHXX27p1a4ZhbG1t8xYJhULVz1euXLm8pdra2qpSjMMCAAAvCRiGKe42AAAAAEABwFAsAAAA\nAE8g2LFgmLS4+NSirwvZuG8jbjIAAACrsviMXV7KjKQ37xOyv8peHp6xPu3grsnfVnfaikc+\nXZuq21+sV7N7pzpZOz+7su/4+eiPiRNmz39/4lRmY6mTlURV9D4l00qP69f55rocpXlXhhMI\nxUYmJqZm1k5V7AQcrVFz2L1793JUyXkruH8C7tLoh7cfxcTleqSgVvNWVmKhxtsIAADAJ/g3\njz7d3jtq7r5kxVfBwLl91nK+jCL58tlzL98n5MoNLXv0stcWsdbVMy1/584d1eeXkREpSnE5\ne3t9QWp01NsMsW3bDuVVRbJnfwz231SpQcuHd+5mEsXeO7Fwx8HhqwLb2+sT0VDfvjUbNXd3\nlzZvVEMiyJ2pvqcuR2loaOiTiAg5w2jrGesJ0uKT00U6to62ondvYgTWLkOn+AtunEr4wduz\nnN6/e5cFnrhn5th4zNTh5SUidYfNvg/ct4L7J+AufbR/9qQ9t43MLXW+7n1e3LyVxlvB/eMS\nAABAaYPJE7R2gM+DH4ZP71Jp16Sp1easbqh4t2PZilYLNza1kBDRiRmDNobLKtd0MtT6KjhM\nmj3XSCTgrvviZMDUo4q5C0dXs5AQkTzu2frp0+Xt50/yciCi3T/3vtpwcuDget7e3kFHQ0xF\ngmvbxqz6p+Ge9f2I6OH1M6FhoReu3E2TWDVpKXV3l7pWtc4++/fU5Sh9dXLpxIPyqTP8XCub\nEpHsdfiGBcurjF7ZubrwxNppQZcS0tPSOwZuH2j+zKfPzNZ9hiiu7L9Xzm/ztCYaT8p9K7hv\nI3epf89urWZv9q5hxvrjcreK+8f9j3+OAAAASgCmzOvbuVPIx1SGYcIXD51z9xPDMAlPN/UZ\nuUdV2r9bj3tx6d9Wd4JPl21Rspz7J78J7tJjbFbdLp0OfUhhGMbLyys2U8kwTGrsCe/OPXPu\nr0iP/efM78tmju/q7d13xJStB089+5D6nXU5Sif17Lo9d4N3d+szj2GYzNTHXl5ev/37gWGY\nNxd+7dE/kGGY5DdBnbuPzM9JNdwKztvIXTqwp5+6X0djq7h/XAAAgFIHQ7FkoCVIzFQSkZmr\n6fvLH6mWma71D0kxi4l6E5GVjqGTce4Xi+Wzboxc4Zx7+E+hzPig+mSiJXgnyyCLL4vepX14\nLBRb5txbqG3awL2Tc+06zn/s33Lk8u87H4Ts2lC5jlQi+va6Q0cPc7aUsJYKGaW97Ks35Aq0\ntDNSHhCRUMuciBzt9Yko8vhry0Z9iUgksVNmxubnpG84bwX3beQu9a2Zfu5NitRGT91vxNEq\nQ7EBx48LAABQ6iDYkVclo73LdtSeOMjRpcbboEOxA6fK75/T0rFTlY4b4jpz19npvlI9trE5\n7rpdKxsdmb+1zdKR9gZaRJSZFLV13inDyt1VpYNb2y9etKndolFERMqM6Mhr6xacr9hmRvbB\nk949vXLp0qXLl28/fmNoW7WNz6BmzZpZpL/443DQ8QwKXbix3eLR31B3+s8jl66a9uL6lbyl\na+YuOD3l56bbd9Y3kxBRZkpM8KIQY8fuxGSG/7FaJNQKO3G3pVRny6ME6Rh7Inoedlqs75Kf\nkz5XCv6ct6XNMj/WW8F9G7lLy/cYcWD+L49aSKvbW0lyjKg2btxYY6v+l5Y0Zcfpef1bs/64\nAAAApQ6esSN5woMVC9bG/zB5URfbgJH9w2LSGSazQf8VM7s7ElFy1CW/scviFGJDA52ctYKD\ngzXWzUi6P230nCcJOg5VK+lR8svHz9JNqs4OXFhTX0xEjCJhy6Lp//vnNcMotUWCDKWwVqvu\n08f20RUKiGjG+KHhz94blKvSrFmzZs2auTh86Y1jFLJOXXyd61Z4cCfq2+oKBALW0syUiK69\nppBIr3xFez1Ki3kZpbR2mbN8lk3cqn6jbvUY1uHkpkOJCqWBvfvOteNe7Jww4cgTt5/XTulg\nn5+TWppKPsnYbwX3beQu9fHxYf1ZDxw4kJ9W6WkJU5XsPy4AAECpg2D3FUaR8ujOv6l6FetW\nz+oQmu/b/aOLe/smtY3EXz1f7+bmprEuETGKpKvnwp69jk4TGdraO7Zs1VBP+FXn0NtnD5++\nihLoW9qVr1LRWj97+9qgw82aNavjyPJeLGIyn794bV+p8qfn31J3ceD2Nj9616+i5sjPXya9\ni3oaFZWo0LUv79jMrY62gBTpLz+k21obieVxMZGvEyo4VzcWCeLuhD0WVmvkYqPupAyTFp/A\nmJroqhpsV97yZijXreC4jfkszYv7VvzSp2dyndYd8vHjAgAAlAplN9gdOHDAoLz0xyaW165d\nY91BNZbn6zN45/6tuUbq8lmXOJdYU31WpKWJJBIi+vRBZm5pmHO3b6srT7gwenLw8OWBrgZf\nPT1269Yt1qZ+ObJjMmvFglqLLu/lXL9+vXKzQT2blWO9jZcuXarepJ+6m8xdSjl+Ao4F/1h/\nXAAAgNKr7D5jFxwcbNPc+ccmlsuXL2fdQTWW522veJyaWf3rRW7zWZd7iTVF2suN85ddjK69\nZ/swIgryH3zXusmMeWMcJKLvqSs2qG2Y9OnY1Q+uHl/1aS1cuJD7hhzcv5W1YoGsRcd6Oe/f\nv38i8OzZrBzrbUxLS4tUtFN3k7lL6fNPwL3gH+uPCwAAUHqV3R67+Ph4kbahoZ6GdWgfhJ/e\ntPF8i44trY2/TEFNTk7+oam7xrrcS6ydmf3TlvfVJ4wd2MDJiogSoyN3r5x/w3DQ1pnu31k3\n4vbJdb8dqNre26VSOb0cC+1md2Llkj1myl3xe9aiY70c7p/gm0u/DAFrWvCP9cclDMUCAECp\nVXb7KkxMTEj9wGW2eYu2EtHBnY9zbW/Tpo3qA8eAaZzARl0yI6Kd4bHt1/g1sM16Ns7Izmng\nZO8/f95F5E5E31N31qLtRPTu+N6LX9dSdWKR+jFT7oprdlxsF7BTleqISNvUYegMz75jVpPX\nSiK6mijv4dPUxlzSoZbp0RSdzrXqjp7abMSso03X9lZ3OaqfQEXdbVQNML+9F7r76JkX0dHp\nImP7itU79uztWvFLXY4h4FPvUzt3qp7zmHW6dEg+HkTUj9T/uAh2AABQSpXdYKeibuAyG/cT\nZtwDptxLrIkEArHWV493MQxDlJVtvqdudoDLUZoW//m9WRxjpnkr5sS9LN/3rDbHfRs/3tox\nfM5Ra+cW0raN9JmkyJuhc8b8PThgm7ejEfflkKbFArl/XAAAgFKnrAc7gch48MTB636bvvoN\n+/jjjRs38tYSapdzrV2eiDYcuTt48XZ1XWvcS6z1dzXfPG9bk7nDKptqE1GG7PXOhcfMag34\n/rrE2Ym1b+VRs7ZjAnKNmfrU03ix3Mvyfc9qc9y3ccPy/9m4j9swVpp1om69G6wesW7uNu+g\ncdyXQ/lYLDAzJfrUsTPPoqITFRL7Cg4enTzt8cgdAACUWmX3Gbts3Auh5SxVZqTLFYxIx9Kx\nutdv8zoT0aBeo7bvW/NtR1bK3y3/ddrFx4lWNrb6wvS3MW9F9vUX/vZrRR3Rd9ZV14m1aGQT\nIurXpXOPLfu8zSV3lww76rl4Zi2zxGebRyw32L22N/fFci/L9z2rzXHfxp6dO/Xcsq9rzl63\n2OM9B+8OObqP+3JI02KBabFXRw1fkqBfoW6NivrC9BcRt1/KjKZsXPODmURdYwAAAEoydE5o\nGH/8qpRRvH92a/uyzXUHuKs2cI8wcg+JCrXLTVq2tcutq49eRSUoJPblKzdpWCt7fPV76nJ3\nYnGMmXJfrNjAedmWbdnL8jVt1yvnWnTaxjWnLF2r+jx+zVbPr1eb474c7tvY1ETnRVRyzuFU\n2dMIbYMGGi+HiAQi46HTA73ULBZ4dGag0qXfruldJEIBETHKtN8X+AXOCvkhsCdrSwAAAEo4\noeZd+G7kyJGJX3duKdIejxrzK8uuApGVY8PRcz23zNmo2lC+x4iL83/ZuD8k7NKVazlk11Bm\nJEXnEHll07DRgdml0Q//fR2fKjEyL2eqn5H0/vy5s2fPnn2focxPXdmzq+cunL9+89+OnTva\nvnv99ENadtHVRHk7n6Y21o4dapmGp+jYVa07emqzdbOOqkq9Khn9uWxH+NtUE5cab88fipUr\nP+UYM+W4WCKKefw4TahrU7FKZftyOpR0NfRcdoMDNuw6f+NhUiZDRAKRnpOrW641hDkuh/U2\nnj9/PiUlJSUlpc+MofeXzDp45mb0+7i499E3/tr36/KHw+cOz8/lqG6ltUP1pq083BrWUaW6\nVzf+UJX+Lzqp48gOks/ZVCCUdPDrnBR1jOWnBwAAKA3KdI/d9u3biSgqKmp30HZJjmkBaXGR\nUdFv1dXSkpjLk26rPs+YtZiI6PDuM1/vo+qg+oal3ejzjAHuutzLs3F3YnlMn3J3wdq9l98v\n6uLrZth/UI/uqjFTjRfL3eAPERdWnDzEaBlUr1O/QcMGDRs0qGj5pQeO+3JYb2NaWlrOnXet\nmrPr82eBQHvX0hCP9X01Xo7/6pMBYzpkt1ee8Cx4XWDI1WchIZ5EpC8SxqZk5jxLZsonociA\n9VYAAACUfGU62L18+VL1IerVK3GO7QKhYV+/YarPEREROasoM5KvHt6qY9xE9ZV7GJd7SJR7\nxgB33WNLg8t5zV46uJ63dygRNZwWOHXbmFULjrRf3480zWPgGDPlvljuBi9atSlD9v7BvXvh\nd+9eP7EzeMNyswo1GjZoMGJAd42XwzpQG373hZGhTu7TfCbUMtF4OUSk+89W/9UUMKaDkMm8\n/r8d63f8kWJWc9TcrD7IAY0tV81a1WDO2LoVDIlIFhW+ZtZJy0Zj1J0UAACghCvTwW727NlE\n5O/vP3XGLEM1L5aaMmVKri2GVg6Dp3+Zf8oxrfIblnbLxl2Xe3k27k6skSNHLg5cayQS0Ocx\nU9XQ85rVC7gvlrvBRCQ2tKrTxL1WvXoP7927cfGvY+fCT758oAp23JdDbNN4569PO7hrssaF\nBoko/vnNA4dOPoqKkWVq29pXadejRnbRnLVzZ/vNGhsQZ/vq5NWXGdIeo4b1cs9+LrDJuPnX\nZ02fOcpX18hMj9I+JaZYObdaMK4JxzUCAACUZGU62KkEBARwlP7+++85vwoEAkHOQdsc0yoN\nhGn//r075Mjx7GmV37O0G3dd7uXZ1HViaRx65r5Y7gbfv3Hh7t17d++GP3waw+ia13Rx6Tlk\nTO3aLvm5HI6BWo0LDcY/OPTTL7urNWn7g7Sedmbio1uhiyb81Gfhtp7OpkSkbVRz9rq5s0fO\n/Cfddt76xbWtv3rDhFBsNX7hpq73bz+Pjkli9GztHVydK7KeBQAAoFRAsCNi5BePHUn4wduz\nnN6/e5cFnrhn5ti4WjUzu8qtf2xi+c8//7BWUi3Axj2t8nuWduOuy70826lTp3K1ViB8eCXx\n7YOISH09CakfehYKhRwdkNwNnjZ3mUCoXc+9y6yRrZwd7XJ1gHJfDsdArcaFBjcu2t9sTKC/\nu33W1u69G68duWrhaumKEZ93NPebNWr+tJWH/v7Xup0jER07dkxf/8vc2M8SI2PfRoZfFuvV\n7N6pTt5fHAAAoOTDOnZ0Z/2omafedgzcPtD8mU+fma37DFFc2X/mWaJN80UbJzlzL8Dm26VT\nt815l1jbF3J0N33f0m7cdbmXZ5s6deqTiAg5w2jrGesJ0uKT00U6to62ondvYgTWLhImcfnK\nFaxDz9zrunE3+Pe92+/du/fg4dNM/XLOzs61atVyrlXLqaKV6jTcl8O9Fh33eXt16RZ85HDO\n13CkxR73GbiZtUq2mjVrqj68jIxIUYrL2dvrC1Kjo95miG3bdvAd8VMz7uoAAAAlFFPmjffp\nsuLOR4Zh3lz4tUf/QIZhkt8Ede42PDE5U2Pdod06b36ZmHOL7PX2zt2G5d1TmZn88Oal2xFR\nHEdTKlNj41LyX/fN04iL5/6+dP3fF2+Scm5/eWJJj0Hzbj6LVX1NfHVn6fD+R+7FKjPj/7dq\nRM/BG9U1YI9fn0FzDqcqlFnnVaQemftTn1H78t9gpSL12f2bx/YHLZwxoau3d7c+g/NzOT93\n77zrbTLDMFF/TfbbGMkwjDw53LtzH3XnzWndIJ/zH1Jzbnn/z9LufRe946Ta8/mJ5T2HLo38\nXD099unKkb2XHnuan/MCAACUQBiKpY8Zytb2+kQUefy1ZaO+RCSS2CkVCYZ6ImIf1hQbmZiY\nmlk7VbFjnVZpVLXjrVu32E4loZR3t269c3V1VX3nePHXV2cU6Tm55n4tvezZlePHz0d/TJww\ne/77E6ciG0udrLLel7Am6NqPy4Nc7bKW7TAsX9tvdrvewwcfNtQjRpEi+59v3/N5++uCg4P/\nF53UbXbudd12DN5H1DOfDU76+C4mJjoq6tWrV68zBWIrM9P83ArugVrVxe7LcbGZOS520OKJ\n03+ZH9evh2s1ex1F8vO7l7ZsvdFn9ipdXV154pWpsw+OWLFW3cSLNTsutgvYWc0i61Dapg5D\nZ3j2HbOavFay7g8AAFDCIdhRC1PJ6T/C3aQ6Wx4lSMfYE9HzsNNi/ayn/kNDQzmGNYdM/LXJ\nhgW5plUmPQ5ZuDCE44yHDh0iTUu7MYrky2fPvXyfkGukvGWPXvbaIu517GLSFa7ir9aaE2hp\nMyT09vZmlKm79xzx9PLSErAMxXKv68bd4K2BS8PD7zx/J5OY2NWrX7/L0I71XV2G9+u5cOFC\njbeCexov98X2Hr6QUSofLQvPedjtU4dt//yZY+JFjFzhnPs+KJQZHzgaDAAAUJIh2FGPyT1C\npy4ccFBpYO/e39bgSdCEKUeeuP2cNat0ZEuzie8bzp7h51rZlIhkr8M3LFheZdjKztWFJ9ZO\nWzf3z31b8k6r9M/PebmXdjs5e9TGcFnlmk6GWl9FNC+RkDStY9e7hsnehTubzR9sbyAmosyU\nmOBFISZV+/j08L5zbIHEtGWfnuyvzOJe1427wbdep9T36D24fgOXKtbZWUmV2zTiXouO+2JX\nrVrFceRnERcOb1c78aJrZaMj87e2WTrS3kCLiDKTorbOO2VYuXt+2gwAAFACIdiRsVO3bdua\nRL5OqOBcXUtA5nW9f3Wt1sjFRlXKOqzZf8LaLruntx/mv9FnwofMIRWd61V0zso3irTHYyfv\nWLN6gepr9MPbj2LicvW61Wreykos5F7abX9E8sKgPc4m7GOI3OvYtZ8199bEX/z6hdlXtNOj\ntJiXUUprlznLvWUxq2bteNRv3hp1t4J7XTeOBssTLmQmvKnr2ba2+tXmOObb5pR33Jn7YitU\nqJC9/cXdW4li0xpOlcWfo+XEiSFE9O743otfn0U18aLT3KlXR88Z1f8fh6qV9Cj55eNn6SZV\nZy/1UncJAAAAJRyCHd24cUP14fHtm0REpC+k6FvhmQCdcz4AABpKSURBVK61y5OaYc2MlAfb\nt28nZRoRs3/nDn01ryPjfgcX99JuVjqGTsZqQxL3OnYinQozVgdFXLsY+ToqUaHboYdjM7c6\n2gJSiLpvCBpjbSRWc1QN67pxNFjjanPcC/5xjzuru9j7f27f/PsF/R7zF7jbEjFHFozccS2a\niCxqdVgyZ7ilWEiaXg0iNnBetmXb1XNhz15Hp4kMm7br1bJVw+zliwEAAEodBDtaunRp9mdl\nRrpcwYh0LB2re6mCHeuwprFj95cv78jePyWiN+pfR8b9Di7uGQPjhrjO3HV2uq9Uj21dEu51\n7IgoOjL8bYrCyNzGiIjSP108d5aIajVvZW0kzHu0nN7eCz109MyL6Oh0kbF9xepk0Nu1opHG\nBmtcbY57wT/ucWfWi7Wt6fTLuj9adPf1cDEjosRn2/c8sF27a6Ve4sOAKfPmBkkDh1SnHKk9\nJ6F2OdWP+3lmjMjcpgIRkTz2wumz2TNjkO8AAKDUwTp2X2MU75/d2r5sc92Jv7WrYkREivRX\nCyf+ciNK8fWw5iybuFX9Rt0ytbZYvWaluteRDeo1avs+teOe3Eu7JUdd8hu7LE4hNjT46n2p\nwcHBpGkdO7U9hes3WYi5gt3HWzsGzzlq7dxC2qCaPpMUeTP0wv1PgwO2eTsaaWzw9yz4N6C7\nz+QtwerGnVkv1uZOSGSLOYE/Zb097MbswWvS/HYsdiWiN6HTRm82OLT711ytypnaf5vXmTQt\n+Dd06tTmtuyv2QAAACiZEOxYpLwPGTDh0cFdk7K+M4rsYU378p+HNdNffki35RjWJKLTc4eK\nhq5S9w6unBhFyqOvZwzM9+3+0cW9fZPaRl9HMTe3L8+fvX328OmrKIG+pV35KhWtv7xKwb9n\nt1azN3O/15XVfN/uUY38NoyVZm8JXT1i3U2nA0HjNDaY27DuXRoF7BxSwTB7S1LUjn7jrhw9\ntJGIJvkOXhS8VYuziyzXxfp26dRmw96B5bLu7ZRe3VI8FgUOqUZEKW839x5xJuTovtyHyJPa\nX51cOvGgfGqumTGjs2bG7Aqvu2/LsPxcHQAAQAmBoVgWWhLzdNk/Xy3Apm1YwVHVOaS4d/sW\nEbm6ulrrsL+ObMzU4eUlIuJ8B1eud9vnnTEQkWG8c8pI1q7AL3Udqls7VM+7Q5zA5htSHRHd\nTc7o6ftDzi0/9P0x4OzOW7dasO2ee1k+jukR3PNtucedVawdqls7VH9x91ZC/PuMcpWJBNn7\nyhMvRaRkdPPMiphKhVxAbIFbILJybDh6bsyACRvb7ZpEmmbGbOo5KY0ZKmFbFwYAAKBkQrCj\niIiInF+VGclXD28VMBn5WYDtzgb/ZafedqznmZF8Z86+i6rXkc1dUW/ztCZENGPWYiKiw7vP\nfF33wIEDGmcbeNsrHqdmVmebN6qxrm/N9HNvUvLTU5hLUxOdF1HJOacpyJ5G5PNWcE+P4J5v\na1K1bsyaZb2PrM817jytX2t10yPczCRXDz/sN8KViF6dOCQUGXe3yrreB/vDtY3VvhNMS2Iu\nT7qt+qxuZgwRCbXM83nTAAAASg4EO5oyZUquLYZWDiOXr1KN1nELCo2Rzts8tILh24sHxSZt\nRvX0SmkZ5zs6mKgJcU7J1DjbwGVg3w2T5rbo2NLaWDdnRTc3N411OXoKWRuTkpKi+tBnxtAp\n02cdHPKTm4uDHqU8/ffCpm0PR6/c5VHZkLViTtzTI7jn266YssKkYdteX487xz8I4Zgecb9e\nk+hTc2akd6xpkn485JlF/cn6IoHsQ3T4xZAVYW/rj/NWHYQ1tesYZwVKdTNjiMkM/2O1jklz\ndNcBAEDpgmfsSKlU5vwqEAgEX/9zzvE+q/5dO/fcss/TTBI2ZcCBCtPW+lVPjz/TY8D6n6eu\n/7GJ5bVr11jPqApY3LMNevfuzVq6d+9ejXW5S/Py9vZm3U5EAoG2iW3noPV9c40d56VuesTv\nhzc/f/T0Y6qocrVqlvrs/yPh6zN45/6tuYZhNwz0uc85PWK5n9OmI2Ev38psnd3GTxhioy2c\n69v9ZhJJfceP9WkqUHNphlYO/afOzc/MmH7z1nSrZaruzgAAAJRA6LEjofCrwThlRsLtSxfC\nzoeNn7mMNL3PivV1ZMTIQy6+/7GJ5fLly1nPqApY3EusqQKcOtx1uUvz4n55g1DLhPIx/sv+\nOjKh1vRhg+6+TyUikbaFz+SlvRtZ5K3LOu58ISG9jeeXXr2DD+MNPbIehjOu7pCRcqai268L\n3L56S8SgeSv87e0MtL/8oL///nvOHXKl9m9e8A8AAKBkQrDLwjBpkf9cDgsLu3DlTmKmUs+q\nimo79/usWF9H1mjgkrHtq5GagDVp0qRTcWntTSVERIwiLT1DIpHk2kdj9xg37sXb8qpcubLG\nY2oc/2WdHqGvK4xMrTJpwcBKevJTO5YdWDq9/f71pnlmSLCOO2cy9F+nR5R3yLrALl26dN+4\n29dKL1dqz+ubF/wDAAAogRDslK/uXw8LCzt/4fq75AwiaujeuXXr1k1csvqKuN9nxfo6soM7\nAy5J57XXExGxRLfIyMg6GVmDv6mfDvf8KfjYsWO52sTdPfbq7qWnNvWlFpJff/0153aJ2Y8z\nJjQlTUsuc+B+A8SsRdtJ/eu5WKdHCCLP15o+vrmLBRENmDL6eJ855+LScg7XqsxbtJWIDu58\nnHNjJkPfNj2CiBQKRX6eMOB+NQgAAECpU3aD3cdn4WHnw8LOX3jxMU0kMa/buG1nF+2Na47O\nGPdTzt3Uvc+KIVJ1J2mb2rqY2qqKTOu0rC9/Mz8f0Y2b2u4xRhl76/D6U4+aBeySWkju3r1b\n09PL4sOLK//cM3b1Gd/FWbXXVz2F2Yu3DXDXeF7uN0Bwj/CyTo/w9g51sM9KY9oGrkSUomRJ\nXKzjzvGROwZM1jw94ntwvxoEAACg1Cm7we6ncdNFYvNGrTp0bdKksauTrlCQnhC2Mc97Iljf\nZ6VIk+9+n9LXSo+I0uP/njb3ZEBAgGp/eeKFAmkea/cYo8yQK3QGzFrbrYqxakutLr59rfTi\nHp72m7493qQby4HyLN7GYX9E8sKgPereAEGc80hUKjrXq+hcL+eWHAmRa4Ypyxp4TgNXTzHY\ndCTsjxsy+0ae4yc0IaIV48beTCKp7+SxUhvua3l57WKoodoLadWqFX3Hgn8AAAAlU9kNdqba\noviM2Nevoyo7vI9NcrAzYg8BdYbMb/1huv9PvYhoqE8P1fus6Nz+7B2UmXFPnjwp8Oaxdo9t\n+annzbrTutXPPaJqWt3jl3a/L1t8uflS9m65nIu3cbDSMXQy5kh1LPNIzGyMjLW/93E0tWvg\nuXXXOD1CnWub17DPSSaiz8Humxf8AwAAKJnKbrDbsS/o38sXwkJDD21evneTlmPdH5q4sixc\nJxAZD50e6PX1+6y8cwS7wpO3eyw0Lr1upy8THWxsbAxFWRGnckeXxDGHidxJ0+JtHLjfAME6\nj2TpaXGzNjXz7pwSc+fPa8+I6MzCGXdyrE6X6+uyZctI0xp4OWVPj9Co69qgXpa5H+bLfbT/\nuOAfAABACVd2g51Ay6heC896LTz9ZG+unA8NDQ0L3vaGiMbPDmjbpo20SS1VyFCxdqhuZqZ9\n+Ubk80yFrmmd7zz12SWz74mFRKTM+EhEU6dOzVm6ePFiUtM9pkOkmyMVbdy4MUc9pTIzVvWJ\ndcnlwdMHaGyYujdABAcHk5p5JJnHgwYNWpZzI8OknT+waf2N55bO7uWNlaa6X+bP2tvbs573\nf9FJ3WZ3yL7hAqGkg1/nHYP3EeUOdvmnpaOTd7pxLhyvBvnm8wIAABSjshvssokNbVp49m7h\n2Vv29tH5c6GhYWHrl4RuMbTu36LiqWsPxVZVm3sP9nSIHDFydbyCGEYp1q+o8Zgc0c3Y2LiW\nnfXnb1bWdizdXaSue+xYfORfUTSQ5f2w0X9GaBtkPdzGvXgbB9Y3QGRTN48k5z7xTy6tXrH2\n9ju9zsPn9G9fN5/vbWBfA09kkL/a3w4BDgAAeAbB7gtD62qevat59h729tHNA+uWbz/1sLVX\nB3NB3PGACU9MyKLjqDV93cWpr7dP/+VksoZDcUQ3Kysrf39/jY1h7x47tullyNzLntvcLL/q\ni0p9d33x8dcVe4xTfdW4eJs6ERnGO6eMZBuGJVIzj6RimxmqUkaR8Mf2NduOX7dv7L18cT8H\n9RMX8mJdA8+y0Zhvuwoi+uGHH8rriNSVHjhwwKC8VOOrQQAAAEodvFKM3VifruJ+K3/zqkBE\nr09M9tvwcPOh38tpC4lI9nKl7+izFlWrW33uk3v4+H3NmlnpTfX1v65vktdony41lgSNrGzk\n7e0ddDTEVCSIf7R60PRHHrbxp19rte87oGXtKtbmurFv30TePLP7UKjStqWtwTstzi4y1SAv\nh/3+A+vM35LrDRDZGEXClkXT//fPa4ZRaosEqnkk08f20RUKYm6fXLlq+1N5OV+/cV2bOv7X\ni1VmvF81a/q5e29zroG3YM64ct89LYOVt7e3TfNFGyc5/9d3rwEAAJRw6LFj9yJd4dnQXPXZ\nvH5NoofZIUNL35a4+uTUjq7+J+q6x0b+5FD9wLZtO1f+8XkJXoHI0N1n1E8+rTcE/JZdXZn+\n+tL1F82bN/9PJ2V9AwQRubm5kZp5JIq0mL0bVu87F1Grte+6n7uV01bbT8aBdQ28bzhOPu3c\nuVOkbUgIcAAAwDvosWPn7e3ts2WfaqW61I8Hci4ynOtrIeHoHiMiJiMl5vXr6PcyM1t7e7ty\nkjyjp9/WyN69e7Nuz15AOObRncdv4nP+mdmxZmWsXGld28OjtjVrXXW9Yholv76vX9752+py\nW3Xi0dgfq7EWMZmxh9ct6z5mUWGcFwAAoLChx66EYu0e+1Iq1rNzcLJzKOCTsr4BItujvbMn\n7r2lY2hqmOPxtQSFwMbGhj7cP3PmPmstjmDHMPKwA1tO34hMYvQbtOnXt12N93evXnv0PCrq\nzce42Pt37u47GvLN18Lh3MZJAsGyMR1yZ7u4h+eWLFkfKTPu/u1P9wEAABQnBDu1bgZvkemK\niSgz9QkRrV+/XrVd9bVoWDtUt3ZgmQNbeDjeLbH+aHjtnxbM7+xSUOd6vG/ain1Pqtb7oYKu\n4q+N0z4pvUM3hJhWqFLezEAoMW3XvV9BnSiXgFHtJ6yZRPTbmA5VVVsYJu1s8Kq1hy6b1263\nbOKQQjovAABAYUOwY+fg4MC8ehaZ42tkZGTO0kI9+6u7l57a1JdaSH799dec2yVmP86Y0LTw\nzsu6eN7wVYHt7fWJ6H2GcnxrpwI83eaQFxU6L/xtkDMRJTzZ1c//YMWucwIH1tNY8Ts5tBkR\nIBT6r54koGWjO1RNeXNr9eLlV18JPIfOHNKxfj6XaAEAACiBEOzYrVy5snhOzPy/vXsPi6rO\n4zj+mxkgREdUQh3FDEQzDezm47ZlomZeSjRL2pIueF0xbxSsW+yjWCJBICKKdGFk1SzajKzd\n7GJpu1uirq6hIWZswEBWJpSI3GbO/jHGjFzG5xnmeub9+uuc3znznK+Pj8/z8Zzf7/fVf5Dz\np5y9p+/K2D7+Wt/i4uIR902/9qfvvjx8wv/WqJUP2GXOWasON8/buG73lJzHhBDRo/rsO3ru\n9nEDbPW4M5da7p1yvfG4Z/BMId4Kn2LL4GhB8MRFmQrlyo3xF6sjit//TBl8Z1LO0lH9r9Kp\nAgAAF0ewcy3njmZt/Vj3xOrND4b6G0duemBOdF+/mlOfLEnU1vZ60MJvje25jAyNlW1GhBDx\n8fGWn97h5nkX9+QVFQ0TQvSaNPvMxvi0b2feNnRgd7PVr1bv+qaXJPVvyz4UKrUQoptdtjfp\n2OAJCzKVypUb9vjfMnfr6hk+vKkDALg/gp1rKdx8cMD4Zx+8rW1H1N7D73l2cmFayhdjUyd0\n9tva2lqzM3VYWNiVI1fXYW8JydCUnp7eOnJ471uH917xK/fdNOS6iHmZKuXKDW+8/9Vds0YF\nOLscAAC6imDnWvbXNN48I7j1VKPRqFWX32IF3x/267K3heg02K1bt66LT+9w87yQ6WszF3S1\nPa5LaV0HYzSyjyF/zVO6SXd7//bSbvHixU4oCwCALiPYuRalQnQz69Oam5trdtFgaDlv16eP\nmv/CxJ8S4+b+QQixIGq2cfO89fPCjVdjY2NTNm3uabZnnr7hm+UJ27KzrA+UHyetOmL2521z\naqeZjubrYIQQoocmuIcoO13aye0AALgNgp1ruUPtU/KRTjzZwRYnVR+W+PSw74rRzjbP02q1\nQgidTrczX+urMAW7hppSXdVZqx83depU89MbbnDQygmnrYwBAMDOCHau5f6oYXtfXfvFfXm/\nD/Q1H7/0w6GU9yoHz15h16dLQijabZ4nSQ3l5eXGY11FhbfZ/QqlOnrJQqsfxxdPAABsi5Zi\nrkUy1G+JW/hJpdeU6CfGhYf2D+h2/uz3pf/Zt/Nv+w0DxuVkrfBv1z3MhuY/tzkhYcEwf5/W\nkQvlRRtfykrctFMIERcXl5SWrrZnAQAAoCsIdi5H0l/4tCAvr+DTC/rLfzUKlXpCVMzcqIn2\nDlXb0+J2F/06e8kzj44fLkkNB97YsuXNA8F3P/xi3KPGGyz0pQAAAE5HsHNRUnN9dWVl1Y8X\n+gwIChrYz9dR78m++/Kd9KwdInxav+pPj/+qiVm2ctptA42XTH0pDu3Pf+fdM6nLko9cbO1L\nAQAAnI5ghytJTfu3J214+6QQ0v0rX1oQMbT1ys4/PnJwdMKmebdERkbmv/Nub5WiKG/ZxsOj\nX8+xV1NXO9m1a5eFq95+Ix6aIavtXQAAnoPFEzC5UH4oe0PWf+sGr3gxb/C5falZCSeLZj69\ndM4gPy/RWV+K9/KFcLNgd/z48dbj8tKSeoN3v6Cg7opLVbqzzd4D7p3adndoAADcBcEOJnOX\nrx85Nebl+dP9VQohZm8adbs2I3X5kwd3F+SITvpSKL0DnVevlVJSUowH332Qsep8QFry0mHX\n+gohmmrKchIT6wJt1gwXAAAHc2BvTri8+c/nrlkU2brw1lsdvHD1ltUxo42n8yYGfb7+5W9/\nbhBCCENz1df/TEv6fPCk+c6qtuuyt/1r8urFxlQnhPDpHbLgL/d9uT3LuVUBAGA13tjBJKCx\n4siRijaDyoGTjAeW+1K4o+om/UhFm1UpekPzT86pBgCALiPYwSQ1NbX12NDc2KSXVNcEDhk+\n/dbwQaLzvhTua1Zwz90vvDYpNTaoh5cQoqVO99rze9XBDzm7LgAArMSqWHRC0v9YdlSb9srN\nz7w0ObSns6uxi+a6k39emnTml2tChl7vJy6Wf1PW2Gvomk3JI7p7X/3HAAC4HoIdLKn/8d1H\nFr05JLi/hXsyMjIcVo/NSfq6g58dKKusalCpBwQNGRcx2k9Jaw0AgLviUyws8fINkAyNYWFh\n7S/VVx//sKhMoerh+KpsqK68+MTJE629NCrPNdJLAwDgvgh2MCkpKTE/NTRfPPj2a769I2Ji\nYszHJanh84KXc478L3DkhBXLFzm2Rlsy9dI4XtwixPkT/0je9ha9NAAA7otPsTCJjIxsM6Lu\nG/L4qrXmc+xqz/w7a8PmYz/4zZz/1ONTbnbrz5ay6aUBAIARb+xgUlhYaH6qUCiEaK6razSe\nSvpf/q7NznvvUNCYyPSUx0LUPs6o0ZZk00sDAAAjgh1MlMq2G1ZfOlc4Z+6OPXv2VB/7IHOj\n9tumftEJGbPuHOKU8mxONr00AAAwovMErm5X5qrFa7Z63/rQlm2Zskl1Qo69NAAAHo45drDk\n0rmCh+fuEEL0D7/nnvCONz2JiopybFE2I+l/eXV94vuHKyXJ4KNSGHtpJC5/tBs7ngAA3BPB\nDpYYg51Go7FwT25ursPqsYezMuqlAQDwcMyxw9W5e3TrTGxsbMqmzf1DhvcPubyEQt/wzfKE\nbdlZ65xbGAAA1iHYQWRnZ3d2qaWhzJGVOIxWqxVC6HS6nflaX4Xpw2tDTamu6qzz6gIAoEsI\ndhBlZZbSW2hoqMMqcZjy8nLjga6iwrwvrEKpjl6y0CklAQDQdcyxg+eKi4tLSktXq1gqAQCQ\nCYIdPE5BQUGPQeOn3RFYVFTU4Q1jxoxxcEkAANgEn2LhcXbs2KEZO3LaHYHp6ekd3lBQUODg\nkgAAsAne2MHj1NbWqnzUaj+VswsBAMDGCHbwaFWnjp2urmnzb+CmsRF9vWnKAgBwP3yKhec6\n/eaa+NeP9QwIvObKFJcyNsI5BQEA0DUEO3iurbuL56VoI2/s4+xCAACwDb43wXPVKDSkOgCA\nnBDs4LnmjGj87Pt6Z1cBAIDNsHgCnqu05GhB9l/73j1+eFBfXy/Tf3LYxw4A4KYIdvBcUVFR\nHY6zjx0AwE0R7AAAAGSCOXYAAAAywXYn8Djx8fHtB5Ve3a8bOnTy7KhQtbfjSwIAwCYIdvA4\nGo2m/aDUUl9yoHDfR188m7vhdn8fx1cFAEDXMccOuMzQ8nPWwtivgp7KWzvW2bUAAGAN5tgB\nlym9AqKX3lh7arezCwEAwEoEO8DET3OdvqnS2VUAAGAlgh1gUl9dofIZ5OwqAACwEsEOuMzQ\n9EN+9te9hs9ydiEAAFiJVbHwOMnJye0HDS31FaWnfpYGPvc0/cQAAO6KYAeP09TU1H5Q6dXz\nd9MemfjAjMF+/KMAALgrtjsBAACQCebYAQAAyATBDgAAQCYIdgAAADJBsAMAAJAJgh0AAIBM\nEOwAAABkgmAHAAAgEwQ7AAAAmSDYAQAAyATBDgAAQCYIdgAAADJBsAMAAJAJgh0AAIBMEOwA\nAABkgmAHAAAgEwQ7AAAAmSDYAQAAyATBDgAAQCYIdgAAADJBsAMAAJAJgh0AAIBMEOwAAABk\ngmAHAAAgEwQ7AAAAmSDYAQAAyATBDgAAQCYIdgAAADJBsAMAAJAJgh0AAIBMEOwAAABkgmAH\nAAAgEwQ7AAAAmSDYAQAAyMT/Aanu3NkeaVPLAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "fig1_colors<-c(\"#F6A26B\",\"#F06423\",\"#71A8DF\",\"#286EB4\",\"#FDDBA3\",\"#FCC975\",\"#FAA519\")\n", "ggplot(dt, aes(x=geo, y=values,fill=acl00)) + \n", " geom_bar(position=\"stack\",stat=\"identity\")+\n", " scale_y_chron(format=\"%H:%M\") +\n", " scale_fill_manual(values = fig1_colors)+\n", " ggtitle(\"Figure 1\") +\n", " ylab (\"\")+\n", " xlab(\"\")+\n", " theme(axis.text.x = element_text(angle = 90, hjust = 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The graph not exactly as in the SE article, because in our case it is sorted alphabetically. We have to add the empty spaces before the EFTA and accession countries and reorder the values. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (position_stack).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddWDTyh8A8FTWubsAgw3Yhg8bMtzl4Q4PHg7v4fxwd3d3dx8Md3dnMGHu7lu3\nNr8/Bm1STbpemo7v569mu1wv6Ulyd7lwcBzHAAAAAAAAAAAAAAAAAAAAAAAAAIAeV9cJAAAA\nAAAAAAAAAAAAAAAAAAAAAP4UMEgPAAAAAAAAAAAAAAAAAAAAAAAAMAQG6QEAAAAAAAAAAAAA\nAAAAAAAAAACGwCA9AAAAAAAAAAAAAAAAAAAAAAAAwBAYpAcAAAAAAAAAAAAAAAAAAAAAAAAY\nAoP0AAAAAAAAAAAAAAAAAAAAAAAAAENgkB4AAAAAAAAAAAAAAAAAAAAAAABgCAzSAwAAAAAA\nAAAAAAAAAAAAAAAAAAyBQXoAAAAAAAAAAAAAAAAAAAAAAACAITBIDwAAAAAAAAAAAAAAAAAA\nAAAAADAEBukBAAAAAAAAAAAAAAAAAAAAAAAAhsAgPQAAAAAAAAAAAAAAAAAAAAAAAMAQGKQH\nAAAAAAAAAAAAAAAAAAAAAAAAGAKD9AAAAAAAAAAAAAAAAAAAAAAAAABDYJAeAAAAAAAAAAAA\nAAAAAAAAAAAAYAgM0gMAAAAAAAAAAAAAAAAAAAAAAAAMgUF6AAAAAAAAAAAAAAAAAAAAAAAA\ngCEwSA8AAAAAAAAAAAAAAAAAAAAAAAAwBAbpAQAAAAAAAAAAAAAAAAAAAAAAAIbAID0AAAAA\nAAAAAAAAAAAAAAAAAADAEBikBwAAAAAAAAAAAAAAAAAAAAAAABgCg/QAAAAAAAAAAAAAAAAA\nAAAAAAAAQ2CQHiCAF3K07X5moa6PCpR9fexN5fNe/dWfSh+zMOspn8uVj3x9bE7pIwcAAIBC\nQXogscb22/xV1ylSIDt6OTGRHR/G6TpFAIDSolKuoexL6EVdjULZPnA9yOHkTo9KPe7rOkEA\nlH3Jr1eX9KuYOffJF5P+VZh5X+vdOMxEDgAAAJ1TfT1Kqm7/RU90nRYAlIJBeqCXLlWzlxns\nfJ9bpOtEARoKM+5yfw9az4vM0nVyVAnasLb0kYSfmS3C8dLHA1CA+gQAwE5QO+kFXf1MWv9e\nyG9/uLKdAcpMOQUAgD+WqCC8Z7uFJf0qU67sMIb+bKALP57d3L5q3oAuLWr6VHVzsjcxNDC3\ncfCoWr1Jq+4zl2+99TKoNB1/xbkxF/et7t+tg59vdTcHa4GxRXlPn8bN2w75b+G1F6GlTDnS\nyCNe3962ck6vdk18Kld0sDY3MDR1dHWvXqdh/1FTdx2/EpVbXMr4yzz9zVcyStvbjxdbG/A4\nmmp9OUI+yl4HzrgY8jAMe7q03Z4fGaU+RACQ4Os6AQCAP1HkpSW4ngxa5yYdO5G8e6C9SWki\n2bv0o7bSAwAAAAAAAAAAAPDn2D+o1ZOMQgzDnJqsWVrfXtfJAX+cx6c3r1qzJvCd3MouwuSc\n9OSfwV+f3b+8Zh7mWKvD7Dlz/+vblEcncnFR8qaJ/yzbfyO9SET8e3RYUHRY0PNHd45tX2JT\nudGyHcfHtalIN+VIIw8K3Dt/xerzT8Nk/p4UF5kUF/n1w6vT+zbyjVz6/Ttl/qJJVc0M6MZf\n5ulvvlKolL39wqynGcVi9eHoMDCre3VRI9/ZT3Bx/pTmg7tHX3EwgElegHUgUwIAdGDLgve6\nTgINazYElWb3wsz7G6OztZUYQFF6yAjihMpBP9J0nSIANAf5GQCGlZlCV2YOBAAAACiroLFW\nK/nt4jEXIjAM43B4686O13VywJ9FLIxf1K9Ws/6TFYykykn8eGNyP/+qHSYFZVNdOyfj6+WO\n3p7Tdl2TGUmVkRby/N92lbtN35MrpjEIii5ycXHqpnGtfTqPlh+hl1FcEHd8/f9qV2i4534U\n1XRTo9eVp17nK2VK2dufnxZY+jTIqzX9Um0zAYZheYnXOi96juIrACgleJIeMKHb2AkVjWhN\n9pJVzrBUuwNWyQzbsl2vBq2D9y7CVgZovPvP4/PEerJsAAAAAAAAAAAAAABbiPP/7frrLYRO\nTbYMcjbVbXLAH0VclDykls+J7/RWyQ67ucW34vPrQY9a2BupDpmfdMevQZ8feZRGXnFcdGX9\nGN+o7K+np/E56sOjixwX585uW2PNg3gqMZcoSHs/to1X4vWQ+e1cqe9VVul1vlKm9L39GV/e\nlmZ3Zbh826NLG9aY8hjDsHdrut79X3xrK0MUXwSAxmCQHjBh9Io1nazVtB/gT4EXzuiwQNeJ\noCc/9eqOuJzxLmaa7b5jxWftpgcAAAAAAAAAAACgzPu+t9fZ+FwMwzgczsLjQ3SdHPBn2TOk\nsfxIqnv9tl3btalTtZytjXleenJ08IfbNwJuvw4nhilIfd3Vt/fb4EtVjJUOvogKowfW6ykz\nkmpgWr730D61PCu5WPGiwsPf379w/kkIMUDw2emd6vvf+l8D1SlHGvmxofXkR+gr+Po3qlnN\n29vb3ZYf+uN7UFDQq/sPo3KlCcDF+Yu7+nqGhQ1w07B/tczQ33yllDZ6++NvkDJVFS8vWmuA\nl1f+PgWf8aeqznX/kVckLk4f2ntvzJ3/NE0jAEjAID3QS9a16vlZkBozU24p5noBpuDFaasG\nNNoTmqnrhFDiJOAlCH8tCrR92afxOxprEElh+s3tcTmSTQcjflJBsXbSB7QE6hMAADtB7aQX\ndPUzaf17Ib/94cp2Bigz5RQAAP404uKUftPulny2rrpwTHlz3aYH/FHi7o0bdzqU+Bcj2wY7\nTx4c1tZHJuT/lmwOfXhy4shx1wkdnjkx1zoMOfPz3EBl8V8a0eoS+cnjlpP2nFg93Im0muyq\nyBen+3Ye9iqtQPKnu7NbX/snubOdqsfh0EWe8X3TsOM/iH8xr9Bq97E9A5p6yIQUFcQdXPTf\nuDWXin8vLyoSJk3ovHzAx5UqUl7m6XW+Ukhbvf0/HyVJPvONPX8Elerls0RcgcvRiT4NVn3E\nMCzu3sS90cNGlfvTZ4oAVoFBeqCXmp+4Dq8Q0S/5ScGXz5/euGz1q7hcXaeFqtUtXYbejC75\nHHZilnjHI1oz+EqEHlqI/74Y5QkcV3oUj/iaqr00Ai2A+gQAwE5QO+kFXf1MWv9eyG9/uLKd\nAcpMOQUAgD9NyOGBn3KFJZ+77Bql28SAP82MQUeJm0ZW/o+Cb9e3UbxQtmfzAVe/tZrVps7a\nR9KngSMuDN0f2XVEBQWTS/KTzw44SXqbe+tlN+7MbS8fsoJfv4fB7m09mj/JLCz5i1iUM7b/\nieg7w5WlHGnka7stIb7T06xc13ffL3oqesstz8hl5KoLDTyH1Rp1WPLH1E+rZn6Zvrq6rbL4\nyzz9zVcKvk6rvf03kvMln43tepQ+QqKaszYarGldJMZxHF80+Pioh2O0Gz8ApaHBkBMAAKhX\nlPv57JHdi2ZO7NOljU9FZ3MnrwHjF+jRCD2GYU3X9JZ8Lsx8vDo8S4NItqz9Kvns2HCDg4GC\ny1YAAAAAAAAAAAAAIIGLckZMe1TyWWBWe4e/s27TA/4o2dHrjidI+zA5HM6SOxeUjaSW4Bo4\nrrz1sg3hfa84Xrx41A2FgW//O6tILB3qtvYef2OOgpHUEka2Dc8FzuRwpOvxxN4ff//32CqT\nkQuzHq8Kka4SxOHw1j44pnCEXqLmyENrGjoS/3Jy6lMV4cs2vc5XGNrefvENwmP9Fh4ttRGn\nlKFly7W17Uo+xz/+71xSvurwADAJBukBAEhkhM7tO3Ts4jVbz127GxSRICLMstQXNt7LqplK\n32dzcMEbujEUpAXsiZeudd9hXRvtpAwAAAAAAAAAAACg7Iq9N+rp7+Eiz6Hb4Y0hgElBGw4T\nN62rzv9fXTu1e/EMyx08NYD4l/jHM4RyHaLi4tSxlyOJf1kQuJKvMoM7Nl68obY0Abi4cMaO\nHwpDIo089fN64mP05uWmj61koSpqDMMwbMRB0jlJfrNV7S5llf7mqxLoevuF2S+Ti0SSTdcu\n5bQVs0T/nX+VfMDx4pn/3td6/ABoDJa7B3+QwrSwS6dOnrly72d0dExMTB7XskKFCu4VvbsN\nGfF3d39jPZmyEnr/yJ4Lj4OCguJzue7eA84dGKcicFFm1M2AK5cvX/8SHhMfn5CYlCGwsLS1\ndalet36jpq36DOzpaa1qst4fjsM13ti5fLszv5YJirw0TYi/F9C5Kwzeu0TymW/ots7XXuPJ\nouh+ypyYT2fOXH7x7sOnz19iktKzs7NzhbiZuYW5hUV5D58aNao3ad2lR8dGZrzS3g9nhb/a\nt2fv7VffY2JiomNii3hmNrZ2VWs1aOrfevCIQZ5WglLGrytiYcrNU0eOnLr2IyomNjY2s1jg\n7OziWs6jfe/BQwd3L29uIL9L5Id7Z86cCbj3Oj4xMSkxqYhvZmtr51XHr0Xrv0aN6ukgoF0Z\nsaGk58Z+PHXu2osXL15//J6cmpaekckxNLOysnKs4NWgQYOmbf/q376u6nsD1RI+39u3//Dj\nDyGRkZHRsamm9k7Ozi4VvHy79ezdo0szG/onrQQzp06fMj8u/Pb8ztWrV28//RCfkJCQkJhV\nbODo6Ojo6OBRo1Hnzp07tm9qr3KaPEW6PSeJQc/OnTsXcO9lTGxcXHy8kG/p6urqVq5iy659\nB/Tv7qFyGrtajFWqeg3pWcLFua9vB5w/f+H5559xcXHx8Sk8U0tbW5sKXnWaNGnatnv/Ft7q\n+0EAdYgqUtTNitZB2dd6xY60rmYz/T1w3ZYCNlUa4u9PAo4eO/H4Y1hcbGxcQrqJjb2Ts7Ob\nZ60u3bp3+6tdOQsFNwjsh6R5ZerKEyn2XOrT6izSC/v/uyn5PGZ2TU2jwUNf3Tx54sStF18T\nEhKTkpKK+WY2tnaVa9Rr2rTVoBFDqtqWpl5FGjkNbOiXYFtKSunKhSjiZsudVBfHdm29uZzh\n0ejC4pLN4oKICyn5/e2NiWFS3v8vXigdjzR1HDLZXf1Q98BdvaY03CXZDNqyBZu9Tz4Y0sgT\n7pBOS/mePdXGjGGYleccDNsk2SzMeJAnxk10O+1GRw2Q/uYr1ArSrhE3K7Vx0vpXOPiudTU8\nFFsowjAsMmB0QlGUk4GejAaBMg8HQOvEBTLZ7Fpavna/oSDjHjH+eqs+qg5fnB+9Zmx7Y+XN\nv4lT9TUBwSWB88mtwr2MAvkIwy+1IobZFpdDMeWdbaTNp1WlDVSO7l2O8Nff01+P7VyL+C8z\np5HKvkiY+WPFmI7GKntAuDzTVkPnvonLpZh4WpI+dFXx1URzIzJpxZybdFwmhord72klzb3t\nTIjRZhSLM0IXEf8yKyiNVoRDHU0l+7q1PovjeEBtB2KE62Ky1UaC7qdMD7o5vE1NHkf9ZbHA\nosL4VScyisWqI5TJuudT8kr+XpjxYVQHXxVfxOVb9565N0td/GplRS1TeywlJMVKPtkK65Pi\ngnCFh/bswAxXE6XT3XgChwUnSbEVpH6c1MVLRcIEFh4rLnylfsg6L+k4jmeF3R3V1U+g7v7K\nwr3+spOvVEflLJDeAk37mVHyx8yQwB6NPFTEzDdy+W/duTwRvWRr99ShyPya5edSED87tdbP\nzVT1d/EE9v8s2JdQqP5067xCUCjt2/W/m1VUcYAcrnHbcesShCJc7nqg4aYvqiNHXakqrJ1k\n8kmHB7HE/66vRnrV32YKjY7EqVauxH2HPYmnvq8KWj9LJOKi6ztneVqq6g3ncLh12v997XuG\n/N5ab0RSv04n/svAtEYhnaMJOUq62rRwn0b8r4rvRdcaykDUBmmxWWGG1nO16nJNPQwtVDIA\nYxW71utqFpZTZg4c6U0rkU5KgTSwTioNcqeH5IY05f3ZNpWtVSSDy7cYOHtXolDppRQL2+5S\nNq/KItXulSeTXTQ6vNSn21nExuxEWX7qVcm5NbJqqbrWUFbfZoXd7lOH1Akj9xtZ9Ji2M71I\nVfRII8fp9HGxp1+CPSnB5X4gDMOc/QJV70IFsXcCw7CXWTRuupe7WxL3HRUs25d4t3clYgC/\nLdR6gUT5nsbS08vh8D7nFsmHQhr5s9HexMib7PtOKXIcdzUknc+f+cUUd5ShjX4SLTdAtOhv\nviqBrrc/6kZb4u5HE5H0YZ5s7iL5im6XIlB8BQAagEF6gADLBumTXu3xJc8sU4jD4fWef1LE\n1kH6gvRX7VxlLyCUDdJ/OTXX3YTq9Hyegf2cI9rv4izK/fZEiXXkG0U2D9Lj4qKGFtKJz+5/\nXaUeW17yWWJs494l4/QH6dH9lC93jVLdqy7Pulr/ryrHAhV2XqS8O1HPxkhZnER2viMTlHdX\nUcHkIL1YlLNyaEO1X8ThcHoseVgSSeLTrZ6m6n9NDocz5mQIleNlQ0l/tnWcFZ/GzNO6gzao\n6KOQH6R/dWSOo4DS5GWbap2fplBta7R+6lBkfiYH6Yvygkc0LU/x6zAMM7KrdeBNMvPnpJSu\nLR1Asd4zK9fsXFgmrUF6BipVDQbpIwJIt9DV/ntO8VyJhPHEosc39qQ3WK4EirMkUZD6oqev\no/oYMQzDMC7feuL2pzIxaL8RERfUNiMNacwNTqd+umZUID330OVCOOl4dT1Ij6gN0m6zwgAU\nuVq/Bum1XrGjqKtZWE6ZOXBmBul1VQpK6KzSUDRI/3DjWDMepcSYONY990PxeDbb2u7SN6/y\nUFx5Mj9Ir5NLfbqdRWzLTrS8nil9dN5r5BPVgRXWtx8PzXSgdi9pW+ufeOVDcUgjx0s3SK+r\nfgn2pET+B8K0MUgvzPlIjNDQojGt3S/VtCfu3vNrikyAgQ6k7sdV0VkUY97pQ+pQHfJBQd2I\nNPLXM0hrWvguek8panGRIXkuXZqmjXEp+0lQNEDU6XW+KoGut//l5OqSfTkcA41ziGoJL4ZK\nvsWy0hwUXwGABmCQHiDApkH6lHf7ZCbrqdZq8QMWDtIX5QW3dVEwxU/hIP2zHaP4FB5ikNFp\nkRbmmVIU6OdM/GpWD9Lj+MMRVSV/4Rt7ZlO+NX2/xFe6o1GlkunztAbp0f2U3w+M5NKPGcMw\nq8rDC5SfAPnOi8yw47YGNApguQ5bKZ5ehZgcpN8/1Ifid3G4gk0fUlLe7XOmdg+PYRjXwOZp\nZqHqg2VDSX+zZQiHfhrq/nteWYQyg/QhJ8fSitnEofnjZPXNDYpThyLzMzZIX5D+5i8P9Wug\nyeAJHNffiWH4nJTGudntaB2goVXDhz8vEv+iYpCemUpVg0H6ovwQ4miBkXU7iqcr+nYfYrQe\n/W5S3FEFRGepRF7iw+aOJurjIuBwuGMOkX5TFI3Ivb+rEP/r0fcWxdNVkH6HeLp4AqcYcveu\nbgfpEbVBWm9WUEOUq/VokF7rFTuiupqF5ZSZA2dgkF6HpQDXbaUhN0gfenYirVPBN/Y88jFV\nPmJWtd1aaV5lILryZHiQXleX+nQ7i1iVnegaQBht+u+bgsJCJF/fRlyZo3aBDaJyHXfqJHK8\ndIP0uuqXYE9K5H8gTBuD9LmJx4gRWpSbTWv3neQlVSTLBJYQF6USR6y5fKtMyj2Nn9bWJ8Zc\nZ+E7mQBII8dxPCKgNTGMfZ09VGLOTSAtn25gWoNikuSVpp8EUQNEnf7mKypK2dt/qrZ0CoKR\ndRviv9Kjv7948vDalUs37z368PVHYrqa/lIVivPDDH6fJQ7X4JN2lqUEoLTgnfSgLCtIu1u3\n8diSd41ImDj59Onft2H1Si6O5hnxsSEfn546cSEsvbDkv/cXtVnkvUMXiVVlV782t+NyqYQM\nPzemyb/7cBwn/tG+asMe3brW83Z3tDPNSIgP/vD04sVL38gRBi7qNMD+08nxNbSZ7jKhzsLR\n2P5pJZ+L80NnfU7dVpvSy/bWbPsu+ezSaoM5zedL0P2UwuxXbcYdEpNjNrL1GjSwc6Xy5d3c\n3KwNhLGxsbGxMY8Djj0MSiEGywg50HP/jGsjq2IUiAqi+jUalVr0qwA6VfPv37dnfe+KjraC\n6OAfQd++3jhz/FNiPnGX6BsTln8bONfHhkr88ngCVz8/v9/f/vP1hyTJv+xq1/M0kjZ5pqV7\n99Wztd3WH/5W8tnI1rv/3wPbNq7pZMUL//7t86dXJw5dTC6SVju4WDizRdfNBa8lr4Yyr9jg\n70H9/X2r2hsVBn398uHNvSNnHwrF0l9EXJQ2ctbrbzuaKEsAG0p6bvz5FlOOy6TB1rvl4C5N\n3N3dy5ezz02MiYiIeHn92LV38cQw73b03TstbVRFNbdGmSHH/P7eS/yLqWvNjs3rli/nLM5O\nio4MvnfrSXqRmBggL+lhh5r9YqMvWSovbsycOq1kfmbyMy7OHe3b6kp4FvGPHA6/erOuPTs1\nr1TOzdqwOC429vPz2+cu3kksKJYeozDxfx1qeETHdHOi1HXLfIVA9H1/794rb8n8kcu3aNql\nd8v63m6ujsUZCeGhHy+dPB+c+qvPvTDjZSf/hVQiZ6xS1QDfyHNFNZuJn359aUH6rR1xueMV\n9eTKODv1PnFz7OpGpUwJ0rMkEsZ2rt7hYTIp/xjaePTo379pLU8XZ6vUiJBvQUFvH1x5FJQq\nCYDj4j3D6zdvkzzg98NnKApdvaVjsCPTJJvRgTOK8PcGFPYOOTiXeLrc2u10pfw+TtS1B6KK\nFHWzonVsLvvM0HrFjrSuVkEn5ZRIVwdeerotBayqNLIjjzYYeFhyKvgmzh169W1Rt7KtjWVB\nWnxk+LerZ89+IVeJxfmhIxq3qJv0zoe8NDR72m5tNa9EjF15IsWqS33VnUXsyU50FaQHnkzK\nK/nM5ZnM8bCitXvqh1115u0uucXm8kw7DBjRr2/3OlXcHS15kSE/gr693bd6xePwbOIu0dfH\nrQsdMN3TUkmUDEVOi877JViYEm3hG7pNny59IY6pQ186e4t3x5NKZUtLQ+JmXsrFQsLRGdv1\nsKDcYej2V3Xsf68lm7GXQ7BFdRiLHMMwB78xGHZXspn6Zdar7KENzFW9DwXDsOdLNxA3bapN\nppgkeRpXnmxogPQ3XzHgdkKe5LOxXXcMwzLCnu/cuvX4xRtfo9KJITkcfpV6LTp06DBk7Li6\nLvR+FJ5RpVFOpjvicjAMw8VFcx7GB3SisbICAKjobn4AKLtY8yT9Yj/SsmxcvsWIlWfkJ+yL\nizP3zugpmUjF5ZHqd50/SX92/2DJZw7X0L/b4MUb9t558vLrj59JaXnEHQsznlY0It3hG1rV\nXnf6mfzEObEo9+KmqTKzVrl86/OxVA+kNPTrSXocF7exlq5i59b6jAaJnPL51xpEFJ+kR/pT\n3hzkSQpsYDNnxyUl6wiJv9w92ZJ8D2/u+q+ymGWybsemvwqggUnlpUcfK4i9OHPXpDYyv2b5\nDleUxU9LWvBwYrQDvyudeq/Bk/QSzcZvjC2QfZNWXsLTru7mCsNzOPwhy0/Ir8eQ+PpQVfKi\nwSZ2PZUlmCUlfWd9UgVrZF13z5VXilbxE7+5soP4gisMw5waHVUYJzGpRgbSbm5j+3rbAl4J\nyUdYlBN7atVoa7kFThvOVZDZSqA7dagzP/X8TNfjBY1lkuFYr2/gNwUr/RbnR60e01bmpZvW\nXuOUvbuXPRVCQfoDmTV1OBxOs2FLQzNlJ02LRblX1itdNVfZk/SMVaoaPEmP43jUjR7EANWn\nvFR5tnAcx4U5H4wIPRrGtt3U7qIWurOE4/jZf0hjPByuYd/Z+xW9/1X05Og8mXJt77tAYZza\na0TEHchr4S4IpfS+3qGOpDOwIkx2L4oXw9ptDXGUFSmKZgUpdLlaX56k127FjrSuZnM5RXrg\nqJ+k120p0HGlIdfpIdF8+IpouRsEXFz05OgiD7mFnd277ZaPmyVtN4rmFd2VJ5NdNDq81Neg\ns4gl2Ymu73ubShJgUW6W2vDyz1L/+k2r9LiuKIOJRTlnVg+SWYrDo89t5iPHS/EkvQTz/RLs\nSQmO7J30Gkv9MoeYGIFZHZkAKV8HEwPYVN1PPfLchAPEfc1dJzIZeYkZ5NmW5TqtVL0wedrn\nAxbkq5eZr5Oop0pVzHT6SdA1QMzQbb6iopS9/cQLiUp9Tm6c2NVA3YRyLt+i54RVIblFtL7o\n+Tjpsh8OdffR2hcARGCQHiDAjkH6qMBRxDAcnvGSm9Eq4vy8fzimiM4H6c1/r05W+a/pT8NU\nvU5mVSMn4o5m5bq8ULnyc9qXM7XIr2C0911F8UBKo5TNdkHaDT+ynjPeaCVhSgbp8ReE9+Lw\nDF1TitS/TfPtvNqSXQxMvPJEv6KiOEiP8KcUF8nc6ky+HqX6WArSH7oZSnu1OBxOuHyvU0lI\nRfeuBqbVzger+on3D/Ighjeybqs6PRQxMEjfbH6AsjhzE64pfCHluONK136MuTWJGJLD4cQp\neXEdG0p6cf5P4l0W18DmksqB/4SnpNsJvmH5HJGC+xuF691Zew8JU37NnfHjkg+5u5PLM1PW\n6KA7dagzP6JB+vyUKzIvkXVtPUv1Sz1ebBkgc5hdjyh+QSB7KoStTUmNDofD+WfnaxXhk9/s\nslO0fqniQXoGK1XNBumLCyKIpdXYprPq5OE4/uNgC9L3rlDzbnL1UJ6l9KC1xA4UDoc7/liQ\nipgTn643JdfP+xNy5YNpsRF5M6sWMYDnwLuqjx3H8TxyX62xbTf5YqmrQXpEFSmiZgUhlLla\nXwbpS2irYkdaV7O5nCI9cLSD9DotBbqvNJQM0rdfpOp1CflJjxvbyr7FfOUP2RECNrTdKJpX\npFeeTHbRlNDJpb4GnUVsyE4a2Ftdun6h18inasMr/I0sKvb+kadq8ObyWNIK7aYOg5iPHKfT\nx8Wefgn2pATHcWH2G5kT2HnkM2XRIicWjvUkLfxQZZjsRUXoiebEAJV63acefXF+CHFf+ZFa\npJGXyI66KDNnt0a/hTFKGvSQ65tlrha8Bm6jniTVqFeeSBsgJug6X1FRmt5+YfYb4r4cOuu9\nmbm1vBZK47uS3g+U7Ms3rqS+ix8A9GCQHiAgd7/a678p0zWy7Xmiwm+g0EbvXjMAACAASURB\nVN8hHuJEmqffasNbtQk//08VTI7OB+lL1B6/T/XMxKzI7cTwfKPy1xV1OstIeb+VeJnC4XB2\nq3xLulaUcpAeHWWD9DnxpJcnDX0WrzaqnoSoKvaQzuGlMkiP9KfMTTxKjNyy4gy1MeM4HtjN\nnbjX6eQ8hcEUZt25j9ScLmHOO2KHDpdvRSVJaqEepLepNk11kTzewlVmF8/Bx1UmWdzDzpgY\n/m66gsqHJSU9LXgcMRnl2qt/tWdve1L5OpyoINnyg/SGFo0+Zqt5R1T6t2Pm5Bv+KsPuyAdD\neupQZ35Eg/SB/Uldh8Z2HZKF6u9Qzg0jtZXGNh0V7sOSCiEv+ZzMFPgGc5U+xSIRfnm8fOIV\njn8wWalqNkiP4/jOOvbEMHvj1Vy0TConfdKFw+EpvBCiBelZWlWbdHTVJ1xXG/PtCaTl1mvO\nUDAepsVGJC/5NDGAwLye6uYDx/HXM2oSd2m0UZNBR60fCI6yIkXUrKCDNFfr1yC9Vip21HU1\na8sp6gNHetOq21Kg+0pD0SC9a+tNavfLiblqT55m4dhwl3wwnbfdKJpXpFeezHfR6ORSX7PO\nIp1nJ/rE1QjzsDvfV9/GyZ8ZLs/sZLSae96i3G/GhKEgA5OqzEdOC3v6JdiTErY5OLo2Mc0c\nrtF5uZbu/RJfYpi6Sz/Q+gpi7weXZ8Jk5BKJzzfLPBwvsKj0z/SFe46cefTqU2TYt3uBF3Zs\nWDGwFWmqCoZhLi1n52pvZi31yhNpA8QAnecrKkrT258ZuRgrBb5huTMRqh5rJMpPu0bc91SS\n4mtRAJgEg/QAAeUrv9HVeJfiydpq+zuyokhvuzG266x6flyJotxP5Qz55CSwYpDezLV3prr0\nB3SvSNylxWal01Fl3BhBWsXO59/nFHfUmN4N0uPkQXenRgdVxyOzTNCs72mSf1EZpEf6U6Z8\n6UcM03i3quchJL7vI736a5+SHnn5rOvUeDuV+BdUIL0SUv6dFBpAPUi/MihNPhhRxNXWxPBc\nvsXzrELVu9zrVYm4y/EkBeeZJSU9+nY7YmyNdn5Tu8u1Ji7EXSbLLQmLKxqkH341kkp6Hs6s\nS9zLwMRL/sYP6alDnflRDNKLizNk5r//74n6GUg4jhflBcmsGbvip4JqnCUVwstppP5iY9sO\n6WoHXnAcx/H55N5MTMn4B5OVqsaD9DF3+xDDKByTlshPvUJcnNO6ymIqR6QaurNUkPGAOL5l\nYFL1Z77iZziICrNeCgh9pmbOY+XDaLcRGelsRgyz9KfqlbTF7Qnv2eFwjd4omqukk0F6dBUp\nomYFHaRlX48G6bVVsaOuq1lbTlEfONKbVt2WAt1XGnKdHly+NcUBpDcr/Uk78syC5Z7H1W3b\njaJ5RX3lyXAXja4u9TXrLNL5pSBd+alXiAk+QGFGoPyZ8ehPacHz6W7SGQlcvjXzkdPCnn4J\n9qSETYrPzmlNPitYtfEKZjg9GUa6MG60Q30TRuROrktlFhhAGjlR/IujTZxJT8epxuHwOk7Y\nkkrtOociipUn6gYIMVbkKypK09sffae9fJ7h8szaDfjvcMDj4J/RWflFeZmp4cGfLxzcNPyv\nejLvE8EwzMSxPZVrFRzHcVxEfNVU+0BKvY4AIKX4fWYA6LsvK/YSN+stX2fGU79SCt+kxt7O\n5ZElSnOdj2yyUJ1+XDjlZrRki2/seXa8N8XIW248xCe0bZHndmiUxjJu3njptU7Sm2mxQpGK\nwN/Wb5J8FpjWXFzFmsY3If4pDYy7LCKY3rMClZj5ZrKTVygasbc/lWCNypupD8Qmhpb+s7zU\n/KyWVUkv6bSqvMTPXKAscAn7xnaqA7CnpPOMSaPpWd+y1O7S6Qmpd3VjJUu1u5jY99tHrU5u\nuuSyE2GAvyjv+8qobFIIxk8d+zN/5s+l4QXFkk1jux5rmjipCC/BN/baR56HfnxTEJUddXJO\nNh8NI2623LXDik9p5bSpp8apD8R4paoZp6YbrAkPOoQcWK4icNCWhTiOSzabbxhW+gSgO0sR\n5+aJCKn1GLi3opGCVaBlCMwbTHWV9pnmJZ8oxlUE14Ipc0jjcEcXf1ARODtq48106diPfZ11\ndc1k32GsGygrUmaaFS3Si7LPAG1V7Kjraip0Uk7ZcOAa020pYGGl4dxsRysrQyohfadfqkTo\nCheLchZ9TpUJo9u2G0XzyvyVJ1LsudRX31mk6+ykgcwQ6WMPHI5Bb/Lj1BTNWt+MSjA/a9k3\nUOg8cup01i/B4pToSn7Sq1EtPfqsuEv8o0XFvnc3tZMPLMwQEjcFVmrOgwwb8iPsKcVixiIn\ncmo4+OHPb/N6VFIWgIhvVGnbjR+BWybYULvO0S79bYDYk69QS7gZL/MXS8/2Z99F3jyx9e8u\nTStXdDM34htb2LhXrt5j2KT9l19HPT/b0oU0RyQv8Wa74dcwSrh9CasrBe8JUxEUAGaUtW4C\nAEocviztQ+RweOsGULpowDCswYp+2IWVaBKlIZ6B/RZ/Z9VhcuJ2hOZLLzicm6yx41OdgiMw\n9/vPxWxT7K8BrbzksxnFhyl2D/05vCbMxpb0LfksLkqb/Cj+bBs3ZYEX7Ze+y6d81/UCOucS\n9U9pUWnwwoU00vMrVaE5tPfBML5RxcU+NlRCGtpS6s9iD6vKU9WG4fJJ95OVhrZUu4vAVs01\nNHtKurETqVINPjDiwYI3Ley03AdRY9Y8iunjClx3tHHtGRgl+cv1Y+FL50nfL8vwqdOLzB+6\n/zZx02cKjarBd/FY7OAUyWbUxfPY5oaqd9HJOSnO+3YyOV+yyTOw39WV6lQ8qyoL/C1XP84s\nVB2MyUpVYzyB21pf+5GvEks281MuHU7MG+poojDwgm3fCTs6bGurtLGjDt1ZerDpO3FzxILa\nykLKGPTvoNA3yZLNOKGovKH64QeNef69lj/Rv/h3l3fkxdniQ8+U1UHvFu0hbvbY0UdJQKYh\nrUiZaVa0SC/KPmraqtgZqKupYL6csuTANabbUsDCSqPXxjYUQ3L4Njt7uLc/GSr5y5vtIVgD\nR2IY3bbdKJpXhq88kWLPpT6VziJM19lJAwl3pB16Bma1zSk8ciNDYOY70oXSM74mprQ7xpFG\nTouu+iXYnBLm4eLci1sXTp21OZIwDIxhmJFNw8uvDzsaKLiUKM4jhRRY0ztMa/IVeK6INJiK\nNHIy0YPje8/ejaESbXHBz8P7djestbiuoyZzbkpJHxsgtuUr1CLvJZIS4zP447tD5ZTfobs1\n7HXzh/cAH7/z0dLnc36eGfRwZ0pzS/Utb2Mbo40xv3ZM//Qew9RXRwAgBU/SgzIIF2UfScqV\nbBpZd2igbnqmhKXHdEMuu8anTRwGOyhqfYmSnl8mbvrMrE/rK7rWtZV8xsUFF1PzVQT+Mxnb\n9fnHSXob9nD6JWUhc+N3X0uTnsDBy+j9Fiz8KYvzvk3d+E2DHS0qTEE44qFTVjVklxhVgFyR\nWNdRv6ACB1NT+bAne5i7TiWuZlmU+7VLrY67Az9pHKFCE4d4qA/0W9NlTYmbUedJmZbhU6cX\nmf9jQCxxs9OgispCyjN3G098nWpe4jG1N3A6OSe5iQeJTwKZl5um4jZPDm9uQwf1oejTuFIt\njY5rSWvAbtr6XWGw7OhNVwnZ27n5VleBbm4WKJ6lvZHSRye5fOuJhDVFVas+c8dZAqQj9BiG\nCSyazPWQPrJZmPV8TaSShz5x4dSz0uVDBWa1N9aj0OIwAmlFykyzols6KftIaatiZ0ldzXw5\nZcmBM0mLpYBtlQaHYzDLi9KobYm681oQN5MeP5MPo8O2G0XzyvCVJ1LsudSn0llUQr8uBeNu\nJ0g+G1o2VRFSGYuKE7SXHEYjp0VX/RJsTgnDXl/Y3NzTudfk9TIjqWbl297+/qCFrZKpYzKL\neNEsZDIVYKHMNtLIf8uOuNG/Ufk2I5f9yBIqDiHn1dm1DctX+nftZcRLmCmgdw0QG/MVYjEu\n1fx+a9pi4NPXB9VeFRuY+Rx+fsiG0AiKRTljp72k8nXO9aTXbAXp1zVLMwBaBIP0gAnX0vI1\nex/D0zFeGnxdfuqVfBGhv8N9MPV9uXwb4jvJ2MCyqoJFbGTEXCBNXWxeld7afZbVSOHf5lC9\nxvqjTJ1eTfI59cvs4PxihcG+rN4m+SwwbzCX5jqKLPopcWHk93dH183wq9LgnkajuVbVa6gP\npJ8MLGmvaCqw1MIccPZkD55Rpe2tXIl/yY17MLZzrYp+HWet2vX0K6XJ1Gq+QuBAa2FDi0oj\niZt58TeImwyfOr3I/LcIT+9xOLyRTjTeJ4dxBIMdpA/fiITxr7PZeE4yvr0nbrp2aUFrd89/\nqC7DQ0mpK9XScGq0gdi5ELxntcJgb+btJG4O3ET1oUCtoXOWRAXhbwkZz8S+H62laxg2dJUf\ncfPwMsUjSek/Fr4j1DCew7Ybs2byKNKKlIFmRWd0WvaR0lbFzp66muFyyp4DRw5BKWBbpWFs\n29WZzlimRYV/iZsFmfflw+iq7UbUvDJ85YkUey71qXQWldCbS0EMwzDsebj0yUhDS00eWrWq\nhrCGRBo5Lbrql2BzShgT9/rCQH/3Br0mPw7PlvlXrb7zvwZfb2qvdHEXPnmJhaKMIlpfnU5e\nh1zm7a5IIy+R+m6/b7W/Tr+Ik/yFw+E36Dpy66HzH0IiUzNzi4X5KQkxb+5f2bBoQk0nYu2d\nsGNG97p/b0D9rjEZetQAsTZfoTbpyt3nvz2+f9zbhNIyJKauPU8OJL1HI/zcPCo72jaUTh8v\nzHyUJ2Z+6ggAJLDcPSiDhNnPiZu29Si9Hk+ivbXhhZQ8raaoVMw91feBxn7KIG7OKW8xpxTf\n+DMhH/OwKkUEZVPl4Us5/+tQ8ryLWJQz5WbMte7u8sHmH5GuW+jecw3d1cR19VPmpcUFB4eE\nhASHhISUfPj29UdGoagUX46ZeejZm+bZj1UlffDpI1sqdPhMHmWJeHlj9csbq2ePM3X0bOrv\n38zf37+Zv18tTwP6l/fGtj1pdQgaWrZ0FPAShb8yrTD7DfG/DJ86vcj8bwj3lnxjT7pPErd0\nNN4YK71vfJtT1FDlojU6OSfp79KJmy4dXWjtbtegNoY91OyrUVSqpcE1cFpbz37Y81+PJeUl\nnzmRfGigPXkejLhg8vkIyZahRaPl3jQeCtRAKc9SIfl6z9iOaj+1TpTrtNmM553ze9nA8LNz\nxHsfyY/nPJ15SvKZw+EsWliHqQSqh7oiRd2sMINtZR8pbVXsOqyrZTBcTtlz4NrFWClgVaVh\naE2vDTIwre1uxI/4/YRcUc5H+TC6arsRNa8MX3kixZ5LfSqdRSXYeSmoTAjh4VFDe03uWE0r\n0RmEY1PkgP0K07+umDx+2dHHYlx2YM/Euf7izdum92mgOgaZOQ3CdHqDvhnkwVSZ90EgjRzD\nsIKUO/7+40LzpAPA1j5dj5w92MXHlhjM1tHV1tG1bouuk+evPL18/PDFRyVP070/Oq2pbaUX\nG7vTSlhp6EUDxPJ8xVr+61Zgh3tLNgszH9/NKGxtpWbFe5Ny0okXuFgYUSDyoTYtAABEIP+B\nMkiYGUncNCmv+FVbyjib0Z4BipSRk/pX60XlKX6qWzMFCQVajK3MMLRuN8nVbNPvl9a8mHUS\n6z5bJkxO7Nbb6dKzN3wx7T47Jn9KYXrEzatXr169ev3uk+jUXBUhNSOw0e+Z0SzEqpJuZNPy\n0avjXdsMexKnIPPkJobePBd689xBDMOM7Dy79uzdp0+fLq18jSk/YsQ3rkI3SR5GfMkgvagw\nivgvhk+dXmT+OKG0u5xnSG82G4Zhpm4m2DvpZlShmjOsk3NSmER6Wa+FG73rAZ4RvadkUFeq\npdR+XTusyRHJ5vodPwYuJL1iNvXr7E+50jv5ysM30p1nRoUWz1Jxfghx09iZLT3mCvGNq6yp\nbTf+bVLJZmHm403R2VPLkRYQxkVZk25Jn/60qDCtD50FRVBDXZGiblbQYXnZR0dbFTvDdbUK\nDJdT9hx46emkFLCq0hCYu6oPROZBGKQXF6UoDKOTthtR88rwlSdS7LnUp9JZJMGSS0Eq4gnT\negzt1L9dWJ6BBcJuPaSRA1bDi69un/XfzM2RclfFfGO3EXOWLp35tz2FN1CYViTN86A7mJpG\nGEzlcHgVjEiDO0gjxzBsRYeBQYQReptqQ7+8O6BiLRkO17T//MP1fRy9+6wr+j38/Gpz702j\nkif7qH/lgVawvQHSh3zFWsZ2vfwsDF9kSS+qTybmqR2kl2lZ4oUwSA90jAW9GgBom8yKLob2\n9K7pjR1p3OcwgGeifopfZrE23xVTnKPLO142G7tAehObHrL4fa7s2kGflktXhzO09P9fBQu6\nX8HMTykWJu6d97ezo8dff0/Yc+am6q40Ls+8RnVYWYEV2FbSrbx73w/9vHnGIOLaifIKUkLP\n7lnVt21da3uPUYsPJAopHQXfqBzd9FQwkiZDLMohLqHGtlOne3hxAWFFL57AkW4Exi6kMYkM\nhleso0ZEfm7PyZjelHmegGqHu15Uqg711zsJpGfg+461MgHuTjlH3Jw3p6Z2E6D1s4QXkx5C\nNXJm0Xi2Qt3Wk9aM3bf8s0yA5HfTfxIeHWu28V+MTRioSJE2KyjoRdlnP8bqaiqYLKesOnCN\n6bYUsKfSMHSg3YdAbJQxTHENq5O2G0nz+mdceTKPSmeRhM4vBamLIxRSQ1tNBukB0LrCtPdj\nWnt0nbBeZiSVy7fsM2X9t4Sfu+YNozKSimGYeWXS/L/ML5nUkyEqjMwitBg8w/KG5Mk0SCPP\n+rlm6dtkySbXwObCk91U3vbi0WvNpZFVJZs4LlrWbw/1hJUKuxsgfclXbPafG2k2Yfh39Qdu\nYE7ahTiNAwCdgEkioAziGpJar8LkQmUhFaL71hY2MCGvQuPb0K80742ryrK1BNijYv/V/DFN\ninEcwzBcXDj9QsTdIZUJ/xfPOflTslFpwEoNpkEx8FPmJdxpUeuv10mq3gdpZufm5eXl7e1d\np0mb3j07CgPbevZn43KafxoWlnS+ccWJq4+Nm7fq5qWLFy5cuBL4OFX51W1h2s99i0ac3Hvk\n6O1LPbzVdNGKRbRfWZpJuFnicAyIT36w8NTpGIdvxOVIblZFwkS6EQjTSPOy2fPabCKZx1wS\nC+jdeomLFT/WJkNfKlWugd36ho6DHv96d2Be0olzKft6/34AVFyUOOlxvCSwudu//ey1OeaN\n5CxxSJ22xblsnz3j1Hizs+B0/O9KMvz0fHzXXWLJuTX1quQzT+C0s1N5ZhOoBjMVKbpmRev0\npeyzHzN1NUVMllNWHbhm2FAKWFJpFCbTXqEqhvAoHodnqfDOUTdtN4rm9c+48mQ53V4K0kL6\ndWE+BmCBuAdbW3Wd/oP8ghUO16DVkBkrV8yp70JvLRzrWm7EzfQP0dT3FWY9JW4KLBoxGfn7\nOaSR9Up9TzVX98iyRLtNZwz31yr83RCkfZ37MXdqLVP0XSssboD0KF+xmZO7GfYtVbJJbdFQ\n0mUXvJIe6BwM0oMySGBNmjuWF0PvBfMp6fQG9WnJFCF51seZNA0f2377oZ/u3tBWhgnMG82u\nZLk07Nc7Wd8uOIANWSn5b3b0hocZ0swzdl4tDb4C9U8pzHzTqeZfr5Nlu9IcKlZv6Ofn17Bh\nfd9a3t7ebnakSYVhWkwBKAXWlnQDc7cuQyZ0GTJBLEx5eC3g+q17Dx8+fPM9Rv5lWhiG5cY+\n7FevyY2IN61U9vuICsLpJiOM8GQb18CO+C/Wnjodchbwwn+fMVFhpOrA8nIjSY/KOVCb3M0w\n0wqkBd8yY/KwarbKAssrppAJ9atSbbOuA9bwgGRz1d7g3rN/NVXxjyYmEEY16i+fpMXvRXSW\neAIH4mZeNL3rPeZxDey2NHfpc/tXd0lBxr2tsTkTXX8dtVgYN+VlkiSwW/udrhSeSmESkxUp\nimZFu/Sr7LMcA3U1dUyWU1YduAwqN62sKgU6rzSEWTHqA5GFEi5cVbzmifm2G1HzytorT0Rd\nNOykq0tBupwNucG/q5bCVIQddABQEXJpUb0+S7PIK544+Pbaf2hXlxp2yvZSwci2BYadkGwW\npD/HsIEU9y3MekaKyro1k5Gffkwa4e42vx7FmDEM45vUmFXOYnHkr6eccVy0OSLrAJ0rH42x\nswHSr3zFZibkN0bJPLqpUFFOFnHTxZDeclYAaB27un4A0AqBRV3iZtrbWFq7v8qm99YWWsLy\nkTzmVcGD1PfxRW4ZdqAtQ5fVl3zOilz7MFOaWz4s3if5bGTdTtKdRwvqn3Jb578eErrSOFyD\npr0nXH0Tk/jz85UTe+dMGtnWv75MVxpgD/aXdK7ArmWPf9bsPPryW1ROYuiNswdnjunn7Wwq\nE6wo79ugbrtVRyXMeU3rq0XCGGIFKzDzJf6X/aeOeXUJo2vF+aGxNBf4eptI6pSva8bGSQ/W\nvjbEzfgb8cpCKpQd8kltGP2qVO1917oS7j+/b94k+Xx26j3JZy7PbFvvilr8XkRnyYBczAuS\ng7SQVsRaru9J3Nyz6ovkc9yjSSlF0mI4ZlNL5pJFjU4qUi02K9qlX2Wf5Rioq2lhrJyy7cCJ\nqNy0srMU6KrSKEi7Riu8MPtFLPGt2xZNlIVkvu1G1Lyy9soTURcNO+nqUpAuF8K8QBikB7oV\nd3dhjV5LSCuBG9iPX3s++s05zUZSMQwztutpSHgaOz/1YhHlB3mTn5Baf+e21ZiM/GUWqcO8\nsxO9R72belsSN8ODaKzHXhosbID0Ll+xWV4saTahzJi9QsIUUk52FcAgPdAxGKQHZZCxTWfi\nZlb4CWUhFcCFJ5JRPYklKgiLR/OaE+d2zsTN+9Gq3gUISqN81/WSix4cF805Fvr7P6KZZyMk\nwTyHLtEsfqQ/ZUHalenPEiSbHJ7xqsDQx2e3dK7LildaArX0q6Qb21dq33vYql2nvsVlfbi2\ns1Vl0v1Y4oupL1TOiCpIux5VSKPCzIndXkx4WMqQPPNXv04dM9rZSl+eiuOi/Qm0zolob7w0\nPJdn2tiCjYP05u6kbBBzhd76uj8PhKgOoHeVKodvs7GJtCzkJh66klqAYVhR7qc5X6QLxNnX\nXe9torXVttCdJUNzPwu+9F4mN+GAisAsYVttZXXCoo5hxxdKPl+Y9kDy2diu++xKpDqTDXRe\nkZayWdEivSv7LIe6rqaLsXLKtgOXoHLTqhelgMlKoyDtegSdC9fMsB3ETUuvdspCMt92I2pe\n2Xnlia6Lhp10cimogcrG0m8vTM7QYUrAHy4/6bZ/lxWFhLWwTZyaXfsRtn16z9K89YnLt+1h\nK13KRVQYezyJakf0h12k1r/qoApMRp5Bfuyb7tCmzMvdhakMXbqzrQHSx3yFkjiMIDyC9vsI\n4n7mEDdreJgrCylBHNfncAwqGMEgPdAxGKQHZRDfpFpjC+lLcQrSrn7Oozo5OjfhYFoRquXO\nsqK2IIrZpRNp8YBXm74j+iJgYFpjaVVryeanFdtKPmRFrH6eJZ3iPXFmdc3iR/pTRgeswwmj\nmFX/uTSjPaX3aBZlwGPHrKC3JZ1bq9PYmx9fNLEi3hrh64NVdbjguGhjKI2J1SG7A4mbzm39\niJt6e+oQqt2Z1I1+7WwU9X1zEw5GE16kamzXx4zHxjeDmtgPNCLMJc+OWR8rpNHE774XpzqA\nPlaqLdaSJjIuOxCCYVjE+cn5hD6Crlu6afEbEZ4lrnF/e+k0+aK8b4HpVF8JnBEyoxxBv0Aa\n+b9UuMabukm7PArSb+2My8UwrDgvaPbXNMnfa89dxlB66GBTRapJs6JF+lj22Qx1XU0bU+WU\ndQf+G5WbVn0rBcgrDRwXLXmXTD38i8WPiZueIyurCMx0242meWXnlSe6LhrWYv5SUAONKkqH\nWAozXuowJeAPt6z1gJ+EV5NYV+v77Mft9hXVDwGqNaKpI3Hz2DOqA5Pbv6cTN6dXs5EPgy7y\n8kak6TufaS6slfGNtMY4lSeetYJtDZCe5itkuEN8q3lKVPFJoDkuszkmW/KZw+EMdZRdP0le\n6gvpvDRDyyamXDZ2Z4E/CgzSg7JpRj17yWdcXDTlUgTFHb+s3qbB18m8QkaZT2tvaRA5FRbu\nc0x40uIcE7hESHlNG0xcMKB9m5a/dR10CkUKy5K+qxtLPufE7QxIK8Aw7N2CQ5I/Gtv+NcpJ\n/TWBQkh/yuhz0cTNbrMbUow45DLtlywCFFhS0ovzv/sTtO06n8pefGOv3QtrEf+S+E3NGPy5\nyXeopgkXTtz5g/gH/3Gkvk6WnDpW8RzVirj5Zc1K6vu+X7SBuOnS5h/tpEnbuAKnf12kC+2K\nhInjKI/F5sbvOaFu4rk+Vqp2tda4E/pWgjZuwzBs57y3kr8YmFTdWM9BwZ6aQnqWhnQgdbgs\n3B1MMfLQ/TdjCOwrW1DcsfTqrxhF3Nyx7iuGYVFXJ+f9ficuh2u8daTSlxPrELqKlLFmRVv0\nseyzGeq6WgPMlFPmD1yLN626LQXsrDSuTbxMMaRYmDD2OukETmjroiI88203iuaV4StPnXfR\nsBbz2UkDzu2cJJ8Lsx6rCAkAOslv5qwgrDBhbNvi5evjtbS0jEeNmU2Jm+/nUloCNidm+8MM\n6dNBJvb9G5krSA+6yDvZGBE3j7xNoRKzxK4Q0tw4Xx+GVg5jVdeH/uYrdGbVlw7iiIvSpj+m\n8Qao3PhDbwkLIxnb9apBYSWYhLfSebdGNp2ofx0AiMAgPSib/JaT1ot7MX1+IYVuRHFR0oQD\nVO8/iT6Q30+jOPLitNHHwzSInAqewHWRl/Tx7oKMu+MeUH20Iv7ppFO37j74Lc7LC00ayw63\ntpvMCZ3Ui3f9wPDi/12KlPylyugFGkeO9KfMiyP15fmYGWAUiIsS/0P2pA6ghSUlnWfg8Pzp\n0ye/3Q1cn0xtoquFN2kYDBepqZfjH45/kklpAbSfp4YSl7LgCRwX38aUaAAAIABJREFUe5Nm\n/rLk1LGKlceCcobSu5e8pBOL31J6Aqw4P3jk0VDiX7rP0XDtEAYMnUj6ve6OmZSlLuOVODVq\nudow+lipcngWG5pJlznNid9zMfTcJsLcc/ce27S7LgLSs1R9Vm/i5pc10zKp/b6r90vzMIdr\n8J8bc29NtqgwvY21tHsr7PASDMMOzXkl+Yt9nXV1qZ0lhqGrSBlrVrRFH8s+yyGtqzXAWDll\n+MC1eNOq21LAzkoj+d2k4zE56sNh2Itl3eMIa+ObOg7paWusIjzzbTeK5pXhK0+dd9GwFvPZ\nSQNOraUrcxTlfMhmqn0HgOjAkN3EzcmBp4kvYigle9/1ToS14tO/L7xDGCVV5sn0jcRNr/9m\nMhx56wHuxM1nMw6pjVYi6+f2q6nSmpnLM5nsqoVnx6lgVdeH/uYrdOrOJS2EGfAPjavcwLGL\niZseQ2dQ2et5sjQrWlWvqyIkAMyAQXpQNjnU31iD8CrB3PhTvfcHqd3r5dIur6m9l87QnjR5\n8PVy9QtwPZ7fITgf4eJ+AzeTZn6d6NUvOF/9Iv+4KGt8n2OSTQ6H899oNj68xSo8I4/VNW0l\nm0GbV2X+XPaGkHOmT/YuTfzofkpTd9Lz/V9yKGXIK5PbRRVSfWEEQI0NJZ3DtyG+hQsX5098\nSKm/NfRUJHHTtZa1spAlREWp/XvtUB0GwzBh1rtOI88T/+LWdpuTgewVDhtOHatw+DbbO5cj\n/mVtlzFUemDPj+nyI09aexha+i/3ZnIxNHqqjF5tSFi7LC/pSvslD9Tulfx65ajAaLXB9LRS\n9V9DWsJ01IAxxCWL/11J9WlIipCeJavKi1oR1i4uSL/TefVrtXslPpt5LkU6vGTlscBLez0j\nFHBXjJAu9ZGfdm178I0VP6VPc/bY0VvRXqyAqCJlrFnRFj0t+2yGtK7WCEPlFPWBo7tp1W0p\nYGelgYsLJ3ZcUKButkB2+LlOK0lNVaMV89RGznDbjaJ5RX3lycIuGtZiODtpwNJzuOQzjhef\nSVE/5QIA7SrO+7IwWLoAuKnjkBUNtLnCBNfAfmcX6WQUHBeNGXtO9S4FaXeGXYyQbHK4hmsm\nKu57RBe514TJxM2UTwtm36f20LM4f35n0rI3trVWOQsYGpZiT9eHXucrdJz9d1Y2lg7iZEXt\nHHgsVEV4ieTXG4ZclV7acbgG6+fWpLCf+AxhkL7KKA/qSQUAERikB2UTh2dxdAHp1iJwXKON\nT1W9iyX6+sKWy99QjN/EmdRiRV4dcjNJ1W1D7J01HddSjVwzrq32drKTTsAvSH/SvMP0aMIM\nfQXw4l3DGlxKlN5I29Zc9o8jQ+8E0lhhxm1/sr5z3jGchr/WtZR8zks6NWX0XsmmiX3/wQ6l\nOofofkr7pvbEzQAKXS131//da+dnmT+m03w/EBvkF+pfmhViSUn/l/yGqiuDx6epW1IyP+nW\n0JM/JZscDneyp/rFzWLvTmkz94qKAMV5Qf3rtCTeOHE4Bsv3KViuiiWnTiu0lZ/b7FpLHBvI\nTbhYu/sy1Z3LTzf27380hPiX5mv3GrD4BV6Gli33tCfdkL9c2mb0/g8qdskOv9i4+QJiZ6Uy\nelqp2tZY5UnoNE99I13qzcSu96RyWn6gAe1Z4vB3bSStXvhsfosFVyNURF6U+3XQX1uJf/Ff\nNVhtkrTbiFT7H+nphPn9Bol+5zeBWe2N9ewV7aQdpTwQdBUpumZF/rqx+9gXqmNWS0/LPpsh\nras1w0w5RX3g6G5adV4KGLsWpSXty8Z6w/eoSEdewr1WdQZnEpJqaOF3fIin2pgZbrsRNa9I\nrzxZ2EWjMdS3rtrKTiha2BJGNl2qEZ66uRiUriJwGcCGPi69hiIrJjyZXSiWNrWVhkwoZYTy\n2u1YbsCRVmfhZ/5e/jxJaWhcuKTdwESh9KrbtfWu1laGDEdu4jh0ZSPSW8/XdWx45L2aRe9x\nce6WofW2EN56zuFwZx1VfwtGl4rKkyVdH/qerxDh8u0OjiLN4T4zosmOl2pWO0j/fKZNK9L5\nrNjrWFsKiS9Mv0OcMzq0IcK7bwCowgHQOnGBTDa7lpav3W8oyLhHjL/eqo8KUlGc1duVtHgp\nz8B+4uarRWL5oMILa8da8X/NWeHySHs9yCiQj1xUGCsJX8LMtdPDmBxFiRU/ODhPEtjIUTq/\n26rSBo2PTqGUd+v4HNL1gmWVLsfuhygMnPj59qROpO4ADtdoV3AGxe8qjUA/Z+L3zo3IpLV7\nbtJxmQxWsfs9rSSstx2pyzijWD6v/CIqjLU14GGK+C55r+IrAmqT5kiui8lWGAzRT5kTR3oo\nmcsz33Q/WllS8xLezehTT+Ex+q17p3AXjbPuve4ViTsWKD3xNKQFDyfG2WjHN2UhqSS7uCCc\nGKb65JdqE5AZMZe4S+cXCWp3CT7kT9zleFKuwmBsKOkJz0bL5ArXFhNfhyspy+KCpxd3+JLf\nXmZXc5l8QGeB4mLVoP+cb+mF8uG/XN1aX26kp+aEQGXJRnfqUGd+6vmZrnsz68ucwHL+Q++F\nZcmHLM6PXDW6DZd8Aq2qjsoTKY6ZPRWCMPt1JSPSc9IcDrf1qJXh2UK5sKJHB+dVIATmEI63\n4aYvMqHZUKlmRS0jhunwIJbKObnSpYLClDRY95nK7rSgPku4uHCst7XMVwxfejxHpCDrpH8P\n7FKFNCRjYv+XwpDabUTkDXUkPYQqUe2/p1R2p/69Wj8QRBUpomYFV3Td6OyntJmgCHWuplKu\nNSv7KlDJAEgrdnR1tcYpZ6acIj1wdDetOi8F6CoNquQ6PSQqtR33Jj5PLnzRo8MLKsot3DLt\nHtXCy2TbjeOomld0V57s7KLR+qW+ximRoZXshKKFldhb3U4SrddI9bWuxmeG2D3F5VszHzlO\np4+LPf0S7EkJjiYrPuxPuoI1c69avRR+5hcr/JYzA0iP8PIEThvuKGhMRcKkOV1J6eHyrW+p\n62lHFHle4kVTHqmy5fLMR644HJ1XpDB80IMzvWvbYWTlO+9TnXiKaPWToGuAqCsD+UqF0vT2\nF+V+Ic7NKknM+PUXFfbMiwoTj62eaE/ulje0avwlV3EmlJH8aYhkL76Ru4JxIgAYx+TSjgAw\nisMz33dv/VXvsQW/J1WJipK3TOpyaH3tvv37+FWr6ORgmZOc8PPrizMnT3+IyioJwxM4bgxc\nO7HN35J4THgKFpzgClw2tXEddkO6zGBObGArj8r9/5vQpWkdb2/vCnaGiXFxH57cOHl01+Xn\nv4KZu/e8sjip5dAniA7Zts60gEnHO256L/lLZvDVwS2vLm7QrnPHdnWqlLezNctOjI2Kivr8\nJOD4rY9i8hMYzRbdGVNZyw8TlFVcgcuG+g5DnylY1mnOuKqljx/RT2nqPGZ4hVkHIn/ldrEo\ne0or9yMd/p4wdkANdzdnZ2csO+7Hjx/BwcHvHgceu/QkT/RrWqnA0k6YKZ0b+2pmsz4xMzrV\nryzg1RvUT/2THzrB4ZLe7Phu9uiTPttbVCvPF2bGx8dXqt1Q52/a0xgbSrpjo50j3E/tj8iS\n/CX2wZYGlXb4tuvfq009B3t7e3tbLC81JiY2Jir46qkTn+NJLy7l8i12Bk6Wi5WEb+RaXBBb\n8vnVqRXVz23379q7XaMarq5O4uykqIgfNy+cfh4sO2XbxLHz3Q3tlcXJhlOnGXT5ucXyu/1O\nuJ6Olr6HMvrx4daVT9dt071np2YV3VytDEXxsbEfn944c+5mPHlda56B/ZEHm4xZvyqTgVm9\nm/v6VR4s7bvBcfHdvbM9D61p3q1P6wY+rq5OoqzEyJ9fAk6ffh8lzdWWlQdusrjzz1ulE8/1\nt1JtsqoXdnWDzB85HIP1o7T/NgfkZ4kjWH//yPly3ZOLRJKvODB/0Mnty3r26dOsTmVnJ7u8\npKiwsLCgD49OX3tZRJhrz+EazLyy15SroPigbkT+N6v64SmyK/FyOJxFC+uUJlp5Wj8QRBUp\nA82KFulv2WczdHW1xpgpp0gPHN1Nq85LAdsqjdkLOq5ccr3k88/bO+u7HmrUuX8n/1puro7F\nGQkRP78EnD79Ue6N9R49dq1r6ULxK5hsuzEMVfOK7sqTnV00FDF/68p0dqLPf2JVbPSvuiLu\nZgCGNdZtesCf5vYzUvOaE/HjSyliK1Sy/k3Pg3e7PqoeEPurdRAJE6a1q3Sh59jJY/pW9/Rw\nMBFFR0W+uX1uy7Y9H+NIrdiwfU/bWhspihJ55MYO3Z/sGOo79hD++6DEoux9c4YeWjq7ZYc2\nTRv7utnbmQnw9LTU8G/vHj28+fyr7KK2ZuU63zgzVHXiKaJVebKh66MM5CtE+CbVrh3/x737\nHslfxMXpO6b12L+sSvs2DStXrly5socZlpeUnPD5xcPbtx/FkN9WzOVbbH16tZoJpYHOsH3S\npUqsvefw9bVvGJQtup4lAMoidjxJX+L7mRmGim4OFeLyLdY+iM9PvUr84zcl87AK0u+7Gip+\n6FMhA9MaD1LyQ081l/xF69O0cRzHRfkbh2rSbVR/zG7FE/AQKANP0uM4nvB8mPxpNHX6R/VX\nUHySHsdR/ZSpn9cbUS4RJezrDf2UGl3BSMG1jq3XSWLk7HlwFsfxvKRTKg7qXY704SS9e5Ie\nx1lR0tODDjgqefBdNQ7HYPRuxXmD+CS9Q+2AczNaqohHnrFdk7vxyk8aylOHOvNTz88ayE95\n3qEC7VVSeYYum+7FqIiWVRUCjuMBC7vQOkCBeZ1n6QXEBkvhQ4o6r1Q1e5pWLMrzMjEgfzlm\n47VCs3OrFtKzVCL2/iYn+jVSvy2vlKVZu42IvIKMBzyO7DmxrPg/6meV4vciORA0FSmKZgVH\n9pwf0lz9Zz5JXwJRXc3ycoruwHGUN606LwWIKg2qyJ0e51Py9g7xopWM8u3nZKm835T9Qmbb\n7hJab15xZFeeOCu7aLR+qa+tJ+m1kp2QPkmfn3pNEi2HZxxbqOYJVniSXhl4kl4zdc0FmPYE\nKXnKHMfx3PgbnnKLrKjWcOolikeBLvI7y7pz5a6RqDBxavokVcGCtZqh20+CrgGiqGzkK2VK\n2duP4/jVhZ01OA88gfPKK2HUv2WSqzQPdA6IoJtIAFBg/dNPAJRO1T6rP56aReXG0si69s47\nQdObO4mLSPPayhsp3tfQqsW7exvslax5LsPCo/3F90+a26Kfj8Y1mnzozfEZfwmoT03gmQ1d\ncublrtGa9HD8wezrrZfvAvCZOkVrX4Dmp7SpPvXtofEUZ65wOPxWw5Z/f36gho3b9S2DKCaD\nJYzt+/V3MVMfTk+xoKRbef3z4dbqCjSv+/nG5eac/LB7dE0qgXutvndyehf5/nGFrL063g66\n08pJ3QvjWXDqNIA0PxvZ+l35+mJwQ6oPcmEYZuxY58irz5NauiJKEgpdFgXcWDHYVNHqOPLM\n3VudeXO/EYX3melppcrhGm9o5ybzx1abtP9ewBIMnCWXFpO+PN9Xk/KFFtfAZuqeR6cmyK55\nKIG6ETG0bD7T3ULmj802jNf6FyE5EDQVKQPNihbpadlnP0R1tWYYK6cYygNHd9Oq81LAtkpj\nxMGXq4c3pRi44YBFn64tM6fzeDTDbXcJrTevGMorT5Z20VDA/K2rTrITLUY2nQY4/Lqzw0X5\nK8IydJse8GfBi7/mFjHzVSZO7V++ONnandLIMYcr6Dv30JN13XQeeeu5F79dWe9Nc8i5Tt+5\nX37eb2KjtSs3upWnjrs+ykq+QqfzoquBK4db8GmMV5qVa3Lmw7dZXStRDC8qjNwV/2uNAQ7H\nYDnlBY0AQAoG6UHZV7XPirCIp/928lEWgMPh1uo08W3Eq9HNXTAMKy6MlPyLJ3BWuEpbCYfG\nE8O+3+jv567i2zlcoxbDVgQHBXauLNvFgwx34OrL8R+vDW+rZi4/hyto2HVkwKfoQ/P7wOIu\ndHH5Npv8SZMEORzOopGVtfslKH5KnyHbIp4dbe0t+1IoUoQcTtWWf196G3v34BwbPhfDMO9R\nh+6sGeOg0dMqFHD4fAMjYxMzcwtraxttRbrr3u4qFtqcpsoAHt/A0MjYzMzcytrGUM3gtO5L\nulPzad+jX0/r7a/wtSAy+EaOXUcs+hAbsqyf0tpYXv+1ARGPDrWspKr+5Bu5/LvmTPTXa03s\nKPay6f7UEb+EYuZHmp8NTH2Ovoh+eGxlPRfF79+V4Bk6jVx8MDL6zcCaWiuqcpBUCBiGtZ99\nNPbrjWEtVa2my+EaNBm89PuP292qUH21ASsrVfX8VvYhbvIEzttaIZx1wcBZsvUd9i7u585Z\nA61U3tVzOHy/7uMCPoatH+WvIhiGvhEZsbIhcZMncNrVqTyKL0JzIEgqUgaaFS3S07KvIzQq\ndkR1tWYYK6cYygNHd9Oq81LAqkqDw7OYsf/xm+MLq6gc97Vwb7IjMOjFiYWW9BcwZ7jtLqH1\n5hVDeeXJvi4aVlzqK6ST7ETL1H+k9eGddV91mJI/EJ1+iTKYkuL84AKx4oXEUbCp2ftWcMia\nMR0tVVazDt7NDzwKP71sKK3VudFFXrXLlA8xn7fPH+Vhqb7u8mk18EDg+3enl1WkObVOLbqV\npw67PspSvkKn46z9UZ+vDe1Q10BdeTe08Z6x+Xxs+OOe3lbU40/9vKTw969g4T69lqnsojIA\n6AQHV/L6CgDKnqSgpydOnLh871VMTExsfLqpvUv58uV9/NqNHjPG38tWEiz5wwCHOr8WzDGx\n752bdFZtzOEvrxw6c+3ps2ffwxPSM9I5RtbOLi7OLm5NO/b9e0g/LwfpXXpRVkRwdG7JZ57A\n2asyukEODMOw1LC3AQEB1248CI2JT0xKSknLM7WytrGzq1KjQdOmTTr06Fe3fNl91LhsQfBT\nij/dOXXqyp1nz1+GRielp6dzTGxcXFxc3Tyadejao0f32u4KrnIKkj9dvPLoW0iCrbunt7e3\nl0+tCvasePhAGVFB7OF1y49efxURERGbkm/n5Ozs7Ozi4rLt5IkKdNZCZDmdl/TCtNALpy48\nffP+w8ePUQlp2dnZ2bmFRmaWlpaWjuU9fX196/m16NmrrYO6c+5iyI8X/nrtpUPtgMT3v5d+\nxYXv7105feb0gzfBCQkJiUkZJrYOzs7OFbzqde/Vq3vXFvaa/po6P3W0MJGf8cLPT25fvXr1\nzrMP8YmJSYmJmUK+vYODo4ODR63GXbp06dTe38FY78tO0o8XFy5cuHLraVRcQkJCQrZI4Ozs\n4urq6teu97Bhg2u4SNdjyAn/EZn363V0Js6eFVXN+tezSjUjZIl1lYWSzfIdL0QG9kD/tUyc\npeKc2DtXAy5fDnj7IyoxITExOV1gbm1nZ1e+au0WLVq07dqnSRVrisktM40I0gNBUZFqq1mR\n0cfe9FxKnrNfYNzzjnSTpJyelX09gqau1gPoDhzZTavuSwGiSkMl/OvXb5KN8l4+ksficXHe\ns4CTh49d/PwzMiYmNjG90M7Z2cXFtWq95v369e/S1EfjZ2V01Hb/osXmVQrZlSdru2hUYPiq\nQ7vZCUULW5B21dTuLzGOYxhmaNksL+MhPGcG1EJzsceQopzoKyeOnQl4EB4dExsbk5QtdnJx\ndXV1rVyn2aAhQzrUp/qsMMORi4tSn9y6/eDBg4dP3sQkJaempGTk49a2tnZ2dhWq1m7eokXL\nVh38fBxLk3jVNKw8/4yuDwxxvkInJ+rdibNXX75+/fbDt6S0jMzMTJHA3NHR0dHRuaZfq06d\nOrZrUdeM/nzHc23K9bkbU/K568XwK93dtZxuADQCg/QAyHo7u3a9VR9LPttU2Zn6Y6xu0wMA\nAH8IpYP0AABtO9epQp/rUZLNud/TllWl37cOgF7pYmtyLS2/Qqc7Edda6zotAABAG7TdQIu0\nm50QtbALq9gsCUkv+bwxOnuyG4vmTwN2gos9AIAyuCjL3cw2qqAYwzCeoUt0VrSzAGZ/AVaA\njAiArPvnpTcqLp18dZgSAAAAAACtExVGjb8TK9k0tGy2SIOn3wDQNyXzwEwrqlncEgAAWAja\nbqBFWs9OiFrYUdvaSj7vWfFRu5GDMgku9gAAyqR8nFUyQo9hWPlOu2GEHrCHll8EAgBLpH/d\ntmDXD8lm7RkrR5SjNOVWmPVsXliGZLP+3xW1nzgAAAAAAN2JvDI2uUgk2aw6eh1LXkEHADri\noqTPuUUYhlXo4abrtAAAAG3QdgMt0m52QtfCurbe19ji8rOsQgzDQo+My9760Zz+4sbgzwEX\newAAFc6Ou1DygcPhrdjZSreJAYAIBulB2cQzS9y2bZtks2p+rxH7WlDZ8cHCMYXiX++A4PJM\nF/vo7IVkAAAAAAAobJj6RPKZw+Esmlldh4kBgBkJT2cX4TiHw59Zz0HXaQEAANqg7QZapN3s\nhK6F5fDM/8/evcfHWRV4Az8zmdyahjSlFFKo8FZApYBYX+Uu90VW5CMsXhBwK6uIl1fRVy6K\nchFcWFiLisC+uiAXy0VgQddXoAviIhUECy5CqV0FsdQCvSdpm06TzP4xaSilTZtnnjkzyXy/\nf53MPOfkx5OQSfOb8zzXXXHQ2z71YAhh3arff/bhRTcdNindT8Fo4pc9YHPynbO/9NtXi+Md\nDvzuR7YfU9k8sCFXdWB0Gtvx6e0b6gY//OOPTnmiM7/FWUue/O77v/vs4IcT33Xl5Ma6IY4H\nABhZlj1z0dUvdQ1+2Dr5zOO3ba5gHii3fOcrv/7JFQcec1MIoeOQfz6kraHSiQCGx2s3KUrx\n2ynCK+zuH79tr5b64vhnn/5/qa/P6OCXPWBoz3zr/xS3ZWYymQtmnlrpOPA6SnpGp2zDpH89\nbufBD/vWLvybd0+fs7RniCnz771i7/2/lF+/jT6E8IXrTyxjRACAuNa8+sTfHf5PGz5y5He/\nUKkwEMGaJT9uHtdx4AfO/nNPb/N2B935k09XOhHA8HjtJkUpfjvFeYXN1k+47YqBixKvmH/x\nv7zYNfTx1CC/7AFD61/36se+9UxxPOnQb3/qTa2VzQMbyRQKhS0fBSNQfuWv39ZxyPNregcf\nyTVPOu7Uj5922qkH7vm/xrUMvK2yZ+mfH/7lQ7d9f8YPZz2z4fSdjpqxYNYXoyYGqG2TGnOL\n8gM3R5y4z7+/8tSxlc0Do0Ehv+f/PvTNb37zzpPali18/t6f3L9sXf/gk43bHPDKskfa3N2T\n0Wv14ltaJp5c39Jx1Ac/cemM8/Zub6x0IoAt8dpNisr27RTtFbbQv+aDO25318urQgg7HHDV\notmfK9MnYoTyyx4wtOeuPnyPzz0UQsjmxt33yqKjxjdVOhG8jpKe0WzBz8576wcuW93X/8an\nGse2bzeuqWv58pWrNrG9vnWXv33s2Z/sMSZX/owADFDSQ/oKazPZzf4T9NM//8s1x0yOGQci\nK/R1vrBwVcdOOzRnFVrACOG1mxSV7dsp5ivs4ifOn/jui0MImUzdTQtXntLRUu7PyAjilz1g\nCIXe5e8ev8Nvu/IhhGnn/mrOpQdVOhFszOXuGc0mH/vNuf//0l3G1L/xqbXdy196adEmG/pt\n9znlCQ09ADCqvfOMW/2Vn1EvU7fNlDd1+KMtMDp47SZFJX47xXyF3e5d37j2A7uEEAqFvrNO\nvDrCZ2QE8cseMISnv3N8saEfM/GYe79xQKXjwCYo6Rnldj767D8s/N2FH39ve33dFg9unrjX\n2VfePv+Jm96ioQcARqlsbtxJX5n5+LUfqXQQAGCreO0mRSPx2+mTtz5wQFtjCOHlX5/z9ScW\nVzoOACPAuu6njj1vdgghk22a8Z+3TKxXhlKNXO6eWtG76qWf3nrnw795/Ldzfvfiy0tXrlix\nuq+ura2tbdy4CR1T9j3gwIMOOuhvjj64PeetlwCV4XL3UAb9P7j07Jtv+9m8Fxd0hdbddt99\n6rQjvnzBWe/sGFPpYADAJnntJkWj59tp8eOXdez31b5CoWWHExcvvKNZ1QLAkG7/yK4fuf1P\nIYQDz3/4kYsOrnQc2DQlPQAAAAAAAABE4m2HAAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAA\nAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAA\ngEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAA\nkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAi\nUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESi\npAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJ\nDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIe\nAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0A\nAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAA\nAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAA\nAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAA\nAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAA\nAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAA\nAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCR+0sHWAAAgAElEQVRKegAAAAAA\nAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASHKVDlAVVi98\nbtaDv5j95NzFS5au7Ant48d37PLWgw857IgD9qrPlH36yM0GAAAAAAAAwLBkCoVCpTNUVuHR\nu66+8ub/6OnfxHlo3/3Qs7/y2anbNpZt+sjNBgAAAAAAAMCw1XpJP+emr1x057ODH2ayDWOb\nCl2r1w0+0tC6x+XXfXNKU105po/cbAAAAAAAAAAkUNMl/Yp5N/z9OXcXz0DL5P3POP2jB+y9\nc30mrF725wd+OvO6ux8vPrXNlBN/9O2PpT595GYDAAAAAAAAIJm6Cy+8sNIZKqX/2i9f+sKa\n3hBC04QDr73mnLdNGleXCSGE+uZxb9nnPe/c5k+z5iwMIaxdPrew37F7tTemOn3kZgMAAAAA\nAAAgoWylA1RM90s3PrSspzg+9eLPjc9lNjpg9/edd+zEMcXxz698ON3pIzcbAAAAAAAAAInV\nbkn/wm2PFQdN49/7/h1bNnVI5oTPvKM46lowc2Xf6+4LUOL0EMINp334uPWe7+mrqmwAAAAA\nAAAAlEPtlvR3P7W0OJh0xNGbO6Z96kezmUwIodDXfcvLq1KcPnKzAQAAAAAAAJBYjZb0hb7O\np7rXFcdvOWz7zR1W1zh539b64viFp5enNX3kZgMAAAAAAACgFLlKB6iMfNdv+goD13jfp61h\niCOnjW14tDMfQlj6+LJwzORUpheNnTBxYnZNcVy/wV3jqyFbAmvXru3v7y9xEQAAoAY1NjZm\nszX6DnIAAACgBtVoSb9u9fzB8R5j6oc4smOnMeGv3SGENX99KYS3pzK96MTLrzqxWrMlsHbt\n2nw+X+IiAMPScu+F6S646piUFwQAtkZ9fb2SHgAAAKgdNVrS9+dXFAeZTK6tLjPEkQ3tA5vR\n+3tXpDV95GZLXTUXbNWcjWR8TQHYkNcFAAAAAKAiarSkz68c2POdqWsd+sjc+hu3b9hklzh9\n5GaDLVJ4JFPN562as1Uz52308TUFRqt0f7754QYAAACwRTVa0g9Df2H9YG0Fppd18bJmo5wU\nRUApqvlnSDVnq2bOGzH5fkvGeQMAAABgUI2W9A1tA1d6L/StGvrI3lW9xUGmfnxa00duNgCA\nYVFMAgAAAABspEZL+mxDW3FQKORX9xfGZDd77/b88oGrx2dzrzXZJU4fudmG0NjYWF9fX/o6\nJWppaal0hM2SLRnZkpEtGdmSkS0Z2ZKRbfRx3pKp2vOWLFg2m009CQAAAEDVqtGSPte8Wwiz\niuPnVq9759iGzR356sI1xUFj+w5pTR+52YbQ2NiYYNaa0j/x6zU3N6e1lGzJyJaMbMnIloxs\nyciWjGyjj/OWTDWft3Sz1cgXFAAAAKAUNbpfoXGb/bKZgS3m/9XdO8SRT3evKw4m7L99WtNH\nbjYAAAAAAAAASlGjJX2mrm2floFrsz/76OLNHVboXTq7c21xPHnaa9eEL3H6yM0GAAAAAAAA\nQClqtKQPIRy/z0Azvej+xzZ3TOeLd6wrFEIImboxJ3e87t6KJU4fudkAAAAAAAAASKx2S/op\nJ+1bHKxadOvjnflNHvPINbOLg9adTp5Q/7pzVeL0kZsNAAAAAAAAgMRqt51t3Wn6we1NIYRC\nof97l9xVeMMBy5+d+f0/dhbHx3zxkHSnj9xsAAAAAAAAACRWuyV9yNR94pz3Focr5t36+Svu\nWLSqd+CpQt+8R24/8+t3FAqFEELbbiedPGWblKeHcNe5Z35qvQVr+6oqGwAAAAAAAADlkKt0\ngEpq3+O0r58w7+J/mxdCePFXN5/x63um7LpzW2P/KwufX7i0p3hMQ9tel3zzQ+WY3vXqokVL\n1hTH696w272y2QAAAAAAAAAohxreSR9CCOFd0y8765TDm7KZEEKhr+tPf3jmyafnDtbYE/Y4\n/JKrLti5qa5M00duNgAAAAAAAAASqOmd9CGEELIHf+jMafsfdf+Dv5g9Z+6SZcs614b29vEd\nU6a+59BDj9xvz7pMWaeP3GwAAAAAAAAADJuSPoQQWiZPPWH61BOmR50+/frbt2ZGRbIBAAAA\nAAAAUA61frl7AAAAAAAAAIhGSQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAA\nAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAA\nAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAA\nAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAA\nAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAA\nAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAA\nEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAg\nEiU9AAAAAAAAAESSq3QAAABKkn/4vnQXbD413fUAAAAAAHiNnfQAAAAAAAAAEImd9ECa7OYE\nAAAAAACAISjpASB93rACAAAAAABskpIeAACgdqX7xjLvKgMAAADYIvekBwAAAAAAAIBI7KQH\nANgytzAAAAAAACAVSnoAAIDy8kYfAAAAAAYp6YFa4Y/jAAAAAAAAVJySHgCoFt5MAwAAAADA\nqJetdAAAAAAAAAAAqBVKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgklylA0CVyj98\nX7oLNp+a7noAAAAAAADAyKOkh5HHGwgAAAAAAABghFLSU0nKZqh+/j8FAAAAAABIkXvSAwAA\nAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRuCc9QOW57zsAAAAAAECNUNIDAFAu3oQEAAAA\nALARl7sHAAAAAAAAgEjspAcAALaWqyMAAAAAQInspAcAAAAAAACASJT0AAAAAAAAABCJy90D\nMFK55DIAAAAAADDiKOkBoLZ4cwMAAAAAAFSQy90DAAAAAAAAQCRKegAAAAAAAACIREkPAAAA\nAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAA\nAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAA\nAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAA\nAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARJKrdABGic7Oznw+P9xZ9WnHWLJk\nSVpLyZaMbMnIloxsyciWjGzJVHO2lrQWWi/FbNWsmr+m1ayaz1u62ZIFGzduXC7nH6cAAABA\nrbCTHgAAAAAAAAAisVmBdGQymUwmU+kUoRoybI5syciWjGzJyJaMbMnIloxso4/zlkzVnrdk\nwar2PwcAAACgHJT0pKO1tTXBrJVpx9h2223TWkq2ZGRLRrZkZEtGtmRkS6aas61Ja6H1UsxW\nzar5a1rNqvm8pZutRr6gAAAAAKVwuXsAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIl\nPQAAAAAAAABEoqQHAAAAAAAAgEhylQ4AAAAVkH/4vnQXbD413fUAAAAAgNHJTnoAAAAAAAAA\niERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQ\niZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACAS\nJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRK\negAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0\nAAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkB\nAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMA\nAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAA\nAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAA\nAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAA\nAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAA\nAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAA\nAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAA\nEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAg\nEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAk\nSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU\n9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJLlKB6gKC57+zwdnz3l27vxXl6/s6u5p\nam1r327HPfd++4FHHLP35NYtTl+98LlZD/5i9pNzFy9ZurIntI8f37HLWw8+5LAjDtirPlNq\nthIXL2s2AAAAAAAAAIal1kv6fOd/X33JZQ/NW7zhg90rl3WvXLbgj7+/7+5b3nbIh8/6/Ie3\nzW3ukgOFR++6+sqb/6OnvzD40JKXVy95+aXfP/bArbsfevZXPjt128ak6UpcvKzZAAAAAAAA\nABi2mr7cfe/q+Weffu6GDX0mU9fWPjaTGdhjXij0z/3lrZ/99KWL8v2bXGHOTV+99MZZgy14\nJtvQOqZ+8Nnl8395wecveL6nL1m8EhcvazYAAAAAAAAAEqjpnfQzv/qN51evK453fc/fffz4\nw6dM3rGlIZvvXvbC/Cdn/uBff7dwdQhh9Su/Ofdrd9x4+Yc3mr5i3g3fuGtucdwyef8zTv/o\nAXvvXJ8Jq5f9+YGfzrzu7scLhUK+a+7558780bc/NtxsJS5e1mwAAAAAAAAAJFO7O+m7F95x\n1/OdxfGU958748t/v9ebJ7c0ZEMIDWPHv2XakRddfcMn37Nj8YDl82betP7g9fp/eNnPC4VC\nCKFpwoFXf+fcQ96+c/Eu72PG73Lc9POuOP1dxeM6n7/zlhe6hpmuxMXLmg0AAAAAAACAhGq3\npP/vH95fHOSad/3Hf9j/jQdksk3HfvGf3rr+EvEPXff7DZ/tfunGh5b1FMenXvy58bnMRtN3\nf995x04cUxz//MqHh5WtxMXLmg0AAAAAAACAxGq3pP/351YUBx2HnD4mu3GNXZSp2+YfDt2h\nOO56YdaGT71w22PFQdP4975/x5ZNzj7hM+8YmLtg5sq+wkZP33Dah49bb6N7w5e4eOnZAAAA\nAAAAACiHWi3pC/mnugfuRr/b304a4sBt371tcdDb88KGj9/91NLiYNIRR29ubvvUj2YzmRBC\noa/7lpdXbX26EhcvazYAAAAAAAAAEqvRkr635899hYHt43uOaxziyLXL88VBJtc2+GChr3Ow\n43/LYdtvbm5d4+R9Wweulv/C08u3MluJi5c1GwAAAAAAAAClyFU6QGXkmnf98Y9/XBw3Ng1V\n0j9yz4LioLn98MEH812/Gez492lrGGL6tLENj3bmQwhLH18Wjpm84VNjJ0ycmF1THNdvcLn9\nEhdPJVsCPT09fX19Wz6uzFatqt6rAsiWjGzJyJaMbMnIloxsycg2+jhvyVTteUsWrLm5OZut\n0XeQAwAAADWoRkv6ELJNTU1bPGjlH+6c+WJXcfzWU/cffHzd6vmD4z3G1A+xQsdOY8Jfu0MI\na/76Ughv3/CpEy+/6sRNTSlx8VSyJZDP5/P5/HBnDZUvkTVr1qS1lGzJyJaMbMnIloxsyciW\njGyjj/OWTDWft3SzJQvW2NiopAcAAABqh7+DbNaqBY+cdd7M4rih9R1f2v+1S8f351cUB5lM\nrq0us4nJ6zW0D+xl7+9dsZWft8TFy5oNAAAAAAAAgFLU7E76IRX6Hv/pD759w73dfYUQQl3D\nxC9cfs7YDQrv/Mr1N6qvax16pdz6+75vfRFe4uJlzQYAAAAAAABAKZT0G/vLk7Ou/+GNT66/\nyn02137GZTMO3nFMwuX6C+sHa9NIl+riZc0GAAAAAAAAwBso6V/TvWDO9T+47oHfvTT4yMS9\njvzSF0/fY8LGd69vaBu4UHyhb9XQa/au6i0OMvXjtzJGiYuXNRsAAAAAAAAApVDShxBCob/n\nl7dfe+3tv+xZv7m8ofVNH/jYJ08++u2bvKl7tqFtYGIhv7q/MCa72Vu/55cPXHw+m9vaIrzE\nxcuabQhNTU0NDQ3DnZX6Fv6xY8emtZRsyciWjGzJyJaMbMnIloxso4/zlkw1n7d0syULVldX\nl2oKAAAAgKqmpA8r/zT7OzO+99sFA/vO6xq3O/pDJ590/GFtuc3W27nm3UKYVRw/t3rdO8du\ntpx+deGa4qCxfYetzFPi4mXNNoQEDX0owx8rm5o2vuxBYrIlI1sysiUjWzKyJSNbMrKNPs5b\nMtV83tLNViNfUAAAAIBSZCsdoML+8vANn/y/lxcb+kwm9+7jPvkvN3//jA8ePkRDH0Jo3Ga/\nbGbggP/q7h3iyKe71xUHE/bffisjlbh4WbMBAAAAAAAAUIqaLumXzLnxC9+6u3iJ+zGTpp31\nz9d/7RPv375pyxdazNS17dNSXxw/++jizR1W6F06u3NgX8rkaVt7SfkSFy9rNgAAAAAAAABK\nUbslfe+aP5z9j/f0FQohhPF7vu+qq84/aLdxWz/9+H0Giu1F9z+2uWM6X7xjXaEQQsjUjTm5\noyXa4mXNBgAAAAAAAEBitVvSP3nNjCXr+kIIDdtM+87Fp29XP7xTMeWkfYuDVYtufbwzv8lj\nHrlmdnHQutPJE4azfomLlzUbAAAAAAAAAInVaDtb6Ou6evYrxfFR55/ZVjfUHeg3qXWn6Qe3\nN4UQCoX+711yV+ENByx/dub3/9hZHB/zxUNiLl7WbAAAAAAAAAAklqt0gMpY9fIty3v7QwiZ\nTN2+/a/Mn//qFqdkc+N2nTLxtY8zdZ84572/OveeEMKKebd+/orcVz9zfEdLLoQQCn3zZt95\n6Yw7CoVCCKFtt5NOnrLNGxe869wzZy1fUxx/7bvXTG6sS23xkrMBAAAAAAAAUA41WtIv/c38\n4qBQ6Dv/7LO2ZkrT+Pf9+IZPbfhI+x6nff2EeRf/27wQwou/uvmMX98zZded2xr7X1n4/MKl\nPcVjGtr2uuSbH9rkgl2vLlq0ZKCkX/eG3e4lLl7idAAAAAAAAADKoUYvd7/8qeWprPOu6Zed\ndcrhTdlMCKHQ1/WnPzzz5NNzB1vwCXscfslVF+zcVDfkGuVavKzZAAAAAAAAAEigRnfSL16y\nNqWVsgd/6Mxp+x91/4O/mD1n7pJlyzrXhvb28R1Tpr7n0EOP3G/P4d/sPsXFy5oNAAAAAAAA\ngGGr0ZL+qGtnHpXeai2Tp54wfeoJ04c3a/r1t2/NjGSLpzUdAAAAAAAAgBTV6OXuAQAAAAAA\nACA+JT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAA\nQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACA\nSJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACR\nKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR\n0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKk\nBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkP\nAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4A\nAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAA\nAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAA\nAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAA\nAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAA\nAAAgklylAwAAUJKLjnwg3QVnpLscAAAAAAAbsJMeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAA\nAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAA\nAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAA\nAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAA\nAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAA\ngEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJLlKB2CUKBQKlY4QQtXE2CTZkpEt\nGdmSkS0Z2ZKRLRnZRh/nLZmqPW/JgmUymdSTAAAAAFQtJT3p6Orqyufzw51Vn3aMpUuXprWU\nbMnIloxsyciWjGzJVHO21NXIeavmbNXMeUumms9butmSBRs3blwu5x+nAAAAQK1wuXsAAAAA\nAAAAiMRmBdKRzWbr6uoqnSJUQ4bNkS0Z2ZKRLRnZkpEtGdmSkW30cd6SqdrzliyYy90DAAAA\nNUVJTzrGjh2bYNbKtGO0t7entZRsyciWjGzJyJaMbMlUc7bU09XIeavmbNXMeUumms9butlq\n5AsKAAAAUAolPQCk76IjH0h3wRnpLgcAAAAAAFSIe9IDAAAAAAAAQCR20gMwUtmtDgAAAAAA\njDh20gMAAAAAAABAJEp6AAAAAAAAAIjE5e4BALbM7RUAAAAAAEiFnfQAAAAAAAAAEImSHgAA\nAAAAAAAiUdIDAAAAAAAAQCTuSQ/AUNyHGwAAAAAAIEV20gMAAAAAAABAJHbSAwDVwpUbAAAA\nAAAY9eykBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAicU96oFa41zUAAAAAAAAVZyc9\nAAAAAAAAAP/D3n2HR1G1DRx+NsmmhxRCDyREOiJNFETpVelSRSmCHyg2EBFQOhhRCCLtRQFF\nFFGkShMp0pXeeyAQAiSBkN6z8/0xmxCTzSbZ3WwI/O7rva73sHPKc2Yna7LPnDOwEpL0AAAA\nAAAAAAAAAABYCUl6AAAAAAAAAAAAAACshCQ9AAAAAAAAAAAAAABWYlfUAQAAZEqbHZbtMNCy\n3QEAAAAAAAAAAMBCWEkPAAAAAAAAAAAAAICVkKQHAAAAAAAAAAAAAMBKSNIDAAAAAAAAAAAA\nAGAlPJMeAAAAAJ5cU9rssGBvgRbsCwAAAAAA4DHFSnoAAAAAAAAAAAAAAKyEJD0AAAAAAAAA\nAAAAAFZCkh4AAAAAAAAAAAAAACshSQ8AAAAAAAAAAAAAgJXYFXUAAAAAAPCYm9Jmh2U7DLRs\ndwAAAAAAALAiVtIDAAAAAAAAAAAAAGAlJOkBAAAAAAAAAAAAALAStrsHih+2SwUAAAAAAAAA\nAACKKVbSAwAAAAAAAAAAAABgJSTpAQAAAAAAAAAAAACwEpL0AAAAAAAAAAAAAABYCUl6AAAA\nAAAAAAAAAACsxK6oAwDwWJnSZodlOwy0bHcAAAAAAAAAAABAkWIlPQAAAAAAAAAAAAAAVkKS\nHgAAAAAAAAAAAAAAKyFJDwAAAAAAAAAAAACAlZCkBwAAAAAAAAAAAADASkjSAwAAAAAAAAAA\nAABgJSTpAQAAAAAAAAAAAACwEpL0AAAAAAAAAAAAAABYCUl6AAAAAAAAAAAAAACshCQ9AAAA\nAAAAAAAAAABWQpIeAAAAAAAAAAAAAAArsSvqAPBEm9Jmh2U7DLRsdwAAAAAAAAAAAABgUayk\nBwAAAAAAAAAAAADASkjSAwAAAAAAAAAAAABgJSTpAQAAAAAAAAAAAACwEpL0AAAAAAAAAAAA\nAABYiV1RBwAAAKxqSpsdlu0w0LLdAQAAAAAAAADwWCNJDxhGEgsAAAAAAAAAAACAxbHdPQAA\nAAAAAAAAAAAAVkKSHgAAAAAAAAAAAAAAKyFJDwAAAAAAAAAAAACAlZCkBwAAAAAAAAAAAADA\nSkjSAwAAAAAAAAAAAABgJSTpAQAAAAAAAAAAAACwEqY74BQAACAASURBVLuiDgAAAAAAgMdN\n4op3izoEy3B6Y35RhwAAAAAAwOOGlfQAAAAAAAAAAAAAAFgJSXoAAAAAAAAAAAAAAKyEJD0A\nAAAAAAAAAAAAAFbCM+kBAAAA5NeUNjss22GgZbsDAAAAAAAAHnmspAcAAAAAAAAAAAAAwEpI\n0gMAAAAAAAAAAAAAYCVsdw8AAIAnEdu2AwAAAAAAACgSrKQHAAAAAAAAAAAAAMBKSNIDAAAA\nAAAAAAAAAGAlJOkBAAAAAAAAAAAAALASkvQAAAAAAAAAAAAAAFiJXVEHAAAAgMfWlDY7LNth\noGW7AwAAAAAAAACrYyU9AAAAAAAAAAAAAABWQpIeAAAAAAAAAAAAAAArIUkPAAAAAAAAAAAA\nAICVkKQHAAAAAAAAAAAAAMBKSNIDAAAAAAAAAAAAAGAlJOkBAAAAAAAAAAAAALASkvQAAAAA\nAAAAAAAAAFgJSXoAAAAAAGANsSEzNOaJTleKehKF7vTMRupkfTvuKOpYgIce2SvzkQ3MfKtq\neqtTa/dnSFHHUpQy/xNwMTGtqGMBAACwGJL0AAAAAAAAAACzjKlYIjOhfiI+tajDAQAAeKSR\npAcAAAAAAMCTpVcpFzWVOCMk1pptUYwU3ze6+EYOAADw5LAr6gAAAAAAAMATwc1ndFTUuwYP\nPbjyVuVGq9Xyj9fudvFyNFjN3VZTWMEBAAAAAGAtJOkBAAAAAIBVaBzc3R0MHkl302aWXUqU\ncHd3slZMAADL8Kzo62cXp5YdNNxTBQAAYAxJ+uzu/P3psMAzWueaa1bNzHcjJeTcvzt37Tx9\n+VbEvXvx6XaeXmVq1KnXqmPXhv6eZsaTEHph+85dB46fj7h3PzpJPL28yvnVeKl5y9Yv1NHm\n43ddM5sDAAAAAAAAQJ7GHTwzrqhjAAAAKC5I0me365drBaqfnhS6fNaM9YdvZXktOeL2tYjb\n1/ZvX1e/0/DxQzvYm3jrqHJozYI5K/5K0imZL927m3Dv7q0z/+z4pVqLMeNG1C5peAmCJZoD\nAAAAAFB86JJ2rlt99OylNBf/T0e/WdTRABm4MrPhhAAAAAAiNkUdwKMlIWz7b3cT8l8/Pfnm\nxLc+zJqht3NytctIySuKcvyPRSPn/mlaMMd+HB+wfHtmil1jY+/m/HD3vweX/570/qRrSemF\n1BwAAAAAgEdW8IbWGo1Go9G0+DVIROJubm5Xu3ybngPGTp4xZdLsbJWTI8//MPvT3t1efqFh\nnYqlPeyd3f2qPf1iqw5vjJj894V7OTs/N6ex2rmt1ut2is5IGFu7+6s1nbzaGawXdXnP7Anv\ntXy2TsWy3o6ObpVr1G3zcveJC9dGpBrr1kwFHXT+K5XUWbhV7BOf5Ub/rM4t6qzW0TpVPhiT\nYqCGLunPn+cPfbV1df9K7s4O3j5VXmj18qDho1bvuWjxgEXES2ur0WicS3ZS/5kYdmbR1Peb\nNny6fEk3Rzcv/+pP9xjy8S9/nc/Z8PTMRupEfr+n//7ns0ol1FeaLb9iPM78tOXKzKZAJ6SQ\nAivoeS7oRWJOzIlhx+dNHdW6UR2fMl72jm4+lau36DF08e97TJttASPXHVq79MNB3evUeMrb\nw8Xexd2ncrVmnfoHLFx5O9nELwwz3+5StdfnUsUCg8YFH5o17q3n6lQv4+nq4OLhW6XmK/1H\nfLfmkPGTpugS965Z/Pbgfm1fes6/fElH15LVn2nUsVuf0QFLLkYmF2iaAAAAFsFK+odSY4O/\n/nSpohj+c9QAJfW7sePPRCeLiMbGoXWfN7t3aF7R01lJTbhx8Z8fFy89ejNWREJ2LVzcotGw\neiULFEzUxR+mrtH/MelSscnw/3vthWd8tRpJiAzesfHnpesOK4qSEnt+4tiff/p6gMWbAwAA\nAABQXCSG/9XimVePRRvOshxc9GGvkfOzpX9uXDl348q5A7v//HnRtHod316zZm5lR9vMo1UG\nT7P5qL1OUXRpD8YcCfupaTmDPSu6xJHb9Xft1/xgZrZlEEp6zNcjB3y6YGNilrR38KXTwZdO\n79y6fuY4/xGzVwYOfd6UCefOtEGH/bZ5UemG5xNS42791n7GyP0TGmerkBy1p+2HW9Xyaz/s\nfKGEfbYKkadX9e83Ytv5yIcvhQYdCg06tHvr8sVzanYetf7XmdWcDHwHZZGzdHr1tE5vTA1J\nTst85frlB9cvn1u3bNYXXd7/fdXsqoaGtgKuzGyMn5BCCsyE85x/Zsa85cu3B0/4LjzlYWyh\nwZdDgy/vWbc0oMXQtRsWmBBSPsUEbRrY5631x+5mfTE0OCY0+Mq+zSunfDr9k/m/TOlf9xEc\n9J+ln3R9Z3bWk3YzKPpm0MUtKxdObdJn5frvXyrtlLNV9KW1/XoM3Xr+QdYXL5+JvHzm6LYN\nv82dOm3899um9K1pxuQAAAAKjCS9JDwIu3nzxtF927fuPBKbnu8MvUjYocAtQTEiotHYD57+\nv25P69PwGq2zX51WE76uP2PosMORSSKyM/DHYT+OLEhQuu+/2KLeLuDo3XTB3DFedvrV+c5e\nfl0GfVqj1PTRiw+LSMy131de7/5aZTeLNgcAAAAAoJjQJY9s1icz7edeunwFn2qZB6/+NKjp\nO8uzVnd2L+Vhnxp2LzpdUUREUXQntixo/JL73SMzMp9U5+DR9gMftzkhMSKye+xu2feawZEj\nz4+/lJAqIhqN7cwPav0nqNTwke3qf/P37cxXNBptKW/H8IhY9Z8pMdfmvNU46ObqDVN7mjN7\niwyqdamz9Zchvl3/JyKHprZfO/ROj3LOWSvMfLnPnZR0ESnfaubyPv7Zxg0/uKBeyw/uZOTM\nNBqtV5nSyffvxGUsI77wR2CT5yOvHF/qZfeffLFFzlLw+pH1+sxVFKXMM60H93m5eiXv2LCQ\n/Vt/X73rlKIopzd+81z9O0dOrqziqP8GrHTjQWPHthGRdd/MVt++Zu+MUm878KvjmfvZLXhb\nrsxsjJ6QQgrMtPOczzfazJhXj27Ze/bfWV9xKlHSJikqPiVdRG78vaRVw7jPdAVb0Z7PyB+c\n+6FRo7eCEh/e1+Ls7u3pkB4WEZWmKCKSHHVh2hsNgu7u++mjFwoUgBEWGfTq6g+6vrVIpygi\nYmPn6O7uGBsZnZax4OrWoV/b1bi28dKetqX+k6dPDN/0bP0+V7MM7ViilKc26c59/TuVlnRz\nWv/6zjVCPyngIisAAABzPNHb3SdH7Rzcv2ffgW+NmTD9t+2HC5ShV5SUefOOqOWn+kzNzNBn\n0th5jpzRVy0nRe3elcttwgbF3Vq+OzJJLb8x7d3MFHumaq982qm0/g/mLXP2WrY5AAAAAADF\nxYVFnRdfemDn6Pvu5z+cDb4fFRZ67tg69ZAuNaL9//2slh08ngtYtjkiLiU+Kjw0/EFqSvzx\n7T8PbFJaPRp+9POZwTFZux02Qb+aM+zImOhcvi448Il+II8qn7X1cMh6aPWw5pmpu0rNBm/Z\nfyI8NiEsPObBrctbV35R211feeO0Xr2XXjDzDFhk0EpdFgW29RERXVrMW23GpmWZcfCawZMO\nhYmI1rn6Hxuyr0BISzjbrv0oNUNv71pt4pKNoXEJ9+7cik1ODD67c0Rn/WmMPPPDKzOOWDBg\nVWrC2cZ95imK0jtg7a2TOwLGjxr0+oD3Pvr01x0nLm75poKDrYhEXVrd7vWfMpuUbT4iICAg\nICCgTsYzAduNnay+MqyBt9ETXLC2XJnZGDkhhRSYyec5n2+0OTGH/jU6M0Nv5+jz4ewVl8Li\nE6LvxSWnXDuy7aNuz4hI9NVVH1+Lyudk8x95enJIz+bvqMlyjY1D95FzjgZFxkdF3AqLTIgJ\n2bhkUi13BxFRFN3KMa0W/nfpucksNWivwYt0iuJR8+Uf/zwSl5wYee9BcnLU/o3fd66j/2I2\n6cGRvi3HpP73J+Prjm+qGXobrdeoL5dfux+fGB1++15MSlzY7/PGe2ttRUTRJX/ebaJFJgsA\nAJBPT3SSXkmPvR9r6Dlq+ZBwe9Xp+BQRsdF6jelZw2Adlwo9nitfytPT09PT88i12GxHf3iz\nT5cM2Z4Nf33VP2rB0atD5wouhvrW9HinvlqKDfk5219lZjYHAAAAAKC4CN93zc7Jf+3Z0/PG\nDazt65X1UMSJ0dfUxIyd54pjO8YOftnbRZ+40tg51W/72rI9Z3qU0t/CvnFLaNa2lfvOtNNo\nRCQ9OXTc2fs5x1XSY0fu0jdpPufNrIeigwL7/XBJLXcJ2HB9z7KOTet5u9iJiEeFqh36fXIi\n5OTbDUupFda9+0qwqY9/tuyg767bWN1ZKyKR5+e9+p0+p5iWcKbjAH2ac+gv2xu4arO12jKw\n66m4FBHROtdcf+H4lCGdyznbiYho7H1rt5q/8eTcrr5qzWMzB2R94L1FzlJa0o2wlPTa76z9\ndWz3bCsUqnV499iOSRqNRkSC174590ZMzuaFiiszGyMnpJACM+c858msmJXk13rNV4talzpr\nL5yfM+r1avrlNDaVn20/a92p9eNaFiie/Ds+pcuu+4kiotHYjfv93NrADxv66xfZa10rdB4y\n+eiV7Y3VlLkueWyHzx6pQZN0Sslnhlw49ccb7Z51shERsdGWaNp50IYTwRNfrqTWiTw3f8ju\nh+9mavypiSfuqeW31xyf/fGAyl76N13rUvrVd2cc/L6H+s/Ym4uOxKVaZL4AAAD58UQn6e2c\na77+Xz3als9n2+u/HVQL7k8NKWuf62n87H9Lly9fvnz58k/q53E7dlbrTuj/yirfun1udTxr\nv2aj0YiIkh638m68BZsDAAAAAFCMtFq4tfNTJXK+HrrptFooVW9uL38DD3qz0Zb+sF0FtRx7\n9T/31tu7NRlbWd/n5vGHcra9f2bstaQ0EbG1L7uwrU/WQ2uHzFafQFe2yZcbxnbJ+ZWB1q3G\n3D1/+jjYiUha0vUha4PzmGE+mD+o1qX+thUD1PLm99vuj04RkaV9O19MSBWRSq/MW9ilUrYm\naYkXB2/Q99Nj2aaOPgbWCYxYtUNdqJqaeHn6zYeZckudJTtH382BXQweKvPihAUvlBURRVG+\nfm+XwTqFiiszm9xOSCEFZs55zpM5Md899O7ejB0339u4rbOfgdi6fv7X21U9ChRSfijpsUO+\nOaeWqw78bUb3p3LWcSrVbO3GEWo5NmThvJCCnZlCHdTG1m35znlltdnPt8bWdeLa/U1K6Hcv\n+GP4osxDSZFb1P3wNRrtnE6+Ofv07xXo5+fn5+fn6+t7PM7E1VwAAAAmeLKT9E7Ve/9Xl5Zl\n89l263F9IrxyH8PL6E2mpMecyLhts3rLMrlVs3Wo+Lyb/v7f66cfbgNlZnMAAAAAAIoRG1vn\n//U1kPIRkepDfjl58uTJkyf3rHs1t+ZK5t5yOfaYGzS9kVq48/eYJF32o3s+3qgWKrReUC7L\nvftKevTIA3fV8siVw3IbV+tSf0Vf/cPdT39u7nPoLDWoX48lX7aqICLpyaG9O8++s2fs8D9u\niIi9a72tvw3PWT/s308iU3UionWusbRXZYOD2jpWmfZMRQ8PDw8PjzPHIi0bsIhUaDvP18E2\ntx56LeilFm7tGJ3jPSxcXJnZ5HZCCi8wM8+zEWbGfHLadrXgUuaN2a1yWy9kO2lFrwLElD9x\nt+efiU8VEY3GJnB2x9yqlWs2q3NJ/WPdv1969dEZtEyTea94Oxk8ZOtQcdnM59VydNDsu6n6\nnw2NjT5zryipvwUbyP3b2vtczzCsrMEdSQEAAAqFXVEHUCwpStLhjH3yGxi63TU/XL1Ll7ZJ\nVMvaLHuypcT+m67o/zKo525vpIcGrvaHYlJE5P7hSOlY0SLNTZaUlJSWlmZmJ+aLi4sr6hBy\nRWymITbTEJtpiM00xGYaYjMNsT1+OG+meWTPm2mBOTs729g80XeQwxyOJbtWdjSco3XxrVHX\nwLLJh5LunZy67VZuRyt1me1gUy9Zp6QmXJxyNSqg2sNVrUpa1Mh9+hTdwK9bZW0VFzo3Ok0n\nInZO/qP9DCwazvT0yLqy/LKIxIWuEhlsLNC8WHDQDzes/7Z0k6uJaXf2jW/QXn9i31+3qZaz\ngW+QLs49oxa8ak91sdHkrKAafvR6tgy/BQOuM6qBkeZeNcdoNfNSFSUtMWjT/aQuJR2NVLYs\nrsxscjshhReYmefZCDNjXnpMv/t6tbdHGmlb+tnZJeyWxqRZ8vaS0C2b1IJTye6veBn5cdB8\n/LLPHyuuiMiNVftlcv1HZNCGU9sYGci/3zR5u7mIKLqkhbfjpvqWEBHn0v097D6OStOJyNCG\nbSIWz3mn5wv2uX5cAQAAWA9JelOkxh5NzniOWkM3rYhEXj68ddfew2cu37sXmazYe3iVrFKr\n7nMvtm3VINe/Bnp+Oa+nwc4TLmeWazlnf9hbVuV8nOV2nIgk3r4lUtcizU2WkpKSklL0W0Il\nJSUVdQi5IjbTEJtpiM00xGYaYjMNsZmG2B4/nDfTPLLnzbTAHB0dSdLDZA4lmua7ru5+aPDV\noKCgoKArly6cPXNy+/b9RhJgWpdnplb3/ORCpIj8Pvl4wMqHKc+IEx+HJKeJiKNHq8nV/rMl\nddT5/WrBxtZt0oQJRqJJjgpRCylxR/M9BcMsOKjW9dnty1/37/2DiNxNTheRyr2WftWmgsHK\nxzN25qvYvXpRBdy6qruR5jb2FRqXsN8XnSwiq+8lWDNJz5WZTW4nxIqBFew8G2FmzAcy9rqv\n19vYTQQaW7e+pZy/vWPJ2/Ii9keoBVeffsZr+vX3kxVXRCTp/l6R9x6RQbvV8jTS3N69WR0X\nrbpq/+T9JPEtISI22jLrRzVu8eVBEUl6cHhk76ZjPSq1bNeu+Usvvvhi0+fqViFhDwAAigpJ\nelOkJlxQCxqNTVm7tI2Lpy/bclynZG6MlRJ+Oy789o2DOzaurNlyzKcjqpUwtqI9G11KVEbn\ndu62xn5PtPfUd6tLi7JUcwAAAAAAihEbbWnjFRJuH12ydNXWrdsOnbgUnVSwHeD6fNHkk66b\nReTmpnE6+TfzXpKdo7eohRrvfpXtBpPYK/rtlFPiTk2ffio/o+hSI2PSlRJG/4Q3zrKDVu71\n/ZQGmycdjxARW6339h8H5tbJlUT9+XSrVrBdBi0YsL9THl9tPeVopybp791NkoLdS2AWrsxs\ncjshhR2YOec5N+bErOji76Skqy/WdMvjC8M6LsaW35gg7po+5e/i52W8pkulkmohLcns7e4t\nN6jBLT2yykzSx12Pl4xdNprP3Luq5PujJi6+nZwuIslRN7f9tmTbb0tEROtaoU3nLl27duvz\nalsPO9L1AADAqlisYApdqv5WcY2Ny+bZHy7ZfCwzQ+/o4qzRPPyVLvzC7rH/N/psbAGWmKdE\n6ytrbPP4E9cu46HyWbPsZjYHAAAAAKAY0WiMJbHWTR5Q0e/5DybO3nboXGZ+zsbWqVK1Z9p3\n7Tf1mxVLe/sbaV6h7RxXWxsRSYk9PPumPi2nS7036p8wEdFobAJG1crWJDUm1YRZxKUX5IHY\nOVh20PSkoC1XY/Tl1HuT1wXn1kNsxipkW+dcnwpvkAUDztzpMNdWGRXSk9NNGNRkXJnZ5HZC\nCjUwM89zbsyJWaNxsM345jDPnLDls8aZpy3Pnm3075eiSyxGg2ZujKAtkfV6s+0zZkHQrWNz\np4xs82wV2yzf3KbGhW79ZdHwvu0rVW3x7XZzb0cAAAAoEFbSmyI1JkEt6NJjl+yLFZEytVsM\n7t+5um/Fkm6OaQnRITeDtqz89s+Tt0UkLSF4+kcLfl480kJ3HmeR+YeoLrkImgMAAAAA8Ag7\nNLl9jynb1bKDR5V+g/o2bfRsw4b1alSt5JTxAPVD5z830oOdU9WAp0u+dypCRH6YefbjBU1E\nJPzIR3dT0kXE/anxHTyzb5/u6u+qFtx9J0UFT7bkfHJn2UGXD2j7b8zDLwp+HdLuw84Xn3U1\nkGGtkrGKPT44vkBDWDDg8wmpIk5GKpyK0+dT3Ss4mzOQBT05V2Z+FF5g5p/n3JgVs8aukoPt\n9aQ0EbkYl8eqnosJlln6n8nV31UOiYjEB+exYifxdrhasHOq9ugMej4+tYnR7Qcyf969Kmb/\neXf0rvv+xMD3JwYm3L34186/9+/bv2/fvsMXQhRFEZHY4L3DO9YOOxAyoXEee2AAAABYCivp\nTaFL/s8Dq5r/34zvAka98HTVkm6OImLn7F65RoMRU/83beCzaoWEu7u/PhaRz87t3fW/ayrp\nefyJmxav/01do324W5SZzQEAAAAAeAykJZzvFrBTLdd4be7tiMvfz5k29LWu9av7Zubn8qPb\nrOZq4dqqqWrhz9H6tF+z2UNz1nevpX98e3L0PtMiN4EFBw3d8fGQ1ddFROtS5w3/EiKSlnit\nW/d5BivXLatPg91af8NIn0pafHR0dHR0dExGStKCAe8+YOz7luQHf15J1CftWnlZ74H0RjxR\nV2Z+FFJgljrPBpkZc9uMWyhOrgkxVk9JWRWRYEL/Rng38VYLcbdWGa95Y6X+h9re7flHZ9C1\nZx8YaZ4ctfNCgv7nvbt3rvfuOJet0bX/8K/+99M/525E3zzz/Yy3S2ltRUTRpczq+4XxCAEA\nACyIlfSm0Ho8vGfTs8abH3WqY7Ba3VcntNnUZ8f9JBE5/sO/8myn/HRuY++uFhQlJUGnOOf+\nl0PKA/0ftzZ2D7PsZjY3mZOTk4ODQ8HbxZk/dFZubgV7DJ5RxGYaYjMNsZmG2ExDbKYhNtMQ\n2+OH82aaR/m8WTI20wKztS3YRtlAfkSc/DQ8JV1EtM41j654zyWXv46jL8YY76dcszle2rWR\nqbqkyG3LwhIGecaMPhohIrb2pRd28MlZ3/2pUSIrRSQpateOqOQ2Hrn+pRx3/eSp2/Ei4uBR\n+9naHvmemQGWGjQt4UKn7t+o5cG/bJpVd+/v/gMS05XQHR+N2NxrwSsVs9WvO6KqHL4rIhGH\nv0yXDrn9JB8e+Xzj+edExKf11pAdHSwYsIic/Xyd9BudW/OrP05RC7b2pQeVccmtmjU9UVdm\nfhRSYJY6z4URc98XSn+7Jk5ELi2cL59+l1vbyPOTwlIs/IyGCp07yLuHRCTx3pq/opLb5h75\nnPU31UKlHu0enUGPfbpZ2gzLrfnV5RPVgtapas+MJP2ljauPxqaIiFvldl1eKJWtiZtP7UHj\nFzb1C6rWf7uIxIYsTFMCeTY9AACwDpL0prB1LJFZbjisZe4VNd26V9qx5LKIJNzdIJKvJL2d\nU1UR/b3PFxJSG7rmuolTeKj++UwOnmUt1dxkWq2xZ61ZjUk3ClgJsZmG2ExDbKYhNtMQm2mI\nzTTE9vjhvJnmkT1vj2xgeALFBd1XCw7uzXPLz+lSI8YcCTfej629z1cNSg35N0xE5i242KHV\nV/dS00WkfMsFFewNZKW1rg2HlHddejtORN4ft/f8oraG+1VSBjVpuiYsQURe+v7SXvNSoZYa\n9Nu+HU/GpYhIuWYBiztXEnl986g5rb46LiJL+nR6L+JYDaf/fI9U8ZVRtpr96YqSFLV71O7b\nc1uWNzSqLuCXa2qpyqAqlg1YRCLPj//xxrABvgbuEEpPvvHmhGNquXSjGU6Pxm6ST9SVmR+F\nFJilznNhxFzns66yZo6IxN1eMm7vtIBmhr+X+2bQUhNiM86twgc1nKdfTEhVlPQPxu08v+hl\ng9Xu7hvz+z39Iv4+75i73b0FBw0/OvKXW/37+bjmPJSedH3QhKNqueIrgZk/7henvff60TAR\n8awWGHlppMFuy77UMvPb1HS+LgcAANbyaPyBUtxoXZ7OLDcsZezJZ5719M8xSk8Ji09XjNTM\n5FCisY1G/8fDqThjj546nfGYJe8mZSzVHAAAAACAx4BbVU+1kPRgW0SqLmcFRZcQ+HqTM/H6\nP411huqoOs7Sr+m88u3Xmz/epZYHzG2dW/0JizqohYvfdpq85ZrBOpundVZTd7Za77k9Kxuf\nS36YP2jI5vdG/HFDROwcKq7+Y5T6YvPPt3fwdhKRlPjTL7/+Y7YmjiW7BdTVb2S9uFuP/feS\ncg56KKDDhvuJIqKxcfiiayULBqxSdKnvthh0NSn7FyCKLmH6q80Px+o3EXzru1cNNheRFF2+\nvq6xVNsn7crMj8IIzILnWQy90ebE7F33y3YZO94Hduq47ZaBB1bunfXqlKP5fXRm/iPX2Lov\nG1Y9I/Lu07fdzNkkMXxPt076HTVcy7/56VPuZsZgwUEVXeLwZoZ+3tNjJ3Ztpq6Y12jsJs57\nuKTKv4/+Yyfq6vgNdww/PmDX1yvVgqPXyw4sowcAANZCkt4U9m4vOGTchJto9O8xRdEf1Wjs\nHfP3yCuNrXs9F/2q9HOHcv11XEm7fyAmWS1XbPBwv3ozmwMAAAAA8BjwqvWJVqMRkbSk4EY9\npl28l/zwmJKy99e5L9f3+/i3oMzXbm1acv6OgVSZiJR5PrCsva2IxIet+OBEhIg4eDSfUt0z\nt6F9O60Y8bSXiCi6lKmda/Qc+dW/Z4Pi09TvB5TQU3+NH9y00yT9qs0Xxm2o72qBrenMHDQ1\n/lSH3ovVcpcFfzUtod+Wz8au5Iptn2k0GhG5vnbI+H13s437zqb/eWltRCQ55t+21Rt//tOf\nEUn6DbrjIi7NGdW75Wc71H9WHfjb824Pd/uz4FmKDV5bv3qrRev2xqjNdUnH/vqlV6PKkzfr\nn29dsf2cKTVzfb8OH7mf26E8mdD2Sbsy86MwArPgeRZDb7RZMWvsflivX9KdEnuyS/U6Y+b9\nei1SH+Hd8wemDGrWYsw6EXH1M7BkvEByRv7c5xuaejiokU/qVPv1zxafu61/8E16YtiWH6Y2\nqt7+35hkEdHY2E/f8qWZAVhwUFttKRGJub6mXpUWC9fujU1XRETRJR7e+mO3BpU/335LrVZ7\n+NqBZR8+26Lq4HH2NhoRUXRJr9VrN++XHVFpqnx0uQAAIABJREFUmTdk6EJP75o8vEW3wDPq\nvxuMmmyR+QIAAOQHSXpTaGwc23np73g9eMXYw6si9t9RC1qXp23zfSdm93r6rPmdP//JrU7M\njdWpiiIiGlvn/uX+81g1M5sDAAAAAFDc2Zd44efXqqrlG5sm1y7rXafB8206tGtUp5qni0vz\nvh9uOx2hdak2c8nrap2YG0ufruBeqWr3nF3ZaL3nvKDfjzoxXRGRGm/Pzu356yIiNo6z965v\nXs5FRBRd6pqvxzSuU8XNwdnHz6eEk9anXruAHw6qFat2m7Jj8guWmbB5g37T7ZXzCakiUrLO\nyNVDqmc95N1w/Ire/mo5sPOrIcn/eUi2S4UeB5e9r65kSIo89ekbHcq6upWt6Ffa3cmtdI1R\nc1Yn6xQR8ajad8eiVywYcKaxo9qISNzNfe/0aO7h6FSqbGlnB5dn27225rh+G/MS/l22rX03\nZ8PKTvr3cHvfZ15s3b5NsyYD1t/IbRQLtn3irsz8KITALHKejb3R5sVcrtnna8fo9zxITbj+\n1ft9q3g7lShZ1svNsVztFycv36coilul7juXN83/Wcxn5LaO/ht2z/N1tBMRXXrczzOG1/Fx\n9ypdoXLFsq5u5V8ZPOlcVLKIaDQ2r3359wd1S5oWQDYWGdS5zKANHzUWkfjQAyNebe7u4FS6\nXGlne5fnXx648bT+XoRyL763+5v/fNQ4luy+emhdtZwQfuD919p6OTiVLFOhsm95Vwd7n7qt\npyzeox4tWXfQ1jF1LDJfAACA/CBJb6IOr/qqhfOLf81tG3tFl7Bsk/4uTq/6Bv6ayo1/v+fV\nQvydXw7HpBiss3/hAbXg5tPfW/uf99HM5gAAAAAAPAZ6Lj/8Wb+mthqNiOjS486eOLzzz7+O\nnr0SlZgmItXbDN528fiYN7+f0M5Hra8o6RH3Yg121XrWw6yPRmMzY3Rt40M7eL7016VDw19+\nmO9RdEmhN0JjM1aZ29i69p/w/dm1E+0tt7WyyYMGrxkyekeoiNjYeSz7a3rO7wj6fL+ljotW\nRJKjD7Ydvi7b0eqvz7mw8cv6ZfRPA9SlJ4bduhER83Dr+1qdRx8+uaKiQ/b0sUXOUruJm7Z8\nMdTDzkZElPTke2ERiQ+XyUqtjm//c3pNLWcDz5j+v2mdMwKOO7Br+859/wRHG/4KxbJt5cm7\nMvOjMAIz/zwbf6PNjLn7zB1bvhxext42Y3QlNjLsQZx+PX2FFwfvPvmLr4OJj0c3HnnJem+d\nOvnrK3VLZQytexBxO/hWWFK6LmNqNSf+dOKnj5qYNrpBFhm0y1d7l4/vqe6RoKQnR9yNSErP\n3MTUttWb087s/trbLvtnWJf//TtvRAfbjMeDKrqUyPDbwTfvxKekZ7S1eemNCacPL3XL/xIr\nAAAAs5n4qx7KtRrqvmRMdLouIXz7uGW1Z7zZUvvf3+IUJWnbN2POxKsPQ7LtN7i64Y4McfMZ\n9JLnn/seJCmKbv70Ncu/7JftN8QH537+9qp+BX/Hkc0t2xwAAAAAgMeAxtZ92sr973y0YWrg\nj2cvX7l69Wq0zrl8+YqNWnTs0euNXq1qqtWmbL3caPGsdXtPiWelWnVaGOzKu95Xfo7LgpPS\nRKRE5U9eydhdzwitW51Fm09/vPf3Zas3/rnr0M27YQ8SbHyrVK1atWqtek3fGDq4bnlny83V\n9EFTYw+3fUP/sPmXpv3VpYyBqOycqm1aOci363cicnl53y/fuzumgXfWCpVfGX301qDflyzZ\n8Mcf/5y5HhYeoTiUKFXOr0mzFj0HvvNq06csGHBOHT/57mav179ZsHztlj03bt+NSbMrV658\n3aYdevV9842Oua6LrTLw5z/Tqk+bt/LCteuJNiXKlStXu3Teb6v5beWJvDLzw+KBmX+e83yj\nzYy548eLrg/4vyXf/rTxj+0XbtyOiEzwKFOucu3Grw0cNLxfO3uNJFQaMmtWSxHxreFRoLnn\nGbl79R6bTnTZ9/uy3zZu2vXP6bth4TGptqVKl/av/VzHVzq/ObRPuRx31ZjP5EFnzZolIvZu\njUSjHTBjddvuWxYu/WHD7qO3Qm8n2biWr1Cxcesufd/4v07PVTA8sMb+3flbe721c+mKXw+f\nvxYSEhISEhKruPr6+fr5+j1Vq1Gv/gNb1Clj8fkCAAAYp8l8aDpEJPLs5EHjj4uI1rnmmlUz\njVe+/Mvo0b9cVsvu/k2GDelZ29/P00WbEnv/etCpVd8tORaif7qSb9ux897LvrHVmrEfbn+Q\nqJY/+2ZhtjvKH5xfNnDsen3zl94Y/073ci52IiJK+sUDvwcE/vIgTSci7lX7rZjdL2dsZja3\nmlG/Blu2w8A+fpbqithMQ2ymITbTEJtpiM00xGYaYnv8cN5M8yifN8vG9oS8ofmRuMLA9trF\nkdMb84s6BMAAL62t+s3Grqiklu4ORR0OABGR4A2tK3fbJSLetdZFnOtW1OEAAAA80lhJb7qq\nfaf3vvDObyfviUj0tUNffnpIo9G4lHCKi07IWs37me5fvWtgp6bY8Dt37umT9Kk57pTwrPXm\nhB4Xp629KCI39q0YfnC9fxVfdwddWOi10Pv6LePs3etMn9HbYGxmNgcAAAAAAAAAAAAAFAYe\nRm46jcax/6S5gzo2ePhMI0XJmqHX2Do3ffX9xdMGO2pMeaBRo0FffPx6K0cb9TFLsUGXzh4/\nfT4zxe5dq9X0eZN8HXPde8rM5gAAAAAAAACQX2zYCgAAkG+spDeLxtatx9uTW7U/sWPvgX+P\nX4h48CAmLtnJzb1kOd969Ru0aN/e39PejO5tXur9YYMmbf/cuevAsfP3IiNjksXT06ucf+1m\nLVq0afy0bR6pfzObAwAAAAAAAEC+xF6JLeoQAAAAig2S9P/h9fTkjRsL3MrDv35P//o9BxWs\n1aBlv+anhUvF2j0G1e5RwM4t1RwAAAAAAAAA8qCkLP32ilp08HYs2lgAAAAefSTpAQAAAAAA\nAACmODFx1IKbEcHHtu68GqW+UuOtKkUbEgAAwKOPJD0AAAAAAAAAwBQ31qxYev5e5j9L+Hdb\n1ce/COMBAAAoFmyKOgAAAAAAAAAAQDGmsXUsV7nuBwE/nDv3u7eW75wBAADywEp6AAAAAAAA\nFCeRqelFHQIAvS4ng29HJHqX89ZqijoUAACA4oMkPQAAAAAAAADAFDZal3LlXYo6CgAAgGKG\nrYcAAAAAAAAAAAAAALASkvQAAAAAAAAAAAAAAFgJSXoAAAAAAAAAAAAAAKyEJD0AAAAAAAAA\nAAAAAFZCkh4AAAAAAAAAAAAAACshSQ8AAAAAAAAAAAAAgJWQpAcAAAAAAAAAAAAAwEpI0gMA\nAAAAAAAAAAAAYCUk6QEAAAAAAAAAAAAAsBKS9AAAAAAAAAAAAAAAWIldUQcAAAAAAMDjxumN\n+UUdAgAAAAAAeESxkh4AAAAAAAAAAAAAACshSQ8AAAAAAAAAAAAAgJWQpAcAAAAAAAAAAAAA\nwEpI0gMAAAAAAAAAAAAAYCV2RR0AAAAAAACPm+i3qhR1CJbh/t3Vog4BAAAAAIDHDSvpAQAA\nAAAAAAAAAACwEpL0AAAAAAAAAAAAAABYCUl6AAAAAAAAAAAAAACshGfSAwCKq60Hz1m2w8A+\nfpbtEAAAAAAAAAAAIBtW0gMAAAAAAAAAAAAAYCUk6QEAAAAAAAAAAAAAsBKS9AAAAAAAAAAA\nAAAAWAlJegAAAAAAAAAAAAAArIQkPQAAAAAAAAAAAAAAVmJX1AEAAADALFsPnrNsh4F9/Czb\nIQAAAAAAAAAgEyvpAQAAAAAAAAAAAACwEpL0AAAAAAAAAAAAAABYCUl6AAAAAAAAAAAAAACs\nhCQ9AAAAAAAAAAAAAABWQpIeAAAAAAAAAAAAAAArIUkPAAAAAAAAAAAAAICVkKQHAAAAAAAA\nAAAAAMBKSNIDAAAAAAAAAAAAAGAlJOkBAAAAAAAAAAAAALASkvQAAAAAAMB6lPRoTYYWvwYV\ndThA3k7PbKResb4ddxR1LBa2qqa3OrV2f4YUdSx4Epn2w6Wkx62e9X7z5+uWcXcs4V2+3cdH\nCy9CAACAQkKSHgAAAAAAPCnGVCyReYvAifjUog4HFsb7i0dKkVyQj8dPgZFZKOnRQxr49f54\n3t7Dp8NjkmPv37l+K6Go4gQAADAZSXoAAAAAAAAAKDZ6lXJRE9gzQmKLOhZru/Zbv+9P31fL\nbr5Pt2jbtnFtj6INCQAAwAR2RR0AAAAAAAAAAAB5O/GlfnN7v66LLq8brtUUbTgAAAAmIkkP\nAAAAAACeFJ4Vff3s4tSyg4bczuOG9xePlCK5IB+PnwIjswiJ1e9+X3tcdzL0AACg+CJJDwAA\nAAAAnhTjDp4ZV9QxoPDw/uKRUiQX5OPxU2BsFor+/20ceZArAAAoxkjSAwAAAAAAPDJ0STvX\nrT569lKai/+no98s6mgAAAAAAJbH/YYAAAAAAKBYirq8Z/aE91o+W6diWW9HR7fKNeq2ebn7\nxIVrI1J1uTUJ3tBao9FoNJpStdfnPKroEveuWfz24H5tX3rOv3xJR9eS1Z9p1LFbn9EBSy5G\nJhvscHd3f7XDhlNO5jZoQsRKtY6DW8Pc4mnxa5CIxN3c3K52+TY9B4ydPGPKpNkWmbL5TDgt\nWegOrV364aDudWo85e3hYu/i7lO5WrNO/QMWrrydnJ732LqkP3+eP/TV1tX9K7k7O3j7VHmh\n1cuDho9aveeiwerG318RSY48/8PsT3t3e/mFhnUqlvawd3b3q/b0i606vDFi8t8X7uUdj0lM\nGzRzLk0X6yd758Sfnw3rUa9WlZJuju5lfJ9r1m7Q+wHn8noLEsOOz5s6qnWjOj5lvOwd3Xwq\nV2/RY+ji3/dY5Iox53yafF09yRfk6ZmN1A5/v5egvvJZpRLqK82WX8lt0HNzGquv2Gq9bqcY\ne+e3ZnygOXm1M1jPah9BOWcRcaqL+sqoa1HqK3/UK62+UrXf3iIMFQAAwDSspAcAACjezr33\noKhDAADA2pT0mK9HDvh0wcZEnZL5YvCl08GXTu/cun7mOP8Rs1cGDn2+QH1GX1rbr8fQref/\n8x/Wy2ciL585um3Db3OnThv//bYpfWtaZgKGJIb/1eKZV49FG84yFsaU88Oc0xITtGlgn7fW\nH7ub9cXQ4JjQ4Cv7Nq+c8un0T+b/MqV/3dyGjjy9qn+/EdvOR2ZpHHQoNOjQ7q3LF8+p2XnU\n+l9nVnMqwFdbBxd92Gvk/Gy52BtXzt24cu7A7j9/XjStXse316yZW9nRNv99WmtQ3foZr/ea\nsCpNyXj3424eCb95ZN9fP337zfCv1s5/r4nBZlu+fHvwhO/CUx6OHhp8OTT48p51SwNaDF27\nYUFRTc3k64oL0gRVBk+z+ai9TlF0aQ/GHAn7qWk5g9UUXeLI7bfUcs0PZmZb2lVUH0EmKEah\nAgCAJxlJegAAAAAAUJzoUsNHtqv/zd+3M1/RaLSlvB3DI2LVf6bEXJvzVuOgm6s3TO2Zzz4T\nwzc9W7/P1cS0zFccS5Ty1Cbdua/vMy3p5rT+9Z1rhH5Sr6SF5vFfuuSRzfpkZujdS5ev4FPt\n4cFCmHJ+mHNaHpz7oVGjt4KytHV29/Z0SA+LiFIzzclRF6a90SDo7r6fPnoh59DhBxfUa/nB\nnYzsskaj9SpTOvn+nbiMVbAX/ghs8nzkleNLvezytU/k1Z8GNX1nedZXnN1Ledinht2LTlcU\nEVEU3YktCxq/5H73yAxNfnq04qA7xjfrHnDAo0b7MR+82axBNYfk8DOnDn09+YvT95PSk+8u\n/OBFr+fvTH2udLZWq0e37D3776yvOJUoaZMUFZ+SLiI3/l7SqmHcZ7p8LB+39NRMvq64IEs3\nHjR2bBsRWffN7EsJqSLS7J1RL5SwFxG/Op65jeXg0fYDH7c5ITEisnvsbtn3msFqkefHq31q\nNLYzP6iV9VBRfQRl5Vy659ixtUXk8P++3hWVJCJV3ny/Z2lnESlZt+IjFSoAAEB+sN09AKC4\nOvfeA8v+r6gnBAAAgHxZPax5ZgKmUrPBW/afCI9NCAuPeXDr8taVX9R2d1APbZzWq/fSC/ns\n8+uOb6qZPxut16gvl1+7H58YHX77XkxKXNjv88Z7a21FRNElf95tYiFMSETkwqLOiy89sHP0\nfffzH84G348KCz13bF3m0cKYcn6YfFrSk0N6Nn9HTYhqbBy6j5xzNCgyPiriVlhkQkzIxiWT\nark7iIii6FaOabXwfPZfxdMSzrZrP0pNiNq7Vpu4ZGNoXMK9O7dikxODz+4c0Vm/1jnyzA+v\nzDiSn4noUiPa/9/PatnB47mAZZsj4lLio8JDwx+kpsQf3/7zwCb6DHf40c9nBseYdLYKa9C7\n+6d0+OJgrdcCQ85uHTe8d9Pn6j37UrvB7046futSX78SIqIoum/6zs3WKvSv0ZkZejtHnw9n\nr7gUFp8QfS8uOeXakW0fdXtGRKKvrvo4Y+dwa07N5OuKC7Js8xEBAQEBAQF1nLXqK+3GTlZf\nGdbA28iIwybogww7MiY6XTFY58An+s8cjyqftfVwyHqoqD6CsnIpN0CdaScvR/WVmu9/pr4y\num/lRypUAACA/GAlPQAAAAA8ubYePGfB3gL7+FmwN8Cg6KDAfj9cUstdAjasG9slc/2BR4Wq\nHfp90rpT1w9aNlt0LEJE1r37SvDrV/wc8tgsOjX+1MQT+sc/v73m+OzOvpmHtC6lX313xjOe\nV6q9vlpEYm8uOhL3dSNXrYVnJRK+75qdk//aMyc6P1Ui26HCmHJ+mHNajk/psut+oohoNHbj\nfj83o/tTD9u6Vug8ZHKbLq1aVW33T3Syokse2+Gzd27+Z9/1LQO7nopLERGtc831F4509HHR\nH9DY+9ZuNX/jyWrd/D7YcENEjs0cED/hootNHkvfI06MvqYmd+08Vxzb0cvfLfOQxs6pftvX\nlrVoE1uh8tqIBBHZuCV07DvZ3wUTWGrQaz+tcqvU/+iKD53+O01bx0rz1g1dVT9QRGJufJWo\nm/6wgpL8Wq/5alHrUmfN2QOd/TJHt6n8bPtZ69q/NL5Vt4Dd1p+aydcVF6Q5KvedaTesaZqi\npCeHjjt7f2Hd7Bl9JT125K5Qtdx8zptZDxXVR5AJilGoAAAArKQHAAAAAADFxtohsxVFEZGy\nTb7ckCUBk0nrVmPunj99HOxEJC3p+pC1wXn2mRS5Rd3vWqPRzunkm7OCf69APz8/Pz8/X1/f\n43Ep5s4hF60Wbs2ZoZfCmXJ+mHxalPTYId/obwCqOvC3rAnRTE6lmq3dOEItx4YsnBcSm3ko\nLfHi4A36KfRYtulhQjSLEat2qMumUxMvT7+Z98L30E2n1UKpenOzJkQz2WhLf9iugj6eq7E5\nK5jAgoP2+3W2k6G8r1ftT9SCoku9kmUj97uH3t2b8eiE9zZuy5Khf6jr53+9XdUj72kYYs7U\nTL6uuCDNYe/WZGxl/cfL5vGHcla4f2bstaQ0EbG1L7uwrU/WQ0X1EWSCYhQqAAAASXoAAAAA\nAFA8KOnRIw/cVcsjVw7LrZrWpf6Kvv5q+fTne/PsVmOj3wBZUVJ/CzaQD7O197meYVhZAyk6\n89nYOv+vr4HcYSFNOT9MPi1xt+efiVefbG0TOLtjbv2Xazarc0kntfz90quZr4f9+0lkqk5E\ntM41lvaqbLCtrWOVac9U9PDw8PDwOHMsMs+5VB/yy8mTJ0+ePLln3au51VEy9wA3vBd4gVlq\nUFutd2CO582rbLSlHTOS91mfLX9y2na14FLmjdmtyufW8aQVvXId1ShzpmbydcUFaaZB0xup\nhTt/j0nSZT+65+ONaqFC6wXl7B9+Y1yEH0EFVYxCBQAAEJL0AAAAAACguIgLnRudphMROyf/\n0X7G9n9+emTdjCar8uzWuXR/Dzv9NyRDG7b5evXBFAtlxfLPsWTXyo4Gdl0upCnnh8mnJXTL\nJrXgVLL7KxlPjzZE8/HL+gW7N1btz3z14twzasGr9lQj24YPP3r9wYMHDx482PSq4bxpVi6+\nNerWrVu3bt3qPs4GKyTdOzl12608+ykQSw3qXGagkfNg8MDSY/pt4au9PdJIz6WfnV3CzpTv\nBs2ZmsnXFRekmSp1me1goxGR1ISLU65GZT2kpEWN3KdPbw/8ulXWQ0X4EVRQxShUAAAA4Zn0\nAAAAAACguIg6r8+c2di6TZowwUjN5KgQtZASdzTPbm20ZdaPatziy4MikvTg8MjeTcd6VGrZ\nrl3zl1588cWmz9WtYp/HA6YtwKFEU4OvF9KU88Pk0xKxP0ItuPr0Mz6EX38/WXFFRJLu7xV5\nT33x+OkHaqFi9+qWmIdBuvuhwVeDgoKCgq5cunD2zMnt2/fHpOVYXPxoDKp1ebqgIx3I2Ou+\nXm8D28Jn0ti69S3l/O2duIL2n0MBpmbydcUFaSatyzNTq3t+ciFSRH6ffDxg5cNkfMSJj0OS\n00TE0aPV5Gr/eQhCEX4EFVQxChUAAEBI0gMAAAAAgOIi9op+j+uUuFPTp5/KTxNdamRMulLC\nNo80e/OZe1eVfH/UxMW3k9NFJDnq5rbflmz7bYmIaF0rtOncpWvXbn1ebethV1jpehut4f3M\nC2/K+WHaaYm7pk/6uvh5Ge/fpVJJtZCW9HB38cxnq7tVM/CsbnMk3D66ZOmqrVu3HTpxKTop\nLe8Gj8agNrYFe3K8oou/k6Lf/L6mm73xynVctCaEpDJ5aib/uHFBmqnPF00+6bpZRG5uGqeT\nfzN3Udg5eotaqPHuV9m2Vijaj6ACKUahAgAACNvdAwAAAACA4iI1JtWEVnHp+dkU27bPmAVB\nt47NnTKyzbNVbDUPczapcaFbf1k0vG/7SlVbfLv9qpEucqXkvSJWozGcKy3MKeeHSaclc/A8\nM182+lkrusTM12IzFhDbOhvY/99k6yYPqOj3/AcTZ287dC4zIWpj61Sp2jPtu/ab+s2Kpb39\nLThcEQ6q0ThkvlN5vgMm33Zi3tRM/nHjgjRLhbZzXG1tRCQl9vDsm/qUti713qh/wkREo7EJ\nGFUrW5Oi/ggqgGIUKgAAgLCSHgAAAAAAFBeu/q5qwd13UlTwZIv37+hd9/2Jge9PDEy4e/Gv\nnX/v37d/3759hy+EKIoiIrHBe4d3rB12IGRCY8Or3nOTnhJqckiFPeX8KOhpcfV3lUMiIvHB\nUUa6FZHE2+Fqwc6pWuaLVZz031bFB8dbagqHJrfvMWW7WnbwqNJvUN+mjZ5t2LBejaqVnDKe\nMn7o/OeWGq4IBxUR0dhVcrC9npQmIhfjUozXvZhgygJui0zN5B83LkiT2TlVDXi65HunIkTk\nh5lnP17QRETCj3x0NyVdRNyfGt/B0zFbk0fhIyifilGoAAAAwkp6AAAAAABQXLjXqqAWkqP3\nFepAzmVrdO0//Kv//fTPuRvRN898P+PtUlpbEVF0KbP6flHQ3uJvmf7YY6tNOT/yeVq8m3ir\nhbhbq4x3eGPlDbVg7/Z85ot1yzqrhVvrbxhpq6TFR0dHR0dHx+SVh05LON8tYKdarvHa3NsR\nl7+fM23oa13rV/fNTIhaXJEMmqltRqr15JoQY/WUlFURCQXt3OJTM/nHjQvSBN1mNVcL11ZN\nVQt/jtbfLtBs9tCc9R+pjyDjilGoAAAAwkp6AIBxWw+es2yHgX38LNshAAAAnhzuT40SWSki\nSVG7dkQlt/FwyK1m3PWTp27Hi4iDR+1na+fxSO9LG1cfjU0REbfK7bq8UCrbUTef2oPGL2zq\nF1St/3YRiQ1ZmKYE5twkPD3jKeA5nZpzwngARhTSlPPD5NNSoXMHefeQiCTeW/NXVHLb3GOe\ns/6mWqjUo13mi3VHVJXDd0Uk4vCX6dIhtx3GD498vvH8cyLi03pryI4ORiYScfLT8JR0EdE6\n1zy64j2XXPKg0RdjjHRSUEUyaKa+L5T+dk2ciFxaOF8+/S63apHnJ4Xlft3mxsypmXxdcUFa\nRLlmc7y0ayNTdUmR25aFJQzyjBl9NEJEbO1LL+zgk7N+EX4EFVQxChUAAEBI0gN4cpBsBgAA\nAIo7rWvDIeVdl96OE5H3x+09v6it4XpKyqAmTdeEJYjIS99f2ptXDubitPdePxomIp7VAiMv\njTRYp+xLLUX0603Ts3yfoslIsN3/J1SkYc6G6UlBwzcaW4BrXCFNOT9MPi1uFT6o4Tz9YkKq\noqR/MG7n+UUvG2x7d9+Y3+/pl3H3eefh7uIVXxllq9mfrihJUbtH7b49t2V5Q611Ab9cU0tV\nBlUxPpG4oPtqwcG9eW4JUV1qxJgj4cb7KZAiGTRTnc+6ypo5IhJ3e8m4vdMCmpU1WO2bQUtN\n6NzMqZl8XXFBWoStvc9XDUoN+TdMROYtuNih1Vf3UtNFpHzLBRXsDdyBUIQfQQVVjEIFAAAQ\ntrsHAAAAAADFyIRF+iWqF7/tNHnLNYN1Nk/rrCZgbLXec3tWzrNP/z6V1ELU1fEb7hje/XvX\n1yvVgqPXyw5Z0mpu1dzUwp0D7+x5kJyjXfqiAW2Dk0x57Hemwphyfph8WjS27suGVc+Iufv0\nbTdzNkwM39Ot0zdq2bX8m58+5Z55yLFkt4C6+v3JF3frsf9eUs7mhwI6bLifKCIaG4cvulYy\nPhG3qp5qIenBtohUXc4Kii4h8PUmZ+JT1X/qDNUpqCIZNJN33S/bZex4H9ip47ZbBh6mvnfW\nq1OORpjQuZlTM/m64oI0KEWnGB8up46z9PsEXPn2680f71LLA+a2zq1+UX0EmaAYhQoAAECS\nHgCK3taD5yz7v6KeEGAifhYAAHjS6JIS4/MhIfHhM559O60Y8bSXiCi6lKmda/w/e/cZGFWx\nBmB4djebHlKA0AIJJfQYiiC9qVSp0juCgiIgSBeQJiAldFEvVYoUkSICUgTpIr13AiFACKT3\nsuf+OJsQyKZttqS8z587OWdmzjeT3VwMbg3JAAAgAElEQVTZb2em88h5/167H5kgp6kk/8sH\nJw6o/9G32qW09Sbsqm6vzjAMzwETLJUKIYSkielZrfnSXw+FJCRnxTT+V/6eOqRJB5+r8s81\nRk1N2bZ0n2ZyITHWv2ODXnuuvkq+Ffn04viu1YZte6i2reBhrf9ehtkf8vcNq3smOROewYHZ\nybIzLbVn7arvZCXH/O1HVXpP+un60wj5VmJ0wN6102tVaPFvWKwQQqG0nLl37luP/mLPjy5q\npRAiNuzfDyvUmbXhr8AY7a7sEYG3F47q2nTSIW2Q/ba+52CZ/kBcKo9TKxRCiIQY31qdZtx6\nmeK7FFLcsS2LW1f3GLP1fvK1J3tW3nimI6udJWZ56GsKi7U7tWvN48IvtavgNXbplgdB2hie\n3zg5rX+jJmN3CCHsPeyz2nc2h6b364oXpE5n/3uV1q20FHnPp6ilSggRGbB+xMVAIYSVU+Np\nFZzTqm+Mv7pGkotCBQAAIEkPAAAAAADM43h/L/tMKFLu69dtlNYLju1sXMxOCCFp4rcvGlvH\nq5yDla2bh1sBG7Vbteaz156SK3p2mHZoar3MhGFdsOO2Qd5yOerFyeE9P3SxsilYpERp9+L2\nVpZu3u9P++kf+W5B7/77xnqlbOtSed7g8trdkoNvbG/nXdStXNVmLZvXrVnRya3m99uuKVX2\n844cL5uNJH32h/zK9/69JNGZXnebnWlRWZfZdWSpu7WFEEKTGLHxuyFebo4uriVKlyxq71C8\nzYBvr4fECiEUCmXPuUdHeBd869F2JTqdWj3cSqkQQsQEXf6mT8ui9g5FS3q4Oto4uFYctXBb\nrEYSQjh5dj+0ok2GA7EsUG9jT0+5/GjP1CpFC3nVeO+Dls1reZV3trNr3P2r/VcC1Xblv1/Z\nW64T9mhV1RKOpTw7ZnKics5DUyrWaNbvY7Vro+OjHs4b3r1cIZsCBYu6OFgXq9Jg6rrjkiQ5\nlOp4eF19Ew9N79cVL8iUnZS20W5Nf6D7Ow3eb/FBo7p9d2b2WA2lutDCetoTEKITJSFExc8X\n6Njp/nUDw//VNZZcFCoAAMj3OJMeAAAgYwZfl+/TzcOwHQIAkH9YOTc8ePv08O69ftyrXTUr\naWL8H/knV1Cq7HtMXLp6Wn9L3cc969Dux3+Xqtt/9cNfiZIkhJA0cUEvngalqKBQKBv0/mbz\nyqkOqrc6VS3571BQi47bzvgJISQpwf/+df/72v9ysHJ6Z9H2PUNqF/5Dv6EmMcaQMyMb0yIK\nVvv08qWCvboN+fNyoBBCkjTBgU+D3xhUpfHLNk/t+Y7OR1fovfCmc4mPB065GBAthNAkRgc8\neSMHWbnt6J2bZ5e0Si+3mKzzurOTNG1mbz6VKEmaxIhrF89eS/msDwb8sGZpsxJWEVuPzjjw\nRAghSYmBL8Mz03NOe2hKHb8/tLfQ5wMm/S8gLlEIIUlSeFBA8t0SDQbs2r3C7c7HevSczaHp\n/briBZnssxlt5/XfJITQJEac/PuAEKLhwMxukiGEeH9+G/Huz3JZoVB+N7pK+vXN9SdID7ko\nVAAAkM+RpAcAAAAAALmM2sFrxZ9Xxhz7bfW23X/9ffrx84DgKKV7OU9PT8/K1er3GTTAu7ht\n1npUWH65bF+XTw+vWr/l7I0Hfn5+fn5+4ZK9u4e7h7tH2cq1uvTq18SriM6mlgVqbj396Mxv\nixau33/37t17D/wtHAuXKFm+ddfen3zep4KDWggxeOacVjEJKkvdPZhnyJmRjWkRQjhW6LTn\nYrvjv63eunvP32euPA94ERavKuzqWqZK7VZt2n4yqFuxdDOapduMPvek/28rV+76448zVx8G\nvAiUrAoULuZRt1GTzv2++Lh+2SyMQ+U4Y9OJL77eNd3nl2t37t67dy9UY1u8eMlaTVp16tKn\nS7NKcrVp++7U+mn+jmOXhXOpyl5NMt9/znnoW1qNWfGw72crf96w+48DNx89DQyKcipSrHSV\nOj379R/So7mlQkSVGjh/flMhhHtFJ9MNTe/XFS/IJOX6bfwrocKMpZtuPngYrSxQrFixKq7W\nmQ+gULV5HtarfWMShBAFSo9r45JxW/P8CdJLLgoVAADkZwpJyuwuZ4DBjdria9gODbgqkdj0\nk5NjqzTiT0N1Jbu5OONd7DKJ2PSjubfBUF3JlOV6G6qrnDxvvE/1k5Njy8nvhZz8esvJseVk\nzJt+cvK8GfbvmwH/uOV2oZ+WM3cIhuH4v3vmDgEGc3pw5Xo/3zwaEtPY0crcscBwJE1CQkJC\nQoKljS2nWgIAAAC5BSvpAQAAAAAA8r7op9FCiOKWmdqOG7mGQmmhtrRQW5o7DgAAAABZQJIe\ngCFxZjMAAAAA5Ew374ZZ2nt72vBZEAAAAACYGf8wAwAAAAAAyNM0MZf3LB57L6R0/23mDgUA\nAAAAQJIeAAAAAAAgT5tQpsicR2Flmg//a3ljc8cCAAAAACBJDwAAAAAAkKd9NGNF09IV329Q\ng+PoAQAAACAnIEkPAAAAAPnX9WHB5g4BgNHV79PT3CEAAAAAAF5TmjsAAAAAAAAAAAAAAADy\nC5L0AAAAAAAAAAAAAACYCEl6AAAAAAAAAAAAAABMhCQ9AAAAAAAAAAAAAAAmYmHuAABk2b5T\n1w3boU83D8N2CCAn428IAAAAAAAAAABmxEp6AAAAAAAAAAAAAABMhCQ9AAAAAAAAAAAAAAAm\nQpIeAAAAAAAAAAAAAAAT4Ux6AEB6rg8LNncIyEd4vQEAAAAAAAAA8jyS9ADyC5J/AADAXPad\num7YDn26eRi2QwAAAAAAAJgMSXoYRmJioiRJ5o5CJCQkmDuENBGbfgwYm8GP92De9JNPYjO4\nfBJbTv6dGvyLPvlk3gyO2PIe5k0/OfZviH6BqVQqhUJh0EAAAAAAAAByLpL0MIzIyMi4uDhz\nRyFCQkLMHUKaiE0/BozNxVAdJTFgbAZP/gXlj3nLybEZXD6JLSf/TokthyC2vId500+O/Rui\nX2BOTk4WFvzjFAAAAAAA5BcGX3kFAAAAAAAAAAAAAAB0Y7ECDEOlUuWEtS85IYa0EJt+iE0/\nxKYfYtMPsemH2PRDbHkP86afHDtv+gWWJ/e6d/zfPXOHAAAAAAAAcqgc+skOch07Ozs9Wu07\nddKwYfh0a2O4zgy886qTk5NhOzSgfBKb5qWhetIiNv3kk9gMLp/ElpN/p8Smr5z8/6c5Obac\njHnLEXLs3xB+oQAAAAAAABliu3sAAAAAAAAAAAAAAEyEJD0AAAAAAAAAAAAAACbCdveAbvtO\nXTdshz7dPAzbIYCc7PqwYHOHAAAAAAAAAAAAciKS9AAMicQkAAAAIIQYtcXX3CEYBt82BgAA\nAADA4NjuHgAAAAAAAAAAAAAAEyFJDwAAAAAAAAAAAACAibDdPZD7sKU8AAAAAAAAAAAAkEux\nkh4AAAAAAAAAAAAAABNhJT0AAPkLu3EAAAAAAAAAAGBGJOkBAAAAZNa+U9cN26FPNw/DdggA\nAAAAAADkcGx3DwAAAAAAAAAAAACAibCSHgAAAACMi6NGAAAAAAAAkIyV9AAAAAAAAAAAAAAA\nmAgr6QEAAJAfcbY6AAAAAAAAALNgJT0AAAAAAAAAAAAAACZCkh4AAAAAAAAAAAAAABMhSQ8A\nAAAAAAAAAAAAgImQpAcAAAAAAAAAAAAAwEQszB0AkENdHxZs7hAAAAAAAAAAAAAA5DUk6QEA\nAGAs+05dN2yHPt08DNshAAAAAAAAAJgY290DAAAAAAAAAAAAAGAiJOkBAAAAAAAAAAAAADAR\nkvQAAAAAAAAAAAAAAJgISXoAAAAAAGBSVewsFQqFQqHwGnk2k03OjvSSm6htyho1ttzCd9f7\n8oQUrrLT9E+/8n0t+enurQ7p0XxzpUJy8+Z/+Rk8NvPKztCkxIht84c3fs+7iKN1gULFm485\nZ4wITSObrxAAAAAgz7MwdwAAAAAAAABAviYlhg6sUXbNlVdJF549fBJlzoAyZ2zJAvOehMvl\nCxFx1e3U5o0HAAAAyC1I0gMAAAAAAADm9GBrj+QMvYN71Zrli7lVcTJvSAAAAACMhyQ9AAAA\nAAAAYE4X52o3t/dov+LOjiFqhXnDAQAAAGBcJOkBAAAAAAAAc/ILj5cLVSZ0zEUZeueS7h4W\nEXLZSpF74gYAAADMjSQ9zOn6sGBzhwAAAAAAAGBukvZ/ldZKs8aRNRNOXZ1g7hgAAACA3Igk\nPQAAAAAAAABkmybm8I5t567dTrAr883oT8wdDQAAAHKu3PTlXAAAAAAAgLRpTv++6qv+Hb0q\nli3kZGdp5+hWunyjj3rN/mHT09jEtNoc6VhGoVAoFIqa0y6lVScqcJNcx8qhps4Kkib62Paf\nPh/Q48OGtcsUL2htX7DCO7Vadeg2evbKW0GxGcYdcuefBZOHNX3Xq2TRQtbWDqUren/QuuOU\nH34PjNdkZtiyu4d+HdmvbcVy7s721o5F3Gs1/LDvlzMvB8Zk1E6fSctQdMCFpdNHvV/Ly62I\ni6W1g1vpCk06Dfrpt3+yMJ60xQbdWLvgm64dWter6VXS1cnS1tGjfNUGzVr2GTr16M2XabXy\n3fW+/Eus/9Mt+cqzi39NGtypWuVyBR2sHYu4127UvP/w2dcz+n0ZdmiBl9vJUY16ECJf+aOa\nq3zFs8cxgwz86T+t3hi4FLfvF5+u79cuXcLV2tKmaMmyDTsMWrP3ZooWmn82Lun7Uf3SJYva\nWVkVK12pcYv24xdtDkmQUneePKuFq+xMf6Rx4WcslEq58rKnEenUnObprJ2BnofS71MHTcxf\nG5cN+vj9CmVKOdpaFXIrV69Z6/5DRm3751b67bL5omqy5b4QIuLxn82rFP+gc9/xU7+b9u2C\n1PUN8k4HAABA3sBKegAAAORHHLsDAHlM2P09/bp9uvP885QX/X3D/H3vHv9z07RvZo5b9uu0\nXt7GeHTo7d97dBq078Yb/89y52rQnavn9u/aunj6jIlr9k/rXklnWykxbNHIvt8s3x2teZ0B\n9b19xff2lcP7dn4/oczQBZt8Br2XfgBSYoTP0PZjfj4iSUmdRD4+9+LxuROHNv28ZOCc7T+N\naqizoZEmbe/czwdM/t+LuNc5fn/fO/6+d/7ZsWp2k0G/71qe1Q5TOrXiqy4jl731BYJHd68/\nunv95JG/Nq6YUa3V59u3Ly5trUq3G83O73p3mbw5IXnGIh7/9+Lxf8cPbvh5yZB5vy8bVtf0\nQ0ufQQYeF3Zp6EcfrTzun3wl4MmDgCcPTu5e/fu4LX/M7pIQfXdY+1Y/HryfXCHK99Zz31vH\nDuxeuXbX5bMbSlimP7FpsnSoM8a9wBzfUCHEzwtufrmglu4Iw0/PvB8qlwfPzuCV/5agK5t7\n9Ri6/0bQ60v+90/73z99ZN+6nxZWajtq55bvy9vo+CzUIHMb/eJgk3c+Ph+q+0seBnmnAwAA\nIC8hSQ8AAAAgs/hyA4CcKfj62lq1Pr0fnZB8xdaxkLNVYkBgiJyFjQ25OaNPjfvPj2/4up5h\nHx39Ys+71bvdS/Fo6wKFndUxz16Fyz8mxDye0au6bUX/cdUKvtVWE/9iZPPqS44+Tb6iUKgL\nF7J+EahtGxf2YOGnde4/3rZreue0ApCkhEU9aozedlcIYelUqlqVshbRAbdu3QmKShBCJMYH\n/m9048L1n898z/WthkaatG2jm3ZdcDTlFZsCBZUxIZFxiUKIR0dXNqsZMUmj5xr9exv61/9i\nXcorto6FnSzjA16GJkqSEEKSNBf3Lq/T0PH5f98p0u7n0MRGHWefdKrYYuyITxrVKG8V++Lq\n5dOLps658iomMfb5DyMauLz3bHrtt2fMGEOzde08fnwVIcTZHxf9HRIjhCj3yfDOrrZCiILe\nJQ078MS4ZwPe7bjpbmjjT8b0bdG0ehmHu9cu/Tht4hHfcEmS9szp+nmN41HT2/9yLahwza5j\nB7WtW7tyuO/NvSunL913Rwjx6vLmZkP6317dIksDTKn/pHfmDDouhLi37juxQPfK+webxsov\nPxuXNqPdHTLf+YtTy6s1HfEs6fsTCoXapYhr7KtnEUmL1G/+4VP3vaC7F1a5WLyxsahhXlSa\n2JGNuiVn6B1di5dwK//6piHe6QAAAMhj2O4eAAAAAADkYomxfp0bfyEnmxVKq44jF567HxQZ\nEvgkICgqzG/3ym8rO1oJISRJs2lssx9uGPjLRotafSJn6JVql1Fz1z14FRkd+uLpy7C4iIDf\nlk4spFYJISRN7KwOU1K33Ta4cXLerlSjAXtPXHwRHhXwIiz4yZ19m+ZUcbSSb+2e0aXrqpup\nm8uC73wyattdC+sy09YdDX7l+++Jv0+evx4Y/Pinb3ooFQohhCRJy3v9+FYrI02a/8HRyWls\nC2u3rxasvx0QGRX6MiI27sF/+7/u8I4QIvTe5jFJW7tniSY+sMVnG+WylVPt2av/DIyIiwx5\n4f8iOD4u8sKBjf3qatPqL87N+t43LK1+np+Y1nLOqco9ffyu7ZswpGv92tXebdh8wJffXnhy\nu7tHAXnUS7ovNs3Q7Ir1nT179uzZsz9ysZavVBo+Sb4yuntpww780ozWmx/ET9504eiquZ90\nbVX93QZd+3956M69Hm7aXPiPXRv+ci2oztDlD89uHj2kd/0aNVp26rVk760Nn1SQK9zf9El0\nNvZlL93lO5VCIYSIfrVrw4sonXWWzbgsFyoOm5H5nhOirjVvMUrO0Fval5+ycrd/RNTLZ0/C\nY6N9rx0e2la7G0TQ1bVtvvsvZUNDze3NFW1/uh1sYe3+5ay113xfhQT4Xz+/I/muQd7pAAAA\nyGNI0gMAAAAAAPPQxEdHZk502mc2X5jW7u9X0UIIhcJiwm/Xf/f5qmYZZ/mW2r5E24FTz909\nUEdOOWtix7ecZMD44yMvT7moPa/68+0XFozpW9rFVvtoO9ePv/zu1JpO8o/hj1f8FxGfsm3o\nfZ8ea2/L5Xazdz38Z3Wr+tUK2VkIIZxKeLbsMe6i36XPaxaWK+z4so1vGifEaxLDlRZOa8+f\nm9K3sa1Su9BXaVnss5mb/hhSUf4xzHfeW9NnlEmTYnt2WZY0fK/fb95YOKp3eVd5QpSl320x\nf8flnROaZqorXQIvjn4gfx/Cwnn9+UPjB7QuZKeWbyksbKp/2HP1P1c7FdbO/+69/mn182DD\nZtuSPc+t/8pe9ca6aJV1qaU7BsnlsEfzUm5Lbuyhpc9QA48NjKkx6eD0HtVTXlSqXeet/SD5\nR6dyw44v/cJOmXJmFF0WrVEoFEKIxNine4Ki9R6IZYGGI5K+ELDwpzupK8QE7V7uHy6EUCgU\nM4brPiFCp7392l+OiBNCqG0r7bx5YdrAtsVsLYQQQmHpXqXZst2XFrd3l2ue/75vZIrfrKHm\n9sXxBxY2ZX6/dmXphH5V3F1S3jLUOx0AAAB5DEl6AAAAAABgHjeWN7HPnCbLb+jsQUoMH7jk\nulz27Lf1u45lU9exKdzo991D5XK43w9L/cINFX9M0F55a26FQr3wI/fUFcp08fHw8PDw8HB3\nd78QEZfy1u8DF8hHyBetO3fX+HapP6BRO1Rc/M9fblYWQoiEmIcDf/dNK4xqE/f1quyc+nqT\nqRPlgiYx4kmKzJ+RJu356S+PJW33PWz3/rYeOvYqbz/r4OeeThl2pZP/nityoXC1xV3K6Ohc\nqXb9qnkJbcz30gu4x5YFNkodO5e7VBknFyRN/N0UBwEYe2jpM9TAFSqbX8fXTn3dxbtHcrnj\nhm8sUk2MpUPdWvba1HXK8xH08OlEL7lw+4clqe/e/mG6XHAoOapN0tYCGUqIvjVgl69c7rR6\nTys3u9R1hm4+JG9rER99Z+bj1wviDfiiavbDvrZlC6S+bsB3OgAAAPISkvQAAAAAACC3ini6\n7GpkvBBCoVD6LGiVVrVijea3LWgjl9esumeopyuU2n2qJSl+q6+OBJ7K0u1hksFFX+cOpcTQ\nkSefy+WRmwan1b/arvr67mXk8pVZx3THoFCtGF1T5y1r5w+TyylX0htp0i7NOCAX7Ir0WdCs\neBq1VN+u75JhVzpVGPjrpUuXLl269M+Oj9OqIyUmLZKW0qoiVOpCPqnOm5cp1a7WScn7lMuZ\njT209Blq4HaufcpZW6S+rrIskVwe905BnW1LWmkbZnOVd+keM+RTGCKfr9kbFPPW3ZlLtJu9\n1541JPN9Bvw7LiheI4RQ21Zc1aW0zjoq63Iz3inp5OTk5OR09XxQ8nVDza1SZftjdx1fdjHg\nOx0AAAB5DEl6AAAAAACQW/nv3SMXbAp2THfprWJMaze59GjzCUM93da1l5OF9qOVQTU/WLTt\nVFzaabyUIvwXhyZohBAWNmVGe+hYfZus6kjvpCabdVawLtiutoNa5y2FUveEGGnSVp3X7vxf\n/vOR6VRzfXdBAQt9Po+yc6/o7e3t7e1dwc1WZ4WYl5em73+SYT+2RfrZ6VpGL9N5w9hDS5+h\nBq62rar7hkI7aIXSsoKNjiy+SGNa9GDl2PTL4vZyeebGBylvRT5f+VtglBBCqbJf0tEj833e\nWnxVLrhUmZ7Ob3bIuYfBwcHBwcF7Pn6dyDfU3FoXbF/aWpX6ugHf6QAAAMhjdP+XNwAAAAAA\ngLFV/erfqwt17L+d2tmRXu8tupb6euCJQLlg79Yj9d2UPHp5iPV3hRAxr44JMSyLkeqmVBfZ\nOapOk7mnhBAxwWdHdq0/3qlU0+bNGzds0KBB/dre5SzTyBiG3NDmvJUqh28nT07nEbEhfnIh\nLuKczgrWTs2yGraRJu1k0obw1brq2Pk/mULl0L2w7c/PIjIbbpo0r/x9792/f//+/bu3b167\neunAgRNhCZoMm6nt0shVp83kQ0ufngMXigw/BtSRZja4weOqLhl+Wghxbd5KMcwn+frVWYvk\nQqFqcyvZZuETywtXguVCyY4Vsh2dnnNrVaC+zusGfKcDAAAgjyFJDwAAAGO5PizY3CEAAPK4\niAfahKidh0v6Ne1KaffxTogx2Hb3QojG3x/bXHD4qCk/PY1NFELEhjzev3Xl/q0rhRBq+xIf\ntG3Xvn2Hbh9/6PTmQd/hd7V748dFXJ4583JmHqSJDwpLlAqo3k77p9yrPJOMMWmSJvJZnHYr\n9EoOlulX9rLTvfQ/M6Kenlu5avO+fftPX7wdGqPP+ehKVdZOjjfZ0NKX/YHnEGV7T1WMaClJ\nUsSTJafC5tQrIE+pZtwv2tdYy0UdstTh3WjtbDiU13GofGYY4EWl1n2AggHf6QAAAMhj2O4e\nAAAAAADkWsnby2eY0lJqs6eSJjrrT0lnKa2q29jl95+cXzxt5AfvllMpXscRH+G/79cVQ7q3\nKOXZ5OcDbyS548PisxyDEBGJOjfTz3oyzwiTplBYJY89w14t9M0/7pjat6THeyOmLNh/+npy\nMlWpsilV/p0W7XtMX7J+VdcyenadNtMMLX1mGbiRWDk3H1LMTgghSYnf7HokXwx7OOdYaKwQ\nwsLaY1GdolnqMDxppbvKVp+dAAwytwqF7i9nGPSdDgAAgDyFlfQAAAAAACC3si9jL04LIUSk\nb0j6NaOfvpALFjbls/qUxDj/9CtYF/IePsVn+BSfqOe3Dh4+euL4iePHj5+96SdJkhAi3PfY\nkFZVAk76Ta7j+jpsIYQQju7fhvhOzWo82WSUSVNYlLJSPYxJEELciohLv+6tKH0WK5+e2qLT\ntANy2cqpXI/+3evXerdmzWoVPUvZJJ1EfvrGLD16zoDxh5Y+sw3caL4YXXnFqLNCiEvTfhV9\npgghzn6zRr7l1mKpcxa/6VDORvvxZqRvZFYjMfbcmvedDgAAgJyMlfQAAAAAACC3KlS3kFyI\neLI5/ZqPNmnX7Fo6vJfVp0Q+yewp0bZFK7bvNWTejxvOXH8U+vjqmu8+L6xWCSEkTdz87nOS\nqzlW1u5RHxt6PKvBZJ+RJu1DZ2u5cGm7X3r1pLjNgVEZ9vaWhKgbHWYflssVey5+GnhnzcIZ\ng3q2r17BPTmZajxGHVr6zDtwIynXb4pcCH0462pkvNDEjNytfaX1ndcgq715F7WVC092Pkqn\nmpQQGRoaGhoaGpb0TQsTzK153+kAAADIyUjSAwAAAACA3KpE25ZyIfrl9oMhsenUXLjzsVwo\n1am5zgqJSeeOp3Z54UWd12/v3rZx48aNGzfuPhWY+q6DW5X+E384ufZ9+cdwvx8Skjaxdiw7\nSi7EhPx9KN2wIx5eOnny5MmTJ89dz2DVe+YZcNJS6l5Pu0/A7R+WpVMt6Ma3AWlPdVoCL33z\nIi5RCKG2rXRu/TCXNBZbh94Ky2rPmWHUoaXPvAM3EmuXNgOL2gkhJE3suIP+r25MvBYZL4Sw\ncmw0xdMpq715D/WUC4Fn56Yz+2dHvufk5OTk5FSlw9/a+safW/O+0wEAAJCTkaQHAAAAAAC5\nlUOJERVt1UIISUocMeFwWtWeHx/720vtEuduX7yxc7siacnsqzO697RPjLk/ZLfuFbq3Zgzr\n3bt37969+w/YkNajizZs+rqrpILavubA4tp9sIdPOJZWWyHF9a9bv0GDBg0aNBj134s0q2VR\n9idNJ69J7eVCxNOVE449T6vakv6rshau3Of9V3LByrGxXRqrnDXxgWMNN0spGXVo6TPvwI1n\nxMjKcuHspF3HRm+Xy+UHztPjVPmSbUapFAohREzIkVFHnqZRSzP71wdyqVz/cnLBBHNr3nc6\nAAAAcjKS9AAAAAAAILdSqBxXD64gl2/93HHm/sep60S/+KfDR0vksn3xT74p65jyrkN5B7nw\n7OQX/wSnXuqauKLvh74xug8aL9OtlFwIuTdx1zPd+5z/vWiTXLB2aW2VIg84eUXLpLA/mrr3\ngc62f85ouz0gSgihUhda3Lm0zjp6yP6k6VTIe27zpG3hfT5qtf+JjgPCj83/eNo5HbsOZMjB\n01kuxATvD4zXpK4gaaJ8ete9Gi7Qas4AACAASURBVBkv/6jRVUdvRh1a+sw7cOPxHDhBLgTf\nmjTsqPb7MRPGe+nRlXXBDrO9tSc4/NSh04mXManrnJ7dcteraCGEQmk1p732bWuauTXjOx0A\nAAA5GUl6AAAAAACQi9Wetau+k5UQQtLEfftRld6Tfrr+NEK+lRgdsHft9FoVWvwbFiuEUCgt\nZ+6d+1bz0n2aaSvH+nds0GvP1VfJtyKfXhzftdqwbQ/VthU8rC1SP9pzwARLpUIIIWlielZr\nvvTXQyEJyWk8jf+Vv6cOadLB56r8c41RU1O2df9o/dCqLnLY09tW7Dxy3r/X7kdqN8SX/C8f\nnDig/kffHpAr15uwq7q9Wr/50Smbk6abwmLtzpFyMS78UrsKXmOXbnkQpP3ew/MbJ6f1b9Rk\n7A4hhL2HfVYDdqk8Tq1QCCESYnxrdZpx62WKr1NIcce2LG5d3WPM1vvJ157sWXnjmY5Uup6M\nObT0mXngRmNdsGO/InZCCE1ihH9sohDCvthnPQrb6NfbF3t+dFErhRCxYf9+WKHOrA1/BcZo\n962ICLy9cFTXppMOyT969tv6noOlXDbN3Jr3nQ4AAIAciyQ9AAAAAADIxVTWZXYdWepubSGE\n0CRGbPxuiJebo4tridIli9o7FG8z4NvrIbFCCIVC2XPu0RHeBd9q7lJ53uDy2mOwg29sb+dd\n1K1c1WYtm9etWdHJreb3264pVfbzjhwvqytJb12w47ZB3nI56sXJ4T0/dLGyKVikRGn34vZW\nlm7e70/76R/5bkHv/vvGvrlKWGm94NjOxsXkk7njty8aW8ernIOVrZuHWwEbtVu15rPXnpIr\nenaYdmhqPQPNllY2Jy0txRrN+n3s+3I5PurhvOHdyxWyKVCwqIuDdbEqDaauOy5JkkOpjofX\n1c9qwJYF6m3sqT16/NGeqVWKFvKq8d4HLZvX8irvbGfXuPtX+68Equ3Kf7+yt1wn7NGqqiUc\nS3l2zOqDTD+09Jl94MYzcljFlD9WnzpS767sSnQ6tXq4lVIhhIgJuvxNn5ZF7R2KlvRwdbRx\ncK04auG2WI0khHDy7H5oRZvkViaaW7O+0wEAAJBjkaQHAAAAAAC5W8Fqn16+tKWNd2H5R0nS\nBAc+9X0SEJOoXddu5VxpyoaLG76uq6u1asl/h7rUKZnUNsH//vUjfx08c+F2giRZOb2z/MCN\nEbULp/Xodj/+u3RoS/lIbCGEpIkLevHU9/GzyDjtQl6FQtmwz+QrZ1c5qN4+9NrKueHB26eH\ntH6dvJc0Mf6P/MOTFgErVfa9Jq+59vsUS93nZWdL9iYtTR2/P7R37pAilqqkbqXwoIDgCO0a\n5RINBhy59Ku7lY5vPGSo87qzk3rUl6dakxhx7eLZw38dPHftbkh0ghCiwgcD9t+6MPaTNZOb\nuyU9OjHwZbgeD0qL8YaWPrMP3EjKDx6XXFYorRb2LJud3ir0Xnhz99zqRbRr8TWJ0QFPHgWG\nvd76vnLb0WcvrS9p9cap96aZW/O+0wEAAJAzGf5fDgAAAAAAACbmWKHTnovtjv+2euvuPX+f\nufI84EVYvKqwq2uZKrVbtWn7yaBuxd5MzqVkWaDm1tOPzvy2aOH6/Xfv3r33wN/CsXCJkuVb\nd+39yed9KjiohRCDZ85pFZOgsizydmOF5ZfL9nX59PCq9VvO3njg5+fn5+cXLtm7e7h7uHuU\nrVyrS69+TbxStUqidvBa8eeVMcd+W71t919/n378PCA4SuleztPT07Nytfp9Bg3wLm5roBnS\nITuTlo5WY1Y87PvZyp837P7jwM1HTwODopyKFCtdpU7Pfv2H9GhuqRBRpQbOn99UCOFe0Snz\n3SpUjjM2nfji613TfX65dufuvXv3QjW2xYuXrNWkVacufbo0qyRXm7bvTq2f5u84dlk4l6rs\n1USP+E0/tPTlhIEbg02hLt1dbTe/iBJCuFSeWTPb27yXbjP63JP+v61cueuPP85cfRjwIlCy\nKlC4mEfdRk069/vi4/o6vgRgsrk17zsdAAAAOZBCkiRzx4D8S3Nvg2E7VJbrbaiuiE0/xKYf\nYtMPsemH2PRDbPohtryHedNPTp43w8aWT36hmTFqi6+5QzAMn24e5g4BMC1Jk5CQkJCQYGlj\ny/6Tr0mSPC0qaxu1oVZ7S/ENnBxOhsUKIboc8Nv6oZuB+gUAAAByAVbSAwAAAAAAAEIIIRRK\nC7WlhdrS3HHkMAqFhVptoc7uYveUXl2fKGfoVZZFljQpbsCeAQAAgJyP7wQDAAAAAAAAMKn9\nw36VC8UbLy2q5iNKAAAA5C/8FzAAAAAAAAAA04mP+G/oiWdyuatPM/MGAwAAAJgeSXoAAAAA\nAAAARnft7uPI+ITAR+fGtGoXmqARQti6fjy7SkFzxwUAAACYGmfSAwAAAAAAADA6r/Lub13p\n9ssitcIssQAAAADmxEp6AAAAAAAAAKZW+8uNq1u4mTsKAAAAwAxI0gMAAAAAAAAwuvb1K1oq\nFUqVjUel+jPXHjq1tKe5IwIAAADMg+3uAQAAAAAAABjdzhM3hSYuRqitlexxDwAAgHyNJD0A\nAAAAAAAAk1BaWps7BAAAAMDs2O4eAAAAAAAAAAAAAAATIUkPAAAAAAAAAAAAAICJkKQHAAAA\nAAAAAAAAAMBESNIDAAAAAAAAAAAAAGAiJOkBAAAAAAAAAAAAADARkvQAAAAAAAAAAAAAAJgI\nSXoAAAAAAAAAAAAAAEyEJD0AAAAAAAAAAAAAACZCkh4AAAAAAAAAAAAAABMhSQ8AAAAAAAAA\nAAAAgIlYmDsAAAAAAADyGp9uHuYOAQAAAAAA5FCspAcAAAAAAAAAAAAAwERI0gMAAAAAAAAA\nAAAAYCIk6QEAAAAAAAAAAAAAMBGS9AAAAAAAAAAAAAAAmIiFuQMAAAAAACCvqTTiT3OHYBg3\nF7cxdwgAAAAAAOQ1rKQHAAAAAAAAAAAAAMBESNIDAAAAAAAAAAAAAGAiJOkBAAAAAAAAAAAA\nADARkvQAAAAAAAAAAAAAAJgISXoAAAAAAAAAAAAAAEyEJD0AAAAAAAAAAAAAACZCkh4AAAAA\nAAAAAAAAABMhSQ8AAAAAAAAAAAAAgImQpAcAAAAAAAAAAAAAwERI0gMAAAAAAAAAAAAAYCIW\n5g4gx3l29JvBPlfVtpW2b/4+k038rvxz+OT56zfuvAgODY+IsXZwdC5couo73vXfb/VOSYds\nxhPlf/PA4b9PXrgR+PJVaIxwdnEp5lGxYeOm79fzUiuM3hwAAAAAAAAAAAAAYEAk6d/2968P\nMl85Luzu8plzjtwKTHkxIjQoIjTI797V/Ts2VWrcbczwbgUt9NuxQDq9ffnC9QdjNFLypZfP\no14+f3L1zKFfyzcZO2FolYJWRmsOAAAAAAAAAAAAADAwtrt/Q1TAga3PozJZOSHqztjPxqfM\n0CsUKkdne4VCu0RdkjQ3jv469PPZz+I0egRz/peJs9cdSE6xK5SWDrbq5LvBd45+O/zbBzGJ\nRmoOAAAAAAAAAAAAADA4VtK/Fh/uu+ibVZIkZVxVCCHExonTH0TFy+VyjT4e0LFZmZIl7CyV\ncRFBD+9c2Pi/lZf8o4QQUQH/jp+0bd3cblkKJuTW2unbb8hlu5J1h3zWs9477mqFiAryPbR7\n46odZyVJigu/MWX8xg2L+hq8OQAAAAAAAAAAAADAGFhJL6KCA25dPrth2cz+fUeceRGdyVYR\n/tu2PwiTy2XajvcZ3c+rbEk7S6UQwtLepUKND6YtX/tpoxJyheBbG39Jqpw5mjVz9spfF7Au\nVH/54vGNvd3lI+RtXTza9f9m3me15HphD37b9DDc0M0BAAAAAAAAAAAAAEaRr5P0sSGHB/Tq\n3L3fp2Mnz9x64Gx4YmbX0Ash7q75Sy5Y2JSbNbBu6goKpfVHI7+vmLTD/JFVVzPfecSTdUeC\nYuRynxlfulgo3qpQvs03H7nayuW9C48ZtjkAAAAAAAAAAAAAwEjydZJeSgx/FR6nX9s/bobI\nhWKNP7NVvp0FlylUBQY2KSqXwx8eeOvu2k+6tUvy1tnwDzefkQvWLi3blrDT2XenL6pre/bb\nGPrm1wuy2RwAAAAAAAAAAAAAYCT5+kx6C9tKvXv3TnklKuDv3w8+zbilFHcxQnsavWfr4ulU\nLFi7oNjrJ4RIiHmY+cB2XHwlF4q/3yKtOs5VeioVpzSSJCVGbHoe+XkJe0M1BwAAAAAAAAAA\nAAAYSf5O0ttU6Nq1QsorQdduZCZJnxDjmyhpV59XdbJKp2ZssHalvsLCMZNRSYlhyd8AqNC0\nSFrVVFYl33NQnw6LE0I8vBIskrLs2WwOAAAAAAAAAAAAADCefJ2k15uFTbmtW7fKZSvr9JL0\nJ3b6yQUb52Zv3bIv5OqqjJbL6hT75ceF/5v8DYBqjpbpdF7D3lLOsr86GyRalTRIc71FR0cn\nJCRktZXOvfizIzw83FBdEZt+iE0/xKYfYtMPsemH2PRDbHkP86afnDxvho1Nv8Ds7OyUynx9\nFls+F/X00rr1vx0/cfLc9QevXr0KjdE4OTsXLOxWrVbtug1b9O7VupBljn55bK5UqMetV0KI\nD/c/PtAiu/+4BgAAAADkByTp9aO0trbOsFLo7d82PtJ+RFWxT9237naeu7SzrlbxUXeSy5Vt\n1en0X8zNVjyNEEJEP30ihLdBmustPj4+Li4uq60M/mFlbGysoboiNv0Qm36ITT/Eph9i0w+x\n6YfY8h7mTT85ed4MG5t+gdnY2JCkz58Soh7MGDxo7qajMRop5fVXAdGvAp7euXZ265plY4eV\n7D/ZZ9nYzpaKtLoBAAAAACCX4XMQY4n0OzHmm41y2dKh+qi6ae48/xZNXIhcUCgsHFXpfQhh\n6axdKK9JCDFUcwAAAAAATCDq+aF67lWnbziSMkOvtLB1tnvj6+bxkX7/G9+ldKPhQQkanf10\nKWynUCgUCsV3fvliZw4AAAAAQB5Akt4IpMSzu378dPi853GJQgiVpeuIuePs082XpxQXmnSM\nvcoh/ZoWDtpPLlJm2bPZHAAAAAAAY0uMe9LmnXb/vdSeAefo2Xj+xr1X7/pFxUYERcSFvnhy\n6d/j/5s1qnphG7nC0xNLa3Rcbr54AQAAAAAwJJL0Bvb4woGpw/vOXLU3IlESQigtnIfM8WlY\nwtYoD0tebaDRa6/LbDYHAAAAAEAvJyZ8dDRQm6FvN217wO2jX/dsVbWcm5VSIYQoULiEd+0G\ngyYs+M/v7sQWpeRqj/YMn3H5ldkiBgAAAADAcDiT3mAi/M6v/t+qQ5eeJF9x9fpg1MjPKhfK\n+PT6lCwdtbvQS4mR6ddMiEyQCwq1i6GaAwAAAABgXJqYz1bckItuHy7ZNaVTWhVVViVm7Lnw\nr6vb4eAYIcSKoQcmn+hhoiABAAAAADAakvQGIGlijm5ZsWLL0eSD9CwdSnXo+2mvFt6Z3eM+\nBaWlo7ZbKS5KI9kq0+wjLli7s73S4nWWPZvN9WZra2tjY5PlZobeaN/R0dFgfRGbfohNP8Sm\nH2LTD7Hph9j0Q2x5D/Omn5w8bwaNTb/AVCqVIYNAjhf+dPGd6Hi5/OmPfdOvrLQouHzeuxUH\nnRBCBJ6fqBE92BIQAAAAAJDbkaTPrtD7Jxf7LDvnp122rrIq3KJrrx4dmzpa6JGgF0IICxtP\nIQ7I5ZtR8TXtLdOq+cJfuzeglXNRQzXXm4WFPq8lTfYf/Ca1Wm2orohNP8SmH2LTD7Hph9j0\nQ2z6Iba8h3nTT06eN8PGlk9+ocimmMAzyeWuxewyrF+i5cdCnBBCJMT4Xo2M97ZTCyGufF/L\ne/y5lNUmlSowSQghRMO1d4718xRCHOlYptnOh0KIGlMvnv+2ms7OowI32bn2EkJY2teIDT+v\ns050wIWVP23Y+cfB24/9X4TGuxYrXq56wx49+3zaubHObwzEhZ+xdayXKElCiKX+4V8Wt09r\naNM8nafeCxFClOtx8O6mDzKaCQAAAABAHkGSPlseH1s72meHvIBeobCo1XbAp71bF7HO1ioQ\nqwJ1lIofNJIkhLgckZBOlv1KhHblQaG6RQzVHAAAAAAAo4oNikouP4xJqGiTwUcTNoU6/fij\ndue2QmpTL6TfO/fzAZP/9yIuMfmKv+8df987/+xYNbvJoN93LU/dxNKhzhj3AnN8Q4UQPy+4\n+eWCWjp7jgs/PfN+qFwePPs9I8QOAAAAAMihSNLr7+X5dSMW7JC/Gm9bvMaXX3/VwNMp+90q\nVI7V7NQXIuKEENdPB4qO7jqrSQmvTobFyuWSNVwM1RwAAAAAAKOydy+bXB47aX+r5R3Sr6+y\nKjV48OC3LrrW6T9+/AdCiB1LFtyOihdCNPpiVL0ClkIIDy9nQ4W6bXTTrguOprxiU6CgMiYk\nMi5RCPHo6MpmNSMmaRJTN+w/6Z05g44LIe6t+04s2Kmz8webxiZIkhDCxqXNaHcHQ8UMAAAA\nAMj5OMpNTwnRt8fO2iln6F2qtlm6dIpBMvSyjtW0WfNnf51Jq07Yo23xkiSEUKhse725PWA2\nmwMAAAAAYDwObmOcLLQfR1xf8XGnr5c9j8/ywQtFGw+dPXv27NmzvWy1hyw0Hz9VvjK4RiGD\nxOl/cHRyht7C2u2rBetvB0RGhb6MiI178N/+rzu8I4QIvbd5zIOQ1G1Ld/lOpVAIIaJf7drw\nIip1BSHEshmX5ULFYTMMEjAAAAAAILdgJb2eLvzg8zI+UQhhWaDG4hmfOar0PIFepzI93hMn\ndgkhIp/9ejasY+0COrasP/HDSbng4Nbrre3+stkcAADkLlLQFXOHAABAFqisS6/vV6HtqptC\nCEnS7PAZ9ueq+a0/7tylc6cWzd4raJWtI+QMRort2WWZXFTbeW2/drKtR/Jid2Xpd1vM39Gi\n4cRmHWYf0dnaskDDEW4OPn5hQoiFP93pPbnaWxVignYv9w8XQigUihnDKxlnDAAAAACAHIrs\nrD6kxPDlJwPk8odTvjJshl4I4eDWv6GztRBCkjTLZm6XUlUIvr7x53thcrnVyMaGbQ4AAAAA\ngFG1XnH061Zlkn+MC320c/WCXq3ru9o712zaftx3yw7+eysu9b9mTej56S+PhWoPiRu2e3+K\nDP1r7Wcd/DztTfU+neglF27/sCT13ds/TJcLDiVHtXGxzm64AAAAAIBchSS9PiKfbwpO0Agh\nFArVe5qAO5lw78GLtzrZPv6rwUn8Yt88wU6hGjSupVwMufXr8HnbnkUmaG9JibdObPlq8jZJ\nkoQQjp49epUp8HZ82WwOAAAAAIAxKdWu8/+8vWFy/9KOb+z9pkkIv3B099xJw5rXqeTg5PZB\np/7zVu95lfXN8LPv0owDcsGuSJ8FzYqnUUv17fouafVQuscMpUIhhIh8vmZvUMxbd2cuuSkX\nas8aku1gAQAAAAC5DNvd6+PVv3fkgiQlThk7JjNNrF3abF07OOWV8BfPnr2MlsvxqdYHOFf+\nZHKnWzN+vyWEeHR8/ZBTO8uUc3e00gT4P/B/pf23vaWj18zvuup8XDabAwAAAABgXAqLXtPX\n9Px28ZHf1m/Z8eehw0cfJP0bWRYX5n94x7rDO9ZN+sqj2+BhC2d/VdDCdCsNVp1/KRfKfz4y\nnWqu7y4oYLEqLEHH1wisHJt+Wdx+iX+4EGLmxgeth1VOvhX5fOVvgVFCCKXKfklHDwOGDQAA\nAADIFUjS6yP4YrAJnlKr/5wxtkuWbjoSo5GkxPD7t6+lvFuocrOx479wt07zrL5sNgf0w7nI\nAAAAADJPoSrQrNvQZt2GCqF5ePnkoUOHDh8+fPjIvy9jEpLrxIX7rp//9d5D5w78vaaGs5Vp\nAjuZtNd9ta7u6VRTqBy6F7b9+VmEzruDx1VdMvy0EOLavJVimE/y9auzFsmFQtXmVrLlkxkA\nAAAAyHf4p6A+Al/GmuQ5yoZdv6pR98O/Dv998vyNl0FBYbHC2dmlWJkqjZo0+aBOVZXCqM0B\nAAAAADAZZWnvhp96N/z062mSJvLK6bMvYxWWlhb3/933y/+WH7kd+urSr42qRvs+2l7I+Ovp\nJU3kszjtsXSVHCzTr+xlp07rVtneUxUjWkqSFPFkyamwOfUKyF1pxv1yT67QclEHgwQMAAAA\nAMhdSNK/waXq1N27M6724YqNH2b7Wf1Xb+mfiWp2Jat06l+lU2aqGqE5AAAAAAAGFB9x3mf5\nIbk8ZPRYR13fH1co7bzrN5XLDRs06Dt8WIcSZf8IjIp8urPTilvHUuwbbwCSjp3qFQorlUKR\nKElCiAy/326Rdg0r5+ZDitmteBohSYnf7Hp0pI+nECLs4ZxjobFCCAtrj0V1iuofOQAAAAAg\n1zLdcW4AAAAAACCfi4+6OT7Jf+FxmWmiVBedNa6qXL4wa75h40mM89dxVWFRykp7PNytiAyC\nvBWVkM7dL0Zrv1JwadqvcuHsN2vkgluLpc7pZPgBAAAAAHkXSXoAAAAAAGAiVo4NFQptZnrd\n7ZBMtrIvay8Xol5sehmvY+273iKfnNN5/UNna7lwabtfeu2luM2BUencL9dvilwIfTjramS8\n0MSM3P1IvtJ3XoOsRgsAAAAAyBtI0gMAAAAAABNRWbl3LGgjlw9+tSGTrfz+0K53V9t5uaiz\n/FFGYtIB86ldXnhR5/Xu9Vzlwu0flqXTc9CNbwPS7lwIYe3SZmBROyGEpIkdd9D/1Y2J1yLj\nhRBWjo2meDplGDkAAAAAIE8iSQ8AAAAAAExn4mfl5ULAmdGjf7+fYf3EmHvDtj6Uy0UbTs78\nBxkKpXbJ/qszuva0FyIx5v6QpHXtb/Ga1F4uRDxdOeHY87QesaT/qgzDGDFSu+P92Um7jo3e\nLpfLD5ynyrAlAAAAACCPIkkPAAAAAABMx3vytgq2arm8sFuNkcsPpLN/fZT/xSFN61+OiBNC\nKBQWE5Y0SatmnEZ664pDeQe58OzkF/8Ex6Zqkbii74e+MbpPlC/kPbd50o73Ph+12v8kMnWd\nY/M/nnYuMO3YtTwHTpALwbcmDTuq/brAhPFeGTYEAAAAAORVJOkBAAAAAIDpWFiX27v6c5VC\nIYTQJIQt+rJF4QoNx89Ztvef8w8f+weHhj59dO/cqX92bftlaJdGBUvVXHnmhdyw+uDtQ8oW\nSKvbs/+9eutK6T7N5EJirH/HBr32XH1dIfLpxfFdqw3b9lBtW8HD2kJHdwqLtTtHysW48Evt\nKniNXbrlQZA20//8xslp/Rs1GbtDCGHvYZ/+eK0LduxXxE4IoUmM8I9NFELYF/usR2Gb9FsB\nAAAAAPIwXf8QBQCYlhR0xdwhAAAAAKZTptvi00HRTYatikrUCCGC7pz4fsKJ79NtUueT5cd/\naJf6emkb7bbxB7q/06BxPev4sOKjNv/SwV0I4VJ53uDya366EyKECL6xvZ33ruJlKpQvVzw6\n8PG5i3cSJEmpsp935PgfLUrpXE9frNGs38ee7TT3sBAiPurhvOHd549Q2Du7WsSFBEdos/UO\npToeWhf1XuO/0h/vyGEV1006n/xj9akj068PAAAAAMjbWEkPAAAAAABMrdbnPz++sP3jeuUy\nrOniWW/hziunV31hodBx97MZbeWCJjHi5N8HDh8/4xsal3RTteS/Q13qlJR/kKQE//vXj/x1\n8MyF2wmSZOX0zvIDN0bULpzOozt+f2jv3CFFLFVJPUjhQQHJGfoSDQYcufSru1XG6x/KDx6X\nXFYorRb2LJthEwAAAABAHsZKegAADI/dEQAAADJU8J0Ov53s8Pzq3xu27zt79uzFGw+CQkLC\nImKs7R2dnJxKelat9e67TVp/3KFhJV3Zea1y/Tb+lVBhxtJNNx88jFYWKFasWBVX6+S7lgVq\nbj396Mxvixau33/37t17D/wtHAuXKFm+ddfen3zep4KDWggxeOacVjEJKssiOvtvNWbFw76f\nrfx5w+4/Dtx89DQwKMqpSLHSVer07Nd/SI/mlgoRVWrg/PlNhRDuFZ3SCtKmUJfurrabX0QJ\nIVwqz6xpr9ZzygAAAAAAeQJJegAAAAAAYDZFvZqN9mqWnR6aD5zSfOCUtO8r6nQeuaVzmjvM\ndxk6Iv3+bYpUHza5+rDJuu/aFuv49dcZhSjF+8UkysVmPt0zqg0AAAAAyONI0gMAcitWqwMA\nACBXeHV94smwWCGEyrLIkibFzR0OAAAAAMDMOJMeAAAAAADAiPYP+1UuFG+8tKiaj2IAAAAA\nIL9jJT2A/IJV1wAAAKnx30iAscVH/Df0xDO53NUnWxv7AwAAAADyBr6+DQAAAAAAYGDX7j6O\njE8IfHRuTKt2oQkaIYSt68ezqxQ0d1wAAAAAAPNjJT0AAAAAAICBeZV3f+tKt18WqRVmiQUA\nAAAAkLOQpAcApIctcAEAAIDsq/3lxtUt3MwdBQAAAAAgR2C7ewAAAAAAAANrX7+ipVKhVNl4\nVKo/c+2hU0t7mjsiAAAAAEBOwUp6AAAAAAAAA9t54qbQxMUItbWSPe4BAAAAAG8gSQ8AAAAA\nAGAESktrc4cAAAAAAMiB2O4eAAAAAAAAAAAAAAATIUkPAAAAAAAAAAAAAICJkKQHAAAAAAAA\nAAAAAMBEOJMeAID8RQq6Yu4QAAAAAAAAAADIv1hJDwAAAAAAAAAAAACAibCSHubEak4AAAAA\nAAAAAAAA+Qor6QEAAAAAAAAAAAAAMBGS9AAAAAAAAAAAAAAAmAjb3QMAAGSMI1oAAAAAAAAA\nAAZBkh4AAAAAjIsv+gAAAAAAACAZSXoAAAAAAAzs5uI25g4BAAAAAADkUCTpgdyHlVgAAAAA\nAAAAAABALqU0dwAAAAAAAAAAAAAAAOQXrKQHdGO1OgAAAAAAAAAAAACDYyU9AAAAAAAAAAAA\nAAAmwkp6AAAAAAAMTHNvg7lDMAxlud7mDgEAAAAAgLyGlfQAAAAAAAAAAAAAAJgISXoAAAAA\nAAAAAAAAAEyEJD0AAAAAY8+3gAAAIABJREFUAAAAAAAAACZCkh4AAAAAAAAAAAAAABMhSQ8A\nAAAAAAAAAAAA/2fvvgOiNvs4gP9ycHBsBAQHylDEjbvuLe5d98LRap2VuvfGvcer1bbWvXDU\nPetunbgHokwVUPYel/ePHIhwd3BJ7g7p9/NPH3NPkt/z5MmTNA95AqAjGKQHAAAAAAAAAAAA\nAAAAAADQEQzSAwAAAAAAAAAAAAAAAAAA6AgG6QEAAAAAAAAAAAAAAAAAAHQEg/QAAAAAAAAA\nAAAAAAAAAAA6gkF6AAAAAAAAAAAAAAAAAAAAHcEgPQAAAAAAAAAAAAAAAAAAgI4Y6jsAAAAA\nACiy2KjH+g4BAAAAAAAAAAAAoHDBm/QAAAAAAAAAAAAAAAAAAAA6gjfpAQAAoLDAW9cAAAAA\nAAAAAAAAUOThTXoAAAAAAAAAAAAAAAAAAAAdwZv0AAAAAPBfhJkbAAAAAAAAAAAAQC/wJj0A\nAAAAAAAAAAAAAAAAAICOYJAeAAAAAAAAAAAAAAAAAABARzBIDwAAAAAAAAAAAAAAAAAAoCMY\npAcAAAAAAAAAnTpZ04Hh5XZ8mr5jL6jHy+pyMTu1v6jvWKDwKsLtZH8lO65onudC9B0LgHJo\npRopwv0V5MVmJhxaOb7Zdx4OVjJLu1Kek++pyrmncSmGYTqfCi74xnHqQZGHRl54FKpjkf1/\ntS+TM7glGKQHAAAAAAAAAAAAUG5KGcvsh6oPE9P1tUHRwwAAUIrNjB1ey7n35A3X7jyOiEuN\n//zhXWiS0pzyjKjJdyMYA5OVLUvpOEh+0JGKC/UJRZXO2jYG6QEAAAAAAAAA4BvWq7gZ9xBt\ncUi8vmMpLFAnmiokNVZIwgD1cJhAB/TYzN4e7Pf7489c2sKpavM2bepXsVaa85PflA9pmcXc\n5rubGOowQACAIgJdJwAAAAAAAADoh3nJH0NfLNcgv4WR9oIBAAAAgIfLFZPbO3fd8vroKCmj\nMue1aeeIqM6i73UTGABAEYNBegAAAAAAAADQE8bIyspK30EAAKhTrIyTs2EClzZmVI9WaXmD\noocBAKBUSLxibucq07urGaFnM+Mn3fzISIyWt3PUUWSCoSMVF+oTiiqdtW0M0gMAAAAAAAAA\nAAAoN/3Wk+mFYIOihwEAoByr+K9Epu5zyZ+fTQ9KybAuP9/DTKqLqMSAjlRcqE8oqnTWtjFI\nDwAAAAAAAAAAUADylEtHD917+irDzHXmpGH6jgYAvgXoNyBf32YjuTX9LyKqObe/vgNR7dus\nWAD471D3l1AAAAAAAAAAAIXW+6vtGYZhGKbR1pdERGzamT9X925Vz6W0vczIpESZck26jfj9\n9Isca8iv7lk/uFMjlzIlzIyNS7pUata267S1+2My2Lwbt5EaMAxjatuJ+2dy+JMtC8Y3ql21\nlK2FzMLG1b1qj+GT9114LiB8+W3fHT97da9WsZydtZmRmZWjS4WmnQb4bN77PjUzb+60+H8M\nJRKuvBvfJ6jZ7ny3Ylw2t/4Xsxdqta5yinl9ddXscS3qVCtTwk4ms3Cp6NG6Q/c5m30j0+Wq\nVgk83uqr2Ig+PDw3a2SPGpXL21rIrByc6jX19Brv8ywqNdeKj5fV5VY8/CmJWzKrrCW3pOlO\nf/VxFkR2YM0PBBBRQvApzyqlWn8/eNq8xfPnrhKl7PlKjXr+x6qZvbt1aFi7Whl7ayNTK+cK\nVRu3bDdozLy/X3zKm1/TOhESc3L4gw0LvFvVreboYGMks3B0cW/eY8TWw1f5lzYHTQuemzzl\n3J6NI3q2cncta2VqbOdYvmHLDl6jvA9dfZkrY0FqLLslFK9yjFvybE19bomB1OZ9mroSn+nu\nyuU0sfHMzpd3g/zCyIv3AWXlydeObP1paL82Teq5lrKVmdu6V6/bvlufST7bX+Y59TTC71Dy\n7hZyEbeVanSYCtJvaFo5AhteTtror9QTclKL3j7FusQLbN5KG4molzbN7jQiH3XhduT9NoZb\n8lcNe8UdRb9ruTKz8uTJVz4wjIFP17J5N8Xv1LuS1W5rz/dTlScpci+Xx9iidq6fCnL2qepI\nxepzMlNCdq+f17lJLaeSdsbG5mXKVWrTd8zOU/e5X/dXsuP2sjcySf12ctLNLZzAxqyl+lSv\nKF1fchLY4wnq3gt8+5R3TY16G05hPhYFuOniU+RcEgJv4016AAAAAAAAAPjmpcX5jenUafv1\nsOwl4aFvw0Pf3jzxm+/UA3/59MpI9h/Xtf3/LgRkZ0gKfPkx8OW18ye2/3H80Z3dpY0MVG38\n8aGFnQYtCEnNyF7y7nX0u9fPjv62cmmX8Yf3r3Iz0ewBS1zAySF9fjh2/2POhWGBcWGB/tdP\n7Z0/c9HUjfvmD/DI+auRRf3JTpZLA2OJaNuqF2NX1VVeD/G3FwXEcumRPt8pz6OdumIz49ZO\nHDxz04lk+ZenwIGvHge+enzpzLFl013HrNq7eoTykHKQH1s8sNfs/Rls1kYSgu9GBN+9fmH3\ntvWjVvhuHNcgvy1oRXLEhebVe96PVf6UUKSy53Zry8+9Jm7M9aQvyP9ZkP+zm1fO7dmysEb7\nn44cWeciU9l01RAY8+nlPw2d/WtE2pfYwgJfhwW+vnp0h0/zEb7HN/EIKZvAgkc93j+g35iz\nz6O+LAoLuB0WcPvKmZ1b11Tq7H3swLIKGp6zuZQfulDyS1s5y8ozoqfcDd/dqKTSbKw8eeL5\nUC5dacIyrb4sJeSAxr7y7ddjxJnn0TkXvn4S9frJvbPHD65bsHDG72fn963EIyqR2jDPbkGr\nrbQg1PcbPCpHlIanpf5KPSEtQXvtk8P7Ei9K81bfSITgcaehkZjXc14np1s6Tf3OwijXT3o/\n9UhoxfLsc96dWtPDa4bfp5TsJaFvX4a+fXnxwOalHcYcPLCGVzBf0dItnFbvN7R0a1dUry9C\nejyB3Tvv2yeReptCdyzUEKXI/+yY2nX0KgzSAwAAAABAQbFRj/UdAgCAEplpH4bW6b7XP7bZ\nsMmD27ao6Wrh/9Tvf/NnXAmMZ1n25NLeP9W6nrSg659Po4rX7j1lROcG9SrHB744vX3BhjOv\niejzo/0tR3m9+q2t0o0HHptYo886lmUdqrca2qeDe1m7+PCQG2cOH7r8iGXZxyfW16v54a7f\n3vKygj5jiX72R926PwQkfxkPMLWyK2acGR4Zwz2WSo15sXBQrYCP13f/0jDnil6zqi8dcZ2I\n3uxcTKuUv9Xxdu8UbiMmNh0nOVnorK7k6RETPWuu//t99hKGkRa3k0VExnP/TIt7u+aH+gHB\nh44v+F5N5Vyc0bS7z03rim2nTBjWtFYF49SIJ49ur5239PHnlMzUj5snNLb57sOCevZcZvv6\nXtOmtSaio+tXvUpKJ6Kmo70bWhoRkXO1Ymr2ojF56sSmfbKf9VvZlyrtWEH0sufyZrdXo9E7\ncy4xtSpubZQe/ik2k2WJiGXlD09vqt/E6uPdxUxWngLWicCYD01q0XvV3zmXmFjaSlJiEtMy\niSjo7+0tayfMkhf0LSJRCp4t4tamGi0mfMh6VsswUhsH+9TPHxKyXiB78dfqBt9F+T/YYWMo\nIb6tyNi6zQRHizUhcUR0ZdoVuq58tueo5zO4bTKMwbIJldWUWmBjFnJAkyNO1qnZ502OHklm\nWbyYNOXDZ8W6GSnBCwfUNK0YNrWGbb6R5CTwUGbTqFvIpo1WqtlhUttv8Ksc4Q1PS/2VekJa\ngvbaJ4f3JV6c5q2skdjXby380sbvTsPU/vtp06oQ0Z3/rb0ck0JE5YeN/97elIhsPcrk2sW/\nM48QUfWZQ3Mt1+oFoqDUnn354tfnvPWdWbW3T3KmYnyRkRjZOtilx0bGJqUT0cvTmxpWfvMD\nmyakWFq6hROrr1aFX32qV/SuLxwhPZ7A7l3T26dsvP+/JpfCdizUEKXIbw5N6PrDFjnLYrp7\nAAAAAAAAAPi2+S3ssP9t+uy9D/7esXxY7/Y16zTu7TX24us3/RwVo9T/693kz6dR9cdsendn\n/6RRAxvVqtWux4D1p1/uHubOZQjYOyxZ2ZSI6UlP6/fZwLJsbx/fUL+LPjO8vQYOHvfLzAMX\nH748vb60sQERxbw65DlwdwFDzUwN+b7ZaO6xDiMx7j5xzb2AqMSYyNDwqKS4kBPb51a2MiYi\nlpXvndJy89ev0bj0WmzAMESU/Pn47gjlE6VuXPiIS1Qct1CXdXVoZLPsx4Jlmw49feNhRHxS\neERcdOjrM3uXVrEy5n46sbBX7x0vcq+c5eON+e2W3qrcf3XI0zPTR/VuVK9GnSaeQ8fOfRD6\nqq+zJVct6/uuy85fotkYHx8fHx+faqZSbonntHnckpG17FTthYcXWzpvfRVtKHMau+SPp4Gf\nY8LDnt0/Km7Zc5GnR7b9cQ+XNrau5/PbqciEtMSYiLCI6PS0xAfn9wxpoHhMGXFvybLAuOwV\nC1gnQmIOuzAp+3mooczx51W7XoUnJsV+SkhNe3v37C/dqhNR7Jv9k7NmS9YI74JzMpKeerb1\n5h4xG5lXmLP9RFhC0qcPofGpyYFPL43prHilKerJHx0X39WoxvIaOVuxtfC7U2Izlc8hfHOq\nop1Yl5/VxtpYzdYENmYhB3Rt+2HceIBEauO9fOfbz4nJsRHvP8WlJYQf3jDDTmpARKw8dUm3\nOfmGkZPAQ5lN026Bo6VWqtFhUtNvCKkcgQ1PG/2VegJbgpbaJ4f3JV6s5q20kQi/tPG+0zAr\nOZjbUScbGbek0vhZ3JJJfV2+2gebNuVcKMNIFvR2zrlYqxeIglN/1VaPX5+TEnWpUb9l3Ai9\ncbFqi/88E56UFPk+LCYx9dXtk8NbOBNRQsi5NaHxQsqljVs4sRqzKvzqU70ieX3hCOnxhHTv\nPG6fOEL+vyanQngsVBGryL2GbpGzrHWlDhikBwAAAAAAAAA9YdMTCyxZ9fd3UyNTas26sKBf\nzZwLJVL7FX+0zv6ndflx1zeMNpPkfJ2G6bX2d4ZhiCgz9f3JqOS8W85ICQpPy6wy2vfAtO6G\nX7+JU6Hd2PsX53KrB/oOWxdUoAeXD+Z3ufw5mYgYxnD64We+q3+u7ap4MU5qXrrz8Hn3/M/X\n5x7uyFOntZuVc10jyyYTsp7Drtn6Ou/GU6JObAqLJyKGYRaOVz4TpjbqKjZgdb8/XnHpLj7H\n3139rX2jGnZmhkRkXdqtXb+pD0P8fqpdnMtwdGzHQBVfany7e79pmf73dv1sbvBVXRvIym44\nOoJLxwWtyDmHp25EXH9raOLq+/TxhulDqjjZ5PxJrLLnEvlw0lvuKa1hsV33L04b2sHOTDFa\nwxia1GzT/7erT3oUN+WWnDgdpnJDygiKmU3t32sjl5SaVfN98XyN98AK9lwkEpc6bVcefXRs\neguN4slJYMFPD+n6KCGNiKSmlY69eDB/eOeSpoZERIyRU5WWG0/4revqxOW8v2xworCG5NJ3\nmaHijAib/vRz3gxsZvzEy4oIm60ZJmRf6gk5oOmJj+Y8VHy496cjD1ZNHuxio6heqZl9z7GL\nb/3eg/tnfPCWuwnpBY9KrDbMp1vQcistIDX9hpDKEdLwtNRfqSeksNprnxzel3ixmreaRiKE\nkDuNAooJWPQkMd281JgWVjn+CqRwnHokrGL53Yr83mXQx7RMIjK2qn/x9Z0Zg9oVN+ZmWWcq\n1O+4/ZL/ip6uAgqkoI1bOK3eb5B2bu2K6vVFSI8nsHvnffskVm9T2I6FGmIVOUXO2lYf/uLR\nXxikBwAAAAAAAAD9SPiw1bzAak/4V9V2GAOTfdPq5V1u49EvO91990zDPPNdGlk0qGuueK6X\nc9LCnAxlTqdWd1H6k0Pj2ZsaliAilmXXjrusrqhERMRmxg9f/4xLuw05uLh7ubx5TIo39T0x\nhkvHh2zeEPLVS1c/zKjGJV5tXp933VebF3AJizLeHbNeg8tFG3XlO3wVy7JEVKLB8uPTuuR9\n2CS1qLju6jlHY0Miykh5N9w3UGlsRNTvwCoTiZJ5SW2qTOUSrDzdX8WR0qqWm890LmeZd7mI\nZc8p7KTi+zLFa6zr5arkswUSqf3PnqW5dPwbzd7MExLzx9tjr2VNIDzuxNnOzkpi67rkwk9u\n1hqFlE1IwTOSXw49rgi1x28n2zua5V19zP6L3Ito6cmvFwVr/EZgTkYWDaa5KJrEqRm382b4\n/GTa25QMIjIwKrG5jaOQfakn5ICmRJ3mpmZlGOmaTk55N+7aa7Wzs7Ozs7OTk9ODBA0mahax\nDWvaLWi7lRacqn5DSOUIaXha6q/UE1JY7bXPbPwu8SI2b1WNhDfhdxoF8XDePiKqMnlkzoWF\n59QjYRWraZ+TGnvl59uKT1OPOeHb2C7PDRhjOHH3xUpZUyPwpo1bOK3eb3BEv7UrqtcXIT2e\nkO6d9+2TuL1NoToWqohYZImBxc5LG0pIJRikBwAAAAAAAIBvm5n9IKWfhDcwKp2dnlpd+ddq\nyxgrVlT1wmDpNhucFK9DKdFrUy8uEXpxkso3/bMkvN/4JJH7TrBk9ar2qrKVbLqys60Jl/59\nx5ucP7n0WyhhGCJK/Pj76aiUXCsuWq+YvrLeklGqNi56XbGZsRNvKp5NT9w7Ms9KClKzmrv6\nKl4je7zkmtI8BlK71So+SiqR2suyntxp+Uu2yvZuYPq/vkoew4lY9lzch+/z8/Pz8/O7erSn\nqjxs9kzXmrwQLjBmv4XnuYSZw6BVLUupWNtg7q5eGsSUg5CCh/87NSpdTkRS04o7ernkWY+I\nyEBWfmH1MtbW1tbW1k/uR/ELMpvXorpc4sPfU1LynP9XJ5/gEqVbbSpppK1nsAIPKCNRvAXL\nsukHA5U8RzYwcnyXZWQJJQ/uVRGrDfPoFrTdSgtIVb9BgiuHX8PTXn+lnpDCaq99ZuN3iRer\neatpJLwJv9MogMxpJ4KJaPagr4IvJKceCatYHn1OkO+cNDlLRCa2nVY2Lal8szKXXweX5xdS\nNm3c7mrvfkMRmxZu7Yrq9YV3jyewe+d9+yRib1PYjoUqIhbZocGGjnYmRIRBegAAAAAAAAD4\ntklNqyr/gVE802EkRu4mSh5rEpGSVza+Vs27lppfbSpNkTIMEWUkB5z8nHvUPJew0ye5hIlt\nd1VvunNBTe6geP0xaP+NnD8YW7UYW8qcSy/a8zbnT4kftx+OTCIiiYH5+u7OqjYtel0lhK2L\nzZATkaGJ6yRndW+tVZ3okbXKfqUZTB2GmCl7h0bN3nVDZtvVRaZkFEfEsudi5lTRw8PDw8PD\n3dFUaYaUT34LzoYWZFO5CIx5x33FRKwVfpqoZl37OqssDfk8dRRS8JfrnnAJmyoL1DSkUffe\nRUdHR0dHn+yp/El0wZXtsspYwhBRetLL+W+++uIpmxEz8briifmQtS0F7kgNgQfU1H6AddaR\nGlG79dpDt9JE+pqEWG2YR7eg7VZaQKr6DRJcOfwanvb6K/WEFFZ77TMbv0u8WM1bTSPhTfid\nRr7igpbfiU8zKzG8w9fbLySnHgmrWB59zv0t/lyidNvJau5Vqk7uwC+kbNq43dXe/QZHG7d2\nRfX6wrvHE9i98759ErG3KWzHQhURi1x7geIrFcrPWAAAAAAAAAAAbTMvNTY+bIMIG2Lyfb7B\n/yF4KzcrNb9KjErXtzS6HptKRIc+JXWxVfO8hiJvRHIJc8d+arIRkfMAZ9rlT0Qpn68Rjcv5\n08ipVdePv01ET1dsp3Grs5c/WbKWS9jVWF7JVHWFiF1XMc8Vz54kBhZzZ89WkzM1JoRLpCXc\nU5pBaqbi6bO+GVs2UrpcxLLnR/45LPBNQEBAQID/qxdPn/idP38jLiPfuRuUEBjzzayZRWv0\nVjIRazbGwKJvcdNtHxJ4RPg1DQr+4HE0lyjT3V3wfgtEalZ9gXuxqS+iiOjwvAc+e7+MiUY+\nnBySmkFEMuuW8ypocW5ngQdUInU45l2/+fJbRJQSfWdi70bTrMu28PRs1qRx48aN6nmUNxLt\nr2N4tmEe3YLOW6lyqvoNZTSrHH4NT4f9lXoaFFYH7VOkSzzP5q1JIykoUe401Hu86E8iqjR+\nfK7lheTUI2EVy6PPOR+sKItzf2c12UwdBhCt4heVgjZvd7OIdr/B0cmtXRG5vvDu8QR277xv\nn0TsbQrbsVBFxCJ3q6z4kj0G6QEAAAAAAAAAVHJV8U5StnIyQ+4J/qePKaT26VbCW8UTIjNn\nG/XbNCurmK00IyX3HInlBs5jJrRjWTYhdP2tuKUNLY2IiEg+9U9FznZru6nfuLji/RUTcqYl\nPFq06FFBVpGnR8VlspYGuZ81Sgx08Z1aHiRS5TNwilh2pZLe39u+Y/+ZM2dvP3wVm6LB51rV\nEBIzK0/8kKaYarSShZH6taqZ8f/4Lr+CZ3+p1KKCku+SakmfpQ2mdj1FRMEnp8vp3+x3tS5N\nOs0lKo5dodU3RoU3wmbLru23He89Z+v71EwiSo0JPntw+9mD24lIal66decuXbt269OzjXXe\nrxwXgPA2rGm3oLNWmi9V/UY2IZXDo+Fpu79Sj3dhtdo+SdglXoTmnV8j4UGUOw212FmH3hHR\nlB/cvlpaaE49ElaxPG5Fsq8+1s7qvrlgaKKjPyDjQRv3Gxzt3doVyesLvx5PYPfO+/ZJxN6m\nEB4LpUQscuWsv6jGdPcAAAAAAAAAACqlyvOZazIhK0Nman6f1MzeUr6jCRLF4yRWnpzrF+Ni\nnqNKmhERy2bOPB7ELYx7t/RabCoRGcqc19Yvkd/WxZQel85jrYRMsecs1iaGUf50T6tlPzpv\ncBnn7ybMWXX29rPsp88SA5OyFaq37dpvwfpdO3q78ti7kJgZxtgge07d/FbhO2TGv+DxWa/N\nGZiKPH20GqXbrDE3kBBRWvydVcGKp+Ty9E/e/4QTEcNIfLwrazUAMRqhQZ8pmwJC76+bP7F1\nnfLZh5iI0hPCzuzbMqpv27Juzbed1/Sr1dpqw+rpppUWLBJ1owICK4dHw9NjXy2ssNpqnxze\nl3hRmrf6RsKTGHcaaiSErr8am2pq37eXnUnO5bo79dj835DWSsWqlt1IGLXlYhhDifoceqKX\nvlqgont94dPjCeze+d8+abm3UUNv13otFBlv0gMAAAAAAAAAqPQ8KZ3IRE2GRwmKR2NWpZV/\nGjObuas53SYiSgyMUZ8z+X0ElzA0qZD319GTKm/xvkNEfvP30aA5RHRn5u/cT45tNxTT6rhT\nHuau5lzCymluTOA8Xe5a77RX9tvz2vaYf55LG1uX7+fVt1HdOrVr16joVtYk65udt58v4bFl\nQTEzhmWNDd6lZBDRy4Q09XlfJvF5rU1IwctnvRGbGJjIY9f8GJq4+VS1Hfcokoj+WPZ08qYG\nRBRx95ePaZlEZFVuRrti6j6BIZxYjVBm5zF+zurxc1YnfXx54dLfN67fuH79+p0XISzLElF8\n4LVR7auE3wyZXb+g76dqrw3nQ/utVDjhlcOj4emrrxalJYjePrPxu8TrrXkXgFh3Gqo8Xf4r\nEVX4cXLuH3R16mWmhfFeV0sqmBg+SkgjouigRKpsqypbRkqgnC10f6FYmBuzKkX++qJpjyew\ne+d9+6Tt3kYdPV3rRSzy88T0BhZGhDfpAQAAAAAAAADUuHIzUs2vqdHn/JMVT/Bb2uQzGmfX\nwI5LJITuV58zaK/iFXkji+/y/lp+yBwuEftuyZPEdJKnTDyhyD94RWP1WxadVeXSXCI19rqO\nd613Wip7RtLzbj6XuHTF/uveR77+fc3CEf271nR3yn76zJvAmNtkjfz5HQlRl49N2x+ZpOnG\nBRbco4RiCC30WJC60DISY2NjY2Nj4/J7qltA3VY24xJv9y/gEucmKQYPmq4aIcou1BC9EZqW\nqNh1wKgV/9v9z7Og2OAnvy/+qbjUgIhYedrKvksLuBGttuF8abWVCidW5Wja8PTSV4veEkRp\nnznxuMTrt3nnS6w7DVUW7HlLRBPGVsz7k25OvcTQe/ln0q2G1sZcIvhgsJpsyZEHdRKOBgp5\nY1bqP3V9KWCPJ7B75337pO3eRj29XOtFLLLv02gugUF6AAAAAAAAAACVni45qubXN3/O5xIG\nRvZeDuq+RUpEpTu34xLJn45ciElVk3PNMcVz3rI9PPP+KrPpOLyEGRGx8tSpF8I+P5/xNDGd\niIytms5x0/Vn3a3KeXOJlJjLF9UWKuGd382bN2/evHnvWT5vn3wrtFT2SL+ZEWmZRCQ1rXRv\n1zgbFVMjxL6M0zxkoTH3bah4bevV5o1q1o16Pjc8Lb+vP+QhsOAeYxQfSI68s1zNvu9M/M7a\n2tra2rpKt8uaRqhUyaZrbKQSIkqJOvtbeJI87eOke5FEZGBkv7mdoyi7UEPgAX114tCePXv2\n7Nlz4paSoUoLxypeMzbf/KMV98/4kM0ZBXsLVKttOF9abaXCiVU5mjY8vfTVAgurpfaZE49L\nvH6bd77EutNQKvHjr2eikk1sO3s5KJk6SMRTL1N1hkdrHhYgUp1qPsiFS4Se2qAmW8Dv6hqb\nXhTyxqxUEb6+8O7xBHbvvG+ftNrb5Esv13oRi3x/5ikugUF6AAAAAAAAAACVop7P+DMoXulP\nmalBw2bf59L2dReb5PeUxaL0hIqmUiJi2cwJ0y+pyvbx+pTDnxTvfPQZrXyOxAkTFd8bvjPr\n+LVJR7h0heErdPct7ixS89rDSymm2Rw//ZrKfGyaV4NGjRs3bty4sffdCB0Fp2VaKntCwGcu\nYWzVzEzFa2Hy9MgpvKpRYMzVZnVVBPl++/RrH1Wtvd5rB4/YBBa8TEdv7gOlKTFXvK+8V7ET\nuc++t1yqvFd5HkHmZWDkuKJWcS69YdPLj7cmfkrPJKJSLTaVNtL6GSnwgL5cOG7gwIEDBw70\nGrpb1aolmrTIThfwObdW23C+tNpKhROrcjRteHrpqwUWVkvtMycel3j9Nu98iXinkdeLtRuJ\nqPyQ2Up/FX7qMVkkfyIAAAAgAElEQVT1+fkf5XPaZ6YEjDqh7mVfvXAbMZJLJEUenHtP+dwM\n8oxP49c802FQBVLIG7NSRfj6wrvHE9i987590mpvky+9XOtFLHLEvYn7QhMIg/QAAAAAAAAA\nAGqw8vSxzb3epOT+nCErT1rUs9mdeMWUjz/82jPfTTEGVr+NdOfSL7d1X3RWybSoyRFXu3Va\nz6XNSw2bWc5K6abchk/nEtEvZ437W/Ese/q0avnGoA2ztyheK3m5rdO802+V5jm1sPOR8CQi\nMpDarfveRUuRpMl1/bVXbZTdwq0Yl0iJPhuZLs+bgZUnrR7Y4EmiYhJmubI82fLWiZCY7TyW\ne2bNL7q6U/uzoUo+X3ptZc/5KkYp1BNYcJltNx8PxTSkW7v1uPEpJe8Wbvu0O/45mYgYifHS\nrmWVhsGjFbVfqXhNyn/b2lOTFW+YDV7XStPt8AtDyAF17aOohJg3M45/UD4f7OW1e7mEzKaD\nccHmEha3DWtKq600Fx6tRcTK0bTh6b6vFlhYLbXPrwPQ+BKv++atUTMT8U4jr2U73hDRqF8q\nKf1V+KlnUcGCS3y4OfpqdN63VDO3DG4TmOdg6Z1ZyR+nZM1jtKJd3wdxSr6lsnNMi+ux6t67\n1Qv99tX8FOHri5AeT0j3zvv2Sau9Tb50ea3PJmKRWXnyqKZeb1IyMEgPAAAAAAAAAHrCpidq\nIilZnG9Iayo+0Leme8stR6/FcTNLylPuX9jXq67LvFOK17nKtF0zv1Kxgmyq3pLjjayNiYiV\np83tVGXgrK3P3idwP2Umh5/+Y0Fd97b/xqUSESMxWnR6uartyGy7D3EwIyJ5ZkJYaiYRmZf8\nsV9xEyHF5M2p064xVW2IiJWnLehc8fuJK/59GpComIWTDXt0YcbQRp3mKj6W3HD68ZrmUi1F\ncufu57wLlzWp6Zbln3iRm5A2ym5TeaqUYYgoIyWwbo+FLz/leKzPpl07sK5DTefJBwOyl4We\n3P78g5JHk5y8dSIoZsbwj2MTuWRavF8X92pTNhx4G6WI8OPzm/O9mjafcpSIzJ3N8y2p6AUf\nffJ/3ATgqXH/tnGvv2T3ucgUxZtmCZGv1nj3bjHrIvdPtyEHv7MwUhqG0laknsN3q0sYGRBR\nYviuCQ8jicjYutl89wL1CaoUPAwhB9Rt6HQjCUNErDylfw3PDfsuxmRkj2fIwx5fnjeqebfV\nT7h/1/KeV8CQxG3DGtNmK82FR2sRsXI0bXi676sFFlZL7TMXTS/xum/emjYzse40ckmO3Hv4\nU5LMutXoUipOHMGnnsugloo4U8O6Nx5w8smXgie+fzitd41xh95JTd2dZYYFjFlnZp5ZbWog\nIaLkz5ebuDdZe/jvmKy5yMOeXP2lR/Vh254yjLSWueK6wzUhvdNzX81LEb6+COnxBHbvvG+f\ntNTbFIgOr/U5iVJkA2lxIop7d6RG+eYYpAcAAAAAAAAA/Uj4sNVcEyUqzNJ9kNO8WxNRQvD1\n0T2aWctMipewNzU2q+PZ/8gDxUSRlq5dzvqOLeDWDGSux69scJIZEpE8M2HP4lHVHK1s7Eu7\nlClhblGq49C5z2JSiYhhJP2X/z3Bw1bNpiaOq5jznzXnTeRROnFIZKuuHWtW0oyIWHn6kbVT\n6lcrb2Fs6ujsaGkidazh6fPHLS6jW7f5F+c1FH3/LiaKuZ3P963euFXb1k0bDD72ZTrcz4EB\nb7Iki/6qvRbKbmTZcE9/xfdBg07Oq1LCrlqt71q386xbrUIxM7NmfX8++zhSalZh2faBXJ64\noB1VS1uVdeuecyPq6kRYzCWbLvGdonhVNz3p3YrxfcvbmVjalrCxkJWs0njezussy1qU7X5p\nZ6OC16JYBTcr3ePWb+ONJQwRpUQ9mjmoXQlzixJlnO2tTCzsK3qvOZQqZ4nI2q3vxS0dc+1d\nfStSTyK1W9OwBJdOzmSJqOJPq/jNdM8nDAEHVGbb/dAIDy6dFHFzfP82NsYmtg6lXZxKmRsb\nOXq0mr/1KverrYfXmSkFnatDlDYshPZaKUdIaxGxcjRueDrvqwUWVkvtMycel3idNW/ezUzE\nO42cXv1vFRG59FmgJo/AU8+m8oqRFRSvpEc/P9LFo4Rj+aot23k2qF3R2rH2skNPJQbmK65c\nL1f4Buktyw29umaghGGIKOnjnYm9WtiaWpRycnEoZuZYvfnqo08YRjJi251JjoqpAuylhWJg\nTu99NQ96j1l71xdBPZ6w7p337ZOWepsC0va1XilRimzq4HX8l/pElBh2s1D0BQAAAAAAAAAA\nhZPnnJOnl46wNpQQEZuZ+ik8MvnLey1Uuf1P/zw+UtlUg+fFtjV+eOR3oKOH4lvCLCuPjnwf\nGBqekqnYrHGxSnN2P9z9SwP126kwcmp2mpEYr+lfruAxiM64WJMLr26P6vDliSErTwkLCovP\nehFHYmA+YPbvT33nGGnh5bEfF3bmEvLMhJuXz1+6/k9grO4mXdBG2b/feWdWv0bcJ0LlmQlP\nH965dO7Cvaf+MckZROTeeujZlw+mDPt9tqejYo9sZuSnrz6rrL5OBMbcfdnF08tHOWR995pl\n2fio8OgExdtLpRsPveK3z8mYzyCK8IK7D1zz4sTymg4mWcVPDg8Nioz7Mndr5c6T7vjtKmOc\neyhTYCtqtfLLY2uGkSyeVKXg6woPQ8gB7fK/fzeMaWeQ9VonK0+LingfGPwhMS0zuzhNBs1+\nfGeHhYEGZ6/wQymQ9lopCW4tIlaOpg1P9321wMJqqX1m43eJ103zFtLMxLrTyGnNpldENHRG\nPn8MIezUM1h/92Kv+mWy1s0IC3h25dyFfx68ymBZY+vqm84/n1CveMFj1qU643b+++tkx6w/\nIJCnJ34IDoyISSIiQ1nZ+fsfbBtR43NW68quH73Te1/Ng95j1t71RUiPJ7B75337pI3epuC0\neq1XRZQid1lxbeeM76UMU+j+5ggAAAAAAAAAoFBpP/XX4F4D12/a6Xv6atD7j3EZhiVLlvJo\n1K5X32GD2vN5dc/KvcfJh12uH/7t4ImTl/95/DE8Ii7doLi9vWuVeu07dh42ok/JPI/A8jKx\n69XX3nR/RBIR2VReVFtrc8gXkNSi2pZTjydfO/zboRPnLt8O/hgenSRxKu/m5uZWuUajQSOG\nepQy1dKuyw/Zcy7DfeGGvS/evkuWWJYsWbKKvUxL+1JK9LIzBlYL994Y/cvxBav/fPra/82b\nN7Fy01KlytRt3r5Hr0G9Wiq+Bzz/zOu6W1cevfaIipWtXK15zi3kWycCY24/ecu7wT9u37b7\nxF/nXwS9j4xKsnYo6VKlfv8hXqP6eRoxlFR2+MqVLYjIqaK1LgtORC4dJ90L9Tq8ffvxv/76\n58m78IhI1tiyeEnnBk2bfz9kdM9Gyv+cRWArsquxwln2G/exZEuXqR1teLZA3mHwP6CM0diN\nZ3r9cGnHrgN3nr8NCQkJCQmJZ82dnJ2cnZzLVa7ba8CQ5tUcNC2IKIdSIC21UhLcWkSsHB4N\nT8d9tdDCaqd95sTjEq+b5i2wmYlyp5Et5fOJP8MTjS0b/FLWIt/MQk49I8vaB28H/XN47Zpd\nZ/39/d+8DTO0Kl66TIUOvQcO+2mQu4WUiEYuWto+JcPASNBx14Y6w5f5d+2/beOOQ8fOvwoM\nic2UlSnj1KLboNHjR9UsYUJEAckZRMRIZGU1qXytKgx9taYKQ8zaur4I6/EEdu/8bp9I7N5G\nU9q71qvBu8grV64kIiOLusRIBy8+1Kb7aYZlxZ7mC6DAMu9MEXeDBvVE+6wFYuMHsfGD2PhB\nbPwgNn4QGz+IrehBvfFTmOtN3Nj+Iwe0IORvdus7BHFIyg/Udwjax7IZGRkZGRkGMhNpjjdL\nbKQG0RlyIrock9LCylhv4anBpje2trgZl0pEvc6HHGzjqP09Kq8rHWHl3N6NTEx5zAx5e2Tl\nhtte/B2T0qxwHk0A4EFYtwD/Wd/AJR4KJ0F9TqajzDgsNdPEtmvSp2NaCE4t/d7CqVKY+/DC\nHNt/jT6OReDxVi7dLhORXeWjkc+6aW9HeJMeAAAAAAAAAP7DGMZQKjWU6vk1dB4+P5vBjdAb\nGDmsb15KF7vUb10xEkOpkaHUiN/aye+TiahUoZlgFgBEIKxbAADQjLI+JyPp+bkr74hIYmjd\nvq3Kr1/HB68PS80kIrNSWhzwU6lw3u4W5j68MMf2X1OkjwUG6QEAAAAAAAAAvj1nx+3jEqWa\nbSghxUs++XjhH2dk7uFmgkdhAAAAIJqM5FedOvUgIkYifRCXWMNM+UD4wdFruUTtec10FxwA\n8KOrOejxfyYgjoyMDB6fThD9EUJ6erpYm0Js/CA2fhAbP4iNH8TGD2LjB7EVPag3fgpzvYkb\nG7/ADA0NGabwzLoI8G1IT7g75sYHLt17dUv9BlPYyVMenVw35U2Mi9chfYcCAAAARYrMtmt7\nG5MzUcmsPL3HkNXPD06V5flfLL+dY0ecCiYiiaHVirba/z4RAAgT7x+vmx1hkB7EkZSUlJaW\npulaxcQOIzY2VqxNITZ+EBs/iI0fxMYPYuMHsfGD2Ioe1Bs/hbnexI2NX2DW1taGhvifU4AC\neeof7OJcKum93+KBXWIz5ERkat/Tp4qtvuMq1Ka7OiwNinP1HH9uE95dAwAAAHFJNm76vly/\nXUT07sg099aPZ40f1aZuxRIOlp8C/V+8eH7xwJZVe69yWWtPPVVNxav2AFBYsGk7tvlzSWM7\nmVZ3hecgAAAAAAAAAADfhmoVnHIt6fPnWimmolCr08ItLVwqtmpcC5+jBwAAANG59v1z+/WA\nEZtvEVHwlb0/XtmrNFvZNpPOzWuo29AAQAMP53hvCo4MvH/m0psYbknFH8prdY8YpAdxGBoa\n8pjuXnRSaeH9MzTExg9i4wex8YPY+EFs/CA2fhBb0YN646fQ1hu/wDDXPQBv9cbu+Q2Tpuan\n0aD++g4BAAAAirLhm266N1j086wV94Pi8v4qNS3rNWX2mtnDzST4Hx+AwivoyK4dzz9l/9PS\ntdv+Pq5a3SMG6UEcpqamPNbKFDsMKysrsTaF2PhBbPwgNn4QGz+IjR/Exg9iK3pQb/wU5noT\nN7b/yAEF0KOujSqeuf0qg5GVrVBrxNT504a00ndEAAAAAECNB866N3DGi3+vP3vz9t27d0Gh\nn6TmlsVsHKrXa9i4cR07GSb0Afg2MAayEmXde/84cdLPA+2kEq3uC4P0AAAAAAAAAAC5RaWL\n/gc2Ijh24wXJ01JIKsObWAAAALwUzks8FAmSSt81q/RdM32HAQB8dPELfB+ZbFfSTmdfE8Mg\nPQAAAAAAAADAt0NiJNN3CAAAAAAAAEWJRGpWspSZTveoy50BAAAAAAAAAAAAAAAAAAD8l2GQ\nHgAAAAAAAAAAAAAAAAAAQEcwSA8AAAAAAAAAAAAAAAAAAKAjGKQHAAAAAAAAAAAAAAAAAADQ\nEQzSAwAAAAAAAAAAAAAAAAAA6AgG6QEAAAAAAAAAAAAAAAAAAHQEg/QAAAAAAAAAAAAAAAAA\nAAA6gkF6AAAAAAAAAAAAAAAAAAAAHcEgPQAAAAAAAAAAAAAAAAAAgI5gkB4AAAAAAAAAAAAA\nAAAAAEBHDPUdAAAAAAAAAEBRIyk/UN8hAAAAAAAAAEAhhTfpAQAAAAAAAAAAAAAAAAAAdASD\n9AAAAAAAAAAAAAAAAAAAADqCQXoAAAAAAAAAAAAAAAAAAAAdwSA9AAAAAAAAAAAAAAAAAACA\njhjqOwAAAAAAAACAoibzzhR9hyAOg3rL9R0CAAAAAAAAQFGDN+kBAAAAAAAAAAAAAAAAAAB0\nBIP0AAAAAAAAAAAAAAAAAAAAOoJBegAAAAAAAAAAAAAAAAAAAB3BID0AAAAAAAAAAAAAAAAA\nAICOYJAeAAAAAAAAAAAAAAAAAABARzBIDwAAAAAAAAAAAAAAAAAAoCMYpAcAAAAAAAAAAAAA\nAAAAANARDNIDAAAAAAAAAAAAAAAAAADoCAbpAQAAAAAAAAAAAAAAAAAAdASD9AAAAAAAAAAA\nAAAAAAAAADqCQXoAAAAAAAAAAAAAAAAAAAAdwSA9AAAAAAAAAAAAAAAAAACAjmCQHgAAAAAA\nAAAAAAAAAAAAQEcwSA8AAAAAAAAAAAAAAAAAAKAjGKQHAAAAAAAAAAAAAAAAAADQEQzSAwAA\nAAAAAAAAAAAAAAAA6AgG6QEAAAAAAAAAAAAAAAAAAHQEg/QAAAAAAAAAAAAAAAAAAAA6gkF6\nAAAAAAAAAAAAAAAAAAAAHcEgPQAAAAAAAADo1MmaDgwvt+PT9B07CLW/kh13ND3Pheg7FoXA\n4624kIpXOabvWKDoeLysLteunNpf1HcsAAAAAFDoYJAeAAAAAAAAACC3KWUss/844GFiur7D\nAQAAAAAAgKIDg/QAAAAAAAAA8B/Vq7gZNwy/OCRe37GAduFYAwAAAABA4WGo7wAAAAAAAAAA\n4D/KvOSPoS+Wa5Dfwkh7wQAAAAAAAADoBgbpAQAAAAAAAEBPGCMrKyt9B6FcsTJOzoYJXNqY\nYfQbDAAAAAAAABQlGKQHAAAAAAAAAMht+q0n0/UdAwAAAAAAABRJGKQHAAAAAAAAAAAoNOQp\nl44euvf0VYaZ68xJw/Qdjea+9fiBg+MIAAAAoE0SfQcAAAAAAAAAACBIatTzP1bN7N2tQ8Pa\n1crYWxuZWjlXqNq4ZbtBY+b9/eJT3vyPl9VlGIZhmMOfkrgls8packua7vTnlgQeb8UtKV7l\nWM51s5c32vqSW/Lh4blZI3vUqFze1kJm5eBUr6mn13ifZ1Gp6mPOTAnZvX5e5ya1nEraGRub\nlylXqU3fMTtP3ed+3V/JjtvL3sgkHVSIuEVLDn+wYYF3q7rVHB1sjGQWji7uzXuM2Hr4qpxH\nSZSQ3/bd8bNX92oVy9lZmxmZWTm6VGjaaYDP5r3vUzPz5i7Isc7L/+K+iUM6VyzvVMxcZuXg\nVLdJm8FjFz2KTMk3uJjXV1fNHteiTrUyJexkMguXih6tO3Sfs9k3Ml1l6bOrvfmBACJKCD7l\nWaVU6+8HT5u3eP7cVfnXB5GN1IBhGFPbTtw/k8OfbFkwvlHtqqVsLWQWNq7uVXsMn7zvwvOC\nbEqr8bPy5GtHtv40tF+bJvVcS9nKzG3dq9dt363PJJ/tL/NrVJoe91yxCWzS/E4ooeQp5/Zs\nHNGzlbtrWStTYzvH8g1bdvAa5X3o6kttRKtpO+TRVAAAAAAgJ7xJDwAAAAAAAADfsFtbfu41\ncWOugbog/2dB/s9uXjm3Z8vCGu1/OnJknYvMQAs7lx9bPLDX7P0ZLKtYkBB8NyL47vULu7et\nH7XCd+O4BkpXe3dqTQ+vGX6fvgz6hr59Gfr25cUDm5d2GHPwwBohMYlUITyLdnr5T0Nn/xqR\n9mXvYYGvwwJfXz26w6f5CN/jm4QULS7g5JA+Pxy7/zHnwrDAuLBA/+un9s6fuWjqxn3zB3gI\n2QWbmbB6TNfJ266w2QVPDL4XEXzvxsW929YPX3pkq3cTFSvGrZ04eOamE8lyNnth4KvHga8e\nXzpzbNl01zGr9q4e8Z36vSdHXGhevef92HxHrFV6fGhhp0ELQlIzspe8ex397vWzo7+tXNpl\n/OH9q9xMlD8M1Hb8sa98+/UYceZ5dM6Fr59EvX5y7+zxg+sWLJzx+9n5fSsp3axIx51nk9ZL\nDxP1eP+AfmPOPo/6sigs4HZYwO0rZ3ZuXVOps/exA8sqKDuUokSrvh2K0lQAAAAAAIP0AAAA\nAAAAAPCterPbq9HonTmXmFoVtzZKD/8Um8myRMSy8oenN9VvYvXx7mImK499fa9p01oT0dH1\nq14lpRNR09HeDS2NiMi5WrGC7/3ijKbdfW5aV2w7ZcKwprUqGKdGPHl0e+28pY8/p2Smftw8\nobHNdx8W1LPPtdZb35lVe/skZyrGtxiJka2DXXpsZGxSOhG9PL2pYeU3P7BpfKqDb4WIVbRD\nk1r0XvV3ziUmlraSlJjEtEwiCvp7e8vaCbPkKt97Vi/62R916/4QkPxl+NnUyq6YcWZ4ZAw3\n7Joa82LhoFoBH6/v/qVhdh6NjjXLZqztV2vSIX8iMrIuW6NKOcPk8JcvX0clZRBRZnrkr5Oa\nFW/0cdF3uQsuT4+Y6Flz/d/vs5cwjLS4nSwiMp77Z1rc2zU/1A8IPnR8wfcqSyhPndi0T/bI\nqJV9qdKOFTSqosBjE2v0WceyrEP1VkP7dHAvaxcfHnLjzOFDlx+xLPv4xPp6NT/c9dtbXpb7\neaC240+OOFmnZp83OY6dzLJ4MWnKh8+K7WekBC8cUNO0YtjUGra5tsrvuOfFr0mLdUJpJOLW\nphotJnzI+ksXhpHaONinfv6QkPWS+ou/Vjf4Lsr/wQ4bw68mSRUnWrXtUJymAgAAAACY7h4A\nAAAAAAAAvlHy9Mi2P+7h0sbW9Xx+OxWZkJYYExEWEZ2elvjg/J4hDRRDbhH3liwLjMtesUSz\nMT4+Pj4+PtVMpdwSz2nzuCUja9kVcO8fb8xvt/RW5f6rQ56emT6qd6N6Neo08Rw6du6D0Fd9\nnS2JiGXl6/uuy7VWStSlRv2WcSP0xsWqLf7zTHhSUuT7sJjE1Fe3Tw5v4UxECSHn1oTG67JC\nRCla2IVJ2SP0hjLHn1ftehWemBT7KSE17e3ds790q05EsW/2T34bw6Nomakh3zcbzY3UMhLj\n7hPX3AuISoyJDA2PSooLObF9bmUrYy6wvVNabs7xurZGxzr69TDvQ/6GMtf5O/+O/hz4743L\nN+8/i4wO3jqzn4RhiIhl2U0D/pc3vEMjm2UPW5ZtOvT0jYcR8UnhEXHRoa/P7F1axcqY++nE\nwl69d7xQVcYXWzpvfRVtKHMau+SPp4GfY8LDnt0/WvAqSk96Wr/PBpZle/v4hvpd9Jnh7TVw\n8LhfZh64+PDl6fWljQ2IKObVIc+Bu3Uf/9r2w7gReonUxnv5zrefE5NjI95/iktLCD+8YYad\n1ICIWHnqkm5zcm2T93HPhV+TFuuE0khG0lPPtt7cCL2ReYU520+EJSR9+hAan5oc+PTSmM6K\nCQOinvzRcfFdbUSrvh2K0lQAAAAAgDBIDwAAAAAAAAB6w6YnFlhyWu5PHUc+nPSWG/kzLLbr\n/sVpQzvYmSkGYhlDk5pt+v929UmP4qbckhOnw8SN/e3u/aZl+t/b9bO5wVevpBrIym44OoJL\nxwWtyDkjNBH93mXQx7RMIjK2qn/x9Z0Zg9oVN+bmnWYq1O+4/ZL/ip6uvEMSq0L4FI1N7d9r\nI5eUmlXzffF8jffACvbcviQuddquPPro2PQWvIv2YH6Xy5+TiYhhDKcffua7+ufaror34KXm\npTsPn3fP/3x9brxWnjqt3Sx+e5FnxksMrf+4f2/O4GamEkXZJUYlf1y0969RFbl/xgWuyNUQ\nYwNW9/vjFZfu4nP83dXf2jeqYWdmSETWpd3a9Zv6MMTvp9rFuQxHx3YMVPEN9Yjrbw1NXH2f\nPt4wfUgVJxtNg89ICQpPy6wy2vfAtO6GX78lXaHd2PsX5zIMQ0SBvsPWBX01QKvt+NMTH815\nqPgU+k9HHqyaPNjFRtEIpWb2PccuvvV7D+6f8cFb7iak59ymWMed39mqlx7m9JCujxLSiEhq\nWunYiwfzh3cuaWpIRMQYOVVpufGE37quTlzO+8sGJ+YIWKxo1bRDsZoKAAAAABAG6QEAAAAA\nAABAXxI+bDUvsNoT/s21etjJx1yieI11vVwt8m5fIrX/2bM0l45/w+fddPX6HVhlIlEyabRN\nlalcgpWn++eYpjs19srPtxXf1R5zwrexnSz3mozhxN0XK2W9860pEStE06J9vD32Wtb82ONO\nnO3srGTvXZdc+MnNOv9i5MFmxg9f/4xLuw05uLh7ubx5TIo39T0xhkvHh2zeEMLzcNeYcWZA\nZSWfPGg+bwaXkGcmhH499Og7fBX3AfsSDZYfn9Yl77M2qUXFdVfPORobElFGyrvhvoGq9t5y\n85nO5Sz5RU5EhjKnU6u7KP3JofHsTQ1LEBHLsmvHXdZl/ClRp7l56RlGuqaTU961XHutdnZ2\ndnZ2dnJyepDw5UMP4h53TZs06aOHyUh+OfR4IJfu8dvJ9o5mefOM2X+Rm3sgPfn1ouAvf28h\nYrSq2qGITQUAAAAAMEgPAAAAAAAAAN8k9+H7/Pz8/Pz8rh7tqSoPm/Xpd2JVZeHJQGq3Os8X\nrDkSqb0sazgw53BukO+cNDlLRCa2nVY2Lal8szKXXweX5xeSWBXCo2h+C89zCTOHQatallK1\n4bm7eqncq2oJ7zc+SUwnIoaRrF7VXlW2kk1XdrY14dK/73jDY0cMY7BlUm2lP8mKtclO53yT\nns2MnXhT8YcXE/eOVLVlqVnNXX0VcyQ8XnJNaR6Jgen/+ioZhy640m02OCkmZlCi1yZF5Yde\nnJRdBB3Ez0gUU6CzbPrBQCVjwwZGju+yjCzxZVhaxOPOo0mTPnqY8H+nRqXLiUhqWnFHLxel\neQxk5RdWL2NtbW1tbf3kfpTo0ao6jiI2FQAAAAAgDNIDAAAAAAAAwDfKzKmih4eHh4eHu6Op\n0gwpn/wWnA3V0t5NHYaYKXsxl6P0h/tb/LlE6baTVa5JVHVyB34hiVUhPIq2475iPvMKP01U\ns2X7OqssDTV+GBV2+iSXMLHt3tEmz/QDOUKb3MGRSwXtv6HpXohIZtulnoXyaQwYifL9JoSt\ni82QE5GhieskZ3UvwVed6JG1yn4Ve+/qIlM5xF4Q1bxrqfnVptIUKcMQUUZywMnPKVnBaD1+\nU/sB1lkHfUTt1msP3Uor2Hi2iMedR5MmffQwL9c94RI2VRaoCXjUvXfR0dHR0dEne34ZyBcr\nWlXHUcSmAgAAAABEZKjvAAAAAAAAAADgP8q81Nj4sA3ibU/+OSzwTUBAQECA/6sXT5/4nT9/\nIy4j95fsxfThfF4AACAASURBVCI1q6rpKueDE7iEc39nNdlMHQYQreIX1dd4VgiPot3Mmuu+\nRm8l85lnYwws+hY33fYhQaONR96I5BLmjv3U53Qe4Ey7/Iko5fM1onEa7YWIZNYtNV0l5rli\nVFhiYDF39mw1OVNjQrhEWsI9pRmMLRtpuvdcWrlZqflVYlS6vqXR9dhUIjr0KamLrYx0Er9E\n6nDMu37z5beIKCX6zsTejaZZl23h6dmsSePGjRvV8yhvpGIwWsTjzqNJK6P1HubB42guUaa7\nu+CN8YxW1XEUsakAAAAAAGGQHgAAAAAAAAC+aUnv723fsf/MmbO3H76KTcnIfwWRSAw0/rx6\n9hevrZ2VfGo6m6GJoPE54RWiadFYeeKHNMVM4ZUsjNRnrmam/FV1NRLeKgb1zZxt1Oc0K2vL\nJTJS+Ex3b2BUWtNV4v0V87enJTxatOhRQVaRp0fFZbKWBrmHpiVS5fOxF5yrST4P+srJDLlB\n+k8fU8idSFfxN1t2bb/teO85W9+nZhJRakzw2YPbzx7cTkRS89KtO3fp2rVbn55trA2/2qaI\nx53H2ZpNlz1MdhdhUUHJR+ULQoTTX8VxFLGpAAAAAABhkB4AAAAAAAAAvl1H5w0esWQP9xXn\nbBIDE8dybpUqVWnUqkPpG3OHH3yrr/BySZArpvlm1A5aMYyhhGHkLJ9vXOulQhjG2IBhMlmW\nVM8cns2Qx4Bddk3ku65E8RcArDxZ890UZAe5pcel89hNgrKRS4bR+M8XckmV59NmsltgZqri\njyp0Fb9Bnymbug77cdvmnX/99deV+wGZWc07PSHszL4tZ/ZtmezcdOXWHT96lv+yku6Ou0o6\nPqHis950NzDl8+EDUaJVdRxFbCoAAAAAQBikBwAAAPjWyd/sFneDBvWWi7tBAAAALbk9r22P\n+ee5tLF1+X5efRvVrVO7do2KbmVNsj7nfPv5Ev0FmFsFE8NHCWlEFB2USJVtVWXLSAnkN0Kv\ntwphDMsaG7xLySCilwlp6vO+TNL47V5zV3O6TUSUGBijPmfy+wguYWhSQdO98GPuas4lrJzm\nxgTO081OVXmelE5koibDowTFOKtVacVny3UZv8zOY/yc1ePnrE76+PLCpb9vXL9x/fr1Oy9C\nWJYlovjAa6PaVwm/GTK7vv2X2PR63HV/QpXPmgshMTBR03W1HW2hauoAAAAARQAG6QEAAAAA\nAADg25OR9LybzyUuXbH/ups7x9nweUdbpxpaGx+KTCKi4IPB1L6sqmzJkQd5bFy/FdKmmIz7\n0rzfkRCaqXpycjZtf2SSphu3a2BHe/yJKCF0P1F3NTmD9gZxCSOL7zTdCz9WlRUz5KfGXtfN\nHtW4cjNybllLVb+mRp/zT1YM0re0kXEJvcRvWqJi1wEVuw4YRUTxoc+O/LlpyrxtkemZrDxt\nZd+lswNXc9n0e9z1ckJ5lDCl4DgiCj0WRD9VUpWNzUiMS8wgIsbAxNLcSDfRFqqmDgAAAFAE\nYJAe4NuDNyYBAAAAAAAi/WZGpGUSkdS00r1d48wkykekYl/G6TYudZoPcqE50UQUemoDUWNV\n2QJ+P8pj4/qtkL4N7bcdSSCiV5s30sxfVWWLej43POvr9QVXunM7GnubiJI/HbkQk9rG2lhV\nzjXHgrlE2R6emu6FH6ty3kR7iSgl5vLFmNTWqmNLeOf36H0iERlbV6lThf8n0tV4uuQo9Zuk\n6tc3f87nEgZG9l4OZlxaB/G/OnHoXnwaEVm4eHZpWDzXrxaOVbxmbG7kHFBhwHkiig/ZnMGu\n5saX9Xvc9XJCeYxxozsfiSjyzvJMaqdqyvs7E7+rv/EZETm2OhNysZ1uoi1UTR0AAACgCJDo\nOwAAAAAAAAAAAI0lBHzmEsZWzVSNSMnTI6fcjdBhUPlwGzGSSyRFHpx7L1JpHnnGp/FrnvHY\nuH4rpNqsroow3m+ffu2jqmzrvXbw2LhF6QkVTaVExLKZE6ZfUpXt4/Uphz8pXtPvM1pH091L\nzWsPL6WYBnz89Gsq87FpXg0aNW7cuHHjxt5aa5NRz2f8GRSv9KfM1KBhs+9zafu6i02yngjq\nIP6XC8cNHDhw4MCBXkNVvnJQokmLL6FmJfR73PVyQpXp6G3AMESUEnPF+8p7FbnkPvsU35Uv\n71VeZ9EWqqYOAAAAUARgkB4AAAAAAAAAvj0WbsW4REr02ch0ed4MrDxp9cAGTxIV83vLleXJ\nlibn8w14TZmV/HGKm+K90hXt+j6IU/L59p1jWlyPTeWxcXErRFN2Hss9iylmUF/dqf3ZUCVf\n1L62sud8FX+aoB5jYPXbSHcu/XJb90Vng/PmSY642q3Tei5tXmrYzHJWqrYm+rGevaVdVmyd\n5p1+qzTPqYWdj4QnEZGB1G7d9y7iBpCNlaePbe71JiUjz/KkRT2b3YlXtLcffu2Z81dtx+/a\nR/Flh5g3M45/UP6xg8tr93IJmU0H46whZnGPu6b0ckLJbLv5eNhx6a3detz4lJI3z22fdsc/\nJxMRIzFe2rWsLqMtPE0dAAAAoAjAID0AAAAAAAAA6AmbnqiJpOQvo9o2ladKGYaIMlIC6/ZY\n+PJTjoFtNu3agXUdajpPPhiQvSz05PbnH5SMHHPu3P2slQLmMfPMalMDCRElf77cxL3J2sN/\nx2QoxozDnlz9pUf1YdueMoy0lrkRt5ArY0GIWyEaYwz/ODaRS6bF+3VxrzZlw4G3UYoYPj6/\nOd+rafMpR4nI3Nmcx+brLTneyNqYiFh52txOVQbO2vrsfQL3U2Zy+Ok/FtR1b/tvXCoRMRKj\nRafVfdNN9GPt1GnXmKo2XGwLOlf8fuKKf58GJCoOKxv26MKMoY06zT3PZW44/XhNc6m4AeQU\nH+hb073llqPX4rgA5Cn3L+zrVddl3inFV9vLtF0zv1IxXcbvNnS6kYQhIlae0r+G54Z9F2My\nskeI5WGPL88b1bzb6ifcv2t5z8u5rojHXVP6OqFGn/yfjVRCRKlx/7Zxr79k97nIFMXkAgmR\nr9Z4924x6yL3T7chB7+zMNJltIWqqQMAAAB86zBIDwAAAAAAAAD6kfBhq7kmSlSYlb2ukWXD\nPf3duHTQyXlVSthVq/Vd63aedatVKGZm1qzvz2cfR0rNKizbPpDLExe0o2ppq7Ju3XMG4GKi\n+Ojz+b7VG7dq27ppg8HHgrRaZMtyQ6+uGShhGCJK+nhnYq8WtqYWpZxcHIqZOVZvvvroE4aR\njNh2Z5KjBZffXlrQRzeiVIgQJZsu8Z3SikunJ71bMb5veTsTS9sSNhayklUaz9t5nWVZi7Ld\nL+1sxGPjBjLX41c2OMkMiUiembBn8ahqjlY29qVdypQwtyjVcejcZzGpRMQwkv7L/57gYZt3\nC1o81hLZqmvHmpU0IyJWnn5k7ZT61cpbGJs6Ojtamkgda3j6/HGLy+jWbf7FeQ3F2aky07xb\nE1FC8PXRPZpZy0yKl7A3NTar49n/yAPFrOOWrl3O+o7Vcfwy2+6HRnhw6aSIm+P7t7ExNrF1\nKO3iVMrc2MjRo9X8rVe5X209vM5MqZZzXeHHnTd9nVBmpXvc+m28sYQhopSoRzMHtSthblGi\njLO9lYmFfUXvNYdS5SwRWbv1vbilo66jLTRNHQAAAKAIwCA9AAAAAAAAAHyTvt95Z1a/Rtwn\nnOWZCU8f3rl07sK9p/4xyRlE5N566NmXD6YM+322pyOXn2UzIz999cXuHxd25hLyzISbl89f\nuv5PYKySKejFVWfczn9/newoM1TsOj3xQ3BgREwSERnKys7f/2DbiBqfs141djAyKPiWhVeI\nQN2XXTy9fFR2zCzLxkeFRycoXuot3XjoFb99TsaG/DZuW+OHR34HOnoUz9q4PDryfWBoeEqm\noq6Mi/2fvfuMk6o63Ad+Zjt1pVhAEUWxAdbYRdEUJTEkEo2xE3v/a2yoQY0ae1difiZWFGMQ\nLLFExS5RsRNFJQoigvS2sCzb5v9ilhWFXWBm9uyy+/2+Ojtzzr3PvYv4YZ659259yYMfPHjO\n7itd3qC/68IOfV/4/M2Tf/5dwZysLps6eWrJsmugc3LbHjHk3o9HXVKwundGSMfPLnnqmWuO\nXycvJ4SQrFo6e8asJd9dsx626X/KW+NGbtN6Jee/ofMP+Ovbt592QO6y20Ikq8vnzpz21dff\nLi6v2X4ikdP3qCHjxt7dLveHO8jw956JxvoPassjb/70yet2WL9V6sfqqiUzvpk8a+F3t77f\n5pfnjv1wWLfC7/3lECdtE/mjDgDQDKT57yIAAACageovHszi1nJ3yeathmGVErnFVwx/49Rz\nnrj8pgc+nvC/L774YkF1665du+3cr//AQ446ZL+tU9P+9OyEnf/vhsde+yh02HibPv2W38Lm\nxzz0XOWWV9w+/NOJk5bktO/SpUuv9YoiJP/Rcdf+71eH33XH3SMef/7zr6YsqCrq1q37vr8+\n6tQzT95hg1YhhC+XVIYQEjlFGxeuQUmf+QnJXP/z7px09Il/v+vBJ//1/KeTp82aW7rO+l02\n7bXb4ccMOvmwnxUkQunGx91ww74hhO5brbOmGy/ecuBTHwx4/dF7/vnkUy+9NW76jJkLK3LX\nXW+9Hr126f+LXx57/KFd6j5dDf27zm/X586nx5332qP3jHjyuZfe/Hr6jHmlOd0379mzZ89t\ntt/zqON/v13X1lncXV36X/C3rw858rah94965tXJ06YvrMzr0qXrdnsecMjvjj2qf596FjZs\n/kTB6Xc8e8gJL9497JGx4ydOmTJlypQpJcm23Tfpvkn3TTbbZudDjjimX5/161qdye89E434\nH9Smvzj33W8GPfr3vz/xr3+99d9JM2bOSha2X7fLJrvv3e/gY079zZ6bNWLaJvJHHQBgbZdI\nJpONnYGWq2rs+dndYBY/E2zK2SqGd83WplLyD5+WrU015fMmW3pkS49s6ZEtPf6/kJ6mnK0p\nc97S05TPW3b/DsniXyBru6z/0htLC/mPtEEkqysrKysrKwtatV7z2xhWbVRUOHVpVatOvyqd\n/XgDhMtMRodG9nXMz51XWR1CeGl+2b7FhY0dZy3kjzQAANG5kh6AtVV2r/wLPoMGACCLEjl5\n+QV5+QXLv1ZZOv65lyeFEHLy1um/f52PZi/5+rapS6tCCG26/rqhY6ZjZYcGazF/pAEAiE5J\nDwAAABBD5ZLPDzxwYAghkZP//sLF27fJX+m0f556S2qw02X7xAsHAABALEp6oKVw1TUAANC4\nijr9qn/HVs/OXZKsrhh4zE3j/3lB0Qo31/7w/tOPf/rrEEJOXvH1+2/UCCkBAABoYEp6GpPS\ntPnxOwWaK3+/AQDZkHPH0IM3O2xYCGHSyMFb/mTcH888+ac7b7XB+u1nf/W/Tz8dP/qRO28c\n/mpq6k4XPN2njkvtAQAAWKsp6QEAaCi+3AAAP9Djdw/8/fUvj//Lf0IIX788/MSXh6902sY/\nPfe5y/aIGw0AAIBIlPQAkH2KSQAA6nLc0DFb7n7lWX+8/r3JC1d8N7/1xoPOH3LzkOPa5CTi\nZwMAACACJT0AAABAVHsd+cd3j7zo07df/+SLiZMmTZr8zez8tu07dFx/21322GuvH3Uuym3s\ngAAAADQgJT0A9XFFOAAANIycrXfdZ+td92nsGKz15lZUNXYEAABgzSjpARqfIhxS/LcAAAAA\nAECzl9PYAQAAAAAAAACgpVDSAwAAAAAAAEAkSnoAAAAAAAAAiMQz6WHlPBcZaK78/QYAAAAA\nAI3IlfQAAAAAAAAAEImSHgAAAAAAAAAicbt7AABaIo9+AAAAAAAahZIeAACgYflSCAAAAAC1\n3O4eAAAAAAAAACJR0gMAAAAAAABAJG53DwAAAFnmkQQAAABAXVxJDwAAAAAAAACRuJI+hBBK\np376/IsvjXl//KzZcxaUhQ4dO3bZZKu+++z74z365CdWvXzqJ28898rbH3/y+cy58xdXhHbt\n22+46Zbb7rDbAQfs2SE/069BZJgtw+UAAAAAAAAAZJGSPvnmyKE3D3uhrDpZ+9Ls6aWzp3/z\n37dGP7xFv/MvPK1Xp8K6FleUTPz7ddc++9G3y784f07Z/DkzP3n39X8OG/a7MwYf2rdHo2TL\neDkAAAAAAAAAWdbSb3f/3gMXXX3/87U1diKnoF3r/Np350145dIzL51YVrXStRWLJ1xyyvnL\nN/SJRF7botzaH6vKpj90/Vm3PPtl/GyZLwcAAAAAAAAg61r0lfTzP7vv8pHjU+M23XY/+cTD\n99i2e34ilM79avSTD9392NhkMlleMv6SwQ89eMvRKy4fMeSKTxaWhxASiUTPPX51zG8P6Llx\nl6LcUDJnxidv/vveYU9+u6QyhPDyXy/YadcH+3Ysipktw+UAAABkomJ418aOkB35h09r7AgA\nAADQ3LTkK+mr773mmWQyGUIo6rzn0FsH77Nd99Rj2lt33GTAoIuvP3Hn1LyFEx8dPqnkB4tL\nZ478xxcLUuNtj77qhguO7bNp16LcRAiJdp022O3AQbf/7fKuBbkhhGSy/J4b3omZLePlAAAA\nAAAAADSIllvSL/rm/pfnlqXGR11xese8xA8mbPGLiw9cr3Vq/MzNr/3g3W+efCU1yGu1xZCB\nvVbcfkH73ucfvElqPP/ze5MrzmiwbBkuBwAAAAAAAKCBtNySftI/3koNijoe8MsN26xsSmLg\nqTukRiVTHlpQ9b2efd74msvoW3UeUPDDErzGBv16pwZVFbO/WfrDp7/fd+yhA5b5wbPhM8yW\n4XIAAAAAAAAAGkjLfSb9Yx/MSQ26/nj/uuZ06HV4TuI/1clksmrR8OmLT9mwbe1bVRXVtcO6\nd/Jde1+xJj14htkyXA4AAHWp/uLB7G4wd5frsrtBAAAAAGjiWuiV9MmqhR8sqkiNt9x3/bqm\n5RZ227Vdfmo8ady85d9af9fOqUHprFGl1Stv4KeOHleznYINNi3KjZMt80MDAAAAAAAAoIG0\n0Cvpy0verkrWNOvbFxfUM3PHtgVvLiwPIcwZOzf071b7+sYDjy949OLy6mRV2eRLHnj7hkG7\n/WDhkhlvX/3Y5NS4y76nrnhH/Lad11svZ0lqnL/c2xlmy/zQ0lNaWlpRUbGmq1pnuNcVLFiw\nIFubki09sqVHtvTIlh7Z0iNbemRrfpy39DTl85bdbOkFa9u2bW7u6n6tGQAAAGBt10JL+orS\nCbXjbVrn1zOzy0atw7RFIYQl074JYbva1/Nb977xjP3PvO25ZDI5YdRVJ3ze75hD+2/ebaPO\nbcK306aOf/O5Bx99eUFVdQihfY/9rz55uxW3fPB1tx/cANkyP7T0VFZWplHSZ11TyFAX2dIj\nW3pkS49s6ZEtPbKlR7bmx3lLT5M9b+kFSybX5PFgAAAAAGu5FlrSV5fPTw0Sibzi3BWvcv9O\nQYeai9GrK+f/4K3uPz715sJOV9/yjxnlVTM+eeW6S15ZcfkW/Q674IxD699FdrNl5dAAAAAA\nAAAAaAgt9Jn05QvKU4NEbrv6Z+Yte3D7SpvsTff41aH9N6trbeE6Ox575EHr5q/ZSc4wW7YO\nDQAAAAAAAICsa6El/RqoXnbfxeqlP3hn8Tdjhpwy6LYnam4vn0jkdVi/W88e3dq3qrk/wdL5\n71940qBbHnkrfrYYywEAAAAAAABYQy30dvcFxTV3ek9WLa5/ZuXiytQgkd9x+dcXT3ntnLNv\nnlZeFUJovUGv3x119AF7bFW07PbyC6Z/+thDDzzx2viqqtKXHrpq5uJzrzp27zjZMj80AAAA\nAAAAABpICy3pcwqKU4Nksry0Otk6p85nt5fPq7l7fE7ed012snrJtYNvSzX0xZsfeOf1J7T9\n/tPfizfYetA5V/9057+dcsO/QggfP37D//2o90nbrlYXnmG2DJenrW3btslkctXzvq868x1/\nX4cOHbK1KdnSI1t6ZEuPbOmRLT2ypUe25sd5S09TPm/ZzZZesNzc3KymAAAAAGjSWmhJn9eq\nZwjPp8afllbs1Lagrpkzpy5JDQo7bFD74vwJf/2wpDyEkEjknHnZoB809LU23PuE4x5/7e4v\nFoQQXrnjmZPuOjJCtgyXpy0nJ51HJ2T9w8osfronW3pkS49s6ZEtPbKlR7b0yNb8OG/pacrn\nLbvZWsgvFAAAACATLfSZ9IXtd8tJ1DTrHy2qrGfmuEUVqUHn3devfXHG6P/VbKd4n53b19mC\nhxD2PHLT1KB05pNVq3edeYbZMlwOAAAAAAAAQMNpoSV9Ird4+zb5qfEnb86qa1qycs6YhUtT\n4247fndP+PL5NTeKzy3sXv+OCtevudljsrqstHq1WvoMs2W4HAAAAAAAAICG00JL+hDCQdvX\nNNPfPvdWXXMWTh5RkUyGEBK5rY/o0qb29Tabtk0NKko/qX8viyfW1OS5+Z3b1XFX/Oxmy3w5\nAAAAAAAAAA2k5Zb0PQ7bNTVY/O3DYxeWr3TOG38Zkxq02+iIzvnfnav1+vZODcpL3nl2emnd\nO0k+PWxiatR6gwFxsmW+HAAAAAAAAIAG0nLb2XYbDerboSiEkExW33HlyBXvRD/vk4fu+mJh\natz/7H2Wf6tttyO3al1zS/n7/njLlNKVP/r9/RF/fmJZhb/zsXvFyZb5cgAAAAAAAAAaSMst\n6UMi9/gLDkgN53/28JnXj/h28bKuPVn12RuPnDVkRDKZDCEU9zzsiB7tv7c0UXT+eT9NjZfM\nfOvMY06+a9TrU2bMq0qGEEJZydz/ffTytecde9mwsak57br/8v/t1PkH+x85+KyTlpmytCpb\n2bKwHAAAAAAAAICGkdfYARpTh22OHTLwsytGfRZCmPz6sJP/83iPzbsXF1bPmDpx6pyy1JyC\n4j5X/vm3K67tvNPJlx8x+5KHxoYQqpbOfOq+65+6LyRyi9oXVS9Y/L07zLda70dXX3/sio+j\nL5n57bezl6TGFStc7Z5JtsyXAwAAQByl0z68f9ijr78x5t1PJs6ZM2dBWfU6HTp0Wnej7Xfe\nZfe++x95xM87F9R5gcG4a3febvC7IYSND3hh8rM/iZgaAAAA0teiS/oQws6Drjmv9W23D3+5\nrDqZrCr58vOPl3+38zb7nT/41O5FuStdu/2hf7x941E3/GX45AU1rXyyqmzB4u8mJBK5vfc7\n7A+nHdwpL507FmSSLfPlAAAA0KAqSydecdLx1w1/paz6e19dnzNjyZwZ0yZ8PPaf995x/hnd\nBg256Y7zDy5Y8cvvAAAAsHZq6SV9CDl9f3vWjrv/9LkXXxrz3vjZc+cuXBo6dOjYpUevvfv1\n+8luvXPr/RSg++4Db9u1/4evvvCf9z4aP2HSvAUlpRXJdu3ad+q6Se/e2+79k59tsX7rxsqW\n8XIAAABoKKXTR/frM+CdZXeYS8nJa11cWDFvcUXtKxWLp/xt8CFPP3XGf1++pWNa34AHAACA\npkZJH0IIbbr1Gjio18BB6axN5LTaYd8BO+w7YE0XDrrnkdXZYSbZMl8OAAAAWVdV/s0vtv2u\noS/uuc+Qyy7Yf5c+PXtsWJiTWDhr6qRJk9558bG/3HznB7OWhBCmvXH7jgf1/OpfZzRqagAA\nAMgOX0IHAAAAonrjwgNfmVXT0A/408gZn79yzuH9e2++UWFOIoTQft0Nt9tlr+MvvPGdKf+7\naP+NU9MmP3XmFR/NabTEAAAAkD1KegAAACCi6rIT7xyfGm7009ueuGRgYR2PY8st3PCKp97/\ncYei1I93nvZ8nIAAAADQoJT0AAAAQDwl026dsKTmqfMn/PXo+ifn5HUaev2PUuNZ711U3bDR\nAAAAIAYlPQAAABBP2ay3ase/7dJmlfM3POA3qUFl2Vf/XVyxprubP+HVG4ecse+P+nTboHNR\nUbtNt9ruJz8/6JK/jJpVsVqNfxrLO+bnJhKJ1p0OTP24ZMZ/77z8zD136t21U7uidh17bNl7\n4HHnPfzC+DU9EAAAAJqNvMYOAAAAALQgS+eW1o4nlVVu1WoVH0206jzwr39tlRp3zl+Diw2S\nVQtvOfvoi4c+uaQ6WfviV5+P++rzcS8++/i1F/Y47cbhNx2/awMtTxk34ooDj7p8ytLK2lcm\nTZg3acInj91zwzUDznz0Hzf2XNXhAwAA0Pz4pyAAAAAQT9vum9WOz//jv/sP/XX983MLNz7p\npJPWdC/VFTPP/tkOt70yrfaVRCJ/3c5FM2eVpH4sXzjx5hN2+/LrEU9cfnDWl6d89fjZ2x96\nazKZXH/bH//+0J9vuXHnkhlT3nj20REvfZRMJsc9edsuO3z7zofDNy/y4QwAAEDL4nb3AAAA\nQDztNjpvnbyajyM+ufM3A8+5Y/rq3Xl+jYw4aZ/ain3jvX//zBsfzCwpnTFz4bxvJjw7/Jpe\nxYWpt5684pDf3v1p1peHECpKP97t0NuTyeRvrx71zYejr77oD4OOPPqMcy5+ZPQHnz1z24aF\nuSGE+Z+P+NmRD2b3wAEAAGj6lPQAAABAPLlFmw47ZsvUOJmsfuymM7qv2+Og484d/ux/5iyt\nysouFnx502H3fZ4aD7j6iUmv3tN/z+07t8kLIayzYc8DDrvggykfnrLTuqkJj53+i6++v98M\nl6dUlk2eUV7V69RRjww+KC/xvbe2OOD090ZfmkgkQghfjTr21skLs3LUAAAArC2U9AAAAEBU\nP7/zlXP696j9sXzB5MfvufGIn++5XtsOO+37qwv+fMcLb39WnqxnA6sw6rgbk8lkCGGD3a97\nYvCAFT/7yG+31a2vPrdRYV4IobJs0nGjvsri8lp5Rd2fvmnASt9af68hQ/fYIISQTCZvOeOl\nNTo6AAAA1nZKegAAACCqnPz1bnj68weHDNq0uGD516srS95/5cnr/njGz3bbut06G/1k4KDr\n73lqzhreDD9ZteDsMdNT47OH1/kw+/w2Owz7Xc0XBcZd9Vq2li9vw5/e3r0wt64tHDL0kNTg\nm9HnPMpVRAAAIABJREFUZv92/wAAADRhSnoAAAAgukTeEZff++WcWS/+444TD+3fo3OrH7xf\nvnDqi4/df/5xv+zaabOjz7tpTuXqFtmLpt66oLI6hJDXqse5m7SvZ2bvs7dbtuQf2Vq+vD5/\n2LGe5R23Pj8/kQghVC758qk5ZfXMBAAAoJnJa+wAAAAAQAuVyG2/36Gn7XfoaSFUT/pozOjR\no1988cUXX357dlll7Zzykq+G3XDOM6Pfff6le3fsULjKbc4f/0ZqkJPb7tIhQ+qZuXT+lJpd\nLHo3W8uX9+OexfUszynYcLf2Ba8vWBpCGDG7dECnonomAwAA0Jwo6QEAAIBGl7Ppdn1P2K7v\nCef8KVm9eNybY2cvTRQU5H359rMP/G3oy58vmPPhw3v3XvLV5JGd81ZxU8CS/5WkBuWLPrry\nyo9WZ9/VFXMXViXb5yYyX768Hq1W8anLZkV5qZJ+9vSysOXq7AoAAIDmQEkPAAAARFKx6L2b\nho5OjU8+9/ziFYrtEEIip812e+6bGvfda6+jzzzj1xtu9q9ZpYunPT7wzs9eO2ObVexiYUUa\nwRYta9kzXL68pdXJVaxaNqFqaVUaOwUAAGAt5Zn0AAAAQCQVpZ8OXuadkvLVWZKTv8FVF/RO\njd+/6oZVzm/bo21qUNz90uRq61qQk5Xlyxtfuoq+/6NFNROKN2y9GmcCAACAZkJJDwAAAERS\nWNw3kai54vz+z+ev5qq2m9UU56Uzh8+uqK5/cvE2G6YGSxe8nkbCDJcv7+Uxs+p5d+m85/63\npKak36+jB9IDAAC0IEp6AAAAIJLcwu4HdWqVGr9w1oOruWrKv6amBvlt+nTMX8VHGcWb/SE1\nKJv/0uj5S+uZuWjSh2PGjBkzZsy7n3z3dYEMly/v46seq2f5Fw/8KTXILVhv0Ppt6pkJAABA\nM6OkBwAAAOK56MQtUoMZb5177qgvVzm/quyLM/45KTXeoO+QVX6Qkd92p+O61lx5f+aFr9U5\nL1k+aPc999prr7322usP78zM1vLlzR1/0QOTS1b6VtXSyccOeS81Xm/nP7fy8QwAAEBL4l+B\nAAAAQDzbDRmxZev81PjmQ3c8e+jz9dy/vnTqByfvu+dHi8pDCIlE3oW39VudXQy584DU4LO7\nDrzsmYkrnfP0Fb8cOaM0hJCb3/nWgzfN4vJayeqK0/sN+qKscoXXS6/8zT5jS8pTP57wt9+s\nzkEBAADQbCjpAQAAgHjyijZ/5p5TchOJEEJ15cJbTt9/3S37Dr7mjmdefW/S11PnLVgwbfIX\n7/7n1SdGPHDaIXt32ninv79Vc536DieNPHmz9quzi+4HDjutd8cQQrK6/PJfbnXw2de//fGX\niyuTIYQQklM/euGi3+954KXPpybvceETO7TNz+Ly5ZV8NWqHLfe787HXFqaWV5e998LDh+y8\n6WVPT05N6Lb/zX/ausNqnTgAAACai7zGDgAAAAC0LD0OvfXNuUv6nXF3aVV1CGHuhDeuvfCN\na+tdstuxQ1//y4DV3UFO0Y2vPf5xr/6vfrs4WV0x8pbzR95yfiKnqGu3TgtnTC8pq6qd2PPX\nfxp92R5ZXr7M4D/85JqbRi/6+vVTB+5zWm5hp87tF8+Zs6TyuxsHtO8x4N+jTl/dgwIAAKC5\ncCU9AAAAENvOp9z19fsjf7PH5quc2bHnHjc/Pu7Nu0/NS6zB9gs79H3h8zdP/nmf2leS1WVT\nJ0+trdhzctseMeTej0ddUrCyzWa4POVnlzz1zDXHr5OXE0JIVi2dPWPW8g39Nv1PeWvcyG1a\nu3wCAACgxfFPQQAAAKARdNr214+O+fX0/7704Mhnx44d+8H4iXPnz1+4qKyobfE666zTrWfv\nnX/0o34//82v+269Ju38d/Lb9bnz6XHnvfboPSOefO6lN7+ePmNeaU73zXv27Nlzm+33POr4\n32/XtXXDLU/pf8Hfvj7kyNuG3j/qmVcnT5u+sDKvS5eu2+15wCG/O/ao/n1WuRwAAIBmSUkP\nAAAANJoN+ux3bp/90lu77QXvJC9YxZweex985d4HX5neDjJeHkJo12Ofi2/c5+IbM9gEAAAA\nzYvb3QMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAA\nRKKkBwAAAAAAAIBIlPQAAAAAAAAAEEleYwcAAAAAaD7mVlQ1dgQAAACaNFfSAwAAAAAAAEAk\nSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU\n9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkeQ1\ndgAAAABobvIPn9bYEQAAAIAmypX0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoA\nAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAA\nAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAA\nAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAA\nAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAA\nAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAA\nAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAA\nACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAA\nRKKkBwAAAAAAAIBI8ho7AM1ERUVFdXX1mq7K+pdEli5dmq1NyZYe2dIjW3pkS49s6ZEtPbI1\nP85bepryectutvSCFRQUJBKJrAYBAAAAaLqU9GTHkiVLysvL13RVcbZjlJSUZGtTsqVHtvTI\nlh7Z0iNbemRLj2zNj/OWnqZ83rKbLb1g66yzTl6ef5wCAAAALYXb3QMAAAAAAABAJC5WIDvy\n8/Obwg0qCwsLGztCnWRLj2zpkS09sqVHtvTIlh7Zmh/nLT1N9rylFywnx9fHAQAAgBZESU92\ntGrVKo1VFdmO0a5du2xtSrb0yJYe2dIjW3pkS49s6ZGt+XHe0tOUz1t2s7WQXygAAABAJlyv\nAAAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIe\nAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0A\nAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAA\nAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAA\nAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAA\nAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAA\nAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAA\nAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAA\nAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAA\nIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABE\noqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhE\nSQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImS\nHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9\nAAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoA\nAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAA\nAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAA\nAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiyWvsAE1C\n6dRPn3/xpTHvj581e86CstChY8cum2zVd599f7xHn/xEOhucMWboCdc+F0Lofd5dV/XdoBGz\nZf3QAAAAAAAAAEibkj755sihNw97oaw6WfvS7Omls6d/89+3Rj+8Rb/zLzytV6fCNdpi+YIP\nBt/0QhPIlv1DAwAAAAAAACATLf129+89cNHV9z9fW2Mncgratc6vfXfehFcuPfPSiWVVq7/B\nZLLs/wZfN6eiutGzZf3QAAAAAAAAAMhQi76Sfv5n910+cnxq3Kbb7iefePge23bPT4TSuV+N\nfvKhux8bm0wmy0vGXzL4oQdvOXo1t/nBfRe9MHVxo2driEMDAAAAAAAAIEMt+Ur66nuveSaZ\nTIYQijrvOfTWwfts1z31mPbWHTcZMOji60/cOTVv4cRHh08qWZ0tzv9sxOWPf9kEsmX/0AAA\nAAAAAADIXMst6Rd9c//Lc8tS46OuOL1jXuIHE7b4xcUHrtc6NX7m5tdWucGqssl/uuTh6mQy\nkdOqU35GJzbDbFk/NAAAAAAAAACyouWW9JP+8VZqUNTxgF9u2GZlUxIDT90hNSqZ8tCCqmS9\n20uO+NMlX5ZVhhB2/P1Vmxat+jkC9x176IBlfvBs+AyzZfvQAAAAAAAAAMiOllvSP/bBnNSg\n64/3r2tOh16H5yQSIYRk1aLh0+t70vzEf105/JN5IYR1tjr0kl9t1rjZsntoAAAAAAAAAGRL\nCy3pk1ULP1hUkRpvue/6dU3LLey2a7v81HjSuHl1TSud/vJF97wbQsgt6n7p5b/74c3l42bL\n7qEBAAAAAAAAkEWrvit7s1Re8nZVsuYe79sXF9Qzc8e2BW8uLA8hzBk7N/TvtuKEZNW8Gy+4\ns7QqmUgkfjPk8s2KclczQ9vO662XsyQ1zl+u2M8wWxYPbY0sWrSooqJiTVe1zXCvK5g3L2tf\nOJAtPbKlR7b0yJYe2dIjW3pka36ct/Q05fOW3WzpBWvfvn1u7ur+SwoAAABgbddCS/qK0gm1\n421a59czs8tGrcO0RSGEJdO+CWG7FSe8fOuF78wrCyFsfMCFR/bpsPoZDr7u9oMbIFsWD22N\nVFdXV1VVZbiRzDWFDHWRLT2ypUe29MiWHtnSI1t6ZGt+nLf0NNnzll6w5LLvGQMAAAC0BC30\ndvfV5fNTg0Qirzi3vvvTF3SouRi9unL+iu/OfPOvt7wyLYTQat2+15y4a1PIlq1DAwAAAAAA\nACDrWmhJX76gPDVI5Larf2besge3r9hkl5eMu/DG50IIObntzrrujDb1NuLRsmXl0AAAAAAA\nAABoCC20pF8D1cvuu1i9dPmXk8nyvw++ZlZ5VQhh91Ou2b1TUfxodWWLtBwAAAAAAACANdRC\nS/qC4po7vSerFtc/s3JxZWqQyO+4/Ovjhl387ymLQgidtx90wc+6NZ1smR8aAAAAAAAAAA0k\nr7EDNI6cguLUIJksL61Ots6p80715fNq7h6fk/ddk71gwsjLRk4IIeS33uLyP/6qSWXLcHna\n2rVbxd31V6oy8x1/X6dOnbK1KdnSI1t6ZEuPbOmRLT2ypUe25sd5S09TPm/ZzZZesEQiO88O\nAwAAAFgrtNCSPq9VzxCeT40/La3YqW1BXTNnTl2SGhR22KD2xWsuHV6VTCYSuUdcMWSjgtwm\nlS3D5WlrIh+rNZEYKyVbemRLj2zpkS09sqVHtvTI1vw4b+lpsuetyQYDAAAAaDpaaElf2H63\nnMRfqpPJEMJHiyrrabLHLapIDTrvvn7ti5PLKkMIyWTVfeccdV+9O/r4+hMHXF8z3n3oQxd2\nW/Xl5hlmy3A5AAAAAAAAAA2nhT6TPpFbvH2b/NT4kzdn1TUtWTlnzMKlqXG3HSM9uD3DbE35\n0AAAAAAAAABauBZa0ocQDtq+ppn+9rm36pqzcPKIimQyhJDIbX1Elza1r7du07ZNvXKX3eMx\nt7B17YuFq32yM8mW+XIAAAAAAAAAGkgLvd19CKHHYbuGN54IISz+9uGxCw/apf1Kbgv/xl/G\npAbtNjqic/53HfvfH3yo/o1ffsTB75aUhxC2PvOWq/qu8RPfM8mW+XIAAAAAAAAAGkjLbWfb\nbTSob4eiEEIyWX3HlSOTK0yY98lDd32xMDXuf/Y+a1G2pnxoAAAAAAAAAC1Zyy3pQyL3+AsO\nSA3nf/bwmdeP+HZxZc1byarP3njkrCEjkslkCKG452FH9Gif9f2PHHzWSctMWVqVzWyNfWgA\nAAAAAAAArFTLvd19CKHDNscOGfjZFaM+CyFMfn3Yyf95vMfm3YsLq2dMnTh1TllqTkFxnyv/\n/NuG2HvJzG+/nb0kNa5Y4Wr3DLM17qEBAAAAAAAAsFIt+Er6EEIIOw+65rwj9yvKSYQQklUl\nX37+8fvjxtfW2J232e/K2y/tXpS7NmZryocGAAAAAAAA0DK16CvpQwgh5PT97Vk77v7T5158\nacx742fPnbtwaejQoWOXHr327tfvJ7v1zk2svdma8qEBAAAAAAAAtERK+hBCaNOt18BBvQYO\nytoGL3no0VXOGXTPI6uzwwyzZf3QAAAAAAAAAEhbS7/dPQAAAAAAAABEo6QHAAAAAAAAgEiU\n9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjp\nAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdID\nAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcA\nAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAA\nAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAA\nAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAA\nAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAA\nAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAA\nABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAA\nIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABA\nJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBI\nlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo\n6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHS\nAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQH\nAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8A\nAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAA\nAAAAAAAiyWvsADQT5eXl1dXVa7oqN9sxysrKsrUp2dIjW3pkS49s6ZEtPbKlR7bmx3lLT1M+\nb9nNll6wwsLCRCKR1SAAAAAATZeSnuwoKysr///s3WlgVNXdB+AzSUggLGEXREQREcEFF6yI\nVLD1rdW6W7XirlUral1xV9wXXKq41F1RlLrhXlFbUUQqCi6oLCIKCISdQAhhksm8H0YREUOI\nmcmNPM+nk5lzZ/6cyb253N+cc+Px9d2qoKbLKC4urqmXUlv1qK161FY9aqsetVWP2qpHbb8+\nxq16ojxuNVtb9QrLycnJyfGfUwAAAGBDYbl7AAAAAAAAAMgQkxWoGbm5udnZNb6K53pr0KBB\nbZfws9RWPWqrHrVVj9qqR23Vo7bqUduvj3GrnsiOW/UKy8ry9XEAAABgAyKkp2bUr1+/GluV\n1XQZDRs2rKmXUlv1qK161FY9aqsetVWP2qpHbb8+xq16ojxuNVvbBvKBAgAAAPwS5isAAAAA\nAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAA\nAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAA\nAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAA\nAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAA\nAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEA\nAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8A\nAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoA\nAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdID\nAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAe\nAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0\nAAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKk\nBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAh\nPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI\n6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJE\nSA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAh\nQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAM\nEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABk\niJAeAAAAAAAAADIkp7YLiISSWRNf/89/R4//Yv6ChUWloVnz5m0369J7j76/223berG0b153\nawMAAAAAAABgvQjpk2Oeveu2x94orUiuemhBYcmCwm8n/O/NJzv3GXBR/24t8tK2ed2tDQAA\nAAAAAID1tqEvdz9uyMXXP/r6qhg7lpXbOL/eqmcXTxl5xZlXTCtNpGnzulsbAAAAAAAAANWw\nQc+kXzLpkaue/SLVbti+56knH7nbdh3qxULJom/efHHog8PHJpPJ+LIvLr9w6OP/OKbGN6+7\ntQEAAAAAAABQPRvyTPqKh294NZlMhhDqt+x11+0X7rF9h9Rt2vObb7b/cZcMOrlHqt/Sac88\n8fWymt687tYGAAAAAAAAQDVtuCF98bePvrWoNNU++urTm+fE1ujQed9L/tQ6P9V+9bZ3anbz\nulsbAAAAAAAAANW24Yb0Xw/7X6pRv/ne+7VruLYusYNP2yHVWjZzaFEiWYObhxAeOeHw/b+3\nxr3ha702AAAAAAAAANJhww3ph3+0MNXY+Hd/+Lk+zbodmRWLhRCSieInCpfX4OZ1tzYAAAAA\nAAAAqm0DDemTiaUfFZel2lv13ejnumXntf9N43qp9tefLq6pzetubQAAAAAAAAD8Ejm1XUDt\niC97P5H8bo337gW5lfTcsVHumKXxEMLCsYvCH9vXyOYpjVq2bp21ItWut9pd46NQWzUsW7Ys\nHo+v71ZNfuG7/sTChQtr6qXUVj1qqx61VY/aqkdt1aO26lHbr49xq54oj1vN1la9wpo2bZqd\nnV2jhQAAAABE1wYa0peVTFnV7ppfr5KebTfJD7OLQwgrZn8bwvY1snnKoTcNPjSqtVVDMplM\nJmv/3vZRqOHnqK161FY9aqsetVWP2qpHbdWjtl8f41Y9kR236hUW2X8OAAAAQDpsoMvdV8QN\nopcWAAAgAElEQVSXpBqxWE5BdqySnrnNvpuMXlG+pKY2r7u1AQAAAAAAAPBLbKAhfbzou4XZ\nY9mNK++Z8/2N21dPsn/h5nW3NgAAAAAAAAB+iQ10ufv1UPH9uosVK2th87S+eFprq5qi//u0\ntt56ndRWPWqrHrVVj9qqR23Vo7bqUduvj3GrniiPW5RrAwAAAPhV2kBn0ucWfLfSezKxvPKe\n5cvLU41YveY1tXndrQ0AAAAAAACAX2IDnUmflVuQaiST8ZKKZH7Wz967Pb74u9Xjs3J+SLJ/\n4eZ1t7ZKNGnS5Je/CAAAAAAAAMCv2wY6kz6nwZar2hNLyirpOW/WilQjr1mbmtq87tYGAAAA\nAAAAwC+xgYb0eU12zYp9N8X8k+LySnp+Wvxdzt2y50Y1tXndrQ0AAAAAAACAX2IDDelj2QXd\nG9ZLtT8fM//nuiXLF45eujLVbr/jD2vC/8LN625tAAAAAAAAAPwSG2hIH0I4qPt3yfScEf/7\nuT5Lpz9dlkyGEGLZ+f3aNqzBzetubQAAAAAAAABU24Yb0nf8y29SjeVznhy7NL7WPu/ePTrV\naLxJv5b1fjRWv3DzulsbAAAAAAAAANW24aazjTc5rnez+iGEZLLizmueTf6kw+LPh943dWmq\n/cez96jZzetubQAAAAAAAABU24Yb0odY9kkX7J1qLpn05JmDnp6zvPy7p5KJSe/+66zLnk4m\nkyGEgi3/0q9jkxrePIRnLzzrlO/NXJmIVG0AAAAAAAAApEMsFdZusD54ZMDVz01KtWPZjTt2\n6lCQVzF31rRZC0tTD+YWbHvL/Vd1qJ9d45s/csLhzy1YkWr/46nhHX/SpxZrAwAAAAAAACAd\nNvSQPoSKUU/dMfiJt0or1jIOLbvuOeDC07o0zU3H5usM6WuxNgAAAAAAAADSQUgfQgjLZ34+\n4j//HT3uiwWLFi1dGZo1a962Y7ff9unz+123yY6la/MqhPS1VhsAAAAAAAAA6SCkBwAAAAAA\nAIAMyartAgAAAAAAAABgQyGkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAA\nAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAA\nAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAA\nAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEA\nAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8A\nAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoA\nAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdID\nAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAe\nAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0\nAAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKk\nBwAAAAAAAIAMEdIDAAAAAAAAQIYI6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAh\nPQAAAAAAAABkiJAeAAAAAAAAADJESA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI\n6QEAAAAAAAAgQ4T0AAAAAAAAAJAhQnoAAAAAAAAAyBAhPQAAAAAAAABkiJAeAAAAAAAAADJE\nSA8AAAAAAAAAGSKkBwAAAAAAAIAMEdIDAAAAAAAAQIYI6aHmDfrnEx9OnlPbVdSYgf1PPemk\nk657c1btlpGIr6zdAuqo2h23X9m+kDG/jnFLJGu7giqIyPGtzjFuVNuv4/hWJ2RsP/WZAgAA\nAFRDTm0XADWgpGj+7DkLy5JVTYQ6d9k6O5bGeka9OmzUq8Mat+28R5++ffru0blNozS+WZpV\nlM2fOGvOiopk2Yg54fftMva+yfLF7418d8KEzz6fOHXJ8uUlJSvKEskXX3wxhBBf9sFzI5f1\n6tO7feN6GatnDcVFReVV/n0raNo0nb9uPxK1cYvyvjBjxoz16h/Lys6r36B+Xv36DRvkZqX3\nI43yuK1uxcLC2YtXbtGpw+oPFn01evADz375zYwlK0Lztpvvtue+Rx+yR/00j1j1pOn49sYb\nb9TUS4UQmnbt1aNdfg2+4C9n3H4qauchUVZXjm91XSbP33ymAAAAANUgpKcOS5YvevbBe19+\nZ/yiZes3V3jo8Bcap//q+LI5U15+csorw+7beKud+/Tp22ePXTdqGJ09LvntpHEfTfxm8bKS\nSnuVz/zkrRUVyRBCRWnmJmRPGvXsP+97clpRfK3PJlZ+/cT9jw976OE+R5x8xmG9M5lzzBo/\nYsiLb02d+tX8pesxGpn5fQsRHrdo7gunn3569TaMZeW2bLtx+002227nXXfbrUebtH3pIZrj\nljL/0zfvefhf46bNq5e/3TNPXr3q8YXjh5xy1bPxiu+iyoWzJr/02OS3R386+OYzmuVk7ssq\ntXt8Gzx4cA2+WpfTts5U2Gzc1lvEz0OiLMrHt2iL7vmbzxQAAABgvbh0Ql2VTCy//e+n/3dm\ncTW2zUvzfR56btNh7OczEslkCCGZTM6a9MHQSR88cV/9Ljvv3qdv39/uuk3DWr00XxEvvOfq\ny0d8UrheW211yBZpqmcN44deNvBfn6yzW0Wi6L9DB30xde7dFx+amexv6ku3nvvA28kqT5Rc\npV5G7isSzXGL+L5QPcmK+PxZ38yf9c3490c++s+Gff984kmH/65Rjf5DIj5uhaMf6n/TCz+d\nNJxMLL32xudXJfSrLJ325oBB291/UZ8M1Bbx41tkGbdqiPJ5SJRF/PgWZZHdT32mAAAAANUQ\nq0bgBFEw89+X9L9nwqof6+UXtG7euIqXAO+6++50XywsXTR99Duj3nnn7Y+mzl3jqez6LXv0\n3qNv3z6/2aZDrVylf+L8Y4ZNXrJem7Te6ZC7Lz82N/2XWGe+fkf/O99MtWPZjXf/XZ/Onbas\nN+GJf44qDCGklm0vK5kw8NzrJsxanurW5YibbjqyS7oLixeNPurYm0pXSx+zs7OruO2zw4en\n+4OO7LiFCO8L1113XQihrPircZ/N/+mzsdiafx/r5XfcabtWJUWL5s+fv2Bh0eoRdcvt/3z3\nVUfVj9XkHhLZcUuUTjv5qHPnxxOpH3Mbbr9qJv38cdefeOWYEEJWTsGhp/5tp3a5n495cciL\nH4cQYrGs84Y81bsgN93lReH4lvrVWquKsoVjx3256sdYLKtxs1YbtWnTOHvl3Llz585fsuo+\nGtm5bfqdekTLnKyCzrvssHHaZ4Qbt2qI+HlIlEX2+BZxUdhPf47PFAAAAGB9Cempqx454fDn\nFqwIIXTpe9jJRx/YqWVE73+5bPaUd955++133pn0bdEaTzVo2fG3ffr06dunW/umGauneOaQ\nI/s/k2rnt+28S/cuTXNWTnp35KTFK0MI2/5xv071c0IIJUXzJ4x9f3ZxWQihW7+B1xy2YwYm\nQSVKp5/U7+8LyypCCAWd9zj/vNO2a9MghDB1yN/Peebr8H3YHEIIyfIxw669/slxIYRYdv5N\nTzy+VYP0rgvyyaCTLxtVGEJo0HqbE07pt8OWHVs3bZDWd6y6KI/b6qK2L4QQEqXfXP23AeMX\nloYQYtn5O/9uv9/vuk2rVi1bt2rdKKds/rx58+bNm/rxqOdfeXdxWSIWy/7j6YNO3atTCCFZ\nEZ/z5Sevv/z0c29PSr1U53633Xx4WmYrRm3cpj933hmPTAkhZGU3Obj/WX/osc1GBfVTT404\n86i7vlkaQuhy7D9uOqRj6sF37vjbzW/OCiF0OOiWwcdvmdbaonx8CyGUl3x1y/mXjZ5ZHELI\nb9v14D8f9qffds/P/SG0SiZWTn7/jWHD/jX+m6IQQv7Gu1xz24Wd0r+TGrfqqSvnIVEWteNb\nlEV8P13FZwoAAABQRUJ66qqTDj1oXjzRrFu/R64/vE5MR5s/7dN33nn7nXfe/XrBijWear1F\n9z59+vbp02uT9E8zHX/NSQPHzgshNNli37tuPrkgOxZCKC+Z0u/I81dUJLucctdN+7ZP9Uwm\nip669cKho2Zl57W/4oHbuqe/tpkvDeh//6QQQl7Bzvc8fGnLnO8ymLWEzSGEEP4z6OTbRxWG\nEDoddfuth22e1tpuPOrPo5euzG2y872PXNoiJ1ozwaI8bmsVkX0hhPDUgGMfn7Q4hNC+15EX\nnHrwpj/zpokVc19+6KYHR3wZi8X+dMkDf92l1aqnvvrPXefc8XoymczObfPIv+4tSGcYEpFx\n+9dJRwydVxJC2PHMewb+vt0PTyTLTzj0zwvKErFY7MYnn+2S/11EGl86+tCjbgwh5LfuN+yB\nw9NaW5SPbyEkHznnmOemFoUQdjx0wKVH7/7z95tIjn9u0MBH3g0hFHQ68OFbTkj3nSmMW/XU\nufOQKIvI8S3Kor2froXPFAAAAKBy0YqaoOqWlleEEPY440915cp4q47bHXLcGbc/NOyuGy49\nfJ/ebRv/cF1y3lcfP/Xgbf2P+cs5A295aeT4orI0fnXmvS+XphoHXXj0qkAxJ7/zMW0ahhBm\nvzZ1Vc9YdsFh592210b5iZUzb7lyePpKWmXMCzNSjd4DTm9ZhSC898lHpxqz3/ggjWWFEEL4\nrKQshNCt/ylRS+hDtMdtrSKyLxRNeyCV0Bd0OvSOAUf8XEIfQshusNEB/W8+btvmyWTy1Zsu\nmlRSvuqpLX7X/4zuLUIIiXjh8/PXzCFqVkTG7d2lK0MIsVju2X03Xv3x0iVvLihLhBBym/Re\nldCHEHKb9GpRLyuEEF86Jn1VpUT5+LZ44h2ppLll9xMHHlNJ0hxCiO148IAze24UQiia+vyg\n/81Ld23GrXrq3HlIlEXk+BZlUd5P18pnCgAAAFC5yKVNUEWb5mWHEDrkZ26x7hoSa991l36n\nnn/v40/cMvDcA/bs0Sz3u1ubJ5NlU8e/ff+tA4894pgrb33gnY+mJtJw0fLT5WUhhFh2/gGt\nf3Sz3i13ah5CWLl47I9qjdU/9qK9QghFU4cOm7285qv5sbeLVoYQYll5x3dtVpX+uQW9W+dm\nhxDiRe+mt7IQVlYkQwi7dilI9xtVQ5THrVK1vC+Mv29UqnHoxX+uwgT42L7nHxVCSMTn3f30\n16s/0fPU36Yan324sKZrXHsltTtuc+MVIYScBputsWzA4k/fTjWadt1rjU02yc0JISTKCmu+\nmh+L8vHtgwfGpRqHnvWHqvTvfVq/VGPCo6PSVdP3jFv11NnzkCir5eNblEV5P62UzxQAAABg\n7YT01FV7tM4PIXw6N71TV9OnrHjR/AULlxQtXVFescZTFWVF40a+ePMV5xzT/9LnR02s2fdd\nVFYRQsjJ23SN+YjNezQPIcSLx8V/fIW0yebHtcrNDiH8d+jUkGap8C87b9PGVV4zvE297BBC\nIj4njWWFEEJI3d64PJKXj6M8blVRW/vCi9OWhRCycgoOaNmgKv3zmv4+9eWG2a8/tfrj9Vt8\nl0mXfFtSsxVWrrbGrUFWLISQrChf4/EpL81ONTbfv/0aT8W/u7FO2ucbR/n49urM4hBCLDv/\nj83rV6V/XkGfpjlZIYQVC99Mb2XGrbrq+nlIlNXW8S3KoryfVoXPFAAAAGANZv9QV/U8ccf7\nLx/54Z3PJwcfV4dWmi1dNON/Y8aMee+9Dz/7piy5ZuTbrH3XgpJp3ywsTf247NtPHxr06dhJ\nf7/2r7+rqX9jXlYsnkgmk2sGbPkbdw7h42RF6bjieM/VliQNsew9muQ9s6Bk0ccvh7B9DVWx\ndg2zY/HyZEXZgmSV07zCskQIIZZVpZD1l9i3Y5PPJiwcN7Fov15VCooyKcrjVola3xdmrEyE\nELLqtVpnz1Wa52TNiyfKln+6+oPZ9VqnGvFF8RoqrTK1Pm6bN8hZvCyeWPnNrHii3fcTIkOy\nbOg33y3FfODmTVbvn6xYMa20PISQVa9lDZXws6J8fJuZ+n3Lalj1D6JBVmxJCBXxtC/bbtyq\np46eh0RZrR/foizK+2klfKYAAAAAP0dIT13VsvvZh3X+6Kkpz1380KYDj++bF4v01bxlhVPH\nvPfemDFjPpoyu+In1yhbdtim1+69eu3Wq0v7piGZmPrRu//5z5tvvfdpSSIZQvjspdtv2Xbb\n83ZtXSOVbJyXPbmkIlE6fVkiufrE69xGO4fwVAhh5KzlPbv86ObcrXKzQghlJZ/VSAGV+E3j\n3NcWl1aULx6xqHTvKkyajC8bMy+eCCHUa7hdumvb4fSDs0594Iv7h5Tudl79iP2yRXncfio6\n+0LTnKz5ZYlE6YyiRLKgCosQJBPLviktDyHEYvVWfzwR/24V99xm9dayWQ2Jzrjt1bbh+GXx\nZLJi8OuzbvjTpqkHF37yz8J46ob0Pbv+ePXvoi+HpO4Wkdd41xopoBJRPr41yo4tLk8myuZP\nK010rJ+9zv6JldMLyypCCFn1mqa7NuNWPXXrPCTKonN8i7Io76c/5TMFAAAAWCchPXVX7C/X\n3TDv3AEjn//HcR+MPOaoA7p23HyTNs2rvOB3Jiya8cWYMWPee++9CV/P/+mzrTtut9tuvXbv\n1atzu9UmnsayO+24R6cd9zi+aPrDN1z+yueLQwjv3/Vw2PWCGimpd5PcySVlyWTZo5OWnN7t\nh1uY5+R3bpQdK04kZ7w+O3T50a3NZ8cTNfLW67RXn41eGz49hPDUHSP3Hrj3Ovt//thjqUaL\nHdbd+RfKb7vfNUeOvXjoqPNv6zLo7D9FKqeP8ritEsF9oU+zvKfnlSST8XvHLxjQY93z6RdO\nuL+0IhlCyG3yo7C5pPDfqUaTrZqsZbNfJoLj1vX4HcJF/w0hTHzwoqdaXLrPzp1XfPvBjTeM\nTD278V5/Xr3zsumjLr9iRKrdYpeda6SASkT5+NazSe6ri0pDCA/8d/Z1+6x5R4CfmjPyvmQy\n9fvWK921GbfqqgPnIVEWweNblEV5P13FZwoAAABQdUJ66rDs3Hb7HbTbyH+MWD7r43tu/DiE\nEMvKzqrCxfHhw4entbDCqZ+89957Y8a8N3lW0RpPxWKx1h2369Vr9169dtuybeNKXiS3oMPx\nF5/+Sr+rQwjxpe+VVCTzq/JvW5fu+20S7p8cQhh57XW73HzlLhvnf/9M1m8L8l5dVFr47j3L\n+g9eNUmrIj73zcWlIYR69Tv+8nevXIeDj6j3/E1lyeSC8Xdf/0zBgEN6VhJ1FH745FUjZqXa\n/3dk2msLIWxz+FVnr7zh9mcfOObztw/5S78D+navH40oJsrjFuV9Yc/DN3968OchhP/dfP2k\nB27o0ji3ks7lJV/dfMPoVLvdPvv88EQyPvy2d1LNHts1++mG1RPlcWva9dRezd8bvag0mVj2\n+PUXDI3Fkt/Pkoxl1f/rnzuk2ivm/fvGm1765MtZiWQyhBCLZf/5iM1++btXLsrHt//7Q7tX\nn/wqhDDxoSs/7HHnzq0qW/SidMH4K+//ItVut8+e6a7NuFVbZM9DoizKx7coi/J+6jMFAAAA\nqAYhPXXYB49cevVzP7o5dLIikelJQ2tz8jmXrfFILBZr02mHXr1269Wr1xYbNazi69RrtO33\nzZzcGpq63W6vU5o9fN7i8op48eRr+5+41fY7nHTBOZ0b5IQQ9uy90asvTE+Uzrj4jhcGnXVA\n/VgsmSgadvNlyxPJEELD9mmfdZ1b0OvC329y9RszQwhjhlx/4tg+fzvmgG26/PjicjKxsPCb\nd155eshLY1LhX7Muxx3cJn+tL1iDnn/++RBCaLL1H7b76t+fTBl6xxVPDK7XfKM2bdq0adqw\nsnA3hHDBBemdDRblcYvyvtC2z9mdHjh16ory8hVTLz314uPPPn3fnTdba89Zn7xx5633fVFS\nFkLIzm3d/4Dvcuhlc6a8/Ohtz0xbGkLIbbTDQS0b1EhhIdrjFovVP+P6M74649bU+vbJ1dYx\n3urQy7bN/27N/5VLPhg/5dtVT232h4v6FOTVSAGViPLxbdMDTip46pKiREUiPu+6088//tzz\n9tulw1p7zvjw5VtufmhuPBFCyMppdvK+m6S7NuNWbZE9D4myKB/foizK+6nPFAAAAKAahPTU\nVUVfDblm+ITarmIdYrGsjTvv2KvXbrvttlvH1usdiJaXTEk1Gmx0QE4NXavMrt/p6r/+9vR7\nRoYQkonlk8a/O33l31MXeTv+5ZSGL1+yPJGc/tZDfxn99CbtCubPnF1SXpHacI9Tt6+ZCiq1\nc/9B+8889cVJS0IIiyaNvPbikbHs+q0afVfDhef0nzFjdvFqy7fmFWx31VUHZKCwhx56aI1H\nksmyhYUzFxbOzMC7r1Nkx22VCO4LWfVaX3rxoSdf/q94MhlfNuXeq858YuMuPbbdonXr1q1b\nt84PpfPmz5s/b/60zz/8fOaS7/8Vsb36X9WpfnYIoaTwgaNOfWlVRP3bM/unI0+I4LiFEPLb\n9v7H4Cb33fXgyAnTUzcbzspp1OuAk849atufdo7Fcnb6418vOWWXGnv7nxfl41tOfreBR+94\n9iMfhhDKV0y//5oznuvYffcdt27btm2bNm3yQ0lhYeGcOXMmjX/3o2kLV2218zFXdGmQ9lM1\n41Y9deI8JMqieXyLrCjvp6v4TAEAAACqLrb6HDioQ/59ztH3TC0KITRo3fXwI/ffetN2rZo1\nquIFvRYtWqS1tgMOOHCTrXbqtXuvXrvt1qFlZWvz1pYvRjx66wPPz1uZCCGcMeTpvZp+N8P1\ni6GXXfivT37av9WOxz848KDM1JZMFA2/56ZHXl938tFsqz0vvvS0rQrWMZG9Ruy///7V3vbF\nF1+swUp+TjTHLfr7wpwxj18w6Jkl34cZlYhl5e3112tO33er1I/Fs+848tQ3U+3O+5x186k1\nubZ29MctZeXiwhlzF2Y3arVJu1ZrzHos/vbxwU8u2Hizzrv0/O3WmzTKZFVRPr6NevCSQS9U\nNdbtfvCFVx23W1rrWZ1xW19RPg+JsrpyfIumaO6nPlMAAACAahDSU1f97c8HzVqZyGu68wMP\nX1YQjVuDrzJzcWn7ZlG/RllRVvTp+2OnzJi93UH9Vp9xOOaJW+9+5p2i7zPLWCx7+736XXja\nIRm+M2jh56OHv/jSW2MnlibWcoxquXn3ffc/cP89d6yXqaJee+21am+7995pX2l2laiNW53Y\nF0oXfPHQPx9644MvEz//B3Hjrr2OPeW0npv/cD/dVEif36bzfocf3+933Wq2pDoxblEW5ePb\nN+89e9t9w75etLKSPvmtO/c75az9emRiwfbVGbf1EuXzkChzfPuFIrif+kwBAAAAqkFIT111\n8AEHlCeTv73x0fO2blbbtfzalC+f/fGnX81ftLzFJptt0bFji8aZmHK9VslEydeTvpg2a0Fx\ncfGKeEXDRo2bNGvduWu3jV0LrpRxq4YV86a+M2bcxIkTv5k1v3h58Yqy0Lhxk4IWbbt07br9\nLrvvuEXLNfonVs6cPr/+5pu0qvH0Y+Yrl1/05LQQQl6Tng/e3b+mX35DF4njWzL++Xv/GT3u\n04kTJ89ZuLSkNB6LZeU1aNi8Tfuttuq8fY/ee+y0ZdQyX+P2U85DiJpI7KcAAAAAVI2Qnrrq\npEMPmhdP/H3I07/7fqlPgF+BLx8+49zh00MI2fU7DH9qcG2XQ9olE/GKrNyopfLRV+vj5jwk\nYwb2P/XbleUdj7jy4t+3q+1aWG+J+MrsXPsIAAAAwJpy1t0FImnPpnnD5pV8W5qo7ULWrbio\nqLzK34YpaNpUUkNddOedd9bsC55++uk1+4Kri/Js9RY9Ng3Dp4cQEqXTPy8p75Zfa3+p33jj\njRp8taZde/Vol1+DL/irEcvOza7tGuqiWh+3OnQeUqdVlM2fOGvOiopk2Yg5QUgfecnyxe+N\nfHfChM8+nzh1yfLlJSUryhLJF198MYQQX/bBcyOX9erTu33jerVdJgAAAEDtE9JTV/U9quuw\nWz98b+iEY8/9TW3Xsnazxo8Y8uJbU6d+NX9pZffQXcPQ4S80rrmJgUuWLEk1YrF6BQUNa+pl\nMyCZLP1ywmczZi36/R//70ePJ5bcfNewzTff6je9e7Vvmq51XI1bNbz++us1+4JpDelL5y1e\nunRpCCE7Pil971I9zbv9vWfTD8YsKQ0hPDri25sO2qy2Khk8uCbn8Xc5beuaDenr7n5au4xb\nTYn+eUi0Jb+dNO6jid8sXlZSaa/ymZ+8taIiGUKoKF2Ps6m6ro7up5NGPfvP+56cVhRf67OJ\nlV8/cf/jwx56uM8RJ59xWG/LhwAAAAAbOCE9dVXbPS7a7/njX37nxqd/d9+fu695u+haN/Wl\nW8994O1q3E6iXlZNlnHMMcekGrkNt3/myatDCDfeeGO1X+2CCy6ombIqlUws++9TDz/5wsh5\nJeXZuW3WDJsr4qPefHVUePWxB+7ssU+/v514YIucGh2yEIJx2wBEZ7b6WsRyz775/Lln3jCt\npOzLode+v/vg37SqX9s1RVFd3E9XqcUVVoxbTYn4eUiUVcQL77n68hGfFK7XVlsdskWa6omg\nurifjh962cB/fbLObhWJov8OHfTF1Ll3X3xojpweAAAA2IBFKZaA9RKrd8L1Vy4877LHrzhl\n8j5HnXT0fm0iE7PFi0Zf/OCPEvrs7KouypsbS+8Fy9GjR6f19X+hRHzWHQMGvDVt2Xa1ocsA\nACAASURBVDp7JpNlY1955ItPpw667dx26V/z2Lit01FHHVWDr5Zu0Zmtvlb1W/e44a4r7rh2\n0LtT595w2pkHn3jCPn16tKif6bW9d9111597qqJs4dhxX676MRbLatys1UZt2jTOXjl37ty5\n85esSlKzc9v0O/WIljlZBZ2bp7vgiO+nIRorrPyUcaumCJ+HRNywSwaMmLxkvTZpvdMhA/Zo\nk6Z66oSI76czX79jVUIfy268++/6dO60Zb0JT/xz1A9fxcjJ33rbdg0nzFoeQih8f8jFT25z\n05FdaqdcAAAAgAhwMZG66vnnnw8hdO77+8+feHHsKw9/8OqjBa3atW/Xql4VLsgPHDgwrbVN\nvO/R0opkCKFB621OOKXfDlt2bN20QVrf8Vdj+JWXrEqaY7HcDltvu0aHWHbjw/bt8/77Y6cv\nKAkhFM9897Jrt3zoyoMyXWjERGHcDjvssBp8tbSL9mz1V155JYTQbc9DlhQ98dn8wqfvvu6Z\ne3KbtmjevHmLZs0L8irNHWtwxuTFF1+81sfLS7665fzLUu38tl0P/vNhf/pt9/zcH9ZmSCZW\nTn7/jWHD/jX+m6JEvPCZZ9675rYLOzXY0E85IrLCSp0T2XGL8nlIlBXPHDLs+4Q+v23nXbp3\naZqzctK7IyctXhlC2PaP+3WqnxNCKCmaP2Hs+7OLy0II3foNvOawHa2OHlmJ0umX3/vfVLug\n8x7nn3fadm0ahBCmzhu+erd6+dtee/djY4Zde/2T40IIk58eOPmgx7fa4P80AAAAABssl0Wo\nqx566KHVf0wmK5bMm7lk3szaqmd1r32yOISQ22Tnu/95ae0uKr7VVlulGjkNNkk1TjvttNor\nZx2KZz45ZMKiVHvz3Y+4+PTDNvrJrMRYVoOjTjnnqJMT7z19+y1D3y5LJhd89PDzhX84sE1N\n3uvauG0IIjJbfa3uvffeNR5JJuOLFxQuXrB+q0OnR/LxSweOnlkcQtjx0AGXHr37T9crjmXn\nddntTwN323f8c4MGPvJuyeyxV14y5OFbTqjZlY3r1n4anRVWjFtNifJ5SJRNefSdVKPJFvve\ndfPJBdmxEEJ5v736HXn+iopk2aZ7H79v+1SHZKLoqVsvHDpq1qRnHpyw9zbdC3JrreiMq1v7\n6ew37lpYVhFCyCvY+bYbzm5ZyalvLKfnX674+7cn3z6qMJkoufelmbcetnnmCgUAAACIEiE9\n1LzPSspCCN36n1Lrt/0eNGjQGo/svffetVJJVUy6/41Uo3XP/rcP+ENlXWPZux12TvPErAFP\nfhlCeOXBKQde0r0GKzFuG4KIzFavcxZPvOO5qUUhhJbdTxx4zO6V9o3tePCAMyd/eceYuUVT\nnx/0vz9d1LN1DVZSt/bT6KywYtyoXe99uTTVOOjCowu+P9Lm5Hc+pk3De2cXz35tavg+pI9l\nFxx23m3zphz3xtyZt1w5/LFbD6+dimtD3dpPx7wwI9XoPeD0yhL67/U++ejbRw0KIcx+44Mg\npAcAAAA2VEJ66qqzzjqrtkv4WSsrkiGEXbsU1HYhdczr0767cH9C/75V6b/lQWfGhp2ZTCaX\nTHojhA03bP6VjdvA/qd+u7K84xFXXvz7dml9oyjPVo/yjMkPHhiXahx6VqXfCPle79P63THm\n1hDChEdHhZ6HpLGyaIvOCit1S5THLcrnIVH26fKyEEIsO/+A1j9aymXLnZqH2cUrF48N4Ye/\nZbFY/WMv2uuNs14omjp02Ow/HbFxw0yXSxW8XbQyhBDLyju+a7Oq9M8t6N0699Z58US86N0Q\n6tS9cgAAAABqjpCeumrPPfes7RJ+VqcGOZ8tLytf7/vnbugml5SHELJz2+zWpEpL2mbX77BF\n/eypK8rLV0xOc2mR9msat4qy+RNnzVlRkSwbMSekOaSPsijPmHx1ZnEIIZad/8fm9avSP6+g\nT9Ocfywpr1ix8M0Q0hjSz3zl8ouenBZCyGvS88G7+6fvjaonOius1C1RHrcon4dE2aKyihBC\nTt6ma9z/onmP5uGlGfHicfFkyF3tqSabH9cq9+X58cR/h0494vztM1ssVTI3XhFCyM7btHGl\ni9Csrk297HnxRCI+J511AQAAAESakB5q3r4dm3w2YeG4iUX79apSiEXK8kQyhBDLWo95ctmx\nWAihomxJumr6BTI2I7wujFvy20njPpr4zeJlJZX2Kp/5yVsrKpIhhIrSlemuKcqz1aNs5spE\nCCErq2HVb/fdICu2JISK+Lz0VRVCKJ23eOnSpSGE7PiktL5R9VhhpXqM269PXlYsnkgmk+Vr\nPJ6/cecQPk5WlI4rjvdsvNp3zmLZezTJe2ZByaKPXw5BSP+DiviyaV9Onbdo6bLi4lCvQZPG\njVu123yLTVpW/eBcUxpmx+LlyYqyBckQqvjuhWWJEEIsy90rAAAAgA2XkB5q3g6nH5x16gNf\n3D+kdLfz6scyf7F0PRQXFZUnqzrlv6Bp07T+Yzatnz11RXli5fSF5ckWOet+q2T54q9XlIcQ\nsvM2SWdd1ZHJGeERH7eKeOE9V18+4pP1W0N+q0O2SFM9q0R5tnqUNcqOLS5PJsrmTytNdKyf\nvc7+iZXTC8sqQghZ9ZqmtbAWPTYNw6eHEBKl0z8vKe+WH60znDq0wkqk/i7UoXGjijbOy55c\nUpEonb4skVx94nVuo51DeCqEMHLW8p5dfrQwTKvcrBBCWclnGS41opLlE9597ZVXX/vwi5nx\nn+yquY1b7tTr9/vsu+/2HTL31ZbfNM59bXFpRfniEYtK967CIivxZWPmxRMhhHoNt0t/dQAA\nAAARFa1L2PDrkN92v2uOHHvx0FHn39Zl0Nl/imBOP2v8iCEvvjV16lfzl67HfOWhw1+o+kKm\n1bDPJo3u+HJJMln+z/fnXtKrzTr7z//g3tTl6fyN9kpfVT8WxRnhER+3YZcMGDF5/abst97p\nkAF7rPsfwuoytnJDzya5ry4qDSE88N/Z1+3Tfp3954y8L5lMhhBym/RKa2HNu/29Z9MPxiwp\nDSE8OuLbmw7aLK1vt76iv8JKNP8uRH/cWF+9m+ROLilLJssenbTk9G4/3MI8J79zo+xYcSI5\n4/XZocuPbm0+O57IeJkRVbrws7tvHDRy0uKf6xBftmDMa8P+N+LpHvud9Pfj90nr7rnKXn02\nem349BDCU3eM3Hvgur8A9/ljj6UaLXbwbTkAAABgwyWkh7TY5vCrzl55w+3PPnDM528f8pd+\nB/TtXj8j10mrYupLt577wNvJKk+UXKVemu8IvMMx3cJlo0MIH95+zUdb3bxDy8oimfjSz6+/\nbWyq3ekvO6e3shBChGeER3ncimcOGfZ9Qp/ftvMu3bs0zVk56d2RkxavDCFs+8f9OtXPCSGU\nFM2fMPb92cVlIYRu/QZec9iOkdld6oZMrtzwf39o9+qTX4UQJj505Yc97ty5VWW/b6ULxl95\n/xepdrt90nwD71ju2TefP/fMG6aVlH059Nr3dx/8m0pry7CIr7AS3b8L0R631c378sP3Pvxs\n8uTJ385fXFxcXFqe1bhx4ybNN9pq667b7NizZ7f07ph1SPf9Ngn3Tw4hjLz2ul1uvnKXjfO/\nfybrtwV5ry4qLXz3nmX9B69Klyvic99cXBpCqFe/Y+1UHBnxos8uPf2KKcvLVn8wFqvXfKM2\nDSqKC+cvWbUGRjKZGPvivad/NefOa07MQE7f4eAj6j1/U1kyuWD83dc/UzDgkJ6VvGfhh09e\nNWJWqv1/R27onykAAACwIYtV44IsRMGxxx5bvQ07HXfDZX3b1mwxa3j++edTjTnjXv73J/PC\n95dQ27Rp07RhbqWbhgsuuCCttcWLRh917E2lFT/s+NnZ616wOuXZ4cPTG8ck4zced9ToxaUh\nhOz6mxx+6t8O7rtN7lpSmYqpY1+5+/ZHpy6LhxDq5W/98NAbmqT/GvQT5x8zbP1nhN99+bG5\n6S4twuM2/pqTBo6dF0JossW+d918ckF2LIRQXjKl35Hnr6hIdjnlrpv2/W4qdjJR9NStFw4d\nNSs7r/0VD9zWvWAde8qGYT1Wbnh/alEIoaDDBY8NTu+E9fKSz4/vd0lRoiKEkNOgw/Hnnrff\nLh3W2nPGhy/fcvNDX5eUhxCycprdMPTBLg3S/tXA0oWf3nHtoHenFmXntTn4xBP26dOjRRXW\n5M+Mz/512cVDP+nQ569RW2El0n8XIjxuqyyeMnLwPx/7cOr8Svq06Ljj0af+fc8fTxDfMCVK\np55w5HmLyytCCLHshlttv8NJF5zTuUFOCGHKg2ec98L0EEKHvicMOuuA+rFYMlH05I3nD/tf\nYQihWZfzH72pd+0WX6uS9/3tyJdnLU/9kFuwxf6H7L/HLtu2bdMiNysWQkgmSufPmf3p/0a+\n8Nwr04u/C/Lb9bngnnPS+0ch5YPB/a9+Y2aq3bxLn78dc8A2XTrOeeKsc575OoTw4osvhmRi\nYeE377zy9JCXxiSSyRBCsy7HPXrTwRmoDQAAACCahPTUVfvvv3/1Nuxy2t037Z3eW3FXu7aQ\nuo6ZTp8MOvmyUYUhhAattznhlH47bNmxddMGaX3H9VI8483+Z92ZunYfQqjXuO323Tq1atWq\nVatWjfMSC+bOmzdv3vQpn0ybtyLVIRbL/ctV9x2xffO0FzZzyJH9n0m1IzgjPLLjduexh72+\nuDSEcOz9ww7ZaNV0yfDKqUfeO7u4SYezHx/cd9WDyWTpnScf98bckoJO/R679fB01xZx1Vu5\nYZdz7ru0T9rvFPDVc1ed/ciHq35s0bH77jtu3bZt2zZt2uSHksLCwjlz5kwa/+5H0xb+UNgJ\n/7j0wLTPmHzllVdCCCFZNnr4E5/NLw0hxGK5TVs0b968RbPmBXmV7o3p/oJUCCGE5FtDbrj9\n2f/lttwyUiusRPzvQmTHLeWL52+77OGRZVU4nY7F6vU9/pqzDtw6A1VF3Ix/33r6PSNX/XjG\nkKf3apoXQigv+ezofpcsTyRDCNm5jTdpVzB/5uyS7/+0HfiPx0/o2KQ26o2ExZPuOnbAiFS7\n9c6H33DRX1r+zEIWifjcx6696LmPFoQQYrGsvz04bO9Kl9ipEcmKkgcvPPXFST98lzGWXb9V\no4p5RfEQQtdO7WfMmF282m0L8gq2u/n+KztE5ktUAAAAAJlnuXs2FDn5zZs3ygkhNE//VM4o\ne+2TxSGE3CY73/3PS1vkpHsC5HprtOnvb7925SVXPjSzpCyEULZszof/m/NznWPZjQ/8+/UZ\nSJpDCFMefSfV+NGM8H57pWaEl2269/E/mRE+6ZkHJ+y9TWZmhEd23D5dXhZCiGXnH9A6f/XH\nt9ypeZhdvHLx2BB+COljsfrHXrTXG2e9UDR16LDZfzpi44ZprS3Kq3GEEIZdMmDE+q/cMGCP\ntCf0IYQtDr78/MWXDHphQurHhdM+fmHax5X0737whRlI6EMI99577xqPJJPxxQsKFy9Yv+86\npMN3K6w02foP233170+mDL3jiicGR2WFlSj/XYjyuIUQ5r5770UPj1z1hdfGG2/VY9tOrVu3\nbt2qdeN6ZXMLCwsLC7/67IOJs5aFEJLJsrcevqjxRved2LN1uguLuE3/eM4NWS1ufeD5eSt/\ndLP5nPxtLjt0uwv/9UkIIRFfNv3rZauearXj8RtyQh9C+OzRD1KN/NZ977zsyEpWlcjO3ejY\nK+5ccNLx7yxYkUxWvPD41L3P2ibd5cWy8k+8fnDze2565PXv/jQkE6Xzir579oupM1fv3Gyr\nPS++9DQJPQAAALCB26DTSuq0O++8s9Lnk0sXzJ0zZ/bMbz4b8cYHKyqSyYoGfz73uj9snYmV\nZk877bQMvEv1fFZSFkLo1v+UqCUxqzTdet/bH9pu2AMPv/rWuOLE2ucmxmJZm+/Q55i/nrxj\nu/y1dqhx7325NNU46MKjC76fxJmT3/mYNg3vnV08+7Wp4fuQPpZdcNh5t82bctwbc2fecuXw\njM0Ij+a4LSqrCCHk5G2a8+M0oXmP5uGlGfHicfFkWP12AE02P65V7svz44n/Dp16xPnbp7W2\nxYsXV2/DZT9OldKheOaQVfdWiODKDSGE3ide237rZ2+7b9jXi1ZW0i2/ded+p5y1X4/0Ll5S\nJzz00ENrPJJMli0snLmwcOZa+2dSlP8uRHncKsoXXHPHa6mEPrfxlsf9/fR9d9l8bbtg8uux\nrwz+xyNTi+PJZMUrt11/cI9bm+VEaDGAWtH1D8fet+eBn74/dsqM2e3zfghru/a7+qLYrXc/\n807R9xPoY7Hs7ffqd+FpB9ZSpVHxxvTiVKPvxSes874Psaz8v16y5ztnvxJCmP/hiyGkPaQP\nIcSyCw4+/drd+o4e/uJLb42dWLq2U5GWm3ffd/8D999zx3ob+h4AAAAAIKSnztp0003X1aPD\nNiGEcOCRh0956uHBz4yafvdFpy6/6b6DOxeku7a999473W9RbSsrkiGEXbukfRB+iZz89ked\nefkRJ8754P2PJk6c+M3sBcXLi1eUhUaNGjVp3qbz1l2332nXLu0aZ7KkKM8IXyWC45aXFYsn\nkslk+RqP52/cOYSPkxWl44rjPRuvNh02lr1Hk7xnFpQs+vjlENIb0q+vTK7GEfGVG1I22+2Q\n23vu9/l7/xk97tOJEyfPWbi0pDQei2XlNWjYvE37rbbqvH2P3nvstGUmFyaP8hekoqxO/F2I\noLnv3ja9NBFCyKm/+ZV3X9/tZ/e+2Oa7/OmGuzc95+QrZpQmyku/unXM3Kt7Z2LRi4jLqlfQ\nffe9uv/k8Z5HntPjgCM+/vSr+YuWt9hksy06dmzROHNHtsiatqI8hBCLZR+9WZVWFGjS8dh6\nsVfLksmy5RPSXNqPtOnW62/dep2aKPl60hfTZi0oLi5eEa9o2Khxk2atO3fttnGztC+8DwAA\nAFBXCOn59avfsvMx59/eaNlJj3y84PFLB+782M2b5m24C2x2apDz2fKy8nXfPLf25TRs23PP\ntj333Ke2Cwkh2jPC1xCpcds4L3tySUWidPqyRLLxamltbqOdQ3gqhDBy1vKeXX6UvrTKzQr/\nz959BzRxvg8Afy4LCHsFRBwgAoKTYaWWur91742zLhTqat17U7VqwVH3aB11K2Lr+Cl11NZB\nlQ0iyg4BhDBCuORyvz+iFBEh2ly46PP567i8yT0elwTveZ/nBVDIYpmOjc3dONjfueEVQuDZ\nsZdnx17qn2iKVHEE9bhcOJsnSLF5AgGbvxfYfN6iTr9Qb3jNWvTuDP0rAovWS7/xnrrpPgA8\nPxkF/qz4iGYtnrGDj59DfUfBLhTQAMAR2As5Gn3IEoRhAwNOupwCWsVwaDUdnSt09vRx9tT9\nkRFCCCGEEEIIIYT0Bibp0SeC02/hnCOjlirlz7acfrEtoFl9x1Nv+jibxcYUPEqQ9uuIxUzv\n4WOqCNclfzNBkkxB04rDiUXBnv+mt3lCVxMuUUrR6Vezwf2NtHc2yXgzeTU2d+PQi84NbyO4\ngk93AlRd2DyBgM3fC2w+b9ck5QBAENxp7TVaY17UIZBPPFDQtCz3GsCnm6RPzChwb2Rd31Ho\nn9bG/HvFpEpRoKBBk17xtEqWXaECAL7QlfHgPlTirdPuXw6t7ygQQgghhBBCCCGE6gfrFh9F\niCF8YavO5gYAkH31an3HUoOVQYGTJ09efz2L6QO1Cx7MIYj4vUfkNCurJt+NImtb+pppDgZc\nAFBXhFfdLzDxUW9EZpVVe4rOKsLZrG2/V4uRR65bfz9bVuURzpfmBgAgvrOr6ilVkbnXC+UA\nwDd01mWctVN345jQ1oZWlf+ydGU682vS19a5AUDduaEqM6cJtgIuANw4msJ0bGwWHh4eHh4e\nGVek+VMeX7kcHh7+2/V45qJiP/39XqhfmRUUAHANmtjyNfpzmsO3cTLkAgBFZjAbGbvND5o4\navLMzbsOR96Pk5L1UOStp/q0swYAWiU/ml6iyfii+D1KmgYAs+Z9mY0MILlU8b5PkeVEhy2b\nOn/zESbiQQghhBBCCCGEENILmKRHnxAXQx4AkKV/13cg1akUeQlZORKJJOlKDtPHEjbot3Z0\na/nL2/O2XmJzPoZWFt69Hv7T1g3fTJ00NmDkkEEDBg0dpn6ILHlwIvxGRsl73xH+L/zNBACg\nrgivul9dEQ4A6Vezqz1FZxXh1ZRKpUUaY/oKaNhjmiWPAwBkadK6oEnzV25MLn/VjaCrvx0A\nUPL0xaEX1JciTUlPbF5WRtEAYNyIbeWznH4L53AIQt2Ng+mDGXAIAHhH5wZQd2544wGC28nM\nAABePr7EdGzVsOp627t37969e8/ck2j+lLQzP+/du3ffvl+Yi4r99OV7gW3MeBwAoFWyOkdW\nKlfRAAAEn6GQ9EWZ5MWt385sWbto3IjR3y0LOX7henJmYX0HxXbuU6eYczkA8NvqPVKqjvcp\nReZs2XAHAAiCO3RGK6ZjWxK0MqGYrHscAADQVPGVI5snTl927YmY0agQQgghhBBCCCGEWA7b\n3aNPSGqFEgBoqlRXB6QzEx/9k/CisKTWO/i0MuPJTfWNe5VcF8XiLUesnlMR8uOZfePi/hgy\nKmBAl7aG9biIdE0Sb5/5ac/xVGnNN3ypiufH9v5y4sDBziOnfjPcXzext+3nCHuTACBy3fr2\nm1e1d6hsQs750tzg8ku5+M6ukqCwymXXdV8RnhV15cjFmykpz/KK3+MqOnrugimTZ5Br6LJm\nypfBuyIBgKbKEqPupFXMcjXiAYDzqGnGl5aUUXTazQOj7p5ybGiel5EtU76qquwUyLo1AtTd\nOG4UybOvXoWA6Ywey8GAmyRTqTs3VP0FCUx8AE4CQGRWmZ/7G2tg67hzAzuvtw9AqmgAUFY8\nr+9AarAyKDCzQuk8ctXi7g2ZPhb7vxc0p7Pz5mTIzVdQFCl+XKZoa1x33l0pi8skVQDAN2Jv\n+3EdoylZ8pM/k5/8eXw/mNo5e3t7eXt7e7VtYapZc4JPisDUZ0NQ56Cwm+V5fwTP5y5cEOgp\nqnl9ipy42/tDdzwpIQHAbciq3nbCGodpUUVhzLKg5SvCVreyENQ+8sX98B27fk4qkDMdEkII\nIYQQQgghhBD7YZIefSrI4vs3iyoAgCNooIPDqUjxrjXLr7xnkZDbkGYMxVPp/PnzAABmLb5q\n/ey3J8lHQ1ccC+Nb2dnb29tbGNdxa3XBggVMhwcAUUeXrfz1SZ3DVJT0xtFN8Sm5OxcP5TGf\nS2rYY5rlwe8KlSp1Rbhbm3aTF8xVJ5u7+ttdvpCmrgjfNHuAIUHoviI8JXzLt/v+oN+/BFYH\neZDGveaGcKy37DsvebNLPE/YctnQ1gt/fQIAFFmS9vzf/r22XhO/djZjPLL352LIu/GqGwez\nSXp/M0GSTKHu3BDsaVm5X925oZSi069mg7tl1afosnMDe663hISEt3dWvHyekKDB2aCVhdnx\np/LL1T9oObL/TN1hpVxFK67kAMPJZvZ/L2hOl+etu7PZgyf5ALD/eHzY5LrnFSWd2qt+15g1\n68VoYCy3dsncmJjY2NiYxOdiqsrHSEluauTl1MjLpwmusHnrdj4+Pt5e3s0bWtRjqPWlpKTm\nhvbmn01aXc5fve+q9OmNxdP+au3X+bM2rvZ2dnZ2dkZEea5YLM7J+ef25Vuxr1r7eA2atWxs\na93ETErjVwUtXhq6tq11zVMH5PmJh3ftiHiQVrmHwzXvETBFN+EhhBBCCCGEEEIIsRAm6dEn\noaIwacfSbep7wUZW3XVwxBNL5l9Jeo91kQFA5D1kfid7huKpdODAgWp7aFpRIM4oELNiidyM\nq6GVGXqCa/pFt86uLs35Mcd+uv3vdAeesEWrhsYxWWUAIP77yOLjLTeOdmc6MDZXhJPSu4v3\nv5Ex5XK5Gj5XQOiiWNbjq/F7ug6M/vt+cnp2I4N/Y/MIWLOI2LLz9C3p69NFENw2PQIWzhio\ng6g+gM66cbC5cwOrrrcaM8TiOzsW3Hm/1zEw7aCdgOrGxg4rLP9eAAB2nrcWY7zhyRUASA9f\nc6zV9tGf1fYNLnl0ctW5Vw0bvAIY/85is9afdW79WWcAoGQF8bFxsbExsbGxic+yFa8/VWhK\nlvzP3eR/7h4DMLV39vH28fb2btfW3VQHM/LYISAgoM4xNCV7cufykzuX3zWAwzUvi/994fzf\nmw6ZF9RBpNUAq/MwF8RLSbIkeU3w4kWh631s38jT06ryP07v33f8ejGlqtzp9Fm/oOnjXK0M\nGA0MIYQQQgghhBBCiM0wSY/01fHjxzUap6rISU+LfvjPS8WrO4Me4xhPxpRmHDnxOkMvbODa\nvq27Ba8i8U5kYmEFALTq1c/FkAcAMmlezP2/s0sVAOAZsHLtcC+97S6sHZQ8bfnuG+ptc9dO\n876b0dreCABSJOeqDuMLW63b+fO9E+s2HH8EAEmnViYN+sXNiPFPM9ZWhCfsOSxX0QBgJGr5\n9bSAds2dRRZGTB/0fXH45m2/6NH2rf1+o+f6Dhj5OPpZ3ssya8emzZydrU3rqNytL7rsxsHm\nzg16cb29L+9po3RwFNZ2WGE51p43C7fp3UW3r0tkNE3+un56Su+xowf2dHmrtXi55NmVCyeO\nXLqvVM8UtO02w/1TrA5/G1do3ar9l63afwkAVHlhYlxsbGxsTExsYkom+TphXyJOvRmRejPi\nJIdn4tq63caV8+o1ZH2ioqRJSVIAIIo0XS3+g63esWbVN8tjCisUZSnrgxcs+DHkM/tX3wvZ\nT67u2HEgRvzv9BpDG/fx04P6+DZhOiqEEEIIIYQQQgghlsMkPdJXmibp3yS06/wtw+VEAJB8\n+JZ6w6xZnx2bp5pzCQBQBvQIGD2vXEUrGvec2KeRegBNSU9uWXj0dlbi6f0xPVu2NWc8PTlj\nxgymD/HBsq/tKFCoAMDA3GdryBwb3rtbYxM8v1ErZmVO/fG2mKZku8Mztgx3RwgKCAAAIABJ\nREFU0kGE7KwI//1JIQAIzHx2/rTUupaTxlY8YwcfP4f6jqIOOu7GwebODay63hwdHav+mJmZ\nCQB8U5Gdxp+lJtYOrfwHje1op/3g3sLaDits/l4AFp83AM6U9bNiZ2wUkxRNUw8jDj26fMTC\ntoGdSGRnZ2cE5RJJbm5ubk5ekep1ypkrEM1cN0X/PqaZxzWy9PTx9/TxHwFAyaVJcbGxsbGx\nsTHxTzNIdWsEZWli1G0ATNKzkcCsxcod69bNXBqVL1eWPw+Z+d13Wzf5muYe373jzO3kymEE\nV9hp6KQpI7ubfuKTUhFCCCGEEEIIIYQAAJP06JNi6fLF8rUzjTiM3xn882mxemPQwrHmr29E\n8oSu4+yNd2eXZv+eAq+T9ATXfPh3WyXJE67lZvyw6tzPW0YwHVvPnrpYIv3D3LuQrt7wnx9c\nW4b+Nf+pY3+8vQkAsq89AJ0k6YGVFeGxMgUAeAZNq/eM6dvCw8MBwNTZv7OnppWjj69cziAp\nnlGzXt09mAyN1d04gMWdG1h1ve3cubPqj/379wcAhy7zwya71lNE78TmDits/l5g83kDACOR\n3w8bZ61ZtUMdD02rCiVZhZKsxNgaBgvMXacvX97RvnqpPaqGa2BiaWlhaWlhaWlpZpidL1PW\nd0S6dvHixfoO4b3xTVyXbg8JmbX4fq6MkmdsnjXbgs4rUPz7/dWw3VdBM75uaaf3nVcQQggh\nhBBCCCGEtAWT9Ehf9erVS+OxXFvHJs7Nmrdp4aybu/bRZQoAILjCAaI37sU397aC7NKKwvsA\nXSp3EoTh+EU9rs2+IE05eiK770gHY12EyEp/SCsAgOAYTPSw1GS8wNxfJNgiISlSegdgOMPR\n1a2+KsIrVDQAdHA31/2h67R3714AaNLfTfMkfdqZn/eLy/jClr26r2cyNFZ341BjZ+cGNl9v\nbMbmDitsxv7zZurcOWSfZ8SJXyN+u6meJfA2vtC+U68+I0b1tRNwaxyAgCYznibGxsbGxsXG\nxyUW1JSYJ4j6nxiEasETOi8K27hp9vw/s2UUKS54vV9g3mx04IzBHZvXZ3AIIYQQQgghhBBC\n7INJeqSvpk+fXt8hvJO64pZn0Jj35pwAK18rCE8nSx+RNAiqPGTmNMFWcCmPpG4cTRk5j/Fu\n1ayVS6oAgGvQWPM+qPZ8roSkKDKHybjYzsWIF1umUNL1HYeWqDsbKyue13cgNdBZN45KLOzc\nwObrbcyYMQBg7mpT34HUgM0dVthML84bh2/bb2xw34BJL5ISEhKScvKlpaWlCuCZmJiY2zRw\nc2vh3sJJqMPPDX1B0/L0pAR1X/vY+GSpnHp7DEEQNo1cW7Vq1bJly1atWuo+SJbIiFi+6Hgq\nABiY+e3fGVTf4bwT17DxvNAfts6ddyu9VL3HudekFVP6WbKg8wpCCCGEEEIIIYQQ22CSHiHt\nM+AQJEXTdPU6MKGDK8BjWiV/VEr6Vc2oEdxOZgan82UvH18C+HST9MZcglTSKkU+DaBhNkOs\noACA4NRL91S6MOdFakZuSWmpguIITUws7Bo2d2oo0Hkipo+zWWxMwaMEab+Ohro+9lsSEhLe\n3lnx8nlCQg3Zl+poZWF2/Kn8cvUPWo7sLWzuxqGJ+urcwKrrrZrhw+u/o8a7fGQdVlYGBWZW\nKJ1HrlrcvSGjB9Kj80ZwjJxaeDm18NLlQfVRatxDdV4+LuFZCVlzYt7asXmrVq3UuXn7T7uZ\nhJpcUlhcXAwAXDKxvmOpA1fQcO6Wrfz5c/8vtQQAxI9iiib0tcT/cSKEEEIIIYQQQgi9BW+Z\nIKR9DgbcJJmKkqeVUHTVonCBiQ/ASQCIzCrzc3/jprOtgAMACllNy9gySfL04Z8PY5OSkjLz\nCktLS+VKjqmpqZmVnVsLj5Zefn6ezGZfqvnMVPB7oVylLLzyUt7Tqu78H1lyT0JSAMA3bs18\ndP+SJD/47fcrf/z1T/5bnY25AlN3X/8+vft80aqRzuJpFzyYE7gvfu8R+effGRL1nENesGDB\n2zvFd3YsuPN+r2Ngyvi672zuxsFmrLrePhhFg47nW3xMHVZUiryErJxyFa24kgMMJ+k/pvOG\n1GYvWv32ToIgrBq6tHqlpb25ge4DYzNr38ZwLg0AKHlanEzpKWT1/+A4ArtvNv/IWzjnSrJU\nJrm/8Jt1G0IXO7M7ZoQQQgghhBBCCCHdw9slSD8UFRWpNwiCb27OuprCavzNBEkyBU0rDicW\nBXv+u7w6T+hqwiVKKTr9aja4v7HsenZNxWSMKkyODPvp54cpedX2l5UUibMzkmMfhp86Yu3s\nNTZwVld3jVaI/+96dLb7/VwaAJwMjey5smed4+N+/lm9Yd2u7sFaQZHikzu2nYhMoOma67wp\nsiTu7uW4u5dPdxz63awAR0NdLD8sbNBv7ej7i4/enrfVfdOcvvqbN63Ke9qo+g4B1Uxfrrfy\nAnF2YUUzlyZVd0qf3Q3bd+bpi/SicrBq4PR51z5jh3Qy1Ekfcn3osEJnJj76J+FFYYms1lHK\njCc3y1U0AKjkFUzHpA/nDX04A8smHT7zatmqVauWLR0sWdecgz2sPGf5WTy4VyQHgMNXMjcO\nalpfkdTYL6dGncdPfxGyJamELJc8XPjNuoVzh9W4WEyLFi20GiBCCCGEEEIIIYSQ3sAkPdIP\n48aNU28IjNucPr4GAL7//vsPfrUai321qG0/R9ibBACR69a337yqvUNlk17Ol+YGl1/KxXd2\nlQSFVRbZq8jc64VyAOAbOjMaWKX481uXHYxUvCPTXKkgNerHBZOjJ66dPVAXt1CbDB7JP79R\nQdP5UTs3nDafP8SvllJX8cPjq69kqbf/N1oX540is36Y9d2drLKqOzl8ochORMgLJQXFVJXz\nmXr39HfPsn7YPr+hQBd5+pYjVs+pCPnxzL5xcX8MGRUwoEtbw3pqy+7o6Fj1x8zMTADgm4rs\nNO5XbGLt0Mp/0NiOdtoPTn+kp6e/13iCwzUwNDI0MDQ0NhIwn3Jmz/VWo7zo67sO/vooVcIX\ntlZ/X6gVRB2ZtvoMqXr1Pi3ISgr/OemPu9Fhm7+x5DEeP8s7rKhI8a41y688Eb/Xs9yGNGMo\nnkosOW/Xrl3T4qtZeHT0bSise9wngCzKSEgw4nAIAFB5eDha42l5B0IwZ/O83JkhqTLF06Pr\n/v4i7DPb+pnT8GF/QsvzHq1c9KjGhy5evPjfIkIIIYQQQgghhBDSV5ikR/rq7t279R3COzXs\nMc3y4HeFShVZmrQuaJJbm3aTF8x1NeIBQFd/u8sX0ih5+uLQC5tmDzAkCJqSnti8rIyiAcC4\nkS4qwnPv7F50MLKyFtzUwc23lYtIJBLZikz5ilyxWCwWP4t9kJBVAgA0rbh5cJGp3Z5JfiKm\nAxOYd1zY3XHNtQwAuHdkw6T7naePG9DS/c0EPE0ViF/cijh1JPyeOilu6T5hsL0ubutfWLFY\nnaEnCKK5X88+3bt4Oje0tTJVZ41oZbkkJyf678jwc5dflJAAIBPfW7zs/OHvhzAd2Pnz5wEA\nzFp81frZb0+Sj4auOBbGt7Kzt7e3tzCuIzWu9QkrO3furPpj//79AcChy/ywya7aPdDHLTg4\n+MOeSHAENg0cGjk2be3T4fPPfe1N+doNDFh2vb1NfPdA0MYLb89Aoqnidd+fr8zQVypOvT5/\nU+u9izozHRjLO6ycWDL/SlLRez1F5D1kfid7huKpxJLzFhYWpsVXc5/R4lNO0rdu7piYkkXS\nNADQtEqSlihJS7x5+SwAmNs39fDw9PT09PDwdGmooy4++sJQ5BuyY0Xouk13UnJDZswcPOnr\n3p19rXXSsAchhBBCCCGEEEIIMQGT9AhpH9fQZc2UL4N3RQIATZUlRt1Jq5ilTtI7j5pmfGlJ\nGUWn3Tww6u4px4bmeRnZMqVK/cROgYz35lUp89eG/q7O0AtMm0+YFdynvVNNNaT08/sRYdsO\npZSSNK2K2LphsO8WHRSb+gRt6p8ReDGxCABeJkauWxxJcA1tTV6dn4Vzg9LTs0urJGAMzFuv\nXj2A6agAoCT950NxhQDA5dtMXr6+T5vqqSmCZ2TXyLlHI+du/fsdDVl06qEEAAoTDh9J+9+4\nJqaMxnbgwIFqe2haUSDOKBBnMHrcj4zk6cM/H8YmJSVl5hWWlpbKlRxTU1MzKzu3Fh4tvfz8\nPJldeFtbaBWZl/UiL+tF1N+Rh38y7jJs0uQR3Uy0WubO5uuNkqcu2RpeY4+Q/Mc7UsqVAMDh\nmQ8NnO7dUBB37+KRi48BQPLXttvSz/01bvbwYdjcYaU048iJ1xl6YQPX9m3dLXgViXciEwsr\nAKBVr34uhjwAkEnzYu7/nV2qAADPgJVrh3vpoIECm88b+jBrf9ipIqUpCfGxcfHxcXEJiakl\nilff8lLxi3viF/duRACAoUUDD08Pdc7ezakB83+AsF1ERAQAeHYdUiQ9FpsnPrVz/eldAgtr\nKysra0src4Na341anCDVoEEDbb0UQgghhBBCCCGE0CcOk/RIP7i5uak3eEavmmnPmDGj/sKp\nW+Nec0M41lv2nZdUvFHSxxO2XDa09cJfnwAARZakPS+pfMjWa+LXzmZMB5Z7Z2uanAIAnqHT\nqp0bPN+ZlyKc2vcN2dl47tQV6XJKKX+25V7uGn/GiyYJjnDShjCrXRsPXY1R76EpuUT66tH4\nlDeygJZuXRcvndFEJ2VkCQcjAYAgiOHrtvRxt6hlJEdgO2bZ9pdTJ/xfrgwA/jiUMG5Fex1E\nyE5jxowBAHNXm/oOpDaFyZFhP/38MCWv2v6ykiJxdkZy7MPwU0esnb3GBs7q6q6jys4OHToA\ngKL02aPY6lEBAEEQ9Jt5aL7Q2bu1rUz6Mi8vL79Aqs5S01TZjROh0Qk5O1ePYe3K8dqVeXln\nHkkBAIdrNjho9le+LSsfijocp95wDVg15n/OANDC00ckm775ehZNq06eTfOf2JzR2NjcYSX5\n8C31hlmzPjs2TzXnEgCgDOgRMHpeuYpWNO45sU8j9QCakp7csvDo7azE0/tjerZsy/DMBmDN\neVO/JWukUhTcf/S08keC4Jha2trZ25tyK3Jzc3PzipSv361cgX1A4EgbHsfc1UqLsekjjsDc\ntY2faxu/wQC0Sp6enBgfHxcXFxcfn5RfplCPkRflRN3Nibr7fwDANbJ08/Dw8Gw5bmifeg28\nPu3evbvaHpomC/PFhfnvt0qF1sNACCGEEEIIIYQQQh+m+o1+hJAWqRTS6L/vJ6dntx4U4G70\n75yYe8e27Dx9S/q6gJ4guG16BCycMUTI/GLSEcEBu9NLAKD9gj1LO9addBffXjt1030AMGsS\n+EtYb6bD+/e4cXfPXQy/eT9BTtXwGWXj1LZP/4H9u3rxdZV5XDJqaEwZadpo3NEdQzUZX/Ji\nf8DMCwAgMG51+vg6RmP7/fffP/i5PXvqYoUFNos/v3XZwcgaa6+rIQh+l4lrZw9soYOoAICS\nv1gzfX5UgRwACK7Qp1u/7h1a2traiGxFJjxFnkQikUhSHt8+H3GnUEERBLdX8KbAHi4AQKvI\nnKdPrl46dfaPRPVLuQZs3TxCa2uHs/l6+3XyyKMSGQB4zdy1snuV5ge08uuhw/IVFEEQ3x8/\n4y589WlMFt8dOuZ7ABCKAk7sG8FobACQ/tsWdYcVtW+OnOphYQAASlns2IAl6tQyV2BarcPK\nwG2/MD1/a/v44VcL5QAwfu+JIXb/tmGPCBy9O7vUrMmcX8K6VO6kafn2qROu5crMXQJ+3sL4\nSQMWnzcAUMqe/TBv2d2MUgAQNvAYPGx43y/bCgWcygE0VZH097UTJ36NeiEFAKFD+7VbF7oY\n4RzZd1FJ0pLj1OLjswpk1R7+lNcvVy8f82E+5fOGEEIIIYQQQgghxFp4lxAhBnH45m2/6NH2\nrf1+o+f6Dhj5OPpZ3ssya8emzZydrU0Zr0dUuyYpBwCC4E5rr9Ea86IOgXzigYKmZbnXAHSX\npLf37Djds2MgJXueGJ+alV9aWlpOqoxNTM0sRa4eng6WhjqLRO1puQIAGvZ/ZzFlNaZNxgqI\niyRNK8qf1j36v8FE+wfLvbN70cHIyslqpg5uvq1cRCKRyFZkylfkisVisfhZ7IOErBIAoGnF\nzYOLTO32TPLT6L3zH51ZvkKdoW/UcfSCwMGN3yhZ5ts5NrVzbNrKq33/UWMuHdi4/8rT37Z/\nyzXfN6W9LcEROLj5TnDz9W+7Y27oVZqmn536Xjp0t7mWWpOz+Xq7U1wBAAQhmNPFoep+edH1\nfAUFAAIz/8oMPQAIzDpa8zkFChVZfA+A8XwzazusRJcpAIDgCgeI3lgovbm3FWSXVhTeB/g3\nSU8QhuMX9bg2+4I05eiJ7L4jHYyZDo+15w2A/mXpSnWG3mvo/KVjv3i7JTvBNXD/vO/Kz/tE\nnd208tAdWfb9VUuOHPzha2ze/g4cURN3URP3Lr2HkCW5d69ePHn696zXtfWfONZ2kMqIWL7o\neCoAGJj57d8ZVN/hIIQQQgghhBBCCOkNTNIjVD94xg4+fg51j9O2zAoKALgGTWz5nDoHAwCH\nb+NkyE0uV1JkPSw4TXCFzp4+zp66P3J16oSK0FFY18DXCIG9ASddTgGhi278bJCenq7dF2zc\nuLF2X7AalTJ/bejv6gy9wLT5hFnBfdo71ZQ4o5/fjwjbdiillKRpVcTWDYN9t1gynGGTpu77\nJbEQAMxdhobOH1lLep1rZDcgaDOVPfFQzMvLGxf5H/mpMgndrFvQN7cehf6TT5Hi83nl4+01\nvnr1Vi6pAgCeUdNqMxIKo/9Qb1h49Kj2FEcBr0BBUgod9Yv2+Gr8nq4D1R1WGhn8++HgEbBm\nEVFjh5WBOojqpUIFADyDxtWuaytfKwhPJ0sfkTQIqjxk5jTBVnApj6RuHE0ZOa+NDiJk53kr\nTAg9myIFAJu2k1aO+6LWsYTX4Pkzk56G3suVppzf9FffRTqZ66N3KFl+XExsTHR0dHR0Unqe\nCtt9VcHaCVJySWFxcTEAcMnE+o4FIYQQQgghhBBCSJ9gkh6hT4sZj5OvoGhV9RaytShX0QAA\nBJ+pmPSBl4nglrSiJKkEPDVaS5hWyXIqVAAgMH67k8LHKTg4WLsvyHR73tw7W9PkFADwDJ1W\n7dzg+c7VtQmn9n1DdjaeO3VFupxSyp9tuZe7xr/upSL+i6g9t9UbQxcP06AAnugzb8yhcaEU\nKdl56nno+H/XVvcL/DJ02lkAiH1YAH0//iS9EYeQq2hapay2Pzk8W73h1L9RtYfIV1lA3dU1\ns7DDigGHICmapqufN6GDK8BjWiV/VEr6VQ2G4HYyMzidL3v5+BKALpL0wMrz9mDfI/XG0Nlf\naTLef0ZA6L0tABBz+Db4DWEwMr1CyYsSY2NioqNjYmLiU3OomhLzlg1dvb28vLy9dB8eqpO1\nb2M4lwYAlDwtTqb0FOL/LhFCCCGEEEIIIYQ0grdRkL5637JdgsM1MDQyNDA0NDYSML/0O2s5\nGXLzFRRFih+XKdoa1513V8riMkkVAPCNXJmPrjYUWcEVGNTX0ft8Lrr1W0bGhfOqwbM0aUFQ\nlLBPvcy5qOMApmP7ACuDAjMrlM4jVy2uum73Jybq9Av1htesRe/O0L8isGi99BvvqZvuA8Dz\nk1Hgz+zSDxdTSwCAwzMfYGOkyXgDi+4iwQ4JSWVfPQnjl1TuN7TuAXAWAGSZ7zEvR+t0dr05\nGfEKS0iq4kUWSTUUvK63phVHXxSrNwc6vdECnVaVp8qVAMDh2zAamIbqq8OKgwE3Saai5Gkl\nFG1aZVaIwMQH4CQARGaV+bm/8R6xFXAAQCGL1XGoNaqv83Y5oxQACK6wl5VGK7AYmHe24G0r\nUqrKC64DfNJJehVZ8jT+VcV8/NNMsqbEPNfAwqNNOy9vb29vr6YiE90HiTRk5TnLz+LBvSI5\nABy+krlxUNP6jgghhBBCCCGEEEJIP2CSHumrDy7bJTgCmwYOjRybtvbp8PnnvvamzBaIy6R5\n2TkFCo1btrq6t9DSytE16+5s9uBJPgDsPx4fNrnuCsikU3vV/cDNmvViMKy30MrCPyPvxMTE\nxiWkFJWVyWTlCopWl1aTJQ/ORpZ07OzfiOHfXVXNx8+wvr6koPD/Vp/ttnJwy9oHU2TO1vW3\nAIDgGo8f46yTAN+DSpGXkJVTrqIVV3LgE07SX5OUAwBBcKe116jvtKhDIJ94oKBpWe41AGaT\n9OkVFABw+LaaP8WKx5GQlKIsuupOLv/VP418SWoxvPeiy+utRwPjqBKSplVhV7NC+r5aLqHg\nyU9iUr0gvZ/HmyWe0qdHKlQ0ABiYdmA0MJbzNxMkyRQ0rTicWBTsaVm5nyd0NeESpRSdfjUb\n3C2rPiWbpN56mU9Ohvp9yjHW/EvbiEMUAahICXNRsd+qhbPiEl/IVTX8XUQQhG0TD3XRfJuW\nzobEpzul8n3V50RGQjBn87zcmSGpMsXTo+v+/iLsM1uNpq0ghBBCCCGEEEIIfeIwSY8+ObSK\nzMt6kZf1IurvyMM/GXcZNmnyiG4m2k6M08qXZ/bvvnQr6mVJxXs98ei5C6ZMZulbjPGGJ1cA\nID18zbFW20d/VlvXbsmjk6vOPVdvewW4MxdVNYm3z/y053iqtOa0IlXx/NjeX04cONh55NRv\nhvszOqehEk/o+f283lM2REQdWrwyb9y4Yf2crWq+G17y4v6PG7Y8LiEBwHfc2va6arwMQGcm\nPvon4UVhSa0107Qy48lN9RIGKvn7XZy1W758uRZfTQcyKygA4Bo0seVr0hwBOHwbJ0NucrmS\nIjMYDg0seJw8BUXJ06UUba7BJU5TJS/kSgAg3lyWgiJfLbUusNT6jJZ6vt5q5DGxHSy6AQAJ\n+xedtF7a28e1PPPB9yGR6kcdegyrOrgk7fbyFVfU29btfZiOjc3a9nOEvUkAELluffvNq9o7\nVK6MwPnS3ODyS7n4zq6SoLDK7yYVmXu9UA4AfEPWTULSJRMuUaikKUVeqpxyNuTWOZ6qSBMr\nVADA4VswHx17PYp/Xm0PT2jTup2Xl7eXl5eXo2ZtCT5xbJvIaCjyDdmxInTdpjspuSEzZg6e\n9HXvzr7WGrwpEEIIIYQQQgghhD5lmKRH+qpDhw4AoCh99ig27+1HCYKg3yxe5wudvVvbyqQv\n8/Ly8guk6tJ2miq7cSI0OiFn5+oxWizYoqmyH2cF38go/YDnGmiULvxwFm7Tu4tuX5fIaJr8\ndf30lN5jRw/s6WJXfbHqcsmzKxdOHLl0X0nTAGBk222Gu46SClFHl6389Umdw1SU9MbRTfEp\nuTsXD+XpJE8v6jD1x+9Mlm09GRVx5J/ffm3zZU9v90YikZ2dyJZLFudKciW5uclP/rr9zzP1\nkrrO3QOndjSVSN5ZMSkSaVTArQkVKd61ZvmVJ+L3epbbkGbaCgAAfHz0LM1pxuPkKyha9R59\n4NXJZiAYz3x0tjQ4JZHRNLk7Kn++b9319AUxe9VlqQKzNyrCZeLf1BtmbmY1PO1DseF6q5GF\nR2BHqz/vvpTTVMkvGxYcrfJFQHAMpwxrot4ul/z2/cbwJ0+z1G9VguAOG9lUi2Fs375di68G\n/6FzjIYa9phmefC7QqWKLE1aFzTJrU27yQvmuhrxAKCrv93lC2mUPH1x6IVNswcYEgRNSU9s\nXlZG0QBg3KinFsPQu/PmZya4/FIOAPtuZK/v3ajO8TmRe9QXpMCsI6OB6QWC4Do0a+nl7eXl\n7d3GrbFuvsc/DiycyBgREQEAnl2HFEmPxeaJT+1cf3qXwMLaysrK2tLK3KDWIBYsWKCLEBFC\nCCGEEEIIIYTYB5P0SF8tXryYkr9YM32++keCK/Tp1q97h5a2tjYiW5EJT5EnkUgkkpTHt89H\n3ClUUMryNCvf4MU9XACAVpE5T59cvXTq7B+JAJD/5NTSk59vHqG1BFLm1fVVM/R8obnIylTD\n26R8xpu7cqasnxU7Y6OYpGiaehhx6NHlIxa2DexEIjs7OyMol0hyc3Nzc/KKVK+TW1yBaOa6\nKQxPHngl42poZYae4Jp+0a2zq0tzfsyxn27/mw7kCVu0amgck1UGAOK/jyw+3nLjaMar/KdN\nm/bq6DwClECrKh5HXngcWdtTUq//NPl6bQPURW9acWLJ/CtJRe/1FJH3kPmdauuj8NFzMuTm\nKyiKFD8uU7Q1rjvvrpTFZZIqAOAbuTIdW9cRTqfC4gDgr80bEveFuNfaj0Epe7Y55K56u2Hv\nKn34afLc1lvqTd/Wlm8/8YOx9nojCMNvNnzz7Jst6v72VadquQ1d1kr46rdcUfQgKjmz8qGm\nXy3qbK7NNtFXr17V4qsB88lmrqHLmilfBu+KBACaKkuMupNWMUudpHceNc340pIyik67eWDU\n3VOODc3zMrJlSpX6iZ0C614zRXN6d97+91XDy8efAUDCgVUPfbf71NriW54ftWpvvHq7Ye+u\njAbGcu079/H28mrn1cbeTGedZj4e7JzIuHv37mp7aJoszBcX5r/fXC6EEEIIIYQQQgihTwom\n6ZEeO7N8RVSBHAAadRy9IHBwY/Oqd3v5do5N7RybtvJq33/UmEsHNu6/8vS37d9yzfdNaW9L\ncAQObr4T3Hz92+6YG3qVpulnp76XDt2tSVtpTfzfqRT1hnuX4VPHDnSxMdHKy2qLkcjvh42z\n1qzakVhYAQA0rSqUZBVKshJjaxgsMHedvnx5R/vqpfZMoORpy3ffUG+bu3aa992M1vZGAJAi\nOVd1GF/Yat3On++dWLfh+CMASDq1MmnQL25GzH6a5eTkMPr6/0VpxpETrzOmwgau7du6W/Aq\nEu9Eqn+/rXr1czHkAYBMmhdz/+/sUgUAeAasXDvcSzcFdqzV3dnswZN8ANh/PD5sct25xqRT\ne9VJX7NmvZiOrUHnOS77AlPKlcrylKWBiyfOCe7j07TGkVlPrm3fsicMVc0xAAAgAElEQVRe\npgAArkAUNOBVsXhJTvKlw1tPpxYDgMCk3SAbI23FxvLrTdjAf1uY2Z4d+yNj0tQzjTg8k44D\nJn87ptXbgwmC591rypJp7XURGbs17jU3hGO9Zd95ScUbi83zhC2XDW298NcnAECRJWnPSyof\nsvWa+LWzNjs06J3GAyabn1wipVQUKVkfPG/it9/1a9+kxpHpDy/9sPlALkkBAIdnObWPo24j\nZZGMiOWJUamJUbdPm/nt3xlU3+HoGdZOZEQIIYQQQgghhBBCHwCT9EhfSVP3/ZJYCADmLkND\n54+sJf3DNbIbELSZyp54KObl5Y2L/I/85C58deU36xb0za1Hof/kU6T4fF75eC2lou8UkwBg\n6Rnw/ZwR7EyDmjp3DtnnGXHi14jfbqqzaG/jC+079eozYlRfO4GOVhXNvrajQKECAANzn60h\nc2x4767eJ3h+o1bMypz6420xTcl2h2dsGe7EaGwCAXsL/pIPv6qWNmvWZ8fmqeq5JsqAHgGj\n55WraEXjnhP7vOrDTFPSk1sWHr2dlXh6f0zPlm3N2fuP0oEWY7zhyRUASA9fc6zV9tGf1Vbn\nLXl0ctW5V+soewUwnvDg8EVLFw+duvxXkqbJkuTdq2cec3D3bdVMJBKJRCIhyCV5kjxJXmrc\nw7iMV/lygiB6BK12MeQCgEy8b0xgeGUd+Zczg7T4QcT+603YoM3staHTC8XpuQVcE1vHhraC\nNzuU8ITOfv5mDk1d2/t92cJR+5OoxowZo/XX1AGPr8bv6Tow+u/7yenZjQz+/dj3CFiziNiy\n8/Qt6esCeoLgtukRsHDGQO0GoHfnjSf0XDnWa86hhwCgLE/bu/abs85tv/Bq0aBBA3t7eyHI\nxGJxTk5OYtSdf1ILKp/lM26FO8OzythMLiksLi4GAC6ZWN+x6Bk2T2ScMWMGo6+PEEIIIYQQ\nQggh9FH6dO8SIn0Xtee2emPo4mEaFGgSfeaNOTQulCIlO089Dx3fvPIBv8AvQ6edBYDYhwXQ\nVztJ+mKlCgA6fdOXnRl6NQ7ftt/Y4L4Bk14kJSQkJOXkS0tLSxXAMzExMbdp4ObWwr2Fk5Cj\n03/BvQvp6g3/+cG1Zehf85869sfbmwAg+9oDYDhJf/r0aUZf/7/482mxemPQwrGV3SB4Qtdx\n9sa7s0uzf0+B10lTgms+/LutkuQJ13Izflh17uctI+onYnawcJveXXT7ukRG0+Sv66en9B47\nemBPF7vqHwLlkmdXLpw4cum+kqYBwMi22wx3Cx2EZ9VmdNhC1YJNp4uUKgAoyU68kf3OnBbB\nMegxZe2MLg7qH1UqWWWG3rX37JkdRFoMTF+uNwNL++aWNU+8MHEcs2geg4cePnw4g6/OJA7f\nvO0XPdq+td9v9FzfASMfRz/Le1lm7di0mbOzda1LMHwYfTxvzQYvn1e4ZNOFGPWPBamPL6Q+\nrmV828ELlw501kloLGXt2xjOpQEAJU+Lkyk9hfg/EU2xeSJjz549GX19hBBCCCGEEEIIoY8S\n3hpD+upiagkAcHjmAzRr42xg0V0k2CEhqeyrJ2H8ksr9htY9AM4CgCxTpq3YGhtwk8uVTfTh\n1jPBMXJq4eXUwqu+AwEA+ENaAQAEx2Cih0brZwvM/UWCLRKSIqV3APQvu6Mt0WUKACC4wgGi\nNxLMzb2tILu0ovA+QJfKnQRhOH5Rj2uzL0hTjp7I7jvSwVjX4bIIZ8r6WbEzNopJiqaphxGH\nHl0+YmHbwE4ksrOzM4JyiSQ3Nzc3J69I9TrhzRWIZq6bUvf8ES1p4Ddmzx6vAz8duPbgKVVl\nefVqHDw6jp82w8/JtNp+ob1rvxETA7p5ajcqvN4+TTxjBx8/h/qOgo38J61r1OLM1j0nnr+s\nqGWYUOQaMG12P99Pt9G9mpXnLD+LB/eK5ABw+ErmxkFN6zsivcHmiYwIIYQQQgghhBBC6APo\nQRIRoRqlV1AAwOHbav4UKx5HQlKKsuiqO7n8VzWm5EtSW7F1EgmT04qjc8u7WRho6zW1JTw8\nHABMnf07e2paDfz4yuUMkuIZNevV3YPJ0CCXVAEA16CxqcaLV9vzuRKSokj2LhivAy8VKgDg\nGTTmvXnarHytIDydLH1E0iCo8pCZ0wRbwaU8krpxNGXkvLrXYv+IGYn8ftg4a82qHer11Gla\nVSjJKpRkJcbWMFhg7jp9+fKOWloUQ0OGNh4zlm6eKEm5de9RQkLCi6y80rLScgWYmpqZWzdw\n9/Bo0/4Lr2Y21Z5lZD1o285RTo62TLTCwOsNoWqafj7kR79+cX/+391H0QkJSTkFxTI5SRAc\nAyNjK/tGbm6ubXz9O3k31/ib7aNGCOZsnpc7MyRVpnh6dN3fX4R9ZmtY3zHpB5zIiBBCCCGE\nEEIIIfSRwSQ90lcWPE6egqLk6VKKNtfgzjdNlbyQKwGAIPhV91OkWL0hsOTX8LQP4jfJa+/y\nyIfbz9NhE9h2T37v3r0A0KS/m+ZJ+rQzP+8Xl/GFLXt1X89kaGDMJUglrVLk0wAanjexggIA\ngqNRNwWmVchKeUYmuk/DGHAIkqJpWlltv9DBFeAxrZI/KiX9qvamJridzAxO58tePr4E8Kkn\nTU2dO4fs84w48WvEbzezSxU1juEL7Tv16jNiVF87AbfGAUwzErl8NcDlqwGajucaNHJmrF4X\nrzeEakAIPDv28uzYS/0TTZEqjgCz8jUyFPmG7FgRum7TnZTckBkzB0/6undnX2vD+vl01SM4\nkREhhBBCCCGEEELoI4NJeqSvOlsanJLIaJrcHZU/37fuevqCmL1yFQ0AArMOVffLxL+pN8zc\nzLQVm03bOcNd/zmZfHbxgcYrJ3YxIPT7Pj2pogFAWfGc6QN9Zir4vVCuUhZeeSnvaVV3aR1Z\nck9CUgDAN27NdGxkeUk519hcUFODWZr65+qJszcepWdkKvkWLb39Ovce5Oeii2XL1RwMuEky\nFSVPK6HoqvfuBSY+ACcBIDKrzM/9jQWkbQUcAFDIaioY//Rw+Lb9xgb3DZj0IikhISEpJ19a\nWlqqAJ6JiYm5TQM3txbuLZyEHP1+F2sRm6+38ePHf9gTXSaELOvSQLvB1E7y9OGfD2OTkpIy\n8wpLS0vlSo6pqamZlZ1bC4+WXn5+ng11GUxVMmledk6B4t3LK1Tj6t5Cl6noUqlUqXFs5hYW\n9fW+Jbj1NKNHH0RERACAZ9chRdJjsXniUzvXn94lsLC2srKytrQyN6j1elqwYIGuwmQdfZ/I\niBBCCCGEEEIIIYSqwSQ90lddRzidCosDgL82b0jcF+JuKqhlsFL2bHPIXfV2w969/32AJs9t\nvaXe9G2tUftQzRCj1odIvp0feX7bhAeR48YM8HB2crS3qpeiuoSEhLd3Vrx8npBA1f1kWlmY\nHX8qv1z9g5Yje0uPzna/n0sDgJOhkT1X9qxzfNzPP6s3rNvVPfjDZEffOH/l1sNH0fkyZesl\n+9Z+Jqo2gJTGhSwLefhC+nqH+N71c3/930WfvtOXTPmfbhYv9zcTJMkUNK04nFgU7PnvZcwT\nuppwiVKKTr+aDe5vXN7ZpAa//U8MwTFyauHl1MKrvgNhOzZfb4WFhR/2xJIK3b0jCpMjw376\n+WFKXrX9ZSVF4uyM5NiH4aeOWDt7jQ2c1dVdi99KdaCVL8/s333pVtTLktoWVn/b0XMXNK/r\n/WBZUVeOXLyZkvIsr/g9wtNNbOh97d69u9oemiYL88WF+eJ6iUdfsHkiox5NkEIIIYQQQggh\nhBBiD0zSI33VoPMcl32BKeVKZXnK0sDFE+cE9/FpWuPIrCfXtm/ZEy9TAABXIAoa0ES9vyQn\n+dLhradTiwFAYNJukI02K424gob9Bn0eue1KWdbjXd8/BgCCw9WkFvfcuXNaDAPeUXYmvrNj\nwZ33ex0D0w51D/pvmgweyT+/UUHT+VE7N5w2nz/Er5b0ivjh8dVXstTb/xvtrPVgaKrk2Mbl\nv957VssYlSJ/7TcrHxdVTxrRNPUgfPu3FZytwd21Htjb2vZzhL1JABC5bn37zavaO1Qums75\n0tzg8ku5+M6ukqCwymSVisy9XigHAL6h9s8bYgKrqoc/puuNJ7SyMuEBgJWRjv4cij+/ddnB\nyDrr1AtSo35cMDl64trZA1voICqaKvtxVvCNjNIPeK4B83ORUsK3fLvvD1rjt0AlPsOxpaen\nv9d4gsM1MDQyNDA0NDYSYHMO9J5YOJGxkl5MkEIIIYQQQgghhBBiG0zSI33F4YuWLh46dfmv\nJE2TJcm7V8885uDu26qZSCQSiURCkEvyJHmSvNS4h3EZReqnEATRI2i1iyEXAGTifWMCwytv\n+n85M0i798sfHFq65mx01T20itLrO5He00YxfQiBeceF3R3XXMsAgHtHNky633n6uAEt3d9M\n7NFUgfjFrYhTR8LvUTQNAJbuEwbbC2t8wQ9HK/YtCQ6Pr+Om8+Pdy9UZegPLFj26eTey5KQm\nJ8U+iMqSKQDg2dXQQ529J7RkvBa2YY9plge/K1SqyNKkdUGT3Nq0m7xgrqsRDwC6+ttdvpBG\nydMXh17YNHuAIUHQlPTE5mVlFA0Axo0Yv3GvX1RkSerTFMnL4pLSUuAbmZma2jZ0auZoU1/J\nNHZWD7P5etu+fXutj9PF+bk5OdkZL2KvXHtQrqJpldGwb9d/1UJHBeu5d3YvOhhZ+b1j6uDm\n28pFJBKJbEWmfEWuWCwWi5/FPkjIKgEAmlbcPLjI1G7PJL/qDTy0LvPq+qoZer7QXGRlquE1\nxGd4PRdSenfx/jcy9Fyupo3kBQzHFhwc/GFPJDgCmwYOjRybtvbp8PnnvvamfO0GxnIzZsyo\n7xD0EqsmMv5Hup8ghRBCCCGEEEIIIcRCxAdUJiHEHjn3flmw6XSRUlXnSIJj0GPK2uA+buof\nS7NDRwdeV2+79p69ObCrFqOSPjsybu6ZD3tzXbx4UYuRwFt3wzMzMwGAbyqyM69tgYCqTKwd\nWvkPGvs/T+0GViNaJdu/MPBiYlHlHoJraGuikkhJAPBwaZSenl1apXW2gXnrzXtXNTHU8uK/\nKWeXzj30ao6FoY37wAH/a+fhLGrcxNrg3wNRFRljRgaXUbSh5ec/7J7X6HUMlDznp4XzrqQW\nA4CB+eenfl6o3dhqlP7bluBdkZU/fnPkVA8LAwBQymLHBixRp0i5AlPHhuZ5Gdmy1++Xgdt+\n+drZTAfhsR2tjLnze8Tl3x/GZ5BvvW0FpjbeHbv37tOnTRNzXQb1wdXDJy9cMGQ4N/kRXG/y\n/OSTB8NO304jOEbjN+4Z7Mr4L1elzJ81ekqanAIAgWnzCbOC+7R3qun3RD+/HxG27VBKKQkA\nPMNm+49tseQx+ws99PWIs/nlAODeZfjUsQNdbEwYPdx7ebJp6rLbYgAwErX8elpAu+bOIgu2\nLLDdv3////4iBNe4y7BJk0d0M8HO/KguD8KC1BMZAcDK/dVExpxjs+eefg7qPyBrmsh4eONg\npgOrq6tE9QlSXMOGgat0N0EKIYQQQgghhBBCiJ0wSY/0njw//sBPB649eEq9+2J28Og4ftoM\nPyfTyj3qJL3Q3rXfiIkB3bScfv5t7thdKVIAMBJ5jBjdv0XjhraWJhrefbe2ttZuMNWokwpN\n+m8Om+zK6IE+GE1Jz+3aeOhqTJ0jLd26Ll46w03j2QYaB1A0ZcRE9Uqutl7Dti0bU2Ndcu69\nlVM2RAGAz8oDy71sqj5EyZ9OHD1PPXdk/N4TQ+y0Xehfk/grh7fsOy+poKBK0hQA4o8uW/jr\nk7fH23pN3L9ykA4CYzl5QezO7zdFJtbRNYEguL79Js+a2Fs3S1yT0rtjxm+Uqz6kevjMuXPM\nNyD/OK431dnlkw89zucZNtv28+bGBlqe61NNTuSSaVtiAIBn6LRm7ybPWj+4yKLouVNXpMsp\nAGgzb88af3tGY5s8dJCEpCw9Aw5tGMG2RPH3Y4bdLa4QmPnsPrTUmqeDS/s9rF+/HgAUpc8e\nxea9/ShBVP8bmy909m5tK5O+zMvLyy+QVl31wKbNsJ2rxzA9vQbpO5ZMZPwvdD9BCiGEEEII\nIYQQQoi1MEmPPhLlkpRb9x4lJCS8yMorLSstV4CpqZm5dQN3D4827b/wamZTbTxVkZGWZ+jk\naMvEHfHpwwZlVVAGFj77Di4zZ1ltHPuT9GriuLvnLobfvJ8gp2r4jLJxatun/8D+Xb34DJzd\nvIfrJ63+CwD4Qvfdv4TYvCMtdH322NBUKQBMO3Syj5VhtUcfrZu86m8JADQZ9EPYxObaj7Im\nKoU0+u/7yenZrQcFuFdpIXvv2Jadp29JXxc0EwS3TY+AhTOGCD/5RZFJaeziwBXJZYqqOwmC\nb2Vnb6QqFecVVVsJ3tKz//a1k3SQp2dz9XClj+B6U8hiho1aqqJp5xFbtwU0Y/RYEcEBu9NL\nAKD9gj1LO9addBffXjt1030AMGsS+EtYb0ZjGz5wgFxFD/zp+NcOxowe6AOMHTxQqlS1W7R3\nlZ9dfcdSA0r+Ys30+VEFcgAguEKfbv26d2hpa2sjshWZ8BR5EolEIkl5fPt8xJ1CBUUQ3F7B\nmwJ7uAAArSJznj65eunU2T8S1S/lGrB18whmL0L0Eaj3iYzaoNMJUgghhBBCCCGEEEKshUl6\nhLRv8IABSpr+8vvD37Gvk+fJkycBwNy1+1dtreo7lrrRlOx5YnxqVn5paWk5qTI2MTWzFLl6\neDpYVk+Ka9HDpV+vjs4HAPfJ2zf2b/yOyJRThg3LJSkACDx8svdb8UhTN4+dfQsATBymHPup\nH3PRakhZlv04+lneyzJrx6bNnJ2tTVl411736D3TR1/KKlP/IDBv1n9I/07tWzWwtxZwCACg\nKXleTnb0X5EXzkaklb5K5DfsvGDX3I5MR8bm6mFN6NH1tm3c8BtFckPLXicPT2f0QLOHD06V\nKwmCu+/0GVt+3b9TlSJ/2NBJCprmGTY7e3Iro7F9N2Jwcrly1pFT3V53RGAP9QSC6YdP9mLy\nY/+DnZw//pfEQgBo1HH0gsDBjd+REKXKcy8d2Lj/ylOCIPou2TelvW3lQ8/+b8fc0Ks0TXMF\n9od+3c22iX2InepxIqNW6HKCFEIIIYQQQgghhBBr8eoeghB6T1Z8joSk2jXQRZPz9zV8+PD6\nDuE9EFyhs6ePs5aXI6jDH2kl6o0+nd5Z7Sp/eSn3dUdZOVXDACMbP4BbAEAW3weo/yQ9z9jB\nx8+hvqNgl8LEnZUZepHPiJBFo2zeTJ0SXEORo3P3oc5d+vf5ed2is//kA0D2H5t+H+fd04bZ\nfGGsTAEAnkHT9DFDD3p1vbkY8m4AkKV/AzCbpM+soACAa9BEkww9AHD4Nk6G3ORyJUVmMBoY\nAHQSCZPTiqNzy1mYpHcx4sWWKZSsnFAqTd2nztCbuwwNnT+ylvQ618huQNBmKnvioZiXlzcu\n8j/yk7vw1V/gzboFfXPrUeg/+RQpPp9XPt6ejX85MEry9OGfD2OTkpIy8wpLS0vlSo6pqamZ\nlZ1bC4+WXn5+ng3rO0A2svfsON2zY2B9TGTUCr6wVWdzgxtF8uyrVyGA2c9ehBBCCCGEEEII\nIdbCJD1C2tfVwuCERJZZY/JWf1A06LKiLyNi+aLjqQBgYOa3f2eQ7g78lucVSgAgCEFHs3eW\n/4pv3lJvcHgWva1qSGtxBY7qDYrMZSDGf7HnvOmd2MMP1BtCUZfty0bXsho0V2A3fsX2/MkT\nb+WX07Tqwi8pPWe3ZDS2ChUNAB3ccbFexqVWKAGApkqZPpAZj5OvoGiVTPOnlKtoAACCz1RM\nr/lN8tq7PPLh9vN02AS2Vd72cTaLjSl4lCDt15F1eceoPbfVG0MXD9Pg65LoM2/MoXGhFCnZ\neep56Ph/l0HxC/wydNpZAIh9WAB9P6EkfWFyZNhPPz9Myau2v6ykSJydkRz7MPzUEWtnr7GB\ns7q6s64vERvUy0RGbdHZBCmEEEIIIYQQQggh1sIkPdID27dv1+4LBgcHa/cFq+kyxuPElod/\nHo0Z/+1njB7oPyovEGcXVjRzaVJ1p/TZ3bB9Z56+SC8qB6sGTp937TN2SCdD5heTlksKi4uL\nAYBLJjJ9rNpJSBUAcPg2vHf/o/++mqPeMG4wosaTQ3BeZe5VipfaD7EK9pw3vXMt7VVetsvi\nr2vJ0KsRHOGUJV1vzYkAgLyHFwGYTdKzuXr4Y0IW379ZVAEAHEEDpo/lZMjNV1AUKX5cpmhr\nXHfeXSmLyyRVAMA3cmU6Npu2c4a7/nMy+eziA41XTuxiUNfbQZfaBQ/mBO6L33tE/vl3db5P\ndexiagkAcHjmA2yMNBlvYNFdJNghIansqydh/JLK/YbWPQDOAoAs8z3mcOi7+PNblx2MVNS1\n6lZBatSPCyZHT1w7e2AL3QSGdENnE6QQQgghhBBCCCGEWAuT9EgPXL16VbsvyHSSvkGnRf3O\nT7x06/tT3fYMa2vD6LE+TF709V0Hf32UKuELW58+vqZyf0HUkWmrz5CqVzfNC7KSwn9O+uNu\ndNjmbyxrSVlrg7VvYziXBgCUPC1OpvQU1tunkzGXkKtomq541wCakp6VvEqlNOzfpsYxlEKi\n3uDwrbQeYVXsOW96J7Vc3TKBO7apmSbjzZzH84nLCppWlMUwHBpbqof1boLUe6koTNqxdBtF\n0wBgZNWd6cN1dzZ78CQfAPYfjw+bXPPnRlVJp/bSNA0AZs16MR0bADFqfYjk2/mR57dNeBA5\nbswAD2cnR3srNiyPLmzQb+3o+4uP3p631X3TnL6sytOnV1AAwOHb1jmykhWPIyEpRVl01Z1c\nvki9Qb4ktRgem+Xe2b3oYCT9OkNv6uDm28pFJBKJbEWmfEWuWCwWi5/FPkjIKgEAmlbcPLjI\n1G7PJD9RvUatBypkpTwjEza8c2unywlSCCGEEEIIIYQQQqyF6RyEGEDwv96wquC7Zb+smJbU\ne8zksf3s2ZQ6Fd89ELTxwtvlazRVvO7785UZ+krFqdfnb2q9d1FnRqOy8pzlZ/HgXpEcAA5f\nydw4qCmjh6uFg4BXoCBp5csskmoo4L49oDTzRPnrs/S/z2pOzyjKnqg3uIJ3LmyvFew5b3qH\nAhoAOAJ7oWaNIgjCsIEBJ11OAa1iODS2VA/r3QSp48ePazROVZGTnhb98J+Xile/So9xHRgM\nCwAAWozxhidXACA9fM2xVttHf1bbJ4Pk0clV556rt70C3JmODQC4gob9Bn0eue1KWdbjXd8/\nBgCCw9XknXHu3DmmY2s5YvWcipAfz+wbF/fHkFEBA7q0NWRHEtKCx8lTUJQ8XUrR5hqERFMl\nL+TquUFvtFKgSLF6Q2DJ+NIGbKBS5q8N/V2doReYNp8wK7hPe6eaTh/9/H5E2LZDKaUkTasi\ntm4Y7LuF6fmCbEaWl5Rzjc0FnBoeo6l/rp44e+NRekamkm/R0tuvc+9Bfi4WOo9RIzqeIIUQ\nQgghhBBCCCHEWixKHCL0LmPGjKnvEN7P+fPnAcC1S/e4YxfvRxx8cPmwuW3DRg1t+RrcW165\nciWjsVHy1CVbw2tsMJv/eEdKuRIAODzzoYHTvRsK4u5dPHLxMQBI/tp2W/q5v/k712jXAkIw\nZ/O83JkhqTLF06Pr/v4i7DPb+qkh7mhlEFNG0jR96lnx7BY1rIOb8Hotc65hk24WNSxIDwCS\n2/+oNwwsP2cozldYc970Tmtj/r1iUqUoUNCgyXuTVsmyK1QAwBcy3n6czdXDbKZpkv5NQrvO\n33ZgvELXwm16d9Ht6xIZTZO/rp+e0nvs6IE9XeyqL0BeLnl25cKJI5fuK9UZLNtuM9x1kWl7\ncGjpmrNvlHfTKorSwYHrov4+BbMWX7V+9tuT5KOhK46F8a3s7O3t7S2M6/hKWrBgAaOxdbY0\nOCWR0TS5Oyp/vm/d9fQFMXvlKhoABGZvTAqRiX9Tb5i5adTVQ9/l3tmaJqcAgGfotGrnBs93\n/mlBOLXvG7Kz8dypK9LllFL+bMu93DX+zM57Y6Hs6Bvnr9x6+Cg6X6ZsvWTf2s+qf1iR0riQ\nZSEPX0hf7xDfu37ur/+76NN3+pIp/6sppa99bJ4ghRBCCCGEEEIIIcRamKRHemD48OH1HcL7\nOXDgQNUfaVpVJMkokmTUVzxVZV7emUdSAMDhmg0Omv2V779La0cdjlNvuAasGvM/ZwBo4ekj\nkk3ffD2LplUnz6b5T2zOaGyGIt+QHStC1226k5IbMmPm4Elf9+7sa21YQy07ozx7NIADJQBw\nP/QcvevratlRWlm4L7pAvW3mNOIduVPVL2fT1Vsif8YTuiw5b3qnTzvre3/k0Cr50fSSCU1M\n6xxfFL9HnTc1a96X+ehYUT2sdxOkPoClyxfL18400qybwn/DmbJ+VuyMjWKSomnqYcShR5eP\nWNg2sBOJ7OzsjKBcIsnNzc3NyStSvZ5ExRWIZq6booMcm/TZkbXnGF/E4cNU+z4FAJpWFIgz\nCsT1/5XadcT/s3ffAU1dbRjA35uQAGEEkKW4oBYRnNRqFalotWptXXVvq3XgwFFn1eKqg9ZF\ntW5bFBV3tX6W2ioIuLC2FkS0OBCZIpsQktzc748gtcqImgnP76+Tm/deniKQNO8957geCb5F\nRFe+WZ24a42HVVU3DSgk975ZE6Mau3z00b9PcLITGy6qhu+2rOC2sJrnxtGHqoF3wMLKO/Rl\nhDYtF09/Z2LQNSJ6cPgG+X5UdX1NwrGFB9YtDbt8r4oapTx75fTAv/Je3KCH49jY09/NKeVt\nmKaLqeqGfIMUAAAAAAAAAIDBQpMeoHa58r/HqkHrqWtHd3P59wlOEZZaTEQMw3zWq2H54ffG\njqTf1hLRk5gbpOUm/ZkzZ4jIq+unefkH4p9kHNn69dHvhTZ17Ozs6tjaiU2r7FBqcMZkvQ/H\nCPYulnNcUerJZWFtAoe0ef7Zv/YuzZCVzS/1GFrxMtTJZ1dfK2GxeO8AACAASURBVCzbWrhv\nL5cKazTIQL5vRsdj4ufi6JX5rPLs8h39d8yuerVqVpa+fnU0ETEMf6B/C21nM5DZw0Z3g1Sv\nXupv3853qN/I7a23WzVz09nND+aOHb5dF7Bi2ZbE3FIi4jhlblZqblZqYnwFxUKx+5SlS32c\nX5xqrw2XtpxTrT1u7ug5ZHifZg1dHGwtsXpDter6zWqya3JSiUJRkrR48qJxs6b1btu4wsrU\nm+e+W78jQSInIr7QcWrfRqrjhel3f/5xw9H7BUQktGzT395cV9n16VxWCRExDH9SO7UatI7v\nTRYwsXKOk2SeI6o1TXpOvuvLaacTcquu+mv7UlWH3tS2WfcP3mlgy7t/90587I1UiZyI7v26\n+Qe/d8Y2N8SbP3R4gxQAAAAAAAAAgIFCkx5A82bOnKnvCJWKLiglIoYRzupS7/nj0rzfsuUs\nEQmtfT1E//5lEFr71BHwnsqVsoLLREO0mm379u0vHOE4WW52Rm52hla/7gsEohZT2ztsvJJF\nRDdCv5rzsP8nnb09mrpyBRnXww/sOlM2RZ5nYvuZl93LpyfH7J+/45pqbOkywE9c8Xr4GmQg\n3zejI7Rqu3qq39TgCyVPIqfN4y+YP9nLseKdAtJvRe3evOVmoYyImn667KOXlijXOEOePWzI\npkyZou8I1bBy81uzy+vMobAzZy+kFckrrBGInDv36j1k2MdOQh2th3EqpYiITG3a7ti+RJ29\n1XXJ399f3xEqxRM4Ll40cOLSMBnHyQrvbl8+40A9j3dbvOXo6Ojo6CgiadaTrCdZT+7fun4r\nJU91CsMw3acub2LGJyJJxq6Rk09zzxZOeH/GVMP61mvN41KWiPimjRwEaq0TwRPYu5rx75Yo\nWFkt+gOYdGJZeYfezN6jX98P23i6OTas83wNW5oS9HsqEZnZdvx2+9wGz1bQYaXp2xbMDb9f\nQERn1m4fu2+BttMa+A1SAAAAAAAAAACGCU16qJlYWSlfqPXmaGW6du2qry9drUyZkohMzBu/\n0InJ/TtSNbDx7P7CKfWFJk/lMlZeizq+nb9YdnbMjDvFciL6J+bE+pgTL9e49VngJCxrMHAK\naU5OzuOkhJjfT/8S+0B1kOGZfb5Mu7c1gJoKCwsrPC5uP355iWD5rl/z/zm/aNKVlh382rdy\nd3ZycnJyMmdKMjMyMtLT/4z638X4NFW9d/+AJaNa6jC4wUk5s3ThwftEZGrdYffWqfqOY5R4\nAodPRk37eMT4h3du3759Jz07v6ioSE4mlpaWYvu6TZs282jmKtLt7FLV60L7hdMNrUNPRD17\n9tR3hKrYtRoevEA5P+honkJJRIVpiefTEisrZnim3T9f6f/sDjmlUlLeoXf/aOaMWrPut7UJ\nL1vOckqJ+qeUKDkiIkagrUwGhmPz1hwo24HIwXvQxiUjrSr63cy+sbuY5YioecCEBs/tccM3\nqzt5zVdXh8/NUyhL8y8dy5R8quV7ywz/BikAAAAAAAAAAAOEJj3UBJwi91JEdFxc/K3bSXnF\nxRJJiZzlTp06RUSywtjjEYU+fr4NrGrLZ7tVM+cxUiXHKRUvHL97uqwN6dqnwQtPycq6CFpv\n3hjOjEm+0GXllqWBAStv5b+4z6uKuEmPlaP/Xes+5eziaTvvPl/AMLxuk1Z3cdTF2sWG830z\nWCNGjKi2hmMlN6P/dzP6f5UV8Pji4oRfFsz7pfGnc6dquZ1msP+m0qzcgoICIuLLKu1EGiNZ\n/mOhuL4uvyLDM3dt5u3azFuXX7QydgJeloxtU1cXS+vXPHU7jNyxw3vPtj3nYv9hnzXdX1bP\n02fMJP8OrlYvHBc5u38yZNyID7y0HNOAuJrxs+UsK8v4q1je2qL692YKya3HMiURCczdtZ/O\nIGT/uTVLxhKRQOSxdvGICjv0RBQXVrZd/TuNLV94im/2dsA79suuZhFRxP9SP9XydkUAAAAA\nAAAAAPAa0KQHo5cYdWzbjoP382UVPsuWPjiwc/+hPXv9hk6cPthXB7MEDXymqau5SW6hjC19\nmCpjXcrXUubkoQ8LVMN+rtbP13PKkvtSBRHxBPbazmZQMyZN7Vqt2v392QN7T4RfySr+d1Vq\nnsC2+6BRowZ9UMVUVxPzugOmLBrp10gnSQ3r+1aDKdn8O3fyiYjJq/ivjQYZ7L9pnXcb0olk\nImKlybckCi+Rcb+LYKVP/4iOioyMvPz3/eM//aTvOHrT1cb0UJbksZTVdxBjZWbv6b/4m3FZ\nSRcv/3H79u2HqU+KiotK5GRlZS2uU9fD07NVu07eb734Gmpep//GrcNc6zsY3PIFWtbNzTr2\nZjYR7T6YEDyhVbX1d47sVC05YP2W+muqG7fkk0mqwVvDp9mbVLIpAKcIe1ykGjIV/Qw1GeZB\nV7OI6OnVRNJck14uL3tHJBDg5lcAAAAAAAAAgDdi3B+vA9wIXRIYdrPaMiWbfz40KCEpc+ui\ngSZa/jjcwGeadq9rcaNQxnHK4F9T13zcUHXw6c1tGTLVhvQdPP/bdcv/J6RUyRGRqdV7uk+r\nXzyhfe+xc3uPkT1ITMzIzilmBXXrubg0bGBjVvFG0QzDOLo2b9e+Y5/+PZ0qqQEwanZeAR1s\nYi/nSYnox/DH6/o31nei18GxklvXoiMjI6OvxqsWi67luoz0PLT++qXQuDFz2us3SV5e+d7t\nArHYQr9hXpW5Y5MefZv06KtuPd+0gZtOl28wFM1GvkM3w4no0ekVB1p8N7y9cxXFWX8cXnai\nbBMZ7xEeVVTWJJHJZVu09O5c6TdHmvNzpqzsxpoKb7Axt+9AdJGIZAXXiD7RVLZPP/1UNdh1\n7KSjoJIbCAAAAAAAAAAAQA1o0oMRS/l1c3mHnuFbdfrAz73J24K4A9ui/t093UTUrIWLRVxq\nMRFlXA1ZdLD5uuHa/ZDXwGeaeo5rQwvPE9Ht3QsP11n8UVv3ksexa9dEqJ6t133Q88WFyVFL\nvwpXjeu0a6vbpAaDEbo2a+laZYnz+7O+f9fUxsbGwsyw/rlBRbX5BWgAI5z1zdzMGWvuS+T/\nhK662im4vYOZvjOpjVPc//tKZGRkVPT1bF3NGn9wIyIq9q+Euw/zCgpLWJ7Yxqbh215t2/v5\neTfWTQB11O288JOT436+uPbIBzsGtdb6oilVGD16tGogtGh19OAKIlq7du1rX23+/PmaiQUa\nZdN0SjfHqN+yJBwnC/t6StJHo4b369nkpU3TS7Luhf90KOTnawqOIyJzhw/8PWz0kVcPHpQq\niIhhhD7WwspqMi5cVA14JjYf2Zm+XMAXlt0DwsoytZARAAAAAAAAAADeFPpJYKxYafLS7edV\nY7F757lf+Ld0NieipKwTz5cJRC1Wbd13+dCq1Qf/IKI7RwLv9N/f1FyLP/kGPtPUxnOyj92l\nmBwpxxbuXz0/lGG4Z3voMjyzzweVrdBeknV27brTN/9JVe2wyzD8QUMb6yuz4ROKXVzEuvhC\noaGhqkG/ocMtdLB5A8BLzBzfXbPlq82rgqKTMtf4zxgw/rOP/N6tY9hLR2T8cyMy8uLFqJiU\n3NKXn2UYXn0Pzd+EJM2OW//1t1eScp4/mJud+TDpzsWzx0PcO835MsDLtoLWmh4wgs9WL3v6\nxZL9X02689HICaM+cTaY28tiYmL0HQE0jvf51wHx/usyZCzHsdfP/PDH/0JsHOo6OTo6OTmZ\nU0lWVmZmZmb6kzzls/cnfKHjjFWf155Z21kyJRHxBPZVLP509dd01cCi7hCzivbfYXhlf16U\n8pyXnwUAAAAAAAAAAL0zlA9hAV5V2rktT+VKIjIVt92wZlale3YSEWPSYdhXAY8nborK4FjJ\n9tMp6wdXPS/6zRj2TFOGMZu+evq96etV69uXd+iJqOnAJS1EZTuMlubF3rj7uPypxj0W+ol1\n3kziZFHRV9UprPPOe56iWrE3alhYmGrQffAwNOlBL86cOUNEXl0/zcs/EP8k48jWr49+L7Sp\nY2dnV8fWTmxa5Y+ljmc2F6TeuXgxIiLy4t20wgoLHN9q9f77nd/37dTYXsN/pUvzbgRMWZFe\nWul8/ey70YsnPViyfaO3AfTpT548SUTuXbrdOnDq2pm9sf/7Uezg0sDFQaDG35jAwEBtxzMW\nRfn5Ck7d3RPENja1+S+4uWOHb9cFrFi2JTG3lIg4TpmblZqblZoYX0GxUOw+ZelSH+cXp9rX\nYBZ8RqrkOK6Cm4pUODb/eJZENXbp06rCGlaepRrwBHYaTwgAAAAAAAAAAG8OTXowVpd/eqQa\n+M6bVlWH/hnfiaM2RQURUdq5WNJqk97gZ5qK6vpuDLbesWV3RFyyapoaz8TSp++EOSNbvFzM\nMCbv9Pr8y0nttJuJU9yKCY+4FJvCDFoz16vsmLI4KChInbPbbdrn6aqTmewGj2MLlwauU41X\nrFih3zDw2saMGfN6JzYZu2ZJl7qaDfOC7du3v3CE42S52Rm52RkV1uteae6jmMiLkRcj/0yq\neJFnmwbNfH3f7+zr6+5irZ0I3LZ5657v0AstbBs2amzNFD5MfpRTJFMdZKWpa+dsDt09t4rJ\nsrqxZ8+e5x9ynDIvKyUvK0X3SZo2baoamJiXrdTt7++v+xivJPVGeMipC0lJ954UVNpSfVno\niZ+saveNVlZufmt2eZ05FHbm7IW0InmFNQKRc+devYcM+9hJaCjvoHSjntDkqVzGKXJSZaxL\nRf/tRY8PlSjL7gj5sL1DhReRF5dtCMUXVrqxPQAAAAAAAAAA6BGa9GCsIvNLiYjhmY7ztFWn\nXij2dRSuz5KxsvxoosFazWb4M01FdVvNXLl5Sm7Go8ynfEuH+i4OQuY/qUxEbh18res1dm/X\n4f1m9S21Gibr5tlvtvyYmCEhIgfv/q96OsPwrdW4S6PWUNy8eVPfGYyPJP9JWvpTudqzYN09\nmmm1v5abm/t6JxZWPnW7xmNLsmOjL0ZGXrwS94Ct5J+SL3RcHrSmhat2t13PT9rze0bZJFcT\nUYMR0+d86uNW/mzy1ZPfbNqXXCQnopLsqE03xs15R5/bwBuUl2/M6tmzp16SqCnp9Po5uyI5\ntf90lBPgVYuIJ3D4ZNS0j0eMf3jn9u3bd9Kz84uKiuRkYmlpKbav27RpM49mrqKKFnKv8Xzs\nTOOKZRzHHblXMLNZBe9yb/8YqxrwzRp9YFPxahxZUX+qBqa2HbWUEwAAAAAAAAAA3gSa9GCs\nMmVKIuKbNlR/LpqzgJ8lY1lZujZzERnDTFMVU1vnt20rnl9lWX/kwrm6yHAjbN2KAzGVddTK\nvfvuO4W5OZmPH+VKy3qQDMPv0mdwmxbNmzf3rCOqXXPsQFM4Rc6x3dt/vngjp/AVpsCS4c2C\nNRHZ2VmaEJGdudZf1g1tZjPHFsdfiYqIjIyJTZCwFfwlsXRu0qlTp1+O/kBEDM9K2x16Ikra\nf0k14Asdl+3Y0MJa+Pyzjdr3W7/DfdrYL9NlLBH9te8GvfOhtiNVbebMmfoNYKRk+TGLdv+n\nQ8/nq/ti9MKNcbUZwzN3bebt2sxb30EMiFf3urSnkIiubT7Bff/ZCz8rnCJ3199PVWNr1yGV\n/CQp9x8vW3HK0ddda0kBAAAAAAAAAOD1oUkPxsqCz8gUnFKezRGp+VF3hpwlIoZnrtVgoL6k\n00GBodHlD3km1s1b2FRYuWTJV0TEKaV3rkeG7tl7M03CcewDqePMdhUs0Q+gDo4t3hQw7XxK\n0Wuca6rlWbDfffddlc9zBdmZ6elpKQ/jw8/Flig5Tmk+aM7XPSqacKlxhjKzmZMn/XXlYmTk\nxZg/cipaP0Dk4ObTqVMn305tmjgTkapJrxu/3ytQDRr2nf9Ch15FYOk5b2DjWQfuEZEk4zci\nPTfpu3btqt8ARur2jh+lSo6IzB2bfzZpRJu33Rxt8AYDNKDeh2MEexfLOa4o9eSysDaBQ9o8\n/+xfe5dmyMr+6HkM9ajwCslnV18rLNtZo28vF62mBQAAAAAAAACA14MmPRir9lbCX3KlSkVu\neI60p51ZtfWywstZMpaIBBYttZ3N0GaaGiZpTsyi3WUdeoYv+mjUxP69OjuaVzUNkeGZebTr\nsbytb9iaWQeupD8I3xRo7xQ4pLlO8kJN8/jXr5/v0AtEYkc7KzXv+BFoeRZsw4YNq6to1JyI\nqN/wIXcP7w0+GpW8deHk4nU7BriLtRrMcEwZPSw1X/bycTO7Rh07dfL17eTd1EVfU5WTShSq\ngV+vBpXVuHzYjQ7cIyKF9KFuUhm+0NBQ1aDf0OEWhrRSRWV+uZlLRELrtlu3La6DXVdAcwSi\nFlPbO2y8kkVEN0K/mvOw/yedvT2aunIFGdfDD+w6UzZFnmdi+5mX3cunJ8fsn7/jmmps6TLA\nT1zxevhvKD0tVa6JH3sXF9xDAAAAAAAAAAC1FJr0YKy6+zn9ciKZiA5vjugZWP3Mzlv79qkG\nddpofRqogcw0ffq0bDVU2zp1XvtjVI4tnLdguWr88m7Bb+LnZd+r5iAyfIuJa7b1bqpuc5Hh\niYYuDM6dNvZsStGfBwKjP9zfybb6uzQAXvD7kSTVwKPL4Imj+jWxt9RvntdjZu8+eu4my8IJ\nP/yVvX9xYNt93zQ0rRW7P7zQoRfa1O/o06mTr29bzwZ6b5Y+kStVg1aWgspqym8X45RSXWQy\nBmFhYapB98HDjKJJHy+RE5HX1Eno0IPGdf5i2dkxM+4Uy4non5gT62NOvFzj1meBk7DsZ49T\nSHNych4nJcT8fvqX2AeqgwzP7PNlQ7SUcMn0qRq5zqlTpzRyHQAAAAAAAAAAo4MmPRirRgOG\nCk6uk3Nc9o2tq4+K533aoYqP9DOuH1wenqoafzjcTUcR9W3cuHGqwa5jJx0FFbQQOGXJDz8e\neqH4JYo7d+5oPJus8Nr+h4WqcdvJ69Tv0JdhhONWTg0fu07JybYvO9Zp4wiNJ4QaL7pARkS2\nXiPWzqpsT19jwftkwayQYYsV0nvrjz7cOOItPUZhZaV8oVZmbVaG4Yt6jpk9sW87w+nqss82\nKbesPBPPxChvCtEvji1cGrhONV6xYoV+wxBRqZIjovc8asvyFa+hT58+mr1g7Wno8oUuK7cs\nDQxYeSu/tMICcZMeK0f/u9Z9ytnF03befb6AYXjdJq3u4ogtGAAAAAAAAAAADBSa9GCshGKf\nBd3qrziXQkSXQ1aPv+Y3ZXTf5h7/bcBz7NOMhxfPHAk5fVnVNbH1GDvAWaSXwIaIk544UTY3\nq/ImvVak/xam5DgiElq1XfhhpStCV8HM1mesq/We+/n598POZH/a2x6T6eHVFCiURNR5+scG\n09t9fQJRCz+x6fk8adqvv9KIKTr7upwi91JEdFxc/K3bSXnFxRJJiZzlVF00WWHs8YhCHz/f\nBlaVzibXTAZWcnbPysvnvLp06dLF7/3G+FPwxrL+uX7pevydO3ceP8ktKiqSKnhWVlbWdk5N\nm3k29+7QwUuPa1Mrbt68qb+v/qIm5ibxxXIFp+8cUEOZ2rVatfv7swf2ngi/klUsLz/OE9h2\nHzRq1KAPRLxKX75MzOsOmLJopF8jnSQFAAAAAAAAAIDXgSY9GLG2U4P6pEw+lZhHRDmJEasW\nRTB8MwfLsnWGF8ye+uhRWpGMLa83FbdcvryvfrI+R/czTQ1Q4u8ZqkGDPiNNXrdH2mFI4z2r\nbxLR2WOPek9y11Q2qCUamvLvligaiWrI62ATM5PzRLKiq0Q6atInRh3btuPg/Yo2hicitvTB\ngZ37D+3Z6zd04vTBvhqf5t6ojlny038Xis9LuXUi5NbJfd83av5e165dOvu2tRViBfJXlns3\nInjbvutJT144XlyYl5GWcjf++ukjIXXcvEdNDujqYauXhAalt5t1fNzTP27nf+KDW0NAK3hC\n+95j5/YeI3uQmJiRnVPMCurWc3Fp2MDGrOJtTRiGcXRt3q59xz79ezpVUqMpU+cvtMFGDwAA\nAAAAAAAAb6CGNCegdmJ4ovGrg+2+X/fDr3GqIxwrzcovezYhKeX5YtumXRct9m+k5Y8sX2YI\nM00NUExO2fKt3l2cX/siYg8foptElH3tKqFJD6+os6PobnLB35klH9jUhJtm7pcqiIhji3Tz\n5W6ELgkMq35Os5LNPx8alJCUuXXRwNe+HadCwXsOPoy/EhEReTEqNltadjMWx7EP42L2xMX8\nsMW6Vcf3u3Tp4uP9tqAGLJWgEwknNyzZGyHnqpkY/vT+jU3zJ/w9buXMfs10E8xgtZk2gDd5\nV8LOEGnHL8wY/JxV4A13Jbh94dDBCwncs59JhtH1WzhDwQhdm7V0rbLE+f1Z379ramNjY2Gm\no/+5a9OufYVbKQEAAAAAAAAAgJrQpAfjxvDFA6at6tgl5sSp0xeu3ZayFXQX7F1b9+7Tr09X\nb923avQ709SQpT1b4aC1ZRU3KDBmZlVNTxSYle1uICuMJRqlsXBQO3QY771zacT1705ywWON\n/ZdPVnDtQl4pEfGEdXXw5VJ+3VzeoWf4Vp0+8HNv8rYg7sC2qIzyGhNRsxYuFnGpxUSUcTVk\n0cHm64Z7VHy518PwG7fwGdvCZ4x/cfzV6IiIiJjYBMmzlwClouDPiz//efHn78QuPp27dOna\nRZNfuibKjN6+cG9EeTfUql7Td1s0cXR0dHRwtBLIMzMyMjIy7sXH3k4tJCKOk1/Yu9DKacf4\nDo56Ta1norqfrBx+bVFo1NwNHkGzPkaf/mWtWrV6vRNLc+7s2bzx7I3U8iOieq0nzwzQUK4a\nSCh2cRHrOwQAAAAAAAAAALwKNOmhJnD28pni5TOZlTxITLifml1UVFQiU1pYWlnbOrp7etWz\n1c86tHqfaWrIcuVluxLYVr5WKsO3OXz4cBUXYUxsVANWllFFGUCF7FvPGuz+5+G7xxftaRg4\nroup0TbYSnPvbFm8keU4IjK366btL8dKk5duP68ai907z/3Cv6WzORElZZ14vkwgarFq677L\nh1atPvgHEd05Enin//6m5pp/18HwLVp07NGiYw9/yZOrUZGREReuJjxWPms2y/JTL5zaf+HU\nftVDjpOVKDnzyjdyrp2UiuyVm39RdeiFVm+PDZjWu51rRd8j7sG1M8Ebf0gqknGc8syG1QPe\nXW9be163KtJ8yPJZpWs2Hds1+lbkp8NG9O3S2qxW3XCnDRx77ec9W/aeyVWUvU9geGZ+gydP\nHtoFv7kAAAAAAAAAAFCToEkPNQfDF7l5tXXz0ncOIjKQmaYGTGzCy5azRPRUrqwvfM0FbFl5\nVtmIwYKr8BqYYV+vyZozL+LkxrGxEaNH9vV0c63vbGcILbaDBw+qVacsTX+U/Pf1P3Oe3fXi\nOfo9LcYiIqK0c1ueypVEZCpuu2HNLPsq9iRmTDoM+yrg8cRNURkcK9l+OmX94KoXbH4jfJFD\nxx4DO/YYWPLk/sXIiIiIyFuPcl+oYUtTRgz/vJ3v+539/Np7NcQfDpXM6A3JUpaITMxcl21d\n7SUWVlLIuLb7eM3WhrMnfvVIyiqk99Zfzlzh+/pblhi7kydPEhFZN+vR8t7Zm3dDN391IFhg\n5+Ts7OxsY1HZ97DM/PnzdRHR2BSnXN+yKTj67r+/ubZN3w8ImOJd30KPqQAAAAAAAAAAALQB\nTXoAzTO0maYGyENkEp3PEtGVHGkriypWvK+KLO+aasAX1tNYMiOxcv4XlfygsOWj2bNnV3ud\n9evXayqSMeILXT7p3zFiY3hx6l/fr/2LiBgeX525midOnKi+6A2o26T/L5GT35z3tL78+OWf\nHqkGvvOmVdWhf8Z34qhNUUFElHYulrTZpC9n7uDWY6Bbj4GfZd+/GREZGREZ/ShHWv6sQpJ1\nKfzopfCjZvaN33/fr7Nf5xaN62gpyVezAiqdZ879+6s6ffr0qq8THBysuVAVuHH0oWrgHbCw\n8g59GaFNy8XT35kYdI2IHhy+Qb4faTWbIduzZ88LRzhO/jQj5WlGil7yGDVOKfn94LYdRyKl\nyrJlMHgCu0/GTRvbu60h3DgFAAAAAAAAAACgcbWiHQi1EystfJJTbGZlLbYS6fgDXoOdaWo4\nOjiJovNLieiPg/dp3mvuWZt6+oZqILRqp7FkRuJhUlK1NUlq1NRysT8sXnH87+ePcEqWraza\nsNk26bR05QwdLAcdmV9KRAzPdJynrTr1QrGvo3B9loyV5UcTDdZyuv+wd2s10K3VwLFTH8Rd\niYi4cDH6j6fSf/95pdkPfz3+w6/Hf7Bt1LxL585jB/bQeIDUR8nqlCUnq1WmPeeySoiIYfiT\n2ql1k4fje5MFTKyc4ySZ54hqb5MeNCX79oVNG7ffTJeUH2nQtvfMGePetqnmlhEAAAAAAAAA\nAADjhSY91DSy/OTThw+dufhndn7Zp70CK8dWbd796NOhbV3Fuslg+DNN9c59QGNak0tET67v\neqrYXOc1djXmFGEXy/YOcHjPW7PxoDbIvxey8kScvlNUrFevXmrX8h3qN3J76+1Wzdx0M980\nU6YkIr5pQyu1v56zgJ8lY1lZujZzVY7hu7b0cW3pM3ZqUdyVqIgLEdHXE8tn6xJRbnL88ZB4\nbTTpjcXjUpaI+KaNHARq7QDAE9i7mvHvlihYWa2eMu7v76/vCEZPKcs+ufu7kF/+VHJlv5IC\nUYNhUwMG+rrrNxgAAAAAAAAAAIC2oUkPxkSW/+DnU+Gxf8SnP81hzGwcneq27dzzo65tLZ71\niiSpUTMC1mfJ/jMVVl6Ydf3imT+izrYfNGfhSF8dtLGMaKapvti/M0HEnyZhOVaavGJ/wsax\nXq96hazL62MLZapx934NNB3QQPn6+uo7Qs1xacs5juOIyNzRc8jwPs0aujjYWhrIsspTpkzR\nd4RKWfAZmYJTyrM5IjW/XRlylogYnrlWg1WL4Vu29OnV0qeXvyTramRERGRk7O3H5a1BDfrg\ngw80fk2tsjbhZctZTimpvvSZEtVdDsxrblZSM/Ts2VPfNEnoJgAAIABJREFUEYxb8rXTG4N/\nvJdf9lLOMIxnl2EzJg+qa8bXbzAAAAAAAAAAAAAdQJMejEZyVMiSDcfzFMqyx/lFTzMf3/47\n9tjhtoHfLPAQCxWShIWzN7zQoS/Hccorh4MWMTarR7TQdlTjm2mqc3zTBgt6Nlh65hERPTix\nNNTr+xHvvsJe2qW5fwZuuKwaW7r062Ov5+afzsydO1ffEWqOUylFRGRq03bH9iVibHqstvZW\nwl9ypUpFbniOtKedWbX1ssLLqj/LAouW2k+nFhORo0+vwT69Bkuy7l2MjIyIiEhIydPg9QMC\nAjR4NR1wNeNny1lWlvFXsby1RfV9d4Xk1mOZkogE5pjuDK9DUZwc+t2mYzH/7sliZu85PmBm\nj1bOekwF6li7dq1qYKvGSlEAAAAAAAAAAFAFfLwCxiHnZkjAN8f+7dA/R5J5ffHUZbkKLiLo\nmwclCiJiGF4Lv16jPpsyf/7sz0YM6tjUrrw44fDSyLxSbadVzexXzTRVk4HMNNWlluOWNDTj\nExHHyQ9/HRB64a6aJ5Zk/Llq5mrV+sxENHjxEG1FhBpNdTNN+4XT0aF/Jd39nFSDw5sj1Km/\ntW+falCnjcFNOxY5vtVz0GdrtoTs3rBc31n0qZubtWqw+2CCOvV3juxUrUJh/Zb6+zIAqHBx\nv4X6j51Z3qFnGEGH/pN37VyNDr1RaPaMAK+cAAAAAAAAAABvBjPpwQhwbMGyVSfLFyXmmzm1\naOneoH6d4qy0B4l/P8iWygriFn13IPPGUyLimzaYtWL5+x51/j1/yIjrp79bvvM3IuI4NnRb\nQucFbbQauAbMNNUBntBp2aKhkwIPyJQcxxaHbfjiemz/sUMGtGokruwUji24/Mvx7btP5j67\nXaNJ7/n9XCx0FRlqFDsBL0vGtqkr0ncQI9NowFDByXVyjsu+sXX1UfG8TztUcZNDxvWDy8NT\nVeMPh7vpKOKrc3irtb4j6FOzke/QzXAienR6xYEW3w1vX1WvNOuPw8tOPFCNvUd4aCPPyvlf\nVPL29N+VcmbPnl3tddavX6+pSESUl1e23ALDCMRivO68DumTW7s2bfr174zyI9aN20+dOb3D\ns9tEAAAAAAAAAAAAag806cEIZF3Z9ECqUI3rtOq1ZN4EN6uy9Xg5tuDnXWt3nolLPR+mOtJu\nzlf/6dATEfHafjJjeuxfwX9lE1FO/C9E2m3Sd/dz+uVEMhEd3hzRM7D6yaOGPNNUq+q0HrJx\nVsG09T+r7sC4F31iaczJhl7verdo7uX5toOtjZWVJSMvKSgoyHp8Lz4+Pjb6SppEXn66fauh\n6yb66C8+GLeuNqaHsiSPpRVvkAGVEYp9FnSrv+JcChFdDlk9/prflNF9m3v8twHPsU8zHl48\ncyTk9GWW44jI1mPsAGfcD2GgbJpO6eYY9VuWhONkYV9PSfpo1PB+PZs4vfjvVZJ1L/ynQyE/\nX1NwHBGZO3zg72GjjTwPk5KqrUlSo0azRo8erRoILVodPbiCnlv3+zXMnz9fM7GMBSeLObH7\n+33hBWzZPXY8vtWHI/0nDPARYkI2AAAAAAAAAADUSmjSgxGIP1K2ELqJeZOgrybZP7cLJsO3\n/mTSyty/Rx5NKSQihmE+87av8CIdJvkET/mJiOSF11iOtLq+taHNNH2zWYnabWHW7/z5Nut6\nq4P2PCiSExHHccnx15Ljr52o7sQWvSYuntTbBB/uw+vqMtLz0Prrl0Ljxsxpr8cYw4YN0+wF\nDx48qNkLvqzt1KA+KZNPJeYRUU5ixKpFEQzfzMGyrPe2YPbUR4/SimT//ukwFbdcvryvtlPB\nG+B9/nVAvP+6DBnLcez1Mz/88b8QG4e6To6OTk5O5lSSlZWZmZmZ/iTv3yVthI4zVn1ey/dM\niomJ0XcE41Dw4OqWTd9dvp9ffsSpRfeAgM+bO1a/1BAAAAAAAAAAAEBNhSY9GIHfMyWqQYOP\n/J/v0D/DfDylxdFFl4iIGKGTsOKugXmdzkQ/ERHHaX3irKHNNDXMWYnlnNv0Xr+nddjuvWd+\niy1kuWrrLep5DRoxYYDvWzrIBjVY3c4LPzk57ueLa498sGNQ64pv7tGB4uJifX3p18bwRONX\nB9t9v+6HX+NURzhWmvWsAZeQlPJ8sW3TrosW+zcy4+s4JLwSc8cO364LWLFsS2JuKRFxnDI3\nKzU3KzUxvoJiodh9ytKlPpp+wfL19dXsBUHvOLYwfN/WXScuycpv7zB1/nTS9BHdWuAWOwAA\nAAAAAAAAqOXQpAcjkFJa1lb37lGvwgLLRp2JLhERpyyt7CI8k3/XwNfqNHoVzDR9JXwzl+FT\nFw8ek/b7/8Kv/RWXkHi/+Nmu8+VMRPZerVu369i1l29zTKAHDWAEn61e9vSLJfu/mnTno5ET\nRn3iLMJroroYvnjAtFUdu8ScOHX6wrXb0opur7F3bd27T78+Xb0F+IU1BlZufmt2eZ05FHbm\n7IW0InmFNQKRc+devYcM+9hJqPm7LubOnavxa2pQ06ZNVQMT8/qqgb+/v/7iGIcvJ02Izyop\nf+jg1XXG1BGNLAX5eXmvd0EbG63ssAAAAAAAAAAAAKB7DMdVP28VQL/69OmjGqw5dNyzoi4a\nK0vrP3Cyanzq1KkKL8KxuX37j6m6RrM4Nv/EczNNq6CaadpULNRsgKCgIM1eUGcdFI6VPE5J\nKygoLCgokDOmYmux2Ma2fn1n9OZBg06ePElESkXOiQOn8hVKhuGJHVwauDio01EODAzUVIyQ\nkJCqCzil9Njxn1XjgQMHVnvB8p2zdYZjJQ8SE+6nZhcVFZXIlBaWVta2ju6eXvVssZa1UeKU\nJQ/v3L59+056dn5RUZGcTCwtLcX2dZs2bebRzFXEwx9iUFf5+zdN0c37NwAAAAAAAAAAAB3A\nrEEwJvaCipey5/HNdZxEHXqfaWrgsxKrwPBFDRo30XcKqOH27Nnz/EOOU+ZlpeRlpVRWryXV\n9tQ5Nre8Sa/7Brw6GL7Izautm5e+c4CGMDxz12bers289R0EAAAAAAAAAAAAoMZCkx5Au5y9\nfKZ4+UzGTFMAAADj9ESudKjkNsHXIM2KM3NsoamrAQAAAAAAAAAAgDFCkx5AFzDTFMDQzJw5\nU98RAIwadzfxjruHh75j6MLMud9tCppW2XI+r+Tv8L3fbP8p5PjJN7+U4du0aZO+IwAAAAAA\nAAAAABgoNOkBAKA26tq1q74j1ASlJZKKtvKomEgk0mYWeGVKmSQnN1fKmTk42JnyX2HbFaUs\n+5cf1207nVhL9ggvvP/bzLm08c369ApJ8g/frjkVm6rBYAbO1dVV3xEAAAAAAAAAAAAMFJr0\nAAAA8GpSboQf/Pli0r17GbkS9c+qJQ1do/DP5dOHTp27mZAs4zgiYhh+3Wbv9R8wqEc7t+fL\nFJInf9/4OzU7v6ioqLCwSFoqKy2V5j5JS36YUihj9ZRdPwru/zZzHrNx3dTX69M/unpy7YaQ\nFIlC48EAAAAAAAAAAADAGKFJD6B9nCwq+qo6hXXeec9TJNB2HACAN3HnRNC8H6I5Tu0Z9GBI\nOE7204Yv9kQ8/O9BNi0hZktCzPXhS78c2paIOLbgyMYVYRfvyvEP/UzBvXMz59Gr9uk5Re7x\n74N+PBdffkRg2UgL6QAAAAAAAAAAAMCYoEkPxiTqt3PWJhV8Ms4pi8vH586dq/Dc52u0iFPc\nigmPuBSbwgxaM9er/EsHBQWpc3a7Tfs8XcXazAcAamFlpXyhqb5TGCJpbsSX6NAbs/h9i17o\n0D/v6oHl6+vvnN3JKWT+1GN386u+FMO8wgr5Rm1KN7fvf7tPRAX3zs2az2xY529f0buRl+Xe\niVi3duutbGn5EdeOn86bOVJbQQEAAAAAAAAAAMBIoEkPxuTH77dUWxMcHKyDJBXKunn2my0/\nJmZIiMjBu/+rns4w/ApvQQAAbeMUuZciouPi4m/dTsorLpZISuQsp1qbXVYYezyi0MfPt4EV\nVrkgIrq9LVT2rEPv2W3UsA/fady4vuhVtjMHPVJIEpYd+6f8oW0T73ebNqrrJC7MSn/0MOF6\nfAoRRW1e0V3YrLxDzzB86zoODvb21uYmLKtUcjwLaytra7GLm+c773jr5z9D53rN2MDjz9kS\nnkRE+Um/zprHbFw3pU6VL9kcV3ohdPOWI9HlSxHwhY6Dps4d3qWpLhIDAAAAAAAAAACAYUOT\nHkAzboStW3Eghq1udum7775TmJuT+fhRrrRsN1+G4XfpM7hNi+bNm3vWEfG1nxQA/iMx6ti2\nHQfv58sqfJYtfXBg5/5De/b6DZ04fbAvmtG/3MpVDVqMXr1qoJd+w8CrSvl517NN6JkPP/ty\ncp92z/9Ip1w+MGNNGCt9tHhViupIE9/+n48Z1szRTC9pDQnTY+q3PN7c4LN3iSg/KXzmPNq4\nzr+OScV/ESQZfwWv+Tbm/r9LETi17DF37ufuYqGO8gIAAAAAAAAAAIBhQ5MeQAOSTgcFhkaX\nP+SZWDdvYVNh5ZIlXxERp5TeuR4ZumfvzTQJx7EPpI4z27XQUVYAeM6N0CWBYTerLVOy+edD\ngxKSMrcuGlhJV662SChWEBFf4LCwv6e+s8Aru/lbumpg13za1L7tXni2QYfh8ztFfB2VodrO\nwNZjzLdzP63dP+/PY7pPCeLz52/8OZFUffr5tHHty3167saZXd/uOlPIKlWPeXyrXp/NmvhJ\nW3wnAQAAAAAAAAAAoBya9GAEQkND9R2hKtKcmEW7yzr0DF/00aiJ/Xt1djSvak48wzPzaNdj\neVvfsDWzDlxJfxC+KdDeKXBIc53kBYAyKb9uLu/QM3yrTh/4uTd5WxB3YFtURnmNiahZCxeL\nuNRiIsq4GrLoYPN1wz30E9cwlHAcEZnafmCJVQWMUHR+qWrQekL7CgtajupMUWGqcacZPfBv\n/F9M14nreLwF608lEFH+P+Ez59Omtf52z/r08sL7e75de+ZGevkJ4rd85syf3tpZpJ+8AAAA\nAAAAAAAAYKjQpAcjYGVlpe8IVfl52fdSJUdEDN9i4pptvZuK1TyR4YmGLgzOnTb2bErRnwcC\noz/c38kWSwoD6AgrTV66/bxqLHbvPPcL/5bO5kSUlHXi+TKBqMWqrfsuH1q1+uAfRHTnSOCd\n/vubmtfeV8/GZiZ3JXKqbmsPMEzpsrLp3Z0cKn65MbXrTFTWpH+/Dl6SKuA3YQ2f92XQyTgi\nyv8nPGABs3nNFFsT5kHM0bWbQtPK97LhCTsPmTZtaGchg1sdAAAAAAAAAAAA4EU8fQcAMG6y\nwmv7Hxaqxm0nr1O/Q1+GEY5bOZXHMBwn277smObzAUAl0s5teSpXEpGpuO2GNbNUHfqKMSYd\nhn0V4OtMRBwr2X46RWchDdBHLhZEVFoQLUOb3giVr8HuJKx4uRe+wKl8bMPHu8SK+X62av6A\nVqpx/t1fZizYFrZxXsDakPIOvci51dxvds8e5ocOPQAAAAAAAAAAAFSo9s4FBNCI9N/ClBxH\nREKrtgs/bPAaVzCz9Rnrar3nfn7+/bAz2Z/2tsfMRQBduPzTI9XAd940e5Pqm5G+E0dtigoi\norRzsTTYVVMxQkJCqi7glFL1i4lo9OjRb5qpSm2n9qSZh9jS1C1XsmZ1cNTq1wLtqbR5zAj+\nHaK/XDmfsSsW8gNXH7lBRPl3z4beLTvOMDzv3hNmj+9thf0gAAAAAAAAAAAAoHJo0gO8kcTf\ny/aubtBnpMnrfiDfYUjjPatvEtHZY496T3LXVDYAqEJkfikRMTzTcZ626tQLxb6OwvVZMlaW\nH000WFMxjh49qtlibTfprd2Gf9E16pvzqRe/XfLOt9++38hSq18OwGB1GBW4mLd8Zdj18iNC\n8dsTvpjXs5VTFWcBAAAAAAAAAAAAEJa7B3hDMTmlqoF3F+fXvojYw0c1yL52VQOZAEANmTIl\nEfFNG6o/4dVZwCciVpauxVjGwHfG+pGdGrCy9G8Dxi7fcuhejrT6cwBqonYjli4d3q784dsf\nj0aHHgAAAAAAAAAAANSBmfQAbyRNVrYBbWtLQeVVjJlZVYvYC8zcVANZYSzRKI2FA4DKWfAZ\nmYJTyrM5IjW79BlylogYXuW71786a2trDV5Ns9auXVvpc5yLOe9xiVJ2PfzA9fADIrF93bp1\nHetYV33r3/z58zWdEUDP2g5dHMhbHbj/MhHdCl2yVrBq/oAW+g4FAAAAAAAAAAAAhg5NeoA3\nkitXqga2le9pzfBtDh8+XMVFGBMb1YCVZWgwGwBUob2V8JdcqVKRG54j7WlX1W00KrLCy1ky\nlogEFi01GGP//v0avJpmxcTEqFkpyc++l599T6tpAAyV9+CFK/hrl/wYQ0QxP3y5jlbNQ58e\nAAAAAAAAAAAAqoTl7gHeiPhZb/7ps279a2DlWWUjBr+SADrS3a9sVerDmyPUqb+1b59qUKdN\nTy1FAgAj1erT+avG+TIMQ0TRP3wZdCJe34kAAAAAAAAAAADAoGEmPcAb8RCZROezRHQlR9rK\noooV76siy7umGvCF9TSWDACq1GjAUMHJdXKOy76xdfVR8bxPO1SxN33G9YPLw1NV4w+Hu+ko\nor75+/vrOwKAQTh37lz1RZatP3C7+du9AiKK2rtIUfJ5W4dKl+jo3r27BuMBAAAAAAAAAACA\n0UGTHuCNdHASReeXEtEfB+/TvFavd5HU0zdUA6FVO40lA4AqCcU+C7rVX3EuhYguh6wef81v\nyui+zT3+24Dn2KcZDy+eORJy+jLLcURk6zF2gLNIL4F1r2dPrBkAQEQUHBz8qqdcPrTzcuXP\nokkPAAAAAAAAAABQy6FJD/BG3Ac0pjW5RPTk+q6nis11TCqfilsZThF2sWwreof3vDUbDwCq\n0HZqUJ+UyacS84goJzFi1aIIhm/mYFm2dcWC2VMfPUorkrHl9abilsuX99VPVgCNmjNhXLXb\nq6hT8+OPP2omEAAAAAAAAAAAAEBtgiY9wBuxf2eCiD9NwnKsNHnF/oSNY71e9QpZl9fHFspU\n4+79Gmg6IABUiuGJxq8Otvt+3Q+/xqmOcKw0K7/s2YSklOeLbZt2XbTYv5EZX8chDc3p06eJ\nyMrN18/LRs1T/gr/X4qMNTF/q1c3T21Gg1eQn5urkRoAAAAAAAAAAAAAeA1o0gO8Eb5pgwU9\nGyw984iIHpxYGur1/Yh3HdU/vTT3z8ANZQviWrr062NvrpWUAFAJhi8eMG1Vxy4xJ06dvnDt\ntpTlXq6xd23du0+/Pl29Ba++UkbNs3PnTiJq1Kep+k365GP7dmcUC0TNe3X7WpvRALQlNDRU\n3xEAAAAAAAAAAACgRkGTHuBNtRy3pOHvkx9JWY6TH/46gGYsG9HFXZ0TSzL+XD1/9ePSssW0\nBy8eos2YAFApZy+fKV4+k1nJg8SE+6nZRUVFJTKlhaWVta2ju6dXPVszfQc0bjIlR0SK0gf6\nDgLUv39/fUcwSlZWVvqOAAAAAAAAAAAAADUKmvQAb4ondFq2aOikwAMyJcexxWEbvrge23/s\nkAGtGokrO4VjCy7/cnz77pO5irLdr5v0nt/PxUJXkQGgAgxf5ObV1u2V96yo4W7fvv3ywdKc\nB7dvs9WfzCly0xKOZJeoHmg4Gby6cePG6TsCAAAAAAAAAAAAABDDcfjQHEADHkfunLb+Z+Wz\nXyiGYRp6vevdormX59sOtjZWVpaMvKSgoCDr8b34+PjY6CtpEnn5ufathu5YPtwEK2kDgOHp\n06ePRq5jZtP1cMhMjVwKAAAAAAAAAAAAAMCooUkPoDEZf55ZHbTnQZG8+tLntOg1cfGk3uY8\ntOgBdCopX9ZELHyNE7Pif3Ns3k3jeQyWppr0PvN3zvdx0silAAAAAAAAAAAAAACMGpr0AJrE\nSlPDdu8981tsIVv9b5ZFPa9BIyYM8H1LB8EA4AX9B04Y6D9nRNdm6p+ilGef3Lk5JPzmyZ9+\n0l4wQ+Pv7//8w8ePHxORwMrRSe1bHCzr1Gvh23/Uh9hIAAAAAAAAAAAAAACACE16AG1QFKX9\n/r/wa3/FJSTeL36263w5E5G9V+vW7Tp27eXbHEvcA+iLaoJ4w3Z9584c3chSUG394+tn1m/a\nm5QvI6JTp05pPZ+hUn3fGvX5JniCu76zAAAAAAAAAAAAAAAYJRN9BwCogUws6/UYPK7HYOJY\nyeOUtIKCwoKCAjljKrYWi21s69d3Rm8ewEA8uvbTzM+uD58+Z5Bvk8pqWGla2NaNhyISdRkM\nAAAAAAAAAAAAAABqKsykBwCA2ij29M7v9p7JfbbWxVs+A78IGOFixn+hLCnm2IbgAykSueqh\nQNRgqH/AoPdr7yTyw4cPE5HYvVuP1nb6zgIAAAAAAAAAAAAAYJTQpAcAgFqqNPfOnk0bzt5I\nUz0UWDQaNfOLfu0bqR7KCx/uC15/8spD1UOGYby6Dp8+aWDdlxr5AAAAAAAAAAAAAAAA6kOT\nHgAAarWE8wc3bzuSJlWoHnp0Hf6F/6AnFw9t2n40o5RVHTR39Bo/I+DDls76i2kcWFkpX2iq\n7xQAAAAAAAAAAAAAAAYNTXoAAKjtFJKUA1s2HY26q3rINxOxUolqzDBCnwGfTxn5oRWf0V9A\nA8Upci9FRMfFxd+6nZRXXCyRlMhZ7tSpU0QkK4w9HlHo4+fbwEqg75gAAAAAAAAAAAAAAIYF\nTXoAAAAiouRrp5au2VO+Sz0RWTXuEDBnWrtGVnpMZbASo45t23Hwfr7sheOqJn1J9uEhn+3n\n8cV+QydOH+yLOxwAAAAAAAAAAAAAAMrx9B0AAABA/2R5//zyS/jzHXoikmY9fvQoXV+RDNmN\n0CXzgn58uUP/AiWbfz40aMrXRxW4IRAAAAAAAAAAAAAA4Bk06QEAoHbj2Otn9kwaP+/M9RTV\nARfvbm5WQiKSS1JCgr6YtmJnUnXd6Fol5dfNgWE3VWOGb+X74Sfj/WdP9nV+vsZE1KyFi4Vq\nnHE1ZNHBRF2nBAAAAAAAAAAAAAAwVFjuHgAAai9J2l/bNm6KSHyqesg3dR40Zdbwrs3Y0szD\nW749GFHWWuYL7fuOnzamlzdWbWelyRNGBDyVK4lI7N557hf+LZ3NiSgpJGD20Qf0bLl7IiJO\ncfnQqtUH/yAihi9ad2B/U3MTveUGeAPnzp3T4NVsPH3edRFp8IIAAAAAAAAAAABgdPBxOQAA\n1EYcJ40M274t7LyELbtZrVG7vnMCRje2EhAR39Rp2Ox1HTue/GbTvuRiOSvLPv594MXIrjNn\nTlL1pGuttHNbVB16U3HbDWtm2ZtUviQPY9Jh2FcBjyduisrgWMn20ynrB7vqLiiA5gQHB2vw\nah7+zdCkBwAAAAAAAAAAqOWw3D0AANRGK6Z9tv7A76oOPd+s3vDZQcGLx6s69OUavddv497N\nAzu9pXqYnXB+yZTPvjsapYe4BuPyT49UA99506rq0D/jO3GUapB2LlaLsQAAAAAAAAAAAAAA\njAdm0gMAQG10PaVINXDt0H/2jFGNLCp+QeSbuYyet6Fjx6PfBh9ILVFwbPGvIUHTBvrqMKlh\nicwvJSKGZzrO01adeqHY11G4PkvGyvKjiQZrOR2AVrz33nuVPaWUP732xz/lDxmGZ2Xr4OTs\nbMUvzczMzHySp3i2sRRf6Dxi8lB7E57Y3U7riQEAAAAAAAAAAMCwoUkPAAC1lIm5y7Bpcwb5\nNqm2skmngcFt3g3Z9M3JK8k6CGbIMmVKIuKbNrTiM2qe4izgZ8lYVpauzVwAWrRo0aIKjysk\n976du0Q1FtX1HDBo8MfvtxYJ/11hgmNL71w9d+hQ2I2H+aws4+jRSys3LGhijrffAAAAAAAA\nAAAAtR2WuwcAgNroLZ+Bm/YGq9OhVzGxaPTZouB1s4c5m/K1GszAWfAZIlLKszm1T8mQs0TE\n8My1FgpAL7j9iwNjUoqIyHvgvP3b1gzu5v18h56IGL6pR8ePAzeHBI7tRESStGvLvgxRqP/L\nAwAAAAAAAAAAADUUmvQAAFAbbZg/uoHoleezevgN+27Pt9rIYyzaWwmJSKnIDc+RqlMvK7yc\nJWOJSGDRUrvJAHQr9/bm40n5RGTfenzg6E4mVS0twXgPmDejgxMR5SedDLqSpaOIAAAAAAAA\nAAAAYKjQpAcAAHgFQis3fUfQp+5+TqrB4c0R6tTf2rdPNajTpqeWIgHoReyuP1SDgTN7qFPv\n6z9CNYj7MUpbmQAAAAAAAAAAAMBIoEkPAAAA6mo0YKiAYYgo+8bW1Ucvs1Uu3J1x/eDy8FTV\n+MPhtfrmBqh5/pdSREQMX9TLzkydelOxn40Jj4hKnv6m3WQAAAAAAAAAAABg8NCkBwAAAHUJ\nxT4LutVXjS+HrB4/f/3V+HvFL2yyzbFP0++d2LVmyopDLMcRka3H2AHOIt2nBdCelFKWiHg8\ni6rWuf8vcx5DREoZlrsHAAAAAAAAAACo7V55O14AAIAaYMyYMa93YpOxa5Z0qavZMMal7dSg\nPimTTyXmEVFOYsSqRREM38zBUql6dsHsqY8epRXJ2PJ6U3HL5cv76icrgNZY8plcBcfKn9yX\nsm5m/Grr2dLkDLmSiHgCG+2nAwAAAAAAAAAAAIOGJj0AANRGubm5r3diYSlbfVGNxvBE41cH\n232/7odf41RHOFaalV/2bEJSyvPFtk27Llrs30iNFiaAcelgLfxfjpSIdp1P+/qjBtXWp0fs\n4DiOiITWPloPBwAAAAAAAAAAAIYNy90DAABUz0Rk5+jo6OjoaGeO+9uI4YsHTFu1Y/X8Xh08\nzfgVr/Zt79p6TEDgrnUzm4qFOo4HoAMf9nBRDW7vWXb9ibTqYmn2jWU7E1Rjl4+6ajcZAAAA\nAAAAAAAAGDxGNacHAACgVnn06FGVz3MF2Znp6WkpD+PDz8WWKDm+mcvkZV/3aGaro3zGg2Ml\nDxIT7qdmFxUVlciUFpZW1raO7p5e9WzN9B0NQIuXsOG/AAASVElEQVQUklvjRnyZzyqJyMS8\n0bg5X3zSrlGFlY+u//ztN3seSBRExDOxXRO62wP3+gAAAAAAAAAAANRuaNIDAABURZp99/De\n4KNRyQzPfMy6HQPcxfpOBAAG4d7x5bN+uF7+sI5b607ezerWrevs7CwiSUZGRnp6euKN6D/v\nPy2vaffZxsX93PQRFgAAAAAAAAAAAAwImvQAAADVUh5fOuGHv7JNzN7auO+bhqbYYR0AiIii\ndn8Z9FOcmsWtByxYPrajVvMAAAAAAAAAAACAUUCTHgAAoHpySdygYYuVHOc2ZMPGEW/pOw4A\nGIqHl45t2HHoQU5pFTUiR/cRk2Z+8m59naUCAAAAAAAAAAAAQ4YmPQAAgFo2jh58Pk9qZtvr\n8I9T9J0FAAwJJ7t16feYP/6+fftO+tMCiVTGMDxTcws75wZNm7q3ete38ztv8xl9hwQAAAAA\nAAAAAACDYaLvAAAAAMahiZnJeSJZ0VWiWtGk79Onj2YveOrUKc1eEMBQMEIvn15ePr1UjzhW\npuQJ0ZUHAAAAAAAAAACAyqBJDwAAoJb7pQoi4tgifQcBAIPG8IV8fWcAAAAAAAAAAAAAQ8bT\ndwAAAAAjICu4diGvlIh4wrr6zgIAho6VVbVFPQAAAAAAAAAAANRymEkPAABQjdLcO1sWb2Q5\njojM7brpO46OrFix4k1Ov33h0MELCRzHqR4yDKYWQ43FKXIvRUTHxcXfup2UV1wskZTIWU61\nv4OsMPZ4RKGPn28DK4G+YwIAAAAAAAAAAIChQJMeAABqo4MHD6pVpyxNf5T89/U/c+RK1QHP\n0e9pMZYhadWq1eudWJpzZ8/mjWdvpJYfEdVrPXlmgIZyARiWxKhj23YcvJ8vq/BZtvTBgZ37\nD+3Z6zd04vTBvtioHgAAAAAAAAAAAAhNegAAqJ3UbdL/l8jJb857jhoPU3Nw7LWf92zZeyZX\nUXZPA8Mz8xs8efLQLuY8NCehBroRuiQw7Ga1ZUo2/3xoUEJS5tZFA03wqwAAAAAAAAAAAFDr\noUkPAACgFtsmnZaunIFmc2WKU65v2RQcfTe3/Iht0/cDAqZ417fQYyoA7Un5dXN5h57hW3X6\nwM+9yduCuAPbojLKa0xEzVq4WMSlFhNRxtWQRQebrxvuoZ+4AAAAAAAAAAAAYDDQpAcAgNqo\nV69eatfyHeo3cnvr7VbN3LBUdYU4peT3g9t2HImUKst2oOcJ7D4ZN21s77b4jkFNxUqTl24/\nrxqL3TvP/cK/pbM5ESVlnXi+TCBqsWrrvsuHVq0++AcR3TkSeKf//qbmeAcOAAAAAAAAAABQ\nq+EjQgAAqI2mTJmi7wg1RPbtC5s2br+ZLik/0qBt75kzxr1tI9RjKgBtSzu35alcSUSm4rYb\n1syyN+FVWsqYdBj2VcDjiZuiMjhWsv10yvrBrroLCgAAAAAAAAAAAIYHTXoAAAB4HUpZ9snd\n34X88qeSK5tALxA1GDY1YKCvu36DAejA5Z8eqQa+86ZV1aF/xnfiqE1RQUSUdi6W0KQHAAAA\nAAAAAACo3dCkBwAAgFeWfO30xuAf7+XLVA8ZhvHsMmzG5EF1zfj6DQagG5H5pUTE8EzHedqq\nUy8U+zoK12fJWFl+NNFgLacDAAAAAAAAAAAAg4YmPQAAQPU4tnDO3K9U4/Xr1+s3jH4pipND\nv9t0LCap/IiZvef4gJk9WjnrMRWAjmXKlETEN21oxWfUPMVZwM+SsawsXZu5AAAAAAAAAAAA\nwAigSQ8AAKAORVJSUvVVNRwX99uB4O1HM0pZ1WOGEbzXb/zU/7d3r0FW1gUcx/9nz+5huSy7\nyFXbQlFBWbxglApDIaMNjtOawEyppJVOIGqj3dZRmy5qZlkNhZghZJhjoYiBpNALSiXK8ZKl\nopNliRIKCCjBsuzZpxfHYTK57ME9/+cc9vN59ezhPM/8huHFzvnyPOeCM/t2ulPCwaF3NtPW\nnnTs2piE0Ml//et35UMImaqeJR0GAAAAAJQ/kR4A2L/WDc/ePmvWir+s3/1K38NPvvSKy08d\n1jfFVZCWk+tyD21u7WjfvPyN1kmH1O73/W1vrX69LR9CqOl9fOnXAQAAAABlrSrtAQBAeUva\nVt1368Wfv2Z3oa/K1k26sGX+rGsUerqtMyYMLhws/NHvOvP+Z++8s3DQf/SkEk0CAAAAACqF\nSA8A7NWbL/3pxisvuumOB9/MdxReGXzcGdffNm/mlHE5T7inGxs6+VM1mUwIYeOTc268d3U+\n2deb1z9+97eWv1o4/th5wyLMAwAAAADKmcfdAwB7kOTfWn7nnNsX/6EteTs/ZnsMmTL98vNP\nP06dh1z9uKtOb7zut2tDCKsX3HjRYxMuueDsUce8M8An+U3r//nwsnsWLF2dT5IQQr9jPjN5\nSK9UBgMAAAAA5SOTJPu88QcACCHJbz77nAsLx0uWLEl3TBxXX/zJZ17fsfvHgU0Tv3Dp+UP7\n1BzwBRsaGrpiF5SLpGP7vKtmLHl+y+5XMtnagX06Xt/aFkIYedT7X3553ba2/O4/7VF//M1z\nvzm0NpvCVgAAAACgnIj0ALB/3TDSNzc3d+0Fu8nfG91Kkt+6+Nbv3rHir/t9Z78RE6++duaI\n+lyEVQAAAABAmfO4ewAAOBCZbP3ky24Ye9qqxUuWrnxsTeuevpp+wBEnntX8ieaJJ9X4oggA\nAAAAIIQg0gMAwHsxpGncJU3jZuS3v/T8c/94deO2bdt2tHX07lPXt9+g4SObDutXm/ZAAAAA\nAKC8iPQAwB7MmjUr7QlQSTLZXsOaxgxrSnsHAAAAAFD2RHoAYA+OOOKItCdA+Vq6dGkIoW7Y\n+AlNDZ085c/Lf7O2LV/d88gzTx9ZymkAAAAAQLkT6QEAoDhz584NIQxtHtH5SP+vRXfOW/+f\nml6jzjz926WcBgAAAACUO5EegIPcsmXLuuAqHTu64CJAN9bWkYQQ2ne+lPYQAAAAACBlIj0A\nB7nbbrst7QlAxVuzZs27X9z5xktr1uT3f3LSvnndc/dsLPxfn6SLlwEAAAAAlUakBwCA/Whp\naXn3i+sfvaXl0eKu06PulK4ZBAAAAABUrKq0BwAAQHfxwennpj0BAAAAAEiZO+kBOMgtWrQo\n7QlAxWtsbPzfH1955ZUQQk3doMH1uU5eoU//w44bf86nxw3u+nEAAAAAQEXJJInvxQQAgCI0\nNzeHEIY23/zji4envQUAAAAAqDAedw8AAAAAAAAAkXjcPQAAFGfatGkhhPrhA9IeAgAAAABU\nHo+7BwAAAAAAAIBI3EkPAAD7smXLlsJBJlNTX9873TEAAAAAQKVzJz0AAOxLc3Nz4SDX+4R7\n774uhHDTTTcd8NVaWlq6ZhYAAAAAUJncSQ8AAMVZtWpV2hMAAAAAgEpVlfYAAAAAAAAAAOgu\n3EkPAAD7MmLEiMJBdc/GwsHMmTPTmwMAAAAAVDbfSQ8AAAAAAAAAkXjcPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEUp32AAAAqGzbtm5tT5JOvrm+oSFT0jUAAAAAQHkT6QEA4EC8\n+uTyBUtWvvji3ze8ubPzZ921+Nd1WZkeAAAAALovkR4AAIr24tIffOn23yedvoF+txrfNwUA\nAAAA3ZtIDwAAxWnbuurqee8o9NlstpPn5jJuowcAAACAbk2kBwCA4qz56c9bO5IQQs9Boz43\n/fzRRw8b1NAz7VEAAAAAQGUQ6QEAoDgPPb05hJDrO2bOT67tX+359QAAAABAEXykCAAAxXlm\n+64QQtOl0xV6AAAAAKBYPlUEAIDi7OxIQginHFOf9hAAAAAAoPKI9AAAUJyjelaHENqTtHcA\nAAAAABVIpAcAgOKcNaxvCOGJNVvTHgIAAAAAVB6RHgAAijP6sslVmcxzcxe0Ju6mBwAAAACK\nI9IDAEBxeh368evPO771jUe+8sMHdHoAAAAAoCiZxKeKAABQtGTlgu/MWvTH3ICjp5x7/tmn\nnVibzaQ9CQAAAACoACI9AAAU5/777y8c/PuJBx58+vUQQiZTc8jgIUOGDGnondv3uS0tLSXf\nBwAAAACUseq0BwAAQIWZP3/+/72SJLs2rV+7af3aVPYAAAAAABXEd9IDAAAAAAAAQCTupAcA\ngOLMnDkz7QkAAAAAQKXynfQAAAAAAAAAEInH3QMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAA\nAABAJCI9AAAAAAAAAERSnfYAAAAoX1OnTj2As6qqa/v1P+TQw489dezY08aekMt0+S4AAAAA\noFJlkiRJewMAAJSp5ubm93iFug+MmfHFK8cPq+uSPQAAAABApfO4ewAAKKG3Xn78+1++bNmz\nW9IeAgAAAACUBXfSAwDAXi1cuPAAzurY1bp547qnH3983da2wivZ3Pu+94vZR9Vmu3QdAAAA\nAFB5RHoAACiJpGP7yl/NnvXLVYVfuQecdMX8b0xMexQAAAAAkDKPuwcAgJLIVPWaeO5Xvz1t\nVOHHTU/NeX5He7qTAAAAAIDUifQAAFBCTVO/PqYuF0JIkrafPfJa2nMAAAAAgJSJ9AAAUEqZ\n3IVThhYO1z30t3S3AAAAAACpE+kBAKC0Bo4fUzjY8dqj6S4BAAAAAFIn0gMAQGnleo8uHOR3\nvpruEgAAAAAgdSI9AACUVlV1v8JBR/uGdJcAAAAAAKkT6QEAoLQ68psLB1XVA9NdAgAAAACk\nTqQHAIDSanvricJBtsdh6S4BAAAAAFIn0gMAQGm99vDbkb7nwPHpLgEAAAAAUifSAwBACSUd\nrXfc93Lh+NBJR6U7BgAAAABInUgPAAAl9MRdX3tqW1sIIZPJffYjQ9KeAwAAAACkrDrtAQAA\ncHDKt254YMEt8x54ofBj/9GXHNvLr98AAAAA0N35lBAAAPZq9uzZB3BWR/vOLZtee+6ZF7bn\nk8Ir2R6N11w1oSuXAQAAAACVSaQHAIC9WrFixXu/SDY3aMYNNx5Zm33vlwIAAAAAKp1IDwAA\nJTRw5EdnXHbJhxp7pT0EAAAAACgLIj0AAOxVY2PjAZxVVV1b39AweOjwk0859cNNQzNdPgsA\nAAAAqFiZJEnS3gAAAAAAAAAA3UJV2gMAAAAAAAAAoLsQ6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACL5LwUaqSG1fRnFAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "dt_sep<-data.table::data.table(acl00=c(\"Sleep\",\"Sleep\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "acls_ord<-c('Travel except travel related to jobs','Leisure, social and associative life','Household and family care','Study','Employment, related activities and travel as part of/during main and second job','Eating and other personal care','Sleep')\n", "dt$acl00<-factor(dt$acl00,levels=acls_ord)\n", "geo_ord<-c('Belgium','Germany','Estonia','Greece','Spain','France','Italy','Luxembourg','Hungary','Netherlands','Austria','Poland','Romania','Finland','United Kingdom',' ','Norway',' ','Serbia','Turkey')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=acl00)) + theme_minimal() +\n", " geom_bar(position=\"stack\",stat=\"identity\",width=0.5)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,4/24)) +\n", " scale_fill_manual(values = fig1_colors)+\n", " ggtitle(\"Figure 1: Mean time spent on daily activities, all individuals by country, (hh:mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(), \n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 2: Participation time per day in study and employment, only individuals taking part in the activity, by country, (hh mm; 2008 to 2015)\n", "\n", "The data is again in the *tus_00age* dataset. We use the same method as for Figure 1. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",sex=\"total\",acl00=c(\"^study\",\"^empl\"))`. Again in order to get the data we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>age</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Austria </td><td>2010</td><td>7:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Belgium </td><td>2010</td><td>7:24</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>7:02</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Estonia </td><td>2010</td><td>7:52</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Greece </td><td>2010</td><td>7:20</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Spain </td><td>2010</td><td>7:24</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Finland </td><td>2010</td><td>7:17</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>France </td><td>2010</td><td>6:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Hungary </td><td>2010</td><td>7:12</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Italy </td><td>2010</td><td>7:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Luxembourg </td><td>2010</td><td>7:29</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Netherlands </td><td>2010</td><td>6:42</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Norway </td><td>2010</td><td>6:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Poland </td><td>2010</td><td>7:38</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Romania </td><td>2010</td><td>7:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Serbia </td><td>2010</td><td>6:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>Turkey </td><td>2010</td><td>7:41</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Employment, related activities and travel as part of/during main and second job</td><td>United Kingdom </td><td>2010</td><td>6:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Austria </td><td>2010</td><td>5:11</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Belgium </td><td>2010</td><td>5:30</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>4:14</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Estonia </td><td>2010</td><td>5:02</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Greece </td><td>2010</td><td>6:13</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Spain </td><td>2010</td><td>4:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Finland </td><td>2010</td><td>4:24</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>France </td><td>2010</td><td>5:16</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Hungary </td><td>2010</td><td>5:14</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Italy </td><td>2010</td><td>5:41</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Luxembourg </td><td>2010</td><td>5:23</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Netherlands </td><td>2010</td><td>4:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Norway </td><td>2010</td><td>4:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Poland </td><td>2010</td><td>5:13</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Romania </td><td>2010</td><td>5:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Serbia </td><td>2010</td><td>5:05</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>Turkey </td><td>2010</td><td>4:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>Total</td><td>Study </td><td>United Kingdom </td><td>2010</td><td>4:36</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & age & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Austria & 2010 & 7:45\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Belgium & 2010 & 7:24\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Germany (until 1990 former territory of the FRG) & 2010 & 7:02\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Estonia & 2010 & 7:52\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Greece & 2010 & 7:20\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Spain & 2010 & 7:24\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Finland & 2010 & 7:17\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & France & 2010 & 6:51\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Hungary & 2010 & 7:12\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Italy & 2010 & 7:33\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Luxembourg & 2010 & 7:29\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Netherlands & 2010 & 6:42\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Norway & 2010 & 6:59\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Poland & 2010 & 7:38\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Romania & 2010 & 7:08\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Serbia & 2010 & 6:44\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & Turkey & 2010 & 7:41\\\\\n", "\t Participation time (hh:mm) & Total & Total & Employment, related activities and travel as part of/during main and second job & United Kingdom & 2010 & 6:54\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Austria & 2010 & 5:11\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Belgium & 2010 & 5:30\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Germany (until 1990 former territory of the FRG) & 2010 & 4:14\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Estonia & 2010 & 5:02\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Greece & 2010 & 6:13\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Spain & 2010 & 4:48\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Finland & 2010 & 4:24\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & France & 2010 & 5:16\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Hungary & 2010 & 5:14\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Italy & 2010 & 5:41\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Luxembourg & 2010 & 5:23\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Netherlands & 2010 & 4:00\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Norway & 2010 & 4:44\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Poland & 2010 & 5:13\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Romania & 2010 & 5:44\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Serbia & 2010 & 5:05\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & Turkey & 2010 & 4:46\\\\\n", "\t Participation time (hh:mm) & Total & Total & Study & United Kingdom & 2010 & 4:36\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | age <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Austria | 2010 | 7:45 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Belgium | 2010 | 7:24 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Germany (until 1990 former territory of the FRG) | 2010 | 7:02 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Estonia | 2010 | 7:52 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Greece | 2010 | 7:20 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Spain | 2010 | 7:24 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Finland | 2010 | 7:17 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | France | 2010 | 6:51 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Hungary | 2010 | 7:12 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Italy | 2010 | 7:33 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Luxembourg | 2010 | 7:29 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Netherlands | 2010 | 6:42 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Norway | 2010 | 6:59 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Poland | 2010 | 7:38 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Romania | 2010 | 7:08 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Serbia | 2010 | 6:44 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | Turkey | 2010 | 7:41 |\n", "| Participation time (hh:mm) | Total | Total | Employment, related activities and travel as part of/during main and second job | United Kingdom | 2010 | 6:54 |\n", "| Participation time (hh:mm) | Total | Total | Study | Austria | 2010 | 5:11 |\n", "| Participation time (hh:mm) | Total | Total | Study | Belgium | 2010 | 5:30 |\n", "| Participation time (hh:mm) | Total | Total | Study | Germany (until 1990 former territory of the FRG) | 2010 | 4:14 |\n", "| Participation time (hh:mm) | Total | Total | Study | Estonia | 2010 | 5:02 |\n", "| Participation time (hh:mm) | Total | Total | Study | Greece | 2010 | 6:13 |\n", "| Participation time (hh:mm) | Total | Total | Study | Spain | 2010 | 4:48 |\n", "| Participation time (hh:mm) | Total | Total | Study | Finland | 2010 | 4:24 |\n", "| Participation time (hh:mm) | Total | Total | Study | France | 2010 | 5:16 |\n", "| Participation time (hh:mm) | Total | Total | Study | Hungary | 2010 | 5:14 |\n", "| Participation time (hh:mm) | Total | Total | Study | Italy | 2010 | 5:41 |\n", "| Participation time (hh:mm) | Total | Total | Study | Luxembourg | 2010 | 5:23 |\n", "| Participation time (hh:mm) | Total | Total | Study | Netherlands | 2010 | 4:00 |\n", "| Participation time (hh:mm) | Total | Total | Study | Norway | 2010 | 4:44 |\n", "| Participation time (hh:mm) | Total | Total | Study | Poland | 2010 | 5:13 |\n", "| Participation time (hh:mm) | Total | Total | Study | Romania | 2010 | 5:44 |\n", "| Participation time (hh:mm) | Total | Total | Study | Serbia | 2010 | 5:05 |\n", "| Participation time (hh:mm) | Total | Total | Study | Turkey | 2010 | 4:46 |\n", "| Participation time (hh:mm) | Total | Total | Study | United Kingdom | 2010 | 4:36 |\n", "\n" ], "text/plain": [ " unit sex age \n", "1 Participation time (hh:mm) Total Total\n", "2 Participation time (hh:mm) Total Total\n", "3 Participation time (hh:mm) Total Total\n", "4 Participation time (hh:mm) Total Total\n", "5 Participation time (hh:mm) Total Total\n", "6 Participation time (hh:mm) Total Total\n", "7 Participation time (hh:mm) Total Total\n", "8 Participation time (hh:mm) Total Total\n", "9 Participation time (hh:mm) Total Total\n", "10 Participation time (hh:mm) Total Total\n", "11 Participation time (hh:mm) Total Total\n", "12 Participation time (hh:mm) Total Total\n", "13 Participation time (hh:mm) Total Total\n", "14 Participation time (hh:mm) Total Total\n", "15 Participation time (hh:mm) Total Total\n", "16 Participation time (hh:mm) Total Total\n", "17 Participation time (hh:mm) Total Total\n", "18 Participation time (hh:mm) Total Total\n", "19 Participation time (hh:mm) Total Total\n", "20 Participation time (hh:mm) Total Total\n", "21 Participation time (hh:mm) Total Total\n", "22 Participation time (hh:mm) Total Total\n", "23 Participation time (hh:mm) Total Total\n", "24 Participation time (hh:mm) Total Total\n", "25 Participation time (hh:mm) Total Total\n", "26 Participation time (hh:mm) Total Total\n", "27 Participation time (hh:mm) Total Total\n", "28 Participation time (hh:mm) Total Total\n", "29 Participation time (hh:mm) Total Total\n", "30 Participation time (hh:mm) Total Total\n", "31 Participation time (hh:mm) Total Total\n", "32 Participation time (hh:mm) Total Total\n", "33 Participation time (hh:mm) Total Total\n", "34 Participation time (hh:mm) Total Total\n", "35 Participation time (hh:mm) Total Total\n", "36 Participation time (hh:mm) Total Total\n", " acl00 \n", "1 Employment, related activities and travel as part of/during main and second job\n", "2 Employment, related activities and travel as part of/during main and second job\n", "3 Employment, related activities and travel as part of/during main and second job\n", "4 Employment, related activities and travel as part of/during main and second job\n", "5 Employment, related activities and travel as part of/during main and second job\n", "6 Employment, related activities and travel as part of/during main and second job\n", "7 Employment, related activities and travel as part of/during main and second job\n", "8 Employment, related activities and travel as part of/during main and second job\n", "9 Employment, related activities and travel as part of/during main and second job\n", "10 Employment, related activities and travel as part of/during main and second job\n", "11 Employment, related activities and travel as part of/during main and second job\n", "12 Employment, related activities and travel as part of/during main and second job\n", "13 Employment, related activities and travel as part of/during main and second job\n", "14 Employment, related activities and travel as part of/during main and second job\n", "15 Employment, related activities and travel as part of/during main and second job\n", "16 Employment, related activities and travel as part of/during main and second job\n", "17 Employment, related activities and travel as part of/during main and second job\n", "18 Employment, related activities and travel as part of/during main and second job\n", "19 Study \n", "20 Study \n", "21 Study \n", "22 Study \n", "23 Study \n", "24 Study \n", "25 Study \n", "26 Study \n", "27 Study \n", "28 Study \n", "29 Study \n", "30 Study \n", "31 Study \n", "32 Study \n", "33 Study \n", "34 Study \n", "35 Study \n", "36 Study \n", " geo time values\n", "1 Austria 2010 7:45 \n", "2 Belgium 2010 7:24 \n", "3 Germany (until 1990 former territory of the FRG) 2010 7:02 \n", "4 Estonia 2010 7:52 \n", "5 Greece 2010 7:20 \n", "6 Spain 2010 7:24 \n", "7 Finland 2010 7:17 \n", "8 France 2010 6:51 \n", "9 Hungary 2010 7:12 \n", "10 Italy 2010 7:33 \n", "11 Luxembourg 2010 7:29 \n", "12 Netherlands 2010 6:42 \n", "13 Norway 2010 6:59 \n", "14 Poland 2010 7:38 \n", "15 Romania 2010 7:08 \n", "16 Serbia 2010 6:44 \n", "17 Turkey 2010 7:41 \n", "18 United Kingdom 2010 6:54 \n", "19 Austria 2010 5:11 \n", "20 Belgium 2010 5:30 \n", "21 Germany (until 1990 former territory of the FRG) 2010 4:14 \n", "22 Estonia 2010 5:02 \n", "23 Greece 2010 6:13 \n", "24 Spain 2010 4:48 \n", "25 Finland 2010 4:24 \n", "26 France 2010 5:16 \n", "27 Hungary 2010 5:14 \n", "28 Italy 2010 5:41 \n", "29 Luxembourg 2010 5:23 \n", "30 Netherlands 2010 4:00 \n", "31 Norway 2010 4:44 \n", "32 Poland 2010 5:13 \n", "33 Romania 2010 5:44 \n", "34 Serbia 2010 5:05 \n", "35 Turkey 2010 4:46 \n", "36 United Kingdom 2010 4:36 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"Participation time\",age=\"total\",sex=\"total\",acl00=c(\"^study\",\"^empl\")),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. Before plotting the values we need to cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Austria </td><td>07:45:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Belgium </td><td>07:24:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Germany </td><td>07:02:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Estonia </td><td>07:52:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Greece </td><td>07:20:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Spain </td><td>07:24:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Finland </td><td>07:17:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>France </td><td>06:51:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Hungary </td><td>07:12:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Italy </td><td>07:33:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Luxembourg </td><td>07:29:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Netherlands </td><td>06:42:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Norway </td><td>06:59:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Poland </td><td>07:38:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Romania </td><td>07:08:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Serbia </td><td>06:44:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>Turkey </td><td>07:41:00</td></tr>\n", "\t<tr><td>Employment, related activities and travel as part of/during main and second job</td><td>United Kingdom</td><td>06:54:00</td></tr>\n", "\t<tr><td>Study </td><td>Austria </td><td>05:11:00</td></tr>\n", "\t<tr><td>Study </td><td>Belgium </td><td>05:30:00</td></tr>\n", "\t<tr><td>Study </td><td>Germany </td><td>04:14:00</td></tr>\n", "\t<tr><td>Study </td><td>Estonia </td><td>05:02:00</td></tr>\n", "\t<tr><td>Study </td><td>Greece </td><td>06:13:00</td></tr>\n", "\t<tr><td>Study </td><td>Spain </td><td>04:48:00</td></tr>\n", "\t<tr><td>Study </td><td>Finland </td><td>04:24:00</td></tr>\n", "\t<tr><td>Study </td><td>France </td><td>05:16:00</td></tr>\n", "\t<tr><td>Study </td><td>Hungary </td><td>05:14:00</td></tr>\n", "\t<tr><td>Study </td><td>Italy </td><td>05:41:00</td></tr>\n", "\t<tr><td>Study </td><td>Luxembourg </td><td>05:23:00</td></tr>\n", "\t<tr><td>Study </td><td>Netherlands </td><td>04:00:00</td></tr>\n", "\t<tr><td>Study </td><td>Norway </td><td>04:44:00</td></tr>\n", "\t<tr><td>Study </td><td>Poland </td><td>05:13:00</td></tr>\n", "\t<tr><td>Study </td><td>Romania </td><td>05:44:00</td></tr>\n", "\t<tr><td>Study </td><td>Serbia </td><td>05:05:00</td></tr>\n", "\t<tr><td>Study </td><td>Turkey </td><td>04:46:00</td></tr>\n", "\t<tr><td>Study </td><td>United Kingdom</td><td>04:36:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " acl00 & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Employment, related activities and travel as part of/during main and second job & Austria & 07:45:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Belgium & 07:24:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Germany & 07:02:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Estonia & 07:52:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Greece & 07:20:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Spain & 07:24:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Finland & 07:17:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & France & 06:51:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Hungary & 07:12:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Italy & 07:33:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Luxembourg & 07:29:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Netherlands & 06:42:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Norway & 06:59:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Poland & 07:38:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Romania & 07:08:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Serbia & 06:44:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & Turkey & 07:41:00\\\\\n", "\t Employment, related activities and travel as part of/during main and second job & United Kingdom & 06:54:00\\\\\n", "\t Study & Austria & 05:11:00\\\\\n", "\t Study & Belgium & 05:30:00\\\\\n", "\t Study & Germany & 04:14:00\\\\\n", "\t Study & Estonia & 05:02:00\\\\\n", "\t Study & Greece & 06:13:00\\\\\n", "\t Study & Spain & 04:48:00\\\\\n", "\t Study & Finland & 04:24:00\\\\\n", "\t Study & France & 05:16:00\\\\\n", "\t Study & Hungary & 05:14:00\\\\\n", "\t Study & Italy & 05:41:00\\\\\n", "\t Study & Luxembourg & 05:23:00\\\\\n", "\t Study & Netherlands & 04:00:00\\\\\n", "\t Study & Norway & 04:44:00\\\\\n", "\t Study & Poland & 05:13:00\\\\\n", "\t Study & Romania & 05:44:00\\\\\n", "\t Study & Serbia & 05:05:00\\\\\n", "\t Study & Turkey & 04:46:00\\\\\n", "\t Study & United Kingdom & 04:36:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| acl00 <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Employment, related activities and travel as part of/during main and second job | Austria | 07:45:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Belgium | 07:24:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Germany | 07:02:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Estonia | 07:52:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Greece | 07:20:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Spain | 07:24:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Finland | 07:17:00 |\n", "| Employment, related activities and travel as part of/during main and second job | France | 06:51:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Hungary | 07:12:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Italy | 07:33:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Luxembourg | 07:29:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Netherlands | 06:42:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Norway | 06:59:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Poland | 07:38:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Romania | 07:08:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Serbia | 06:44:00 |\n", "| Employment, related activities and travel as part of/during main and second job | Turkey | 07:41:00 |\n", "| Employment, related activities and travel as part of/during main and second job | United Kingdom | 06:54:00 |\n", "| Study | Austria | 05:11:00 |\n", "| Study | Belgium | 05:30:00 |\n", "| Study | Germany | 04:14:00 |\n", "| Study | Estonia | 05:02:00 |\n", "| Study | Greece | 06:13:00 |\n", "| Study | Spain | 04:48:00 |\n", "| Study | Finland | 04:24:00 |\n", "| Study | France | 05:16:00 |\n", "| Study | Hungary | 05:14:00 |\n", "| Study | Italy | 05:41:00 |\n", "| Study | Luxembourg | 05:23:00 |\n", "| Study | Netherlands | 04:00:00 |\n", "| Study | Norway | 04:44:00 |\n", "| Study | Poland | 05:13:00 |\n", "| Study | Romania | 05:44:00 |\n", "| Study | Serbia | 05:05:00 |\n", "| Study | Turkey | 04:46:00 |\n", "| Study | United Kingdom | 04:36:00 |\n", "\n" ], "text/plain": [ " acl00 \n", "1 Employment, related activities and travel as part of/during main and second job\n", "2 Employment, related activities and travel as part of/during main and second job\n", "3 Employment, related activities and travel as part of/during main and second job\n", "4 Employment, related activities and travel as part of/during main and second job\n", "5 Employment, related activities and travel as part of/during main and second job\n", "6 Employment, related activities and travel as part of/during main and second job\n", "7 Employment, related activities and travel as part of/during main and second job\n", "8 Employment, related activities and travel as part of/during main and second job\n", "9 Employment, related activities and travel as part of/during main and second job\n", "10 Employment, related activities and travel as part of/during main and second job\n", "11 Employment, related activities and travel as part of/during main and second job\n", "12 Employment, related activities and travel as part of/during main and second job\n", "13 Employment, related activities and travel as part of/during main and second job\n", "14 Employment, related activities and travel as part of/during main and second job\n", "15 Employment, related activities and travel as part of/during main and second job\n", "16 Employment, related activities and travel as part of/during main and second job\n", "17 Employment, related activities and travel as part of/during main and second job\n", "18 Employment, related activities and travel as part of/during main and second job\n", "19 Study \n", "20 Study \n", "21 Study \n", "22 Study \n", "23 Study \n", "24 Study \n", "25 Study \n", "26 Study \n", "27 Study \n", "28 Study \n", "29 Study \n", "30 Study \n", "31 Study \n", "32 Study \n", "33 Study \n", "34 Study \n", "35 Study \n", "36 Study \n", " geo values \n", "1 Austria 07:45:00\n", "2 Belgium 07:24:00\n", "3 Germany 07:02:00\n", "4 Estonia 07:52:00\n", "5 Greece 07:20:00\n", "6 Spain 07:24:00\n", "7 Finland 07:17:00\n", "8 France 06:51:00\n", "9 Hungary 07:12:00\n", "10 Italy 07:33:00\n", "11 Luxembourg 07:29:00\n", "12 Netherlands 06:42:00\n", "13 Norway 06:59:00\n", "14 Poland 07:38:00\n", "15 Romania 07:08:00\n", "16 Serbia 06:44:00\n", "17 Turkey 07:41:00\n", "18 United Kingdom 06:54:00\n", "19 Austria 05:11:00\n", "20 Belgium 05:30:00\n", "21 Germany 04:14:00\n", "22 Estonia 05:02:00\n", "23 Greece 06:13:00\n", "24 Spain 04:48:00\n", "25 Finland 04:24:00\n", "26 France 05:16:00\n", "27 Hungary 05:14:00\n", "28 Italy 05:41:00\n", "29 Luxembourg 05:23:00\n", "30 Netherlands 04:00:00\n", "31 Norway 04:44:00\n", "32 Poland 05:13:00\n", "33 Romania 05:44:00\n", "34 Serbia 05:05:00\n", "35 Turkey 04:46:00\n", "36 United Kingdom 04:36:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))]\n", "dt<-dt[,c(\"acl00\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Employment*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2DUZB/A8dx1l07aAqXsPWULskGQ7UAQHAgqiLhwvai4cLERXOBARJEhMmQL\nCILKRgTZZdOWDqAFSve494/CNXe93uXuklzu+v381VyfJE+SJ8/zy/Nk6AwGgwAAAAAAAAAA\nAAAAAJSnd3UGAAAAAAAAAAAAAAAoKxikBwAAAAAAAAAAAABAJQzSAwAAAAAAAAAAAACgEgbp\nAQAAAAAAAAAAAABQCYP0AAAAAAAAAAAAAACohEF6AAAAAAAAAAAAAABUwiA9AAAAAAAAAAAA\nAAAqYZAeAAAAAAAAAAAAAACVMEgPAAAAAAAAAAAAAIBKGKQHAAAAAAAAAAAAAEAlDNIDAAAA\nAAAAAAAAAKASBukBAAAAAAAAAAAAAFAJg/QAAAAAAAAAAAAAAKiEQXoAAAAAAAAAAAAAAFTC\nID0AAAAAAAAAAAAAACphkB4AAAAAAAAAAAAAAJUwSA8AAAAAAAAAAAAAgEoYpAcAAAAAAAAA\nAAAAQCUM0gMAAAAAAAAAAAAAoBIG6QEAAAAAAAAAAAAAUAmD9AAAAAAAAAAAAAAAqIRBegAA\nAAAAAAAAAAAAVMIgPRRgyNHJ7Y/rOa7eKpQJlf287SqZer0+KDSiWq16Le/s+sQL47/7ef3F\njHxXbwQAwA1kp60XNyjtPj3q6hwBdqMYaxPHRYPS4z4WH5Q+2y+5OkeAJ+DMUlSZbU08e8M5\na+wyrmqIcV8FR49ydXaAMifn+h/iKqvNlP9cnSNAfgzSwy392jjKbKz034w8V2cK1pzcufHL\nyW8/3L/rHY3qV6kUFejnE1y+Qu36TTp0v//1jz/ftOe4wdU5dIzBYMi4kRp37tS/+7bP/2LS\nyKH9akdUffilyQevevhtJa46Bzn3jdgVjmG/AdrB+QgAADyeZwc89AwA9qL0QnYUKmgZoYJN\n3q7OAAAP99fPn06eOnX9gRI35+Zevpl2+Wzs0Z1/rJr6tlCxWe83x7/1/EMdvVyRSRnl5yQt\n+fTNFd/Nn7J0zUt96ro6OwAAAAAAAAAAANAWnqQHoJTC3MQJQ5p1HvqShRH6EpIP/fbSkE71\ne489nq7Re5rsknvz5Cv9Gr68/KyrM2KftFNPie8ve/RkqqtzVOZwCBzDfgPgpqi+AKCMoyEA\ngJKoG+GRKNhF2A8ewGMOohY2hCfpoYb7nnmhpr9TD0hX9XP356vLnMK8y8OaNVp04ppdc53Z\n+FnLmrs2HP+za5S/QhmzS7dRzzUr52MlQW5mempqyvF/9x46k2z2L4Oh4LOH2zQ7enZE3VAl\n8wgAAAAAAAAAAAB3wiA91PD0xKl9wzUx5grVfDOsfckR+hpteg64p0eL+lUjygdnpl2Oiz24\n+bc1m/edE6fJvrpvQMtB/8T+Wi/A9RXUg+9PeS66nJSU187s+nLWlPdnr84rNBh/LMxLfaX/\nhyNOTlcsgwAAAAAAAAAAAHAzrh8DAxwQ3qx1uxCTAeByep2rMoOSLm0dM+bn0+Jf/CPunLP4\n+xE9G5ml/N8Hn57evvjFkWM2nL5u/PFm/Lrew5aeXfaIGnmVSVjtu976/NfhD33TpsezSbkF\nxt/TYme8fejNj5pFuDBvSnDVOci5b8SucAz7DdAOzkcAAODxPDvgoWcAsBelF7KjUEHLCBVs\nYpAebqnLog27XJ0HWDHu0QXiSf+wTn/Gbm5T3s9i4jpdHl57rPsbPVpM+zPR+OP5FcO/uzDg\nqerBymZUblU6Pb131dFqfT4T//jDK9s+2vKgq7KkEFedg5z7RuwKx7DfAO3gfAQAAB7PswMe\negYAe1F6ITsKFbSMUMEmvaszAMDTpMdNX5iUYZzU6XQf/L6itBH6InqfipM27ekh+iaCwZD/\n/qjfFMylYqr2/nRc7TDxLyn7proqMwAAAAAAAAAAANAaBukByOz4Jz+IJ8Prv/O/VpE25/Ly\nq/r9kofFvyT+NS7XUFpyTRv57h3iydz0vSez8l2VGQAAAAAAAAAAAGgKr7tHGZKTeubXJYuX\nrt56Ni4uPj4+Ux9avXr1GjUb3jfsqcfv7xTgJresnP7jx29W/HX8+PHEDH2Nhg8vmzfGSuK8\n6xc3rlm9atWGI+fiExOTklOu+YaERkRUbtKqzV0duw9+ZGCdcGsPuDtm9YqL4sluc0ZLnDHm\n7k+r+i2Iy7k1np2ffX7FlayhUQEy5095Fbt0EYQ/xb/svpFbP8BGfXsz/r+lS1ftPnDwv8NH\n4lPS0tPTM3INQcEhwSEh1Wo3atq0SYe7+z/Q564gL2e/nmJXEZKXoTBj3+Y1y5ev2HX47KVL\nlxITr3iVC42IKF+9QYsOHTr2vH9o14a27+dwRtLhrXO/++Gvg6cuXLgQl3C1XFSl6OjK1Ru0\nvG/goAf6dy7v60gtoNqBk4ch99iu39euXbt5x8HEpKSkpOQb+T4VK1asWLFC7aZ39evXr0+v\njlH+Xs6v58a5vXO/+Xbz3hPx8fFx8Ql5XkHlIyLrN7uzY6e7H3vq0Tphvs6vwiUKc69sXPLj\nj0vWnbwYn5CQcD3fNzq6ckzV2r0GPTb8sfurBfuUnOXCwa1Lly5ds3VfYnJySnJKnndQRERk\ngxbtut5976hRAyvYX+pcUrFbocRpJai1mQrVh8nHdy5btmzN1j3xCZcuJSbmeofGxMRUqVqz\n24CHHh56f22rr5axyc3qHIW5sKrJSDi0ZNm63bt37zt04vLV1LRr13V+QWFhYRWrN7jzzjs7\n9rx3aK9W3u58EBQtxi6n2nkkexHV1HFRoaLWQrNbRKHGzja1IjfZaeHYqRNLeGrQy1WDpnh2\na6Im991w114CuF3c6/FXTLLXCRrsMHfr7jsX9rs6zD2bY8PpvRsXL1q0affRpKTklJSUfO+g\n8hGRdZu27tix+6NPDasf4UitrpE+N0WLq8v752HOAMiuMNusmK1LzZJ3DdnXtoqX33ryIevp\n87Pipj7TK0BfarUVWKnJ1DWxRYmzUteJ/7X1WnbJBZ77tbs4zReXbkrMeb/yxUPOYbU+kbJ1\nB27m3vo9bd8z/ZqJ/xVUaWRpK8q9fnLi6D4BVmtqvVe57sPf2n8pQ2LmJYr2NblW33MjV/q8\nH9cIFc87Kja1ZJqMlIVmG1Lz/q0KZV76kTXJYfIPZjmcGnfDSvq04xuf7HGHl852s+obUv3Z\nyYuu5Rdaz4BdRejGxY9srtdsOSVXYfMcNBTmbZjzRp1Qa1GdTqdv0evxdSeuSd80i+sVH8RX\nz95a2vVT6x+4q7aVtXv7V35++rLMAhvbISbXgVPpEBgKdy6Z1q5KOeur8PKNeuLduUk5tneE\nWQaWX8ks+j3n2sFRvVta2S167/BBr397w1Yxtkm5/Zaffc7ipu2cNy4msNS7bbx8K7y72GRp\n2VcPje3fwErGfENqT1xxVPoma6RiV/S0kn0zZWlSpUs9tuHxzjWt5FynD+g5ZnpSboGhRLzR\ndtYR6wuXsbGY0ThCnP7T+HTp27ike4x43hF/J0qf14yU89HlVU1JN85sGTWgnW/pUWWRkBpt\nPlq81/ISHKq+FA0+xWQsxhopaWJKB13KFVFFqxd7yVtRa6fZVbSxMzvxe29LsLVjZIvclDsT\ntXPszCgaS8hymjvWEKjFna4arJ9ZGmmGNBXwyN6aWNm6q0dfE//Lp1zTHHvislMLTCKfkBqv\nSlyvOhuuWmAme+hiV3vkfNxrF+frRtl31/+qBBtnkXLBeHjBSz6mu6v9Cz+YrUNTdYLsHeZ2\ncbvuOyMV+l3toqlCVRp5O/FunNk8uEUFKwvRe4c88OqctDw7su3CPjcx2YurCef652XviXVV\nqGDvhigdUjJIDwVobJA+Ze83LSU8ja3TeQ16Z3GBVgfps9P23hNjfp1cWoB4ZMlbNQItPJ1g\nkZdP1PgfZQimi+TePCReuF9Ie7tm//WOKPHsA49eKZlG+4P018+/Z5bD2aUvZ89Xo6w3/yWF\nNx561GrcZlcRUmGEOPvq7oEtK0pci947/MUvd0jcNImD9Ht/HF/RV9JzHuUb99txRVJ9JeOB\nU+EQ5GXGPtWxmvSs+kc2m7f/svU9YDG+v3JgUevy/lJWEdlyZFEPiMPUHKQvLLg5aXhbmyvS\n6XQPfLC9aCHJOz6vU852PazT6UYvPiVle11YsRvUOq2U2Eznm1Tp1n34sMRqIahq52Vnrts1\niiZvY3F+zQBxysbP75K4jQW5ieLj7h1Qx74LQlMOdyWoWdWY2fn5mDBvO57baPXoJyW7BbQ8\nSC9vMdZISTNSIehSqIgqWr3YS/aKWjvNrqKNnV2DIvJGbsqdido5dmJKxxKynOaaHaR3u6sG\n62eWRpoh7QQ8SrQm1rauMLt5kMkwwFuxadL327jqIeJ5+684Z+9eVXTD1QnMlAhdpLdHssS9\ndnGyblRid9k1SH/4x7FmI/Qdxy4omUw7dYISHeZ2cbvuOyMV+l3top1CZYWMnXiH5r9eQVo5\niWj2RKKEGwoNru5zM1KiuBo53z8vf0+si0IFezdE6ZCSQXooQEuD9FcOzI3xs+MlbN3f36bB\nQfq8zNielS3cyW4xQNw5e5S3hJutzPSdsF7iJliXkfyTeLEhVd+0a/Y5dcPFsxvvozRZheYH\n6U8v6maWw73plhvLE/NG6u0/WIIghNV9Mrv0ix+7ipDSI8SZydu7VAy0a+t0Ov3o+ZZ7kx0Y\npD+1+Bm71h5Yoctfl21UWfIeOKUPQXba/ntrh5S2zNJ4+Vac8Xu8lZ1QMr6/fmZhhI8d9W3V\n3p9b38/WqTlI/93wRhLXpdP7zjp45cqBudHSLhgEQdD7lN9xPcf6xrq2YjeocloptJlONqnS\nLXvzHruy7RfWdvvZleJfrIyiyd5Y5GWdCvIq7nHzD79H4mbGbR4sXn7tIRsd211FHOtKULmq\nEdv/2TCd/Qei1XPLzZaj2UF62YuxRkpaEXWCLiWKqKLVi72UqKi10+wq2thJHxSRPXJT7kzU\nzrEzUiGWkOU01+YgvTteNVg/szTSDGkk4FGoNbG+dVsfryf+b+2HNkndaWm/i1ttL99K8aaj\nLNIvhxXacBUCM4VCF4ntkVxxr12cqRsV2l3SB+n/++FFsxH6zi8vtJhSI3WCQh3mdnG77jsj\nFfpd7aKRQmWdXJ1451ePt/l6D5Ns95ljM28u73MrolBxLSJL/7wSPbEuCRXs3RClQ0q+SQ9P\nlp26pVX7ZxJyCsQ/BlZqNHjoQ22b1KpcMfhaYsKpQzuWLFpxJi2n6L9/TOgxoeFsV2TWmq+G\n9Nh8KUNKynPLRnd4bq7BYBD/GFW/7QP3DWjdsEbFyHLXkhJjD+5YufLXY6YLXD+h78NR/y1+\ntqmTWfX2q/Laa8UvKilX4SF75i78OtEkV91CtftJMCt+mHBQPOkT2Kh1kIV78XLT9/YYM7/Q\n9GD5RzR49JF+tapVq1KlSrhPbkJCQkJC/F9rftp+/Io42bVT8wZ+N27dyPoSs2SlCHn5xrRr\n167o74Lss/sOphj/Fdm8dR3/4mainD0x0K0F5ib0a9J7++Us8Y9+5Ws/MHRox2Z1KkeHXT1/\n6tjx4/9sW/3n8avGBAZD4TdPtunS4/LDJW5Btdf1Uz+1e/xb8S/lYu7o06VVtarRhekpcRdi\nt276Oy2vUJwgM2V77zuGJMT9GlrKrYuyHzhFD4GhMOPplt1Xn7sh/lGn827SecDAvl1qVa0S\n7pd/KSHh8K7Ny1b+npydb0xTkJv8v95Na8fF31dJUgxXkH1xyF2jrubdqm8rNe409KGBbRrW\nrBjhGxd78vixo78tXfhfsklJiPvthY+PPfJWo/L2blQRRfeb2M5p98344VjR3/4RDYc+/kjP\n9ndUCvM6d+LY4f/2Lpq/8nJecStjKMx9veuAT7P3Jebe+jG45p2PPzq0U8v6Uf45x48eObh/\n64+/bM8tLC4/hXmpI9/Yd2x2h9Iy4PKK3YwSp5Wg4mZKb1KlO/HdoEGTNpn9qPcO6dh/ULc2\nDavEVMy/lnTu9KFfFy+PvXrrRsaca3v6djJ/7YpFSjQW3v51JjYu/+J/txJnp22afSnjWUt9\nCmZ+eeUP8eQzU+6SsgkyUr+qMcpIXN715YVmRTSiYbfH+neoUaNGtapRGcnx58+f37Php3UH\nEsVpDsx+6NtXU0fVLB72UK36sosSxVg7JU21oEv2Iqpo9WIvdSpqlze7RRRq7GxSInJT7Ux0\n+bFTp4jKcpprsCHwyKsG7TRD9vKY1qT1h6OFH18tzuT6cXmGf30kFOpT378lbrWr3DMnxqFP\nUGuqGbWLmv1FJckY99rF4brRtbtLEITDP45tNeLzPFEGury6eNv0oc4sU0z2OkGDHeZu0X1n\nhav6XR3mpp14Vw9+1eLtr4viQ71Xud4PPzXkoftb1KtRMdTrwqmTx4/9M3fKxL/OpZtke8OY\n6acffq1OaCmL1Eqfm6LFVa7+eSUKs0tCBXs3RPGQUuKYP2AHzTxJ/347kzd46L1Dnpq0tOSN\nRYX5178dN9B4w6Pey+Ta0uVP0v/y3WPGv3V6v073Pfb+J9/+/veeoyfPpqRmimfMubajpr/J\nnTd+Yc2n/7yz5K1UhQUZK2e9YvbUgt47fHmCIw+Oy+XqkfHi/PgGtbCYTONP0idsGWeWvcqd\nF1lMufHROib736f8+Nm/plp+O1jhkS2Lu5lW/cExz5WWB4eLUGrsk+IZHzlxVeIqSjsHf3nC\nJD7Q6f0eevM7S98xKvh7wdtmOz+q5buOrVe8HH+f4uY5IKr1F2v25pquPO9mwpLJT4eXeIdb\n27f+Km3blTtwBgUOwV/vtjfbtIqtH1p/zMK7g/KzLk4Z3dPso0fhDcaU9jUgswz06XirvvUJ\nrPvhAgt7rzD/+ldje5hlplrv1Vb2hnTy7jezx8KMOj87MyE73yxxZtKOATWCLabX6byHfbwo\nvUSBT943v77pS7QCIweWlmGNVOxKn1bKbabD9aF02WnbzB5B0Ol0nUd8ePq6+V3whQUZq2eU\n+tLI0h51VajOufjbA+JkTV7eY3NLc28e9BddaAVE3GdzFuscuN/fhVXNnDYmUaV/eKtvVu+1\n9OK8wv2rZ9cJMCnPle6y8KLLItKrL2WDT8WKsRZKmkHFoEveIqp09WIX5Spq7TS7ijZ2Ep9c\nVChyU+hM1M6xM6gYS8jeEklvCBTlplcNNs8sLTRDLg94FG1NbG1dYW/TFym/e9rC6xJLGl7R\npCGeeMZ8Lkl7VckNV/pJeuVCFyntkUJxr13sqhuV211SnqQ/NP8FH9Mqsdv/fraSW5fXCQYl\nO8zt4r7ddyr0u9pFC4XKLg534hmF1Xtgg6UopbDg5tIpj5q9CKT24M2lLV8jfW4GhXubZe+f\nN8jZE+vKUEH6higaUjJIDwVoY5D+4vpRJrWPV8AHG+OsLPPwd08Klrh8kD749ss06t772o4z\nN6wsfPJdlcQzBlXtv9vqa39SjyxtZvrZj6iWkyVuiPwKc5+pEybOTL0RWywmzE79rZ2pgeP2\ny5ULJwfpE3d/X8XP/A0lbx+6YiFpYZ5Zl9NLGy5aX3h22nbxwnU63bkSnV+3UjpahOQd6Uw7\nPk3cd6PT6Z/96biVtSfvmFHOyyTa/i4pw4H1WnxnZnjDYWcy8kpb9bWTvzYy/Ram3ivIcsWl\n5IEzyH0Isq6sNvuUUczdb5TsABXb/dnDZrtuwI+WP/9pMVD2Kdd4eex1K8v/7tHa4vT+4T2t\nJJZOhUH6zu+sKW2ZGUnrgrwsdOiMWVjqoEj8prHilDqd7lIpX8nSSMWu7Gml5GY6XB9K93nH\naLOj+cScfVbSX97/VaSld8pZHkVTrM7Jzz4fIurgCCjfz+aWnvy+qzgnrSda+/anFA50JRRR\nv6rJzzor3l16n/K/Wr0UT9phct+ht1+1mwWW616NDNIrV4y1UNLUDLqKyFVEla1e7KRcRa2d\nZlfRxk7KoIhykZtCZ6J2jp1BxViiiIwtkRYG6d33qsHmmaWFZsjlAY+irYnNrdv/RjNxgjqP\nWO7nEcs0fTAjIOK+kmVRyl5VdMOVHaRXMnSxfdYoFvfaxY66UcndZXOQ/tD3z5uN0N/9+i82\n1u7qOkHRDnO7uG/3nQr9rnZxeaGyl5OD9CE1B53MLLWQGAyGVc+YfICpXIVHS0upkT43RYur\nEv3zBll7Yl0YKkjfEEVDSgbpoYASg/QPPv/yaw75YleyxTVIOMcKh1UyuZum+yf/2Mz48ifq\nCSW4fJC+SPNn51q+d+q2Gxe+FKf39q+2wVIFaubKv5+Lr8Z1Ot3X8ekSt0Ve3z/dXJx/nd5/\n+WUHH2p0hsOD9OkX/5n+2kP+Jd7lUr7h6xbTZyQvECcLrTlOylrW31dDPNfPpewix4qQQe6R\nzsnNo8RpmrywweYGbn7B5B1Bd4wzv4R2bJDeL+SuQ+k2PuyUduynYNMQpN6I30smU/TAGeQ+\nBOuHmgTTAZG9L+da7tYUWzbCpCYMKN/H4jwWi9lbfyZaX3juzQPiUE/vHWYzP1IoPUhfvvGr\n1k+fhV1jzGap85jl78/dVvhAZIA4/ZY0C22Ndip2RU8rRTfT4fpQoszLy8yeJLvzrVLv0TY6\nt+rZkrmy2P2naJ0zp4VJLf1too0mb2zV4i4qnc7L+U4Zh7sS1K9qUmPHiDNQtZftz20OijJ5\n0OSHZMulWguD9EoXY5eXNPWDLlmKqNLHxS6KVtTaaXaVbewkDNIrGrkpcSZq59ipH0vI2BJp\nYZDefa8aJD0T7OpmyLUBj9Ktic2ty7z8sziBb3Brm3H4vnF3iGe5a6Zj61V2wxXtFVQ0dLF5\n1igX99pFet2o6O6yPkhfcoS+55u2d5erL4KU7TC3i/t236nQ72oXVxcquzkzSK/3ClocZ6OP\nKy/jWICoi94nsL7FZNrpc1O0uCrRP2+QtSfWVaGCvRuiXEjJID0UUGKQ3mHtv7J8X4/Nc+zG\nxU/ECQIi+1m/DbxIXsZ/VUs8Bq2FQfqgmEHXbeV/zf01xbN0/VRqZ9xvT5m88KTRc7skziif\n/F/G3222yY2ftd1gKMEsQLx7zFjr95GMff6Zxx95sE3DqmaXf0W8fKIWnbV8B+WVI0PEKdt/\nbe0WNqMTc00+wTi3lNDBsSJkkLV9zb62TbxPfALrn80q9fFxo5wbe3xFUVRQ9DP2rtdgKcp/\ncu0Fm6s2GAzbX28lnssnsEFGiRvAFT1wBlkPQWH+NbNXNv3vbxvBd5G8zONmL6ybeNbCfbUl\ni1ml9l9KWf671U0+UFfyjWoOUHqQftLxVOsZOL/WpBLTe4fsupFjfZatD9YSz7IwxUKp0E7F\nruhppehmOlwfSrTnVZNLl4CI3mnSxv/fMQ3uhVK6/xStc+K3DBYns3jdZZR1dbX4lXHh9d6X\nkhPrHOtKcElVE7f5HvHS7ppzzOYs6zpUFs/yUol3rxXRwiC90sXY5SVN5aBLriKq9HGxi6IV\ntXaaXUUbO5uDIkpHbkqcido5dirHEvK2RC4fpHfrqwYpg/Qub4ZcG/Ao3ZpI2bqR0UHiNB+e\ntf4a28Je4cWvvdXp/fdbGrGzuV6lN1zRXkFFQxebZ41yca9dpNeNiu4uK4P0B+c9523aE9jr\nrZVSVu3aOkHpDnO7uG/3nQr9rnZxoyvrIs4M0tceul7KKl4Tnbx673CLabTT56ZccVWof94g\nd0+sS0IFezdEuZDSvHoFPMORid+KJ1t/PD3Iy8IYqhnvwKbf9qvWe8VZxfLloH4/zgqxnn9D\n7ssb44xT3gF1fnm2ocSFd5s533te+3yDoWjywrLZwhftHM2p3bJS9r445KG52y6Ifwyp+dCW\nWfeUNouatsz5dIuj8+p0Pi/8vOfhmpa/vOgT0H/ChOJjdMfA6lKW6R3kYKVtuwjJ7fyytwtu\nFypBEGo/8m1NfwuvsTLjG3znKzHBk+NuFE1mXl6Ub5jj7VzGA6OGzO1XTUrKjh+sqjSzelJu\nQdFkXuaJSRfTP6xhEoyqfOCccf3sh+ey842TAZEPTO1QyUp6I++ABnOH1u76/UnjLwtnHX/z\n07Y2Z3zq26FSln9XtSDhwg0pKTXCL7TTGw3CracJrV9HEIpri7C6H7QL9rWSXhCEqPaRwnKr\nzY2GK3Y5TyvVN1Pe+vDTBWdMsvTV7DBpddYrS8Z8WP8Dm8kUrXMqdfwk3Ht5Wn5h0eSpeR8L\nU1aWlvj4Z+8ZRLV6l09GSFmFElxS1XgFmDRhN47ZXnLfvxMMNhNpg9LF2OUlTeW2W64iqvRx\nsYO6FbXLmt0S5I0hbVI6clPhTCw7IZOHBb0ef9Xg8mbIMZ7Umrw8vuncF3YZJxe8f/Dt+V1K\nS5x+cebGtOInf6JaTG8V5FNaYiu0sOEOc223g9vFvS7ZXQe/f67NU3PyRdVFn3dWrf/gXmeW\naZ1cdYKWO8zduvtO/X5X57lpPPPGjM5SkrUL9xfi062l0FKfm3LFVTv989a5JFSwl3IhJYP0\n8Ew/rCquZHU6r+kP17KSWOzOiUOEFZOUyZSDvHyiPusUbT3NzUuzT2cVX1dHd5ga6a23kl7M\nN7jd85WDZiXcarcyL/9yLf8HiVcvzjAUZqz8/L1X3vj0gqhHQBAE//JtV+37oaKP1Pxrk7df\n1YnLt/6vX83SEoTUeuy99+xe7M3TNx3IjJQiJLtts06IJ596t3lpKc08+tyjp/dfNk5eyi2o\n5mc7erCi6RtvSyzNet+Y2T1iBq6/aPxlw0/nPnzb5Ls4ah44J53+brN4stHLduS75fvPCN+/\nbJy8uHK5YKu7zdu/5vuNyktZuF+En/ScaEFY3VdsptF7R4onaw3vZnMW3wgbXdJarthlPK1U\n3kx568P8zGOLL2eJF/7VAEl9CoIghNV7t1PolL+u51hPpmid4+VbZVrLqJF7k4sms678+kNy\n5vCKgRYTv/vFCdGMFb7oWcXubMnBVVVNQCWTSDJ23lPb3t3fNdK/tPRuRDhDPAMAACAASURB\nVIVi7PKSpmbbLVcRVeG4SKdyRe2qZrckeWNIm5SO3FQ4E8tIyOR5Qa/HXzW4vBlygIe1JnUe\nn+b9YqfiwYyVbxbO31naWXpgwjfiyQdmDy4loTUa2XCHubbbwe3iXvV318F5z7UZaTJC3++9\nNWsn9Hd4gTbJWHNqucPcfbvvXNLv6iQ3jWd8g1qOrFzOdjpBCCxnY9xTU31uyhVX7fTPW6d+\nqOAA5UJK9x4GAywyFKT/mJJhnPQP732nrdvzjUJrv+ZX4rPirhVY4bEKtkasU3atEk82er2N\nXasY0CrC+LehMHvl1SwriWWxb8WnXepEP/jSDLMR+qBqPTef2NY1QrvRv006vU+XR8Ztiz32\nv3515F1yfuaxV2Yec2BGKUVIdt+K7rLUe4e/WMXyGwVKavL67F9EnI8AXhxW23ai2zp+1FE8\neXG5IzvcjMMHzkmH1iSIJ/s+WuotIyUFV3k2yqd4z2cm/1Roa5aQ6i8rGKy5VFhT8xceWmDa\nboS3sPEYmSAIOsFGW6Plil3G00rlzZS3PsxI/l58Y2xw1Ver2lFleb3VtoJcORGzq87pM83k\nRZ2zPj9hMVl63Ky1on0b3eXzGF/XXES4qqoJjnlF/La3vIyj/Zv1+Xr9f67Ii8zUKcZuV9Ic\nbrvlKqKaql5Urqhd1eyWpHIMqULkpvSZWEZCJs8LesvCVYPbNUMe1pr4hnR4q3aocTLnxq6p\npT2Uach95Zfi72j4BjWf2VpCxVKCRjZcTTJ2O3hw3GvkzO76d96zZiP0giDcNUDZN5LKVSdo\nvMPcfbvvXNLv6iQ3jWdCar4g16K03OcmhcTiqp3+eevUDxUco1BI6WbVB9zUutQsKx9dsGLH\n6AYOrC7r6uqsAlE4XuMx6fPqvcuLPxClBaH1bb/4PX5FvHiyS/3Q0lJaXkVjk/T/3My1a3a7\nXNq34pFONe588KW/zpm/c6bZQ+8cjd3QMcr9Ruj9g8tXr9Ogfc8H350xd/fJlG0Lp3SoFmR7\nNokMuRdOHFgwfVy7endudajJl1KE5FWQfe6f9OJSFBg1xNdFt754+VYYFGnHGR1Sa6R4MjPx\nN8fX7fSBc9Im0aMDOp3XyEqSbjW9PYPvYxWK7wQsyE3cl26jWghr0tR6AvflE2r3S5N8Q+1+\nXK8kzVbs8p5WKm+mvPXhtWP/iidj+ne1a/Y6T0h9akESh+qcSnd9Iu5bj/1misVk+9+eI558\nZFYPh7PpJFdVNV7+tb7sHiP+JePStmf6NavZrs8bk7/acTS+tBm1T51i7DYlzem2W64iqqnq\nReWK2lXNrhn1Y0gVIjelz8QyEjJ5XtBbFq4a3KYZus3zWpPhk02GMH/4yPKIb9rJ9w6IzsE6\nI74McGhQUDsbrjgFuh08OO51fnf9+92YNiO/MhuhFwRhYp8R1/IVfOW/XHWCljvM3br7Tv1+\nV+e5aTwT1li2+lmzfW422FNctdM/L4XKoYJjFAoped09PFBu+i7xZERrSZ/xMOoV7rfiSqas\nOXJKcB3bjUTCf9fEk+OrhYx3Yo1nk7KE2mFOLMCynLSjE1969qMFfxWWCGcDo9u8/+kXrw2+\nU/aVOumLSzefi7ank8JpmamXYmNPnToVe+rUqaI/jh09eS2nwJllSilC8soxPQcDIl0WrQZE\nDLQr/vAL7VbR1yv59netctP3S5xRiQPnpP2iOMw7oI699zx2qxgwM6H4Tpp/bua1tXqHdVBt\n+W5MgSAIGq7Y5T2tVN5MeevDtANp4snKfSrbNXvknc0FYbtjq5arztH7VJrWOmrErqRbi728\ndNHl+Y9EmXaOFGa/tPy8ccov5K6PG0p6LZ4SXFjVPPbzj59V733Y9Nr7/J7fpuz5bcqbY8pV\nrNOxU6fOnTp16typXbM6Phq+9DWjTjHWZklTou2Wq4i6sHopSbPtkaJUiyGNVIjctHkmOk/l\nIup5QW9ZuGpwu8Lvea1J1b6fBnk1vFlw61UL534ZX/jtnyWfG9vx+hLj3zqdbsJ7LRxbnXY2\nXF6qdTt4Rtwr++7KurqqzagrBSW6NAVByLy8rtf7O/d82MGJ/FojV52g5Q5zt+6+U7/f1Xlu\nGs+UqyVbL71bXOM4WVy10z8vhcqhgmMUCikZpIcHyr1+QTwZWM3ylyFKEx1k9xMAivKvZPvJ\n8ouZ+TbTSJedlC3j0gRBEAz5a7984/nXP71QIp/eAVWeGv/hh68/HuVu7wWSUW7a+Y1r165d\nu3bDlr/jrmbYnsFOUoqQvPKzToknA6JdFvl5B9Szd5ba/t7GKL8g56KVlEofOCddyi0O2rz8\n7Lv0EgShXJVA4UDx5MUcG5WMb3n5H2Ir4zRbsct7Wqm8mfLWhzkpJt+qDKliX7zh5W/fPeAK\n1Tm9pt8jdPjRODlj9slH3jP5StnVo2/+l1HcQ1f3yZlOfGrNWS6savzLd/tz78IBPUb8fcnC\nzs9IPr1x2emNy74XBME/ss6AgYMGDx7cv3vLAM1HN6oVY42UNKXbbrmKqMrVi3WabY8UpWgM\naZE6kZtGzkR5qVxEPS/oLSNXDe5V+D2vNfEOqDe1eeSz/6Tcytj1v2bFpb9S1eSlu4aCG2M3\nFT/XGFL91cH2PFYrpp0Nd55Luh3cN+5VdHcV5BV/ntmnXKNxA/M/XhBr/GX/pD4rnksaWMm+\nwiaRXHWCljvM3br7Tv1+V+e5aTzjEyJbIdTsNY6MxVU7/fNSqBwqOEyJkFID7Scgt7xreeJJ\nvyg/u2YPqKitltUr0Pad7NfzbX76zQ75N+VspXJS/x19d+0BL8wwG6HXe4cOfnnGsaSzX709\nosyO0BfmJn/79uPRFWvf+/gL3yzdaL3p1XsFN23iyE15UoqQvAz5Jvet+0e77BMS3v5V7Z2l\nun/x7iosuGnxjWXqHDinGPKzC4uz7uVb0d4FBFQ2OWqKvroNFmm2Ypf3tFJ5M+WtDwtM71+u\nFGDfwr18Y2wnEgRB4TqnQpsZlXyLc35i9jSzBFteXiaefHv8HdIX7mHCGg764/ThT8c9Kn6/\nWUnZV07/8s3kh3q2Co+qPer9ecm5chZy2alWjF1e0tyg7RZR7bhIodn2SFEKxZClUityc/mZ\nqISyWURlU2auGjyy8Nukqdbkvhkm73qd+/FhswSXD7x2Nrv4BOw88zmH16WpDXeYa0MXt4t7\n1dxdvkFNlx7a9cHcPzqGFnc4FxakP33Pu5qO+7XdYe7W3Xfq97vCeRoMIGUvrtrpn5dIzVDB\nYUqElDxJDw+k9zMZ8c25nFNaSovMQha3EOhlckNOy7btnPnESH35bo28tO3z7gNeO2n6jiyd\n3qf7sHGTJo5vU1mRO0zdRWbS712b3bsvxdr3Y4IiqzRo0KBhw4YtOvQYNLBP7vqedYZq8a1r\n5nQmgX5+hsu6ugoL7P6a1HVRXK/T+ZS82c09DpzO21+vM/a4FeQm27uA3FST01bND/ygiGYr\ndnlPK81uphRmN3EnZ9v3irzC/CtSkild5+h9Ime0rfjoX5durS5l0bIrc42fAyzMSx77V6Ix\ncXCV54ZEaf26TlHeATVfnPLTmLcnb/x15YoVK1av/+tqbqnHPSf17NwJTy3+9scFm399oKFG\n3++tTjEWXF3S3KPtFlHtuEjh1hW1w5SIIa1RK3LzyDq/bBZR2ZSZqwaPLPw2aao1qdT+02jf\nnxNvB07nfn7H8NUWcXHZ9Mpa499evpXm9K3m8Lo0teGO0ULo4kZxr5q7yy+k+bL//upfPUgQ\nQn5e+XxM9xnGf109POORhWOWPFrbgcWqQ8sd5mW3+w4uorUAUpHiqpn+eYnUDBUcpkRIySA9\nPJBvuMl7MDLj7ftezpU0+2IUu1wvUOSuymhfk1v2vty8vZ3V78Cp49SvE1oP/vCG6Y1pFVo+\n+N38r/o3jXRVrjQi9/r+vnfcu++yedNboWaTtu3atWvbtk3LZg0bNqwSafIimjMq5tAZXr4V\nxJOZcUp9s8qmguxz9s5yRnRHnt7HvKC60YGL9vU6d3tbCnIuWE9cUsYFkxs2K5TV1124kDYr\ndkHu00qzmylFueomn0O7Hp8pNI6QPnu+hD2pTp3TY3pvoe084+Tkb2MHvdms6O/EP19MEnXG\ntfl4rJ3L9kw+wVX6D3uh/7AXCnOvbF+3ZsOmrdu3b99/Ir7Q0icqMxK2D2nd4bfz+7u7qLvf\nevCpQjE2clVJc6O220jN42KTW1fUDpM9hrRJtcjN8+r8sllEZVR2rho8r/DbpKnWRO8T+VmX\nyoM3xxVNZl/b+nnCzRdjbjW+hbmXXt6TYkxcpdecGF/Hy5KmNtyMlF5BTYUu2o971dxdfmGt\nfv1ve++qtwpY5W7TZ9295KUtCcYEK0b1OXz/0ablNHq/l5Y7zMty9x1cQlMBpELFVTv98xKp\nGSo4Q/aQUrvRM+Aw35BW4snUfxJKS2nR3vRc24kcdSZLkVuWqtc2qaOPZLj+ZQCXtrzX9MEP\nxCP0Xj5Rz05bHrd/GSP0giB80e/e7aKmV6f36TjohbX745PPHl696NvxY0f27NTGrOl1Iz5B\nLcWT2ZePuyonuTf32ZW+IDdefJL6mm6I4FYHrpUouMzPOp1Q+j3vFv2TbBIatgqir1NtGqzY\ni8h7Wml2M6UIb1lePJn4W2JpKS1KP/WfzTTq1DlRLafF+Ine1vXpLOPfv7yy1fi33ivoi0E1\nnVyXh9H7RnZ74ImpcxbsOXbxZvLp3375/vXRQxpGlzNLlpd57NH7vnZJDgVbwacKxdjIVSXN\njdpuIzWPi01uXVE7TPYY0ibVIjfPq/PLZhGVUdm5avC8wm+TploTQRC6zRgonvxm8hHj35f+\nHHslr7jsjZ7VzZkVaW3DxaT0CmozdNFs3Kva7vIJqLv26J/GEfoiY1b+Iq5Y8rJO3fvYT86v\nSyFa7jAvy913cAlNBZAKFVft9M9Lp1qo4AzZQ0oG6eGBAsr3E0/eOLfIjpkNuYsuK3VXUUH2\nmUQ7r3glir4nWjz5R5y1b5aoICtlc6f+E3NEH7cLrNR53ckzX7420JlXx3iM7NTVr+1MMk7q\nvAImrz/91y+f9WuliS+fOc8vuF2Id3H7kpE0z0piRWWnbriYY8dJdzPhy3zR/eB+4XebLs2d\nDtw9EcVfCzMYCr5LsqtaKPg2sTi93qtc+xDtdrd5Kq1V7Ebynlaa3UwpgmuYbEv8avtei3d2\n3inrCVSrc3Te5Wd2KD4QGcnzV1/NFgQhL+O/8UeuGn+PajWjYSBv4SpVQFStXoNGTP5qybFL\nNw6um9O9bqj4v8m7X9mtZK9WaWwGn0oXYzGXlDT3aruN1DwuNrl1Re0weRs7KVSL3Dyvzi+b\nRVRGZeeqwfMKv02aak0EQYhoPKmJ6AnjMwvfM/694tVtxr8DIu9/s5ZJHGUvrW24kZReQbcI\nXbQT96q5u/xCu/Qo8dVO3+C7Ns3qLf7lwqqnPtx3Wfa1y0KzHeZC2e6+g0toJ4BUrrhqp39e\nOtVCBWfIHlIySA8P5B3YuH1I8Sc3slPXHs6U+vx6RtL3qXmKvJFeEIQbFz9TaMmV+5rcC7l3\n1gmFViTRR3c/fFb00qHwxg/tPLm5V81gK7OUKXFrphtEoWT9J34d10vSN1QU/f6TnPQBQ6OK\nL13yMo+tT8uWOOu1U+OqigxZf9GZjBgMBTNPX5ee/tTX68WT0T3biSfd68A172cSzK37xY49\nmZH0fVxO8SkcEDk4yIv7a9SmtYrdSN7TSrObKUVg1CP+og+vpsfPSMi1I4T4eusl6wnUrHO6\nTjPpr/lo3ilBEM4vfylLdL/dgM/us3exZZW+Wd9nNh7a3SFMPOxhmBF7Tf2s2Aw+lS7GZtQv\nae7VdhupfFysc+uK2mHyNnZSqBm5eVidXzaLqIzK1FWDhxV+mzTVmgiCIOgDZt1X3TiVnbZp\nzqUMQRDyM4+/eTTV+Hvztz5ycj2a2/DbpPQKulvo4uK4Vwu7q9HolaPqFI8VGQyGSX2Hp+Zb\n+ByAy2m2w1wo2913cAntBJAKFlfN9M/bQa1QwUnyhpQM0sMzjWsdZfzbUJj38q/nJc54ZMoX\nDqzO7LPrpflv2iYHFi5FSI3xgV7Fp3P8+g9ypUeDhdkP9+rR7bYBjy5xMjOX94+fKLppKCCi\n6559C5tp+IZ69cUtixNP3vdmW4kznloVr0B2FDGst0lfz3tfx0qc8fR3G+NFouqGOJmTZS/9\nLjWpIffFOSfFP3QaU1c86V4Hrs6o7uLJI1MnSZ/33wmfiCcr93hCnjzBHpqq2M3IeFppeTNt\n0vtWeq5y8QvHCnKTx0i+bslI/GZRio0HEdSscyKbTa3hX3yH7/GZXwiCMOftf4y/+ATWn9m6\ngoU5y4D8rBOdRHoOeEfKXN4BDb5+r5n4l+RjdvQ62SRX8Kl0MTajfklzr7bbSOXjYp1bV9TO\nkLGxk0LNyM3D6vwyW0TlUqauGjys8NukqdakSJuJo8STs6cfFQTh4tqXMm9/qV2nD/h8ZD0n\n16L+hsvYK+ja0EWbca8Vmoj0dD4zNn/qJ7ovJOvKhl7v/iXb8mWlcoe5Xcps9x1cQjsBpKLF\nVTv989KpEyo4Sd6QkkF6eKZ2H98jntz92js5EurZwryUF+ZJrarEDpp+hs3ywvNTn154xoGF\nS+HlGzOhQbhxMvvaljHbpN75m7hj7JJNW7bddqlBAyczM2+YydenXlr/c90AD3lZnFwyL5lc\n8jUK8iktpVhhXvLzit3QLbsmbwwSTx6Z+ur1AknBzpTvThv/1ul9nq/i7AeiErc/+/d1SW9a\nO7tk+K4bOcZJL9+K7zc0+ZSdex24sNrvVvUrPvUyUxa9/4+kV67lZ8WOXHBa/Mv945vInDlI\noKmK3Xz58p1WWt5MKYa/aLLSLaPH3pBW1y0Z9bHNNGrWOTqvkE86F7+t62biNytPL5sVn278\npcYDX2j82TjlePlU2LVjx9+3bVk/47K0h0hCGppcxxqklQ2JZAw+FS3GZtQvae7VdoupeVys\nc/eK2mEyNnZSqBm5eVidX2aLqFzK1FWDhxV+KbTTmhQJqf5aj/DiR67P/PCBIAjzx+81/hLV\nYnoraY21dSpvuIyBmWtDF23GvVZoJNILrjF89fNNxb8cmNpvWaIWP7+icoe5Xcps9x1cQjsB\npKLFVTv989KpFio4Q96QkkF6eKYKbWY2FX2+IiNxyaDvjtuca8+H/fdJ+2ySX5S/eHLfx3ts\nzvLXO71jsxR8Z84jn/YVTy56cEhslu13FhkKbjw7+CfjpE6ne/5pp25Eys888l5smnGyXMVh\nE+/0nPvQ5VKuRjnx5JGbkgrG6pfuuZgj9T1ULhdWd0J30evOstN+7zdln825kne+vuxKcWgS\nVvvdBk7f4VGQd3Xog7NtJsu9caDvyOXiX6r0/KKSj0kr6V4HTudd/st+VcW/TOs/Wkootnx0\n/5OZxZvmF9rpY/s7miELjVTsJcl4Wgka3kwp6j09RfzMRGbK6l4fbLM51+V9k0atj7OZTOU6\np9NUkzdxjXp4tPiVa89Nkno3t+fReZcXf2HXUJj14nZJV++nl1wQT8Y0Cy8tpRTKBZ+KFuOS\nVC5p7tV2i6l8XKxz64raYfI2djapHLl5WJ1fNouoXMraVYOHFX6bNNWaCIIgCPqJTxU/8JqV\nuu7L2N8mni1+6vqB2YMszWU3pTdcucDMtaGLRuJe6bQT6fWYvrGzqBOssODm6B5vKfh2eEcp\n3WHujDLbfQdX0UgAqWhx1U7/vD1UChWcJGNIySA9PJPOK2TBuyZnwvoxd83ckWxllrgN73X7\neL/E5QdGNxRPXlg7bGOKtdtmE36f2mea1IU7Jqb7t30jA4yT2Wl/d+n9WlxOgbV5DPlfjbjz\n1+TiOjfijo+eqBhoZQ6bkv5+M0f07Y1aw15wZmkW5Vzb3MnUQ+MPyL4WRUV1jBJPrpHQOm6Z\n8fiDcw6b/Zim5OegBEHIynFi+Trvr2aavDhx5ztd31173soceRlHH733c/EvnSY/5ngGRBK2\nvNzjrdVWEuRnHh/aopu4j0mn8/l4bl+zZOofOKcOgSD0+GqauGMiI2ll8/s/yra6yB0zhw5d\ncEr8S5dp3/q428MkTu437dBIxW6RXKeVoO3NtMkvtNs3vUz6tfd82OPp7w5amSX93Mr2Xd4V\nx+6lUbnOiWg6uY7ouuvq/uLPfQVGDhpbNVjKQjzVc41NRh1WP/Zsqq2XmmalbBq++KxxUqfT\nvyT6VmWpc5VefSkXfCpajEtSuaS5S9BVksrHxTq3rqidIWNjJ4WakZuH1fmeVEStx7Elr4Xv\nf2a38ystU1cNHlb4bdJUa1Kk8f9eF0++M+TRgtvr8g1qPrN1lKWZ7Kb0hisXmLk8dFEt7rVL\naXWjy3eXkd6n0pJfTbpAU499alZPaoHSHeZOct/uO8d4TOeVk1y1HzQSQCpbXNXqn5f3IKoT\nKlgkfUPkCilzrm0WDIDsCrPNitq61Cx515B9bat4+a0nH7KQi/wbg2JMXsTh5RP14qdr8wpL\nJs1dMe2ZMO9b96zovUzm2nYtu+TCC3ISjOmLBMX03R5/01JmC7d9/7YxsX/F4nuXwmp94vDW\nWXTlwHRvncllcWi9/j/9ccpi4uTDm8f2rSNOrNP7fxV7TeK6SrN9qMkyg2rUb+KEs1n5JVeR\nkbLQrIDVvH+rk9k2ivb1Ei/5i0sWj6mzbl4yuTNU7xU864+40hJnJh0YN7i1YEm76QcszuJw\nEUqNfVI8412zj5WWUtIqCnOeaWhy97TeK/jJDxfeLCh5EhrSTqzvX8/kKi4w6t6SKaWs1+wg\nGt05dPyxtJyS6Y+s/bxNiXDqjhfWl0yp9IEzyH4IDIatr7cxW3vVTsO3nrlRMmV+1oXJT/fQ\nm9YhYfVHZRY4lQELWbq/pnjGbAvFwW7y7rf87HPiNE1e2mMzA9fPvyWepd/uJJuzxM7vJJ5l\nYUqGxWRaqNgNSp5WSm+mwwVVutz0fbX8Te4p1un0d4+adC49t0Tagj+/f7u6KLFOtNVtZx0x\nS61CnWNmdf/qlg/09MN27BHJpBwdjVQ1STufNtsnMV1f3HfuuuXUhdk7Vs5uWd7k+arIOz6y\nmFZ69aVo8KlcMbZIzZKm2aBLShFV+bhYp1xFrZ1mV9HG7sbFj8TJem9LsJhMucitJOfPRO0c\nO4MmYwmJLZH0hsBg6Vo4ul2p8ZVd3PSqQeKZZaasBTyKtiaO5Xx4RZOnBo0aP79D4oZLWa+i\nG65cYKZ06GLzrFEu7rWLxLpR6d31vyrFoyxBlUbazPZn91QRL9Y7oPbBm+blzeV1gqId5nZx\n3+47Ffpd7eLyQmUv2Ts/S1rfrvhV5Hrv8NKSaaHPTfGeHwX65w3KH0R1QgW7NqQkWULKjJSF\nfCgaHkvnFTx364y1DZ/Jvv1gd0He5c/G9p8/o/lDQwe3a1yzUoXQm5eTzh7dvXTxzwcv3ihK\n4+Vbceb6aS/2eNy4nEAvCy+c0PtWntUjZsRvxW/BupmwvnvtukOff6F/xxYNGzasHumXfOnS\nwb9/W7zgq1W7biULrjFw9fsp3Yb/rdAmR7R4dc3YhX1m/Wv85Xrs2se6rX3/znv69bmnRb1q\nkRFB6ckJFy9ePPz3moWbDhWa3iDcecLvo+s6e6/r5p0p4smb508ecWJpOYrdu+1a5aJHP1n9\njXkXbpW6woL0l7vX+LH34y8883DTGlWio6OF9EsnT56MjY098Nf6n379O7Pg1j1cvqGRudev\nGJez9/XOg+PH9W1T19er9aND6lhYk510+gDx5IE3n17c6Muujat5515PTEys1bytfd/n0/nO\n+OPH5VXvv5x36ybEwoL0ee88uvjLjwYOHty5Rd3oSpGZKRfPnDlz/OCfP6/bkyd6B4NO7/P6\n6m/L6Z19FsPbPyY/O6Ho771LJjZZ9mWnAYPuuatpTEylwvSUi+dPblzx867YK2ZzBVbst+WT\nXiWXpsKBk/kQCELXj7cMWRTzc1zxR3Hi/vrh7ro/t+px/8C+nWtWiQnzK0hMSDi047elyzYm\nmr7Wycsn6sdtswLc4Z07su837dBCxW5G3tOqiAY3UzqfoNYb5w6p+1hxp7nBULjl2zfrzJ/a\n5b7Bd9/ZKCamUsGN5Atnj6z5+ed/b8cbgiCE1n1kVsjvT/yTYmmpguCKxqLD5AeFtZ+Y/ajT\n+cwYVRZf/ytW8a45T9VY8t354sOXsO2zO2vNbnnP0Ad7tK4QFRUVFSFkXo2PT4i/GLt2yaLD\niSZfldN7h8xZ/5LFJUuvvhQNPpUrxhapWdI0G3RJofJxsc6tK2oHKNHYSaFm5OZhdb77FlGN\nxLFl5KqhiIcVfps01ZoU+d8bTX542fz98DqdbsJ7LWRci6Ibrlxg5vLQRbm41y4S60aX7y4z\no5ctmx7V0fgO6vysM/c9/MP51SMdXqASFO0wd5jbdd85RiONvstpZz9oIYBUvLgq0z+v9EFU\nJ1QQnNsQ2UJK6UP6gFTaeJK+yIml4/wkj/PpvUOmbUvMurpW/OOxjDzLeUj7I8bP8h1/FvmU\na7rtStbpJV2Mv8j+JL3BYDAUZM0c7khV1Wb01xYeWrdfq2Bf2yuT7HimhZ3vAU/SGwyGq4dn\n+Ns5Ah3Vevh/V+Oq+1u4uSqiwWLxwh0uQpkpS6xk4IDo/l/pq0j4Y1alUu6NtWLIZ3stLs3e\nJ+krNF+zbFw3u1YdENlhS6LlB3QMCh84hQ5B1pVdvavb/dpGL7/Ks7bGl7ZMuzJgRombcOXd\nb5p6LMxgcH3FblD4tFJ0M1V4kr7Imvf625Vt3+AWO9OyxTd3W3xGR+k6x0xhQWaDQB+zuco3\nmKjMPnOz+/3Tjs+raH9zJgiCTufz9NelZlt69WVQMvgsolAxLknlkqbNoEt6EVXtuNimTEWt\nnWZX0cZO+vO+CkVuJTl/Jmrn2N2isVhC4mluV0Og3JP0Bve8anDsLh/W3QAAIABJREFUSfqy\nGfAo1Jo4lvPsa9u8dOZNc2jN/0ncarvWq1wzqlxgpmjoIuWsUSjutYv0ulHR3WXvk/QGg+HY\n1+ZF7r3dyeIEGqkTlOswl859u+9U6He1i0YKlXRKdH6akfgkvcGgiT43FXp+5O2fNyh/EFUL\nFZw5K2UJKTNSFrrPna6AQ+oPnnJoyRtS6iD/8OZzfj/+WpdKhXkmd8tW87c8r19Y1wNbP4ny\nkVS7hdTutfLfv7tE+NtO6iS9/0vz9y8cd6+v9EjLK2j4B0v3fPW0IwG4GUP+0Yw828kgCOWb\nvPLP/GclBsQ6nXf3ER+f2DWvafkqGz57VLlcBUQNGVo5yHY6e1TuOvbIrrl3SC78ep/yr3zz\n55IXzF+36LAHp2xd/Fr/ku26ReEN+mw+/nv3SqV+TEjpA6fEIfCPaLf66O7H2laWPktAxRY/\n7j08tluMvDlRjhL7TUNcW7FbIu9pdYv2NtMu/Ses+W3iY+WkPUwQXKP70v1/3BXmZzOlyo2F\nTh/wiekbGgVB6D7L9ufHyoKwBk8c3DSleoB97yHzDqg6fvHBr5++o7QEdlVfSgefChXjklQu\nadoMuqRT7bjY5uYVtb0UaewkUC1y88A63z2LqHbi2LJw1VDEAwu/BBpqTQTBL7TL6zVCzH7s\n/MmzSqxLuQ1XLjBzeeiiUNxrF+l1o8t3l5mGo1aOrhsm/mVqv2FX8jX36XHlOswd5l7dd47R\nTqPvWtraDxoIIFUorrL3zyt9EFULFZzZELlCSgbp4fnqD5545vyO5/o2Ki2BTqdv1vfFf87v\nfbpLZUEQ8nMuGP/l5Rtt5YXbFdq/eObEb0Pb1bCydp3ev+uIibHH1/era16tKEb/yJRViYfW\nPdmzgfV0Or1v2wEj1/wXN/+dwbK8RCY/Kza70DNfUK+ERsO+OL9zwd0NI62k0el09bs9/us/\nCVu+H1/eWy8IQsNR83+fOrqCQzc1S/HV1q/rhcj5OgRBECJajjhw6eycNx4x+2abGZ3Ou939\nY9YcOjNjVCcryRwwdNqa83/O71bL2jno7V/5ualL446u6xBpI15R+sApcQh8yjVasDtu+0+T\nWle2/EUfIy+/SiPf//5C3P5H7igvbx5EdN7ePv4BgUHBIeHhsq1Fif2mNC9vHz//gKCg4LDw\n8n42LkRdVrGXRt7T6jbNbaZder25IOHobyO6WXsJnk7v0+GxD0+c3HxfPamvRFO5sWg3abB4\n0ss3+ovubtbzfpv8VU2lLq+eiNv36qBOUl7t6O1fccBTEw4mnPpoSKkhaBG7qi+lg0+FinFJ\nKpc0TQZddhRR1Y6LBG5cUdvT7N6iTGNnm2qRm7vU+W4bMkk9zbUTx5aFq4Yi7lL4JXDT1kR4\nalJb8aSXb6Wv+lZTaF3KbbhygZnLQxeF4l67SK8bXb67TNfkPW3zZwGizuSsq5t6v/WnzGux\nsnrJdYJyHeYOc6/uO8dop9GXrCx04rk+gFShuMreP6/0QVQtVHBmQ2QJKXUGD/3kM1BSyvEd\nixYtWrV1b3x8fEJiWrmoytWqVWvU7p6nR4/u1CDCmOzywYcrtLj1movAqEEZKb/YXPK5Pavn\nL123Y+fOE+eS0q6l6fzDoytXjq5cpWOfhx4fNqRBheKgIe/G+di4jKK/vXyjG9RV7oJWEATh\n6pl/1qxZs+63bafjE5NTUq6kZpYLCy8fGVmv6Z0dO3bo/cCQVtU0c9ta2VX43+9Llqz+feeu\nPafjUtLS0nSB5StXrhxTpXbn3gMeeOD+5jXCSs6Tffm/lav/PHYqKaJGnYYNGzZo1Kx6lGzd\nggXZCT9M/3jBhr3nz59PuJIVWSk6Ojq6cuXKXyxeVN2el7mVlH8z4fe1a1atWvPPyYvJScnJ\nl9N8g8MjIyOr1W/etWvXngMGd6gX7nz+K/t5J+be+spOheZrkv+9/aoxQ+6/W1f/vPTnbftj\nk5KSklOuBUZUiI6Ort6g9f0PPnj/gK5R9m2dggdOuUMgGHIO/7157dq1v+88mJicnJKcfD3X\nO6pChYoVKtRu1r5///59e3WqEOCOT7sJgqL7TUtcUrGrdVoVc+v2K+Xk7hUrVqzetOPipaSk\npKT0At/o6MoxMTHt7hk0YsRjTSsX3+x/89zJC5m3PlgYGF2nZnkrT+2o1FhcO/VBeL33jJPV\n+qy4sP4Be7a+TMhJPb1iyYod+/89eOjQxaTU9PT09Iwc/6DQ0NDQitXqtGzZsnW7rgMf7FlB\ncvl3oPpSOvhUphgXc1FJ01zQZS+lj4td3Lqitkj9xs42hSM3z67z3auIOtAQDI4qt+xKZnS7\n9Zd29ZE/Qx591SB4euG3SVOtiZqU23DFAjPXhy6yx712sbNudP3uclPKdZhb5wHdd44pI51X\nNmlzP7g6gFSjuMrYP6/Ng+gAhzdElpCSQXrA3D9vNm89+VDR3+Xrzbl68hnX5geAXUqN8gE4\nitOq7FjWt/rgDReNk2+dSP2ovgy3TwFmKGnQoDLY2HEmurX+EYHrUrOq9/39/Lq7XZ0X90Ph\nBwB7yd5hXgZDLwAeRpaQktfdA+b+WF58XlXu29KFOQEAAFBNQc7FZ39PME76hXaeIMcLTgAz\nlDRACzgT3V3RwEa5mjbeS4+SKPwA4AA6zAFATK6Q0lu+LAEaknb0i3e/OmmcbD5u0lNVJb2K\nJPfGzrfPXDNOtnm8pvyZAwAA0J4Lq5+5nFdgnKz/9HRvjXxKGp6FkgZoAWeiWyvMSzmckScI\nQvUHqrg6L+6Hwg+gzKLDHADkIldIySA9PJNXUPIXX3xhnKyf9eBTc7tKmXHbe6NzCm99A0Lv\nVe79Rsp+Mx4AAEAjPnnlb+PfOp1uwutNXJgZeDBKGqAFnIluLWnHm3kGg07n/XrrCq7Oi/uh\n8AMos+gwBwC5yBVS8rp7eKag6DEVfb2Mk6d/emzfjVybc1058NmAz44aJyu0mVnVz8tKegAA\nAM+QeuT9L+PTjZPBVV96ICLAhfmBp6KkAVrAmei+cm8k71w1rUOfHwVBiO4yvUuor6tz5GYo\n/ADKMjrMAUAWMoaUDNLDM+l9K8+9t7pxsiAn4Z47R/xzNdvKLLEbpt1x1yu5t+8KFARh7LxB\nCmYRAABAG7JS9j3YfYr4lx6fjXVVZuDBKGmAFnAmuq+sK0sDwqI73D/ufHZ+QFTHZavGuDpH\nbobCD6CMo8McAJwnY0iZdWUpr7uHx7pn7oJa67qczcovmrx2cnG7qtvvHfbEk08O69CkZli5\nW/ebZ189/+e2P5Z888n3m46IZ6/S85M3GoarnWkAAAAVGHKbtO5au3bt6pVDUxPObli1MTWv\n0PhPv5D28/pXc2Hu4DkoaYAWcCZ6CoMhv9Bg8CkX3XPwyEmfvHVHCI/R20LhBwBTdJgDgN0U\nCykNhnydwWCwnRBwT3Fr32pw/+TMgsKS//ILCo8K809PS7ueYeFuweAafXcfXdUokLtYAPdT\n2c87Mbeg6O8Kzdck/9vftfkBPACnlQcy5Oj0/qX9c8z6i7P7VFUzO/BYlDS4D09u7DgTPYWh\n4Ma5hIzoKpUC9DpX58VNUPgBoASNdJh7cugFwMMoFlIaCm7wunt4sqr9Pz62blKNQJ+S/8q5\nmRYfn2gx4Iho/tg+RugBAECZ1OqZxXRYQwWUNEALOBPdi84rpFa1aEboZUHhB1Bm0WEOAHJx\nMqTUeYUwSA8PV73XuJMJByc80Tvcx8tm4oAKTcfN/Dl234/1CTgAAEAZo/cOe/jNhXvnDHV1\nRuDhKGmAFnAmosyi8AMAHeYA4CS5QkoqVng+37BG783b8Nbn8asXL/tzz979/xy8kHT1+rVr\nmQVeoaGhoWFhkdG12rbv0LFjx3t6dQr35p50AADg6XQ+30x8dcGStScuxKULwXXr1Wvc8u7X\n3vtfq+hAV+cMnoWSBmgBZyLKLAo/AJSCDnMAkErJkJJv0gMAAAAAAAAAAAAAoBJedw8AAAAA\nAAAAAAAAgEoYpAcAAAAAAAAAAAAAQCUM0gMAAAAAAAAAAAAAoBIG6QEAAAAAAAAAAAAAUAmD\n9AAAAAAAAAAAAAAAqIRBegAAAAAAAAAAAAAAVMIgPQAAAAAAAAAAAAAAKmGQHgAAAAAAAAAA\nAAAAlTBIDwAAAAAAAAAAAACAShikBwAAAAAAAAAAAABAJQzSAwAAAAAAAAAAAACgEgbpAQAA\nAAAAAAAAAABQCYP0AAAAAAAAAAAAAACohEF6AAAAAAAAAAAAAABUwiA9AAAAAAAAAAAAAAAq\nYZAeAAAAAAAAAAAAAACVMEgPAAAAAAAAAAAAAIBKGKQHAAAAAAAAAAAAAEAlDNIDAAAAAAAA\nAAAAAKASBukBAAAAAAAAAAAAAFAJg/QAAAAAAAAAAAAAAKiEQXoAAAAAAAAAAAAAAFTCID0A\nAAAAAAAAAAAAACphkB4AAAAAAAAAAAAAAJUwSA8AAAAAAAAAAAAAgEoYpAcAAAAAAAAAAAAA\nQCUM0gMAAAAAAAAAAAAAoBIG6QEAAAAAAAAAAAAAUAmD9AAAAAAAAAAAAAAAqIRBegAAAAAA\nAAAAAAAAVMIgPQAAAAAAAAAAAAAAKmGQHgAAAAAAAAAAAAAAlTBIDwAAAAAAAAAAAACAShik\nBwAAAAAAAAAAAABAJQzSAwAAAAAAAAAAAACgEgbpAQAAAAAAAAAAAABQCYP0AAAAAAAAAAAA\nAACohEF6AAAAAAAAAAAAAABUwiA9AAAAAAAAAAAAAAAqYZAeAAAAAAAAAAAAAACVMEgPAAAA\nAAAAAAAAAIBKGKQHAAAAAAAAAAAAAEAlDNIDAAAAAAAAAAAAAKASBukBAAAAAAAAAAAAAFAJ\ng/QAAAAAAAAAAAAAAKjE29UZ0ITMhOObtmzdceDY5StXr2cL4eXLR9do0KlLt7vbN/XR2Z49\n4ejfG7ftOXL0ZErqtYw8ITgkJKZm/TtatOvdu0O4j7O3QTiZNydnBwAAAAAAAAAAAADISGcw\nGFydB9cy7Fr+5cwFm7MLLeyH8Hpdx735XOMIv9Jmzks/O3fqlA2HEi3+18u/0tAX3hjSqZZL\n8ub07AAAAAAAAAAAAAAAmZX1Qfp/fnzz/WVHjZM6vW+QvyE9M8/4i29wo6nffVzL36vkvHkZ\nse+OHn/0Rm7x7Drvcn6Gm9kF4mTdx8x8qU9tlfPm/OwAAAAAAAAAAAAAANmV6UH6ayfmD399\nZdEeKFf1rmeefqT9HdV9dEJm6vnfVy/8buXeon+F1Br006zHS86+6JVhS05fFwRBp9PVbX/f\n8Id6160W7e8lpF9NPrrrt+8XrE7MyhcEQafzfe37nzqV91czb07ODgAAAAAAAAAAAABQgteE\nCRNcnQdXKZzz2qRzWfmCIPhHdpgz+/WGlcO8dIIgCD4BYfWbd24VcmbTPwmCIOSkHTO06980\n3OTN8JkpyyfM31P0d7PhkyaP6lUxPNhbrxMEnV9gUJV6zXv1avz32m3pBQZBKDh5usb9d1dX\nLW9Ozw4AAAAAAAAAAAAAUITe1RlwmZvxP/yRml3097APny/vrTNLUK/fW/0rBBb9vX7mn2b/\njV+9regP74B67wxsXHL5viFNxg2qUfT3tZPf2/W+Aifz5uTsAAAAAAAAAAAAAACFlN1B+nNL\ndhf94V++94CYcpaS6AY+26Lor/S4hdcLTMbZ045dL/ojIPJeX/NB8FsqdW1S9EdB3pX4nAKz\n/85/csi9t501/Yy9k3lzcnYAAAAAAAAAAAAAgELK7iD9yn+vFv1R+e5epaUJb/yIXqcTBMFQ\ncHNRUob4XwV5hcY/S19J8eh9nj3j4E7mzcnZAQAAAAAAAAAAAAAKKaOD9IaCG//ezCv6u363\niqUl8/Kr2jbYp+jvc/+lif9VsW1k0R+Zl1dkFloegU/4/b9by/GtVNPfS528Ob9pAAAAAAAA\nAAAAAACFeLs6A66Rm76nwHBrZL15qK+VlC2DfHfdyBUE4ereVKFPVePv1QaO9F32Vm6hoSD7\nwrs/7pk+op3ZjFnJeyatvFD0d3S3Z0u+ET8oskIFfVbR3z6ifzuZN+c3zTHZ2dn5+flOLgQA\nAAAAAAAAAAAANCswMFCvd/ZJ+DI6SJ+XGWv8u1Ggj5WU0VUChUs3BUHIuhQvCM2Mv/sENpnx\nQq8XP9toMBhiV0wcdbLr8CF96lStEllOSLyUcGzXxp+W/XG9oFAQhJBavSY906zkkgdN/XyQ\nAnlzftMck5ubm5ub6+RCAAAAAAAAAAAAAECzAgICnF9IGR2kL8y9VvSHTucd6lXyKfdivuG3\nHkYvzL9m9q/qdz870y9i0qwlybkFyUe3TX13W8nZ63V9+PUXhlhfhbx5k2XTAAAAAAAAAAAA\nAABKKKPfpM+9fuuZb51XsPWU3rc/3G5xJLtm+/uG9Kld2rx+YS2ffOyBKB/7drKTeZNr0wAA\nAAAAAAAAAAAAsiujg/R2KDTc/iPH7D8Z8TveGTPis1W3Xi+v03mHV6xat1bVkIBb7yfIuXbg\nzdEjZv28W/28qTE7AAAAAAAAAAAAAMBOZfR1976ht970bijIsJ4yPyO/6A+dT3nx7xlxf776\n8sxLuQWCIARWajx02OO92zfwv/16+etJx1cu/HHVn8cKCjK3LpyYkvHaxCc7q5M35zcNAAAA\nAAAAAAAAAKCQMjpIr/cNLfrDYMjNLDQE6kv9dntu2q23x+u9i0eyDYVZU974rGiEPrRO/znT\nRgWZfv09tFLDEa9O6tnm2zHT1wiCcOTX6V+3bjL6Dklj4U7mzcnZHRYQEODn5+f8cgAAAAAA\nAAAAAABAm/R6Gd5VX0YH6b0D6grCpqK/j2fmtQryLS1lSkJW0R9+4ZWMP/6fvTuPr7K68wd+\nbm4SQiDEBARFKUrdQQVcKi4VqXUZbUetI4q2P0SrtloHtXVcq6PYxY51t+5Vq1h11Na6jBax\ntSpCFS0qUKxYBAJCWJJAyH5/f9wQIiQRSHIuNe/3X8fnOee53/v1vvSPT855Vs65892KmhBC\nIpF1/tVj10vom2z31e+e8btX7/tHWQjhT7c9f/bdp0WorZ3LN1tOTk77HwIAAAAAAADwxdZF\n30nfrdcBWYnGZP1vq+ramDljVW160GdEv6aLn076sPE5hYfu16vVFDyEcNBpO6YHlUueqU+1\nMbHDamvncgAAAAAAAAA6TxcN6RPJwqE9Gnd+fzBlaWvTUnXLXi+vTo8HDF93JnzNysaD4pPd\nBrb9Qd36FTU+qqGqsmGjUvp21tbO5QAAAAAAAAB0ni4a0ocQjh/amEwvevHN1uaUz3uiNpUK\nISSS+adu26Ppeo8de6YHtZUftP0pq+c2xuTJnD4FrZyK37G1tX85AAAAAAAAAJ2k64b0g075\nSnqwetGj08prWpzz2h2vpwcF25/aJ2ddr/oeMiQ9qKn46wuLK1v/kNRzv5mbHuVv8804tbV/\nOQAAAAAAAACdpOumswXbjz2kKC+EkEo13DbhyQ1Pol/xwSN3/6M8PT76gkOb3+o54LTd8huP\nlH/gipvmV7b86vfpT1z3+7UR/n7jDo5TW/uXAwAAAAAAANBJkldffXWma8iQRNYeu1b8btLs\nEEJV6ftTFmQPG7prQW5WCCGk6me//sQVP3lsTUMqhFC48ylXnbzvZ5YmsoftuOL3f/4whFC3\nesGLf3ilPLuob3Gvnj26ZyVCVcXyj2e/ee8N1/5m8ofp+QUDv3H9GYesd9j9k5eMv/mJp599\n9tlnn3126BH/Vpjd7A8m2lFbBywHAAAAAAAAoHMkUqkNN1p3IX994OJrn5qdHieSBYN2GljY\nreHThXMXLqtKX8wt3POGe64ZmJfccO27j0348SPTml9JJPN65TWUrf7MCfPd++77i9su/9IG\nT3hg3OinStekxzc9/vSgDSa0p7b2LwcAAAAAAACgw3X1kD6Ehr88fsutE1+pamihD332GHXx\nJd/fbavc1hbPm/LU/9wxcV5Zy+99TySSQ0adcuG5J/bObuG1Ap8b0reztnYvBwAAAAAAAKCD\nCelDCGH1/A9efHny62/PLF2+vLw6FBUVbzto8FdHjjz8gCHJxOesTTWseffPf3zj7b/NnPPx\nirKKytpUQUGv3v13GDJkr68efsQu/fJbW7gRIX17a2v/cgAAAAAAAAA6kJAeAAAAAAAAACJp\n4Rh2AAAAAAAAAKAzCOkBAAAAAAAAIBIhPQAAAAAAAABEkp3pAgAAAAAA4PPVTuyf6RJCzpiS\nTJcAAPzLs5MeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASLIzXQAAAAAAwL+k2on9M11CyBlTkukSAADYNHbSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAe\nAAAAAAAAACLJznQBAAAAAAAAAHSM2on9M11CyBlTkukStmh20gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARJKd6QIAAAAAgI5RO7F/pksIOWNK\nMl0CAABs0eykBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIsnOdAEAAAAAfGHVTuyf6RJCzpiSTJcAAACwjp30AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiyM10AAAAAQDy1E/tnuoSQM6Yk0yUAAACQMXbSAwAAAAAA\nAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIgkO9MFAAAAsGWp\nndg/0yWEnDElmS4hHg0HAACALsVOegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk2Zku\nAAAA4PPVTuyf6RJCzpiSTJcAAAAAwL88O+kBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJNmZLgAAAP4l1U7sn+kSQs6YkkyX\nAAAAAABsGjvpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAESSnekCAADoGLUT+2e6hJAzpiTTJQAAAAAAbNHspAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEkp3pAgCAL6zaif0zXULIGVOS6RIAAAAAAGAdO+kBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACLJznQBW4TKhbNeenny69NnLi1d\nVlYVioqLt91ht0MOPexrB+6Zk9iYB6TmfzD15ckvz5izYGlp6er67KLifrvtOXTU0f++z6Ci\nzawpVXPS8f9R1ZD63IkF2//okTsOaeVmw+wpf3x16tszZs9dsWJlVSq3qKhomx12PeCAEaMO\n3Tc/a6O+GwAAAAAAAAAdRUifmvLk7Tf+5o/N4/DSxZWlixe89+akR3cZefGl5w7u3a2N9fVV\nCx/8n+t+N21Bs2vVS0vmLi2Z+9pLTw879pzLzjwqN7HJcXjNqhkbk9C3YdU/X//FDb96Z155\n86cuWbRqyaL5M6ZMevjRvc668IejdtuqPR8BAAAAAAAAwCbp6sfdv/3QZT998KWmODyRlVuQ\nn9N0d8WcP111/lVzq+pbW15f/cmPvzu+eUKf3b1n9tpIPpVKTf/Dry64+cXNKKymYtpmrGqy\n/G+PnXXB9c0T+mS3goLcZNM/Vi6ecculP3hhTll7PgUAAAAAAACATdKld9KvnP3ANU/OTI97\nDBhxzlljDtxrYE4iVC7/56RnHrnv6WmpVKqmYuaPL3nk4Zu+08L6VO09l1z2Xll1CCGR1e1r\no8cdf9ShA4ryU7WV82a/+dBd9731SUUIYf7kO+4aud/ZQ3tvUm3lf5+fHhRs/50rfjC4jZnJ\nbtutd6W6bOqF1zy6qj4VQkgk8w876bvHjxy2/TbFyVBfWjJv+itP3fu/f6lqSDXUl919xeXD\nH76lX25X/1sNAAAAAAAAgDi6ckjf8OufPZ9KpUIIeX0Ouv3mi4uzG3fA5xfv8M2xl++29YQf\n3jUthFA+938nfnz8mB0L1lv/6ZRfPv9ReQghkcg9fcKdxw1pjOETOfk77DnqypuGXXfm2dOW\nV4UQXv7lQ2c/dMEmFbf8rWXpQZ8RQ3fffadNWvvCT+5YXtsQQkh22+7Sm27Yf7v8tXeSfbYb\ndMRpPzzwkIN/eNHPS2rq66s+mfDgzFu/O2STng8AAAAAAAAhejEoAAAgAElEQVTA5um6W6hX\nLXjwleVV6fG3rz2vKaFvsssxlx/btzHefv7GV9e7m0rV3HrrX9PjL4++pimhb5LILrrgupPT\n46qVr0wuq96k8j7+cFV60G//TduCX1f5wa9nr0yPD77ov5sl9Ov0HHjAtZeMTI8XvHR7TSq1\nSR8BAAAAAAAAwObpuiH9x799Mz3IKz7qG9v1aGlK4oTvD0uPKuY/Ulb/mSS7suS3M1bXhBCy\ncoovPnG3Fj+ix3Yn7N9/66KioqKior/OrVjv7gPjRn9zrQ1fez9tVU16sG/f7pvytcLy9x9P\nHw+QldP73P23bm3a1vucNzAvGUKor1748IJVm/QRAAAAAAAAAGyernvc/dPvNJ4n3/9rR7Y2\np2jwmKzEGw2pVKp+1cTFq7+3Xc+mWx8//kZ6UPjlM7Zp/Z3uV9x532bUlmqofH91bQghkUiO\n6NVtk9aWz1yRHnTrNSIva/3jAdZJJI8u6n7nolUhhPfeWBpGr3+YPwAAAAAAAAAdrouG9Kn6\n8ndW1abHux7Wr7VpyW4DvlKQM6W8JoTw8YwVoVlI/8L0xox/x9Etb6Nvj9qKt+tTqRBCTs+9\nC5KJkvf+9H9vvLdwwcJFny5P9ujVe+vt9xw27KCRB2/TPbnh2pqVjd8rJFq421x+sjHCL32z\nJIwe1JFfAGBLVTuxf6ZLCDljSjJdAgAAAAAAkDFdNKSvqZhav/ZF7EMLc9uYObxnbjqkXzZt\neTh6QPpiKlU1raLxOPrhO2zmHvSeffr2zVqTHud8dsd7ddlb6UEiq8ctV5076Z35zW4unvfR\nnOlvTn74vgcOP/ms7584Yr3N8j12aDy6v6bi7YZwRhvvM3ijvLpx5spZIRy8ed+iSV1dXcq7\n7QE2Qm1t7edPouNoeGQaHpmGR6bhMel2ZBoemYZHpuGRaXhkGh6ZhgPAxvgC/x8zOzs7kWj9\nOPONfEiHlPIvp7ZyTtN4j/ycNmZuu31+KFkVQlhTsiCEvRuXV7xV3dAYSO9TkBNCWD5n2guT\nX5323pzS0uXVqdytinvvtMfe+x/89VHDB7b25BOvv/XEVm6tfH9RelBd9pdJ77Q8p75m2YsP\n/XTmh6fdcslJyWY/g60PGBbunxNCqK9eMPHjitN2bPlvCFbN/92b5Y1/Z9BQt7y1IjdeZWVl\nTU1N+58D0KkKM11ACKGsrCzTJcSj4ZFpeGQaHpmGx6TbkWl4ZBoemYZHpuGRaXhkGg4AG8P/\nMTtVUVFRMvk5J5p/ri4a0jfUrEwPEonswmRbf+mQW9S4z76hbmXTxdrKWWuXZ22TXffMXRPu\nf356w7p95DVLSlYtKZn3xqRnJu5+2MWXn7tLr7Y2629o+VvrUvNEsuCIk0752sH7f6lv71BZ\nOm/evH98MPXppyeX1tSHEOZPefjyh3f/2bf3bJqf3+8/9sh/amZlbQjhmf++ceSvLt9+g1Px\na1bO+fnljzT9Y0NtB4T0AAAAAAAAAHyuNk5D/yKrKWvc851Ifs5h9dkFjfvsm4f0DbUrGpdn\n9XjuhvH3Pvd2U0Kf1yO/+fkGS2a9cslZP3y/YtO2mP/9k1XpQU7+Tlfecc+5pxy724C++d2S\n+UX9dh+6/zdO/cEdd/73kILG4H/WkxPer6xbtziRe+F/HpIeVi1/6/yx502cNH3x8ooQQkjV\nlZbMe+Xx288cd/HfVlavW5GVt0nlAQAAAAAAALB5uuhO+k2w9lj70LAu1a4tr2y8Vl9x718q\nQgj9Bo88/dRv7DpwQO+CvLrKsvmffPT8xLtffLckhFBX+c8JF93+yF0XtLlj/zMGnHDquJr6\nEMKXDj5qeJ8WEvS8Pntd/vMzxpx7ZyqVSjWsueuxj289feemu31HjL/w6E9++cI/Qgh1axb+\n9parfxtCdvde2TUVVfWNXyfZbbsTD0k9NqkkhJCVXbQpHQEAAAAAAABgM3XRkD63sHEbeqp+\nddsz61Y3blJP5BQ3XWyobmg+59Czrrvo2HUHzmfnF+642/Bzr7nz4CevufLBt0IIlYtfuent\n0y7ad+uNLG/Ev33jc+f02P7ob/d/+KGFFSGET//8cmgW0ocQRn7vhp7b3HbTQy+X1zeWWrem\nvG7d2uH/ecXFxc9d/FgIIYSs7OIAAAAAAABkSOFLe2W6hFB2xIxMlwDQVXTRkD4rtzA9SKVq\nKhtS+VmtbnKvWdF4Un3zJDtnq3XvmC/abVzzhL65vb915eHPjp60rCqEMP2BqWHfY9tfeXNf\nOXa7h+6aHUKoKX8jhHM+ezOx7/E/+PXhx730/B/fnv7uxyWlZRVV3Qu36rv9zgcdMvKYIw7o\nnpX426Kq9NTcrXZqfzE5OTnNz/kHoDXdunXLdAldi4ZHpuGRaXhkGh6Tbkem4ZFpeGQaHpmG\nR6bhkWk4X2B+3kAH+gL/J6VDItEuGtJnd985hJfS41mVtfv0zG1t5pKFa9KDbkXbNF1M5vVq\nGu9z9mGtf07iuOO/NOneOSGEysW/D6GDQ/rCIY3H1DfUrSyvT/Xa4Dz9nIIBx4wed8zolpd/\nOL/xzfe999um5Rmbonv37u1/CEBnq810ASGEgoKCTJcQj4ZHpuGRaXhkGh6Tbkem4ZFpeGQa\nHpmGR6bhkWk4X2B+3kAH8p+ULV9WpgvIjG69Dsha+zcOf1tV18bMGasaf8Z9RvRrupjTY0jT\neJ+t2wqni4b2TQ/qaz5dvfZ98B0lkb3uL1ByNvkvNlJ/LqtOj/rv17vDagIAAAAAAACgdV00\npE8kC4f2yEmPP5iytLVpqbplr5c3JtkDhq877j634MBua0/IX9PQVvSeSjXeTSRy81o/VL+5\nFe9Nnzp16tSpU9+ZXdb2zDULl6cH2Xk7dN+4hzepWvHSvKr6EEIikXPygJ6btBYAAAAAAACA\nzdNFj7sPIRw/tHj6a4tDCItefDMcP7DFOeXznqhNpUIIiWT+qdv2aLqeyMo7ojjvD6VrQghv\nfFh++H5bt/YpS19blB7k9BiywWn0LSub8/B1D/4jhNCt8NAnfnNRGzM//P3C9KDngOOaX7/k\n7DOX1DaEEPa59MZzdy5sce1HT/whPcjvd+KAbsmNqgwAAAAAAACA9umiO+lDCINO+Up6sHrR\no9PKa1qc89odr6cHBduf2ifnM7066luNuf7Mux5r7Rj7VEPl/c8uSI+Lhx2/kYVtM+qI9KC6\n7M8PzV7Z2rS6ytm3zWzcSb/7yXs2v3VQ9prS0tLS0tJp97ze4tr6qrk3vNgY8A8dO2ojCwMA\nAAAAAACgnbpuSF+w/dhDivJCCKlUw20TntwwZ1/xwSN3/6M8PT76gkPXu7vtqDMLk1khhMol\nL116/yu1G6xPpar+75aL31tdE0JIJJKnnL7rRhaWV3TUN/vlp8dP//iK91r6A4KGutJ7LpuQ\nfsl9Tv7g8fv0aX53xBl7NX6F2XfePWXJ+oXVVzx0xVWltfUhhNyCfS8Y0W8jCwMAAAAAAACg\nnbpuSB8SyTP/66j0cOXsR8//xROLVtc13krVz37tsfFXPpF+o3zhzqecOqjXequzu+9y5Uk7\npcezf3/juAt++tp7H65YXRtCqKlY9vd3J19z3rhfTf4kPeFLh//osD556z3hyUvGn73W/Or6\n5rdGX3pyViIRQqiv+uTqs/7zgT9MWVpWmS5s2aJ5b/3p6SvOOfeFueUhhEQi64RLf7TeC+l7\nDz1//8Ju6fFz14+/5beTl5ZXpZf/890/XX/hOU/PKQshJBLZ/3HZD3I37V32AAAAAAAAAGy+\nrvtO+hBC0R7jrjxh9rVPzQ4hzPvLb85543eDdhpY2K3h04VzFy6rSs/JLdxzwnUntbh855Mn\nnDTr+4+/WxpCKJs75frLpyQSiR69uq9KB+pr9dnr+F+cN2LD5RVLFi0qXZMer7cRv2DQcVef\nPOPHj74VQqitXPjUPT996p6QnVeQW7+6srahaVoikXXo//vJqXsXr/fkRFb38RPO+t7428vq\nG1L1qyZNvGnSxJvyCgobKstrmh3Nf8AZPx89uGhjGgUAAAAAAABAh+jCO+lDCCHsN/ZnPzpt\nVF5WIoSQqq/46O/vT58xsymh77PHqAm3XjUwL9ni2kQi79Srbh579PBkonE3eiqVap7QJ5L5\nB33r/LuuPT0vscnb1Yee8uNrz/73oux1/4LqqiqaJ/R5xTt957LbLzxhjxaX9xz49Vt/ct6g\ngtymK1UVZU0JfbJbv2//182XfnPnTa0KAAAAAAAAgPbo0jvpQwghZB1y0vjhI77+4suTX397\nZuny5eXVoaioeNtBg786cuThBwxJthmvJ5IFJ3zv6lFHvjPp1denTp+1dMWK8lXV3QsKe287\ncOiw4SOPPHJQUW5b69u09zFn3HvIUX+e9Md3/v7Jkk+XfLrk04ra5FaFhdvvNHjffQ/4+qj9\n8rPaKm6r3Q//5QP7vPrcH16bNn3OvMUVlXW9inv36bvdvgcfNuqwA/vlt/yXBwAAAAAAAAB0\nHiF9CCH0GDD4hLGDTxi7mcu3GjTsxEHDTtzE5WPvf+xzV+T02u7wE8YevnllhZCVUzTyuO+M\nPO47m/sAoNPVTuyf6RJCzpiSTJcAAAAAAADQVXT14+4BAAAAAAAAIBohPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJNmZLgDYstRO7J/pEkLO\nmJJMlwAAAAAAAACdwk56AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABBJ\ndqYLAAAAAAAAAL6waif2z3QJIWdMSaZLgHXspAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAk2ZkuAD5f7cT+mS4h5IwpyXQJAAAAAAAAwL88O+kBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJFkZ7oAAACAfwF7Tb0nTH0uszXMuvmYzBYAAAAAQPvZSQ8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRZGe6gC1C5cJZL708+fXpM5eWLiurCkXFxdvusNshhx72tQP3zEls\nzANS8z+Y+vLkl2fMWbC0tHR1fXZRcb/d9hw66uh/32dQUWZra/dXAwAAAAAAAKDDCOlTU568\n/cbf/LGqIdV0qXRxZeniBe+9OenRXUZefOm5g3t3a2N9fdXCB//nut9NW9DsWvXSkrlLS+a+\n9tLTw44957Izj8pNbF4e3s7a2vvVAAAAAAAAAOhYXf24+7cfuuynD77UFGMnsnIL8nOa7q6Y\n86erzr9qblV9a8vrqz/58XfHN0/os7v3zF4byadSqel/+NUFN7+YkdrauRwAAAAAAACADtel\nd9KvnP3ANU/OTI97DBhxzlljDtxrYE4iVC7/56RnHrnv6WmpVKqmYuaPL3nk4Zu+08L6VO09\nl1z2Xll1CCGR1e1ro8cdf9ShA4ryU7WV82a/+dBd9731SUUIYf7kO+4aud/ZQ3vHrK29Xw0A\nAAAAAACATtCVd9I3/Ppnz6dSqRBCXp+Dbr/5kkP3Hph+TXt+8Q7fHHv5L87aLz2vfO7/Tvy4\nYsP1n0755fMflYcQEonc0yfcef4pRw8oyg8hJHLyd9hz1JU33bZ/cV565su/fChube39agAA\nAAAAAAB0hq4b0q9a8OAry6vS429fe15x9vqvjd/lmMuP7ZufHj9/46vr3U2lam699a/p8ZdH\nX3PckPU3yieyiy647uT0uGrlK5PLqqPV1s7lAAAAAAAAAHSSrhvSf/zbN9ODvOKjvrFdj5am\nJE74/rD0qGL+I2X1qeb3Kkt+O2N1TQghK6f44hN3a/Ejemx3wv79ty4qKioqKvrr3PU3rD8w\nbvQ311rv3fDtrK2dywEAAAAAAADoJF33nfRPv7MsPej/tSNbm1M0eExW4o2GVCpVv2ri4tXf\n265n062PH38jPSj88hnb5Lb6tw5X3Hlf/NrauRwAAAAAAACATtJFd9Kn6svfWVWbHu96WL/W\npiW7DfhKQU56/PGMFc1vvTC9MQjfcXTL2+gzVVv7vxoAAAAAAAAAnaSL7qSvqZhan2o8431o\nYW4bM4f3zJ1SXhNCWDZteTh6QPpiKlU1raKmccIOBZtXQ88+fftmrUmPc5q9Nb6dtbVz+War\nqKioqalp50Na06uTnrspli1blukSItHtyDQ8Mg2PTMMj0/DINDyyLaHhGRft3/iW0G0/78g0\nPDINj0zDI9PwyDQ8si7VcGLy8+aLzS88Mg3vVFtttVUymWznQ7poSF9bOadpvEd+Thszt90+\nP5SsCiGsKVkQwt6Nyyveqm5oDML3KcgJISyfM+2Fya9Oe29Oaeny6lTuVsW9d9pj7/0P/vqo\n4QNbe/KJ1996YmfU1r7lmy2VSqVSX+R323+xv92WRrcj0/DINDwyDY9MwyPT8K6mS/0b71Jf\ndkug4ZFpeGQaHpmGR6bhkWk4X2B+3nyx+YVHpuFt66IhfUPNyvQgkcguTCbamJlb1LgZvaFu\nZdPF2spZa5dnbZNd98xdE+5/fnrDup9azZKSVUtK5r0x6ZmJux928eXn7tKrrR3tHVtbO5cD\nAAAAAAAA0Hm66Dvpa8oaD2ZPJD/nsPrstS9u/0wQXtv4EvdEVo/nbhh/73NvNyX0eT3yE4l1\n0fiSWa9cctYP36/YhHPg21lbO5cDAAAAAAAA0Hm66E76TbD2WPvQUN10rba8svFafcW9f6kI\nIfQbPPL0U7+x68ABvQvy6irL5n/y0fMT737x3ZIQQl3lPydcdPsjd13Q5rb2Dqst3nIAAAAA\nAAAANlEX3UmfW9h40nuqfnXbM+tW16UHiZziposN1Q3N5xx61nX3/PTCA4fs3LsgL4SQnV+4\n427Dz73mzmv/377pCZWLX7np7aVxamvncgAAAAAAAAA6TxfdSZ+VW5gepFI1lQ2p/KxWN7nX\nrGg8PT4re12SnbPVunfMF+027qJj92xx7d7fuvLwZ0dPWlYVQpj+wNSw77ERamvn8s3Wq1ev\n9j+kNbWd9+iN1qdPn0yXEIluR6bhkWl4ZBoemYZHpuGRbQkNz7ho/8a3hG77eUem4ZFpeGQa\nHpmGR6bhkXWphhOTnzdfbH7hkWn4lq+L7qTP7r5z03hWZVs/1CUL16QH3Yq2abqYzFsXSO9z\n9mGtr04cd/yX0qPKxb+PU1s7lwMAAAAAAADQebpoSN+t1wFZicYt5n9bVdfGzBmrGnPuPiP6\nNV3M6TGkabzP1t3bWF40tG96UF/z6er6VBszO6q2di4HAAAAAAAAoPN00ZA+kSwc2iMnPf5g\nSqtvi0/VLXu9vDo9HjC82XvfCw7stvYY+TUNbUXvqVTj3UQiN6/1k+c7sLZ2LgcAAAAAAACg\n83TRkD6EcPzQxmR60YtvtjanfN4TtalUCCGRzD912x5N1xNZeUcU56XHb3xY3sanLH1tUXqQ\n02NIcqMy+vbW1v7lAAAAAAAAAHSSrhvSDzrlK+nB6kWPTiuvaXHOa3e8nh4UbH9qn5zP9Oqo\nbw1MD2be9Vhrx9inGirvf3ZBelw87PhotbVzOQAAAAAAAACdpOumswXbjz2kKC+EkEo13Dbh\nyQ1z9hUfPHL3Pxp3yR99waHr3d121JmFyawQQuWSly69/5XaDdanUlX/d8vF762uCSEkEslT\nTt81Wm3tXA4AAAAAAABAJ+m6IX1IJM/8r6PSw5WzHz3/F08sWl3XeCtVP/u1x8Zf+UT6jfKF\nO59y6qBe663O7r7LlSftlB7P/v2N4y746WvvfbhidW0IoaZi2d/fnXzNeeN+NfmT9IQvHf6j\nw/rkrfeEJy8Zf/Za86vrO7C29i4HAAAAAAAAoHNkZ7qATCraY9yVJ8y+9qnZIYR5f/nNOW/8\nbtBOAwu7NXy6cO7CZVXpObmFe0647qQWl+988oSTZn3/8XdLQwhlc6dcf/mURCLRo1f3VWWV\nzaf12ev4X5w3YsPlFUsWLSpdkx5vuBG/nbW1czkAAAAAAAAAnaEL76QPIYSw39if/ei0UXlZ\niRBCqr7io7+/P33GzKYYu88eoybcetXAvGSLaxOJvFOvunns0cOTiUT6SiqVap7QJ5L5B33r\n/LuuPT1v7YRotbV/OQAAAAAAAAAdrkvvpA8hhJB1yEnjh4/4+osvT3797Zmly5eXV4eiouJt\nBw3+6siRhx8wJNlmvJ5IFpzwvatHHfnOpFdfnzp91tIVK8pXVXcvKOy97cChw4aPPPLIQUW5\nmaqt3csBAAAAAAAA6GBC+hBC6DFg8AljB58wdjOXbzVo2ImDhp24icvH3v/YxqxoZ23tXA4A\nAAAAAABAB+rqx90DAAAAAAAAQDRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARJKd6QIAADrLXlPvCVOfy2wNs24+JrMFAAAAAACwRbGTHgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgkuxMFwAAAAAA\nnWWvqfeEqc9ltoZZNx+T2QIAAIAtip30AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASLIzXQAAAAB8xl5T7wlTn8tsDbNuPiazBQAAAABfVHbSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkB4D/z969x1ld1/kD/5y5MQwMs4OkopAumZsQSGYZFuu99EfZRmYq\n5VLbmt3M3V8XL4mtYrn52Iw124ou3pBcI2t7WKuZWUk4rJdfXoCsVFYRL9znwjAzZ76/P84w\nEjAjcGbeZ+Q8n399Oufz+X7f3/f5dg4PX/P9fgEAAAAAAIII6QEAAAAAAAAgSFWpCwAAAAAo\nI1Oa5qem20tbw/J5M0pbAAAAQDlzJT0AAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHS\nAwAAAAAAAEAQIT0AAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHSAwAAAAAAAEAQIT0A\nAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHSA3zQmh4AACAASURBVAAAAAAAAEAQIT0A\nAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABKkqdQEAf2FK0/zUdHtpa1g+b0ZpCwAAAAAA\nAGBv5Up6AAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAjimfQAAAyMKU3zU9Ptpa1h+bwZ\npS0AAAAAAKB/rqQHAAAAAAAAgCBCegAAAAAAAAAI4nb3AAAAAMDA8AgkAAB4Wa6kBwAAAAAA\nAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgnkkPAAAAAPCKNKVpfmq6vbQ1LJ83o7QFAAC84riS\nHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkB\nAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAA\nAAAAAACCCOkBAAAAAAAAIEhVqQsYEtpWLb/zl3cvfnDZi2vWbmxPjaNHjz34ddOPOe6EoydX\n5/pelnWc/p73tXdnL7v9+nGfXfCN6aG1DdByAAAAAAAAAAaQkD5bsujaq2/8xbZZ+5rn2tY8\n98wj99218NBjP3fhJybtM2ynKztaHt6VhL4ktQ3EcgAAAAAAAHjFm9I0PzXdXtoals+bUdoC\nGFLK/Xb3D9xw0Zevv7M3xs5V1NTXVfe+u/7xey4979In2vM7XdvRvHTI1lb8cgAAAAAAAAAG\nXFlfSb9hxXWXLVpWGI8YP+3cc846espB1bnUtu6pu/5rwXdvW5plWUfzsjkXLLjpa2fvuHzT\nH54uDOrHnf2FT03qZ0eVww4Mrq3I5QAAAAAAAAAMhnIO6bu/f+XPsixLKdWOeeu18z43uqrn\nIe11ow8+dfbFr3vV3M98a2lKadMTP7z5yfec9df1261fd//awmDMtKmHHXbIUKqt2EMDAAAA\nAAAAYDCU7+3uW565/lfr2gvjD17+yd4Yu9ehMy5+5751hfHPrv7Njlt48o8thcF+b95nSNVW\n/KEBAAAAAAAAMBjKN6R/8gf3FQa1o09+14EjdjYlN/PjbyiMmp9esDGfbff20paOwuDIfYfv\nQQHXffj9p2613bPhi6yt+EMDAAAAAAAAYDCU7+3ub3uo52b1B5zwjr7mNE46qyL3u+4sy/It\nNz/X+rEDR/a+lXW3PdramVLK5SqnjRo2pGorcjkAAAAAADua0jQ/Nd1e2hqWz5tR2gIAgOKV\naUif5Tc91NJZGP/Ncfv1Na1y2Pij6quXbOpIKT358Pq0TZLd2fxAPstSStUjD6+vzD37yD3/\n/btHVj2zavXz6ypHjNrnVeMmv+ENbz32bfsPrwyurfhDAwAAAAAAAGCQlGlI39HcVIjYU0pT\nG2r6mXnEyJpCkr126bp0yvje17dsvL8wyFWM+PdLP3HXQ09vs+i5lX9+/MH77r7pu9edeMY5\nHz9t2vbPhE8ppTRyzL77VmwujKu3mVFkbcUf2p5pb2/P5/MvP2+P9HcYUVpbW0tdQpCh0O2S\ni/y4h0LDy+f0Thoebig0vOTK7Sul5Mqt4b5Syk3YJ67byffJXm0oNLzkyu0MLzkND6bhwTQ8\nWFn9apeVoXB6O7sYPEPhDC+5cvvF3Iu/UoYPH15RUewz5cs0pO9se7x3PLGuup+ZY8fVpWdb\nUkqbn30mpcN7X9/w6OrCYMvG39710M7X5jvW3nHDl5f98QP/fsHplTsE9ad95ZrTBqG24g9t\nz3R0dHR0dBS5kb4Mha+SzZs3l7qEIEOh2yUX+XEPhYaXz+mdNDzcUGh4yZXbV0rJlVvDfaWU\nm7BPXLeT75O92lBoeMmV2xlechoeTMODaXiwsvrVLitD4fR2djF4hsIZXnLl9ou5F3+l1NbW\nFr+RMg3puzs2FAa5XFXDjvn5Nmoae07j7q4N276+7v51veNcZf3bTz/zhLe9+dX77pPa1qxc\nufJPjzXddtvdazryKaWnl9x08U2HXfnByTG1FX9oAAAAAAAAAAySMg3pOzb2XPOdq6zvf2ZV\nfc/F6Nsl2X/435bCoLrukAuvnnvk2LqeN4btd1jjfodNffNJ7zjmsk9f9mhzR0pp+aK5j753\nwevrdqnbRdZW/KEBAAAAAAAAMEjKNKTfDd3Z1sGWbV8eP3PWhzvyKaVXv+3kI8bs5J4GtWOm\nXPyv/3DWJ76ZZVnWvflbtzx5zYdeG1Nb0HIAAAAAAAAAdlOZhvQ1DT13es/yrf3P7GrtKgxy\n1aO3fX3a/3nXy+5lxLhTPnjATTesak4pPf/rX6ZdC+mLrK34QwMAAAAAAABgkJRpSF9R01AY\nZFlHW3dWV9Hns9s71vfcPb6iak+S7KPeeeAN31qRUurY9LuUzg2oLezQtjN8+PBhw4YVv50h\nq77+ZR4fwN6k3D7ucjvektPwcuMTD1ZuDS+348UnHqncul1ux4tPPJiGB9PwYBoeTMMZPM4u\nGFTl9n+xvfh4Kyoqit9ImYb0VcNfm9KdhfHyts43jqzpa+YLqzYXBsMa99+DHTW8vrEw6O7a\nsCmfjarsMzIfqNrCDm071dXVxW+kL52Dt+ldtnf/CcK2hkK3Sy7y4x4KDS+f0ztpeLih0PCS\nK7evlJIrt4b7Sik3YZ+4biffJ3u1odDwkiu3M7zkNDyYhgfT8GBl9atdVobC6e3sYvAMhTO8\n5MrtF9NXSv8GIOd/JRo26i0VuZ68/PctXf3MfLil5zQeM22/PdhRruql86/65QP6Aagt7NAA\nAAAAAAAA2F1lGtLnKhumjui58vuxJS/2NS3rWrt405bCePwRL90Tfv0jDzY1NTU1NT20YmP/\nO9q8al1hUFV78PC+7zw/gLUVuRwAAAAAAACAwVOmIX1K6T1Te5Lp1Xfc19ecTStv7cyylFKu\nsm7W2BG9r298/KYrrrjiiiuu+NIV3+l/L3/8yarCYOT4v4uprfjlAAAAAAAAAAyS8g3pJ5x5\nVGHQunrh0k0dO51z7zcWFwb142aNqX6pV/sf//bCYMvGX9+wYkNfu+hqW/H1ZT1X0h92xuSY\n2opfDgAAAAAAAMAgKd90tn7c7OmNtSmlLOv++txF2Q4T1j+24Nt/2lQYn/JPx2z7Vm3jyafu\nV1cY3zbnC4/sLAjv7loz/6K5rfkspVRdN+n8N46Jqa345QAAAAAAAAAMkvIN6VOu8iOfP7kw\n3LBi4XlX3bq6tavnrSy/4t5bzr/k1izLUkoNrz1z1oRR261+/4VnVORyKaV8+/9+8ZxPX/fT\nJS9ubCusXbt65f333PaFcz/x8yc2pZRyuYqZF352xwfSL7rg/I9u9fSW/ADWVuxyAAAAAAAA\nAAZHVakLKKXGiR++ZOaKy3+0IqW08rc3nvu7H0845KCGYd3Pr3pi1dr2wpyahslzrzh9x7X1\nE/7ui2c8PGfh/SmlzrZVP5r/5R/NT1W19TX51rbO7t5puVzFMX//pVmHj95xC80vrF69ZnNh\n3LnD1e7F1Fb8cgAAAAAAAAAGQxlfSZ9SSulNs6/87AeOr63IpZSyfPOf//Dogw8v642xx0w8\nfu41lx5UW7nTtVPPnHP5R9/dWPVSD7vam7dN6GtHH3L2Rdf+88yJ8bUVvxwAAAAAAACAAVfW\nV9KnlFKqmH76+UdMO+mOX969+IFla9at27QlNTaOHjth0t8ee+yJb3l95fZ3qf8Lh8/4h+9M\nP/nXd/3ioT/87wvPv/D8C883d1b+VUPDuEMmHXnkW046/k11O9zlPqy2opcDAAAAAAAAMMCE\n9CmlNGL8pJmzJ82cvSdrq0cdeOLM2Sfu/sLZ37tlV3ZYTG3FLwcAAAAAAABgAJX77e4BAAAA\nAAAAIIyQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAA\nAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAA\nIIiQHgAAAAAAAACCVJW6AAAAAKCUpjTNT023l7aG5fNmlLYAAAAACONKegAAAAAAAAAIIqQH\nAAAAAAAAgCBCegAAAAAAAAAI4pn0AAAAAAAAAAyMKU3zU9Ptpa1h+bwZpS2gf66kBwAAAAAA\nAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACFJV6gIAAAAAAAAopSlN81PT7aWt\nYfm8GaUtACCMK+kBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkB\nAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAA\nAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAA\nAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIEhVqQsAoJSmNM1PTbeXtobl82aUtgAAAAAAAIAw\nrqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBC\negAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQH\nAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAA\nAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAA\nAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAAAAAIIqQHAAAAAAAAgCBCegAAAAAA\nAAAIUlXqAgAAgD0xpWl+arq9tDUsnzejtAUAAAAAwCuOK+kBAAAAAAAAIIiQHgAAAAAAAACC\nCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQ\nHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkB\nAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAA\nAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCCOkBAAAAAAAAIIiQHgAAAAAAAACCVJW6AAAo\nI1Oa5qem20tbw/J5M0pbAAAAAAAAlDNX0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABA\nECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR\n0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9\nAAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAASpKnUB\nQ0LbquV3/vLuxQ8ue3HN2o3tqXH06LEHv276McedcPTk6tyebPD5xdf+47/ekVJ6/We//aXp\n+5ewtgE/NAAAAAAAAAD2mJA+W7Lo2qtv/EV7d9b70prn2tY898wj99218NBjP3fhJybtM2y3\nttix8aELvvqLIVDbwB8aAAAAAAAAAMUo99vdP3DDRV++/s7eGDtXUVNfV9377vrH77n0vEuf\naM/v+gazrP1bF3xlbWd3yWsb8EMDAAAAAAAAoEhlfSX9hhXXXbZoWWE8Yvy0c8856+gpB1Xn\nUtu6p+76rwXfvW1plmUdzcvmXLDgpq+dvYvbfOi6i36xqrXktQ3GoQEAAAAAAABQpHK+kr77\n+1f+LMuylFLtmLdeO++CYw4/qPCY9rrRB586++KrznlTYd6mJ35485PNu7LFDStuvezHfx4C\ntQ38oQEAAAAAAABQvPIN6Vueuf5X69oL4w9e/snRVbntJhw64+J37ltXGP/s6t+87Abz7Sv/\nZc7C7izLVQzfp7qoxhZZ24AfGgAAAAAAAAADonxD+id/cF9hUDv65HcdOGJnU3IzP/6Gwqj5\n6QUb81m/28tu/Zc5f27vSikd8aEv/XXtyz9H4LoPv//UrbZ7NnyRtQ30oQEAAAAAAAAwMMo3\npL/tobWFwQEnvKOvOY2TzqrI5VJKWb7l5uf6e9L8Ez+de/Nj61NKf/W6989592tKW9vAHhoA\nAAAAAAAAA6VMQ/osv+mhls7C+G+O26+vaZXDxh9VX10YP/nw+r6mtT33q4u+d39KqbL2oEsv\nO2P7m8vH1jawhwYAAAAAAADAAHr5u7LvlTqam/JZzz3epzbU9DPziJE1SzZ1pJTWLl2XThm/\n44Qsv/7fPv8fbfksl8u995LLXlNbuYs1jByz774Vmwvj6m2C/SJrG8BD2y35fD7L9ubb5nd1\ndZW6BOL4uINpeDAND6bhwTQ8mIYH0/BIuh1Mw4NpeDAND6bhwTQ8mIazF3N6s3dzhgcbvIZX\nVlbmckVetV2uIX1n2+O944l11f3MHDuuLj3bklLa/OwzKR2+44Rfzbvwf9a3p5ReffKFH5jc\nuOs1nPaVa04bhNoG8NB2S2tra0dHR5Eb6UvDIG13d2zYsKHUJQQZCt0uuciPW8OThofT8GAa\nHkzDg2l4sLCG63ZyeofT8GAaHkzDg2l4MA0PVj7/obLcOL2T03uv5gxPfjHDDV7DGxsbKyt3\n9bLtvpTp7e67O3o+lVyuqqGyv790qGnsuRi9u2snH+QLS775tXueTSkNf9X0K885aijUNlCH\nBgAAAAAAAMCAK9Mr6Ts29lzznaus739m1dYHt++YZHc0P3zhv92RUqqorD//K58a0W8iHlbb\ngBwa25nSND81NZW2ht9eMjB/BQIAAAAAAACUUJleSb8burc+Z717y7YvZ1nHdy648sWOfEpp\n2seunLZPbXxpfdUWtBwAAAAAAACA3VSmIX1NQ8+d3rN8a/8zu1q7CoNc9ehtX3/4xov/++mW\nlNKYqbM///bxQ6e24g8NAAAAAAAAgEFSpre7r6hpKAyyrKOtO6ur6PNO9R3re+4eX1H1UpK9\n8fFFX1z0eEqpuu7Qy77w7iFVW5HL91hVVVWWZS8/jz1VXV1d6hLKiG4H0/BgGh5Mw4NpeDAN\nD6bhkXQ7mIYH0/BgGh5Mw4NpeDANZy/m9Gbv5gwPNngNz+UG4BnoZRrSVw1/bUp3FsbL2zrf\nOLKmr5kvrNpcGAxr3L/3xSsvvTmfZblc5azLLxlXUzmkaity+R6rq6srfiN96Ry8Tb9yNDQ0\nxOxIt1Ngt5OGp5Q0PJyGB9PwYBoeTMOD+TdhJKd3MA0PpuHBNDyYhgfT8GCRDSeS0zs5vfdq\nzvDkFzPcEP9KKdOQftiot1TkvtGdZSml37d09ZNkP9zScxqPmbZf74sr27tSSlmWv+7/fvC6\nfnf06FXnnHpVz3jatQsuHF8/2LUVuRwAAAAAAACAwVOmz6TPVTZMHdFzi4PHlrzY17Ssa+3i\nTVsK4/FHBD24vcjahvKhAQAAAAAAAJS5Mg3pU0rvmdqTTK++476+5mxaeWtnlqWUcpV1s8aO\n6H29bsTIEf2q3Poogsphdb0vDtvlZhdTW/HLAQAAAAAAABgkZXq7+5TShDOPSvf+JKXUunrh\n0k3vefOondwW/t5vLC4M6sfNGlP9Usb+nZsW9L/xy2addn9zR0rpsPO+9qXpu/3E92JqK345\nAAAAAAAAAIOkfNPZ+nGzpzfWppSyrPvrcxdlO0xY/9iCb/9pU2F8yj8d8wqqbSgfGgAAAAAA\nAEA5K9+QPuUqP/L5kwvDDSsWnnfVratbu3reyvIr7r3l/EtuzbIspdTw2jNnTRg14PtfdMH5\nH93q6S35gayt1IcGAAAAAAAAwE6V7+3uU0qNEz98ycwVl/9oRUpp5W9vPPd3P55wyEENw7qf\nX/XEqrXthTk1DZPnXnH6YOy9+YXVq9dsLow7d7javcjaSntoAAAAAAAAAOxUGV9Jn1JK6U2z\nr/zsB46vrcillLJ885//8OiDDy/rjbHHTDx+7jWXHlRb+UqsbSgfGgAAAAAAAEB5Kusr6VNK\nKVVMP/38I6addMcv7178wLI169Zt2pIaG0ePnTDpb4899sS3vL4y98qtbSgfGgAAAAAAAEA5\nEtKnlNKI8ZNmzp40c/aAbXDOgh++7JzZ37tlV3ZYZG0DfmgAAAAAAAAA7LFyv909AAAAAAAA\nAIQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABA\nECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR\n0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9\nAAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMA\nAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAA\nAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAA\nAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABA\nECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR\n0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9\nAAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMA\nAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAA\nAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAA\nAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABA\nECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR\n0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9\nAAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMA\nAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAA\nAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAA\nAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAASpKnUBQ0LbquV3/vLuxQ8ue3HN2o3tqXH06LEHv276McedcPTk6tzLrO3uWPubn93xPw8/\n8vhTzzY3N3emmpH1o8ZNOPT1hx/19nccvU9NZQlrK345AAAAAAAAAANISJ8tWXTt1Tf+or07\n631pzXNta5575pH77lp46LGfu/ATk/YZ1tfip+5dOPff//OF9vw2r3Wt39K2fs1zjyz9zX9e\n/6r3ffLzZx17aElqK3o5AAAAAAAAAAOs3G93/8ANF335+jt7Y+xcRU19XXXvu+sfv+fS8y59\n4i8y+JesuueaT1/1g20T+qraUQ11L/3dQ77jxR989TNX//yJ+NqKXw4AAAAAAADAgCvrK+k3\nrLjuskXLCuMR46ede85ZR085qDqX2tY9ddd/LfjubUuzLOtoXjbnggU3fe3s7dZ2tT36uXl3\nZVmWUqoeMWHWObOPPvw1+42uz6XUvO65B+5a9L0f/GJDV3dK6Z5vXXjM2248or4mrLbilwMA\nAAAAAAAwGMr5Svru71/5s0LKXjvmrdfOu+CYww8qPKa9bvTBp86++Kpz3lSYt+mJH978ZPN2\ni5d//xvN+SylVFmz7xe/+ZWZx03df3R94SHv9aP3P/b0T/zHvPNqK3Ippax787e/88fI2ope\nDgAAAAAAAMCgKN+QvuWZ63+1rr0w/uDlnxxdldtuwqEzLn7nvnWF8c+u/s127/7n4hcKg4P+\n7oLJDTu5Sn7E+OM/PXWfwnjtAz+NrK3I5QAAAAAAAAAMkvIN6Z/8wX2FQe3ok9914IidTcnN\n/PgbCqPmpxdszGe9b+Tbn/h9S0dhfOwp4/raxaHvOrAw6Gx9dMd3r/vw+0/dartnwxdTW/HL\nAQAAAAAAABgk5RvS3/bQ2sLggBPe0decxklnVeRyKaUs33Lzc629r3dufrx3/Kb66r6W12y9\nwj7rbt+tGLyY2opfDgAAAAAAAMAgqSp1AaWR5Tc91NJZGP/Ncfv1Na1y2Pij6quXbOpIKT35\n8Pp04MjC69UjJs+ZM6cwHltT2dfydQ+t75lf/8bt7zg/aLUVuRwAAAAAAACAwVOmIX1Hc1M+\n67m4ferOnijf64iRNYUke+3SdemU8YUXK2sOPPLIA/vfRVfbyv9YtLIwfvXJ79txwsgx++5b\nsbkwrt4mwy+ytiKX77GWlpbOzs4iN9IXf0GQ+Og1gQAAIABJREFUUlq/fn3MjnQ7BXY7aXhK\nScPDaXgwDQ+m4cE0PJh/E0ZyegfT8GAaHkzDg2l4MA0PFtlwIjm9k9N7r+YMT34xww1ew0eN\nGlVZ2edV3LuoTEP6zraX7lc/sa7P+9WnlMaOq0vPtqSUNj/7TEqH9zMzy3e2tra2tLQ0r3/2\n/sX3/uaexavaOlNKoyaceMmZr9lx/mlfuea0QahtMA5tV3R3d+fz+SI3Qj+0N5JuB9PwYBoe\nTMODaXgwDQ+m4ZF0O5iGB9PwYBoeTMODaXgwDWcv5vRm7+YMDzbEG16mIX13x4bCIJeraqjs\n71b0NY09F6N3d23of5vf/odZt69r3/aVXK768BPee97HzmjsdxcDW9tgHBoAAAAAAAAAA6Ki\n1AWURsfGjsIgV1nf/8yq+p6L0fcgyR558FvfefLbx1TvXpOLrC3m0AAAAAAAAADYA2V6Jf1u\n6M62Drb0P3HsoYdN3LQll8vlcrmulmdXPLWu+cl75n7mntdMP/vLn3lvbW43LqYf8NoGZTkA\nAAAAAAAAu6lMQ/qahp47vWf51v5ndrV2FQa56tH9zzz1on85dZv/+eyyJd+/el7T821//u0N\nn9rcPX/O6TG1DcahAQAAAAAAADAgyjSkr6hpKAyyrKOtO6ur6PMy9471PXePr6javST7gInT\nPvvV4WeffWlbPnv+/puuW3nK7INe5v7zA1JbwKHtVH39Lh3dnukavE2/cuyzzz4xO9LtFNjt\npOEpJQ0Pp+HBNDyYhgfT8GD+TRjJ6R1Mw4NpeDAND6bhwTQ8WGTDieT0Tk7vvZozPPnFDDd4\nDc8NxA3UyzSkrxr+2pTuLIyXt3W+cWRNXzNfWLW5MBjWuP/u7qWmfuqs/UfOX9WcUlp881Oz\nL5wcUFvMoe1oQE5H+qHDkXQ7mIYH0/BgGh5Mw4NpeDANj6TbwTQ8mIYH0/BgGh5Mw4NpOHsx\npzd7N2d4sCHe8IpSF1Aaw0a9pWLrB/P7lv7+muThls7CYMy0/Xpf/P1Pfrhw4cKFCxfeuWJj\n/zuaMGFkYdDyxB9jaityOQAAAAAAAACDp0xD+lxlw9QR1YXxY0te7Gta1rV28aYthfH4I166\nJ/yGu35cCOl/9PNn+t9RV3t+6y6rY2orcjkAAAAAAAAAg6dMQ/qU0num9iTTq++4r685m1be\n2pllKaVcZd2ssSN6Xx87+a8Kgw2P/E//e/n9Uy2FwfBXHRhTW/HLAQAAAAAAABgk5RvSTzjz\nqMKgdfXCpZs6djrn3m8sLgzqx80aU/1Srw6YcURhsHntT5Y273xtSqlj45Ifr+l57vshp786\nprbilwMAAAAAAAAwSMo3na0fN3t6Y21KKcu6vz53UbbDhPWPLfj2nzYVxqf80zHbvjVi7BkT\naqtSSlmWv+bS61vyO65O+S3Pf/Oia7qyLKVUWXPARybuxi3li6mt+OUAAAAAAAAADJLyDelT\nrvIjnz+5MNywYuF5V926urWr560sv+LeW86/5NYsy1JKDa89c9aEUX+xtKLu/35ocmG88U8/\n/eg/X3nn0mXPr2/JUkqpe8MLqx64a+F5f//xu57uudf9kR+6eN8drlZfdMH5H93q6S35v3iv\niNoGYDkAAAAAAAAAg6Oq1AWUUuPED18yc8XlP1qRUlr52xvP/d2PJxxyUMOw7udXPbFqbXth\nTk3D5LlXnL7j2vEnzzlryUdu/n9rU0rNTy75+twlKaXK2vrh3W0tHX+RuB9y0nkXzxi/4xaa\nX1i9euvN8Dt3uNq9mNqKXw4AAAAAAADAYCjjK+lTSim9afaVn/3A8bUVuZRSlm/+8x8effDh\nZb0x9piJx8+95tKDait3sjJX+f4vXvuPpxxekcv1vpZvb942oa8cNuZd517+1U+dGF3bQCwH\nAAAAAAAAYMCV9ZX0KaWUKqaffv4R006645d3L35g2Zp16zZtSY2No8dOmPS3xx574lteX5nr\nc2Wuou5dH7v8uHcv+/mdv3502fKnVq9tbW1NVcPrR40aN+F1kw8/8sST3jq6ppg/g9jz2gZi\nOQAAAAAAAAADTEifUkojxk+aOXvSzNl7snbkARPfN3vi+3Z/4ezv3bIrOyymtuKXAwAAAAAA\nADCAyv129wAAAAAAAAAQRkgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAA\nAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAA\nAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQ\nREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE\n9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgP\nAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAA\nAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAA\nAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAA8P/Zu/sgu8o6wePP7dvdaTpp2m5i\nMEI2VJY3CQjGciC4GF50hFWphWVhIepkGEVGLcTZBaOMsCvMyMAO4CC6pYsGMUTAiMVWsUvk\nbZUIZhcYQULMaCITQgLktd/S6bezf5xOzCTpTtL33l93534+fz3Vfc69z/l5JKn65p4LABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACFI72hsYE7rWvrLk8SeWPr/8rQ0bt3anltbWqUcdf8acs845/aS6wr5P\nX/Pi/3l86XMvL1/55uat7R3dDU3NLW8/4sR3n/z+c85797Sm0d1biacDAAAAAAAAUEYiffbM\n4rtuv/dn3QPZzh9tWN+1Yf1rLz372KJjz7z2y5+bediEoU7uafunu266+ckVb+36w46tmzq2\nblrzu5f+90P3vWvOJddcdclhtSN7YkFJeyv5dAAAAAAAAADKrNofd//cD77y9XuW7MzYhZr6\npsa6nb/dvPKpG666YVV3/17P7etaee0V83ct9IVCsbllUqEw+BH1LBtY/tSiz/3l19f1DATv\nrfTTAQAAAAAAACi7qv4k/ZYVC762eHm+njht9pVXXHb6u6fXFVLXpj889vDCux9almVZT/vy\n6+cv/OEdn9zz9IVf+dqqrt58ffQH/v2fX3D2jGlHTKyv6enYtHrl8wu/+z/+cW1XSqnrjV/N\n/+sH77nlksi9lXg6AAAAAAAAAJVQzZ+kH/j+zY9kWZZSapj8/ru+MX/OydPzr2lvbD3q/HnX\n3XrF+/Lj2lb9+L7V7bud3LH2wcWr2vL1jI/Nv+0//9lJ/3raxPqalFL9pNbjZn3wv9614NMf\nOCI/YPOKhT/YcXDA3ko+HQAAAAAAAICKqN5I3/HaPU9u6s7Xn7jx8621hd0OOPYj1310SmO+\nfuT2n+/223/6/qP5ovaQo//2L2bv+fqFmoaPfvHvjt/xhPkn734pbG8lng4AAAAAAABAhVRv\npF/9o2fzRUPruR87YuLeDilc+Nn35Kv2NQu39me7/u5/vrIlX0ydc0Vjze4VfPD84qF/ceY7\nBl9h9ZLdfrvg8kvO32G374YvcW8lng4AAAAAAABAhVRvpH/ohY354p3nfHioY1pmXlZTKKSU\nsv6O+9Z3/vEXWc8LHYPfRn/Mv33nMO9y2J8cli/6ulcH7a3k0wEAAAAAAACokCqN9Fl/287K\nftxZhw91WHHCtFObBp9Xv/rFzTt/3tf9h/5s8NPnJ75twjBvtH1zT74o1DbH7K3E0wEAAAAA\nAAConNrR3sDo6Gn/1c7Kfkpz/TBHzppU/0xbT0pp47JN6bxp+Q9rDzn6gQceyNcTGoaL9E//\ndE2+OKTl7N1+NWnylCk12/J13S7Pyy9xbyWePmLd3d39/f37Pm5EhruMqtHZGfTAA9NOgdNO\nBp5SMvBwBh7MwIMZeDADD+bvhJHc3sEMPJiBBzPwYAYezMCDRQ6cSG7v5PY+qLnDkz8xw1Vu\n4IccckhNTamfhK/SSN/btXLn+oTGumGOnHpkY3q9I6W07fXXUjp5x49rGhoa9vkuW3/744Wv\ntufr4z8xe7ffXnTLnRdVYG8lX9oI9fT09PT0lPgiQ/GfkpTStm3bYt7ItFPgtJOBp5QMPJyB\nBzPwYAYezMCD+TthJLd3MAMPZuDBDDyYgQcz8GCRAyeS2zu5vQ9q7vDkT8xwlRv4/mTifarS\nx90P9GzJF4VCbXOxMMyR9S2Dt/FA35YDeovONU9fc93CwRdpes9fzR7yyfPl3VvApQEAAAAA\nAAAwMlX6SfqerTu+Kr7YNPyRtTu+uP0ASnbWv+zh796x4H919GcppWL9lC/c8qVJw/byMu6t\nspcGAAAAAAAAQAmqNNIfgIFsx2L7/hz+z88v+d7373l+x1Pua2pbrrz5tjOOaBwLeyvz6QAA\nAAAAAAAcoCqN9PXNg096z/o7hz+yr7MvXxTqWoc/smPNc9/77t2P/eNrO38y5aQP/tUXrzhh\n8oF9LUGJe6vEpQEAAAAAAABQFlUa6Wvqm/NFlvV0DWSNNUM+i75n8+DT42tqhyzZ2UD3U/d/\n+9v3P9W947Pp9U3/6t998tNzP3zy/j7jvnx7K++l7b+Ghob6+vrSX4ehTJo0abS3UEVMO5iB\nBzPwYAYezMCDGXgwA49k2sEMPJiBBzPwYAYezMCDGTgHMbc3Bzd3eLDKDbympqb0F6nSSF97\nyDEpLcnXr3T1vnfSkHX5zbXb8sWElnfs9YCtv1/6jdu++f/WDH5svTjh7R++eO6lF5zVXDuC\nQF+GvZXx0g5IRQt9b+VeevxoaDiwRzKMmGmnwGknA08pGXg4Aw9m4MEMPJiBB/N3wkhu72AG\nHszAgxl4MAMPZuDBIgdOJLd3cnsf1NzhyZ+Y4cb4f1LK0PnHowmHnlZTGIzov+7oG+bIFzsG\nb+PJsw/f87f//PMFn/5Pt+SFvlCo/ZPzP/3f7/3Olf/h7BEX+tL3Vq5LAwAAAAAAAKDsqjTS\nF4rNp0ysy9cvP/PWUIdlfRuXtm3P19Nm7f5M+A3P3fOFv38of8R94ztnXfPfvvfXn/rY4Q3F\n0d1bWS4NAAAAAAAAgEqo0kifUrrglMEyve7RZ4c6pu3VB3uzLKVUKDbOnTpx11/1bfvttX/7\n0/4sSym1nviRO++8/t8c87YxsrcSTwcAAAAAAACgQqo30s+49NR80blu0bK2nr0e8/S3luaL\npiPnTq77F7N6/lu3bejtTynVHzrrGzde8fa6ck6yxL2VeDoAAAAAAAAAFVK9dbbpyHlntDSk\nlLJs4Js3Lc72OGDzywu/87u2fH3eF+fs+qusv/2upW/k6w9df3VzceTfQF/2vZV+OgAAAAAA\nAAAVUjvaGxg9heKnvnTuL+b/NKW0ZcWiq26t/cpnL5g6sTallLL+FUt//PXbHsyyLKXUfMyl\nc2ccuuupnevv29w3kFIqFIqnDryxcuWb+3y3mtq3HT1jyq4/WTz/6iWbt+Xrv/6Hb02bsMuX\n2ZewtzKcDgAAAAAAAEBlVHGkT6nlhMu/euGKG3+yIqX06i/uvfKXP51x9PTmCQNvrF21dmN3\nfkx980k3/c3Fu5248Vcr80WW9V9/7TX7814NrR95YMFndv1J+5vr1m0YjPS9e3zafcR7K8vp\nAAAAAAAAAFRC9T7uPve+eTdf8/GzG2oKKaWsv/33v/3N8y8u35mxJ59w9k133jC9objbWZtf\n2Dxm91au0wEAAAAAAAAou6r+JH1KKaWaMy6+etbsDz36+BNLn1u+YdOmtu2ppaV16oyZHzjz\nzA+eduJev27+rQ3bx+zeync6AAAAAAAAAGUm0qeU0sRpMy+cN/PCeft7/Ie+vfBDJb/pvO/d\nvz9veKB7K+/pAAAAAAAAAJRRtT/uHgAAAAAAAADCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESk\nBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAA\nABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAI\nItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHp\nAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAA\nAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAA\nAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAA\nAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACC\niPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6\nAAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAA\nAAAAAAAEqR3tDYwJXWtfWfL4E0ufX/7Who1bu1NLa+vUo44/Y85Z55x+Ul3hwF5q3VPXfea2\nl+oa37X4R383FvZWxksDAAAAAAAAoEQiffbM4rtuv/dn3QPZzh9tWN+1Yf1rLz372KJjz7z2\ny5+bediE/X+5JxatGjN7K/OlAQAAAAAAAFCian/c/XM/+MrX71myM2MXauqbGut2/nbzyqdu\nuOqGVd39+/lqXW8seWB91xjZW3kvDQAAAAAAAIDSVfUn6besWPC1xcvz9cRps6+84rLT3z29\nrpC6Nv3hsYcX3v3QsizLetqXXz9/4Q/v+OQ+X623/Q93XHd3lmX7PDJgb+W9NAAAAAAAAADK\nopo/ST/w/ZsfyZt6w+T33/WN+XNOnp5/TXtj61Hnz7vu1ivelx/XturH961uH+pVuja/seLX\ny374zZvmffILz765bWzsrTyXBgAAAAAAAEB5VW+k73jtnic3defrT9z4+dbawm4HHPuR6z46\npTFfP3L7z/d8he1bHv/zuRf9xz/79LVfvemBJcva+8vzGfrS91b6pQEAAAAAAABQCdUb6Vf/\n6Nl80dB67seOmLi3QwoXfvY9+ap9zcKtezT4rL99Y3vPiDew4PJLzt9ht++GL3FvpV8aAAAA\nAAAAAJVQvd9J/9ALG/PFO8/58FDHtMy8rKbwy4Esy/o77lvf+ZdHTNr1t7WN7/r4xz++60+6\n3njiJz97fdT3VvqlAQAAAAAAAFAJVRrps/62Fzp68/VxZx0+1GHFCdNObap7pq0npbT6xc1p\nt0h/yHEXX3zcrj/Z9JvlpUf6EvdWlksDAAAAAAAAoBKqNNL3tP+qPxt8xvspzfXDHDlrUn1e\nsjcu25TOm1bGPUyaPGVKzbZ8XbfLt8aXuLfRurT+/v4s89j8Curr6xvtLVQR0w5m4MEMPJiB\nBzPwYAYezMAjmXYwAw9m4MEMPJiBBzPwYAbOQcztzcHNHR6scgMvFouFQmHfxw2rSiN9b9fK\nnesTGuuGOXLqkY3p9Y6U0rbXX0vp5DLu4aJb7ryoAnsbrUvr7Ozs6ekp8UWG0lyh1x1XtmzZ\nEvNGpp0Cp50MPKVk4OEMPJiBBzPwYAYezN8JI7m9gxl4MAMPZuDBDDyYgQeLHDiR3N7J7X1Q\nc4cnf2KGq9zAW1paisViiS9SU5atjDsDPYP/qxQKtc3F4f6lQ33L4IfRB/qC/p9T4t7G8qUB\nAAAAAAAAVLkqjfQ9Wwc/810oNg1/ZG3T4IfRw0p2iXsby5cGAAAAAAAAUOWqNNIfgIEd37M+\nsH1U97E3Je5tLF8aAAAAAAAAwMGoSiN9ffPgk96z/s7hj+zr7MsXhbrWyu5phxL3NpYvDQAA\nAAAAAKDK1Y72BkZHTX1zvsiynq6BrLFmyO9u79k8+PT4mtqgkl3i3kbr0mpra7Ms2/dxjFRd\nXd1ob6GKmHYwAw9m4MEMPJiBBzPwYAYeybSDGXgwAw9m4MEMPJiBBzNwDmJubw5u7vBglRt4\noTBkft1/VRrpaw85JqUl+fqVrt73Tqof6sg3127LFxNa3hGxs5L3NlqX1tjYWPqLDKW3ci89\nfjQ3N8e8kWmnwGknA08pGXg4Aw9m4MEMPJiBB/N3wkhu72AGHszAgxl4MAMPZuDBIgdOJLd3\ncnsf1NzhyZ+Y4cb4f1Kq9HH3Ew49rWbHv3H4dUffMEe+2DF4G0+efXjFt5VSKnlvY/nSAAAA\nAAAAAKpclUb6QrH5lImDjzh4+Zm3hjos69u4tG17vp42K+hx9yXubSxfGgAAAAAAAECVq9JI\nn1K64JTBMr3u0WeHOqbt1Qd7syylVCg2zp06MWhnJe9tLF8aAAAAAAAAQDWr3kg/49JT80Xn\nukXL2nr2eszT31qaL5qOnDu5Lm5WJe5tLF8aAAAAAAAAQDWr3jrbdOS8M1oaUkpZNvDNmxZn\nexyw+eWF3/ldW74+74tzxtHexvKlAQAAAAAAAFSz6o30qVD81JfOzZdbViy66tYH13X2Df4q\n61/x9P1Xf/XBLMtSSs3HXDp3xqFlf//F86/+zA5rtveXc2+jfWkAAAAAAAAA7FXtaG9gNLWc\ncPlXL1xx409WpJRe/cW9V/7ypzOOnt48YeCNtavWbuzOj6lvPummv7m4Eu/e/ua6dRu25eve\nPT7tXuLeRvfSAAAAAAAAANirKv4kfUoppffNu/maj5/dUFNIKWX97b//7W+ef3H5zow9+YSz\nb7rzhukNxfG4t7F8aQAAAAAAAADVqao/SZ9SSqnmjIuvnjX7Q48+/sTS55Zv2LSpbXtqaWmd\nOmPmB84884OnnVgsjN+9jeVLAwAAAAAAAKhGIn1KKU2cNvPCeTMvnFfq67Se+F8efnh/D573\nvfv35w1L3Fu5Lg0AAAAAAACA0lX74+4BAAAAAAAAIIxIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AACSef3yAAAgAElEQVQAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAA\nAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAA\nAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACC1I72BsaErrWvLHn8iaXPL39rw8at3aml\ntXXqUcefMeesc04/qa5Q8dPH794AAAAAAAAAOCAiffbM4rtuv/dn3QPZzh9tWN+1Yf1rLz37\n2KJjz7z2y5+bediEip0+fvcGAAAAAAAAwAGr9sfdP/eDr3z9niU7M3ahpr6psW7nbzevfOqG\nq25Y1d1fodPH794AAAAAAAAAGIGq/iT9lhULvrZ4eb6eOG32lVdcdvq7p9cVUtemPzz28MK7\nH1qWZVlP+/Lr5y/84R2fLPvp43dvAAAAAAAAAIxMNX+SfuD7Nz+SZVlKqWHy++/6xvw5J0/P\nv6a9sfWo8+ddd+sV78uPa1v14/tWt5f79PG7NwAAAAAAAABGqHojfcdr9zy5qTtff+LGz7fW\nFnY74NiPXPfRKY35+pHbf17e08fv3gAAAAAAAAAYseqN9Kt/9Gy+aGg992NHTNzbIYULP/ue\nfNW+ZuHW/qyMp6eUFlx+yfk77Pbd8KO+NwAAAAAAAAAqoXoj/UMvbMwX7zznw0Md0zLzsppC\nIaWU9Xfct76zjKeP370BAAAAAAAAMGJVGumz/rYXOnrz9XFnHT7UYcUJ005tqsvXq1/cXK7T\nx+/eAAAAAAAAAChF7WhvYHT0tP+qPxt8xvspzfXDHDlrUv0zbT0ppY3LNqXzppXl9NykyVOm\n1GzL13W7fGv8WNjbCHR2dvb29pb4IkPZ6yP7q82WLVti3si0U+C0k4GnlAw8nIEHM/BgBh7M\nwIP5O2Ekt3cwAw9m4MEMPJiBBzPwYJEDJ5LbO7m9D2ru8ORPzHCVG3hTU1OxWCzxRao00vd2\nrdy5PqGxbpgjpx7ZmF7vSClte/21lE4uy+m5i26586KxurcR6O/v7+vrK/FFGIbxRjLtYAYe\nzMCDGXgwAw9m4MEMPJJpBzPwYAYezMCDGXgwAw9m4BzE3N4c3Nzhwcb4wKv0cfcDPYP/dKJQ\nqG0uFoY5sr5l8MPoA31//NcWJZ4+fvcGAAAAAAAAQCmqNNL3bO3JF4Vi0/BH1u744vZdS3aJ\np4/fvQEAAAAAAABQiip93P0BGMh2LLaPwukVffGK7q2stv7pi6O7gV/86ei+fyjTDmbgwQw8\nmIEHM/BgBh7MwCOZdjADD2bgwQw8mIEHM/BgBs5BzO3Nwc0dHszAx74q/SR9ffPgk96z/s7h\nj+zrHPy6gkJda7lOH797AwAAAAAAAKAUVfpJ+pr65nyRZT1dA1ljzZDf3d6zefDp8TW1fyzZ\nJZ4+fvc2jEmTJmVZtu/jAAAAAAAAAManYrFY+otUaaSvPeSYlJbk61e6et87qX6oI99cuy1f\nTGh5R7lOH797G0ZNTZU+lQEAAAAAAABg/1VpWJ1w6Gk1hcGPmP+6o2+YI1/s6M0Xk2cfXq7T\nx+/eAAAAAAAAAChFlUb6QrH5lIl1+frlZ94a6rCsb+PStu35etqsPz4TvsTTx+/eAAAAAAAA\nAChFlUb6lNIFpwyW6XWPPjvUMW2vPtibZSmlQrFx7tSJZTx9/O4NAAAAAAAAgBGr3kg/49JT\n80XnukXL2nr2eszT31qaL5qOnDu57l/MqsTTx+/eAAAAAAAAABix6q2zTUfOO6OlIaWUZQPf\nvGlxtscBm19e+J3fteXr8744p7ynj9+9AQAAAAAAADBi1RvpU6H4qS+dmy+3rFh01a0Pruvs\nG/xV1r/i6fuv/uqDWZallJqPuXTujEPLfHpKi+df/Zkd1mzvH1N7AwAAAAAAAKASCnmsrVr/\nd8G1N/5kRb4uFJtmHD29ecLAG2tXrd3Ynf+wvvmkv//u16Y3FMt++oLLL/nJhm35+o4HHpqx\nxzGjuDcAAAAAAAAAKqHaI31KA7944B/uvO/J7oG9zGHyCWdfO/+zx7+tvhKn7zPSj+LeAAAA\nAAAAAKgEkT6llDrXvPzo408sfW75hk2b2ranlpbWqTNmfuDMMz942onFQqVO349IP2p7AwAA\nAAAAAKASRHoAAAAAAAAACFIz2hsAAAAAAAAAgGoh0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAA\nAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAA\nAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAA\nAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACC\niPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6\nAAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISM//Z+++45q4/z+Avy+BAEEIQ4biqKiI4l4V0Yq2/qq1\nah114azWhdZR9ypuq1arOOquWpQ66raub8VdcVQFZIgDEAhLiEAISS73+yOKiMiI5CLh9fzr\nuPskj3fP9HPvz73v8zkAAAAAAAAAAAAAAAAAAOAJivQAAAAAAAAAAAAAAAAAAAA8QZEeAAAA\nAAAAAAAAAAAAAACAJyjSAwAAAAAAAAAAAAAAAAAA8ARFegAAAAAAAAAAAAAAAAAAAJ6gSA8A\nAAAAAAAAAAAAAAAAAMATFOkBAAAAAAAAAAAAAAAAAAB4giI9AAAAAAAAAAAAAAAAAAAAT1Ck\nBwAAAAAAAAAAAAAAAAAA4AmK9AAAAAAAAAAAAAAAAAAAADxBkR4AAAAAAAAAAAAAAAAAAIAn\nKNIDAAAAAAAAAAAAAAAAAADwBEV6AAAAAAAAAAAAAAAAAAAAnqBID6B3LGfoCCoAVplr6BAA\nPsiq3/bdjkw0dBTwXn6+Y0eNGrXsQryhAymX8POGigwpCgDAxwxZCkB+GPXwDCccyhFcMQEK\nQB+uM/Qn+ZkYOgAAY5CTJk1Iz61dp2b+nbLH1/y3H370LDYjh+yq1GrbqduQPh3MBYyhgjQm\nnDr9etDVkJDQsPDojOxsuTxHxXLHjx8nImXmrb+CMr2821e3MjV0mMZDLktJSExTcSV93sTN\nvb4Qv/RSunI68MrpQKsqbh28O3p37ODmXMnQEcEbGlVKeHxijoZTnU2kL1wMHU75g5+3/pw/\nf74Mv82mgVcrF3EZfmEFhBSFZ0hR+Jclk6lLfMIlNjY436UVGxtbqvaMQGhmbmFuZm5uaSHC\nYLP0kKXoCVKU8gijHp7hhEP5gismQH7owz8E+pP8UKQH+CApDy5s3vXnnSfJpuLGh/Yvztuf\ndnfPmEWHlZpXN7DS4iNP7I28dO2B/+qJtia4dfJBIq4c/m3r/icyZaFH2dyn+7b9Ebhzl/eA\n0RP7tcd92A/BqV8c3rHl5OW7LzJLNwsw4MgxK5x6nWQmRp3cH3UqcGvVei29vTt6d2jjZIkr\ntf5wzyPu/Bf+LD1TXmQrddz9izkajog0CsyI1R1+3vrg7+9fht/mPr4+7oB/CKQovEGKwr/4\nu2f3HL8YHf045WUpzjlOuA4mTJig2wcZgahylarVq33SuGWbtm1bOeN5oNJAllLmkKJ8TDDq\n4RlOOBgzXDHB2KEP5w/6E62K+N8MUFak13b6rjz27twdjn259OejeRX6PC+fXJixqvG22d48\nxWeM7gbM9/vzfrHNNKzsn4BVD6OTNs3pi4cidMOx2esmTfgnLkuHz5rhVSql59mwZnBYLMtx\nRMRxXHzErYCIW/u2mru3bOfdseNnbRpa4h53mdIopZsXLzh7X1qqT9XrU1tP8Rg3/LyhIkCK\nwhukKPyLPrHmx+2XuBJPoM9jihPOI06jTIl/lhL/7O7NoN2/WXb8duSo/p9XwhW2OMhSwLhh\n1MMznHAwYrhigtFDH84b9Cf5MTqMtAGAiFjFk9GDf0xRsto/RZZN8mbSp9xZPnLhDSISmEj6\njh3XwkUUduP4nuP3iIhhBNP2HGgvERkq7HIt7tx63w0XtNuM0Krd595udeqahuz77YqUiLRr\nyarkIX4/LguJz9Y2cx+wcuUgd0MFXK7F/T3Xd3NI3p+mYomjnVUJL48bN22qQBfSsqN4EXPt\n8pXLly/9F51U4JDQvHKr9h06dvT+tGFN3O4uE/umDw2MzCjVRxxb9Nm0YJgIP26d4OetJ8uW\nLXvfIY0qLfjOo7w/GUZgZevg5OxsJcxNSkpKSsnIW7BaKHL2GTugsolA4ta6WVVMU9MFUhQ+\nIUXhmVJ2bfCwlYp8zx8LhcISfvbwkSPo2EtL27Grsh7fCU159yjDFLyHYyp2bdHYQS57kZKS\nkpomy/8EeeUm325aNNicwa++GMhS9AEpykcCox6e4YSDccMVE4wb+nA+oT/JgyI9gI5i/po2\n8fcoIhIIrXv7Tv6yVUMnibn20NkfBm989pKI3If9urKPq3bn5fXjVl+IJ6KavX7xH1HXQFGX\nY6wiZpTPpDSVhogkbh2mTxvf2NmCiKL3TJp66Cm9vgNORMSpbwQuXb7/DhExQvHKfX/Us8Cq\nIaX2+3f9/0rNISL3jv1GD/mmTuUK/W4YnmUmRF2+fOnS5csRz2UFDllUdv3M29u7o7dHdRuD\nxGYcsuL2DPI9pN0WV3Fr3dTdxiQ34mpQRHouETXq2r2OuQkRyWUpIcE3E7JUROTh47ekX/OK\n9BynvuDnzQ+1/PEv0+dfi8siInGVBr2/7ff1Z03FojejG47Njbx5PjDwz7vPZEQkrtp6ydpZ\ndXC51AlSFJ4hReHZ/VWj51+REpGFY8Pvxvg0q+vqaGNh6KCMHKt4tnjcjLtpCiJihOKWn3f/\nok1DB4fKjg6OlUxUKcnJycnJ0feuHD11NV3FMoyw64RVYzvXISJOo0x8dP/cyYN/XYrQfpWb\nz9rV/TG5p6SQpfAAKQqfMOrhGU44VBy4YoLxQR9uKOhPUKQH0NGfowYEJMuJqPkPm/2+cHlz\ngFN/1/fbVBXLMMzP+w+7i18NJpUvr/Ud/DMRiR19Arf3N0TI5VvciRm+2yKIyEzScvOueZVN\nXg3jC7kDTkRE/1s1et0VKRHVGbxuTb9avMdb7o3q2ytZydp6+Py+vD+SDUNJefLg8uVLly9f\nfZqaU+CQY+2m3t4dvb29qmFljtK7u2SUX3AyEVnX7rZx9WiJkCEitTzKZ9D0HA3nPmbjym7V\ntS05VnZgzayAK/FCs+o/bV/bFGe77ODnrU/c71OH/hUtI6LmfWfMG9Lu/cuqc3f/WuX3+1Ui\nktT5Ztcv32EBdh0gReEZUhSe/Tz422svc0XWLbf8Ps/epCLMZDC8AzOG/RGRTkTVvQbNHNu7\nxnuuhmxO0smdK3ecfcQwzNdzt3/f2iHv0OP/bZy6/hzHcUKR8+9/bpHg3mEpIUvRG6QovMKo\nh2c44VAB4YoJRgN9uMFV2P4EY2wAHV19mUtEDCOa0rFq/v2KjAupKpaIRNbt8yr0RCSy9rI3\nFRCR8uUNfiM1EjeOxWo32s+YULkE9wfbjx6i3Ug4f0uPYRmvl2oNEXWY+DVuhhiQg2vjPsMn\nrtsZuHHFvP5fta9i9SYRSX5878COtb5DB071++VE0F2ZCo/clcL1Ry+1G71mDcm7bW0idhvq\nbElECWei81oyQkm/aWs7O4nZ3LhfFh7hP1Qjhp+3/qSHr9fe/q7cdKTf0CJufxMR07z3jB88\nnYhIFn101b/JPIVoXJCi8AwpCs9C5Soi8vAdgwo9P2RPtmsr9JI6fdfPGPC+Cj0RCS2cevqu\nHt7IjuO40ytnR8jVeYdqf+47sak9EbFK6dGUgje5oFjIUvQEKQrPMOrhGU44VEC4YoLRQB9u\ncBW2P8EwG0BHSUoNEZlYfFJgXkL6g0vaDZsGnQt8pJrIhIhYlZSXAI3NJVkuETECsxENbEvS\nXiRp7ygSEpFSdlW/kRmpGmZCIqopxrqCHwOmeoPWPmOnb/lj3y9+P/bs1MpW9OpdsBynir57\nadsav2EDhi5cs/3yf9GsUWUp+vIgW0VEjFDc0/Gtd1vWbWFHRLnpwfl3Moz5sNmdiUgWHRCY\nkM1jmBUEft5l79b2O9qNvpO/LEn79uN9tBshu6/oKyajhhSFZ0hReJar4YiojbvE0IFUFHe3\nvuqK+875tgQT4Jlu0wcTEatM3nTwaf4DnmM/026E3k4r6xgrDmQpZQwpCs8w6uEZTjhUYLhi\nQrmHPvyjUeH6ExTpAXRkIWCIiNOoC+yPOpGg3ajVo3qBQ8pXb5fAtB9daJ+KEJrVsCrxao3O\npkIiYpWJegzLeHVwFBPRgyTMvPmIqLJepKSmZche5qg1BQ5pVLI7QcdX/zR1qO+8o1fCDRJe\nOfJCpSEiE7MaBabv2LWyIyJl1h3l20meda3hDiIhEf0TEE2gH/h5l6HTcVlExAjFXe3MS9Le\nTOJtYyIgopy0C/qNzEghReEZUhSeaV8FrTaK2x/lwvEnmUQkMJH0rGxRkvZmNl9on/tJOHcg\n/35z+1ePjMufy8s6xgoHWUpZQYrCM4x6eIYTDoArJpRf6MM/NhWnP8H8AwAd1bIwSc9UsrnP\n4pWsy+vHeYhTBTx7tTTKN7Ws87fnNDlPFGoiEphW5jdSI2EpZJRqTqNK5Ur8mINUxRIRIyjR\n7S0owHNk820Lgm5vOMr5D8dzJYaleBH7740bN65fvx36TMUVvEduW72BRP7kWZpC+2fm8wc7\nVz0Ijpi09PvP8Q/3PmYCRslyHFfwKStxVTeie5xGcSdL6ZlvVSVihB2szQ6lyl/cO0nUhNdY\njR1+3voQl8sSkUBgWfKzZCFgMog0SqwlqwukKDxDisKzbq7WoSFpd8Jl3b1KVFSDDxSr7cNN\nHYptmcfORJCsZFXZD/LvFJo6ajeUL5RlGF6FgiylzCFF4RlGPTzDCYcKC1dMMALowz8SFbA/\nQZEeQEedq1jezVRynMb/XPyKr2tod6bd/02q1L6Q3rPB24twyh7t0a4VaWbVhv9ojcCnVqIz\n6QqNOv3sC0WXEjx3r8y8kaxkicjUsrH+ozNClZtO6ef234Gov+bsrOE3oqMZU36vdOVVpjT6\nxvXrN27c+C8qQfNOUlK5ZkOvdl5ebb3cq9sQx0b/d/V//7tw8foDOcsRUeiJdb80ajStjaMh\nAi8HqpoJI+UaVhGTyXL5Z76KKrUkOkBEQfHZnu5vvQLWQSQgIpU8lOdQjRV+3npVScikqzlW\nlfJEwbqaC4ttz+bGSFUaIhKY2ug/OiOEFIVnSFF41mxCb8HY7Q+37VG0nWaOs61/NiaCFBXL\nKmJlLCcpwfocHJv5TKEmIoYxzb+fVb56yZrI1rSQj8H7IUvRH6QoPMOoh2c44VDR4IoJxgR9\nuGFV5P4ERXoAHTUY0Yxm/0NE4TtmH7Cf91VLt5znt35eEaQ9WrXzt/kbZ8ZcWfDTWe22feuW\n/EZqJDp7O505EkNEB9YHdfHrUmz7sL17tRv2zYpvDIVhBi5bkfzjjKCjvw6/FTR0cM8GrrWq\nOduVeClf0NGL2Ic3bty4fv16yNOUd486ujZu29arnZeXm0u+tToYYZ3mHeo07zBCFrNrxYJT\nYelEdHPjLmozk7ewy5f21qJIuYrjVLsjMiZ4vHmHtInYrZKQyWK52HMJ5P7Wu6UTlCzvYRoh\n/Lz54WktOv1CQUTb/0lY9lXBl++8KzFoK8dxRCSy9tJ7cMYIKQrvkKLwSlyl+5JBwXMCrkxf\n675qyteo0+ubt63ZwWQ5xym33E2d0ar4+fRpIdsUGm0f/taz4HLp39oN63rWhXwM3oEshQdI\nUXiGUQ/PcMKhgsAVE4wS+nCDQH9CKNID6MymwVgvu+vXXig4NvOP5TMDGIZ7/YwPIzD//tua\n2u2c5L9/Xnni/qN4luOIiGGE3w74xFAxl2s1ew8wPbpSxXGpdzctPySZ0ceziFux0tv7F52N\n127/3yBXnkI0OkKRS/debYN+PZsdf2/zz/eIiBEIBSW4MXvkyBG9B2d0pNH3r1+/fuPG9ch4\nWYFDDMM4ujb28mrn5dW2bhWrIr5EJKk5Ys6EUz6LiUj58rpcw4lL8g9W8TTtXo22RRJR0NJl\nrVcvbF1V/PqI4DOJ2ekXCunVzZm+/nlPzmqUSRfSFURkao7+RBf4efPs/750Ob3/MRGF71x4\nu9WGlg5Fze1WpN5duO2hdtvlq058xGd0kKLwDykKzxr2XzQld8W6w9uHhl3qM9CnZ8em5ngm\nQm869a910D+MiP5dvTxi+wp3K1ERjdXyx6tXXNNuu3z11ZsDnPLI2svazVaNbd/9IORBlsIn\npCg8w6iHZzjhYNxwxQTjhj6cT+hP8kORHkBHDGM+cfnExxPXaNe35/KtwlGv7/xG4leLCuZm\n3Lob9Tzv0CdfzvaWmPEcqnEQSbxmfVFt8fk4IrqxZ/nIYO9xQ3s2dH/7KsixadJnl08d3HPi\nhvapCFv34b2dxYV+IRTr1u/zFv/11rstOQ2LRwT1ZPTU+QX2MAzjXKeZl1dbLy+v2k6WJfwe\n00qNXm+aiDDX7T1cOo+x3TUtXa1RZkUu9R1Zr0mzUTOnulmYEFGn9k6nj8Wwitg564+tmtzT\nnGE4Vha4en42yxGRZXVMe9UFft48q9FzlOTAXBmrYZXJyyZMH/HjtO6taxbaMvb2yV9W70xS\nskQkMLEd3a0av5EaCaQo/EOKwqejR48SEVnX/7Lx47/vRwWs/2mfv6mdk7Ozs7ONZVH1YyKa\nObO8zmYwoCreU+psHxudo1bnRM8bO2fElAndWn5SaMv4++c3rNn6UK4iIqHI0bfnq64+MzHq\n5O61h568JCJRpWa9KlvwFXu5hCyFT0hReIZRD89wwsG44YoJxg19OJ/Qn+SHIj2A7sRV2v/q\nb711446gkBjtqzIEJpW8eo76cXCjdxszjEmLrt/PHdOa9zCNR0vfVT3ixh6PyCCiFxFBS+cE\nMUJzh0oa7dFZU31jYxOy8q0zYyZpvGhRT8PEWv7JHu9ZciTE0FFURAwjqOrW3Murbdu2bV0d\nS12/UcujtBsWTj1NymtyondC8zqLv/9swuYgIuLY7Ii7V2NyJ2kzb9eBYyxPzs1muZiLOwde\nO1jNRZISlyBXv+pnOoxtYsCwjQB+3vwwEXv4DWk+5ffbRKTOidm2ZOJfrk3bNa9fpUoVZ2dn\nMcmlUmliYmLE3av/PUnL+1TLoT+5W2BooCOkKHxCisKznTt3FtjDcao0aVyaNM4g8Rg9ganj\nvDl9Ry/4U8lxysyoLYt+2FfVvRwyw5cAACAASURBVFWj2o6Ojo6OjmJSJKckpySnPAm7HRaX\nof0IwzCdfRfVMRcSkVy6ffDYE3lPkH/2gy8umCWELIUHSFF4hlEPz3DCoYLAFROMEvpwg0B/\nQkRM/um/AKCb3HRpbFKasJJDNReHAs/sZD3/w39/atVP3Fp7fla/WiVDRWg0OFZ2ZPPK388V\nf2fWtl6nOfPG15MUM78H3ufvqUM2R8uIyMKxQf9BPerXcHGwrVTCi529vb1eYzNKPXt+U61e\nC692Xl5t29asXNTCj1BWHp7dvWb70eRclogm7jnY2ebVMicPA+bP+vP+u+0dmo/Y4deL1xCN\nBX7eBnFlx9xVx0payGzae9ai4W31Go/RQ4rCG6QoPOvRo4fOnz1+/HgZRlKhJN74Y+aqQxmv\n7/0VgRGYdf5+yYRu9bR/ZiWsHzT2gnbb7avJq8dikfBiIEvhH1IUnmHUwzOccDBWuGJCRYA+\nnB/oT/JDkR4Ayh9p2LUjx09cDA5XsIX0YJVrNe3W45senZqbltvnpz4G477tFZ/Lmtm03L5r\nvgSvHdW/uHRFdduKnpTwT6OSPbgZHBWb0LiXT/4JOjf2rdl06LLs9Z1xhhE26ewza3yfcvpy\nI4PDz9tQnl0/vHZr4NMXuUW0ETu6+YyZ3L0VVpEtG0hReIAUhWdnzpzR+bNdumDtR90pUh/u\n/G3n+VuP2PfftKnawGvYmPGetd68rFFbpBc7u3XvP8Lncw9eIi3fkKUYBFIUnmHUwzOccDBK\nuGJCBYE+nAfoT/JDkR4AyiuOlT+NePgkPjUrKytHqbGsZGVt6+jWwKMquviy0LtnTzXHffbz\n7mn1bQ0dC4ABqLMT7j14nPIi277aJ7VdXe2tMOdVR3GnFsze/4SIzKw9d2zyNXQ4FQ+nDLv+\nv2t3HoSHRyamvZQrlAwjMLOwtHOuXq+eW5NW7Tu0qIsqZ5lDiqJXSFGgQslJjr584054ePiz\n+JSs7KwcFVlZWUvsq7g3aNCkdbvmtSsXaM/mxsWkmNeq5oCuHT52SFE+Dhj18AwnHACg/EIf\nDvqAIj0AABRiVN9eyUp20p6Dn79e2AcAQAePdk388UgMEQnNax454G/ocCo6jlVqBCLc8oZy\nDSkKAIDxQYoCAGB8/HzHPs9Vuw5YOOcLF0PHAgDlBqvMFYoq0GDfpPgmABXe+fPny/DbbBp4\ntXIRl+EXAuhDJxuzwGT5cwVr6EAqqCyZTF3ip+gkNja4nQUfLftWNehIDBGxipgwudpDjOTT\nkBihSGjoGAA+EFIUMGJYfkavNmzYULZfOGHChLL9wooMKQoAgJHRqFLC4xNzNJzqbCKhSA8A\n78Gp068HXQ0JCQ0Lj87IzpbLc1Qsd/z4cSJSZt76KyjTy7t9dStTQ4epR7hPClA8f/+ynPnn\nPr4+ivQfiOMUj0JCY+NffNH1/97az2as3hhYq1a9T9t7VbfBgjMfpOPgBoFrbl8PCBn246eG\njqUCib97ds/xi9HRj1NeFvWCxgICjhyzwqyT98vIyNBuMIypRGJp2GAqIDuPSZ42t25kKIho\n99nnK3t9YuiIAPQIKQoPkKLoFS6ahqVITn/58iURCZURho7FCJ07d65svxBFeviooAPnGU44\nVFTc84g7/4U/S8+UF9lKHXf/Yo6GIyKNohQ3uAD4gT78IxFx5fBvW/c/kSkLPcrmPt237Y/A\nnbu8B4ye2K+9sd78RpEeAMoTjs3858Cu/ceCkuVqoci54B1wjfLKhdNX6PTe7RtafeUzbuQ3\n9iYCQ4Va3lXpMLv70REnL/988POt3zYt+LZL0IfoE2t+3H5Jh9fQmOJnXqShQ4dqN0SWTQ7t\nX0xEP//8s87fNnPmzLIJq+JgRFNWT0/6YcUTuepRwNKb7fw/dcBruXmFlTn4gRSFN0hR9AoX\nTcPC8jNQoSBFKVvowHmGEw4VkEYp3bx4wdn70lJ9ql6f2nqKB0Bn6MM/BncD5vv9eb/YZhpW\n9k/AqofRSZvm9DUxxnQQQz6A4rVp0+Z9hzSqtOA7j/L+ZBiBla2Dk7OzlTA3KSkpKSUjb8wp\nFDn7jB1Q2UQgcbPTe8RGilXGr58x4+KTzGJbcpwq+NTvDx9Er1r7owuWzdMNY/rd8oVp0+b/\n8dOYyK8GjxrS3Rl3CfVJKbs2Z8dbFXqhsKQ/XRFjjBmKPl27ds3QIVQs5o6tVmz8af3SVVej\nk1aM/6H3yO++8m5lb47OWb+wMgefkKLwCikKv3DR5BOWn9GrwYMHGzoEIEKKwiN04DzDCQej\nFzh3xtnIjFJ9xLFFnxkdnPUUD0AZQh/Os7hz6/Mq9IzQqt3n3m516pqG7PvtypvHgEzE9Ru5\nWIbEZxOR9OaeOfsbrhzkbphw9Qm3MwCKN2fOnEL3q+WPf5k+X7strtKg97f9vv6sqVj0Zl4U\nx+ZG3jwfGPjn3WcyVik9dOj6krWz6ljg/zsdHVk4N+/2N8OIatZvVKABI7Tq18375s3gmFQ5\nEWXFXZ2/tO7Ohb34DtQoHD16lIjcOn4Rtu948Kldt07vlji4VHdxMC3BjRE/Pz99h2d8wrfu\nVmg4IrJwbPjdGJ9mdV0dbSwMHRRA2Th16hQReXTqkyHbF5oiPbhp2aHNIht7Ozs7e1s7iVmR\n91vxPLJusDIHz5Ci8AkpChgzLD+jT/369TN0CIAUBQCgvMqK2xP4ukIvruLWuqm7jUluxNWg\niPRcImrUtXsdcxMikstSQoJvJmSpiMjDx29Jv+Z4wgoACmAVMQu2/KPdlrh1mD5tfGNnCyKK\nTj6Sv5mpuNHSTXtvBC5dvv8OEUUe9Ivs9Uc9oyuuGdt/DwCPuD/m+V2LyyKi5n1nzBvS7t3V\nNhihmXvbr/3adrv71yq/36/KE4IXzt2z65fvjHJdDn3Litu/J+SFdrtWuwFzJvRzemfWFCOw\nGDxm6uDR7PWD634JuKTiuNT/dh2VfvmNs5j3eMu9nTt35v+T4zQZyXEZyXGGisfonbmfTkQi\n65abfpuHNZDLVr169bQbJhbVtBvjx483XDgV0ZYtWwrs4Thleqo0PbV0q+RBCWFlDp4hReEZ\nUhS9wkXT4LD8DBgxpCh6hQ6cZzjhUNFE7b6s3bCu3W3j6tESIUNEap/OPoOm52g4VY0uI7pV\n1zbgWNmBNbMCrsRHHNoR0qVhU4nIYEEDvAf6cMNKOL8xTaUhIjNJy7UrplQu4k44Y+I58KdJ\nz0evuyLlWPmWE3Fr+tXiL1BeoEgPoKP08PV/RcuIqHLTkX5D2xXZlmnee8YPkY/W30iSRR9d\n9e/Xsz0d+QnSmERsO6/dcPT0XTfjy6KaMsK2/abasfEz9j8iolM7or6Z25SHCAE+RKhcRUQe\nvmNQoS9zq1atKrCnS5cuBokEgB9YmYNnSFHAmOCiaXBYfgaMGFIUvUIHzjOccKhorj96qd3o\nNWuI5HVCYiJ2G+psuSUhK+FMNL0u0jNCSb9pa5Ojhp9Pivtl4ZG9a/obJmKA90Mfblg3jsVq\nN9rPmFBUhf619qOHrLuyiogSzt8iFOkBQOvW9jvajb6Ti7wb+1r78T7rb6whopDdV8izjx4j\nM1LnnrzKBb/z7ViS9nV7/cAE/sBxXEbEeSLcAS+1yZMnGzqEiiVXwxFRG3eJoQMBKHt4Hpln\nWJmDZ0hReIYUBYwblp/5+Pn5jn2eq3YdsHDOFy6GjqWcQYoCAFB+PchWEREjFPd0fGsxsLot\n7CghKzc9mOjNaIhhzIfN7nx+8jFZdEBgwtcDqlryHS4AfMQuyXKJiBGYjWhgW5L2Ikl7R9Ga\nZCWrlF0lMrY3WKFID6Cj03FZRMQIxV3tSvSaQDOJt43JrxlqTU7aBSIU6UstUq4mIqHIua11\niVZJEprXrG0ujM5Rq3Mi9RyacerUqZOhQ6hY6liYhGar1KV+OSNAOYDnkXmGlTl4hhSFZ0hR\nAMCANKqU8PjEHA2nOptIKNKXElIUPsWdWjB7/xMiMrP23LHJ19DhAEC590KlISITsxoF3uJq\n18qOTsQqs+4oORLlO2Rda7iD6GSKkv0nIHrA9Cb8BgsAH7UkpYaIhGY1rIpcJyw/Z1NhspJl\nlYn6jMswUKQH0FFcLktEAoFlyV+MZiFgMog0ymT9RWXEslmOiBhBKR69FDIMEWlUGfqKCaDs\ndHO1Dg1JuxMu6+5Voud+AADeBytz8AwpCkABmGf8IbD8jIFwzyPu/Bf+LD1TXmQrddz9izka\njog0ilyeQjMiSFH4pEhOf/nyJREJlRGGjgUAjIGZgFGyHMepC+wXV3UjusdpFHeylJ5W+Z5a\nZoQdrM0Opcpf3DtJhCI9lD8aZeaTR9HJL15mZmWRqYW1lZWDS63a1SqXvBgE72MpZJRqTqNK\n5YhKeD6lKpaIGIERvikJRXoAHVUSMulqjlWlPFGwrubCYtuzuTFSlYaIBKY2+o/OCNUwF0bn\nqNncmDQ1Z29SfO/NqdOf5qiJSGhWTf/RAXyoZhN6C8Zuf7htj6LtNHMG+R6vsmQyNVfSRQwk\nNjb454GPHFbm4BlSFID8MM/4A2H5Gf5plNLNixecvV+6FwrU61NbT/EYMaQofLJvVYOOxBAR\nq4gJk6s9xLgDzDcMM8HIVDUTRso1rCImk+XyT34VVWpJdICIguKzPd3fWlrMQSQgIpU8lOdQ\nAT4Ipw65eubU6TO3H8Yp3+nGRVaVW3h98VW3bk1q4qFD3X1qJTqTrtCo08++UHQpwTLVyswb\nyUqWiEwtG+s/Or4hRQPQkae16PQLBRFt/ydh2VfVi22fGLSV4zgiEll76T04Y/RVtUrrH2Vw\nnPq3m0lzvZyLbZ9ya4v2Oip26qz/6AA+lLhK9yWDgucEXJm+1n3VlK9Rp+dB/N2ze45fjI5+\nnPKyFBOhAo4cK/laTKAzzML8EFiZg2dIUaBiwDxjMFqBc2ecjSzd0iaOLfrM6FB8hw8FIEXh\nk53HJE+bWzcyFES0++zzlb0+MXREFQWGmWCs2luLIuUqjlPtjsiY4PHmNdImYrdKQiaL5WLP\nJZD7W6+XTlCyvIcJ8EEUaaGbfl4VFJH+vgbKzNQbZwL/PXuwVfdRk0Z8ha5bN529nc4ciSGi\nA+uDuvgV/4xy2N692g37Zkb4QDOK9AA6+r8vXU7vf0xE4TsX3m61oaVDUYNMRerdhdseardd\nvsJ7NHXRbKgHzb9GRLfXLfmv3upmlYs64cqXYcvXBmu36wxsyUd8xi750e3rt0MjIyOfp6Rn\nZWUp1AIrKytrO6d69Rs0bO7p6YEqWhlo2H/RlNwV6w5vHxp2qc9An54dm5oj1dOb6BNrftx+\niSvxzIY8pniBpv5hFuYHwsocPEOKAkYP84zBiGXF7Ql8XaEXV3Fr3dTdxiQ34mpQRHouETXq\n2r2OuQkRyWUpIcE3E7JUROTh47ekX3Pk6TpAisIrRjRl9fSkH1Y8kaseBSy92c7/0yJvW0GZ\nwDATjFjT7tVoWyQRBS1d1nr1wtZVxa+PCD6TmJ1+oZBe3Zzp659Xs9Qoky6kK4jI1NzVMBED\nlJJSFjpvwk9R2ar8OxnG1M7J2UKTJU3JyFsfhePY4ONbJjxO3LBkJOr0OqjZe4Dp0ZUqjku9\nu2n5IcmMPp5FnEXp7f2LzsZrt/9vkBH2J4wOeQMAEJFaHjbCZ66M1RCRiUXNET9O6966ZqEt\nY2+f/GX1zqdyNREJTGxXBOxwt8DzMaXHKX8ePvhauoKIhObV+o8d17tjQ1EhA3tNdPCpTet2\nR2cqichUXH9XwAprXCw/QHpUkP9ve29HpxTRxt61+ZCxkzq9/cAslMrRo0e1G4l3Tv59P5le\nZ4HOzs42lqIiP0ozZ87Ue3zGRSm7NnjYSoXmTQokFBb/1hKtw0eO4P6JrkoxC/NmtIyIJDVn\n7vXH8jO6CP1z/pyA+zW9v8fKHHxAisKvYcOG6fbBOsNXzO9YpWyDqSD2TR8aWPp5xpsWDBPh\nBw4fvbtLRvkFJxORde1uG1ePlggZIlLLo3wGTc/RcO5jNq7s9mrZPI6VHVgzK+BKvNCs+k/b\n1zaVFJOiQ6GQovBMkfZg/dJVV6NlQjPn3iO/+8q7lX0JXtcIusEwE4wbq4j+btC0dLWGiBih\nZb0mzUbNnOpmYUJEUTsmTjsWQ0Q1O363anJPc4bhWNn+n6cH/islIlv36btXtjds8AAlwG0d\nN+hkfLb2D5Gkdo8+PTq0blTF2V4kYIiIYxUpiQkP/g069tepmKxXhXwX75mbp+K2lS5u+fsu\nPh+n3bZz9x43tGdDd9fEfZOnHnpKRMePHyeOTZM+u3zq4J4TN1iOIyJb9+G7V/Y2ZND6gSI9\ngO4e/7Voyu+38/60d23arnn9KlWqODs7i0kulUoTExMj7l7970laXpvW3/067xsjfN6HH1mx\nF3wnb9Cmg0RkalWliUcdBwcHBwcHKzM2NSk5OTk5Jur+k+QcbQOGEQ1ctHVAEzvDhVzuPTy6\ndv6uIFUJrhQMY9pxxJLJ39TnISqj1KNHD50/e/z48TKMpCK4v2r0/CtSIrJwbPjdGJ9mdV0d\nbSwMHZSR020WZuupW+d5Yy1Z3XAX96xYd/hfUeW6WJmDB0hR+KTzFdN9/KaVXaqVbTAVQVbc\nnkG+h7TbmGcMxmfDsH7n0hVENGxbYB+nvEmBdGrsoC0JWdY1p/zh3zFvJ8cpNowefj5JLqnj\ns3dNfwOEawyQovDn1KlTRESc6tqRfaEpCiJiGJGNvZ2dnb2tncSsyDOPB8F1gGEmGL3Yv9dM\n2ByU9+fEPQc725gRkVoeOsRnbjbLEZFQZFXNRZISlyB/PTj65tc/vnO1NkS8AKWQHrFx2Iyz\n2m3Hlv1XzB5Y+T2LnLDKpL1LZ//1XyoRMYxg3I7ALkUupweF4jTyHbPGHo948yw4IzR3qKRJ\nlimJqEGd6rGxCVn5XplhJmm8etvCmsb4rCGm8wLornbvBdPT5646FqL9M+3JvWNP7hXRvmnv\nWajQf4hKNb5YtzR37sKdcXIVEakyE2//m/i+xozQ6ptJy3H7+0MkXd0ye1dQ3rNcVlXrtWpU\nx9HR0dHB0cpUlSSVSqXSx6G3wuMziYjjVBd3zbZy2jrS09GgUQMU78z9dCISWbfc9Ns8exPM\nWOAD3vbKp1crc1jX/7Lx47/vRwWs/2mfP1bm0C+kKB8zE7GdXSUTIrLDWlY6idp9Wbvx1jxj\nn87aecaqGl1GvDPPOOLQjpAuDTHPWDdYK4JnD7JVRMQIxT0dxfn3121hRwlZuenBRG+K9Axj\nPmx25/OTj8miAwITvh5Q1ZLvcMs5pCg827JlS4E9HKdMT5Wmp5buwVkoIQwzwejV6Dp1hcB+\nzfajyblvvWzeRNxwft/Gs/68T0SsMjPmaWbeIYfmI1Chh3IhdPct7YbYseOG+YOKWO9HKHIa\n9tOG1FEjLqfmcJzm2B/RXSY35CtM48EIxCOX+9ttXvn7uVfFNY5VJMteHX0YHZe/sW29TnPm\njTfKCj2hSA/wgdqPXFq9/uG1WwOfvsgtopnY0c1nzOTurTB350PZ1O+2bmfjwO27Tl+8k8UW\nPr2bYQS1mnkP/X50cxdxoQ2gJDTq1CXrz2gr9CKrusMnTejWulZh6Qn3NPiU/6+/R2cpOU5z\nau3y3q3W2JpgMkSpjR8/3tAhVCChchURefiOwa0TfuBtrzzbuXNngT0cp0qTxqVJ4wptD2UC\nKQpvNmzYUORx7mVqUmJiQtyz0LPnb+VoOE5j8e2Py76sj5fy6Oj6o5fajV6zhkhe98smYreh\nzpZbErISzkTT6yI9I5T0m7Y2OWr4+aS4XxYewTxj3aSnp+v2wcy3b5dDCb1QaYjIxKxGgRGM\nXSs7OhGrzLqj5Cj/ixusaw13EJ1MUbL/BEQPmN6E32DLPaQoYNwwzISKoMGXw7Z2+ubBzeCo\n2ITqZm8KZg18Fs9m1mw6dFn2egI9wwibdPaZNf4bA0UKUDrnY7K0Gx3nfFfsG3kYgfj7uZ0u\nTzlFRCm3jxOhSK8LRijpPWFp247Xjhw/cTE4XFHYjZTKtZp26/FNj07NTY33DiGK9AAf6pO2\nfdZ5dg+7/r9rdx6Eh0cmpr2UK5QMIzCzsLRzrl6vnluTVu07tKiLSkNZMRFXH/zDggEjE2/d\n/C88PPxZQmpWdlaOiipVqmRt5+xWv0GTFm3cXawMHWa5l3R1bYyCJSIT81oLNy33eO9cKKZW\n669XbKoxdfRPsQpWrXi85kbS4vaY/FpqXbp0MXQIFUiuhiOiNu4SQwdSUWAWJlQQSFH4UaNG\njeJa1GxIRPTNoP5RB3b5H7oSs2n22OyVW3u7odvXBeYZf+SwVsQHMhMwSpbjOHWB/eKqbkT3\nOI3iTpbS0ypfQsIIO1ibHUqVv7h3kghFevio4UFwnmGYCRWEwFTStF3npu/s9xw0tVXPAfce\nPE55kW1f7ZParq72VhjRQ7nxJEdNRAwjHPJJidZ+sHYdZsqcVnGcKjtEz6EZOWcPr3EeXmNZ\n+dOIh0/iU7OysnKUGstKVta2jm4NPKraGv+rBDCKAygLjMjDq6uHV1ftXxyr1AhEqMrrlYll\nFc9OVTw7fWXoQIzW3UPPtBvNJ81+f4X+FZFN43kTW4xeFUxETw/cpfb4d4GPWh0Lk9Bslbrw\nma5Q9jALk2e4IWtYSFE+HuaV3YZOX1cpc9Tv91L/mOfXcu/qGmbGuT6eXmGeMc+wVgTPqpoJ\nI+UaVhGTyXJW+cbwokotiQ4QUVB8tqf7W6MhB5GAiFTyUJ5DNQJIUXiGB8F5hmEmgIll1Zae\nVQ0dBYAuWOKISCByFgtKVNRhGPMqZoJYBUucRs+hVQiMUOzq0dLVw9BxGAKK9ABljxGKcP8P\nyrvzyTlExDDCMa1L9I55xzZjTZlbKo6TJ50nQmUCPmrdXK1DQ9LuhMu6exn/85gfA8zC5Blu\nyALkI+g+a8qegfPUisdrDj371ae2oeMpfzDPmGdYK4Jn7a1FkXIVx6l2R2RM8HjzrIOJ2K2S\nkMliudhzCeT+1jMQCUq8WUBHSFHAuGGYCcYtIi7Nvbq9oaMA0JfGlqY3Xio1qjQVRyVZWZ3T\nyBNyNURkKnbTe3DwWsTlQ+6f9TV0FGUM78gBAIBCPM9liUhoVtPBtERXCoFp5VrmQiJilXih\nIE/8fMeOGjVq2YV4QwdS/jSb0FvAMA+37VFwmObAh6JmYRJpZ2HmZ11ruINISET/BETzFiSA\nnrDKXEOHUNGZiht5S8yIKOHcOUPHUi5VNRMSkXaecf79okottRtB8dkFPoJ5xvzQrhUxvGll\nTpPzxzy/WLyTXidNu1fTbgQtXRacIM93RPCZxIyIpFc35//xa5RJF9IVRGRq7spnnAA6OHHi\nxIkTJ4LCMkr+kXtnT584ceLvCw/1F5URwzATjNsM3xEDR/2wevPuoOAwmRJTh8HYdGtmT0Sc\nRhEQm1mS9hkPt6o5jois636t38iMUVSWqrQfkSc+8J8/esbqPfqIx7BQpAcoG1kyWUaJIVv/\ncDjh+mZtIiAiTiMvtmWeHA1HRMSY6ikkyE+jSgmPT0xOTo48m2joWMofcZXuSwY1Vry4Mn3t\nSdxA4YGZgCGi98zCJO0szLcOMMIO1mZE9OLeSZ5CBCgjnDr92oUTv61dPnH0yCE+A/r06tmr\n77faQ8rMW4En/onLLPVYFD5cHXMTIlJm3TR0IOVSe2sREWnnGeffr51nTESx5xIKfATzjHkk\n6D5rioBhtGtFGDqYcsml8xhbEwERKbMil/qOnOG3MirnVcbSqb0TEbGK2Dnrj2kzRo6VBa6e\nn81yRGRZHZPC4WO3bdu2bdu2Hb6RXPKPxBzeu23btu3b/9BfVEYMw0wwetnJzy7/fXjNktlD\n+w+aNn/F/mMXop6nGzoogLLhPvp7iVBARH8v2ipji+nDWWXimuVXiYhhhH3HN+IjPuMy19cv\n/KWy+HZERMSxL8/uWT1i3Pzz96V6jcpQsNw9wAeJv3t2z/GL0dGPU16WYppUwJFjVnhlvU5w\nwnlTy1yYqmJZpfRetqqpZfF1d7U87LlSQ0SmFljk50NwzyPu/Bf+LD2zyMcjOHXc/YvapyI0\nCszR1EXD/oum5K5Yd3j70LBLfQb69OzY1By9hN7gba8fPz/fsc9z1a4DFs75wsXQsZRjEVcO\n/7Z1/xNZ4UNNNvfpvm1/BO7c5T1g9MR+7dHl8OlJrpqIODbL0IGUS027V6NtkUQUtHRZ69UL\nW1fNe3GJ4DOJ2ekXCunVzZm+/nndO+YZ80y7VsQ/GYqEc+fIZ5yhwyl/hOZ1Fn//2YTNQUTE\nsdkRd6/G5E5yszAhIteBYyxPzs1muZiLOwdeO1jNRZISlyBXv5o72GEs3ubAB6QoPFNqOCJS\n5z41dCDlFYaZUEFwrDzq/vWo+9f37yArJ9cWLZq3aNGiedP6ViVbjBPgIySyarnc19vX/2JO\nyqUJM4SzZo71cCz83SWJYVd2rN94P1NJRPX6LPzKSVxoMyhCbnrIfN8FP/kvamQjKrrls+AT\nGzfvjUxT8BOYQaBID6C76BNrftx+iSv947HIWHSDE86nL1ytb91PJaId+x/6jyr+DlTkwW3a\nfxrr2l31HpyR0iilmxcvOFvKpwLr9cHrdUvt6NGjRETW9b9s/Pjv+1EB63/a529q5+Ts7Oxs\nY1lMdjhz5kw+QjQueNvrR067MkeOhlOdTSTcAdfV3YD5fn/eL7aZhpX9E7DqYXTSpjl9TXDP\nlhfKl8EXM3KJSCCqYuhYyiWXzmNsd01LV2u084zrNWk2auZUbQmzU3un08ditPOMV03uac4w\nmGdsEHXMTf55tVYEivS6qNF16gqB/ZrtR5PffmWAibjh/L6NZ/15n4hYZWbM0zdrnzo0H/Gd\nqzXfgVY8SFFKKzw8/N2duS+ehoeXILXm1OkJDw+m5mj/KOPIKgYMM8G4LZk7NSQkNDQ0JOKp\nlM13bzYz6UnQ6SdBpw8xlca+nQAAIABJREFUQnHdxs1atmzZonmLui42BgwVoGiZmYUvaC/5\ndOSiHNNF28/JHv0zZ8y/jT29P23i5uzk5OTkZMHkJEml0sTE/66cvhz6aiGx5r0mzR/SmMfA\njYpS9nCh75x565c0tS/8YQhFasTuzRtP3YrJ2yMQSjr7fM9XgPxBkR5AR0rZtTk73ioYC4XC\nEn5WxOCmbKnhhPOs/uAWdP8sEcWeWLyv0YZBnzoX0Tj5zoGFR149a9/cx52P+IxR4NwZZyNL\n8b5AInJs0WdGh6L+aaBQO3fuLLCH41Rp0rg0aZxB4jF6mIVpIFiZgz9x59bnVegZoVW7z73d\n6tQ1Ddn325U3z12ZiOs3crEMic8mIunNPXP2N1w5CFdMvctNj9w471ftbUQLuy8MHU65hHnG\nHz+sFfHhGnw5bGunbx7cDI6KTahu9maY2cBn8WxmzaZDl2Wvf9gMI2zS2WfW+G8MFKlxQIqi\nL4UWeqVXN868WrrvMbNqUzYBVTAYZoJxa/ypd+NPvYmIlac9DA0LDQ0JDQ2NeJygen2rlmPl\nUf9di/rv2j4iK2fXli1atmjRollTdys8mwwfGR8fn2LbcKz8/tXT96+efl8DgVCS/fDMrBln\nPukz3beNY5kGaPwaSEQPZUplZtTiCXNmr1/W0uGtOj2nybl0aMf2/Rdespq8nbU+7e47bqib\nnRnvweodivQAOgrfuluh4YjIwrHhd2N8mtV1dbSxMHRQxgwnnGc29cZ94XjlQrKc45R/LhsX\n/dWQQd90qfPOAj45yY/PHgvcczJYrb397fD5eHc8LauLrLg9ga8r9OIqbq2butuY5EZcDYpI\nzyWiRl27a9+nK5elhATfTMhSEZGHj9+Sfs2xeB58/DALk39YmYNPrCJmwZZ/tNsStw7Tp41v\n7GxBRNHJR/I3MxU3Wrpp743Apcv33yGiyIN+kb3+qGeB4Vip7d+/v0TtNLmJsTEPbv/3QvVq\nYN9gKEoOOsI8448Z1oooKwJTSdN2nZu+s99z0NRWPQfce/A45UW2fbVParu62lsVMyMWioAU\npVxoMWagoUMAgI+XUGzfqPVnjVp/RkRsTnpEWGhoaGhISGhE9HPl64J9pvTJxVNPLp46IDCp\n5Na42Uq/6QYNGaDsaVhZZKSMiJiMkr5bHfIs2rh44cQFIem5quzoZRNmzly34lPnV4WehPvn\nNm7cGSJ98yineWX3YeN8u7WqaaBg9Q53hQB0dOZ+OhGJrFtu+m2evQmWU9c7nHDeCb5fNil0\n/EqpkuU49vap3++c3mPjUMXJ0dHJycmCcpKTk5KSkhJTMjSvU3ChyPGHpd/j30Y3Ubsvazes\na3fbuHq0RMgQkdqns8+g6TkaTlWjy4hu1bUNOFZ2YM2sgCvxEYd2hHRp2FSCu4SlNn78eEOH\nULFgFib/sDIHnxLOb0xTaYjITNJy7YoplYvIUhgTz4E/TXo+et0VKcfKt5yIW9OvFn+BGouS\nFunfJnby/hHzGz4A5hl/nLBWBD9MLKu29Kxq6CiMBFIUvapWrVr+P58/f05EplaOTiUeM1ay\nr9qofa8hXk5lH1wFgGEmVEBCC1uPlu09WrbvT8QqZJFhoaGhoaGhIQ8fxSm1S6GosyLuXiFC\nkR4A3hBZ1/fbuHTpD/PupirUOU9X/DBt2tpVrayS9m/ZePhKVF4zRiju0Hfk9wO+sDLqOWoo\n0gPoKFSuIiIP3zEoGPMDJ5x/Fo6ev6yctHjhRu1kbo7TpCfHpyfHR4QW0lgkcRu3YIGXc8Gp\n9lBC1x+91G70mjVE8jrzMBG7DXW23JKQlXAmml4X6RmhpN+0tclRw88nxf2y8MjeNf0NE3F5\n1qUL5mfzDbMw+YSVOXh241isdqP9jAlFVehfaz96yLorq4go4fwtQpGeF7Z12i1Y8oOFAD/x\nD4J5xvzAWhE8O3HiBBFZubb39ijpemD3zp6OU7ImFrW7ftFAn6EZIaQo+rZp06b8f/bo0YOI\nqnac4T/KzUARVSwYZkIFJzSrZGtrY2trY2tra22ekCpXGzoigMIdP37c0CEAmVZym7dhxYpJ\nc4KT5KwibvWkyTZcSprqzT1Dl2Zf+o7/rqGT8S+ljCI9gI5yNRwRtXGXGDqQigIn3CCsXL1X\nbPc4Ffjnqb8vau+SvMtU7Nyha7f+A792EgkLbQAl8SBbRUSMUNzT8a0HHeq2sKOErNz0YKKO\neTsZxnzY7M7nJx+TRQcEJnw9oKol3+EClB5mYfIGK3Pw7JIsl4gYgdmIBrYlaS+StHcUrUlW\nskrZVaJ+eo7OCHXt2rXEbYUO1Wq61q7bpL4rCjx6hXnGZQhrRfBs27ZtRFSzR72SF+ljDu/d\nIc02FTfs+sUyfYZmhJCiAAAYG04Z9ygiNDQ0NCz0YVhEWmGFeYbBbCsAKISJ2HW2/8pVk2dc\nT5CzSmna6/0iSe1BY8f39qpryOB4hCI9gI7qWJiEZqvUnKHjqDBwwg1FYOrQfciEr31GPosM\nDw+PTEyVZWVlqcikUqVKkspV6tWr716/lhhT0z6YdhaUiVkNk7fPpV0rOzoRq8y6o+RIlO+Q\nda3hDqKTKUr2n4DoAdOxJDiUD5iFyQ+szMGzJKWGiIRmNUq+ApuzqTBZybLKRH3GZbTGjRtn\n6BAAPi5YK4Jn2vV71blPDR1I+YMUhWeDBw8mIolbZUMHAgBGheMUsZHh2nXtQx9GyRTsu20Y\nhqlc3a1Ro0YNGzZs1Kgh/0EClErcqQWz9z8hIjNrzx2bfA0dTgUiNK8xff0va6dOvxybpd3j\n2nXkT993t61ISymjSA+go26u1qEhaXfCZd29zA0dS4WAE25YjMCiVv3mteo3N3QgRstMwChZ\njuMKPnQsrupGdI/TKO5kKT3zly0ZYQdrs0Op8hf3ThKhSK93fr5jn+eqXQcsnPOFi6FjMU6Y\nhVmGsDIHzyyFjFLNaVSpHFEJS2RSFUtEjMD4120DI8WlJz57EpeUmZWlYgXiSpVsnFzq1nIR\noUZcFrBWhL6Fh4e/uzP3xdPw8EJqDAVx6vSEhwdTc7R/lHFkFQBSFJ7164cFewCgzDwJu62t\ny4eFP85UFl6Yt69Wt1GjRtravDMWQYHyQ5Gc/vLlSyISKiMMHUuFIxS5TF2z1nTG1P89ySQi\n6Z2QjOFf21akwnVF+m8FKFPNJvQWjN3+cNseRdtp5gxuiugdTjgYt6pmwki5hlXEZLJc/rmY\nokotiQ4QUVB8tqf7WyMcB5GAiFTyUJ5DrYA0qpTw+MQcDac6m0go0sNHDytz8OxTK9GZdIVG\nnX72haKLXfGPEiozbyQrWSIytWys/+gAylJy1K2/z5y99O9/qe+8BUkosnJv1b7bV93aNapu\nkNiMBtaK0LeZM2e+u1N6dePMq6X7HjOrNmUTUEWCFOWjxXKEZ33KXPKj29dvh0ZGRj5PSc/K\nylKoBVZWVtZ2TvXqN2jY3NPTA+NKKGcmz1707k6GYexc6jR6paGzxIz/wAA+nH2rGnQkhohY\nRUyYXO0hRtmUVwKR08TV60xmTTkbJZMnB8+auHT5+jmuFeZfoaL8dwKUOXGV7ksGBc8JuDJ9\nrfuqKV+jbKxvOOFg3NpbiyLlKo5T7Y7ImODx5q3GJmK3SkImi+VizyWQ+1tvO04o7MllKA3u\necSd/8KfpWfKi2yljrt/MUfDEZFGkctTaAAfACtz8Kyzt9OZIzFEdGB9UBe/LsW2D9u7V7th\n36z4xpCRkaHdYBhTiQTTKA2GVUoPbPw1MCic4wqfPcwqM8OunQ67dvqQV99pk3yqmQt5jhCA\nZy3GDDR0COUPUhQDykmTJqTn1q5TM/9O2eNr/tsPP3oWm5FDdlVqte3UbUifDuZ4d8YHS48K\n8v9t7+3olAL7szMzpAlxUaG3TxzcY+/afMjYSZ3eHuMDlBdmtjXbfNq8YaNGjRo2rGqLFU+h\n3LPzmORpc+tGhoKIdp99vrLXJ4aOyHgUuopVobyHjXu2Yk1kpjIn+fasiUtnTf220Pd51a9f\nv0wDNDwU6QF017D/oim5K9Yd3j407FKfgT49OzY1x7PH+oQTrifnz58vw2+zaeDVykVcfDt4\nW9Pu1WhbJBEFLV3WevXC1lXzzqHgM4nZ6RcK6dXNmb7+eZPsNcqkC+kKIjI1dzVMxOWcRind\nvHjB2fvSUn2qXp/aeorHuMXGxpaqPSMQmplbmJuZm1taiHCXsPSwMgfPavYeYHp0pYrjUu9u\nWn5IMqOPZxHpifT2/kVn47Xb/zcIHXjxhg4dqt0QWTY5tH8xEf388886f1uhM2ihWKwy/pdJ\n067GZ+ffKTAVOzo5Mor05LSXbL7K/ZNrh6Y9jv9lwwwXEer08DGqVq1a/j+fP39ORKZWjk4l\nXpW3kn3VRu17DfFyKvvgjB1SFINIeXBh864/7zxJNhU31l5JtdLu7hmz6LBS86oDT4uPPLE3\n8tK1B/6rJ9qaIAPX3cOja+fvClK955m2PGlP7q6bOerBiCWTvzG2YgNUBMqMuPBwC4GAISJN\ngwbV7HEbEMo5RjRl9fSkH1Y8kaseBSy92c7/Uwc8fVI2dBuDK1Lu+M2+U+ih48ePf1hEHx0U\n6QF0dPToUSIi6/pfNn789/2ogPU/7fM3tXNydnZ2trEsZniP+4M6wAnXH39//zL8Nvfx9VGk\n14FL5zG2u6alqzXKrMilviPrNWk2auZUNwsTIurU3un0sRhWETtn/bFVk3uaMwzHygJXz89m\nOSKyrI6JmLoInDvjbGRGqT7i2KLPjA7OeorHuE2YMEG3DzICUeUqVatX+6RxyzZt27ZytjIt\n28CMFVbm4JlI4jXri2qLz8cR0Y09y0cGe48b2rOh+9sFeI5Nkz67fOrgnhM3tOVMW/fhvZ1x\nudTFtWvXDB1ChXPspznaCj3DMHU9u3T7oqOHq4uDnZW2hsOpc5ITEx/cDDpx5PSzTCURyaU3\n5sw/uvvnPgaNGqBwmzZtyv9njx49iKhqxxn+o9wMFFEFghSFf9JrO31XHnu3YMyxL5f+fDSv\nQp/n5ZMLM1Y13jbbm6f4jE7S1S2zdwXlrTpjVbVeq0Z1HB0dHR0crUxVSVKpVCp9HHorPD6T\niDhOdXHXbCunrSM9HQ0aNUCJNK5bLSI6XslxRMRxmuSYiOSYiIun/yIiifMnDRp4eHh4NGjg\nUccF60NAuWTu2GrFxp/WL111NTppxfgfeo/87ivvVvZYHgz0D0V6AB3t3LmzwB6OU6VJ49Kk\ncQaJx+jhhINxE5rXWfz9ZxM2BxERx2ZH3L0akztJW6R3HTjG8uTcbJaLubhz4LWD1VwkKXEJ\ncrVG+8EOY7HwY6llxe0JfF2hF1dxa93U3cYkN+JqUER6LhE16tq9jrkJEcllKSHBNxOyVETk\n4eO3pF9zLN7BM06jTIl/lhL/7O7NoN2/WXb8duSo/p9Xwj9DcbAyB/9a+q7qETf2eEQGEb2I\nCFo6J4gRmjtUetVRz5rqGxubkJWvzGAmabxoUU/DxApQSpmxe38PSycioWnlUQuWdWtS8Hk1\nxsTCqbpr5+qun/foHrBi9sHbyUSUHr57T8z/Da1pZYCIjQteaQzGBCkKz1jFk7lrTxQ6pTv1\n3sboHDURCUwkfceOa+EiCrtxfM/xe0SU/O+vV2Rt25d4bQnIo1GnLll/RluhF1nVHT5pQrfW\ntQobunBPg0/5//p7dJaS4zSn1i7v3WoNVi+Aj9+SXzZplLLo8IehYQ8fhoWFRzzJVL0a78ik\nz25In9345xQRmdtUaeDRQFuzr1erCn7aUF6cOnWKiDw69cmQ7QtNkR7ctOzQZpGNvZ2dnb2t\nncSsyDtRmB9YhCpVqhg6hI8divQAABVdmzZt3ndIo0oLvvMo70+GEVjZOjg5O1sJc5OSkpJS\nMtSvB/xCkbPP2AGVTQQSNzu9R2ykanSdukJgv2b70eTct+aLmIgbzu/beNaf94mIVWbGPM3M\nO+TQfMR3rtZ8B1r+Re2+rN2wrt1t4+rREiFDRGqfzj6DpudoOFWNLiO6Vdc24FjZgTWzAq7E\nRxzaEdKlYVPcq9KJtpNRZT2+E1rwvYxExDBMgTccm4pdWzR2kMtepKSkpKbJtDcWOTb7n8D1\nD8ITNy0abM5goF8UrMzBP0YgHrnc327zyt/PhWj3cKwiWfbq6MPotx4otK3Xac688TXxSH7J\n1KtXT7thYvFqherx48cbLpyKKHxXEBExDNNv6Zpu7jZFtBSIHAbP3/Bi9PD/JcmJ6NLv4UN/\nas1PkEYJrzTmx+DBg4lI4lbZ0IFUCEhRePb89KYUJUtEAqF1b9/JX7ZqmHfo7u4w7Yabz8LB\n/+dKRPU9WjrKx62+EM9xmgN/xbQfUdcgMZdrSVfXxihYIjIxr7Vw03KP9w4emVqtv16xqcbU\n0T/FKli14vGaG0mL22PNNigHBCKJWxNPtyaevYk4jSI2KuLhw7CwsLCHDyNTs1XaNoqMxLvX\nEu9e+x8RCS1s6zVo0MCj4dC+3QwaOEDxtmzZUmAPxynTU6XpqaV7USYU8O6JhQIK3hUFgBI6\nc+aMzp/t0gUjzFLDCeefWv74l+nzr8VlEZG4SoPe3/b7+rOmYpEgrwHH5kbePB8Y+OfdZzIi\nEldtvWTtrDoWePzrg2hUsgc3g6NiExr38nHPdzJv7Fuz6dBl2esJ9AwjbNLZZ9b4PmK8sbv0\nNgzrdy5dQUTDtgX2cXqz3PSpsYO2JGRZ15zyh3/HvJ0cp9gwevj5JLmkjs/eNf0NEK5RYBXP\nFo+bcTdNQUSMUNzy8+5ftGno4FDZ0cGxkokqJTk5OTk5+t6Vo6eupqtYhhF2nbBqbOc6RMRp\nlImP7p87efCvSxHar3LzWbu6f21D/seUB7F/r9GuzKE1cc/BzjZmRKSWhw7xmau93y0UWRVY\nmeObX//Acz8fSBp27cjxExeDwxVsIYOsyrWaduvxTY9OzU3Rc0P5MXdg35BspVX1oQEb+5ak\nfeazHT4/HCMikWWjQ/uX6jk6o1XCVxoTEcOYdsQrjaH8QIrCpz9HDQhIlhNR8x82+32Rb+EN\nTv1d329TVSzDMD/vP+wufjXqVL681nfwz0QkdvQJ3I6BT6mdmuCzJTaTiFrP3DrPq/iiu/TK\nktGrgonIuubYP/y/0nt8AHqkSY6JCtN6+DA+TV7gsPG9QxqMj/YVSLrBLxw+BEopADpC3Zdn\nOOG84/6Y56et0DfvO2PekHbvLlHFCM3c237t17bb3b9W+f1+VZ4QvHDunl2/fIfFrD6EwFTS\ntF3npu/s9xw0tVXPAfcePE55kW1f7ZParq72VpjVraMH2SoiYoTino5vvRC6bgs7SsjKTQ8m\nelOkZxjzYbM7n598TBYdEJjw9YCqlnyHaxQOL/hJW6Gv7jVo5tjeNd6aVmLqVO0Tp2qfNGre\nusfAwSd3rtxx9tHfG34USrZ/39qBEYiq1ms1vF6r9k03Tl1/juO4xwd/lvXdIsGi90XCyhyG\n4uzhNc7Daywrfxrx8El8alZWVo5SY1nJytrW0a2BR1Vbc0MHCFBqj3JUROTS470LLxVgVXOI\niDmu5DhVzqPiW0Nh8EpjMGJIUfh09WUuETGMaErHqvn3KzIupKpYIhJZt8+r0BORyNrL3lSQ\nptIoX94gQpG+1M4n5xARwwjHtC5Rh+zYZqwpc0vFcfKk80Qo0kO5JnCs6e74/+zdd1xT1xcA\n8POygLBXAHGBFhGciAMRxVX3XnVr3YqrrbPuiePnwL1H3VpxoVVbZVkHiAOUIaLsEPYK4SUv\n7/dHkCIyQiQJhPP96/JyXz6nz/Tl5Z57z21k373/CDI35cmDW1eu/ZX4ZW09QrUCFmxTmXif\nNSsuxgCAloHLiYPz1B2O+mGSHiGEUBkyw72uR2cDgFmbaesmdamwL+E0fOmCyA9eT1Oyo2/s\neDZwBQ4RKgdLt56zS73K+6HKZIilAMDSalhqQolJexO4HUfmvSRp4JR4ycBmijnnTipJPTof\n/dOS1qoNVhNkxxw/F5EJAIZNR3ot/amC9DpTx2LIvJ1U0tTToRl3t69wO3u4eNywSc958/1f\ner1Ko0j+jdSCyZbcct8FAQCAQ5/JR3sMlVXmaKD1X2V1h/EbVxBlVuYYqqZINRDB5No6Ots6\nqjsOhKqD7LuSW1/uuy7BsdRixIkoIHBPB0XglsbKExcXV71v2LBhw+p9wzoCH1FUJoWUAgBL\np3Gp6a2Zb/1kDSOH3qVOqc9hpYtJSoylfRWRUEgBAFOrkTmbUWlnAGCwzWy0mVEFEoqMr7w3\nQjUYJUx7FxoW+vbt27dvI+NSpVi5GdVCuD5QZUSCzJycHABgkhHqjqVGwCQ9QgihMgQdfylr\njFzUR57+bnPHez3dBQChZwLAZYQSI0Pou2kxCJKiaVpS6ji3nh3Aa1oqeplHupQsVEAwuxlo\nXUsTZry+A4BJ+ioLORoga4xcOUqOBfDEgCUTTk/yokjBwaufvCb/tx2my+yuXrOuA0BYcDoM\nxCR95bAyB0Lo+znpcfyzC3Mjc8HRRJ7+tFSYXCgFAI7ut7cfVDnc0lh5PDw8qvcNsbSpwvAR\nRTV0GIRIStPS0r96om4nyRo2gxuUeoksSq3hjB9FGLAYaWKKlpYu9F2BAikNAECwlRUTQkpD\nibIiwkJD374NDQ19H5NMlZWYN7a2a+fk5NTOSfXhIYRqLNP2DcE7FgAoUew7ocSRW9eT1HX9\nvx8hVVo3b3ZCocT2p/UrS24GhpQGL/j3uBufBwAEk9vPRK7avFqG7kasPVkSaUH63wCYpEc1\nWj0tZqRQSolicylav0TSmKPnDHAFAHwT813svxoQNOcwAEAsDFNxqJrhVkwuADBYhkPMdOTp\nr2XUi8c5ICCppAdXYPLvxce1TXsDXAcAYUIVRr5QmbAyh8pQZCGTo6XuKDRKVdfCEgymlraO\ntpa2tq4Oh4FZhyob0Jnnfy8+/uYN6fCF8iwMzAo/LttJnec6RNmxaaSQa59lDaeFK8rP0Bfh\nGLVaNb+dbEvjT1dCwA2rJaNaDx9RqpGNDiszl6QKPyeSlDXnS9ECWnz+c46sOdTmq30EaGlB\njEgCAAy2mWoj1RA22sw0MUWR/Nf54ja6lefdJcJ3CaQUANg6dsqPDqFqICVzP7wvWjH//kMC\nWVZinqll5NC6rVO7du3aOTXm6ak+SIRQDWfiuNDFKOhplggAztxP2D6ssbojUjNM0iOkIlJx\nanhicoGUFt9PBswZKx9e8O8UX0gBAIOhK/9gtg6DyAKQkgLlRVVHCLNTk5LTxXLXB7Ozb47b\nc1eJmwEnUiimafGZiCwPR+Pi4yyunR6TyKPouAdJYG9c8pQkkvrmbZC84mT3E7a5/KeYsBgC\nkhLnvy15kMku2kqDzCCrMTyEqhEtyfzXNzA0NOxdeHRWfr5QWCCmaNlSSzI36Lpvrqu7WwN9\nXCz1XRReC0swOGZW9RrUb9zKuVPnzu0t8R9CPj9Mnmv69+/pmf9suN5z3fAWFXemyOTdW/wB\ngGDqTp5gq5IANQ1uaYwQqi69rXRDckmalu57kOg5sGh3hvQ3h/mkbEN6F4ev165lfzhbKKUB\nQEu/k+qj1QC9bA2C3qQBwImL7/dNr7wAW+TVY7LNTQya9FN6cAh9t/XLF76L+CySljFURRCE\neSMH2aL51i1stQkcokKaBiffVyeCs3jnkpQFnjFC8Yfzm5932dfRXK4lgpoKk/QIfSc6IeLl\nq/DPmbkVruqjJfFvHsvKWElFhSoKTTPhBVcRPSaRKaEpcWqMiLLVrnxLUaowli+WAgCDbaT8\n6DQTLcn488SRO/4hGblV+9Ce976pj1n6qmgzqD4ciwQA381bOuxc36FeceF0RldDrbsZIn7g\nodx5+4qvqpRM+TtTBABsbcw3KMKIxUgVU5QoLpuiDeX4rNJU7meRBACIrws/UmTR7pgcY0yt\noZooIuDPw0cvxmSXPYmEKvx04di5SydPuf80c/5oN7xtqx4tJVMTP6cmfg557nvmsG73UdOm\nj+mph/8SlWFxHbct6T9jq0/I6ZXrUidNGjXI1qTs8anczy/2bt31OpcEgPaTNnXAItUKwS2N\nlWfNmjXqDgEhlXKY2hZWPAKA8BMrrpiu6u9sV5AQtM3TV/Zqvd6jSnbOjQ1Ys/a+rG3awVm1\nkWqI5hPawZv7ABB3e+OFlvvHdaxoCxLByyvrvT/J2k7j7VURH0Lf5+X7T6WOsLhmrdo6ObVz\ncnJyqi9fGU6EagWcfK9s2rz2ngfWem3eERid4jl3wfBpP/d3b28qRwJCI2GSHiHFSUn+oY1r\n7r/hV+msZiOaKCkejYcXXJVcDDh3M0QAcPxR0pb+pXeq+1ay71HZHHCOgavSg9NENJW/d6HH\no/g8Bc7VkmsIF/3Huvcs41O/ZUqkZF7k5nnTmrVuO33ZL3Y6LADo4WZx92YsJYpb6XVzx6Ih\n2gRBU9mXdq7Op2gA0G3QV92x10ruxlpXBUKaJo+EpC1tX/l6+vTQY7Lp+RyDrxbxCPn3ZA2D\nZgZlnFYn7d+/v3rfsNr36607Qs6vXnf5TaXdpFT2o/M73kenHFw5koXZYYV06tQJAMR5H1+G\npX77KkEQ9NelaNhc23atzIXZGampqWnp2bJCNTSV/+iS19vw5IMbJuBan0rxOs3c+5ve6t1X\nQnzOvrp3uXXXvu3sG/B4FhY8cyaZkyJIEaSkRL15FvDqo2w7Uttes2e66gsE5VZX4vHkWiNe\nN+GWxsrj7Ix5R9XBR5SawMhhtqvJv08yRDSVe27rsvMlviIJhvaMUY1k7QLBvW3bb7/5kCi7\nhxMEc9RPjdUVc61m1GxOL17A3wIhTZOXt8yJ7j9x3NC+TS24pboVCD7ev3np7J0XEpoGAB3z\nnnPtcakDqjUIglmvSQundk5O7dq1btYQf9EgzYOT71XAx8cHABx7jMjKvhCWyr96cMu1Qxwj\nUxMTE1NjE0OtCi+y6f+8AAAgAElEQVTrsmXLVBWmimCSHiHFXfp96f3IrCqdwms3Ymm3iubS\nogrgBVelH/tY3734EQDCT64Pbr/fucKyM6K0kPXH3sva1v17qCI+jZPwYEvJDD2ba8gz0Zfz\nSY+N2YUqYmo33Tijq8chXwCgqfyIkMDYwoWyJL3t2Fm6d37Pp+jYxyfHPrla39owNT5JKJHK\nTuw2u/KihehbPcbYXN33DgCe7dwacdzTvsK1lRLhx52eT2Rt6/4lyvbSpPduf1mzfSvjb0+s\nmx48eFC9b4gj4IqJf+BVnKEnmPpderrbNf2BHXrhcMB/MwtZ3OYtrXVDE/MBgP/87MqLLbaP\nw1VTili5ciUl+rxxzlLZnwST69xzUK9OLczNzXjmPD2WOFUgEAgE0a8DbvgEZoopSUGsSXuP\nlb2bAgAtJZM/vHlw5+p1vwgASHtzddWVzjvH4ITOisyaNUvWYLEIkAAtLXzte/O1b0WnxPx9\nePrfFXWQLUNBZcItjZFmwEeUmoAgtOdvnf9x/i5ZffuSk9iajVzdklt0hynMCgqJSih+qXGf\nFe6GWNFXMYwZWxaGzd3OJymapoJ9Tr+8e9bI3MqCx7OwsNCBAoEgJSUlJTk1S/rl34LJ4S3Y\nPANn3aNaoYP7gHZOTm2dWlsaYLUkpLFw8r1qHDlypNQRmiYz0/iZaVVbnKkZMEmPkILy4s9e\n+pIw5lrZdWhjb8QqjAj0jcgsBICW/QY11WYBgDA7NfTF86Q8MQA4jl+3abQTTrBSDF5wFWs4\nZLrhld+zKSlFCrZ4LJn662+DOjQqs2dc8J3/7TyZQlIAwGAZzxxQX7WRaoh/rkbLGvbdR8+c\nOLSpmZ5649F4Dfv94skw3XX8hqDwq83mWdwWq0e2Wn75DQBQZG7sp9zil8ydpv5siwu4FWHl\nvrjp8dnRBRJJQfSq2SunLvYY4Ny4zJ6Jbx7u33X0vVAMAEwOb96QottObnLUnTO7r8XkAABH\nr+0wMx1VxY5Q5ShR7Jojj2RtQ7tuS36b28pSBwCiBd4lu7G5LTcf/OPppc1bL74EgMir6yKH\nnWumgz/HFPHnmrUh6SIAaOA6btns4Q0NSw4Usi3qN7ao37ilU4fBYyfcObn9xP0P9/b/yjQ8\nPqODOcHg1GvWfkqz9m5tDvzi9YCm6Y9Xt2WPPCLPThx1VnJysrpDqFtwS2OEUDXiWrnt2Wdw\n9MAJ39BYWWKYwdJzHTL91wktv+1MEKx2/Wb8PquDysPUHDo8l/9tX7hx/QHZUBVNSzMFiZmC\nxIiwMjpzDO3mrFnjall6qT1CNVC8z5qIkJiIkIBrBi4nDs5TdzgIKQVOvkdqgaNCCCko6kzR\nej6DJgMO7JwpG9qTjO89ftySAiktbth36oCiCuE0lX1l1/LzAYkR106E9m3RxhDnGyoCL7iK\nsbiO6yY6LT4dDACSgthjm+Zft23Txam5lZWVpaUlF4R8Pj85OTkiJPBVTHrxWc6T1tpjvkEh\ngTkkABg7jt+2eAwmClTDoc/koz2Gvn3+IiouqYHWf/seOYzfuILYdfCaf/aXBfQEwWzde/zy\nuUPVFGmtx2DzVq0cOXPNZZKmydyoIxsWXKhn375lEx6Px+PxuCASpApSBakx74LfxRdNxiII\nove8DU21mQAg5B+fMPt28dKfrgvm4f8jxSZMmKDuEBAkPTyQLpYCgJah827PxWas8ldDESyX\nsWsXJszcG8CnKeGR2/G7RtuoLlBNkR1z/FxEJgAYNh3ptfSnCtLrTB2LIfN2UklTT4dm3N2+\nwu3sYXtu0VNKk57z5vu/9HqVRpH8G6kFk3F8vHwcDj5LqxRuaYw0Az6i1Bxcq9aLNnnNyeTH\npaQz9czrW5tzvq7ExuLaurgZ1Gts18Gla/P6OFn8e+nbunsed/S5dNnn3mPZApJvsbmW3foN\nGDN2oAWnju6/i2odkSAzJycHAJhkhLpjQUgpcPK9Ks2dO1fdIdQg+OlBSEH/fsiRNYYtn1i8\n+IbFtZtkqXskKS/pr2j4kjMmmIajf9stiJryMCX+f+u9/9g1Rj0R13J4wVWvyfA1SzJ/33Ez\nVPZneszrmzGvK+jfZvjyVUNtVRKaBsqRSAGg2/yBmH1UJQbbsE2X3m2+Oe4y7pf2Q356/fZj\naka+af3GTWxtTSus0I4qZdJ63L7l0mU7rmVJpACQmxTxKKnc3/YEQ6v3jE1zu9eT/SmVCosz\n9Hb9Fy3ohDsZ/2f06NHqDgHB05txsobbUo+KMvRfuM2cuDdgBwAkPQwCTNJXXcjRAFlj5MpR\nciyAJwYsmXB6khdFCg5e/eQ1+YfiF1xmd/WadR0AwoLTYSAm6ct17do1dYdQt+CWxkgz4CNK\nTaNlbPmDcdmTfvTqT1ixRMXhaDgG23zQRI+B46d9jgwPD49MTsvOy8sTA0tPT8/QzKpZs+b2\nzW24DPzpj2oT0/YNwTsWAChR7DuhxJGLSSWkaXDyvSr17dtX3SHUIHg/RUhBb/PFAEAwuUN4\nX42Y/NDOBJLyCjNfAHQvPkgQ2pNX9H646GZ29PlLSQN/qqer6nBrP7zgauE2bXOD5n/uPnrp\nU0ZhBd24PLvxsxYNao+F7hXXUIsZVSBphL9zagyWbj1nl3rqjkKjWLlMOHrU6eThkw+DPlAl\ndsQspZ6D6+RZc11s9Esd51raDRozdXxPRyWHiVCV+WUXAgDB0JrqYCxPf46hG4+zS0BSZHYg\nAOYwquxWTC4AMFiGQ+Tb+ULLqBePc0BAUkkPrsDk34uPa5v2BrgOAMIEoZJCRUghuKUxQghp\nAoKhY9Pcyaa5k7oDQagamDgudDEKepolAoAz9xO2D2us7ogQqmY4+R6pCyYDEFJQhlgKACyt\nhqyvJ7+atDeB23Fk3kuSBk6Jlwxspphz7qSS1KPz0T8tqXxzQVQKXnB1adx5xF6XQe/+/efJ\ny7fh4ZHJ6TlCEUkQDC0dXRPLBs2a2bVu79at3Q+4l+t36sbjRsXmvE0p6Gmkpe5YEFIWbTOH\nuat2ThVE+z99GR4e/jkxNS8/r0AM+voGhqZW9g4OrTt0cWpiVuosHdNhew6OtalvjrcZVDOl\nkFIAYGo11Jf7u9CSzRSQFEXiVt+KiCukAIDBNpf/FBMWQ0BS4vy3JQ8y2UVlOcgMshrDQ+j7\n4ZbGCCFUG92+fRsA9G3d3B3lLW3y+v7deJJi6TTp18tBmaEh9N0IzuKdS1IWeMYIxR/Ob37e\nZV9Hc211x4RQdcLJ90hdMEmPkIK0GARJ0TQtKXWcW88O4DUtFb3MI11KlkcmmN0MtK6lCTNe\n3wHAnHGV4QVXJ4Lj6NrP0bWf7C+aIqUMDmblq5fLNKdja3yD99+g903BS4s0mw6vaZ8hTfsM\nkbc/U6uBLdbpQDWYLpMgJbRUnEYDyHkD54spACAYci0ER6UYsRipYooSxWVTtKEcjyM0lftZ\nJAEAgmCXPE6RfFmDY8wu4zRUFYXCPJaOHj4cViPc0hghhGqdY8eOAUCjwc3kT9LH/vnHCX4+\nm9uiX68tygwNoWqgzWvveWCt1+YdgdEpnnMXDJ/2c3/39qba+BCCNAROvkfqgkl6hBRUT4sZ\nKZRSothcii557+boOQNcAQDfxHwX+6/2MDbnMABALCxrBQSqDF7wmoNg4kBg9TNrs3i03asr\nUddXnmy4bmp3LQLHuVVEmJ2alJwuLr/6eil29s0xCYFql7zsbIncn3BDIyP8gFdVR33OX5ki\nqSTzfoaor0nlC0rI3KcCkgIAtm4r5UengdyNta4KhDRNHglJW9q+8vX06aHHRFIaADgGnUoe\nF/LvyRoGzQyUEafGIAtyC5i6hpyySj7S1KsHl64/ehkXnyBhG7Vo5+Lef5hLU9wZvXrglsZI\n4wk+BP8bHBYZGZmQmpmXlyeSMPT19Q1MLJo1d2jh5OLiaK3uAGu9yZMnK3Zi0ymeq7tbVW8w\nqEyklAYASeEndQeCUOV8fHwAwLHHiKzsC2Gp/KsHt1w7xDEyNTExMTU2MdSqcKBk2bJlqgoT\nIQXh5HukLpikR0hBbgacSKGYpsVnIrI8HP+rgsLi2ukxiTyKjnuQBPZfVUdJIimVh6k58IIj\nTUeM3eIp+HWp7409U4J8J00Y4mBrU9/SBPPBSkJLMv48ceSOf0hGbmGVTjzvfVP+SbUIqVFi\nyP2ztx5HR39MzanChxw/4Qro7W7xl3csAFzx8u27rm+l/d/98YesYdq28s7oWz3G2Fzd9w4A\nnu3cGnHc016fU0FnifDjTs8nsrZ1//7/vUCT3rv9Zc32reSqZ1jXJL19dOO+f/DLt2lCSavf\nj2/qyCvVgcx+57naM/hz9pcD/Kd/ez/755bzwDm/z/gR90evLrilMdJImVG++w7/ERydWup4\nfm4WPyk+Kiz49tWzprZOE2cv7GGPt2jFZWZmKnZibiGOpcglPDz824OFGZ/Cw+W4gLQkM+n9\n1bQC2R/VHBlCSnDkyJFSR2iazEzjZ6bx1RIPQtULJ9+rEs4jLAmT9AgpqM2g+nAsEgB8N2/p\nsHN9h3rFuwAyuhpq3c0Q8QMP5c7bVzzSLSVT/s4UAQBb21Y9EddyeMFVLC4urkr9CQZTS1tH\nW0tbW1eHg2t6FMLkWA8a1tl3z/38xNeHtr0GAILBlOdaent7Kz04zUJT+XsXejyKz1PgXC1M\nO3w3XNitAtG3d/163I+W+zoXY+MnvOoaDf+JfWO7mKbTQg5uvWa4dIRLBfMc+MEXN9xPlLV/\nHIePKIqwcl/c9Pjs6AKJpCB61eyVUxd7DHBuXGbPxDcP9+86+l4oBgAmhzdvSCPZ8dzkqDtn\ndl+LyQEAjl7bYWa49OErNJV7Yfuay08/VtBHKk7bNH/d66zSc4Bomgq6vf/XQsZuj17KjBEh\nVIu9v7F79SnfSgtZpceE7F02/e3UTYuGNldNYIjFNTHRYwGAiQ4OF8ulzMXB/MADywKr9j5a\n+p0q74QQQkiZcPK9KuE8wpLwqQshBVn3nmV86rdMiZTMi9w8b1qz1m2nL/vFTocFAD3cLO7e\njKVEcSu9bu5YNESbIGgq+9LO1fkUDQC6DfDGrQi84Crm4eGh2IkEg2NmVa9B/catnDt17tze\nUh/3eZVX0OlVG6+/LXmEllIa+OhRAyQ82FIyQ8/mGvJM9OXMBLNxJwJF4cJulSGzn6w88VWG\nnsmUd5cSDn7Cq45j6Lq8V/2ND+MB4OnZrdNeuM+ZNKSF/dcJeJpK53/297l69vZTiqYBwNh+\nynBLbplviCrGYPNWrRw5c81lkqbJ3KgjGxZcqGffvmUTHo/H4/G4IBKkClIFqTHvgt/FZ8lO\nIQii97wNTbWZACDkH58w+3bx/yBdF8zDD/1XaPHx3z1uv69k0OT1kTWyDL2WcfPePds1MGbE\nREWGBYUkCsUA8PGB12n3dlNa4PrX6iElc2M+RAsycnLz8oCtY6Cvb25t06S+GX50UW2UEnhk\nxSnf4puwfr1m7Vs25fF4PHOePlucwufz+fyPYUHhibkAQNPix6dW6FscneZSupgHksf+/fsr\nfJ3OSUtJTk6K/xx2/2FQgZSmpTqjft3SpznevVWt3ayx6g4BocrNnTtX3SEgpEQ4+b4m0+x5\nhIQCK2wQQjJx93Z5HPIt/nP+2au9jbQAQCIMmzj+d1mGmMnRr29tmBqfJJRIZd2G7jn3sy3u\nfKkIvOCqNHjw4O9/E4Kp233UtOljeuphjq0y2R/PTvrlT8W+lG/dulXt8Wi20z+PuZ5WAAD2\n3UfPnDi0qZmeuiPSfAov7L5y86Y2po2r6M2OmasD+ACgw2vx86zxbX+w5RnhQmHloqXCE8tn\n34rIKj5CMLXN9aSCbBIAHJo2iItLyiuxC4+WYaudx9Y30pZ38gT6VvLTc8t2XMv68rxXAYKh\n1XvGJo8BzWR/5iV5jZv9t6xt13/Rztk9lBhlLRR9fdUvp4umDGqb2Q8d8mNbB1tew0amWv99\nXKnC+Ak/eeRTtLZx5/8dWdLgyyeZEiUfXr7kfkwOAGgZdr76x3LVx69RaElo4F8+d/8Kfh9P\nfvMFytE3a+faq/+AAa0bGaolOoQUIJWkLRw3I1ZEAQBH/4cpCz0GdLAp6zmP/vTCZ9+e09F5\nJACwtJucuLDLmIUPhEokSou6cmrftYBYgqEzefvR4XZ4Y5FLqZxlQkICALD1eRaGFe3FU5Ke\nab2WbsMm/uhY/cEhhBCqoqB982ST7wHAxL5o8n3yhUW/XPsEstHXsibfn9k+XJ1B106VVfAt\nPY+QqW09e73GziPEJD1C3+X9/TO7jt8QFFJQImcMAO/Pr15++c23/c2dpp5YN0ylIWoWvOAq\ns2XLFgAQ5318GVZ6p0AAIIjSXx9srm27VubC7IzU1NS09OyS1QvNWo86uGECptkqdu+XiYei\nswFAh+cwZtzg5g2tzY315LxkpqamSo1N80wfOUxAUsaO409vHYOfSxUgs59MmLxdJFVkYfef\n3t5Yf72qtk0Y9SSnkGPgfOT0KlMWXj8Voals70PbTz8IrbSncbMeK1fNbSb36C0qjyjt/cnD\nJx8GfaDK/0lbz8F18qy5Ljb6xUdkSXqupd2gMVPH98Qx8a/QVNaMMVNleyuaO43as3pCmbVM\nUp6um7E1BACc151c42RW8iVK9GHquCWyyROTj10aYYHlIhQkSg87uG2Hb0QlJQ0Igtl+0PSF\nU/tj1RlUKyT7/j5rVygAsLRtNh7b4VjhVyGZ9faXmWvjRBQAtF5ydKObpYqirLuk19dMP/06\njaXdZM8fOxtq4VTCKpMtdWg0eOe+6XbqjgUhhFCV4eT7GqguzCPEJD1C30sqzn77/EVUXFKr\nYePtSxTceHph18Fr/tlf1vcQBLN17/HL547g4nbd3wcvuMpQos8b5ywNSRcBAMHkOvcc1KtT\nC3NzM545T48lThUIBAJB9OuAGz6BmWKKIJj9PHbM7t0UAGgpmfzhzYM7V6/7Rcjeym787p1j\nmqjzP6bGmzNqWGIhpWXkfPzUakMcZlWy0UOHiKT00MMXf66nq+5Y6gRc2K1iE4cPzZZI2644\ntt7FQt2x1Dn8d0+8b91+/CJcRJXxI8vMps2AwUMH93Bi422++hQIov2fvgwPD/+cmJqXn1cg\nBn19A0NTK3sHh9Ydujg1MSvVnyqMj03Vtqlvjv8I30oN3jJtwzMAYHPtj5zzNCtnls/fiyZ6\nxWQDwKzTVwaYaJd69eXm6eufCwCg0bD/7Zv6g5JD1kxkdtjK2Wuj8sUlDxIE28TCUkeax0/N\nknw9jGPsOHj/pmmYp0c1n4/H+CNxuQDQYdnRVa6VJ935AZtm7ngBAAaNZp/b11/p8dV5YmHo\nqLGrpDRtO2b3nvH4+73KMEmPEEK1HU6+r5E0fB4hJukRUiJJftLrtx9TM/JN6zduYmtrqo93\nbeXCC169riydfC4iEwAauI5bNnt4w3IeO6iClDsnt5+4/4EgiIG/H5/Rwbz4pY//HPjF6wFN\n00yO5enLRzD3XIHhQ4ZIaLrrtjO/aWjpnhrltzHDowokC89e7fmlGgdSKlzYrWKyaShzzlzp\nZ1w6eYZUg6aEnyLexySm5eXlFZBSXT19A2OenYNjPfwXQTVb8KqfN7xNAwD76fu3D25Ydida\nMmPUqBSSAoDZZ670/+ZTnR2zc+IifwDQqzfjwuFByo1YM9FH54y7k5gv+4Nj2GTwiMHdOrS0\nsjTlMAgAoClRanLS22e+N6/7xOYVJfKt3Zcd+sVVbSEjJJ9Fo4fHiCQEwTx+7U9zduXPhFJx\n2qiR08Q0zdJucv3KbhVEiPZMGv0oS6Rt3O/KmTnqjqX2uXLlCgAY2vXq08ZE3bEghBBSHE6+\nr2k0ex4hq/IuCCFFsXTrObvUU3cUdQhe8GqUHXNclqE3bDrSa+lPFaTXmToWQ+btpJKmng7N\nuLt9hdvZw/bcoi+XJj3nzfd/6fUqjSL5N1ILJltiydNymbAZApJqa4WXSBW68bhRsTlvUwow\nSa8aYUIxADjOm4UZetVoqsMKyxdLcCKu+hBMrq2jsy1WUke1jV9srqwxoFu5K1xFGXdSvtR4\nFFFldNAxcwHwBwAy5wUAJumrLDPiYHGGnuc8xnPFWLOvc5kEU5tX37bXSNvugwf8sXnF9Vdp\nAJDkt+OvSe36muFMIFSjJRRSAMDUaiRPhh4AGGwzG21mVIGEIuOVHBoq0lSb9QiAzHsOgEn6\nKhs9erS6Q0BIdQQfgv8NDouMjExIzczLyxNJGPr6+gYmFs2aO7RwcnFxtFZ3gAgpztLRdY6j\n62ycfF9jsLkt3Q21HmWJkh48gPGa9oiCSXqEUC0Q77NmxcUYANAycDlxcJ66w6kTQo4GyBoj\nV46SYwE8MWDJhNOTvChScPDqJ6/J/5U2dZnd1WvWdQAIC06HgZiBLlcPI61LAmFCmaPdqLq5\nTHM6tsY3eP8Net8UnPaqAoVSGgA62WvgxlE10wBbg7DQ9Jfh2YNc8aej0uEjCtIknwolAEAQ\nHFeDcutR8R/7yxoMllF/kzLmujE59WUNikxRQoyaL+xMkKzB5XXfv3qcNlHuowqTYzF57f60\n6VP90wpoWnrzXHTfRS1UFSZCijBgMdLEFC0Vyn9KgZQGACDYyooJfS2mUAIANJWn7kA0HEUD\n1hlEtVdmlO++w38ER6eWOp6fm8VPio8KC7599ayprdPE2Qt72GOpSFSL4eT7GkWD5xFikh4h\nVAuIBJk5OTkAwCQj1B1LXXErJhcAGCzDIWZybR2tZdSLxzkgIKmkB1dg8u/Fx7VNewNcBwBh\nQhXGYuqg7hMcLu0K/vd86ORfO6o7Fs1n1mbxaLtXV6KurzzZcN3U7lrlD3+jaoELu1Wsrcdw\nxuzj74+dFXX+rYLsDqoW+IiiVPv376/eN/Tw8KjeN9QwAlIKAAy2Gav8O8fzB8myhq7VGG1G\nGf0IRlHmXirOqP4Q64CHsUW5se4rf670Hk4wuDN+7+G/2AcAUoNvAWCSHtVoNtrMNDFFkfzX\n+eI2upXn3SXCdwmkFADYOrjDtyqQOS8eZxUCAINjpe5Yar2CdH5SZmGTpo1KHsz++GTf8T8/\nfI7LKgATK5vOPQZMHNGtzC9ThGqs9zd2rz7lK65sA+X0mJC9y6a/nbpp0dDmqgkMIaTZNHge\nISbpEaocjg+qnWn7huAdCwCUKPadUOLIxXuX0sUVUgDAYJtX2rOYCYshIClx/tuSB5lsnqxB\nZpDVGJ7mseq2YtCNqXf8t13teXRUGzN1h6PxiLFbPAW/LvW9sWdKkO+kCUMcbG3qW5rgagYl\nwYXdKsa1GrRp3IuV5wOW7LbfsXgg5umVCh9RlOrBgwfV+4b4EF4xXSYhktI0XVheB5rKvi4o\nmnZpPbh1mX0osUDWYLBxR15FxBTI6hkwJzY2kKe/ge1kNnFXTNPi/FAlh4bQ9+plaxD0Jg0A\nTlx8v2962feQkiKvHqNpGgAMmvRTenB1XmFm5IFVeyiaBgAdk17qDqcWS33796FTl1/GCNjc\nVtcubiw+nh5ydtaGP0lpUWozPTHy9h+Rfk/e7ts537iCyXEI1SQpgUdWnPKlv2To9es1a9+y\nKY/H45nz9NniFD6fz+d/DAsKT8wFAJoWPz61Qt/i6DQXnlqjRqjaFArzWDp6OHioepo9jxBH\nkRCqHI4Pqp2J40IXo6CnWSIAOHM/YfuwxuqOSPMZsRipYooSxWVTtKEcTx80lftZJBtS/GpJ\nBEXyZQ2OMZYorBDB/nnr+vTfVp9bOyuy/4TpEwdZYqZHmZgc60HDOvvuuZ+f+PrQttcAQDCY\n8qxh8Pb2VnpwGgcXdqteizEbFhd67v3z+KR3fiPGjh/SvY02/o5UDnxEQZqkHoeVLiZpSUYi\nSVlzmN92yEu4VPAlu/Bjx7Kncorz38gaTE65G9ujClBAAwCDY8mVb20lQWhbaTHiRBTQUiWH\nhtD3aj6hHby5DwBxtzdeaLl/XMeK7hKCl1fWe3+StZ3G26siPo1z8eJFufpJC5PjYt8Gv8oQ\nF91GHCZ1UmJYGo3/5OS87Te/XWRMUzmbt90oztAXy4n5e+mOVsdWuKsoPoS+g1SStsnrL1mG\nnqP/w5SFHgM62JT1sEJ/euGzb8/p6DySpqU+u7cOb78LZ6Kgmo8syC1g6hpyGGW8RlOvHly6\n/uhlXHyChG3Uop2Le/9hLk2NVB5jHaXx8wgxAYAQqg0IzuKdS1IWeMYIxR/Ob37eZV9Hc1yO\nqVzuxlpXBUKaJo+EpC1tX/l6+vTQYyIpDQAcg69+zwv592QNg2ZyLQaqs27cuAEAdt17vbtw\n64XPqaC7ZwzNrRtYm7Pl+CGzbt06ZYeneYJOr9p4/auqD7SUotQVjabDhd0qJrufgEHzPq0+\n3nsTdd5r7YV9bBMLS0tLSyPdcveZllm2bJkqQtQk+IiiTBMmTFB3CHWLq4lWaD5J0/TVjzmL\nmpexh2j4l+3SmdqNehqVsSE9AAgCXskaWsadlRSnZmuly36aQ0rF6WIa5HkOpKXCpEIpALC5\nWA8c1XRGzeb04gX8LRDSNHl5y5zo/hPHDe3b1IJbqluB4OP9m5fO3nkhkY3Gmveca4/j4IqQ\nN0n/Na6F+6+dcNmrIihRzO+7b5dZBjzt9YHoAgkAMFiGI2fPaWfNeff01tlbrwFA8GxPQHZn\nN8NKntIRUruUwN2xIgoAWNo26w9udSz3Q0vYdBjoebDhLzPXxokoiejjrqcpG91w7iaqoZLe\nPrpx3z/45ds0oaTV78c3dSz9DUhmv/Nc7Rn8OfvLAf7Tv72f/XPLeeCc32f8WFZKH1UO5xGW\nhEl6hCqH44M1gTavveeBtV6bdwRGp3jOXTB82s/93dubapexxAdVix5jbK7uewcAz3ZujTju\naa9f0S9GifDjTs8nsrZ1//7/vUCT3rv9Zc32rcoY6kXFTp48WfJPmpZmCeKzBPHqikezZX88\nu8kbS8KqFHb3SSoAACAASURBVC7sVqVS9xMAoGlxOj8+nY+3FKXARxTlGT16tLpDqFsce1vB\nyVwAeOHlTR/6udRtmpZkHn+bLmsb2Iwp5yYuPXc9TtbiuWHOWBED2po+9UumpaLzcblTGulX\n2j/r/VFZItPgh4HKjw6h78SYsWVh2NztfJKiaSrY5/TLu2eNzK0seDwLCwsdKBAIUlJSUpJT\ns6Rf0pxMDm/B5hk4Aq4yxk27rNm0QAd3SVdIwt2DqSQFAAymwfB5i/q0b1H8UsiZd7KG3fj1\nE360BYDmjs484ZydfyfStPTK9Vi3qT+oJWaE5Bdy7bOs4bRwRfkZ+iIco1ar5rebueMFAHy6\nEgJu/Svuj5Dq0VTuhe1rLj/9WEEfqTht0/x1r7NKbwdG01TQ7f2/FjJ2e2jgwm4VwHmEJWGS\nHqHK4fhgTeDj4wMAjj1GZGVfCEvlXz245dohjpGpiYmJqbGJoVaFyR5cF6gAK/fFTY/Pji6Q\nSAqiV81eOXWxxwDnxmX2THzzcP+uo++FYgBgcnjzhjSSHc9NjrpzZve1mBwA4Oi1HWamo6rY\nEarEvwceykq06fAcxowb3LyhtbmxHg5EKQ8u7EaaDR9RkMao9+Nk9qlVYprOS7yx/nLbdWPa\nlnz19ak1fLKo6Iz9T2WXno69t/VFLilrD+lnrdRoNZX9zBmGgZuyKem9DUeHHf2l4m2nKDJ5\n19ZAACAI5si5LVUVI0KK0+G5/G/7wo3rD0RkFgIATUszBYmZgsSIsDI6cwzt5qxZ42pZeqk9\nklO/fv3k7ss0r9/ItskPrZvb4kxahT27myBrtJm3bVKvEl+CtORyYj4AEATxc7+GxYc7TZkA\nf28DgNQnIYBJelTjPRQUAABBMGd1kCtJxus0m00EiWlamPIQAJP0qIahxcd/97j9PrPiXq+P\nrJFl6LWMm/fu2a6BMSMmKjIsKCRRKAaAjw+8Tru3m9ICl6WpggbPI8QkPUKodjhy5EipIzRN\nZqbxM9P4aolH4zHYvFUrR85cc5mkaTI36siGBRfq2bdv2YTH4/F4PC6IBKmCVEFqzLvgd/FZ\nslMIgug9b0NTbSYACPnHJ8y+TX9ZANF1wTwN/AqtVosWLVJ3CHXIrfg8ANAycj56ZHXFY9+o\nWuDCbhWbO3euukOoW/ARBWkMNrflvI7me54JACDk/NpfPw8b1M3JvpkNncMPvn/huE/REnkG\ny/hnR5NvT499cm7Z0Reytp71cHfDsuvho4px9J23znOft+9xQaqfx1Lm8mWzHXllb6KR/C7g\nhNeBN7kkADQbsb7/NzXDEaqZ9G3dPY87+ly67HPvcVKeuMw+bK5lt34DxowdaMHByjSKmzNn\njrpDqFsCcwoBgCA4i7vXK3lclPV3mpgCAI6Bmz33v6F4joGrKZuRLpaSOU8Bxqg4WoSqKqGQ\nAgCmViNztlz1TRhsMxttZlSBhCLxhz+qcaK91xdn6LXN7IcO+bGtgy2voWnJPlRh/I5/EgFA\n27jz/44safClWh4lSj68fMn9mBwA8Nl2ZMofy1UbuybAeYQlYZIeIUXE+6xZcTEGALQMXE4c\nnKfucBBSCpPW4/Ytly7bcS1LIgWA3KSIR0kR5XUmGFq9Z2ya++W3qFQqLM7Q2/VftEATa9FU\nrx49eqg7hDokhZQCQMcV8zFDjzRS37591R0CQmpDkYVMDuaGFdftt/X3Ji+IzBcDwIcn3rue\neH/bx3bwcgtO0eAsLRFlZGQkRL9/8s/tv4I+yQ4SDO0Z6zHZULnc3Nwyjxt2nLahgL3h+IPs\nD49WznrWysW9Y2s7SwsLCwsLHaIghc/nJye/CrjrH5Yk6+80bOHqia1UGDhC34vBNh800WPg\n+GmfI8PDwyOT07Lz8vLEwNLT0zM0s2rWrLl9cxuuJq6UQppN9jOTpdO41M/MzLd+soaRQ+9S\np9TnsNLFJCXGmZ2oFjBgMdLEFC0Vyn9KgZQGACDYyooJIYXQVJbnhaJdSMydRu1ZPUG/rOHB\ntJAT+RQNAC0WTm9QYj87prbVbM+1z8ctyZJIC7P//TNFOAIny1YRziMsCZP0CClCJMjMyckB\nACZZbs4SVS9cF6gWVi4Tjh51Onn45MOgD9SXpPu36jm4Tp4118Wm9K6ZXEu7QWOmju/pqOQw\nEaoaEzZDQFJtrfAZWkXwBo40G37C1YiWZP7rGxgaGvYuPDorP18oLBBT9K1btwCAzA267pvr\n6u7WQB+HBauAybHedGDNuoWb3mWX3nlRxrBpn02T/qt1H39vlcexqJIdCILRa9bW7jzc56hy\n48ePr7QPTQnfBN59E3i3vA4MpmH++7+WL/2r8Ygl83BeLKpVCIaOTXMnm+ZO6g4ElUZmJ3AM\n66s7itpHh0GIpDQtlZQ6HnW7aE6VzeAGpV4ii4ZZcEoKqgVstJlpYooi+a/zxW10K3/Algjf\nJZBSAGDr2Ck/OoSqIO3VQQFJAQCba79t1fgyM/QAEHq5aLv6do31Sr3E1P5hYTuz9c8FAOB7\nN3EEblmCvgMm6RFShGn7huAdCwCUKPadUOLIxf+VlA7XBaqLtpnD3FU7pwqi/Z++DA8P/5yY\nmpefVyAGfX0DQ1MreweH1h26ODUxK3WWjumwPQfH2tQ3x9+a8sDiHCrWw0jrkkCYIKLUHUhd\ngTdwpNnwE64uEQF/Hj56MSabLPNVqvDThWPnLp085f7TzPmj3bByivy0TFpvPnHo3oVT3vef\nCfL/q0TNYBv3HjVx4qieFSxvZelYDZ+zcoJ7I5VEigAApFR2ZGQ2ABBZZf+/gBBCcqJE6S8D\nA/z8/J6+jbl+86a6w6l9bHRYmbkkVfg5kaSsi3dqoMXnP+fImkNtDEr2p6UFMSIJADDYpUdU\nEKqBetkaBL1JA4ATF9/vm9660v6RV4/JSmwaNJG/rjVCqhB7I1rWaDLOw4xVzvYNtORyQp6s\nSZT166fpWHt4LgCA9OcRgEn68onFRb8o2WycPV82zCwipAgTx4UuRkFPs0QAcOZ+wvZhjdUd\nEULKpcNr2mdI0z5D5O3P1GpgizPv5YbFOVSs+wSHS7uC/z0fOvnXjuqOBaHvlZWVJWsQBNvQ\nUFe9wSCkMiHnV6+7/KbSblIq+9H5He+jUw6uHMnCPL3cGByzAVOWDJhMfoqI4Kdl5FNsq3rW\n1g0bGGmXvTk0QRA8mxYdOnYePKyvRTl9EEII1Uw0JXz3ItDPzy/weZisri9STG8r3ZBckqal\n+x4keg5sKDuY/uYwn5RtSO/i8PUKn+wPZwulNABo6XdSfbQIVVXzCe3gzX0AiLu98ULL/eM6\nWlbQWfDyynrvoo2QnMbbV9ATIdXziy3ac2pAt3I/xqKMOylk0dqeMtf46Ji5APgDAJnzAmBQ\n9UepKUaMGCFrHP/zBo9dzpSIug2T9AgphOAs3rkkZYFnjFD84fzm5132dTTXVndMCKHaCotz\nqJhVtxWDbky947/tas+jo9rgqgVUu02aNEnW4Oi2vnZxIwBs27ZN4XdbtmxZ9YSFkDLFP/Aq\nztATTP0uPd3tmv7ADr1wOOC/LV1Z3OYtrXVDE/MBgP/87MqLLbaPw/HBKiI4Ns1b2VTYxbLr\n4kPttYyMjHS18emlymRbMyCk8T6F+AYEvX4f9TkrJ7eAYhgaGTX8wdG5o7u7U2N1h1a30ZKY\nt8/8/PwCAoPTsMZYdXCY2hZWPAKA8BMrrpiu6u9sV5AQtM3TV/Zqvd6jSnbOjQ1Ys/a+rG3a\nwVm1kSKkCKNmc3rxAv4WCGmavLxlTnT/ieOG9m36zVbcBYKP929eOnvnhYSmAUDHvOdceyN1\nxItQuT4VSgCAIDiuBpzy+vAf+8saDJZRfxOtbzswOUWr0ygyRQkxojoEf0gjpCBtXnvPA2u9\nNu8IjE7xnLtg+LSf+7u3N8WFI9Xh/PnzssbQn8bpYnFSVAdgcQ5VI9g/b12f/tvqc2tnRfaf\nMH3iIEucGIE0yJMnT9QdAkJKRIli1xx5JGsb2nVb8tvcVpY6ABAt8C7Zjc1tufngH08vbd56\n8SUARF5dFznsXDMdvNtXM46htbWhuoNACNVUorTQXVv+9yw6o+TBzLSUz9GR/veun7Xr8uvv\nCx2Nyxj4RkrF/xDi5+fvH/AkPrPw21cJglHfHnPGijBymO1q8u+TDBFN5Z7buuw8QdBFW84D\nwdCeMapoL5gCwb1t22+/+ZBI0TQAEARz1E+N1RUzQlXBmLFlYdjc7XySomkq2Of0y7tnjcyt\nLHg8CwsLHSgQCFJSUlKSU7OkXz75TA5vweYZuHIW1TQCUgoADLZZBbXWnj9IljV0rcZol7Xb\nF8EoeoCRijO+fRUh+eEgBUIK8vHxAQDHHiOysi+EpfKvHtxy7RDHyNTExMTU2MRQq8LUMi5T\nq9jly5dljd6jx2KSvobIy86W0PIWvjM0MsJ/tqrB4hyqdePGDQCw697r3YVbL3xOBd09Y2hu\n3cDanC3HB3fdunXKDg8hVLvRZEDgc3k6mrbr5MDFXdmqLOnhgXSxFAC0DJ13ey4udxNBACBY\nLmPXLkyYuTeAT1PCI7fjd42ueFk4QgihalOYFbJwzsbkwnKXaKdFBa6a9Wn1kT1OmKdXiZzE\nSH9/X18//6ik3DI78Jq07tq1W1e3Lo3N8NeoIghCe/7W+R/n75LVt6dLDKE0G7m65ZenvsKs\noJCohOKXGvdZ4W6I/wug2kGH5/K/7Qs3rj8QkVkIADQtzRQkZgoSI8LK6MwxtJuzZo2rZeml\n9gipnS6TEElpmi5jppoMTWVfFwhlbevBrcvsQ4kFsgaDbVLtEaI6BZP0CCnoyJEjpY7QNJmZ\nxs9M45fZH1Ujmspds267rL1x40b1BqPZEkPun731ODr6Y2pOuQ8u3zrvfVMfZ1dUERbnUKWT\nJ0+W/JOmpVmC+CxBvLri0XiTJ09W7MSmUzxXd7eq3mA0T7NmzWQNlk5RsbW5c+eqL5w6hpa8\ne3Lf99+geGKU5xLHomPS/B07dshzdoe9fzjY4BrkKnt6M07WcFvqUVGG/gu3mRP3BuwAgKSH\nQYBJeoQQUhH68NLtJTP0HF3jho0aGxC5n2PjMvJI2UFKlLjtV6/zJ5ZUsJQNfafCzLgnfv5+\n/n6vosuux2vUoLmbW9dubm521gYqjk3zcK3c9uwzOHrghG9orGwxMYOl5zpk+q8TWn7bmSBY\n7frN+H1WB5WHiZDi9G3dPY87+ly67HPvcVKeuMw+bK5lt34DxowdaMHBQS1UE9XjsNLFJC3J\nSCQp67I+pXkJlwqkRROtfuxoXuabiPOL9l9jcsrd2B4heWCSHiFUG0nevHmj7hg0X/TtXb8e\n96PlXkBfjI2lrKoOi3MgDZaZmanYibnlL71Cxb7NB/ft21ctkdQ1gjf3dh44E8EXAoC507Cq\nnk4QTAM5EszoW37ZhQBAMLSmOhjL059j6Mbj7BKQFJkdCDBaydEhVJ2E2alJyeliuZ/G7eyb\n40RZVENkR5/8h1+0BI3FbTB+/q8jXG2LX419fmPn3j9i88QAUJAWsDdk6q/tzNQTqOaiCtKC\nAv39/PyfhX6iyrmNMDm8DTs8W9rgxa9OXKvWizZ5zcnkx6WkM/XM61ubc4ivbs0srq2Lm0G9\nxnYdXLo2r6+nrjgRUhiDbT5oosfA8dM+R4aHh0cmp2Xn5eWJgaWnp2doZtWsWXP75jbcssqD\nI1RDuJpoheaTNE1f/ZizqHkZPyrDzwTJGkztRj2Nyi52Igh4JWtoGXdWUpyojsAkPUIKwmVq\nSLOR2U9WnvgqQ89kyjsBttRPUCQPLM6hSosWLVJ3CKgiLK6JiR4LAExw92hUU4Vc3r7xwpPy\nhryLtW/fLjczIyUhLlNUNOOEIJjdB49u27JFixYOplxcWaKIFFIKAEythvKX7bFkMwUkRZHJ\nyowLoWpDSzL+PHHkjn9IRm4ValkBlrNCNUn0uX9lDSaHt/7o7pYGnJKvNuo4dNdRO48pvyeT\nFAC8/iME2v2ohig1EU3lhz0L8PXzexL0XkiV8aCiZ9m0S5cuf107DQAEQx8z9EqiZWz5g3HZ\nayv16k9YsUTF4SBU/QiGjk1zJ5vmTuoOBKEqc+xtBSdzAeCFlzd96OdST8+0JPP423RZ28Bm\nTDnP1tJz14sKvPHc7JQWKaoTcOgTIQXhMjWk2cKPnhFJaQDQ4bX4edb4tj/Y8ox01B0UQtWj\nR48e6g6hbtm/f3+Fr9M5aSnJyUnxn8PuPwwqkNK0VGfUr1v6lDWdGaGaIPr2jnXnA4v/ZLAM\nWrQ0KrPn6tVrAYCWiiKD/c6fPPUmSUjT1CcRb1GHMkqeIjnpMglSQkvFaTSAnNlIvpgCAIKB\nTzKoFqCp/L0LPR7F5ylwrhaW50A1xj8fc2SNhkOWlcrQy7D1HJaObLz4wkcAEPL/BsAk/feh\nxdGvn/n7+fk/eZlRVjEqrrmta5cuXdy6tG1qCQCyJD1CCCFUB9X7cTL71CoxTecl3lh/ue26\nMW1Lvvr61Bo+WfRNav+TfZnvEHtv64vcor17hvSzVmq0SONhkh4hhFAZ/nqTCQAcA+eDh1eZ\nYj1e5cPiHEiDNWzYsLIejVoAAAwdNybqyql91wJiD66Ynb/96HA73K67EufPn5c1hv40ThdX\nT6qEKOPJyhNFGXqCye0/ceawft14OhWtiScY2vYd+mxwdrvsufjCs+RP9/euM7NYN6aFSuLV\nQB31OX9liqSSzPsZor4m2pX2J3OfCkgKANi6rZQfHULfK+HBlpIZejbXkGeiL+f9nY3lrFCN\nEV0gkTXc+zUor4/1j73gwkcAkIg+qyYqDTZn0tjEbPLb49omjTp36eLm1sWpmTXeIBBCCCEA\nYHNbzutovueZAABCzq/99fOwQd2c7JvZ0Dn84PsXjvsULZFnsIx/djT59vTYJ+eWHX0ha+tZ\nD3c3LLsePiolOSlRXB0pBmtrTZsVgUl6hBBCZQgTigHAcd4szNCrBhbnQAgAtM3sJi3Zq5c7\n/fTrtHOr1jn/sbOhFtYDr8jly5dljd6jx2KSXjXurD8kqzRDMHVneh4e0EzeqSQEg/vTin2Z\nHlPuxee9urAu8MdzXYwrTzCjb/V2t/jLOxYArnj59l1X+bfnuz/+kDVM2+JXLaoF/rkaLWvY\ndx89c+LQpma4XTGqlVLFUlmjtR67vD7Fc6doqUgVMWm0Uhl6jlH9zq5duri5OTs0wN/zypCe\nXlQJ2djUVOErTFO5S5dvkLV37NhRHXEhhBCSS7ff1t+bvCAyXwwAH55473ri/W0f28HLLThF\n93haIsrIyEiIfv/kn9t/BX2SHSQY2jPWj1FZzLXd6vnzquV9bt26VS3vU3Ngkh4hpaDIQiYH\nZ1GhWqxQSgNAJ3tcxooQUjHGoOWLz45dJRF93HXt857xTdQdT+1GU7lr1m2XtTdu3KjeYDQA\nmfvi3OdcWdt59nb5M/RFCM7UTfPuT9kupckj6//ssmd89YdYBzQa/hP7xnYxTaeFHNx6zXDp\nCJcKJqjwgy9uuJ8oa/84zlZFISL0HQJzSAAwdhy/bXF5W2AiVAtQdNFu6Hrl36MZLJyDUv0I\nJrfv5F9mDumAszeVaurUqbLG8T9v8NhlpOlpacHpM5dKdf6GJDIyUinxIfR9Bg8eXL1vqHlJ\nNVTbMTnWmw6sWbdw07vswjI7GDbts2nSf7Xu4++t8jgWVbIDQTB6zdranYdbqqHvhUl6hKoB\nLcn81zcwNDTsXXh0Vn6+UFggpmjZ8weZG3TdN9fV3a2BfrnzxxGqgZrqsMLyxRJa3XEgpHyC\nD8H/BodFRkYmpGbm5eWJJAx9fX0DE4tmzR1aOLm4OGpaGaWaj81t6W6o9ShLlPTgAYyfo+5w\najvJmzdv1B2D5kj++7KUpgGAo++84sdy6/dWQNvYdYqNwcmY7OyYyz5pIwaY4WL6KuMYui7v\nVX/jw3gAeHp267QX7nMmDWlh/3UCnqbS+Z/9fa6evf1Uligytp8y3JKrloARqpIciRQAus0f\niPk1hJACaEp47+Smpw8du3fv3t29a2N80lAXWuTtXbQus/wkPUIIIbXRMmm9+cShexdOed9/\nJsgXFx9nsI17j5o4cVRPLqPc53GWjtXwOSsnuDdSSaRIw2GSHqHvFRHw5+GjF2PK2v0LAKjC\nTxeOnbt08pT7TzPnj3bDucyothhgaxAWmv4yPHuQK/6qVz8szqEkmVG++w7/ERydWup4fm4W\nPyk+Kiz49tWzprZOE2cv7GFvrJYI66ym2qxHAGTecwBM0qMaJOIfvqzRYPAElqIPdS5jGp/c\n+gYA7v0ZN2CWXXXFVqc4z9sxOH72rYgsAMiI8N280pdgapvrFZVWXv7LvLi4pDySKu6vZdhq\nw4Yh6okVoSpqqMWMKpA04uJYDUKoChqZasem/7drQFb8O++z7278cahRi049enTv5uZszMGy\n9wghhNBXGByzAVOWDJhMfoqI4Kdl5FNsq3rW1g0bGGmXvfEiQRA8mxYdOnYePKyvRTl9UHnm\nLVthhJvqlgV/+CH0XULOr153ufIFalIq+9H5He+jUw6uHKnwkC5CqtTWYzhj9vH3x86KOv+m\nTeCnVqWwOIdqvL+xe/UpXzFdSb2I9JiQvcumv526adHQ5qoJDAFATKEEAGgqT92BIPSVJxlF\npfCculsq/CaG9q4AbwAg7cVzwCS9QggGd9rWfSaHtp9+ECo7QlMiQXbRq++j40t2Nm7WY+Wq\nuY1wDAXVEt143KjYnLcpBT2NcIImQkhe+05e/Bz2zNfXzz8gKE1UNE2NpqnPoU9Ohj45fcCg\ndeeu3bt3d3X6gY0/7hFClfnOjdLCH1+6+Pg9/WWwhSDwORzVbATHpnkrmwq7WHZdfKi9lpGR\nka42ZlQV1LZDxzI3iEH4kUJIcfEPvIoz9ARTv0tPd7umP7BDLxwO4Bf3YXGbt7TWDU3MBwD+\n87MrL7bYPs6+7LdDqCbhWg3aNO7FyvMBS3bb71g8EPP0KoPFOVQjJfDIilO+xT8a9es1a9+y\nKY/H45nz9NniFD6fz+d/DAsKT8wFAJoWPz61Qt/i6DQXnlqjrivInBePswoBgMGxUncsCH0l\n6cvi7DZ6FcyUIrS1KypCw9YuKsxO5gYBTKy24OoYgmk43GNz5+5PvG/dfvwiXESVMePKzKbN\ngMFDB/dwwoQEqkVcpjkdW+MbvP8GvW8KfnIRQvIimI1buk5p6Tp5bn7Y80BfX98nQe+FX74c\npZKcV/53Xvnf2W9o7dqte/ce3dUbLEKohmvdurViJxZmRJ702nMvJLH4CLdem9mLFlZTXAip\nDcfQ2tpQ3UEgDYVJeoQURIli1xx5JGsb2nVb8tvcVpY6ABAt8C7Zjc1tufngH08vbd568SUA\nRF5dFznsXDMd/F8P1QItxmxYXOi598/jk975jRg7fkj3NtqYE1YyLM6hGlJJ2iavv+iijaV/\nmLLQY0AHm7IuJP3phc++Paej80ialvrs3jq8/S5jvOJKVpgZeWDVHtke0jomvdQdDkJfyRQX\nFVQ3Lr9KG8E0unLlSgVvQrCMZA2K5FfQDcnD0tF1jqPrbEr4KeJ9TGJaXl5eASnV1dM3MObZ\nOTjWM8Yte1DtY9Zm8Wi7V1eirq882XDd1O5aOFMWIVQVBFO3Zec+LTv3mStMfR7g5+f7+Pn7\nBOmXqclkduLjW+ce3zon+5OmyQIprVP+nrsIISQvmnpx5+SBUz6ZkqJfTARD23307Nk/dceb\nDEIIVQAzhQgpKOnhgXSxFAC0DJ13ey42q2BHDYLlMnbtwoSZewP4NCU8cjt+1+iKC6ggpH43\nbtwAADBo3qfVx3tvos57rb2wj21iYWlpaWmky6n43GXLlqkiRI2DxTlUJiVwd6yIAgCWts36\ng1sdDcv7SBM2HQZ6Hmz4y8y1cSJKIvq462nKRjfFa1zXWRcvXpSrn7QwOS72bfCrjC95UIdJ\nnZQYFkJVZ8hipIkpAEgXS+tzFCzbSIkFRS0CS71VD4LJtXV0tnVUdxwIVQ9i7BZPwa9LfW/s\nmRLkO2nCEAdbm/qWJjhXFiFUJUyueec+Izv3GVmQGuPv5+vr6/cuLrNUH6owfvy4GR3cunZz\nd+/o2BCfSxBCismPDz6wd19g1H83GeNmXRcunONUX1eNUSGEUK2ASXqEFPT0Zpys4bbUo6IM\n/RduMyfuDdgBAEkPgwCT9PLZtOy3cm5SVHHrl19+qfR9du3aVV0h1R0nT54sdYSmxen8+HR+\nfJn90XfC4hyqFHLts6zhtHBF+Rn6IhyjVqvmt5u54wUAfLoSAm79lR2e5pE3Sf81roX7r51w\nfwFUs9hzWYHZFAA8yxC11q2g4n1FyKwXsgaTU6/aIkMIaRAmx3rQsM6+e+7nJ74+tO01ABAM\npjyL0Ly9vSvvhJBqrV28sNxCVPR/v+vnz59f8fvs27ev+oKqW3TMbfuMtO0z8ue0mDe+fn6+\nfoFxGaLiVyVCwb/3r/17/5q2WeOuXd27uXdr2dhUjdEihGoXWir85+Lho1f9RNKiih0Mtsmg\nqR5TBjjj/EKEEJIHDusjpCC/7EIAIBhaUx2M5enPMXTjcXYJSIrMDgQYreToNMTn6OhK+0TL\n0Qehmg+Lc6jSQ0EBABAEc1YHuXLAvE6z2USQmKaFKQ8BMEmvCsZNu6zZtADL4qGaxsWCG5hd\nCAAvL8bAUgV3aky8HSJrcPQ7VFtkqARKlJuaka+tb2Coz8WbCKqNgk6v2nj9bckjtJSiyuuN\nUM2WGBcrT7fYWLm6oe9hZtt6pG3rkVPmfQp95uv72D/wZbrov1uLKO3zg+unH1w/bdyoRfdu\n3aaM7KPGUBFCtUJa+OO9e468SRYWH2ngPGDRgqk/GFWyFgIhhFAxTNIjpKAUUgoATK2G+nLP\nDLRkMwUkRZHJyowLoeoxd+5cdYdQt2BxDlVKKKQAgKnVyJwtV01HBtvMRpsZVSChSKwkoYh+\n/frJi5luPQAAIABJREFU3ZdpXr+RbZMfWje3xXn3qAayG94YPDMBIDX4eLrEy7TctYHloyWX\n/Ys2MTHv5FS94dVxZHbs7SuXfPxfpWUXDRSy9Xmt27bvP+InZxtD9caGkPyyP57d5B2q7igQ\nQpqLYNq0crVp5TplXl7oswDfx76BwRHFS2ABIDM27PrZMEzSI4QqICXTbpzYf/avV1K66O7B\n5jYYO2/hSDc79QaGEEK1DibpEVKQLpMgJbRUnEYDyDlAyxdTAED8n707jY+qOvgAfCaTBAiE\ngLKpUCpaQBAXSt2QitSN+haVuu9bVZAKrlhcilqLgqKIa1VUFBHcQVoRqygiVdHWgoAtioIC\nIhrCEkKSybwfBlNrAwlhMkPC83w69+bc+/vLD0ky/3vPyWhQo8HqgB49eqQ7AuGoo45Kd4Tt\ni8U5UqlxZsbKkli8rLDyqd9Zn/jcKlLN1a23c/369Ut3BEiOZj89Pyc6oDAWjxV9ftMT8+48\ne4t3QV8xa+R7a4oT48OPbZPsgHVWccGilyZNfe/9ucu++TZSv0mLljt1O+SoX/bq1vC7x3kK\nv5xxycCRK4r/62XjkjUrZr855f0Zf9n/hMt/d3oPT/5QK7x9z7R4PB5CaNCi00mn9tnjR7s0\nb9rI315qnV/84hfpjkAlItFGe3XvvVf33v0LV7zzxvTpb7zx3vwvyvs2gE35/N3Jd45+7JOC\njb/URCKRToeecslFJ+xUP5reYAC1kZIeqmn/3OyX84vKSvOnflt01A71K51fvGZW4nPDrIZ7\n1Xy62u3KK69MdwRINYtzpNKu9aMrS2Kx4uX/WFeyTxV2lS4t/OiL4rIQQlYDT4XDdi1ar83V\nR7W5fsriEMKi568f1/m+035WpV0zEjbk/33oHbMS40a7HNunmQc3q+TzGWOvu+O5VaVlG48L\n1n7z1Rfz//nesxO7Db3t6o552aWF83532R0/aOjLxeNlf5s4YkikybDTuqQuNFTXpCVrQwj1\nmnT70wPX5VlVhlpr4MCB6Y5AVWXmtOje+8TuvU8sXPHJm2+8MX369HlLVqU7FLAtKl33+bi7\nRz078z8bj9Zv1um8gYOO3LtVGlMB27Jbb701MWhahYVjt0/+XKCaDu/ZMjGYeNf0qsz/6PHH\nE4Md9/WCMvBDiXcBE4tzVJHFOartsHaNE4OHx8+ryvyPn34w8U5b492qvmw7UDftdc51P6of\nDSHE4yUT/zhw3Ov/quKF65f//eZBwxLbbYQQTrz2pJqKWLd8++HYgbc9+5+G/nsKv5p97cU3\n5JfGp4+4bdH60hBCJJLRpWfvM87tN3jwZeeedsJBHXYonzxv4vVvrNqQutxQXYkHN/f/3W81\n9ECK5bTY7agTzr3lnrEP33FjurMA25r4nFfH9T97UHlDH4lkHXjcRQ89OExDD2zGHt/J8svN\nJniTHqqpbd+Ts14YXhKPr/zg3mHP5F316wM38ynK8tnjb5z6ZWJ8xKntUhQRqmzVqo1Pykci\nWXl5DdMbZvtkcY5U2uP0n4YPp4YQFk++6ckud5+6/+Z+pVzx/sQbnl+UGHc9rWMq8sGW+8Pg\nKzbxY/1/3i2+7LLLKr3PyJEjkxWprsrIbnnDkJMvHPpkcVk8Hls34Y4rZr933Nkn9d277SZ3\nPY/HVs96+bkHHn4h/7umefejBx+7i++2lYvHVt9w8wvlS+9G67fsslf7Nq13XLdi6aIF/1y0\nsqh49Zwhdz/51QffhBCi9dpcetONP++443+uP+m02ZPvvvHBV0MI8Xhs3P3zDrl633T8d8AW\n2CErY0VxbN+dctIdBNh+Nd9tn3RHALYhRV9/9NCoUa/8c3n5mcY/3v/iQb898Lv3HwCoNiU9\nVFN2XverD2t907QlIYRZY4ed927Pfmces2fH/y7g47Fvln/25pSnx06eFYvHQwhNO57dt5UP\nXNjmnHnmmYlBdsO9nxl/U/jeWjTVMHjw4OTE2p4c3rPly89/HkKYeNf0o4ZWvt6GxTm2RpMO\n/Q5rMePVFYXxePGEP/Zb+MszTj32qN1b/vAf5/UrPpn64lNjX3q3NLE1bPNf9O/YJB15oXKf\nLVxY6ZyFVZhDVey4z0l3Xrp6wMiXEuXxJ289f/3MF37U+Wddu+zZudNPmjdtkpvbKFKyfvXq\n1Su++GTu3LnvvfW3pYUl5Zc32/vk4Rd0T1/82mTF30YtKipNjHfcu/d1V53fLnfjHiXx2OqX\nHrr1wSlzvnxtQuLMfpf//r8a+hBCyOj2q0t++94/Rv9jZQjh27kvh6CkZ1vXq0m9p1YUflFU\n8fYNAACpEy+e+fzD9z0+dXVs49PGGdHcI07vf37f7tleigVIBiU9VF+3i0f0WXLRpAWrQgjf\nLph+85DpkWj95o02/tRy9WUXL168dO33dsesl7fXjTcek56ssIVmzpyZ7gjbF4tzpFbGb/44\ncG7/4cuLY/F4bPaUR9//89gmzXdq2aJFy5YtG4T1K1Z89dVXXy37etV/Xt/MbnHJzb+xS1Cl\nTjnllOTecPz48cm9ISRF60N+c3/jnYeNGLNobUkIIR6Pfz733c/nvvt8ZRd26X3BtRcenekj\nraqZ+/TG3QQyG+w+4vcXNvveJnaRaONfXfiH/H+e/sySNSGESCRybtdmFd7kwAu7j+73Ygih\nZM27sXiwgjjbuENP7/TUyNlvj5tz1uX7pzsLAJXYuuWsPI/FNm31onfuGXX3rE8Lys+07HL4\nwIG/2bNF5as/AlBFSnqovkhGznnDRu9w3/BHX5mTOBOPFa347keXeQuXfH9y0w69hlzbv239\naIpDArWCxTlSrEGLA28fPvCmG+5ZkL8hhBCPl+Wv+DJ/xZcL5lYwOTuvfb/rr+/uj7oK1q1b\nl+4I25cePXqkO8L2q9W+R48cs8+Ehx+Z8up7a2LxSuc33LnzCaed37fHbinIVmf89avCxKDN\nL/t/v6H/TuT/+nV5ZsjbIYQQyW6ZXfGTVA12PCSEF0MI8biPwqkFdjrkd7964ZyX3rz16V/8\n6YR9Kn70BIBthOWsqJPisTVTH7/3oeffLi5/b6Feq19f+NvTDuvieVeA5FLSw1aJRPP6Drj5\noENnPj9p8uvvzi+q6CPaZrvuc3SfY/v06prlBxm2VR06dEgMMhu0Tgz69++fvjjbKYtzpFhu\nu563PNR5ylMTpvzl9aVrSyqck5XT6pDeR590yv+1zPaIFduiK6+8Mt0RtmvR+rucevG1J561\n9K9/nvruP+bMW/Dpuu92nS+XmdOs8z777HdQr9499vQC/ZZasmHjd72uR+5c4YRGbQ8J4e0Q\nQrxsw6ZukpH5nzXwvUZPLRDJOnfYDd9ccd0Tv7/w41+efv4Zv2qV43MbACB1rrnw/Lkr1pcf\nNu/c65KLT2vbKKtg1arq3bBJE1sHAlQsEo9X/toHUBXxWOGiBfM+/XLl2rVr1xeXNWyU27hp\ni/adOu/c1CpAQJXEYwXPf29xjs1ILM7RIS87BanqvHjZ+s8+nj9//sfLVhasXbu2JGQ2atQo\nr9lOHTrs0XGPXXMyVDpbYOzYsZufEC8reva5lxLj448/vtIbnnnmmUmIBSkRjxV+sWTp6tVr\nVq9eXRKpl9c4L69J09atW+nmq61Pnz6JwS1PPdepop4yVrz0uOMvSownTZpU4U3isfxjjjtr\n83Ng2/HCCy+EEMpKv33+yUkFpWWRSEZe813a7NK8Kg98Dx06tKbjARBCGDFiRHJv6NFbtinl\nP4Qnix/CATbFE9mQNJFoTrvO3dp1TncOoNayOEdaRDIa7LpH11336JruIHVBpZ16PJZfXtIr\n4KljItGcNj/ePd0p6qZmWRUvZZ8RbZDiJFDTxowZ8/3DeLxs1Yolq1Ys2dR8AFJPpw4AJIWS\nHmB793VJWfNNfPZdDUUr5tRv0SVZd9s+tercvV/n7hdZnAMAAAAAAOoiJT3A9m7QlXePGjFg\nU++obZF/Tn3ktgdeHPvcC1t/KyzOse2J/2vBx+07dkx3DACgzho0aFC6IwAA27VRo0alOwLA\n9kJJD8mxYX1hRetSVywnJ6cms8CWWfPpq4OuDHduXU9fWvj5o7ffMum9L5MYDJKurLjw2/z8\nonj95s13qBfdgg0DyopXvvzY8PsnL7CVGgBQc3r16pXuCADAdm3XXXdNdwSA7YWSHrbKkg+m\njn/pzYWffLI8v7DqV+l42Nas/vTVQVdF7hx+cfV6+sXvvHDrHWOXFJYmPRgky79nTX5q0rQP\n531eHI+HECKR6E57HHBc3xOO3K/d96eVFn79zw/++eXKgrVr165Zs7ZoQ/GGDUX5Xy/9/LMl\na4pjacoOAAAAAECdoqSH6vv4+RFXPfpWPF7lN+hhG7b6k2mDrgpb2tPHS/Ofu2/EY9Pmlp/J\natS2BtJtf+LFM956pyoTd/zpAZ1ysmo6Tq0Wjxe/eMcVY6Z/9t8nY0vnzbxn3szZp15/zcnd\nQgjx2Oqn77xpwpv/KvGvOgAAAAAANUlJD9VUlD/9Gg09dUK/w9rd9+qnIYTVn0y7dHDkjuH9\nm2VWqafP/3j68Fvv/WhlUfmZXQ/69VWDTq+poHVVvPSjmVOnv/3eksgJt1y5cQv6eNm6ESNG\nVOXq/UY93mnXvJrMV+vNfXzIDxr673vnyRtHtn7wsoNbjh188bP/Ktj8rSKRLVghH4BkmfHq\ntMYV/XASL1tXPp42bVqF135/DtR2seIN0ex66U4BAABAEijpoZrm3z+u+LuGvtNhZ5xyxE9/\n/OPWOVuywzFsI3pfckdG9PJ7pi4MIRQsfOXSqyJ3Du+342Z7+nh8w+vj7rrn6bfK3zmOZrc4\n4eIrTz20QyoS1yErPvzLbfc8tmB5YQihedfjtvTySCRaYWlBudLCeTc8++/yw6a7d/1Zh7Y7\ntcxbs2LZ4s/mzZ67JIQw466bDs/eo7yhj0SijXds3rxZs8YNMmOxsrJ4RsPGuY0b5+3SrtNP\nf9o1Pf8ZANu3x+67p9I5o0ePTkESSKV4af7b09+aM2fuR/MXrlq3rrBwfUksntg6rXjNe89N\nX9O9Z482uVZUAgAAqJWU9FBNL3+Unxh0OXPYzcd3Tm8Y2DqRIy++PSPjytF/+VcIoWDh1EFX\nhTuH998xs+KHTgqX/2P0LbfP/PQ/7xy33OvIK6/8Tfu87BTlrSs+mDD8pidnxipbkONnP/vp\nmvxvv/picX7Rxj3RI5HooX1O3LfLnnvu2WnHnGjNJ63Flrz00Heb0EeOOPeai/rs9/2HqZbM\nevKSWybEihZfe/OSxJndexz3m7NO2aNF/bSkBQBIWDDj2fv/NP7TguIKvxrbsOjJB594aswj\nPU++4Lcn9vCsOAAAQK2jpIdqmreuNIQQzWr+u+M6pTsLbL3I4f1GRKOD73xpQUj09IPDnbf+\nb08f/2DKQ7c/NGVNrCxxnBHN7X3upRf8qpsPBrfUwskjho57q/wwI7Pxnl2aVDjzuut+H0KI\nlxV9PPuNcWMe+XBpYTweW1TUYtB+XVKUtTb78NVlicEOew64+Jj9fvDVNgeeOvjg6X+csTyx\nd0nTjmfdfuWv/WUGANLrg3HXDZ3wYaXTymIFr40bMW/hV/cOOX4Tj9cCAACwjVLSQzWtj8dD\nCPWa/qKR1xaoIyK9LhiekXH1yEnzQggF/546aHAYdWv/Hb77wK9kzadjbr91ygfLyi/I2637\n5YN/u0+rnPTkrc2Kvp055OGNDX0kmvPLMy44rvchLRps7p34SEb9jvsdeWO3HhNuufTJvy1b\nNHXU0GYth560Z0ry1mJvFWxIDPY5f/8KJ+x1xiFhxoTE+OBLjvQPOsC2Y9y4cemOAGmw5JW7\nyhv6SDT34F/0bL/7T7LmPHn/jOXlczJz9uiyS8M5X64LISx/Z+yQ8XsOP7VjeuICAABQLUp6\nqKYf18/8V2FJqGydaqhdep5/SzTjmhEvzAkhFPx76sCrI3fd0q9pZmTRzGduHTVuafly6xnZ\nh5w0YMDJh2RHdJrV8dIN9xWVxUMIkWjDC265/+gOeVW8MJKRc/LvRucPOPsvS9b+/cmhbx3x\nxMFNLcy+OcuKN676cHDziv+g6u1wSAgbS/qf7+gPE2Abkpubm+4IkGqxos+vf+C1xDiv/SFX\nXtF/r1YNQggLVzz//WlZOV1uvvfxWU/dPGz8+yGEj58e+vFxT3Ro4BMeAACAWiMj3QGgtvrl\nLg1DCBtWv1Wspqdu6XHuzYP77p0YF/zr5Uuuvn/CnVcNvHVseUOf02rvK297+LJTemroq6d4\nzbtPfLYmMe520fCqN/QbRbLP+cPFGZFIPF78wA3PJj9f3VK+NUPL7IoXKohmtSwfN4n6uQgA\nSKel0+75pqQshFAvr9sdt1yaaOgrFsk88JTfD+zRKoQQjxU+MHlJykICAACw9TxnDdXU7eKj\nwqCnYhu+vOdvKy49sEW640AydT/7pt9Fhw57+oMQQsG//jLuXxvPRyIZXY8+/7Lzjs61y8NW\nWPbqhLJ4PISQndvtd0e0qcYd6jftfvaujcd8WlDw6YQpK399dDPvf1duk8+URLL+M/T3equN\nHTt28xPiZUVVnxxCOPPMM7c2EwDUHrNeXJwY9LhqQLPMyh8f7HHBGaNmjAghLJ32Xjhx15oN\nBwAAQPIo6aGaGrc79YpeM2577cs3b7/up7ff/vO2jdKdCJLpwDOGXptx4x8mzC4/k533k/Ov\nuOqovVtu5iqqYsFfN+4n2qbP6ZnVbYUPPOnHY4Z9GEL4y7OLj76wfbKywVZ65plnkjtZSQ/A\nduWNgg0hhEhGvXM6Na3K/Oy8Hi2yR64ojhUXvBXCiTWcDgAAgKSxrCtUX49LRp5+cJtY8bLb\nB5594z1PffJtUeXXQO2x32nXX3/qfuWHP/m/MzX0STHz2w2JQddDW1X7JnkduycGK999JwmZ\nAADYBnxVXBZCiNb7UdVXrmqVFQ0hxIqX1WAsAAAAks2b9FC5W2+9dZNfi+/SIOOL9WXFs6c+\nOXvqkzl5zXbaaacWOzbe/PMvgwcPTnZGqBHdTr52aMawoU/MCiF8NO66W7NuHty3S7pD1XpL\ni2OJwT6NsjY9K1K//uYWsc+q3y4xKF7zXghnJC0cbJ3GjRunOwIA1GINo5Hi0nhZycp4CFVs\n6ZeXxEIIkYxN714PAADAtkdJD5WbOXNmFWcWFqz8pGDlJzWaBlKr64m/uyl663WPzQwhzHz0\nmuHh5qv09Fsnv6QsMWi66X1GI9EmEydO3MxNIplNEoNY8fIkZoOt9MQTT6Q7AgDUYvvnZr+c\nX1RWmj/126KjdtjcI5sJxWtmrSiOhRCyGu5V8+kAAABIGsvdA1CJvX89+OZzekQikRDCW49e\nM+L5uelOVLvlfdfNf/NdW18NsZIVG0cR38oBAOqIw3tu3F5q4l3TqzL/o8cfTwx23PeoGooE\nAABATfAmPVSuf//+6Y4ANWjatGmVT2q0zy/affjqJ6tDCDMeGVK6/jfdmm/yzZ7DDz88ifHq\nno45mW8VxEIIf/u2aO+Gm1nxfnOKV72bGESzd05aMgAA0qpt35OzXhheEo+v/ODeYc/kXfXr\nAzezN/3y2eNvnPplYnzEqe1SFBEAAIBkUNJD5Y46yksJ1GWjR4/e0ktmPfXgrE1/VUm/eQe2\nzHmrYEMI4f3xn4ar9q7eTb6c/EFikJ27X9KSAQCQVtl53a8+rPVN05aEEGaNHXbeuz37nXnM\nnh3/u4CPx75Z/tmbU54eO3lWLB4PITTteHbfVjlpCQwAAED1KOkBIKXa9/1xuCU/hPD17Ie+\nKb1rx8xNvx61KfHSCW9u3Iq++QFdkxuvrrr8/HMq3RigKnMee+yx5AQCAKhIt4tH9Fly0aQF\nq0II3y6YfvOQ6ZFo/eaNNm6TdPVlFy9evHRtcax8fr28vW688Zj0ZAUAAKC6lPRQTZMnTw4h\n5Lbr0bNzkype8o+pf15SHMtssFvvwzrVZDRgm9bsp+fnRAcUxuKxos9vemLenWd33tI7rJg1\n8r01xYnx4ce2SXbAuqkgPz8pcwAAalQkI+e8YaN3uG/4o6/MSZyJx4pWFGz86ryFS74/uWmH\nXkOu7d+2fjTFIQEAANhKSnqopgcffDCE0LZPh6qX9J8/+/jDy9dl5ezZ+7A/1mQ02DLjxo1L\nd4TtS7Rem6uPanP9lMUhhEXPXz+u832n/axF1S/fkP/3oXds3G2g0S7H9mnWoEZSAgCQJpFo\nXt8BNx906MznJ01+/d35RbH4/85ptus+R/c5tk+vrllbvioTAAAAaaekh9QpLouHEEo3LEp3\nEPgvubm56Y6w3dnrnOt+9NeLFhfF4vGSiX8cGC654bRD21flwvXL/z5s8LAvNmxc4PTEa0+q\nyZh1wXHHHZfuCAAA1dGqc/d+nbtfFCtctGDep1+uXLt27frisoaNchs3bdG+U+edm9ZPd0AA\nAACqT0kPVTV//vz/Pbnh20Xz58f+9/wPxUvzl857euX6xEGSkwG1TUZ2yxuGnHzh0CeLy+Lx\n2LoJd1wx+73jzj6p795t8zZ1STy2etbLzz3w8Av5pRt3JN396MHH7tIwVZFrq3POOSfdEQAA\nqi8SzWnXuVu7Ld4fCQAAgG1aJB7XF0KV9OnTJyn3qd+k18Sxg5JyK6BW++KNBweMfKnsu2/E\nkUjkR51/1rXLnp07/aR50ya5uY0iJetXr1694otP5s6d+95bf1taWFJ+bbO9T/7TjadmWt0U\nAAAAAABqGyU9VFWySvrugx8c3L1lUm4F1HbL/z5l2Igxi9aWVD71e7r0vuDaC49ukKGiBwCo\nUxYWFO+el12NC1fMfbXFnoclPQ8AAAA1REkPVdW/f//vH37xxRchhKzcFi2r/BlKox137tLj\nuDOOsFIh8B+xoi8nPPzIlFffWxOr/Dtyw507n3Da+X177JaCYAAApNhxx59/fP/LT+u1R9Uv\nKStZ+cKDd42d+uELL75Yc8EAAABILiU9VFPixfq2fW4bfX77dGcBar3StUv/+uep7/5jzrwF\nn677btf5cpk5zTrvs89+B/Xq3WNPS9wDANRViV8zf7TfMVcOOrNto6xK538xe8rIUY8sLCgO\nIUyaNKnG8wEAAJAkmekOAACEzEY7H3niOUeeGOKxwi+WLF29es3q1atLIvXyGuflNWnaunUr\n3TwAwHZi8bsvDjp39qm/vfyEHrtvak6saOmEe+98avqCVAYDAAAgWbxJD9U0ceLEEEJe+8OO\n3GeHdGcBAACg1ntv8oN3PzIl/7t1lXbrfvwVA0/bpX70B9MWznz2jtFPLiksSRxm5bQ5uf/A\nE35ujTcAAIBaQ0kPAAAAsE3YkP/xmFF3/OWDpYnDrIZtzxh0xbH7t00clqz57PHRI1/422eJ\nw0gk0rnXqb+98Pid/qfIBwAAYFumpIcaESveEM2ul+4UAAAA1D7zXht/1/1PLy0qTRx27HXq\nFf1P+PrNp0Y98MzyDbHEyQYtOp93ycAj9mqVvpgAAABUk5IekiBemv/29LfmzJn70fyFq9at\nKyxcXxKLT5o0KYRQvOa956av6d6zR5vcrHTHBAAAoHYoLVzy5D2jnpnxr8RhtH5OrKgwMY5E\nsrv3/U2/04/IjUbSFxAAAIDqU9LD1low49n7/zT+04LiH5xPlPTrV0486dwnMqJ5PU++4Lcn\n9vARCgAAAFX0+buTrr9lTPku9SGE3B8fOPDyAfu1zU1jKgAAALZSRroDQO32wbjrrhrx2P82\n9D9QFit4bdyIfn98ptRTMQAAAFRB8ap/v/zy1O839CGEohVfLF68LF2RAAAASAolPVTfklfu\nGjrhw8Q4Es3tccSvzut/2UU9/mtHwMycPbrs0jAxXv7O2CHjF6Q6JQAAALVLPDZ7ypgLz7tq\nyuwliRO7dD2sXW52CKGkcMnYEVcMuOnBhZU9LA4AAMA2y3L3UE2xos/PP23gNyVlIYS89odc\neUX/vVo1CCEsHDvwsmcWhe+Wuw8hhHjprKduHjb+/RBCJJoz/MknOjTITFtu+B/Tpk1L4t2a\ndOr+s11yknhDAADYrhQu/cf9d46avuCbxGG0XqsT+l16aq89Yhu+mnjP7eOnb3zyO5rd7Jjz\nBpzVu6tN1QAAAGodTSFU09Jp9yQa+np53e645dJmmZtelyKSeeApvx/4xQWjZiyPxwofmLxk\n5Im7pi4oVGb06NFJvFvH/nso6QEAoBri8aI3Jjxw/4TXCmMbX6hou98xlw8888e5WSGEaL2W\np1w2/KCDXrht1OOfryuJFa987r6hb77Ra9CgCxOPjAMAAFBbWO4eqmnWi4sTgx5XDdhcQ/+d\nHheckRgsnfZeDcYCAACgdrppwLkjn/xroqGP1t/51MtGjL72vERDX67tAcfe+chdxx+8W+Jw\n5bzXrut37t3PzEhDXAAAAKrLm/RQTW8UbAghRDLqndOpaVXmZ+f1aJE9ckVxrLjgrRBOrOF0\nsAUOOOCATX2prOSbd9//d/lhJJKR27R5y1atcqMbvvrqq6++XlX63Z4p0exWp110crPMjLz2\nO9R4YgAAqItmL1mbGOx64HGXXXJG24YVf2gTrb/LmVfdcdBBz9w++skv15fGY+teGTtiwPE9\nUpgUAACAraKkh2r6qrgshBCt96PcaFV3AGyVFV1RHIsVL6vJXLDFhgwZUuH50sJPbr/yusQ4\nZ6dOfU848f9+vk9O9n/WjYjHNnz8zrSnnprwwWcFseLlzzzz9h/uuHr3Br6zAABANWU22OWU\nAZef0GP3SmfufvDxo/f92dhRt73wt89TEAwAAIAkstw9VFPDaCSEUFayMl7lS5aXxEIIkQyb\nBVIrxJ+4dujMJWtDCF2Pv+qJ+2858bCu32/oQwiRaL2OB/3f0LvGDj374BBC4dJ3b7hmbGnV\n/5cAAAC+Z7fux496ZHRVGvqEzIZtzx0yevhlp7SqF63RYAAAACSXkh6qaf/c7BBCWWn+1G/A\nHl+HAAAgAElEQVSLqjK/eM2sFcWxEEJWw71qNhkkQ/78u55bWBBCaLbPeUPPPDhzcwtGRLr2\nveqSA1uGEAoWvjDibytSFBEAAOqWOwaf2SZnixem6tjzlLvH3F4TeQAAAKghSnqopsN7tkwM\nJt41vSrzP3r88cRgx32PqqFIkETvPfR+YnD8oCOrMr9H/9MSgzmPzaipTAAAQEWyc9ulOwIA\nAABbQEkP1dS278lZkUgIYeUH9w57ZlZss0t8L589/sapXybGR5zq0xNqgT8vWRtCiERzeu9Q\nvyrz6+X1bJKZEUJY/82rNZsMAAAAAACgNlPSQzVl53W/+rDWifGsscPOGzzynbmfrPvBdtzx\n2DfLPnn+oVv63fRULB4PITTteHbfVjmpTwtbasmGWAghI6Ph5ta5/28NMiIhhLJiy90DAAAA\nAABs0hZvdQaU63bxiD5LLpq0YFUI4dsF028eMj0Srd+8UVniq1dfdvHixUvXFsfK59fL2+vG\nG49JT1bYQo2ikfzSeKzk60+LYu3qRyudH9vw+fKSshBCRlaTmk8HAAB10FlnnVW9C3c/+5br\nDt0puWEAAACoOUp6qL5IRs55w0bvcN/wR1+ZkzgTjxWtKNj41XkLl3x/ctMOvYZc279tFcpO\n2BYc2Dj7z98WhRAeem3pH3/ZptL5y6b/KR6PhxCyG3ev8XAAAFAX5efnV+/CNRtilU8CAABg\nm2G5e9gqkWhe3wE3/2nY4N4HdqofrXhd8Ga77nPWwKEPDR/UIS87xfGg2o44cpfEYP6YG2Z/\nXbT5yUUrP7jhwXmJ8S6/7FWzyQAAgBBCCJk5O7Ro0aJFixY7NPAOBgAAQG0SSbz4CGy9eKxw\n0YJ5n365cu3ateuLyxo2ym3ctEX7Tp13blo/3dFgi5UWfnTOadcUxMpCCJkN2p5z+RW/2q9t\nhTMXz37p9tvGLCosDSFkZDa9ZdzDHX1ECAAAW27x4sWb/Xp89cqvli1buuSzuVOnvbe+LB6t\nv8tFN/zxyD2apigfAAAASaKkB6Binzx346WPzi4/3LHdPgd33WOnnXZq1apVTihcvnz5smXL\nFnzw1t8//aZ8zn7n3nntse3SERYAALYjRSv/NfGR0c/M+DyS0eCs4X/q2z4v3YkAAADYAkp6\nADZpxsPXjHhxThUn79P36hvPPqhG8wAAAN8pe+768x/9x8rM+rvd+fhtP6oXTXceAAAAqkpJ\nD8DmfPb2s3f86alF327YzJycFu1Pu3DQr37WOmWpAACAksI5J5xybVk83u6kO+48bbd0xwEA\nAKCqlPQAVCZe/NHbf535/j/nz/942TerC4uKI5GMeg0a7tCqTYcO7ff+WY9DfvqTaCTdIQEA\nYPtz55knvraqqH7T3hMf65fuLAAAAFRVZroDQC3Qp0+f5N5w0qRJyb0h1KxIdufuvTt37504\niseKyzKytfIAAJB2u9fPfC2E4rXvhKCkBwAAqDWU9ABsmUg023aXAACwLfh0Q2kIIR5bm+4g\nAAAAbIGMdAcAoPaJFW9ui3oAACAFile/+/qqDSGEjOyd0p0FAACALeBNeqjcTTfdtDWXz3/9\nqfGvz4vH44nDSMRLyNQy8dL8t6e/NWfO3I/mL1y1bl1h4fqSWDyxa0Pxmveem76me88ebXKz\n0h0TAAC2IxvyP77n2jtj8XgIocEOh6U7DgAAAFtASQ+V23vvvat34YZvPx5z151/+eDL8jM5\nO+9z0aCBScoFqbBgxrP3/2n8pwXFFX41tmHRkw8+8dSYR3qefMFvT+xho3oAAKi28ePHV2le\n2YZliz//5+y/f1tSljjR6cwDajAWAAAAyaakh5oRj7370ph7HpmSX7rxQ5NIRv2eJ1500cmH\nNshQY1JrfDDuuqETPqx0Wlms4LVxI+Yt/OreIcdn+gsOAADVUtWS/r/ltOx5+QEtkh4GAACA\nmqOkh+Rbt2T2PaNGv/Wv/PIzTTv8fODAfl1bN0xjKthSS165q7yhj0RzD/5Fz/a7/yRrzpP3\nz1hePiczZ48uuzSc8+W6EMLyd8YOGb/n8FM7picuAABsf5rufvD1f7jEs+AAAAC1i5Iekile\nVvjX8ff/6ek3iso27kCfkbXDr84ZcPbR3SwDTu0SK/r8+gdeS4zz2h9y5RX992rVIISwcMXz\n35+WldPl5nsfn/XUzcPGvx9C+PjpoR8f90SHBr65AADAFuvdu3eV50abt27bbref7L1HO79s\nAgAA1Dp6FEialfNfH3XnAx8uKyw/06bb0YMuOecnTbLTmAqqZ+m0e74pKQsh1MvrdsctlzbL\nzNjk1Ejmgaf8fuAXF4yasTweK3xg8pKRJ+6auqAAAFBX9OvXL90RAAAASAUlPSRBWfHKFx6+\ne+zLfy+Lb3yBPiunzSkXDzy+R/v0BoNqm/Xi4sSgx1UDNtfQf6fHBWeMmjEihLB02ntBSQ8A\nAAAAALAJSnrYWp+/O/nO0Y99UlCcOIxEIp0OPeWSi07YqX40vcFga7xRsCGEEMmod06nplWZ\nn53Xo0X2yBXFseKCt0I4sYbTAQAAAAAA1FZKeqi+0nWfj7t71LMzF5afqd+s03kDBx25d6s0\npoKk+Kq4LIQQrfej3CpvcdkqK7qiOBYrXlaTuQAAgI3isTWXX/n7xHjkyJHpDQMAAEDVKemh\neuJzXn1y9APPLN8QSxxHIlkHHHvexWf2blzlRhO2ZQ2jkeLSeFnJyngIVfw7vbwkFkKIZDSo\n0WAAAMB3ShcuXFj5LAAAALYxSnrYYkVff/TQqFGv/HN5+ZnGP97/4kG/PbBd4zSmguTaPzf7\n5fyistL8qd8WHbVD/UrnF6+ZtaI4FkLIarhXzacDAAAAAACorTLSHQBqlXjxzOfuO/+Ca8ob\n+oxo7lFnDR4z6hoNPXXM4T1bJgYT75pelfkfPf54YrDjvkfVUCQAAAAAAIA6QEkPVbV60TvD\nLj3v1kf/sjpWljjTssvhf3jg4f6/7p5thXvqnLZ9T86KREIIKz+4d9gzs2LxzU1ePnv8jVO/\nTIyPOLVdCuIBAAAAAADUUpa7h8rFY2umPn7vQ8+/XRzfWFRG67X69YW/Pe2wLtp56qrsvO5X\nH9b6pmlLQgizxg47792e/c48Zs+O/13Ax2PfLP/szSlPj508KxaPhxCadjy7b6uctAQGAAAA\nAACoFSLx+GbfjgRCGHL+SXNXrC8/bN651yUXn9a2UVa1b9ikSZNk5IKaFS8rfPjqiyYtWFV+\nJhKt37xR2YqC4hBCp93bLF68dG1xrPyr9fL2uu3BG9rWj6YhKwAAbH/isfxjjjsrMZ40aVJ6\nwwAAAFB1SnqoXJ8+fZJ7Q5+eUFvEYwXP3zf80VfmVDqzaYdeQ67t3yEvOwWpAACAoKQHAACo\ntSx3D8AmRaJ5fQfcfNChM5+fNPn1d+cXVbQ1fbNd9zm6z7F9enXNsv0DAAAAAABAZZT0AFSi\nVefu/Tp3vyhWuGjBvE+/XLl27dr1xWUNG+U2btqifafOOzetn+6AAAAAAAAAtYaSHio3atSo\ndEeA9ItEc9p17tauc7pzAAAAAAAA1GZKeqjcrrvumu4IkGqTJ08OIeS269Gzc5MqXvKPqX9e\nUhzLbLBb78M61WQ0AAAAAACAWkxJD0AFHnzwwRBC2z4dql7Sf/7s4w8vX5eVs2fvw/5Yk9EA\nAAAAAABqMSU9AMlRXBYPIZRuWJTuIAAAsK2bMmVKEu5Stj4JNwEAACDllPQAhBDC/Pnz//fk\nhm8XzZ8fq/zieGn+0nlPr0x8RBhPcjIAAKhzHnjggXRHAAAAIG2U9ACEEMLgwYP/9+Tyt+4Z\n/NaW3ade7gHJCQQAAAAAAFAXZaQ7AAB1yk8vPCXdEQAAAAAAALZd3qQHIIQQWrdu/f3DL774\nIoSQlduiZV52Fe/QaMedu/Q47ozuLZMfDgAA6pZnn3023REAAABIm0g8bvNgAH6oT58+IYS2\nfW4bfX77dGcBAAAAAACoOyx3DwAAAAAAAAApYrl7ACpw+umnhxDy2jdLdxAAAAAAAIA6xXL3\nAAAAAAAAAJAi3qQHIKxatSoxiESy8vIapjcMAAAAAABAHeZNegBCnz59EoPshns/M/6mEMKt\nt95a7bsNHjw4ObEAAAAAAADqHG/SA1CBmTNnpjsCAAAAAABAHZSR7gAAAAAAAAAAsL3wJj0A\noUOHDolBZoPWiUH//v3TFwcAAAAAAKDOsic9AAAAAAAAAKSI5e4BAAAAAAAAIEWU9AAAAAAA\nAACQIkp6AAAAAAAAAEiRzHQHAKAWWFtQUBqPV3FyXpMmkRpNAwAAAAAAUGsp6QHYpC8/mDp2\n0usLF37y9eoNVb9q3PMv5kbV9AAAAAAAABVQ0gNQsYWTR17+0BvxKr9AXy7LVioAAAAAAACb\noKQHoALFBTOHPPxfDX00Gq3itdkRr9EDAAAAAABUTEkPQAXm/+mxorJ4CKFBiz3PvfC0fX/S\nrkWTBukOBQAAAAAAUOsp6QGowMsf5ocQsht3u/f+a3fMtH49AAAAAABAcuhdAKjA3MKSEELn\niy/U0AMAAAAAACSR6gWACmwoi4cQDuiYl+4gAAAAAAAAdYqSHoAK7N4gM4RQGk93DgAAAAAA\ngLpFSQ9ABY5u1ziE8P78gnQHAQAAAAAAqFOU9ABUYN8BfTMikXkPji2Ke5seAAAAAAAgaZT0\nAFQgZ6df/eHUvYq+nXHlHS/p6QEAAAAAAJIlEle9AFCx+Otjbxn17N+ym/3k16ecdsyh+9SP\nRtIdCQAAAAAAoHZT0gNQgRdeeCExWPb+S3/5cEUIIRLJ2qFlq1atWjVpmL35awcPHlzj+QAA\nAAAAAGqnzHQHAGBbNGbMmB+cicdLvlm+5JvlS9KSBwAAAAAAoG6wJz0AAAAAAAAApIg36QGo\nQP/+/dMdAQAAAAAAoA6yJz0AAAAAAAAApIjl7gEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAA\nAAAASBElPQAAAAAAAACkSGa6AwCQZscff3w1rsrIrN90xx12+vEeBx500KEH7Z0dSXouAAAA\nAACAOigSj8fTnQGAdOrTp89W3iH3R90uuuzSHu1yk5IHAAAAAACgDrPcPQBba83i2bdfMWDK\nR6vSHQQAAAAAAGBb5016gO3dxIkTq3FVWUlR/sqlH86evbSgOHEmmr3LiCfu3r1+NKnpAAAA\nAAAA6hQlPQDVFy8rfH3C3aOempn4btKs66AxQ3ulOxQAAAAAAMC2y3L3AFRfJCOn1ylX/fH0\nPROH3/z93gXrS9MbCQAAAAAAYFumpAdga3U+/vfdcrNDCPF48SMzvkp3HAAAAAAAgG2Xkh6A\nrRbJPuvXbRPDpS//O71ZAAAAAAAAtmVKegCSoHmPbonB+q/eSm8SAAAAAACAbZmSHoAkyG64\nb2IQ2/BlepMAAAAAAABsy5T0ACRBRmbTxKCs9Ov0JgEAAAAAANiWKekBSIKyWH5ikJHZPL1J\nAAAAAAAAtmVKegCSoHjN+4lBtN7O6U0CAAAAAACwLVPSA5AEX725saRv0LxHepMAAAAAAABs\ny5T0AGyteFnRo88tTox3Omr39IYBAAAAAADYlinpAdha74+77u9ri0MIkUj2OT9vle44AAAA\nAAAA267MdAcAoBaLFX390th7Hn7p48Thjvv22yPHdxYAAAAAAIBNUqUAbO/uvvvualxVVrph\n1TdfzZv7cWEsnjgTrdf6mqt7JjMZAAAAAABAnaOkB9jevfLKK1t/k2h2i4tuHrZb/ejW3woA\nAAAAAKAOU9IDsLWadzrkogH9ftY6J91BAAAAAAAAtnVKeoDtXevWratxVUZm/bwmTVq2bb//\nAQfu17ltJOmxAAAAAAAA6qJIPB5PdwYAAAAAAAAA2C5kpDsAAAAAAAAAAGwvlPQAAAAAAAAA\nkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAA\ngBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAA\nAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAA\nACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAA\nAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAA\nAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAA\nAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAA\nAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAA\nAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAA\nAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAA\nAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAA\nAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAA\nAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAA\nAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMA\nAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4A\nAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQA\nAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQH\nAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9\nAAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijp\nAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJ\nDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJK\negAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR\n0gMAAAAAAABAiijp4f/bu+/4Jur/geOfJE13aWnLKqNllikbkSVDloIMZaioCKgoAoJsBQFR\nHCxBwIH6VVk/nCBDEFBARBFlypBV9iiju2ma5n5/XBo7kjTJJZcWX89H/7gmd5fP53PvfO5z\n98nncwAAAAAAAAAAAACgEjrpAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAA\nAAAAAABUQic9AAAAAAAAAAAAAAAqoZMeAAAAAAAAAAAAAACV0EkPAAAAAAAAAAAAAIBK6KQH\nAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAAAFAJnfQAAAAAAAAAAAAA\nAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAAAJXQSQ8AAAAA\nAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI66QEAAAAAAAAAAAAAUAmd\n9AAAAAAAAAAAAAAAqMTP1wkAAABelL0yxtdJ8Az9o5d9nQQAAAAAAIqjOqM3+DoJnnHs3Qd8\nnQQAAFTCSHoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAAAJXQSQ8A\nAAAAAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI66QEAAAAAAAAAAAAA\nUAmd9AAAAAAAAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAAAAAAKqGTHgAAAAAA\nAAAAAAAAldBJDwAAAAAAAAAAAACASuikBwAAAAAAAAAAAABAJXTSAwAAAAAAAAAAAACgEjrp\nAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAAAAAAAABUQic9AAAAAAAAAAAA\nAAAqoZMeAAAAAAAAAAAAAACV0EkPAAD+o9Y3Lqdxy55Uo6/T7qxDbzWX0xzbfauv04Li6w6O\nk9V1ouWsddl8wddpAWwjSl1yB9dXKEzKSftyzqh7725YLjywVHRMl/H77K25ok2MRqPpueG8\n8zvnq4c7HkFefBSrY3F8YQ/5z2jK8XVafCPj8oGlb73yaM8OtarFRoWH+gUER5evGN/g7gFD\nRi74dP0No9nXCSxCsQonAIBCdNIDAAAAQHE3oXIp60+F9qdn+2qHHk8GANgk5SQPbRLXf/yi\nnXsPXU/JSr155ezFDJtrmk23xv9xXaMLmtMxRuVEuoeK1LMoT9ypiG2PM2WcefXxjlGVmzw/\n6fVV638+efb8rZT0HGPmzWuX/zmyd82n740Z0jMmMu6Zt74ySr5OKwDgv4FOegAAAMAD+pUJ\nkW+ivX4h1ddpKS4oE1cVkxIrJsmAYxwmqMCHYXZmzSOfHropL4fF1m/fuXPLehE217xxYMIV\nY07pmjPig/xUTCAAoCTJuLq1VWz9mct/Mpj/7YHX+gWXDtHnXS07/cJHk/pVbTfqlsn2kHoa\nYAAAD+ICBgAA/NeFVnjm4rG3XVg/zN97iQEAAMD+ty2T28f1WvrPt8P1Grtr7py0WQjRbNbD\n6iQMAFDi5BgvPnDXg3/cyJT/Da9579TpE7u2aFCzWsUArSYl8dLZs2f/2PbtkvlL9ydmCiEu\n/7KoSZ+aCd+P9GmqAQB3PjrpAQDAf57GPzw83NeJAABHSleOjfNLk5cDNPZ7q7y8Q48nAwBs\nupBqmdu53uQ+DnropZzUcbuvarT+b3erpFLKFKMi9SzKE3cqYtuDfpnc4+dESw/9gzO+XjO1\nb0CeEi1VpmLDMhUbtmjz1Nix03q1emPzeSHEufWjXjv46NSGUT5JMADgP4JOegAAAAAo7ib/\nenhyMdihx5MBALblzkasDXT0oMabf08+ZzBF1JjRMP98xcUZFalnUZ64UxHbHmM2PLP0qLxY\nqfPCtdP62ltRF1DxtfV//V620rbbBiHE0hFbpv7yiEqJBAD8J9FJDwAAAJQoZsO2b7/cd+SE\nKaTay+OG+Do1AEoC6g0UqWQGya+TvxdCNH71UV8nxL6SWbAAcMdIvfzuP5mW2Vmefv8Jxytr\n/aIWv9Os9rBfhBCJf04xi0cc/VIMAABlOMsAAAAocnlHd41Go9FoWn9wXAghJOOmz+f179Si\nasWygf5B5StXb9t72Kcbj+XZwrxjxcInerSuWrl8SEBAhap17u3aa9KC1UkmqfDOI/U6jUYT\nHNVD/jfz2uGlM0e1blo/JiosMCyyWnz9vkPHr/rxqILkm/d88/GLg/s0qF09OiLEPyS8UtVa\n7Xo8NnvJystZOYXXNqb+5qfVyvl973Kag/3OqFlaXq3mo1utL3q1rPJK+mfH3KkjOzRrULl8\ndGBgWNXaDe+7v8+0Jd8kZpvtbZKwtlO+tAlxZf/mV57t26hujaiwwPBysS3adRk8avbft7IK\nbHjorebyhl/dyJBfeaVKKfmVdp+ddJxOZ1gT1v7/Tgsh0s5v6FIv5r6Hn5g0/fUZr871SN6L\nlHXr6P/mvty/9/2tmjaoXDbCPzg8rlb9Nh27PT5i+s/HbhRe39UyUZLmzGt/LZo5tlPzBpXK\nRfoHhlWqGt++77APvtrhfm7zcDXjBZkNm1e8N+yhTvHVqoQHB0RXqtGq4/2Dh4/9csfxAis6\nU2LWSChT7zv5lb/nt5Rf0ekjLxsd5XhTn2rymkGRXazrFd6he8kozO0DKpkzd379wXNPPdK5\nbYtqMVGBoVHxdzXv3nvAuNnLjhf66rnEvUPpdrVQgGej1KXD5Ey94WrhKAy8vLxRXzmm5Evt\n8fj01CleYXjbDBKPntpca2kkHnxQ/qCxZ5LkV75vVNbSonhkZ4GVJXPm+J+uaDS62b2qFN6V\ne1+9n3LjtumMA/bWyUhcKa8TENa0wFvOfPvsVaSeqnNyDBeWL5zes22T2ArRAQGhlavX6Txw\nxGcb/pTfXV0nWv6UlYkZjveTlzpNOIXB7KXydOxOOr/kpbDGU1S9O918KrylS7WNrDgfCyca\nXfmyfGJJ/1P/e+b8ujk3D/1synH2k80px2/9uihhxbMnP3j4xJIBpz8bfnHz0qRTRZZ2SWJI\n/M263L9CSJHrV+z2kLxgMiQcTrf07jtzZlR4BrFyNZwUXqQDAHxJAgAAdy7jigp3xp83Cuf7\nRmXl5lBozAtK9nPp527yflq9fywref+wthULt7g0Gk2PSWskScrO+Gd45+o2W2VRDQdezDIV\n2HlpP60QIijyAUmSDq6ZWTnA9jRIdz046p+M7MJpO/hmM3mFKt1+LPxu8qnvezctb6+VGBBR\nZ9ryA4W3mhQXLq/QYOxee2WSlfKrX+5zE99JSFGnrGRmU/K8kb2CtLaf2uhfqtqYj36zueHZ\n7zpa0yZJOd/OesTP1qMfdQHlRyz81WYhF9b2f//YKyLnWRN27+pTGde2NA0PsO5fH21+CR8A\nACAASURBVFzXI3l3HCe7l4yOCdDZy6NGo218/4gzmSabOyyyTNxOs2zDW8PL+ttOW2z7YX8m\nZ62qbXmKZOcfzjtb4goyntfNg6u61Y20t3mdnmNP5PnOOlNi1kiIrvut/Irh9hZtbpQ+9stl\neykx52TEB1tmgW48/S/r64V36F4y8n2WggOadPzr7nVL20uAX2CVaauO2tvWMbcPpdvVQl4e\nj1KXDlOR9YYbhaMw8Czveqe+ckzJl9ob8anwFK8wU46DxFOnNjdaGtcP9LS3fo2BOwqsfOvY\nOCFEqdiJhT/a7a/e9t5V5debTN9vL1/p11fI6/iHNnGpYAusU6Ai9Uidc2b9vEbRgTYzXvv+\nEYdSjdaMr7iebm8nhanQhFMezN4oT8fusPOLlZIaT2HTzqXmU17uXddIxftYOG50Oc6yJqBy\ndNdFtUetL/xnXafa82tjOz2k09kewudXoW2Vp7+xuQdv/zlfRE66sLWLNV8bb2UWub7JcO79\nXNYqy5kzo8IziMy9cFJykQ4A8CGmuwcAAPCMHOOVp5r1WXky+d4h45/o2qFxtbCTRw68P2PK\nTwmpkiStf7P/c012Zczs9fmRW2Wa9p8wrOc9LeqmJhzbuGzmok3/CCFuHlzdcfjgE590tbnz\nhO/GNBrwriRJ5e7q9NSA++OrRKdeu/DLpq++3H5QkqRD6xa2aHzljwMrawQ627q7/ff/mjd/\n+nSmyfpKcHh06YCca4lJJkkSQmQlHXvt8Sanr+5a/lKrvBsOfuWuN4ftEkKc+ux1Mdf2qI4z\nKyfIOwmKfGBcbJhqZWXOvj6mS+OFP1+2vqLR6MtEB15PTJX/Naacmf90y9Pnv1w782EHhbN1\nSrs+s3dH1O46YfSQdk1qBWRdP3xwz4Lpbx66acjJurpkdJvIu6/MbGH5kUfZloMnTbpPCPHt\nwrknMrKFEO2eH9uqlL8QIq6B3fub7jBnjWk34M9kyzie8LIxFSvV8njeCzi1fHDr5z/L+0pw\neJkI/+xrN5JzJEkIIUnm/RsXt2wbfvWP1613NJ0sE4Vp/nJch/5zf877SlCpKK0hKd2YI4Q4\n9/Oyjk3TXjHbHTjljYxbXf91caMOo68Yc6z5iixXNuvmlbTcAWTHvp93z923Tv71caSfVrgb\nRQERnUdXCpt/IUUI8dOkn8Qu27M93zo6Rd6nRqN7a3RdB7lWGMxKDmjm9fXNGg84ladGCixV\nprTecOWmZVuT4fxrjzUOrn1pYqOoIlOSl8JDaeVStWDljSh17TA5rDfcKxzlgeel+soxJZHg\nvfiUuX2K90x42wqSsi3vU35qc6+lEVz24UmT6gkh9r6/YHuSQQhRY8ioh8sGCyGiGlYu8BG/\nv/y1EOKul58q8LpXTxDOcvjtK5J7dc6Zb16u3392Zo5ltLpG6x9VLjo7OTE5I1sIcXzj4lZ1\nTz0tGZVky0tNOE/V1fa4V56O3XnnF5mSGk9h9e5q88nK7euaAorbsXDAZpaNRkNOZrokJCGE\nlHXhxuZRxvS3Y5rUsbcT48kPL27bKIQkhBBaf52/3mzIkDcXQpiu7Lrw+dVKT7wVEuTv2cSr\nLzT2358NTXjlh+6LezteXxdQ5dlnny3wojoXfW6Hk0cu0gEAPuDDHwgAAABv8/kI+P/USPqA\nMoFaXfDUlfnGC+YYrz1SKd8FcMsRi9NyzHlWMS8fEi+/pQuIycjJt3N5mJ1fYGw5f50Qov/s\nb7LN+VY4sWlRxdwRPFUf+rRA2uyNODQZzneMCpLf0mgD+oyZv+/0LfktY+rFdcterZs78Euj\nDVj8962822Yl79Tl/gD/i2u2x2CNqGjJcuNX85WGV8tKkqTVT9W2blul3VMbf9mfmJYtSdLt\ni/9sWvlmvTyj2fotKzgAyDpUpdqggTqNpu6j81JN+cralHluYFwpeZ3wqlMK5/rh6GD53Vnn\nPTkuwZqwsm2rycHwwhv/O5Jw04N5txcnOcbr1YIsfUIBES1mf7IhMc0ov2XOzvhry4on7/n3\nNuXss8mFE++4TJSk+eKWl6zv+gVWenHuFycs0Zhz5o8fXup9l8jPpXFLCjOenX64YajlbqZ/\naK1py9ZdTs+WJEkyZyUc2TaiZ8N/I3x6wcFkDkrM5miq4x+2lV/UBVRMyh+xVmvvj5XXKV3z\n1SJ36F4yZEoO6BtNyshvafWRY9/+7MxNS91iTLv21aIp0XpLLVcq9nmbebRH4aFUWC14NUol\n5w6Tg3pDSeEoCTzJO/WVYwojwUvxqfAU76nwdnxycfvUpqSlIZtXLUJeoeeB67Y/w5zVIESv\n0Wi3Jxnyvqzwq+epkfQOCrbIkd/u1TmZN7eWzx18GVC6weufb7pukAeAmk/sWT+0Q1yBjLs3\nkt4bTThPBbNny9OxO/j8oqTGU1K9u918UljbFOdjYS+27WW59qj18c99VqnTowH+lplshEZf\nbtBqeyPpNRqNEEIX2axC7/nxI9fXHrW+9gtrYnu+GBr179dZF9UjvuSPpDdlnonI/WGHRqPt\nM3bRFWOhK0mnOTgzKjyDKAknJRfpAAAfopMeAIA7mc8710tGJ32FZ9OclpFV8HreetdSCNHs\n1d2FP+ji1j7WFSJqjMwu1J2RlfKrJveKek1iRt63SucZJlLv+W9sZuTqrpny5hqNZkFCvpuA\n9joz9k5ulHuTwm/KN6cK7zPj+o6WufezwioXvAc3trLlRlWTmTbuPmTeXGu977P+Zr7pBL1a\nVkmn5lrfenD22sL3XYwpx55rWib3rkfVs4Z8s49a74IJIcKqPJaRY6PbKXH/WEvWtPrCK3i7\nk14I4RdUbd0pG33hCvNuL06u/v6E/LrWr/Sa0zYylWO81reMJdf3LLYx8amDMlGUZrOhXW58\n6kMarDtrI23fTe4g8nDplqjCjK99uJolbcF1Nl5IK7z5u70snZf6oFr5+zBc7h3PO2vlcwcS\nC3+W2ZRSLXf0be/154rcoXvJkJQdUGPaAWsuRqxLKJyLf5b3s3z1NJq9qcbCK9ij8FAqqha8\nHKWSc4dJ2K83lBSOksDzUn3lmJLMei8+FZ7iPRje9oJEUnBqU9jSkJzopL99cqoQIqziyHyv\nKv7qeaqT3kHBFtmpLNxqiixpXUF+KyC85a7EQvM5m7Pfeaha3oy710kvvNCE81Qwe7Y8HbtT\nzy9KajyF1bvbzSeFtU2xPRaS/di2l2VrJ3f8028G5fbTa8MesNdJL4TQRXep8cL3BbvJR34V\nHVfGuk54389Keie9JEnfD803o4B/eGzvIS+t2Lj7hsHus6vs8VYnveJwcvsiHQDgQ7afOgMA\nAPDfkXblg1CnNR39u739aHRBqya1KPx6ZMNHrMt9lr/sV2i+S/+we5qHWm6j5J20MC+/wNgN\n8x60+Va5NlMXtyovhJAkacHI7Y6yKoQQQspJHbrwb3m55pNrXu9j46GhQWXafbNuhLycemHJ\noguped99ekoDeeHEkoWFtz2xZKa8EFZ57AORtp+K6o2y+mboXEmShBDl73l77aQHCzdz9WG1\n392xuVKAnxDCZDg79JsEm2kTQjzyf3NtPkozst5EeUEyZ5+0c6S8quOSTT2rlyr8ugfzntel\n9YfkhTKN3u1XzcaMiFp92Re7WJ5Km3oqtfAKDihJ89U9L+zMnUB45LofesbZSFuvN358rmaE\nS0myUpJxU+bxp9Zaktr3k/XdK4UU3nzE6q3yQLTszH9mnU9xL5Ey/7B7JlW1hMSGKXsKr3Dz\n8KQzBpMQQudffknnSko+yzElB9Rwa6M896ZGo5/fI7bwzqv1mxcXFxcXFxcbG/tXmgsTNXsw\nhl2tFrwdpc6zV28oKRwlgeel+soxJZn1XnxauXeK92B42wsStylvaThj//RVQoh64/PNSFx8\nvnpCWcG6WudkJf/04p6r8vKIdd+0KfxYeo3fmOVb6wTrC77uIm804bza3pB5vGl3p55flNR4\nSqp3t5tPnq1titWxsMeZLGuC6lfs+YC8bE7dcDs10/a+NEEV+gz3K5xlTWD0A+9Yu/nTtm/0\nRMJ97P6lP7/U/d8fKhmTz333ydzH7m9dNrR00w69Jr7+3o+/HzdKPkygB8JJ+UU6AEB9dNID\nAAB4RkjZx20+El7nX9G6PPEu20+rrRxg2dDe4wordl4UmzvnbWH9FlsGtVzcOs5cVDrTLr93\nOF1+TrB23tzu9lar0G5Oz9x5FD/9+FTet6o+8ppWoxFCpF/9dOMtQ4ENZy08Ji+0eGO4vZ17\nvKyknOQxuy33psesLPgEQSt9SOMvBlruzhx6Y6fNdXT66Hl2Hkqq1ZcNzL2N5eUn2dr6dF3w\n+wNt3IbzYN4LiB+66sCBAwcOHNjx7UP21pFyH3wrXLmrpTDNB17bIi+ElHt8bscYO1vrXv2i\nnwtpykNJxq/9PvFWtlkIoQ+u/XG/qrZTFljjtbsqR0REREREHP7zlnuJtBo8q7m8cOXnCYZC\n3/8d49fJCxU7La7g762rP4UHVKO1DBuSpOw1CTZunev8K53N9Wx5Gzfu7fFUDLtRLXg7Sp1k\nr94QigvHvcDzXn3lmJLMei8+rdw7xXsqvB0EiduUtzSckDNp3XkhxNTH8yW+mHz1hLKCdaPO\nOffNNKNZEkIERfWY066C7d0GVv3oiRruJcnKG81d77U3LGnzQtPuTj2/uF3jKaze3W4+ebC2\nKW7Hwh4ns+xXcWhooOXxAclHL9tep8LwUHvPm9dFV2hteURFTvK3JrNPu689QasvO2fDieVT\nB1cNz5dlsyn1r5/Xvf3KyC4t64RFVLqv7+B3Pll/M7vIS2rPUx5Oyi/SAQDqo5MeAADAM/TB\n9W2/kTvxo0brHx9k47amEMLGkI38Goxt4uDdyDoT9BqNEMKUeXr9zYIX5AVc2miZ5DAoqo/D\nH9Frxt9vGf54bvUved8ICO/wQkyovDxrxZm8b6VfXfZVYoYQQqsLXdgnzt6uPV5WaZfeTTaZ\nhRB+QdXGxTkatVZ/TMPcTVbbXCG43JMhtsbQOPh0dQRG9aoaaKMXx4N5LyAktnbDhg0bNmwY\nXynY5gqGGwdm/nDRmV0VoDDNH/95Q16o9dwYB9uWbTa3lJ871ztKMn783cPyQmS9mQ4Cafi+\ns7dv3759+/b6h2zfiXZelQfnBmg1QojsjOMzTiXlfUsyJY3ZZblj/uSCjjY29hCFBzS47GPW\nB4UOa3rfgi9/9dRIJk/FsBvVgrej1En26g2huHDcCzzv1VeOKcms9+LTyr1TvKfC20GQuE15\nS6NIKefe3ptqDCk/9P78+y8mXz2hrGDdqHP+XHpSXqjYdbyDtkr98fe7lyQrbzR3vdfekHmj\naXennl/crvEUVu9uN588WNsUt2Nhj/NZjoyLlpey/zlqc43Alo0cfJA+fpBlSTImpdsZi1+y\naPwem/np6ZuJ21a/98yA7tWigwq8b0y5tO3bzyYM7RkTVf2J8fNumlTtqlceTsov0gEA6rPd\nbgYAAPjvCI15IfXSIg/sSFNky8r9m+CdaoY7eFfrX7FlKf9dyVlCiC9vZDwY5Wj+usRfEuWF\n0EqPOFhNCBH3WJz44qQQwnBzpxAj87717MT6C0ftEUIceWeZGDnP+vrhNxbIC9GN3q4TbL9A\nPF1WSUctt9u0urBXp051sGZW0gV5wZi2z+YK+hA7d599LaBUa5uvezDvRTHfvJRw6vTp06dP\nnzxx7MjhA1u2/JLi1t0rhWnenTsVZKP+NiZitdLowgaWCf7wSpobKczPhYz/dei2vFC5T7zi\nz3WKPuSumfGlJx67JYT4avpfs1f+2yeauH/8hSyTECIwouP0Wl6c21nhAdXqy303tmX7t38V\nQhhu7x3Tv/WkiCodunS5t22bNm1at2hYw99jv45xM4bdqBZUj1Lb7NUbtrhWOO4Fnor1lWMu\nZFaF+PTQKd7N8HYlSJzlkZaGY4dmfS6EqDNqVIHXi8lXTygrWDfqnC3nLXmJezTOwWrB5R4T\nYq57qbLwZnM3l8faGzJVmnZ3yPnF7RpPYfXudvPJg7VNcTsW9jifZX18OXH8shBCMhwRomfh\nFUIjQx1srvGvH6D3y8o2CSEMmUYRZvv3KCWORleq44ARHQeMEMJ89uDurVu3btu2bdtPv98w\n/PsgA2NqwhdzXtq4dd+W7Z82KR2gTsI8Ek5KL9IBAKqjUgYAACgBqtkZk2RVPdBPvoN/46pB\nOLy7lXbGckkfEhfpeJ8hVSyzlZoMBaeFrD5oumZ0N0mS0i4u/DXlzVal5GkDzRM/t6zZbUFv\nxzv3rNSTlgk5jWkHZ8066Mwm5uxbKTlSKV3Be41anRrPqXWDVm97Bk4P5t2mjMv7ln28etOm\nH/bsP5FscOFxrQ4oSbNkTr9itEw1WifMzhSduRqEuP/wXfcybn1SaVgtGw+S9JIBb94zsdcG\nIcT59ZPN4nfr4Jpt4yzPEK39wjteHTGqPAjvfWvn6qhRY6d9cDkrRwiRlXT+hzXLflizTAih\nD614X88He/XqPeChzhGFn3LsBOUx7Gq1oFqUFslevWGlpHDcCDxv11eOuZ1Zr8anUHaK90B4\nFxUkbvBIS8Mh6ZUvzwohJjxdM9+rxearJ5QVrBtNEevZJyLO0TMX/IJU+gGZG7zR3pB5r2l3\nR55f3KvxFFbvbjefPFjbFMNjYZPzWdaGWQpTMl2xuUKAXxE/qQnw08md9OaULOH5c4XPaas2\nbPt0w7ZPvzRDMqcf2rP3RpbG39/v9O+bPv9o8U8nkm8eWNWufmbCua+jvTzzivBcOBW3i3QA\nQJGY7h4AAKAEyCrqQYBpuSvkZBX1SE3rnorsTdBarv8lc8EZDgNKdxleIUQIIUk5L689J7+Y\ncvbNnclZQgi/wLgFLcsXtXdPyk7JdmOrtJyS9HhFjcb27Riv5v3b6U9Ujrt79LS5P+z523r3\nWasLqlLrrq69Hpm58IuP+1dz49OVpFmjCdBZ59QtahN3u8zcz3hq7rA5XbCHp492oGLn+aE6\nrRDCmLp37nnLXXJz9o2xv10TQmg02tlj63o1AZ4IQt2ACYtPX/zz3Rlj7mtWw3qIhRDZaZc2\nrVo6fGDXKjXbf7jF1adWeyuGHVMnSp1LiaNeAYWF40bg+bCuVpZZb8WnzO1TvEfC23GQuMkT\nLQ0H0i4u3JGcFVx2YL/8kxWr99WTih4h7ZWCtc8aJBqH+dJo/LSO1/ARn9TVCt255xd3ajyF\n1bv7zScv1zYO+Oxc73yWrfNeSEaFn6nxV69Z63HZaX++lSvZTotCow1p2LpDp47t27ZpM/il\n17cePt6zTLAQIv3yd32XHvdwgmydQTwVTsXtIh0AUCRG0gMAAJQARzOyhSj42Ly8DqZZbo2F\nVyxiKsLQaqFijxBCpCckOV4z8/J1ecEvqFbhd58fV3fp2L1CiAMzVonHpwkh9r78qfxWpa6L\nSnu136mQ0GqW2RrDY19NSpiu5kf7nPfyvmd6174ztsjLARE1Hhk8sHXzZk2bNqpds0pQ7jM7\n9xx9w409K0qzxq9KgO6swSSEOJ5WxD3H4xnuDGtTkvEauSNi0xPS3fho9/gF1ZxdP2rkwUQh\nxP/eOjJ+8T1CiOt/vHTVmCOECK8+pVtpR4/AUM5TQRgY3XDUtHmjps3LuHr8x20//7Lrl127\ndu09dkGSJCFEasLO4d3rXdt9YWpLZwdzeS+Gi+D9KFVOeeG4EXi+qqs9Egkej08r907xPgtv\nJ3iqpWHPkbc/EkLUemZ8wTfU+urlGC+5va2X1AryO5hmFELcPpcu6kbZW81kSDBLxe4XisU5\nmO25488vrtZ4Cqt3t5tP3q5tHPHRud75LEvpuSv4xdhcIctkCvJ31DVgyLb8MkwXptKU796Q\nnXFs0qRJ8nLTZ1+8L6LovGj15d+YWP/7cXuFEH+9MUeM/MSD6bF9BvFcOBWri3QAQJEYSQ8A\nAFAC/LQ70cG7Wbc3n8y03MHvGFlEb1z0PdHyQtrF1Y7XPLfS8ut7/7C7C79b48lp8kLy2TcO\np2cLs2HMOsv6T7zTxvGePS68bkV5ISt5l8of7XNeyrsp42jv2dvk5dqPvns58Z9P57827NFe\njeNjrXef3aYwzZ1ze/4OfH3B0XqScXVihqs7V5jxhuUtXWgXvzvnKGmm9OTk5OTk5JSibsM5\nqfece+WFM6tnygubx1k6D9rNHeaRj3DA40EYXL52r8eGv/P+8t/+Ppd8/vCnrz9XRq8TQkhm\n45yBbzq5E6/GcJG8GqXKeapwXA08n9TVHo8Ej8RnXm6c4n0b3kXyVEvDnpkrzgghRr9Qu/Bb\n6nz10i/uK3oldbXK7XY6v+a8g9UyE9eokhwXFPNgtuk/dX5xssZTWL273Xzydm3jmE/O9c5n\nOfuE5XcJGn/bz7lIu2n7ueYyKeug0ZT7GILAEtxJHxDeVpM7SP2zE0X8ssEqtLrldycZ11fe\nyC569hTn2TuDeCqcitVFOgCgSHTSAwAAlABH3vjWwbunPp8hL+j8yw4u5+hZpEKIij27yQuZ\nN77+MSnLwZrzv7Pc563St0vhdwMjHxhaPkQIIZmzJv546ebRKUfSs4UQAeHtptVU+7Hu4dXH\nyguGpO1bHWYq7eyB3bt37969e9/fzt6jKea8lPfEAy9fN+YIIfTBdfZ9MTLSzqiL5OMpridZ\naZoHtrIM2zqx5D0H2946+uo1Y1FPfyhEYcYbjrA8IDlx79sOPnvvmLsjIiIiIiLq9d7uagpt\nqtBufqReK4Qw3Prhk2sZZuPVcfsShRA6/7JLulXyyEc4oPCAnlj35YoVK1asWLHuVxtdlWGV\n6g2esmT3/zrJ/6ZeWGJybhSoV2O4SF6NUuU8VTiuBp5P6mqFmfVSfOblxinet+FdJE+1NGxK\nv/rRpluZQVE9B5ezMXWQB796OfZXODh/vxMpVVX7x6vKCxc3LHKw2ulPHQWbTxTzYLbpDj6/\nuF3jKaze3W4+ebW2KZJPzvXOZ/nWGctB1FdvYnMFw69/ONjceGy5vKDxiwkLKuIp6cWZLiC2\nT5RlupofX1zu5FYXvreMd9eHNJCbOi5x4wziqXAqVhfpAIAi0UkPAABQAtw6OuXzc6k238rJ\nOjdk6p/yctnmrwcV1b4Lqzi6drBeCCFJOaMnb7O32tVdE766YfmR/oDnbU8LOXqM5XnDe19Z\nu3Pc1/JyraHvqP/QQn1o06ExluEOoybvtLueZBx8T+s2bdq0adNm7B/XVUqcl3kp72mnb8oL\nAeH3htgZFmbOTpzgVjEqTHODV3pZEnl52eSdV+1tvXDwx26kTWHGKz8wVn6ipCHpp7E/Xbbz\nIebZq87ISzUG13AjkYXp/Cu906SMvLxo8fGrv465kZ0jhIjpsLii9x8jqvCAHn9t5KBBgwYN\nGjT4Kbt3Tsu37WBddvI+t1djuEhejVLlPFU4rgaeT+pqhZn1Unzm5cYp3rfhXSQPtjQKO7bg\nPSFEjSen2nxX+VdPk1ueN3+zPad9juH08HWOBvv6RM1hz8oLGYlrXt1ne24Gs+nGqPl/q5go\npxTzYLbpDj6/uF3jKaze3W4+ebW2KZJPzvVOZtl0+dPUTEsXfqm7bE93b7r+UUqawfb2Odeu\n/HZSXvSL8/qcTN425RnLQb/227hx35wucv0cw6mRa87Ky+XbTnW++0TJGcSD4VR8LtIBAEWi\nkx4AAKAEkMzZL7QffMpQ8Plzkjlj1kP37k21TPn49EcPFbkrjS78k2ctcx4e/7DPrB9sTIua\neX1H7x4L5eXQmCEvVw+3uauaQyfLC7ePvzLyZ8udiMmTGhSZBm+YutQyrOT4hz2mbzxjc50N\nr/X8+lqGEEKnj3734apeSonRrPbTXr2R97CapeUFw+0fEm3N8SiZM+YNuudwumUSZrPDeSAL\nl4mSNEc3fLtL7oSQ83p0/+GijceX7pzz0Aw7vRSOKcx4YFTv2Q0t05B+0LvvLzds3PrcM7vb\n2puZQgiNNuDNXlVsJsONKOo+xzIy7OSHCzaMt4wwe+LdTq7ux71kKDmg1QZYCiHp1JS1V2xP\n4Ll9wUp5ITDy/gDn5hL2bAy7yqtRWoAb0eLBwnE18NSvqxVm1kvxmT8BLp/i1Q9vl8LMgy2N\nwt76+JQQYvhLdWy+q/yrF1YrTF64svv5HbcLj1LNWfpE54RCB8vnQio8MyF3iOQ73Qb+lWLj\nWSqfjeiwK9nRuFuf8G1d7Z47+PyipMZTUr273Xzyam1TJDXP9VbOZFnKPHJp3Tp5WRvSOSrc\nzkRrkvHqV/ONOYV+XSZlJn4/0WCUKzpddPu7PJJyH2o49cv4YL28PH9AkzGLtzj4TmZc2j+8\nQ+uDaUYhhEbjN3lhe3trFj4zKjmDeDCcitVFOgDAMTrpAQDAf56Une6KjEzPPEPaVakJ3zSO\n77j0250p8sySZsOfP67q17zq9A2WH+NX7jp/Rp3SzuyqxRtrW0cECCEks/HVHvUGvfLB35ct\njyTMyby28X8zm8d3/T0lSwih0frP2vi2vf0ERvV5slyIEMKck3YpK0cIEVrhmUfKBCnJptti\ne3wxon6kEEIyG2f2rP3wmHd+P3I63TILp3Tp4I9Tnmrd41XLw5JbTV7bOFTvpZTs/eNm4Rff\natu4Zq7fUj0cQt7Ie2TdiXqNRghhMiQ07/va8Rt5bjNJxp3/9+79jePGr/l3JMrF9cuOXrFx\nL0lWuEwUpVnj97/vxsiLxtQDD8Y3mLDo/87csqTw6tHdMwa3az/hWyFEaFxokTn1eMafX/++\nPCtmVsrvneNbvrF8c6LBcvczLfHE/LH9O7yyVf635pNr7g6zPX2ozShyrNzd88r764QQ6de+\nGL0/UQgREHHvjHin6gR7nE+GkgNa86nJ/lqNEEIyGx5t1GXRqq1JJuu9U/OlQ9unD2/fe95h\n+f8mY6c7mSTPxrDLvBmlBbgRLR4sHFcDT/26WmFmvRSfBbh6ilc/vF0NM0+1HEsKkwAAECxJ\nREFUNArITFz51Y2MwIhOz8fY+eIo/upVfbyjJZ1Zl/q0eWz94X8znn55/6T+jUZ+eVYfHB8X\n6OdkmlXz8qZ5wTqtECLz5va28W0XfPVzUu5c5JcO73ip711DPjyi0eibhFrOO3qN678o8QIf\n19VuuYPPL0pqPIXVu9vNJy/VNk5R8Vyfl4MsC1NS2rFVCZ9PzTRmyyks02uI7b1ow4UQ5pTd\nCZ9Nvn36iFmShBBCMhrObb+4asjN8zfktQIavBweHOjBxPuEX2CNjZ88J8/WYDalLHiha5n4\ntpPefG/jjj/Pnr90Ozn58rlT+37dsfbLz0f0axdVpemy3yzTPDR+9uvh1UvZ223hM6OiM4jn\nwqlYXaQDAIogAQCAO5dxRYU7488bhfN9o7LuNZ/CKo3Pu59LP1tGjZSuscTmB2Wl/CqvoNEG\n2UvMw9GW56rOOp+S9/XSfpafVE4ae581ARpdQHS5MkF++X5tWarag3+nZxfY7cE3m8nvVun2\nY4G3buz/MDbP3QGNRlu6TExcpXKBOm3eFx+b86vjYjwwq2neZLT94JiDlb1aVpIkGW7tvLdC\nvpEiGm1gxdiKYYH55var2XtGlrngbs9+Z7mlEl33WwdZCMqdw/CvNGOBt8ZXtoyc0OpCW3fs\n0qlty8e/Tfj33Uph1gRsTzI4+Aj3EqYk7/biZM1j/04HqtWF1m/colPXzs3q14wIskSOPqTW\nW8sG5QkYXeUavZ0vEyVpliTpmwn5hupqNJqwyHKlQwOsr4RV6fP7jq7ycucfzjtf5sozfvyL\nFwPyzH+r1QWVqxRbplS+W5wRNQeeN5gKfLSDEnMmEla1r5j3IxpO3ucgmw526F4ylBzQtc80\nyr+hf2TZmLgqFULyT5ke1XBwislWNNih8FAqrxa8F6WS4mhRHudWLgWe5J36yjGFmfVSfCo8\nxasT3o6rcccUtjTmVbOMC+954Lr1xf0zmwgh6jy72/FHK/vqmZ6tFZFnW7+K1et16Nq5ZZN4\nP41GLooFv1/vFBEohPAPbVLgo50pWHvrKK9z/lj4hDZP17tWH1KhSlzZiGBraT/90f6VtaPk\nf392pTXi1Sacl4JZeXk6cAefX5TUeAqbdm43n5TUNsX5WDhIm80s60MjNPl+fKMp1WZO7VHr\nC/xZijf0oUpNaudZV68LDs+/ufCL6Vnzhe8L78Hbf84XkUv2Lnk6WOfCeMWWQxZn2wpUh2dG\nRWcQyXPh5NJFOgDAhxhJDwAAUAJ0mbZ+45vDIvy0QggpJ+vGtcTMf8e1iLrdn/vt0Nd1g10Y\n1BXV6OmDB/7vgYaWZwlLkvl24uWEi9cMOZbdBpSuM235/uUv3eN4P7WenWhd1mgD5j9a3fk0\neFxA6bY/ntgz/P5/p/KTzIZL5y6l5g7E0epCH5v66ZFvpvl7YfDYM6/1lBfMOWm7t2/Ztuu3\nhGT1Jl3wRt4f/mzvK4+0tgw6yUk7sn/vts0/7jtyMinTJISIv++pH47/NWHIp1O7VLJ8opST\neCPfY5Udl4nCNPd5a+vGt4eXy71lLElS6q1rt9Msw00qtnnqpwOrYgPcGemoPOPxg+YfW/d2\n43JBudnPvHbxXGLKv3O31u05bu+BLyoHFHw0pMIo6jTnAeuyRqN9fVw957dVngwlB/TB939f\nNKKbLvfWsGQ23rp+OeH8lXRjjjU7bR+femjvx2E6F769yg+lQt6LUqE4WjxYOK4Gnvp1tcLM\neik+rdw7xasT3krCzFMtjbzmLz4hhHhqShFz9ir76ukW/rG1X8vKuduaLp3++6fNP/721wmT\nJAVE3LV4y9HRLco4n2Y1NRv52e8fja+U23Vnzk6/cj7helKGEMIvsMqM1X99OKzRzdzoKudf\nXB5P7PO62g0+T7P3zi9KajyF1bvbzSdv1DbO8+q53h6bWc5OS5Iky/wZmoDK0V0XxeTthi8k\ntM2bFZq31giNEEJI2TkZydbNhdAG1x1Ute8zOq0Xrpp8pPlzH57/6+uHWtUocs3Imq3mf3do\nz8fP+9nKvcMzo9IziKfCqVhdpAMAHCh203MBAADApu4TPzrfb9DCxZ99s3HHuctXU0x+FSrE\nNGzdrd/AIY93d+cJc+Hxfdfvf3DXV5+sWbd++2+Hrl67npKtK1O2bLV6Lbo/0HPIsAEVCt0C\nKywout/AssGrr2cIISLrzmrqtTnknaQPa7B0w6HxO7/65Mt1m7fvOX/12u0MbWyNmjVr1qzb\nqPXjw55qGBPspY+u8eSKzab41xatPHbmbKa2VIUKFeqVVXVySI/nXaMLf23lL8+/tHbmvM+P\n/HPy1KlTyebgmJjKzdt379vv8X4dLc8DnrHpn+YfzPl250FRukrdBu3z7qHIMlGY5u7jl559\n4pllHy5f9/2WY+cuJ97KiChXoWq9lo8+OXj4I138NSKjytA5czoIIWJrRzjYj8czLoSo+sC4\nfRcHf7Vs2drvv//t8Nlr1xOlgFJlKsTd0679w08+/1Br23fKFEZRdKN34gI/kR91WarqxAci\n3YxAt5Ph/gHV+L/w3qZ+T2/7+Iv/23v0zIULFy5cuJAqhcbGxcbFxlWv27zfY0+2b1DO1Yx4\n5FAq5KUoFYqjxYOF40bgqVxXK82sd+IzLzdO8eqEt8Iw80hLw8pwc93n19IDSt3zUpWwIldW\n8tXzL9V0zZ5zv321YP4XP5w8efLUmUt+4WUqVq51f/9BQ557PD5ML4R4dtab3Q0mnb+i4+4N\nzYa+dbLXox++9/GX3205kXAhOSewcuXYDr0ff37U8Mblg4QQpzNNQgiNNrCKK4XvVcWhrnZV\ncUizt84vymo8hdW7e80n4enaxlXeO9c7UDjLtzMkXXCEPrJWaNUW4fXa+dkZNV62zVAhhMa/\nphB+4fdMDqm+7/bfW9MunjSl3TJrAv1CywRVvrtU7W6h5aI8ldTiI+qu3l/t7n318PblX2/a\nu3fv/qNnbiUlpaQZAkPDIyIiKtes37xZs/b3P9S7bR0Hv01wfGZUfgbxSDgVt4t0AIA9mjw/\nkQMAAHea7JUxvk6CZ+gfvezrJHiZJJlMJpPJpAsM0ue5JRCp1902mYUQ25MMHcID7G7uQ1J2\nm4iw3SlZQoh+Wy6s6VzJ+59ou6xUIpnlT/cPCnZjTqo9z9Zt9eGxn5MM9xbPownADcqqBfxn\nlYBTPIonRXVOTqXAgEtZOUFRvTJufOeFxDnk2yacPcW5Di/Oafuv8cWxSFjbqWrv7UKI6Lrf\nJv7du8j164ze4P1EqeHYuw8UvRIcU/8iHQDgFkbSAwAAFAMajZ9e76cveb9wv/n3FPniX+df\nbmF7VX4U4tuy0mj99P5+en/3ts68nCmEiCk2E8wC8ABl1QIAuMZWnWPKOLr5p7NCCK1fRPeu\nre1tmnp+4aWsHCFESEzRHX6eVzybu8W5Di/Oafuv4VigRPHBRToAwC100gMAAMB9P4xcJS/E\n3LuovJ5BPkU4djLFP7RhzSAa4QAAwGNMmSd69OgrhNBo9X+lpDcKsd0Rvub5BfJC0+n3qpc4\nAO5h9lu4i4t0ACgpqKMBAADgpuy0P0b8ckVe7j+vo28TU9yZDQfXvTXhVFLVAfN8nRQAAHBH\nCYzq1T0ySAghmbP7PjnPYLaxzoHPXhi24bwQQusX/k5Xpj4GirvUk6m+TgJKJC7SAaAEoZMe\nAAAArjly8nx6tinx3L7x3R9MNpmFEMFlH5pdL8rX6SrWJlcr16jXpPKdXti8mLFrAADAs7Tv\nLX5YXjr79aT4+x776LtdCZcSDaasi6eO/Pj9momDOjR7aom8QtOJGxrYGWoPoLiQjB9/eFJe\nDIgO9G1aUCJwkQ4AJREzbQIAAMA1DWrFFnhlwOcL9BqfpKXE6PHa0g5Va3dq04TH0QMAAI+r\nNvDzZbtOD1vyqxDi/E8rn/lppc3VqnQet3l6K3WTBsAF+6eNXXw+MeHPTdtOJcmv1H66hm+T\nhBKBi3QAKInopAcAAIAiLV5Y8QmTphal9eOP+joJAADgTjZ08e74e2a9+Mo7f55LKfyuPrjK\n4AlT508dGqKl0wYovs59/cXHR29Y/y1VrffqAdV8mB6UUFykA0CJQCc9AAAAXNOrde1Ne06Y\nNIFVajUZNnHGpCc7+TpFAAAAEG0GvbJv0JRjv+/6+9SZs2fPnrt4Qx9aqnRkubtatGrTpll0\nIBP6ACWDRhdYvkp8/2fGjHtxULSe59WiaFykA0BJpJEkyddpAAAA3pK9MsbXSfAM/aOXfZ0E\n5Gc2GoQ+kJFYAAAAAOAh5uz0a4mZ0RWiXZ2ovM7oDd5JkdqOvfuAr5NQYnGRDgAlDSPpAQAA\n4Dqtf6CvkwAAAAAAdxKtPqRCTIivU4GSiYt0AChpmC0HAAAAAAAAAAAAAACV0EkPAAAAAAAA\nAAAAAIBK6KQHAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAAAFAJnfQA\nAAAAAAAAAAAAAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAA\nAJXQSQ8AAAAAAAAAAAAAgEo0kiT5Og0AAAAAAAAAAAAAAPwnMJIeAAAAAAAAAAAAAACV0EkP\nAAAAAAAAAAAAAIBK6KQHAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAA\nAFAJnfQAAAAAAAAAAAAAAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAA\nAAAAAAAAAJXQSQ8AAAAAAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI6\n6QEAAAAAAAAAAAAAUAmd9AAAAAAAAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAA\nAAAAKqGTHgAAAAAAAAAAAAAAldBJDwAAAAAAAAAAAACASuikBwAAAAAAAAAAAABAJXTSAwAA\nAAAAAAAAAACgEjrpAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAAAAAAAABU\nQic9AAAAAAAAAAAAAAAqoZMeAAAAAAAAAAAAAACV0EkPAAAAAAAAAAAAAIBK6KQHAAAAAAAA\nAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAAAFAJnfQAAAAAAAAAAAAAAKiETnoA\nAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAAAJXQSQ8AAAAAAAAAAAAA\ngEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI66QEAAAAAAAAAAAAAUAmd9AAAAAAA\nAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAAAAAAKqGTHgAAAAAAAAAAAAAAldBJ\nDwAAAAAAAAAAAACASuikBwAAAAAAAAAAAABAJXTSAwAAAAAAAAAAAACgEjrpAQAAAAAAAAAA\nAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAAAAAAAABU8v9nQVd1lTV4IQAAAABJRU5ErkJg\ngg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "dt_sep<-data.table::data.table(acl00=c(\"Study\",\"Study\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Empl\",acl00)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia','Turkey')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "fig2_colors<-c(\"#FAA519\",\"#286EB4\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=acl00)) + theme_minimal() +\n", " geom_bar(position=\"dodge\",stat=\"identity\",width=0.7)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/24)) +\n", " scale_fill_manual(values = fig2_colors)+\n", " ggtitle(\"Figure 2: Participation time per day in study and employment, only individuals taking part in the activity, by country, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 3: Participation time per day in household and family care, by gender, (hh mm; 2008 to 2015)\n", "\n", "The data is again in the *tus_00age* dataset. We use the same method as for Figure 1. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"household.*care\")`. Again in order to get the data we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 54 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>age</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Austria </td><td>2010</td><td>4:32</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Belgium </td><td>2010</td><td>3:58</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>3:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Estonia </td><td>2010</td><td>4:05</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Greece </td><td>2010</td><td>4:28</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Spain </td><td>2010</td><td>4:36</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Finland </td><td>2010</td><td>3:41</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>France </td><td>2010</td><td>4:04</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Hungary </td><td>2010</td><td>4:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Italy </td><td>2010</td><td>5:09</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Luxembourg </td><td>2010</td><td>3:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Netherlands </td><td>2010</td><td>3:29</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Norway </td><td>2010</td><td>3:30</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Poland </td><td>2010</td><td>4:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Romania </td><td>2010</td><td>5:02</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Serbia </td><td>2010</td><td>4:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>Turkey </td><td>2010</td><td>4:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Total</td><td>Household and family care</td><td>United Kingdom </td><td>2010</td><td>3:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Austria </td><td>2010</td><td>2:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Belgium </td><td>2010</td><td>2:42</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>2:35</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Estonia </td><td>2010</td><td>2:52</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Greece </td><td>2010</td><td>2:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Spain </td><td>2010</td><td>2:36</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Finland </td><td>2010</td><td>2:32</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>France </td><td>2010</td><td>2:53</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Hungary </td><td>2010</td><td>2:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Italy </td><td>2010</td><td>2:22</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Luxembourg </td><td>2010</td><td>2:14</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Netherlands </td><td>2010</td><td>2:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Norway </td><td>2010</td><td>2:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Poland </td><td>2010</td><td>2:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Romania </td><td>2010</td><td>2:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Serbia </td><td>2010</td><td>2:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>Turkey </td><td>2010</td><td>1:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Total</td><td>Household and family care</td><td>United Kingdom </td><td>2010</td><td>2:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Austria </td><td>2010</td><td>3:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Belgium </td><td>2010</td><td>3:23</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>3:15</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Estonia </td><td>2010</td><td>3:35</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Greece </td><td>2010</td><td>3:31</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Spain </td><td>2010</td><td>3:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Finland </td><td>2010</td><td>3:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>France </td><td>2010</td><td>3:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Hungary </td><td>2010</td><td>3:56</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Italy </td><td>2010</td><td>4:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Luxembourg </td><td>2010</td><td>3:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Netherlands </td><td>2010</td><td>2:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Norway </td><td>2010</td><td>3:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Poland </td><td>2010</td><td>3:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Romania </td><td>2010</td><td>4:03</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Serbia </td><td>2010</td><td>3:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>Turkey </td><td>2010</td><td>3:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total </td><td>Total</td><td>Household and family care</td><td>United Kingdom </td><td>2010</td><td>3:11</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 54 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & age & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Austria & 2010 & 4:32\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Belgium & 2010 & 3:58\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Germany (until 1990 former territory of the FRG) & 2010 & 3:50\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Estonia & 2010 & 4:05\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Greece & 2010 & 4:28\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Spain & 2010 & 4:36\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Finland & 2010 & 3:41\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & France & 2010 & 4:04\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Hungary & 2010 & 4:43\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Italy & 2010 & 5:09\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Luxembourg & 2010 & 3:54\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Netherlands & 2010 & 3:29\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Norway & 2010 & 3:30\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Poland & 2010 & 4:33\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Romania & 2010 & 5:02\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Serbia & 2010 & 4:48\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & Turkey & 2010 & 4:59\\\\\n", "\t Participation time (hh:mm) & Females & Total & Household and family care & United Kingdom & 2010 & 3:50\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Austria & 2010 & 2:47\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Belgium & 2010 & 2:42\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Germany (until 1990 former territory of the FRG) & 2010 & 2:35\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Estonia & 2010 & 2:52\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Greece & 2010 & 2:07\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Spain & 2010 & 2:36\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Finland & 2010 & 2:32\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & France & 2010 & 2:53\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Hungary & 2010 & 2:55\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Italy & 2010 & 2:22\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Luxembourg & 2010 & 2:14\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Netherlands & 2010 & 2:27\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Norway & 2010 & 2:43\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Poland & 2010 & 2:48\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Romania & 2010 & 2:45\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Serbia & 2010 & 2:33\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & Turkey & 2010 & 1:43\\\\\n", "\t Participation time (hh:mm) & Males & Total & Household and family care & United Kingdom & 2010 & 2:27\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Austria & 2010 & 3:46\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Belgium & 2010 & 3:23\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Germany (until 1990 former territory of the FRG) & 2010 & 3:15\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Estonia & 2010 & 3:35\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Greece & 2010 & 3:31\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Spain & 2010 & 3:43\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Finland & 2010 & 3:08\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & France & 2010 & 3:33\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Hungary & 2010 & 3:56\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Italy & 2010 & 4:01\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Luxembourg & 2010 & 3:07\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Netherlands & 2010 & 2:59\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Norway & 2010 & 3:07\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Poland & 2010 & 3:46\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Romania & 2010 & 4:03\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Serbia & 2010 & 3:51\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & Turkey & 2010 & 3:50\\\\\n", "\t Participation time (hh:mm) & Total & Total & Household and family care & United Kingdom & 2010 & 3:11\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 54 × 7\n", "\n", "| unit <chr> | sex <chr> | age <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Austria | 2010 | 4:32 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Belgium | 2010 | 3:58 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Germany (until 1990 former territory of the FRG) | 2010 | 3:50 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Estonia | 2010 | 4:05 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Greece | 2010 | 4:28 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Spain | 2010 | 4:36 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Finland | 2010 | 3:41 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | France | 2010 | 4:04 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Hungary | 2010 | 4:43 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Italy | 2010 | 5:09 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Luxembourg | 2010 | 3:54 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Netherlands | 2010 | 3:29 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Norway | 2010 | 3:30 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Poland | 2010 | 4:33 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Romania | 2010 | 5:02 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Serbia | 2010 | 4:48 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | Turkey | 2010 | 4:59 |\n", "| Participation time (hh:mm) | Females | Total | Household and family care | United Kingdom | 2010 | 3:50 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Austria | 2010 | 2:47 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Belgium | 2010 | 2:42 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Germany (until 1990 former territory of the FRG) | 2010 | 2:35 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Estonia | 2010 | 2:52 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Greece | 2010 | 2:07 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Spain | 2010 | 2:36 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Finland | 2010 | 2:32 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | France | 2010 | 2:53 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Hungary | 2010 | 2:55 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Italy | 2010 | 2:22 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Luxembourg | 2010 | 2:14 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Netherlands | 2010 | 2:27 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Norway | 2010 | 2:43 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Poland | 2010 | 2:48 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Romania | 2010 | 2:45 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Serbia | 2010 | 2:33 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | Turkey | 2010 | 1:43 |\n", "| Participation time (hh:mm) | Males | Total | Household and family care | United Kingdom | 2010 | 2:27 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Austria | 2010 | 3:46 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Belgium | 2010 | 3:23 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Germany (until 1990 former territory of the FRG) | 2010 | 3:15 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Estonia | 2010 | 3:35 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Greece | 2010 | 3:31 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Spain | 2010 | 3:43 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Finland | 2010 | 3:08 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | France | 2010 | 3:33 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Hungary | 2010 | 3:56 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Italy | 2010 | 4:01 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Luxembourg | 2010 | 3:07 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Netherlands | 2010 | 2:59 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Norway | 2010 | 3:07 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Poland | 2010 | 3:46 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Romania | 2010 | 4:03 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Serbia | 2010 | 3:51 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | Turkey | 2010 | 3:50 |\n", "| Participation time (hh:mm) | Total | Total | Household and family care | United Kingdom | 2010 | 3:11 |\n", "\n" ], "text/plain": [ " unit sex age acl00 \n", "1 Participation time (hh:mm) Females Total Household and family care\n", "2 Participation time (hh:mm) Females Total Household and family care\n", "3 Participation time (hh:mm) Females Total Household and family care\n", "4 Participation time (hh:mm) Females Total Household and family care\n", "5 Participation time (hh:mm) Females Total Household and family care\n", "6 Participation time (hh:mm) Females Total Household and family care\n", "7 Participation time (hh:mm) Females Total Household and family care\n", "8 Participation time (hh:mm) Females Total Household and family care\n", "9 Participation time (hh:mm) Females Total Household and family care\n", "10 Participation time (hh:mm) Females Total Household and family care\n", "11 Participation time (hh:mm) Females Total Household and family care\n", "12 Participation time (hh:mm) Females Total Household and family care\n", "13 Participation time (hh:mm) Females Total Household and family care\n", "14 Participation time (hh:mm) Females Total Household and family care\n", "15 Participation time (hh:mm) Females Total Household and family care\n", "16 Participation time (hh:mm) Females Total Household and family care\n", "17 Participation time (hh:mm) Females Total Household and family care\n", "18 Participation time (hh:mm) Females Total Household and family care\n", "19 Participation time (hh:mm) Males Total Household and family care\n", "20 Participation time (hh:mm) Males Total Household and family care\n", "21 Participation time (hh:mm) Males Total Household and family care\n", "22 Participation time (hh:mm) Males Total Household and family care\n", "23 Participation time (hh:mm) Males Total Household and family care\n", "24 Participation time (hh:mm) Males Total Household and family care\n", "25 Participation time (hh:mm) Males Total Household and family care\n", "26 Participation time (hh:mm) Males Total Household and family care\n", "27 Participation time (hh:mm) Males Total Household and family care\n", "28 Participation time (hh:mm) Males Total Household and family care\n", "29 Participation time (hh:mm) Males Total Household and family care\n", "30 Participation time (hh:mm) Males Total Household and family care\n", "31 Participation time (hh:mm) Males Total Household and family care\n", "32 Participation time (hh:mm) Males Total Household and family care\n", "33 Participation time (hh:mm) Males Total Household and family care\n", "34 Participation time (hh:mm) Males Total Household and family care\n", "35 Participation time (hh:mm) Males Total Household and family care\n", "36 Participation time (hh:mm) Males Total Household and family care\n", "37 Participation time (hh:mm) Total Total Household and family care\n", "38 Participation time (hh:mm) Total Total Household and family care\n", "39 Participation time (hh:mm) Total Total Household and family care\n", "40 Participation time (hh:mm) Total Total Household and family care\n", "41 Participation time (hh:mm) Total Total Household and family care\n", "42 Participation time (hh:mm) Total Total Household and family care\n", "43 Participation time (hh:mm) Total Total Household and family care\n", "44 Participation time (hh:mm) Total Total Household and family care\n", "45 Participation time (hh:mm) Total Total Household and family care\n", "46 Participation time (hh:mm) Total Total Household and family care\n", "47 Participation time (hh:mm) Total Total Household and family care\n", "48 Participation time (hh:mm) Total Total Household and family care\n", "49 Participation time (hh:mm) Total Total Household and family care\n", "50 Participation time (hh:mm) Total Total Household and family care\n", "51 Participation time (hh:mm) Total Total Household and family care\n", "52 Participation time (hh:mm) Total Total Household and family care\n", "53 Participation time (hh:mm) Total Total Household and family care\n", "54 Participation time (hh:mm) Total Total Household and family care\n", " geo time values\n", "1 Austria 2010 4:32 \n", "2 Belgium 2010 3:58 \n", "3 Germany (until 1990 former territory of the FRG) 2010 3:50 \n", "4 Estonia 2010 4:05 \n", "5 Greece 2010 4:28 \n", "6 Spain 2010 4:36 \n", "7 Finland 2010 3:41 \n", "8 France 2010 4:04 \n", "9 Hungary 2010 4:43 \n", "10 Italy 2010 5:09 \n", "11 Luxembourg 2010 3:54 \n", "12 Netherlands 2010 3:29 \n", "13 Norway 2010 3:30 \n", "14 Poland 2010 4:33 \n", "15 Romania 2010 5:02 \n", "16 Serbia 2010 4:48 \n", "17 Turkey 2010 4:59 \n", "18 United Kingdom 2010 3:50 \n", "19 Austria 2010 2:47 \n", "20 Belgium 2010 2:42 \n", "21 Germany (until 1990 former territory of the FRG) 2010 2:35 \n", "22 Estonia 2010 2:52 \n", "23 Greece 2010 2:07 \n", "24 Spain 2010 2:36 \n", "25 Finland 2010 2:32 \n", "26 France 2010 2:53 \n", "27 Hungary 2010 2:55 \n", "28 Italy 2010 2:22 \n", "29 Luxembourg 2010 2:14 \n", "30 Netherlands 2010 2:27 \n", "31 Norway 2010 2:43 \n", "32 Poland 2010 2:48 \n", "33 Romania 2010 2:45 \n", "34 Serbia 2010 2:33 \n", "35 Turkey 2010 1:43 \n", "36 United Kingdom 2010 2:27 \n", "37 Austria 2010 3:46 \n", "38 Belgium 2010 3:23 \n", "39 Germany (until 1990 former territory of the FRG) 2010 3:15 \n", "40 Estonia 2010 3:35 \n", "41 Greece 2010 3:31 \n", "42 Spain 2010 3:43 \n", "43 Finland 2010 3:08 \n", "44 France 2010 3:33 \n", "45 Hungary 2010 3:56 \n", "46 Italy 2010 4:01 \n", "47 Luxembourg 2010 3:07 \n", "48 Netherlands 2010 2:59 \n", "49 Norway 2010 3:07 \n", "50 Poland 2010 3:46 \n", "51 Romania 2010 4:03 \n", "52 Serbia 2010 3:51 \n", "53 Turkey 2010 3:50 \n", "54 United Kingdom 2010 3:11 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00age\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"household.*care\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with sex, countries and values. Before plotting the values we need to cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 54 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>sex</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Females</td><td>Austria </td><td>04:32:00</td></tr>\n", "\t<tr><td>Females</td><td>Belgium </td><td>03:58:00</td></tr>\n", "\t<tr><td>Females</td><td>Germany </td><td>03:50:00</td></tr>\n", "\t<tr><td>Females</td><td>Estonia </td><td>04:05:00</td></tr>\n", "\t<tr><td>Females</td><td>Greece </td><td>04:28:00</td></tr>\n", "\t<tr><td>Females</td><td>Spain </td><td>04:36:00</td></tr>\n", "\t<tr><td>Females</td><td>Finland </td><td>03:41:00</td></tr>\n", "\t<tr><td>Females</td><td>France </td><td>04:04:00</td></tr>\n", "\t<tr><td>Females</td><td>Hungary </td><td>04:43:00</td></tr>\n", "\t<tr><td>Females</td><td>Italy </td><td>05:09:00</td></tr>\n", "\t<tr><td>Females</td><td>Luxembourg </td><td>03:54:00</td></tr>\n", "\t<tr><td>Females</td><td>Netherlands </td><td>03:29:00</td></tr>\n", "\t<tr><td>Females</td><td>Norway </td><td>03:30:00</td></tr>\n", "\t<tr><td>Females</td><td>Poland </td><td>04:33:00</td></tr>\n", "\t<tr><td>Females</td><td>Romania </td><td>05:02:00</td></tr>\n", "\t<tr><td>Females</td><td>Serbia </td><td>04:48:00</td></tr>\n", "\t<tr><td>Females</td><td>Turkey </td><td>04:59:00</td></tr>\n", "\t<tr><td>Females</td><td>United Kingdom</td><td>03:50:00</td></tr>\n", "\t<tr><td>Males </td><td>Austria </td><td>02:47:00</td></tr>\n", "\t<tr><td>Males </td><td>Belgium </td><td>02:42:00</td></tr>\n", "\t<tr><td>Males </td><td>Germany </td><td>02:35:00</td></tr>\n", "\t<tr><td>Males </td><td>Estonia </td><td>02:52:00</td></tr>\n", "\t<tr><td>Males </td><td>Greece </td><td>02:07:00</td></tr>\n", "\t<tr><td>Males </td><td>Spain </td><td>02:36:00</td></tr>\n", "\t<tr><td>Males </td><td>Finland </td><td>02:32:00</td></tr>\n", "\t<tr><td>Males </td><td>France </td><td>02:53:00</td></tr>\n", "\t<tr><td>Males </td><td>Hungary </td><td>02:55:00</td></tr>\n", "\t<tr><td>Males </td><td>Italy </td><td>02:22:00</td></tr>\n", "\t<tr><td>Males </td><td>Luxembourg </td><td>02:14:00</td></tr>\n", "\t<tr><td>Males </td><td>Netherlands </td><td>02:27:00</td></tr>\n", "\t<tr><td>Males </td><td>Norway </td><td>02:43:00</td></tr>\n", "\t<tr><td>Males </td><td>Poland </td><td>02:48:00</td></tr>\n", "\t<tr><td>Males </td><td>Romania </td><td>02:45:00</td></tr>\n", "\t<tr><td>Males </td><td>Serbia </td><td>02:33:00</td></tr>\n", "\t<tr><td>Males </td><td>Turkey </td><td>01:43:00</td></tr>\n", "\t<tr><td>Males </td><td>United Kingdom</td><td>02:27:00</td></tr>\n", "\t<tr><td>Total </td><td>Austria </td><td>03:46:00</td></tr>\n", "\t<tr><td>Total </td><td>Belgium </td><td>03:23:00</td></tr>\n", "\t<tr><td>Total </td><td>Germany </td><td>03:15:00</td></tr>\n", "\t<tr><td>Total </td><td>Estonia </td><td>03:35:00</td></tr>\n", "\t<tr><td>Total </td><td>Greece </td><td>03:31:00</td></tr>\n", "\t<tr><td>Total </td><td>Spain </td><td>03:43:00</td></tr>\n", "\t<tr><td>Total </td><td>Finland </td><td>03:08:00</td></tr>\n", "\t<tr><td>Total </td><td>France </td><td>03:33:00</td></tr>\n", "\t<tr><td>Total </td><td>Hungary </td><td>03:56:00</td></tr>\n", "\t<tr><td>Total </td><td>Italy </td><td>04:01:00</td></tr>\n", "\t<tr><td>Total </td><td>Luxembourg </td><td>03:07:00</td></tr>\n", "\t<tr><td>Total </td><td>Netherlands </td><td>02:59:00</td></tr>\n", "\t<tr><td>Total </td><td>Norway </td><td>03:07:00</td></tr>\n", "\t<tr><td>Total </td><td>Poland </td><td>03:46:00</td></tr>\n", "\t<tr><td>Total </td><td>Romania </td><td>04:03:00</td></tr>\n", "\t<tr><td>Total </td><td>Serbia </td><td>03:51:00</td></tr>\n", "\t<tr><td>Total </td><td>Turkey </td><td>03:50:00</td></tr>\n", "\t<tr><td>Total </td><td>United Kingdom</td><td>03:11:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 54 × 3\n", "\\begin{tabular}{lll}\n", " sex & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Females & Austria & 04:32:00\\\\\n", "\t Females & Belgium & 03:58:00\\\\\n", "\t Females & Germany & 03:50:00\\\\\n", "\t Females & Estonia & 04:05:00\\\\\n", "\t Females & Greece & 04:28:00\\\\\n", "\t Females & Spain & 04:36:00\\\\\n", "\t Females & Finland & 03:41:00\\\\\n", "\t Females & France & 04:04:00\\\\\n", "\t Females & Hungary & 04:43:00\\\\\n", "\t Females & Italy & 05:09:00\\\\\n", "\t Females & Luxembourg & 03:54:00\\\\\n", "\t Females & Netherlands & 03:29:00\\\\\n", "\t Females & Norway & 03:30:00\\\\\n", "\t Females & Poland & 04:33:00\\\\\n", "\t Females & Romania & 05:02:00\\\\\n", "\t Females & Serbia & 04:48:00\\\\\n", "\t Females & Turkey & 04:59:00\\\\\n", "\t Females & United Kingdom & 03:50:00\\\\\n", "\t Males & Austria & 02:47:00\\\\\n", "\t Males & Belgium & 02:42:00\\\\\n", "\t Males & Germany & 02:35:00\\\\\n", "\t Males & Estonia & 02:52:00\\\\\n", "\t Males & Greece & 02:07:00\\\\\n", "\t Males & Spain & 02:36:00\\\\\n", "\t Males & Finland & 02:32:00\\\\\n", "\t Males & France & 02:53:00\\\\\n", "\t Males & Hungary & 02:55:00\\\\\n", "\t Males & Italy & 02:22:00\\\\\n", "\t Males & Luxembourg & 02:14:00\\\\\n", "\t Males & Netherlands & 02:27:00\\\\\n", "\t Males & Norway & 02:43:00\\\\\n", "\t Males & Poland & 02:48:00\\\\\n", "\t Males & Romania & 02:45:00\\\\\n", "\t Males & Serbia & 02:33:00\\\\\n", "\t Males & Turkey & 01:43:00\\\\\n", "\t Males & United Kingdom & 02:27:00\\\\\n", "\t Total & Austria & 03:46:00\\\\\n", "\t Total & Belgium & 03:23:00\\\\\n", "\t Total & Germany & 03:15:00\\\\\n", "\t Total & Estonia & 03:35:00\\\\\n", "\t Total & Greece & 03:31:00\\\\\n", "\t Total & Spain & 03:43:00\\\\\n", "\t Total & Finland & 03:08:00\\\\\n", "\t Total & France & 03:33:00\\\\\n", "\t Total & Hungary & 03:56:00\\\\\n", "\t Total & Italy & 04:01:00\\\\\n", "\t Total & Luxembourg & 03:07:00\\\\\n", "\t Total & Netherlands & 02:59:00\\\\\n", "\t Total & Norway & 03:07:00\\\\\n", "\t Total & Poland & 03:46:00\\\\\n", "\t Total & Romania & 04:03:00\\\\\n", "\t Total & Serbia & 03:51:00\\\\\n", "\t Total & Turkey & 03:50:00\\\\\n", "\t Total & United Kingdom & 03:11:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 54 × 3\n", "\n", "| sex <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Females | Austria | 04:32:00 |\n", "| Females | Belgium | 03:58:00 |\n", "| Females | Germany | 03:50:00 |\n", "| Females | Estonia | 04:05:00 |\n", "| Females | Greece | 04:28:00 |\n", "| Females | Spain | 04:36:00 |\n", "| Females | Finland | 03:41:00 |\n", "| Females | France | 04:04:00 |\n", "| Females | Hungary | 04:43:00 |\n", "| Females | Italy | 05:09:00 |\n", "| Females | Luxembourg | 03:54:00 |\n", "| Females | Netherlands | 03:29:00 |\n", "| Females | Norway | 03:30:00 |\n", "| Females | Poland | 04:33:00 |\n", "| Females | Romania | 05:02:00 |\n", "| Females | Serbia | 04:48:00 |\n", "| Females | Turkey | 04:59:00 |\n", "| Females | United Kingdom | 03:50:00 |\n", "| Males | Austria | 02:47:00 |\n", "| Males | Belgium | 02:42:00 |\n", "| Males | Germany | 02:35:00 |\n", "| Males | Estonia | 02:52:00 |\n", "| Males | Greece | 02:07:00 |\n", "| Males | Spain | 02:36:00 |\n", "| Males | Finland | 02:32:00 |\n", "| Males | France | 02:53:00 |\n", "| Males | Hungary | 02:55:00 |\n", "| Males | Italy | 02:22:00 |\n", "| Males | Luxembourg | 02:14:00 |\n", "| Males | Netherlands | 02:27:00 |\n", "| Males | Norway | 02:43:00 |\n", "| Males | Poland | 02:48:00 |\n", "| Males | Romania | 02:45:00 |\n", "| Males | Serbia | 02:33:00 |\n", "| Males | Turkey | 01:43:00 |\n", "| Males | United Kingdom | 02:27:00 |\n", "| Total | Austria | 03:46:00 |\n", "| Total | Belgium | 03:23:00 |\n", "| Total | Germany | 03:15:00 |\n", "| Total | Estonia | 03:35:00 |\n", "| Total | Greece | 03:31:00 |\n", "| Total | Spain | 03:43:00 |\n", "| Total | Finland | 03:08:00 |\n", "| Total | France | 03:33:00 |\n", "| Total | Hungary | 03:56:00 |\n", "| Total | Italy | 04:01:00 |\n", "| Total | Luxembourg | 03:07:00 |\n", "| Total | Netherlands | 02:59:00 |\n", "| Total | Norway | 03:07:00 |\n", "| Total | Poland | 03:46:00 |\n", "| Total | Romania | 04:03:00 |\n", "| Total | Serbia | 03:51:00 |\n", "| Total | Turkey | 03:50:00 |\n", "| Total | United Kingdom | 03:11:00 |\n", "\n" ], "text/plain": [ " sex geo values \n", "1 Females Austria 04:32:00\n", "2 Females Belgium 03:58:00\n", "3 Females Germany 03:50:00\n", "4 Females Estonia 04:05:00\n", "5 Females Greece 04:28:00\n", "6 Females Spain 04:36:00\n", "7 Females Finland 03:41:00\n", "8 Females France 04:04:00\n", "9 Females Hungary 04:43:00\n", "10 Females Italy 05:09:00\n", "11 Females Luxembourg 03:54:00\n", "12 Females Netherlands 03:29:00\n", "13 Females Norway 03:30:00\n", "14 Females Poland 04:33:00\n", "15 Females Romania 05:02:00\n", "16 Females Serbia 04:48:00\n", "17 Females Turkey 04:59:00\n", "18 Females United Kingdom 03:50:00\n", "19 Males Austria 02:47:00\n", "20 Males Belgium 02:42:00\n", "21 Males Germany 02:35:00\n", "22 Males Estonia 02:52:00\n", "23 Males Greece 02:07:00\n", "24 Males Spain 02:36:00\n", "25 Males Finland 02:32:00\n", "26 Males France 02:53:00\n", "27 Males Hungary 02:55:00\n", "28 Males Italy 02:22:00\n", "29 Males Luxembourg 02:14:00\n", "30 Males Netherlands 02:27:00\n", "31 Males Norway 02:43:00\n", "32 Males Poland 02:48:00\n", "33 Males Romania 02:45:00\n", "34 Males Serbia 02:33:00\n", "35 Males Turkey 01:43:00\n", "36 Males United Kingdom 02:27:00\n", "37 Total Austria 03:46:00\n", "38 Total Belgium 03:23:00\n", "39 Total Germany 03:15:00\n", "40 Total Estonia 03:35:00\n", "41 Total Greece 03:31:00\n", "42 Total Spain 03:43:00\n", "43 Total Finland 03:08:00\n", "44 Total France 03:33:00\n", "45 Total Hungary 03:56:00\n", "46 Total Italy 04:01:00\n", "47 Total Luxembourg 03:07:00\n", "48 Total Netherlands 02:59:00\n", "49 Total Norway 03:07:00\n", "50 Total Poland 03:46:00\n", "51 Total Romania 04:03:00\n", "52 Total Serbia 03:51:00\n", "53 Total Turkey 03:50:00\n", "54 Total United Kingdom 03:11:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))]\n", "dt<-dt[,c(\"sex\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing total value of *sex*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(sex=c(\"Males\",\"Males\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Total\",sex)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia','Turkey')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "sex_ord<-c('Males','Females',\"Total\")\n", "dt$sex<-factor(dt$sex,levels=sex_ord)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOyddWDUSBfAs1J399LSAi3uFCnucrjDweEOd8eH6+F2uLu7tVDcneLSUoO6u3fb\n3Xx/FHaT1WSbZJPe+/3V2c5MXmYmb97MG+GhKIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA/\nfF0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/FcBJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM\nAU56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAIcNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOA\nkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAKc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEOCk\nBwAAAAAAAAAAAAAAAAAAAAAAAAAAAACGACc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEOOkB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCHASQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFOegAA\nAAAAAAAAAAAAAAAAAAAAAAAAAABgCHDSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABDgJMeAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABgCnPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBDgpAcAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAhgAnPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBDjpAQAAAAAA\nAAAAAAAAAAAAAAAAAAAAAIAhwEkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBTnoAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAYAhw0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ4CTHgAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAYApz0AAAAAAAAAAAAAAAAbAQV5984tHpIj9buznbGBvrWDm51GjVf\nE5ena7kAAAAAAAAAAACACgFOeoAG0BIe1TzIKdH1WwH/CZwNhKRaJp/PN7Wwca9avWHTtn9M\nX3DwbFBsQZmuXwIAAADgAMVZQdgOxW/rV11LBKijJOcBtr6arPuka4kAbeBuPebFrcJK3u1R\nIoWZgzqqOPSVYVHKw9613LqPXXg26ElcUnqRqDQrNf7Lu5dfCkupekRlgtYvBaj84OeyqvZ9\noGuBAFYDvSdx0oLXCfl8Ho9n6jSwSIL7F622GXcNPwAAgP84ZwZ5latu/2VPdS0L7YCTHuAk\nV2rZyflK3xfAJAV7KUz8fO7glikj+zauX9vTzcncWN/I1NKlile9Rq1GTp6z9+TVuEKuOrZR\nFC3IzYz7EfE++NGRHWvGDenhZeM2dNbaDxmVfFmJrr5B+PalQFFoB5QbALAH+B4BAADUIxEl\nD2rYMzAsW9eCsALoNQAAALiIuPhHv85LxSiKIMifAbuMwBcB6IKw57d2rl00tGfbujVruDra\nGRvomVnbe9Wo3bJ9n7mrtt9+FYpWIPOygvjLB9YN6d3Vr2FtV3srfSNzd++aLdp0Gjlt6fWX\nkRWUnNbMo4Pv7FizoH/nljWredpbmekZmDi4eNRu0GzI+L/2nAyAfWga4W67kqMk+x6fzy83\nsBfF5JJOj5ZZ6Ql42tLharRilv0PnXM2ECAI8mxF532VfTQk1LUAAABUZvKjn65ZvnLL8TuF\nYvxaWSQnsSAnMfb7p3fPTuzZIDRw7Ddh2pKV/6tlrq8bQamjrCT5zNb5lw4eWXcucFa3aroW\nBwAAAAAAAAAAThKyfcC1xAJdSwEAAAAA2nNwePun2SUIgji2XL+iiZ2uxQH+czw5u3Xt+vVB\n7xQO1xGl5WelfQ//+vzB1fWLEId6XecvWDhtUCsBmcwlpWlbZvyx8uDNrFIx9ve4qNC4qNAX\nj++e2PmPdbXmK3ednNzRk6zktGYeGrR/8ep1F59Fyf2emhiTmhjz9cPrswc2Cw2dB0/9c/Gy\nmTVM9cjmX+nhbrtSSsyVf1BU+xUFotxn2WUSzfHIoGfa6Nqy5g3nP0UlRX+2GdEnLsBer9Iu\n8qq0LwYAgM75dnWNj0/b1UduKXjo5SkrST63fVEj98Y7bn1nRja6EeWH/dXD98+LHHudrIix\n2IVsw8MydS3Rfw6oAu2AcgMAAAAAoPLx78YP2GCV9mOuPnodk5Sempy4zctSV1IBAAAAAEHS\n3i6feCkaQRAeT7Dx/BRdiwP8t5CIkpYNrtd6yCwlnlQFUj7enDXYv0bXmaF5RM/pyf56tZuv\n9997rst5UuXIjHgxtXO13rP3FUhIOEHpy1xSlrFlcoeaPSYoeujlKCtOPLnpf/WrNNv3IJao\n3MTg9CQep9uVKrYteV+R5EWZQRWXQZF6s6/UN9VHEKQw5XqPZS/oeARLgJ30ABP0njTd05DU\ngiF53AwqlBxgnsgzk2oP2ycmswirJOfzjO61c+9ELWjvRJ9gpGg3fmo9E3WrBUWFeZmZqaHv\nX3+MSpH7F4qKtw1tUu/r99HVLOiUEQAAAAAAAACAygYqzj2WUigNGlp1eXfrgLWQp0ORAAAA\nAIAEkqKpvTaU/+nYcttwJxPdigP8p5CUpo2sV/PUN3KnZEfd2tbQ88WN0Mdt7QzVxyxKvevX\ndGBYISHPK4qKAzZNbBib9/Xs30RMOfoyRyUF8zvVWf8wiUjO5RRnvp/U0SflRsTizi7EU1VW\nON2uVJETtW1nXJ726REk+8vbiiRXBV9oc3xFszp/PkEQ5N36Xvf+l9TB0oCOB+kccNIDTDBh\n9fruVhp0EFCZyI+90OL3A3IeelP3Rn17dmzRqKadtbWepDAtJfb1k4eXL95ME8nWhaGSoiXd\nGzdIjOpmzYoG03/5uqnERhHZUS92blm3fFdAKWb9mqQ086+eK0aHbaRNQAAAAAAAAAAAKiFl\nhd+w4ynPgUvBQw8AAABwiG/7+59PKkAQhMfjLT05UtfiAP8t9o1soehJ9WjSqVfnjg1quNlY\nmxVmpcWFf7hzM/BO8A9snOKM4F4NB7wNv1LdSKXjTFwSN6xxPzlPqp6J+4BRA+t5V3W2FMT+\n+PH+waWLTyOwEcLPz+7exP/2/5qql5zWzE+Maqzooa/S0L953Vq+vr4eNsLIsG+hoaGvHzyK\nLZAJgEqKlvdq6B0VNdTVVH3+lR7utiuVoCVzui7RMu0vkm7iGlV1Hx9S57e7q75PoeaUMzUW\neoQVlkrKskYN2B9/d5q2MrIacNIDnMSqXmM/c5xCNOHDhAWLWN91YhrmSBa+wGzmzjOrxncz\nwlfT2Mmzt+dEbJg2bNGJN9IfxSWJE4Ycj7s9njlxqcDSq/nC7VdGDdrXpOOUZMyyg6zwTYs+\nzl9Zz0aHstGBrr5B+PalQFFoB5QbALAH+B4BAADUIJHgbqM3qfpf34AIvQYAAACHkJSlD/77\nXvnfVjWWTnQ30608wH+KxPuTJ5+NxP5iaNN09+nDozvVlIv5v3+2Rj46PWPc5BuROdIf8+Ov\ndx157vuFYaryvzK2/RX8zuN2M/edWjfGEXcS8NqYl2cH9Rj9OrNY+tO9+R2u/5HWw1bdzjT6\nMs/+tmX0yTDsL2ZV2u89sW9oKy+5mOLixMPLpk1ef6Xs14JRsSh1eo9VQz+uUSN5pYfT7Uop\naFnm2qHN92GE1I7vj1OlfwuNvMNCQyuYoRS+vvPxGTWbrv2IIEji/Rn740aPd6uEK0XASQ9w\nkjanblTmayg4Tl7M7hWhsrtkeDzB4tuhy9orPxJH36LawuPBVU3qDdv7Sfpjwt3JF9NH9Lc1\nol1WqnH1n/D66lf3btuwPx796+HKe/11JRJN6OobhG9fChSFdkC5AQB7gO8RAAAAIA70GgAA\nABwi4uiwTwWi8r977uHYPhyA68wZfhwbNLT0fxx+p4m18oOyvdsMvRbSfl7HBhsey3YDR18a\ndTCm19gqShaXFKWdH3oad5t7h5U37y7sohizit/gR+EenbzaPM0pKf9FIs6fNORU3N0xqiSn\nNfMNvf+RYE5pMnXr9e7bZW9lNxQLDJ3Hrb3U1Ht0vfFHpT9mfFo798vsdbUr2z404nC3XSl5\nXGr41YtnN69c9zqxQHNsTdxMK5L+bWTbt+IZYqk7b7Pe+g6lEhRF0WUjTo5/NJHa/NkAqYMH\nAAAANPNk2jpssOrg06o89FKG7HzSykLWpaGoeN2RSDXx2Yxb161zvCyxv6QGr9eVMAAAAAAA\nAAAAAAAAAADAGKg4f+zfj8v/1jetv8vfSbfyAP8p8uI2nkyW+R15PN4/dy+p8qSWw9dzWHP7\nVUfMXb0oWrZ8/E2lke9MnYe96tTKd8rNBUo8qeUY2jS7EDSXx5Od/ZPwYMqDX75VJjMX5T5Z\nGyE7kYjHE2x4eEKph15K3XFH1jdzwP5y+q9nauJXbjjdrhAEKS34fP7Y3mVzZwzs2bGmp5OZ\no8/QKUso8dAjiOQmZlu/uVc7KvKUYWDRbkN92/K/k55Mu5BapD4+FwEnPQAAFLPicTI2uHxr\nD41JeALzHXNrY3/5fvg1xWIxyLgldbFBUd7rsKIyXQkDAAAAAAAAAAAAAAAAAMyQcH/8s1/u\nIu9RO+F2EoBJQv89ig1a1Vj8v0a2GlMJDNwOnxmK/SXpyRwRKh9NUpYx6WoM9pclQWuEahu4\nQ4vl/9aXCYBKSubsClMak9bMMz5vwm6jN3ObPamqubqsEQRBkLGHcWWS9ma7xiSVFe62q3Ky\nIxcOGjVp+frtF67fC41OFqMKQmiLKO8V9tZjl55uVOUsZcju38r/QNGyuVMfUJ6/zoHj7oH/\nECWZUVfOnD4XcP97XFx8fHwh36JKlSoenr69R479vY+/EUeWrEQ+OLbv0pPQ0NCkAr6H79AL\nhyariVyaE3srMODq1RtffsQnJSWnpGbrm1vY2DjXbtSkeav2A4f187ZSt+BLC0rzg1/mytZt\nGVq2H25vTCSh5/DfkAVvpcGi9LsIMpZa2RjDoU0bBHmM/eVlrqiGkQZ9mx//6dy5qy/fffj0\n+Ut8alZeXl6BCDU1MzczN3f3qlmnTu2WHXr27dbcVFDRsQ2pJkQtqKQg+E7gxYuXXnz+npiY\nmJSULjCxsLGxruLToGXLVp36DGnrq9m+qQjJn+8fOHj0yYeImJiYuIQMEztHJyfnKj4Ne/cb\n0Ldna2t9bbQAYxVHDago5MXda9eu3Xn2ISk5OTk5JbdMz8HBwcHB3qtO8x49enTr0spO7UJa\nguT+eH1g3/47r7/Fx8fHxSeUCkytbWxr1Gvayr/DiLHDvS31K/4InSARpd86c+zYmethsfEJ\nCQk5ZfpOTs4ubl5dBowYNaKPu5meYpKYD/fPnTsXeD84KSUlNSW1VGhqY2Pr08CvbYffxo/v\nZ0++1TGv2NVDx2eFMPWaNOnDlNDnFy5cCLz/Kj4hMTEpSSS0cHFxcXXzbNdr0NAhfbzULrXW\nCMd0Ds2wRtWgka9vnT516vbLr8nJKampqWVCU2sb22p1Grdq1X742JE1bMhXOlPqmloKEj6e\nuXD95cuXwR+/pWVkZmXn8AxMLS0tHar4NG3atFWn34Z0aaR+rkEVjOiESliPtKojUjCmuyhX\nC+wpQ1IwU+BssIsqB3SMktg5umSbHUsGybengcdPnHryMSoxISExOcvY2s7RycnVu17P3n16\n/9bZzVxJg2c/dM+SMVPjnNP8nB7pEOTgtFvSvyfOr6smplposM0YypwE7OlM2SNJBQm4FIsN\ntttN9HBslw5b3QyOx5X83GdVVhx9Kb1oiB3uMtb09/9LEsn8kSYOI2d5aHZ1D9vT/89me6TB\n0G3bkPkHFKPRmnnyXVyxuPfrpzFnBEEsvRcgyBZpsCT7YaEENdbtshsdjbC4267opjjzOjZY\ntaMj5Y+wb7jBxeBIQokYQZCYwAnJpbGOepVr1IACAOVIiuWa2fXMImqfUJx9H5t/47Uf1ccv\nK4pbP6mLkeouxNix9vrA8PLIRXjNcj+7WDHDH1faY+PsSMwnKHkPa5kKtqz6L5G3e5cv+vl7\nVvCkHvWw/zJ1HKfqQaKcsNUTuxmpHXLzBSbtRy18k1hAUHgi5EQvxj7CvsFpggmLM3GHvRiY\nt1QVsyD1pNyLePa5T5H4qJM+rhcnXrM4CVOOykm4Pi5XTfys0FtjOtYV8DSbOPrmVaasPZVd\nJlEvAKkmlBu7UuNz5fJRfITGbxCVlN7YPc/bQt3wmMfjN+jy+/Vv2cRfTelzsZX49/efueVE\nBPVt7qXm6UJD52kbLxSKNbwHFqoqjqEqQCXPz2zwczVR/wiBvt0fSw4kl2guCDkBLqYXlv9e\nkv1hfNeGaoqFL7QaMHd/rqZmrBH6yq2s+IfSV3t+aI6LscrVNgJ9+yWncbkVZ3yc2dNHjWD6\n5l6rL30l/sq6Uuwog58V5a9JSZdKnMyQG7+39lQjOY9v1GnyxmSRGFWwN5pt+aI+cwo7i021\ncNfIbY3PI/6OZ/BX2Ix+mkQ8rRxEvkedqxqN0uZG3RnYwF5NdfCF5n3/3p1VSlwSitU1rVar\nlNyoe+N7+elrmq8x92iy8vRrggKUQ6tO4FA9yvV6XR8mqI9PqzoiBd2GLn1qQTdlqDCUVsWw\nbxlKM6C8wNljFxHpNdR/KSzp/nBQNErCotvRpapMdGjHkgD/AUrnGdLfn+9YzUqd5ELzYfP3\npIhUKnMWtj3KZ8nkoLX75q7m5/RIhzhFGdeklWJo2U596dNqmzFo+GmAPZ0peyRBFSoIQRAn\nvyDShauA3NTuq1yR5jS/WOVhgU07PjxTLsK9AVWxEfy2EZvSERd5Y/Zu8XiCzwWlirFozfz5\nBF9s5i0PfCOUOYq6GODK83tRGcGEcmg3iYeH4hEWKbjbrspJ/dCLYPkvjM4h/mooisbe7IRN\nfjyFFkPudBtn6SN6X4mm4xE6BJz0AA2wzEmf+npfQ/zqJKXweIIBi0+L2eqkL8563dlFvhNS\nZWd/ObPQw5joOm6Bnt2CY+RmS9WQ+v43bObVRjwmmLA46y42oaF1V1Ux2e+kz4leKifhLtX5\nvNozXv0ITRGrWkO+qrRXUJRkE2LAQ1yc8bJfQwdV2crBF1rN2PmM4KsRdNK/PrbAQZ/QIkrr\nWj2epRPSVxRWHANVUFoYPraVO3FRDW3rHXqTpr4ElE6UpL871djaUFW2WGwbjktWPY1FBCad\n9BJx/ppRzTQ+iMfj9f3nUXkmKc+2e5to1sM8Hm/i6Qgi76tDxY4y9VnR8ZoV71KJc33FUIJq\nwdSt9YWoHFLzetR2FtGBuOFZrWkvCL6jWJSErXehkbfGmX01aO2kZ1LVqJf245G59sQ+BJt6\nfyQRmCagQ10z4KR/vn2ypZDESvZGw/8lOOdJt07gUD2SctLTqo5IwYChS5Na0FkZVsxJT0eB\ns8cuqriTniXdn+yNqBslSdH56FJpDrq1Y0mgzEn/aPMkUwGhPs7YodGFMOVrKdjW9uiYJcNC\nd/fNUc3P6ZEOKYLnyrbO+4x7qj4yrbYZM4YfEdjTmbJHEsUKQqhw0ovyP2IzNDBvQSr5lbp2\n2OT9vqbLRRiGPy92rdpNWVh218St1hr5QYnxT2vmwXNwZ1o0XPaeUNaSUgP8cq5MbRevVNBJ\nT8cIizicblfllBaEPFXBRvxSQrJO+lezZFcY83h6WrcQ9SS/HCV9ikXVBXQ8QoeAkx6gATY5\n6dPfHZBb8KWe9ssfstBJX1oY3slZyTIxpXb2813jhQRWzcvRfRkFaxVRFE17v6wPhj9PRhFM\nmBe3HiuPeZUlqmKy30kfeaqdnISv85TPenw7NI5PvrIQBLGsNqZYdZdHqgnR7SEuTHnUxoHQ\nlQdSeDz+xCPKx7daOOkjTk8i9XRj+zZP0jSoLGorju4qKM5685uX5lOS5BDoO2y6G6+mEBQn\nSnKiTtrokdC3bl23qy9n9TDppD84qibBZ/H4+ls+pKe/O+BEbNiPIAhfz/pZTon6l9WtYkcZ\n+axoes0KdqnEuTC/MymxDSybPfp+GfuLmnk9yjuL0qII7HSzoVVngq8Zd2cgNn+vwbe0K65y\ntHPSM6xq1EgbHbBA48ZxnCTddmt4BD3qmm4n/ZttI3nk22ejqRc1CsCATuBQPRJ30tOqjkjB\njKFLh1rQZRlWwElPU4Gzxy6quJOeJd1fOdSOksphw+hSMbnO7VgSKDjpI8/PIFWkQiPvYx+V\nLKBhVdujaZZMCgPdNxc1P6dHOmQZivE2TQtRfu6LFFptMwYMP4KwpzNljySKFYRQ4aQvSDmB\nzdDcbT6p5Lvx56ZIzxEsR1KagfVY84WWOYQXTn3a0ASbc4Ol7+Qi0Jo5iqLRgR2wcewa7COS\nc0Ey7vh0PZM6BEVSpCJOeppGWMThbrsiQpCfEzYTsk76M/VlSxAMrTpi/5UV9+3l00fXA67c\nuv/4w9ewlCwNk59qKCuK0vtVSjy+3ie1C0w5B9xJD1RmijPvNWoxqfy+CinGjjUHDhnUrHZV\nZwez7KSEiI/Pzpy6FJX18xr1B8s6LvPdpQth1bFncMc7iQVEYv64MLHl1AMoimJ/tKvRrG/v\nXo19PRxsTbKTk8I/PLt8+UoIPsOgZd2H2n06PaVOBUW1rb/08mXN0RSJuXgRG3Tt3q2CkuiQ\no8s+YIN6xjUbmypZYSrKe91x8hEJvrIMbXyGD+tR1d3d1dXVSk+UkJCQkBD/JPDEo9B0bLTs\niEP9Ds65Pq4GQZHUNCGBvoufn1/53+Li78EfUqX/sq3f2NtQ1k2YkL9zSCxK6FG766O0IuyP\nBtZefYcMaVXP29nJMiM6IiQ09O3DgMehGdIIKCrZN6ZJm45pQxUWgJMlJ+KE3+/7sb+YuNTt\n1qaRu5uTJC81Lib8/u2nWaUSbITC1Edd6w5OiLtioWIRPeUVR2sVoJKCCQ3bB/zIxf7I4wlr\nt+7Vr3ubqm6uVgZliQkJn1/cuXD5bkpxmTSOWJTyv651vOLiezsSmj0UF8cObj4+o/SnvnWs\n5T9kUL8mvp4ONvpx4WGhIV9vnjv5KQXXEuJuTl8VMmxhTWuyL1UOreWG5fmG3puOhpT/bWjj\nO+T3YZ1a1HW0FPz4FvL50+tTRy6nlcp6GVQimtu219biYOltUmaeTX8fPsS/YQ07w5LQr18+\nvLl/7PwjkUTWfiSlmePmBYfsaqlKAJ0rdjno+KwQBl+TeJdKnG8HBwxYc1vuR77QvFXPAe2a\n+Lq6OJRlJ/+I/Hjl9MXwjJ+TvyXZr7r7yx+7ohQ6OguhoffqWtYzPv2MXJx1e1diwRRlM3py\nnP/rATY4aV1zIq9AIcyrGlVkfNjTYNHe8m+ZLzDpOnTs4EF9GlT3cLAQxESEhYa8PbBu9ZMf\neThJbkzeGDl0treF0gwZU9fUUpB0se2fJ+W+XBvfdiN6tvTw8HB3sytIiY+Ojn5148T1d0nY\nOO92Ddr/d+Z4T5VTLczohMpXj7SqI1IwZuhSrhZ0XYY8qXmDinNfBYdI/2HqXre2s6x5YE0d\nhMEC17ldVBHY0/3RMUpiyehSDrbZsaTIiznedNhRaZEKjZ269h/UtlE1G2uL4sykmB8h186f\n/4IXu6wocmyLto1S39XEnxrNnrZH9ywZMzXOOc3P6ZEOWYqzgk6nFpb/zRcYL/CyJJWcctuM\nscxJwZ7OlD2SUIXQwHX27NnSoIn9IDKpJXuTcF9QOwsDbLAw/XIJ5u2MbPuaEz69xvW32sj/\ngqXBhKsRyLIGjGWOIIi930QEuScNZnyZ9zpvVFMzdRfuIAjyYsW/2KB1rVkERVJE60k8nY+w\nEC63Kwa4k1wo/dvItg+CINlRL3Zv337y8s2vsVnYmDyesHrjtl27dh05aXIjZ3KVIjCsOt7R\nZFdiPoIgqKR0waOkwO4kTlZgO7pbHwBUXlizk365H+7sOL7QfOyac4orxCVlOfvn9JMuxuEL\ncDpC5zvpzx8cIf2bxzfw7z1i+b/77z599TXse2pmITZhSfYzT/xkjYFl/Y1nnysuvpKICy5v\n+Utu5SNfaHUxQZuN4xWntCC0vqnMLODx+AdVFynLd9In3JsjJ55z61NKY94a7o0rfz3rBbuu\nqDgTRvLl3ul2+DG8mctUVTJo3YQyw8dgE6q66lLxEaq+wfN/4CZ6eHyDQfMPKrsQTvz0+CK5\nwrdrqOQ0BbI76Q31ZPsVjOwa7wh8LcI/vDQ/4czaCVYKh/Q2W/hE1bvTV3EoDVXwZEkLuVdz\naDwoKCRLMWZZUey6iZ3k7vOz8plcomL5ppwA3Vr91Ld6xtVWHFdSepKynD0zO8oJ4941QE1p\nEIfacpNbWi6l9ZTNCcXyl28VJj/r5WGmND6PJxy56lSeQoNPCT5SA3/OobFtP1UCs0Sx0/1Z\n0feaWutD4hRnPZTbjcTj8VqPXhGZI7+wVyIuCNik8lRwVZtvaNI5sTf7YqPV/vOVxjcV5X8w\nxIyWjWx6a0yiHi120utQ1Sju8yjHsnrfG8qUqkScf27dcLkt5l4D76jKnz51TavVursJztg2\ntGq0L+C1slNBJW8CdmEvzEMQxLH5cVWPZkwncKgeieykp1sdkYIxQ5datcCqMiR1txF9Bc4e\nu6jiO+lRdnR/KA2jJJSVo0uW2LEkUH2URZsxq+MUGjwqKX16fJmXwpnPHr33KubNkrZH3ywZ\nymD3zS3Nz+mRjhZ8299KKoa52zyN8Wm1zeg2/IjDns6UPZKgtN1JrzUZXxZghdE3bSAXIf3r\nCGwE6xoHiWdekHwIm9bMZQaTmZczB79Qya37GvUHk2d+PmSO13hzg1OJS6UuZ8KTeCidIyxm\n0G27IkIFd9Jju62qA09vntFLT9NeKb7QvN/0tREFpaQe9GKy7NgP+0YHSKVlOeCkB2iAHU76\n2KDx2Dg8gdE/t+LU5Pn54BhEGTp30pv9OhWt2m+zn0Wpu5JkbXNHbEJTt54v1R4vnPnlXD1T\n3Io5u4ZrCb4IhcS8uNQdb/N59FbXGxVn3vTD02/OG6qEqaCTPunlYVcD+Xs3AW0AACAASURB\nVBNKFn2Uv2kGRVFUUipnts66Eas+8+KsR9jMeTzeD8VpgvKY2jYhaj2dWaEbsIYRj8efciJU\nzdNTnm0ywd/2dzC5QIvnKj13y8p3ZJTqvj877EpN/NwKX2CqXHHRWXEo1VVQlB4gd6meS4d5\nioMoLC+3DZUrul7HlF8hpnS4q2dS62K4OmPu4HAvbHxDq05qIhOHASd968WBqvIsSL6u9KLK\nySdVTtDH356Jjcnj8RJV3HXHEsVO72dF52tqrQ+Js70VbjzD4/H+2B2sJn7amz22yg7nVD6v\nR5vOKSuOxo63jax7aHzTsMNtsZI0Xq3OXUQELZz05ehE1SiVxNxzQFihuoHl1Um40yNN7Icr\njUaruqbPai0r+o5tRXw96ytqvSnJz3DTE0ID93yx8ndkTCdwqB6JOOnpVUekYNDQLYcqtcCi\nMiTlpKezwNljF1HipGdD90fHKImdo0uW2LEkUOGk77LstppERalPWtjI34y+JkzeecCGtkfr\nLBnKePfNFc3P6ZGOFuyvbSsVyWfcM43xabXNaM2cFOzpTNkjCYqiorw3chO8PcY9V5Ut7UhE\nk7xxBz9UH31PLkrkqTbYCFX7PyCefVlRBDatoqeW1szLyYu9LLdmqM7gpfEqev+IG1vlTAuf\nYTuIi6Qe4pN4tI6wmEDX7YoIFXHSi/LeYNPyyBxlaura7nokiWelvh8mTSs0qqpcrXATcNID\nNKAwsOk/7c/ZWrHjRYrSJxAYn0tGOuIWhrf/961GwS/+UV1RX+jcSV9O/SkH1K9uy43ZiY0v\nNHS/oTh0VyD9/XZsV8fj8fbG5xF8Fy3IS4oN+fT+2aP7gZcvHD24b+XcKR0ae8u9qVXNIfEq\nrDcG0NpJnxf7duPsQYYKXZG171yl8QtSjmOjWXjOIfKUoN4e2FRn05SvhtauCaFUezrXYu6k\nQRCk9vQbGl/wznTcMW5158iPjbVz0huYN/+Yp+GumqyQE2b4gUf10XcVo9FacSjVVRA0BDcr\nYWTbNU2k+eO6MBqnCY2suylNo7SZLXycpD5zUf477CQjX2ipUR4i0O2kt671t/rP52RbF7kk\n3iNOqhVZ0tfWCBv/XpaSvoY9ip3Wz4rW19RaHxKkMO2C3DLtpgs177T4cXWKolRK5/Vo1Tm7\nG+C09P4kDV3eTDfZijoeT6D+OlIiaO2k14mqUZSELzA9Hafh4yotCDHC2AZ6xjWURqNVXdNn\ntWaGT8bm7NZF8zXzA+xwW/GOpij52BnWCVypR42uR7rVESmYN3QpUQusKkOUjJOe1gJnj11E\niZMeZUH3R8coiYWjS/bYsSRQ5qR36bBFY7r8+Gt2eK+tQ7M9itF03fbonSVj3qTnhObn9EhH\nKyS1MAu1ezxQooTloNU2ozVzUrCnM2WPJGzj8IT6WJl5fMOLCt3i+38aYuM0WvGB1COw0yN8\ngTGTmUtJebFVbnO8vnnVP2Yv3Xfs3OPXn2KiQu4HXdr17+ph7XFLVRAEcW43v0DFAmstID6J\nR+sIiwF03q6IUBEnfU7McqQCCA3czkUTXVVWlHkdm/ZMKnOHxNANOOkBGlB9RBhZWuxRvqJc\n4/g8NxZ3Y4qRbQ/1a6zKKS345KawDZoNTnpTlwE5muQP7OOJTdJ2K9GJoZtjcUft1Zz6gmBC\nLVjloe4aJx7foPOY5Qm689CjCo6oDpNnql9HMnPapN+H9W/i6yY3ritHoGd36rvynib9y2Bs\nzBZ71W2ekPLtAO4apwMqRnfaNSGUUk9ncfZDbJnoGdf4XqRy+7iUktxX+pixkKnTJLLPRZV5\nE8dci9H4aBRFH81thE2lZ+yjaIDSWnEopVUgKcuWWyH7v6caZjHKKS0MlTuRePV3JfaZYjNz\nbLGTSP5LquBuIFY8XFEL6HbSrwnNVC9A9LUO2Ph8ofmL3BL1Se73r4pNcjJVSatgj2Kn9bOi\n9TW11ocEefU3btLcyKZrFrFZscX4WVpExbwerTon/t5AbDTFGX8sRRkB2IMfraovJyKJerRz\n0utK1ShK4jWE0GGMs11lM+x8oZViBLrVNX1Wa9ydzticm+8O0Zjn9ZbO2CSzorIV4zCsE7hS\njxpdj3SrI1IwbOhSpRZYVYYoGSc9rQXOHruIKie9brs/mkZJLBxdsseOJYHCXBZfaEXQt/Rm\njT8uocA0XGGrrm7bHt2zZAx331zR/Jwe6WhBUUYAVp5DBFYk0Geb0Z05KdjTmbJHEjZRdn5B\nB3ypILWmKFlC93Q07sNsvkvz8AeLB36wIHfAAK2ZY0l6ebylE27Nlnp4PEG36dsyKF3+Q3AS\nj+4RFs2wol0RoSJO+ri7XRTbDF9g2nnotKOBT8K/x+UWlRbmZPwI/3zp8JYxvzXmKThQjB26\nEDGGURRFUTH2epouQYSmJTkBOOkBGmCBk/75JF9sBH9iY1QURW/2q4oXgRVO+sH34jXkKynB\n9j1CI++0UqIauST3hRCjH00cRhJMqAVqnPQW3v3uflNynQzDKD3SWTt4PL1Zl76relBO1PFl\nGC6p3lqNJfIM7gAc4tMompsQiqKUejq/HWiFjeAz7jERAVAUnecmG0XzheZyRqAWTnpju8EE\nDUlxSbwjPu2iH/J2Ca0Vh1JaBVnhf2MjGNn2JSJqOQ/x12TWmvFSowAIgiz8qu4SKSk3/HEe\nGvY76Q0s/DUKkBUxEZvE2lfzhpvPm5pikygZtbJJsdP4WdH8mlrrQ4IMs8dtC+5+XqXalyMr\nbImcYErn9WjVOWUlcVbYY1dt+6jJ893SBtg8+xBbpaEe7Zz0ulI1ipLsJ3ZR7oU6sjlcpXN8\ndKtr+qzWxKfdcE+fruTppGFcJ3ClHjW6HulWR6Rg2NClSi2wqgxRMk56ejsLlthF1Dnpddv9\n0TRKYt3okk12LAkU5rJc2p8mmrQ0oyp+lnzYq2S5OLpte/TOkjHefXND83N8pKMFyS/7SIXh\n8fRyCawYoM82oztzUrCnM2WPJCyhMOXVuLZV5NqJueegZGXbte/jl920ORVJ6lkN8TdZfMLf\nHkhr5nKUFcUs6iuv25UiNKy68xY5SYhAcBKP7hEWfbCnXRGhIk764P/VlXtNC+8uFz+q7KPj\nXl5o5yy/RsR76FWCj/sTs4LKs8994nKyHPnlkABQOTh6NU76N48n2DiUUMeDIEjT1YORS2vo\nEUpLBHp22/yd1MfJT9wVWVQmDTq1XG+LP7tGDfpmftOcTbck5JUHC9POZ5cdtRSSuEGEEnIi\nL02fYjR//oKRHeVP1OEiQgO31Rfv/6+Hp6oI5lVHLF1KOtv8yHwthCHShCjn4ZZv2ODYJfVV\nxZRj+NThkW/SpMFEkdjdoEIrJ+rMW0SwNfP1XXZ1dOkXFCv95caJHysW1cPGYbLiKkjkwTvY\nYM0/ScjdcPkk5PCf0mDs5YvI1mbqkwgNPZfXtCaSuYGNAXFJ2IBltb80xuELbbHBqqPaaUyi\nb6OvPgKbFTuFnxXDr0mtPiwrDDmdVoTNfE8vd4JpLasv8bdY9ySnRH00WnWOQN91Q0O7ca9T\nyoNF6VeOphSOcjBWGnnJjm+YhPY7OrmSFosK2KNq9E0bjlMYWyrF2ETDgIthdU0hRo44Azv8\n0NiHS960tZW/l5cUDOuESlOPDKgjUjBpL1GlFthWhqRgssB1ZRdRiG67P5pGSWwbXbLZjiVF\n/80dCcbkCa139/XocjpS+subnRFIUwdsHN22PVpnyRiuca5ofk6PdLQj+a6smemZ1jcTkP5y\nKbTNGM6cFOzpTNkjCfOgkoLL25f+NW9rTHEZ9ndD62ZXg4866Cn5WssKcTH1rci9phVeAxSI\nJYxljkf88OT+8/fiiWRbVvz96IG9zeotb+RgpDk21XBxpMy2dkU3MfdTcMLUHPHx3RE31TP5\nrs363wrzHVrT72JcnvTH7+eGP9qd3sZC8xxOC2vDzfE/E2Z9eo8gmtURJyBqHAAAh0DFecdS\nC6RBQ6uuTc2IajcLr9kGCteK6xZj+xH2yjQ4ltQXV7HBmnObkHpEr0Y20r9RSfHljCI1kekj\n9P7J3zvV8mwz4XOuSCcCUAKPr9dm2JyH4SH/6+FNbc5lhSF/bQ7RIiGRJkQ5+2NypX/zhVYz\nMCvd1FN77q7zGCrooUcQZMZIL82RftFqJW5rS+xFbQpcDq0rroJ8DEzABrsPV7lkRBEz1ynY\nWxULU05oNPHMq/xJ2TEULMOyjvxJhkrA9xtWDawIpNDQ17BZsVP4WTH8mtTqw4KUwyiKSoNm\nbn+rGYooIFjYzJ4qSbCQ0jndNuD2WG/Z/k1ptLy4LdcwZevUZruLvm4GEexRNeae06nKimF1\nTSFmLn9hj18uLfjas163vUGfKpInwzqh0tQjO9URKbS2l6hSC5WgDEmhdYHryi6iFh12f+wZ\nJdE6umSzHUscHk9vng8hT3A5jRa1xQZTnzxXjKOrtkf3LBnT3TdHND+nRzrakXgnWfq3gUUr\nNTFVQaFtxnDmpGBPZ8oeSRgm+NLWNt5O/WdtkvOkmrp3uvPtYVsbFcuOUXyQ5AcnZ+GXyIVp\nzfwXedE3hzR37zhuZRjhuffX5zc0c686dcNVVHNciuHcSJmN7Ypm4p1r+f2iVdthz4IPa+xJ\n9UxrHn1xxBrTYUnE+ZP+fkXkcU6NZYZZcdYN7WRmIeCkB5jgemaRdkc9PJvoo8XjijICisQY\nO9tjBPG0fKE19mxPNmBRo7PGOPGXcMvf2tRQd/W7kkfUwsV/m0+Xj3zBj583j5aJinOy0r+8\nfnRsxz9dG+GWKkc/3u9XrdunglKaZKADQzPrKt4+LTr1X7LpwMuw1Icn17V0N6Usd1QU8+3d\n8Y1z/Ko3va/V9ASRJkQt4uIfb/NkrcjYbrC+juxzgb79AFsSX7R51XHYYGHSTe2fXeGKqyC3\nMXsCeDzBOEcSN04hPP0RmHP/xKKk4DwNasGydh31EbiLnoUe2ST6FhQsG2etYqf2s2L4NanV\nh9kh77FBl55tSSX3/oPoBiZCaKVzHJv/ix24hu9bpzTam0W7scFhW4juKqMc9qgay1qUVR/D\n6ppCBIZVd7Z3wf5SkPhwUo96nn7d5q3d8+wroc0ZcjCsEypNPbJLHZGiwvYSVWqBw2VIigoX\nuK7sImrRVffHilESI6NL1tqxpDCy6eVExjVuXmUqNlic80Axjq7aHt2zZEx33xzR/Jwe6WjH\nix+ynZEGFtpsWqXQNmM4c1KwpzNljySMkRh8aZi/R9P+s55gmms59QYt/hp+o5WdyoPBhPgj\nFkqzyc1dZ5Xh3Kem+KMmaM28nIx3BxvW+u3sy0TpLzyesGmvcduPXPwQEZORU1AmKkpPjn/z\nIODfZdPrOmKHJ8m75vRp9Pu/Zcw66jk0UmZtu6KbmQH3XvziyYOTvsaEjiExcel3ehhuc+OP\nC4uIJLRpJlu+VpLzuFDC/NIRWoDj7oFKiCjvBTZo01j+ChD1dLEyuJReSKlEFcLMW7Mdn/Ap\nGxtc4G6+oAJP/J5chHhZViADzQj0DMwtDWo1aV2rSeuRUxe/OL6s77iVKSJx+X8LU+93arcm\n5bX8FV/MsyMxf6oTGQugwhRmJoaHR0REhEdERJT/EfI1LLtEXJE8iTQhainBf4NGtjobKxrZ\n9CM182Vg0c5BXyBtiqK8NwQT0lFxFeQNxvoUGnmT3W3TzsFoc4LMsnybX9pM7WYLUy/qFqYA\nCIKwWLFT+1kx/JrU6sOsd1nYoHM3Z1UxlWLbtD6CPNLu0VTpHL6e44bGdqNf/NzyUph27lTa\nkWF2+HlYSfGsi9HSkIF581W+JHaVUQt7VI1JVcrMA4bVNbWMOHtsW5Wun/GzxtGvbq57dXPd\n/MkmDt6t/P1b+/v7t/b3q+etR0B1MKwTKk096lAdkYIOe4kqtcCVMiQFCw1UlqCr7o/5UZKu\nRpestWNJYWBFroL0TOp7GAqjf22eK83/qBhHV22P7lkyhmucK5qf0yMd7YjAbB41sNPms6XQ\nNmM4c4D9lGR9XT1rysrjTySovGPP2KnJ8q07Zg9sqj4HuTUNoiySy2rxzlS5+yBozRxBkOL0\nu/7+kyMLZQ5gq5q9jp0/3LOmDTaajYOLjYNLo7a9Zi1ec3bVlDHLj0vXeL0//ncrm6ovN/ch\nJVhF4MRImeXtirX4b1yNHB0gDZbkPLmXXdLBUsOJ98ZusoUXqEQUXSyuSWxZAMupDO8AAHKI\ncmKwQWN35Vd8qcLJlPQqQloxdNR8tWcs/vKSClKcXExhbkRoPnLZOxd9946LxL/6s9TgpYu/\nTV/ho/kMpUqAKCv61rVr165du3HvaVxGgeYEJCHShKilrCgCGzRy0plPRWhUnWwSL0Oh1Jso\nLolVE5PuiqsgiSLZ7JvAgNwsDIIgJq7GyDtZMLZEg5LRt+b2YmoWwlrFTu1nxfBrUqsPS1Jx\nl1Cau5KzNwSG5HZy0KRzumzsjLQ8Jg1u2hU2bCnuftyMr/M/FchGidXGbNbRtbAIwiZVo2dO\nmbnIsLqmFkPrdo9fn+zVcfTTRCVtsiAl8taFyFsXDiMIYmjr3avfgIEDB/Zs39BI9b5EhnVC\npalHhtURKei2l6hSC2wuQ1Kw3EBlDzrp/pgZJbFhdMlaO5YU+mYumiPh8cI46SWl6Urj6KTt\n0T1LxnCNc0Xzc3qkox1JmDVABraabxdWhELbjOHMAVaDll3bOW/a3K0xCl+l0Mh17IIVK+b+\nbkfgtggTT9w6D7LO1EyMM5XHE1QxxDnmaM0cQZDVXYeFYjz01rVGfXl3SM2BMTy+yZDFR5vU\ndPAduLH013T9660DtoxPm1WToel6to+UudCuWIuRbX8/c4OXubKO+HRKoUYnvVzPkiSqJE56\nOO4eqITInQpiYEfOLjRy0L1di0VgrHmZWE4ZlfeNlOUzOr1bjnP7BQe7u2F/OfbnE+bFYBiJ\nKGX/ot+dHLx++336vnO31M+h8AVmdWprsxKZSBOiFrQMtyDd0ElnV0gIDd00R8JTxVBWXBJx\nvtKjnJipuAqBlhVjzvwR6DuQzcDIGVdr2QyfaQWwWLFT+1kx/JrU6kMxfiOaoxG5zAX6RGd+\nadU59k02OerLJP+2a4NchHt/XsAGFy2oSzxzQDPcV9eWvgMeRH7eOmc49vxeRYrTI8/vWzuo\nUyMrO6/xyw+liJR/+6xVfRrQdT0ypo5IwQF7CQM7y5AU3CpwnaOT7o/uURJ7RpdcVeZ4DOxJ\nTw1hGxWCKC8FnbQ9umfJOFrjdGt+To90tCMRY+AZ2GjjpAcAyinJfD+xg1ev6ZvkPKl8ocXA\nPzeFJH/fs2g0EU8qgiBm1cywwZwvOcTFEJfE5GJ0gsDA3QC/AIvWzHO/r1/xNk0a5OtZX3q6\nl8iVLl79118ZV0MaRFHxysH7iAtWIXQ9wlIPV9oVm5nmiluu+uOb5hfXM8MlwS7j4DSVYaEB\nAMjBN8BpwJK0ElUxlUL25g82YIw/yaRhM7+KXG5XQ0dnCfTePAS5vl4aTAs+hCC/6UQSZihM\nvtu23m/BqeouAjS1dfXx8fH19W3QsuOAft1EQZ28h7DuIE0l8HCDsbIC3cyqIAgiEZO+ZzEH\nY7TxeHqKuxa4UXE8oSGfJzVnxaIUshmIMnErN4343LHyKgusVezUflasfU0iyG3FSCkmNzyQ\nlCnfXyUH3TqHr2e7qZnD8Cc/76UrTD11If3AANufo1lJacrMJ0nSyGauUwfb6WzdVeWkUqhr\noZHnjHUnJi9ae+vK5UuXLgUEPclQPVouyfx+YNnY0/uPHb9zpa+vvH+IqzpB1/XIjDoiBTfs\nJQwsLENScK7AdY5uuj86R0msagNcVeZ4StJI7+CPx+zS4wkslM7N66Tt0T1LxtEap1vzc7RY\nKgLu/WCdP8ACEh9ub99rdhj+ci4eX6/9yDlrVi9o4kzu/Ayreq7YYNaHOOJpRbnPsEF98+ZM\nZv5+Ac6zXnXQmTaatixL6bzlnMHBeiW/RjqZXxd+LPirngn9GknXIyw1cKhdsRlHD1MkJEMa\nJHZyEs6eqSxX0oOTHqiM6Fvh1h8VxpO7YD49i9xwhRQ5YioX0kpxwq3XRnbeeeTH4HWkVGHu\n+T8EkTnpizODxAii+5XA9CDKedO97m/BafJzKPaetZv5+fk1a9akYT1fX19XW9wCsSgGJawI\nAn17bLAwjtw3SCHi4h9kk0RhLlHj69nK/ZdDFeekL/jx613EJTHqIytSEIPbeWNPbPknQCGs\nVezUflasfU0imFTBHUqWE1+I1LJRFVmRMgIlyYzO6bixK9LskDS4dn/4gPn1yv9OejwjGeNt\nbbJqJsm8Ac2wVl2TtVr1zFx7jpzec+R0iSj90fXAG7fvP3r06M23eMXL+RAEKUh4NLhxy5vR\nb9rjfQ/c1Qm6rUcG1BEpOGQvSWFbGZKCiwXOBpjv/ugbJbGtDXBXmWMR5caTTRKJMXrVXBHF\nfNuje5aMozVOt+bnaLFUBCcDfvgvPVSSQePkKgAQIeLKssYDV+Tiz7Swb9j/4JE9PevIT/cR\nwdCmLYKckgaLs14gyDCCaUtyn+OysurAZOZnn+A83L0XNyaYM4IgQuM689zMl8f83OWMouKt\n0bmHyGhLrWHnSJlb7YrNGONvmZFbUKiU0vxcbNDZoJI4jsBJD1RC9M0bIcg5aTDzbQKp5K/z\nyN38QYqoIlq2FFfxMkXCM6XBLwWlOjH9izODBo7aLQ2auf55and74sn5QltnA0HirwPHULQ0\nSSR21a8k2laOHT1+e4SZQ+Hx9Vr2mzRv3twejXR/VGbF0TNtiA0Wp4UiSHedSCLKDyYVXyyK\nx36k+vgXQThVcY3M9KW2bFlRZIJI7ELma3qbgpvja2RayWcTWAhLFLsi1H5WrH1NIlg1tMYG\nk24mIV1I3AWQF/FJYxxmdI5dww0uBkcTfvW/37ZuQeYfLv/7/F/3pdH4AtMdAzwpfC5QDmvV\ntdZWK1/ftl3fP9r1/QNBkKK0748fPX5w92ZAwLXQJNwsSWlhyPDee5Oez8L+yF2doNt6ZEAd\nkYJD9pIUtpUhKbhY4GyA+e6PvlES29oAd5U5luLM6wgyiXh8Ud7LBOyF3OYtVcVkvu3RPUvG\n0RqnW/NztFgqgjPG+AEnPaBbEu8trdN/RQn2vHQ9u4mr92z+u5/WZ1oY2fYz4E+U5lmUcbkU\n3a5HLLe0pziN4dSpFpOZv8rFqfEejuS2erfytUBiZEeR/wjNIbWkSWtYOFLmXLtiM4UJuCWD\ncj57pYjScS2ZVHtgM7AxDqiEGFn3wAZzf5xSFVMJqOhUGl27fsXFUUn0XJXh1NkJG3wQp+7y\nOfrgC82uYQkMIJtDLv56GH1e5TxhuzgzYPbzZGmQJzBaGxT55Py2SjOPZmDmZy6U9S8FyYfU\nRKaV4swbsSUkPrr8hJ1lmA1/BvgViNyquM42sosDUVR8MJmUWhDvx7hS+AKTFuaVfDaBhbBE\nsStC7WfF2tckgpkH7l3iA8gdGPv9UIT6CIzpHJ7QenNLWUUUpBwJyChGEKS04NOCL7LDx+wa\nbfI1hgW+1MNOdU2V1WpkV7XLgNFr95wJScz9cH13+2oW2P+mvPzrJX7en7s6Qbf1SLc6IgW3\n7CUprCpDUnC0wNkA890fTaMkFrYB7ipzLMWZN6LJGL05UbuwQQufzqpiMt/26J4l42iN0635\nOVosFaGakazFlqRl61AS4D9OUeod/56rsZ5UY8fW18Oids7W3pOKIAhfaNPXRnYMmLgk4WQq\nUSfChz04jVFjeBUmM8/Gb/sm69qUu9xdlEHj/kYsbBspc7Fd0YkkCsOPaNL3ESR+z8cG63iZ\nqYopBevX5/H0qhiCkx4A2IrQuFYLc9nFKsWZ1z4XEt0JVJB8OLOUlhPpEQTJjd1GU87O3Rth\ng6+3fKPpQerRN/OzxhwdU5QZWEbmapCywtB8zMGqAn17u0p6wnZc4EYU47Kq8ceVOV3ciSTU\neBUcW+AbDbGTLX8rLQwJyiJ6n192xBw3DIODYisiCIqKN0fmaI73i4i9QdigUyc/bJBbFVe/\nB25W7vp5EiVZkHw4DnOfopHtQFNB5Vwxw2ZYotgVofazYu1rEsHYbpgh5lazvPhNCSISJsTe\n+4nqIzCpc9puwE3drjwUgSBI9MVZRZjxZ69tvclmCxCBneqaBquVX6/7pFsfX7a0xE61oJvC\ncRO43NUJuq1HutURKbhlL0lhVRmSgqMFzhKY7v7oGSWxsA1wV5ljQVHxP+/SiMd/ufwJNug9\nrpqayAy3PbpnyTha43Rrfo4WS0Vo7ilzsZRkv9KhJMB/nJUdhn7H3D9iVWvQ87A7XTw1uwA1\nMraVAzZ44jlRx+TOb1nY4Oxa1opx6Mvc3RC35OtzATkDIDsEd8Y4kR3PlMC2kTJH2xVt8Ec2\nrOUtpXrNZJI+ta3xedK/eTzeKAcTNZHLyXgpW8toYNHShF9JJqsrpwMMAOY0tpP+jUpK/7wS\nTTDhl3U7tHic3DUkqvi04bYWmRPB3GOBsUD2OccH/SMi7h2XFA/t0rHdL3oNP6O9HDy94fYy\nfVpW9H0/mTVuWWEbsEEjm76VRNEqEHchDhvsPb8ZwYQRV0nfiqcrRnbFGVJL94YTTBh58FY8\nBrtq5hWU5MKsu0SjoqIZu8OwP/hPxk2scKvivMfjLpv4sn4N8bTvl/2LDTp3/IMamQAysEWx\nK4PCz4rNr6kRvr7jVGfZ3a5iUcpkwuuKCpL2ndK0OJpJnWNbb70HZtweunkHgiC7F72V/qJn\nXGNzY3slKYEKw7C6pspqLSv65o+hU6/FRLIVGvnsXVoP+0tKCG7RD3d1gm67XbrVESm4ZS9J\nYVUZkoKjBc4SmO/+6BglsbANcFeZy3F9xlWCMSWi5Ek3cBUxvZOzmvjMtz1aZ8k4WuN0a36O\nFktFcOrsKP27JPeJmpgAQB9pbxasxpxKYmTT9lXwyXoUnTdWZ24r8xC7vQAAIABJREFUbPD9\nQkIHk+TH73yULbsAwthuSHNll1/Ql3l3a0Ns8NjbdCI5S9kTgVtX3bCmhaqY1MKqiU3utiv6\nmNdEZlpISjNnP0kinrYg6chbzKF6Rrb96xA4PSj5rewSGUNr3VytSwfgpAcqJ36rcAeLvZy9\nuISAKSwpTZ1+iOggGcsH/B0nyjMvy5xwMkqLzIkg0HdZ5mMlDRZn35v8kOhmjqRnM8/cvvfw\nF4k+PhWRZEg33KTD9n9eE097+a9b2KBzx+EVkYTNFCbixnI1TfWIpJKUpkzT3R4dstSeNwAb\n/LL+7xwxofHouoOR0r95fL1prqZqIhMh6dGUpzmEDmL6fmbUi1yZcSPQd1jui1uByK2Ks/Ra\n4mYgs28KU08tf0toI0hZUfi445HYX/osqE2xcAAB2KPYleRP3WfF5tckwqgZuIfemzgzl5iu\nOzN+lcY4TOocnsD839ayAznzk/ZdjrywBbOu2aPvDjhRgyYYVtdUWa0CPfsXz549/cW9oE1p\nxBbOm/vilt+h+E+GuzpB590ureqIFNyyl7CwpwxJwd0CZwPMd390jJJY2Aa4q8zlSHs382R8\nvuZ4CPJyZZ9EzNn4Jg4j+9kYqYnPfNujdZaMuzVOq+bnbrFojWMH2TEepfkf8ogVJgBQy6GR\ne7HBWUFnsRcxVBC7hpscMWfFZ31behfjJVXF09mbsUGfaXMZzrzDUA9s8PmcIxqzlZL7fee1\nDNkQki8wnuVCwd5xIuh8hIWFu+2KPhotxJ2UGfgHiTFR0KTl2KDXqDlEUr1IkzVFy9qN1MTk\nFuCkByon9k021zGRDU0Lks4MOBiqMdWrFT2D8wh5HQzscAvQgldpPsTpyeKu4UU0nig4bCtu\n9dCp/oPDizQfX4aKc6cMPCEN8ni8aROqV0SMWvOHYoPhh4Y/I9CpIAiS+Xn3lEe49Vajl9dT\nFZnrmHjgzm/5kk+oYQTM6hxbQvRIOp1jWW1Ze8x5tsVZd3usC9aYKuX53AvpsjkmS68lPhW2\neMSlGUP679IYTZT7rvu4i9hfXDvtcMRfuMCtiuMJrXf2cMP+sqHnRCKTgBcn9gwrlL2agYX/\nKl8mj0sCZLBEsStC4WeFsPg1iVB9wjoDzPlahakBXf55qDFVWvCa8UFxGqMxrHP81+OOVB0/\ndCL27Nypa4huywPIQre6pslq5Qmtsbf6oZKiGY8IzTtHnonBBl3qWclF4KhO0Hm3S6s6IgW3\n7CUs7ClDUnC3wFkCw90fHaMkdrYBjipzeXkkJTO6LSnWtAgt78eF7mtw9dh89SKNmTPc9uie\nJeNojdOt+TlaLFpj4T1G+jeKlp1L17w2FACopazwy9Jw2QHgJg4jVzel8lQSvp7d7p6yxSgo\nKp446YL6JMWZd0dfjpYGeXyD9TN8Gc7cZ/osbDD905L5D4htepYULe6BOzLNpt5aJ32GXIo6\nH2FJ4XS7og8n/93VjGSmRW7s7mEnItXEl5IW/O/Ia7JpAR5fb9PCugTSSc5hnPTVx3sRF5Xl\ngJMeqJzwBObHl+CGNEGTm29+pu4+j7gbS9utekMwf2MnnNaLuTbyVqo60zPh7vpuG4hmrh0u\n7fd3t5Wt1C7Oetqm6+w4zFJuJaBle0Y3vZIiG+3b1F35h0OF7pWxqLrodxfscWFJvVpM1SAG\nguTH3O3capYYMyK1rjVvvqfyc85Lsu/44xm04F1FZGYeu1Z22GAggXmZe5t+77/7s9yPWSTv\neiFLUUkF8ucJ92zGnUr0fHHbJdei1aQoLfg6/Lft2F/8147QXgAMCff+7LgwQE2EssLQIQ3a\nYQ04Hk9v1QH5Y3OYr7gKVQGCdNyzATvjUJB8uX6flernmJ5tHjLkeAT2lzYb9utxbfdsBcuN\nPbBEsSuFqs8KYfdrasTAot2+LrhB46sVHScc/KAmSd6Pyy3aLMFOwqqCYZ1jU2etN2bGP+ON\n7BgxY9sBM90YWiz/34RWdU2f1ToVf+NdwIgpmZrO0i9KvT3q9HdpkMfjz/KWPyyRuzpBt90u\nreqIFFwxdBVhTxmSgrsFzhKY7v5oGCWxsw3QrcwVpwX6THpJkew4Mr9sbjxmn5qiKUy+377B\niBxMD2hg7ndypLfGnBlue3TPknG0+6Zb87OzWOj7fAyte9bCrAW5HJqlJjIA0NEUk5/OL5HI\nPs+qI6dXMENFOu9apceT2es/zv2+6kWqytio6J/Ow1JEsq/epcOeDpYGDGdu7DBqTXPcrecb\nuzU79l7DofeopGDbqMbbMLee83j8ecepmarFomYSjyUTm1xvVzTBF9oeHo9bQ3ZubMtdrzSc\ndpD1+VzH9rjy9Ox/ohMB4Uuy7mIXmI5qZqcmMsdAAYByJMVyzex6ZhG1TyjOvo/Nv/Haj0qk\nKMsd4II7KFugZzdj67VSiWJU0aUNkyyFP9es8AW4VA+zixUzF5ckSOOXY+rS/VF8vjJhJQ8P\nL5JGNnSQrZq3rPqv1m+nlPR3G4U8XJ9jUb3niQcRSiOnfL4zsztu3MjjG+4Jzyb4LDUkPpos\n1wDMPLucuh+qNLKkLCdg7yJ3A9xuaR5PsDMqR1X+Bakn5fL37HO/4mKX44Q5WwZBkB2JSuu0\nouQn4nag8gVmWx7EqYpcmPxuzsDGiDL8Nr5TmkTrJpQZPgabsPmuEFUxCT1CUjLJF7c9ji8w\nG7PiZL5Y8SNEs74F9ayOm6Y3tvtNMSaR58pVopSmQxaEZJUoxv9ybXsThRFv3elBijHprjiU\n8ipA0ftzm8g93c1/1P2oXMWYZUUxayd05ON1iGWN8YXiCgmgRKQ+ntiExUqaA2moLbey4h/Y\nOLVnvdIoQE70QmySHi+TNSYJP+KPTXIytUBpNJYodvo+K7pfU+uGShxRXnBVQ7lejN9h/Jof\neSKFuOLHhxdVwUTmYd662ZYvcrEZ0DlyBPSsoryiN34mUSKEIVI77FE1WksS5Cc7zJYvtFIp\nMG3qmj6rNfn5BDmZXdrOCP6hwoSTFD+7vKsh/jZE27orlcZloU7QeT3mxq7Exuz6MEExDn3q\niBSsNXSJqAWWlGE5BN+U7gJnj11EpECIfCmKMNz9UT5KYu1HR6sdqzgt4OSn0tQkisJclpSq\nnSa/SSpUiF/6+OgST4Wz3/6+T6jhoYy3PVpnyVBWdt9s0PwsLBZaPp9f7K9tK83WZ9wzjfFp\ntc3oNvyIw57OlD2SoPQ0xUdDcF+QqUeN2hXge1GZ0qecG4rbwivQd/z3rpKeVyxKXdALJw9f\naHVbk5eEpswLUy6bCHCjQr7AbNzqo3GFpUrjhz48N6C+LYLHvccB9cIThPgkHkrnCIs4laBd\nqQGr8RAEWRit0imjSGnBF+zarHJhpmy6nF2mpMcVl6ScWDfDTg83wWhg2eJLgfJGKEfap5HS\nVEJDDyXWC2eh7OIEAGAbPIHZgfubrvlOKv61MEdcmrZtZs8jm+oPGjLQr5ano71Fflry968v\nz50++yE2tzyOQN9hc9CGGR1/l+ZjLFBy4ARf33lLR5fRN2XHW+UnBLX3qjZk2vSerRr4+vpW\nsTVISUz88PTm6eN7rr74Gc3Mo1/A8tR2o57S9Mo2Df4OnHmy25b30l9ywq+NaHdtedPOPbp1\nblDd3dbGNC8lITY29vPTwJO3P0rwK39bL7s7sZr8ZiYtcGq9Y1nHgGV3E6S/5P24Nay97+w6\nrbq0bV3fx93K0kooLshIT/3y5tn923ci0uVHwj3XPphSVfk2+sqBidPEMVXmHYr52eok4rw/\n23sc6/r79ElD63i4Ojk5IXmJYWFh4eHh754EnbjytFD8c4mgvoWtKEe2zvH13NYD4+d0b1JN\nX9B4+GDNS/U1wuPjrs17N3/C6Zo729ZyF4pykpKSqtZvRu5WPJ7+pgfHLrr1SSv9ubJPIs47\ntHj46Z0r+w0c2LpBNSdH28LU2KioqNAPj89ef1WKWUPH4+vNDdhvwq/oDm6hoUtZ8c+m+PrM\n6toXdvr3GtC5eR0XF0dJXmpsdNitS2dfhMsvHTV26HHv3y6KuTFQcRRXAYK0XXVv8CmXs3Gy\n2w3jnhztUO1so459+nVv7enqYmkgTkpI+Pjs5rkLt5LwJ+8J9OyOPdxixIUzdygvN/bAEsWO\nhdrPqhwWviZx9Ewb3zowuNoI2fwCikru7Z/vfWR9m94DOzSt6eLiKM5Nifn+JfDs2fe/7A0E\nQSyqDdtifvePtyoXRzPfWbRc2x+59q/cjzye3qbx3Dhgk9PQp67ps1odmu8e63HmYLSsVSc8\n3Na06q6GnYf079jY3s7Ozs4GKcyIj0+Ijw2/dubU5yTcrcl8ofnuoFkKuSIIl3WCbrtd+tQR\nKVhr6BKBJWVICk4XOEtguvujepTE2jbAXWVezvwl3db8c6P87+93djdxOdK8x5Du/vVcXRzK\nspOjv38JPHv2o8KN9V5992xs50zwEQy3PVpnyRDO1jjdmp+jxaI1/jNqIBN+KpbEW4EI0kK3\n8gD/Ne48x32S+dFhXyqQW4mKMzP6Hb7X63HtwISfXYBYlPx356qX+k2aNXFQbW8ve2NxXGzM\nmzsXtu3Y9zERNwIafeBZJytDZVnSnrmRfZ+nu0Y1nHQE/fVSEnHegQWjjqyY365rx1YtGrra\n2Zrqo1mZGT9C3j1+dOvFV/mjVkzdetw8N0q98AQhNYnHhonNStCuaEJoXOv6yT88+uyT/iIp\ny9r1d9+DK6t36disWrVq1ap5mSKFqWnJn18+unPncTz+Dh2+0Hz7s2u1jAk5qaMOyI5StvJd\nIOTqRK8ydL1KAKiMsGMnfTnfzs0xIOzn4wvNNzxMKsq4hv0xRMVanuKsBy4GyncWKkXPpM7D\n9KLIM22kv1C+kx5FUVRctHlUA+JSSWkyca/yRVxaUVYc28ddy8PZ/KceV595JdhJj6JoxudN\nhiQ90HaNR33KiKtiqKTfsvE5jc1c6yZUmHpGjQDv8mULyYk/IuHBFkcVe3DVMHjba6W5kd1J\nb18/8MKcdqQebWTb8l6S8kW+KM0VR1MVFKW/6FqF9PcoMHDecj9eVZ6kBJCDjp301JYbq5aW\noygrFDutnxWtr8nATvpyApf2JCW2vlmD51nF2AXLSjff0K1z5JCIC32M9eRSWfuspqfMYCe9\nPDSpa5ROqzUr9JAD+V4eQRAeT2/CXrVlyDKdoPN6JL4/mCZ1RAp2GrrE1QIbypDUm9Ja4Oyx\ni+jbSc9w91cOtaMkdn50KEqjHcvATvqL6YX7R/qQEtu9y4JcZVvHVD5QF22PvlkyFGVd980W\nzc+yYqF1J31RxnVptjyBUUKJhh2ssJNeFbCTXjsamekj1BGqYpc5iqIFSTe9FU5SUU+zv64Q\nfAv6Mr+7so/cRnOCGDu2epqh/BgVLSA+iVcOfSNlglSOdqWKiuykL+fa0h5alINA32lNQBTx\np8x0kbWBHoHRZIVkM1zYHwcAFaDGwHUfz8wjMvo1tKq/+27o7DaOklLc2ih3Q+VpDSzbvrv/\nr9wBHaow9+py+f3TNjb0r2niG8468ubknN/0iQ+6BKaj/jn3as8EbWZYVSAwcDsf8mZWVy/N\nUbGp9J0WHn35eAf1d9uwEOvaf709MoXg2JjHE7Yfverbi0N1rF1vbBtOn1RGdoOHOJtqjkcG\n57Yzv7w4UJdw4+frWf+17/GZ6fJnGWlN/3X3T8/uKSBmg1r5dLsTere9o8r73uiuODqqwNDG\nL+DryxHNiO7nQBDEyKHBsdefZ7ZzoVYS+qCj3FgEOxQ7Fmo/q5+w7zVJ0XNZ4M3VI0xU7CuS\nw8yj/bk3D5oTuHOL4c6Cxzf6t7Or3I/tt/wn+mU2QJ+6ps9qtfT548PtdVVIziMIjdwWnP6w\nd0JddZE4qxN03u3SpI5IwU5DlzhsKENScL3AdY5Ouj9qR0nsbQOcVebljD38at2YVgQjNxu6\n7NP1lWZkTvDSSdujb5YMQThc4/Rqfs4WixYYWncfav9z6IeKi1ZHZetWHuC/BVr2taCUmUcZ\nO3Z59fJ0Bw9CnmMeX3/QwiNPN/bWeeYdFl4OCdjkS9Ll3GDQwi/fH7S0pszcJTuJp+MRVmVp\nV/TRY9m1oDVjzIUkfM2mbi3PfQiZ16sqwfjikpg9ST/PGODx9FYRPrWIG+h6lQBQGWHTTvpy\nChJfTu1eU9VXwOPx63Wf8TXn5yqtnJil0n8J9J3U55wbdWeIn4eaT4zHN2w7enWy6OfSUdp3\n0v8i43PQmE4aFn3z+PrNeo27/jVLi/yJIQ7av6KNj416MRAEERg4Dpm19m2Cpn2WKIpWlp30\n5SS9PNHBV/6CH1wd8Xg12v1+9V0KNtXd9RPt8XJSuNch+9vJ6ubKbTXttnGXU1aSuHveMEu1\nvTWPJ/TrM/l6iLoGqcVO+vIf454cbaf2DgWhofPU9eeU3gSpCE0VVw5NVYCi4kcn1jR2NlEj\nNoIgAgPHccsPp4o039dUgd0MVYVCPUMjY1Mzcysra0p20qOUlhtjS8sFQj0DQyNTUzNLK+sL\naQqXXCqgQ8XOwGdF02sytpO+nOxvt0e3U3c8LI+v13LECumGEoKbb2jVOXJkhs7BJhHoOyUT\nUAjaQfNOeopVDYMbcShW11LosFrLKUp///cAf1WH32IRGjr0GrvsSyaJTRgs0Qk6r0ey+4Np\nUkekYJuhS1Yt6LwMyb4pTQXOHruIvp30KLPdHxaqRknlsO2jw0K5HcvMTvryn9+cXFpd7XIK\nc4+Wu4JCtXumrtoefbNk5bCk+2ab5mdJsdC6kx5F0eC5soWYNcY8Vh8ZdtKrgqbOlD2SoDQ0\nxdKCrwilqNnxXI5YlLx+YjcLtf24vW+bw0+JGiTMZF6SE7Zz8XgvC82u+prthx0Keq+F8Boh\nOImHh66RsnoqWbtSpOI76cvJDr0xqmsjPU37eQysfedsvZhD5uQhFEVTgsdIc7DwnK+dhKyF\nh6q4AgEAKh+poc9OnTp19f7r+Pj4hKQsEztnd3f3mn6dJ0yc6I9xJKd9GGrf4OehK8Z2AwpS\nz2vM+cergCPnrj97/vzbj+Ss7CyeoZWTs7OTs2urboN+HznYx142nCvNjQ6PKyj/W6Dv5FPN\nmtJXlCcj6m1gYOD1mw8j45NSUlPTMwtNLK2sbW2r12naqlXLrn0HN3JnYO+p5OP9wLtPnj1/\n/jzkR2JWVnZ2dq7A2MLW1tbG1rG+n3/bNm3ad2nnakJuD1YlQvLp7pkzAXefv3gVGZealZXF\nM7Z2dnZ2cfVq3bVX37596ntYKqYpTvt0OeBxSESyjYe3r6+vT816VewoO6dBXJxwdOOq4zde\nR0dHJ6QX2To6OTk5OTs77zh9qgqZw3IVKctPuHst8OrVwLdhsSnJKSlpWfpmVra2tu416rdt\n27ZTr4Etq1tVXH5nA2GS6Of9jvb1A1Pe/zq2DhW9vx9w9tzZh2/Ck5OTU1KzjW3snZycqvg0\n7tO/f59ebe3IvR2NFUdfFSBoyeend65du3b3+YeklJTUlJQckdDO3t7B3t6rXouePXt27+Jv\nb8S5xfo/obHc2IROFDtTn5UMdvRfWpIa9vLSpUsBt5/FJiYnJyfnifWdnJxdXFz8Og8YPXpE\nHWfZoQL5P8JiCn9emWbs5O2pbmU6Q51FdsQ/VtVl87Du3S7FBPUl8/YARdCmrumzWksyIy+d\nufTszfsPHz/GJmfm5eXlFZQYmlpYWFg4uHs3bNiwsV/bfv072WulFriqE3Td7dKjjkjBOkOX\nLCwoQ1JwvsB1hW67P0pHSaxuAzQp84F2JhfSC538ghJfdKuYgOjXryHSgLtPTem2eFRS+Dzw\n9NETlz9/j4mPT0jJKrF1cnJ2dqnRuM3gwUN6tqqp9Tmlum179M2SlcPR7ptuzc+qYqHu85FR\nnHnNxPY3CYoiCGJg0bow+xEc5AtohI6myBil+XEBp06cC3z4Iy4+ISE+NU/i6Ozi4uJSrUHr\n4SNHdm1CdK8ww5lLSjOe3r7z8OHDR0/fxKemZaSnZxehVjY2tra2VWrUb9O2bbv2Xf1qOlRE\nePVoOYmn6xEWY9DarugjP/bdqfPXXgUHv/0QkpqZnZOTI9Y3c3BwcHBwquvXvnv3bp3bNjIl\nc+xQORc6ug28F1/+d6/LPwL6eFAst04BJz0AyPN2fv3Gaz+W/21dfXdG2CTdygMAAClUehMB\nANAW+Kz+O1zoXmXgjVhpcOG3zJU1KFg+BQAAAABsBro/TtPTxvh6ZlGV7nejr3fQtSyk4UTb\ng1mySgxNn8/S6tb/RGSV/705Lm+WKxtXYwCsgtOaHAAAWkHFuR6mNrHFZQiCCAyc43LjnPQr\n1eqvSvUyAEAJDy7KBkjO3RvqUBIAAAAAAADGEJfETrmbIA0aWLReRsUBJwAAAADAZqD74zrl\na0lNPDWcf8tCuNL2YJasEkPT5zN+Ryfp3/tWf6Q2c6BSwl1NDgAA3aR/nFfuoUcQxL373krm\noUcQ5D97vjRQycn6umPJnjBpsP6cNWPdCC3bFOU+XxSVLQ02+d2TeuEAAAAAAADYR0zApLRS\nsTRYY8JGIelDyAAAAACAY0D3x2kkpamfC0oRBKnS11XXspCGybYHs2SAIvR9Pi4dDrQwv/o8\ntwRBkMhjk/O2fzQjf7gx8N+B05ocAAC6OT/5UvkfPJ5g9e72uhWGDsBJD/yfvTsPjKsqFDh8\nJpOtG6WlFgpUsAJaCoioaIHKJgKCPEFkkUXEJ4uIxYVdAcsuspSCiLiwFVREHgr6WEVk32rL\n0tonIEIpW/dmm2Zy3x83hNo0adqZOZNkvu+v28m9c869tEnIL/fc/ik7+M0rrrii448favri\n136+U08OfODMo1va2p8BUZUd9MPNS/vMeACAXuKS7zzUsZ3JZM46eYsyTgYA4vDlr0974+FT\nlyVJJlN98sdHlnsuqy3m3z0/JaOz0v3zyWSH/OKiHcYefV8IYVnDs8c9OPf6ndcv7hD0J336\nMzlQUrnFD3/nqbfS7fW2v/ygdQeWdz6l0N9WBoDU4FHHrlub7fjjP2889MnFuVUe9c4zl3/+\n8uc7/jjyE5eOrst2sz8AQP8w/7kfXvnako4/Dhl9wr7rDCjjfAAgAl/++q7c4jcfuf2i7fe8\nPoQwascf7zi0ttwzWj2R/+75KRnLi/DPZ7Ov/nrLQTXp9h3HXl3096d/6OufyYFSe+7i49Nf\nFsxkMmdOPazc0ykJkZ7+qap2/Z/vs1HHH/Mtcz677RFPz2vu5pDZf75oq/Hfyb37C8IhhIm/\n3L+EUwQA6B2a3nryi7tcuPwrn7l8YrkmAwBx+PLXdzW989sBa4/a/gsn/au5dcD7dvjd7ceW\ne0arJ/7fPT8lo0Ocfz5VNSN+fVH7osQLZ5/901eWdL8/FaivfyYHSq1t2VuHX/xcur3+Tpcd\n/f4h5Z1PiWSSJFn1XtAH5RY9MnbUji81tXa8Uj1g/X0O++qRRx62/RYfWHtQ+6/mNc/714MP\n/OXXP7vkV3c/t/zhG+52yat3fzvqjIFiWL+uem6u/cF+I7f+45vT9i7vfKAf8M+qH0pyW3x8\npw9+8IMbrT90/pyX/nz7XfOXtXV8sG6t7d6c/9BQT44EoJ/x5a+/aHz7pkEjD6kZNGq3L/33\n+ZecvtWwunLPaFV6wd89PyUjFe2fT9LW9KUN3nfrGw0hhPW2mzL34W+WaCD6qL73mRyIa+aV\nu2z+zb+EEKqq1/7fN+fuNry+3DMqCZGe/uzVO07/8BcuaMy3df5Q3eBh71u7fsmCBYsaVvKL\nw0M2/txjz9+++cDq0s8RKDI1EYrOP6t+KGnJVHX5vzfH/unfP9lzdMzpAEAMvvz1F0l+8ctz\nGkZtuN6Aqj7ySxW94++en5IR4v7zefvJM0Zue3YIIZPJXj9n0aGjBpV6RPqQvveZHIgoaV2w\n7fD1nlqSCyFsc8rfnj5/h3LPqFQsd09/Nnrvc1+48/yNB9Z0/lDL0gWvvTZ3pf/vsc7Whz7p\n/z0AgIr0sWNuligAqDS+/PUtmexaY94/qn90nZh/9/yUjBD3n8/7PjHpqi9sHEJIkvyJ+18Z\nYUT6kP70mRwouhmT900L/cCRe/550nblnk4JifT0cxvtftI/5vz9rK/uMawmu8qdB4zc8qRL\nfzP7yes/5P89AIAKU1W99sGnTn3iqoPKPREAiMeXP8qlLH/3/JSMyL5+873bDa0LIbzxyMk/\nePLtck8HgD5g2dJpe5/+cAghU1V/yV9vGlnTn0O25e6pFK0Nr/3h5t89+PgTTz3991femLdo\n4cLGfHbo0KFD1157xKgxn9xu+x122OGzu08YVu3X96Bvsy43FJ1/Vv1R2zXnn3TDr++Y9cqr\nS8KQTTfbbNw2u37vzBM/NmpguScGAKXjyx/l0uv+7vkpGdG8/cQFoz51Wj5JBq23/9tzbhnQ\nn1MLAEXwm4M2Oeg3L4YQtj/jwYd+OKHc0yktkR4AAAAAAAAAIvGrawAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAACuLYnWAAAgAElEQVQAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQSXW5JwAAAAAAwJoYO/HOyCPOnLxX5BEBAPof\nd9IDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQi\nPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEUl3uCfQKjXNm3n3f/Q8/88Lb78xb1ByGDR8+\nauMPT9hx512327Im0/VhSe6Afb/U3Jas8v2HbHji1J9MiDq3Ih0OAAAAAAAAQBGJ9Mmjt155\n6Q33LN/a33mj8Z03Xnv2sXtv3mynk049btw6dSs9Mrd0Rk8KfVnmVozDAQAAAAAAACiySl/u\n/unrTzv/urs7MnamqnbIwJqOjy6Y/cCZ3zrzpeb8So/NLXmi186t8MMBAAAAAAAAKLqKvpN+\n4axrJ936Qro9aPT4Y4768nZbbVSTCY3z/3XvH6b+4rYnkiTJLXnhjFOm3njZ4Z0PX/yPV9ON\nIRse/v3jx3UzULZug8hzK/BwAAAAAAAAAEqhkiN9268u+FOSJCGE+hHbXzn5pOHV7Q9pHzh8\n432OOP3D7zvne1c/EUJY/NLvbnp53y9/YMgKx89/al66MWL81mPHbtKb5lboqQEAAAAAAABQ\nCpUb6Ze+dt1f5jen24ed/c2OjN1hs71O3/u2g+94qzGE8KdLH/zy5XutsMPL/7c03Vh323V6\n1dwKPzUAAAAAAFYwduKdMYebOdlPbgGgf6rcZ9K//OvH0o364Xt8foNBK9sls983PppuLXl1\n6qJ8ssKHn1iaSzc+PnLAGkzg2iMP3OddKzwbvsC5FX5qAAAAAAAAAJRC5Ub626a1L1a//q67\nd7XPsHFfrspkQghJfulNbzQs/6GkrfG5hmUhhEwmO36tul41twIPBwAAAAAAAKBEKnS5+yS/\neNrSZen2h3Zet6vdsnWjPzmk5tHFuRDCyzMWhA0Gd3xo2ZKn80kSQqgZ/JEh2czrzz7wv488\nO+e1OXPfnJ8dtNY679twy49+dPuddlhvQDby3Ao/NQAAAAAAAABKpEIjfW7J42liDyFsPbS2\nmz23GVyblux5T8wPe47ueL1l0VPpRqZq0OVnHnfvtFeXO+iNV16c/cxj99/4i2s/c9BR39h/\n/IrPhA8hhDB4xMiRVU3pds1yexQ4t8JPbc00Nzfn8/lV7wcAAAAA9FkNDVbljMfVBoBeaMCA\nAVVVhS5XX6GRflnj7I7tzQfWdLPnqA0HhteXhhCaXn8thI90vL7wubnpRsuiv907beXH5nPz\n7rr+/Bf+79DLTzkg2ynU7/+jKfuXYG6Fn9qayeVyuVyuwDcBAAAAAHqzpqamck+hgrjaANAL\n1dfXF/4mFRrp23IL041Mpnpo536+nNph7Tejt7UuXP71+U/N79jOZId89oCDd91h2/ePXCc0\nvvPKK6/88/nHb7vt/ndy+RDCq4/eePqNYy84bMs4cyv81AAAAAAAAAAokQqN9LlF7fd8Z7JD\nut+zekj7zegrlOx//HtpulEzcJNTLz3n46MGtn+gbt2xw9Ydu/W2u+2+46SJk55bkgshzLz1\nnOe+OHWLgT262gXOrfBTAwAAAAAAAKBEKjTSr4a25N2NluVfHr3fIUfm8iGE9++wxzYjVrKm\nQf2IrU6/8GtfPu6nSZIkbU1X/+blKV/dNM7cIh0OAAAAAAAAwGqq0EhfO7R9pfck39D9nq0N\nrelGpmb48q+P/9znVznKoA33PGz9G6+fsySE8OZf7ws9i/QFzq3wUwMAAAAAAACgRCo00lfV\nDk03kiTX2JYMrOry2e25Be2rx1dVr0nJ/uTeG1x/9awQQm7xIyEcE2Fu0U5tBfX19bW1tYW/\nDwAAAADQaw0ePLjcU6ggrjYAfdRHT74v8ojTLtw12lhVVVWFv0mFRvrqAZuGcHe6PbNx2ccG\nd1mX35rTlG7UDVtvDQYausWwdKOtdeHifLJWtstkXqy5RTu1FSj0AAAAANDv1dev5NGflIir\nDQA91Oe+aBah8/dFdWt9qirT3sunL23tZs8ZS5elGyPGr7sGA2Wq6zq2a1Yd6Iswt2inBgAA\nAAAAAMDqqtBIn8kO3XpQTbr9/KNvd7Vb0jrv4cUt6fbobd5bE37Bs888/vjjjz/++LRZi7of\nqGnO/HSjun7jAV2vPF/EuRV4OAAAAAAAAAClU6GRPoSw79btZXruXY91tc/iV25ZliQhhEx2\n4CGjBnW8vmj2jeeee+6555573rk/736U/7t9TroxePQX4syt8MMBAAAAAAAAKJHKjfRjDv5k\nutEw9+YnFudWus9DP3k43Riy4SEjat67Vuvt8tl0o2XRX6+ftbCrIVobZ13xQvud9GMP2jLO\n3Ao/HAAAAAAAAIASqdw6O2TDIyYMqw8hJEnbFefcmnTaYcHzU3/2z8Xp9p7f3nH5D9UP22Of\ndQem27ed8f1nVxbC21rfuea0cxrySQihZuC4Ez42Is7cCj8cAAAAAAAAgBKp3EgfMtn/PnmP\ndHPhrJu/ddEtcxta2z+U5Gc99JsTfnBLkiQhhKGbHnzImLVWOPrAUw+qymRCCPnmf5911MRr\n//jo24sa02PnzX3lqQdu+/4xx/35pcUhhEymar9TT+z8QPpbTznh6He92pIv4twKPRwAAAAA\nAACA0siksbZiPXntSWf/fla6nckOGbPJRkPr2t6c89Kcec3pi7VDt7z4mkkb1Wc7H/v3myed\ncfNTy79SXT+kNt/QuKyt45VMpmrHr5z3nf0273z4tUce+Pt3mtLty35725hOQxQyt8IPBwAA\nAAB6ubET74w84szJe0UesVeJfMEr/GoD0Hf5FmWVKvhO+hBCCJ844oITD92lvioTQkjyS178\nx3PPzHihI2OP2HyXc6ac2VXG3vrgM84++r+GVb93DVublyxf6OuHb3L4aVeutNCXem6FHw4A\nAAAAAABA0VWXewJlVzXhgBO2Gb/bXffd//DTL7wzf/7iljBs2PBRY8Z9eqedPvOpLbIrrlL/\nHz6y19d+PmGPv957z7R//PutN9968603lyzLrj106IabjPv4xz+12y6fGNhplftocyv4cAAA\nAAAAAACKrNKXuwcAAAAA6KOsJRuZ5e4BoCd8i7JKlb7cPQAAAAAAAABEI9IDAAAAAAAAQCQi\nPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAA\nAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAA\nAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCTV5Z4AAAAAAAAAQKmMnXhn5BFn\nTt4r8oj0Le6kBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAA\nAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAA\nAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAA\nAIBIRHoAAAAAAAAAiKS63BMAAAAAAPqJsRPvjDzizMl7RR4RAAAK5E56AAAAAAAAAIhEpAcA\nAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAA\nAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAA\nAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAA\nAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACA\nSER6AAAAAAAAAIhEpAcAAAAAAACASKrLPQEAAACgnMZOvDPyiDMn7xV5RAAAAOg93EkPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJFUl3sCAAAAAFAqYyfeGXnEmZP3\nijwiAADQt7iTHgAAAAAAAAAiEekBAAAAAAAAIBLL3QMAAADEY/V1AACACudOegAAAAAAAACI\nRKQHAAAAAAAAgEhEegAAAAAAAACIRKQHAAAAAAAAgEhEegAAAAAAAACIRKQHAAAAAAAAgEhE\negAAAAAAAACIRKQHAAAAAAAAgEhEegAAAAAAAACIRKQHAAAAAAAAgEhEegAAAAAAAACIRKQH\nAAAAAAAAgEhEegAAAAAAAACIpLrcEwAAANbE2Il3Rh5x5uS9Io8IAAAAAP2PO+kBAAAAAAAA\nIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAA\nAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAA\nAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAA\nIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAA\nAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAupM0LGz69dlntdywSdvr5Z4LANDn\nVZd7AgAAAAAA0HslS+Y3XHJ4/rVZe4SwQ/75ifXHPl+1UbknBQD0Ye6kBwAAAACAlUuWzG+4\n+LD8a7PSPw4OTZObrxrX9kp5ZwUA9GkiPQAAAAAArER7oZ/zj+Vf1OkBgAKJ9AAAAAAAsKKV\nFvqUTg8AFEKkBwAAAACA/9BNoU/p9ADAGhPpAQAAAADgPass9CmdHgBYMyI9AAAAAEAfkzQu\nbvrVSVc3T/5M67Ryz6W/6WGhT+n0AMAaEOkBAAAAAPqSpHFxw6VfyT3y+4+0vXR27rovtj5U\n7hn1H6tV6FM6PQCwukR6AAAAAIA+I2lY2HDxofl/PZv+MROS7+V+94XWR8o7q/5hDQp9SqcH\nAFaLSA8AAAAA0DckDQsbLjk8/+8Xln8xE5KTc7/V6Qu0xoU+pdMDAD0n0gMAAAAA9AErLfQp\nnb5ABRb6lE4PAPSQSA8AAAAA0NsljYsbLvvqSgt9Ku30nk+/BopS6FM6PQDQE9XlngAAAAD8\nh7ET74w84szJe0UeEQBWS9K4uOHSr3Q8h74r6fPpQwi3Vu8QZV79QRELfSrt9BPrj32+aqNi\nvScA0M+4kx4AAAAAoPfqYaFPpZ3e/fQ9VPRCn3I/PQDQPZEeAAAAAKCXWq1Cn9Lpe6hEhT6l\n0wMA3RDpAQAAAAB6ozUo9CmdfpVKWuhTOj0A0BXPpAcAAFi1yE9J94h0AGCNC33K8+m7EaHQ\npzyfHgBYKXfSAwAAAAD0Lknj4oZLj1jjQp9yP/1KRSv0KffTAwCduZM+hBAa58y8+777H37m\nhbffmbeoOQwbPnzUxh+esOPOu263ZU1mTd7wzYev/PqFd4UQtjjxZ+dNWK+Mcyv6qQEAAAAA\nJfVuoZ9R+Fu5n34FSa6p4ZLDoxX61ODQNLnlqq/XnfByVUE/KwYA+g2RPnn01isvveGe5rak\n46V33mh8543Xnn3s3ps32+mkU48bt07dar1jbtG0Uy65pxfMrfinBgAAAACUVBELfUqnX17r\n9Pvyr82KP+7gpOmA1gcvrD0g/tAAQC9U6cvdP339aedfd3dHxs5U1Q4ZWNPx0QWzHzjzW2e+\n1Jzv+RsmSfPVp/xo3rK2ss+t6KcGAAAAAJRU0Qt9yrr3HTJDR5Zr6Hcya5VraACgt6noO+kX\nzrp20q0vpNuDRo8/5qgvb7fVRjWZ0Dj/X/f+YeovbnsiSZLckhfOOGXqjZcd3sP3nHbtaffM\naSj73EpxagAAAABA6ZSo0KfcT5+q3mzbut2/3nLXNZHHfSa7yY01u0YeFADotSr5Tvq2X13w\npyRJQgj1I7a/cvIpO35ko/Qx7QOHb7zPEadfdNQn0v0Wv/S7m15e0pN3XDjrlkn/82IvmFvx\nTw0AAAAAKJ2SFvqU++lT9fufXPe5Y2OOOL1qzHfrjm4JNaveFQCoDJUb6Ze+dt1f5jen24ed\n/c3h1ZkVdthsr9P3Hjkw3f7TpQ+u8g3zza/88Iyb25IkUzVgnZqCLmyBcyv6qQEAAADAKi17\n6s8Tc7dtmf9XuSfS90Qo9CmdPlW/73ejdfrpVWNOqD+2KdTGGQ4A6BMqN9K//OvH0o364Xt8\nfoNBK9sls983PppuLXl16qJ80u37Jbf88IwXm1tDCNt89bwP1K/6OQLXHnngPu9a4dnwBc6t\n2KcGAAAAAKvQfPtljVcff3DrA1e1XL5Tfnq5p9OXRCv0KZ0+FafTK/QAwEpVbqS/bdq8dGP9\nXXfvap9h475clcmEEJL80pve6O5J8y/98Zybnl8QQlj7wwee8V8fLO/cintqAAAAANC95tsv\na7njinS7OuTPablOp++ptnzMQp9KO/3O+b/HHLQXKnWnV+gBgK5UaKRP8ounLV2Wbn9o53W7\n2i1bN/qTQ9ofFPTyjAVd7db4xl9O++VTIYRs/UZnTjpoxcXl486tuKcGAAAAAN1bvtCndPqe\ny788I3KhT2VCsn/F30wfStnpFXoAoBurXpW9X8oteTyftK/xvvXQ7r5P2mZw7aOLcyGEeU/M\nD3uO7rxDkl9w8clXNeaTTCbzxR9M+mB9todzGDxi5MiqpnS7ZrmwX+Dcinhqq6WhoWHZsmUF\nvgkAAL3ZwoULyz2FCuJqR+aCR+aCR+aCR1ZxF/zuqzP3XNP55eqQP7fl2rPqDrsnu01Jx+/r\nFzxTu1ZSXZtpzcUf+uXMemtwVF+/4Cux89dCc3Pm/l8V8S2LVej74dUGqBg+h0cW84IPGTIk\nm+1pEe5KhUb6ZY2zO7Y3H1jTzZ6jNhwYXl8aQmh6/bUQPtJ5h79MPvXJBc0hhPfvceqhWw7r\n+Rz2/9GU/UswtyKe2mrJ5/Otra0FvgkAAL2Z7/dicrUjc8Ejc8Ejc8Ejq6gLXnXPz7L3/7Kr\nj2ZD25ktNy6ryz6QLfRHT93o8xd8wNDMQZOqb/5+yEc9kelVY66o2WcNDuzzF3yldju6qq0t\n+8B1RXmzIt5D3z+vNkBl8Dk8sj53wSt0ufu2XPsvU2Qy1UOz3a1PXzus/XupttaV/P7FW4/+\n9LIHXg8hDHjfhAuO+mRvmFuxTg0AAAAAulF17zXdFPpUej/9bvln4kypj0rG7ZQ/9MIk2939\nNsU1o+oD3647pjljJfb3tO1+bH6nrxT+Pla5BwB6okIjfW5R+/pRmeyQ7vesfvfB7Z1Ldm7J\njFMvviuEUJUdcsKPjh/UbRGPNreinBoAAAAAdKPq3muy9/2iJ3tmQ9tZLTfo9N1r+/D2bYde\nEKfTz6j6wAl1xzZm6iKM1bcU3ukVegCghyo00q+GtuTdjZblX06S3M9PueDtXD6EMP7YC8av\nUx9/al3NLdLhAAAAAFSknhf6lE7fE3E6vULfvUI6vUIPAPRchUb62qHt3yol+Ybu92xtaH+A\nQaZm+PKvz7jh9P99dWkIYcTWR5z82dG9Z26FnxoAAAAAdGV1C31Kp++JUnd6hb4n1qzTK/QA\nwGqpLvcEyqOqdmi6kSS5xrZkYFWXK9XnFrSvHl9V/V7JXjT71rNunR1CqBm42aTv/1evmluB\nh6+xwYMHJ0my6v0AAOizhg0bVu4pVBBXOzIXPDIXPDIXPLL+fcFzd0zJrX6hT6WdPtSFe7Lb\nFHFK/e2Cj987P3hw09XHh9Zccd+4WIW+v13wlTrotNyAAbk//7SHu5eu0FfE1Qbop3wOjyzm\nBc9ms4W/SYVG+uoBm4Zwd7o9s3HZxwZ3+f3TW3Oa0o26Yet1vHjBmTflkySTyR5y9g82rC3C\nf4Yizq3Aw9dYVVWFrsoAAFA5ivJ/IPSQqx2ZCx6ZCx6ZCx5ZP77gzX+YnLvjikLeoRSdvv9d\n8OzWu1Yde2XDVccVsdMX8R76/nfBV2rAft/LZDItf7pqlXuW9B76CrnaAP2Sz+GR9bkLXqGR\nvm6tT1VlftKWJCGE6UtbuynZM5YuSzdGjF+348VXmltDCEmSv/a7h13b7UDPXXTUPhe1b4+/\ncuqpo4eUem4FHg4AAAAAnTX/YXLLH6cU/j4lup++n6neaudBxev0VrlfM/X7fjfkW1vuuqab\nfZ7JbvKd2qObrXIPAKymCr37OZMduvWg9mc7Pf/o213tlrTOe3hxS7o9eptID24vcG69+dQA\nAAAA6IuKVehTnk/fE2mnD9WF1l+FvhD1+59c97lju/ro9Kox3607ujmj0AMAq61C76QPIey7\n9fBnHnojhDD3rsfCvhutdJ/Fr9yyLElCCJnswENGDep4feCgwUm+rZs3b25szCdJCCFbN7C+\nuv2p8HU9/o2IQuZW+OEAAGtm7MQ7I484c/JekUcEAKhAxS30KffT90Th99Mr9IWr3/e7IYTO\n696XdJV7AKDfq9xIP+bgT4aHbg8hNMy9+YnF+2671kq+nXroJw+nG0M2PGREzXuN/ec3Tu3+\nzScdsv9TS3IhhLHfuuy8Cav9xPdC5lb44QAAAACQKkWhT+n0PVFIp1foi6XzuvdWuQcAClS5\ndXbIhkdMGFYfQkiStivOuTXptMOC56f+7J+L0+09v71jH5pbbz41AAAAAPqK0hX6lHXve2LN\n1r1X6Iurfv+T6/Y4Ot1+Orvpd2qtcg8AFKRyI33IZP/75D3SzYWzbv7WRbfMbWht/1CSn/XQ\nb074wS1JkoQQhm568CFj1ir6+LeecsLR73q1JV/MuZX71AAAAADo60pd6FM6fU+sbqdX6Euh\n/osnDj799yfUHfutum8o9AB9S7J04Y75Gesl88s9EXhP5S53H0IYtvmRP9hv1tm/nxVCeOVv\nNxzzyP+M2WSjoXVtb855ac685nSf2qFbnnPuAaUYfclbc+e+05RuL+t0t3uBcyvvqQEAAADQ\np8Up9Cnr3vdEz9e9V+hLJ7vxVo9lXy33LABYPfk5sxsuPuzClnktoebUuiMfyW5e7hlBCBV9\nJ30IIYRPHHHBiYfuUl+VCSEk+SUv/uO5Z2a80JGxR2y+yzlTztyoPtsX59abTw0AAACAXqvl\njiuiFfpUNrSd2XLj9vnnYw7a51RvtfPAr18ast3ddjW9aoxCDwAd8nNmN1x8aLJkXgihLiy7\noOUX2+VfKPekIIQKv5M+hBBC1YQDTthm/G533Xf/w0+/8M78+YtbwrBhw0eNGffpnXb6zKe2\nyGb67tx686kBAAAA0BsljYua4xb6VHXIf3PZ7Q9nx8Ufug+p2Wb3gUdNbvzZxJBv7fzR6VVj\nvl13jEIPAKm2N15suPQryZL3VrmvDa0X5n5+Wu2Rfy6O2CEAACAASURBVMtuUcaJQRDpU4NG\nj9vviHH7HVG0Nzxj6u9Wuc8Rv/xNTwYscG5FPzUAAAAA+rOq6pCtDm35+CPnQk38Qfucmm12\nH/SNqzqvez+j6gMKPQB0aHvjxaU/PjRZ9PYKr9ck+fNyv9TpSydZ1tx845n/0/SXv2a3vLz2\nC/mKX9a9K64LAAAAANAuUz9owMFnhkzsNRgbM3U/qj0g8qB9VOd1761yDwDLy8+ZvfRHB3cu\n9KmaJH9uy6+se18KSa6pccpRuUduXS+Zf2DrX89uubY6lOFXP/sEkR4AAAAAeE/thAMGHH5e\nyMT7yWFzpvZ7tUc9X7VRtBH7upptdh949JRMTX0IYVrVB91DDwAdOq9y31m67v2E/HPRZlUJ\n0kLfOvORjld2yU8/q+WGbGgr46x6LZEeAAAAAPgPtTt8acDh58bp9M2Z2u/UHv1MdpMIY/Un\nNR/dbciFDx5ef+Jx9ccr9ACQ6mqV+87Sde91+mJpL/SzHl3h9c/kp/2w5XqdvjORHgAAAABY\nUZxOr9AXIjNk+OyqDdtC7GcTAEDv1PNCn9Lpi6WrQp/S6VdKpAcAAAAAVqLUnV6hBwCKZXUL\nfUqnL1ySa2q84uiuCn3qM/lpnk+/gupyTwDgP4ydeGfkEWdO3ivyiAAAANBX1O7wpRBC0/Wn\nh6TINz8p9ABAsbTNfXHpxatd6FNppz+t9si/Zbco+sT6vfZCv9xz6LuyS356aLnujLqvtIZs\nhIn1fu6kBwAAAAC6VIr76RV6AKBYCin0KffTr5meF/rULvnpk1qucz99SqQHAAAAALpT3E6v\n0AMAxVJ4oU/p9KtrdQt9SqfvINIDAAAAAKtQrE6v0AMAxVKsQp/S6XtuzQp9SqdPifQAAAAA\nwKoV3ukVegCgWIpb6FM6fU8UUuhTOn0Q6QEAAACAHiqk0yv0AECxlKLQp3T67hVe6FM6vUgP\nAAAAAPTUmnV6hR4AKJbSFfqUTt+VYhX6VIV3epEeAAAAIJ51ksUV+3OoMkjaRiSLsqGt3PPo\nb1a30yv0AECxlLrQp3T6zopb6FOV3OlFegAAAIAYklxTw5Sj7mz6we+bJ23aNqfc0+n/kiXz\nlp7/pTuazri+6aKRbQvLPZ3+puedXqEHAIolTqFP6fTLK0WhT1VspxfpAQAAAEouyTU1Tvl6\n64z7Qwgj2xZe0XKFTl9SyZJ5DT8+NP/y9BDCB5PXr8pdrtMXXe0OXxpw6KSQyXSzT2OmbmLd\nsQo9AFC4ttf/ufSig+MU+lRNkj+35Vfj8zOjjdg7la7Qpyqz04v0AAAAAKWV5JoapxzVOuux\njleGJo1XtUwZ2/bvMs6qH0uWzGu4+LD86//X8coGbfN+1jJ5/WR+GWfVL9V++qABh5/X1f30\nzZna79UeNb1qTORZAQD9UuO1JydLYn87VxtaJ7VcXxtaI4/be5S60KcqsNOL9AAAAAAl1H4P\n/axHV3h9cNJ0WctV7qcvuvZ76OfMXuH19ZL5U1qucD990XV1P7176AGA4op5D/3yBoWm2mRZ\nWYYuuziFPlVpnV6kBwAAACiVdwv9Yyv96NCk0br3xdVe6Je7h355G7TNs+59KdR++qABh569\nfKdvzNR9u+4Y99ADAEVUt/c3u3/OTon8tmbHpZkB8cctu5iFPlVRnV6kBwAAACiJzqvcd2bd\n+yLqvMp9Z9a9L5HaTx804LBz0nXvFXoAoBRqJxww4JCVrN9TUn+oHn95zRdijth7NF3z7ZiF\nPrVLfvoJudsiD1oW1eWeAABUkLET74w84szJe0UesVdxwQGAMnq30K+4yn1ng5OmKS0/Ob7u\nGzOr3h9hYv1Ve6HvtMp9Z+sl83/SPOUb9ce/nhkeYWKVo3bCgdn1Nzv7kpsfzo57LTOi3NMB\nAPqh2h0PDiE0TT0jJEmE4f5QPf6C2gPbQhlu3y+7pKVp2d/vLcvQe7Q+9ePa/csydEzupAcA\nAOD/2bvTMLnKOuHDp6qrek3AhDWByCYMgoAiDrK9gICCCzMqKrJoQIEEkhC30ZFRdARxB0zC\nkrAKBMR9Q0A2FUQcUYkQcFQCI7skLJ1eq7vP++GEkPSW7jpVT3VV3fen6uo6/X9yrlYu+OV5\nDlBiYy/0iaTT209ftLEX+kTS6e2nL7mGHV737dyBCj0AUD6NB74/zH76ei70URRlmloapu9Y\nkdEPNNTF310W6QEAAABKabyFPqHTF228hT6h0wMAVKkAnb7OC32idc7i7NTpgYc+nJ32ucYP\nBB5aESI9AAAAQMkUV+gTOn0Riiv0iaTTT4tXlnxVAACUVVk7vUKfyG42o+0/rs1uunWwiY9k\ntpjbdOpzmUnBJlaQSA8AAAD1q+/+Xy3sXvSZnqVT4tWVXkstSFPoEzr9uKQp9Ikt41UXdi/U\n6QEAqk6ZOr1Cv67sJlu1ffyaMJ3+kcwWpzXPWZnZKMCsiUCkBwAAgDpV+MONHQtP3mvgf9/W\nf8+F3d/cJH6x0iuqbukLfUKnH6P0hT6h0wMAVKmSd3qFfqgwnb7eCn0k0gMAAEB9Kvzhxs7F\n86P+vuTLbeOnF/RcYD990UpV6BM6/QaVqtAndHoAgCpVwk6v0I+k3J2+Dgt9JNIDAABAHRpU\n6BPbDzy5qGehTl+E0hb6hE4/itIW+oRODwBQpUrS6RX60ZWv09dnoY9EegAAAKg3wxb6RNLp\np0bt4VdVvcpR6BM6/bDKUegTOj0AQJVK2ekV+rEoR6ev20IfifQAAABQV0Yp9IntB568oGuB\n59OPUfkKfUKnH6R8hT6h0wMAVKmiO71CP3al7fT1XOgjkR4AAADqxwYLfWLb+OlF3Qt1+g0q\nd6FP6PRrlbvQJ3R6AIAqVUSnV+jHq1Sdvs4LfSTSAwAAQJ0YY6FP6PQbFKbQJ3T6KFShT+j0\nAABValydXqEvTvpOr9BHIj0AAADUg3EV+oROP4q4t6tzwUlhCn1iUtx1Xs+FOw48HmzihBKy\n0Cd0egCAKtV44Ptb3vdfG+z0P8jtd45CX6w0nV6hT4j0AAAAUOOKKPQJnX4k3dd9oe+h3wYe\nunHceW7PRU1RIfDciaBz8fyQhT6xZbzqnJ7LAw8FACC9xkM+OPp++h/n9vlq43tihT6F4jq9\nQr+WSA8AAAC1rOhCn0g6/abxC6VdVbXr//sfKzJ30/jFafGqioyurP6H/1SRuf8y8Fg+7q/I\naAAA0hhlP7099KUy3k6v0K9LpAcAAICalbLQJ7aNn17YvUinX1f+X99ekbkPZl/5j8xmFRld\nWfk3vK0ic3/ZsHsh01CR0QAApNR4yAeHdvof5Pb7ij30pTP2Tq/QDyLSAwAAQG0qSaFP6PSD\nNL311MY3fSDw0EcyW3y86aT+uvyPOS3Hn5V/3WGBh/6pYYfPNR4XeCgAACU0qNMr9OWQ3WSr\nto9elZ06fZTPPJyddmrLXIV+XfX473UAAABQ80pY6BM6/XoymZajPxOy09f7vpOGXOspC0J2\n+j817DC/cVZ3pjHYRAAAyqHxkA+2zlpwS+515za+S6Evk+xmM9o+fs1Inf7h7LQ5zaetiiYH\nXtUEJ9IDAABArSl5oU/o9OsJ2OnrvdAnAnZ6hR4AoJbk9zz8vxpnfjt3oEJfPtnNZrT9x7VD\nz71/JLPF3KZTFfqhRHoAAACoKWUq9Amdfj1BOr1C/7IgnV6hBwCAIgw9994p96MQ6QEAAKB2\nlLXQJ3T69ZS50yv0g5W50yv0AABQtOxmM9o+sTS75Q5RFD2YfaVT7kch0gMAAECNCFDoEzr9\nesrW6RX64ZWt0yv0AACQUnbTrSd//oYjWz7/oeaPKvSjEOkBAACgFgQr9Amdfj1l6PQK/WjK\n0OkVegAAKI1swzOZVwxEmUqvY0IT6QEAAKDq9T34m86LTw9W6BPbxk+f23NxU1QIOXTiKmmn\nV+g3rKSdXqEHAABCEukBAACg6vXefnU00B9+7o4Dj79+4K/h505QJer0Cv1YlajTK/QAAEBg\nIj0AAABUvewW21Vkbn+UfSyzaUVGT1CpO71CPz6pO71CDwAAhCfSAwAAQNVresec3M77BB46\nEGXOaTz6/zKbB5470aXo9Ap9MVJ0+j817PCRJoUeAAAITaQHAACAqpdpbGmduzj36n2DTYyj\nzNcbj/ppbu9gE6tJUZ1eoS9eUZ0+KfRdkUIPAACEJtIDAABALcg0trTOuThMp4+jzNcaj/pe\nbv8As6rVODu9Qp/WODu9Qg8AAFSQSA8AAAA1IkynV+jHasydXqEvjTF3eoUeAACoLJEeAAAA\nake5O71CPz5Jpz/4uFE+8nB22uzmeQp9aTTkWk/+Zn6PQ0b5yO8bdjpdoQcAACoqV+kFAFBJ\nrz79Z4EnPnj+2wJPBACqztYDz/ZGuWeyr6j0QqpV0uk7F57S9+BvSvuTFfpiZDIt7z8ziqLe\n268e+s2Hs9NOa5rzXGZS8GXVrly+ddbCzovmFO67deg3f9+w08eaTupR6AEAgIqykx4AAIAJ\nIx7ouubM73Z/4Yfdn/tA4ReVXk0VK8d+eoW+eJlMy/vPHLqfXqEvl1y+ddbCofvpFXoAAGCC\nEOkBAACYGOKBrqv+q/eOa6IoykbxqYWfnlC4udJrqmKl7fQKfVpJp1/n+fSPZLaY23SqQl8u\nuXzr7EXrPp/+Tw07fEKhBwAAJgaRHgAAgAkgjruWfr7319ev+94phZ+dWLipUiuqAaXq9Ap9\naWQyLUd/pvnIec9kXnFnw2s8h77sGnKtJ3+z8aBj/5nZ+Ibcv57eNNtz6AEAgAnCM+kBAACo\ntGQP/fqFPnFy4YY4ylyef3P4RdWG9M+nV+hLKZNpese8I2/ZodLrqBu5fMuxn3/H7/610usA\nAABYj530AAAAVNTIhT5xSuFnzr1PI81+eoUeAAAASk6kBwAAoHKGO+V+KOfep1Rcp1foAQAA\noBxEegAAgA3oX3Hf6/v/mo3iSi+k5sRx19LP9d5xzVg+e3LhBp0+jfF2eoUeAAAAykSkBwAA\nGFkcd133hdVffPeinoVf7rkkH/dXekE1ZDyFPqHTpzT2Tq/QAwAAQPmI9AAAACOI465rP997\n65XJVwf0339O76U6fWmMv9AndPqU1nT6nfcZ5TMDUeaLjUcr9AAAAFAmIj0AAMBw4rjrui/0\n3n71uu/t3//Al3suaYoKlVpUjSi20Cd0+pQyjS2tcxeP1OkHosw5jUf/JPfGwKsCAACA+iHS\nAwAADJEU+tu+NfQ7+w4sP6f7Mp2+eOkKfUKnT2lNpx9y7n0cZb7eeJRCDwAAAGUl0gMAAKwv\nOeV+uEKf2Hdg+dk9lzv3vhilKPQJnT6loefeO+UeAAAAwhDpAQAA1jHcKfdDOfe+GKUr9Amd\nPqU1++l33T+Kov4o65R7AAAACEOkBwCA6tP3wJ3v6PvtpLir0gupOSOfcj+Uc+/Hp9SFPqHT\np5RpbGk7/fIPNX/0nc1nKvQAAAAQhkgPAABVpvs753ScN/OM3msv7/76ZvELlV5ODRlPoU/o\n9GNVnkKf0OnTymQeyG7zTPYVlV4HAAAA1AuRHgAAqkn39Wf33Hxp8npG/M8Le76p05fG+At9\nQqffsHIW+oRODwAAAFQRkR4AAKpG9/Vn9/zi8nXf2XrgWZ2+BIot9AmdfjTlL/QJnR4AAACo\nFiI9AABUh+7vf21QoU9sPfDs4u7zp8Urwy+pRqQr9AmdfnihCn1CpwcAAACqgkgPAABVoPv6\ns3t+ftFI350Wr1zQc4H99MUoRaFP6PSDxXHXVWcEK/SJkws3fLBwS8iJAAAAAOMl0gMAwEQ3\n0h76ddlPX4zSFfqETr+u3ru+2/vr68PPnV34yev7/xp+LgAAAMAYifQAADChdX//a6PsoV/X\ntHjlBd2LdPqxKnWhT+j0aw08UbFSvl38VKVGAwAAAGyQSA8AABPX2At9Qqcfq/IU+oROn8jv\n885MY0v4uSszG93RsEf4uQAAAABjJNIDAMAENd5Cn9DpN6ychT6h00dR1DDj1a3zL8s0tYYc\nuiqaPLfp1GczG4UcCgAAADAuIj0AAExExRX6hE4/mvIX+oROH0VRbsc3tJ5+abBOvyqaPKf5\ntIez08KMAwAAACiOSA8AABNOmkKf0OmHF6rQJ3T6KGCnV+gBAACAaiHSAwDAxJK+0Cd0+qG6\nrvvvYIU+se/A8rN6rshF/SGHTjQBOr1CDwAAAFQRkR4AACaQUhX6hE6/rr5lt/fedlX4uQf0\n3//uvjvDz51QytrpFXoAAACguoj0AAAwUZS20Cd0+rUGnnuqUqM3j5+v1OiJo0ydXqEHAAAA\nqo5IDwAAE0I5Cn1Cp0/k3/DW7ObbhJ/7fKbtB7n9ws+dgEre6RV6AAAAoBqJ9AAAUHnlK/QJ\nnT6Kokzrxm0fvyZwp2+PWj/SNOuxzKYhh05kJez0Cj0AAABQpUR6AACosHIX+oROH0VRdsqW\nITt9e9Q6r3n2g9lXhhlXLUrS6RV6AAAAoHqJ9AAAUElhCn1Cp48CdnqFfhQpO71CDwAAAFQ1\nkR4AACqm+/ovBiv0iWnxygU9F2wSvxhy6EQToNMr9BtUdKdX6AEAAIBqJ9IDAEBl9D96f88v\nLgs/d+uBZ08u3BB+7oRS1k6v0I9REZ1eoQcAAABqgEgPAACVEfd0Vmp0a9xTqdETR5k6vUI/\nLuPq9Ao9AAAAUBtEegAAqIzcjnvl93hT+LntUetl+beEnzsBlbzTK/RFGGOnV+gBAACAmiHS\nAwBAhWSyrbMW5fc4JOTM1ZmW+c2zVmS3DDl0Iithp1foi5bb8Q2tcxZnGltG+sCqaPJpzXMU\negAAAKA25Cq9AAAAqGO5fOushZ0XzSncd2uAaaszLac3zX4gW5YHsVevpNN3fO3YgWceLfqH\nKPQp5XZ+Y+vcJZ0LTop7uwZ9Kyn0/mYJAACU1atP/1ngiQ+e/7bAEwEmDjvpAQCgonL51lkL\nA+ynV+hHkXI/vUJfEkmnH7SfXqEHAAAAao9IDwAAlVb+Tq/Qb1DRnV6hL6Hczm9snX/Z2ufT\nJ8+hV+gBAACAGuO4e9iwwOf8OOQHAOpROc+9V+jHqIhz7xX6ksvt+Ia2j1z5y69+ujtqXJj/\ntxXZLSq9IgAAAIASs5MeAIC04q72zks+em33F48t3FbptVSz8uynV+jHZVz76RX6MmnY4XWn\nNc35WNPJCj0AAABQk0R6AABSibvaO86dWbjnx9sNPD238KN5hR9WekXVrNSdXqEvwppOv9kG\n0vsLmdZTm+co9AAAAACMl0gPAEDx4s4XO77xwf4V961955jC7af1/qSCS6p6pev0Cn3RslO2\nbPvE0lH207dHrfObZv81u1XIVQEAAABQG0R6AACKFHe+2HHuzP5Hlg16//i+W3T6VErR6RX6\nlEbZT28PPQAAAABpiPQAABRjpEKf0OnTStfpFfqSWLOffv1O/0KmdU7THHvoAQAAACiaSA8A\nwLjFXe0d550wUqFPHN93i+fTp1Jsp1foS2hQp1foAQAAAEhPpAcAYHzirvaOc2eu+xz6kRxT\nuF2nT2X8nV6hL7nslC0nffK6xgPed1Nur1lNpyv0AAAAAKQk0gMAMA5jL/QJnT6t8XR6hb5M\nMhtv3vKBs89sPH5FdstKrwUAAACAqifSAwAwVuMt9AmdPq1cvnXWgtzuB4/+qfaodU7TaQo9\nAAAAAExwIj0AAGNSXKFP6PRp5RrbZl8wyn761ZmW+c2zHsrOCLkoAAAAAKAIIj0AABuWptAn\ndPq0Rt5Pbw89AAAAAFQRkR4AgA1IX+gTOn1auca22YsGdfr2qHVu86n20AMAAABAtRDpAQAY\nTakKfUKnT2tNp39T8pVCDwAAAABVJ1fpBQAAMHGVttAnjincHkXRN/P/XsKfWV9yjW2nXtBz\n27eu/P5vfpDf95HMFpVeEAAAAAAwDiI9AADDK0ehT+j0aTXkmg478dyfyvMAAAAAUH0cdw8A\nwDDKV+gTzr0HAAAAAOqTSA8AwGDlLvQJnR4AAAAAqEMiPQAA6wlT6BM6PQAAAABQb0R6AABe\nFrLQJ3R6AAAAAKCuiPQAALwkjju++eGQhT5xTOH29/fdEXgoAAAAAEBFiPQAAKwx8PSK/r/d\nW5HRR/bdXZG5AAAAAACBifQAAKyRmTotM3lqRUY/lJ1RkbkAAAAAAIGJ9AAArJFpbGmbuyTT\nMjnw3Aey23w1/57AQwEAAAAAKkKkBwDgZQ3b7dH2sasyrRsHm/hQdsb85lmdmaZgEwEAAAAA\nKkikBwBgPQ3bvKbto1eG6fQPZWfMbT61PWoNMAsAAAAAYCIQ6QEAGCxMp1foAQAAAIA6JNID\nADCMcnd6hR4AAAAAqE8iPQBQm+LVz72x/6FJcVelF1LFytfpFXoAAAAAoG6J9ABADepfcV/7\nfx12Xs+F13ed/aqBJyq9nCpWjk6v0AMAAAAA9UykBwBqTf+K+zrOnRl3PB9F0dSofWHPQp0+\njdJ2eoUeAAAAAKhzIj0AUFP6H72/47wT4672te+8Iu64sHvBzgP/qOCqql2pOr1CDwAAAAAg\n0gMAtaN/xX0dXz8+7nxh0PuTo87zei60nz6N9J1eoQcAAAAAiER6AKBmrDnlfp099Ot6Rdzh\n3PuU0nR6hR4AAAAAICHSAwC1YOgp90M59z694jq9Qg8AAAAAsJZIDwBUvf5H7+/4xgeHnnI/\n1OSoc0H3BTp9GuPt9Ao9AAAAAMC6RHoAoLqNvdAndPr0xt7pFXoAAAAAgEFEegCgio230Cd0\n+vQatnlN2/zLMi2TR/nMA9lt5jSfptADAAAAAKxLpAcAqlVxhT6h06fXsN0ebR+5YqRO/0B2\nm9ObZ6+OWgKvCgAAAABgghPpAYCqlKbQJ3T69Bq226PtY1cNPff+oeyM+c2zFHoAAAAAgKFE\negCg+qQv9AmdPr2h59475R4AAAAAYBQiPQBQZUpV6BM6fXprzr2fvEkURX9q2MEp9wAAAAAA\noxDpASCQ/sf/8qHCjW/sf6jSC6lupS30CZ0+vYbt9pj8pTuOav7M7Ka5Cj0AAAAAwChEegAI\noW/5nR1fPOqkws/P67nwuL5bK72calWOQp/Q6dPLNLY8lt00jjKVXggAAAAAwIQm0gNA2fUt\nv7Nz4ay4tyv5ck7vj3X6IpSv0Cd0egAAAAAAAhDpAaC81hT6Qve6b+r041XuQp/Q6QEAAAAA\nKDeRHgDKaNhCn5jT++OZhV+EX1I1ClPoEzo9AAAAAABlJdIDQLmMUugTswo/tZ9+g/pX3Nfx\n9ePDFPrE5KjzvJ4Ltx94MthEAAAAAADqh0gPAGWxwUKfsJ9+A+K48+J5cVd74LGviDvO6r0y\n8FAAAAAAAOqBSA8ApTfGQp+YVfipTj+i/r6B556qyOQt41UVmQsAAAAAQG0T6QGgxMZV6BM6\n/Yhy+abDTqjI5Ktyh1ZkLgAAAAAAtU2kB4BSKqLQJ3T6kTS/+5ONbzo+8NCl+YMvz7858FAA\nAAAAAOqBSA9Q12bE/2yLx52TGUnRhT6h0w8vk2k5+rMhO/3S/MHfzP97sHEAAAAAANSVXKUX\nAEBlxIXurovnfafrto5M8xmNJ/y2YedKr6jqpSz0iVmFn0ZRdEX+sBItqlZkMi1HfzaKot7b\nrir3KIUeAAAAAICyspMeoB7Fhe7OhbMK990WRVFb3P3lnkv26X+w0ouqbiUp9An76YcXZD+9\nQg8AAAAAQLmJ9AB1Jy50dy44pW/5nWvfaYoKX+ldsn//AxVcVVUrYaFP6PTDK3OnV+gBAAAA\nAAhApAcmkP7/e+Ccnsv/s/e6TeIXK72WmpXsoe978K5B7+fj/rN7LrefvgglL/QJnX54Zev0\nCj0AAABQt/ofWfalnss+2Xv9lHh1pdcCUBdEemCi6P/bvR1fPebg/j/9W9/di7oXbhq/UOkV\n1aA1hX6dPfTraooKX+q5VKcflzIV+oROP7wydHqFHgAAAKhbfX+5p+Nrxx7Uf987++66oGfB\n1Ki90isCqH0iPTAh9P/t3o7zT4y7O5Ivt42fXti9SKcvraGn3A/l3PtxKWuhT+j0wytpp1fo\nAQAAgLrV95d7Ohd8OO7pSr7cbuCpRd0LdXqAchPpgcobVOgTOn1prSn0Q065Hyof95/Te6lO\nv0EBCn1Cpx9eiTq9Qg8AAADUrUGFPqHTAwQg0gMVNmyhT+j0pTL2Qp/Q6TcoWKFP6PTDS93p\nFXoAAACgbg1b6BM6PUC5ifRAJfX//Q8jFfrEtvHTF3Qv3DR+MeSqasx4C31Cpx9F30N3hyz0\niVmFn76v75chJ1aHFJ1eoQcAAADqVt/fft+54KRhC31iu4GnLuhaYAMVQJmI9EDF9P/9Dx3n\nnTBKoU+8Mn7mgu4FOn1xiiv0CZ1+JN3fPjtwoU/MKfxoUjTivzjVr6I6vUIPAAAA1K2+v/2+\n87wT457O0T/moFOA8hHpgcoYY6FP6PTFSVPoEzo91WGcnV6hBwAAAOrWGAt9QqcHKBORHqiA\ncRX6hE4/XukLfUKnH6r5fWdk8s3h5y7M/9vqqCX83OqQdPqDjt3gB6/OH6LQAwAAAPVpXIU+\nodMDlINID4RWRKFP6PRjV6pCn9DpB8ntvE/rnIsCd/qL8m//du7AkBOrTybTcsznRt9PvzR/\n8ML8kcFWBAAAADBxFFHoEzo9QMmJ9EBQRRf6hE4/FqUt9AmdfpDcLvuH7PQX5d9+Rf6wMLOq\n26j76e2hBwAAAOpW0YU+odMDlJZID4STstAndPrRlaPQJ3T6QYJ1eoV+fJL99EM6/dX5Q+yh\nBwAAAOpTykKf0OkBSkikBwIpSaFP6PQjKV+hT+j0gwTo9Ap9MYZ0eoUeAAAAqFslKfQJnR6g\nVER6IIQSFvqETj9UuQt9QqcfpKydXqEvXibTcsznmt97xm8advla41EKPQAAAFCfSljoEzo9\nQEmI9EDZlbzQJ3T6dYUp9AmdfpAydXqFPq1MD+YWFwAAIABJREFUpumwEz7adMp3cwdUeikA\nAAAAFVDyQp/Q6QHSE+mB8ipToU/o9Im40N25cFaYQp/Ix/1n91y+d/9fgk2c4Ere6RV6AAAA\nANIoU6FP6PQAKYn0QBmVtdAndPooinq+//W+5XcGHtoUFb7ce8nUqD3w3AmrhJ1eoQcAAAAg\njbIW+oROD5CGSA+US4BCn9Dp+/+xvCJzm+PeGQP/rMjoiakknV6hBwAAACCNAIU+odMDFE2k\nB8oiWKFP1Hmnz+93VEXm/i07fXlmm4qMnrBSdnqFHgAAAIA0ghX6hE4PUByRHii9/n88GLLQ\nJ14ZP7OgZ1Fr3BNy6ATRuM87m993RuChj2a3mN80q5BpCDx34iu60yv0AAAAAKTR/+j9need\nEKzQJ7aNnz6/+6KmqDfkUIBqJ9IDpdd7xzWBC31iu4Gn/t/An8PPnQiaDj0hZKd/NLvFaU2n\nPZvZONjE6lJEp1foAQAAAEip97ar4p6u8HN3iJ/Yv68yT+QEqFIiPVB62U22qtToJzNTKzW6\n4oJ1eoV+LMbV6RV6AAAAANLLVO4/zD6VnVKp0QDVSKQHSq/psBNzux4Qfu4l+SPuy24ffu7E\nEaDTK/RjN8ZOv7DxSIUeAAAAgPSajjg5t/M+4edelH/7A9ltws8FqF4iPVAG+aa2OYtzu78p\n5Myr84dckj885MSJqaydXqEfrw12+ovyb786d0jIJQEAAABQqzL55tZ5S3Kv3i/k0CX5I2xB\nARgvkR4oj1y+bfaiYJ3+6vwhC/NHhpk18ZWp0yv0xRml09tDDwAAAEBpZfLNrXMvDtbpl+SP\nuNTWKYDxE+mBsgnV6RX6oUre6RX6NIbt9Asbj7SHHgAAAICSC9bpFXqAoon0QDmVv9Mr9CMp\nYadX6NNb0+kbW5IvFXoAAAAAyidAp1foAdIQ6WED4vaVU+P2Sq+impWz0yv0oytJp1foSyW3\ny/5tn/7ukvwR85tmK/QAAAAAlFVZO71CD5CSSA+j6blx8Ysf3/cnXZ89sXBTpddSzcrT6RX6\nsUjZ6RX60mrY6l8uzR/+24adK70QAAAAAGpfmTq9Qg+QnkgPI+r52QXd3/tKNNDfEA2cXLjh\npMLPK72ialbqTq/Qj13RnV6hBwAAAICqVvJOr9ADlIRID8PruXFx9w+/se47HyrcOKfw40qt\npxaUrtMr9ONVRKdX6AEAAACgBpSw0yv0AKUi0sMw1uyhH+K4wq3206dSik6v0BdnXJ1eoQcA\nAACAmlGSTq/QA5RQrtILmBA6H3/w5ltvu+sPy//57MoXuqMpU6dO23bnAw48+JB9d8tnNnDt\nQO/KX91w0/8s+/P/PvJEe3t7IWqcNHmjrbff6TV77P3mt+y7SWNDBdeW/vL61POzCwbtoV/X\nhwo3RlG0JH9EwBXVlly+bfaijgtP61t2WxFXK/RpNB16QhRF3d8+e/SPKfQAAAAAUGOSTt+5\n4JS+B+8q4nKFHqC0RPr47u8tOveqX3QPxGvfevapzmefeuzPv73l2p0O+o//PG3XTZpGuviR\nO68965vXP9Pdv857fc/1dD737FN//t2vrr9ys/fM+eQxB+1UkbWlvrxODT3lfqgPFW5sigpS\ncfGK7fQKfXpNh54QxXH39V8c6QMrsluc1jR3VWZyyFUBAAAAAOVWdKdX6AFKrt6Pu7/3W58+\n58qb12bsTLZxcmt+7Xef+987zpx35sPrNfiXPX7HgtO/et26hT7XvNHGrS//vYf+3n9e942P\nn/vzh8OvLf3l9annxsXDnnI/1HGFWz2fPpXxn3uv0JdK02EnNr/308N+S6EHAAAAgBpWxLn3\nCj1AOdT1TvrnH7riv7+3PHndNmOfWScfs+/u2+QzUeeqR2758TWX/uB3cRz3ti//7Keuufq8\nDwy6tq/z/v84/5Y4jqMoyrdtf+zJM/fdY4ctpk7ORFH7qqfuveV7l133i+f7BqIouuPi/zxw\n/6v2nNwYbG3pL69PYy/0ieMKt0ZRJBsXbzz76RX60mo67MQoigbtp1foAQAAAKDmjWs/vUIP\nUCb1vJN+4PIv3ZBU9uZN91t0/qcO3GOb5DHtrVO3PXLmGV89+Q3J5158+LtLV7QPuvjByy9o\n74+jKGpo3PxzF33lXQe/dsupk5OHvE+euuVB7z3twvPnNWczURTFA12LL/lryLWlvrwejbfQ\nJ+ynTyuXb5u1ILfrAaN/6rL8WxT6kms67MTm952x9stHs1vMbTpNoQcAAACAmpfJN7fOuSi3\n8z6jf2xx/q0KPUCZ1G+kX/3Ylbev6k5eH/+FOVNzmUEf2OltZ7x989bk9Q3n/mrQd6+/65nk\nxTb//qndNh5ml3zbjDed/tpNktcr7/1JyLWlvLwO9dy0pIhCn9Dp08o3tZ120Sid/rL8Wxbn\n3xpyRfWj6dATWmZ+6eHstDsa9pjdNPfZzMaVXhEAAAAAEEKmsaV17uJROv3i/Fsvy78l5JIA\n6kr9RvoV1/02edE89fB3bNU23Ecy7zr1dcmr9n9c80J/vPYb/d0P37e6N3l90BFbjzRip3ds\nlbwodNw/9LtXnPi+I18y6NnwadaW/vJ603PTku7vfjnNT9Dp08o3tc1ZPOzz6a/OH6LQl1Xj\nfkcd0/ypTzWdaA89AAAAANSVTGNL67wlwz6ffkn+CIUeoKzqN9L/4I8rkxfTDxnxnzRTdj0m\nm8lEURT3r176VMfa9wtd/7v29Rsm50e6vPGlHfbxQPe4MniataW/vK6kL/QJnT6t4c69d8o9\nAAAAAED5DHvuvVPuAQKo00gf97/4x9WF5PW/HLzFSB9raJqx90sNfsWy59a+n2/b7bMvmdbY\nMNLlq/645pL85NcPPnG+bGtLeXldKVWhT+j0aSXn3u92UPLVpfnD7aEHAAAAACirNefe77p/\nFEVxlLk4/zZ76AECyFV6AZXR235Pf7xmc/trh3ui/Fp7Tmq8+8XeKIpW/m5VdMSM5M2Gxq32\n2mur0Uf0dT564fceTV6/8vD3DP3ApE033zzblbzOr9PwU64t5eVFi+MqOzO/56YlPcU+h34k\nxxVujaIo/ebvqruZJZNrbJ1z8bGnL3ohan04Oy3Y2Pq94RXihgfmhgfmhgfmhgfmhofkbgfm\nhgfmhgfmhgfmhgfmhgfmhofkbhNIvrl13qXHz1uwKjN5RXbLYGP9hlPb/IYHFvKGZzJj3509\nojqN9IXOl8+r36V1xPPqoyiatnVr9MTqKIq6nngsivYY5ZNxf6Gjo2P16tXtzz3x+7vu/NUd\ndz3eWYiiaKPtD/3M+3cY+vmjvrLgqDKsrRx/tLFob2/v7e1N+UOCyf7q6oafLyzHTy5Jp1+5\ncmWJllOV/pgd5n8vZVXnNzw8NzwwNzwwNzwwNzwwNzwkdzswNzwwNzwwNzwwNzwwNzwwNzwk\nd5uQ7m3YMfBEv+HUNr/hgYW84VOmTGloGPGo9TGq00g/0Pt88iKTyW3cMNpfdmicsmYz+kDf\n86P/zMUfOvZnq7rXfSeTye9xyLvnzT56yqgjSru2cvzRakz5Cn2iVPvpAQAAAAAAgNpTp8+k\n731hzZ7vTMPk0T+Ze+nB7UWU7Enb7vf2w9+8aX58Nznl2sL80apXuQt9wvPpAQAAAAAAgGHV\n6U76cRh46QEGAz2jf3DaTq/e5cWeTCaTyWT6Vj/x0COr2lfccdbH79jhgA+c8/F3N5fi4QRF\nr60sl1ehMIU+YT89AAAAAAAAMFSdRvrGjdec9B73d4z+yb6OvuRFJj919E8e+enPr9tjn1h+\n9+Xnnn/P051///W35nYNLPnse8OsrRx/tNrQcPsV2ZsvCjnxuMKt3VHjJfnDQw4FAAAAAAAA\nJrI6jfTZxo2TF3Hc2zkQt2ZH3Obe+9ya0+OzufGV7Om77POJb7R84ANndvbHT//+6isePWLm\nNhs4f74kawvwRxtWNpttaGhI/3PKJPOXuzNhC33iw4Wf/yW79a8bXjOuqybynaxJbnhgbnhg\nbnhgbnhgbnhgbnhI7nZgbnhgbnhgbnhgbnhgbnhgbnhI7ja1zW84tc1veGBVd8PrNNLnWnaM\nopuT1w92Fl4/qXGkTz7zeFfyomnKluOd0jj5tcduOWnJ4+1RFN219JGZ/7lbgLWF+aMNNWnS\npPQ/pHx6Vv1fd4VG/8vAY+ON9FOmTCnTYhiWGx6YGx6YGx6YGx6YGx6YGx6Sux2YGx6YGx6Y\nGx6YGx6YGx6YGx6Su01t8xtObfMbHljV3fBspRdQGU0bvTH70kPi71vdN8onl60uJC823WeL\ntW/e96PvXnvttddee+3ND70w+qDtt1+Trlc//Ncwa0t5ea3K7/nmTHNb+LldUeOtDa8NPxcA\nAAAAAACYmOo00mcaNn5tWz55/cDd/xzpY3Hfyrte7Elez9jz5TPhn7/lh0mk//7PHxt9UF93\n/0sj82HWlvLyWpXdcvu2+ZcH7vQ9UeMnmk9akS3BQQUAAAAAAABAbajTSB9F0Ttfu6ZMP3nT\nb0f6zIuPfqcQx1EUZRpaj532ct+dttsrkhfP//l/Rp9y3yOrkxctm20VZm3pL69VDTvsGbLT\n90SNH2s+6ffZncKMAwAAAAAAAKpC/Ub67d+/d/Ki48lrf/di77CfufOCu5IXk7c+dtP8y/dq\n+tv2TF50rfzR79qHvzaKot4X7v7hs2ue+/6q974yzNrSX17DgnV6hR4AAAAAAAAYVr3U2aEm\nbz3zgCnNURTF8cDCs74XD/nAcw9cs/hvLyavj/jIget+q23a0ds356IoiuP+BWdeubp/6NVR\nf8/TF316QV8cR1HU0Dj9w7uM40j5NGtLf3ltC9DpFXoAAAAAAABgJPUb6aNMw4c/eXjy8vmH\nrp331e882dG35ltx/0N3fnv+Z74Tx3EURRvv+P5jt99ovUuzrR87Ybfk9Qt/+8kpH/3Szb9b\n/vRzq+MoiqKB5595/N5brp33wVNv+ceas+73OuGMzYfsVv/ep+af8pJ/9PSv970UayvB5bWu\nrJ1eoQcAAAAAAABGkav0Aippyi4nfuZdD33h+w9FUfTor6+a9Zsfbv+qbTZuGnj68YcfX9md\nfKZx493OOvu9Q6+dcfhnj7n7w0v/tDKKovYVdy886+4oihqaJ7cMdK7uXa+4v+qweWe8bcbQ\nn9D+zJNPvnQYfmHIbvc0a0t/ec1LOn3HeSfE3R0l/LEKPQAAAAAAADC6Ot5JH0VRFL1h5pc+\ncdybmrOZKIri/va//+X+PyxbvjZjb7rLm85acOY2zQ3DXJlpeN/nFp10xB7ZTGbte/3d7esW\n+oamTd8x6wvfmHto6LWV4vKaV/L99Ao9AAAAAAAAsEF1vZM+iqIoyh7w3vl77nPYTbfedte9\ny59dterFnmjKlKnTtt/1/x100KFvfE1DZsQrM9nWd8z+wsH/tvznN//y/uUPPvLkyo6OjijX\nMnmjjbbefufd9tjr0MP2m9qY5q9BFL+2Ulxe+0q4n16hBwAAAAAAAMZCpI+iKGqbseu7Zu76\nrpnFXDtp+i7vmbnLe8Z/4czLvj2WgWnWlv7ymleSTq/QAwAAAAAAAGNU78fdQ8pz7xV6AAAA\nAAAAYOxEeii+0yv0AAAAAAAAwLiI9BBFRXV6hR4AAAAAAAAYL8+khzXG9Xx6hR4AAACoCoWl\n00OOW7Z3tPs9S0JOBACAqmMnPbxsjPvpFXoAAAAAAACgOCI9rKdhhz1bT78009Q60gd6osaP\nNJ2i0AMAAAAAAABFEOlhsNyr9mqdf9mwnT4p9H9oeFX4VQEAAAAAAAA1QKSHYQzb6RV6AAAA\nAAAAICWRHoaXe9VebR+5Yu3z6ZPn0Cv0AAAAAAAAQBoiPYyoYYc92z76rYYdXnd/dtt5zbM9\nhx4AAAAAAABIKVfpBcCE1rDdHpM+9Z0Pn/6zSi8EAIDBCkunhxy3bO9o93uWhJwIAAAAQE2y\nkx4AAAAAAAAAAhHpAQAAAAAAACAQx90DAACwYSGfL+DhAgAAAEANs5MeAAAAAAAAAAIR6QEA\nAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAA\nAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAA\nAAAgEJEeAAAAAAAAAALJVXoBAAAAANSRwtLpIcct2zva/Z4lIScCAACMzk56AAAAAAAAAAhE\npAcAAAAAAACAQBx3DwAAANQ1p68DAAAQkp30AAAAAAAAABCISA8AAAAAAAAAgYj0AAAAAAAA\nABCISA8AAAAAAAAAgYj0AAAAAAAAABCISA8AAAAAAAAAgeQqvQAAAAAAAChGYen0kOOW7R3t\nfs+SkBMBgJpkJz0AAAAAAAAABCLSAwAAAAAAAEAgIj0AAAAAAAAABCLSAwAAAAAAAEAgIj0A\nAAAAAAAABCLSAwAAAAAAAEAguUovAAAAAAAAgPUUlk4POW7Z3tHu9ywJORGgntlJDwAAAAAA\nAACBiPQAAAAAAAAAEIjj7gEAapaT8QAAAAAAJho76QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEA\nAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAA\nAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAA\nAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAAAAIR6QEAAAAAAAAgEJEeAAAAAAAA\nAAIR6QEAAAAAAAAgEJEeAAAAAAAAAALJVXoBAAAAwHoKS6eHHLds72j3e5aEnAgAAAD1zE56\nAAAAAAAAAAhEpAcAAAAAAACAQER6AAAAAAAAAAjEM+kBgHA8YRcAAAAAgDpnJz0AAAAAAAAA\nBCLSAwAAAAAAAEAgIj0AAAAAAAAABCLSAwAAAAAAAEAgIj0AAAAAAAAABJKr9AIAAAAAAACA\nOlJYOj3kuGV7R7vfsyTkRBidnfQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhn0gNM\nLJ7EAwAAAAAAUMPspAcAAAAAAACAQER6AAAAAAAAAAhEpAcAAAAAAACAQER6AAAAAAAAAAhE\npAcAAAAAAACAQER6AAAAAAAAAAhEpAcAAAAAAACAQER6AAAAAAAAAAhEpAcAAAAAAACAQER6\nAAAAAAAAAAhEpAcAAAAAAACAQER6AAAAAAAAAAhEpAcAAAAAAACAQER6AAAAAAAAAAhEpAcA\nAAAAAACAQER6AAAAAAAAAAgkV+kFQDEKS6eHHLds72j3e5aEnAgE4/9PAAAAAACAkOykBwAA\nAAAAAIBARHoAAAAAAAAACESkBwAAAAAAAIBARHoAAAAAAAAACESkBwAAAAAAAIBARHoAAAAA\nAAAACESkBwAAAAAAAIBARHoAAAAAAAAACESkBwAAAAAAAIBARHoAAAAAAAAACESkBwAAAAAA\nAIBARHoAAAAAAAAACESkBwAAAAAAAIBARHoAAAAAAAAACESkBwAAAAAAAIBARHoAAAAAAAAA\nCCRX6QUAAAAAANSIwtLpIcct2zva/Z4lIScCAJCenfQAAAAAAAAAEIhIDwAAAAAAAACBiPQA\nAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAA\nAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAA\nAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAA\nAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAA\nEIhIDwAAAAAAAACBiPQAAAAAAAAAEIhIDwAAAAAAAACBiPQAAAAAAAAAEEiu0gsAqkBh6fRg\ns5btHe1+z5Jg4wAAAAAAACAkO+kBAAAAAAAAIBCRHgAAAAAAAAACEekBAAAAAAAAIBCRHgAA\nAAAAAAACEekBAAAAAAAAIBCRHgAAAAAAAAACEekBAAAAAAAAIBCRHgAAAAAAAAACEekBAAAA\nAAAAIBCRHgAAAAAAAAACEekBAAAAAAAAIBCRHgAAAPj/7N17kJXlfcDx5+ydhXWzK8GgUhzq\nLeItZIxiaryPWqNTrdUqxhATjbmM0bQaqlHbSKLR1ku9pBPrLQaNF6JjZ2wl3ppIVKZighGR\nJKBBxAvX3WVZdtl9+8dZKF1gBc7Z3x73fD5/PbPnfc953p/v+M+X9xwAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAkKrB\n3gAAAAwRXffvHPlxcw5O+790R+QnAgAAAACF8yQ9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQaoGewMloX3x6zOefmbm7LkfLF22\nqiM1NTeP3m3vww4/8uhD96vOffjpi+b899MzX35t7vz3V6xqbeuoa2hs+vgu++5/wGePPmH/\nMQ2Du7cCTwcAAAAAAACgiET67IXpt9143y86erINf1r6bvvSd99+9cWnHtjziEv/4Rvjd6zd\n0smdLb+/beq1z877YOM/tq1a3rZq+aI/vPpfj97/ycPPuOTCM3as2r5vLChobwWfDgAAAAAA\nAECRlfvX3b/8k8uuuXfGhoydq6hpqK/e8OqK+c9ddeFVCzq6N3vuuvb5l54/ZeNCn8tVNjaN\nyOV6H1HPsp65zz3wja9ds6SzJ3hvhZ8OAAAAAAAAQNGV9ZP0K+fd873pc/Pr4WMmXnD+WYfu\nP7Y6l9qXv/nU49PufHRWlmWdrXOvnDLtpzeds+np0y773oL2rvx698/99ZdOOWrcmF2G11R0\nti1fOH/2tDv+/TeL21NK7e+9NOW7D9973RmReyvwdAAAAAAAAAAGQjk/Sd9z97VPZFmWUqob\n+dnbbp5y+AFj8z/TXt+828mTL7/+/IPyx7UseOT+ha19Tm5b/PD0BS359biTptzw91/c78/H\nDK+pSCnVjGjea8Ix/3TbPed9bpf8ASvmTfvJ+oMD9lbw6QAAAAAAAAAMiPKN9G1v3/vs8o78\n+gtXf7O5KtfngD1PvPzzo+rz6ydu/GWfV39/95P5RdWw3X/w5Ymbvn+uou7zF/9w7/XfMP/s\nna+G7a3A0wEAAAAAAAAYIOUb6Rf+7MX8oq75+JN2Gb65Q3Knfv1T+VXrommrurONX/uP11fm\nF6MPP7++om8F7z2/cocvH/GJ3ndYOKPPq/ece8bJ6/X5bfgC91bg6QAAAAAAAAAMkPKN9I++\nsiy/2Pno47Z0TNP4sypyuZRS1t12/7ur/++FrPOVtt5fo9/jL3fu51N2/MyO+cW6joVBeyv4\ndAAAAAAAAAAGSJlG+qy7ZUNl3+vInbZ0WGXtmIMber+vfuGcFRv+vq7jze6s9+nzfT9W288H\nrV3RmV/kqhpj9lbg6QAAAAAAAAAMnKrB3sDg6Gx9aUNlP7Cxpp8jJ4yoeaGlM6W0bNbydMKY\n/B+rhu3+0EMP5de1df1F+ucfW5RfDGs6qs9LI0aOGlWxJr+u3uj78gvcW4Gnb7eurq6enp4C\n32TrDe1/XbJ27drB3kJfBh5paE87GXg4Aw9m4MEMPJiBRyq1aScDjzW0p50MPJyBBzPwYAYe\nzMAjldq0CTa0b+/kDi977nCKK3LgNTU1udzmfwx965VppO9qn79hvU99dT9Hjt61Pr3TllJa\n887bKR2w/s8VdXV1H/opq954ZNpbrfn13l+Y2OfV06675bQB2FvBl7ad1qxZ09nZWeCbbL2t\n/V6Cj6bW1tbB3kJfBh5paE87GXg4Aw9m4MEMPJiBRyq1aScDjzW0p50MPJyBBzPwYAYezMAj\nldq0CTa0b+/kDi977nCKK3LgTU1NlZWVBb7JkP93KpvX07kyv8jlqhor+/uXDjVNvQ+j96xb\nuU0fsXrR85dcPq33TRo+9e2JW/zm+eLuLeDSAAAAAAAAANg+Zfokfeeq9T8VX9nQ/5FV63+4\nfRtKdtY96/E7brrnP9u6s5RSZc2ob133nRH99vIi7m1gLw0AAAAAAACAApRppN8GPdn6xVb9\nksGfZs+46+57Z6//lvuKqqYLrr3hsF3qS2FvRT4dAAAAAAAAgG1UppG+prH3m96z7tX9H7lu\n9br8Ilfd3P+RbYtevuuOO5/6zdsb/jJqv2O+ffH5+4z88F+vL+LeBuLSAAAAAAAAACiKMo30\nFTWN+UWWdbb3ZPUVW/wu+s4Vvd8eX1G1xZKd9XQ89+CPfvTgcx3rn02vafizvzrnvEnHHbC1\n33FfvL0V99K2Xk1NTUVFReHvQ0qprm7b/mEHBTLwYAYezMCDGXgwAw9m4JFMO5iBBzPwYAYe\nzMCDGXgwA49k2gxt7nCGNnd4sMiB53LbUYD7KtNIXzVsj5Rm5Nevt3d9ekTNlo58f/Ga/KK2\n6RObPWDVH2fefMOt/7Oo97H1ytqPH3f6pDNPObKxajv/8xS4tyJe2jYJ/n9NV+SHhRsxYsRg\nb6EvA480tKedDDycgQcz8GAGHszAI5XatJOBxxra004GHs7Agxl4MAMPZuCRSm3aBBvat3dy\nh5c9dzjF9ZEbeJk++ly7wyEV6/+Nw2/veD0NAAAgAElEQVTb1vVz5Jy23v9LjJy406av/umX\n95z3d9flC30uV/WZk8/7t/t+fMHfHLXdhb7wvRXr0gAAAAAAAAAoujKN9LnKxgOHV+fXr73w\nwZYOy9Ytm9myNr8eM6Hvd8Ivffneb/3Lo/mvuK/fecIl/3zXd79y0k51lYO7t6JcGgAAAAAA\nAAADoUwjfUrplAN7y/SSJ1/c0jEtbz3clWUppVxl/aTRwzd+ad2aNy79wWPdWZZSat73xFtu\nufIv9vhYieytwNMBAAAAAAAAGCDlG+nHnXlwfrF6yQOzWjo3e8zzt8/MLxp2nTSy+v/Navbt\nNyzt6k4p1eww4earz/94dTEnWeDeCjwdAAAAAAAAgAFSvnW2YdfJhzXVpZSyrOfWqdOzTQ5Y\n8dq0H/+hJb8+4eLDN34p6269beZ7+fWxV17UWLn9v0Bf9L0VfjoAAAAAAAAAA6RqsDcweHKV\nX/nO8b+a8lhKaeW8By68vuqyr58yenhVSill3fNmPnLNDQ9nWZZSatzjzEnjdtj41NXv3r9i\nXU9KKZerPLjnvfnz3//QT6uo+tju40Zt/JfpUy6asWJNfv3df719TO1GP2ZfwN6KcDoAAAAA\nAAAAA6OMI31KTfuce8Wp867++byU0lu/uu+CXz82bvexjbU97y1esHhZR/6Ymsb9pn7/9D4n\nLntpfn6RZd1XXnrJ1nxWXfOJD93z1Y3/0vr+kiVLeyN91yZPu2/33opyOgAAAAAAAAADoXy/\n7j7voMnXXnL2UXUVuZRS1t36xzd+N3vO3A0Ze+Q+R0295aqxdZV9zlrxyoqS3VuxTgcAAAAA\nAACg6Mr6SfqUUkoVh51+0YSJxz759DMzX567dPnylrWpqal59LjxnzviiGMO2XezPzf/wdK1\nJbu34p0OAAAAAAAAQJGJ9CmlNHzM+FMnjz918tYef+yPph1b8IdOvuvBrfnAbd1bcU8HAAAA\nAAAAoIjK/evuAQAAAAAAACCMSA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQJCqwd4AAAAAAAAAAAOl6/6dIz9uzsFp\n/5fuiPzEjxxP0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEe\nAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAA\nAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAA\nAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAA\nQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCI\nSA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQH\nAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAA\nAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAA\nAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAA\nEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEGqBnsDJaF98esznn5m5uy5HyxdtqojNTU3j95t78MOP/LoQ/erzm3bWy157vKv3vBq\ndf0np//sh6WwtyJeGgAAAAAAAAAFEumzF6bfduN9v+joyTb8aem77UvfffvVF596YM8jLv2H\nb4zfsXbr3+6ZBxaUzN6KfGkAAAAAAAAAFKjcv+7+5Z9cds29MzZk7FxFTUN99YZXV8x/7qoL\nr1rQ0b2V79b+3oyH3m0vkb0V99IAAAAAAAAAKFxZP0m/ct4935s+N78ePmbiBeefdej+Y6tz\nqX35m089Pu3OR2dlWdbZOvfKKdN+etM5H/puXa1v3nT5nVmWfeiRAXsr7qUBAAAAAAAAUBTl\n/CR9z93XPpFv6nUjP3vbzVMOP2Bs/mfa65t3O3ny5deff1D+uJYFj9y/sHVL79K+4r15v531\n01unTj7nWy++v6Y09lacSwMAAAAAAACguMo30re9fe+zyzvy6y9c/c3mqlyfA/Y88fLPj6rP\nr5+48ZebvsPalU9/adJpf/vF8y69YupDM2a1dhfnGfrC91b4pQEAAAAAAAAwEMo30i/82Yv5\nRV3z8SftMnxzh+RO/fqn8qvWRdNWbdLgs+7WZa2d272Be8494+T1+vw2fIF7K/zSAAAAAAAA\nABgI5fub9I++siy/2Pno47Z0TNP4sypyv+7Jsqy77f53V39tlxEbv1pV/8mzzz5747+0v/fM\nz3/xzqDvrfBLAwAAAAAAAGAglGmkz7pbXmnryq/3OnKnLR1WWTvm4IbqF1o6U0oL56xIfSL9\nsL1OP32vjf+y/HdzC4/0Be6tKJcGAAAAAAAAwEAo00jf2fpSd9b7He8HNtb0c+SEETX5kr1s\n1vJ0wpgi7mHEyFGjKtbk19Ub/Wp8gXsbrEvr6Ojo7u7+8OOKpL8L++hbvXr1YG+hLwOPNLSn\nnQw8nIEHM/BgBh7MwCOV2rSTgcca2tNOBh7OwIMZeDADD2bgkUpt2gQb2rd3coeXPXd4MAMv\nomHDhlVUFPqb8mUa6bva529Y71Nf3c+Ro3etT++0pZTWvPN2SgcUcQ+nXXfLaQOwt8G6tM7O\nzs7OzgLfZOsN7f+VrFmzZrC30JeBRxra004GHs7Agxl4MAMPZuCRSm3aycBjDe1pJwMPZ+DB\nDDyYgQcz8EilNm2CDe3bO7nDy547PJiBF1FdXV3hb1Jo5P+I6ulcmV/kclWNlbl+jqxp6r1p\ne9atHPBt5T+osL2V8qUBAAAAAAAAlLkyjfSdq3qf+c5VNvR/ZFVD78PoYSW7wL2V8qUBAAAA\nAAAAlLkyjfTboCdbv1g7qPvYnAL3VsqXBgAAAAAAADAUlWmkr2ns/ab3rHt1/0euW70uv8hV\nNw/sntYrcG+lfGkAAAAAAAAAZa5qsDcwOCpqGvOLLOts78nqK7b42+2dK3q/Pb6iKqhkF7i3\nwbq0YcOG1dbWFv4+pJQaGj7kpwooLgMPZuDBDDyYgQcz8GAGHsm0gxl4MAMPZuDBDDyYgQcz\n8EimzdDmDmdoc4cHixx4RUURHoMv00hfNWyPlGbk16+3d316RM2Wjnx/8Zr8orbpExE7K3hv\ng3Vp1dXVhb/J1uuK/LBwJfjPHQw80tCedjLwcAYezMCDGXgwA49UatNOBh5raE87GXg4Aw9m\n4MEMPJiBRyq1aRNsaN/eyR1e9tzhwQy81JTp193X7nBIRa73EfPftq3r58g5bb037ciJOw34\ntlJKBe+tlC8NAAAAAAAAoMyVaaTPVTYeOLz3ye/XXvhgS4dl65bNbFmbX4+ZEPR19wXurZQv\nDQAAAAAAAKDMlWmkTymdcmBvmV7y5ItbOqblrYe7siyllKusnzR6eNDOCt5bKV8aAAAAAAAA\nQDkr30g/7syD84vVSx6Y1dK52WOev31mftGw66SR1XGzKnBvpXxpAAAAAAAAAOWsfOtsw66T\nD2uqSyllWc+tU6dnmxyw4rVpP/5DS359wsWHf4T2VsqXBgAAAAAAAFDOyjfSp1zlV75zfH65\nct4DF17/8JLV63pfyrrnPf/gRVc8nGVZSqlxjzMnjduh6J8/fcpFX11v0druYu5tsC8NAAAA\nAAAAgM2qGuwNDKamfc694tR5V/98XkrprV/dd8GvHxu3+9jG2p73Fi9YvKwjf0xN435Tv3/6\nQHx66/tLlixdk193bfK0e4F7G9xLAwAAAAAAAGCzyvhJ+pRSSgdNvvaSs4+qq8illLLu1j++\n8bvZc+ZuyNgj9zlq6i1Xja2r/CjurZQvDQAAAAAAAKA8lfWT9CmllCoOO/2iCROPffLpZ2a+\nPHfp8uUta1NTU/PoceM/d8QRxxyyb2Xuo7u3Ur40AAAAAAAAgHIk0qeU0vAx40+dPP7UyYW+\nT/O+//j441t78OS7HtyaDyxwb8W6NAAAAAAAAAAKV+5fdw8AAAAAAAAAYUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAglQN9gZKQvvi12c8/czM2XM/WLps1f+yd++BNdf/A8dfn3O2swvbbJi5Z5i5\n3xVLpvJNSQpJJlJCpnuuUVRKiCLkWpRLIrco9ItciygMw1zHzGZmdj9n53x+fxxmxGzHzufY\nOc/HX+99zvtz9urt03vv9+f1eb8/WeIfEFD+vtDWbdo+0qq+u2L304tvbAAAAAAAAAAAAACA\nQiFJr+5cPm3ydxuzLGruoYvxGRfjzx7487fFIeFDhkfWLe1ht9OLb2wAAAAAAAAAAAAAgEJz\n9e3u9ywY8en8DblpbEVn8PF2z/00+ejmD17/4ESW2U6nF9/YAAAAAAAAAAAAAAA2cOmV9Jej\nv/1w+SFruUTllgP69WjVoKq7IhmXTv22euHcFbtUVTWmHnp/2MLvv+hV5KcX39gAAAAAAAAA\nAAAAALZx5ZX0lm/GrVNVVUQ8y4RN+3JYm4ZVra9p9w6476kX35vQr7m13pUTyxadTC3q04tv\nbAAAAAAAAAAAAAAAG7lukj7t7PxNl7Ks5Rc+GhTgptxUIaTDe08GelvL6yZvKdrTi29sAAAA\nAAAAAAAAAACbuW6S/uSSP60Fz4D2HSuWuFUVpfPAxtZSauzCFLNahKeLyLcvPffUNTe9G97h\nsQEAAAAAAAAAAAAA7MF1k/Qr/kmyFio88tjt6vjX7aFTFBFRzWmL4tOL8PTiGxsAAAAAAAAA\nAAAAwGYumqRXzVf+STNZy7XalrtdNb1H5ft93K3lk/uTi+r04hsbAAAAAAAAAAAAAOBuuDk6\nAMcwpv5lVq/u8d7Iz5BPzSYlDTuvGEUkadclebxykZxuVbJMYKAu01p2z/PW+HshNhukp6eb\nTKa7/JKCu+Um/k7j8uXLjg7hZjS4lpy7tYUG1xwNrjEaXGM0uMZocC3da60tNLi2nLu1hQbX\nHA2uMRpcYzS4xmhwLd1rrQ2NOfflLVzhLo8rXGM0eBHy8fHR6/V3+SUumqQ3ZRzNLdfxds+n\nZvlK3hKXJiKZcWdFGhbJ6VZdx0/teq/GZgOz2ZyTk3OXXwIrWlJjNLjGaHCN0eAao8E1RoNr\njAbXEq2tMRpcYzS4xmhwjdHgGqPBNUaDa4nWhnPjCodz4wrXWLFrcBfd7t5ivPowhaK4+emV\nfGoa/K8uRrfkXH/+4i5PL76xAQAAAAAAAAAAAADuhosm6Y0pRmtB0fvkX9Pt2ovb82ay7/L0\n4hsbAAAAAAAAAAAAAOBuuOh294VgUa8Vsh1wul2/3K6x2VnK//Zr/Bu3/k/jX3hv0bjBaW2N\nfyMNrvFvpME1/o00uMa/kQbX+DfS4Br/Rhpcy19Ha2v8G2lwjX8jDa7xb6TBNf6NNLjGv5EG\n1/g3uniDQ0tc3nBuXOEao8HvNS66kt7gd3Wnd9Wcnn/NnPSrLzBQ3AOK6vTiGxsAAAAAAAAA\nAAAA4G646Ep6ncHPWlBVY4ZF9dbd9t3txuSru8fr3K5nsu/y9OIbWz5Kliypquqd6wEAAAAA\nAAAAAABA8aTX6+/+S1w0Se/mVVNkg7V8OMPUtKThdjUTzmVaCx7+QUV1evGNLR86nYvuygAA\nAAAAAAAAAAAABeeiiVUP3wd0ytUl5vvScvKpuT/NZC2UaVmuqE4vvrEBAAAAAAAAAAAAAO6G\niybpFb1foxLu1vLBnYm3q6bmJG2/km0tV25yfU/4uzy9+MYGAAAAAAAAAAAAALgbLpqkF5Fn\nGl3NTJ9f/+ft6lw5/aNJVUVE0XtHlC9RhKcX39gAAAAAAAAAAAAAADZz3SR98PP3Wwvp5xfv\numK8ZZ1t07dbCz6VIsq439BWd3l68Y0NAAAAAAAAAAAAAGAz183O+lR6sbW/p4ioquWrj5er\n/6mQfHDhrJgr1vLjb7Up2tOLb2wAAAAAAAAAAAAAAJu5bpJeFH3foe2txcvRi1+f8OP59Jyr\nH6nm6G0/vDnqR1VVRcSv5vMRwb5FfLrI8mFv9r8mNtt8T8UGAAAAAAAAAAAAALAHxZqsdVm7\nvx3y0U/R1rKi9wmuUdXPw3Lh3IlzSVnWgwa/+p/P/rCqp77IT//2ped+uphpLX+xdEXwf+o4\nMDYAAAAAAAAAAAAAgD24epJexLJ16ZSpizZlWW7RDmXqPDxk2MDQUgZ7nH7HJL0DYwMAAAAA\nAAAAAAAA2ANJehGR9NiD6//v9+17Dl28dOlKtvj7B5QPrvtQePijD9TTK/Y6vQBJeofFBgAA\nAAAAAAAAAACwB5L0AAAAAAAAAAAAAABoROfoAAAAAAAAAAAAAAAAcBUk6QEAAAAAAAAAAAAA\n0AhJegAAAAAAAAAAAAAANEKSHgAAAAAAAAAAAAAAjZCkBwAAAAAAAAAAAABAIyTpAQAAAAAA\nAAAAAADQCEl6AAAAAAAAAAAAAAA0QpIeAAAAAAAAAAAAAACNkKQHAAAAAAAAAAAAAEAjJOkB\nAAAAAAAAAAAAANAISXoAAAAAAAAAAAAAADRCkh4AAAAAAAAAAAAAAI2QpAcAAAAAAAAAAAAA\nQCMk6QEAAAAAAAAAAAAA0AhJejll3ZAAACAASURBVAAAAAAAAAAAAAAANEKSHgAAAAAAAAAA\nAAAAjZCkBwAAAAAAAAAAAABAIyTpAQAAAAAAAAAAAADQCEl6AAAAAAAAAAAAAAA0QpIeAAAA\nAAAAAAAAAACNkKQHAAAAAAAAAAAAAEAjJOkBAAAAAAAAAAAAANAISXoAAAAAAAAAAAAAADRC\nkh4AAAAAAAAAAAAAAI2QpAcAAAAAAAAAAAAAQCMk6QEAAAAAAAAAAAAA0AhJegAAAAAAAAAA\nAAAANEKSHgAAAAAAAAAAAAAAjZCkBwAAAAAAAAAAAABAIyTpAQAAAAAAAAAAAADQCEl6AAAA\nAAAAAAAAAAA0QpIeAAAAAAAAAAAAAACNkKQHAAAAAAAAAAAAAEAjJOkBAAAAAAAAAAAAANAI\nSXoAAAAAAAAAAAAAADRCkh4AAAAAAAAAAAAAAI2QpAcAAAAAAAAAAAAAQCMk6QEAAAAAAAAA\nAAAA0AhJegAAAAAAAAAAAAAANEKSHgAAAAAAAAAAAAAAjZCkBwAAAAAAAAAAAABAIyTpAQAA\nAAAAAAAAAADQCEl6AAAAAAAAAAAAAAA0QpIeAAAAAAAAAAAAAACNkKQHAAAAAAAAAAAAAEAj\nJOkBAAAAAAAAAAAAANAISXoAAAAAAAAAAAAAADRCkh4AAAAAAAAAAAAAAI2QpAcAAAAAAAAA\nAAAAQCMk6QEAAAAAAAAAAAAA0AhJegAAAAAAAAAAAAAANEKSHgAAAAAAAAAAAAAAjZCkBwAA\nAAAAAAAAAABAIyTpAQAAAAAAAAAAAADQCEl6AAAAAAAAAAAAAAA0QpIeAAAAAAAAAAAAAACN\nkKQHAAAAAAAAAAAAAEAjJOkBAAAAAAAAAAAAANAISXoAAAAAAAAAAAAAADRCkh4AAAAAAAAA\nAAAAAI2QpAfszqw6OgIAQB4Tvl7095Hzjo4CcAyzMdvRIbgWGvxeMDpyQN++fT/57ZyjAwHs\ngiscxQWDcI3R4Pc+OnAUI3QpwE3ow21Gf5KXm6MDAJxBZlJ8XHJ29RpV8x5MOb596pzlx06d\nuZwpAeWrtXq4wwtd2njqFEcFWdydOXOmUPUVnd7D08vTw9OzhJeBZs/Xxo0bi/DbStUJa17R\nuwi/0AVlpCTGnU8yqQV9wCcktLaea7wwtq5bsnXdEp/yIW3C24a3bRMSVNLREbkQLm+NqTnJ\nOzZvO3Ag6uDhmMvp6RkZmSazunr1ahExpu7+aXNqWHjryj7ujg7TedDg9yCLKfHwufOZFtW0\n/rw8WtHR4RR7aSkpOQXuw/1KlaILtzeu8IJj1uNwDMI1RoPf4+jAUbzQpQB50YffDfqTvEjS\nA3clcf9vM775Yc+JBHfvBssWf5R7PGnvgv4fLjdart7ASjp3ZM13R/7Yvn/qxNf83bhVZYtB\ngwbZdqKiM5QpX6FypfsaNHugVavmQdwZ/4+pU6cW4beFDqzN7SrbqDmXls+d+fOWvZdSC7fs\ncuGKVT6kMQsv9fzRnxcfXbtkVoVazcLD24a3eaBcCcZF9sLl7RDRW5d/PWvxiRTjLT81Z59c\nNPv7JfO+Ce/e77VurWnmu0eDa0s9G73nn8OnklMz8q2VE7tvU6ZFFRFLFrsa2O7c3vULVm+K\niTmeeKUQzUgffhe4woses557BINwjdHgmqMDhzOjS4Gzow/XDv2JlSv+NwNFJX77vMjxq/67\nHFA1Xxn72crcDH2uKyd+GzKhwezh4RrFBxERUS3GxHOnEs+d2vvX5vlfl2j77Mt9n3ukJLcL\ncY9RzelfvjHo99g0G8714N01hdSyXtVdB8+YVVVEVFU9F717YfTuRbM8Q5s9GN627UMP1CtB\nF1GkuLwdYu/CUaN/2HfHahZzyu8LJxyKuTB9RFceI7wbNLiWLMb4GR+9v35ffKHOqtWlup3i\ncXoxaya9M+cPtcAL6HO504fbhCsczopBuMZocO3RgcOJ0aXA6dGHa4b+JC/Fhpk2ABExZ53o\n1/OdRKPZ+qOhRMPclfSJez59ecxOEdG5+XUd8GrTioaDO1cvWP2viCiK7t0FS1v7GRwVdvH1\nySefiIgp7fieqMT/fqooN/dm7t7BTRuUzUi5lJiYeDEpJe+zFGUaPjv9w56eigv19fmztu0t\nWUxJu/Ycy/1RUXQ+/mXLBQX56LMvXLhwIfFy7n6nekNQxIDuZdx0fiEtGldgTUmhxf7yXuSM\nA7k/unv7BQb4FPAanTZ9OldzYWVdOr19y9YtW/74J+bCTR/pPcs0b92mbdvw++tVJblQJLi8\ntRe7YUrkV79Zy4re58FHwkNq1HQ/sOjrrfEiYt193ZRxYPQ7nxw4l26tFtp9/PgeoY4KuLij\nwTW2aHCvJUcuF+qUwKZdpr/f20CHUnjGlO09e4/PyvP8sV6vL+C5y1es4C+pDbjC7YRZz72A\nQbjGaHCN0YHDudGlwLnRh2uJ/iQXSXrARqd/eve1b4+KiE7v2znyzcea1yvn52n9aP3rPaed\nuiIiob2/GN8l2Hpwy5RXJ/52TkSqPvP51D41HRR18WbOOvXRq0P2JmWJiKL3bvZIx0cfqFe2\nbJnAsoEl3UyJCQkJCQkx/25duXZbssmsKPrHB00Y0K6GiKgW4/lj+zb8/ONPf0RbvyokYvLE\n53jM7Q5yMo5/PnjU9tg0EfEuX6fzs92efKiRt+H6H0fVnH3kr41Llvyw91SKiHhXaPHx5GE1\nvNijxRbfvvTcTxczRSS0bbd+Lzxdo4xLv4xHS6lxR7ds+eOPLVuiz6bc9JFXmeCHwsPD24bX\nrVzKIbE5DS5vjZmzTveNeCPJZBERv5A2g98d2CDIS0RiFrzx9rKTci1nLCKi5uxcMvbTxXtE\nRNF7j1/0fS368MKjwTWWFrugR+Qya9m7fEiLRqGl3LKjt22OTs4WkfqPd6zh6SYiGSmJB3b9\nFZdmEpG6EaM/7tbElZ7FL0r7JvQbtTVeRLwC673UP6JxzeDAUl6ODsqZcYVrj1mPQzAI1xgN\nrgE6cLgOuhQ4H/pwR6E/IUkP2OiHvt0XJmSISJPXZ4x+tOL1D9Scl7o+e9FkVhTls8XLQ72v\nTt2NV7Z37fmZiHgHRiyZ85wjQi72lg7p/X10sohUDusxdEDnKrfZkMCceeHneePnrj+mKMqT\n7815pUXZ3I+O/9+0t6dsUFVVbwj69oeZfvwVzY/67du9fopJEZEmXYeMfOHB2+/Kq+79acLo\nb7eJiF+Np7/5/CX277VB367PJBjN/nUjvv30OdrPIRJP7N+y5Y8tW7advJh500eB1RuFh7cN\nDw+rxD4oNuHy1ljsmiGRs6NFxMOv2YxvRpZxu5pmuEXOWERE/m9Cvy+3xotIjZ5fTupWTfN4\niz0aXGN7P+47eleCiPhW7zBtYj/rcC4n42hEj8GZFjW0/7TxHSpba6rmlKWThi3cek7vUfmD\nOZMb0Yfb5LOez26/km3wbTbz25Gl3VxhJYODcYVrjlmPgzEI1xgNbj904HBBdClwGvThDuey\n/QlzbMBG265ki4iiGN5qWyHv8azLv100mUXE4Ns6N0MvIgbfsNLuOhExXtmpbaROIuXEHGuG\n3q9G1ylDut8uQy8ieq9ynSInvlg/QFXVdeOHR2fk5H5U/ZHI1xqVFhGzMX5l4s3dPfJKPjzF\neq+qTKOXR/fK516ViChNOg95vWU5EUmJWTnhzwSNQnQuV3IsItLmtSe51+coZYMbdHnxtS/n\nLZk2buRzT7Qu73O9k0k4/u/SuZMjez3/9ujP12zem2LiAcfC4fLW2M5VZ6yF1kMGlSlARq11\nvxeshbiNu+0YlvOiwTW249gVa+GZYS/kPnDp5h3SK6iEiMT9GpNbU9H7dXt3crty3ubs2M/H\nrNA+VOcQlWESkbqR/cnQa4MrXGPMehyOQbjGaHD7oQOHC6JLgdOgD3c4l+1PmGYDNrpgtIiI\nm9d9N63GTt7/h7VQqk67m06pZHATEbMpXpMAnc3eWVutha4jni3AAnilw+CeImI2Jkz/8WTe\nD1oOeMhaiPo7qahjdCq75+yxFrq++VhB6rceGGEtHJi/1V4xObUqHnoRqerNtpkOp1Su0yJi\nwOCZ3y/6fPQ7nR5u7m+4+uZdVTXF7P1j9qTRvbv3GjNpzpZ/YsxONSa0Iy5vjf2Rki0iis6j\nTx3/gtQ3+LUONOhFxJiyzb6ROSkaXGP7000ioui9OwXe8Dbomk0DRCQ7eVfeg4ri2Xt4OxFJ\niVm4JC5dwzCdR7ZFFZEHQv0cHYir4ArXGLOeewaDcI3R4EWPDhwujC4FxR59+D3D5foTkvSA\njbx0ioiolpybjh9dE2ctVHuq8k0fGa++XYKVhLZYfSJVRHRufp3KFOgtmB6lHrXeAY/bsDTv\ncc/SVx+eyDibUdQxOpV1sWkioui9Hw/wLEh9D7/wUm46EclM+s2+kTmpNoHeIrL/Ahs83CtM\naZcSLyZdTrmSmWO56SOLKWXP5tUTP3i7V+TIlVsPOyS84oXLW2PW5wj1HlV8CvxWlyB3vYiY\njeftGJbzosE1dslkERE3jyo3LXgNaB4gIsa0PcYbJ+q+1V4sa9CLyO8LYwSFZ33xdo5T3P4o\nFrjCNcas517DIFxjNHgRogMH6FJQfNGH32tcpz9hSRNgo2pebsmpRnP2qXNGc8Vrj/OIalp4\n6urWKE9X881bX7VknsjKERGdexltI3USZ7LNIqJzL3vHmrkC3HQJRrMpfX/eg3r3QGvBeMlY\nhOE5n1hrg+tKFPyhEi+dclnEYmTjR1u0fLnJ7Pc3//3VSnXqizzI40BZl878uXPnzh07/o46\nZVJvzkj4V67jl3HiVFKW9cfUs/vnTdi/K/qNsa88wr9aPri8NVZCrxhzVIvpolrgBwPjTWYR\nUXQFegwON6HBNeahU4xmVVVvflLWu0KIyL+qJWtPmrFlnp3xRNG38fVYdjHj0r8/izTUNFan\n0CHYN+pA0p7DKR3DCpTCxF3iCtcYs557BINwjdHg9kAHDpdFlwInQB9+j3DB/oQkPWCjduVL\n7E01qqpl6oZz456sYj2YtO/reKP1hfQt69y4r2/KsQXWvSI9fB7QPlonUMpNl2gym7POpJhV\nvwKsVFPNqaeyckREUdzzHjcbr75uwODvfovTcE1JvZKco5pNiSeyzMGe+jvWN2efjjdZRETn\nXsr+0TmhMo3e6hbyz9KjP42YV2V0n7YeSvEdWhRLqfExO3fs2Llz5z9H4yz/GQKWqVov7MGw\nsFZhoZVLiWqO+Wfb//3fb5t27M8wqyIStebLz+vXf/eBQEcEXjxweWvsfh/Dr8lZlpzk9Zey\n2hdgXaAxdWeC0Swi7iUa2D86J0SDa6yCh/5IhsWcdTrVrObdvcBQspnIUhHZfC69Zagh7yll\nDToRMWVEaRyqc2g8qLNuwJxDsxdktXrXkw7c/rjCNcasx7EYhGuMBrcrOnC4GroUOBP6cMdy\n5f6EJD1gozp9Gsvw30Xk8NzhS0uPfKJZSObZ3Z+N22z9tEK7Z/NWTj299f0P1lvLpVs00zZS\nJxHu7/FjQoaqGmfuvTik+Z3X0ycdmJ1lUUXE4HvDUxEZ8b9YC761fG9xGq5p6WtYdylLROb8\nHvfJEze/u+G/zm+eparWBg+ze3DOSXn+k3EJ7wzZvPKLF3dv7tWzU53gapWCAgq8dzJscenM\noZ07d+7YsePAycT/fhoY3KBVq7AHw8JCKubpLhR9jSZtajRp0yfl9Dfj3l97MFlE/pr2jTww\nVLOwiyEub021Cy/364rTIrJ0yub2o9vfsf7B776zFko3vnNl/BcNrrHWvoYjGSZVNc2Pvjyo\nrn/ucTfvkJJ6Jc2sntkQJ6H+eU+JM5o1D9N5eJfv+HGPXSMWbh08OXTCW0+Sp7c3rnCNMetx\nCAbhGqPBtUEHDhdBlwKnRB/uEPQnQpIesFmpOgPCAnZsv5SlmlO//3ToQkVRrz3jo+g8X3m2\nqrWcmfDLZ+PX7Dt2zqyqIqIo+me73+eomIu1h5+r9uPUgyLy58RPo+eMC/Ux5FM5J+P4xHHb\nreWKTzxx/QPVuGLyFmuxeQP//56IXP97rOK6xcdF5PC8MX83/6pZ2fyWBmZd3Dtm9iFrueIT\nD2sRnzPSGyp2fKbV5i/Wp5/7d8Zn/4qIotPrCnAnfMWKFXYPzrnEx+zbsWPHzp07jpxLuekj\nRVECgxuEhT0YFtaqZnmffL7E4Fe1z4hBayM+EhHjlR0ZFtW7IP9arorLW0tVO3d3XznepKoX\n907/dJnfkC4t83keIv7vxR+uP2ct/69HsEYhOhcaXGONOlaS2UdEZPPYT1pMHNOigve1T3QP\n+Xmsu5QVv21GauTU3NUPFuOF35KzRMTdkwa3Ub3nPnwre9yXy+f0OvhHl+cjOrVt5MljVnbD\nFa4xZj1aYhCuMRpcY3TgcG50KXBu9OFaoj/JiyQ9YCNF8Xzt09eOvzbJur+9mmcXjlpdR9X3\nvrqVevbl3XuPns396L7Hhof7eWgcqnMoH/5WjTkDYjJzcjJjRg4Y0eetQR2a3XfLmuf2bfxq\n0qxDGSYR0RsCIztdfWAi9fzRn+dPXnbiiogYSjZ+pgwvgs1PlU59/Za+l2K2mI0Jnwwa3Oed\ndzu2qHrLmmf+/vnzifMuGM0ionPz79ehkraROo/d34786Kf9eY+oFjPPZNpDv7dH3XREUZSg\nGo3DwlqFhYVVL1eigN/jXrL+taKbgZWF+eLy1pLBL2zYo5U+2hgrIjsXfPryrvBXe3WqF3rj\nvFE1J8Wf2rL2xwVrdlqfI/QPfbFzkPctvxD5o8E1VrFdf/9v3k3OsRjTjoyNfLlWw8Z9h74d\n4uUmIg+3Lrdu1Wlz1pkRU1ZNeLOTp6Ko5pQlE0elm1URKVGZrQtssXLlShER39qPNTj+y76j\nC6d8sGiqe0C5oKCgoFIl8ntqVkSGDi2uqxkciCtcY8x6tMQgXGM0uMbowOHc6FLg3OjDtUR/\nkhdJesB23uVbfzHVd9a0uZsPnLa+KkPnVjKsU993etb/b2VFcWv6+Cvv9W+heZhOQuceOHJE\n137v/2BUVWPq0Zkfvr6oQmjz+tUDAwMDAwO9JSshMSExIfHEwb8Pxl62nqIoSrvID2t46kUk\nI35OzwFrcp+leOj1yOLabWvFzbvu6BeavPXt3yKSk3l69sev/RTc6MEmtcuXLx8UFOQtGfHx\n8efPn4/eu+2fE0m5ZzXr9UGoF39ZbJFyfMHHKw44OgqXoyi6CiFNwsJatWrVKjiw0NmynIyj\n1oJXuU5u9Cm3x+WtvWaRE56KHbA6+rKIXIrePHbEZkXvWbakxfrpsLcjz5yJS8uzM5uHX4MP\nP+zkmFidAg2uJb1njY9eeWjQjM0ioprTo/duO539hvXuSfDz/Uv8/F66WT29ad7z23+sVNEv\nMTYuI+fqP0SbAQ0dGHbxNW/evJuOqKopKT42KT7WIfE4Pa5wjTHrcQgG4RqjwbVBBw4XQZcC\np0Qf7hD0JyKi5F3+C8A22cnxZy4k6UuWrVSx7E3P7KSd/X7q4osV7gtp0fKh2pVKOipCp3F+\n5/dDJyy7fO2vYD4UnUe7Vz4e1KGW9ce0uCk9BvxmLYc88ebEAWxOWCBb5743YVVBU2uNOg/7\n8MVWdo3Hif3y9gszYlJExCuwznM9nqpdpWJZ/5IFHF2ULl3arrE5n06dnq5Uq2nYg2FhrVpV\nLZPfpqYoElzeDqGaU1bMGP/thjv34f61Hh4xcmAtvzusiEX+aHCNHVo/f9KclQnZZhF5bcGP\n7Upd3arq0MJRw37Y99/6ZZv0mTv6GU1DdBZPPfWUzeeuXr26CCNxKVzhGmPWow0G4RqjwR2C\nDhzOii4FroA+XBv0J3mRpAdQzGRdPDTv63kbdx8z3777qlAnrHf/gS2rXX9tiTVJ7x0U0vG5\nPhGP1NUkUidxasfyybOWnLyUnU8d78CQiP5vdmzOlo+2e/XZZ85lmz1KNZvzzSg/3vNqZ7HJ\nWZX9XX0IqCUubweKP7h9xeo1m3YdzjLf4o9mmWqNOjz19FMPN3Hnn6WI0OBasphS9v+16+iZ\nuAbPRORd0rpz0aTpy7akXHumU1H0DdtFDBvYpZi+oM7hfv31V5vPbd+evR9txxWuMWY9GmAQ\nrjEa3FHowOGU6FLgIujDNUB/khdJegDFUmZCzJadew4fPnzqXGJaelqmSXx8fP1Klw+tU6dh\niwebVC9zU31zduzpRM9qlcryZ9MWqvHgjv/bvmf/4cNHziddycgyKorOw6tEQFDlWrVCGjZv\n3aZpTfJud6lzp045qvrQZ/Pfre3v6FiAIsbl7XCqOeNk9KET5y6mpaVlGi0lSvr4+geG1Klb\ngUmRfdDgDpeTHvfv/uOJl9JLV7qvenBwaR/2LYBT4Qq3F2Y99hS79v3hi0+IiIdvy7nTIx0d\nDuAYdOAAUHzRh8MeSNIDAApHNRstOgP3p4pW367PJBjNbyz48ZFrOykBToPLGwAAFDvMeorW\nsW9ee2fFaRHRe1ZdsXSqo8MBANjd6MgBZ7NzgruPGfFoRUfHAqDYMBuz9QYXun/oducqgMvb\nuHFjEX5bqTphzSt6F+EXugIeur+nKHqD3tExOJ+HS3ksScg4m2V2dCCuKC0lJafAzyz6lSrF\nrdrC4vIGAADFDrOeolW6eRVZcVpEzFmnD2bk1PXmhmRR+uqrr4r2CwcNGlS0XwjA1VhMiYfP\nnc+0qKb154UkPYDbUHOSd2zeduBA1MHDMZfT0zMyMk1mdfXq1SJiTN390+bUsPDWlX3cHR2m\nHTEmBu5s6tSifMo7dGBtkvSFlZWQfOXKFRHRG6MdHQtgF2171lky6e8dCw/0fud+R8fiKs7t\nXb9g9aaYmOOJV/J7+ehNFq5Y5cOKqkLi8nYgVc06diDqzLlLjz7+vxuOmy9PnLakWrVa97cO\nq1yKLdqKDA1e5C5fvmwtKIq7n18JxwbjCmhwjdHgcB0Bdd9oWWr3zstZIjJ//dnxz9zn6Iic\nyoYNG4r2C0nS3xEdOFyVejZ6zz+HTyWnZuRbKyd236ZMiyoilqxC3HIBtEEffo+I3rr861mL\nT6QYb/mpOfvkotnfL5n3TXj3fq91a+2st2NJ0gMoBnjo3uFYamxv5dsM77iyz89bPvvxkVnP\nNirj6HCcX8yaSe/M+cOGl/646+wRjpPj8nYI1Zz6+9JvFq/anJCRozcE3Zwzthi3/rZuq6z7\nbs5XzZ+IePXlp0u7cXHfFRrcTnr16mUtGEo0XLb4IxH57LPPbP62oUOHFk1YzosG1xgNfq9h\n1mNHiuGtiYMvvD7uRIbp2MKxfz049f6yno6OCbAdHThckMUYP+Oj99fviy/UWbW6VLdTPIDN\n6MPvBXsXjhr9w747VrOYU35fOOFQzIXpI7q6OePgm0QXcGcPPPDA7T6ymJJ27TmW+6Oi6Hz8\ny5YLCvLRZ1+4cOFC4uXcGb7eEBQxoHsZN51fSIDdI3Y6PHTvKCw11o7i/tKnY5LeHfX9B/2P\nPNGz7wsdg3gYxW6MKdtHzL0hQ6/XF3Q3U4PCtV14XN6aMxvPTRkyZNOJ1DvWVFXTrrXfHtof\nM2HyOxXZ1tdWNLiWtm/f7ugQXAsNrjEa3CGY9WjDM7D5uGkfTBk7YVvMhXEDX+/88ktPhDcv\n7clfwyLQs2dPR4cAOnA4vyXvDVl/5HKhTgls2mVImyA7xQMUIfpwjcVumJKboVf0Pg8+Eh5S\no6b7gUVfb73+GJCbd+36FUscOJcuIvF/LRixuN74HqGOCdeeuEMK3NmIESNueTwn4/jng0dZ\ny97l63R+ttuTDzXyNlxfF6Was4/8tXHJkh/2nkoxG+OXLdvx8eRhNbz4/67weOjeEVhqrKWV\nK1eKSEjbRw8uWr1r7Te71833K1uxcsWy7gW47zd69Gh7h+dkDs+an2VRRcQrsN5L/SMa1wwO\nLOXl6KCcGZe39laMeS83Yawohqq1699UQdH7dOsQ/tdfu05fzBCRtNhto8bWnDfmGa0DdRY0\nOAAUX8x6NLN27VoRqftwl8spi6IS43+c/smyGYZSpQMCAkr7B/h55PvEA2vU8tetWzdHhwDA\nyaXFLlhyLUPvXT6kRaPQUm7Z0ds2Rydni0j9xzvW8HQTkYyUxAO7/opLM4lI3YjRH3drwvNs\nAG5izjr9/szfrWW/kDaD3x3YIMhLRGISVuSt5u5df+z073YuGfvp4j0icuTH0Uee+b6W0yXX\nnO2/B9CQ+v3I0dtj00SkSdchI1948L+7bSh6j9BWT45u1WHvTxNGf7stI27XmPcWfPP5S065\nL4e98dC9xlhqrLF58+bl/VFVLZcTYi8nxDoqHuf2675kETH4Npv+9Uh2nNYAl7fG0mIXLzhw\nyVqu9mD3EYO6lfvP1gWKzqtn/7d79jPv+PHLzxf+YVLVi/98szL+saeDvDWPt9ijwe2qVq1a\n1oKbVyVrYeDAgY4Lx/nR4BqjwR2OWY+WZs6cedMRVTUmX4xPvli4nZOBewEdOFzN0flbrAXf\n6h2mTeznp1dEJCeiXUSPwZkW1VSlfZ8Ola0VVHPK0knDFm49F71s7oH29Rr5GRwWNHAb9OGO\nFbdxWpLJIiIefs0mj3urTD73ZhW3ls9/8MbZfl9ujVfNGTPXxE7qVk27QDVBkh6wUfLhKT/F\npIhImUYvj+71YL51lSadh7x+5NiUnRdSYlZO+PPJ4S0DtQnSmfDQvcZYagwnFpVhEpG6kf3J\n0MMpRc/eaC0Etoz8cshj+VVV9K26vR1gPjdk8TERWTv36NPvNdIgQidDg9vVhAkTbjrSvn17\nh0TiImhwjdHgDsesB4Bt6MDhanYcu2ItPDPsBb9rt2HdvEN6BZWYGZcW92uMXEvSK3q/bu9O\nTjj64sYLsZ+PWfHdpOccEzFwe/ThjrVz1RlrofWQQfll6K9p3e+FL7dOEJG4jbuFJD0Aq91z\n9lgLXd/M927sNa0HRkzZ6+l0KgAAIABJREFUOUlEDszfKi272DEyJ8VD9xpjqbHG3nzzTUeH\n4EKyLaqIPBDq5+hAXAWXt8Y2nLh69+SlyLYFqV/zmdeVJa+rqno5eqMIOeNCo8EBoPhi1qMl\n1qjd+0ZHDjibnRPcfcyIRys6OhYA95b96SYRUfTenQJv2AysZtMAiUvLTt4lcn02pCievYe3\n2/jmqpSYhUvinuxeoYTW4QK4h/2Rki0iis6jTx3/gtQ3+LUONExKMJqNKdtEnO0VPyTpARut\ni00TEUXv/XhAgV6O7uEXXsrti8s5lsyk30RI0uNex1JjjT388MOODsGF1PByi0o35RT6xaOw\nEZe3xo5k5IiI3hDUyrdA+wrqPatW99THZObkZB6xc2jOiQYHUFRi174/fPEJEfHwbTl3eqSj\nw3EJzHq0xBq1e5zFlHj43PlMi2paf15I0gO40SWTRUTcPKrc9BbXgOYBsuaMMW2PURVDno98\nq71Y1vBzotH8+8KY7oMbahssgHvaBaNFRPQeVXzy3R05ryB3fYLRbDaet2dcjkGSHrBRbLZZ\nRHS6EgV/DZ2XTrksYjEm2C8qJ8ZD9xpjqTGcWIdg36gDSXsOp3QMK9BTVkDxkm5WRUTRFWKx\ngl5RRMRiumyvmJwaDQ7chIWYNstKSL5y5YqI6I3Rjo7FVTDrgQtQz0bv+efwqeTUjHxr5cTu\n25RpUUXEkpWtUWgAig8PnWI0q6qac9Nx7wohIv+qlqw9acaWPnmeWlb0bXw9ll3MuPTvzyIk\n6VH8WIypJ47FJFy6kpqWJu5evj4+ZStWq16pTMGTQbidEnrFmKNaTBdVkQK2Z7zJLCKKzgnf\nS0WSHrBRSb2SnKOaTYknsszBnvo71jdnn443WURE517K/tE5IR661xhLjeHEGg/qrBsw59Ds\nBVmt3vVUGF3D2VTx1Mdk5pizTyflqKXd7nyFqznJJzNzRETvUcn+0TkhGtyx0lJSctSCjlf8\nSpWi07c3FmLejdLNq8iK0yJizjp9MCOnrjd3bOyOWQ+cm8UYP+Oj99fvK9xbAmt1qW6neFwK\nQxQ4mQoe+iMZFnPW6VSzmnfxq6FkM5GlIrL5XHrL0Bu2Fitr0ImIKSNK41CBu6LmHNj269p1\nv/59KNb4n27c4FOmadijT3To0LAqj3ja7n4fw6/JWZac5PWXstoXYJtqY+rOBKNZRNxLNLB/\ndFpjygfYqKWvYd2lLBGZ83vcJ09UvmP985tnqaoqIgbfMLsHB9w1lhrDiXmX7/hxj10jFm4d\nPDl0wltPkqeHk3miUskpxy6ras7Xf114LyzojvUTd8+0zjy9y7Wzf3ROiAZ3iHN71y9YvSkm\n5njilUKs9lu4YlXB99PDjViIqYWAum+0LLV75+UsEZm//uz4Z+5zdETOj1nPPY6dOe7SkveG\nrD9SuJ17Apt2GdLmzuMZ3A5DFDir1r6GIxkmVTXNj748qO7110i7eYeU1CtpZvXMhjgJveH1\n0nFGs+ZhAnclKylq+mcTNkcn366CMfXizl+X/Ln+x+Yd+77R5wm6btu0Cy/364rTIrJ0yub2\no++8MvPgd99ZC6UbO+EyTpL0gI3+91jFdYuPi8jheWP+bv5Vs7L5TemzLu4dM/uQtVzxCV7N\ni2KApcaOlXDs7x1/Rx05cuRsYnJaWlpWjs7Hx8c3oFyt2nXqNWnZsi63qO5Wvec+fCt73JfL\n5/Q6+EeX5yM6tW3kycAazqJxr7oyaruI/P3lx//Umti4TH5DFOOVg59O3mUt13i+mRbxOR0a\nXHsxaya9M+cPtcCr03K588ppm7AQUzuK4a2Jgy+8Pu5EhunYwrF/PTj1/nynmbh7zHruZezM\ncZfSYhcsuZah9y4f0qJRaCm37Ohtm6OTs0Wk/uMda3i6iUhGSuKBXX/FpZlEpG7E6I+7NWFi\nZDOGKHBijTpWktlHRGTz2E9aTBzTooL3tU90D/l5rLuUFb9tRmrk1NycpcV44bfkLBFx9wx2\nTMRAIRlTokYO+uBouinvQUVxDygX5GVJi0+8nLs/iqqad62eOej4+a8+fpk8vQ2qdu7uvnK8\nSVUv7p3+6TK/IV1a5tOK8X8v/nD9OWv5fz2csD9RbBg3ABCRnIyDfSLeSzFbRMTNq2qfd97t\n2KLqLWue+fvnzyfOO5mRIyI6N/9xC+eGevF8DIqBqB9GjVi4r2r4Kyw11lLy0c1Tv/7u75jE\nfOqUDm7ywoA3Hr7xCWUU3MqVK62F83t+/mVfglwbcwcFBZUqYcj3VBk6dKjd43M6vXv3tu3E\nGi+OG9W2fNEG4xJU42cv9tyenCUies9Kzw14tXPbeoZbdOOWmF1rp385PybVKCLu3rW/WTjO\nl+mlDWhwbRlTtvfsPT7Lcn0aq9ff+c1TVstXrOAeuA0WDe61pPALMae/39vABW6TrKT9U8ZO\n2BaTovcI6vzyS0+ENy9dgNerwWbMejRXiJ05/opJERG/qkO/m8qWhIW29+O+o3cliIhv9Q7T\nJvbz0ysikpNxNKLH4EyLGtp/2vgOV3eFVM0pSycNW7j1nN6j8gdzJjfyu8OcCLfEEAXOzZwV\n81KPd5NzLCKi6EvUati479C3Q7zcROTo3NfeXXVaRKq2fWnCm508FUU1pyz+bPCSP+NFxD90\n8PzxrR0bPFAA6qxXe/x8Lt36g8Gv+lNdnmrTon75oNIGnSIiqjkr8Xzc/j83r/pp7em0q4n8\niuFDZ7zNEMUWu6dGfrQx1loOCA1/tVeneqHB5xe9+faykyKyevVqUc1J8ae2rP1xwZqdZlUV\nEf/QF+eP7+zIoO2DJD1gu+M/ffjWt3/n/lg6uNGDTWqXL18+KCjIWzLi4+PPnz8fvXfbPyeS\ncuu0eOmLkU874fM+cFLqpgXjvlz+p6FMTZYaa+PQysmjvtlsKsCfZkVxb9vn4zefrq1BVM7n\nqaeesvnc1atXF2EkLsLmBg8dOH18e17abYu0M79FvvmV9QaKiLj7lG9Yt0bZsmXLli3r42G+\neCEhISHh9NF9JxIyrRUUxfD8h7O6NwxwXMjFGw2upX0T+o3aGi8iXoH1Xuof0bhmcGApL0cH\n5czSYhf0iFxmLbMQUwNr164VEVFN21csikrMEhFFMZQqHRAQUNo/wM8j32blUUJbMevRjm07\nc7R4e9bIcDZgL7SvenfbkJwlIr1nL+lSLnfNq6wd0GNmXJpv1be+n9o296CqZn3V78WNFzL8\nakR8N+k5B4Rb/DFEgdM788ukQTM25/742oIf25XyEJGcjKgXIt5LN6siojf4VKrolxgbl3Ft\ncvT0F9+/FOzriHiBQkiOntZ7yHprObDZc+OGP1/mNpucmI0Xvhs7/Kd/LoqIouhenbukfb7b\n6eGWVEvG3GEDVkdffxZc0XuWLWlJSDGKSJ0alc+ciUvL88oMD78GE2ePqeqMzy6znBewXfXO\n7w9Ofm/CqgPWH5NO/LvqxL/51G/UeRgZepuxEFNjV5ca+9Z+rMHxX/YdXTjlg0VTWWpsXxe2\nzRz+zebch+d8KtRqXr9GYGBgYNlAH3fThfj4+Pj441G7D59LFRFVNW36ZrhPuVkvtwx0aNRA\n0XPzDggo6SYiAWw8Y6uSVR79cmz2e2PmxWaYRMSUev7vP8/frrKi93n6jU9JGN8NGlxLv+5L\nFhGDb7PpX48s7caqM7s7On+LtXDDQsyIdtaFmKYq7fv8ZyFm9LK5B9rXYyGmbWbOnHnTEVU1\nJl+MT75YuKQmCohZj8Z4RbqW9qebRETRe3cK9M57vGbTAIlLy07eJXI9Sa8onr2Ht9v45qqU\nmIVL4p7sXqGE1uEWfwxR4PSqPP72OF3pSXNWJmTf8LJ5N+96o7o2GPbDPhExG1NPn0zN/ahs\nkz5k6FEsRM3fbS14B7b9alSPfHZX0hvK9f7gq4t9+2y5mKmqllXfx7R/s55WYToPRef98qdT\nA2aM/3bD1eSaas5KSLn66aGY2LyV/Ws9PGLkQKfM0AtJeuAutX55bOXayyfPWnLyUnY+1bwD\nQyL6v9mxOcsBbZecnGzbiak3DhxRQPPmzbvpiKqakuJjk+Jjb1kfd8mSc/HjKb9aM/QGn5ov\nvjGoQ4tqtxoPqid3rZ36xbcxaUZVtayd/Gnn5pP83VjrUzgDBw50dAiu5auvvsr3c/XKxQvn\nz8fFnopav3F3pkVVLV7PvvPJY7V5ocNdKVW7w5fzGiyZ8826TXvSzLfen0NRdNUah/d6pV+T\nit63rICCo8E1E5VhEpG6kf25/a2NHceuWAvPDHvB79ryYjfvkF5BJWbGpcX9GiPXkvSK3q/b\nu5MTjr648ULs52NWsBATxQKzHi3xinSNXTJZRMTNo8pN88WA5gGy5owxbY9RlbzvJfGt9mJZ\nw8+JRvPvC2O6D26obbDOgCEKXEGdx3rPevjp/X/tOnomrrLH9YRZnYiPhiuTpi/bknJtAb2i\n6Bu2ixg28GkHRQoUzsbTadZC2xEv3fH9R4rO+5X3Ht7y1loRSfx7tQhJelsoer/Og8a2art9\nxeo1m3YdzrrVjZQy1Rp1eOrppx5u4u68o0GS9MDduq9Vly9bdjy44/+279l/+PCR80lXMrKM\niqLz8CoREFS5Vq2Qhs1bt2lak1mlxliIieLlwrbJp7PMIuLmWW3M9E/r3nbxmVKtxZPjpld5\nu98HZ7LMOVnHJ+288FFrVpYUTvv27R0dgmupUqXKnWpUrSci8nSP544u/Wbqsq2npw8fkD5+\nVucQPw3Cc2Ju3pV7vv5+95fP7/7rn8OHD5+Ku5iWnpZpkpIlS/oGBIXUrtOw6QOhFX0cHabz\noMG1kW1RReSBUPoHjbAQU2M8Sggnxs4cGvPQKUazqqo5Nx33rhAi8q9qydqTZmzpk6dtFX0b\nX49lFzMu/fuzCEn6QmOIAhehc/dr9GC7Rv853rLH2807df93//HES+mlK91XPTi4tA+9N4qN\nE5k5IqIo+hfuK9DeD77Bvd2VdSZVNaUfsHNoTi6obtirdcMGmDNORh86ce5iWlpaptFSoqSP\nr39gSJ26Ffyd/1UC5K6AoqAY6oY9XjfscetPqtlo0RnIyhctFmJqjPuDGtu77JS10OSN4bfP\n0F9lKNVg5GtN+03YJSInl+6V1k/YOzxAG55lQnoN/rJkat9v/734/cjRzb6bWMXDOTez0pJb\nifItHy7f8mE6Co3Q4PZWw8stKt2Uc+vdClD0WIipMR4l1BizHi2xM4fGKnjoj2RYzFmnU82q\nT55bVIaSzUSWisjmc+ktQ2+Ye5Y16ETElBGlcajOgSEK4FaiQrOWFRwdBWALs6giojMEeesK\nlNRRFM/yHrozWWZRLXYOzSUoeu/gus2C6zo6DkcgSQ8UPUVvIKVQ5FiIqTHuD2psY0KmiCiK\nvn+LAr1jPvCBAe7KbpOqZlzYKEIqCM5E13HYWwueH5mTdXzSslNfRFR3dDwA7i0dgn2jDiTt\nOZzSMcz5n6m/F7AQE86NWY+W2JlDY619DUcyTKpqmh99eVDd6wsY3LxDSuqVNLN6ZkOchN6w\nsCHOyOsCbccQBc4tOjYptHJpR0cB2EuDEu47rxgtpiSTKgXZWV21ZMRlW0TE3TvE7sHhmugt\ny0If6uroKIoY78gB4GysCzFfbFRGtWR+P3L0Gd5Jj+LgbLZZRPQeVcu6F+hPs869TDVPvYiY\njbwvUwujIwf07dv3k9/OOToQl+DuXT/cz0NE4jZscHQsTshszHZ0CMBdaTyos05RDs1ekKWy\nVE0LFTz0ImJdiJn3uKFkM2th87n0m05hIebdWLNmzZo1azYfvFzwU/5dv27NmjW//HbIflEB\nRSK/nTlErDtz5OVb7cWyBr2I/L4wRrMgnUmjjpWshc1jP9kVl5HnE91Dfh4iEr9tRt6+3WK8\n8Ftyloi4ewZrGafTYIgC5zYkss/zfV+fOGP+5l0HU4wsHYaz6dC4tIiolqyFZ1ILUv/yoVk5\nqioivjWftG9kzuhomqmwp2Sc3z91VL8hExfYIx7HIkkPFI20lJTLBcZo3f50HYe9pVMU60JM\nRwcD3Jmvm05EVEvGHWvmyrSoIiKKu51CQi6LKfHwufMJCQlH1p93dCyuooanm4gY0/5ydCDF\nnpqTvP23NV9P/vS1fi+/ENG9yzOdnun6rPUjY+ruJWt+j00t9NQI+WNMaG/e5Tt+3KNB1qWt\ngyf/zE1wDbT2NYiIdSFm3uPWhZgicmZD3E2nsBDzbsyePXv27NnLdyYU/JTTy7+bPXv2nDnf\n2y8qoEh46BQRuc3OHGLdmeOGDxR9G18PEbn0788ahehcKrbr7++mExFj2pGxkS8PGT3+aObV\nxn+4dTkRMWedGTFllfWPqWpOWTJxVLpZFZESldlhwhYMUeD00hNObfll+aSPh/d6rse7o8Yt\nXvXb0bPJjg4KKBqh/V7x0+tE5JcPZ6WY79CHm43nJ326TUQURd91YH0t4nMu70WOPnzFeOd6\nIiKimq+sXzCxz6ujNu6Lt2tUjsJ298BdObd3/YLVm2JijideKcS6tIUrVvnwyno7sy7E/P1y\nVtyGDRLxqqPDcQmjIweczc4J7j5mxKMVHR1L8VPNU3/RZDYb4/9NNzUqcee8e07GwbNGi4i4\ne7Grks3Us9F7/jl8Kjk132cj1JzYfZusj0RYsliCrJET2TkioprTHB1I8Ra9dfnXsxafSLn1\nzMecfXLR7O+XzPsmvHu/17q1ZmBylxgTaqnecx++lT3uy+Vzeh38o8vzEZ3aNvKkGe2mUcdK\nMvuIiGwe+0mLiWNaVMjdpFr3kJ/HuktZ8dtmpEZOzb2SWYipPaNFFZGc7JOODsRVMOuxGa9I\n15jes8ZHrzw0aMZmEVHN6dF7t53OfiPEy01Egp/vX+Ln99LN6ulN857f/mOlin6JsXEZOVeX\nxrYZwMtKbMQQBS5CNWcc3bfj6L4di+eKT7ngpk2bNG3atEmj2j4F2xsSuAcZfJp9GhkeOXVT\nZuIfg4bohw0dUDfw1u8uOX9w69wp0/alGkWkVpcxT5TzvmU15CM7+cCoyPc/mPph/VKG/Gue\n2rVm2ozvjiRlaROYQ5CkB2wXs2bSO3P+UAv/eCwjFm3U8HT7/epCTJL0dmddapxpUU3rzwu3\nqwrv0WDf3fsuisjcxYem9r3zPZEjP862dj6+1R+3e3DOyGKMn/HR++sL+QxmrS68H10Lxiu7\nNl3OFhGdobyjYynG9i4cNfqHfXesZjGn/L5wwqGYC9NHdHXjFqKtGBNqaeXKlSIivrUfa3D8\nl31HF075YNFU94ByQUFBQaVK3GGGP3ToUC1CdC4V2/X3/+bd5ByLdSFmrYaN+w5925rjebh1\nuXWrTlsXYk54s5OnorAQ0waHDx/+78HsSycPHy7AhgRqTnLcoR8vZlp/KOLIcCvMeu4Gr0jX\nXpXH3x6nKz1pzsqEG98D6OZdb1TXBsN+2CciZmPq6ZPXt/Yt26TPS8G+WgfqFBiiwLl9/N7b\nBw5ERUUdiD4Zb84z8Um9cGLzuhOb1y1T9N41GzRu1qxZ0yZNa1Ys5cBQgfylpt56Q3u/+1/+\nMNP9wzkbUo79PqL/nw1aht/fMCSoXLly5cp5KZkX4uPjz5//Z+u6LVFXNxJr8swbo15ooGHg\nTsWYcmhM5IiRUz5uVPrWD0NkXYyeP2Pa2t2nc4/o9H7tIl7RKkDtkKQHbGRM2T5i7g13Y/V6\nfQHPNSjcBdcCCzGLAkuNNVK7Z1PZt15Ezqz5aFH9r3rcH5RP5YQ9S8esuLpYqklEqBbxOZ0l\n7w1Zf6QQb3sVkcCmXYa0ye/fBUUiO/nItJFfWOf8XgGPOjqc4ip2w5TcDL2i93nwkfCQGjXd\nDyz6euv1B1PcvGvXr1jiwLl0EYn/a8GIxfXG96A/sQVjQo3NmzfvpiOqakqKj02Kj3VIPE6P\nhZj2dsvETPy2aUO3Fe57PHweKJqAXBSzHi2wM4dD1Hms96yHn97/166jZ+Iqe1wfotSJ+Gi4\nMmn6si0p1/ptRdE3bBcxbODTDoq02GOIAufW4P7wBveHi4g5I+lQ1MGoqANRUVHRx+NM1+ZB\nqjnj6D/bj/6zfZGIT1Bws6bNmjZt2rhRqA8Pg+MeExERccc6qjlj37Z1+7atu10Fnd4v/dCv\nw4b8el+XwZEPBBZpgM6vjp/hUIrRmHr0o0Ejhk/5pFnZG/L0qiXzj2Vz5yz+7YrZknuw2v0d\nI1/tFRLgoXmwdkeSHrDR4VnzsyyqiHgF1nupf0TjmsGBpbwcHRSuYyHm3WOpsZZK1Xr10cCt\nvyVkqKrxh09ejXnihR5Pt6/xnx2TMhOOr1+1ZMHPu3KsKcyyjwwM5fHkQkuLXbDkWobeu3xI\ni0ahpdyyo7dtjk7OFpH6j3e0vhA9IyXxwK6/4tJMIlI3YvTH3ZqwVaFtFi9eXKB6luzzZ07v\n//ufS6aro/A6vcg32MKcdfr9mb9by34hbQa/O7BBkJeIxCSsyFvN3bv+2Onf7Vwy9tPFe0Tk\nyI+jjzzzfS0vZgeFxpgQTo+FmMVC0/7POzqE4opZj2bYmcNRdO5+jR5s1+g/x1v2eLt5p+7/\n7j+eeCm9dKX7qgcHl/a5w4JvANB7l67f4qH6LR4SEXNmcvTBqKioqAMHoqJjzhqvJexT409s\nWnti09qlOreSIQ0ajx892KEhA0XPYk45ciRFRJTLBX23OnJ9OO2jMa+9fyA525Qe88mgoUO/\nHHd/0NW7KHH7NkybNu9A/PUHZz3LhPZ+NbJD86oOCtbuuA0H2OjXfckiYvBtNv3rkaXd2Kv0\n3sJCzCLBUmNt6V755I2ogePjjWZVNf+99ts96xaUKlu+XGBguXLlvCQzIeHChQsXzidetlyb\n8+gNga+PfYXexwZH52+xFnyrd5g2sZ+fXhGRnIh2ET0GZ1pUU5X2fTpUtlZQzSlLJw1buPVc\n9LK5B9rXa+THTStbFDRJfyPvcuHv8DCyTeI2TksyWUTEw6/Z5HFvlclnlKK4tXz+gzfO9vty\na7xqzpi5JnZSt2raBeosGBNqbODAgY4OwRWxENN+KlWqlPfHs2fPioi7T2C5Ao86SpauUL/1\nMy+ElSv64FwDsx7NsDPHPcitRIVmLSs4OgonwRAFLkjv5V+3Weu6zVo/J2LOSjlyMCoqKioq\n6sChY7FG68YzOWnRe7eKkKQHcJ3Bt/boaWPHvj5y78WsnMyT415/993JE5r7XFg8c9ryrUdz\nqyl67zZdX36l+6M+Tr1qiiQ9YKOoDJOI1I3sz91YbbAQU2MsNdaeV2DLz8e/8dGYadZGVlVL\ncsK55IRz0VG3qGzwC3n1/ffDgm5eao+C2HHsirXwzLAX/K5dsm7eIb2CSsyMS4v7NUauJekV\nvV+3dycnHH1x44XYz8es+G7Sc46J2PX413jw/Y9f99LRodhi56oz1kLrIYPyy9Bf07rfC19u\nnSAicRt3C0n6wmNMqLH27VlP6RgsxLST6dOn5/3xqaeeEpEKbYdM7RvioIhcC7MejbEzh5bW\nrFkjIj7BrcPrFnT3tX/Xr4s1mt28qj/+aB17huacGKLAxek9Svr7l/L3L+Xv7+/rGXcxI8fR\nEQG3tnr1akeHAHEvGTLyq3Hj3hix60KGOSt24htvllITk0zXx4cVGz8WOfCleuWcf59CkvSA\njbItqog8EOrn6EBcBQsxNcZSY4fwCQ4fN6fu2iU/rP1lk/Um4H+5ewe1ebzDc88/Wc5Q0Hce\n4yb7000ioui9OwXe8JRDzaYBEpeWnbxLpG3uQUXx7D283cY3V6XELFwS92T3CiW0Drf4e/zx\nxwtcV1+2UtXg6jUb1g7m3rfN/kjJFhFF59Gnjn9B6hv8WgcaJiUYzcaUbSLd7BydE2JMCLAQ\nE8UXsx7tsTOHZmbPni0iVZ+qVfAk/enl382NT3f3rvf4o5/YMzQAzkI1xh6LjoqKijoYdehg\ndNKtEvOKwqPMAG7BzTt4+NTxE94csiMuw2yMT7p23OBXvceAgZ3DajoyOA2RpAdsVMPLLSrd\nlKM6Og7cHgsx7wZLjR1F51624wuDnox4+dSRw4cPHzl/MSUtLc0kbiVLlvQrU75Wrdqhtat5\nc1XfHetOG24eVdxubMiA5gGy5owxbY9RFUOej3yrvVjW8HOi0fz7wpjug9lss9BeffVVR4fg\nWi4YLSKi96hS8A3Bgtz1CUaz2XjennE5LcaEAIpQz549RcQvpIyjA3EVzHocgp057lnW7alz\nsk86OhAA9y5VzTpz5LB1X/uoQ0dTssz/raMoSpnKIfXr169Xr179+vW0DxIolNi17w9ffEJE\nPHxbzp0e6ehwXIjes8rgKZ9PfnvwljNp1iPBj7/8wSsd/V1pn0KS9ICNOgT7Rh1I2nM4pWOY\np6NjcQksxNQYS40dS9F5VavdpFrtJo4OxDl56BSjWVXVmx/x9v5/9u47rqnrCwD4eVlA2CtM\nB4hMJ4qKlrpb9x5VcNWFiqute28cVQsu3Fq31o3W8bOoWOuiDhBQRNkhzDBCeMnL+/0RpIgR\nQoQEwvn+dXm5yeeYpsl999x7rq0zwHNaJn5WQHqXnRAkmJ2NdM5lirKfXwXAJD2q7fSZBCml\nZZJMGkDJn0G+hAIAgqH9ZcRqAo4JUf1D56R9iE9Kzy8okFAMroGBiZVdUwc7Dg68q8OIEVjR\nRK3wrqe2wcocXyM6Ovrzi8XZ76OjFaTQyqOlOamvz2YWyf+o5sjQF6yc4Z9cLHX8YdXiHnaa\njgWhSsRHPZXn5aOi3+WTihPz5vZNmzdvLs/NW2PJGVR3iAU5eXl5AMAkYzQdS73D5Nj9tHUb\ne/5P/4vPBwD+s1e54/uZ1qfEdX36tyJUrVoHDGH473+976i44y+6BM5I1TjciKlmuNUYaTFb\nHWasSEaJE/IpuuxWY45BW4AzABCWUujt+sn9pCWHAQASUaSaQ0VIBe0NOX/miGXSnBvZ4l5m\nlaeNyfyHApICALaByK3QAAAgAElEQVR+i5qPTgvhmFCzBG+f/v00MjY2Njkjp6CgQCxlGBoa\nGplZubi5N/P09vbAKe/qJHjz5PqfN+7+82/mZ4fyMDmGrl4+ffv0/aZ5A43EVg9RNOCK5K+H\ndz1ImyxYsODzi/zwnQvCq/Y6OoYdqicgVCGZJCM6Ja1IRktupAEm6VGtN2fR6s8vEgRhZufU\nvEQza2Md9QeG0Ncz92oIFxIAgBInRImkHlxMm6oVg2M1c8tvrIVzb7wRigSPF85ctyFosWO9\n+a9QX/6dCFU7rk3/taMfLz5+f942181z++GcLNIyuNUYaTEfI06sSELTkiMxuQEe/x3azeI6\nGzCJAopOvJkKrp8c5p2qaJ04Uig3N1feIAi2sTHuMNOAnl2s/ryQAABngsJ6rexVaf+o33+X\nN8xbV94ZfQ7HhJqS8yYseM/vT+Myyl0vzM/lpya9iXx65exRc0fPMf6zu336lY5UQJH8Mzu3\nnwqLpmnF2yspMj/qwbWoB9fOdRr2y2xfe12mwm6oSoqy+Kk5xU2cGpW9KHz3IHj/H28/JOYW\ngZmNQ8dufccM7ayLZyGpCu96EPpcm6mjNB1CnUYnxzz7N/pDTr6owl7SpBd/FcloAJCJi9UU\nGkLVRMe0UYf2ns2aN2/erJmtKZYTQ3Wemcdsb5MnD3PFAHDkRvKmwY01HZH2UFjmR6Eu46Z9\nCNwam08WCZ4unLlu4U/DFZ5i7ObmVq0Bah4m6RFSXbORq+cWB/72x/6xUXeHjvId2LWVLu5l\nQNoCtxrXnFu3blXjq5m4d/Ky41beD5XRqr897IsFgLB169ttWdXOtvQNZHxrrHMtW8wP350/\nI7j0ky8j02/niAGAreuomYjrlLFjx8obHP2W506uAYCNGzeq/GoK9wOhijUa8gP74iYJTWdG\n7Npwznj+UO8Khif8pydX30iRt78bjZ9wFeGYUP1eX9y27FCY5AsJ41JZ8RG/LZj0csLaOYO0\n7U5enSgy5dfZv4SnFJa9yGBzeVY8QpwjyMqjyvyHiH9w7pd3Kb/umG/HwTy96jJe3t596PSz\neAGb20L+YyqXFXF06uo/5IdGA0BWSuyV32PvPngZvGWmKQu/dlSBdz3qlJiYWKX+BIOpo6un\nq6Orq6/HwZUoSrC3ty/7Z3JyMgCwDXlWShedNjC3be4zeEwnq+oPrn6Qkfzda5bfeMGv0rNc\nhjapoXgQqiFkblJ0tB6DQQCAzN3d3hxnpVAdR3DmbpmXPiswXiR5e3zdo2+C21vi6pPqodq0\nnjjj2cpFzxQ+dPny5a+LqNbBJD1CKrp48SIAgJHb9y3eXX/x5njQihPBbDMra2traxP9Su5/\nMOWAaj/calxzgoODq/HVXKe7YZK+qux6TjU99EuOVEYWxK6bMdGlZetJC35y1mMBQDcfq2uX\nEihx4uKgS5vnDNQlCJoSntqyrJCiAUC/Ae4zVsWDBw80HUL9wjHutLCH/ZpbSQDw8OiGiY+7\nTBs7sJnrpwl4msrif7gXevbolYfy7Jqp6/gh1vhlogocE6pfenjIokNhpVu6DW1dvJo78Xg8\nniXPkC1J5/P5fP67yCfRKfkAQNOSvw4tMrTaO9Gbp9Go67BLKxbLM/QEQTT17tW3R1cPRztL\nM0N5xoyWFgnS0l4+Crty4dqHfBIARPyHi5ddPLJxqEajrsP4Dw7O2HTp8zUoNJW3buPF0gx9\nqbz42/M3t9i3qIua4tMueNejTgEBAao9kWBwLGxsG9g3btG2Q8eOXtaG7OoNTGvs2rWr7J8D\nBgwAANuu84MnOWsoonrn1JL5N2Jzq/QUXpuh8ztb11A8CFWjFk3tY+JSSJoGAJqWCRJiBAkx\nf107DwDG1o3d3T08PDzc3T2c7LCEFaqTdHlegTtXBK3bHB6XHjh91pCJP/bp4mWO5cFQzcMk\nPUIqOnjwYLkrNC3J4idl8ZM0Ek99g+eP1jTcaoy0GFPXac3kbwN2hwEATRXGRIQnFM+WJ+kd\nR03Vv7qkkKIT/jo46sFZezvjjKRUkVQmf2JnfyxqiuqGtjM2D0jyvxyTCwDZMWHrFocRTF1L\ng5JP8sKfZiQmphaUyTHoGLdYvXqgZmKt+3BMqGYyaebaoD/lGXqOYdPxswP6tnNQtL+Sfv84\nNHj74bgCkqZlods2DPHailuNVZCf+PvhqBwAYLItJi1f37dl+UQCwdKzauDYs4Fj9wH9jwcu\nOvtUAAA50UeOJnw3tpGhBiKu4yhx/JJtVxRWich8vjOuSAoADJbxMP9pbew4UQ8vH738HAAE\n/2y/L+zoo/RmWVQK73rqBFpGZqR8yEj5EPEo7Mge/a7DJ04a2d0Ai9agWqYg6eipjxl6ro1z\nu1auJqzimPCwmJxiAGjeu7+TLgsARMKMV48fpRZIAMDDd+XaEZ74WUZ1wtpfd8lIYVz068io\n16+joqJj4vMlJTeYQv6Hh/wPD++EAoCuiY27h7s8Z+/iYIOjb1RXhIaGAoBHt6G5whORGfyz\nu9af280xMTczMzM3NTPWqfCbGhffV8DGxkbTIdR2mKRHCNUxeP6oeuBW45rToUOHLz0kk2Q9\nfva29E+CYBiaWlpZWxsyi9PT09MzcqUfZ2yZHGtf/x8sWAxjZ7Maj1gbNez9UyDDfOv+i4Li\nT/ZCsbjNlg1rsfD0CwCgyPyE9/mlD1l6TvjR0UjdgdZBLi4u8gZLr6Te5vTp0zUXTj1FMLgT\nNwSb7d50+OYr+RWaEguEJY++jvskeWzq0m3x0umNcIU4qiPSw7cliCkAYOk6rNq1weOLWUnC\noV2/wF0Nf5qyIlFMScXvtj5MX+ODO9WqLPpQGAAQBDFi3da+riYV9GRwLP2W7cieMv5/6SIA\nuHs4euyKduoJUpskX9uVQVIAwGAaDZkx53uvZqUPRRyJkjecfVf5fecIAG4ebXmiaVtup9C0\n7Mz5BJ8JTTUSc52Gdz3qJL8PkhS8exZZ/nYeAAiCoD9dnsLmOrZpYSkSZmdkZGRmCeWLV2iq\n8M6poJfRabtW++kSmPypiJ+fHwAYO1toOpD64s2Re/KGUZO+O7dMMWYSACD17ek7el6RjJY0\n7DWhbwN5B5oSntm68Pj9lJhzB171atYKl1ihOoLBMXZu6e3c0nsIAC0TJ76Jef06Kioq6vXr\n2MxCibyPODct4kFaxIP/AQBTz9TF3d3do9nYYX01GjhClQsJCSl3habJnEx+TmbVTjBB5Xz+\nxqJyyo+AEUJK+vPPP1V+bq9eeD+vIiXPHwUAgmB3xfNHv07i9a3yrcZyM4+e7WmiAwBSUeQY\n3yXyySkmx7DcVuNB249hIlM1UtG7X+cte5BUAABcG/chw0f0+7YVl8Mo7UBTxbGPbp06dTri\ngxAAuLbt1m5b6KSH6+1UJ5MIXz56/CYxtcVgX9cy7+TDE1t3nbsn/PipJghmy56+C6cP5eJZ\nmKiu4Uc9uHD5yl+Po8WUgp9OC4dWfQcMGtDNk40f7a+AY0I1Cw3wDUnMB4B2C/Yu7VR50p1/\nf+2UzY8BwKiR/7HgPjUen9ZZMmrYq0LSsMHY4zuHKdM//8MB31mXAICj3/zcyXU1HJ0WOj3p\nh+MCEQB4ztq9skeZ8mC09MdhwzMlFEEQG0/+4cotGbeQeQ+G+W0EAC7P99T+kZoIuc7Dux51\nosQf1kybH5ElBgCCyW3bvX+PDs0sLS14ljwDliRDIBAIBHHP718MDc+RUATB7B2w2b+nEwDQ\nMjLt7YubV8+evxsjfyln321bRuJJ3qgW2TFuxM0cMQCM23dqqNV/x0iF+o8OSS0wajT3WHDX\n0os0Ld4xZfytdJGxk+/vW/HbG9V1MkHCmyi5169TskTlHta+M6SR9pGfEaMa/ISjr4Ez+wip\nCCdV1Q/PH1Uz3GqsXvSxpSvlGXrPYfOXjvnm85pgBFPHtWO/lR37RpzfvPJwuCj18aolRw/9\n+iNWD1MZg23c6puerT677j36J6+BPzx/+S4ju9DcvnETR0dzQ9zcgOoka49O0zw6+VOi9zGv\n41MyCwoKikiZvoGhkSnP2d3D1lRX0wFqAxwTqtktQREAEARzajulxni8Dv5s4omEpkXptwAw\nSV9lb4skAGA34It1gMoxbDSGQ1wmaVpS9Lby3ugz4XnFAEAQnLldbcteF+fezpRQAMAx8inN\n0AMAx6iTOZuRJZGReQ8BMM2jCrzrUac/lq+QZ+gbdBq9wH9Iw082ELOt7Btb2Tdu7tluwCi/\nqwc3Hbjx9vqOn5nG+ye3syQYHFsXr/EuXj6tdv4UdJOm6XdnNwqHhRhjoXBUa7wslAAAweQO\n5HHLXm/axgxSC4pzHgP8l6QnCN1xi3remnNJGHf8VGq/H2z11R0uQtWJwWvkymvk2rXPUDI/\n/cHNy2fO/ZnycW89QnUC1oBUm6TQ5YtOxgOAjpH3gV0zNB2O5mGSHiFUN+D5oxrh/v24vd0G\nybcaN9D5rxKyu++aRYTCrcaDNBRpnZcTHXQ+TggAFq0mrhz7TYV9Cc8h82fFvg16mC6Mu7j5\nn36LcCVKDWDp27b1tq28H0J1AcHkOnq0dfTQdBwIVYfkYgoAmDqNLNmMSjsDAINt4aDLfFMk\npcikynujz8jH0Vx7bmUdPyI41jqMRDEFBB6ioYp0UgYALL3G5VKPOS/vyhsm7j3LPcWew8qS\nkJQES3GqDu961EMYv/9YTA4AGDsNC5r/QwXpdaae1cAZW6jUCYdfZV/btMjn6J7StSlNus+Y\nee9Z0L+ZFMm/mFE0zlrpbyetlpiYWL0v2LBhw+p9wfogWyIDAJZOw3JTUGZeZnAlkSx4RtLA\nKfOQkcN4S87VDJK6czzuh3kt1RssQtWJEmVGvYp89fLly5cvYxMzZFi5GdVBuPhebcSCnLy8\nPABgkjGajqVWwCQ9QqhuwPNHNQW3GqvHk/3P5I1hc75Xpr/PdN+gh1sB4NWR++A9tAYjQwgh\nhGoTIxYjU0LRsvJVNCtQJKMBAAh2TcWk1TwNOPeExfmx+eBhpkx/WiZKK5YBAEf/8/Ejqpwe\ngxDLaFomLXf9zZVUecNhQINyD5ElU+G4Lvmr4F2PGkTsvS9vDFs8XIkN8ETfeX6HxwZRpGDX\n2fdB45qWPuDt/23Q1PMAEPk0C/phkh4AICAgoHpfECv3qkCHQZAUTdPlv8C5ts4Az2mZ+FkB\n6V32C4RgdjbSOZcpyn5+FQCT9KiOocS5MZGvXr18+erVq9fxaZSixLypnXMbT0/PNp7qDw8h\nVGuZezWECwkAQIkTokRSD259T1LX938/Quq0coZ/crHU8YdVi8seLoiUE3Hug7zhOXvRlzP0\nJTgmLZbObCM/f/T9mQjwwdKmNQK3Gleja0kFAEAwub3NlKo+rWPcxYS1PVcqK8q6DYBJelSr\nVXVnD8Fg6ujq6ero6urrcRiYcqhmFFnM5OhoOor6DseEX8NBl5kpoSiS/7xQ0kq/8ry7VBSV\nTMoAgK3nXPPRaaG+HXn3riclXbooGzJbmdoFudH7JTQNALxOA2s6Nq3koMfKySep4g8pJGXH\n+bilm5Yc/5Anbw5y+KTKOi0rihdLAYDBtlBvpPUI3vVUl8vx+QDAYBkPtNBTpr+OSQ8eZ6eA\npFJvnoFxS0qv65r3BDgPAKLkKizYQqim2eowY0UySpyQT9GGZdahcAzaApwBgLCUQm/XT6az\nLDkMAJCIItUcKkKqkZH5b1+X7Jh//TaZVJSYZ+qYuLds7dmmTZs2no15BuoPEiFUy5l5zPY2\nefIwVwwAR24kbxrcWNMRaRgm6RFSE5kkIzolrUhGS26kAU7IVh2eP4q0W1IxBQAMhr7yCUk9\nBpELICMFNRdVfSASZqSmZUmUrsbm7OqGB19Wlco7ewgGx8LGtoF94xZtO3Ts6GVtiLtgq4yW\n5vwdFv7qVWRUdFxuYaFIVCShaPnWKDL/yfmw/E5dfBrgG6teOCb8Sj0cjZ68yASAAydfB0+q\nfNtZ7Nl98vOSjJr0rvHgtFHTcdPNby/Jyvnf6vPdVw5pVnFnikzbtv4eABBM/XF+jmoJUNv0\ntNGPyCdpWhZ8MyWwX0m56awXe/ik/EB6b/dP95oI3x4tltEAoGPYQf3RIlQlifJbHral8k8x\nYzEEJCUpfFn2IpNdMidAZpPVGB5CX8nHiBMrktC05EhMboCHael1FtfZgEkUUHTizVRwNS37\nlFSSUnuYCKlo1cLZUTEfxDIFkycEQVg2cpdvmm/ZzFGXwEkTpG1wt0N1Ijhzt8xLnxUYL5K8\nPb7u0TfB7S2V2rGmrTBJj9BXopNjnv0b/SEnv8IV3LQ06cVf8kqbMnGxmkLTLnj+KNJuBkwi\nR0pTkox4MeWoW/kZrlRxAl8iAwAG26Tmo9NCtDT7jwMhV+9FZOdX7Tv5+IVLhpilVxdaRmak\nfMhI+RDxKOzIHv2uwydOGtndAN9/pcXc/2PP3pPxQsXz11Tx+xP7jp06eKjLD1NmjvDB9/Wr\n4ZhQTdz82sCLGwCQeGXNieY7Rrev6FQjwbMzqy68l7c9fV3VEZ/WYXE9Ns7rM3lDaMThxSsz\nxo4d3t/RTPH8VP6Hx79t2Po8nwQAr7Fr22FJcJW4T2gNi+4AQPSBRWfMl/Zp61yU/GRjYJj8\nUduew8t2zk+4v3zFDXnbvF1b9UaKUJWZsBgZEooSJwop2liJkQdN5X8QSwGA+PS8Eorkyxsc\nU1xoWGL58uWaDgFBq/72sC8WAMLWrW+3ZVU729KzGBjfGutcyxbzw3fnzwguvZ2Ukem3c8QA\nwNbFZW2oDnj2+n25KyyuRYvWnp5tPD09Pe2VqwqJUJ2Aux1qmi7PK3DniqB1m8Pj0gOnzxoy\n8cc+XbzMlZgP10qYpEdIdTKSv3vN8hsv+FV6lsvQJjUUj3bD80drzo4dO6r3Bav9PLz6wNuI\ncy1bDAD776Su71P+qNHPpYXtle8L5Bh1qvHgtA5NFf42O+BOUoEKz9VRapkQ+kSHDh0AQFLw\n7llkxuePEgRBf1rJgM11bNPCUiTMzsjIyMwSyusc0FThnVNBL6PTdq32w4X5yog4vmzl6ReV\ndpNRwjvHN7+OS9+1eBgL31dV4ZhQnUxcpvXg3b8tENE0eXr9tLg+Y0YP6uVkVf5M4iLBuxuX\nTh29+lhK0wCgZ9l9uisua1MRr8OU334xWLbtTETo0X+vn275ba82rg14PCsrniWTzEsXpAvS\n09+8+Of+v+/kx5E69vCf0slQIPhisR8eT6nKWPWTibt/J7O/H2SLaSr/2IYFx8v8ShIM3cnD\nG8nbRYLrGzddefE2Rf6eEwRz+A+NNRVzXYF3PRrXxVTnrEBE02RIROZ8r8r302e92iffsskx\n+qRQhIh/Xd4wcjFS8LR6qW1bXKajeXY9p5oe+iVHKiMLYtfNmOjSsvWkBT8567EAoJuP1bVL\nCZQ4cXHQpc1zBuoSBE0JT21ZVkjRAKDfoJemY0dIWQTBtG3SzLONp2ebNi1dGuItJNI+uNtB\nDUJDQwHAo9vQXOGJyAz+2V3rz+3mmJibmZmZm5oZ61T4ti5YsEBdYaoJJukRUt2pJfNvxOZW\n6Sm8NkPnd65ouw/6Ejx/tObcvHmzel8Qp6tU8N33dtdOvgOA6IOrnnrtaFthnR9xZsSqfa/l\nbbs+3dQRn3ZJvrm+bIaezTXmmRkqOa5mY3q46hYvXkyJP6yZNl/+J8Hktu3ev0eHZpaWFjxL\nngFLkiEQCASCuOf3L4aG50goaVGCmVfA4p5OAEDLyLS3L25ePXv+bgwAZL44u/RMxy0jMbVZ\niaSbQaUZeoJp+E33Ls5OTdmvTuy5/18WmcV1a26n/yqlEAD4j44uPtls02jcZ6wiHBOqF2Py\n+tmR0zfxSYqmqaehh59dO2piaWPF41lZWelBkUCQnp6enpaRK/uY2mRyeLPWTcZFVqqZOnWq\nvMFiESAFWlb8POzS87CKnhJ/e8+k2xV1kG9DQQoRhO7MDTPfzdwqr29fdh2by7Blzbkl90HF\nuU8i3iSXPtT4+0VdjLECZyXwrkfjuo10OBscBQD/bNkQsz/QtcJ6G1LRuy2BD+Rtuz5lDrCj\nyQvb7smbXi1MP38iQprC1HVaM/nbgN1hAEBThTER4QnFs+VJesdRU/WvLimk6IS/Do56cNbe\nzjgjKVUklcmf2Nm/8uN7ENK4dl36tvH0bO3Z0toIqyUhrYW7HdQjJCSk3BWaJnMy+TmZVdv5\noB0wSY+QigqSjp76OBvLtXFu18rVhFUcEx4Wk1MMAM1793fSZQGASJjx6vGj1AIJAHj4rlw7\nwhMXWKkGzx9F2q3hwEnGZ5YIKRlFCtYHzJvw8y/92zVS2DPx6dVftxxMJykAYLBMp/S1V2+k\n2uB/Z+PkDdeuI6aMGeRkYaDZeOqDP5aviMgSA0CDTqMX+A9paFz2rp5tZd/Yyr5xc892A0b5\nXT246cCNt9d3/Mw03j+5nSXB4Ni6eI138fJptfOnoJs0Tb87u1E4LESZEqn1FiVOWB5yR942\ndu4875fpLaz1ACBOcKFsNza3+bpdvz88tW7DyWcAEHt2ZezgYy56eHdQZTgmVD89nvevm2av\nWbVT/ibTtCxHkJIjSImJVNCZY+w8bfnyTtblt9ojJaWlpWk6hHqHa+OzPdho784DYa8S5GtN\nGCyDTgMn/ezX/PPOBMFq03vykqnt1B4mQlVm02Wu037/uCKptChuqf/iCXMD+rZtrLBnyotb\nO7bufS2SAACTw5sxsOTOKD/tzdUj287F5wEAx6D1YAs9dcWOkFIa9v4pkGG+df9FQfEnh82z\nuM2WDWux8PQLAKDI/IT3+aUPWXpO+NERa0Kg2i4pdHlMRHxMxP1zRt4Hds3QdDgI1Qjc7YA0\nAqfhEFLRmyMla7eNmvTduWWKPFsg9e3pO3pekYyWNOw1oW9JwWqaEp7ZuvD4/ZSYcwde9WrW\nyhjXG6oCzx+tOX5+fpoOAQGL67FyjOfcw08BQFqUsG/tzPOOrb7xdLOxsbG2tuaCiM/np6Wl\nxUSE/xufVfqstmNXuGJGrerC80gAMPXw3Th3JObI1EAYv/9YTA4AGDsNC5r/QwWJSaae1cAZ\nW6jUCYdfZV/btMjn6B5XbsknvEn3GTPvPQv6N5Mi+RczisZhvu3LUm/tzJLIAEDHuO22wLkW\nrC/vHyZY3qNWzE6e8tt9Pk2JQq4kbR3hoL5AtQWOCTXC0LFL4H6P0FOnQ6//JV/68Dk217pz\n774jR/Wz4tTTw+2qBYeDH1QN4Nq0nLM2aFoOPzE9i2lgaW9nyfm0lg+L6+jtY2Tb2Lmd97du\n9rjcUCl416NxDDZv6eJhU5afJmmazH8TsnrWCVtXr+ZNeDwej8fjgliQIcgQZMRHPY1KKln9\nRhBEzxmrnXSZACDi7/fzv1JaXuLbWTNwJI9qIffvx+3tNujlo8dvElMb6Pw3AnH3XbOI2Lrr\n3D3hxw30BMFs2dN34fRBGooUoSoQC3Ly8vIAgEnGaDoWhGoE7nZQp+nTp2s6hFoEPz0Iqejv\nt3nyxuCFY0r387G4zmOt9UNSC1L/jIOPE7IE03jEL9sEb8bfSk/6ddWF37eO1EzEdRyeP1pz\nRowYoekQEABAkyHL5+Us2XzplfzPrPjnl+KfV9C/1ZCFSwc5qiU0bZMnlQFA55n9cF5PPSL2\n3pc3hi0ersTWYaLvPL/DY4MoUrDr7PugcU1LH/D2/zZo6nkAiHyaBf0wSf9FDy8lyhs+8wMq\nytB/5DNlzG/3NwNA6q0ngEn6qsMxoaYw2Jb9xwT08534ITY6Ojo2LVNYUFAgAZaBgYGxhY2L\ni5urmwOXgd/0X+vcuXOaDqH+0jG1bmqqeGmygb3fonlqDqfOw7ue2sCs5ejghbIFm8/lSmUA\nkJ8acyf1i/kegqHTc/La6V1t5X/KZKLSDL1znzmzOvDUEDBCKmCwjVt907PVZ9e9R//kNfCH\n5y/fZWQXmts3buLoaF7hoQ8I1R7mXg3hQgIAUOKEKJHUg4tJJaRtcLeDOvXq1UvTIdQi+H2K\nkIpeFkoAgGByB/I+yRM0bWMGqQXFOY8BupZeJAjdcYt63ppzSRh3/FRqvx9s9dUdrjbA80eR\n9vOZuK6B2x/b9p56n11cQTcuz9l36pz+XljoXkUNdZhviqSN8K5SXS7H5wMAg2U8ULmSpDom\nPXicnQKSSr15BsYtKb2ua94T4DwAiJJFNRSqdrgrLAYAgqEzwV2pg1o5xj48zlYBSZHCcABM\nYFQZjgk1i2DoObh5Orh5ajoQhBBCSrHx9tu71/PgnoO3nrylPt68f87WvdO4qdO9HQzLXeda\nO/cfOcG3u0cNh4lQjWDp27b1ttV0FAhVmZnHbG+TJw9zxQBw5EbypsGNNR0RQtUMdzsgTcHp\naYRUlC2RAQBLpyHr0/05Zl5mcCWRLHhG0sAp85CRw3hLztUMkrpzPO6HeZUfqY4+h+ePovqg\nccehv3n3j/r7fw+evYyOjk3LyhOJSYJg6Ojpm1k3cHFxbunl07lNUzzJ+Gt05nHfJOS9TC/q\nbqKj6VjqhcRiCgAYbEvln2LGYghISlL4suxFJrtkvxSZTVZjeNonnZQBAFOnoaHS3xTWbKaA\npCgST55WBY4J1ezKlSsAYOjo08VD2WpJz29cSyIpll6T3j3cazI0hBBCStG1cJ++dMsEQdy9\nh8+io6M/pGQUFBYUScDQ0MjY3MbV3b1lu288m1iUe5ae+eDtu0Y52FvinRBCCKkbwZm7ZV76\nrMB4keTt8XWPvglub6mr6ZgQqk642wFpCibpEVKRDoMgKZqmpeWuc22dAZ7TMvGzAtK7bN0q\ngtnZSOdcpij7+VUAnJBVEZ4/iuoFguPRqbdHp97yv2iKlDE4mJWvRt4TPfctD3u64yIdPB7f\nVzUwYTEyJBQlThRStLESH2Wayv8glgIAQbDLXqdIvrzBMWUreBr6SJ9JkFJaJsmkAZT8hPMl\nFAAQDKVKHYRD3VgAACAASURBVKBycEyoZvv27QOARgNclE/SJ/zx+wF+IZvbrHeP9TUZWv1V\nLCpg6RngWAUhVCV6PKfvBzp9P1DZ/kydBo5YSgwhhDREl+cVuHNF0LrN4XHpgdNnDZn4Y58u\nXua6OPWKtATudkCagkl6hFRkq8OMFckocUI+RZf97uYYtAU4AwBhKYXerp8cLmXJYQCARKRo\n3zdSGp4/qhEFQqH0y6UIyzE2McH/ANWIYOJ6k2pm0WruCOd/z7w5v/hgw5UTuuoQ+IGtWV1M\ndc4KRDRNhkRkzveqfD991qt9YhkNAByjDmWvi/jX5Q0jF6OaiFNrtDfk/JkjlklzbmSLe5lV\nvr+BzH8oICkAYOu3qPnotBCOCWs/UkYDgLT4vaYDqZPIovwipr4xR1HJR5r69+ap83eeJSYl\nS9kmzdp4d+kz2NtJ2cUTSKFx48ap9kSn8YHLutpUbzD1kODt07+fRsbGxiZn5BQUFIilDEND\nQyMzKxc392ae3t4edpoOECFUN4iEGalpWRKlZ1GcXd1wrRuq5UJDQwHAo9vQXOGJyAz+2V3r\nz+3mmJibmZmZm5oZ61T4CV6wYIG6wkRIRbjbAWkKJukRUpGPESdWJKFpyZGY3ACP/6qgsLjO\nBkyigKITb6aC6yfVUVJJSu1hai08f1Q9UiJuHL38V1zcu4y8io5IL+f4hUvKrzpESBOIUesD\nBT/PD7u4ffyTsLF+A90dHeytzfBjW0O6jXQ4GxwFAP9s2RCzP9DVkFNBZ6no3ZbAB/K2XZ8+\n/z1Akxe23ZM3vVooVXys3urZxerPCwkAcCYorNfKXpX2j/r9d3nDvHXlndHncExY06Kjoz+/\nWJz9PjpaibeRluakvj6bWST/o5oj02qpL+9cvHHv6bOXmSJpiyX717bnletACqMClwU+/SD8\neIH/8PaFf/53uW2/aUsmf1f5KY7oC3JyclR7Yn4xfrF8lZw3YcF7fn8al1HuemF+Lj816U3k\n0ytnj5o7eo7xn93NFcchCCHFaGn2HwdCrt6LyM6vwhQK4CwKqgtCQkLKXaFpMieTn5PJ10g8\nCFUv3O2gTrguuSxM0iOkolb97WFfLACErVvfbsuqdralZ58zvjXWuZYt5ofvzp8RXDrIlpHp\nt3PEAMDWddRMxAhVUdyVrT/vv0srvfS7FBvnZasuMTGxSv0JBlNHV09XR1dXX4+DpSOqjsmx\n6z+4Y9j2G4Upz3dvfA4ABIOpzBt54cKFGg9O69h0meu03z+uSCotilvqv3jC3IC+bRsr7Jny\n4taOrXtfiyQAwOTwZgxsJL+en/bm6pFt5+LzAIBj0HqwBa5TrkijIT+wL26S0HRmxK4N54zn\nD/WuYMaP//Tk6hsp8vZ3o3GIogocE9Y0hTtv+OE7F4RX7XV0DDtU3gkB0FT+iU3LTz98V0Ef\nmSRz7cyVz3PLZyBomnpyZcfPxYxtAT1qMkb0HxbXzMyABQBmeji9o7rXF7ctOxRW6Z7XrPiI\n3xZMejlh7ZxBbuoJTLthtTakZWiq8LfZAXeSClR4rg7OoiCEkEbhbgd1wnXJZeFdHEIqsus5\n1fTQLzlSGVkQu27GRJeWrSct+MlZjwUA3Xysrl1KoMSJi4MubZ4zUJcgaEp4asuyQooGAP0G\n+MVdPWRkfvzbOEF2Xn5BAbD1jAwNLe0cmthb4K17tSCFDxYf+CRDz2QqW3Odg8XDqy4gIEC1\nJxIMjoWNbQP7xi3adujY0cvaEM/qVsqTw0vXnH9Z9goto7RwoFc7MNi8pYuHTVl+mqRpMv9N\nyOpZJ2xdvZo34fF4PB6PC2JBhiBDkBEf9TQqKVf+FIIges5Y7aTLBAARf7+f/5XSr6NvZ83A\nr5iKcYw7Lexhv+ZWEgA8PLph4uMu08YObOb6aT6YprL4H+6Fnj165SFF0wBg6jp+iDVX4Qui\niuGYsK5oM3WUpkOoC2jJ/iUBV15XMmnyPGS5PEOvY+rWs3ubBqaM+DexkU8iUkQSAHh3M+hw\nlzbjm+FuY1Xs2LGjwsfpvMz0tLTUpA+RN249KZLRtExv+M/rv3fDd1t16eEhiw6FlY40DG1d\nvJo78Xg8niXPkC1J5/P5fP67yCfRKfkAQNOSvw4tMrTaO9G7fHkJpCSs1oa0VfLN9WUz9Gyu\nMc/MUMlPLRtnUVCtN336dE2HgFANwt0OtZl2r0smVNgiiRCSS7y+NWB3WOmfM4+e7WmiAwBS\nUeQY3yXy6Vcmx9DezjgjKVUklcm7Ddp+7EdHPEz3K9DSV+F/hl778+nrJPKzbzCOoUWbTj36\n9O3bspGxRqLTGi82T1l2nw8AerxmP071bd3UkWeCW1dr0IABA77+RQimftfhEyeN7G6AE1gV\nEr47OvanP1QbAl2+fLna46kn0h4eW7D5XO7HX8MKEAydnpPXBvR1kf9ZkBo02v+2vO3cZ84W\n/241GKW2oGWiAwv9L8fkll4hmLqWBjKBkAQAd6cGiYmpBWUqrusYt9iyb1UjXWUXY6FycExY\no8pNCCYnJwMA25BnZVzR2RllGZjbNvcZPOY7j+oPTuvEnV/60+GSRWy6Fq6DBn7X2t2R17CR\nuc5/3w9UcZLfDwGFFK1r2vHXkHkNPn51UOK0PQvn3YjPAwAd445nf1+o/vjrFXHmmzOHgs/d\nTyAYeuM27R3ijLc/qpBJM2ePnpwgpgCAY9h0/OyAvu0cFI2k6fePQ4O3H44rIAGApdvkwImt\npiwccleZytXazly6pItZTFS7Hf5x5PnMIgBw7TpiyphBThYGmo4IIYRQFTwJniHf7QAAZq4l\nux3STsz56dx7kM8HKtrtcGTTEE0GXTdVVlC2/Lpkpq6d/yqtXZeMSXqEvsrrG0e27r8oKKag\nzIQsALw+vmzh6Ref97f0nHBg5WC1hqhdxFmRuzZuDoupZHMPQTC9+k+aPaEPrrVX2Ua/4Q/y\nijlGbUMOLzVnYeW1Grd+/XoAkBS8exZZ/iBMACCI8r/XbK5jmxaWImF2RkZGZpawbHFOi5bD\nd632wzmsClz/aczuOCEA6PHcR44e4NbQztLUQMn3y9zcvEZj027izNcH9xy89eQt9eXxp617\np3FTp3s7GJZekSfpudbO/UdO8O2OOTZl0ZTwwu5Nh2++qrSnqUu3xUunuyid70QK4ZhQbeTL\n2hoN2BI8yVnTsWgbmsqdPHKC/GxFS8/h25f5KRxLpz9cOXlDBAC0XXlwuadF2Yco8dsJo+fJ\n12ON23dqqBXW56hpsvPLJx1+nsnSbbL99y0NdXCtVZWlhS2ZuvUVALB0Hdbs2+xR4a8hmfvy\npykrEsUUALSct3eNj7WaotQWpPCB37hNYpkq1dr+uHABb0pRLTdp2GABSZl6+B7eMBLvxhFC\nqM7B3Q61UH1Yl4xJeoS+lkwifPno8ZvE1BaDfV3LFNx4eGLrrnP3hB83SxEEs2VP34XTh3Lx\n9GhVkcLIxf4r3hRKyl4kCLaZlbWerICfkVvuQDtTjwE71k7EPL1qxgwZJJTKWi/at8rbStOx\n1BeU+MOaafMjssQAQDC5bbv379GhmaWlBc+SZ8CSZAgEAoEg7vn9i6HhORKKIJi9Azb793QC\nAFpGpr19cfPq2fN3Y+Qv5ey7bcvIJpr8x9Ru04YPTimmdEza7j+0zBi/ItSuSBB37+Gz6Ojo\nDykZBYUFRRIwNDQyNrdxdXdv2e4bzyYW5fpTxUkJGboO9pb4n0oF/KgHFy5f+etxtJhSMOa3\ncGjVd8CgAd082fjmVgccE6oHJulrTsbT9RNX/wMAbK5ryLFAiy8s07w9Z0xQvBAAph4+09dM\nt9yjz9ZNWvVIAACNBv8aPKFpDYeMQCJ6NXzUUhlNO47ctt0Xh39VFhrgG5KYDwDtFuxd2qny\npDv//topmx8DgFEj/2PBfWo8Pu2C1dqQdhsxaKBYRg/ac/JHW31Nx4IQQkgVuNuhVtLydcmY\npEeoBkkLU5+/fJeRXWhu37iJo6O5IX5rfw1677TRV1MK5X9wjJsMGDqgc7vmNtbmHAYBADQl\nzkhLfflP2KXzoQkFJYl8uy4Ldv/USWMh12Xy28tpR870Ni0/94pqyJn5447F5ABAg06jF/gP\nafiFcR5VlH714KYDN94SBNFvyf7J7SxLH3r3v50/Bd2kaZrJsT58OgTTz18yZOBAKU1/u/HI\nL1paKAmhcmhK9D7mdXxKZkFBQREp0zcwNDLlObt72OI3vLrgmLAanTlzBgCMnXt838pM07Fo\nm6dLf1z9MhMAXCft2DSgoeJOtHTy8OHpJAUA/kfO9Pnsa0QYv2XMnHsAYGA7+cSe/jUbMQIA\ngO1jR9zJFeua9j5zZJqmY6l75owYEi+WEgRz/7k/LNmVb9WWSTKHD5sooWmWbpPzZ7apIUJt\ngtXakHb7ZeSQN0XS2UfPdv9YUQkhhFBdhLsdahvtXpfMqrwLQkhVLH3btt62mo5CS+TE7CrN\n0PPajgxcNMri0zkUgqnLs3fsMcyx64C+v69bdP7fTABIvbv5z7FtellgEqLKnPRYkYUSKa7j\nUhdh/H55ht7YaVjQ/B8qSK8z9awGzthCpU44/Cr72qZFPkf3uHJLfs2bdJ8x896zoH8zKZJ/\nMaNonDXWmFXMjM0QkFRrG3x/UH1BMLmOHm0d8awAzcExYTUaMWKEpkPQWncT8uWNvp2/uJ9Y\nnH01/WONRzGloIOehTfAPQAg8x4DYJJeHZx0WXcAyIJHAJikr7LkYgoAmDqNlMnQAwCDbeGg\ny3xTJKXIpBoOTQtFiiQA4DFjKmbokVbqzOO+Sch7mV6ESXpUHwjePv37aWRsbGxyRk5BQYFY\nyjA0NDQys3Jxc2/m6e3tYafpABFSnbVHp2kenfxxt0OtweY272KscydXnHrzJvhq2y0PJukR\nQnVD5JEn8gaX13XHstEVnLfN5FiNW7Ejc9KEe5lFNC27dCyu15xm6gpTe/R1NIp8lfUsWti/\nE4481CFi7315Y9ji4UpsgCf6zvM7PDaIIgW7zr4PGvdfLVlv/2+Dpp4HgMinWdAPk9CKdTPR\nOSUQJSvMLSBUxyWFLl90Mh4AdIy8D+yaoelwtB++4bUZRQPWlKmS98VSACAITiejLxZ74P91\nT95gsEz6mClIQjA59vIGRabXQIxIgfhiKQDQVIGmA6mTjFiMTAlFy0TKP6VIfqQ6wa6pmLRX\nsYwGgA6uWniYKEIA4D3Rc9/ysKc7LtLB43EAgrRYzpuw4D2/P43LKHe9MD+Xn5r0JvLplbNH\nzR09x/jP7uaKxQtRHYa7HWoVLV6XjEl6hFDdcCuhZNap6+IfK8jQyxEM7uQl3e7NDQWAjKeX\nATBJX2WtA4Yw/Pe/3ndU3PGXSt9w9PUux+cDAINlPNBCqXMZdUx68Dg7BSSVevMMjFtSel3X\nvCfAeQAQJVdhqrG+6ernfmrr07+Pvxr3c3tNx6JtduzYUb0vGBAQUL0vqPXEgpy8vDwAYJIx\nmo6lXsA3XLOKsvipOcVNnBqVvSh89yB4/x9vPyTmFoGZjUPHbn3HDO2sy8DBTOUEpAwAGGwL\n1pffrUc30+QNfZuRCt9VglGSuZdJsqs/RPQZMu/xX7nFAMDg2Gg6ljrJQZeZKaEokv+8UNJK\nv/K8u1QUlUzKAICt51zz0WkbrNaGtJtFq7kjnP898+b84oMNV07oqoMTKUgbvb64bdmhMEll\nByhnxUf8tmDSywlr5wxyU09gCCHtpsXrkjFJj1DlMOVQG8QXyXf2MMc0NlKmv5HjODZxTULT\nksJXNRyaduLa9F87+vHi4/fnbXPdPLcf5ulrWmIxBQAMtmWlPUuZsRgCkpIUvix7kcnmyRtk\nNlmN4WkZm86L+l+ccPXexrPd9w5vZaHpcLTKzZs3q/cF8Rezqsy9GsKFBACgxAlRIqkHF0f7\nNQvfcE3JeHl796HTz+IFbG6LcyfXlF7Pijg6dfUfpKxk3jArJfbK77F3H7wM3jLTtILMMwIA\nAH0mIZbRNF38pQ40JTwvKFkFaDegpcI+lEQgbzDYZtUeISqnOCd259LtFE0DgJ5ZD02HUyf1\ncDR68iITAA6cfB08SfGnuqzYs/tomgYAoya9azw4rYPV2pC2I0atDxT8PD/s4vbxT8LG+g10\nd3SwtzbDuj5Ia6SHhyw6FEZ/zNAb2rp4NXfi8Xg8S54hW5LO5/P5/HeRT6JT8gGApiV/HVpk\naLV3ojdPo1EjVG2KRQUsPQP8Vlc/7V6XjLNICFUOUw61AQU0ADA41lzlNkIRhK6NDiNRTAEt\nq+HQtFazkavnFgf+9sf+sVF3h47yHdi1lS4OQ2qMCYuRIaEocaKQoo2VeJ9pKv+DWL5y5ZMd\nPxTJlzc4pliB88sI9o8bVmX9suzYiqmxffwmjelvjXk1pC3MPGZ7mzx5mCsGgCM3kjcNbqzp\niLQcvuEawX9wcMamS5/v4KGpvHUbL5Zm6Evlxd+ev7nFvkVd1BRfnWXLYWVJSFqanUJSdhzm\n5x0Kkk8VfXx7v2uveGWhpPCFvMHkfPFge1SBkydPKtVPVpyWmPDy6b/ZkpKbHfexHWowLO3l\n5tcGXtwAgMQra0403zG6fUWfW8GzM6suvJe3PX1d1RGfdsFqbUjrMTl2/Qd3DNt+ozDl+e6N\nzwGAYDCVmcS6cOFCjQeH0NeRSTPXBv0pz9BzDJuOnx3Qt52Dok83/f5xaPD2w3EFJE3LQrdt\nGOK1FRfLotqPLMovYuobcxgKHqOpf2+eOn/nWWJSspRt0qyNd5c+g72dTNQeYz2l9euScUoa\nIVQ3tNBnP8wjZZIsCQ1sJYZ2tEyUWiwDADYX6xCq4uLFiwAARm7ft3h3/cWb40ErTgSzzays\nra2tTfS/eEyp3IIFC9QRonbpYqpzViCiaTIkInO+V+X76bNe7RPLaADgGH0yISviX5c3jFyU\nqjlRP8k/3s5de0SduPw49NCTa0eMLe0a2Fkq892ycuXKmg6vTvPz89N0CPUewZm7ZV76rMB4\nkeTt8XWPvglub4mb1WoSvuFqR4njl2y7orDGZubznXFFUgBgsIyH+U9rY8eJenj56OXnACD4\nZ/t9YUcf40rGMPVcJzOdV4UkTdNn3+XNcVNwhmj0kSfyBlO3UXcTBQfSA4Dg/r/yho5pxxqK\nU7spm6T/FNeqy88dcJuaKkxcpvXg3b8tENE0eXr9tLg+Y0YP6uVkxS3XrUjw7salU0evPpbK\n5wctu093xZnZKsNqbUjrPTm8dM35T2rd0TKK0lQ0CFWr9PBtCWIKAFi6Dqt2bfD44riacGjX\nL3BXw5+mrEgUU1Lxu60P09f44NpNVEulvrxz8ca9p89eZoqkLZbsX9u+/IiaFEYFLgt8+kH4\n8QL/4e0L//zvctt+05ZM/k5RSh9VDtcll4VJeoQqhymH2qBva/OHd9Nomfh4Yv74RoaV9s99\nvVc+gWLUtF/NR6eFDh48WO4KTUuy+ElZ/CSNxKP1uo10OBscBQD/bNkQsz/Q1bCiLIJU9G5L\n4AN5265Pn/8eoMkL2+7Jm14tFMytI7lyH2+aluUKknIF+NmuBiNGjNB0CAh0eV6BO1cErdsc\nHpceOH3WkIk/9uniZa6rYFMsqhb4hqtZ8rVdGSQFAAym0ZAZc773alb6UMSRKHnD2XeV33eO\nAODm0ZYnmrbldgpNy86cT/CZ0FQjMdcVHj1t4GA+ADwOukDv/rFc9oyW5ux/mSVvGzmM/EJu\nTXbsfKK8xfPBlbJqYur0zfK1s/SUqzeGPsOYvH525PRNfJKiaepp6OFn146aWNpY8XhWVlZ6\nUCQQpKenp6dl5Mo+rg1icniz1k3GOVnVYLU2pMWE746uvYDnLSKtFXHug7zhOXvRlzP0JTgm\nLZbObDNl82MAeH8mAnz6VNwfIfWjqfwTm5affviugj4ySebamSuf55Y/DoymqSdXdvxczNgW\noIUbu9UA1yWXhUl6hCqHKYfawHXKZOPwtUJKdn313sF7f6q4HjhFpm3dEA4ABMEcNr25umJE\nSHU2XeY67fePK5JKi+KW+i+eMDegb9vGCnumvLi1Y+ve1yIJADA5vBkDG8mv56e9uXpk27n4\nPADgGLQebKGnrtgRQrVLaGgoAHh0G5orPBGZwT+7a/253RwTczMzM3NTM2OdCn9AsRSKCvAN\nV7N/riXLG61mbBzbw+6/B2jp6ZRCACAI4sfeDUsvdxjvB7c3AkDGgwjAJH2FbL8bxz60VELT\nBSkXV51uvXJk67KPPj+0nE+W7AZ0/UFxoe+E6xse55Py9sDedgr7oIr17q38SedMS/tGjk2a\ntnRzxCzn19Djef+6afaaVTtjcooBgKZlOYKUHEFKTKSCzhxj52nLl3eyLr/VHikDq7Uh7fb3\nzlvySuB6PPeRowe4NbSzNDXAr2ekNW4JigCAIJhT2ymVJON18GcTTyQ0LUq/BYBJelTL0JL9\nSwKuvM6puNfzkOXyDL2OqVvP7m0amDLi38RGPolIEUkA4N3NoMNd2oxvhruk1EGL1yVjkh4h\nVDdwDNtumNFlRvBfRRl3A+YzFy7w9+ApLiebFnX/QNDOF/kkALgMXdXns1qFSBnTp0/XdAj1\nC4PNW7p42JTlp0maJvPfhKyedcLW1at5Ex6Px+PxuCAWZAgyBBnxUU+jknLlTyEIoueM1U66\nTAAQ8ff7+V+hP+7v+XbWDC0cs1SfOXPmaDoEhGpQSEhIuSs0TeZk8nMy+RqJR+vhG65m4XnF\nAEAQnLldbcteF+fezpRQAMAx8nHl/nefyzHqZM5mZElkZN5DgJFqjrZuYXObz2hvuf0fAQBE\nHF/x84fB/Tt7uro40Hn8pzdO7A8t2SLPYJn+6GH2+dMTHhxbsPexvG1gN6SLseJ6+Khi06ZN\n03QI9ZGhY5fA/R6hp06HXv8rtUCisA+ba925d9+Ro/pZcbBWioqwWhvSbpeTCgBAx6Tt3pBl\nFW8sQaguSi6mAICp08iSrVQ1GQbbwkGX+aZISpH4JY9qnbgLq0oz9LoWroMGftfa3ZHX0Lxs\nH6o4afP/UgBA17TjryHzGnyslkeJ0/YsnHcjPg8AQjeGjP99oXpj1wa4LrksTNIjpIqk0OWL\nTsYDgI6R94FdMzQdjrbJz89XeN24/cTVRezV+28K395ZPPWfFt5d2rd0traysrKy0iOK0vl8\nflrav/ev3YtMlff3HDx72ZgWagxcq/Tq1UvTIdQ7Zi1HBy+ULdh8LlcqA4D81Jg7qTFf6kww\ndHpOXjv9Y35CJhOVZuid+8yZpY3Ff6pRt27dNB0C+g9FFjM5mMhBCCkrnZQBAEuvcbnp75yX\nd+UNE/ee5Z5iz2FlSUhKgssmKtf5l1XXx82KLZQAwNsHF7Y+uPB5H8cBC604JZOztFScnZ2d\nHPf6wf+u/PnkvfwiwdCdvArXQ6A6hsG27D8moJ/vxA+x0dHRsWmZwoKCAgmwDAwMjC1sXFzc\nXN0cuNq4dwchVF3kQ5T2i2Zihh5pJSMWI1NC0TKR8k8pktEAAAS7pmJCSCU0lRt4ouSgNEvP\n4duX+Rkq+t7OjDhQSNEA0Gz2pAZlzrNj6tr4B654NHperlRWLPz7j3TRUNwiWEW4LrksTNIj\npAqxICcvLw8AmOQXU2hIZb6+vpX2oSnRi/BrL8KvfakDg2lc+PrPhfP/bDx03gxMWKI6wsbb\nb+9ez4N7Dt568pb6mHT/nK17p3FTp3s7GJa7zrV27j9ygm93jxoOEyHV0dKcv8PCX72KjIqO\nyy0sFImKJBR9+fJlACDzn5wPy+/UxaeBId7DfxUshaJm+IarmR6DEMtoWiYtd/3NlZJlmg4D\nGpR7iCz5ScUZ88oxOXZrdy5fOXttlLD8yYtyxk7frx37X637pOtLA/a9KduBIBg9pm7oysNj\nd9SNFCZzjO01HUWdRzD0HNw8Hdw8NR2IdsJfTKTdzNgMAUm1tsFUDdJODrrMTAlFkfznhZJW\n+pXfs0tFUcmkDADYes41Hx1CVZD57y4BSQEAm+u6camvwgw9ALw6XXJcfZvGBuUeYuo2nd3G\nYtUjAQCEXUsZiqeqoa+ASXqEVGHu1RAuJAAAJU6IEkk9uPi/Uq0jo4SxsUIAIHJJTceCUBXo\nWrhPX7plgiDu3sNn0dHRH1IyCgoLiiRgaGhkbG7j6u7est03nk0syj1Lz3zw9l2jHOwtMf9Q\nKSyFokEx9//Ys/dkvFDx1zJV/P7EvmOnDh7q8sOUmSN8cP+JyrAUiprhG65mDnqsnHySKv6Q\nQlJ2pUWnacnxD3ny5iAHo7L9aVlRvFgKAAx2+V9PpJCOWct1B3ZfP3Howo1/BIX/1f1msE17\nDh8zZnj3CjYTs/Rshkxb7NelkVoiRQAAlDjrWfj9u3fvPnwZf/7SJU2Hg1BF8BcTabduJjqn\nBKJkMaXpQBCqET0cjZ68yASAAydfB09qWWn/2LP75BUfjZooX9caIXVIuBgnbzQZHWDB+sLx\nDbT0dHKBvEkouvtxGuUKjwQAkPUoBjBJ/2USSckdJZuNG3IUw8wiQqow85jtbfLkYa4YAI7c\nSN40uLGmI0Loq+Tmlh5zzjY21tdsMAgA9HhO3w90+n6gsv2ZOg0cceuUcrAUiqZEHF+28vSL\nSrvJKOGd45tfx6XvWjyMhXl6hNBnetroR+STNC0LvpkS2K+h/GLWiz18Un4gvbf7p8tnhW+P\nFstoANAx7KD+aOsoBsei7/h5fceR72Ni+JnZhRTbxtbOrmEDE13FR3ETBMFzaNaufccBg3tZ\nfaEPql40JYp6HH737t3wR5HyOpwIIYQ0q6uf+6mtT/8+/mrcz+01HQtC1c/Nrw28uAEAiVfW\nnGi+Y3R76wo6C56dWXWh5CAkT1/XCnoipH53E0pO2u3b+YsfY3H21XSyZNGVwsVXehbeAPcA\ngMx7DNC/+qPUFkOHDpU39v9xkcf+wpKI+g2T9AiphODM3TIvfVZgvEjy9vi6R98Et7fU1XRM\n2kNesmBnqgAAIABJREFU9xip09ixY+UNjn7LcyfXAMDGjRtVfrUFCxZUT1gI1QAshaIRSTeD\nSjP0BNPwm+5dnJ2asl+d2HP/vyOiWVy35nb6r1IKAYD/6Ojik802jcabeYRQee4TWsOiOwAQ\nfWDRGfOlfdo6FyU/2RgYJn/Utufwsp3zE+4vX3FD3jZv11a9kdZ9BMfBrYVDhV2sv52720vH\nxMREXxd/T9WClsa//Ofu3bv3w59m4mbNr/A+Iuz+k+ev33zIzcsvohjGJiYNm3q0bd+li2dj\nTYeGEKqrbDov6n9xwtV7G8923zu8FdbvQdrGxGVaD9792wIRTZOn10+L6zNm9KBeTp8dxV0k\neHfj0qmjVx9LaRoA9Cy7T3c10US8CH3R+2IpABAEp5MR50t9+H/dkzcYLJM+Zjqfd2BySjZL\nUWR6DcSI6hG8kUZIRbo8r8CdK4LWbQ6PSw+cPmvIxB/7dPEyx40jSFs8ePBA0yEgVCOwFIr6\nUeKE5SF35G1j587zfpnewloPAOIEF8p2Y3Obr9v1+8NT6zacfAYAsWdXxg4+5qKHg1VUixw/\nflzeGPTDaH08kkFDTNz9O5n9/SBbTFP5xzYsOE4QdMmR80AwdCcPLym0XiS4vnHTlRdvUyia\nBgCCYA7/obGmYtZiHGM7O2NNB1E/8N9G3L177979B0k5xZ8/ShAMe1dchqIUcearret//Scu\nu+zFnMz0D3Gx966fP+r8zc9LZnuYKpiKRQihShDsHzesyvpl2bEVU2P7+E0a098aV4QjrcKY\nvH525PRNfJKiaepp6OFn146aWNpY8XhWVlZ6UCQQpKenp6dl5Mo+Ds6ZHN6sdZNx5yyqbQSk\nDAAYbIsKyjc+upkmb+jbjNRVdNoXwSgZLsok2Z8/ipDycKyAkIpCQ0MBwKPb0FzhicgM/tld\n68/t5piYm5mZmZuaGetUOG+L+4wRQhUrEAqltLKVS41NTDBTVAVYCkXtUm/tzJLIAEDHuO22\nwLlfPPELAAiW96gVs5On/HafT1OikCtJW0dUvIcTKYEm74c/UqajeZsO7lw8JKwip0+fljd6\njhiFSXpNIQjdmRtmvpu5VV7fni7zc+kybFnzj5/h4twnEW+SSx9q/P2iLsaYdUN1T15K7L17\nYWF3771JzVfYgdek5bffdv7W55vGFjieqVxxbsTsaWvSir9YhCDzTfjSqe+XhWz3xDw9QqiK\nLl68CADOXXtEnbj8OPTQk2tHjC3tGthZspUYM65cubKmw0Po6+nxvH/dNHvNqp0xOcUAQNOy\nHEFKjiAlJlJBZ46x87TlyztZl99qj5DG6TMJsYymaQUrX+VoSnheIJK37Qa0VNiHkgjkDQbb\nrNojRPUKJukRUlFISEi5KzRN5mTyczL5CvsjVJu5uLjIGyy9klo906dP11w49VdKxI2jl/+K\ni3uXkffFkeLnjl+4ZIi5oqrAUihq9vBSorzhMz+gogz9Rz5Txvx2fzMApN56ApikrxJaGvXg\nRtjfT5KI4YHzPEquyQo3b96szLPb/fa7uwNuif0qNJW/fOUmeXvNmjWaDUaLcW18tgcb7d15\nIOxVgnynDoNl0GngpJ/9mn/emSBYbXpPXjK1ndrDREh1xTmJD+7eu3vv7r9xiutnmjRw8/H5\ntrOPj7OdkZpjq8voPfM3lc3Qc/RNGzZqbETkf0hIzC4g5RcpccrGn4OOH5hXweYqpJpx48ap\n9kSn8YHLutpUbzAIVbuDBw+W/ZOmZbmCpFxBkqbiQagmGDp2CdzvEXrqdOj1v1ILJAr7sLnW\nnXv3HTmqnxUHp1lQbWTLYWVJSFqanUJSdoo+pQXJp4pkJWvBv2tvqfBFJIUlRzoyOV882B4h\nZWCSHiFU94iEGalpWRKl9xk7u7phBrNin+dvevXqpZFI6rO4K1t/3n+XVvqDXYqNtcOqCEuh\nqNldYTEAEAydCe6myvTnGPvwOFsFJEUKwwFG1HB02kPw4vqWnUdi+CIAsPQcXNWnEwTTSIkl\nFKgy0hcvXmg6hnqBa9NyztqgaTn8xPQspoGlvZ0lh/jk25vFdfT2MbJt7NzO+1s3ewNNxYlQ\nlVBFmU/C7929e++fV++pL4wJmRze6s2BzR3wtOMqE8Yd/B+/ZFMUi9vAd+bPQzs5lj6a8Oji\nlt9+TyiQAEBR5v3fIib83Abf5GqWk5Oj2hPzv1z8ACGEkJox2Jb9xwT08534ITY6Ojo2LVNY\nUFAgAZaBgYGxhY2Li5urmwNXUXlwhGqJTmY6rwpJmqbPvsub46Zgnir6yBN5g6nbqLuJ4upK\ngvv/yhs6ph1rKE5UT2CSHiEV4T5j9aOl2X8cCLl6LyI7vwqbjAH3GaO6gBQ+WHzgkww9k6ns\niuNyaQlUKSyFombppAwAmDoNlf8qtmYzBSRFkWk1GZdWiTi9ac2JB1/K6JTy8mqTn5OdnpyY\nIy6Z7CYIZtcBI1o3b9asmbs5Fzc6oDpGx9S6qanijQsG9n6L5qk5HIRURFOFkf/cD7t798GT\n1yJKwTe5gbXTN9988+e5wwBAMAwxQ6+auGN/yxtMDm/V3m3NjThlH23UftDWvc4B45ekkRQA\nPP89Atp8p4EoURksrpmZAQsAzPRw9hLVAXPmzNF0CAipD8HQc3DzdHDz1HQgCFWZR08bOJgP\nAI+DLtC7fyw3UUVLc/a/zJK3jRxGfmEaS3bsfEnNSJ6Pc41FiuoFHOYipCLcZ6xmNFX42+yA\nO0kFKjxXB3cGoloveu8RsYwGAD1esx+n+rZu6sgz0dN0UAhVD30mQUppmSSTBlAyS8+XUABA\nMPD/AqXEXdm88nh46Z8MllGz5iYKey5btgIAaJk49und4wcPvUgV0TT1Xsyb005BkXCEEEI1\ni5bEPf/n3t279x48y1a0UZhr+X/27jwuqqrx4/i5MzBsIqAIuJJkbrhlZimSaJaaT5Sm5pKm\n6eOC5laKmZlL5lYqoqWZS7ibWy6/XCpxy1KzzN0HVxQRUWQRYeDO/f0xSFYswzgzl4HP+68z\nl3Pv65uPD87M995zAoJatGgR3OLpGn5CCGNJD7P9eDHFOKj2Wvg/GnojxzJ1x3R+YuTqi0KI\n9PgfhKCkt7D58+cX+HMlJfHWzZtxsVdO7dpz9IFBUQwuXd77tG1ej7gBxVDr1q3VjgAAKFyl\nl992XDY+S1HSbmyZtO7piW8+/ehP/1g2IV6f8868drfaeV7h6vfTjqTm7JT0WvvKVk2LEo+S\nHoB9uL7700cbekdXD59y7iaWPY48Z1ygVatWGQevd+vhxpIDKtl5IkkIoSvb5IuF48uz4rSV\nsRSKjT3nrtuZlGHITtp1N6NdOedC5+tTDyfoZSGEo1sD66ezexl3D41bktPQS1rXV3oN6Ni+\npY9LQc/ESxrn2k3bTm4SvG76yNW/3Ly8K2Kit+/EN+vZJC8AIMfg3t1vJOv/fdy5nH/zFi2C\ng1s0rlWZt+YWFPMg2zgIaV81vzmVX24jVl8UQmRnXLFNqlKlWrVqhc3wryeEEK/3ePPC+mWR\nGw5c/eKDQfdnftWppocN4gEAgNLA0bX+kOcqzP0lQQhxfNXH713p+GrLxrVrVVdS4o/tWv31\njpxH5DUOXu8Elvv36VcPrQz/6ohxXKZypxCPvNfDxz/cjLuRZYlvvCtXLml3RVDSA7APP34b\nYxzUbtV1QK/Xa3izt6jFrFu3zjh4qWt3Snq1nErPEkIEDhlIQ28DLIViYy+F+O7cfFUIsX5e\ndLuJhf/hn16xwjgo/zT/SxVu+6QvjetwSFq3AdMXdqhl6rfYksa12weRSUP7fB+b9vvqiQdf\nXtnCq/BbKABbunMnZ5lBr/Llzf7XUZFTx4ydbBzPmjXLErkAy/hHQ6/zrNI8qEWL4OAmdavy\ndtAabmcZjIOGZRzzm5N7g6BiyLBFJuTD2btm79ERZVL7L/8jceX4iU1WfFbNiU15AACAZbR8\nf9L3bw87fz9LCPG/Q5tnH9r87zkBoWN9dTnvypXsjLt3716POXPox207j142HpQ0zv+d9KbN\nMtu7j94dYpHrbN261SLXKT4o6QGrkPWZWh13UVnSwRS9EMIrsOeMkfltBgNrUeTUCRNnGsdT\npkxRN0xJlWlQhBDP1+YZEZRA/p26OW6ZmaUoice/mLbBY8wbzQq4HSj+2JrJu24Yxy/3CLBR\nRLulTz2y8kqqcdxk0EzTG/ockq7vJ0N29ZlpUPSLJm1sMben5SMCj6Fv377Gwdcbt/g45tFa\nKoYHy79Z+4/J/5J9/vx5q+QDLETSurZ7e9SA15pyu6xVyYpiHJTJ/w9a48C94MWH5tWxI6O6\nj8/OuDh7w5W5PZ9UOw8AlBahoaGWvWDJK9Vg77S6yp8smDBx+CenkzPznOBRo+0nvf9a6z72\n+/FDF194dIIkadoMnNbKh10a8bgo6QELULKTfo4+ePLkqdNnY+7dv5+e/iBLVozvP/SpRzdF\npwaFBFd1z/dufZgiJdsghGj57n/45koN2SdOnFA7QwlXw8Xh1P2sbEXtHIAV6DyCxrapMmVP\nrBDicNS0fkdCBvd+rV7tvxfwinwn/sr+Hd9GbTts/A7dq3afTn6uqgS2Izd/WGdQFCGEzr3J\nBy/nu3hvAZy9gvpUL7v0UnLypXU7Et/o4M3D9LArSsbmzTkPPeRf0gPFnSKnf7/0k8N7Alu1\natUq5IUn+FUMCCGEcHStH+Lh9NO9jLjdu0XPwWrHAYom4X/Hfj526vz589dvJ6WlpWVka9zd\n3cuW861Vp269xs2aBZa01XoBwL44lWs4dcmX369etnnXLwn3s3KPaxy9XurSq1eXF101+bYQ\nDi4VOw0e91aIv02SooSjpAce17kDGxd+teZSXrsJCiHkzMurF69cu3RZSLcB73YN5tkIs1Vz\n0l54kO3vym8tlEwdAsqeOnnnt7PJrwbxtazKWArFGpoMmRUaO2jruXtCiLvnoqeOi5a0zhXK\n5Kw6O3bUkGvX4tL0cu58J48Gkye/pk5Wu3Lux3jjoGroWw7mvsdo9uYTS6edEEJ8v/Fah4E1\nLZUNAFAw//LOV+/8tab6vdjTm6NOb1nxpX+951u3btUyuImXjmXvUdrVcHb4SQh92q9CUNLD\nbiRdiI5cuOJYzO1/HL+fei8+LvbCqWPbvo0qH9C416DhrWt7qZIQACCE0Oi8O/QZ3eFt/eVz\n5+IT796XHStWqly5WlVP57w32ZEkyad6vabPNQ/t2M43nznIz5DwDzzZ4zUv1F3AYzm+6qOJ\n6wp/wtggJ/+0ataZmFtfjOts9nfopVxLH9cLV1P+vPXgRU/KM5RATw/tpBn09ZnFURnN33eW\n+DVhOyyFYhuSxrXftMhyX85cvvuk8YgiZyQk5/z0TEzso5O9arUeNz7Mnw88Jjh0N2dltsat\n/My+iEftICFOCCESj/wqKOkBwFYil665cuqX6Oh9+w8cTczIuVNNUeQrJw8tPXlo+YKyDZu/\n0KpVq6DGTzny3hCl1aXMbCGEIqepHQQw1Zktcz5aFp2lFLJK3p1LxyPC+//Z95MRr9exTTDA\ndI+50+XZvWvX7D2jPPx/gSTx0R7Fm6SrXqdB9QKn+L0w8stnnTw9Pd2caVTN9HTT5/Lcww78\nlQLMF7t7Xm5DL2ndW7wYUrPGU44nVy88EJ87x8G1Tv3Kbidv3BdCxP8aNW5NvZk9aud9ORSo\nWb/GiydEH5u/RYnsw5dUKHlcK776SY8j41YdGD2n9qyR/6Gntw2WQrElSevRaejU5q0Obd66\nbe+RsxlyHt9beVdv1CH09dDWjWkjTBT3cPmBRmUKuJVEcnYuaIkOR+ecrQf0qUeF6GWxcACA\ngknaJ+oH9akf9HbY/VO/HoyOjj509Ez6w38fDdkpv+/f/vv+7fM9Kge1bNWqdSt1wwK2p085\nsvdephBCo6uodhbAJLcOLvpgWXRuN+leqdaz9Wv4+Pj4VPBxd8y6FR8fHx9/8dTRszdShRCK\nkrV32Qfuvl/1a+ajamrgnxo2bGjeiZl3zy+dN/f74zdyj7hWajRoxHAL5QJUo/OoXNlD7RAo\noSjpATPJGVcnLPrJOPao2XL0+2EN/FyEEDEJmx+d5uhaf+oXKw6vnTptzW9CiPPfTjzfcWUt\nF/6vV2TejUZ2rfn7+gubxi2tNrFvKycqTJQ49d6cPDJzesTGr3uf3vdG956vtWrkTC1sTSyF\nogq/wKDBgUGD5PTL585cupGYlpb2QG9wK+Ne1sunZt3ASl5s91A0SVk5WwZ45b9omKT1XL9+\nfQEXkRw8jQNZH1/ANACAlUhat/rN29Zv3jYs/favB/bti97765nrhocdjz75xt6tK/duXWl8\nqSj6BwbFJf89MoGSITPp/ILxc2VFEUK4lGujdhygcIbsxE/m7TQ29Dr3p/oMH9qhafW8flkr\nl4/siJy7PCZNryiGHXOmdXp2thcfNWHvFPnI9qULlu1Iys75iCppnEO6DhrUrRVvWgCgADSF\ngJni9iy4k2UQQjh5NJkzfaR3ATtqSA7Nun88/PqAiAPxipy+aFvs7K4FL6CCPEndP52e8N6Y\n6C1z+xyN7v3Wa3UDqlfxK0eJiZJhy5YtQghRtk7bBhe/P3Fh1byPV0c6lvP18/Pz83TTFXxu\neHi4LSKWLCyFoi5J6xoQ2CQgUO0c9s/DQZOYJQsh7mQZqujMXEVQzkrIGUmsPAYAatK6Vmje\ntnPztp0f3L60f190dPS+09eS/jFHzozt2eO/TYNfaBkS8lxgNX5xw46sWbPGpHmGzJvXrv55\n7Pe7D29GrNv7eSvGAizk1sE5VzNkIYSDc/VJX0wL9Mjvg7xUvel/pn9RbdSAj69lyNkZF2cf\nvjUl2Py9qwDV3Y89tiAi8uCFv960eNV6YfjwwY2ruKmYCgDsAiU9YKbD310zDoLHDC2ooX8o\neECviAOzhBBxe44KSnqzaHWVX+3YPHrurvs3/vhyxh9CCEmjNeV2zM2bNxc+CVDV0qVL/3FE\nUbLuxMfeiY/Ncz4eB0uhoMSo7epwMFkWQvxyN6OhWwEr3hdEf++IcaDVVbJYspLuk/D38/ld\nIOeORo0aVeh1Zs+ebalIAEoSlwoBbTsHtO38TuKlE9H79kXvO3jtbkbuT7PTE37eteHnXRuc\nvZ944YWQliEt6z9RXsW0dufjkcPzfWZV+evX+LvvvlvwdSIjIy0XqlQwtaT/O1ffkPeeZzFw\n2IHjG64YB42Hf5B/Q59D59lg/LvPDJh1RAhxef1xEfyKteMB1qAY0n9cs/Crb/dlGHJWANI4\nlnu179A+HZrwVBUAmIIvmgEz7UvOFEJIGqe+db1Mma/zCPbRzU7Qy/rkg0J0tXK6kuno8vFT\nNv356BHFIMv5zQaAfLAUSnEjZ6Tevnvf2b2sh7srH+SLpJmv68HkTCHEb2suiTFmbhx4Y9tx\n40Dn3tRiyUq6KzExhc6JMWEOABTMO6Bh54CGnfsMuXzyl+jovfsP/nYn468PQBmJV3ZvWr57\n03Iv/3qtWrbs07mtilHtyI1rV02ZdvWqSdNgVV41Wkz4ZBhLJcMu7El4IISQJO3ApibdVuLz\n/CBH6WiWoqTf2iMEJT3sT+LZvRFzF524mZ57pGqTDiOG9X3Ks5CbVAAAuSjpATPd0huEEFqn\nau4m3xno56hN0Muy/qY1c5VYyRejPtl8Uu0UgLWEhYWpHaEUYSmUYkKffHXb+rU79v+emJzz\nqd7R3afh08++8ka3JtU91M1mL2p2ekJMTxJC3D729Z3seeXN2MxSyV63P2eXhwrPN7ZsPACA\nZUja6g2CqjcI6jMk7eQvB6L3Rh88di73kTUhRNLVU5uiTlHSo5hr3769yXO1Far4Bzz5VMM6\nATyLCXtxPVMWQmid/Cs4mrQVicbRu7qz9sKDbFnP+nmwMwZ94pYl86N2/m5Qct6NOLpW7T5k\neOfgmuoGAwC7Q0kPmMlNK+mzFUNWoiKEiZ8Z47NkIYSkcbFqsJLq5wV7FEURQrj41H2zR2id\napUreJXh0zpKjHbt2qkdoRRhKRQb0Cdf3r5119HfTt28c1dy9vTxrdikZbtXWjdxe/g9a/qN\nA8OGz07Q/209lKzUhGP7d/x24Pvnurz3wVvB/JIvlPcz/V21Q9NlRc64OmXlmbl9Aot6hYTD\ns4+m6o3jl16vaumAJU1wcLDaEQCUapK2TIOg9g2C2oelJ/y6Lzp6376jZ6/nfj+Ogr344otq\nRyjtBg8erHYEwIrKOmgSs2TFkF741IceGG+3kszctQpQxdUj2+ZGfnMxOedTpCRJdVt1Hzao\nS0VnrbrBAMAeUdIDZnrOXbczKcOQnbTrbka7cs6FztenHjZWEY5uDayfrgTaGpsmhHDybPLV\noo88uJcewGNgKRRru3og6qM5m+5lG3JeJ6fduXX97J9HN65vMvGzsbU9dNnpZz4YNecfDX0u\nRTH8sn7WOMlzWs/6tgttn7ROVce2qzphxzUhxOXNE1YFftnz2SJs2pqZ9PvEOYeN4zKVXw/1\n5j7CQowePVrtCAAghBAOrj5B7bsGte+annBx/7590dHRZ2LvqR2quBs+fLjaEQCUZNWdtYlZ\nsqyP/+N+ViO3wnv37PTT1/UGIYSjCw8fwz5k37+6an7ExkN/7erl7F233/ARbRv6qZgKQHE2\nY8YM48DLhKVMSyf+XAAzvRTiaxysnxdtyvzTK1YYB+Wf5nlZcxhLtec+eJeGHsBjMj7MbVwK\nxUQshWK6uyeihn+28a+G/hHpt46NHzIpKVuJnvXZ5QfZQghJ0tQPad/rncHh4aPe6dmlea1y\nuZPPrJ+w716m7XLbrQZ9P6rmrBVCKErW+k+Hr9p7wcQTH8T/PnXENOOynEKIruPftFZEAIDV\nuPo82a7LO9MXRC2ZM1ntLABQqrUJKGscLFlzxpT5579dbFwwsuyTpu8EAahFOfnDqrA+I3Ib\neklybNZx0NeLp9HQAyhAnYccqXTywZP0gJn8O3Vz3DIzS1ESj38xbYPHmDeaFdAdxx9bM3nX\nDeP45R4BNopYspRz1CTo5acruqodpCT7JPz9fP5V+Otp11GjRhV6ndmzZ1sqUkl1717Oo06S\n5Ojh4aZumFKIpVCsR5FTJk3dkrvurtbZt36DmlWrlL+fEHf53J+XEzP0KSfHzV996/gdIYTW\nqerIKZNfqF3+r/Pf7Hls2/zJi38QQiiKvGrhmZZjn1bjv8OeaHS+k8Z1Gzhxtd6gKPL9dXPe\nP3a0Y583OzX098jvFEVOObxz06IlW5Ie3ktRo0P465X5XQQAdqzCk43UjgAApVqdt54RJ3YJ\nIa5tm7K6/vwezxXUXCb8tn7S5svGceOetW2RDzBXxu3TX0dE7P4zPvdI2SeeGzLi3WYPb0wB\nAJiNkh4wk84jaGybKlP2xAohDkdN63ckZHDv1+rV/nsBr8h34q/s3/Ft1LbDsqIIIbxq9+nk\nR81sjtaeTmsT0q9n5L02MiziSkxMoXNiTJiDQvXu3ds40Lk13LBminhk8R8zhIeHWyZWqfFS\niO/OzVeFEOvnRbebWPjqJiyFYrqEXyIuZ2Qbx+Ubtv9oTP8A95yVHhU5ZfvXMxbvOHnjp3XG\nI03f+/hvDb0QQmiavDrs3aN/RP6RKIS4e2qnEJT0hSvf6M25I1OGzt5uvD3i4sHNEw5tqRb4\nbOP69QLrPlXBy9PdvYyU9SAlJSXh+sVTp04dPfhLXHpW7uneDbvNHBCkXnwAAADA7nnWGtzG\n58APCemKol/36eCYV3r1eL1dDd9/fgf4IOHiru/WRm0/kq0oQgiXCi+G1fZUIy9gAkV/aPOS\nL1fsSpFzbu/WaN1ffiusf6cgHQ/FAoAlUNID5msyZFZo7KCt5+4JIe6ei546LlrSOlcok/Ou\nZeyoIdeuxaU9suGuk0eDyZNfUyer/Wv1Vt21s4/9vOrk2+89p3YWwPIOHTqkdoRShKVQrOfU\ntzlrrTu41Jj18UDvR3ackrRlXx34SdKfb22ITRVCSJL0TmPvPC/SbGBQ5ODvhBBZqUdkRbDJ\niSmqtPzvwrKVps1aejktSwihKMrVU0eunjqyubAT67cfMH5gBwf+kFG8Pd5iP9ziCQC21r17\nd8tecM2aNZa9IGAFmv9+OvxU2Mx4vawo8rEdy3/7vyjPChV9fXx8fX1dxIOEhFu3bt26efve\nXwuP6XyGTf0vm9GieEq5/OuCiPmHLyXnHvGt/9Lw4f+t51P4eoQAABNR0gPmkzSu/aZFlvty\n5vLdJ41HFDkj4eFblzMxsY9O9qrVetz4MH9nrY1DlhgVW37w6pa+2/fP+PbFr7o0yrvXgXmC\ng4PVjgDYFEuhWM+Pt9KNg6qvhD3a0D8k/Wdw/Q3jfhZCCEnnq8v7+yiX8i2F+E4IoShUa0Xg\n93SH2UsbrVuybMcPR1NlpdD5bpUCu/Ts3yn4SRtkAx4Ti/0AgH25f/++2hEAFbj4NPt85vAp\nkxacS8oUQiiKISnhRlLCjXOn8pis86g5eMKEID5jovhR5NRdK774evPP+twbSpz83hj4bs82\n9bm7GwAsi5IeeCyS1qPT0KnNWx3avHXb3iNnM/L6Tty7eqMOoa+Htm7syBuZxyE5vjNt0p33\nP1r58cDzr7zVv9erfq78BrOM0aNHqx2h1KlVq5Zx4OBSxTgICwtTL05pxFIoVhKbmfOH1rht\npTwnlPFvKcTPQgjFkJnfRTQOf62Bz2P0RaJ1rtxjyPiub8f9+H+7jvxx8sy5S/cf7jqfy8HV\nO7BRo6bNW7cPrscD9AAAAIAFuQeETP86cMfadTu+3xuXlpXnHEdXv5btO7zZ/T++Op7kQXH0\n4cD+pxIe5L6sENh62JCe/mUck+/dM++Cnp7s6QAAeZMUpfDnbACYQpHTL587c+lGYlpa2gO9\nwa2Me1kvn5p1Ayt5sQqQBWzZskUIYci+u3n11uRsgyRpPCpUrlq5gim3PkycONHa8QDYHUXS\nyZ2XAAAgAElEQVRO3vzIUigFMC6FUstDZ4NU9i40NNQ4mL52U928bqWS9XEdOw8yjrdu3Zrn\nRRQ56bWObxc8B6ZQ5PTrsXEpKakpKSlZkpNHWQ8PT68qVfzo5mEvZs2aZdkLcmMiANhGVFRU\nwRMUQ8bGTduN486dOxd6wd69e1sgFmBDiuHBlfNnz549fzMxOS0tLUs4lClTxsO7Yq1adWrX\nqe6q4R05iq/cz/WWwud6AMgPz6ECFiNpXQMCmwQEqp2jhFq6dOmjLxXFcC8h9l5CbH7zAaBg\nLIViVd6OeS9lr9G62DhJaSZpXas+UUPtFID56NQBwE4V2qkrclJuSU8BjxJJ0rhUr9O4ep3G\nagcBAADFFyU9AAA2dTvLUCGf/tIMGQknnX3qW+pqpZBfYNDgwKBBLIUCAAAAAAAAALAVSnoA\n9mHEiBFqRwAsY8To+RGzhub3nHGR/Llr2WeLvovatOXxL1XKsRQKAAAAAMDmlAvnztesXVvt\nGMBfIiIi1I4AAKUFJT1gGZkP0vNaKTlvrq6u1sxSMrVu3VrtCIBlpF76YcRoMffxevrs9KvL\nP5++9egNCwYDAAAAAABFYtCn301KylCcK1Qo56Qtwk5pBn3izm9mLtx2jh27UaxUr15d7QgA\nUFpQ0gOPJfb4rjXb98dcvBiflG76Wbz5Bkq5lEs/jBgjzZ05xLye/tqvW2bMiYpNz7Z4MAAA\nAAAAYIr/Hd62duueE2eu6hVFCCFJ2op1nu/YqUvbpgGPTstOv/3n8T9vJCanpaWlpqZlZOoz\nMzOSbsddvRKbqpdVyg4AANRHSQ+Y7/zmWWOWH1QUk5+gB4CHUi7uGTFGFLWnV7KTNn0565s9\np3KPOJbxt0K6UkbRHzj4qykTyz/zfF1XR2vHAQAAAAAUZ4qi/27O+0ujr/z9oBx35tCCM4eO\n9ZjwYbcmQghFTvl27pR1+y9k8eUhAAD4F0p6wEwZSdEf0tAXG7I+U6tzUjsFYJLBbQK+/OGS\nECLl4p6R4dKcmWHeDib19Enno2fO+OJ0YkbukerN3xgz4i1rBS2RlOzTh3ZF/3w0VuoyfXTO\nFvSK4f6sWbNMObtpxIq61T2sma/kOPDDnrJ5/cVWDPdzx3v27Mnz3EfnAAAAAEBxc2rFuH80\n9I/6dfXk2VUWj2rhGxU+ZOOF5IIvJUlFWCEfAACUJJT0gJnOLlylf9jQ123Tq/vLzzzxRBXX\nomw9BbMp2Uk/Rx88efLU6bMx9+7fT09/kCUrxk0E9KlHN0WnBoUEV3XnaVcUU+2HzdFo31uw\nK0YIkRyze+QYae7MweUL7OkVJXPvqnkLvj2Ye/e9VufTZcjoHq1q2SJxSZFw4vvPFnxzLj5d\nCFGhcceini5J2jxbZ+Tpmy8XFDonMjLSBkkAAAAAwIKy089M2vi/3JdeNRo/W8u/oq9HasLN\na1fOHDsVK4Q4MG/KS7o6uQ29JGnLlq9Qwdu7rIuDLBsMisatrHvZsh6VA+o+80xjdf4zAACA\n2ijpATPtPJ1kHNTvPW1q50B1w5Qq5w5sXPjVmkvJ+jx/KmdeXr145dqly0K6DXi3azB3TaBY\nktoO+VyjGR35/QUhRHLMrhFjxNyZYeUd8v77mh7/R+T0zw9d+uvue98GbUeP/m9ND52N8pYI\nx9fNnLL6kFzY8ifPPvtMatLdW9evJWXkbA0oSdpWoV2frl+vXr265V211k8KAAAAACi+Yrd/\n/XATeunldz4cFNr00W+fYg+vHjZ9nZxxbfzUWOORGsEd//t29zo+zqqkBQAAxRYlPWCmM/ez\nhRBaxwofdKyrdpZS5PiqjyauO1HoNIOc/NOqWWdibn0xrnM+vSegLumlwbO02vC5288JY08f\nLubO+HdPrxzf8fXnX+9IlQ3G1xqte/t3Rg54tQl/r4skZtusiasO5r7UOJStV98zz5kfffSx\nEEIxZJw/tm/V0mUn4tIVRb6c4TOiaX0bZQUAAAAAFGMnfrhpHJSrN3TIa03/8dOqzXqEt4j+\n9EC8cYtMr9pvfz76DT7CAwCAf6OkB8z0QFGEEE5eL5bhYW1bid09L7ehl7TuLV4MqVnjKceT\nqxceiM+d4+Bap35lt5M37gsh4n+NGrem3swetdWJCxRCaj1gpkYzdvbWM0KI5P/tGhEuImaE\nlXvY02elXlr6+Ywdx2/mnuDxZNB74e828nNVJ6/dyrh7aNySnIZe0rq+0mtAx/YtfVwKeiZe\n0jjXbtp2cpPgddNHrv7l5uVdERO9fSe+Wc8mee3bqlWr1I4AAAAAAFZ0MDnTOGjU/7k8JzTo\n1VIcWGcctxjWlu8NAQBAnijpATM94exwIT1LFLZyMixFzrg6YdFPxrFHzZaj3w9r4OcihIhJ\n2PzoNEfX+lO/WHF47dRpa34TQpz/duL5jitrufC7DsVUSP/pWs2Hs7acFEIk/2/X8LHSvOmD\nvRyky4c2zIhYFZe74rpG1/LNoUO7tdRJfLovsu2TvswwKEIISes2YPrCDrU8TDxR0rh2+yAy\naWif72PTfl898eDLK1t4sT5hIdzd3dWOAAAAAABWdFOfs9Zdiwp5f0J0KtdSiJyS/oXyfIoE\nAAB506gdALBXr1R2E0JkphzUU9PbRNyeBXeyDEIIJ48mc6aPNDb0eZMcmnX/eHiwnxBCkdMX\nbYu1WUjADMHvTA3v1NA4Tr6wc9jYhevmjhk+Iyq3oXf1azj6syWjuofQ0JtBn3pk5ZVU47jJ\noJmmN/Q5JF3fT4ZoJElR9IsmbbR8PgAAAACAXcndkM5Xl/cKbVpH39yxp5av3wEAQN54uhQw\nU5Mh7cSItXLmjQW/JIxs5qN2nJLv8HfXjIPgMUO9HQr/hBM8oFfEgVlCiLg9R0XX6tYNBzye\noD5TPtBOnPbtcSFE8oXvV13IOS5JmsYd+o/q18GdbTXMdfOHdQZFEULo3Jt88HJVM67g7BXU\np3rZpZeSky+t25H4RgdvHoMAAAAAChIVFVXwBMWQYfpkIUTv3r0fNxNgBfneSS85/jXk0zwA\nAMgHJT1gprIBPd5vfeCzn27s//yjZz7//AX/MmonKuH2JWcKISSNU9+6XqbM13kE++hmJ+hl\nffJBIbpaOR3wuJr1mjheM/mTdcdyj+g8nur//ph2DX0LOAuFOvdjvHFQNfQtB3O/HGn25hNL\np50QQny/8VqHgTUtlQ0AAAAokTZs2GDZyZT0AAAAKHlYbwcwX/Cw2W+1qCrrb34+vM/kBWsv\n3s0o/ByY65beIITQOlUz/ZFiP0etEELW37RiLMBymvacMKFH09yXT/2nNw394zt0N9M4aNzK\nz+yLeNQOMg4Sj/xqgUwAAAAAAAAAgNKNJ+mBws2YMSPfnymVXTTXHxj0x3atPrZrtauHd8WK\nFX3Kly34/pfw8HBLZyz53LSSPlsxZCUqQpjY0sdnyUIISZP/7vVAMdOk2/iJmmkTVx4WQpxe\n9dEMx6nhneqrHcq+xell46BRGcf8Z0nOzgUtYu/oHGAc6FOPCtHLYuEAAACAkqhs2bJqRwAA\nAACKO0p6oHCHDh0ycWZ6cuLF5MSLVk1TWj3nrtuZlGHITtp1N6NducL3hNanHk7Qy0IIR7cG\n1k8HWEzjrh9M0c746JtDQohDyz+cKaaOoad/DElZBuPAyyHfu6ckref69esLuIjk4GkcyPp4\nC2YDAAAASqSVK1eqHQEAAAAo7ljuHoB9eCkkZ93v9fOiTZl/esUK46D80+2sFAmwkoZvhE/t\nGyxJkhDi4PIPZ20+pXYiO+bxsJu/87CtN4OclZAzknjjBAAAAAAAAAB4XDxJDxQuLCxM7QgQ\n/p26OW6ZmaUoice/mLbBY8wbzQrYmz7+2JrJu24Yxy/3CLBRRMA0e/bsKXxSmUYvBpz44WKK\nEOLAsnHZD/7bpEK+C0i89NJLFoxXwtR2dTiYLAshfrmb0dCtgBXvC6K/d8Q40OoqWSwZAAAA\nAAAAAKC0oqQHCteuHY9iq0/nETS2TZUpe2KFEIejpvU7EjK492v1av+9gFfkO/FX9u/4Nmrb\nYVlRhBBetft08nNVJTCQn8jIyKKecnjt4sP5/5SSvgDNfF0PJmcKIX5bc0mMaWjeRW5sO24c\n6NybWiwZAAAAAAAAAKC0oqQHYDeaDJkVGjto67l7Qoi756KnjouWtM4VyuQsYT121JBr1+LS\n9HLufCePBpMnv6ZOVgDFQ81OT4jpSUKI28e+vpM9r7xD/ktw5EfJXrc/Zyv6Cs83tmw8AAAA\nAICdeq9/30J3RDNlzjfffGOZQAAAwK5Q0gNm2rZtmxDCPSA4JNDTxFP+2PV/sXrZweXJ9m3q\nWjNaiSVpXPtNiyz35czlu08ajyhyRkJyzk/PxMQ+OtmrVutx48P8nbU2DgmgWPF+pr+rdmi6\nrMgZV6esPDO3T2BRr5BwePbRVL1x/NLrVS0dEAAAAABgl5KTkiwyBwAAlE6U9ICZFi9eLITw\nD61lekl/deOKJfH3HV3rtW/zqTWjlWSS1qPT0KnNWx3avHXb3iNnM2Tl33O8qzfqEPp6aOvG\njkV/YhawgVWrVqkdoRTROlUd267qhB3XhBCXN09YFfhlz2d9TD89M+n3iXNythooU/n1UG8X\nq6QEAAAAAAAAAJQmlPSA7egNihAiO/Oy2kHsnl9g0ODAoEFy+uVzZy7dSExLS3ugN7iVcS/r\n5VOzbmAlL2e1AwIFcXd3VztC6dKg70fVfhx0LUNWlKz1nw4Xwyb1bFXTlBMfxP8+LXza9cyc\nTTS6jn/TmjEBAAAAAHagY8eOakcAAAAlASU9YKqzZ8/++2Dm3ctnz8r/Pv5PSnZS3JlvEx8Y\nX1g4WWklaV0DApsEFHntagCli0bnO2lct4ETV+sNiiLfXzfn/WNHO/Z5s1NDf4/8TlHklMM7\nNy1asiUp22A8UqND+OuV3WwVGQAAAABQTPXt21ftCAAAoCSQFIW+EDBJaGioRa7j7Nl6fdQI\ni1wKAGCi6/sWD5293fDwbY8kSdUCn21cv15g3acqeHm6u5eRsh6kpKQkXL946tSpowd/iUvP\nyj3Xu2G3ryb3cGAHDQAAAAAAAACAJVDSA6ayVEkfFL44PMjXIpcqVWKS9TU8dGacmHDqB596\nbSyeB4Ddif99x7RZSy+nZRU+9RH12w8YP7CDi4aKHgAAAAAAAABgGZT0gKnCwsIefXn9+nUh\nhKO7j6/JzXGZ8pXqB3fs9TLrs5ujY+f+ncPe69m6jumnGLIStyyeF7XrxJbvvrNeMAB2RM64\nsW7Jsh0/HE2VC3//41YpsEvP/p2Cn7RBMAAAAAAAAABA6UFJD5jJ+GC9f+hnkf1rqp2lVDD+\ngVdr+troEb39yzgWOv/6sR2zI5bFJOuFEFu3brV6PgD2Izst7sf/23Xkj5Nnzl26/3DX+VwO\nrt6BjRo1bd66fXA9lrgHAAAAAAAAAFicg9oBAKAIrh35bsQ7x3q8+16X4Br5zZEz4tZ9MXdt\n9DlbBgNgRxzKVGrbtW/brkKR06/HxqWkpKakpGRJTh5lPTw8vapU8aObBwAAAAAAAABYD0/S\nA2Zav369EMKjZpu2jcqpnaVUOLpt8fxlO5IePvP6ZFDn94f3rOys/ce0mEMb50Sujk3P2XPa\n0bVqt7DhXV5gtQMAAAAAAAAAAAAUC5T0AOxGZtL5pRFzvj8eZ3zp6Obfa8T7rz/nb3yZlXpl\nReTsLb9cMb6UJCmwdY93B3au+K8iHwAAAAAAAAAAAFALJT1gFbI+U6tzUjtFyXTmpzXzFn4b\nl5FtfFm7dY/3w7rc3r82YtGG+EzZeNDFJ7DfsOEvN/BTLyYAAAAAAAAAAACQB0p6wAKU7KSf\now+ePHnq9NmYe/fvp6c/yJKVrVu3CiH0qUc3RacGhQRXdXdUO2bJkZ0eu3pBxIYDF4wvtc6u\ncka6cSxJuqBO/x381svuWvaUBgAAAAAAAAAAQLFDSQ88rnMHNi78as2lZP0/jhtL+geJ6998\nZ6VG6xHSbcC7XYMpji3o6pGtE6Yvzd2lXgjh/kSz4e8NbervrmIqAAAAAAAAAAAAoAAatQMA\n9u34qo/GzPrm3w39Pxjk5J9WzRr86YZs7oqxEP29/+3cuevRhl4IkZFw/dq1m2pFAgAAAAAA\nAAAAAApFSQ+YL3b3vInrThjHktY9+OVX+4WNGhT8t33QHVzr1K/sZhzH/xo1bs05W6cseRT5\n2I6lA/uN2XEs1nigcuM2Ae46IURWemzUrPeHTlkcU9htEwAAAAAAAAAAAIAqWO4eMJOccbV/\nz+F3sgxCCI+aLUe/H9bAz0UIERM1fNSGy+LhcvdCCKFkH147ddqa34QQktZ15uqVtVwcVMtt\n59Lj/lg4NyL63B3jS62TX5fBI3u0riNn3lq/4PM10Tn3QGh13q/1G/p2+8ZsL4BiaM+ePRa8\nmmfdoGcru1rwggAAAAAAAAAAwKpoCgEzxe1ZYGzonTyazJk+0tsh/3UpJIdm3T8efn1AxIF4\nRU5ftC12dtfqtgtaUihKxr51ixau+yldzrm1yL/pa+8N7/2Eu6MQQuvk233UzObNt3wWseLq\n/SxZn7jpy4n797UeMWKg8eYJoPiIjIy04NVqh9WhpAcAAAAAAAAAwI6w3D1gpsPfXTMOgscM\nLaihfyh4QC/jIG7PUSvGKrmmDH1n9uofjQ291rlSj1GzIsf3Mzb0ufyff33usnmdWzxpfJl4\n5qePBr8zf8MBFeICAAAAAAAAAAAAeeFJesBM+5IzhRCSxqlvXS9T5us8gn10sxP0sj75oBBd\nrZyuBDoWm2YcVG/WcdSwXv5uef/60jpX7j1mTvPmGz6PXH3jQbYi398dNWto52AbJgUK8fzz\nz+f3I0PWnSO//S/3pSRp3L0q+Pr5uWszb926dev2veyHm9RodX49B3XzdtB41Cxn9cQAAAAA\nAAAAAMByKOkBM93SG4QQWqdq7lpT9z33c9Qm6GVZf9OauUoyB5fK3Ye+1yW4RqEza7ToHPn0\ns1ERn2355aoNggFFMm7cuDyPZ6df/Hz0R8axa8W6nbp0/c8LjVx1fy3UociZ53/ds3btuuNX\nkmV9/IYNP38yZ2wNF/4pBwAAAAAAAADAnrDcPWAmN60khDBkJSomnxKfJQshJA1bpJvjyaDO\nEcsiTWnojRzc/N8ZFzlzVHc/J61VgwEWoqwcP/FQbJoQonHnMSsXTu/apvGjDb0QQtI61W7+\nn4nzoib2aSGESI87MunDqGzTfwcBAAAAAAAAAIBigJIeMNNz7johhCE7adfdDFPm61MPJ+hl\nIYSjWwPrJiuh5oT3rupa5CeGa4d0n7/0c2vkASwr6ey8TTHJQgjvRv0m9m7hUNAKHVLjTmOG\nNfMVQiTHbJn1S4KNIgIAAAAAAAAAAEugpAfM9FKIr3Gwfl60KfNPr1hhHJR/up2VIiFPOvcA\ntSMAhTv69W/GQecRbU2ZHxzW0zg4+c0Ba2UCAAAAAAAAAABWQEkPmMm/UzdHSRJCJB7/YtqG\nw3KBK07HH1szedcN4/jlHnTGAP7p/2LThBCS1rV9OWdT5jt5hHg6aIQQD+78YN1kAAAAAAAA\nAADAoijpATPpPILGtqliHB+OmtYvfPavpy7e/8fu0Ip85+bFzV9PHzxlrawoQgiv2n06+bna\nPi2AYi42UxZCaDRuBa1z/3cuGkkIYdCz3D0AAAAAAAAAAPakyBs8A8jVZMis0NhBW8/dE0Lc\nPRc9dVy0pHWuUMZg/OnYUUOuXYtL08u58508Gkye/Jo6We3f22+/bd6JNfpM/6hVRcuGASyu\njFZKylbkrNuXMuQAZ22h8+XMq/FZBiGExtHT+ukAAAAAAAAAAIDFUNID5pM0rv2mRZb7cuby\n3SeNRxQ5IyE556dnYmIfnexVq/W48WH+JnRvyFNSUpJ5J6ZmyoVPAtTWrKzu/+5mCCG+/inu\n01eqFjr/ZvRXiqIIIXRlg6weDgAAAAAAAAAAWA7L3QOPRdJ6dBo69atp4e2b1XXW5r1MtXf1\nRm8Pn/j1zBG1PHQ2jleaObiW8/Hx8fHxKefC3UiwAy+3rWwcnF066djtjIInZyQen7T4jHFc\n+ZXW1k0GAAAAAAAAAAAsSjI+hwfg8Sly+uVzZy7dSExLS3ugN7iVcS/r5VOzbmAlL2e1o5UE\n165dK/DnSkrirZs342KvnNq15+gDg6J1rjxo0qdt63jZKB/weLLTT/ft+WGybBBCOLj4933v\n/Veb+uc589qx7Z9/tvRyerYQQuPgNX3VktrciQIAAAAAAAAAgP2gpAdQ0mQkXli/LHLDgauS\nxuXtmV91qumhdiLAJBc3TR65/Fjuy/IBjVo0rlOxYkU/Pz9XkR4fH3/z5s1zxw/+fulO7pym\n78wd/3qAGmEBAAAAAAAAAICZKOkBlEiGTRP6L/8j0cH5ybkrPqvmpFU7D2CSA0s+nPXdSRMn\nN+o0dnKf5lbNAwAAAAAAAAAALI6SHkDJlJV+skv38QZFCXhzztyeT6odBzDVlZ83zvlq7eW7\nmQXMcfWp2XPgiFefrWKzVAAAAAAAAAAAwFIo6QGUWHN7d/3pXoazV/v13wxWOwtQFIr+9M8/\nHvrtz7Nnz9+8k5KeoZckjZOLWzm/qrVq1Wz4bHDLZ57SSmqHBAAAAAAAAAAAZnFQOwBgB0JD\nQy17wa1bt1r2gshTDWeHn4TQp/0qBCU97IqkCwxqHxjU3vhKkfUGjY5WHgAAAAAAAACAkoGS\nHkCJdSkzWwihyGlqBwEei6TVadXOAAAAAAAAAAAALEWjdgAAsAp9ypG99zKFEBpdRbWzAI9L\n1he0RT0AAAAAAAAAALAjPEkPFG7KlCmPc/rZvWvX7D2jKIrxpSTxTKzVZSadXzB+rqwoQgiX\ncm3UjgMUjZKd9HP0wZMnT50+G3Pv/v309AdZsmLcJkOfenRTdGpQSHBVd0e1YwIAAAAAAAAA\nAHNQ0gOFa9iwoXknZt49v3Te3O+P38g94lqp0aARwy2Uq3RZs2aNSfMMmTevXf3z2O93swzG\nA3V7P2/FWIClnTuwceFXay4l6/P8qZx5efXilWuXLgvpNuDdrsFsVA8AAAAAAAAAgN2hpAes\nQ5GPbF+6YNmOpOycqljSOId0HTSoWysXDa2aOUwt6f/O1Tfkved9LB4GsJLjqz6auO5EodMM\ncvJPq2adibn1xbjODvxGAQAAAAAAAADArlDSA5Z3P/bYgojIgxeSco941Xph+PDBjau4qZiq\nFPKq0WLCJ8O4KwL2Inb3vNyGXtK6t3gxpGaNpxxPrl54ID53joNrnfqV3U7euC+EiP81atya\nejN71FYnLgAAAAAAAAAAMAslPWBJiiH9xzULv/p2X4YhZwd6jWO5V/sO7dOhCatSP6b27dub\nPFdboYp/wJNPNawTwB877IWccXXCop+MY4+aLUe/H9bAz0UIEZOw+dFpjq71p36x4vDaqdPW\n/CaEOP/txPMdV9Zy4V9zAAAAAAAAAADsBl/rAxaTeHZvxNxFJ26m5x6p2qTDiGF9n/LUqZiq\nxBg8eLDaEQArituz4E6WQQjh5NFkzvSR3g6afKdKDs26fzz8+oCIA/GKnL5oW+zsrtVtFxQA\nAAAAAAAAADweSnrAAgz6xC1L5kft/N2g5DxA7+hatfuQ4Z2Da6obDIC9OPzdNeMgeMzQghr6\nh4IH9Io4MEsIEbfnqKCkBwAAAAAAAADAflDSA4/r6pFtcyO/uZisN76UJKluq+7DBnWp6KxV\nNxgAO7IvOVMIIWmc+tb1MmW+ziPYRzc7QS/rkw8K0dXK6QAAAAAAAAAAgMVQ0gPmy75/ddX8\niI2HYnKPOHvX7Td8RNuGfiqmgpEip743+mPjePbs2eqGAQp1S28QQmidqrlrJRNP8XPUJuhl\nWX/TmrkAAAAAAAAAAICFUdID5lFO/rA6ctGG+EzZ+FqSHJ9/vd+Q3u3LmlywwcqyY2JiCp8F\nFA9uWkmfrRiyEhUhTPwlEp8lCyEkjYtVgwEAAAAAAAAAAMuipAeKLOP26a8jInb/GZ97pOwT\nzw0Z8W6zgLIqpgJg155z1+1MyjBkJ+26m9GunHOh8/WphxP0shDC0a2B9dMBAAAAAAAAAACL\n0agdALAriv7Qpi/7D/gwt6HXaN3bvR2+NOJDGnoAj+OlEF/jYP28aFPmn16xwjgo/3Q7K0UC\nAAAAAAAAAADWQEkPmCrl8q/TRvabsfz7FNlgPOJb/6VPFi0JeyNIxwr3AB6Pf6dujpIkhEg8\n/sW0DYdlpaDJ8cfWTN51wzh+uUeADeIBAAAAAAAAAABLYbl7oHCKnLprxRdfb/5Zr+T0Zlon\nvzcGvtuzTX3aeQAWofMIGtumypQ9sUKIw1HT+h0JGdz7tXq1/17AK/Kd+Cv7d3wbte2wrChC\nCK/afTr5uaoSGAAAAAAAAAAAmEdSlAIf1gMgxLj+b55KeJD7skJg62FDevqXcTT7gp6enpbI\nhYIoctJrHd82jrdu3apuGMAUiiF9ydhBW8/dyz0iaZ0rlDEkJOuFEHVrVL12LS5NL+f+1Mmj\nwWeLJ/k7a1XICgAAAAAAAAAAzEVJDxQuNDTUshekM7YBSnrYI0VO3vzlzOW7TxY606tW63Hj\nw2p56GyQCgAAAAAAAAAAWBDL3QMAUFxIWo9OQ6c2b3Vo89Zte4+czchra3rv6o06hL4e2rqx\nI/ttAAAAAAAAAABghyjpAQAoXvwCgwYHBg2S0y+fO3PpRmJaWtoDvcGtjHtZL5+adQMreTmr\nHRAAAAAAAAAAAJiPkh4oXEREhNoRAJQ6ktY1ILBJQKDaOQAAAAAAAAAAgEVR0gOFq169utoR\nAJRw27ZtE0K4BwSHBHqaeMofu/4vVi87uDzZvk1da0YDAAAAAAAAAACWREkPAID6Fi9eLITw\nD61lekl/deOKJfH3HV3rtW/zqTWjAQAAAAAAAAAAS6KkB1Ds7NixwwJXMTywwEWAYrj6ijIA\nACAASURBVExvUIQQ2ZmX1Q4CAAAAAAAAAACKgJIeQLGzaNEitSMAVnf27Nl/H8y8e/nsWbnw\nk5XspLgz3yYa70RRLJwMAAAAAAAAAABYEyU9AAAqCA8P//fB+IMLwg8W7TpO7s9bJhAAAAAA\nAAAAALAJjdoBAACA+Z4Z2F3tCAAAAAAAAAAAoAh4kh5AsbNx40a1IwBWV6VKlUdfXr9+XQjh\n6O7j66Ez8QplyleqH9yxV5Cv5cMBAAAAAAAAAACrkRSFvWwBAFBZaGioEMI/9LPI/jXVzgIA\nAAAAAAAAAKyI5e4BAAAAAAAAAAAAALARlrsHAEB9b731lhDCo6a32kEAAAAAAAAAAIB1sdw9\nAAAAAAAAAAAAAAA2wpP0AADY2r1794wDSXL08HBTNwwAAAAAAAAAALAlnqQHAMDWQkNDjQOd\nW8MNa6YIIWbMmGH21cLDwy0TCwAAAAAAAAAAWB9P0gMAoL5Dhw6pHQEAAAAAAAAAANiCRu0A\nAAAAAAAAAAAAAACUFjxJDwCArdWqVcs4cHCpYhyEhYWpFwcAAAAAAAAAANgOe9IDAAAAAAAA\nAAAAAGAjLHcPAAAAAAAAAAAAAICNUNIDAAAAAAAAAAAAAGAjlPQAAAAAAAAAAAAAANiIg9oB\nAADAP6UlJ2criomTPTw9JaumAQAAAAAAAAAAlkNJDwBAcXHj+K6orXtjYi7eTsk0/axVm79z\n11LTAwAAAAAAAABgHyjpAQAoFmK2zX7v632KyQ/Q53Jk7xoAAAAAAAAAAOwHJT0AAOrTJx8a\nt+RvDb1WqzXxXJ3EY/QAAAAAAAAAANgNSnoAANR39qtvMgyKEMLFp947A3s+/VSAj6eL2qEA\nAAAAAAAAAIDlUdIDAKC+nSeShBC6sk2+WDi+vAPr1wMAAAAAAAAAUGJRAwAAoL5T6VlCiMAh\nA2noAQAAAAAAAAAo2WgCAABQX6ZBEUI8X9tD7SAAAAAAAAAAAMC6KOkBAFBfDRcHIUS2onYO\nAAAAAAAAAABgZZT0AACor0NAWSHEb2eT1Q4CAAAAAAAAAACsi5IeAAD1PT20k0aSziyOylB4\nmh4AAAAAAAAAgJKMkh4AAPW5Vnz1kx4NMu4eGD1nOz09AAAAAAAAAAAlmKTQBAAAUCwoe6Om\nR2z8Ref91Bvde77WqpGzVlI7EgAAAAAAAAAAsDBKegAA1Ldlyxbj4OZv278/kSCEkCTHcr5+\nfn5+nm66gs8NDw+3ej4AAAAAAAAAAGAhDmoHAAAAYunSpf84oihZd+Jj78THqpIHAAAAAAAA\nAABYCXvSAwAAAAAAAAAAAABgIzxJDwCA+sLCwtSOAAAAAAAAAAAAbIE96QEAAAAAAAAAAAAA\nsBGWuwcAAAAAAAAAAAAAwEYo6QEAAAAAAAAAAAAAsBFKegAAAAAAAAAAAAAAbISSHgAAAAAA\nAAAAAAAAG3FQOwAAAKVL586dzThL4+DsVb5cxSfqNGvevFXzhjrJ4rkAAAAAAAAAAIAtSIqi\nqJ0BAIBSJDQ09DGv4F6tyaBRI4MD3C2SBwAAAAAAAAAA2BLL3QMAYGdSrx37/P2hO07fUzsI\nAAAAAAAAAAAoMp6kBwDAptavX2/GWYasjKTEuBPHjsUl641HtLrKs1bOr+GstWg6AAAAAAAA\nAABgXZT0AADYDcWQvnfd/Ii1h4z/fHs3HrF0Ymu1QwEAAAAAAAAAgCJguXsAAOyGpHFt3X3M\np2/VM7688/sX5x5kqxsJAAAAAAAAAAAUCSU9AAB2JrDzx03cdUIIRdEvO3BL7TgAAAAAAAAA\nAKAIKOkBALA3ku7tN/yNw7id/1M3CwAAAAAAAAAAKBJKegAA7E+F4CbGwYNbB9VNAgAAAAAA\nAAAAioSSHgAA+6Nze9o4kDNvqJsEAAAAAAAAAAAUCSU9AAD2R+PgZRwYsm+rmwQAAAAAAAAA\nABQJJT0AAPbHICcZBxqHCuomAQAAAAAAAAAARUJJDwCA/dGn/mYcaJ0qqZsEAAAAAAAAAAAU\nCSU9AAD259b+nJLepUKwukkAAAAAAAAAAECRUNIDAGBnFEPG8k3XjOOK7WqoGwYAAAAAAAAA\nABQJJT0AAHbmt1Uf/Z6mF0JIkq7vC35qxwEAAAAAAAAAAEXgoHYAAABgKjnj9vaoBUu2nze+\nLP/04Dqu/FMOAAAAAAAAAIA94Zt9AABsav78+WacZcjOvHfn1plT59NlxXhE61Tlw7EhlkwG\nAAAAAAAAAACsj5IeAACb2r179+NfRKvzGTR12pPO2se/FAAAAAAAAAAAsCVKegAA7EyFui0H\nDR38bBVXtYMAAAAAAAAAAIAio6QHAMCmqlSpYsZZGgdnD09PX/+azz3frGmgv2TxWAAAAAAA\nAAAAwCYkRVHUzgAAAAAAAAAAAAAAQKmgUTsAAAAAAAAAAAAAAAClBSU9AAAAAAAAAAAAAAA2\nQkkPAAAAAAAAAAAAAICNUNIDAAAAAAAAAAAAAGAjlPQAAAAAAAAAAAAAANgIJT0AAAAAAAAA\nAAAAADZCSQ8AAAAAAAAAAAAAgI1Q0gMAAAAAAAAAAAAAYCOU9AAAAAAAAAAAAAAA2AglPQAA\nAAAAAAAAAAAANkJJDwAAAAAAAAAAAACAjVDSAwAAAAAAAAAAAABgI5T0AAAAAAAAAAAAAADY\nCCU9AAAAAAAAAOD/27vvMKmqg4HDZ7bDAos0aVJFRCVYgtEAahIbdk3AHnuL3SiiUUQxoiYQ\nDdY8tqhgN+qHYGwJIJoYCyoKRlEUQSkiZYFl23x/zEpWWGB32TmL6/v+dfbOuXcOz3OPir+d\nOwAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAA\nRCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0A\nAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAA\nRCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0A\nAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAA\nRCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0A\nAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkWfW9AAAAgI0o\nGde+vpdQN7KPmVffS6A2ep3/bH0voW7MuPnA+l4CAAAA4JP0AAAAAAAAABCLSA8AAAAAAAAA\nkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAm4Xy+Z8m\ni1bU9yoAAID0yqrvBQAAAADAD12yeNXK288pnT4p0ahp47NuyerVr75XBAAApItP0gMAAABA\nfUoWr1o55rTS6ZNCCMlVy1eOOaN0xtT6XhQAAJAuIj0AAAAA1Jtk8aqVY04vnfmv/x0pKdLp\nAQCgARPpAQAAAKB+VHyGfuZrax/X6QEAoOES6QEAAACgHnxb6P9V9as6PQAANFAiPQAAAADE\ntu5T7quYo9MDAEBDJNIDAAAAQFTfFvq1n3JfxUydHgAAGhyRHgAA4HuscO6oRCUtthlRo9Pv\n+UnbyqefM2tJHa7t3Rv6pi7beeCLdXhZNivjd9oyUXM7XvZmfS88BluA9al+oa+Yv3l3+uVz\nfl+Lfw5UtrQsWd9/iI2zowEAqEMiPQAAQMOxZNaINwpLqjm5vHjuJW8vTOt6AFhLTQt9xVmb\nd6cHAABqRKQHAABoOJLlJUOenF3NyV+9+tvFJeXpXA4A31G7Ql9xrk5fDYNa56c+7/77Ocvr\ney0AALBeWfW9AAAAAOrSm8PuDr++vjozJ1zyzzSvhR+QJu1O/2LGjdWcnJnXNK2Lgc3TphT6\niiuUFK0cc0bjc+/M6tWvDhe2iZp2vHjJknOqfOmbj07r2vex1Pj+T746pEVeldMKMhPpWhwA\nAGyWRHoAAIAGonujrFmrSpd//sfJS6/ZoyBnw5PLir8YMm1hCCErr1OieE5J+ffg+4DZrCVy\nCgoK6nsRsPna9EJfcZ3NsNMncgsKcqt8paxp9ppxfrNmBQWNYq0JAAA2ax53DwAA0ECMOKxz\nCCGZLLts3KyNTv7qlYu+KS0PIbQb8Ce/vg2QVnVV6Cuu5rn3AADwPSfSAwAANBC7XH1yavDe\n72/d6ORnh0xKDQ6+cY80rgngB69uC33FNXV6AAD4PhPpAQAAGohmnS8ZUJAbQiicd9vEb4o2\nMLNs9ZxL31kUQsjK63Z975YbvfLqxR/cN+p3gw874Ke79N6qTfOcxgVdttmh/8/3P/7s4f+c\nsWhT1rzkv5NGXXnuz37ce6u2rfLymnbdts/eBxw+7LYnF5aUb/jEZPmqyU/cedZJR+8zYNdu\n7VvmNWnZ80d9Bx525MUj75q5ePWmLIl6VIv7Yd6kgYlEIpFI9LtzZgghJIsn3j968C927dqh\nTV5Oo7ZbdR9w2Kn3TphR6YzySWP//OuD+nXdqm1+bm67rr323O/QoTc9vKR0Q9/4YAtQa+ko\n9BVXbuCdvvy1J+++4MTDe2/bvVXz/Jz8go5dt9njoGNH3jZu3uqydWe/e0Pf1D8KHl+0MnXk\nik7NUkf2+OtHa01O344GAIBqSiSTvncQAADYrJWMa1/fS6gb2cfMq/NrFs4d1bTjxanxl8Vl\ns87bof8dM0IIfW989/VLeq/vrLkvDeq49+MhhE4Dn/pswqGNMzNWlSdDCGd//M0t3ZuvNfnV\n2y8YdOEtVUaREEIikbHjwLOeeOLmrnmZa7307g19+wx9I4TQaf8XPpu491qvJsuW3XThr393\n6zOpt15LTrNuZ48aN/rUn1T5pks/fPLoI06d+ME3Vb6aldfp8nufu/qoXlW+Wgu9zn+2ri5V\nv2bcfGCdX3P8TlsePG1BCKFJ+3OWzx1T6+vU+n6YN2lgh72eCyH89I4Z/zi66OyDDrpryty1\n5iQSiQMvfeT/Rg4qXfXRuYcOvOOFKr4PomWfo955/cEOOWvfxsEWYBOkr9CvkcjO27y+n/67\nFn94bMttx6XGTyxaeUTLan0n/bJZ40848rSn3vyqyldzm/e69JaHrj62T+WDa7bbugbc99/J\nJ/RY82OadjQAANSIT9IDAAA0HH2uOCs1+GDUqA1MGz9kcmpw2A39N3zBjx88sd9vbq4cMxoX\ntG7funlmIpH6MZksf3vCrbsNGFajXwAvL1lwwd69Lhrz9Jo8mUhkt2nddM2E4mWf/Om03Q4d\n9vi6565aMP7HOx1ZOU/mNWvdruX/zi0t+nzEsTvdMO3rmqyI+rQp98MaZcVfnvTjve6aMnfP\nky+5+5EJb/1nyiP3jvlZl6YhhGQyOf76wWc99sopu+52xwuzWu8y+A+3P/DKm29OfOLBcwdu\nkzr963ce/vmZL657WVuAWotQ6END/Dz9N+/ft3PvwysX+sYFrTq02SLr2023esmMEcfvfNyo\nVyuf1Wa3E4cOHTp06NCejbNTR/b4zUWpI8f23mLNtDTtaAAAqCmRHgAAoOFo0uHc/bbICyGs\nmP/XxxatqnJO2erPL313UQghu1GP67ZvsYGrlZcs3O/0salxbvNdR97z7MLC4hVLFsxd8E1J\n8Yq3nh97wu5tUq8ueOO6G2Yvq/46Hztjzz//s+K5Ap32OGnCK28vWL5y/oJl33zx34njrt++\nIDf10jMjBg2+e8Za59408OSPV5WGEDKyW1x0418/+XrFqqUL5i1aVlw4//Exl7fKzgwhJMtX\nX3fYsOqvh/q1KffDGtNGHPDwJyVXjnvrn3ffePLggTv9uP/gE8958b8fH92xol7fMXjA/dMX\n73b2rZ++/vDFZx7Xb+ed9z/i2D9PmPngyT1TE2aNO3nVd58xbwtQa3EKfcV7NaBOX7Z6zq/2\n/M2sVaUhhERG7uEX/umNWYtXLFn4xfzFK5fNeeauq7YryA0hJJPl44b8/LZKv6rSds+zR44c\nOXLkyN7fRvp9hw5PHTlj51apI+nb0QAAUFMiPQAAQINyzUkVD/UdecvMKid8OfmipaXlIYQO\ne4/Oz0hs4FIL3774k1QLzNrigTdfHHrSAa3yK+JHIqvRTvscc8+k945o3Th15JkJaz9jfH2W\nzhp99H0fpsaHjHz600n3DOy3Y6v8rBBC8w499j/60rfnTDtrl9apCX8758DZlT7yWLLinWFv\nV3xh8FlPvDXqkl93bVGxgOz8Nr885/ev3ntE6sfln9/+n8KSai6JOpAsWVENK1eVrnXeptwP\nla1eWLTzFS9cc/ROlQ9mZLf5w33/eyp1863PnTLmN9+97RODbro3kUiEEMpWzxu/+Du/2mIL\nUDvJ4lUrx5wWp9BXvGNFp39141M3b29dfcjLX68KISQSWZc9/v6Toy/YpVvF5+Czm3Q4+JTh\nb3z0/G6pTl++euj+V9To4mna0QAAUAsiPQAAQIOyw5DzU4MPb72uygn/d2nFs+5/ef1PN3yp\nuePfTQ1a73jzoG5N152Qkd3mgn07pMbLP15ezRU+ecqoZDIZQmi7+41PDz1k3b+XZjfd9uZJ\nf++YmxVCKC369JQnZ695qWjxhNJkMoSQSGT/6aDO616826DRXbp06dKlS+fOnd8qLK7mkth0\nhV/e2aQaOuyw9vfWb8r9UFkis9FDQ3dd93iLPkevGR/+4O+y1vm9lJymu/dtUhHqZn33dwhs\nAWqn6PEbSmf+K/KbJkuKVt52VrJwSeT3rUPJsuWn/Pn91LjHCY/+/vDu685p1HqPJ585OzVe\nPue2MXOqu+9C2nY0AADUgkgPAADQoDTe8pTDWzUKIaxc9Pi981eu9WrZ6s+Gvvd1CCG7ca8R\n227oWfchhJ6nPDRt2rRp06ZN+tsv1zcnWfbt9/ZW7/t7k2VLL5xa8U3DF447Y33TsvN3euCo\nbqnxu9dNXnM8kVHxGPBksuTR2VUUlMycjp9+64y2+dVaE/VnE++HyvLbHL91Xta6xzNzOqwZ\nX/qjllWeu1VuxYlrfUjfFqB2yuas93sZ0ipZtKJ84Wf18tZ1onDeLe+tKAkhJBIZo0cNXN+0\ndnv88eCWjVLje+/+uPrXT8eOBgCA2hHpAQAAGporzqr4ju0//WH6Wi99OfmiZaXlIYSO+49u\ntLG/EeZ33rZPnz59+vTp2bFxlROKFk275rkvarS2wrk3px62n9Wo28Vdmm1g5g4X9vn2lIfX\nHGzc5tjmWRXrPnWXvW967NViHeX7bBPvh8qyG+9Q9ZmJis/OJzJyejaqouKHENb3rQ+2ALWT\n039QvbxvZqftMjttXy9vXSfmThifGjRqefiBLfLWPzFxyQEdU6PPHn6l+tdPx44GAIDaqfpv\npwAAAHx/9Tp3aBhxVAjho3uvCn+cWPmlZ4ZMSQ0GX/eTml+4/Ou5sz+eNWvWrFkffThj+nvT\nnn/+lVTyr74lH1QElYzMplddeeUGZq5eMic1KC58Y83BjOwtn7pot71ufDWEUPTN6xcO7je0\neaef7bvvngP69+/fb9c+W+esL7eSZk3an7N87tqPst+oTbwfviOx0f/FkVnD1a3LFqBacvr9\nKrliadFjI2O+aUbb7vnn3R0yv8f/r2/hKwtTgyYdj97wzC7HdgkPfBRCKPp6cgjn1vYN62BH\nAwBA7XyP/8MdAACAKjVqfeTxW57ywPwVRYufGzO38NwOTVLHy4o+vWz61yGE7Pze12yzRTWv\ntnLeG3fd/fDEic+99vaHS4tKN37CBi3/qOIB3cWF71x77TvVOaW8ZPGysmSzzIr2uOcNkx9u\ned5Fw+6ct7oshLB6yefPPXrXc4/eFULIbtJh74MPOfTQw4785T7N1/3ucTY/m34/RGALUAu5\n+54SQojW6TPadm9y8YOJgtZx3i5NCj8pTA3yu2zk21jyO1V8dUVpUQ0ed59StzsaAABqx+Pu\nAQAAGqCLL+yVGtxeqQLOm1TxrPtOB46q5sdt/zb811t1+cn5w0Y999r7a2JGRmajTtv8aL9D\nj77mzw/cPbhbjRZWsqykRvNTCssqP9E788ght8764s2br75w7x9vnZn435+kpHDuxIduP/Oo\n/Tr12Osvz9e43BBfXdwP6WULUGu5+56SN+iyCG/UMAp9CJW+Bn6j/4bKyK44o3xVjd6hznc0\nAADUjk/SAwAANEDbnDYsDD0khPDJQ5eV3z459QvaT19a8ZztY67tW52LvDZ8vyOufj41zm2+\n9dEnHtWv74932WXHbXt0apRRkVBe++C6Gi2sSbeKj/UXdL5qyezhNTq3srxWfc4bNvq8YaNX\nfjXzhZf++cqUV6ZMmfL6jDnJZDKEsHz25DMHbj9/6pwrd2tT67cggrq6H9LEFmATRfg8fcMp\n9Knd8VoIIayYvWTDM1fNW5AaZDXapvrXT8eOBgCA2hHpAQAAGqC8Fgef2b7JHfMKVy+dcuPs\nZUO7NCsr+vTy6YtDCDlNdr5y6+YbvULpyg8OG/lSarztMTdP/eu5Leri6dkF23VIDVYvnbLp\nVwshNG677aHHbnvosWeGEJZ/8f4T9986ZPhfFpaUJcuL/3jU9VfOHl0n70Ka1Pn9UIdsAepE\nWjt9Qyr0IYRWu7cKYz8KIRR+8XAIh29g5mfjPksNcpr+pJoXT9OOBgCA2vG4ewAAgIbp3KE7\npAb3DHsrhDDvHxcuLysPIXQ65A/Z1QgTC6f9bkFxWQghu3GvNx5Yb8xYOnNZjVZV0P2i1KBo\nycsvLlm9gZmFn06bOnXq1KlT33j/fx+p/PCZx8aOHTt27NhnXl247ilNO25/4uW3Tb3vF6kf\nl8+5rTTeY9GpjU28H9LKFqCupOm59w2s0IcQOhy8f2qwatETL2xwd/zpqc9Tg05H7FvNi6dp\nRwMAQO2I9AAAAA1T9+OvzUgkQgifPXVxSTI8NXRq6vjxI3apzumFs75ODXIL9szPqDpmlJcs\nHPKfBTVaVXaTXU5pX/G47/Mum7zeecniE3fv179///79+19U6S1mjjj3uOOOO+6440486cH1\nndp2wM/WjMtqtDii28T7Ia1sAepQnXf6hlfoQwhNO5y/bePsEEIyWXb+ZS+tb9pXU4Y8vmhl\nanzkb6r7uPs07WgAAKgdkR4AAKBhym3+iwu2ahpCKF7+5rDpb17+/uIQQk7TXS/vWlCd05v2\n2CI1KPrmuYUl5etOSJavHH3c7u+tKEn9WF7VnCpdeXvFZyVn/uWg4RM+qXLOsyMOfmL+yhBC\nZnarm3/Vdc3xbkd2Sg2WfHz501+urPLcl28alxrktTgg18OMN3ubcj+klS1A3arDTt8gC30I\nIZFZcM8ZPVPjmX85/NrnPl93zqoFkw476M+pcZP2J/+u+3r/jVZc/p3nSKRvRwMAQC2I9AAA\nAA3W6cN2TA1uH3xQYVl5CKHLETdW80t4W2x3aXYiEUIoLZrd94gRMxdVevJwsnjyIzcfsFOX\nSx6dtebYF+Pv+uDLFdW5cueDHjh7hxYhhGR58TUHb/urC//w7+mzVlQ8lTs5950XLj+p30FX\nPZ+a/NPLnt6pSfaac3ucdFlORiKEkCwvOmbHfcc89OKS0jUdpXzuuy8PP3Ov3v77vgAAByxJ\nREFUw0a/l/p554uGV+uPSr3alPshrWwB6lyddPqGWuhTdr3u6X7Nc0MIyfLiqw7a/rgr7nx/\nXmHqpbJV8yfcd03fnvv9e9nqEEIiI+faCTdu4FKv/+fryj+mb0cDAEAtiPQAAAANVtfB12cl\nEiGEpTO/Sh05afhO1Tw3p9lPxx7TIzX+bPzw7du26r3zT/bef9++vbfZIj9/z6MueO7dhdn5\n29xw13GpOcs+u3uHDgWdehy+8Utn5I2a/NSe7fJDCMnykiduGrJb762b5jbu2KVjs0bZHXfc\nd+R9r6Ym9jjs6heH/7TyqXktD3/s1D6p8coFU887Zp8WuY1abtmha+f2TXJzOvb5xdV3Tkq9\n2rLPiROH9K7mH5b6tAn3Q1rZAqTDJnb6jHYNudCHEDLzuj39jzGd87JCCOVlhWN/f2bvjgUt\n2nToulXbJk3bH3jSVe8vWR1CSCQyjrnxn+f3abnuFbo2ykwNnj/qR/1/sd/ee+z+66c+C2nd\n0QAAUHMiPQAAQIOV03T3oV2brfkxt1m/IV2abWD+Wn7119evOLpfZiIRQigvK5z+9usv/f2F\nN6Z/tGRVaQih594nPTfzrSEn33vlvh1T85PJsoWLllfnyrlbDHjhw9fOPOB/BTFZXjT3s7nL\niyq+QTsjs8mxV947/clhOet87v+QO/495uz9U6sKISTLixcvmDf78y9XFFecm0hkDDj+yndf\nv7tppid9fz9syv2QVrYA6ZC77yl5gy+vxYkZ7bo3+W1DLvQpLXc87Z1pjxzYp+KPmUyWf7Nw\n3uwv5heVVTw0IneLXsMefPvB3+5e5emnjzg4NSgvK5z68vMvTfnX7KXFqSPp29EAAFBTWfW9\nAAAAANLohGt2ufa4l1PjroNH1ug3tROZBSPGvfKb3z59zej7p//3o48//nhpeeP27bfqu9fA\nIwYdP+jnvVLTrp743753/vFvk98JW3Tarvde1bx4dtPetz/77iWTH7/nsWf+/vJrn381/5uV\nGZ237tGjR4/tdux3/Kkn9WnfeD3LyjnnlomDTnvp7gceef2DT+bMmTNnzpzlySadu3Tu0rlL\n9+36Djr2hL16b1mTPyj1r/b3QzrZAqRJ7j4nhxCKHr2u+qf8QAp9SkHPI8a/fciUx+959Jnx\nL//r3a/mL1hWktm6TZtu2+868MCDTz71yHa5mes7d+sTxv69tOeIMeNmfPLpqoxm7dq1275N\nXuqltO5oAACokUQymazvNQAAAGxIybj29b2EupF9zLz6XgK10ev8Z+t7CXVjxs0H1vcSNlfJ\nZGlpaWlpaWZeo2wfPieW1S/cU81O/4Mq9AAA8EPgk/QAAADAD1sikZWdnZWdXd/r4Ielmp+n\nV+gBAKDh8Z30AAAAAFAPcvc5Oe+XQzYwIbNDzyaXPKTQAwBAAyPSAwAAAED9yN3/9PV1+swO\nPfN/+0CiaYvISwIAANJNpAcAAACAelNlp1foAQCgARPpAQAAAKA+5e5/et7gy9f8mNGue/6F\n9yn0AADQUGXV9wIAAAAA4Icud5+TE3n5xS/dn9GuW6NjrlboAQCgARPpAQAAAKD+5Qw4MmfA\nkfW9CgAAIO087h4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4A\nAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAA\nAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACCSRDKZrO81AAAAAAAAAMAPgk/SAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0A\nAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAA\nRCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk/w+F\n4nznSuhWVQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig3_colors<-c(\"#FAA519\",\"#286EB4\",\"#F06423\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt[sex!=\"Total\"], aes(fill=sex),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " geom_point(data=dt[grepl(\"Total\",sex)],aes(shape=sex),colour=\"#F06423\",fill=\"#F06423\",size=3)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/24)) +\n", " scale_fill_manual(values = fig3_colors)+\n", " scale_shape_manual(values=c(\"Males\"=NA,\"Females\"=NA,\"Total\"=23))+\n", " ggtitle(\"Figure 3: Participation time per day in household and family care, by gender, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 4: Participation rate per day in household and family care, main activity, %, by gender (2008 to 2015)\n", "\n", "The data is this time in the *tus_00educ* dataset. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"household.*care\",sex=\"male\",isced97=\"^all\")`. This time we can use the SDMX REST API to get the data as it is numeric. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>96.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>95.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>96.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>95.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>94.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>94.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>97.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>94.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>97.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>95.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>94.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>96.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>98.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>97.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>96.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>96.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>95.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>96.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>81.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>86.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>88.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>83.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>71.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>77.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>93.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>82.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>85.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>69.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>80.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>88.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>91.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>86.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>78.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>77.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>53.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Household and family care</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>88.9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Austria & 2010 & 96.4\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Belgium & 2010 & 95.6\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 96.3\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Estonia & 2010 & 95.7\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Greece & 2010 & 94.6\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Spain & 2010 & 94.8\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Finland & 2010 & 97.3\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & France & 2010 & 94.8\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Hungary & 2010 & 97.4\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Italy & 2010 & 95.4\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Luxembourg & 2010 & 94.2\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Netherlands & 2010 & 96.3\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Norway & 2010 & 98.3\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Poland & 2010 & 97.9\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Romania & 2010 & 96.3\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Serbia & 2010 & 96.6\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & Turkey & 2010 & 95.0\\\\\n", "\t Participation rate (\\%) & Females & Household and family care & All ISCED 1997 levels & United Kingdom & 2010 & 96.8\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Austria & 2010 & 81.5\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Belgium & 2010 & 86.5\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 88.5\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Estonia & 2010 & 83.1\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Greece & 2010 & 71.6\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Spain & 2010 & 77.2\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Finland & 2010 & 93.0\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & France & 2010 & 82.1\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Hungary & 2010 & 85.9\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Italy & 2010 & 69.7\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Luxembourg & 2010 & 80.8\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Netherlands & 2010 & 88.8\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Norway & 2010 & 91.8\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Poland & 2010 & 86.4\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Romania & 2010 & 78.9\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Serbia & 2010 & 77.5\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & Turkey & 2010 & 53.4\\\\\n", "\t Participation rate (\\%) & Males & Household and family care & All ISCED 1997 levels & United Kingdom & 2010 & 88.9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Austria | 2010 | 96.4 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Belgium | 2010 | 95.6 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 96.3 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Estonia | 2010 | 95.7 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Greece | 2010 | 94.6 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Spain | 2010 | 94.8 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Finland | 2010 | 97.3 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | France | 2010 | 94.8 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Hungary | 2010 | 97.4 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Italy | 2010 | 95.4 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Luxembourg | 2010 | 94.2 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Netherlands | 2010 | 96.3 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Norway | 2010 | 98.3 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Poland | 2010 | 97.9 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Romania | 2010 | 96.3 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Serbia | 2010 | 96.6 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | Turkey | 2010 | 95.0 |\n", "| Participation rate (%) | Females | Household and family care | All ISCED 1997 levels | United Kingdom | 2010 | 96.8 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Austria | 2010 | 81.5 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Belgium | 2010 | 86.5 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 88.5 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Estonia | 2010 | 83.1 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Greece | 2010 | 71.6 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Spain | 2010 | 77.2 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Finland | 2010 | 93.0 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | France | 2010 | 82.1 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Hungary | 2010 | 85.9 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Italy | 2010 | 69.7 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Luxembourg | 2010 | 80.8 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Netherlands | 2010 | 88.8 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Norway | 2010 | 91.8 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Poland | 2010 | 86.4 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Romania | 2010 | 78.9 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Serbia | 2010 | 77.5 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | Turkey | 2010 | 53.4 |\n", "| Participation rate (%) | Males | Household and family care | All ISCED 1997 levels | United Kingdom | 2010 | 88.9 |\n", "\n" ], "text/plain": [ " unit sex acl00 \n", "1 Participation rate (%) Females Household and family care\n", "2 Participation rate (%) Females Household and family care\n", "3 Participation rate (%) Females Household and family care\n", "4 Participation rate (%) Females Household and family care\n", "5 Participation rate (%) Females Household and family care\n", "6 Participation rate (%) Females Household and family care\n", "7 Participation rate (%) Females Household and family care\n", "8 Participation rate (%) Females Household and family care\n", "9 Participation rate (%) Females Household and family care\n", "10 Participation rate (%) Females Household and family care\n", "11 Participation rate (%) Females Household and family care\n", "12 Participation rate (%) Females Household and family care\n", "13 Participation rate (%) Females Household and family care\n", "14 Participation rate (%) Females Household and family care\n", "15 Participation rate (%) Females Household and family care\n", "16 Participation rate (%) Females Household and family care\n", "17 Participation rate (%) Females Household and family care\n", "18 Participation rate (%) Females Household and family care\n", "19 Participation rate (%) Males Household and family care\n", "20 Participation rate (%) Males Household and family care\n", "21 Participation rate (%) Males Household and family care\n", "22 Participation rate (%) Males Household and family care\n", "23 Participation rate (%) Males Household and family care\n", "24 Participation rate (%) Males Household and family care\n", "25 Participation rate (%) Males Household and family care\n", "26 Participation rate (%) Males Household and family care\n", "27 Participation rate (%) Males Household and family care\n", "28 Participation rate (%) Males Household and family care\n", "29 Participation rate (%) Males Household and family care\n", "30 Participation rate (%) Males Household and family care\n", "31 Participation rate (%) Males Household and family care\n", "32 Participation rate (%) Males Household and family care\n", "33 Participation rate (%) Males Household and family care\n", "34 Participation rate (%) Males Household and family care\n", "35 Participation rate (%) Males Household and family care\n", "36 Participation rate (%) Males Household and family care\n", " isced97 geo time\n", "1 All ISCED 1997 levels Austria 2010\n", "2 All ISCED 1997 levels Belgium 2010\n", "3 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "4 All ISCED 1997 levels Estonia 2010\n", "5 All ISCED 1997 levels Greece 2010\n", "6 All ISCED 1997 levels Spain 2010\n", "7 All ISCED 1997 levels Finland 2010\n", "8 All ISCED 1997 levels France 2010\n", "9 All ISCED 1997 levels Hungary 2010\n", "10 All ISCED 1997 levels Italy 2010\n", "11 All ISCED 1997 levels Luxembourg 2010\n", "12 All ISCED 1997 levels Netherlands 2010\n", "13 All ISCED 1997 levels Norway 2010\n", "14 All ISCED 1997 levels Poland 2010\n", "15 All ISCED 1997 levels Romania 2010\n", "16 All ISCED 1997 levels Serbia 2010\n", "17 All ISCED 1997 levels Turkey 2010\n", "18 All ISCED 1997 levels United Kingdom 2010\n", "19 All ISCED 1997 levels Austria 2010\n", "20 All ISCED 1997 levels Belgium 2010\n", "21 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "22 All ISCED 1997 levels Estonia 2010\n", "23 All ISCED 1997 levels Greece 2010\n", "24 All ISCED 1997 levels Spain 2010\n", "25 All ISCED 1997 levels Finland 2010\n", "26 All ISCED 1997 levels France 2010\n", "27 All ISCED 1997 levels Hungary 2010\n", "28 All ISCED 1997 levels Italy 2010\n", "29 All ISCED 1997 levels Luxembourg 2010\n", "30 All ISCED 1997 levels Netherlands 2010\n", "31 All ISCED 1997 levels Norway 2010\n", "32 All ISCED 1997 levels Poland 2010\n", "33 All ISCED 1997 levels Romania 2010\n", "34 All ISCED 1997 levels Serbia 2010\n", "35 All ISCED 1997 levels Turkey 2010\n", "36 All ISCED 1997 levels United Kingdom 2010\n", " values\n", "1 96.4 \n", "2 95.6 \n", "3 96.3 \n", "4 95.7 \n", "5 94.6 \n", "6 94.8 \n", "7 97.3 \n", "8 94.8 \n", "9 97.4 \n", "10 95.4 \n", "11 94.2 \n", "12 96.3 \n", "13 98.3 \n", "14 97.9 \n", "15 96.3 \n", "16 96.6 \n", "17 95.0 \n", "18 96.8 \n", "19 81.5 \n", "20 86.5 \n", "21 88.5 \n", "22 83.1 \n", "23 71.6 \n", "24 77.2 \n", "25 93.0 \n", "26 82.1 \n", "27 85.9 \n", "28 69.7 \n", "29 80.8 \n", "30 88.8 \n", "31 91.8 \n", "32 86.4 \n", "33 78.9 \n", "34 77.5 \n", "35 53.4 \n", "36 88.9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"household.*care\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we keep only the columns with sex, countries and values. Before plotting the values we need to cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>sex</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Females</td><td>Austria </td><td>96.4</td></tr>\n", "\t<tr><td>Females</td><td>Belgium </td><td>95.6</td></tr>\n", "\t<tr><td>Females</td><td>Germany </td><td>96.3</td></tr>\n", "\t<tr><td>Females</td><td>Estonia </td><td>95.7</td></tr>\n", "\t<tr><td>Females</td><td>Greece </td><td>94.6</td></tr>\n", "\t<tr><td>Females</td><td>Spain </td><td>94.8</td></tr>\n", "\t<tr><td>Females</td><td>Finland </td><td>97.3</td></tr>\n", "\t<tr><td>Females</td><td>France </td><td>94.8</td></tr>\n", "\t<tr><td>Females</td><td>Hungary </td><td>97.4</td></tr>\n", "\t<tr><td>Females</td><td>Italy </td><td>95.4</td></tr>\n", "\t<tr><td>Females</td><td>Luxembourg </td><td>94.2</td></tr>\n", "\t<tr><td>Females</td><td>Netherlands </td><td>96.3</td></tr>\n", "\t<tr><td>Females</td><td>Norway </td><td>98.3</td></tr>\n", "\t<tr><td>Females</td><td>Poland </td><td>97.9</td></tr>\n", "\t<tr><td>Females</td><td>Romania </td><td>96.3</td></tr>\n", "\t<tr><td>Females</td><td>Serbia </td><td>96.6</td></tr>\n", "\t<tr><td>Females</td><td>Turkey </td><td>95.0</td></tr>\n", "\t<tr><td>Females</td><td>United Kingdom</td><td>96.8</td></tr>\n", "\t<tr><td>Males </td><td>Austria </td><td>81.5</td></tr>\n", "\t<tr><td>Males </td><td>Belgium </td><td>86.5</td></tr>\n", "\t<tr><td>Males </td><td>Germany </td><td>88.5</td></tr>\n", "\t<tr><td>Males </td><td>Estonia </td><td>83.1</td></tr>\n", "\t<tr><td>Males </td><td>Greece </td><td>71.6</td></tr>\n", "\t<tr><td>Males </td><td>Spain </td><td>77.2</td></tr>\n", "\t<tr><td>Males </td><td>Finland </td><td>93.0</td></tr>\n", "\t<tr><td>Males </td><td>France </td><td>82.1</td></tr>\n", "\t<tr><td>Males </td><td>Hungary </td><td>85.9</td></tr>\n", "\t<tr><td>Males </td><td>Italy </td><td>69.7</td></tr>\n", "\t<tr><td>Males </td><td>Luxembourg </td><td>80.8</td></tr>\n", "\t<tr><td>Males </td><td>Netherlands </td><td>88.8</td></tr>\n", "\t<tr><td>Males </td><td>Norway </td><td>91.8</td></tr>\n", "\t<tr><td>Males </td><td>Poland </td><td>86.4</td></tr>\n", "\t<tr><td>Males </td><td>Romania </td><td>78.9</td></tr>\n", "\t<tr><td>Males </td><td>Serbia </td><td>77.5</td></tr>\n", "\t<tr><td>Males </td><td>Turkey </td><td>53.4</td></tr>\n", "\t<tr><td>Males </td><td>United Kingdom</td><td>88.9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " sex & geo & values\\\\\n", " <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Females & Austria & 96.4\\\\\n", "\t Females & Belgium & 95.6\\\\\n", "\t Females & Germany & 96.3\\\\\n", "\t Females & Estonia & 95.7\\\\\n", "\t Females & Greece & 94.6\\\\\n", "\t Females & Spain & 94.8\\\\\n", "\t Females & Finland & 97.3\\\\\n", "\t Females & France & 94.8\\\\\n", "\t Females & Hungary & 97.4\\\\\n", "\t Females & Italy & 95.4\\\\\n", "\t Females & Luxembourg & 94.2\\\\\n", "\t Females & Netherlands & 96.3\\\\\n", "\t Females & Norway & 98.3\\\\\n", "\t Females & Poland & 97.9\\\\\n", "\t Females & Romania & 96.3\\\\\n", "\t Females & Serbia & 96.6\\\\\n", "\t Females & Turkey & 95.0\\\\\n", "\t Females & United Kingdom & 96.8\\\\\n", "\t Males & Austria & 81.5\\\\\n", "\t Males & Belgium & 86.5\\\\\n", "\t Males & Germany & 88.5\\\\\n", "\t Males & Estonia & 83.1\\\\\n", "\t Males & Greece & 71.6\\\\\n", "\t Males & Spain & 77.2\\\\\n", "\t Males & Finland & 93.0\\\\\n", "\t Males & France & 82.1\\\\\n", "\t Males & Hungary & 85.9\\\\\n", "\t Males & Italy & 69.7\\\\\n", "\t Males & Luxembourg & 80.8\\\\\n", "\t Males & Netherlands & 88.8\\\\\n", "\t Males & Norway & 91.8\\\\\n", "\t Males & Poland & 86.4\\\\\n", "\t Males & Romania & 78.9\\\\\n", "\t Males & Serbia & 77.5\\\\\n", "\t Males & Turkey & 53.4\\\\\n", "\t Males & United Kingdom & 88.9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| sex <chr> | geo <chr> | values <dbl> |\n", "|---|---|---|\n", "| Females | Austria | 96.4 |\n", "| Females | Belgium | 95.6 |\n", "| Females | Germany | 96.3 |\n", "| Females | Estonia | 95.7 |\n", "| Females | Greece | 94.6 |\n", "| Females | Spain | 94.8 |\n", "| Females | Finland | 97.3 |\n", "| Females | France | 94.8 |\n", "| Females | Hungary | 97.4 |\n", "| Females | Italy | 95.4 |\n", "| Females | Luxembourg | 94.2 |\n", "| Females | Netherlands | 96.3 |\n", "| Females | Norway | 98.3 |\n", "| Females | Poland | 97.9 |\n", "| Females | Romania | 96.3 |\n", "| Females | Serbia | 96.6 |\n", "| Females | Turkey | 95.0 |\n", "| Females | United Kingdom | 96.8 |\n", "| Males | Austria | 81.5 |\n", "| Males | Belgium | 86.5 |\n", "| Males | Germany | 88.5 |\n", "| Males | Estonia | 83.1 |\n", "| Males | Greece | 71.6 |\n", "| Males | Spain | 77.2 |\n", "| Males | Finland | 93.0 |\n", "| Males | France | 82.1 |\n", "| Males | Hungary | 85.9 |\n", "| Males | Italy | 69.7 |\n", "| Males | Luxembourg | 80.8 |\n", "| Males | Netherlands | 88.8 |\n", "| Males | Norway | 91.8 |\n", "| Males | Poland | 86.4 |\n", "| Males | Romania | 78.9 |\n", "| Males | Serbia | 77.5 |\n", "| Males | Turkey | 53.4 |\n", "| Males | United Kingdom | 88.9 |\n", "\n" ], "text/plain": [ " sex geo values\n", "1 Females Austria 96.4 \n", "2 Females Belgium 95.6 \n", "3 Females Germany 96.3 \n", "4 Females Estonia 95.7 \n", "5 Females Greece 94.6 \n", "6 Females Spain 94.8 \n", "7 Females Finland 97.3 \n", "8 Females France 94.8 \n", "9 Females Hungary 97.4 \n", "10 Females Italy 95.4 \n", "11 Females Luxembourg 94.2 \n", "12 Females Netherlands 96.3 \n", "13 Females Norway 98.3 \n", "14 Females Poland 97.9 \n", "15 Females Romania 96.3 \n", "16 Females Serbia 96.6 \n", "17 Females Turkey 95.0 \n", "18 Females United Kingdom 96.8 \n", "19 Males Austria 81.5 \n", "20 Males Belgium 86.5 \n", "21 Males Germany 88.5 \n", "22 Males Estonia 83.1 \n", "23 Males Greece 71.6 \n", "24 Males Spain 77.2 \n", "25 Males Finland 93.0 \n", "26 Males France 82.1 \n", "27 Males Hungary 85.9 \n", "28 Males Italy 69.7 \n", "29 Males Luxembourg 80.8 \n", "30 Males Netherlands 88.8 \n", "31 Males Norway 91.8 \n", "32 Males Poland 86.4 \n", "33 Males Romania 78.9 \n", "34 Males Serbia 77.5 \n", "35 Males Turkey 53.4 \n", "36 Males United Kingdom 88.9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(sex=c(\"Males\",\"Males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Females\",sex)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "sex_ord<-c('Males','Females')\n", "dt$sex<-factor(dt$sex,levels=sex_ord)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd0AT1wMH8Mtg771VBEXcIioO3ButW3Fr3dpqa62t2p+j1j1qrXvXvbe4994b\nBFGRvfcIgSS/P9BwCSG5C7nkgt/PX1x49+7de+/ejXfvHUcikRAAAAAAAAAAAAAAAAAAAADA\nPK6uEwAAAAAAAAAAAAAAAAAAAPCtQCc9AAAAAAAAAAAAAAAAAACAlqCTHgAAAAAAAAAAAAAA\nAAAAQEvQSQ8AAAAAAAAAAAAAAAAAAKAl6KQHAAAAAAAAAAAAAAAAAADQEnTSAwAAAAAAAAAA\nAAAAAAAAaAk66QEAAAAAAAAAAAAAAAAAALQEnfQAAAAAAAAAAAAAAAAAAABagk56AAAAAAAA\nAAAAAAAAAAAALUEnPQAAAAAAAAAAAAAAAAAAgJagkx4AAAAAAAAAAAAAAAAAAEBL0EkPAAAA\nAAAAAAAAAAAAAACgJeikBwAAAAAAAAAAAAAAAAAA0BJ00gMAAAAAAAAAAAAAAAAAAGgJOukB\nAAAAAAAAAAAAAAAAAAC0BJ30AAAAAAAAAAAAAAAAAAAAWoJOegAAAAAAAAAAAAAAAAAAAC1B\nJz0AAAAAAAAAAAAAAAAAAICWoJMeAAAAAAAAAAAAAAAAAABAS9BJDwAAAAAAAAAAAAAAAAAA\noCXopAcAAAAAAAAAAAAAAAAAANASdNIDAAAAAAAAACgjEeWe37E4OKh1FVcHUyNDWyePeo2b\nL4nJ0XW6AAAAAAAAQC+hk/5bJSnkaNr1rEJd7xV8E1yN+LRqJpfLNbeyq1K9pl/TtqN/nL39\nUEh0XrGudwIAANhCkBFCPmsE/PNW1ykCZQqzrpPLq8myV7pOEahDf8sxJ2YROeXdbsZrMHI0\nRxXHXB4WJN3oVcej+5g5h0JuxySkFgiLMpJj3zx78Ca/SFObqEwYPVIAAAAAAAAqB3TSA1NO\n1nGQ6yt9nofnF3pJJPjQ1s5EWo6FEl0niCaJRJKXnR7z6f3zxzd3rVsyNjjIy85j8E9LX6RV\n8tdKdHUM4tiXQlYAgF5AYwUAoJxYmDjQr8eZ8ExdJ4QVcNYAAAAAAADQCHTSA4AKa/q1u5ku\n0HUqNKm4MPHgP7OaVWuw5vx7XacFAAAAAABYLfTf/mfj83SdCgAAAAAAAKhU0EkPAMq82TJg\nRkiMrlPBCGFu+PQg35+PfdR1QujJeD+GPGxlaHi6rlP0zUERVBooSgAAAKBi9coX5MWq7b8/\ndfPR54TU5MT4tV7WukoVAAAAAAAA6DW+rhMAbNFr4o+exryKxOBhVKHVgYVyPu0PnHJc16lQ\nod24KQ3MDJQEEObnpKcnhz1/9PJDkty/JBLR2sFNGrz9OKqGFZNpBAAAAAAAvSQRZe9Oypcu\nGtt0eXZxmy2fo8MkAQAAAAAAQCWATnr4Yvzi5d1tjHWdCmARsTBxaMvxmcViXSdEhX4Llk1x\nMaMSMvPD/fVrli3YcLpILJH+KC5Kn95j4ajwlYwlEAAAAAAA9FVx/juRpPT2wXPAPPTQAwAA\nAAAAQMWhkx6YYtPAP8Ayk/yLGRfPMvTJrpGBZxIq1ZcXrb2az/n35MiBW5p0nJwoFEl/z4hY\n9cfLWX81sNNh2pigq2MQx74UsgIA9AIaKwAAJcRimXsis+qU3g+uxHDWAAAAAAAA0Ah00gNT\n2uw/f1/XaQC1fTg0bszBSF2nghHugeMfnXpbpdta8o//Tb/x19V+ukoSQ3R1DOLYl0JWAIBe\nQGMFAADU4awBAAAAAACgEVxdJwAAWCc/8VzgiJ26TgWDPLr+M9PLmvxL8uPlukoMAAAAAAAA\nAAAAAAAAfFPQSQ8AMiSirPEthyR8nQ3ezOW7AEsj3SaJCWPn1icvCnMehRcU6yoxAAAAAAAA\nAAAAAAAA8O3AdPfALoXpH04ePHD49LWPMTGxsbH5XKuqVatW8/TtNXzMiN6BJnryVknk9d1b\njt8OCwtLyONW8x18dMckJYGLsqIvnjl96tT5N59iExISk5IzDS2t7Oxc6zZu0rxV+wFD+nrb\naLWP/PgPgfs+Zpf8zeVbb7m3d39jJ20mQDuc2rQhiFvkXx5kC31MVDSJubGvDh8+9eDZi1ev\n38QmZ+Tk5OQJJeYWlhaWllW8aterV7dlhx59ujU351X0o4y0qpBmScR5jy+fOXbs+P3XH+Pj\n4xMSUnlmVnZ2tlVrNWrZslWn3sFtfe0ZTUDi62vbtv93+8X7z58/x8SlmTk4u7i4Vq3l16tv\n/z49WtsaqtMKaK3gNEMiDL1/5ezZs5fvvkhITExMTMouNnBycnJycvSq1zwoKKhbl1YOxryK\nbyf706NtW7ZefvQuNjY2JjauiGdua2fv06Bpq8AOw8YM9bY2rPgmKKJe4VlVlGxrvZk4dght\n7SZDjV5S2L2jR4+eufYwNi4+PiFByLdyc3Nz9/Bs13Pg4ODeXrYVSjmraqPOsaY9kUQ+unhg\n//5LD94mJiYlJycX881t7exr1PNv1ar90DHDfezoF7q22mTNyot7efDouQcPHjx++S4lLT0j\nM4tjZG5tbe1UtVbTpk1bdfouuEtjvlp1UyttQiUsR0abI1q01nZpvFlgTx7Sop0MFwtTLx7c\nvfvgufDo2Li4uKxiQxcXVzcPry79h40c1ruKhUHZVT6/uHb48OEz1x4nJCUlJyUX8c3t7Oxr\nNQpo2+G7ceP6Oqp72aDvmLgVYuctJNuuYwEAAAAAvlES+DaJBXI14Vx6gWa3IMi8Ro7ff+lL\n5eGLC2KWT+xiwi331tTUue7yMxElgQvSz5H/dS1TUDbCTyfbk8Osi8+lmPIgWxPpWtbVV1PZ\nu2e5wi+/ZzyeGNSA/C9z57HlbUiYFb54QjcTpXfjXJ5Z+5FznsTnUUx8BcVc+JXDKU1P3w2v\nJLIZQhCEQKw6nrzkfXI74tn7mqYS6WIo8wiVesnKpDDpP7kULo/JVhI+I+zi9x3r8ziqH50Y\nWladvHR/ZrGKbKJVhbKj/1K5Xbl4ym5C5TEoERed3/i7t5WyZ6YcDrdRlxHn3mVS3zWF2yUX\n4i8fv8SW9T6kT3MvJVvnG7v+sPJovkjFfpBpquC0VAQS8b2DKwLczZRvgmfoMHrutsRC1Rkh\nl4BjqfklvxdmvhjX1U9JtnD5Nv1/25qtqhpTV/E2U7dFKUeHrbfWjh2N76ZGzpvUpYeeH9Ha\nU0nKOVyTTpNWJgpFkjIXFc3WvFEeuQbPCKvq2JHD/xObQ30fD7Z3I6876k4C9XXlUGmsWNue\nSFOb/eHygEaOSoqDy7fs88vGjCLqKdFwm8zopalU9oer43oGGJZ/RV3CslqTvw48opiAEoy2\nCXpUjnLnka434pSHZ7Q5ooXpq1nmmgXd5GGZ++XyDHmXpjACjWd4seATeS1pht/bMdPNtNxX\njXmGjnMPyLTqgrSX03rUUpoer8XH3ypJCZWzhvIjhSWnPxkauhUi0+0tZHmRsPApBAAAAADA\nNwud9N8qlnXSJz/a4udgQqjC4fD6/++AiK2d9IKMR53d5J8Alnd7/ObgnGqmCsY0KMQzcJi9\nm96DVDUI0m95k4aSu3deWvJ7peykz4qaJ5fCDeXH83DTOOVPMcqyqRP8tvwePgnNKqSFHmJB\n2oO+flSnTODybaauv0tx1yh20j/aPdvJkNIINts6QXdTKbVXGiw4LRRBUX7EmFZVqCfV2L7B\njicpynNA4dPz1Gf7/W2NqWzC3m9syfPuiqtgm6nzoiTTbeutnWOHid2s+HmTunMLB1OsMOYe\nrY9+yKLVo6PZM0LUmZ7kkHV+uE9xH0XCBHK58028VT7ZV0LtTno2tCclqX256zdHageCXYPR\nCRQ6Yplok7XQSX/v30nWfBrjXxsPXU2xs5vpNkGPypFWJz2jzREtWriaZahZ0FkeVqyTnokM\nL9tJLxblLhnZTGXMHA6nz583SyJJuvuvt5nqY5nD4Uw48L68lFS8k54lp7/SPdLcrZCUzm8h\nFcbAwqcQAAAAAADfMnTSf6vY1Emf+mybmxGN6SXbL7jBwk76ovyITq4KxugovD2+t2Ecn8IL\n9XK6zw+huAvqEOVPrmsr3ZaRVYvw/KKyGUJUlk76yP3t5FL4KEfxA5F3O8Zy6RcWQRDWNb5X\nkle0qhDTPcT5STfbOJnS2jsOhzthl+KHnmp00r8/MJHW1k0d29xOUdFkabbgmC4CQcaT77ws\n6SaVZ+i06kqskkwo+/Q868M+OwMa7a1H13+V5zNFFWkz2VCUUjpvvbVw7DC0mxU8b1J3dFZn\nWsk2sm528+MJ8i9KenQ0fkYoKnhvzivtUjW26UxxN2MuDyDH7zXoonrZVUK9TnqWtCf+S19G\nnZ6tcuC4TEq6bVSxCWbaZKY76Z+sHc6hXz8bTzmmMgFaaBP0qBypd9Iz2hzRop2rWSaaBV3m\nYQU66RnK8LKd9NtH1qYYM4druOZFauqzbS7U3oMhCIJrYHs3q1BhSireSc+S018Jzd4KlWDD\nLWTZ1XV+HQsAAAAAAHLwTXrQMUH61cYtJsYVisg/mjrXHhA8sFnd6q5OFpkJce9f3j24//iH\njMKS/16f33G+7wZdJFaZTYM6Xo7PoxLy09EJLadsk0gk5B8dfJr16dXT37eak71ZZmJCxIu7\nJ06cDJWNMGR+98EOrw5MrqfJdH91ZU77DW/SS/7mcI2WXj9dU9UH2vXaf/NfkBcNTGv7mysY\nUiDMedRx0i6xbGEZ29UaOiSoepUq7u7uNgbCuLi4uLjY22f23gxLJQfLfL+j7/aZ58b6UEyS\nkirEM3QLCAgo+Vsk+Pj4RbL0X/YN/b2NS0vKjM7T7S8RCuOC6na9mVJA/tHI1qtPcHCrBt6u\nLtZpUe9Dw8Ke3jh9KyxNGkAiEW/5vkmbjimDy4zboCvr/d6AEVvJv5i51e/WpnEVDxdxTnLM\n54hrl+5kFInJAfKTb3atPygu5qRVOcNTNF5wjBaBRJw33q/96U/Z5B85HH7d1j37dm9T3cPd\nxqg4Pi7u9f3LR09cSRIUS8OIhEm/dq3nFRPby5nSg0WRIHpQ83FpRV/aW+c6gcED+zbx9XSy\nM4yJCA8LfXvh8L5XSTI1IebCj4tCh8ypbasovgqh2GayqijZ1nozcewQWtxN6udN6t5t799/\nySW5H7l8y1Y9+rdr4uvu5lScmfgp8uXJA8ci0r70vhRmPuweKD+3ikJMnBH4xt6L69hOffUl\nsCDj0ob4vMmKnrbLOTL9Onlx4rLmVHZBg9jTnqS92NToj81CsYQgCC7PrOvgMYMG9m5Us5qT\nFe/z+/Cw0Kfbli2+/SlHJiXnJ62MHDzD20phhFprkzUrL+FY25/3yR25dr7thvVoWa1atSoe\nDnlJsVFRUQ/P7z33LIEc5tmGgVt/SR/nWW5ntnbahMpXjow2R7Ro7WpW482CrvOQI71gkIiy\nHz4Olf7DvEr9uq6l1YN88UBoMcPvrei16r/Qr/H7Bo8Y0qlFfWdr3qd3oa9fPdq/60RKUekt\ntkQs/K1tz38EjxOEX3608Gw6YmhwoJ+Pg3Fh2Ns3L55c233kZskxWEJclD7298ehG1pSSQxd\n7Dn9MXErxJJbSDlsu44FAAAAAACCwDfpv1msGUm/IEBmWjku33LMksNlXx4XF2dtndnX4GuX\nCZcn89RM5yPpj2wfJv2bwzUK7DVsweqtV+48fBv+MTk9n7xiYeZdT9nnOEbWDVceulf2dXmx\nKO/EmulyYx24fJtjceoMHFcu8e4i8jv1bebfIv+38o2kj7s6Uy55rq33Kwx5cai3TP4b2M7e\ncDJd8cyw4jdXD7STfbRk4TalvDSoXYXSI74nr1jeVzDLbqK8Y/DIaJlnQByu0cBZ2xV9JVR0\nZ88fcpnv4DdXve2S4zE2KB1GY+Lgv+7MI6Hsxoty4w4uHW9TZv7eZnNul7fvzBWchIEiuD23\nhdyuOfkPDAnNKBuyuCB62YROch+2tKk1qbCco1IuAd1afWlvDUxrLNyjIPfExVmbpnWUS0yV\nrqeV5AZFald4lhSlhDWtN9PHDnO7qXYdoE6QcUNuYh4Oh9N61MLILPlJEcSivNOryp0VvLxh\nlwzVxugLfcjB6v78UOWeCnNfGJNeIjGx66VyFeXUGEnPnvZEyrpmn/OKWk6xKPfwsqFyQ8y9\nBlwuL37m2mRGL003NpG5oja2abzl9CNFM4mLn5ze4C37IqZz8z3lbVprbYIelSOVkfRMN0e0\naO1qVrPNAqvykNYHjJjLcLmR9FKtJ/8dJyiWC5yfeLdnNQuF4Tkc/vBF+3PKXO0nPd7lIzsR\nuql9X7UzROWRwobTn4SBWyEJK28hWXIdCwAAAAAActBJ/61iRyd9dMg4mVtinsmfF2OUxPl6\n+/eEIjrvpLf4Ollfje9m3P2QrSTypc2dySuae/R4oHTm4fQ3hxuYG5JXcfBbSnFHKBLmPm9I\n2oSD33S5h5JqdNIL0i8EyOo784mmElzBTvqEBzvdjeQnCfjjZaqCoOIiuQdVP52PVh65IOMm\nOXIOh/OpzCOzLyHVrUKa7SHOCFtBfirN4XAn7w1TsvWku6vMeDLPQLcn5qmxXYUzbdr4Dv+Q\nV1TepjPDT9aW/YIml2euuOFisuAkmi6CgtTTcp+rdOvwe9nHpmQP1g6Wy7qeuxV/NFRhF4iB\nWZ1jEVlK4t8+1Isc3timk5LAFKlZ4VlTlBLWtN7MHjtM7qbajR51/7ZyIW+Cw+GM3vhYSfiU\nJ5vsFU3LrLhHh7HaWCyIsiT1LZnYBqnc0/Cdbckp8V+srLuICjU66UuwoT0pYenZX/qZHoVO\nTZSZFNrMcajCYIy2ycxdmhYXfCTXIq6B7UmlvSmJd2eTU8I3qpIrUryPWmsT9KgcqXTSM9sc\n0aLFq9kSmmoWWJSHtDrpmcxwhZ30rf93pryY8xLPmfMUvLswaV+5eRJ7aZpctscXKnjbRyOd\n9Gw4/TFxK8TOW0iWXMcCAAAAAIAcdNJ/q8p00vf74ecZall3P0nhFijcuouHO8u8M95+9VOV\nCT82uiZRhs476Us0nLxN8fvxX2V/Xk8Ozzeucr7sXX0Zqc//JT9n5HA4m2NzKO6LauKi2c1L\nh14ZmPreL/PpQTU66Rmldid9TvTTlTMGGpeZwtrW9zeF4fOS9pCDWXnOpLKVkF7VyGsdSlE8\nJFS9KiTRdA/x0oYO5DB1fzyvcgcv/ygz1WH9mfIPTNXrpDeybP4yR8EnwMkyQvdayD4Xqznq\nStlgjBacRNNFEBIs86jaxL5rilDR0EdZR0fJtIQmtt0UrqOwms25laA8cmHuM/LzRy7fWmV6\nVFKvwrOnKNnTejN67DC6m2o3ehTlpxyVGwjbdE65Q2ylPp2aXDZVCnt0GK2NGxvJNMVbE1Sc\n16Z5lA6O5HB4Cq+CaFG7k54l7QmXZ34gRsXBVZQXakK6ADAw9VEYjNE2mblL0/SISeSYPbqo\n/sx8fweZWan+S1JwsGu5TdCXclTZ9ch0c0SL9q9mNdIssCoPJXQ66RnN8LKd9LZ1flF+Gt3X\n1k1uFe9h+5SmRdzHXubW72qGglOMRjrpJSw4/TFxK8TCW0j2XMcCAAAAAIAcdNJ/q8p00qut\nxSbFL5urvHXPjl5NDmBiH6R8gEuJorxXHmWGQbOhk97crX+WqvSf6e1JXqXtP1SfGV0YIzML\nX+0p9ymuqNL9JaVzTnI43FlXFDw9YXknfYdJ05S/RzLth4kjhvRr4ush97CvBM/AYf9HxcMO\nUt8MIodssVnZuAqpd9tkPty4rZwnIOpVIYlGe4gFmTfIeWJg6vOxoNwxx1KF2Q8NSc/HzV0m\n0t2uRFFH4/dnP6vctEQiuflbY/JaBqa18soM/mO04CQaLQJxcabczJO/3lHxaLtEUX6Y3GTF\niz8qGLVWtpo5t1hPJf65VWU+Tlzxo169Cs+eomRP683oscPobqrd6FH08BeZh+Ymdl0zqPX/\n/0+2h4Aop0eH0doYe3UAOVjZJ/5kBWmnyTN+29RcQCUlyqnXSc+e9sQrOITKijPcS3t3uHyb\nsgGYbpOZuzSNudyZHHPzjaEq4zzX0pW8yk8fMsuG0XKboC/lqLLrkenmiBYtX81qqllgVR5K\n6HTSM5rhZTvpl4SlK4856mwHcngu3/J+tvwL2XKu9atOXmVfsoLEaKqTXrenP4ZuhVh4C8me\n61gAAAAAAJAj39kJoDVvFm8lL/ovWmnOU9CHKodvWm9rUJWuxz8yli41Be1eY6k8/RLhzxdj\npEt8E+8jk30pRt7u7138HS2KJZKSxc9HNxDrAtRNaan01xvaz7kqXaw3+djiDq5KwrPT1Y3/\nXFUdSjEOx+DHQw8Heyr+XqOBSY/580vLqH7fqlTi5Jur2a6qrkKaFnX0D9HXSkUQhNeQrZ7G\nCqYJlWNo0XS6m8XSmOySxfyU/cWSjfyKJdzUYdC2oCpUQrb685Tz31UThaKSxaL8d0uicxZW\nk3nUq+WCq4isjws/CYqliyb2fZa3dFYSXopvUmtbsFfbneHSX/atCZv1TzOVK47ZGkwl/uZV\nzInP2VRCqo1KhWdLUbKv9ZbS5LGj9d3UbKP3z54PMknatMGaWsM0/eCkhT5/qgzGaG10brXa\nhn8so1hcsvh+xyJi2YnyAoetnSchNd1tVo+isgkmsKc9+X1VayrBAmyMidgcJQG03yZrCs9E\n5vSdHao6w7vfiZMoD6H1NqHSlCPTzREtWj6TaqpZYFUe0qLNDDeyCvy9lo3yMFY+3gRReqtk\nXePPAAtDJeEJgnBoYU8c09K9tm5PfwzdCrHuFpLF17EAAAAAAIBOetCZ/06V3ityOLyVg6sr\nCUzWdPEg4vgSZhKlJp6Bw9pAF+VhcuM3RBaUPjF0abncnq/gG4EKGVoE/OBqvibuyxPJ/JQj\nmcX/UXxWVZ5iQWTvNr8UiL/ccltVH3b7n14ViVDv8I08Fh+79muQZ3kBLKsPmzePdrS5kblq\nJIZKFdK4G2vekRfHzG1IccWhU4ZGPkmRLsYLRVWMVD/SUqLe739QrM1cQ7cNHd36hkRLfzm/\n99PCPxqQw2iz4Coocvtl8mLtn2mk22/BRGLnz9LF6BPHCFUdCXxjzwW1balEbmRnRD0laqBY\n4VlSlGxrvck0eOxoeTc12+gV54ceSCkgR76pJ6V3FwiCsK45N9Bq2e2sQuXBGK2NPEP3FX4O\nYx8llSwWpJ78Lyl/pJOpwsBz170jrei4rpM77WRpAnvaE0Nzv7GuZqrDEYSpmYobHy23yRpk\n4ixzFR2xY8yNuU/a2htXJE4ttwmVphy10BzRos0zqaaaBbblIS3azHDrGtNVhuHy7cmL1Ue2\nU7mKoZ2KXnwN0u3pj6FbIbbdQrL5OhYAAAAAAKhenQNolkSUszs5T7pobNO1qaqX+qWsvGYY\nlfmsuG6ZOg5zNFBxNCXfP0VerP1bE1qb6NnYTvq3RCw4kVagJDAVa/q0v53x5asHPEOXvXc3\na3kYtw5xuAZthsy8ERH6a5C3ZmMuzg+d/neoGitSqUIat5U0honLt5nqrnhGgbLq/rbhCEkF\ne+gJgpg63Et1oK9a/dWKvBh9TJ0Ml6N2wVXQyzNx5MXuQ8t9ZaQsC/fJDgalOZ+ftFesahXL\nqj9XtKg0hLkKz0RRsq31JtPgsaPl3dRsHchL2kkeXWfh8YsHjXaJN6eZo6ZSQkarNnZbITMR\n+pp/3ykMlhOz5iwpb13a/OtmqJuLefa0J5aeP2oqKi23yRpk4TadPP1yUd7bHg26bQ55VZE4\ntdwmVJpyZGdzRIvaZ1JNNQuVIA9pUTvDrevJz+2vgOztnU0jFSPvCYLgEFq9JdTh6Y89t0KM\n3kKy+ToWAAAAAADQSQ9fnEsvUO+TCXcn1FJjcwVppwtEpIcv1YZRX5fLt5X7SrrOWfl0Vhkm\n9ngsebGNjxW9TdSRCf80V0hrdTmvN/X79ULpTAYjdt3q4ax4yEKlYWxhW9W7VotO/eau2vYg\nPPnGvmUtq5hrLHaJ8PO7Z3tWzgyo2fSaWk8uqFQhzRIJPj3NKa1Fpg6DDHX0kgbP0LG/PY0j\n2rL6WPJifsIF9bdd4YKroEukgWIcDm+sM6VBhF9XMBzmWHrYioQJj3NUNAvWdespD6A1mq/w\nTBYlq1pvMs0eO1reTc3WgczQ5+RFtx5taa3uPZrqXD6UqFUbnZuvJncNRmxZpjDYkz82kheH\nrOmodjIriD3tiXUdjRWflttkDeIZV1/f3o38S178jYlBDTwDuv2+dNPdt7HlraiEltuESlOO\n7GqOaKnwmVRTzYIe5yEtFc5wAysDuqsYWmlvlDxFujr9seJWSCu3kKy9jgUAAAAAAALT3YOu\nCHPukxft/Cl9qk2qi43R8dR8jaaoQiy8Vd/rxr3KJC/OrmI5uwJb/JhYQHhZq7du9sd9rX88\nKV2s3n/zjsEaHlCuTevic6e40Hn8WmH56fEREe/fv494//59yR+hb8MzC0UViZNKFdKsQtlj\n0MRe228JlG7ari+th2JGVu2cDHlJXz+tLcx5QnFFJgqugp6QHg7yTbzpDsRp52Tyd1zpd3mf\n5hY1UzolibmX5l5MqZgKVngtFyV7Wm85mj12tLybmm30Mp5lkBddu7nSWt2+aUOCuKnepjVV\nG7kGziv8HUbdT/wSbcrh/Sm7hjjIvoQhFvx0LEq6ZGTZfJEvpZmlmcCe9sSsusauAbTcJmvW\nsEO711bt+lq2+yTq4YVlDy8smzXJzMm7VWBg68DAwNaBAQ28DSg0HVpuEypNOeqwOaKFiTOp\nppoFfclDWlh4FcoSujr9af9WSFe3kKy9jgUAAAAAAAKd9KArwqzP5EXTKvSGcbuY0x43wChj\nZ9Vf/YzOL1YZhjpBokC9FcXChCEtJ2QWf5m809Sxy619YzSXrkpLmBF18ezZs2fPnr96JyYt\nT/UKNFGpQppVXPCevGjiorPuFr5JTbqreBnzpR2NosJoJSGZLrgKiheWPramkkcAACAASURB\nVJjjGdF7V4kgCDN3U+JZ6WJ0oYpGxtCWLcOn1KjwOixKlrTeZWn22NHybmq20StMlvn8sKU7\nvYsKnjG9YZcM1cYuKzsTLXdLF1dtCB8yT+b7uGlvZ73KK+19rPH93zr8LCx72hMDS41dE2q5\nTdYsY9t2tx7t69lx1J14BXUyLyny4tHIi0d3EgRhbO/ds2//AQMG9GjvZ1L+rGpabhMqTTlq\nuTmihekzqaaaBTbnIS0svwplD52c/rRzK8SGW0jWXscCAAAAAACB6e5BV4oyi8iLRg5GtFY3\ncdJ2j6ZyPFPVY3SyijX5cdLiXDVvtj8eHnwu8csDAi7PYv2dQ26GLPmqLEuJhUlb/xjh4uT1\n3Ygftxy+qPzxCpdnUa+uOmMLqFQhzZIUy4xSMnbR2Sck+MYedFepalyaXWJRbrFEQRjtFFyF\nSIoF4tKk8wyd6EZg4ipTapkKM4KVaFV4nRclS1rvsjR77Gh5NzXb6IlkB6I5m9CLnGfopjoQ\nQRAM10bHJqucSWfkdxtWyAW4+vNR8uIfs+tTjxxU0/822dq3//XI1//MHEqeO7osQWrkkS1L\nB3ZqbOPgNW7BjiSh4mOftU2fCrouR601R7To/ExKCzvzkBb9ynCd08npj+lbIfbcQuprYw4A\nAAAA8G3ASHrQDa6RzAsihSmF5YVUSK6PXy+Y8mRe+PdrFlCR7975qDuXQHFeadaJRTmja1qP\nphmDMVcm3ab2/fNSjqiXGPbLT7zStsF3j5OVfSPQ3N69Vq1avr6+jVp27N+3mzCkk3cw6+bY\nVIAj82ZMcZ7OHriIRbQ/wZhFemLO4RiUHUyjHwXH4RtzOdK+BJEwiW4EwnSZaY1NuLobVMsY\nNhQlS1rvsjR77LB2N6mQG4ObJKA3eay4OJVKMKZrI9fAflUzp6G3479sLnn/0dRt/e2/dBuI\ni5Km3U6QBrZwnzLIQWcvV1VOlaJN5pt4Tl22d9IfSy+ePHH8+PHTIbfThOUeDoXpH7fNH3Ng\n6+49l0/28ZXvH9LXNkHX5aid5ogWNpxJaWFhHtKidxmuc7o5/TF5K8SqOqCvjTkAAAAAwLcB\nnfSgG4Y2FuTF/Fh6H5hPzaDXqU9LlkiTL5tLucgOWF9/+WaAFr9UCmoQZj3pXv+7xynyj1cc\nPes2CwgIaNasiV8DX19fd3uZ2RE/aDGFFcEzdCQv5sfQOwY1SCT4RHeVD4LS52hcA3u5/+pR\nwbkY8j593RdR4WflgcvK+ywzKMfRoLLNjsOSomRt663ZY4e1u0mFWVWZr1lnxeYTdeyor15M\nISe1Uxs7ruxKNNshXVy6NaL/rAYlfyfcmppI6m1tsmgazbhBNda2yXQvTQ0s3HsM/7HH8B/F\nwtSb586cv3Tt5s2bT97FiiUKBoXnxd0c5N/yQtST9rL9XvrbJui2HLXQHNHCkjMpLWzLQ1r0\nMcPZQPunP+ZuhdhWB/S3MQcAAAAA+Bagkx50w9CyMUEcli6mP42jtfqjHKHqQOr6UMDIkOKq\nXuZERLp08U1eEW6PWW5d0Hc3SY9XOFyDln0n/v77b0GNdT+LZsUZmPuRFwUpYQTRXScpEeY+\nphVeJIwlH6SGsjtC6FXBNbYwlHYkFBdExglFtD4/8TRJ5vFfY/PK1qSwpChZ23pr9thh7W5S\nYeNnS15MuJBAdKHxLYCc969UhtFObXTwW+Fm9F/c16me3/2zhpi1s+TvI9OvSYNxeebr+ntq\ncLtQgrVtstqXplxD+3Z9RrfrM5ogiIKUj7du3rp+5cLp02fDEmT6oYvyQ4f22pxw7yfyj/rb\nJui2HLXQHNHCkjMpLWzLQ1r0McPZQPunP+ZuhdhWB/S3MQcAAAAA+BZUtlF3oC9MbIPIi9mf\n9tNYWSLcn8LUqF+R4ENC+fOCVoRLZxfy4vUYZd+lA50TpJ+ecS9RusjhmSwNibx9ZG2lecRm\nZBFgyS89BeQl7lASmFGC9PPRhTQOuty49cWksYBGNh1kY9OngutsZyz9WyIRbU+k1SyItpJ6\nWbg8sxaWleqJG3uKkrWtt2aPHdbuJhUW1WT2JfY0vQljP+54rzyA1mojh2/7d8vSgshL2nU6\nTUAQRFHeq9lv0qS/OzRe5WuKF201j51tsqYuTU0cqnfpP2rppoOh8dkvzm1sX8OK/N+kB9Mf\nyL4Cq79tgm7LkenmiBb2nElpYVUe0qKnGc4G2j/9MXQrxMI6oL+NOQAAAADAtwAP+EA3+KZ1\nWlga3cv+Mmu9IP3s6/zietRuufMSd6YXMTIjPUEQ2dFrGYrZtXtj4ueH0sVHa94R+xyVhGeI\nS9tZ27bR+zznP9MmvSZ9yX7j1m0GpO/Y8Y2raShp7BJzZqWE1JvlM/rkzC5VqKxYlFmkOhAb\ncE2CHUy3JOSWLBXlh4ZkCLrbGCtfqUTm+5n12h+QLrbYfPdQd0qZo5BEIvo7MuvvOraqgxIE\nQRDvN4eQF106BZAX9avgGga5Ee9Kh7acOxI995e6FNfNS9wZU1g6ttLEfoA5r1J9k549RcmS\n1rsszR47rN1NKkwdhhhzZ0i/Qp0TuypO+IubIdVXUTdfi1ceQJu1se2KIKLxZuniXzvef/dr\nvahjPxWISxPQc20vutECFexskxm4NOU26D7xYru2bV0b3c0UlPwkkUhWRWQeaVx61Otvm6Db\ncmS6OaKFPWdSWliVh7ToaYazhLZPf8zcCrGwDuhvYw4AAAAA8C1AJz3ozEx/h97XYkv+loiL\nfj4ZdWWIN5UV3yxbp8bmsosp9eu/WnFJjcipsKw225S3Kf/rV0VjQ/4USq4YUnzuJxYM7tZD\n+jU+c9cJZ/YFq5cMK58eY3zorXJi5o/kTvrRY8YYVaquQMVijsaQF3vNakZxxfenYhlIDiOG\nd3XbsjNcujhvc0T33+tTWTFy+8XY2NLddKhhWcGUHP3pyt+XB1IKKhFO3RhO/iFwUg3yon4V\nnPe49sSq19LFN8uXEL/so7ju8/mryYuuHUdrMmUswJ6iZEnrrZAGjx0276ZKXEPnKa7mq2Jz\nShZFwqRJIdGne1ejsm5ewpb9ySqm59FmbbRvsLya8faor5N1h/29jvh188Y/nkoDGJj6/O2P\nx+uM0HKbrKlL0+KCd+06j5MuGlu3vXxmocpo+Sa1Ns9rUJfUc5MUmkWQOun1t03Q7bmV6eaI\nFvacSWlhVR7SoqcZzhLaP/0xcSvEwjqgv405AAAAAMC3ANPdg84ELOpMXnww43+FkvLClhIX\nJf+4I0KNzb2Q/cCk4siL08fv+6BG5FTwDN3m17KRLgoyr066QXWcR8LdaQcvXb3xVXytWsyk\nEUrlx8s84KttbkBlLXFR0g+6G75DV93f+5MX3yz/JUtE4SAkiGXbI6V/c7gGP7ibVzAlCTcn\n38kSqg5HEB8Pjrz/dQYOgiB4hk4LfGWGEetXwVl7zfUwKn1bLj95/4KnKVRWLC6IGLsnkvxL\n79lUhwnqC/YUJZtbbw0eO2zeTSpGTpXZ6NUJ07KpNWgHxy1SGUabtZHDs1zdunRm2tyELSci\nj6752llFEES1Pusq2bQZ7KHlNllTl6Y8A8f7d+/e+epqyKoUajNOWfrKvGMnkT1k9LdN0Pm5\nldHmiBb2nEnpYk8e0qK/Gc4G2j/9MXErxMI6oL+NOQAAAADAtwCd9KAzjk3+rmdWeteal3Cw\n//YwlWs9XNjjcQ6lDgkjB5nZ6h4velheSKnb/+saUcDgZIND/ulOXtzfb1BEQXF5gaUkouzJ\nA/ZKFzkczg/ja2o+cSDLrJoZefFNLqWKcfqnztGFqsuUJaxrzG9vXXqYCDKuBC17rHKtpHu/\nHU0tffxk7TW3lklFJ2URFaUF99ugMpgw+1n3scfIv7h3WudsIHMi06+C4/Bt1wd5kH9Z0WMC\nleeDxyb0CM8v3TUjq8BFvlTnPNcXrCpK1rbeGjx2CBbvJhU1xy8z4pY+u89PPt3lzxsq10p5\nvGRcSIzKYFqujYHLZabzHTd4Annu3ClLqA7LA7qYbpMZujTl8G3J302XiAum3qTUARN58DN5\n0a2BjVwAPW0TdH5uZbQ5ooVVZ1Ja2JOHtOhvhrOElk9/TNwKsbMO6GljDgAAAADwLUAnPegM\nh2e5Z67MnXbIpOZ/31X2ufSY8/PaLXpCMX5TF1/y4uezwy8mKxuxFHdlebcVVCNXj1v7rd3t\nTaSLgow7bbrOiCkUKVtHUrxpVNOTSaUPAuzq/zXayZS5RGpEYeblQFkDZz/TdaLocWjlQF48\nQ+GRzdVVI/ptfC33Ywa10WxqKyisQPwc/qa/25N/uPe/tnPPRilZoyjv7dDv/iX/Erh0mPoJ\nIIm7+nPHOaeVBCjODwtu1I789JzDMVi0rbtcMO0XXIWKgCA6blpBfgydl3iiYe+/BEqjvPt3\ncPCe9+Rf2qzYalDpBtayqijZ3Hpr6tgh2L2bKhlZtdvSRaZb7uHCjuO3v1CySs6nEy3azCV3\nAJRHy7XRrt5Sb9IT/7QnpV/XNrXvP83DgkokoB5G22TmLk2n1JHpSz49bHK6qrn0C5IvjTzw\nUbrI4XB/8raSC6O/bYJuz62MNke06MvVbFnsyUNa9DfDWULbpz8GboXYWQeYbszL3vv3nvhA\nQ2kHAAAAAKjsJPBtEgvkasK59ALNbkGQeY0cv//SlwpSUZzd301momyegcPUf84WicsGFR5f\nMdGa/+W1Ei5PZq0bmYKykYsK46ThS5i7db8Zm6soseIbO/+QBjZ2Kn2h3rr6arX3TqHUZyv5\nHJkHflY1e+y9/l5h4KTXl6d19yYH5nCNN0VkUtyWpgTZmpDTIChbOmXkJct/+9Oz9zVNpcfF\nkEeOeV28wjKtqNx4mcGpXJ7Fmusx5QXOT3w2c4A/oUjAymcKV1G7CqVHfE9esfmG0PJCUtqE\nuHCir8zIOS7P4vuF+3JFCoo5411Ij5oyT/BNHb4rG5LKduUKUapp8OzQjMKy4d+c/bdJmadC\n9X8MKRuS6YKTaLwIJJJrvzWR27pH4MhrH7LLhiwu+Lx0fEeubBti7TMuX1ShBChIUm9P8opU\njnrl1EgJq4pSwprWm7ljh+ndVLs2UifMeVzdWGZiDw6H22Hckk85wjJhRbd2/lGVFJhD2utm\na97IhdZCbZRzukdVxQW98jWNHKGMSunodXtSIiSgdCJlLt+m3AQz1iYzd2maeG+8XJrd2k59\n/ClLcTrEgrsnNvjZygzrt6//l8KwLGwTdF6O2dF/kUN2vRFXNgxzzREtrL2apdIssCQPS1Dc\nU6YzvFjwiRys7k8PVaY8K2oOeZWgB4kqV4nYFUheZV9yXtkwVDKEypFSlpZPfxq/FWLtQcfo\ndWzZe3+XgHIvNQEAAAAAgKyicxQDVASHZ7Ht2qqzvhMF4i+DHkRFKWun9di1quHA4AEBdTyd\nHa1yUxI/vn1w+MChF9HZJWF4hk5/h6yY2nGENB5TnoI5IbiGrms6uo26UDrnYW5cSHuvGsE/\n/NijVSNfX9+q9kZJ8fEv7lw4sGfTqftfgllU63t6QXK7kXcY2mW7Rr+cmbav25rn0l+yIs4O\na3d2QdPOQd06N6pZxd7OPCcpLjo6+vWdM/suvRTLDgdpPf/KhBry45yACWYuE76v+vuOz19q\nnViU83P7aru7jvhx4uB61dxdXFyInPjw8PCIiIhnt0P2nryTL/oy3MHQyl6YlSqN59FvrQfE\nzuzepIYhz3/oIG8FW6KJw5V5Z+LZrPEHaq9vW6cKX5iVkJBQvWEzeh9r5Biuur77mEfvlKIv\nYynEopwd/xt6YP1ffQcMaN2ohouzfX5y9IcPH8Je3Dp07mGRuLRCcrgGv53easat6AhuvrFb\nsSCu5O9HBxfXPbo+sGf/zs3rubk5i3OSo6PCLx4/dD8iVW4tU6egq6u7lI1NCwWn4SIgiLaL\nrg7a73YopvSjmzG3/+tQ41Djjr37dm/t6e5mbSRKiIt7effC4aMXE2Rnp+QZOOy+scakMk6L\nw7aiZGHrrdljpwQLd5M6A3P/i9sG1RhW+qRYIhFf3TrLe9fyNr0GdGha283NWZSd9PnjmzOH\nDj3/elFBEIRVjSFrLK+MfppcXszaPyO0XNqPOLta7kcOx2DVOMw0yzjm2mTmLk2dmm8cU+3g\n9qjSWh13Y23T6hv8Ogf36+jv6ODg4GBH5KfFxsbFRkecPbj/dYLMV5O5fMuNIT8pjFl/2wTd\nnluZa45oYe3VLBUsyUNa9DrDWULbpz9N3wqxtg7ob2MOAAAAAFDJ6fotAdARdoykL/Hu8Ewj\nyv18XL7lihsJBWlnyT+G5hUpTkPGdTcjxYMOFTIwq3cjtSDyYBvpLxofSS+RSCSigr9HNqKe\nKqkmEzYX09iMxnybI+klEkna61XGNHugHfxHvkqLqWqs4P0nu1oHyJGrXYXykw8qScCz3NLR\nRdQ3EXd9jXM5w3OVGLT2kcLY6I6kd2x45ujMdrQ2bWLf8mqCgmE9JRgtOIaKoCD1fteqtOfw\n5Bm5rrkWW16ctBIghyUjX9lTlF+woPVm9NhhdDe1MJK+xJl5PWgl29Ci0b0MAXlsrsJhl0zX\nRjliUX4tUwO5tWxrLWYmzzCSXh5DbbKEyUvTjLAdTvRP5QRBcDgG4zcrzUOWtQk6L0fq44MZ\nao5oYefVLPVmgQ15SGtPGc3wb2EkvZZPfyU0eyvEzoNOImHwOhYj6QEAAAAA1FYZB9+BvvEZ\nsOzlwd+p3Bgb2zTceCVsRhtncZHM2IgqxorXNbJu++zaagcDSrfcll5dTjy/08bOWHXQCuIa\n/7Tryb6Z3xlSfzWBZz7yz8MPN41X5+ErqMu27vSnuyZTfIOEw+G3H7Xo3f0d9Wzdz68dylyq\nTBwGBbuaqw5Hh2vbaW/ub6tPufJzDWynb7l18Ef5iWTV1m/ZtQMzevA4lLLapla3y2FX2juX\n+4FbpguOiSIwtgs4/fbBsGau1FcxcWq0+9Hrae3cNJsSVmFdUbKv9dbssfMF+3aTlh7zz1xY\nPMxM0RQ7ZVlUa3/4yfXm1kYqQ2r5jMDhmqzu7C73Y/s1wxQGBo1jrk1m7tLUutboF5eWVTWh\nN00a38Rj9oEXm8fXVxZIb9sEnZ9bGWqOaGHn1Sx1bMhDWvQ9w3VOJ6c/zd4KsbcO6G1jDgAA\nAABQiaGTHljBZ8DiD1F3p3SvXV4ADofboPvUp1GPxrdxJQiiuPCz9F88QxclE247tpj64d2F\n4IBqSrbO4Rq3HbU4IiwkqIalOqlXB3fIslMJL89936mW8nAcrmGznmPPvIrZ9b8BFZ1VHOir\nPXxd1L09HXztlYThcDg+7UacfBp3dedsWz6XIAjfcbuuLJ/gqNaANio2Xdtc09JQs3Ha+Y16\nFv9x4+9D5D6XK4fD4Qf0nnTm5YdV4wKVBFND8IozUbd2tauu7BjkG7tOWX445u25lvYqHqIx\nXXBMFIGBWe09D2Ju7l3i72qmPCTPyHnsgp2fY54MqW+r2TSQcPh8A2MTU3MLSxsb5raiGvuK\nknWtt2aPna9Yt5u0dJm1J+7thVHtlE0Py+EatBy28F345V41qU7fquUzQsCSAeRFnqHLuvZ6\n+lIOW9oTWphrk5m7NHVu88u7mMe/9A9U+B0oOXxjp55j5r+Ie//XoHIvv0n0tU3Q+bmVoeaI\nFlZezdJoFtiQh7SwMsPp4fENjIxNzM0trG1sjai9CKhBOjn9afZWiMV1QF8bcwAAAACAyooj\nkf3WFIBuJYfd3b9//6lrj2JjY+MSMswcXKtUqVI7oPP4CRMCa9lJg6W8GOzY6Ms0xaYO/fOS\nj6iM+dPD07sOn7t77967T4kZmRkcYxsXV1cXV/dW3QaOGD6olmNpv0VRdlRETF7J3zxDl1o1\nmH2gnPbh6ZkzZ85duBEZm5CUnJyanm9mbWNrb1+zXtNWrVp27TOocRUNj9kF+sSvrhw8ePrK\nvfsPI2OSMzIyOKa2rq6ubu5erbv27NOnd8Nq1mXXEaS8OnH6Vuj7RLtq3r6+vrVqN6jqoLF5\nGkSCuP9WLtpz/lFUVFRcaoG9s4uLi4urq+u6A/ur0plHt6zi3LgrZ8+cOnXmaXh0UmJSUkqG\noYWNvb19FZ+Gbdu27dRzQMuaNhVPv6sRP0H45dOPjg3PJD3/OpepRPj82ulDhw/deBKRmJiY\nlJxpaufo4uJStZZ/7379evds60Bv7xgsOOaKgJAUvr5z+ezZs1fuvUhISkpOSsoS8h0cHZ0c\nHb0atOjRo0f3LoGOJqx4hqtFbCxKnbTe2jp2Sun1SSo5/MHx48dPX7obHZ+YmJiYIzJ0cXF1\nc3ML6Nx/1Khh9VxLJxXI/RT+Of/LR6lNXbw9bZUMxNTSGSHz/Z82NedJF6t0O/45pA+dvQcN\nYaxNZu7StDA98vjB43efPH/x8mV0YnpOTk5OXqGxuZWVlZVTFW8/Pz//gLZ9+3VyVKtZ0Nc2\nQdfnVmaaI1pYdzVLFwvykBa9z3Bd0e3pT6O3QqyuAww15gMczI6m5rsEhMTf76bxNAMAAAAA\nVD7opAe99HRWQ/+lL0v+tq25MS18om7TAwC0lNvRCABK4dj5dhztXnXA+Wjp4px36X/5aOAd\nKQAAADbD6U+v9bAzPZdeULX7lahzHXSdFgAAAAAAPYDp7kEvXT9Wet/u2t1PhykBAAAA0CxR\nYfTkK3HSRSOr1vM1MYsJAAAAm+H0p+9K3iU181TxhREAAAAAACjB13UC4NuV8Xbd3E3h0sWG\nM5eM8aA0o5ow+94fHzKli01GeGo+cQAAAAA68vn0xJQikXTRZ/xKPj4JCwAAlR1Of3pNXJT8\nOq+IIIiqfdx1nRYAAAAAAP2ATnrQGZ550rp166SLPgX9xmxrS2XFG/MmFIq/fKaByzNbUJvZ\nb8YDAAAAaNPq6Xekf3M4nPm/1dVhYgAAALQDpz+9lnh3VpFEwuHwf/N31HVaAAAAAAD0A6a7\nB50xd5nkZMiTLkbuHfY4W6hyrdRna3uufStddGzyt4cRT0l4AAAAAD2S/mbB+tgc6aKFx099\n7Ex0mB4AAAAtwOlPfwmzk+6dWtGy226CIFzarGxjZajrFAEAAAAA6Ad00oPOcA1dt31XVboo\nKozr3HTU0zSBklUizq+o33y68OsweoIgpu3oz2ASAQAAALSoIPlxv/bLyL90XDtNV4kBAADQ\nDpz+9FdB6mETa5eWvWdGCYpNHFodPTVJ1ykCAAAAANAbmO4edKnztj3Vz7X5WFBcspgZfiDA\n4+Z3w0d///3wlnU9rc2+vH8tSIu6deP6wS2rd156Q17dvdPq331ttJ1oAAAAAE2RCOv6t/Xy\n8qrqapUe9/H8qYvpRWLpP40sW+zoUUWHqQMAAGAETn+VhURSLJZIDMxcOg0Yu2T1nPqWGEYP\nAAAAAEAVRyKRqA4FwJiYs3Nq9V6aLxKX/ZeRuY2DtXFORkZWnoLh9RbVuj94e6q2KV40AdA/\nrkb8BKGo5G/HhmeSnvfQbXoA9AWOnUpIUsjhGpf3z0kh0Ru6eWgzOQAAANqA019lIRFlf4rL\nc3F3NuFydJ0WAAAAAAA9g+nuQcc8eiwKPbekmqlB2X8V5mbExiYo7KG3azjsMXroAQAAoPJq\nPPEAuigAAOBbg9OffuHwLKtXcUEPPQAAAACAGtBJD7pXtcvM8LgX80d3tTHgqQxs4lhv5t+H\nIh7v9kEPPQAAAFRGXL714Fn7Hm0M1nVCAAAAtAenPwAAAAAA+KagmxNYwdC69rwd5+f8G3v6\nwNFbDx89efric2JaVmZmvohnZWVlZW1t71K9WYuWrVq16twl0IaPd7QBAACgUuAYbFn8y56D\nZ999jskhLGrUrFnHr8OMeb82djHVdcoAAAAYg9MfAAAAAAB88/BNegAAAAAAAAAAAAAAAAAA\nAC3BdPcAAAAAAAAAAAAAAAAAAABagk56AAAAAAAAAAAAAAAAAAAALUEnPQAAAAAAAAAAAAAA\nAAAAgJagkx4AAAAAAAAAAAAAAAAAAEBL0EkPAAAAAAAAAAAAAAAAAACgJeikBwAAAAAAAAAA\nAAAAAAAA0BJ00gMAAACwhqSQQ1K9z3VdJwhYTZARQq4wAf+81XWKtCrl8TI+l8vhcMxdBhSI\ndZ0aANC0gwO9Shq3wPl3dJ0WAAAAAAAAAA1DJz0AgB44WceBI+t5XpGuE/WN0lVZoA4w5MXy\nViX5yeUa7o7N1XVyAIAqkeBT387zRBIJQRA/n95gQuG2JvzexfVL/xjco2392j7uzg6mRgYW\nto5ePnVbtu/926J/Lz0Mk1QgPcV5sSe2LQvu1TXAr667o42hiWUV79ot2nQa/sO8cw8iKxAx\n45FHPb68bsnsfp1b1q7h6WhjYWBk5uRWrW6jZsHjpm/adzo6r7iC8Vd6+luv5BRmXuVyuSXn\nxD8+Z9NeX1JsY8DjqKvDqaiyUfbbcdjViEcQxN2FnbeEZ1Z4FwEAAAAAAABYhCORVOShAQAA\naMPJOg59QlPJvzzLFTYyM9BVer5luioL1AGp9IgHh4+fvHj7aWxsXI7YxM3VpXbTdr179+3Q\n2JNuVMX5oV52DaIFxQRBVOu979OJIQyklyZJIYdrLF3y7H3t44l2OkwOsJwgI8TENki62GzN\nmwfT6ugwPdq0pZ/nhONRBEE4t1yecOdX5YFvH/pn6fLlIc/ilQdzatB11uw5PwxsxaOTEnFR\nypqpo//afiGjSFReGNsazf/asG9SR9rNFKORh4Vs/d/iZcfuflAShm/sOmjKz/+bP83H/Fs8\n4yinv/VKoYhdbXxG3yr5e05U1l9VLWmtLsy6aWTdVu2ttz/56WqvamV/f7400G/WHYIgTJ2C\nPsWcdjTAMAMAAAAAAACoJHCLCwAAQGS8H0MezjU0PF3XKVJTpdkRhQrTn88e3s6pVotJs5ad\nDLny5FVY+Jtn1y6dW/fXjI7+1Wt3GXv+XRatCK/83K+kh55rYLv7DN8/0QAAIABJREFUv/7M\npBoANC/l6YKSHnoOh7fyyGQlIcXChPmDGrQO/kllTypBEEkvL/w0KNCn67SwHKpTlWS+PdXN\n1/uXTeeU9KQSBJH+/v6UzjV6zdiSJ6bxhjRzkYuL09ZM6lA7aLzyHnqCIIoF8ftW/dqwarMt\n16OpppsavT5h6XW9Ks/auc8rsnpBekjF01BWgxknG5obEgSRn3QuaP59JjYBAAAAAAAAoBPo\npAcAAAA9kPZsX4BX8yV7bxSXMwlQ2KXtPRvU/PNYGMUIBennB2yPKPm73tQTgZaGmkkoADBN\nXDCl54qSP51brh3qYlZuwKKU4Q1qLzj8ilb0Hy6u9fNseSNFoDJkQfKVgKYDLn2gNDG4RCI6\nvWqCX/DqYmrdqcxFLhHnzepU7+dN1yilgyAIghCkP5/YsdbCS3HUV6nE9LpelSfrw9r1MTkV\niSHzzdMKpaAcXL7dnoXNSv5+trzn1cxCJrYCAAAAAAAAoH18XScAAAAAQIW8uDONW476LFDx\naWSRMHn+wEYGN6JmBTqrjPO/QeNzRWKCIAxMa51c1FIzCQUA5r3b2u9IQh5BEBwOZ96+4UpC\nbhneYv87+e9YV2vSqWfnjo18POxsLfIzUmIiXly+cOby40/kMIK0xz39+j+NOFnTpNzbJVFh\nzBD/vuH5MmOjDcyq9B85oIF3dVdrXvSnT8+vHz925z05QMSRGd2bBF76tanyfWQ08r0j/Zff\nSJD7sapfYPP6dXx9favZ8SPD34WFhT26fjM6rzQBEnHBgp5+3h8+DHY3Vx5/pae/9apcksKZ\nXeeque5XCRdkKlXNWrVoDQioUv73FGpPPugzp1p4fpG4OGNk/62xV35QN40AAAAAAAAALIJO\negAAPWDTwD/AUuZxsBmXo6vEfON0VRbfch2QiPOHNR1M7qGv1+vn30d39/f3d+GlP3369MaJ\njQt33BBLJARBSMSFc7sE9koNq22q7CInK3L95KtfhoS2XXm8mhGtLwUDgM6Ii1MH/XK15G8b\nn3kTqliUFzL+2qRJhyLJvxjbNd14YOeoTrXlQv765z+RNw9MHTvpfGTpJzNyY891HX7449Eh\n5cV/ckz7k7Ijj9tN27J/2ffOMu3J0s8PDg0MGvUovXT89NVZHc6NTgmyNy5/LxmMPPPdmlH7\nwsm/WFRtv3nvlsGtvORCigTxO+f/MGn5Sen8JSJh8o9Biwa/XKIk5ZWeXtcrhSTF6UsHN98S\nSe97MWV9vJUs/Ztv4h0eRnViG5W4hq57ptZuuvQlQRDx16ZujRk1zuNbf1MEAAAAAAAAKgMJ\nAADANy894nvyyXHIuzRdp0hNlWZHyMK3B0n3iMu3mr/3ftkwkZc31TItHYRXe9Jl5XHO8LUt\nCWls2zm7WMxMwtUilpkJ2bP3NV0nCFitIP0cucI0W/NG1yli3LttnaT7O+JGnJKQQ51lpsE3\ntg58lCZQEl4kTPy1tQt5FQ6Hvy0qW2Hg/OTDBrJvSnX460J5MRekPmhlZUQO7N5hu5KUMBr5\n7Jo25MDmHj3fFxQrCf9y60hC1szXqUrCU6enJyz9rVcKNpcUfmDDn01dFXwwYk5UFq2oJBLJ\ncKfSeCw8fqW7unKCzGvSnHFtvUmzkQMAAAAAAADoBL5JDwAAAKy2YNZ16d99t96fNzSgbBiv\njhNuXpknXYzYOSZPXO7neRNuTVsZll7y97D92y1438qcBAD6TiLKHfPLrZK/Dc0bbgh0KS9k\nTszKfYl50kUOh/PnleNNbI3KC08QBNfAacmlhx1tSgciSyTFC8ZdUBj48pTfi0iNjI3v5Auz\nu5QXs7Fds6Mhv3E4pU1N3PXJ17PK/bQ2c5ELs28vfV86KQuHw1txY6+3sbKpROqP3bW8mRP5\nlwPT7yoJX7npdb0iCKIo7/WR3Zvn/zZ1QI+OtT1dLJxrDZ4891F8npJVKBNfIA3rt/Rqp4k4\nSxlZtVvR0L7k74TbPxxNLtBs/AAAAAAAAADah056AAAAYK/CjIv7k/NL/jaxDTow0re8kI7N\n5yyu9WV8fLEgeuHHcmbuFQumDNhW8qeV18TNXdw1mVwAYFLctXF3v/ZBeo9cr+SrH2Gr/yMv\n2vj879fG9irj5xl57Dw4mPxLwu2ZwjIv/IiL0yae+kz+ZW7IEr7St32cWixY3bA0ARJx4cwN\n4QpDMhp52utVYknp/lh4zJhY3VJZ1ARBEMSYnTJ5kvLkX5WrVFb6W69KZEbOGThy4oLl/x49\ndzUsKlEkKfdtNrqEOQ9TikTSRbceHpqKWSp443clf0gkxb9Nua48MAAAAAAAAAD7oZMeACot\nsTD1/O7Vg7t38Kvr42Rjbmxh61mzbqsOvRZuPBKdU6Rwlc8vrq2YPbF1QOManu5WpoamlrYe\nnjU79R2xaP3RZKGYbgJyY1/tWL1w/LB+AQ183F0crcxN+IbG1naOHp7eLTt+N/Hn2XvO3ssV\naezxqHLZnx6tnjWuW4fAej6e1maGZpa2Hp41O/YeNn/VzshMIdNbZzQrJOK8RxcP/jZ+YOvm\n/t5VXc0MDS1tHDy9fdr2CJ6zZN2NsFTN7gtoWW58aY+IR4/flXdX9J9dR/r3netJCsNE7h10\n4muv/6xTi/TqSkj87s6pORMHtW7u713FxdTQ2N7Zo26jpl0HjFu391xMtuJmjf0K0z8c2vBX\nv67tG9Wp4WBlYmbjXLths+59Rm0+fruAdrurQFFW9Nm968YNCGru36Cam5OJgZGVnWP1mg2/\nGzxuyfoDkRnKRp1Sp/E2Nins3vqF07u2a1m3pqethbG5jZNPXb8O3fr9teHQh3QNpFk72RJ5\nfffMH8f17NjKv3nr/t9vrHiE23+4KP17wqz6SkKePh5NXmy3cQLFTbh1+MfDiC9dLBZEHU+V\nH7Ob+vzXBGFpf6SZ0/Cfqqnu6h6yqR95MWztWoXBGI088YpMtlTp21dlzARBWHvPJi8WZt7I\nL3+qEi2RCEPvhSyfPblTmxZ1farbW5kZmll7VPfxbx44aPzM3adupghEqiOhT3/rFdMEsp/e\nqN7RWeObcPRb4Wb0ZdaHz2fGJxZp4gwBAAAAAAAAoEO6nm8fAKBCigWfyG3asdT8kt/v7Zjp\nZsovr+njGTrOPfCSHI8g7eW0HrWUtJaGll6Lj7+lmKqMsIvfd6zP46ieQ9vQsurkpfszVX0S\nW5B5jbyW/9KXKsNIs6Iw88W4rn5KEsPl2/T/bStDn+XWeFbIEBed3/i7t5Whkmg5HG6jLiPO\nvcssu3Z29F8qU1XiWa5QupaSskh7O4P8LwOzeoV09ub9nvbk1S2r/UL+r5Lt0t2RVXXsyD/+\nE5tDPZEH27uR1x11J4HGHqol9lrpTL8B/6o4BlPfDpAGbvD7k7IBRIXxDc2/VBiXlquYSXLF\nlPNN+tTnRzrWkPmStBwu33LIrE1JQlF5EbOw3IsLYpZP7GJS/mBoU+e6y89ElASW+/j6tUxl\nH4EuIcwKXzyhm4nSzxlweWbtR855Ep+nMjattbHpoedHtPZUkmYO16TTpJWJQlHZbKHyTXpG\ns0XaWgoyHk8MakD+l7nzWIo5UJ6CtLPSfDa2bqc8Q10MZaZwf5gtVBpcxqJqVuR1x0WkywW4\n2r86OUDAWmqXB6ICb5PSKxMOh/c6r6hsKEYjvzdeZjKSltveUYpcIpF2jpb4qPQz9kqod+aV\nJb53cEWAu4LPqJPxDB1Gz92WWFhuk6ge/a1XJZJf9KSY/3S/SR99oRN59T1JqlsPNRxo4yrd\nRK+TUUxsAgAAAAAAAEBr0EkPAPqtbCe9WJS7ZGQzlQ8fORxOnz9vlkSSdPdfbzMDKqtMOPBe\nZZIebhqnvPOjLJs6wW/LfRgtkVSgkz712X5/W2OCAnu/sYnld++ph4msKN3ftAd9/ZxUx0gQ\nBEFw+TZT19+Vi0HjnfQSsUDaAVxiTkQG9eyaWVVmwFyP459k9ldznfRRZ2Se0df54T7FFIqE\nCU6k/gm+iTe9lyrUkvKyv3SLtSepSOrnsx2lgZuseFU2wMN5TUr+y+EaHUlkpAuhohR10t/8\ne6I5j9KYf1OnxkfDFbySImFfuSc/2uLnYKJyjzgcXv//HRDR76R/c3BONVPVDXsJnoHD7N2P\nlEeonTb23MLBFJtNc4/WRz9k0e2kZzpbShoZQcajzm7yfagV76R//Fvp0PlaY+8oCSnMfUne\ntJFlC1obOlnfgbx637epcgGGOJqSAyyNyaYY88baMu/KDH+RUjYMo5E/nikz/YDf/OeUohYX\nGcm+TJNepGYjUMFO+qL8iDGtqlCMgSAIY/sGO54oyAf16HW9KlGUF3qnHCtlX+Si20n/8Ke6\n0nU5HAO1a4hyiQ9GSrdiVX02E5sAAAAAAAAA0Bq9muQVAICCnd83nfXfQ5XBJBLJyfmd/nmZ\nlvZ8e8N2P0XmqZ4pWiKRbB3R7F62somLw3eOaz5pWwHNmdsz3h5s2Whioabnjs3+uN+n2fAn\n6QLVQQki9dm2Jt9t0ODWGc2KguRbXWq3P/5M8XzmZYmLM/79IXDif29pJYY2jtHqvtXIPxz8\n4zHFVQszr66MzpEu8gydNwXR6Iegxa3janKP74d98yiuGH9zahJpJt6q3623ovkShhrMXEpn\nY/58XMV02TeWlBaxT3v5uXaLcp9+t+RZyd9ewQf6O5kS+uDD0Wntpm/OFVGa1zc/6WlwQ/89\nr9LL/otV5Z72fHujwEnPUuRney5LIhEdXTi40583acV/f+P4hoMXR+VT/QSAqChl8YimQQvO\n09qKxtvYY7O7BP3vAMVmMzfm1tDGnR/RmUtfO9lSXPC+Z512l+LyaK1FxeqdkdK/O073VRKy\nKO81edHIqg2tDSUUFJMXPU1kJuaRFKcfI01UzuVbT3Ixpxhzy9EyQ6XfnIiRC8Bo5ARBOATK\n9BPHnKJ0kspP/q+QNL+9gVk9G+WfHmFGYebTfvX8t9+JVh30K0Hqy3Et6q6+GqeRBOhvvZLi\nm/q2LEdtC2XzEqn06UbpJZmRdRtyDcmMDX9491bImVOXrt9+GRqRXIGvLNk3mGvw9X2R7KgV\nrylcvQMAAAAAAACwVrlzQQMA6KN7K3qt+i+05G9jO9/gEUM6tajvbM379C709atH+3edSCkq\n7WqSiIW/te35j+Cx9AugFp5NRwwNDvTzcTAuDHv75sWTa7uP3BSSHkyLi9LH/v44dENLhVsX\n5jzqOGmXWCLTv2JsV2vokKDqVaq4u7vbGAjj4uLi4mJvn9l7U/Zb6Znvd/TdPvPcWB+N5ANB\nECJB9KDm49K+7q9zncDggX2b+Ho62RnGRISHhb69cHjfqySZHrKYCz8uCh0yp7ZtxbfOaFaI\nhHFBdbvelO3eM7L16hMc3KqBt6uLdVrU+9CwsKc3Tt8KS5MGkEjEW75v0qZjyuCv4zt5hm4B\nAQFf4hR8fPwiWRrYvqG/t3HpKdKs/Om45fgvnEDs/kW6GBMys0jy3IDC2u93ziFnl3vnjW6G\nVF+ko7sjfGPvxXVsp776ku2CjEsb4vMmu6qYOpggiCPTr5MXJy5rTjGFFWHiMLizzfeXMgQE\nQeQl7Z5yYdH6ru4KQ+ZE7Rt/P7Hkby7fakld+Zp8blJwSWczz9Dp4OYeTKZaY3I+72k65D9p\n3eCbunTtN7Bt4xp2tlaC9ITPn0LPHjnyJl6mN7S4IHJMi7aNk5/Vlv3kB3vKXZB+tXGLiXGF\nMl+MNnWuPSB4YLO61V2dLDIT4t6/vHtw//EPX7+Mfn1+x/m+VN8i+nR0Qssp2ySy7Y+DT7M+\nvXr6+1ZzsjfLTEyIeHH3xImTobJZFzK/+2CHVwcm16OyFY23se+29++/5JLcj1y+Zase/ds1\n8XV3cyrOTPwU+fLkgWMRaV9eCyjMfNg9kOrLFtrJFoIgNg3qeDle8z30goyQA8n5JX9zeaaz\nvayVBOYbuc+YUfr9ETPHgXQ2Jd6cIJP+dlZG5MX81BPkHmsT+z6WlF9bcf+uLvFrab943Kn3\nxPxGWoucIAjHgAkEcVW6mPbm90c5I5uq6p29v3A1edG2zk8Uk1SW2mdeiThvvF/705+yyT9y\nOPy6rXv27d6muoe7jVFxfFzc6/uXj564kiQo7Q4XCZN+7VrPKya2l3NFX8zS33qlBZcT86V/\nm9j3Jggi88P9jf/+u+/EhbfRGeSQHA6/pn/brl27Dp84qbErvULhGVcf52y2IT6XIAiJuGj2\nzYQz3Zl6oxEAAAAAAACAcbodyA8AUEFy091LtZ78f/buMzCK4m/g+F5Jb6RBCr1X6b1XqQoC\nigiC/kHsIPIggjSpSkdAFBEQ6SDSpQnSO9J7TQIpkJDe754Xgbu9y+VuL7nbJPj9vNo5Zmbn\ndjd3Ib+Z38wJSzHeMDUp/Gi30h4m6ysU6v5TVsdny+EccXp5JcPMwK5+b+Q0mN3vlBfXVDr4\njF70Zw4JPzWX969pbRge8wj+JKeec5HuvlOz56ngHVwrTFp52MQIMmIXD20nGCrZcWtOY7CK\n/S6FVqvd8J5B/F6hdHrz66Wm9nvOPLLyG6PtY/3rjDPZZ/TN98XV+l5/mtPZLd0LTUfD3Nfj\nbpvOPW5kQDGDKzD1jnErKc+A9Dfy8K8e4mrVvzhpcYRpCf86i0ImLr6vS3lfNnF+UiPdedVO\nJZcceJC9TuzNPa1FudNLdvnNqEJi+EZduub6Y0/IMvBc0eS4LLvl+1NDsn2saTXpR1ZOKJdt\nw47Sr/+Uve8Cct8nNjLYqEKp9vzftPUp2X6CNRmxS0a+oVs0qVQZxHJySnef+uxoGWeD2QlO\nRWrNXHcs+weEJjNx89zhRh8RSrX3prAEkz3b9TM2Jeag0Z7fCoWixcBJt2ONM35rMhO3zvqo\niNr0JJ6c0t3Ldlk2LO2nfwtKp+av95s4e8m+Iyev3LgbGZ1ksgeJri9ppuvZs8SovHRl3tPL\no8XvyNG9tlGFJ1f6iSv4VFoqvfPE8F/FbT2CP5ez8ywjDaeJlOg8zXxi8uhLv3oaPm9fnY6U\nPipzPUv+5tVqtYfHNREMFav35s6rJvaUyUh++N2Q9iqFQYTbu/JHqXbfnsWc/H2upNjZKFDc\nibXp7sUfGmV7r5nzeTcHSxMclWrPNz6bfisx3aoTHf+oqq6HonV/saotAAAAAAAFCkF6AIWb\nySB9i7HbcqqfGL7D5NbOH63KcR/f0D1DxTUVCsWjVFP7CmvSjcL5w3Y9ND/4lJh/ijupxT3f\nyx6By6ppfZA+i4NbtU03zf2Zdek75cT1nb3bmx+zJPa8FDHXZoj/8q5QKD/+/ZqZniOOznIz\nvONLTe1EbrsgvfbMqJriCuX77jf/3rVabVLkKnETF9/Xs4cSbBukz0i5Lw66uPh0sTjIG8ta\nGQxgqukB2ENmWoR4oadCoer4yawj524kZmi02oyQ6+dWThssjlkq1d77Y4wjuLOaPg8/OLrX\nMv0jXEDkEKR/dcIeM42SIw838TXeGX3aDePwVUG47w93DhZ3qFC5fLs7xEz9S0sNHmmdnIL0\n0xsbbHPgXqLriahkM/1HX15f091gGbF/nekma9r1M/aHZgbhMYVC8d6Pp810G3VmsZ+DSsgm\npyC9bJfF48XnbYXXRhy9I3VHbSmWVPfTnaXyoKM27NmAJu3D8gZr9CsONP4Mv73aIMl52Z4H\npHefkXxL3DZ7pNaunWeJf7jZaMZGjbfGh+bwnXtr1zyjL/TKfRdIH5J50r95k59sdTFcVh7c\ndlT2iZViJ+a/LRjq9tstW43cavn9XEmRlyB9WvwZcVuF5PxDgiC4F2+947YV54o831fXVu1S\ntgB/nQMAAAAAYAFBegCFW/YgvU+1L82vCVvVKtioSfl+q8yeRNPDz0VcP3v8T6vVJkasFNfx\nKjNSyvh3vl5a3GpdlOmFhrkO0o859Nj8ANISzolj2Ep1ESnDNs+ul2J6LYP9dKt/tstiz3s/\nM8jS/MpIE6EvGwbpk6LWiSs4etQz/0BqtdrTI18RN2k8x0SYzbZBeq1W+2Ntgyu55LHpZbI6\nQ0vos1AoFKqcQqR28uTcIs9sS4dVjp5F3Y1XkCsUio/X3DRq/vTydF2F15Yb/2vBYipIH9x2\nrsV2CaHb/Q2jtsUaLs5eLb/vu6Z/gEHSiDazz1pss+m9itmvicmRxD1YKK6jdi65y9SkHCNP\nzv8gjv8pFIqfQuOzV7PfZ2xS1EajVb8Nxuy1OOx7Wz7OPh6TQXr5L0utj3+x+LlnJU01UbqI\nLgfCbNu7zrIPaonfiELpvCnbl9H5b+uI69Sd9K9Vp/AQPw8qVzk714k4Ps/oE9XRs+x7I8b/\n/Nv6Q6cuPrhz9e+dfyyaPbVvm6qCoaDWXydm2uzWSv/C2tnHYLKLi1/HqDTLwdmNAw0+Olx8\nOuVXQDffnysp8hKkj30wUcgDtVOJ9felzulJjt4hbrs2Mk8pOgAAAAAAyEdS97sFgMLi/zaO\nUZtdwNN0RGVxUan2XLmol9kuFZ+1NPjDZXh6ZvZKyVHbxcVqo96zMFBBEAShbDeDGQPxmdqc\nauZCQJOFk5sHmK/j4Fb7y+LuuqIm41lqnodgv0uRGvvPmAv6DewdXCtt/b69xZ5bTPnFUbSo\n6+7KpVLGk2sufm8OCtRf0rT4M9Pvx5ptof1myU1dQaF0/mGQiZCkzXWb2Upc/GHONTOVU6K3\nzQ9N0BWLVBhntJmuvfnW/uj8pklGKbgz0+IiE9LFryiUToPmHVzYp4Jha83Y16dlHbkW7b6u\nv9G/FnRKtfdvGz+0WM0tuMuubw3SQUedGXErOcOoWv7e9/iQuSvD9bsyu/h12fK55Y2TX1uw\nsYST2mI1QRD+GTpTXGz23c6OxSxveOxb69PNomCeVqudN+2ylNPZ6jP20vSJmaKt4l18O+6e\n0Nbi2Uu/tnCs4ZSLnMh8WdyDe/0z/33zX8TWSonefiVR/8Pes4q5DelzK3PjmHbv/fyv+KWq\nH25+w3CWniAIiXcNdhZ39LWwobsRXwf9/780mUmP0zSyda5TtNHnN46saBqonzGTFnd32cyJ\nH7z7ZosGr5QqV7VN5zc+Hj569d9XdRUUClWnz+Zf2jPF1ZpF0jahzYz95M8H4lc+/XOZn4Pl\n/8a+vmhLeRf9R0dy9K7vDLe0l0WBeK7sLe7WsewvKlXuHd7+dMW2wzfvhsQlpyfFPr1389If\ny+a+/1o9heG0pIzUkIENe99LMfHbdXbO3h3Fm4MsOxOVx8EDAAAAAJBfCNIDeKk4eTUfVdnb\nfB2vSgbbpRep8G0jDwt/CfVv4me+giAIDi5dJ4iMeKOUxSaCIKjdJUWecud/S/pIqda4pLvl\nStaw36W4v/EbcSirXN8lZZxNJHw24ujRYHiwfjVwUtTqDFvOhTDhi9EGa/dXTvw3p5qCIMQ/\nnLM7Rr942r/2zLrZVofbQ0Cz2d6ilZS3fp1ipvK1+eO1oivfcvZA+w0sJ2VfG33twh9vNy+T\nUwXvKu1+2nfr589aGL0eunvIojvP50kM2rDIubD97hPYYlGbIpJC43VG/FlWlMVak5kw4dJT\nozr5e98vT10iLtabMtNdZTngp3atsaRLScu9a9O+2B2ib+VSfsPHVSQOrPWc5WpR0OjBxkVS\nWtnqM3beyjsGg1m8qIi0EPfwtR9ZriT7Zeny21xPCbfVKrG39FtuKxQOvbIFOPMoOfLU4Nbl\nek/dL37Rs8yb++d2yF457VmauOhYxLpgqo/hEvYnGQbBVLt2LhbQsN8/d69+06OslG7VzmUX\n/HVj5/zPfGw7+UKa2LuT7qXo5xu5+PX4vqmFyTFZ1C6VfzFcgr9qrrlpSTZXcJ4rewvf/djo\nFa/yr24492D36h/e7dqsQpniHs5qF0+f0hWq9xg4dOmW0w+Pb2gdZJBVJSlid4f3dwiSKN/0\n108zuvnzHTNVAQAAAAAoyOwYHAIA+RWpMNxiHaXaIOJedkBri02krGfyLNtv/HiLtYwl3E6w\nXClX1M5lJlb1kVLTydfGS6LtdykOzr0uLv5vXK2cahp555N3bovWWj1KyyzpZDm6n2vl352h\n/rx5xovo5oPNX2uWH8spNHxuws/iYo9Fve03MDGVY/EZdfwHnYrIKiY/+XNFRNKAHNbXjltw\nXdSw6IL2xeUYYjZelV9bfei1r/euW71p81+HzoY+ehSX7hAYFFStQevuPXoP6NnKMVv8SJuZ\nMKjvqqxjnypfzmsRaFyjwOs5p53Emgq1z489Sr+65rbulTMLbwkNionr5O99X7FFHy1WKFQz\n35YUIBQEocHUt4Q/ppmvk/Bo0W1R5oDApt/7ZdsiISeOHo0+DXKfGxafVUyK2vAsY4X5SLmt\nPmMzkq6uiUrWFVUO/ou7SZiRIAiCIBSpOK6513eHY1PN1JH5sqgc/Oc3t/1PWfg+/ZPj4F7L\nw3aTALSaxM0/jB8+at6DFIO0E84+DbecXlHM1HLtjCSDmo7e1gVTvQ2vf2KmQTDVrp0byjy4\nasmG/aFSus1Iubvil58a1pxYt5iNp0dIcXvpXnGx6hdW/IZRZ+KHwrIvdMWHmzcJ8xrabGQ5\nK2jPlb09+DvCYDBV+104t7xEzr9oFW/Yc/eNKm9XbbQpJF734t317/zz45OWEvK1NPFxnhP6\nvGHMxfOCYPk3eQAAAAAACqDCtpoMAMwqUkNC7l/Dv+1717aw8l4QBIVgl6VjGUlXh8+5arle\nrniW+sKOUWhbk3gpljzQJ6pVqr0/L+5hprJY9a8WbRCxa4ReEARHz6Zjynnpiqlxx79/kEOK\nXW3a8A339A3da82pJyl/tU10mtFGXJz7w3WT1eJD5m5/qg8iBrb8IdgxP39/qNH+rWmL156/\neivqWWJq4rP7t67uWLVwcC8TEXpBEK4v6bk7OlkQBIVCOWHrWLnHmmcKhcOoypIiwVnqftNK\nXIw8bCIFcX7dd21m/G+R+nzOzt4dG1jKYqLjVW6Ek6Uk25HidjfGAAAgAElEQVTHt4iLVb+q\nb9XwutX11R1rNSmbRe/dJFt9xiZGLBOnK/Ao8aWZyFY2qjENi5qvIfNlcS3ar6iEPOTWerQ3\nXHfs5NXMVt2e/mNey/KBPYfNMoqkupdsv/f6wVa+zqabGeVisfLtGsVOU43Kdu38hfj7f/Vp\nXLLdoMk34tJM18jm1IYZDUuW/WTGFjtnojHhwrYwcbHzOznmU8nOo/jH/g76H6ikiN9liF0X\nxOfKzkKDqjV6oVmrvkdPL7P4OebgXnXF8eU+Bln6Ez788qSU0wXW038tpsTsyt2YAQAAAADI\ndwTpAbxUHLyszhPu6GXdWiUb0KY9uH5u5cyRjSo2+NtSwCPXilSvYblSvrPmUmSm3Dsbrw8n\nuPq/ZTIoW0AMmN5IXFwx+aLJajE3xp9L0L+p8gMXusi43W9A49ni6MXNn78zWe3MNz+Ki33n\nSl3Yne8yU+/3/PJA1nFw24WflfcyWS3p0eXff5jU5/VOjeu+UrFazZbtOr0//Nst/1yQN8Zh\nmotvt0BrQuOepT4RF1NiD2Svk1/3Pfnp1uRMUTS6dD/pbZVqny4+Fpbwhv5hsCa4ZSXTtzsn\nXtUM6p9NsBC8tNVn7LOr58XF4K6trGpe/j0L2QhkvixelUzk8c674/f0y22dvGywEvrR6T/6\nNi/doOeww6Kes9R8c+yVm7ua+ecQSRUEtZtBKrL0Z+lWnTrGMA+50Y4Pdu08y9NzS+tUe23d\niUe6VxQKdYNug35YvunfWw+exiZmpCU/CQ89c2Dr7AmfvRKgT7ORmRa+aGT3uu/OtveWMUb2\niFJNKBSqQQFuZiobUzj2Kyp+C49Px0udl5ALBfa5srehW/cff+HwgVVVXCWl63MLfmNNX4Mt\nqO5t/EZKQ9+G+slDqbGHkjTyTx0BAAAAAMAGSHcPAPaVFP3o5s1bt27dvHXrVtbB1Ss3nqVm\n2vu87uVsvNN83uXxUqTGHxcXXfzsEgqylRKd57mrqiS8yDd7b8NozZJD2WOtR79aqztWKBQT\nxteWa4CCIAhKh4AZ9fwHHn++RDUpav3qqOV9/Q1DoZqUYZvu60pOno2nVLFiYXf+OvpN92tJ\n6YIgKFVuP60dmL1CZuqDuV8Nn7DgzwRRZuBbVy8e2v/XsjnjA+p2nzH7h34t8ie3fxYnb+ue\ncwe3WqWd1fdfLN9MT7iQvU5+3fc0wx9h33qlrGr+qrfTH0+SzFQIu/hMXBxd0nO0VScwdDc8\nWShXxEwFW33GxpyLEReDOgVZ1dyvQS1B+MdMBZkvi0cOU2Hy6JZoRbKTv7kBWJQac2XqsI8n\nrzys0RoH9lwD60+ct2BE7wbmezCaDpgWY13Q95lhMNUodb9dOxcEIeXJvubNP7qdpA8Ae1ft\n9tuGZV2r+oqr+RYL9i0WXLdVt2Fjp62b8vH7E1fqZticX/llM9+yJ+Z0t2pgeXFGFFZXu5S3\nNhdO62Iuc8L0IfOzCekNJefwkK6AP1cFVvOZU4UVvXTF1NjD+5+lti1iIeO9awn9xAutJu1+\nSmZVadMCAAAAAAAoUPjfLADYXlrM/d3bt2/fvn3X/iMhTxMtN7ADRx/ZMwSYYsNLkZF8S1x0\nCSxwsxDE1C4Vv6/l9/HZyKxiauzhuSHxw0sY5OfXZsYN3aNf5OpZ6svefnJv9/vqzA5C0990\nxVmLbvQdX0tc4emVry8m6kMFFd6fY3ZD6gIkLe5Ij3mXso4rvr+xc7YMw4kh+3u26LH7vvF6\nR53ws3++23rXP7O3Lxmab8kDHD2CrW1SThSk16Q/MVknX+57WuwDcdG1pGtONU0KdLeQKOWh\n4Y7OeZQSnmK+gq0+Y1MjDXaU9yxu3WVROVtYSS/zZXEOyHGhcF48Fk3ncvKzvGW1adqM7QtH\nffrVvAfZronapfj/Rk+a9NW7/hJy9buVMVjJbW0wNVoUTFUoVKWcDf47ZtfOBUGY2rHvNVGE\n3qfagMvnfjWTrkOhdOszdkX9qsWq9J6Z/iL8fGper7mDo4ZVtbxbkE08StPffZWTdZN7BEFw\nK+4qnNMXH6ba8idCEArHc1Vgufj1bOTpdCJO/zG4JiLJYpDe6EPgcRpBegAAAABAoUS6ewCw\nJU1axJJv3g0sVu61dz/7ef1u82FppcqjRvU8rQgsyGx+KbQZButNnQPljmdb6/VZBpHdX6Zc\nMqoQdW7EXdHy0BZzPhFkV7T+rABH/arE64tmGFXY/8VGcfGb0a/IMSxb2Djw3eh0jSAIaqeS\nG7Olak9P+PfVml3NROizaDWpvwxr/+7SK/YapSVORa0OeYpvqCBkmEzany/33Sh7s5O/daFW\nl2IWLkWs6feaSxkJto7k5SDTMJtIgIt1q4RVjhamcch8WVSu1o1fokdp+nfh5JubIH1q9Pkh\nbct1+2yWUSRVqfbq/cWsq+F3F38zUEokVRAEjwoG061iL8dKH0Zm6oM40R1ROZV0Mpz+YtfO\n4+5+P+lslK6odPD548hPUjbUKNfz+z8HVdIVtdrMyW/9LH1geaLNSBElM1c5FrO2A5cgg98W\nntk0WX9hea4Ksk+LG8y5vHfd8ht38DBoIp7GAQAAAABAIcKUcwCwmaTwfa1qvnY60tze6u5+\nxStXrlylSpXaTdv1eqNT2s725fuYy1RcSNnlUigMAjMZiTKF0HItoMm8QMd1j1/87fjeurHa\nxfvFfzbfM3y77ljlGPBj55LyDlAQBEHp4DerYbF3Dj/fnDgpcvXGJ7/0erGgX5MeMfTwY11l\nj+KfvOVf0OdGZEkIXTnwz/tZxw0n/lkt2xq7ia06HI3RrwkOavzOpKF96tevX947499z547v\nXfXNjPXJLyJDq4Y06tIl4q0A65Y420RqlIWFy9mFitaJKlReJqND+XLflU4GY0mNSs2ppkkW\nd2h2NUzvXKdhI8c8hKkqWVq4bysOngYnikixLtqkyTCdLEGnkF4WIwZDtj7G+ujgD226jbiR\nYLA0WaF0aNN/5LSpo+sHWfej7V3TYAuMmH9DpLdNizsqLjp6Npaz8/OjDSLrZd9c29LSkmWd\nDnPXOy2tmfriUzH6ypgLicNrutn/eVConZUKXZw+My3C2g7Sog3uu4vSZuHrQvRcFWQBpd2F\nq091RYvpOgRBMFppwJb0AAAAAIBCiiA9ANhGWuyZzq+8djrKOCxdtEz1ho0aNWrYsH6dmlWq\nVCnuZ7D6546MI5SNnS6FyrGouJgUYm536oJA6eA3v2VQ773P/86e8uzvH8ISPg9+/q41aY++\nOBmpq1z81R+DJSxntId2MzsKDX/VFacvudnr65pZx48PfR4uWqBWf8pQuQeXW3O7j8jKzOzk\n2fjPL2sa/WvEsRFTXiwnVShU78/YtHj467p07o3bBjdu2+3dt3q/+Wr/A1HJgiBoMhOG9fr5\nrSPD5HsDL6TFhVquZOi2KD2D2qViTtXkv++O3gbrRJNCrfsRfhJjIagfaJBCQFi4959Gdth5\n2ubcShnkuI4NTRKq+eZUObuMlHvmKxTSy2Ik0El588VXSupT66Z33PpzQr3ek+IMMwoUrdNz\n6fLFXWv45WIwzr6tBGG1rpgSc1wQ+kpsmxp3zKAr77Zydr7usEGE+/Wx9ST2LAiC2rXGqBKe\nEx88X+Ws1WbOux/3qzXPaq4FOqruvfhYy0x9YL5ydokPDBL5FJW2rt2iwvVcFWSuhnt8GE3n\nMik9IU5cDHKySwIPAAAAAADsjXT3AGAbC7q89o8oLK1QOjTr9dn2M6ERdy9tXb1k9NBB7ZvX\nNwpLv6zsdCkc3OuIiylR12wwVjtrPesNcfHn6Zd1x48ODX2Sro+DDpnbWr5hGfKvMyNY9Afu\n6/Pm6o43DP9bd6xUuS/oVUbWkeVW1NlxY88+nwDRfekqP7XxbzsbPlyhO649ctcvX76efcN1\nv9o9t55d6aZ63jbi2IhT8RZWcttDSvQOq+qnxZ8IE+/e7dk0p5ry33dHz7riYvTZMKuan4q3\nsENzqXIGnyqXE/PhfuWCdx0fcfHxX49zqmlS/K2L5isU0stiJEg01cCqIP2j/eNr9PzWIBO4\ng//HMzaFnNmYu0iqIAgufm84iVZjJz/dnC55IW/UEYP7Fdi+mpydn4wz+CHqYmV2kGZVvMTF\ne9esyMeeF3VF00oykm+HWZnb/GyEwZTBuu42mKRS6J6rgiwpzGDCllHM3qS0JwZPcrAjQXoA\nAAAAQKFEkB4AbCAleuuIY+G6okLlMn3n7cMb5nepa2G34JeP/S6Fk0cjT1G0NTH8VzOVCwjf\natOqi7IB31k1Xnf8x5cHdccuft2/LmsQ/JCTQu0zp2mgrpgYsXzr0xRBENITL46+rM9A6193\nVpVsSeMLIm3G//V4Hm92D+q7sqdxgFmTHjnmWnTWsdqpxI5JOa44dC/Rc2W353sQaLWZ4w8+\nssNwLUiJ3nU/1YqIVOydReKiV+UOOdWU/767+HQRF+Purc6ppgnatNVRFlbeB3YIFBcPhCTm\nVLNA8Sht8ASGbrVuA5S7v94yX6GQXhYjFVz0D2Fq1DOJrZIj9zbvOjVVlAvbNaDFjht3Fo54\nIy85/5Vq3x6++g0gMlPDVkVKTQvx72KD+1XpnVJydv7McNm3taFNo83d055amDdjKx18nXXH\nWm3m0nCrnuHMJY/19ZUqtyaeeQ3SF8bnyp40d0Tu3bd6P4JHdxPExRrlPHKqqSOO6ysUDqWc\nCdIDAAAAAAolgvQAYAMh22Zqtfo/11Z678+Rr0raX9ziLsuFjh0vhdKlj79+fVV60tWdMVK3\n6352a2QJkbd2PpTYMK+ULnNf1/+tPCVmz4+PEgVByEi69vWVaN3rtcZMlmk8OWg1wyB6OvnX\nW4Ig3N80LFkUhOg2/3W5h5Ur97cMWBESn3X82Z9zHLKFTJKf/KFb/likwuQAs6mPm09opTu+\nvcbqNMt5p9VmfnsuSnr9ExMPi4vlB1UwU1nm+652rdbEU78Bdkr09ktJGWbqiyWGL4tO15iv\nE9TZYKX+qbnXrR1hvnD17+ssWj4bHzorLM3COxX76W8Lc0cK6WUx0riMPm6X+uykxFaT2759\nV7T7g3e1N4/d2PtqGcshQIv+16yYuPj7MamByYXXY8TFEdV8stexX+clnQ0m3FyyMq3Cs6sG\nOcalrHi2iVpdDCb57dhgxTd4YviykFT9M+Di19tdldc96Qvpc2U3yv51qpXXqVg13NJntZF5\nofG6Y4VCMaCYm5nKWZ6e0M8kc/Jq6qbM6z0FAAAAACBfEKQHABsI2RgiLr7+dUOJDW9tsXrD\n6QLOrpeif0eDv9SP/+mmxM5vL90dKuJfwVNiw7yrP3WwuLho5hVBEB5uH5aU+fyv2Aqlyw+D\nctw4XB5+Nb8vLQreXJuzQBCEH785q3vFwbXSnHpF82FkVtJmxAwYuCnr2K/WuKn1TYw5M1Uf\n4PGsZGEGiUvRBrrjBMPVfrLZ8fkWiTU1aeEf7jL4AfysfZCZ+vLf95H1/HXHWk36F3/el9jw\n8ncLLNbxLD3aVaX/zTZ057dpkpNFC5qUt19t1/qFbu+sldwyr5SOAZ8E6TPSZ6ZFfCR5FlHi\n459XW1prW0gvi5HADgG649S4w2Zq6kSdGT1VlBPCxbfVydOrauZ5FXWWGl81ExfPj5GUFiIh\ndOE/z/S5+l39+zT2MDEe+3Xe2cdZXPzt7BMpPessvmWQw6BOVZkSwJQf3EZcvPz9NOltz0+Y\nLS4GtXsvj4MpvM+V/Yyqr/9g16RHjzhsxZ4diY+XnxVtZeLi17OGhNwt4Wf10xydfTpLPx0A\nAAAAAAUKQXoAsIGkRwZhkqruDjnVFNOkR3xqaRFkoWPXS1F9VC9x8fL3X8ZmSgo3fbf0tu5Y\noXT4tLi7mcq25VlqRDtvfVzkzopvBUFYPvqU7hX/2jPrSrtK9qNQec5uoc+JnfD45823N84V\nLW4r3WNB3lcfyuDS/O6HYlMFQVAoVN9tGWGyjspRH7dOuBNpvsOMZP2T4+TvZKam/USdG7oq\nVNL8gBOTuz8S5cZ3K9b/DV8XM/Xlv++Nphik3z8xYmyqhJ9gTXrkZ79anpGjcgyeUNlbV0x5\ntv8jyTsUPD46dO2e/QdfeFS5ssSGNjHgc4PT7R8yNE7aJ9vawVMs1im8l0UsoK1+Pk16wr/x\nEq7Pr/1/EheH7VwnzpmfR/51ZgWIcsXHXB+/TxQlzcmREXPExcqffiVz523fLi0uHhu53GK3\nOnF3F25/qt/cXalyHRZsg7XjUhQpN66Ek/7eJUWunnhWUn6RjOSbg1beFr/SfXT1PA6m8D5X\n9lN3TCNxcdt7lj+XdHZ+OFFcLDdgpJRWx6P0j2KR6nXN1AQAAAAAoCAjSA8ANuBW2iA55+UE\nSSlktw7r8DBVarbnwsKul6JIhQltiugD3ikx+7p8d9piq4hjX218op86UKTcuMq2+5O6BMqp\n/9OnHE+O3rHw5l9T78bqXumxqJepVnJr/r1BVvPBbw8Rb1vwyTSpGRHyUUby9e5jjmUdl+y6\n7P2SpgNIzn7dXV4EnmNujk8wG+27+sMe3XHx7sVtNFLraDWpn3cal2Ipf3D8vY2dpxn8ODSe\n+o3FzmW+70Xrz6nhpp+Skvh4ba+l1yy2Ojmp6+l4Sbtf951nsKRydc+3biZb/mDRZsZ93Pt3\nXVGhUHz6gazJLSp+8J2TKF1zUuTWV789aLFV1Olpg3eGWKwmFNrLIuZV/n3dsVabsf5JspnK\ngiBkJF0ef1OfANytWP+pDWyZE0Lp4P9jV/28Aa02c8iHG803SYneN3DzfV1RoXT6/vMqMnde\n+bNh4uKTi+O+PiBt0bMmeWyXseIXfGtOD3SU6T+SCrXPwi4lxK/M6DpEyhS9TUO63kjS/xLi\n5NV8SpU85YEv1M+V/QQ2/7GCi/6DPe7hj31/v22mvk7U6dn9t+v3kVEoHWaNeUVCO816UZC+\n4uBy0ocKAAAAAECBQpAeAGzAv5m/uLhNQuR4/6x3e/54yejFGCs38iyA7HspFOrFcwzS3h4b\n22rc9vtmOk9PvPLOaz+IX2k+vZ/FISWn2vJGVPs/g2VtY996J/NFHNTRvdacev6mGtmG9Dfi\nW2N6edHchadn9LlkXf16DS0hdcVk6rO9zQ11//CE9AHnxYERPe+lZAiCoFQXWb7yzZyqqRyL\njy9fJOs4Pel6j4UXcqqZnnD+7cX6DbxH9ShlVEG2Nxt9eU699382cy+Twv9uU7tfbIa+ipNn\no1X9y1vs2Vb3XSKFynPlOIPA/86PGs85am7f5ZBd41tPOSOx/+A2Szr76ZMHpMQcadlxRIgo\nu4AJ2ozFAxv8GaGfx+P7yuT3ism02XYWJ6/WP79qEIM8OandB0v/NdMk/t7mJi3HiWdUmFFI\nL4uYs0/XaqLpHZuvxZipLAhC+JGvUzX6i1O2/2c2H1KHRVMcFPqpFffWvzvleM6ZObRp33bo\nG5Gmv+bBbRe3LZJjcg47de5abMC0xga7ns/s1PC38xaS3ms1ifMH1Jsv2vVcoVCOWmn5m9Ra\nZr6w2i2eIZ7Ikhi+uVb3yeanLh2d06fPylviV1rOWOKQt8wghf25shOl2m/ZYIMZPOv/13TR\nSQvZDmIurW/XxuB6lun5e3sJg0+N2See1jmgoR1/iQIAAAAAwL60AFCYZaTcE3+mVR920mKT\n2PtjxE26nAi32OTm8ubiJqsiE40qJDxaJK6gVHnMPRCSU29J4edG9q5n8jO50cxzJpukPPtb\nXK3e9Au5q2PS393LiBumaCS2M83el0KrSf2wirfRKd6ftCoh08S4Y67v7FrRYNNcV//XTNaM\nvvm+uFrjRVdzGnPurvOAYgYJBnSqfXpUSnPp55X+RrLb2tU4CJ2lwcxL0jtJjFxl1Dyw0U7p\nzXMtJXq3x4uNt2sMPWC+8sNdA0XPj/ukDedNdPjk/MDq+jWXPlVHZq9jlzerSTF5FwRBKNv+\nozOPk7LVTz+0YlyZbMkhvvw7TOIJbXLfpdNkxPUKNthvQuXg//m87enZfy41aX/M+LCIWqm7\nU+JWB5+lmOz/ybmZaoVBIM6rYtffD9wyWTni0t6hnQ2mMiiUzotvPjNZ2a6fsWnxp8s6G9xE\nhULZdvC0e/Fp2epmHlr2TSlRZYXo/Tace7mwXBZrLanupztL5UEWPjn/6WMwfvfSlarnwd3k\nDJNnWf+2wRJelWPA7H0mvu8y0yJHdzMYj1LtvSc62fxbsFPnSRGb3VQGs7SVKo9BU1eEJKWb\nrH/t4PpetfwEQyW7/GJ+8BJZ9YX191f1jYZRovmAv+/EZa+Zkfxg+gftlIYPfJFKg5My8zrg\nl+C5MmNno0Bxb2Pux0pvm554WTyNJmswH8/a/CzDxOddZmrE79997u+gEtd3KtLkcqLph9BI\n1MX+ulZq59ImvjsAAAAAACgk5Mz3CwAvLbfAIe+XGvXrg7isoiYz/os2pX/r+O5nH75do3Tx\nwMBAIf7RjRs3bt68ee7wzt//PJKU+Xz9l6OXX1qsfhHbqa9a9A4d2bl+BUdVvXfesrwKtgCy\n+6VQOM468NumEt2j0jN1p/h17DtrFk5+o3fvFrUrBAb4JUU+vHPnzrV/D63bcTJdtEhLoXT4\nausSN6WJlXQKpcHW3ee+/mBN1YWtqpVUp8U+fvy4bK2GedyZ+/9GVV/xxUnjkyoUE8bXzku3\n2eXljTSd3lPYPjvbIB1mDc63HNfS/f72oPhMjSAIDi4VNk9vbr5yiY5LB5fdvORurCAImsyE\nsb1rb3lr9PfD365Tq6qXo/LJg2vH9q4a9vl3916kBFco1JO2jrb3WzDp63Gdpn27K+v47t4f\n6wcvb9ylT+fmNYsHF8t4Fn7/7uVt69ZdyLZjfbkei2e2DpJ4Cpnvu0Ll8cvfs7ZX+TDlxc9m\nZnrU/KFdl8+q9Waf3o2qlQko6pUQFX73yon1a9b9+/D5J4nKsdicnTM+b/eurh9Xlel0UL61\nv9w2dFWnued1r8Te3N6v9faJDTp06dShdsWSfr7u8RFhDx8+vHRk26o9FzSGi9FbTNg3pIJX\ntl7tzsG93u5f3qrQTz/tQ6vV7F/ydfnl37d8vXfbBlWDgwMy4yIe3L28bd268y8uiyAIXhX6\nzvXc997ZnNfaCoJQaC+LWPPPKwkfPP+OeLR7myA0MVN57zGDC5Jw/8blPJw6NYeMBW8s29/t\nUPVtYc9/ADPTwr/sUPaPNz4cNuTN6uXLFXXNDHn44MzejfMX/HzhUZK44cBfjrb3djbVpd07\ndyna/ciiAXU+XK598aY0mfG/jB6wfNLXrTu2a9akTnF/P3dHbUz003tXzx36Z/fxK8aJLtxL\ndPlr/QDzg5fIqi+sVlP2v7U6eF1IvO6VkMMr2lZYV7dd9zc6tyhTPLiIU+bjsLALR/9av3H3\nY8MNHVQO/r8dnOuS5xRyL8FzZSdq12o7Vr1XuvvPulc0GTGLvuyxdHLFV9s1rFChQoUK5dyF\npMio8Esn/tm791Co4Q4mSrXnD0e3V3OV9KeJO7+c0x17Vxmtzlt2BAAAAAAA8lN+zxIAgDwp\nICvptVrt00uznE1Ff83wrzfg4tOQUs4m/ijpW3mNuPNCtJLe3pciS9iBuQGOquyVzXtr/qmc\nxpwUudZMw3MJ+sWsubvOKc8OqhTG18SrzP9Jv6oSzyv9jWSnyUyq7Opg1MSn8lTpg9Tm00r6\n2DuLdZe37XzTK4mNJEXsqZTtzSqULsVMRTi6TD9sshMZVtJvepK0pH9lM/c0u5Kvjo4ztXgx\nxxPa4r5b6/r6kU6SPyWUas8ZBx8nP90ufvGqmTWXmclzBuRm+kv9IT+ZXtmq1Wpl+YzdNr6r\nVQN29Kh9LCZFvP41p5X0BfCyWCv56Q7dWRQql7BUc8ui63o45uKd5uRaDqvMtVpt4uO/ymfL\nY2Few+F/SnzL9ut83+TuymxfSVK4BjQ78tR0EotcsPYLK/nJ8Y6lrN6DQ+UUNPfvUJsM+OV4\nrnKSl5X0WbaP75KL66ByDJy29Y70swwN1j8DXbbdt3aQAAAAAAAUHOxJDwC24VN9+NnlH0sM\nOykU6jYDp1w//msNn+K75r9j77HJTIZLEdRq6OXjv7ziK3XFmNLBZ/jPh9Z+ZpwsV8fF/60+\nQe45/WveOXm1/Kq0p9GLLWZ/bPMT5eWNKJQuszsUN3qxzVzbbzxsc9NeH5Op1QqC4Ozd9o+P\nq0pp4lK0/dGjS2t6GWx/q9UkR8QYxMgVCsXro9ds/6qZDUdrrf8tO/nd+1IH0PDtCRd3TPaw\nJvFDvtz3Sr2/u7B2lJSpNs7etX7cd21EywBNusEa1pLOObdVOg9bfmbVyNccpc8DULkP+Hb9\nycUfWD33x6a6Ttj219R+bjkkCTDiUbrN+jMHGkvff7rQXpYszj6d3y7qmnWszUyeeudZjlW1\nGVcS0+UZlWvAqydPrGlbWlLkWKF0fHPM8iMzX8/3ztuO2Xx166wqVoaca7855vLdA019bLbl\nubVfWM6+jbZeOdGvodQ0IYIguBSr/dupS0NbB1s/umxelufKfrpM2L5z2vueaiv+wuBeoun6\nf6+O6lZWYv3M1AeLHz/PMaBQOEyRnDMGAAAAAIACiCA9AEiiUjs4Obu4u3sU8fZxymH9WdX+\nC+4fW9m2ivHurWIKhaJS63f/PBu2f9loH7VSEIQqg5fv+35IUevXhduOQq12cHZxdffw9Pb2\nsVxdAhkuhW+dgece3f1xVN8iZv8crFCoG3X/aNuFO7MGW0iBvvjvnyp62nKRnJH/TWsoLqoc\nAxZ3LmmPE+XljTSa1ltcVDkGLmhji9iGPYUf/XL65adZx31WLvOUHJ/2rdX/xJ1Dn3Wvp8jh\nJ9otuMF36y/8OaWPbQaaWwqV58ilh8+sGl/R7KwUz9JNF+28dmL1eC/rt2bIl/teqffUO/eP\nftI5x0kVCoWyZufPz94/9UHLIEEQMlIfiEdoct8KEZBmHWYAACAASURBVGXf77Y8vrDj/fYW\n8hAolI4Nuw3adjFk+djedsuabMVn7Ktfrwy78tfA1ua2O1EoHZr2m3T9xt7XK1qbgr5AXRar\nDX9Pf1n2zbySU7WM5JspGtOJxO3B55Vee27e+n5IJy+zX0ZFq7T89dC9dZMHWJWd236dV+r6\nxb+hlxaOHVzOy/L3RdU2fX/def7cusllrFzebZG1X1gOblVXngj55/dp9YLczNdUOQUMmrjs\nQciZvq/Y5hebl+m5sp9Oo5Y+vLRjQMe6DpZSNTj5VBk5b1PYvcNvVCkivf+nl75NfXEXPEuP\nqOlmnAYGAAAAAIBCRKHNYTM8AEBuaS7uW7t2675jx0/eDomMiYlRuPoEBQUFFy/XomO3Hj26\n1ypt4s+RKVEXN289dPVWuG/p8lWqVKlctWYp//zZWNSm5LgUGQlh+7Zv27Jl29kbDyPCIyKi\nYhw9vP38/EpWqtWqVav23Xo3regtcbiZKWErZk5ZuevU/fv3w54k+wUEBgYGBgUFLVizupRT\nQVhKKlWu38izW996VxyvK5bs9MeDnT1yPYze/m4bnyQFNtr56HinXHdigTbtzSCfDeGJgiB4\nlh4Uc29JLqYfhp7asXz95h17j94Pe/QkQRMQFFShVtPuPd4Y0LeL9IC37d6s9sqVq7pCycpV\ndcvitZqkY9vWrPh986W7D0JDwyJiUv0CA4OCgivVa/nWW326Nqua66mXtr3v1oq8dnT16tVb\n/j4VGhoa9jjGzT+oZMmSVRt1+GDIkOaVfXXVov59u2jt58mxXf17JUZukNj/0ztnt23btuOv\ng7dDH0dERj6JTnIr4u3j51exRoNmzZp27PFW3ZJ2zKKRa5E3Tvzxxx9b9xx9+Cg8PDw8PtMx\nMDAoODi4UYdeAwf2qxHkqquZcO/Gg6TnO3C7BpYvI22hc2G8LCnR2938XtNotYIgOHm1SHr2\nT4GabpyeELJ19e/rtx28FxIaFhYaGa8JCAoODg6uULvFO/37d6wvda2wzJ1r0p8e2bP34MGD\n/xw5ExoZ9fTJk2fJWm9fXz8/v1KVarVs1ap1m46NqhbLy+DNy+UXljb10pG927dv33fs38cR\nEZEREbFpav+iRYsVLVquZpOuXbt2frV5UZfC9MWdE7s+V/aT8PDc6g3bT54+ffbfq5HRz2Jj\nYzMdPYoVK1asWOArjdp07typQ6u67tZPKdvYrkTv/aFZx90239vavbSNxw0AAAAAgIwI0gMA\ngOc2di7Ve9dDXXHM9ejJlaROcciuq6/rjujkUp333d/R1hajK9AK9Zu17X23k7Nf16o3/ULW\nsU/FH5/e+DB/x4N8Mb6iz7e3YrKO54TEDyte4GYSALATbWZcaXffhykZgiConIJC4kICHQvU\nRB0AAAAAAKzDf2sBAIAgCEJm6sOP94Xpik5eLSZITkJg0uO0TEEQ3MpYSEr8cii8b9bm991O\nDmzSTyMI6lwnH0eCfDR4QXvd8c9TL+TjSADI7MmFUVkRekEQSnb+iQg9AAAAAKCws/G2ggAA\noJB6sPXDqPRMXbHSBzPzssetJj3yUmK6IAilehTP+9gKuEL9Zm17382LubJg3OIbumKtkdP+\nV0LSSui0uGPf3HmmK9Z/t4ztB4fCILjtL008txyLSxUE4fZvH8X/cMHD+ozZAAqjDR/9kXWg\nUKim/tgmfwcDAAAAAEDeEaQHAACCIAizhx/RHSsUiglfVc9Lb+FHv07XahUK9Vf1iuZ5aAVd\noX6ztr3v5qncIxYsWKArVkru+b9fWklpeHD8kFTN8x2alCq3iVV97DE8FHwKlcfSGc2qDNkv\nCEJ64qVPDj3+rXVQfg8KgN2lxR0dfiYy6zig6fw+xVzzdzwAAAAAAOQdOeIAAIAQfXniwtB4\nXdGjxLAevi656yotLuLYlhlNO/0mCEJgy5ktvRxtM8QCqbC/WRvedyncAz8q5qjSFW//3u90\nXJrFVk/Oze82/4quWLT+nBJOKjP18XKr+N7aGm4OWcfbP/opfwcDQB6XZ32WNVVLoVCMX9U/\nv4cDAAAAAIANEKQHAOC/LjnydM8234lfaTd/aC67erLepUhg0+4j76dkuPg327jlI1sMsIAq\n7G/WhvddIqVj0C+vldIVM1PDOjQYePZpipkmN3fNeKXx8LQXy+gFQRj6ay87DhEFntLBb+2M\n55mun92ctPhBvPn6AAo7TXrku7MuZx0HtZo7pKRH/o4HAAAAAACbUGi1Wsu1AADAy0SbVr1e\nq3LlypUK8ooOu7try+7odI3uH508m0REH/HK1U7PSVGr3Yq+4+AW2L73oGmzx7zi7WS7QRc4\nhe/N2u2+S5cWe6xKYMu7yRm6V9QuQa/1f+/99/s3rV6miNvzVAQpT+8fOnhg7c+zl+25LG5e\nvP3skD1f2HWEKPi0muTewf6bwhMFQQho8sPjo5/m94gA2NG1hW2qfnpAEASlushfEY/b+zjn\n94gAAAAAALABgvQAAPz3aFMVyhz/xv3RzoeLOpXIZceZcffCEgOLB7go7RvrLQgK35u12323\nSsj2MZW7T0/K1GT/Jyd3b/8izvExMbGJJpbXe5TufOLKlqquavuPEQVd1OlxRRtMEgRBoVD9\nFhbbL9Atv0cEwC60GTENfALOxKcJglBn1OGz05rl94gAAAAAALANgvQAAPz35BysrfvhmjM/\n9pF5OJBJgbnvD3Z/3+qNb+4npUtv4lur39GjyyoRoccLi3uU+ejP+4IgBDT57vHRkfk9HAB2\ncWFWq1oj/hEEwbVop3uh24s6sGEfAAAAAOAlwX9xAQCAIAiCUl3k7a9XnSJC/x+TL/e91Ksj\nb4T9O+G9jt4OKouVXYrWGDln3c3TvxGhh9jgNfuaeDkJghB+7Kuxp6PyezgAbC894XzXMUcF\nQVAonWf/s5oIPQAAAADgZcJKegAA/oM0S6aNXLl2+/UHIfGCR4WKFavVaTti/P/VDXTN74HB\nrgrcfc9IDN26ZuOhk6fOnP33QfjT2GfPkjJVXl5eXkWK+AWWbdikabNmzTq82txbXUg2FIC8\nok5ND2w0OlOrdQvoFRW2wYX4HfByWdenfJ91dwRBaDru0JGJzfN7OAAAAAAA2BJBegAAAAAA\nAAAAAAAAZMJ6EwAAAAAAAAAAAAAAZEKQHgAAAAAAAAAAAAAAmRCkBwAAAAAAAAAAAABAJgTp\nAQAAAAAAAAAAAACQCUF6AAAAAAAAAAAAAABkQpAeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAA\nAEAmBOkBAAAAAAAAAAAAAJAJQXoAAAAAAAAAAAAAAGRCkB4AAAAAAAAAAAAAAJkQpAcAAAAA\nAAAAAAAAQCYE6QEAAAAAAAAAAAAAkAlBegAAAAAAAAAAAAAAZEKQHgAAAAAAAAAAAAAAmRCk\nBwAAAAAAAAAAAABAJgTpAQAAAAAAAAAAAACQCUF6AAAAAAAAAAAAAABkQpAeAAAAAAAAAAAA\nAACZEKQHAAAAAAAAAAAAAEAmBOkBAAAAAAAAAAAAAJAJQXoAAAAAAAAAAAAAAGRCkB4AAAAA\nAAAAAAAAAJkQpAcAAAAAAAAAAAAAQCYE6QEAAAAAAAAAAAAAkAlBegAAAAAAAAAAAAAAZEKQ\nHgAAAAAAAAAAAAAAmRCkBwAAAAAAAAAAAABAJgTpAQAAAAAAAAAAAACQCUF6AAAAAAAAAAAA\nAABkQpAeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAAAEAmBOkBAAAAAAAAAAAAAJAJQXoAAAAA\nAAAAAAAAAGRCkB4AAAAAAAAAAAAAAJkQpAcAAAAAAAAAAAAAQCYE6QEAAAAAAAAAAAAAkAlB\negAAAAAAAAAAAAAAZEKQHgAAAAAAAAAAAAAAmRCkBwAAAAAAAAAAAABAJgTpAQAAAAAAAAAA\nAACQCUF6AAAAAAAAAAAAAABkQpAeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAAAEAm6vweQIHz\n+OCYIbMvObhW2bT2O4lNksKu7dn/99FzV6OePI1NEbx9fAJLV27esnXbJjUcFHZvDgAAAAAA\nAAAAAAAoLBRarTa/x1CwrBry9rrHiZKD9NrjmxbOWbk3RWPiMnpXbDXy60+q+TrZrTkAAAAA\nAAAAAAAAoDAh3b2BpIg968OTpNc/+9voaSv26ELsCqWjh6uD7l9jbh4c//n4uymZdmoOAAAA\nAAAAAAAAAChcSHevlx5/f+6YpdJTCzy7vvzbTVezjt1KNP7wg75NXinloBCSou/v27pq6eZT\nWq02Lf7quFGrfp/7rs2bAwAAAAAAAAAAAAAKHdLdC0kxEQ8fPjhzeM+u/afjM59fDQnp7jVz\nBvY5EJ0iCIKzX9PFP4/0URtsIH9zx+QRP53KOu4zb1XfMh42bQ4AAAAAAAAAAAAAKHz+0+nu\nU5/tf++dXn0GDB45dvL6Pad0EXopEkJXZIXYBUHoP+lToxC7IAgVu4zpWtQ163jnnEO2bQ4A\nAAAAAAAAAAAAKIz+00F6bWb80/i03LW9t/ZE1oGzT8duwW6mqije+Lh21lF8yKpYwxkAeWwO\nAAAAAAAAAAAAACiM/tN70qtdq/Tr10/8SlLE33/sfSSl7ebzT7MOgtq+mlMd72p9lYpjGq1W\nm5mwOjzxo2B3WzUHAAAAAAAAAAAAABRG/+0gvUulN9+sJH4l+vJVKUF6bWbc+YT0rONKrYvl\nVE3lVKKhh8PxuDRBEO5djBFeRNnz2BwAAAAAAAAAAAAAUEj9p4P0uZYWfzJT+zz/fC0vRzM1\n67g7ZkXZn56KFjqVsEnzXEtPT9doNHnsBAAAAAAAAAAAAAD+mxwdHRUKRR47IUifG+lJN3XH\nVV0dzNQMLO4qPEoQBCH5Uagg1LRJ81xLTk5OS0vLYycAAAAAAAAAAAAA8N/k7e2tUqny2InS\nJkP5r9GkPcs6UCjUXipzEyUcvZ8vlNdkPLNVcwAAAAAAAAAAAABAIUWQPjfSYp+vR1eoPMzX\nVHs8XygvjrLnsTkAAAAAAAAAAAAAoJAiSG9nGu2Lg9R8aA4AAAAAAAAAAAAAKEgI0ueGo9fz\nLPTazETzNTMSM7IOFA4+tmoOAAAAAAAAAAAAACik1Pk9gEJJ6eiVdaDVpiVptK7KHPeVT4t5\nntleqdZH2fPYPNccHR2VSqZlAAAAAAAAAAAAAEBuKBQ5xnalI0ifG2qXCoKwJ+v4WlJ6XXfH\nnGpGhiVnHTh5B9iqea45OzvnvRMAAAAAAAAAAAAAQK6xrjo3nDwbKV9MkbiQkGGm5sWE9KwD\nv8bFbNUcAAAAAAAAAAAAAFBIEaTPDYXKq5abQ9bxleNROVXTZjw9GpeadVyijj5ffR6bAwAA\nAAAAAAAAAAAKKYL0udSj1vOo+ePdJ3KqE/dgQ7pWKwiCQuX6TqCbDZsDAAAAAAAAAAAAAAoj\ngvS5VPbthlkHiY/XnIpLM1nnyKKjWQcexd/xczC41HlsDgAAAAAAAAAAAAAojAj95pJH8YHN\nvZ0FQdBqNQsmb9JmqxBzZdXPt+Oyjjt90dK2zQEAAAAAAAAAAAAAhRFB+txSqAZ91THr8Nn1\nNZ/P2PA4MeP5P2kzrx9ZN2zsBq1WKwiCV4W33ynraePmAAAAAAAAAAAAAIBCSJEVCUaW6MsT\nBo4+JwiCg2uVTWu/s1j/9PKRk/64nnWsUHmULV/Ky0kTEXY37GlK1ouOXjVmLfm2lLPKHs0B\nAAAAAAAAAAAAAIULK+nzpP7A6f/Xr42zUiEIgjYz/s6Ny+cuXtWF2P2qtpn8w3gzIfY8NgcA\nAAAAAAAAAAAAFC7q/B5AYads/uawOo3b797/99GzV59ER8elCt7ePoFlq7Vo1apdo+oqhV2b\nAwAAAAAAAAAAAAAKE9LdAwAAAAAAAAAAAAAgE9LdAwAAAAAAAAAAAAAgE4L0AAAAAAAAAAAA\nAADIhCA9AAAAAAAAAAAAAAAyUef3AAAAAAAAAAAAACCrKkN3yHzGa/O6yHxGACiwWEkPAAAA\nAAAAAAAAAIBMCNIDAAAAAAAAAAAAACATgvQAAAAAAAAAAAAAAMiEPekBAAAAAAAAAHiOjboB\nAIC9sZIeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAAAEAmBOkBAAAAAAAAAAAAAJAJQXoAAAAA\nAAAAAAAAAGSizu8BAAAAAAAAAABMqzJ0h8xnvDavi8xnBAAA+K8hSA8AAAAAAADAMvmjxQIB\nYwAAALyMSHcPAAAAAAAAAAAAAIBMCNIDAAAAAAAAAAAAACATgvQAAAAAAAAAAAAAAMiEID0A\nAAAAAAAAAAAAADJR5/cAAAAAAAAAAKtVGbpD5jNem9dF5jMCAAAAeCmxkh4AAAAAAAAAAAAA\nAJmwkh4AAAAAAAAAAAAAYAOkvJKClfQAAAAAAAAAAAAAAMiElfQAAAAAAAB5Iv9KEaFwLhYB\nAAAAAAgE6QEAAAD8dxBFyxekuZMf1xwAAAAAgIKMdPcAAAAAAAAAAAAAAMiEID0AAAAAAAAA\nAAAAADIhSA8AAAAAAAAAAAAAgEwI0gMAAAAAAAAAAAAAIBOC9AAAAAAAAAAAAAAAyESd3wMA\nAAAA/qOqDN0h8xmvzesi8xkBAAAAAAAAGCFIDwAAgHyIFgsEjAEAAAAAAAD8J5HuHgAAAAAA\nAAAAAAAAmbCSHgAAFDjkAAcAAAAAAAAAvKxYSQ8AAAAAAAAAAAAAgEwI0gMAAAAAAAAAAAAA\nIBOC9AAAAAAAAAAAAAAAyIQgPQAAAAAAAAAAAAAAMlHn9wAAAAAAAAAAAAAAwPaqDN0h8xmv\nzesi8xlRGLGSHgAAAAAAAAAAAAAAmbCSHgAKE/kn/QnM+2OuJQAAAAAAAAAAsB1W0gMAAAAA\nAAAAAAAAIBNW0gPIPZYXAwAAAAAAAAAAAFZhJT0AAAAAAAAAAAAAADIhSA8AAAAAAAAAAAAA\ngEwI0gMAAAAAAAAAAAAAIBP2pMdLQv7N0QX2RwcAAAAAAAAAAABgJVbSAwAAAAAAAAAAAAAg\nE4L0AAAAAAAAAAAAAADIhCA9AAAAAAAAAAAAAAAyIUgPAAAAAAAAAAAAAIBMCNIDAAAAAAAA\nAAAAACATgvQAAAAAAAAAAAAAAMiEID0AAAAAAAAAAAAAADIhSA8AAAAAAAAAAAAAgEwI0gMA\nAAAAAAAAAAAAIBOC9AAAAAAAAAAAAAAAyIQgPQAAAAAAAAAAAAAAMlHn9wAAAAAAAAAA5Eb6\n6iA5T3exofDKySVynhEAAAB4KbGSHgAAAAAAAAAAAAAAmRCkBwAAAAAAAAAAAABAJgTpAQAA\nAAAAAAAAAACQCUF6AAAAAAAAAAAAAABkQpAeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAAAEAm\nBOkBAAAAAAAAAAAAAJAJQXoAAAAAAAAAAAAAAGRCkB4AAAAAAAAAAAAAAJkQpAcAAAAAAAAA\nAAAAQCYE6QEAAAAAAAAAAAAAkIk6vwcAAAAAAAAAAADwX5e+OkjO011sKLxycomcZwQA6LCS\nHgAAAAAAAAAAAAAAmRCkBwAAAAAAAAAAAABAJgTpAQAAAAAAAAAAAACQCUF6AAAAAAAAAAAA\nAABkQpAeAAAAAAAAAAAAAACZEKQHAAAAAAAAAAAAAEAm6vwewEtAc/343kMnz168fjcm5lmK\n1tHb2zugdKVGjRq3aVnPVamw2D4p7Nqe/X8fPXc16snT2BTB28cnsHTl5i1bt21Sw8FyawAA\nAAAAAAAAAABAoUGQPk8S7h+dMevH8w/iRK+lRT5OiHwccvH4vt/XvPLB8BH/z969x3dZ1/0D\n/3z33YmNMTdQBCWU1EwUETNEI/F0q3fWnVSah7zJzEzNH3bwkKn9FNOybg9ld2rlKdBS07zv\n7Nbw8DOVQ7eYqIhUmAmIyHEbY2z77vr98R0TgS3a4XON8Xz+9Wbf6/DZi8vRo9eu6zpi7x3a\nP0Ay44Gbr7/79w0tSduXli+tX7500Uszp9+z14QLLzl35MCSnls/AAAAAAAAADF53H3nrXzx\nl2dd8L2NG/psSUVFcbbtj/VL5950yVd+t2BNe0d4/q5vXnPnY20NfaaguKKsqO3TVQueuuL8\nKxY25Hpg7QAAAAAAAACkwJ30nbR+zayvXnlPXS4JIWSyZYef+MUTJhyw687V2ZBbvuSNOU/+\n+qf3/6GhJWnJrbn1W5eO+cVNg4s3/X2I1fPvuPKBefm5fNi4s8865ZBRw4syoX7l36Y/PPVn\nD85OkqSxdt7lF0/9xQ2nx/72AAAAAAAAAOgB7qTvpN9958crm1pCCNmSXS790c8nn3zk8CHV\n2UwImeygXUb8y2lf//mNlwwtzoYQcg1/n3LnvM0O0HL7tY8kSRJCKB106M03XnzY/sPzb6Av\nq97tE5Muve6sg/Lb1Sy8f9rrtfG+MQAAAAAAAAB6jJK+M5rrX7l9/ur8/JGv/d8P71K2+Tb9\nhx981cUT8vOix25uTJKNP61bdOeTKxvy8+euOq+6MLPJ7nt97NLjd2o97CPXP919awcAAAAA\nAAAgNUr6zlj58q/yN8EXFA0898M7trfZjgeeN7w0G0LIrV/8i0V1G3/0+r0z80Np9bEf36V8\nS3tnJp5zQH6qfXPqmlyypW0AAAAAAAAA2JYo6TujZt6q/FAyYFxpwaY3wb8rkz2uql9+fOm5\ndzb+5MEXVuSHoUce097eVSNPKchkQghJrm7a0rVdWzIAAAAAAAAA6VPSd0bj6qbWKZPteMuy\nbGuFv3zmkrYvJrmaF+paj/CBwwe3t2+2ZNjYiqL8/PrcVZ1dLAAAAAAAAAC9RWHaC9gmle/W\n+oD6xtrnW8IXOvhNh+dq1rduufrVED6yYa9ZuQ2vqB9dWdzBicb0L55R0xhCWDF7ZThuWBeX\n3dDQkMvlungQNrZ2rSccxCbzVIg9PpnHJ/NUiD0+madC7PHJPD6Zp0Ls8fXCzDv6/5X6il4Y\ne58n8/hkTl6f/6nuUmc74VKPL3Lm/fr1Kyjo6p3wSvrO2PHgA8LPF4QQcusXTXu99rTdK7a4\nWd2bD82saczPLc0r277eVL+gbd6nrKiDEw3ZtSwsqQshrFuyKIT9u7jsxsbGxsbGLh6Eja1b\nty7tJWx3ZJ4Ksccn8/hkngqxxyfzVIg9PpnHJ/NUiD2+Xph5n69zQq+Mvc+TeXwyJ6/P/1R3\nqbOdcKnHFznz0tLSrh/E4+47o2zwZ9rK9Yf/7/WL1m3h9vTG1Qu+e+nUtj+2NL1b0rc0rs4P\nmUxhZbb9V9qHUFzV+o9yS/PqLq4ZAAAAAAAAgNQp6TslU/zV/zM+Pzas/N/zJ503bfqcpStr\nQwghaV6+5I0nf3XzmWdc+OLq9e/uUfDur1Q0rmm9nT2T3fIt+G0KN7yTXkkPAAAAAAAA0Ad4\n3H0n7TRu8leP+/t//O4vIYTmdYvvvenb94ZQ2G9AYWNtQ671ffPZkl0+PT755fQlIYSCwqrO\nnKYl2TCs73A7AAAAAAAAALYB7qTvvAlf/sHlnz96QPbdDJvX1bQ19OW7jrnoxh8c1K/11yAK\nCqvbNiuubH2IfZJb2/Epmtc254dMUXXHWwIAAAAAAADQ+7mTvisyHzrhK7cf9cnHHvn983P+\n9PqS5WtqG/pV7rDTrnseOn7Cx/7l4H4FmRffashvWrzDHm27FRRX5ockaaxvScoK2n0tfeOq\n1gfjb9zxd1ppaWlxcXHXj0Ob/v37p72E7Y7MUyH2+GQen8xTIfb4ZJ4Ksccn8/hkngqxxyfz\nVIg9PpnHJ3O2Ey51thMu9fgiZ15Q0A23wSvpu6qoYtjHTjrjYydt+dM/v1mXHwYetHPbFwv7\n7RnCY/n51fqmA/u3W5wvW7wuP5RU7dzeNltPQ9/tSktL017CdkfmqRB7fDKPT+apEHt8Mk+F\n2OOTeXwyT4XY4+uFmTelvYAIemHsfZ7M45M5eX3+p7pLne2ESz2+bTFzj7vvUcn/W9P6Lvmh\nBw1s+2rJgIMLMq13z79Y19zB/nPrWv9RHjRucM+sEAAAAAAAAIB4lPQ9qGHVY2805EIImUzR\nZ4e9+5iFTLZydHlRfn5lxjvt7Z40r3i2prXjHzbGO+kBAAAAAAAAtnked99JF3/pzGVNLSGE\nAy+5/tw9K7e4zV/v+6/8UDb408NKsht/dMLo6jnPLA0hvPXozHDC8C3uXvPGfU1JEkLIZMtO\nHVLejYsHAAAAAAAAIBXupO+kQwvXLV++fPny5bNve3aLG+QaFv7g0cX5efSkIzb5dMTJY/PD\n2rfumV3TuMUjPPPj1iNX7HrqoCJ/UwAAAAAAAADbPNVvJ437wqj8sGr+T26dsWyTT5Nc7V3f\numJ5Uy6EUFzxoQs2e6N8xa6TxleVhhCSpOVHUx5INjv+qlem3vqXmvx83AWHdfPqAQAAAAAA\nAEiDkr6TBo4+/8OVJfn5t9+bfNO9T7xT0xBCCEnub3966ntfPfvBBWtCCJlM4We++ZXizGb7\nZ7JnXnRsflw9/57zr7vvrbXNrR8lufnP/HLyZfclSRJCqNzz5FNHDOj5bwgAAAAAAACAHued\n9J2UKeg3ecpZX55885pcS5Krmz7thunTbiitqGypr2nMvXtj/MFf+O5JI6u2eISqfc64bOL8\nq349P4Twxh/uPvu5h0bsMbyypOXtxQsXr2jIb1Ncud+Uq0+M8O0AAAAAdFHTtKExTzd3bBg1\n67aYZwQAAOgWSvrO6z/86B9+J/PtKT9ZWNv6UvmG2jVtn2ZLBp8y+ZufOXT3Do5w0KRrv1F2\n0w+nPdnQkiS52r++9vLGnw7a54gLLz5neGm2JxYPAABsnyJXaEGLBgAAAPBeSvou2eGDR/3H\nHQc+/dv/emb2nAVvLK2tbx5QPXDQTrt86COHH3H4IYPL/mG/XjD+xMljxh396ONPPPv8vOUr\nV9asD1VV1UNGjPzohAlHHbxvdvPn5AMAAAAAB69S7AAAIABJREFUAACwzVLSd1VBUdWET54+\n4ZOnd/oI5cNGTpw0cuKk7lsTAAAAAAAAAL2Skh4AAEiNtxcDAAAAsL0pSHsBAAAAAAAAALC9\nUNIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESi\npAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJ\nDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIe\nAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkRSmvQAAALagadrQmKeb\nOzaMmnVbzDMCAAAAAGyflPQAAAAAAPRefokZAOhjPO4eAAAAAAAAACJR0gMAAAAAAABAJEp6\nAAAAAAAAAIhESQ8AAAAAAAAAkRSmvQAAAAAAgG1D07Shkc84d2wYNeu2yCcFAKBHuZMeAAAA\nAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAA\nAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAA\nAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAA\nABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAA\nIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABA\nJEp6AAAAAAAAAIhESQ8AAAAAAAAAkRSmvQAAAOgtmqYNjXm6uWPDqFm3xTwjAAAAAJA6d9ID\nAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcA\nAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkhWkvAAD+OU3ThkY+49yx\nYdSs2yKfFAAAAAAA6JPcSQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAA\nAIBIlPQAAAAAAAAAEElh2gsAAAAA6GZN04bGPN3csWHUrNtinhEAAIBtlzvpAQAAAAAAACAS\nJT0AAAAAAAAARKKkBwAAAAAAAIBIvJO+Gyx+5ZlHn5r18iuvLVu5em1TqBgwYJfdPzDqgIOP\nPfbQqqJ//GsQ9YtffezxJ56dM++d5SvWNISq6uohu+09/rDDjzxkv6JMhOUDAAAAAAAAEImS\nvkuaahf+9Hvf/d2Lb238xdUrGlavWPbK//7hV3ff/dmvXHzS+BHtHyCZ8cDN19/9+4aWpO1L\ny5fWL1+66KWZ0+/Za8KFl5w7cmBJjy0fAAAAAAAAgKg87r7zmtYuuPzLF27c0Gcyhf1Ls21/\nzDUsnXrd5Bt+99f2jvD8Xd+85s7H2hr6TEFxRVlR26erFjx1xflXLGzI9cDaAQAAAAAAAEiB\nO+k7777LrnqlpjGEkMlk9jzk3/79xGP3fN+Q0myoXfH2KzP+5/a7H35rXXMI4cmfXHTg2F+M\nry7dZPfV8++48oF5+bl82LizzzrlkFHDizKhfuXfpj889WcPzk6SpLF23uUXT/3FDadH/tYA\nAAAAAAAA6AlK+k6qX/bAvX9Zk59Hnf6dqz41su2jioE7H3z8pDEf/dD5Z1y2pDGXJI0///4f\nx39n/HsP0HL7tY8kSRJCKB106M03Xlhd2Pr++bLq3T4x6dK9d5zy9VtmhxBqFt4/7fUTTtm9\nIsq31Z2apg2Nebq5Y8OoWbfFPCMAAAAAAADAP8vj7jtp0cNP5YfCfntdNnHk5hsUD9j3wk/v\nlp9Xv3Z78t5P6xbd+eTKhvz8uavOa2vo2+z1sUuP36ksPz9y/dPdtGoAAAAAAAAA0qSk76RV\n81pvo+836BPFmzbsrXaesG9+yDUtX7T+Pa+Wf/3emfmhtPrYj+9SvqW9MxPPOSA/1b45dU0u\n2dI2AAAAAAAAAGxLlPSdlGtqaRvb3+rd9r7pvSX7gy+syA9DjzymvZ2rRp5SkMmEEJJc3bSl\nazu5UAAAAAAAAAB6DSV9Jw0eOyg/1L/z6/qWLd/mvnj63PyQLd5599Js29eTXM0LdU35+QOH\nD27vFNmSYWMrivLz63NXdX3NAAAAAAAAAKSrMO0FbKveN/HM4vsvbWxJcg1vXH7XrO9POniT\nDda9PeuaB9/Iz0MOP2fjJ+I31s7KJa29/ujK4g7OMqZ/8YyaxhDCitkrw3HDurjmdevWNTc3\nd/EgW6802pnSU1tbm/YStjsyT0Vvi92PF3pCL8zcpZ6KPh+7zFPR22KXOT2hF2buUk9Fn49d\n5qnobbHLPBV9PvZemDmpcKlD3+BSjy9y5uXl5QUFXb0TXknfSUVl+/7gK8ecf9OjSZIs+PV3\nvvjahH8/6bg9hu06qDy8tWTxvBmP/uL+J9fkWkIIA0Ycc83Z+2+8b1P9grZ5n7KiDs4yZNey\nsKQuhLBuyaIQ9u9gy63R1NTU2NjYxYNsvT7/vydCCOvXr097Cdsdmaeit8Xuxws9oRdm7lJP\nRZ+PXeap6G2xy5ye0Aszd6mnos/HLvNU9LbYZZ6KPh97L8ycVLjUoW9wqccXOfOysrKuH0RJ\n33nDjzzn+pKB19xw79uNubdfeep7lz+1+TZ7TTj5oq+cVJnd+Eb60NK4Oj9kMoWbfLSJ4qrW\n++xbmld3z6IBAAAAAAAASI930nfJ7of820nHvb+9T0t2GHPGaSfsWLRpyI1rWm9nz2QrOj5+\n4YZ30ivpAQAAAAAAAPoAJX3nrV307GVfnnTTb1qfXZ/JFFYNHrbniGED+rU+n2D96jmXfGnS\nDb+c2flztCQbBk/GAAAAAAAAANjmedx9J6198+mvXXD9ksZcCKFs55Gf/dzpxx6yd+mGZ9ev\nWfrqg1Pv+s3T83K5+iemfmfZ2q9/54yPtu1bXNn6EPskt7bjszSvbc4PmaLq7v8eAAAAAAAA\nAIhLSd8ZScu67158U76hr9zj+P+87ov93/tq+cqdPzjpa9ccfdBtX/7+f4UQXn7o+7d8aN8v\njWot2guKK1uPkzTWtyRlBe2+lr5xVeuD8QsKu6GkLy8vLysr6/pxtlLyjzfZ5u2www5pL2G7\nI/NU9LbY/XihJ/TCzF3qqejzscs8Fb0tdpnTE3ph5i71VPT52GWeit4Wu8xT0edj74WZkwqX\nOvQNLvX4ImdeUNANz6pX0nfG6gU/+VNtYwghkyk4/9uTNmno2+zy0S9+4aGnf/aXNSGEp370\nyJduPS3/9cJ+e4bwWH5+tb7pwP7F7Z1o2eJ1+aGkaueuLzubzXb9IFuvKebJUlJY6L+g2GSe\nit4Wux8v9IRemLlLPRV9PnaZp6K3xS5zekIvzNylnoo+H7vMU9HbYpd5Kvp87L0wc1LhUoe+\nwaUe37aYuXfSd8bb0/+cH0oqDztoQLsVewjh0NN2zw/1yx7ObfgtuJIBBxdkWnv9F+uaO9h9\nbl3rP8qDxg3uwnoBAAAAAAAA6BWU9J3RuLr1KfTZkuEdb1kyuCo/JC0N9S2tLX0mWzm6vCg/\nvzLjnfb2TZpXPFuzPj8PG+Od9AAAAAAAAADbPCV9Z5Tv3j8/NNW/0vGWaxe2dvDZokEVGz0V\n/4TRraX7W4/ObG/fmjfua0qSEEImW3bqkPKuLBgAAAAAAACA3kBJ3xk7jd83PzTW/vF3S+vb\n3zD57d0L81PZzp/Y+IMRJ4/ND2vfumd2TeMWd37mx8/mh4pdTx1U5G8KAAAAAAAAYJun+u2M\n/sNO27us9Xn1d3zrhjfrt/xe+Tn3Xf2bDRX+QWd8ZOOPKnadNL6qNISQJC0/mvJAstm+q16Z\neutfavLzcRcc1m1LBwAAAAAAACA9SvrOyGRKL/zG0fl53bKZ5//72bf++g9vvr0ql4QQQkPt\nyj+/+OR3v3HGt++end+mYvjH/8+Bg957iOyZFx2bH1fPv+f86+57a+2Gpj/JzX/ml5Mvuy9J\nkhBC5Z4nnzpiQIRvCgAAAAAAAICeVpj2ArZVgw48+8pTl18+dXYIIbd+2X/fcd1/3xEy2dIB\npS1r1r7n8fX9dvrQNdedkdnsCFX7nHHZxPlX/Xp+COGNP9x99nMPjdhjeGVJy9uLFy5e0ZDf\nprhyvylXnxjh2wEAAKDnNE0bGvN0c8eGUbNui3lGAAAAYOu5k77zRp/0rR9eMml4ZXHbV5Jc\nw8YNfSaT3e/I0378k2+9rzS7xSMcNOnab5x2RGlBJoSQ5Gr/+trLc+bOa2voB+1zxJQfXjG8\nnX0BAAAAAAAA2Oa4k75Lho+beNPY4/70/37/3PMvzlvw+qo1tfVNSUXFgIFDd9t331EfPepf\n9hpc1uEBCsafOHnMuKMfffyJZ5+ft3zlypr1oaqqesiIkR+dMOGog/fNbn4DPgAAAAAAAADb\nLCV9V2UK+h1w+CcOOPwTnT5C+bCREyeNnDip+9YEAAAAAAAAQK/kcfcAAAAAAAAAEImSHgAA\nAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAA\nAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIilMewEAAAAAAAAA9IimaUNj\nnm7u2DBq1m0xz7gtcic9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJd9IDdIlXuQAA\nAAAAALD13EkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAA\nAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAA\nAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAA\nAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAA\nAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAA\nAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAA\nIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABE\noqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhE\nSQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImS\nHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9\nAAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoA\nAAAAAAAAiKQw7QUA3alp2tCYp5s7NoyadVvMMwIAAAAAAMA2zZ30AAAAAAAAABCJkh4AAAAA\nAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiKQw7QVsk+qW3HTK2dP/2b3G3Tz1kmEVm3+9fvGr\njz3+xLNz5r2zfMWahlBVXT1kt73HH3b4kYfsV5TpjuUCAAAAAAAA0Dso6dOVzHjg5uvv/n1D\nS9L2peVL65cvXfTSzOn37DXhwkvOHTmwJMX1AQAAAAAAANCNPO4+ntLNwn7+rm9ec+djbQ19\npqC4oqyo7dNVC5664vwrFjbkoq0QAAAAAAAAgB7lTvrO6DfoM9/97tFbs+Xq+fdfc/sfQwg7\nfGDiV4ZWvPejO658YF5+Lh827uyzTjlk1PCiTKhf+bfpD0/92YOzkyRprJ13+cVTf3HD6d3+\nLQAAAAAAAAAQn5K+M7LFQz74wSH/cLNcw+tfv+KFEEJR+d5XTflc4XteMN9y+7WPJEkSQigd\ndOjNN15YveHjsurdPjHp0r13nPL1W2aHEGoW3j/t9RNO2X0LL7MHAAAAAAAAYNvicfc9J7nn\n8iv+2tCcyRR94drLh5dkN/6sbtGdT65syM+fu+q86vcW+CGEvT526fE7leXnR65/OsJyAQAA\nAAAAAOhpSvqesuixa341f3UIYY8TrvjX4f03+fT1e2fmh9LqYz++S/mWDpCZeM4B+an2zalr\ncknPLRUAAAAAAACAOJT0PaJp7cvfumV2CKHfoPFTTt9v8w0efGFFfhh65DHtHaRq5CkFmUwI\nIcnVTVu6tmdWCgAAAAAAAEA8Svoe8cAV31vZ1JLJFJx+1Tn9CjZ9lH2Sq3mhrik/f+Dwwe0d\nJFsybGxFUX5+fe6qHloqAAAAAAAAANEUpr2APmjVyz+dtmB1CGGncZM/tqVH2TfWzsolrY+v\nH11Z3MGhxvQvnlHTGEJYMXtlOG5YFxdWV1fX1NTUxYNsvU0f8d8XrVrV6355os/HLvNU9LbY\nZU5P6IWZu9RT0edjl3kqelvsMk9Fn49d5qkQe3wyT0Vvi13mqejzsffCzEmFSx36hl54qfvx\n0r0GDBiQzWa7eBAlfTdLWupvvOZ/QggFRQMvmjx+i9s01S9om/cpK+rgaEN2LQtL6kII65Ys\nCmH/Lq6tpaUll8t18SBsTJ7xyTwVYo9P5vHJPBVij0/mqRB7fDKPT+apEHt8Mk+F2OOTeXwy\nZzvhUmc74VKPb1vM3OPuu9mbj1w9p7YxhLDbJy/Zo3TLv0PR0rg6P2QyhZXZTR+Gv7Hiqtb7\n7FuaV3frMgEAAAAAAABIgZK+OyXNq667a14IIVu840Unvb+9zRrXNOaHTLai4wMWbngnvZIe\nAAAAAAAAoA9Q0nenNx6+9o2GXAhh+CcvGlLc1VcRhBBCS7JhWN8NRwMAAAAAAAAgVUr6bpPk\n6r5/74IQQqag9LxPt3sbfQihuLJ4wy5rOz5m89rm/JApqu6ONQIAAAAAAACQpsK0F9B3LJt5\nw98bciGEgfud097b6PMKiivzQ5I01rckZQXtvpa+cVXrg/ELCruhpK+o+AdP1+9ezTFPlpKB\nAwemvYRN9fnYZZ6K3ha7zFPRfM8uMU83d2wYNeu2mGfsjZmnvYAIxB6fzFPR22KXeSr6fOwy\nT4XY45N5Knpb7DJPRZ+PvRdmTipc6tA39MJL3Y+X7pXJtNvtbj0lfXdJ7r5lbn7613M/3PGm\nhf32DOGx/PxqfdOB/Yvb23LZ4nX5oaRq564vsVuuGDYm0vhkngqxxyfz+GSeCrHHJ/NUiD0+\nmccn81SIPT6Zp0Ls8ck8PpmznXCps51wqce3LWbucffdo37p/U+vbgghFPcf/amdyzreuGTA\nwQUbrpUX6zr65ZW5dU35YdC4wd2xTAAAAAAAAADSpKTvHi//9NH8MOSo0/7hr2pkspWjy4vy\n8ysz3mlvs6R5xbM16/PzsDHeSQ8AAAAAAACwzVPSd4Mkt+Y/X1ienz85cfjW7HLC6NbS/a1H\nZ7a3Tc0b9zUlSQghky07dUh5l5cJAAAAAAAAQMqU9N1g9Z9/vqKpJYRQVPbBI3co2ZpdRpw8\nNj+sfeue2TWNW9zmmR8/mx8qdj11UJG/KQAAAAAAAIBtnuq3G8y7e25+2OGDn9nKXSp2nTS+\nqjSEkCQtP5ryQLLZBqtemXrrX2ry83EXHNYt6wQAAAAAAAAgXUr6rkqShttfW52f9z7x/Vu7\nWyZ75kXH5sfV8+85/7r73lrbvOGIufnP/HLyZfclSRJCqNzz5FNHDOjeNQMAAAAAAACQisK0\nF7DNW/fOQ8sac/n5X4dXbP2OVfuccdnE+Vf9en4I4Y0/3H32cw+N2GN4ZUnL24sXLl7RkN+m\nuHK/KVef2O1rBgAAAAAAACAV7qTvqqVPzsoPhaW7jSz7537p4aBJ137jtCNKCzIhhCRX+9fX\nXp4zd15bQz9onyOm/PCK4aXZ7l0wAAAAAAAAAGlxJ31XPf/40vzQb9Bx//zeBeNPnDxm3NGP\nPv7Es8/PW75yZc36UFVVPWTEyI9OmHDUwftmM927WAAAAAAAAADSpKTvqs/ces9nunaE8mEj\nJ04aOXFStywHAAAAAAAAgN7L4+4BAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAA\nAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAA\nAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAA\nAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAA\nAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAA\nAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAA\nACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAA\nRKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACI\nREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJ\nkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIl\nPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6\nAAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQA\nAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEA\nAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAA\nAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAA\nAAAAgEgK015A35C8+cqsx594fO6CRe8sX742V1hVPXjv/UYfcdy/HTii6h/uXL/41ccef+LZ\nOfPeWb5iTUOoqq4estve4w87/MhD9ivKRFg8AAAAAAAAAJEo6bsq17D4zu9f/dDsRRt9bf07\nSxa+s2ThM489eMDxZ3/zzGOLM+2V7cmMB26+/u7fN7QkbV9avrR++dJFL82cfs9eEy685NyR\nA0t6dP0AAAAAAAAARONx912SW//3y784eeOGvrBf/8INlXySJHP+6z8vuPHR9nZ//q5vXnPn\nY20NfaaguKKsqO3TVQueuuL8KxY25Hpm7QAAAAAAAADE5k76Lkiabrv4my+tWR9CyBSUHHnS\nGScce9iwqrKkqf6N+TPvuuVn//v32hDCm0/8+JYJB31p9MBN9l49/44rH5iXn8uHjTv7rFMO\nGTW8KBPqV/5t+sNTf/bg7CRJGmvnXX7x1F/ccHrk7wwAAAAAAACAnuBO+s57e8Z/PPLXmhBC\nJlP8+Sk/Of/k44ZVlYUQMkVlu+13xGU3/OjD1aX5LR//j7s227vl9msfSZIkhFA66NCbb7z4\nsP2H599AX1a92ycmXXrdWQflt6tZeP+012vjfEcAAAAAAAAA9CglfSclSeMPf/jH/Pz+k678\n5L6b3iifKay64OrP5ueG1U8+sWb9xp/WLbrzyZUN+flzV51XXbjpS+v3+tilx+9Ulp8fuf7p\n7l08AAAAAAAAAKlQ0ndS/ZJ7565tDCEUFFVf+Om9t7hN+S4TPzx0x6qqqqqqqj8ufM/d8K/f\nOzM/lFYf+/Fdyre0d2biOQfkp9o3p67JJd23dgAAAAAAAADS4Z30nfT6r57LD5Xv/8LOxe3+\nrsO3fvKzLX79wRdW5IehRx7T3r5VI08pyDzXkiRJrm7a0rVf3qV/F9YLAAAAAAAAQPrcSd9J\nv5vT2rLvftKWb6PvQJKreaGuKT9/4PDB7W2WLRk2tqIoP78+d9U/v0YAAAAAAAAAehd30ndG\nkjTMrm3Mz2N2q/hnd2+snZVLWh9fP7qyuIMtx/QvnlHTGEJYMXtlOG7YP7/S90gSz8zvZiKN\nT+apEHt8Mo9P5qkQe3wyT4XY45N5fDJPhdjjk3kqxB6fzOOTOdsJlzrbCZd6fJEzz2QyXT+I\nkr4zmmr/d31L61/2gRVFIYSVC2b/7omnZ7+0YPnyleuT4h2qB+6xz/4f/sjRR4wZvoXd6xe0\nzfuUFXVwoiG7loUldSGEdUsWhbB/F5ddW1vb2NjYxYNsvcpoZ0rPihUr0l7Cpvp87DJPRW+L\nXeap6POxyzwVYo9P5qnobbHLPBV9PnaZp0Ls8ck8Fb0tdpmnos/H3gszJxUudegbeuGl7sdL\n96qqqspms108iJK+M5rqX80PmUzBzoXND98y5eePzGl593c0GpctqVu25I3npj887YOHX3jp\nuXsNeM/t8i2NqzfsXliZ7ehXLYqrWndsaV7drd8BAAAAAAAAACnwTvrOaGlqfUN8pqD8tz+Y\n/NPfPt/W0JeWl238iINlrz558Vlff7n2PfevN65p/WMm+w8elV+44Z30SnoAAAAAAACAPsCd\n9J3RVFOfH1pytT/9Q20IYfDICZ8/9ePzzgdkAAAgAElEQVQfGD5sYEVpc/2aN//+10em3fro\nn5aEEJrr/zblazdPveWCDu+Zb8eGh+qHlvXdtHYAAAAAAAAAUuNO+s5oWd+y8R8PO+vq2675\n6iH77jmwojSEUFhWufveY8698idX/fuH8hvUL33yhuffadu+uLL1IfZJbm3HJ2pe25wfMkXV\n3bV4AAAAAAAAANLiTvrOKNrh3XfMV+19xteO32+Lm+3/qcuO+u+Tpq9oCCHMuWNW+NDx+a8X\nFFfmhyRprG9JygravcW+cVXrg/ELCruhpC8oKMhms10/Dm3kGZ/MUyH2+GQen8xTIfb4ZJ4K\nsccn8/hkngqxxyfzVIg9PpnHJ3O2Ey51thMu9fi2xcyV9J2RLR3QNh/4pcPb3zDzyRPeN/2n\nC0II9Ut/E0JrSV/Yb88QHsvPr9Y3Hdi/uL39ly1elx9Kqnbu6qJD6N+/f9cPsvWaYp4sJVVV\nVWkvYVN9PnaZp6K3xS7zVPT52GWeCrHHJ/NU9LbYZZ6KPh+7zFMh9vhknoreFrvMU9HnY++F\nmZMKlzr0Db3wUvfjpRfyuPvOKCrft20+cMd+HWxZNXqn/JBrfHttrvUF8yUDDi7ItN49/2Jd\ncwe7z61r/a9m0LjBnV4tAAAAAAAAAL2Ekr4ziisOKdnwjPp1LUkHWyZJ66eZTHHphl0y2crR\n5UX5+ZUZ72x5zxCS5hXP1qzPz8PGeCc9AAAAAAAAwDZPSd8ZmYLSf6kuzc/P/bmmgy3feeat\n/FBUvm92o1fPnzC6tXR/69GZ7e1b88Z9TUkSQshky04dUt61JQMAAAAAAACQPiV9Jx37qeH5\nYd4tv8y1cy990lL/8/9elJ+rDzhh449GnDw2P6x9657ZNY1b3P2ZHz+bHyp2PXVQkb8pAAAA\nAAAAgG2e6reThhxxZmW2IIRQv+yxS37+ZNNmPX2SNPzPTRe+tLYxhJDJZE/+/Ac2/rRi10nj\nq0pDCEnS8qMpD2ze8q96Zeqtf2m9R/+4Cw7riW8BAAAAAAAAgMiU9J1U2G+vy07cIz/P/831\nZ1xwzTMv/XnV2qYQQmPtitf+9MSV553xn0/8Pb/B+476xuGDSt+zfyZ75kXH5sfV8+85/7r7\n3lrb3PpRkpv/zC8nX3Zf/n32lXuefOqIATG+JQAAAAAAAAB6WGHaC9iG7fnZKSe+es6v/rQ8\nhLBm4YzvXTojk8mUD+hXt6Z+480GjTrhuvPGbb571T5nXDZx/lW/nh9CeOMPd5/93EMj9hhe\nWdLy9uKFi1c05LcprtxvytUn9vy3AgAAAAAAAEAM7qTvvEym9NQrbpx03JhsJpP/SpIkGzf0\nmWzZoZ86/5arPl+6YYNNHDTp2m+cdkRpQSaEkORq//ray3Pmzmtr6Aftc8SUH14xvDTbw98H\nAAAAAAAAAJG4k75LMtmKiV/+9hHHvDD96WdnzXn1nVWraurW96uoHDhk+OgDxkw45pgRVcUd\nHqBg/ImTx4w7+tHHn3j2+XnLV66sWR+qqqqHjBj50QkTjjp43+yWy30AAAAAAAAAtklK+m6w\nw4gDPj3igE9P6uTu5cNGTpw0cmJndwcAAAAAAABgW+Fx9wAAAAAAAAAQiZIeAAAA/j97dxsn\nVXXYD/zMzj6xy7LdlagIBEvUKogg0SgaCj4l2ERTSWNUEkvS1NqYGNvGxIcIqZKE1k9jrNHm\nsfEJSWqISfOprYrGJBIMVfwHFQlRkCoCCgvsLusyu7P3/2JWQpBdcHc5dxi+31eHmXPvnPlx\n99Vv7rkAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImS\nHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9\nAAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoA\nAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAA\nAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAA\nAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAA\nAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAA\nAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAA\nAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAA\nACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAA\nRKKkBwAAAAAAAIBIytNeAAAAAAAAAFD6Ou45LPInLjspHPfrb0f+UNgjd9IDAAAAAAAAQCRK\negAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0\nAAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkB\nAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMA\nAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAA\nAAAAAIBIytNewP4syZ1/3ofau5I9TqwbceW82yb39G7b2ucefPiRRUuXv7Zx09b20NDYOOzw\noydPOe2MU8ZVZAZ0wQAAAAAAAACkSknfd7nWZXvT0PcqWbzg1pvuemjn82xc37Zx/ctPP75w\n/lFTP3f1ZWMPqurnOgEAAAAAAAAoEra777tcy5J+nuHJO6/5yh0P7mjoM2WVdTUVO97dvPLR\n2ZfPXtWe7+enAAAAAAAAAFAk3Enfd82/fakwqBtx8Rc+PbaXmdmq4W9+ccuK269fsLwwrh05\n6dJLLjrluFEVmdDW9OLC/5z33fuWJEmSa1k+66p5d3/t4gFfPAAAAAAAAADxKen7rumJTYXB\n0EkTjjnmiLd4dNf35t6fJEkIoXroqbfe/LnG8u7nz9c0Hn7uzGuPftucz35zSQihedUP71l9\n3kV/XDeAKwcAAAAAAAAgFba777vVv2stDA5510Fv9djWl+/4WVN7YfzRGz61o6Hf4aj3Xfv+\ng2sK4/tv+kU/lgkAAAAAAABAsVDS992S1lxhcMLBg97qsau//3hhUN047Zzhtbubkpn+yeML\no5aX5m3NJ31bJAAAAAAAAADFQ0nfR0lX2zPbOkIImUx20pCqt3r4fU91b5V/2Bnv7WlOw9iL\nyjKZEEKSb71n/ba+rhQAAAAAAACAYuGZ9H3U0fJkPklCCBWDx9dlM688/ej//OrptS+vXbeh\nKVs75KC3jRh3/PGnTn33oYOybz42yTc/1dpRGP/JaYf09BHZqpEn1VUsbs6FEFYv2xyGD943\nXwUAAAAAAACASJT0fbR96xOFQaas9l9nX7bwqZd2enP9mhdWLn38kbu/e/uZF1zyyb+YtMsD\n53Mtvy4U/CGECfWVvXzKxMGVhZJ+05KmcPbIfq65s7MzSWybP5A6OjrSXsIBR+apEHt8Mo9P\n5qkQe3wyT4XY45N5fDJPhdjjk3kqxB6fzOOTOQcIlzoHCJd6fJEzLy8vz2Qye57X+0kGZCkH\noC3PrCsMtm/95cKndj8nn9v0wJ1fWf67j/zrVednd/qf6mhbuWM8pqail08ZNqImvNIaQnj9\nlZdDGN/PNbe1teVyuX6eZO/VR/uk9GzdujXtJeyq5GOXeSqKLXaZp6LkY5d5KsQen8xTUWyx\nyzwVJR+7zFMh9vhknopii13mqSj52Iswc1LhUudAUPLXeSjKS73kY4+ceUNDQza7m83U3xIl\nfR81PdG0Y5zJ1r3n/AvPePe73n7wQaFt45o1a55/9tf33ffIxlw+hPDS4ruvvfuYuR8dt2N+\nV25L94GZ8vpsb7+zqGzovs++q3PLwH8HAAAAAAAAAOJS0vfRb/+vtTCoqDni6pvmnDCspvuN\nqkOOaTjkmAnvOuu9U67/zPXPtORCCM8tmPPMB+cdW9Oddm5r9+3smWxd759SXtd9n72SHgAA\nAAAAAKAEKOn7aOT0GR/P5UMIb3/3tIlDq988oXrocdf+019ddNk3kiRJul7/5g9W3/KxI9/y\nx3S98Qj5ru39Wi4AAAAAAAAARUBJ30eT/uycPc6pHXH2Rw+7+861LSGEDT9/OLxR0lfWd29i\nn+S39X6Gzm2dhUGmorHvawUAAAAAAACgOCjp962T3j/8zm+uCCHkmn8VwqWFF8sq6wuDJMm1\ndSU1ZT0+lj63uXtj/LLyASjpKyoqMpkeP4s+qKqqSnsJBxyZp0Ls8ck8PpmnQuzxyTwVYo9P\n5vHJPBVij0/mqRB7fDKPT+YcIFzqHCBc6vFFznxA+lYl/b5Vf2xDYdDVuaU5nwzJZkII5YOO\nDOHBwuvPtXW8c3BlT4e/uvb1wqCq4dD+L2bQoEH9P8ne64j5YSmpq6tLewm7KvnYZZ6KYotd\n5qko+dhlngqxxyfzVBRb7DJPRcnHLvNUiD0+maei2GKXeSpKPvYizJxUuNQ5EJT8dR6K8lIv\n+diLMPM9Kkt7ASUuU/77H25UvPGjiqohJ5e98QuL37R29nL4stbuv5qhkw7ZJ+sDAAAAAAAA\nICJ30vfF5qeXrmzrCCFU1h99/NH1vcx8fW1TYVBeffigN7a1z2TrJ9RWLG3NhRCeXfxaOG/U\nbo9NOjctat5eGI+c6Jn0AAAAAAAAAPs9JX1fbF1595fueD6EUFU/5d67/qGXmb/7ydrCYPDI\nP9/59fMmNC59bH0IYd0Dj/dU0jevubcjSUIImWzNjGG1A7JyAAAAAAAAAFJku/u+OPT09xQG\n27f+/M4VW3qa1tm24uvLu++kP+aCcTu/NfrCkwqDbevmL2nO7fbwx25bVBjUjZgxtML/FAAA\nAAAAAMB+T/XbF9UN0849pKYwvm/WF57eXcve1bnx29fM2ZZPQggVNWOveOfQnd+tGzFzckN1\nCCFJur4+Z0HypsM3PzvvW883F8Zn/92UAf4CAAAAAAAAAKRBSd9HH776grJMJoSQb/+/L17y\nmdt/uvi1rW0hhJDkN61b88Sj933h0sv+e1VzCCGTKZt+9ZU7HkjfLZP9xOenFYZbVsy//MZ7\n123r7H4rya947AdXXHdvkiQhhPojL5wxeki07wUAAAAAAADAvuOZ9H1UN/rPv3jBslnznwgh\ndLSt/dG3v/Kjb4fy6rrK/La2jq4d0zKZsil/+eUZ4xvffIaGMR+/bvqKG360IoSw5pd3Xfqr\nH48+YlR9VdeGtavWbmovzKmsHzfnS+dH+UIAAAAAAAAA7HPupO+7CRfOuuFvPtBQ/vsMO9tb\ndm7oqxuPuPiaW/9++pieznDizLlXfuT06rJMCCHJt7zw22eWLlu+o6EfOub0ObfMHlWd3Wff\nAAAAAAAAAICo3EnfL+Pf91ffmTzt5wsfeuq3//fqhlc3vLqhpSP7R/X1I44Ye8IJJ591+ok1\nu+xyv6uyyedfMXHSWQ88/MiiJ5dvbGpq3h4aGhqHjR77p1OnnnnysdnejwYAAAAAAABgv6Kk\n76+KIcPPnD7zzH6coXbk2Okzx06fOVArAgAAAAAAAKBI2e4eAAAAAAAAACJR0gMAAAAAAABA\nJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBI\nlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo\n6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHS\nAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQH\nAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8A\nAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAA\nAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAA\nAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAA\nAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAA\nAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAA\nACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAA\nQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACA\nSJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACR\nKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR\n0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkZSnvYDStGHRrX/9Tw+EEI698ltfnnxo\n75Pb1j734MOPLFq6/LWNm7a2h4bGxmGHHz15ymlnnDKuIhNluQAAAAAAAABEoaQfeLmtT131\n1Yf2bm6yeMGtN931UHtXsuOljevbNq5/+enHF84/aurnrr5s7EFV+2idAAAAAAAAAERmu/sB\nliTt37zqnzd1dO3N5CfvvOYrdzy4o6HPlFXW1VTseHfzykdnXz57VXt+nywUAAAAAAAAgOjc\nST/Anrr9mofWbtubmVtW3H79guWFce3ISZdectEpx42qyIS2phcX/ue87963JEmSXMvyWVfN\nu/trF+/LJQMAAAAAAAAQiTvpB9KWFfde/+MX9m5u1/fm3p8kSQiheuipt9581ZTxowpPoK9p\nPPzcmdfeeMmJhXnNq354z+qWfbRgAAAAAAAAAGJS0g+YfPuaf5w1vytJMmWDDqrYQ7CtL9/x\ns6b2wvijN3yqsTyzy4Sj3nft+w+uKYzvv+kXA75aAAAAAAAAAOJT0g+U5N5/nPVCe2cIYeLH\nvvzH1Xt4jsDq7z9eGFQ3TjtneO3upmSmf/L4wqjlpXlb88kArhUAAAAAAACAVCjpB8aqn865\n59nNIYQ/OvrDsz7wjj3Ov++pTYXBYWe8t6c5DWMvKstkQghJvvWe9Xv1nHsAAAAAAAAAipmS\nfgC0rf/ZNf/+RAghWz1q9vUX7Lpz/Zsk+eanWjsK4z857ZCepmWrRp5UV1EYr162eUCWCgAA\nAAAAAECK9rArO3uU5Df/y+f/rS2fZDKZD153/Tuqs3s8JNfy63zSvX39hPrKXmZOHFy5uDkX\nQti0pCmcPbKfS83lcl1dXf08yd7bcxD7v/b29rSXsKuSj13mqSi22GWeipKPXeapEHt8Mk9F\nscUu81SUfOwyT4XY45N5KootdpmnouRjL8LMSYVLnQNByV/noSgv9ZKPPXLmVVVVmcwe79re\nAyV9f/3s5qv/d3N7COHt067+yLiGvTmko23ljvGYmopeZg4bURNeaQ0hvP7KyyGM799KQ3t7\ney6X6+dJ9l59tE9KT2tra9pL2FXJxy7zVBRb7DJPRcnHLvNUiD0+maei2GKXeSpKPnaZp0Ls\n8ck8FcUWu8xTUfKxF2HmpMKlzoGg5K/zUJSXesnHHjnzioqKbLa/v3yw3X2/vLr4G1979JUQ\nwqC3TZ57yUl7eVRXbkthkMmU12d7+51FZUP3ffZdnVv6sUwAAAAAAAAAioKSvu9yLcuu/pcH\nQghl2bor/vnTtb3W7X9w4Nbu29kz2breZ5a/8Ux6JT0AAAAAAABACVDS91GS5L5z1dzXcvkQ\nwqS/nTvpoOp98jFdyRuD7fvk/AAAAAAAAABEpKTvo2V3Xfs/L7WGEIZOmPn594x8S8dW1ndv\nYp/kt/U+s3NbZ2GQqWh862sEAAAAAAAAoLiUp72A/dLWlQu+uGBlCKGi5qjrv/CBt3p4WWV9\nYZAkubaupKasx33yc5u7N8YvKx+Akr6ysjKbzfb/POwwaNCgtJdwwJF5KsQen8zjk3kqxB6f\nzFMh9vhkHp/MUyH2+GSeCrHHJ/P4ZM4BwqXOAcKlHl/kzDOZvX0Gei+U9H0xd/Y9+STJZLIz\nbrhuROVbrr3LBx0ZwoOF8XNtHe8cXNnTzFfXvl4YVDUc2rel7qy6et/syd+DjpgflpLa2tq0\nl7Crko9d5qkotthlnoqSj13mqRB7fDJPRbHFLvNUlHzsMk+F2OOTeSqKLXaZp6LkYy/CzEmF\nS50DQclf56EoL/WSj70IM98jJX1frGnvDCEkSf72f/jo7b3OfObGS869sXs86dZ5V4+sCyFU\nDTm5LHNbV5KEEH7T2tlLSb+stfuvZuikQwZi4QAAAAAAAACkyTPpU5DJ1k+orSiMn138Wk/T\nks5Ni5q3F8YjJ3omPQAAAAAAAMB+z530fVFTOzjJd/Uyob2tLZ8kIYRsVU11efdjCap2+kXE\neRMalz62PoSw7oHHw3mjdnuS5jX3diRJCCGTrZkxbP/bpQEAAAAAAACAXSjp++I7d8/rfcL1\nM/7iiZZcCOGYy7/25cm7eZz86AtPCo/9JISwbd38Jc3nvWvIbna8f+y2RYVB3YgZQyvseQAA\nAAAAAACw31P9pqNuxMzJDdUhhCTp+vqcBcmbJmx+dt63nm8ujM/+uylxVwcAAAAAAADAPqGk\nT0km+4nPTysMt6yYf/mN967b1tn9VpJf8dgPrrju3iRJQgj1R144Y/SQtJYJAAAAAAAAwACy\n3X1qGsZ8/LrpK2740YoQwppf3nXpr348+ohR9VVdG9auWrupvTCnsn7cnC+dn+oyAQAAAAAA\nABgw7qRP04kz5175kdOryzIhhCTf8sJvn1m6bPmOhn7omNPn3DJ7VHU21TUCAAAAAAAAMGDc\nSZ+ussnnXzFx0lkPPPzIoieXb2xqat4eGhoah40e+6dTp5558rHZTNoLBAAAAAAAAGDgKOn3\niVnzfrj3k2tHjp0+c+z0mftsNQAAAAAAAAAUB9vdAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAA\nAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAA\nAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAA\nAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAA\nAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAA\nABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAA\nIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABA\nJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBI\nlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo\n6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHS\nAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQH\nAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8A\nAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAA\nAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAA\nAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAA\nAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIJLytBew3+vKbfrF/Q/877KnV774SktLS0eoHFw3\nZMToo44df9J73nvKQZXZPZ6hbe1zDz78yKKly1/buGlre2hobBx2+NGTp5x2xinjKjIRvgEA\nAAAAAAAAkSjp++XFx+bP+df/eLU9v9NrnZu3t23euP7pJb/4jzve9qFPff6iqUf1fIJk8YJb\nb7rrofauZMdLG9e3bVz/8tOPL5x/1NTPXX3Z2IOq9t36AQAAAAAAAIjJdvd9t/bRWz5z4/d3\nbujLq4fU1/z+dw/53Gvf/+pnb/rvVT2d4ck7r/nKHQ/uaOgzZZV1NRU73t288tHZl89e9Qe/\nAAAAAAAAAABgP+ZO+j7qbHvmczcvTJIkhFBRO3rGJTNPGf+OQxrrMiG0NK1/cuGCf//+Q1s6\nu0IIj37z6invvmtiXeUuZ9iy4h83uAQAACAASURBVPbrFywvjGtHTrr0kotOOW5URSa0Nb24\n8D/nffe+JUmS5FqWz7pq3t1fuzjytwMAAAAAAABgX3AnfR89973bWvJJCCFbefAXv/HP00+b\ncGhjXeEJ8nWNh049/7J/u/ny6rJMCCHpev1b3/ndm07Q9b259xc6/uqhp95681VTxo8qPIG+\npvHwc2dee+MlJxbmNa/64T2rWyJ9KwAAAAAAAAD2JSV9H/3HolcLg1F/ftW4+l3vkg8h1I48\n/TMTDiqMNz35013ebX35jp81tRfGH73hU43lmV0mHPW+a99/cE1hfP9NvxioZQMAAAAAAACQ\nIiV9X+TbV/2mNVcYTz17RE/TjjpneGHQse2ZXd5a/f3HC4PqxmnnDK/d3dGZ6Z88vjBqeWne\n1nzSrxUDAAAAAAAAUASU9H3R8frKHeMT6yp6mlb5xh32SVf7Lh37fU9tKgwOO+O9PR3eMPai\nskwmhJDkW+9Zv63vywUAAAAAAACgOJSnvYD9UkXtuFmzZhXGwyqzPU1rempz9/y6d+68nX2S\nb36qtaMw/pPTDunp8GzVyJPqKhY350IIq5dtDsMH93fdAAAAAAAAAKRKSd8X2crhJ5wwvPc5\nnW1r/m3BmsL47dM+tPNbuZZf55PuW+sn7O559jtMHFxZKOk3LWkKZ4/s+4pDCCG0t7d3dnb2\n8yR7ryraJ6WntbU17SXsquRjl3kqii12maei5GOXeSrEHp/MU1Fsscs8FSUfu8xTIfb4ZJ6K\nYotd5qko+diLMHNS4VLnQFDy13koyku95GOPnHlNTU1ZWX+3q1fSD5gk37Ft27bW1taWza88\nseixXzy6aG1bRwhhyOgzr7vwHTvP7Gj7/W75Y2p63C0/hDBsRE14pTWE8PorL4cwvp8rzOVy\nuVyunyfZeyX/Bx9CaG9vT3sJuyr52GWeimKLXeapKPnYZZ4Ksccn81QUW+wyT0XJxy7zVIg9\nPpmnothil3kqSj72IsycVLjUORCU/HUeivJSL/nYI2c+aNCg/p9EST9gvvVXM/6r6Q+ugEym\nYvwZH7z8by9oyO68233oym15Y0J5/R++tYvKhu777Ls6twzoYgEAAAAAAABIQX/vxKcXgw8/\n9f3T3jO0YteQc1u7b2fPZOt6P0N5Xfd99kp6AAAAAAAAgBLgTvoBM+yoY8Y0b89kMplMprP1\nlRUvNrWsfnTOZx99x+SLv/LZD1ZnertjvkddyRuD7QO4VAAAAAAAAABSoaQfMOde84/n7vTP\nV5Yv/t5NN/96Q9sLv7zz0693fXvW+Tveqqzv3sQ+yW/r/Zyd2zoLg0xF48CuFgAAAAAAAID4\nlPT7ymFjJl351UEXXzy7LZ9seOLu29ecPXNU9+b2ZZX1hUGS5Nq6kpqyHm+yz23u3hi/rHwA\nSvpBgwZVVVX1/zzsUFe3hwcWMOBkngqxxyfz+GSeCrHHJ/NUiD0+mccn81SIPT6Zp0Ls8ck8\nPplzgHCpc4BwqccXOfOysgF4oLySfh+qrJsw49DB317bEkJYdM+LM68eV3i9fNCRITxYGD/X\n1vHOwZU9neHVta8XBlUNh/Z/PRUVFf0/yd7riPlhKSnCHz2UfOwyT0WxxS7zVJR87DJPhdjj\nk3kqii12maei5GOXeSrEHp/MU1Fsscs8FSUfexFmTipc6hwISv46D0V5qZd87EWY+R4p6fvi\nNz/54fK2jhDCQcf/2XuOru9l5ujRg8PalhBC66rfhdBd0lcNObksc1tXkoQQftPa2UtJv6y1\n+69m6KRDBmrxAAAAAAAAAKRFSd8XWxb+eP6a5hDCYeuP672k72zPd48yv7+LPZOtn1BbsbQ1\nF0J4dvFr4bxRuz026dy0qHl7YTxyomfSAwAAAAAAAOz3BmDH/APQsHF/VBhsefp/e5/5mxdb\nC4NBbxu+8+vnTegu3dc98HhPxzavubcjSUIImWzNjGG1fV4tAAAAAAAAAEVCSd8Xh71vYmHw\n+qafLGnJ9TQtt3Xxjzd2P1T+iPPfvvNboy88qTDYtm7+kubdn+Gx2xYVBnUjZgyt8D8FAAAA\nAAAAsN9T/fZF7bALRleXhxCSJH/L7Dta88mb5+S3b/jGNbd0JkkIIVt52CfG/MF+9XUjZk5u\nqA4hJEnX1+csePPxm5+d963nmwvjs/9uysB/BwAAAAAAAACiU9L3Raas5h8+Nq4w3vr8T//m\n7+c+uGT5hs2tSQghdG15de2TC+df/pefXPhS9173J3zs2oN3uRU+k/3E56cVhltWzL/8xnvX\nbevsfivJr3jsB1dcd2+SJCGE+iMvnDF6SIQvBQAAAAAAAMC+Vp72AvZXI6fNumjxJ+75f5tC\nCC2rF399zuIQQra6blBXW2suv/PMI866/Nr3jXzzGRrGfPy66Stu+NGKEMKaX9516a9+PPqI\nUfVVXRvWrlq7qb0wp7J+3Jwvnb/PvwwAAAAAAAAAUbiTvq8y2Q9/8da/Pnt8WSaz47V8e8vO\nDX22aug5l97w1U+f2dM5Tpw598qPnF5dlgkhJPmWF377zNJly3c09EPHnD7nltmjqrP77DsA\nAAAAAAAAEJU76fsuU1Zzzt/ecNoHlv/3gz9/ZvlzL67btG3btlA+qG7IkBGjjx43/oQzzzq1\nsbL3n0GUTT7/iomTznrg4UcWPbl8Y1NT8/bQ0NA4bPTYP5069cyTj81mej0aAAAAAAAAgP2K\nkr6/Bh825kMzx3yoH2eoHTl2+syx02cO1IoAAAAAAAAAKFK2uwcAAAAAAACASJT0AAAAAAAA\nABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAA\nIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABA\nJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBI\nlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo\n6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHS\nAwAAAAAAAEAkSnoAAAAAAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQH\nAAAAAAAAgEiU9AAAAAAAAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8A\nAAAAAAAAkSjpAQAAAAAAACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAA\nAAAAAAAiUdIDAAAAAAAAQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAA\nAAAAAESipAcAAAAAAACASJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAkSnoAAAAA\nAAAAiERJDwAAAAAAAACRKOkBAAAAAAAAIBIlPQAAAAAAAABEoqQHAAAAAAAAgEiU9AAAAAAA\nAAAQiZIeAAAAAAAAACJR0gMAAAAAAABAJEp6AAAAAAAAAIhESQ8AAAAAAAAAkSjpAQAAAAAA\nACASJT0AAAAAAAAARKKkBwAAAAAAAIBIlPQAAAAAAAAAEImSHgAAAAAAAAAiUdIDAAAAAAAA\nQCRKegAAAAAAAACIREkPAAAAAAAAAJEo6QEAAAAAAAAgEiU9AAAAAAAAAESipAcAAAAAAACA\nSJT0AAAAAAAAABCJkh4AAAAAAAAAIlHSAwAAAAAAAEAk5WkvoBS8tOznDy968tnlK1/dvLWl\ntb26rr7hbcOPPW78qWecfdzIuj0e3rb2uQcffmTR0uWvbdy0tT00NDYOO/zoyVNOO+OUcRWZ\nCMsHAAAAAAAAIBIlfb/kmn9365y5P1vx2s4vtm5tat3a9NLzT//PffccM+XDV17+4YPKe9qx\nIFm84Nb/z96dB1hZ1f8DP3c2hmEZBhFBJJQQCTckNYFQ1PxlmZpmmqKmZUahluaWe2pqapqa\nWu6auCumfS3XcEHMBXNDJMQF2ddhGYaZufP8/rg4TSiIw8x5xjuv11+He8+98+Hj4fjc+57n\neS7/y+PV9UnDQ/NnV82f/dEbLzxxZ/8RJ/969JYbtGvJvwEAAAAAAAAA8bjcfdPVVU05+ehT\nGyf0mUxheUXHTGbV+e9JUj9p3J2jf3bhrJr6T32HV2477cJbH2tI6DMFJZ3KihueXTRl3NnH\nnT2tOttifwMAAAAAAAAAonImfdONOe3caVW1uXG/nb935H679e3dq0NJQc2yhe9NmTjm+hv+\nPaMqhFA151+nnnHvrRcftNrLF0++5dz7J+XGHXoPGXX0IUO36VOcCVUL33/ioTE3jn0xSZKa\npZPOOnXM7X84PObfCwAAAAAAAIAW4kz6Jlo24977py3JjfvufeplJ/5w6y/37lBSEEIo6dh1\ni8Hf+M3Vt/xk5165CYsmj7nt48kfq7/5okeSJAkhlHYbdvUVp+6ybZ/cHejLum66zxGnX3L0\nDrl5S6bdd8d7S+P8pQAAAAAAAABoUUL6JvrPzY/mBkXt+13w4yGfnJApKP3O8b8b8PHl6/95\n4xuNn1320a3/XFidGx923jFdizKrvbz/Xqd/p3tZbvzI5c80Y+UAAAAAAAAApEVI30QPv704\nN+i5y9FlBatH7DmZws4/HtEjN1763mONn3rvrhdyg9Kue+7dq8Onvnr/n2+36rXTx1Rmk2Yo\nGgAAAAAAAIBUCembJKl5ddmqu9Fv/u2N1zJxgx03yA3qqt9r/PjYVxfkBhvv/s01vbZiy0MK\nMpkQQpJddsfs5etTLwAAAAAAAACtgZC+Keqq388mq05t36pLu7XMXLmoJjfIFJU3PJhklzRk\n/FvsutGaXlvYrvfXOq26Wv57ry9an4IBAAAAAAAAaA2K0i7gC6mofb977rknN25XuraQ/rkH\np+cG7St2a3iwZum/GjL+QeUla3n54I4lE5bUhBAWvLgwfKv3+tQcQqiqqqqtrV3PN1l3ZdF+\nUnoqKyvTLmF1ed92PU9Fa2u7nqci79uu56nQ9vj0PBWtre16noq8b7uep0Lb49PzVLS2tut5\nKvK+7a2w56TCUqctyPt1HlrlUs/7tkfueadOnQoK1vdMeCF90xSUlpZ+5qTKd+4b88HS3HjA\nYUMaHq+tmtIwHlhWvJZ36LlJWZi5LISwYuZHIWzbxGI/VldXFzOkbwv0Mz49T4W2x6fn8el5\nKrQ9Pj1PhbbHp+fx6XkqtD0+PU+Ftsen5/HpOW2EpU4bYanHF7nnyccnY68Pl7tvKcunP3fS\n6WNy45JO250w5L+Xta+vWZwbZDJF5YWZtbxJScWq8+zr6xa3TJkAAAAAAAAAxONM+haQZF98\n6Po/3PL3ZdkkhFBY0v0XF5/SsVEYX1P58Y3qCzut/Z2KPr4nvZAeAAAAAAAAIA8I6ZvZhxMf\nu+nmWyd+fJX7gqKKURddNrxXU+/1UP/x1RLqVzZHdQAAAAAAAACkSUjfbJZNf+Wm62984t8f\nNTzSfetvnHD80QO7rX73+pLyVRexT7LL1/6edcvrcoNMcdfmqxQAAAAAAACAdAjpm0FSXz3u\n7muvvXtc9ccnvpd0+tJ3D//JyG9u+6k3nC8oKV/1wqSmqj4pK1jjbelrFq26MH5BUTOE9B07\ndkyS5LPnNZP6aD8pPRUVFWmXsLq8b7uep6K1tV3PU5H3bdfzVGh7fHqeitbWdj1PRd63Xc9T\noe3x6XkqWlvb9TwVed/2VthzUmGp0xbk/ToPrXKp533bI/e8sLBw/d9ESL++Kt8df8Vlf3x5\n+qpz4gvbbfjNA0cevN+u5UVrjN6L2m8ewmO58dtVtV/tWLKmmXNnrMgN2lX0WP9SCwoK1v9N\n1l3e/4MPzfSPsHnlfdv1PBWtre16noq8b7uep0Lb49PzVLS2tut5KvK+7XqeCm2PT89T0dra\nruepyPu2t8KekwpLnbYg79d5aJVLPe/b3gp7/pmE9Ovlw2duOfGysbkT6DOZoh32PvInh357\no9LPWAftOu9UkLmmPklCCK8tq1tLSP/6strcoNuQjZqvagAAAAAAAADSIaRvuvmv3PqL34/N\nJkkIoWzjwcf86pdf37zLurwwU1g+qEPxxGU1IYS3JswL+/X51GlJ3YLxS1bmxr0Huyc9AAAA\nAAAAwBde1Ouf55O6Fe+cfMGDuYS+61Z7XXXVWeuY0OfsN2hV6D7r0RfWNGfJB/fWJkkIIVNY\nNrJnh/WrFwAAAAAAAID0CembaOI1l82vzYYQSjoPvuK8ozcs/nyd7Hvw13KD5bPufHFJzafO\nee6a8blBp01Gdvuc7w8AAAAAAABAKyT6bYoku/Tq8XNy4z3O+mV5YebzvkOnTY4YXlEaQkiS\n+j+ef3/yiQmL3hpz3dQlufG3jt9lfaoFAAAAAAAAoJVwT/qmWD77jkV19SGETKbwa/VzpkyZ\n+5kvKSjq0q9v9//+OVN41Cl7PnvqgyGExZPvPO6SotN+vl/PDkUhhJBkJ4+/78LL7k2SJIRQ\nvvnBI/t2bpm/BwAAAAAAAABRCembYsG/puQGSZI96+ST1uUlpV33uueWnzZ+pGLgj87cf/J5\nD0wOIXzw7F9GPf9g3359ytvVz5kxbcaC6tyckvKtz//tgc1aOwAAAAAAAACpcbn7plj06qJm\neZ8djrjopEN3Ky3IhBCS7NJ333lz4uuTGhL6bgN3O/+qs/uUFjbLzwIAAAAAAAAgdc6kb4p5\n81c20zsVDD/wl4OH7PHok0+Nf2XS/IULl6wMFRVde/bdcucRI76x01af/2b3AAAAAAAAALRe\nQvqm2OPaMXs037t16L3l/kdsuf8RzfeOAAAAAAAAALRKLncPAAAAAAAAAJEI6QEAAAAAAAAg\nEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIrSLiDfzBp3+k8ve6O47Cv33/W7dXxJ\n1Yy3H3vyqfETJ82bv6CyOlR07dpz0wHDd9l196FbF2datFgAAAAAAAAAohLSN7On7pz2eaYn\nE+6/+vK/PF5dnzQ8NH921fzZH73xwhN39h9x8q9Hb7lBu2YvEgAAAAAAAIBUuNx9c6qa89g9\ns6vWff4rt5124a2PNST0mYKSTmXFDc8umjLu7OPOnladbeYqAQAAAAAAAEiJM+mbTe3S9/9w\n+o1Jknz21BBCCIsn33Lu/ZNy4w69h4w6+pCh2/QpzoSqhe8/8dCYG8e+mCRJzdJJZ5065vY/\nHN5iVQMAAAAAAAAQj5B+fVUtmvPhhx+8/Oxjf3/ypaXZdU3oQ6i/+aJHcol+abdhV19xctei\nVfefL+u66T5HnD5gw/NP/POLIYQl0+674739DtmsU4tUDwAAAAAAAEBEQvqmW7n4yVGjr12w\ntKYJr1320a3/XFidGx923jENCX2D/nud/p2xB/9tblUI4ZHLnznkyr3Ws1oAAAAAAAAAUuee\n9E2XZJc2LaEPIbx31wu5QWnXPffu1eHTpmT2//l2udHS6WMqP8c5+gAAAAAAAAC0Us6kb7qi\nsq8ceuihjR+pmvPUA4/PXJfXjn11QW6w8e7fXNOcii0PKcg8X58kSXbZHbOX/6xXx/WpFgAA\nAAAAAIDUCembrqj9FgceuEXjRxa+OWldQvoku+TVZbW58Ra7brSmaYXten+tU/GEJTUhhPde\nXxSE9AAAAAAAAABfcEL6FNQs/Vc2WXX5+kHlJWuZObhjSS6kX/DiwvCt3uv5c5cuXVpT08Tr\n8zdB52g/KT0LFixIu4TV5X3b9TwVra3tep6KvG+7nqdC2+PT81S0trbreSryvu16ngptj0/P\nU9Ha2q7nqcj7trfCnpMKS522IO/XeWiVSz3v2x655126dCksLFzPNxHSp6C2akrDeGBZ8Vpm\n9tykLMxcFkJYMfOjELZdz5+bJEmSuLd9c9LP+PQ8Fdoen57Hp+ep0Pb49DwV2h6fnsen56nQ\n9vj0PBXaHp+ex6fntBGWOm2EpR7fF7HnBWkX0BbV1yzODTKZovLCzFpmllSsOs++vm5xi5cF\nAAAAAAAAQAsT0qegpnLVNeczhZ3WPrOo06rz7IX0AAAAAAAAAHlASN+61X98cYb6lanWAQAA\nAAAAAEAzENKnoKR81UXsk+zytc+sW16XG2SKu7ZsTQAAAAAAAAC0vKK0C2iLCkrKc4Mkqamq\nT8oK1nhb+ppFqy6MX1DUDCF9586d1/9N1l1tzB+Wkm7duqVdwuryvu16norW1nY9T0Xet13P\nU6Ht8el5Klpb2/U8FXnfdj1PhbbHp+epaG1t1/NU5H3bW2HPSYWlTluQ9+s8tMqlnvdtb4U9\n/0zOpE9BUfvNG8ZvV63t38XcGStyg3YVPVq2JgAAAAAAAABanpA+Be0671SQWXX2/GvL6tYy\n8/VlqyL8bkM2avGyAAAAAAAAAGhhQvoUZArLB3Uozo3fmjBvTdOSugXjl6zMjXsPdk96AAAA\nAAAAgC88IX069hu0KnSf9egLa5qz5IN7a5MkhJApLBvZs0OkygAAAAAAAABoMUL6dPQ9+Gu5\nwfJZd764pOZT5zx3zfjcoNMmI7sV+y8FAAAAAAAA8IUn+k1Hp02OGF5RGkJIkvo/nn9/8okJ\ni94ac93UJbnxt47fJW51AAAAAAAAALQIIX1KMoVHnbJnbrh48p3HXXLvrOV1q55KspOfu/uX\nZ96bJEkIoXzzg0f27ZxWmQAAAAAAAAA0o6K0C2i7Kgb+6Mz9J5/3wOQQwgfP/mXU8w/27den\nvF39nBnTZiyozs0pKd/6/N8emGqZAAAAAAAAADQbZ9KnaYcjLjrp0N1KCzIhhCS79N133pz4\n+qSGhL7bwN3Ov+rsPqWFqdYIAAAAAAAAQLNxJn26CoYf+MvBQ/Z49Mmnxr8yaf7ChUtWhoqK\nrj37brnziBHf2GmrwkzaBQIAAAAAAADQfIT0zanrVuc89NDnflWH3lvuf8SW+x/R/PUAAAAA\nAAAA0Kq43D0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAApUKAAgAAIABJREFUiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAA\nAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAA\nAAAAEElR2gUQqma8/diTT42fOGne/AWV1aGia9eemw4Yvsuuuw/dujiTdnEAAAAAAAAANB8h\nfbqSCfdffflfHq+uTxoemj+7av7sj9544Yk7+484+dejt9ygXYr1AQAAAAAAANCMXO4+Ta/c\ndtqFtz7WkNBnCko6lRU3PLtoyrizjzt7WnU2peoAAAAAAAAAaGbOpE/N4sm3nHv/pNy4Q+8h\no44+ZOg2fYozoWrh+088NObGsS8mSVKzdNJZp465/Q+Hp1sqAAAAAAAAAM3CmfRpqb/5okeS\nJAkhlHYbdvUVp+6ybZ/cHejLum66zxGnX3L0Drl5S6bdd8d7S1MsFAAAAAAAAIDmIqRPx7KP\nbv3nwurc+LDzjulalFltQv+9Tv9O97Lc+JHLn4laHAAAAAAAAAAtQ0ifjvfueiE3KO265969\nOnzalMz+P98uN1o6fUxlNolVGgAAAAAAAAAtRUifjrGvLsgNNt79m2uaU7HlIQWZTAghyS67\nY/bySJUBAAAAAAAA0GKE9ClIskteXVabG2+x60ZrmlbYrvfXOhXnxu+9vihGZQAAAAAAAAC0\npKK0C2iLapb+K5usunz9oPKStcwc3LFkwpKaEMKCFxeGb/Vez59bX1+fJC6b35yy2WzaJbQ5\nep4KbY9Pz+PT81Roe3x6ngptj0/P49PzVGh7fHqeCm2PT8/j03PaCEudNsJSjy9yzwsLC9f/\nTYT0KaitmtIwHlhWvJaZPTcpCzOXhRBWzPwohG3X8+cuW7aspqZmPd9k3ZVH+0npWbSo1V3h\nIO/bruepaG1t1/NU5H3b9TwV2h6fnqeitbVdz1OR923X81Roe3x6norW1nY9T0Xet70V9pxU\nWOq0BXm/zkOrXOp53/bIPa+oqFj/nN7l7lNQX7M4N8hkisoLM2uZWVKx6jz7+rrFLV4WAAAA\nAAAAAC1MSJ+CmspVp7NnCjutfWbRx/ekF9IDAAAAAAAA5IGMm5THN/+1s3905qshhIKiigcf\nuHUtM6fectwJD7wfQigtH3HPX05Yz5+7ZMmSmJe7BwAAAAAAAMgnLnf/RVVSvuoi9kl2+dpn\n1i2vyw0yxV1btiYAAAAAAAAAWl5R2gW0RQUl5blBktRU1SdlBWu8LX3NolUnvhcUNUNIX1hY\nWFTkvzgAAAAAAABAakS2KShqv3kIj+XGb1fVfrVjyZpmzp2xIjdoV9Fj/X9uhw4d1v9NAAAA\nAAAAAGgyl7tPQbvOOxVkVp09/9qyurXMfH1ZbW7QbchGLV4WAAAAAAAAAC1MSJ+CTGH5oA7F\nufFbE+ataVpSt2D8kpW5ce/B7kkPAAAAAAAA8IUnpE/HfoNWhe6zHn1hTXOWfHBvbZKEEDKF\nZSN7ulI9AAAAAAAAwBeekD4dfQ/+Wm6wfNadLy6p+dQ5z10zPjfotMnIbsX+SwEAAAAAAAB8\n4Yl+09FpkyOGV5SGEJKk/o/n3598YsKit8ZcN3VJbvyt43eJWx0AAAAAAAAALUJIn5JM4VGn\n7JkbLp5853GX3Dtred2qp5Ls5Ofu/uWZ9yZJEkIo3/zgkX07p1UmAAAAAAAAAM0ok0uCScVL\nt5x83gOTc+NMYae+/fqUt6ufM2PajAXVuQdLyrf+/fXn9iktTK9GAAAAAAAAAJqNkD5d9c/e\nc+VVd/yzuv5T/it0G7jbyaf+fECXkvhlAQAAAAAAANAShPTpWz79rUeffGr8K5PmL1y4ZGWo\nqOjas++WO48Y8Y2dtirMpF0cAAAAAAAAAM1HSA8AAAAAAAAAkRSkXQAAAAAAAAAAtBVCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERID0SVrVmZdgkQg6XeQi750x0vvzMr7Sqg1Tln9KijjjrqgidmpF3IF5jtpTXL\nJmlX0LbZYeLTc2BdOHoBWojthTbCUv+iyOPPR0VpFwAt68MPP/xc8zMFhe1K25e2Ky3t0L6k\nINNCVbUdSd2i58c998Ybb7719tTFy5dXVa2ozSYPPfRQCKFm6UsPjFs6bMTw3p2K0y4zDy2r\nrKxL1vX77PIuXaz19WSpR/PsI3c9+8hdnXr232XEriN23aV/j45pV9S2VFXOmzlrQe06by/9\nB3yl0P7S8upr5709Y9aK+qT20VnhG73SLueLyvaSrhULZs9ctPLL/fo0frDy3fFX3XD/f97/\ncPGK0LXnZkN32+uw7+1S6hA9LjtMfHrevBy9tITHH3+8Gd+ty8BhO/Qqa8Y3bDscvbQ0S502\ny/ZCG2GpfyHk9+cjIT157phjjmnaCzMFJd16btx7k0232X6noUN36CFd+/wmP3v/n667c1pl\nzac+m1353h3X337XTTeP+MHRxx443PcgzWLGxEdve+ifU6e+O2/J5ziNe8zYv3byH2A9WOrx\nLZ015W93Tvm/u67beIvtR4zYdcQuO23UwSFNC0rqFt5/45//9szEhUs/3yUibC/rJ/lo8iuv\nvv3+oqVVa51VN/21f66oT0II9dWu4bG+bC/xzXv9iWtvvvuVaXOLy7a5787zGh5fMPG2n557\nf039qlxtwYx3Hv7LO0+Pf/2qS4+tKLKxrD87THx6HpWjlxZ11VVXNeO7Dfj5VySX68PRS8ux\n1GnjbC+0EZZ6Snw+CkFID2uS1NfMm/H+vBnvT/zXuFv/1GHX7//4qIN27+iz+jqbOObMc+5+\n7TOn1WcrnxpzyaSpc6457QBft66nqQ9f9qsbnk7W+RyRBsXufLIeLPXIhmzV58W3PswmSQgh\nSZIZk18aM/mlO64rHbD910fsuuvOO23VwUbd3JLs8it+ccxT05c14bXtbC9NVV8z+9rzznr0\ntdmf61VbfO/LLVRPW2B7ScXs8TeNvvivnzzDNcku+e3vHmxI6BssmfbEyZdsc/2vR0SqL0/Z\nYeLT88gcvdBGOHoBWojthTbCUk+Lz0cNMk2Ic+AL5IILLggh1C5795U3533y2Uxm9X8CxWV9\nv7rNhlWVC+fNmzd/QWXjbwy7bfv9a849tDRjX/5s0x+7cvQfn8iNM4Wdvr77iP79Ni9+444/\nPTs7hJC7Bnht1Rvn/OqCN2Ysz00b8IOLLz5kQFoF54GayvGH/vDi6kbfZRcWFq7ja+8fO9Y3\nUU1jqaeieuEH45959plnnn516pzVnios7bbD8F123XXE17bqY1U3l+l/P330tW80/LG4rLx7\n107r+P/Cq6+5xv81m+aOkw6/653Fn+sl3b/6vWvO+mGJjq8H20tk2eppRx/6q3k12dwfSzps\n23Am/bxXLvzxbyaEEAqKyg8Y9bOv9ip5a8JDtz307xBCJlNw4m33DC8vSavsPGCHiU/PI3P0\n0tJy37R8qvraBS++8p+GP2YyBZ0qNtyoR49OhSvnzJkzZ97ihvuyFZb0GDnqB92KCsr777jd\nxk4vbiJHLy3KUqcts73QRljqqfD5qIGQnvyXrX7/vJ+dPHFBdQghU1i2/e57f2OnrTbcsFv3\nDbt3LKqdN3fu3Llzp/772Qf/77lFtdlMpvBbx1wyao9+IYSkvmbWf1577G/3PvD05Nxb9R95\n+aUH5eFv6zSvbPUHR438xYLa+hBCef9dTjrx59v0aB9CmHrbL064773wcXIZQghJ3YS7fnvh\nna+EEDKFZRffcfsW7V3eo4leu+ToM5+dHUJo332rH/105Hab9+3epX3aReU5Sz11S2dOeeaZ\np59+5pnJH1Wu9lT7bn13HjFixK4jtuzdJZXa8sktPzrogfkrQggDdj3w6MO+26+bG3S1uGXT\nbztk9H25cVnP/jsOGtClaOXk58ZNXrQyhLD1t/buV1oUQqiqnPfGi/+auaw2hLDlyHPOP3Cw\n3/BuLraXOD544MRjb5kSQigo7Lz/6F9+c4etNiovzT316HGHXv3+khDCgB/+4eLv9c09+MyV\nP7v0iRkhhD77/f6qIzdPqeovPDtMfHoen6OXtNRVvfv7k84cP31ZCKGs58D9v3/gd3YeVFby\n36+1k+zKd/71+F133T3x/coQQtnGO55/+an9fDhqDo5eYrLUaVNsL7QRlno0Ph81JqQn/91z\n8g9vn7wohNB72CGnjNr/S2s47Sa7Ys7fbrr4xkf/k8lkvnP6DT/ZccOGp9598uoTrnwsSZLC\nkh633P3n8rzcDJrP9IdPHn395BBCu/Ltr735jG5Fqz6lfEpyGUII4clLjr7i2dkhhH6HXnHZ\ngZtFrzdP/O7Q749fsrKk8/Z/vuWMDYr8bl8MlnrrMW/a68888/Qzzzz33vwVqz3V/cuDRozY\ndcSIYZs457Kpjjpgv7k12YotR95y4UH+/xfHxPOPOufFuSGEzl/e6+pLj84deNRVTRl5yEkr\n6pMBP7364r1652Ym2cp7Ljt1zLMzCtv1PvuGywdZ583N9tKi7j7qB2PmVoUQBh937Tnf6PXf\nJ5K6Hx3w/fm12Uwm87s77x9Qtuob7Zol4w849HchhLLuI++64aA0Ss4Hdpj49Dw+Ry8pSW45\n4fAHplaGEAYfcPIZh319zff5SiY+cMk5tzwXQijv992bf/8jdwRrRo5eWp6lThtle6GNsNRb\nms9HjQlyyHOV027IJfTl/Q648uQfrCmhDyEUtt9o39GXHrF11yRJHrn415Or6hqe+vLuo48d\ntEEIIVsz+8F5q2/NrGbCXz/MDYaffEy3dUiLhx99WG4w8/GXWrCsfPdmVW0IYcvRP5XQR2Op\ntx4b9t3me0cce8VNd1190RkHfXt4z07/3ernvvvve268fPThB59wzu8fHjexstbvJn5uS+rq\nQwi7HPsdXyhF8/x/luQG+516WMOvBhaV9T+8R4cQwsx/TG2YmSksP/DEy/fYqCy7cvrvfzM2\nfql5z/bSop5bsjKEkMmUHL/rxo0fr178xPzabAihpPPwhoQ+hFDSedgGxQUhhJolE+JWmlfs\nMPHpeXyOXlKx6O0rc7Flt0E/PufwtcSWIYTM4P1PPm7IRiGEyqkPXvLC3Egltg2OXlqapU6b\nZXuhjbDUW5rPR43JcshzE697Njc44LTvr8MJ8Jm9Tjo0hJCtmXvNve81fmLIqJ1zgzdfXtDc\nNeabpytXhhAyBe2OHFixLvNLyod3LykMIdRUPteyleW1lfVJCGGnAeVpF9KGWOqtT6b3wB1H\njjrpz7ff8ftzfrXvbjtUlBTmnkiS2qkTn77+snN++IPDf3PZDc+8OjXrKHqdfaldYQihT5lr\nM8bz+vLaEEKmsGzf7v9z08rNv9o1hLBy0YuNH8xkSn/46z1CCJVTx9w1c3nEMtsU20uLmFNT\nH0Ioar/patepWvT607lBl4F7rPaSTUqKQgjZ2tlRCsxPdpj49Dw+Ry+peOmGV3KDA375zXWZ\nP/znI3ODN259tqVqatMcvbQUS502z/ZCG2GptxSfjxoT0pPnHpq2NIRQUFS+b7d1uj93uy7f\nyKVoMx+7p/HjpRus+oqw6qOq5q4x3+S+by1s96VO63xfgB7FhSGEbM2sFiwr3+XubVbngCAi\nS73Vql22cN78BYsrl6yoq1/tqfraylfGPXTp2SccPvqMB599O5XyvnB26V4WQnh9jgvJxLOw\ntj6EUNTuS6udl9N1h64hhJplr9T8727febMjNiwpDCE8NWZqoCXZXppX+4JMCCGpr1vt8SkP\nz8wNNtun92pP1ay6WZuTY5vODhOfnsfn6CUVj0xfFkLIFJZ9q2vpusxvVz6iS1FBCGHFgida\ntrK2zdFLs7PUIcf2QhthqTc7n48a82vF5LkPV2ZDCAXFG37mzAZdiwrm1mRrl7/e+MHC4u65\nQc3CmmYsLy91KMzU1CX1tfOTdf4CdXZtNoSQKVinX6TgU+3Vt/Obbyx45e3KvYet06dE1p+l\n3tpUL/zwhQkTJjz//Mtvvl+brP4bKxW9B5ZXTXt/QXXuj0s/ev2mS15/cfIvfvuT3UU9azfk\nx4OvP2vcy398MLnqCL2Ko11BpiabJMnqyWXZxv1D+HdSX/3Kspohja63FjKFu3Rud9/8qoX/\n/lsI20attW2wvbSQzdoXLVpak135/oyabK+PT0oISe2Y91dd++67m3VuPD+pXzGtui6EUFDc\nLW6lecUOE5+ex+foJRXTc1+/FHRY9563L8gsDqG+xjXAm5+jl5ZjqdPG2V5oIyz1luPzUWNC\nevJcl6KCebXZbPWHldmkfB3Odk2yS9+vrgshZDLFjR/P1qy6qGZJRfGnvIxGvtap5B+Lquvr\nFj26sHrPdfi14pqlE+bWZEMIxR22afnq8tZ2x+xfMOqGSdffVj30xNKMg4EYLPVWYunsqROe\nf37ChAmvTplZ/4mD5m59thr29WHDhg4b0LtLSLJTX33uySef+Ofzr1dlkxDCmw9f8futtz5x\np+5pFP6F0W3Q8Qf2f/WeKQ+cdtOXzjly13Z2mJa3cbvCd6rqs9UfLM0mja/VUdJx+xDuCSGM\nm7F8yICSxi/ZsKQghFBb9WbkUvOb7aWl7dGzw8SlNUlSf9VjMy76zpdyDy547U+za3I3pB8y\n8H8vVV35n9ty9/dp12mn+NXmDTtMfHoen6OXVHQszCyqS7K186ZVZ/uWFn7m/OzKD2bX1ocQ\nCoq7tHx1bYWjlwgsddom2wtthKUegc9HjQnpyXMjKtrdO7cqSWr+PHH+yTt89vn0C964vro+\nCSGUdP6f7/6qZv89N+i8RedPeRmN7DFio3+M/SCEcM+V4/Y8Z8/PnP/WX/6SG2yw3WdPZk3K\neu59/iEvnjbm2ZMuH3DJ8d+R00dgqadr4YeTJkyY8Pzzz7/x3rxPPtu97zZDhw77+rBh/Xs1\n2rQzhf0G79Jv8C5HVn5w80Vn/d9bi0II/7r65rDTKdHK/mLKHHzBRXN/dfK4B/9wxEvjDj90\n34F9N9ukR9d1vs8Dn9vwziXvVNUmSe2tkxcfs2VFw+NFZf07FmaWZZMPH5sZBlQ0fsnMmmz0\nMvOW7SWagUduF379VAjh7Rt/fc8GZ3x7+/4rPnrpdxeNyz278R7fbzx56QfPnnX2o7nxBjtu\nH7fSvGKHiU/P0+DoJQVDOpc8srA6hHDDUzMv+Pbq9yv5pFnjrkuS3Ncvw1q8uHzn6CUmS502\nxfZCG2Gpx+TzUWNCevLcbgdtdu9Vb4UQXrj0wsk3XDSgU8laJtdVvXvpReNz417f/vZ/n0hq\nxl7+TG64wzYVn3whjfXZ/wfFD15cmyTzJ15z4X3lJ39vyFq+Cpn98p3nPjojN/5/h/SNVGKe\n2uqgc49fedEV999w+FtPf+/gkfvuOqjUt1AtyVJPxeyprz3//PMTJjz/zozK1Z7KZDLd+24z\nbNjXhw0bunnPTmt5k5LyPkeedsz/jTwvhFCz5Pmq+qSswD+WtSks6bX3fkPH/eHR5TP+fe3v\n/h1CyBQUrkvPxo4d2+LF5aNBe28Srn8nhDDutxfseOlvdty47ONnCnYub/fIwurZz127dPRV\nDb9uXF8z54lF1SGE4lLbS9PZXuLrMnDUsK7Pj19YnWSX3n7hKWMymeTjMxUyBaU/+X6f3HjF\n3L//7uKHX/vPjGyShBAymcLv/2DTtGrOA3aY+PQ8FY5e4vt/3+z1yJ3vhhDevuk3L+/wx+03\nXNvFxqrnT/zN9ZNy417f3i1GffnI0UsqLHXaAtsLbYSlngqfjxoT0pPneo44vt8No6auqKtb\nMfWMUacdefwxe22/6afOnPHa43+87LpJVbUhhMKS7qP3XfW14NJZU/526+X3TVsSQijpuN1+\n3dxM+jOUlA879RubnPf49BDChNsu/PGLI352+L5bDfjfDTTJLpj9/jP/d+9tD0/Ifd9aMeCI\n/XuUfeobsi4efPDBEELo/JVvbvPu31+bMubKs++4qrjrRj169OjRpcPafjclhHDKKX6/ryks\n9VQcfcKZqz2SyWR69Ntu2LChw4YN+/JGHdbxfYo7bv3xsKjElSc+y0u3nHHeA683fiSpz+bt\nr7C2Ar32+GnFzScuqquvWfbOb0f/eItttzvqlBP6ty8KIew2fKNH/vpBtvrD06786yW/3Lc0\nk0mylXddeubybBJC6NDbhTqazvYSXyZTeuyFx7577GW569snja4luMUBZ25dtuomUysXvzRx\nykcNT236zV+PKG8XudR8YoeJT89T4eglvi/te1T5PadXZuuzNXMvOOakI3914t479vnUmR++\n/LffX3rTnJpsCKGgqOLovTaJW2n+cPSSCkudtsD2QhthqafC56PGhPTkuYLi7mecdsDRZ91d\nkyQ1S6f8+dzj7th4wA5bf7l79+7du3cvC9Vz582dN3fetLdefmv64txLMpnMHqPP7VdaGEKo\nmn3DoaMebvjGcOfjRtti18X2oy/ZZ/qohyYvDiEsnDzut6eNyxSWbtixPvfsqSeM/vDDmcsa\nXaKkXfk25567bzq15oubbrpptUeSpHbB7OkLZk9PpZ42wlJPUSZTsHH/wcOGDR06dGjf7p/7\n9x7qqqbkBu032rfIzr5Wle/edv7YN9Kuom0pLO133k92PubacSGEJLt88sTnPlj5i9zHlb4H\n/7TD305fnk0++OdNB4+/d5Ne5fOmz6yqW7Xt7DJq2xTLzhu2l5jKeg7/w1Wdr7v6xnFvfJC7\n4V9BUcdh+x71q0O3/uTkTKboq9/6yek/3TF6mXnFDhOfnsfn6CUVRWVbnnPY4ONveTmEULfi\ng+vPP/aBvoO+PvgrPXv27NGjR1momj179qxZsyZPfO7VaQsaXrX94WcPaO/LyfXl6CUmS502\nxfZCG2Gpx+TzUWOZxucrQL6aNeH2Uy65b/HH/5jXIlPQbo+fnH/MXlvk/rhs5pWHjHoiN+7/\n7V9eOsqVqdZVkq0ce+3Ftzz22d+MVGyx22ln/HyL8s8425u122effZr82oceeqgZK2lrLPXI\n9t33u5ts8dVhXx82bOjQPt3Wdl1BmsvfTzjs2qmVIYT23QcedMg+X/lSrw0rOq7jJ44NNtig\nRWvLb5MevfWyGx6cuzIbQjj2tnv36LLq1OFJY8489e7XPjl/w8FH3njOflFLzC+2l3StXDT7\nwzkLCjtuuEmvDVc782DZR7dfdef8jTftv+OQnb+ySce0Kswzdpj49DwmRy8pevbG0y/567r+\nhsSg/U8994ihLVpPfnP0kiJLnfxme6GNsNRT5PNRjpCetqJ6/qSb/nTT4y/9J7vmNb/xwGE/\n/OnPh2z231uM5EL6sh799z7oyJG7bxml0rwy+63xYx96+J8vvl2d/ZS2d9ts0F77fHef3QYX\n+/2y9faPf/yjya/dc888vFBMZJb6/2fvvuOaut4GgD83CQmEEYYERFyogOBAhpUqdVTfunet\nirNaF9ZV97YuqhYrKNZdtSh11IkV9afUUeuAqoAMEQUEQgBDJIRwk5v7/hFFRITIyJXk+f51\nuTk3n6fp8a7nnOfoTIZE0dgKb5p1avrXQzJLKJ6l994DKwRs7MQ6pVZKH925m5ye1W6If9mZ\nN7ePBIWeuC59M/qQINjte/kvnjEMlz2rCTy9IEODZxjdw99cZ/DuhVnP/zm5dXf4s5cllbTh\nC539p84Z4IPVv2sE716YhV0d6TE8vSADgV2dWfh8BJikR4amWJxy/XZ0QkLC88xcWZGsWAnm\n5hYCm4aubm7tO3bxbNGgXHuqJCMt17i5o60e/uvXIZqSP0t8nJqZJ5PJikm1qZm5hZXQ2c3d\nAS+BSL9gV0d6aeigQSqa/uKng/NbWzEdC3pLVZT14NHT3JdFNo7NWjg52ZhjlQ6EUK3BM4zu\n4W9eu/DuhXk0Gf/P/25FP0pISMrOfyVXkATB4pmYWts3dnFxbu/j19WrFQ6fqKGMiJVLjqYC\nAM/Cd19oANPhGCrs6gghhFAdMJznI0zSI4QQQgihD5o8fIiYpGYfOv7lm8JTCCGEEEKfMrx7\n+dTQFKlmcTFVWbueHPj+h1NpAMA2bnrqWAjT4SAA7OrIsK0OmPaiROU0cs3Sno2YjgWh2kGR\nJWwu3kyiusWpugnXxg+gAAAgAElEQVRC9RYOK0YIofpr+/bttfuFM2fOrN0vNBA9LHnhYvkL\nBcV0IAjplEwqVWk9mllgaYkvYyt3+fLlWvw2S7fOPo34tfiFCCE9g3cvnxqCzWUzHYP+sfFp\nAqfSAIBSpMXLVe58fMfLPOzqyGCplbkJmdnFaloZmQ2YpEf1E62S/BN1MzY2Lj4hpaCoSC4v\nVlL02bNnAYAsvPdnVGHnbn6NzY2YDhPpG7yBQ/pMIZa8evUKANhkItOxGCiaVjyJjUvPfNmz\nz/+9s58q2LIjvHlzl8/8Oje21NtaJXWnoKBAs0EQRgKBKbPBIMCuXjcuXbpUu1+ISfrq6T7G\nLTzo/j9hseN/+IzpWPQTntI/KZkxkYfOXktJeZr7qrLlRcsJO3XGHOdMVSokpDZn+LnOaI1J\nei3hGUb38Df/FODdCzIE1u6zfS3v3S5QAMDByBebhjRjOiKEkP6hXyRG/5fwXFIor7SVKuPh\ntWI1DQBqxUc8RiH06Ui8cfLX3UdTpWSFn1Ilz47s+T18/4FuI6d8P8IPn/4/Cj4fVQ6T9Eif\n4bBiBtFU4dVjB46eiRLLVWyuffnMpZq8ceXCDbhweO92n77+0ycNtuGwmAq1Pho3bpxmg2va\n/sTRtQDw008/VfvbFi1aVDthGSTs6kjvNey6ZMDpieev/3T8y91fezRgOhw9hKf0T0fKuaAf\n9v5djeXAjPDUjj5VeIbRPfzNPwV49/IpwJo0dY7gzt2yIGdWYKpc+SRs/Z0uIZ/ZGjMdkyHC\nro70lZoU7Vy7MvKh6KOOchnWoo7iQajuxIStWP3HwyqbqSnp1bDNj1NyQpcO5+DZXGv4fFQ5\nzFkifYbDiplCkZnBCxdeSy2ssiVNK+9G/Pb4UcrmrT80wqpgNXDr1i2mQzBE2NXr1JgxY5gO\nAQEAAGH07cY1+fNX/L5qalLfMZPHDrDHQW91DE/pjCClt5bueydDz2Zre7rmEviAXoVOnTp9\n6CO1Mv9u9JPSPwmCZW5la2dvb84uycnJycktKH3xzeba+08b2YDDEjhb13nE+gvPMLqHvzkD\n8O6FOViTRpeMhT6BO1YFr998MyUncMasoZO+7dvNx8YYnzd1Abs60nvhyxZGJhV81CFCr2EL\nu9rXUTwI1ZGMS8GlGXqCbd7ly27OLVsZxR759cbbESocfuu2jUxjM4sAQHTn0NKjbTaNdmUm\nXL2Az0dl4VMK0ms4rJghp9YsK01bEgS3aeu25RoQbPMR/brduXM3LU8OALKMmyvWt9q/Zoiu\nA0WoZrCr16kRI0YwHQICADh9+jQAOHfvGX/k7N2IA/cuHBTYNmrcyNZIi5dLq1evruvwEKot\nCbsPKtQ0AJgI23w71b9DKyehpQnTQemPpUuXVrhfJX/684IVmm1+Q7ehX4/o/4UHn/u2NAFN\nlSTduRwe/kfMcylFik6c+Gfd1sUtTfAxFiFUGbx7YQrWpNGxiIgIAHDvMaxAeiQuV3Q8dMOJ\nnVxLG2traxsrawGv0mSw/k1E0yXs6kjvyTIOhb/J0PMbOnf0cLXklCTejEqUlABA2z4DWhpz\nAEAuzY29eydLpgQAd//V60Z44igUVL9QirSVu65qtgXOXRfMn9HO3gQAUsSnyjYz4rddH3r4\ndvj6jUejASDp+OqkIb+74GMpqg3YjZCew2HFuifLOHoo9qVmu3mXkUtnjrB7b9YCwTIZM3Xe\nmCnUP8e3/Rz2t5Km8/47cFr01WB7XF5UKy4uLpoNjomjZmPGjBnMhWOgsKsjA7F///6yf9K0\nukCcUSDOYCoe/YOn9E/ExYcSAOBaeIf+uhyXJtEV+vflq29lyADAc/jC5WO7vF8zkGDzXD/v\nv/rzfjF/bl7920151t01yw4d+PlbrC6oJTzD6B7+5p8CvHthBNak0b1du3aV20PTpCRPJMn7\nuPLU6KNgV0eGIPngdc2GRYt+O7ZMEbAJAFD59/IfvaBYTSub9J7Yr7GmAU1JjwUtDruRmXhi\nX2zvNh4CLmNBI/Txsi7vyFeqAYAn8N4aOLdBJa8CCI7vqFWzX0zZdkNEU/Jd5zKCRjTXXaD1\nGT4fVQ6T9EjP4bBi3Uvcc1mzIfQN2Lbwq8qaEuzPR8yzpjIXHn0CABH7kgcv89BBhHpg8+bN\n5fb07t2bkUgMGXZ1hFCtwFP6JyJOrgQA94CpmKHXGUlC8J8pUgBo4DFp9bgulbYlPIcunJX0\nJPh2jjTl9OZ/+y/xFeomyPoOzzC6h785MlhYkwYZCOzqyBD88+SVZmPI4rGCN+/POXzncfam\nu7JkWRdT4E2SnmALRszfKk6ecDkn4+c1pw4HfcNMxAhVy+0z6ZoNv4UzK8vQv+E3Zey2G5sB\nIOvyPcAkvXbw+ahymKRHeg6HFevepdTXt3HfBnTXpn2rIbOI8Fk0TRckXgbAzCWqN7Cr1xer\nA6a9KFE5jVyztGcjpmOpl+bMmcN0CAjpQomaBoBOrgKmAzEg9/ZGazaGz6l0rNsbfjP8g28H\nAUDswRvgO6wOI0MI1XN498IIrEmjezgRjRHY1ZEheFSkBACCzR8kfKcSZCsva8iSlUjuArx9\nFUYQxuOX9Lo854w0JSw8q/9IB1Ndh4tQdf0tLQEAgsWb6GalTXuuwE/IDRKTFCm9CYDLdKJa\ngEl6hFAtS5KrAIDNtf/cQqsCR2zjpi2M2SnFKlVxUh2HhlBtwq5eL6iVuQmZ2cVqWhmZDZik\nr5YePXowHQJCutDShBNXpFR99NKiqPouZMgAgGDz+1gba9OeJ+hmyfmlQKUuzr8CgEl6VD9k\nRKxccjQVAHgWvvtCA5gOx1Dg3QsjsCaN7uFENEZgV0eG4KVSDQAcXpNyi0xZ+1jDuXRSFk3S\nwC3zkUXzCbbc87kkdTUsZeSC9roNFqHqyyHVAMDmNTGvtOJyWfZGbDFJUWR2XcaFDAgm6ZGe\nw2HFuldE0QBAsD5i1CSbIABArSyoq5hQRXB6cQ1hV2cU/SIx+r+E55JCeaWtVBkPrxWraQBQ\nK0p0FBpCqH7q52QRF5sfnSAd0FmrhDGquYwSCgBYLFPtV2c1YREFAGpSXHdRIVS7FGLJq1ev\nAIBNJjIdC0J1C2vSIAOBXR0ZAh6LICmaplXl9vMdnAEe0GpFtIz0NS8zZYVgd7XgnciTv3xw\nHgCT9KjeMGUTpIpWK/NoAC0fS0VKCgAIFi50UpvUZGHqkxTxy1eFMhkYmViYm9s2at7CsYH2\n7wrqL0zSIz2Hw4p1r4kxO6VYRZWk5atoG07VJ1JaJXlWrAIANs+x7qNDr+H04prDrs4UNSna\nuXZl5MOPW7XEZViLOooHobomk0pVtLbzuwWWlobwDFMXOswcypq29/GeQ4rP5xsT+Cvqghmb\nkKhoSpmbqqCcjNlVtqdK0kRKNQCwjCzrPjpDgWeYumbj0wROpQEApUiLl6vc+fgSBuktrEmD\nDAR2dWQIHHjsJLmaUqQVUnTZGcZcM2+AYwAQlVnk6/pOXUlbLgsAlPI4HYeKUE18Zs69KFGo\nVZLIl4reWhR4Iwtvi0kKAIxM29V9dAaAVsXevBhx4eL9xxnke4+lXPMGXp179u3Xr31TfR4Y\nh8+HCKFa1tfRLPhJAU2rfr2Ts6yzfZXtc+/t0pyC+Xa96j46vYfTi3UHuzpTwpctjEz6uGoE\nQq9hC7tW/f8IoU9KZkzkobPXUlKe5r76iBN12Kkz2ldpQ2XxGw5YN/ru0rAbC7a6bp7bH/P0\nOuBrwb3wUgEAe69mbejbuMr22VG7aZoGAK5F5zoPTt/hGUZnrN1n+1reu12gAICDkS82DWnG\ndEQI1RWsSVMvYEW9msOujgyBnwU3Sa6kaeXBxIKZ7m/X6ubwnc3YhIyi0y9lges7a3hnkZTO\nw0Sopnp1s7t4Kg0AjgVH9V5d9WzP+MOHNRs2HXBqaE0p8uNCf9oclSj5UAOyMO/2xfB/I4/7\nDJg8e2JffX0UxSQ9QqiWdRjnDituAcD9bev+c9nSoUFlDy3kq/iNW+9qtluO8tZFfPoLpxfr\nGHZ1RsgyDoW/ydDzGzp39HC15JQk3oxKlJQAQNs+A1oacwBALs2NvXsnS6YEAHf/1etGeOrp\njRzSWynngn7Y+zet9fTWUka4MmYNtPnmx7klgdtO7h0X//ewUf6DunsY47mjLv3fV40uHH0K\nAAn719z32e5tW9mVVJEXs2bPY812o7642nSN4BlGpwju3C0LcmYFpsqVT8LW3+kS8lmlXR3V\nBfGT+//cj0tKSnqRK5HJZAoVy9zc3MLazqW1WxtPX193TFXWDqxJ8+nDinq1Ars6MgQeAxxh\nTxIARK3f0HHLmo4O/DefsL4Q8C68VIhu7iwMCCnNmanJnCsSBQAYGTsxEzFC1dJ06Eij05uU\nNJ0XE7rxhGDhMN9K3gGI7h/9MTJTs/1/o7Gr1wgpjVs+c1VykbLsToIwsrazN1HLRLkFpfXe\naJq6e3bXzKfZ29dN0ss8PVGNJ3OEEKoMTf40YcwtiQIA2MaO30ybPrR7G24Fzy3qlLsRodsO\nphSSAGDEb30gLNBCH8+zOnNkwbjwj59eHLpyPBd/9erBrs6EmHWTV98VA4BFi347tkwRsAkA\nUMmT/UcvKFbTrlN3bOr3ei4mTUmPBS0Ou5HJ5jVetXerh4Bb2feiDxs/fnz1Dmw5IXBF94a1\nG4yBIKW3xozfpFC/vUtns6uuBK5x8tQpTKJVz+nTpzUb2dHn/3oohjfPh/b29pamVZxAFi1a\nVOfx6SOVPH6i/zIppQYAjknTiT/MH9CxaYUt0++f/3nL/mdyFQCwOFaBYftcTXC4eTXhGYYR\nivxHwes330yRsnn2Qyd927ebj40WSzygmpMkR4X8evh+Sm4lbWycPMdOm93j3emAqHri/lix\nNOxh027fYU0a3fqIinp3UqQAIGi66HAIlqWpPuzqSO9RipRvR8+XqNQAQLBNXdp3mLxonrMJ\nBwCS930//0waADTt/u3mOYOMCYKmpEd/WhD+rwgArFwXHNzkx2zwCH2UeyEBay9naLatXbtN\nHzeojatT9pE58048A4CzZ88CTeWLnl+POH7o3G2KpgHAynXCwU1DmQy63qN3Tx99PrNI8wdX\n0GLgsIFdO7ZtaG/DZREAQFOK3OysR/9GnfkzIk32OpHfqNuinfP08O4Fk/QIodonS78SMGe7\n5k4OAIzMG7Z3b2lra2tra2vOo/JyxGKxOC35Yaq4WNOAILijftw9sr01cyHXe7KMQ6MDTmi2\ncXqxzmBX173t40dckigAYPye8GF2pUO5IWLa6F1ZMoumc38P6V66k6YV26dMuJwjF7T0Pxz0\nDQPh6oWBAwdW70DXGaGbejvWbjAG4uHmKStuiADARNjm26n+HVo5CS1NmA5K/1W7q4PmuR1V\ny9M/f5z72/3SP22cPLp4tm7YsKG9vT0f5CKRKDs7OzHm5n+p+aVtOn77y/LBOGuh+vAMo3sR\nEREAALTy1qkjcbkKACAIrqWNtbW1jZW1gFfp7TiOAaqJx6e3rjgQpdTirRdBGHWfuG7O4NY6\niErf0dcOBW47+S+3QSusSaMb1auo13He7uXdcDmwmsCujvRf+l9BM3dGlf75/aHjvSx5AKCS\nx431X1ZE0QDA5po7NhLkZmTJ37wZG/zL7986WTARL0LVRKvl+xZPO5v4duYbwTa2NVOLpSQA\nuLVsnJ6eJSuzmgNP0G7LnjVNccRtDUgSd4xfGKnZFnp/E7hkVIMPFG2jyJzD65f8+V8eABAE\na/q+8N6V1rKtj3D+AdJzOP+PEWZNem5bX7Jszf4MuRIAlIXZ9//N/lBjgm0+ePZGTFvWUPLB\n65qNd6YX+/fSTC9WNuk98b3pxYkn9sX2boPTi2sCu7ruPSpSAgDB5g8S8svub+VlDVmyEsld\ngLdJeoIwHr+k1+U5Z6QpYeFZ/Uc6mOo6XIPE4Vtbm3EAwBrnuVbXxYcSAOBaeIf+utyGg9NW\nkT5rMXTlAsmyzWdiNX/mpz44k/qgkvYeQxdjhr6G8Ayje7t27Sq3h6ZJSZ5IkvdxSTX0UXJu\n7lpyIKp0Xoq5g4tP25ZCoVBoKzQ3UuaIRCKR6GncvYTMQgCgaeW1A0vM7XZP8hUyGnX99rom\njUXrr9o9/ethcljwqiMhWJOmzoUvWxj58RX1FnbFDH31YVdHBqJJn3mBLJugvafFJe8sNs/h\nt1kxvN3iPx4CAEUWpj0rLP3I1nMiZuhRvUOw+JM2hljv3PTbpdePpTSlEEtff/o4JaNsYyuX\nHkuXz8AMfQ3FHbyn2eALu29fMbqSmjRsrt34VdvzJk+8nldM0+ozv6f0ntNGV2HqCL48RXpO\nIpFU78DCd+8/0MeybN1v2/524XsPXLgWLaMqnrtAEKzmHbqN+26KZyN+hQ2Q9v558kqzMWTx\nWMGbEdwcvvM4e9NdWbKsiynwJklPsAUj5m8VJ0+4nJPx85pTOL24hrCr69hLpRoAOLwmnHfv\n36x9rOFcOimLJmkou4KDRfMJttzzuSR1NSxl5IL2ug1WT2zfvr3Sz+lXeTnZ2VkZz+MiL98r\nVtO02uTrHzZ81RprxlZfnFwJAO4BUzF/pkszZsxgOgQD5TdpfePWJ7fuDn/2sqSSZnyhs//U\nOQN8sD5HTeEZBhkCtSpvXfBFTYaea95qwuyZ/To2r+jlH/3sbkTIL7+lyEiaVkds3TjUJ8iK\ng9Nhq2n//v3l9tC0Ml+UkS/KqLA9qjlZxqHSNe+wop7OYFdHhsPtq/G7ewx+dOducnpWY97b\nrKSb/9olRFDoievSNxPoCYLdvpf/4hmDGYoUoRoh2IKhM9d/3v3WqbPnrt1NUFT0grdBc49+\nAwcP7OFphNfQGrucJtNsdF/6bZWrxhAs/nfLelyfGwEAuffPAmCSHiG9hvP/ahGH33jMrJUj\nJ2Xfu/NfQkLC86w8WZGsWAlmZmYW1vbOrd3ae3VybWTOdJh6AqcXMwi7ui7xWARJ0TStKref\n7+AM8IBWK6JlpK95mekLBLurBe9Envzlg/MAmKSvjiZNmlTVomkbAIDBo79JPnYg5MSNtNAl\n04o27R7qLNBBeHqpRE0DQCdX/AF1qnfv3kyHYLiafT5sm++A+H/+dyv6UUJCUnb+K7mCJAgW\nz8TU2r6xi4tzex+/rl6tMKNQK/AMo3s4Bkj3cm5uTVNQAMAxbr4mdKP7B4uHEc079g8MbTJv\nyqp0BaVSPA26nbPWD2cYo3oDK+ohhOoay0jg0aWXx3v7fUfP8xk08sGjp7kvi2wcm7VwcrIx\nxxMLqt/s3TtPd+88jZI/S3ycmpknk8mKSbWpmbmFldDZzd3BSt+qrDMotVgFAATBHttMq9ob\nFk7jjYgLSppWFsXWcWgMwDQk0nM4/49xHNOGvj0a+vboy3Qgeg6nFzMOu7puOPDYSXI1pUgr\npGjzMukarpk3wDEAiMos8nV958nQlssCAKU8TsehGiDjBs7jFmwzK5z824O835ev9j68pQkP\nK4BVR0sTTlyRUlX1EroI6RGC6965j3vnPpq/aIpUs7iYla8LeIbRPRwDpHsxJ55rNjxnL/lw\nhv41rmW75d97Tdl8FwCeHYsBP7yfryYcj6J7WFGPEdjVEdLgmDp4+zowHQVCtYxg853cvZ3c\nmY5Dr1FAAwCLa89nafXMTxDGDXmsdAUFtLqOQ2MAJumRnsP5f8hA4PRiZCD8LLhJciVNKw8m\nFsx0fzugisN3NmMTMopOv5QFru8MtMoicfkSXWINWDz30KjlKsXToBPPf/FvwXQ89VI/J4u4\n2PzoBOmAzjhSGxkogs3FMT51BM8wyBBcFhcDAEGwp3bUao15YadpRsQ9JU3Lcy4DYJK+mnA8\niu5hRT1GYFdHhiAxI9+1sQ3TUSD06Uq8fsL1i+FMR1FftTM1uv2KVCvzlTRos3wArZZnlagB\nwIjvXOfB6RyuQofQa5r5fxM8GtDq4t+Xr07HNenrBkVWttooqjYHHhsANNOLy+7nmnlrNqIy\ni8odgtOLUX3kMeD1asRR6zfczZKX+YT1hYAHAKKbO8v+K1CTOVckCgAwMnbSZZyGzIjftpuA\nBwBZly4xHUt91WHmUBZBPN5zSEHjXNdP2uqAaZMnT95wJZPpQBD6CHiG0b1z586dO3cuKr5A\n+0MeRF44d+7cX1ce111U+u1FCQUAbF5TWyOt3nqxjBo0N2YDAEXiktKoPqmsoh6ApqJeWRbN\nJ9hy2QBwNSxFZ0EihOqjhQETR02etWXnwai78VJSD6euIqSRLFN+7CHy7EchK6Ys3HKoLuIx\nEP062AAArVaEpRdq077g8W4VTQOARav+dRsZEzBJj1BZrAGL57IIQjP/j+lg9AGtkty6cu7X\nrRu/nzJprP/IYUMGDRn+teYjsvBe+LmrGYUffSFEFfKz4AKAZnpx2f2a6cUAkH4pq9whOL24\ndsmk0gKt4UvxamvUa6oVhwUApCxpfcCkhas3JRe/LiDRw88OAChF+tLgM5rEA01Jw7esKKJo\nADBtjNMddKelMQcASNkdpgOpr/gNB6wb3U7x8saCrecxi/bJUitzEzKzxWJxUmQ207HoCbyS\n6gaeYXRvz549e/bsOXlbrP0haScP79mzZ+/e3+suKv1mwWEBAK2WV9myVLGaBgAgjOooJITq\nAo9FAMAHKuqBpqLeOx8Q7K4WPAB4+eC8jkJECNVbReLn1/86GbRuybhvRs9fEXj0zJXkFxKm\ng0Koli0LWJ3wiqy6HQAA0NSryENbJk5fcfmhqE6j0nuuU74TsFkA8NePu6VUFc+kFJkdtPEm\nABAEe/iMtrqIT7ew3D1C79DM/7taoMi6dAn8pzMdTv2WeOPkr7uPpkorvs5RJc+O7Pk9fP+B\nbiOnfD/CD9ccrSGPAY6wJwkAotZv6LhlTUeH0mJ3rC8EvAsvFaKbOwsDQkrX8MbpxbUlMyby\n0NlrKSlPc199RJWIsFNnzLHTVwvbuOXa776YuTMKAGiqKDHmZlrJbGcTDgA4jZpqen5ZEUWn\nXds/6tZxx0aC3Iwsuer1iO+u03BZB91JLVEBAE3JmA6kHmvzzY9zSwK3ndw7Lv7vYaP8B3X3\nMMaTho7QLxKj/0t4LimsNLVDqzIeXtNkdNQKrBJUI3gl1T08w3z6SDUNAKqSZ0wHUl81N2bn\nKSmKFD0oUnqYVp13V8njX5BqADAy0cMSmp+y1QHTXpSonEauWdqzEdOx1EsOPHaSXK2pqFf2\nssg18wY4BgBRmUW+rtyyh2BFPUZgV0f1Gk3Jkx/+k/zwn6P7wNzOycvL08vLy9Ojtbl25WoQ\n+pSVSGJXBKxcFfJjW0tu5S2f3z23Y+fhpHyFbgLTb1xz740B3QJCrhXn/j1zIXvxomnuworX\nYsuOv7EveMfDQhIAXIat6WvHr7BZvYZJeoTKa2nMufp6/h8m6asvJmzF6j8eVtlMTUmvhm1+\nnJITunQ4B98N1kCjXlOtDsyXqNSa6cUu7TtMXjRPk7ns4Wd34UyaZnrx5jmDjAkCpxfXlpRz\nQT/s/Zv++Flo+CBTE036zAtk2QTtPS1+d10SDr/NiuHtFv/xEAAosjDt2duKSbaeE791stB1\noIaKfHX3WkEJALC4DZmOpb46ffo0AIBF66/aPf3rYXJY8KojIUbWdvb29vaWplU8Ny5atEgX\nIeopNSnauXZl5EcOincZ1qKO4jEEeCXVPTzD6EBCQsL7O0tePktI0KKQFa2SZD0+nles+aOW\nIzMYPZ0s7j3MA4B9Rx+HTK56pGbS8T2aE5FFiz51Hhx6Q1OTplhNKyOzATOX1eJnwU2SKzUV\n9Wa6W5Xu11TUk1F0+qUscLUqewhW1NM97OqoPlq3bF5sbFxcXGziMxFV5l69MCc16kJq1IUT\nBJvfql0Hb29vL0+vVo0sGQwVoRoipY/XBCxdHrzOw6biPLEiL/Hgzh0R99JK97DYgl7+3+kq\nwPqtsLDigvaCzyb9WGz0495L0idXl079t51vt8/aO9vb2dnZ2ZkQxTkikSg7+78bF67Hva4N\n7Dlk9oqx7XQYuO5gkh6h8nD+X81lXAouzdATbPMuX3ZzbtnKKPbIrzfevvXm8Fu3bWQam1kE\nAKI7h5YebbNptCsz4eoFnF6se6T01tJ97+QV2Gy2lsdyCRyTUiNuX43f3WPwozt3k9OzGvPe\n/uxu/muXEEGhJ65L3/RwgmC37+W/eMZghiI1OCWSpB3Lf9E8w5tY92Q6nPpq//795fbQtDJf\nlJEvwoVy61b4soWRSR+xaDQACL2GLexqX0fx6D28kjICzzA6UOFoBtHNHYtuftz38Mw71U5A\nhqf1GC94GAkA6efWHmm7ffRnlZ2oxdHH1px6XbTA0x+fSWsOa9LoDlbUYxR2daTP2n3Wrd1n\n3QCAkuc/jouPi4uNi4tLfJqlfHPrTlPy5P9uJf936wiAub2Tt5e3l5dXBw9Xc5yDheoVNwH3\nsZQkC5PXzly6JHiDt+07eXpaXfz3iX17j155RalLdzb/bEDA9HHO1jydB1sv+fv7V9mGpuQP\nb154ePPChxqw2IKixxcXL7zYbNiCgE7CWg2QeZikR+gdOP+v5ihF2spdVzXbAueuC+bPaGdv\nAgAp4lNlmxnx264PPXw7fP3Go9EAkHR8ddKQ311M8KRUfTi9WMcSdh9UqGkAMBG2+Xaqf4dW\nTkJLE6aDMiAsI4FHl14e7+33HT3PZ9DIB4+e5r4ssnFs1sLJyca8inmBqHJHjx7Vqp26JDs9\n7dH9/14qXz+6uI3D1AKqT2QZh8LfZOj5DZ07erhackoSb0YlSkoAoG2fAS2NOQAgl+bG3r2T\nJVMCgLv/6nUjPLFMeLXhlRShynlNHcV0CPWVpcv0nsIbV8Rymib/2DA9pe/Y0YN7t3yvPGax\n+GnkmfBD5++qNOMLbb+c4YpzAWsEa9LoGFbUYwp2dWQ42Hybth2/aNvxCwCgiiWJ8XFxcXGx\nsXGJKS/INzf1I+AAACAASURBVAn7QlHqtYjUaxHHWBwz53YdNq1ewGjICH2EH3esXfP9ylhJ\nibIoZcPMRYu2BX5m//qZNOvhpR079seK3o7EMm7gOn56QD+fpgwFa7jUlDQpSQoAREHFCyvX\na5gPQ+gtnP9XK7Iu78hXqgGAJ/DeGji3AefD1UgJju+oVbNfTNl2Q0RT8l3nMoJGNNddoPoI\npxfr0sWHEgDgWniH/rrcppJ+jnSOY+rg7evAdBT6Q9sk/bv4dt1+0LvBrTozY8YMpkMwRMkH\nr2s2LFr027FlioBNAIDKv5f/6AXFalrZpPfEfo01DWhKeixocdiNzMQT+2J7t/EQ4EigasIr\nKSPwDKMDjo6OZf988eIFABiZC+20Pl2Y2Ti09RsytrNd7QdnKFjfbZgdN2OTiKRomrof8Vv0\nhUOWtg3thEI7OzsTKBaLc3JycrJzC9RvEgxsrnDW+u/wTFRDWJNGx7CiHlOwqyPDxDaxcvf2\nc/f2+waAUkiT4uPi4uLi4mIfP8kgNeUiVLLEmBsAmKRH9QbXovXqHevXz1oek6dQFT8LnDV/\n/tbNPuY5R3ftOHkjubQZweZ3HT7pu5E9zXGQPqptmKRHeg7n/+ne7TPpmg2/hTMry9C/4Tdl\n7LYbmwEg6/I9wCR9jeH0Yp2JkysBwD1gKuYVdOncuXMAYO7k181d23lODyIvZJAUx6RFn55u\ndRkaesuqZZeV62aZsPDRpZp698a5TQz458krzcaQxWMFbx68OXzncfamu7JkWRdT4E2SnmAL\nRszfKk6ecDkn4+c1pw4HfcNMxPUfXkkZgWcYHQgNDS3758CBAwHAofvCkMnODEVkiEyEvj9v\nmr12zQ5NQRSaVkvEmRJxZmJcBY25AufpK1d2ti8/1R59FKxJwwisqKd72NURAgA2z8zKytLK\nytLKysrCOCtPrmI6IoSqycjMefn2wMDZS+/myClFxpbZcyzp3Hzl26tqow5fBcz4to0dVn2r\njrNnzzIdwqcOk/RIz+H8P937W1oCAASLN9HNSpv2XIGfkBskJilSehNgRB1HZ9BwenHtKlHT\nANDJVcB0IIZlz549ANB0oIv2Sfq0k4f3iYqM+G369NxQl6HprT59+mjdlm3r2NSpRav2rZ3w\nDRSqdx4VKQGAYPMHCd9J0rTysoYsWYnkLkD30p0EYTx+Sa/Lc85IU8LCs/qPdDDVdbh6Aa+k\nCKE6Ze7ULXCve0T4HxF/XdPkyd5nxLfv2qffN6P623HZFTZA2sOaNEzBino6hl0dGS6azHiS\nGBcXFxcf9zg+Mb+ixDxB4OhbVP9w+E5LQjZtnrPwnyw5RYry3+znClqMnjZjaOdWTAaH9B0m\n6REqD+f/1VAOqQYANq+J9uVf7I3YYpKiyOy6jAuhWtbShBNXpFTRTMeBqqKpuqYqecZ0IPXV\n9OnTmQ4BIV3QlFPi8Jpw3r1/sfaxhnPppCyapIFb5iOL5hNsuedzSepqWMrIBVgztjrwSooM\nxJgxYwBA4NyA6UAMEcvIdsDYmf39Jz1PSkhISMrOk8pkMiVwzMzMBA0auri0dm3dnI/P/rUE\na9IwCCvq6RJ2dWRQaFqRnpSgqWsf9zhZqqDeb0MQRIPGzm3btm3Tpk3btm10HyRCNcc2brIg\n+Oet8xZcT5dp9jj1mbTquwFWWPWttmVErFxyNBUAeBa++0IDmA6HeZikR3oO5//pnimbIFW0\nWplHA2j5Q4qUFAAQLCwaU7toSfbz1IycQplMSbH4ZmaWdo1aNW/Exe5dS/o5WcTF5kcnSAd0\nNmY6Fn2WkJDw/s6Sl88SEip4MiyPVkmyHh/PK9b8UcuRIYT0C49FkBRN0+Wng/AdnAEe0GpF\ntIz0Lftem2B3teCdyJO/fHAeAJP01YFX0vpidcC0FyUqp5FrlvZsxHQs9dKIEVgtjGEEy6R5\na8/mrT2ZDkTPYU2aTxNW1Kt12NWRIUiNv6/Jy8cnPC0kK07M2zi2atu2rSY3b4+FIlD9x+Y2\nmhe01WjhvP+lFgKAKDq2YEJ/K8yg1jaFWPLq1SsAYJOJTMfyScAuhvQczv/Tvc/MuRclCrVK\nEvlS0du66leuZOFtMUkBgJFpu7qPziCIk+/9dTHy73//y3uvqCOba+7q49evb78ubRszEps+\n6TBzKGva3sd7Dik+n29M4NiHurJo0aL3d4pu7lh08+O+h2feqXYCQkjnxE/u/3M/Likp6UWu\nRCaTKVQsc3NzC2s7l9ZubTx9fd0xZ1Y7HHjsJLmaUqQVUnTZakBcM2+AYwAQlVnk6/rOuydb\nLgsAlPKK1jdGWsArab2gVuYmZGYXq2llZDZgkr6OUTTgeHFUf2FNGmQgsKsjQzBnyY/v7yQI\nwrpRy7avtbEX8HQfGEJ1isW1+37LNs7iuZHJUrn47uLv128MXurExyxqbbLxaQKn0gCAUqTF\ny1XuBv/zGvp/P0Ko1vXqZnfxVBoAHAuO6r26d5Xt4w8f1mzYdKi6MaocRYqO7fglPCqBpiue\nNEyRhfG3LsTfunCi8/D5s/0djXHlxerjNxywbvTdpWE3Fmx13Ty3P2YXPnFeU0cxHUL9UFBQ\noNkgCCOBAOd5MEySHBXy6+H7Kbnl9hcVFoiyMpLj7p87fsjGyXPstNk9XK0YiVCf+Flwk+RK\nmlYeTCyY6f729+Twnc3YhIyi0y9lwbu/c1ZFc0qQ9vBKyij6RWL0fwnPJYXySlupMh5eK1bT\nAKBWlOgoNL1WnC/KkpS0aNm07E7p01she08+eZ5eUAzWDZt/3qPf2GFdjbEGO6pvsCYNMhDY\n1ZGh4Vk17fSZZ5u2bdu2aeNghRWwUH1VYanOCnUbP/15YFBSIVksvr/4+/WL531d4crIrVu3\nrtUADYW1+2xfy3u3CxQAcDDyxaYhzZiOiGGYpEcI1bKmQ0cand6kpOm8mNCNJwQLh/lWMh1E\ndP/oj5GZmu3/G+2koxD1FEVm/jx7/s3MorI7WUZ8oZ2QUEjE+a+oMpn71Fsn5j/N/Hn7wkZc\nzNNXX5tvfpxbErjt5N5x8X8PG+U/qLuHMc5+qm2Ojo5l/3zx4gUAGJkL7bSupWZm49DWb8jY\nzna1H5w+GjdunGaDa9r+xNG1APDTTz9V+9sqLISAtPT49NYVB6KUHxh0VSo/NWbbosmPJq6b\nMxifD2vEY4Aj7EkCgKj1GzpuWdPRobR+KesLAe/CS4Xo5s7CgJDSSfZqMueKRAEARsZ4A1N9\neCVlhJoU7Vy7MvKh6KOOchnWoo7iMRC5j67sPPBHdKrYiN9Oc4XVyI85NPXHk6T69dk+PzPp\n3OGkv289CtnyvRUH/zlU7fLly7X4bZZunX0a8atuhyqCNWl0Lz09/aPaEyw2z9jEmGdsbGrC\nxZFA1YVdHRkasiAjIcGExSIAQO3m5miDF0pUL1XvDZUiN3r1kugKPzp79mzNIjJUBHfulgU5\nswJT5conYevvdAn5zNagR/9gkh4hVMu4gs6LezquvZwBALcPbZx0t9v0cYPauL77/pqm8kXP\nr0ccP3TutiZzbOU6Yag93uTVyJlVSzUZeoIgWvn27tezu7tTI1trc80jI60qFmdnP7oTde7U\nheeFJADIRbeXrjh98KdhjEZdj50+fRoAwKL1V+2e/vUwOSx41ZEQI2s7e3t7e0vTKvLHmLnU\nXmhoaNk/Bw4cCAAO3ReGTHZmKCKDc+vWLaZDMEQ5N3ctORBVWhbF3MHFp21LoVAotBWaGylz\nRCKRSPQ07l5CZiEA0LTy2oEl5na7J/kKGY26fmvUa6rVgfkSlZqUJa0PmOTSvsPkRfOcTTgA\n0MPP7sKZNEqRvjT4zOY5g4wJgqak4VtWFFE0AJg2xlJA1YRXUqaEL1sYmVTwUYcIvYYt7Gpf\nR/EYAtGt/QGbzrw/7oqmXq3/6XRphr7Uq9QrCze327Okm47iq89CQkJq8dtcZ7TGJH21YU0a\n3Zs5c2b1DiRY3AYNHRo7Nmvn3enzz33szY1qNzD9hl0dGYJ2rRwTUzJJmgYAmlaL0xLFaYnX\nLvwJAAL7Zm5u7u7u7m5u7i0bYUU3hNBHMxb6BO5YFbx+882UnMAZs4ZO+rZvNx8bQ634i0l6\nZFhwVVfd8A7YPDBj2tnEAgB4mRi1fmkUwTa2NVNrPl08LyA9PUtW5hGFJ2j344+DmIlVXxSm\nH/4tXgIAbKMGk1du6Ne+/FtUgmNi19ipV2OnLwcOCAtccvy+GAAkCQcPpf3fuKbmDERc/+3f\nv7/cHppW5osy8kUZjMSDENIbalXeuuCLmgw917zVhNkz+3VsXtFcJ/rZ3YiQX35LkZE0rY7Y\nunGoTxBOu6w2tnHLtd99MXNnFADQVFFizM20ktmaJL3TqKmm55cVUXTatf2jbh13bCTIzciS\nq17f2HSdhmVLqwmvpIyQZRwKf5Oh5zd07ujhaskpSbwZlSgpAYC2fQa0NOYAgFyaG3v3TpZM\nCQDu/qvXjfDEGgfVRilSl209V2FllLwHO1KKVQDA4giGT5vu1Ygbf/vsobMPAED87y83pJ/7\naV06CCHGYU2aeoRWk7mZz3Mzn8fciTr4q2n3rydN/uZLMzzRawe7OjIE634OVZPSlITHcfGP\nH8fHJySmFipfP/5IRc9vi57fvhoBAMaWDd3c3TQ5e5fmDfFhFH3KGjZsyHQI6LWIiAgAcO8x\nrEB6JC5XdDx0w4mdXEsba2trGytrAa/SGxL9G6+PSXpkKHBVV10iWPxJG0Osd2767VKsZg9N\nKcTS158+TnnnxauVS4+ly2c0NdShUrUl4UAUABAEMWJ9UD9Xy0pasri2Y1Zsfzllwv9y5ADw\n928J41Z11E2QCNXcmDFjAEDg3IDpQPSWi4uLZoNj8nqhgRkzZjAXjoHKubk1TUEBAMe4+ZrQ\nje4fzNAQzTv2DwxtMm/KqnQFpVI8Dbqds9YPp7pWX5M+8wJZNkF7T4tL3pntxOG3WTG83eI/\nHgIARRamPSss/cjWc+K3Tha6DhShGkg+eF2zYdGi344tUwRsAgBU/r38Ry8oVtPKJr0n9mus\naUBT0mNBi8NuZCae2Bfbu40HZour68WF0FySAgAW22JowJyvfNqUfhRzMF6z4ey/Zsz/OQFA\na3dvoXz6liuZNK0+9mea38RWjMRcj3Tq1OlDH6mV+Xejn5T+SRAscytbO3t7c3ZJTk5OTm6B\n6s3ICTbX3n/ayAYclsDZus4j1l9Yk0b3NP1fKXsaHVf+ZRcAEARBvzs8yIjv5NXOVi59mZub\nm5cv1Qweoqmiq+HBjxKyQ38cY0xghq1q2NWRgWBxBc7tfZ3b+w4FoNWK9OTEx4/j4+PjHz9O\nyitSatooCrJjbmXH3PofALBNrFzc3Nzc24wb3o/RwBGq2K5du5gOAb32/v8LmiYleSJJ3set\nyKYfyt+uIaSXtFzVFQAIwqg7rupae0Txt06dPXftboKCquDHb9Dco9/AwQN7eBrhY2CNLRs1\nPLaING88LmzHcG3aFz7f5z/rDABwTdueOLq+jqPTTxcvXqz2sb1748M5QuiDImb670ovBICO\ni3Yv71x10l10Y92UzXcBwKLptN9D+tZ5fPpOrZQ+unM3OT2r3RB/V5O3Y5pvHwkKPXFd+mYC\nPUGw2/fyXzxjGB+XdK0uvJIyYvv4EZckCgAYvyd8mN3bst4R00bvypJZNJ37e0j30p00rdg+\nZcLlHLmgpf/hoG8YCFcv/DF5ZJhYDgCes3au7lmmeBut+nb413lKiiCIn46edOW/PuGQr24N\nH/MTAPCF/uF78WevJpX86c8LVtzKkAEAv6Hb0K9H9P/Cg89llTagqZKkO5fDw/+IeS4FAL5D\nx3VbF7c0waksNZL+V5CmJo3G94eO97LkAYBKHjfWf5kmT8nmmperSTP4l99xxFu1UYrna6cv\njMlXAADB5nt/OaBnpza2tg2EtkIzjjJXLBaLxSkPbpyOuClRUgTB7jNz87ReLQGAVpPZTx5e\nOn/8z78TNV/l7L91yzctmPyPqT+wqyPDphanJcdrPH6cmS8v9zEu1I0QqpxmMdPq0b8zDD5+\nIP2Hq7oyyN6983T3ztMo+bPEx6mZeTKZrJhUm5qZW1gJnd3cHayMmQ5QfzwpVgJAo4EfnEdS\njnnTsVziLEnTyuInVbdGFcH0AEKojlwWFwMAQbCndtTqbkTYaZoRcU9J0/KcywCYpK8plpHA\no0svj/f2+46e5zNo5INHT3NfFtk4Nmvh5GRjjhOLawSvpIx4VKQEAILNHyR8Z+HtVl7WkCUr\nkdwFeJukJwjj8Ut6XZ5zRpoSFp7Vf6SDqa7D1Qs3X5UAAEFw53Z3KLtfUXAlT0kBANfCrzRD\nDwBci842Rqx8pZp8dRsAk/TVQ/++fLUmQ+85fOHysV3eL8BLsHmun/df/Xm/mD83r/7tpjzr\n7pplhw78/C2W6q0JrEmjeydXrtJk6Bt3Hr1o2tAm71Q9MbJzbGbn2KytZ8eBo8ac379pX+ST\nv7b/wBbs/a6jLcHiOrj4THDx8fPYMS/4Ek3TT4//JB2+S4BF77WAXR0ZNpawqauwqWv3vsPI\nwpxbl84eO3Ex883ceoTqkYyIlUuOpgIAz8J3X2gA0+EYEKzZWRYm6ZGew1VdPwUEm+/k7u3k\nznQcek3TW/mO/KoavkFw7XmsdAUFBC40gD5R6enptfuFTZo0qd0vRKiOvCihAIDNa2prxKqy\nMQCwjBo0N2YnF6soElfyrlscUwdvX4eq2yH0CXupVAMAh9ek3LOOtY81nEsnZdEkDdwyH1k0\nn2DLPZ9LUlfDUkYuaK/bYPVEDqkGAI5Js3KpL8mjvzUblm69yh3iyOXkK0lKaYj1HmuFJCH4\nzxQpADTwmLR6XJdK2xKeQxfOSnoSfDtHmnJ687/9l+B4/Zpx+2r87h6DNTVpGvPePmy6+a9d\nQlRYk2YwQ5HqA2nq3t8TJQAgaDk8eOHIStLrbBO7QQFbqKyJv8W+vLBpid+hX0vHBrX4MuD7\n69HB/+VRpOh0bvF4e63fKhg27OrIYFHyvPjYuNhHjx49epSUnqvGOs2o3lKIJa9evQIANpnI\ndCyGBcfrl4VJeqTncFVXZCA8zbjXpSWFSYXgrtUyirRanl2iBgCu6ftzBRH6JMycObN2v1D/\nCiIhfWXBYeUpKVpdvmxgJYrVNAAAYVRXMSGE9AWPRZAUTdOqcvv5Ds4AD2i1IlpG+patEkGw\nu1rwTuTJXz44D4BJ+uowYREKNU2ry//myeeyNBvNBzYu9xH5+n03jhqvpnt7ozUbw+d8pU17\nvxn+wbeDACD24A3wHVaHkRkGrEmjMzG7b2g2hi/9WosJ8ES/BWN+GxdMkeLQ48+Cx7cq/cB3\n2hfBU/8EgLj7+dAfk/Tawq6ODAelKEiMi4199Cg2NvZxajZVUWLeqpGzl6enp5en7sNDqHps\nfJrAqTQAoBRp8XKVOx+zpYgB2O2Qnos58Vyz4Tl7yYcz9K9xLdst/95Ls6rrs2Mx4IcFY2sf\nRZawuTymo9BD/T4XXv8rI+PMafXQ2drMuyxI2KukaQAQdh5U17GhUqsDpr0oUTmNXLO07HKk\nCH3aPrakAcFi84xNjHnGxqYmXFyru1qaG7PzlBRFih4UKT1Mq867q+TxL0g1ABiZONd9dAgx\nCa+kNefAYyfJ1ZQirZCizcukdLhm3gDHACAqs8jX9Z3nJlsuCwCU8jgdh6o3mptwJIUkVfI8\nk6Qacd/MtqSVYc9faTYHN3+nADKtLk5VqACAZdRAt5HqjwsZMgAg2Pw+1lqtsMYTdLPk/FKg\nUhfnXwHAJH0dwpo0tetsaiEAsDiCQQ1MtGnPs+wp5O4Qk1TWpWMwflnpfmObXgB/AoD8xUcM\nEkWVwK6O9ICaLHzy+PWM+cdPXpAVJebZPEu39h08vby8vDybCc10HyRCNWHtPtvX8t7tAgUA\nHIx8sWlIM6YjQoYIk/RIz+GqrsyiVZJ/om7GxsbFJ6QUFBXJ5cVKitZMZiUL7/0ZVdi5m19j\nc5z2VwtajZ9hc2VZvuR/P/755eqhbSpvTJHZWzdcBwCCbTp+jJNOAkSgVuYmZGYXq2llZDZg\nagHVH9UuaUCwuA0aOjR2bNbOu9Pnn/vY49leaz2dLO49zAOAfUcfh0yuet5q0vE9mpV9LFr0\nqfPgDINcmpuVna/UunKjs2trXL9VB/BKWiv8LLhJciVNKw8mFsx0tyrdz+E7m7EJGUWnX8oC\nV6uyh2SR1Htfgz5Cr4amMYUkTatDLmUG9n+9+E7+w19FpGZBel+3d2ftSJ8cKlHTAMAz76T7\naPVDRgkFACyWqfbnZhMWUQCgJsV1FxVCtS5d09WNbLU/xJrDEpOUsuhR2Z1so9dvzMiXZC2G\nhxCqv9Ysnh2f+FyhruCBiCAI26Zumknz7ds4GRP4IITqLYI7d8uCnFmBqXLlk7D1d7qEfGar\n1fhOVKcMbZInJumRnsNVXRmUeOPkr7uPpkorfsajSp4d2fN7+P4D3UZO+X6EH77ariEO3/2n\nBX2/2xgR89vS1bnjxn09wMm64otZ4fO72zYGPSgkAcBn3LqOWHWtpugXidH/JTyXFFY654BW\nZTy8pqlHrVaU6Ci0em7lypVMh4BqhFaTuZnPczOfx9yJOvirafevJ03+5kszPN1rofUYL3gY\nCQDp59Yeabt99GeVrb8jjj625tQzzbanv6su4tNftOrlyX27zl+PeVn4cSfqsFNnzLFvVx9e\nSXXKY4Aj7EkCgKj1GzpuWdPRobSsMesLAe/CS4Xo5s7CgJDSLq0mc65IFABgZIwjO6vJbWIH\nWHIVABL2LTlms7yvt3Pxi3s/BUZpPnXo9XXZxoVpN1auitRs23T01m2k+sOMTUhUNKXMTVVQ\nTsbsKttTJWkipRoAWEaWdR8dQrXGksPKVVKUIl1K0QItbkVoqvC5QgUAxLtrJFGkSLPBtcJh\ntQghAIDox8/K7eHwG7Tr4Onp5enp6emoXaEahD59xkKfwB2rgtdvvpmSEzhj1tBJ3/bt5mOj\nxd0jqi04yROT9EjP4aquTIkJW7H6j4dVNlNT0qthmx+n5IQuHc7Bl9s1I+w0Zdt8sxVbj8VE\nHPrvrz/af9Hby7WxUGhnJ7Rlk69yxDninJzkh//e+O+pZu0op57TpnQ2F4s/OFlEKNSq/oQh\nU5OinWtXRj4UfdRRLsNa1FE8esbbG19MfxI6deoEAErZ0+i43Pc/JQiCfne2sRHfyaudrVz6\nMjc3Ny9fqpmLTFNFV8ODHyVkh/44BgfaV8nSZXpP4Y0rYjlNk39smJ7Sd+zowb1b2pVfH7RY\n/DTyTPih83dVNA0AJrZfznDF1EL10VTRttkzr2bIqnEsT6uxoKgCeCXVvUa9plodmC9RqUlZ\n0vqASS7tO0xeNM/ZhAMAPfzsLpxJoxTpS4PPbJ4zyJggaEoavmVFEUUDgGnj3kzHXl9Zuk3r\nbP3PrZcKmir8feOisDKXToJl/N3XTTXbxeK/ftp07uGTTM29OkGwvx7ZjKmY6ztfC+6FlwoA\n2Hs1a0PfxlW2z47arfmfwrXoXOfB6YXt27fX7hdWu3STgetmxTsultM0uSsmb6FP1fPp82P3\naObFci3eKdQhF/2l2bBwsajgMAOGXR0ZOIJgO7Ro4+nl6enl1d6lCb65RfonIiICANx7DCuQ\nHonLFR0P3XBiJ9fSxtra2sbKWsCrdADcokWLdBWm3sJJnoBJeqT3cFVXRmRcCi7N0BNs8y5f\ndnNu2coo9sivN96+geXwW7dtZBqbWQQAojuHlh5ts2k0zv+rvqlTp2o2OBwCVECrSx5EnXkQ\nVdkhqVd+nXylsgaaMWuoEuHLFkYmFXzUIUKvYQu7VjYpFqFPzdKlSynF87XTF2r+JNh87y8H\n9OzUxta2gdBWaMZR5orFYrE45cGN0xE3JUpKVZxm7TNzaa+WAECryewnDy+dP/7n34kAkPfw\n+PJjn2/5BrNrVWJ9t2F23IxNIpKiaep+xG/RFw5Z2ja0Ewrt7OxMoFgszsnJycnOLVC/SfOw\nucJZ67/DTHFNvLi0oWyG3ogvEFqba/kMaIRDT6oLr6S6xzZuufa7L2bujAIAmipKjLmZVjJb\nk6R3GjXV9PyyIopOu7Z/1K3jjo0EuRlZcpVac2DXaVWvvoEqRBDG32/8/un3QZr69mUHt7kM\nX9GW//optaTgXkzyi9KPmn21pJvAgMo81q7/+6rRhaNPASBh/5r7Ptu9K61cqsiLWbPnsWa7\nUd8euoiv/rt06VLtfiFmLqunxzfNj4fEA8C/WzYm7g10rbROnkr+dEvgLc12o75llnekyVNb\nr2s2fdpZvX+gIcOujgxWx279vDw9O3i2t7fAApxIn+3atavcHpomJXkiSd7HjSNH1YCTPDUw\nSY/0HK7qqnuUIm3lrquabYFz1wXzZ7SzNwGAFPGpss2M+G3Xhx6+Hb5+49FoAEg6vjppyO8u\nJnhSqqbs7GymQzA4soxD4W/yCvyGzh09XC05JYk3oxIlJQDQts+AlsYcAJBLc2Pv3smSKQHA\n3X/1uhGe+jruD+mxkytXxeQrAKBx59GLpg1tIij7lG5k59jMzrFZW8+OA0eNOb9/077IJ39t\n/4Et2PtdR1uCxXVw8Zng4uPnsWNe8CWapp8e/0k6fJc21TgNnInQ9+dNs9eu2aE5pdC0WiLO\nlIgzE+MqaMwVOE9fubKzffmp9uij/O94imbDtfuIKWMHt2xgxmw8hgCvpExp0mdeIMsmaO9p\ncck7i81z+G1WDG+3+I+HAECRhWnPCks/svWc+K0TTq+sPn5Dv19CLHbv2BcVm6YZX8XimHUe\nNPmHMW3fb0wQHK8+3y2b2lHnYeqPJoMmC44tk1JqihRvmLlg4g/zB3RsWmHL9Pvnf96yP4ek\nAIDFsZrSz1G3kSJUIw27zW25d1pKsUpVnLJ82tKJc2f2825WYcvMh5e3B+1+LFcCAJsrDBj0\n+l9EBTcGGQAAIABJREFUYXby+YNbT6S+AgCuWYchDUx0FTtC6NOVEbEyMSY1MebGCQvffaEB\nTIeDENJDOMmzFObDkJ7DVV11L+vyjnylGgB4Au+tgXMbcD48r4/g+I5aNfvFlG03RDQl33Uu\nI2hEc90Fql+4XBzZqmvJB1/PNrBo0W/HlimapKPKv5f/6AXFalrZpPfEfq9La9KU9FjQ4rAb\nmYkn9sX2buMhwP9ZqD6Rpu79PVECAIKWw4MXjqwkN8Y2sRsUsIXKmvhb7MsLm5b4HfrVlf/6\nVrPFlwHfX48O/i+PIkWnc4vHYzpZC+ZO3QL3ukeE/xHx1zVNevJ9Rnz7rn36fTOqvx0Xl0yr\nqZuvSACwcvf/ae43mALWDbySMsjtq/G7ewx+dOducnpWY97bE4ib/9olRFDoievSNxPoCYLd\nvpf/4hmDGYpUf/Abtp+zLni6RJSek882s3VsZMt9twgHh+/k62fh0My5o+8XrR1xnFCNcPju\nq8d6zv3tPgCoitP2rPv+TyePLp6tGzZsaG9vzwe5SCTKzs5OjLn5X2p+6VHe41a54qhx7YwZ\nM4bpEBAAAMtIuHzp8Ckr/yBpmixM3vXjrCMOrj5tWwiFQqFQyAeFOFecK85Njb8fn/F6VBxB\nEL0CfmxpzAYAuWjvmGnnSst7fDErAG+BysGujgyTQix59eoVALDJRKZjQahuzZgxg+kQDBFO\n8ixL3/57ECoHV3XVvdtn0jUbfgtnVpahf8NvythtNzYDQNble4BJ+uo6ceIE0yEYnH+evNJs\nDFk8tnRaMIfvPM7edFeWLOtiCrxJLRBswYj5W8XJEy7nZPy85tThoG+YiRihaonZfUOzMXzp\n11rMXiX6LRjz27hgihSHHn8WPL5V6Qe+074InvonAMTdz4f+mKTXCsvIdsDYmf39Jz1PSkhI\nSMrOk8pkMiVwzMzMBA0auri0dm3dnM/Ct6m145VKDQBdv++PP6jO4JWUWSwjgUeXXh7v7fcd\nPc9n0MgHj57mviyycWzWwsnJptL6yeij8KzsW1lVPHDczHHMkgU6DkeftRi6coFk2eYzsZo/\n81MfnEl9UEl7j6GLlw920klo+mDEiBFMh4Bes24/OmSxetHmEwUqNQAUZiVezfpgUo1g8Xp9\nt25GdwfNn2q1vDRD79x3zqxOQh0EXL9gV0eGycanCZxKAwBKkRYvV7nzMYWE9Fbv3r2ZDsEQ\n4STPsvAMi/Qeruqqa39LSwCAYPEmumm1mBlX4CfkBolJipTeBMDnH1RvPCpSAgDB5g8SvpNu\nbOVlDVmyEsldgO6lOwnCePySXpfnnJGmhIVn9R/pYKrrcBGqrrOphQDA4ggGaVf9kmfZU8jd\nISaprEvHYPyy0v3GNr0A/gQA+Qt5HYWqrwiWSfPWns1bezIdiJ5rwmMnF6ua4hsoHcIr6SeL\nY+rg7evAdBQI1ZTfpPWNW5/cujv82cuSSprxhc7+U+cM8MFC96i+aug7Zvduz/2/7r987wn1\n5tXW+xzcOo+fOsO3uXm5/Xx75wHfTPT/0r2Ow0QI1RvW7rN9Le/dLlAAwMHIF5uGNGM6IoSQ\nXsFJnmXhSyik/3BVVx3LIdUAwOY1Mdd6vVB7I7aYpCgSV1VH9clLpRoAOLwmnHd7urWPNZxL\nJ2XRJA3cMh9ZNJ9gyz2fS1JXw1JGLmiv22ARqr70EgoAWEa22h9izWGJSUpZ9KjsTrbR66k5\n5EuyFsPTS+fOnQMAcye/bu7a1vV5EHkhg6Q4Ji369HSry9D0WVchPznt1aOc4i8teUzHYijw\nSooQqmvNPh+2zXdA/D//uxX9KCEhKTv/lVxBEgSLZ2Jqbd/YxcW5vY9fV69WWj+5IvSJMm7g\nNmP5lonilOu3oxMSEp5n5sqKZMVKMDe3ENg0dHVza9+xi2eLBuWOMrEZ8kvoqOaOtvgvACH0\nDoI7d8uCnFmBqXLlk7D1d7qEfGZrzHRMCCH9gZM8y8IkPTIIuKqrLpmyCVJFq5V5NICWT3oi\nJQUABEurOZqo2krkMo6JGb6Bqi08FkFSNE2ryu3nOzgDPKDVimgZ6Vu2PCzB7mrBO5Enf/ng\nPACmFlC9Yclh5SopSpEupWiBFmcQmip8rlABAEEYld1PkSLNBtfKqILDUBl79uwBgKYDXbRP\n0qedPLxPVGTEb9On54a6DE2f+U7y3LMy6v7203TIBLxU6gZeSRFCukBw3Tv3ce/cR/MXTZFq\nFhefiZBeMhG2/GpQy68GaduezWvshCUkEEIVMRb6BO5YFbx+882UnMAZs4ZO+rZvNx8bY3xn\njhCqBTjJsyxM0iNDgau66sxn5tyLEoVaJYl8qehtXfVAS7LwtpikAMDItF3dR6e3yOLCYrap\ngFtRfRia+u9S+J9Xo9MzXqiMLNt4+XbrO8S3pbaJH/QhDjx2klxNKdIKKbrsLQXXzBvgGABE\nZRb5ur6zhqstlwUASnlFdTwQ+lR1s+IdF8tpmtwVk7fQp+r59PmxexRqGgC4Fp3K7peL/tJs\nWLhY1EWcBo5U0wCgKnnGdCD1WAOPuSOc/zuW/OfS/U1WT+zOI/C2sM7hlZRxcmluVna+8sO1\nkctxdm2Nqc1qGD9+fPUObDkhcEX3hrUbDCLYOCpfR2RSqUrr04vA0hLPLqieEj+5/8/9uKSk\npBe5EplMplCxzM3NLaztXFq7tfH09XVvxHSACFVHREQEALj3GFYgPRKXKzoeuuHETq6ljbW1\ntY2VtYBX6R3hokWLdBUmQqhewkmeZWGSHhkWXNVVB3p1s7t4Kg0AjgVH9V7du8r28YcPazZs\nOlTdGJWT9ejq6cjr96Mf5clV7ZbtXfeZsFwDUhofuCLw/nPpmx2i21dO/fu/s979py/77v+q\nXvIFfZifxf+zd59xTZ1tGMDvk5AwZI+A4gKtorhnFam46qp71T3q3qPOukeddeHe4p5YRy3q\nWwGhDtA6cGARRQQhsmdIcnLeD0GkGiBihoTr/+nJyZPzu4ppknPuZwjDs2QcJzv4LGWi+4fF\neYzMqpnzmQyWe30lltz+s2hPrJTVeUyAL9W6n8sp78dEdGvdymd7VrlZCAvpLM96sW5VsLLt\n3KnThyc4qe+GQGWzcR21FrMqVZ4+ffrpwZykl0+fqvGhwcmTY5+cSshWPtBwstKF6f/rKvGM\nWf7nNg4L8R8yqFtNV5fyTrYoSWoPvkn1hZMnndm782LgvaT0wjbq/tQR39/Vn+sAeZKTk4v3\nwvQcvOGh5Im55+dz/npExIt3aZ/xCYOPFyiJkp/7e+84FBrx7qPjmekpcbHRz8NCL5zysXNt\nMHjslNZuuAKCEmbnzp0fHeE4aXJCXHJCnF7yAGgJRtPqBSZ55ociPQBoWKWePwrOrZFxXMK9\nbStPW83q1ayQa+240GNL/WKU7e8HuOoookHg2PSjaxaeuPmikD4KWcLySYvvp3x8c4Tj2JAL\nW2bk8DZMbKvNjAauXpfytDuciPxX/Npk3ZIm5czeP8P7zsr4jyRJXND29AneeTebFNL4a8kS\nIhKY4K0OJUlZr2lV94yNyJbLsyPmj503fNrEzo0qq+wZ8+DqlvW7nmTJiIgvFE3oVkl5PP3t\n84sHN5yOTCMioXn9HvYGOO71C6mcahAXtHV20Oedx9ji26I7QcH4QucuPZr7b/TLjLm/ffV9\nImJ4fHUWWvL19dV6OEOEb1K94NjMTVMm/hWdUYzXGmOAp04YmdnamhsRka0p7tgU0+vXrz+r\nP8PjG5uYmhibmJQxFWKBvS8QcWH9jD0BnNoT6PMI8PGiCVi9QJeenNuwYL9/kavRJEbe2zR7\n5MPhy6d2r6GbYAAAoD6MptULTPLMD5d8UOoopOmR/0aIk9LSMzJIYGppYeHg7FKlvD0uTjRF\naOUxp235ZVejieimz8qf7niNG9Ktltt/76VybGLcq8BLp3wu3GQ5johs3Ib1dDJTeUJQgZPt\n+WXihSdF/Iy4v3OhskJvbFOjXZuGFWx4kc/Dw0LuxWTJiOjFlc0HvBoOq4UB3cXk3G6Mzf6f\nk+UKaUb4igk/Va9bf+Ts6dVMjYiotafjH79HsZLX8zb/vnZqNxOG4djU4+sWZLIcEZWpYIC/\nJ8CA8QSi+fN6j154Qspx0vTnO5dOPlrOrXHtKiKRSCQSmZFE/E78Tvwu8nHo4+gU5UsYhmk3\nYWlVEz4RZcXtGTT2Qt692u8mT8AXrvY0HNNf3xFKtpAD85edfZj/CKdgceWtPfgm1Ys3V37N\nX6EXmFmJbC3U/GQWYBuIYtmyZUuhz3NpCfFv38ZGvwrzuxqSreA4hWmfGb+2r4Ff6cU3ceLE\n4r2Q4Qnty5arUL5ynUbfNm/e2MlCoNlghk2aGjxv738q9Hy+unsLCPHx8gWweoHuxQftnLvf\nP+/dblGueuPaVUUikchBZCGQxcfFxcXFvQgLeRqTTkQcJ7u+f66F466fmn289iHAV2v8+PH6\njgDwNcJoWo3AJM/8mGKMbwUokTj5o6A/L/3xZ+iTaOknb3uhhX1Dj7adOneuW8lKL+kMDKfI\n2jtn7PlnKXlHGL6Jg7lCnColoppVK7x+HZuRb7VSY6s663YvqWSCzQHVFXF2/vQDuVUEE3u3\n7t2+r1/TVVSxkp3xh78hmxM96MeJmSxnYtP8t50zK7z/87KStzvmzPSLTCMiY6vmpw7N0X1+\ng/H68vqJ2/3zHk7yOdXO2piI5Flhgwf+oiwk8IUW5Z2t3kXHZskVym7dNx4e4Yo9uaGEeXvz\n8Oy1p1Pev40LwfCM241aPrFzdeXDjNjNA8ZeU7ardZq6bmxrLaYssT66A/LmzRsiEliIHK0K\n21wgP3O7crU9ewz+3l3z4UqN1Bc+Q6afKd7F0fnz5zWep5TAN6nuHRjR72xCNhG5teo7enD3\nqvbm+k4EH0gSnp/c7336RhTDMx26ZlfParg4LaauXbt++UkYfplWfX4a2a+NOQqZ6nmwdvSC\nG3FEZCqqNWLMwPrfuIqssX6S1hV79YKTv/9ugrERxaKQJ0wZMCpKwhKR0OKbYVMmdm7ioupP\nyb28c8l744GIDCkRGZlU2Xt0vY0R/uYAAF+RopZf+ng0Ld/EeewSjKbVgBDvCcpJnkRk65Y7\nyfPt0anTT78k5T0WVZM8D67pqc/Q2oEiPZQKksSwbavX+j8rYtoxw/Abdxk5ZXgnjCb+chyb\n6rt9zYErj4rsaVO99bz546urXYcAjk0Z1W+4ciMWhwZ9Ni4YpPIdG39z8aiV94io0eJ9CxvY\n53+Klfw7fMBMZbFt6O7jvRyxhkHxPfE7uH7POXEOS/lKC0T05MiCOScefNrfocHwvYt76DQi\ngIZIEp7s27Hvasi/bMG/HsvV9Bg6ZnwzF4u8I8oivZlTtS79hg9sgxKyWpSlhUpd13mPrKbv\nLKXI5emDt0ekEpGpqGa/AV1rVHR2sDFX8xehnZ2dVrMZNnyT6tjI3j3EUtbGfeCBlf1wzfNV\nUpxdOPLA/QQjkyobD62raIxxzMXx66+/EpEs48XdsI/3iiYihvn4VpjAzLVhHYes1KR3794l\nJKbmX7/avm6fbUsHoZapjtWD+gSn5QgtG+08MN/OCOvX64I0NXjQ0DUSRXFWLzjj64t/pOJ5\n6//LmPWPiMjIxGXZ7rXuhd7OkqY8nD560WsJS0R1Z+5a5umko5QAAKBRGE2rWZjkmQdFejB8\n0tSweWMXPc+U5T/IMAJbRydTRUbcu5SPtuyyce+6ZflPqNNrRNzjYN/zF67feSphVXzU2LvU\n69y1e9fWDQT4Y3+Od6G//rT0FhEJzNx2Hl5lX8Dtj2tTB2+OTCWiMQdOdrY1+ejZuytGLrkt\nJqJKPX7zHv6NliMbOIUs9eHtO89fx9bpMdAt32JHN4+u33Y6MPX9tD+G4ddtN3DO+F5m2OcS\nSrJscUTgzbtPnz59FfMuIzMjW0YWFpZWdmXdatas26RFgyr2H/Vnc6Kj3pm4lHfA+159KNLr\nxbg+PWJyWGPrRnv2L7DC70DdwjepLvXt3k2i4LrvODaiXBl9ZwHVZFmP+vSfr+A4134bNg6s\nou84JRUrebVs3Kx7iRIiYvhmjdp0afttLQcHe5GDyNxI9k4sFovFEfdvnLsUlCxjGYbfceLa\nse2qEhGnkL7998GVi6fOBjxTnqrawA3r+uEfomiDe3ZPlSvqz929pJmjvrOUFli9QC8uTRy4\n83U6ETWZvWu+R9FF97gby0evvUNElpXGHvbupPV8AACgLRhNq0mY5KmEIj0YPG7XuAEXYzKV\nD4RWVbr26tqySe2yTnZCHkNEHCt59zb24S3/389eisrILeQ7e83ePt1Db5ENDsdmvXz2JDIm\nISMjI1uqKGNuYWkjqlbTvZzNx5VjUEfo/BFLHyYQkdvILWu6VlTdiZOP6tMnXsoS0diDJzt9\n8qdOjVw3eGogEZmXG3V0RxftJi7F5Jmx9x++eJeUaVe+chVXVzsLw/wxAQCadfLkSSKyqta2\nfT1bfWcpRXp26ybnuO9WH/wZK9d9TfBNqnE/9+v5PFs+xedUm/eLFsBXaOOQvn+lSExsOp48\nOE7fWUqqk7OGHn6WTEQVPAbMHtuzYgE39djs+Iv71uz1+5dhmB9+2TOqiUPeUy/+t3X65isc\nx/GFTgdO7MT4rSIpxwCNO3iyI670dQWrF+jF1L49IyVyhuHvOX3GQVD0n10hS+jT+ycZxxmZ\nVDl7coMOEgIAgJZgNK3GYZKnUdFdAEqy5Gfb8ir0okb9Vs3tb//fH9AM30RU3rVtb9dWXTsf\nWjH37D8JRBQbsPbPIQ072OPCUjMYvpmreyNXLHKsIQFR6cpG55YFDtmWJF2Mf78gjIRV0cHU\nvhlRIBFJ0+4QoUivLUZlyjVqVk7fKQCghOnbt6++I5RGtgKeWMrWL4stYL4u+CbVuJYis+dR\naQ/js1Gk/5pVNTH6i0iacZsIRfriSI3co6zQW1XtvXnWj4WU1/mmjt0mrGNjhx94lPTHmrme\nPjvczHJvlFVpM2FS4N3N/ySw0rhz77KHOuELoghVTY3CMmVyTAXSobAsGRG5TxiDCr0uvclh\niYhvXEmdCj0R8QT2Lib859lyVhqt5WgA2iL+N/Tv0LDw8PA375IzMjIkcp6FhYWlrWP1GjVr\nNWjWzN1Z3wEBdERgVtvLyvivFEnslSs0ED/UNcDJ3WOcu8fYUjzJE0V6MHBhB0OUDTNRqy0L\nBhSykxxf6Dh00ZaEkcMDE7I5TvH74YgOU2vpKqbhiL60cO6xSCIytmy2d9sEfccxTC9z5ETE\nMEIPywInk8VdD1Q2eEbWnWxV3IHlC8srG6w0XgsZDR/e6gDwNWA5wrw+TWltbXxcnPVG5dA2\nAAPS7KcGuxf6h245x3kPw+fHVysyR05EHJuh7yAl1b1dN5SN3vP6qPFFyXSeOejAkM2sVLzt\n1MvNQz/sBdZs7Hebx5wlorDQRPoBRfoidHa1DHuUePdpahcPw7+d+pXIUXBE9K0btsXVKUsj\nXoKM5RRZ6r8kW8ERETECbWUC0Jrk5/7eOw6FRrz76HhmekpcbPTzsNALp3zsXBsMHjultRsW\nJINSAaNptaE0T/JEkR4M3NWo3PsareaNKKRCr8TwzEb90jpw2iUiehd6nghF+s8mESenpaUR\nEV/6TN9ZDJZYqiAinsDeqOB39O0rb5WNMmX7majat5Xh5VbuFbIkzUcsBfBWB4O0ZcsWzZ5w\n4sSJmj1hKZSdGBebnFOlaqX8B1NfBHvvOfPvq9cp2WRb1qV5686De7VU+WkP6ms1qObx9aF/\nH3k0dEZTfWcB0CL7etP6Vvvn5POz8/ZVXDy8lXFRl0ige9K0O9dTcoiIJyyr7ywl1fnIdCLi\nGVl1s1drf25j67Yi4VaxlI29cpKG/pJ33MSuHdFZIsp68xnVuFKr/sSevLF7nuz2kTT/ucjb\nL6ARWL1AL1xM+AkylpXG3c+U1StTdN1dnvX4jVRBRALTatpPB6BJT85tWLDfX1bUdsmJkfc2\nzR75cPjyqd1r6CYYgB5hNC1oFor0YOAis5VzjvmDK1uq09/SdaiA+UPGcbLMR1qOZpjsGlck\n3ygiYiVRj7Pk7mb4kNG8MnxGouA4LqegDhybelacexfJuWtdlX1YmVjZ4Amw4XFx4K0OBunK\nlSuaPSGK9F/i3cNr2/efuBspFpjVOX1sWd7xxHs+Y5aekSpyb5QkxoRfOBQeEPzQe90km0JG\nb0FRyrac2+Xc8IuBq0+12dWnnr2+4xgajAH6mjD9f10lnjHL/9zGYSH+QwZ1q+nqUt7JFsty\nfCVyksO3zt/IchwRmdq21Xeckup1DktEPIFDkT3z2BrxxFJWlvkw/0G+QKRsSJOkGoxnqMzK\ndlk+4M68IzdmbnBbO+0H1Ol1AKsX6EVbV8uQBwlEtPfYE++Rqm+55Bd+ajfHcURkWaWj1sMB\naE580M65+/259xV6i3LVG9euKhKJRA4iC4EsPi4uLi7uRVjI05h0IuI42fX9cy0cd/3UTKTX\n1ADahdG0OpOTlWFkal4arlJRVAADxxJHRDyhk5l608sYxqSsMe+1hCVOoeVohsnWfUoz65Cb\nKRIiOuj3Zk2PyvpOZIDKCY0SZVJOnhQjZZ2F/E87ZLw5nv2+ePN9U9V3pmSZD5QNvrDAje2h\nEHirA4BWxQXvm7Dm90+nLHBs2orV5/Iq9HnSIq/NWltn91wvHeUzSIxgxMoliT8vOLxoTHin\nQSMHd3HCACzNwRigrwpf6NylR3P/jX6ZMfe3r75PRAyPr87Vkq+vr9bDGaJjx46p1U+R8/Z1\n1MPQf5JkuZeiNYd8q8VYBs3aiPdOxrKS16ksZ6XGvT2OTX8lUY7v/8+kWFYap2wIbbBItVpq\n9Vs6LWfVpjN7hjwO6NV/YLdW9UxKw71V/cHqBXpRY1BDeuBHRK8vLDtae8uApoXdVBHfPbnE\n96Wy3WCgmy7yAWiCQp6wfPOfygq90OKbYVMmdm7ioupThnt555L3xgMRGVKOU1zasLJn4/UY\nOw6GCqNpNUWanZ7NL2Ml5Kl4jmP/uXL87F93X0e/kQusazVs5tWpR7Oq1jrPqDu48QQGrk4Z\nwc00qUKWKONIoMYvBE6RFZujICKBGRahKhZGOG3dzPjJqyKzZP8eWXG7hXdTBwzo1jAPW+NH\nmVKO4069SJtaQ8WGT08PhigbfJNKbaxVbEhPROIb/ygbxjbNtZTTwOGtDoZo0KBB+o4ARESs\nJPKXDRdULiqYcH9rRLaciHhGVr3HjmvoLHx887zP+ftEJL618UZqc08roa7jGopz584RUbVW\nbR8fPX/n0v6QPw5aOThXcHZQ5wfk4sWLtR0PQINCDsxfdvY/04U5BcvqK00poG6R/r/MHL1m\nfIu5aMXkZWN8SpzFcdKd9xJmNS56Pn3io90SBUdEQsv/DIzIirusbFhWV2tlvlJO+U1KljXa\n13lx+cHzI5sXHfUW2Do6OTk5WZcp4vfJ7NmzdRHR4GD1Ar2wrj6urejGNXEWx0lP/DouotPg\nAd07VHU0+6hbtviF3+/HfS7ekSvLOQ5txrsZco0BDEx80IYoCUtERiYuS7atdC/wMpNxafLD\nqm0Vp49e9FrCyiUv1t+MX+aJ6UBQYmA0rS7FPvzrnF9g6N2HCVnyOr/sWd7044sdaerjVQtW\nhb5KfX8g7uY131v/O9/oh3G/jPpeVUnfEKBIDwauc327mwFvOYXkyOv0YZUsiuyf8mSX8tez\n5Tc/aD+dYTIRNV61ddHmFWuDIuJXjZ/c86cRnbwa25momPANxePeriztSyeiO5t9ue0jProK\n5+TJex4mKtuWLv0KuEZXHD77WtkSeWI8SjHhrQ6Gp2/fvvqOAEREb/7Y9k7KEhGPb9lzwtT2\njWvlPXXv4GNlo9rAJYO+dyWiGu6NRFnj1l2L4TjFybNRnsO/0UtmA7Bv3778DzlOkSKOThFH\n6yuPgcEYoK9H6guf5b7Y2OtrZ1O1xcLlk03VWw0OPtW6n8sp78dEdGvdymd7VrlZFFYhlme9\nWLcqWNl27tTpwxOc1HdDoLLZuI6KsdHwkY++SYmI42SJcdGJcfgy1SKsXqAPvFG/TgkbvyZO\nynIcG3rpwN0/fKwdyjqKRI6OjqaULRbHx8fHv32Xong/6JYvFE1eMcpQqwtgkO6dfqVsNJgy\nt+AKfS6hdZ35kxqOXnuHiF6evEeenQrvD/D1wGha3eDY9KNrFp64+aKQPgpZwvJJi++nfLzD\nL8exIRe2zMjhbZhomKsXoEgPBs5t9CiroOWprOLy0l09dk0vfKU7Vvp2/cogImIYfu/xtXWV\n0dBcunSJiNxb90pJPRr2Lu7Utl9Pbxda29na2trZ2FoZF/pPgOHz6ij3/VDB/vkyjsuIObfk\nRP3F/ernf/b+/oVx0typUG4/ql5LLeryyjvpubsqduvorNW0BgxvdQDQklt/vFE26k1YPaRt\nvk9pTn4iJpOIGIYZ0bFi3uFvhw2ia6uJ6F3wPUKRHr5KGAP09fh761XlyqWmopr9BnStUdHZ\nwcYc9Ryt6thR/U2I+Q7lK7lW+aZuDVdU2b5EWa9pVfeMjciWy7Mj5o+dN3zaxM6NKqvsGfPg\n6pb1u55kyYiILxRN6FZJeTz97fOLBzecjkwjIqF5/R72prrKDvAZsHqBvpiKmv22ZsqyJVuf\nJecQEccpksUxyeKYZ2EqOgutqo1buNDD6eOp9gBfs6vibCJiGP6YJmpVIkXfjhUwITKOy4q/\nSoQiPRgyjKb9bJxszy8TLzxJLrzX/Z0LlRV6Y5sa7do0rGDDi3weHhZyLyZLRkQvrmw+4NVw\nWC0DHDiLIj0YOKFFo5UTvCZ4X89+FzBxFn/O7LHuItVLUr99fGPv5q0P0qVEVL3Xkk6fLFQF\natq5c+dHRzhOmpwQl5wQp5c8hkdgVntCU4eNt8REdO/IohmvenRp2cCtuguXFhfqd3TPpdy9\nTM+5AAAgAElEQVQp8jwjmxHutp++PCr48Oxdd5Rtc+eeXlaq18OHIuGtDgBaEpSWQ0QMI5zW\nqlz+45KUawkyloiElp5u+bZLF1p62Al4iTKFNO0mUT8dpzUYU6dO1XcEAF04H51BRMbWjXbt\nXKDOXt3w5caNG6fvCKUOTyCaP6/36IUnpBwnTX++c+nko+XcGteuIhKJRCKRGUnE78TvxO8i\nH4c+jk5RvoRhmHYTllY14RNRVtyeQWMvcO+nwH43eQL+V1HH+PHj9R2h1MHqBXpk4eq1ao/7\npeMnLl2+HpshU9lHYObUsmPnfv1/cBRiyT0oYd7ksETEN67kIFBrDQiewN7FhP88W85K8fkD\nJQlG0+pAhO+SvAq9ib1b927f16/pKqpol78PmxO99n8xRGRi0/y3nTMrvF+qlpW83TFnpl9k\nGhFdWr1z2KE5us2uCyjSg+FIT09Xedyq6U9LswVL91xJ/feveWNu1Wnm1bRuNSdHR0dHR1Mm\nOz4uLu7t239u/BEYFqvs36DHlAWD6+gwOMBna/nzkstDJ4dnyojo32Df9cG+n/Zx7TrHUZj7\nS5qTS5KSkt5EPAn+34U/Q14qDzI8k1FLUMsBgC/CSnP4Qoz10bB4qYKIjEwrf1Q/S34YoGxY\n12z30UvKC40SZVJWhkFCxde6dWt9Ryhdoi8tnHsskoiMLZvt3TZB33FKEeUnTNO5k1ChB8Nm\nW3eA9xzF7LWnU+QKIkqPffZX7LOCOjM843ajlo9/PzZOocjKq9BX6zR1MpYzVU+HDh30HQFA\np3gChy6DJ/4w8KdX4U+fPg1/m5CakZEhIyNzc3Mr+7LVq9dwq+FihqmWUDJZGvESZCynyFL/\nJdkKjoiIEWgrE4AWYDSttnFsyqqjufs2OjTos3HBIAtV16EJ9/ZmshwR1ZoyskK+zWT5JmXH\nrlp0e8DMFLkiJ/XvM/FZvQxubi2K9GA4Bg4cWGQfjs16EPTHg6A/CurA41tlPvlzzqw/K/ea\nOQGX4sWC4fM6wBc6L9+6cPGU5Y9TP96mRcmqavvlQz6sdR99ef7E3c/zd2AYXtsxK1uJsGxj\n8eGtDqUQJ0/+2z/o0aOwx08jUjIzs7KyZSx3/vx5IpKmh5z1T/fw8qxggWvyL2XKYyQKjlPI\nPzr+/ELugEKXrhU+ekqaW0vATUAoMSTi5LS0NCLiSwssm4E22Ap4Yilbv6yh3dowSNLUN0Kr\n8vpOUYKVbTZo164G+3bsuxryL/u+6P6pcjU9ho4Z38zF4qPjZk7VuvQbPrCNu5ZjAhQfrkm/\nBgzP1KVGA5caDfQdBECTXEz4CTKWlcbdz5TVK1P0Nb486/EbqYKIBKbVtJ8OAEqMhH+2iaUs\nEQnM3FbPH6iyQk9Ej07kblffsLL5R0/xTb6Z0tB+yW0xEfn/EdPL4DZ5RJEe4D8UbGp4eCoR\nMSlSfWcpqTB8XjeMbeuu2Lv98tH9vn63xJkfllbjCWza9Rk8uE+bQsZrG5mW7Tlu3iCvSjpJ\narDwVofS5tmNMzt2HYtMVf39yOa8PLr78PF9+71+HD2pryfmZ34JF1Oj5HQpm/MqRso6562N\nycmOvEpTNru7WObvzymyIyVyIuIJ7HWb1HBgVrfu2TWuSL5RRMRKoh5nyd3NcGWqI62tjY+L\ns95IWH0HgQKxksS7QTcCAgJuPow8+/vv+o5TspnY1xw/f91wcUTgzbtPnz59FfMuIzMjW0YW\nFpZWdmXdatas26RFgyoff3ua2vXYuK2/S3kH/JyBrxyuSQFAS9q6WoY8SCCivceeeI+sW2T/\n8FO7lYvQWFZRf/FwAJ2SyXLvnwsEmFuiO1HnIpSNKgMm2hsVsH0GJz/xJkPZZFT9/q7a341u\ni4ko8fYzQpEeAAC+EjyhfedhMzsPlb589iwuISmTFZQt5+xcsYK1ierdzhiGEbnUatK0edce\nHRwL6AMAoNK9IwsWn3hQZDcFm/rXkbVPIuK3zetthBvbxdWubJl76VKOU3hfiVn1Q0XlwcQH\nO+Kkyg3pm9X8bzkz9V+fHAVHRMYW3+o+rWHArG7ds3Wf0sw65GaKhIgO+r1Z06OyvhOVFq0G\n1Ty+PvTvI4+Gzmiq7yzwHxyb9fhOUEBAQNDtMOVij6AppqKq7btVbd9N3f584wquWMKgKCkp\nKcoGwwisrMroNwwAAGhWjUEN6YEfEb2+sOxo7S0DmjoV0ll89+QS39y9NRsMdCukJ4Ae9erV\nS9nYc+acSFBAtRg0LSAqd4vqzi0L/BiRJF2Ml+YOIlc5mNzUvhlRIBFJ0+4QddF8Sr1CkR4M\nh3K5XYBShxG61KjjUmgXp++mbW9sbG1tXcYEH/sA8Nmir2zOq9AzfIsWbbyqVf1G8Ojojhsf\ndkA3MqtR27nMo5hMIoq77TPvWK01A3BxXkw1h9enuX8R0dO9c0/aze/UqFr2m5DVq/yVz5Zr\n1yd/5/SoGwsX+Snbdk0a6Tap4cCsbj1ghNPWzYyfvCoyS/bvkRW3W3g3dTDRd6ZSoWzLuV3O\nDb8YuPpUm1196mH5ja8AJ498eCsgIOBGUGgCVjiAkmPIkCHKhrBM3dPHlhHR6tWri3222bNn\nayYWgNa8vOd/I+T+k+evUtLSs1melbV1xW/cGzX18mpQWd/RADTPuvq4tqIb18RZHCc98eu4\niE6DB3TvUPWTraCzxS/8fj/uc/GOnOOIyNShzXg3a33kBYCv1MscORExjNDDUlhQn7jrgcoG\nz8i6k63xpx34wtzxs6w0XgsZ9Qy3nwAADJ/QytnZSt8hSrIjR44oG91/HFAGq3hDKcNKohbu\n/EvZtqrWcubP4+s4mRJRhNg3fzeBWe0V2w7dPL5i5bG7RBR+anF4j8PVTfFTszisa471sP07\nOEnCsemHV84+wjDc+510GZ7JqD65m5Vkiy+vXnPhwb8xyn12GYbf58fK+spc0mFWt16YiBqv\n2rpo84q1QRHxq8ZP7vnTiE5eje2w2I+2MYIRK5ck/rzg8KIx4Z0GjRzcxQmjUvQk7t97AQGB\ngTeCo5NzPn2WYXjl3TD0CkqS4OBgfUcA0ApJwqP1v/52KyIp/8HkhPhXEeGBl8/6VGsx45cp\n7jYqigoAJRlv1K9TwsaviZOyHMeGXjpw9w8fa4eyjiKRo6OjKWWLxfHx8fFv36Uo3l+r8oWi\nyStGYXoyAOQnliqIiCewL2S5zdtX3iobZcr2M1G1gS/Dy/2SVciSPn22pMPVOABoGSe9EXRb\nnY52Db+taYYtYeBrdOLECWWjXd/+KNJDaRN7dWuiTEFExlaNNqyaVuAOUkTEGDXrv2jKm9Gb\nbsRxbNbOC9Hr+xa+zAeoxjAmk1ZOejFpvXJ9+7wKPRFV772g9vvvypyUkHvP3+Q9Vbn9XC8r\n3BwsLszq1odLly4RkXvrXimpR8PexZ3a9uvp7UJrO1tbWzsbWyvjQr9wMeey2M6dO0dE1Vq1\nfXz0/J1L+0P+OGjl4FzB2UGgxg+cxYsXazteaZAWEx4Y6O8fEPg8Nl1lB1GVut991/I7zxaV\n7fFBpBkZqalyTt0dBKysrfFzHwDy5KTcmzJu2ducAlc6SXgeNH/MywU7NzZAnR4Mi6mo2W9r\npixbsvVZcg4RcZwiWRyTLI55Fqais9Cq2riFCz2cPp5qDwClXBk+I1FwHKdiULISx6aeFWcp\n285d66rsw8rEygZPYKvxhHqHIj0AaA4nfxzs5/93SDTTZ9VM99xjisy1a9eq8+ommw7VdMF0\nbyiRODZ94eI1yvayZcv0GwZAs27+/lrZ8Jw1sbAK/XueowdvurGWiGKvhhCK9MVlVtZzo7fl\nrq17/R9FKacm8IzMPbqNnDGo9qedGcaoYcdRv4xpovOYBgWzunVv586dHx3hOGlyQlxyQpzK\n/qAR+/bty/+Q4xQp4ugUcbS+8pQeOcmvgwMCAwID/olQvUijdYUanp7ftfT0rOZsqeNshirm\nnp/P+esRES/epRV4W/BTR3x/t8CoXDVUr15d2TAyzV2AdPz48fqLU0oNHTq0eC+sOmzVglZl\nNRvGQHE7Zq3JX6EXlrGpWKmyJZP+Kup1UoZUeZCVxKyesfnI3pmFTBMEKIksXL1W7XG/dPzE\npcvXYzNkKvsIzJxaduzcr/8PjkJcOgHAx8oJjRJlUk6eFCNlnVV9SmS8OZ6tyB1N+31TB5Un\nkWXmbsHJFxa4sX3JhSI9lCJZqe9i3ybK1B5BX82tBq7N1Sd+cHnd1oPP4rKIyKFBj899OcPw\nLdWo/QB8reQPHjzQdwYArQhIzSEihmc8vKaNOv2FVp4i4XqxlJWmBhH11XI6Q2ZWtu7U5ZvH\nJce9jk/kmzuUd3YQMv/5XWJk5trM07Jc5WpNmn1Xo7y5vnIaDMzqBgBtYLMTQoICAwICbz16\nyRZwKcoXipauXVXbxV7H2QxbxIX1M/YEcGpf/ucR4KpUPZ+Oxe/QoYNekpRmycnJxXthesHz\nwiG/1Ih9/4vLnd5nZFZh4KQZvTxc856Nun1u3aZDURkyIspOuLHp3vAZDfFJDoaGJ3DoMnji\nDwN/ehX+9OnT8LcJqRkZGTIyMjc3t7IvW716DbcaLmaqlqcGACAiD1vjR5lSjuNOvUibWkPF\nfcWnB0OUDb5JpTbWqtekEd/4R9kwtmmupZx6hCI9GD5OnnRm786LgfeS0j9j+DxhBP3nuHdi\nzbKjwQXddcrTuHHD9OSk+DevkyW5F4QMw2/VtW/92rVq1appZ4YRlwAAX514qYKI+MYV1f9O\ndBLwxVKWlb7VZq7SwtjG6Rsb1SOFzcsPmjtTx3EMGWZ16x7mXOrF1KlT9R2hVODYzLBbN/wD\nAoJDnmSxKq6SzJ2qtmjR4s/TB4iI4VmgQq9Z0tTgeXv/U6Hn89W92PxoSByAITEys7U1NyIi\nW1PcEFZLxOG/lQ2+ULRk14balsL8z1Zq2n39rmoTh/3yVsoS0f1D96jh93pICaB9DM/UpUYD\nlxoN9B0EAEoY93ZlaV86Ed3Z7MttH/HR72xOnrznYaKybenSr4Bf4YrDZ3PX+BR5VtNaUr3B\nbzIwcBybuWnKxL+iM4rxWmOMoFdPxIW1i48E5T3kGVnWqm2tsueCBYuIiFNIwkMDjuzb/yA2\ni+PYlxLR1CYqFu8FAICvQRk+I5VzClkCR6TmTes4GUtEDM9Uq8EAoKTDnEu9aN26tb4jGDRO\nFnH/VmBAQGDw3SRVE1XNHFw9WrRo4dmiflUnIlIW6UHjnu46KFFwRGQqqjVizMD637iKrPGz\nBAzQli1bCn2eS0uIf/s2NvpVmN/VkGwFxylM+8z4tb2qeWyg0v9epCkbFbvN/qhCryQwrzmr\nd+VpR18QUVbcNSIU6QEAAD4o9/1Qwf75Mo7LiDm35ET9xf3q53/2/v6FcdLciya3H91UniHq\n8so76bn7y3Tr6KzVtHqBIj0YuDdXfs1foReYWYlsLdSsMQgwgl4NkqTgeXtzK/QM36zT4NE9\nOrYUmRY2TYHhmbg1ab+0keeJVdOO3nr70m/TYnvHxf1q6SQvAAB8nqYWwj+TJQp5sl+SpIOt\nSZH9pek3xVKWiARl6mg/HYDGYFY3AHy5cUP6x6RKPz1uYlupeYsWnp4tGlR3xkWmDvz5IJmI\nhJaNtu2Yb4dd1bTgyJEjykb3HweUwQKE+lOxYsWielSqRUTUfUC/5yf3e5++EbVt7tjMNbt6\nVrPSQTwDEJEtVza8OlYoqI/z923p6Asikkte6SYVAAB8ibexMTJN/D50djbAgrHGCcxqT2jq\nsPGWmIjuHVk041WPLi0buFV34dLiQv2O7rmUO0WeZ2Qzwt3205dHBR+eveuOsm3u3NPLSvV6\n+CUaivRg4P53KkLZcGvVd/Tg7lXtsWOrhl1csl05R4Hhlxm9akfn6upe6TE8sx/neidPHHY5\nOuOfo4uDvj/cwqbo2g8AAOhYOy/HP32jiOjkZv8Oi4ue9vr40CFlw64+5sgWLTExd10vGzu7\nYl8jcmz6rDlLle1PN4gFNWFWNwB8uY8q9ELr8s09WrTw9GxUswIKxboUliUjIvcJY1Ch15IT\nJ04oG+369keRvkQwsa82ZOYm8/SRB+4nHJ6/uNGhdRWNseFg0d7JFMpGXXNBQX3yhiZzCoku\nMgEAwJdZMGmCRs5z/vx5jZzH4LX8ecnloZPDM2VE9G+w7/pg30/7uHad4yjM/d3OySVJSUlv\nIp4E/+/CnyEvlQcZnsmoJf10llmXUKQHAxeUJiUiG/eBq6cVtKcFFJ80/c7hV+nKdqOxa9Sv\n0OdihMOXT/AbtkbBSXcuOdNi40DNRwQAgC9TqeePgnNrZByXcG/bytNWs3o1K+RObFzosaV+\nMcr29wNcdRSxJBs+fLiysefMOZFARSGBU2QfOHj8o86fkIeHh2slH4D+sNIcvtAAh8lDKcHw\nzToMnT66WxOUL/UiR8ER0bdumCusNxybvnDxGmV72bJl+g0D7/G6zJnm03++XPJi/elXGwdW\n0XeeEoDlOGXDvOBPc54RpgNByda1a1fNnhCVSwDIjy90Xr514eIpyx+n5qjsYFW1/fIhH9a6\nj748f+Lu5/k7MAyv7ZiVrUSGuX0VivRg4NLkCiJqOekH3BvRhrfXTig4joiEFo3mfl/g2l+F\nMLHxGOZiuS8yNTXyxKWEXp3tMZkeAODrIrTymNO2/LKr0UR002flT3e8xg3pVsvtvwV4jk2M\nexV46ZTPhZvKO1k2bsN6OpnpJbCh4SS+vrmjjAsu0gOUeJw8+W//oEePwh4/jUjJzMzKypax\nnPIGnzQ95Kx/uoeXZwWLAiexQbGJ/w39OzQsPDz8zbvkjIwMiZxnYWFhaetYvUbNWg2aNXPH\nEo7FxLFZl/ctv3nVvVWrVq28vquMyxzdqmpqFJYpk3P6zlGqyR88eKDvDPAxgVltLyvjv1Ik\nsVeu0MBx+o4DAAAApYKxbd0Ve7dfPrrf1++WOFOWd5wnsGnXZ/DgPm3MeAWW74xMy/YcN2+Q\nVyWdJNUDFOnBwFU05j/Pllcyw1tdK579L07ZqNB1kFFxx0E061d538oHRHT5zOvOY6ppKhsA\nAGhKowlru0aPPf8shYiSnvmvmOfP8E0czHPXfpwzfcLr17EZUjavv7FVnaVLu+knK4B2YFa3\nVj27cWbHrmORqnbyJiI25+XR3YeP79vv9ePoSX09MS9ZU5Kf+3vvOBQa8e6j45npKXGx0c/D\nQi+c8rFzbTB47JTWbjZ6SVgSVbIziUr8sNxxSvRjX5/H5w5tr1Tr29atW7X0bGQjxOrrutDZ\n1TLsUeLdp6ldPDA8AuA/qpoY/UUkzbhNhCI9AACURhNmz7XGjkg6xxPadx42s/NQ6ctnz+IS\nkjJZQdlyzs4VK1ibqN5/h2EYkUutJk2bd+3RwbGAPoYBlUswcC1FZs+j0h7GZ7exxn1VzQtO\nyl2ipEErp2KfxMrNg+gBESXcuU0o0gMAfH0YntlPK71tt685cOWR8gjHSsSpuc8+iYjO39mm\neut588dXMugf0GDwMKtbl+4dWbD4RNGzLRVs6l9H1j6JiN82r3exx4ZCnifnNizY7y/jipho\nnBh5b9PskQ+HL5/avYZugpV03vuOvQq75e8fEHgjJEGSO3yN49hXj4L3PQo+sNWybvPvWrVq\n5dHgGwHextpUf2JP3tg9T3b7SJr/bMLgbw3wQWSOnIg4NkPfQQDga/GFm5I8vX782PUn3Ptf\nlQyDWwHwtavfpKnK3QZBFxihS406LoV2cfpu2vbGxtbW1mVMSkX9ulT8R0Jp1uynBrsX+odu\nOcd5D8OlucbFvp83Wc+8kPvUjIlJYdMXBCa5ayZL00OIBmssHAAAaA7Dt+o5cUXzVsG+5y9c\nv/NUwqqo69i71OvctXvX1g1QeIASDbO6dSn6yua8Cj3Dt2jRxqta1W8Ej47uuBGX18fIrEZt\n5zKPYjKJKO62z7xjtdYMcFN9OlBPfNDOufv98+6lWpSr3rh2VZFIJHIQWQhk8XFxcXFxL8JC\nnsakExHHya7vn2vhuOunZiK9pi4hGH7l2h7DansMHZ8ZdjvI398/OORJ1vsvTYU87Z/Ai/8E\nXtxi5ezRslWr1q30G9aAmZXtsnzAnXlHbszc4LZ22g+o0wMoSdPuXE/JISKesKy+swDA16Ju\n3brFe2FOUvi+zRsv34vJO2JWrt7YqVM0lAsASimhlbOzlb5D6BCK9GDg7OtN61vtn5PPz87b\nV3Hx8FbGuDjXqGRZ7lrHNgUvEcPwrU+ePFnISRgja2WDlcYV0g0AAPTOyd1jnLvHWDbr5bMn\nkTEJGRkZ2VJFGXMLSxtRtZru5WywoiyUeJjVrUusJGrhzr+UbatqLWf+PL6OkykRRYh983cT\nmNVese3QzeMrVh67S0ThpxaH9zhc3RRXssWkkCcs3/ynskIvtPhm2JSJnZu4qHoXcy/vXPLe\neCAiQ8pxiksbVvZsvN4Gb3e1MfwytZu3r928/fisd7dvBAT4X7/95I3i/cAIaWrM9fOHr58/\nrHzIcdJsBWda8EaMUAy1+i2dlrNq05k9Qx4H9Oo/sFureiYYVwWlW05y+Nb5G1mOIyJT27b6\njgMAJRnH3rm4b+v+S8ny3DvDDM/Eq+/YsT+2wu8ZAIDPglsbYPCY/r+uEs+Y5X9u47AQ/yGD\nutV0dSnvZIvLc42wMuIlyFgiSpQpyguLuZwRKxPnthisMwMAUAIwfDNX90au7vrOAaBpmNWt\nY7FXtybKFERkbNVow6pp9oXsC8gYNeu/aMqb0ZtuxHFs1s4L0ev7Fr5CHhQoPmhDlIQlIiMT\nlyXbVrpbCQvoyLg0+WHVtorTRy96LWHlkhfrb8Yv8yz+FlelFt/MoXn73s3b985+FxkY4O/v\nH/D4dfJHfdic6IEDRjXx/K6ll1dT94q4KPpy586dIyKyrNG+zovLD54f2bzoqLfA1tHJycnJ\nukxB7/lcs2fP1kVEAE04duyYWv0UOW9fRz0M/Sfp/USLmkO+1WIsADBomdGhWzd5Bz3/8HvG\npvp3U6aMa1C+jB5TAQCUUCjSg+HjC5279Gjuv9EvM+b+9tX3iYjh8dUZ1efr61t0p9LNzcwo\nKJUloltJkrplirkzqzTljrLBF5bTWDIA7Vg+++cCvjjZvNb06dOLPM/69es1FQkAADQCs7p1\n7+bvr5UNz1kTC6vQv+c5evCmG2uJKPZqCKFIX1z3Tr9SNhpMmVtwhT6X0LrO/EkNR6+9Q0Qv\nT94jz07ajmfATB1c2/d2bd97RELkA/+AAP+AoNdJkrxn5Vniv/1O/+132sS+8nffebX0alm7\nsp0e05Z0+/bt++gIx8kS46IT46L1kgdAS9Qt0v+XmaPXjG+xg8nnWTRtSoGryXAf7gZMmjSp\n8PN4e3trLhSArnGKrP8d27HrVIBEkbs4EE9g22X4xGGdG2E6HABA8eB2Ehi+kAPzl519mP8I\np2DZgnrD52jmaBaUmkNEd49F0qxi7mAUc+GesiG0aKKxZADa8Soiosg+EWr0ATAkrCT9XVKm\niYWllYUZLsyh5MKsbt0LSM0hIoZnPLymjTr9hVaeIuF6sZSVpgYR9dVyOoN1VZxNRAzDH9NE\nrQqN6NuxAiZExnFZ8VeJUKTXAHvXur1d6/YeNuHlo1v+/tcDg+4mSj5cnkoSXl05e+DK2QM2\nlWq1atlyWO/2eowKAIbHpmqLhcsnYz3qzxXzOkqdblFRanUDKIkSnl7ftHHng7dZeUcqNOo8\ndfLwb6yLGPQJAACFQJEeDFzqC5/lvo/0ncJgVetZmVYlE9G70D2J8s12xdilkpOfCMxdQtbh\n2waajQcAANojTY26cPL4pcB/ElJzr9IFFqK69Rt36vVjIxcr/WYDKAbM6ta9eKmCiPjGFS3U\nnnrjJOCLpSwrfavNXAbuTQ5LRHzjSg4CtVZV5wnsXUz4z7PlrBRTkDWK4bvU8XCp4zFsQsaj\nWzf8r/sHhT7Lm5dGRMlRYWd9wlCkL57x48frOwKALnTs2FHtvnyH8pVcq3xTt4YrJrwCwGdR\nSBPO7d3i8+c/Ci73h4rArEL/CVN6e1bTbzAAAAOAIj0YuL+3XuU4johMRTX7Dehao6Kzg405\nrkc0xb7hSDP+xCyWYyVRyw4/2TjsszcoFt9cH5IuVbbbda+g6YAAmuHp6anvCAA6JU19efG8\nX8jdsLeJSYyJtcixbKOWHTq1blTm/S29rJgbk6esF0v/szCNLF0cGnjp7o3LTfvMmDvIE9+2\nULJgVrfuleEzUjmnkCVwRGp+YsTJWCJieKZaDWbYLI14CTKWU2QV3fW9bGXlmCnm5lZQOIZv\nXsejYx2PjuOzxLcD/P0DAkKevsm7CQ7F06FDB31HANCFcePG6TuCgWvTpo2+IwDoWdSdCxu9\nD75Izb15yzBMzVb9J4/tU9aEr99gAACGAUV6MHDnozOIyNi60a6dC6wwWljT+MYV5nSosPDS\nayJ66bvwiPv2gY0/Y2OznOR/Fm+4qWybO3fvao/7rfCVmjlzpr4jAOhO1A2fBRvOpsgVuY9T\nMxLj3zx9GHLmZKPF6+a4WQnlWU/mTt/wUYU+D8cpbp1cO4+xXjmwtu5CA3wxzOrWvaYWwj+T\nJQp5sl+SpIOtSZH9pek3lZ88gjJ1tJ/OYLmY8BNkLCuNu58pq1em6Lq7POvxG6mCiASmmCyl\nXUZmIo+OfT069s0SvwgMCPD3938SnaLvUAAApdqUKVP0HQFAb+SZUUe2bDoT/GFLRxP7mj9N\nmdq+rpMeUwEU2+rVq5UNGzVWzgPQGbwdwcAp77c2nTsJFXotqTN8QUUTPhFxnOzkr1OOXH+u\n5guz4/5ZMXWlcr1NIuo7v5+2IgIAgNqSHvhMWXfmQ4U+n6z40PkTliTLOf+1615my4mIYXi1\nvToOHjFu9uzpIwb2aV7dNq/zk5MLA1JydJcb4IspF4pQzupWE2Z1f6F2Xo7KxsnN/hoh/BMA\nACAASURBVOr0f3zokLJhVx9zZIuvraulsrH32BN1+oef2q1cmcyyivqLKsMXMRNV6dBnxKqt\nPns3LNV3FgAAACiFuEfXjowfNjWvQs8wgmY9xu7ZvRIVeii5arwnQJkIviaYSQ8GzlbAE0vZ\n+mXN9B3EYPGEjkvm/Thm8VGpguPYzBMbfg4N6TGsX8+6lQrckJhj027+eXbn3nPJ74tAVTvP\n7u5cRleRAQBANY5NW7LiXN4Su3wTx9p1qlUob5cpjn357OHLBIk07dG8LUfj7yUSEd+4wrRl\nS79zs/vw+n4DQy9sWbr7GhFxHHtkx5OWc+rr478DoDgwq1v3KvX8UXBujYzjEu5tW3naalav\nZoWMqo0LPbbUL0bZ/n6Aq44iGqIagxrSAz8ien1h2dHaWwY0LexOq/juySW+L5XtBgPddJEP\n8nGoUk/fEUqGlJTcJQcYRmBlhetKnVo+++cCbix+WHJp+vTpRZ5n/fr1mooEAABfQvLu8Z5N\nm648jMs7Ylm56YSpk5q9H+gJAAAahCI9GLjW1sbHxVlvJKqX5AWNsKvXb+O0tInrLyrrOi+C\nfBcGn6vo3rhB7VruNb9xsLG2sDBnZNlpaWniNy/CwsJCgm7FZsnyXm5f98c1oz30Fx8AAHKJ\nb216KZEr23Z1Oy6YNdLVInclZI5Nu7hn9e5Lj2L+OqE80mTGov9U6ImIeI26TJ4Uct/7fgIR\nJYX9SYQiPZQY7bwc//SNIqKTm/07LC56ojZmdX85oZXHnLbll12NJqKbPit/uuM1bki3Wm7/\nLcBzbGLcq8BLp3wu3GQ5johs3Ib1dMIA3OKzrj6urejGNXEWx0lP/DouotPgAd07VHX8+E+a\nLX7h9/txn4t35BxHRKYObca7WesjL0DRhgwZomwIy9Q9fWwZ5VvOtBhmz56tmVilw6uIiCL7\nRKjRBwAA9I+TBvvu3X7IL43NnVXF41t8P2j8yJ4eQsw8BgDQDhTpwcC1GlTz+PrQv488Gjqj\nqb6zGLLyLUftsCy3cu2+lxkyIuI4LirsTlTYHd+iXli74+j5Yzob4aceAMBXIOxU7pYlRqZV\n1y4aY59vmy6Gb9llzPLkh4NOR6cTEcMwIxrYqzxJszEe3uN+JyJZ+h2WI+w2o6Yvm4iGwYga\ngFndetFowtqu0WPPP0shoqRn/ivm+TN8Ewfz3NuCc6ZPeP06NkP64R1ubFVn6dJu+slqOHij\nfp0SNn5NnJTlODb00oG7f/hYO5R1FIkcHR1NKVssjo+Pj3/7LuXDwipC0eQVo7BVHpQgwcHB\n+o4AoGH9+/fX7AmPHTum2RMCQImW9vL21k1bbkam5h1xrN1uypRRtURFrzEGAADFhiI9GLiy\nLed2OTf8YuDqU2129amnupwAGuFUv/P6ffVO7N1/6VpIOlv0dq5lyrn3GTiyp2cVHWQDAAB1\n/C8+S9mo0Gl8/gr9e8wP42qfnvc3EREjdBSqrteY2rUk+p2IOA6V48+AiWh6h1ndesHwzH5a\n6W27fc2BK4+URzhWIn5/b/BJRHT+zjbVW8+bP76SCV/HIQ2PqajZb2umLFuy9VlyDhFxnCJZ\nHJMsjnkWpqKz0KrauIULPfA+B4B8PD099R2h1MnMzNR3BAAwTByb7ndo2x7fv6V5AzSNnXqN\nmTSwbW0MuQcA0DYU6cHQMYIRK5ck/rzg8KIx4Z0GjRzcxckMb3tt4Zs4D5gwv+/Q2P/94Xfn\n/qMnzyIz3+86n8fIzN69Xr0mzVt39KyFCfQAAF+V6JzcsnqD9uVUdjCv1JLobyLiFDkFnYRn\n9GENfEyjh5IFs7r1guFb9Zy4onmrYN/zF67feSpRNdbT3qVe567du7ZuIMCnioZYuHqt2uN+\n6fiJS5evx2bIVPYRmDm17Ni5X/8fHIUYGAFfterVqysbRqbllY3x48frL06pMHPmTH1HAAAA\nzfhlzMgwcXbeQwf31pMnDKxkLkhNSSneCa2tsUcSAIC6GI4resIrQMl17tw5IlLIk3yPnk+V\nKxiGZ+XgXMHZQZ0bfIsXL9Z2PMPGsVlvomPT0tLT0tJkjLGVpZWVtU358k6ozQMAfJ26du2q\nbKw6framqjFtrDS2R++xyvb58+dVnoRjk7v1GFp4H8izdu1azZ4QN82/EMem+uab1V0I5azu\n6lZCHaQqPTg26+WzJ5ExCRkZGdlSRRlzC0sbUbWa7uVssMymtnCK7FfhT58+DX+bkJqRkSEj\nI3Nzcyv7stWr13Cr4WLGww93AICvgo+PT+EdOIXkzNmLynbv3r2LPOGQIUM0EAsASr68+wCa\ngvsAAADqw5RiMHD79u3L/5DjFCni6BRxdEH9QYMYvlmFylX1nQIAAD6bvUD1UvY8vqmOkxg8\n1NS/NpjVrV8M38zVvZGru75zlCYMz9SlRgOXGg30HQQAAApTZE2dY5PzivQowAMAAACUCCjS\nAwAAAAAAfODk7jHO3WMsZnUDAHz13skUDgUMLiwGifiRiai2ps4GAAAAAABQCBTpwcBNnTpV\n3xEAAAAAoOTBrG6AfLjnz8KrubnpOwbAx6bO3LJp7cSCFgH6LA/99q/b+bvP2XNffioAAICS\nYtOmTfqOAABQeqFIDwaudevW+o4AAAAAAABFyMnOUrW9gGpmZmbazGKYFNKspORkCWfi4GBr\nzP+M3RoU0oQ/D67ZceEZdhiFr1B65LWpM2njl9Xp5VlRB35bdT4kRoPBAAAASgQXFxd9RwAA\nKL1QpAcAAAAAAAD9iL7nd+xiYMSLF3HJWeq/CtXiz/LvzQvHz1998CRKynFExDD8sjW+7dGz\nT/smrvm7ybPePbz3MCYhNSMjIz09Q5IjzcmRJL+LjXoVnS5l9ZQdoGhpkdemzmI2rplQvDr9\n69vnVm/wic6SazwYAAAAAABAIVCkBwAAAAAA+C9OeiPotjod7Rp+W9NMoO04hircd+2sA0Ec\np/YMevhMHCf9fcPP+/xf/fcgG/skeOuT4NABC3/5sRERcWzaqY3LTgQ+l+HfAkqmtBdXp86i\nz63Tc/Lks9vXHrwalndEYF5JC+kAAAAAAABUQJEeSjVWmsMXGus7BQAAwNflxrWrlkYq7nFz\nisy89tWrV1W+Nn8fgJKBkz8O9vP/OySa6bNqZu4W9Jwic+3ateq8usmmQzVdrLSZz2BJkv1/\nQYVey8IOzfuoQp/f7aNL15ffPb2Fo8/sCWeepxZ+Kob5jBXyAXRmXFvX7dciiSjtxdVps5kN\na8bbq/oN86nkcP81q7c9TpDkHXFp3mvW1EHaCgoAAAAAAPBfKNJDKcLJk//2D3r0KOzx04iU\nzMysrGwZyymXypSmh5z1T/fw8qxggYlQAABQ2h3cvrXIPt7e3jpIAqBt4geX1209+Cwui4gc\nGvT43JczDF/liBZQx9MdR6TvK/Q12w7u/33DypXLm33OXulQOHnWkyVn/s17aFO1QePqlco6\nWqWL375+9SQ0LJqIbmxe1k5YI69CzzB8SzsHB3t7S1MjllUoOF4ZSwtLSytn15oNGzbQz38G\nQKE6Tt7A48/Y6hdBRKkRV6bNYjauGWdX6Cczx+VcP7J566mgvKUj+EJRnwkzB7SqrovEAAAA\nAAAARIQiPZQez26c2bHrWGSqVOWzbM7Lo7sPH9+33+vH0ZP6euLeIAAAAIDBu3dizbKjwWxR\nM7kbN26YnpwU/+Z1siR3W26G4bfq2rd+7Vq1atW0M+NrP6lh+vNxsrJRe8jKFb3d9RvGIEVf\n3PN+E3rm+xG/jO3aJP9lTvTNo5NXnWAlr+eviFYeqerZY9TQ/jVEJnpJC1BcTPsJv/F4M70v\nPyei1Ai/qbNo45rxdkaqr+qz4u57r/otOPLD0hGOddrPnDmqmpVQR3kBAAAAAACICEV6KCXu\nHVmw+MSDIrsp2NS/jqx9EhG/bV7vAq7oAQAAAMAQRFxYu/hIUN5DnpFlrdrWKnsuWLCIiDiF\nJDw04Mi+/Q9isziOfSkRTW1SW0dZDdSTTDkR8QUOc3vU1HcWw/Tg2ltlw7bWxAndmnz0bIVm\nA2a38P/1RpxyxwEbt6G/zeyFayAomZh249by+bM3XnxGyjr9bNq4+tM6PXfv0p7f9lxKZxXK\nxzy+RccR00Z3aYR3PgAAAAAA6B6K9GD4oq9szqvQM3yLFm28qlX9RvDo6I4bcXl9jMxq1HYu\n8ygmk4jibvvMO1ZrzQA3/cQFAADQkyNHjug7AoCOSJKC5+3NrdAzfLNOg0f36NhSZFrYnHiG\nZ+LWpP3SRp4nVk07euvtS79Ni+0dF/erpZO8himb44jI2KaNOZax0o6g1Bxlo97Ipio71Bnc\nkm6cULZbTG6PfwYoyZjWo9fweHPWn39CRKn/+k2dTZtWj7d9X6eXpUfu+231pXtv815gVcVj\nxuxJ9ZzM9JMXAAAAAABKPRTpwcCxkqiFO/9Stq2qtZz58/g6TqZEFCH2zd9NYFZ7xbZDN4+v\nWHnsLhGFn1oc3uNwdVP8DwIAAKWIhYWFviMA6MjFJdslCo6IGH6Z0at2dK5upeYLGZ7Zj3O9\nkycOuxyd8c/RxUHfH25hg7XBi6myidHzLBkVtd0AFNtbae504RYOqt+lxrYtiXKL9N/Z4Z0M\nJZ7XyFV83i9rzz0iotR//abMYTavGmdjxLwMPr1605HYvC1LeMKW/SZO/LGlkMHQFAAAAAAA\n0BuevgMAaFfs1a2JMgURGVs12rBqmrJCrxpj1Kz/oimeTkTEsVk7L0TrLCQAAAAA6Iw0/c7h\nV+nKdqOxa9Sv0OdihMOXT+AxDMdJdy45o/l8pUYn5zJElJMWJEWZXjvy1vR2FKpeJYIvcMxr\nW/NxcwAMgeeIFbN71lW2U5//OXnOjhMbZ01Z7ZNXoTdzqjtz3d7p/b1QoQcAAAAAAP3CRGEw\ncDd/f61seM6aaG9U9I0nz9GDN91YS0SxV0Oor4t2wwEAAACAzr29dkLBcUQktGg09/sKxTiD\niY3HMBfLfZGpqZEnLiX06myPKcjF0WhCB5p6nM2J2XpLPK2ZSN9xDFmBxUhG8KGJeiUYCo9h\ny+byF688dY+IUp9fPvI89zjD8Bp0Hjn9p84W2GIDSiAfH5/CO3AKifqdiWjIkCFfmgkAAAAA\nvgyK9GDgAlJziIjhGQ+vaaNOf6GVp0i4XixlpalBRH21nA4AAAAAdO3Z/+KUjQpdBxkVt1LT\nrF/lfSsfENHlM687j6mmqWyliqXrgJ9b31j3V0zgbwsa/vbbd5XM9Z0IAAxEs8GL5/OWLj8R\nmndEaPXNyJ9ndajrWMirAL5mp0+f1mxnFOkBAAAA9A4r2oGBi5cqiIhvXFH9wfJOAj4RsdK3\nWowFAAAAAHoSnJSjbDRo5VTsk1i5eSgbCXduayBTaeU5ef2gFhVY6dvfpgxbuvX4iyRJ0a8B\nAFBDk4ELFw5okvfwmx+GoEIPAAAAAABfFcykBwNXhs9I5ZxClsARqVmlj5OxRMTwCt69HgAA\nAABKrFhp7s7E9cwFBfdiTEwKW8ReYOKqbEjTQ4gGayycgVq9enWBz3HOprw32QppqN/RUL+j\nZlb2ZcuWFdlZFj6cfPbs2ZrOCACGptGP8xfzVi4+fJOIHh9ZsFqwYnbP2voOBVBMlpaW+o4A\nAAAAABqGIj0YuKYWwj+TJQp5sl+SpINt0duFStNviqUsEQnK1NF+OgAAAADQtWSZQtmwMSqw\nEMzwrU+ePFnISRgja2WDlcZpMJuhCg4OVrNnVmrCi9SEF1pNAwClRoO+c5fxVy84GExEwQd+\nWUMrZqFODyXT4cOH9R0BAAAAADQMy92DgWvnlbui3cnN/ur0f3zokLJhV7+DliIBAAAAgB5Z\nva/NJ76v1hcDKxPnthhcUgEAfL3q9pq9YrgnwzBEFHTgl7W+YfpOBAAAAAAAQISZ9GDwKvX8\nUXBujYzjEu5tW3naalavZoXsTR8XemypX4yy/f0AVx1FBAAAAAAdcjMzCkpliehWkqRumUJW\nvC+MNOWOssEXltNYMsM1fvx4fUcAAMN09erVojuZ12vj+uDaizQiurF/njx7VCOHApfZa9eu\nnQbjAQAAAAAAFARFejBwQiuPOW3LL7saTUQ3fVb+dMdr3JButdz+W4Dn2MS4V4GXTvlcuMly\nHBHZuA3r6WSml8AAAAAAoFXNHM2CUnOI6O6xSJpVt3gniblwT9kQWjTRWDLD1aEDFqkCAK3w\n9vb+3JfcPL77ZsHPokgPAAAAAAC6gSI9GL5GE9Z2jR57/lkKESU9818xz5/5P3v3HSZVdfgP\n+Mw2loVlAWlSRFFBRcUeFYnol6jEiEoURdSI+lNA7AWCSlQSsUQUsfeG2At2TWyIJoqKioAJ\niNJ7Z9k2O78/BjdIXWD3Duy+71/n3jnn7sfnmeFx9zP33PTshrVX7W7a/7ILpk6dubwoXja/\nRt7eN9xwfGqyAgBQyVp33THctCiEMG/MQwtK7twuY/37LK1PouTZj1c9ir7hwftVbDyocJef\n23OjT2Uoz5zHH3+8YgIBAABAtaekp+qLpeWcM3hY/Xtveezd75JnEvGCuUtWvTp+0rTVJ9dr\nc+SAa/q0zE6POCQAANFosP+5Oel98+OJeMHPg54af8dZbTf1CnM/G/LFsqLk+HcntKjogNXF\na6+9FkLIbdWhY9u65Vwy9p03pxXFM2ru3LnTHpUZrapZsmhRhcwBAAAAKoqSnmohlp7Xte/f\nDj1i9MsjX/vg8wkF8cTacxrstM+xXU7ocuR+mZt+MxUAANuK9Bot+h/TYuAbU0MIU14eOLzt\nvT0ObFT+5YWLvr7u9lU7JddudkKXBjUrJWU18OCDD4YQWnZpU/6S/ucXn3x49orMnD07d7qx\nMqMB24zhw4enOgIAAMDmUNJTjTRp27532/a94vlTJo7/ccb85cuXrywqrVU7t069Rq33aNu0\nXnaqAwIAEIW9e167wz97TS2IJxLFz914cbjo+h5HtC7PwpWzvx7cb/D0wlVPSup2zSmVGZM1\nFZUmQgglhVNSHWTbcOKJJ6Y6AlS63NzcVEcAAADYHEp6qp1Yek6rtge02uRtTQEAqCLSshpf\nP+DU8697uqg0kYivePb2K8Z8ceJZp3Rt1zJvfUsS8aWfvf3S/Q+/sqikNHlml2P7ndCsVlSR\nq4IJEyasfbJw4ZQJE+IbX5woWTRz/PPzVyYPKjhZFdWzZ89URwAAAADWLZZI+AMHAABQ7Uz/\n6MG+Q14v/eUXolgstkPbA/fba8+2e+zasF7d3NzaseKVS5cunTt98rhx47745F8z84vL1jZo\nd+oDN5yW4TFJm6JLly4Vcp3sukc+98QlFXIpAAAAgJRQ0lPFTVpStEte1mYsnDvuH4327FTh\neQAA2HrM/vqNwbc+MmV58canrmavzuddc/6xNdNU9Jumokr69v0e7Ne+cYVcCgAAACAllPRU\ncSeedO5JfS7vceTu5V9SWjz/lQfvfOKdb1559dXKCwYAwNYgXjDj2YcffeMfXyyLb/w3o1pN\n257c49yuHXaOIFjV06dPn9UPp0+fHkLIzG3UuNzfqa29XdO9Opx4xlGeXAUAAABs25T0VHHJ\n+3V2OOj4Ky85s2XtzI3Onz7mjSFDH520pCiEMHLkyErPBwDAVqBk+cx/vvnO52O/Gz/xxxW/\nPHW+TEZOg7b77HPQoUd27rCnLe4rSvJ/1Ft2+fuwc1unOgsAAABApDJSHQCiMPXzVy85e8xp\nF15+codd1jcnXjDz2XvueObDiVEGAwBga5BRu+nR3Xoe3S0k4vnTp81cunTZ0qVLi2M18urk\n5dWt17x5E908AAAAABXFnfRUcV+89uBdj76x6JfboXZuf9IVF/dolp2+xrRJo1+8fdjT0/JX\nPY40M6fFqX0uPvm37ukBAIBK8dxzz4UQ8lp3Onqf+qnOAgAAABApJT1VX+GiHx4ZevtbX81M\nHmbWannGJVec8JuWycPiZT89OWzIK//6KXkYi8XaHnnaheeftP1aRT4AAAAAAADAFlLSU12M\nf3/Enfc9P7OgJHm425GnXdHn5HkfPzP0/hdmF8aTJ2s2anvORRcftXeT1MUEAABCvKgwPatG\nqlMAAAAAVAolPdVISf60p+8e+sKo/yQP07Nz4gX5yXEsltW+6//rffpRuekeNwoAAJFKlCz6\n9MNPvvtu3PcTJi1esSI/f2VxPDFy5MgQQtGyL176cFn7jh1a5GamOiYAAABAxVDSU+38/PnI\ngTc9UvaU+hBC7o6HXHx534Na5qYwFQAAVE8TR7143wMjflxStMb5ZEm/cv5zp5z9VFp6XsdT\nz7uwWwdfqQUAAACqgLRUB4BIFS3+79tvv7N6Qx9CKJg7ferUWamKBAAA1dZXw6+96tbH127o\n11AaX/L+8Ft73/hCiS+ZAwAAANs+JT3VRiI+5o1Hzj/nqjfGTEueaLZfp1a5WSGE4vxpT9x6\nRd9BD07a2B8HAQCAijLt3Tuve/ab5DiWntvhqOPO6XNZrw5NVp+TkbP7Xs1qJcez//3EgBET\no04JAAAAUNFsd0+1kD9z7H13DP1w4oLkYXqNJif3vvS0I3ePF8557u7bRny46i996VkNjj+n\n758672cTTQAAqFTxgp/P7XHxguLSEEJe68OvvKLP3k1qhhAmPXHxZS9MCb9sdx9CCImSz575\n2+ARX4YQYuk5tzz9VJuaGSnLDWxN3nvvvQq8Wt092h/YLKcCLwgAALA+/rRBFZdIFHz07P33\nPft+fnzV91FaHnT85RefuWNuZgghvUbj7pfdcuihr/x96JM/ryiOF81/6d7rPv7oyEsuOT/5\nJ0IAAKAyzHzv7mRDXyPvgNtvurRBxvq3eYtlHNL9LxdPP2/oqNmJeP79r00b0m2n6IICW7Fh\nw4ZV4NV267O7kh4AAIiG7e6p4gb1PXvI0/9MNvTp2U1Pu+zWYdeck2zoy7Q8+IQ7Hr3zpMN2\nTh7OH//+tb3PvuuFUSmICwAA1cNnr05NDjpc1XdDDf0vOpx3RnIw870vKjEWAAAAQOVzJz1V\n3Jhpy5ODnQ458bKLzmhZa93v+fTsZmdedfuhh75w27CnZ6wsScRXvPvErX1P6hBhUgAAqEY+\nWlIYQoil1ei5R73yzM/K69Aoa8jconjRkk9C6FbJ6YBtw8EHH7y+l0qLF3z+5X/LDmOxtNx6\nDRs3aZKbXjhnzpw58xaX/PL8x/SsJj16ndogIy2vdf1KTwwAABBCUNJTHWTUbNa97+Und9hl\nozN3OeykYfse+MTQv7/yr58jCAYAANXWnKLSEEJ6jR1y02PlXNIkM31uUTxeNKsycwHbkgED\nBqzzfEn+5NuuvDY5ztl+j64nd/vDb/fJyfrfph2JeOEP/37vmWee/eqnJfGi2S+88Olfb++/\nS01/JQMAACJiu3uquJ3bnzT00WHlaeiTMmq1PHvAsFsu696kRnqlBgMAgOqsVnoshFBaPD9R\n7iWzi+MhhFhazUoLBVQNiaeuuW70tOUhhP1Ouuqp+27q1mm/1Rv6EEIsvcZuh/7hujufuO6s\nw0II+TM/v/7qJ0rK/+8RAADAllHSU8Xd3u/MFjmb/F343Tp2v+uR2yojDwAAEEL4TW5WCKG0\nZNE7CwvKM79o2Wdzi+IhhMxae1duMmAbt2jCnS9NWhJCaLDPOdedeVjGhnbriO3X9aqLDmkc\nQlgy6ZVb/zU3oogAAEC1p6SHdcvKbZXqCAAAUGX9rmPj5OC5Oz8sz/zvn3wyOdhu32MqKRJQ\nNXzx0JfJwUmXHF2e+R369EgOvnt8VGVlAgAA+DUlPQAAAFFr2fXUzFgshDD/q3sGv/BZfIO7\nTM8eM+KGd2Ykx0ed5tu0wIa8OW15CCGWntO5fnZ55tfI61g3Iy2EsHLBPyo3GQAAwC+U9AAA\nAEQtK699/07Nk+PPnhh8Tr8h/x43ecUaT4ROxBfMmvzyQzf1HvRMPJEIIdTb7ayuTXKiTwts\nQ6YVxkMIaWm1NrTP/a/VTIuFEEqLbHcPAABEZJOf1Q3blj/96U+bt3CXs2669ojtKzYMAABQ\n5oALbu0yrdfIiYtDCAsnfvi3AR/G0rMb1i5Nvtr/sgumTp25vCheNr9G3t433HB8arIC247a\n6bFFJYl48bwfC+KtstM3Oj9e+PPs4tIQQlpm3cpPBwAAEIKSnipv0aJFm7dwWWF845MAAIDN\nFUvLOWfwsPr33vLYu98lzyTiBXOXrHp1/KRpq0+u1+bIAdf0aVmOvg2o5g6pk/XmwoIQwkPv\nz7zx9y02On/Whw8kEokQQlad9pUeDgAAIIRgu3tYQ0ZO/UaNGjVq1Kh+TV9hAQCAyhVLz+va\n928PDO7X+ZA9stPXvTV1g532+dPF1z10yyVt8rIijgdsi446ullyMOGR68fMK9jw5IL5X13/\n4PjkuNnvj6zcZAAAAL+IJb8sDFXV1KlTN/h6Yun8ObNmzZz207h33vtiZWkiPbtZr+tvPHr3\nehHlAwAAQgghJOL5UyaO/3HG/OXLl68sKq1VO7dOvUat92jbtF52qqMB25KS/O979rh6Sbw0\nhJBRs2XPy6847qCW65w5dczrt/39kSn5JSGEtIx6Nw1/eDff1wcAACKhpIdVCub/57lHh70w\n6udYWs0/3fJA19Z5qU4EAAAAbLLJL91w6WNjyg63a7XPYfvtvv322zdp0iQn5M+ePXvWrFkT\nv/rk6x8XlM056Ow7rjmhVSrCAgAA1ZGSHlZX+tLAcx8bOz8je+c7nvz7DjU88BIAAAC2PaMe\nvvrWV78r5+R9uva/4axDKzUPAADA6pT08CvF+d+d3P2a0kSi1Sm339Fj51THAQAAADbHT5++\nePsDz0xZWLiBOTmNWvc4/5LjDmweWSoAAICgpIe13XFmt/cXF2TX6/zc471TnQUAAADYXImi\n7z/95+gvv50w4YdZC5bmFxTFYmk1ataq36RFmzat2x3Y4fD9d02PpTokAABQRhGeqAAAIABJ\nREFU/WSkOgBsdXbJzng/hKLl/w5BSQ8AAFuqS5cuFXvBkSNHVuwFgSorltW2fee27TsnjxLx\notK0LK08AACQckp6WNOPhSUhhER8eaqDAAAAABUmlp6VnuoMAAAAIYS0VAeArUvR0s8/WFwY\nQkjL2j7VWQAAAICKFC/a0CPqAQAAouFOevifwkU/3H3NHfFEIoRQs36nVMcBAICqYNCgQVuy\nfMIHz4z4YHwikUgexmLugwXKK1Gy6NMPP/nuu3HfT5i0eMWK/PyVxfFE8pEZRcu+eOnDZe07\ndmiRm5nqmAAAQLWjpKeKGzFiRLnmlRbOmvrzt2O+Xlhcmjyxx5kHV2IsAACoNtq1a7d5CwsX\n/vDInXe89dWMsjM5TffpdcnFFZQLqOImjnrxvgdG/LikaJ2vxgunPP3gU8888mjHU8+7sFsH\nD6oHAACipKSniitvSf9rOY07Xn5wowoPAwAAlEsi/vnrj9z96BuLSlZ9iTaWlt2xW69epx5R\nM02TBmzcV8Ovve7ZbzY6rTS+5P3ht46fNOeeASdl+NcFAACIipIe1lRvl8MG/vUif/sDAICU\nWDFtzN1Dh33yn0VlZ+q1+e3FF/fer3mtFKYCtiHT3r2zrKGPpece9n8dW++ya+Z3T983anbZ\nnIyc3fdqVuu7GStCCLP//cSAEXvectpuqYkLAABUP0p6qrjOnTuXe256w+YtW+28a7vdW9nm\nDgAAopcozf/niPseeP6jgtJVT6BPy6x/XM++Zx17gP9FB8opXvDzwPvfT47zWh9+5RV99m5S\nM4Qwae7Lq0/LzNnrb/c8+dkzfxs84ssQwg/PX/fDiU+1qekPZQAAQBT87kEV17t371RHAAAA\nNm7+hA+G3nH/N7Pyy860OODYSy7quWvdrBSmArY5M9+7e0FxaQihRt4Bt990aYOMtPVOjWUc\n0v0vF08/b+io2Yl4/v2vTRvSbafoggIAANWYkh4AAIBUKi2a/8rDdz3x9teliVU30GfmtOh+\nwcUndWid2mDAtuizV6cmBx2u6ruhhv4XHc47Y+ioW0MIM9/7IijpAQCASCjpAQAASJmfP3/t\njmGPT15SlDyMxWJ7HNH9ol4nb5+dntpgwDbqoyWFIYRYWo2ee9Qrz/ysvA6NsobMLYoXLfkk\nhG6VnA4AACAEJT2sIRFfdvmVf0mOhwwZktowAABQhZWs+Hn4XUNfHD2p7Ex2gz3OufiSo9s1\nSWEqYFs3p6g0hJBeY4fc9Fg5lzTJTJ9bFI8XzarMXAAAAP+jpIc1lEyaNGnjswAAgM2X+O4f\nTw+7/4XZhfHkcSyWefAJ51xwZuc65S7VANapVnqsqCRRWjw/EUI5/0GZXRwPIcTSalZqMAAA\ngDJKegAAAKJTMO/7h4YOfffb2WVn6uz4mwsuufCQVnVSmAqoMn6Tm/X2ooLSkkXvLCw4pn72\nRucXLftsblE8hJBZa+/KTwcAABBCCGmpDgAAAED1kCga/dK95553dVlDn5aee8yf+j0y9GoN\nPVBRftexcXLw3J0flmf+908+mRxst+8xlRQJAABgDUp6AAAAKt3SKf8efOk5Nz/21tJ4afJM\n471+99f7H+7zx/ZZdrgHKk7LrqdmxmIhhPlf3TP4hc/iiQ1Nnj1mxA3vzEiOjzqtVQTxAAAA\ngu3uAQAAqFSJ+LJ3nrznoZc/LUqs6srSazT54/kX9ui0l3YeqHBZee37d2o+6L1pIYTPnhh8\nzucde595/J67/bqAT8QXzP7p4zeef+K1z+KJRAih3m5ndW2Sk5LAAABANRRLJDb4jWKoZhLx\nRcef+KfkeOTIkakNAwAAVcCAc08ZN3dl2WHDtkdedEGPlrUzN/uCdevWrYhcQJWVKM1/uH+v\nkRMXl52JpWc3rF06d0lRCGGPXVpMnTpzeVG87NUaeXv//cHrW2anpyArAABQLSnp4VeU9AAA\nULG6dOlSsRf0P+rARiXiS16+95bH3v1uozPrtTlywDV92uRlRZAKAAAgyXb3AAAAAFQpsfS8\nrn3/dugRo18e+doHn08oWNej6RvstM+xXU7ocuR+mZ69AQAAREtJDwAAAEAV1KRt+95t2/eK\n50+ZOP7HGfOXL1++sqi0Vu3cOvUatd6jbdN62akOCAAAVFNKegAAACrR0KFDUx0BqNZi6Tmt\n2h7Qqm2qcwAAAPxCSQ8AAEAl2mmnnVIdAahGXnvttRBCbqsOHdvWLeeSse+8Oa0onlFz586d\n9qjMaAAAAKso6QEAAACoIh588MEQQssubcpf0v/84pMPz16RmbNn5043VmY0AACAVZT0VB1v\nvPFGBVyldGUFXAQAAADYRhSVJkIIJYVTUh0EAACoLpT0VB33339/qiMAAAAAkZowYcLaJwsX\nTpkwIb7xxYmSRTPHPz8/+X39RAUnAwAAWA8lPQAAAADbqn79+q19cvYnd/f7ZNOuUyP34IoJ\nBAAAsDFpqQ4AAAAAACm2//ndUx0BAACoLtxJT9Xx4osvpjoCAAAAEKnmzZuvfjh9+vQQQmZu\no8Z5WeW8Qu3tmu7V4cQz2jeu+HAAAADrEkskPHALAAAAgKqgS5cuIYSWXf4+7NzWqc4CAACw\nbra7BwAAAAAAAICI2O4eAAAAgCri9NNPDyHktW6Q6iAAAADrZbt7AAAAAAAAAIiIO+kBAAAA\n2CYtXrw4OYjFMvPyaqU2DAAAQDm5kx4AAACAbVKXLl2Sg6xa7V4YMSiEcPPNN2/21fr161cx\nsQAAADbInfQAAAAAVBGjR49OdQQAAICNSEt1AAAAAAAAAACoLtxJDwAAAMA2qU2bNslBRs3m\nyUGfPn1SFwcAAKBcPJMeAAAAAAAAACJiu3sAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAA\ngIhkpDoAAAAAAFSK5UuWlCQS5ZycV7durFLTAAAAhBCU9AAAAABUMTO+eueJkR9MmjR53tLC\n8q8a/vKruelqegAAoNIp6QEAAACoOia9NuTyhz5KlPsG+jKZHgsJAABEQkkPAAAAQBVRtGT0\ngId/1dCnp6eXc21WzG30AABAFJT0AAAAAFQREx54vKA0EUKo2WjPs8/vse+urRrVrZnqUAAA\nAL+ipAcAAACginj7m0UhhKw6B9xz3zXbZdi/HgAA2Br5XQUAAACAKmJcfnEIoe0F52voAQCA\nrZZfVwAAAACoIgpLEyGEg3fLS3UQAACA9VLSAwAAAFBF7FIzI4RQkkh1DgAAgPVT0gMAAABQ\nRRzbqk4I4csJS1IdBAAAYL2U9AAAAABUEfv27ZoWi41/8ImChLvpAQCArZSSHgAAAIAqImf7\n4/562t4FC0ddefvrenoAAGDrFEv4dQUAAACAqiPxwRM3DX3xX1kNdv1j9x7HH7FPdnos1ZEA\nAAD+R0kPAAAAQBXxyiuvJAezvnz9rW/mhhBiscz6jZs0adKkbq2sDa/t169fpecDAAAIISPV\nAQAAAACgYjzyyCNrnEkkihfMnrZg9rSU5AEAAFibZ9IDAAAAAAAAQETcSQ8AAABAFdGnT59U\nRwAAANgIz6QHAAAAAAAAgIjY7h4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAA\nAAAAAACISEaqAwAAAADAJjvppJM2Y1VaRna97epvv+Puhxx66BGHtsuKVXguAACAjYglEolU\nZwAAAACATdOlS5ctvELuDgf0uuzSDq1yKyQPAABAOdnuHgAAAIDqaNnUMbdd0feN7xenOggA\nAFC9uJMeAAAAgG3Pc889txmrSosLFs2f+c2YMTOXFCXPpGc1u/Wpu3bJTq/QdAAAAOulpAcA\nAACgekmU5n/w7F1Dnxmd/MtYg/0ueeS6I1MdCgAAqC5sdw8AAABA9RJLyzmy+1U3nr5n8nDB\n1/dMXFmS2kgAAED1oaQHAAAAoDpqe9JfDsjNCiEkEkWPjpqT6jgAAEB1oaQHAAAAoFqKZf3p\njy2Tw5lv/ze1WQAAgOpDSQ8AAABANdWwwwHJwco5n6Q2CQAAUH0o6QEAAACoprJq7ZscxAtn\npDYJAABQfSjpAQAAAKim0jLqJQelJfNSmwQAAKg+lPQAAAAAVFOl8UXJQVpGw9QmAQAAqg8l\nPQAAAADVVNGyL5OD9BpNU5sEAACoPpT0AAAAAFRTcz5eVdLXbNghtUkAAIDqQ0kPAAAAQHWU\nKC147KWpyfH2x+yS2jAAAED1oaQHAAAAoDr6cvi1Xy8vCiHEYlk9f9sk1XEAAIDqIiPVAQAA\nAAAgUvGCea8/cffDr/+QPNxu39675/grGQAAEBG/fgAAAACw7bnrrrs2Y1VpSeHiBXPGj/sh\nP55Inkmv0fzq/h0rMhkAAMAGKekBAAAA2Pa8++67W36R9KxGvf42eOfs9C2/FAAAQDkp6QEA\nAACojhrucXivvr0PbJ6T6iAAAED1oqQHAAAAYNvTvHnzzViVlpGdV7du45atf3PwIQe1bRmr\n8FgAAAAbE0skEqnOAAAAAAAAAADVQlqqAwAAAAAAAABAdaGkBwAAAAAAAICIKOkBAAAAAAAA\nICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAA\niIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAA\nIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACA\niCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAg\nIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACI\niJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAi\noqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICI\nKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAi\nSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiI\nkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKi\npAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo\n6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJK\negAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiS\nHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKk\nBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjp\nAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6\nAAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIe\nAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQH\nAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkB\nAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoA\nAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4A\nAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcA\nAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEA\nAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAA\nAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAA\nAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIhmpDgAAAMDWq/jppqmOUDEyT5uZ6ghsst0v\nfiPVESrGhKHHpjoCAAAAWxF30gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAA\nAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAA\nAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAA\nAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAA\nAAAAAERESQ8AAACbbPmM22Krqd960CYtf+Q3TVZf3nfy4grM9u3NByYv27LzPyrwsmxtXt+3\ncWzT7fPnL1MdPAo+BQAAwNZMSQ8AAABbavHkQWOWF5dzcmnRjCu/nlepeQAAAICtlpIeAAAA\ntlSitPiql34q5+TZn16+sLi0MuMAAAAAW6+MVAcAAACAquDLgQ+HM28qz8w3r/ywkrNQvdTe\n/rzpE24p5+T07NxKDQMAAMBGKekBAABgi+xcM2PyypJlU//+8ZIbfpuXteHJ8aLpV42dF0LI\nyN4hVjStuDQRSUaqtFhWXl5eqkMAAABQXra7BwAAgC0y6ISWIYREIv7npydvdPLsTy5bVFIa\nQti+w+2+OA8AAADVkJIeAAAAtsj+15+dHHz3t7s3OvmNqz5KDo675beVmAkAAADYWinpAQAA\nYIvUaXllh7waIYTlM+95a1HBBmbGC6f1+2Z+CCEju9VNe2230SsXLhz/2G1Xdzvh94fuv1eL\nRnWzcvJ2bL3nYUcec8YF1304Yf6WZF78n49uu/bCIw7Yq0WTBtnZuTvt1q7T708ceM9L84pL\nN7wwUbry4xfv792z++86HNSq6XbZtbdrs/eBnU845YrBD01cWLglkUitzXhLzPyocywWi8Vi\n7e+fGEIIiaK3nhjS7f8O2qlZo+ysmk1a7NzhhHMffXPCaitKPxp+55l/aL9Tiya1atTYfqfd\nDz/6+P53PLO4ZEMPffApAAAAqp5YIuHpdwAAAKxb8dNNUx2hYmSeNrNiL7h8xm25za9IjmcV\nxSdftOdh900IIRx4y7efX7nX+lbN+OfJzTu9EELYofMrP795fE562srSRAjhgkmL7tq57hqT\nP733kpMvvWtmYXydl4rF0vbp3PvFF4fulJ2+xkvf3nxgu/5jQgg7HPPez291WuPVRHzpHZee\nefXdI5M/eg1ZdVpdcNvTQ879zTp/6JIfXure9dy3xi9a56sZ2TsMePTt60/dfZ2vbobdL36j\noi6VWhOGHlsZl31938bHjZ0bQqjdtO+yGcM2+zqb/ZaY+VHnZh3fDiEcet+ED7oXXPCHPzw0\nasYac2Kx2LH9nn1t8MklK/974fGd73tvHY+E2K7dqd98/lSzrDXfycGnAAAAqKLcSQ8AAABb\nqt01vZOD8bfdtoFpr1/1cXJwws2HbfiCk546q32foat3kzl5DZs2rJseiyUPE4nSr9+8++AO\nAzfpq/elxXMv6bT7ZcNeLesmY7HMRg1zyyYULf3x9v938PEDX1h77cq5rx+w7ymrd5PZdRpu\nv93/1pYUTB3UY9+bxy7YlESk2Ja8JcrEi2b1PKDjQ6NmHH72lQ8/++ZXX4x69tFhR+yYG0JI\nJBKv39St9/OfnHPQwfe9N7nh/t1uvffJT7788q0Xn7qwc+vk8gXfPHNkr3+sfVmfAgAAoKpS\n0gMAAMCWqt3swqPrZYcQVsx5/Pn5K9c5J144td+380MImTV3vbFt/Q1crbR43tHnDU+Oa9Q9\naPAjb8xbXrRi8dwZcxcVF6346t3hfzqkUfLVuWNuvPmnpeXP+fz5h9/54apNBXb4bc83P/l6\n7rL8OXOXLpr+n7eevqltXo3kSyMHndzt4QlrrL2j89mTVpaEENIy6192y+M/LlixcsncmfOX\nFi2f88KwAQ0y00MIidLCG08YWP48pNyWvCXKjB30+2d+LL726a8+fPiWs7t13veAw7qd1fcf\n/5nUvfmq9vq+bh2eGLfw4AvunvL5M1f0Or39fvsd07XHnW9OfOrsNskJk58+e+Wv95j3KQAA\nAKowJT0AAABUgBt67pocDL5r4jonzPr4siUlpSGEZp2G1EqLbeBS876+4sdkEZhR78kv/9G/\n5+8b1MpMvhTLqLnv70575KPvujbMSZ4Z+eaaG4yvz5LJQ7o/9kNy3GXwq1M+eqRz+30a1MoI\nIdRttusx3ft9PW1s7/0bJie83PfYn1a7g7l4xTcDv171/O/eL35125Vn7lR/VYDMWo3+2Pdv\nnz7aNXm4bOq9XywvLmckKkaieEU55K8sWWPdlrwlVlc4r2C/a967ofu+q59My2x062P/22e+\n7i4XjhrW59fv/NjJdzwai8VCCPHCma8v/NW3W3wKAACAKkxJDwAAABVgz6suTg5+uPvGdU54\nrd+qve7/eNOhG77UjNe/TQ4a7jP05Fa5a09Iy2x0yVHNkuNlk5aVM+FL59yWSCRCCE0OueXV\n/l3W/otAZu5uQz96p3mNjBBCScGUc176qeylgoVvliQSIYRYLPP2P7Rc++KtTh6y44477rjj\nji1btvxqeVE5I1Ehls+6v3Y5NNtzzefWb8lbYnWx9Joj+h+09vn67bqXjU986uqMtb6akpV7\nyIG1V1Xvk3/9HQKfAgAAoApT0gMAAEAFyGl8zokNaoYQ8ue/8Oic/DVejRf+3P+7BSGEzJzd\nB+22ob3uQwhtzhkxduzYsWPHfvTyH9c3JxH/5THc5XscdyK+5NLRs5PjS58+f33TMmvt++Sp\nrZLjb2/8uOx8LG3VHuCJRPFzP62jEE3Paj7lF+c3qVWuTKTUFr4lVler0Rm7ZGesfT49q1nZ\nuN/e261zbYsaqxaucZO+TwEAAFCFKekBAACgYlzTe9UDtm+/ddwaL836+LKlJaUhhObHDKm5\nsd/Fa7XcrV27du3atWvTPGedEwrmj73h7emblG35jKHJzfYzara6Ysc6G5i556XtflnyTNnJ\nnEY96masyn3u/p3ueP7TovLVomy1tvAtsbrMnD3XvTK26t75WFpWm5rraPFDCOt78INPAQAA\nUIWt+xckAAAAYFPtfmH/MOjUEMJ/H/1L+Ptbq7808qpRyUG3G3+z6RcuXTDjp0mTJ0+ePPm/\nP0wY993Yd9/9JFn5l9/i8Z8kB2npuX+59toNzCxcPC05KFo+puxkWmbjVy47uOMtn4YQChZ9\nfmm39v3r7nDEUUcd3uGwww5rf1C7XbLW17VS+Wo37btsxppb2W/UFr4lfiW20b8vpW9iurX5\nFAAAAFWHkh4AAAAqRs2Gp5zR+Jwn56woWPj2sBnLL2xWO3k+XjDlz+MWhBAya+11Q+t65bxa\n/swxDz38zFtvvf3Z1z8sKSjZ+IINWvbfVbtzFy3/5q9//aY8S0qLFy6NJ+qkryoeD7/542e2\nu+iygffPLIyHEAoXT337uYfefu6hEEJm7Wadjuty/PEnnPLH39Vd+8HjbJW2/C0RAZ8CAACg\nSrLdPQAAAFSYKy7dPTm4d7UKcOZHq/a63+HY28p5r+3L153ZYsffXDzwtrc/+76sm0xLr7lD\n672PPr77DXc++XC3VpsUrHhp8SbNT1oeX3077/RTrrp78vQvh15/aacDdkmP/e+/pHj5jLdG\n3Nvr1KN32LXjA+9O2owfRPQq4i1RuXwKAACAqsqd9AAAAFBhWv+/gaF/lxDCjyP+XHrvx8mv\nxr/ab9Um26f99cDyXOSz647uev27yXGNurt0P+vU9gcesP/+++y26w4101aVgp+Nv3GTgtVu\nteq2/ryWf1n803WbtHZ12Q3aXTRwyEUDh+TPnvjePz/8ZNQno0aN+nzCtEQiEUJY9tPHvTq3\nnTN62rUHN9rsH0E0KuotUUl8CgAAgCpMSQ8AAAAVJrv+cb2a1r5v5vLCJaNu+Wlp/x3rxAum\nDBi3MISQVXu/a3epu9ErlOSPP2HwP5Pj3U4bOvrxC+tXxNbZeXs0Sw4Kl4za8quFEHKa7HZ8\nj92O79ErhLBs+vcvPnH3Vdc9MK84nigt+vupN13705AK+SlUngp/S1QgnwIAAKBqs909AAAA\nVKQL+++ZHDwy8KsQwswPLl0WLw0h7NDl1sxy9Izzxl49tygeQsjM2X3Mk+vtJpdMXLpJqfJ2\nviw5KFj8/j8WF25g5vIpY0ePHj169Ogx3y8uO/nDyOeHDx8+fPjwkZ/OW3tJbvO2Zw24Z/Rj\n/5c8XDbtnpLo9kRnM23hW6JS+RQAAABVm5IeAAAAKtLOZ/w1LRYLIfz8yhXFifBK/9HJ82cM\n2r88y5dPXpAc1Mg7vFbaurvJ0uJ5V30xd5NSZdbe/5ymq/b6vujPH693XqLorEPaH3bYYYcd\ndthlq/2IiYMuPP30008//fSzej61vqVNOhxRNo5vUjhSYQvfEpXKpwAAAKjalPQAAABQkWrU\n/b9LWuSGEIqWfTlw3JcDvl8YQsjKPWjATnnlWZ67a73koGDR2/OKS9duMs9WAAAG50lEQVSe\nkCjNH3L6Id+tKE4elq5rzjpde+8xycHEB/5w3Zs/rnPOG4OOe3FOfgghPbPB0JN2Kjvf6pQd\nkoPFkwa8Oit/nWvfv+Pp5CC7/u9rVMDe5FS6LXlLVCqfAgAAoGpT0gMAAEAFO2/gPsnBvd3+\nsDxeGkLYsest5Xymdv09+mXGYiGEkoKfDuw6aOL81TblThR9/OzQ3++745XPTS47N/31h8bP\nWlGeK7f8w5MX7Fk/hJAoLbrhuN1OuvTWf4+bvGLVltyJGd+8N6Bn+z/85d3k5EP//Oq+tTPL\n1u7a889ZabEQQqK04LR9jho24h+LS8pq0dIZ375/Xa+OJwz5Lnm832XXles/lVTbkrdEpfIp\nAAAAqrZYIuEBWQAAAKxb8dNNUx2hYmSeNrNiL7h8xm25za9IjmcVxZtk/upL8EXLPquV175k\ntd+4B09Z0n/HOmtcJCc9bWVpIoRwwaRFd+1ct+z886e36Tb8P8lxWnrtPfbeo3GjvCUzfpo0\necrilSUhhMxarf869KB+567aczsWS2++83FT//ty8vDbmw9s139MCGGHY977+a1Oq//EwkWj\njm7b+aPV6sxYWnbTFtstnTN7WcH/Nufe9YTrx700MOvX3yoYef6+xz8wdrWFWfUaNKiTnZg3\ne+6Kov+t3a7dWVO+fCQ3vQJuIt794je2/CJbgwlDj62My76+b+Pjxs4NIdRu2nfZjGGbd5Et\neUvM/Khzs45vhxDq7XLPwv/2XvviRcs+q1Hn0BBCLK1maXzdt56f3LDWC/PzQwh/nbr06ha5\nZed9CgAAgCrMnfQAAABQwbJyD+m/0/8q+Rp12l+1VkO/ASc9/vk13dunx2IhhNL48nFff/7P\nd94bM+6/yW6yTaeeb0/86qqzH732qObJ+YlEfN78ZeW5co16Hd774bNev9+r7EyitGDGzzPK\nusm09No9rn107W4yhNDlvn8Pu+CYZKoQQqK0aOHcmT9NnVXWTcZiaR3OuPbbzx/+/+3dwYuM\nYQDHcWPnFRvJSU0xK+ZgaqI0J5fJzVWNC9umuMhN/gBLuchJyYEDtSVKlDYHe9iUciM5rMnB\nXDhJyunN67DnLUv7G2Y+n9N7eHt73nqe0/d9nleb/I/8zZTYUFYBAAAwxuqjHgAAAACMobn5\nI1dPL61e7zt5bV3fyNemdl5ZeHn+4pP5G/ferXwYDAbffk43Gnu6veMn+rP9YwdXb7u8uNK9\nff3x8ptNu/a2O73ffHixo3Pr2dtLy4/uPnz6fOnVp89fvv7Y3DzQarVa7cNHZ8+eOdSYXmNY\nWy7cXOyfe3Hn/oPX7z8Oh8PhcPi92t6cac40Z/a3u/1Tc73O7vW8KP+EP58SG8kqAAAAxpjj\n7gEAAFiT4+4ZIcfdT4SqKsuyLMuprdsKm88BAIDJYCc9AAAAACNSq9WLol4Uox4HAABAjn/S\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQIhIDwAAAAAAAAAhtaqqRj0GAAAAAAAAAJgIdtIDAAAAAAAAQIhIDwAAAAAA\nAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACE\niPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItID\nAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAA\nAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAA\nAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi\n0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8A\nAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAA\nAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAA\nECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAIT8ArQRLgYogk1wAAAAAElFTkSuQmCC\n", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig4_colors<-c(\"#FAA519\",\"#286EB4\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(aes(fill=sex),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig4_colors)+\n", " scale_y_continuous(breaks=seq(0,100,10)) +\n", " ggtitle(\"Figure 4: Participation rate per day in household and family care,\\n main activity, %, by gender (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 5: Participation rate per day in cleaning and food management, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 4. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^food|^clean\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>81.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>77.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>76.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>85.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>85.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>81.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>84.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>79.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>85.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>87.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>78.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>78.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>86.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>90.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>86.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>88.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>88.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>80.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>68.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>30.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>59.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>50.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>62.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>56.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>51.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>65.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>54.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>79.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>33.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>51.6</td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>60.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>43.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>43.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>40.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>42.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>52.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>69.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>53.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>29.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>31.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>19.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Food management except dish washing</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>56.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>24.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>10.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>28.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>18.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td> 9.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>18.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>23.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>25.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>16.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>16.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>10.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>22.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>35.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>25.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>16.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>16.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Cleaning dwelling </td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>20.2</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Austria & 2010 & 81.1\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Belgium & 2010 & 77.0\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 76.6\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Estonia & 2010 & 85.0\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Greece & 2010 & 85.5\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Spain & 2010 & 81.3\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Finland & 2010 & 84.4\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & France & 2010 & 79.7\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Hungary & 2010 & 85.1\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Italy & 2010 & 87.9\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Luxembourg & 2010 & 78.4\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Netherlands & 2010 & 78.5\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Norway & 2010 & 86.2\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Poland & 2010 & 90.9\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Romania & 2010 & 86.9\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Serbia & 2010 & 88.5\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & Turkey & 2010 & 88.1\\\\\n", "\t Participation rate (\\%) & Females & Food management except dish washing & All ISCED 1997 levels & United Kingdom & 2010 & 80.4\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Austria & 2010 & 68.6\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Belgium & 2010 & 30.9\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 59.8\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Estonia & 2010 & 50.3\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Greece & 2010 & 62.1\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Spain & 2010 & 56.0\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Finland & 2010 & 51.8\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & France & 2010 & 65.6\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Hungary & 2010 & 54.1\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Italy & 2010 & 79.8\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Luxembourg & 2010 & 33.7\\\\\n", "\t Participation rate (\\%) & Females & Cleaning dwelling & All ISCED 1997 levels & Netherlands & 2010 & 51.6\\\\\n", "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Finland & 2010 & 60.9\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & France & 2010 & 43.2\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Hungary & 2010 & 43.3\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Italy & 2010 & 40.5\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Luxembourg & 2010 & 42.3\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Netherlands & 2010 & 52.0\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Norway & 2010 & 69.5\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Poland & 2010 & 53.6\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Romania & 2010 & 29.8\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Serbia & 2010 & 31.4\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & Turkey & 2010 & 19.0\\\\\n", "\t Participation rate (\\%) & Males & Food management except dish washing & All ISCED 1997 levels & United Kingdom & 2010 & 56.0\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Austria & 2010 & 24.5\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Belgium & 2010 & 10.9\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 28.9\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Estonia & 2010 & 18.3\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Greece & 2010 & 9.2\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Spain & 2010 & 18.8\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Finland & 2010 & 23.9\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & France & 2010 & 25.5\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Hungary & 2010 & 16.4\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Italy & 2010 & 16.8\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Luxembourg & 2010 & 10.8\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Netherlands & 2010 & 22.6\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Norway & 2010 & 35.7\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Poland & 2010 & 25.9\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Romania & 2010 & 16.4\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Serbia & 2010 & 16.5\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & Turkey & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Males & Cleaning dwelling & All ISCED 1997 levels & United Kingdom & 2010 & 20.2\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Austria | 2010 | 81.1 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Belgium | 2010 | 77.0 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 76.6 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Estonia | 2010 | 85.0 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Greece | 2010 | 85.5 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Spain | 2010 | 81.3 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Finland | 2010 | 84.4 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | France | 2010 | 79.7 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Hungary | 2010 | 85.1 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Italy | 2010 | 87.9 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Luxembourg | 2010 | 78.4 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Netherlands | 2010 | 78.5 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Norway | 2010 | 86.2 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Poland | 2010 | 90.9 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Romania | 2010 | 86.9 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Serbia | 2010 | 88.5 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | Turkey | 2010 | 88.1 |\n", "| Participation rate (%) | Females | Food management except dish washing | All ISCED 1997 levels | United Kingdom | 2010 | 80.4 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Austria | 2010 | 68.6 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Belgium | 2010 | 30.9 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 59.8 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Estonia | 2010 | 50.3 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Greece | 2010 | 62.1 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Spain | 2010 | 56.0 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Finland | 2010 | 51.8 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | France | 2010 | 65.6 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Hungary | 2010 | 54.1 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Italy | 2010 | 79.8 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Luxembourg | 2010 | 33.7 |\n", "| Participation rate (%) | Females | Cleaning dwelling | All ISCED 1997 levels | Netherlands | 2010 | 51.6 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Finland | 2010 | 60.9 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | France | 2010 | 43.2 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Hungary | 2010 | 43.3 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Italy | 2010 | 40.5 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Luxembourg | 2010 | 42.3 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Netherlands | 2010 | 52.0 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Norway | 2010 | 69.5 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Poland | 2010 | 53.6 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Romania | 2010 | 29.8 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Serbia | 2010 | 31.4 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | Turkey | 2010 | 19.0 |\n", "| Participation rate (%) | Males | Food management except dish washing | All ISCED 1997 levels | United Kingdom | 2010 | 56.0 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Austria | 2010 | 24.5 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Belgium | 2010 | 10.9 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 28.9 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Estonia | 2010 | 18.3 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Greece | 2010 | 9.2 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Spain | 2010 | 18.8 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Finland | 2010 | 23.9 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | France | 2010 | 25.5 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Hungary | 2010 | 16.4 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Italy | 2010 | 16.8 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Luxembourg | 2010 | 10.8 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Netherlands | 2010 | 22.6 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Norway | 2010 | 35.7 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Poland | 2010 | 25.9 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Romania | 2010 | 16.4 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Serbia | 2010 | 16.5 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | Turkey | 2010 | 7.0 |\n", "| Participation rate (%) | Males | Cleaning dwelling | All ISCED 1997 levels | United Kingdom | 2010 | 20.2 |\n", "\n" ], "text/plain": [ " unit sex acl00 \n", "1 Participation rate (%) Females Food management except dish washing\n", "2 Participation rate (%) Females Food management except dish washing\n", "3 Participation rate (%) Females Food management except dish washing\n", "4 Participation rate (%) Females Food management except dish washing\n", "5 Participation rate (%) Females Food management except dish washing\n", "6 Participation rate (%) Females Food management except dish washing\n", "7 Participation rate (%) Females Food management except dish washing\n", "8 Participation rate (%) Females Food management except dish washing\n", "9 Participation rate (%) Females Food management except dish washing\n", "10 Participation rate (%) Females Food management except dish washing\n", "11 Participation rate (%) Females Food management except dish washing\n", "12 Participation rate (%) Females Food management except dish washing\n", "13 Participation rate (%) Females Food management except dish washing\n", "14 Participation rate (%) Females Food management except dish washing\n", "15 Participation rate (%) Females Food management except dish washing\n", "16 Participation rate (%) Females Food management except dish washing\n", "17 Participation rate (%) Females Food management except dish washing\n", "18 Participation rate (%) Females Food management except dish washing\n", "19 Participation rate (%) Females Cleaning dwelling \n", "20 Participation rate (%) Females Cleaning dwelling \n", "21 Participation rate (%) Females Cleaning dwelling \n", "22 Participation rate (%) Females Cleaning dwelling \n", "23 Participation rate (%) Females Cleaning dwelling \n", "24 Participation rate (%) Females Cleaning dwelling \n", "25 Participation rate (%) Females Cleaning dwelling \n", "26 Participation rate (%) Females Cleaning dwelling \n", "27 Participation rate (%) Females Cleaning dwelling \n", "28 Participation rate (%) Females Cleaning dwelling \n", "29 Participation rate (%) Females Cleaning dwelling \n", "30 Participation rate (%) Females Cleaning dwelling \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE> \n", "43 Participation rate (%) Males Food management except dish washing\n", "44 Participation rate (%) Males Food management except dish washing\n", "45 Participation rate (%) Males Food management except dish washing\n", "46 Participation rate (%) Males Food management except dish washing\n", "47 Participation rate (%) Males Food management except dish washing\n", "48 Participation rate (%) Males Food management except dish washing\n", "49 Participation rate (%) Males Food management except dish washing\n", "50 Participation rate (%) Males Food management except dish washing\n", "51 Participation rate (%) Males Food management except dish washing\n", "52 Participation rate (%) Males Food management except dish washing\n", "53 Participation rate (%) Males Food management except dish washing\n", "54 Participation rate (%) Males Food management except dish washing\n", "55 Participation rate (%) Males Cleaning dwelling \n", "56 Participation rate (%) Males Cleaning dwelling \n", "57 Participation rate (%) Males Cleaning dwelling \n", "58 Participation rate (%) Males Cleaning dwelling \n", "59 Participation rate (%) Males Cleaning dwelling \n", "60 Participation rate (%) Males Cleaning dwelling \n", "61 Participation rate (%) Males Cleaning dwelling \n", "62 Participation rate (%) Males Cleaning dwelling \n", "63 Participation rate (%) Males Cleaning dwelling \n", "64 Participation rate (%) Males Cleaning dwelling \n", "65 Participation rate (%) Males Cleaning dwelling \n", "66 Participation rate (%) Males Cleaning dwelling \n", "67 Participation rate (%) Males Cleaning dwelling \n", "68 Participation rate (%) Males Cleaning dwelling \n", "69 Participation rate (%) Males Cleaning dwelling \n", "70 Participation rate (%) Males Cleaning dwelling \n", "71 Participation rate (%) Males Cleaning dwelling \n", "72 Participation rate (%) Males Cleaning dwelling \n", " isced97 geo \n", "1 All ISCED 1997 levels Austria \n", "2 All ISCED 1997 levels Belgium \n", "3 All ISCED 1997 levels Germany (until 1990 former territory of the FRG)\n", "4 All ISCED 1997 levels Estonia \n", "5 All ISCED 1997 levels Greece \n", "6 All ISCED 1997 levels Spain \n", "7 All ISCED 1997 levels Finland \n", "8 All ISCED 1997 levels France \n", "9 All ISCED 1997 levels Hungary \n", "10 All ISCED 1997 levels Italy \n", "11 All ISCED 1997 levels Luxembourg \n", "12 All ISCED 1997 levels Netherlands \n", "13 All ISCED 1997 levels Norway \n", "14 All ISCED 1997 levels Poland \n", "15 All ISCED 1997 levels Romania \n", "16 All ISCED 1997 levels Serbia \n", "17 All ISCED 1997 levels Turkey \n", "18 All ISCED 1997 levels United Kingdom \n", "19 All ISCED 1997 levels Austria \n", "20 All ISCED 1997 levels Belgium \n", "21 All ISCED 1997 levels Germany (until 1990 former territory of the FRG)\n", "22 All ISCED 1997 levels Estonia \n", "23 All ISCED 1997 levels Greece \n", "24 All ISCED 1997 levels Spain \n", "25 All ISCED 1997 levels Finland \n", "26 All ISCED 1997 levels France \n", "27 All ISCED 1997 levels Hungary \n", "28 All ISCED 1997 levels Italy \n", "29 All ISCED 1997 levels Luxembourg \n", "30 All ISCED 1997 levels Netherlands \n", "<U+22EE> <U+22EE> <U+22EE> \n", "43 All ISCED 1997 levels Finland \n", "44 All ISCED 1997 levels France \n", "45 All ISCED 1997 levels Hungary \n", "46 All ISCED 1997 levels Italy \n", "47 All ISCED 1997 levels Luxembourg \n", "48 All ISCED 1997 levels Netherlands \n", "49 All ISCED 1997 levels Norway \n", "50 All ISCED 1997 levels Poland \n", "51 All ISCED 1997 levels Romania \n", "52 All ISCED 1997 levels Serbia \n", "53 All ISCED 1997 levels Turkey \n", "54 All ISCED 1997 levels United Kingdom \n", "55 All ISCED 1997 levels Austria \n", "56 All ISCED 1997 levels Belgium \n", "57 All ISCED 1997 levels Germany (until 1990 former territory of the FRG)\n", "58 All ISCED 1997 levels Estonia \n", "59 All ISCED 1997 levels Greece \n", "60 All ISCED 1997 levels Spain \n", "61 All ISCED 1997 levels Finland \n", "62 All ISCED 1997 levels France \n", "63 All ISCED 1997 levels Hungary \n", "64 All ISCED 1997 levels Italy \n", "65 All ISCED 1997 levels Luxembourg \n", "66 All ISCED 1997 levels Netherlands \n", "67 All ISCED 1997 levels Norway \n", "68 All ISCED 1997 levels Poland \n", "69 All ISCED 1997 levels Romania \n", "70 All ISCED 1997 levels Serbia \n", "71 All ISCED 1997 levels Turkey \n", "72 All ISCED 1997 levels United Kingdom \n", " time values\n", "1 2010 81.1 \n", "2 2010 77.0 \n", "3 2010 76.6 \n", "4 2010 85.0 \n", "5 2010 85.5 \n", "6 2010 81.3 \n", "7 2010 84.4 \n", "8 2010 79.7 \n", "9 2010 85.1 \n", "10 2010 87.9 \n", "11 2010 78.4 \n", "12 2010 78.5 \n", "13 2010 86.2 \n", "14 2010 90.9 \n", "15 2010 86.9 \n", "16 2010 88.5 \n", "17 2010 88.1 \n", "18 2010 80.4 \n", "19 2010 68.6 \n", "20 2010 30.9 \n", "21 2010 59.8 \n", "22 2010 50.3 \n", "23 2010 62.1 \n", "24 2010 56.0 \n", "25 2010 51.8 \n", "26 2010 65.6 \n", "27 2010 54.1 \n", "28 2010 79.8 \n", "29 2010 33.7 \n", "30 2010 51.6 \n", "<U+22EE> <U+22EE> <U+22EE>\n", "43 2010 60.9 \n", "44 2010 43.2 \n", "45 2010 43.3 \n", "46 2010 40.5 \n", "47 2010 42.3 \n", "48 2010 52.0 \n", "49 2010 69.5 \n", "50 2010 53.6 \n", "51 2010 29.8 \n", "52 2010 31.4 \n", "53 2010 19.0 \n", "54 2010 56.0 \n", "55 2010 24.5 \n", "56 2010 10.9 \n", "57 2010 28.9 \n", "58 2010 18.3 \n", "59 2010 9.2 \n", "60 2010 18.8 \n", "61 2010 23.9 \n", "62 2010 25.5 \n", "63 2010 16.4 \n", "64 2010 16.8 \n", "65 2010 10.8 \n", "66 2010 22.6 \n", "67 2010 35.7 \n", "68 2010 25.9 \n", "69 2010 16.4 \n", "70 2010 16.5 \n", "71 2010 7.0 \n", "72 2010 20.2 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^food|^clean\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>81.1</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Belgium </td><td>77.0</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Germany </td><td>76.6</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Estonia </td><td>85.0</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Greece </td><td>85.5</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Spain </td><td>81.3</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Finland </td><td>84.4</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>France </td><td>79.7</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Hungary </td><td>85.1</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Italy </td><td>87.9</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td>78.4</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Netherlands </td><td>78.5</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Norway </td><td>86.2</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Poland </td><td>90.9</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Romania </td><td>86.9</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Serbia </td><td>88.5</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Turkey </td><td>88.1</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td>80.4</td><td>Food management except dish washing, females</td></tr>\n", "\t<tr><td>Austria </td><td>68.6</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Belgium </td><td>30.9</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Germany </td><td>59.8</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Estonia </td><td>50.3</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Greece </td><td>62.1</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Spain </td><td>56.0</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Finland </td><td>51.8</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>France </td><td>65.6</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Hungary </td><td>54.1</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Italy </td><td>79.8</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Luxembourg </td><td>33.7</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>Netherlands </td><td>51.6</td><td>Cleaning dwelling, females </td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Finland </td><td>60.9</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>France </td><td>43.2</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Hungary </td><td>43.3</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Italy </td><td>40.5</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Luxembourg </td><td>42.3</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Netherlands </td><td>52.0</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Norway </td><td>69.5</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Poland </td><td>53.6</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Romania </td><td>29.8</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Serbia </td><td>31.4</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Turkey </td><td>19.0</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>United Kingdom</td><td>56.0</td><td>Food management except dish washing, males</td></tr>\n", "\t<tr><td>Austria </td><td>24.5</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Belgium </td><td>10.9</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Germany </td><td>28.9</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Estonia </td><td>18.3</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Greece </td><td> 9.2</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Spain </td><td>18.8</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Finland </td><td>23.9</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>France </td><td>25.5</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Hungary </td><td>16.4</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Italy </td><td>16.8</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Luxembourg </td><td>10.8</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Netherlands </td><td>22.6</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Norway </td><td>35.7</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Poland </td><td>25.9</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Romania </td><td>16.4</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Serbia </td><td>16.5</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>Turkey </td><td> 7.0</td><td>Cleaning dwelling, males </td></tr>\n", "\t<tr><td>United Kingdom</td><td>20.2</td><td>Cleaning dwelling, males </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 81.1 & Food management except dish washing, females\\\\\n", "\t Belgium & 77.0 & Food management except dish washing, females\\\\\n", "\t Germany & 76.6 & Food management except dish washing, females\\\\\n", "\t Estonia & 85.0 & Food management except dish washing, females\\\\\n", "\t Greece & 85.5 & Food management except dish washing, females\\\\\n", "\t Spain & 81.3 & Food management except dish washing, females\\\\\n", "\t Finland & 84.4 & Food management except dish washing, females\\\\\n", "\t France & 79.7 & Food management except dish washing, females\\\\\n", "\t Hungary & 85.1 & Food management except dish washing, females\\\\\n", "\t Italy & 87.9 & Food management except dish washing, females\\\\\n", "\t Luxembourg & 78.4 & Food management except dish washing, females\\\\\n", "\t Netherlands & 78.5 & Food management except dish washing, females\\\\\n", "\t Norway & 86.2 & Food management except dish washing, females\\\\\n", "\t Poland & 90.9 & Food management except dish washing, females\\\\\n", "\t Romania & 86.9 & Food management except dish washing, females\\\\\n", "\t Serbia & 88.5 & Food management except dish washing, females\\\\\n", "\t Turkey & 88.1 & Food management except dish washing, females\\\\\n", "\t United Kingdom & 80.4 & Food management except dish washing, females\\\\\n", "\t Austria & 68.6 & Cleaning dwelling, females \\\\\n", "\t Belgium & 30.9 & Cleaning dwelling, females \\\\\n", "\t Germany & 59.8 & Cleaning dwelling, females \\\\\n", "\t Estonia & 50.3 & Cleaning dwelling, females \\\\\n", "\t Greece & 62.1 & Cleaning dwelling, females \\\\\n", "\t Spain & 56.0 & Cleaning dwelling, females \\\\\n", "\t Finland & 51.8 & Cleaning dwelling, females \\\\\n", "\t France & 65.6 & Cleaning dwelling, females \\\\\n", "\t Hungary & 54.1 & Cleaning dwelling, females \\\\\n", "\t Italy & 79.8 & Cleaning dwelling, females \\\\\n", "\t Luxembourg & 33.7 & Cleaning dwelling, females \\\\\n", "\t Netherlands & 51.6 & Cleaning dwelling, females \\\\\n", "\t ⋮ & ⋮ & ⋮\\\\\n", "\t Finland & 60.9 & Food management except dish washing, males\\\\\n", "\t France & 43.2 & Food management except dish washing, males\\\\\n", "\t Hungary & 43.3 & Food management except dish washing, males\\\\\n", "\t Italy & 40.5 & Food management except dish washing, males\\\\\n", "\t Luxembourg & 42.3 & Food management except dish washing, males\\\\\n", "\t Netherlands & 52.0 & Food management except dish washing, males\\\\\n", "\t Norway & 69.5 & Food management except dish washing, males\\\\\n", "\t Poland & 53.6 & Food management except dish washing, males\\\\\n", "\t Romania & 29.8 & Food management except dish washing, males\\\\\n", "\t Serbia & 31.4 & Food management except dish washing, males\\\\\n", "\t Turkey & 19.0 & Food management except dish washing, males\\\\\n", "\t United Kingdom & 56.0 & Food management except dish washing, males\\\\\n", "\t Austria & 24.5 & Cleaning dwelling, males \\\\\n", "\t Belgium & 10.9 & Cleaning dwelling, males \\\\\n", "\t Germany & 28.9 & Cleaning dwelling, males \\\\\n", "\t Estonia & 18.3 & Cleaning dwelling, males \\\\\n", "\t Greece & 9.2 & Cleaning dwelling, males \\\\\n", "\t Spain & 18.8 & Cleaning dwelling, males \\\\\n", "\t Finland & 23.9 & Cleaning dwelling, males \\\\\n", "\t France & 25.5 & Cleaning dwelling, males \\\\\n", "\t Hungary & 16.4 & Cleaning dwelling, males \\\\\n", "\t Italy & 16.8 & Cleaning dwelling, males \\\\\n", "\t Luxembourg & 10.8 & Cleaning dwelling, males \\\\\n", "\t Netherlands & 22.6 & Cleaning dwelling, males \\\\\n", "\t Norway & 35.7 & Cleaning dwelling, males \\\\\n", "\t Poland & 25.9 & Cleaning dwelling, males \\\\\n", "\t Romania & 16.4 & Cleaning dwelling, males \\\\\n", "\t Serbia & 16.5 & Cleaning dwelling, males \\\\\n", "\t Turkey & 7.0 & Cleaning dwelling, males \\\\\n", "\t United Kingdom & 20.2 & Cleaning dwelling, males \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 81.1 | Food management except dish washing, females |\n", "| Belgium | 77.0 | Food management except dish washing, females |\n", "| Germany | 76.6 | Food management except dish washing, females |\n", "| Estonia | 85.0 | Food management except dish washing, females |\n", "| Greece | 85.5 | Food management except dish washing, females |\n", "| Spain | 81.3 | Food management except dish washing, females |\n", "| Finland | 84.4 | Food management except dish washing, females |\n", "| France | 79.7 | Food management except dish washing, females |\n", "| Hungary | 85.1 | Food management except dish washing, females |\n", "| Italy | 87.9 | Food management except dish washing, females |\n", "| Luxembourg | 78.4 | Food management except dish washing, females |\n", "| Netherlands | 78.5 | Food management except dish washing, females |\n", "| Norway | 86.2 | Food management except dish washing, females |\n", "| Poland | 90.9 | Food management except dish washing, females |\n", "| Romania | 86.9 | Food management except dish washing, females |\n", "| Serbia | 88.5 | Food management except dish washing, females |\n", "| Turkey | 88.1 | Food management except dish washing, females |\n", "| United Kingdom | 80.4 | Food management except dish washing, females |\n", "| Austria | 68.6 | Cleaning dwelling, females |\n", "| Belgium | 30.9 | Cleaning dwelling, females |\n", "| Germany | 59.8 | Cleaning dwelling, females |\n", "| Estonia | 50.3 | Cleaning dwelling, females |\n", "| Greece | 62.1 | Cleaning dwelling, females |\n", "| Spain | 56.0 | Cleaning dwelling, females |\n", "| Finland | 51.8 | Cleaning dwelling, females |\n", "| France | 65.6 | Cleaning dwelling, females |\n", "| Hungary | 54.1 | Cleaning dwelling, females |\n", "| Italy | 79.8 | Cleaning dwelling, females |\n", "| Luxembourg | 33.7 | Cleaning dwelling, females |\n", "| Netherlands | 51.6 | Cleaning dwelling, females |\n", "| ⋮ | ⋮ | ⋮ |\n", "| Finland | 60.9 | Food management except dish washing, males |\n", "| France | 43.2 | Food management except dish washing, males |\n", "| Hungary | 43.3 | Food management except dish washing, males |\n", "| Italy | 40.5 | Food management except dish washing, males |\n", "| Luxembourg | 42.3 | Food management except dish washing, males |\n", "| Netherlands | 52.0 | Food management except dish washing, males |\n", "| Norway | 69.5 | Food management except dish washing, males |\n", "| Poland | 53.6 | Food management except dish washing, males |\n", "| Romania | 29.8 | Food management except dish washing, males |\n", "| Serbia | 31.4 | Food management except dish washing, males |\n", "| Turkey | 19.0 | Food management except dish washing, males |\n", "| United Kingdom | 56.0 | Food management except dish washing, males |\n", "| Austria | 24.5 | Cleaning dwelling, males |\n", "| Belgium | 10.9 | Cleaning dwelling, males |\n", "| Germany | 28.9 | Cleaning dwelling, males |\n", "| Estonia | 18.3 | Cleaning dwelling, males |\n", "| Greece | 9.2 | Cleaning dwelling, males |\n", "| Spain | 18.8 | Cleaning dwelling, males |\n", "| Finland | 23.9 | Cleaning dwelling, males |\n", "| France | 25.5 | Cleaning dwelling, males |\n", "| Hungary | 16.4 | Cleaning dwelling, males |\n", "| Italy | 16.8 | Cleaning dwelling, males |\n", "| Luxembourg | 10.8 | Cleaning dwelling, males |\n", "| Netherlands | 22.6 | Cleaning dwelling, males |\n", "| Norway | 35.7 | Cleaning dwelling, males |\n", "| Poland | 25.9 | Cleaning dwelling, males |\n", "| Romania | 16.4 | Cleaning dwelling, males |\n", "| Serbia | 16.5 | Cleaning dwelling, males |\n", "| Turkey | 7.0 | Cleaning dwelling, males |\n", "| United Kingdom | 20.2 | Cleaning dwelling, males |\n", "\n" ], "text/plain": [ " geo values bd \n", "1 Austria 81.1 Food management except dish washing, females\n", "2 Belgium 77.0 Food management except dish washing, females\n", "3 Germany 76.6 Food management except dish washing, females\n", "4 Estonia 85.0 Food management except dish washing, females\n", "5 Greece 85.5 Food management except dish washing, females\n", "6 Spain 81.3 Food management except dish washing, females\n", "7 Finland 84.4 Food management except dish washing, females\n", "8 France 79.7 Food management except dish washing, females\n", "9 Hungary 85.1 Food management except dish washing, females\n", "10 Italy 87.9 Food management except dish washing, females\n", "11 Luxembourg 78.4 Food management except dish washing, females\n", "12 Netherlands 78.5 Food management except dish washing, females\n", "13 Norway 86.2 Food management except dish washing, females\n", "14 Poland 90.9 Food management except dish washing, females\n", "15 Romania 86.9 Food management except dish washing, females\n", "16 Serbia 88.5 Food management except dish washing, females\n", "17 Turkey 88.1 Food management except dish washing, females\n", "18 United Kingdom 80.4 Food management except dish washing, females\n", "19 Austria 68.6 Cleaning dwelling, females \n", "20 Belgium 30.9 Cleaning dwelling, females \n", "21 Germany 59.8 Cleaning dwelling, females \n", "22 Estonia 50.3 Cleaning dwelling, females \n", "23 Greece 62.1 Cleaning dwelling, females \n", "24 Spain 56.0 Cleaning dwelling, females \n", "25 Finland 51.8 Cleaning dwelling, females \n", "26 France 65.6 Cleaning dwelling, females \n", "27 Hungary 54.1 Cleaning dwelling, females \n", "28 Italy 79.8 Cleaning dwelling, females \n", "29 Luxembourg 33.7 Cleaning dwelling, females \n", "30 Netherlands 51.6 Cleaning dwelling, females \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE> \n", "43 Finland 60.9 Food management except dish washing, males \n", "44 France 43.2 Food management except dish washing, males \n", "45 Hungary 43.3 Food management except dish washing, males \n", "46 Italy 40.5 Food management except dish washing, males \n", "47 Luxembourg 42.3 Food management except dish washing, males \n", "48 Netherlands 52.0 Food management except dish washing, males \n", "49 Norway 69.5 Food management except dish washing, males \n", "50 Poland 53.6 Food management except dish washing, males \n", "51 Romania 29.8 Food management except dish washing, males \n", "52 Serbia 31.4 Food management except dish washing, males \n", "53 Turkey 19.0 Food management except dish washing, males \n", "54 United Kingdom 56.0 Food management except dish washing, males \n", "55 Austria 24.5 Cleaning dwelling, males \n", "56 Belgium 10.9 Cleaning dwelling, males \n", "57 Germany 28.9 Cleaning dwelling, males \n", "58 Estonia 18.3 Cleaning dwelling, males \n", "59 Greece 9.2 Cleaning dwelling, males \n", "60 Spain 18.8 Cleaning dwelling, males \n", "61 Finland 23.9 Cleaning dwelling, males \n", "62 France 25.5 Cleaning dwelling, males \n", "63 Hungary 16.4 Cleaning dwelling, males \n", "64 Italy 16.8 Cleaning dwelling, males \n", "65 Luxembourg 10.8 Cleaning dwelling, males \n", "66 Netherlands 22.6 Cleaning dwelling, males \n", "67 Norway 35.7 Cleaning dwelling, males \n", "68 Poland 25.9 Cleaning dwelling, males \n", "69 Romania 16.4 Cleaning dwelling, males \n", "70 Serbia 16.5 Cleaning dwelling, males \n", "71 Turkey 7.0 Cleaning dwelling, males \n", "72 United Kingdom 20.2 Cleaning dwelling, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Food management except dish washing, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Cleaning dwelling, males\",\"Cleaning dwelling, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Food management except dish washing, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd),decreasing=TRUE)\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZYDURhsA4Kycuxt32AF3h7sXdyiuxUqhWAt8heJaihT34m7FHYpT3J0z5Dh3\n173bzfdjYTdZySa7O5HjfX5t7iaTSTIzmeSNiHAcxwAAAAAAAAAAAAAAAAAAAAAAAACAnpjr\nAgAAAAAAAAAAAAAAAAAAAAAAAADfCgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAA\nAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAA\nAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAA\nAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAAAAA\nAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyB\nID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAA\nAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAA\nAADAEgjSAwAAAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAA\nAAAAAAAAAAAAAAAAAAAAACyBID0AAAAAAAAAAAAAAAAAAAAAAADAEgjSAwAAAAAAAAAAwGxw\nee7FnYsHdPkuwNfD1srS1cu/et3GS2JyuC4XAAAAAAAAAADAFxCkFyy8SGRuN7KKuF4r8E3w\ntZIyqplisdjeyS2gQuU6DVr++OvMHf9ciM4r4XolAAAA8EVhxgXiUaPR2rdclwiwLSdmEbEO\ndLoVz3WJABAAdJ1nQdLN7lX9O/80658Lt2MSUgtkxRnJsW+ePXiTX2yuRQgRHK0AAKwiXzas\n0PMG1wUCvAYHqW9HyuO/pGKxSCSy9+lboOC6NAAAczvcr6KyJ28+/w7XZQG0QJAe6HWqqodG\nrPR53jd9VYWP8BIXCwmjgDdRm9NRXK8ALTiO52Wnx3yKfP741u4NS0YO6FLRzX/gpKUv0kr5\nbSVctUFo+yqwKQAAggCdFTAaVB5gdgpZYr86Xc+GZ3JdEAAAAAAA3nmxrJly1C0WW+6NzWV5\n6fLCT73az5PjOIZh/zuzyYZGaCj83r8bl84e2LVljZAqZbw9bK0sHFw9K1ap1rR1j2mL1l9+\nGIqbUJ6SvNiT2/8a0L1jozrVyni6WNo4BgSGNGnRbsgv884/eG9Cxsgzj3p8ZcOSmb3bNw2p\nVN7TxcHCys7Lr1y12g0HjPpt84Ez8HSZQcKtVxqKMq+JxWJlo579OZvx/AiCO713HvG1kmAY\ndndh+61wUiYEUq4LAAAwniz7bmbJt3jTY0lR4uG1M07s2P3XkbOTOlXiujgAAAAAAAAADMOw\nd+v7nIvP47oUAAAAAADmkR7x4MiJU//efhobG5ejsPHz9Qlp0KpHj15t6pZnmlVJ/rvu8x4q\nf5ftvntoGXtzF9aAHT+0vpNZhGGYd9NlC+t7UCe+/c/apcuWXXim9ZYyWUpuRsrHiLf3bpxe\nNhvzqtlxxsxZv/RrJmFSEkVxypoJP/6541JGsZz495gPoTEfQu//d3X/xj9cKzX+c9OBsW0Z\nb2ekmYde2DZn8V/H737Q+Hty/Ofk+M9vXzz6Z/tqqbVv//H/mzN/YhV7C6b5l3rCrVc6fT71\nB44bf0cBiuCOhX3dc/Mb15lxB1cU/K/F4B4xZzwt4FFtXoPdA4CAFaRf4LoIXJLlhv/WJfh/\nxz9yXRBmMiJ/It7y9kN4Otcl+ubALig1YFcCAAAAfLNqxQviZNnWI07fevQ5ITU5MX5dRWeu\nSgUAACyDUxUASoGi9Oczh7TyCmoydsZfpy5cffIqNPzNs+uXz2/4c0rbehVCOoy8GJbFKMOr\n/+sdXViCYZjYwnXvnj5oSq1XytMFo09EYRgmEklWHB1HkVIhS5jfv+Z3AybpiKRqSXp5aVL/\n5lU6TgzNoftGrsy3pzsFB07efF4jkqohPfL++PaVuk/ZmqdgEARFl7miJG3N2DYhXX7WjtBr\nKCmMP7Dy91plG269EU233PQI+uAi6Hqlz7q5z02ZHVFwp+aUU7XsLTEMy08632X+fRSLAGYE\nT9KXHt3H/FremtGtRZr8rUyaHbAv881TrotgBq1Gja9pR3VfoSw/Jz09OfT5o5cfkjT+hePy\ndQPr13z7cXglJ5RlBAAAAAAAABiAy7P3JuWrJq1dOjz7d7urVMRhkQAAAAAAjJD27EDbNj+9\nyNT7qc3Qyzu61Tw79+DNub2D6WRYmH6x744I5e/qE042d7Q0T0FpUhSM77Zc+dO76boffOz0\nJixOGVIz5GAYs7dkf/h3XZ3y9y+G/tfSw5o6ZUHy1UYN+obn04q84rj8zMrRdaJz3v4zmc6I\nEl3muCJvRrvqy24m0MlZqTD9+Zi2QUkXI+e096M/V2kl6HqlT9aHdRtjcoyfH1lwRyx127ew\nYfX/3cYw7Nmybtd+T2jjbIViQcAsIEhfevy8eFlnFwO9FShlEi6RRgaVg4IYvRwjgB+v3Om9\n4K/x+oeGRJkf7m9c89eCTWeKCXe6KYrTf+u6cHj4CmQFBAAAAAAAABhWkh8mJ7zvsXzfeRCh\nBwAAAIDg5MWdrdt0+OdCA18Wl8uS5/erbXEzakZzb4N57un/c65cgWGYhW3QqUVNzVNQ2sK2\n9T6akIdhmEgkmndgCEXKrUOaaEdSy9Vv161929pV/N1cHfIzUmIiXly5dPbK40/ENIVpj7vV\n6fM04lRlG70hJ3lRzKB6vTQiqRZ2AX2G9a0ZWMHXWRL96dPzGyeO34kkJog4OqVz/eaXf29A\nvY5IM98/rJ52hL5sneaNa1QNDg4u5yZ9Hx4WGhr66Mat6Dx1AXBFwYJudQI/fBjI+qcN+Ea4\n9UovvGhqx7lGzvsVuuBOyLjDVWaVC88vVpRkDOuzLfbqL8aWESAHQXqgl0vNeo0cSV2nnRiu\nsPDLx/+SVb+lNoHhoaEcFoYFzhUbz1p/ali/rfXbjkuUqV9ckxGxcvbLGX/WdOOwbChw1Qah\n7avApgAACAJ0VsBoUHmAeSkUpK/R21WgdScuAAAAAAB/4Ir8wQ0GEiP01bv/b/qPnevVq+cj\nSX/69OnNk38v3HlTgeMYhuGKorkdmndPDQ2xpYqzZL3fOO5anPJ3yxUnyrH7OltFSWr/ydeU\nv12qzBsd4KAvZfz1sWP/eU/8i7Vbg78P7RreLkQj5e9/rH1/69CEkWMvvle/8z839nzHIUc+\nHhukL/9TP7U+RX7yuNXErQf/GuFN2iBLPz/4p1+X4Y/SC1V/ujajzfkfU7q4Uz2giC7zzLA1\nww+EE//iULb1lv1bBzarqJFSXhi/a/4vY5edKvl636pclvxrl0UDXy6hKHmpJ+h6pRNekr50\nYOOt75l98EIbuuCO2NJ334SQBktfYhgWf33Ctpjho/y/9TtF+AsHAqUo1NiV59MLuC4TYNsQ\nL/VlLwf/37kuDl0+lqSR6Ib4XKY5RF+coFH/y7Q+hqKoKKRHjCCWfFBYGtcl+ubALig1YFcC\npYL088Sa0HDNG65LBNiWHf0nsQ50vBnHdYkAEAAUnWdh5nVinvWWvjQ9z1IDjlYAfFO4P1Uh\nXzYs3+M62wUAggIHKaLwHV1Um0IsdZq//752mvdXNgfZqp9hDRl7hTrPKcGuypTWru2zSxRo\nCq5X2PZ2qqIOpTxX+sGbdIeltXPzR2mFFOnlssTfv/MhziISSbdHZetMnJ98xIJ8Q3CbPy/p\ny7kg9UEzJ9ILusu02UFREqSZz6zsQkxs798tsqCEIv3LbcMwsqmvUynS08f9wcUowq1XOhaX\nFH5o0x8NfHXcizwrKotRVjji4E5h5nXVlvH9brN5MwdmxOj1CQAAXlFcItz55VixFYdFYZl/\nx7VTKzoT/5L8eBlXhQEAAAAAAAAAAAAAAJQCC2bcUP3ute3+vB8aaaep2Hb0ravzVJMRu37K\nI3yaU0PCfxNXhKYrfw8+uMNBwuqbq3B57k+T/1P+trSvtam5j76UOTErDiSq34okEon+uHqi\nvivVp6zFFl5LLj9sS/gCL46XLBh1SWfiK+OnEz9g6hI87tLMDvpytnZreOzCNJFIva3iboy7\nkVWkLz26zGXZt5dGqt89JhJJlt/cH2hN9S6EGiN3L2voRfzLod/uUqQv3QRdrzAMK857fXTv\nlvnTJvTt2jakvI+Dd9DAcXMfxedRzEIb2uCOlVOr5bXclb8Tbv9yLLnAvPkDc4EgPQBCJct5\nmFKsfuW7X1d/DgvDvpFzaxAnZTmPwgsMfCkKAAAAAAAAAAAAAAAAdCrK+Pdgcr7yt41rl0PD\ngvWl9Gw8a3HQl+fjSwqjF37U8+JrReH4vtuVP50qjtnSoYw5i0tD3PVRd7/GIAOHbaT4uFXo\nqj3ESZcqc36v624wf4mV/67DA4l/Sbg9VaZ1x4KiJG3M6c/Ev8y9sERKebuCV5MFq2qpC4Ar\niqZuCteZEmnmaa9XKnD1+jj4TxlTwZEqawzDMOynXaRtkvJkvcFZSivh1iulzPez+g0bs2DZ\n+mPnr4VGJcpxvbfjMMVCcGfA398rf+B4ybTxN6gTA67AN+mBmRWlfzh1+NCRM9c/xsTExsbm\ni53Kli1brnxw9yE/De3R3EYgt4W8v7F364nboaGhCXnicsEDj+0cS5G4OCv637NnTp+++OZT\nbEJCYlJypqWjk5ubb7W69Rs3a913UK9AF6pbw4xWSH4VVYW23iiWwlteLVpg2H/EvzzIllWx\nMdCn5ca+OnLk9INnL169fhObnJGTk5Mnw+0dHB0cHQMqhlSvXq1pm649OzW2N/meVkZVyLxw\nRd7jK2ePHz9x//XH+Pj4hIRUiZ2Tm5tr2aDaTZs2a9djQMtgwyMhUyS+vr59x57bLyI/f/4c\nE5dm5+Ht4+NbNqhO9159enb9ztXSmF6AtR1nHrjs3f2r586du3L3RUJiYmJiUnaJhZeXl5eX\nZ8Xqjbt06dKpQzMPyltuacr+9Gj71m1XHoXFxsbGxMYVS+xd3dyr1GzQrHmbwT/9EOhsafoi\naKJf4Xm1K7nqvfVB0XYwtlYTUaeXFHrv2LFjZ68/jI2Lj09IkEmd/Pz8yviXb9Wt38ABPSpS\n3nltEK9qI+e47U84PHKhayCsVTDOjwVmLwB/ziaEuxORdp4IIR1BocychxtcIUv99/DevYfP\nh0fHxsXFZZVY+vj4+vlX7NBn8LDBPQIcLLRn+fzi+pEjR85ef5yQlJSclFwstXdzcw+q3ahl\nm+9HjerlyXAcItzmg7TkqPs3FkZ9nFctdlYT48HhFTFF2J2z+/YfvP3yQ3xcXHxihq2rh7eP\nT5nAml279+j+fXt/Rx27kv9KQRPDBDgqEPT5pk658eqAon/X6dTRvj4zq84celv5+86NJCzQ\nWTvN+/39T36N+s84vYj9S+M7fvlX9Xv0jBoUKc+ciCZOtvp7NM1F+LVZ62+1L6boy9NTJYVR\nJ1ILBnjYENOkPv89QaaOR9p5DZlUznCoe9Dm3v9ruFk1GbpuHTZju3YypJknXiVtloBevQzm\njGGYc+BMDFujmizKvJmvwG313yHBBrYuV2oQbr1CjYXgjmed5X5Wu+OK5BiGfT77c2JxtLeF\nQOJz3xSu37cPjIX+m/RMPyhYUhCzbEwHG/0HG1vvasvORigTa3zr6Hqmjs+QfDrVmpiG/pfL\nu7iqO2vnCqvorN2zXNmXv2c8HtOlJvFf9t4j9S1IlhW+eHQnG8rzc7HErvWwWU/i82gWnr7o\nS+2IC9qXZM5F5CUf0FgRM37AzPRv0uM4npe0R6OEy2J0f5lGKSP03xFta0hEhgdDlo5lxy09\nmGnoA1GMqpDGt3IpqPLRXoThj3oqii/+PT3QieqcTSQS1+4w9HxYJv1V07lc4k6c/PFLblmR\nF3o2rkixdKm17y8rjuXLDawHkbl2HEu7AFfcO7y8URkd3yUiklh6/Dh3e2KR4Q2hUYDjqfnK\nvxdlvhjVsQ7FZhFLXfpM22bG75yZ3mdyuys1cNh7s9Z2zL6aZjlu0pf+7uLQ78pTlFwktmk3\ndkWiTI4z/4CiGY8IK6u6EdOvjc2hv46HW/sR5x1+J4H+vBrodFb86U9IzHTkMuKb9Oj6AdRD\nDvPuO15VHrOfTRhNWDuRCGnnqZfWmak++r+aaeYRFGuZc7PBvyop/ETMUFWv7u2c6mer995l\niaXn3EOkll6Y9nJi1yCKtbB0rLj4xFuapRJu8zF7yYlQ92/mPajxs2qZfTVRVC2znKqYjZ5v\n0qc+P9q2kou+gmEYJpY6DpqxOUmmtz/kyQCYSFhNrNSMCgR9vkkh9rr6RdmN1hvoo1Lf9lUl\nrjn9iXYCeVF8LfsvJzs+TVeiKTKVgrRzqkpl7dyKuvZoXLB9mM2gp1pUzok476iIdI0E1/pU\nICZotI5e/y8vCCQ8kSUSSV7nFWunQpr5vZ9Jb1Nouj2MVuY47mdF2p4fKT9jT8EcBxekg20D\nhFuvlJJfdKO5/Zl+kx5pcEflUAtf1SK6n4pCsQhgIgjSCxbPgvTJj7bWId/HpJNIJOkz55Cc\nr0H6woxH7f00D1f6Bn9vDs8qZ0v35mKJhcfMvY9olp+mh5OqETasRXqxOa+e8z9InxU1T6OE\nm/Tn83DzKOrTBm0uVQe8pTxtZlSFWIgQF6Y96FXHS1+2GsRSlwkb79JcNZpB+kd7Z3pZ0rrd\n0rVql7uptPorM+44FnZBcX7ET80C6BfV2r3mzicp1FtA59l76rOD9Vyt9WVL5F5nZKL+ayuM\nmNhncr4ribjtvdlpOyhW0/TjJn3nFw6kWWHs/b879iGL0RUl8x4Ros6Sztaq/nKf5jrKZQnE\n/S61CWR0rV+D0XFWTvoTdZHMd+RiGqRH1w+wMOQw777jT+VBcTZhHMHtRBWknScV04L0KEZQ\n7GTO2Qb/SjuSqpDnLhnW0GB5RCJRzz9uKTNJurs+0M5wfygSiUYfijRYJOE2HxQlV0Hdv5n9\noMbDqoViNVFULf4H6W+tHmMvofUIna1X3WPhum+R5MkAWEVwTax0jAoEfb5JLeVlH9WyQsYa\nqN6fz7VVJa6//JV2gofz6iv/KxJbHU1EEoGj9nia+tH5oJF3KFLKcl8St7OVYxNGCzpVw4M4\ne6+3qRoJBnnaEhMspXzUiujvENKNQUNe6BiqIc388VTS6wfqzH9OK2tFsRX5ziGjL92beHBB\nOh42SND1Sqk4790dPVaQ71pjGqRHGtxRSXwwTLUUpwozUSwCmAiC9ILFpyB96rPtGreGUWu9\n4CYPg/TF+RHtfHXcUKZz8Hdv0ygpjVvsNXSef4HmKtBxuJb6KGXt0pb4r4yYsAd3bp0/c+rf\n6/+9eBuelFHENHP+B+nfH2ylUcJHObrPcsN2jhQz31kYhjlXGlGo/+DIqAqhjhDnJ91q4WWr\nL0+dRCLx6N26T7qMCNJHHhrDaOm2ni1upxjossy741DvgsKMJ99XNPw+JQ0SS6+VV2MpNoL2\n2XvWhwNuFgz6W/+O66m3M02m9Jl82JUqnPfeLLQdRKtp4nGTvmMz2jMqtpVzw1sfTxL/QnFF\nyexHhOKCSOKFTmuX9jRXM+ZKX2L+Ffv/a9zmUjIuzspVf6Jk3iMXoyA9un6AnSGHefcdTyoP\norMJIwhxJyoh7TwNMCFIj2gExULmXG7wr7QjqTuGhdAsj0hsueZFauqz7T707hTEMExs4Xo3\ni+q8UrjNB1HJlVD3bygOanyrWohWE0XV4nmQ/v3RCYyqutQmcO9LXTdX8WMArCTEJlYKRgWC\nPt80KD/5oGpZdl5DqRPvaeqjSjz4abLGf2U5T1Q3pgQOOoGsyFQGEkKYv7zT904jHMfxvKT9\nxO3s6D+D0YL+Jr+iQ/XiQCVFcRoxYi2WOmfRvkfn1fL6xJxrz3umkQBp5jiOR51tQ0zjUXsr\nnZzzEkmvT7ewq06zSNpMObggHQ/TIdx6RceFRj7ETJgG6ZEGd1RKCj5YfN1KIrHFKxZGIIAh\n+CY9MFVh+rW6TcYov2yhYusd0ndAv4bVKvh6OWQmxEW+vHv44IkPGUXK/96Y33Z+8CYuCktl\nc/+2V+Lz6KT8dGx00/HbcRwn/tGjSsOe3bvVCy7n5W6XmZgQ8eLuyZOn3pEzvDC/80CPV4fG\nVTdLga8k5qt+27j3wDAs88P9v9evP3Dy0tvoDGJKkUhauV7Ljh07Dhkztq4vswvivLVn/gvi\npIVtSD17HffwynIetR27W0HeWdZuQT8M6lIhIKBMmTIuFrK4uLi4uNjbZ/ffCk0lJsuM3Nlr\nx9TzI6vQLBJFFZJY+jVq1Ej5W1748fGLZNW/3GvVC7RWd8V2zL9OJJfFdanW8VZKAfGPVq4V\new4Y0KxmoK+Pc1pU5LvQ0Kc3z/wXmqZKgOOKrSPqt2ibMlDrrmSmsiL3Nxq6jfgXO78anVrU\nDfD3UeQkx3yOuH75TkaxgpggP/lWxxr942JOOem5s9vsOw7pLsAVeT/XaX3mUzbxjyKRtNp3\n3Xp1blHBv4yLVUl8XNzr+1eOnbyaVFiiSiOXJf3esXrFmNju3rQaprwwun/jUWnFX/pb76rN\nB/TrVT+4vJebZUxEeOi7t5eOHHiVRKoJMZd+XfRu0KwQV6YrZRDNPpNXu5InvbcKiraDsbia\n9I+b9IXt6NNnyWWNP4qljs269mlVP7iMn1dJZuKn9y9PHToekfblsmNR5sPOzTXfraITiiOC\n1DpwcVXXCa++JC7MuLwpPm+crmtJGo7+doM4OeavxnRWwYy47U84PHKhayCsDTk4PxaYvQD8\nOZsQ7k5E2nnSIFIdmnF59sPH71T/sA+oUY1w9kE8TGOIR1BIM+d6g+t2b3n3lXu+bHxrt+AB\nQwe1a1LD21nyKezd61ePDu4+mVKsbmW4QjatZbe1hY9VX/F0KN9g6A8Dmtep4mFdFPr2zYsn\n1/cevSVTqJuDojh95PTH7zY11bl04TYfpCVH3b+xM+rjtmqxtppmqVpIzzpNlPN5X4NBe1RV\nXWrr07F3v5Z1K7m5OhWmJ3z+9O7c0aNvyBuwpOD9T01a1k1+FkL+zAF/BsClo4kJblQg6PNN\nOmw8BrZ3GXE5oxDDsLykveMvLdrYsYzOlDlRB36+n6j8LZY6LammuUfOjx2QJJNjGCax9Dq8\npSvKUutWmHHhUPKXq8diie3Mis4UiaVWZaZMmaKatPPsx2RRii0JpJ3VysmKOJmferKI0PPb\nuPd0pP0CmzLfV8N+f6yajDsdic2vzVrmGIZ5NhqNYddUk2lvpj/KGdbAgeqTbRiG3V+4ijjp\nWnUSzSJpM/rgwtrlSgrCrVcsYCe4I7GuMMrbblN8LoZhuKJ45q2Es50ZvFkBsIG7+wOAaXjz\nJP2CRqT3lIqljj8tOaJ9O7miJGvb1F6q23bEElJvwvmT9Ed3DFb9FomtmncfvGDVtqt3Hr4N\n/5icnk+csSjzbnny1SUr51or/rmnfZuWQp53cs1vGvePi6Uux+OMeXBcGzHnCn0PrZ7QzcLQ\naZ5Y6tjr16WR+j+yosLzJ+njrk3VKJ7vdwd1pvz3h0DSFrBwnbnplJ63xyjeXDvUinxi6eA3\nXl8ZjK5C6REjiDPq/zYn3TZ49EfSVSGR2KrfjB26vlImv7NvtsbG96gz17jlEvOxtlDfRG/j\nUW/D2Ucy8sKLc+MOL/3ZRar5Vr2Gs27rW3d0Ow5HsAtuz22isWpe9fpdeJehnbKkIPqv0e00\nPjLnEjS2SM+NnhoF6NTsS39rYVtp4T4dW09RkrV5YluMLKDjGYqtQZPRFZ4nuxLnTe+Nuu2g\nW02j6wB9hRk3NZ6DEYlE3w1f+D5L8z5fhTzvzMqxzlpb5sv20fPYB6LaGH2pJzFZtf89NLim\nstwX1oRDto1bd4OzUDPiYWgO+xMcwZGL5pP0SPsB1oYc5t13fKg86M4mmBLqTkTceTLC6FNB\n6EZQSDPnzwbXeNxZ5btxq+MKNT96mp94t1s5B53pRSLpkEUHc7Q64aTHu6uQX2Vs695LX2EE\n2nyQlhxH3L+hO6jxqmqxNrg1e9VidKqChP7XnLQYsThGa1fiiuI7++ZX1PpIQbnuW7Tz5sMA\nGBdsExP0qEDQ55v0PV/YSLV0qVXAthuftdNkRVxuRfjOQkCXvRoJ8hKPqZ7xrT/nAeoy6xS2\nrZmqhI7+09EtKO3NTOLus7SvrZEg9e1gYgLXKjvoZ56XuJM4r4PfBDYzV5pKvifGv/MS6heT\np7/e6UhuXNMea75owTiMDi5IB9ss4LZe0WHik/RIgztE98eqX4nkWXc7o3kBCyBIL1j8CNJH\nXxhFTCOS2PzxbwxFnq93jMB04TxI7/D1VV2Vvp9y9wPVx0uWNvYmzmjv3/UB5ZuH098cqWlP\nurfOo85SmitCQZbzhLTlmdyFbV+m1fn3Bo4ZhemXGpH1mvrE9GIrmRikT3iwq4yV5ltAZr/U\n/CYNjuO4oljj5H/SxWjqzAszbhEzF4lEn7TPXZUpja1C5o0QZ4QuJw6hRCLxuP2hFEtPurvS\njvwJuh1a38RiGqRXcQke8kH/KCEz/FQI+YRfLLHX3XGh3HG4uXdBQeoZjS+9+bWZrn0piujB\nuoEam67bXt0fYtQogJKFXdXjEVRNeMcPFYnprV3aUSSmycgKz5tdifOm90bbdlCuptGdHn3r\nm5FOb0Qi0Y9/P6ZIn/Jks7uu10LqvqKErDaWFEYRT79tXLsYXNPwXS2JJam3mCqIRYcRcVYl\nTvoTFEcumkF6hP0Ai0MO8+47zisP0rMJZgS7E9F2ngzRD9IjHUEhzZw/G6OZk78AACAASURB\nVFxnJPW7OWf1pc9LPK/zW9RjD+gtSezliRorG1+k60PIgm0+SEuOun9Dd1DjUdVicXCrZMah\nEW+D9B3mX6aYqSD5dhM3zS+jLwnXjOjwYQAs3CYm6FGBoM836ZPLkojPSYtEko7jV955Fp5X\nosDxkpiwZ/uWjCLe3yCWulzL0KxIK7++Cd/Svpa+Lg61bdXcVYUMGnkX1WIUsjGBpGf0Kw+/\nppHk/cEWxAQVet+gn31JQSRxXu1ILdLMlXKiT2rcnlK9/7xYPQOAyItrNUYXQYM20C8SNfoH\nF6TjYTZwXa/oMCVIjzq4Q5T8fJBqXqlNBW76I6AfBOkFS2u03fuX/00xyob7STqXQOMKi2KI\nN+ku8tarnhos+PEfK2v3LJwH6ZVqjdtOfR9c9ueNxPRS64CLWpeJtaU+X088KIpEoi2xOTTX\nRZ+szwv0ddN0SK38j0SxPcZVMTpInxP9dMWUftZaBy3X4Gk60+cl7SMmcyo/lc5SLnQvR5zr\nnxTdt+gaV4Vwc0eIlxK+XoNhWLVfLxpcwSu/kt4tVmOq5gmbcUF6K8fGL3MMfNUm491+B/Ll\nm8rDr2onQ7rjcHPvggsDSKfKNu4dU2SGRzvHhpN6QhvXTjrn0VnNZv2XQJ25LPcZMaAlljob\nLI9BxlV4/uxK/vTeSNsO0tU0utOjKT/lmMZd2w1mXTE416fT47RLpfOKEtLa+HdtUle8LcHA\ncW2iv/qBM5FIYnpw0eg4Kyf9CYojF50gPdIGwv6Qw1z7juvKg/ZsghGB7kTUnSdT9IP0SEdQ\n6DLn1QbXjqS6Vp1MfVw+0NJPY5bAwQcoF6Lo6W5DTK8dhMAF23wQlxxt/4b0oMafqsX+4NaM\nQyN+Bun92qwxOF9u7DkPctTWq+Fm7WRcD4AF3MSEOyoQ9PkmU6nPNjlqvWZAYunoqfWpTZFI\nNO5QhMbsaW+WqhJ8v1vzv2xRVCXc7t/lhu77mE236+dapA0itj6udWR8/kcdYpq6C18wWgTx\neohYYstm5ipJ99dqVAlLxwo/Tpm3de+R/x69+vzh3fULJzatWjyodQhG5ttqRp7cbPWY/sEF\n6WCbBZzXKzpMCdKzGdwpSD9PnPdwMvL3kQBGIEgvWPrfW8VUk826n14yeIUlO5r0bRUb9y7U\nd2MpFee98td6DJoPQXp7vz5Zhsp/tkd54iwt19K9sHLpJ9JrXUPG36c5oz4xVzto70qxxL79\nwF/2nL0d8TEmu6A4PyvtU8TrE7vWjPi+nkikGdi29erwsUDv86lIacSo2oydSH0fycRfxgwd\n1Lt+sL9Eay0wDJNYeBz8qPuYlPqmPzFlky1UD+qphG0nfQxvu55TDuOqEG7WCHFh5k3iNrGw\nrUJnnxZlP7Qk3Ohg7zOG6XJxXYHGEed0vP5L261pdYlzWdgGaQ9Vke443Ky7QFGSqXEv7e93\nDJxaKxXnhwbakGZc/FHHSE67mnk32Ugn/7llHYlzab/xjynjKjx/diV/em+kbQfpahrd6dH0\ncDIpCmvj1jGD3vWYOeTrg5ieK0pIa2Pstb7EZNohZKKCtDPEg7JL5QV0SkLNuDgrJ/0JoiMX\nnSA90gbC8pDDjPuO28qD+myCEYHuRNSdJ1M0g/RIR1BIM+fVBteOpC4JTaeeJepcG2J6sdTx\nfnYR9SzXe1cgznIgWUclF2jzQVpy1P0b0oMaf6oWy4Nb8w6NeBik1/mwr05PljQnzSixj8jX\nfO8XtwNgQTcx4Y4KBH2+aYQPpxfpfBMekUhsNWrdLa1Z5eMqOikT2Hr2KOAoyFmQdoZY1J00\n7qhgruTozDYa26TqOB03Yd8ZTqoDjTe9Y7SYcuShncabCZBmTpTwYF9TH9LtQQaqh0jS6dd1\naWa904TmwQX15UrEeFGv6DAlSM9ucEdO/BJKhwu0rkMC1kCQXrB4EKS/NyaYmKA5vRNaHMcv\n9apALgIvgvT9r8UayFdRRDxKSW0CU4rp9t1F2felhJ7UzmsIzRn1efx7DY3yOwV2OP5S71lf\nzINjGh/PwzAscOBpE4thHINjXPpEIotJJz7qW1DWh33zCU7ofx6X6P1h0qty6F8tMlyFcBw3\na4Q4bHszYoKgkf/RKQCO49P91ad2YqmjxnDRiCC9rUd/mkNOeVGsN3ne2Z80RzBIdxxu1l2Q\nETGZmMDGvSedoirdJH+SueoEHZ8o065ms97SurhzsbkvcS4UQXo6FZ4vu5JPvTfCtoN4NY3u\n9Gga5En6NmTno3r7dg0Z4XM1CqbzihLS2lhSFONCfOGnew+KPJ/Nq03Mswe9uzSoGRdn5aQ/\nQXTkMhykR9xAWB5ymHHfcVt5UJ9NMCLQnYi682SKZpAe6QgKaea82uAakVQrp+aGixE5mjiL\na7DhZ2pfr2xAnEVnJFWgzQdpydH2b4gPanypWqwPbs07NOJhkN6v9SG6sxanVSCHLgY9TNRI\nw+0AWNBNTKijAoGfbxonM/T0wOblMT1cgttuva7jIykxl0aq0ky4Fc9+sZUSH/RQFUMkssg2\n9x0P+UkPR7Ysq7FNHMv3S9T1uPZ18h0eLQ6+Z7SsOuSPJrwify4QaeYaSgo+z+6p2Y3oJLWu\nsPFfZiWhg+bBBfXlSnT4U6/oMCVIz3Jw539l1O+zKd/jOv1yAhZAkF6weBCkH+1jr/qvSCR5\naOhGaZX0sBkaZeA8SC+x8Egy9MqXnNjVxFn8256gWR6lSX6EV3uJrWnezarPsbpexMK4hAyO\n1v/ZZiVZztvehNeLYRgmltjfNP37ncyZK0gvtfJfds78n8Z58SfpcVWaV4voVCElM0aINxM+\nLoVh2PJoum+5eb10bB+Cz+TKY0SQvuHK1zQXjeP4ic4BxHmZvoxIH5o7DjfrLng8jTSiqruI\nwbpkR5O6FAf/3w0WQGpdnuYdkhrjVLMH6elXeCOYfVfyqvdG13ZQrybSOlCc95Z4U7DEwsPg\nQY2gpLmTFWmrmiPOpES/Nm5vQDou79afsqubepQisfSMNcfnCY2Is3LVnyA6chkM0vOqH1Ax\nbshh3n3HbeVBfTbBAm53Ig87T5pBeqQjKHSZ822Da0RSveqdNDhL1qdZdHYQUfhu0s1VOoP0\nxuFDH4iu5Ej7N9QHNZ5ULZYHt2avWjwM0k94mUJ/7n8HBhLnrTz0tnYaDgfAgm5iAh0VCPp8\n00SvLh+ePrp/reBAdydbS1unsoHBnQeN23r0RpGu5q8oyenw9bq0a/Bk1gurRjxaWTrUN2PO\nCnnu8TWTy1prvpfC2rXhjdQCnbNcbu9PTNnuoo6bGyi0cbYmzq7xshakmZOVXN0+u4ojKbJL\noUHf358kmvm94jQPLqgvV6LAt3pFhylBepaDO0drqN+Y4lxhJf1yAhZoflsFAJpwec7e5DzV\npLVLxwYOdA9RThWnWGl9Vpxbtp6DPS0MNIfk+6eJkyHT6jNaRLe6bqrfuKLwZFoBo9k1xPpW\nbfRVs5aD7j7e5W9lIPJtYR+y5/5uV8JqKuS5YyY/NKUYXBGJLVoMmnoz4t3vXQINp2aiJP/d\nb6vfGTEjnSpkdts+Z6t+i6UuE8o4UCQmqjZt01GCAEOVx6AJQyoaTvRVsz9Jl2OijxuzwTUY\nveNM9PJsHHGy8w9677DW5lBmHPFTf/lJ+xWGZnEs+z+zvYbCNOgqPIpdyaveW4MZ2w7Lq2ne\nOpCXtAvHcdWkg/9kgwc1Asmshp7mKgkRo9rYaTnpzsI168N0JsuJWXOOsG19Wqz3s+RmNM5V\nf8LVkYuH/YDR3R3nxwJzFaAUnE1wvhP52XnSgXQEhS5znm9w5+qaLyvWgdxuXGq70JgDSVvj\nvPkYjU7JUfdvLB/UuKpaLK8m51ULNZHIYnqQK/30dWe3JE4m376nnYarAXApa2JCGRUI+nzT\nRNXb9V+y+fDzd5EpmXlFeZlRke/OH9g4qk9LS11VKWxb73/TCzAME4nE88/MYbusBPFXElW/\nrZyaUaRk5PGJtS0CfXpPWvm5sIT4d/uAdlfCbrZ0s9Y9G06eZLhvNQZ7RRrTSDP/Kifq0oDG\nAW1H/hmeLaOZ86OjyxsGVBi//DRuOK2ZsXy50nR8rFeIsRzc8amnHgMUZlw0rswAEb4c7YDp\nzqfrvqXIoLujg4xYXEHamQI5YfBXbjD9ecVSV+LD7nzgVKW9wTSxJ2KJky2qODFbRFVS+qe5\ndI/oOk08c+3+V7dvHAi21bzLTCc7v16HBpGi2p+OzTalGGyydnAtGxjUpF3vuSu3PwhPvnng\nr6YB9oZnowmXfQ57tm/F1EaVG1w36so7nSpkXvLCT09z1LXI1qO/ztMDFkgsPfu4M2jRjhVG\nEifzEy4Zv2yTd5yJLqeoFyoSSUZ6M/g2FSayHEx4GZ1clvA4x0C34FytOnUC1pi/wqPclbzq\nvYnM23ZYXk3z1oHMd8+Jk35dWzKaPfBHWq+bo8uo2ujdeBXxPDZi6186kz2Z/TdxctCatkYX\n00Sc9CccHrl41A+Y3N1xfiwwVwEEfDbBm53Ir86TCaQjKHSZ83yDWzhZMJ3F0oluWMtseNN8\nGGNSctT9G8sHNa6qFsuryfnhFTUbt24+TELjjmXHEycLs25op+FqAFzKmphQRgWCPt9kjbwo\nqvfkL43Fr83GXwN1b6X8+Df71y8c0L1T47o1Klet2aJtpxG//XH61kvzhgjvf8pR/bZyamh6\nhvGPTwxqXq5B70m3CTkr1ew3523ExWYeeiKpGCa1I124Ls4sZrTojBLStrGXkE4jkWaulPZs\nR52q3//zIF71F5FI2qDbyPW7j7+I/JyWlVciK0hNjH1y48yq+b/W8CYOJhM3Te1Rd+iqEnYD\n9SxfrjQFb+sVaiwHd9waqu+UKsr6L1/B/q0jQC9a+x4AbbKc+8RJt3qaHwuh1sHF6kRqvllL\nZBIHPcMmorhXmcTJmQGOM01Y4sfEAqyiswkZGKn5isXYnj6qyaKs29cyi9o4W1HMgtqG+Nzx\nPkzGCibLT4+PiIiMjIyIjIxU/nj3NjyzSG5KnnSqkHkVkdugjTtnJzA2br0YRVmsnFp5WUqS\nZF82uCznCc0ZUew4Ez0hjFOlNoFMn+xs5WWzOk49Bn2aW9yQ8gkA+4rmuzHFNCZWeJZ3JW97\nb/O2HZZX07ydXsazDOKkbydffSl1cm9QC8NuGbdoc9VGsYX38noew+9/eVghP+XIwZTdgzzI\nVwAVhZOOR6mmrBwbLwpm8DyTeXHSn3B45OKqH0DR3XF+LDBXAYRyNsHnnchh52kipCModJkL\nd4Nzhc/Nh5qJJUfdv/F2cGteLK8m54dX1KxcmI27LOxqlbOWRn19orE496V2Gq4GwKWsiQll\nVCDo803W3J3dIzS/GMMwscRuy+Hh2gnkRZ/XTPtt/oZTuXJ1dDDy3av/rl3atXqed90ey1et\nH/xdGbMUJpLwRLKVh0n9fFHG28WTxv2577YC1wzs2frUX7B2w5S+Dahz0LjfS5bBLOibSQ6m\nOpCDqUgzxzCsMPVq8+Zj3+erA8AuId32Ht3VNcSNmMzNy8/Ny69uy26T5iz5Z9G4EQv2qW4n\ner5vcjO3Cg9W92BUMFOwfLnSODyvV7xlXHDH1l994wWukEUVykPo3RYAWAB7AhhJlvWZOGkb\nYKsvpU4+9ozvxUbK2lvvPVkq0fklBtPQV5io+Xkwdti4927kaPUgu0j1l0NJ+dwG6dkhy4j6\n99y5c+fOXbx2JyYtz/AMDNGpQuZVUhBJnLTx4eyagtSmMtNZKlpLVYFGeVE0RUrUO85E8TL1\npTqJFbNLAxiG2ZWxxZ6pJ6OLDHQylq6sP+2khxEVnsNdydve27xth+XVNG+nV5RcRJx0LMNs\nUCGxZvZsIqLa2GFFe6zpXtXkyk3hg+bVIiZIezvjVZ76pLHSiNVS7s4BOelPODxysdlAUHd3\nnB8LzFUAPp9NCGUnstx5mhHSERS6zIW7wdkklOajzYwlR92/8XZwa14srybnh1fULB38mM5S\nkRCkVxSn6kzDyQC4lDUxoYwKBH2+yQ5Z9p2ea18rf1cecayz1gu682Ku9f6u579Rmo8LqyQ+\nPTW01cVbq85tm2iGN64lEO4ts3I39sIvXnJu4/Rfpq39rFUBpDZlfpq5cOG0oR40PkxgV570\ndBbTYGo6IZgqEkk0PluONHMMwxZ3HBRKiNC7Vh325tlOineTiMR2A+bsqR/iFdx3RfHX8POj\ntX3WjEqZFGL4czBmwfLlSsaEUK94y7jgjkYnkCCDID2PwJ4ARtJ4f4iVB7ODvY0XvwZbElvD\nN5RllZjztUMlueY+vNH2Sxn7B+/U/finsCysCktDBE4oZEk7/vh9+rID6cWG96BY4lA1WPL6\nTabBlBroVCHzwktId0lb+3D20leptT/TWcpaS+59/SqxQp5bgmPaJ+rs7DiT4CWFhLcDSSy9\nmGZg40vaa5ksv/3KBIwqPOe7kre9t3nbDsurad5OT05+NM3bhlnmEku61xyR1kbP+iu9LQ8k\nfj0ZDtu0HJt3gJjg2v+OESdnz6xBM+dSg8MjFzsNhPPuTlj4eTYhrJ3IWudpZkhHUCgzF+oG\nZ4uwmg+R2UuOun/j7eDWvL6R1WSNlSfj46a3JbGXK1Ho+mYqJwNgaGI6oT5ICfp8kx3Hhg9V\nHkekVgHHtD7rUJz7okPNrnczDNydgCuKtk9qV2T/Zu9PVU0sT7xMvcus3IwJ0helP5/Qp8fW\nG5qP1oilTr1/nbto/q+VHOneNetQyYE4mfUmi34x5EWfswnVT2IVYEW+hIg08+yPyxY+TVFN\nii1cT9zZQufrIRV7Lzs18myXbWHKSRyX/9l/66TX0+iXzXj8vlwplHrFZ0YEdywcSM9IEG/j\nAJyDID0wktiKdDQqSinSl1Inpt8I4QNb8jtP6jRsZMqHVKtw9y4B73L22Ls01SRvb5w3i/zE\nqy1rfv84meqrgfbuZYKCgoKDg2s3bdunVyfZhXaBA4TwIkoRaYRdksfZRQeFnPHnJLMIwzuR\nyEI7Qi+MHSeSWotFqoGvXJbENANZOukeTxuxcMaDtPFhV/K29zZv2+HtatJhQT4HSypkdrag\nKNH9ZI8G1LVRbOG+sqHXD7e/fKYuP/ngsdTtfdy/nNwqipMm3k5QJXYoM76/B3df1OYKd0cu\nFhoIH7o7YeHh2YTgdiI7naf5IR1BocxcqBucFYJrPiooSo66fxP0qI++b2Q1WVOUwvjKTyzh\n0UmRxElnSIqTATA0MZ1QH6QEullYkxu7b/ipKOXvhgtOVdV6RHVBy/bECL1v4x8WThxQv379\nQJeSF8+e3b9yYPbyIwVfBzAHRjfq0iWpvzez1yFoIO0f5jHW+JvrW3ebEp5LGheJxBath0xd\nsnhmfV9mZXOpSXqHf8aLGPrzyrLvEictHRuzmfnzmVuJkxX6HW5B+3207dccsdpRs+jrbk1/\nO+tl3m817dBXfh5frhRQveIzo4I7pEMnfJKeVyBID4xk6UK6Uyk/ltknIVMzmI2hGcmSm/Pu\nThUf0k3E2MYrtxoh+BwLC2zJ77zSOL0pTWRZTzrX+P5xiuYFF8/y1Ro2atSoYcP6dWoGBweX\ncSfdSvaBxRKaQmLpSZzMj2Hjs6w6yQs/MZ3lA+HLWGILd43/CmjH+VhKPn1dF3nRZ+rE2vI+\nk16k6UnjVU7CwpNdydve27xth7erSYddWdI7yrJi87GqbvoSayuhsSXZqY1tV3TEGu5UTS7d\nFtFnRk3l74T/JiQSblWuv2giw7xLAw6PXKgbCE+6O2Hh29mEEHciC50nIkhHUOgyF+4GR02I\nzUcJUclR92+CHvXR942sJmtk2bFMZ3lPOPWg+FAX+wNgaGI6oT5ICXSzsGZNjynKF5tbOTY+\nNbmmxn+T7k1Z9PVpbJFIMmL58c2/dVfdc9+4jV/jNt2G9u/br8OQGykFGIYp5LmT+mztf2eS\nKUXysRJHfD2+FaUxGzlHnppfr+/CbPLrEzzr9N6xe3PX6poX8eiwdmuJYQdVk4UZ9zFsEM15\ni7LvkbJyacNm5v/cJkW4u8+pRzNnDMOkttWn+zsu+Pzl8W4cl6+Nyt7JpGEajZ+XK4VVr/jM\niOBOcW42cdLXSnhvKynFIEgPjGTpWBfDjqgm05/GMZr9UQ6zb4Qw8qEAyYNZZSvaYxHpqsk3\necUCHY/mx5FOYGwZfqdKQDZ0+f4W4YKLSGzRtNeY6dOndalbGl41aWFfhzhZmBKKYZ05KYks\n9zGj9HJZLLGRWpJXBBPUjqvrYKka9ZYUvI+Tyf0sGYxyniaRLgjWtRdkl0KBJ7uSt723edsO\nb1eTDpc6rsTJhEsJWAcG3wLIiXxlMA07tdGjznI/qz1xX181GbZ2DTZjl/L30d+uq5KJJfYb\n+pQ343KFgsMjF+oGwpPuTlj4djYhxJ3IQueJCNIRFLrMhbvBURNi81FCVHLU/ZugR330fSOr\nyZrC9PMYNoZ+elnOgzjiB60dm+pLyf4AGJqYTqgPUgLdLOxIeTp3ztNk5e8eOw64SzUDZkfH\n7FH9rj314vbJ7bQzca/d+8xTzLt8vzy5AsOwpHtTHuWMb+Bg/FPXvoTxD6Mgffy1edV7Lywi\nvi/dwmP04s2rJ/cy+vUJNu69rMSjVXkWpJ0sxtdb0Mst5Q6pcvq00/wQANLMH2aTeowuDF9v\n0CzYCfusfgf7p9AsRnfPGI2HlysFV6/4zIjgjiyVVJMZ1QeAWml7aA+wxsa1C3Ey+9NBfSl1\nwGUHU1A9OyUv/JCA5qMaPu19iJM3YvL0pURM8YHgUxTjV9bEf8wlTlav6KAvpaAVpp+Zci9R\nNSmS2Cy98P720XX8v1REk5VDI0fCuD8vcSdFYqQK0y9GFzFodLlxG0tw9ZjMinyvorB2XHs3\n9dfscFy+I5FRtyDflqBOL5bYNXEsVae4/NmVvOm9NZm37fB2NelwKEdal9gzzF5++3FnJHUC\n1mqjSOq6uql6R+Ql7T6TVohhWHHeq5lv1O8i86i7Mljr/YffAg6PXEgbCH+6O2Hh1dmEQHci\n6s4THaQjKHSZC3eDIyXQ5oOhLDnq/k3Qoz76vpHVZE1h+sUoJqceWR82ESedgtrrS8n+ABia\nmE6oD1IC3SxswEt+77lG+dPed9C+3po3oyiKk2eFfrm/QWrlf36h3gd27f177+sW8CVXXD7v\nZrwp5apko25xRSmZNOcqSL7SvOtiYiTV1vu78+EfNk4xPpKKYZhY6tbTTf21C3lR3IFkuoP5\nF5tJlbPKD2XZzDyT/Ng309CmxsfdZWkIn1ok4tvlSiHWK5Q4CO4Q4/oikUVZawjS8wgE6YGR\npLZVmziqP8FSmH7udT7d59fzEnelFyN5Iz2GYdnR6xDl7Nu5LnHy0ZowRAsyRDykTtVAlcoh\niQw35trYHNVvkUg0zMuOIrFwxZxdgROiWVV+PDW1QwCdGVF84hQJsc0AD/WNcsX57y5k0P3I\nXGbkVH+C/heiTSkIjstXv88ynO6ryC0XiJM+7RoRJ4W142p1IV3CO3+UwZbMS9wVQ/jIn417\nX3uJ2T7yxAf82ZW86b01mbft8HY16bD1GGRN+MhZTuzKOBmDQ9uW6wYuXrBZG1suJ100/HNn\nJIZhUccnFRBOR7ut684021KCuyMX0gbCn+5OWHh1NiHQnYi680QH6QgKXebC3eBICbT5YChL\njrp/E/Soj75vZDVZg+PyP56l0E//YMFt4mTgyEoUiVkeAEMT0wn1QUqgm4UFUaeH7Yn5cqH1\n11OrtZ/iLUg9oXq/t3OlP70p3xzefH5L1e/3hxi/pZyocXl13K4o8yHNuf5sM/Aj4VMXLlX7\n3Qu/0qG8GZ7v+qmZF3Fy/z26gcmNYRnEySlVXbXToMs8wJp0d9HrPGajl8x3pHeMs/Y6W75d\nrhRovUKGg+BO2gP1bXNWTk3txKXqErTQQZAeGG9qPQ/Vb1xR/L9TUTRnfPPXBiMWp/HBEn1e\nLb9sROZ0OJabaStRN5nYC3/IcIrkZIrCgR3atvqq2w+HTSnJ9PrqLa8oTp9yO4H+vHkJu58S\nXu1l4967eil9mC/mWAxxsvuMhjRnjDzN+FNtXBnSkTTkmrclguaM73f8G0vgUcnRxJIcm3SV\nblJcNuHvcOIfmo8lne0La8cFjmpNnHyzbAn9eZ/PX0Wc9G37o3nKxBv82ZX86b21mbHt8Hk1\nDRJbeo/3VX/tVS5LGks7BJuXsPWgoXul2ayN7jWXlSOcxoeu3oBh2N+zn6r+YmFbZXU9Tx1z\nfhu4OnIhbSD86e4Eh+WzCQoC3YmoO090kI6g0GUu3A2OlECbD4a45Ej7N0GP+uj7RlaTTecn\nnKaZUiFLHHOR1EB+bedLkZ79ATA0MW2oD1IC3Syo4SUZw4YfV/52rzV3cX0d9VxepN4RjlUM\n3A1m49lA9TuX/LAsUz7tvVW/i7JvU6RUSXkyczHhBRg2bi0fPj5Q00wvfaw+rRlx8vksWu/A\nyI3deCtT/a5+W48BjXV9ZwFd5p1drYmTe5+m0slZZXMk6R0GdUKcGM1uNF5drhRuvUKH/eBO\n4lP190qsXbn5YC7QB4L0wHiNFpHedvVgypwiGuMzRXHyrzvpXpAlekH+GoruzEvSfz7wwYjM\n6ZBY+s0PclFNFmZeG0v7vUMJdycevnzt5lfxQUGmlKTuLNLTk2d/XER/3gtjFhAnKw6bakpJ\n+Cw/nnSCEWJP6zNOiuKkX4TzjEu16X2Ik2+WTc6S0zpJ+mvHe9VvkdjilzL2FInpSLg17k4W\nrVc2fTw87H62ehgksfRaEEy6V1FYO8654lx/K/VIKD/54IKntJ5OKCmIGLnvPfEvPWZWM3Ph\nuMafXcmf3ltH/uZrO3xeTTqGTSAt9Nroidn0OrTDowwfBNmsjSKJ46rv1K+CzE3YevL9sTWE\n25zL9dxQyl6bwQhXRy6kDYQ/3Z3gsHw2QUG4OxFp54kO0hEU0swFLf4UcQAAIABJREFUusGR\nEm7zQVpypP2b0Ed9NH0jq8mmlGcTD8TSivk9+LNHPOHd+HZeQ3q52VCkZ38ADE1MJ6QHKeFu\nFqRer+vxX1YRhmEikeSv01N0ppFYqu9xyf2QTJ1hSYF6KGLlYUWR0iDvNuobAopzX+TQqAw7\nh2whTk668A/xnfkm8qiz0pvwrviMsHlXCVFSfe5MWU2cDPplGsuZtxlYjjh5b+pug9mqZH/c\neC5NHc4QS2wn+bH0zVleXa4Ubr1Ch/3gzv0UdVV0rlaXIiVgHwTpgfE866+ubqc+j81LONxn\nR6jBuR4u7Po4h1ZAwsqDdKva40WG38xze07HiAKEL80btJZ0n9HB3v0jCgy/UwuXZ4/ru181\nKRKJfvm5sinF8Gn+dyUb9ZbPjv570P73FOlVUh6vGnJO/a4kkdhi5awappSEz+zKkd708iaX\nVsU4M6l9dBHd96RxzrnS/NbO6mZSmHG1y1+PDc6VdG/asVT1BSnninODTB4byYvTBvTeZDCZ\nLPtZ55HHiX8p026Dxpu+hLXjRFLXjV38iX9Z3nU0nYDT8dFdw/PVq2bl1HxRMJsvVmIDr3Yl\nT3pvbWZsOxiPV5OOyj//ZUV43VZ+8pkOf9w0OFfK4yWjLsQYTMZybWy+jPQyz1EDRxPfpjt+\nCd0H9UolDo9c6BoIr7o7YUF9NkGfcHci0s4THaQjKKSZC3SDIyXc5oO05Kj7N0GP+uj7RlaT\nNbiiaEKnuYWGXlKZ8+lY5yWk4VnjxbMNZs7yABiamE6oD1IC3SzolBSE9Zh1T/k7oOuuEQG6\n46/W7j1svt6kkhExL5dyTPJuvfoFsWV6lDGleE6BI1S/cbzkSKqBh99K8t/Mi1C/ANzOa8ji\nBuZ8AYbYwuPvrur7BnBcPnrMMepZCtOvDj8ZpZoUia2WTQhmOfOgXycRJ1NfzZ1xg95Dz4qC\nOV3mEP/gVnOpjyVLwTj+XK4UdL1Ch/XgjuIIIUhfeVRF+kUFbMCBQCk0P+F5Pr3AvEsozLxO\nzL/e0pfaaV78RXqjiFjqtOpOIkWe0RfmWun64sX1zELtxJkfJ2tkfikpnyLz2Ct/2Wjdmetc\nYZXRa6eDorCzO+n2Ye/vJkYXllDOUrxpcBXiLO41F9FaFqU7E6oS85RYem58kEw9S/qrf2rY\nk97cUqHvP/oSF2ZcbkbWd8ZT04ut5EO4wQ3DsA3xuebKmej1qgbEpQT9fMXgLFdXDBGLNKvQ\n8pgcnYmNrEI4nh4xgjhjz5cp+lLSWUTELtI5kkhsM+fsJ4qly3LftCHfAv/9cc30dJarsROV\n2sw8TbHo4rx3PSuQ3k4sElnsT8jTSIZ6x+Hm3gX5ycc0urVyXf8okFMV+M6q/hqlbb81zOgC\n6HS9R3nijIUKmvPpZURJeLUr+dN7o2s7OI52NY2ujfTt6UR69Z9IJB61/TlF+uyPJwJ1RWob\nrnmjkZKF2kikkOfqLBiGYbbufejkwBSdvcOf/gTFkSs7+k9igo4343RkhKyB8HbIQWffcV55\nkJ5N0CfonYiu8zQC/TVFOoJCmjl/NnhJ4SdihtUmPTQ4S1bULOIsXR5QNTeliN3NibMcSGZ7\n9I6u+aAuOdr+DeWojydVC/Vqoh4aMThV0XUFpvvo+zTLo5fWZUOlqsO2UHSHeQnX6jmRHt61\ncmyUJKPsQJVLY30ALNwmJuBRAS83C5LmQ8/lcSFfq5/zDcqx6NIq6pcQtF2rd4/Icp6VJXw5\n4myaqZf6qxLuZelyI5Y6ccy/XYm7oPqURyYuXVte4kELwmFUJBL/eS9Jb2pF0Yy6HsQilWm3\ni5PMlzQmffVcauW/5xlVl47juEKeu3ZwCHEukUi88m069Vx00D+4IB0P0yf0ekXtQiMfYlaz\norLoz4s6uENUmP4vcS7dgy7AHQjSCxY/gvSKkuw+fqTXjUosPCasPVesPVJUyE4sH+Ms/XK/\nmFhCmuumrqGMvChOlV7J3q/zrVidAV3FzV2zVYmtvdRPaJk5SI/jqc9WSMmn5U6Vu+6/Eakz\ncdLrKxM7BxITi8TWmyMyaS6LQnHeG+JIC8MwsdRl3MqTmSU6BunyoqT9f03wsCBFhqycm7zJ\nK9aXf17yAY0KVr7HddOLrcROkD43nvRwqljisOZGjL7E+YnPpvath+nSaMUznbOYK0jfeNM7\nfSlpLUJRNCbYhZhMLHEYsfBArlxHTcgIu9C1MunrR7Ye32unNDpIj2FYgwEz32UUaad/c259\nfS9bjcQ1fr2gnRL1jsPNvgtw/Pq0+hpL928+7PqHbO2UJQWfl/7cVuPSnnOVUfl6Rsn8CaoZ\nURJe7UqcN703uraDejVZCNLLch5XsCZdIRKJxG1GLfmUI9NKK/9v12zi9QsRYa21ryixUBs1\nnOlaVveOXvGawRahjfM4KzMIjly0gvTIGghvhxyCCNIjPZugT9A7EV3naQRGa4puBIU0c/5s\ncJ5EUoXbfFCXHHX/hm7Ux5OqhXo1WQ7SU5+qaF+B8Wmkd8BPl54gPYZhFdqNfZKg9QyMovi/\nPXPLa8VrJ1/XPazSxvIAWLhNTNCjAh5uFiTNh4bC9H8dJF8qVfWJN6gTR18criqeWGK/8KiO\nOH1h6vPh1dSPLLuGTDW9kNuquasyDBp5lzrxrQGknWVfrko1E3ws0H33xpGBpEd4JZbeq67q\nOPjKZckzu5HKI5a6XDYU+0CUeX7SSTsJKUIhljiMXLwnJl/3dfXQm0f61HLHyAK6bKcuPE2M\nDi5IB9s0lYJ6RcGUID3q4A5Ryqshqrmk1uV0HCgBpyBIL1j8CNLjOJ4ZvsVa615Ux4BaI6cu\n2r7n4LmL5w/v3bF42qhaAeqnACWWXuuu7iWmf6RjsIjjOL67o79GzhIrnx8mLz508uKLsKiM\n1ISwV08Pb1rUvbE6mUO5Xjf2qG+nNXuQHsfxi5NqY1oqNWg/ad6KPQeOnL904fCebcsWzhnS\noZb2XfYt/rhDf0HUok79rF0MK5fK3/cdMnnmH5t3Hdi/a9uqZQt/7NW2jIOlRjKx1HEr5e17\npSBIj+PyEWU1nj2V1On0467Tl5+8fBeXnBH34e31Cyc2r1n6c+/vbAmDLUsn0kBKLLHvM+mP\nnQcO7T9MOuswugplvB9P2mVOzQ7efBmfkpEcF/Xyyf0cwpGY5iLyEs9qHKQxDLPxDv7h17lb\ndu47c+Hi4d1bFs2ZOrhbIwtyUxWJLRbc13FrIdMgvdTaj7TFpE4tev60aNma3QcO79y8bv70\n8Y0ra45NMQyz9eqSUqxzrId2x6HYBYqS7P7+mq81E4mt67UfsHjNpkPHTl88e2Ln5vUTh3Tx\n0brkIbHwOKPzkWgmBdDGhyA9r3alEh96b5RtB+1qshCkx3E8cv8P2oWXWLi07vOzcsvs+Hvt\n3N9H1Q4gVS2nSoN21VW/ME3XFSXktVFD2pvftFdEJLK4naXjVgzTcR5nZcrsRy6aQXocVQPh\n6ZBDEEF6HPHZBG0C3ok4ws6TMUZrim4EhTpznmxw3kRShdt8kA8PUPdviEZ9vKlaaFcTdc/M\n6FSFhSD9jLmdiJMisU2Tbj/+uWzN7gOHtm9cPXvyTzXL2GNaKvbcTH+BLA+AccE2MaGPCvi2\nWbgK0m/v8OVatIVNpfd6AocE8lEVSHce1+s/8/rD15lFchzHU6Lend42i3iLjEgk3fjeDA8J\nhG1tqsrT0X86deLZ5CpholA9AeySwqhu5NtrRGKLZn1+PXbldtin+PSkmJeP7+xYPKmmr+az\nCiN2U0WjUWf+fMuPIq36LLXxbddz6ILla3bs3v/PwX2bN6yZNm5o46pemBZ7/y7v6AVTDWJ0\ncEE6HqapFNQrCqYE6XHEwR2iB4Sn9j1qb2W+ogAtCNILFm+C9DiOhx2ZqvOdUTqJpY7LbyYU\npJ0j/lHfgaow44afle6HDnWysKt+M7Xg/eEWqr+gCNLj8oLVw3QMSQ2qP3qLwVEbI+fmdTGi\nGBJLnyVnPlDnXCqC9Hja65XaJ2zUPOoNe5UWU9Zax8u+3IIOETM3ugrlJx+mKMCzXPX5If1F\nxN1Y463n8VwK/dfpfsUQ0yC9Z62zx6a2YrRoG/em1/QP9ZDuOES7oCD1fseyuj8/RkFi5bvm\nOtULx/gTVDOuJPzZlV/woPdG2naQriY7QXocx8/O66qvhDpZOtS+l1FIPDXSeUUJdW3UoJDn\nB9laaMzlGrQYzTbjRZyVKfMeuegH6RE1EH4OOYQSpMdRnk3QJ9ydqISo82SK6ZoiGkGxkDkf\nNjh/IqnCbT4sDA/Q9m9oDmr8qVpIVxN1z8zoVIWFIP3x1PxtQ4IYbcCADjOzdT3Pp3eB7A6A\nlYTYxAQ/KuDZZuEkSJ/1YbPka8i2zTpaB/T8pMtVtBqISGzj5WKNaemy9LZZylmQdl69LIlN\nXBHV7f51taKAptAXTMVxPC/hkr6vY+jT8LdTNFcZXeZX/+yhfd8JHbbeze6kmfTSLyKm18GQ\njofpKB31Sh8Tg/Q4yuAO0UQ/dR3ocjaKaSEBahCkFyw+BelxHA87MoPOlVZrl1pbbsbhOJ6X\nuJP4d50vOFVKurtW+1krnRwrdjgXkYXjOPIgPY7juPzA1O8t6Z8JSOyH/XEExatELiwZ4Uj+\nKAA1e/+mx99lGMy2dATpcRx/u3c8zRM2kUjaeviitGI5juPvtg7TTmCuq0U4jg/w1XGLupJx\nEWIcx1Of7qrhpmNkr5PYwvW3rf/py8qIID2O44emdJXQG626BHW6k2Kgv0K349DtAlnu28EN\nfemUWcnGq/aBl2nU24E/QTWjS8KTXUnAce+Nuu2gW03WgvQ4jl9aPFjjbXL6OJRrfSo8Eyef\nGum7ooS6Nmq4QG6GGIb1uRRt3g2lwpM4K1NmPHIxCNLjOKJ+gIdDDgEF6XGUZxP0CXQnqiDq\nPBkxYk1RjKDYyZzzDc6rSKpwmw8LwwPE/Zv5D2q8qlroVpOFnpn+qQo7QXpFSdZfI5ph9DQc\nOF/nG3epsTkAVhFcEysVowIebRZOgvTTq7kpl2Xt0iaLdktJfb63ppMV9bYSiUTdZxo+2aRv\noKf60eHx7/QPchTFTO9ao0YRTMVxPO3l0TblaEWORWLLfrN2M3o7N7rMw86uCmYYcq7db9ZH\nyk1hBKbXwZCOhw0oRfVKJ9OD9Diy4I5KSWGUaqwrElm80H2xFHAJgvSCxbMgPY7jefEPxncO\n0dv3icQ1O094m/WlF8j6PE/1L4mlD3XO2R+uDGhUjqJvEomtWw5fnCj7cj8gK0F6HMfxtNcX\nRrQzcCeySGzZsNvI828ZdJ1MZYZeHNaxroWhGI+Va/DUtcdpjh1LTZAex/GEB/vbBOt4ZbR6\nH4lEVVoNPf2M9Prcq8tGe5LLacYgfWbYgcqOukd1RkeIcRwvKYr/e/ogZ8rjukgkbdRj7HnK\nY7lxQXocx2Nu72lVgeotRlJr3/HLjtC8jI5oxykh2gU4Lr+1f0k9XzuKYmMYJrHyHrlgV7LM\n8JedTDh7ryCVWljb2No7OLq4uHIYpMf5sSs1cNh7s9B2EK0mm0F6HMczwy4PbxWor9gYhonE\nFk0HL1Q9CkDzihLS2qghPXQqcRaJpU8ijVZvHMRxVjP3J0TmOnIxDNLjOJp+gG9DDjr7jleV\nB93ZBH1C3IlEiDpP+oxdUzOPoFjLnNsNzlokVSK1sLK2sbd3cHZxPZai9R3rr4TbfFgYHqDu\n38x7UONb1UK0mixULfqnKuwE6ZV/fnJgXmXKuyQdyzXddCHUuGWyOQAmElYTKzWjAp5sFvaD\n9Al31F92GH6O2W0oBakPf+1RT/vF6Up2fg2WHX1l3tI+nlZDlX+VEXpvei7Oe0u9K5miDqbi\nOC6XJS4b3cmJ8kzQM7jFrjuGz+zYzLwoK3zjnFEVnQyH6kNaD9p54bkRhTfIqOtgSAfbepWy\neqXNLEF6HE1wRyXp8QhVDk7lZxhXQoCUCMdxUxoGABqSQ+8ePHjw9PVHsbGxcQkZdh6+AQEB\nIY3a/zx6dPMgN1WylBcDPWt/eT2LrUefvOSjBnP+9PDM7iPn7967F/YpMSMzQ2Tt4uPr6+Nb\nplmnfkOH9A/yVJ9jFGdHRcTkKX9LLH2CKrmadRU1pX14evbs2fOXbr6PTUhKTk5Nz7dzdnF1\nd69cvUGzZk079uxfN0DvDW5mlBv97ODRcw8fP3764l1yemZWVpbc0sHLy8vLy6dGo9adO3dq\n37KuvcScN68JiuLV1cOHz1y9d//h+5jkjIwMka2rr6+vX5mK33Xs1rNnj1rlnLXnKUx5dfLM\nf+8iE93KBQYHBweF1CzrQfeBP4PkhXF7Vizad/FRVFRUXGqBu7ePj4+Pr6/vhkMHyzL5xIO2\nkty4q+fOnj599ml4dFJiUlJKhqWDi7u7e0CVWi1btmzXrW/Tyi6ml9/XSpogkyt/e9Y6m/T8\n67vUcNnz62f+OfLPzScRiYmJScmZtm6ePj4+ZYPq9ejdu0e3lh7M1g7hjkO3CzC86PWdK+fO\nnbt670VCUlJyUlKWTOrh6enl6VmxZpOuXbt27tDc08a0RQgPH3clJ703W21HjScHKeMkhz84\nceLEmct3o+MTExMTc+SWPj6+fn5+jdr3GT58cHXC58RyP4V/zi9R/rb1CSzvSvGAAktHhMzI\nP1wqq68ABnQ68flCTyZr/w1h58ilE4IGwrshh+CgO5ugTfA7EU3niR7SERTKzIW6wZEQbvNh\no+So+zdBj/roE9ZqGnGq0tfD7lhqvk+jC/H3O+lMQBv+9u071URAUIjD1ytCuCL/3tlDe/af\nfP3xc2xsXFJGkbuPj6+vX5V6Lfr3H9C1WQiDB/rIuB0AQxPTCfVBilebxXzNRz9c1s/X9Whi\nHoZhjuVGZnzaZkR7iX10fveRk+ev3I2Ki0/NVXj7+laq1bRHz17DBnVxMveV28L0c3bu3ytw\nHMMwK6fv8jNvGd3AUSjOjTlzcP+Rszc/xcTGxcUm5yi8ff38/Pwq1f7uhyFDOtavwM/MFcVp\ndy5fuXnz5q07T2KTU9JSUzMLcBc3N3d397JVarVo2bJV646NQnR8nN5cjLwO9s1crkRar9BB\nFNw51ta/77VY5e9uJz+d6VHOzOUGJoMgPeDG0xm16i19qfztWvnvtPAx3JYHAMCI3kAjAIAS\ntJ1vx7HOZftejFZNzgpL/7MKqkgzAN8gOJsAAJRW0L9947q62Z5PLyjb+WrU+TZcl4UxQQyA\noYmVYoJuPujMq+z6R2SG8vfqmJxJZfh4NwkAAAVcnl3O3i26sATDMImVb0x2jI8lr27UARiG\nYbBLADduHFeP2n071+GwJAAAAAAA5iUvih53NU41aeX03Xxkz4ID8G2CswkAQGkF/ds3TnlH\nr115Ay8l5iGhDIChiZViwm0+SI3a0E71e+vilxyWBADAstSX05URegzDAjpvgQg9P0m5LgAQ\nsIy3G+ZuDldN1pq65Cd/WvfiybLvzf6QqZqsP7S8+QsHAAAAAMCRz2fGpBTLVZNVfl4h/WY/\nOAOAfnA2AQAoraB/A8ZRFCe/zivGMKxszzJcl4UxNgfA0MSANkE3H6T82mxv4nj6XnYRhmHv\n947NWf/S4dv9HCoA35ajY08of4hEksV/t+a2MEAfCNID40nskzZs2KCarFLQ+6ftLenMeHPe\n6CLFl+8siCV2C0LQfjMeAAAAAIBNq367o/otEonmT6vGYWEA4C04mwAAlFbQvwHjJN6dUYzj\nIpF0Wj1PrsvCGJsDYGhiQJugmw9SIonDjuXNgkdfwzCsOO/1+P8S9rby5bpQAADkZNl3f3uS\nrPzt3XTdAC9bbssD9IH3GwDj2fuM9bKUqCbf7x/8OFtmcK7UZ+u6rXurmvSsv9rfSkKRHgAA\nAABAQNLfLNgYm6OadPCf1NPNhsPyAMBbcDYBACitoH8DTMmyk+6dXt60014Mw3xarGjhZMl1\niZhheQAMTQwQCb35sKDyj4er21kof58bu4XbwgAA2PFm5a/K+9JEItG8A0O4Lg7QC4L0wHhi\nS9/t35dVTcqL4to3GP40rZBiloiLy2s0/k329a5VDMMm7uyDsIgAAAAAACwqSH7cu/VfxL+0\nXTeRq8IAwHNwNgEAKK2gfwOMFKQesXH2adpjalRhiY1Hs2Onx3JdImbYHwBDEwMqQm8+7BBb\nuB9e/uVN15kRCzd/zqFODwAQOkVx8tCVb5S/fVuuGR3gwG15AAUI0gOTtN++r4KN+qMJmeGH\nGvlX7D169vmH4Zl56ptYC9OiLh/fNaJD9SqdpybI1F+oKtNu1fRgF1ZLDAAAAABgRrisWt0m\n3fsNmTDpl8F9O5cp0+hmSoHqn1aOTXZ2DeCwdADwHJxNAABKK+jfAH04XqLAcQs7n87D5zwI\nv9rYkffPAfNgAAxNDCgJr/lwJHj0yd7edhiG4Ti+YNAerosDAEArfOuAt3nFGIaJpc67jv3M\ndXEAFRGO44ZTAaBfzLlZQT2W5ssV2v+ysnfxcLbOycjIytNxN6tDuc4P3p4OsZVq/wsAwHO+\nVlLV+a1nrbNJz7tyWx4AhALaTimEF4nE1vr+OfZC9KZO/mwWBwDBgbMJAEBpBf0boAmXZ3+K\ny/Mp420jFnFdFnr4MQCGJgYwITYf7qQ8nuvZYCGGYSKRZG9c1mAfO65LBABAAi/JaODq/SRH\nhmFYnem3ny5pxnWJABV4kh6Yyr/ronfnl5SztdD+V1FuRmxsgs4BsVutwY9hQAwAAACA0qvu\nmEMQoQfAIDibAACUVtC/AZpEEscKAT6lI8TI5gAYmhjASlfzQc2j/h9/9yiHYRiOy3/vs5Hr\n4gAAUHm1tqcyQm/r2eniH024Lg4wAIL0wAzKdpgaHvdi/o8dXSwkBhPbeFafuvqfiMd7q8CA\nGAAAAAClkVjqPHDGgUd/D+C6IAAIA5xNAABKK+jfwLeDkwHw/9m788C6yjJ/4O/Nzda0aUhb\naQvUlg4gUkAWKS1YKeACgzLCT0AWsT8GFREZZLSACKigQBFBFEdxAYGyyOYwMzjsDFKWOIAw\ntNQqhQ4tFOiSJmmaJrm588dJQ2mTUJLb9zS5n89fD/ee99wnT04g+s17jh8xeE++ePMD+9VU\nhBCWPn7WeX96K+12gMJra3r2U+fOCSFkSip/9F83bV0mAt7Sud09hdS+evHdN9/+6FN1//30\nnxctXb6qvr45l62pqanZaqtRYyfuu9/+H/nIRz7xyWm1pf68EQY2t+yGvvGzMxh1/PLimTfc\n8u/zF73aGKp33GmnSXsd/I0Lvrn32Kq0G4OBx/+aAAYr/35jcNnifgH2Iwab6K26S8ZO+VYu\nnx865rNvLbltiPwOBpdbP7fD5259KYSw//mPPvbdaWm3w7sT0gMAAAAAAABAJP5WCgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiKU27gS1Bx/wn7n/0qaefn79w5cr6lnx5bW3tmAkfmDJl6kEHfLiqJPOu\n65uXvHjfgw/NeWbeW8uWr2oJtSNGjJ2w87QDDjx4v93K3n01AAAAAAAAAMUik8/n0+4hTU2v\nzLns8n95dlFDt+9Wjdn9S2d+46Cdt+r5BPkn7rj6ihvub+noZoy1O02fec5XJ42sKFCzAAAA\nAAAAAAxsRR3Sr3ju1tO+c1NT7u0JZCuqq/LNja25rldKsjVfvvSnh+5U0+0Znr7+nO/ePrfr\nHzMl5cMq843NbV2vlFfvMuvX359Ymd0M7QMAAAAAEEIIubqZfV6bnTyrgJ0AALyr4g3p1656\n6ssnXbyirSOEkMlWHXj0F4+Yvud2Y0ZkQ27Za4ueefjOX93+x2R/fLby/T+/8arR5SUbnKF+\n/nVfOOuuZIBDx0095UvH7bf7+LJMaF7xygN3z/71XXXJW8MnfvbGK0+M/vUBAAAAABQLIT0A\nMIBsGDwXjz/84GdJQp+t2Pbcn/7mjGMPHj92RDYTQiY7atvnHa4YAAAgAElEQVSJnzjhG7/5\n8TnblGdDCLmW/73ot/M2OkHHtZfck8TwlaP2v/rHZx/wofHJE+irRkw4fMa5l31pn+S4hoW3\n3/RyY7wvDAAAAAAAAIAtVZGG9O3Nc6+dX5/UH/nn707etmrjY4aNn3Lh2dOTevF9V7e+85YD\nTYt/+/CKlqT+/IWnjSjNbLB8p8PO/dTWnae954pHC9c7AAAAAAAAAANVkYb0K174XbIJvqRs\n5Fcnv6+nw96392njK7MhhNzaJTcublr/rZdveTIpKkcc8ulth3a3OnPkqXsmVeOrs1flivSx\nAgAAAAAAAAB0KdKQvmHeyqSoGD61smTDTfBvy2QPrR2SlP/z+Fvrv3PXs8uTYpuDP9nT6tpJ\nx5VkMiGEfK7ppqWr+9cyAAAAAAAAAANekYb0rfVtnVUm2/uRVdnOCH/Zk691vZjPNTzb1HmG\nDxw4uqe12Ypx+1aXJfXLz6/sa7MAAAAAAAAADBJFGtIPndB5g/rWxqc7ej3y8Ya1nUfWv9j1\nYmvjU7l1j6jfo6a8l+V7Det8d3ndij72CgAAAAAAAMBgUZp2A+l435Q9w28WhBByaxff9HLj\nCdtXd3tY06u/f7KhNak72t9O2duaF3TVu1SV9fJBY7erCq81hRDWvLY4hA/1s+2GhobW1tZ+\nngQAAAAAYJCp7cfaZcuWFawPAGCwq62tzWbf5Wbt76pId9JXjT6qK1y/+7tXLF6T2/iY1voF\nl547u+sfO9reDuk7WuuTIpMprcn2/Ej7EMprO3fSd7TX97NnAAAAAAAAAAa6Ig3pQ6b8zH+a\nlpQtK/779Bmn3fTAM0tXNIYQQr592WuLHv7d1SefNPO5+rVvryip7KpbV3VuZ89ku9+C36V0\n3TPphfQAAAAAAAAAFOnt7kMIW08948xD//dHf/hbCKF9zZJbrvrOLSGUDhle2trYkut83ny2\nYtvPTsvf+sBrIYSS0j7dMKkjv65Y2+txAAAAAAAAAAx+xbqTPoQQwvSvXH7+///48OzbQ2hf\n09CV0A/dbq+zfnz5PkM6/46hpHRE12HlNZ03sc/nVvf+Ee2r25MiUzai9yMBAAAAAAAAGPSK\ndyd9CCGEzIeP+Nq1H/vMfffc//Qzf375tWWrGluG1Gy19XY77j9t+mGfmDKkJPPc6y3JoeVb\n7dC1rKS8Jiny+dbmjnxVSY+PpW9d2Xlj/PUz/r63m8lkMj1+FgAAAAAA75X/0xUAiKzIQ/oQ\nQiirHnfYMScddkz37/711aakGLnPmK4XS4fsGMJ9Sf1ic9vew8p7OvmbS9YkRUXtmJ6O2XTV\n1dX9PwkAAAAAwCCTe6nva0eOHFm4RgAA3l1R3+5+E+T/a1Xns+S32eftX9Qqhk8pWffHlc81\ntfey/vmmtqQYNXX05ukQAAAAAAAAgAFDSN+blpX3LWrJhRAymbLPjRvW9XomW7PH0LKknvvE\nWz0tz7cvn9PQmfGP28sz6QEAAAAAAACKXfHe7v7sL5/8ZltHCGHvc6746o413R7z0m3/lhRV\noz87riK7/ltH7DHimceWhhBev/fJcMT4bpc3LLqtLZ8PIWSyVcePHVrA5gEAAAAAAAAYiIp3\nJ/3+pWuWLVu2bNmyul/O6faAXMvCy+9dktR7zDhog3cnHrtvUqx+/ea6htZuz/DYzzrPXL3d\n8aPKinfUAAAAAAAAACSKNzme+o+7J8XK+T+/5ok3N3g3n2u8/tsXLGvLhRDKqz/89Y2eKF+9\n3YxptZUhhHy+46cX3ZHf6Pwr586+5m8NSX3o1w8ocPcAAAAAAAAADEDFG9KP3OP0yTUVSf0f\ns8646paH3mpoCSGEfO6VPz8y68xT7lqwKoSQyZQe9a2vlWc2Wp/JnnzWIUlZP//m0y+77fXV\n7Z1v5XPzH7v1jPNuy+fzIYSaHY89fuLwzf8FAQAAAAAAALClyyRBcnFqWnT/V864elWuo+uV\nyuqajuaG1tzbM5l68uXnHL5jT2f403UzL7xzflJnstUTdxhfU9HxxpKFS5a3JC+W1+x2+S+/\nN74y29MZAAAAAADop1zdzD6vzU6eVcBOAADeVVGH9CGE+hcf+M5FP1/Y2M1D5bMVo48741tH\n7b99ryfo+OPvrvrJTQ+3dHQzxlG7HDTz7FN33qq8QM0CAAAAANANIT0AMIAUe0gfQuhoW/no\nf/zbY3XPLFi0tLG5ffiIkaO23vbDHznwoAP3G121STvgV786994HH5rz9LxlK1Y0rA21tSPG\nTpz00enTPzZl1+zG98kHAAAAAKCghPQAwAAipAcAAAAAYGAT0gMAA0hJ2g0AAAAAAAAAQLEQ\n0gMAAAAAAABAJEJ6AAAAAAAAAIikNO0GAAAAAAAAANiC5Opm9m1hdvKswnYyKNlJDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEhK024AAAAAAAAAoBu5upl9Xpud\nPKuAnUAB2UkPAAAAAAAAAJHYSQ8AAAAAUDA2/AEA0Ds76QEAAAAAAAAgEiE9AAAAAAAAAEQi\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEhK024AAAAAANgscnUz\n+7YwO3lWYTsBAAC62EkPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkpWk3AAAAAAAAwKbK1c3s89rs5FkF\n7ASAvrGTHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAA\nAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASErTbgAAAACAQS5XN7PPa7OTZxWwEwAAgNTZSQ8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIStNuAAAAACCeXN3Mvi3M\nTp5V2E4AAAAoTkJ6AAAASEGfo+IgLQYAAICBzO3uAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCSlaTcAAABAynJ1M/u8Njt5\nVgE7AQAAABj07KQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiKU27AQAAgE65upl9XpudPKuAnQAAAADAZmInPQAAAAAAAABEIqQHAAAAAAAAgEjc7h4A\nALrhvusAAAAAwOYgpA8hhCVzH7v3kademPuXN1fUr24L1cOHb7v9B3bfc8ohh+xfW/buNxto\nXvLifQ8+NOeZeW8tW76qJdSOGDF2ws7TDjjw4P12K8tEaB8AAAAAAACAgaHYQ/q2xoW/mnXp\nH557ff0X65e31C9/c+5///F3N9zwua+dfcy0iT2fIP/EHVdfccP9LR35rpeWLW1etnTx/zz5\nwM07TZ95zlcnjazYbO0DAAAAAAAAMJAU9TPp21YvOP8rM9dP6DOZ0mGV2a5/zLUsnX3ZGVf+\n4aWezvD09d+6+Lf3dSX0mZLy6qqyrndXLnjkgtMvWNiS2wy9AwAAAAAAADDwFPVO+tvOu3Bu\nQ2sIIZPJ7LjfP3zh6EN2fP/YymxoXP7G3Cf+89ob7n59TXsI4eGfn7X3vjdOG1G5wfL6+dd9\n7455ST103NRTvnTcfruPL8uE5hWvPHD37F/fVZfP51sb551/9uwbrzwx8pcGAAAAAAAAwBao\neHfSN795xy1/W5XUu5/4gx+eddJu229Tmc2EkKkeOWbKp2b85Jff26Y8G0LI51t/88M/bXSC\njmsvuSefz4cQKkftf/WPzz7gQ+OTJ9BXjZhw+IxzL/vSPslxDQtvv+nlxkhfFQAAAAAAAABb\nsOIN6Rff/UhSlA7Z6bwjJ218QPnwXWd+dkJS1//l2vw7321a/NuHV7Qk9ecvPG1EaWaD5Tsd\ndu6ntq5K6nuueLRAXQMAAAAAAAAwgBVvSL9yXuc2+iGjDi/fMGHvNGb6rkmRa1u2eO07Hi3/\n8i1PJkXliEM+ve3Q7lZnjjx1z6RqfHX2qly+u2MAAAAAAAAAKCLF+0z6XFtHV9nzUW+n923v\nDNnvenZ5Umxz8Cd7Wlw76biSzOMd+Xw+13TT0tVf2XZYX5sFAIpXrm5mn9dmJ88qYCcAAAAA\nAPRf8e6kH73vqKRofuvO5o7ut7kveeD5pMiWj9m+Mtv1ej7X8GxTW1J/4MDRPX1EtmLcvtVl\nSf3y8yv73zMAAAAAAAAAA1rx7qR//5Enl99+bmtHPtey6Pzrn/rhjCkbHLDmjacuvmtRUo89\n8NT174jf2vhULt+Z6+9RU97Lp+w1rPyJhtYQwvK6FeHQcf3suampqa2trZ8nAQAGluH9WLty\npT8T7DuTT4Wxp8XkU2Hsaenz5I29P1zwaXHBp8IFnwpjp6i44CkqLvi0+E2yJ8OHD89ms+9+\nXK+KN6Qvq9r18q998vSr7s3n8wvu/MEX/zL9C8ccusO47UYNDa+/tmTeE/feePvDq3IdIYTh\nEz958SkfWn9tW/OCrnqXqrJePmXsdlXhtaYQwprXFofwoV6O3BQdHR25XC835wcAeAe/OaTF\n5FNh7Gkx+VQYeyqMPS0mnwpjT4vJp8LYKSoueIqKCz4Vxr4pijekDyGMP/jUKypGXnzlLW+0\n5t6Y+8is8x/Z+Jidph971teOqcmuv5E+dLTWJ0UmU7rBWxsor+3cZ9/RXl+YpgEAAAAAAAAY\nsIr3mfSJ7ff7h2MO/bue3q3Yaq+TTjjifWUbTql1VWtSZLLVvZ+/dN0z6YX0AAAAAAAAABR1\nSL968ZzzvjLjqn/tvHd9JlNaO3rcjhPHDR/SeYOBtfXPnPPlGVfe+mTfP6Mjv65Y269eAQAA\nAAAAABj4ivd296tfffSfv37Fa625EELVmEmf+/yJh+y3c+W6e9evWvriXbOv/9dH5+VyzQ/N\n/sGbq7/xg5M+2rW2vKbzJvb53OreP6V9dXtSZMpGFP5rAAAAAACK3g8ebOrbwm8dPKywnQAA\nsCmKNKTPd6y59OyrkoS+ZodP/ctlXxz2zkfL14z54Ix/vvjj+/zyKz/8txDCC7//4S8+vOuX\nd+8M2kvKazrPk29t7shXlfT4WPrWlZ03xi8pLUBIX139LnfXB4DNquNPZ/V5bck+lxawk6LS\nsbDva0eOHFm4RoqOyafC2NNi8qkw9rT0efLG3h8u+LS44FORxgXfx5B+MH2j/XuGouKCp6i4\n4NPiN8meZDI9RsObrkhD+voFP/9zY2sIIZMpOf07MzZI6Lts+9Ev/uPvH/3131aFEB756T1f\nvuaE5PXSITuGcF9Sv9jctvew8p4+6M0la5KionZM/9suyLccAFLhv2KpMPa0mHwqjD0tJp8K\nY0+FsafF5FNh7GmJPHnf6IQ5UFRc8BQVF3wqjH1TFOkz6d944K9JUVFzwD7De4zYQwj7n7B9\nUjS/eXdu3fPlK4ZPKVl3eT3X1N7L8ueb2pJi1NTR/egXAAAAAAAAgMGgSEP61vrOu9BnK8b3\nfmTF6NqkyHe0NHd0pvSZbM0eQ8uSeu4Tb/W0Nt++fE7D2qQet5dn0gMAAAAAAAAUuyIN6Ydu\nPywp2prn9n7k6oWdGXy2bFT1enfFP2KPztD99Xuf7Gltw6Lb2vL5EEImW3X82KH9aRgAAAAA\nAACAQaBIQ/qtp+2aFK2Nf/rD0uaeD8z/xw0Lk6pqzOHrvzHx2H2TYvXrN9c1tHa7+LGfzUmK\n6u2OH1VWpKMGAAAAAAAAoEuRJsfDxp2wc1Xn/eqv+/aVrzZ3/1z5Z277/r+ui/D3Oekj679V\nvd2MabWVIYR8vuOnF92R32jtyrmzr/lbQ1If+vUDCtY6AAAAAAAAAANWkYb0mUzlzG9+PKnX\nvPnk6V845Zo7//jqGytz+RBCaGlc8dfnHr70myd954a65Jjq8Z/+p71HvfMU2ZPPOiQp6+ff\nfPplt72+el3Sn8/Nf+zWM867LZ/PhxBqdjz2+InDI3xRAAAAAAAAAGzhStNuIDWj9j7le8cv\nO392XQght/bNf7/usn+/LmSylcMrO1atfsft64ds/eGLLzsps9EZanc56bwj51945/wQwqI/\n3nDK47+fuMP4moqON5YsXLK8JTmmvGa3i75/dIQvBwAAAAAAAIAtX5HupE/sccy3f3LOjPE1\n5V2v5HMt6yf0mUx2t4NP+NnPv/3+ymy3Z9hnxiXfPOGgypJMCCGfa3zpLy888/y8roR+1C4H\nXfSTC8b3sBYAAAAAAACAYlO8O+kT46ceedW+h/75v+5//Onn5i14eeWqxua2fHX18JHbTNh1\n190/+rFP7DS6qtcTlEw7+oy9pn783gcfmvP0vGUrVjSsDbW1I8ZOnPTR6dM/NmXX7MYb8AEA\nAAAAAAAoVsUe0ocQMiVD9jzw8D0PPLzPZxg6btKRMyYdOaNwPQEAAAAAAAAwGBX17e4BAAAA\nAAAAICYhPQAAAAAAAABE4nb3AAxIubqZfVuYnTyrsJ0AAAAAAABsOiE9QL/0OSoO0mIAAAAA\nAIDi43b3AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIStNuACiYXN3Mvi3MTp5V2E4AAAAAAACAbtlJDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABE4pn0FF6fn4wePBwdAAAAAAAAGNTspAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkpWk3AAAA\nAAAAALBFOPPWV/q89kfHTChYHwxqdtIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIJLStBtIR9NrVx13ygPv\nddXUq2efM65649ebl7x434MPzXlm3lvLlq9qCbUjRoydsPO0Aw48eL/dyjKFaBcAAAAAAACA\nQaFIQ/rCyT9xx9VX3HB/S0e+66VlS5uXLV38P08+cPNO02ee89VJIytS7A8AAAAAAACALYfb\n3b8HlRtN6+nrv3Xxb+/rSugzJeXVVWVd765c8MgFp1+wsCUXrUMAAAAAAAAAtmRFupN+yKij\nLr3045tyZP382y++9k8hhK0+cOTXtql+51vXfe+OeUk9dNzUU7503H67jy/LhOYVrzxw9+xf\n31WXz+dbG+edf/bsG688seBfAgAAAAAAAAADTpGG9NnysR/84Nh3PSzX8vI3Lng2hFA2dOcL\nL/p86TseMN9x7SX35PP5EELlqP2v/vHMEeverhox4fAZ5+78vou+8Yu6EELDwttvevmI47bv\n5mH2AAAAAAAAABQVt7vvRf7m8y94qaU9kyn7x0vOH1+RXf+9psW/fXhFS1J//sLTRrwzwA8h\n7HTYuZ/auiqp77ni0QjtAgAAAAAAALCFE9L3aPF9F/9ufn0IYYcjLvj78cM2ePflW55MisoR\nh3x626HdnSBz5Kl7JlXjq7NX5fKbr1UAAAAAAAAABgQhfffaVr/w7V/UhRCGjJp20Ym7bXzA\nXc8uT4ptDv5kTyepnXRcSSYTQsjnmm5aunrzdAoAAAAAAADAgCGk794dF8xa0daRyZSceOGp\nQ0o2vJV9PtfwbFNbUn/gwNE9nSRbMW7f6rKkfvn5lZupVQAAAAAAAAAGitK0G9gSrXzhVzct\nqA8hbD31jMO6u5V9a+NTuXzn7ev3qCnv5VR7DSt/oqE1hLC8bkU4dFw/G2tubm5ra+vnSSLY\n8NkA78WqVasK1kfx6fPkjb0/XPBpccGnwgWfCmNPi8mnwtjTYvKpMPa0+E0yFS74tLjgUzGA\nLvjB9I0eQGOH/nPBU1QG1gU/mH7E/CbZk+rq6pKS/u6EF9JvKN/R/OOL/zOEUFI28qwzpnV7\nTFvzgq56l6qyXs42druq8FpTCGHNa4tD+FA/e2tvbx8QIX1/DPovcMtk7Gkx+VQYe1pMPhXG\nnhaTT4Wxp8XkU2HsqTD2tJh8Kow9LZEn7xudMAeKigueohL/gvcjFopgCPl1e7n7w+3uN/Tq\nPd9/prE1hDDhM+fsUJnt9piO1vqkyGRKa7Ib3gx/feW1nfvsO9rrC9omAAAAAAAAAAOPkP4d\n8u0rL7t+XgghW/6+s475u54Oa13VmhSZbHXvJyxd90x6IT0AAAAAAAAAQvp3WHT3JYtaciGE\n8Z85a2x599vo35uOdbc76FhbgLMBAAAAAAAAMJAJ6d+WzzX98JYFIYRMSeVpn+1xG30Iobym\nfN2S1b2fs311e1JkykYUokcAAAAAAAAABrDStBvYgrz55JX/25ILIYzc7dSenkafKCmvSYp8\nvrW5I19V0uNj6VtXdt4Yv6S0ACH90KFDq6qq+n+eLdlWW22VdgvFyNjTYvKpMPa0mHwqjD0t\nJp8KY0+LyafC2FNh7Gkx+VQYe1r6OvmmuB832JgDRcUFT1GJ/B/WfnzioDLoh1BSUoBt8EL6\nLvkbfvF8Uv39Vyf3fmjpkB1DuC+pX2xu23tYeU9HvrlkTVJU1I7pf4vZbCHuwL/55fqxtrTU\nNdl3fZ68sfeHCz4tLvhUuOBTYexpMflUGHtaTD4Vxp4Wv0mmwgWfFhd8KgbQBT+YvtEDaOzQ\nfy54isrAuuAH04+Y3yQ3K7e779S89PZH61tCCOXD9vh/Y95lt3rF8Cklmc7d8881tfdy5PNN\nbUkxauroQrQJAAAAAAAAwADmDxk6vfCre5Ni7MdO6PHm9etksjV7DC17pqk1hDD3ibfCEeO7\nPSzfvnxOw9qkHreXZ9IDAAAAAACd2m7aps9rS3Y4oYCdABCZnfQhhJDPrfqXZ5cl9WeO7D5x\n38ARe3SG7q/f+2RPxzQsuq0tnw8hZLJVx48d2u82AQAAAAAAABjYhPQhhFD/198sb+sIIZRV\nffDgrSo2ZcnEY/dNitWv31zX0NrtMY/9bE5SVG93/KgyowYAAAAAAAAodpLjEEKYd8PzSbHV\nB4/axCXV282YVlsZQsjnO3560R35jQ5YOXf2NX9rSOpDv35AQfoEAAAAAAAAYEAT0od8vuXa\nv9Qn9c5H/92mLstkTz7rkKSsn3/z6Zfd9vrq9nVnzM1/7NYzzrstn8+HEGp2PPb4icML2zMA\nAAAAAAAAA1Fp2g2kb81bv3+zNZfUfz++etMX1u5y0nlHzr/wzvkhhEV/vOGUx38/cYfxNRUd\nbyxZuGR5S3JMec1uF33/6IL3DAAAAAAAAMBAZCd9WPrwU0lRWjlhUtV7+6uFfWZc8s0TDqos\nyYQQ8rnGl/7ywjPPz+tK6EftctBFP7lgfGW2sA0DAAAAAAAAMEDZSR+efnBpUgwZdeh7X10y\n7egz9pr68XsffGjO0/OWrVjRsDbU1o4YO3HSR6dP/9iUXbOZwjYLAAAAAAAAwAAmpA9HXXPz\nUf07w9Bxk46cMenIGQVpBwAAAAAAAIBBy+3uAQAAAOnS4kIAACAASURBVAAAACASO+kBAGCL\ncOatr/Rt4Y+OmVDIPgAAAACAzclOegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRlKbdAABAj8689ZW+LfzRMRMK2QcAAAAAABSInfQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAAD4P/buPUDOqr4b+JnZazZZ1l2ikJCYNAYEAhKCCkFpuKlQ8UL0\nJUCib6SWUrEUsSgXAQtBqbwFrWLFW7klmCKitqUFIVglBFMIbYAQowQiBALkurvZbGYvz/vH\nbNYA2U3Y2T3Pzszn89dh55x5zv7m5Nln+e55nkiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQSWXaEwAAAAAAAACgfF2w8NkBj71u1sRBm0csdtID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiKQy7QkA\nAAAAwCC7YOGzAx573ayJgzYPAACA17GTHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAklWlPAAAAAAAAgOHrgoXPDnjsdbMmDto8AEqFnfQAAAAA\nAAAAEImd9HnJc0/+5v5F9y9f9fwr69dv7apsbNrnwEOnHn/yR46Y1LjbwW1rn7r3/kWLl614\nZf2GLe2hsalpzMQDj5lx3AlHH1qViTB5AAAAAAAAAIqDkD50ta+9+f9d/dOlz+/0te2vvLD6\nlRdWP3jvXYefcs4lnz6pOtNX2J4sufOG62/9RXt30vul9eva1q97/vGH77v9gGO/cPG5U/au\nGdL5AwAA5HUsGDvgsdnJcwZxJgAAAAD0pdxvd9+1/Q+X/8X5Oyf0lSNGVe6I5JMkWfav//S5\nb9zT1/BHb7nkqzff25vQZ7LV9XVVva9uWvXLK867YnV719DMHQAAAAAAAIAiU9476ZOO7110\nyeNbtocQMtmaE2addepJM8Y31iUdbWtWPnzLjT945A8tIYTnFn37xmPf9ZdT937N6M0rb7ry\nzhX59sjx0885+8yj3zGhKhPaNj5738/n/+CupUmS5FpWXH7R/Nu+/snI3xkAAAAAAAAAw1BZ\n76R/acl1dz/dHELIZKo/Ne87551x8vjGuhBCpqpu4qHHX/b1b727qTbf8/7rbnnd6O5/vubu\nJElCCLWj33PDNy6acdiE/BPo65omfnjupdee/a58v+bVP17wTEuc7wgAAAAAAACA4ax8Q/ok\nyX3zm/+db79t1pUfPeS1G+UzlY2fu/r0fLt98wOLtmzf+dXW529+YGN7vv2Jqz7bVPnah9Yf\n8MFLT3lLXb599/W/GtzJAwAAAAAAAFCMyjekb3vhR8u35kII2aqmL3z8wF32GbnfzHePfXNj\nY2NjY+N/r37VbvhnfvRwvlHbdNKH9hu5q9GZmZ85PN9qeW7+lq5k8OYOAAAAAAAAQFEq32fS\nP/MvD+UbDW/7832r+/xjhS995we7/Ppdj23IN8ae8IG+xjZOOTObeag7SZKu1gXrtv7VfqMK\nmC8AAAAAAAAARa98d9L/x7KelP1PZu16G30/kq7mx1o78u23H7dPX90qasYfWV+Vbz+zfNMb\nnyMAAAAAAAAAJaVMd9InSfvSlly+PW1i/Rsdnmv5TVfSc/v6qQ3V/fScNqp6SXMuhLBh6cZw\n8vg3PtNXaW9v7+zsLPBNIhhRwNjW1tZBm0f5GXDllb0QFnxaLPhUFNGCL6UPuojKXmKKqPKl\n9EEXUdmHp5o0DqryA2bBp8WVZCqKa8GX0mdtwaeiiBZ8KX3QRVR26FUmF/D+iVGg4jrDl9KC\nL6IrychHrKury2YL3QlfpiF9R8sj27t7UvYj6qtCCBtXLf2PRb9a+viq9es3bk+q39S09+SD\nD3v3e993/LQJuxjetqq3fXBdVT8HGjOuLrzQGkLY9sLzIRxW4LRzuVwulyvwTSIo5HTZ3t4+\naPMoPwOuvLIXwoJPiwWfiiJa8KX0QRdR2UtMEVW+lD7oIir78JTK/+NT+QGz4NPiSjIVxbXg\nS+mztuBTUUQLvpQ+6CIqO/Qqkwt4/8QoUHGd4UtpwRfRlWTkI44YUciq7FGuIX3bU/lGJpPd\nt7Lz5zfO++Hdy7p3bI4PIffyC60vv7Dmoft+vuCg475w6bkH7PWq7fLduc07hlc2VGT6OVB1\nY8/A7s7Ng/odAAAAAAAAAFB8yvSZ9N0dPU+Iz2RH/vs/nP/9f3+0N6GvHVmXyfwxd3/5qQcu\nOvtvn2h51f713Jae/8xU7OZW+ZU7nkkvpAcAAAAAAACgXHfSN7flG91dLd//dUsIYZ8px35q\n9ofePmH83vW1nW1bnvvD03cv+O49//NCCKGz7dl5n79h/o2f63fPfB923FQ/dG8fpLkDAAAA\nAAAAUKzKNKTv3t6983/OOPvqz59yaO9/VtY1/MmB08698jvvvfPKy25+JITQtu6Brz865/Pv\nfHO+Q3VDz03sk66t/R+oc2tnvpGpahqsyfN6X7m/dcBjLzlh1CDOBAAAAAAAAKAfZRrSV73p\nj8+YbzzwrJ0T+p0d9rHLTvy3WfdtaA8hLLvpN+Gdp+S/nq1uyDeSJNfWndRl+9xin9vUc2P8\nbOUghPQjRoyoqakp/H2Gs/r63TxBoA8DD+kHesSSoghpUflUKHtaIp/hfdB56pAWCz4V6pAW\nlU+FsqdC2dPi/xWkQhHS4koyFepAWfGDlbJiwaei5MuezQ7CA+XLNKSvqN2rt33EXx7Xd8fM\nR099633fXxVCaFv3sxB6QvrKEfuHcG++/VRbxxGjqvsa//LabflGTeO+hU46hKqqqsLfJIKu\nAsbG/yuEUvq7hwFXvpSKEF9xLfhSYsGnoogWfCl90EVU9hJTRJUvpQ+6iMo+PHWkcVCVHzAL\nPi2uJFNRXAu+lD5rCz4VRbTgS+mDLqKyQ68yuYD3T4wCFdcZvpQWfBFdSRZj2Qch5y9GVSMP\n6W0f8eYR/fRsnPqWfKMr99LWrp4HzNfsdVQ207N7/n9bO/sZvry154fs6On7DHi2AAAAAAAA\nAJSGMg3pq+uPrtlxj/pt3Uk/PZOk59VMprp2x5BMRcPUkT2b2p9c8kqfYzs3LG7enm+Pn+aZ\n9AAAAAAAAADlrkxD+ky29v1Ntfn2Q79r7qfnKw++mG9UjTykYqdHz586tSd0f/Geh/sa27zm\njo4kCSFkKupmjxlZ2JQBAAAAAAAAKHplGtKHEE762IR8Y8WNC7v62EufdLf98N+ez7ebDj91\n55cmnXFkvrH1xduXNud2OfzBby/ON+rHzR5dVb6lBgAAAAAAACCvfJPjMcd/uqEiG0Joe/ne\ni3/4QMfrcvokaf/Pf/zC41tzIYRMpuKMT71951frx809prE2hJAk3d+ad+frU/5NT87/7u97\n9uif/LkZQ/EtAAAAAAAAAFBcyjekrxxxwGWnTc63V/7s+rM+99UHH//dpq0dIYRcy4bf/s+i\nKz971j8t+kO+w1tPvPC40bWvGp+p+PQXT8o3N6+8/bxr73hxa2fPS0nXygcXnn/ZHfnn2Tfs\nf8bsSXvF+JYAAAAAAAAAGN4q055AmvY/fd5pT33mX/5nfQhhy+olX7t0SSaTGbnXiNYtbTt3\nG/2OU6/97PTXD288+KzLZq686icrQwhrfn3rOQ/9dNLkCQ013S+tXb12Q3u+T3XDofOuPm3o\nvxUAAAAAAAAAikD57qQPIWQytbOv+Mbck6dVZDL5ryRJsnNCn6moe8/Hzrvxqk/V7ujwGu+a\ne82Fc46vzWZCCElXy9O/fWLZ8hW9Cf3og4+f980rJtRWDPH3AQAAAAAAAEBxKOud9CGETEX9\nzL/68vEfeOy+Xy3+zbKnXtm0qbl1+4j6hr3HTJh6+LRjP/CBSY3V/b5B9pjTzp82/X333L9o\n8aMr1m/c2Lw9NDY2jZk05U+PPfbEow6p2HW4DwAAAAAAAEA5KveQPu9Nkw7/+KTDPz53gMNH\njp8yc+6UmQMdDgAAAAAAAECZKOvb3QMAAAAAAABATEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASCrTngAAAAAAABSZCxY+O+Cx182aOGjzAACKkJ30AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEEll\n2hMAACgXHQvGDmxgdvKcwZ0J0OuChc8OeOx1syYO2jwAAAAAKBtCegAAAABgEPjrNwAA2BNu\ndw8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEgq054A\nAAAAQMm6YOGzAx573ayJgzYPAAAAhg076QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIqlMewIAAAAAANCjY8HYgQ3MTp4zuDMBABgidtIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIikMu0JAFDWOhaMHfDY7OQ5gzgTAAAAAACACOykBwAA\nAAAAAIBI7KQHAAAgqgsWPjvgsdfNmjho8wAAAABIg530AAAAAAAAABCJnfQAsHs2/AEAAAAA\nAIPCTnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQSWXaE0hVkjvt1P/T3p3stmP9uAvnf/uYvl5tW/vUvfcvWrxsxSvrN2xp\nD41NTWMmHnjMjONOOPrQqsygThgAAAAAAACAYlbWIX2udfmeJPT9SpbcecP1t/5i5/dZv65t\n/brnH3/4vtsPOPYLF587Ze+aAucJAAAAAAAAQGko69vd51qWFvgOj95yyVdvvrc3oc9kq+vr\nqnpf3bTql1ecd8Xq9q4CjwIAAAAAAABAaSjrnfTNv30u36gf98kv/fWUfnpW1Oz3+i9uXnnT\nlXeuyLdHjp9+ztlnHv2OCVWZ0Lbx2ft+Pv8Hdy1NkiTXsuLyi+bf9vVPDvrkAQAAAAAAACg6\nZR3Sb3xkQ74xevrUgw6a/AZHd//zNXcnSRJCqB39nhu+8YWmyp7nz9c1Tfzw3EsPfPO8v71x\naQihefWPFzxz6pl/Uj+IMwcAAAAAAACgGJX17e6f+V1rvrHPu/d+o2Nbn7/5gY3t+fYnrvps\nb0Lf64APXnrKW+ry7buv/1UB0wQAAAAAAACgRJR1SL+0NZdvvPMtI97o2Gd+9HC+Udt00of2\nG7mrLpmZnzk832p5bv6WrmRgkwQAAAAAAACgZJRvSJ90tz2xtSOEkMlUTN+r5o0Ov+uxnlvl\njz3hA331aZxyZjaTCSEkXa0L1m0d6EwBAAAAAAAAKBHl+0z6jpZHu5IkhFA16rD6iswLj//y\nPx96fO3za198aWPFyL32fvO4Qw8//D3HvnffERWvH5t0NT/W2pFvv/24ffo6REXN+CPrq5Y0\n50IIzyzfFPYbNTTfCgAAAOzeBQufHfDY62ZNHLR5AAAAQHkr35B++5ZH8o1MduQ/XnHufY89\nt9OL69Y8vWrZw4tu+8FNJ55+9mc+Pv01D5zPtfwmH/CHEKY2VPdzlGmjqvMh/YalG8PJ4wud\n8/bt3d3dBb5JBP1VZHe2bds2aPMYrkccOgOufCkVIb7iWvDDUPyfQ84zhSiiBT88y14OC76U\nWPCpKKKyp3LE3UrlFzwLfsAs+LQU0a9Oyp6n8oWw4FNRRAt+eJa9HH51Gp6VJ75yuIBP5YiU\nmCL6wZrKEYeOK8m+1NTUZLOF3q6+fEP6zU+8mG9s3/Lr+x7bdZ+u3IZ7bvnqit/N+ceLTqvY\nKajvaFvV2z64rqqfo4wZVxdeaA0hbHvh+RAOK3DO27dvz+VyBb5JBIWcLrdujf1cgPhHHDoD\nrnwpFSG+4lrww1BD9CM6zxSiiBb88Cx7OSz4UmLBp6KIyp7KEXcr/nkmWPAFsODTUkS/Oil7\nnsoXwoJPRREt+OFZ9nL41Wl4Vp74yuECPpUjUmKK6AdrKkccOq4k+1JdXciq7FG+If3GRzb2\ntjMV9e8/7YwT3vvut75l79C2fs2aNb9/8jd33bVofa4rhPDcktsuve2gaz5xaG//7tzmnoGZ\nyoaK12yzf5Xqxp4Pqbtz8+B/DwAAAAAAAAAUlfIN6X/7h9Z8o6pu8sXXz3vnmLqeF2r2Oahx\nn4Omvvt9H5hx5d9c+URLLoTw1J3znvjY/EPqesqV29KznT1TUd//USrre/bZC+kBAAAAAAAA\nKN+QfvzM2WflukIIb33vSdNG176+Q+3od1z6939+5rnfSZIk6d5248Jnvvmp/d/wYbqTHY3t\nBU0XAAAAAAAAgOJXviH99D/70G77jBx38ifG3nbL2pYQwkv/dX/YEdJXN/TcxD7p2s0TDjq3\nduYbmaqmgc8VAAAAAAAAgJJQviH9HjrylP1uuXFlCCHX/FAI5+S/mK1uyDeSJNfWndRl+3ws\nfW5Tz43xs5WDENLX1NRUVVUV/j7D2ciRIwc0rjX6EUuKIqRF5VPhPJOWyJVX9jx1SIsFnwpn\n+LQMqA7KXigLPhXKnhaVT4Wyp8WVZCoseMqKBU9ZseBTUfJlz2T6jIb3nJB+NxoOacw3ujs3\nN3cle1VkQgiVI/YP4d78159q6zhiVHVfw19euy3fqGnct/DJ1NTUFP4mEXQVMHbEiBGDNo/h\nesShM+DKl1IR4iuuBT8MdUQ/ovNMIYpowQ/PspfDgi8lFnwqiqjsqRxxt+KfZ4IFXwALPi1F\n9KuTsuepfCEs+FQU0YIfnmUvh1+dhmflia8cLuBTOSIlpoh+sKZyxKHjSnJIZdOewHCXqfxj\nLl61468iavY6KrvjTyT+t7Wzn+HLW3t+yI6evs+QzA8AAAAAAACA4lGmO+k3Pb5sVVtHCKG6\n4cDDD2zop+e2tRvzjcraiSN23NY+U9EwdWTVstZcCOHJJa+EUyfscmzSuWFx8/Z8e/w0z6QH\nAAAAAAAAKHdlGtJvWXXb1Tf/PoRQ0zDjjls/30/P3/1sbb4xavxHd/76qVOblj24LoTw4j0P\n9xXSN6+5oyNJQgiZirrZYzyCAgAAAAAAAKDclent7vc9/v35xvYt/3XLys19detsW/mtFT07\n6Q86/dCdX5p0xpH5xtYXb1/anNvl8Ae/vTjfqB83e3RVmZYaAAAAAAAAgF5lmhzXNp704X3q\n8u27Lv/S47tK2bs713/vknlbu5IQQlXdlPOPGL3zq/Xj5h7TWBtCSJLub827M3nd8E1Pzv/u\n75vz7ZM/N2OQvwEAAAAAAAAAilCZhvQhhFkXn57NZEIIXe1/+PLZf3PTvy55ZUtbCCEkXRte\nXPPIL+/60jnn/sfq5hBCJpOdefGFvQ+k75Gp+PQXT8o3N6+8/bxr73hxa2fPS0nXygcXnn/Z\nHUmShBAa9j9j9qS9on1fAAAAAAAAAAxbZfpM+hBC/aSPfvn05Zff/kgIoaNt7U++99WffC9U\n1tZXd21t6+ju7ZbJZGf836/MPqzp9e/QePBZl81cedVPVoYQ1vz61nMe+umkyRMaarpfWrt6\n7Yb2fJ/qhkPnXX1alG8IAAAAAAAAgOGufHfShxCmnnH5VX/5kcbKPxahs71l54S+tmnyJy+5\n4YKZB/f1Du+ae82Fc46vzWZCCElXy9O/fWLZ8hW9Cf3og4+f980rJtRWDNl3AAAAAAAAAEAx\nKd+d9HmHffDPv3/MSf913y8e++0fXn7p5Zdefqmlo+JNDQ3jJk955zuPet/x76p7zV3uXyt7\nzGnnT5v+vnvuX7T40RXrN25s3h4aG5vGTJryp8cee+JRh1T0PxoAAAAAAACAclLuIX0IoWqv\n/U6cOffEAt5h5PgpM+dOmTl3sGYEAAAAAAAAQGkq69vdAwAAAAAAAEBMQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEgq054Aw1fHgrEDHpud\nPGcQZwIAAAAAAABQGuykBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAi8Ux6GHY6Fowd\n8Njs5DmDOBMAAAAAAABgcNlJDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIqlMewIAAAwvFyx8dsBjr5s1cdDm\nAQAAAABQiuykBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRVKY9AQAA\nAChiHQvGDnhsdvKcQZwJAAAAUBTspAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJJVpTwAAAChBHQvGDmxg\ndvKcwZ0JAAAAAAwrdtIDAAAAAAAAQCR20gMAAADFZ8B37Ahu2gEAAECq7KQHAAAAAAAAgEjs\npAeAsmPbGQAAAAAApMVOegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niKQy7QkADAsdC8YOeGx28pxBnAkAAAAAAAAlzE56AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEIwp49EAAAIABJREFU6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABBJZdoTGKZeWnzDX/z9PSGEQy787leO2bf/zm1r\nn7r3/kWLl614Zf2GLe2hsalpzMQDj5lx3AlHH1qViTJdAAAAAAAAAIqBkH4Xclseu+i6X+xZ\n32TJnTdcf+sv2ruT3i+tX9e2ft3zjz983+0HHPuFi8+dsnfNEM0TAAAAAAAAgOLidvevlSTt\nN170tQ0d3XvS+dFbLvnqzff2JvSZbHV9XVXvq5tW/fKK865Y3d41JBMFAAAAAAAAoNjYSf9a\nj910yS/Wbt2TnptX3nTlnSvy7ZHjp59z9plHv2NCVSa0bXz2vp/P/8FdS5MkybWsuPyi+bd9\n/ZNDOWUAAAAAAAAAioOd9K+yeeUdV/706T3r2/3P19ydJEkIoXb0e274xkUzDpuQfwJ9XdPE\nD8+99Nqz35Xv17z6xwueaRmiCQMAAAAAAABQRIT0f9TVvubvLr+9O0ky2RF7V+2mMq3P3/zA\nxvZ8+xNXfbapMvOaDgd88NJT3lKXb999/a8GfbYAAAAAAAAAFB23u++V3PF3lz/d3hlCmPap\nr2T+5YsbOnL99H7mRw/nG7VNJ31ov5G76pKZ+ZnD/+3Li0MILc/N39L1Zw0Vrw3yAQAAAIDh\nqWPB2AGPzU6eM4gzAQCgxNhJ32P1v85b8OSmEMKbDpx1+Ufettv+dz22Id8Ye8IH+urTOOXM\nbCYTQki6Whes26Pn3AMAAAAAAABQwoT0IYTQtu6BS374SAihonbCFVeevtsN70lX82OtHfn2\n24/bp69uFTXjj6yvyrefWb5pUKYKAAAAAAAAQPFyu/uQdG36hy/+U1tXkslkPnbZlW+rrdjt\nkFzLb7qSJN+e2lDdT89po6qXNOdCCBuWbgwnjy9wqh0dHd3d3QW+yZ5L5S84tm/fXvJH3K34\nlR+GRYivTBb8MFQOC34YftDlsOCHYdmDBV9sCrlQtuCDBZ8SZ/hUlEPZUznibjnPFJci+sGa\nyhGHzoArr+yhPM7ww7DswRmeclIO55lUjkiJcSWZFleSfamurs5kCn3KuZA+PPCNi/97U3sI\n4a0nXTzn0MY9GdLRtqq3fXBdVT89x4yrCy+0hhC2vfB8CIcVNtOwbdu2XC5X4JvsuYZoR9pJ\nS0tLyR9xt+JXfhgWIb4yWfDDUDks+GH4QZfDgh+GZQ8WfLHZo+vCPljwwYJPiTN8Ksqh7Kkc\ncbecZ4pLEf1gTeWIQ2fAlVf2UB5n+GFY9uAMTzkph/NMKkekxLiSTIsryb40NjZWVOx+13f/\nyv129y8v+c7Xf/lCCGHEm4+55uwj93BUd25zvpHJVDZU9PeHEtWNPfvsuzs3FzBNAAAAAAAA\nAEpBWYf0uZblF//DPSGEbEX9+V/765H9xu2vGrilZzt7pqK+/56VO55JL6QHAAAAAAAAoHxD\n+iTJff+ia17JdYUQpv/VNdP3rh2Sw3QnOxql8wgKAAAAAAAAAAamfEP65bde+p/PtYYQRk+d\n+8X3j39DY6sbem5in3Rt7b9n59bOfCNT1fTG5wgAAAAAAABASalMewLp2LLqzi/fuSqEUFV3\nwJVf+sgbHZ6tbsg3kiTX1p3UZfu8T35uU8+N8bOVgxDSV1dXZ7Ml/ncVtbUDu6VBa/QjlhRF\nSIvKp8J5Ji2RK6/seRZ8Wiz4VFjwaRlQHZS9UBZ8KpQ9LSqfCmVPiyvJVFjwlBULnrJiwaei\n5MueyezpI9T7UaYh/TVXLOhKkkymYvZVl42rrnijwytH7B/Cvfn2U20dR4yq7qvny2u35Rs1\njfsObKo7i7zCOmIebIdRo0YNaNz66EccQvErPwyLEF9RLfiSUjwL3nmmUJErPwzLHiz4YtNV\nwFgLPljwKSmeM7yyF8qCD84zxaaIfrAWcMThaMCVV/ZQHmf4YVj24AxPOSmH80wBR4QeriTT\n4kpySJVpSL+mvTOEkCRdN33+Ezf12/OJa8/+8LU97ek3zL94fH0IoWavo7KZb3cnSQjhf1s7\n+wnpl7f2/JAdPX2fwZg4AAAAAAAAAEWsxO+dPkQyFQ1TR1bl208ueaWvbknnhsXN2/Pt8dM8\nkx4AAAAAAACg3JXpTvq6kaOSru5+OrS3tXUlSQihoqautrLnuQI1O/1Jw6lTm5Y9uC6E8OI9\nD4dTJ+zyTZrX3NGRJCGETEXd7DEjB2nuAAAAAAAAABSrMg3pv3/b/P47XDn744+05EIIB533\n9a8cs4vHyU8648jw4M9CCFtfvH1p86nv3msXd7x/8NuL8436cbNHV7lpAQAAAAAAAEC5kxwP\nUP24ucc01oYQkqT7W/PuTF7XYdOT87/7++Z8++TPzYg7OwAAAAAAAACGIyH9QGUqPv3Fk/LN\nzStvP+/aO17c2tnzUtK18sGF5192R5IkIYSG/c+YPWmvtKYJAAAAAAAAwPBRpre7HxSNB591\n2cyVV/1kZQhhza9vPeehn06aPKGhpvultavXbmjP96luOHTe1aelOk0AAAAAAAAAhgs76Qvy\nrrnXXDjn+NpsJoSQdLU8/dsnli1f0ZvQjz74+HnfvGJCbUWqcwQAAAAAAABguLCTvkDZY047\nf9r0991z/6LFj65Yv3Fj8/bQ2Ng0ZtKUPz322BOPOqQik/YEAQAAAAAAABg2hPS7dvn8H+95\n55Hjp8ycO2Xm3CGbDQAAAAAAAAAlwe3uAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiqUx7AgAAMIQ6Fowd8Njs5DmDOBMAAAAAgGAnPQAAAAAA\nAABEI6QHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAg\nEiE9AAAAAAAAAEQipAcAAAAAAACASCrTngAAAAAAxaFjwdgBj81OnjOIMwEAAChedtIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiKQy7QkAAAAA\nAAAw5A6ZPyPM//eBjT356CmDOxmAcmYnPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRVKY9\nAQDemAsWPjvgsdfNmjho8wAAAAAAAOCNs5MeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAOD/s3fv4VVWd77A185OQgyEmEhVRAYP9VYCapl6LDgWvI1Sa8/IPLWjWIfO\ntI7VjrWdaq2eaqfS0Wmf42WsdqYdq9YGrEp1nINzpHgZlaJM1akXpLQFraKghEBuhtze88cb\nIlISMAnrTdifz18re6/17l9+Ljf7eb5Z74ZIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQSXHWBQAAAAAA\nAAAw+NrnH9DvtUUHnzOIlbAtJ+kBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEh8J33o\naqt7/MGH/uv5F1a98kZjY2N7KB1VMfrAiYdOPvKYPz1l+j6l+Z1eoWXty4sffmTpsyve3lC3\nuTVUVVePPejw42Ycf+L0KSW5CL8BAAAAAAAAAMNDoYf0rzy5YN4/3f1Wa+c2j3XUb2mp37Du\nheWP333HBz71xa+dPfPQ3i+QLFt48/V3/ry1K+l5aMO6lg3rXn/hqSULDp156dcvrNlnxO6r\nHwAAAAAAAIBhpKBD+rWP3fSl65ckybv5enHZ6JFFLZtbOtIfO9vevuu6r65/54Yvz5q4wys8\n8+PLr7n3pZ4fc0Wlo8qSxpb29Mf6VY9dddFb37n12xPLdn4cH4adr/z0lX6vve7TBw1aHQAA\nAAAAADB8FG5I39Hy4qU3dif0JSMnzjlv7vQjP7hfdUUuhMaN655ZsvBHd/18U0dXCOGxf/n6\njD+5c2pF6XZX2LTy9m8tXJGOR46fdv55Z08/YkJJLrRsfGXJA7W33rc8SZK2xhVXXlb7kxvO\njfzbAQAAAAAAADAEFWVdQGZevu2Wxs4khJAv3feb//yd2ccftX91RfoN8hXV+88888Lv33hR\nWVEuhJB0vfODf/3NH1yg67ZrH0wz/rIxx95842UzjpyQfgN9efVBn5x7xXfPOzqd17D63vlr\nGiP9VgAAAAAAAAAMYYUb0t+99K10MOHPLptSuf0p+RDCyPEnfOmofdJx3TP/vt2zTa/f8ejG\n1nT8mau/WF2c227Coadd8Yl9y9Pxg9c/PlhlAwAAAAAAADB8FWhI39m6+ldNbel45qwDe5t2\n6Onj0kF784vbPbXmrqfSQVn1qaePG7mj1bnZF3w4HTW+Vru5MxlQxQAAAAAAAAAMfwUa0re/\ns6pnfHRFSW/TSreesE+6WrfL2O97ri4dHHDiKb0tr6o5uyiXCyEknU3z1zX3v1wAAAAAAAAA\n9gjFWReQjZKRU6688sp0PLY039u0jc/Vd8+v+ONtb2efdDY819Sejg87fr/eludHjD+momRZ\nQ1sIYc3z9WHcqIHWDQAAAAAAAMBwVqAhfb503Ec+Mq7vOR0tr35/4avp+I9O/dS2T7U1Pt2Z\ndB+tP2pH32ffY+qo0jSkr1u+Mcwa3/+KQwghdHZ2Jskeftv8jo6OPf4VhyBtz4rOZ0LbsxK5\nD9qesuGzYsNnwobPig2fCRs+E9qeFZ0fiNzOp+yYtmfFP6yZsOFht7LhGaB+f54J3uEzsse3\nPZ/P53ID2ZghFGxIv0NJZ3tzc3NTU1Nj/Ru/XPrk448tXdvSHkIYPfGkb5z1wW1ntre8e7f8\nSeW93i0/hDD2wPLwRlMI4Z03Xg/hyAFW2Nzc3NbWNsCL7LrKaK+0jU2bNu3xr7hT8Tuv7cGG\nz44Nn4lC2PBDsO3Bhs+IDZ8VGz4TNnwmCqHtmbziTnmfyYQNP+xU9XehtofC2PBDsO3BOzyF\nJJP3mfhseAao359ngnf4EIJ/WHeDqqqqfL7XO7XvIiH9u37w13MWbWzd9pFcruTIE//8oi/8\nRVX+PX8N0dW2aeuE4sp8X38oUVrVfc6+q2PI/T8JAAAAAAAAQGRFWRcwpI066NhPnPqnY0q2\n71Lb5u7j7Ll8Rd9XKK7oPmcvpAcAAAAAAADASfp3jT30Q5MatuRyuVwu19H0xspXNjaueWze\nVx/74HHnXvPVPy/r31cLdG39CvmuLYNYKgAAAAAAAADDkZD+XZ+8/O8/uc2Pb6xYdtv1Nz69\nvuV3T/z4b9/p+uGVZ/Y8VVrZfRP7pLO572t2NHekg1xJ9eBWCwAAAAAAAMCwI6Tv1QGTpl1y\n3V7nnntVS2ey/pc/uf3VWXMndN/cvqi0Mh0kSVtLV1Je1Osh+7b67hvjFxUPQkhfXFycJMnO\n5w1nJSUle/wrDkHanhWdz4S2ZyVyH7Q9ZcNnxYbPhA2fFRs+EzZ8JrQ9KzofQihf9KH+LewK\noejgc/qxUNuz4h/WTNjwsFvZ8GTIO3wm9vi25/p3//X3EtL3pbTiqDn7j/rh2sYQwtL5r8z9\n+pT08eK9DglhcTp+uaX9j0eV9naFt9a+kw5GVO0/8HrKy8sHfpFd1x7zxbaqrKzs17r66K+4\nG8XvvLYHGz47NnwmCmHDD8G2Bxs+IzZ8Vmz4TAyfDa/tA2XDB+8zGbHhs2LDZ6IQNvwQbHuw\n4SkkmbzPxGfDM0CdA1jrHT74h3WoKtCQ/lf/du+KlvYQwj4f/vifHt7Xf7aJE0eFtY0hhKbV\nvwmhO6QfMfqjRblbupIkhPCrpo4+Qvrnm7p3/php+w1W8QAAAAAAAAAMUwUa0m9acv+CVxtC\nCAesO6LvkL6jdesf6OTevU9CLl951MiSZ5vaQggvLXs7nDFhh2uTjrqlDVvS8fipvpMeAAAA\nAAAAoNAVZV1ANsZO2TsdbHrhv/qe+atXmtLBXh8Yt+3jZxzVHbq/+dBTva1tePWe9iQJIeTy\n5XPGjux3tQAAAAAAAADsGQo0pD/gtKnp4J26f1ve2NbbtLbNy+7f0P2l8gef+UfbPjXxrGPS\nQfObC5Y37PgKT96yNB1UHDhnTEmBthoAAAAAAACAHgWaHI8c+xcTy4pDCEnSedNVdzR1Jn84\np3PL+n++/KaOJAkh5EsP+Nyk99yvvuLAucdVlYUQkqTre/MW/uH6+pdqf/DbhnQ868szBv93\nAAAAAAAAAGC4KdCQPldU/nefnZKON//23//mK9cuXr5ifX1TEkIIXZveWvvMkgUX/eUFS17r\nvtf9Rz57xb7bHYXP5T/3tVPT4aaVCy767j1vNnd0P5V0rnzypxd/454kSUIIlYecNWfi6Ai/\nFAAAAAAAAABDXHHWBWRm/KlXnr3sc/P/uy6E0Lhm2ffmLQsh5Msq9upqaWrr3HbmwSdfdMVp\n4//wClWT/uobs1de/bOVIYRXn7jz/F/cP/HgCZUjutavXb22rjWdU1o5Zd63z9ztvwwAAAAA\nAAAAw0GBnqQPIYRc/tPfvPnzs44syuV6Hutsbdw2oc+PGHP6+Vdf97cn9XaNo+dee8k5J5QV\n5UIISWfj73794rPPr+hJ6MdMOmHeTVdNKMvvtt8BAAAAAAAAgOGkcE/ShxByReWnf+Hq4//X\niv9Y/J8vrnj5lTfrmpubQ/FeFaNHHzjx8ClHfuSkk4+tLu377xiKjjvz4qnTTn7o4UeWPrNi\nw8aNDVtCVVX12Ik1H5s586SPTs7n+lzNe02unRFqF/Vv7azpNYNbDAAAAAAAAMCgK+iQPjXq\ngEmfmjvpUwO4wsjxNbPn1syeO1gVAQAAAAAAALBnKuDb3QMAAAAAAABAXEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCTFWRcAAAAAAADZmFw7I9Qu6t/aWdNrBrcYAKBAOEkPAAAAAAAAAJEI6QEAAAAAAAAg\nEiE9AAAAAAAAAEQipAcAAAAAAACASIqzLgAA2PNNrp0Rahf1b+2s6TWDWwwAAAAAAGTISXoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACCS4qwLAACAPcrk2hmhdlH/1s6aXjO4xQAAAAAAQ42T9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACCS4qwLAAAAYLia\nXDsj1C7qx8JZ02sGvRgAAACAYcFJegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQSXHWBQBAPJNrZ4TaRf1bO2t6zeAWAwAAAAAAFCAn6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACCS\n4qwLGBJee/4/H176zEsrVr1Vv7mxqbWsorLqA+MmH3HksSfOOmJ8xU6Xt6x9efHDjyx9dsXb\nG+o2t4aq6uqxBx1+3IzjT5w+pSQXoXwAAAAAAAAAhodCD+nbGn5z87xrH1359rYPNm3e2LR5\n42u/feH/3Tf/QzM+fclFn96nuLdbDiTLFt58/Z0/b+1Keh7asK5lw7rXX3hqyYJDZ1769Qtr\n9hmxO38DAAAAAAAAAIaNgr7dfUfLqkvPu2zbhD6Xy1dWjcrlus+/J0nXiscWXPiFa95s69rh\nFZ758eXX3LG4J6HPFZVWlJf0PFu/6rGrLrpqdWvnbvsNAAAAAAAAABhOCvokfe3l31rd0p6O\nD/7Yn3/2jBMmjh83srSorWnjmlXP1v7wX/97bUsIoWX905f973vu+M6nt1u+aeXt31q4Ih2P\nHD/t/PPOnn7EhJJcaNn4ypIHam+9b3mSJG2NK668rPYnN5wb8/cCAAAAAAAAYGgq3JP0TWvv\nWbi6IR1PPP2y6776l1M+OH5kaVEIoXRU9WFTT/r7m2///MfGpRPqV9b+eOvkrbpuu/bBJElC\nCGVjjr35xstmHDkh/Qb68uqDPjn3iu+ed3Q6r2H1vfPXNMb5pQAAAAAAAAAYygo3pP/NbQ+l\ng+K9Dv6Hv572hxNyRWWf+PI/Hr719vWP3vrCts82vX7Hoxtb0/Fnrv5idXFuu+WHnnbFJ/Yt\nT8cPXv/4IFYOAAAAAAAAwDBVuCH9v7+8KR2MnXFeedH2EXsqlx/91zP3T8eNaxZv+9Sau55K\nB2XVp54+buQOV8++4MPda1+r3dyZDELRAAAAAAAAAAxnhRrSJ23PNXV/G/0hHz+gj4n7/M99\n0kFH65ptH7/vubp0cMCJp/S2tqrm7KJcLoSQdDbNX9c8kHoBAAAAAAAA2AMUaEjf0fpKZ9J9\ntH3y3iP6mLmlvi0d5Iorex5MOht6Mv7Djt+vt7X5EeOPqei+W/6a5+sHUjAAAAAAAAAAe4Di\nrAvIRvFeB999993peERZXyH9k/e/lg72qjqh58G2xqd7Mv6jKkv7WD51VOmyhrYQQt3yjWHW\n+IHUHEJIEvfMH3y6GrJograndL5AaHsmtD3lfaZAaHvKhi8Q2p6y4TOh7VnR+Uxoe1Yi90Hb\ns6LzFBQbngz5SJOJPb7tudyOv0j9fSnQkD6EorKysp1O2vzre2tfbUzHh39mWs/j7S2resaT\nykv6uMLYA8vDG00hhHfeeD2EI/tZ7FaNjY1tbW0DvMiuq9z5lD1BXV1d1iVsL37n4zdB21M6\nHwrjrUbbMzEE2x6id35y7YxQ+2D/1s6aXtO/hUOw8zZ8VnykyYQNnwmfJLPifSYTNnxWbPhM\nFMKGH4JtDz7SUEgKYbcHG54BqxrAWh9pgk+Su0FVVVU+nx/gRQr0dve7ovm1Jy+5ojYdl1Z8\n+CvT3r2tfVfbpnSQyxVX5vv6W4nSqu5z9l0dm3ZPmQAAAAAAAAAMGwV7kr5PSefyB354w+3/\n0dSZhBDypft+6TtfG7VNGN+2eesX1ecr+r5S8dbvpBfSAwAAAAAAACCk397vn138o9vueHbr\nXe6LiqvOv/a648aV9/NyXVu/AqFry2BUBwAAAAAAAMAwJqR/V9Nrz/zoh7cu+e/Xex7Zd8pJ\nX/nyeZPGbP/t9aWV3TexTzqb+75mR3NHOsiVVA9epQAAAAAAAAAMS0L6EEJIulof++n3v//T\nx1q3HnwvrfijPzv383NOOXKHXzhfVFrZvTBpa+lKyot6/Vr6tvruG+MXFQ9CSF9UVJTP5wd+\nHbalpSGLJmh7SucLhLZnQtuzovOZ0PaUf1gLhLanbPhMaHtWdD4T2p6VyH3Q9qzoPAXFhidD\nPtJkQtt3hZA+bP7d0huv+94vX+s+E58f8YFTzpxz1hnHVxb3Gr0X73VICIvT8cst7X88qrS3\nmW+tfScdjKjaf+Cljho1auAX2XXtMV+fwAfFAAAgAElEQVQsO1VVVVmXsL34ne9vEzZHf8Xd\nKJMNr/OhMN5qtD0TQ7DtQeczou1Z8ZEmEzZ8JnySzIr3mUzY8Fmx4TNRCBt+CLY9+EhDISmE\n3R5seAascwBrfaQJPkkOVYUe0v/+8du/et196QH6XK746NM/+/lzPr5f2U7+2mLE6I8W5W7p\nSpIQwq+aOvoI6Z9v6t75Y6btN3hVAwAAAAAAADAsFXRIv+GZO770f+7rTJIQQvkBU7/4dxf/\nySF778rCXL7yqJElzza1hRBeWvZ2OGPCDqclHXVLG7ak4/FTfSc9AAAAAAAAQKEryrqAzHS8\n8+tL/+H+NKGvnnzaTTdduYsJfeqMo7pD9zcfeqq3OQ2v3tOeJCGEXL58ztiRA6sXAAAAAAAA\ngGGvcEP6Z2+5bkN7ZwihdPTUG68+7wMl768VE886Jh00v7lgeUPbDuc8ecvSdFBx4Jwx7/P6\nAAAAAAAAAOx5CjQ5Tjobb166Ph2ffOXFlfnc+71CxYFzj6sqCyEkSdf35i1M/mBC/Uu1P/ht\nQzqe9eUZA6kWAAAAAAAAgD1DgX4nffO6+fUdXSGEXC5/TNf6Vave2umSouK9D56477s/5/Kf\n+9qpT1x2fwhh08oFF323+PILzhg7sjiEEJLOlUvvvea6e5IkCSFUHnLWnImjd8/vAQAAAAAA\nAMBwUqAhfd3Tq9JBknReeeklu7KkrPq0u2//m20fqZr0V9+YvfLqn60MIbz6xJ3n/+L+iQdP\nqBzRtX7t6rV1remc0sop87595qDWDgAAAAAAAMBwVaAhff1z9YNynaPnXntJ+T/dNP/R1q4k\n6Wz83a9f3PbZMZNOuPSyCyaU5QfltQAAAAAAAGA4ap9/QL/XFh18ziBWAkNBgYb0b2/YMkhX\nKjruzIunTjv5oYcfWfrMig0bNzZsCVVV1WMn1nxs5syTPjr5/X/ZPQAAAAAAAAB7rAIN6U/+\nfu3Jg3e1keNrZs+tmT138K4IAAC8H5NrZ4TaRf1bO2t6zeAWAwAAAAB9KMq6AAAAAAAAAAAo\nFEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKcdQEAAADA+zC5\ndkaoXdS/tbOm1wxuMQAAAMD75SQ9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4A\nAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAA\nAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKcdQEAAAAAAITJtTNC7aL+\nrZ01vWZwiwEAYPdxkh4AAAAAAAAAIhHSAwAAAAAAAEAkbncPAAAAAAAAwED5+p5d5CQ9AAAA\nAAAAAETiJD0AAADATjgOQkGx4QEAYLdykh4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKcdQFDzpuPXfE3171QUv6hhXf9\n4y4uaVn78uKHH1n67Iq3N9Rtbg1V1dVjDzr8uBnHnzh9SklutxYLAAAAAAAAwHAipN/eIwtW\nv5/pybKFN19/589bu5Kehzasa9mw7vUXnlqy4NCZl379wpp9Rgx6kTCIJtfOCLWL+rd21vSa\nwS0GAAAAAAAA9mxC+vdoWb/47nUtuz7/mR9ffs29L/X8mCsqHVWWNLa0pz/Wr3rsqove+s6t\n355Ylh/kQoHhz59HAAAAAAAAFCAh/bvaG1+54YpbkyTZ+dQQQgibVt7+rYUr0vHI8dPOP+/s\n6UdMKMmFlo2vLHmg9tb7lidJ0ta44srLan9yw7m7rWoAAAAAAAAAhg0hfWipX//737/6yycW\n/8fD/9XYuasJfQhdt137YJrol4059uYbL60u7v7++fLqgz4594rDPzDvq/+yPITQsPre+WvO\nOPt/VOyW6gEAAAAAAAAYPgo6pN+y6eHzL/x+XWNbP9Y2vX7Hoxtb0/Fnrv5iT0Lf49DTrvjE\nfWf937daQggPXv/42f902gCrBQAAAAAAAGC4K8q6gCwlnY39S+hDCGvueiodlFWfevq4kTua\nkpt9wYfTUeNrtZvfxxl9AAAAAAAAAPZMBX2Svrj8Q+ecc862j7Ssf+RnP39jV9be91xdOjjg\nxFN6m1NVc3ZR7hddSZJ0Ns1f1/yFcaMGUi0AAAAAAAAAw11hh/R7HXbmmYdt+8jGF1fsSkif\ndDY819Sejg87fr/epuVHjD+momRZQ1sIYc3z9UFIDwAAAAAAAFDYCjqk77e2xqc7k+7b1x9V\nWdrHzKmjStOQvm75xjBr/ABft7Gxsa2tn/fn74fR0V4pU3V1dVmXsL1C6Ly2Z0XnM6HtmRiC\nbQ86nxFtz4rOZ0LbM1EIbQ86nxFtT8Xvg85nQtszMQTbHnSeQlIIuz3Y8Gzlk2RWCuGtJnLb\n995773w+P8CLCOn7o71lVc94UnlJHzPHHlge3mgKIbzzxushHDnA102SJEl8t/0g09JMaHtW\ndD4T2p4Jbc+KzmdC27Oi85nQ9qzofCa0PRW/DzqfCW3PhLZnRecpKDY8GfJJskAMx7YXZV3A\nsNTVtikd5HLFlflcHzNLq7rP2Xd1bNrtZQEAAAAAAAAwtAnp+6Ntc/c953P5ir5nFld0n7MX\n0gMAAAAAAAAgpN/NurbeXaFrS6Z1AAAAAAAAAJA9IX1/lFZ238Q+6Wzue2ZHc0c6yJVU796a\nAAAAAAAAABjyirMuYFgqKq1MB0nS1tKVlBf1+rX0bfXdN8YvKh6EkH706NEDv8iua4/5YtkZ\nM2ZM1iVsrxA6r+1Z0flMaHsmhmDbg85nRNuzovOZ0PZMFELbg85nRNtT/e1DU/RX3I1s+Exo\ne1Z0nsJRCLs92PBs5ZNkVgrhrWYItn2nnKTvj+K9DukZv9zS195+a+076WBE1f67tyYAAAAA\nAAAAhjwhfX+MGP3Rolz36flfNXX0MfP5pu4If8y0/XZ7WQAAAAAAAAAMbUL6/sjlK48aWZKO\nX1r2dm/Tko66pQ1b0vH4qb6THgAAAAAAAKDQCen76YyjukP3Nx96qrc5Da/e054kIYRcvnzO\n2JGRKgMAAAAAAABgqBLS99PEs45JB81vLlje0LbDOU/esjQdVBw4Z0yJVgMAAAAAAAAUuuKs\nCxiuKg6ce1zVQ0/UtyZJ1/fmLbzjO2fl3juh/qXaH/y2IR3P+vKM+BUCAAAADHeTa2eE2kX9\nWztres3gFgMAADAoHO/ur1z+c187NR1uWrngou/e82ZzR/dTSefKJ3968TfuSZIkhFB5yFlz\nJo7OqkwAAAAAAAAAhg4n6fuvatJffWP2yqt/tjKE8OoTd57/i/snHjyhckTX+rWr19a1pnNK\nK6fM+/aZmZYJAAAAAAAAwFDhJP2AHD332kvOOaGsKBdCSDobf/frF599fkVPQj9m0gnzbrpq\nQlk+0xoBAAAAAAAAGCqcpB+gouPOvHjqtJMfeviRpc+s2LBxY8OWUFVVPXZizcdmzjzpo5Pz\nuZ1fAgAAAAAAAIACIaR/j+rJ33zggfe9auT4mtlza2bPHfx6AAAAAAAAANiTuN09AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiKc66AAAAAAAAAIDB\nNLl2Rqhd1L+1s6bXDG4xsB0n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiKc66gD1B\ny9qXFz/8yNJnV7y9oW5za6iqrh570OHHzTj+xOlTSnJZFwcAAAAAAADAkCGkH6Bk2cKbr7/z\n561dSc9DG9a1bFj3+gtPLVlw6MxLv35hzT4jMqwPAAAAAAAAgKHD7e4H5JkfX37NHYt7Evpc\nUWlFeUnPs/WrHrvqoqtWt3ZmVB0AAAAAAAAAQ4uT9P23aeXt31q4Ih2PHD/t/PPOnn7EhJJc\naNn4ypIHam+9b3mSJG2NK668rPYnN5ybbakAAAAAAAAADAVO0vdb123XPpgkSQihbMyxN994\n2YwjJ6TfQF9efdAn517x3fOOTuc1rL53/prGDAsFAAAAAAAAYIgQ0vdT0+t3PLqxNR1/5uov\nVhfntptw6GlXfGLf8nT84PWPRy0OAAAAAAAAgCFJSN9Pa+56Kh2UVZ96+riRO5qSm33Bh9NR\n42u1mzuTWKUBAAAAAAAAMEQJ6fvpvufq0sEBJ57S25yqmrOLcrkQQtLZNH9dc6TKAAAAAAAA\nABiqhPT9kXQ2PNfUno4PO36/3qblR4w/pqIkHa95vj5GZQAAAAAAAAAMYcVZFzAstTU+3Zl0\n377+qMrSPmZOHVW6rKEthFC3fGOYNX6Ar9vc3Nze3j7Ai+y6Hd7Ef8+zadOmrEvYXiF0Xtuz\novOZ+P/s3X18jfX/wPH3dc52dsM2G2buM8zc5r6QjG9+KUlRkkkpIXQn91FUSohvROWuKJEU\nEYW+JbflrjA2jDC7sZmZ3Z2ds3Ou3x8HzWhmN9e1nfN6/nXtOp+z3o+ry3vv63pfn8/FYddF\nKTzswpHXCYddLxx5XXDYdeEKh1048jrhsOuFI68LDrsuSuFhF448XIkrnO3CCY+rOOH14gpH\nXuPD7uPjYzQai/hLaNIXhjXz+LXtRt7u+YysWsNb4tJFJCvunMidRfzv2my2nJycIv4S5MEh\n1QWHXS8ceV1w2HXBYdcLR14XHHa9cOR1wWHXC0deFxx2vXDkdcFh1wWHXS8cebgUTni4FE54\nXZTFw85y94Vht1x5HENR3PyMSj4jTf5X5tnbc0rdgzMAAAAAAAAAAAAAAI3RpC8MS6rFsaEY\nffIf6Xb1nfQ06QEAAAAAAAAAAAAAinr13eoouAsH33x20p8iYnDzX/vd0nxGRn/+0sjvTouI\np1/Yqi9GFvG/e/nyZYvFUsRfAgAAAAAAAAAAAAAoBH9//6K/k56Z9IVh8ruyiL1qy8h/ZE7G\nlVcgKO4BJRsTAAAAAAAAAAAAAKDUc9M7gDLJYPJzbKiqJdOuehv+9bX0lpQrE98NbsXQpC9f\nvjwrHwAAAAAAAAAAAACALoo+jV5o0heOm1d9kc2O7chMa6vypn8bmRib5djw8A8q+n/XYGDl\nAwAAAAAAAAAAAAAow2j6FoaH790G5crs+YPpOfmMPJRudWxUalelxMMCAAAAAAAAAAAAAJRu\nNOkLQzH6NS/n7tg+sjvp34apOck7L2c7tmu25J30AAAAAAAAAAAAAODqaNIX0qPNrzTd4zf9\n/m9jLp/5xqqqIqIYvcOrltMoMgAAAAAAAAAAAABAaUWTvpCCn7zLsZERv2LPZctNx+yYv9Ox\n4VMjvJI7hxoAAAAAAAAAAAAAXB2d40LyqfFMR39PEVFV+0fvfKveMCDlyPIF0Zcd2w+82knb\n6AAAAAAAAAAAAAAApRFN+sJSjIPGdnNsXopa8dKMb+Izcq58pNqidnz9yqRvVFUVEb/6T4YH\n++oVJgAAAAAAAAAAAACg9FAcjWQUzt7Px7z9XZRjWzH6BNer7edhPx97KjbZ7Nhp8mv6wcK3\nansa9YsRAAAAAAAAAAAAAFBa0KQvIvv2VXPmfvWr2X6Tw1ipUZcx44aFVjBpHxYAAAAAAAAA\nAAAAoBSiSV8MMmKObPrfLzv3H71w8eLlbPH3D6ga3PjesLD77m5iVPQODgAAAAAAAAAAAABQ\natCkBwAAAAAAAAAAAABAIwa9AwAAAAAAAAAAAAAAwFXQpAcAAAAAAAAAAAAAQCM06QEAAAAA\nAAAAAAAA0AhNegAAAAAAAAAAAAAANEKTHgAAAAAAAAAAAAAAjdCkBwAAAAAAAAAAAABAIzTp\nAQAAAAAAAAAAAADQCE16AAAAAAAAAAAAAAA0QpMeAAAAAAAAAAAAAACN0KQHAAAAAAAAAAAA\nAEAjNOkBAAAAAAAAAAAAANAITXoAAAAAAAAAAAAAADRCkx4AAAAAAAAAAAAAAI3QpAcAAAAA\nAAAAAAAAQCM06QEAAAAAAAAAAAAA0AhNegAAAAAAAAAAAAAANEKTHgAAAAAAAAAAAAAAjdCk\nBwAAAAAAAAAAAABAIzTpAQAAAAAAAAAAAADQCE16AAAAAAAAAAAAAAA0QpMeAAAAAAAAAAAA\nAACN0KQHAAAAAAAAAAAAAEAjNOkBAAAAAAAAAAAAANAITXoAAAAAAAAAAAAAADRCkx4AAAAA\nAAAAAAAAAI3QpAcAAAAAAAAAAAAAQCM06QEAAAAAAAAAAAAA0AhNegAAAAAAAAAAAAAANEKT\nHgAAAAAAAAAAAAAAjdCkBwAAAAAAAAAAAABAIzTpAQAAAAAAAAAAAADQCE16AAAAAAAAAAAA\nAAA0QpMeAAAAAAAAAAAAAACN0KQHAAAAAAAAAAAAAEAjNOkBAAAAAAAAAAAAANAITXoAAAAA\nAAAAAAAAADRCkx4AAAAAAAAAAAAAAI3QpAcAAAAAAAAAAAAAQCM06QEAAAAAAAAAAAAA0AhN\negAAAAAAAAAAAAAANEKTHgAAAAAAAAAAAAAAjdCkBwAAAAAAAAAAAABAIzTpAQAAAAAAAAAA\nAADQCE16AAAAAAAAAAAAAAA0QpMeAAAAAAAAAAAAAACN0KQHAAAAAAAAAAAAAEAjNOkBAAAA\nAAAAAAAAANAITXoAAAAAAAAAAAAAADRCkx4AAAAAAAAAAAAAAI3QpAcAAAAAAAAAAAAAQCM0\n6QEAAAAAAAAAAAAA0AhNegAAAAAAAAAAAAAANEKTHgAAAAAAAAAAAAAAjdCkBwAAAAAAAAAA\nAABAIzTpAQAAAAAAAAAAAADQCE16AAAAAAAAAAAAAAA0QpMeAAAAAAAAAAAAAACN0KQHAAAA\nAAAAAAAAAEAjNOkBAAAAAAAAAAAAANAITXoAAAAAAAAAAAAAADRCkx5lwIxPvtp3LF7vKABA\nRMSm6h2By7BZsvUOAdDZ5OFDBw0a9O7PsXoHAsCZkWqKjivWUohKslQhzxQdeQaABkg1cB2c\n7WWIc1eSbnoHANza9o0rt29c6VM1pFNY57DOnUKCyusdkcvJTE2Ki0+2qgVtToaENjQqJRqR\n0zp79uxtjVcMRg9PL08PT89yXiYDB714ZCUnxKVk161XO/fO1JM75y769sTps5eyJKBqnfZd\nuj/Vu5Mnx7z4qDkpu7buOHw44khk9KWMjMzMLKtNXbdunYhY0vZ+tzWtQ1jHmj7ueofphMjw\npZbdmhQZG59lV62b4uW+6nqH4zzSU1NzCnzC+1WowPl+S1u2bCnG31ahUYc21b2L8Rcif6Sa\nYsEVq+6oJEsz8kyxIM9ogJIGINXAdXC2lxVOX0nSpEeZkRZ//IcVxzesXFCtQeuwsM5hne6u\nUo4TuGSpORe/XfzpD9sOXEy7vVkIy9d870MPp1BGjBhRuC8qBlOlqtVq1rijWeu727dvE8Qd\nqEJJOvTzx599vf9Uort3s9Ur3r62P/nAsiFvfWuxX2nqJMceW//Fsd92Hpo780V/N071YhC1\n/dtPFqw4lWq56ae27L+/WvjlyiWfhfUd/GKfjmSXYkGG1496Lmr/n5GnU9Iy8x2VE3Pw1yy7\nKiJ2M3MBi0HsgU3L1v0aHX0y6fJtHE9O+IKYO3duMf620GENuaNdHEg1OuCKVS9Ukjohz+iA\nPFOiKGkAB1INXAdnu36oJK/ghEMZ0K5J7T1HztpUVURUVY2N2rs8au9XCzxDW98T1rnzvXc3\nKcd1dglQbRkfvjzil5j0QnzXgzdpaE61W5JiTyfFnj7wx9aln5Tr/Phzg574T3n+adyOhJ1L\nhk///sb5xKrt8tT3117r0F9z+dTPY2Y0Wzg+TKP4nNeB5ZMmf33wlsPsttRfls84Gn1+/oTH\neDSiiMjwerFbEj5++41NBxNu61sNetctoXhcR/T6Wa8t+k0t8AT6a9w54VEGkWq0xxWrjqgk\ndUGe0R55BoAGSDVwHZztOqKSzE0pxL0qQHvmi2d2btu+bdtvf0afz/OR0bNSm46dOncOu6tJ\nbe6jFqOYH18f/vHhaz+6e/sFBvgU8E/TvPnz+SNWOO+++66IWNNP7o9IuvFTRcmbtN29g1s1\nq5yZejEpKelCcmruBnOlOx+f/1Z/T4X/FQViM58a3P+1JIvN8aOp3J3XZtIn7X/vuSm7RcTg\n5vfY0BdaVTcd2b1u2bq/RERRDKOWreroZ9IrbCcQs3nO8I9+dmwrRp97/hMWUq++++GvPtme\nICKORUqtmYcnv/bu4dgMx7DQvtOn9wvVK2DnQIbXy1ejB6w8dum2vhLYqvf8N542cdCLwJK6\ns//T0825nrUyGo0F/O63a9ZQXt6So3q5Kbs1ec/+E9d+VBSDj3/lKkFBPsbs8+fPn0+6dO3V\nA0ZTUPjQvpXcDH4hbVtUY9pZkZBqdMEVqy6oJPVCntEFeaakUdIAQqqBK+Fs1wuVZG406VHG\npMUd37btt9+2bYs6l5rnI69KwfeGhYV1Dmtcs4IusTmZz5994rsLWSIS2rnP4KceqVeJ97Jo\nxGY+/fYLYw4km0VEMXq3/k+P++5uUrlypcDKgeXdrEmJiYmJidF/bV+7YUeK1aYoxgdGzBja\ntZ6IqHZL/ImDm3/45rvfohy/KiR89swnnPMRs2J35rtRL35+XEQMRt9ew1+5v02TKn6ejo82\nvdR/3unLIhL69H+n9w527Nw254WZP8eKSO1HP5g7sL5OUZd5NvOZQeEvJ1vtIuIX0mn0qGHN\ngrxEJHrZyyNX/y1Xb62KiKg5u1dOfW/FfhFRjN7Tv/qygRerARUeGV4X6THL+g1f7dj2rhrS\ntnloBbfsqB1bo1KyRaTpAz3qebqJSGZq0uE9f8SlW0Wkcfjkd/q05OntIjo4Y/Ck7Qki4hXY\n5Nkh4S3qBwdW8NI7KJeQk3nyg/5HFxgAACAASURBVNGTdsaki4h31Ua9Hu/z0L3NvU3/3OJQ\nbdnH/tiycuXXB06nioh3tbbvzB5Xj/ReNKQa3XHFqhkqSb2QZ3RHntEYJQ1cE6kGroOzXUtU\nknnQpEdZlXTq0LZtv23btuPvC1l5Pgqs2zwsrHNYWIcaTG8tgkGPPZposfk3Dv/8vSecNAGW\nUqvGPP1lVIqI1OzQb+zQXrX+5TS2ZZ3/Ycn0xZtOKIry0OuLnm9b+dpHJ/83b+SczaqqGk1B\nn3/9qZ+z/gUrVl8P6rs8MVNEWr708eT7qv/zgZrz7GOPX7DaFEV5f8W3od5XLrMtl3c+1v99\nEfEODF+56Ak9QnYGMevHDF8YJSIefq0//mxiJbcrtzlucmtVRET+N2Pwh9sTRKRe/w9n9amj\nebzOgwyviwPvDJq8J1FEfOt2nzdzsCM552QeD+83Osuuhg6ZN717TcdI1Za6ata45dtjjR41\n31w0uzn1TNG83//xnZezTb6tP/18YkU3HoLXjPr5yAHfRaeKSMvHxkx86p5/X19aPfDdjMmf\n7xARv3qPfPbBs6xEXRSkmtKDK9aSRiWpF/JM6UGe0QQlDVwdqQaug7NdA1SSeXCXCmVV5eBm\nvZ958cMlK+dNm/jEgx2r+vzzTzTx5F+rFs8ePuDJkZM/WL/1QKqVJ1EK43KOXUQ6vfgQ1xRa\nSj21yNGh96v32Jwxff+tQy8iRq8qPYfPfKZpgKqqG6ePj8rMufZR3f8Mf7F5RRGxWRLWJuUt\nKXBTOy5ni4iimF7tXC33fvOlny9YbSJi8u14rUMvIibfDhXdDSJiubxb20idyu7vzzo2Oo4Z\nUakAnbOOg59ybMRt2VuCYbkAMrwudp247Nh4dNxT1x6fcvMOGRBUTkTifoq+NlIx+vUZNbtr\nFW9bdswHU9ZoH6qTici0ikjj4UPo0GspJXKO43Z2pebPTR6Qz+1sEVFa9hrzUrsqIpIavXbG\n74kaheikSDWlB1esJY1KUi/kmdKDPKMBShqAVAPXwdmuASrJPLhRhbJOqdmobfjQ0Z9++dUH\nk1/r2aWNv+nKS0ZV1Rp94LeFsyY/3XfAlFmLtv0ZbSNz3o5aHkYRqe3N8lyaOrBgu2PjsQmP\nF2ACvNJ9dH8RsVkS53/zd+4P2g2917ERsS+5uGN0TuctdhFx87ojz8IDKYd+c2xUaNQ1z1dq\nmNxExGZN0CRA5/RbaraIKAaPgY38CzLe5Ncx0GQUEUvqjpKNzNmR4XVxKMMqIorRu2fgdS+n\nrN8qQESyU/bk3qkonk+P7yoiqdHLV8ZlaBimE8q2qyJyd6if3oG4lr2L9js2Hnvl/oKM7zgs\n3LFxeOn2korJNZBqSh+uWEsKlaReyDOlD3mmBFHSAFeRauA6ONtLEJVkHjTp4SSs6ReTLiRf\nSr2clWPP85Hdmrp/67qZb44cMHzi2u2RuoRXFnUK9BaRQ+eZh62pdafSRMTg5tezUoFel+tR\n4T7Hnaa4zaty7/eseKWjnHkus7hjdE5eBkVEVHtOnv3H18c5Nuo8XDPPR5Yr74thKnLhOZ6N\nMHrU8inwSxmC3I0iYrPEl2BYLoAMr4uLVruIuHnUyjP/JqBNgIhY0vdbrr+0863zTGWTUUR+\nWR4tKALHC0FzuHLW1saYdBFRjN4PBHgWZLyHX1gFN4OIZCX/XLKROTtSTanFFWuxo5LUC3mm\n1CLPlARKGiAPUg1cB2d7SaCSzIMZVCjbzBfP/r579+5du/ZFnLaqeW+++tds5Jd56nSy2fFj\n2rlDS2Yc2hP18tTn/0NX7ZbaPddy4Rtb9320Vp37DIdLM2ezbSJicK98y5HXBLgZEi02a8ah\n3DuN7oGODctFSzGG58TqeLmlpFls2adjLbbqV5+OFNW6/PSVFXgeqeObe7xqzzplzhERg3sl\nbSN1KuWMiiVHtVsvqAV+2CHBahMRxVCgp1jwb8jwuvAwKBabqqp5HwbyrhYi8pdqN+9Pt7TL\ntZaaKMZOvh6rL2Re/OsHkTs1jdW5dA/2jTicvD8ytUeHAt1aRbGIcZQ0hnIFTzJeBuWSiN3C\n2rBFQqopbbhiLTlUknohz5Q25JkSRUkDOJBq4Do420sUlWQeNOlRJqUlRO/etWv37t1/Ho+z\n35AoK9Vu0uGeDh3adwitWUFUW/SfO/73v59/3XUo06aKSMT6Dz9o2nTU3YF6BF6WVGr+ap+Q\nP1cd/27CklqTB3b2UPgro4UKboYkq81mPptqU/0KMCNEtaWdNueIiKK4595vs1xZg93k736T\nr+EGXauWO5BmUVX73M2x0x6q5diZfPCTBIvjhfTtGl2/MHjqiWWO9ZM9fO7WPlqncZeP6acU\nsz0nZdNFc7cCzEuwpO1OtNhExL1cs5KPzpmR4XVRzcN4LNNuM59Js6m55/yZyrcWWSUiW2Mz\n2oWacn+lsskgItbMCI1DdTItRvQyDF10dOEyc/tRnpztWilvVFJyVJs16ZTZFuxpvOV4W/aZ\nBKtdRAzuFUo+OmdGqikluGLVAJWkXsgzpQR5RhuUNHBxpBq4Ds52bVBJ5kGTHmXJxbNHd+/e\nvWvXrsN/J934aWBws/btO9zToUNI9VwTXhVjvZad6rXsNDD1zGfT3thwJEVE/pj3mdw9VrOw\nyyzlyXenJb42Zuva/z6zd+uA/j0bBdepERRQ4KUEURhh/h7fJGaqquXTAxfGtLn1fPrkwwvN\ndlVETL7XtYozE350bPg28L3J13CDRgNbyPhfRCRy8fhVFSc+2Dok69ze96dtdXxarevjuQen\nndn+xpubHNsV27bWNlKn0jWsyk9rzojIqjlbu03udsvxR774wrFRscWtByNfZHgddPQ1Hcu0\nqqp1adSlEY3/eXuum3dIeaOSblPPbo6T0OveqhtnsWkephPyrtrjnX57JizfPnp26IxXH6JP\nr412vqaNF80isuiXuHcfzPvKmBvFb12gqo6SpkOJB+fUSDX64opVS1SSeiHP6Is8ozFKGrgm\nUg1cB2e7xqgk86BJjzIgIfrgrl27du/edSw2Nc9HiqIEBjfr0OGeDh3a16/qk88vMfnVHjhh\nxIbwt0XEcnlXpl31NnCL9haMpuo9Hm2/9b+bMmL/+vj9v0REMRgLctjWrFlT4sE5qS5P1Plm\n7hER+X3me1GLpoX6mPIZnJN5cua0nY7t6g8++M8HqmXN7G2OzTbN/G/8Im5UodHQDgG7dl40\nq7a0L98bu1xR1KuPTCoGz+cfr+3Yzkr88f3p6w+eiLWpqogoivHxvnfoFbMTqN2rr/va6VZV\nvXBg/nur/cb0bpdPkzhh34q3NsU6tv+vX7BGITovMrz2mveoIQuPicjWqe+2nTmlbTXvq58Y\n7vXz2HjRnLDj47Thc689R2y3nP85xSwi7p6c8EXV5Im3Xs2e9uG3iwYc+a33k+E9Ozf35JmU\nEvZ/91ffuOKkiEQumbKvzUetK+c3ydV84cCUhUcd29Uf7KJFfM6LVKMLrlh1QSWpF/KMLsgz\neqGkgUsh1cB1cLbrhUoyD5r0KAMGj5yUZ4+iKEH1WnTo0L5Dhw51q5Qr4O9xL9/06qabiUlU\nBbD384lvf3fdm85Vu82ZH1sqBaqGvVpv0dDorJycrOiJQycMfHVE99Z33HRk7MEtH81acDTT\nKiJGU+Dwnle6yGnxx39YOnv1qcsiYirf4tFKvHCxQBTF88X3Xjz54izH+vZqrkWNGjw2qan3\nlbcGZF/ae+D4uWsf3XH/+DA/D41DdSYmvw7j7qvx9pYYEdm97L3n9oS9MKBnk9DrSy7Vlpxw\netuGb5at3+14NsI/9JleQd43/YUoODK89qp3HeL/2aiUHLsl/djU4c81uLPFoLEjQ7zcRKRL\nxyobvz9jM5+dMOf7Ga/09FQU1Za6cuakDJsqIuVqMuGvSNauXSsi4tvw/mYnfzx4fPmcN7+a\n6x5QJSgoKKhCufwehhORsWN5EL6QavUc5Lfq9VSb3WZJfHfE6IGvjerRtvZNR57d98MHM5ec\nt9hExODmP7h7DW0jdTakGl1wxaoLKkm9kGd0QZ7RCyUNXAqpBq6Ds10vVJJ50KRHWaIohmoh\nLTt0aN++ffvgwNu+rs7JPO7Y8KrS042EeSupJ5e9s+aw3lG4HIN74MQJjw1+42uLqlrSjn/6\n1ktfVQtt07RuYGBgYGCgt5gTkxKTEpNOHdl3JOaS4yuKonQd/lY9T6OIZCYs6j90/bUG870v\nDedMLzjvqh3/O9d3wbzFWw+fcbx5yOBWvkPPQa/1b3rjYEVxa/XA868Paat5mM6m9fAZD8cM\nXRd1SUQuRm2dOmGrYvSsXN7u+HTcyOFnz8al51rUyMOv2Vtv9dQnVidChteF0bPe28/fO+Lj\nrSKi2jKiDuw4k/2y4zok+Mkh5X54PcOmnvl1yZM7v6lR3S8pJi4z58o/hE5D79QxbCewZMmS\nPHtU1ZqcEJOcEKNLPC7Czbvx5Kdavvr5PhHJyTqz8J0Xvwtufk/LhlWrVg0KCvKWzISEhPj4\n+KgDO/48lXztW60HvBnqxSVqkZBq9MUVq8aoJHVBntEXeUZjlDRwTaQauA7Odo1RSeah5J4s\nCJROPXs+UqNBqw73dOjQvn3tSvmtK4Vi9OPIpz6OThURr8BGT/R7uGGt6pX9yxfwD03FihVL\nNDanF7/7y7EzVl+6+hcoH4rBo+vz74zo3sDxY3rcnH5Df3Zshzz4ysyhrK5WGNkpCWfPJxvL\nV65RvXKeRyDTz305d8WFaneEtG13b8Ma5fWK0MmottQ1H0//fPOte8b+DbpMmDisgd8tZr7i\nlsjwOjq6aemsRWsTs20i8uKyb7pWuLIax9Hlk8Z9ffDG8ZVbDlw8+VFNQ3Q6Dz/8cKG/u27d\numKMxAVtX/z6jO8L+khQ817j3nqmfYnG4zpINRrjilVHVJJ6Ic9ojDyjL0oauAhSDVwHZ7u+\nqCSvoUmPMiAmxVzTn0SptRcefzQ22+ZRofWizyb58d5WzZkvHF3yyZIte0/Y/j1LV2vU4ekh\nw9rV+efVOI4mvXdQSI8nBob/p7EmkQLFI+HIzjXr1v+6J9Jsu8k5X6lO8+4PP/Jwl5buZKPi\nQIbXl92aeuiPPcfPxjV7NDz3DJvdX82av3pb6tUntBTFeGfX8HHDevNKsyL66aefCv3dbt2c\nczk1LZ3e9e3sBSv/vpidzxjvwJDwIa/0aMOqsMWJVKMlrlh1RyWpC/KMlsgzuqOkgSsg1cB1\ncLbrjkrSgSY9gJvr1bNnjqre+/7SUQ399Y7FdWUlRm/bvT8yMvJ0bFJ6RnqWVXx8fP0qVg1t\n1OjOtve0rFspz3hbdsyZJM86NSo7558suADVlvl31NFTsRfS09OzLPZy5X18/QNDGjWuRt1c\nrMjwpVZORtxfh04mXcyoWOOOusHBFX2Y7QenoFqO7Prfzv2HIiOPxSdfzjRbFMXg4VUuIKhm\ngwYhd7bp2KlVfZ4X0hKppnjFbHhj/IpTIuLh227x/OF6h+PSqCRLD/IMnBMlDQAAJc+lKkma\n9ABubtBjjyZabC8v++Y/VxcbAQA4BzI8AB2pNovdYOIWNpzGic9efG3NGRExetZes2qu3uEA\nADRCSQOIyOThQ89l5wT3nTLhvup6xwIUG5sl22jijhm04HbrIUApk56amlPgh0v8KlSgWi6c\nLhU8ViZmnjPb9A7EhTALRxtbtmwpxt9WoVGHNtW9i/EXAhogwwPQkWI0GfWOAShGFdvUkjVn\nRMRmPnMkM6exN7dZABTJRx99VLy/cMSIEcX7C+FASQPYrUmRsfFZdtW6KV5o0qPMUnNSdm3d\ncfhwxJHI6EsZGZmZWVabum7dOhGxpO39bmtah7CONX3c9Q4TzomrR5QZsQc2LVv3a3T0yaTL\n+b3/KY/la7734aHWQuncv9HKWft2LT/89Gt36R2LqzAnply+fFlEjJYovWNxZnPnFucMp9Bh\nDWnSFwtVNZ84HHE29uJ9D/zfdfttl2bOW1mnToO7OnaoWcGZVzfSEhleA5cuXXJsKIq7n185\nfYNxKRx5uBRO+NIgoPHL7Srs3X3JLCJLN52b/ugdekfkiqgkSw55RnubN28u3l9Ikx7AbVLP\nRe3/M/J0SlpmvqNyYg7+mmVXRcRuvo3b9UCpErX9208WrDiVarnpp7bsv79a+OXKJZ+F9R38\nYp+ONJpuF5XkLdGkR9kQvX7Wa4t+K8TbGdwNJRGOS6jaaXyPtQN/2Pb+N/9Z8HjzvO8+R0lg\nFg5ck2pL+2XVZyu+35qYmWM0BeW9tWq3bP9543bZ+MWij9o8GP7Cc49UdCOzFxUZXgMDBgxw\nbJjK3bl6xdsi8v777xf6t40dO7Z4wnIBHPnSiaWwSggnfKmgmF6dOfr8S9NOZVpPLJ/6xz1z\n76rMG9C1QyVZ0sgzQG6UNHB6dkvCx2+/selgwm19q0HvuiUUD1CiDiyfNPnrg7ccZrel/rJ8\nxtHo8/MnPOZGZr8dVJK3RAcIZYAldeeExdd16I3Ggi4oZVLImoWluD/73pTkUZO+fHPIsQf7\nD3qqRxA94xLGLBxt3H333f/2kd2avGf/iWs/KorBx79ylaAgH2P2+fPnzyddunY1bjQFhQ/t\nW8nN4BcSUOIROzWbJXbOmDG/nkq75UhVte7Z8PnRQ9EzZr9WnWUFi4gMr4edO3fqHYKL4sjr\niKWwtMcJrwvPwDbT5r05Z+qMHdHnpw17qddzzz4Y1qaiJ+VKiaOS1AV5pqT1799f7xCQFyUN\nXMfK18dsOnbptr4S2Kr3mE5BJRQPUHJiNs+51qFXjD73/CcspF5998NffbL9n4dU3LwbNq1e\n7nBshogk/LFswoom0/uF6hOus6CSzIMbsigDIhcsNdtVEfEKbPLskPAW9YMDK3jpHZTzW7t2\nrYiEdL7vyFfr9mz4bO/GpX6Vq9esXtm9ANcXkydPLunwnBOzcDQxYcKEm+7PyTz5wehJjm3v\nqo16Pd7noXube5v+mWqj2rKP/bFl5cqvD5xOtVkSVq/e9c7scfW8+EtaJGumvH7tvqqimGo3\nbJpngGL06dM97I8/9py5kCki6TE7Jk2tv2TKo1oH6lzI8AA0wFJYcB0bNmwQkcZdel9K/Soi\nKeGb+e+u/thUoWJAQEBF/wA/j3w7NE45HUQzVJJwSn369NE7BFyHkgauIz1m2cqrHXrvqiFt\nm4dWcMuO2rE1KiVbRJo+0KOep5uIZKYmHd7zR1y6VUQah09+p09LHkdBmWMzn3nj018c234h\nnUaPGtYsyEtEohPX5B7m7t106vwvdq+c+t6K/SJy7JvJxx79sgF3g1F8OJlQBvx0MEVETL6t\n538ykbXpNLNkyZLcP6qq/VJizKXEGL3icRHMwtGP+uXEyTtj0kWk5WNjJj51z42LFylGj9D2\nD01u3/3AdzMmf74jM27PlNeXffbBsyxzVGjpMSuWHb7o2K5zT98JI/pUuWE+t2Lw6j9kZP/B\ntl3ffPjB8t+sqnrhz8/WJtz/SJC35vE6DzK8Bho0aODYcPOq4dgYNmyYfuG4EI58KcFSWNrg\nhC8lPv300zx7VNWSciEh5cLtLRWL20IlqQ3yDFwcJQ1cyvGl2xwbvnW7z5s52M+oiEhOeNfw\nfqOz7Kq1VreB3Ws6Bqi21FWzxi3fHhu1evHhbk2a+5l0CxoolLgt85KtdhHx8Gs9e9qrlfLp\nOilu7Z588+Vzgz/cnqDaMj9dHzOrTx3tAi3jqCRviSY9yoCITKuINB4+hA49nB6zcPSSEjnn\nu+hUEanU/LnJA+7Jd6zSsteYl46dmLP7fGr02hm/PzS+XaA2QTqfqIVbHBuB7YZ/OOb+/IYq\nxvZ9RgbYYsesOCEiGxYff+T15hpECBTajBkz8uzp1q2bLpG4Go58KcFSWNrghIcro5LUBnkG\nLo6SBi5l14nLjo1Hxz3ld/UmpJt3yICgcp/Gpcf9FC1Xm/SK0a/PqNmJx5/Zcj7mgylrvpj1\nhD4RA4W1+/uzjo2OY0bk16G/quPgpz7cPkNE4rbsFZr0BUYleUs06VEGZNtVEbk71E/vQFzL\nK6+8oncIrohZOHrZu2i/Y+OxV/K9wXdVx2Hhc3bPEpHDS7dLu94lGJlT23zqyuXfs8M7F2R8\n/UdfUla+pKrqpagtItxaLTwyPICSxlJYcClMB9EFlSSQv8nDh57LzgnuO2XCfdX1jqUMo6SB\nSzmUYRURxejdM/C6JWfqtwqQuPTslD0i//zNVRTPp8d33fLK96nRy1fGPdS3WjmtwwWK4LfU\nbBFRDB4DG/kXZLzJr2OgaVaixWZJ3SHCi2lQbGjSowyo5+UWkWHNue13P6FIunTponcIgHY2\nxqSLiGL0fiDAsyDjPfzCKrj991KOPSv5ZxGa9IV0LDNHRIymoPa+BVoYzehZu66nMTorJyfr\nWAmH5uTI8NqL2fDG+BWnRMTDt93i+cP1DgcocSyFBZfCdBBdUEkC+bBbkyJj47PsqnVTvNCk\nLwJKGriUi1a7iLh51MrzYseANgGy/qwlfb9FFVOuj3zrPFPZ9EOSxfbL8ui+o+/UNligSM5b\n7CJi9Kjlk+/KtbkFuRsTLTabJb4k44LLoUmPMqB7sG/E4eT9kak9OhSoeQaUXczC0UtMtk1E\nDIZyBX9lnJdBuSRitySWXFROL8OmiohiuI2nrY2KIiJ266WSigkoGebElMuXL4uI0RKldyy4\nNWaeFR1LYQEoaVSScEnquaj9f0aeTknLzHdUTszBX7PsqojYzdkaheakKGngUjwMisWmqmpO\nnv3e1UJE/lLt5v3plnY+uZ6NU4ydfD1WX8i8+NcPIjTpUZaUMyqWHNVuvaCKFPBucILVJiKK\ngZeeFDO7Je3UiejEi5fT0tPF3cvXx6dy9Tp1a1Qq+F36Mo0mPcqAFiN6GYYuOrpwmbn9KE/F\nRf5twkUxC0cv5Y1KSo5qsyadMtuCPY23HG/LPpNgtYuIwb1CyUfntGp5GqOzcmzZZ5Jz1Ipu\nt07vak7K31k5ImL0qFHy0QHFqWKbWrLmjIjYzGeOZOY09qYIL72YeVYsWAqrlEhPTc1RC/q/\nwa9CBa61UIZQSZYS5BnN2C0JH7/9xqaDt/cuvAa965ZQPC6CkgYupZqH8Vim3WY+k2ZTc08v\nNpVvLbJKRLbGZrQLvW4Bm8omg4hYMyM0DhUoort8TD+lmO05KZsumrsVYF1VS9ruRItNRNzL\nNSv56FyDmnN4x08bNv6072iM5YZi0uRTqVWH+x7s3v3O2k7+nBz3B1EGeFft8U6/PROWbx89\nO3TGqw/RpwdQ7Nr5mjZeNIvIol/i3n2w5i3Hx29doKqqiJh8O5R4cM7rwRrl55y4pKo5n/xx\n/vUOQbccn7T3U0fR5l2la8lHBxSngMYvt6uwd/cls4gs3XRu+qN36B2RC2LmmaZYCktfsQc2\nLVv3a3T0yaTLt3EaL1/zfcEXe0QRsWJH0VFJ6os8o72Vr4/ZdOz21oEIbNV7TKdb/+tAPihp\n4FI6+pqOZVpV1bo06tKIxv+8qNvNO6S8UUm3qWc3x0nodS/wjrPYNA8TKAZdw6r8tOaMiKya\ns7Xb5FvPmjvyxReOjYotmGJXDMzJEfPfn7E1KuXfBljSLuz+aeXvm75p02PQywMfdOICkiY9\nyoYmT7z1ava0D79dNODIb72fDO/Zubmn8/6zBKC9/7u/+sYVJ0UkcsmUfW0+al05v8tv84UD\nUxYedWxXf5B3exdeiwGNZdJOEdn34Tt/NpjZolJ+h91y+ch7s/c4tus92VqL+FxG4ol9u/ZF\nHDt27FxSSnp6ujnH4OPj4xtQpUHDRk1atmvXmOZBcVBMr84cff6laacyrSeWT/3jnrl35Ztn\nULyYeaY9lsLSUfT6Wa8t+k0t8MTWa9x52a5WWLGjWFBJ6og8o730mGUrr3bovauGtG0eWsEt\nO2rH1qiUbBFp+kCPep5uIpKZmnR4zx9x6VYRaRw++Z0+Lbl5VkSUNHApzXvUkIXHRGTr1Hfb\nzpzStpr31U8M9/p5bLxoTtjxcdrwude6ZXbL+Z9TzCLi7hmsT8RAYdXu1dd97XSrql44MP+9\n1X5jerfL5y9mwr4Vb22KdWz/Xz/O9qKypEZMHPHm8Qxr7p2K4h5QJcjLnp6QdOnaKk2qatuz\n7tMRJ+M/euc5Z+3TK4UoqQGNrV271rERv/+HHw8mytV/sUFBQRXKmfL9qowdO7bE43NSTz/9\ndOG+WO+ZaZM6Vy3eYICSlpN5ZGD466k2u4i4edUe+NqoHm1r33Tk2X0/fDBzyd+ZOSJicPOf\ntnxxqBdPvBWWann/mf47U8wiYvSs8cTQF3p1bmK6yY0Pe/SeDfM/XBqdZhERd++Gny2f5uuk\nlZnGUo5vnfvJF/uik/IZUzG45VNDX+5y/cPyKBxz8qE5U2fsiE41egT1eu7ZB8PaVCzA+zVQ\ndF+NHrDy9meezX/jaROZpggivp40YfnB2mHPsxSWliypO/s/Pd1s/+cy32gsaJ75ds0a2mdF\ncxsrdvwRnSoifrXHfjGXZZkKi0pSJ+QZXRx4Z9DkPYki4lu3+7yZg/2MiojkZB4P7zc6y66G\nDpk3vfuVBeFUW+qqWeOWb481etR8c9Hs5n63uG+GW6KkgeuwmaOf7TcqJccuIoqxXIM7Wwwa\nOzLEy01Eji9+cdT3Z0SkdudnZ7zS01NRVFvqivdHr/w9QUT8Q0cvnd5R3+CB27V37vC3t8Q4\ntgNCw14Y0LNJaHD8V6+MXP23iKxbt05UW3LC6W0bvlm2frdNVUXEP/SZpdN76Rm0M1AXvNDv\nh9gMxw8mv7oP9364U9umVYMqmgyKiKg2c1J83KHft37/3YYz6Vca+dXDxn480jmvm2jSowx4\n+OGHC/3ddevWFWMkLqXQhz102Pzp3XjJH8qek9+99ern+679WDG4+T0tG1atWjUoKMhbMhMS\nEuLj46MO7PjzVPK1MW2f3wBZ0gAAIABJREFU/e/ER3h8skjSz/48/JWPHFeAIuLuU/XOxvUq\nV65cuXJlHw/bhfOJiYmJZ44fPJWY5RigKKYn31rQ984A/UJ2HkfXzp702VZrAUpBRXHvPPCd\nVx5pqEFUTmzDhg0iIqp155qvIpLMIqIopgoVAwICKvoH+Hnk2y3gocOiSI9Z1m/4asc2M8+0\npf66bNqH3/5uqlSfpbA0c3DG4EnbE0TEK7DJs0PCW9QPDqzgpXdQLqFwK3a0HblgYhgrURce\nlaQuyDO6+OjpPptTzCLy9MKVvatcm9sqG4b2+zQu3bf2q1/O7Xxtp6qaPxr8zJbzmX71wr+Y\n9YQO4TobShq4kLM/zhrx8dZrP7647JuuFTxEJCcz4qnw1zNsqogYTT41qvslxcRlXv0T/Mh/\nv3w22FePeIHCU+2Zi8cNXRf1zwP9itGzcnl7YqpFRBrVq3n2bFx6rhc6ePg1m7lwSm3mWhRN\nStS8p8dscmwHtn5i2vgnK/3LUks2y/kvpo7/7s8LIqIohhcWr+yW79JZZRST/wAUDzfvgIDy\nbiISwKziImABAx3V7fXG6JTXZ3x/2PFj8qm/vj/1Vz7jm/caR4e+6MrXuu/DqdmvT1kSk2kV\nEWta/L7f4/9tsGL0eeTl97ivWizO7/h0/Gdbrz2s6VOtQZum9QIDAwMrB/q4W88nJCQkJJyM\n2BsZmyYiqmr99bPxPlUWPNcuUNeoy7ZPP/00zx5VtaRcSEi5cHsdHdyu40u3OTaum3kW3tUx\n88xaq9vAG2aeRa1efLhbE2aeFcWVpbB8G97f7OSPB48vn/PmV3NZCksLPx1MERGTb+v5n0ys\n6MaEVe3wrmhdUEnqgjyji0MZVhFRjN49A71z76/fKkDi0rNT9oj806RXFM+nx3fd8sr3qdHL\nV8Y91LdaOa3DdSKUNHA1tR4YOc1QcdaitYnZ171s3s27yaTHmo37+qCI2CxpZ/5Ou/ZR5ZYD\n6dCjLFIM3s+9Nzfg4+mfb75yN1i1mRNTr3x6NDom92D/Bl0mTBxGh77oIpbudWx4B3b+aFK/\nfJaoMZqqPP3mRxcGDdx2IUtV7d9/Gd3tlSZahakdemkoA4YNG6Z3CK7oo48+yvdz9fKF8/Hx\ncTGnIzZt2ZtlV1W71+OvvXt/Q9ZDLpKUlJTCfTHt+tIZhdPxuak1G347e8HKvy9m5zPMOzAk\nfMgrPdqwYkTxqNCw+4dLmq1c9NnGX/en224+q1tRDHVahA14fnDL6t43HYDbYs+58M6cnxwd\nepNP/WdeHtG9bZ2bFcXq33s2zP3v59HpFlW1b5j9Xq82s/zdmDWCMmbXicuOjUfHPeV3ddqT\nm3fIgKByn8alx/0ULVeb9IrRr8+o2YnHn9lyPuaDKWuYeVYUS5YsybNHVa3JCTHJCTE3HY/i\nEpFpFZHGw4fQOdMS74rWEZWk9sgzurhotYuIm0etPMV4QJsAWX/Wkr7fokru1/T41nmmsumH\nJIvtl+XRfUffqW2wToWSBi6o0f1PL+jyyKE/9hw/G1fT45+WZKPwt8crs+av3pZ6dQK9ohjv\n7Bo+btgjOkUKFJVi9Os1Ymr7zjvXrFv/655I882KyUp1mnd/+JGHu7R0p3QvDlvOpDs2Ok94\n9pYvkVEM3s+/3mXbqxtEJGnfOhGa9IAeunXrpncIrqhWrVq3GlG7iYjII/2eOL7qs7mrt5+Z\nP35oxvQFvUL8NAgPDixgUOzuaN/7w3Y9juz63879hyIjj8UnX840WxTF4OFVLiCoZoMGIXe2\n6dipVX3uqBYvN++a/V96o+9z8Xv/+DMyMvJ03IX0jPQsq5QvX943ICikYaM7W90dWt1H7zCd\nx/kds8+YbSLi5llnyvz3Gv/rdGGlTtuHps2vNXLwm2fNthzzyVm7z7/dkTl/hcRDh3ph5hlc\nSrZdFZG7QynINcWKHfqiktQYeUYXHgbFYlNVNSfPfu9qISJ/qXbz/nRLO59cKUUxdvL1WH0h\n8+JfP4jQpAdwewzufs3v6dr8hv3t+o1s07PvX4dOJl3MqFjjjrrBwRV9KGZQ5gU17vBC4w5D\nbZl/Rx09FXshPT09y2IvV97H1z8wpFHjav5OuMS6jk5l5YiIohifuqNAK3D4Bj/trmy0qqo1\n43AJh6YPmjoAisqzUsiA0R+WTxv0+V8Xvpw4ufUXM2t5sPBLIbGAQamgmBp3eKBxhwccP6k2\ni91goiuvAbdyVdt1qdquy4N6B+L8Dqw+7dho+fL4f+/QX2Gq0Gzii60Gz9gjIn+vOiAd+R9U\nSDx0qBdmnumCp1L0Us/LLSLDmnPz6cQoKazYURpQSWqGPKOLah7GY5l2m/lMmk31yXV1airf\nWmSViGyNzWgXel1hX9lkEBFrZoTGoToZShogD7dy1Vq3q6Z3FEDxU4zewY1bBzfWOw5nZxNV\nRAymIG9Dge62K4pnVQ/DWbNNVHsJh6YPmvQAioWhx7hXlz05Mcd8ctbq0/8Nr6t3PGUVCxiU\nQorRxFMncDJbErNERFGMQ9oW6B3zgXcPdVf2WlU18/wWEe59o4xh5pkueCpFL92DfSMOJ++P\nTO3RgQkf2mHFDrgU8owuOvqajmVaVdW6NOrSiMb/PKbv5h1S3qik29Szm+Mk9LrH9+MsvBSv\nGFDSwKVExSSH1qyodxRAqRa1bXXovY/pHUUZ1qyc++7LFrs12apKQd4goNoz47LtIuLuHVLi\nwemB10fBOU0ePnTQoEHv/hyrdyAuxN27aZifh4jEbd6sdywuwbGAwTPNK6n2rC8nTj7LO+kB\nFNi5bJuIGD1qV3YvUClocK9Ux9MoIjYLb14svPXr169fv37rkUsF/8pfmzauX7/+x5+PllxU\nrqCah1FEHDPPcu83lW/t2Ngam5HnK8w8Q9nVYkQvg6IcXbjMrDLLVTv5rdgh4lixIzffOs9U\nNhlF5Jfl0ZoF6Wpslmy9Q3Ba5BldNO9Rw7Gxdeq7e+Iyc31iuNfPQ0QSdnycu9SxW87/nGIW\nEXfPYC3jBFCmjRk+8MlBL838eOnWPUdSLc45aRVwOJ5uvd2vZMYfmjtp8JiZy0oiHtfRvUVF\nEVHt5uVn0woy/tLRBTmqKiK+9R8q2ch0QpMeTshuTYqMjU9MTDy2KV7vWFxLPU83EbGk/6F3\nIK7D0GPcqwZFcSxgoHcwTiU9NfVSgXFrqrhw2DXj62YQEdWeecuR12TZVRERxb2EQnIFCxcu\nXLhw4be7Ewv+lTPffrFw4cJFi74suahcQUdfk4g4Zp7l3u+YeSYiZzfH5fkKM89QdnlX7fFO\nv2bmi9tHz/6B/plmPAyKiPzLih3iWLHjug8UYydfDxG5+NcPGoXo7NSclJ0/r/9k9nsvDn7u\nqfC+vR/t+ehjjzs+sqTtXbn+l5i0274Pi39DntFF9a5D/N0MImJJPzZ1+HNjJk8/nnUl53Tp\nWEVEbOazE+Z87/g/otpSV86clGFTRaRcTSaCA7gNGYmnt/347ax3xg94ot+oSdNWfP/z8XMp\negcFFL/Xh0+OvGy59TgREVFtlzctmznwhUlbDiaUaFSuIHTw835Gg4j8+NaCVNstKkmbJX7W\neztERFGMjw1rqkV8mmO5e5Qh6rmo/X9Gnk5Jy7epoObEHPzV0Uuwm3l2XlOnsnNERLWl6x2I\nC3EsYPDLJXPc5s0S/oLe4ZR5sQc2LVv3a3T0yaTLt5E9lq/53odX1hcBh117dTyNF6w2myXh\nrwxr83K37rvnZB45Z7GLiLuXcy4tVWpZ7KqI5GT/rXcgZVvzHjVk4TER2Tr13bYzp7Stdm0x\nasO9fh4bL5oTdnycNnzutZTCzDO9TB4+9Fx2TnDfKRPuq653LGVbkyfeejV72offLhpw5Lfe\nT4b37Nzck7+YJYx3Resravu3nyxYcSr15rdZbdl/f7Xwy5VLPgvrO/jFPh3511AsyDPaM3rW\ne/v5e0d8vFVEVFtG1IEdZ7JfDvFyE5HgJ4eU++H1DJt65tclT+78pkZ1v6SYuMycK1NgOw3l\n3T1ao6SBc1BtmccP7jp+cNeKxeJTJbhVq5atWrVq2byhT8EW5ANKueyUw5OGv/Hm3LeaVjDl\nP/L0nvXzPv7iWLJZm8Ccnsmn9XvDw4bP/TUr6bcRY4zjxg5tHHjzNyjFH9m+eM68g2kWEWnQ\ne8qDVbxvOqyso0mPssFuSfj47Tc23eaTSg1682Z07Vgu7/n1UraIGExV9Y7FtdTzdPvlygIG\nNOmLJHr9rNcW/abe/lwQLk+KgsOui/uCffcevCAii1ccnTvo1rftjn2z0PH/yLfuAyUenBOJ\njIy8cWf2xb8jIwswS1vNSYk7+s2FLMcPxRyZi6nedYj/Z6NScuyOmWcN7mwxaOxIx03tLh2r\nbPz+jGPm2YxXenoqCjPP9OJYCivLrlo3xQt3tItg7dq1IiK+De9vdvLHg8eXz3nzq7nuAVWC\ngoKCKpS7xe2nsWPHahGiM+Jd0To6sHzS5K8P3nKY3Zb6y/IZR6PPz5/wmBvd5KIhz+il1gMj\npxkqzlq0NvH6t925eTeZ9FizcV8fFBGbJe3M3/8sHlu55cBng321DtS1UdKgTHvn9ZGHD0dE\nRByO+jvBlutGTdr5U1s3ntq6cbVi9K7frEXr1q1btWxVv3oFHUMFis6SenTK8AkT57zTvOLN\nm8TmC1FLP563Ye+Za3sMRr+u4c9rFWCZl5Z28wXt/e567q0s97cWbU498cuEIb83axd2150h\nQVWqVKlSxUvJOp+QkBAf/+f2jdsirqx62PLRlyc91UzDwDVFkx5lw8rXx2w6dhvvcBWRwFa9\nx3QKKqF4kEd2yrF5E//rqN68Au7TOxzXwgIGxcKSunPC4utaxUajsYDfNSnc5yskDrteGvZv\nJQc3icjZ9W9/1fSjfnfl9+cycf+qKWuuzORuGR6qRXzO4qa3oRN2zBu74/Z+j4fP3cUTkKti\n5pmuWApLa0uWLMmzR1WtyQkxyQkxusTjIlixQy8xm+dc69ArRp97/hMWUq++++GvPtn+z/P9\nbt4Nm1Yvdzg2Q0QS/lg2YUWT6f2oZ4qEPKOjRvc/vaDLI4f+2HP8bFxNj38unRqFvz1emTV/\n9bbUq2WMohjv7Bo+btgjOkXqfChp4BKa3RXW7K4wEbFlJh+NOBIRcTgiIiLqZJz16n0b1ZZ5\n/M+dx//c+ZWIT1Bw61atW7Vq1aJ5qA9PwKGsaeRnOppqsaQdf3vEhPFz3m1d+bo+vWrP+m31\n4kUrfr5ss1/bWeeuHsNfGBAS4KF5sGVVeHj4LceotsyDOzYe3LHx3wYYjH4ZR38aN+anO3qP\nHn53YLEGWCrQpEcZkB6zbOXVDr131ZC2zUMruGVH7dgalZItIk0f6OF4FXpmatLhPX/EpVtF\npHH45Hf6tGS5taJYsWJFgcbZs+PPnjm078+L1it/sRoNoJegHRYwKC6RC5aa7aqIeAU2eXZI\neIv6wYEVvPQOyvlx2PVSocEL9wVu/zkxU1UtX7/7QvSDT/V7pFu9G5aNyko8uen7lct+2JPj\neAar8n+GhfKkvA5aDXlS7xDKPGae6YKlsOA6WLFDFzbzmTc+/cWx7RfSafSoYc2CvEQkOnFN\n7mHu3k2nzv9i98qp763YLyLHvpl87NEvG3hxNwxllcHdr/k9XZvfsL9dv5Ftevb969DJpIsZ\nFWvcUTc4uKLPLRY2QAFR0sAFGb0rNm17b9O294qILSsl6khERETE4cMRUdHnLFcb9mkJp37d\ncOrXDasMbuVDmrWYPnm0riEDt+eteW9PefGNwynZ1ozod0eMHfvhtLuCrtyTjDu4ed68JYcT\n/nkqy7NS6NMvDO/eprZOwbo0uy312LFUEVEu3fzlVmUdlyUoA44v3ebY8K3bfd7MwX5GRURy\nwruG9xudZVettboN7F7TMUC1pa6aNW759tio1YsPd2vS3I8LksIraJP+et5Vwl5zxgeaSicW\nMChGPx1MERGTb+v5n0ys6MZC6hrhsOvH8Py7L0cMm55gsamqbd+Gz/dvXFahctUqgYFVqlTx\nkqzExPPnz5+PT7pkv3r5bTQFvjT1ef4n3ZYaNWrk/vHcuXMi4u4TWKXA9Un5itWadnz0qQ5V\nij8418PMM+2xFJYuhg0bpncIrogVO3QRt2VestUuIh5+rWdPe7VSPsWk4tbuyTdfPjf4w+0J\nqi3z0/Uxs/rU0S5Qp0OeKbXcylVr3a6a3lE4IUoauDijl3/j1h0bt+74hIjNnHrsSERERERE\nxOGjJ2IsjnUjctKjDmwXoUmPssTk23DyvKlTX5p44II5J+vvaS+NGjV7Rhuf8ys+nfft9uPX\nhilG706PPfd83/t8mA+KkkGTHmXArhOXHRuPjnvK72o2dPMOGRBU7tO49LifouVqk14x+vUZ\nNTvx+DNbzsd8MGXNF7Oe0CdiV+Vf75433nnJy8BfrMJjAQO9RGRaRaTx8CG0irXEYdeRV2C7\nD6a//PaUeY5laVTVnpIYm5IYGxVxk8Emv5AX3nijQ1DeqfbI3/z583P/+PDDD4tItc5j5g4K\n0SkiV8fMMy2xFJZeunVjZrY+WLFDe7u/P+vY6DhmRH4d+qs6Dn7qw+0zRCRuy16hSV8E5Bld\nrF+/XkR8gjuGNS7o0lZ/bdoYY7G5edV94L5GJRmak6OkAXIzepT396/g71/B39/f1zPuQmaO\n3hEBhedePmTiR9OmvTxhz/lMmzlm5suvVFCTkq3/FPPVW9w/fNizTaqw6mchrVu3Tu8QygCa\n9CgDDmVYRUQxevcMvK49UL9VgMSlZ6fsEel8baeieD49vuuWV75PjV6+Mu6hvtXKaR2us3jg\ngQcKPNZYuUbt4Lr172wYzEVIEbGAgV6y7aqI3B3qp3cgroXDri+f4LBpixpvWPn1hh9/ddxO\nupG7d1CnB7o/8eRDVUzGmw4AnAMzz4odS2HBBbFih8Z+S80WEcXgMbCRf0HGm/w6BppmJVps\nltQdIn1KODqgmC1cuFBEaj/coOBN+jPffrE4IcPdu8kD971bkqE5OUoaQFRLzImoiIiIiCMR\nR49EJd+sMa8oTL1AmeTmHTx+7vQZr4zZFZdpsyQkX91v8qvbb+iwXh3q6xkcXANNepQBjrnC\nbh613K5vAAe0CZD1Zy3p+y2qmHJ95FvnmcqmH5Istl+WR/cdzfqBhfTCCy/oHQIKhAUMikU9\nL7eIDGuOqnccLobDrjuDe+UeT414KPy508ciIyOPxV9ITU9Pt4pb+fLl/SpVbdCgYWjDOt6k\nl2LSv39/EfELqaR3IIAWWAoLrokVO7R03mIXEaNHrYKvPhrkbky02GyW+JKMCygtHMtQ52T/\nrXcgZRslDVyTqprPHot0rGsfcfR4qtl24xhFUSrVDGnatGmTJk2aNm2ifZBAsTB61ho954PZ\nI0dvO5vu2BP8wHNvPt/Dn1U/S0DMhjfGrzglIh6+7RbPH653OKUCTXqUAR4GxWJTVTXvY3re\n1UJE/lLt5v3plna573Eoxk6+HqsvZF786wcRmvQoS1jAQC/dg30jDifvj0zt0cFT71hcCIe9\nlFAMXnUatqzTsKXegTi5Pn2YtFd6qCnxp0/FnE9LT7faDN7ly1eoUr1+neom/p4WH5bCAvJg\nxY5iV86oWHJUu/WCKlLA/J1gtYmIYmDNUq1NHj70XHZOcN8pE+6rrncsZUZkZOSNO7Mv/h0Z\neZNWWV5qTkrc0W8uZDl+KObIXAwlDVzKqSP7HH35I5En0yw3b8xXrFG/adOmjt58ECtGwCkY\nTdVHzprtPmbk/06liUjC/sOXnnnIn95pCTAnply+fFlEjJYovWMpLTjRUAZU8zAey7TbzGfS\nbGruZ+RN5VuLrBKRrbEZ7UKvqwkqmwwiYs282Zt1gVKMBQz00mJEL8PQRUcXLjO3H+Wp0KXR\nCIcduCmbKjx9VUISj+/98adNv/3+54UbXvFgNPmEtunY/cHu9zStqUtsToalsEqJxBP7du2L\nOHbs2LmklPT0dHOOwcfHxzegSoOGjZq0bNeuMd0ylGF3+Zh+SjHbc1I2XTR3C7j1E5+WtN2J\nFpuIuJdrVvLR4R92a1JkbHyWXbVuihea9AU2duzYG3cm7Jg3dsft/R4Pn7uLJyBXRUkDl/LK\n+Ldu3KkoSkD1ek2vaBLk56F9YEBJM5iqvDjzQ7dxr246npqZuGfci1PfmzMh2Jv+aTGr2KaW\nrDkjIjbzmSOZOY05wjTpUSZ09DUdy7SqqnVp1KURjf9525ybd0h5o5JuU89ujpPQ695CF3ez\nZ/2Qj0uXLjk2FMXdz49HfeFyvKv2eKffngnLt4+eHTrj1YdoGGuDww6XlZWcEJeSXbde7dw7\nU0/unLvo2xOnz17KkoCqddp36f5U706evG6gmNgsCavm/Xfl1khVvfl8Mpsl7cjOjUd2blzd\n4bFRL4fX8DTedBgKiKWwdJdyfOvcT77YF52UZ39G2qWEuJjjEfvWf7OsYnDLp4a+3CW0QO/z\nBkqbrmFVflpzRkRWzdnabXK3W44/8sUXjo2KLW49GAWgnova/2fk6ZS0zHxH5cQc/DXLroqI\n3ZytUWjI5f/Zu++4pq4vAODnZRHCXmG5QAQEJ4qKSsXVuvcGV92Kq617bxxVCy7cWrfWjdZR\niwo/66IuBBRRdgh7hfCSl/f7I0gRA0QkiQnn+9flvfvyOX3Sx807957baspITYeg3XBIg2ot\nPbP67dp6NGnatGmTJnZmWP4QaTGFxWkU8hk77UPA1ph8skj4ZOHMdQt/Gqpwh9nGjRvXaIC1\niLn7bC/Txw9yxABw5EbSpoENNB2R5mGSHmmBFn3rwL4YAAhdt77NllVt7EoLTDG+M9G7liUW\nhO3OnxFUusheRqbdzhYDAJvrqJmItdCYMWPkDY5B83Mn1wDAxo0bq/1pCmd8I/SNazJ89dzi\ngN/+2D8m8u7gkb79O7fg4lJW1cPbrmq3bt2qwU8zdevgac+ruh+qWPqL27sPnX4aJ2Tzmsn/\n4MplRhydsvoP+dahAJCZHHPl95i74S+Ctsw0Y+H/FF+LIpN/nf1LWHJh2YMMNo9vzSfE2cLM\nPKpM5j4u/Nwv75J/3THfnoN5+urDUlia9fritmWHQiUVTEkplRkX8duCiS/Gr50zAF8zfZWE\nhIQv6k8wmHpcfa4el2ugz8HJWNVVf9AI9sVNEprOiNi14ZzJ/MFelYwiBU9Orr6RLG9/Pwpf\nFHwtGSnYvWb5jeeCL7rKZXBDFcWjk+rUqVP2x6SkJABgG/GtlS4ubWhh19R74OgO1jUfXG2C\nQxpUa5E5iVFR+gwGAQAyN7c6FvgqAGmr6qUqxOlPVy56qvDU5cuXvy6iWozgzN0yL21WQJxI\n8vb4uocdg9pa1fY5QJikR1rAvvsUs0O/ZEtlZEHMuhkTXJq3nLjgJ2d9FgB08ba+dimeEics\nDry0eU5/LkHQVO6pLcsKKRoADOriBPnqCw8P13QICKnPxYsXAQCMG//Q7N3152+OB644EcQ2\nt7axsbExNajiJQjOSqk2vO1qEBQUVIOf5jq9MSbpv4Yg/OCMTZc+T5vRVN66jRdLM/Sl8uJu\nz9/cbN8iHzXFp7surVgsz9ATBNHIq0fvbp3dHe2tzI3k71lpaZEwNfXFw9ArF659yCcBQCR4\nsHjZxSMbB2s0au2GpbA0KC0seNGh0NKiEUZ2Lp5Nnfh8Pt+Kb8SWpAkEAoHg3avHUcn5AEDT\nkr8PLTKy3jvBi6/RqLWbv79/9S4kGBxLW7u6dRo0a92ufXtPGyN2zQam2zgmHRZ2q7PmViIA\nPDi6YcIjn2lj+jdx/TQBT1OZgg/3Qs4evfJAPh/LzHXcIBsczHytU0vm34jJ+aJL+K0Gz+9k\no6J4dNKuXbvK/tivXz8AsOs8P2iis4YiqqVwSINqlWaN6kTHJpM0DQA0LRPGRwvjo/++dh4A\nTGwauLm5u7u7u7m5O9ljHSaEUDVx+Z4BO1cErtscFpsWMH3WoAk/9vLxtKjFtQwxSY+0AJPr\ntGbSd/67QwGApgqjI8Lii2fLk/SOI6cYXF1SSNHxfx8cGX62jr1JemKKSCqTX9hpKtaVQtoN\ntxFVm4MHD5Y7QtOSTEFipiBRI/HUEnjbUa1CieOWbLuicGFrxrOdsUVSAGCwTIZMndbKnhP5\n4PLRy88AQPjP9vu57b2VXjKFPpef8PvhyGwAYLItJy5f37t5+QwBwdK3ruvYva5j1359jwcs\nOvtECADZUUeOxn8/pr6RBiLWCVgKS1Nk0oy1gX/KM/Qco0bjZvv3buOgaHUx/f5RSND2w7EF\nJE3LQrZtGOS5Fet2qB8tI9OTP6Qnf4h4GHpkj0HnoRMmDu9qiFWFlNZ6xuZ+iVMvR+cAQFZ0\n6LrFoQSTa2VY8kJg4U8zEhJSCspky/RMmq1e3V8zseqQgsSjpz5m6Hm2zm1auJqyiqPDQqOz\niwGgac++TlwWAIhy018+ephSIAEAd9+Va4d54K820kY4pEG1ytpfd8nI3Nio168iX7+OjIyK\njsuXlPxVzRV8eCD48OBOCABwTW3d3N3kOXsXB1scQqJvnK2traZDQP8JCQkBAPcug3NyT7xK\nF5zdtf7cbo6phbm5uYWZuYlepeNFnVyyhUl6pB3q9fwpgGGxdf9FYfEn01FZvCbLhjRbePo5\nAFBkfvz7/NJTVh7jf3Q0VnegWsvFxUXeYOmXVFSbPn265sJBuI0oQqhmtGvXrqJTMknmo6dv\nS38kCIaRmZW1jY0RszgtLS0tPUf6MZ3M5Nj4Th1hyWKYOJurPGLdlXRtVzpJAQCDaTxoxpwf\nPJuUnoo4EilvOPuu8vveEQAau7fmi6ZtuZ1M07Iz5+O9xzfSSMy6IepQKAAQBDFs3dberqaV\n9GRwrPyW7ciaPO6vNBEA3D0cNWZFG/UEqXuwFJampIVtixdTAMDiOqzatcG9wik+hEObPgG7\n6v00eUWCmJKK323/FvdgAAAgAElEQVR9kLbGGxe5VpP8r62k4N3TV+VH7wBAEAT96QwtNs+x\nVTMrUW5Wenp6RmaufP4WTRXeORX4Iip112o/LoFvu5VCMHgTNgSZ7950+OZL+RGaEgtzS86+\njv1k3qeZS5fFS6fXr8XLdGrKmyP35A3jhr13bplswiQAQOrb3XfUvCIZLanXY3zvuvIONJV7\nZuvC4/eTo88deNmjSQucdPgV/Pz8AMDE2VLTgdQ6OKRBtQ2DY+Lc3Mu5udcgAFomTngT/fp1\nZGRk5OvXMRmFEnkfcU5qRHhqRPhfAMDUN3Nxc3NzbzJmSG+NBo5QhYKDgzUdAvrP5/8cNE1m\nZwiyM75sHyWdUf67IkLfMpkk98XDR28SUpoN9HXV/2+KyYMTW3edu5f7cQE9QTCbd/ddOH0w\nD7f3Q9pJyW1EAYAg2J1xG9Ga8Oeff1b72h498Lt3NeFt1yCp6N2v85aFJxYAAM/WbdDQYX2+\na8HjMEo70FRxzMNbp06djviQCwA8uzZrty100sf5ndV3euKI40IRAHjM2r2yW5lSKLT0xyFD\nMyQUQRAbT/7hyiu5yWRe+BC/jQDA4/ue2j9cEyHriCUjh7wsJI3qjjm+c4gy/fM/HPCddQkA\nOAZNz51cp+LodFnC9a3yUlhyM4+e7W6qBwBS0avRvkvk76+ZHKNypbAGbD+GE22/Roi/b3BC\nPgC0WbB3aYeqk+6C+2snb34EAMb1px4L6qXy+HQXJf6wZtr8iEwxABBMXuuufbu1a2JlZcm3\n4huyJOlCoVAojH12/2JIWLaEIghmT//NU7s7AQAtI1PfPr959ez5u9Hyj3L23bZlOG7d/WUE\nkeEXLl/5+1GUmFLwHcrSoUXvfgP6dfFg4xuCmrBj7LCb2WIAGLvv1GDr//YOCJk6KjilwLj+\n3GNBnUsP0rR4x+Rxt9JEJk6+v2/F8QzSSjikQQgAAGTC+DeRcq9fJ2eKyp3GXboRQsqQ7+BT\nPTr5nME3rUibMNgmLTp2b/HZca9RP3n2H/Hsxbv0rEKLOg0aOjpaGOEEbaStcBtRjcCMr0bg\nbdcc+tjSlfIMvceQ+UtHd/y8PB3B1HNt32dl+94R5zevPBwmSnm0asnRQ7/+iIXsqi0srxgA\nCIIzt7Nd2ePinNsZEgoAOMbepRl6AOAYd7BgMzIlMjLvAQC+1K6+t0USALDvV2FViXKM6o/m\nEJdJmpYUva26N6oYlsLSiFvCIgAgCOaUNkoNDvntprKJxxKaFqXdAsAkffX9sXyFPENft8Oo\nBVMH1ftkxTDbuk4D6zoNmnq06TfS7+rBTQduvL2+42emyf5JbawIBsfOxXOci6d3i50/Bd6k\nafrd2Y25Q4JNsDL4l7Bx7zDNvcNUSvQ++nVcckZBQUERKTMwNDI24zu7uduZcTUdoE55USgB\nAILJ68/nlT3eqJU5pBQUZz8C+C9JTxDcsYu635pzKTf2+KmUPiPsDNQdLkJfDYc0CAEAAINf\n35Vf37Vzr8Fkflr4zctnzv2Z/HFtPULaJTFk+aKTcQCgZ+x1YNcMTYdTu2D95nIwSY90BMvA\nrrWXXdX9EPq24TaiCCE1yI4KPB+bCwCWLSasHNOx0r6Ex6D5s2LeBj5Iy429uPmfPotwSlB1\npZEyAGDpNyiXd8l+cVfeMHXrXu6SOhxWpoSkJLW05FdNkf955NXhVdXxI4Jjo8dIEFNAYEnk\nr+X2w9i9XQbIS2HV1fvvfrr5rllEKCyFNUBDkeqOpGIKAJh69a3YjCo7AwCDbenAZb4pklJk\nYtW9UQVy4/Yfi84GABOnIYHzR1SSXmfqW/efsYVKGX/4Zda1TYu8j+4pnZ7VsOuMmfeeBv6b\nQZGCi+lFY22Ufmqhjwgmz9G9taO7puPQdVkSGQCw9OqV+wJq7mkOVxLIgqckDZwyp4wdxllx\nrqaT1J3jsSPmNVdvsFopISGhZj+wXr16NfuBtRAOaRCiRBmRL1+9fPHixYsXMQnpMizPjLSZ\nWJidl5cHAEwyWtOx1Dq4ZKscTNIjhNA3BLcRRQipweP9T+WNIXN+UKa/93TfwAdbAeDlkfvg\nNViFkek0fQYhltG0TFru+JsrKfKGQ7+65U6RJS8+cA7WV/Ew5NzLLc6PyQd3c2X60zJRarEM\nADgGn9dvQl8MS2GpmTGLkSGhaFn5AqSVKJLRAAAEW1Ux1QIRe+/LG0MWD1ViATzRe57f4TGB\nFCncdfZ94NhGpSe8pn4XOOU8ALx6kgl9MEmPvlF6DIKkaJouP6Th2TkDPKNl4qcFpFfZRzrB\n7GSsdy5DlPXsKgAm6avm7+9fsx+ok7Vh1Q+HNKgWosQ50a9evnzx4uXLl6/jUilFiXkze+dW\nHh4erTzUHx5C1WbhWQ8uxAMAJY6PFEndeZgnRRqDv3wIIcW+dO42wWDqcfW5elyugT6HgemE\naoo490He8Ji9qOIMfQmOabOlM1vJtxF9fyYCvLFCqVqtnDE1qVjqOGLV4rJ7SyMVw9teI64l\nFgAAweT1NFeq+queiY8pa3uOVFaUeRsAk/TV5KDPys4nqeIPySRlz/m4/oaWHP+QJ28OcPik\nJCYtK4oTSwGAwbZUb6S6pnd7/r3riYmXLsoGzVZmZXFO1H4JTQMAv0N/VcdWy2EpLFVw4DIz\nJBRFCp4VSloYVJ13l4oik0gZALD1nVUfnc66HJcPAAyWSX9LfWX665l243N2Ckkq5eYZGLuk\n9DjXojvAeQAQJX3BNAukEEUWMzl6mo5CN9npMWNEMkocn0/RRmWmpXAMWwOcAYDQ5EIv10++\nzFpxGAAgEb1Sc6gIqQcOaZAukZH5b1+XrJh//TaJVJSYZ+qZujVv6dGqVatWHg34huoPEqGv\nZO4+28v08YMcMQAcuZG0aWADTUeEai9M0iMtI8pNT0nNlChdUcfZtTHu5Vc91Z67TTA4lrZ2\ndes0aNa6Xfv2njZGuCjnC+A2otpCJkmPSk4tktGSG6mA2WJ1wdteUxKLKQBgMAyU/wupzyBy\nAGSkUHVR6bzutgYR+SRNy4JuJgf0KSk6mvl8j4CUb0jv5fbp3O3ct0eLZTQA6Bkpu5k6UqjR\n2OkWt5dkZv+1+nzXlYOaVN6ZIlO3rb8HAATTYKyfo1oCRKgmdXM0fvw8AwAOnHwdNLHqFasx\nZ/fJN1oybthT5cHprgT5H1a2lfKXmLMYQpKSFL4oe5DJLvkKQGaRNRhebUBLs/8XGvby5avI\nqNicwkKRqEhC0fLVw2T+4/Oh+R18vOviN9Ma4m3MiRFJaFpyJDrH392s9DiL52zIJAooOuFm\nCrialb0khaQ++xiEEELfnFULZ0dGfxDLFLx4JwjCqr6bfNF88yaOXAJfuCNtRnDmbpmXNisg\nTiR5e3zdw45Bba2UWsSCVK0WTrTFJD3SDrQ0648DwVfvRWTlF3/RhccvXDLCLL160TIyPflD\nevKHiIehR/YYdB46YeLwrob4r6Ac3EZU0+ik6Kf/Rn3Izq909RItTXz+t7w2rEz8ZQ8lpAje\ndnUzZBLZUpqSpMeJKUdu1btuU8XxAokMABhsU9VHp7PcxreERXcAIOrAojMWS3u1di5Kerwx\nIFR+1q770LKd8+PvL19xQ962aNNavZHqGhbPfeO8XpM2hEQcXrwyfcyYoX0dzRV/5cv/8Oi3\nDVuf5ZMA4DlmbRssVYq0UGO/VvD8BgAkXFlzoumOUW0r2w5J+PTMqgvv5W0PX1d1xKejTFmM\ndAlFiRNyKdpEiS8+NJX/QSwFAOLTXQYoUiBvcMwwnfwFou//sWfvybhcxTMbqOL3J/YdO3Xw\nkM+IyTOHeeMX06/Xom8d2BcDAKHr1rfZsqqNXenWDIzvTPSuZYkFYbvzZwSVvoqRkWm3s8UA\nwObi7DelLF++XNMhIIRqqaev35c7wuJZNmvp4dHKw8PDo45ypfgQ0gpcvmfAzhWB6zaHxaYF\nTJ81aMKPvXw8LZR4RYZqEE60BUzSI61AU4W/zfa/k1hQjWv1lEp0IgXatWsHAJKCd09fpX9+\nliAI+tN6BmyeY6tmVqLcrPT09IzMXHm1A5oqvHMq8EVU6q7VfjjFUhm4jagGyUjB7jXLbzwX\nfNFVLoMbqiieWgJvu0Z4GXOuZYkBYP+dlPW9yu+D/rnU0L3yZz7HuIPKg9Ndpm5TO5j/LzxL\nTFP5xzYsOF7mLynB4E4aWl/eLhJe37jpyvO3yfIN/wiCOXREA03FrDP47Sb/9ovhsm1nIkKO\n/nv9dPPverRyrcvnW1vzrZhkXpowTZiW9ub5P/f/fSe/7Y7dpk7uYCQUVlg6gs9XquBNLbFj\nx46a/cAa34u3VjF1mdaNf/+2UETT5On102J7jR41oIeTdfndzYuE725cOnX06iMpTQOAvlXX\n6a44Dav6fMz0zgpFNE0GR2TM96x6PX3my33yNWoc409qpYgE1+UNYxdjBZchRSKOL1t5+nmV\n3WRU7p3jm1/Hpu1aPISFX0y/jn33KWaHfsmWysiCmHUzJrg0bzlxwU/O+iwA6OJtfe1SPCVO\nWBx4afOc/lyCoKncU1uWFVI0ABjU7aHp2LVD69Y4QVMzcEiDkBxBMO0aNvFo5eHRqlVzl3r4\ndxPppJCQEABw7zI4J/fEq3TB2V3rz+3mmFqYm5tbmJmb6FU6r3PBggXqClOX4URbOUzSIy2Q\ndHN92Qw9m2fCNzdS8v9KNiaGq2vx4sWU+MOaafPlPxJMXuuufbu1a2JlZcm34huyJOlCoVAo\njH12/2JIWLaEkhbFm3v6L+7uBAC0jEx9+/zm1bPn70YDQMbzs0vPtN8yHJNqVcNtRDXo1JL5\nN2JyvugSfqvB8ztVtkANVQlvu0Z8/4P9tZPvACDq4KonnjtaV1rUS5wRsWrfa3nbvlcXdcSn\nowiCO3PDzHczt8rr25ed6+YyZFlTXskzvzjnccSbpNJTDX5Y5GNSuyp91bgpU6bIGywWAVKg\nZcXPQi89C63skrjbeyberqyDfGY3krt582bNfiC+0f46jEnrZ7+avklAUjRNPQk5/PTaUVMr\nW2s+39raWh+KhMK0tLS01PQc2cenEJPDn7VuEs5t/hpdhjucDYoEgH+2bIjeH+BaaR0Oqejd\nloBwedu+V5n9qmjywrZ78qZnM7PPL0SfS7wZWJqhJ5hGHbv6ODs1Yr88sef+fxNAWbzGTe0N\nXiYXAoDg4dHFJ5tsGoV1I74Kk+u0ZtJ3/rtDAYCmCqMjwuKLZ8uT9I4jpxhcXVJI0fF/HxwZ\nfraOvUl6YopIKpNf2Glq1XtwIKRBOKRBqI1P71YeHi09mtsYY1ExpOOCg4PLHaFpMjtDkJ3x\nZeuIUPXgRNtSmKRHWuCvs7HyhmvnYZNHD3CyNNRsPLXHH8tXRGSKAaBuh1ELpg6qZ1J2fMa2\nrtPAuk6Dph5t+o30u3pw04Ebb6/v+Jlpsn9SGyuCwbFz8Rzn4undYudPgTdpmn53dmPukGBl\naj/WcriNqKYUJB499TFVzLN1btPC1ZRVHB0WGp1dDABNe/Z14rIAQJSb/vLRw5QCCQC4+65c\nO8wDf6m/Bt52TanXf6LJmSW5lIwihev9543/+Ze+beor7Jnw5OqvWw6mkRQAMFhmk3vXUW+k\nuoZn6709yHjvzgOhL+Pl6TEGy7BD/4k/+zX9vDNBsFr1nLRkShu1h6lrUlNTNR0CQmqlz/f6\nddPsNat2yv+e0rQsW5icLUyOfqWgM8fEedry5R1syi+1R1/E1meu0/6psUVSaVHs0qmLx8/1\n7926gcKeyc9v7di697VIAgBMDn9G/5K/v/mpb64e2XYuLg8AOIYtB1rqqyt2LUaJ45cH35G3\nTZw7zftlejMbfQCIFV4o243Na7pu1+8PTq3bcPIpAMScXRkz8JiLPr4N+yr1ev4UwLDYuv+i\nsPiTzeZZvCbLhjRbePo5AFBkfvz7/NJTVh7jf3TEEhEIIfTtSgxZHh0RFx1x/5yx14FdMzQd\nDkJIZ+FE27LwawnSAmF5JACYuftunDsc8zJqkxu3/1h0NgCYOA0JnD+ikpQYU9+6/4wtVMr4\nwy+zrm1a5H10jyuv5NnSsOuMmfeeBv6bQZGCi+lFY/H1X1VwG1FNeXOkZN2SccPeO7dMlk8o\nkfp29x01r0hGS+r1GN+7pCQ4TeWe2brw+P3k6HMHXvZo0sIEJxdXH952TWHx3FeO9ph7+AkA\nSIvi962ded6xRUePxra2tjY2NjwQCQSC1NTU6Iiwf+MyS69qPWaFK77R/mo82+Zz1gZOyxYk\npGUyDa3q2FtxPq36w+I5enkb2zVwbuP1XeM6ODGxBnA4+MRQLT8/P02HgMozcvQJ2O8ecup0\nyPW/5bPcPsfm2XTq2Xv4yD7WHNx58Wsx2Pyli4dMXn6apGky/03w6lkn7Fw9mzbk8/l8Pp8H\nYmG6MF2YHhf5JDKxZHoiQRDdZ6x24jIBQCTY7zf1SmmFle9mzcCvvcpIubUzUyIDAD2T1tsC\n5lqyKq4HQbC8Rq6YnTT5t/sCmhIFX0ncOsxBfYHqKLcfxu7tMuDFw0dvElLq6v33GHHzXbOI\n2Lrr3L3cjwvoCYLZvLvvwukDNBQpQsrCIQ2q5cTC7Ly8PABgktGajgUhlZs+fbqmQ6ilcKJt\nOTr4n4R0T55UBgCdZvbBVxXqFLH3vrwxZPFQJRatEr3n+R0eE0iRwl1n3weObVR6wmvqd4FT\nzgPAqyeZ0AeT9FXAbUQ15X9v8+SNgQtHl5Z8YPGcx9gYBKcUpPwZCx+zxQTTZNgv24Rvxt1K\nS/x11YXftw7XTMQ6AW+7BjUctHxe9pLNl17Kf8yMe3Yp7lkl/VsMWrh0gKNaQqsV9MxsGpkp\nnoZlWMdv0Tw1h6Pjzp07p+kQdNywYcM0HQJSgMG26jvav4/vhA8xUVFRMakZuQUFBRJgGRoa\nmljaurg0dm3swGPgF6waY958VNBC2YLN53KkMgDIT4m+k1LhC26Codd90trpne3kP8pkotIM\nvXOvObPa8dUQsA54cClB3vCe719Zhv4j78mjf7u/GQBSbj0GTNLXBAbbpEXH7i0+O+416ifP\n/iOevXiXnlVoUadBQ0dHi0r3gEDoG4FDGlTLWXjWgwvxAECJ4yNFUnceZo6QLuvRo4emQ6il\ncKJtOfioRVqgnh7zTZG0Po4M1OtyXD4AMFgm/ZWrtahn2o3P2SkkqZSbZ2DsktLjXIvuAOcB\nQJQkUlGougW3EdWMF4USACCYvP78T6ZENGplDikFxdmPADqXHiQI7thF3W/NuZQbe/xUSp8R\ndgbqDldX4G3XLO8J6+o2/mPb3lPvs4or6cbjO/tOmdPXEwvdI4SQ9iEY+g6NPRwae2g6kFrB\n1stv716Pg3sO3nr8lvo4Vv+cnVuHsVOmezkYlTvOs3HuO3y8b1d3FYepO+7mFgMAwdAb72am\nTH+OiTefs1VIUmRuGACm4lSLZWDX2stO01EghBD6Aubus71MHz/IEQPAkRtJmwY20HRECCEd\nhBNty8GsJ9ICnfi8N/F5L9KKuprqaTqWWiShmAIABttK+UvMWQwhSUkKX5Q9yGSXLAQhs8ga\nDE+H4TaiGpElkQEAS68e69MVZeae5nAlgSx4StLAKXPK2GGcFedqOkndOR47Yl5z9QarO/C2\na1yD9oN/8+ob+b+/wp++iIqKSc3ME4lJgmDo6RuY29R1cXFu7undqVUjJeqpIIQQ+iZcuXIF\nAIwcvX3clS2z9OzGtUSSYuk37NnNTZWh1QpcS7fpS7eMF8bee/A0KirqQ3J6QWFBkQSMjIxN\nLGxd3dyat+no0dCy3FX6FgO37xrpUMcK/95+kTRSBgBMvXpGSo9UbNhMIUlRZKoq40IIIYS0\nE8GZu2Ve2qyAOJHk7fF1DzsGtbXiajomhJCuwYm25WCSHmkBrwke+5aHPtlxkQ4ah68t1MaU\nxUiXUJQ4IZeiTZR460FT+R/EUgAgCHbZ4xQpkDc4ZmwFlyFFcBtR9dNjECRF07S03HGenTPA\nM1omflpAepUt0kgwOxnrncsQZT27CoDZ4mrC2/5NIDjuHXq6d+gp/4mmSBmDg1l5VNsUiwpY\n+ob4m490wL59+wCgfj8X5ZP08X/8fkBQyOY16dltvSpDq0X0+U4/9Hf6ob+y/Zl6dR2xYM2X\nM2ASpJSWSTJoACWf3wIJBQAEQ6lacQghhFBtw+V7BuxcEbhuc1hsWsD0WYMm/NjLx9OCiy8e\nEUI1BifaloNJeqQFLFvMHeb875k35xcfrLdyfGc9Al+gqoOPmd5ZoYimyeCIjPmeVa+nz3y5\nTyyjAYBj3K7scZHgurxh7GKsijh1FW4jqmZ2eswYkYwSx+dTdNkhAsewNcAZAAhNLvRy/WQn\nRSsOAwAkIkUlDpBy8LZ/gwgmTvxRlbFjx1bvQqdxAcs629ZsMLUKWZRfxDQw4SiqokZT/948\ndf7O04TEJCnbtEkrL59eA72clE1tIuUV5OZKK67+XY6JqSkOcdSJlNEAIC1+r+lAEPoybY04\nf2aLZdLsG1niHuZVL/Uj8x8ISQoA2AbNVB9dbSHKTU9JzZQo/YR3dm2MU+KQVhO+ffK/J69i\nYmKS0rMLCgrEUoaRkZGxubVLY7cmHl5e7vaaDhChrxISEgIA7l0G5+SeeJUuOLtr/bndHFML\nc3NzCzNzE71Kn+ALFixQV5gIIS2GE23LwSQ90grEyPUBwp/nh17cPu5x6Bi//m6ODnVszPGr\nnUp1Ge5wNigSAP7ZsiF6f4CrEaeSzlLRuy0B4fK2fa9e/52gyQvb7smbns2UKmCCysJtRNXG\n25gTI5LQtORIdI6/+3+/qyyesyGTKKDohJsp4PrJ73AKSak9TF2Dtx3VKtnZ2dW7ML8Yf+2r\nI+XFnYs37j15+iJDJG22ZP/atvxyHcjcyIBlAU8+5H48IHhw+8I/f11u3WfakknfV70xGlJC\ncsSNo5f/jo19l55XrPxVxy9cUn5OPYqKivr8YHHW+6goJR4dtDQ75fXZjCL5DzUcGUIq1t3H\n+s8L8QBwJjC0x8oeVfaP/P13ecOiZdWdUeVoadYfB4Kv3ovIyv+CxzvgEx5ps+w3oUF7fn8S\nm17ueGF+jiAl8c2rJ1fOHrVw9Bg9dXYXV3z9hbRVcHBwuSM0TWZnCLIzBBqJByHVwXUUmoIT\nbcvBJD3SDkyOfd+B7UO33yhMfrZ74zMAIBhMZVYRX7hwQeXB6Shbn7lO+6fGFkmlRbFLpy4e\nP9e/d+sGCnsmP7+1Y+ve1yIJADA5/Bn968uP56e+uXpk27m4PADgGLYcaKmbc52QbmjRtw7s\niwGA0HXr22xZ1caO9/EM4zsTvWtZYkHY7vwZQaVvlGRk2u1sMQCwuY6aiVgn4G3XlISEhC/q\nTzCYelx9rh6Xa6DPwRoe6sLimZsbsgDAXB9H7F+GpvJPbFp++sG7SvrIJBlrZ658llM+tUDT\n1OMrO34uZmzz76bKGGuF2Ctbf95/l1Z6eWUpNk6R+BIKFy0JwnYuCPuyz9Ezald1J6QcLB2h\nHvUHjWBf3CSh6YyIXRvOmcwf7FVJ8lfw5OTqG8ny9vejcCT5VWiq8LfZ/ncSC6pxrR4+4ZF2\nen1x27JDoVUWjciMi/htwcQX49fOGdBYPYEhhBCqHlxHoSk40bYcfOWHtMPjw0vXnH9R9ggt\no/BxqFIMNn/p4iGTl58maZrMfxO8etYJO1fPpg35fD6fz+eBWJguTBemx0U+iUzMkV9CEET3\nGauduEwAEAn2+029Uvpa9rtZM/DdU/XIyPy4t7HCrLz8ggJg6xsbGVnZOzSsY4n3s2bZd59i\nduiXbKmMLIhZN2OCS/OWExf85KzPAoAu3tbXLsVT4oTFgZc2z+nPJQiayj21ZVkhRQOAQV3d\nHB+oB952TfH396/ehQSDY2lrV7dOg2at27Vv72ljxK7ZwHTbjh07Kj1P52WkpaamJH54dePW\n4yIZTcv0h/68/ofGuBDnC9GS/Uv8r7yu4vv2s+Dl8gy9nlnj7l1b1TVjxL2JefU4IlkkAYB3\nNwMP+7Qa1wRvfvWRueGLD3ySoWcyld1Mg4ObW2lCqykjNR2C1sPSEWrGMemwsFudNbcSAeDB\n0Q0THvlMG9O/ieunCXiayhR8uBdy9uiVBxRNA4CZ67hBNjyFH4iUlHRzfdkMPZtnwjc3UvKX\nmI1PeKSF0sKCFx0KLR3VGNm5eDZ14vP5fCu+EVuSJhAIBIJ3rx5HJecDAE1L/j60yMh67wSv\n8mWcEPr2TZ8+XdMhIPSNwnUUNQUn2pZDVGNlA0Jqlvvu6Jif/qje7+rly5drPJ5aJfXBsQWb\nz+VIZVX2JBh63Set9e/tIv+xICVw1NTb8rZzrzlbpnZRYZQ6iZa+DPsz5NqfT14nkp/98nOM\nLFt16Nard+/m9U00Ep1OSri+1X93aOmPM4+e7W6qBwBS0avRvkvkuWEmx6iOvUl6Yoro4/8U\nA7Yf+9HRWBPx6gi87RrRr1+/r/8QgmnQeeiEicO7GmJqoaaJM96cORR07n48wdAfu2nvIGd8\n1H+B2PNLfzpcMrOTa+k6oP/3Ld0c+fXqW+j9lyGmihP9RvgXUjTXrP2vwfPqcktOUeLUPQvn\n3YjLAwA9k/Znf1+o/vh1xvPNk5fdFwCAPr/Jj1N8WzZy5JtiUSWVKPcuNSkpCQDYRnxrk8o2\nqyrL0MKuqffA0d+713xwtUm1S0ecuXSJi2nL6qJlogMLp16Ozik9QjC5VoYyYS4JAG5OdRMS\nUgrKbJakZ9Jsy75V9bnKzhlCCh3+cfj5jCIAcO08bPLoAU6WhpqOCCEVkkkzZo+aFC+mAIBj\n1GjcbP/ebRwUPbXp949CgrYfji0gAYDFbXjgxFYzFj7eEULoG1VVjcny6yiYXPupq3AdRc14\nHDRDPtEWAMxdSybapp6Y89O59yDP6CmaaHtk0yBNBq0ymKRHWuD6T6N3x+YCgD7fbfiofo3r\n2VuZGSo5zvmOs3YAACAASURBVLWwsFBpbLWBOOP1wT0Hbz1+S1X8uLBz6zB2ynQvB6PSI/Ik\nPc/Gue/w8b5d8ZXflxFnvtq1cXNodBWrAAmC6dl34uzxvXDxTU15fePI1v0XhcUUlMkWA8Dr\n48sWnn7+eX8rj/EHVg5Ua4i6CG+7+q1fvx4AJAXvnr4qv6UiABBE+fEhm+fYqpmVKDcrPT09\nIzO3bJlHy+ZDd632w+yCCsjOL594+FkGi9tw++9b6ulhOkEpNJUzafh4+XZlVh5Dty/zU/gn\nMu3BykkbIgCg9cqDyz0sy56ixG/Hj5onn544dt+pwda42rKaNvoNDc8r5hi3Dj681IKF1Y3V\nRz4Nq36/LUETnTUdSy1C5ob7jd0kllWndMQfFy7g/yFfg6ZyL+zedPjmyyp7mrl0Wbx0uovS\n81dQRSYOGSgkKTN338MbhuMQEOm81NAlU7a+BAAW12HNvs3ulT5DyJwXP01ekSCmAKD5vL1r\nvG3UFCVCCCGVwXUUNQ4n2paFSXqkBaYNHZhcTOmZtt5/aJkJJiM1pEgYe+/B06ioqA/J6QWF\nBUUSMDIyNrGwdXVza96mo0dDy3L9qeLE+HSuQx0r/Af7UmTuq8VTV7wplJQ9SBBsc2sbfVmB\nID2n3A6XZu79dqydgHn6miKT5L54+OhNQkqzgb6uZeoXPTixdde5e7kfV3ITBLN5d9+F0wfz\ncH/umoC3Xf0o8Yc10+ZHZIoBgGDyWnft261dEysrS74V35AlSRcKhUJh7LP7F0PCsiUUQTB7\n+m+e2t0JAGgZmfr2+c2rZ8/fjZZ/lLPvti3DG2ryP0ZHSUQvh45cKqNpx+HbtvviHVZK+pP1\nE1b/AwBsnmvwsQDLCnLDt+eMDozLBYAph8/0NueWO/t03cRVD4UAUH/gr0HjG6k4ZJ01etCA\nXKms5aJ9q7ysNR1L7YJJeo3A0hEaJ4gMv3D5yt+PosSUgndclg4tevcb0K+LBxuHkDVh2ID+\nYhk9YM/JH+0MNB0LQioX4u8bnJAPAG0W7F3aoeqku+D+2smbHwGAcf2px4J6qTw+hBBC6oDr\nKGoYTrQthUl6pAUG9e8vpenvNh75BcuJIN1H75026mpyofwHjknDfoP7dWrT1NbGgsMgAICm\nxOmpKS/+Cb10PiS+oCSRb++zYPdPHTQWcq0hLUx59uJdelahRZ0GDR0dLYx0dnDwTcHbriJn\n5o89Fp0NAHU7jFowdVC9Cga7VFHa1YObDtx4SxBEnyX7J7WxKj317q+dPwXepGmaybE5fDoY\nZ9GpwvYxw+7kiLlmPc8cmabpWLTDk6U/rn6RAQCuE3ds6ldPcSdaOmno0DSSAoCpR870Miuf\npM+N2zJ6zj0AMLSbdGJPX9VGrLvkKZxpR870/OwOI5U6c+YMAJg4d/uhhbmmY6lFsHTEN4Km\nRO+jX8clZxQUFBSRMgNDI2MzvrObux0+iGrUL8MHvSmSzj56tuvHClgI6bA5wwbFiaUEwdx/\n7g8rdtVPeJkkY+iQCRKaZnEbnj+zTQ0RIoQQUgNcR6EKONEWAFhVd0FI08zZDCFJtbTFcqNI\n92VH7yrN0PNbDw9YNNLy0y+BBJPLr+PYbYhj5369f1+36Py/GQCQcnfzn2Na9bDEd0+qxTKw\na+1lp+koah287aqQG7dfnqE3cRoSOH9EJel1pr51/xlbqJTxh19mXdu0yPvoHldeyeixYdcZ\nM+89Dfw3gyIFF9OLxtrgn+ma58Rl3QEgCx4CYJJeKXfj8+WN3p0qXOckzrqa9rFsmphS0EHf\n0gvgHgCQeY8AMElfTU76rFeFEilOCFe7YcOGaTqE2uiVSAIA7jOmYIZeswgmz9G9tSNutqZi\nnfi8N/F5L9KKMEmPaoOkYgoAmHr1lcnQAwCDbenAZb4pklJkoopDQ0jlhG+f/O/Jq5iYmKT0\n7IKCArGUYWRkZGxu7dLYrYmHl5e7vaYDREh92LymPiZ6d3LEKTdvgi++oqkZNu4dprl3mFq7\nJ9pikh5pgS6meqeEoiSFr1ER0i2vjjyWN3j8zjuWjapkm2cmx3rsih0ZE8ffyyiiadmlY7E9\n5jRRV5gI1YDEkOWLTsYBgJ6x14FdMzQdTu0Ssfe+vDFk8VAlFsATvef5HR4TSJHCXWffB479\nr/q319TvAqecB4BXTzKhDybpa15csRQAaKpA04FojffFUgAgCE4H4wqrbgj+vidvMFimvcwV\nZBeYnDryBkWmqSDG2qK3o/Grl5lPo3L7dqgV36u1EUUD1kCpKcUyGgDaueL+lOqDI0kN8prg\nsW956JMdF+mgcfgUQTrPmMXIkFC0TKT8JUUyGgCAYKsqJoRUL/tNaNCe35/Eppc7XpifI0hJ\nfPPqyZWzRy0cPUZPnd3FFQvfotoC11GoSC2faItJeqQFOvu5ndr65H/HX479ua2mY9FNO3bs\nqNkP9Pf3r9kPrD1uxZdkYjov/rGSDL0cweBNWtLl3twQAEh/chkAk/RIm4iF2Xl5eQDAJKM1\nHUutczkuHwAYLJP+lkrtmKtn2o3P2SkkqZSbZ2DsktLjXIvuAOcBQJT0BS+tkJLIvEd/5xQD\nAINjq+lYtIaQlAEAg23JqvhP6MObqfKGge1wLkNBP4JRkrmXSbJqPsRao6X/IMbU/a/3HRW3\n/6XKIQ1SkaJMQUp2cUOn+mUP5r4LD9r/x9sPCTlFYG7r0L5L79GDOyn8fwEpD0tHqB+OJDXI\nssXcYc7/nnlzfvHBeivHd9bDhzzSaQ5cZoaEokjBs0JJC4Oq8+5SUWQSKQMAtr6z6qNDSCVe\nX9y27FCopKpdkjPjIn5bMPHF+LVzBjRWT2AIaRauo0CqgEl6pAVsOy3qe3H81Xsbz3bdO7SF\npabD0UE3b96s2Q/EJH21xRXJlwAyRzcwVqa/seNYNnFNQtOSwpcqDk134KyUb4SFZz24EA8A\nlDg+UiR15+GYRH0SiikAYLCtquxZypzFEJKUpPBF2YNMNl/eILPIGgwPAUBxdszOpdspmgYA\nffNumg5HaxgwCbGMpuniijrQVO55YcmcEvt+zRX2oSRCeYPBxi29q49n23ftqEeLj9+ft811\n89w+mKdXs/QXt3cfOv00TsjmNTt3ck3p8cyIo1NW/0HKSl65ZibHXPk95m74i6AtM80qmduC\nqoKlI9QPR5IaRYxcHyD8eX7oxe3jHoeO8evv5uhQx8Yci3MgndTN0fjx8wwAOHDyddBExaPH\nsmLO7qNpGgCMG/ZUeXAIqUBaWPCiQ6H0xwy9kZ2LZ1MnPp/Pt+IbsSVpAoFAIHj36nFUcj4A\n0LTk70OLjKz3TvDiazRqhFQO11GoU7GogKVvWEvGlvg1BmkDgv3jhlWZvyw7tmJKTC+/iaP7\n2uA3cKSjKKABgMGx4Sm3nokguLZ6jAQxBbRMxaHpDpyV8o0wd5/tZfr4QY4YAI7cSNo0sIGm\nI6pFTFmMdAlFiRNyKdpEiTEvTeV/EMunEH2ydoQiBfIGxwxrOVbt5MmTSvWTFacmxL948m+W\npOTB7jamnQrD0i12HFamhKSlWckkZc9hft6hIOlU0cf05PdtFc9TkRQ+lzeYnAo3tkfKaDJ8\n9dzigN/+2D8m8u7gkb79O7fg1pIv2ZomCD84Y9Olzxc/0VTeuo0XSzP0pfLibs/f3GzfIh81\nxaeLsHSE+uFIUrOYHPu+A9uHbr9RmPxs98ZnAEAwmMp8hb1w4YLKg0OoRjX2awXPbwBAwpU1\nJ5ruGNW2svGh8OmZVRfey9sevq7qiA+hGiWTZqwN/FOeoecYNRo32793GwdFT3f6/aOQoO2H\nYwtImpaFbNswyHMrzvhEOgzXUdQgsii/iGlgwmEoOEdT/948df7O04TEJCnbtEkrL59eA72c\nTNUeo1phphNpgYsXLwKAc+dukScuPwo59PjaERMr+7r2Vmwl/vSvXLlS1eHpAD8/P02HgEo0\nM2A/yCNlkkwJDcr8htMyUUqxDADYPCykhrQNwZm7ZV7arIA4keTt8XUPOwa1tcLFZ2riY6Z3\nViiiaTI4ImO+Z9Xr6TNf7hPLaADgGH+SLRYJrssbxi5KFf+o5ZRN0n+KZ+3zcztclKCsDuZ6\nLwtJmqbPvsub01jB5ohRRx7LG0xu/a6mCjakBwDh/X/lDT2z9iqKszaQD+DBuPEPzd5df/7m\neOCKE0Fsc2sbGxsbUwNO5dcuWLBAHSHqKEoct2TbFYXlSTOe7YwtkgIAg2UyZOq0VvacyAeX\nj15+BgDCf7bfz23vbVLFPw2qCJaO0AAcSWrU48NL15z/pMASLaMoTUWDkCqZukzrxr9/Wyii\nafL0+mmxvUaPGtDDyZpXrluR8N2NS6eOXn0kladwrLpOd9XxpALSSWlh2+LFFACwuA6rdm1w\nr3BwSDi06ROwq95Pk1ckiCmp+N3WB2lrvHGKM9ImuI5CzVJe3Ll4496Tpy8yRNJmS/avbVv+\nTReZGxmwLODJh9yPBwQPbl/456/LrftMWzLpe0UpfR2BSXqkBQ4ePFj2R5qW5QgTc4SJmopH\n9wwbNkzTIaASvVtaPLibSsvExxPyx9U3qrJ/zuu98m+Axo36qD46HYGzUr4dXL5nwM4Vges2\nh8WmBUyfNWjCj718PC24Cha/oprVZbjD2aBIAPhny4bo/QGuRpVlZaSid1sCwuVt+169/jtB\nkxe23ZM3PZspyIair2fm1HH52ln6uFe00ty728LBfAB4FHiB3v1juRtHS7P3v8iUt40dhldw\nW2XHzifIW3xvnABXfeUG8ABA05JMQWKmAMfwqpV0bVc6SQEAg2k8aMacHzyblJ6KOBIpbzj7\nrvL73hEAGru35oumbbmdTNOyM+fjvcc30kjMugFLR6gfjiQ1Jffd0bUXcLc1VHswJq2f/Wr6\nJgFJ0TT1JOTw02tHTa1srfl8a2trfSgSCtPS0tJS03NkH2fIMTn8Wesm6XA6AemwiHMf5A2P\n2YsqztCX4Jg2Wzqz1eTNjwDg/ZkI8O5VeX+Evim4jkJtaCr/xKblpx+8q6SPTJKxdubKZznl\n9y6kaerxlR0/FzO2+etsAQNM0iOE0DfEdfIkk7C1uZTs+uq9A/f+VHkZaopM3bohDAAIgjlk\nelN1xaj1cFbKtyMkJAQA3LsMzsk98SpdcHbX+nO7OaYW5ubmFmbmJnqV/v7jOsuvYesz12n/\n1NgiqbQodunUxePn+vdu3UBhz+Tnt3Zs3ftaJAEAJoc/o399+fH81DdXj2w7F5cHABzDlgMt\n9dUVuxbr2VP5bSmZVnXqOzZs1LyxI6Z4vojd92PZh5ZKaLog+eKq0y1XDm9Z9uyzQ8sFZMky\nP9cRiguQxl/f8CiflLf797RXabQIqcI/15LkjRYzNo7pVuZ3mJaeTi4EAIIgfuxZr/Rwu3F+\ncHsjAKSHRwAm6asLS0doBI4kNeV/O2/JKyHr892Gj+rXuJ69lZkhDliQDtPne/26afaaVTuj\ns4sBgKZl2cLkbGFy9CsFnTkmztOWL+9gU36pPUJa4ZawCAAIgjmljVJpSH67qWzisYSmRWm3\nADBJj3QcrqOoDlqyf4n/ldfZlfd6FrxcnqHXM2vcvWurumaMuDcxrx5HJIskAPDuZuBhn1bj\nmujmAiFM0iMtMGfOHE2HgJCacIxab5jhMyPo76L0u/7zmQsXTHXnKy7bmBp5/0Dgzuf5JAC4\nDF7V67Niawh9+4KDg8sdoWkyO0OQnSHQSDy1B4PNX7p4yOTlp0maJvPfBK+edcLO1bNpQz6f\nz+fzeSAWpgvThelxkU8iE3PklxAE0X3GaicuEwBEgv1+U6/QH1eKfDdrBn5BUca0adM0HYLu\nY/Oazmhrtf0fIQBEHF/x84eBfTt5uLo40HmCJzdO7A8pWSLPYJn96G7++eXx4ccW7H0kbxva\nD/IxUVwPHylj+vTpmg6hlgrLKwYAguDM7WxX9rg453aGhAIAjrG3K++/9wAc4w4WbEamREbm\nPQAYruZodQaWjtAIHElqyuXEAgDQM229N3hZ5dPKEdIZRo4+AfvdQ06dDrn+d0qBRGEfNs+m\nU8/ew0f2seZgSQ+krZKKKQBg6tW3YitVDILBtnTgMt8USSkSxzxIy+A6CvWIvbCqNEPPtXQd\n0P/7lm6O/HoWZftQxYmb/0oGAK5Z+1+D59X9WBmLEqfuWTjvRlweAIRsDB73+0L1xq4mmKRH\nWqBLly6aDgGVR5HFTA6+uf4q+fn5Co+btJ2wuoi9ev/N3Ld3Fk/5p5mXT9vmzjbW1tbW1vpE\nUZpAIEhN/ff+tXuvUuT9PQbOXja6mRoD10GJIcsXnYwDAD1jrwO7Zmg6HITUwbz5qKCFsgWb\nz+VIZQCQnxJ9JyW6os4EQ6/7pLXTP+Z7ZDJRaYbeudecWVjpC31LOv2y6vrYWTGFEgB4G35h\na/iFz/s49ltozSl560RLxVlZWUmxr8P/uvLn4/fygwSDO2kVZiu/So8ePTQdQi2VRsoAgKXf\noFzmLPvFXXnD1K17uUvqcFiZEpKSYF4TIaQU+XOm7aKZmKFHtQqDbdV3tH8f3wkfYqKiomJS\nM3ILCgokwDI0NDSxtHVxaeza2IGHyyuRljNmMTIkFC0TKX9JkYwGACDYqooJIdXAdRRqQFM5\nASdK9lyz8hi6fZmfkaLRY0bEgUKKBoAmsyfWLbN3FZNrOzVgxcNR83KksuLc//2RJhqsi8sU\nMUmPEKoaLc3+X2jYy5evIqNicwoLRaIiCUVfvnwZAMj8x+dD8zv4eNc1wtHYl/H19a2yD02J\nnoddex52raIODKZJ4es/F87/s8HgeTMwT1ZdYmF2Xl4eADDJCpOUSBVwnaVm2Xr57d3rcXDP\nwVuP31Ifk+6fs3PrMHbKdC8Ho3LHeTbOfYeP9+3qruIwEZC5SRyTOpqOQmswOfZrdy5fOXtt\nZG75zczkTJx+WDvmv1r3ideX+u97U7YDQTC6TdnQmY+bOCCtpM8gxDKalknLHX9zpWR+p0O/\nuuVOkSV/AjCvUH04pNEIvO2aYs5mCEmqpa0OviRFqEoEQ9+hsYdDYw9NB4KQSjhwmRkSiiIF\nzwolLQyqftMrFUUmkTIAYOs7qz46hJCWyfh3l5CkAIDNc9241Fdhhh4AXp4u2a6+VQPDcqeY\n3EazW1mueigEgNBryYN1cYM2TNKjbx2ucNW46Pt/7Nl7Mi6XVHiWKn5/Yt+xUwcP+YyYPHOY\nN86kVzMZlRsTkwsARI7ifyCkDAvPenAhHgAocXykSOrOwz+OaoLrLDWOa+k2femW8cLYew+e\nRkVFfUhOLygsKJKAkZGxiYWtq5tb8zYdPRpalrtK32Lg9l0jHepY4SNfpShx5tOw+3fv3n3w\nIu78pUuaDkeb6Jk3X3dg9/UThy7c+EdY+F89UgbbrPvQ0aOHdq1kkRNL33bQtMV+PvXVEilC\nNc9Bn5WdT1LFH5JJyr603C4tOf4hT94c4GBctj8tK4oTSwGAwS7/tEfKwyGNRuBt15Qupnqn\nhKIkMaXpQBBCCNWwbo7Gj59nAMCBk6+DJjavsn/M2X3yMnvGDZWvHI6QukkkJa8F2GxcZKhW\n8Rdj5Y2Go/wtWRVsokFLTycVyJuEolc1TiNd4aEQADIfRgMm6RFSP1zhqlkRx5etPP28ym4y\nKvfO8c2vY9N2LR7CwqQN0jbm7rO9TB8/yBEDwJEbSZsGNtB0RAiplT7f6Yf+Tj/0V7Y/U6+u\nI67rVhmaEkU+Crt7927Yw1fyel+oGhgcy97j5vUeS76PjhZkZBVSbFs7e/t6dU25ircIJQiC\n79CkTdv2/Qb2sK6gD6pETk6OvEEQbBMTA80GU8t1tzWIyCdpWhZ0MzmgTz35wcznewSkfEN6\nL7dPJyPmvj1aLKMBQM+onfqjRQhpo85+bqe2Pvnf8Zdjf26r6VgQQgjVpMZ+reD5DQBIuLLm\nRNMdo9raVNJZ+PTMqgsl+4V5+LpW0hMhzRo8eLC8sf+Pi3x2BalipAJ340t2++3dqcKHiTjr\nahpZMvVT4RRQfUsvgHsAQOY9Auhb81FqGibp0bcOV7hqUOLNwNIMPcE06tjVx9mpEfvliT33\n/9uxksVr3NTe4GVyIQAIHh5dfLLJplE4LFOKfL8A9E0gOHO3zEubFRAnkrw9vu5hx6C2VlxN\nx4QQqmVoadyLf+7evXs/7EkGLk2rKQTHoXEzh0q72Hw3d7ennqmpqQEXB5nVN2bMGHmDY9D8\n3Mk1ALBx48Zqf9qCBQtqJqxayW18S1h0BwCiDiw6Y7G0V2vnoqTHGwNC5Wftug8t2zk//v7y\nFTfkbYs2rdUbKUJIW9l2WtT34vir9zae7bp3aAsswoF00/uI0PuPn71+8yEnL7+IYpiYmtZr\n5N66rY+PRwNNh4aQCpm6TOvGv39bKKJp8vT6abG9Ro8a0MPps02gi4Tvblw6dfTqIylNA4C+\nVdfprqaaiBch9E17XywFAILgdDDmVNRH8Pc9eYPBMu1lrvd5ByanZJ0QRaapIEbNw1dR6FuH\nK1w1hRLHLw++I2+bOHea98v0Zjb6ABArvFC2G5vXdN2u3x+cWrfh5FMAiDm7MmbgMRd9fLYg\nLcPlewbsXBG4bnNYbFrA9FmDJvzYy8fTAhdT1pzjx4/LGwNGjDLAjTEQKkPwNuLu3Xv37ocn\nZivYQ50gGHVcMXOmQhwTe3sTTQehi8LDwzUdQi1l6ja1g/n/wrPENJV/bMOC4wRBl2w5DwSD\nO2loyVYORcLrGzddef42maJpACAI5tARDTQVM0JIyxDsHzesyvxl2bEVU2J6+U0c3dcGV1Mg\nHSLOeLl1/a//xGaVPZidkfYhNube9fNHnTv+vGS2u5mCLAJCOoExaf3sV9M3CUiKpqknIYef\nXjtqamVrzedbW1vrQ5FQmJaWlpaaniP7OMJkcviz1k3CtckIoc8JSRkAMNiWlZRefngzVd4w\nsB3OVbQ1IcEo+Zsrk2R9flYH4DAaffNwhauGpNzamSmRAYCeSettAXMr3DUEAAiW18gVs5Mm\n/3ZfQFOi4CuJW4dVvmgNoW9OSEgIALh3GZyTe+JVuuDsrvXndnNMLczNzS3MzE30Kk0q44I/\nZZw+fVre6D5sJCbpvzUFublSWtmy6iampvjvVyPykmPu3QsNvXvvTUq+wg78hs2/+67Td94d\nG1jiyAchpCyC4M7cMPPdzK3y+vZ0mce7y5BlTXkluzAW5zyOeJNUeqrBD4t8TDDfgLQcTd4P\ne6hMR4tW7dx4uCNp9V28eBEAnDt3izxx+VHIocfXjphY2de1t2IrMUZcuXKlqsND6GsU50TM\nnrYmtbjCulYZb8KWTnm/LHi7B+bpkY7S53v9umn2mlU7o7OLAYCmZdnC5GxhcvQrBZ05Js7T\nli/vYFN+qT1CCAGAAZMQy2iaVrAiRY6mcs8LRfK2fb/mCvtQEqG8wWCb13iE3wJM0iMtgCtc\nNeLBpQR5w3u+f2UZ+o+8J4/+7f5mAEi59RgwSY+0TXBwcLkjNE1mZwiyMwQK+6MaR1P5y1du\nkrfXrFmj2WBqieSIG0cv/x0b+y49r8Lh8ueOX7hkhNMsvkJxdkL43Xt37939N1ZxnS7Tuo29\nvb/r5O3tbG+s5tgQqjYXFxd5g6VfUolu+vTpmguntuPZem8PMt6780Doy3j5IicGy7BD/4k/\n+zX9vDNBsFr1nLRkShu1h6lTxo4dW70LncYFLOtsW7PB1Aq0NDL8Ruj/HicSQwPmuZcckxVu\n3rxZmavb/Pa7mwMWUam+gwcPlv2RpmU5wsQcYaKm4kGo5tB75m8qm6HnGJjVq9/AmMj/EJ+Q\nVUDKD1Li5I0/Bx4/MK+SdYEIaTUjR5+A/e4hp06HXP87pUCisA+bZ9OpZ+/hI/tYc/AVPUJI\nMTsOK1NC0tKsZJKyV/SsKEg6VSQrmVb+fVsrhR8iKSzZjpnJqXBje62GSXqkBXCFq0bczS0G\nAIKhN97NTJn+HBNvPmerkKTI3DCAYSqOrlYQ5aanpGZKlF7e6uzaGBNnSJtJnz9/rukYapHY\nK1t/3n+XVvoJU4qNZeyqhSrKeBx27+7de/+8fE9VcNuZHP7qzQFNHXBvV6R9Pk+M9ejRQyOR\nIDmebfM5awOnZQsS0jKZhlZ17K04xCfDRBbP0cvb2K6Bcxuv7xrXMdRUnDojOzu7ehfmV7xY\nE1VE+Pz6lp1HogUiALDyGPillxME01iJOegIoVooN/bgX4KS9XwsXl3fmT8P7uBYejb+4cUt\nv/0eXyABgKKM+79FjP+5FY7bkc5isK36jvbv4zvhQ0xUVFRMakZuQUGBBFiGhoYmlrYuLo1d\nGzvwFBWmRgihUh3M9V4WkjRNn32XN6exghxT1JHH8gaTW7+rqeISNcL7/8obembtVRSnZmGS\nHmkBXOGqEWmkDACYevWUXzFpw2YKSYoiU1UZl+6jpVl/HAi+ei8iK/8L1rYCLm/9OrjgD9Uq\nZG744gOfZOiZTGUnv5dL86DK0VThq3/uh969G/74tYhSkJs3tHHq2LHjn+cOAwDBMMIMPUKo\nBumZ2TQyU7zawLCO36J5ag4H/YfFMzc3ZAGAuT6+k/kyEac3rTkRXtF0t1Kenq3ys7PSkhKy\nxSXTIAiC2bnfsJZNmzRp4mbBwzV/X2XOnDmaDgEhlYg99j95g8nhr9q7rakxp+zZ+m0HbN3r\n7D9uSSpJAcCz3yOg1fcaiBIhNSIY+g6NPRwae2g6EISQVnLvbgsH8wHgUeAFeveP5d4n0tLs\n/S8y5W1jh+EVvG2UHTtfUu+Z7+2sskg1Cb8QIoQUM2ASpJSWSTJoACUTMgIJBQAEQ1+lgek2\nmir8bbb/ncSCalyrhwtCvgIu+EO1StTeI2IZDQD6/CY/TvFt2ciRb4qP7hpFS2Kf/XPv7t17\n4U+zFK2S5Fk5dujYsaN3x5ZONgAgT9IjhBDSUjt27Kj0PJ2XkZaampL44dWNW4+LZDQt0x/6\n8/ofU2NyPwAAIABJREFUFK0mQZWIvbJ55fGw0h8ZLOMmTU0V9ly2bAUA0DJxzJO7xw8eep4i\nomnqvZg/p42CTR/Ql+rSpYumQ0BIJf56lydv1Ou/oFyGXo5t6DZ/SIO5J94BgEhwGwCT9Agh\nhFCF7L4fyz60VELTBckXV51uuXJ4y7Jnnx1aLiBL3pi5jnBV+Anx1zc8yi/ZbqZ/T3uVRqsp\nmKRHWgBXuGpEWyPOn9limTT7Rpa4hzm3yv5k/gMhSQEA26CZ6qPTWUk315fN0LN5JnxzIyUn\nSbBxeStCSDl/Ps8GAI5x6117llpgxVcVmDZmZHIu+flxrnn99h07ent39HCxx0c20hnHjx+X\nNwaMGGWARX1QrVSvXr2qetRvAgAwYNTwN2cOBZ27H79r0dTCTXsHOePO6MoSZ4UvPlCSoSeY\nvF6jJw/s2YmvX9maeILBdW3zw+rW3qcD5p74J/X9jd9WWlqvHN5ELfEihLRPbJFU3vDpWbei\nPvbfd4MT7wBAKv6gnqgQQgjVlNSUZElNvASzt9fNbHGNY/Oazmhrtf0fIQBEHF/x84eBfTt5\nuLo40HmCJzdO7A8pWSLPYJn96G7++eXx4ccW7H0kbxvaD/IxUVwPX9thkh5pAVzhqhHdfaz/\nvBAPAGcCQ3usrPqfIPL33+UNi5b471V9f52NlTdcOw+bPHqAkyVuEYoQqnmvRBIAcJ8xBTP0\nKlIuQ88xrdO+Q8eO3t6t3eriHUe65/Tp0/JG92EjMUmvTpmZJbUBzSwsqv1soan8+QtXy9ub\nN2+uibhQZbiWzmPm/WaYP/Hws4xjS1e2/n1LPT0sva6Uq6t2y+sAEUyDyQF7ersoO7+BYPBG\nLArK9h93PbHg3xMrw74/1tGs6jnoCKFaKF0ikzeaG7Ir6lO6LoWWidURE0IIoZqzbOaMGvmc\ny5cv18jn1Aadfll1feysmEIJALwNv7A1/MLnfRz7LbTmlHyjpaXirKyspNjX4X9d+fPxe/lB\ngsGdtGq42mJWM0zSI4QUqz9oBPviJglNZ0Ts2nDOZP5gr0peugqenFx9I1ne/n6Uo5pC1EVh\neSQAmLn7bpxb0UYsSAMospjJ0c3Jeqh2KpbR8H/27jwuqqrx4/i5MzBsIqAIuEWSueGWmaVE\nLllqPlGamUuapo8LmqilmJmZZm6lIlmapYa7uaX5K7UStywly1RcHlxRREKRRYSBO/f3xyBa\nsYwwM5eZ+bz/OnM5976+8fgAM997zhXiiQas3rM4Seve+bWxQ15oRXEJR6bImZOnzDaOp02b\npm4YezJw4EDj4IuNW/yci6jpFcPt5V+t/cfkf8k/ffq0RfKhWJrnJ4yJ6T0pP+fs3A0X5vd9\nSO08NkCfeWjlhUzjuOWw2aY39AUk3cAPRuwYMNug6Be/v/HJ+X3NHxGA7ZMVxTioVPzf7hon\nllLAToSFhZn3gtSWAP5Nq6v5wcLJUyI+OJGeW+QEr7qdPuh/d6/7xO8mjVxy5t4JkqTpOHRG\nez+7fUwnJT2Aoum8QiZ0rDVtV6IQ4mDMjEGH2g3v/0LjBn8v4BX5evKFvdu/jtl20PhmxqfB\ngO4B7qoEtg8Z+QYhRNs3/kOboyIlP+3n2P3Hjh0/cTLh5q1b2dm382TF+GZDn3l4U2xmSLvQ\n2p7F3lkPVHx13ZyO38rLV9TO4QAUOfu7pR8c3BXcvn379u2eetCXpXtwTPlHjx5VO4NDUnI2\nby5YqVB8SQ8VOLs3aefl8tPNnKSdO0Xf4WrHsQFXf1hnUBQhhM6z5dvPFrsNdQlcfUIG1Km8\n9Fx6+rl121Nf6spvZPNJ+V/cz3HHT58+ffmvtKysrJx8jaenZ+Uq/vUbNmrconXrYPaDBQAA\ncFwuVZpN//Kz71Yv27zjl5RbeYXHNc4+z7zcr9/LT7trim1CnNyqdx8+8dV2gVZJqg5Ketg8\nVrhaTssRc8ISh209dVMIceNU7PSJsZLWtVqlgu2/JowdcelSUpZeLpzv4tV06tQX1MlqLx5w\n0Z65nR/ozg9n1Zzat3HR52vOFfUwaSGEnHt+9ZKVa5cua9dryBs9Q1kaCxvVNajy8WPXfzuZ\n/nwIn1BbRGBV14vX726AeTPxxOaYE1tWfBbY+IkOHdq3DW3po2PbewBwaHVdnX4SQp/1qxCU\n9KU79WOycVA77FWnsv4F3vqVB5fOOCqE+G7jpa5D65krmyNLOxMbvWhFXMJf/zh+K/NmclLi\nmeNx276OqRrUot+wiA4NfFRJCAAAUGhE5NvePPZRDRqdb9cB47q+pj9/6lRy6o1bsnP1GjVr\nPlDb27XoJ39JkuRXp3Grx9uEdevsX8wcu0EPBBvDCldrkjTug2ZEV/ls9vKdx4xHFDknJb3g\nq/EJifdO9qnfYeKk8EB7/6FpaW393M9czPjz2u2nvbn1RAVHVr07ZV3pS/0McvpPq+bEJ1z7\ndGKPMn9KCKjokZHdNcO+iF8Sk9PmLVeJf8TmF710zYXjv8TG7tm773BqTsHdbIoiXzh2YOmx\nA8sXVm7W5qn27duHtHjYmW8/ADikc7n5QghFzlI7iG04cKNge8wW7QPKfBGvBiFCHBVCpB76\nVVDSl1v8lnnvLovNU0rZmun6uSNRkYP/HPjB6BcbWicYAMAU5XwK1cnda9fsjlfu/BaQJD4Q\nhg14pNXjRT4mDFYi6eo0bFqnxCkBT4357DEXb29vD1dHKa8d5b8T9oEVrtYnab26j5zepv2B\nzVu37T50Mkcu4h24b53mXcNeDOvQgqah/FoParFkcmzcJ1uU6AF8O60sceeCwoZe0no++XS7\nenUfdj62etG+5MI5Tu4Nm9T0OHbllhAi+deYiWsaz+7ToOjLARWYe/XnP+hzaOKqfePmNZgz\n5j/09OYnaR9sEjKgSchr4beO/7o/Njb2wOH47Du/Qw35Gb/v/fb3vd9+4lUzpG379h3aqxsW\nAGBl+oxDu2/mCiE0uupqZ7ENSXf2b2teqYQ78iVX15K2CHJ2LXh2mz7zsBD9zBbOIV3bv/jt\nZbGF3YxnjfqPNanr5+fnV83P0znvWnJycnLy2eOHT17JFEIoSt7uZW97+n8+qLWfqqkBAHc1\na9asbCfm3ji9dMH8745cKTziXqP5sNERZsoFwKHpvGrW9FI7hHVR0sNmsMJVRQHBIcODQ4bJ\n2edPxZ+7kpqVlXVbb/Co5FnZx69eo+AaPuyWbDa+zcf0rPf7+jObJi59YMrA9i40Z9Yi51yc\nvPgn49irXttxb4U3DXATQiSkbL53mrN7k+mfrji4dvqMNb8JIU5/PeV0t5X13fhlCtvT+JWp\nY3JnRm38ov+JPS/17vtC++au3N1mAZLWo0mbTk3adArP/uvXfXv2xO7+Nf6y4c4n2vr0K7u3\nrty9daXxpaLobxsUt+KfxQUAsAO5aacXTpovK4oQwq1KR7Xj2Ia0vIJnrvkUv0OppPVev359\nCReRnLyNA1mfXMI0lMqQn/rBgu+NDb3O8+EBESO7tqpT1J8vyvlD26PnL0/I0iuKYfu8Gd0f\nm+vDxzQAYLsU+dC3Sxcu256WX/B7WdK4tus5bFiv9ryNBYCyoVeAbWCFa0Ugad2DglsGBaud\nw85JvT+cmfLm+Ngt8wccju3/6guNgurUCqhCd2ZpSbsWXs8zCCFcvFrOmznGt4QHFElOrXu/\nF3F5SNS+ZEXOXrwtcW7PkvfpASqcLVu2CCFE5Yadmp797uiZVQveWx3tXMU/ICAgwNtDV/K5\nkZGR1ohod7Tu1dp06tGmU4/bf53buyc2NnbPiUtp/5gj5yb27fPfVqFPtW3X7vHgB9iCDQBs\nxZo1a0yaZ8i9eunin3G/37hTOTfq/4QFY9kRLydNap4shLieZ6ilK+OGunJeSsFI4ndsuVzb\nP+9ijiyEcHKt8/6nM4K9ivvrUarT6j8zP31g7JD3LuXI+Tln5x68Ni207A8sAACo6FZi3MKo\n6P1n7r6N9an/VETE8Ba1PFRMBQC2jpIeNoAVrnAoWl3N57u1iZ2/49aVPz6b9YcQQtJoTbkh\ndfPmzaVPQjEOfnPJOAgdP7Kkhv6O0CH9ovbNEUIk7TosKOnvxweRbxXzc1kuHI0dO7bU68yd\nO9dckRzQ0qVL/3FEUfKuJydeT05UJY9DcasW1KlHUKcer6eeOxq7Z0/snv2XbuQUfjU/O+Xn\nHRt+3rHB1ffBp55q17Zd2yYPVlUxLQDAFKaW9H/n7t/uzSfY/dskDdyd9qfLQohfbuQ08yhh\nx/uS6G8eMg60uhpmS+aQjmy4YBy0iHi7+Ia+gM676aQ3Hh0y55AQ4vz6IyL0OUvHA8rvvTER\nxW76oNx93/rGG2+UfJ3o6GjzhQJUoxiyf1yz6POv9+QYCvaE0zhXeX7gyAFdW7KmCADKif4S\nNoAVrhWTnJP5141brp6VvTzd+ZPMjA4vnzRt05/3HlEMslzcbJjJnvRcIYSkcRnYyMeU+Tqv\nUD/d3BS9rE/fL0RPC6ezKxcSEkqdk2DCHMDW+QY16xHUrMeAEeeP/RIbu3vv/t+u59z9YZ+T\nemHnpuU7Ny33CWzcvm3bAT06qRgVAGB2PnWfnPzBKPaGNVFrf/f96blCiN/WnBPjy/gM3Svb\njhgHOs9WZkvmkHal3BZCSJJ2aCuT7jLxe2KYs3Q4T1Gyr+0SgpIeNuDKpYumTLt40aRpgE1L\nPbk7av7io1ezC4/Ubtl19KiBD3uXcpMWAMAUlPSwAaxwrVD06Re3rV+7fe/vqekFf585e/o1\ne+Sx517q1bKOl7rZ7ED62ZgPNh9TO4UjuqY3CCG0Lg94mnwbcICzNkUvy/qrlswFWER4eLja\nEXCHpK3TNKRO05ABI7KO/bIvdnfs/rhThQsUhBBpF49vijlOSQ8AFVmXLl1MnqutVisw6KGH\nmzUMYvGZ6ep1f1DMTBNC/BX3xfX8BVXL8FxzJX/d3oKH5VV7ooV54zmay7myEELrEljN2aQH\nB2icfeu4as/czpf1bNoEADbDoE/d8uUnMd//blAK3p86u9fuPSKiR2g9dYMBgD2hpIcNYIWr\n1ejTz3+7dcfh345fvX5DcvX286/esm3n5zq09LjzAVL2lX2jIuam6P+2rjsvMyVu7/bf9n33\n+Mtvvv1qKJ81lcfPC3cpiiKEcPNr9EqfsIYP1KzmU4lvqRV4aCV9vmLIS1WEMPEbnpwnCyEk\njZtFg9mN0NBQtSPgrs6dO6sdAf8kaSs1DenSNKRLeHbKr3tiY/fsOXzycuGnIQCAimz48OFq\nR7Bzvo8OdteOzJYVOefitJXx8wcE3+8VUg7OPZypN46febG2uQM6lspOmtQ8WTFklz71jtvG\nGxClMj6qALCOp59+Wu0IQEVx8dC2+dFfnU0v+NUpSVKj9r1HDXu5uqtW3WAAYGco6WEDWOFq\nHRf3xbw7b9PNfEPB6/Ss69cun/zz8Mb1Lad8NKGBly4/O/7tsfP+0dAXUhTDL+vnTJS8Z/Rt\nYr3QdmdrYpYQwsW75eeL3/VicY0VPe6p+z4tx5CftuNGTucqrqXO12ceNP5/wdmjqeXT2YNx\n48apHQGwDU7ufiFdeoZ06Zmdcnbvnj2xsbHxiTfVDgUAgJq0LrUndK49efslIcT5zZNXBX/W\n9zGTNlo3yk37fcq8g8ZxpZovhvlyl2251HHVpubJsj75j1t5zT1K793zs09c1huEEM5uLL5E\nhRYREaF2BEB9+bcurvokauOBu08hdPVtNChidKdmASqmAspj1qxZxoGPCZs0A1bGP0rYAOMy\nbuMKVxOxwvV+3TgaE/HRxrsN/T2yr8VNGvF+Wr4SO+ej87fzhRCSpGnSrku/14dHRo59ve/L\nbepXKZwcv37ynpu51sttd4y3pDz+9hs09Fb2TDt/42D9glhT5p9YscI4qPoIK5IBWIS730Od\nX3595sKYL+dNVTsLAAAqazrw3QdctUIIRclb/2HEqt1nTDzxdvLv00fPMO7QLoToOekVS0V0\nGB2DKhsHX66JN2X+6a+XGLeLq/yQ6Q+GAABYn3Lsh1XhA0YXNvSS5Ny627AvlsygoYdNa3iH\nMx+3o+JhJT1sACtcLU2RM96fvqVwT12tq3+TpvVq16p6KyXp/Kk/z6fm6DOOTfxk9bUj14UQ\nWpfaY6ZNfapB1bvnv9I3btsnU5f8IIRQFHnVovi2Ex5R47/DHlRx1qTo5Uequ6sdxOEEdu/l\nvGV2nqKkHvl0xgav8S+1LuE2ieS4NVN3XDGOn+0TZKWIQFndvFmwDluSnL28PNQNgzKo9lBz\ntSMAJvkg8q1i3l7e3Ydp7NixpV5n7ty55ooEwG5odP7vT+w1dMpqvUFR5Fvr5r0Vd7jbgFe6\nNwv0Ku4URc44+P2mxV9uSbtzM3rdrpEv1uRvofJq+Oqj4ugOIcSlbdNWN/mkz+MlNTcpv61/\nf/N547hF3wbWyAcAuH85f534Iipq55/JhUcqP/j4iNFvtL5zYxYAwBIo6WEDnmnn//3mi0KI\n9QtiO08pfdEqK1zvV8ovUedz8o3jqs26vDt+cJBnwZ51ipzx7Rezlmw/duWndcYjrd58728N\nvRBCaFo+P+qNw39E/5EqhLhx/HshKOnLqIO3y9qU7Ms5RT9TAJaj8wqZ0LHWtF2JQoiDMTMG\nHWo3vP8LjRv8vYBX5OvJF/Zu/zpm20FZUYQQPg0GdA/gjgpUdP379zcOdB7NNqyZJu7Z6asM\nIiMjzRMLgN25kJBQ6pwEE+YAQJGqNn9l/piMkXO/Nd5ffnb/5skHtjwQ/FiLJo2DGz1czcfb\n07OSlHc7IyMj5fLZ48ePH97/S1J2XuHpvs16zR4Sol58++Fdf3hHv30/pGQrin7dh8MTnuvX\n58XOdf3/+bbodsrZHd+sjfn2UL6iCCHcqj0d3sBbjbwAgBIp+gObv/xsxY4MueCeNo3W89lX\nwwd3D9Gx7BgALIySHjaAFa6Wdvzrgq0CndzqznlvqO89T2eRtJWfH/pB2p+vbkjMFEJIkvR6\nC98iL9J6aEj08G+EEHmZh2RFsFl72bR/tdHauXE/rzr22puPq53F4bQcMScscdjWUzeFEDdO\nxU6fGCtpXatVKniLMmHsiEuXkrL0d++fcPFqOnXqC+pkBcrnwIEDakcAAJhN+fYw4N7Q+9O7\nd2/zXnDNmjXmvaB9q9X2v4sq15gxZ+n5rDwhhKIoF48funj80ObSTmzSZcikoV2deJdqHpr/\nfhhxPHx2sl5WFDlu+/Lf/i/Gu1p1fz8/f39/N3E7JeXatWvXrv518+52fTq/UdP/yxM3AaCi\nyTj/68KoTw6eSy884t/kmYiI/zb2K30vWwBA+VHSwwawwtXSfryWbRzUfi783ob+Duk/w5ts\nmPizEEJIOn9d0e+s3aq2FeIbIYSi8Elf2VVv+/bzWwZ+u3fW109//nLzou+HgIVIGvdBM6Kr\nfDZ7+c5jxiOKnJNy531KfELivZN96neYOCk80FVr5ZAAAFQ0oaGhakdwdOxhYE23bt1SO4Kj\nC3ik69ylzdd9uWz7D4czZaXU+R41gl/uO7h76ENWyOY43Pxafzw7Ytr7C0+l5QohFMWQlnIl\nLeXKqeNFTNZ51Rs+eXIIn88AQEWiyJk7Vnz6xeaf9YU3VLkEvDT0jb4dm3BLGwBYDSU9bAMr\nXC0qMbfgW9eiU40iJ1QKbCvEz0IIxZBb3EU0Tnf3wGcZfdlJzq/PeP/6W++ufG/o6edeHdzv\n+QB3flBbj6T16j5yepv2BzZv3bb70Mmcoj71863TvGvYi2EdWjjz7xw2on79+saBk1st4yA8\nPFy9OADszbhx49SOAMCxaF1r9hkxqedrST/+345DfxyLP3Xu1p2nzhdycvcNbt68VZsOXUIb\ns4DeEjyD2s38Inj72nXbv9udlJVX5Bxn94C2Xbq+0vs//jpubgaAiuWdoYOPp9wufFktuMOo\nEX0DKzmn37xZtgt6e/NMEwC4b5KilH7fMVARKHL65ntWuJbAuMK1vpfOCqnsQ1hYmHEwc+2m\nRkVVwrI+qVuPYcbx1q1bi7yIIqe90O21kuegVFu2bBFCGPJvbF69NT3fIEkar2o1a9esZkof\nPGXKFEvHcyiKnH3+VPy5K6lZWVm39QaPSp6VffzqNQqu4cOWXwAAQH1z5swx7wW538IUMTEx\nJU9QDDkbN31rHPfo0aPUC/bv398MsRybImdfTkzKyMjMyMjIk1y8Knt5efvUqhVAN28diuH2\nhdMnT548fTU1PSsrK084VapUycu3ev36DRs0rOOu4X8GAKiICj8NNhc+DQaAMmCBJmwGK1yt\nwNe56K3sNVo3KydxWEuXLr33paIYbqYk3kxJLG4+LEfSugcFtwwKVjsHAABAUejUVVFqp67I\naYUlPQW8dUha99oP1lU7heOSNG51Grao07CF2kEAAAAAG0NJDxsTEBwyPDhkGCtcAQAwwV95\nhmrF3IBVBjkpx1z9mpjragAAAAAAAADgmCjpYZNY4Qp7NXr0aLUjALAro8d9EjVnZHEbpdyX\nP3cs+2jxNzGbtpT/UgAAAHAwyplTp+s1aKB2DACAEEJERUWpHQEAQEkPABVJhw4d1I4AIYTI\nvZ1d1CM1iubu7m7JLEC5ZJ77YfQ4Mb98PX1+9sXlH8/ceviKGYMBAADAthj02TfS0nIU12rV\nqrho7+MpgwZ96vdfzV607RRPLAaACqJOnTpqRwAAUNIDAHBH4pEda77dm3D2bHJatuln8UkT\nKriMcz+MHi/Nnz2ibD39pV+3zJoXk5idb/ZgAAAAsAn/O7ht7dZdR+Mv6hVFCCFJ2uoNn+jW\n/eVOrYLunZaf/defR/68kpqelZWVmZmVk6vPzc1J+yvp4oXETL2sUnYAAACggqKkhw1S9Pv2\n/2rKxKqPPtHI3dnScQDYh9Ob54xfvl9RTF5BD9iOjLO7Ro8X99vTK/lpmz6b89Wu44VHnCsF\nWiAdAAAAKihF0X8z762lsRf+flBOij+wMP5AXJ/J7/RqKYRQ5Iyv509bt/dMHu+nAAAAANNQ\n0qNiU/JPHNgR+/PhROnlmeMKHkGvGG7NmTPHlLNbRa1oVMfLkvnszb4fdlV2KqK/UQy3Cse7\ndu0q8tx758BCZH2uVueidgr7lJMW+w4NPezR8I5Bn/1wTgiRcXbXmEhp3uxw36J+zv9b2unY\n2bM+PZGaU3ikTpuXxo9+1VJBAQAAUPEcXzHxHw39vX5dPXVurSVjn/SPiRyx8Ux6yZeSpPvY\nIR8AAACwe5T0qLhSjn730cKvTiVnCyGqteh2v6dLkrbIvhkl+OqzhaXOiY6OtkISCCGU/LSf\nY/cfO3b8xMmEm7duZWffzpMV487q+szDm2IzQ9qF1vZkrwjzOLlolf5OQ9+oY7/ezz764IO1\n3O/nOYtAxdRl1DyN9s2FOxKEEOkJO8eMl+bPHl61xN+PipK7e9WChV/vL1wIpdX5vTxiXJ/2\n9a2RGAAAABVDfnb8+xv/V/jSp26Lx+oHVvf3yky5eulCfNzxRCHEvgXTntE1LGzoJUlbuWq1\nar6+ld2cZNlgUDQelT0rV/aqGdTo0UdbqPOfAQAAAFRIlPSooI6smz1t9QG5tFWtjz32aGba\njWuXL6XlFDzeTJK07cN6PtKkcePGjaq6ay2fFLCIU/s2Lvp8zbl0fZFflXPPr16ycu3SZe16\nDXmjZyhVcvl9fyLNOGjSf8b0HsHqhgHMSuo04mONZlz0d2eEEOkJO0aPF/Nnh1d1KvoHR3by\nH9EzPz5w7u5CKP+mncaN+289L52V8gIAAKBiSPz2izsPoZeeff2dYWGt7n3vmXhw9aiZ6+Sc\nS5OmJxqP1A3t9t/Xejf0c1UlLQAAAGBbKOlRESVsmzNl1f7Clxqnyo2beBc589133xNCKIac\n03F7Vi1ddjQpW1Hk8zl+o1s1sVJWwAKOrHp3yrqjpU4zyOk/rZoTn3Dt04k9iqnbYKr4W/lC\nCK1ztbe7NVI7C2B20jPD52i1kfO/PSWMPX2kmD/r3z29cmT7Fx9/sT1TNhhfa7SeXV4fM+T5\nlvyAAQAAcEBHf7hqHFRpPHLEC63+8dXarftEPhn74b5k41PDfBq89vG4l/i7EQAAADARJT0q\nnJwbByZ+WdDQS1r35/oN6dalrZ9bSWviJY1rg1adprYMXTdzzOpfrp7fETXF13/KK42tktce\nrFq1Su0IuCtx54LChl7Sej75dLt6dR92PrZ60b7kwjlO7g2b1PQ4duWWECL515iJaxrP7tNA\nnbj24raiCCFcfJ6uxL4EsE9ShyGzNZoJc7fGCyHS/7djdKSImhVe5U5Pn5d5bunHs7YfuVp4\ngtdDIW9GvtE8wF2dvAAAAFDb/vRc46D54MeLnNC0X1uxb51x/OSoTryVAgAAAExHSY8K59v3\nP8sxKEIISesxZOairvW9TDxR0rj3ejs6beSA7xKzfl89Zf+zK5/0YY81k3h6eqodAQXknIuT\nF/9kHHvVazvurfCmAW5CiISUzfdOc3ZvMv3TFQfXTp+x5jchxOmvp5zutrK+Gz/Sy+5BV6cz\n2XmitEdsADat3eCZWs07c7YcE0Kk/29HxARpwczhPk7S+QMbZkWtSip8cIxG1/aVkSN7tdVJ\nfNAKAADguK7qCzZYerJa0Z+uuFRpK0RBSf9UVT6BAQAAAO6DRu0AwN/oMw+tvJBpHLccNtv0\nhr6ApBv4wQiNJCmKfvH7G82fD7CwpF0Lr+cZhBAuXi3nzRxjbOiLJjm17v1eRGiAEEKRsxdv\nS7RaSLv0XE0PIURuxn49NT3sWujr0yO7NzOO0898P2rConXzx0fMiils6N0Dmo376MuxvdvR\n0AMAADi4wqcg+euK3t1Q6+xfOPbW8hkjAAAAcB9YdomK5eoP6wyKIoTQebZ8+9naZbiCq0/I\ngDqVl55LTz+3bnvqS119uZUbtuTgN5eMg9DxI32dSv+MI3RIv6h9c4QQSbsOi551LBvOrrXx\nnUzQAAAgAElEQVQc0VmMXivnXln4S8qY1n5qxwEsKGTAtLe1U2Z8fUQIkX7mu1VnCo5LkqZF\n18FjB3X15KEPAAAUIyYmpuQJiiHH9MlCiP79+5c3E2B5xd6+KTnfHfInJAAAAHA/KOlRsZz6\nseCp27XDXnUq6xu81q88uHTGUSHEdxsvdR1az1zZACvYk54rhJA0LgMb+ZgyX+cV6qebm6KX\n9en7hehp4XT2rHJQn7c67Pvopyt7P3730Y8/fiqwktqJAAtq3W/KJM3UD9bFFR7ReT08+K3x\nnZv5l3AWAADYsGGDeSdT0gMAAACAY2IrKlQsB27kGgct2geU+SJeDUKMg9RDv5ohE2BF1/QG\nIYTW5QHTV7IGOGuFELL+qgVjOYbQUXNffbK2rL/6ccSAqQvXnr2RU/o5gM1q1Xfy5D6tCl8+\n/J/+NPQAAAAAAAAAYB2spEfFkqQveCZu80rOxc+SXF1L2sTe2TXIONBnHhain9nCAZbnoZX0\n+YohL1URwsSWPjlPFkJImuKfXo+/mzVrVrFfU2q6aS7fNujjdqyO27Ha3cu3evXqflUrl3xH\nW2RkpLkzAtbQstekKZoZU1YeFEKcWPXuLOfpkd2bqB0KAIAKrXLlympHAAAAAADYA0p6VCxp\neQbjwKf4p3FLWu/169eXcBHJyds4kPXJZswGWMHjnrrv03IM+Wk7buR0rlLSzShG+syDKXpZ\nCOHs0dTy6ezEgQMHTJyZnZ56Nj31rEXTAKpq0fPtadpZ7351QAhxYPk7s8X08fT0AAAUb+XK\nlWpHAAAAAADYA7a7R8Xidaebv36nrS8DOS+lYCTxLxw25pl2BdtNr18Qa8r8EytWGAdVH+ls\noUgA7FuzlyKnDwyVJEkIsX/5O3M2H1c7EQAAAAAAAADYOVbSo2Jp4O60P10WQvxyI6eZRwk7\n3pdEf/OQcaDV1TBbMsAqArv3ct4yO09RUo98OmOD1/iXWpfwbPrkuDVTd1wxjp/tE2SliLYv\nPDxc7QiA9ezatav0SZWaPx109IezGUKIfcsm5t/+b8tqxe7k8cwzz5gxHgAAAAAAAAA4IEp6\nVCyt/d33p+cKIX5bc06Mb1a2i1zZdsQ40Hm2MlsywCp0XiETOtaatitRCHEwZsagQ+2G93+h\ncYO/F/CKfD35wt7tX8dsOygrihDCp8GA7gHuqgS2RZ07s+sAHEh0dPT9nnJw7ZKDxX+Vkh4A\nAAAAAAAAyomSHhVLve4PiplpQoi/4r64nr+gqlPxi4iLo+Sv21vwKPpqT7QwbzzAClqOmBOW\nOGzrqZtCiBunYqdPjJW0rtUqFTwAYsLYEZcuJWXp5cL5Ll5Np059QZ2sAAAAAAB79+bggaU+\nTdCUOV999ZV5AgEAAAC2j5IeFYvvo4PdtSOzZUXOuThtZfz8AcH3e4WUg3MPZ+qN42derG3u\ngIDFSRr3QTOiq3w2e/nOY8YjipyTkl7w1fiExHsn+9TvMHFSeKCr1soh7c+2bduEEJ5Boe2C\nvU085Y8d/5eol53cHurSsZElowEAAACAmtLT0swyBwAAAEAhSnpULFqX2hM61568/ZIQ4vzm\nyauCP+v7mJ/pp+em/T5lXsEevZVqvhjm62aRlICFSVqv7iOnt2l/YPPWbbsPncyRlX/P8a3T\nvGvYi2EdWjjf/34T+LclS5YIIQLD6pte0l/cuOLL5FvO7o27dPzQktGAclm1apXaEQAAAAAA\nAAAAf0NJjwqn6cB3H/hx2KUcWVHy1n8YIUa937d9PVNOvJ38+4zIGZdzC7YB7znpFUvGBCwu\nIDhkeHDIMDn7/Kn4c1dSs7KybusNHpU8K/v41WsUXMPHVe2Ajk5vUIQQ+bnn1Q4ClMTT01Pt\nCAAAALBJ3bp1UzsCAAAAYLco6VHhaHT+70/sNXTKar1BUeRb6+a9FXe424BXujcL9CruFEXO\nOPj9psVfbknLL3hud92ukS/W9LBWZMCCJK17UHDLoPt+8gNKcfLkyX8fzL1x/uRJufSTlfy0\npPivU28bX5g5GQAAAABUAAMHDlQ7AgAAAGC3JEWhXUBFdHnPkpFzvzXc+fcpSdIDwY+1aNI4\nuNHD1Xy8PT0rSXm3MzIyUi6fPX78+OH9vyRl5xWe69us1+dT+zixBziA4oWFhZnlOq7eHdbH\njDbLpQAAAAAAAAAAgCOgpEfFlfz79hlzlp7Pyit96j2adBkyaWhXNw0VPWxSQrq+rpeuDCem\nHP/Br3FHs+exY+Yq6UMil0SG+JvlUgAAAAAAAAAAwBFQ0qNCk3OurPty2fYfDmfKpf9D9agR\n/HLfwd1DH7JCMMBCuvUY3CP8zb4dGpp+iiEvdcuSBTE7jm755hvLBbM/4eHh9768fPmyEMLZ\n08/f5JskKlWt0SS0W79neRQBAAAAAAAAAAC4D5T0sAH5WUk//t+OQ38ciz917tadp84XcnL3\nDW7evFWbDl1CG7PFPWydcXn3A61eGDe6f2Al51LnX47bPjdqWUK6XgixdetWi+ezX8bvfGDY\nR9GD66mdBQAAAAAAAAAA2DMntQMApXOqVKNTz4GdegpFzr6cmJSRkZmRkZEnuXhV9vLy9qlV\nK4BuHnbm0qFvRr8e1+eNN18OrVvcHDknad2n89fGnrJmMAAAAAAAAAAAAJQTK+kBoAI5vG3J\nJ8u2p93ZMeKhkB5vRfSt6ar9x7SEAxvnRa9OzM4zvnR2r90rPOLlp1gCXnbr168XQnjV69ip\neRW1swAAAAAAAAAAAHtGSQ8AFUtu2umlUfO+O5JkfOnsEdhv9FsvPh5ofJmXeWFF9Nwtv1ww\nvpQkKbhDnzeG9qj+ryIfAAAAAAAAAAAAFRAlPQBURPE/rVmw6OuknHzjywYd+rwV/vJfe9dG\nLd6QnCsbD7r5BQ8aFfFs0wD1YjoKWZ+r1bmonQIAAAAAAAAAANgDSnoAqKDysxNXL4zasO+M\n8aXW1V3OyTaOJUkX0v2/w1991lMrqRfQbin5aT/H7j927PiJkwk3b93Kzr6dJytbt24VQugz\nD2+KzQxpF1rb01ntmAAAAAAAAAAAwCZR0gNAhXbx0NbJM5cWPqVeCOH5YOuIN0e2CvRUMZUd\nO7Vv46LP15xL1//juLGkv526/pXXV2q0Xu16DXmjZyj3SAAAAAAAAAAAgPulUTsAAKBY+pv/\n+/77Hfc29EKInJTLly5dVSuSfTuy6t3xc776d0P/DwY5/adVc4Z/uCGf+9wAAAAAAAAAAMB9\noqQHgApJkeO2Lx06aPz2uETjgZotOgZ56oQQedmJMXPeGjltSUJpXTLuS+LOBVPWHTWOJa1n\n6LPPDwofOyw04N45Tu4Nm9T0MI6Tf42ZuOaUtVMCAAAAAAAAAAAbx3b3AFDhZCf9sWh+VOyp\n68aXWpeAl4eP6dOhoZx7bf3Cj9fEFhTDWp3vC4NGvtalBXuul5+cc3Fw34jreQYhhFe9tuPe\nCm8a4CaESIiJGLvhvLiz3b0QQij5B9dOn7HmNyGEpHWfvXplfTcn1XIDpdm1a5cZr+bdKOSx\nmu5mvCAAAAAAAAAAOCB6BQCoQBQlZ8+6xYvW/ZQtF9xBFdjqhTcj+j/o6SyE0Lr49x47u02b\nLR9Frbh4K0/Wp276bMrePR1Gjx5qbJRRZkm7FhobehevlvNmjvF1Kn6nGcmpde/3Ii4PidqX\nrMjZi7clzu1Zx3pBgfsUHR1txqs1CG9ISQ8AAAAAAAAA5cR29wBQgUwb+frc1T8aG3qta40+\nY+dETxpkbOgLBT7x4vxlC3o8+ZDxZWr8T+8Of/2TDftUiGtHDn5zyTgIHT+ypIb+jtAh/YyD\npF2HLRgLAAAAAAAAAADYHVbSA0AFEpeYZRzUad1t7Kh+gR5F/5TWutbsP35emzYbPo5efeV2\nviLf2hkzZ2SPUCsmtTd70nOFEJLGZWAjH1Pm67xC/XRzU/SyPn2/ED0tnA4ouyeeeKK4Lxny\nrh/67X+FLyVJ4+lTzT8gwFObe+3atWt/3cy/81AkrS6g77Bevk4ar3pVLJ4YAAAAAAAAAOwd\nJT0AVCxObjV7j3zz5dC6pc6s+2SP6Ecei4n6aMsvF60QzL5d0xuEEFqXBzy1komnBDhrU/Sy\nrL9qyVxAeU2cOLHI4/nZZz8e965x7F69UfeXe/7nqebuurvbSChy7ulfd61du+7IhXRZn7xh\nw88fzJtQ140/HQEAAAAAAACgvNjuHgAqkIdCekQtizaloTdy8gh8fWL07LG9A1y0Fg1m9zy0\nkhDCkJeqmHxKcp4shJA0bhYLBViOsnLSlAOJWUKIFj3Gr1w0s2fHFvc29EIISevSoM1/piyI\nmTLgSSFEdtKh99+JyTf9/yEAAAAAAAAAgGJQ0gNABTIvsn9t9/teqNqgXe9Pln5siTyO43FP\nnRDCkJ+240aOKfP1mQdT9LIQwtmjqWWTARaQdnLBpoR0IYRv80FT+j/pVNL+EVKL7uNHtfYX\nQqQnbJnzS4qVIgIAAAAAAACA/aKkBwB7oPMMUjuCbXumnb9xsH5BrCnzT6xYYRxUfaSzhSIB\nlnP4i9+Mgx6jO5kyPzS8r3Fw7Kt9lsoEAAAAAAAAAA6Dkh4AABHYvZezJAkhUo98OmPDQbnE\nPb2T49ZM3XHFOH62D7dHwPb8X2KWEELSunep4mrKfBevdt5OGiHE7es/WDYZAAAAAAAAADgA\nSnoAAITOK2RCx1rG8cGYGYMi5/56/Oytfzx/W5GvXz27+YuZw6etlRVFCOHTYED3AHfrpwXK\nKTFXFkJoNB4l7XP/d24aSQhh0LPdPQAAAAAAAACU130/+RgAYDmvvfZa2U6sO2Dmu+2rmzeM\no2k5Yk5Y4rCtp24KIW6cip0+MVbSularZDB+dcLYEZcuJWXp5cL5Ll5Np059QZ2sQPlU0kpp\n+Yqc99e5HDnIVVvqfDn3YnKeQQihcfa2fDoAAAAAAAAAsHOU9ABQgaSlpZXtxMxcufRJKJGk\ncR80I7rKZ7OX7zxmPKLIOSnpBV+NT0i8d7JP/Q4TJ4UHmtBuAhVQ68q6/7uRI4T44qekD5+r\nXer8q7GfK4oihNBVDrF4OAAAAAAAAACwd2x3DwA2zMm9ip+fn5+fXxU3broyA0nr1X3k9M9n\nRHZp3chVW/RG4L51mr8WMeWL2aPre+msHA8wl2c71TQOTi59P+6vnJIn56QeeX9JvHFc87kO\nlk0GAAAAAAAAAA5AMq6LAgBUBJcuXSrx60pG6rWrV5MSLxzfsevwbYOida057P0POzX0sVI+\nR6LI2edPxZ+7kpqVlXVbb/Co5FnZx69eo+AaPq5qRwPKKz/7xMC+76TLBiGEk1vgwDffer5V\nYJEzL8V9+/FHS89n5wshNE4+M1d92YBbggAAAAAAAACgfCjpAcAm5aSeWb8sesO+i5LG7bXZ\nn3ev56V2IgC25OymqWOWxxW+rBrU/MkWDatXrx4QEOAuspOTk69evXrqyP7fz10vnNPq9fmT\nXgxSIywAAAAAAAAA2BVKegCwXYZNkwcv/yPVyfWh+Ss+esCF56MDuA/7vnxnzjfHTJzcvPuE\nqQPaWDQPAAAAAAAAADgISnoAsGF52cde7j3JoChBr8yb3/chteMAsDEXft447/O152/kljDH\n3a9e36Gjn3+sltVSAQAAAAAAAIB9o6QHANs2v3/Pn27muPp0Wf/VcLWzALBBiv7Ezz8e+O3P\nkydPX72ekZ2jlySNi5tHlYDa9evXa/ZYaNtHH9ZKaocEAAAAAAAAADvipHYAAEC51HV1+kkI\nfdavQlDSmyQsLMy8F9y6dat5LwhYlaQLDukSHNLF+EqR9QaNjlYeAAAAAAAAACyHkh4AbNu5\n3HwhhCJnqR0EgD2QtDqt2hkAAAAAAAAAwL5p1A4AACg7fcah3TdzhRAaXXW1swCwE7K+pEfU\nAwAAAAAAAADKiZX0AGCrctNOL5w0X1YUIYRblY5qx7EZ06ZNK8/pJ3evXbM7XlEU40tJYtUx\nbJuSn/Zz7P5jx46fOJlw89at7OzbebJifIiDPvPwptjMkHahtT2d1Y4JAAAAAAAAAPaDkh4A\nKpA1a9aYNM+Qe/XSxT/jfr+RZzAeaNT/CQvGsi/NmjUr24m5N04vXTD/uyNXCo+412g+bHSE\nmXIBKji1b+Oiz9ecS9cX+VU59/zqJSvXLl3WrteQN3qG8qB6AAAAAAAAADALSnoAqEBMLen/\nzt2/3ZtP+Jk9DO5S5EPfLl24bHtafsFdEZLGtV3PYcN6tXfT0FvCVh1Z9e6UdUdLnWaQ039a\nNSc+4dqnE3s48e8dAAAAAAAAAMqNkh4AbJtP3ScnfzCKqthybiXGLYyK3n8mrfCIT/2nIiKG\nt6jloWIqoJwSdy4obOglreeTT7erV/dh52OrF+1LLpzj5N6wSU2PY1duCSGSf42ZuKbx7D4N\n1IkLAAAAAAAAAHaEkh4AKpAuXbqYPFdbrVZg0EMPN2sYxB7UFqIYsn9cs+jzr/fkGAqeQK9x\nrvL8wJEDurbkew6bJudcnLz4J+PYq17bcW+FNw1wE0IkpGy+d5qze5Ppn644uHb6jDW/CSFO\nfz3ldLeV9d346xEAAAAAAAAAyoWPWQGgAhk+fLjaEVAg9eTuqPmLj17NLjxSu2XX0aMGPuyt\nUzEVYBZJuxZezzMIIVy8Ws6bOcbXSVPsVMmpde/3Ii4PidqXrMjZi7clzu1Zx3pBAQAAAAAA\nAMAeUdIDAPA3Bn3qli8/ifn+d4NSsIDe2b127xERPULrqRsMMJeD31wyDkLHjyypob8jdEi/\nqH1zhBBJuw4LSnoAAAAAAAAAKB9KegAA7rp4aNv86K/OpuuNLyVJatS+96hhL1d31aobDDCj\nPem5QghJ4zKwkY8p83VeoX66uSl6WZ++X4ieFk4HAAAAAAAAAHaOkh4AbJgiZ7457j3jeO7c\nueqGsXX5ty6u+iRq44GEwiOuvo0GRYzu1CxAxVSAJVzTG4QQWpcHPLWSiacEOGtT9LKsv2rJ\nXAAAAAAAAADgECjpAcCm5SckJJQ+C6VQjv2wOnrxhuRc2fhakpyfeHHQiP5dKptcYQI2xEMr\n6fMVQ16qIoSJ/8ST82QhhKRxs2gwAAAAAAAAAHAElPQAAIeW89eJL6Kidv6ZXHik8oOPjxj9\nRuugyiqmAizqcU/d92k5hvy0HTdyOldxLXW+PvNgil4WQjh7NLV8OgAAAAAAAACwcxq1AwAA\noBJFf2DTZ4OHvFPY0Gu0np1fi1wa9Q4NPezbM+38jYP1C2JNmX9ixQrjoOojnS0UCQAAAAAA\nAAAcByU9AMARZZz/dcaYQbOWf5chG4xH/Js888HiL8NfCtGxwz3sXWD3Xs6SJIRIPfLpjA0H\nZaWkyclxa6buuGIcP9snyArxAAAAAAAAAMC+sd09AMCxKHLmjhWffrH5Z71S0ExqXQJeGvpG\n345NaOfhIHReIRM61pq2K1EIcTBmxqBD7Yb3f6Fxg78X8Ip8PfnC3u1fx2w7KCuKEMKnwYDu\nAe6qBAYAAAAAAAAAeyIpSomLpwAAFZgip73Q7TXjeOvWreqGsRUTB79yPOV24ctqwR1Gjegb\nWMm5zBf09vY2Ry7AqhRD9pcThm09dbPwiKR1rVbJkJKuF0I0qlv70qWkLL1c+FUXr6YfLXk/\n0FWrQlYAAAAAAAAAsC+U9ABgwyjpyyAsLMy8F+Q7DxulyOmbP5u9fOexUmf61O8wcVJ4fS+d\nFVIBAAAAAAAAgN1ju3sAAABHJGm9uo+c3qb9gc1bt+0+dDKnqEfT+9Zp3jXsxbAOLZx5GgQA\nAAAAAAAAmAklPQAAgOMKCA4ZHhwyTM4+fyr+3JXUrKys23qDRyXPyj5+9RoF1/BxVTsgAAAA\nAAAAANgbSnoAgGOJiopSOwJQ4Uha96DglkHBaucAAAAAAAAAAAdASQ8AcCx16tRROwKgsm3b\ntgkhPINC2wV7m3jKHzv+L1EvO7k91KVjI0tGAwAAAAAAAAD7R0kPAADgWJYsWSKECAyrb3pJ\nf3Hjii+Tbzm7N+7S8UNLRgMAAAAAAAAA+0dJDwDq2L59uxmuYrhthosAQGn0BkUIkZ97Xu0g\nAAAAAAAAAGDzKOkBQB2LFy9WOwIAR3Hy5Ml/H8y9cf7kSbn0k5X8tKT4r1ONtwQpZk4GAAAA\nAAAAAI6Hkh4AAMDORUZG/vtg8v6Fkfvv7zounk+YJxAAAAAAAAAAODCN2gEAAABgGx4d2lvt\nCAAAAAAAAABg81hJDwDq2Lhxo9oRADiKWrVq3fvy8uXLQghnTz9/L52JV6hUtUaT0G79QvzN\nHw4AAAAAAAAAHIykKDxbFAAAwIGEhYUJIQLDPooeXE/tLAAAAAAAAADgcNjuHgAAAAAAAAAA\nAAAAK2G7ewAAAMfy6quvCiG86vmqHQQAAAAAAAAAHBHb3QMAAAAAAAAAAAAAYCWspAcAALBn\nN2/eNA4kydnLy0PdMAAAAAAAAAAAVtIDAADYs7CwMONA59Fsw5ppQohZs2aV+WqRkZHmiQUA\nAAAAAAAAjoqV9AAAAI7lwIEDakcAAAAAAAAAAMelUTsAAAAAAAAAAAAAAACOgpX0AAAA9qx+\n/frGgZNbLeMgPDxcvTgAAAAAAAAA4Oh4Jj0AAAAAAAAAAAAAAFbCdvcAAAAAAAAAAAAAAFgJ\nJT0AAAAAAAAAAAAAAFZCSQ8AAAAAAAAAAAAAgJU4qR0AAAAAaspKT89XFBMne3l7SxZNAwAA\nAAAAAAD2jpIeAADAEV05siNm6+6EhLN/ZeSaftaqzd94aqnpAQAAAAAAAKDsKOkBAAAcTsK2\nuW9+sUcxeQF9IWeelQQAAAAAAAAA5UNJDwAA4Fj06Qcmfvm3hl6r1Zp4rk5iGT0AAAAAAAAA\nlAslPQAAgGM5+flXOQZFCOHm1/j1oX0feTjIz9tN7VAAAAAAAAAA4Cgo6QEAABzL90fThBC6\nyi0/XTSpqhP71wMAAAAAAACAVfGxLAAAgGM5np0nhAgeMZSGHgAAAAAAAACsj09mAQAAHEuu\nQRFCPNHAS+0gAAAAAAAAAOCIKOkBAAAcS103JyFEvqJ2DgAAAAAAAABwSJT0AAAAjqVrUGUh\nxG8n09UOAgAAAAAAAACOiJIeAADAsTwysrtGkuKXxOQorKYHAAAAAAAAAGujpAcAAHAs7tWf\n/6BP05wb+8bN+5aeHgAAAAAAAACsTFL4ZBYAAMDhKLtjZkZt/EXn+/BLvfu+0L65q1ZSOxIA\nAAAAAAAAOARKegAAAMeyZcsW4+Dqb99+dzRFCCFJzlX8AwICArw9dCWfGxkZafF8AAAAAAAA\nAGDXnNQOAAAAAKtaunTpP44oSt715MTryYmq5AEAAAAAAAAAh8Iz6QEAAAAAAAAAAAAAsBJW\n0gMAADiW8PBwtSMAAAAAAAAAgOPimfQAAAAAAAAAAAAAAFgJ290DAAAAAAAAAAAAAGAllPQA\nAAAAAAAAAAAAAFgJJT0AAAAAAAAAAAAAAFZCSQ8AAAAAAAAAAAAAgJU4qR0AAAAAltKjR48y\nnKVxcvWpWqX6gw1bt2nTvk0znWT2XAAAAAAAAADguCRFUdTOAAAAAIsICwsr5xU8H2g5bOyY\n0CBPs+QBAAAAAAAAALDdPQAAAIqVeSnu47dGbj9xU+0gAAAAAAAAAGAnWEkPAABgt9avX1+G\nswx5OWmpSUfj4pLS9cYjWl3NOSs/qeuqNWs6AAAAAAAAAHBElPQAAAAogmLI3r3uk6i1B4x/\nLvq2GL10Sge1QwEAAAAAAACAzWO7ewAAABRB0rh36D3+w1cbG19e//3TU7fz1Y0EAAAAAAAA\nAHaAkh4AAADFCu7xXktPnRBCUfTL9l1TOw4AAAAAAAAA2DxKegAAABRP0r32UqBxmPT9/9TN\nAgAAAAAAAAB2gJIeAAAAJakW2tI4uH1tv7pJAAAAAAAAAMAOUNIDAACgJDqPR4wDOfeKukkA\nAAAAAAAAwA5Q0gMAAKAkGicf48CQ/5e6SQAAAAAAAADADlDSAwAAoCQGOc040DhVUzcJAAAA\nAAAAANgBSnoAAACURJ/5m3GgdamhbhIAAAAAAAAAsAOU9AAAACjJtb0FJb1btVB1kwAAAAAA\nAACAHaCkBwAAQLEUQ87yTZeM4+qd66obBgAAAAAAAADsACU9AAAAivXbqnd/z9ILISRJN/Cp\nALXjAAAAAAAAAIDNc1I7AAAAACoiOeevb2MWfvntaePLqo8Mb+jOn44AAAAAAAAAUF580goA\nAGC3PvnkkzKcZcjPvXn9Wvzx09myYjyidan1zoR25kwGAAAAAAAAAI6Kkh4AAMBu7dy5s/wX\n0er8hk2f8ZCrtvyXAgAAAAAAAABQ0gMAAKBY1Rq1HTZy+GO13NUOAgAAAAAAAAB2gpIeAADA\nbtWqVasMZ2mcXL28vf0D6z3+ROtWwYGS2WMBAAAAAAAAgAOTFEVROwMAAAAAAAAAAAAAAA5B\no3YAAAAAAAAAAAAAAAAcBSU9AAAAAAAAAAAAAABWQkkPAAAAAAAAAAAAAICVUNIDAAAAAAAA\nAAAAAGAllPQAAAAAAAAAAAAAAFgJJT0AAAAAAAAAAAAAAFZCSQ8AAAAAAAAAAAAAgJVQ0gMA\nAAAAAAAAAAAAYCWU9AAAAAAAAAAAAAAAWAklPQAAAAAAAAAAAAAAVkJJDwAAAAAAAAAAAACA\nlVDSAwAAAAAAAAAAAABgJZT0AAAAAAAAAAAAAABYCSU9AAAAAAAAAAAAAABWQkkPAAAAAAAA\nAAAAAICVUNIDAAAAAAAAAAAAAGAllPQAAAAAAAAAAAAAAFgJJT0AAAAAAAAAAAAAAFZCSQ8A\nAAAAAAAAAAAAgJVQ0gMAAAAAAAAAAAAAYCWU9AAAAAAAAAAAAAAAWAklPQAAAAAAAAAAAAAA\nVkJJDwAAAAAAAAAAAACAlVDSAwAAAAAAAAAAAABgJZT0AAAAAAAAAAAAAABYCSU9AGasOeYA\nACAASURBVAAAAAAAAAAAAABWQkkPAAAAAAAAAAAAAICVUNIDAAAAAAAAAAAAAGAllPQAAAAA\nAAAAAAAAAFgJJT0AAAAAAAAAAAAAAFZCSQ8AAAAAAAAAAAAAgJVQ0gMAAAAAAAAAAAAAYCWU\n9AAAAAAAAAAAAAAAWAklPQAAAAAAAAAAAAAAVkJJDwAAAAAAAAAAAACAlVDSAwAAAAAAAAAA\nAABgJZT0AAAAAAAAAAAAAABYCSU9AAAAAAAAAAD4//buM8yN6moA8NUWe927jXvBYDAYm+bQ\nu+k99N5CDQQcIEDokBAIJUCAECCEUEPv/SP0FoohdAy2ccU27n2Lvh/SLutd7Xq9kkba9fs+\nfh5mpSlXc0fnHubMjACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAA\nAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAA\nAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAA\nAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAA\nAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcA\nAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0A\nAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkB\nAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgP\nAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6\nAAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjS\nAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESR\nHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK\n9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFR\npAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiI\nIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBE\nFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAi\nokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQ\nEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACA\niCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAA\nRKQog+sqva9XBteWQ8WHTMl1EwAAmoPy98/OdRMyo3DkVbluAgAAqa39m2dy3YTM+PL63XLd\nBICmbfS/x+e6CZlx7YEDct0EIOvcSQ8AAAAAAAAAEVGkBwAAAAAAAICIKNIDAAAAAAAAQEQU\n6QEAAAAAAAAgIor0AAAAAAAAABARRXoAAAAAAAAAiIgiPQAAAAAAAABERJEeAAAAAAAAACKi\nSA8AAAAAAAAAEVGkBwAAAAAAAICIKNIDAAAAAAAAQEQU6QEAAAAAAAAgIor0AAAAAAAAABAR\nRXoAAAAAAAAAiIgiPQAAAAAAAABERJEeAAAAAAAAACKiSA8AAAAAAAAAEVGkBwAAAAAAAICI\nKNIDAAAAAAAAQEQU6aPz9Po9YitvxLkf5rrhK+eBtbsmWr7jCxNz3RZglRBZ2Bn/xPaJDXVb\n5/GsbqhJs5eakE+v3DjRWf13eTnXbVlFSQ4BskFymFfspZTi5Qseuvq0rX8xvEeHkvZde+14\n1ge5blHWyTzzzdwJY+685vy9dtp2g3WHrNalfXGrtj169Vt35HbHnX7+/a98Fq93Wb3ZtDSV\nbLyu48rxlg/0QjNmOFh1GA7ykyI9AM3T2X3bV9W0Pl5Ymuvm0CB6DQDIEmlGU9Qsey1ePvfY\nDQYccNaNr7//6fR5S+f/NHXcpEW5bhSrkAUT3jx512GdBm5wzJl/ePLFVz/+/JsfZ80vW7Jw\n+tSJn//3P3dc/4dDth/WY91R97wzNdctjVSzjDbNmy6DNBkOUhJbmpym3mWK9MAqav9ubRKx\n+w8T5+e6Lc2cXQ0A5D8ZS2TsalZx3z948J2f/pSYbtd/3W1GjdpknY65bRKrjtevP7Hv4K1v\nee6zeLy+2yNnfP7yEVsMOPqm9yNrGABRMhxAnijKdQNWRW17Hj/py6saOHNhSbusNgYAgNyS\nHALAquPjq5IPtx+w1y3fPHZicSy3zWEV8vKf9h917sOJ6Vgstv6oAw8+8ICt1l+zV68eZXOm\nTpgwYdx3H9953bWvfzsnhBCvWHbXqZu17zH2+v0G5LLRAGSa4QDyhyJ9LsRadOjQIdeNAGjm\nOvXtP6BoQWK6Zcypr6ZBr7GKkhwCZJ80oylqlr02cX7yOZzrnLuPCj2RmfD48VUlmVbdN7vh\n3ruO22Hwz2/36DpgyLCtw+5HnXjOa/ddse/Rl8wqrYjHy28+YtRRO3+xftvi3DQ6Qs0y2jRv\nugwax3BQP7GlyWnqXaZID0DzdO7b/zs3121gZek1ACBLpBlNUfPstcrHyhaU+A1KIlK68JOd\nD/1nYrpVt61e+uKFzbuUpJ41Vrz1oRd+0nV+352vDiGULR57yG/f+vLWbSJqaO40z2jTrOky\naATDwQqJLU1OU+8y/z8AAAAAANA8vfSr/b5aVBpCiBW0uOGdp+osyVTqs9OfrxvZIzE99l9H\nzyytyHoTAcg+wwHkG0X6JqrinUfvOP2ofYattXrXjm1atOnQZ+CaW+1+6BU33zdlaXm2F1/8\n40c3Xjp6+42H9enRuUVJuz4Dh2yz73G3PvxaOhF6ymu7xGKxWCy2+a1fhRBCfNlz/7r2gO1H\nDuzdvaRFq9X6rr7l3sfd+eyX1T/Ca/fecMTumw/su1qbli17Dlx76532OucvD8wpi9exhRBC\nWDrri39e8/sD9t51sw2H9e3esUXrDgPWXHeL7XY+/JSLX/1yZl1LjX9i++XaFsLUj184/4R9\nRwwd3KVdSYce/UduteNRp13x+ayl9X/Gxm29SvmSiffccPEeW27Qv2fXli3b9l197VEHnXLX\nMx8m3n1g7a6JRt43Y1Fda5jzzWvXXHDqthsN67ta15KSdgPXGr7DrvtcePOjM+oeXKPpl8a1\nrdH98umVGycWfHhmcl+d36994pWt7vq2/nam3/K/7tYvsa12fQ9cWJF6t3x+yx6JeYpbDXx7\n3rIUc1QseeHevx73y+2HDOrXoXXLrn0Gb7bdrkedOPqh177KeINDCJ2LC2OxWOsuuyf+XPzj\n/2659LTNN1y3V5d2Je06Dxqy7r7HnnX/S1/UXjCDu7pxYafqIOm2zuO1341XLH79kVtPOvrg\nUVuOHNSrS0nbLkPW23iXvQ8884rbv1rR17nKty/ff8aRe6w1uH+ntiUdevTfeMtRR/z68k9m\nLFmpT/fodn0S7eww4PyUM5zeJ7nfYrHYRePn1Z5h5ifHVM3wwIzFNd5NJ/hEv5fq6rVMheL0\nY+nKyucBriEaETQSqg6enY6/e43dbmyzzY1DD7l7t7OePPuuT7+a15BchZUlOZQcSg4lh5JD\nyWGS5DA/k8MZn+yZWNvo7+ckXnlqRPfEK2sc/Hrt+fM2Sudn5rlo7HPTXrpq4sNnfHfHwV/f\ncvD3954x8ekrp3/wwrIlpek0qXkoXzrh2EfGJabXOOLh41Zv35ClDr/94MRE2ZLxl303d2U3\n2ujeDDnK0Jp0tFnZYTHbA01I7wBooCbdZSmtyjE8/eyChjAcGA5qMBzkvMtCCCGeOcvu7dk8\n/mVwn1T31IjuiX3ettev01nP3LFP7b3hanV1aMuOa194z5jsLf7MlSd2b1GYctn+2xz34dyl\n96/VJfHnqOd/aPiHmvzqzomlNvvbl0vnfnzclr1rrz8Wi+1+zoPxeLx00Tcnjlo9ZRu6DD9o\n0tKylJt46+bf9GqZuuUhhFisYP1dT/l+cYplxz2+XVXb4vHyxy4/uCjVL1sUtlztlBverusD\nNnrrCd8/fe2Irqmva1tr11M+nb+sarffO31h7cUryuZee+perQpS/yBHi/aDzrjt3Vz1S6Pb\n1uh++eRPG6XcVghhy39+U1cXZKrlyxZ8OrR18sd7Nr/0ndozLJn9as/Kr9gRD3xXe4afPrl/\n56Gd6/oIa+8x+utFpRlscDwe71RUEEJo1Xm3eDz+yYOX9m2Z+ndS1tvztG+W33SmdnWjw07V\nQdJ16GM11jnnq0d2GdqpruYVlfS78P4varek+goryuZffcJ2sZRHXXG34695veEfcPJ/fplY\nsKCw7Y/Lymu8W75savVe2/DyFCH6zWOGJN5t2XHrGm+lE3xyspfq6rWMhOI0Y2nj5PMAV/Ul\n7bfzS7XfbXTQiK/w4GnR/oLLjyl776ym9a+xh0B9JIf1yOfvjuQwSA4z13LJYSN2teRQchhv\nmsnh9DF71LX3Bh/0WvU58zlKN7nMM1bYrevOt6x12tNN5V89h1Cjjb1/x6re//eMRQ1cqqJ0\n9n777LP33nvvvffeo+//vvpb2evNeO4ytKYbbRoxLGZ1oGn0AVDXcVXX6023y+oihtdWV3ZR\nvzMeGNc8/q3sB18hw0F1hoO44SDXXZbgTvomZvbn/9xg2D6Pfzit6pXWHbr27t6p6vBaOufL\nyw7f4LBr3s7G4g+due1uv/vb9GU/31DVqn2XNpXf/Amv3r7dhkdOWpbW7XHly6YevdE2t78x\neetjzrrj389+9N83/n3njdsOaBdCiMfjT//pgJMeevPYkZv87aXvum14wJ9vufvNDz987pF7\nTt1lzcTiP33ywHYnvlx7tWPvOWrzk6+vfitY6w7denXrWFj5wePxio+fvWmTLS+s/6ael8/b\nap/z7287ZMc/3vLvN9/7+L+vv/CPGy9er0tJCKF86bSbf7PFhe9Pz/jWv3/09+vs9dsxM5M3\nFsQKWnTt2atD5bm8r569abOhe7y/INUtNSGEECpKp5++w9qjb3xiceWtObFYcfdu7apmWDbv\n++t+tcleFz5czwfPUr9kpG1hJful+yZHnXPOOeecc86Qyn241cmjE68cOqzOpDBTLS9uM+y5\n+49NTL9z6U6PTq15gdWVux44dVl5CKHXdlfedeCgGu9Of/umdTc+7PkvZlVttMtqvdsW/xzJ\nv3zq2k1/8atZZTWvRMvIrh7/+BkjDrxo4tKyHuttf84frrnz7rtuuPryA7YfkTjL9umTN4xc\n/5CxS8qq5s/Irs5G2Fk8/emN1j/wuS9mV71S0r5bzy4/742yJT9cduj6V475qa41xONlfzl4\ngzNvfSUej7fo2G/k5ttutsHQzq2TZ6jLS2fcdubW57+XIhqk1H3kxYkgXFG+4IpxNa9InTfh\n6sXV7qv77p8v1F7D3c9NTkz03n65yx7TCT75tpeqa1woTjOWpi/PB7ga0gkaKQ6eNq17dmhR\n9WfZsnmXX3jXVd+kuMCWRpAcSg4lh7VJDqtmkBw2RL6lPZLDldVUksPW3fdLHPDbdUye6Rt8\nzGmJV07Yq2/VbPkcpZtE5hlr0aGopFXVn/HyGTNfOO2nGfNXpkXNzct//Cgx0Wa14w/o2qr+\nmavEijo+9Oijjz322GOPPXbNQQMbuFSaB3BuM7QVysNo07hhMXsDTaZyuUzJwy5riFU5hq9s\ndsFKMRwYDmosZTgI+TAcNK62n1LO74Bv9nfSly35YbsurSoPiJb7nHHdB9/NSry1bP6kJ2+/\naGiHllXv3vT5rMwuPunF31YdNkUlfU6/5u6vf0xcG1L+/X+f/+3e69U4tBp3s1TLbiUFha0v\nuO+j6u+WL/vx4D7tqq98k1NuWlBeUW2Winsqr9kpbNlr0fIX/ZQvmz6oVfL//Ft2HHnFP56Z\nsWBZcrHSRR+9eO+Rm3avWvMV4+bWaFvVFTeDDjuoMBYbesi188uqbzpetnjCQQOSD4fpMPC8\nGounufXFP728WmUwbdlp2B/+9dz0JYkLxCq+fufpY7cdUGO3175g54Gj16p6t99WRz/75scz\nFpTG4/HZk7557r4/rVPZ6SGE/W+veWViVvslzbal2S/xeHy/rq0T717+w7za79YvnZbH4/Fr\nR/VJvNt56Kml1Vo97uGjEq8Xtx7y4fxlNZYqXfi/4W2TVa4Wbde88PYnpywsjcfj8Yql4z/7\nv1P2GP5zR1xc8zK0dBqcuFmqqKR/jxaFIYQDrni0dLk9Hf/6uRt7V17YOPCXd9b+vI3e1WmG\nnbouo/vjBt0SrxcUdx591V3f/5T81ixb8OPDN57XtTj5Wdr3P7lGe6pWWFDYLoRQVDLokrte\nXVh5zJcvnXLr7w8uqEwWO65+ScM/6am9k1+ldU9/r8ZbH54/ovpnLCzutvy3LF62+PviymsS\nj/toetXraQafXO2lFV782LivfPqxtNHyeYCr55LndIJGjYPn25dOT9yJvvjVUx48c5OuRcne\nb7/a+jm/Ob4Z3EkvOczJd0dymKV+SbNtkkPJoeQwQXJYuR/yNDmMx+PXDuqYWO0eY6bXfjdv\no3SeZ56hoF3nLUavfvwjifvRh5x0T++tDygsKKh8c7ec3yKfwzvph7VJnk1e/YBXM7LCLPVm\nbjO0phht0hkWszHQxNM7ADJ+62Qedln9VuUYvrLZRf1yfgd83t5JbzhIMBwYDirbnxfDgSJ9\nLor0PU9Y0AALaz2W8P1zk9+KWKzovEfH1t7EoumvbVJ5fLfrW3P0SmvxiiVbVb5V3GbYk+NS\nnEx5/Nxt6/qqr1BVFhJC2Oiit2rPMOnlfapm6Dj41BqngeLx+NJ5b1c9NO/B5Z/WMu29IxKv\nFxR1evC7FC0vX/bjvt2S54k2vanO830hhHb9Dl1UXmvb8fiMj0cn921BcY0Z0tz6zZv3TAaC\nDpu8MWNxzYUrSv/8y+Xup6kRC+aMvaZqt+x5xRO1ToTGl8378qQNk/lQUcnAcUuWe0RMVvsl\nzbal2S/xNE4OptnyeDy+bMFHVfcP7XlrstNLF366VuWLJz0xofZ2n9gv2dfFrdd+duKC2jNc\nv1f/5Ayt1qw+ZKbZ4MR52IR1Tn405T6Z9saliU3EYrG/jK+ZGzVyV6cddlKO0MsWjKm6PfSU\nJ8fXXuc39+yfPGxisfeXPxte/agrKOp4T616VTwef+aktZMzFLatvavr8sF5ydPo7fqcUeOt\nPw7qGEKIxQo3aZ/cG39cfjfO/PT4yia1n7r0522mE3xyuJdWmFeFRn3l04yl6cjnAa6u7Dad\noFH74KlR6v7ykiGVB09499Xf5rz0ni9FeslhLfn83ZEcZqlfJIfJNUgO6yI5jMfjksNUq21a\nyWG83iJ9PkfpPM88O+3xj9oF70E7bVH5cWMDTno85wX4nBTpSxd/W9XpOzybYjRphGz0ZjzX\nGVrTizbpDYvZGGjSPAAyXpXJuy5bkVU5hq9sdlG/nBfX87NIbzioznBQ9ZbhIAddtjyPu8+B\nBVNvbdsAvde9sfpS8fL5x97weWJ6jSMf/MM+KX51plW3rR598pTE9PyJN984cX6mFp/2zq9f\nn7s0MX3qk8/vMaBd7cX3+uNLJ63RsWH7oE6xwlb3nzOy9uudhx9cNb3PPb+vvA3vZy3abbpx\n2+Q5rO8Wl1V/a/LTnyYmuo24fv9BKVpeUNz99B2TP/Mzf2x9z0A7+N/XpPwVjc7r/C4xEa8o\n/TZzW1869z+nv5N8/OwpTz66Re1fv4gVnXHPy2tXnryr7dFjr4nH4yGE1Ta96olz9qz9hS9u\nt9b1r73Qp2VRCKFsybhjHx2fcj3Z6JdMtS00ql/SkX7Li9us//zdyWzjmdNGvTl3WQjhjoP2\n+GpRaQih32433rxnvxqLlC3+6ugnkuvZ9x9P79KnTe2GnfLAy4mLTEsXf3P5D/My2OCEopL+\nz1y7Z8q3emxxwU2brRZCiMfjfzn1lZTzrKwshZ0ls54ti8dDCLFY8XW79689w6D9rx0wYMCA\nAQP69+//Ud3Pqxlx3nOHpvrRrG0uPi8xUVG+YNLShj5qdc0TDkxMLJhyy8RqS8UrFl43cX4I\noXW3gy/fvlfixccfnFB92W/++kZiosOg36/W4ufuTSf45OdeqrKyX/n0Y2lG5PkAV106QWPF\nB8/22w7o2WFAzw79V+vw0aK0noLenEgO65Hn3x3JYQ2SQ8lhguSwiuSwOsnhCuVzlM7zzLP7\nwO61Fg0tBh9X3L5Hcfsexe27LynNWNhvWkrnf1A13XVg26xuK80DOLcZWkPkVbRJc1jMxkCT\nwVwuU/KqyxpuFYzh6WQXNJDhoDrDQRXDQWIih8OBIn2TsWDKX/+3sDSEEIsVXHvNLnXN1nOr\nq/eofGzpnXeMzdTiYy57MTHRpsfh12zXq46lCy+6e/8GfZi6tel++OCSohSrbtG7avp363VJ\nuWzflpW/Zrf860OOvX/MmDFjxox57bFf1rXdeHnlr2vU/TMmhcVdrx2Z4v/6QggFxd1LKr/k\nGdz6hEcvXFYRDyG06rL71Vv1TN2qkoG3HTG4jtXOPeOtZCg5474T6tp6cZv17z4oedXPp398\nPeU8Ge+XDLatcf3SaJlq+YB9b79qu94hhPKlkw/Y45qpr51z4lMTQggt2o547sETa8//43u/\nm1VaEUIobr3WHfun/vmfwpLBl63Xt2PHjh07dvzfh7My2+AQQu9RN/avfHJpbfvflPz6T3r5\nzJq/etooWQo7sYLkpX/xeOmD41OkcYUt+oyrdMJqKc53hxBiscJbztww5VslnUZVTTd8P7Tr\n+9vVWxWFEOIVS/44dk7V6wum3DSjtDyE0GOrY9Y5c+PEi2NvW+5M931PT0xMDD1zubPk6QSf\n/NxLyU2v/Fc+zViaKfk8wC0/f1pBY8UHT3G7sY8fn/h3fJccnPtuTiSHVdOSw+VaJTmUHFaS\nHDZEfqY9ksOGa7rJYW35HKVD3mee8+ctTrFkYdfVj7oj8a9j61pnV1cN5aUzqqYHpDoqMiX9\nAzi3GdoK5Vu0SXNYzPhAk8EIlin51mUNtwrG8EZnFzSc4aA6w0EVw0HOhwNF+iZj8rNPJyZa\nddlnt871/K9F7Kxdk79oOOGBNzO1+B0fzkxMrHnSGfU0svtG17QvSuugKm69bh3tSn5VYgUt\nhrRKPYqkuBImhBBCm/5rDR8+fPjw4UP6tE45w5KZYy59ftIK29a6x5FtUl1uk72tf3hL8ik0\nvXc6q84Nh7DuWbumfH3B5OvnllWEEIpaDTqz8tc1Uq/hjOGVizyQcoaM90sG29a4fmm0DLb8\n9CceH9yqKIQw9Y3zNtjp6sSLpz329NDWKfbkV9f/LzHReZ1L6/m8J34wbvbs2bNnz376lwMz\n3uBhozeoZ/HOa59dHIuFEMoWf/f0T0vqmbOBshR2Wnc/tGPl/MdtuMNfHnp7WcP+36O6ki57\njmyXurgYK2jUqZ9Yi0tHdE1MvnbDN1UvT3z8scTE+qev1WW93yWeFDR3/JVLKk9eli/94bZp\nCxPTv9lnueuO0wk+ebqXEm1b+a98mrE0U/J5gKsuzaCRkYOHBpIcJv8rOaxFcig5rCI5XKE8\nTXskhw3WdJPD2vI5Soe8zzyn3v/7Wd9+KfGsLVbQomo6sbezJP0DOLcZWjZWm9Vok+6wmOmB\nJoMRLFPyrcsabhWM4c4eRMBwUIPhIMlwkOrFKIeDLF4yQ13a9vr1/Mk3rni+5c14M3mtU9s+\nB9c/54BDB4S7vw0hLPnp9RBOzcjib1U+MWPEASkePlMlVtjuoG6t/z51Qf2bqE9shcdknfdq\nNFjFT5PHj/3uu+++++7br7/87H9jXnzxzXkNGJmK29SRIWVt6y/+kNyTAw4ZUM8aW/c4NIRr\nar8+54vkmfSCwnYXXXBBPWtYOid50dOyBR+kniPT/ZLBtmWoXxoqky1vu9GLdx026IB/hhCm\nLS0PIQzc/44/79A75cwffTo7MdF3nyG5avD2a3SoZ/GCFr03ad/ijblLQwgPzVy0Z5d0b1PI\nUtgpKO7x+OhNtrnq7RDCktnvn3HA5ud07LftjjtuveUWW2yx+cjhg1s0IEcr6bjdimdaSVuc\nv2HY7ZkQwsSn/hVu3TTx4pu3Jm9aHT2sS3Hbnr/s0urhmYvKl07529QFp/duG0KY+92fllbE\nQwglHbffv2urerewEsEnb/dSaNRXPs1YmjF5PMBVl2bQSHHwtGu/zS8GbDWi9xbDe2+8RqeG\nHDyrIMlhffL4uyM5rJfksCbJ4Uq1szbJYZAcptKEk8Na8jlKp5JfmWd86TfTnztrxivdWvfb\noHWvoa17DS3p1lPiGUIoavnz01Ymzl6avQ1l8gBOym2GloHVZjXapD8sZnagycIBkK5867KV\nsOrF8EZnFzSc4SBT8i22GA5WKN+6rAZF+iZjwffJw6LNgM71z9mmX/JxN2VLqj3RNI3F4xUL\npy5LPuxh7XYtUi9WaVibPH107aIpH9x+xwPPPff8Ox9/PXdJY36KrKCw8T+qYSMbYgAAHhBJ\nREFU2ritV/0MRscB9T3Sp6hV6hNz879NPilo2YJPLr/8k4ZssaJ01rzyePvCrCdBGWxbOv3S\nCJndqwP3v/OSDZ656KMZIYTC4q4v/uvIulZSdTC0WzPF78pE0+BBdVylW2X1kqLEediZ05aE\nlTtdXFNWw87WV77+QJfTRl9465Sl5SGEpXN+eP7B259/8PYQQnHb3jvssedee+194C9Hdaz9\n616Vqj9hLFNW2/KCWOzZeDy+cNodY5fcOLikKITyP383J4RQ0mnUZu1bhBBO2nq1hx/5PoTw\n4BMTTz957RDCNze/lli896jzUq620aEvP/dSaNRXPs1Ymv/SH+CqSz9o1Dx45s974eVPX3j5\n0xBCcau22285eM+t1jhguwEd0z+rsMqTHKZJctiQLUoOV0hyWA/JYTokhw3UnJLDfI7SVfI8\n84wvnbHw2xcWfvtCCCFW3KX1wF+0G7Rpu8EjCuu+farZa9F+05YFscRp9CnPTg0b92j4svGy\nhfMWJnu5TfsOdX+/Q8jcAZzbDC2zq81etMnIsJjZgSYPI1hedVmeyPMY3ojsgoYzHGRKXsUW\nw0FD5FWX1eZx901H1fNeVnisFiS/bPGKar/IlcbisVjLwqrH6axo6fwcNB+7+Ii+A37xmwuv\nef6dz6tiekFhq35rrrfTXgdfesPddxwwKA+3vqAi2W2xevdqLFZUkGqO0nmljWjtgvIoHi2U\nz22rX2ZbXr7ku2fHzktOl868+LHxda1hfuXlgYWtV66ulcEGL61Ywf6vOmLLl6b7M69ZDjuF\nB55903eTPrz+kjN22GhwYbWvT+mCyc/df8uJB+3Ub41t/v7i2LrXkPlI16LdL47o3jqEEI+X\n/uHL2SGERdPvHbu4LITQdf3kfatVvwD07S3Jn+p58PHkJYejzl+v9jrTC335uJcaJ81Ymucy\nPsBlImjUOHiqrXzxgudfHHPy+Q8N/OX9t703uxEbYjmSwzRIDhtOclg/yWF9S0kO0yA5zJ68\nTQ7zPxLmc+bZY5O923TvWf0wi5f+tPCbZ6c9f8F3/zp3zg9TG7Gh5iFW2G7/rsnHBY+795X6\nZ67hv2dt0rFjx44dO3bq1KWqBlCXjBzAuc3QMi570SYjw2JmB5r8j2ANkbcDREbkcwxPI7ug\noQwHOWQ4WKFVeThQpG8y2g5qm5hYOH5O/XMunjI9MVHUas3MLB4r6tcyeernqwXL6l/8q0Xp\nXoWXce9cvNO+l9w9q7QihNCy4+CjTj//tnsf/+ir8QuWLZzw9SfPP37fBacetnbnlnm49TUr\n702ZPWFhPZsoWzK+Ip4iilV1eof+F8UbrFeLKMJCPretfplt+V1HjHpv3s/PF/r3sTt+sCD1\nMDa48mBYOL6+gyGrDf5i0QqG2E8qG9+hd+pfDFoJ2Q87JV2Hn3bhtS/999t5U754/J5bzjzh\n0F8M7RerHFbnj3/9xF3Wuezd6Y1Yc6OdtP+AxMRb130VQpj26j8Tf64zOvkLPZ2HnZMY+OeM\n/VNpPFQsm3zL1AUhhIKijpesXfNG2IyEvjzcS42QZizNZ9kY4DIVNKoOntnPHPvoJaN+u8/Q\nkQPbVyWu86dOOvn0Oy//bFG6u2DVJjlsNMlhHiZg+dy2+kkO6yE5TJPkMEvyNjnM80iY55ln\np5HH9T3otjWPu6XPTqd0XnebVp27VZ2srpj32bQnTpo5bQUJTzN23I69EhNzx1322cpEyKce\n/SExUdJp574tV3BNWPq9mdsMLRuyGG0yNCxmcKDJ8wjWQHk7QKQvz2N4M8gumgTDQa4YDgwH\n9civT049um7aNTGxYNID9c854b4JiYkW7X6RqcVHdUr+guCYRybWt3B82QMz8uuEe9miL/a+\n4v8S02sdcv2UGd/ced1lxx2y1/pD+rfK/uPO0tz6Zh2Tg80PD/5Qz2yLZzyY8vUOQ5OPE1w6\n942VaHQk8rlt9ctgyye/fNaxD40LIRS3GXb4oPYhhLLF3++9T+rfJB6+WvLM5qTHJ9SzznjZ\nwrlz586dO3de5aicwQb/560Z9by7dPYL3y5OnofdrnO6vzkaIgw7rVdba69DT/zz3+559/MJ\nc3/4351/OKlbcWEIIV6x7OqD/pTOmlfWWqfvlZiY8uLtIYQPr/8q8ecJm3RPTBS3GbFf11Yh\nhLIl4/8xbeHc769cUhEPIXRc/fzuxcsN6BkPffmzlxohzViat7I0wGU8Prfu0nnPnUdcec5u\nbz9wwqwnj77jpBHdimIhhHhF+bW/fy8jm1hlSQ4bR3IY8jIBy+e21U9yWBfJYfokh1mSt8lh\nPkfCppJ5FrTu03bILt23O7P/YXeuecxNPTfdtbCgIIQQ4mWznns4I5toija4/LTEREXZnGP+\n8r8GLrVs/rtXTko+sbbrxsetcP40ezO3GVqWZDXaZGRYzOBAk88RrOHydoBIU1OJ4U06u2gS\nDAe5YjhocqIcDhTpm4zee+ycmFg885GX5iytZ87rHk8eN/323TFTix+0WfLb+PXNf61n2Vlf\nXPTjih54ErEZY34/fVl5CKG49dof3H1q5zoe6jH3q3l5uPVtDh+YmJj0TOpzcwnf3flYytc7\nrD46MbFkzisv19vpC8aNeeutt956660PPo/o0vJ8blv9MtXyskVf7r7PDYnpo+9/+qb/3NSq\nMBZCmPzyb095JsWAOvyUNRITM96/qp7v2Ptn/CLx9KF19n4lsw0OIXz2x9RHWsLYf12SmChs\n0f2oHvX9WEsDZSnsfP3kQ/fee++999775NspTiu367POUefd/NY/t0/8OX/izWURXhvdfsC5\nvVoWhhAWTb/3s0Vl1302K4TQou3wfbr8fF77xG16JibueX7yt7f+JzE99Ow9aqwqzeCTz3up\nEdKMpXkrSwNcmkFjBQdP965HHjXq9Qv7J/6cP/3jPD948pzksHEkhyEvE7B8blv9JId1kRym\nT3KYJXmbHOZzJGyKmWdB234dNj65/6jkHWAVC57J7wMzi9r1//XoQR0S0x9dssuz0xfXP3/C\nu5eeWFr5rNf9rt5yhfOn2Zu5zdCyJKvRJiPDYgYHmnyOYA2XtwNEmppiDG9y2UWTYDjIFcNB\nSoaDBEX6JqNd79+s1bo4hBCPl//m3P+ra7Zpb5z98MzkFTEHnvzzE03TXHzY+clLaRZMuf3c\n16fVtfgNR93RkM8SpQXf/ZSYaNlh6zZ1XGxVUTrj7P9m5Zk5aW59jeNOSEwsmvHgRR+kvk+l\nomzmadd9nvKt4rYbHtsr+XSR0859vc5WxpcdtenmW2yxxRZbbDE6O/uhabWtfplq+d8P2mXM\ngmUhhJ5bXXHrHv3a9TvsmdHrJ966/cDdv1pc8+EzfXcbnfiBmSVz/jP6P1Pq2GrFFfd/n5ga\nfNTgzDY4hDDri/P+NWF+yrfKl0445oIPE9PdN/5Dq0yMLVkKO19dduphhx122GGHHXX0PXXN\ns9qW21ZNR1lZihW2vXRo5xBCPF5+0Rv3vzNvaQih45Azq88z9MyRiYmvb3j74YeTd86N3qtv\njVWlGXzyeS81QpqxNG9laYBLM2g06OAZ0a9qOs8PnjwnOWwcyWFiOt8SsHxuW/0khynfkhxm\nhOQwS/I2OcznSNh0M8+iXuvV9dYq5Xf3n5kYNcqX/XjIZod/On8Fv1cy99v79rk+eZNlqy47\n/3FolxVuIs3ezG2GliVZjTYZGRYzONDkcwRruLwdINLUdGN4E8oumgrDQU4YDlIwHFRSpG8y\nYoUd/nHCkMT0V3/f5/LnUzxmYfH01/bePXn7Rdtex/x+9Q6ZWrzr8Kt2rHxuxrW77/L8pBS/\nxPD61b+8pI7jNYfardEpMbFk9vMzSitqzxCvWHTtYZv+b2FyQKpINU+utt6m5/Fnr9ExMf3n\nnQ/6aF6KnxW565Rt35hb5xVJF9ySvEnuq7/vfvGz36ec55nL9njkx0UhhMLirtfvN7D+T5RB\n+dO2ZRUrdylm+i2f+Myppzw1IYRQ1LLvQ08lLy7b+o8v7ty1VQhh2cJPdz3sXzUWKemy9xXD\nk88lvnXvfd+cuaT2Rt+5YucnflocQogVtPzTXj/XwDK1q+MVpb/e5qixS2qeI45XLLr8l1u/\nPz95fP7qtl+mXDys5K7OUtgZdGByz8wZe94TU1M/5OeVv9yXmCjpvGvLaB+ktN15yfs8Xjo1\neWAMOfUX1WfovE7yF4Bmf33ZTVMXhhBKOu24T5dWNdaTZvDJ8720stKPpfkpewNcOkGjIQfP\nfx74MjFR0n5Qnh88eU5y2DiSw8REzhOwfG6b5HCFDU6QHEZAcpgN+Zwc5k8krCH/M88FC1P3\n16IxryUmYiUb5feBmV3dR57/yInrJqbnfvfIZmvtdM9rqfd2COHH9+/efuNjZlV24nEP3VHS\nsPPH6fRmbjO0LMlqtMnUsJipgSbkcQRruHweINKR/zG8GWQXTYXhICcMB7UZDqoo0jclI//4\nxOYdW4YQ4hXLLtp9ncPOv/XzKQsSb5Uv/vHZf1668ZCd3pu3NIQQK2hx+bNXZXLxWNE/Hz8j\nMbls/pg9hww7+8Z/fz8reQhO++KtS47aapuzHwshtB3QNisfvrE6D/1dcSwWQihbMn7jfS/7\nama1r0182ev/vn7X9Qec9eB3Va9Nevr2L6amCGS52vrvn7u2dWFBCGHxT69sOWTLvzz86pzK\nh/tM/t9rv913vWP+/lksVrxB2xaJFxObq9J/97tPWbdzCCFesezSPdba74w/v/fZdwuTa4hP\n/uSl847efPeLXkzMvNm5T6zftjhTn32F8qdt7//3p5WaP82Wly78ZOcDbk1M73nTS5u3T/Zd\nQVGXu58/PxaLhRDGPXrseW/UvPDt5Kf/1rm4IISwdN57o4Zs8sd7XpixJHkV6YIZX183+oBt\nz3858ecaRz74i3YtMtXg6uaPf3T9Idvd8tjr8xKLVyz58KX799944MXPJK+e67vTdZes3amu\nxVduV2cn7Kxx9LktChK/h73kkBE73nj/y3PKqpK5ismfvnLxidvsfW3yEtENRl+8Eg3OhF47\nnJOYmP/tzMTEoTv2qj5DcZv1DuzWKoRQtvj7ReUVIYQ+O51Tez1pBp8830uNkGYsDSFcueX6\na1R6d36KzCx62Rvg0gkaKQ6e8qoCTHzy2B8u/dMD+96X/B+D9Q/ZvHGfnSqSw0aQHOZJAlZb\n/rRNcig5rHwz92mP5DBL8jY5zJ9IWEP+Z55T7rtg9jdjyn++9CdeNvOTma+cM+nj8Ym/S9Y/\ntFEfvfnY84bXzt4p+bNTC6f85/BtVh+x8yF/+tsDH3zyxaQfZ82c/P17r7143z9u+fX+W/Xf\n9MgPK086D//VnTds26vutS4nnd7MbYaWPelHmzplaFjM1EAT8jiCrZS8HSDSkf8xvHlkF02F\n4SAnDAeGgzq3FM+cZff2bB7/MrhPqntqRPLHIdr2+nWjVzLz47/3Lymq6r5YrKBTt14D+vQo\nKSyo/uKhV7+djcUfPXv76gdPLBZr17lHp7Ytq15p12+f917bKTE96vkfGv65Jr+avLim0+Cb\nU86wdN7byY0WtKprJft1bZ2Y5/If5lV//cFDf340a0Fh23XXH7n9TqM2WneNjq2Su6K4zZpX\n3n5Ytc9V2Hfw3lWLj3t8u8TrXYc+Vs9HaFX59JWPFizL4Nbj8fh/bziioNo3vKC4Tc9+A7p3\nbF3VX7+67eP71ko+aubVOUtqNGzJrNe37rncb0DGCkp69+/drqSw+otr7H3J0oqaHyqr/ZJm\n29Lsl3g8flbfdlX9svl2O26/5SaHPza+nlVlquVX79A78W6XYWeU11rzPQeunni3ZYfNflhS\nVuPdr+4+vWW15/wUFLbq0ad/t/Yl1TfacY2Dai+YToM7FSXjwzmjd/h58cKWXXt0a1W03JVe\n7Qft+fnC0tq7K51dnU7YqesgeeL4Ecvvihadu/ca0K9nmxbL7Y0uw4+aV1bRkBVWV1H284/o\njKvVEQ2xb+VXJoRQ1LJf7R75z0GDq7fz5P/NTLmeNINPrvZSXYun/5VPM5ae1add1bKv1Hq3\nHvk8wH3yp40Sr/fb+aUaW0wnaNQ6eAo7d2o7YLU2bYqXy1a7rLHu7HfOKnuvyfxreKc3nOSw\nHvn83ZEcZqlf0myb5DBIDkMIkkPJ4fLyMDmMx+PXDkrel7PHmOm1383bKN0kMs8QKyps1bm4\nXeeCwuXCUWHXHdY89am1Tns6///V1S8ZUVG+4MpDNgwN9osjrqy9z+NZ683cZmh5G23ql5Fs\nPFMDTTy9A6Cu46qu1/O2y5w9SOPsQUOzi/qd8cC45vGv4R95ZRkO4oaDVAwHNd6KZjhwJ30T\n02XErz4Z8+/dhndL/BmPV8yeMWX8pB+XlCcvNGvZae0L7/n4nt9umo3F97ny5WevOrFH5TAZ\nj8fnz/px9oLkVTm9tzj6P2Pu79+yKOWyObTfXe+ff/DmiV9bqShf8NnH7//fCy998Nm3cxaX\nhRCG7HD08199dPYxd16wY5/E/PF4+YyZqX9bMSdb3+jUu9677aw+lSfQK0oXTv1h/PQ5i0II\nRSX9Lnngo78fN+KnyisNeyyfxIQQWnba8qWv3zlx12FVr8QrlkyeMHl+5X02BYVtD73gzs8e\nvbBF5E8Nym3bjr9sj8RERfmCt1558f/eeHf83IZe39rolo9/5NgzX54cQigo6viPly6vHYIP\nvPPZYW2KQwhL57496sTHarw75LDrvnzyqvV7tKps+eIfJ02YMe/np5sO3ePM98fc3bdlVg6D\nHS98+tk/HdexqCCEEC9fOvPHGYt/vsQ1DN3lpHc/fWRo6xQRIJ1dnY2ws+ff3rvxlJ0LK4fY\neMWyWdOnjP9h6sJlyb0RixVsefgFn75/R7vCHDxL6/Td+1RNtx94Zu0eGTr652cNFRR1umRI\n6rvT0gw+eb6XGiHNWJqfsjfApRM0ah085bNmLxg/beHC0uQFp7FYbItdNv34zp3byUMzQXLY\nCJJDyWFKkkPJYXKdeZb2SA6zJG+Tw7yN0k0i8wzxsvLFs0rnz6oorwpHsdZrHTTwwN8UNPyO\ntOYrVtDm7Hs/+PL5v49aq85nnCS06z/y4rvfe/eus1f2MEunN3OboWVPVqNNRobFTA00IY8j\n2ErJ2wEiHU0ihjeD7KKpMBzkhOHAcJBS3p0yY4U6DNn36Y/3fOPhfzz45NOvvPvptB+nzyst\n7Na9+6B1Ru6y2x7HHHdgz1qnYDK4+C5n3TLuiONv//s9Tz714pcTpsyYtahjj54D19nkkCOP\nOvHgHVvEwqJ+x1599bYhhP5rdczwJ2+sWGGHy+578+TfPnHptf/67Jtvx44dO7eida9efTfe\nZpd99z98/+3WTsx2yXPfbHzr1Y+9/kno1G/osG3yausbHXvlt3sd8ve/3vHQ4y9+PX7i3PKS\nvn37b7v34SefduL6q7UKIXy3uCyEECso6Zeq+4rbDbvlmU/Pev3hfzz05AuvvPPDtB9nLyro\nP3iNNdZYY+iIzQ8/7ujhvVrXXioaOWzb4CPvfaFsyGU33vfl9+MWF7Tv2bPnOt1LVrxYGi0v\nnf/+qMOTvye65WUv7dkjxUcrarXm0/cd1X+v20II39x10FWnTjt7g67VZxi425kfTDrq4dtv\nf+Kpp97937gfp8+It2zfreeATbfaZr8jT/7l5qtnsMG17fK7237Y/7Abbrrr0WdfmzBl2ryy\nop49ew3ffOf9Dzrm8F2G1bVUmrs682En1uLXf31u/1/93x13//v9L76fOHHixIkT58fb9h/Q\nf0D/AasP3Xj/Q4/cZliPhrcws9Y5e5fwz28S06sfu03tGTqvc05h7L7yeDyE0HGNC7sWp65z\npht88nsvNU6asTQPZXWAa3zQWP7g+eGbjyb9OH9+vEX/nu379+yw+sDV9tt5na1Xb5N6WRpF\ncriyJIeSw5Qkh5LD/Ex7JIfZk7fJYX5G6TzPPIcd8+fFP00rWzCzdP6MitCquH334nbdW3Re\ns91a27fuki8ZSJ5Ya6dfvfjlMV+9+9KTTz75whsfTZk6bdq0aQvLizt16tS158CRm22+9fa7\nH7LXZo0+ad7o3sxthpZVWY026Q+LmRpoEvIzgq2svB0gGi3PY3hzyi6aEMNB9AwHhoPaYvF4\nfMVzNUzpfQ39UYo8V3zIlFw3gUaJx8vKysrKygpLWhVHfwFOvCKx9RatWkd+Z2B5n5KWk5eW\nt+qy16KZj0e98RVadfulmehcXDi7rCKE8MqcJdt2aLnC+SGX0vrKrziWvnPC0M3+/uWrc5Zs\nHfF3IbeBND3l75+d6yZkRuHImj/oThOw6iYhksN6ti45TJfkkKakuSaHWdU0M8+1f/NMrpuQ\nGV9ev1uum9DcZSkTyHK0IfOa6wDRNGN4Zo3+9/hcNyEzrj1wQK6b0KwZDkjI9XDgTnqakVis\nqLi4qLg4R1svKCpuUVTcIoOrLFv0xQv/GRdCKCjquMtOm9c12/wfbpi8tDyE0KbX3hncesY0\nu34B8leqr3wGY+niKYtDCL2if5xdbgMpNF3NLgmRHGZi65JDWJU01+Qwq2SeNG9ZygSyHG3I\nvOY6QIjh0ECGAxJyPRwo0kP+Klv89e677xtCiBUUfzRv4Yg2qROsB0/+S2Jiw4u3jq5xAE1E\nBmPpl9/Oa9F2+BqtpE9AbkgOAdInOQSiIXNrcgwQQDYYDpqcKIcDT/iD/FXSZa9dOrcKIcQr\nSvc98tolFSnmGXPXr4975ocQQkFRhz/v1CfiFgLkv8zE0oolnzx55dlj5ww88NrsNhegbpJD\ngPRJDoFoyNyaHAMEkA2GgyYnyuFAkR7yWcFfb9ovMTXukXOG7HDobY+/MX7yjCVlSyeN/eyl\npx783WHbbnT0zYkZNvzdM8PquKIHYNWWgVh67qAeI/Y6Z7Xtf/3CTa5mBXJIcgiQPskhEA2Z\nW5NjgACywXDQ5EQ3HMTi8XimWl16X69MrSq3ig+ZkusmwM/uOGXz425+u/55+o06c8yzV3Uq\nikXTJFYpnYsLZ5dVhBBembNk2w4tc90caKQ0Y+lbd9+3cOBa22+xQfP6xdEolL9/dq6bkBmF\nI6/KdRMgSXJIbkkOaR4kh83M2r95JtdNyIwvr98t100gw2RuTY4Boqkb/e/xuW5CZlx74IBc\nN4FMMhw0OdEMB+6kh3x37E1vvXH3ZRv2b5/y3eLW/X518W1fPC92A9QnzVi6+eGH7Oj/sYH8\nIDkESJ/kEIiGzK3JMUAA2WA4aHKiGQ7cSZ+CO+nJSxVfvvfG52O/Hzdu3IRJM4vbtu/Uucd6\nIzfbYouNupZI/MgiN0vRvIilUXMnPWSNgEZuSA5pXsTSZsKd9OQ90abJ0WVNlTvpyW9iS5OT\n3S5TpE9BkR4AICMU6QEAyDZFegASFOmBJsTj7gEAAAAAAAAgIor0AAAAAAAAABARRXoAAAAA\nAAAAiIgiPQAAAAAAAABERJEeAAAAAAAAACKiSA8AAAAAAAAAEVGkBwAAAAAAAICIKNIDAAAA\nAAAAQEQU6QEAAAAAAAAgIor0AAAAAAAAABARRXoAAAAAAAAAiEgsHo/nug0AAAAAAAAAsEpw\nJz0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBE\nFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAi\nokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQ\nEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACA\niCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAA\nRESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAA\nICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAA\nABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAA\nAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAA\nAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQkf8HIq6zpzCcBhgAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig5_colors<-c(\"#FAA519\",\"#FCC975\",\"#286EB4\",\"#71A8DF\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig5_colors)+\n", " scale_y_continuous(breaks=seq(0,100,10)) +\n", " ggtitle(\"Figure 5: Participation rate per day in cleaning and food management, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 6: Participation rate per day in laundry and ironing, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 5. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^iron|^laund\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>32.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>23.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>30.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>13.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>27.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>27.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>33.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>19.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>28.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>22.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>26.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>34.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>39.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>23.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>30.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>29.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>18.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>30.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>28.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>24.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>13.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td> 7.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>26.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>17.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 8.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>17.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>13.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>24.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>29.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 9.7</td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 7.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td> 2.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td> 2.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 1.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 3.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 6.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>11.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td> 2.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 2.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td> 2.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 0.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Laundry</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td> 3.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td> 2.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td> 1.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td> 1.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td> 1.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td> 1.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 1.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td> 1.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td> 0.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 0.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 7.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 1.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td> 1.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td> 1.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 1.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td> 0.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 0.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Ironing</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 3.3</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Austria & 2010 & 32.8\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Belgium & 2010 & 23.5\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 30.1\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Estonia & 2010 & 13.8\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Greece & 2010 & 27.8\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Spain & 2010 & 27.8\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Finland & 2010 & 33.5\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & France & 2010 & 19.3\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Hungary & 2010 & 28.7\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Italy & 2010 & 22.7\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Luxembourg & 2010 & 26.0\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Netherlands & 2010 & 34.8\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Norway & 2010 & 39.5\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Poland & 2010 & 23.2\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Romania & 2010 & 30.2\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Serbia & 2010 & 29.1\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & Turkey & 2010 & 18.7\\\\\n", "\t Participation rate (\\%) & Females & Laundry & All ISCED 1997 levels & United Kingdom & 2010 & 30.0\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Austria & 2010 & 28.3\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Belgium & 2010 & 24.2\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 13.4\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Estonia & 2010 & 7.8\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Greece & 2010 & 26.7\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Spain & 2010 & 17.0\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Finland & 2010 & 8.1\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & France & 2010 & 17.5\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Hungary & 2010 & 13.8\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Italy & 2010 & 24.6\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Luxembourg & 2010 & 29.1\\\\\n", "\t Participation rate (\\%) & Females & Ironing & All ISCED 1997 levels & Netherlands & 2010 & 9.7\\\\\n", "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Finland & 2010 & 7.7\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & France & 2010 & 2.7\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Hungary & 2010 & 2.4\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Italy & 2010 & 1.1\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Luxembourg & 2010 & 3.9\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Netherlands & 2010 & 6.5\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Norway & 2010 & 11.5\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Poland & 2010 & 2.8\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Romania & 2010 & 2.3\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Serbia & 2010 & 2.1\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & Turkey & 2010 & 0.6\\\\\n", "\t Participation rate (\\%) & Males & Laundry & All ISCED 1997 levels & United Kingdom & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Austria & 2010 & 3.6\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Belgium & 2010 & 2.8\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 1.9\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Estonia & 2010 & 1.0\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Greece & 2010 & 1.0\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Spain & 2010 & 1.1\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Finland & 2010 & 1.4\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & France & 2010 & 1.6\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Hungary & 2010 & 0.1\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Italy & 2010 & 0.4\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Luxembourg & 2010 & 7.9\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Netherlands & 2010 & 1.4\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Norway & 2010 & 1.5\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Poland & 2010 & 1.7\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Romania & 2010 & 1.2\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Serbia & 2010 & 0.6\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & Turkey & 2010 & 0.5\\\\\n", "\t Participation rate (\\%) & Males & Ironing & All ISCED 1997 levels & United Kingdom & 2010 & 3.3\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Austria | 2010 | 32.8 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Belgium | 2010 | 23.5 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 30.1 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Estonia | 2010 | 13.8 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Greece | 2010 | 27.8 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Spain | 2010 | 27.8 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Finland | 2010 | 33.5 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | France | 2010 | 19.3 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Hungary | 2010 | 28.7 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Italy | 2010 | 22.7 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Luxembourg | 2010 | 26.0 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Netherlands | 2010 | 34.8 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Norway | 2010 | 39.5 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Poland | 2010 | 23.2 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Romania | 2010 | 30.2 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Serbia | 2010 | 29.1 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | Turkey | 2010 | 18.7 |\n", "| Participation rate (%) | Females | Laundry | All ISCED 1997 levels | United Kingdom | 2010 | 30.0 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Austria | 2010 | 28.3 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Belgium | 2010 | 24.2 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 13.4 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Estonia | 2010 | 7.8 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Greece | 2010 | 26.7 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Spain | 2010 | 17.0 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Finland | 2010 | 8.1 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | France | 2010 | 17.5 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Hungary | 2010 | 13.8 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Italy | 2010 | 24.6 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Luxembourg | 2010 | 29.1 |\n", "| Participation rate (%) | Females | Ironing | All ISCED 1997 levels | Netherlands | 2010 | 9.7 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Finland | 2010 | 7.7 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | France | 2010 | 2.7 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Hungary | 2010 | 2.4 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Italy | 2010 | 1.1 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Luxembourg | 2010 | 3.9 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Netherlands | 2010 | 6.5 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Norway | 2010 | 11.5 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Poland | 2010 | 2.8 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Romania | 2010 | 2.3 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Serbia | 2010 | 2.1 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | Turkey | 2010 | 0.6 |\n", "| Participation rate (%) | Males | Laundry | All ISCED 1997 levels | United Kingdom | 2010 | 7.0 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Austria | 2010 | 3.6 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Belgium | 2010 | 2.8 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 1.9 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Estonia | 2010 | 1.0 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Greece | 2010 | 1.0 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Spain | 2010 | 1.1 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Finland | 2010 | 1.4 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | France | 2010 | 1.6 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Hungary | 2010 | 0.1 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Italy | 2010 | 0.4 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Luxembourg | 2010 | 7.9 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Netherlands | 2010 | 1.4 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Norway | 2010 | 1.5 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Poland | 2010 | 1.7 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Romania | 2010 | 1.2 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Serbia | 2010 | 0.6 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | Turkey | 2010 | 0.5 |\n", "| Participation rate (%) | Males | Ironing | All ISCED 1997 levels | United Kingdom | 2010 | 3.3 |\n", "\n" ], "text/plain": [ " unit sex acl00 isced97 \n", "1 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "2 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "3 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "4 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "5 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "6 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "7 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "8 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "9 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "10 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "11 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "12 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "13 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "14 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "15 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "16 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "17 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "18 Participation rate (%) Females Laundry All ISCED 1997 levels\n", "19 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "20 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "21 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "22 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "23 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "24 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "25 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "26 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "27 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "28 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "29 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "30 Participation rate (%) Females Ironing All ISCED 1997 levels\n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE> <U+22EE> \n", "43 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "44 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "45 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "46 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "47 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "48 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "49 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "50 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "51 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "52 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "53 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "54 Participation rate (%) Males Laundry All ISCED 1997 levels\n", "55 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "56 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "57 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "58 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "59 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "60 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "61 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "62 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "63 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "64 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "65 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "66 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "67 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "68 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "69 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "70 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "71 Participation rate (%) Males Ironing All ISCED 1997 levels\n", "72 Participation rate (%) Males Ironing All ISCED 1997 levels\n", " geo time values\n", "1 Austria 2010 32.8 \n", "2 Belgium 2010 23.5 \n", "3 Germany (until 1990 former territory of the FRG) 2010 30.1 \n", "4 Estonia 2010 13.8 \n", "5 Greece 2010 27.8 \n", "6 Spain 2010 27.8 \n", "7 Finland 2010 33.5 \n", "8 France 2010 19.3 \n", "9 Hungary 2010 28.7 \n", "10 Italy 2010 22.7 \n", "11 Luxembourg 2010 26.0 \n", "12 Netherlands 2010 34.8 \n", "13 Norway 2010 39.5 \n", "14 Poland 2010 23.2 \n", "15 Romania 2010 30.2 \n", "16 Serbia 2010 29.1 \n", "17 Turkey 2010 18.7 \n", "18 United Kingdom 2010 30.0 \n", "19 Austria 2010 28.3 \n", "20 Belgium 2010 24.2 \n", "21 Germany (until 1990 former territory of the FRG) 2010 13.4 \n", "22 Estonia 2010 7.8 \n", "23 Greece 2010 26.7 \n", "24 Spain 2010 17.0 \n", "25 Finland 2010 8.1 \n", "26 France 2010 17.5 \n", "27 Hungary 2010 13.8 \n", "28 Italy 2010 24.6 \n", "29 Luxembourg 2010 29.1 \n", "30 Netherlands 2010 9.7 \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE>\n", "43 Finland 2010 7.7 \n", "44 France 2010 2.7 \n", "45 Hungary 2010 2.4 \n", "46 Italy 2010 1.1 \n", "47 Luxembourg 2010 3.9 \n", "48 Netherlands 2010 6.5 \n", "49 Norway 2010 11.5 \n", "50 Poland 2010 2.8 \n", "51 Romania 2010 2.3 \n", "52 Serbia 2010 2.1 \n", "53 Turkey 2010 0.6 \n", "54 United Kingdom 2010 7.0 \n", "55 Austria 2010 3.6 \n", "56 Belgium 2010 2.8 \n", "57 Germany (until 1990 former territory of the FRG) 2010 1.9 \n", "58 Estonia 2010 1.0 \n", "59 Greece 2010 1.0 \n", "60 Spain 2010 1.1 \n", "61 Finland 2010 1.4 \n", "62 France 2010 1.6 \n", "63 Hungary 2010 0.1 \n", "64 Italy 2010 0.4 \n", "65 Luxembourg 2010 7.9 \n", "66 Netherlands 2010 1.4 \n", "67 Norway 2010 1.5 \n", "68 Poland 2010 1.7 \n", "69 Romania 2010 1.2 \n", "70 Serbia 2010 0.6 \n", "71 Turkey 2010 0.5 \n", "72 United Kingdom 2010 3.3 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^iron|^laund\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>32.8</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Belgium </td><td>23.5</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Germany </td><td>30.1</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Estonia </td><td>13.8</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Greece </td><td>27.8</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Spain </td><td>27.8</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Finland </td><td>33.5</td><td>Laundry, females</td></tr>\n", "\t<tr><td>France </td><td>19.3</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Hungary </td><td>28.7</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Italy </td><td>22.7</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td>26.0</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Netherlands </td><td>34.8</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Norway </td><td>39.5</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Poland </td><td>23.2</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Romania </td><td>30.2</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Serbia </td><td>29.1</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Turkey </td><td>18.7</td><td>Laundry, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td>30.0</td><td>Laundry, females</td></tr>\n", "\t<tr><td>Austria </td><td>28.3</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Belgium </td><td>24.2</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Germany </td><td>13.4</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Estonia </td><td> 7.8</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Greece </td><td>26.7</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Spain </td><td>17.0</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Finland </td><td> 8.1</td><td>Ironing, females</td></tr>\n", "\t<tr><td>France </td><td>17.5</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Hungary </td><td>13.8</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Italy </td><td>24.6</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td>29.1</td><td>Ironing, females</td></tr>\n", "\t<tr><td>Netherlands </td><td> 9.7</td><td>Ironing, females</td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Finland </td><td> 7.7</td><td>Laundry, males</td></tr>\n", "\t<tr><td>France </td><td> 2.7</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Hungary </td><td> 2.4</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Italy </td><td> 1.1</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Luxembourg </td><td> 3.9</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Netherlands </td><td> 6.5</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Norway </td><td>11.5</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Poland </td><td> 2.8</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Romania </td><td> 2.3</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Serbia </td><td> 2.1</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Turkey </td><td> 0.6</td><td>Laundry, males</td></tr>\n", "\t<tr><td>United Kingdom</td><td> 7.0</td><td>Laundry, males</td></tr>\n", "\t<tr><td>Austria </td><td> 3.6</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Belgium </td><td> 2.8</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Germany </td><td> 1.9</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Estonia </td><td> 1.0</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Greece </td><td> 1.0</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Spain </td><td> 1.1</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Finland </td><td> 1.4</td><td>Ironing, males</td></tr>\n", "\t<tr><td>France </td><td> 1.6</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Hungary </td><td> 0.1</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Italy </td><td> 0.4</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Luxembourg </td><td> 7.9</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Netherlands </td><td> 1.4</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Norway </td><td> 1.5</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Poland </td><td> 1.7</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Romania </td><td> 1.2</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Serbia </td><td> 0.6</td><td>Ironing, males</td></tr>\n", "\t<tr><td>Turkey </td><td> 0.5</td><td>Ironing, males</td></tr>\n", "\t<tr><td>United Kingdom</td><td> 3.3</td><td>Ironing, males</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 32.8 & Laundry, females\\\\\n", "\t Belgium & 23.5 & Laundry, females\\\\\n", "\t Germany & 30.1 & Laundry, females\\\\\n", "\t Estonia & 13.8 & Laundry, females\\\\\n", "\t Greece & 27.8 & Laundry, females\\\\\n", "\t Spain & 27.8 & Laundry, females\\\\\n", "\t Finland & 33.5 & Laundry, females\\\\\n", "\t France & 19.3 & Laundry, females\\\\\n", "\t Hungary & 28.7 & Laundry, females\\\\\n", "\t Italy & 22.7 & Laundry, females\\\\\n", "\t Luxembourg & 26.0 & Laundry, females\\\\\n", "\t Netherlands & 34.8 & Laundry, females\\\\\n", "\t Norway & 39.5 & Laundry, females\\\\\n", "\t Poland & 23.2 & Laundry, females\\\\\n", "\t Romania & 30.2 & Laundry, females\\\\\n", "\t Serbia & 29.1 & Laundry, females\\\\\n", "\t Turkey & 18.7 & Laundry, females\\\\\n", "\t United Kingdom & 30.0 & Laundry, females\\\\\n", "\t Austria & 28.3 & Ironing, females\\\\\n", "\t Belgium & 24.2 & Ironing, females\\\\\n", "\t Germany & 13.4 & Ironing, females\\\\\n", "\t Estonia & 7.8 & Ironing, females\\\\\n", "\t Greece & 26.7 & Ironing, females\\\\\n", "\t Spain & 17.0 & Ironing, females\\\\\n", "\t Finland & 8.1 & Ironing, females\\\\\n", "\t France & 17.5 & Ironing, females\\\\\n", "\t Hungary & 13.8 & Ironing, females\\\\\n", "\t Italy & 24.6 & Ironing, females\\\\\n", "\t Luxembourg & 29.1 & Ironing, females\\\\\n", "\t Netherlands & 9.7 & Ironing, females\\\\\n", "\t ⋮ & ⋮ & ⋮\\\\\n", "\t Finland & 7.7 & Laundry, males\\\\\n", "\t France & 2.7 & Laundry, males\\\\\n", "\t Hungary & 2.4 & Laundry, males\\\\\n", "\t Italy & 1.1 & Laundry, males\\\\\n", "\t Luxembourg & 3.9 & Laundry, males\\\\\n", "\t Netherlands & 6.5 & Laundry, males\\\\\n", "\t Norway & 11.5 & Laundry, males\\\\\n", "\t Poland & 2.8 & Laundry, males\\\\\n", "\t Romania & 2.3 & Laundry, males\\\\\n", "\t Serbia & 2.1 & Laundry, males\\\\\n", "\t Turkey & 0.6 & Laundry, males\\\\\n", "\t United Kingdom & 7.0 & Laundry, males\\\\\n", "\t Austria & 3.6 & Ironing, males\\\\\n", "\t Belgium & 2.8 & Ironing, males\\\\\n", "\t Germany & 1.9 & Ironing, males\\\\\n", "\t Estonia & 1.0 & Ironing, males\\\\\n", "\t Greece & 1.0 & Ironing, males\\\\\n", "\t Spain & 1.1 & Ironing, males\\\\\n", "\t Finland & 1.4 & Ironing, males\\\\\n", "\t France & 1.6 & Ironing, males\\\\\n", "\t Hungary & 0.1 & Ironing, males\\\\\n", "\t Italy & 0.4 & Ironing, males\\\\\n", "\t Luxembourg & 7.9 & Ironing, males\\\\\n", "\t Netherlands & 1.4 & Ironing, males\\\\\n", "\t Norway & 1.5 & Ironing, males\\\\\n", "\t Poland & 1.7 & Ironing, males\\\\\n", "\t Romania & 1.2 & Ironing, males\\\\\n", "\t Serbia & 0.6 & Ironing, males\\\\\n", "\t Turkey & 0.5 & Ironing, males\\\\\n", "\t United Kingdom & 3.3 & Ironing, males\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 32.8 | Laundry, females |\n", "| Belgium | 23.5 | Laundry, females |\n", "| Germany | 30.1 | Laundry, females |\n", "| Estonia | 13.8 | Laundry, females |\n", "| Greece | 27.8 | Laundry, females |\n", "| Spain | 27.8 | Laundry, females |\n", "| Finland | 33.5 | Laundry, females |\n", "| France | 19.3 | Laundry, females |\n", "| Hungary | 28.7 | Laundry, females |\n", "| Italy | 22.7 | Laundry, females |\n", "| Luxembourg | 26.0 | Laundry, females |\n", "| Netherlands | 34.8 | Laundry, females |\n", "| Norway | 39.5 | Laundry, females |\n", "| Poland | 23.2 | Laundry, females |\n", "| Romania | 30.2 | Laundry, females |\n", "| Serbia | 29.1 | Laundry, females |\n", "| Turkey | 18.7 | Laundry, females |\n", "| United Kingdom | 30.0 | Laundry, females |\n", "| Austria | 28.3 | Ironing, females |\n", "| Belgium | 24.2 | Ironing, females |\n", "| Germany | 13.4 | Ironing, females |\n", "| Estonia | 7.8 | Ironing, females |\n", "| Greece | 26.7 | Ironing, females |\n", "| Spain | 17.0 | Ironing, females |\n", "| Finland | 8.1 | Ironing, females |\n", "| France | 17.5 | Ironing, females |\n", "| Hungary | 13.8 | Ironing, females |\n", "| Italy | 24.6 | Ironing, females |\n", "| Luxembourg | 29.1 | Ironing, females |\n", "| Netherlands | 9.7 | Ironing, females |\n", "| ⋮ | ⋮ | ⋮ |\n", "| Finland | 7.7 | Laundry, males |\n", "| France | 2.7 | Laundry, males |\n", "| Hungary | 2.4 | Laundry, males |\n", "| Italy | 1.1 | Laundry, males |\n", "| Luxembourg | 3.9 | Laundry, males |\n", "| Netherlands | 6.5 | Laundry, males |\n", "| Norway | 11.5 | Laundry, males |\n", "| Poland | 2.8 | Laundry, males |\n", "| Romania | 2.3 | Laundry, males |\n", "| Serbia | 2.1 | Laundry, males |\n", "| Turkey | 0.6 | Laundry, males |\n", "| United Kingdom | 7.0 | Laundry, males |\n", "| Austria | 3.6 | Ironing, males |\n", "| Belgium | 2.8 | Ironing, males |\n", "| Germany | 1.9 | Ironing, males |\n", "| Estonia | 1.0 | Ironing, males |\n", "| Greece | 1.0 | Ironing, males |\n", "| Spain | 1.1 | Ironing, males |\n", "| Finland | 1.4 | Ironing, males |\n", "| France | 1.6 | Ironing, males |\n", "| Hungary | 0.1 | Ironing, males |\n", "| Italy | 0.4 | Ironing, males |\n", "| Luxembourg | 7.9 | Ironing, males |\n", "| Netherlands | 1.4 | Ironing, males |\n", "| Norway | 1.5 | Ironing, males |\n", "| Poland | 1.7 | Ironing, males |\n", "| Romania | 1.2 | Ironing, males |\n", "| Serbia | 0.6 | Ironing, males |\n", "| Turkey | 0.5 | Ironing, males |\n", "| United Kingdom | 3.3 | Ironing, males |\n", "\n" ], "text/plain": [ " geo values bd \n", "1 Austria 32.8 Laundry, females\n", "2 Belgium 23.5 Laundry, females\n", "3 Germany 30.1 Laundry, females\n", "4 Estonia 13.8 Laundry, females\n", "5 Greece 27.8 Laundry, females\n", "6 Spain 27.8 Laundry, females\n", "7 Finland 33.5 Laundry, females\n", "8 France 19.3 Laundry, females\n", "9 Hungary 28.7 Laundry, females\n", "10 Italy 22.7 Laundry, females\n", "11 Luxembourg 26.0 Laundry, females\n", "12 Netherlands 34.8 Laundry, females\n", "13 Norway 39.5 Laundry, females\n", "14 Poland 23.2 Laundry, females\n", "15 Romania 30.2 Laundry, females\n", "16 Serbia 29.1 Laundry, females\n", "17 Turkey 18.7 Laundry, females\n", "18 United Kingdom 30.0 Laundry, females\n", "19 Austria 28.3 Ironing, females\n", "20 Belgium 24.2 Ironing, females\n", "21 Germany 13.4 Ironing, females\n", "22 Estonia 7.8 Ironing, females\n", "23 Greece 26.7 Ironing, females\n", "24 Spain 17.0 Ironing, females\n", "25 Finland 8.1 Ironing, females\n", "26 France 17.5 Ironing, females\n", "27 Hungary 13.8 Ironing, females\n", "28 Italy 24.6 Ironing, females\n", "29 Luxembourg 29.1 Ironing, females\n", "30 Netherlands 9.7 Ironing, females\n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE> \n", "43 Finland 7.7 Laundry, males \n", "44 France 2.7 Laundry, males \n", "45 Hungary 2.4 Laundry, males \n", "46 Italy 1.1 Laundry, males \n", "47 Luxembourg 3.9 Laundry, males \n", "48 Netherlands 6.5 Laundry, males \n", "49 Norway 11.5 Laundry, males \n", "50 Poland 2.8 Laundry, males \n", "51 Romania 2.3 Laundry, males \n", "52 Serbia 2.1 Laundry, males \n", "53 Turkey 0.6 Laundry, males \n", "54 United Kingdom 7.0 Laundry, males \n", "55 Austria 3.6 Ironing, males \n", "56 Belgium 2.8 Ironing, males \n", "57 Germany 1.9 Ironing, males \n", "58 Estonia 1.0 Ironing, males \n", "59 Greece 1.0 Ironing, males \n", "60 Spain 1.1 Ironing, males \n", "61 Finland 1.4 Ironing, males \n", "62 France 1.6 Ironing, males \n", "63 Hungary 0.1 Ironing, males \n", "64 Italy 0.4 Ironing, males \n", "65 Luxembourg 7.9 Ironing, males \n", "66 Netherlands 1.4 Ironing, males \n", "67 Norway 1.5 Ironing, males \n", "68 Poland 1.7 Ironing, males \n", "69 Romania 1.2 Ironing, males \n", "70 Serbia 0.6 Ironing, males \n", "71 Turkey 0.5 Ironing, males \n", "72 United Kingdom 3.3 Ironing, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Laundry, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Laundry, males\",\"Laundry, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Laundry, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd),decreasing=TRUE)\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddWDTyh8A8KTt3I35GGzANtyHuw53h4c7/ICHP+Th7u7Og+Hu7q4zBmPurt3a\n/P4otEk1aZM0Hd/PX812SS65y+WSk6AYhiEAAAAAAAAAAAAAAAAAAAAAAAAAYB5P3xEAAAAA\nAAAAAAAAAAAAAAAAAAAA/hTQSA8AAAAAAAAAAAAAAAAAAAAAAACwBBrpAQAAAAAAAAAAAAAA\nAAAAAAAAAJZAIz0AAAAAAAAAAAAAAAAAAAAAAADAEmikBwAAAAAAAAAAAAAAAAAAAAAAAFgC\njfQAAAAAAAAAAAAAAAAAAAAAAAAAS6CRHgAAAAAAAAAAAAAAAAAAAAAAAGAJNNIDAAAAAAAA\nAAAAAAAAAAAAAAAALIFGegAAAAAAAAAAAAAAAAAAAAAAAIAl0EgPAAAAAAAAAAAAAAAAAAAA\nAAAAsAQa6QEAAAAAAAAAAAAAAAAAAAAAAACWQCM9AAAAAAAAAAAAAAAAAAAAAAAAwBJopAcA\nAAAAAAAAAAAAAAAAAAAAAABYAo30AAAAAAAAAAAAAAAAAAAAAAAAAEugkR4AAAAAAAAAAAAA\nAAAAAAAAAABgCTTSAwAAAAAAAAAAAAAAAAAAAAAAACyBRnoAAAAAAAAAAAAAAAAAAAAAAACA\nJdBIDwAAAAAAAAAAAAAAAAAAAAAAALAEGukBAAAAAAAAAAAAAAAAAAAAAAAAlkAjPQAAAAAA\nAAAAAAAAAAAAAAAAAMASaKQHAAAAAAAAAAAAAAAAAAAAAAAAWAKN9AAAAAAAAAAAAAAAAAAA\nAAAAAABLoJHeYGFFKN3uZRXp+6jAH8HNREApZ/J4PEsbB6/yFWvVa/7XpLn7/rsanVei74MA\nAADAFYUZV/F3jcBNX/QdI6BOTswyfHp1eBCv7xiVfnCNlCaQmoCjiC8oyne/p+8IAU6DouzP\nkfJqlYDHQ1HU0rV3gVjfsQEA0O1kHx9JSd5k0WN9xwUAAAwSNNIDlc5XdpJrK32XV6zvSAEN\nxEUp145sHNq3e/OGdXw8nc2MTR2cPfyrBQ4aP+fQ+cdCTN/x0wqGYXnZ6TE/It69enBw64qR\n/YJ8HDz7T135Pq2UdyvR1zUI174UnAoAgEGAwgoAoDUoQBTBOQEAlBrvVzeWlGM8nvHh2FyW\n9y4q/NGj7UIRhiEI8r+L281IvIQOe3pj28r5/Ts1rxZQycPFydzEyMq+jE+lKo1adpu1bMvN\nFyG6vNYqyYs9t3dVv67tA2tV8ShjZ2xm7eUb0LBZm8ETF155/k2HDTO+8ahXt7aumNuzbaOA\nCuXK2FkZmVg4u3tXqVm/36hpO49dhHEsGhluvpJTlHmHx+NJLur5P7Mpr4+V2BnxUW21uhCl\nuMme+0+5mfARBHmypO3usEydDxEAAP48GDBQ4kLaM8PdzEL8Hs4FOMoFeJsr1NfhAo1K8n/8\nO7KLi5lATRLb+DRaceK1vmOKuRrzacmxxpaVNlwN1/fRMEhf1yBc+1JwKgAwCAXpV/DXaf2N\nn/UdI7YZVmGVHb0UH9X29+P0HaPSD66R0oT21DSsAoQdcE60QXxBUa7bXX1HCHAa3JjUSAt7\ntmPFrG4dW9ep5l+pSq2WbYMmzl97+/V3LTZVnPfFy/TXOyLvbsdoj6pGu3p4S/bu0mi1xsAP\nT27sWMsN0cS5evuN/z0qoRgTkTB53dggOyN1L6PsKzTYfkub88zoxr9e2d2zkY/6cyIwdRs4\nfU1oDtyqlDDcfKVU2IGm0i3Pi8qiunpR5n2Np0KNlud/KN3s2xWNJQHMnYOShCJdDxIAAP4w\nMJIegNIg/snBxuUrL9h7MbFAXf/ZrMgnc/rXaTxidZ7YMMfUEwlzw6YF+f/vzHd9R4SajIgR\n+I6oA8PS9R2jPw4kQakBSQkAAAAAAAAoHYrS380d3MLZr+G4OavOX739+mNI2Oe3d29e2bp0\nRus65QPajbwWmkVpg7f/1zO6sARBEJ6R/eFDvZiJtUopbxaPORuFIAiK8teeHq8mpFiYsKhv\n9ab9pl59q/krSEkfrk/t26RS+ykhOWTnOMn8cqGDv+/0nVcyikVqgqVHPJvQtkLXGbspvTFj\nbuPikrSN41oFBI0+8yRSfciSwvhj6/6uUbb+7nvRZONNjkE/cRt0vlJl84J3uqxekH5V9zgo\nqj7jfA1LYwRB8pOuBC16xsQuAACgFFM36BYYlq5jJ5Uz1WmAsqcJPeObActCj0+pPniLkHRt\n78n+WbXyTEJOTuFIJ50WoyZUtzBSE0CYn5Oenhzy7uWHyCS5f2GYaHP/utW/fB9WwYbJOAIA\nAAAAAAAAAAAwIu3tsdatRrzPVPlRv5Cb+zpXv7Tg+P0FPf3JbLAw/VrvfeGS31Unn2tibUxP\nREkSF0zovEby06XR5oGuFioDFqcMrh5wPJTaLNmRNzbXKvfsWsjD5k6m6kMWJN8OrNc7LJ9U\nyyuGiS6uG1MrOufLf9MFqObwzG0cE+fNaVN19f0EMluWKEx/N7a1X9K1iH/aupNfq7Qy6Hyl\nSlbk5m0xOdqvjyCZn9/osroqPIHDkSX1q/7vEYIgb1d3vvN3QitbEyZ2BAAApRI00pceo5ev\n7minoQ4BSp+Ul2tqKbTQ2/k2GNC1RXlvbwej/JCvXz++vXPtMaHjbfh/U9vVa35rWnV2I6tc\nz8WrJqh+YMPLjHy2beOqxdsvFuOOV1ycPq3TkmFhaxmLIAAAAAAAAAAAAAAj8uIu1W407Geh\nhi+Li4TJi/rUNLofNaeJi8ZtHuo7OlckRhDEyNzv/LJG9ESUtNA9PU8n5CEIgqLowmOD1YTc\nPbihYkuqd902ndu2rlnJ08HeKj8jJSb8/a3rl269+oEPU5j2qnOtXm/Cz1dU/dlHUVHMgDo9\n5FpSjSy8eg3tXd23vJstP/rHj3f3zp55HIEPEH56Rse6TW7+XU/9MTK68aND6yi20Jet1aRB\ntcr+/v7eDoJvYaEhISEv7z2IzpNFABMXLO5cyzcysr+Hpfrtl3qGm69Uwopmtl+g5bq/JVwn\nZKqKfn6Uhm95WaocYRUw/mSled5h+cXikoyhvfbE3p6obRwBAOCPA430QCW76nUCrQkVGgue\nDv39AANKCiI6tJ5fgGuxNrYKWP/f0XEdaspVs95f2DJh/Jyn8XnSv9yb0+7hiOimNux2ptaN\nrU+DeVvOD+2zu27r8YlC2XRSGeHr5n+Ys7S6gx7jxgR9XYNw7UvBqQAAGAQorAAAWoMCRBGc\nEwAAmzBx/qB6/fEt9FW7/m/2Xx3r1Knjyk9/8+bN/XM7luy/L8YwBEEwcdGCdk26poYEmKt7\no5v1bdv4O3GS383XnvVmd+JMcUlq3+l3JL/tKi0c42WlKmT83XHj/vuG/4upQ70dJw4MaxMg\nF/Lvfzd9e3Bi8shx177J5vzPjb3SfvCp78EDVG3//IiW54kjj1tM2X181XAXwglZ+fP5f32C\nhr1ML5T+6c6cVlf+SglyVDcUirmNZ4ZuHHYsDP8Xq7Itdx3d3b+x/MfpRYXxBxZNHLf6fAn2\n68WgSJg8KWhZ/w8r1MS81DPofKUUVpK+sn+D3d+offBC0feHydLfAjPfsJAQHTcoxTN2OzI5\noN7KDwiCxN+dvCdm2CjPP72nCAAAkMXGh+8BE8SFckl5Jb1A33ECbLs8yg+fB8zLtHuerDIb\nFGW9aW5PqAj6jbzPZmylXI0Jz4db43OpbiH62mS5/O/RMpiJqDIhPXw4PuYDQtP0HaM/DiRB\nqQFJCSQK0q/gc0L9jZ/1HSOgTnb0Unx6tb8fp+8YlX5wjZQmkJqAo4gvKMp1u6vvCAFOg6IM\nL2xfkPRU8AQ2i44+Uwzz7dZOP3PZGNaAcbfUb3OGv70kpKl92+wSMTMRVyl0bxtpVIeorekN\ndCHMqmhq2+RlWqGa8CJh4t9NXfGroKhgb1S20sD5yaeMiF2sWi29rmrLBanPG9sQJuj2aLVP\nTUwY3fjcinb4wJaenSMKStSE/7BnKEI081OqmvDkGegTt+HmKyW7Swo7sf3fem5K5h+dF5VF\naVMYhg12lm3HyvNvqqurV5h5V3pm3JrupHfjAABQinHkm9QAAMqE2Y/67A+XLvKM7Pc8O1Vf\n9WeTjK1rnb45H/+XyONjskRkv2TPKZ7tN830scX/JfnVan1FBgAAAAAAAAAAAEALi+fck/7u\nsefZwoGBimF8Wo95cHuhdDH8wIg8scqXOQkPp6wNSZf8HnR8nxWf1blAMFHuiOkPJb+NLWts\nb+KqKmROzNpjibLpHlEU/ff22br26j5lzTNyXnHzRWvctz4xrGTxqOtKA9+aMBv/qUQ7//HX\n57ZTtWVTh/rBV2ehqOxcxd0bfy+rSFV45jYuzH60MkI2mwuK8tfcP+prqm4uhGojD66u74z/\ny4lpT9SEL90MOl8hCFKc9+n04V2LZk3u3al1QDlXKxe//uMXvMRNjKoD8XXcsH5rnxZ0bFPG\nxKbFmhqOkt8JjyYGJxfQu30AACitoJEeAEP1au7YfJFYulhzzvUB5a3Vr+JYe9708jbSxeL8\nsNXECZoMyMgF1fCLwpyXYQUavt8GAAAAAAAAAAAAwBFFGTeOJ+dLfpvZB50Y6q8qZJkG85b7\n/RofX1IYveS7iomvxYUTeu+V/LTxGburnQed0SUh7u6oJ7/bIH2HblPzuZCQ9Yfwi3aV/vm7\ntqPG7fNNPA+c7I//S8KjmUKFHgvikrSxF37i/7Lg6gqB2u4Kzg0Xr68hiwAmLpq5PUxpSEY3\nnvZpnRiTHY+V54yxmt71IQgy4gDhnKS83qJxldLKcPOVROa3eX2Gjl28ekvwlTshUYkijLax\nVcKcFynFsi+HunfypGvLUv12dJH8wLCSWRPuqQ8MAABAAr5JD2hWlB55/uSJUxfvfo+JiY2N\nzefZlC1b1rucf9fBI4Z0a2JmIN1Cvt07vPvso5CQkIQ8nrd//+D949QELs6KvnHp4oUL1z7/\niE1ISExKzjS2tnFwcKtSu26Dxi17D+jha6euw6aWMOGUw7IPLPGNnY/OrklmvTELqq8b9lC6\nePtM9LLpVeiPHvOcmzVDkIf4vzzPFlYy01Cm5cZ+PHXqwvO37z9++hybnJGTk5MnxCytrK2s\nrb18AqpWrdKoVafuHRpY6tzTnFIWohcmznt169KZM2efffoeHx+fkJDKt7BxcLAv61ezUaPG\nbbr1a+6v+flEF4mf7u7dd+jR+4ifP3/GxKVZOLm4urqV9avVtUev7p2a2htrUwqwlnD0wIRf\nn92+fPnyrSfvExITExOTskuMnJ2dnZ3L+FRtEBQU1KFdYye1HeFJyv7xcu/uPbdehsbGxsbE\nxhXzLe0dHCtVr9e4SatBIwb62hrrvguSyGd4TiWlfkpv1Zi4dhC2DpOhQi8p5GlwcPCluy9i\n4+LjExKEAht3d3cPz3ItOvfp36+bj9rxEBpxKjfqHXfKE1VKR3rRfp4ZvUbw9FixoYq1rGK4\nqUk7Ctnjj6kj0R4BA3/KFoc+vnTk6PFHHyLj4+LiEzPM7Z1cXF09fKt36tqta5e2ntZGmrfB\nPUwnCjtVOIMrygy6ZqtUbrysQdGz02z1rX295laeO+SR5Pfje0mIr61imG9H+5773eo/58Iy\n9ouHfRNvSH+PmVNNTciLZ6Pxiy12jCG5C/dWmzxNjsQU/RqnUVIYdTa1oJ+TGT5M6ru/E4Sy\n9kgL58FTvTU3dQ/Y2fN/9XdKF0M2b0bm7FUMxujGE28TTotXjx4at4wgiK3vXATZKF0syryf\nL8bMVfeQYANbN305hpuvmFZI/M5I+dYutO+iTK017iYH44pECIL8vDQ6sTjaxYjrdRQAANA/\nfc+3D7TF/DfpCzPv4rdfZ+UH9eFLCmJWj21nproKaO5SZfWlcElguS+Q3c1U8nGgH+db4sOQ\n/3J5kL2sCmVbfj2Zo3ubK/z194xXY4Oq4/9l6TJS1Y6EWWHLx3QwU/uOj8e3aDl03uv4PJKR\nJykzkjBxfdmgSyRXFAmTQnEiY5VHLC/5mNyB0PhZQd2/SY9hWF7SIbkYro5R/r0oiYyQG8Nb\nV+Ojmh9RjK3Ljl95PFPTZ9soZSG57++qId2O4i40XoOYuPjajtm+NurepKAor2a7IVdCM8kf\nmtL94hNx+vdfW8uKuNq9gY+avQtM3SauDc4XaTgOPLoSjqUkwMRPT64J9FDytTA8vrHTXwv2\nJhZpPhFyETiTmi/5e1Hm+1Hta6k5LTyBXa9Ze2j8+qDuZaZ+k1KOHktv1q4d2g+Tlvsmeelf\nrw1pWk5NzFGeWZtxaxOFIoz6Z01pvCOsq+yAD78pNof8MZ5s6Y5fd9jjBPLryiFTWHGnPKH6\nTXra7+Bs1jCZO8+0XyNUr3GOZH48pit7BpSalGhRgGh1CzCkOhKnClXan7KZouKb9KnvTreu\nYIeoxhNYD5izM0moMtE5WNownSiMVuEMtygz6JqtGrF3ZRNlB275oj5w6pfe0sDVZ79WDCAq\niq9h+euFgGujdcxEWZ2CtMvSTGVq20J97pF7NfQiW+Xjm6Jl3jb4dUeFp8sFuNOrPD5A4GYN\n5/YXUYEvbuwHivI/5RUrhmJ0409HE2ZTaLQ3lNTGMczdhHA+v6v9jL0adDxx03zTp8Rw85VE\n8vvOJM8/1W/SR19vg1/9SBLN7zokTjRzk+6i6/koJnYBAAClDDTSGyyONdInv9xdi9i7UCkU\n5ff654SIq430hRkv27rLVyJVPZJ9PjnP25xsl3++kdPcwy9Jxp+Ml9Or4rc/6HkijRvHDKGR\nPitqoVwMt6vezoudo9Q/zCuyq9zvi+oWPoxiFmKhhbgw7XmPWs6qNiuHJ7CbvO0JyUMj2Uj/\n8vBcZ2NSnaDtKwc9SSVVXtGYcCwkQXF++IjGXuSjaupYff/rFPVnQOk7tdS3x+vYm6raLJ5j\nrZGJqt94UqJjman3pMTTb+nNzrXDxGHqft8k78qS/iQzjKVn0+DILErveem9I0RdIrxDqTzx\nGcljFAkT8OkuMPPV2F6ohtbtSXopTyg10jNxB2e/kZ7288zENUL1GudI5pdiobJnQKlJidaN\n9ORvAQZXR+JOocrEUzZTlDXSP9gw1pJPagiduXPt4DDl3Yi5VtownShMV+EMtCgz6Jqteikf\nekn3FTBOQ/b+ebm1NHDdNR8VA7xYWFfyX5RncjqRkRY49V7Nkg2d9xv5WE1IYe4H/Hk2sW5I\naUfnqznhV+/xJVUuwIAy5vgAK9UO6sDbEUDoGDT4vZL7EaMbfzWTMP1ArUXvSG1aXGxC7DmU\nXqxliafjEzcTN33yDDpfSRTnfX2swlpirzWqjfQvpsomUkVRI61ziHqJz4dK92JTfi4TuwAA\ngFIGGukNFpca6VPf7pXrsKley8X3OdhIX5wf3sZNSTdPpY9kT7ePEpAYpiOn46KrJA9Bo7le\nsvmUUJ6x1j1kVeF+I/234y3kYvgyR/lr1tD9I3nUEwtBENsKwwtVV1kpZSGmW4jzkx40czZX\ntU2lUJQ35qDyVyFaNNJHnBhLae/mZZo9StFQZNGbcEwnQWHG6y4+mmc5k8M3dl53O1bNSVB8\np5YVeczBiEJ569l+i/rzTJIuZSYXklJK76U3C9cOQ4ep432TvOA5bSlF28S2/oPv5/B/UfOe\nl/Y7QnFBBL75wdSuLcnDjLnVG799n743tDtdEtq1J+mrPCHfSM/QHZzlRnrazzND1wjVa5wj\nmV+CncqeAaUmJdo10pO/BRhiHYkjhSpDT9lMUWik/3Z6MqULU2Dme/hDmuKGOVXaMJ0oLFTh\nDLEoM+iarUb5ycel+7JwHqI+8KFGrtLAg94ky/1XmPNa2jHFd8BZxqKsTn9cE+bEr0quaKm8\npKP482ztOYfSjnYQp+iQTlEmIS5Ow7dY8wS2WaT76HxcUxe/5ZoL38oFYHTjGIZFXWqFD+NU\nczeZLeclEqZPN7KoSjJKinR54mbopk+e4eYrMq4GuuI3QrWR/mQNWRcEU7vW+H9lxIQ+f/zg\nysXzN+4+fP8lLCmjSIvoSZQURBr9Pksoz+ij2h6xAAAAMAyDb9IDXRWm36ndcKzkezNS5i4B\nvfv1qV+lvJuzVWZCXMSHJyePn43MKJL8996i1ov8t+sjsurs7Nv6VnwemZA/gsc0mrAXwzD8\nH50q1e/etXMdf29nR4vMxITw90/OnTv/lbjBq4s69nf6eGJ8VURHWPG+RNmWTWxblmPgM04c\nd2jRe/yikXlAHUslPeuFOS9bjzsoJiaWqYPfwAFB5b28PDw87IyEcXFxcXGxjy4dfRCSig+W\nGbG/x76ZV0ZWIhklNVmIb+weGBgo+S0q/P7qfbL0X4416viayopiC+rfDBMJ44KqtH+QUoD/\no4m9T/d+/RpX93VztU2LivgaEvLm/sWHIWnSABgm3j28brPWKf0VxgpQlRVxNHDIHvxfLNyr\ndWhW28vTVZyTHPMz/O7NxxnFYnyA/OQH7av1jYs5b6NivAXtCcdoEmDivNG1Wl78kY3/I4oK\nqjTt3KNjs/KeHnYmJfFxcZ+e3Qo+dzupsEQaRiRM+rt9VZ+Y2K4upPpYiAqj+zYYlVb8q7x1\nqdykX58edf3LOTsYx4SHhXz9cv3UsY9JhJwQc33Ssq8D5gXYUz0ojUiWmZxKSv2X3kRMXDsI\ni4dJ/r5JXui+Xr1W3JT7I09g3bhTrxZ1/T3cnUsyE398+3D+xJnwtF+NAUWZLzo2kZ9bRSkm\n7ggCU9/lle0nf/wVuDDj5vb4vPHK3vDKOT3tHn5x7KoGZA6BRpwqT5Ri8w7OHNrPM6PXiBz1\n1zh3Mj9rWcWgU5N2JG8Bf04difYIGPpTds7PI/UGHJJemAJz1/Y9+zSvXcHB3qYwPeHnj6+X\nT5/+TMxCJQXfRjRsXjv5bYA54T0Vd0obphOFnSqcwRVlBl2zJcPMqX9bu+E3MwoRBMlLOjzh\n+rJt7T2UhsyJOjb6WaLkN09gs6KKfIpcGdcvSShCEIRv7HxyVycmY61cYcbVE8n5kt88vvlc\nH1s1gQUmHjNmzJAuWpTpQ2VX4l0JhMRqYWOCX8xPPVckluUZM8fu1qSn2/HoUgX5+5V0Me5C\nBLKoJmsbRxCkTOAYBLkjXUz7PPtlztB6Vuo+a4ggyLMl6/GL9pWnkoySIq2fuFm76athuPmK\nBbcS86W/zRy7IQiSGflsx5Ytx85d/xKdgQ+JooKKdZq3b99+8Nhxtd2oJQrftPwoF4vt8bkI\ngmDi4rkPEi51pDCzAgAA/In02kUA6IAzI+kXBxJm2OYJrEesOKU4JEVckrVnZg9pZzoen3CP\n1/tI+tP7Bkl/ozyTJl0HLV6/5/bjF1/Cvien5+NXLMp8Us6U8NbAxLbG2v+eKnaeFIvyzm2c\nJjdqnCewOxOnzcBxvIK0S/ht2lXYIb/rkrzYH+Evn9y/dOHyg6cvQyOjiyhOYsTxkfRxd2bK\nRc+t6XGlIW8M9CWcfyP7udvPq5jTSfz5zokWxNc9Vu4TVMVB6yyUHj4cv+KAUJW9y0leg6f/\nIrxZRnkmfebsU/btQNHjI/PlTr5TrQXa7Re/HVMj2dAWM6c6Wy+9FBJ3Xpwbd3LlaDuB/FyX\n9ec9UnXszCUcxkASPFrQUO7QnOv0ufo1QzFkSUH0qjFt5D79aOc3TtUVKheBDo1/lbdG5hWW\nHFFy9sQlWTuntEaIvNpfVHM2SNI6w3MkKTFulN4Y89cOc4epdR4grzDjvtzoNBRFmw5b8i1L\nvve9WJR3cd04W4Uz8+v8qBiMxVBujL7eHR+syv9eaDxSYe57U9wrLTOHrhpXUU+LQZ96LE9I\njqRnrvRgs4ZJ73lm9BrR4hrnQubHWKzsGVBqUqJFAUL+FmCgdSQuFKrMPWUzReEFhVSz4ctj\nChUmfhMXPz6yyMdCvpu1d9dditvmSGnDaKKwVoUzrKLMoGu25L1bEijdu8DEa8+9n4phssJv\ntsB9Z8Er6LBcgLzEYOkY37r/PGc6zkqF7mksjaG152zmdpT2eS4++Ywta8oFSP0yCB/AvtI+\n8hvPS9yPX9fKfTKbG5eYSewT49lxhfqJydM/7bcmXlyzXslPtKAdSk/czN302aHffEWGjiPp\n8SVk+d4nNkzubKRpjApPYN1j0sqIvGJKO3o2LkC6hTK191JaFwAA/kDQSG+wuNFIH311FD4M\nyjf790aMmm1+2jccUUbvjfRWvyfQq9BlxpNIdZ8UWtnABb+ipWen52pnHk7/fKq6JaHHq1Ot\nlSQPRJWMb5PwG6ww6OHv/4ifXzo4cUAHF1P5STJM7Mp26Ddm57mXJGu8henXA4l6zHytY7Sl\ndGykT3h+wMNE/gDnf5D/UhSGYZi4uBLxw3VTr0Wr33hhxgP8xlEU/aH4RkkSUtssRG8LcUbI\nGvyDDYryxh8NUbP3pCfrLIgfhtyn8KU6qo30Unb+gyNV190zw84HEF/D8fiWygsuJhMOozsJ\nClIvyn1/0b3V7By1k54939xf7tR1PhxBJgISRhaVz4SrexjbN9AHH97Uro2awCRpmeE5k5QY\nN0pvjOlrh8nD1LrQI29LY8JLBxRF/9rxSk34lNc7HZVN1qr8PS9jubGkMAr/UszMPkjjkYYd\naI6PSZ3lKj+lQZIW7UkSeilPSDXSM1l6sFnDpPc8M3qNaHGNcyHzs1nZM6DUpESLAoTkLcBw\n60h6L1QZfcpmiopG+naLbqpZqSD5UUMH+S+jrwiTb9HhQmnDdKKwVoWTMJSizKBrtuSJhEn4\ncdIoym8/Yd3jt2F5JWIMK4kJfXtkxSh8/waewO5OhnxGWvd7JnxjyxrxRSKWD0FiTxVHaST9\nRj5hajdi4Vhfwhj9isPuyAX5drwZPkD5nvfIb76kIAK/rmJLLaMbl8iJPifXPaVq34WxKqor\nEdc2ydWF/AZsJR8l9cg/cTN602eDvvMVGbo00gtzXuPXRalMIWnp0eLKN4U281UAACAASURB\nVAr7Sn43QLquwKy8fsojAAAwHNBIb7AUnoF7TvzfDK1sfZakdA8k3k2IB7sQRqK0XP9GY8TP\n/FVR8X6v90Z6iRrj96rvnZr9cxs+vMDU65pCA6ei1Hdb8FVVFEV3xeaQPBalfl4hdGyv9e87\nDMPy4p6NaUN4kFbKrU7XQ0/iddm77rRupM+JfrN2Rh9Thaqkvf8speHzko7gg9mUm0lmL1e7\neuPX+i9Fecd57bIQRncL8UrcN6UQBKky6ZrGA7w1iTDjX7WZ8q9RtGukN7Fu8CFHw7emMr4e\ntSJ2Eag47LZiMEYTDqM7Ca72I1x3Zo7tU4San0GChxFKQjP7DkrXUZrN5j1MUL9xYe5bfFcM\nnsBWY3w00i7DcycpOVJ6YwxfO4weptaFHkn5KcFyYynqzbulca0fF8Yrxkrpe15Gc+OOmoSi\neE+ChvvaFE8r3Ann696IonV7kl7KEzKN9IymF/s1TFrOM9PXiHbXuN4zP/uVPYNITUq0LkA0\nZg/DrSPpu1Bl9imbKcoa6d1bbdS4Xm7sZSdiq61z/Z2KwfRd2jCbKOxX4QyiKDPomi1VqW+3\nWytMM8A3ti6j8FE/FEXHnwiXWz3t80ppgC4H5f/LFnFlXMfioHvKp0rS3YHRNQgnhGd6RuE+\n/u7fWvgwtZe8p7QL/JMXj2/O5salkp5tkssSxtbl/5qxcPfhUw9ffvwZ+fXu1bPb1y8f0DIA\nIXJrMSdPRFs+Jv/EzehNnwV6z1dk6NJIn/VzMaIDgYnnqSiyHZgK0q/g1z2ZzPh8JAAAYNCg\nkd5gqZ5NjqqGO5WPu9X4biI7mvDFIzPHIPV9JCWK8z56KgyD5kIjvaV7ryxN8b/UrRx+leab\nyL4Uuz6CMCF5wIRnJFdU6tPaevitNdoTmvpur5uJkg7pSvH4FhN3PNS8G8bItVG1GjdFfT+S\nKRPHDhnQs66/p9wrAAm+kdPx78priqmf++JDNtylboi5VOjeRvi19qp4EaBdFsJobSEuzLyP\nPydG5pW+F6gccyxVlP3CGNfRwdJ1LNX9YsoaGodfVjIpn6IHs2rj1zIy91N8gGQ04TBak0Bc\nkinXw/3vxxpeeEkU54f4mhFWXP5dyfOVYjZzabiNzPYXlLXGr6U4DydV2mV47iQlR0pvjOFr\nh9HD1LrQI+nFdEL/ITOH9hnk3pL+Q3xrj6h4z8toboy90xsfTLHzE15B2kUUV3TbVVxMJibq\nadeepK/yhEwjPaPpxXINk67zzPQ1ot01rvfMz3Jlz1BSkxLtChCN2cOg60j6LVSZfspmisIL\nCqWDfZV6vaIJYUW+ZXi+/AxD+i1tmE4UlqtwhlKUGXTNVguRF5YpnXMLD+WZjNr8QGFV0Xgf\nG0kA8zLdCvTUyFmQdhEf1f0kelRQV3J6biu5c1J5vJKBCo+HEfJAg+1fKe3Gm3j/kpuZgNGN\n4yU8P9LIldA9SEP2QPkdJm1Oo7WnCcknbqZv+gzjRL4iQ5dG+pjb7RTzDI9v2bb/xEOXHoV/\nj8kuKM7PSvsR/unsgY3Du9RBFV7Amju3I/PKEcMwDBPhv4TS7iqpNx4AAPDHkn9gAIC8z8v3\n4BfrLFtrydc8W47AvOqeIK/2Z78zFi8tBR3eaK0+/pjwfzdipEsCM9/T4/1JbrzFhoOC/Q1L\nMEyy+DN4O7I1UP0qauRE5OAXhfnXGjScGV8kIrm6WJS3dVzThJK3wRNrah0HGt3ZsemOtuui\nqNGk/170L2el9L9GZp0WLZKlUbUeZclsU2CpZcGoOQvRLSp4vuh3pkIQxGfAnnKmmvtqGFvV\nm+ZutTImW7KYn3K8BNsh0C3i5k599wZ5kQnZ+N8LLhvKJgp/Zdfi/NAV0TlLvAkvgFhOOF1k\nfV/yo7BEumjm2H11Ixc14aUEZn57+/k0PxAm/cuxjSFzNtXXuOKIPf3IbL+BlyXyM5tMSK2R\nyfBcSUrOlN6K6Lx2WD9Megu9TUciCVHaud2WXME07eS4JZX+1RiM0dzo0ni9neBMRolYshix\nfxmy6pyqwCGbF2K4orvZ+mFkdsEE7pQnirhSetCBrvPM9DWiiMw1rvfMz3JWMdzUpJ3G7PEH\n1pHoikCpecp2bbq9pa0JmZC1Zpwvv9j5++8MIxblLvqUdqwe4QPw+i1tmE0U1qtwhlGUGXjN\nVgvlu8wN+VBl3OipJx79UBrAzr/1qm37R7XwlPt77I0x2yOzJL9Hnt5uKj8gnyVZEbJPbqOo\nUS9HMzWBtVCQ/HJy3z577//E/9G6XJ87G9sqBhZmCvGLxrbGimHUsBfwonCLqSViV2PZaWV0\n43gu9Qc9+N500YAWS89pLtsFpuU3Xbg5vq3m+TWZwP5Nny7cyVdMS7yRIPcXG992+88c71HN\nXvYnU3tva3vvClW6D5uy+MWZIT2G3ovPk/4zP+lG2+FXIo53IbE3Xh8n8w2xv95dh++ORDqQ\neukBAAB/KH32EAC64MBI+jGultL/oij/RXYRybinh86Ri4PeR9LzjZySNE3ElBO7Ab+KZ+uz\nJOMjMdUdN+Eez5RkH3Ol7vUqj48JvnsjT2DXfeycIxfuf49JyC0szstMjfz68vCWZe2ryvdV\nR/lmG1+naB0HXWjsHk6SwMRz9WX6P1j1filhuCrJwVVkspAEjcO4d+I++YYgyJposnNPfVo5\nrhfOT+K3zbQYSV9/3SeSu8Yw7GxHQu2c6hRhqpBMOIzWJHg1qxrhWJZROJbsaEKRYuX5t8YI\nCEzLkey3fJc47oT2kfTkM7wWaE9K7pTeGJPXDtOHyWgeKM77gr+X8Y2colV8c1GZkiY2hDYA\n3ceVSpHPjXuJbQkHVYfs5CCrpfCNy8TS8dFQLQZ96rE8IfVNeq2QTC82a5h0nWcWrhGtr3H9\nZn7taFfZM6DUpESLAoRM9jDoOpJ+C1Wmn7KZovCCYvIHCg+bN/r74tetOOSRYhg9ljaMJgrL\nVThDKcoMumaro483T84e07eGv6+jjbmxuU1ZX/+OA8bvPn2vSFl5JS7Jafe7fmLvP531yMrg\n763GVnVp3LJYlHtm4/SypvId7Ezt699LLVC6ys22hK4Mba5FU9pjK1tT/OrPiJc8oxsnKrm9\nd34la7ItwfV6//06keZ5xUk+cTN902cC1/IVGbqMpA+uTbiH2gUM0lhoC3O+9PQkjIni8S3v\nk6tanK4mewttW34d+XgCAMAfSE8dLIHhw0Q5h5Nl/elM7drXsyJbcbTxmWGi8Flx/TIvM6iM\nkYbLIfnZBfxiwKy6lHbRubaD9DcmLjyXVkBpdbyS3BL8Iva7h7hXywlv4+LP7lg+qEuzch4u\nFiYCcxuH8v51B0+ce+1D/I0tY/Bfc8dEBfM6TSzBEEOE8oyaDZh5P/zr30G+mkNTUZL/ddqG\nr1qsSCYL0W4PbmQDT2A32UP5jAKKqszafhrHi/S3ElSZPJhCf+3GSxvjF6PPaHPC5WidcDr6\ncCkOv9hxYDlVIRVZeYzHf4AzP+moWNMq1mX/R08PF50xl+GZSErulN6KaLx2WD5MevNAXtIB\nDDfizcpzuieFcok/r34ZumKCRyk3dlhDaPfduCVUabCcmI2XcefWtdkWdxbHT+Bxpzyhi75u\nBOrRdZ7Zv0bIX+MGl/m1ziqGm5q0I5M9/rQ6El0RKDVP2ShqNNvPXnO432rPb45fTH70VDGM\nvkobphOF5SqcoRRlBl2z1VHVNn1X7Dz57mtESmZeUV5mVMTXK8e2jerV3FhZVgrd0/NGegGC\nICjKW3TxH7bjihN/K1H628SmsZqQlLw6u6mZr2vPqet+FhLeg1l6tbkVer+5g6ny1eTedFFM\nW7mbTpHcMqMb/y0n6nq/Bl6tRy4NyxYqD6Hg5ek19b3KT1hzgf33fCzf9HXHxXzFsFi3yoG/\nNW4+4MmrAxoLbSPLgEPPDtrjykaxKHfs9BdkdudaR1YHKMy4pl2cAQDgD8GVOijQ3ZV05R39\nNHoyxk+L3RWkXSwQ4R7JvAeRX5cnsMcPReICm0pKJjKSE3s2Fr/YrJINtV1UJoR/k0u2nq0I\nU9a07t11TcTtrdXLqKhKooK2E3d+OD4S/7e8xP9G4maQ4zhTK/uyvn4N2/RcsG7v87Dk+8dW\nNfKy1LwaSZjwZ+jbI2tnBlasd1erFjgyWYheosIfb3Jkucjcqa/Sh3YW8I3LUJrLzro8IR/m\nJ1zXft86J5yObqbIdoqi/JEuFL4Yh6DGg8qYS5dEwoRXORqKBdsqVdUHYA39GZ7JpORO6S2H\n3muH5cOkNw9kfn2HX3Tv1JzS6r5/ldcciDytcqNLg/X4t0vhu1cpDfZ6/g784oCNrbWOpo64\nU57oSt83AvXoOs/sXyPkr3GDyfw6ZxXDTU3akckef1odia4IlJqnbDOHzpRm8bUuOwG/WJh1\nTzGMvkobphOF5SqcoRRlBl2zZY2oKKrn9F8Xi3urbZN8lZ+l/PjPR7cs6de1Q4Pa1SpWrt6s\ndYfh0/698OADvU2Ez37IPstoYkPDdOXxr84OaOJdr+fURz9y5P5Vvc8/X8KvNXZS8foLQQQW\nhOHRxZnFlHYt/bKGhNznLRjduETa2321Knf573m89C8oKqjXeeSWg2feR/xMy8orERakJsa+\nvndx/aJJ1Vzwd8zE7TO71R6ynuUBOSzf9HXB2XzFtCkX7zz77dG9Y/7mpL79ZOHe48QAwuCo\nH8HzyazoUF/WU6oo62G+2DCHiAEAACu4+OFGYBCEOc/wiw51SH0AUqqdncnZ1HxaY6QTKxUP\nM3hxHzPxi3O9rOfqsMfviQWIj6126/LN5Xs7mtq1fnF6msY22op9d2/dcWXiA1lF/8KEPUik\nnj9suTU+d4IrlRq8zvLT48PDIyIiwiMiIiQ/vn4JyywS6bJNMlmIXkXEa9DMUW+vFcwcelDq\nH2Bi08LZmJ/0+9PawpzXJFdkIuF09Br39Cgw86U6J0ELZ7MNcbInwze5xfXVjsux9KGvY4pu\ndMzwLCcld0pvOfReOywfJr2FXsbbDPyiWwc3Sqs71quBIA+02zVduZFn5LKmjtOwZ7+GEOWn\nnDqecnCAE/G9vLhw6pko6ZKJdYNl/hRGGdKLO+UJJRy8EahH13lm/xohf41zM/MzkVUMNzVp\nRyZ7/Gl1JLoiUGqesk3sqD2bGFnU8DYVRP0e0Vic+0ExjL5KG6YTheUqnKEUZQZds2XNk/nd\nQvKLEQTh8S12nRymGEBU9HPjrGmLtp7PFclaByO+fnx45/qBDQtdandbs37LoKYetEQmAjci\n2cRJp8eloowvy6eOX3rkkRiTb9gzd627eNPWGb3rqd+CkY0RflGYQa3RN5PYmGpFbExldOMI\nghSm3m7SZNy3fFkDsF1A58OnD3QKcMAHc3B2d3B2r92889R/Vvy3bPzwxUek3YneHZne2KH8\n8w3dKEVMFyzf9LXD8XzFWU3WLkcO9ZIuFmU9upNZ1MrWRM0qCIKYe8o6XmBiYVShKIBctwAA\nAPgDQfkItCTM+olfNPcyVxVSKVdLI82BWGTqorKnpFR0fonGMOQVJsp/tI88I2v5sxe0dw/J\nydmGHJ47sexE6WJW1MqfRQvL6jzbOfcJM6JuXL58+fLla3cex6TlaV6BIjJZiF4lBRH4RTNX\nvb2aFJhVpLqKj6lA2tAoKopWE5LphNNRvFD2up9vQu2FHYIgFh7myFvZYnSRhkLG2J7+J1Xt\naJHh9ZiU3Cm95dB77bB8mPQWekXJRfhFaw9qlQq+KbVxpQzlxnZr2yKNDksX120PG7CwBj5A\n2pc5H/Nkr3IqDN8g0N+bGe6UJxpx/EagHl3nmeVrBKF4jXMk8zOdVQw3NWlHJnv8aXUkuiJQ\nap6yja3cqa7ig2ukFxenKg2jl9KG6URhuQpnKEWZQdds2SHMftx90yfJ74rDgzsqTNCdF3On\nZ9PuN6LkhwtLJb45P6TFtQfrL++ZQsP0Ngm4nnAmjhoa8FTCSi5vmz1x1qafChlAYOYxYu6S\nJbOGOJF492VRjjAOhGpjajquMRVF+XKfLWd04wiCLG8/IATXQm9feejnt/vVzE2C8iz6/XOo\nboCzf++1xb+bn19u6rVxVMrUADtKcdMayzd9ygwhX3GWmWPPQGuT59myMv9EUr7GRnq5QiBB\nCI30AACgEkx3D7QkN6uPiRO1KriZM7cegRTHpivKKqFzMjC578pTYlme0BzL45tvCPIkua6V\n14Q6uB6pmLh4R0Ku1jExCGJh0p75Q1ydfboMmbT71A31L215fKuqVbTp9E0mC9ELKyGMXTB1\n1dvklgJTstlPqqyp7HSJRblKp2JjJ+F0gpUU4ubs4hs7U92AmRsh1TJZnpNOB5QyvN6Tkjul\ntxx6rx2WD5PeQk9EHN7qYkZt43xjsi0BjObGMnXXuRjLYh66fY1cgDv/C8Yvzp9bjfzG/0x6\nLz24g7VrRLYKlWtc75nfsLIK+6lJO83Z4w+uI+mo1Dxlm6j6Cptq+GIEQZRXa/RS2jCdKJyt\nqarHdFFm0DVbdgQPG5JeLEYQRGDiFazwWYfi3PftqndS00IvgYmL9k5tM2TfF93jEy+UJZmJ\ngzaN9EXp78a08uk8aZ1cSypPYNP7f+u+Jn7fOX8YmZZUBEGsKljhF7M+Z5GPhqjoZzYu+/FN\nvEyIfX0Y3Xj299VL3qRIF3lG9mcf7yLz9RCfnqvPj6wkXcQw0dK+u8lHTCfcvukbSr7isoke\nhLfQP0I1H7iRFWEVfDcOAAAAcqATE9ASz4RQgylKKVIVUimqX+7hAnPiTES16gfq8gnwSjqM\ncrCqRKgXmjsP86QyFH5qWetBn2VDE96GZyPeBjm3Gxn5ibebV+/yKlndl0ctHT38/Pz8/f1r\nNmrdq0cH4dU2vv30PIkoKSjhubckj6XXMYrEIsofds3CPXShqJHiABfDSDhUYMpDpY+jImES\n1Q0I0wk9r814hvOURhoXkpI7pbcceq8dzh4mGXIzxCQVUnuGF5coH28nh+ncyDNyXFffeeCj\nX9+UyU8+Hpy6t5fjr1dO4uKkKY8SpIGtPCb0deLKl4O5iQulB3ewc41oTb+Z3+CyCsdTkx5Q\nR9JWqXnKLkqhPPNQLG7oJMq3UdpgopfShulEMdAqHNNFmYGeFtbkxh4Zdj5K8rv+4vOVFYao\nLm7e9kmG7DJ0azBwyZR+devW9bUref/27bNbx+avOVXwu5Q+NiYwKCiprwu16RDkENKHehtr\n/P0tLTvPCMslFP4oz6jl4Jkrls+t60YtbnbVCXP4Z7yPIb+uMPsJftHYugGbG383l9CyXr7P\nyWaahixLtd14ymRf9aLfyZr+Zd6HvGnVLZjP/By+6RtQvuIyF29L5GuadJHc5IKEWyd8kh4A\nANSARnqgJWM7Qjtxfiy1T9+lZlB7sqUkS0Rnn2spV0LXfmTbrQeBDHwkiQz7mt4I8lC6aGxZ\nm9Lqbr5WCK6RPv8nJz5byARh1uuO1bq8SpF/aVumXJX6gYGB9evXrVXd39/fw5HQwTOSxRjq\ngm9cBr+YH6O3dBQV/qC6SiTue3U8I0e5/xpQwrka83/8PhZR0U/1gRXl/SQM9SP50QoDwpGk\n5E7pLYfea4ezh0mGRVnCzIFZsflIZQdVgRWVkDiT7OTG1mvbI/X3SxdX7gnvNae65HfCw8mJ\nuAEEdZdNobjtPwtHSg85DNUwyWDhGtGRvjI/N7OKetxPTVpAHUk7XH7KpkSYHUt1lW+4So6a\nTwKxX9ownSgGWoVjuigz0NPCmo3dZkgmNjexbnB+enW5/yY9nbHs92hsFOUPX3Nm57Su0t69\nDVq5N2jVeUjf3n3aDb6XUoAgiFiUO7XX7r6Pp+oSJVcTXvjvu3FRGrWyKOL8ojq9l2QTp08o\nU6vnvoM7O1WVf11AhqlDcwQ5Ll0szHiGIANIrluU/ZSwKbtWbG78v0eEFu6u/9QhuWUEQQTm\nVWd7Wi/++WuUM4aJNkVl76dyYWqNmzd9w8pXXGZO/KCJXN81pYpzs/GLbn/AV1YBAEBrf8qz\nLqCdsTWhYTj9TRyl1V/mUPtyDyWRBYwMKS7rQ3i79zlPb8MUTB3aEJZRah1j5b4MhPJL7cCU\nrUFdHuBe2qI8o8a9Jl1+HZv0/dPF43vmThnZpklduZe2BsTIshZ+sTAlRF8xEea+ohReJIzF\nX6TGxANBDCrhauNeFZUUfIujOIXXmyRCo0Jty9L24okjScmd0lsOvdcOZw+TDLta9vjFhOsJ\nqkIqlRPxUWMYdnKjU6017rgXEKGbNkp/n552V/qbx7fc2qucjvsq3ThSeshhqIZJBgvXiI70\nlfm5mVXU435q0gLqSNrh8lM2JYXpVyiFF+Y8j8N/0Nq6kaqQ7Jc2TCeKgVbhmC7KDPS0sCPl\nzYJ/3iRLfnfbd8xRIP9q9/TYQ9LfNWde2zu9q+LcdY41e158c8SC/2vdpKczXubodJLdcP0q\nKDXSx99ZWLXnv4SZwI2cxq85E/M6WLuWVARBzBx7mOBGYxeknSsmPZA35TEhc7q2qczmxl9k\nE0qMIIrTGzT2J0yT+SOEwnzsuuDgTd/g8hWX5ccReqfJtdkrJUwl5GR3Y2ikBwAAlaCRHmjJ\nzD4Iv5j947iqkEpgwuMpTI36FRVGJjDzqRvXtq74xXsx6r52ySgzxx62uMew4rxPlFbPDiP0\nZzQvq9OcZpxVmH5xxtNE6SLKN1t59duj05uDauv/Q560MLEKtMZlg7zE/WoCM6ow/Vp0EYWL\nLjduWwkme5QxIfYgNqyEa+sg+8Ykhon2JVIqFkR7EmTheXyLhtal6gU0d5KSO6W3HHqvHc4e\nJhlW3oRjib1IbRrq7/sj1AdgLTeiAvsNjWQJkZd08GJaIYIgxXkf536WzRDoVHudv8KspECK\nO6UHHnM1TDKYvkZ0p5fMz82sohH3U5MWUEfSDmefsqkqTL8WRaWSkxW5Hb9o49dWVUj2Sxum\nE8VAq3BMF2UGelrYgJX83f1X3xRLtwFHesp3RhEXJ88LSZf8Fph4XlmicsCupWfPI529fm0V\nEy28H69LvCqYya64opRMkmsVJN9q0ml5EW4ubHOXplfCIrfN6KHLBw54AofuDrKvXYiK4o4l\nky0e3+8kZM5KA8uyufFM4rBvqk2bch93F6ax1HOLazd9Q8xXTBJH4vyIovw9gvjvufjFqj5W\nqkJK4dv1UdSorCk00gMAgErQSA+0JDCv3NBaNiC7MP3yp3yyo4vyEg+kFzM1X2h29GaGtuzW\nkdCD/uXGUIZ2pBHKMx/pIptcLj/5SK6Iwud9bv7IwS/W9bWmLWZcEnNpLYZrzar01/mZ7bzI\nrMidTzlqwDPr5yTrYFGc//VqBtlPP2ZGzPTE6Xs1WpeIYJhowzcKHbQjdl3FL7q2CcQvGlbC\n1QgiNANcOU3hTOYlHojBfXrTzLG3Zema1oI7Scmd0lsOvdcOZw+TDHOnAaa4QQk5sevihBTq\nCbvuanilyGZubL6G8Cp/6f4IBEGizkwtwL0k6ry5K9XN/lG4U3rgMVfDJIPpa4QW7Gd+bmYV\njQwiNXUHdSTtcPYpmyoME/37NoV8+OeLH+EXfUdWUBOY5dKG6UQx0Coc00WZgZ4WFkRdGHoo\n5tcrnUnnNxgplI4FqWelo4dtKyx1UTtzeJNFzaW/v52gPEs5XoNysna7oswXJNda2qr/d9yn\nLuwq93kadqtdOc1NgBqNaOyMXzz6lGzD5LbQDPzijMr2imGY27iXKaF30SeKc0hkfiWOySEx\n4pkWXLvpG2i+YgxvcK3KvlIVAxIp1hY2xcpeI6MoOtTZQk1gibTnsm5zJjaNLHh/SkUOAAC0\nAI30QHsz6zhJf2Pi4v+djyK54udVW7XYndxnhFT5uOamFhsnw9p7rjlfdsnEXv1XSL5lXFzY\nv13rFr91HnhSx8j0HSjrLi0SJi4l1vbUKCkI3RYv6wKJ8ozHuGiuXRmimOAY/GLXOfVJrhhx\ngfIHFPVlcHvCg9DCXeEkV/y270YsjlMFXTtqBE+9TTYoJpy8Iwz/hybjCO/gDCvhfEe1xC9+\nXr2C/LrvFq3HL7q1/oueOHEGd5KSU6W3HBqvHS4fpkY8Y5cJbrJJTUXCpHGkOw/lJew+rmkE\nA5u50bH6am/cy7WQDVsRBNkx/430L0bmlTbUKUN1s38UlksPvdcwyWD6GqEF+5mfOzcaSgwi\nNXUHdSStsfyUzZwrky+QDCkWJo69RricJ7VxUxOe/dKG0UQx0Coc00WZgZ4WpmElGUOHnZH8\ndqyxYHldJflcVCRLCOtKGvqumZWpJ/2dSxwsS5VrWxfp76LsR2pCSqW8nrscNwGGmUPzF6+O\nVadp6pSqsxrjF9/NIzUHRm7stgeZsrn6zZ36NbBSEh/mNt7R3hS/ePhNKpktS+2MIMxhUCvA\nRlVIenHqpm+4+Yo5s+vK7mLi4vQZjyh8oCQv4eAb3HdbzBx7ViUxUU3im3Tpb1P7juR3BwAA\nfyBopAfaC1xGmIPu+Yx/ikg8NYmLkyftJ9uUiPee+I0i5RsvSR99LFKLjZPBN3Zf5GcnXSzM\nvDOO9GxgCU+mnLx55/5v8X5+OkbGb9Jo/OK+gTtIrvhx7RAhboSBtfdMT5PSOelQfjzhsT/A\n0ojMWuLipIkGMj4JQZAqs3vhFz+vnp5Fbk6FVfu+SX+jPKOJHrp+qzXhwfjHWaQmUvt+cuiz\nbNnDCd/YebE/oQexYSWcrc8CTxPZ80l+8vHFb0iNGSopCB955Bv+L93mVqE5cvrGnaTkVOkt\nv336rh0uHyYZQycTdnpnzJRscgXayVHLNIZhMzeifOv1TWUTtOYm7D73LXgjbvCBd/etf86Q\nUO2wXHrovYZJEqPXCC3Yz/zcudFQxf3U1B3UkbTG8lM2c1LeTjkWS6rN7/nSbvG4ufEtnAf3\ncDBTE5790obRRDHcKhyjRZnhnhZGfdrc7WFWEYIgKMpfdWGG0jB8vrVZdwAAIABJREFUY1kf\nl9zIZPUbLCmQlbcmTiZqQmrk0krWIaA4930Oicywf/Au/OLUq//h58zXkVOtdS64ueIzQhfe\nxrWSqvJ4xgb8ot/EWSxvvFV/b/zi05kHNW5WKvv7tstpsmotj28+1Z2GseNkcOqmb7j5ijm1\n5xEm4bv0F4X65NWxi/GLPkNnklnrWYosK9pWqa0mJAAAAGikB9orU3dDVQvZu7C8hJO99oVo\nXOvFkk6vckg1SJg4ETqQvlqmeb6sR/+0Dy9gcPrKAZsIvf+O9+wbXqB5pjtMlD2+91HpIoqi\nE0dX1DEmlu4T+uHmF0r9MH9C8HeNaxUk3+i+7B3+L+3Wj9QxJpxl4U2YIeBzLqmMcXFq2+gi\nsrMX6p1thUUtbWWXSWHG7aBVrzSulfR0VnCq7KW2rc8CP52fWETFaf16btcYTJj9tuPIM/i/\neLTZKjf/nmElHCqw3xbkif/Lmk5jyHSVODOmU1i+7NBMbJos82dzujM2cCopuVN6y6Hx2kE4\nfJhkVBy9ygQ3CV5+8sV2/97XuFbKqxWjrsZoDMZybmyymjDF7qj+Y/Azck9YQXaw7x+L6fTi\nYA2TDEavEbqwnPk5daOhxCBSU0dQR9Ia00/ZrMHERZM7LCjUNFlJzo/gjisIjzANls/XuHGW\nSxumE8VAq3BMF2UGelqYU1IQ2m3eU8lvr04Hhnspb381dexm9ruTSkb4QvXfRvy6RTZRkEc3\nD12iZ+M7XPobw0pOpWroBFmS/3lhuGxKSAvnwcvr0TkBBs/IaUcnWb8BDBONGRusfpXC9NvD\nzkVJF1GeyerJ/ixv3G/SVPxi6scFc+6RG/QsLvgn6B/8Hxyqr3Q1Zum1P3du+gadr5jj2mRH\nBTPZXSw7eseAo9/UhJdKebV+8GXZhzBQntG6edVIrCc+hWukrzjKh3xUAQDgDwSN9EB7KN/6\nyALC0+/VcQ02PFH3PZ6YawtbLHtNcvvmroRay8/Lg28kq6vlx91e3WEN2Y1rx73lno6Osk79\nhRmPm7WfEYPr9a8EVrJzWL3zSbI2UYdqS/9ypuG7UCt2dsAv7hrYcMv9ODXhizLeDKjXO5rw\nqafOh7uUVR4481YToj5z3+oeZzY5NXbCL14i0Xp9Z92Qnjs+yf0xg+EvOxYU6bB9VLBzA2FW\nsaf/NF9wOUrNGsV5XwZ22YL/S5OVg7SPAE7cnf+1nndRTYCS/JB+NVvgH8BQ1GjZXvlpr9hP\nOJ2SAEFa71yDfzmVl3iuRrel6l9HPtnQr9+RCPxfmq3Zo/g1QUPHqaTkVOkth65rB+H2YWpk\nYtNidzvCm50XS1qP3vdezSo5P841bLYA/1JeFZZzo0PVlb64zk9pr2Vz/Zk79priydKIFsPF\ndHpxsIZJBqPXCF1YzvyGUtlTZBCpqTuoI2mH6adsRNmzXrexz7WMrlrpnzfUGb5bTZrnJ95t\nWXNQFu6zIybWgccG+2rcMsulDdOJYqBVOKaLMm6eFtYuH0X3ZvT8UViCIAhPYHvwSB9VwfjG\nHgt9bSW/i/NDu2/7oCpkce67/jtDpYuzuyt/O0SSqX2nyri+LOdCNHyTMfHxnCLcLI/lB0/S\nZe9Ktd2+zAiV3UJ+nBqy7JnqqQUw4b9tByQJZRnMvdXOVrYqZxdgaOPmzkNXNCB89Xxth/qH\n32mY9B4T520eWmcz7juYKMqbfYSeVz14ap64OXLTN/R8xRCewPHAKEJ3pVMjGm1/oWG2g4xP\np1q3JJzPcj2PtiER+aKM2/iXz0PrO6kJDAAAAMGAgRIXyiXllfQCevdQmHkXv/06Kz8oiUVJ\ndi93wkTZfCOnyZsuF4sVgwrPrhlrK/jVL4THJ6x1P7NQceOiojhpeAlL944PYnOVRVZ8/8B8\naWBTZ9kAKdvy67U+OqVS364VoIQ6o03FTkfvRSgNnPTp1pSOhFcMKM90Z3gmyX1pICoYROw6\nzeNbDF+0P0koUggqfhG8sQ7x01Yoik67Fatq23nJx+QyWLlud+mJNoa5GhMm2N8arzRNdZUb\nTxicyuNbbbwXoypwfuLbmb3rIMoErn2rdBWts1B6+HD8ig22f1UVktQuxEVj/e3wwXh8q+FL\njuWKFC9CLCP0aqeKhG+SmTt1UQxJZr9yiShVr9/crxlFiuE/X95SV+HlSLVJVxVDMp1wGO1J\ngGF3Z9WV27tnk6F3I7MVQ5YU/Fw5ujWPWIbYVhqVr3jVUomAkih1K4dfsVBJdqBGi5hwKikx\nzpTezF07TB+m1rmRPGHOq/KmhIk9UJTXatSKHzlChbCihwfml8UFRnFHXX/jZ7nQLORGORc7\nKX/LWW/tJwpnhDQyqcOd8iQ7eil+g+3vx8kFYDq9uFnDJHOembtGdIm5HDYzP2cre3pPTUqY\nLUAMs46k90KV0adsTNmznmugyqoFWQovKKTKtxn3OiFfIXzxw0MLyilM6DX9rvxNQRWWb7VM\nJwoHq3BcKMo4eFoYuXxIKEy/YcX/lamqTrmnPnD0tWHS6PH4lktOv1OywdR3w6rIhizbB8zU\nPZJ7qjhKN+g38on6wA/6ERLL0rtSFR18LyhRupdT/QlDePnGLutvK6kqiITJczsT4sMT2N3U\n9JaVoY3nJ52z4BNqqjy+1cjlh2Lyi5WGD7l/qlcNR4TIK2iv+siTROmJm7mbPnmlIF+pcTXQ\nFb+1eVFZ5NctzvuM70Yjicz4decyS5QU7qKipKOrJjsZEd5dmNg2/JynPBPKSfk4WLqWwNRb\nyY0SAAAADjTSGyxuNNJjGJYZtsuUJ9/R0dqrxsiZy/YeOn752pWTh/ctnzWqhpc1rvrivPn2\nYXz4l0oe4TAMww6295TbMt/EdeD05SfOXXsfGpWRmhD68c3J7cu6NpAFs/Luce9QY+ki7a9Q\nMQy7NrUmoqBCvbZTF649dOzUletXTx7as3rJP4Pb1ZCrcSII0uzfx+R3pFFW5Al3hS/KG9uU\n7TRo4tqN246eOLlv59aF00fWqyhfX0cQJHDGJTVbLgWN9BgmGl7WGr8jFOXX6vDXgQs3X3/4\nGpecERf55e7Vszs3rhzds6k57hHI2IZwunh8y15T/91/7MTRk4R3AVpnoYxvE/Armtg0Pn7/\nQ3xKRnJc1IfXz3Jw9WOSu8hLvCRXdUYQxMzFf+CkBbv2H7l49drJg7uW/TNzUOdAI+KlivKM\nFj9LUtwg1UZ6gak74YwJbJp1H7Fs9caDx07u37l50ewJDZTlQHPnoJRipU9gzCYcE0kgLsnu\nqzBeB+WZ1mnbb/nG7SeCL1y7dHb/zi1TBge5KryI5Bs5XUzIU7pZ8hFQxIVGek4lpQQXSm8m\nrx1mD5OFRnoMwyKODlSMPN/IrmWv0ZIzs2/HpgV/j6rpRchaNhUGHKgtm8ZQ2XtexnOjnLTP\n0xQPBEWNHmUp6YqhO723J1GisZGehfTiYA2T5Hlm7Bqh7RpnN/NztLKn99SkhNECxEDrSFwo\nVBl9ymahkX7OAsKsbyjPrGHnv5au3njw2Im92zbMnz6iuoclosCn+07yO2T5VosxnCgY96pw\nHCnKuHZa9NVIv/f3pAVGZhW+qWg4xBGNKk/onV+n79y7Lz5lFokwDEuJ+nphzzx8FxkUFWz7\nRkN35NDdjaTbtPacrT7wfGKW0FGIigbsksKozsTuNSjPqHGvScG3HoX+iE9Pivnw6vG+5VOr\nu8n3ih5+UF1rNNMbf7frL1QhPwvM3Np0H7J4zcZ9B4/+d/zIzq0bZ40f0qCyM6LA0jPoK7nG\nVI0oPXEzd9MnrxTkKzV0aaTHMCzq/GjFYzSxq9il9+Dpc//deeDY0QN71q9e8leP1h5WxnLB\neALr3V/SSe7o+eTK0hWdau6mfqAAAPBngUZ6g8WZRnoMw0JPzTRReFhVhSewXnM/oSDtMv6P\nqqqPhRn3FBuh1TCyqHo/teDbyWbSvzDRSI+JCjYMVfKgqFHdMbs0PktRFX9vhTmf8ncragxc\nWaT2JXupaKTH0j6tU3yNop5TnaEf02LKmso/MCAI4uB3Ar9xrbNQfvJJNRF4myt7a0N+F3H3\nNrqoGJ6rRt/NL5VujWojfZkal4JntqC0azPHRndUP4AxmnAMJUFB6rP2ZSnPq8k3cdt4V+WE\nFpQiIIcbjfQcSspfOFB6M3rtMHqY7DTSYxh2aWEnStE2tqr5NKMQ/8JC6XtepnOjHLEo38/c\nSG4te7/lzJwzTrQnkUeikZ7x9OJgDZP8eWboGqHrGmc583Ozsqf31KSE0QIEM8w6EkcKVeae\nsllopD+Tmr9nsB/JyEt4tZubrWw8n8odslvaSDCXKBjGuSocV4oyjp0WvTTSZ0Xu5P9usm21\nmVSxn590s5LCBYLyzJztTBEFQSsf0RLPgrQrsn3xzeKK1HUsrq3QCqgLVY2pGIblJVz3VWgS\nVq/+tPMkD5m5jd9e2k2x3wkZ5i6NH6cpn7FDC1SfuBm66ZNXOvKVKjo20mMYdnlhkBbngW/s\nuuJiJPm9THGX5YGgS1FUIwkAAH8a+CY9oEGl3qs+nJxNpo3Q1K7GjtshM5q5iIsJH+zxMlW+\nrolt87d31yuOElbK2qfduXePmzkoeeSgGc906sHXx2Z2MSb/fM63HPrvqRc7R1NuR9XEtfns\nD8ErA2zIftAI5ZkMWXX53dFZxn/Axx3tq0x7c3A8ydcoKCpoOWxZ6LP9Ve09rm1WMhqALmZO\nffu5KRk4ogu35lM+P9tbjXTm5xnZT9v98OQk+bnItNZz1d0TMzrxyT1D2vl1uBVyu6WLyk8D\nMp1wTCSBqUPgxS/PB9V3I7+KmXPNwy8/TWnhrjmoweJcUnKp9Jag99r5hXuHSUmnRZeuLx9k\nQa7/mZV3y1Ov7zUg8WE8lu8IKM9sfVsPuT+23Ej/hyFLK6bTi6M1THIYukbownLm52ZljzyO\npyYtoI6kNeaestkx4sCLVcMbaw6HIAiC1O+/6OOVpVZ8Cs+oernVMpsoBluFY7YoM9jTQqMV\nXeeJMAxBEFO7VmfHB5BZxaxMmydP9lUnvinCxAVJGYT+NCiKdp174vIsspeqeqb2HfuX+fWo\ngokKlkdmqgyKlXzJK6ZlpxqZu7R78fxEK29SLccoz7jPvIOP13bV+8ZbzTv39eI6f4pNzjX7\nzPv8/V4je9qqClSfuPV80y8t+Yo5QYsuX10x3FpAoT3I0rPRqfdfZ3cuTzK8qOjnzoRcyW8U\nNVrWgkJmAACAP5S+ewkAbXFpJL1EXvzzCR1VPi2gKK96x8lfsn71ssz6uVD6L76xq/otZ0fe\n6hforSYbozzT5sOWJ/7+FjvjI+l/S/t0dXgbDeMDUJ5x/c4jr3zJ0GL75AlzwhcMaqp+SD2K\n8hv2nno3jFRMSsdIeomE50db+SuZMhp3ZtBKLYZceEuY+P326jFliPGka3AVhmGZoccqWit/\n1tJuGLdESVH8jtkDbNXWtlFUENht3JWv6rKBFiPpJX+MeXSoRXl1c4sJTN0mrD6VKyI1RIah\nhJNgKAkwTPTg6Io6bhZqoo0gCN/EZeTiA8lCzd9b02HgS3mBwMjUzNzSytrOzl5fI+kluJCU\ncvRYerNw7TB0mKyNpJfIDL05rIWvqmgjCILyjBoNWiIdoENyMBajuVFOeshM/Cp8Y9dEEle9\ndhge9ElzeUJmJL0E0+nFqRom1fNM+zVC4zXOZuaX4FplT++pSQnTI+l/M6Q6EqcKVSaestkZ\nSS/58+tjCyuq7eRk7d1o+9UQ7fbJfmkjwdyrDwmOVOG4VpRx5LSwP5I+4bHsyw7DLkdTWrcg\n9cWkbnUUJ06XsHCvt/r0R3pj+2pWNen2Kw1/qCpYcd4X9UlJlZoRzxIiYeLqMR1s1L4tKePf\n7MBjlfVSvWy8KCts2z+jfGw0N9UHtByw/+o7LSKvkVZP3DTf9EkqZflKke4j6SUyQ64NbV/b\nSNNQARN7/5mbzmRRmeQGw7CkV8OlW7ApN0e7GAIAwB8FxTBMl9sVAHKSQ54cP378wt2XsbGx\ncQkZFk5uXl5eAYFtR48Z08TPQRos5X3/MjV/TZpk7tQrL/m0xi3/eHHx4KkrT54+Df2RmJGZ\ngZraubq5ubp5NO7QZ8jgvn5lZE/+xdlR4TF5kt98Y1e/Cva0HqK8tMg3ly5dunL9/rfYhKTk\n5NT0fAtbO3tHx4pV6zVu3Kh99761vWges6uKMDPqypngMxdvf4tNSExMTErOMLV1dHZ29vCp\n0rp9h44dg6qVtdG8ldJJ/PH2yZMXbz999uJbTHJGRgZqbu/m5ubu4dO0fefu3bvV8LZVXKcw\n5eO5iw+/RiQ6ePv6+/v7BVQv60TbKDpRYdyhtcuOXHsZFRUVl1rg6OLq6urq5ua29cTxslQm\n4FVUkht3+/KlCxcuvQmLTkpMSkrJMLayc3R09KpUo3nz5m06925U0U73+LuZCBKEIsnvMjUu\nJb37PcMhJnx39+J/p/67/zo8MTExKTnT3KGMq6trWb863Xr27Na5uRO1o2Mw4ZhLAgQr+vT4\n1uXLl28/fZ+QlJSclJQlFDiVKeNcpoxP9YadOnXq2K5JGbNSM66DJC4mpV5Kb7auHRnu3KS0\nkBz2/OzZsxdvPomOT0xMTMwRGbu6urm7uwe27TVs2KCquI/85f4I+5lfIvlt7upbTt3wEZbu\nCJkR/9pVlL2X9+pw9ufV7lSOHkgwnl6crWGSwcw1ois9ZX7OVfao4mZq0gzqSNpi7im7t5NF\ncGq+a+DV+GcdNAZWC/vy5at0wcsvQDosHhPnP7104tDRc5++/4yNjUvKKHJ0dXVzc69Up1nf\nvv06NQ7QeoJH/d5qmUsUCQOtwjFdlHHqtNB3+aiGCfu42Z9OzEMQxNp7ZMaPPVpcL7Evrxw8\nde7KrSdRcfGpuWIXN7cKNRp1695j6IAgGyrTV5BRmH7ZwrGLGMMQBDGxaZqf+YBTM7gW58Zc\nPH701KX7P2Ji4+Jik3PELm7u7u7uFWo2HTh4cPu6ZMcKs7xxcXHa45u37t+//+Dx69jklLTU\n1MwCzM7BwdHRsWylGs2aN2/Rsn1ggJKP09NFyyfuP+amz2i+Yk5u9Nvjpy+/ePXqzfuvyemZ\nWVlZImMrZ2dnZ2fXaoEtO3bs0LZ5bUvqRURwa8/ed2Ilvzuf+3GxmzfN8QYAgFIHGumBfryZ\nU6POyg+S3/YVd6SFjdVvfAAAlKhsaAQAqAXXzp8juGPZ3teipYvzQtOXVqKhjxQA3AeZHwB9\n0eIpu5OD+ZX0grIdb0ddacVw7OhnEKUNvPooxQz68mHOwor2/0ZkSH5viMmZ6sHF3iQAACZg\nomxvS4fowhIEQfgmbjHZMa7GnOqoAwAAXAQFJdCPe2dkz9JuHWvpMSYAAAAAAPQSFUWPvx0n\nXTSxabqIjllMAOA+yPwA6JEWT9mSvoMW5TRMSsxBhlLawKuPUsxwLx9GjdraRvp79/IPeowJ\nAIBlqR9mS1roEQTx6rgLWugBAIAMgb4jAAxYxpetC3aGSRdrzFwxwpNUD1lh9tP5kZnSxbpD\nytEfOQAAAAAAPfl5cWxKsUi6WGn0WgHNk4kCwFGQ+QHQEZtP2eLi5E95xQiClO3uQT2mesZm\naQOvPoAig758GOXeam9D6wtPs4sQBPl2eFzOlg9WdE+qDwDgptPjzkp+oCh/+Y6W+o0MAAAY\nCmikB9rjWyZt3bpVulipoOeIvc3JrHh/4Zgi8a/vLPD4FosD9P9FTwAAAAAAuqyf9lj6G0XR\nRbOq6DEyALAJMj8AOmLzKTvxyZxiDENRwaw6ZbSKrD6xWdrAqw+gyKAvH0ahfKt9axr7j7mD\nIEhx3qcJDxMOt3DTd6QAAIwTZj+Z9jpZ8tul0eZ+zub6jQ8AABgKmHUEaM/SdZyzMV+6+O3o\noFfZQo1rpb7d3HnzF+limbobPE34asIDAAAAABiQ9M+Lt8XmSBetPKd2dzDTY3wAYA1kfgB0\nx85TtjA76emFNY06HEYQxLXZ2mY2xjpEWQ9YLm3g1QfAM/TLhwUV/zpZ1cJI8vvyuF36jQwA\ngB2f102S9EtDUXThscH6jg4AABgMaKQH2uMZu+3tUla6KCqKa1tv2Ju0QjWrhF9bU63BNOHv\nvuQIgkzZ34vBKAIAAAAAsKgg+VXPlqvwf2m9eYq+IgMAmyDzA0ALFp6yC1JPmdm6Nuo2M6qw\nxMypcfCFcbpHm03slzbw6gNIGfrlww6ekePJNb9mus4MX7LzZ4768AAAQycuTh6y7rPkt1vz\njWO8rPQbHwAAMCAohmGaQwGggjDrqb9rs+8FJdK/CMzcugz+a/jwwY2qlLO1+NWhuDAt6uH/\n2bvz+CqrA+Hj5+ZmIxBiArIoFF+0jKIU3FBcXqm7rbbVVqtiHZyxVrvYVdwqWKXVVz+jtVbb\n2s64i9Uy6jijo9KWWikWRasiUheEalgUCGQjJLl53j9uBGQJmuWEcL/fv473nufx5HKTzyf5\n3ec8M/94/2033P7kvI0PH3LMDe88+d2oKwY6wy5F+UsbW+8BOWDMo8tfPLF71wM9he+dHVDS\nuM8B43ffffdhu5Stqlz4+CNPrGpqWf9kUd9Dlq96psydONkhefND1+jq37Lr37+v94AJBb0H\nH3PqudfccPmnyou64qvoTNvBTxt/+iCr5337dJOkZe2pu+48fVldCGHQITcvnfXN7l4R0IVe\nu+XIkd/8YwghL3+n/12+9JiK4u5eEUCPIdLTUe/89+V7fuHa+kzL5k8V9SnfeafimqqqNXVb\n+Ix56W6fefbVR0aW5Hf9GoFOJjRC+/je2QEl61J5W/0bxAWP/ePWE4bGXA7E480PXaZLf8tO\nMtVvV9YNHjKoV14P+RjN9vHTxp8+CD3x26f7vP/c5AFjrw4hpFLpuyrXnDW4d3evCOgSSXPV\n2IpBz9c0hhD2u+TPc685rLtXBNCT2O6ejhp64o/n/881u5UUbP7Uutqqd99dusVfU/uNOes5\nv6YCADuu/c+fJlKSm7z5oYO69LfsVLrv8E8M3jESY8yfNv70Qdixvn262s4HXvWLL+wWQkiS\nzEVfuqW7lwN0lZdvOjlb6EsGnPD4VYd093IAehiRnk4w7LhJf6/825XnHF9ekN7m5F4DRk26\n8bevP3fXP/k1FQDYEeXl73TGpffO+cXp3b0QiM2bHzqL37Lb1i0/bfyjwMfy1WkzDikrCiEs\n+8vFVzz3fncvB+h8TbUvnnj5rBBCKq/4hj/dN6BAbAL4eGx3T2dqrnv3v6b97um/znl+7t8W\nL1u5ZvXq+ky6rKysbKed+g8eftAhhx522GHHHnd4eb4PHUPPZstuaB/fOzuill9fM+nu+/97\nweJ3akLpJ0eM2Hu/o34w5aL9B5d098Kgq3nzQwx+y94Of9r4R4GP6P051w4++LJMkvQe9KX3\nKx/spd/BjuW3p+9x+m/fCiEcOvnpZ350eHcvB6DnEekBAAAAAAAAIBKfYAQAAAAAAACASER6\nAAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcA\nAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAA\nAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAA\nAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAA\nAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACA\nSER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhE\npAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6\nAAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcA\nAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAA\nAAAAAIhEpAcAAAAAAACASPK7ewHbqeWzbvnq/3sihLDPRbf95PBBbU+ur3ztyd//YdYL899f\nsXJNQyivqBi8256HH/Hpow4ZVZCKslwAAAAAAAAAegKRfgsa17x4yQ1PfbS5yezpt9x491MN\nLcn6h1Ysq1+x7N1Xnp0xbcT4SZd+Y+9+RV20TgAAAAAAAAB6FtvdbypJGn51yXUrm1o+yuS5\nd112zZ1Pri/0qbzC0pKC9c9WvT5zyoVTFjZkumShAAAAAAAAAPQ0rqTf1It3XPZUZd1Hmbl6\nwR1XTZ+fHfceOu7888485FPDClKhftWiGf91778/NCdJksaa+ZMvufeen57dlUsGAAAAAAAA\noGdwJf2HrF7w4FUPv/XR5rbcfu1jSZKEEIr7H3rLTZccMXpY9g70JRW7fW7i5defd2B2XvXC\n3933dk0XLRgAAAAAAACAHkSk3yDTsPhHk6e1JEkqr1e/gm28MrXv3vnHVQ3Z8Veu/mZFfmqT\nCSM+e/mJA0qy48dufLrTVwsAAAAAAABAjyPSr5c8+KPJbzU0hxD2O+cn/6d4GzcCePv+Z7OD\n4orjT9q195ampE75+r7ZUc07967JJJ24VgAAAAAAAAB6IpG+1cJHp973alUIYac9vzz587tv\nc/5DL67MDnY56ritzSnf+8y8VCqEkGRq71v2ke5zDwAAAAAAAMAOTKQPIYT6ZX+87D+eDyGk\ni4dNuer0TXeu30ySqX6xtik7/qdPD9zatHTR0INKC7Ljt1+u6pSlAgAAAAAAANBzbWNT91yQ\nZKr+7eJf1GeSVCr1xSuu2r04vc1DGmv+mklat68fU1bYxsze95ziAAAgAElEQVT9+hTOrm4M\nIaycsyqcMLSjS03smQ8AAAAAAADQPVKpbV7xvW0iffjjTZc+V9UQQvjE8ZeeNar8oxzSVP/6\n+vHIkoI2Zg4eUhKW1IYQ1i55N4TRHVtpqKmpaWxs7OBJAAAAAAAAAGiH8vLydHrbV323Lde3\nu39v9i9/OnNJCKHXzodfe95BH/GolsbV2UEqlV+WbuuzEoXlrdfZtzSv7sAyAQAAAAAAANgR\n5HSkb6x5+dJ/eyKEkJcu/c513+rdZm7/0IFrWi9nT6VL256Z/8E96UV6AAAAAAAAAHI30idJ\n428uufb9xkwIYdwF147rV9wl/5uWD+4i37KuS84PAAAAAAAAQM+Ru5H+5bsv/993akMI/cdM\nvPjYoR/r2MKy1k3sk0xd2zOb65qzg1RBxcdfIwAAAAAAAAA7lPzuXkD3WPP69Cunvx5CKCgZ\ncdUPP/9xD88rLMsOkqSxviUpydvqPvmNVa0b4+fld0Kkz8vLS6fTHT8PAAAAAAAAAN0iRyP9\ntVPuyyRJKpWecPUVQwo/dvbO7/XJEJ7Mjl+rb9q/T+HWZr5XuTY7KCof1L6lbqxPnz4dPwkA\nAAAAAAAA3SVHI/3ihuYQQpJk7vj+V+5oc+a868/73PWt43G33Hvp0NIQQlHfg/NSt7YkSQjh\npdrmNiL9y7VN2UH/cQM7Y+EAAAAAAAAA9GC5e0/6jkily8b0LsiOX539/tamJc0rZ1Wvy46H\n7uee9AAAAAAAAAC5LkevpC/p3SfJtLQxoaG+PpMkIYR0UUlxfust54s2+kjDyWMqXnhmWQhh\n6RPPhpOHbfEk1YsfbEqSEEIqXTJhcO9OWjsAAAAAAAAAPVWORvrf3HNv2xOumvCl52saQwh7\nXfjTnxy+hdvJDz/joPDMIyGEuqXT5lSfPLbvFna8f+bWWdlB6ZAJ/QtsWgAAAAAAAACQ65Tj\ndiodMvHw8uIQQpK0/Hzq9GSzCVWv3nvbm9XZ8QnfPSLu6gAAAAAAAADYHon07ZVKn3vx8dnh\n6gXTLrz+waV1za1PJZkFz/z2O1c8mCRJCKHsk2dMGN63u5YJAAAAAAAAwPYjR7e77xTlI//l\nilMWXP2fC0IIi/989/l/eXj4HsPKilqWVy6sXNmQnVNYNmrqj0/r1mUCAAAAAAAAsL1wJX2H\nHDjx2ovOOrI4LxVCSDI1b/193gsvz19f6PuPPHLqzVOGFae7dY0AAAAAAAAAbC9cSd9BeYef\n9p39xh3zxO//MGvu/BWrVlWvC+XlFYOH7/1/x48/+uB90qnuXiAAAAAAAAAA241U9r7pAAAA\nAAAAbP8ycya1+9j02Os6cSUAtI/t7gEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACLJ7+4FdL+WxpVPP/bEcy+/8vqiJTU1NU2hsE9p3yHDR+wz\n+qBjjzukX2F6q0cmjaedfGpDS7LN/0XpkIvuvfXwzlw0AAAAAAAAAD1Qrkf6Rc9Mm/qzB95r\nyGz0WHPVuvqqFctemfP0A3fufOo3Lz5z/IgtHttY+/JHKfQAAAAAAAAAkJXT291Xzrz529ff\nv3Ghzy/uW1ay4YMLmcb377/hBzc+vnCLhzfWzOnyJQIAAAAAAACwA8ndK+mb6+dNumlGkiQh\nhILewyecN/GQ0bsPrChNhVCzatncGdP/4/6nVje3hBBm/urSIw67e7/Swk3OUP33d7KD0iFn\n//Bbe7fx/0oX7do1XwQAAAAAAAAAPUnuRvrXbr+1JpOEENKFA6785XWjyjY0+NKKQeNP+8aB\n4/Y651s3NbQkScva237zxi+/u2mGX/X8yuyg/7gxe+21R7SVAwAAAAAAANBD5e529w/Mei87\nGPaFSzYu9Ov1Hnrkt8f0y45Xzn108wlvv1GbHQwc269r1ggAAAAAAADADiVHI32mYeFLtY3Z\n8fgThmxt2oiTWrepb6qbt/mzcz44wwEDenX2AgEAAAAAAADYAeVopG9a+/r68YGlBVubVvjB\nFfZJS0Py4aeSlvp5dU0hhFQqPa5vUVcsEgAAAAAAAIAdTI7ek76g96jJkydnx4ML01ubturF\nqtb5pfunPvxUU83cTJKEEAr6jC5Np5a8MvN///JK5buVS5evSvfu22/nIaP23ffQ8YcN6rXV\nkwMAAAAAAACQa3I00qcLdz3ggF3bntNcv/gX0xdnx584/tRNnl235vnsIJXX+2dTvjHjxXc2\nenLZ4rdef+HZP9zz73ccffp5X//SuE0Cf7s1NzcnSbLteQAAAAAAwA6qI5skNzU1ddo6AHJS\nfn5+KtXR/JujkX6LkkxTXV1dbW1tTdWS52c98/TMWZX1TSGEvsOPvuKM3TeZvHre0uxg3Zo/\nz3hxyyfMNK584q5r5r9x1s8uOS3dGaG+vr6+sbGxE04EAAAAAAD0TOUdOHbNmjWdtg6AnFRe\nXp5Od3QzdZF+g9v+dcL/rGrY+JFUqmD0UV+88ILTyzdr7KueX7VhWrr02NPOOOqwsZ8Y0C/U\nr1i8ePGbr/71oYf+sKIxE0J4Z/Y9l9+z17VfGRXhSwAAAAAAAABgeybSt6XPboeeePyx/Qu2\nsHPM3/9Rmx0UlOxx6Y1TDxhc0vpE0cC9ygfuNWbsMccdcdW3r5pX0xhCeG361HlfvHefEq82\nAAAAAAAAQE5LX3nlld29hu3FkvnzGvpWDBgwYODAgRUlzStWr21cvejpJx+Z827B+EP2yv/w\nrQWq84tGfGrMvvvue9L5X9t/YK/Nz5ZfMvDgg0r/87G5IYSQNL+ZGfuZfft1cIXr1q3LZDId\nPAkAAAAAANBz9aqa1e5jG8oP7cSVAOSgXr165eVt4RrvjyWVJEmnrGbHs2T+7NtvvOmvy+tD\nCAMPOOvXk09rx0l+d8GEuyprQgjFFZ954I7zO7ik6upq96QHAAAAAIBcVr7wunYfWzV8Uieu\nBCAHuSd919pl5LiLbuh19tlT6jPJ8ufvuWPxCROHlX7ckxx04q53/WpBCKGx+i8hdDTSFxQU\npD58QT8AAAAAAMBHVFRU1N1LAOjZOiXXivRtKSwdM2FQn19X1oQQZt23aOKloz7uGcr2Kc8O\nWppXV2eSvukO/Zv16rWFffUBAAAAAIDc0ZHb4paWfuzLEQHodDka6V965Hfz65tCCP32/cyx\ne5a1MXP48D6hsiaEULvwjRA+dqRP5W/4SFqBa+ABAAAAAAAAcluORvrVMx6etrg6hLDLsk+1\nHembGz74RFqqYP2DVa+88Hp9UwihsGzPfds8fG3lquwgv3i3XnkqPQAAAABA58vMaf9tttNj\n2397bwCAdsjRSD941E5hcXUIYfUrz4WwdxszX1pUmx302nnX9Q+uef2eH9/5ZgihqOyIB+/+\nfhuHv/FIZXbQZ+gXOrhmAAAAAAAAAHq6vO5eQPfY5bP7ZQdrVz4yp6Zxa9Ma18x+eMXa7HiP\n0z6x/vFBRx6bHaxb86e7Fqze2uHN9Qt+Pr/1Svq9Tv/YW+UDAAAAAAAAsIPJ0Ujfe/Dpw4vz\nQwhJkrl5yp21mWTzOZl1y3952c3NSRJCSBfucu7IivVPFZcf/7mBJdnxQ5N/+Er1FjJ/S/OK\nX182tS6ThBAKSvb+zv79u+ILAQAAAAAAAKAHydFIn8or+f45rZe2r3nz0a9979on58xfXlWb\nhBBCy+r3KufOmHbhP399xjute90fcM7lAwo+9Fp9+dLT81KpEEKm4R9XnvftOx6d/f6a+hBC\nSDIrly5+fuZDPzz/G48vrA4hpFJ5p1x6kRvSAwAAAAAAAJBKki1cRJ4Tksz9U869728rN34s\nXVzaq6W+tjGz8YN7HHPhDd86evMT/G3aVZOnPb/xI/nFpYWZuvqmlvWPpFJ5R/zzT753yshO\nXToAAAAAABtk5kxq97Hpsdd14kogAm94gJ4uR6+kDyGEVPrLV97y1RNGZy+Iz8o01Gxc6NNF\n/U86/+otFvoQwpgzJl/9tc+X5294DZsbajYu9MUVe5x92S0KPQAAAAAAAABZOXwl/Qdql8x/\n/Mk/zZv/2qKlK+vq6kJ+r9K+fYcM33PU6AOOPubQisJtfI6hqbryTzOeevHv/3hv+XvL31te\n05TeqaxsyB57H3DAwccceWCJXe4BAAAAALqYC4vJKd7wAD2dSA8AAAAAQM+mWZJTvOEBeroc\n3u4eAAAAAAAAAOIS6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgkvzuXgAAAAAAwI4jM2dSu49Nj72uE1cCAMD2yZX0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkeR39wIAAAAAgC6RmTOpfQemx17XuSsBAADWcyU9AAAAAAAAAEQi0gMAAAAAAABAJCI9\nAAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMA\nAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAA\nAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAA\nAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAA\nAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABA\nJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi\n0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9\nAAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMA\nAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAA\nAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAA\nAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAA\nAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJPndvYDu19K48unHnnju5VdeX7Sk\npqamKRT2Ke07ZPiIfUYfdOxxh/QrTG/zDPWVrz35+z/MemH++ytWrmkI5RUVg3fb8/AjPn3U\nIaMKUhG+AgAAAAAAAAB6hlyP9IuemTb1Zw+815DZ6LHmqnX1VSuWvTLn6Qfu3PnUb1585vgR\nWz9BMnv6LTfe/VRDS7L+oRXL6lcse/eVZ2dMGzF+0qXf2LtfUdetHwAAAAAAAIAeJKe3u6+c\nefO3r79/40KfX9y3rGTDBxcyje/ff8MPbnx84dbOMPeuy66588n1hT6VV1haUrD+2arXZ065\ncMrCD30CAAAAAAAAAIDclbtX0jfXz5t004wkSUIIBb2HTzhv4iGjdx9YUZoKoWbVsrkzpv/H\n/U+tbm4JIcz81aVHHHb3fqWFm5xh9YI7rpo+PzvuPXTc+eedecinhhWkQv2qRTP+695/f2hO\nkiSNNfMnX3LvPT89O/JXBwAAAAAAAMB2KHevpH/t9ltrMkkIIV044MpfXnfKp8cMqijN3kG+\ntGLQ+NO+8YubLizOS4UQkpa1t/3mjc1O0HL7tY9lG39x/0NvuemSI0YPy96BvqRit89NvPz6\n8w7Mzqte+Lv73q6J9FUBAAAAAAAAsB3L3Uj/wKz3soNhX7hkVNmmV8mHEHoPPfLbY/plxyvn\nPrrJs7Xv3vnHVQ3Z8Veu/mZFfmqTCSM+e/mJA0qy48dufLqzlg0AAAAAAABAz5WjkT7TsPCl\n2sbsePwJQ7Y2bcRJu2YHTXXzNnnq7fufzQ6KK44/adfeWzo6dcrX982Oat65d00m6dCKAQAA\nAAAAAOj5cvSe9E1rX18/PrC0YGvTCj+4wj5paUhC2Phi+YdeXJkd7HLUcVs7vHzvM/NSf2lJ\nkiRTe9+yugt27dOxVQMAAAD0SJk5k9p9bHrsdZ24EgAAgG6Xo5G+oPeoyZMnZ8eDC9Nbm7bq\nxarW+aX7b1zok0z1i7VN2fE/fXrg1g5PFw09qLRgdnVjCOHtl6uCSA8AAAAAAACQ23I00qcL\ndz3ggF3bntNcv/gX0xdnx584/tSNn2qs+Wsmad2+fsyW7me/3n59CrORfuWcVeGEoe1fcQgh\nhHXr1rW0tHTwJAAAAJDLCl+Z0r4DG0f9qHNXklPa+uvJtqxdu7bT1pF72v3Ke9k7whu+W3jZ\nySne8ADdqKioKC+vo/eUz9FIv0VJpqmurq62tramasnzs555euasyvqmEELf4UdfccbuG89s\nqt+wW/7Ikq3ulh9CGDykJCypDSGsXfJuCKM7uMJ169Y1NjZ28CQAAACQy9r9R+26urrOXEeO\n6UhL8Mp3hDd8t/CG7xZednKKNzxANyos7MiP4VYi/Qa3/euE/1nVsPEjqVTB6KO+eOEFp5en\nN97tPrQ0rv5gQn7Zh5/aRGF56z9SS/PqTl0sAAAAAAAAAD2PSN+WPrsdeuLxx/Yv2HS/gsY1\nrZezp9KlbZ8hv7T1OnuRHgAAgI2VL7yu3cdWDZ/UiSsBAAAAYhLpNxg8Yq+R1etSqVQqlWqu\nXbJg0aqat2dO/cHM3Q8/+5offLE41dYV81vVknwwWNeJSwUAAAAAAACgJxLpN/jcZT/63Eb/\nuWT+7NtvvOmvy+vf+vNd31rb8uvJp61/qrCsdRP7JLONe7c01zVnB6mCis5dLQAAAAAAAAA9\njki/VbuMHHfRDb3OPntKfSZZ/vw9dyw+YeKw1s3t8wrLsoMkaaxvSUrytnqRfWNV68b4efmd\nEOmLiooKCgo6fh4AAAB6tN69e3f3EnKRl727eOW7hZe9u3jlu4WXnZziDQ/QQan27b/+YSJ9\nWwpLx0wY1OfXlTUhhFn3LZp46ajs4/m9PhnCk9nxa/VN+/cp3NoZ3qtcmx0UlQ/q+HqKioo6\nfhIAAAC2B5kOHNurV69OW0fuafcr72XvCG/47uIN3y284buFl52c4g0P0NPlaKR/6ZHfza9v\nCiH02/czx+5Z1sbM4cP7hMqaEELtwjdCaI30RX0Pzkvd2pIkIYSXapvbiPQv1zZlB/3HDeys\nxQMAAAAAAADQQ+VopF894+Fpi6tDCLss+1Tbkb654YNPpKU27DOfSpeN6V3wQm1jCOHV2e+H\nk4dt8dikeeWs6nXZ8dD93JMeAAAAAAAAINfldfcCusfgUTtlB6tfea7tmS8tqs0Oeu2868aP\nnzymNbovfeLZrR1bvfjBpiQJIaTSJRMGu8sLAAAAAAAAQK7L0Ui/y2f3yw7WrnxkTk3j1qY1\nrpn98IrWm8rvcdonNn5q+BkHZQd1S6fNqd7yGZ65dVZ2UDpkQv+CHH2pAQAAAAAAAFgvR8tx\n78GnDy/ODyEkSebmKXfWZpLN52TWLf/lZTc3J0kIIV24y7kjP7RffemQiYeXF4cQkqTl51On\nb3581av33vZmdXZ8wneP6PyvAQAAAAAAAICeJkcjfSqv5PvnjMqO17z56Ne+d+2Tc+Yvr6pN\nQgihZfV7lXNnTLvwn78+453Wve4POOfyAZtcCp9Kn3vx8dnh6gXTLrz+waV1za1PJZkFz/z2\nO1c8mCRJCKHsk2dMGN43whcFAAAAAAAAwHYuv7sX0G2GHj/5zNnn3ve3lSGEmrdn/3zq7BBC\nuri0V0t9bWNm45l7HHPh5Z8duvkZykf+yxWnLLj6PxeEEBb/+e7z//Lw8D2GlRW1LK9cWLmy\nITunsGzU1B+f1uVfDAAAAAAAAAA9QY5eSR9CCKn0l6+85asnjM5LpdY/lmmo2bjQp4v6n3T+\n1Td86+itnePAiddedNaRxXmpEEKSqXnr7/NeeHn++kLff+SRU2+eMqw43WVfAwAAAAAAAAA9\nSe5eSR9CSOWVnHTB1Z/+/PzHn/zTvPmvLVq6sq6uLuT3Ku3bd8jwPUeNPuDoYw6tKGz7cwx5\nh5/2nf3GHfPE7/8wa+78FatWVa8L5eUVg4fv/X/Hjz/64H3SqTaPBgAAAAAAACCX5HSkz+qz\ny8hTJ448tQNn6D1071Mm7n3KxM5aEQAAAAAAAAA7phze7h4AAAAAAAAA4hLpAQAAAAAAACAS\nkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHp\nAQAAAAAAACASkR4AAAAAAAAAIsnv7gUAALB9+d5vF7X72Bu+vFunrQMAAAAA6CaZOZPad2B6\n7HWdu5IdkivpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAA\nAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAA\nAAAAIsnv7gUAAADQzTJzJrX72PTY6zpxJQAAAAA7PFfSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAP+fvXuPs6osFD7+7NmbYRgYhgEUFTA+HDyJN9QUozTMS96yo3QO\naF7SfCVPdlIpOd5eKjU1+xy6qqeXzEugoSmeOp9TmppWZvIi9ooioMlNUpDbMMMIw+zZ7x8b\nkBAQ9+x51uy9v9+/HvastfYzz16N+9Pvs9YCACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4A\nAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACCSTNITAAAAAADKwYTpiwre\nd/K4IUWbBwAAdG2upAcAAAAAAACASER6AAAAAAAAAL0McAUAACAASURBVIhEpAcAAAAAAACA\nSER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhE\npAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIgkk/QEAACgK8rOnFjw\nvumRtxZxJhXFsgMAAABQ9lxJDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAA\nAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAA\nAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlI\nDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRZJKe\nAAAAEEIIE6YvKmzHyeOGFHMeAAAAAEBnciU9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAA\nAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABA\nJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi\n0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJJmk\nJwAAwK5kZ04seN/0yFuLOBMAAAAAADrOlfQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlI\nDwAAAAAAAACRZJKeQJew9MWnn3jm+ZfnLlixprGpeUNNXX3DHgMPOmTEx48/5ZDBdTvdLdc6\n9sx/2dCee9/j1w26ctrtxxRzxgAAAAAAAACUoEqP9K3rXr3txlt+N+/tbV9sblzd3Lh66Wtz\nfjPjvuGjx135lXH9Mju45UBr84u7U+gBAAAAAAAAIK+ib3ff1rJg4virti30qVS6vqFXKpXK\n/zOXa5/71P2X/uvNb7a2v3f31qaZkSYKAAAAAAAAQFmo6Cvpp11z/estm/LjYZ/47IVnHjd0\n8MCe1VWtzasXLpg9bcpP/rKsJYTQsvy5q6578J5bx223+7r5S/ODukHnX/dvB+7ijdLdB3bC\n9AEAAAAAAAAoMZUb6ZuXPfjQ6+vy46GnXzX54o9t/VF1r74fPvyEb9529H9PvmLK75eFENbM\nm3bv66ecP7T3tkdYPWtVftB/1KHDhw+LNXEAAAAAAAAASlXl3u7+1bsezQ8yPYbddNGo926Q\nqqr59BXf3r+2W/6fv7tzznYbLHy1OT8YMLJfp00TAAAAAAAAgPJRuZH+V6+szQ/2Hj2+tiq1\nw21S6d4XHbtXfty08LHtfjqzuTU/OGLPHp0zRwAAAAAAAADKSqVG+lzrC82bn0a/36n77GLD\nfluukm/bsPDvDtDe8tL6TSGEVCo9qnf3zpklAAAAAAAAAGWlQp9J37ZhUTaXy48P6rOrxL5x\nzebL5VOZ+m1f39T0fP4I3XqNqEun/jbnqd/8ac6yN5a9uXx1umfvfnsMOviwwz5+7NF79Uh3\nzm8AAAAAAAAAQOmp0Eif6THsgQceyI+71+wq0v/xkaX5QY+G47Z9fWPjrPwgVdXzB1+/9PEX\nlm7zw7cW/3XB7D8/OfXOu084a/yX/nnUjm+m/8G1tLRs2rSpSAcDAEpDrw7s29jYWLR5dNV3\n7DwltPKWPa+c1iE+K58Iy56UglfesneEEz4pJXTCl9MH7YRPhGWnojjhgQhK6JtkZHV1dVVV\nHb1dfYVG+hCqampq3nejxvm/mLa4KT/e/7xR2/5o7Utv5gcbG//w+As73j3buurRe2+e++q5\nP7hqbLoYob6trU2kBwB2X/xvDr6r5EVeB8ueZx2SYuUTYdkTYdmTYuUT4ZtkUqxDIiw7FcUJ\nD3S2sv87k9tyv/aOqNhI//7WL/3jlddOy4+r6w6bMGrAtj9dPWv11nEqXfepsWcff/TIfffs\nF1pWLl68+LWXn5sx48mVrdkQwtJnp147dfgt5x0cc/IAAAAAAAAAdEEi/Y7ksjN/OeV7d/+6\nOZsLIaSr97zs1n/v9ffXws9f0pwfdKsddvV3bzxi79rNP+g+YHjDgOGHjjzxpNHXX3b9S02t\nIYRXHrrxpc9OO6jWagMAAAAAAABUNNl4e0tmP/bTu+6ZveUu91WZhktumXzMwNrtNhs85pwv\ntGZDCPseffLh/Xdw5/ya/odc++2LPnfpf+ZyuVz7Oz+evvCHF+7X2ZMHAAAAAAAAoCsT6d/V\nvPT5n0658/G/vLH1lT0PPmHCFeMP2FGDH3Xq6e97wJ6DTjlvn6n3LmsKISx/+okg0gMAAAAA\nAABUNpE+hBBy7Ruemn7HHdOf2tCey79SXbfvGedffM5JI1K73vP9HPXpgff+eF4IoXXdn0K4\npIPz7NmzZ23t9tf0AwDsTJ8+fQrarzn6O5abyCtv2fOsQ1KsfCIseyIse1KsfCJ8k0yKdUiE\nZaeiOOGBzlb2f2eqqqo6fhCRPjT+9ZnvT/7RrKXr8/9Md9/jpLHnnH3mJ+szHQz0IYRQf1BD\nftDetnZdNtc73aFjptPpjk8JACgt2Q7sm8nE/rIX/x07TwmtvGXPK6d1iM/KJ8KyJ6Xglbfs\nHeGET0oJnfDl9EE74RNh2akoTnggghL6JlmKKn2Nlvz+7q9NnpG/gD6Vyhx5+oUXn3vqgJqi\ntfBUpvvWcbciRH8AAAAAAAAASlhFR/qVz99z2X/MyOZyIYTafQ7/8lcvP3q/3br9wpo5sxe0\nbAohVNfvf9j+9bvY8p1lq/ODTM2QHlUqPQAAAAAAAEBFq9xI3/bO/Ik3PZIv9H0POu0737x4\nj267+/yAxgVTv3XPayGE7vWjH/zZV3ex5av/tSw/6DX4jI7NFwAAAAAAAICSV4TH2peo2bdP\nXrkpG0Ko7n34928Yv/uFPoSw13Gfyg82Nj5977y1O9usrWXej+ZuvpJ++FkHd2CyAAAAAAAA\nAJSDCo30uWzTbc8sz49PnHR5ffqD3Yi+puHkzwyozY9nTLpuzrrW927T3rZyyjU3rs/mQgjd\nag+8/CP9OzZlAAAAAAAAAEpehd7ufv1b961paw8hpFLpo9qXL1iw4n13qcr0GTZ0z63/HHf1\nWf99xV3tuVx2w5JvjL/s9HPOP+0TI/aorw257Kq33lg4f/bDU3/+0op3QgipVNWYq6/0QHoA\nAAAAAAAAKjTSr3puQX6Qy2UnTbxyd3ap6XvaA3d/ces/64ae8Y2zXpx0/6wQwqaWZQ9Pufnh\nKSFTU1edXd+yqX3rZqlU1ejP33TOiL5FnT5Q0SZMX1TwvpPHDSnaPAAAAAAAAPjgKvR292te\nWNPxgxx69qQbvvhPDZl317BtQ9O2hb6m77Dzr7ltwpgDOv5eAAAAAAAAAJSBCr2S/u2VG4ty\nnBGnXfSTY05++vHfvjB/yYrlK5avWN60Kd2nvn7QsAOPOOKjJx53ZK273AMAAAAAAACwRYVG\n+hPvmHZikQ7VrffAE8ZccEKRjgYAAAAAAABAGavQ290DAAAAAAAAQHwiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEkkl6AgAAOzVh+qLCdpw8\nbkgx5wEAAAAAAEXiSnoAAAAAAAAAiESkBwAAAAAAAIBI3O4eAAAAgHJT8IOTgmcnAQAAncyV\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQSSbpCQAA\nJSM7c2LB+6ZH3lrEmQAAAAAAQIlyJT0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARJJJegIAUIjszImF7Zge\neWtxZwIAAAAAALD7XEkPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJFkkp4AQGnLzpxY8L7p\nkbcWcSYAAAAAAAB0fa6kBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAA\niESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBI\nRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESk\nBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoA\nAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAA\nAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAA\nAAAAiESkBwAAAAAAAIBIMklPAAAAAAAAAIDKNWH6ooL3nTxuSNHmEYsr6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACLJJD2BLmHpi08/8czzL89dsGJNY1Pzhpq6+oY9Bh50yIiPH3/KIYPr3nf3\nlmWvPPbEk8/Mnvv2ylWNG0JD3757D9n/mNGfPP5jB3dLRZg+AAAAAAAAAKWh0iN967pXb7vx\nlt/Ne3vbF5sbVzc3rl762pzfzLhv+OhxV35lXL/Mzm45kHv2odu++7PfbmjPbX1p5VstK996\nY86fH7//H4+dePWlB/br3pm/AQAAAAAAAAAlo6Jvd9/WsmDi+Ku2LfSpVLq+oVcqtfn691yu\nfe5T91/6rze/2dq+wyM8f+81N9/z2NZCn6qqrqvttvWnaxY89fWvfP31DdlO+w0AAAAAAAAA\nKCUVfSX9tGuuf71lU3487BOfvfDM44YOHtizuqq1efXCBbOnTfnJX5a1hBBalj931XUP3nPr\nuO12Xzvv7usfmpsf9xw86pLxn/vYIR/qlgotqxc9/stpd86YmcvlWpvmTrpq2tTvnR/z9wIA\nAAAAAACga6rcK+mblz340Ovr8uOhp181+WufP/gfBvesrgohVPfq++HDT/jmbXdf/ImB+Q3W\nzJt275aNt2i/65b/yeVyIYSa/h+/7ftXjR7xofwT6Gv7DvnMBdd+Z/yR+e3Wvf6L+xY2xfml\nAAAAAAAAAOjKKjfSv3rXo/lBpsewmy4a9d4NUlU1n77i2/tvuX397+6cs+1Pm9+453erN+TH\n593w5b6Z1Ha7/+Np1356z9r8+H+++/sizhwAAAAAAACAElW5kf5Xr6zND/YePb62avvEnpdK\n977o2L3y46aFj237o4U//3N+UNP35NMH9tzh3mO+dNjmfZdOa8zmijBpAAAAAAAAAEpZpUb6\nXOsLzZufRr/fqfvsYsN+I/vlB20bFm77+owXVuUH+xx/0s72bTjwc1WpVAghl22+7631HZkv\nAAAAAAAAAGWgQiN924ZF2dzmS9sP6tN9F1tuXNOaH6Qy9VtfzGXXbW38H/7kgJ3tm+4++Ki6\nzXfLX/jimo5MGAAAAAAAAIAykEl6AsnI9Bj2wAMP5Mfda3YV6f/4yNL8oEfDcVtfbG16bmvj\nP7S+ehe7H96r+tl1rSGEVTNXh1MGd2TOIYSmpqbW1tYOHgQorj4d2HfVqlVFm0dXfcfOU/DK\nl9MixFdCJ3w5fdAltOyJvGPnKaGVt+x55bQO8Vn5RFj2pPgmmYjSOuHL6bMuoRPesueV0zpE\nZtmpKE54IALfJHemT58+6XS6gwep0EgfQlVNTc37btQ4/xfTFjflx/ufN2rr65taFmwdH1Db\nbRdH2HtQbfhbcwjhnb+9EcKIAie7RS6Xy+U82x7KR/z/RfsbEixCciKvvA86z9+ZpDjhE2Ed\nkmLlE2HZE2HZk+IrTSIse1KsQyIsOxXFCQ90Nt8kd0eF3u5+d6xf+scrr52WH1fXHTZh1Lu3\ntW9vXZsfpFKZ+nRqFwepbth8nX1729rOmSYAAAAAAAAAJaNir6TfpVx25i+nfO/uXzdncyGE\ndPWel9367722ifGtjVseVJ+u2/WRMlueSS/SAwAAAAAAACDSb2/J7Md+etc9s7fc5b4q03DJ\nLZOPGVhb4OHat9xdoX1jMWYHAAAAAAAAQAkT6d/VvPT5n0658/G/vLH1lT0PPmHCFeMP6L/9\n0+ur6zffxD6XXb/rY7atb8sPUt36Fm+mAAAAAAAAAJQkkT6EEHLtG56afscd05/asOXC9+q6\nfc84/+JzThqxwwfOV1XXb94x19rSnqut2ulj6VvXbL4xflWmCJG+d+/eHT8IUFzZ1wvft3//\n/gXt1xz9Hbuigle+nBYhvhI64cvpgy6hZe/AO3ZFJbTylj2vnNYhPiufCMueFN8kE1FC/2Ht\nwDt2RdFPeMsegr/wCbHsVBQnPBCBb5KdSqQPjX995vuTfzRr6eZr4tPd9zhp7Dlnn/nJ+sxO\n03umx34hPJYfv9Ky6SO9qne25Ypl7+QH3Rv2Kt6UAQAAAAAAAChJlR7pl/z+7q9NnpG/gD6V\nyhx5+oUXn3vqgJr0rvfq3vujVanb23O5EML/a27bRaR/sXlTftB/1IDizRoAAAAAAACAklTR\nkX7l8/dc9h8zsrlcCKF2n8O//NXLj96vz+7smErXH9qz2+zm1hDCy8++Hc780A43y7Wtembd\nxvx48OGeSQ8AAAAAAABQ6aqSnkBi2t6ZP/GmR/KFvu9Bp/3wh5N2s9DnnXno5uj+5qN/3tk2\n6xY/uCmXCyGk0rXn7N2zY/MFAAAAAAAAoORVbqSfffvklZuyIYTq3od//4bxe3T7YEsx9Oyj\n8oP1b94/c13rDrf54+3P5Ad1g87p/wGPDwAAAAAAAED5qdBynMs23fbM8vz4xEmX16dTH/QI\ndYMuOKahJoSQy7X/6MaHcu/ZYM3L0/7Pa+vy41OuGN2R2QIAAAAAAABQHir0mfTr37pvTVt7\nCCGVSh/VvnzBghXvu0tVps+woXu+++9U+n/9+8l/uOqREMLaefd/5TuZa7505t49MyGEkMvO\ne+YXN09+MJfLhRDq9zv7nKG9O+f3AAAAAAAAAKCUVGikX/Xcgvwgl8tOmnjl7uxS0/e0B+7+\n4ravNBzwhf89Zt4ND88LISz+w88u+dMjQ4d9qL57+/Jlry9btSG/TXX9wTd+a2xR5w4AAAAA\nAABAqarQ292veWFNUY5z5AW3XHnucTVVqRBCLtv01/kvzX5x7tZC3/+A42784dc/VJMuynsB\nAAAAAAAAUOoq9Er6t1duLNKRqo4Ze/nho0589Iknn3l+7srVq9dtDA0NffceeuAnjj32hI8e\n9MEfdg8AAAAAAABA2arQSH/iHdNOLN7Reg4+cMwFB465oHhHBAAAAAAAAKAcVejt7gEAAAAA\nAAAgPpEeAAAAAAAAACIR6QEAAAAAAAAgkgp9Jj2UpezMiYXtmB55a3FnAgAAAAAAAOyQK+kB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAA\nAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAA\nAAAiySQ9AQAAAAAAAIAdyM6cWPC+6ZG3FnEmUESupAcAAAAAAACASER6AAAAAAAAAIhEpAcA\nAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAA\nAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAA\nAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAA\nAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACA\nSER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhE\npAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASDJJTwAoVROmLyp438njhhRtHgAAAAAA\nAFA6XEkPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQSSbpCQAAACRmwvRFBe87edyQos0DAAAAgIrhSnoAAAAA\nAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAA\nAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAA\niESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBI\nRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESk\nBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoA\nAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAA\nAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAA\nAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiESkBwAAAAAAAIBIRHoAAAAAAAAAiCST9AS6nDef\nuvaLk+d0qx3+0M+//T6b5lrHnvkvG9pz73vMukFXTrv9mOLMDwAAAAAAAICS5Ur67T15/+u7\nuWVr84u7U+gBAAAAAAAAIE+k/zstyx974K2W3dy4tWlmp04GAAAAAAAAgDLjdvfv2tS06HvX\n3pnL7e7F8evmL80P6gadf92/HbiLLdPdB3Z0cgAAAAAAAACUPpE+tKxZvmTJ4ll/eOzXT/zf\npuwHuH396lmr8oP+ow4dPnxY58wOAAAAAAAAgPJR0ZF+49onLrn0jlVNrYXtvvDV5vxgwMh+\nxZsUAAAAAAAAAGWrop9Jn8s2FVzoQwgzmzfve8SePYo0IwAAAAAAAADKWUVfSZ+pHX7uuedu\n+0rL8icf/u3fdmffXHvLS+s3hRBSqfSo3t07ZX4AAAAAAAAAlJfKjvQ9Pjx27Ie3fWX1S3N3\nM9Jvano+m8uFELr1GlGXTv1tzlO/+dOcZW8se3P56nTP3v32GHTwYYd9/Nij9+qR7pSpAwAA\nAAAAAFCCKjrSd8TGxln5Qaqq5w++funjLyzd5odvLf7rgtl/fnLqnXefcNb4L/3zqFSR3rS9\nvT2XyxXpYPCubDZb9u/YNVn5RFiEpEReeR90nr8zSXHCJ8IJnxTrkAjLngjLnhR/4RNh2ZNi\nHRJh2akoTngqihM+EWX/TTKdLsJF2iJ9gda+9GZ+sLHxD4+/sONtsq2rHr335rmvnvuDq8am\nixHqm5ubW1tbi3AgylRDoTuuWbOmmPPoku/YeQpe9mDlO6aETvhyUkInfDl90CW07Im8Y+cp\noZW37HlO+I4orZUvG5Y9Kb5JJqK0Tvhy+qxL6IS37HnltA6RWXYqihOeiuKET4pvkjvT0NDQ\n8U4v0hdo9azVW8epdN2nxp59/NEj992zX2hZuXjx4tdefm7GjCdXtmZDCEufnXrt1OG3nHdw\ncpMFAAAAAAAAoEsQ6Qs0f0lzftCtdtjV373xrJEl/QAAIABJREFUiL1rN/+g+4DhDQOGHzry\nxJNGX3/Z9S81tYYQXnnoxpc+O+2gWqsNAAAAAAAAUNFk4wINHnPOF1qzIYR9jz758P41792g\npv8h1377os9d+p+5XC7X/s6Ppy/84YX7RZ8mAAAAAAAAAF2ISF+gUaee/r7b9Bx0ynn7TL13\nWVMIYfnTTwSRHgAAAAAAAKCyifSd66hPD7z3x/NCCK3r/hTCJR08WjqdzmR8ZBRf/PPKmZxn\n5RNhEZISeeV90Hn+ziTFCZ8IJ3xSrEMiLHsiLHtS/IVPhGVPinVIhGWnojjhqShO+ET4Jrk7\nSm/GpaX+oIb8oL1t7bpsrnc61ZGj9ezZsxiTomxlC92xT58+Be23ttA3LPgdu6KClz1Y+Y6J\nfsITQkmd8OX0QZfQsnfgHbuiElp5y57nhO+IJFYey54Y3yQT4S98Uvx/BYnwFz4Rlp2K4oSn\nojjhk+KbZKeqSnoCZS6V6b513K1DgR4AAAAAAACAkudK+kKsmTN7QcumEEJ1/f6H7V+/iy3f\nWbY6P8jUDOlRpdIDAAAAAAAAVDSRvhCNC6Z+657XQgjd60c/+LOv7mLLV/9rWX7Qa/AZMWYG\nAAAAAAAAQBfmdveF2Ou4T+UHGxufvnfeTh+Q0NYy70dzN19JP/ysg2PMDAAAAAAAAIAuTKQv\nRE3DyZ8ZUJsfz5h03Zx1re/dpr1t5ZRrblyfzYUQutUeePlH+kedIgAAAAAAAABdj0hfoHFX\nn1WVSoUQshuWfGP8ZXf/6tm3G1tCCCGXXfXm4llPzbjukkt//fq6EEIqVTXm6is9kB4AAAAA\nAAAAz6QvUN3QM75x1ouT7p8VQtjUsuzhKTc/PCVkauqqs+tbNrVv3SyVqhr9+ZvOGdE3uZkC\nAABACCFMmL6o4H0njxtStHkAAABAZXMlfeEOPXvSDV/8p4bMu2vYtqFp20Jf03fY+dfcNmHM\nAUnMDgAAAAAAAIAux5X0HTLitIt+cszJTz/+2xfmL1mxfMXyFcubNqX71NcPGnbgEUd89MTj\njqx1l3sAAAAAAAAAthDp/07fg77xy19+sF269R54wpgLTuic+QAAAAAAAABQTtzuHgAAAAAA\nAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAA\nIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiySQ9AQAoAROmLyp4\n38njhhRtHgAAAAAAQIlzJT0AAAAAAAAARCLSAwAAAAAAAEAkbndP8WVnTix43/TIW4s4EwAA\noAvyHBkAAACgkrmSHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAADg/7N379Fxl+edwN8ZjSRbtlBl3BCMXbwckQA24ZIL4ISaAGlwc9nC7kIAJcumPZQN\nXZqyGwohgRygTXpyFtIkZDdNc8pNJoQCbXZJFwKENBAI5XLCxTiEcjfG4KssCzG6zP4xwqEE\nC/Ob0fOb0Xw+f73Het/5PefhPcMcffW+AwAAQYT0AAAAAAAAABBESA8AAAAAAAAAQYT0AAAA\nAAAAABBESA8AAAAAAAAAQUp5FwAAAAAwY515zVOZ1158wuK61QEAAEDDcJIeAAAAAAAAAIII\n6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAe\nAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEA\nAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAA\nAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAA\nAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAA\nAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAg\niJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII\n6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAe\nAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEA\nAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIKU8i4AAAAAAACg5YyuXJB5\nbbGvv46VABDMSXoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoA\nAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAA\nAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAA\nAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAA\nAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAA\nCCKkBwAAAAAAAIAgQnoAAAAAAAAACFLKu4CGs/b2c//44ofau/a97nt/tZNLhtc8evOtt915\n/6qX1m/YMpJ6583bffE+hy//4FHL9m8vTGuxAAAAAAAAADQTIf3r3Xb1E29leuWu6y695Mof\njUxUtv/T+heG17/w3EN333L1O44465zTl+zaWfciAQAAAAAAAGhGrrv/N4bX3fz9F4Z3fv59\nV3z+y5ffvD2hLxQ7urvat/9002O3n3/G+U+MjNe5SgAAAAAAAACak5P0vza69amvnfvdSqXy\n5lNTSiltXn3ZBdetqo7nLDrstFNPWvauPdsLaXjjU7f8YOC7N9xTqVTKW1edd/bAVV/71LRV\nDQAAAAAAAEDTENKn4U3rnnnm6Xt/evM/3fovW8d3NqFPaeLvvvLDaqI/a/77L/3rs+aVJr9/\nvmve4o+fcu4+v33R//j2PSmlwSf+fuWTx57077qnpXoAAAAAAAAAmkdLh/SvbL71tNP/14at\n5Qxrh567/McbR6rjT174J9sT+u3e8ZFzP3rDif/3xeGU0g8v+eeTvv6RGqsFAAAAAAAAoNm1\n9HfSV8a3ZkvoU0pPfu/u6mDWvGM+tsecN5pSOO4zB1VHW58d2PIWzugDAAAAAAAAMDO19En6\nUte+/f39r/2X4XW3Xf+j53dm7Q0PbKgOFhz14R3N6V1yUrHws4lKpTI+tPKFbf91j7m1VAsA\nAAAAAABAs2vtkH72O48//p2v/ZeND6/amZC+Mj74wNBodfzOD+62o2ltnYsO6W6/a7CcUnry\nwU1JSA8AAAAAAADQ2lo6pM+svPXn45XJ6+sP7OmYYubBczuqIf2GezamFYtqfW65PDExUeOL\nBGivYe3IyEjd6mg9mTsf3/aZ9B+6uTa8zidtr00TbXhtr7Lha9FEndf2Khu+Fk3UeW2vsuFr\n4ZNkLmz4vNjwuWiuDT9jaDvNqC2Ph9rwNB3v8HnxSXJHOjs7C4VCjS8ipM9idPix7eP9uqba\norsv7ErPD6WUXn7+uZQOqPG5IyMj5XK5xhcJ0FvD2qGhobrV0Xoydz6+7TPpP3RzbXidT9pe\nmyba8NpeZcPXook6r+1VNnwtmqjz2l5lw9fCJ8lc2PB5seFz0VwbfsbQdppRTx4PteFpOt7h\n8+KT5I60t7e3tdX6d1bFupTSaibKm6uDQqHU0zbVH0p09E6es58Y2zztZQEAAAAAAADQ2IT0\nWZS3TB5nL7R1Tz2z1D15zl5IDwAAAAAAAICQfppNVF4dvJJrHQAAAAAAAADkT0ifRUfP5CX2\nlfFtU88c2zZWHRTa501vTQAAAAAAAAA0vFLeBTSlYkdPdVCplIcnKl3FHX4tfXnT5MX4xVId\nQvqOjo62trbaX6eRzZ49O+8SWlHWtg+FP3Gm0flcaHtegjuv7VU2fF5s+FzY8HnJ1Adtr5UN\nnwttz4vO50Lb86IPudB2WooNT0ux4XMx4z9JFgo7jIZ3npA+i9LsvVO6uTp+dHj03XM7djTz\nxTUvVwedvW+v/bmzZs2q/UUCjNewds6cOXWro/Vk7nzWtr+U9YEz6j90Hhte51Oy4XPSRBte\n26ts+Fo0Uee1vcqGr0V457U9JRs+Pz5J5sKGz4sNnwu/HMuFttOMRvN4qA1P0/EOnxefJKeV\nkD6Lzl0OLRa+NVGppJR+MTQ2RUj/4NDk/2TnH7ZbUHEAAAAAAAD1c+Y1T2Vee/EJi+tWB8BM\n4Tvpsyi09Rw4p706fuSuHf5ZR2Vsw52Dr1THiw72nfQAAAAAAAAArU5In9GxB06G7mtvuntH\ncwafvna0UkkpFdq6Tt69+a5ZAAAAAAAAAKC+XHef0V4nHpLu+MeU0ra1V98zeOz7dnmDG+/v\n+Nad1UH3wpPnt/t7CAAAAACAGcLt3wBAZpLjjLoXnnJ476yUUqUy8c2Lrqv8xoRNjwz8zeOD\n1fGKP1seWx0AAAAAAAAAjUhIn1Wh7Y/+/JjqcPPqq8/46rVrt41N/qgyvvqOaz77xWsrlUpK\nqWfvE0/ea5e8ygQAAAAAAACgcbjuPrve/T79xeNWX3j96pTS0z+98rSf/cNefXv2dE6sW/PE\nmg0j1TkdPftf9BfH51omAAAAAAAAAI3CSfqavPeUr3yu/8hZxUJKqTK+9V9/+fD9D67antDP\n3+/Ii75x/p6z2nKtEQAAAAAAAIBG4SR9jYqHH//Zgw/70E233nbnfavWb9w4+Erq7Z23+15L\nfveII44+dGlbIe8CAQAAAAAAAGgYQvp/Y97SL/3gB2951ZxFS447Zclxp9S/HgAAAAAAAABm\nEtfdAwAAAAAAAEAQIT0AAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHSAwAAAAAAAEAQ\nIT0AAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHSAwAAAAAAAEAQIT0AAAAAAAAABBHS\nAwAAAAAAAEAQIT0AAAAAAAAABCnlXQAAAAAAAABAQzjzmqcyr734hMV1q4MZzUl6AAAAAAAA\nAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACA\nIEJ6AAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgi\npAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIEJ6\nAAAAAAAAAAgipAcAAAAAAACAIKW8CwAAAAB4y0ZXLsi8ttjXX8dKAAAA4C1xkh4AAAAAAAAA\nggjpAQAAAAAAACCIkB4AAAAAAAAAggjpAQAAAAAAACBIKe8CAAAAAADI7sxrnsq28OITFtez\nDgAAdo6T9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAA\nAAAQpJR3AQAATIulA8vTwI3Z1q5YtqS+xQAAAAAAUOUkPQAAAAAAAAAEcZKemeDMa57KvPbi\nExbXrQ4AAAAAAACAKTlJDwAAAAAAAABBhPQAAAAAAAAAEMR19wAAAAAArze6ckHmtcW+/jpW\nAgDADOMkPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAA\nAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAA\nQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAE\nEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQJBS3gUAAABAExtduSDz2mJffx0rAQAA\nAJqCk/QAAAAAAAAAEERIDwAAAAAAAABBhPQAAAAAAAAAEERIDwAAAAAAAABBhPQAAAAAAAAA\nEERIDwAAAAAAAABBhPQAAAAAAAAAEERIDwAAAAAAAABBhPQAAAAAAAAAEERIDwAAAAAAAABB\nhPQAAAAAAAAAEERIDwAAAAAAAABBSnkXAAAAAAAAk0ZXLsi2sNjXX99KAACmiZP0AAAAAAAA\nABBESA8AAAAAAAAAQYT0AAAAAAAAABBESA8AAAAAAAAAQYT0AAAAAAAAABBESA8AAAAAAAAA\nQYT0AAAAAAAAABBESA8AAAAAAAAAQYT0AAAAAAAAABBESA8AAAAAAAAAQYT0AAAAAAAAABBE\nSA8AAAAAAAAAQYT0AAAAAAAAABCklHcBAAAAAMBURlcuyLy22Ndfx0oAAIDaOUkPAAAAAAAA\nAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQ\nREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE\n9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQpJR3Ac2sUj7+2P80MlF504ndCz838K3D\nAyoCAAAAAAAAoJE5SZ9deejBnUnoAQAAAAAAAKBKSJ9dees9eZcAAAAAAAAAQDNx3X12g798\ntjroXvipL/y3JVPMbOvcI6QiAAAAAAAAABqakD67jfduqA7mH3bgvvv25VsMAAAAAAAAAI3P\ndffZPfmroepgt/ftmm8lAAAAAAAAADQFIX129wyVq4P3vG12vpUAAAAAAAAA0BSE9BlVJoYf\n3jaaUioU2g7bpTPvcgAAAAAAAABoAr6TPqPRrfeNVyoppfa5B3S3FZ5/6Pb/97OH1jy3Zu26\njW1zdtn1txfuf9BB7z/iA2+f3ZZ3pQAAAAAAAAA0CiF9Rq9subc6KBTnfP3802954NnX/PCF\np//1sfvvvu2q71529CdO/cx/PKxQp4eOjIyMjY3V6cWmUS23/w8NDdWtjkZ94vTJ3Hltr4UN\nnxcbPhdNtOG1PS86X2XDZ9ZEbc/lidOniTrfgG3P5Wo1Gz7l0Xltr0UTvc/k8sQ3ZcPnohXe\n4Ruw7cmGp5W0wvtMLk9khvFJMi9+Cb8jXV1dxWKt19UL6TPa/PDa6uCVLT+95YE3njNe3nDT\nFV9e9av+r599fFs9gvpyuVwul+vwQtOslrfLkZGRutXRqE+cPpk7r+21sOHzYsPnook2vLbn\nReerbPjMmqjtuTxx+jRR5xuw7bn8atWGT3l0Xttr0UTvM7k88U3Z8LlohXf4Bmx7suFpJa3w\nPpPLE5lhfJLMi1/C78js2XX4la2QPqON927cPi60df/e8Sce9YH3/c7bdk3D659++unHH/n5\nDTfctr48nlJ69q6rzr1q3698cv/8igUAAAAAAACgIQjpM/rlM5PXJrR39Z1zyUXv2b1r8ged\nu+3bu9u+B77vQx9efsGfXvDw1nJK6dHrLnr4Pwws7dJtAAAAAAAAgJYmNs5o0XEnf7o8nlL6\nnQ8cc/D8Wb85Ydb8d537V3940un/u1KpVCZe/vY1T37jv+wdXiYAAAAAAAAADURIn9Fhv/+x\nN50zZ+GKTy646oo1W1NK635yaxLSAwAAAAAAALQ2If30OuSje1zx7dUppfLgz1I6rcZXmz17\ndmdnZz3qalzd3d2Z1g2FP3FG0fa86HwutD0vwZ3X9rzofJUNnwvv8HnJ1Adtr5UNnwttz4vO\n50Lb8+KTZC5seFqKDU9LseFzMePbXiwWa38RIf306lnaWx1MjG0eHK/s0lao5dXa29vrUdS0\nG69hbfxfIcykv3vI3Hltr4UNnxcbPhdNtOG1PS86X2XDZ9ZEbc/lidOniTrfgG0fzeOhNnzK\no/PaXosmep/J5YlvyobPRSu8wzdg25MNTytphfeZXJ7IDOOTZF78En5a1SHnZwqF0q/3RHtN\nAT0AAAAAAAAATc9J+iw2PXT/Y8OjKaWOnn0O2qdnipkvr9lYHZRmLZ5dlNIDAAAAAAAAtDQh\nfRZbHrvqLy5/PKXU2bP82iv/+xQzf/WPa6qDuYv+IKIyAAAAAAAAABqY6+6zePuRv1cdvLLl\nJ1es3ryjaWPDq7+5avIk/b6f2D+iMgAAAAAAAAAamJA+i1m9x3x8t67q+IbzvvDQYPk350yM\nrf/O5y/aNl5JKbV3Lfnsu+eHlggAAAAAAABA4xHSZ3TCOZ8oFgoppfGRZ7506p9e9n/uemnL\ncEopVcY3rH363ttv+MJpp//TE4MppUKheNw5n/OF9AAAAAAAAAD4TvqMuvf6gy994sHzrr43\npTQ6vOb673z5+u+k0qzujvFtw6MT26cVCsXl//kvTz5gXn6VAgAAAAAAANAonKTP7sATz7vw\nj/99b+nXPRwb2frahH7WvL5Pff7SM4/bL4/qAAAAAAAAAGg4TtLX5ICP/OHfHn7MT2750QO/\nfObFdS+ue3Hd1tG23+rpWdi35D3vOfRDR763yy33AAAAAAAAALxKSF+r9l32OPq4U47OuwwA\nAAAAAAAAGp/r7gEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEA\nAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgSCnvAgCA\naKMrF2ReW+zrr2MlAAAAAADQapykBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoA\nAAAAAAAACCKkBwAAAAAAAIAgpbwLAABoFaMrF2RbWOzrr28lAAAAAADkxUl6AAAAAAAAAAgi\npAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIKW8CwAAAGag0ZULsi0s9vXXtxIAAAAA\naChO0gMAAAAAAABAECE9AAAAAAAAAARx3T0AAAAA8GtLB5angRuzrV2xbEl9iwEAgJnHSXoA\nAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAAAAAAAIAgQnoAAAAAAAAACCKkBwAA\nAAAAAIAgQnoAAAAAAAAACFLKuwAAAADgLVg6sDwN3Jht7YplS+pbDAAAAPBWOUkPAAAAAAAA\nAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQ\nREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE9AAAAAAAAAAQREgPAAAAAAAAAEGE\n9AAAAAAAAAAQpJR3AQC0tNGVCzKvLfb117ESptXSgeVp4MZsa1csW1LfYgAAAAAAIEdO0gMA\nAAAAAABAECE9AAAAAAAAAARx3T00HLd/AwAAAAAAwEzlJD0AAAAAAAAABBHSAwAAAAAAAEAQ\nIT0AAAAAAAAABBHSAwAAAAAAAECQUt4F0LhGVy7IvLbY11/HSgAAAAAAAABmBifpAQAAAAAA\nACCIkB4AAAAAAAAAgrjuHgAAYIbwlVUAAAAAjc9JegAAAAAAAAAIIqQHAAAAAAAAgCCuuwcA\nAABgp/haDQAAgNo5SQ8AAAAAAAAAQYT0AAAAAAAAABBESA8AAAAAAAAAQYT0AAAAAAAAABCk\nlHcBAAAAAAAAANTf6MoFmdcW+/rrWAmv5SQ9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAAQR0gMAAAAAAABAkFLeBQAAAAA0uqUDy9PAjdnWrli2pL7FAAAA0NScpAcAAAAAAACAIEJ6\nAAAAAAAAAAgipAcAAAAAAACAIEJ6AAAAAAAAAAgipAcAAAAAAACAIKW8CwCAOEsHlqeBG7Ot\nXbFsSX2LAWKMrlyQeW2xr7+OlQAAAAAAJCfpAQAAAAAAACCMkB4AAAAAAAAAgrjuHlqd278B\nAAAAAAAgjJP0AAAAAAAAABDESXoAAAAAAICZz72qAA3CSXoAAAAAAAAACCKkBwAAAAAAAIAg\nrrsHAAAAAMifa6hzoe0AQDwn6QEAAAAAAAAgiJAeAAAAAAAAAIII6QEAAAAAAAAgiJAeAAAA\nAAAAAIKU8i4AAAAAAN7Y0oHlaeDGbGtXLFtS32IAAADqwkl6AAAAAAAAAAgipAcAAAAAAACA\nIK67B0gppdGVCzKvLfb117ESACADlyEDAAAA0CycpAcAAAAAAACAIEJ6AAAAAAAAAAjiunsa\niEtKAYAZwEcaAAAAAGAKTtIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAA\nAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAAQBAhPQAAAAAAAAAEEdIDAAAAAAAA\nQJBS3gUAAAAAAAAAM9noygWZ1xb7+utYCdNq6cDyNHBjtrUrli2pbzGNzEl6AAAAAAAAAAgi\npAcAAAAAAACAIK67BwAAAAAAAGYU967TyJykBwAAAAAAAIAgTtLXwfCaR2++9bY771/10voN\nW0ZS77x5uy/e5/DlHzxq2f7thbyLAwAAAAAAAKBhCOlrVLnruksvufJHIxOV7f+0/oXh9S88\n99Ddt1z9jiPOOuf0Jbt25lgf0LDctAMAAAAAANCCXHdfk/uu+PyXL795e0JfKHZ0d7Vv/+mm\nx24//4zznxgZz6k6AAAAAAAAABqLk/QoSh0qAAAgAElEQVTZbV592QXXraqO5yw67LRTT1r2\nrj3bC2l441O3/GDguzfcU6lUyltXnXf2wFVf+1S+pQIAAAAAAADQCJykz2zi777yw0qlklKa\nNf/9l/712csP2LP6DfRd8xZ//JRzv3rqe6vzBp/4+5VPbs2xUAAAAAAAAAAahJA+o6HnLv/x\nxpHq+JMX/sm8UuF1E97xkXM/+rau6viHl/xzaHEAAAAAAAAANCQhfUZPfu/u6mDWvGM+tsec\nN5pSOO4zB1VHW58d2DJeiSoNAAAAAAAAgAYlpM/ohgc2VAcLjvrwjub0LjmpWCiklCrjQytf\n2BZUGQAAAAAAAACNSkifRWV88IGh0er4nR/cbUfT2joXHdLdXh0/+eCmiMoAAAAAAAAAaGCl\nvAtoSuWtPx+vTF5ff2BPxxQzD57bcddgOaW04Z6NacWiGp+7bdu20dHRGl9k573hJf4zz+bN\nm/Mu4fVaofPanhedz4W256IB2550Pifanhedz0V825cOLE8DN2ZYuGLZkmxP1Pa86HwutD0v\nOp8Lbc9FA7Y96TytpBV2e7LheZUNn5dW6Hxw27u7u9va2mp8ESF9FqPDj20f79fVPsXM3Rd2\npeeHUkovP/9cSgfU+Nzx8fGxsbEaX4TX0dJcaHtedD4X2p4Lbc+LzudC2/Oi87nQ9rzofC60\nPS86nwttz4W250XnaSk2PC3Fhs9FM7bddfdZTJQn/xyjUCj1tBWmmNnRO3nOfmKs4f5wBgAA\nAAAAAIBgQvosylvK1UGhrXvqmaVXv5NeSA8AAAAAAABAofLqd6uz89b/4vxPf/GBlFKx1PsP\n118+xczHLzvjzOufSinN6jni+1eeWeNzBwcHy+VyjS8CAAAAAAAAQAa9vb21fye9k/RZdPRM\nXmJfGd829cyxbZNfgVBonze9NQEAAAAAAADQ8Ep5F9CUih091UGlUh6eqHQVd/i19OVNkwff\ni6U6hPRz58518wEAAAAAAABALmo/Rp+E9NmUZu+d0s3V8aPDo++e27GjmS+uebk66Ox9e+3P\nLRbdfAAAAAAAAADQxIS+WXTucmixMHl6/hdDY1PMfHBotDqYf9hu014WAAAAAAAAAI1NSJ9F\noa3nwDnt1fEjd720o2mVsQ13Dr5SHS862HfSAwAAAAAAALQ6IX1Gxx44GbqvvenuHc0ZfPra\n0UolpVRo6zp59zlBlQEAAAAAAADQqIT0Ge114iHVwba1V98zWH7DOXd8687qoHvhyfPbtRoA\nAAAAAACg1UmOM+peeMrhvbNSSpXKxDcvuq7yGxM2PTLwN48PVscr/mx5bHUAAAAAAAAANCIh\nfVaFtj/682Oqw82rrz7jq9eu3TY2+aPK+Oo7rvnsF6+tVCoppZ69Tzx5r13yKhMAAAAAAACA\nxlGoBslk8y+XnXXh9aur40Jb9159e/Z0Tqxb88SaDSPVf+zo2f9/fueCPWe15VcjAAAAAAAA\nAI1CSF+jiZ9+/+vfWPnjkYk3aOP8/Y486+zP7PNbHfFlAQAAAAAAANCAhPR1sO3ZR2669bY7\n71u1fuPGwVdSb++83fda8rtHHHH0oUvbCnkXBwAAAAAAAEDDENIDAAAAAAAAQJBi3gUAAAAA\nAAAAQKsQ0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAA\nAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABA\nECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR\n0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9\nAAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMA\nAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAA\nAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAA\nAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAAAAQR0gMAAAAAAABAECE9AAAAAAAA\nAAQR0gMAAAAAAPx/9u47ron7/wP4+xIIEIQwZLgrKqK4V0VqRVt/1Vq1jrpwVutC66h7FbdV\nq1UcdVetSh11W9e34q6zKiBDHIBAWEIkhJDkcr8/oohIAYHkTPJ6/nVcLnm8H+d5n/G+z/sA\nAAAMBEl6AAAAAAAAAAAAAAAAAAAAA0GSHgAAAAAAAAAAAAAAAAAAwECQpAcAAAAAAAAAAAAA\nAAAAADAQJOkBAAAAAAAAAAAAAAAAAAAMBEl6AAAAAAAAAAAAAAAAAAAAA0GSHgAAAAAAAAAA\nAAAAAAAAwECQpAcAAAAAAAAAAAAAAAAAADAQJOkBAAAAAAAAAAAAAAAAAAAMBEl6AAAAAAAA\nAAAAAAAAAAAAA0GSHgAAAAAAAAAAAAAAAAAAwECQpAcAAAAAAAAAAAAAAAAAADAQJOkBAAAA\nAAAAAAAAAAAAAAAMBEl6ME2BAaNHjBix5HwC34GYLFaVy3cIpmnFr3tvRyXxHQUAABgaGlYw\nMejSgFnBBW8sMFHAF5x5MAcsx3cEAGWGLg2YD1ztRsS0e5IWfAcAUP606tSIhKQcLac+k0Sf\nV+E7HFPAaTKuhVwJDQ0Lj4jJzM5WKHLULHfs2DEiUmXd+jMky9evbTU7S77DNAWXTwVfPhVs\nV8mznV97v/btPN0r8B2RCTp37lw5/ppDfd+WVcTl+INmSyFLTUxKV3Mlndjw9KonZPQakSmL\ni4t7r+MZgdDK2sbaytra1kYkwHkvB2hYeSSXyTQlvtVIHBxwxZcOujQfArStBoML3ihgooAv\nOPPvCyPWD1ZOujQxI7dW7Rr5d8oeXw3aeujRs7jMHHKqVLNNhy6DerWzxqAJjBO6NGA+cLUb\nC5PvSSJJD0aEex5559+IZxlZiiKP0sTfv5Cj5YhIq8SitHIQefnQr5v3PZGpCv2UzX26d8vv\nwdt3+PUbOb5PW8zrlYuspOgT+6JPBm+uXLeFn197v3at3Wxxuy43QUFB5fhrXmPrYcqjLDjN\ni0PbNp24dPdF1vvdsfccPmqHO05pjRs3rnRfZASiipUqV6v6UaMWrdu0aemOLHKpoGHlRcLd\nM7uOXYiJeZz68j3uNrjVlBG6NLxA28oXXPA8wUQBX3Dm9QUj1g9Q6oPzG3f8cedJiqW40cF9\nC/P2p9/dNWrBIZX21fNw6QlRx3dHXbz6IGjleEcLNKlgrNClAfOBq50/6Em+ggsOjINWJd24\ncN6Z+9L3+lbdXrX0FI/5uLtnbuAf94s9TMvK/t6z4mFM8oZZvTEMKQufBjVuhsexHEdEHMcl\nRN7aE3lr72Zrrxaf+LVv/2nrBraYOQUTwrHZayaM+zteXorvWuGNPXzgtKrUhGepCc/u3gjZ\n+att+2+Gj+j7WQXcl94HGlZexBxf9cPWi1yJ1xPnscStprTQpeEL2lZe4ILnCyYK+IIzD2ZF\nenV7wPKj71am4diXi386kpehz/PyyflpKxptmelnoPgAyg+6NGA+cLXzCD3J/JhSzFUBGN7e\nqYODozLf6yuuzXttmDdEhHtpGcSfXRuw7rxumxHaffKZn2ftOpahe3+9LCUiXVVetSI08Icl\noQnZusO8+i1fPsCLr4BNg/JF7NVLly9duvhvTHKBj4TWFVu2bde+vd/HDWpgErXUlixZ8l8f\nadXpN+88yvuTYQR2ji5u7u52wtzk5OTk1My8CslCkbv/6H4VLQQSz1ZNK2NdQinF/zU7YGNo\n3p+WYomrk10Jb9vrN2zADb7UdP8L1PLHd8JS3/2UYQr2Dy3FHs0buShkL1JTU9PSZfnnpyo2\n/mbDgoHWDP41SgQNKy9UsqsDhyxX5ps/FQqFJfzuocOH0eCWGro0vEDbyhdc8LzARAFfcOb1\nCiPWDwqrfDJy4A+pKlb3p8i2cd5K+tQ7S4fPv05EAgtJ79FjmlcRhV8/tuvYPSJiGMGUXfvb\nSkR8hQ1QaujSgPnA1c4X9CTzQ5IejIA8fteAgIO6bXElz1ZNvBwsciOvhERm5BJRw85da1tb\nEJFClhp680aiXE1E3v6Bi/o0w9NOZcEqY0f4T0hXa4lI4tlu6pSxjdxtiChm14TJB5/S61wC\nERGnuR68eOm+O0TECMXL9/5e1wZVOspBVmL0pUsXL166FPlcVuAjm4oen/r5+bX3867mwEts\nJkmjePzz1LlX4+VEJK5Uv+c3fb76tIlY9KYnxrG5UTfOBQf/cfeZjIjElVstWj2jNq72Mvjt\n275/puUQkVf7PiMHfV27It7/ZDis8tnCMdPupiuJiBGKW3zW9fPWDVxcKrq6uFawUKempKSk\npMTcu3zk5JUMNcswws7jVozuWJuIOK0q6dH9sycO/HkxUvdTnv6rV/Y1zadZyxcaVr7cXzFy\n7mUpEdm4Nvh2lH/TOh6uDjZ8B2Ve0KUxJLStvMMFbzCYKOALzjxfMGLlReyfU8b/Fk1EAqF9\nz4CJX7Rs4Cax1n105vuB65+9JCKvIb8s7+Wh23lp7ZiV5xOIqEaPn4OG1eEpaoBygC4NmA9c\n7YaEnmQBSNKDEbi7aETgzRQisq/VZf3KkRIhQ0QaRbT/gKk5Ws5r1PrlXarpjuRY2f5VM/Zc\nThBaVftx6+omeGS1DOKPTwvYEklEVpIWG3fMqWjxauBXSC6BiIj+t2LkmstSIqo9cM2qPjUN\nHq8pS33y4NKli5cuXXmallPgI9daTfz82vv5+VbF1V5W3G+TB/8ZIyOiZr2nzRn0yX/Xl+bu\n/rki8LcrRCSp/fWOn79FJepSG9G7R4qKdfT2/21pX5xFA9s/bcjvkRlEVM13wPTRPav/xz2E\nzUk+sX35tjOPGIb5avbW71q55H30+H/rJ689y3GcUOT+2x+bJKbaWS4/aFj58tPAb66+zBXZ\nt9j02xxnCzwEzyd0aQwAbeuHAxe8vmGigC848zzBiJUff4zotydFQUTNvt8Y+HmVNx9wmm97\nf5OmZhmG+WnfIS/xq4chVC+v9h74ExGJXf2Dt/blI2SAcoYuDZgPXO0GgJ5kAZilAiNw7dFL\n3UaPGYPycgAWYs/B7rZElHg6Ju9IRijpM2V1Rzcxmxv/8/zDhg/VlFw/GqfbaDttXMUSzGi3\nHTlIt5F47pYewzJLLh6Neg0dv2Z78Pplc/p+2baS3ZsGKeXxvf3bVgcM7j858OfjIXdlajx3\nVUoZEWt18x0VmwwPHFzEfAcRMc16Tvvex42IZDFHVvyTYqAQTdFLjZaI2o3/CrNGBiZ7slWX\noZfU7r12Wr//ytATkdDGrXvAyqENnTiOO7V8ZqRCk/dRrc8CxjdxJiJWJT2SWnD0Au9Cw8qX\nMIWaiLwDRiFDzzt0aQwAbeuHAxe8vmGigC8487zAiJUvV17mEhHDiCa1r5x/vzLzfJqaJSKR\nfdu8DD0Riex9nS0FRKR6ed2wkQLoC7o0YD5wtRsAepIFYKIKjMCDbDURMUJxd9e3XqNVp7kT\nEeVm3My/k2Gsh8zsSESymD3BidkGDNPUXJTlEhEjsBpW37Ekx4skbV1FQiJSya7oNzLzxVSr\n38p/9NRNv+/9OfCH7h1aOopevVKX49Qxdy9uWRU4pN/g+au2Xvo3hkU/4T3d2npHt9F74hcl\nOb7tWH/dRujOy/qKyQxUtxISUQ0xCjAa2t3Nr67b3rO+KcECeKbL1IFExKpSNhx4mv8Dn9Gf\n6jbCbqeXd4wmCA0rX3K1HBG19pLwHQjkQZdGj9C2fnhwwesLJgr4gjPPC4xY+ZKs0hKRhc1H\nBSqHZTy4qNtwqN+xwFeqiiyIiFVLDRIggMGgSwPmA1e7HqEnWQCS9GAEXqi1RGRhVb3Ak8JO\nLZ2ISCW/o3r7Vmhfc6iLSEhEf++JISgt3ThEaFXdrsQVjN0thUTEqpL0GBYQqeUvUtPSM2Uv\nczTaAh9p1bI7IcdW/jh5cMCcI5cjeAnPSJ2KlxMRIxR3drIuyfFWEj8HCwER5aSf129kJq2d\nq5iIHiRjEbahHXuSRUQCC0n3iiV6M7eVw+e6bHHi2f3591s7v5qQUjxXlHeMJggNK190r2LV\nYOT84UGXRh/Qtn6wcMGXO0wU8AVnnhcYsfLFRsAQEafVFNgffTxRt1GzW7UCH6levVsWRW3A\nNKFLA+YDV7s+oCdZAJ6vByNgJWBULMdxBTvE4sqeRPc4rfKOXOWTr/YIMcJ29lYH0xQv7p0g\namzQWE2IrZBRaTitOo0r8cBCqmaJiBGUKOUD70v5Iu6f69evX7t2O+yZmiuYanCsVl+iePIs\nXan7M+v5g+0rHtyMnLD4u88wLiyJ+FyWiAQC25KfLhsBk0mkVaF4YOn5DG+2ZV7I7XVHuKCh\nuFANKU53wVu6FHtkHicLQYqKVWc/yL9TaOmq21C9UJVjeKYKDStfunjYh4Wm34mQdfUt0aQ2\n6Bu6NHqFtvVDgwtefzBRwBeceV5gxMqXmjYWGVkqNvdZgoqt8nolJXHqPc9eVev9uqZ9/uM5\nbc4TpYaIBJYVDRspgH6hSwPmA1e7XqEnWQCS9GAEKlsJoxRaVhmbxXL5F5+JKrQg2k9EIQnZ\nPl5vvU/XRSQgIrUizMChmpKP7USnM5RaTcaZF8pOJXhSW5V1PUXFEpGlbSP9R2dGsqQx169d\nu379+r/Ridp3ugUVazTw/cTXt42vVzUH4tiYf6/873/nL1x7oGA5Igo7vubnhg2ntHblI3Aj\nU0HIZGg4Vp36RMl6WAuLPZ7NjZWqtUQksHTQf3Qmq2KTSX08/90f/ees7dUDh7W3YtCbNRAH\nC0GqmmWVcTKWk5RgVTfHZj1TaoiIYSzz72dVr0o4ihwtC/kavA0NK1+ajuspGL314ZZdyjZT\nrHGf4Q+6NIaBtvUDgQveADBRwBeceV5gxMqXjpVs72apOE4bdDZh2VfVdTvT7/8qVeleSO9T\n/+1XzMge7dK9a8nKrrXhowUod+jSgPnA1W4Y6EkWgCQ9GIG29qIohZrj1DsjM8d5v3mNq4XY\ns4KQkbNc3NlE8nrr9a6JKtbgYZqajn5upw/HEtH+tSGdAjsVe3z47t26DeemxR8MxXoR9/D6\n9evXrl0LfZr67qeuHo3atPH9xNfXs0q+R7YZYe1m7Wo3azdMFrtj2byT4RlEdGP9Dmo93WBh\nGy8fe9GpF0oi2vp34pIvC1are1dSyGaO44hIZO+r9+BMGdN/ybKUH6aFHPll6K2QwQO71/eo\nWdXdqcS1wKGU/BytDqQoOE616W7atJbFr6dPD92i1Oou+LdmmhTSv3Qb9nXtC/kavA0NK1/E\nlbouGnBz1p7LU1d7rZj0FfL0BoYujcGhbeUTLnhDwkQBX3DmeYERK1/qD2tKM/8moohtM/c7\nz/myhWfO81s/LQvRfVq54zf5D86KvTzvxzO6bedWLQwbKUB5QpcGzAeudgNDT7IAJOnBCDTp\nWpW2RBFRyOIlrVbOb1VZ/PoTwacSq1MvlNIrG7MCgvKeu9Gqks9nKInI0tqDn4hNQo2e/SyP\nLFdzXNrdDUsPSqb18iliak96e9+CMwm67f8bgNNeetKY+9euXbt+/VpUgqzARwzDuHo08vX9\nxNe3TZ1KdkX8iEhSY9iscSf9FxKR6uU1hZYTCzAvW4z/+6LKqX2PiShi+/zbLde1cClqkasy\n7e78LQ9121W+7GCI+EyXUFSla482Ib+cyU64t/Gne0TECIQluWAPHz6s9+BMV4e+NQ8EhRPR\nPyuXRm5d5mUnKuJgjeLxymVXddtVvvzyzQec6vDqS7rNlo0c3/0iFICGlUcN+i6YlLtszaGt\ng8Mv9urv3719E2tkLPUMXRoeoW01PFzwvMBEAV9w5nmBEStfHOqP9nW6dvWFkmOzfl86fQ/D\ncK+XVzIC6+++qaHbzkn566flx+8/SmA5jogYRvhNv4/4ihmg1NClAfOBq50v6EkWgCQ9GIEq\nHUc57piSodGq5FGLA4bXbdx0xPTJnjYWRNShrdupo7GsMm7W2qMrJna3ZhiOlQWvnJvNckRk\nWw0rz0pPJPGd8XnVhefiiej6rqXDb/qNGdy9gdfbt0KOTZc+u3TywK7j13XjEEevoT3dxYX+\nIJTEyMlzC+xhGMa9dlNf3za+vr613GxL+DuWFRq+3rQQYclgCVTvPkKyf7aM1bKqlCXjpg77\nYUrXVjUKPTLu9omfV25PVrFEJLBwHNmlqmEjNTW3fpuz8M+3XnPOaVlTfjzyw1DJb1LtraNj\ncjSanJg5o2cNmzSuS4uPCj0y4f65das2P1SoiUgocg3o/ur/RVZS9Imdqw8+eUlEogpNe1TE\nS9OLh4aVL0eOHCEisq/3RaPHf92P3rP2x71Blk5u7u7u7g62RT2hQkTTp+NB+FJCl4ZHaFsN\nDxc8LzBRwBeceV5gxMoXhrEev3T84/GrdPXtuXwFkOv2nttQ/Oq1X7mZt+5GP8/76KMvZvpJ\nrAwcKkDZoUsD5gNXO1/QkywASXowAkLr2gu/+3TcxhAi4tjsyLtXYnMn6P7fevQfZXtidjbL\nxV7Y3v/qgapVJKnxiQqNVvfFdqMb8xi2CWgRsKJb/OhjkZlE9CIyZPGsEEZo7VLh1emdMTkg\nLi5Rnq/YiJWk0YIF3fmJ1eQwjKCyZzNf3zZt2rTxcH3v9IxGEa3bsHHrboHuQQlYiL0DBzWb\n9NttItLkxG5ZNP5PjyafNKtXqVIld3d3MSmkUmlSUlLk3Sv/PknP+1aLwT962aAlLT3Z412L\nDofyHYU5Eli6zpnVe+S8P1Qcp8qK3rTg+72VvVo2rOXq6urq6iomZUpqSmpK6pPw2+Hxmbqv\nMAzTMWBBbWshESmkWweOPp43P/Xp9wG4zZQQGlZebN++vcAejlOnS+PTpfG8xGNu0KUxMLSt\n/MIFb0iYKOALzjwvMGLlkbhS21+C7Dev3xYSGqt7S7HAooJv9xE/DGz47sEMY9G883ezR7Uy\neJgA5QldGjAfuNoNDD3JApj8DwACfMgentm5auuRlFyWiMbvOtDR4dUTqQ/3zJ3xx/13j3dp\nNmxbYA+DhmiKOFZ2eOPy384WP9PnWLfDrDlj60qKWZEGReve/euqdZv7fuLr26ZNjYpF1a8D\nfbi8bfaKoyWd127Sc8aCoW30Go/J+2vyoI0xMiKyca3fd0C3etWruDhWKGGH1tnZWa+xmYOk\n679PX3Ew83VntwiMwKrjd4vGdamr+1OeuHbA6PO6bc8vJ64cjRKa7wENq+F169at1N89duxY\nOUZiVtCl4QvaVl7ggucRJgr4gjPPC4xY+ZWbIY1LThdWcKlaxaXAckn589+D9qVV/sizlc+n\n9apW4CtCgDJClwbMB652fqEnmQdJejAmWrXswY2b0XGJjXr4538W+PreVRsOXpK9TjMwjLBx\nR/8ZY3vhFSDlRRp+9fCx4xduRijZQu4YFWs26dLt624dmlnifJdZfIaymiO6BXx6du3Q6s3B\nT1/kFnGM2NXTf9TEri1RNrCsxnzTIyGXtXJosXXHXAneD80HZdrD7b9uP3frEfvfHcLK9X2H\njBrrU/PNW7h0SXqxu2fXvsP8P/M2SKSmBg2rIZ0+fbrU3+3UyTTLqRkAujR8QdvKC1zw/MJE\nAV9w5nmBESsA6A+6NGA+cLXzDj1JHSTpwURoshPvPXic+iLbuepHtTw8nO2w7Kz8caziaeTD\nJwlpcrk8R6W1rWBn7+jqWd+7MtozMDGcKvza/67eeRAREZWU/lKhVDGMwMrG1sm9Wt26no1b\ntm3XvA4mvctFz+7dNRz36U87p9Rz5DsWs5aTEnPp+p2IiIhnCanybHmOmuzs7CXOlbzq12/c\n6pNmtSoWOJ7NjY9Nta5Z1QX/D8oIDSuYqviT82bue0JEVvY+2zYE8B2OeUHbCpAfJgr4gjOv\nXxixAgAAgOkyq54kkvQAAABF4ViVViDCHIc+jOjdI0XFTth14LPXRY0AAMAEPNox/ofDsUQk\ntK5xeH8Q3+GYF7StAADmBiNWAOBRYMDo57kaj37zZ31ehe9YAMoNq8oVijCeAkOwKP4QAADQ\ng3Xr1pXvD44bN658fxB0GKFIyHcMpqqDg1VwiuK5kuU7EPOCFa4AoG/OLavT4VgiYpWx4QqN\ntxijTsNB2/ohkMtkmhIvh5A4OCCzBgBlgRFreTl37lw5/ppDfd+WVcTl+IMAHyCtOjUiISlH\ny6nPJBGS9GC0OE3GtZAroaFh4RExmdnZCkWOmuWOHTtGRKqsW3+GZPn6ta1mZ8l3mGCaMF0C\nH5zMzEzdBsNYSiS2/AYDOhynfBQaFpfw4vPO//fWfjZz5frgmjXrftzWt5qDKVcd0YezZ8+W\n7w8iSQ9Gp/3A+sGrbl/bEzrkh4/5jsWMKFMyXr58SURCVSTfsZgvNKz6g57kh8DJe4KPw63r\nmUoi2nnm+fIeH/EdkRlB28qjhLtndh27EBPzOPVlUe+KLmDP4aN2WABbAri98wVnHsxHUFB5\nlv/xGlsPSXowWtzzyDv/RjzLyFIUeZQm/v6FHC1HRFrle3R+AD4okZcP/bp53xOZqtBP2dyn\ne7f8Hrx9h1+/keP7tEW3/X2hJ1ksJOnhgzN48GDdhsi28cF9C4nop59+KvWvTZ8+vXzCMlcc\nm/X3/h37joakKDRCkXvBXIJWdfn8qct0avfWdS2/9B8z/GtnCwFfoQKUI6x/MoxK7WZ2PTLs\nxKWfDny2+ZsmBV98DnqCFa78QjGrG18AACAASURBVMOqb+hJfhAY0aSVU5O/X/ZEoX60Z/GN\nT4I+drHmOyZzgbaVLzHHV/2w9WIp3idoidt8yeD2zhec+Q8TRqwAoCdalXTjwnln7kvf61t1\ne9XSUzwAenV3z9zAP+4Xe5iWlf29Z8XDmOQNs3pboE19H+hJFgvTsmAErl69yncIZopVJayd\nNu3Ck6xij+Q49c2Tvz18ELNi9Q9VUGitZAYOHMh3CFAQ1j8ZGmP57dL56VPm/v7jqKgvB44Y\n1NUdCWP9wwpXHqFh5QV6krywdm25bP2PaxevuBKTvGzs9z2Hf/ulX0tna1zM+oe2lQ8q2dVZ\n297K0AuFJb3aRQy6kaWE2ztfcOZ5hBGrXrVu3fq/PtKq02/eeZT3J8MI7Bxd3Nzd7YS5ycnJ\nyamZec9MCEXu/qP7VbQQSDyd9B4xgB4Ez552Jirzvb7i2rzXtHbueooHQH/iz67Ny9AzQrtP\nPvPzrF3HMnTvr5ffPKRiIa7XsIptaEI2EUlv7Jq1r8HyAV78hGsq0JMsAMN1APhPh+fPzksk\nMIyoRr2GBQ5ghHZ9uvjduHEzNk1BRPL4K3MX19k+v4ehAzVOffr04TsEeAvWPxnekSNHiMiz\n/efhe4/dPLnj1qmdEpcq1aq4WJZgBikwMFDf4ZksrHDlDxpWMB8nT54kIu8OvTJle8NSpQc2\nLDm4UeTg7OTk5OzoJLEqMlVgkk/HGwzaVl5EbN6p1HJEZOPa4NtR/k3reLg62PAdFACYGoxY\n9W3WrFmF7tcoHv88da5uW1ypfs9v+nz1aROx6M1p5djcqBvngoP/uPtMxqqkBw9eW7R6Rm0b\nzLqD8ZHH7wp+naEXV/Js1cTLwSI38kpIZEYuETXs3LW2tQURKWSpoTdvJMrVROTtH7ioTzM8\nCARGh1XGztv0t25b4tlu6pSxjdxtiCgm5XD+wyzFDRdv2H09ePHSfXeIKOpAYFSP3+viDg/l\nBxcTfHDq1q2r27CwqarbGDt2LH/hmC95/L5doS902zU/6TdrXB+3d1bhMAKbgaMmDxzJXjuw\n5uc9F9Ucl/bvjiPSL752x2u3wMhg/RMvtm/fnv9PjtNmpsRnpsTzFY/5wApXXqBhNQz0JD8Q\nmzZtKrCH41QZadKMtPernAnvC20rL07fzyAikX2LDb/OwWtK9AS3d77gzH8gMGLlD/f7nMCr\n8XIiatZ72pxBn7xb6JgRWnm1+SqwTZe7f64I/O2KIvHm/Nm7dvz8LUoig9GJ3nlJt2Ffq8v6\nlSMlQoaINP4d/QdMzdFy6uqdhnWppjuAY2X7V83Yczkh8uC20E4NmkhEvAUNUCqJ59anq7VE\nZCVpsXrZpIpF9OEZC5/+P054PnLNZSnHKjYdj1/Vp6bhAjVy6EkWC0l6+OCsWLGiwJ5OnTrx\nEomZi9xyTrfh6hOwZtoXRR3KCNv0mezEJkzb94iITm6L/np2EwNECFCOsP4JzApWuPICDath\noCcJAIYXplATkXfAKGTo9Qe3d77gzH8gMGLlS0bE2j9jZERUscnwwMGfFHks06zntO+jHq29\nniyLObLin69m+rgaJkiA8nLt0UvdRo8ZgySvZwYsxJ6D3W03JcoTT8fQ6yQ9I5T0mbI6JXro\nueT4n+cf3r2qLz8RA5TW9aNxuo2208YVlaF/re3IQWsuryCixHO3CEn6EkNPslhI0gNA4c4+\nedUt+zagfUmOr9Pjeyb4e47jMiPPESGXYDiBAaOf52o8+s2f9XkVvmMxYlj/xIuJEyfyHYKZ\nwgpXXqBhBbOCp+P5graVF7lajohae0n4DgQATBZGrHy5tfWObqP3xCKfsn2t7Vj/tddXEVHo\nzsvk00uPkQHowYNsNRExQnF317dqudVp7kSJ8tyMm0RvBrMMYz1kZsdzE4/KYvYEJ37Vr7Kt\nocMFKIOLslwiYgRWw+o7luR4kaStq2hViopVya4Q4SW2UG6QpAeAwkUpNEQkFLm3sS9RwSKh\ndY1a1sKYHI0mJ0rPocEbWnVqREJSjpZTn0kiJOnLAOufeNGhQwe+QwAwHDSsYFbwdDxf0Lby\noraNRVi2WvPe74kGMD7xJ+fN3PeEiKzsfbZtCOA7HDOCEStfTsXLiYgRijs7WZfkeCuJn4PF\nL5kabU76eSIk6cHIvFBricjCqnqBlzU4tXSi43Eq+R0VR6J8H9nXHOoiOpGqYv/eE9NvamPD\nBgtQJskqLREJrarbFVlOMj93S2GKimVVSfqMC8wOkvQAULhsliMiRvAeT0EKGYaItOpMfcVk\nRrjnkXf+jXiWkaUo8ihN/P0LOVqOiLTKXAOFZqKw/gnMCla48gINqxFBlRoAeC9dPOzDQtPv\nRMi6+pYohQNgvJQpGS9fviQioSqS71jMC0asfInPZYlIILAt+fvlbQRMJpFWlaK/qAD0xErA\nqFiO4zQF9osrexLd47TKO3KVj12+h84ZYTt7q4Npihf3ThAhSQ/GxFbIqDScVp3GEZXwDi9V\ns0TECPC6mXKmVWU9eRST8uJlllxOljb2dnYuVWrWqlqx5C2vUUOSHoyPXCbTcCVdpCBxcDCT\n/8zlrrq1MCZHw+bGpms4Z4vizyKnyXiaoyEioVVV/UdnyrQq6caF887cf7+i03V71dJTPGYC\n65/ArGCFKy/QsBoLVKkBgPfVdFxPweitD7fsUraZYs1gAMoPTBQYhnPL6nQ4lohYZWy4QuMt\nxryigWDEypcKQiZDw7Hq1CdK1sNaWOzxbG6sVK0lIoGlg/6jAyhnla2EUQotq4zNYrn8y4tF\nFVoQ7SeikIRsH6+3KsO5iAREpFaEGThUgDL62E50OkOp1WSceaHsVIJaKaqs6ykqlogsbRvp\nPzrzwGlCr5w+eer07Yfxqne68SK7is19P/+yS5fGNUz8CUV0psFoJNw9s+vYhZiYx6kv32PF\n8J7DR0tesQTy+7JqhbWPMjlO8+uN5Nm+7sUen3prk+5mKnbrqP/oTFnw7Glnot5v0aRr817T\n2hX/bwRFwPonANA3NKx8Q5WaDx0KGIDxElfqumjAzVl7Lk9d7bVi0lfI0xsSJgoMzMl7go/D\nreuZSiLaeeb58h4f8R2RucCIlS8+9qJTL5REtPXvxCVfViv2+KSQzRzHEZHI3lfvwQGUt7b2\noiiFmuPUOyMzx3m/eVG3hdizgpCRs1zc2UTyeusF3okq1uBhApSDjn5upw/HEtH+tSGdAotf\nyhK+e7duw7kp1r2UA2V62IafVoREZvzXAaqstOung/85c6Bl1xEThn1pwl13JOnBOMQcX/XD\n1otciZ+Lz2OJd3WVVtPB3jT3KhHdXrPo37orm1Ysahyoehm+dPVN3Xbt/i0MEZ+JksfvCn6d\noRdX8mzVxMvBIjfySkhkRi4RNezctba1BREpZKmhN28kytVE5O0fuKhPM9NtpwwE658AQN/Q\nsPIIVWo+fChgoCcpj25fux0WFRX1PDVDLpcrNQI7Ozt7J7e69eo3aObj441TXW4a9F0wKXfZ\nmkNbB4df7NXfv3v7JtbooOsfJgp4wIgmrZya/P2yJwr1oz2Lb3wS9LELcsaGgBErX/7viyqn\n9j0moojt82+3XNeiyAtemXZ3/paHuu0qX3YwRHwA5apJ16q0JYqIQhYvabVyfqvK4tefCD6V\nWJ16oZRe2ZgVEJSXLdOqks9nKInI0tqDn4gBSqtGz36WR5arOS7t7oalByXTevkU0XmX3t63\n4EyCbvv/BuBqLyuVLGzOuB+js9X5dzKMpZObu41WLk3NzKuPxXHszWObxj1OWrdouKnm6ZlS\nDGYADEwluzpwyHKl9s21KhQWX2BK59Dhwxh9lxKn+mnowKsZSiISWlftO3pMz/YNRIUMBbUx\nN09uWLMzJktFRJbiejv2LLM30TumAdxdNCLwZgoR2dfqsn7lSImQISKNItp/wNQcLec1av3y\nLq8e3OZY2f5VM/ZcThBaVftx6+omElFRvwslEPbH3Fl77tfw+w7rnwxmyJAhpfti7aHL5rav\nVL7BAOgdGlb+7J06OPj9q9RsmDdEhBNfVu9RwOBGjIyIJDWm7w7CyrNykBEdEvTr7tsxqUUc\n4+zRbNDoCR3eXg4FpXDkyBHdRtKdE3/dT6HXc0zu7u4OtsX00qdPn673+EwUJgp4pEx/sHbx\niisxMqGVe8/h337p19K5BGXAoYwwYuWFRhE+zH+2jNUSkYVNjWE/TOnaqkahR8bdPvHzyu1P\nFRoiElg4LtuzzcsGq+PAyLDKmG8HTMnQaImIEdrWbdx0xPTJnjYWRBS9bfyUo7FEVKP9tysm\ndrdmGI6V7ftpavA/UiJy9Jq6c3lbfoMHeF+3ggIWnovXbTt5+Y0Z3L2Bl0fS3omTDz4lomPH\njhHHpkufXTp5YNfx6yzHEZGj19Cdy3vyGbQp4DaPGXAiIVv3h0hSq1uvbu1aNazk7iwSMETE\nscrUpMQH/4Qc/fNkrPxVIr+K3/SNk01zogBJejAC91eMnHtZSkQ2rg2+HeXftI6Hq4MN30GZ\nBXnc+YCJ63Q9MyKytKvU2Lu2i4uLi4uLnRWblpySkpISG33/SUqO7gCGEfVfsLlfYyf+QjZ6\n64b0OZuhJKIhW4J7ueU9r0onRw/YlCi3rzHp96D2eTs5Trlu5NBzyQpJbf/dq/ryEK6p4S7s\nWrbm0D+iinWw/skwunXrVroveo3dsLwT3tINxgcNKy/k8bsGBBzUbaNKjSGVroBBq8mb5/jh\nJT5l9fDI6rk7QtQlGOwzjGX7YYsmfl3PAFGZsFJ3aUg3/QelgokCvpw8eZKIiFNfPbw3LFVJ\nRAwjcnB2cnJydnSSWBXZfOKplLLBiJUfj/9cMOm323l/Ons0+aRZvUqVKrm7u4tJIZVKk5KS\nIu9e+fdJet4xrb79Zc7XWGoJRinur1XjNobk/Tl+14GODlZEpFGEDfKfnc1yRCQU2VWtIkmN\nT1S8Htt+/cvv33rY8xEvQOlxWsW2GaOPRb55oJ8RWrtU0KbIVERUv3a1uLhEeb4XOlhJGq3c\nMr8GHkwsm4zI9UOmndFtu7bou2xm/4r/UeSKVSXvXjzzz3/TiIhhBGO2BXcqsialkcIDfWAE\nTt/PICKRfYsNv85xtsDz7oZTofrnaxbnzp6/PV6hJiJ1VtLtf5L+62BGaPf1hKVIJJTRg2w1\nETFCcXdXcf79dZo7UaI8N+Mm0ZskPcNYD5nZ8dzEo7KYPcGJX/WrbGvocE3Iq/VP9vW+aPT4\nr/vRe9b+uDcI658+OBZiJ6cKFkTkhBUJZYMaBnxBw8qL6J2XdBtvVanx76irUqOu3mnYO1Vq\nIg9uC+3UAFVqyih49rQz71/AYFo7ZOjLKvnKppk7QvIex7erXLdlw9qurq6uLq52lupkqVQq\nlT4OuxWRkEVEHKe+sGOmndvm4T6uvEYN8N4wUcCXTZs2FdjDcaqMNGlG2vs9lQXvBSNWHtXq\nOW9qxuwVR0N1f6Y/uXf0yb0ijm/ScwYy9GC8qneevEzgvGrrkZTct142byFuMLd3oxl/3Cci\nVpUV+zQr7yOXZsOQoQdjxAjEw5cGOW1c/tvZV3d4jlWmyF59+jAmPv/BjnU7zJozFhn6sgvb\neUu3IXZtv27ugCKKAwlFbkN+XJc2YtiltByO0x79PabTxAaGCtNwMMcNRiBMoSYi74BRGHgb\nnkO9Lmu2NwreuuPUhTtytvC1OAwjqNnUb/B3I5tVERd6AJTcC7WWiCysqlu83Tw5tXSi43Eq\n+R0VR/lL79rXHOoiOpGqYv/eE9NvamPDBmtStm/fXmAPx6nTpfHp0vhCj4dysW7duiI/516m\nJSclJcY/Cztz7laOluO0Nt/8sOSLeqjKW1YZGRml+2LW26N0KAU0rIZ37dFL3UaPGYMkrxec\nWYg9B7vbbkqUJ56OoddJekYo6TNldUr00HPJ8T/PP4wqNWUhj9+V94oBFDAwJK0mbdHa07oM\nvciuztAJ47q0qlnYSeWe3jwZ9MtvMXIVx2lPrl7as+UqRwuc/VIaO3Ys3yGYI0wUgFnBiJVf\nbYcvrlbv0OrNwU9f5BZxmNjV03/UxK4tUfUNjFv9L4Zs7vD1gxs3o+MSq1m9SUnW9184k1m1\n4eAl2esF9AwjbNzRf8bYr3mKFKCsGKGk57jFbdpfPXzs+IWbEcrCZmkq1mzSpdvX3To0s8Ro\nqTyci5XrNtrP+rbY1/cwAvF3sztcmnSSiFJvHyNCkh6AD7lajohae0n4DsRMWYirDfx+Xr/h\nSbdu/BsREfEsMU2eLc9RU4UKFeyd3D3r1W/cvLVXFTu+wzQRVgJGxXIcpymwX1zZk+gep1Xe\nkat87PI9Js8I29lbHUxTvLh3gghJejAy1atXL+6IGg2IiL4e0Dd6/46gg5djN8wcnb18c09P\ntAgGhRoG5QsNq4GhSg0vUMCAL8lXVscqWSKysK45f8NS7/88n0zNVl8t21B98sgf45SsRvl4\n1fXkhW1RxqCUOnXqxHcI5ggTBXzBUylgnj5q02uNT9fwa/+7eudBRERUUvpLhVLFMAIrG1sn\n92p163o2btm2XfM6eNwQTIPAUtLkk45N3tnvM2Byy+797j14nPoi27nqR7U8PJzt0HsHo+fu\n7TvG23c0q3ga+fBJQppcLs9RaW0r2Nk7unrW967saIIl1nn0JEdDRAwjHPRRiSpw2HsMsWRO\nqTlOnR2q59D4gZlWMAK1bSzCstWa4t+oCHpkYVvJp0Mlnw5f8h2IiatsJYxSaFllbBbL2eUb\n24kqtCDaT0QhCdk+Xm91f11EAiJSK8IMHKqJwUzTB866oufgqWsqZI347V7a73MCW+xeWd0K\nBaZKDzUMPgRoWA0GVWp4gQIGfLl78Jluo9mEmf+doX9F5NBozvjmI1fcJKKn++9SW9yRwJhg\nooAveCqFFxixfhAYkbdvZ2/fzrq/OFalFYiQlQdzY2FbuYVPZb6jACh/jFDs4d3Cw5vvOEwd\nSxwRCUTuYkGJWlCGsa5kJYhTssRp9RwaP5CkByPQxcM+LDT9ToSsqy+eWgIT19ZeFKVQc5x6\nZ2TmOO83+TALsWcFISNnubizieT1Vp4sUYXq0+UAM03GQNB1xqRd/edolI9XHXz2i38tvuMx\nYqhhAGYFVWp4gQIGfDmXkkNEDCMc1apE75h3bT3akrml5jhF8jkiJOnBmGCiAMwKRqwfIEYo\nwpPjYGIi49O9qjnzHQXABy3y0kGvT3vzHYURa2Rref2lSqtOV3NUkjcIcFpFYq6WiCzFnnoP\njg94cRcYgabjegoY5uGWXUoOD8mDiWvS9dWry0IWL7mZqMj3ieBTiRURSa9szMr3dhytKvl8\nhpKILK09DBknAC8sxQ39JFZElHj2LN+xmAtdDYOhTSpy2pzf5wTG4Z30esOqinq9JZRFZSsh\nEemq1OTfL6rQQrcRkpBd4CuoUlN2RRUwINIVMMjPvuZQF5GQiP7eE2OwIE3S81yWiIRWNVws\nSzTYF1hWrGktJCJWhbcaG1RgwOgRI0YsOZ/AdyBGDBMFfDl+/Pjx48dDwjNL/pV7Z04dP378\nr/MP9RcVAACU3bSAYf1HfL9y486Qm+EylWkuWgXQiZar3/criqQHQXNHTlu5Sx/xmI8uTZ2J\niNMq98RlleT4zIebNRxHRPZ1vtJvZDxBkh6MgLhS10UDGilfXJ66+gSG33yRy2SZJYZ/pFKr\n0nGUo4WAiFTyqMUBw6cFLo/OebXyr0NbNyJilXGz1h7V/UfgWFnwyrnZLEdEttXwWD2YhdrW\nFkSkkt/gOxCzIug6Y5KAYXQ1DPgOxkRwmoyr54//unrp+JHDB/n369Wje4/e3+g+UmXdCj7+\nd3zWew8X4b+0tRcRka5KTf79uio1RBR3NrHAV1ClpuysBAwR/UcBA9IVMHjrA0bYzt6KiF7c\nO2GgEE2UvYWAiDitotgj8+RoOSIixlJPIcG7tOrUiISklJSUqDNJfMdixDBRwJctW7Zs2bLl\n0PWUkn8l9tDuLVu2bN36u/6iAjAMTI6ByctOeXbpr0OrFs0c3HfAlLnL9h09H/08g++gAMrf\n7IDAiJeq4o8jIiKOfXlm18phY+aeuy/Va1TmwGvkdxKhgIj+WrBZxhbTVLKqpFVLrxARwwh7\nj21oiPgMDuXuwTg06LtgUu6yNYe2Dg6/2Ku/f/f2Tazx0ieDSLh7ZtexCzExj1NfvscKvz2H\nj9rhH6hUhNa1F3736biNIUTEsdmRd6/E5k7wtLEgIo/+o2xPzM5mudgL2/tfPVC1iiQ1PlGh\nefVYa7vRqMdraIEBo5/najz6zZ/1eRW+YzEjT3I1RMSxcr4DMS+6GgZ/ZyoTz54l/zF8h2P0\nIi8f+nXzvieywkeDbO7TvVt+D96+w6/fyPF92qI5LbsmXavSligiClm8pNXK+a0q51VfF3wq\nsTr1Qim9sjErICiv64IqNeWispUwSqHVFTDI3y0UVWhBtJ+IQhKyfbzeemM6ChiUi5rWwjQ1\ny6qk97LVTWyLz7trFOHPVVoisrQxzeKBhsU9j7zzb8SzjKwiH5LgNPH3L+iejdAqUUalTDBR\nYCxUWo6INLlP+Q7EvGDEWo4wOQZmiGMV0fevRd+/tm8b2bl5NG/erHnz5s2a1LMrWbkmgA9c\nbkbo3IB5PwYtaOggKvrIZzePr9+4OypdaZjATJ7IrsXSAL+AoAs5qRfHTRPOmD7a27Xwd1cl\nhV/etnb9/SwVEdXtNf9LN3Ghhxk7JOnBCBw5coSIyL7eF40e/3U/es/aH/cGWTq5ubu7uzvY\nFnMPnT59uiFCNFExx1f9sPUi9/6LEtBbK4vqnScvEziv2nok5e2y0hbiBnN7N5rxx30iYlVZ\nsU/fFIRxaTbsWw97Qwdq3nTrn3K0nPpMEmHKw1BUL29eyMwlIoGoEt+xmJ3a1hZ/v6phgCR9\nmdzdMzfwj/vFHqZlZX/vWfEwJnnDrN4WmNkrmyodRznumJKh0eqq1NRt3HTE9Mm6B+A6tHU7\ndTRWV6VmxcTu1gyDKjXlpa29KEqh1hUwGOftmLdfV8BAznJxZxPJyzH/V1DAoFx87mF/634a\nEW3b9zBoRPEPcUYd2KLr7dvX6qz34EyaViXduHDemfdcW1O3Vy09xWMOMFFgMBEREe/uzH3x\nNCKiBPdtTpOR+PBAWo7uj3KODP4bRqzlCJNjYD4WzZ4cGhoWFhYa+VTK5rvms5KfhJx6EnLq\nICMU12nUtEWLFs2bNa9TxYHHUAHKTiV7OD9g1py1i5o4F54kVqZF7ty4/uSt2Lw9AqGko/93\nhgrQ6GVlFV7QXvLx8AU5lgu2npU9+nvWqH8a+fh93NjT3c3Nzc3NhslJlkqlSUn/Xj51KexV\n1cNmPSbMHdTIgIEbFJL0YAS2b99eYA/HqdOl8elSvDdRj1Syq7O2vTUIEQqFJfyuiEE+oUzq\nfzFkc4evH9y4GR2XWM3qzWmv779wJrNqw8FLstcL6BlG2Lij/4yxX/MUqenB+qcPV25G1Po5\nv+hGiTZOn/MdjtlBDYNyEX92bV6GnhHaffKZn2ftOpahe3+9/CapYyGu17CKbWhCNhFJb+ya\nta/B8gFe/IRrKlClhhcoYMCXegOb0/0zRBR3fOHehusGfOxexMEpd/bPP/xqYWszf9xqyiR4\n9rQzUe/xim4icm3ea1q7ov6BoGiYKDCYQp9pkF5ZP/3K+/2OlV3r8gnIrGHEamiYHAOz0uhj\nv0Yf+xERq0h/GBYeFhYaFhYW+ThR/fq/AMcqov+9Gv3v1b1Edu4eLZq3aN68edMmXnZ4tByM\nTX2J6KFMpcqKXjhu1sy1S1q4vJWn57Q5Fw9u27rv/EtWm7ez5sddA8YM9nSyMniwxsrf37/Y\nYzhWcf/KqftXTv3XAQKhJPvh6RnTTn/Ua2pAa9dyDfCDgCQ9ABQuYvNOpZYjIhvXBt+O8m9a\nx8PVwYbvoMyIwFLS5JOOTd7Z7zNgcsvu/e49eJz6Itu56ke1PDyc7YpZJgIlhPVPhrdv374S\nHafNTYqLfXD73xfqVz3j+oMxwWdQqGFQLlhl7LxNf+u2JZ7tpk4Z28jdhohiUg7nP8xS3HDx\nht3Xgxcv3XeHiKIOBEb1+L2uDTrtZYIqNYaHAgZ8cag75nPXy+dTFByn+mPJmJgvBw34ulPt\ndwoD5qQ8PnM0eNeJmxrd028un431wlqo0pPH7wp+naEXV/Js1cTLwSI38kpIZEYuETXs3LW2\ntQURKWSpoTdvJMrVROTtH7ioTzNUQQaz0nxUf75DMG4YsfICk2NgnoRi54atPm3Y6lMiYnMy\nIsPDwsLCQkPDImOeq14n7LOkTy6cfHLh5H6BRQXPRk2XB07lNWSA97Ng/cL54+eFZuSqs2OW\njJs+fc2yj91f3d4T759dv357qPTN83DWFb2GjAno0rIGT8GaNS0ri4qSERGTWfhbI40d5vvA\nCIwdO5bvEMzR6fsZRCSyb7Hh1znOFijR9QGxsK3cwqcy31GYIKx/MrySJunfJnbz+8EUH5z8\nYKGGQXlJPLc+Xa0lIitJi9XLJlUsom1lLHz6/zjh+cg1l6Ucq9h0PH5Vn5qGC9REoUqNgaGA\nAX8E3y2ZEDZ2uVTFchx7++Rvd07tcnCp5Obq6ubmZkM5KSnJycnJSamZ2tcTrEKR6/eLv0N3\nvyyid17SbdjX6rJ+5UiJkCEijX9H/wFTc7ScunqnYV2q6Q7gWNn+VTP2XE6IPLgttFODJhI8\nblt6mCgwmKpVq+b/8/nz50RkaefqVuILuIJz5YZtewzydSv/4MwJRqy8wOQYgNDG0btFW+8W\nbfsSsUpZVHhYWFhYWFjow0fxKl3FDo088u5lIiTpwZiI7OsFrl+8+Ps5d9OUmpyny76fMmX1\nipZ2yfs2rT90OTrvMEYobtd7+Hf9PrfD07WgH0jSgxHo1AnraXgQplATkXfAKAxCDOn48eNE\nZOfR1s+7pIuZ7p05Fa9iSRTv0QAAIABJREFULWxqdf68vj5DM3FY/2QsHGt/Mm/R9zYCnPcy\nQQ0DXlw/GqfbaDttXFEZ+tfajhy05vIKIko8d4uQpC8PqFJjYChgwBcbV5+fl09YOH+9rhvD\ncdqMlISMlITIsEIOFkk8x8yb5+tecKk9vJdrj17qNnrMGCR53Tu0EHsOdrfdlChPPB1Dr5P0\njFDSZ8rqlOih55Ljf55/ePeqvvxEbBIwUWAwGzZsyP9nt27diKhy+2lBIzx5isgcYcTKF0yO\nAeQntKrg6Ojg6Ojg6Ohob52YptDwHRFA6VlW8JyzbtmyCbNuJitYZfzKCRMduNR09ZvRa5Wm\nXwSM/baBGwqolNKxY8f4DsEIIEkPAIXL1XJE1NpLwncg5mXLli1EVKNb3ZIn6WMP7d4mzbYU\nN+j8+RJ9hmbisP6JF507dy7xsUKXqjU8atVpXM8D00xlhxoGvLgoyyUiRmA1rL5jSY4XSdq6\nilalqFiV7ApRHz1HZ+5QpUZPUMCAL3Yefsu2ep8M/uPkXxd0qZp3WYrd23Xu0rf/V26ikr5b\nF/7Lg2w1ETFCcXfXtx53qNPciRLluRk3idrn7WQY6yEzO56beFQWsyc48at+lW0NHS4AGCGM\nWPmCyTEA4lTxjyLDwsLCwsMehkemF5aYZxg8xQJGyULsMTNo+YqJ064lKliVNP31fpGk1oDR\nY3v61uEzODAPSNIDQOFq21iEZas1HN9xQHF0paU0uU/5DsS4Yf0TL8aMGcN3CFBSqGFQdskq\nLREJraqXvEiau6UwRcWyqiR9xgWgXyhgwBeBpUvXQeO+8h/+LCoiIiIqKU0ml8vVZFGhQgVJ\nxUp169bzqldTjLt6OdGVnLGwqm7x9hl1aulEx+NU8jsqjkT5PrKvOdRFdCJVxf69J6bfVLzi\nAYzMwIEDiUjiWZHvQMwLRqx8weQYmCeOU8ZFRejq2oc9jJYp2XePYRimYjXPhg0bNmjQoGHD\nBoYPEqBcCK2rT1378+rJUy/FyXV7PDoP//G7ro4ooKIH8Sfnzdz3hIis7H22bQjgO5wPApL0\nAFC4Lh72YaHpdyJkXX2t+Y7FlEVERLy7M/fF04iIQrq/BXGajMSHB9JydH+Uc2RmBuufwKyg\nhgEvbIWMSsNp1WkcUQnPpVTNEhEjQGm1csdlJD17Ep+cJZerWYG4QgUHtyp1alYR4SI3LBQw\nMABGYFOzXrOa9ZrxHYiJsxIwKpbjuIILy8SVPYnucVrlHbnKJ/9jKIywnb3VwTTFi3sniJCk\nN5zAgNHPczUe/ebP+rwK37EYsT59UOCHBxix8gWTY2BWnoTf1uXlwyMeZ6kKT8w7V63TsGFD\nXW7eHbU6wCQIRVUmr1ptOW3y/55kEZH0Tmjm0K8ckTvVA2VKxsuXL4lIqIrkO5YPBS40MD4p\nj25fux0WFRX1PDVDLpcrNQI7Ozt7J7e69eo3aObj443BdvloOq6nYPTWh1t2KdtMsWYwaa0v\n06dPf3en9Mr66Vfe73es7PCi6DLB+icwK6hhwIuP7USnM5RaTcaZF8pOTsXP8amyrqeoWCKy\ntG2k/+jMRUr0rb9On7n4z79p7xQAF4rsvFq27fJll08aVuMlNgAwXpWthFEKLauMzWK5/OVS\nRBVaEO0nopCEbB+vt2axXUQCIlIrwgwcqjnTqlMjEpJytJz6TBIhSW8QLEd4yrO8YMTKF0yO\ngVmZOHPBuzsZhnGqUrvhKw3cJVaGDwxA3wQit/Er11jMmHQmWqZIuTlj/OKla2d5iJE/LWfO\nLavT4VgiYpWx4QqNN84wkvRgXDKiQ4J+3X07JrXA/uysTGlifHTY7eMHdjl7NBs0ekIHrxK9\n7RWKIK7UddGAm7P2XJ662mvFpK8wFPnANR/Vn+8QjBvWPxlAZmamboNhLCUSLOYAs9PRz+30\n4Vgi2r82pFNgp2KPD9+9W7fh3LT4g6FYrEq6f/0vwSERHFd47RlWlRV+9VT41VMHfXtPmeBf\n1Rpv6QaAkmprL4pSqDlOvTMyc5z3m6GohdizgpCRs1zc2UR6e4iaWNjqNCgV7nnknX8jnmVk\nKYo8ShN//0KOliMirTLXQKGZgZx0aWJGbq3aNfLvlD2+GrT10KNncZk55FSpZpsOXQb1ameN\n92uUDUasfMHkGJgtK8carT9u1qBhw4YNGlR2RCUJMGKFFrItlN+QMc+WrYrKUuWk3J4xfvGM\nyd8U+trHevXqlWuAZsTJe4KPw63rmUoi2nnm+fIeH/EdEf+QpAej8fDI6rk7QtT/Ma+aJ/3J\n3TXTRzwYtmji17hXllWDvgsm5S5bc2jr4PCLvfr7d2/fxBqPwZe3qlWr5v/z+fPnRGRp5+pW\n4oJRFZwrN2zbY5CvW/kHZ06w/skABg8erNsQ2TY+uG8hEf3000+l/rVCq1AAfMhq9OxneWS5\nmuPS7m5YelAyrZdPEY2q9Pa+BWcSdNv/N8DDQCGaLlaV8POEKVcSsvPvFFiKXd1cGWVGSvpL\nNl8P88nVg1MeJ/y8bloVEfL0pRcXF/dexzMCoZW1jbWVtbWtjQiJnJI5d+5cOf6aQ33fllXE\nxR8HhWnStSptiSKikMVLWq2c36py3pkUfCqxOvVCKb2yMSsgKK+TqVUln89QEpGlNe7wZaJV\nSTcunHfmvvS9vlW3Vy09xWNWUh+c37jjjztPUizFjXR9e530u7tGLTik0r5qWNMToo7vjrp4\n9UHQyvGOFri9lx5GrDzC5BiYJ1VmfESEjUDAEJG2fv2qzugogrEq3RSiMvVO4Mw7hX507Nix\nskVkxhjRpJVTk79f9kShfrRn8Y1Pgj52MfdngJCkB+OQfGXTzB0heSuf7CrXbdmwtqurq6uL\nq52lOlkqlUqlj8NuRSRkERHHqS/smGnntnm4jyuvURu3I0eOEBHZ1/ui0eO/7kfvWfvj3iBL\nJzd3d3d3B9ti8sdInpXchg0b8v/ZrVs3IqrcflrQCE+eIjJTWP/Ei6tXr/IdAoDhiCS+Mz6v\nuvBcPBFd37V0+E2/MYO7N/B6Oz3DsenSZ5dOHth1/LoubezoNbSnO2ZDyuroj7N0GXqGYer4\ndOryeXtvjyouTna66VVOk5OSlPTgRsjxw6eeZamISCG9PmvukZ0/9eI1auM2bty40n2REYgq\nVqpcrepHjVq0btOmpbudZfkGZkqCgoLK8de8xtZDkr7UqnQc5bhjSoZGq5JHLQ4YXrdx0xHT\nJ3vaWBBRh7Zup47Gssq4WWuPrpjY3ZphOFYWvHJuNssRkW011Eopk+DZ085EZb7XV1yb95rW\nzl1P8ZgP6dXtAcuPvruIgmNfLv7pSF6GPs/LJ+enrWi0ZaafgeIzRRix8gWTY2BWGtWpGhmT\noOI4IuI4bUpsZEps5IVTfxKRxP2j+vW9vb2969f3rl0FJWwBoJSsXVsuW//j2sUrrsQkLxv7\nfc/h337p19LZjGsZIkkPRkCrSVu09rQuQy+yqzN0wrgurWoW9swq9/TmyaBffouRqzhOe3L1\n0p4tV+FJ7VLbvn17gT0cp06XxqdL43mJB0CvsP4JzFnKo9vXbodFRUU9T82Qy+VKjcDOzs7e\nya1uvfoNmvn4eOOlreWmRcCKbvGjj0VmEtGLyJDFs0IYobVLBa3u0xmTA+LiEuX5plOtJI0W\nLOjOT6wmJCtu92/hGUQktKw4Yt6SLo0L5mYYCxu3ah4dq3l81q3rnmUzD9xOIaKMiJ27Yv9v\ncA07HiI2b5xWlZrwLDXh2d0bITt/tW3/zfARfT+rgPVq8GETWtde+N2n4zaGEBHHZkfevRKb\nO0GXpPfoP8r2xOxslou9sL3/1QNVq0hS4xMVmld3/najUYO69OTxu4JfZ+jFlTxbNfFysMiN\nvBISmZFLRA07d61tbUFECllq6M0biXI1EXn7By7q0wx3lDJilU9mrz5eaJnDtHvrY3I0RCSw\nkPQePaZ5FVH49WO7jt0jopR/frksa9O2xBXjoACMWPmCyTEwK4t+3qBVyWIiHoaFP3wYHh4R\n+SRL/arTIpM+uy59dv3vk0Rk7VCpvnd9Xc6+bs1KmH2HD1ylSpX4DgHeOHnyJBF5d+iVKdsb\nlio9sGHJwY0iB2cnJydnRyeJVZE9dZN8+g1JejACyVdWxypZIrKwrjl/w1Lv/xzUMTVbfbVs\nQ/XJI3+MU7Ia5eNV15MXtsUz8mBMBg4cSEQSz4p8B2J2sP7JAOrWravbsLB59ZaHsWPH8hcO\nEBFlRIcE/br7dkxqgf3ZWZnSxPjosNvHD+xy9mg2aPSEDl54Ur4cMALx8KVBThuX/3Y2VLeH\nY5UpslefPox5a6bPsW6HWXPG1jDjp4nLS8SOECJiGKbP4lVdvByKOFIgchk4d92LkUP/l6wg\noou/RQz+sZVhgjQ9rVu3JiK1/PGdsIJ3GCJiGIZ7O7tjKfZo3shFIXuRmpqali7T5X44Nvvv\n4LUPIpI2LBiIV8C+S3eSC6VVp9+88yjvT4YR2Dm6uLm72wlzk5OTk1MzNa/Pv1Dk7j+6X0UL\ngcTTSe8Rm7TqnScvEziv2nokJfetpasW4gZzezea8cd9ImJVWbFPs/I+cmk27FsPe0MHakKi\nd17SbdjX6rJ+5UiJkCEijX9H/wFTc7ScunqnYV2q6Q7gWNn+VTP2XE6IPLgttFODJsgTl83z\nUxtSVSwRCYT2PQMmftGyQd5Hd3eG6zY8/ecP/D8PIqrn3cJVMWbl+QSO0+7/M7btsDq8xGwC\nMGIFAMMQiCSejX08G/v0JOK0yrjoyIcPw8PDwx8+jErLVuuOUWYm3b2adPfq/4hIaONYt379\n+t4NBvfuwmvgAP9p06ZNfIcAb7z7z8Fxqow0aUba+73BymQUnBwB+ACdHOe/KS6LiFpN3zzH\nt/iku/TyopErbhKRfY3Rvwd9qff4TNTp06dL/d1OnTAIBOMT99cq3fonnfG7DnR0sCIijSJs\nkP9s3QSHUGRXYP3T17/8jtlVMFIPj6yeuyOk0FVQBTCMZfthiyZ+Xc8AUZkJafjVw8eOX7gZ\noWQLOf8Vazbp0u3rbh2aWSIpWR5m9+8dmq2yqzZ4z/reJTk+69k2/++PEpHItuHBfYv1HJ0p\nY5XPFo6ZdjddSUSMUNzis66ft27g4lLR1cW1goU6NSUlJSUl5t7lIyevZKhZhhF2HrdidMfa\nRMRpVUmP7p89ceDPi5G6n/L0X72yL94hXVIaxeOfp869Gi8nInGl+j2/6fPVp03EIkHeARyb\nG3XjXHDwH3efyYhIXLnVotUzatvgCf5yoFXLHty4GR2X2KiHv1e+U3p976oNBy/JXncgGUbY\nuKP/jLG9xALc6Etv3ZA+ZzOURDRkS3Avtzcvazg5esCmRLl9jUm/B7XP28lxynUjh55LVkhq\n++9e1ZeHcE3IHyP67UlREFGz7zcGfp6v5BKn+bb3N2lqlmGYn/Yd8hK/+i+genm198CfiEjs\n6h+8FSe/9DBi5QUmxwBe06bERofrPHyYkK4o8DHe0g0AJaF722/pmOR9BuNwMALnUnKIiGGE\no1qV6B3zrq1HWzK31BynSD5HhCR9KWEsAeYG65/ArCRf2TRzR0jew5p2leu2bFjb1dXV1cXV\nzlKdLJVKpdLHYbciErKIiOPUF3bMtHPbPNynRA0xFMvd23eMt+9oVvE08uGThDS5XJ6j0tpW\nsLN3dPWs713Z0ZrvAE3Koxw1EVXp9p9rjguwqzFIxBxTcZw651HxR8N/OzTvR12GvprvgOmj\ne1Z/a+mqpVvVj9yqftSwWatu/Qee2L5825lHf637QSjZ+l0rF0Ygqly35dC6Lds2WT957VmO\n4x4f+EnWe5MEJapLhPt9TqAuQ9+s97Q5gz55twApI7TyavNVYJsud/9cEfjbFUXizfmzd+34\n+VuUKi07wf+zd99xTV1fAMDPyyKEvcJygZbpxImI4qp77611K662zronjp9acG+tWysutGqr\niFoHiAOUIaLsEPYK4SUv7/dHkCIyIkJikvP96/LeffmcxjR575577mUbNe/QvfkXx91H/9x6\nwMiXr9+nZRaY1WnQ0N7ezACLub/V6wIJABBM3gA+r/TxH1qaQnJ+UdYzgP+S9ATBnbC0+535\nV3JiTp1N7jvSRk/Z4WqQh7lFAEAQnAWdbUofF2f/nS6hAIBj6FmSoQcAjqGHGZuRIZGRuY8B\nMElfffjEqhI4OIbQJwx+fSd+fafOvYeQeamPbl89f/GvpE+19Qipl4SAlUvPxAKAjqH74T2z\nVR2OdsF1VcvAJD1SA4lFFAAwdepbsBlVdgYABtvcjsuMLpRSJG4Qhb5f8fHxNfuC9erVq9kX\n1EIuPSYc6DJQXv9UV+e/JaZdxqxbSpRb/zRQRZEi9E1k0vT1vn/JM/Qcgx8mzvPu08auvNQM\n/eFZgN/OYzH5JE3LAnZsGtx6uwnmcGoOweTZu7ayd1V1HJpO/pnl1eFV1fETgmOlw4gXU0Dg\nXgPVlxN76GRkFgAYNRrqu2hkJel1pq7lgNnbqORJx8Iyb2xZ6nliX0lqp2HX2XOCnvu+SKdI\nweW0wglWCv8jarGsCN9LMTkAYN588urxHSrtS7gNXjQ36p3v49ScmMtbn/RdijOxahNLz6aV\nu03V/ZDCMiUyAGDp1Ctzb2La2hSuxZP5z0kaOKVOGdpNtOBcTyOpu6diRi5sptxgNUoqKQMA\nlm6DMnOnsl7flzeMXbqXuaQOh5UhISmJlq5iWoPwiRUhpCqUKP1NWHjY69evX7+Oik+T4fLM\nSJ2JhVm5ubkAwCQjVR2L1sHZb2Vgkh6pAUMWI11C0bKyq+hUolBGAwAQ7NqKCaFv5u3tXbMv\nqJHrvSgf1j8hbZD6cEecmAIAFtduzZ5NrhXuzErYtenrs6fez9NWxYspqfj99sep6zyr3ncG\noe+Kmz4nKKcoLyoPXBXacpuWiVKKZADA0fvy1wApKvTAA3lj6LJhChTAE30Wjj023pcihXsu\nfPCd8N+Oxe4zOvpOvwQA4SEZ0BeT9FULPvRc3hg6v4ci/T1njfF9vB0Awo4/APchtRgZQjVN\nh0GQFE3T0jLHeTYOAC9pmfh5Pule+o6dYHYy1LmYLsp8eR0Ak/TVp8sgxDKalpV956OvJcsb\ndv3rljlFFudycK5nDcAnVoSQ0lDi7MjwsLDXr8PCwt7GplDlJeZNbB1aurm5tXRTfngIVZtZ\n63rgHwcAlDjujUjqysM8KVIZ/PAhNWDHZaZLKIoUvCyQNNerOu8uFb1JJGUAwNZ1qP3o0H9W\nz56RWCS1H7lmWel96RDSFFj/VOO+dj0JgsHU4epydbhcPV0O7uH6DUIvfpQ33OYtrThDX4xj\n3HT5nJbTtj4DgA/nQ8ET95GpFRRZxOToqDoKzdSnPT/oZkLClcuywfMUWZQpO+KQhKYBgO8x\noLZj02BXY/MAgMEyGmCuq0h/HeNufM5uIUkl3z4PE34rOc416w5wCQBEiV8xYVeb3UjIBwCC\nyetlqtDGGTpGXsasndlSWWHG3wCYpEfqxEaHGSWSUeK4PIo2KDUbiKPfCuA8AAQmFbg7fXaf\nY8FhAIBEFK7kUDWMnS4rK4+kij4mkZQt51MxNy059TFX3hxo99n66rSsMFYsBQAG21y5kWod\nfGL9TuDgGFJrMjLv3dviivm37xLJ8hLzTB1jl2Yt3Fq2bNnSrQFfX/lBIvSNTF3nuRsHP84W\nA8DxW4lbBjVQdURIe2GSHqmBbvaGwa/SAeDwmbd+U6qe8B514aB8CV/Dhr1qPTj0iUySFpGU\nUiijJbdSAJ9DEEIKqPZ6EgSDY25tU7dOg6at2rVv39rKANdN+Tp3hIUAQBDM6W0UWtmY324G\nmwiW0LQo9Q4AJulrAC3N+jfwYVhY+JuImOyCApGoUELR8gVRyLzgS4F5Hl6edfGDXUN+mDDL\n7O/fMrL+WXup6+rBjSvvTJEpOzYGAQDB1Jsw1l4pAWqm+CIKABhsC8UvMWUxhCQlKXhd+iCT\nXfw1RWaSNRieBkuQv/MMPcXnsukyiGwAGSmsvai0iignLTklQ6LwGrAOTs4KrDaByuFpyIkS\nSWhacjwy29vVpOQ4i+egzyTyKTr+djI4mZS+JJmkvngZ9NW6W+uF5pE0LfO7neTTt3jPtYxX\n+wSkfEN6d5fPy9Fy3p0oktEAoGPQTvnRIqRkODiG1NqaJfPeRH4Uy8q5jSEIwqK+i7xovllj\ney6Bty9InRGcBdsWps71iRVJ3p3a8LSDX1sLhaY4o9qmhRUsmKRHasB5bEt4dQsA4q+tO91k\n1+i2lS20K3x+fo3/B3nbbYyTMuLTcHRi5PMXER+z8iqtXqKlCa/uyXcZkImLlBSamlu5cqWq\nQ0BIXdEyMi3pY1rSx9Cngcf36XUeNnnKiK76OMKtsMQiCgCYOvUt2IrUFQODbW7HZUYXSiky\noZZD0wqRD/7cd+BMbE75GUeq6MPpgyfPHjnqNXLanOGe+Ln+diye6+aFvaduCgg9tmx12vjx\nw/rZm5b/yJf38dnvm7a/zCMBoPX49W1wkdhvYMxipEkoShyfQ9FGCnyOaSrvo1gKAMTn+1VR\nZPEGxhwTnLaiEH0mkSWlKUlarJiy5zKr7E8VxQkkMgBgsI1rPzpNRksz/zy8/3pQaGbe1z0N\nnfK/YoDf9dXSvF8dOBgFAIEbNrbZtqaNTcmOGIyORjo3MsWCh3vzZvuVvL0yMvXvLDEAsLk4\nB+ubuExqAUvvAkDE4aXnzZb3buVQmBi82SdQftam+7DSnfPiHqxcdUveNmvTSrmRIlSDcHAM\naYXnbz+UOcLimTdt4ebW0s3Nza2OYgs1IaQWuPzWPrtX+W7Y+jAm1WfW3MGTf+rt1dpMgQco\nVIOwggUwSY/UgrHjzG78B38LRTRNnts4M6b3uNEDezayLLsnZaHw/a0rZ09cfyalaQDQteg6\nywlHmr6JjBTsXbfy1ivBV13lOKRhLcWjYVq1whEK1di1a1fNvmC1y8FRu3btAECS//55eNqX\nZwmCoD+vQmPz7Fs2tRDlZKalpaVn5Mhr1Giq4O5Z39cRKXvWjsWp3AoyZDHSJRQt+4q1o+Uj\nTUBo+J2xEoSeWrH63Ksqu8monLuntr6NSd2zbCgLP9ffjN9u2u+/6q/YcT404MSLm+eadezZ\n0qkun29pybdgkrmpwlRhamr0qycPXryX77No323GNA8DobDCwmI+X6FVKLSZl4nOBaGIpsn9\noemLWlddT58RdlBessMx/KzOUiS4KW8YOhqWcxn6grsh50amGAAO3U3e2LvsttBfSgk8IP+1\n5Rh61HpwmoumCn6f5303Ib8a1+ooNF8OlcO2+3STo79mSWVkftSG2ZMdm7WYsvhnB10WAHTx\ntLxxJY4Sxy/zvbJ1/gAuQdBUztltKwooGgD06vZUdezqzdhlhofpv48yxTSVd3LT4lOlbtoJ\nBnfqsPrydqHw5uYt1169S5L/thIEc9jIBqqKWb3gE+v3BgfHkLYhCKZNw8ZuLd3cWrZs5lgP\nH0iRRgoICAAA1y5DsnNOh6cJLuzZeHEvx9jM1NTUzMTUSKfSSbSLFy9WVpiaDCtY5DBJj9QC\nY+rGeeGztghIiqapkIBjz2+cMLawtuTzLS0tdaFQKExNTU1NScuWfXoyZHL4czdMxeGOb3T2\nt0W3orK/6hJ+yyGLOlW21AFCKnf79u2afUEc8qi2ZcuWUeKP62Yukv9JMHmtuvbr1q6xhYU5\n34Kvz5KkCYVCoTDm5YPLAQ+zJJS0MM60tfey7o0AgJaRKe9e3b5+4dL9SABIf3Vh+fn220bg\nOIhC7LjMdAlFkYKXBZLmelXn3aWiN4mkDADYug61H50mS7jtW5KhJ5gGHbp6OTT6gR12et+D\n/4b8WDznJrZ6YUkFACB4emLZmcZbRuPKQN9k+vTp8gaLRYAUaFnRy8ArLwMruyT2731T/q6s\ng3xmN6pElxF2F/zeAMCTbZsiD/k4VbosgVT0fpvPI3nbtnepPTVo0n9HkLzZuqnJlxeiL/3Y\nw/bGmfcAEHFkTUjrXa0qXbZRnB665uBbedu2dxdlxKehEm9vLJ2hZ/OM+KYGCo4jsXGKYXUx\nuY3WTe3ovTcQAGiqIDL0YVzRPHmS3n7UdL3rvxVQdNy9I6MeXahja5SWkCySyuQXdppR9SZ6\nqBIEwZ2zac77Odvl69uXnlbrOHRFE17xvWVRdnBodGLJqQY9lnoZadfipdWGT6zfGxwcQ9qj\njVeflm5uLdyaWRniomJIw+3fv7/MEZoms9IFWelfNyULVQ9WsJTAJD1SD7p89/9tmbduze7I\nrCIAoGlZljApS5gUGV5OZ46Rw8yVKz2sypbao6+Sn3Di7KeHEJ61Q5vmTsasosiHgfJ/gia9\n+jXisgBAlJMW9uxpcr4EAFzHrF4/3E2DpzUhhGrcnytXhWaIAaCux+jFMwbXMyr9HMi2rNPA\nsk6DJm5t+o8ae/3IlsO33t3c9QvT6NDUNhYEg2Pj2HqiY2vP5rt/9r1N0/T7C5tzhu5XZFFl\n1M3eMPhVOgAcPvPWb0rV49RRFw7Kh18NG/aq9eA0FyWOW7n/rrxt5NBp4a+zmlrpAkCM0L90\nNzavyYY9fzw+u2HTmecAEHVhddSgk466eNNefSkpKaoOQRtZey1odGhGTKFUWhizfMaySQu8\n+7RqUG7PpFd3dm0/8FYkAQAmhz97QHEJZl5K9PXjOy7G5gIAR7/FIHNdZcWu3uoNmGJ0/rcc\nSkaRwo3eCyf98mu/NvXL7Rkfcv1/246kkhQAMFgm0/rUUW6kGuWfCzHyhlPn4dPGDWxkrq/a\neLRHvV4/+zDMth+6LCz6bLN5Fq/xiqFNl5x7BQAUmRf3Ia/klIXbpJ/scWWOb8Wz9tzpZ3hg\n9+HAsDh5sQSDpe8xYMovY5t82ZkgWC17Tf1tehulh4lQDcDBMaQ9EgJWRobGRoY+uGjofnjP\nbFWHgxDSWFjBUhoJZ//BAAAgAElEQVSO9yG1YWDv5XPINeDsuYCb9+R3vV9i86w69eozYlRf\nSw5uH/Ktoo8X1y0ZNuyze9s0ed5LOqb7mNELC2W0pF7PSX2K18+kqZzz25ecepAUefFwWM/G\nzY1wriX6ro0dO1bVIaBiObGHTkZmAYBRo6G+i0ZWMorB1LUcMHsblTzpWFjmjS1LPU/sc+IV\n38M07Dp7TtBz3xfpFCm4nFY4AWdoKcB5bEt4dQsA4q+tO91k1+i2lRV5CJ+fX+NfvC+d2xjN\nvCFWjuQ7uzMkMgDQMWq1w2eBOaviFX8IlvuoVfMSp/3+QEBTov3XErYPt1NeoBqHw8E7ExVg\nsPnLlw2dtvIcSdNkXvT+tXNP2zi1btKQz+fz+XweiIVpwjRhWuybkDcJxQPfBEF0n722EZcJ\nACLBobEzrpVUZ3acOxsHuhXE4rmuHue24FgIAEgL4w6un3PJvnkHN2dra2srKyseiAQCQUpK\nSmTowxexGSVXtRq/ygknA32Dh7kkAJi4jtm8YAR+VpXMpceEA10Gvn76LDo+ua7Of+MALmPW\nLSW277kYlPOpgJ4gmM26j1kya6CKItU0POtm89f7zswSxKdmMPUt6thacD5fFoLFs3f3NLRp\n4NDGvaNzHZy58hXwifW7goNjSHuIhVm5ubkAwCQjVR0LQrVu1qxZqg5BS2EFSxka+J+ENBiD\nbdFvnHffMZM/RkVERESlpOfk5+dLgKWvr29kbu3o6OzkbMdj4KhIzfj3Xa68MWjJuJLKVBbP\nYbyV3v7k/OS/YuDTcwjBNBr+6w5h9MQ7qQn/W+P/x/YRqokYIcUMHz5c1SGgYqEHHsgbQ5cN\nU6DOgOizcOyx8b4UKdxz4YPvhB9KTrjP6Og7/RIAhIdkQF9M0lfN2HFmN/6Dv4UimibPbZwZ\n03vc6IE9G1mWfesKhe9vXTl74vozKU0DgK5F11lOxqqIV0M8vhIvb3gu8q4sQ/+J57Rxvz/Y\nCgDJd4IBk/Tf4OLFi6oOQUuZNhvtt0S2eOvFbKkMAPKSI+8mVzjeRzB0uk9dP6uzjfxPmUxU\nkqF36D1/bju+EgLWGA0Hr1yY9dvWK2HyPzNiX16JfVlJ/+aDlywfaK+U0DRWrlQGAJ3m9MVn\nUZVgsI2ad+je/Ivj7qN/bj1g5MvX79MyC8zqNGhob29W6dYbqBp0TKx+MCl/uqd+nbFLFyo5\nHA2BT6zfFRwcQ9rDrHU98I8DAEoc90YkdeVh5ghpsp49e6o6BC2FFSxl4FctUj8EQ9fO2c3O\n2U3VgWi41wUSACCYvAH8z9I2P7Q0heT8oqxnAJ1LDhIEd8LS7nfmX8mJOXU2ue9IGz1lh4sQ\nUkNXY/MAgMEyGqDYIsY6xt34nN1Ckkq+fR4m/FZynGvWHeASAIgSRbUUqsZhTN04L3zWFgFJ\n0TQVEnDs+Y0TxhbWlny+paWlLhQKhampqakpadmyT0kyJoc/d8PUqhPLqGL3c4oAgGDoTHJR\naGttjpEnn7NdSFJkzkMAHKtFasnafeyBA25H9h25E/yOKrVpcRk2Lh4Tps9ytzMoc5xn5dBv\nxKQxXV1rOUwN5Dl5Q13nP3ccOPshs6iSbjy+w5jp8/u1xoXuv1U9HWZ0obQ+jmV/f1h6Nq3c\nbVQdBUJIjeHgGNIepq7z3I2DH2eLAeD4rcQtgxqoOiKEkAbCCpYy8BkSqYFr164BgIG9p5er\nogV8L2/dSCAplm7DXt1cajM0TZYpkQEAS6ce6/N6ENPWpnAtnsx/TtLAKXXK0G6iBed6Gknd\nPRUzcmHVOxwjhFB8EQUADLaF4peYshhCkpIUvC59kMkurrAkM8kaDE+z6fLd/7dl3ro1u+Wb\nKdK0LEuYlCVMigwvpzPHyGHmypUeuJXAt0klZQDA1KlnoPAGlVZsppCkKBK3VEdqjGvuMmv5\ntknCmKDHzyMiIj4mpeUX5BdKwMDA0MjM2snFpVmbDm4NzctcpWs2aOeeUXZ1LLAuudoatB/y\nu3u/N//+8+j564iIqJSMXJGYJAiGjq6eqVVdR0eHZq09O7X8AXfMrRGd+LzouNzXqYVdjXVU\nHQtCCKGahINjSIsQnAXbFqbO9YkVSd6d2vC0g19bC66qY0IIaRqsYCkDk/RIDRw8eBAA6vd3\nVDxJH/fnH4cFBWxe417dNtZmaJpMh0GQFE3T0jLHeTYOAC9pmfh5PuleerVAgtnJUOdiuijz\n5XUAfA5BCFXNmMVIk1CUOD6Hoo0UyBLQVN5HsRQACIJd+jhFCuQNjgm7nMtQBQzsvXwOuQac\nPRdw815yvqTcPmyeVadefUaM6mvJYZbbASlOj0mQUlomSacBFEyKCSQUABAMhZaaQN+iSJTP\n0tXHbGXt0eU36jGgUY8BivZn6tS1x+rub0dwXD16uXr0kv9FU6SMwcHPeW1wn+x2cGVgyK7L\ntN9EfIMRQkiT4OAY0ipcfmuf3at8N2x9GJPqM2vu4Mk/9fZqbcbF0QCEUI3BCpYyMEmPNBMp\nowFAWvRB1YGoMRsdZpRIRonj8ii69DcmR78VwHkACEwqcHf6bEs/Cw4DACSi8sowEVIrwnch\n/4aER0VFJaZl5efni6UMAwMDQ1NLR2eXxm7u7q62qg5QQ3iZ6FwQimia3B+avqh11fX0GWEH\nxTIaADiG7UofFwluyhuGjoa1EacGY7At+o3z7jtm8seoiIiIqJT0nPz8fAmw9PX1jcytHR2d\nnZzteAxMN9SMtgacv7LEMmnWrUxxT9OqKxLIvMdCkgIAtl7T2o9Ok5GFeYVMPSNOeauo0dSL\n22cv3X0en5AoZRs3bunu1XuQeyNFZ4UipF4IJs63qi3mzRcMd3hxPvrSsiP1Vk/qrEPgT6ey\niXLSklMyJBVvq1GGg5MzTliptgkTJlTvwkYTfVZ0tq7ZYLRWfk6OVOEPvJGxMX7eqw0Hx5BW\nCQgIAADXLkOyc06Hpwku7Nl4cS/H2MzU1NTMxNRIp9LfzsWLFysrTISQGsMKljIwSY++RxER\nEV8eLMr8EBFBVX0xLc1KfnshvVD+Rw1Hpk08DTlRIglNS45HZnu7/rf2CIvnoM8k8ik6/nYy\nOH22JkkyqcA/EELft6zoQL99f4TEpJU5XpCXLUhOiA4PuXbhhJm927gZ87o4KbQmD6pElxF2\nF/zeAMCTbZsiD/k4GXAq6SwVvd/m80jetu3d+78TNOm/I0jebN0U/1Gqg2Do2jm72Tm7qToQ\nDdfdy/Iv/zgAOO8b2HN1zyr7v/njD3nDrEXVndGXkl/fvXwrKOT563SRtOlvh9a35ZfpQOa8\n8VnhE/Ix59MBweO//Z/8c7VV35m/Tf2x6o3REELoP8SojT7CXxYFXt45MThw/NgBLvZ2daxM\nMQ1c22hp5p+H918PCs3MK/qqC0/5X1G8dgeVkZWVVb0L84pwxOBbJYXeOnH1XkzM+7Tcr/jM\n4wf+W+DgGNIq+/fvL3OEpsmsdEFWukAl8SBUe3DSoapgBUsZmKRH36NyZ94JHu5e/PDrXkfH\noF3VnVAFmverAwejACBww8Y229a0sSnZipjR0UjnRqZY8HBv3my/kic9GZn6d5YYANhce9VE\njNA3e3t5x4qjgVWW4GTEhv6+eMrrSevnD3RWTmCaytprQaNDM2IKpdLCmOUzlk1a4N2nVYNy\neya9urNr+4G3IgkAMDn82QPqy4/npURfP77jYmwuAHD0Wwwy18w5lUgz1B88kn15i4Sm00P3\nbLpotGiIeyWDpYKQM2tvJcnbP47GH9avQ1N5p7esPPf4fSV9ZJL09XNWv8wuO8BN01TwtV2/\nFDF2eHerzRi1Dhb8KU18fPxX9ScYTB2uLleHy9XT5eDSKd+AybHtN6h94M5bBUkv925+CQAE\ng6nIO+rv71/rwWkomir4fZ733YT8alyrg1OxlIjFMzXVZwGAqS4OQn6TmGvbfzl0n1b497QE\nGz/w3wAHxxBCSCPhpENVwQqWMvD+GGmyltNHqToENWbbfbrJ0V+zpDIyP2rD7MmOzVpMWfyz\ngy4LALp4Wt64EkeJ45f5Xtk6fwCXIGgq5+y2FQUUDQB6dTXz6xJpvNSH+5ceDSwZ8jCwcWzd\npBGfz+db8A3YklSBQCAQvA8PjkjKAwCaltw7utTA8sBk97KlmUhxDDZ/+bKh01aeI2mazIve\nv3buaRun1k0a8vl8Pp/PA7EwTZgmTIt9E/ImIVt+CUEQ3WevbcRlAoBIcGjsjGsl/2Qd587G\n3EK1yci82HcxwszcvPx8YOsaGhhY2No1rGOOb2kN4hh5LOlWZ92dBAB4fGLT5GdeM8cPaOz0\n+eAdTWUIPgYFXDhx7TFF0wBg4jRxsBWv3BdE5aMlh37zvva2iuftl/tXyjP0OibO3bu2rGvC\niI2OCg8OTRJJAOD9bd9jXi0nNsbFOb4VFvwpn7e3d/UuJBgcc2ubunUaNG3Vrn371lYG7JoN\nTOMFH1u+7tLr0kdoGYUDeLUq8fbG0hl6Ns+Ib2qg4HcHG7ck+Aa7du2q9Dydm56akpKc8DH8\n1p3gQhlNy3SH/bKxhzP+qn4TMufRssOfZeiZTEX3MOHgB/4b4OAY0iqzZs1SdQgIfadw0mFN\nwQqWMohqTMBEqLaVuSFITEwEALYB39KospWQS9M3s2niOWjcj641H5w2ib+53XtvYMmfc05c\n6G6sAwBSUfi4Mb/JnzqYHIM6tkZpCckiqUzebeDOkz/Z47bQSM3IpOnzRk+NE1MAwDH4YeI8\n7z5t7Mq7Q6A/PAvw23ksJp8EABa34eHT201YOOTxTVIen1y89WL2p++QShAMne5T13v3cZT/\nmZ/sO3rG3/K2Q+/522Z0qcUoNRUtDXv4V8CNv0LeJpBf3BNyDMxbenTr3adPs/pGKolO89Ay\n0eElM65GZpccIZhcC32ZMIcEAJdGdePjk/NLLY+pY9R028E19bm4i/RXiLm0/OdjxXkyrrnT\nwAE/tnCx59erb6bz39tIFSWMHeldQNFck/b/27+w7qd3mBKn7Fuy8FZsLgDoGLW/8McS5cev\nSapd8Hf+yhUuphOqq3///t/+IgRTr/OwyVNGdNXH2RKKyXl/YvzPf1ZvdOXq1as1Ho+WOPbT\niEvphQDg1Hn4tHEDG5nrqzoiVJY4Pfr8Ub+LD+IIhu6ELQcGO+AtZfW92jptxQMBAOjyG/80\nfUyLH+z5xriKmJLg4BhCCGmeqlYgKzvpkMm1nbEGJx3WjGC/2fIKFgAwdSquYEk5Pf/nix9A\n/nxUXgXL8S2DVRl0rcEkPVID8pGm+v23+U1xUHUsWuftrePbD10WFlFQ6jkEAN6eWrHk3Ksv\n+1u4TTq8epBSQ0SoJqQE/jZ9exgAsLh26w5uda10ShCZ/frnaavixRQANFt4YJ2nlZKi1Fzi\n9LdH9h25E/yOqvi2xMbFY8L0We52BiVH5El6npVDvxGTxnTFWVlfTZwRvmfz1sDIKgqOCYLZ\nut+UeZN6Y2FrjaCpHP+9W47dDquyp4ljl2XLZzkqPEMRAQBNZU8dMUm+XZmF27CdK8aW+7lN\nfbx66qZQAGi1+shKN/PSpyjxu0mjF8qnDU04eHaIJS5jUE1kzqOxE7aIZdUp+PvT3x/X5a22\njRs3AoAk//3z8LQvzxJE2REANs++ZVMLUU5mWlpaekZO6U1/zJsN27N2LE6YUMTNn8ftjckB\nAF2+y4jR/Z3r2VqY6Cv4xpmZmdVqbBpsytBBQpIycR1zbNMI/Jh+x2SXVk459jKdxW24849t\n9XRw6mE1bR477FFuEcew1f5jy81Y+DupbDg4hhBCWgsnHdY4rGApDZP0SA1gkl61ZJKc10+f\nRccnNx00xqnUci6PT2/fczEo59McYYJgNus+ZsmsITzczBKpoQDvMfvj8wCgzeIDyz2qTroL\nHqyftvUZABjWn3HSr3etx6cdCoUxQY+fR0REfExKyy/IL5SAgYGhkZm1k4tLszYd3Bqal+lP\nFSXEpXHt6ljgl041kDnhy2asii6QlD5IEGxTSytdWb4gLbvM7tEmrv13rZ+MefqaInjzyP/q\ntXvPIsRUObfi5nbN+/Qf2L+LGxvf76+UFrJx8tonAMDmOe0/6WNewRD23/PH+cbmAMD0Y+f7\nmHLLnH2+Ycqap0IAqD/of36TfqjlkDUWFvypECX+uG7motAMMQAQTF6rrv26tWtsYWHOt+Dr\nsyRpQqFQKIx5+eBywMMsCUUQzF7eW2d0bwQAtIxMeffq9vULl+5Hyl/KYcyObSMaqvI/Rk3M\nHDYoqYjSMW516OgKI/ytVJbhAweIZfTAfWd+stFTdSyoMhJR2LBRy2U0bT9ix84x+JVSTeMG\nD8yRylosPbjG3VLVsWgpHBxDCCEthpMOaxhWsJTAJD1SA+fPnwcAI4duPZqbqjoW9BlpQfLL\n1+/TMgvM6jRoaG9vZqCx35VI480fPjhWLCUI5qGLf1qwq65LkEnShw2dLKFpFrfhpfM7lBAh\nQjWKPjBz9PWkAvkfHKOG/Yf079SmibWVGYdBAABNidNSkl8/CbxyKSAuvziRb+u1eO/PHioL\nWRPRlOhD5NvYpPT8/PxCUqanb2BowndwcbUxKZs2RgoKWf7T2tfpAOA0ZdeW/vXK70RLpw4b\nlkpSADDj+PneX7zbObHbxs0PAgB9m6mn9/Wr3Yg1Fxb8qdD5RRNORmYBQF2P0YtnDK5XwXAG\nVZh6/ciWw7feEQTR97dDU9tYlJx6/8/un31v0zTN5FgdO7cfs85VGjxggJSmO24+/isugKlE\nv44YHF0onXfiQtdPJa3ou7Vz/PC72WKuSa/zx2eqOhZ1JZ+VMvP4+V54o/j9wcExhBDSeDjp\nsDZgBQsAsKrugpCqDR8+XNUhoPKx9GxauduoOgqEakBiEQUATJ36imToAYDBNrfjMqMLpRSZ\nUMuhIVTzsiL3lGTo+a1G+CwdZf75J59gcvl17LsNte/cv88fG5ZeepEOAMn3t/41vmVPcxwW\nrDEEk2fv2soe92qoOffj8uSNPp0qXBNFnHk99dOyaWKqnA665u4AQQBA5j4DwCR9NYWLJADg\nOns6ZuiVLCf2kDxDb9RoqO+ikZWk15m6lgNmb6OSJx0Ly7yxZanniX1OvOLxgYZdZ88Jeu77\nIp0iBZfTCidY4b4PVTBlM4Qk1cIa3yil6sTnRcflvk4txCT9968Rl3UXgMx/CoBJ+mpqpMsK\nL5BIsdLqu4SDY0hTCd+F/BsSHhUVlZiWlZ+fL5YyDAwMDE0tHZ1dGru5u7vaqjpAhJSHzWvi\nZaRzN1ucfPs2jMH7mZph5eox09VjhnZXsGCSHmkUigYs86gRCQErl56JBQAdQ/fDe2arOhyE\nap0hi5EuoWiZSPFLCuX77BLs2ooJoVoTfjxY3uDxO+9aMbqS/YaZHMsJq3alT5kUlF5I07Ir\nJ2N6zm+srDA1Cv6wKseHIikAEATHw7DCAibBvSB5g8Ey7m1aTl6Hyakjb1Bkai3EqC2KZDQA\ntHPC7fqULfTAA3lj6LJhCjwZEX0Wjj023pcihXsufPCd8N/+Du4zOvpOvwQA4SEZ0Bdzz1Xo\nYqxzVihKLHfiD6o17pPdDq4MDNl1mfabiMMA37nYIikA0FS+qgNRY33sDcPDMp5H5PTz0IoB\na4SQamVFB/rt+yMkJq3M8YK8bEFyQnR4yLULJ8zs3cbNmNfFCZcRQtoCJx3WEi2vYMEkPVIz\nhRmC5Kyiho3qlz6Y8/6R36E/332Mzy4EU2u79l36jBvSiYubP30DsTArNzcXAJhkpKpjQUgZ\n7LjMdAlFkYKXBZLmelXn3aWiN4mkDADYug61H50m2LVrV82+oLe3d82+oFa5E1c8Qtp52U+V\nZOjlCAZv6m9dghYEAEBayFUATNJXB/6wKoeQlAEAg23Oqvhz/fR2iryhZz2i3NtFglGcuZdJ\nMms+RK2BBX+qcjU2DwAYLKMB5rqK9Ncx7sbn7BaSVPLt8zDht5LjXLPuAJcAQJT4FVMYtVbn\nsS5nt4f8eypswi9tVR2LFjFvvmC4w4vz0ZeWHam3elJnnapuaZCqkLnP7mUXAQCDY63qWNRY\nC+/BjBmH3h48IW7/a5U38Agh9C3eXt6x4migpKpdkjNiQ39fPOX1pPXzBzorJzCEVAsnHaLa\ngEl6pDbSXv+99+i557FCNq/pxTPrSo5nhJ6YvvZPUlZ835CRFHXtj6j7j177bZtjUskALaqU\nWet64B8HAJQ47o1I6srD7wqk4brZGwa/SgeAw2fe+k1pVmX/qAsHaZoGAMOGvWo9OI1w+/bt\nmn1BTNJ/i9hCebUxc1wDQ0X6G9pPYBM3JDQtKQir5dA0Fv6wKocekxDLaJouqqgDTeVcEhZn\nHG37l/9tT0mE8gaDbVrjEWoPLPhTlfgiCgAYbIsqe5YwZTGEJCUpeF36IJPNlzfITLIGw9NU\n1p2W9rs86XrQ5gtdDwxrbq7qcLQHMWqjj/CXRYGXd04MDhw/doCLvV0dK1NcXe+7UpQVtXv5\nToqmAUDXtJuqw1FjPOt+60c/W3bqwcIdTlsX9MU8fW3AmeUIAUDqw/1LjwbSnzL0BjaOrZs0\n4vP5fAu+AVuSKhAIBIL34cERSXkAQNOSe0eXGlgemOzOV2nUCNU6nHSoTEWifJauvpbc1eP4\nIFIPgkdHZm+58uUMPprK3bD5ckmGvkRu7N+LtjY9uNRLSfFpHFPXee7GwY+zxQBw/FbilkEN\nVB0RQrXLeWxLeHULAOKvrTvdZNfothVuZgwAwufn1/h/kLfdxjgpIz6EahQFNAAwOFY8xVad\nIQiutQ4jXkwBLavl0DQW/rAqhw2HlSEhaWlmEknZcphfdshPPFv46b7xx7blZzElBa/kDSan\nst8CVDks+FMVYxYjTUJR4vgcijZSYFSDpvI+iuUztz5bSYgiBfIGxwR39lEAwf5p05qMX1ec\nXDU9qvfYKeP6WeFkLKVgcmz7DWofuPNWQdLLvZtfAgDBYCpyd+Pv71/rwWmuM2fOKNRPVpQS\nH/c65EWmpPgG0mV8u1oMSws0HrF2QZHP738eGv/m/pBRYwZ0bs7VktFrZcGZ5QjJpOnrff+S\nZ+g5Bj9MnOfdp41deV809IdnAX47j8XkkzQtC9ixaXDr7VgshzQYTjqsQWRhXiFTz4jDKOcc\nTb24ffbS3efxCYlStnHjlu5evQe5NzJWeoxKhc+NSA1Q4tjfdlwrd42d9Je7YwqlAMBgGQ2d\nMbOlLefN46snrr4EAOGTnQ9y2nsaVbgjKaoMwVmwbWHqXJ9YkeTdqQ1PO/i1tcAqKKTJjB1n\nduM/+Fsoomny3MaZMb3HjR7Ys5Fl2R1YC4Xvb105e+L6M6n8tsyi6ywnDb9RqCljx45VdQjo\nP0312I9zSZkkQ0IDW4HnaFomSi6SAQCbh/s7VBf+sCqFh6lOWAFJ0/SF97nzncvZHDHieLC8\nweTW72pczob0ACB88ELe0DFpX0txagMs+FMVLxOdC0IRTZP7Q9MXta66nj4j7KBYRgMAx/Cz\n5JlIcFPeMHRUaM0VLXf58mUAcOjc7c3pq88CjgbfOG5kYVvX1kKRH9nVq1fXdngaLPjY8nWX\nPlsEgpZRlKqi0RqKJuk/x7P0+qUd1llWn/x7BgydezR9f/NV9CnfVaf92KaWVlZWVsZ6VQx8\nLV68WBkhIoTUX+rDHXFiCgBYXLs1eza5VjiuTti16euzp97P01bFiymp+P32x6nrPHGKM1In\nOOlQyZJf3718Kyjk+et0kbTpb4fWty17W0jmvPFZ4RPyMefTAcHjv/2f/HO1Vd+Zv039sbyU\nvobAJD1SA4k39qSRFAAwmIaDZ8/v0fq/3XBDj7+RNxzGrBn7oz0AOLu24otmbvs7iaZl5y/F\neU76QSUxawAuv7XP7lW+G7Y+jEn1mTV38OSfenu1NuOWU5SGkEZgTN04L3zWFgFJ0TQVEnDs\n+Y0TxhbWlny+paWlLhQKhampqakpadmyTxOGmBz+3A1TNfgWoWYNHz5c1SGg//RpYfb4fgot\nE5+Kz5tY36DK/tlvD8gnphj+0Lf2o9NY+MOqBK7dreFIHgA88/Wn9/5UJjtGS7MOvc6Qtw3t\nRlSQO5OdvBQvb/E9cVbKN8GCP5XoMsLugt8bAHiybVPkIR8ng8oyN1LR+20+j+Rt2969/ztB\nk/47guTN1k3Lme+Cyjhy5EjpP2lali1MyBYmqCoeLZHz/sR6f9yIRz2YNOqwcv1cXcXWcELl\nKvM9AwA0LckQJGQI8KumxuDMcoRCL36UN9zmLa04Q1+MY9x0+ZyW07Y+A4AP50PBs3fl/RH6\nruCkQ6WhqbzTW1aee/y+kj4ySfr6OatfZpfdu5CmqeBru34pYuzw1tgFDDBJj9TAkxuJ8kbz\n2ZvHd7P97wQtPZdUAAAEQfzUq17J4XYTx8LfmwEg7VEoYJK+ugICAgDAtcuQ7JzT4WmCC3s2\nXtzLMTYzNTU1MzE10ql0jBWnaSN1pMt3/9+WeevW7I7MKgIAmpZlCZOyhEmR4eV05hg5zFy5\n0sOqbKk9QmrBadpUo4frcyjZzbUHBh34ufL1kCkyZfumhwBAEMyhs5ooK0YNhD+sSmDz4wT2\n0eUSms5PurzmXIvVI1qUPvvy6EoBWVxg6TSy/M1K4m5uepZXvAP3gF625fZBisCCP1Wx9lrQ\n6NCMmEKptDBm+YxlkxZ492nVoNyeSa/u7Np+4K1IAgBMDn/2gPry43kp0deP77gYmwsAHP0W\ng8x1lRU7Ql/n39135Ovx6vJdRozu71zP1sJEH5PAStCrVy+F+zIt6tS3b/hDM2d7nKaFvn84\nsxyhO8JCACAI5vQ2CqUh+e1msIlgCU2LUu8AYJIeaTicdFgdtOTQb97X3mZV3uvl/pXyDL2O\niXP3ri3rmjBio6PCg0OTRBIAeH/b95hXy4mNNXP6OCbpkRp4mFsEAATBWdDZpvRxcfbf6RIK\nADiGnk6l9iwTEboAACAASURBVPzjGHqYsRkZEhmZ+xhghJKj1Rj79+8vc4Smyax0QVa6QCXx\nIKQEBvZePodcA86eC7h5LzlfUm4fNs+qU68+I0b1tSxvt2OE1ALHoNWm2V6z/e4Vpt33XsRc\nsniGK7/8pddT3jw47Lv7VR4JAI5D1vT+Yg8IpDj8YVUCNq/J7LYWO58IASD01KpfPg7q18nN\nydGOzhWE3Dp9KKC4RJ7BMvnJ1fTLy+MenVx84Jm8rW872Muo/PXwkSKw4E9VGGz+8mVDp608\nR9I0mRe9f+3c0zZOrZs05PP5fD6fB2JhmjBNmBb7JuRNQrb8EoIgus9e24jLBACR4NDYGdfo\nT+sGdZw7G4egFDF//nxVh6CNribkA4COcasD+1dUPuMQ1ayZM2eqOgRtNGvWLFWHgBDSfIlF\nFAAwdepbsBVaOJLBNrfjMqMLpRSJN/lIzeCkQ+WI8V9TkqHnmjsNHPBjCxd7fj2z0n2oooSt\n/yQBANek/f/2L6z7aclJSpyyb8nCW7G5ABCwef/EP5YoN3YlwSQ9UgOppAwAWLoNyjx4Z72+\nL28Yu3Qvc0kdDitDQlISHPVGCH0dBtui3zjvvmMmf4yKiIiISknPyc/PlwBLX1/fyNza0dHZ\nydmOh1MmlYIii5gczJB9q7y8vHKPG7WdvLaQvfbQ7Zx3d5dNf9LU3attMwcrS0tLS0tdojBV\nIBCkpLx4cCMoPFne323QvBXjmioxcISqqdOva25OmBtVIAGAd4/8tz/y/7KPff8llpziUSda\nKs7MzEyMefvon2t/BX+QHyQY3KlrcKInUlemzUb7LZEt3noxWyoDgLzkyLvJkRV1Jhg63aeu\nn/VpMrRMJirJ0Dv0nj8X13JUTJcuXVQdgjaSDxS0XToHM/RIG/Ts2VPVIWijhICVS8/EAoCO\nofvhPbNVHQ5Ctc6QxUiXULRMpPglhTIaAIBg11ZMCNUOnHSoBDSV7XO6eLtqC7dhO1eMNSjv\nvj099HABRQNA43lT6pbaFJLJtZ7hs+rp6IXZUllRzr9/poqGaGLtECbpkRrQZRBiGU3LpGWO\nR18rzhzY9a9b5hRZPLSEz+rVh9O0kTYjGLp2zm52zm6qDkSL0NKsfwMfhoWFv4mIyS4oEIkK\nJRR99epVACDzgi8F5nl4edY1wKe+rzZmzJgq+9CU6NXDG68e3qioA4NpVPD2ryWL/mowZOFs\nTNhUF/6wKgeTY7t+98rV89a/ySm7mZmcUaMe68f/t9Z9ws3l3gejS3cgCEa36Zs683GJ72+C\nH3jVsnYfe+CA25F9R+4Ev6M+Jd2/ZOPiMWH6LHc7gzLHeVYO/UZMGtPVtZbDROibmLIZQpJq\nYa2BQ3WaisxJ5BjVUXUUCH0FsTArNzcXAJhkhdPdENIkdlxmuoSiSMHLAklzvapHYKSiN4mk\nDADYug61Hx1CSM2kv9gjJCkAYPOcNi8fU26GHgDCzhVvV9+ygX6ZU0zuD/Namq95KgSAwBtJ\nQzRxb2tM0iM1YKfLysojqaKPSSRlW7K+NC059TFX3hxoZ1i6Py0rjBVLAYDBNldupBoFp2kj\nhJQm8sGf+w6cic0hyz1LFX04ffDk2SNHvUZOmzPcE2ullE9G5URF5QAAkV3+vxFSBP6wKo2O\nabMNh/fePH3U/9YTYcF/e5cw2Cbdh40bN6xrJQuisHStB89cNtarvlIi1WT4gVc5rrnLrOXb\nJgljgh4/j4iI+JiUll+QXygBAwNDIzNrJxeXZm06uDUs+7ikazZo555RdnUs8MdWcVhnqSpd\njHXOCkWJYkrVgaAqUOKM5w8f3L9///Hr2EtXrqg6HIS+glnreuAfBwCUOO6NSOrKw4F0pOG6\n2RsGv0oHgMNn3vpNaVZl/6gLB+WLMBk2VHzlcISUTSIpHhZgs7H4R6niLsfIGw1He5uzKthE\ng5aeS8yXN4nynkIbjXKCp0IAyHgaCZikR0glulvrheaRNC3zu53k07ee/GDGq30CUr4hvbvL\n53fJOe9OFMloANAxaKf8aBFCCH2V0FMrVp97VWU3GZVz99TWtzGpe5YNZWHqACFUKQbHvM/E\nhX0mkB8iIwXpmQUU29rG1rZeXeNSK6eVRhAE365xm7bt+w/qaVlBH4TUkS6/UY8BjXoMULQ/\nU6euPZa5fiWss1SVzmNdzm4P+fdU2IRf2qo6FlQOmhK9efbw/v37D5+Gy5cwRYrLzs6WNwiC\nbWSkp9pgtJmp6zx34+DH2WIAOH4rccugBqqOCKHa5Ty2Jby6BQDx19adbrJrdFurSjoLn59f\n41+8X5jbGKdKeiKkWkOGDJE3Dv15mc+uIFWMasH9uOItOPt0qvDLRJx5PZUsnnRb7uRbXXN3\ngCAAIHOfAfSr+ShVDZP0SA24TGoBS+8CQMThpefNlvdu5VCYGLzZJ1B+1qb7sNKd8+IerFx1\nS942a9NKuZEihNTMh9DAB8Ev30Z/zM7NK6QYRsbG9X5wbdXWy8utgapD0xYJt31LMvQE06BD\nVy+HRj+ww07veyAo6cPiOTex1QtLKgAAwdMTy8403jIaH/8UJd8yACEtRXDsnJvaVdrFquOC\nva11jI2N9bj4ZIQQqg6ss1QV605L+12edD1o84WuB4Y1x1X0vhu0NPb1k/v37z94GJKO6xxU\n1/jx4+UNjl6zi2fWAcDmzZur/WqLFy+umbC0EMFZsG1h6lyfWJHk3akNTzv4tbXgqjomhGqR\nsePMbvwHfwtFNE2e2zgzpve40QN7NvpiE+hC4ftbV86euP5MStMAoGvRdZaTsSriRQh91z4U\nSQGAIDgehpyK+gjuBckbDJZxb1OdLzswOcWzyCkytRZiVD18ekRqwNhlhofpv48yxTSVd3LT\n4lMEQX/aWJFgcKcOK16PtFB4c/OWa6/eJcm3XSQI5rCRDVQVs3o5deqUvDFw5Gg9XEgaaQdx\netj2jf97EpNZ+mBWeurHmKigm5dOOHT45bd5ribl3BmgGkSJ41buvytvGzl0WvjrrKZWugAQ\nI/Qv3Y3Na7Jhzx+Pz27YdOY5AERdWB016KSjLt7DIIRqAMfI1tZI1UEghNQZ1lmqDMH+adOa\njF9XnFw1Par32Cnj+lnhDAmVErwLvX8/KOjBo4Ssoi/PEgSjjhPWUVTfo0ePVB2CluLyW/vs\nXuW7YevDmFSfWXMHT/6pt1drM1x4CWksxtSN88JnbRGQFE1TIQHHnt84YWxhbcnnW1pa6kKh\nUJiampqakpYt+zQ4z+Tw526YirXJCKEvCUkZADDY5pUsifr0doq8oWc9glve1oQEo3h8XibJ\n/PKsBsAHGKQGCII7Z9Oc93O2y9e3L8nQA4Dj0BVNeMVbiRRlB4dGJ5acatBjqZcRJtgUcu7c\nOXmj+/BRmKRH2qAoO3TezHUpRRUWdqRHP1w+/cOK/TvdME9fm5Lv7M6QyABAx6jVDp8FFe5O\nBAAEy33UqnmJ035/IKAp0f5rCduHV14ci9B3jyYfPHyqSEezlu1ceLhxGkKoOvJzcqS0oqtM\nGxkb45NAdWCdpYpcvnwZABw6d3tz+uqzgKPBN44bWdjWtbVgK/A5Xr16dW2Hpz1yk6KCggID\n7wdFJ+eV24HfsFnHjp06enZoYI7/ayD1ExAQAACuXYZk55wOTxNc2LPx4l6OsZmpqamZiamR\nTqVjaLiGAVJHunz3/22Zt27N7sisIgCgaVmWMClLmBQZXk5njpHDzJUrPazKltojhBAA6DEJ\nsYym6XKmb8rRVM4loUjetu3frNw+lEQobzDYpjUe4fcAk/RIPfCsPXf6GR7YfTgwLE4+U4/B\n0vcYMOWXsU2+7EwQrJa9pv42vY3Sw9RYNJW3cvUWeXvdunWqDQahb0bvW7SldIaeo2dSr34D\nQyLvY1x8Zj4pP0iJkzb/4nvq8ELc/rz2PL4SL294LvKuLEP/iee0cb8/2AoAyXeCAZP0SI3Q\n0jePbgX+G5xADPNZ6Fp8TFawdetWRa5u8/sfLnZY643UzIQJE6p3YaOJPis6W9dsMFooKfTW\niav3YmLep+VWOCDypVP+Vwxwwm61YJ2lShw5cqT0nzQtyxYmZAsTVBWPtinKin90P+h+0P0X\nMeUvPWpc19nTs2MnT08HW0Mlx6YBHB0d5Q2WbvESr7NmzVJdOFpt//79ZY7QNJmVLshKF5Tb\nHyENYGDv5XPINeDsuYCb95LzJeX2YfOsOvXqM2JUX0sO3vAghMpnw2FlSEhamplEUrblfVfk\nJ54tlBXPKf+xrUW5LyIpKN4mlcmpcGN7tYZJeqQ2eNbN5q/3nZkliE/NYOpb1LG14BCfDSGx\nePbunoY2DRzauHd0rqOvqjg1lPTVq1eqjgGhmpETc+QfQfEcPRav7pg5vwzxsC85G/f08rbf\n/4jLlwBAYfqD30Mn/dISd7isLfdzigCAYOhMcjFRpD/HyJPP2S4kKTLnIcDwWo5OW4hy0pJT\nMiQK11k6ODljBuerCF/d3Lb7eKRABAAWboO+9nKCYBoqMIUFoe9NVlZW9S7Mq3idG6SgmGvb\nfzl0n1b4i70EG79sqgvrLJH2oArTgx8G3b8f9CTsA1XB9wyTw1+71aeJHT5GVd+XUzl79uyp\nkkgQQtqJwbboN86775jJH6MiIiKiUtJz8vPzJcDS19c3Mrd2dHR2crbjlbcwNUIIlfAw1Qkr\nIGmavvA+d75zOWO/EceD5Q0mt35X4/KXsxU+eCFv6Ji0r6U4VQuT9EjN6JhY/WBS/pQZ/Tpj\nly5UcjgIIfUTc/JfeYPJ4a85sKOJIaf02fptB24/4OA98bcUkgKAl3+EQssfVRCldkglZQDA\n1KmneN2eFZspJCmKTKnNuLQCLc388/D+60GhmXlfUWQJWGf5lULPbVl3+lFFQ9glWrdumZeV\nmZoYnyUuTk8SBLNz/+EtmjRu3NjFjIelCUjzsXimpvosADDVxUfUb0LmPFp2+LMMPZOp6HdI\nmTnQSHFYZ6kS8+fPV3UIWoSmCsKfPAi8f/9R8FsRVc6Njb5Vow4dOvx18RgAEAwDzNAjjYFr\nGCBtRjB07Zzd7JzdVB0IQkgtuXa3hiN5APDM15/e+1OZp01amnXodYa8bWg3ooJnUdnJS8Xr\nsPI9HWotUlXCERCEEELa5Z/3ufJGvQGLy2To5dj6LouGNlhw+j0AiAR/A2CSvrboMQlSSssk\n6TSAgmkBgYQCAIKhW6uBaTyaKvh9nvfdhPxqXKuDdZYKi7m2dfWphyV/MliGjZsYl9tzxYpV\nAEDLxFEh908dOfoqWUTT1Acxf36bcrb1QUgt7Nq1q9LzdG56akpKcsLH8Ft3ggtlNC3THfbL\nxh7lTa5HXyXiwHGxjAYAXX7jn6aPafGDPd8YfzSRZurSpYuqQ9ACtCTm5ZOg+/eDHj3PLG+l\nE56FvUeHDh08O7RoZAUA8iQ9QpoE1zBACCGEqsfmxwnso8slNJ2fdHnNuRarR7Qoffbl0ZUC\nsvj20mmkU7mvEHdz07O84q1pB/SyrdVoVQWT9AghhLRLTKFU3vDqVbeiPrY/doPT7wFAKv6o\nnKi0U1sDzl9ZYpk061amuKcpt8r+ZN5jIUkBAFuvae1Hp8kSb28snaFn84z4pgYKzpNgY52l\nYsSZj5YdLs7QE0xe73HTBvXqxNetrJ6VYHCd2vRY28rznM+C009SPtz6fbW55eoRjZUSL0I1\nrF69elX1qN8YAGDg6BHR54/6XXwQt2fpjIItBwY7GCkhPA3216ssAOAYttqzb7kZbpahLFhn\niTTVzPGjknLIL49zTeu379DB07ODm6Mt3hrWuFOnTskbA0eO1sMlrBBCCKEakpKcJKmJRyRb\nW83MFtc4Nq/J7LYWO58IASD01KpfPg7q18nNydGOzhWE3Dp9KKC4RJ7BMvnJ1fTLy+MenVx8\n4Jm8rW872Muo/PXw1R0m6dH3JSOjeIELEzOzan9f0lTeoiVr5e0v9/FCCGm5NIlM3mimz66o\nT0kOmJaJlRGTturuZfmXfxwAnPcN7Lm66gKFN3/8IW+YtcBqhm/yz4UYecOp8/Bp4wY2MtdX\nbTwa6fqavfJiVoKpN81nXx9HRfOOBIM3cqlflvfEmwn5L06vfvjjyQ4mVU9hQUh9cc0dxi/8\nXT9vyrGX6SeXr271x7Z6OrjFQ/WFiyQA4Dp7OmbolQnrLJGmKpOh5xjXae/RoYOnZyuXuvgV\nU3vOnTsnb3QfPgqT9AghhFBNWTFndo28ztWrV2vkdbRBp1/X3JwwN6pAAgDvHvlvf+T/ZR/7\n/kssOcW3lrRUnJmZmRjz9tE/1/4K/iA/SDC4U9eMUFrMSoZJevR9mTRpkrxx6M/LfHY5D320\nrPDY8bNlOn9BGhUVVSvxIYTUX8nm0PoVj3cwWJizVIb6g0eyL2+R0HR66J5NF40WDXGvZAxK\nEHJm7a0kefvH0fZKClFDPcwlAcDEdczmBRXt+YS+CZn37OTHPHm71YwtimfoixGcSetn35q4\nRUaT+9f82WHnmJoPEaHvC6PfkgUnRi2Xit9vv/hx55iGqo5HjRXJaABo54QLEiCEahLB5PWc\n8PO0AW0wZfw9oKm8lau3yNvr1q1TbTBajiKLmBzNLOxDGq9///41+4KYtkQIfYnJsV2/e+Xq\neevf5BSV28GoUY/14/9b6z7h5nLvg9GlOxAEo9v0TZ35GruJGybpkbqhxf7+xdNtKk7SI4QQ\nUgMcI48l3eqsu5MAAI9PbJr8zGvm+AGNnT5PwNNUhuBjUMCFE9ceyydYmDhNHGzFU0nAGiNX\nKgOATnP64ihrLUn5+5yMpgGAY9Bq6Y8V7qxRCa6Jx0Q7wyOxOTmx5wLSh/Qxx2J6pOHYvCZe\nRjp3s8XJt2/DmJmqDkeNNdJlhRdIpLSq40BI6YTvQv4NCY+KikpMy8rPzxdLGQYGBoamlo7O\nLo3d3N1dcVXSb0JToptH1j++49q5c+fOXh0b4J2JiklfvXql6hi0ES3N+jfwYVhY+JuImOyC\nApGoUELR8sQkmRd8KTDPw8uzrkGFK/YhhBBCWkjHtNmGw3tvnj7qf+uJsEBScpzBNuk+bNy4\nYV15jAqHJ1m61oNnLhvrVV8pkaoGJukRQgghpDKtZm/tnzDjamQ2AGRGBm5YFkgwuRb6xVsS\nLPl5dnx8cj5JlfTXMWq6du0A1cSqQerpMKMLpfV5eB9YWyL/EcgbdfuPZVV3KoT7iAZHNr0C\ngJt/xveZ7lBTsSH03WrEZd0FIPOfAmCSvvr62BuGh2U8j8jp54EptO8F1lnWtqzoQL99f4TE\npJU5XpCXLUhOiA4PuXbhhJm927gZ87o4magkQvVV34wbl/Hf/l/ZCW/8T7y5/Mfe+o3bdenS\nuZNnKxMOLnuPtEXkgz/3HTgT+/keECWoog+nD548e+So18hpc4Z74poTCCH0HZq9eKkxbgqm\nCgyOeZ+JC/tMID9ERgrSMwsotrWNrW29usbc8re6IwiCb9e4Tdv2/Qf1tKygj8bAwVmEEEII\nqQzB4E3e5Ge6d8ux22HyIzQlFuYUn30bk1C6s4ljl2XLZ9XX9JszJejE50XH5b5OLexqjDmD\nWvEos3gVL7fOVtV+ESMnD4BXAJD+7Clgkh5pgdgiKQDQVL6qA1FvLbwHM2YcenvwhLj9r1wC\nUwQqgHWWSvb28o4VRwMldBXLR2TEhv6+eMrrSevnD3RWTmCawe/ImY/hTwID7wc9CE4XF0+c\npWnqY9ijI2GPju02bNa+Y+fOnT3cfmDj9w3SaKGnVqw+V/XqBTIq5+6prW9jUvcsG1rtqboI\nKcc3bpYRce/smXtv6U+/vwSBAzVIDbRo07bcHZaRkhAcO+emdpV2seq4YG9rHWNjYz2utiSv\nteW/EyGEEELfJ4JpNNh7Q/vOj/yvXrv3LEJMlTPGam7XvE//gf27uOHwX41wn+x2cGVgyK7L\ntN9EfEdrQ/Kn5R+a61eShiG43MrqXNnc4q0fyLxggHE1FhxC3yUy99m97CIAYHCsVR2LeuNZ\n91s/+tmyUw8W7nDauqAv5umVDOsslSz14f6lRwNLMgQGNo6tmzTi8/l8C74BW5IqEAgEgvfh\nwRFJeQBA05J7R5caWB6Y7M5XadRqhWA2aOIxsYnHhFkF4U8fBgYGPgp+K/p0uy6T5r4Iuv4i\n6PouI1uPTp07d+ms2mARqiUJt31LMvQE06BDVy+HRj+ww07veyAo6cPiOTex1QtLKgAAwdMT\ny8403jLaqfyXQ+j70KxZs+pdWJQZdcR3583QpJIjPJvmM+bPq6G4EEJajWNka2uk6iCUC5P0\nCCGEEFI9K1ePma4eMyjRh8i3sUnp+fn5haRMT9/A0ITv4OJqY4Jr9tYk8+YLhju8OB99admR\neqsnddbBFE5Ny5IUb9lgUvFCagTT+Pz585W8CMEyljcoUlBJN4Q0QFFW1O7lOymaBgBd026q\nDkftNR6xdkGRz+9/Hhr/5v6QUWMGdG7OxWywUmCdpZLJpOnrff+SZ+g5Bj9MnOfdp41dee8o\n/eFZgN/OYzH5JE3LAnZsGtx6uwm+9V+JYOo1ad+jSfses0RpTx/cvx947+nbRNmn6RFkTtK9\nqyfvXT0p/5OmyUIZrVvx9qIIqRFKHLdy/11528ih08JfZzW10gWAGKF/6W5sXpMNe/54fHbD\npjPPASDqwuqoQScddXHgHWkWmnp2/cjuowFZ0uIHXoLB9Ro+Y8bIzvidjxBC1YP3CgghhBD6\nXhBMnr1rK3tXVceh+YhRG32EvywKvLxzYnDg+LEDXOzt6liZYhKnphixGOkSCgAyJLI6nGqu\n+0dJhMUtAldjQ+rnzJkzCvWTFaXEx70OeZH5aWqLy/h2tRiWFrh8+TIAgKFzj6bvb76KPuW7\n6rQf29TSysrKyliPU/m1ixcvVkaIGgrrLJUv9eGOODEFACyu3Zo9m1yNKvqEE3Zt+vrsqffz\ntFXxYkoqfr/9ceo6z+rvR6PlmDyL9j2Gtu8xtDAtNuh+YGDg/TfxWWX6UEUJY0ZPbePZsZOX\nV1vXengfg9Ra8p3dGRIZAOgYtdrhs8C8ks2MCZb7qFXzEqf9/kBAU6L91xK2D698TV+E1ElB\nQsju3/0eRv/3nW/i2HHevJludfRUGBVCCKk7TNIjhP6zfvGvFXwpUCWtn3/+ucrX2b59e02F\nhFDtWbVgXoUlNPR/n/k5c+ZU/jp+fn41FxRCSsLk2PYb1D5w562CpJd7N78EAILBVGTuu7+/\nf9WdtJ4Tj/UwhwKAJ5niZnrV3HiYzH4mbzA5NjUWGULKomiS/nM8S69f2uEy1N/kyJEjZY7Q\ntCRDkJAhSFBJPFoC6yxVIvTiR3nDbd7SijP0xTjGTZfPaTlt6zMA+HA+FDx713Z4Gk/Xwr7H\nUPseQ39Kj30VeP9+4P2H8ZnikrNSkfDfWxf/vXWRa96gY0evTl6dmjQwU2G0CFXb4yvx8obn\nIu/KMvSf/J+9Ow2PqjrcAH4mkwQIhICyuVAqKiCIW3FFKlI36r+oFPd9qQpSwRXrVtRaVBRF\n3BdUFBHcQVoRqyggKqi1IKBFEVBARENYQhgymf+HwbgUSIBkhiS/36dzb869zyuPD2Tmvefc\nTuefPnjiwBDCwvFTg5KeaiFRUvivEQ889OxbRSXrNlDJyNrmD2f3PuvoDh70B9hCPg0CP/py\nzpwy58wpxxyoEr6eP6880+bNK9c0KkO8aMW336+qnVs/LzfHR7+KNfXxa2964T8/PZMoicc3\nNJtNdGDTnEkFa0IIH4z4Ily5ma/6+3rMh8lBdu5+FZYMtmINdzn4+r9dbKtMqiLrLNNi/JLV\nIYRIJHrBfuV6uKfJARdmRaauTSQKvxkfgpK+wjRquWePlnv2OOuiudPfnTDhzbcnffBd0Y+/\nVBYt/fK1Fx5/7YXHG7bY/dBDDjmrx5FpjAqb4a2CNSGESEats9s2LM/87LxOTbIHLYnFYwWT\nQjihktNBpVs6683Bdz348aLC0jPNOxzd9+Kzd21QxuNxAJSHkh4A2LrECuaNGfXM2Lc/Wlqw\n7nNgVm6TPffe9/d/PKnDTnnpzVY9FHw+7G8vTk93iuqsVfdfh1vyQwjfTnvku+K7t92MF98m\nike+vW6H5MYH7FOx8SAFunbtWu650cY7tmi586577tbSWpwt16tXr3RHqImss0yLr9bEQwjR\nWi0aZ5VrP/WMrEY71Y5+tro4HrOxRCWIRHfao+NOe3Q866KV09+dOOHNCZOmzS5dcxlCyJ83\n44VhM5T0VDnfxEpCCNFav8ot968pzbKiS2LxeGxRZeaCSlcSW/rSo/cMe/WjksS6v8yzcpqf\nfFGfHp1apTcYQHWipAdCp06d0h0BUud3v/tduiPUaLGCua+MHjf1gxmLvvs+UrtBk6bbdTjk\nqN936VD3h688Cr+eeHGfQUtiP1vUvXbFkmlvj/1g4j/3P/6yv5zWSYmzhd65d3wikQgh1GnS\n9sRTuu32qx0aN6znT7UCNfrNeTnR3oXxRLxo3k1PzbzrrHabeoclUwZNXRFLjg8/tnlFB4RK\n17Nnz3RHqKGOOuqodEeoiayzTIv6mRlL18YTJYVlT/3B6mRnHNnMN9FQHpFovT06dt2jY9de\nhUvee2vChLfemjrrq9KCB6qcutFIrDhRsnZpIoRyfmJavDYeQohk1KnUYFCp5r0/5q4hT3xe\nsO4zaSQSaXvoyRdfePx2taPpDQZQzSjpgXDFFVekOwKkTp8+fdIdoeaaN3HYdXe+sKy4ZN1x\nwcrvvvlq1n+mPj+qQ//br2qTl11cOPMvl975i4a+VCJR8u6ogVdHGgw4tX3qQldHoxesDCHU\natDhoQevy7NwtRJEazW/6qjm14+dH0KY++L1w9vdf+q+m/Ca7TX5H/W/c0pyXG+HY7s18gUf\nwFbNOsu02Kl2dOnaeDy2+N+r1u5Vt+zevbjwk69iJSGErDqWAKZCZk6Tjl1P6Nj1hMIln7/9\n1lsTsnTh4gAAIABJREFUJkyYuWBZukPBJts/N/vV/KKS4vxx3xcdtU3tMufHVkxJfp7NqrtH\n5aeDile8at7wewY/P/nHt53WbtT23D59j9yzWRpTwZa49dZbk4OG5djyClLM/5QAQCp8//Gw\nPrc//2ND/xOF30y79qIb8osTEwbePnd1cQghEslo37nr6ef07Nfv0nNOPf6g1tuUTp456vq3\nlq1JXe7qKNkl7P+XP2voK88eZ1/3q9rREEIisXbU3/sMf/Ozcl64evFHN/cdkNzCN4RwwrUn\nVlZEACpIckOg5DrLcrLOcssd1rJ+cvDoiJnlmf/psw8ndxKqv3P538dBBchpsvNRx59zy73D\nHr3zxnRngU12eOemycGouyeUZ/4nTz6ZHGy7t71tqHIS018f3uusvqUNfSSSdeBxFz7y8AAN\nPVXabj/I8h0YWx8r6QGASpeIL7/h5pdKN7qM1m7afo9WzXfcdtWShXNn/2fu0qLY8ulX3/P0\nNx9+F0KI1mp+yU03/rbNtj9ef+Kp08bcc+PDr4cQEon48AdmHnLV3un476gmtsnKWBKL771d\nTrqDVGcZ2U1vuPqkC/o/HStJJOKrRt55+bSpx511Yvc9W+Rt6JJEfPmUV1948NGX8n94lmWX\no/sdu0PdVEUGqp5ly9YtS41EsvLy/HWRNtZZpsVup/0mfDwuhDB/zE1Pt7/nlP031h8s+WDU\nDS/OTY73ObVNKvLxPxrvvFe6I1Qxf+t3+Qa+t/1x47FLL720zPsMGjSooiLVQC26n5T10m1r\nE4mlH9434Lm8K/944Eaec148bcSN475Ojo84pWWKIkJFKPr2k0cGD37tP4tLz9T/9f4X9f3z\ngT88EgdAZVDSAwCVbsm7g+cWFSfH2+7Z9borz2uZu25X0kR8+SuP3Prw2OlfvzEyeWa/y/76\ns4Y+hBAyOvzh4j9P/feQfy8NIXw/49UQlPSbr0uDWs8sKfyqaP2vFaCibLvXiXddsrz3oFeS\nj6d8PunF6ye/9Kt2++7Tfvd2bXdt3LBBbm69yNrVy5cvX/LV5zNmzJg66d2FhWtLL2+050m3\nnd8xffGBKuCMM85IDrLr7vnciJvCT/Zy3Az9+vWrmFg1z+Gdm7764rwQwqi7JxzVv+ylk9ZZ\nVogGrXse1mTi60sKE4nYyL/3nPP700859qhdmv7yGcTVSz4f9/Izw155vziRCCHUafy7Xm0a\npCMvbLIv58wpc86ccsxhS2TndbzqsB1vGr8ghDBl2IBz3+/c84xjdm/z8wI+Ef9u8Zdvj312\n2Jgp8UQihNCwzVndm3kkmioiEZv84qP3PzlueXzdw+IZ0dwjTut1XveO2ZYdA1QyJT1bqS17\nXljrALB1mfHsur2+M+vsMvCvFzT6yVugItH6f7jgb/n/Oe25BStCCJFI5Jx9Gq33Jgde0HFI\nz5dDCGtXvB9PBDu1b7ZDT2v7zKBp7wyffuZl+6c7SzW34yF/eqD+9gMGDp27cm0IIZFIzJvx\n/rwZ779Y1oXtu55/7QVHZ/qfnKrg5JNPrtgbjhgxomJvWKNMnjw53RFqIuss0yTjT3/vM6PX\nbYtj8UQiPm3s4x/8Y1iDxts1bdKkadOmdcLqJUu++eabbxZ9u+zHzZyym1x885+89xHYJB0u\nGthtwYWjZy8LIXw/e8LNV0+IRGs3rreuzrzq0ovmz1+4MvbjV5G18va48cZj0pMVNtHyue/d\nO/ieKV8UlJ5p2v7wPn3+tHuTsncGAmDLKenZSnleGKA6+dc3hclB89/3+mlD/4PI//Vs/9zV\n74QQQiS7afb6vzuts+0hIbwcQkgkPIy1RbY75C9/eOnsV96+9dnfPXT8Xut/JIKK0mzvowcN\n3Wvko4+NfX3qinjZbyuuu3274089r3unnVOQDSrEqlWr0h0B0sw6y3Sp0+TAO27rc9MN987O\nXxNCSCRK8pd8nb/k69kz1jM5O69Vz+uv7+jPnK1ep06d0h2Bn4lk5Jw7YMg299/2+GvTk2cS\n8aIlP3SaM+cs+Onkhq27XH1trxa1oykOCZsqEV8x7sn7HnnxnVjpo2y1mv3xgj+felh7z4oD\npIySHgCodAvWrKvV9zly+/VOqNfikBDeCSEkStZs6CYZmT/ugW8Z/RaJZJ0z4IbvLr/uqb9e\n8OnvTzvv9D80y/E7YSWK1t7hlIuuPeHMhf/6x7j3/z195uwvVv3w1vlSmTmN2u21134Hdena\naXcL6IFyat26dXKQWWfH5KBXr17pi1OjWWeZLrktO9/ySLuxz4wc+883F65cu945WTnNDul6\n9Ikn/1/TbLUZVcAVV1yR7gj8UiSa1733zQcdOvnF0WPefH9W0foevW20015Hdzu2W5d9svwy\nT1VwzQXnzViyuvSwcbsuF190aot6WQXLlm3eDRs08DYZgE0WSSTKXtADKTNw4MCKvaHPNgBb\ng27duiUHtzzzQtv19cHx2MLjelyYHI8ePXq9N0nE84857syNz6E8XnrppRBCSfH3Lz49uqC4\nJBLJyGu8Q/MdGpfn66T+/ftXdrxqLxEv/GrBwuXLVyxfvnxtpFZe/by8Bg133LGZbp4qatiw\nYRufkCgpev6FV5LjHj16lHnD0vesQ9WSiBe8+JN1lhuRXGfZOi87BalqjkTJ6i8/nTVr1qeL\nlhasXLlybcisV69eXqPtWrferc1uO+Vk+FcWqBiJeOHc2TO/+HrpypUrV8dK6tbLrd+wSau2\n7bZvaHtwqpLSb2kqim9pADaDVVNsXXTqANVbo6z1b2WfEa2T4iQ12dChQ396mEiULFuyYNmS\nBRuaT8WKRHOa/3qXdKeAClNmp56I55eW9Ap4qjHrLNMrklFnp9322Wm3fdIdBKjmItGclu06\ntGyX7hwAQNWnpAcAAIAq5tu1JY038OjbZihaMr12k/YVdbearFm7jj3bdbzQOksAAAA2SkkP\nAFCz9O3bN90RANhSfa+4Z/DA3hvaomaT/GfcY7c/+PKwF17a8luRZJ3lVizx2exPW7Vpk+4Y\nAJBOgwcPTncEAJT0AAA1TJcuXdIdAYAtteKL1/teEe7asp6+uHDe43fcMnrq1xUYDCpbSazw\n+/z8okTtxo23qRXdhDcHlMSWvvrEbQ+Mme29ucDmWbO6cH0vM1m/nJycyswCW2SnnXZKdwQA\nlPQAAABQBS3/4vW+V0buuu2izevp57/30q13DltQWFzhwaCS/HfKmGdGj/945rxYIhFCiESi\n2+12wHHdjz9yv5Y/nVZc+O1/PvzP10sLVq5cuWLFyqI1sTVrivK/XTjvywUrYvE0ZQeqsAUf\njhvxyttzPv98cX5h+a/yPBAAsHFKegAAAKiSln8+vu+VYVN7+kRx/gv3D3xi/IzSM1n1WlRC\nupoqEZs46b3yTNz2Nwe0zcmq7DjVQyIRe/nOy4dO+PLnJ+MLZ06+d+bkaadcf81JHUIIifjy\nZ++6aeTbn61NlHutK8BGffriwCsfn5TwtwoAUNGU9ABA6kx8fXz9zPW0CImSVaXj8ePHr/fa\nn86h8sRja6LZtdKdAoAy9Dys5f2vfxFCWP75+Ev6Re68rVej9f0L+7/yP51w2633fbK0qPTM\nTgf98cq+p1VW0OotUfzJ5HET3pm6IHL8LVesewV9omTVwIEDy3P1foOfbLtTXmXmqz5mPHn1\nLxr6n3rv6RsH7fjwpQc3Hdbvouc/K9j4rSKRTdghH6jhivInXKOhBwAqh5IeAEidJ+6/t8w5\nQ4YMSUESkhLF+e9MmDR9+oxPZs1ZtmpVYeHqtfFEcmPG2IqpL0xY0bFzp+a5FvkBbHW6Xnxn\nRvSye8fNCSEUzHntkisjd93Wc9uN9vSJxJo3h99977OTShcZR7ObHH/RFacc2joViaudJR//\n8/Z7n5i9uDCE0Hif4zb18kgkut4nF/lfxYUzb3j+v6WHDXfZZ9/WLbZrmrdiyaL5X86cNmNB\nCGHi3Tcdnr1baUMfiUTrb9u4caNG9etkxuMlJYmMuvVz69fP26Fl29/8Zp/0/GcAVdCsB4bH\nfvhHs+1hp598xG9+/esdc6Ke9QEAKoCSHgCghpo98fkHHhrxRUFsvT+Nr5n79MNPPTP0sc4n\nnf/nEzr5JgpgKxM58qI7MjKuGPLPz0IIBXPG9b0y3HVbr20z1//3deHifw+55Y7JX/y4yLjp\nHkdeccWfWuVlpyhv9fLhyNtuenpyvKy1lfvu+5sV+d9/89X8/KJ1r0KPRKKHdjth7/a77757\n221zopWftDpY8MojP7yEPnLEOddc2G2/n/5asmDK0xffMjJeNP/amxckz+zS6bg/nXnybk1q\npyUtUJ28+kl+ctD+jAE392iX3jAAQDWjpAcAqIk+HH5d/5EflzmtJF7wxvCBM+d8c9/VPTbQ\n+wCQLpHDew6MRvvd9crskOzp+4W7bv3fnj7x4dhH7nhk7Ip4SfI4I5rb9ZxLzv9DB3+vb545\nYwb2Hz6p9DAjs/7u7Rusd+Z11/01hJAoKfp02lvDhz728cLCRCI+t6hJ3/3apyhrtfDx64uS\ng212733RMfv94qfNDzyl38ET/j5xcXI/6oZtzrzjij/6fxuoEDNXFYcQolmN/3Jc23RnAQCq\nGyU9AFDphg8fnu4I/MyC1+4ubegj0dyDf9e51S67Zk1/+oGJi0vnZObs1n6HutO/XhVCWPze\nsKtH7H7bKW3SExeADYp0Of+2jIyrBo2eGUIo+O+4vv3C4Ft7bfNDT792xRdD77h17IeLSi/I\n27njZf3+vFeznPTkrfqKvp989aPrGvpINOf3p59/XNdDmtTZ2Jr4SEbtNvsdeWOHTiNvueTp\ndxfNHTe4f6Om/U/cPSV5q4NJBWuSg73O23+9E/Y4/ZAwcWRyfPDFR2rogYqyOpEIIdRq+Lt6\nNhYDACqakh4AqHS5ubnpjsCP4kXzrn/wjeQ4r9UhV1zea49mdUIIc5a8+NNpWTntb77vySnP\n3DxgxAchhE+f7f/pcU+1ruO3R4CtTufzbolmXDPwpekhhIL/jutzVeTuW3o2zIzMnfzcrYOH\nLyzdaD0j+5ATe/c+6ZDsiKZh871yw/1FJYkQQiRa9/xbHji6dV45L4xk5Jz0lyH5vc/654KV\nHz3df9IRTx3c0H7s5bIotm4TiIMbr/9PrNY2h4SwrqT/7bb+VIEK8+vamZ8Vrg1lvdwEAGAz\nZKQ7AAAAKbVw/L3frS0JIdTK63DnLZckG/r1i2QeePJf+3RqFkJIxAsfHLMgZSEB2CSdzrm5\nX/c9k+OCz169+KoHRt51ZZ9bh5U29DnN9rzi9kcvPbmzhn5LxFa8/9SXK5LjDhfeVv6Gfp1I\n9tl/uygjEkkkYg/e8HzF56umSt/U0DR7/TsWRLOalo4bRH3TBVSY3+9QN4SwZvmkmJoeAKho\n1kIBANQsU16enxx0urJ3o8yyv8judP7pgycODCEsHD81nLBT5YYDqpphw4ZtfEKipKj8k0MI\nZ5xxxpZmqqk6nnXTX6L9Bzz7YQih4LN/Dv9s3flIJGOfo8+79Nyjc23Vu8UWvT6yJJEIIWTn\ndvjLEc034w61G3Y8a6f6Q78oKPhi5Nilfzy6kWXfm2CDj5hEsn4c+t8cqDgdLjoq9H0mvubr\ne99dcsmBTdIdBwCoVpT0AAA1y1sFa0IIkYxaZ7dtWJ752XmdmmQPWhKLxwomhXBCJacDqpjn\nnnuuYicr6bfEgaf3vzbjxr+NnFZ6Jjtv1/Muv/KoPZtu5CrKb/a/FicHzbudlrm5ZfCBJ/56\n6ICPQwj/fH7+0Re0qqhsAFS4+i1PubzLxNvf+PrtO677zR13/LZFvXQnAgCqD5uAAQDULN/E\nSkII0Vq/Kv+SymZZ0RBCPLaoEmMBUBH2O/X660/Zr/Rw1/87Q0NfgSZ/vyY52OfQZpt9k7w2\nHZODpe+/VwGZAKhMnS4edNrBzeOxRXf0OevGe5/5/Puisq8BACgHK+kBAGqWutFIrDhRsnZp\nIoRytvSL18ZDCJGMDb+9Hqip6tevn+4I/FKHk67tnzGg/1NTQgifDL/u1qyb+3Vvn+5Q1cTC\nWDw52Kte1oZnRWrX3tgm9lm1WyYHsRVTQzi9wsIBsAVuvfXWDf4ssUOdjK9Wl8SmjXt62rin\nc/Iabbfddk22rb/x1W/9+vWr6IwAQLWipAcAqFn2z81+Nb+opDh/3PdFR21T9qtwYyumLInF\nQwhZdfeo/HRAFfPUU0+lOwLrsc8Jf7kpeut1T0wOIUx+/Jrbws1X6ukrQv7akuSgYeYGq5lI\ntMGoUaM2cpNIZoPkIB5bXIHZANgSkydPLufMwoKlnxcs/bxS0wAANYDt7gEAapbDO6/b93jU\n3RPKM/+TJ59MDrbd+6hKigRAhdvzj/1uPrtTJBIJIUx6/JqBL85Id6LqIO+Hbv67H9r6zRBf\nu2TdKOI7GQAAgBrKSnoAgJqlRfeTsl66bW0isfTD+wY8l3flHw/cyLvpF08bceO4r5PjI05p\nmaKIAJRl/PjxZU+qt9fvWn78+ufLQwgTH7u6ePWfOjTe4AYqhx9+eAXGq67a5GROKoiHEN79\nvmjPuhvZ8X5jYsveTw6i2dtXWDIAtkyvXr3SHQEAqFmU9AAANUt2XserDtvxpvELQghThg04\n9/3OPc84Zvc2Py/gE/HvFn/59thnh42ZEk8kQggN25zVvVlOWgID8L+GDBmyqZdMeebhKRv+\nqZK+PA5smjOpYE0I4YMRX4Qr99y8m3w95sPkIDt3vwpLBsCWOeoo24YBACmlpAcAqHE6XDSw\n24ILR89eFkL4fvaEm6+eEInWblxv3c69V1160fz5C1fG4qXza+XtceONx6QnKwBsNVp1/3W4\nJT+E8O20R74rvnvbzA3vRbMhieKRb697FX3jA/ap2HjV3mXnnV3mGwLKM+eJJ56omEAAAACb\nS0kPAFDjRDJyzh0wZJv7b3v8tenJM4l40ZKCdT+dOWfBTyc3bN3l6mt7tagdTXFIANjaNPrN\neTnR3oXxRLxo3k1PzbzrrHabeoclUwZNXRFLjg8/tnlFB6zmCvLzK2QOQDmNGTMmhJDbslPn\ndg3Kecm/x/1jQSyeWWfnroe1rcxoAECVp6QHAKiJItG87r1vPujQyS+OHvPm+7OK4on/ndNo\np72O7nZsty77ZG36QkEAKtXw4cPTHaEmitZqftVRza8fOz+EMPfF64e3u//UfZuU//I1+R/1\nv3PdOwfq7XBst0Z1KiUlABXk4YcfDiG06Na6/CX9vOeffHTxqqyc3bse9vfKjAYAVHlKegCA\nmqtZu44923W8MF44d/bML75eunLlytWxkrr1cus3bNKqbbvtG9ZOd0AA1i83NzfdEWqoPc6+\n7lf/unB+UTyRWDvq733CxTecemir8ly4evFHA/oN+GrNurfJnHDtiZUZs1o57rjj0h0BoLxi\nJYkQQvGauekOAgBs7ZT0AAA1XSSa07Jdh5abvGUvANQ4GdlNb7j6pAv6Px0rSSTiq0beefm0\nqceddWL3PVvkbeiSRHz5lFdfePDRl/KLS5Jndjm637E71E1V5Crv7LPPTncEoKaYNWvW/55c\n8/3cWbPiZV+cKM5fOPPZpauTBxWcDACodiKJhN8YAAAAAMrrq7ce7j3olZIfvlGJRCK/arfv\nPu13b9d218YNG+Tm1ousXb18+fIlX30+Y8aMqZPeXVi4tvTaRnue9NCNp2R6lQzA1qdbt24V\ncp/aDbqMGta3Qm4FAFRXSnoAgJplTkFsl7zszbhwyYzXm+x+WIXnAYCqaPFHYwcMHDp35dqy\np/5E+67nX3vB0XUyVPQAW6OKKuk79nu4X8emFXIrAKC6UtIDANQsx/U4r0evy07tslv5LylZ\nu/Slh+8eNu7jl15+ufKCAUDVEi/6euSjj419feqKeNlfrdTdvt3xp57XvdPOKQgGwObp1avX\nTw+/+uqrEEJWbpOm5X7Kud6227fvdNzpR3iXGABQBiU9AEDNklwd8qv9jrmi7xkt6mWVOf+r\naWMHDX5sTkEshDB69OhKzwcAVUrxyoX/+se49/89febsL1b98Nb5Upk5jdrttdd+B3Xp2ml3\nW9wDVC3Jj04tut0+5LxW6c4CAFQ3mekOAABAGsx//+W+50w75c+XHd9plw3NiRctHHnfXc9M\nmJ3KYABQtWTW2/7IE84+8oSQiBd+tWDh8uUrli9fvjZSK69+Xl6Dhjvu2Ew3DwAAwC9YSQ8A\nULNMHfPwPY+Nzf9hqd/OHXtc3ufUHWpHfzFtzuTn7xzy9ILCda/azcppflKvPsf/1goSAACg\nRhg1alQIIa/VYUfutU26swAA1Y2SHgCgxlmT/+nQwXf+88OFycOsui1O73v5sfu3SB6uXfHl\nk0MGvfTul8nDSCTSrsspf76gx3b/U+QDAAAAALCplPQAADXUzDdG3P3AswuLipOHbbqccnmv\n4799+5nBDz63eE08ebJOk3bnXtzniD2apS8mAADAViceWxPNrpXuFABAVaWkBwCouYoLFzx9\n7+DnJn6WPIzWzokXFSbHkUh2x+5/6nnaEblRr9IFAABqtERx/jsTJk2fPuOTWXOWrVpVWLh6\nbTwxevToEEJsxdQXJqzo2LlT89ysdMcEAKoMJT0AQE037/3R198ytPQt9SGE3F8f2Oey3vu1\nyE1jKgAAgK3B7InPP/DQiC8KYr84nyzpVy8ddeI5T2VE8zqfdP6fT+jkIWcAoDwy0h0AAIB0\nii3776uvjvtpQx9CKFry1fz5i9IVCQAAYCvx4fDrrhz4xP829L9QEi94Y/jAnn9/rtiaOACg\nHJT0AAA1VSI+bezQC869cuy0BckTO+xzWMvc7BDC2sIFwwZe3vumh+eU9VUUAABAdbXgtbv7\nj/w4OY5Eczsd8Ydze116YadmP52TmbNb+x3qJseL3xt29YjZqU4JAFRBtrsHAKiJChf++4G7\nBk+Y/V3yMFqr2fE9Lzmly27xNd+MuveOERPWfa8UzW50zLm9z+y6jy0bAbYq48ePr8C7NWjb\ncd8dcirwhgBQDcSL5p13ap/v1paEEPJaHXLF5b32aFYnhDBnWJ9Ln5sbftjuPoQQEsVTnrl5\nwIgPQgiRaM5tTz/Vuk5m2nIDAFWB3xUAAGqWRKLorZEPPjDyjcL4uoc1W+x3zGV9zvh1blYI\nIVqr6cmX3nbQQS/dPvjJeavWxmNLX7i//9tvdenb94LkF1IAbA2GDBlSgXdr02s3JT0A/MLC\n8fcmG/paeR3uvOWSRpkb3pU2knngyX/t89X5gycuTsQLHxyzYNAJO6UuKABQBdnuHgCgZrmp\n9zmDnv5XsqGP1t7+lEsHDrn23GRDX6rFAcfe9djdPQ7eOXm4dOYb1/U8557nJqYhLgAAQDpM\neXl+ctDpyt4ba+h/0On805ODheOnVmIsAKBasJIeAKBmmbZgZXKw04HHXXrx6S3qrv8Xwmjt\nHc648s6DDnrujiFPf726OBFf9dqwgb17dEphUgA26IADDtjQj0rWfvf+B/8tPYxEMnIbNm7a\nrFludM0333zzzbfLin947V00u9mpF57UKDMjr9U2lZ4YAKqatwrWhBAiGbXObtuwPPOz8zo1\nyR60JBaPFUwK4YRKTgcAVG1KegCAGiezzg4n977s+E67lDlzl4N7DNl732GDb3/p3XkpCAZA\nOV199dXrPV9c+PkdV1yXHOds17b78Sf832/3ysn+cfFfIr7m0/fGP/PMyA+/LIjHFj/33Dt/\nu/OqXbw3FwD+xzexkhBCtNavcqORcl7SLCu6JBaPxxZVZi4AoDqw3T0AQM2yc8cegx8bUp6G\nPimzbotzrh5y26UnN6sVrdRgAGyxxFPX9p+8YGUIYZ8eVz71wC0nHLbPTxv6EEIkWqvNQf/X\n/+5h/c86OIRQuPD9G64ZVpxIT1wA2JrVjUZCCCVrl5b/38nFa+MhhEhGnUoLBQBUE0p6AICa\n5c5+ZzTP2eQVk206n3zP0DsqIw8AFSV/1t0vzCkIITTa69z+ZxycubFVf5F9ul958YFNQwgF\nc14a+O6SFEUEgKpj/9zsEEJJcf6474vKMz+2YsqSWDyEkFV3j8pNBgBUfUp6AADKJTu3Zboj\nALAxUx/5IDno0ffI8szv1OvU5GD6ExMrKxMAVFmHd26aHIy6e0J55n/y5JPJwbZ7H1VJkQCA\nakNJDwAAANXBPxasDCFEojldt6ldnvm18jo3yMwIIaz+7vXKTQYAVVCL7idlRSIhhKUf3jfg\nuSnxje56v3jaiBvHfZ0cH3GK55sBgDIo6QEAAKA6WLAmHkLIyKi7sX3uf65ORiSEUBKz3T0A\n/FJ2XserDtsxOZ4ybMC5/Qa9N+PzVcU/7+oT8e8Wff7iI7f0vOmZeCIRQmjY5qzuzXJSnxYA\nqFo2+XWkAABUaWeeeebmXbjLWbdcd+h2FRsGgApULxrJL07E1377RVG8Ze1omfPja+YtXlsS\nQsjIalD56QCg6ulw0cBuCy4cPXtZCOH72RNuvnpCJFq7cb2S5E+vuvSi+fMXrozFS+fXytvj\nxhuPSU9WAKBKUdIDANQs+fn5m3fhijXxsicBkD4H1s/+x/dFIYRH3lj49983L3P+ogkPJRKJ\nEEJ2/Y6VHg4AqqBIRs65A4Zsc/9tj782PXkmES9aUrDupzPnLPjp5Iatu1x9ba8W5XhODgDA\ndvcAAGxMZs42TZo0adKkyTZ1PN8JsFU74sgdkoNZQ2+Y9m3RxicXLf3whodnJsc7/L5L5SYD\ngCorEs3r3vvmhwb063pg29rR9b9SptFOe53Zp/8jt/VtnZed4ngAQBUVST41DwBADTF//vyN\n/jyxfOk3ixYtXPDljHHjp64uSURr73DhDX8/creGKcoHwOYqLvzk7FOvKYiXhBAy67Q4+7LL\n/7Bfi/XOnD/tlTtuHzq3sDiEkJHZ8Jbhj7bxJBYAlCURL5w7e+YXXy9duXLl6lhJ3Xq59RsL\nhW/NAAAgAElEQVQ2adW23fYNa6c7GgBQxSjpAQBYv6Kln416bMhzE+dFMuqcedtD3VvlpTsR\nAGX4/IUbL3l8Wunhti33Onif3bbbbrtmzZrlhMLFixcvWrRo9oeTPvriu9I5+51z17XHtkxH\nWAAAAKihlPQAAGxEyQvXn/f4v5dm1t75ridv/1Utr1cE2NpNfPSagS9PL+fkvbpfdeNZB1Vq\nHgAAAOAXlPQAAGzM2sLpx598bUki0fLEO+86ded0xwGgbF++8/ydDz0z9/s1G5mT06TVqRf0\n/cO+O6YsFQAAAJCkpAcAoAx3nXHCG8uKajfsOuqJnunOAkD5JGKfvPOvyR/8Z9asTxd9t7yw\nKBaJZNSqU3ebZs1bt261576dDvnNrtFIukMCAABAjZSZ7gAAAGztdqmd+UYIsZXvhaCkB6gi\nItntOnZt17Fr8igRj5VkZGvlAWC9unXrVrE3HD16dMXeEACoZpT0AACU4Ys1xSGERHxluoMA\nsJki0exoujMAAAAASRnpDgAAwFYttvz9N5etCSFkZG+X7iwAbL54bGOvqAcAAABSxkp6AAA2\naE3+p/dee1c8kQgh1NnmsHTHAaC8EsX570yYNH36jE9mzVm2alVh4eq18URy693YiqkvTFjR\nsXOn5rlZ6Y4JAFuFm266aUsun/XmMyPenJlIJJKHkYj9awCAMijpAQBqlhEjRpRrXsmaRfPn\n/WfaR9+vLUmeaHvGAZUYC4CKM3vi8w88NOKLgth6fxpfM/fph596ZuhjnU86/88ndPKiegDY\nc889N+/CNd9/OvTuu/754delZ3K23+vCvn0qKBcAUG0p6QEAapbylvQ/l9O082UHNKnwMABU\nuA+HX9d/5MdlTiuJF7wxfODMOd/cd3WPTD09AGyqRPz9V4be+9jY/OJ1jzVHMmp3PuHCC086\ntE6Gf1kBgDIo6QEAKEPDXQ6+/m8X+6YJYOu34LW7Sxv6SDT34N91brXLrlnTn35g4uLSOZk5\nu7Xfoe70r1eFEBa/N+zqEbvfdkqb9MQFgKpp1YJp9w4eMumz/NIzDVv/tk+fnvvsWDeNqQCA\nKkRJDwBQs3Tt2rXcc6ONd2zRcudd99ytpc2QAbZ+8aJ51z/4RnKc1+qQKy7vtUezOiGEOUte\n/Om0rJz2N9/35JRnbh4w4oMQwqfP9v/0uKda1/H9AACULVFS+K8RDzz07FtFJeveQJ+Rtc0f\nzu591tEdfGgCAMrPh3AAgJqlZ8+e6Y4AQKVYOP7e79aWhBBq5XW485ZLGmVmbHBqJPPAk//a\n56vzB09cnIgXPjhmwaATdkpdUACompbOenPwXQ9+vKiw9EzzDkf3vfjsXRtkpzEVAFAVKekB\nAACgOpjy8vzkoNOVvTfW0P+g0/mnD544MISwcPzUoKQHgA0riS196dF7hr36UUli3QL6rJzm\nJ1/Up0enVukNBgBUUUp6AAAAqA7eKlgTQohk1Dq7bcPyzM/O69Qke9CSWDxWMCmEEyo5HQBU\nVfPeH3PXkCc+L4glDyORSNtDT774wuO3qx1NbzAAoOpS0gMAsDGJ+IrLrvhrcjxo0KD0hgFg\nI76JlYQQorV+lVvul+I2y4ouicXjsUWVmQsAqqriVfOG3zP4+clzSs/UbtT23D59j9yzWRpT\nAQDVgJIeAICNK54zZ07ZswBIt7rRSKw4UbJ2aSKEcrb0i9fGQwiRjDqVGgwAqqDE9NefHvLg\nc4vXxJPHkUjWAceee9EZXeuX+2E4AIANUdIDAABAdbB/bvar+UUlxfnjvi86apvaZc6PrZiy\nJBYPIWTV3aPy0wFAlVH07SePDB782n8Wl56p/+v9L+r75wNb1k9jKgCgOslIdwAAAACgAhze\nuWlyMOruCeWZ/8mTTyYH2+59VCVFAoAqJhGb/ML9551/TWlDnxHNPerMfkMHX6OhBwAqkJIe\nAAAAqoMW3U/KikRCCEs/vG/Ac1PiiY1NXjxtxI3jvk6OjzilZQriAcBWbvnc9wZccu6tj/9z\nebwkeaZp+8P/9uCjvf7YMdsO9wBAhbLdPQAAAFQH2Xkdrzpsx5vGLwghTBk24Nz3O/c845jd\n2/y8gE/Ev1v85dtjnx02Zko8kQghNGxzVvdmOWkJDABbiUR8xbgn73vkxXdiiXXPuEVrNfvj\nBX8+9bD22nkAoDJEEomNPloPAEDNlojnH3Pcmcnx6NGj0xsGgI1LlBQ+etWFo2cvKz0TidZu\nXK9kSUEshNB2l+bz5y9cGYuX/rRW3h63P3xDi9rRNGQFgK3G1eedOGPJ6tLDxu26XHzRqS3q\nZW32DRs0aFARuQCAaktJDwDAxijpAaqWRLzgxftve/y16WXObNi6y9XX9mqdl52CVACwNevW\nrVvF3tBHJwBg42x3DwAAANVHJJrXvffNBx06+cXRY958f1bR+l5N32invY7udmy3Lvtk2cMX\nAAAAUk5JDwAAANVNs3Yde7breGG8cO7smV98vXTlypWrYyV16+XWb9ikVdt22zesne6AAAAA\nUHMp6QEAAKB6ikRzWrbr0LJdunMAwNZt8ODB6Y4AANQsSnoAAACoDsaMGRNCyG3ZqXO7BuW8\n5N/j/rEgFs+ss3PXw9pWZjQA2KrttNNO6Y4AANQsSnoAAACoDh5++OEQQoturctf0s97/slH\nF6/Kytm962F/r8xoAAAAwI+U9AAA1dbYsWMr4C4lqyvgJgBslWIliRBC8Zq56Q4CAAAANYiS\nHgCg2nrwwQfTHQGASjRr1qz/Pbnm+7mzZsXLvjhRnL9w5rNLk09iJSo4GQAAALBhSnoAAACo\nkvr16/e/JxdPurffpE27T63cAyomEAAAAFAOGekOAAAAAKTTby44Od0RAAAAoAaxkh4AoNp6\n/vnn0x0BgEq04447/vTwq6++CiFk5TZpmpddzjvU23b79p2OO71j04oPBwAAAGxAJJHw5jkA\nAACo8rp16xZCaNHt9iHntUp3FgAAAGCDbHcPAAAAAAAAACliu3sAAACoDk477bQQQl6rRukO\nAgAAAGyM7e4BAAAAAAAAIEWspAcAAICqZ9myZclBJJKVl1c3vWEAAACA8rOSHgAAAKqebt26\nJQfZdfd8bsRNIYRbb711s+/Wr1+/iokFAAAAlMVKegAAAKgOJk+enO4IAAAAQNky0h0AAAAA\nAAAAAGoKK+kBAACg6mndunVykFlnx+SgV69e6YsDAAAAlJd30gMAAAAAAABAitjuHgAAAAAA\nAABSREkPAAAAAAAAACmipAcAAAAAAACAFMlMdwAAAACg4q0sKChOJMo5Oa9Bg0ilpgEAAAB+\noKQHAACA6uPrD8cNG/3mnDmff7t8TfmvGv7iy7lRNT0AAACkgpIeAAAAqok5YwZd9shbiXIv\noC+V5W14AAAAkCpKegAAAKgOYgWTr370Zw19NBot57XZEcvoAQAAIEWU9AAAAFAdzHroiaKS\nRAihTpPdz7ng1L13bdmkQZ10hwIAAAB+SUkPAAAA1cGrH+eHELLrd7jvgWu3zbR/PQAAAGyl\nfGgHAACA6mBG4doQQruLLtDQAwAAwNbM53YAAACoDtaUJEIIB7TJS3cQAAAAYGOU9AAAAFAd\n7FInM4RQnEh3DgAAAGCjlPQAAABQHRzdsn4I4YNZBekOAgAAAGyMkh4AAACqg717d8+IRGY+\nPKwoYTU9AAAAbL2U9AAAAFAd5Gz3h7+dskfR9xOvuPMVPT0AAABstSIJn9sBAACgmki8OeyW\nwc+/m91o1z+efOoxh+5VOxpJdyQAAADgZ5T0AAAAUB289NJLycGiD17558dLQgiRSNY2TZs1\na9asQd3sjV/br1+/Ss8HAAAAhBBCyEx3AAAAAKACDB069BdnEom13y1e8N3iBWnJAwAAAKyX\nd9IDAAAAAAAAQIpYSQ8AAADVQa9evdIdAQAAACibd9IDAAAAAAAAQIrY7h4AAAAAAAAAUkRJ\nDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAimSmOwAAAACwaXr06LEZV2Vk1m647Tbb\n/Xq3Aw866NCD9syOVHguAAAAoGyRRCKR7gwAAADAJujWrdsW3iH3Vx0uvPSSTi1zKyQPAAAA\nUH62uwcAAIAaZ8X8aXdc3nvsJ8vSHQQAAABqHCvpAQAAoIoZNWrUZlxVsrYof+nCj6dNW1gQ\nS56JZu8w8Kl7dqkdrdB0AAAAwMYo6QEAAKAGSZQUvjnynsHPTE5+IdBon75D+3dJdygAAACo\nQWx3DwAAADVIJCOny8lX/v203ZOH33103+zVxemNBAAAADWKkh4AAABqnHY9/tohNzuEkEjE\nHpv4TbrjAAAAQA2ipAcAAICaJ5J95h9bJIcLX/1verMAAABAjaKkBwAAgJqocacOycHqbyal\nNwkAAADUKEp6AAAAqImy6+6dHMTXfJ3eJAAAAFCjKOkBAACgJsrIbJgclBR/m94kAAAAUKMo\n6QEAAKAmKonnJwcZmY3TmwQAAABqFCU9AAAA1ESxFR8kB9Fa26c3CQAAANQoSnoAAACoib55\ne11JX6dxp/QmAQAAgBpFSQ8AAAA1TqKk6PEX5ifH2x21S3rDAAAAQI2ipAcAAIAa54Ph1320\nMhZCiESyz/5ts3THAQAAgBokM90BAAAAgNSJF337yrB7H33l0+Thtnv33C3HlwMAAACQOj6H\nAwAAQBVzzz33bMZVJcVrln33zcwZnxbGE8kz0Vo7XnNV54pMBgAAAJRFSQ8AAABVzGuvvbbl\nN4lmN7nw5gE7145u+a0AAACA8lPSAwAAQI3TuO0hF/buue+OOekOAgAAADWOkh4AAACqmB13\n3HEzrsrIrJ3XoEHTFq32P+DA/dq1iFR4LAAAAKAcIolEIt0ZAAAAAAAAAKBGyEh3AAAAAAAA\nAACoKZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAA\nAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAA\nAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAA\nAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAA\nAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAA\nAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAA\nAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAA\nAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEA\nAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8A\nAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoA\nAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdID\nAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIe\nAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0\nAAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKk\nBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBEl\nPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo\n6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJE\nSQ8AAAAAAAAAKaKkBwAAAAAAAIAUUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAi\nSnoAAAAAAAAASBElPQAAAAAAAACkiJIeAAAAAAAAAFJESQ8AAAAAAAAAKaKkBwAAAAAAAIAU\nUdIDAAAAAAAAQIoo6QEAAAAAAAAgRZT0AAAAAAAAAJAiSnoAAAAAAAD+v737jrOiOhsAfO4W\ndulVUDooICqCokQFaxTFhpiggtjJJ3YxithBVGygYovGGhWxYYkFW6IgmmDDDtKlKGChl2V3\n7/fHXVbiFpYts3fxef7J2ZkzM+/ucN7Mb17PGQAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjS\nAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESR\nHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK\n9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFR\npAcAAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiI\nIj0AAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiCjSAwAAAAAAAEBE\nFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0AAAAAAAAARESRHgAAAAAAAAAi\nklbZAQAAVc+GsU0rO4Tykd5/UWWHAL8XOVOGVHYI5SO1282VHQJQeh0veKWyQygf39xxRGWH\nAFXSRU/NrewQysfo41tXdggAAJSJmfQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAERE\nkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAi\nivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAAR\nUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACI\niCI9AAAAAAAAAEREkR4AoDzFc5bHNjrgqVmVHU4yGtexUeLv0/P1+ZUdS5X3+U17Jv6YrXq9\nVdmxUEqSxmZV0aQRz1n1zK3n7/+Hzk3qZtZp1LTnJR9VdkQVTkbaCvwy44z8jDR26ZrKDofk\nZbxvlWSAJORxAgC2YmmVHQAAAABsVeI5y8/YffuHP/9p44bv5yxQ7YCKNaRFnVsWrEy0P1mV\ntVvN9MqNB4jSVpkBPE4AwNZNkR4AAADK0+yn++W/Uq/dapeu7bdrvnO9yg0JAKhaPE4AwNZN\nkR4AAADK06c3561G27r3vd8+Pyg9VrnhAABVj8cJANi6KdIDAABAeZq/ckOisfNlfbxSh2jU\nb9GqddqqRDsjZuDB78tWmQE8TgDA1k2RHgAAAMpVPO9/UzJTKjUO+B257P0vLqvsGIDKsnVm\nAI8TALBVU6QHACBZ5a57+/lnPvpyenbNtldcfHplRwMkPUkDomTEwe+ZDAAAUDb+KzwAgGS0\n/uevHxl1xXHHHL5P104tGterVqNu6/a79DjosJPOGfbONz8WddS/+7SNxWKxWKzr8KlF9Vmz\ndGyiT0btrr/ZNffFPyZ2db9vWmLL95++fuWZx3bZaYeGtTPrNmnVbb+ep54/8quf1xcf/NrF\nn9x57UV/3LNT8yYNqmXWbt6mwwHHDrzv2Xdziz0q/+oHPDUrhLDqu1d67tz04D+fPHTY9cOv\nGZW18j9pKSmJDnctWlXMeYa3q5/o1q7/W8XHWUKL3u31P3+WeNZr/xh93B+7tWnWOLNa9W1b\nbL/vMQMffvWbTY7IffeJMScf2b1Ni21rZmRs16bj/of2Hnr7uGXZ8SKuEEJp73hJLPv23VFX\nnXfgHp1abNsoM7N2mx07H3x4n6vvGb90Q/E3JMRz10587r6zTut3yL7d2jZtmFmrYYdd9+x1\nzPEXj3xg2ub+DRA9SSMZksbSz45OnOqi2csSW/7ZpXHeyftNLNi/FMNTRpKRKkvxI65A99wP\nxj944al9Ou24faN6NavVrNu8Tfv9jjxx5D1jF63P2ewlSpdS8g/fZucXyvG0+XLWzX98zLCj\n9t291XaNMjJqtdi+4yEnnPPoKx8n9o7r2ChxlbFL1xR/npIz3o335CEDRJkBPE5slvQCwNbB\nTHoAgKTz/r0X9h1812/eYc2b8dW8GV9N/vfrT9w7okuvs5577o42makVGUXuC9cP6HvVuOz4\nxjcvq777cMl3H0568/H7xwy6Zfxd5+1d6GGv3nzWaVf9fUnWr8EvnPvtwrnfvvv8gyMPGDj+\nxbtLcu21S948YNc/fbz81xcl1WrvdUmrOjfOXR5CuH/UN+eO2rPQA7NWfnDdrOWJ9pkj/1CS\na22RrBVTzznyyAcmLczfsnjB7MULZk9+6aHxlz71z5F9s9fOOK93r7+9OSu/w5q5036YO23i\nGy898MiLn015vFm1Qu5aBd3xeM6K2weffMXdL63N/fX12dzpn8+d/vnbr71w02Vtzxk1dvTA\nwv9Ky6eP73fswNe+/mXTjd9+8fO3X3w04cWn77h2xOUPTxh+QsctioeKI2kkbdIoSlmGZz4Z\nSUaqLAVH3KZWzHr5lOP/8sLHP2y6ceHcFQvnzpj0ytjhV1x36V1PDj+x8+YuUsqUUkGnnfPK\nbceeevnUH9flb1kwe9qC2dPeeuqeGw8/5+mnbitVMFvAeDfek4cMECLPAEXxOLFFv7L0AkCy\nMZMeACC5zHz81O5n37Hp64wadbdpuk291Fgs8WM8nvvpq3fvte/VxU1bKLO3Lt+vz5VP1urQ\n84Z7n3rvv59+OPH1h+4ctmvDzBBCzvof7rmgx9VTlhQ86pmLDzzi0r9tWmyrXqdhzY1vbea9\n88BBXU9ZkFXkBJo8uesH73d8/ou/uo2bttuxfQjh1Ct3TWyZ+ej1RR06e+yQxEu36g2OuLhV\n7RL/uiWSk/X9aXsc8MCkhfuffsmDT736yYeTnnr4zgNb1w4hxOPxl2887qxn3juj215/e3PW\nNl2Pu+Xex977+OPXnnv8vF7tE4f/9Nm4gwYVMk+3gu547oYlFx7c8aI7X8x/gRWLpTfe5te/\nSdaK2bf9Za/eVz9b8Ni1S17eY7fjN32BlVlnm+0a/nps9rrvRpy4201Tf9qSiKgokkbyJI0a\njf88dOjQoUOHHlQvM7Flh9PPT2w5s3eLX+Mtw/DMJyPl/ygjRa2IEZfwy1eP7N6pz6b1uRp1\nGzVrXD9t4z+h9cu+GXHS7gNGvV/8RUqXUjardKedPf6KnXv/Nb8+F0up1mi7pnVrpCd+nPbq\n3fvsdNSUVVmliKeEjPf8H433yicDVHwG8DhRFOkFgK2MIj0AQBLJ3bD00P97ItHOqNdt5EOv\nLF2VtXrZkoVLftmQtfqTN544Ze/Gib1LPrrhprkrKiiMH94bftiN7+/Uf/T8L1+7bNBx3bt1\n2WPfnqede80nC6af0LpOCCEezx1zwh2/OWrhmxcfN+qdRDsts/mFox6bvnj1muU/rlqfNfvD\nCX89ZtcQwvKZ4y7ZuGxjUb6596j7pv+Sltnq3Bse+XLuT8sWL/zq4+dDCG36Xp94rbP2pxcf\nX1L4SpJ3jfgs0djxvBGl/vWLMnXE4eNmb7hq7CfvPHjz6cf12m2PHsedeu5b387s1zzv5c7f\njtv3H1/+vNc5d8+ZMu7iQQO67777YceeOObVaY+f3iHRYdbY09f+7xKMFXfHnzlz/zHvLEq0\nW+532qvvfbpk5ZrFS1b8suDb18beuHPdjMSul0b0Pe7Bb35z7O29Tp+5NjuEkJLe4KKbH539\n0+q1y5cs+nFF1qrFz955eaP01BBCPHf9DcdcXfJ4qCCSRkimpFFzu5NHjhw5cuTIIxvkvVXv\neP6ViS0Xn9Amv1tZhmc+GUlGqixFjbgQQs76+X/e/+xZa7NDCLGUjD6Db/to1s+rly1dsPjn\nNSvmv/TANTvVzQghxOO5Y4ccdM//zmXcVOlSymaV7rTrfn67e7+b1ubEQwgZ9Ttd/4/XFq9Z\ns3TRwmWr10//4OUzDmwdQlg1//XbFqzc0nhKzng33pOHDBBBBvA4URTpBYCtjCI9AEASWfrp\nxbMT7w7S6j/28VtDTzu8Uc28WRqxtOq7HdL/oXe/OHabGoktL726sMgTlc3sx8fVaNH/o8cu\nrJUa23R7ambLO58fmGivmHfLpmsMhvj6/n3vSjTTa3Ya/83Xt100oH3jRKgpbfY49NbnP3vh\nsgNLcvUlk2anVW87/svP77zslJ1bNcjfXq3OvhdsfFt0233fFjxw3c8v3b1wZQghFouNOL/8\nFypcv3Td7le+eW2/3TbdmJLe+JZHDs7/sd4O50268+yaKZv+3WJ9b384FouFEHLWL3r557Wb\nHl5Bd3z5rNH9HpmeaB898sU57z7Uq3uXRjXTQgj1mrU7rN+ln86felbXbRIdnj/3iLmbTHPZ\nsPqzqz/N+0jkWc99MuqSk9s0yAsgvWbjP517/fsPH5v4ceV39364akMJQ6KCSBohiZNGocoy\nPDclI8lIlaWoERdC+GT40f/6aW0IIRZLu+zZr8aPvrBr2/qJXem1mh11xrCPZryxV6JKl7t+\n6GFXFnWJ0qSUEijdaR8++qQfsnJCCBl193rr2ymXn3TYNhmJ1T5i7fc64oG3Z9zyp/YS06kA\nABgmSURBVLZbFEYpGO/Ge/KQAaLPAIXyOCG9ALAVUKQHAEgiC1/+PNHYpssdfdsWsvBySnrj\nC3s2S7RXzqzAOVv9nhpV/X9exORpsPOliUY8d8OMtdn523/44NyJG9e9PO+lCUe1LiT43je8\neVa7eiW5+kH3vHbU9nUKbv/L5Z0Sjen3jCm4d/o91yYatVtcdMTGeSflKJZa/cmh3Qpub9C5\nX367z+NXpBX4s1WrvfeetfLeTM3a5I8WKuyOjz9jVDweDyFsu/fNLw49uuBDf3rtHe949/Xm\nGWkhhOx1c84YPzd/17qfX02s/h2Lpd92ZKuCJ2/bd3Tr1q1bt27dqlWrTypydV9KQtJISM6k\nUaiyDM9NyUgJMlKlKHTExXNWnjHmq0S73SlPX99n+4IHVt9mv/EvnZNor5x/z53zi/xXtKUp\npYS29LTrl//7wg/yFu4+56XxPRoVSBSxtMGPv9Vx48LXFcR4TzDek4QM8KtIMkChPE5ILwBs\nBRTpAQCSSIcznpw6derUqVPfff5PRfWJ52yc3lFh35dOTW80ulvjQnelpDfO3Phua9PpGFNH\nvJFo1Gxy0qiDmhZ14mse67vZq6ek1vjbCYW81wshtOk3IiUWCyGs/uHhV39e95u9143JW9Ww\n2w2DNnuVUqjZ+KQdMtMKbk+t1iy/femuDQs9tkVG3oG/mcNSEXc8nrN88OS894mDx55ZVLf0\nmrs9dkLe1J/Pb5iYvz2WkrdQZDy+4em5hbw1S63WfM5GZ25bs0QxUWEkjZDESaOgMg7PTclI\nCTJS9IoacasW3fXF6g0hhFgsZfSoXkUdvt1+tx7VsHqi/fCDMwvtU4qUUhKlOO288Vdn5cZD\nCNUbHnnrftsVftrMNn8/eYctjGXLGO8JxnsykAF+e9qKzwAFeZwoqpv0AkDVokgPAJBEarba\nsXPnzp07d+7QvEahHdb9OPXaCQsqOowaTU6pWdgsk4RCdzz4cd76ge3PGlzMmRvvMapO2mYe\nQTMb9m6TmVroroy6B57btFaifd0TszfdtfqHB55duiaEkJJaa0yf1sVfonTSa+xS+I5Y3p8k\nllKtQ/VCXnKFIv5ooWLu+KqFdyzPzg0hpFVve3HrQuYW59tlcOeNh4zL31ij8Yn1Nt6jgV0P\nvv2Z97MqrLJL2UkaIYmTRkFlHJ6bkpGoLEWNuIWvvpxoVG/Yp9ilKWKXHN480Zo37r1Ce5Qi\npZREKU778b0zEo1mh15SzHV3ueTw0gZVIsY7yUMGKKiiM0BBHieK6Sm9AFCFFP5/sQAAJIfc\nnxbOnTlr1qxZs2ZM/+bLL6a+8cZ7K7JzK/qq6TWLeFlTtMkbl63uclwh6wfmi6XWPmGbGvd/\nv6qYPhl1uhez98xLdxlz/gchhC9veSCcNzp/+xc33J5oNOpyc8caFfOUG9vsaQsvE26Jcrjj\ny77Oe+OZklr7mquuKqbn+mXzE42sVR/lb0xJb/LCRXsdcPP7IYR1v0wZfFz3ofVaHtiz5/77\n9ujRo3u3zjtUK/XLUaIgafxWZSaNAso4PP+HjCQjVZKiRtzS95YmGrWa9yu0Q77WJ7YOj80I\nIaz7aWII5xXsUIqUUhKlOO0b3+Uln9b9WxfTrUaTE0MYVbqoSsR4N96ThgxQUIVngAI8ThTT\nU3oBoApRpAcASDprFn30wIPjXnttwgefTl++bou/tlh2Kakl+gh0vnju6u+z8pY57Fi7WvGd\nO9XczFcbU9ILX4gyYfsBw2IXHBaPx1ctGPP+ihv3qZO4XO6l/8hbMPOw248pWdRJpHzv+MoZ\neUs4Zq367LrrPivJIbkbfl6RE6+Tmvd2av+bJo5reP5FV9+3aH1OCGH9su8mPP3AhKcfCCGk\n12p28FFH9+59zPF/OqRewa9TUkkkjWL2JlXSKPvwjICMRPGKGnGrZudVs2q2blD8GWq2zFs5\nOXtd4Ytdb2lKKaFSnDb/69T1Whe3+nFa9Q6ljKmyGe9sKRmgoOgzgMeJkhwivQCQ/Cx3DwCQ\nXJ4fdnKL1n+44OpREz74Kv91Rkpq9Zbtdz20d79rxzz24HFty3SBePnPqY3FMlLzV0TcXOfN\nvveIxYoryGXU7zlou5ohhHg854oX5yU2rphz48Tl60MIaZmtb99r25LEnDzK/Y5vWLGhFGGs\nytl0zcfU44fcPWvBx3cMH3zwHjvk39wQwoZVC1978t5BJxzast0B979R+KtVIiZpVKGkUR7D\ns2LJSGxWkSMu/6ZtdlSn5J0hnru2fGKqMKty836rWLG/VCyWllJ8j6RkvFMKMkBB0WcAjxMl\nJL0AkOTMpAcASCIfDDv02OFvJNoZ9Xbod+oJ3ffco2vXLju2a1l94zcUP/j6hrJcIidrYVmj\nLCiW1jIjdc667BDCtFVZxfedtqasEynOvniney+aEkKYOvzJcNLVIYQpVzyc2NX80DvrV6nZ\nDxVxx2u1zfsCd91W1yybO6zUsWU26nz+1aPPv3r0mh+mvfn2O+9Nem/SpElTvpkfj8dDCCvn\nThzUa+fFk+dftVdxk5ipaJJGSSRP0iiv4VlBZCTKolbbWuGDEEJYPXdZ8T3XLlqSaKRVb1/R\nUZVR++ppn63KCiH8Mm912KlhUd2y183NjVex7xsb75QvGSDCuDxODCt1bNILAEnFTHoAgGSR\nvebrY0a+nWjv2P+ORUu/ffi2EQP7996tQ6v81xllt3pBEd8jLJtD6mcmGlOfm19cv3jWuKVr\nynitHU65OtFYPueGL1ZvCLnrBr+UNzv25Ft6lPHkUaqgO153p2aJxvrlk8ohyhBqbLtj7xMH\n3fK3x//z1bzl333x8PVnbZOeGkKI52bdesKN5XIJSkfSKKHkSRrlPjzLkYxEGTXau1GisWrB\nuOJ7zhubNwCr1f5DxcZUZvvUy0g0vnv6u2K6rV36dCThlBvjnXInA0TJ40TZSS8AJANFegCA\nZLF06hVLsnJCCOk1On702HkNipjcuXzais2eKmfjx54L+uy2T0sdYTFO2CdvtsH0e+4qptvP\nX1+zuOjYSiizwRFnbFszhBDPXX/pmwt/+vryL1dvCCFk1N3v6nYV8g3LClKOd3xTdbe/KNFY\nt+xfby1bX0zPVXOmTp48efLkyR999eucp+kvPfPEE0888cQTL72/tOAhtZvvfOrl90x+5I+J\nH1fOvye7ik0d3KpIGiWUPEmjjMOzQslIlFGzow5LNNb++Nybxd7r217IK3e1PLZnhYdVNgec\n1CbRWPDKncV0m/Xw85GEU26Md8qdDBAljxPF9JReAKhCFOkBAJLFqlk/JRoZdfevWcQ8g9wN\nS4d8uKSoM8Q2HvXTfwpfnjpn3axBG+ePlq9OV/ZONFYteuCyiT8U1W3MqQ+Wy+UuGLxTojHl\nyhcnXvxcot3+jFtSy+XsUSn7HS9Ueq2uZzTNWxDy/MsmFtkvnnXq3t179OjRo0ePiza5xLQR\n5w0YMGDAgAGnnvZ4UYduu++B+e2ylk8pA0mj5JIkaZRxeFYoGYkyqt3sgh1rpIcQ4vGcCy57\nu6huP0wa8uyPectjHH92si923W7gmYnGmqVPX/NRIaWdEEJu9o/n3/ZVhEGVA+OdcicDRMnj\nRJH9pBcAqhRFegCAZFG7Xf1EY90vE5ZuyC3YIZ67ZvSAvb9YvSHxY26BPrXb1040vp989ru/\nFJxhkHPvyYfMXVfWrzsXqlHnm3tuXLx69JG9JixYXbDPxFv/NLyI11tbqt0ZlyUav0y78rx3\n8oqLlw3tVC4nj0zZ73hRrro3bzLTtPuPHPbq7EL7vDLiqOcWrwkhpKY3uuPPbfK3tz2+ZaKx\nbOblL35f+DLj/7p9bKKR2eDwjOg+581vSRollzxJoyzDs0LJSJRRLLXuQ2d2SLSn3d/nugmF\nrA69dsm7xxw5JtGu1fT0K7avG118pVJzu/8bsnG9jVsOO+GTFVkF+zx6zoGTlhc3rTMJGe+U\nOxkgYh4nCu0jvQBQtSjSAwBUlNx1a1eXwJq1ea97Gux0aXosFkLIXjd3z2NHTPtxk9c98ayJ\nT91x+G6tL3l6Vv62BS8/8PX3/1PWanPSQYlGzvqFfXqc+PIXP+XvWr3o06HHdTnvmTnpNTq0\nzkwr/982lvbIC4MTzayVU4/u0GnInU/N/jnvV/jh68nDT93vgCHPhxBqta5V9qtlNuxzSpOa\nIYTcnFUL1+eEEGpt93/9tqlezCE37btbu43+s7KQV2zRK/sdL0qrIx87Z5cGIYR4bta1R+34\n58G3/PfLWavz1m2ML/zszctP637kNW8kOu9z2Yu71UrPP7bdaZdVS4mFEOK56/p36Xnnk28t\ny85/d5a78PN/DRt0wDGjv0j8vPtFw0r1q1M4SeP3kDTKMjwrlIxE2XW74cXu9TJCCPHcrGuO\n3HnAlfd9tWhVYlfO2sWvPnLtnh0O/e+K9SGEWEq16169uTJjLbErXhtdIzUlhLD2p3/t22Hf\n2599Z9nGdZAXfvHuX4/d9fT7v4zF0nevVS2xMTGONuUJxHj/nZABQoQZwOOE9ALAVkCRHgCg\nokw6tVOtEmiyw18T/avV2eeJ/u0S7XkvD9t520addv/DwYf13LNT+/o1a+5/woUTPl+aXrP9\nTQ8MSPRZMe/BXZrVbdmuT/4VG+x0y5nt82Z7/PL1c0d33rb5DrscdFjPvbvuWK9515ue+TIl\ntdYt/560fUXU20LYbr8bxg/J+5LfhjVzbjn/hB0aVa/TcNsGtTO327nHsEcnxePx2i37vP1o\n93K53ODzdtz0x92GDS6+/09zZ83caG1uUnxmsOx3vEgpmaMmvrD/domPcG947vYhe3XaoXZG\njeatm9epnt68S8+Rj7yf6NjumOFvDdtn00MzG/Z5ZmDnRHvNksnn9z+kQUb1hk2atWnVtFZG\ntead/zj8vncText2PvW1IVVs9YIkJ2n8LpJGGYZnhZKRKLvUzLYv/vvOVplpIYTcnFVPXD+o\nU/O6DRo3a9Ni21q1mx5x2jVfLVsfQojFUvrf/M4FnRtWdrwlUmf70969bUBKLBZCWPPDlMF9\nD2xYo3bTVm2a1K/ZfNcDRj//RSyWMvD+KRc3z1uYpHH6b1+1eQIx3n8nZIAQZQbwOCG9AFD1\nKdIDACSRPz865cp+3VNjsRBCbs6qLz+d8vbrb3705Yxla7NDCB0OPm3CtE+GnP7wVT2bJ/rH\n4zlLf1y5yQlSx3z4Vt+9Wmzcm71w1lf/fv3N/3wyPTsez6i3691vfH1Bt20qLv4+N7316s2D\nmlRL3RhAfOXPi39ZlTd/olmP0/499clWGeVT7Wt/5qX57VhKxm39ty+X00aszHe8SBn1931z\n+geDDv/1HVM8d93CeQtXrsv7xmJKaq0Tr3r4y/FXVyuwnOPRf/vvnecclrpxJlA8N+vnJYvm\nfvf96qy8Y2OxlH1PuurzKQ/WTrUWZCWTNEoueZJGWYZnhZKRKLuGXf7y2dSnjuiclzfi8dxf\nli6au2Dxupy8OYsZ9Tte/finj/9178qLcYvtcd6j//37Jc03/udKuRtWf//d3CXL1oQQ0jJb\nDh/3yf0Du/y0cVJmfkJLcsY7FUEGiDIDeJwI0gsAVVyFzIcAAKB0Yql1R4x97+y/vnjt6H98\n+e2MmTNnLs+t0bRpiz0P6HVs35P6HtQx0W34a9/ued+tz0/8LNRvuVOnAzY9Q7U6XZ/+YN5/\nnr39tscmzJgxY+bshWl1t2nWov3hxw04/ayTOtRODyGced2NvdZlp1ZrUhG/Qq9L7p1z8v89\ncP/jL/3zjW/mLVr685p6TbZrs/Ne/U85dVC/ntViYU3LM2699cAQQqsd65XlQtUb9T2hcY1x\nS9aEEBrsdF3XqJZwLF9lv+PFSK/d6d5XPr9k4rMPPfPS6//64LsfFv+yJqXVDu3atWu3U5fu\nJw08rXPTGkWEVe3cu17r+5e3H3zsqSlfz54/f/78+fNXxmu1at2qdavW2++0Z98TTzmgU4X8\n+2FLSRoll1RJo/TDsyLJSJSLuh2OffnToyc9+9DTL738r/98/sPiJSs2pG7TuHHbnbv1OuKo\n0wcev11G1Shjb2qPM26a0bv//Xc9+MwLb0yfO395TmaLFq0OPOaks88ftNu21UMIs9ZmhxBi\nKZktq8hvZ7xTQWSAKAPzOCG9AFClxeLxpFhoCwCoQjaMbVrZIZSP9P6LKjuEqimem52dnZ2d\nXa16jcpclym+oUe92pNXrA8h9H1j/tOHNC/JQR+cudM+93/zzrJ1+9fNqOD4/lc8nvijpWZW\nT/9dzs3ImTKkskMoH6ndqsYnVJOLpJFsfscZqeMFr1R2COXjmzuOqOwQKk8FpZQynTaneWbG\nwvU51Rv2XvPjC4X28ASSJC56am5lh1A+Rh/furJDqCQyQPKQXgCgbMykBwBgC8VS0tKrpaVX\nq9wofvrq8kSxLbVakzEHlPQ/HFm7aG0IoWn0S9HGYmnp6WnpVXK6P5SVpJFsZCSqtApKKYWd\nNnvN16//e04IISWtXq9Duxd16MrvxixcnxNCqNn0mKL6eAKB8iEDJA/pBQDKRpEeAIAqacJ5\nTyYaTfe/c9v0ks54+WbGimq1Orer7jEYfnckDWBLZa+dfuSRx4YQYinpn6xY3aVm4bWop8++\nPdHoOmz/ok4lmUCVIwMAABWqMtcaBACA0tmw6sNz3vs+0T5u9EElOiZ33Wcv3TRk5rI2x4+u\nwMiApCRpAKWQ2bB3rwbVQwjx3A3HnjJ6XW4hfaY+eu7AV74LIaSk1b3l0MK+oyGZQNUkAwAA\nFUqRHgCAKuPLGd+t3pC9dN5Hl/Q6enl2bgihRuM/jdy5YUmOvaxtky69h277x3Nfv7vIOS7A\nVkbSAMom5a67/5xozXluaIeDT/z7C5PmLly6Lnv9gplfvvnPpy8dcOAep92T6ND10lc6FTbR\nVjKBKksGAAAqUCwej1d2DABAFbNhbEk/5Zvk0vsvquwQ2DKxWOw3W06bMP+hQuesFDD5sbGr\n2+z4xx67b12fgqwycqYMqewQykdqt5srOwS2gKTBb3S84JXKDqF8fHPHEZUdwu/Ig+d0H3jP\n+8X3aXnIxVNfvbl+2m9zTpBMksxFT82t7BDKx+jjW1d2CL8XMgAAUEHMpAcAoKrqdu4TJSy2\nhRC6n9S/p7dj8PsmaQClcMbdkyc9NqJrqzqF7k2v0fIvw/7+9YTC63NBMoEqTgYAACpIWmUH\nAAAAJdW7+46vfTA9O5bZsv3uAy8dPvSUP1Z2REBSkzSActFjwJUfDbj8m/9O+mrm7Dlz5sxb\n8GN6rTr1GzTZtds+PXrs0ShTAQ62ZjIAAFARFOkBAKgyXnjvm5CbtS6kZ6YUPlUFYFOSBlB+\nUjr+Yf+Of/BVafh9kgEAgHKmSA8AQJWSUi2zskMAqhJJAwAAAEgyvkkPAAAAAAAAABFRpAcA\nAAAAAACAiCjSAwAAAAAAAEBEFOkBAAAAAAAAICKK9AAAAAAAAAAQEUV6AAAAAAAAAIiIIj0A\nAAAAAAAARESRHgAAAAAAAAAiokgPAAAAAAAAABFRpAcAAAAAAACAiMTi8XhlxwAAAAAAAAAA\nvwtm0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAA\nAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAA\nACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAA\nAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAA\nAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAA\nAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAA\nAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAA\nAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAA\nAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAA\nAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAAR+X94rmnOt+bxHgAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig6_colors<-c(\"#FAA519\",\"#FCC975\",\"#286EB4\",\"#71A8DF\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig6_colors)+\n", " scale_y_continuous(breaks=seq(0,40,5)) +\n", " ggtitle(\"Figure 6: Participation rate per day in laundry and ironing, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 7: Participation rate per day in shopping and services, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 5. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^shop\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>54.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>50.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>54.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>55.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>35.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>51.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>55.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>39.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>50.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>53.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>44.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>54.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>57.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>56.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>31.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>48.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>22.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>50.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>37.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>41.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>45.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>43.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>25.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>33.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>50.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>30.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>34.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>34.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>31.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>41.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>49.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>38.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>30.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>40.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>22.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Shopping and services</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>39.0</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Austria & 2010 & 54.1\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Belgium & 2010 & 50.1\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 54.2\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Estonia & 2010 & 55.2\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Greece & 2010 & 35.3\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Spain & 2010 & 51.2\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Finland & 2010 & 55.2\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & France & 2010 & 39.4\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Hungary & 2010 & 50.0\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Italy & 2010 & 53.0\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Luxembourg & 2010 & 44.4\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Netherlands & 2010 & 54.9\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Norway & 2010 & 57.2\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Poland & 2010 & 56.5\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Romania & 2010 & 31.7\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Serbia & 2010 & 48.4\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & Turkey & 2010 & 22.5\\\\\n", "\t Participation rate (\\%) & Females & Shopping and services & All ISCED 1997 levels & United Kingdom & 2010 & 50.7\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Austria & 2010 & 37.0\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Belgium & 2010 & 41.0\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 45.7\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Estonia & 2010 & 43.0\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Greece & 2010 & 25.9\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Spain & 2010 & 33.6\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Finland & 2010 & 50.5\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & France & 2010 & 30.0\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Hungary & 2010 & 34.2\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Italy & 2010 & 34.5\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Luxembourg & 2010 & 31.4\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Netherlands & 2010 & 41.4\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Norway & 2010 & 49.1\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Poland & 2010 & 38.9\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Romania & 2010 & 30.0\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Serbia & 2010 & 40.5\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & Turkey & 2010 & 22.9\\\\\n", "\t Participation rate (\\%) & Males & Shopping and services & All ISCED 1997 levels & United Kingdom & 2010 & 39.0\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Austria | 2010 | 54.1 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Belgium | 2010 | 50.1 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 54.2 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Estonia | 2010 | 55.2 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Greece | 2010 | 35.3 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Spain | 2010 | 51.2 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Finland | 2010 | 55.2 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | France | 2010 | 39.4 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Hungary | 2010 | 50.0 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Italy | 2010 | 53.0 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Luxembourg | 2010 | 44.4 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Netherlands | 2010 | 54.9 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Norway | 2010 | 57.2 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Poland | 2010 | 56.5 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Romania | 2010 | 31.7 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Serbia | 2010 | 48.4 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | Turkey | 2010 | 22.5 |\n", "| Participation rate (%) | Females | Shopping and services | All ISCED 1997 levels | United Kingdom | 2010 | 50.7 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Austria | 2010 | 37.0 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Belgium | 2010 | 41.0 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 45.7 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Estonia | 2010 | 43.0 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Greece | 2010 | 25.9 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Spain | 2010 | 33.6 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Finland | 2010 | 50.5 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | France | 2010 | 30.0 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Hungary | 2010 | 34.2 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Italy | 2010 | 34.5 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Luxembourg | 2010 | 31.4 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Netherlands | 2010 | 41.4 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Norway | 2010 | 49.1 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Poland | 2010 | 38.9 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Romania | 2010 | 30.0 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Serbia | 2010 | 40.5 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | Turkey | 2010 | 22.9 |\n", "| Participation rate (%) | Males | Shopping and services | All ISCED 1997 levels | United Kingdom | 2010 | 39.0 |\n", "\n" ], "text/plain": [ " unit sex acl00 isced97 \n", "1 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "2 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "3 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "4 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "5 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "6 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "7 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "8 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "9 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "10 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "11 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "12 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "13 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "14 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "15 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "16 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "17 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "18 Participation rate (%) Females Shopping and services All ISCED 1997 levels\n", "19 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "20 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "21 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "22 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "23 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "24 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "25 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "26 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "27 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "28 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "29 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "30 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "31 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "32 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "33 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "34 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "35 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", "36 Participation rate (%) Males Shopping and services All ISCED 1997 levels\n", " geo time values\n", "1 Austria 2010 54.1 \n", "2 Belgium 2010 50.1 \n", "3 Germany (until 1990 former territory of the FRG) 2010 54.2 \n", "4 Estonia 2010 55.2 \n", "5 Greece 2010 35.3 \n", "6 Spain 2010 51.2 \n", "7 Finland 2010 55.2 \n", "8 France 2010 39.4 \n", "9 Hungary 2010 50.0 \n", "10 Italy 2010 53.0 \n", "11 Luxembourg 2010 44.4 \n", "12 Netherlands 2010 54.9 \n", "13 Norway 2010 57.2 \n", "14 Poland 2010 56.5 \n", "15 Romania 2010 31.7 \n", "16 Serbia 2010 48.4 \n", "17 Turkey 2010 22.5 \n", "18 United Kingdom 2010 50.7 \n", "19 Austria 2010 37.0 \n", "20 Belgium 2010 41.0 \n", "21 Germany (until 1990 former territory of the FRG) 2010 45.7 \n", "22 Estonia 2010 43.0 \n", "23 Greece 2010 25.9 \n", "24 Spain 2010 33.6 \n", "25 Finland 2010 50.5 \n", "26 France 2010 30.0 \n", "27 Hungary 2010 34.2 \n", "28 Italy 2010 34.5 \n", "29 Luxembourg 2010 31.4 \n", "30 Netherlands 2010 41.4 \n", "31 Norway 2010 49.1 \n", "32 Poland 2010 38.9 \n", "33 Romania 2010 30.0 \n", "34 Serbia 2010 40.5 \n", "35 Turkey 2010 22.9 \n", "36 United Kingdom 2010 39.0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^shop\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>54.1</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Belgium </td><td>50.1</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Germany </td><td>54.2</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Estonia </td><td>55.2</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Greece </td><td>35.3</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Spain </td><td>51.2</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Finland </td><td>55.2</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>France </td><td>39.4</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Hungary </td><td>50.0</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Italy </td><td>53.0</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td>44.4</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Netherlands </td><td>54.9</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Norway </td><td>57.2</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Poland </td><td>56.5</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Romania </td><td>31.7</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Serbia </td><td>48.4</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Turkey </td><td>22.5</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td>50.7</td><td>Shopping and services, females</td></tr>\n", "\t<tr><td>Austria </td><td>37.0</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Belgium </td><td>41.0</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Germany </td><td>45.7</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Estonia </td><td>43.0</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Greece </td><td>25.9</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Spain </td><td>33.6</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Finland </td><td>50.5</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>France </td><td>30.0</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Hungary </td><td>34.2</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Italy </td><td>34.5</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Luxembourg </td><td>31.4</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Netherlands </td><td>41.4</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Norway </td><td>49.1</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Poland </td><td>38.9</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Romania </td><td>30.0</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Serbia </td><td>40.5</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>Turkey </td><td>22.9</td><td>Shopping and services, males </td></tr>\n", "\t<tr><td>United Kingdom</td><td>39.0</td><td>Shopping and services, males </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 54.1 & Shopping and services, females\\\\\n", "\t Belgium & 50.1 & Shopping and services, females\\\\\n", "\t Germany & 54.2 & Shopping and services, females\\\\\n", "\t Estonia & 55.2 & Shopping and services, females\\\\\n", "\t Greece & 35.3 & Shopping and services, females\\\\\n", "\t Spain & 51.2 & Shopping and services, females\\\\\n", "\t Finland & 55.2 & Shopping and services, females\\\\\n", "\t France & 39.4 & Shopping and services, females\\\\\n", "\t Hungary & 50.0 & Shopping and services, females\\\\\n", "\t Italy & 53.0 & Shopping and services, females\\\\\n", "\t Luxembourg & 44.4 & Shopping and services, females\\\\\n", "\t Netherlands & 54.9 & Shopping and services, females\\\\\n", "\t Norway & 57.2 & Shopping and services, females\\\\\n", "\t Poland & 56.5 & Shopping and services, females\\\\\n", "\t Romania & 31.7 & Shopping and services, females\\\\\n", "\t Serbia & 48.4 & Shopping and services, females\\\\\n", "\t Turkey & 22.5 & Shopping and services, females\\\\\n", "\t United Kingdom & 50.7 & Shopping and services, females\\\\\n", "\t Austria & 37.0 & Shopping and services, males \\\\\n", "\t Belgium & 41.0 & Shopping and services, males \\\\\n", "\t Germany & 45.7 & Shopping and services, males \\\\\n", "\t Estonia & 43.0 & Shopping and services, males \\\\\n", "\t Greece & 25.9 & Shopping and services, males \\\\\n", "\t Spain & 33.6 & Shopping and services, males \\\\\n", "\t Finland & 50.5 & Shopping and services, males \\\\\n", "\t France & 30.0 & Shopping and services, males \\\\\n", "\t Hungary & 34.2 & Shopping and services, males \\\\\n", "\t Italy & 34.5 & Shopping and services, males \\\\\n", "\t Luxembourg & 31.4 & Shopping and services, males \\\\\n", "\t Netherlands & 41.4 & Shopping and services, males \\\\\n", "\t Norway & 49.1 & Shopping and services, males \\\\\n", "\t Poland & 38.9 & Shopping and services, males \\\\\n", "\t Romania & 30.0 & Shopping and services, males \\\\\n", "\t Serbia & 40.5 & Shopping and services, males \\\\\n", "\t Turkey & 22.9 & Shopping and services, males \\\\\n", "\t United Kingdom & 39.0 & Shopping and services, males \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 54.1 | Shopping and services, females |\n", "| Belgium | 50.1 | Shopping and services, females |\n", "| Germany | 54.2 | Shopping and services, females |\n", "| Estonia | 55.2 | Shopping and services, females |\n", "| Greece | 35.3 | Shopping and services, females |\n", "| Spain | 51.2 | Shopping and services, females |\n", "| Finland | 55.2 | Shopping and services, females |\n", "| France | 39.4 | Shopping and services, females |\n", "| Hungary | 50.0 | Shopping and services, females |\n", "| Italy | 53.0 | Shopping and services, females |\n", "| Luxembourg | 44.4 | Shopping and services, females |\n", "| Netherlands | 54.9 | Shopping and services, females |\n", "| Norway | 57.2 | Shopping and services, females |\n", "| Poland | 56.5 | Shopping and services, females |\n", "| Romania | 31.7 | Shopping and services, females |\n", "| Serbia | 48.4 | Shopping and services, females |\n", "| Turkey | 22.5 | Shopping and services, females |\n", "| United Kingdom | 50.7 | Shopping and services, females |\n", "| Austria | 37.0 | Shopping and services, males |\n", "| Belgium | 41.0 | Shopping and services, males |\n", "| Germany | 45.7 | Shopping and services, males |\n", "| Estonia | 43.0 | Shopping and services, males |\n", "| Greece | 25.9 | Shopping and services, males |\n", "| Spain | 33.6 | Shopping and services, males |\n", "| Finland | 50.5 | Shopping and services, males |\n", "| France | 30.0 | Shopping and services, males |\n", "| Hungary | 34.2 | Shopping and services, males |\n", "| Italy | 34.5 | Shopping and services, males |\n", "| Luxembourg | 31.4 | Shopping and services, males |\n", "| Netherlands | 41.4 | Shopping and services, males |\n", "| Norway | 49.1 | Shopping and services, males |\n", "| Poland | 38.9 | Shopping and services, males |\n", "| Romania | 30.0 | Shopping and services, males |\n", "| Serbia | 40.5 | Shopping and services, males |\n", "| Turkey | 22.9 | Shopping and services, males |\n", "| United Kingdom | 39.0 | Shopping and services, males |\n", "\n" ], "text/plain": [ " geo values bd \n", "1 Austria 54.1 Shopping and services, females\n", "2 Belgium 50.1 Shopping and services, females\n", "3 Germany 54.2 Shopping and services, females\n", "4 Estonia 55.2 Shopping and services, females\n", "5 Greece 35.3 Shopping and services, females\n", "6 Spain 51.2 Shopping and services, females\n", "7 Finland 55.2 Shopping and services, females\n", "8 France 39.4 Shopping and services, females\n", "9 Hungary 50.0 Shopping and services, females\n", "10 Italy 53.0 Shopping and services, females\n", "11 Luxembourg 44.4 Shopping and services, females\n", "12 Netherlands 54.9 Shopping and services, females\n", "13 Norway 57.2 Shopping and services, females\n", "14 Poland 56.5 Shopping and services, females\n", "15 Romania 31.7 Shopping and services, females\n", "16 Serbia 48.4 Shopping and services, females\n", "17 Turkey 22.5 Shopping and services, females\n", "18 United Kingdom 50.7 Shopping and services, females\n", "19 Austria 37.0 Shopping and services, males \n", "20 Belgium 41.0 Shopping and services, males \n", "21 Germany 45.7 Shopping and services, males \n", "22 Estonia 43.0 Shopping and services, males \n", "23 Greece 25.9 Shopping and services, males \n", "24 Spain 33.6 Shopping and services, males \n", "25 Finland 50.5 Shopping and services, males \n", "26 France 30.0 Shopping and services, males \n", "27 Hungary 34.2 Shopping and services, males \n", "28 Italy 34.5 Shopping and services, males \n", "29 Luxembourg 31.4 Shopping and services, males \n", "30 Netherlands 41.4 Shopping and services, males \n", "31 Norway 49.1 Shopping and services, males \n", "32 Poland 38.9 Shopping and services, males \n", "33 Romania 30.0 Shopping and services, males \n", "34 Serbia 40.5 Shopping and services, males \n", "35 Turkey 22.9 Shopping and services, males \n", "36 United Kingdom 39.0 Shopping and services, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Shopping and services, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Shopping and services, males\",\"Shopping and services, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Shopping and services, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd),decreasing=TRUE)\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOyddWATSRfAN1I36kaLtECLFacccLi7uxzyYYfcwcHhcBwOhx3uzuFa3N29ipS6\nu6ZN9vsjkOxGNrvJzmYD7/dXtp2ZnZ1580bezBsBjuMYAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAADoERo7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwowBGegAAAAAAAAAAAAAAAAAAAAAAAAAA\nAADgCDDSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABHgJEeAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nADgCjPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBFgpAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\njgAjPQAAAAAAAAAAAAAAAAAAAAAAAAAAAABwBBjpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIAj\nwEgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwBRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Agw\n0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR4CRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Aoz0\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMARYKQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4AIz0A\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAQY6QEAAAAAAAAAAAAAAAAAAAAAAAAAAACAI8BIDwAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAcAUZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAIMNIDAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAEeAkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAKM9AAAAAAA\nAAAAAAAAAAAAAAAAAAAAAADAEWCkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAACOACO9yYIXC9jm\nZnaxsb8K+CHwshAzkkyhUGjr4OxbsXKdBs1/mThr538hMfmlxv4IAAAAgC8UZYYQe43gde+N\nnSOAa4qzbxJloP7yN8bOEQB8z4DWBYCvkJdlKva4aewMAbwGlOePQ+rT5WKhUCAQ2Hr2KZQZ\nOzcAALDNkb5+ck3edME9Y+cFAACTB4z0gFZOV3NVsZW+zC8xdqYADMOw8K2NGRm5qbFx7WPs\nD9IBjuP5ORmxn6NePr2959+lo/p38nP2GTBl2av073xbibHaILR9BVAUAACYBKCsAO4BqQMA\nPgAtEQAAQJ1XK5rIVaJQaL4vLo/jt0uLPvdsO1+K4xiG/XZ2kxWNpfeIB5c3LpszoHPzmlWr\nlPVwtbYws3Ny86tSvXHL7jMWb7jyOAw3ID+l+XGndizv3619cJ3qZd0cza3sff2r/tSszZBf\n51949MGAhJEnHv306r9LZ/Vq27hqpQpujnZmFjbu3uWr127Yf/TvWw6ehdM7OjFduVKhOOu6\nUCiUN+o5X3IYx8dLHc1ETFbKSbQ6E62eZK9dR70sRBiG3V/UdltElsGfCADAD43Y2BkAAABg\nTGlx0pF1M0/u3LP86LkpHSoZOzsAAAAAAAAAAAAAAACAPmREPjp68vTlu8/j4uJzZVbeXp5V\nG7To3r1nq7oVmCZVWhDabf5j+e9y3fYMLWvLdmZ1sHNQy3tZxRiGeTResai+K3Xgu/+tW7Zi\nRciLBNV/SFLzMlM/Rb5/cPPMijmYe1D7mbNm/9q3iYhJTmQlqWsn/fL3zkuZJVLi32M/hsV+\nDHt459qBjX85VWr096aD41ozLmekiYeFbJ+7ZPmJ+x9V/p6S8CUl4cv7V0/+27FGbOnVb8Jv\ncxdMrmJrxjT97x7TlSuNfDn9F47rv6NAknM/q5RljxZmtnXPL2hUZ+Y9XFb4W7PB3WPPupnB\nUVgAAPQE1AcAAKaKJC/i906Bv534ZOyMMCMzaiRxS+agiAxj5+iHA6rguwGqEgAAAAAAAAAA\nwHQpzng5a0gL94Cfxs1cfjrk2rM3YRHvXty4cuHfv6e1rlexartRF8OzGSV47bdeMUWlGIYJ\nzZz27e2NJtdaSX2+cMzJaAzDBALRqmPjKULKJIkL+gX93H+KBkuqGsmvL03p17RK+8lhuXTd\npWS9P9Mh0H/qlgsqllQVMqIeTmhbqdu0bfkyBkZQdInLStPXjmtVtdP/1C30KpQWJRxc/Uet\ncg233Yyhm296mPQ6g0nLlTbWz3tpSPTCjBDD86BO0LTTtWzNMQwrSL7QacFDFK8AAOAHAU7S\nfz90GzuxgiWjrW+q+FgYFB0A9KPF6AlBNlT7XiUFuRkZKWEvn7z+mKzyLxyXrh9QP+j9p+GV\nHFDmEQAAAAAAAAAAAAAAAGCN9BcHW7ca+SpL61WGYVd2dgk6N+/QrXm9AukkWJRxsc/OSPnv\nGpNONbU3ZyejNJEVTuiyUv7To/H6QZ42WgOWpA4JqnoonJmX7I+X19ep8PBi2J3mrpbUIQtT\nrgU36BNRQMvyiuPSs6vH1InJff/fVLFAd3h0ieOy/Jltaqy4lUgnZTlFGS/Htg5Ivhg1t603\n/VjfKyYtV9rI/rh+Y2yu/vExLOvdc0Oia0Modt6/qGGN3+5iGPZiRZfrfyS2KmOB4kUAAHz3\ngJH+++F/S1Z0dNTRmwLfB+ZlygUE6L+RU1aSEvlRGb3GL6PYyJT+9Fq4fIL2qQuRrI8PN65d\nvnDT2RLCTkxZScbvnRcNj1iFLIMAAAAAAAAAAAAAAAAAa+THn6vbePiXIh03i0slKQv61ja7\nFT2zqYfONPf2+1+eVIZhmJl1wOnFjdnJKG3Ct/c6lpiPYZhAIJh/cAhFyG1DflK3pJav36ZL\n29a1q/g4O9kVZKbGRr66eunc1aefiWGK0p92qdP7eeTpylZal/SlxbED6/VUsaSa2fj2HtYn\nyL+iVxlRzOfPL2+ePHEvihgg8ti0jvWbXvmjAfU3Ik38wLB66hb6cnWaNqpZLTAwsLyz+ENE\neFhY2JObt2PylRnAZYULu9Tx//hxAOdXG/AN05UrreDF09vP0zPuNxIvkYSqckAAI8/Svtrv\nU6g6/kiV2eUjCkpkpZnDem+Pu/arvnkEAOCHBoz0gFYcg+oF25O6dhuhATvfAPao2O9QWD/9\no6/q4PvHNyO9a/3fby9vx0620FPGr9HsDaeH9d1Wv/X4JInSsVJm5Oo5r2f+HeRsxLyhwFht\nENq+AigKAABMAlBWAPeA1AEAH4CWCACAiYLLCgY3GEC00Nfo9tufv3SsV6+epyjj+fPnt05t\nXrTrlgzHMQzDZcXz2jXtlhZW1ZpqHTv7w8bx1+Plv5uvOlmeW3ehstK0flOvy387Vpk/xtdO\nW8iEG+PG/feB+BdL5wabD+8e3qaqSsg//lr34fbhSaPGXfyg9PmfF3eh/ZCjn44P1Jb+6ZEt\nT5NPHreYvO3Q8hEepAJZ9uXRf307DX+SUaT40/WZrS78ktrJheoAGLrEs8LXDj8YQfyLXbmW\nWw9sG9DETyWktChh94Jfx604XfrtnnKpJGVip8UDXi+lyPl3j0nLlUbw0oxlAxpt+8Dswgt1\nPt1JUfwWW/lHhIUZmKACobnX/klVGyx7jWFYwo1J22OHj/b50XeKAACgDzhgosiKVKryQkah\nsfMEmABvtvRSyIy5ff2XeRLu8+BpTpop/ZuQxzSFmIuTVOS/bMvjKLKKgozIEcScDwxPN3aO\nfjigCr4boCoBOYUZF4iS0HDtO2PnCOCaoqwbRBmot+y1sXMEAN8zoHUB4CvkZZkK3W8YO0MA\nrwHlSSRiZydFUQjFDgsOPFQP8+HqlgBr5RnWquOuUqc5LdBJHtLSqW1OqQxNxrUSvqONIqtD\nb8VThBzkQfIlaVmm6ZP0IorwUknSHz97EqMIBOId0TkaAxekHDUj79Zq9fclbSkXpj1q4kBy\n0F221U6KnCBNfFZlR2JgW58uUYWlFOFfbx+GkZn+No0iPH1MdJ3BdOVKw+uSIw5v+quBlwav\nq7OjsxklheP4EHdlOnY+fzCNTk1R1g1FyXj9vIXdxAEA+EFg5N4DAADTJufTwZ9/PSX/LRRZ\nr759sRblZfC8xaf9uul+ZYh/SXm6wliZAQAAAAAAAAAAAAAAAGiycOZNxe+e2x/OHxSsHsav\n9Zjb1+YrHiN3j8wnXH2oQuKdyavCvvqMHHxop52IU7ciuDRv5NQ78t/mtrU2NfXUFjI3dtXB\npHzFo0Ag+OvayfpOVFdZC83cl1553JpwwymOly4cfUlj4KsT/iReEOkYOP7SLK3uMy2dGx4P\nmSEQKMsq/ub4m9nF2sKjS1ySc3dZlNIxjEAgWnnrgL8llS+EmqP2rGjoTvzL4d/vU4T/vjFp\nucIwrCT/7bF9WxfMmNSnc+uqFTztPAIGjJ/3JCGfIgptZJcIx/rt/VqwkaYSC4cWK2u5yH8n\n3v31eEohu+kDAPAjAEZ6APhRkJUkD2o8JqtUJn/8ad61X2uZsH/4UfNqEh8luU8iCnXcZAYA\nAAAAAAAAAAAAAAAYkeLMy4dSCuS/rZw6HR4WqC2kW6PZSwK+no8vLYpZ9EmL42tZ0YQ+O+Q/\nHfzGbm1Xls3s0iD+xuj732yQ/sM2Utw8EvbPXuKjY5W5f9R10Zm+yMJn95EBxL8k3p0uUdux\nICtNH3vmC/Ev80KWiim3K7j/tPCfWsoM4LLi6ZsiNIZEmnj629UyXPk9dj7Txla0p0oawzAM\nG7mbVCapzzbojPK9YrpyJSfrw+y+w8YuXLHh+IXrYdFJUlzrdhymSHIfp5Yo70v17uzDVsoK\n+m/uKv+B46UzJtykDgwAAKAO3EkPsExxxsfTRw4fPXvjU2xsXFxcgdChXLly5SsEdhsycmj3\nplYmsi3kw819207eDQsLS8wXlg8ccHzXOIrAJdkxl8+dPXPm4rvPcYmJSckpWeb2Ds7OXtXr\n1m/UpGWfgT39Ham2LnJGyJTW579tq3SoOOzKHA37lE0I92bNMOwO8S+PciRVrHTotLy4N0eP\nnnn04tWbt+/iUjJzc3PzJbitnb2dvb2vX9UaNao3btW5R4dGtgbvuWYkQuyCy/KfXj134sTJ\nh28/JSQkJCamiWwcnJ2dygXUbty4SZvu/ZsH6h6pG0LS2xs7du69+yrqy5cvsfHpNq4enp5e\n5QLqdOvZu0fnn53M9dECnFUcO+CS0IfXzp8/f/X+q8SkpKSk5JxSM3d3d3d3N78ajTp16tSh\nXRNXyi3hNMn5/GTHtu1Xn4THxcXFxsWXiGydnF2qBDVo0rTV4JGD/MuYG/4KmtAXeF5VJd+0\nN4q2g3H1mYiUXnLYg+PHj5+78TguPiEhMVEidvD29i7rU6FFl74D+nf3ozwZoBNeSaPRMaI+\nyY9/feT4hUePHj19HZ6anpGZlS2wsC1Tpox7uYAGDRo0adO1f7u61GtAusA/PLl8+NChK4/e\nJyUlp6SklIptnZxdKtWo16RJy0Ejh1RxZi5InOh5RDqBg8RpwrrU8Wcawpl6Yb0MkWpd+qBT\nCybdJ7IIovkCouJF300gQhZ+79z+A4fuvv6YEB+fkJRp7eTq4elZ1j+oc7fu3bq29bE3SZ92\nqDUtN43U5JTn96e78hKUBkWfzn9SN+Hes6rNGnpX/vvezWTMv4x6mA8H+p36ZvWfeWYx90uP\nO3+9rPg9ZmZNipBnT8YQH1tsHkPzFd6t1vlY7I8t/no6pbQo+mRaYX9XK2KYtJd/JEqU9kgb\n9yFTyus2dQ/c0uu3hlsUj2Hr12Mzd6gHQ5p40jVSsfj27KkzZQzDyvjPwrC1isfirFsFMtxa\n+w4JLuBqOUgF05Ur1BSR7xmp2NqD9Ve41VnpbbEnvliKYdiXc/9LKonxMDMR+wcAADzB2P72\nAX1Bfyc909s9SwtjV4xtZ6V9MGTtUX3FuUh5YJW7uG5kabgm5/PplsQw9G8u7+SkHEyUqfgP\nna978e1q9qLMp2M7BRH/ZesxStuLJNkRS8Z0sKJcXxOKbFoOm/0sIZ9m5hGR8W6d2TdHQ0Kx\n/X+xudTh81MOqnwIixfsGX4nPY7j+cl7VXK4IlbzzUlyMsMuj2hdUyTQPVg3ty83ftmhLF0X\nmDESoZyYv3W+VyUd9VfovmFXVnJx85/+DlRrCgKBsHa7oRfCs+h/msb3Eitx6qevqWVHhfRo\n5EfxdrGl16+rjhdIdXwHEbYqjqMqwGUPjqwMLqvh3iwiInPXX+btSCrWXRAqGTiRViD/e3HW\nq9Ht61AUi1Ds2HvGdhbv4TNcZxq3KlUwovbmrO2w/pms9Jv0yQi9OPTnChQ5Fwit2oxblSSR\n4swv+GSxR1hdjeSTZl2cju6VyJGW3sS4w+8l0o+rAh1lxR99oiDn4/XRXYLNda2j2Zev//fh\nJ/qVQM7Hq31qu1EkLhTb95i6ObOE/texrOeR6gSkifNK6lifhugN6gEnujJEqnXpw6JaUMGI\nfWL6+2nEv5jZ1ChmolCj9pMmxfblp1LkhLP5ggqIRlbo5IE1tNxJn/byWOtKjtoyjGGYUGw/\ncOaWZIlWVcuTAQYR1JoWaSM1XeVp0uN5CuJuKB1lB294Tx047X0fReCgP5+pB5AWJ9Sy/arW\nPBuvRpNlKgrTzyuEyrJMC2rpUVkQe5yjddKqzuLyDsS4oyMzVAJc712RGCB4vY6y/Yq00J9w\n4kUgEL3NL1EPhTTxB/8jeVNovCOcVuI47m1BKs9PlNfYU8DGOgPL0wRGmK5cyUl51YVm+TO9\nkz7mUhti9P3JSNbnDzfzUryi2+loFK8AAOA7Boz0JgvPjPQpT7bVIe+z04hAIOo997CUr0b6\noswnbb1Vh1PaJifvjswub01387vIzHXWPiMtHOC4rCS9q7u1IjMtlunOCf+N9NnR81VyuEl7\nOo+3jKae1qrjWK3/e+0WPpyhCHFgIS5Kf9Szjru2ZFUQih0nbbxP89NoGumf7Jvlbk5rO7BT\ntU7302jpKxYrjoMqKCmIHNnEl35WLV2Cdj1LpS4BjatLaS8O1XOy1JYsEZc6o5K0r/0xwkCd\nafSqJGJc7c1N20HxmYb3m/S5sGgATYGx9fn5+MdsRiue7PYI0edIqwnVfn1I8xulkkRivYut\n/HXa6ijQ21xqFH0i58GGcWXEDE4Y1B30D4UlXWMJvN4zw41e43IO+iWRxkoZCj2PVCcgTZw/\nUodiGqIfHAw4EZUhUq1LH3bVAhEj94myIoX1SM7syEz6xTK9HOmwWueTnylywtl8gQiikRU6\neWATTUb622vG2opo5dzave7xCM2bIXgywFCAWtOibqQmqjxNejxPTerr3op3VR2nQ7y/nG+t\nCFx/5Rv1AI/n15f/VyC0OJZkhBMyT2coj84HjLpHEVKS95pYzhb2PzF60emarsToPd+nqQQY\n6GZNDLCM8igLkc1VSRuDhrzSMIJFmvjT6ST3A3UWvKSVtKzEgrxzKEPfnsDAdQYU0wT6mLRc\nySnJD72nhVXkXWtMjfSPp1RXxBUIzPSWEGqSHg1TvMWh4iwUrwAA4DsGjPQmC5+M9Gkvdqhs\nXaSm5cJbPDTSlxREtvHSsOFR4+TkwabRYhpHZFTouCCE5iewy41pdRR5sPHsQ+csJv+N9B8O\ntVDJ4ZNczUuc4btGCZlXFoZhZSqNKKJtD6AWIdQW4oLk283crbWlqRGBQDhmj+ZFAT2M9FGH\nxzJ6u7Vbs7upOlQWuxWHugqKMp919dPt70sFkbn76mtxFIWgvrqU/fGgsxkDfevTfgN1OdPE\nEJ3Jh6pUYHTtzUHbQfSZBvab9Dk+sy2jbFuUaXj70yniXyhWPFnvEUoKo4gL8ZaObWl+ZuzV\nPsT0/fpd1q+45OhnLjWWPsFx/Nn6IQLmFVF3wgn6JRB9dpbOw5ekr+uwmTrPiPQ8Up2ANHGe\nSB2iaYgecDPgRFGGSLUufVhXCwr40CfeGFqZ+Ee/vldoFktR5jWiXInMPeLIO4qMNV9AWrw4\nSnlgGTUj/YdjkxipArGV/77X6eoJ82SAIQe1puWgkZqi8uSD7kJHQcohxbts3IdSB97b2FMR\nePDzFJX/SnKfKTam+A88iSzLVAwgmDB/DdXQohXkJx8glrO9z0xGL9pMdtGh8JMkR1aSTrRY\nC8Vlsmnv0Xmzsj4x5drzX6gEQJo4juPR51oRw7jW3kYn5fwkkvt0M5saNLOkjiHrDIimCfQx\nXbmiQ0iwJzERpkb6I7WUWxAsHVsT/5UZG/7o3u0LZ09fvnHn1fuI5MxiPbInp7Two9m3UhII\nzd5Q7sEFAABQAe6kBwylKON63Z/Gym9eUWDtUbVP/74Nq1f0crfLSoyPen3/yKGTHzOL5f+9\nuaD1gsBNxsgsFVv6tb6akE8n5OfjYxpP2IHjOPGPrlUa9ujWpV5geXcXm6ykxMhX90+dOh1K\nTjBkQccBrm8Oj6/BZr51UZh6ruuaV4rH6ec3cXklJzr2LnhFfDSzrlrPVsMec0nuk9bj9sjI\nlWXpHDBoYKeKvr5ly5Z1NJPEx8fHx8fdPXfgdlgaMVhW1K6eO6dfGFWFZpYoREhk7h0cHCz/\nLS369PRViuJfLrXq+VsqVbEN89uzpJL4TtXb304tJP7RwsmvR//+TYL8vTzLpEdHhYaFPb91\n9k5YuiIAjsu2jajfrHXqALVd80zJjjoQPHQ78S823jU7NKvr6+Mpy02J/RJ548q9zBIZMUBB\nyu32NfvFx5520HLygPWKQ1oFuCz/f3Vanv2cQ/yjQCCu/nOXnh2bVfQp62hRmhAf//bh1eOn\nriUXlSrCSCXJf7Sv4Rcb182D1pqptCimX6PR6SVf9a1Htab9+/asH1jB3dk8NjIiLPT9paMH\n3ySTJCH20sTFoQNnV3Vi+lE6oakzeVWVfNPeKNoOxuFn0u836RO+s3fvpVdU/igU2zfp3LtF\n/cCy3u6lWUmfP7w+ffhEZPrXZfHirMcdm6r6VtEIih5BbOm/pJrTpDdfAxdlXtmUkD9e01qn\nCsd+v0l8HLu8EZ1PYBEj6pP8xBPNfzuoIqLOgS0Gd25cvnx5Xx/X/OS46OjoxxcPXHiRSAzz\nYlPf7VMzRlfQvQSW/mpL7TlbJTIcwzChyKb9gJH9+navXbm8u4PoS1REWOjzHcuX3P2cS/q6\ni+NWfRgwzd9BY4Lc6HlEOoGDxGnCutTxZxrC2YCT9TJEqnXpg04t8KRPrLdoDLZvquIxNmR6\nCf7SjEbDito9myhXZdtu9jbXZy6HaL6AqHg56CYQkftlf4OBexVVJrb2bN+rb/O6lZydHIoy\nEr98Dj1/7Ng7clGUFn4Y+VPzuikvqlqTVuf4M8BArWm5aaQmpzx5orvQYeU6oK3jiCuZRRiG\n5Sfvm3Bp8cb2ZTWGzI0++L+HSfLfQrHD0uqqNXJhXP9kiRTDMJG5+5GtnVHmWjNFmSGHUwrk\nv4Ui61l+ZSgCiy3KTpumvAPFxq0vk1fJtiaSKquFgwXxsSDtVLFMKTNWLj3saQ/hynatjv3x\nVPEYfyYKW1Cbs8QxDHMLHoNh1xWP6e/+fJI7rIEd1eUsGIY9XPQP8dGp2hSaWVJH73UGzpaD\nKDBdueKAq0kFit9WLt0xDMv6+HDzhg0HT116H5NJDCkQiCvXa96+ffshY8fV9WJWKSLLiqM9\nbDYl5GEYhstKZt1OPNeRgWcFAAB+dIy1OwAwFN6cpF8YTPKYJxTbj1x6VP04iKw0e/v0nopt\nZUIRqbcz+kn6YzsHK34LhBZNuw1e+M/2a/cev4/4lJJRQIxYnHW/giVp/mxRptaq/x6obyOU\nSfNPrf1d5dS4UOx4Il6fg+N6s6yRh+Lt3i3X04zF85P08denq2TP6+dDGkNeHuRPKn8zp1mb\nTmvxbiR7d/1wC/LCh533BG150FuEMiJHECMODNe6z5pmGzz2C2lVVyC06Dtzp6Zb9KT39s9R\nKXzXOvP0ey8xHUsz5VqhlWu9f889kZBfXpIXf2TZ/xzV/FU2nH1X27ejqzgcQRXcnfeTyqe5\n1+sbEqrBkWlpYczyMW1ULkF0DBin7WpSlQx0aPJV35pZV1q0X0PpyUqzt0xujZHxbX+WojRo\norfA86Qqcd5ob9RtB91n6i0D9CnKvKVyTksgEPw8fNGHbNV96DJp/tnVWr3gajuWhEgaYy71\nIAar/ttjnV8qyXtlSVjcsXLupjMKNXqcaTaiPtlcnzR0tHSsu+3sE01efmTPzm4iXmSIYZhH\no/0a01T5OgVlKve4qEkby6R5R5cPUjmm6dfnqrY8o9PzSHUC0sT5IHXopiFM4WzAyW4Zota6\n9EGhFnB+9Ymy9mQn2/M+0LrxfZg7SVSWfFSNZaz5Ao6yeBHJAxLUlmUUNBuxJLZI7WpkWcm9\n/Qv8bFQ3l5fvtlU9bT4MMHDEmpazRmpaypNPugshLxcFK94utvDdfvOLepjsyCstCPcs+Hba\npxIgP+m44oxv/bmPUOdZI+HbmyhyaO/zJ7oXpb+bRaw+c9vaKgHS3g8mBnCqspN+4vlJu4hx\n7bwncZm4nOnkPTE+HZdSOybPeLvLnty4ZjxVdbSgH4zWGdBNE7jBuHJFBwNP0hM1ZMU+h9dM\n6mKm62SOUGzfc+KyqPwSRi96OK6qIgW3ujsYxQUA4AcHjPQmCz+M9DEho4lhBCKrvy7HUqT5\nducITBNGN9LbfXMlV6nrtPsfqS7XIdq8MQyz9en8iNLzcMa7o0HkOwhd6yyj+SGGk/xwJmGQ\n4Xg1g+4qZFHGpWAyPac/YytXBhrpEx/tLmuh6gVkzmvVO5NwHMdlJVXIV7hNuRhDnXhR5m1i\n4gKB4LP62oo8pL4ixK6FODNsJXGILxAIxx8Io3h78v3VNuQrEneq3dnG1EivwDFwyEfto9is\niNNVyQtSQpGtZsWFsuJwtqugMO2syk2E3q3+zKV0//Vo/QCVouuyL4pOBuSY2VQ7EUk1Ldk5\nyI8Y3tKxDUVgmugp8LypSpw32htt20H5mXorPfpsaEKafgsEgl82P6UInw4g+FMAACAASURB\nVPpsi4smt6WaVzyRSWNpUTRxecjKqZPOL43Y3ZyYk3pLqK4QpoMe5lI53OuT0sJPxOISmjmd\nptz+knSftGwktvDNk2pQsBq/zr5C74gCqrWVM2OrEsPbuA3SGAypnkeqE5AmbnSpQzoNYQaH\nA052yxCt1qUNIrWA86xPfPZnEDGK/8DrFDmRU0DeNm3l3E39O401X8CRFS86eUCCFiN9uwVU\nNxoUptz9yVn1ZvSlEaoWHT4MMFBrWs4aqRxTUZ680l3okEqSieekBQJR+wmr772IyC+V4Xhp\nbPiL/UtHE/c3CMWO1zNVBWn1N0/45ra1Eopp3OyIgO3VXRSZDBh1H9VrZJKx/qQz+pWHq/Yj\nHw41Iwao2Osm/eRLC6OIcdUttUgTl5Mbc0ple0qNfvPjtAyQoi6uUxl9BQz8l36WqKG/zoB0\nmsAFxpYrOhhipJfkPiPGFTBxnGlbtsWFDwzelfJyoCKu2KqicfQRAACmCRjpTRa12WCvX3+b\nphf/PkzW+AYaE37ZEA/S1v6W/zzXmfETv1TG1DC6kV5OrfE7qPdp5nzZSAwvtvS9qGnBQoW0\nlxuIgzaBQLA1LpfmtxiCTJrfnXDvYPVJtzh4KR30NtLnxjxfNa2vpdqgyilwhsbw+cn7icEc\nKkyn85aQbuWJsf5L1byFXD8Rwtm2EC8j3K6EYVj1iRd1fuDViSTfdzWnqy4o6Gekt7Bv9DpX\nx61LmaEH7MhLfpWHX1MPhrTicLarIKQ/aSnHyqV9qkT3aPz4cJImtHLqoDGORjGbfSeROnFJ\n3gvi0qpQXEZnfnSin8Dzpyr5o72Rth2kn6m30qNJQepxlVMFDWZrPdas4POZ8eq50rjiiVQa\nN9cmqeLtiTr6tck+doQCFxluI9TbXMq9PsmIHEfMgE873fcH93Ylncbbm6xBqtW/TiiyPRyr\no8GW5IdaEQYVZtZVNAZDqueR6gSkiRtb6tBOQxjB/YCTlTJErXXpg0gt8K1PLEj9jxjY3K6e\nzg706fSaxCiN1mgoZ2PNF9AVLyJ5QIUmI713q7U64+XFnXclW23dG25RD2bsAQZaTct9IzUJ\n5ck33YWUtBeb7NXcDIjM7d3UrjIUCATjD0eqRE9/t0wRoOse1f9yhawaYXdjp5vxiF6z+3+1\nSAUitDyhNnJ4+VcdYpi6i14xegVx+CcUWXOZuILkh+tURMLcvuIv0+Zv23f0zpM3Xz6G3gg5\nuemfJQNbkjbaYhjm1WJmPns7tOivMyCdJnCA0eWKDoYY6bO/LMQMQGzhczSa7gamwowLxLhH\nUpD7IwEA4LsBjPQmi3a/akz5aYvmffQ6J/w5MaS7f6xcOlHvFpRTkv/GR+0YNB+M9LbevbN1\n5f9c9wrEKM3X0V2QujSS5GCw6oSHNCMawsfD3RVvFJm7vc7TsSbLGSpLxq3GTabeRzL517FD\nB/aqH+ijMhn++mlmroc+aR4zpb3rRxL1rVRHRhSE72hMjLVDy5RYPxHCWbUQF2XdIpaJmXWV\nT4VazxwrKM55bE6wSdh6jmX6XlzTuv+I8xrc06lze0ZdYiwz6wD1qRTSisNZrQJZaZbKXu8/\n7ulY+pFTUhCm4pxzyScNMw11MfP4aSOd9OeVI13Gqe6Rkin6CTx/qpI/2htp20H6mXorPZo8\nnkqyB1g5t8+kt144l7x+jWlZ8UQqjXHX+xCDqRsziBSmnyV6WXesvJBOTqjRz1xqFH0Se7Ut\nMbVGm0N1RrnQ2IsYZYqat2dc09f59Q+hk59pZZX2DKHYUT0Aaj2PVCcgTdy4Uod6GsIIjgec\nbJUhaq1LH0RqgYd94ihPW2KURZ+oPd7L2jkqD1sLhJbPNO2wMdZ8AV3xIpIHVKgty2g87KuR\nZ0ubkiKKbCPVvL8Yd4CBWtNy3EhNRXnyUHch5eOZxRod/xARCC1Gr7+tFlU63s9BHsDarXuh\nkYychelniVndRWNHBXNKj81qpVIm1cZr2G51bzhJBhpt0q0/iZQnj3hVPBMgTZxI4qP9jT1J\n24N0iIdA1GHi+nRWd5rQXGdAPU1ADC/kig6GGOljr7VTlxmhyLbtgF/3nrsb+Sk2p7CkIDv9\nc+Tbk7vXjuhaT6C27Gzt3o7OwAnHcRyXEm9CaRdCa9oFAACAg5HehOGBkf7B2EBigKb0FqRw\nHL/Us6JKHvhgpO93PU5HurJi4ihKbOWfWkJ3bFGc81BM6Olt3IfQjKg3stLcFmWUyzrVJvLl\nGD2uxfmqfggEZlNOftL2ouyP+xcQOKn9PC6RD0dIrpzor5nqFiEcx1m1EIfvaEIMEDDqDp0M\n4Dj+p49y6UEotleZzuhhpLd27UdzSiQtjvMgx53zWXWEjbTicFarIDNyKjGAlUsPOlmVc4t8\nOWi1SRqu0FMXs9nvqTy6K7jYlLRYicJIT0fg+VKVfNLeCNsO4s/UW+nRZKAb6Rhcx2NadbsK\nmRHzVDKmccUTqTSWFscSb/K2culOkeaL+bWJaXanZzSlRj9zqVH0ScK9DsTUqk1k5/ZQ9a/b\nTukeWcHxGsoVc41GetR6Hml/ijRx40od6mkIIzgecLJVhqi1Ln2QqAVe9onvNzQiRqk8jGqC\nlvNlNTGwW13NXnyNM19AWbyIuglUqC3LeLc8TDdqSXpFsuli4OMklTDGHWCg1bScN1LTUJ68\n1F2oyQo7M6BpBUwLjoGtt93QcIlM7KVRijCTbidwn205SY+UZ2MEArMctnc8FCQ/HtW8nEqZ\n2Ffom6TpuPYN8g6PZoc+MHpXHfKlCW/ItyMhTVyF0sIvc3qoqhGNiC0rbrzMLCd0oLnOgHqa\ngA7+yBUdDDHSP/2D5JQIwzAH/3YnXmvtDmIfHW/hpbpHxH/AGZqv+42w/7tC9xv08wkAwA8O\nGOlNFh4Y6ccQjgIIBKLHOcU0854RPlMlD0Y30ovMXJN1uSTKjVtDjOLT+iTN/MiZ4k1wPSe0\npLnbWm+i9nYmft0r3hyjx9kz0ostfFacZ//qpld/k06P0VwzpSNCcli0EG8hXH6GYdjKGLpe\nmN4uG9ebwBfyLV96GOkbrn5L89U4jp/s6EuMy9RZljZoVhzOahU8nUEa8dddzOBbcmJIKsXO\n5w+dGRBbVqC5g1dlHsW6kZ6+wOsB61XJK+2Nru2g/kykMlCS/564aV1k5hqj5fZBTZQ2dbAg\nlaph5iIi9KVxRwN3Ysg92kN2dlaOUkTmbnFsXJ+ph7nUWPok88MEYmpmNtVuUl6zShOVrzO3\nrUMzInHRR6ORHrWeR9qfIk3cuFKHehrCAfoNONkqQ15pXRRqgZ99YnH2PaIJzcK+EUUcleX7\nMY/1vKIOxXwBafEi6iZQobYsM+l1Kv3Ylwf4E+NWHnpXPYwRBxhINS3HjdRUlCc/dRc3vLly\n5M8x/WoF+rs4WJtbO5TzD+w4cPy2YzeLNY08ZaW57b6t+zkFTuU8s0qIvbm5XX0WU5ZJ806s\nnVrOUtUvhaVTw5tpmrXilbY+xJBtLmrY3EBBK8I5HwzDHpKbPNLEyZRe2zGnij3JsktBgz5/\nPEti2a84zXUG1NMEFPBNruhgiJH+eF1SH+pYdbBOpS3Jfd+LcHcMhmFCke0tevOFYzWV+7/L\nVFxNP58AAPzgqN79AwA0waW5+1LyFY+Wju0b2NEdQjn4TbNQu1bcuFi7DXYz09EcUh6eIT5W\nnVGf0Su61HVW/MZlRafSCxlFZwQuzR4+6arisfKI/4JsVO/0MmkEQrNmA6ffigz9o5O/7tBM\nKC0I/X1NqB4R6YgQ62z/kqP4LRQ7TiprRxGYSPUZm44R8LUwdNvEpCF+ugN9o8nfpAM9MSf0\nKXAV9K44A3l9Lp742HGQ1hMA6tiVHU+8irIg+YBMVxT7cr+x5obCMNAJPIqq5LP2ZrHtcPyZ\n7MpAfvJuHMcVj3Y+U30Y6CXR7IZubOWECCNp7LCStLNw7YZwjcFyY9eeJ5StZ7MN3ubGGY0b\nS5/Yef9OdKFckv++c1CHrSFv2H2LfYWJbCXFsZ5H2p8avbNmS+q+g2mI3p0dW2XIK62LQi3w\ns080t288+5tzZgzDinMeriAM5kngkt+PfVZGtK21pp6qo2yaoJgvIC1ebroJRAgEZn8GONEP\nX3dOc+Jjyt0H6mGMNcBArWk5bqSmojz5qbu4oUabfku3HHkZGpWalV+cnxUdFXrh4MbRvZub\naxKl8O29LmcUYhgmEAgXnJ3LdV4JJFxNUvy2cGhCEZIRT0+ua+bv2WvK6i9FpcS/2/q2uRp+\nq7mzpeZoOPmRYd2qDFOLVZ6RJv6N3OhL/Rv5th71d0SOhGbKT46tbOhbccLKM7jusCzD8TTB\ncPgoV4iJ86oW/I0mzQfef7pbp9I2s6269+EeJ4JulEnzxk59TOd1nvWUY4CizIv65RkAgB8Q\nvozGAMO5kKHnBvP7YwL0eF1h+tlCKWFyUn4w/bhCsRPxsDsfcKjSVmeYuJNxxMdmVRy0hdT8\nimqk8M/z6I449SD61ND72cXy3wKBeNWSRtThTQJLO6dy/gE/tek1b/WORxEptw4ub+xrqzsa\nTXDJl/AX+1dND67c4IZeFjg6IsQu0qLPz3OVUmTt2k/j9JUDROZuvV0YtGj7iqOIjwWJl/R/\nt8EVZyBXUpUvFQhEozwY3J2GCcwHE5wlSiWJT3N1qIUy1WtQB+AM9gUeZVXyVnuz23Y4/kx2\nZSAr9CXx0btzc0bR/X+h5Q6RLnpJo0ejf4jrLJHblmsM9mzOZuLjwLWt9c6mgRhLn4gsK25s\n6U38S37CrbGdgioEd/hz2Zb77+O0RWREmWqsiQSXeh5pf2rMzvobbEmdCU9DDO7s2CpDXmld\nFGqBt33isGXBxMe9f2u2PWdGzH9BeKn/8I1Wem0uQTRfQFq83HQTiLBy7uLJxDRuX47kNqAo\n+6Z6GGMNMFBrWo4bqakoT97qLl4hLY7uNfVrY/FutXGiv+ZSKkh4d2DDov7dOjSqW7NytaBm\nrTuM+P2vM7dfs2sifPg5V/HbwqGh4QkmPD05sGn5Br2m3CWkLCeo79z3kRebuGqxpGKY2IZ0\nPLokq4TRqzNLSWVjKyJ1GEgTl5P+Ymedal3/e5Sg+ItAIG7QZdSGPSdeRX1Jz84vlRSmJcU9\nu3n2nwUTa3oQx9hJm6Z3rzv0n1JuDfUcLwcZAm/lCjWTz15/+I27Nw8GWqu6ENCIjXfPwwNJ\nR8I+H59DJ6JzQ+VOqeLsOwUy7reOAABgktDSTQCgjiT3IfHRuZ7qZTbUtHO0OJlWwGqODMJO\ny7CeSPybLOLjLF/7WQa88VNSIeZXxoAEKMDn/Hpd8eAStKyjk9bBFh/4NyFvgieTsazBFGQk\nREZGRUVFRkVFyX+Evo/IKpYakiYdEWKXYnIbtHIx2gTbyrkno/U+C4cW7uaiZMnXApfkPqMZ\nEUXFGcgzwjxKbOXP1CdBC3erNfHKOdLzvJKGlCdUbP3Y25hiGAYKPMdVyVvtzW7b4fgz2VV6\nmS8yiY9eHby0hdSIS4NaGHZbv1ezJY1CM4+V9VyHP/x6mKYg9eih1D0DXckr1LKiKSeiFU8W\n9o0WBzI4b8cuRtQng//bt75c+7fkhePox5eWP760fOY4G3f/Jk2b/ty0adOfmwYH+ZvptYxj\nU5G1cQWXeh5pf8pZZ00BW1JnKtMQFJ0dW2VoRK2rEdbVAm/7RJ+O62xFgXnSrwvWn4/Nkm2/\no27UvT/jiOK3QCBYQL5rnD6I5guoi5eDbgIRFo7MStjMplZ5S3H0txONJXmv1cMYa4CBWtNy\n3EhNRXnyVnfxivtzuocVlGAYJhTZbD0yXD2AtPjL2hm/L/j3tELZYhgWFfrmzvVLu9fM96jb\nfeU/Gwb/XJaVzEQRTiRbuBo0SSzOfL9kyvi/99+V4aqGPWvP+gvX/TutTwPqFMwcSB40JZnM\njL5ZZGOqHdmYijRxDMOK0q41bTruQ4HSAOxYtcu+Y7s7V3UmBnN293Z2967bvMuUuUv/Wzx+\nxML9iu1EL/dPbeJc8dGa7owyZggcLwfpB8/lirc0XbUE29tb8Vicffd6VnGrMhYUUTAMs/ZR\nbrzAZZLoImlVetsCAAD4wQFNAeiJJPsL8dHa11pbSI142vLL+7qlh24zdkxBqc4w9ClKUr2+\nji3S384+lKx0TDdwx1BELzItJJnRl8+fP3/+/MXr92LT83VHYAgdEWKX0sIo4qOVp9HMLWKr\nykyj+FmKFev+0uIYipCoK85AEiTKpXaRBbOlKwzDbMpaYy+UjzHFOpSMuRP7czb90EPgjViV\nvNXe7LYdjj+TXaVXnFJMfLQvy2xQIbJkdqYTkTS2W9UWa7xP8bh6U8TA+bWIAdLfz3yTr1zU\nqDRijdh4axRG1CeWTi3uPDnYpfXwewkaCj8/+cPl4x8uH9+NYZili3+Xnr379OnTuWUdKyb+\nv8zsWRtncqnnkfanSBOnCVtSx+dpCOrOjq0y5Fjr6oR1tcDbPlFsVXlFLZfxz1Pkj8XZd9fG\n5v5OvvoUl+ZMvqI8TWtfbmofJm4wiCCaL6AuXg66CUSY23nrDkTGj2Ckl5WkaQxjlAEGak3L\ncSM1FeXJW93FHyQ593qseyv/XXnE8Y5qDrrzY6/3+rnH5WjV48IKkp6fHtri4u1/zm+fzIJH\nq0TC3jsLFx0GPK3gpec3/vnrjHVf1ARAbFV25KxFi2YMdaVxMYFNBdIuVabG1AyCMVUgEKlc\nW440cQzDlrQfGEaw0DtVG/buxS4K3yQCoU3/uXvrV3UP7LOq5Jv5+cm63mtHp06p6sgob3rD\n8XIQY0xBrniLlUuvYHuLRzlKnX84uUCnkV5FCSRKwEgPAAAteDCPAUwTFf82Fq7MBqNW7vya\nDIisdW94zC5l0y1WaR7bw69v7B2+Q/Hb0rHtqjp63l/43SCTJG+fM9TT3a/r0Inbjl6mXjAV\niuxqVNdn+zMdEWIXvJS0i9/S02i+W8WWPkyjlLNUFpdMmqfRKRk3FWcQeGkRwXuVyNydaQJW\nXqRay+LYO5sBMBJ4o1clb7U3u22H489kV+lJyUdLPayYJS4yp7smjlQa3eqv9jBX5jx800qV\nANd/O058nDOrJv3EvzPKBPa++eHtuumDiC581SlK+3Bs27K+beo6uvqNXrgrWcLtHYYY13oe\nUX/KQeIcw89piNE7O0ZwpnXpw65a4HOf2G01ySy0Y/FblQCpL6Z9IhzN/HnNBExfEM0XOChe\nk+kmyFi4MVYvxJEDhmkuWaMMMFBrWt6Oz6lBrTz5rLt4wvHhQzNKZBiGiS18j6td61CS96pd\nUGcKC70cXFa8Y0qboTvfG56fBILasXDWx0hfnPFyTCu/LhNXq1hShWKHPr+tDk36tGXOcDqW\nVAzD7CqRtnxlv8umnw1p8ZccgviJLHwtyHt9kCae82nFouepikehmdPJe1vp3B7i12vF6VFV\nFI84Lv273zb6GTMIfi8HmYpc8Zlfy5K2Nn4O1/3hZnakKMRtHAAAABTAdh5AT4QWpL68OLVY\nW0iNML3Dhg9Yk33y1GkYbMiVflXQHOIpyrgw/aVyA37g5GVGPKXHBwqSrjUP6vo0herWT1uX\nsgEBAYGBgbUbt+7ds4MkpI1/fzYdeKJCQJoBluZztDChjkzK+FLVbML0QyAwU5dS06g4gdhS\nKFBMzKSSZKYJSDJIe5D1u22U5/ChKnmrvdltO7z9TDqonHtOLmI2m5WVaj55pgJqaRSauaxu\n6D7o7tdrFAtSDh1P26G4BVxWkjz5bqIisF3ZCf1cjXcxNg8QW1WYtPzAuDnLLp8+dfLkybMh\nd9O1r2IUZ3zasWDk4e379l893SOQQ9Mmt3oeRX/KTeIcw8NpCB86O0Zwo3WZwqJa4HOf6PHT\nOk/z/xK/fdrn/+biW64Tc3fl9/OK3yJzj80dffV/GZr5AjfFaxrdhEo2Uhn7W4ojHJ0UiBw0\nGkyMMsBArWn53EgpQK08TbRYOCMvbv/w09Hy3w0Xnq6mdkR1YfO29zOVzdCr0aBFk/vXr1/f\n37H01YsXD68enLPyaOG3cd3BMcGdOiX382DmDkEFUv0wt7Em3NrQssu0CPLtHgKhWcsh05cu\nmVXfi1neHINIPvwzX8XSjyvJuU98NLdvxGXiL2eRLOsV+x5ppuvIsoK2a49a7Awq/latGe9n\nv87/PcgGvfDzeDnIhOSKz3iUt8VC0xWP9FwqkrpOuJIeAACagJEe0BNzR9JOuoI4Zjc7pmUy\nm+MxIluKZAe9J2mTO7bx6u1gBNcFGci7VbOlhHuGZk8IMGJmjI4k+1nHml2fpqoumLpVqN4w\nODi4YcP6dYICAwPLupC2On7kMIeGIDJ3Iz4WxHJxu6pGpEWfmUb5SDgeJDRzUfmvCVWcp7no\n87dvkRZ/oQ6sTv4X0jE7N3obmU0InlQlb7U3u22Ht59JB5tyJB962XEFWDVnbYHVKaVRktxI\nY+tV7bGGuxSPy7ZH9p4ZJP+deGdSEsG6UH/xZIZpf5+Y2ZXtPGRi5yETZZK02xfOXbxy4/bt\n28/C49QvTcQwLD/+dr96jS9FP2vJ4f4GLvU86/0pZ4lzDN+mITzp7BjBgdbVG1bUAp/7RKGZ\ny/pmXn2ufl3jLsq6sSE+b5L3V/GQSRJ+e5yiCFy23WZvGkcJtYFovsBl8fK/myAiyYnTHYjM\nB4KmpbiXhPsBBmpNy+dGSgFq5WmixcIZa7tPkzs2t7BvdHpqkMp/kx9MW/ztNLZAIBqx8sSW\n37spthg2auXdqFWXof369G035GZqIYZhMmnelN7b+t2bYkiWPC2Ekd/6/+J0ZgOMqNML6vVZ\nlEN2n+BWp9fOPVs619Bn3GXp3BzDDikeizIfYthAmnGLcx6QknJsxWXi/90lWbi7za1HM2UM\nw8TWNf70sV/45espZxyXrovO2cWkYeoNP5eDTEuu+Iw1+UITlb1rGinJyyE+elmYnrcSAACM\nwvdmDwA4w9y+LvEx43k8o+hPcpndYcOIj4VIjhSX8yOtrL3L558zALx02qZwxZONx8he+t5f\n+H3wb6eutwkLpgKhWZPeE88/i0v+9Pbsoe2zJo9q07S+yoKpCWFmW4f4WJQaZqycSPKeMgov\nlcQRG6k5+UMwk6q4uoRFk9LCD/EMnVk9TyYt6Ne1/d6WYHhSlbzV3uy2Hd5+Jh0c6zgRHxMv\nJWoLqZHcqDc6w3Ajja51VnoTpuLh69Yqfh/7/Ybit1Bk+2/vCga+6ztDaO7SoscvKzbvfxwa\nk5f84dKx3TPG9Av0tFEJVlIQOqjbVi4zxqWeZ70/5SxxjuHbNIQnnR0jONC6hmOIWuB5n9hi\ndU/i47Zl7xS/E+5MTitR6pkxa1sY8iJE8wWjFC9vuwkiRRkXGIWX5D6KJ15obd9YW0juBxio\nNS3PG6k2UCtPEy0Wbkh9Pm/u8697mLrvPOgiVl3QPjZ2r+J37ekXd0ztpu4EyKV2r7PP99uI\nvsZNfjDtSa5BhexF2FfByEifcH1+jV5/kTyBm7mOX3ki9tlx/SypGIZZufS0IJzGLkw/VUL7\nIG/qPZJwerapxmXij3NIGqMTQ/cGTQIdiI+fwxj4YzcEHi4HmZxc8ZmCeNLuNBWbvUYkaSRJ\n9jYHIz0AALQAIz2gJ1ZOnYiPOZ8PaQupAVxyKBXVqV9p0cdENJe+eLb1JD7ejKW6adIoZEbM\nu52tnBVUn/GbETNjdIoyzk57kKR4FIisloV8uHtsfae67F+iaRQs7ILtCfPS/KRdFIGRUpRx\nMaaYQaPLi99YSjj7YkHeS2taFdfWWXnbIo5LdyYxUgvS7YnK8EKRzU/235WRnj9VyVvtzW7b\n4e1n0sGuPOlb4s4ycwH9aVcUdQDOpFEgdlrTWFkR+cl7zqYXYRhWkv9m1julrzzXuqsD1fxz\nAgqsXCu26z182ZYjoQk5ry5sblmJtO6W/Oj3Ryj3eqrApZ5nVydwmTjH8Goawp/OjhGotS7r\nMFULPO8TnastrU7wxPvx4HzF75NTbyl+W7l0n1mR9KVMQTRfMHrx8qqbIFKUcTGaiabN/riJ\n+OgQ0FZbSO4HGKg1rdGlSD9QK08TLRYuwEv/6PF1b4qt18D9vVQ3o8hKUmaHZch/iy18LizS\nOm6x9em1v8vXa0RwXDr/VoIh+apkpWxxxalZNGMVplxt2nlJMcEXtrXHzxciPm6c1tOQCw6E\nYucezsqDOtLi+IMpdMc8r7aQhLPKoHJcJp5FPvbN1LSpcrm7JJ2jLoBvy0GmKFcokX0k8Dma\n8X0ECZ/yiI81/Oy0hVRAtOsLBGblLMFIDwAALcBID+iJ2LraT/bKK4KKMs6/LaB7fj0/aXdG\nCRKP9BiG5cSsR5SyV0fSXvIna8O1hTQW1yYdID4uGu5vrJzwgdhzq3DC4nKVX05Pb0frQkcU\nN5UiQWjV31W5kbOkIDQkk+4liFlR030I9AuJMSQjOC5d84HBVuWorSHER882wcRH06q4Wp1I\nS/AXjjEoyfyk3bGESyitXPrYinhz3y8b8Kcqeau92W07vP1MOli7DrQkbM/PjVsdL2EwTth6\nQ8fiGpfS2HwlaVH7711RGIZFn5hSSFgu6bK+G9Nkf1SEQR3HXn79qHEZ4hIYvjqS7hqo4XCp\n59nVCVwmzjG8mobwp7NjBGqtixJaaoHvfaLQam035Tp1UeaVzQn5GIaVFoTNfJ+h+Hut2X8b\n/iIU8wU+Fa/xuwkiOC7960Uq/fCPFt4lPvqPqkQRmOMBBmpNyycpYgBq5WmixcIB0WeG7Y3N\nlf+eeHqNmdp4qjDtpOL0cJlKf3tQeg5vuqC54veHw4y9lBNpVEFptyvOekwz1t+tBnwiXHXh\nWK3vg4ir7SroNgHqZGQTd+LjgQd0DZMbwzOJj9OqOamHQZe4ryVpd9Fbhj4kskJJPsbpnHhm\nBb4tB5moXCFDOKRONX8FlasmMZwCrIvLVfwWCATD3FWd96iT/ki5DUJhyQAAIABJREFUbc7C\nobGN8Lta4gMAAB1gpAf0Z3o9V8VvXFby2+lomhHfLf9Xj9epXKijjTcrr+iROB3sy8+yFimb\nTFzIXxLaHn4wWdGAdq1bfKPLoCOsZw+X5k69o3S2ZuXSvU0ZC4rw3z2xx2OJj91mNqQZMeoM\n46sEjcWQ9qQpwfytkTQjfth5OY6AayV7A3NyfMo1ukFxyaTNEcQ/NB1HWo0yrYrzH92S+Phu\nxVL6cV8u+If46NX6F3byxBv4U5V81t4sth0+f6ZOhOYeE7yU7j2lkuRxtDcP5SduO6RrLz+X\n0ugStKI8YZkpbM2/GIZtnvNc8Rcz6ypr6rlpiPkDUFoY3pRAmy5z6cQSWwVsnU+6djQ5lCMn\nlhjnep5FncBx4hzD8TSEAv50doxArXXpg0gt8L9PrL9kNPFx06r3GIbFnJ9SIP065xUIrTaM\n0npDOX1QzBfQFa8pdhMqXJh0hmZImSRp7EWSApnYxosiPPcDDKSalv+NVCOolaeJFgtq8NLM\nYcNPyH+71Jq3pL4GOZcWKyvCvoqO3XJWbg0Uv/PIh2WZ4tnWQ/G7OOcuRUgFqc9mLSE4wLBy\nbv746cEglpzq1ZjRhPj4cjYtHxh5cRtvZym9clq79m9kpyE/6BLv6GRJfNz3PI1Oygq2RJE2\nZtWpapATGvrwajnIdOUKHX/WV/ZispKMaXcZXFCSn7jnOcErj5VLrxo0HNUkPVdutbR06kj/\ndQAA/OjggIkiU90CfyGjkN03FGXdIKZfb9lrlQBJD0cQA9h49i+S6U5WKkmur9Yr38gqUg/5\n+TRpuNP3abLuxEvSK1uZEWOVqfiPfl+nkRXVnImxRtyIpxMLx/GEO/8jRqzz10uaEemT/m4y\n8RX+A26y/gq28CS7rvo3IQ/FW87VIc3c9ibn04kllST5WpAGXjuSNEfUT4RwHM+IJDWcgeHp\n2kLqfEVmxGxiAEvH1lmlNBohjvd2Ue4sFgjNwgpKmH6aSiWKzJzvZhXTefXHQ/1JEc3dEyVS\nYgDUFYezWgWyknQf8nsXPEuhk+GSgogq1iRl9cd7DdnQW8xudCc5AKSjnKnRIye8qkr+aG90\nbQdH/Jl6SyNN3qyoT0zf2q1rNj2FtqOT6jJcw7XvVMJwII1ETrb1IcY6GXVMIFBuoq806Cqd\nRBhBp3b4oE9kJekiQlEIhFYpamKskZhLbYh5aLI7QiWA3l8XEqz0KysUO2rMM1I9j1QnIE3c\nuFKHehpCH94OOHWWIVKtSx90aoH3faK0taPSJmHl1AnH8bl+ZRR/cau7kU4qxpovICpedPKA\nCrVlGYHQ4kBsLp2o9+eS9vTYuA/RGYXjAQZqTcvPRmp05cnPYjEur1f/LM+wQCDa+SVHY5i8\n+A2K73Kr9R91glkff1cELtf5miF5S3rcQ5GUQCDOoSEMywJIh4lnPta91EkfqSTFgzD8EwhE\nVzN1j3Mu9vMjCc9CzXNedIk/n12LGMal5l86k1WQ/ZG0K0gosk4optVxUEBznQH1NIERpitX\nOiHO1zAMmx2dTTNi3I3exIj2vuPov/Ro1/LEuDWmPaETa1pZpd+C8l2v038dAAA/OHCSHtAf\nt/prahDu0stPPNJ7Z5jOWI8XdX5K74o4C1fSVsqni3V7jro7t31kIULXkQPXkfbBHerVL7JQ\nt883XJozvo/SEb1AIPj1fyycilDh2fxzxMcWM6qz/grTwqY8yRPRuzxagnF2StuYYrp+/IxO\nmUoLWhJcOxZlXuu0/KnOWMkPZhxPU27hL+M3L8DK0JsLpSXp/Xtt0hlMkvOi46gTxL+UbfOv\niic606o4gdhpYyfSYtnKzmOypbrPO5wY0zmiQPlpFg5NFwdy6fiLC3hVlbzV3iy2HYzHn0mH\nyv9bbkFwB1eQcrbdX7d0xkp9unR0SKzOYBxLY9MVJGezoweMwQnesCcspXvQ9vtDIHYi3raI\nywon3ablNPvDEZInUu8gR5Zzph2O9Ty7OoHLxDkG9TSEPrzq7BiBVOvSB51a4H2fKFwyUumg\nojDjwsbIS0s+Kc9/99jUW1MsxiCaLyAqXlPsJlTAZcWTOswr0uUEMPfz8Y5LSRXRaMkcnYlz\nPMBArWl530g1g1p5mmixoKO0MLz77Afy376dd4/w1ey729Klu9U3b+GZkfPzKIdqoRuUDjjL\ndi9rSPYc/JXWXBwvPZpWSB2+tODd/EilA3Ab9yFLGrDpAENo5rq5s3I7CI5Lx4w9Th2lKOPa\n8FPRikeB0GLFpECOEw+YOIX4mPZm3syb9A49ywrndiL5XHEOWuZpztGolT/LQSYtV+jwbLq5\nEuEgX07M5oEHPtCJmPr0nyHnleMKgdBs9eyaNOLJjqYqNUDl0X4UQQEAAEgYe5cAoC88OEmP\n4/ir5SSPN0Kxwz/3kijSjAmZZ6HpRhaNG6uzPk1VSfxScgFF4nFXl1upXeHD7kl6XFbU0cWK\nGNHj58kxRaWUUUo2Da5CjOIStJjWu5hRWo+wXV0oso4tpsyVLooyrzQh02fmc7byys1J+rf/\nNCC+JeB/ug8WXFs1RChQFaGVWk5CsHWSvsfrVG0h6bwicjdpDi8QWs0995ni7ZK8d62cSTLc\n9YRqeD1O0stpNesMxatL8kN7VCT51RcIzA4kqp4bQ11xONtVUJByXEWtle/8VyHl1u17//RT\nyW3bbeF6Z0AjfDhJz6uq5I/2Rtd2cBztZ3Jw8mZvB9IBI4FAOHoH1Xb7nE8n/TXtMVI/lsSB\nNBKRSfM0ZgzDMGuX3nRSYIqpnKTHcfzIT6STENbuXdJLdBx2KUi+TDykIhAIH+aoHgdHd5Ie\nR6znkeoEpIkbXeqQTkPow9sBJ50yRKd1GYFILfC/T8xPPkBMxLGWcoHe3LZWgZSWtjXWfAFd\n8aKSB00z3G5jHlKnrBu1ZRk51YZtpch0fuL1eg6km+ks7IOTafgM4H6AgVbT8rKRGl958rJY\nkDQfelwZX/Wb+JW5SdllL6ui3J3Tep3WGpHkvihHuDniXLqhS6nVCHtZOt2Mow4ce7kzsQpo\nHs9lRH7SITOiSxKB8O8H2g9Vy4pn1nUlZqlsm91GSXxpI9Kt52ILn70vtM/u5clL89YNrkqM\nJRAIV7/PoI5FB/rrDEinCfQxdbmiRu+T9DiO35tUjRhXZO628ZEObwcZb/6raUvyB1Oxjw7n\nHHKKMi4TYx1MoeVeCwAAAMdxMNKbLPww0stKc3p72xKDicxcJ607X6I+k5FJTq4cW0b8dT+j\nUESKdUvTUFtaHK8IL8fWu+PtOI0GXdmt3XMUgS3dlWcFWDbS43jai1Vi8rKaQ+XOB25GaQyc\n/Pbq5I7+xMACoeWWyCya76JPbvw64lvsyk41MMH8lIMqAlah+w1WsopzZaTPSyCdFROK7Nbe\njNUWuCDpxfQ+9TBNBK96oTEKW0b6RptCtYWk9QpZ8dhA0kkRochuxKKDeZrW9TLDQzpXJt3O\nZe3aVT2k3kZ6DMMa9J8VmqlhUezd+Q313a1VAtecGKIeEnXF4axXAY7fmFGf/HLMp+mwGx81\nOOIrLfyy7H+tVZbmy1QZXaBlFscTo5p+OeFVVeK80d7o2g7qz+TASC/JfVrRkrSCKRAIW41e\n+jlXohZWemf3HOL6GtHdq/qKJwfSqMLZzuU0V/SqtwxKhDZGN5fSJ+kByRcrhmHezSc9/axl\nqUVWdP/UpjrkWypdav6tHhCpkR5HqeeR6gSkiRtd6pBOQ+jD2wEnnTJEp3UZgUgt4KbQJw5z\nJ3liUFDt1/s0UzDWfAFHVrzo5EF9husZrHVARRctRnoMwyq2GfcsUe2Mgazkzt55FdTstVNp\nuzTneICBWtPysJHyQXnysFiQNB8aFGVcthN9Faoak29SB465OFyRPaHIdtExTQ7/014Or67c\nEeVUdbrhmdxe3UWRYMAoHdr7dn9SZdmWr1LdAD4Vat69cXQA6QivyNzjn2saBidSScqsLqT8\nCMWOV3StLSNKvCD5lI2ItAIsFNmNWrI3lnzZioKwW0d713LByPh22kGdeZowWmdAN02gz3cg\nVxQYYqQvyX9H3EYjz8z41ac0Xv0jLU4+sHySqxlpAmVR5qd3+ZqFUIXUN0MUscSW5TV0lAAA\nAFoAI73Jwg8jPY7jWRFbLdX2Stv71ho1ffGOvYfOX7xwZN/OJTNG1/JVHsoRmbuvv7aPGP6J\nhskMjuP4nvY+KimLLDwHTV1y+NTFV+HRmWmJ4W+eH9m0uFsjZTC78j1v7lVu92bdSI/j+MUp\ntTE1KjVoO2X+qr0Hj164FHJk7/YVi+YOaVdL/ZRMs7/u0X8Rfd6vDya+xa/fLQMT/A6M9Dgu\nHVFO5SiYqE6HX3afufLsdWh8Smb8x/c3Qk5uWbvsf71+tiZMBswdSAN9oci295S/dh08fOAI\naVastwhlfphAjGjh0OTQrdcJqZkp8dGvnz3MJYwUab4iP+mcyiASwzArj8BBE+dt3bX/bMjF\nI3u2Lp47fXCXYDNyUxUIzRY+1LD1lamRXmzpTSoxsUOzHiMXr1i75+CRXVvWL/hzQqPKqnMn\nDMOs3Tulaj4Wg7biUFSBrDSnn4+q2z2B0LJe2/5L1m46fPzMxXMnd23ZMHlIJ0+1JTmRmetZ\njUeimWRAHT4Y6XlVlXL4oL1Rth20n8nNHZZRBwapZ15k5tiy9//kJbNz87p5f4yu7UsSLYdK\nA3fXVTr007TiiVwaVUh/9zumhkBgdjeb1o3gTDG6uZQJ0pHlSXWBYZhAIK7bbvCSlWt37Dl4\n5sKlM8cOblyzYuZvo2p4qhqMhWL7Y5r2a6I20qPT80h1AtLE+SB1SKchtOHpgJNmGSLTuszK\nEIVakMPzPvHdGg3+yQUCwbFUKgdyeuSE9fmCHDTFi0oeODDSz5zXgVx6Vj91+eXvFWv3HDy8\nY+OaOVNHBpW1xdTw67GF/gs5HmDg6DUt3xopT5Qn34rFWEb6He2+rvWZWVX6oMVwSEA6uiJp\nj1G9frNuPH6bVSzFcTw1OvTM9tnELTICgXjjBxY2YYdva6xI097nT+rAc3xV9ZshhGkxYJcW\nRXchb68RCM2a9J54/Ord8M8JGcmxr5/e27lkSpCXqgodsYfKGo068ZdbfxGoybPYyqtNj6EL\nV67duefAf4f2b/l37YzxQxtVc8fUsPXpFErPmKoTRusM6KYJ9PkO5IoCQ4z0OI5Hn1bd/Idh\nmIVj5a59hkyd9deW3QcP7N7+z4pFv/RsXdbOXCWYUGy/jbZvhkeEU/uutbcx/1AAAH5cwEhv\nsvDGSI/jePjR6Rp9mmlEKLZfeSuxMP088Y/aBlJFmTe9LTSfAdKImU2NW2mFH440U/wFhZEe\nlxauGaZhyqST+mO2GuSDXjsbAp2JL+pwVesJHpp8F0Z6PP3tavUFBWpc6w17kx5bzlKDMzrn\ngMPExPUWoYKUIxQZeJGnXL+g/4r4m2s9tJyWo6Dfes0usJga6d1qnTs+vQWjV1u5NL6ufSqC\ntOIQVUFh2sP25TRfj0eByMJr7Q0qh3i8MarpmRP+VOVXeKC9kbYdpJ/JjZEex/Fz8ztry6FG\nzO1qP8gsIk7dNa54opZGFWTSggBrM5VYTgFL0JQZL8yl9MkM2+XOvM/CMEwgMPvfVs3ZRm2k\nx5HpeaQ6AWniPJE6dNMQ+vBzwEm/DBFpXUagUAtf4XefWJR1S6RmkHCo8AeTFIwzX/gKmuJF\nJA8cGOlPpBVsHxLAKM++7WblaDrPp/WF3A4w5KDVtDxrpHxRnjwrFqMY6bM/blFoyFbraXU0\nBclXqqg1EIHQyt3RElOj07K7rOSzMP2C8l0iq/hiqu3UddWsgIagzZiK43h+4iVtt2Noo+Hv\np2l+MrrEr/3dXX3fCR2sPZrcSzfINxIRpusMiKYJ9Pk+5EobBhrpcRw/P7+THuUgMvdcevYj\n/bdM9lbKQKdz0UwzCQDAjwwY6U0WPhnpcRwPPzqTzpzf0rHW1lvxOI7nJ+0i/l2jAz05yffX\nqe/614i9X7vzkdk4jiM30uM4jksPTu9qTn+mKrId9tdRVK5upAUqWxn2JRu6E/P7MNLjOP5+\n3wSaCwoCgbjl8MXyKw9Dtw1TD8DWmimO4/29NByhkKOfhRjH8bTnu2s6a5h5akRo5vT7tjva\nktLDSI/j+OFpndUXGTXiGNDhXqoOfYWu4tBVgSTv/eCGXnTyLMfKvfbB1+nU5cAfo5reOeFJ\nVRIwsvZG3XbQfSZnRnocxy8tGazi7VAbduVbno7IwslTd20rnqilUYUQcjPEMKz3pRh2C0oB\nT8yl9Em8taocw/UdsZXP7CPvtSXIgZEeR6PnkeoEpInzR+rQTUPow8MBJ6MyRKR1GcG6WiDA\n6z5xVgUHlQx0OfWZfnRjzRcIIBlZoZAHboz0stLs5SOaYPRoOGCBRo+71HA5wFCAWNPyqJHy\nSXnyqFiMYqT/s/rXsyiWjq2yabeUtJf7ghwsqMtKIBB0m6V7ME+fAW7Ko8MTQrWP/WQlTHf1\nUUNhTMVxPP31sVblaVmOBULzvrP3MPLOjS7x8HP/BDI0OdfuO/sTZVHoAdN1BhTTBLp8R3Kl\nEcON9DiOhywdYS+mpa7l2Po0PhGaST/90qJoxVxAIDB7pXkxCgAAQDNgpDdZeGakx3E8P+HR\nhI5VtfbNAmFQx0nvs7/2Utlf5iv+JTL3pE455+PV/sHlKfpOgdCy+fAlSZKv+1U5MdLjOI6n\nvw0Z0UbHTnmB0Lxhl1EX3jPo2pmSG7eK+EaRmavhC+jfjZEex/HERwdaBWrw4KqsI4GgSouh\nZ16QHDleWzHGjZxPFo30WeEHK9trnnXobSHGcby0OGHznwPLUI47BQJxcPdxFyjHmvoZ6XEc\nj727t0VFKi9bYkuvCSuO0lwNR1RxchBVAY5Lbx9YWs9L8/WiCkQWHqMW7k6R6L55zIDVpYpi\nsZmllbWtnb2jo5MRjfQ4P6pSBSNqbw7aDqLP5NJIj+N4VviV4S38tWUbwzCB0Kzx4EWKoyo0\nVzyRSqMKGWHTiVFE5p5JNFq9fiA2l7KsT+QUpr2c2rupNY2lbbGle5eRC95lUB2O4cZIj+M4\n63oeqU5AmjivpA7dNIQ+fBtwMi1DRFqXEeyqBRV42yd+PNKWmJTI3IP6FKaBOWFrvqACipEV\n6/LAjZFe/udnB+dXptwPYV++8aaQMP3eyeUAgwhqTcuTRso35cmTYuHeSJ94T3mzw/DzzLah\nFKY9nti9nrrjdDk23g1WHHvDbm6fzqipSL/KCK3bm0ry31NXJVOojak4jkslSSvGdHCg1Plu\ngc1234vX46vRJV6cHbFx7mg/B92m+qotB+4KealH5nWi1zoDy9MEmnxncqUOK0Z6HMezwi4O\na1/XTNd+ZQunwOnrTtDfGCQn+ekIRQoOFWbql0MAAH5YBDiOG6K4AUCFlLD7hw4dOnPjSVxc\nXHxipo2rl6+vb9Xgtv8bM6ZpgNIle+qrAW61v7oPsnbtnZ9yTGfKnx+f3XP0wv0HD8I/J2Vm\nZQosHT29vDy9yjbp0HfokH4Bbso5cElOdGRsvvy3yNwzoJITq5+oSvrH5+fOnbtw6daHuMTk\nlJS0jAKbMo5OLi6VazRo0qRx+x796vpq3YAJcIXszbUjR85ee/Dw8YfYlMzMTIG1k5eXl3dZ\nv5/bd+nRo3ut8mXU4xSlvjl19k5oVJJzef/AwMCAqkHlXOkePdGJtCh+76rF+y8+iY6Ojk8r\ndPHw9PT09PLy+vfwoXJMrnhQpzQv/tr5c2fOnHseEZOclJycmmlu5+ji4uJbpVbz5s3bdOnT\nuLKj4fn3shAnSqTy3261ziW//ObrD5e8vHH2v6P/3XoWmZSUlJySZe3s5unpWS6gXvdevbp3\nae7K7OsQVhy6KsDw4rf3rp4/f/7ag1eJyckpycnZErGrm5u7m5tf0E+dO3fu2K6pm5VhrzA9\n+FiVRtHeXLUdJSbdSaVEPDp58uTZK/djEpKSkpJypeaenl7e3t7BbXsPHz64BuG6u7zPEV8K\nSuW/rT39KzhRHKDhqEfIivrLsbJyhdq3w8kvIT2YfP0PQXHGh5NHTt5/9vLV69cxSRm5ubm5\n+cWWtg4ODg7uvv516tSpF9y8Z682bgaqZdZhT88j1QncKxzjgm4aQhveDTiZgkbrMgOpWjDp\nPpFFEM0XUBQvInno42pzPK3AMzgk4WEH3aGpwN+/D1U8+AZUtRN9Xf3HZQUPzh3ee+DU209f\n4uLikzOLXTw9vby8q9Rr1q9f/85NqjI40EfGuAMM1JrWRBspauXJq2Jhr/loB5f09XI6lpSP\nYZh9+VGZn7fr0V7inlzYc/TUhav3o+MT0vJkHl5elWo17t6j57CBnRxEbB47xjCsKOO8jUtX\nGY5jGGbh8HNB1m29GzgKSvJizx46cPTcrc+xcfHxcSm5Mg8vb29v70q1fx40ZEj7+hX5mbis\nJP3elau3bt26fe9ZXEpqelpaViHu6Ozs4uJSrkqtZs2bt2jZPriqhsvp2ULPdYYfZjkIqVyh\nIy/mxaFj5x8/ffr8VWhKRlZ2drbU3M7d3d3d3bNmcMuOHTu0bV7XlrmKON7ap8/1OPnvLqc+\nn+1enuV8AwDwXQNGesA4PJ9Zq96y1/LfTpU3p0eMNW5+AABghNZ1fwAAKIG28+NwvGO5Phdj\nFI+zwzP+rsLCHingOwOpTgCFoxGYhgAA0NnZ+kJGYbmO16IvtDJ2XhhjEgMM0LTfMSbdfNAx\nv7LTX1GZ8t9rYnP/z969x0lVFo4ff2ZvLLss6wKCIIiRN0QU0URRv97zgpVoX0MtUzOvfcOs\nSDO1vGT9rAzTUtFSFMzM/No3rAy1VFDwVngBqTQURLmzN5a9nd8fs64osIq7+8zOzvv91zM7\n58x55pGd14yfPWcuGNwV/5oE6AxJU+X2vfq+XtcYQsjvMeiNyjcGFnWpP9QBujovGWTGo/e9\n+6ly0DGjMzgTAICO1bT+9fNmLmm92aP8v77bEVcxAdrPxxAg/QdMpR/7gIsSd0HZ8gbDK203\nlr2/Pp3qyzcc0Tq+5fv/yOBMgMhW/OOidKEPIWx3zM0KPbClCjI9AbLY6pduuOymV1pvjpp0\nzZeGfKi/Fa2vnP2df69pvfmJUz/W8ZMDAMiQRb8/Z3lDU+vNnc/6UUEHX1YTcpqPIcBH1tyw\n7IWahhDC0PGDMz2XLRbzDYZXWjaW1b8+nWrbw24d2/uB2ZXrQwj/mnpu1c/+UdbRF9UHuqZ7\nz/1depBK5X//F4dmdjJANhLp+ejye719ww03tN7ced0JX7r14A+z418vP3t9c8v3LOTll35v\n1879zngAgJh+cuETreNUKvXdb+2WwclA9+NjCPCRvTXr4oYkSaUKvrV3/0zPZYvFfIPhlZaN\nZfWvT6dK5Zfddu0Bw89+OITQUPPC+Y8tnXrIoExPCuh09ZWzLnxmWXq8zf7XTxhQktn5ANnI\n9Tf46HoNPHdAUX7rzX/d9fmnK+s/cK8Vz13/qetfar3Z/xPXDemR38b2AABZZNWL37txcVXr\nzbIhF4zv2zOD84Hux8cQ4COor3x79gPX7n/01BDCwIN+dFB5UaZntGUiv8HwSsuGsv3XJ4Kd\nTv/1yNLC9PgP596c2ckAcbz44/9J/11aKpW6fNoXMj0dICuJ9Hx0eUWDbv300NabTeuXfHKf\n055dWdfGLgv/eO3u+11Y/85fVYcQJv7ys504RQCAiNYte/qEQ3+44U8Ov35ipiYD3ZWPIcCW\nWrfiNz23Grj/cZP+U9fYc+sDfvvAuZme0ZaJ/wbDKy2tsv3XJ468wn6/vrblStdrFl5506Kq\ntrcHsl1zw7JTf/xiejzo4J+evV1ZZucDZCmRnnb55K13Duv57pcmrHnl7n2HfPyEs78zY84r\na2re/SPrupX/eei+X51x5Midj5m0tP7db1AbfMRPLhpeEXXGAAAdKKnfba+xnznxC1+94Cuf\n/+9jBg/e96/L17Xe2aP32F8eu10GZwfdlY8hwBZJksbmJCksHXjMaZc+9crM/Xp3+fOAu8Ab\nDK+0pGXfr0+GDD/7/hO2KQ0hJEnyvZPvyPR0gM71yi0TXqppCCHkFWz1q9+elenpANkqlSTJ\nB28Fm/fGHy7Z5bgf1DY1b3xXj14VW29VXLV69dqaTfy1ddn2xzz10gO7lhRsfBfQxQ3qUdD6\n/1/6j/q/t58/NrPzgWzhd6cbStan8oo3d+e5D77+86OHxJwO2aVTXxO6/QuOjyHAh5c0Vb62\npGbg4G165qUyPZcPp2u8wfBKS8jGX5/MWf70Zf33uTKEkErlT12y9vMDSzM9I6BTJI2r9+mz\nzTNV9SGE0Rc9/uw1B2R6RkC2ciY97TXk2KtfnnHN9iWFG9+1vnr14sVLN/mBre+ozz/tAxsA\n0H3tdc7dCj10Hh9DgA8vld972HYDu0dijPkGwystoXv9+nS2rT9xxS+O2z6EkCRN3/zsjZme\nDtBZ5k0eny70Jf2P/uMVYzM9HSCLifR0gKFHTnplyd+/e/pRFYX5H7hxz/4jJ113z8Knp+7s\nAxsA0B3lFWx10sXT5v5iQqYnAt2cjyFATsnIGwyvtLBFvnz3zLHlPUIIb83+1qVPL8/0dICO\n11D9/LGXzAohpPKKf/K36f0LJTbgo3O5ezpSY83i39/928fmzH3m2b8vemvl2jVrapvyy8vL\ny7faqt/AYWPG7n/AAQd88sgDKwr8+S1kt25/BV3oJH53uqPmKddMuvPXf1iw6I2qULbjTjuN\nGH3YNy7/5l4DSzI9MbKAy913FB9DgG6ny73B8EoLH9LyuT8YuO+3m5KkdJvPLl9yb0/9DrqX\neybsMOGef4cQ9r/ssSe+d2CmpwNkN5EeAAAAAAAAACLxt3wAAAAAAAAAEIlIDwAAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwBz7X0nAAAgAElEQVQAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEElB\npifQRSRvvDTn4Ucenrdw8fIVK2qaCir6DNhl5KhDj/7MXsMqPnDn2iXzH3r4kVnPvbx8xcq1\ndaGiT5+B2+9y4EGHHDZ2ZGEqwuQBAAAAAAAAyA6pJEkyPYcMa6pbcsePrv7fuYs3viuVSu15\n7DnfPvOootTmYnvy5H03XnfnX+qaN7GMFTsdPOni80f07dGh8wUAAAAAAAAgW+V6pG9a//pl\nZ379hbXrW39S0LNXqKtp3GBZhhx63o0XHLXJ3Z+devH3fvtS681UXlGv4qSqtqH1J0Vlu/6/\n264eVpzfCXMHAAAAAAAAIMvkdqRPGm668PQH/10ZQkjl9Tjsc2eMP+qgIRUlSUPtogVPTb35\ntmder0pvOO6KX509qu/79l6z4PYvfuv+9AKWDtnvnLNOHrv70MJUqF31n5m/n3bb/XPTd/Ue\n9tm7fnpq3CcGAAAAAAAAQFeU05H+7dk//PIPZoUQUqmi06+++bjd3pPhk8bVV5959txVdSGE\n4q0O+c3Ur7137+brTpvwaPrefvvfdMukPgXvuST+whlXfePmuenxhMnTTv5YWSc+EwAAAAAA\nAACyQV6mJ5AxSVL/s589nR5//HNXvK/QhxBSBRVfu3pCely35tFHNrgkfgihevEd6UIfQvjC\nlV95X6EPIew07pJj+5ekxw9e91jHTh4AAAAAAACAbJS7kb72zV/Pq6kPIeQV9pn02V02uU3p\ntsfvM2jrioqKioqKp1+t2vCu1379VHpQ3OeoT21buqm9U8eft2d6VPXGtLVNuXvFAgAAAAAA\nAADSCjI9gYx57Tez04Pyj39pm6LN/rHCd266bZM/v//5lenBoMOO3Ny+FSNOzkvNbk6SpKl6\n+ls1527bqx3zBQAAAAAAACDr5e6Z9H98rqWyf+xzmz6Nvg1JU+Xz1Q3p8c6HDNjcZvk9howp\nK0yPX5u3esvnCAAAAAAAAEC3kqORPknq5lbVp8ejty/b0t3rq+Y0JS2Xrx9VXtTGlqN7tdy7\ncu6qLT0KAAAAAAAAAN1Mjl7uvqHqmfXNLZV9r7LCEMKqhXP/+Mhjc19YuGLFqvVJ0VZ9+u6w\n6x77HHDEoaOHbmL32oWt411LCts40MDBJeHN6hDCujcXh7BHRz4HAAAAAAAAALJNrkb62vnp\nQSqVt01B4+9vvuqXDz7X/M7J8SHUL3uzetmbi2bP/P304YdMuuT8nXq/53T55vo17+xeUJ6f\nauNARRUtOzY3rmn/tKurqxsaGtr/OAAAAAAAAABsqd69e+fn57fzQXI00jc3tHxDfCqvdMaP\nL7j18SWtdxWXlqyvXZe8E+yXzX/0orNeu2LKj3Yre7fT169tuVR+Kv8DLpVf8M530ndIpG9u\nbm5qamr/4wAAAAAAAACQETka6Rsqa9OD5qaqWx+vCiEMGHHw6ad8auehQ/qWFTfWrn3j9X8/\nOP2WP//9zRBCY+1/rvr6jdNu/lqb58xvxjsX1Q/N6zto7gAAAAAAAABkq7xMTyAzmtc3b3jz\noLOunnLNhWN327FvWXEIoaCk/GO7jD7/ipuu/OLe6Q1q33r0p88ub92+qLzlrPqkqabtAzXW\nNKYHqcI+HTV5AAAAAAAAALJUjp5JX7jVu9eur9jljK8fO3KTm+1xwqWH/+FzM1fWhRCeu31O\n2PvY9M/zisrTgySpr21OSvI2e4p9/eqWC+PnFXRApC8pKenZs2f7HwcAAAAAAACALZWX1wGn\nwedopM8v7t063uvsQza/Yeq48dvNvHVhCKH2rQdCaIn0BT13DOGh9Hh+bcNevYo2t/+yJevS\ngx4V27R30iEUFOTofy8AAAAAAACA7iFHL3dfWLpb63ivrds6N71iVP/0oKn+7Zqmli+Y79F7\n37xUy9nz/6hubGP3edUN6UG//QZ85NkCAAAAAAAA0D3kaKQvKhvb451r1K9rTtrYMkla7k2l\niorf2SWVXz6qtDA9funJ5ZveM4SkceWsyvXp8ZDRvpMeAAAAAAAAINflaKRP5RV/sk9xejz7\nn5VtbLn8iaXpQWHpbvkbfPX8+FEt0X3pn5/a3L6Vi+5tSJIQQiq/5JSBpe2bMgAAAAAAAABZ\nL0cjfQjhqBOGpgcv33xP02bOpU+aa3/5h8XpcZ89x29417CTxqQHNUvvnltZv8ndn/j5rPSg\nbPAp/Qpzd6kBAAAAAAAASMvdcjzw0DPL8/NCCLXLHrr4l482bNTpk6TuT9dPeqGmPoSQSuWf\ndPrOG95bNvi0AyuKQwhJ0nzDVfdtXPlXvzTtln+1nKN/9NcO6oynAAAAAAAAAEB2yd1IX9Bz\np0tP3CE9XvDAdWd87ZonXvjn6pqGEEJ91cpX/v7IFV854xePvJ7eYLvDv3lIv+L37J/KP/Nb\nR6WHaxbc/dVr711a09hyV9K04Il7Lrj03vT32ZfveNIpw3rHeEoAAAAAAAAAdG2pdEjOTUlS\nN+3y837z9xWtP0mlUqW9e1avrd1ws367j//5lacVp1IbPUB4+vZJV/5uQcu++WXDdhha3qP5\n7SWvLllZl/5hUfnIH0+5Ymhxfqc9CQAAAAAAAACyRk5H+hBC0lR1/y0/vvNPzzdtah1S+SVj\njzvzwlMPL9xEoE9rfvw31/9s+qN1zZvYvd+uh0666LxdtirqyBkDAAAAAAAAkLVyPdKnrXn1\n+ZmPzZrz3Pzlq1dXVq/vWVbed+DQUXuOPvjII4dVfHBir3njpT8//MisZ19esWpV5fpQUdFn\n4LAR/3XwwYfvu1v+Zus+AAAAAAAAADlHpAcAAAAAAACASPIyPQEAAAAAAAAAyBUiPQAAAAAA\nAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAA\nQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABE\nItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQi\nPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAA\nAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQFmZ4AAAAA\nAAAAnW74xBnxDzp/8rj4BwXo4pxJDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQA\nAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAA\nAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEElBpicAAAAAAACZMXzijPgH\nnT95XPyDAgBdhzPpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHp\nAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4A\nAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAA\nAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAA\nAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACCSgkxPAAAAAADoQoZPnBH/oPMn\nj4t/0K4m/spbdgCAjHAmPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAA\nQCQiPQAAAAAAAABEUpDpCQAAAADApg2fOCP+QedPHhf/oAAAQO5wJj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkBZmeAAAAAEBXN3zijPgHnT95XPyDAgAA0NmcSQ8AAAAAAAAAkTiTHgAAALKJU7oBAAAg\nqzmTHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiKcj0BAAAAMhWwyfOiHzE\n+ZPHRT4iAAAAQMdyJj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLS\nAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0A\nAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARFKQ6QkAAAC01/CJM+IfdP7kcfEP\nCgAAAEC2cyY9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAA\nAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJAWZngAAAHQrwyfOiHzE+ZPH\nRT4iAAAAAPCR5XakT+pPHP/fdc3JB25YNvib035+4OburV0y/6GHH5n13MvLV6xcWxcq+vQZ\nuP0uBx50yGFjRxamOnTCAAAAAAAAAGSznI709dXzPkyhb1Py5H03XnfnXzZ8nBVv1a54a/EL\nT828e6eDJ118/oi+Pdo5TwAAAAAAAAC6h5z+Tvr6qrntfIRnp377mjseai30qbyispLC1ntX\nL/zr5V+9/NW6pnYeBQAAAAAAAIDuIafPpK985Y30oGzwqd/5nxFtbJnfY9uNf7hmwe1X3Pdy\nelw6ZL9zzjp57O5DC1OhdtV/Zv5+2m33z02SpL7q5csumnbXT0/t8MkDAAAAAJ2nYfqgyEec\nNybsPmdK5IMCABBfTkf6Vc+sTA/67Tdq+PAdtnDv5l/94MEkSUIIxf32v3HypD4FLd8/X9Jn\n+0+fdskuW1/1jZvnhhAqX/3t9NfGn/yxsg6cOQAAAAAAAADZKKcvd//aP6vTgwH79N3SfasX\n3/Hoqrr0+AtXfqW10Lfaadwlx/YvSY8fvO6xdkwTAAAAAAAAgG4ipyP93Or69GDv/j23dN/X\nfv1UelDc56hPbVu6qU1Sx5+3Z3pU9ca0tU3JR5skAAAAAAAAAN1G7kb6pLn2xZqGEEIqlb9f\n7x5buvv9z7dcKn/QYUdubpuKESfnpVIhhKSpevpbNR91pgAAAAAAAAB0E7n7nfQNVc82JUkI\nobDXHmX5qTdf+OufZr+wZPGSpW+vyi/t3XfrwSP33HP/gw/Ypmf+xvsmTZXPVzekxzsfMmBz\nh8jvMWRMWeGTlfUhhNfmrQ7b9uqcpwIAAAAAAABAdsjdSL9+7TPpQSqv9PrLz5/5/Bsb3PnW\non8vfO6pR+667fbDJ5x13mf3e98XztdXzUkH/hDCqPKiNo4yuldROtKvnLsqHD2knXOuq6tr\nampq54MAANDN1NS4aFNmWPmMsOyZYuUzwrJnipXPiC647G39X7/uogsue46w8uQU/+CBbqZn\nz555ee29XH3uRvo1Ly5ND9avfXzm85vepql+5Z+nXvPyPz9//UUn5m8Q6htqF7aOdy0pbOMo\nAweXhDerQwjr3lwcwh7tnHN9fX19fX07HwQAyBEHXjkn/kEfv3RM/IOybt26TE8hR1n5jLDs\nmWLlM8KyZ4qVz4guuOy5EOm74LLnCCtPTvEPHuhmiouL2/8guRvpVz2zqnWcyi/75IknHXbA\nPtv17xtqVyxatOhfL825//5HVtQ3hRDeePKuS+4a/oMvjGzdvrl+TcuOqYLy/PedZv8eRRUt\nb+abG9d0/HMAAAAAAAAAIKvkbqR/5fXq9KCwZIeLr7tq74ElLXf0GDC8YsDwUfscceRBV0y8\n4sWq+hDC/PuuevGEabuVtCxX/dqW09lT+WVtH6WgrOU8e5EegFwW/5Ru53MDAAAAANA15W6k\nH3L8KWfUN4UQtjvgqNH9NnFRguJ+u1/ywy+dfP5NSZIkzetuvue1n52+4xYfpjl5Z7C+XdMF\nAAAAAAAAIPvlbqTf75hPfeA2pYOP/sKgu6YuqQohvP23h8M7kb6ovOUi9klTTduP0FjTmB6k\nCvt89LkCAAAAAAAA0C3kbqT/kMYcu+3UmxeEEOorZ4dwTvqHeUXl6UGS1Nc2JyV5m/1a+vrV\nLRfGzyvogEhfXFxcVFTU/scBgG6vV69emZ5CjrLyGWHZM8XKZ4RlzxQrnxGWPVOsfEZY9oyw\n7Jli5ckp/sED3UxeXl77H0Sk/wDlu1WkB82Nayqbkt75qRBCQc8dQ3go/fP5tQ179dpsOF+2\nZF160KNim/ZPRqEHgA+puHgT32VDBFY+Iyx7plj5jLDsmWLlM8KyZ4qVz4guuOwNmZ5ABF1w\n2XOElSen+AcPsLEO6PzdW6qgR+u48J0T5nv03jcv1XLjH9WNbew+r7rlzXy//QZ0yvwAAAAA\nAAAAyB45eib96heeW1jbEEIoKt9lz13K29hy3ZJV6UFB8fY937msfSq/fFRp4XPV9SGEl55c\nHsYP3eS+SePKWZXr0+Mho30nPQAAAAAAAECuy9FIv3bhXVff8a8QQo/yg+698+ttbPnPB5ak\nB72GHLfhz8eP6vPcE2+FEJb++anNRfrKRfc2JEkIIZVfcsrA0g6ZOQAAAAAAAADZK0cvd7/N\noZ9MD9av/dvUBWs2t1lj7YIbXm45k374hJEb3jXspDHpQc3Su+dW1m9y9yd+Pis9KBt8Sr/C\nHF1qAAAAAAAAAFrlaDkurjjq0wNK0uP7L/vOC5uq7M2NK6Z8+6qapiSEUFgy4oK9+m14b9ng\n0w6sKA4hJEnzDVfdl2y0++qXpt3yr8r0+OivHdTBTwAAAAAAAACALJSjkT6E8LmLJ+SlUiGE\nprrXv3vWxNv/78nla2tDCCFpWrl00TN/vf8755z/x1crQwipVN7xF3+z9QvpW6Tyz/zWUenh\nmgV3f/Xae5fWNLbclTQteOKeCy69N0mSEEL5jiedMqx3tOcFAAAAAAAAQJeVo99JH0IoG3bc\ndyfMu+zuZ0IIDbVLfjflmt9NCQXFZUVNNbUNza2bpVJ5B33x+6fs0WfjR6jY9YxLj19w5e8W\nhBAWPX7nObP/d9gOQ8t7NL+95NUlK+vS2xSVj7zq6hOjPCEAAAAAAAAAurrcPZM+hDDqpMuu\nPPszFQXvLkJjXdWGhb64zw6nfvvGC4/fdXOP8InTfvDNzx9anJcKISRNVf9+5cXn5r3cWuj7\n7XroVT+7fGhxfqc9AwAAAAAAAACySe6eSZ+2x7gv3XrgUX+b+ZfnX3l92dvL3l72dlVD/lbl\n5YN3GLH33vsecegnSt53lfv3yzvwxAtG73fEnx9+ZNazL69Ytapyfaio6DNw2Ij/Ovjgw/fd\nLb/tvQEAAAAAAADIJbke6UMIhb23Pfz40w5vxyOUDhlx/Gkjjj+to2YEAAAAAAAAQPeU05e7\nBwAAAAAAAICYRHoAAAAAAAAAiMTl7gEAAAAAAGJrmD4o8hHnjQm7z5kS+aAAbMyZ9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJEUZHoCAAAAAAAAAGS94RNnxD/o/Mnj4h+0nZxJDwAAAAAAAACRiPQAAAAA\nAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAA\nAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlI\nDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQA\nAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAA\nAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAA\nAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAA\nAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRFGR6AgAAAABbrGH6oJiHmzcm7D5nSswjAgAA0F05kx4AAAAAAAAAIhHp\nAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4A\nAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAA\nAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAA\nAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAA\nACASkR4AAAAAAAAAIinI9AQAIJ7hE2fEP+j8yePiHxQAAAAAAOianEkPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJEUZHoCAAAAAEBbGqYPinm4eWPC7nOm\nxDwiAADkFGfSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAA\nAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAA\nAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAA\nRCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAk\nIj0AAAAAAAAARCLSAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAAAAAAAEAkBZmeAAAAAADZoWH6\noMhHnDcm7D5nSuSDAgAAdCpn0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAA\nAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAERSkOkJAADkiobpg2Iebt6YsPucKTGPCAAAAADA\nB3ImPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABE\nItIDAAAAAAAAQCQF/5+9uw+zsq4TP/49c+aJGYZxRlJBCJfUFOUhyiVsycdKM2u1X5ZSLm3F\nz57U2h5QVyx1y80rjZ9pbVRqBlTGanVlK1m6JotQamECWYGuoqjAwMwwjmfmzP374wwjITOg\nM3zvGe7X669vZ+5zn+98OtfB63rPfZ+0NzBIPbP0+o/8+50hhKM/+60vzTio74Pb1q9e8qtf\nL31w1XMbN21tDw2NjaMOOWLGcSecdOzEilyU7QIAAAAAAAAwFIj0u1DY+tCca365Z8cmyxZf\nf+0tv2zvSnoe2rihbeOGJx++/65Fhx//uYs+ftT+VRSgyRoAACAASURBVHtpnwAAAAAAAAAM\nLW53v7Mkaf+POV/Z1NG1Jwc/8L2Lv3zzkp5CnyurrKup6Plp06P3XHb+ZWvbi3tlowAAAAAA\nAAAMNa6k39lDN138y/Xb9uTILWtuunzxqtK6duz082afc+ykcRW50Lb5sbt+uuA7t61IkqTQ\nsmrunAXf/9q5e3PLAAAAAAAAADvrWDg65sutnBYmLZ8f8xWHKFfS/40ta269/Pa/7tmxXTde\ndUeSJCGE6pFvun7enOMmjyt9A31N4yHvnHXJ1bOPKR3XvPbHC9e17KUNAwAAAAAAADCEiPQv\nKrY//sW5i7qSJFc2bP+K3Uym9cmb797cXlp/4IpPNJbndjrg8NMueccBNaX1HdfeO+C7BQAA\nAAAAAGDIEel7JLd+ce5f2ztDCFM/+KW/q97NFwGs+8H9pUV14ymnH1y7q0NyZ37sdaVVyxML\nthaTAdwrAAAAAAAAAEORSN9t7c+uXPhIUwhhvyPeO/ddr9nt8bc9tKm0GH3S23o7puGoc8py\nuRBCUmxduGGPvuceAAAAAAAAgH2YSB9CCG0b7r74u78LIeSrx112+ft2vnP9SyTF5odaO0rr\n155wYG+H5avGTqurKK3XrWwakK0CAAAAAAAAMHTt5qbuWZAUm776+W+0FZNcLvfuSy9/TXV+\nt08ptCwvJt23r59SX9nHkVOHVy5rLoQQNq3YHE4d28+tFgqFrq6ufp4EgMja29vT3kIWDc6x\n7/4/Moa+wTn5fZ6xp8XkU2HsaRmEk/cPayqyMPZg8ikx9lQMwrFnhMlTkoXPmeAND2nLwkdN\n5M+ZqqqqXG63F33vhkgf7p530W+b2kMIrz7lovdPbNiTp3S0PdqznlBT0ceRo8bUhKdaQwjP\nP/VkCJP7t9PQ3t5eKBT6eRIAImttbU17C1k0OMden/YGIhick9/nGXtaTD4Vxp6WQTh5/7Cm\nIgtjDyafEmNPxSAce0aYPCVZ+JwJ3vCQtix81ET+nKmoqMjn+/vHD1m/3f2zy775tXueCiEM\ne9WMq2ZP28NndRW2lBa5XHl9vq8/lKhs6L7OvqtzSz+2CQAAAAAAAMC+INORvtCy8qKv3hlC\nKMvXXfiVT9b2mdv/5olbuy9nz+Xr+j6yfPt30ov0AAAAAAAAAGQ30idJ4dtzrnquUAwhTP/o\nVdP3r94rL9OVbF+8sFfODwAAAAAAAMDQkd1Iv/KWS/7ridYQwsgpsz7/1rEv67mV9d03sU+K\n2/o+snNbZ2mRq2h8+XsEAAAAAAAAYJ9SnvYG0rH10cVfWPxoCKGi5vDL//VdL/fpZZX1pUWS\nFNq6kpqyXu+TX2jqvjF+WfkARPrKysp8Pt//8wAQ07Bhw9LeQhYZe1pMPhXGnhaTT4Wxp8Xk\nU2HsaTH5VBh7Kow9LSZPpnjDA3tb5M+ZXG5Pv0K9DxmN9FddtrCYJLlcfuYVl46pfNnZu3zY\nYSEsKa1Xt3W8fnhlb0c+u/750qKq4aBXttUdVVfvnXvyA7A31dbWpr2FLBqcY+9IewMRDM7J\n7/OMPS0mnwpjT8sgnLx/WFORhbEHk0+JsadiEI49I0yekix8zgRveEhbFj5qhuLnTEYj/ePt\nnSGEJCne9C8fuKnPI/949ex3Xt29nn79govG1oUQqka8sSx3Q1eShBD+0NrZR6Rf2dr9zh85\n/cCB2DgAAAAAAAAAQ1h2v5O+P3L5+im1FaX1I8ue6+2wpHPT0uYXSuuxU30nPQAAAAAAAEDW\nZfRK+pra4Umxq48D2tvaikkSQshX1VSXd3+vQNUOf9JwxpTGB+/bEEJ4+s77wxnjdnmS5sdv\n7UiSEEIuXzNz1NC7zQIAAAAAAAAAAyujkf7b31/Q9wGXz/w/v2sphBCOPP9rX5qxi6+TH3/2\ntHDfT0II255etKL5jL8fsYs73t93w9LSom7MzJEVbloAAAAAAAAAkHXK8StUN2bWjIbqEEKS\ndH39ysXJSw5oemTBt/7SXFqf+qnj4u4OAAAAAAAAgMFIpH+lcvkPf/6U0nLLmkXnX33r09s6\nu3+UFNfc98MLL701SZIQQv1hZ88cPyKtbQIAAAAAAAAweGT0dvcDomHCP1965por/nNNCOHx\n39xy3v/cPv7QcfVVXc+sX7t+U3vpmMr6iVf+21mpbhMYpI684OfxX3T1vNPivygAAAAAAAA9\nXEnfL8fMuuqz7z+xuiwXQkiKLX/90x8fXLmqp9CPnHDildddNq46n+oeAQAAAAAAABgsXEnf\nT2Uzzrpw6vS33PmrXy99YNXGzZubXwgNDY2jxh/15uOPP/mNR+dzaW8QAAAAAAAAgEFDpN+1\nuQt+vOcH14496sxZR505a6/tBgAAAAAAAIB9gtvdAwAAAAAAAEAkIj0AAAAAAAAARCLSAwAA\nAAAAAEAkIj0AAAAAAAAARFKe9gYAAGAv6lg4OvIrrpwWJi2fH/lFAQAAAIChwpX0AAAAAAAA\nABCJK+kBAAAAABgsIt8Ny62wAID4XEkPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\nSXnaGwAAAIAhrGPh6MivuHJamLR8fuQXBQAAAAaKK+kBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAA\nAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAA\nAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAA\nIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIJLytDcApOzIC34e/0VXzzst/osCAAAA\nAABA6lxJDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAA\nAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRlKe9AQAAAAZGx8LRkV9x5bQwafn8\nyC8KAAAAMKS5kh4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4A\nAAAAAAAAIilPewMAQGwdC0dHfsWV08Kk5fMjvygAAAAAAAxCrqQHAAAAAAAAgEhEegAAAAAA\nAACIRKQHAAAAAAAAgEhEegAAAAAAAACIRKQHAAAAAAAAgEhEegAAAAAAAACIRKQHAAAAAAAA\ngEhEegAAAAAAAACIRKQHAAAAAAAAgEhEegAAAAAAAACIpDztDQAAAPugjoWjY77cymlh0vL5\nMV8RAAAAAF4ZV9IDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAA\nAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAA\nAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAA\nQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABE\nItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCTl\naW8AXnTkBT+P/6Kr550W/0UBAAAAAACAbHIlPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAA\nAABEItIDAAAAAAAAQCTlaW8AgEzrWDg65sutnBYmLZ8f8xUBAAAAAAB25Ep6AAAAAAAAAIhE\npAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6\nAAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcAAAAAAACASER6AAAAAAAAAIhEpAcA\nAAAAAACASER6AAAAAAAAAIikPO0NpK+rsOneO+787cqHH33sqZaWlo5QObxuxJjxhx89edpb\n33bs/pX53Z6hbf3qJb/69dIHVz23cdPW9tDQ2DjqkCNmHHfCScdOrMhF+A0AAAAAAAAAGBqy\nHukfu2/Rlf/vR8+2F3d4rLPphbamjRseXnHvj25+1Xs+8flzjj+89xMkyxZff+0tv2zvSnoe\n2rihbeOGJx++/65Fhx//uYs+ftT+VXtv/wAAAAAAAAAMIZm+3f36e6674Oof7Fjoy6tH1Ne8\n+IcLxcJzP7jmM9f+Ym1vZ3jgexd/+eYlPYU+V1ZZV1PR89OmR++57PzL1v7NXwAAAAAAAAAA\nkF3ZvZK+s+2Pn5t3V5IkIYSK2vEzZ886dvJrDmysy4XQsnnDA3ct/u4PfrmlsyuEcM9/XHTc\nP9wyta5ypzNsWXPT5YtXlda1Y6efN/ucYyeNq8iFts2P3fXTBd+5bUWSJIWWVXPnLPj+186N\n/NsBAAAAAAAAMAhl90r61Tfe0FJMQgj5ygO+8M2vnHnClIMa60rfIF/XeNDxZ338G/POry7L\nhRCSrue/9e0/v+QEXTdedUep8VePfNP18+YcN3lc6RvoaxoPeeesS66efUzpuOa1P164riXS\nbwUAAAAAAADAIJbdSP+jpc+WFuP+cc7E+p2vkg8h1I498YIp+5fWmx742U4/bX3y5rs3t5fW\nH7jiE43luZ0OOPy0S95xQE1pfce19w7UtgEAAAAAAAAYujIa6Yvta//QWiitjz91TG+HHX76\nwaVFx7Y/7vSjdT+4v7Sobjzl9INrd/Xs3Jkfe11p1fLEgq3FpF87BgAAAAAAAGDoy2ik73j+\n0Z71MXUVvR1Wuf0K+6SrfafGfttDm0qL0Se9rbenNxx1TlkuF0JIiq0LN2x75dsFAAAAAAAA\nYJ9QnvYG0lFRO3Hu3Lml9ajKfG+HbX6oqfv4utfveDv7pNj8UGtHaf3aEw7s7en5qrHT6iqW\nNRdCCOtWNoWDh/d33wAAAAAAAAAMZRmN9PnKg9/whoP7Pqaz7fFvLH68tH71Ke/Z8UeFluXF\npPvS+im7+j77HlOHV5Yi/aYVm8OpY1/5jktb6uxMErfNH2AdHR1pbyGLjD0tJp8KY0+FsafF\n5FNh7Gkx+VQYe1pMPhXGnhaTT4Wxp8LY02LyZIo3PLC3Rf6cKS8vz+Vyuz+u75MMyFb2DUmx\nY9u2ba2trS1NT/1u6X333rN0fVtHCGHE+JMvPfs1Ox7Z0fbi3fIn1PR6t/wQwqgxNeGp1hDC\n8089GcLkfu6wra2tUCj08yTsZOvWrWlvIYuMPS2DcPL1aW8gAmNPxSAcezD5lBh7Wkw+Fcae\niiyMPZh8Sow9LSafCmNPxSAcezB5siQL7/bgDQ9py8JHTeTPmYaGhny+1zu17yGR/kXf+tDM\nn29u3/GRXK5i8knvPv+j72vI/81fQ3QVtmw/oLw+39cfSlQ2dF9n39W5ZUA3CwAAAAAAAMDQ\nI9L3Zfghb3rHKW8dWVG20+OFrd2Xs+fydX2fobyu+zr7oRjp65dMivyKK6eFScvnR35RKPGG\nBwAAAAAAIAKR/kWjDj9yQvMLuVwul8t1tj615rHNLevuufIz97xmxrlf/sy7q1/ZVwt0bf8K\n+a4XBnCrAAAAAAAAAAxFIv2L3nnxF9+5w/98atWyG6+dt/yZtr/+5nuffL5r/tyzen5UWd99\nE/ukuK3vc3Zu6ywtchWNA7tbAAAAAAAAAIYckb5XoydM/+w1w84997K2YvLM775/0+OnzhrX\nfXP7ssr60iJJCm1dSU1ZrxfZF5q6b4xfVj4Akb6ioiL3yi7op3dVVVVpbyGLjD0tJp8KY0+F\nsafF5FNh7Gkx+VQYe1pMPhXGnhaTT4Wxp8LY02LyZIo3PLC3Rf6cGZBcK9L3pbJuysyDhs9f\n3xJCWLrwsVkXTSw9Xj7ssBCWlNar2zpeP7yytzM8u/750qKq4aD+72fYsGH9P8me64j5Yump\nq6tLewtZNAjH7g2flixM3thTMQjHHkw+JcaeFpNPhbGnIgtjDyafEmNPi8mnwthTMQjHHkye\nLMnCuz14w0PasvBRMxQ/ZzIa6f/wkx+vausIIez/ure/9Yj6Po4cP354WN8SQmhd++cQuiN9\n1Yg3luVu6EqSEMIfWjv7iPQrW7vf+SOnHzhQmwcAAAAAAABgiMpopN9y1+2LHm8OIYzeMKnv\nSN/ZXuxe5Sp6Hszl66fUVjzYWgghPLLsuXDGuF0+N+nctLT5hdJ67FTfSQ8AAAAAAACQdWVp\nbyAdoybuV1psefi3fR/5h8daS4thrzp4x8fPmNId3Z++8/7entv8+K0dSRJCyOVrZo6qfcW7\nBQAAAAAAAGDfkNFIP/q0qaXF85t+sqKl0Nthha3Lbt/Y/aXyh5716h1/NP7saaXFtqcXrWje\n9Rnuu2FpaVE3ZubIioyOGgAAAAAAAIAeGS3HtaPeN766PISQJMXrLru5tZi89JjiC8988+Lr\nOpMkhJCvHP3hCX9zv/q6MbNmNFSHEJKk6+tXLn7p85seWfCtvzSX1qd+6riB/x0AAAAAAAAA\nGGoyGulzZTX/8sGJpfXWv/zs/376qiUrVj3T1JqEEELXlmfXP3DXovP/6WN3PdF9r/s3fPCS\nA3a6FD6X//DnTyktt6xZdP7Vtz69rbP7R0lxzX0/vPDSW5MkCSHUH3b2zPEjIvxSAAAAAAAA\nAAxy5WlvIDVjT5l7zrIPL/z9phBCy7plX79yWQghX103rKuttVDc8chD33L+JaeNfekZGib8\n86VnrrniP9eEEB7/zS3n/c/t4w8dV1/V9cz6tes3tZeOqayfeOW/nbXXfxkAAAAAAAAAhoKM\nXkkfQgi5/Hu/cP1HTp1clsv1PFZsb9mx0OerRp5+3hXXfPLk3s5xzKyrPvv+E6vLciGEpNjy\n1z/98cGVq3oK/cgJJ1553WXjqvN77XcAAAAAAAAAYCjJ7pX0IYRcWc3pH73ihHet+sWS//7j\nqtWPPb1p27ZtoXxY3YgRY8YfMXHyG05+y5saK/v+O4ayGWddOHX6W+781a+XPrBq4+bNzS+E\nhobGUeOPevPxx5/8xqPzuT6fDQAAAAAAAECWZDrSlwwfPeE9sya8px9nqB171Jmzjjpz1kDt\nCAAAAAAAAIB9U4Zvdw8AAAAAAAAAcYn0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAA\nABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAA\nkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkYj0AAAAAAAAABBJedobAHbWsXB0zJdbOS1MWj4/5isCAAAAAABAZrmSHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAA\nAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAA\nAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAA\nIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekB\nAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAA\nAAAAAAAiEekBAAAAAAAAIJLytDcAAAAAAAAA7Ms6Fo6O/6IV5zwV/0VhT7iSHgAAAAAAAAAi\nEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKRHgAAAAAAAAAiEekBAAAAAAAAIBKR\nHgAAAAAAAAAiKU97AwAAAAAAAAAD7MgLfh75FVfPOy3yKzJEuZIeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIpT3sDg8ITK//7V0sfeGTVo882bW1pba+uq2941cFHT5r8ppNOnTS2brdPb1u/esmv\nfr30wVXPbdy0tT00NDaOOuSIGcedcNKxEytyEbYPAAAAAAAAwNCQ9UhfaP7z9Vdedfea53Z8\nsHXr5tatm5/4y8P/ddvCI49772fPf+/+5b3dciBZtvj6a2/5ZXtX0vPQxg1tGzc8+fD9dy06\n/PjPXfTxo/av2pu/AQAAAAAAAABDRqZvd9/Z9ujnZs/ZsdDncvn6huG5XPf170nSteqeRR//\n6JefLnTt8gwPfO/iL9+8pKfQ58oq62oqen7a9Og9l51/2dr24l77DQAAAAAAAAAYSjJ9Jf2C\niy9f29ZRWh/65nd/8IwTx489uLayrNC6ed2jDy6Y/+3fr28LIbQ9s3zOv95681feu9PTt6y5\n6fLFq0rr2rHTz5t9zrGTxlXkQtvmx+766YLv3LYiSZJCy6q5cxZ8/2vnxvy9AAAAAAAAABic\nsnslfev6WxevbS6tx58+55rP/NPE14ytrSwLIVQOb3zt1JO/eP1NH3nzwaUDmtYs+N72g7fr\nuvGqO5IkCSFUj3zT9fPmHDd5XOkb6GsaD3nnrEuunn1M6bjmtT9euK4lzi8FAAAAAAAAwGCW\n3Uj/5xvvLC3Khx36pQ9Nf+kBubLqd3zq34/YS9WS1wAAIABJREFUfvv6u7/z8I4/bX3y5rs3\nt5fWH7jiE43luZ2efvhpl7zjgJrS+o5r7x3AnQMAAAAAAAAwRGU30v9s9ZbSYtRxs2vKdk7s\nJbn8iA8df1Bp3bJuyY4/WveD+0uL6sZTTj+4dpfPPvNjr+t+7hMLthaTAdg0AAAAAAAAAENZ\nViN9Uniotfvb6A97++g+Dtz/7/cvLTrb1+34+G0PbSotRp/0tt6e23DUOWW5XAghKbYu3LCt\nP/sFAAAAAAAAYB+Q0Ujf2f5YMem+tP3o/ar6OPKFpkJpkSuv73kwKTb3NP7XnnBgb8/NV42d\nVtd9t/x1K5v6s2EAAAAAAAAA9gHlaW8gHeXDDv3Rj35UWldV9xXp77v9idJiWMOJPQ8WWpb3\nNP4p9ZV9PH3q8MplzYUQwqYVm8OpY/uz5xBCV1dXkrht/gArFotpbyGLjD0tJp8KY0+FsafF\n5FNh7Gkx+VQYe1pMPhXGnhaTT4Wxp8LY02LyZIo3PJniDZ+KyGPP5/P9P0lGI30IZdXV1bs9\naOuffrzg8ZbS+ogPTO95vKPt0Z71hJqKPs4wakxNeKo1hPD8U0+GMPkVbna71tbWQqHQz5Ps\nufrdH7IvaGoadDc5yMLkjT0tJp8KY0/FIBx7MPmUGHtaTD4Vxp6KLIw9mHxKjD0tJp8KY0/F\nIBx7MHmyJAvv9uANz3be8GnJwuQjj72hoaH/nT6jt7vfE9ueuO+zlyworSvrXvfp6S/e1r6r\nsKW0yOXK6/O5Pk5S2dB9nX1X55a9s00AAAAAAAAAhozMXknfp6S44qfzv3bTL1qLSQghX3nA\nBV/5/PAdYnxh6/Yvqs/X9X2m8u3fSS/SAwAAAAAAACDS7+x/H1zy3RtvfnD7Xe7LyhvOu+qa\nGQfXvMLTdW3/CvmuFwZidwAAAAAAAAAMYSL9i1qfeOC7879z1++f7HnkgIknf/pTsyeM3Pnb\n6yvru29inxS39X3Ozm2dpUWuonHgdgoAAAAAAADAkCTShxBC0tV+zw+/8Y0f3tO+/cL3yrpX\n/+O5H5n5tsm7/ML5ssr67icmhbaupKas16+lLzR13xi/rHwAIn0+ny8v93/ZADPSVBh7Wkw+\nFcaeCmNPi8mnwtjTYvKpMPa0mHwqjD0tJp8KY0+FsafF5MkUb3gyxRs+FUNx7ENvxwNu61+X\nzrvm6797ovua+HzVq9521syzzzihvrzX9F4+7LAQlpTWq9s6Xj+8srcjn13/fGlR1XBQ/7da\nW1vb/5PsuY6YL5ae/fbbL+0t7CwLkzf2tJh8Kow9FYNw7MHkU2LsaTH5VBh7KrIw9mDyKTH2\ntJh8Kow9FYNw7MHkyZIsvNuDNzzbecOnJQuTH4Rj362sR/r/vfemz1xzW+kC+lyu/JjTP/iR\n97/9wOp838+qGvHGstwNXUkSQvhDa2cfkX5la/c7f+T0Awdu1wAAAAAAAAAMSZmO9BsfuPmC\nr95WTJIQQs3oqZ/4lwv/4bA9+juLXL5+Sm3Fg62FEMIjy54LZ4zb5WFJ56alzS+U1mOn+k56\nAAAAAAAAgKwrS3sDqel8/k+f+9LtpULfePRp1103dw8LfckZU7qj+9N33t/bMc2P39qRJCGE\nXL5m5qiod6oHAAAAAAAAYBDKbqR/8IZrNnYUQwiVI6bOu2L2qype3ijGnz2ttNj29KIVzYVd\nHnPfDUtLi7oxM0e+zPMDAAAAAAAAsO/JaDlOii3XL32mtH7L3Avr87mXe4a6MbNmNFSHEJKk\n6+tXLk5eckDTIwu+9Zfm0vrUTx3Xn90CAAAAAPD/2bv34CrLO4Hj78mNGIghka2iMljqFdRa\nt46oiwQvUx3bzkh33fXSDtN1rKvWtd2ttTpqR+3WHXdrW2ptbV1vBbyhLu26gxe0RbxgxREV\nI4uIlwgI4ZKQALm9+8eJ1FpBOAm/94Tz+fz1mDznnKc/30mDX857AAB2DSX6mfTtK6av7e5N\nkiSXKz+6d+Xixe9/4kPKKobvP+ZTf/rnXPm53z1l7mUPJUmyrmnGxTdUXH7B6SOHViRJkqQ9\nTfPu/+GP7kvTNEmSugPOPHvM7jvnfwcAAAAAAAAAg0mJRvqW5xbnF2nac9Wl39meh1Q3nHbv\n7d/48Ffqx379yslN1z7QlCTJW3PvOv/ph8bsP7puSO/K5qXNLZvye6rqDrvuB2cM6NkBAAAA\nAAAAGKxK9Hb3a19cOyDPc9SU679zzgnVZbkkSdKetjdef2XBwkVbCv2IsSdcN/Xq0dXlA/Ja\nAAAAAAAAAAx2JfpO+lWrNw/QM5VNOOOSI485efbjc+a9sGj1mjWtm5P6+oaRY8Yd39h40vhD\nd/zD7gEAAAAAAADYZZVopD/55mknD9yzDR01bvKUcZOnDNwzAgAAAAAAALArKtHb3QMAAAAA\nAABAPJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESk\nBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAA\nABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAI\nItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHp\nAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAA\nAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAA\nAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAA\nAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIUpH1AYrO8iev+MaPXq6sOWTm3f++\nnQ/paH7tkcfnzFuwaNXqlvWbkvqGhpH7HTxh4qQTjz2sMrdTDwsAAAAAAADAYCLSf9ScGUt3\nZHv6zMybbrzr0U296ZYvrV7RsXrFuy8/+9iMAxsv/d6F4/YYMuCHBAAAAAAAAGAwcrv7P9Ox\n8pF7V3Rs//4X7rz8h3c8sqXQ58qqamsqt3x37eInr7746qWbegb4lAAAAAAAAAAMTt5J/ydd\nbct+fMWtaZp+8tYkSZJkXdPt18xclF8PHXXM+eeddezhoytzSceaZY/Nmnbrg/PTNO1sW3TV\nZdN+8+Ov7bRTAwAAAAAAADBoiPRJx9qVb7/91h/nPvK/jz/f1rO9hT5Jem+7/uF80a8ecdxN\nP7m0oaLv8+drGvb78pQrDv6r6/71l/OTJGldev/0N08/69O1O+X0AAAAAAAAAAweJR3pN697\n/PwLb25p6yzgsRveveOJNZvy669ee9GWQr/Fgadd8cUHz/zd+x1Jkjx84x/O+ulp/TwtAAAA\nAAAAAINdSX8mfdrTVlihT5LkzbufzS+qG0750j5DP25LbvIFn8uv2t6Ztn4H3qMPAAAAAAAA\nwK6ppN9JX1FzyDnnnPPhr3SsnPPAo+9tz2MffLElv9j7xC9sbU/9uLPKck/3pmnas2H6ivZ/\n2mdYf04LAAAAAAAAwGBX2pF+t4POOOOgD39lzSuLtifSpz2tL27oyq8PmrTn1raVDxl1dG3l\nM62dSZK8uXBtItIDAAAAAAAAlLaSjvQF62x7riftu339EXVV29h55LCqfKRvmb8mOXVUP1+3\nra2ts7PA+/MXYPewV8pUS0tL1kf4qFKYvLFnxeQzYeyZKMKxJyafEWPPislnwtgzUQpjT0w+\nI8aeFZPPhLFnogjHnpg8paQUrvbEBc8HXPBZKYXJB499+PDh5eXl/XwSkb4QXR2Lt6zH1lRu\nY+fIfWuS9zYkSbLxvXeT5LP9fN00TdPUZ9sPMCPNhLFnxeQzYeyZMPasmHwmjD0rJp8JY8+K\nyWfC2LNi8pkw9kwYe1ZMnpLigqekuOAzMRjHXpb1AQal3s51+UUuV1FXntvGzqr6vvfZ93av\n2+nHAgAAAAAAAKC4ifSF6Fzfd8/5XHnttndW1Pa9z16kBwAAAAAAAECk38l6P7i7Qu/mTM8B\nAAAAAAAAQPZ8Jn0hqur6bmKf9rRve2d3e3d+kats6P/r5nK5XG5bd9enAEaaCWPPislnwtgz\nYexZMflMGHtWTD4Txp4Vk8+EsWfF5DNh7Jkw9qyYPCXFBU9JccFnYjCOXaQvRFlVXX6Rpp0d\nvWlN2Vb/xXeu7bsxflnFAET62tpPuLv+wOqKfLHs7LHHHlkf4aNKYfLGnhWTz4SxZ6IIx56Y\nfEaMPSsmnwljz0QpjD0x+YwYe1ZMPhPGnokiHHti8pSSUrjaExc8H3DBZ6UUJl+EY/9Ebndf\niIrdDtiyfq1jW9f2+80b84sh9Xvt3DMBAAAAAAAAUPRE+kIM2X182Qe3TXhpQ/c2di7c0Jfw\nRxyz504/FgAAAAAAAADFTaQvRK687oihlfn1q8+s2tq2tLtlXuvm/HrUkQNwu3sAAAAAAAAA\nBjWRvkCnH9EX3ZfPfnZre1rfuq8rTZMkyZXXnD1yaNDJAAAAAAAAAChWIn2Bxpx5dH7RvnzG\n/NbOj93z1M/n5Re1+549otKoAQAAAAAAAEqdclyg2n2nTKivTpIkTXt/dt3M9C82rH112i1L\nWvPrU781MfZ0AAAAAAAAABQjkb5QufJzv3tKfrmuacbFN9y3vL2771tpT9NT91xy5X1pmiZJ\nUnfAmWeP2T2rYwIAAAAAAABQPCqyPsAgVj/261dObrr2gaYkSd6ae9f5Tz80Zv/RdUN6VzYv\nbW7ZlN9TVXfYdT84I9NjAgAAAAAAAFAsvJO+X46acv13zjmhuiyXJEna0/bG668sWLhoS6Ef\nMfaE66ZePbq6PNMzAgAAAAAAAFAsvJO+n8omnHHJkcecPPvxOfNeWLR6zZrWzUl9fcPIMeOO\nb2w8afyh5bmsDwgAAAAAAABA0RDp/0zDod+fNWuHHzV01LjJU8ZNnjLw5wEAAAAAAABgV+J2\n9wAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQJCKrA+wK+hofu2Rx+fMW7Bo1eqW9ZuS+oaG\nkfsdPGHipBOPPawyl/XhAAAAAAAAACgaIn0/pc/MvOnGux7d1Jtu+dLqFR2rV7z78rOPzTiw\n8dLvXThujyEZng8AAAAAAACA4uF29/3ywp2X//COR7YU+lxZVW1N5Zbvrl385NUXX710U09G\npwMAAAAAAACguHgnfeHWNd1+zcxF+fXQUcecf95Zxx4+ujKXdKxZ9tisabc+OD9N0862RVdd\nNu03P/5atkcFAAAAAAAAoBh4J33Bem+7/uE0TZMkqR5x3E0/uWziZ0fnP4G+pmG/L0+54obz\njsrva116//Q32zI8KAAAAAAAAABFQqQv0IZ373hizab8+qvXXtRQkfvIhgNPu+KLn6rJrx++\n8Q+hhwMAAAAAAACgKIn0BXrz7mfzi+qGU760z9CP25KbfMHn8qu2d6at70mjjgYAAAAAAABA\nkRLpC/Tgiy35xd4nfmFre+rHnVWWyyVJkvZsmL6iPehkAAAAAAAAABQrkb4QaU/rixu68uuD\nJu25tW3lQ0YdXVuZX7+5cG3EyQAAAAAAAAAoYhVZH2BQ6mx7riftu339EXVV29h55LCqZ1o7\nkyRpmb8mOXVUP1+3vb29q6urn0+y/T72Jv67nnXr1mV9hI8qhckbe1ZMPhPGnokiHHti8hkx\n9qyYfCaMPROlMPbE5DNi7Fkx+UwYeyaKcOyJyVNKSuFqT1zwfMAFn5VSmHzw2Gtra8vLy/v5\nJCJ9Ibo6Fm9Zj62p3MbOkfvWJO9tSJJk43vvJsln+/m6PT093d3d/XwSPsJIM2HsWTH5TBh7\nJow9KyafCWPPislnwtizYvKZMPasmHwmjD0Txp4Vk6ekuOApKS74TAzGsbvdfSF6O/v+OkYu\nV1FXntvGzqr6vvfZ93YX3V+cAQAAAAAAACCYSF+IzvWd+UWuvHbbOys++Ex6kR4AAAAAAACA\nXPrBZ6uz/Va/dPXXr3wxSZKyivqHHrhjGzuX3H7xtx9YliRJdV3jvXd9u5+v29ra2tnZ2c8n\nAQAAAAAAAKAA9fX1/f9Meu+kL0RVXd9N7NOe9m3v7G7v+wiEXGXDzj0TAAAAAAAAAEWvIusD\nDEplVXX5RZp2dvSmNWVb/Vj6zrV9b3wvqxiASD9s2DB3PgAAAAAAAADIRP/fRp+I9IWp2O2A\nJHkkv36to+uvh1Vtbef7zRvziyH1e/X/dcvK3PkAAAAAAAAAYBATfQsxZPfxZbm+d8+/tKF7\nGzsXbujKL0Ycs+dOPxYAAAAAAAAAxU2kL0SuvO6IoZX59avPrNratrS7ZV7r5vx61JE+kx4A\nAAAAAACg1In0BTr9iL7ovnz2s1vb0/rWfV1pmiRJrrzm7JFDg04GAAAAAAAAQLES6Qs05syj\n84v25TPmt3Z+7J6nfj4vv6jd9+wRlUYNAAAAAAAAUOqU4wLV7jtlQn11kiRp2vuz62amf7Fh\n7avTblnSml+f+q2JsacDAAAAAAAAoBiJ9IXKlZ/73VPyy3VNMy6+4b7l7d1930p7mp6655Ir\n70vTNEmSugPOPHvM7lkdEwAAAAAAAIDikcuHZArz/O2XXvtAU36dK68ds//ouiG9K5uXNrds\nyn+xqu6w//zVNaOry7M7IwAAAAAAAADFQqTvp9659/506vQnNvV+zBhHjD3h0ssuOHh4Vfyx\nAAAAAAAAAChCIv0AaH/n1dmPz5n3wqLVa9a0bk7q6xtGjhl3fGPjSeMPLc9lfTgAAAAAAAAA\nioZIDwAAAAAAAABByrI+AAAAAAAAAACUCpEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAABIZ0xcAAAgAElEQVQAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9u6bvX3j+ueee+2+PNWd9kF1WT+fmrI9QioydXcwNv5j+x9eXZ30KAAaen/CDiD869Z8L\nvsj1pFmfoOT5OQMwKPiVhtLhah9Edu3fJCuyPgAMvN6uVa81L9/Ym3bNXp6ctE/Wx9kVpN1r\nn37yqZdffuXV15asa2/v6NjY1ZPOmjUrSZLOtucfeLLtuMYJo2orsz7mrsbYI7399ts7tD9X\nVj6kerfqIdXVQ3erKsvtpFPt8uY+fPfch++uHXngxMZJjZMmHrjXsKxPVIo61q96b3lLV7q9\n//X6wIMPKXfJ95uxZ2jD+vXd2z35uuHDDb4wfsIPFv7oNCBc8Jnb2LLivbWbP7P/6A9/cf0b\n86b+eub/LXt73cakYeSnjz3htK9+ZWK1X93D+Tmzox599NEBfLbhY487ap+aAXzCXZjJg19p\nKB2u9sFil/9NUqRnEEnfbXrhxdeWrW3r2Oau7ndeemJjb5okSe8mbzseAE1zZ/7ilhlL13d+\n7Hd7Nr85/Ve/ufu/bmv8h/O+ecYECWGgGHuwiy66qLAH5sqqRozce9S++x3++fHHHnvUXv7a\nxI5rW774dzMW/8/dt+x90OcbGyc1Thy/51C/n+x0afeambf+8nd/WLCmbcf+v3Lag/9d64dO\noYw9Q80LZt8564klS95Y1boDwzf5fvITPjv+6JQBF3wmVi187Obb7nlh6fuVNYffP+PaLV9v\nWXDnN66Z2dnb97eyWppf/+1dr/9+3sKp//HN+go/2AeEnzM7y9SpUwfw2Q6+4BCpeDuZPOT5\nlYbS4WrPjt8k+7jgGBx6O1fcfO1Vs19asUOPOugrn9lJ5ykdC6Zd+f17XvrEbb096+dMu2HR\nkpU/v/xv/ReP/jP2QSTt7VzVvGxV87IFzz15xy+GTvq7fzz3708cpuhsn2MOHT3/1bd70jRJ\nkjRNm5uen9b0/PRbqg/+/N80Tpp0/PhDh5rkzpH2tP/kny+a886GAh47xGclFcrYM7Tktz/6\nl1//Pv1/9u47ronzfwD455KQQBhhg+CoqIjgQBwVkYpWf3XvunBrFUXrqHvintW6654oVVu3\ndX0rKkrFUZWNiAICIYAQCCFccrnfH1FERIhAcib5vP+63D3J69PH6/Hc83mG2hPoSxhhzVcV\nPuEZhK9O2oc3PFOE9w4Gbjj/6co0NJW/ev25kgx9ifykm3M3Nt+3wE9L8ekvfM4ghJBewiYN\nMhx4tzMIW5KlEVXoq0JI+07MGRUSn/dFX7FvNXDX0tFcfJZWQ+r1bYE7bqqOCbZ5h+/9XBs2\nMoo88ftdIQCo1l2XSyODflkTmVaoKuY2dMOG4W5MBawfsNoZsWbNGgCQS14+jsr69CpBlP1z\nacR3adXcTip+m5WVlZ0jLt0zaNvix10rRhgT+PRRi+xt8r07d+/cuf1fYmaZS2xj2za+HTt1\n8vu2aT1Mk9Ws1L8XBe6OLPloxBfYW5urecvu3LULb+6qwWpnCim+N2L0BlmpVA2bzVbzu3+e\nPYvPnyrDJzxT8NWJEXjDax8lS5o44pcsklJ95Jq2KJlJn/V47fjl4QDA4ggGBUxu5cyNDr9w\n9MJTACAI1uyjp3wFXKbC1g/4nNEo1ctpuZTynIjHL0o+EgTL3MrOwdHRnF2cmZmZmZVXsqcP\nm+voHzDUlsMSuLZt6YTzudWCNY8QYJMGGRK825mCLcnSMEmPdIAk9ejwwDOqY34t17aebpac\n4riw0LjcYgBo1r13Q2MOAEjFWZERD9IlcgDw8A9aNdgLRztVByVLnuA/PUeuBACBa8c5s6c0\ndzQBgMSj02edeQXvs8UAALQiPGT12pOPAYBg8zecON7YBFfpqCKsdgZRstcrJ899kiMDAILN\nb/197y7tmtrZ2drb2Ztx5FkikUgkSnx699zlsFw5RRDs7lM3BnRtCAC0ksx48ez6pdN/3Y5T\n/ZSr/5ZNQ/RzcJ/mFKQn3Llz+/adO3FvxGUumdi6fOfn59fJz6OOJSOx6Z/D44b8lV0EAG6d\nBk8c2a+hLe68pQ1Y7Ux5tnHikrtCADCxbzpukn/LRi72liZMB2VY8AmvTfjqxDi84bUm+a/Z\n0w4nAACLbTEgcMYPbZo6CIxVl679PGLn63wAcBv924aBLqqTd7ZN3nQzDQDq9f91+9hGDEWt\nD/A5wxSF9OWvc5bcS5UAAL+W+4AfB/f6zpPP/ZA7oKni+Ac3QkL+ePJaDAB8p7artsxviB0F\n1YY1jwwTNmmQ4cC7XZuwJVkGJumRDniyakJQhAgALBr03LlpooBNAIBCmuA/fE6RknabtHND\nzzqqkjQlPrV5fvDdNDavzrL9WzxxdHw1pF6cG7gvDgB4gta7Dy225bx7/SgnWwwAAP/bOHHr\nXSEANByxdfPg+lqPV09gtTPo1NzRx+NyAaCOz/B5AQPqfuYBQhVlXjq44cC1FwRB9Fq0/6e2\ndiWXXv5v56xt12maZnMdD/+xR6CvbQcNy0p6fufO7Tt3wl5lF5W5ZN/A08+vk5+fT218vFfP\nhEH9RSRl5eF/eO0QvE21BqudKetH/Hgvv5hr0XrP4cU2HBwEzyR8wmsBvjp9PfCG17Q/JgwN\nFkkBwOvn3UFdnD9coBXjBv2YLacIglh/8k83/rs8GZl/b9CI9QDAt/cP2T+EiZD1BD5nGEIf\nnjXqr0QxAHgNmrt4ZIfP73lHP/lrY9DhMAAQNOx36NdxuDte9WDNI0OHTRpkOPBu1wJsSZaB\nvVRIB9x/ka866D9/ZEnSi8N3HeVoCgDpVxNLShJsweDZW7o68Kni1F+Xn9V+qPok/HyK6sB3\n7lRbNXq0fSeOVB2k33iowbD0HVY7U8RJ+1UZekHDQdvmDv1chh4A2CYOfQM3jWlmTdP0lQ0L\n4qSKkksNvg+c5mkDABQpPJdVtjGH1GTn0nzgmGlbD4bsXLd4SA/fWuYf/i1EL5+eOrAlcNSw\nWUG/Xgx9IpbjQMMqylcoAaDjtF7Ya6RNWO1MiZLKAcAjcBJm6BmHT3gtwFenrwfe8JoWll8M\nAATBndnJqfR5Wd7NbDkFAFwL35IMPQBwLXxsjFgAQOaHazdSfYPPGUbkxm5T5YltPccHjaog\nTwwAhNeAuT97OwCAOPHcxn9FWgpRT2HNI4RNGmQ48G7XAmxJloEdVUgHPC+UAwDB5ve1/2gz\np0atrAGgODei9EmCMB69oCsAiBODQ9ILtRimvrktLgYAgsUb626lTnmuwNeeywYAUhym2cj0\nGlY7U57svas6GLTwRzUmwBM954wAAIoU7Tr9qvQF74DvVAdRj3JqOkZDQ9Rxb+sfMGfP8RO/\nBv3St3MbK+67PaRpWp745Pa+zUGjh45avnn/nf8SKWwYf6G6PDYA1OPjAoxahdXOlGIlDQDt\n3ARMB4JK4BNeg/DV6euDN7ymZJJKAOCYfFNm/arc57dVB5buXct8pTaXAwCUXKiVAPUWPmcY\n8XD/Y9XBoBk/qFPed4q/6iDyyF1NxWQYsOYReg+bNMhw4N2uQdiSLAOT9EgHvJUrAYDDq1tm\nvKp1G2sAICWPyY8fhRb1x9hx2QDwT3AioKpSdXmweXXN1V6y29GIDQAUmaHBsPQdVjtTLiQV\nAACLI+hrq9ZGxTzLLqrhEenXT5U+b2zzritQ+kZa0zEaKLnkbVZ2Tp44v0ihLHNJKRc/Dr2w\nadmsUYGLz92NZSQ8HdXRng8AzzNxvQetwmpnimpDUAW+OX998AmvCfjq9NXCG77GmbAIAKCV\nijLnEy6mqw7q96lT5hL5bsNHXNSmWvA5w4grqRIAINj87tbG6pTnCfwsOSwAKMq5qdnI9B3W\nPEJlYJMGGQ682zUBW5Jl4FQepAN4LIKkaJou++7Nd3IFeEorZY8lpHeptUeAYHe04J3Jlr59\negmghVZj1SOmbIJU0Ep5Nq12H4ZQTgEAwVIrx4nKhdXOlJRiCgBYRnaVlixhzWGJSEpe+Lz0\nSbaRveqAfEvWYHgGSPY25d/w8PD79x9FvZbTZXNrVnXcBdKk1zky1ceCN88PbnweETd99U/f\nY5+rOrzHe+1bGvpoxzl6+xisMa3BamdKTxeLqMicx7Hi3j5qda0iTcMnvEbhq9PXBm94zalv\nwsktIKni12kk5fx+ehPQ8uDX75bQ7FffonR5WlmUJFMAAMvIVruR6ht8zjAiVfXGyjJV/+Fg\nwiLyAJQkLrpeLVjzCKlgkwYZDrzbNQpbkmVgkh7pACceO16qpGTJBRRdenox16w1wCkACE0r\n9Hb7aANpOy4LAOTSKC2Hqk++NedezZUpFbnX3sq6qTFemCwIF5EUABiZNtd8dHoLq50plhxW\nlpyiZCliihaosYwBTRW8likAgCCMSp+nyHeLZ3KtjMr5GqpMgTAx/P798PDw/xLSlZ+0g23r\nNfXp4OPT3setjiXQVOJ/Yf/7381b959LKRoAoi5u/bVZs9nt7JkIXMfYes4c7PrfqYS/Fh6s\nGzS2E4/A9whtwGpnSsupA1gB+2P2HZW1n22M1c4cfMJrB746fSXwhteCrrVMnxSQNK3cfj1t\nXa+6qpM5z34XkqoN6b3dP95iRvziqGoDFJ55O+1Hq0/wOcMIMzaRq6ApeVaSjHIxZldanipO\nFsqVAMAystR8dPoMax4ZOGzSIMOBd7t2YEuyDEzSIx3ga8GNl8ppWn4kLm+qx4eNujl8VzM2\nIaHolOvp4PbRBt7pJKX1MPVNVz+Hq2eTAeDUttBuQd0qLR997JjqwKZl5YXR52C1M8XPinda\nJKVpcs+T7LltKp9PnxO5T6akAYBr8VEfn1T4t+rAorFFOV9Dn/E2JSY8PPz+/fuRr7I+vWrv\n0rx9e58OPj6uzqVqlWA39OrY0KvjWHHyoXVLL0fnAsCDnYeg3Tytha3LiGFr1ol+mRt67rcx\nD0NHjejr7lK/tqO12vtsoKrBamcGv1bvVcMjFgbfnbPFbePMXpin1zJ8wmsZvjoxC294bXIf\n2xIW/AMAsQcWnLJZ3KO1a9Gbh+vXhaquOnX9sXThguS7S5ddUx3btG2t3Uj1DT5nGOFtwb3y\nVgYA+/9JX9Oj7FYOn8oI3UvTqjdWH40Hp9ew5pFhwiYNMhx4t2sZtiTLwCQ90gGevWvDvngA\nCF29pu2m5W2d+O+vsL4T8K68lQnDdhcEbi8Zd6MkM2/mygDAyNiFmYj1Qr0BQ43ObZDTdPaT\nXWvPCOYO9K4giyB8dHLFtTTV8f8Nx2qvOqx2pnQeUv/09mgA+HfT2rj969zMuRUUVkhfblp3\nT3Xs3KPHhws0eXbLHdVhm+ZWn34RlSFMfHb//v3w8PvxaeIylwiCsHdp7uPTwcenfaNa5hX8\nCFdQb+zCqZf9VwIAmX9fqqT5LMzAVY7Nde7dv33ob9cK057uXv8UAAgWW52aO3v2rMaD019Y\n7UxpOmTFzOJ1W//cPyr69sBh/n07eRrj4AgNwyc8U/DViRF4wzPC0j3Ax/r+vbcymio4vnZe\nMEHQ7+c8ESzjn36spzouEv29fsPFZy/SKJoGAIJg/zj0G6Zi1g/4nGHE//3gfOXkSwCIPbj8\nUZsdre0qWnhPlv1k+b4Y1bFzj87aiE9/Yc0jg4JNGmQ48G5nCrYky8AkPdIBzl0nWR2anatQ\nkpL41YHjG7doOWHeLFcTDgB09nW4cj6ZkqUs3HZ+44y+xgRBU+KQTUsKKRoATOvg3OKq4wp8\n5nepvfJGKgCEH107PsJv8qi+Td0+fhTSVI7w9Z3Lp49eDFd1eVi5jRngyC/3B5E6sNqZUstv\nZsP9AYlFCkVR4uKAhWNnTu3Z+ptyS6Y9u7Fj894YqRwA2Fz7wL7vuv8KMhIuHdlyJikfALhm\nLfvbmmgrdh02cdaSMmcIgnBs2NLHp72Pj08DB1M1f8fIrNn7Qw4X58iq5+HhxSv/el76DK2k\n9Hlg6tcBq50R586dAwCwaPJD85d/P0sI3rbsxHYjawdHR0dHS9OKhmQBwLx5OBC+ivAJzxR8\ndWIE3vCMIAjjaWunvZy2WbW+PV1qVdLGg5Y047/bfKo47+GThDcll775YYGfgKflUPUMPmcY\nUbfvBMGpRWJKSZGiNVPnjP1ldu+29cotmfLo0q+bDmaSFACwOFYTe9bWbqT6BmseGRRs0iDD\ngXc7U7AlWQYm6ZEOYBs3XPnTd1N3hwIATRXGPQlLLp6u+v/WZdgk00uLCik6+dbBYfdO13YW\nZKWmSxVK1Rc7BrRgMGw90DpwY5/UgAtxeQDwNi509cJQgm1sZ/aueufPCkxJSZeUWmyEJ2i+\nYkVfZmLVI1jtjGAZ2S9eOGji0j9ImiYLEvas+PmEk1ubZg3s7e3t7e35IBNlibJEWUnRj6JT\n81RfIQiia+CKhsZsAJAK948IuFjSM/jdz4HYKPsiBMFycvXy8Wnfvn17F/svHnGikCaoDkwc\n+nKw6tUgfnl01dlIpqMwOFjtTDl48GCZMzQtzxGm5ghTGYnH0OATXsvw1YlZeMNrGb+W72/b\nLfbuPBAamazaOpTFMfPpO+GXEc0+LUwQnFbdf1o0qa3Ww9Q3+JxhBIfvETTSa+bhRwCgKEre\nt2raXy6eHbya1KpVy9HRkQ9SoVCYkZER9yTsv6Sckm+1HrXMzQT7fqsFax4ZJmzSIMOBd7uW\nYUuyDKL0WGOEvmYx145s3n9OVEwBwLSjp7tavhv8HhO8ZP4fzz4tb+c19kBQf62GqI9oSnx2\n94bD1ytPKlg17rxw8ZTGgkpmpCF1YLUzJSP8+LyNZ/Le/+2vAMHidf1p1dSejVUfJenbhgfc\nVB279pixKQDXtVNL3779ajdu5dPBx6d9+3q2FS0biGrW37NG7k4UA4CJvfuQ4X2a1HW2szJT\n81XCxsZGo7HpMax2pvTp06fK371w4UINRmJQ8AnPLHx10jK84RlXnCtMycxhm9nVdrYrM4dJ\n8ub49pPZTt+4tvX+rkltM6Yi1D/4nGHE3QOLNp5Xd9Cn54D5K8a012g8hgNrHhkIbNIgw4F3\nO7OwJVkCk/RIlyjl4ucPIhJS0pv39y89IjX8xOZdZ+6I3+fVCILdoqv//CkDcQuQmiKMvnf2\nwsVbEbEyqpwnhm19z559+vXp7GWE9V2jsNoZIcuOOfj7wRsPX1Cf//vo5O4zetIU7/ofNiVS\nJen5jq69h4z1/95DK5Hqg9RcWR0rbAczYPKP/dOKKZ5l6/2HlghwZ25twWpnytWrV6v83W7d\n9HM5NS3AJzzj8NVJm/CGR4YJnzOMeH3/zy17Q169La6gDN/e1X/SjN5tcLn1moQ1jwwBNmmQ\n4cC7nXHYklTBJD3SE4rC9KfPX2a9LbSp/U0DFxcbc5xYXPNoSvoqLiYpLVsikRSRSlMzcwsr\ne1d3Dyf8e6ZJWO2MKBIl3gl/HBsb+zotS1IoKZKDubmFwKaWm7t7i7YdvBrYlilPFacmZxnX\nr22nn40FzUi9vHTBySQA4Fl4H9gVyHQ4hmVA374Kmv5u/ZHZTayYjsWAYLUjhL4S+OqEENI0\nfM5oFk1G3//fvcfPY2PjM3LypTKSIFg8E1NrxzqNG7u2aOPbsVUjHBGqEVjzCCGEkOYZVEsS\nk/QIIYQQYsCLQ9N+OZsMAGzjemdPbWc6HMMyYVB/EUlNP3r6+/fLSSEtwGpHCCGEEEI1jqZI\nJYuLuWHtw5pHCACCAgPeFCtchi5f2MWZ6VgQqjEUWczmYtcN0gZO5UUQQgghvYZTuhlh06Yu\nnE0GAEqWHC1VePCxTaI9nS15ISLpGxnFdCCGBasd6asdO3bU7A9OnTq1Zn8QIS2TiMUKtadD\nCCwtMb9TqRs3btTgr1m6+7Rx5tfgDyLELILNZTMdg2HCmkdIKc+KTcsoUtLyaxmASXqks2hF\n7v3QsMjIqOjYxLzCQqm0SE7RFy5cAACy4OFfoQU+fr51zI2YDhPpJ+wQR1+dvLw81QFBGAkE\npswGg1RoWvYiMiol7W2X7v/30Xkqb9POkPr1G3/r61PHUp9XHWEEVrvWyES5+fn5AMAm45iO\nxYBYe0z3tnwYnicDgCPX3mzo/w3TERmQTiPcQzY/uh8cOfqXb5mOxYBgtWsHtiS17/r16zX7\ng5ikVx/e8F+VtCfXjl64lZj4Miu/oh2Lywg+e94cp2FWZvv2mlx1yW1KE0zSqw+fMwghZHjo\nN3GP/4t9nVsgrbCUIvXZrSIlDQBK2Rc0fhD6qsTd/fP3vSeTxGS5V6niVyf2HQ85eMhv6MRp\ng32x2f6lsCVZKUzSo6/OqFGjVAdc0xZnTq4EgPXr11f51+bNm1czYRkqmir459Shk+dDRVIF\nm+tYNlusJO/evHIXrhzbv6NND//J4/vZcFhMhapPsNq1DKd0M4Pgztw0J/PndUlS+Yvg1Q86\nbP/WzpjpmAxFrY4Lep8be+nO+tPf7/3R05bpcAwFVrt2YEsSGRS84b8eiRc3/7L/dhX2EzTC\nhjz6uuFz5uuEK3YwBWse6T0lKdy9cum1Z8Iv+lbjgQ00FA9CGvUkeEnQH88qLaakxP8Eb4xJ\nzNy1cBAHn+xfAluSlcI8BNIB9+7dYzoEA0WRadvmzr2VVFBpSZqWR1w+HPM8ceOWX5xxua/q\nwWrXPpzSzRRj+zbrdi7btnpjWGLmuik/Dxg/rodfGxtjvJk1jzAat3Z5zuwlx5dNiu8xYsLI\n3o44NkULsNoZgi1JTRsxYgTTIaAP8IZnBCm+t/DARxl6Nlvd9gyXwH6+yrVr1+5zl5TynIjH\nL0o+EgTL3MrOwdHRnF2cmZmZmZVXkk5jcx39A4baclgCV2uNR6zX8DnDIFyxgylY88hwhCya\ney0+74u+Yt9q4NyOjhqKByHNSb2+rSRDT7DNO3zv59qwkVHkid/vfhikwuE3aeZsGplWCADC\nB0cXnmy6YbgbM+HqC2xJloE9gwihzzq7fFFJqpgguPWaNCtTgGCbD+7p9+BBRHK2FAAkqWFL\nVjc6uLy/tgPVL1jtDMAp3Qy5fPkyAHh0HpgnPhGVJTy9a82Z3VxLG2traxsrawGvwu4MvRw7\nqTXnzp0DANdOXaJPXIi4fOjhlSMCO+c6znZGavQgBQUFaTo8fYXVjvTV4MGDmQ4BIYbF7j0i\nU9IAYGLfdNwk/5aNXOwtTZgOSq8sXLiw3PMK6ctf5yxRHfNruQ/4cXCv7zz53A+rE9BUcfyD\nGyEhfzx5LaZI4Zkz91dtmd/QBLvCkE7CFTuYgjWPDIck9WjI+ww9v5ZrW083S05xXFhoXG4x\nADTr3ruhMQcApOKsyIgH6RI5AHj4B60a7IXDUZDOoWTJS/f8ozoWuHacM3tKc0cTAEgUnS1d\nzIjfbPWuY+Ehq9eefAwA8aeD4vsfb4yNSVRz8GZCX53GjRurDjgmtVUHU6ZMYS4cwyVJPXk0\n8q3quH6HoQunDnb4ZMIfwTIZMWnWiInU/dNbfw2+Lafp7P8OnRP+0M8Rd/irIqx2puCUbkbs\n2bOnzBmaJnOzhbnZX7auGvpSBw8eLP2RppV5otQ8USpT8RgIrHbtwJYkMih4w38lrj7LBQCu\nRetdvy/Gjai0iD6+OOheqgQAvAbNXTyyw6erjxJsnlv7XkHtez75a2PQ4TBpesTyRUcP/ToO\n1ylVHz5nvhK4YgdTsOaRQUk4ckd1YNGg585NEwVsAgAU/l39h88pUtLyut3G9qyjKkBT4lOb\n5wffTYs7cyCyW1NPAZexoBGqkvQbO3PkSgDgCVpvWTfTtoI2PMHxHrZs+puJW+8KaUq652Lq\n5sH1tReojsOWZKUwSY++Ohs3bixzplu3boxEYuDi9t1QHdh7B26d+0NFRQl2+8GzrKm0uSdf\nAMDlAwn9FnlqIUK9hNXOFJzSjRBC+gFbksig4A3/lYiSygHAI3ASZui1KTd221+JYgCw9Rwf\nNKpDhWUJrwFzf45/sS08U5x4buO/vRZ422snSD2Az5mvBK7YwRSseWRQ7r/IVx30nz9S8L4r\njMN3HeVouiddkn41Ed4n6Qm2YPDsLaKEMTcyU39dfvbY5iHMRIxQVYWfT1Ed+M6dWlGG/j3f\niSO33t0IAOk3HgIm6dWGLclKYZIeIVS+60nvmmXjAjupU75R/5+JkJ9pms6LuwGA2eIqwmpn\nCk7pZgSOnWTKjBkzmA7BEGG1I1SxoMCAN8UKl6HLF3ZxZjoWhL5MsZIGgHZuAqYDMSwP9z9W\nHQyaUeHg5vd8p/hvC98MAJFH7oL3QA1GhpAG4IodTMGaRwbleaEcAAg2v6/9R6t1NmplDemS\n4twIgA/dlQRhPHpB1xszzosTg0PSew11MtV2uAhVw21xMQAQLN5Ydyt1ynMFvvbczSKSIsVh\nALjjG6oxmKRHCJUvXqoAADbXsSu6GycAACAASURBVL2FWgsWsY3rNTBmJxYpFEXxGg5Nn2G1\nI4OCYyeZ0rlzZ6ZDMERY7QhVQCnPik3LKFLS8msZgEn6qkq9vHTBySQA4Fl4H9gVyHQ4BqSh\nCSeqUK744t2KUbVcSZUAAMHmd7c2Vqc8T+BnyfktT6EsyrkJgEl6pGNwxQ6mYM0jg/JWrgQA\nDq9umX1hrNtYw8UUUvKYpIFb6pJF/TF23EtZJPVPcOLQOS20GyxC1ZJJKgGAzatrXuH6qaU5\nGrFFJEWRGZqMCxkcTNIjhMpXSNEAQLC+YBQkmyAAQCnP01RMBgCrnSk4pRshhFAJnNJdc+g3\ncY//i32dWyCtsJQi9dmtIiUNAEpZsZZC00cyUW5+fj4AsMk4pmMxLD1dLKIicx7Hinv7qJUt\nRjUitZgCABbLVP09n01YRB6AkhRpLiqENARX7GAK1jwyKDwWQVI0TSvKnOc7uQI8pZWyxxLS\n27zUtCKC3dGCdyZb+vbpJQBM0iNdYsomSAWtlGfTAGo2JoVyCgAIFm56UsOUZEHSi0TR2/wC\niQSMTCzMze2c6zeobat+I1+nYZIe6R6JWKyg1Z2kILC0NJD/mWtcXWN2YpGCKk7OUdA2nMpr\nkVbkvipSAACbV1vz0ektrHam4JRuhBBCKjilu6YoSeHulUuvPfuyjWMaD2ygoXgMgU2bunA2\nGQAoWXK0VOHBx/d9LWk5dQArYH/MvqOy9rONCXwB1RIzNpGroCl5VpKMcjFmV1qeKk4WypUA\nwDKy1Hx0BgS7aLQDV+xgCtY8MihOPHa8VEnJkgsouvT0Yq5Za4BTABCaVujt9tHan3ZcFgDI\npVFaDhWhavrWnHs1V6ZU5F57K+umxrJMZEG4iKQAwMi0ueajMwy0IjLs6uUrVx/FpJKfNCa5\n5ratfLr06NmzRT09HyeHL+1IZ6Q9uXb0wq3ExJdZ+V8wvSb47Hn1VyxBpfWobbbtRR5NK35/\nkLnIx7HS8lkP96gepnyHrpqPTm9htSNUMZzeihCqKpzSrW0hi+Zei/+ylX7sWw2c27Hy9g/6\nHGuP6d6WD8PzZABw5NqbDf2/YToiQ8Gv1XvV8IiFwXfnbHHbOLMX5um1w9uCe+WtDAD2/5O+\npkedSstnhO6laRoAuBY+Gg/OAGAXjZbhih1MwZpHBsXXghsvldO0/Ehc3lSPDxt1c/iuZmxC\nQtEp19PB7aMNvNNJSuthIlQDuvo5XD2bDACntoV2C6p87lb0sWOqA5uWONGrBshyonat3xga\nl/u5AmRBdvjVkH+vnW7Te8L0sT30uAGJSXqkGxIvbv5l/21a7dHZJYxwx6iqajnKA5bcA4BH\nW1f913hTS9uK3kbI/Oi1WyJUxw2HtdZGfHoKqx2hCuD0VqRPRC8e3X8UFR8f/yYrVyKRyBQs\nc3NzC2uHxk3cm3p5e3vgHV6TcEq39klSj4a8z9Dza7m29XSz5BTHhYXG5RYDQLPuvRsacwBA\nKs6KjHiQLpEDgId/0KrBXvr76q0VBHfmpjmZP69LkspfBK9+0GH7t3aYUdCSpkNWzCxet/XP\n/aOibw8c5t+3k6cx3s0a9n8/OF85+RIAYg8uf9RmR+sK73ZZ9pPl+2JUx849OmsjPr2GXTTa\nhyt2MAVrHhkUz961YV88AISuXtN20/K2Tvz3V1jfCXhX3sqEYbsLAreXZMuUZObNXBkAGBm7\nMBMxQlVVb8BQo3Mb5DSd/WTX2jOCuQO9K2i8Cx+dXHEtTXX8f8Pxbq8uUhy1eOqyhEJ56ZME\nYWTt4GiilAiz8kpWaaJpKuLCnqkvM3asGq+veXqiCk1qhLSMFN8bMXqDTPnhXmWzK1/LTuXP\ns2fxHbCKaHL9mBH3cmUAwDauPSRg8oBOTbnlvJAoEyMu79p6JLGABAAjfpNDwess9PSJqQ1Y\n7cgQfcH01geJYgAQ1Jt3bDtOgaq60aNHV+2LDcesW9KpVs0GY4ByE0K3/37sUWJWBWVsXLxG\nBkzv/PEcBVRlJ+aMCvnyKd27lo7m4p/WqnqyakJQhAgALBr03LlpooBNAIBCmuA/fE6Rknab\ntHNDz3fTXmlKfGrz/OC7aWxenWX7t3gKuBX9LlKDLOf5ttUbwxLFbJ7jgPHjevi1sVFjJXBU\nHefOnVMdZDy+9PczEbzvY3J0dLQ0reSWnjdvnsbj01MKafRY/0ViSgkAHJN6Y3+Z3bttvXJL\npjy69Oumg6+kCgBgcazWBR9wM8EpK1WHXTRMifpjycLgZ/X8fsIVO7QMax4ZDkqWOG747FyF\nEgAItmnjFi0nzJvlasIBgIQD02afTwaAep3GbZzR15ggaEp8cv2ckH+FAGDlNufIBl9mg0fo\nSz3cHrjyRqrq2NrNb/Kovk3dXDJOzJh15hUAXLhwAWgqR/j6zuXTRy+GUzQNAFZuY45sGMBk\n0PqA3jt5+KW0QtUHrqBBn4F9OrZtVsvRhssiAICmZFkZ6c//DT3/1+VkybtEvrPfvN2z9LMr\nGJP0SAc82zhxyV0hAJjYNx03yb9lIxd7SxOmgzIIkpSbgTN2qFpmAGBkXquFR0M7Ozs7Oztz\nHpWdKRKJRMkJz5JERaoCBMEdtmLv0BbWzIWsD7DakUGp2vTWtrP2LvbD9ZCrrk+fPlX7otuU\nXRu61a7ZYAxNzLktSw6FytVogROEUaexq2b0a6KFqPSbJPXo8MAzqmOc0q01O0YPvp4rA4DR\n+0IGOpRMwYHLAcP3pEss6s08vr1TyUmalu2YOOZGplTQ0P/Y5iEMhKtHLl++DABAy++dPRGV\nJQMAguBa2lhbW9tYWQt4Fd7WmC2usir/YQVV9x+qqpd/rZh5+FHJRxsXzw5eTWrVquXo6MgH\nqVAozMjIiHsS9l9STkmZtuN+W9wP5z9VC3bRMIe+dXTd1j//5do2whU7tAtrHhmQlL83T90d\nWvJx2tHTXS15AKCQRo30X1RI0QDA5prXdhZkpaZL3/de9vvt+DgXCybiRajqaKX0wPyAC3Ef\nBvQTbGM7M6VITAKAe8M6KSnpklIbOvAEzTftW14PB0BXT27cztFzr6mO7VsPWbdgmO1nllqi\nyMxjqxf89V82ABAEa/KBkG4Vrjqso3DsMNIBV5/lAgDXovWu3xfbcHDUtfaY1e2ydXXxouUH\nU6VyAJAXZDz6N+NzhQm2eb/pazFVXH1Y7YzAicVMwR2LdQKHb21txgEAa5x2Vj2ZYXsWHAot\nGSNr7tS4TbOG9vb29nb25kbyTKFQKBS+jHoYm1YAADQtv3VogbnD3vHe9oxGrfMSjtxRHXw0\npdu/q2pKt7xut7GfTOmOO3MgsltTnNJdHc8L5QBAsPl97fmlzzdqZQ3pkuLcCIAPSXqCMB69\noOuNGefFicEh6b2GOplqO1w9smfPnjJnaJrMzRbmZn/ZeDiEdEKDAUvn5C7aeD5S9TEn6en5\npKcVlPccMB8z9NWHXTSMeLdih0WTH5q//PtZQvC2ZSe244od2oA1jwxN3e6z1rFsNu8/Jyr+\naLN5Dr/pkkHN5//xDAAosiD5VUHJJTuvsZihR7qIYPHHr91uvXvD4evvGpM0JROJ312NSUwt\nXdiqceeFi6dghr76oo48VB3w7TvtWDK8giVq2FyH0ct2ZE8Yeye7iKaV548ndpvRVFthag/2\ntCIdECWVA4BH4CR8/dM+yyY9tx5sHrL/0JVbjyVU+dP+CIJVv6XfqJ8mejnzyy2AvhRWu/bl\n5uZW7YsFH7+0oC+COxYzZceOHRVep/OzMzMy0lNfR1278bBISdNKkx9/WfNDE1x6vVqUiuxV\n266qMvRc80Zjpk/t2bZ+efcy/Sri8vbfDidKSJpWXt6ydkCbzVYcvOmr7v6LfNVB//kjBe8f\nHxy+6yhH0z3pkvSrifA+SU+wBYNnbxEljLmRmfrr8rM4pbs63sqVAMDh1S1z81q3sYaLKaTk\nMUlD6d0ELOqPseNeyiKpf4ITh85pod1gEaquKVOmMB2C4fIdv7pOkz+37A159ba4gmJ8e1f/\nSTN6t8EFgWoAdtEw4uDBg2XO0LQ8R5iaI0wttzyqKVjzyAC5/zB6b+d+zx9EJKSk1+F9SEm6\n+69cQGzedeaO+P0EeoJgt+jqP39KP4YiRai6CLZgwNTV7TvdO3vh4q2IWFl5/fC29T179unX\np7OXEXbM1IQbyRLVQaeF4yrdRIZg8X9a1PnOzMsAkPXoAgAm6RFiQrGSBoB2bgKmAzFQHH6d\nET8vHTo+4+GD/2JjY1+nZ0sKJUVyMDMzs7B2dG3i3qJVOzdnc6bD1DdY7V85nFhcI3B6K1Pq\n1q1bWYl6TQEA+g0fknDq0PYzd5N3LQgo3LB3gCv+La66zLAtyTIKADjG9ZfvWuvx2duYqN+2\n17pddWdNXJYioxSyl5vDM1f64uoRVYdTuhnBYxEkRdO0osx5vpMrwFNaKXssIb3NS/1fQLA7\nWvDOZEvfPr0EgEn6qsNsMSO6devGdAgG7Zv2A7d6946+/797j5/HxsZn5ORLZSRBsHgmptaO\ndRo3dm3Rxrdjq0Y4yrOmYBcNQgjpPZaRwLNDV89PznsPn9Wm79Cnz19mvS20qf1NAxcXG3Ps\nn0E6z9HDZ7KHTwAlfRUXk5SWLZFIikilqZm5hZW9q7uHk5UeLrHOoKQiBQAQBHvkN2qtwGHh\nMtqIuCKnaXlhpIZDYwamFpAOaGjCiSqUKyrfvBVpEMe0lnfnWt6dezAdiGHBatcanFjMCJze\n+vUztnUdNWerWcGEw0+zjy8Oan1sU10eLu1VRU/OvFYdeE1f8PkM/Ttcy+aLp7WauDECAF6d\negK++Ieg6nBKNyOceOx4qZKSJRdQtHmpzBjXrDXAKQAITSv0dvvofwQ7LgsA5NIoLYeqZzBb\njAwUwfXw6e7h0131iaZIJYuLWXkNwS4aRuAYLKZgzSNUBsfUqbW3E9NRIFTzCDbfxaO1iwfT\nceg7CmgAYHEd+Sy1GusEYVyLx0qRUUArNRwaMzBJj3RATxeLqMicx7Hi3j44agkhpBE4sZgR\nOL1VR7B6z595dNhihezl5jOvf/NvwHQ8uuqGqAgACII9qa1ae8zbtwswIh7KaVqaeQMAk/RV\nh1O6GeFrwY2XymlafiQub6rHhzFtHL6rGZuQUHTK9XRw+2isWzqJO8gghGoGwebioELNwS4a\nRuAYLKZgzSODEpea41bHhukoEPqqxd054/bdIKaj0GHNTY3C80mlPEdOgzo7CNBKaXqxEgCM\n+K4aD44JuH0U0gEtpw5gEUTMvqMyGodqfy0osqIN/xDSY6qJxWM8bWll0fHFQSm4J301VDS9\nFUA1vbU0i/pj7LhsAPgnOFFrQSIAMOI38xPwACD9+nWmY9Fhb4opAGDz6tkZqdUCZxnZ1jdm\nAwBF4oaX1eLEYwOAakp36fNcs9aqg9C0wjJfwSnd1efZ+93Gz6Gr10SkS0tdYX0n4AGAMGx3\n6X8RJZl5M1cGAEbGLtqMU/9cvHjx4sWLodF56n/l6bUrFy9e/PtmjOaiQp8KCgyYMGHCmptp\nTAeC0BfDLhqEENJXcwPHDpvw86bdR0IjosWkfk5aRUglQSL/0q9IM55vXzJx7qajmojHcPRs\naQMAtFIWnFKgTvm8mL0KmgYAi0a9NBsZQzBJj3QAv1bvVcOby97enbPlEr4EMoJW5N67efH3\nLWunTRw/0n/owP59+w/6UXWJLHgYcvGf1IIv/quG1CERi/PUhv9vaBGr9/yZLIJQTSxmOhgd\nxmMRAPCZ6a2gmt760QWC3dGCBwBvn17SUojovYbGHAAgJQ+YDkSHWXBYAEArpZWWLFGkpAEA\nCCMNhWQgfC24AKCa0l36vGpKNwCkXE8v8xWc0l19zl0nWXFYAEBK4lcHjp8btCGh6N3TvrOv\nAwBQspSF286r2vY0JQ7ZtKSQogHAtA7OV6uWffv27du3789wkfpfSf7z2L59+/bvP665qFAZ\nSnlWbFqGSCSKv5bBdCz6A1+dtAa7aBBCSI8Vil7f+fvPzasWjBoyfPaSdSfP30x4k8t0UAjV\nvEWBQbH5ZOXlAACApvKvHd00dvKSG8+EGo3KELhN/EnAZgHA3yv2iqlKWpIUmbF5bRgAEAR7\n0JRm2ohP63C5e6Qbmg5ZMbN43dY/94+Kvj1wmH/fTp7GuL+ctsTd/fP3vSeTxOX/0aKKX53Y\ndzzk4CG/oROnDfbFf5Yakfbk2tELtxITX2blf8GKBcFnz5vjP4C2qCYW/5MnS79+HfwnMx2O\nrsIdi3VIUrECAGhKwnQgOqy+MTtbTlGk8Gmh3NO08ry7Qhr9hlQCgJGJfq7opTWevWvDvngA\nCF29pu2m5W2dSvbXYH0n4F15KxOG7S4I3F7yFMIp3TWCbdxw5U/fTd0dCgA0VRj3JCy5eLqr\nCQcAXIZNMr20qJCik28dHHbvdG1nQVZqulTxbqZOxwDcYkDbSCUNAIriV0wHogfoN3GP/4t9\nnVtQ4XgsWpH67JZqGJZShuuTVRe+OjECu2h0QlBgwJtihcvQ5Qu7ODMdi2HBmkf6gaakCc/u\nJzy7f/IAmDu4tGrl1apVKy/PJubqrQyH0FeuODdySeDSZdtXNLPkVlzydcTFnbuPxefItBOY\n3uOat14b6Be4/VZR1u2pc9nz5wV42Je/g1JG9N0D23Y+KyABoPHA5T0c+OUW03WYpEc64Ny5\ncwAAFk1+aP7y72cJwduWndhuZO3g6OjoaGlayTN03rx52ghRfz0JXhL0x7NKiykp8T/BG2MS\nM3ctHMTBd/PqSby4+Zf9t+kvn5GAjWQta2jM+efdxGJM0lcR7lisK8j8iFt5xQDA4tZiOhYd\n1sXF4uGzbAA4cDJm+4TK05Dxp/ep/hZYNOiu8eD0mnPXSVaHZucqlKop3Y1btJwwb5YqW9zZ\n1+HK+WTVlO6NM/oaEwRO6a5BdbvPWsey2bz/nOjjrWE4/KZLBjWf/8czAKDIguRXH9a4s/Ma\nO87FQtuB6rjY2NhPTxa/fRUbq8ZfTFqRmx5zOrtI9aGGIzMwSlK4e+XSa184t6bxwAYaisdA\n4KsTI7CLRieoVuwoUtLyaxmAqWItwppHOm3VolmRkVFRUZFxr4RUqT+vBZlJoVeSQq+cIdj8\nRs1btm7dupVXq0bOlgyGilD1keKY5YELF29b5WlTfpJYlh13ZPfOyw+TS86w2IKu/j9pK0Cd\nV1BQ/oL2gm/HrygyWrH/uvjFPwsn/dvc2+/bFq6ODg4ODg4mRFGmUCjMyPjv7pU7Ue9WPfTq\nP33JyOZaDFyrMEmPdMDBgwfLnKFpeY4wNUeIW7RqVur1bSUZeoJt3uF7P9eGjYwiT/x+90Pf\nE4ffpJmzaWRaIQAIHxxdeLLphuFuzISrF0jxvYUHPupmYrPZan6XS+D4CK3CicXVh9NbdUJx\nbvzOxb+p3s9NrLswHY4OazKiFTy7BgApF1eeaLZj+LeOFRQWPT61/Oy7Wa1e/viHtVpwSjeD\n3H8Yvbdzv+cPIhJS0uvwPjRp3P1XLiA27zpzR/y+tgmC3aKr//wp/RiKVIeVm/EShu2cF/Zl\nv8Mzb1czARmqkEVzr8XnVV6uFPtWA+d2rOhvAaoYvjoxBbtoGIUrdjAFax4ZhObf+jX/1g8A\nKGlOTFR0VFRkVFRU3Mt0+fu/tjQlTfjvXsJ/904AmDu6tG7VulWrVi093cxxzhbSNe4CboyY\nJAsSVk5duGDbmtZ2H+XpaWXR7TMH9p+8mU8pS07W/7Z34ORRrtY8rQerq/z9/SstQ1PSZ2FX\nnoVd+VwBFltQGHN1/tyr3wycE9jOvkYD/Cpgkh4hVD5Klrx0zz+qY4FrxzmzpzR3NAGARNHZ\n0sWM+M1W7zoWHrJ67cnHABB/Oii+//HGJvhsqaLYvUdkShoATOybjpvk37KRi72lCdNBoXLg\nxOIagdNbmXLy5Em1yimLM1KSnz/676383TuJ+yhM4VSdZePJXezv3hRJaZr8Y83kxB4jh/fr\n1vCT1bqKRC+vnQ85eilCoRoYYff9FDecoFBdOKWbQSwjgWeHrp6fnPcePqtN36FPn7/Melto\nU/ubBi4uNuaVzL9EGtVq0jCmQ9BhktSjIe8z9Pxarm093Sw5xXFhoXG5xQDQrHvvhsYcAJCK\nsyIjHqRL5ADg4R+0arAXLhBeHfjqhAwNrtjBFKx5ZIDYfJtmbb9r1vY7AKCKcuOio6KioiIj\no+IS35DvE/YFwqRbl5NuXT7F4pi5Nm+5IWgOoyEj9GVW7Fy5fNrSyNxieWHimqnz5m1d963j\nu5Zk+rPrO3cejBR+GJVlbOs2enJgzzb1GArWoCkpcXy8GACIvPK3Y9Z1mEhDOmDKlClMh2CI\n0m/szJErAYAnaL1l3UxbzucXBCQ43sOWTX8zcetdIU1J91xM3Ty4vvYC1S9Xn+UCANei9a7f\nF9tUUOeIUTixuKbg9FamqJuk/xjfwe8XfRyyqkWsn9ZMj5qyQUhSNE09unz48ZWjlna1HOzt\nHRwcTKBIJMrMzMzMyMpTvu/1YHPtf179E/4xqBE4pfsrxDF1au3txHQUOq927dqlP7558wYA\njMztHQTqDnows3Fq5tt/pI9DzQdnMBKO3FEdWDTouXPTRAGbAACFf1f/4XOKlLS8brexPeuo\nCtCU+NTm+cF30+LOHIjs1tRT7X8m9Cl8dWIKdtEwBVfsYArWPDJwbBMrj9a+Hq19hwBQMnF8\ndFRUVFRUVGTMi1RStW6EQhL35C4AJumRLuFaNAnauXr1z4ufZMsURa/W/Tx79paNbcwzT+7Z\n+efdhJJiBJvfcdD4n4Z2McfRtUgzMEmPdEC3bjhjkgHh51NUB75zp1aUoX/Pd+LIrXc3AkD6\njYeASfqqipLKAcAjcBJ2M2kZTixmCk5v1RVWDTssXfWzCQvfSarFxN771w3TVy7fqZpbSdPK\nXFFarigtLqqcwlyB6+SlS30cy061R1WGU7q16eLFiwBg7uLr56HuUhBPr11JJSmOSYPuXdw1\nGZq+2bVrV+mPffr0AQCnTnO3T3BlKCJDdP9Fvuqg//yRgvf9dxy+6yhH0z3pkvSrifA+SU+w\nBYNnbxEljLmRmfrr8rPHNg9hJmK9gK9OTMEuGkbgih1MwZpHqDQ2z8zKytLKytLKysrCOD1b\nqmA6IoSqzsjMdfGOdeumL4zIlFKy1E3TZ1jSWTnyD/2Tzi1/CJwyrqkDrtVURRcuXGA6BB2A\nSXqEUPlui4sBgGDxxrpbqVOeK/C1524WkRQpDgMYrOHo9FaxkgaAdm4CpgMxODixmEE4vVX7\nunfvrnZZtl3tei4NGrVo4oLdTDXC3MVv3X6PyyF/XP77lqoX71NGfMeO3XsOGdbLgavu3rqo\nmnBKd43bt28fANTr01j9JH3yn8cOCAuN+E27d1mjydAQqnnPC+UAQLD5fe0/GlnVqJU1pEuK\ncyMAOpWcJAjj0Qu63phxXpwYHJLea6iTqbbD1Rf46oQMCq7YwRSseYSAJlNfxEVFRUVFR8VE\nx+WUl5gnCBwwh3QSh++yYPuGjTPm3k+XUqQw5/15rqDB8IApA3waMRkcMgyYpEcIlS+TVAIA\nm1dX/bVcHI3YIpKiyAxNxqXnGppwogrlCprpOJAacGJxDcLprVo2efJkpkMwaCwju94jp/by\nH/86PjY2Nj4jWyyRSOTAMTMzE9jWaty4iVuT+nx8tiDDo1otU1H8iulAdNuIESMAQOBqy3Qg\nhkW1xhKHV5fz8cPbuo01XEwhJY9JGrilLlnUH2PHvZRFUv8EJw6dg5v4VBG+OiGDgit2MAVr\nHhkmmpalxMeq1rWPikkQy6hPyxAEYVvHtVmzZk2bNm3WrKn2g0SoRrCN687Z9uuWWXPupEhU\nZ1y6j1/2U28rXKtJA1IvL11wMgkAeBbeB3YFMh3OVwGT9Eg/BQUGvClWuAxdvrCLM9Ox6CpT\nNkEqaKU8mwZQM1EglFMAQLBwBZiq6+liERWZ8zhW3NvHmOlYDAtOLP5q4fRWpK8Ilkn9Jl71\nm3gxHYhhonMzXielZhZIJHKKxTczs3RwblTfmYtP9WqIjY399GTx21exseX06JVFK3LTY05n\nF6k+1HBkBmbwYFzRigE8FkFSNE2XnVjGd3IFeEorZY8lpHfpgYYEu6MF70y29O3TSwCYpK8i\nfHVCBgVX7GAK1jwyKEnRj1R5+ejYlwVk+Yl5m9qNmjVrpsrNO+KKEUgvsLnOszZvMZo7639J\nBQAgfByZN6aXFeZONUAmys3PzwcANhnHdCxfC7zRkB5SyrNi0zKKlLT8WgZgkr6qvjXnXs2V\nKRW5197KullX3utBFoSLSAoAjEybaz46vdVy6gBWwP6YfUdl7WcbE5gr0B6cWIwQQoZAlPDw\n76vXbv/7X/Ynew2wueZubXx79ujZoVkdRmLTdfPmzfv0pDBs57ywL/sdnnm7mgkIVYaiAYcb\n1hQnHjteqqRkyQUUXXodMq5Za4BTABCaVujt9lEvth2XBQByaZSWQ9Un+Or0lRC9eHT/UVR8\nfPybrFyJRCJTsMzNzS2sHRo3cW/q5e3tgX0yNQNX7GAK1jwyKDMWrPj0JEEQ1s4Nm73T1FHA\n035gCGkai+swbdNWzvyZ1xLEUlHE/Gmr125b6MLH/GkNs2lTF84mAwAlS46WKjywhjFJj3QK\n/Sbu8X+xr3MLpBWWUqQ+u1WkpAFAKSvWUmj6qKufw9WzyQBwaltot6BulZaPPnZMdWDTsvLC\n6HP4tXqvGh6xMPjunC1uG2f2ws4mhFD15eXlqQ4IwkggwMkcyEBRpPDUzt9CQmNpuvyJ2hRZ\nEH3vSvS9K2d8Bs2e7l/bmK3lCJFKq0nDmA5BfxTlCNNzixs0rFf6pPjlve37/3zxOiWvCKxr\n1W/fuefIgR2NcYuN6vG14MZL5TQtPxKXN9XDquQ8h+9qxiYkFJ1yPR3crEp/Jb282Wnoi+Cr\nE+NyE0K3/37sUWJWmfOFXxxvZgAAIABJREFUBXnC9NSEqEcXTx+1cfEaGTC988f3P6oCXLGD\nKVjzyGDxrOq1+9arabNmzZo2dbLCRWuQDit31bdy+Y2e/Hrd5vgCskj0aP601fNn/VjuPqdN\nmjSp0QANiLXHdG/Lh+F5MgA4cu3Nhv7fMB0R8zBJj3SDkhTuXrn02jPhF32r8cAGGorHENQb\nMNTo3AY5TWc/2bX2jGDuQO8KptoIH51ccS1Ndfx/w120FKKeajpkxczidVv/3D8q+vbAYf59\nO3ka4ywnpKdSUlK+qDzBYvOMTYx5xsamJlxMJ6ht1KhRqgOuaYszJ1cCwPr166v8a+VOlkVl\n3LhxowZ/zdLdp40zv/Jy6PMoMu3X6bPD0gpLn2QZ8e0d7AlZrignnyqVuU+6d2b2y7Rfd8x1\n5mKe/gvUrl279Mc3b94AgJG5vYPaa2Ca2Tg18+0/0seh5oMzPFnPb+4+9MfjJJERv7nqya+S\n8+TopBV/ksp3N3xOWvzFY/G37z3fvmmaFQf/sFadZ+/asC8eAEJXr2m7aXlbp5KHNus7Ae/K\nW5kwbHdB4PaSSfZKMvNmrgwAjIzx1ala8NWJQTHntiw5FCr/zNC3EjlJT7bOm/B87KoZ/bA7\nu1pwxQ6mYM0jg0XmpcbGmrBYBAAo3d1r2+A7KdJVVevIkmU9DlrwuNxLFy5cqF5EBozgztw0\nJ/PndUlS+Yvg1Q86bP/WztDHAGGSHumGkEVzr8XnfdFX7FsNnNvRUUPxGAKuwGd+l9orb6QC\nQPjRteMj/CaP6tvU7eNeJJrKEb6+c/n00Yvhqt5tK7cxAxyx0VZ1586dAwCwaPJD85d/P0sI\n3rbsxHYjawdHR0dHS9NK+rgxc4Z0ztSpU6v2RYLFta3lVKf2N81bt2vfvo2juVHNBqb37t27\nx3QIem779u01+GtuU5pgkr6azi9bqMrQEwTRyLtbzy6dPFyc7azNVf2stKJIlJHx/EHoxbNX\nXheQACAVhi9ccu7I+oGMRq1jdu3aVfpjnz59AMCp09ztE1wZishwCe8dDNxw/tPMGU3lr15/\nriRDXyI/6ebcjc33LfDTUnz6yLnrJKtDs3MVSlISvzpwfOMWLSfMm+VqwgGAzr4OV84nU7KU\nhdvOb5zR15ggaEocsmlJIUUDgGkdXISs6vDViUGZYXsWHAotWZzG3Klxm2YN7e3t7e3szY3k\nmUKhUCh8GfUwNq0AAGhafuvQAnOHveO97RmNWrfhih1MwZpHBqV5o9pxiWkkTQMATStFyXGi\n5LhbV/4CAIHjN+7uHh4eHu7uHg2dcX0UhFAVGdu3Wbdz2bbVG8MSM9dN+XnA+HE9/NrYGPBa\nhpikRzpAkno05H2Gnl/Lta2nmyWnOC4sNC63GACade/d0JgDAFJxVmTEg3SJHAA8/INWDfbC\nMfTV1DpwY5/UgAtxeQDwNi509cJQgm1sZ6ZUXZ0/KzAlJV1S6t2DJ2i+YkVfZmLVFwcPHixz\nhqblOcLUHGEqI/EYLNxY8StHK8mstNdZaa+fPAg98rtppx/HTxjyvRk+9BFC5SlIOXY4OhcA\n2Ea2E5au6dmi7CBOgmPiUMelax2X7/v0Dl634PQjEQDkxh45mvx/o+qZMxAxQtVAyZIWbblY\n7tzW7Kc7E4sUAMDiCAYFTG7lzI0Ov3D0wlMAEP37211xe1+1lz1AZbCNG6786bupu0MBgKYK\n456EJRdPVyXpXYZNMr20qJCik28dHHbvdG1nQVZqulTx7pWqYwCuhFx1+OrEFKUie9W2q6oM\nPde80ZjpU3u2rV9eQ5x+FXF5+2+HEyUkTSsvb1k7oM1mXLSjynDFDqZgzSODsurXXUpSnBgb\nExUdExMdHRuXVCB/12gRC1+HC1+H/3MZAIwta7l7uKty9o3r18JHO/rK1apVi+kQ0AeXL18G\nAI/OA/PEJ6KyhKd3rTmzm2tpY21tbWNlLeBV2LurlwNtMUmPdEDCkTuqA4sGPXdumihgEwCg\n8O/qP3xOkZKW1+02tmcdVQGaEp/aPD/4blrcmQOR3Zp6YjdT9RAs/vi12613bzh8PVJ1hqZk\nIvG7qzGJH/V9WDXuvHDxlHoGPOgJ6QfcWFGb2rVrBwByycvHUWUrHAAIgiizdbQR36VVczup\n+G1WVlZ2jliVgaCpwn9Ctj2Pzdi1YgTuRVquxo0bqw44Ju8Wo54yZQpz4RgE1b1dLqU8J+Lx\ni5KPBMEyt7JzcHQ0ZxdnZmZmZuUp3t/2bK6jf8BQWw5L4Gqt8Yj1WuyhUAAgCGLw6s093Swr\nKMni2o1YsuPtxDH/y5QCwO3DsaOWtdVOkPpnxIgRACBwtWU6EIPz5squLJICABbbYkDgjB/a\nNC259ORItOrA1X/5iP9zAYAmHq3tpZM33UyjaeWpv5J9xzZiJGb9ULf7rHUsm837z4mKP5pA\nyeE3XTKo+fw/ngEARRYkvyoouWTnNXaci4W2A0Wo2jLDtiTLKADgGNdfvmutx2c7Xoj6bXut\n21V31sRlKTJKIXu5OTxzpS+ud1hFuGIHU7DmkaFhcQWuLbxdW3gPAKCVspSEuJiY6Ojo6JiY\n+OxCuaqMLC/jyb2MJ/f+BwBsE6vG7u7uHk1HDerJaOAIfdaePXuYDgF98Ok/B02TudnC3Owv\n2+pab5Tt/kboK7Rj9ODruTIAGL0vZKDDh+VeLwcM35Musag38/j2TiUnaVq2Y+KYG5lSQUP/\nY5uHMBCuPhJG3zt74eKtiFgZVc4Tw7a+Z88+/fp09jLC7Fi1Xb16tcrf7dYN3wCrS82NFQGA\nIIw64caKNYGSvV45ee6THBkAEGx+6+97d2nX1M7O1t7O3owjzxKJRCJR4tO75y6H5copgmB3\nn7oxoGtDAKCVZMaLZ9cvnf7rdpzqp1z9t2wa0oDJ/xiEKqOQvvx1zpJ7qRIA4NdyH/Dj4F7f\nefK5rJICNFUc/+BGSMgfT16LAYDv1HbVlvkNTXBYbbUsGjYospA0rzMqeOcgdcoXvD7g//N5\nAOCaNjtzcrWGo0Oohv0xYWiwSAoAXj/vDupSau0fWjFu0I/ZcoogiPUn/3Tjv3uwkPn3Bo1Y\nDwB8e/+Q/fj2VF1Kufj5g4iElPTm/f3dSj29w09s3nXmjvj9BHqCYLfo6j9/ykA+C9+gqg5f\nnZhyear/npQCAGg7b+9in8qT7sK7qyZujAAAi3oBx7f30Hh8+ivl782qFTtUph093dWSBwAK\nadRI/0WqxDCba15mxY5+vx3H8UDVhDWPEAAAKEXJCdEqMTFpOdIyl3GXboSQOlRb41WNXj5n\nsMsP6YDnhXIAINj8vvYfbcjaqJU1pEuKcyMAPiTpCcJ49IKuN2acFycGh6T3Gupkqu1w9ZGj\nh89kD58ASvoqLiYpLVsikRSRSlMzcwsre1d3DycrY6YD1B/YW8Qg3FiREX8uXabK0NfxGT4v\nYEDdjybiGDnU/sah9jfNvNr2GTbi0sENB669+HvHL2zB/p/a2hEsrlPjNmMat/H13Dlr23Wa\npl+eXi8etEeAi96jrxd9fHGQKkPvNWju4pEdPl0VkGDz3Nr3Cmrf88lfG4MOh0nTI5YvOnro\n13G4fmB1vCiSA4Bzn88ub1CGeb2RXOICSdPyoheVl0boKxOWXwwABMGd2cmp9HlZ3s1sOQUA\nXAvfkgw9AHAtfGyMWDlyJZkfDoBJ+upiGQk8O3T1/OS89/BZbfoOffr8ZdbbQpva3zRwcbEx\nx1XfqgtfnZhyQ1QEAATBntRWrVch+3YBRsRDOU1LM28AYJK+6nDFDqZgzSMEAAAs+3pu9vXc\nOvUYSBZk3rt+4dSZq2nv59YjpFtSLy9dcDIJAHgW3gd2BTIdjmHB1T3LwCQ90gFv5UoA4PDq\nlumhtm5jDRdTSMljkgZuqUsW9cfYcS9lkdQ/wYlD5+AmfzWGYPNdPFq7eDAdB0IagBsrMkKc\ntP94XC4ACBoO2jZ3aAXpdbaJQ9/ATVT62MORb69sWOB79PeSBEOD7wOn3Xm87b9sihSeyyoa\n7cj/7K8gxKjc2G1/JYoBwNZzfNCoDhWWJbwGzP05/sW28Exx4rmN//ZagOOBqkH1kObXVvvh\nQHAdeawUGQUEbuKjlpSUlJr9wbp169bsDxqUTFIJAByTb8qMWst9flt1YOnetcxXanM5OXKS\nkhvo6oJawzF1au3tVHk5hL56b4opAGDz6tkZsSotDAAsI9v6xuyEIgVFplZeGlXI/YfRezv3\nU63YUYf3oaHi7r9yAVHuih39GIpU32DNI0RJs6MjoyKfP3/+/Hl8SpYSl2dGukwmys3PzwcA\nNhnHdCwGBwfaloFJeqQDeCyCpGiaVpQ5z3dyBXhKK2WPJaR36YkIBLujBe9MtvTt00sAmKRH\nCFUON1ZkxJO9d1UHgxb+qMYEeKLnnBGHR22jSNGu06+2jf6wb653wHfbJv0FAFGPcqAXJunR\nV+rh/seqg0EzflCnvO8U/23hmwEg8shd8B6owcj0nZcZ9464uCC+ADys1SlPK6UZxUoA4Jp+\nOhsWlWPq1Kk1+4N6uYSd1piwCJmSppVlX50SLqarDur3qVPmEvmujxUHHSKE1GLBYWXLKVpZ\ndqHjChQpaQAAwkhTMRkSXLGDKVjzyABRsry4qMjI588jIyNjkjKo8hLzVs6urby8vFp5aT88\nhKrMpk1dOJsMAJQsOVqq8OBjnhQxBm8+pAOceOx4qZKSJRdQtHmpNA7XrDXAKQAITSv0dvuo\nBWzHZQGAXBql5VANB0UWs7k8pqNAAABBgQFvihUuQ5cvLL3tKPpCT868Vh14TV/w+Qz9O1zL\n5ountVJtrPjq1BPwxTUbq+hCUgEAsDiCvrYm6pTnWXax5+4UkVT69VMwelHJeWObrgB/AYD0\nzRf0FRqyL532SrDYPGMTY56xsakJF3fPraorqRIAINj87tZqbRPDE/hZcn7LUyiLcm4CYJK+\n6nq2t7/zd2rq+XPKAdPVmfGXF7tfTtMAYO/TV9OxIVTj6ptwcgtIqvh1Gkk5c99P9aPlwa/z\nVYf96n+0+i6tLEqSKQCAZWSr3UgRYgC+OtWI+sbsbDlFkcKnhXJP08rz7gpp9BtSCQBGJq6a\nj86g4YodTMGaR/pESRa8iHk3Yz7mxRuyvMQ8m2fp3qKlV6tWrVp5fWNvpv0gEaoma4/p3pYP\nw/NkAHDk2psN/b9hOiJkuDBJj3SArwU3XiqnafmRuLypHlYl5zl8VzM2IaHolOvp4GZV+ivp\nJPXJz6CqoxW590PDIiOjomMT8woLpdIiOUWrJjmRBQ//Ci3w8fOtY46D4hmglGfFpmUUKWn5\ntQzAnqZqwI0V/5+9+wxrIusCAHwmIQFCCTWA2ECkWhELIoptbWvvXddesax17RXLZ8OGvXfF\nxrrqrtJcC4gNC4ooIBBCbyFMMpnvRxARKVkgiQnn/XUzuZPnbGQnM/fcc69KxBVQAMBgmct/\niokWQ0BS4ryXxQ8yWYX/amQ6WY3habBKl70SDLaZVa06tes3cWvTtm1LS7zy/xfxsj94hp78\n0xx0GUQmgJQUKC6qmqDh2Ommf/+RlvHPmiudVw1oVH5nikzaviEYAAim3thRtkoJEKHq1NVK\nLyKHpGmp750En18LNw5Ie7GfT8o2pHd3/r5MJOvDiQIpDQDaBm2UH61GEmalJCalieVeA9be\n0UmO9YRQNcBHp+rSxdYw7EUqABw++8Z3YsWLF0ZdPCjbVsywQQ+FB4cQQqgKVi/2fv3us0ha\nym0MQRDm9ZxlRfNNG9nqEHj7gtQZwZ67dUHybJ8YofjD6fWP2/m2NpermgIpWg0sDcUkPVID\nzXrXhoNRABC4fkOrratb1SpaypjRnqv9Z7qIH7ovZ4ZvUZG9lEz+O0MEACwdHFqtBu9CLu8/\ncDYmq/TUF1Xw6czBU+eOHPUaNnnWEE8cYKom9Jd3T5+9/ZyRU25ZMC2Jf3FftnKgVFSgpNA0\nFG6sqBJGWowUMUWJ4rIomivH5YOmcj6LJABAfL9UJkUWbqPLNsacsWLRUjIl4XNKwueIx4HH\n9+t1HDxh4tDO+njpl48+k8iQ0JQ4JUZE2epUvNk5VRDLF0sBgMEyUnx0mkyL47JpQc9JGwMi\nji1dlTJmzODetialP/LlfH6yc+O25zkkALQcs64VLlUqnxUrVqg6BPSN8/jmsOQeALw9vOSC\n6bKebvb5X8I2+QTK3q3VdXDxzjmxIStW3pa1TVu5KTdSTUNL0i8f9rsZHJGe899uy0/7XzPA\nX9IqwUcnZXMa1QJe3AaAuBtrzzTePaJ1eZt/CZ5eWO3/SdZ2HemojPgQQghV1tM3n0oc0eKY\nNWnu6trC1dXVtbZ8a8IhpBZ0eC199qzctX5LaHSyz/TZAyb81tOrpakcYzWoGmFpKGCSHqkF\n665TjI/+niGRkrlR62dMcGjafOKiefa6WgDQydPiz2uxlChu6a5rW+b01SEImso6t3V5HkUD\ngF6d7qqOXe1FnF6+6vyLCrtJqax7p7e8iU7eu3SQFg4xVY2U5O9bu+L2C/5/OsthYAMFxVND\n4MaKKuFlrH1RIKRp0i8idWHLiuvp014dlE3oZht+V+0n5N+SNQwdDEs5Df2gTZs2ACDO/fg0\nMuXHdwmCoL+v/2NxbFs0MRdmpaekpKSmZcmqA2kq7965XS/fJu1dMwon0cvD3ZD9Z7oIAA7d\nS9zQs+Se0D9KCjwg+4dgG3ooPDhNx2szeefv+su3X4gIOPHs1vmm7bu3cKzD41lY8MyZZHay\nIFmQnPz+xaOQZx9l+yzadpk62cNAIChzDQMeT65lV2oINzdM7v5EjJynepj8+yBdRFM5pzYu\nOl3skk4wdCYNridr5wtubdp848WHBNnfPEEwBw+rr6qYNQBN5e30nnkvPrcS52rLNUEUlQ4f\nnVTCyGFaF17I3wIhTZPnN0yL7jl6RL/udhacEt3yBR9vXzt34uYTCU0DgK555+mOOO9QLrt3\n767eD6z0Mlo1DX7zCMkQBLNWg0auLVxdW7Ro6lAXR3qRRgoICAAAl04DM7PORKbwL+7dcGkf\n28jUxMTE1NiEq13uJNpFixYpK0xNhqWhMpikR2qAqWO3dlL7mfsCAYCm8t5FhMYWeMuS9LbD\np+jd/COPomPvHxn+4GJta25KfKJQIpWd2GFqxQuvoXLE39lVlKEnmAbtOnvZ2zVkvTqzP+Tb\nIIgWx6mxtd6rhDwA4D8+sfRso80jcHZ8lZz7Y+HtqMz/dAqvxcCFHcorX0AVwo0VVaLTUJuL\nvq8B4NHWje8O+TiWW7QqEX7c6vNA1rbuWWyLAZr03x4sa7ZsYvzjiehHS5cupUSf105bKHtJ\nMDlunXt3adPI3NyMZ87T1xKnCAQCgSD6ecjVgNAMMSXJjzVpOXNpVzsAoKVk0ocXd25evBL0\nDgBSX1xcdqHt1qE42F2xX7pZ/3n2IwC8PbI6vOVut3LXUhOlRqw++EbWtu7ZSRnxaa4pU6bI\nGlpaBEiAlhY8D7z2PLC8U2L+3j/x7/I6yGZ2I/QTIgidWRtnfZy1Tba+ffFJVw6DljfmFN7k\nFGSGRbz/UvRW/W5LvLg1a1HB6vXlzobiGXoWh8szMZBzHImFE92qAB+dVIQxaYN35PTNfJKi\naSo84NjTP08YmVtZ8HgWFha6kC8QJCcnJyelZEq/XoKYbN7s9ZNwRoqc7ty5U70fiKliOeE3\nj1Arr14tXF2buza1NMRFxZCG8/PzK3GEpsmMVH5G6n+b/YkqB0tDi2CSHqmHuj3m+TBMtx26\nKij4brN5LU6j5YOaLD7/AgAoMif2U07RW+au43+zxZLKyqNEsSv87snaXPsOC36f3sRSFwCi\nBf7Fu7E4jdfvPfnw3PqNZ58CQNTFVVH9Tzno4rWlknLjT5z7OszEsbJv1czRSKvgXWjgu4wC\nAGjco7edjhYACLNSXj15nJgrBgCXkavWDXHV4NlkyoEbK6qElddcu0NTo/MlkvzoZVOXjp87\ns5db/VJ7Jry4u3vbgTdCMQAw2bwZfQsLAXOS3t88vv1STDYAsPWb9zfTVVbsau/yipURaSIA\nqOMxYtHUAXW5xZ/AWRa161vUrt/YtVWf4aNuHtl8+PaHW7vnM7mHJrUyJxjsWg4txzm09Gy2\nZ96uOzRNf7y4KWuQnzwbFtRwdftO5F74I4uSUqRgw8wF4+f/3rtVvVJ7xoXf/N/WI8kkBQAM\nLePJvWorN1JNk5SUpOoQEFIqjpXnDl/DA3sOB76KlWXIGFr6Hn0nzh/V+MfOBKHVosekP6a0\nUnqYGuWfi9GyhmPHIZNH97Mz01dtPDUEPjqpkC7P/X+bvdeu3iP7tmlamiFIyBAkvIsspTOb\naz9txQoPy5Kl9gghhH4q8QEr3kXEvIsIuWTofnjvDFWHgxDSWFgaWhwm0pDacO429kCnfi8f\nP3kfl1hH+9vuIM4j1y4htu29FJz1tYCeIJhNu45cPL2fiiLVEIl396SJpQCgzXXb7jPXTKvs\nWe+Elvvwld5fJu8M4dOU0O9G/LYhNsoLVLO8P15YEGzYoNeerZNlSS/JyK4jRyzIl9Liut3H\n9ypcIZmmsi5sW3w6JOHdpcOvujdqxsUprlWCGyuqBIPFW7Z00OQV50maJnPe+62ZfaaWY8vG\nDXg8Ho/H44BIkCJIEaTEvA5/HV84AksQRNcZa+x0mAAg5B8aNfVGUY1g+9kzcMRVTlkxh069\nywAArt2gXQuHlTNUzdS16DtjK5U4/tir9D83L/E8sd+RU3j32KDzjFnBT3c9S6VI/tWU/LE4\n8FoRLY7LqtGuc4+FA4AkP/bgullXbJu1c3WysrKytLTkgJDP5yclJb2LCH0Wk1Z0ltuYlY44\n9a1q2Gz8iUQ1Dseq6Zx1u6Zl8OOS05j65rWtzdnfl2trcWzdPQ1r1bdv5d7eqTZmlKsqNJsE\nAGOXkZvmDsW7EaXBRyfVMrD18jnkEnDufMCt+7I5ED9icSw79Og1dPivFmzc4fU/GDVqlKpD\nqKHwm0c1nEiQkZ2dDQBM8p2qY0FI4aZPn67qEGooLA0tQQP/k5AGY7C4zdp1bfbDcfcR81r2\nHfb85ceU9DzT2vUb2NqalrtmMpLHw2txsobnwpnlZei/8pw8emfIFgBIvBsGmKSvrH8/ZMsa\n/RePLipL1eLYj7HU80vMTfwrGr6ONBFM7pDftwvej7ubHP+/1f4ntw1VTcSaAjdWVBWTpiN8\nF0sXbbmUKZECQE7iu3uJZT4NEgztrpPWTe9YS/ZSKhUWZejte86Z3Qa3iJZXxIEQWWPQ0sFy\nFJMRvRaMOjZmF0UK9l78tGtsw6I33Ke23zXlCgBEhqfBr5ikr1iDASsWZPyx5dor2cu0mOfX\nYp6X07/ZgMXL+tkqJTRNdunSJVWHgJBqaBtbNjQufd6hfu1RSxYoORxNli2RAkCHWb9ihl6Z\n8NFJ5Rgs896jZ/46csLnqLdv30YlpWbl5uaKQUtfX59rZuXg4OToZMNh4P8W/9mQIUNUHUIN\nhd88quFMW9YF/1gAoESxr4USFw5mjpAm6969u6pDqKGwNLQEvNQiDaGlV8vNvZaqo9AoQVkF\nAEAwtMc7y7XHM5vryWNvE5AUmRUKgA82lfQyTwwABJPTl/dduqthCxNIzC3IeALQseggQeiM\nXdL17pxrWdGnzyX+OqyWnrLD1Si4saLKWLmPOnDA9cj+I3fDPlDFts4toZazx9gp091tDEoc\n51ja9x46fmRnFwWHqVGux+QAAEOL21e+DQK0jbrw2HsEJJV45wKM/aPouI5pV4ArACD8IlRQ\nqJrHc8L6Ok6Xtx849ym9oJxuHJ79yClzerfEhe4RQkgN1NVmvs+X1MOxbOXCR6efBMHQtXFy\ntXFyVXUgCCGEqsTExdvdKOxhpggAjt/+srl/fVVHhBDSQFgaWgI+QyKESpdMSgGAqV3XQO4t\n+yxZTAFJUSTu/Fp56WIpAGhp19X6/ls3aWkCN+LI3KckDexibxnajDNn30whqXuno4ctqHgn\ndVQO3FhRhXTMnKcv2zpeEB388Onbt28/J6Tk5uXmi8HAwJBrauXo7Ny0VTvXBmYlztI17b9j\n73Cb2uZYnvNfxRVQAMBgmct/iokWQ0BS4ryXxQ8yWYWrF5DpZDWGp/Hqtx24073363//efD0\n5du3UUlp2UIRSRAMbV09E8s6Dg72TVt6dmjREHfMRQghddGBx3kfm/0yOb+zkbaqY6lB8NFJ\nVW7cuAEABraeXi7yLir2/Paf8SSlpdugRxdnRYaGEEKoCgj23K0Lkmf7xAjFH06vf9zOt7W5\njqpjQghpGiwNLQGT9Aih0ukxCVJCS8WpNICcaQK+mAIAgiFXXSYqlTaDICmapiUljnNq2QM8\np6Wip7mke/HdHAhmB0PtS6nC9Oc3AXCkqapwY0XV0uXZdetr162vvP2Z2nVsscy4Uoy0GCli\nihLFZVE0V45UME3lfBZJAIAgWMWPUyRf1mAbs0o5DZWDYLt49HDx6CF7RVOklMHGrLwKFQhz\ntXT18Z8AIVQ57hNcD64IDN99lfYdhxcSpcFHJ1U5ePAgANTr4yB/kj728snD/DwWp1GPLhsU\nGRpCCKEq0eG19Nmzctf6LaHRyT7TZw+Y8FtPr5amOjj8hRCqNlgaWgIm6ZGaEWalJCalicte\nD7kEe0cnHG+tnNYG7L8yRFJJxu10UXeTiidOkjkPBSQFACy9JoqPTmPV0mZGCaWUKDaHoov/\nULH13QAuAEBgQp67I7v4KeZsBgCIhaWVe6P/DjdWRDWBl7H2RYGQpkm/iNSFLSuup097dVAk\npQGAbdim+HEh/5asYehgqIg4aw6CibN+FIjMz8ln6nHZpa2iRlPP7py7cu9pXPwXCcuoUQt3\nr5793e3kTTkg9BMaO3Zs5U60G+ezvKNV9QZTc5g1mzvE/tmF91eWHqm7anxHbQLvFZUBH53U\nCCmlAUBS8EnVgWhMk9q2AAAgAElEQVSO3KwsidwjY1wjI7wqVRfBh/B/wyOjoqK+pGTk5uaK\nJAwDAwNDEwsHJ+dGru7uLtaqDhChKgkICAAAl04DM7PORKbwL+7dcGkf28jUxMTE1NiEq13u\nIPuiRYuUFSZCSI1haWgJmKRH6oGWpF8+7HczOCI9p7wNXH902v+a/FNyUHFdvSz+8o8FgAu7\nAruv6l5h/9cnT8oaps0r7ozK4mnIjhKKaVp8/F3mTJdvS75ocez1mUQuRcfdSQTH75aCSSQp\npYep+XBjRaTZOg21uej7GgAebd347pCPowG7nM4S4cetPg9kbeuePb+9QZP+24NlzZZN5Fqi\nCiFlSnx57+rt4PCnL1OFkiZ/HFrXmleiA5n12me5T/jnrK8H+A//9n/0z3W3X6f9MemXijdG\nQ+inlJGRUbkTcwrwlrIqiOEbfATzFwZe3TEuLHDMqL7Otja1LU3wSVSh8NFJad6+ffvjwYL0\nT2/fyvF90pKMxDcXU/NlL6o5sponIeL2iev3o6M/pmT/h8ExHBmrFhnvA333nwyPTilxPC8n\nk58Y/z4y/MbFE6a2rqOnendyxIcjpK78/PxKHKFpMiOVn5HKV0k8CCkOTm5WFSwNLQGT9EgN\n0FTeTu+Z9+JzK3GuNo6wVla9AcNYVzeLaTo1Yu/GS9yFA93Leabjh59dcztB1v5lhK2SQtRE\nzXrXhoNRABC4fkOrratb1Sra8pzRnqv9Z7qIH7ovZ4Zv0QO2lEz+O0MEACwd/NqR2sNyEKWx\n8pprd2hqdL5Ekh+9bOrS8XNn9nKrX2rPhBd3d2878EYoBgAmmzejbz3Z8Zyk9zePb78Ukw0A\nbP3m/c00czZr9YqLi/tP/QkGU1tHV0dbR0dPl40LePwXNJVzZvOK8w8/ltNHKk5dN2vV88yS\nA9w0TYXd2D2/gLF9ZhdFxojQz0KLY2KirwUAJro4OFAlTLZ17/5tA3fczkt4vm/TcwAgGEx5\nLt7+/v4KD05D4aOT0pRaHMkP3bMo9L99jrZBm4o7obJF39g2/1AQLfcTUxEWjoxV2Zur25cf\nDaxwXc+0mIidiya+HL9uTj8n5QSGEEKocnBys6pgaWgJ+ByO1MCXOxuKZ+hZHC7PxEDOsWoW\nrjRYWWyux+IutdfejQeAhyc2TnjiNW1M30aO3w9n0FQa/3NwwMUTNx5SNA0Axo7jBlhySv1A\nJA/rrlOMj/6eIZGSuVHrZ0xwaNp84qJ59rpaANDJ0+LPa7GUKG7prmtb5vTVIQiayjq3dXke\nRQOAXh3N/JVSISmZE/MhWpCenZObCyxdQwMDc2ubBrXN8JpS7bAcRPkYLN6ypYMmrzhP0jSZ\n895vzewztRxbNm7A4/F4PB4HRIIUQYogJeZ1+Ov4TNkpBEF0nbHGTocJAEL+oVFTbxSND7af\nPQP/JeQxc+bMyp1IMNhmVrXq1K7fxK1N27YtLQ1Y1RuYpqHFh/6YeeNNBc/bz/1WyDL02sZO\nXTu3qGPMiHkfFRkWkSAUA8DHO7uOebUY1wiroJD62b17d7nv09mpyUlJifGfI2/fDcuX0rRU\nd/D8Dd2c8K+9qsKOLVt75WXxI7SUwgE8hcJHJ7XTYspwVYegxsisB0sPf5ehZzLl3S6JjSNj\nVZMc6rfkaGDRl29Qy6FlYzsej8cz5xmwxMl8Pp/P/xgZ9jYhBwBoWnz/6BIDiwMT3Esu44TQ\nz2/69OmqDgGhnxRObq4uWBpaAlGJCZgIKdmx34ZeSc0HAMeOQyaP7mdnpq/qiGoKWio8vHjq\n9XeZRUcIpo65vlSQRQKAs12duLjE3GILBmpzm2w9uLqeDu6rWyVxt7bN3BdY9HLWiYtdjbQB\nQCKMHD3yD9m4EpNtUNuamxKfKJRIZd367Tj1my3uCV0daMmr0L8C/vwr/E08+cNPJNvArIVH\nl569ejWtx1VJdJqn0uUgF65d08HBpqpJenhq0ZZLmV8vI+UgGNpdJ62b2ctB9jI3cdeIqX/L\n2vY952yd2kmBUWqQPn36VP1DCKZex8ETJg7trI+TVMoQfWXZvGOFeTIdM8d+fX9p7mzLq1vP\nVPvb/QlVED9q2Mw8itYxbvs/vwV1vt66UKKk/YsX3I7JBgBtbtuLJxcrP36ElEaU+v7CUd9L\nIbEEQ3fs5gMD7PHepvKyPp4YM+9y5UZXrl+/Xu3x1Bz46KQcJXI2X758AQCWAc+CW96WScXp\nm9Zq7Nl/9C8u1R9cjfFiy+TlIXwA0OU1+m3KyOYNbXlGuJaVMkglqd4jJsWKKABgGzQc5z2z\nVyub0m7E6U9PAnx3HIvOJQFAS6fB4TPbjLXwjh0hhH5SFS12WHJyM1PHeupqnNxcPcJ8Z8hK\nQwHAxLGwNDTpzJx5lz6B7PmotNLQ45sHqDJohcEkPVIDEwf1F5CUscvIYxuH4u2tktFUlv++\nzcfuvKqwp7FDp6XLpjvI/ZSOyvHm9vFth64KCigoNtIEAG9OL198/sWP/c1dxx9e1V+pIWoo\nUVrk3k1bAt9VUH9JEMyWvSd6j++JldxVRGY9GDV2s0hamXKQy/7+uGpj1YlS3xzZf+Ru2Aeq\n7BvCWs4eY6dMd7cxKDoiS9JzLO17Dx0/sjMOtsprw4YNACDO/fg0suROlgBAECVvy1kc2xZN\nzIVZ6SkpKalpWcVX1zRrOnjvmlE4T+VHNJU5aeh42XZl5q6DdywfVeqFOvnhqkkbIwDAbdWR\nFa5mxd+iRB/Gj1ggm7wy9uC5gRa4PhDSbNIrKyYee56qpdNgx8mtdbVxrm0l3Zo3el90FgDo\n8pyHjujjVNfa3Fhfzmu0qampQmPTePjopHyyeYf1+mz1nWiv6lhqkE2jBj/ILmAbuvkdW2aq\nhU9CypMU+MeUba8AQEvHZu3BLS7ljnqRmS/nTV4ZJ6IAoOmCA2s9LZUUJUIIIYXByc3VDktD\ni8MkPVIDQ/r1FUnpfvvP/lZLT9Wx1FD81w/8r9+4/+StiCrlimFm06xXn359OrmyMFlQfaTi\nrJePn7yPS2zSf6RjsVV0Hp7ZtvdScNbXKhCCYDbtOnLx9IEc3K64ysisyKVTV77PExc/SBAs\nEwtLXWkuPyWzxHbpxi59dq+bgHn6qsBykJ9EviA6+OHTt2/ffk5Iyc3LzReDgYEh19TK0dm5\naat2rg3MSvSnCuJjU3RsapvjX/9/RYk+r522MCJNBAAEk+PWuXeXNo3Mzc145jx9LXGKQCAQ\nCKKfh1wNCM0QUwTB7DFzy9SudgBAS8mkDy/u3Lx4Jeid7KPsR27fOrSBKv9jfkop4RsmrHkE\nACyOo98pH7MyhrD/njN6V0wWAEw5dqGXiU6Jd5+un7j6sQAA6vX/n+/4hgoOGSEVEwtfDR6+\nTErTtkO37xiJV5VKmja4f0IBpW3kdujoci7eHCodPjopGSbpVWL0gH5ZEmnzJQdXu1uoOpaa\nJWDmSL+4HABotejAMo+Kk+78kHWTtzwBAMN6U0/59lR4fAghhJQBJzdXMywNLYJJeqQGfh86\n4H2+xPvExc5fJ8UjlaAp4ad3b2ISUnNzc/NJqZ6+gaExz97ZpZZxydFtpFCSvMTnLz+mpOeZ\n1q7fwNbW1EBjf6KUiz4wbcTNhDzZCza3QZ+BfTq0amxlacpmEABAU6KUpMSXjwKvXQmIzS1M\n5Ft7Ldo3z0NlIas/LAdBNc2FhWNPvcsAgDoeIxZNHVC3jGcMKj/55pHNh29/IAji1z8OTWpl\nXvTWx3/2zNt1h6ZpJtvy2Hk/TAWVEL7stzUvUwHAceLuzX3qlt6JlkwaPDiZpABg6vELPX+4\njcmK2Tp6TjAA6NeadGZ/b8VGjNBPYMeYIfcyRTrGPS4cn6bqWNTVgL59JTTdftPx33EBzJ8M\nPjopwoULFwCAa9+lWzMTVcdSg8jKV6Ydv9ADR2CUa86QATEiCUEwD126bM6q+KFVKk4dPGiC\nmKa1dBpcubBdCREihBBSApzcrAhYGgoAWhV3QUjVOvA472OzXybnY5JetQgmx9bFzRYXNlY1\nLb1abu61VB2Fpsl4t7coQ89zG+qzZLjZ94/fBFOHV9u2yyDbjn16nVy/5MqzVABIDNry15gW\n3c1wlKSSIoViAHCZMQUz9KgmyIo5JMvQc+0G7Vo4rJz0OlPXou+MrVTi+GOv0v/cvMTzxH5H\nTuFNe4POM2YFP931LJUi+VdT8sda4mLs3wmKzZE1enUos85JlH4z+euyaSKqlA66Zu4AwQBA\nZj8BwCQ90nx2Olr3AMjcxwCYpK8kExZDQFLNrfCa/NPBRydFGDJkiKpDqInsdLUi88QSrLRS\nui8FFAAwtevJk6EHAAbLzEaH+T5fQpHxCg4NIYUTfAj/NzwyKirqS0pGbm6uSMIwMDAwNLFw\ncHJu5Oru7mKt6gARUh4Wp7EXV/tepijxzh0Yic9N1cPSxWOai8fUml0aikl6pAbcJ7geXBEY\nvvsq7TtOoyfN/ETiA1YsORsDANqG7of3zlB1ODUFfu0qFHk8TNbg8DruXj6inJ2emWyLsSt3\np04cH5yaT9PSa6eiu89ppKwwNU2BlAaANo64mROqESIOhMgag5YOlqMAnui1YNSxMbsoUrD3\n4qddY78tuu4+tf2uKVcAIDI8DX7FhNB3PhVIAIAg2B6GZdZK8u8HyxoMLaOeJqVMAGWya8sa\nFJmsgBgR+unEFEgAgKZyVR2IGutkpH1OIPxS6sQfhGowigZc9Ke69LI1jHyV9vRtVm+PGjFg\n/fMw1GKkiilaKpT/lHwpDQBAsBQVE0KKl/E+0Hf/yfDolBLH83Iy+Ynx7yPDb1w8YWrrOnqq\ndydHXEYI1RQ4uVlBanhpKCbpkRowazZ3iP2zC++vLD1Sd9X4jtplJ89QdREJMrKzswGASb5T\ndSw1CH7tKnQ3tnBguuPS38rJ0MsQDM6kPzoFzw0AgJTw6wCYpK8kLAdRgt27d1fvB86cObN6\nP7DmuB6TAwAMLW5fM115+msbdeGx9whIKvHOBRj7R9FxHdOuAFcAQPjlP4wV1hACUgoADJaZ\nVtkX8sd3kmQNPauhOqVtS0wwCjP3UnF69YeI0E+GzH5yP7MAABhsK1XHosY6jnI+ty3839Ov\nxs5vrepYEFKq/DR+YkZBA7t6xQ9mfXzge+jyh89xmflgYmXTtlOv0QM7lPqbi+TXfOYAxtRD\nbw6eELX9vcInVlSNbHSYqWKKIvnP88TN9CrOu0uEr7+QUgBg6dorPjqEFOLN1e3LjwaKK9ol\nOS0mYueiiS/Hr5vTz0k5gSGkWji5GSkCJumRWiCGb/ARzF8YeHXHuLDAMaP6Otva1LY0wRnZ\nimPasi74xwIAJYp9LZS4cPBaoQz4tatQTL6s+JI5ur6hPP0NbceyiD/FNC3Oe6Xg0DQZloMo\nwZ07d6r3AzFJX2lxBRQAMFjmFfYsYqLFEJCUOO9l8YNMFk/WINPJagxPM+gxCZGUpumCsjrQ\nVNYVQeHkBus+TUvtQ4kFsgaDhVvtIg1XkBG1Z9kOiqYBQNeki6rDUWNWHZb0vjr+ZvCmi50P\nDG5mpupwNBBOOvwJpbz8e9/R809jBCxOk0tn1xYdT4s4MWXNZVJamNpJS4i6cTIq6MFL362z\njMuZQ4cqwrHqvW7Ek6WnQxZsd9wy91fM0ytNF1vDsBepAHD47BvfiaXfPRYXdfEgTdMAYNig\nh8KDQ0gBkkP9lhwNpL9m6A1qObRsbMfj8XjmPAOWOJnP5/P5HyPD3ibkAABNi+8fXWJgcWCC\nO0+lUSOkcDi5WZkKhLlauvo1JP2HGSCkHphs69792wbuuJ2X8HzfpucAQDCY8szD9vf3V3hw\nmsjExdvdKOxhpggAjt/+srl/fVVHVCPg165CFNAAwGBbcuSr8CAIHSttRpyIAlqq4NA0GZaD\noBrFSIuRIqYoUVwWRXPleNSgqZzPItn8oe9KdiiSL2uwjXEJzZJqsbXSxCQtSU8gKWs288cO\nuV/O5X9NG/zSuvQJE+K8F7IGk13mxvYI/bTOnj0rVz9pQVJc7MvwZ+niwjsZ5zFtFBiWxiNY\nv21cnfb78lMrp0T1HDVxdG9LnG5brXDS4c+G/+DIjM3XfiyypKns9ZuuFmXoi2TH/L1wS5OD\nS7yUFJ+GajR0zdwCn52XD415HTRw+Mi+HZvp1JDRa5VyGtUCXtwGgLgba8803j2idXn3h4Kn\nF1b7f5K1XUc6KiM+hKqVVJK6btdfsgw926DhOO+ZvVrZlHahoT89CfDdcSw6l6RpacD2jQNa\nbsOZWEiD4eTmakTm5+Qz9bhsRinv0dSzO+eu3HsaF/9FwjJq1MLdq2d/dzsjpceoVPjciNRD\n2LFla698V0ZGSync8U+BCPbcrQuSZ/vECMUfTq9/3M63tTnWuSoefu2q00SP9TCblIrTxDSw\n5HisoKXCxAIpALA4uIRd5WE5iBKMGjVK1SGgQl7G2hcFQpom/SJSF7asuJ4+7dVBkZQGALbh\nd5kzIf+WrGHoINfKHzWKh4n2qzySpumLH7PnOJWyOeLb42GyBlOnXmejUjakBwBByDNZQ9u4\nrYLiREhx5E3Sf49j4TW/DdY/Vd7Vq1cBwL5jl9dnrj8JOBr253GuuXUda3N57ipXrVql6PAQ\nql6UKOaP7TdKXQY59fme6HwJADC0uIOmTmthzX798PqJ688BQPBoR0hWW08uW9nhagrZdQYM\nnbo1+XjrxfvTu1ae8WWZWFhaWloa6VXwrS5atEgZIWooI4dpXXghfwuENE2e3zAtuufoEf26\n21lwSnTLF3y8fe3ciZtPJLIUjnnn6Y4anlRAGik5dHusiAIALR2b1Xs3upR50SZsWv3qs7fu\nvMkr40SURPRx28PktZ44xRmpE5zcrGSJL+9dvR0c/vRlqlDS5I9D61qXfPwks177LPcJ/5z1\n9QD/4d/+j/657vbrtD8m/VJaSl9DYJIeqYGsjyfW+eOC0sqmw2vps2flrvVbQqOTfabPHjDh\nt55eLU11SilKQ9UIv3ZV6dXc9GFQEi0VnY7LGVfPoML+mW8OyJ69DRv+qvjoNBmWgyjakCFD\nVB0CKtRpqM1F39cA8GjrxneHfBwNyhtOlQg/bvV5IGtb9+z57Q2a9N8eLGu2bFJKErqGc+lq\nBUdyAODJLn96328lria0JOPQyzRZ29BmaBnXGumpK3GyFs8Tp2GhGsHYrt2KdbN1cbvoKjhy\n5EjxlzQtzRTEZwriVRWP5sFJhz+VL3/uTSEpAGAwDQfMmNOtZaOityKOv5Y17EeuHvWLLQA4\nubjxhNO2/p1A09ILV2I9xzdUScwaoMR1BgBoWpzGj0/j46VG0RiTNnhHTt/MJymapsIDjj39\n84SRuZUFj2dhYaEL+QJBcnJyclJKpvTrzBUmmzd7/SQNTicgDRZx6bOs4eq9pOwMfSG2UZNl\ns1pM3vIEAD5diADPnuX3R+ingpOblYamcs5sXnH+4cdy+kjFqetmrXqeWXLvQpqmwm7snl/A\n2D5TYxcwwCQ9UgP/7rkrW2ZHl+c8dEQfp7rW5sb6OIakaAEBAQDg0mlgZtaZyBT+xb0bLu1j\nG5mamJiYGptwtcvNouE07UrDr11VHCdP4oauy6Kkt9Yc6H9gXvkrUVNk0raNoQBAEMxB0xsr\nK0YNhOUgqEax8pprd2hqdL5Ekh+9bOrS8XNn9nKrX2rPhBd3d2878EYoBgAmmzejbz3Z8Zyk\n9zePb78Ukw0AbP3m/c10lRW72qj1y1jW0WVims5NuLr6fPNVQ5sXf/f50RV8snAlJsdhpS9A\nGntr45McUtbu28NaodEipAg9esi/Ay7TvHY92wYNmzrZ4gQ59JPDSYc/lUd/fpE1ms3YNKZL\nsd9KWnI+IQ8ACIL4rUfdosNtxo2CvzcBQMqDCMAkPVJDujz3/232Xrt6z7uMAgCgaWmGICFD\nkPAuspTObK79tBUrPCxLltojpBbuCvIBgCCYU1rJlYbktZnKIsLENC1MvguASXqk4XByc2XQ\n4kN/zLzxJqP8Xs/9Vsgy9NrGTl07t6hjzIh5HxUZFpEgFAPAxzu7jnm1GNdIMytVMEmP1MD1\n+FwA0DZyO+C3XJ49XFG18PPzK3GEpsmMVH5GKl8l8dQQ+LWrCtvAbeMMrxm+9/NTgmYuZC5e\nNNWFV/peA0mvQw7v2vMihwQAh4Gre/6wzB2SH5aDoBqFweItWzpo8orzJE2TOe/91sw+U8ux\nZeMGPB6Px+NxQCRIEaQIUmJeh7+Oz5SdQhBE1xlr7HSYACDkHxo19Qb9tUCn/ewZeEv0Ixan\n8YzW5jseCQAg4vTK+Z/79+7g6uhgQ2fzw2+fORRQWCLP0DL+zcXkx9NjH5xadOCJrK1vPcCL\nW/p6+Aj9zKZNm6bqEGqiOXPmqDoEhJQnNLsAAAiCPbdjreLHRZl/p4opAGAbejpyvo03sg09\nTFmMNLGUzH4IMFTJ0WqM6dOnqzqEGs3A1svnkEvAufMBt+4n5opL7cPiWHbo0Wvo8F8t2Lga\nIlJXXwooAGBq1zNnybUYBINlZqPDfJ8voUgcxkFqBic3K0e0/+qiDL2OmWO/vr80d7bl1TUt\n3ocqiN/yTwIA6Bi3/Z/fgjpfFxWmREn7Fy+4HZMNAAGb/MadXKzc2JUEk/RIDSSTUgBovWQW\nZugRQlWXk5NT6nFu6wlr8llrDt3J+nBv6ZRHTdy9Wje1t7SwsLCw0CXyk/l8flLSs5A/gyMT\nZf1d+3svH91EiYEjpCQUWcBkY25SIUyajvBdLF205VKmRAoAOYnv7iW+K6szwdDuOmnd9K/D\n31KpsChDb99zzmxcYK0MHX5ffWvs7Kg8MQB8eOC/7YH/j31s+yy2YBeOOtESUXp6+pfoNw/+\nufFX2CfZQYKhM2k1ZhEQQvLq1KmTqkOoceIDViw5GwMA2obuh/fOUHU4NYtsiEZLt36JIZqM\nl0GyhpFz1xKn1GZrpYlJSoxTzyuve/fuqg6hpmOwzHuPnvnryAmfo96+fRuVlJqVm5srBi19\nfX2umZWDg5Ojkw0HyyuRmjPUYqSKKVoqlP+UfCkNAECwFBUTQoqBk5uVgKYyfc4U7oVk7jp4\nx/JRBqUl+FIjDudRNAA08p5Yp9i2v0wdq6k+Kx+PWJApkRZk/Xs5WThQE4vlMEmP1IAJiyEg\nqeZWGvh/4M8Mp2mrBH7tSjBy5MgK+9CU8EXony9C/yyrA4PJzXvz1+KFf9UfuGAGpsoqC//g\nfwa0JOPfwNBXryJfv43OzMsTCvPFFH39+nUAIHPCrgTmeHh51jHA5+1qY+U+6sAB1yP7j9wN\n+0B9Tbr/qJazx9gp091tDEoc51ja9x46fmRnFwWHqcaYbOt1e1as8l73OqvkZmYyXLtu68Z8\nW+s+/taymQffF+9AEIwuUzZ25OFuAqhmIbO+sLm1VR0FQvISCTKys7MBgEmWOd0NKYgugxBJ\naVoqKXH8/Y3C2cw2feqUeIssvOfB/CVSewRD18bJ1cbJVdWBIKQQNjrMVDFFkfzneeJmehWP\nA0iEr7+QUgBg6dorPjqEkJpJfbZXQFIAwOI4blo2stQMPQC8Ol+4XX2L+vol3mLqNPRuYbb6\nsQAAAv9MGKiJGydhkh6pgU5G2ucEwi8iStWB1Cw4TVsl8GtXF1IqKyoqCwCITFLVsagx/INX\nuXchl/cfOBuTVfqfMVXw6czBU+eOHPUaNnnWEE9czqa66Jg5T1+2dbwgOvjh07dv335OSMnN\ny80Xg4GBIdfUytHZuWmrdq4NzEqcpWvaf8fe4Ta1zfHfoULaJk3XH95368xR/9uPBHnf1iNl\nsIy7Dh49enDncoqctHStBkxbOsqrnlIiRUj1KFHa09CQoKCghy9jrly7pupw1BKWdKuEacu6\n4B8LAJQo9rVQ4sLB0S3lsdHVysghqYLPCSRlXbSsNy0+/Tlb1uxnY1i8Py3NjxFJAIDBKnl7\ngxBC6KfSxdYw7EUqABw++8Z3YtMK+0ddPChb782wgfwrhyOkbGJx4bAAi4UlKEoVezVa1mgw\nYqaZVhmbaNCS819yZU2itKEau+GO8FgAAGmP3wEm6RFSiY6jnM9tC//39Kux81urOhaEEEJI\nQ0ScXr7q/IsKu0mprHunt7yJTt67dJAW5oerjy7Prltfu2595e3P1K5jizWucmOwzXqNW9Br\nLPnp3Tt+anoexbKqZW1dt46RTulbhBIEwbNp1Kp12z79u1uU0QchTUJTwtdPQoOCgkIfR8qW\nFkSVhiXdKmHi4u1uFPYwUwQAx29/2dy/vqojqkG6WulF5JA0LfW9k+Dza13ZwbQX+/mkbEN6\nd+fv50xkfThRIKUBQNugjfKjVVOZmZmyBkGwuFw91QaDEKo5nEa1gBe3ASDuxtozjXePaG1Z\nTmfB0wur/Qv3C3Md6VhOT4RUa+DAgbLGoctXeawyUsVIAYJiC/ec7dWhzIuJKP1mMllYnVtq\nla6umTtAMACQ2U8Aeld/lKqGSXqkBqw6LOl9dfzN4E0XOx8Y3AxnXiOEqkS2jjdCNVz8nV1F\nGXqCadCus5e9XUPWqzP7Q77tFarFcWpsrfcqIQ8A+I9PLD3baPMIfPBGaoVg2zg1sSm3i2X7\nuftaahsZGenp4JMRqgFoSczLR0FBQSGh4am4UFk1wZJu1SDYc7cuSJ7tEyMUfzi9/nE739bm\nOqqOqaZwHt8cltwDgLeHl1wwXdbTzT7/S9gmn0DZu7W6Di7eOSc2ZMXK27K2aSs35UaqxsaM\nGSNrsPWaXjq7FgA2bdpU6U9btGhR9YRVk3yKCAwJe/7m/efM7Jx8isE1Mqrb0MWttZeXa31V\nh4aQAhk5TOvCC/lbIKRp8vyGadE9R4/o193uh02g8wUfb187d+LmEwlNA4CueefpjkaqiBch\n9FP7VCABAIJgexiyy+rDvx8sazC0jHqaaP/YgckuLFihyGQFxKh6+PSI1AHB+m3j6rTfl59a\nOSWq56iJo810Fv8AACAASURBVHtb4sAHUn+nT5+WNfoNG6GHq0gjhJSIEsWu8Lsna3PtOyz4\nfXoTS10AiBb4F+/G4jRev/fkw3PrN559CgBRF1dF9T/loIs/wUijsLnW1lxVB4GQ4vE/RAQF\nBQeHPIjPKPjxXYJg1HbE5FklYUm3qujwWvrsWblr/ZbQ6GSf6bMHTPitp1dLU1wNRfGMnKd6\nmPz7IF1EUzmnNi46TRB04ZbzQDB0Jg0u3DImX3Br0+YbLz4kUDQNAATBHDysvqpi1gAPHjxQ\ndQg1hSj11bYN/3sUnV78YEZq8ufoqOBbV07Yt5v/h7eLcSlZBIQ0AmPSBu/I6Zv5JEXTVHjA\nsad/njAyt7Lg8SwsLHQhXyBITk5OTkrJlH698jPZvNnrJ2FtMkLoRwJSCgAMllk5C3M+vpMk\na+hZDdUpbWtCglH4mysVp//4rgbAYVakBq5evQoA9h27vD5z/UnA0bA/j3PNretYm7PkSGuu\nWrVK0eHVFDQZEvpYno6mLdo4c3B/l4qdP39e1ug6ZDgm6RFCypR4d0+aWAoA2ly37T5zy9wX\nCgAILffhK72/TN4Zwqcpod+N+G1Dyi9LRvLKzcqS0PIuMc01MsLfCYRQJWQnRAUHBwYGBb9P\nzCm1A69B0/btO7T3bFffDKuQKwtLulUkICAAAFw6DczMOhOZwr+4d8OlfWwjUxMTE1NjE652\nuU9YWFhcFQShM2vjrI+ztsnWt6eL3c84DFre+OtoQEFmWMT7L0Vv1e+2xIuLeU30syvIjPCe\ntjapoMzFZlLfhy6b8mm53w5XzNMjDaXLc//fZu+1q/e8yygAAJqWZggSMgQJ7yJL6czm2k9b\nscLDsmSpPUIIAYAekxBJaZouZZq4DE1lXREIZW3rPk1L7UOJBbIGg2VS7RH+DDBJj9TAkSNH\nir+kaWmmID5TEK+qeDQfLXn94Hbgv2HxxGCfBS6Fx6R5W7ZskefsVjtPOttgSVo1oKmcFas2\ny9pr165VbTAIKcLYsWMrd6LdOJ/lHa2qN5ga5eG1OFnDc+HM8jL0X3lOHr0zZAsAJN4NA0zS\nV01CxO0T1+9HR39MyS7zKeVHp/2vGeB0LoSQ3Aoy4h4EBQcFBz2LLn1JQKM6Tp6e7Tt4etpb\nGyo5No2EJd0q4efnV+IITZMZqfyMVH6p/VE14lh57vA1PLDncOCrWFkxJUNL36PvxPmjGv/Y\nmSC0WvSY9MeUVkoPU405ODjIGlq6hUu8Tp8+XXXh1Bz0/oWbi2fo2XrGdevVNyRyPsfGpeeS\nsoOUKGHT/F2nDy8opy4QIbVmYOvlc8gl4Nz5gFv3E3PFpfZhcSw79Og1dPivFmy84UEIla4W\nWytNTNKS9ASSsi7tWpH75Vy+tHC65y+tzUv9EHFe4WadTHaZG9urNUzSI4S+I3hxa+ue4+/4\nQgAwd+3/X08nCKahHPkeJB/JixcvVB1DTSTMSklMShPLXeFq7+iEubPKycjIqNyJOWVXNiB5\nBGUVAADB0B7vbCxPfzbXk8feJiApMisUYIiCo9Nk0Te2zT8URMt9eSnCwp9WhJAcqPzUsNDg\noKDgR68+UWVcaphs3potPo1tzJQcm2bDkm5UA3Gsms5Zt2taBj8uOY2pb17b2pxNfPenrsWx\ndfc0rFXfvpV7e6fa+qqKU039WCPRvXt3lURSo2RFH/mHX1jPp8WpM3LW/IEetkXvxj6+unXn\nydhcMQDkp4bsjBg/vwX+mCKNxWCZ9x4989eREz5HvX37NiopNSs3N1cMWvr6+lwzKwcHJ0cn\nG05pC1MjhFARDxPtV3kkTdMXP2bPcSplBPLt8TBZg6lTr7NR6UvUCEKeyRraxm0VFKdqYZIe\nqYE5c+aoOoSaIuL85rVnHpQ1olekZcsWORnpyV/iMkSFeTKCYHbsM6R540aNGjmbcnAGJVJL\ntCT98mG/m8ER6Tn/obwVsMJVibQ4Jib6WgBggtuiV00yKQUApnZd+f90LVlMAUlRZJIi49Jw\nZNaDpYe/y9AzmfL+YpYY9UYIoeJoKi/yUUhgUNCDsDdCqpQ7eX1Lu3bt2v116RgAEAwDzNBX\nOyzpVgksLP4ZaBtbNjQuvapJv/aoJQuUHA5CVRJ96l9Zg8nmrT6wvbEhu/i79Vr323bAfua4\nP5JICgCen4yAFr+oIEqElIhg6No4udo4uao6EISQWnLpagVHcgDgyS5/et9vJQa2aEnGoZdp\nsrahzdAyhr2kp64UrgbK87RXWKSqhGPcSA106tRJ1SHUCNE3tqw6HVr0kqFl2KixUak9ly9f\nCQC0VBQVHnT6yNEXiUKapj6JeHNalbK0HUJqgabydnrPvBefW4lztbHCtbJ2795d7vt0dmpy\nUlJi/OfI23fD8qU0LdUdPH9Dt9KmXqL/RI9JkBJaKk6lAeTM/fLFFAAQDF2FBqbZ3h44LpLS\nAKDLa/TblJHNG9ryjPD7RAhVAS2Ofv4oOCgo+MHT9NLWmOGY23q0a9fOs11zO0sAkCXpEdIY\nWFiMEKpe/3zMljXq9l1UIkMvw9J3Xjio/twzHwFAyP8bAJP0CCGEUJlq/TKWdXSZmKZzE66u\nPt981dDmxd99fnQFnyx8jHUc5ljqJ8Te2vgkp3C7mb49rBUarapgkh4hBAAgSn+w9HBhhp5g\ncnqOnty/RweebnkVfgRDx7FVtzVunud95p55lPTp9s5VZharhjZSSrwIVbMvdzYUz9CzOFye\niYGcyUsWVrhWVt26dSvqUa8RAEC/EUPfXzjqeykkdu+SqXmbDwyw5yohPA3W2oD9V4ZIKsm4\nnS7qbqJTYX8y56GApACApddE8dFprL9eZAAA29Bt7/5lprg1DEKoyqaNGZ6QRf54XMekXtt2\n7Tw927k6WOM9inJgSTdCqBqdPn1a1ug3bIQertmmRNH5ElnDq0edsvpY/9IFznwEAInos3Ki\nQgghVF2SEhPE1TEaY22tmdniasfiNJ7R2nzHIwEARJxeOf9z/94dXB0dbOhsfvjtM4cCCkvk\nGVrGv7mY/Hh67INTiw48kbX1rQd4cUtfD1/dYZIeIQQAcHP1Pll5H8HUm+yzv5eDvAkwgsEZ\ntsQ3Y+a4W/G5z86sCv3lVDvjivM9CP1s/rkYLWs4dhwyeXQ/OzPcNPHnomNmP2bBTv2cicee\np55atsrt5Na62rizRuV19bL4yz8WAC7sCuy+quIqtNcnT8oaps2xZK3yIoViAHCZMQUz9Aih\nalEiQ882qt3Wo107T0835zp4lVEyLOlGmiotrXANUmNT00pfWGgqZ+HiNbL2j1utox+dP39e\n1ug6ZDgm6ZUpRSyVNZrqs8rqUzRrmZaKlBETQgih6rN81oxq+Zzr169Xy+fUBB1+X31r7Oyo\nPDEAfHjgv+2B/499bPsstmAX3mnSElF6evqX6DcP/rnxV9gn2UGCoTNp9VClxaxkmKRHCAGZ\n8+TU5xxZ223qZvkz9IUI9vh1M26P2yylSb/Vl9vtGFn9ISKkYKHZJAAYu4zcNLesLXCQyjF6\nL557Yvgyiejjtkufd4xsoOp41Fi9AcNYVzeLaTo1Yu/GS9yFA93LGf3jh59dcztB1v5lhK2S\nQtREBVIaANo44joQCKFqRjA53cfOm9y3FaZyECpCkQVMtmZW2yjT+PHjZY1Dl6/yWKWk6Wlp\n/rHj50p0/oEkKipKIfHVVDSVs2LVZll77dq1qg1Gk1A0LWvol/2DytDCCf1IQ/Tp06d6PxDT\nlgihHzHZ1uv2rFjlve51VkGpHbh23daN+bbWffytZTMPvi/egSAYXaZs7MjT2P0iMUmP1I/g\nQ/i/4ZFRUVFfUjJyc3NFEoaBgYGhiYWDk3MjV3d3F1xs5D9L+vu8lKYBgG3gtuSXMhf1KoeO\nscc4G8MjMVlZMecDUgf2MsNieqRmsiVSAOgw61cc3P6ZsTiNvbja9zJFiXfuwMhpqg5HjbG5\nHou71F57Nx4AHp7YOOGJ17QxfRs5fp+Ap6k0/ufggIsnbjyUDVcZO44bYMlRScCawU5XKzJP\nLKFVHQdCSOPQlPDWkXUP77p07Nixo1f7+ngrjmoeWpLxb2Doq1eRr99GZ+blCYX5YoqWZQvI\nnLArgTkeXp51DMosjUWVR4v8/QsrospO0qNqJ3nx4oWqY0AIIYQQqpi2SdP1h/fdOnPU//Yj\nQZ646DiDZdx18OjRgztzGGWOx2vpWg2YtnSUVz2lRKoamKRH6iTjfaDv/pPh0SkljuflZPIT\n499Hht+4eMLU1nX0VO9OjsYqiVBNvfuHL2vU6TNKq7IpSveh9Y9sfAEAty7H9ZpiX12xIaQc\ndbWZ7/Ml9Tj4s/izs9PRugdA5j4GwCR9lbjN2NInfur1d5kAkP4ucP3SQIKpY65fuMDj4nkz\n4uISc0mqqL82t8maNX1VE6um6GVrGPkq7enbrN4emD9DCFWDeqY6sWnf1trNjH/tf+L11ZP7\n6jVq06lTxw6ebsZsXPb+p4Al3Yr2LuTy/gNnY77fAKIIVfDpzMFT544c9Ro2edYQT1xwAiGE\nEEKoZpqxaIkR7j+oCgy2Wa9xC3qNJT+9e8dPTc+jWFa1rK3r1jHSKX0zU4IgeDaNWrVu26d/\nd4sy+mgMzEYgtfHm6vblRwPFdAUFaGkxETsXTXw5ft2cfk7KCUwDPEgvXGzEtaNlpT+E6+gB\n8AIAUp88BkzSI3XTgcd5H5v9Mjm/sxEOof7UYgokAEBTuaoORO0RDM6Ejb4m+zYfu/NKdoSm\nRIKswnffRMcX72zs0Gnpsun1NP22WNGazxzAmHrozcETora/6xCYIkAIVZXvkbOfIx8FBgYF\nh4SligqnVdE09fnVgyOvHhzbY9i0bfuOHTt6uDZk4SVHibCkW8kiTi9fdb7ikmIplXXv9JY3\n0cl7lw6q9MR0hBBCSGNUcbOMt/fPnb3/hv46UE8QOFyA1EDzVq1L3b4HKQnBtnFqYlNuF8v2\nc/e11DYyMtLTqSnJ65ry34nUXXKo35KjgUU//Aa1HFo2tuPxeDxzngFLnMzn8/n8j5FhbxNy\nAICmxfePLjGwODDBnafSqNVG4tdayWb65YwWETo65VX+sXQK10kmc8IARldbcAgphfsE14Mr\nAsN3X6V9x+Go3U+LzH5yP7MAABhsK1XHogkIJnfAzPVtOz7wv37j/pO3IqqUaXBmNs169enX\np5MrJniqjmPVe92IJ0tPhyzY7rhl7q+Yp0cIVRXBrN/YY1xjj7HT8yIfhwYGBj4IeyP8ejGX\nSrKfBd98FnxzN9fao0PHjp06qjbYGgJLupUs/s6uogw9wTRo19nL3q4h69WZ/SH8oj5aHKfG\n1nqvEvIAgP/4xNKzjTaPcCz94xBCCKEao2nTppU7sSA96siuHbciEoqOcGo1mzrHu5riQgjV\naGyutTVX1UEoFybpkRqQSlLX7fqLLtw0veE475m9WtmUNqBBf3oS4LvjWHQuSdPSgO0bB7Tc\nZoyT5OWQIS5c39i47PVeCKbRhQsXyvkQQstI1qBIfjndEPo5mTWbO8T+2YX3V5YeqbtqfEdt\nTJ79fAoyovYs2yHbHF3XpIuqw9Ecli4e01w8plLCT+/exCSk5ubm5pNSPX0DQ2OevbNLLWNc\nmL06NRq6Zm6Bz87Lh8a8Dho4fGTfjs10MEWDEKoygqnXuG23xm27TRemPA4JCgq8//jNF+nX\n+c1kVsL966fuXz8le0nTZL6U1i172z9UaVjSrWSUKHaF3z1Zm2vfYcHv05tY6gJAtMC/eDcW\np/H6vScfnlu/8exTAIi6uCqq/ykHXRwNQwghhP4jmnpy88ieowEZksKRZIKh4zVk6tRhHfHe\nEiGEKgcfS5AaSA7dHiuiAEBLx2b13o0uXHYZHQmbVr/67K07b/LKOBElEX3c9jB5rWfl12+v\nObhajFQxBQBpYmltdiWXJ6LEgsIWgYvGIHVEDN/gI5i/MPDqjnFhgWNG9XW2taltaYLpM4U6\ne/asXP2kBUlxsS/Dn6V/nVHkPKaNAsOqkQgmx9bFzdZF1XFotKtXrwIAGDp1a/Lx1ov3p3et\nPOPLMrGwtLS0NNIr696m0KJFi5QRIkJIzTE55m27DWrbbVB+SkxwUGBgYNDruIwSfaiC+JEj\nJrXybN/By6u1S128ca8uWNKtfIl396SJpQCgzXXb7jPXrJwdRgkt9+Ervb9M3hnCpymh3434\nbUPKX2gTIYQQQt/Jiw/fs9M39P23e0tjh/be3tNca+upMCqEEFJ3mKRHaiDi0mdZw9V7SdkZ\n+kJsoybLZrWYvOUJAHy6EAGePRUdngZw5GiFZlEA8Chd1FSvkvsjkplPZA0mu1a1RVYzrFv0\nexnXYqqoNW/evAo/Z9u2bdUVUs3EZFv37t82cMftvITn+zY9BwCCwZRnKrC/v3/FnVBp5E3S\nf49j4TW/De5mgtTPkSNHShyhaXEaPz6NH6+SeBBCGkzX3LbbINtug35LjXkRGBQUGBQaly4q\nelciFPx7+9K/ty/pmNVv396rg1eHxvVNVRitBsCSbpV4eC1O1vBcOLO8DP1XnpNH7wzZAgCJ\nd8MAk/QIobKtnOtd5kon9LeBmlmzZpX/Ob6+vtUXFEIqQ0uF/5zdf+BikEhauFATg2XSe/zM\ncb3csLIFIYSqCJ8GkRq4K8gHAIJgTmklV1aG12YqiwgT07Qw+S4AJukr5m7BCc0qAICnZ2Ng\nYSV3JEq4ESFrsA1aVVtkNcPn6OgK+0TL0QdVUdixZWuvvCx+hJZSVFm9kYoY27VbsW42LqSm\naJQoJyU9T8fAkGvAwe8aIYTUl5lt00G2TQeNm/Hp1aPAwPvBoU/TRN/ubkSpn+9cOXbnyjHj\neo06dugwblA3FYaq1rCkWyWCsgoAgGBoj3c2lqc/m+vJY28TkBSZFQowRMHRIYTUWEJcrDzd\nYmPl6oaQWkt9e3/nDr8XScKiI3Xces2ZPb6hUQV1dAghhOSBSXqkBr4UUADA1K5nzpJrOUYG\ny8xGh/k+X0KRWJomF/sB9cEnAwBSwg+lSXaZVmJrRFpyPrhwIUfzNq7VGx5CSpD18cQ6/1eq\njqLG6dGjh9x9mea169k2aNjUyRZnaisOmRV748K5gOBnqVmFT+AsA17T5i17DhzmZsNVbWwa\nYPr06aoOASFUUxFMmyYeNk08xs3IffUoJPB+YGj4u6JaKADIiI28ciISk/SVhiXdKpFMSgGA\nqV3XQO67Q0sWU0BSFJmkyLgQQgghTSAlU68e3n3ir2dSuvCmkcWpM3yG9yBPe9UGhhBCmgST\n9EgNGGoxUsUULRVW3PWrfNmQE1HJldtrGrMWEznMmUKKpkSxa0+92THuP29KLHi4LSyHlLW7\n9qtT3QFqJk9PT1WHgL75d89dmqYBQJfnPHREH6e61ubG+pgLVrRp06apOoQahMz6dPP67bCn\nkUlp6YSOEc/Cyq1D956d3PS+jmsLE0Jme28TkN+tHyHOEYQHBzwNudV68Pwlozzxf4qq6N69\nu6pDQAjVdARTv4lHjyYePaYLBY+DAgODgsLefikaeEWVhiXdKqHHJEgJLRWn0gBy3qLwxRQA\nEAxdhQaGEFJTnTt3VnUICP0sYp/c2OF7/GNW4WAvQRDOHYfPnjrYSoep2sAQQkjDYJIeqQEb\nHWaqmKJI/vM8cTM5dkyXCF9/IaUAwNLFmX1yYWrXWdy9zoqAOAD45L/itMu+kS3/w37PBRnP\nVm1/KGvrW/frY4ZDHnJZsGCBqkNA31yPzwUAbSO3A37LuVipjTRObMiJ5duvZEqkha+zctOS\nv7x9GXb5gtuqrYsduWyJ8M2SedtLZOiL0LT00YUtSwmjjSMbKy9ohBBCCqPF4Xn0GOLRY4hQ\n8DE4KCgwMPBNfKaqg1JjWNKtEq0N2H9liKSSjNvpou4mOhX2J3Meym51WHpNFB8dQkj9eHt7\nqzoEhFRPkhd7evfOyw++bbupY+Y8wXtOt6aWKowKoarYtGmTrGEsx5JXCCkZ/lEiNdDF1lDW\nOHz2jTz9oy4elFXEGjaQfyHlmq7J+OV1dZgAQNPiCxu8T99/L+eJ+fxn6+dslG1JAABDlg1V\nVIgIKZJsaLX1klmYoUeaJ/3FCe+tl79l6IsRJocvm7E6Q0IHbtn6KV8CAATBaOzVY/Rv0xYt\nmvfbyMFtHUyKOr+5sCIos0B5cSOEEFI8Dq9B98G/+ew5cXj7GlXHosZky9LISrrlhCXdVdfV\ny0LWuLArUJ7+r0+elDVMm+PaNgghhNCP6Fd/n54+bk5Rhp4gWO79px46uBEz9EitOX3FwkFf\n9PPBSnqkBpxGtYAXtwEg7sbaM413j2hd3m2B4OmF1f6fZG3XkY7KiE8jMNgWq5cOm7LqDCml\naSrv/Pbfw8P6jxs6oGm9Mjchpqnsh39d8Tt8NeNr4seu16J+1nrKChmh6mTCYghIqrkVR9WB\nIFTNaCp79fqrRUsZM3UsGjexr1PbNE+Q+Ondy0+pIjL71dLdZ5Ij0gCAqV1n7to17R1Nv50/\ndGT4jd1rDv4NADRNnd7/psPi5qr471A/mZmFNakEweJy8ccRIfSzM2/QTNUhqDEs6VaJegOG\nsa5uFtN0asTejZe4Cwe6lzPblh9+ds3tBFn7lxG2SgoRoapZt+j3MsZtvy1/NW/evAo/Z9u2\nbdUVEkJIU4lSXh/aufPOS37REcP6rWfMmeX+tXYOIYSQImCSHqkBI4dpXXghfwuENE2e3zAt\nuufoEf2621mUzKXlCz7evnbuxM0nEtnG0uadpzsaqSJedWXabOiOudkzt92U5XI+hvqveHC1\nrktL18aNXJwbmhsbGRjoE+L87OxswZePkZGRYaGPEoXiotPNmg7bPNlDdeEjVCWdjLTPCYRf\nRKWv9Y2Q+hI82vlJJJG1TZv2WL5woq1B4cYxNJV989CmgwGvEu6dlx1pNX/ldxl6AACGW+/Z\ns8Ke+z5PBYD0yL/+z96dhkdVHW4AP5NJAgRCQNlULBUtILiVUqsiFakb9V+sFK37XhWkgisW\nl6LWouCGuC+oKCLugrQiVqmAVEVbCwJa3IgCIhrCEpIhk/l/GKRoWQImd5Lw+306986593n1\n8THJvPecG4KSvlJOOeWU9CC34d5Pjb02rLfB2lYYNGhQ1cQCoBoc2r3li89+GkJ44rYpRwzZ\n/CptS7qrRG5B18sOaX3t5MIQwozRQ898s3vfU47ao8O3C/hU8qvFn7w28cnRE2YkU6kQQtMO\np/Vu5cFcaodP5s/f7Jz5lZgDsCmpxPRnH7jrkUnLk2tXYWXF8w87qd9ZvbvmWnYMUM2U9NQK\nWb/784DZ/YYtTiRTqeTMiQ+9/ZfRTZrv0LJFi5YtWzYIq5cs+eKLL75Y9OWy/64UzG1x/nW/\n8zqHLdX6oN/d3XjHocNHfbxyTQghlUp9OvvNT2e/+ezmLtyz59lXnHNktl/dqLUOPqnj4zfP\nfH3MrFMv+lmms9RNxx9/fNXecOzYsVV7w7pq9pNrX1+S3WC34X88p9l679+KxRv/6pw/Ff37\npKcKV4QQYrHYGZ2bbfAm+5/TdWTf50MIa1a8mUwFL4XYOtOnT890BACqhSXdmdLlvOG9Cs8d\nP29ZCOHreVOuGzwlFq/fvNHajuGyC89bsGDhysR/H8OtV7DXNdcclZmstdz3W9LtSWiAGmr5\nx2/cMeL2GR8VrzvTcs9DBwz43R4tNr8zEADfn5Ke2qFBi/1vGjbg2qvvmFdUFkJIpSqKlnxe\ntOTzebM3MDm3oF3fq67q6un4rdLqx0fePGqfcQ88OPHlt1YkN/9SxYY7djrmxLN6d9s1gmxQ\nfXY46A+/eu70F1674clf3HvMPhvuKfk+Vq1alekI26i/fVGSHuz8y37rN/TfiP1f3z2fGvx6\nCCHEclvmbvjxtgbbHxTC8yGEVMp3rADwXZZ0Z0osK+/MoSO3u2vYQy/NSp9JJUuXfFM0zJlf\nuP7kpu17DL6iX5v68YhD1g2WdEepW7dumY4A1H2p5IpJj9x5/7OvJ9ateavX6jfn/P7EQ/b0\nWD5AZJT01Br5bbtff3+niY+Pm/jXVxeuXLPBOTl5rQ7qeeRvj/+/lrn+8N568fo7nXDeFcee\nuvBvf5n05r9mzZn30apv3jq/TnZes0777LPvAT16dtvDAnrqgljOGUOv/uriKx/94znv//Kk\ns07+Vas8PyKpCwrL1tbqnQ/fcYMTGrU5KITXQwipirKN3SQr+7974FtGX0nt27dPD7IbtE4P\n+vXrl7k4AFQvS7ozJRYv6N3/ugMOnv7s+Amvvjm3dEMPmjfbZZ8je/26V4/OOX6NoTa45JJL\nMh0BqPsuP+es2UtWrzts3qnH+eed2KZRTvGyZVt3wyZNvHYWYIvFUqnNr5SFGiVVsfqT9+fO\nnfv+oqXFK1euXBOyGzVqVNBsh/btd++w+y55Wf7srmKpZMlnhQuXL1+xfPnyNbF6BY0LCpo0\nbd26lW6euuS5554LIVSUf/3sY+OLyytisayC5jvtvFPzynyRN2TIkOqOVweMHj160xNSFaVP\nP/NCetynT5/N3nDdC7/ZtF69eqUH1z/+TMcNPXqSTCw8us+56fH48eM3eJNUsuioo0/d9BwA\n2MalksXPrrekexPSS7rbF+RGkGqbkkqWfDxvzkefL125cuXqREXDRvmNm7Zo17HTjk3t2buV\nhg8fXrU3VD8D1BDrviuoKr4rANgKlglS+8SyGuyye+dddu+c6SDbilg8b+cf7pbpFFC9Ro0a\ntf5hKlWxbEnhsiWFG5vPltpsp55KFq0r6RXw1aFZzoa3ss+KN4g4CQDUSZZ0Z1wsnte2U5e2\nnTKdow7RqQMAQPVR0gMAQFX6ck1F8408FbEVSpfMqt9iz6q6GwDVqlWnrn07dT3Xkm4AAAA2\nSUlPHZb6YN777Tp0yHQMoBYYOHBgpiMAdcfAS24fMbz/xnYv2CL/nvTgjfc8P/qZ577/rQCI\njCXdQhJ4qAAAIABJREFUAEBNNmLEiExHAEBJT81WkSj5uqioNFW/efPt6sW3YEPAisTSFx8e\ndveEeV6HA1RGjx49Mh0BqDtWfPTywEvCrd+vpy8v+fShm64f/9bnVRgMAOqqstUlG3rDwIbl\n5eVVZxYAqOl22WWXTEcAQElPTfWfGRMeHz/53TmfJlKpEEIsFt9h9/2O7n3M4fu2XX9aecmX\n/37n358vLV65cuWKFStLyxJlZaVFXy789JPCFYlkhrIDANu65R+9PPDS2K3Dztu6nn7BG8/d\ncMvowpLyKg8GAHVJ4TuTxr7w2vwPP1xcVFL5qzzNDwAAZJySnhonlUo8f8vFo6Z88u2TyYVz\npt8xZ/rME666/LguIYRUcvmTt1477rUP1qQq/bQ8AEBUln84eeClYUt7+lR50TN3DX948ux1\nZ3IatamGdABUm1Ri6rQ3KjNx+5/s1zEvp7rj1GHvPzv80oempXwnAAAA1EJKemqc2Y8M/k5D\nv743Hrvm5tb3XXhgy9GDznv6g+JN3yoW24Id8gE2Jpkoi+fWy3QK+F6mvjy5cfYGquJUxap1\n48mTJ2/w2vXnUBl9D2l718sfhRCWfzj5gkGxW4b1a7ahf/n/q+j9KcNuuPO9paXrzuxywG8u\nHXhSdQUF4HtKlb83fdKU198qjB1z/SVrX0Gfqlg1fPjwyly974hHOu5SUJ356rLSoimXa+gB\nAIBaS0lPzVJeMufqp/+z7rDpbp1/2r7NDi0LVixZtOCTOTNnF4YQpt527aG5u69r6GOxeOPt\nmzdv1qxxg+xksqIildWwcX7jxgU7te34k590zsw/BlCbpcqLXp8ybdas2e/Nnb9s1aqSktVr\nkqn0lpiJFW89M2VF1+7dds635ola5uG77tjsnJEjR0aQZFvQ8/xbsuIX3TFpfgiheP5LF1wa\nu3VY3+032dOnUmWvjrntjienrdsiKJ7b4pjzLjnh4PZRJAZgyy1596833vHwvMUlIYTmnY/e\n0stjsfgGn5+jkubePSbxzQ/NjoecfPxhP/nhD1vnxT2pDwAA1A5KemqWwhfu/+Yl9LHDzrj8\n3F77rv8nduGMx86/flyydMEV1xWmz+zW7ejfnXr87i3qZyQtUPfMm/r03feO/ag4scFPk2Uf\nP3bfo4+PerD7cWf//thuvgMENiJ2+Hk3ZWVdMvKvH4QQiudPGnhpuHVYv+2zN/x/jZLF/xp5\n/U3TP/rvFkEt9zr8kkt+164gN6K8AGyhd8YNu/ax6cnNLeP+6U9/sqLo6y8+W1BUmkyficXi\nB/c69sd77rHHHh23z4tXf9I668X3itKDPU8Zel2fTpkNAwAAsKWU9NQs7768KD3Ybo/+5x21\n73c+3Xn/EwYdOOXPUxend7Rr2uHUmy75jY4MqCrvjLlyyLh3NzutIln8ypjhc+Z/cefgPhtp\n3ABih/YdHo8PuvWFeSHd0w8Kt97wvz196p2J9990/8QVyYr0cVY8v+cZF5z9qy7+7wJQY82f\nMHzImGnrDrOyG++xZ5MNzrzyyj+GEFIVpe/P/PuYUQ++u7AklUp+XNpi4L57RpS17pqzqjyE\nEM9p/oejO2Y6CwAAwBZT0lOzTCsuSw/2OetnG5yw18kHhanj0uMDzz/c99dAVSl86bZ1DX0s\nnn/gL7q32+1HObMeu3vq4nVzsvN233OnhrM+XxVCWPzG6MFj9xh2QofMxIXKGTNmTKYjbMti\nPc4elpV12c3j54QQiv8zaeCgMOKGftt909OvWfHRqJtumPjOonUXFOza9aJBv9+nVV5m8gJQ\nCaVfTx/8wNqGPhbP++XJZx/d86AWDTa1Jj6WVb/Dvodf06XbuOsveOwfiz6eNGJIs5ZDfrtH\nJHnrrNWpVAihXtNfNLK9FQAAUAsp6alZFiXWLiM7sPmGd7Cvt91BIawt6X++vV3ugaqRLP30\nqnteSY8L2h10ycX99mrVIIQwf8mz60/LydvzujsfmfH4dUPHvh1CeP/JIe8f/Wj7Bn6YUnPl\n5+dnOsK2rvtZ18ezLh/+3KwQQvF/Jg24LHbb9X2bZsc+nv7UDSPGLFy3+3FW7kG/7d//uINy\nY5oGgBrthavvKq1IhRBi8YZnX3/3ke0LKnlhLCvvuD+MLOp/2l8LV/7zsSHTDnv0wKb+pN16\nP6yf/UHJmrC5Nw4AAADUTFmZDgDfsm6v15a5G16IEM9puW7cJO4/YKBqLJx8x1drKkII9Qq6\n3HL9BemGfsNi2fsf/8cB3VqFEFLJknsmFEYWEqilup1x3aDee6fHxR+8eP5ld4+79dIBN4xe\n19Dntdr7khsfuPD47hp6gBouseLNRz9ZkR53OXdY5Rv6tWK5p//pvKxYLJVK3HP101Wfb1vy\ny50ahhDKlk9LqOkBAIBayOI/aqiNfkkdy/nv0PfYQBWZ8fyC9KDbpf2bZW/+AaBuZ588Yurw\nEMLCyW+FY3ep3nB1wujRozc9IVVRWvnJIYRTTjnl+2aCCHU97do/xIcMffKdEELxB38d88Ha\n87FYVucjz7rwzCPzbdULUBssenlcRSoVQsjN7/KHw3beijvUb9r1tF0aj/qouPijcROX/ubI\nZhbTb6Uu5x0RBj6eLPv8jn8suWD/FpmOAwAAsGWU9AAQ/l5cFkKIZdU7vWPTyszPLejWIvfm\nJYlkonhaCMdWc7q64KmnnqrayUp6ap39Tx5yRdY1fxo3c92Z3IIfnXXxpUfs3XITVwFQo8z7\n2+L0YOdeJ2Vv7eNV+//2h6OGvhtC+OvTC448p11VZdvWNG57wsU9pt74yuev3XTlT2666edt\nGmU6EQAAwBawWzgAhC8SFSGEeL0fVH4xa6uceAghmVhUjbGAumXfE6+66oR91x3+6P9O0dAD\n1C7Tvy5LDzof3Gqrb1LQoWt6sPTNN6og0zas2/k3n3TgzsnEopsGnHbNHY9/+HXp5q8BAACo\nGaykB4DQMB5LlKcq1ixNhVDJln7xmmQIIZa18bfXs57GjRtnOgLUCF2Ou2JI1tAhj84IIbw3\n5sobcq4b1HvPTIcCoLIWJpLpwT6NcjY+K1a//qY2sc+p3zY9SKx4K4STqyxc3XXDDTds9LPU\nTg2yPltdkZg56bGZkx7LK2i2ww47tNi+8aaXpAwaNKiqMwIAAGwZJT0AhJ/l575YVFpRXjTp\n69Ijttv8m0ETK2YsSSRDCDkN96r+dHXBo48+mukIUFN0PvYP18ZvuPLh6SGE6Q9dPixcd6me\nHqCWKFpTkR40zd5oCxyLN3niiSc2cZNYdpP0IJlYXIXZ6rDp06dXcmZJ8dIPi5d+WK1pAAAA\nqoLt7gEgHNp97Y7TT9w2pTLz33vkkfRg+x8fUU2RgDps798Muu70brFYLIQw7aHLhz87O9OJ\nAKiUgm+6+a++aeu3QnLNkrWjmO9kAAAAtlFW0gNAaNP7uJznhq1JpZa+c+fQpwou/c3+m3g3\n/eKZY6+Z9Hl6fNgJbSOKCNQekydP3vykRvv8ou27L3+4PIQw9cHB5at/16X5RrfxOPTQQ6sw\nHgBbrUNe9rTiZAjhH1+X7t1wEzveb0pi2ZvpQTx3xypLVqf169cv0xEAAACqmJIeAEJuQdfL\nDml97eTCEMKM0UPPfLN731OO2qPDtwv4VPKrxZ+8NvHJ0RNmJFOpEELTDqf1bpWXkcBATTZy\n5MgtvWTG4/fN2PinSnqAGmL/lnnTistCCG+P/ShcuvfW3eTzCe+kB7n5+1ZZsjrtiCNsXgUA\nANQ1SnpqqIvOOn2zG/9VZs7DDz9cNYGAuq7LecN7FZ47ft6yEMLX86ZcN3hKLF6/eaO1G5le\nduF5CxYsXJlIrptfr2Cva645KjNZAQDIhHa9fxiuLwohfDnz/q/Kb9s+e+ObL21Mqnzca2tf\nRd98v85VGw8AAIDaQklPDVVcVFQlcwAqKZaVd+bQkdvdNeyhl2alz6SSpUuK1346Z37h+pOb\ntu8x+Ip+berHIw4JAEAGNfvJWXnx/iXJVLL002sfnXPraZ229A5LZtz81opEenzor3eu6oDb\nkAkTJoQQ8tt2696pSSUv+dekvxQmktkNdu15SMfqjAYAALB5SnoAWCsWL+jd/7oDDp7+7PgJ\nr745tzSZ+t85zXbZ58hev+7Vo3POlq+bArYRY8aMyXQEAKpFvN7Olx2x81UTF4QQPn72qjGd\n7jrxpy0qf3lZ0T+H3LL29SaNdvp1r2YNqiXltuG+++4LIbTp1b7yJf2nTz/ywOJVOXl79Dzk\nz9UZDQAAYPOU9NQsRx99dKYjANu6Vp269u3U9dxkycfz5nz0+dKVK1euTlQ0bJTfuGmLdh07\n7di0fqYDAjVdfn5+piMAUF32Ov3KH/zt3AWlyVRqzRN/HhDOv/rEg9tV5sLVi/85dNDQz8rW\nvj7p2Ct+W50x2YBERSqEUF72caaDAAAAKOmpYU4//fRMRwAIIYRYPK9tpy5tt3gHUwAA6rKs\n3JZXDz7unCGPJSpSqeSqcbdcPPOto0/7be+92xRs7JJUcvmMF5+554Hnisor0md2O3LQr3dq\nGFXkOmLu3Ln/e7Ls64/nzk1u/uJUedHCOU8uXZ0+qOJkAAAAWy6WSvnjBAAAAKCyPvv7ff1v\nfqHim29UYrHYDzr9tPOee3Tq+KPmTZvk5zeKrVm9fPnyJZ99OHv27Lem/WNhyZp11zbb+7h7\nrzkh27uTtlCvXr2q5D71m/R4YvTAKrkVAADAVlPSA0CYX5zYrSB3Ky5cMvvlFnscUuV5AACo\n4Rb/c+LQ4aM+Xrlm81PXs2fPs68458gGWSr6LVZVJX3XQfcN6tqySm4FAACw1ZT0ABCO7nNW\nn34Xndhj98pfUrFm6XP33TZ60rvPPf989QUDAKDGSpZ+Pu6BBye+/NaK5Oa/Wmm4Y6djTjyr\nd7ddIwhWJ/Xr12/9w88++yyEkJPfomWln7VttP2Oe3Y7+uTDvNEKAADIPCU9AKxdl/ODfY+6\nZOApbRrlbHb+ZzMn3jziwfnFiRDC+PHjqz0fAAA1VfnKhX/7y6Q3/zVrzryPVn3z1vl1svOa\nddpnn30P6NGz2x62uK9C6V/g2/S6ceRZ7TKdBQAAYItlZzoAANQUC958fuAZM0/4/UXHdNtt\nY3OSpQvH3Xnr41PmRRkMAIAaK7vRjocfe/rhx4ZUsuSzwoXLl69Yvnz5mli9gsYFBU2atm7d\nSjcPAADAd1hJDwDhrQn33f7gxKJvVj7t2rXPxQNO3Kl+/DvT5k9/+paRjxWWrH3zaE7ezsf1\nG3DMz63dAQCASD3xxBMhhIJ2hxy+z3aZzgIAALDFlPQAEEIIZUXvjxpxy1/fWZg+zGnY5uSB\nF//6Z23Sh2tWfPLIyJuf+8cn6cNYLNapxwm/P6fPDv9T5AMAAAAAAGyCkh4A/mvOK2Nvu/vJ\nhaXl6cMOPU64uN8xX772+Ih7nlpclkyfbNCi05nnDzhsr1aZiwkAAGxUMlEWz62X6RQAAAAb\npaQHgG8pLyl87I4RT039IH0Yr5+XLC1Jj2Ox3K69f9f3pMPy494sCgAANUKqvOj1KdNmzZr9\n3tz5y1atKilZvSaZGj9+fAghseKtZ6as6Nq92875OZmOCQAA8F9KegDYgE/fHH/V9aPWvaU+\nhJD/w/0HXNR/3zb5GUwFAACsb97Up+++d+xHxYnvnE+X9KuXPvHbMx7Nihd0P+7s3x/bzaO2\nAABADZGV6QAAUOMklv3nxRcnrd/QhxBKl3y2YMGiTEUCAAC+450xV146/OH/bei/oyJZ/MqY\n4X3//FS5hSoAAEDNoKQHgPWkkjMnjjrnzEsnzixMn9ip8yFt83NDCGtKCkcPv7j/tffN39yX\ngAAAQHUrfOm2IePeTY9j8fxuh/3qzH4Xntut1fpzsvN233Onhunx4jdGDx47L+qUAAAAG2K7\newBYq2Thv+6+dcSUeV+lD+P1Wh3T94ITeuyeLPviiTtuGjtl7Td68dxmR53Z/9SenW2WCWzQ\n5MmTq/BuTTp2/elOeVV4QwCoA5Kln5514oCv1lSEEAraHXTJxf32atUghDB/9IALn/o4fLPd\nfQghpMpnPH7d0LFvhxBi8bxhjz3avkF2xnIDAACEEELwZwkAhFSq9O/j7rl73CslybXPrrXZ\n96iLBpzyw/ycEEK8XsvjLxx2wAHP3TjikU9XrUkmlj5z15DX/t5j4MBz0l8FAqxv5MiRVXi3\nDv12V9IDwHcsnHxHuqGvV9DllusvaJa98a0iY9n7H//HAZ+dPWLq4lSy5J4JhTcfu0t0QQEA\nADbEdvcAEK7tf8bNj/0t3dDH6+94woXDR15xZrqhX6fNfr++9cHb+hy4a/pw6ZxXrux7xu1P\nTc1AXAAA2LbNeH5BetDt0v6baui/0e3sk9ODhZPfqsZYAAAAlWMlPQCEmYUr04Nd9j/6wvNP\nbtNwwz8f4/V3OuXSWw444KmbRj72+eryVHLVS6OH9+/TLcKkQC2w3377beyjijVfvfn2f9Yd\nxmJZ+U2bt2zVKj9e9sUXX3zx5bLyb95FFc9tdeK5xzXLzipot121JwaA2ubvxWUhhFhWvdM7\nNq3M/NyCbi1yb16SSCaKp4VwbDWnAwAA2AwlPQCEEEJ2g52O73/RMd122+zM3Q7sM/LHPx09\n4sbn/vFpBMGAWmfw4MEbPF9e8uFNl1yZHuft0LH3Mcf+38/3ycv97+K/VLLs/TcmP/74uHc+\nKU4mFj/11Ot/uuWy3bw3FwD+xxeJihBCvN4P8uOxSl7SKie+JJFMJhZVZy4AAIBKsd09AIRd\nu/YZ8eDIyjT0adkN25wxeOSwC49vVS9ercGAOiT16BVDpheuDCF07nPpo3dff+whnddv6EMI\nsXi9Dgf835DbRg857cAQQsnCN6++fHR5KjNxAaAmaxiPhRAq1iyt/M/JxWuSIYRYVoNqCwUA\nAFBZSnoACLcMOmXnvC1eq9qh+/G3j7qpOvIAdU/R3NuemV8cQmi2z5lDTjkwe1Or/mKde196\n/v4tQwjF858b/o8lEUUEgNrjZ/m5IYSK8qJJX5dWZn5ixYwliWQIIafhXtWbDAAAoBKU9ACw\n9XLz22Y6AlA7vHX/2+lBn4GHV2Z+t34npgezHp5aXZkAoNY6tHvL9OCJ26ZUZv57jzySHmz/\n4yOqKRIAAEDlKekBAKDa/aVwZQghFs/ruV39ysyvV9C9SXZWCGH1Vy9XbzIAqIXa9D4uJxYL\nISx9586hT81IbnLX+8Uzx14z6fP0+LATPGULAABknpIeAACqXWFZMoSQldVwU/vcf1uDrFgI\noSJhu3sA+K7cgq6XHdI6PZ4xeuiZg25+Y/aHq8q/3dWnkl8t+vDZ+6/ve+3jyVQqhNC0w2m9\nW+VFnxYAAOA7tvj9uwBQ95x66qlbd+Fup11/5cE7VG0YoE5qFI8VlaeSa778qDTZtn58s/OT\nZZ8uXlMRQsjKaVL96QCg9uly3vBeheeOn7cshPD1vCnXDZ4Si9dv3qgi/ellF563YMHClYnk\nuvn1Cva65pqjMpMVAADg25T0ABCKioq27sIVZcnNTwIIYf/GuX/5ujSEcP8rC//8y503O3/R\nlHtTqVQIIbdx12oPBwC1UCwr78yhI7e7a9hDL81Kn0klS5cUr/10zvzC9Sc3bd9j8BX92lTi\nOTkAAIAI2O4eALZYdt52LVq0aNGixXYNPO4GVMphh++UHswddfXML0s3Pbl06TtX3zcnPd7p\nlz2qNxkA1FqxeEHv/tfdO3RQz/071o9v+JUyzXbZ59QBQ+4fNrB9QW7E8QAAADYmll6gAwDb\nsgULFmzy89TypV8sWrSw8JPZkya/tboiFa+/07lX//nw3ZtGlA+o/cpL3jv9xMuLkxUhhOwG\nbU6/6OJf7dtmgzMXzHzhphtHfVxSHkLIym56/ZgHOngeCAA2J5Us+XjenI8+X7py5crViYqG\njfIbN23RrmOnHZvWz3Q0AACA71LSA8AWKF36wRMPjnxq6qexrAanDru3d7uCTCcCao0Pn7nm\ngodmrjvcvu0+B3befYcddmjVqlVeKFm8ePGiRYvmvTPtnx99tW7OvmfcesWv22YiLAAAAABQ\nXZT0ALClKp656qyH/rU0u/6utz5y4w/qebElUFlTH7h8+POzKjl5n96XXXPaAdWaBwAAAACI\nnpIeALbYmpJZxxx/RUUq1fa3t9x64q6ZjgPUJp+8/vQt9z7+8ddlm5iT16LdiecM/NVPW0eW\nCgAAAACIjJIeALbGracc+8qy0vpNez7xcN9MZwFqm1Tivdf/Nv3tf8+d+/6ir5aXlCZisax6\nDRpu12rn9u3b7f3Tbgf95EfxWKZDAgAAAADVIzvTAQCgVtqtfvYrISRWvhGCkh7YQrHcTl17\nduraM32USiYqsnK18gCwQb169araG44fP75qbwgAALCllPQAsDU+KisPIaSSKzMdBKj1YvHc\neKYzAAAAAACRycp0AACofRLL33x1WVkIISt3h0xnAeqCZGJTr6gHAAAAAOoSK+kBYMuUFb1/\nxxW3JlOpEEKD7Q7JdByg9kmVF70+ZdqsWbPfmzt/2apVJSWr1yRT6a13EyveembKiq7du+2c\nn5PpmABQI1x77bXf5/K5rz4+9tU5qVQqfRiL2b8GAADIPCU9AISxY8dWal5F2aIFn/575j+/\nXlORPtHxlP2qMRZQF82b+vTd9479qDixwU+TZR8/dt+jj496sPtxZ//+2G5eVA8Ae++999Zd\nWPb1+6Nuu/Wv73y+7kzejvucO3BAFeUCAADYekp6AKh0Sf9teS27X7RfiyoPA9Rh74y5csi4\ndzc7rSJZ/MqY4XPmf3Hn4D7ZenoA2FKp5JsvjLrjwYlF5Wsfro1l1e9+7LnnHndwgyw/WQEA\ngMxT0gPA1mi624FX/el83/EBlVf40m3rGvpYPP/AX3Rvt9uPcmY9dvfUxevmZOftvudODWd9\nviqEsPiN0YPH7jHshA6ZiQsAtdOqwpl3jBg57YOidWeatv/5gAF9O7dumMFUAAAA61PSA0Do\n2bNnpefGm7du03bXH+29e1vbUAOVlyz99Kp7XkmPC9oddMnF/fZq1SCEMH/Js+tPy8nb87o7\nH5nx+HVDx74dQnj/ySHvH/1o+wZ+aQeAzUtVlPxt7N33Pvn30oq1b6DPytnuV6f3P+3ILn51\nBwAAahTf9wFA6Nu3b6YjAHXcwsl3fLWmIoRQr6DLLddf0Cw7a6NTY9n7H//HAZ+dPWLq4lSy\n5J4JhTcfu0t0QQGgdlo699URt97z7qKSdWd27nLkwPNP/1GT3AymAgAA2CAlPQAAVLsZzy9I\nD7pd2n9TDf03up198oipw0MICye/FZT0ALBxFYmlzz1w++gX/1mRWruAPidv5+PPG9CnW7vM\nBgMAANgYJT0AAFS7vxeXhRBiWfVO79i0MvNzC7q1yL15SSKZKJ4WwrHVnA4AaqtP35xw68iH\nPyxOpA9jsVjHg48//9xjdqgfz2wwAACATVDSA8AWSyVXXHTJH9Pjm2++ObNhgFrhi0RFCCFe\n7wf5lX4pbquc+JJEMplYVJ25AKC2Kl/16ZjbRzw9ff66M/WbdTxzwMDD926VwVQAAACVoaQH\ngK1QPn/+/M3PAvhGw3gsUZ6qWLM0FUIlW/rFa5IhhFhWg2oNBgC1UGrWy4+NvOepxWXJ9HEs\nlrPfr88875SejSv9MBwAAEAGKekBAKDa/Sw/98Wi0oryoklflx6xXf3Nzk+smLEkkQwh5DTc\nq/rTAUCtUfrle/ePGPHSvxevO9P4hz87b+Dv92/bOIOpAAAAtkhWpgMAAEDdd2j3lunBE7dN\nqcz89x55JD3Y/sdHVFMkAKhlUonpz9x11tmXr2vos+L5R5w6aNSIyzX0AABA7aKkBwCAatem\n93E5sVgIYek7dw59akYytanJi2eOvWbS5+nxYSe0jSAeANRwyz9+Y+gFZ97w0F+XJyvSZ1ru\neeif7nmg32+65trhHgAAqG1sdw8AANUut6DrZYe0vnZyYQhhxuihZ77Zve8pR+3R4dsFfCr5\n1eJPXpv45OgJM5KpVAihaYfTerfKy0hgAKghUskVkx658/5nX0+k1j7jFq/X6jfn/P7EQ/bU\nzgMAALVULJXa5CoeAOB/pJJFRx19ano8fvz4zIYBaotURckDl507ft6ydWdi8frNG1UsKU6E\nEDrutvOCBQtXJpLrPq1XsNeN913dpn48A1kBoMYYfNZvZy9Zve6weace5593YptGOVt9wyZN\nmlRFLgAAgK2npAeALaakB7ZOKln87F3DHnpp1mZnNm3fY/AV/doX5EaQCgBqsl69elXtDf0C\nDwAAZJzt7gEAICKxeEHv/tcdcPD0Z8dPePXNuaUbejV9s132ObLXr3v16JxjD18AAAAAqIuU\n9AAAEKlWnbr27dT13GTJx/PmfPT50pUrV65OVDRslN+4aYt2HTvt2LR+pgMCAAAAANVISQ8A\nABkQi+e17dSlbadM5wCAmm3EiBGZjgAAAFDFlPQAAFDtJkyYEELIb9ute6cmlbzkX5P+UphI\nZjfYtechHaszGgDUaLvsskumIwAAAFQxJT0AAFS7++67L4TQplf7ypf0nz79yAOLV+Xk7dHz\nkD9XZzQAAAAAIFJKegC2LRMnTqyCu1SsroKbAGxSoiIVQigv+zjTQQAAAACAqqSkB2Dbcs89\n92Q6ArBNmDt37v+eLPv647lzk5u/OFVetHDOk0vTzwOlqjgZAAAAAJBRSnoAAKh6gwYN+t+T\ni6fdMWjalt2nXv5+VRMIAAAAAKgZsjIdAAAA2KifnHN8piMAAAAAAFXJSnoAti1PP/10piMA\n24TWrVuvf/jZZ5+FEHLyW7QsyK3kHRptv+Oe3Y4+uWvLqg8HAAAAAGROLJXykksAAKhevXr1\nCiG06XXjyLPaZToLAAAAAJBJtrsHAAAAAAAAgIjY7h4AAKrdSSedFEIoaNcs00EAAAAAgAzv\nU6IuAAAgAElEQVSz3T0AAAAAAAAARMRKegAAqGLLli1LD2KxnIKChpkNAwAAAADUKFbSAwBA\nFevVq1d6kNtw76fGXhtCuOGGG7b6boMGDaqaWAAAAABADWAlPQAAVLvp06dnOgIAAAAAUCNk\nZToAAAAAAAAAAGwrrKQHAIAq1r59+/Qgu0Hr9KBfv36ZiwMAAAAA1CDeSQ8AAAAAAAAAEbHd\nPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARLIzHQAAALY5K4uLy1OpSk4uaNIkVq1p\nAAAAAIAIKekBACAin78zafT4V+fP//DL5WWVv2rMs8/nx9X0AAAAAFBHKOkBACAK8yfcfNH9\nf09VegH9OjleUQUAAAAAdYiSHgAAql2iePrgB77V0Mfj8UpemxuzjB4AAAAA6g4lPQAAVLu5\n9z5cWpEKITRosccZ55z44x+1bdGkQaZDAQAAAAAZoKQHAIBq9+K7RSGE3MZd7rz7iu2z7V8P\nAAAAANsu3w8CAEC1m12yJoTQ6bxzNPQAAAAAsI3zFSEAAFS7sopUCGG/DgWZDgIAAAAAZJiS\nHgAAqt1uDbJDCOWpTOcAAAAAADJNSQ8AANXuyLaNQwhvzy3OdBAAAAAAIMOU9AAAUO1+3L93\nViw2577RpSmr6QEAAABgm6akBwCAape3w6/+dMJepV9PveSWF/T0AAAAALAti6V8RQgAAFFI\nvTr6+hFP/yO32Y9+c/yJRx28T/14LNORAAAAAICoKekBAKDaPffcc+nBordf+Ou7S0IIsVjO\ndi1btWrVqknD3E1fO2jQoGrPBwAAAABEJTvTAQAAoO4bNWrUd86kUmu+Wlz41eLCjOQBAAAA\nADLFO+kBAAAAAAAAICJW0gMAQLXr169fpiMAAAAAADWCd9IDAAAAAAAAQERsdw8AAAAAAAAA\nEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEJDvTAQAAoE7p06fPVlyVlV2/6fbb\n7fDD3fc/4ICDD9g7N1bluQAAAACAGiGWSqUynQEAAOqOXr16fc875P+gy7kXXtCtbX6V5AEA\nAAAAahTb3QMAQM2yYsHMmy7uP/G9ZZkOAgAAAABUPSvpAQCgKj3xxBNbcVXFmtKipQvfnTlz\nYXEifSaeu9PwR2/frX68StMBAAAAABmmpAcAgJoiVVHy6rjbRzw+Pf1berPOA0cN6ZHpUAAA\nAABAVbLdPQAA1BSxrLwex1/655P2SB9+9c87560uz2wkAAAAAKBqKekBAKBm6dTnj13yc0MI\nqVTiwalfZDoOAAAAAFCVlPQAAFDDxHJP/U2b9HDhi//JbBYAAAAAoGop6QEAoMZp3q1LerD6\ni2mZTQIAAAAAVC0lPQAA1Di5DX+cHiTLPs9sEgAAAACgainpAQCgxsnKbpoeVJR/mdkkAAAA\nAEDVUtIDAECNU5EsSg+ysptnNgkAAAAAULWU9AAAUOMkVrydHsTr7ZjZJAAAAABA1VLSAwBA\njfPFa2tL+gbNu2U2CQAAAABQtZT0AABQs6QqSh96ZkF6vMMRu2U2DAAAAABQtZT0AABQs7w9\n5sp/rkyEEGKx3NN/3irTcQAAAACAqpSd6QAAAMBaydIvXxh9xwMvvJ8+3P7HfXfP8xs7AAAA\nANQpvvIDAICqdPvtt2/FVRXlZcu++mLO7PdLkqn0mXi91pdf1r0qkwEAAAAANYCSHgAAqtJL\nL730/W8Sz21x7nVDd60f//63AgAAAABqFCU9AADULM07HnRu/74/bZ2X6SAAAAAAQNVT0gMA\nQFVq3br1VlyVlV2/oEmTlm3a/Wy//fft1CZW5bEAAAAAgJohlkqlMp0BAAAAAAAAALYJWZkO\nAAAAAAAAAADbCiU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBEl\nPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJ\nDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHS\nAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0\nAAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9\nAAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkP\nAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdID\nAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQA\nAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0A\nAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8A\nAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMA\nAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAA\nAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAA\nAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAA\nAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAA\nAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAA\nAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAA\nAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAA\nAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAA\nAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAA\nAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAA\nAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAA\nAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAA\nAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAA\nAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAA\nAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAA\nAAARyc50AAAANmzNYztmOkLVyDlhYaYjAFBr7D5gYqYjVI25I47MdAQAAABqKCvpAQAAAAAA\nACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAA\nAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAA\nACKipAcAAAAAAACAiCjpAQAAAAAAAP6/vfuOb6pqAzh+btJ0l5YuNi2zDKFs2VMQkK3IVFkq\niuALsmWjIMoQEFCGqExREJA9RJYIMsqQIausCi2FLtq0TXPfP24aSpukI2na4u/78Y/b5Jx7\nzzm54WnP4zkXsBOS9AAAAAAAAAAAAAAA2AlJegAAAAAAAAAAAAAA7IQkPQAAAAAAAAAAAAAA\ndkKSHgAAAAAAAAAAAAAAOyFJDwAAAAAAAAAAAACAnZCkBwAAAAAAAAAAAADATkjSAwAAoGCL\nDwtZMmtC744tKpYN8PF0d3By9S1aIqjaiz0GDP1y5baHSXoLdUO3tJIkSZIkv6qb7dZgPN/W\nV/ZVbqo2u+/kdVsAS87NqqvcqwHt9uV1W5AThD/kK4Q/ZCSnxP00e1izF4OLeDoX8i3eZtTJ\nvG5RriO2AgCArCNJDwAAgIJKF39j8hstfUrVen/sp+u2/X715u1HMU9SkhIiH4T9c+HEhpVf\nDR/Qsbh34Duzfk6S87qt+c/oUoWkVGeeJOd1c/Ac4h4Dcgnhzxr804Tcxj2mkFOiB9YKfH3U\nwkMnzoXHJMZG/nvzbnxeNwoAACAfIUkPAACAAin+/r6GAS9MW31Aq3+aglA5uBZ206Qtlvzk\nzrKx3cs0HfZIZ2lNIQAABQLhD0CBcGNDr5XnIpVjj4AXmrduXb+qV942CQAAIF8hSQ8AAICC\nJyXp7ivVO/31MEH50bNCs9lrdpy/eic+Me5RXFJ0+N2Q44eXzRhR089FKRB2ZGGtrovyrr0A\nANgA4Q9AQXHmc8Pm9oGdl0TePH9gz55VE6rnbZMAAADyFYe8bgAAAACQbUfGdfg9wpCi6DR1\n44aJ3Zykp+8W8isR7FciuF7j/iNGTOrccMbu20KIW9uGTT/be2KwT540OB8qXCog0CFOOXaS\nJMuFgRzgHgNsjvBnPf5pQm7jHlPciTVs9V91XFfNf3cYAAAAzCJJDwAAgIJGr31nyUXlsGTr\nBVsmdTNXUO1UYvq208f9S+5/rBVCLBmyZ+KRXnZqZL437o/z4/K6DXi+cY8BNkb4swX+aUJu\n4x4zSH0ih8qZnVwBAABM4JckAAAAFDCxYfP/STAszXn76zctF1Y5+Cz6oo5yHHFqPA/mBTKh\n1+7fuGrW1Amfzv42r5sC4BmEPyAXEf4AAABgXyTpAQAAUMBoI/40Hr9ezC3T8iXavqoc6LSh\n558kWy58dd+64W91rFQ+oLC7s2eRgLpNWr/5wSdnI7SZXUR/bNOK//XrWq1SOV8vN0c3z5Jl\nKjbt0Gfm4rVhiSnm6nhr1JIkufp0UH5MeHB+ybRhjWq/UNzHw9nDu2zQC90Gjlq392IuVQ/d\n0kqSJEmS/KpuNvl6o28uK6/8e2b3hHe71ahS3sfD2bNIQL2mbfoNm/n3o0TLI5KivbN6wZSO\nTWoFFPN1cnIvVa5y655Dvt9+Snl3fWVf5SprI+Itn8ekxEcXv5vz8etd2jesXa2Uv5ejq2dg\nxRcat2z7xpApv196mGmXrexawoPTC6eNaFW3Wski3o7OHiXLBDXvNuibnw9anwOT9QmHNn7z\nXv9erZvUK1vcx9ndJ6h63XZdeoycufxyZq0SQkT9c3DOxKEt6lQrVdTX2dmjTKXgl9p3nbR4\nU0Sy2aYZx6T5j9eFEHG3t7epWvyl194cO+XTqZPn/D2vvvKuWuMdlmSpfzu7llVKuni30Wc4\nebp77Cm9dvearwa92iqobGlPVyffkuUbtmzfb/CInw5ezo3OKqwc5OwKO9jumbtOTtr5w9zX\nW9UrU8Lf2dGlaKlyTboMWrnjUpoa+oNrFrzZoVGZUkXdnJyKlanc7OXOY79cH6WTzVxBiJx+\nI7KioIzzfwThzybVCX857hrhLyPCX0YRZzsp3R9xI0p55dca/sorFXodskmPiK3EVgAAnhMy\nAAAA8qWkNcWej/9sPjJ39rUx/ja741FCpuV12ltfp7qbqEv71s3NLZXz+Fb5Ra+Lnf1uS8nU\no0PVGr935hwyd/7oa792qV3U3O/bTl6VJ60OMVmxsINKCOHi/Yosy2c3TCvlZPpZVNU7Dfsn\nPtnm1dP23eTrDb++JMspv3zSy8HkmDgVHbLgD3NjcmPb3Bq+zibbU6n9kHOxSesqGZ6OvCb8\nibmTmHN08YfFndTmBlySVDXbD7mRoMtY0SZd2z5rsL+j6asHNB90KjrR2LXWu25nq19Rlze2\nq1LYXL8cnEtPWnfRXF29Lnru0M4uKtNPfHUsVHb4sj9NVjSOSbP11+If7Knt6WSspXGton28\nR5U6RH2OhJm9ekp8kKtGKVZzyumMJ093jykiz65rW8XbXH8rdxxxxdR9a01nrRzknLn3e1vl\n5A2/vpQYfWZQkxIZrytJUoexG2RZTo7/Z3Drcibb5hPcM90/X0Y5/kac/cywzLp0270Z383D\nca40bNvz8V8mN0f2Ef5sUp3wR/iTCX/ZGeTsCg/paO5C5XsetEmPiK0Z5cbvMAAAILexkh4A\nAAAFjHvA04m20RN2ZVpe7VT63VQlzMwvy7Luy161Rn7zmyzLjl6l6zVq0bBWFW9Xw7x/SnLE\nspHNJhwPz1jx8d/f1arWdfOp+8ZXXD19S/gXNk5/J0Zdmv5Grb5z/rDQwtDNw2v0mHwnUVek\nequxn85Zuer7BbM/eb1VDSVlcm7rgno1e1/T6nKpugX7xjftOmGde1CbGUt+PHL8zF+Hdn+7\ncEp1H2chREri/cUfNp50wsSY3Nj0cdXOH4U8NKy/lFSOvsWKe6bOYl/esahhlY4n4pJy0B4h\nxLXV/Rq9Pz/tAk1XT7/ifl7q1AGXZf2ZHYvqN5lkaW1UTrv208gWr4z5Ojzp6dVdCvm4pd5U\nt35f3rL2W3eTzC4etSAhfFudmj12XnxsfMW5kF8xHw/jjzrt7el9as4KicxYV58c/r+XKo9Y\nuCVBb+i0JGn8/Z7WTYq5Me/t+p0n/WypBfrE4U17nIo2LMPy9C9eoVJFJ6/WH5Y0nOfA2APm\nqj66OP5KfLIQQpLUsz6skllfhRAi/I9FL9Ttu+viI2ODfYqWcNc8/fv00q9zG7z49iNd+iVl\n1nTWmkG2XkrSv/3rNF9++F6zAaNW/Ljj9F+Hf1y5sEWghxBCluVtn73+3k9HBtar//Xe6361\nX/9iyaojp07t3Lh6aLuKSvXIs+tbDt6X8bS2+kakU3DH+flG+LNtdQsIf+kQ/kwi/Jnk6v/a\n2LFjx44d29LL8D+slB8wTHnl3c6lbNIjI2Kr8UdiKwAABVLe/j8CAAAAMCfPV8Dn25X0uoQb\nXg6G2UxJUnUdsfDfpJScncq41Eml9hBCODiXnfr9709S9Mq7KYlh33zcy7iUyqvc1PQt0d5u\n6eNiaInKqevweSevP1LeSoq9u3X55CqpC7MkldOivx+lq66sBXRwDijiqBZCvD5zU7L+mQJX\ndi4skbqIp8yrK21bPdOlhGX79lRLUpXec2N1z5xXl3CrZ2AhpYxnmfHpTpsQua9o6qy9U+Fq\nn/6wM1yrLDPSXzm2bWCLwHR/j2RrKWFKUnhZF0PqyMmr3sxvt0fEJSlv6ZPjT+9Z81YDf+OZ\nZ96MNtflnHXt7p6PjCd3cC75vzmrrjxQGp9y469dH3Wpnq5r2VpKOKOWn+FW1HiP+Pz7G5GG\nYUmKe/DzwvG+GsOQFgp4P2Pd9f0rGS9aumn/HUfORMQly7L8+O4/O9d+VjXN6sDuy9MvsTKO\niX+Tssrt9MGM7y6ERhoLXF7aRCmgdioR9exwGW1pH6CUKVxhssmTp7vHkp+cD3Z3VN5ydK84\nafnWsCfJsizL+sTQC/uHdAw2Nrj+lPTryazprDWDnGPG1X5Ofs4qtevEtafTvpuS9KBXyacz\n7EKI+kMWxaWkHWf96gFBqR9B8fhn/6mz8hthYbVf3o5znq+Az7cr6Ql/NqlO+CP8yYS/LA+y\nNeaW9VLO3DEkPOO71vSI2Gq3DxEAAOQqkvQAAAD5VJ4n1/Ntkl6W5V8HVk479eboGdBlwEdr\ndhx9qDW9ZaU5xllUIYTKwWt1hkSCLMvb3zNcS6V2T5cMOTGuhvKWJDmM33QtY9348IP1U2fc\nPEqlnzUr7PB04VTV9zeZbOH9w9OUFYGSJH0ZGm3D6plmKYQQHqX7xKeYmJiOODPC0HGVJl2B\nxY2KGaY1PesfjsiwG7M++YtXy6b97LKVpbh//M3UD6vwhusxGQukJD3o5ueqlGmwyOyMfE66\nptc2Tf0oNW7Vtt40cfXN41qk7VrWsxRJcSHGtadDtoZmLPDP6u6pd5p0IjYp7VtR1+YYN6nu\nNHNLxnxdUsyl92obJnYdnMvc1Jre8loI4eBSduu19HPNiTF/GNv2XkhExrbpdTFlnQ1z2V22\n3TJ58nT32JbXDPeAxrXyjjtxGc85v7Mh7aFxqZh2Vt2azlozyNYwJhKEEHUmH81Y4O6+rsYC\nXuWHJme4KxNj/jD2ekNEfNq3rPxGmEsk5Pk453lyPd8m6WXCny2qE/4IfzLhL41cCn+yxSS9\nlR8fsTWd3PsQAQBArmK7ewAAABQ87Zf8/lG7p5PdSdG3Nn87p0/7Rv7uhWu36Dzm06/2Hr+c\nlK0NKIWoMX5nH1MPemw+ZbxyoE+Ju5tm30s5JXbggr+V4wpvbfi0q4mnXbr4Nd20dYhyHHtn\n8cI7sSYv7eAcsH1uJ5NvFWk8cVHDokIIWZa/HPpbblS3oNePc0w+NdO76hjlQNYnX014upNw\nYvSB/x0zbH08ZOumxhmfyys5DF+9r3Lq3r/ZdW/bOeXAr8b87mU9MhZQafz/18bwXNLYa6ZH\nW5Hdrt0/9sGh1L1wh27d1THQxNU7z9j7XgWvzLuRgfbRDp0sCyEkSTOvQ0DGAmW7zw0MDAwM\nDAwICDj97FbJmwbOkWVZCFG0wedbxnbK+AeexqPS/IO7Szo5CCF02psDN4Waa0bLxTs7liuU\n7kVHjwZjyxhe3D7+WMZakefH3tDqhBBqx6KLW5e02FEhhNAlXO6/xdCGbt9ua1fSLWOZIev3\nKWvCkhP++eR2jPF1azprzSDbhKR2WTe2XsbXvYN7GY+7rv7YIcNd6ejRoK674StzPeGZjbtt\n+I1Iq0CP83OP8GfD6hYQ/oyvE/4E4S8X2OrjI7YqiK0AABRQJOkBAABQ8Kg0/rO3X1k9sV8Z\nT8e0r+t1sad/3/r5hKFt6lf28Cr5Urd+X3y7LTI5/XM9M5Ik9ZKRtU2+5Vy49dPzp3k9Luyr\n80+UB5Gq5s5pZ+7MxZrO7pi6J/DKFddMlinRemGAk+mnBQshui8yLI65u2+kyZ5YWd0ctcZ3\nbj1/k2+pNP7OqVP8aZ9Ae2vTpCS9LIRw8ekwu2kx06d1LrPszfLZachTQQPXhYSEhISEHPzl\nVXNl5JTU9JT5NFUOuhYyfY9y4FbkjTkti5s78eRV3c1e1TxJZVikKMvJG0JNzPaqHUveTPVu\n0afT+nJK9PCjhrTQ8LXvmju/xq3mqp6GrN65GYdMllGpXb/uaSLTJoTo90ld5eDf30drM9xD\nB0dtVQ5KtFpUzDHzPzAfHB/zKFkvhNC4VlrRvYzJMmrn8tOrl/Ly8vLy8jp/yvDgXis7m+NB\nthU3/zfKp665fPa6JYzHY6r7mKxbyin1AeHPvm6rb8Sz5Qv2OD/3CH82rG4O4Y/wpyD85RIb\nfnzEVgWxFQCAAookPQAAAAomyaHPtJXXIyP2r//qnR7tyvq6pHs/Kebe/l++Hz2wY3Gfcm+O\nmhupszRF7+zTqZ6H6fVtkirDejghhBD3dmxTDlx8ur7ibbqMcoJR7Q3rq26tP2KyRLURtSy0\nzbvyaI0kCSF0Cde3RWptXt0c1yJvuZlabKcw+capJVeVgxIvjzJbU4gXRrXPejPScguoFBwc\nHBwcHFTS1WQB7cOQabvuZnqeHHRtxamHykHF94ZbOLN/nTmFHLL9R5arfx/jc6YH1X7py5/+\nyOJC2Lh786N1eiGEg0vZkYHpVwGm9cLw4NQq600WcPbpXMbZdK6rdKc5TipJCJEcf3nqtai0\nb8m6qOGHDZPOb33Z0kTlDC7PP68ceFedZuFTGHzy5uPHjx8/frzt1TKpLbeqszkeZFvRuL5g\n+o3UDWwllWOQi4lMgzBzTwrbfSPSKujj/J9A+LNRdXMIf2kR/gThz9Zs+PERWwEAQIFm+tcU\nAAAAoECQ1IVa9hjSsscQIfQ3zx7dt2/f/v379x84/lD7dOPKpNjQVbM/2rHv5J7fVtYq7GTy\nPM5eWZpgTSviSIRy4F6yl+WSgX0CxaqrQght5CEhhmYs0KqCp4XqKscS9Qs5Ho5OFEL89DC+\nk0/6jIiV1c3RuJmZ9zRvz+045SCwd6CFYq5F+ggxJ7snN0UfeS/02vXr169fv3rl0oXzIXv2\nHImxmI5S5KBrR1M3+63xuoldRo0ktUdPP9el/8Zl6+QqTZHNI+o3//wPIYT28Ynhrzca61W6\nRZs2zZo0bty4Ub3g8o5mJpKjLhryXiq1x+SJEy1cIjHqjnKQFHfSZAGnQo3M1dW4VZ8WVHjM\npUdCiJ+nnJ659umXJeLMqDuJOiGEs1fLKRWztNfx6XOPlYNSXYOyUt7Iys7meJBtRsr0r2+z\nC4KzLIffiLQK/Dj/ZxD+rK9uDuEvLcIf4c/mbPjxEVuJrQAAFGgk6QEAAPB8UJUJbvJ2cJO3\nP5oq65+cO3biYaLk6Ohw/fjOH5YtOnAlOjJkXdMXEkJvbfQ1tdIr7a6YWRR3wzAT7Rbobbmk\nW2nDNps6ren9fsuaWeJjVM7ZQUkzPLyvFRmmdq2sbo5Kne3nyxqfYusVaGmnTQeX7E1PpxMf\ndnL5ivU7d+46duZKtFaXeYUMsts1Wf/k3yTDZqiVPRwtF67mlpNHDjebdWi9z7ARk74JS0wR\nQiRG3d61YfmuDcuFEBr3Ei917NS5c5cer7b2evapqrFXDVueJsWd/eSTs1m5kD75UeQPJMMA\nABUFSURBVEyKXEidfjZXpTG9AbKix2cNxnTeLoS4vW2cXhw3foX2j9yhHFT64IssrqA03iQe\nFU0859UC6zubs0HO/6z/RqTFOBdAhL8cVjeH8GdE+CP85QYbfny5h9gKAADsgO3uAQAAUJAk\nx52alSo6xfRWj5LKLbhRi1Ytmzdp3LjfR5/uO3+5o5+rEOJJ2OZuSy6bOXH2p7SMF8+0qsow\nbS3rE0y+n6jPZM/KuNQCKYkpGd+1sroNGS8kWRwTSXJQWS5h3i9T3iwV+OKHk+bsOva3cc5U\npXYpXbH6y517TVuwasXrZXN2ZgskyUlt3Dc1s8I5nR1V9xi96PrdU/OnDn+pTnl1mvFJjru3\nc92SwT1fLl2h+dI9zyS6kmOSc3ClOFNfHEmylFwp0Xqeu1olhEiKPTHntmGiWZ/8cMSfD4QQ\nkqSaOaJKFq8em7r4TO2avcVttuhsTgY5n7P5N4JxzrcIfzavbkOEP0H4ywzh7+lFbffx5RJi\nKwAAsA+S9AAAAChIkuMvjU31V2xSVqqoNEVnjDHs73p6xmxbtcS9rLty8CQ0ynLJhLBw5cDB\npaLJAhfjM5m5OxtnKOBZwsTTMa2sbkMVUxc1Pr71xEIxnTZUL+dkpvXYlJe7TV31KFkvhHDy\nKt/vfxOWrdl8+nJoXNKTW1fO7tq8duLQvpW9TW/pbBXJobSTYUr9clwmd93l+Jwvt3L2DR42\nae7ev67GhF3cvHrJyHf7vFiltJQ6Dxsbemhwu6rT/ww3ljfehJ4Bk+UsK+6Y7T8DHVwqzHzB\nsCL2u1kXlIPwvz66n5QihPAsN75t4azuI10+9SZ5EmrpJsnIVp3N7iDnZ7nxjWCc8y3Cn82r\n2xDhTxD+MkP4s3mPcgmxFQAA2A1JegAAABQkTp5NjFNR31/JJD1g5F7OMDUWH772YXL2niJp\njm8DX+Ug7u56yyVvrb2lHDh6vGiywIGjERaqJz7efTXBkGZo6W1iLtjK6jbU0MswZXl7w20L\nxRIiNuTg5Lr4i11m7leOK/WeHxbxz8p50wf17lwzKMBFlet7e7ZOnYUP2XjHUjk5aX1EvPWX\ncy1aqXOfwV98vfrPv29F3z6/8tP3/DRqIYSsT5rd8zNjMc8qhn2qE6MPW39Ry7rMbqYc3Fg/\nTTnYPXKPctB0zqCsnye4qCFVdnfzLQvFZN2T6Ojo6OjomNS0kM07m8VBzrdy6RvBOOdbhD+b\nV7chwh/hL1OEPyN7fnzZRWwFAAD2RJIeAAAABYnaKaCrj4tyvPd/q7NY686v95QDjVs1b41t\nfgcu0bGtcpDwcOPeqEQLJedtNkzZl+7WxmSBCzN+sVD92g9TlQO1o3+/IiYedmtldRtq/kYZ\n5eDu9oUWil1faanB5kSEfByelCKE0LhWPrlqqLeZfXWjL8fk4OSZ6tnQ8MzaK4u/slDs0cXJ\nD5Kyvanyla0/rVmzZs2aNVv/MJFw8ihZtd/4xUe/a6X8GHtnsS51HaZnuRHKgTbqt30Wb8K4\nmyFHjx49evToyb+zmttLp1jTecp3R/to17cP4vVJ90eejBBCqB39F7ctmfXzBA+poBxEnPjc\nwkidGP6il5eXl5dX1S6/Ka9Y2dkcD3K+lUvfCMY53yL82by6DRH+CH+ZIvwZ2fPjyy5iKwAA\nsCeS9AAAAChgxr9j2DX3wZ8jR266nmn5FO21oRtuKsdFm0y01W/AHiU+rOSqEULIcsqH4/ab\nK3b/8OifHxrWlvV43/R+v48ujv/hVqzJt1ISbw2YeEo59q/7qYup1ltZ3YYqDHpXOYiP2DD5\npOkFjnrdw2Hz/s7ByeOuRyoHTp7N3MwsZtInR4z+K1c2+aw2obOhGWHLxx26b67Ygn4rcnDy\ny9OH9u3bt2/fvv36m028FW3SwnhsnNzXuNceWNywTHbYuENmLyAn9WvQqHHjxo0bNx6R0/FR\nO5b8opafcrxw0eX7fwx/mJwihCjeYlEJx2w8XrfUKyOUB6lqow6MOBBmppR+5robylH5fuWV\nAys7m+NBzrdy6RvBOOdnhD/bVrchwh/hL1OEPyN7fnzZRWwFAAD2RJIeAAAABUzwxJ+CXDXK\n8bwetYYv2mNhA9/4e2cGt2h0Ni5JCCFJDuMWNLdVMyS157fvBinHl5d2/WSXiR1uE8IPdumw\nQDl2Lz7g43KeJk8l65M/aN7vmjb9w1xlffwnrzY7kfrs4beXvZob1W3Irdg7oyt4KcdftO15\nOsbE82u/H9LicLSlJUTmeFQorBxoH++KMLVps6yPn9u3wfknhs2N9Tba2FnhG/x5m9Qtf+d2\naLfrrokHyh6a/epUM7kZy8r2KK0cRF0bv+Vf09sF//blWuXA2bu9U5pJ44lLDEtaLy/tMGXH\nDZN1t0/vuPFBvBBCrfGd/1qZHLRQ0W62YS3s1aVfbh9lWOH35vxW2TqJs0+XmcGGvbK/6dLt\nyENtxjLHZrbdEpkghJBUTp91Lm183ZrOWjPI+VPufSMY53yL8Gfb6jZE+CP8ZYrwl5Y9P75s\nIbYCAAB7IkkPAACAAsbBufyOb99TViPpdTFffvCyX1CTsZ99tePgqZu37z2Ojg67de3kHwe3\n/PTDkO5NfUrXXv6nYSVKzXc3Di5XyIYtqTdjSyMvJyGErE+a3KFq3wnf/B0Wp7yVkvBgx3fT\n6ga9fDwmUQghqRw/2fG5hVPFhm6qGdRyyS+HYpQdKvXaU3vXda9bZsp2w4NLS708b2rlwrlU\n3YY+3jnXVa0SQiRE/tYkqMmXP/8elbrn5r3zBz/qVn3A0guSpKnl7qi8qJGyOo/oXWWMUlin\nDa3bbfrlh2lSHXLSoR/nt68ZOGrD06Wld7ctv/iviVxCDkkO320erhwmxYZ0Cqo2euGPNx4Z\n2nD/4tGp/Zo2H/2LEMI90D27567Qf5yjShJCyHpt7xptFq7bF6Uzzvnq7537bcrg5l3mnld+\nrjViStq6AR1WDXnBWwgh65Omdaz02vAvjl+4/sQw5vK9s3vH92/UYbLh6bkNx22p6a7JbvOM\nirw4t6ijWgjx5MGqD89ECCGcvJpNDcr2ffX+tq+VrYMTY463Dqo/Y/XuCK1h0VdcxJV5I15v\nMWGf8mOFtza86OFok85aM8hCiFlNalZI9WesifSb/eXeNyIPxxmWEf5sXt2GCH+Ev0wR/mzS\no1xFbAUAAPYkyTKPqQEAAMiPktcWz+sm2Iamt7ktPa3y15J3mg9dEZ+S1fUr9QcsOrz8/XRP\nlgzd0qpMl9+EEL5Vfon4u4vJinJKtMrBsDzuplYX6PTM1qaRIctqN3j/VuoyPklSefkW9XRK\nuf9vhDa1bZKk6v3FkdUfNUh3Zm+N+rFOL4QYO+Klz+YapmUltZOPb6EnkZEJT2ffRKGynY6d\n31jF1cGG1c31PStjIoRwVasS9LIQ4nRcUk23Z2ZOTy5868UPV+lT/9BQadyKFPNLiQkPj4pX\nRmPQ0lMt5rzU+3KkEOL3KG0zTydzV0nnp75Br6/5x3BatXuV6lWK+HtG3wu9dv1mVIJOCKFx\nq/jJ/HpjBhn2ApUkdclyHW9f/cVWXftlzEvdPn+6t7MkSe6F/R2Soh7HGeZwPUp33bcq/sVm\nu4UQrXfd3vNyqSx2beu7NTsvDXl6ZpVjYV/fQs5yxP3wJ2me8usT3O/mqW891M/cx4mPD79c\ntd3BNHPEksq5eCmfmAf3Y7VP61boMvXCpkmO2f8KpLW+Rclev98z/hg87mTIjNrmCls4+ZXV\nw4Pfmp+oT71J1C5+xfz1MQ8iYp6uLPSq0PPc+dWlnv3GWdNZawZ5dKlCX9w17Kr9W5S2RZZv\n2rCD7Uo03yWEKFx+8aOr72UskBR7zKlQQyGEpHLRp5heHtfdz03ZNvyT2zEfl/Iwvm7lN+Lc\nrLrBY08KIUq33Xtr50tpr5hX46yo/OF2k+NQ4Fya/0punJbwR/gj/CkIf/k5/Akh5pUrPOJG\nlBCiY0j41mC/dO9a0yNiaw5iKwAAyIdYSQ8AAIACqe57S2+f3vhqw/KZlvSu0HDe5nPHVqRP\nUdiET423z4b8+ErqzKMs6x9HhIXefWBMUTgVrjxp9ZmMKYq02kzatuOzQV4OKiGEnJL48EFE\n2hxDlXbv/XkufY7BhtVtrs7Q748vG1XS2XBFffKTf2+HKikKB+fSU9efXjqoRmRqC4tk53mu\nr31/YkKvRoZVpClxF86c2L9778kLV5U506CX+u+6fHr0gJUT25RUystySsRD048rzpmus/bt\n+Hywsc2yLMc+emBMUZRo3P9AyLoAp5wMdaevjy8c0ladurBS1ic9Cg8Lvf2vceJVklRN3ph4\n7sSKjBOvToWb7L1ybHD7asZXZL323q17xglfldq9z8SVGSd8c6DV7KdJR0lSfTqyas7OE9R3\n3qWtn9cs4qL8qE9JeHD3VtoURZWOI0+ErEqXohDWddaaQc6fcu8bwTjnZ4Q/W1W3OcJfDs5M\n+PvPhj97fnzZQmwFAAB2Y7+/VQAAAADb8qne5eejXe6f/231xp0nTpw4c/HGo6iomDits7un\nl5dXqQov1K1Tp3n7V7s0qZyrk1WeQd22nel0+OdvN2zd9tuf5+4/CI9JVvv5+5etWq/dKx0H\nDOpRLMNMa0btxiy73b3vgkXfb9px8FbY/RidQ7FixYMbte3ec8Ab7arldnWbqzNw1tXOvZd+\nteKnzXuuhN6JTnEuVSqgRZc33h82uGZRFyHE9QSdEEJSOZfOwuAYSWrP6WuPvP/Rlmlzf7jw\nz9Vr165F612LFy9Vt3m7bt3f6N6yslJs6s5/6n4z+5dDZ0Xh0lWqNbdt19qNWnLzzXeWL129\n9dc9l26FRTyK9ypSrEzV+r3f6je4VxtHScSXHjh7dgshREAlr2ycV3L84Kud3d/ev2LVjycu\n3rhz586dO3diZfeAwIDAgMByVep27/NW82pFzNXWeFRbsv3cqEM/f/vT1t2/Hbt9/8HjeFVA\n+QoVKlSoUqPRG4P6Bxd3tb7vQgjfGl8EOn8bqtUJIQqVGfOKt3OOT1XmlZEn7/b7efnyLb/+\n+uf5mw/CI2SnQn7FAhs0bf7aW++/2qicuYo576x1g5wP5eo3gnHOzwh/tqpuc4Q/QfjLDOHP\nyG4fX7YQWwEAgN2w3T0AAEA+xXb3zz3jhr3Z3T7UJtWtJet1Op1Op3N0cc3+9lwpJZ2d7iWm\nuPh0jn+4ORcaZx2ruobn2bF3qzRceilbm1Tbhiwr96Ta2UXzH1ggx3b3zz3CH+EPBUuehb9c\n9R+LrQAAIB9iJT0AAACA7JNUDhpHB41j2td08Rd3H7gphFA5eLV7uZG5qrG3F9xLTBFCuBXP\n/CmwecBU1wAhREJYghCieHY2qbYNSXLQaBw0msxLAshthD/89+RZ+MtVxFYAAJDXSNIDAAAA\nsA1dwpUOHboJISSV5nTMkxpupuc9N7z/pXJQe0oz+zUOsNqlqzGO7sEVXPg7GsAzCH94vhH+\nAAAAcgP7VwEAAACwDWefzu28XYQQsj6521tztXoTZUK+/2DQ9ttCCJWD5xcvl7RzC4Ec0mvP\nbp01+lpUmR5z87opAPIdwh+eW4Q/AACAXEOSHgAAAICtqL5a9JpydHPj2KCX+izbfDj0XoRW\nl3j32oW9v24Y07dFnf6LlQK1x2yvZmatIZDfjCtbpEbnsUVbfbB7EetfAWRE+MPzifAHAACQ\ne9inCAAAAIDNlO35w/LD1wct/kMIcfvA2ncOrDVZrHTrkbunNLRv04Cc6zB9SYsylVo1rvV8\nPY8XgM0Q/vBcIvwBAADkHlbSAwAAALClgYuOHl41vXZAIZPvalxLvz1l2cVdnxd2kOzcMCDH\nGr3Ruw0pCgAWEf7w/CH8AQAA5B5W0gMAAACwscZ9J5zsO/7S8cN/X7tx8+bNW3cfatwLFfYu\nUr1ew8aN6/g6M9kLAHgOEf4AAAAAZJEky3JetwEAAAAmJK8tntdNsA1N77C8bgIAoMCo/OH2\nvG6CbVya/0peNwEAAAAAkE+x3T0AAAAAAAAAAAAAAHZCkh4AAAAAAAAAAAAAADshSQ8AAAAA\nAAAAAAAAgJ2QpAcAAAAAAAAAAAAAwE5I0gMAAAAAAAAAAAAAYCck6QEAAAAAAAAAAAAAsBOS\n9AAAAAAAAAAAAAAA2AlJegAAAAAAAAAAAAAA7IQkPQAAAAAAAAAAAAAAdkKSHgAAAAAAAAAA\nAAAAOyFJDwAAAAAAAAAAAACAnUiyLOd1GwAAAAAAAAAAAAAA+E9gJT0AAAAAAAAAAAAAAHZC\nkh4AAAAAAAAAAAAAADshSQ8AAAAAAAAAAAAAgJ2QpAcAAAAAAAAAAAAAwE5I0gMAAAAAAAAA\nAAAAYCck6QEAAAAAAAAAAAAAsBOS9AAAAAAAAAAAAAAA2AlJegAAAAAAAAAAAAAA7IQkPQAA\nAAAAAAAAAAAAdkKSHgAAAAAAAAAAAAAAOyFJDwAAAAAAAAAAAACAnZCkBwAAAAAAAAAAAADA\nTkjSAwAAAAAAAAAAAABgJyTpAQAAAAAAAAAAAACwE5L0AAAAAAAAAAAAAADYCUl6AAAAAAAA\nAAAAAADshCQ9AAAAAAAAAAAAAAB2QpIeAAAAAAAAAAAAAAA7IUkPAAAAAAAAAAAAAICdkKQH\nAAAAAAAAAAAAAMBOSNIDAAAAAAAAAAAAAGAnJOkBAAAAAAAAAAAAALATkvQAAAAAAAAAAAAA\nANgJSXoAAAAAAAAAAAAAAOyEJD0AAAAAAAAAAAAAAHZCkh4AAAAAAAAAAAAAADshSQ8AAAAA\nAAAAAAAAgJ2QpAcAAAAAAAAAAAAAwE5I0gMAAAAAAAAAAAAAYCck6QEAAAAAAAAAAAAAsBOS\n9AAAAAAAAAAAAAAA2AlJegAAAAAAAAAAAAAA7IQkPQAAAAAAAAAAAAAAdkKSHgAAAAAAAAAA\nAAAAOyFJDwAAAAAAAAAAAACAnZCkBwAAAAAAAAAAAADATkjSAwAAAAAAAAAAAABgJyTpAQAA\nAAAAAAAAAACwE5L0AAAAAAAAAAAAAADYCUl6AAAAAAAAAAAAAADshCQ9AAAAAAAAAAAAAAB2\nQpIeAAAAAAAAAAAAAAA7IUkPAAAAAAAAAAAAAICdkKQHAAAAAAAAAAAAAMBOSNIDAAAAAAAA\nAAAAAGAnJOkBAAAAAAAAAAAAALATkvQAAAAAAAAAAAAAANjJ/wGkSZmpnf0bRgAAAABJRU5E\nrkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig7_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig7_colors)+\n", " scale_y_continuous(breaks=seq(0,70,10)) +\n", " ggtitle(\"Figure 7: Participation rate per day in shopping and services, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 8: Participation rate per day in childcare, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 5. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^child|^teach\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>23.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>22.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>16.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>23.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>14.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>26.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>18.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>26.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>19.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>21.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>21.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>23.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>26.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>26.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>15.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>18.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>31.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>26.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>23.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>14.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>13.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>15.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>10.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>13.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>14.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>14.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>21.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>14.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>14.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>14.7</td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>12.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>14.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td> 8.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 8.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td>12.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>16.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>21.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>13.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 5.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td> 7.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 6.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Childcare, except teaching, reading and talking</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td>13.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>15.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td> 8.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td> 7.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td> 7.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>10.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td>11.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 8.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td> 9.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>15.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>10.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 8.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 9.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>11.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>16.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td> 8.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td>12.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males</td><td>Teaching, reading and talking with child </td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 9.3</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Austria & 2010 & 23.0\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Belgium & 2010 & 22.7\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 16.3\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Estonia & 2010 & 23.2\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Greece & 2010 & 14.1\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Spain & 2010 & 26.0\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Finland & 2010 & 18.7\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & France & 2010 & 26.5\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Hungary & 2010 & 19.3\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Italy & 2010 & 21.1\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Luxembourg & 2010 & 21.1\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Netherlands & 2010 & 23.3\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Norway & 2010 & 26.4\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Poland & 2010 & 26.5\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Romania & 2010 & 15.4\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Serbia & 2010 & 18.4\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Turkey & 2010 & 31.7\\\\\n", "\t Participation rate (\\%) & Females & Childcare, except teaching, reading and talking & All ISCED 1997 levels & United Kingdom & 2010 & 26.2\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Austria & 2010 & 23.6\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Belgium & 2010 & 14.2\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 13.0\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Estonia & 2010 & 15.4\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Greece & 2010 & 10.9\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Spain & 2010 & 13.9\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Finland & 2010 & 14.7\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & France & 2010 & 14.7\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Hungary & 2010 & 21.7\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Italy & 2010 & 14.2\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Luxembourg & 2010 & 14.7\\\\\n", "\t Participation rate (\\%) & Females & Teaching, reading and talking with child & All ISCED 1997 levels & Netherlands & 2010 & 14.7\\\\\n", "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Finland & 2010 & 12.0\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & France & 2010 & 14.0\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Hungary & 2010 & 8.6\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Italy & 2010 & 8.6\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Luxembourg & 2010 & 12.1\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Netherlands & 2010 & 16.0\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Norway & 2010 & 21.2\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Poland & 2010 & 13.4\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Romania & 2010 & 5.9\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Serbia & 2010 & 7.9\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & Turkey & 2010 & 6.0\\\\\n", "\t Participation rate (\\%) & Males & Childcare, except teaching, reading and talking & All ISCED 1997 levels & United Kingdom & 2010 & 13.4\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Austria & 2010 & 15.2\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Belgium & 2010 & 8.8\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 7.2\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Estonia & 2010 & 7.8\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Greece & 2010 & 10.0\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Spain & 2010 & 11.0\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Finland & 2010 & 8.4\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & France & 2010 & 9.1\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Hungary & 2010 & 15.4\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Italy & 2010 & 10.0\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Luxembourg & 2010 & 8.4\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Netherlands & 2010 & 9.0\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Norway & 2010 & 11.5\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Poland & 2010 & 16.4\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Romania & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Serbia & 2010 & 8.5\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & Turkey & 2010 & 12.5\\\\\n", "\t Participation rate (\\%) & Males & Teaching, reading and talking with child & All ISCED 1997 levels & United Kingdom & 2010 & 9.3\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Austria | 2010 | 23.0 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Belgium | 2010 | 22.7 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 16.3 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Estonia | 2010 | 23.2 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Greece | 2010 | 14.1 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Spain | 2010 | 26.0 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Finland | 2010 | 18.7 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | France | 2010 | 26.5 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Hungary | 2010 | 19.3 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Italy | 2010 | 21.1 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Luxembourg | 2010 | 21.1 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Netherlands | 2010 | 23.3 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Norway | 2010 | 26.4 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Poland | 2010 | 26.5 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Romania | 2010 | 15.4 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Serbia | 2010 | 18.4 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Turkey | 2010 | 31.7 |\n", "| Participation rate (%) | Females | Childcare, except teaching, reading and talking | All ISCED 1997 levels | United Kingdom | 2010 | 26.2 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Austria | 2010 | 23.6 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Belgium | 2010 | 14.2 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 13.0 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Estonia | 2010 | 15.4 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Greece | 2010 | 10.9 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Spain | 2010 | 13.9 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Finland | 2010 | 14.7 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | France | 2010 | 14.7 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Hungary | 2010 | 21.7 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Italy | 2010 | 14.2 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Luxembourg | 2010 | 14.7 |\n", "| Participation rate (%) | Females | Teaching, reading and talking with child | All ISCED 1997 levels | Netherlands | 2010 | 14.7 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Finland | 2010 | 12.0 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | France | 2010 | 14.0 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Hungary | 2010 | 8.6 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Italy | 2010 | 8.6 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Luxembourg | 2010 | 12.1 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Netherlands | 2010 | 16.0 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Norway | 2010 | 21.2 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Poland | 2010 | 13.4 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Romania | 2010 | 5.9 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Serbia | 2010 | 7.9 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | Turkey | 2010 | 6.0 |\n", "| Participation rate (%) | Males | Childcare, except teaching, reading and talking | All ISCED 1997 levels | United Kingdom | 2010 | 13.4 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Austria | 2010 | 15.2 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Belgium | 2010 | 8.8 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 7.2 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Estonia | 2010 | 7.8 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Greece | 2010 | 10.0 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Spain | 2010 | 11.0 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Finland | 2010 | 8.4 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | France | 2010 | 9.1 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Hungary | 2010 | 15.4 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Italy | 2010 | 10.0 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Luxembourg | 2010 | 8.4 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Netherlands | 2010 | 9.0 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Norway | 2010 | 11.5 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Poland | 2010 | 16.4 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Romania | 2010 | 7.0 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Serbia | 2010 | 8.5 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | Turkey | 2010 | 12.5 |\n", "| Participation rate (%) | Males | Teaching, reading and talking with child | All ISCED 1997 levels | United Kingdom | 2010 | 9.3 |\n", "\n" ], "text/plain": [ " unit sex \n", "1 Participation rate (%) Females\n", "2 Participation rate (%) Females\n", "3 Participation rate (%) Females\n", "4 Participation rate (%) Females\n", "5 Participation rate (%) Females\n", "6 Participation rate (%) Females\n", "7 Participation rate (%) Females\n", "8 Participation rate (%) Females\n", "9 Participation rate (%) Females\n", "10 Participation rate (%) Females\n", "11 Participation rate (%) Females\n", "12 Participation rate (%) Females\n", "13 Participation rate (%) Females\n", "14 Participation rate (%) Females\n", "15 Participation rate (%) Females\n", "16 Participation rate (%) Females\n", "17 Participation rate (%) Females\n", "18 Participation rate (%) Females\n", "19 Participation rate (%) Females\n", "20 Participation rate (%) Females\n", "21 Participation rate (%) Females\n", "22 Participation rate (%) Females\n", "23 Participation rate (%) Females\n", "24 Participation rate (%) Females\n", "25 Participation rate (%) Females\n", "26 Participation rate (%) Females\n", "27 Participation rate (%) Females\n", "28 Participation rate (%) Females\n", "29 Participation rate (%) Females\n", "30 Participation rate (%) Females\n", "<U+22EE> <U+22EE> <U+22EE>\n", "43 Participation rate (%) Males \n", "44 Participation rate (%) Males \n", "45 Participation rate (%) Males \n", "46 Participation rate (%) Males \n", "47 Participation rate (%) Males \n", "48 Participation rate (%) Males \n", "49 Participation rate (%) Males \n", "50 Participation rate (%) Males \n", "51 Participation rate (%) Males \n", "52 Participation rate (%) Males \n", "53 Participation rate (%) Males \n", "54 Participation rate (%) Males \n", "55 Participation rate (%) Males \n", "56 Participation rate (%) Males \n", "57 Participation rate (%) Males \n", "58 Participation rate (%) Males \n", "59 Participation rate (%) Males \n", "60 Participation rate (%) Males \n", "61 Participation rate (%) Males \n", "62 Participation rate (%) Males \n", "63 Participation rate (%) Males \n", "64 Participation rate (%) Males \n", "65 Participation rate (%) Males \n", "66 Participation rate (%) Males \n", "67 Participation rate (%) Males \n", "68 Participation rate (%) Males \n", "69 Participation rate (%) Males \n", "70 Participation rate (%) Males \n", "71 Participation rate (%) Males \n", "72 Participation rate (%) Males \n", " acl00 isced97 \n", "1 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "2 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "3 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "4 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "5 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "6 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "7 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "8 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "9 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "10 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "11 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "12 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "13 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "14 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "15 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "16 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "17 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "18 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "19 Teaching, reading and talking with child All ISCED 1997 levels\n", "20 Teaching, reading and talking with child All ISCED 1997 levels\n", "21 Teaching, reading and talking with child All ISCED 1997 levels\n", "22 Teaching, reading and talking with child All ISCED 1997 levels\n", "23 Teaching, reading and talking with child All ISCED 1997 levels\n", "24 Teaching, reading and talking with child All ISCED 1997 levels\n", "25 Teaching, reading and talking with child All ISCED 1997 levels\n", "26 Teaching, reading and talking with child All ISCED 1997 levels\n", "27 Teaching, reading and talking with child All ISCED 1997 levels\n", "28 Teaching, reading and talking with child All ISCED 1997 levels\n", "29 Teaching, reading and talking with child All ISCED 1997 levels\n", "30 Teaching, reading and talking with child All ISCED 1997 levels\n", "<U+22EE> <U+22EE> <U+22EE> \n", "43 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "44 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "45 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "46 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "47 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "48 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "49 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "50 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "51 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "52 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "53 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "54 Childcare, except teaching, reading and talking All ISCED 1997 levels\n", "55 Teaching, reading and talking with child All ISCED 1997 levels\n", "56 Teaching, reading and talking with child All ISCED 1997 levels\n", "57 Teaching, reading and talking with child All ISCED 1997 levels\n", "58 Teaching, reading and talking with child All ISCED 1997 levels\n", "59 Teaching, reading and talking with child All ISCED 1997 levels\n", "60 Teaching, reading and talking with child All ISCED 1997 levels\n", "61 Teaching, reading and talking with child All ISCED 1997 levels\n", "62 Teaching, reading and talking with child All ISCED 1997 levels\n", "63 Teaching, reading and talking with child All ISCED 1997 levels\n", "64 Teaching, reading and talking with child All ISCED 1997 levels\n", "65 Teaching, reading and talking with child All ISCED 1997 levels\n", "66 Teaching, reading and talking with child All ISCED 1997 levels\n", "67 Teaching, reading and talking with child All ISCED 1997 levels\n", "68 Teaching, reading and talking with child All ISCED 1997 levels\n", "69 Teaching, reading and talking with child All ISCED 1997 levels\n", "70 Teaching, reading and talking with child All ISCED 1997 levels\n", "71 Teaching, reading and talking with child All ISCED 1997 levels\n", "72 Teaching, reading and talking with child All ISCED 1997 levels\n", " geo time values\n", "1 Austria 2010 23.0 \n", "2 Belgium 2010 22.7 \n", "3 Germany (until 1990 former territory of the FRG) 2010 16.3 \n", "4 Estonia 2010 23.2 \n", "5 Greece 2010 14.1 \n", "6 Spain 2010 26.0 \n", "7 Finland 2010 18.7 \n", "8 France 2010 26.5 \n", "9 Hungary 2010 19.3 \n", "10 Italy 2010 21.1 \n", "11 Luxembourg 2010 21.1 \n", "12 Netherlands 2010 23.3 \n", "13 Norway 2010 26.4 \n", "14 Poland 2010 26.5 \n", "15 Romania 2010 15.4 \n", "16 Serbia 2010 18.4 \n", "17 Turkey 2010 31.7 \n", "18 United Kingdom 2010 26.2 \n", "19 Austria 2010 23.6 \n", "20 Belgium 2010 14.2 \n", "21 Germany (until 1990 former territory of the FRG) 2010 13.0 \n", "22 Estonia 2010 15.4 \n", "23 Greece 2010 10.9 \n", "24 Spain 2010 13.9 \n", "25 Finland 2010 14.7 \n", "26 France 2010 14.7 \n", "27 Hungary 2010 21.7 \n", "28 Italy 2010 14.2 \n", "29 Luxembourg 2010 14.7 \n", "30 Netherlands 2010 14.7 \n", "<U+22EE> <U+22EE> <U+22EE> <U+22EE>\n", "43 Finland 2010 12.0 \n", "44 France 2010 14.0 \n", "45 Hungary 2010 8.6 \n", "46 Italy 2010 8.6 \n", "47 Luxembourg 2010 12.1 \n", "48 Netherlands 2010 16.0 \n", "49 Norway 2010 21.2 \n", "50 Poland 2010 13.4 \n", "51 Romania 2010 5.9 \n", "52 Serbia 2010 7.9 \n", "53 Turkey 2010 6.0 \n", "54 United Kingdom 2010 13.4 \n", "55 Austria 2010 15.2 \n", "56 Belgium 2010 8.8 \n", "57 Germany (until 1990 former territory of the FRG) 2010 7.2 \n", "58 Estonia 2010 7.8 \n", "59 Greece 2010 10.0 \n", "60 Spain 2010 11.0 \n", "61 Finland 2010 8.4 \n", "62 France 2010 9.1 \n", "63 Hungary 2010 15.4 \n", "64 Italy 2010 10.0 \n", "65 Luxembourg 2010 8.4 \n", "66 Netherlands 2010 9.0 \n", "67 Norway 2010 11.5 \n", "68 Poland 2010 16.4 \n", "69 Romania 2010 7.0 \n", "70 Serbia 2010 8.5 \n", "71 Turkey 2010 12.5 \n", "72 United Kingdom 2010 9.3 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^child|^teach\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 72 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>23.0</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Belgium </td><td>22.7</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Germany </td><td>16.3</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Estonia </td><td>23.2</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Greece </td><td>14.1</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Spain </td><td>26.0</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Finland </td><td>18.7</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>France </td><td>26.5</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Hungary </td><td>19.3</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Italy </td><td>21.1</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td>21.1</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Netherlands </td><td>23.3</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Norway </td><td>26.4</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Poland </td><td>26.5</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Romania </td><td>15.4</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Serbia </td><td>18.4</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Turkey </td><td>31.7</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td>26.2</td><td>Childcare, except teaching, reading and talking, females</td></tr>\n", "\t<tr><td>Austria </td><td>23.6</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Belgium </td><td>14.2</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Germany </td><td>13.0</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Estonia </td><td>15.4</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Greece </td><td>10.9</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Spain </td><td>13.9</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Finland </td><td>14.7</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>France </td><td>14.7</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Hungary </td><td>21.7</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Italy </td><td>14.2</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Luxembourg </td><td>14.7</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>Netherlands </td><td>14.7</td><td>Teaching, reading and talking with child, females </td></tr>\n", "\t<tr><td>⋮</td><td>⋮</td><td>⋮</td></tr>\n", "\t<tr><td>Finland </td><td>12.0</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>France </td><td>14.0</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Hungary </td><td> 8.6</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Italy </td><td> 8.6</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Luxembourg </td><td>12.1</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Netherlands </td><td>16.0</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Norway </td><td>21.2</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Poland </td><td>13.4</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Romania </td><td> 5.9</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Serbia </td><td> 7.9</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Turkey </td><td> 6.0</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>United Kingdom</td><td>13.4</td><td>Childcare, except teaching, reading and talking, males</td></tr>\n", "\t<tr><td>Austria </td><td>15.2</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Belgium </td><td> 8.8</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Germany </td><td> 7.2</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Estonia </td><td> 7.8</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Greece </td><td>10.0</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Spain </td><td>11.0</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Finland </td><td> 8.4</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>France </td><td> 9.1</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Hungary </td><td>15.4</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Italy </td><td>10.0</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Luxembourg </td><td> 8.4</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Netherlands </td><td> 9.0</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Norway </td><td>11.5</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Poland </td><td>16.4</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Romania </td><td> 7.0</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Serbia </td><td> 8.5</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>Turkey </td><td>12.5</td><td>Teaching, reading and talking with child, males </td></tr>\n", "\t<tr><td>United Kingdom</td><td> 9.3</td><td>Teaching, reading and talking with child, males </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 72 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 23.0 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Belgium & 22.7 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Germany & 16.3 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Estonia & 23.2 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Greece & 14.1 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Spain & 26.0 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Finland & 18.7 & Childcare, except teaching, reading and talking, females\\\\\n", "\t France & 26.5 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Hungary & 19.3 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Italy & 21.1 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Luxembourg & 21.1 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Netherlands & 23.3 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Norway & 26.4 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Poland & 26.5 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Romania & 15.4 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Serbia & 18.4 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Turkey & 31.7 & Childcare, except teaching, reading and talking, females\\\\\n", "\t United Kingdom & 26.2 & Childcare, except teaching, reading and talking, females\\\\\n", "\t Austria & 23.6 & Teaching, reading and talking with child, females \\\\\n", "\t Belgium & 14.2 & Teaching, reading and talking with child, females \\\\\n", "\t Germany & 13.0 & Teaching, reading and talking with child, females \\\\\n", "\t Estonia & 15.4 & Teaching, reading and talking with child, females \\\\\n", "\t Greece & 10.9 & Teaching, reading and talking with child, females \\\\\n", "\t Spain & 13.9 & Teaching, reading and talking with child, females \\\\\n", "\t Finland & 14.7 & Teaching, reading and talking with child, females \\\\\n", "\t France & 14.7 & Teaching, reading and talking with child, females \\\\\n", "\t Hungary & 21.7 & Teaching, reading and talking with child, females \\\\\n", "\t Italy & 14.2 & Teaching, reading and talking with child, females \\\\\n", "\t Luxembourg & 14.7 & Teaching, reading and talking with child, females \\\\\n", "\t Netherlands & 14.7 & Teaching, reading and talking with child, females \\\\\n", "\t ⋮ & ⋮ & ⋮\\\\\n", "\t Finland & 12.0 & Childcare, except teaching, reading and talking, males\\\\\n", "\t France & 14.0 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Hungary & 8.6 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Italy & 8.6 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Luxembourg & 12.1 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Netherlands & 16.0 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Norway & 21.2 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Poland & 13.4 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Romania & 5.9 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Serbia & 7.9 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Turkey & 6.0 & Childcare, except teaching, reading and talking, males\\\\\n", "\t United Kingdom & 13.4 & Childcare, except teaching, reading and talking, males\\\\\n", "\t Austria & 15.2 & Teaching, reading and talking with child, males \\\\\n", "\t Belgium & 8.8 & Teaching, reading and talking with child, males \\\\\n", "\t Germany & 7.2 & Teaching, reading and talking with child, males \\\\\n", "\t Estonia & 7.8 & Teaching, reading and talking with child, males \\\\\n", "\t Greece & 10.0 & Teaching, reading and talking with child, males \\\\\n", "\t Spain & 11.0 & Teaching, reading and talking with child, males \\\\\n", "\t Finland & 8.4 & Teaching, reading and talking with child, males \\\\\n", "\t France & 9.1 & Teaching, reading and talking with child, males \\\\\n", "\t Hungary & 15.4 & Teaching, reading and talking with child, males \\\\\n", "\t Italy & 10.0 & Teaching, reading and talking with child, males \\\\\n", "\t Luxembourg & 8.4 & Teaching, reading and talking with child, males \\\\\n", "\t Netherlands & 9.0 & Teaching, reading and talking with child, males \\\\\n", "\t Norway & 11.5 & Teaching, reading and talking with child, males \\\\\n", "\t Poland & 16.4 & Teaching, reading and talking with child, males \\\\\n", "\t Romania & 7.0 & Teaching, reading and talking with child, males \\\\\n", "\t Serbia & 8.5 & Teaching, reading and talking with child, males \\\\\n", "\t Turkey & 12.5 & Teaching, reading and talking with child, males \\\\\n", "\t United Kingdom & 9.3 & Teaching, reading and talking with child, males \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 72 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 23.0 | Childcare, except teaching, reading and talking, females |\n", "| Belgium | 22.7 | Childcare, except teaching, reading and talking, females |\n", "| Germany | 16.3 | Childcare, except teaching, reading and talking, females |\n", "| Estonia | 23.2 | Childcare, except teaching, reading and talking, females |\n", "| Greece | 14.1 | Childcare, except teaching, reading and talking, females |\n", "| Spain | 26.0 | Childcare, except teaching, reading and talking, females |\n", "| Finland | 18.7 | Childcare, except teaching, reading and talking, females |\n", "| France | 26.5 | Childcare, except teaching, reading and talking, females |\n", "| Hungary | 19.3 | Childcare, except teaching, reading and talking, females |\n", "| Italy | 21.1 | Childcare, except teaching, reading and talking, females |\n", "| Luxembourg | 21.1 | Childcare, except teaching, reading and talking, females |\n", "| Netherlands | 23.3 | Childcare, except teaching, reading and talking, females |\n", "| Norway | 26.4 | Childcare, except teaching, reading and talking, females |\n", "| Poland | 26.5 | Childcare, except teaching, reading and talking, females |\n", "| Romania | 15.4 | Childcare, except teaching, reading and talking, females |\n", "| Serbia | 18.4 | Childcare, except teaching, reading and talking, females |\n", "| Turkey | 31.7 | Childcare, except teaching, reading and talking, females |\n", "| United Kingdom | 26.2 | Childcare, except teaching, reading and talking, females |\n", "| Austria | 23.6 | Teaching, reading and talking with child, females |\n", "| Belgium | 14.2 | Teaching, reading and talking with child, females |\n", "| Germany | 13.0 | Teaching, reading and talking with child, females |\n", "| Estonia | 15.4 | Teaching, reading and talking with child, females |\n", "| Greece | 10.9 | Teaching, reading and talking with child, females |\n", "| Spain | 13.9 | Teaching, reading and talking with child, females |\n", "| Finland | 14.7 | Teaching, reading and talking with child, females |\n", "| France | 14.7 | Teaching, reading and talking with child, females |\n", "| Hungary | 21.7 | Teaching, reading and talking with child, females |\n", "| Italy | 14.2 | Teaching, reading and talking with child, females |\n", "| Luxembourg | 14.7 | Teaching, reading and talking with child, females |\n", "| Netherlands | 14.7 | Teaching, reading and talking with child, females |\n", "| ⋮ | ⋮ | ⋮ |\n", "| Finland | 12.0 | Childcare, except teaching, reading and talking, males |\n", "| France | 14.0 | Childcare, except teaching, reading and talking, males |\n", "| Hungary | 8.6 | Childcare, except teaching, reading and talking, males |\n", "| Italy | 8.6 | Childcare, except teaching, reading and talking, males |\n", "| Luxembourg | 12.1 | Childcare, except teaching, reading and talking, males |\n", "| Netherlands | 16.0 | Childcare, except teaching, reading and talking, males |\n", "| Norway | 21.2 | Childcare, except teaching, reading and talking, males |\n", "| Poland | 13.4 | Childcare, except teaching, reading and talking, males |\n", "| Romania | 5.9 | Childcare, except teaching, reading and talking, males |\n", "| Serbia | 7.9 | Childcare, except teaching, reading and talking, males |\n", "| Turkey | 6.0 | Childcare, except teaching, reading and talking, males |\n", "| United Kingdom | 13.4 | Childcare, except teaching, reading and talking, males |\n", "| Austria | 15.2 | Teaching, reading and talking with child, males |\n", "| Belgium | 8.8 | Teaching, reading and talking with child, males |\n", "| Germany | 7.2 | Teaching, reading and talking with child, males |\n", "| Estonia | 7.8 | Teaching, reading and talking with child, males |\n", "| Greece | 10.0 | Teaching, reading and talking with child, males |\n", "| Spain | 11.0 | Teaching, reading and talking with child, males |\n", "| Finland | 8.4 | Teaching, reading and talking with child, males |\n", "| France | 9.1 | Teaching, reading and talking with child, males |\n", "| Hungary | 15.4 | Teaching, reading and talking with child, males |\n", "| Italy | 10.0 | Teaching, reading and talking with child, males |\n", "| Luxembourg | 8.4 | Teaching, reading and talking with child, males |\n", "| Netherlands | 9.0 | Teaching, reading and talking with child, males |\n", "| Norway | 11.5 | Teaching, reading and talking with child, males |\n", "| Poland | 16.4 | Teaching, reading and talking with child, males |\n", "| Romania | 7.0 | Teaching, reading and talking with child, males |\n", "| Serbia | 8.5 | Teaching, reading and talking with child, males |\n", "| Turkey | 12.5 | Teaching, reading and talking with child, males |\n", "| United Kingdom | 9.3 | Teaching, reading and talking with child, males |\n", "\n" ], "text/plain": [ " geo values\n", "1 Austria 23.0 \n", "2 Belgium 22.7 \n", "3 Germany 16.3 \n", "4 Estonia 23.2 \n", "5 Greece 14.1 \n", "6 Spain 26.0 \n", "7 Finland 18.7 \n", "8 France 26.5 \n", "9 Hungary 19.3 \n", "10 Italy 21.1 \n", "11 Luxembourg 21.1 \n", "12 Netherlands 23.3 \n", "13 Norway 26.4 \n", "14 Poland 26.5 \n", "15 Romania 15.4 \n", "16 Serbia 18.4 \n", "17 Turkey 31.7 \n", "18 United Kingdom 26.2 \n", "19 Austria 23.6 \n", "20 Belgium 14.2 \n", "21 Germany 13.0 \n", "22 Estonia 15.4 \n", "23 Greece 10.9 \n", "24 Spain 13.9 \n", "25 Finland 14.7 \n", "26 France 14.7 \n", "27 Hungary 21.7 \n", "28 Italy 14.2 \n", "29 Luxembourg 14.7 \n", "30 Netherlands 14.7 \n", "<U+22EE> <U+22EE> <U+22EE>\n", "43 Finland 12.0 \n", "44 France 14.0 \n", "45 Hungary 8.6 \n", "46 Italy 8.6 \n", "47 Luxembourg 12.1 \n", "48 Netherlands 16.0 \n", "49 Norway 21.2 \n", "50 Poland 13.4 \n", "51 Romania 5.9 \n", "52 Serbia 7.9 \n", "53 Turkey 6.0 \n", "54 United Kingdom 13.4 \n", "55 Austria 15.2 \n", "56 Belgium 8.8 \n", "57 Germany 7.2 \n", "58 Estonia 7.8 \n", "59 Greece 10.0 \n", "60 Spain 11.0 \n", "61 Finland 8.4 \n", "62 France 9.1 \n", "63 Hungary 15.4 \n", "64 Italy 10.0 \n", "65 Luxembourg 8.4 \n", "66 Netherlands 9.0 \n", "67 Norway 11.5 \n", "68 Poland 16.4 \n", "69 Romania 7.0 \n", "70 Serbia 8.5 \n", "71 Turkey 12.5 \n", "72 United Kingdom 9.3 \n", " bd \n", "1 Childcare, except teaching, reading and talking, females\n", "2 Childcare, except teaching, reading and talking, females\n", "3 Childcare, except teaching, reading and talking, females\n", "4 Childcare, except teaching, reading and talking, females\n", "5 Childcare, except teaching, reading and talking, females\n", "6 Childcare, except teaching, reading and talking, females\n", "7 Childcare, except teaching, reading and talking, females\n", "8 Childcare, except teaching, reading and talking, females\n", "9 Childcare, except teaching, reading and talking, females\n", "10 Childcare, except teaching, reading and talking, females\n", "11 Childcare, except teaching, reading and talking, females\n", "12 Childcare, except teaching, reading and talking, females\n", "13 Childcare, except teaching, reading and talking, females\n", "14 Childcare, except teaching, reading and talking, females\n", "15 Childcare, except teaching, reading and talking, females\n", "16 Childcare, except teaching, reading and talking, females\n", "17 Childcare, except teaching, reading and talking, females\n", "18 Childcare, except teaching, reading and talking, females\n", "19 Teaching, reading and talking with child, females \n", "20 Teaching, reading and talking with child, females \n", "21 Teaching, reading and talking with child, females \n", "22 Teaching, reading and talking with child, females \n", "23 Teaching, reading and talking with child, females \n", "24 Teaching, reading and talking with child, females \n", "25 Teaching, reading and talking with child, females \n", "26 Teaching, reading and talking with child, females \n", "27 Teaching, reading and talking with child, females \n", "28 Teaching, reading and talking with child, females \n", "29 Teaching, reading and talking with child, females \n", "30 Teaching, reading and talking with child, females \n", "<U+22EE> <U+22EE> \n", "43 Childcare, except teaching, reading and talking, males \n", "44 Childcare, except teaching, reading and talking, males \n", "45 Childcare, except teaching, reading and talking, males \n", "46 Childcare, except teaching, reading and talking, males \n", "47 Childcare, except teaching, reading and talking, males \n", "48 Childcare, except teaching, reading and talking, males \n", "49 Childcare, except teaching, reading and talking, males \n", "50 Childcare, except teaching, reading and talking, males \n", "51 Childcare, except teaching, reading and talking, males \n", "52 Childcare, except teaching, reading and talking, males \n", "53 Childcare, except teaching, reading and talking, males \n", "54 Childcare, except teaching, reading and talking, males \n", "55 Teaching, reading and talking with child, males \n", "56 Teaching, reading and talking with child, males \n", "57 Teaching, reading and talking with child, males \n", "58 Teaching, reading and talking with child, males \n", "59 Teaching, reading and talking with child, males \n", "60 Teaching, reading and talking with child, males \n", "61 Teaching, reading and talking with child, males \n", "62 Teaching, reading and talking with child, males \n", "63 Teaching, reading and talking with child, males \n", "64 Teaching, reading and talking with child, males \n", "65 Teaching, reading and talking with child, males \n", "66 Teaching, reading and talking with child, males \n", "67 Teaching, reading and talking with child, males \n", "68 Teaching, reading and talking with child, males \n", "69 Teaching, reading and talking with child, males \n", "70 Teaching, reading and talking with child, males \n", "71 Teaching, reading and talking with child, males \n", "72 Teaching, reading and talking with child, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Childcare, except teaching, reading and talking, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Childcare, except teaching, reading and talking, males\",\"Childcare, except teaching, reading and talking, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Childcare, except teaching, reading and talking, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia','Turkey')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd))[c(2,1,4,3)]\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddWDUZh8H8JzUjbpRtEiLuw93GK4bgzEYtjHejcGQIWPIsMGGu8Nwh+EMd5cW\nK7Sl7n7tXd4/Du6S0+TuksuV7+evS/skeZI8eZLn+SVPRCRJEgAAAAAAAAAAAAAAAAAAAMA9\nsbUzAAAAAAAAAAAAAAAAAAAA8KlAkB4AAAAAAAAAAAAAAAAAAIAnCNIDAAAAAAAAAAAAAAAA\nAADwBEF6AAAAAAAAAAAAAAAAAAAAniBIDwAAAAAAAAAAAAAAAAAAwBME6QEAAAAAAAAAAAAA\nAAAAAHiCID0AAAAAAAAAAAAAAAAAAABPEKQHAAAAAAAAAAAAAAAAAADgCYL0AAAAAAAAAAAA\nAAAAAAAAPEGQHgAAAAAAAAAAAAAAAAAAgCcI0gMAAAAAAAAAAAAAAAAAAPAEQXoAAAAAAAAA\nAAAAAAAAAACeIEgPAAAAAAAAAAAAAAAAAADAEwTpAQAAAAAAAAAAAAAAAAAAeIIgPQAAAAAA\nAAAAAAAAAAAAAE8QpAcAAAAAAAAAAAAAAAAAAOAJgvQAAAAAAAAAAAAAAAAAAAA8QZAeAAAA\nAAAAAAAAAAAAAACAJwjSAwAAAAAAAAAAAAAAAAAA8ARBegAAAAAAAAAAAAAAAAAAAJ4gSA8A\nAAAAAAAAAAAAAAAAAMATBOkBAAAAAAAAAAAAAAAAAAB4giC9zSILRJZ2PqPA2lsFn4QgBymr\nkikWi109vEuVq1i7fouvv5+8/p/j73KKrL0RAAAgFPlpx6lXjYZLn1g7R8C3gozz1DJQ74+H\nPGcgK3o2NQMdL7634MJRwm0bvdVWrsd5a2cIBA3n+6cj6dYfUrFYJBK5BvbJU1g7NwBgabv6\nllfW5M1mXLZ2XgAAAEC4EKQHvQ5W8dWIld7LKbR2psCQqFunl82d3Ktdk/AKZf083ewcXPyD\ny1St1aD/8B9XbT9su4FtkiRzMlOj37y4d+vipmVzh/XvXN47ZMC4efdTivljJdY6B3Huq2BX\nAIBNQGXFKexeAIDi5/78psoqXSy23xKTzfPa5flverabLidJgiD+d3iFE4OeuYir/y6fN3VA\nlxbVwyuVDPB1drBz8/IrX6lqk1bdJ87++9SNZ6QZ+SnKiTmw7o/+3To0rF21pJ+nvZN7qdDw\nxs3bDvpu+rHrL81YMOcLL659ILyx3XKloSD9rFgsVp7UU99msp6fLPK0k4hM1fpQlPYie23Y\nHeQgIQjiyqx2ayLSzd5EAAAAKKZIsFGKfIsXhnPp+dQ1HAj30UhwN1tmrc0Fw54eW9OrSXnD\nx1fqGPTFTwueZ1n/IAbaSyxSYu1dK/15PNLaW8Mha52DOPdVsCsAbEJe6jHqedpgyWNr54hv\nqKzy089RN7/uvAcWXDiT3Zv57ndqgg4XYi2YAZRw20ZvtZXtfs7aGQJBw/luQErEtZVzJ3bv\n1KZu9bBKVWu3atf5u6kLz9x+bcKiCnOelHKUKndyme7bLZ5Vo1b3LKNce0CT+UYT/7drSafa\nQYQx/jU6LPnnUhHLnMhliYtGdva0M9RC96rQaMVpU/Yzpwu3rT4QAbLdcqVTxMbPVEueEpXB\ndvaC9AtGd4UBrQ6+0bnYu3ObKhM4+3dOkMnN3UgAAAAojvAmPYBtUxSlLBnVOrzzt/uuvDKc\nsij//fZFP9cs3WDN+Xf85I1rsuyIHzuH/W/fa2tnhJ20F99Qn7n+IiLV2jn65OAQFBs4lAAA\nAADFXkHqvcmDWvpXbjxq0h8Hj5+5/fBZxOO7504dW/b7+DZ1y4W3H3bieQarBZ75X693+UUE\nQYjtvLZs7s1NrvVKujNzxP4ogiBEIsnCPaMNpFTI4mb0q/FZ/3HH7xr/ikrCg5Pj+jWr1OGH\nZ1lMh3tJf3KoY1joT6uOpRXKDSRLfXFtTLsK3cavyVGweK2au4ULoQ/EppshNl2u9Plr2j1z\nZs9LPW5+HrTVGH+wpqs9QRC5Ccc6z7jGxSoAAADA1kmtnQGwmG4jvy/raNYLyiEOlnm/GXhD\nKnImta02/0Ic81nyU++NbFM54cSLX9sFc5cxVloOH1PDxc5AAlluVmpq4rN7Nx+8StD4F0nK\n/xpQr8aT10MqeHCZRwAAAAAAAOBbyt3tbVp/cz9d75fOnp1a37XGkWk7LkzrFcZkgfmpJ/qs\nj1T+rjb2QDN3e8tklCFF3piuC5Q/A5r89UWgi96EhUmDaoTveM5ulOxX//5Vu+y1E8/+a+Hr\naDhlXuKZhvX7ROQyirySpPzwohG132U9+ecnqch4eu4WXjz6QKzIpsuVPhmv/loenWX6/ASR\n/viOObPrI5Z6b53VoNr/LhEEcXd+17M/x7Uu4cDFigAAAMB2IUhffHw7Z34nTyO3y1DMbBtc\nV7t1Wrp2s0bVq4SFhZXxlr6MeP7s2bOb5y++o3w8lVTkzexaO/TVqwElXfnNr269Zv4xRn/f\nBFX6q2vLl/wxc8XhQsqj1orC1B+7zBoSsZCzDAIAAAAAAADfcmKP1Gky5G2+kS+Ly2WJM/rW\nsrsQNalZgNFlbu73bbZcQRCEnXPlg7ObWCajjD1f22tPXA5BECKRaPr2QQZSrhnUWDuSWqZe\n267t2tSqFOLt5ZablhQdef/0ySOnb72hpslPudW1du87kQcrOunt8ZMXRA+s21MjkmrnUqr3\n4D41QssFlZC8e/Pm3vn9+y6/oCaI3DO+U71mp36ub3gbOV148egDsSLbLVd6kQUTOkwzcd6P\n4k7SClXFypVZDTxbylXvayfho3dVmlImIrdQUZQ2uPfamDPfmZpHAAAAKJ4QpAe9PGvUbehO\nu3d3EZvxaCtYWvrzJUO2R1D/4la61eptawY01fwwmzz//cYZ342af7CI/BDblssSv+88e8CD\nuTzl1UJKlG805e+Dg/uuqddmdLxMPXJaWuSiqQ8m/V7D24p544K1zkGc+yrYFQBgE1BZcQq7\nFwDAKkhF7pf1B1Aj9NW6/e+XrzvVrVs3UJJ6586dCwdWztpwQUGSBEGQioJp7Zt1S34W7myo\nmyvj5fLRZ2OVv1ss3F+G39EEFUXJ/X46q/ztWWn6iFJu+lK+Pzdq1D8vqX9x9K6/cufGIW3D\nNVL+/NvSlxd3jh026sRL9Zj/2THHOgza/XrvQH3LP/hNq4P0N49b/rBmxx9DA2g7ZN7b6//0\n7TzkZmq+6k9nJ7U+9nVSZx9D74dwt/BPsA/Esmy6XOlEFqXOG9BozUt2H7zQ9vq/RNVvqVNo\nxLNnZi5QRWwftHVseP15DwiCeH9u7NroIcNDPvUnRQAAAICGjw/fAxcU+RqH8lhqnrXzBLya\nXNGTWgBcQ7q+yCsykP7B2sEaZWbCo2TecksVaE/rCln2PpvtEt6dGKuxLSVb7eUiq1xIjRxK\nzfnA5ynWztEnB4eg2MChBKW81GPUktBgyWNr5wj4lp9+jloG6s57wHMGMt/9Ts1AhwuxFlw4\nSrhto7faynY/Z+0MgaDhfKeKWN9ZtSvEUo8Z265pp3l5elVlZ/U7rOGjThte5vgwL2VKR692\nmUUKbjKu1/N1bVVZ/crgleKLANpQc44lmt1MyTeQXi6L//mzQOosIpF0XVSmzsS5ibvt6E+b\ntf79pL4l5yVfb+pBG6C7ZOv1BnLC6cKF0wdio80Q2y1XOlaXELFzxW/1g3QMyjglKoPVokiS\nHOSvXo5byM9sZzcsP/2cas8EfbbKsgsHAAAAW8dq/B4AEApZ5qV5L9QvdYlEkgUXtoU6GnoP\noPqwTfMb+FP/svPHK1zlj2MhHZZOKF+C+pfEW/OtlRkAAAAAAACwrJmTzqt+91x7bfoXDbXT\nlG8z4uKZ6arJyI3f5FC+jKYh7r8fFj5LVf7+csd6Nwmvw6KQ8uxvfvpP+dveteaKZoH6UmZF\nL9wen6OaFIlEv53ZX8/L0KesxXb+c0/daEP5ACJJFs0cflJn4tNjfqF+P84zbPTJye31LdnR\nu8He4xNFIvW+ij0/+nxGgb703C38E+8DMZ9NlyuCIApzHu3ZsnrGxLF9urQJLxvoFlB5wOhp\nN9/nGJiFMcVJymv97uVbWmKZag4eLRfU9FH+jrv03d7EPMsuHwAAAGwagvQANinl0SIFqW7/\nuIWMH1nO3ehc32wcQJ1Muv235XPGl2HTqlMnZVk3I/KMfKoQAAAAAAAAhK8g7d8dibnK305e\nnXcODtOX0q/RlDmVP7wfX5T/btZrPQNfK/LH9Fmn/OlRfuTq9iUtmV0GYs8Nv/IxBhk6eLmB\nL6c8W7yZOulZ6def6/gYXb7EIWTjLlp7P+7SBJnWEwuKopSRh95S/zLt+FypwccV/BvPXFxT\nnQFSUTBhRYTOlJwuHH0gZrLdcqWU/nJK38EjZ87/e++xs8+i4uWk3sdx2JJl3UgqVH9OMbhL\niKWWrNJ/5efKHyRZNHHMecOJAQAA4JOCb9KDhRWkvjq4a+fuw+deR0fHxMTkij1Kly5dpmxY\nt0HffNW9mZONPBby8vyWNfsvPXv2LC5HXCZswN4NowwkLsx49++Rw4cOnXj8JiYuLj4hMd3e\n3cPbO6hqnXqNmrbqM7BnqKehZ5NNE3/mHXWyVM+eTOYqETqZIJaoJgvSL+QqSGfb/K6qf/Pm\nBPEf9S/XM2WVnIzUadkxD3fvPnT97v2Hjx7HJKZlZWXlyEhXN3c3d/dS5cOrVavapHWXHh0b\nuZr9UgWrImRZpCLn1ukj+/btv/bo9fv37+PikiUuHt7eXqUr12rSpGnb7v1bhBlvipsj/tG5\ndes3X7r/4u3bt9GxKS6+AYGBQaUr1+7Ws3ePLp952ZtSC/B24CyDlD29dubo0aOnr9yPi4+P\nj0/ILLLz9/f39/crX61R586dO7Zv6mvwnQ+GMt/cXLdm7embz2NiYqJjYgslrl7ePpVq1G/a\nrPWX33wRWsLe/FUwxLzAC+pQWqX2NoCLc4fgazM5qvQSnl3du3fvkXM3YmLfv4+Lk0k9goOD\nS4aUbdm174D+3csbfPXHKEGVRquzbn3C8ZWLfHnz3507dpy6/iQ+PiExMbFI6url7VOhWt2m\nTVt98c2gSt68nulUnJZwLvaqMO+jhFaZs6F4fvnI1m07Lj149T429n18mrOXb0BgYMnQGl26\nde/2ebsQdzvjyxAertuD/Bxxi9eKnJ7vhI1f7nXKfq8OKIZ0+cVwtK/35CqTv7qk/H35fAIR\nWkI7zctt/Q58jPpPOjSb/56J9d/9q/o9YlJ1AykP76c19luuHMFwFcGtl4Y4bI0u+PDwelF+\n1P7kvP6+TtQ0yfd+jpOp45Eu/oPGlTEe6h64qtf/GqxSTT776y9i0jrtZJwuvPj0gfDVWtRg\nu+WKa/n074yUaxNg8VX41V4Q7LAptkBOEMTbI9/GF74LsLOR7lEAAADgmrXH2wdTcf9NerZf\n9yzKi54/sr2T/taOc0DV+UcilYk1PrZ3Ll3Hd7DeHGxFTcP8y+WdvdSthRLlFjPZurvZsg9/\nT7s1snMN6r9cA4bpW5EsI2LOiI5OBjsixRKXVoOn3H6fwzDzDF39lvYmQZN1zxnOGOxAa+y9\n1vMJt5zE7RobYsEvaJr/TXqSJHMSNmvkcH607k+jKaU9+3dom+oSkfHWuL176dHzdqQb+0Ih\nqyKk8alaA1TL0V6F8S/sKgpPrPwl1MNQp6FIJK7V/qtjz9OZb5rO9VIP4k+vPywt48XxHo3K\nG1i71DHou4V7c+VGtoPKUgeOp0NAKq7uWtCwpI4P41FJ7H2/nrYuvsD4jtDIwL7kXOXfC9Lv\nD+9Q28BuEUs9e09ca8EPbZpfZ1r3UGqwYu3N27lj8c20yHWTudSnJ776rKyBnIvETm1HLYyX\nyUn2X/C14BVhURVvavqlMVnMt3FXq2DqvEMuxzGfVwOTyko49QkNx1euzFen+9TyM7BwsdS9\nx08r0woNbR2T3cv2m/SclnBL7VUq695H6VuIFStzFvR8kz753p42FTz1ZZsgCLHUfeCkVQky\nvVW/QOofKou3BzVwel3jrlbk9ny38cu9ATHn1ANlN/z7ieHEyU/6qBLX+OW2dgJ5wfuarh9q\nxcAmi7jJsiF5KUdVhcqxREvDpUejvXwjU+89rbbZZTyo8w6PTNVIcLZ3OWqChn8Z2bcfyPNC\nKQ/Ei0SSRzmF2qk4XTjXfSBGWaIZYuHWIiu2W66UEu93Zbj/2X6T/t3JttTZtyZwcs+ws3mQ\nahXdDkZxsQoAAACwRQjS2yyBBekTb66pTX+QVieRSNL7151yoQbp89NutgvWbC/p6314vGtK\nGWemb7dI7Hwnb7nJMP9M3JpAe/S+9ox7jGZTFDrQe81S9fRKCz9InxE1XSOHK/Qv58aq4Yb7\nrbR5Vun/RH+Ej2RZhHiIEOenXO9Z21/fYjWIpZ5jl19huGkMg/Q3t0z2t2f0vL9Xlc5XkhnV\nVxY8cDwcgsLcyG+almKeVUefGhtuJxneAzq7j5Pv7qjr5ahvsVQ+tYfF6+/cZ8XMOtPqh5LK\nurU3P+cOF5tp/nWTuWOzBjAsMK4hn+19lcEqpGHZK0LUEVp3YZXvrjHcRrksjnrcpU6hRoOa\nBpgcpLdKfaLOEsdXrgebJvoxO7m8a3wdp78r3OJBek5LuAX3qorV76N0LsG6lTkLuoL0F/8c\n6Sph9Aqds3+dvRG6n6UQSP2jwkV7kIrr6xpHtSKn5zsPu4XTy71hSQ96q9YVPspI8X57tI0q\ncb0FD7UT3JheT/lfkdhhT7wVntq5NVHdfq887LKBlLLsB9T97ODemNWKDlb3pc7e80myRoKB\nfs7UBPMMPulOtTKc9mDQoPs6GjKcLpzrPhCjzGyGcNFaZM6my5VSYc7Ty3ospD+1xjZIf2Nc\nVdW8IpGdySXEsPjrg1Vr8Sg3mYtVAAAAgC1CkN5mCSlIn3x3ncazyYa1mnlBgEH6wtzItkE6\nnmjW2ftwdcVwKYN3iTR0mnGc4SYYFXWkNXXJvrXWMJkrJ542dJidSzW9KQUfpH+5o6VGDm9m\n6e4Lfr5hmJj9wSIIokSFofn6W2esihDXEeLchIvN/Z31LVMnkUg8YpPuXj8TgvQvdo5ktXZn\nv+aXkoxUWZY9cFwfgvy025+XNz6gnwaJvf+iMzEGdoJ293HGq+3edizq25AOfxvezwyZU2cK\n4VCqWL325uHc4WgzzbxuMrd3UjtW2XYo0eDi6wPUvxgIaVj8ilCY94IaaXP0bMdwM6NP96Eu\nv3y/f03bXUqmBemtVZ8ocX3lijo82Z7NYLYhHVfqy6plg/SclnDL7lUlIdxHac9u9cqcBa0g\n/cs9Y1ntUqlT6JYHKdoLFkj9o8RRe1CFh+saF7Uip+c7P7uFu8u9UbmJO1TrcvH/ynDizU0C\nVYm/vJOo8V9Z1m3VgymhA/dzlmVDBlBCmN891XFGq+QkbKPuZ/eQSaxWtJI+RIdq3CYlRWEK\nNWItlpbIYPyMzsMF9ahLrjX9rkYCThdOct8HYpQ5zRCOWovM2W65YuJ4w0DqQtgG6XfVVD+C\n4OjZhvqvtOjn1y9fPHb44L/n/rv/JCIhrcCE7CkV5b2y+7iXRGK7hwafZQQAAIBPB75JD+bK\nTz1bp/FI5aeVVJwDwvv079ugarkgf7f0uNgXD67s2rH/VVqB8r/nZ7SZEbbCGpk1ZFW/Nqff\n5zBJ+WbviCZj1pEkSf2jb6UGPbp1rRtWxt/HJT0+LvL+lQMHDj6lL/D4jE4DfB/uHF3N/Nz6\nNRxBEGdVkymPf7mZNbi+m5GPI16btZg66VVlnPk5sZbNM+5TJ+2cw+u66niJRJZ1s82oTQr6\nwXL0rvzFwM7lSpUqWbKkp50sNjY2Njbm0pFtF58lU5Olv9jQc/2EY8MqMcySgSIksQ9u2LCh\n8rc8//Wt+4mqf/nUrBvqqK6KXdh/Hk8ui+1ctcPFpDzqHx28yvfo379pjdCgwBIpUS+ePnt2\n58Lh/56lqBKQpGLN0HrN2yQN0Hothq2MF9safrWW+heX4Oodm9cpFRKoyEqMfht57tTltEIF\nNUFu4sUO1fvFRh/00PNqkcUPHKeHgFTkfFu71eE3mdQ/ikTSqp917dmpebmQkp4ORe9jYx9d\nO733wJmE/CJVGrks4ecO1cpHx3QLYBRTkee/69doeErhh/o2oEqz/n171gsr6+9tHx0Z8ezp\nk5O7tz9MoJWE6JPfz346cEq4F9uNMophnSmoQymE2puKi3OH4HEzmV83mXu+vnfvuac0/iiW\nujft0rtlvbCSwf5F6fFvXj44uHNfZMqHuFdB+o1OzTTHVtGJiyuC1DF0ThWvsQ8/JM5PO7Xi\nfc5oXcEMDXt+PE+dHPlHIyabYEHWrU+4vnKl3F9Va+pqmYIkCEIscekw4Jt+fbvXqljG30Py\n9kXEs6d31v0x59KbLNrWnRi18OWA8aEeehZpGZyWcC72qkDuozQIrTJnJevt1voDN6t2qdQ5\nsEOvvi3qVPD28shPjXv75unRPXse07NdlPfym8Yt6iTeDXemNd6FU/9w3R7k54hbvFbk9Hwn\nbPxyz4ST74B2nkNPpeUTBJGTsGXMydnLO5TUmTIravu31+KVv8VSj7lVNY/IsVH9E2RygiAk\n9v67VnfhMte65acd35mYq/wtljhPLl/CQGKpQ8nx48erJl38+rJZlWJ1HO1gtfRwoE7mJh8o\nUKjLjJNPD3fGA6WU/Lwq8fMt1WTsoRfEjFq8LZwQQB+Iyc0Q3lqLBthuueLB6fhc1W8nn+4E\nQaS/urby77+3Hzj55F0aNaVIJK1Yt0WHDh0GjRxVJ4jdQZE4lhse4LLifTZBEKSicPLFuCOd\nWIysAAAAAMWWNZ8QAHMI5k36mQ1pI2qKpe7fzN2t/d6Moihj7YSequdGxRLa7azV36Tfs/5L\n1W+R2KFZty9nLl575vKNJxGvE1NzqTMWpF8p60jrIHMoUXPhP1e1nxNWyHMOLPlR461xsdRz\nX6wpL45rm0DvDwrpNNfwoFypjza4S2njak68pfmSgYrA36SPPTtBI3tBn+3QmfLfL0Jp+9/O\na/KKg3qGL1M8PruzJb1n0y14jL48mFyEUiOHUmcc+FzvixQMz8E9X9O6v0Vih76T1uv6TKb8\n8tapGjvft/Y009ZLXY6jnbpcOfnWXXbkpoy+8sLs2F3zvvWUag7r2mDKJX3bzt2BIzk4BJem\nNdbYNP+6fY8/TdNOWZT37o8RbTW+cupZeVSBnpNXIwMdm36ob+2cK8zaqmPvKYoyVv3QhqAr\n1eGwgb3BkMkFXiCHkhRM7c31ucPdZppcBpjLT7ug8SKmSCT6bMislxmaL5oo5DmHF40qobVn\nPuwfPe8dclQa353sQU1W9X83jG6pLPu+I6X31sm7m9FZDDPhTXor1ick91culRIVe5zQVRsr\n5Nm7//hCRK+Ny/c5rTO3lnqTnusSbvG9SgryPkoglTkLWq02leZD50Tna30aWVF4eeuM8i6a\nz56W6bZae9lCqH9ILtuDJI/XNcvWilyf7zZ9uWfu3qyGqrVLHUqtPf9WO01G5KmWlO8slOq8\nRSNBTvxe1Tu+9X69znWedXq+tqkqh+4hv3C3opTHk6mHz961lkaC5CdfUhN4VVrPfOE58Ruo\n87oFj+Vz4Uqc9oGwwqoZwl1rkR/WLVdMmPkmPbWGLNdn559ju9oZe3BfLHXv+f28FzmFrFZ0\nbVS4agl+ddaxmhcAAACKKwTpbZYwgvTvjg+nphFJnH77N9rAMh+tH0roYvUgvdvHsSIrfD7+\nyitDX8+a1yiAOqNrSJfrBkceTn28u4Yr7eFu39rzGG6IYVnvDmh0zVTrNz1Gu6ePJEmSfHFi\naSX61worD1xmYOH5qScb0vWccNsi2SbNDtLHXd9Y0kFzFJCpDzQ/ikaSJKko1NjqcSfeGV54\nftpF6sJFItEbPbvU5CJk2Qhx2rMF1Da8SCQeve2ZgbUnXFnkQv8G6nqtjzKyDdKreIYNeqW/\nmZoecTCc3uMslrjqrri4PHCkpQ9BXvJhjU+NBrf+Jcvg+H7X/xqgseu6bnnBJANKdi5V9kUa\n6ndY/0V5anpHz7YGEjNkYoEXzKEkBVN7c3vucLmZJld6zP3dlNa/JhKJvl55y0D6pNurfHSN\nS6w7pMFZaSzKj6L2/zp5dTa6pREbW1BzUneO3k9pMGRCkF7JKvUJD1cuJfeyvSNyDXWeHhoZ\nTk3v4veFzmSWCtJzWsK52KvCvI8SSGXOgp4gffsZpwzMlJd4qbG35pfR50ZoRnSEUP9w2h4k\nebyuKVmqVuT2imbjl3vm5LIE6nvSIpGkw5hFl+9G5BQpSLIo+vndrXOHU59vEEs9z6ZpFqRF\nH0fCt3et+b5AzvMmKK2t6qPKZOVhV7hajUI2MpT2jn7FIWc1krzc0ZyaoFyv88wXX5T3gjqv\ndqSW04UrcdoHwgrzZginrUU+WLtcMWFOkF6WdZs6r4jNuHquJVsee8liXYn3BqrmlTqVs059\nBAAAAAKDIL3N0uru6fXd/8abZNm1BJ1rYNAjqRgUQHtdptXiO0Yzvu/ritq3tlYP0ivVHL3O\n8IPYmW+XU9NLHUud0O7Q1JJ8729qq0wkEq2OyWK4LYYlXFuq8WC4vXu5r8dPX7Nl9383H759\n9fTc8f0rFs8Z2IrWB00QRFDLSTlyqz2MbXKQPuvdnYXj+zpqtZq8wibqTJ+TsJWazKPsBCZr\nOd6tDHWuf5J0vyNiWhEiLR0hnkf5fBpBEFW/P2F0A09/TxvcsvoEzR5D04L0Du6NHmQZ+axa\n2tNtbvSQQMUhZ7STcXrgSEsfguP9aX21Tj4dkmTGm9t7h9BqQievjjrn0VnMpvwXZ3jhsuy7\n1NCLWFrCaH6MMq3AC+dQCqf25vTc4XQzTa70GMpN2qvx2lD9Kbpfa6Z6c2i0dq50hjQ4LY0r\na9Gq4rVxRq5rP4S4UXa4xPCXmJkwOUhvlfqEhysXQRBiievOaCMnbGHOUx3zH/4AACAASURB\nVCfKTYWdcyWdySwSpOe6hHOxVwV4HyWcypwFXUH64NZLjM6XHXPUlx619W+wSjuZtesfbtuD\n/F/XLFIrcn2+2/Tlnq3kuyvctYYZkNi7+2l96UwkEo3eGakxe8rjeaoEn2/S/C9fFFUoT1t2\nPq/jKS6L2PhtTdoOETvu06qB7/1Wm5qmzqz7rFZBvR0VS5z5XLiKQPpAmDdDOG0t8sDq5YoJ\nc4L0GW9nEmaQOoTsjmL6AFNe6jHqvLsSOR+PBAAAAIQPQXqbpX/gRLYar9L9no3RHsnMd7SP\nezn5dDb8OLBSYc7DEK3XoIUQpHcN7p1hLP9HupelztJiqe43G7Sd/IY2AGn4mGsMZzQq7vrW\nJoEsvikuEkk6fv9XirV6WUiS1IpRtR71g+HnSH74buRXA3vVCwvR6O1Sktj57nitu1GU/Lgf\nNWXj1YZeKVN5vq4Jda51evq8TCtCpEUjxPnpF6j7xM650us8ve8cqxRk3rCnxCRcA0eyXS+p\nK9A49KiO8Se1XZxYhzqXnXNl7b4STg8cadFDoChK13iZ4+fLRvp2lQpzn4U60Wac81pHV4J2\nMQtovJzJ8qeVdqfOpT3kLFumFXjhHErh1N6cnjucbqbJlR5DN36ixQudvDukMbtU/UoPUBF6\nQhqclsaYs32oybSDnVR5KYepo6x7VpzJJCeGmRakt0p9ws+ViyCI8v2PM8nP+JLqgKVY6qkn\nzxYI0nNawjnaqwK8jxJOZc6CVqtN58u+Ot2e24w2o8Q1UmtwCOvWP1y3B3m+rlmqVuT6imbT\nl3sTvDo0W+dARFQiscPwvy5qzSofXd5DmcDZr3uelYKceSmHqVndwOCJCvaK9kxurbFPqozW\n8bTW5SG0MtBoxVNWqylDb/hojEzA6cKphNAHwrAZwnVrkWOCKFdMmBOkjz7TXrvMiCWu7QZ8\nt/nIpcjX0Zl5hbkZKW8iH+3fuGTo53VFWr1Szv7tmdx3kSRJknLql1DaH2fUDAQAAIDiDUF6\nmyWAIP3VkWHUBM2Y9dyRJHmyZzmNPAghSN/vbIyR5SoKqM0kqVNoUiHTxkNB5jUp5VbexX8Q\nwxmZKMp7O7WH5i7VSepYbvm/Ly24atMY7WRhTiSyG7f/tb4VZbzaOoNiv/73cale7qKN1ca8\nc9l4ESJJ0qIR4ufrmlITVB72H5MMkCT5S4i6b1EsddforzAhSO/s249hn4e8ICaAPu/UN5pN\naE4PHGnRQ5AW+RM1gZNPDyZZVbpA/3hwlbE6vpGpXcymPDE0orvKiWZB1Lm4CNIzKfBCOZRC\nqr05PHc43kyTKz2GBvrRPk7caY/eul1DWsQ0jYzpDGlwWhqLCqI9qSNO+3Q3sMy702tRl9md\n2VMahpkWpLdKfcLPlYsgiLXMvju+t5ovZbEcBuk5LeEc7VXB3UcJqTJnQavVFtxqJ9NZC1PK\n0UMXA2/Ea6Sxbv3DbXuQ9+uapWpFbq9oNn65N036s0MDmpUl9PAMa7PmnI6PcUSfHKZKM/bi\ne/6zrRR/vbsqGyKRXaaln3jITbgxrEVpjX3iXrZvvK7Xtc/Rn/BovoNd50Bt+kcTHtK/1sTp\nwjVYvQ+EYTOE69Yid4RTrpgwJ0h/6+fqGpvpEdp+3wO9l4Po63tbBmk+IxI64BDD1f2P8nho\n2e7nmOcTAAAAiisE6W2WAIL0IwJdVf8ViSQ3MgsY5j31+SSNPFg9SC+x800wNuZYVsyf1FlC\n2uxnmB+lccGUsSXFjgxfp2Cg6My6qZXcaa0aA+r3+fl2vJXH1LJUkF7qEDL/qOW/zXb/d9rr\nqgw7l5kUISULRohXUb5uSBDEgndMh1l7NG9Ub4q39M/4mRCkb7DoEcNVkyS5v1Mp6rxsR8PT\nh+GBIy16CG5NpDXp68xmsS2Z72hVilvIz0YzIHUsy/ARfY2OEosH6ZkXeBNY/FAKqvbm7tzh\nejM5LQOFOU+ob6VI7Hzf6fm8qC5FzTwcaHtVzxd8TcC8NK6r709NuUl/yi7e6rsUib1fjCW+\nj2tCkN5a9Qk/Vy5719oMF0vt1eUuSM91Cedor5qGu/soQVXmLGi12sY+SGI+978DQqnzVvzq\nknYaK9Y/nLYHeb6uWapW5Pp8t+nLvZkentr1y4h+NcNCfTyc7Z09SoeGdRo4es2e8wW6zmZF\nUVb7j90CXmE/8Z5ZNWqtaO9Wz4JLVsiz9y35qbSj5rgUjl4Nzifn6ZzlVLsQasq2J3Q83GBA\n6xKO1Nmv0U95ThdOZ/0+EIbNEK5bi1wQWrliwpwg/d46tGuoZ/iXRittWdaTXpRvxxAEIZa4\nXmD2+Zg91dWPh5Yot4h5PgEAAKC40vy4FwBDpDxrS2KOatLRs0N9N6ZtJI/y4x20PituXc5+\nX/rZGTkdEq8dok6GT6zHahVd63irfpOK/AMpeaxm1ykr6mT/RqXaDPs9IlPGcJabexY0KFVu\nzIJDpPmrtx6R2K75wAkXIp/+3DnUeGo2inKf/vjnUxNmZFKELG7t20zVb7HUc2xJNwOJqapO\nXLGHopSDuY9NjB1U3niij5r+Tnvh790+U3a4BpMPnJkeHImlTnb6Qu8rPtrcSo6mfms2N2Gb\nwtgs7qX/Z7FhKMzDXYHn4lAKsPZWseC5w/NmWrYM5CRsJEn1dckt5KcQFvWSZEoDP0vlhIpV\naey4gPZk4ZK/n+tMlhW95Chl3wY2/zvY3jp349aqT/i5crmX/d6sXFoa1yVcOPcDnN5HCbky\nZ04ksvulshfz9HWmtqBOJl66qp3GWvUP1+1Bno+4pWpFrs93m77cm6la235zV+269/RFUnpO\nQU561Iunx7YvH967hb2uovR8ba9/U/MIghCJxDMO/8p3Xinen45X/XbwaGogJSu39i9tHhrY\na9yit/lF1L+7lmp7+vmFFt6OumfT6AVgeWw1WisFGtOcLvwj2+oD4bm1aD4hliuOxQRVafhR\n0xYDr9zaaLTStnMN33xtkxelblTIs0f+dIPJ6gLrqu8B8tNOmJZnAAAAKE6E0twC8x1L1f1M\nq1FXRlQ2YXV5KYfz5JTehzJfMp9XLPWivuwuBB6V2hlNE7M/hjrZvJIHu1VUoaW/k820SalP\nyt31tat8/s/196q/iETS+l2H/b1p3/0Xb1MycopkecnxMbfPH1484/vqAepBF+Wy+BUTutf5\nanGRTQXqHd28SodWbty217RF665HJF7Y/keTUq7GZ2OIlL19fnfrwgkNK9Y/Z1KnLZMiZFny\n/Dd3stSlyNm3n87+KR5I7P16+7A4o93LDaNO5sadNH3dZh84M51KUq9UJJIMC2DxcURCZP+l\nH/XEjLuVZaRaKFG1muEEvLF8gefyUAqt9lax7LnD82ZatgykP71HnQzu0oLV7KFfMxrvlCmT\nSmNAo8XUjtTINX/oTHZ76krq5MAlbUzOppmsUp/wduUqUcWiRcJsnJZwQdwP8HIfJdjKnBUn\n766BbELj7qXHUCfzM85rp7FW/cN1e5DnI26pWpHrK5pNX+55Iy+I6vXTh5MluPXy70N176Xc\n94+3/T2rf7eOjepUr1ilRvM2HYf++Nuhiw8sGyK89iZL9dvBo4H5C3x/a//AZmXq9xp3ibJk\npRp9f30SeaKpr55IKkFIXWivRxemF7JadVoRbd+4SmjXG04XrmRzfSA8txbNIdhyxbUfDp+9\n9tGl89vDnDWHENDJJbjnzoG0N0be7J3KZEbvBuonpQoy/stV2FSvHAAAAHCA0c0HgDZZ1jXq\npHddza9VGdbe02F/cq5Fc2QWNz3tdqrYh+nUycml3CebscbX8XlE+RImz56ffKZZs1Evc9WN\nH8/wrlv2bOwS7k1N5u0f7O0fXKdF13G/zv1n9uihM7equtLubf2pqXe56392J6xt2fvsMYFs\nGqtmy019Hxn54sWLyBcvXih/PH0SkV4gN2eZTIqQZRXQz0EnH6v1oDl592QVD3DwaOlvL0mQ\nfdjhsqzbDGfk4sCZ6Talo0TqFMr2HcSW/k5/xqo7Qe5kFzYw+Aqaa3nLPZhiHjMLPM+HUlC1\nN5Vlzx2eN9OylV7a3TTqZFDHIH0pdfKpX5MgLpq2akuVRrFdwIK6vkOufXhbLjdp946kTQN9\n6SEoRf64fVGqKQf3RrPDWLxQa1lWqU94u3K5lOP1vsIoTks4//cD1rqPEmxlzoqDJ7sDZOdS\ns4yjNOrjG42F2Q+001ir/uG6PcjzEbdUrcj1Fc2mL/e8uTK1+7PcQoIgxBKX1buGaCeQF7xd\nMvHHGcsOZsvV0cEXTx/+d/bkxj+nB9TpvmDx319+VtIimXlBeSPZwdesaqcg7cmccaN/33pJ\nQWoG9pwD681cumx8n/qGl2DnYUedlKWxC/qm04OpbvRgKqcLJ2yzD4Tn1qJpBF6uBKvZwjnE\n5t6qyYKMS2fTC1qXcDAwC0EQziHqBy9IhSwqXx7O7LEAAAAAKK5wKwAmkmW8pU46l3LWl1Kn\nQFc744l45Big96FglXe5RUbTMJcfr/l9SlbmdBj4jNI69aoy+PHdDQbeyxGJXfr/urleuH9Y\nn4WFH5teN5f2XjI8aVy4pzk5sRWytKh/jx49evToibOXo1NyjM/AEpMiZFlFeS+ok06BVgvf\nSp0qsp2lvKNUFWiUF7wzkJLrA2em9zJ1TELiwK5vmiAIl5LOxF315LsCI5WMvZflO2VMY0KB\nt+KhFFTtTWXZc4fnzbRspVeQWECddC/J7qZC4sjutWmOSmP7he2IJltUk4tWRAycXpOaIOXJ\npIc56l7LCkP/lFqvE9Iq9QlvVy47d2HdZ3JawvnZq0K4jxJsZc6KvVsw21nKU4L0isJknWms\nUv9w3R7k+Yhbqlbk+opm05d7fsgyL/dY+kj5u+LQvZ20BujOiT7b67Me/0Zpvi6sEn/n4Fct\nT1xcfHTtDxYY8CaO8gyTg4+RAJ5eZNHR5b98N3HpW60CIHUq+c3kWbMmfuXL4MMELmVpD7Gx\nDaamUoKpIpFE47PlnC6csM0+EJ5bi6zZQrkSLCefXg3dHa5nquv8nQm5RoP0GpVAnAxBegAA\ngE8dhrsHE2kMYOXgy6616eQvrNa+xNn4E80ZRZYc964o2/T2Vebr+bPuJKkmxXZe+y+vZjJy\nZvle8w8Oq6SaJEn57/3WmJwNW6GQJayd+lWgf/nPv/p+ze5/DfcsiyVu1aqa8n4DkyJkWWQR\n7TUdx0CrfUJC6hjCdpbSjurdpZBn6xx1kJ8DZxayKJ8yPJ3E3p/tApyCaEct3XY+QcGqwFv9\nUAqn9tZg2XOH5820bKUnp7+DG+DEbuESe6ZBL05Lo1+9RQH26pw/X7FAI8HZ/+2lTk6dXJ35\nwosH4Vy5eMZpCed6rwrnPkqwlTkrDn6sG0HUioUgdO8Fq9Q/XLcHbfSIc31Fs+nLPT/2Dvkq\ntVBBEITUodRerc86FGbfb1+ji4EIvRKpKFg3ru1X65+Yn5/3MvUhc/A2JUhfkHpvROvyXb9f\npBFJFUs9+vxv0dP416umDmESSSUIwq2CG3Uy43EG82zIC95mUoqfxKGUA/1ZH04XbpN9IMJu\nLdpKuRKy70rSnox889z4htu50WahPsYBAAAAnyY8rwcmEjvQbtYLkgr0pdSJ7UeqhMCZPuhW\n7QYNzfnkZyUzxhK4N5nWqizXd1dzY4/rqrRbstthfY2Cj23F1CdTHuT8WMNFWC+cWVBu/JkW\nNT6/lWjo86iuPiUrV64cFhZWq0mb3j07yo63De1v4rDJvBLRDnpRjnX6mgmCUMhZf302g9K/\nIBLZab/LZRsHTiR1FItUPS9yWQLbBchSaS8ZOIltp0OCMSEcSuHU3hose+4IdjOZ0HjvOSGf\nXXeVokj3q6UauC6NYjufRQ38v7j04TupuYk79iav6+3zoXdVUZjww6U4VWK3kmP6+X4qIWo1\nwVy5eMZtCedyrwqhDlex6VpOpSCJ9Rv8MZRXJ0USD50BE6vUP1y3B230iHN9RbPR3cKb7Jit\nQw5GKX83mHmwitYrqjNbtLuSpj4Ngxp9MeuH/vXq1Qv1LLp/9+6109unLtid9/H2fvuIhp07\nJ/QLYDccggba8WEfY31/4e9WXcdHZNNaDSKxXatBE+bOmVwviF3ePGvQxvBPux/NfF5Z5hXq\npL17Iz4XbpN9IAJuLdpQuRKygDKuxNMU1SSzQXpol058kh4AAAAQpAcT2XvSHpXNjWH3gfnk\nNHadOKxkyC35eoFKIO0tFmL56YsNOfgeGBP/XKK17rr9Wpf5vFLnar+EuM98++EJX5KUL43K\n3FDF2/BcNkqWcbtT9c9vJWn2LPuVrdqgYcOGDRrUq10jLCyspA/tWeZXPObQHBJ7P+pkbjS7\nc9CC5Plv2M7yivJpRrGdj8Z/bejABdpL3nzcFnnBW8OJteW8pb2P6MfsTQUbIpBDKZzaW4Nl\nzx3BbiYTLqVpg2RmxOQSbC5MRQz2JD+lsc3CDkSDDarJeWsje0+qofwd99/YeMq7MvVm/8By\n2cWBcK5cPOO0hHO3VwVSh6vYdC2nIsuMYTvLS0rNb+A7KfzXP1y3B230iHN9RbPR3cKbJd3H\nKwc2d3BvdPCnGhr/Tbg6fvbHt7FFIsnQBftW/dhN9chjo9bBjVp3/apfn77tB51PyiMIQiHP\nHtd7Tb/L48zJUqCDOPJjPVqQwq4b5MXBGXX7zMqkD5/gV7vX+k2rulTTbEMx4ejdgiB2qCbz\n064RxECG8xZkXqUtyrM1nwu30T4QYbYWbatcCZkz/YMmGs+u6VSYnUmdDHKwvdFKAAAAwLKK\nWzwAeGPvXoc6mXonltXsN7PYfaSKlVd5nLyYVbo8rQvycY7VBgO4kUnbe51ZPtrfNMyDOvnm\nGYuxyGzLss6fX6T0LIvEdk17f3/0dkzC60eHd6yd/MOwts3qafQs2xA719rUyfykZ9bKiSz7\nFqv0clkM9SS1p28IYVMHrg6lV7Qo72Usy9Hq7iTQIh91XItbH6tADqVwam8Nlj13BLuZTHjW\n9qJOxp2M05dSp6wXD42m4ac0+tZeEEzpa3u+dInq954fz6l+iyWuy3qXNXNdtkg4Vy6ecVrC\nudurAqnDVWy6llPJTz3GKr0s63os9YPW7k30peS//uG6PWijR5zrK5qN7hZ+JN2Z9uudROXv\n7uu3+0g1+7v2jNys+l1rwol1P3XTHtDLp1avw3e2ukg+zJtwdfzNLLN2chDluQpWQfr3Z6dX\n6/UbbSRwO9/RC/ZF395rWiSVIAgnn54OlLex81IOFDJ+kTfpMq1wBratwufCbbQPRICtRZsr\nV0KWG0t7Ok0jZq+TLJlWkoPtEaQHAAD41CFIDyZy8upMncx8s0NfSh1I2Y4krt6dkue/iuPm\nq06B7QKpk+ejDX2Sk1Pp9Eee2d7Wa3zYTJbC4QMTVpSfenj81XjVpEjiNO/4y0t7/upch+mn\niwXOwa2hO6XjKSd+g4HEnMpPPfGugMVJlx27vIhUt9od6A/L29aBa+et/pwqScrXx7OqFuRr\n49TpxRKXxu7FKkgvnEMpnNpbg2XPHcFuJhNuZWjbEnOY3VjZrze8MJyAt9Ioknr92UR9IHIS\nNh1OyScIojDn4eTH6sEwfessCtMagPdTIJwrF884LeEc7VXh1OEqNl3LqeSnnohiU/NnvFpB\nnfSo3E5fSv7rH67bgzZ6xLm+otnobuEDWfRzjw/PprgGDdzaS/NhFEVh4pRnqcrfUoeQY7P0\nvrDrGtJra9dSH5ZKyqdfeG9Ovio4qc+4gqR0hnPlJZ5u1mVOAWUsbOeAz45FvFo+vqc5HzgQ\nS717eKt7A+QFsdsTmfbM3F9FK5yVvijN58JttA9EaK1FWyxXXFK8ongTxfp7BO9fZ1Mnq5V3\n05dShRrXF4nsSjsiSA8AAPCpQ5AeTCR1rtLYXf0NsPzUo49ymb6/nhO/MbWQkxHpCYLIfPcX\nR0sO6kR7WeTmkuccrcioUo60nrVHLN+fSH9KG1+LydO+tij6yEKSEs2q9PXBCe1LMZnR6Acy\nhULs1N9XfewKc58eT2P6ldP0FxNCKPodf2dORkhS/udLFu8ivFh9nDoZ2LYhddK2DlzNzrRY\nxbE9LPZkTvzGaMpXZp18+rhKLPaVQSEQzqEUTu2twbLnjmA3kwln34GOlPdvsmIWxcpY3Ces\nPmek95zP0thiAS1q9fuGFwRBRO0bl0fpD+36Vze2iy0mBHPl4hm3JZybvSqcOlzFpms5FZKU\n/3Y3iXn66zMvUSdDh1UwkJjn+ofr9qCNHnGur2g2ult4EHVo8OboLOXv7w/+aad1W52XvF/1\n9nCJCr8HGBw5vNmMFqrfL3eyHqWcqlFZddyuIP0Gw7l+bz3gNeVTF55V+l6NON2+rPEQoFHf\nNPWnTm67yjQwufx5GnVyfBUv7TTcLdxG+0CE1lq00XLFGfGg2lVCVSqGx7PsqFwak6X6LRKJ\nBvu7GEislHJd/dicg0cTF3Gx6gEAAAAAEyBID6abUNdX9ZtUFP7vYBTDGR//scyE1Wl8MUuf\nhwtOmbBwJtzLTHaWqE+ZmOO/yRgP4UUo8ge0b9Pyo65f7DInJ528HKmTW+4ks5p91Qva8/u1\nwz30pbRp0XujqZPdJjVgOOOLQ6y/FWotgzrQ2vzTV0cynPHl+n9jKHwruJuZk73jzjBNSsrG\nroyg/qHZKFp3s20duNDhraiTj+fPZT7vvRmLqZNBbb62TJ4EQziHUji1tzYLnjtC3kyjxPYB\nY4LU4/fKZQmjGIdgc+LW7DD2sg6fpdGnxvwylH7kZ38uIwhi5dQ7qr/YOVf6s66fjjk/DcK5\ncvGJ6xLOxV4VTh2uYtO1HNWxsYcYplTI4keeoB2I79sGGUjPf/3DaXvQRo841+e7je4WrpFF\naYOH7FP+9qk5bU49HeVcXqA+EO6VjDx15ORXX/U7m/6yLFuB7QJUvwsyLxlIqZJ0e/IcygAY\nTt4tbtzaXsNCY25Vm9iUOnlvCqMxMLJjll9MV4/V7+zbv5Gbjvxwt3Ab7QMRVGvRdssVd36p\np76KKQpTx19i8YGSnLhNdyjfbXHy6VWNwUA18XdSVb8dvToxXx0AAAAUVwjSg+kazqYNt3h9\n/K8FDDoIFIWJ329g2nVIdZ/+OS7dCy9K/Xb7KxMWzoTEPnhGZU/VZH762VGMB76Lu/LDrlNn\nL3z0vnJlc3LSekAZ6uTVCZuYz5v5evnRFPWeFEucxwVb4LlpAcp9T+vhCne1YzKXojDhO2Pv\nrwhH1V96Uycfz/8pQ86ol+6P9S9Vv0Viu+9KmvtB2biLoy9nMBoz8PWuwdcy1e1wib3/zDDa\nw/K2deBKlJ8W4qBuiucm7ph5h9HrcUV5kcO2vqT+pfvkqhbOnLUJ51AKp/bWsXzLnTtC3kwm\nBo+lrfTsiB8ymVVou4bPNpqGz9Iokrgv/kw9FnF23JoDL/cuobxnU6bHsmI2bAYrwrly8YzT\nEs7FXhVOHa5i67WcStLdH7bHMIr5Xf+9+3vK2Pgu/oN6ejsZSM9//cNpe9B2jzin57vt7hZO\nPfqr+38ZBQRBiESSPw6N15lGYq9+xiX7VaLhBRblqatHB18HAymNCmitfiCgMPt+FoPCsGHQ\naurkuOP/UMfMN5Nv7UUBlLHi055PP0OJkupzefyf1MnK303keeE22gciqNai7ZYr7tSZQhuZ\n7MjXxithleMjZ1Inyw+ewGSua0nqoliiah0DKQEAAOATgSA9mM6v3p/VXNQddjlxu3qvf2Z0\nrhuzutzKYhSQcPClPSt9a7bxoeEu/dohMo/DIa8HLqU96LqjV7/IPOODOpLyzNF9tqkmRSLR\nd99WNCcblb8fR51Mfjht0nlmD/wq8n7t/Cv1D9415gXaF896wKUMbaixx9mMCsbhce3eFTAd\nqNPqSlSY0aqE+jTJTzvT+Y9bRudKuDpxb7K6571E+WmVzW6cywtT+vdaYTSZLPNup2H7qH8p\n2XaZxlCTtnXgRFKv5Z1DqH9Z0GUEk9DIvhFdInLVm+bg0Wx2GJ8j+/FBUIdSILW3NgueO4SA\nN5OJit/+4UAZ7zE38XD73y4YnSvp1tzhx6ONJuO5NDabTxtNeviAEdRhw8fMZfpGcrEknCsX\nzzgt4VzsVUHV4So2Xcup86MoGNtxWr6xMcKy3uztNJd2HBvNmWp04TzXP1y3B230iHN6vhM2\nu1u4U5T3vPuUq8rfpbpsHFpKd/zV0ae708eHVNIip2cbvGN/+rd6fL6S3Uuakz2P0KGq3yRZ\ntDvZyLsHRbmPp0eqBwB38R80p74lB8AQ2/mu7KJ+boAk5SNG7jU8S37qmSEHolSTIrHD/LFh\nPC/cRvtAhNNatOlyxZ3AZisrOKmvYpnvVg7c9tJAepWkW4sHHVV/CEMktls0pTqD+RS7KUH6\nisPLM88qAAAAFFsk2CiF5scmj6XmWXYN+ennqMuvO++Bdpr7f9CGtBJLPRZfjjewzHfHpzno\n+uTSufR87cTpr3/SWPjJhFwDC485/YeT1qshJcotNnnrdFDkd/Khvb8S8NkP7/KLDM5SuOLL\nStRZfGrMZrQug+Y2on3xS+oQsvlukpG8y7OXfhlOnUskEi96kqozcX7aqaZ0fSbdMT/bSoGU\nJ6wJglj2PttSS6Z6tLg+dS2Vvz1tdJYzCweJRZpFaEF0ls7EJhYhkkyNHEqdsccDvQeOySoi\nN9I66URip1+PvDGwdln249b0d7A+36eZnsl6NQ6iUuvJhwysujDnaY9ytNGJRSK7bXE5Gsm4\nPnCkpQ9BbuJejWqtTJff8uSGMnx5cT+N3LZb89zkDOh0rntZ6oz5Cobz6WVCTgR1KIVTe3N3\n7pAkt5tpcmlkbnNH2tizIpF4+Lp7BtJnvt4fqitS22DJY42UPJRGKoU8W2fGCIJw9unNZAls\nMTk6wqlPrHXl0ul4Q/Vrx2Kpp840TBae+e53apoOF2K103BXwkkOaSdycAAAIABJREFU9qpA\n76M4rsy1b4C7jbjGKGMG86x9EAmCqDJ4tYGbhZy4s3U9aC/vOrg3TJAZvL1Qro33+ofT9qAw\nr2tMakVOz3dh7hZOTh9mTo0O/1j8SpzXWZA+mldJPQhBm6V6j4gs625pypcjjqSY29NShfIs\nS+fzMYYTR//bhXoIqo2/aebateXE77CjVNcikfj3qwl6UysKJtXxpWapZNuNVlk4130grDBv\nhnDaWmTO1suVYdTbOYIgpkRlMJ/38tgq1Hkl9n7LrycaniX14T/VXWnD8pfr8w+TdeWn/kud\na3uirgYdAAAAfGIQpLdZwgjSK4oyewfThhuV2PmOXXq0ULurQiHbv2BkCemHB5bFEtpcF3S1\npeUFsar0Sq7BnS7G6AzoKi5snKpK7OivfpfIwkF6kky+u1BK73/0qNhl2/kXOhMnPDr9Q6dQ\namKR2HFVZDrDdRmQm3DARULbOWKJ27A5m6NzC3Wmf3Zhd++aPhplplTndfqWn5O4XSNx2e7n\nzM+2Ej9B+uz3tJdTxRK3Jeej9SXOjb87oU9dQpeGC+/qnMVSQfpGK57qS8loFYqCkWGe1GRi\nidvQWduz5Tr6C9OeH+9Skfb5PWffz7VTmhykJwiifv/JT9MKtNM/Pvp3PX9njcTVvz+unZLr\nA0da/BCQ5LmJ9TTWHtJs8LlXmdopi/Lezvu2jUYMo0Sl4bl6ummEE1QzISeCOpSkYGpv7s4d\nrjeThyC9LOtWOUdaiEIkErcePvdNlkwrrfy/jVOpHegiylZrhzR4KI0aDncprftAL3zEYo8w\nZltBemtduXTiM0jPXQknScvvVcHeR3FamWvfAAc21FvfMqUnSE8QRLm2o27HaT2CrCj8b/O0\nslrx2p/O6ShUOvFc/3DaHiQFeV1jUitye74LcrdwcvowkJ/6r9vHdnG1H84bTvzuxBBV9sQS\n11l7dMTp85PvDamqfmXZK3yC+ZlcW1XdEq887IrhxBf70w6Wa5lKVc3wOk/30xu7B9Be4ZXY\nByw+o6OSl8sSJ3el5Ucs9TxlrOuJo4Vz3QfCCqtmCHetReaKQbkywJwgfWHOY+pjNMrMjF50\nIL1IR+UuL0jY9sdYXztag86hROPHOboLoYakh4NUc0kdy+i4UAIAAMCnB0F6myWMID1JkukR\nqx21XoZwL1Vz2ITZ6zbvOHri2K4t6+dMHF6zlPotQIm9/19ntlDT39TRW0GSJLmpQ4jGkiUO\ngV/8NGfngRP3n0elJcc9f3hn14rZ3Rqpk7mV6Xl+s/p9DosH6UmSPDGuFqGlQv1246Yv3Lx9\n97GTx3dtXjt/1q+D2tfUfp2o+W+Xma/IsHurvxZpLV/qFNS2x1czFyxZv2nbPzu2rlq2ZOLo\nrxpV8Se0uIZ0fqq/IVEMgvQkKR9aWuPdU0ntjl9vPHTq9oOnsYlpsa+enDu+f9WSed/2+syZ\n0tq396C15MUS197jftuwfee2XbRuL5OLUNrLMdQZHTya7rjw4H1SWmJs1IPb17IoTUGGq8iJ\nP6LRSiQIwikg7Ivvp63esPXw8RO7Nq2e/euEL7s2tKOfqiKx3cxrOp5tZxuklzoG0/aY1KN5\nj29mz1+yafuuDav+mvHLmEYVNTtHCIJw9u+cVKizs4HbA8fFIVAUZfYL0RxXUyR2rNuu/5wl\nK3buPXTiyP4Nq/7+YVDnQK0+d4md72Gdr0SzyYA2IQTpBXUolYRQe3N57nC7mTwE6UmSfLHt\nC+3MS+w8W/X+Vrln1q9cOu3n4bVK0YqWR4WBG+uoR+zUFdLgvDRqSHn8o/aGiER2lzJ0PIph\nPhsL0lvpyqUTn0F6ksMSzsVeFeh9FMllZc5DkH7StI70ne/UuOvXv89fsmn7znXL/5z60zc1\nSroSWsr3WMV8hTzXPyTH7UFSeNc1hrUip+e7AHeLtYL069p/6Aqwc6rwUk/gkEI+vBztEaW6\n/Safu/EovUBOkmRS1NNDa6dQH5ERiaTLX1rgGc3na5qoluke8ovhxFPpRcJMz/QEsIvyo7rS\nH68Rie2a9v5+7+lLz9+8T02IfnDr8vo542oEaT4qOnSToWg01wvntA+EFVbNEO5ai8wVg3Jl\ngDlBepIkow5+q72NDp4VP+8z6KfJv63auH3bxrWL58/6umebkm72GsnEUvc1jMdmuE55a9+3\n1hr2GwoAAADFEIL0NkswQXqSJJ/vnqBz0EKdxFL3BRfi8lKOUv+or6WUn3Y+2EH3S4c62blU\nu5Cc93JXc9VfuAjSk/K8Pwfr6BMxqt6I1Ua7DVg583t37T4XJpwDml5OMTQSYLEI0pMpjxZp\n9xga5lt38MOU6NKOOkab9K68k7pwk4tQbuIuAxm4m63uoGS+itjzSwL0vJ5rQL+/dI9xxzZI\n71fzyN4JLVmt2smnyVn9fQ2cHjiODkFe8rUOpXV//9IAiUPQknOGRrwUTlDNtJwI51B+IIDa\nm9Nzh9PN5CdIT5Lkkeld9OVQJ3u3WlfT8ql9czpDGlyXRg0KeW5lZzuNubwqz+Fmn9lekJ60\nxpVLJ56D9CRnJVzJsntVmPdRJMlhZc5DkH5fcu7aQZVZZbtU+8mZut7n07tCfusfJe7agyQp\nuOsa81qR0/NdaLvFKkH6jFerJB+bw63/0r+vKHITTlXSOkFEYid/T0dCS+d5lyySz7yUY+p1\nSZxiCww9bVlHKwpoDn3BVJIkc+JO6vs6hj4NfjzIcJO5Wzh3fSCssG2GcNRaZK54lCt9zAzS\nkyR5dHpnE/aDxD5w7uFXzNfyQ7C6DHQ+EsU2kwAAAFAsIUhvs4QUpCdJ8vnuSUz6BB09a66+\nEEuSZE78BurfdQ7FqZRwZan2W0E6uZdvfzQygyRJzoP0JEmS8u0TPrdn3hUlcR38224uxrJ6\nfmRxGMvmVq2+U17rb1MpFY8gPUmST7aMYdhjKBJJWw2ZnVIoJ0ny6ZrB2gks2LncP0jHO1JK\npkWISZJMvrOxureOriWdxHZeP675T9+iTAjSkyS5c3wXCbPuEs/KHS8nGamvuDtw3B0CWfaT\nLxsEMcmzkpN/re0PUgzvB+EE1UzOiUAOJYWVa2+uzx3uNpO3ID1JkifnfKkxnKk+bmVaHYxI\nJ+l9c/pCGlyXRg3H6achQRC9T76z7I5SscUgPcn7lUsn/oP0JGclXMmCe5UU6n0USZIcVeb8\nBOkVRRl/DG1KMNNgwAydI+4axmf9o8Jde5AkSUFd11jVipye74LaLVYJ0v9S1Vu5LkfP1hmM\nz5Tke1tqeDgY3lcikajbZOPXeuYG+KlfHR7zVH8TQFHI9ukowwwEU0mSTHmwp3UZRpFjkdi+\n75RNrEbn5m7hHPWBsMW2GcJFa5GpYlSudDI/SE+S5PG5Q92ljKprJdeQJvuepjFfflF+lOqe\nSiSyu6+7rQoAAACfHATpbZbAgvQkSea8vz6mU7jem2+RuEansU8yPtyGZrydrvqXxD7Q8JIz\nX53u37CMgZtjkdixxZA58bIPD6TzEqQnSZJMeXR8aFsjr8KIxPYNug479oTFvTtbBRkRy38d\nXt7DeDM1vNXADcd1fHhPW7EJ0pMkGXd9W+swHUNGq4+RSFSp5VeH7tIGej0zf4QfPZ8W7FxO\nf769orvu42VyhJgkyaKC9yt/GVjCYMNSJJI27D7qmMHGpGlBepIkoy9tblnO0DB6UsegMfN3\nG+uE/YCjA6fE0SEgSfnFbXPrBrkYyDZBEBKHgGEzNybKjH9a0Izu43JSqZ2jk7Orm7unp5cV\ng/SkMA6lBivW3jycOxxtJp9BepIk05+fGtIyVF+2CYIQie2afDlL9S4aw5AGp6VRQ+qzCdRZ\nJPaB8QzOetNwHKS3cH1CxeeVSyerBOlJzkq4kqX2qpIA76NULF6Z8xOkV/759vbpFQ0+TuFe\npsmK489MWyef9Q8Vd+1BJYFc19jWipye76Rgdgv/Qfq4y+ovOww5yu4xlLzkG993r6s9cLqS\nS3D9+XseWja3tyZWVy2/0lC9T0cV5jwxfCjZMhxMJUlSLoufP6Kjh8FLhl9Y842XjVzXeF44\nF30gbJnUDLFwa5GhYlautFkkSE+SZPqzE4M71LEz9vy0g1fYhKX7mD8YpJRwa6hqCR5lJ5mW\nQwAAACh+RCRJmnNnBqAh8dmVHTt2HDp3MyYmJjYuzcU3qFSpUuEN2307YkSzyt6qZEn3B/jV\n+jA+mLNv75zEPUaX/ObG4U27j125evX5m/i09DSRo2dgUFBgUMmmHft+NahfZT91J1dhZlRk\ndI7yt8Q+sHIFL4tuoqaUV3eOHDly7OSFlzFxCYmJyam5LiU8vXx8Klar37Rpkw49+tUppfcJ\nawtSFKZcPnX6woULFy/fjklMSklOTs8jPb29fXx8Sleq2bxFi5atOjQM1/Fhtk+D4uGZXbsO\nn7l67cbL6MS0tDSRs1dQUFBwyfKfdejao0f3mmVKaM+Tn/TwwOH/nr6I9y4TGhYWVjm8Rmlf\npq+mGSXPj928cPbWEzejoqJik/N8AgIDAwODgoKW7dxRms0nHrQVZceeOXrk0KEjdyLeJcQn\nJCSl2bt5+vj4lKpUs0WLFm279mlS0dP8/Ac5SONkcuVvv5pHEu59HMyTlN07d/if3f9cuB0Z\nHx+fkJju7O0XGBhYunLd7r16de/awpfd1nF44Lg7BARZ8Ojy6aNHj565ej8uISExISFDJvX1\n8/P38ytfo3GXLl06tW/m52TeKmyPEA+lVWpvvs4dNYFcpEyTGHF9//79h09defc+Pj4+Pktu\nHxgYFBwc3LBd7yFDvqxG+Z5l9puIt7lFyt/OgaFlvQy8IcfTFSH9xW+eFdUhqFId97893oPN\n1n9C+LlyCRA3JfwDi+5Vwd1HUXFUy/XxddmbnBvY8Pj7ax2NpzaEfPLkqWqiVOVwN8mH3n9S\nkXv1yM7N2w48ev02JiY2Ia3AJzAwKCi4Ut3m/fr179I0nMULfXTWrX+4aw8q2eh1jdPznRDY\nbrHc6aMfKesb5LUnPocgCPcyw9LerDXhfIm5eWzT7gPHTl+Jin2fnK0ICAqqULNJ9x49Bw/s\n7CGx5GvHBEHkpx518flcQZIEQTh4fJabftHkE5wLhdnRh3ds233kwpvomNjYmMQsRUBQcHBw\ncIVan30xaFCHeuWEuXCr94GY2Az5ZFqLnJYr7mS/u7tjz9Ebt27duf80MTU9IyNDbu/m7+/v\n7x9YvWGrTp06tmtRx5V9FbG3TUifszHK310PvDncvYyF8w0AAAC2CUF6sI47k2rWnfdA+dur\n4sqUiJHWzQ8AsKI30AgABuHc+XTs7VS6z4l3qskpz1N/r1Q8I80AxVIXb+djqXmlO52JOtba\n2nlhzSbqH7QHizGbPn24M72i128v0pS//4zOGldSiE+TAAAXSHlmGVfvd/lFBEFIHIKiM6MD\n7QX1oA4AAABYDe4JwDrO71N3GwV1qm3FnAAAAABYlrzg3egzsapJB4/PZhTTd8EBiivlA1Uu\nZY0MSixAtlL/oD1YjNnu6cOp4cvaqn6vmfPAijkBAJ4lP/hFGaEnCKJUp9WI0AMAAICK1NoZ\nABuW9mTZtFURqsmaE+Z+E8LoYXBZ5tWpr9JVk/W+Kmv5zAEAAABYydvDI5MK5arJSt8ulFp4\n3FwA4JCiMPFRTiFBEKV7lLR2Xljjs/5BexC02fTpw6ng1usaux+6mllAEMTLLaOy/n7gZulB\n9QFAmPaM2q/8IRJJ5qxsZd3MAAAAgKAgSA+mk7gmLFu2TDVZKa/XN+taMJnxwvQRBYoP31kQ\nS1xmhnP7zXgAAAAAPi3+8bLqt0gkmjGxqhUzAwBsxV+ZVEiSIpF0Yl0/a+eFNT7rH7QHQZtN\nnz6cEknc1i9oGjbiLEEQhTmPxvwXt6VlkLUzBQCck2Ve+fF2ovJ3QJO/+vs7Wzc/AAAAICgY\nYAdM5xo4yt9eopp8ue3LW5kyo3Ml3/2r619PVJN+9f4McZAYSA8AAABgQ1Ifz1wek6WadAsZ\n18PbyYr5AQDmZJkJVw8taNJxC0EQgc0XNvewt3aO2OG5/kF7EKhs/fThQcWvd1VzsVP+Pjpq\ntXUzAwD8eLzoe+VzaSKRaPr2QdbODgAAAAgLgvRgOrF90LrPS6sm5QWx7eoPuZOSb2CWyBML\nqjf6UfbxtQmCIH7Y0JvDLAIAAADwKC/xVq9Wf1D/0uavH6yVGQBgJS95t1OJwCbdJ0TlFzn5\nNt17aJS1c8QO//UP2oOgYuunDz/Edj67FnwY6To9ctaqt1mG0wOArVMUJn616LHyd1CLJSNK\nuVk3PwAAACA0CNKDWdqt21rOSf3RhPSInQ1DyvcaMfXYjYj0HPVbFPkpUaf2bRzavlqlThPi\nZOpPJJZsu/iXME9ecwwAAABgQaSsap3G3foOGjvuuy/7dCpZsuGFpDzVPx3cG2/oUsqKuQMA\n5kiySEGSdi6BnYb8ej3iTCN3wb8HLID6B+1BULK908dKwkYc6BXgQhAESZIzB262dnYAgFsR\na/o/ySkkCEIsLbFx77fWzg4AAAAIjogkSeOpAPSLPjqlcvd5uXKF9r8cXD19SzhmpaVl5Oh4\nncKtTKfrTw6FO0u1/wUAAhfkIFV1sPrVPJJwr4t18wNgK3DuFENkgUjsqO+fo46/W9ExhM/s\nAIDJSHnmm9icwJIBTmKRtfPCjDDqH7QHgbDF08d6km5N86s/iyAIkUiyJTbjy0AXa+cIADhB\nFqXV9wq4nSUjCKL2L5fuzG1q7RwBAACA4OBNejBXSJfZT4/NLeNsp/2vguy0mJg4nT0y3jW/\nvIUeGQAAACi+6ozciQg9gA0RSdzLlQosHiFGPusftAeBKF6nD9d86/22snsZgiBIUv5z7+XW\nzg4AcOXh0h7KCL2zX8cTvzW2dnYAAABAiBCkBwso3X5CROz9GV938LSTGE3s5Fdtwp//RN7a\nUgk9MgAAAFAciaUlBkzafnNlf2tnBAA+OVapf9AeBGBl+M4zjT0cCIKIvzrx11tJ1s4OAFhe\nYfa9LlOuEAQhEjsuvrjDzw498AAAAKADhrsHSyrKiTm8c+9/N27evnP/bXxKRnp6rlzi4eHh\nUaKET2C5Bo2bNG3atF37Zp5SPF8PYNswZDeAaXDuFEeKtXMnbN119Pnb6CzCrULFilVqtx4/\n/ec6gc7WzhgAFHuCq3/QHgRgKOnmvMCGk+Uk6RLQOyl2jxPidwDFyz/9Q/v/84ogiCbT/rs8\ns5m1swMAAAAChSA9AAAAAAAAAAAAAAAAAAAAT/CwLgAAAAAAAAAAAAAAAAAAAE8QpAcAAAAA\nAAAAAAAAAAAAAOAJgvQAAAAAAAAAAAAAAAAAAAA8QZAeAAAAAAAAAAAAAAAAAACAJwjSAwAA\nAAAAAAAAAAAAAAAA8ARBegAAAAAAAAAAAAAAAAAAAJ4gSA8AAAAAAAAAAAAAAAAAAMATBOkB\nAAAAAAAAAAAAAAAAAAB4giA9AAAAAAAAAAAAAAAAAAAATxCkBwAAAAAAAAAAAAAAAAAA4AmC\n9AAAAAAAAAAAAAAAAAAAADxBkB4AAAAAAAAAAAAAAAAAAIAn/2fvzqPrLuvEjz83N1vTpqGl\nLKVlObUwbKWAWCyLIJRd/AmOLFYRBkFHFASlsjjgwghTz5RBBNSKLFJWER39qSAqIB2ksihL\nKQVpSynQQtcsTZPc3PnjljaUJmWSm09I7uv115P7XfrcLzmcnvPu83xFegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIEh5X08AAAAA\nAAAAgPeQ3Kwp3bswO2FqcWcyIFlJDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKU9/UE+l57y9KH\nfnPvX596eu78V+vr61tT5ZDaoaPH7LT7+H0PP2K/zSuzm7xD06Ln7vvDH2c+MfuNN5eubE7D\nhg8fucPOBx704UP3G1eRCfgGAAAAAAAAAPQPmXw+39dz6EvzH77tsu/duaQ5t9Gj2cotPvHF\nr33y4J06v0H+kbuvufKnv29u38hjHLbTwVMuPGu3zauKNFkAAAAAAACAXpebNaV7F2YnTC3u\nTAakkt7uftEDV5/z3ds7Fvry6qF1Net3F8i1vHH7tK9e+duXOrvD4zdfdPlN960r9Jmyytqa\ninVHl8994NKzL32pk38BAAAAAAAAAECpKd2V9G1Nz3xm8sX1uXxKqWLwmMlnnrrf+PdtNbw2\nk1L9stcfv//un9z++xVt7SmlTNmgS3/6071rKze4w4o5N37ma/cUHuDgbSd+/sxP7rfH9hWZ\n1LRs/v3/PeP6e2YVDg0d88+3/Ncp4d8PAAAAAAAAoDuspO9VpbuS/rkbri0U+mzllt/4wdTj\nP7zn1sNrC2+Qrx2+9cEnnHXdVWdXl2VSSvn21T/68QvvuEH7DVf8ppDhq0fsf81VFxw0fvvC\nG+hrhu/w0VMv/u6ZHyict+qln906rz7oWwEAAAAAAADwHla6kf7OmUsKg+0/dsG4ug1XyaeU\nBm97yDl7bl4YL338VxscbXjlpj8tay6MP/3tLw4vz2xwwk7HXPyRLWsK499c+VCxpg0AAAAA\nAABA/1WikT7X/NLfG1oK44OPGt3ZaTsdO6owaG18ZoND827/S2FQPfzIY0cN3tjVmeO/sFdh\nVL9wxspcib5WAAAAAAAAAIB1SjTSt66eu278gdqKzk6rfGuFfb69eYPGfs+TSwuDbQ49orPL\nh+32ybJMJqWUzzXc+npj96cLAAAAAAAAwIBQ3tcT6BsVg8ddcsklhfHIymxnpy17cvna82vf\n33E7+3xu1ZMNrYXxP314q84uz1Ztu29txSOrWlJK855ankYN6em8AQAAAAAAAOjPSjTSZytH\n7bPPqK7PaWtacN3dCwrj7Y78RMdDLfWP5vJrl9bvubH32a+z95DKQqRfOmtZOmrb7s84pZTS\nmjVr2tvbe3gTAAAAAAAAgC50VUC7tHr16mLO472nqqqqrKyn29WXaKTfqHyutbGxsaGhoX75\nq4/NfPihB2YuampNKQ0dM+nfTn5fxzNbm9bvlr9rTae75aeURo6uSa82pJRWv/pKSuN7OMM1\na9a0tLT08CYAAAAAAAAAXeh2pG9sHOAvAa+s7PazWU+kX+9Hp0/+/8uaO36SyVSMP/TjZ//r\nScOyHXe7T+0tK946obzu7Yc2UDls7X+k9rYVRZ0sAAAAAAAAAP1PT1fiD2xDdtj/I0cePqJi\nw6fUsnLtcvZMtrbrO5TXrl1nL9IDAAAAAAAAYCX9eiN32mXXVWsymUwmk2lreHXO/GX18x64\n7KsPvO/AUy7/6serM12tmO9Ue/6twZoiThUAAAAAAACA/kikX++jF33zox1+fHX2IzdcedWj\ni5v+8eebv7S6ffolJ6w7VFm3dhP7fG4T71Roa2wrDDIVw4s7WwAAAAAAAAD6HZG+U9vsOvH8\naYNOOeXSplx+8WO33LjgqFO3X7u5fVllXWGQz7c0tedryjpdZN+yfO3G+GXlRYj0VVVVFRUV\nPb8PAAAAAAAAQNENHjy4r6fQuzLd23/97UT6rlTW7jl56yGjzcadAAAgAElEQVTTF9WnlGbe\nOv/UC8cVPi8ftGNK9xXGzzW1vn9IZWd3WLJodWFQNWzrns+nqqqq5zcBAAAAAAAA6EKuuxcO\nGjSomPMYoEo00v/9lz+b3dSaUtp8r6MP37muizPHjBmSFtWnlBpeeiGltZG+augHyzLXtufz\nKaW/N7R1EemfamgtDEZM3KpYkwcAAAAAAACgnyrRSL/i/l/ctmBVSmmb1/foOtK3Nb/1z0Qy\n6/eZz2Tr9hxc8URDS0rp2UfeSMdtv9Fr821LZ65aUxhvu7d30gMAAAAAAACUurK+nkDfGDlu\ns8JgxdN/7frMv89vKAwGbTGq4+fH7bk2ur927186u3bVgrta8/mUUiZbM3nkAH/7AgAAAAAA\nAACbVKKRfptj9i4MVi/95az6ls5Oa1n5yC/eXPtS+bEnbNfx0JiT9y0MGl+7bdaqjd/h4Wtn\nFga1oyePqCjRRw0AAAAAAADAOiVajgePPGlMdXlKKZ/PXX3pTQ25/DvPya1Z/IOLrm7L51NK\n2cptPrvr2/arrx196oHDqlNK+Xz79y+7+53XL392xo9eXFUYH3XuQcX/DgAAAAAAAAD0NyUa\n6TNlNV85bVxhvPLFX33uvCvumzV78fKGfEopta9Ysujx+287+zNfuH/h2r3u9znt4i03WAqf\nyX72a0cWhivm3Hb2d+96rbFt7aF8bs7Dd3z53+7K5/MppbodT548ZmjAlwIAAAAAAADgPS5T\nCMmlKJ+7/dLP3vq3pR0/y1bXDmpvamjJdfxw7GFnT/vSpI3e4683Tvn2z+cUxpls7Zix29dV\ntS9e9NKipc2FDyvrxv3n9G9tX53thS8AAAAAAAAAUHy5WVO6d2F2wtTizmRAKuFIn1K+venX\nP7z8+t891d7JQ8hWjTj6tHPOOHp85/do//Od37v61j81t2/kDiN2PWTKBV/YebPKIs0XAAAA\nAAAAoNeJ9L2qpCN9QcOrs39734PPzH5u/mtLGxsbU/mg2qFDR4/Zedz4fSYdtv/wyk2/EaBx\n4bP3/uGPMx+f/eayZavWpGHDho8cs9uHDj540gd3z2YCvgEAAAAAAABA0Yj0vUqkBwAAAAAA\nAGA9kb5XbXqZOAAAAAAAAABQFCI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAA\nAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAA\nAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACClPf1\nBAAAAAAABo7crCndvjY7YWoRZ1JSPHYAoB+xkh4AAAAAAAAAgoj0AAAAAAAAABDEdvcAAAAA\nAAD9hvc7APR3VtIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACBIeV9PAAAAAADoFblZU7p3YXbC1OLOBAAAWMdKegAAAAAAAAAI\nItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg5X09AQAAAAAGuNys\nKd2+NjthahFnAgAA0OespAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEe\nAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAA\nAAAAAABBRHoAAAAAAAAACFLe1xN4T1j41IN/mPn4s7PnLlm+sr6hubq2btgWo3bfY/z+hx61\nx7a1nV6WbznhuE80t+c3ef/a0efPuPbAYs4YAAAAAAAAgH6o1CN9y6oXrrnsij/NeaPjhw0r\nlzWsXLbwxad/d8+tuxx04vlnn7h5+Ua2HGhpeOrdFHoAAAAAAAAAKCjp7e7bmuZOOfOCjoU+\nk8nWDRuSyWQKP+bz7bMfuO2sf738tZb2d17eUj8raKIAAAAAAAAADAglvZJ+xkXfeqmptTAe\n+6GPn3bcIWO2HTW4sqylYdm8uU/MmP7jvy1qSik1LX70gq/fddPUEze4fNXzCwuD2tGnfP1L\nu3XxB2WrRvXC9AEAAAAAAADoZ0o30jcsuuvul1YVxmOOvWDaGfutO1Q5ZPg/7T3pm9cc8Otp\n505/aFFKafmcGTe/dNQpY4Z2vMOyx5YWBiMm7rnLLmOjJg4AAAAAAABAf1W6292/cMO9hUH5\noLHfOX3iO0/IlFV/5Nz/2LmmovDjn65/eoMT5r3QUBhsNWHzXpsmAAAAAAAAAANH6Ub6Xz23\nojAYedCZNWWZjZ6TyQ49/eCtC+P6efdtcHRWQ0thsM+Wg3pnjgAAAAAAAAAMKKUa6fMtTzas\nfRv9jkdv08WJm7+1Sr6ted7bbtDe9Exja0opk8lOHFrVO7MEAAAAAAAAYEAp0XfStzXPz+Xz\nhfHum3WV2NcsX7tcPlNe1/Hz1vrHC3eoGDK+Npt59ekHfvc/Ty96ZdFri5dlBw/dfIvR4/ba\na/+DD9h6ULZ3vgEAAAAAAAAA/U+JRvryQWPvvPPOwriquqtI//AvFhYGg4Yd0vHzNSsfKwwy\nZYO/d+lZ9z+5sMPB1xf8Y+4Tf/njLdffOOmkM7/wzxM3vpn+/11zc3MulyvSzQAAAACCVPfg\n2sbGxqLNo/R0+8l77D3hF75PeOyUFL/wQAB/k+zMoEGDysp6ul19iUb6lMqqqzf9q7Xy+Z/N\nWFBfGO/86YkdD6145rXCYM3KP9//5MYvz7Usvffmy2e/8KnvXXBCthihvqWlpaWlpQg3AgAA\nAAjUk5awevXqos2j9HT7yXvsPeEXvk947JQUv/BAAH+T7My7qcybVLKRftMaFz58/sUzCuPK\n2r3Om7hVx6PLHlu2bpzJ1h5+wsmHHjBhuy03T01vLliw4MVnH73nnj++2ZJLKS185JaLb9nl\nik+Pi5w8AAAAAAAAAO9BIv3G5HOz/nv6f93424ZcPqWUrdzynKlfG/L2tfDPv9xQGFTUjL3w\nysv2GVmz9kDVVrsM22qXPSccdsRB3zrnW8/Ut6SUnrv7smc+PmP3Gk8bAAAAAAAAoKTJxht6\n+Yn7fnLDTU+8tct9Wfmwz18x7cBRNRuctu3xk/+lJZdS2u6AI/cesZE9DapH7HHxf5z+ybN+\nkM/n8+2rf3jHvKtP27G3Jw8AAAAAAADAe5lIv17Dwsd/Mv36+//2yrpPthw36bxzz9x1Yw1+\n4tHHbvKGg0cf9eltbrl5UX1KafGDf0giPQAAAAAAAEBpE+lTSinf3vzAHdddd8cDze35wieV\ntdt97JQzJh8xPtP1lZuy70dG3fzDOSmlllX/k9LnezjP6urqysrKHt4EAAAAoB8ZMmRIX0+h\nFHnsfcWT7xMeOyXFLzzQ2wb8/2fKysp6fhORPq38x8yrpn3/sYWNhR+zVVscccLkk4/7cF15\nDwN9SinV7T6sMGhvW7Eqlx+a7dE9FXoAAACgP8r14Nrq6o3scci71O0n77H3hF/4PuGxU1L8\nwgMB/E2yV5V6pH/5oRu/Ou2ewgL6TKb8A8eedsanjt6qOlus+2fKq9aNK4oQ/QEAAAAAAADo\nx0o60r/5+E3n/Oc9uXw+pVSzzd5f/MqXD9hxs3dz4fKnn5jb1JpSqqzbea+d67o4c/WiZYVB\nefUOg8pUegAAAAAAAICSVrqRvm3181O+84tCoR+++zHf/eYZW1S82/cHrJx7y7/f9GJKqaru\noLt++pUuznzhl4sKgyHbfqxn8wUAAAAAAACg3yvCa+37qSeunfZmay6lVDl076u+fea7L/Qp\npa0PObwwWLPywZvnrOjstLamOd+fvXYl/S4njevBZAEAAAAAAAAYCEo00udz9dfMXFwYH3bJ\nl+uy/7eN6KuHHfnRrWoK43su+frTq1reeU5725vTL7qsMZdPKVXU7Pbl94/o2ZQBAAAAAAAA\n6PdKdLv7xtdvXd7WnlLKZLL7ti+eO3fJJi8pK99s7Jgt1/144oUn/frcG9rz+Vzzy98485xj\nJ59yzIfGb1FXk/K5pa+/Mu/5J35+y+3PLFmdUspkyo6/8HwvpAcAAAAAAACgRCP90kfnFgb5\nfO6SKee/m0uqhx9z542fW/dj7ZiPfeOkpy657bGUUmvTop9Pv/zn01N5dW1lrrGptX3daZlM\n2UGf+c7k8cOLOn0AAAAAAAAA+qUS3e5++ZPLe36TPU++5Nuf+3/Dytc/w7bm+o6Fvnr42FMu\nuua843ft+Z8FAAAAAAAAwABQoivp33hzTVHuM/6Y03984JEP3v/7J59/ecniJYuXLK5vzW5W\nVzd67G777PPBww75QI1d7gEAAAAAAAB4S4lG+sOum3FYkW5VMXTUpONPnVSkuwEAAAAAAAAw\ngJXodvcAAAAAAAAAEE+kBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKU9/UEAAAAAACgnznvjvndvnbaiTsU\nbR4AQD9kJT0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAA\nAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEKS8rycAAABAaTnvjvndvnbaiTsUbR4AAAAA\nfcFKegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAhS3tcTAAAAAIiTmzWl\nexdmJ0wt7kwAAAAoTVbSAwAAAAAAAEAQkR4AAAAAAAAAgtjuHgAAAPpAtzddT/ZdBwAAgP7M\nSnoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQp7+sJAAAA0Mdys6Z0+9rshKlFnAkAAADAgGclPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQp7+sJAAAArJWbNaXb12YnTC3iTAAAAACgl1hJDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEHK+3oCAACdOu+O+d27cNqJOxRzHgAAAAAAUCRW0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIUt7XEwAAAAAAACg5\nrbdu0+1ry8Z+qogzASCYlfQAAAAAAAAAEESkBwAAAAAAAIAgtrsHAHhPy82a0u1rsxOmFnEm\npcaTBwAAAAB6g5X0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIUt7XEwAAAAAAAACgdJ13x/xuXzvtxB2KNo8oVtIDAAAAwP+y\nd+9xVpf1vsCftWbNMAyO4yBqoCSHgymCeak0KMO87CSzk+xzIIXcVDtzZ6eMnWRS2klKs9eh\nq3XabndqDoamdDzb2pKaZaSyFff2gkgloKKi3GcYhrmt88caEA1GWGvN81uX9/uvx8Xv+a0v\n3/X4mwUfnt8PAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACCSTNIFlITnH//dvYsffWrZilc2bm5t66hvbGo+6NDxbz/2\nPadNfvvIxjed3r7m6UX33rd46bJX163f3BGahw4dPuqokye9/7SJx9SmIpQPAAAAAAAAQHmo\n9pC+c8ufrp179W+Xv7rri22bN7Rt3vD8n5/4t4Xzx06adsnnph2Y2dMtB7IP3n7td372m47e\n7M6X1r3cvu7lF5546J5b3nbK7C9fNO7AQQP5OwAAAAAAAACgbFT17e6721fMvuDSXRP6VKqm\nqXm/VKpv/3s227vs/lsu+oerXurs3e0ZHr3psqtuXLQzoU+l6xobanf+6sYV91/xuSue7egZ\nsN8BAAAAAAAAAOWkqnfSt1z29Wfbu3LjMe/724+fc+rokYcOqUt3tm1YuWJpy3X//B9r2kMI\n7WsfvvQrt914zbQ3TN+0/Iav374sNx4ycsKFF5w38e2H16ZC+4ZV99zZcv3CJdlstrN12eWX\nttz83fNj/r4AAAAAAAAAKE3Vu5O+bc1ttz+7JTceffal8774d8f815FD6tIhhLr9hh55wun/\n69obPvW+Q3MHbFzectOOg3fo/enVv8pmsyGE+mHvufZ7l0469vDcE+gbho768Mw5377gXbnj\ntjz7i/krW+P8pgAAAAAAAAAoZdUb0v/pp3fnBpnBY775yQl/fUAqXf+hL3zrqB23r//t9U/s\n+qttL9z42w0dufHHrvzs0EzqDdPfdtacDx3ckBv/6ju/L2LlAAAAAAAAAJSp6g3p/9/Tm3KD\n4ZMuaEi/MWLPSdXs/8lT3pIbt65ctOsvrfz5Q7lB/dAzzz50yG5nT/nM8X1zn2/Z3JMtQtEA\nAAAAAAAAlLNqDemznY+19T2N/ogPjujnwANPPDA36O5YuevrCx9bnxuMOO0De5rbPO68dCoV\nQsj2tM1/eWsh9QIAAAAAAABQAao0pO/uWNWT7dvaPv6AQf0cuX1jZ26QyjTtfDHbs2Vnxn/k\n+w/Z09yaQSNPauy7W/7KxzcWUjAAAAAAAAAAFSCTdAHJyAwec+utt+bGg+r7C+n/8Mvnc4PB\nzafufLGz9eGdGf9xTXX9TD9hv7oHt3SGENYv2RAmjyyk5hBCR0dHd3d3gScBgGrQ1taWdAlF\nM7iAuZXUh/h0PhHanpQy6nwlfdBl1PYKk3fntb0QFnxSLPhEWPCJKK+2+6DJ6S+cGDCWH7CX\nyuibZOR3bGhoSKcL3QlfpSF9COn6+vo3PWjzM79oWd2aGx/1sQk7X+9qX7FzfHRDbT9nGH5Y\nQ3ixLYSw7cUXQjg2z2J36Ozs7OzsLPAkAFANOjo6ki6haAr5m6ZK6kN8Op8IbU9KGXW+kj7o\nMmp7hcm789peCAs+KRZ8Iiz4RJRX233Q5CQS0lt+wF4qo2+Skd9x8OBCvnf0qdLb3e+Nrc//\n4ZI5LblxXePxsya8dlv73s5NuUEqlWmqSfVzkrrmvn32vd2bBqZMAAAAAAAAAMpG1e6k71e2\nZ8md1333hl+39WRDCDV1B3/+mi/tt0sY37l5x4Pqaxr7P1NmxzPphfQAAAAAAAAACOnf6Lml\ni/7lpzcu3XGX+3Sm+cKr5518aEOep+vN7hhsL0Z1AAAAAAAAAJQxIf1r2p5/9F+uu/6e/3hh\n5ysHH3P6rC9ccPSwNz69vq6p7yb22Z6t/Z+ze2t3bpCqHVq8SgEAAAAAAAAoS0L6EELI9nbc\nv+DHP15wf8eOje91jW/9yPmfmv6BY3f7wPl0XVPfxGxne2+2Ib3Hx9J3buy7MX46U4SQfvDg\nwYMGDSr8PABQPtrym9bY+CaPpKkS+pAUnU+Eticlr87neXnP9+0qkD4kQtuTovOJ0Pak6Hwi\n8m27rzSUJcsPGGgV/4M1nU4XfhIhfdj8l8Xfm/fDR57v2xNfM+igD0ydfu4572/K7DF6zww+\nIoRFufHT7V3v2K9uT0e+smZbbjCo+S2Fl1pbW1v4SQCgGlTSP2vrKWBuJfUhPp1PhLYnpYw6\nX0kfdBm1vcLk3XltL4QFnxQLPhEWfCLKq+0+aHK6knhTyw/YS2X0TbIcr2zVHtI/9/sbvjhv\nYW4DfSqVedfZH//UjA8eUl/T/6xB+787nfpRbzYbQvjPtu5+QvrH2/p+yA6bcEjxqgYAAAAA\nAACgLFV1SL/u0Rs//78X9mSzIYSGESd89h8vfu8RB+zNxFRN03FDape2dYYQnnrw1XDO4bs9\nLNu9fvGW7bnxyBM8kx4AAAAAAACg2hXhjvllqnvbM7O/+ctcQj90/Fk/+MHle5nQ55xzXF/o\n/tLdD+3pmC2rb+vKZkMIqZqG6cOHFFYvAAAAAAAAAGWvekP6pT+at66rJ4RQt/8J37vygoNq\n960Vo889KTfY+tItS7Z07vaYP/xocW7QeNj0Yft4fgAAAAAAAAAqT5Umx9me1msXr82Nz7j8\n4qaa1L6eofGwmSc314cQstneH869PftXB2x8quWf/rwlN578hUmFVAsAAAAAAABAZajSZ9Jv\nfXn+xu7eEEIqVXNS79oVK1550ynpzAFjRh/82n+nav7+S2c+cOkvQwiblt/yuW9nLvvMOcOH\nZEIIIduzfPEvrpp3WzabDSE0HXHu9NH7D8zvAwAAAAAAAIByUqUh/fqHV+QG2WzP5bMv2Zsp\n9UPPuvWGT+/6SvPRn/jqlOVX3rE8hLD6gZ9d+Mdfjh5zeNOg3rVrnl2zviN3TF3TMXO/MbWo\ntQMAAAAAAABQrqr0dvcbH9tYlPO8a+bVl8w4tT6dCiFke1r/8syTSx9ftjOhH3b0qXN/cMXh\n9TVFeS8AAAAAAAAAyl2V7qR/dd32Ip0pffLUi0+YcFuVKFsAACAASURBVMbd9963+NFl6zZs\n2LI9NDcPHT563PtOOeX0d4/f94fdAwAAAAAAAFCxqjSkP+PHLWcU72xDRo6bMnPclJnFOyMA\nAAAAAAAAlahKb3cPAAAAAAAAAPEJ6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiCSTdAEAQNnoWTI777k1\nJ15TxEoAAAAAAKBM2UkPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIMkkXAAD56FkyO7+JNSdeU9xKAAAAAAAA9p6d9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEEkm6QIAAAAAAAAAdqNnyey859aceE0RK4EispMeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkmaQLAAAAAKA8dM0fkffc9JgZRawEAACgfNlJDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABE4pn0AAAAAAAA7NGsBavynjtv2qii1QFQKeykBwAAAAAAAIBIhPQAAAAA\nAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAA\nAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAA\nAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQiZAeAAAAAAAAACLJJF0AAAAAAFAJZi1YlffcedNGFa0O2BfjWyaFlrvy\nmzt54rjiFgMAVAk76QEAAAAAAAAgEiE9AAAAAAAAAETidvcABelZMjvvuTUnXlPESgAAAAAA\nACh9dtIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkmaQLAAAAANhn\nXfNH5D03PWZGESsBAACAfWInPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABBJJukCgKLpWTI7v4k1J15T3EoA3mB8y6TQcld+cydPHFfcYgCgas1asCrvufOmjSpaHQAA\nAFDd7KQHAAAAAAAAgEjspH+jl+6f8+l5T9Q2jL395996k0OznVPP+R8dvdk3PWfjYZe0/Ojk\n4tQHAAAAAAAAQNmyk/6N7rvl2b08srPt8b1J6AEAAAAAAAAgR0j/Ou1rF936cvteHtzZumRA\niwEAAAAAAACgwrjd/Wu6Wld9d8712ezebo7f8szzuUHjYed/5X+O6+fImkGHFlocAAAAAAAA\nAOVPSB/aN6597rnVjzyw6Nf3/ntrzz7cvn7DI+tzg2ETjhs7dszAVAcAAAAAAABA5ajqkH77\npnsvvOjH61s785u+8k9tucEhJx5YvKIAAADKxviWSaHlrjwmTp7Y393IAAAAACpYVT+TPtvT\nmndCH0JY0tY3950HDy5SRQAAAAAAAABUsqreSZ9pGDtjxoxdX2lfe98dv3lxb+Zme9uf3NoV\nQkilaibsP2hA6gMAAAAAAACgslR3SD/4yKlTj9z1lQ1PLtvLkL6r9dGebDaEULvfsY01qRef\nuP/f/vjEmhfWvLR2Q82Q/Q886LBjjj/+Pae89y2DawakdAAAAAAAAADKUFWH9IXYvvmR3CCV\nHvL9Ky6657Hnd/nFl1f/ZcXSh+67+fobTv/oBZ/57xNSRXrTbdu2dXd3F+lkVKCGfCe2trYW\ns44qk3fbg84XxoJPRCELPrJK+qBdZ5Ki84nQ9qS4wieivBZ8CXa+Pvo7lmAT4ovf9qDzhSmj\nPzpV0gddXlf4ilFG32eCD5odquQHqwVPgfxgTYpvknsyZMiQdLrQZ8oL6fO06cmXcoPtmx+4\n57HdH9PTuf7um65a9qcZ3790ak0xgvqurq7Ozs4inIgKlfflcvv27cWso8oU8v1A5wthwSei\njP7Ko5I+aNeZpOh8IrQ9Ka7wiSivBV+CnY//l9ol2IT4EskSdL4QZfRHp0r6oMvrCl8xyuj7\nTPBBs0OV/GC14CmQH6xJ8U1yTxoaivC9Q0ifpw2PbNg5TtU0/s3Uc09774lvPfjA0L5u9erV\nf37q4YUL71vX2RNCeP7Bm+fcPPbqjx2TXLEAAAAAAAAAlAQhfZ6eea4tN6htGPPl78x95/Ad\n/2Ji0CFjmw8Ze9yJZ3xg0tc///UnWztDCE/fPvfJv20Z36DbAAAAAAAAAFVNbJynkVOmf6Kz\nJ4Tw1veeecKw3dyTpn7Y2+d865PnXfR/stlstnfbTxas/MHHj4heJgAAAAAAAAAlREifpwkf\nPPtNjxly2OSPjbj5pjWtIYS1v7s3COkBAAAAAAAAqpuQfmCd9KFDb/rJ8hBC55Y/hnBhgWdr\naGgYPHhwMeqC12lqakq6hCql84nQ9irhg87Rh6TofCK0vUr4oHPy7UNb9HesKJqQFJ1PhOtM\nUvShSvigSZArPFXF8ktExV9n0ul04ScR0g+spvHNuUFv96YtPdn9a1KFnC2T8XnRn558J9bW\n1hazjiqTd9uDzhfGgk9EIQs+skr6oF1nkqLzidD2pLjCJ6K8FnwJdr4r+juWYBPii9/2oPOF\nKaM/OlXSB11eV/iKUUbfZ4IPmh2q5AerBU+B/GBNim+SA6oIOT/9SGUG7RzXFhTQAwAAAAAA\nAFD27MzOx8Ynlq5o7woh1DUddfxR/d0/YduaDblBpn7U4LSUHgAAAAAAAKCqCenzsXnFzd+4\n8c8hhEFNk2772T/2c+Sf/u+a3GC/kR+JURkAAAAAAAAAJczt7vPxllP/JjfYvvl3Ny3ftKfD\nutuX/3BZ3076sR89JkZlAAAAAAAAAJQwIX0+6pvP/PAhDbnxwsu/8sSWzr8+prd73XWXzd3a\nkw0h1DaMu/gdw6KWCAAAAAAAAEDpcbv7PE378kf/9Qs/7c1mezqe+9oFnz97+vlnve/Yg5oa\nQrZn/csvrHxm6R03//zJV7aFEFKp9JQvX+KB9ABlbdaCVXnPnTdtVNHqACpa3pca1xmAUuab\nJBCBb5IAAOVFSJ+nxtEf+dpHH7/8lkdCCF3ta+647qo7rguZ+sa6nq3tXb07D0ul0pP+7pvT\njx2aXKUAAAAAAAAAlAq3u8/fcedefuWn/1tz5rUedne07prQ1w8dc/5l186acnQS1QEAAAAA\nAABQcuykL8ixZ33yn08+83f3/OaxZ557Ze0ra19Z29pVc0BT02Fjxr3zne8+49R3NbjLPQAA\nAAAAAAA7COlfZ+j4r915575Nqd3/0NOnzDx9YOoBAAAAAAAAoJK43T0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIskkXQAAAKVl1oJVec+dN21U0eqAKCx4AAAAACKzkx4AAAAAAAAAIhHSAwAAAAAAAEAk\nbndP8fUsmZ333JoTryliJQAAAAAAAAAlxU56AAAAAAAAAIhESA8AAAAAAAAAkbjdPQAAUHxd\n80fkNzE9ZkZxKwEAyE/e32eCrzQAAPTLTnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBLPpAcAAACg0sxasCrvufOmjSpaHQAAAH/FTnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCSZpAsAAAAAAPrTNX9E3nPTY2YU\nsRKIIO8Fb7UDAOXCTnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARJJJugAA9s2sBavynjtv2qii1QEAAAAA\nAMC+s5MeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABBJJukCAAAAAAAAACh741smhZa78ps7eeK44hZTyuykBwAAAAAAAIBIhPQA\nAAAAAAAAEInb3QMAAAAAAACEEMKsBavynjtv2qii1UFFs5MeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIjEM+kBAAAqRNf8EXnPTY+ZUcRKAAAAANgTO+kBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACLJJF0AAAAMoK75I/Kemx4zo4iV\nAAAAAAAEO+kBAAAAAAAAIBohPQAAAAAAAABEIqQHAAAAAAAAgEg8kx6AJHlWNAAAAAAAUFXs\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAe\nAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACCSTNIF\nAAAAAAAAMODGt0wKLXflN3fyxHHFLQagmtlJDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIJJN0AQAAAACwe+NbJoWWu/KbO3ni\nuOIWAwAAUBR20gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkXgmPZVg1oJVec+dN21U\n0eoAAAAAAAAA6Jed9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABBJJukCSs5L98/59LwnahvG3v7zb+3llPY1\nTy+6977FS5e9um795o7QPHTo8FFHnTzp/adNPKY2NaDFAgAAAAAAAFBOhPRvdN8tz+7L4dkH\nb7/2Oz/7TUdvdudL615uX/fyC088dM8tbztl9pcvGnfgoKIXCQAAAAAAAEA5crv712lfu+jW\nl9v3/vhHb7rsqhsX7UzoU+m6xobanb+6ccX9V3zuimc7eopcJQAAAAAAAADlyU7613S1rvru\nnOuz2eybHxpCCGHT8hu+fvuy3HjIyAkXXnDexLcfXpsK7RtW3XNny/ULl2Sz2c7WZZdf2nLz\nd88fsKoBAAAAAAAAKBtC+tC+ce1zz61+5IFFv77331t79jahD6H3p1f/Kpfo1w97z7Xfmz00\n0/f8+Yahoz48c85RB8394k+WhBC2PPuL+SvPOe+/NA5I9QAAAAAAAACUj6oO6bdvuvfCi368\nvrUzj7ltL9z42w0dufHHrvzszoR+p7edNedDC8/911faQwi/+s7vz/v+WQVWCwAAAAAAAEC5\nq+pn0md7WvNL6EMIK3/+UG5QP/TMsw8dsrtDUlM+c3xu1Pp8y+Z92KMPAAAAAAAAQGWq6p30\nmYaxM2bM2PWV9rX33fGbF/dm7sLH1ucGI077wJ6OaR53Xjr1x95sNtvTNv/lrf9w6H6FVAsA\nAAAAAABAuavukH7wkVOnHrnrKxueXLY3IX22Z8tjbV258ZHvP2RPh9UMGnlSY+2DWzpDCCsf\n3xiE9FSWWQtW5T133rRRRasDAAAAAAAAykdVh/R562x9uCfbd/v645rq+jnyhP3qciH9+iUb\nwuSRBb5ve3t7V1dXgSeJoJB/jLB58+ai1VGq7zhw8u68thfCgi9QQ/R31PZClNE/N9P2HAs+\nJHGdCdH7UIJtD67wCUlkwUdWgm3Pmyt8gVxnElEN15mg8yEECz6E4JtkcqrhUlOanSe+aljt\nwYKnYP7olBR/G7wnjY2N6XShz5QX0uejq33FzvHRDbX9HDn8sIbwYlsIYduLL4RwbIHv293d\nXRYhfSHi/wYrvqV7Q9uTovOJ0PYqoe05FnxSIvdB23Ms+Cqh7TkWfCK0vXrofLDgk+ObZJXQ\neaqKBU+CfKWpEpHbnt2xl7sQhYb81am3c1NukEplmmpS/RxZ19y3z763e9OAlwUAAAAAAABA\nabOTPh+dmztzg1RNY/9HZhr79tkL6ffG+JZJITyc39zJE8cVtxgAKHd+sAIAAAAAlCA76QdY\n747bHfRuT7QOAAAAAAAAAJInpM9HXVPfTeyzPVv7P7J7a3dukKodOrA1AQAAAAAAAFDy3O4+\nH+m6ptwgm+1s7802pPf4WPrOjX03xk9nihDSDxkypKGhofDzsKsDDjgg6RKSl28T2qK/Y6XR\n+RBC9s0PKTJtrxLanpQS7Hz860yIfqkpwbYHV/iEJLLgIyvFtt/61vwm9oaQHjMjv7kWfHCd\nSUg1XGeCzocQLPgQgm+SyamGS01pdp74qmG1BwueRPlKUyUitz2dLsI2eCF9PjKDjwhhUW78\ndHvXO/ar29ORr6zZlhsMan5L4e9bU1NT+Eki6Em6gH2SyVTO/wV5dz5+E7Q9R+dDCF3R31Hb\nC1FGV3htT0oJdj7+dSZE70MJtj24wickkQUfmbbnWPDBdSYh1XCdCTofQrDgQwjVcYUvwbaH\n6rjUlGbnia8aVnuw4CmYv4RPShn9tWQ5tt3t7vMxaP93p1N9u+f/s627nyMfb+v7ITtswiED\nXhYAAAAAAAAApU1In49UTdNxQ2pz46cefHVPh2W71y/esj03HnmCZ9IDAAAAAAAAVDshfZ7O\nOa4vdH/p7of2dMyW1bd1ZbMhhFRNw/ThQyJVBgAAAAAAAECpEtLnafS5J+UGW1+6ZcmWzt0e\n84cfLc4NGg+bPqxWqwEAAAAAAACqneQ4T42HzTy5uT6EkM32/nDu7dm/OmDjUy3/9OctufHk\nL0yKWx0AAAAAAAAApUhIn69Uzd9/6czccNPyWz737dte2trd90vZnuV/WHDxV2/LZrMhhKYj\nzp0+ev+kygQAAAAAAACgdGSSLqCMNR/9ia9OWX7lHctDCKsf+NmFf/zl6DGHNw3qXbvm2TXr\nO3LH1DUdM/cbUxMtEwAAAAAAAIBSYSd9Qd418+pLZpxan06FELI9rX955smljy/bmdAPO/rU\nuT+44vD6mkRrBAAAAAAAAKBU2ElfoPTJUy8+YcIZd9973+JHl63bsGHL9tDcPHT46HHvO+WU\n0989viaVdIEAAAAAAAAAlAwh/esMHf+1O+/c51lDRo6bMnPclJnFrwcAAAAAAACASuJ29wAA\nAAAAAAAQiZAeAAAAAAAAACJxu3uAEELomj8i77npMTOKWAkAAAAAAAAVzE56AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIMkkXAAAAAACUkPEt\nk0LLXfnNnTxxXHGLAQCAymMnPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIgkk3QBAAAAAACE8S2TQstd+c2dPHFccYsBAGDg\n2EkPAAAAAAAAAJEI6QEAAAAAAAAgEre7BwAAAHgT7kENAABAsdhJDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACLJJF0AAABA\noca3TAotd+U3d/LEccUtBgAAAAD6YSc9AAAAAAAAAEQipAf4/+zde4CUdb0/8O/s7AUWlwVE\nvKJJSCh4TU1EYkk96bFOZd4SvFT+zBNaHUuPlhmnzEozT5qWaXlJ8JaXND15DfFCqWCCF1RE\nBLlfd4FlmdnZ+f0xSISK6+zyfXZ3Xq+/vsx8Z/bjp6dn5vm+53keAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEjKky4AAIgtO2GHol9bNnBMO1ZS\naoruvLYDAAAAAHQZzqQHAAAAAAAAgEiE9AAAAAAAAAAQicvdAwAAAAAAAF3K0PEjw/j7i3vt\nkQcPad9iYBPOpAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAInFPegBKiLsQARHY1QAA\nAAAAm+FMegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIpT7oAAAAAAAAAoCvLTtih6NeWDRzTjpVAR+BMegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEvekBwAAgM5k6PiRYfz9xb32yIOHtG8xAAAAwIflTHoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgkvKkCwAoUUPHjwzj7y/utUcePKR9iwEAAAAAACAOZ9ID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASMqTLgBI2NDxI8P4+4t77ZEHD2nfYgAAAAAAAKBrcyY9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHI3oL9AAAIABJREFUAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIpDzpAui4shN2KPq1ZQPHtGMlAAAAAAAAAF2DM+kBAAAAAAAAIBIhPQAA\nAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACCS8qQLAAAAAAAAAKD9ZSfsUPRrywaOacdK2Jgz\n6QEAAAAAAAAgEiE9AAAAAAAAAETicvfQ4bjwCAAAAAAAAHRVzqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABBJedIFdGb5zHFfOLapJf+BE2t2Omf81SMiVAQAAAAAAABAR+ZM+uJlVk9r\nTUIPAAAAAAAAAAVC+uJlVj2TdAkAAAAAAAAAdCYud1+8hlfnFgY1O518wVlDNjMzXbVjlIoA\nAAAAAAAA6NCE9MVb/tyywqDvsH12331gssUAAAAAAAAA0PG53H3x3nx9dWGw7YFbJ1sJAAAA\nAAAAAJ2CkL54z6zOFAb79+uebCUAAAAAAAAAdApC+iLlWxpfXJMNIaRS6WE9q5IuBwAAAAAA\nAIBOwD3pi5RdNSWXz4cQKrbauyadmj994l+enj7v7XkLFi1P9+i59TY77bnvvsPrDtmuezrp\nSgEAAAAAAADoKIT0RVpX/1xhkCrrccUPxj7y/NyNnlz41huvTf3bYzf/7obDTjj968cMS7XT\nH21sbMxms+30Zh+sOtpfSlR9fX3SJWyqFDqv7UnR+URoeyI6YNuDzidE25Oi84nQ9kSUQtuD\nzidE25Oi84nQ9kR0wLYHnaeUlMLWHmzwvMMGn5RS6HzkttfU1JSVtfVy9UL6Iq18cUFhsK7+\niUeef+85ucyyB2/6ycuvj7nivOPS7RHUNzc3xwzpS4SWJkLbk6LzidD2RGh7UnQ+EdqeFJ1P\nhLYnRecToe1J0flEaHsitD0pOk9JscFTUmzwiYjc9nw+3/Y3EdIXaflzyzeMU+mafzvuS4ce\ncuDO/bYOjUvfeuutmS/9/e67H1uayYUQ5k6++Xs37/7Tk/ZMrlgAAAAAAAAAOgQhfZFenbO6\nMKioHnj+5Rftv/0714qo2nb33tvuvs+Bh3965A+/+cMXV2VCCK/cedGLXxw/tFq3AQAAAAAA\nAEqa2LhI/Y8e/ZVMLoSw8yFH7Ne327sndOu71/d+9tUTx/4mn8/nW9Zec9ubV355t+hlAgAA\nAAAAANCBCOmLNOzfP/uBc3rsdORJO9x807xVIYRFjz8ahPQAAAAAAAAApU1Iv2V94jM73nTN\njBBCpuHpEM5o47v16NGjurr6g+e1k3y0v5SoXr16JV3Cpkqh89qeFJ1PhLYnogO2Peh8QrQ9\nKTqfCG1PRCm0Peh8QrQ9KTqfCG1PRAdse9B5SkkpbO3BBs87bPBJKYXOR257WVlZ299ESL9l\n1Q7tXRi0NK9syOV7plNtebd0Ot0eRbVWNuYfS055eYf7f0EpdF7bk6LzidD2RHTAtgedT4i2\nJ0XnE6HtiSiFtgedT4i2J0XnE6HtieiAbQ86Tykpha092OB5hw0+KaXQ+Q7Y9g/UDjk/m5Eq\nr9owrmhTQA8AAAAAAABAp9f5flbQEayYPvW1xmwIobJ28L6Dazczc+285YVBebePdC+T0gMA\nAAAAAACUNCF9Mepfu/nHN84MIVTVjrzjD9/ezMzX/zSvMNiq/+djVAYAAAAAAABAB+Zy98XY\n7lP/Vhisq3/8phkr329ac+OMX728/kz63U/YM0ZlAAAAAAAAAHRgQvpidOt9xH9sW10Y333h\nBdMbMu+e09K89NrvXrQmlw8hVFQP+dbH+0YtEQAAAAAAAICOR0hfpOPPP6EslQoh5JrmjDv9\nmzfcN3lJfWMIIeRzyxa89dzEuy84Y+z/zWoIIaRSZUeff44b0gMAAAAAAADgnvRFqhnw+XEn\nTLvwludCCNnGeXdd+5O7rg3l3Woqc2sasy0bpqVSZSNPuXj03n2SqxQAAAAAAACAjsKZ9MXb\n50sX/uhrn+td/s8eNjet2jih79Zn4Mnfverso/dIojoAAAAAAAAAOhxn0rfJ3kd99boRRzz+\nyMPPvzpn8aLFixYvWpVN96qt3WngkP33P+jwTx1Q7Sr3AAAAAAAAALxDSN9WFT13POzoUw9L\nugwAAAAAAAAAOj6XuwcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIpDzp\nArqCxnmvPPToY09NfXnJ0mX1TaF3nz7bf2TwiJGjDj14z4pU0sUBAAAAAAAA0GEI6dsoP/nO\nqy7/w8NNLfkNDy1d2Lh04dvT//bILYPqzj1/7JCtqxKsDwAAAAAAAICOw+Xu22TKTd/9yY0P\nbUjoU2WVNdUVG55d8drEH3zjB7OacglVBwAAAAAAAEDH4kz64q2cccMP73y5MO7Rf9gZp594\n8F67VKRC4/LZj9w7/nd3P5PP5zOrXr7wvPE3/+/JyZYKAAAAAAAAQEfgTPqitVz/0wfy+XwI\noVvf4Vf98ryRe+9SuAN9dZ+P/Mep37v09AMK8xpm/XHCm6sSLBQAAAAAAACADkJIX6TVb9/4\n1+VNhfFJPzqzT3lqkwmDjvreZ/pVF8YPXD4panEAAAAAAAAAdEhC+iK9eevfCoNufY747I49\n3mtK6uiv71sYrZo7vj6Xj1UaAAAAAAAAAB2UkL5Idz+/rDDY4dBPv9+c3kNOLEulQgj53OoJ\nC9dEqgwAAAAAAACAjkpIX4x8ruH51dnC+GOjtn2/aemq/p+oqSiM35y2IkZlAAAAAAAAAHRg\n5UkX0CllVv09l19/+fp9ais3M3O/rSonN2RCCMueWR6O7N/Gv7tmzZpsNtvGN2m997yIf9ez\ncuXKpEvYVCl0XtuTovOJ0PZEdMC2B51PiLYnRecToe2JKIW2B51PiLYnRecToe2J6IBtDzpP\nKSmFrT3Y4HmHDT4ppdD5yG2vqalJp9NtfBMhfTGyja9tGO9RXbGZmdvvVB3mrw4hrJ3/dgh7\nt/Hv5nK55ubmNr4Jm9DSRGh7UnQ+EdqeCG1Pis4nQtuTovOJ0Pak6HwitD0pOp8IbU+EtidF\n5ykpNnhKig0+EZ2x7S53X4yWzPqfY6RS5bXp1GZmVvZef559S3OH++EMAAAAAAAAAJEJ6YuR\nqc8UBql0zeZnlr9zT3ohPQAAAAAAAACp/Dv3Vqf1lr7wg698//kQQll573vuunEzM2fe8I2z\n75odQuhWW3f7H85u499taGjIZDJtfBMAAAAAAAAAitC7d++235PemfTFqKxdfxH7fG7N5mc2\nr1l/C4RURZ8tWxMAAAAAAAAAHV550gV0SmWVtYVBPp9pbMlXl73vbekzK9af+F5W3g4h/VZb\nbeXKBwAAAAAAAACJaPtp9EFIX5zy7ruF8FBh/Epj9uNbVb7fzMXz1hYGVb23a/vfLStz5QMA\nAAAAAACATkzoW4yqngeVpdafPf/C6ubNzJy2OlsY9B227RYvCwAAAAAAAICOTUhfjFS6dp8e\nFYXxS5OXvN+0fPOypxrWFcb993NPegAAAAAAAIBSJ6Qv0hf2WR+6L3jwb+83p+GtO7L5fAgh\nla4evX2PSJUBAAAAAAAA0FEJ6Ys04EufKAzWLLjlmYbMe8558uqnCoOanUb3rdBqAAAAAAAA\ngFInOS5SzU6njujdLYSQz7f86qI78++asOKl8b+d2VAYH/lfI+NWBwAAAAAAAEBHJKQvVip9\n2n8fURiunHHLNy69Y8Ga5vVP5XMznrztW9+/I5/PhxBqd/vS6AE9kyoTAAAAAAAAgI4jVQiS\nKc6zN5z7o7tmFMapdM2AgbvUVrUsmjdr3rKmwoOVtXtedu0Pd+mWTq5GAAAAAAAAADoKIX0b\ntTxx+xVXTvhrU8t7tLHvHp8697yvD+5VGb8sAAAAAAAAADogIX07WDP3pQcffeypKS8vXb68\nYV3o3bvP9gOGfLKu7rCDhqZTSRcHAAAAAAAAQIchpAcAAAAAAACASMqSLgAAAAAAAAAASoWQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAA\nAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAA\nAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIT6eXy6xLugTWGzf2jNNOO+3iR+Yl\nXUgndulvJjz36oKkq4BIbPBJ0XmgA/JNMik6H1Mun3QFQFdkZQxoF9YKYDMcN7UL+5lNlCdd\nAHw4+eYVT098cvr0F196ZebKNWsaG9dmc/l77703hJBZ9exdE1cNrxvRv6Yi6TJLUUt2ySvz\nFqxtyWcfXBAO2zHpcjqrJx649YkHbq3ZftDIulF1o0YO2m6rpCvqgh5++OF2fLdeeww/YMfq\ndnzDkmKDT4rOJ2LOnDkfan6qLF3VrXu3qm7denSvLEttoapKTWP9kvkLlmXzrU3JBg3ePa33\nUfgmmRSdb3drly2cv2LdRwfusvGD9W88deV1d74+e87KtaHP9rse/KmjTvriyG727e1qdX19\nc6t377W9eul+u/DBmggrY1uItQKwVgDvx3FTe7Gf2YSQns5kxhN3/ua3t8yqz7zns7l1b064\n9uZbf3993Qmnn3XcCAd+7ST/9owpz78ye8Wqxs3Oap77wl/XtuRDCC1NfsHdVqsWvPbnW167\n/9bf7vCx/evqRtWNPGjbHnbX7ebKK69sx3cb/PXdHXi3kQ0+KTof2ZlnnlncC1NllX2336H/\nTh/Za/+DDj74gO0suX54+ebld/7umj9Pmrp81Yf7ljL+7j/V+E7ZJr5JJkXnE7Bk2iO/vv62\nKbMWV1Tv9cdbfrTh8WVTb/raD+/MtKxPMZfNe/W+P7z6+FPTrvz5Wb3L7WHaat7UB2+6968z\nZ76xpOFDbMN2723kgzVBVsa2HGsFUGCtgFLiuCkZ9jMblOh/Np3R1PHfH3fbCx84rSVX/9j4\nS1+euejq7x5jxaONWjILf/2jCx98YeGHetXHvvjRLVRPKRg2dJdnXpqTy+dDCPl8ft6MZ8fP\neHbCb7sN3v+QulGjPnnQ0B4OsulCbPBJ0fnOJd+SWTJv9pJ5s6f+feKNv+kx6tivnnb8oVv5\n36jV8rk1v/zmmY/NXV3Ea6vcHKwNfJNMis4nYuFTvx97yZ/efT5xPtfw45/dsyGh36Bh1iPn\nXrrXtefXRaqvi5p53y++fd3j+Vafxr1Bhd17G/hgTZCVMWCLslZASXHclAj7mU2kijiYgfjm\nPnTF2F89Uhin0jWHHFo3aOBuFdMn/OaJhSGEwkW9so3Tx3374unz1hSmDT7hkktOHJxUwV3D\nhHNOvvXVlR/qJf0+/sWrLzylsrR2pO2saflbT016YtKkx5+fuWiTp9Ld+h4wYuSoUXWfGLqL\nxY2iXXzxxe/3VEt22TNTXt/wz1SqrKb3Nttut11Net2iRYsWLVm54RKa6crtRp9xQt/ystpB\nB+67g1/HF88GnxSdj6+w88mufmPKi0ve/WwqtenX8orqAR/fa5vG+uVLlixZuqx+4+Cn797H\nXv3DMd1SPm5bZe7/fW/sr6dv+GdFdW2/PjWt7N1VV1+ty0XzTTIpOh9frmnW6WO+vSSTK/yz\nssfeG86kXzLlJ1/9n8khhLLy2mPO+M+P71j50uR7b7r3HyGEVKrsOzfdPqK2MqmyO7tM/VNj\nTrmkaaMfQKTT6Va+9s677/Ylp2g+WJNiZWxLs1YAwVoBpcRxU1LsZzYmpKcTyDW9ddroby7L\ntoQQageNPOc7X99ru+4hhJk3ffPsP74Z3jkUCSGEfPPkW3/8k1umhBBS6epLJtz8se4uF1Gk\n1XNvOnHsHwvj6u0HHbjP4F7l62Y8OXHGinUhhD2P/OzAbuUhhMb6JdOf+fv81dkQwpDR4y46\nbr8S+6nTFrRq/muTJj3++KRJM96u3+Sp7n0HfLKurm5U3ZD+vRKprUtqbnzjsnO+/9Tc1SGE\n6u33OPrY4z7zyX2qK//5fSCfW/fq3x++9dbbps6uDyFU73DgRZefN9BOpp3Y4JOi8zHlmmb/\n6D/PnbqsKYSQSlfvf+hnDzto6Dbb9O23Tb+tyrNLFi9evHjxzH88cc/9T67I5lKp9JFnXnrG\n4QNDCPmWzILXX3joz3fc9fiMwlsNGn35z4/38+1WueErx9+1dG0IYfCo404/6fMD+5b6Dc/i\n8E0yKTqfiLfu+s5ZN7wWQihL9zx67Lc+fcDQbWu7FZ568BtjrprdEEIYfMr/XvLFAYUHJ13x\nnz9/ZF4IYZcvXHbll3dLqOpO74VLT//+EwtDCN37Df3K10bvu9uAfr26J11USfDBmggrYwmy\nVkBpslZA1+a4qSOwnwlCejqFufedO/baGSGEqtr9f339BX3L138Pfo9DkRBCCI9eevovn1gY\nQhg45pe/OG7X6PV2EVMvOm3cM4tDCD0/etRVPz+9Np0KITQ3vjb6xHPWtuQHf+2qS47qX5iZ\nz9Xf/ovzxj8xL13V/wfXXb6Pc0Ha25JZ0yZNenzSpCffXLp2k6f6fXSfurpRdXXDd9L2tsrf\ncPbJd82sDyHsd8y5F5x0yPtfFTA/9a5Lx93wZAihduDnr7/sK64f2L5s8EnR+QhuP/eUm2es\nCCH0H37if59x9M7v08/c2kV//v0lv3vw9VQq9ZnvXff/Dtxmw1NvPHrV2Vc8lM/n05Xb3XDb\nNbWODlvhtGO+sDiT6z1k9A0/OV6/ovFNMik6n4jbTjth/OLGEMJ+3/j1uMN2/OcT+eavHHPs\n0mwulUr97JY7B1evD2wyDU8dM+ZnIYTqfqNvve74JEruCn425tinGtZV9tz/mhsu2Lq8RM60\n6RB8sCbCylhyrBVQ6qwV0CU5bupQSnk/4zCGTmDyn+YUBiPOPbNvK469R5x+UmEw/+Fnt2BZ\nXd3TrzcUBl8476QNGUB59aCTt+sRQpj/l5kbZqbStcd95/LDt63OrZt72f/cHb/ULm+bAXt9\n8dSzfvn7W6/66QXH//uI7Wv++YG0+I1/3P67y8ee/KWzx11238Sp9Vm/uyrSileuKBx1993n\nq+NO3sxRdwghtd/R535j2LYhhPqZ91z6t8WRSiwZNvik6PyWVj/rukJCXzvwmCvOPeH9EvoQ\nQrr7tp8b+/NT9+yTz+cfuOT8GY3NG5766KFjz9pn6xBCLrPwniWbHrrwnhqaW0III8/6jGXS\nmHyTTIrOJ+LJhnUhhFSq8r9G7bDx400rH1mazYUQKnuO2JDQhxAqew7fuqIshJBpmBy30i7l\nxcZsCGHI2K9J6CPzwZoIK2NJsVYA1grokhw3dSilvJ9xJEMn8Hj9uhBCqqzqy3v0bs38ytoR\n/SrTIYRM/ZNbtrIubdqabAghla7+XL9/uYfWbh/vE0JYt+KZjR9Mpbqdcv7hIYT6meNvnb8m\nYpklJdV/jwNHn3HONTdPuGzctz/3qQN6V66/52I+n5059fFrfzHulBNO/p9fXDfp+Zm5rvZp\ntcU9e92UwuCYb326NfNHfH10YTD9xie2VE2lzgafFJ3fUqb+dv3u4pjvHtuKE+BTR50zJoSQ\nyyy++o43N35i2BmfLAxefG5Ze9fYNe1clQ4h7FLtiqNR+SaZFJ1PxKJMSwihvPtHNrnAyYpp\njxcGvfY4fJOX7FRZHkLIZRdGKbBrWteSDyEcNLg26UJKjg/WRFgZS4q1AniHtQK6FMdNHVIp\n7meE9HQChSWPdNXONa2+put2FekQQi6zYAuW1dUtz7aEEMqrdt7kZ8J9DugTQsisnpL51/1g\nz11P3aYyHUJ4bPzMwJaUXb18ydJlK+sb1ja3bPJUS7Z+ysR7f/6Ds08ee8E9T7ySSHmd1ANz\nV4cQUunqI/t0a838qtq6XuVlIYS1yx6+0uLTAAAgAElEQVTZspWVPBt8UnS+3d07a1UIoay8\n9nN9W3XH3KpehxWWVuc/dPvGj3fben3S0/h2Y3vX2DWN7FcdQpi2yIUHovJNMik6n4juZakQ\nQr6leZPHX7tvfmGw63/03+SpzPo7DzoVuXiF+z03d5XluU7EB2sirIwlxVoBbMJaAV2D46aO\nrKT2M373SifQI53KNOdbskvzrV7DWJjNhRBSZa1aBOc9VZWlMrl8Pr/pSlP1DoNC+Ee+pWnK\n6sywjS48ElLpkT2r/ri0cfk//hzC3lFrLQ1Ny+f8bfLkyU8//dyLs7P5Tdeievffo7Zx1uxl\nTYV/rnp72u8vnfbMjG/++P8dauWvNeauy4UQysp6tL5d3ctSK0NoybiE3RZhg0+Kzm85cwr7\nmYptPnDmBn3KyxZnctk10zZ+MF3RrzDILM+0Y3ld2LCv7nfthROf+9U9+StPtaFG45tkUnQ+\nEbt2L1+xKpNbN3teJrfjO2d7hHx2/Oz1V9H8/K49N56fb1k7q6k5hFBW0TdupV3KUQN6vjh9\n2ZRX6j87vFXJGe3FB2sirIwlxVoBFFgroItx3NQBleZ+RkhPJ/CJmsq/rGhqaV7x4PKmI1rx\nw9XMqsmLM7kQQkWPvbZ8dV3WDlXpVxtbck1vrcrlN/6lduVW+4dwewhh4rw1wwb/y/10t6ks\nCyFkG1+MXGrXtmrhzMlPPz158uTnX5vf8q4Pp767DB1+yPDhBw8f3L9XyOdmPv/ko48+8ten\npzXm8iGEF+/75WV77vmdg/olUXgns1U6taI5n8sumdWUG9At/YHzc+veWphtCSGUVfTa8tWV\nEBt8UnQ+gl7lZUuyuVzTnPpcvrYVp0Dlc6tmNzWHEFKpio0fz2XWXxu5snfFe7yMd+m7z38d\nN+j521+767u/33ncl0dVpTr14Vun4ZtkUnQ+EYdv32Pqqkw+33LlQ/N++pmdCw8ue+E3CzOF\nG9IP2+NfLwxe//pNhUu1V9UcFL/aLmPfM48uO+O6l6+9qeng73Szb4/IB2sirIwlxVoBJc5a\nAV2V46aOo8T3M0J6OoHD67b9y91vhRBuv2LiEeOO+MD5L/3hD4XB1vt+8GTez4iela82ZvP5\n7I0zVp455J/3PCuvHrRVOrU6l5/z0Pww+F/uhTY/k4teZpe1fM7LkydPfvrpp6e/ueTdz/Yb\nsNfBBw8/ZPjwQTtudFJOKj1wv5ED9xv55fq3rv/phfe/tCKE8Perrg8H/Xe0sjuvYT0rH1je\nFEK47rH5F//7ptcjfbcFE3+bz+dDCJU9h2/x4kqADT4pOh9TXe+qOxY35vOZa6YuPfeADz6f\nftn0a5taCvuZf4lwGhf+X2HQ82M93+NlvIfUly7+6eJvnzvxnv899dmJJ4/53B4Ddt1puz6t\nvlgsxfBNMik6n4g9vrxvOP+xEP4/e/cd19T1NgD8uUkIEEYYEqYLFVBEkWFFxFX91b3rwlkX\nirtO3HsWKyjWXa0oVVsn1vUqddZFRTYiCgiEAEIEQkhyc98/oohIIaxckzzfv25uTvJ5jOHm\n3POc8xyIP7z8tPnKfh4OJW+fbNsaoXjWpvf35RsXpt5dveaa4ti8o4dqI9UoHOuBG8c+Dgi9\nu3iX044FAzBPr0L4w0oDHBmjC44VIO2EYwVI4+F9E+3wOqOASXqkBpoOG61zfruUonIjQ7ac\n5S4Z7lXFvR//6an11zIUx/8ba6+iEDWR60A7OJgIABGbNnfcua6jDefjM4yuXN0r78T8e/sK\n/YPLJprJJdk388UAoKOHH3vt8ZOjHjx48PDhg8QMYYWnCILg2bfz9u7i7d25lbVRFW/C5jad\nHDA73HcDAEjePxDJKQ4Dx0uq8b/vbK+cegUA8UfWPfXc42FR1dIEcW7kuoNximPbfj1VEZ+G\nwi88XfCTp0XPUc3PBMcCwD87tyQc2upkxK6isUz0aufW+4pj2379Pj1BSc7tuqM49Gxn+uUL\nUaWYbNuBQztH/HytOOP5vm3PAYBgMJX5wp47d67Bg9NQ2JOkC37ytDBp4+dt9uD+OzFFFp7Y\nsjSUIKiPS0AIht6075sqjksEf23bfinqZQZJUQBAEMzvRzejK2bN0HbU+gWlW3f/cWhC7N/D\nx/gO7uGqh4lilcAfVtXDkTG64FgB0io4VoC0B9430QWvMxVgkh6pATbXe1kvuw030gHg4fEt\nUx53nzlhcFunz6+GFJnHf3Mn/MzxSw8VQx6mTpOGWXEqfUOkDNveM0yPLsqXySVFiZv8pzi2\n7zB16UIHfRYA9PSxvHIhlRSnBQRd2DF/sB5BUKQwbOeqYpICAIPGOE279qYvXFXhDEEQVi07\neHt39vb2bmFpoOT76Bi6fDxksXFNiRKaDJ7KPb1CSMpJiWDz7MWTf1w0sGPTSlumPb38084j\n2RISABgs0+n97VQbqUbBLzxd8JOnhXX3BS0P+SWXyGQlySv9AiYvmN3fo1mlLTOibuwJPBAn\nkgIAk83zH/zhclSYlXT52K6zKe8BgG3YYWgj3GFUWU9+Xbnhzxflz1ByEufANyjsSdIFP3la\nEITenC1zXs0JVNS3p8oVaXQcscqF82F3ktKCJ5FJb8ueavbd8u5cXRWHqknOnz8PAGDc+rt2\nr/6KSgoNWnMyWMfM0srKysrEoKqZcACwdKkar7b5GuAPq+rhyBhdcKwAaRUcK0DaA++b6ILX\nmQowSY/Ug4f/jkHpfhcTCgDgXULEpoAIgqlnYShXPLtsoX9aWmZRuXojutx269cPpidWTcHU\na7lhWtfZ+yIAgCKLEyLvpZbOU/xQ2Y+ZYXB5RTFJpd4+Mub+GTtbbk56pkj24b+jm197GsPW\nGATBsHFw8/bu3LlzZ3tejW+qZaIkxYG+5WCWGv9IqQ6L47x2vNuCX58CgKwk9eDGOX/au3Zx\na21tbW1lZcUBEZ/Pz8rKSoi8929KXtmrPCascdLHX9J6gF94uuAnr0oMHd7KgBHTV/8uoShJ\nYdL+9XNP2jh5urTg8Xg8Ho8DYkGOIEeQkxL7NDa9QPESgiB6+69vqccEABH/0Di/S2WJn65z\n/fEjV5Lw1fGN56LpjkLrYE+SLvjJ04Vj7fNzsPGBvYcjolMVOykyWIbeg6f+OM7ly8YEwXLv\nO23FjI4qD1OjHDlypMIZipLm8dPz+Om0xKM98IeVLjgyRgscK0DaCccKkMbD+yba4XVGgSg/\nxRuhrxlFCs/t2/7r9epvBU0dewasnOXIrWbuPFJG3LVjgYfOC0pJAJhz/Exvkw9LPeJCVy37\nPerL9hZukw+vHarSEDXL4MFD7Bzdvbt4e3fu3LRRVVXUUEO4e3jFjgvKjje5Dlu2flLnBo1H\n4+EXni74ydMo6+GJpTvOFny8u6sCwdDtPW3j7P6OiodFmUFj/W4qjh36zd/ph/UzlfXXwvH7\nkoUAoM9rM2rsoNZNbC1MDZW8gzM3N2/Q2DQe9iTpgp88jUrz+WnZeUxDCztbiwpLOorengg+\nlWvTzKGjV9fWdoZ0RagxBg0aVOvXXrx4sR4j0Tb4w0ojHBmjC44VIC2BYwVI2+B9k+rhdaYC\nTNIjNcOPvX/u4qXbj+PFZCVf3UbNXfsPGjKop5uOOs+d+drIpcIXjx4npWW2G+pbfiLww5OB\nIWfvCD+mGQiC2b6377JZw9V3/4+vQXq+uLEp/jjR6c2DP3YdCHv9rrSKNhyeg++M+QM9sXhd\nXeEXni74ydNLnBt35JcjN568JP+7H27TxnvijFlezT9twaVI0nOsHAaOmuz7rbNKItUQM78f\nmlFK6pp4HDq6iot7Fasc9iTpgp880nhXr16t9Wv79ME6pbWHP6y0w5ExWuBYAdIGOFaAtBDe\nN6kYXmcqwCQ9UksUKXqdEJeSkVtUVFQikRsYGhmb8hzaONvgn7dqyYozn794lfOu2NyuWQt7\ne3MjnKONNAIliX3wf/efvYiPT8zKey8SSwiCoatvYGbV2NHRob2nTzf3VjgYVXfp4auXn0oB\nAF1jr8Mh/nSHg5CqlQiS7zx8Fh8f/yYjp6i4qEQKRkbGXHNrpzZt2nfs4taiUYX2ZGl6ao5e\nczsLvPzU1LDBg2UU1XXbsUWtTemOBX0Ge5J0wU8eIVQX+MP6lcCRMRrgWAFCCGkTvG9CKoBJ\neoQQQqgqFCmRM9h4p13vXh6d8+O5VABg6jU9dzqY7nAQQhpr6oihAgk57/iZbz9WrkMIIYRQ\nreEPK0IKOFaAEACs9fd7WyqzH70uoJct3bEghNQeKSllsrWrh8mqvglCCCGaFAmFMqWnUnFN\nTPDesCEQTDaT7hg0krlnEziXCgCkODVWJHPmYJ+kQezZs6d+33D27Nn1+4ZaAktH0KiniW6Y\nQPRWTNIdCEJIE9y4caMe382kjbenLace3xAhFcAfVoQUcKwAIbk0Jz4jq0ROSa9lASbpEUI1\nRMnyH0Tci46OiY1PLiguFolKpCR18eJFAJAUPvkzotC7u09jIx26w2xYOCCO1AxFiV9Gx6Rl\nvOvV93+fnScLdu4Na97c8Rsf78YmWHikxgoKChQHBKHD5RrQGwzKiLx2/OLt5ORXOe+r2u2s\ngtBzF4xwCjdSH2bO87xMnjwsEAPAsWtvtw9tRndEmun69ev1+4aYpK8dsSD//fv3AMCUJNAd\ni9bpMa5NWODTB6HRE3/8hu5YNBb2JOmCn7zqBQfXZ/kfp1mtMUmvJPy2fz3wh5V2ODKGEGpg\n1NuEZ//Gv8kvFFXZSpYedbtETgGAXFyDAUyEVA97kl+hhLt//HLgVIpQUumzZOnrkwdPhB05\n2n309DkjfTQ46YFJeqQ2KLLw1umjpy5ECEQyJtuq4q2IXHL35pW7cOW3Q3s8+/nOnDLEnMWg\nK1R1NGHCBMUB26D92VMbAGDbtm21frelS5fWT1haKflS4I+H/q7FXiQ6+JWvP1jDQBUI9oKd\ni7Pnbk0RSV+GbnrUJfgbC9w9EWksLB1BI+tuyween3z5zrYz3x743rUR3eFoJuxJ0gU/eaQ9\n8Nv+9cAfVhrhyBjtcKwAaTy5hL9vw+prUfwavcpxeIsGigeheoE9ya9NZOiqtb9HVdtMTgpv\nhe6IS84OCRjB0tDfVBwfROqBlGQELVlyO6Ww2pYUJX0c/mvci+Qdu360xbpTdXD//n26Q9BG\nEuH9gMOfZeiZTGW/xmxCQ3+pVAhrGKiYHs9z6941QZt23EvO3jpr7rApP/Tr7mmuh5fu+jRu\n3Di6Q0AAWDqCXoTOD1vW5S1adWLNjMR+46aOH2iFkyQaHvYk6YKffEPr1KnTfz0ll+Y9fvay\n7CFBMIxMLSytrIyYpdnZ2dk5BWV5HSbbytdvdCMWg+tg1uARay78ttMGf1hpgiNjNMKxAqQ9\nwlYsuZZYUKOX8NyHL+lm1UDxINRAsCdJo/TrQWUZeoJp1OXb7g4tW+lEn/zl7qfpQSxOaxdb\ng+iMYgDgPzoecKrt9rFO9ITbwLAbjdTDuXUryu5DCILdtLVLhQYE02hk/+6PHj1OzRUBQFH6\nvVWbWh1ZN1TVgSJUN/EHjonlFADo89r+MMO3Qyt7nok+3UFpC6xhoHrh4eEA4NxzeIHwZEwO\n/0zI5rP72CbmZmZm5qZmXN0qhzNw1qqSRo4cSXcICACwdASdzp8/DwAOPXrFnrz4OPzokyvH\nuBa2jW0tdJQYMl27dm1Dh4cQUi8BAQGVnpeJXv20eJXimGPdZtj3Iwd0deWwP3UTKbI08dGN\nsLDfI98ISQn/7NkHG3cta6mPYzJI/eAPK11wZIwuOFaAtEdR+vGwjxl6jrVDR1cnE1Zpwr2I\nhPxSAHDpO7ClHgsARMKc6MePMoukAODsu3bjSDecjoIQUhIpTl29/5bimOvQbfGiWe2s9AEg\nWXCufDMdjsumkN8ehm3acuoZACSeWZs49ISjJt49aeA/CWmeovRTx6PfKY6bdxkdMHuk5RfT\ntAmG/rgZC8dNJx+c2f1T6N9Sisr99+h5/ndDrHCHP6U4OjoqDlj6doqDWbNm0ReO9roalQ8A\nbGOPkF9WYmE6VcIaBrTYv39/hTMUJcnP5efn1qyuGkJqAUtH0OXIkSPlH1KUvECQXiBIpyse\njYQ9SbrgJ//VoE6sXHs/vQgA3EYsWTm+y5fFGAmmrlPnAWs794/8c8faX++JMh+vW3H86E8/\naGrZxnqH3/avB/6w0gJHxuiCYwVIqyQdu6M4MG7Rf+/O6VwmAQAy396+YxeXyClpkz6T+zdW\nNKBI4enAZaF3MxLOHo7u09aVy6YtaISUgD3Jr0fmjb15UjkA6HI9dm1d0KiKDAjB8hqzZt7b\n6bvv8ilStP9SeuDI5qoLVFUwSY/UQMLBG4oDnpf/7iXfVdWUYHYeudCMzFhy6iUAhB9OGrLC\nVQURaoAdO3ZUONOnTx9aItFyMSIpADj7z8AMvYphDQOEUEPD0hFIg2FPki74yX8l8uOD/kwW\nAkAj1ylrJ3Spsi3hNmzJ3MSXQQ+zhcnnd/wzYLkXTzVBqjv8tiMthyNjdMGxAqRVHrx8rzgY\numw89+MtKovjMMHKYH9mUebVZPiYpCeY3JGLdgmSJt3ITv9p3bnfAkfREzFCysGe5Nfj4YU0\nxYHPktlVZeg/8pk+fvfdHQCQeeMJYJIeIVpcT/nQP/jBv4cy7VsNnUuEzaUoqiDhBgDeiiB1\nUiqnAKCTE5fuQLQO1jCgBc5aVSNr/f3elsrsR68L6GVLdyzqCktH0GX+/Pl0h4AQ0nBPDj1T\nHIyYX2Xm7COfWb5BDwMBIPrYXfAa3oCRIdQA8IeVFjgyRhccK0Ba5UWxFAAIJmcw77MKHK3c\nzSCzqDT/McCnSxBB6E1c3vvG/AvC5NCwzAGjbQxUHS5CSA39LSwFAIKhO7mNqTLt2VwfHjtQ\nICElwnsAGrinJybpkRpIFMkAgMm26mysVOUcpl7TFnrM5BKZrCSxgUNDqJ611GfFFEtlNd7p\nDNUV1jCgBc5aVRdyaU58RlaJnJJeywJM0iN107NnT7pD0Drp4auXn0oBAF1jr8Mh/nSHg1CD\nu5JeBAAEk9PXTE+Z9rrc7iasnwtk8pK8mwCYpEdqBn9YaYEjY3TBsQKkVd5J5QDA0m1SYTse\nM08zuJQmKXomoYBd7inj5pMs2JdzJOSt0OTRi9urNliEkFrKlsgBgKnbxKjKipLlWekwBRKS\nlGQ1ZFy0wSQ9UgPFJAUABKMG0/GYBAEAcmlBQ8WEUMPob28cE533LF440FupAT5UX7CGAdJK\n1NuEZ//Gv8kvFFXZSpYedbtETgGAXFyqotA0EZaOQNpDLMh///49ADAlCXTHgpAqpJeSAMBg\nGCi/+bA+gygAkEsEDRcV+hJWBkLqC0fG6IJjBUir6DIICUlRlKzCeY6NA8BzSi5+ViTxMio3\nVYhgdjPWPZsrevf8MgAm6ZF6k0sKU14mC969LywqAh19YyMjC9vmLewaKd/DR8owYBISGSWX\n5lIASn62fCkJAARDM7ebwSQ9UgNN9JjJJTKyNDVPRpmzqv/LpWT5r0tkAMDUtWv46LRFkVAo\no5Rd3801McFfr9rpMHsYw+9Q3MHj4s6L9Aj8FFUHaxggbSOX8PdtWH0tqmaF1h2Ht2igeLQB\nlo5A2sPcswmcSwUAUpwaK5I5c/CukzbYh1cNQyaRL6NIaU6KmLTXY1bbnixN5UvlAMDQMWn4\n6NAHWBkIqTUcGaMLjhUgrWKjy0wUyUlxaiFJlV/kyjb0ADgNABEZxV5On9XzsGAzAEAqilFx\nqAjVG0oWfe9q+JWrT+PSJV/cOrGNGrl79+rXv3/7pjhbq358Y8S+mi+Wy/KvvRP3UaIOmaTw\noUBCAoCOQbuGj44GOFyC1EA/O8OglwUUJfvlUfYKb6tq2+c82a+4nnIsezd8dBouI/La8Yu3\nk5Nf5byvwerJ0HMXlC9XgsrjWA/cOPZxQOjdxbucdiwYgHl6lcEaBuoC1z/Vl7AVS64l1mxV\nDc99+JJu1f8KI4SQmfM8L5MnDwvEAHDs2tvtQ5vRHZHWwT68inkZs6+8EwPAoVuZm/s1rrZ9\nVsQBiqIAgG3s3eDBaT6sDIS0Ao6M0QXHCpBW8TFmJ4qkFCU9llAw2/nTdtEsjoMhkygiqbTr\nmeD02TbSmRJS5WEiVG/EeTEh23ZEJOT/VwNJYe7Dq2H/XDvjOXDqvMn98Hap7np3t7x6LhUA\nTgdF9Flb/WqW2N9+UxyYd9DMpS+YpEdqoMMEZ1h1HwCe7t74r+PODo2q6hZL3sdu2fVYcdxy\njIcq4tNcyZcCfzz0N6X04psyOrhRVx20HbV+QenW3X8cmhD79/AxvoN7uOrhz3/DwxoGagHX\nP9WXovTjYR8z9Bxrh46uTias0oR7EQn5pQDg0ndgSz0WAIiEOdGPH2UWSQHA2XftxpFueDVC\nCCmFYC/YuTh77tYUkfRl6KZHXYK/scBxbdXBPrzq/e872yunXgFA/JF1Tz33eFT5hRfnRq47\nGKc4tu2He3vXCVYG+hoIXj598DQmMTHxbU5+UVGRWMYwMjIyNrN0bN2mrZuXlzN22usHjozR\nBccKkFZxHWgHBxMBIGLT5o4713W04Xx8htGVq3vlnZh/b1+hf3BZnlIuyb6ZLwYAHT17eiJG\nqA4kwpiVs9ckFUvLnyQIHTNLK315ET+noKwmGUWRjy/un/0qa8/GKZinr6Omw0brnN8upajc\nyJAtZ7lLhntV8Ynyn55afy1Dcfy/sZp5nSFqceuOkKpRkm2Txt3PFwMAU89ulN/MYT3asivp\nGcuTH4eH7D6WXCgBAB1O66OhW43xollbEuH9cRO3i+WfLhFMZvWVGxX+OHcOh/hq5/z584qD\nrGeX/4oSwMeegZWVlYkBu8qXwtKlSxs8Po0W8/uqgNCopt2nYQ0DlavB+qdHyUIA4DZd+lsw\nrjyrvciNU9c+FgCAcYv+e3dO5zIJAJCJknzHLi6RU04z9m7v/2EVIEUKTwcuC72bwdRtvObQ\nLlduNRcihL5CEydOrN0LW07auqqHdf0Go1XEeS+CNu24lyxk6loNm/JDv+6e5kqUAUd1hH14\nWshEsZN9VwhJOQCw9JtO/nHRwI5NK22Z9vTyTzuPvBbJAIDBMt0aethJH9dO1N7JxRPCal4Z\nKGT1RDZ29utDflJE8C+/PU3OqaKNub3beL95PT9fdolqA0fG6INjBUh7kOLkH8YuypfJAYBg\nGji27zB16UIHfRYAJB2es+hCKgA07fHDjvmD9QiCIoWnti0O+4cPAKZOi49t96E3eIRqiDow\nc+zljGLFAza3xaDhg7p1dLG2MmczCACgSHFOVuaLfyIu/BmeWvQhkW/bfem+hTggWVdPgv03\n3EhXHJs5dZ85YXBbJ/usk/MXnn0NABcvXgSKzOO/uRN+5vilhyRFAYCp06Rj24fRGXSDwSQ9\nUg9FaTf95+9RdBEAQMfIur1zSwsLCwsLCyNdMjdbIBAIUpOiUgQligYEwR6z/sDo9mb0haz2\nonZMX3WXDwD6vLY/zPDt0MqeZ6JPd1Cab9CgQbV+7cWLF+sxEq1E3T6+dfcf/7AbtcIaBipT\nu/VPHRceWNkd667X3p6JI6/niwFg4sGw4ZZlU+Mh3G/s/swi46YLTgT3KDtJUeI90yfdyBZx\nW/r+FjiKhnARqpta/7Y6zQrZ3ge3ca2l8PBwAABKev/cyZgcMQAQBNvE3MzMzNzUjKtb5S8s\nzjusC+zD0+XVn+sX/Pq07KG5vWsXt9bW1tZWVlYcEPH5/KysrITIe/+m5JW16fjDzyuHaOZy\nENUoSj8+1v+s4hgrA6le3Pldq45GSJUYVCQInR6TN84f0loFUWk2HBmjD44VIC2S9lfg7H0R\nZQ/nHD/T20QXAGSimPG+K4pJCgCYbCM7W25Oeqbo4xVpyM8nfrA3piNehGopP2HvxCXXFMc8\nj1Fbl49p9B+FxUhJ9m+blv/5by4AEARj5uGwPlXWs0HVouSiw8v8LiZ8mmtLMPUsDOUCoQQA\n2rRsnJaWWVRuKw1dbrudB9c11dBJ/zhlG6kHwya9dm8qXbHuSLpICgDSwqyn/2T9V2OCaTRk\n3ha8D6mjq1H5AMA29gj5ZaU5CxfVIA33oYaBcevv2r36KyopNGjNyWCsYaAKuDM6LV4USwGA\nYHIG8zjlz7dyN4PMotL8xwCfkvQEoTdxee8b8y8Ik0PDMgeMtjFQdbiaAtdzqwsWx8zMkAUA\nZri8tQ72799f4QxFSfJz+fm5NZuVhWoK+/B0aTFs9eL8FTsuRCse5qU8v5DyvIr2rsOWYYa+\njpKO3VEcfFYZyLe3ojKQtEmfyV9UBko4ezi6T1usDFR32ff2Lz8aUbbsx8jG0dOlJY/H41nw\njHSk2Xw+n89/FfMkPqMQAChKevvociPLA1O8eLRGrfZwZIwWOFaAtE2Tvgu3MswDD50XlH62\n2TyL03bViHbLfo8CAFJSmPq6sOwpC7fJmKFHaifm2BPFAYfXY8+qsVUUSmGyLSeu2ZM7dfKd\n3BKKkl84kdxnfltVhamZCAZnypZgs33bf73+4e6JIsUC4Ydn45LTyzc2dewZsHKWpmboAZP0\nSI2YtO6/+0i7sENHr9x+VkRWPlmbIBjNO3SfMG26my2n0gZIeTEiKQA4+8/A0T1VmjVrFt0h\naKkjR45UOENR0jx+eh4/vdL2qF7gzuh0eSeVAwBLtwnr80/SzNMMLqVJip5JKChfBta4+SQL\n9uUcCXkrNHn04vaqDVZz5Ofn1+6FhZ8PjqCa2rNnT5XPU+9zs7OyMtPfxFy78aRETlFy/e9/\n3PxdayzMi9QS9uFp5DNlU+PWf+w6EPb6XWkVzTg8B98Z8wd6YqGOunrw8r3iYOiy8dyPvUMW\nx2GClcH+zKLMq8nwMUlPMLkjF+0SJE26kZ3+07pzWBmojuSy3I1BVxUZerZRq0nzZvfv2Lyy\n7jn1+nF48M+/JhdJKEoevmvLMIeaSG0AACAASURBVM9AUxb24+sER8ZUD8cKkBZq893EAz2H\nvHj0OCkts7Hup8RYG98Ny4nAkLN3hB8X0BMEs31v32WzhtAUKUK1dyO1SHHQI+CHarcyIRic\naSt63lkQDgA5Ty8CYJK+rggmd9jsTZ173D938dLtx/Hiyno1jZq79h80ZFBPNx2N7j9ikh6p\nExan8bi5q0dPyXry6N/4+Pg3mblFxUUlUjA0NDQ2s3Jo3aa9eycnWyO6w9QQpXIKADo5cekO\nRLv06dOH7hAQUh1c/0QXXQYhISmKklU4z7FxAHhOycXPiiReRuU+ZILZzVj3bK7o3fPLAJik\nVxFcz11fmjRpUl2Lpm0BAIaMHZV0+mjw2bupIcv9ircfGOaAvaDaw3mHdME+PL2adR6+22tg\n7IP/u//sRXx8Ylbee5FYQhAMXX0DM6vGjo4O7T19urm3wumG9QIrA9El+96uVDEJACy95utC\ntjj/Z8+caN5xwNaQJgunr0kTkzLxq8CH2Rt8sCBWXeHIGEJIBRg6XNcuvV2/OO81dqHn4NHP\nX7zKeVdsbteshb29uRGOzyC1lFIiAwCCYI5vplQdCGP7iTrEFSlFSYujGzg0LWLl7D3T2duP\nFL1OiEvJyC0qKiqRyA0MjYxNeQ5tnG1MtWJbARzyQ+qHZWDt1dPaq2c/ugPRcC31WTHFUln1\nG8whpAkwl0ALXP9EFxtdZqJITopTC0nKqFyigG3oAXAaACIyir2cPrvTtmAzAEAqilFxqJoE\n13N//fQaOUxYvNuwcOqvz3NPrFzr8dvOJroaW1GtoeG8Q7pgH55+BNvZu6+zd1/FI4qUyBls\nzMo3BKwMRJfIs28UB27zlv93hv4Dtkm7lXPcp+94DACvT0eCD47k1A8cGVMZHCtAqAKWgY2H\nlw3dUSBUVyRQAMBgW3EYSvXUCULPWpeRJiaBkjdwaFqHYHLsnT3snemOgyaYpEcIVa6/vXFM\ndN6zeOFAb62YsoS0HOYSaIHrn+jiY8xOFEkpSnosoWC286ccMIvjYMgkikgq7XomOH2WG86U\nYMX1usL13GqCMXDZguNjVsrErwLPvvnZtwXd8SBUM9iH/9oQTDZO9mkgWBmILjcEJQBAEMwZ\nHZXaY57XyU+HeCKlKFH2DQBMKiM1g2MFSKskpOc5NTanOwqEVKGdgc7D9xK5NE9KgTLV1Cm5\nKLNUDgA6HIcGDw5VJuHOWaeuI+iOov7hNnVI7ZGSqjb8Q7XWYfYwBkHEHTwupnAlzldtrb/f\n1KlTN9/MoDsQhGqsqvVPAIr1T+UZN59kwWYCwK3QZJUFqZFcB37YBzdi0+bHmaJyzzC6cnUB\ngH9vX2G57aDkkuyb+WIA0NGzV2WcWkuxnnuSayNKXnJi5do03JNetXQ4Lt25ugCQef063bGo\nsUuXLl26dCkitkD5lzy/duXSpUt/3YxruKi0Afbhkfaw0WUCgKIyUPnzbEMPxUFERnGFl2Bl\noHrxtpQEAKZuUwsdpQYVGTqNmusxAYCU4B7eCCH0VVviP3nM1Lk79x2LeBwrlOByYaTJ+ncw\nBwBKLg5NK1SmfUHcARlFAYBxqwENG5mmSyqS1vQloqwXwaumL9l5vCHioR0m6ZGaoWT5929e\n+mXXljnTp4z3HT186OChI75XPCUpfBJ26VZ6YY3/yFGlONYDN45tJ353d/GuyzjG99WSS3Pi\nM7IEAkHitSy6Y0GoxnQZBAD8x/onUKx/+uwJgtnNWBcA3j2/rKIQNZRt7xmmLAYASIoSN/lP\nWbJ2e1LJh/+Fnj6WAECK0wKCLigu/hQpDNu5qpikAMCgMa4jURnGwGULGAShWM9NdzBap6Ue\nCwAkRY/oDkSNHTx48ODBg388FCj/ktQ/fjt48OChQycaLiptgH34r0GRUFigNPxPqjUfYzYA\nKCoDlT+vqAwEAGnXMyu8BCsD1QtjFgMAKLmo2pZlSuQUAACh00AhaSG8ziCEGkix4M2dv/4I\n3Lh8wqixi1ZtPXXhZtLbfLqDQqj+OU2fxmUyAOCv9QeEZDU/laQkK3DLPQAgCOaIWS6qiE9z\nrfBfG/9eUn07AACgyPfXju+cPHPVjSh+g0ZFIyx3j9RJwt0/fjlwKkVY+d8wWfr65METYUeO\ndh89fc5IH9z2r+7ajlq/oHTr7j8OTYj9e/gY38E9XPXwY1UR6m3Cs3/j3+QXVjnwQcnSo24r\nxjvkYiwpoWpr/f3elsrsR68L6GVLdyzqCndGpwtTr+WGaV1n74sAAIosToi8l1o6z0GfBQD2\nY2YYXF5RTFKpt4+MuX/Gzpabk54pkn2YQd/ND2vDqo5iPfetAnHm9evgO5PucLRLSqkMACiy\niO5AtItETgGArPQ13YGoPezD0yUj8trxi7eTk1/lvK9Bzzz03AUj/A+qFdeBdnAwEQAiNm3u\nuHNdR5uy7ZMYXbm6V96J+ff2FfoHl328WBmovjTXY+ZKSVLCf14sdTWoPu8uE8W+lcgBQEcf\ny8PWFV5n1AKOFSDNQJGipKgHSVEPTh0GI0t7d3c3d3d3N9fWRsqVUUHoK8c28tji390/+HZJ\nzt+zlzCXLfVz5lW+X1hW7N3DQXujCiUA4Dh8XT9LTqXNkJJK86NX+a9eE7zexYRddcs3jy/t\n3fdbYp5YNYHRBZP0SG1Ehq5a+3tUtc3kpPBW6I645OyQgBEsvAepg/PnzwMAGLf+rt2rv6KS\nQoPWnAzWMbO0srKyMjGo5gK6dOlSVYSooeQS/r4Nq6/VcHaY43DcNFelFDUMSuSU9FoW4I13\nbeHO6DRq0nfhVoZ54KHzgs9LqbM4bVeNaLfs9ygAICWFqa8/Vf2ycJv8g72xqgPVbi31WLc+\nrOfGJL3qSN4/vl1QCgAMtjXdsaiT+Pj4L0+WvnsdH6/EdZuS5WfGncktUTyo58i0DPbh6ZJ8\nKfDHQ39TNa9egAPdtWbbe4bp0UX5MrmiMpBj+w5Tly5UTDrs6WN55UKqojLQjvmD9QgCKwPV\no172xk+icgHg8Km44KnVz+BMPHNQ8adh3KJvgwen0fA6oxZwrACptY0rFkZHx8TERCe85pPl\nrjaF2SkRV1IirpwlmJxW7Tp4eHi4u7m3sjWhMVSElFdYWHlBe+43U9aX6Kw/dF348lbAjH/a\neXX/pr2DlaWlpaWlPlGSzefzs7L+vXvlTsyH4kxuQ+etGt9OhYFrLIkwbp1/wMqgja7mlU+M\nEOcmHNu3N/xJatkZBpPb23eaqgJUKUzSI/WQfj2oLENPMI26fNvdoWUrneiTv9z9lMhkcVq7\n2BpEZxQDAP/R8YBTbbePdaInXI1w5MiRCmcoSprHT8/j4zZyDStsxZJriTXYwBUAeO7Dl3Sz\naqB4tAzWMFApXP9ErzbfTTzQc8iLR4+T0jIb6zI/nffdsJwIDDl7R/hxAT1BMNv39l02awhN\nkWovXM+teqX5iXtX/qwYkNI360V3OOqk0vwu/97epfdq9j66Rp3qJyBthX14WkiE9wMOf5Y5\nYzKZVbQvj03g1PJawspAdGk9zh2irgFA2qUNJ132jP2mqltRwbPT6859KJHi5otDNLWH1xm6\n4VgB0grtvune7pvuAECK8uJiYmNiomNiYhJeZUo/XnwoUpT07/2kf++fBDCysvdw93B3d+/g\n6mSES+XQV8zX17faNhQpirp3Jerelf9qwGByi+OuLltytdnwxf6dePUaoHZpw2XHCSWSwqQN\nswOWB232sPgsT0/JS/4+e/jQqZvvSXnZyebfDPSfOcHBTFflwaoCJumRGiDFqav331Iccx26\nLV40q52VPgAkC86Vb6bDcdkU8tvDsE1bTj0DgMQzaxOHnnDUxy85UidF6cfDPmboOdYOHV2d\nTFilCfciEvJLAcCl70DFLrkiYU7040eZRVIAcPZdu3GkG9auqzusYaB6uP6JdgwdrmuX3q5f\nnPcau9Bz8OjnL17lvCs2t2vWwt7e3Kia9Zeo3uF67vpy6tQppdrJS7PSUl88/fed9MOtYJsJ\nmC2mgfuMMXSHgFCNxR84JpZTAKDPa/vDDN8Orex5Jvp0B6UVsDIQLUwcZ/bi3b0pEFGU5PfN\nM5P7jR87pE/LL0q/lgheXbsQdvzyY5li6pvFt7OccM1l7eF1hkY4VoC0EJNj7tKxq0vHrgBA\nluQnxMbExMRER8ckJL+VfEzYF/JTboen3A4/zWAZOrTrsH3tYlpDRqhhyUlhYqIQAIgCZfdT\nR5Vav3fDujmro/NLpcXJm2cvXbp76zdWH7o0mVHX9+49Es3/NB9Or5HTxJn+/T2b0hSsKmD+\nEqmBzBt786RyANDleuzauqAR678LdREsrzFr5r2dvvsunyJF+y+lB45srrpANcusWbPoDkEb\nJR27ozgwbtF/787pXCYBADLf3r5jF5fIKWmTPpP7N1Y0oEjh6cBloXczEs4eju7T1pWL+bO6\nwhoGqofrn75mLAMbDy8buqPQXrieux4pm6T/HMey+484O74m7Ozsyj98+/YtAOgY8SyV7qIY\nmtu4+Awd721Z/8FpE+zD0+JqVD4AsI09Qn5ZaV7F7SpqAFgZiA6MaZvnxczazpeQFEU+Df/1\n2ZXjJhbWljyepaWlPpQIBNnZ2dlZOQXyj4kcJps3d9M0/NuoC7zO0AjHCpCWY+qbOnv4OHv4\njAIgxcLE2JiYmJiYmOi4l+kSRd0IWVFC5F0ATNIjhKrHNm69du+mTXNXRuaKZSWvt85dtGjX\nDk+j7FP79/5xN6msGcHkdBsxZdroXkaavjYRk/RIDTy8kKY48Fkyu6oM/Uc+08fvvrsDADJv\nPAFM0tdWnz64UJUGD16+VxwMXTae+/EXiMVxmGBlsD+zKPNqMnxM0hNM7shFuwRJk25kp/+0\n7txvgaPoiVhTYA0DuuD6J1pcunQJAIzsfbo7K7ue6fm1K+kSkqXfom+vNg0ZmibD9dxqxLRl\nl9Ub5+oz8BJfAyEhIeUfDho0CABseiwJnupAU0RaCvvwtIgRSQHA2X8GZs5ogZWBVE+f5/XT\n9nkb1u1V3C5RlDxfkJEvyEiIqaQxm+swc/Vqb6uKS+1RjeB1hi44VoBQeUxdQ1NTE1NTE1NT\nU2O9zFyRjO6IEKrexYsX6Q4BfUbH0GHlnq1b5wU8zhaR4vSd8+abUDl50k8jw7YdvvOf9UNb\nS60oGoRJeqQG/haWAgDB0J3cxlSZ9myuD48dKJCQEuE9gJENHB1C9elFsRQACCZnMO+zIYxW\n7maQWVSa/xigR9lJgtCbuLz3jfkXhMmhYZkDRtsYqDpcDYI1DGiE659U7+DBgwDQdJCj8kn6\n1D9+O8wv1uG07dtrc0OGpslwPTdd+vbtq3RbpoVdU/sWrdq3tsdxVYSQ8krlFAB0cuLSHQiq\nCCsDNRwj++5bDzmHh/0e/tdtRWLySzocq259+48aM8CSrezu6ei/4HWGLjhWgBBQkvSXCTEx\nMTGxMXGxCXmVJeYJAucPIYRqgMWxXx68fcf8JQ8yRaSEn/fxPJvbYqzfrGHeregMTrUwSY/U\nQLZEDgBM3SbKl7aw0mEKJCQpyWrIuBCqf4p1kyzdJqzPv+xmnmZwKU1S9ExCAbvcU8bNJ1mw\nL+dIyFuhyaMXYwHw2sMaBvTC9U9fP0UVO1npa7oD0S64nrtezJw5k+4QtNG4ceMAgOvQiO5A\nEFKFlvqsmGKpjKI7DoRUi6FjMXD87AG+U94kxsfHJ2blCouKiqTAMjQ05DaydnRs7dS6OQe7\nMfUErzN0wbECpJ0oSpyWGK+oax8TlyQUk1+2IQiiUWMHFxeXtm3buri0VX2QCNVaevjq5adS\nAEDX2OtwiD/d4Wgppl6TxUE/7Vq4+E5akeKMfd8pa6YNNNWyokGYpEdqwIBJSGSUXJpLASh5\ne8eXkgBAMLSiIMbXY62/39tSmf3odQG9bOmORV3pMggJSVFUxUmpHBsHgOeUXPysSOJVPklJ\nMLsZ657NFb17fhkAk/S1hzUMvlq4/qlexMfHf3my9N3r+PhK7rQromT5mXFncksUD+o5Mm2C\n67mRVhk5EstZIS3S3944JjrvWbxwoLce3bFoOSo/601KenZhUZGUZHAMDU0sbVs1t2Xjj2lD\nIhj6zVu7NW/tRncgGg6vM3TBsQKkVVJinyry8rHxrwollSfmze1aubi4KHLzVlgxAqknsSD/\n/fv3AMCUJNAdi1Zjsm0XBu7SWbLw/1IKAYD/LLpg0gBTLctaa9k/F6mnb4zYV/PFcln+tXfi\nPmbV341ICh8KJCQA6Bi0a/jo0AdyaU58RlaJnJJeywJM0teWjS4zUSQnxamFJFW+dATb0APg\nNABEZBR7OX3WA7ZgMwBAKqps9z+kNKxhgDTb0qVLvzzJv7d36b2avY+uEW6OXnu4nhuhSpEU\n4GSUhiN4+fTB05jExMS3OflFRUViGcPIyMjYzNKxdZu2bl5ezthprx8dZg9j+B2KO3hc3HmR\nHoFfaBoIkp78dfXa3//8m/tF3XUm28jJ06d/v/5dXBrTEhtC9QKvM3TBsQKkVeYvX//lSYIg\nzGxbunzQ1oqrq/rAEKpf5p5N4FwqAJDi1FiRzJmDeVLaMNiWc3buZi1bcC1JKBI8XjZn05ag\nAHtt+h/Ron8qUl+9u1tePZcKAKeDIvqs7VNt+9jfflMcmHeovjGqDvU24dm/8W/yC0VVtpKl\nR90ukVMAIBeXqig0TeRjzE4USSlKeiyhYLazadl5FsfBkEkUkVTa9UxwMi3/kszKZraimsIa\nBggpw33GGLpDQKgaBQUFigOC0OFycfXSV6Ekj5+ZX9qiZdPyJ4Wv7gcf+uPlm7SCEjCzbt65\nZ//xw7vpYVXk+pOfFBH8y29Pk3MqnC8uLOBnpifFPL105ri5vdt4v3k9P+9bolrgWA/cOPZx\nQOjdxbucdiwYgPkzVSIl/NN7fw6LiKeoyuv9kJLC2PtXYu9fOes9YtE8Xzs93BwdqSW8ztAF\nxwqQ1tI1bdrpG7e2Li4ubdvamGIND6RRzJzneZk8eVggBoBj195uH9qM7og0U6V1PSvVfeLM\nN1sDEwslJYKny+ZsWrbw+0p3fmzdunW9BvhVwCQ9UgNNh43WOb9dSlG5kSFbznKXDPeqYrUN\n/+mp9dcyFMf/G2uvohA1lFzC37dh9bUofo1e5Ti8RQPFow1cB9rBwUQAiNi0uePOdR1tysqp\nMbpyda+8E/Pv7Sv0Dy5bZC+XZN/MFwOAjh5+2+sEaxjQIi0trUbtCQZTV09fT1dPz0CfjYmc\nmrCzsyv/8O3btwCgY8SzVLo2naG5jYvP0PHelvUfHEL1asKECYoDtkH7s6c2AMC2bdtq/W6V\nVqFAyst5cXPf0d+fpQh0OO0U/x0KeZHHZ6z/QyL/kFHLy0i89Fvi3/dfBO+cY8rCy3s9iDu/\na9XRCOl/5CzL5KVE7l469cXkjfOHaOBgh4q1HbV+QenW3X8cmhD79/AxvoN7uOphjYiGR0oy\nfpq36F5GcfmTDB0Oz5JHiPMFee/Jcn8FKffPLnqV8dOeJbZszNMr68aNG/X4biZtvD1tOdW3\nQ/8BrzO0wLECpLUkBenx8foMBgEA8jZt7MzxAo40CMFesHNx9tytKSLpy9BNj7oEf2OBM1Hq\nX+1GVMQ5z9Yuf1bpUxcvXqxbRF8jTNIjNcDmei/rZbfhRjoAPDy+Zcrj7jMnDG7r9HlKkiLz\n+G/uhJ85fumh4j7c1GnSMCvsPdRJ2Iol1xILavQSnvvwJd2sGigebWDbe4bp0UX5MrmkKHGT\n/xTH9h2mLl3ooM8CgJ4+llcupJLitICgCzvmD9YjCIoUhu1cVUxSAGDQGOtG1AnWMKDF7Nmz\na/dCgsFuZG3T2K5ZO49OnTt7Whnp1G9gmickJKT8w0GDBgGATY8lwVMdaIoIIdW5f/8+3SFo\nKf79I/7bL3yZJ6bI95u2nS/L0Jd5n3JzyY52B5d3V1F8miv73v7lRyPKVhUb2Th6urTk8Xg8\nC56RjjSbz+fz+a9insRnFAIARUlvH11uZHlgiheP1qjV2/nz5wEAjFt/1+7VX1FJoUFrTgbr\nmFlaWVlZmRhUMx8OJwPVxYU1AYoMPUEQrbz69O/Vw9ne1sLMSJFGo2QlgqysF48iLp278qZQ\nAgAi/sOAVeePbRtOa9TqJDg4uB7fzWlWa0zS1xpeZ+iCYwVIq7RrZZeQnCGhKACgKLkgNUGQ\nmnD7yp8AwLVq1qaNs7Ozc5s2zi1tsQ4TUnt6PM+te9cEbdpxLzl766y5w6b80K+7pzmWXEIq\nh0l6pB48/HcMSve7mFAAAO8SIjYFRBBMPQtDueLZZQv909Iyi8p1gnW57davH0xPrJqiKP14\n2McMPcfaoaOrkwmrNOFeREJ+KQC49B3YUo8FACJhTvTjR5lFUgBw9l27caQbzuSuC6Zeyw3T\nus7eFwEAFFmcEHkvtXSeIklvP2aGweUVxSSVevvImPtn7Gy5OemZItmHv4JuflhFrU6whoF6\noeSSnIw3ORlvIh9FHPvFoMf3U6aO+tYQrz5IreBG0UizkeKUFbsuVbqSO/f53uQSGQAwWNwR\nfjPdbdmxDy8ev/gcAAT//HxX2NlH6SIf6EtyWe7GoKuKDD3bqNWkebP7d2xe2Q8k9fpxePDP\nvyYXSShKHr5ryzDPQCxjUGtHjhypcIaipHn89Dx+Oi3xaInCtN9+jc0HAKZOo6mrN/dvX3Gy\nOMHSt2xs37ux/beDBoZuXX7mqQAA8uOPHU/934SmRjREjFAd4HWGLjhWgLTKxp9C5BJhcnxc\nTGxcXGxsfEJKofTDwKOQ/+Yh/83DW+EAoGdi3ca5jSJn79jcGruQSB2Fh4cDgHPP4QXCkzE5\n/DMhm8/uY5uYm5mZmZuacXWrHGPE2W9Ksra2pjsENYBJeqQeCAZnypZgs33bf70erThDkWKB\n8MOzccmf3ZOYOvYMWDmrKc57qpukY3cUB8Yt+u/dOZ3LJABA5tvbd+ziEjklbdJncv/GigYU\nKTwduCz0bkbC2cPRfdq64rhq3TTpu3Arwzzw0HlB6WeTr1mctqtGtFv2exQAkJLC1NeFZU9Z\nuE3+wd5Y1YFqFqxhQItOnToBgLTo1bOYijvmAgBBEBX2FtXh2Lu3sxAJ3+Xk5OTmCRW5H4os\nvhUW9CI+K2T9ONyaUUnjxo0DAK5DI7oD0VK4UXSDcnR0VByw9D/s8jBr1iz6wtFeb6+E5EhI\nAGAwjYf5z//Os23ZU5HHYhUHDr7rxv3PHgBaO3vwRDN33sygKPnpP1N9JreiJWbNkH1vV6qY\nBACWXvN1IVuc/7NnTjTvOGBrSJOF09ekiUmZ+FXgw+wNPlgQC6mT+KMRAEAQxMhNgf2dTKpo\nyWBbjFu15930Sf+XLQKAv3+Nn7Cmo2qCVHeK7nql5NK8x89elj0kCIaRqYWllZURszQ7Ozs7\np0D2sSfPZFv5+o1uxGJwHcwaPGKE6huOFSBtw2BzHdp7ObT3GgZAycVpSQlxcbGxsbFxcYm5\nxVJFG3FBVuT9rMj7/wcATH1TxzZt2ji3nTCiP62BI1Qz+/fvr3CGoiT5ufz83Jrt/Iuq8OWH\njL5Ucfgboa8cP/b+uYuXbj+OF5OVfHUbNXftP2jIoJ5uOpimqbM9E0dezxcDwMSDYcMtP5Wk\nC/cbuz+zyLjpghPBPcpOUpR4z/RJN7JF3Ja+vwWOoiFcjSOXCl88epyUltluqK+T/qcJVQ9P\nBoacvSP8uICeIJjte/sumzWcg/tz11naX4GKGgYKc46f6W2iCwAyUcx43xWK22wm26hCDYMh\nP5/AGRJ1QYrfbJi5JDJPDAAEk+Px7cBendpaWDTiWfAMWdIcgUAgECQ/v3s+/F6+lCQIZt/Z\nO/x6twQASi7Jehl1/fKZP/9OULyVg++unaNa0PmPQUgJSm4UDQAEodMDN4pGauv3qaNDBSIA\ncJu7b22vcpUhKNkPI77PlZIEQWw79YcT50MnR/L+/ohx2wCAw/MNO4SdydoLn+27P60QADou\nPbDSu/qkO//uxuk7HgOAcVO/E8H9Gjw+DXX16tVav7ZPH8zi1NKKMSOiiyVGjSeE7h2hTPvC\nN4d9514AALaBy9lTmxo4Og0nE736afGq++lFAMCxbjPs+5EDurpy2IyyBhRZmvjoRljY75Fv\nhADAsem4cdeylvq4Uqj28DpDIxwrQAgAAOSC1KRYhbi4jDxRhac1cq9opMEUG0HWDn7bUT3C\n/jFSM1bO3jOdvf1I0euEuJSM3KKiohKJ3MDQyNiU59DG2cZUj+4ANceLYikAEEzOYN5nm8a1\ncjeDzKLS/McAn5L0BKE3cXnvG/MvCJNDwzIHjLYxUHW4Goehw3Xt0tv1i/NeYxd6Dh79/MWr\nnHfF5nbNWtjbmxth6YL6gTUMaPHH6jWKDH1j77FL/YY1+WzBn46lXTNLu2Yubh0HjRl3+cj2\nw9de/rXnRyb30LSOFgSDbePoOcnR08d178Kg6xRFvTqzTThiPxeL3qOvGG4UjbTHvfelAEAQ\n7AU9bMqfFxfczJWSAMA29inL0AMA29jbXIeRJ5VL3j8EwCR97d0QlAAAQTBndFTq0sHr5KdD\nPJFSlCj7BgAm6WsJE2C0eFkiBQDbQf+51LsCo6bj2cRFCUVJS15W3xpVhTqxcq0iQ+82YsnK\n8V2+LHRMMHWdOg9Y27l/5J871v56T5T5eN2K40d/+gFLItcaXmdohGMFCAEAAIPX1InX1KlH\nv+GSwuz71y+ePns14+PaeoTUDpbco0V6+Orlp1IAQNfY63CIP93hfBUwSY/UEsHk2Dt72DvT\nHYdGeyeVAwBLt0mFu2gzTzO4lCYpeiahgF3uKePmkyzYl3Mk5K3Q5NGLcX/0BsQysPHwsqm+\nHaq5Nt9NPNBziKKGQWPdT1tmtPHdsJyotIbBEJoi1RDClEMnEvIBgNtyRNCS0VWk15n6loP9\nd5KZk3+Nfndl+3Kf47+Ue2Q5DQAAIABJREFUpXZafOs/586zoH9zSQn/fE7JRCvOf76LVkpL\nS6vfN2zSpEn9vqH2wI2ikVbJlsgBgKXfrMLcqfwXfysOTNr0rvASOzYrTyohpVhdsE7elpIA\nwNRtaqHDqLYxADB0GjXXYyaVyEgJ7mqM1Izit5Fjp3Tfj2Bb6TLSxCQQuDVeneTHB/2ZLASA\nRq5T1k7oUmVbwm3YkrmJL4MeZguTz+/4Z8BynHqI1BOOFSBEinJjo2OiX7x48eJFYlqOHMsz\nIzWHs99oIRbkv3//HgCYkgS6Y/laYJIeIVQ5XQYhISmKklU4z7FxAHhOycXPiiRe5ddwE8xu\nxrpnc0Xvnl8GwCQ9UldYw0CVIg/cVRyMCPheiQXwRP/F436dEERKBCFnXgdN/LRjsZdf16AZ\nfwJAzNM8GIBJ+s/Mnj27ft8Qi3rVGm4UjbSKPoMQyylKXrEnmXQpU3HQfFDjCk9JPoz04ZSU\nOjFmMXKlJCWvWIC0CiVyCgCA0GmomBBqGG6G7DvC0sLEQnBWaqdzSi7KKpUDANvgy84+qoEn\nh54pDkbM/06Z9j6zfIMeBgJA9LG74DW8ASNDqCHhWAHSQqS4ICEmOvrFi+jo6LiULLKyxLyp\nrYO7m5ubu5vqw0MIqR1zzyZwLhUASHFqrEjmzMEMNSbpkfojJaVMti7dUWggG11mokhOilML\nScqoXPaMbegBcBoAIjKKvZw+u/GwYDMAQCqKUXGoCKkG1jCodxdTCgGAweIObqSvTHtdk148\n9l6BhMy8fhomrig7r2feG+BPABC9rUFOAiEVizz7RnHgNm/5f2foP2CbtFs5x12xUfTr05Hg\ngzWoa6+m9SQIBlNXT19PV0/PQJ/NwIRxLTXXZ+UXSsjSNxkS0pb9ccEZJQ19815xOKT5ZzVg\nKXlJilgGAAydRqqNVNM012PmSklSwn9eLHU1qD7vLhPFvpXIAUBH36Hho0OfrPX3e1sqsx+9\nLqCXLd2xqKv+nXl3/kpPv3BePmyeMoUjCuIPSSkKAHjegxs6Ns12Jb0IAAgmp6+ZUhsO6nK7\nm7B+LpDJS/JuAmCSXnXwOqMyOFaANIlcUvgy7sOK+biXbyWVJeaZuiZt2ndwc3d3d3drxjNU\nfZAIITVl5jzPy+TJwwIxABy79nb70GZ0R0Q/TNIjNUPJ8h9E3IuOjomNTy4oLhaJSqQkpVjV\nJyl88mdEoXd3n8ZGuAqkHvgYsxNFUoqSHksomO1sWnaexXEwZBJFJJV2PROcTMu/JFNCfvE2\nqPZEwpzMrDyp0vWjHJxa42bcSL2klZIAwNCxUP4lZiyGQEJKi1+UP8nU+VA2U/JOUo/hIVS/\ncKNoutS6ngTBYDeytmls16ydR6fOnT2tsIdZE72tDSILJRQlD76esXXAh20y8qJ+4UsUG9J7\ntfl8yrzw5fFSOQUAukbKbi+NKtXL3vhJVC4AHD4VFzy1+upWiWcOKrbhMG7Rt8GDQx/JpTnx\nGVklckp6LQsweVZbrSbOMr+5Ii///9b/+e3aYW2rbkxKsnZtvgMABNNg4jh7lQSosdIVfXiG\ngfJ3n/oMogBALhE0XFSoArzOIIRqYd2yebEJb8TySoYiCYKwaNpGsWi+fVt7PQKHIJEmw3Wh\nDYVgL9i5OHvu1hSR9GXopkddgr+xUGrSpwbDJD1SJwl3//jlwKkUYeU5GLL09cmDJ8KOHO0+\nevqckT6Yrawj14F2cDARACI2be64c11Hm7IK0oyuXN0r78T8e/sK/YPLFtnLJdk388UAoKOH\nQx51Qsne/XF4/+U7ke8KS2v0wtBzF4zwe4/UigmLkSMlSXGakKS4Snx7KbLwjVgGAMTnJXlJ\nyYcNjNmmmEKraPXq1XSHgD7AjaLVDiWX5GS8ycl4E/ko4tgvBj2+nzJ11LeG+FOrnDaTO8Dy\nWwAQf3j5afOV/TwcSt4+2bY1QvGsTe/vyzcuTL27es01xbF5Rw/VRqppWo9zh6hrAJB2acNJ\nlz1jv6lqswzBs9Przr1WHLv5OqkiPg1HvU149m/8m/zCKkv7ULL0qNuKXQbk4pp1+FF5LI7z\ntsX9pm0Jj/w1YG3OhAnfD7Q3q3wstfDN491bAp8XSgDAc8LGjliJum4MmUS+jCKlOSli0l6P\nWW17sjSVL5UDAEPHpOGj03h4nUEINaBnca8rnGFxGrXr4Obm7ubm5manXAEVhNQOrgtVJT2e\n59a9a4I27biXnL111txhU37o193TXIkupabCJD1SG5Ghq9b+HlVtMzkpvBW6Iy45OyRgBAsH\nUevAtvcM06OL8mVySVHiJv8pju07TF260EGfBQA9fSyvXEglxWkBQRd2zB+sRxAUKQzbuaqY\npADAoHEfumNXYxRZvHve7FvpRbV4ra5SSR8Ee/bsqd83rPc9v7VHd1PdMwIRRUn2R+Yu8ax+\nPX1e9EHFhG628WfrLEX8vxQHxo7GlbxMu3l4YLrra4EbRdOlU6dOACAtevUsJufLZwmCoD4v\nWqPDsXdvZyESvsvJycnNEypK2lBk8a2woBfxWSHrx+GqEWWYtPHzNntw/52YIgtPbFkaWu5z\nJhh6075vqjguEfy1bfulqJcZih0uCYL5/ehmdMWsGUwcZ/bi3b0pEFGU5PfNM5P7jR87pE9L\nS06FZiWCV9cuhB2//FhGUQCgb/HtLCdMntWJXMLft2H1tSh+jV7lOLxFA8WjJXidpu9eZLhq\n1+nI8OP//vV7+6593J0a83iWljwLpuR9tiBbkJ2dFPXP3X9fKS4y9r38pnsbCQT/uZ6bx1Oq\n2o2W8zJmX3knBoBDtzI392tcbfusiAOKnwC2sXeDB6fR8DrT0HCsACEFgmDatGjr5u7m5u7e\n3rEJDrAjzYbrQlUsPDwcAJx7Di8QnozJ4Z8J2Xx2H9vE3MzMzNzUjKtb5Ue8dOlSVYWpOpik\nR+oh/XpQWYaeYBp1+ba7Q8tWOtEnf7n76eaExWntYmsQnVEMAPxHxwNOtd0+FpeD1B5Tr+WG\naV1n74sAAIosToi8l1o6T5Gktx8zw+DyimKSSr19ZMz9M3a23Jz0TJFMrnhhN7/q62qi//L2\n+ubyGXodDpdnZqTkr78O5gyUc/369fp9Q7zxrrWeo5qfCY4FgH92bkk4tNWpylVNMtGrnVvv\nK45t+5Ur/U1Jzu26ozj0bGf65QsR+krgRtF0CQgIIMVvNsxconhIMDke3w7s1amthUUjngXP\nkCXNEQgEAkHy87vnw+/lS0lZSaqZ5+yA3i0BgJJLsl5GXb985s+/EwAgN+rMytOdd47Cwe7q\nEYTenC1zXs0JVNS3Lz8TwnHEKhfOhz+B0oInkUlvy55q9t3y7lwsKlhHjGmb58XM2s6XkBRF\nPg3/9dmV4yYW1pY8nqWlpT6UCATZ2dnZWTkF8o//KUw2b+6maTjbs47CViy5llhQo5fw3Icv\n6VZVqQNUtRkzZigOWCwCZEDJS59HXHgeUdVLUm7+MvVmVQ0US6ZQ1f73ne2VU68AIP7Iuqee\nezyqLFIqzo1cdzBOcWzbr6cq4tNceJ1paDhWgFDH7v3d3dw6uLW3MsaqM0gr4LpQ1du/f3+F\nMxQlyc/l5+fWbBqixsAkPVIDpDh19f5bimOuQ7fFi2a1s9IHgGTBufLNdDgum0J+exi2acup\nZwCQeGZt4tATjvr4Ja+9Jn0XbmWYBx46Lyj9bLN5FqftqhHtlv0eBQCkpDD1dWHZUxZuk3+w\nx5Wstfd/Z5IVB049Rk4fP6RlI0N640GoQVl3X9DykF9yiUxWkrzSL2Dygtn9PZpV2jIj6sae\nwANxIikAMNk8/8EflmAWZiVdPrbrbMp7AGAbdhjaSF9VsSNUY7hRNI3+WL0mMk8MAI29xy71\nG9aEW37IScfSrpmlXTMXt46Dxoy7fGT74Wsv/9rzI5N7aFpHC4LBtnH0nOTo6eO6d2HQdYqi\nXp3ZJhyxX5kdOhDH2ufnYOMDew9HRKcq8sEMlqH34Kk/jnP5sjFBsNz7Tlsxo6PKw9RA+jyv\nn7bP27Bub0J+KQBQlDxfkJEvyEiIqaQxm+swc/Vqb6uKS+1RjRSlHw/7mDnjWDt0dHUyYZUm\n3ItQ/Be49B3YUo8FACJhTvTjR5lFUgBw9l27caQbXkvqIisri+4QtFSTwVO5p1cISTkpEWye\nvXjyj4sGdmxaacu0p5d/2nkkW0ICAINlOr2/nWoj1Sh4nUEINbT08NUJkSkJkXfPGnsdDvGn\nOxyEGhyuC0VfA8xfIjWQeWNvnlQOALpcj11bFzRi/fcyD4LlNWbNvLfTd9/lU6Ro/6X0wJHN\nVReoJmrz3cQDPYe8ePQ4KS2zse6nrUHa+G5YTgSGnL0j/LiAniCY7Xv7Lps1hKZINcS99xIA\nMHX23bZgFN5KN5Bx48bRHQL6gKHDWxkwYvrq3yUUJSlM2r9+7kkbJ0+XFjwej8fjcUAsyBHk\nCHJSYp/Gpn8YkCIIorf/+pZ6TAAQ8Q+N87tUtjqz61x//KtBXzPcKJouwpRDJxLyAYDbckTQ\nktFVDFUz9S0H++8kMyf/Gv3uyvblPsd/ceJ8uF1q8a3/nDvPgv7NJSX88zklEzGjqRyOdfv5\nG4Nm5vPTsvOYhhZ2thbszwv/sDj2Xj7GNs0cOnp1bW2HcxPrjZF9962HnMPDfg//67YiVfMl\nHY5Vt779R40ZYMnW3v3/6kvSsQ9FfYxb9N+7c7piHo/Mt7fv2MUlckrapM/k/h9KglOk8HTg\nstC7GQlnD0f3aevKxWVqtcdm46dHDxbHee14twW/PgUAWUnqwY1z/rR37eLW2tra2srKigMi\nPp+flZWVEHnv35S8sld5TFjjhIso6gCvMyqAYwVIy4kF+e/fvwcApiSB7lgQanC4LpQus2bN\nojuErwt+mZAaeHghTXHgs2R2VRn6j3ymj999dwcAZN54ApikrzOGDte1S2/XL857jV3oOXj0\n8xevct4Vm9s1a2Fvb15lqWqkjPcyOQB0mzMAc40NZ+TIkXSHgD4xaz82eJl86Y6zBTI5ABRm\nJtzK/M+7QYKh23vaxlk9bBQP5XJRWYbeod/8uZ1wD1H0VcONoukSeeCu4mBEwPdKLCYj+i8e\n9+uEIFIiCDnzOmhiq7InvPy6Bs34EwBinubBAEzS14CuqVUr08pnpRjajft/9u4zrImsCwDw\nmYQECCXUgGIDXaoV2yKyYlvb2tvae8O+rnXtFcW1Ye8Nu4KFVdRvBQQb6FoQRBEFBEPoLYQk\nk/l+BBExQIQUSM7762ZyJ88x5hlm7rnn3qULVRyOtqAxLPuOmfXbqEkfY2NiYmI/p+fk5+eL\nQMfQ0JBtUcfBwcnRyZZFw1tOxXjwLlfaGLhkTMlKGzos+7HWBgdS8lNuxcGX5BlBZw/7czvv\n7fg7qUl/r/E/tW24eiLWCJcuXVJ3CNqr8aCVC7P+8rn6SvoyI/751fjnFfRvOWjJ8gF2KglN\nY+F1RgVwrABpOfO2DcA/AQBIQcJrvtiFhZkjpMmwLlRdevbsqe4Qaha81KJaICSnCAAImu4E\nZ7k2G2ayPTjMbTwhKcwJA8A7bCXSMajbxq2uuqPQKA106W8LxQ3xPhhpkzpuow8edD26/+id\niHdkqU2Ly6jr7D5umpebrVGZ4yxr+77DJ4zq6qLkMBGqPtwoWj2uxecBAE2H3V++HTF0Tbpx\nmHt4QjLl9gUY91fJcT3z7gBXAID/ia+kUBFSOIKmb+vkauvkqu5ANNzLAhEAEHRWf843M3h+\nam0GKflFWU8AOpccJAi9cUu735l3NSfO71zKb7/XNVB1uAgpgsekDfWdLm8/eO5DZlEF3Vgc\n+1HT5vVtiwvdVxdeZxBCymbmMtfNJOJhtgAATgR92jKwkbojQkiJsC4U1RCYB0K1QKpQAgB0\n3QZGcm+lZc2g84QkKcQ96lAt04nDepuQ+zK1sKuJrrpjQUh19CycvZZvncCLC334NCYm5mNy\nWn5BfqEIjIyM2eZ1HJ2dW7Tr6NrYosxZ+uYDd+wdYVvPEssAUW2BG0WrRWIRCQA0hqX8p5jp\n0HhCUlTwsvRBOqN4uQ5hplCB4SGkWNevXwcAIzsPTxd5F+F4HvRPkpDU0W/cq5uzMkPTZJki\nCQDo6DbQ+famxKytGVxPFOY/FVLALPWWse14S+aNNCH5r1/c7wtbqDZYhBSmUYfBO936vn7w\nv/CnL2NiYj9n5PIFQoKg6eobmFnXd3Cwb9HWo1Prn3BPdIXA6wxCSOkI5vytC1PneMfzRe/8\nNjzu6NveUk/dMSGkLFgXimoITNKjWsCATgjFlESUTgHI+XDHFZEAQNDkqpdCqOZwm+R6aGVw\n5O4Aync8DmUgbaPPadKjf5Me/eXtT9etb4c1Oai2wY2iVc9Eh5YmIklBYg5JseVIFFBk3keB\nGAAIglH6OCnkShtMU4aM0xCqGQ4dOgQADfs5yJ+kT7h86gi3gMFq2qvbRmWGpsl0aYSQpChK\nXOY4q649wHNKIniaL3QrvTUYQe9krHspnZ/5/AYAJs+UqIifr6NviEliJSKYLu69XNx7SV9R\npFBCY+IXrgx4nUEIqYAep633nlW7NviExaV6e80ZNGlib8+25nr4WIo0ENaFohoCk/SoFmhv\nxLyVJZCIs4IyBT3NKp/BJ8x7yBOSAMAwaK786LQCPyct5XOGqPxlqMuwd3TCx/KqsWg5f5j9\nfxfeXll2tMHqCZ11Cfwe1SM/J0cs9w+ebWKC/08IIfnhRtEq5mmqe5HHpyjhgWfpi9pWXk+f\n8eqQQEIBANP459LH+dyb0oaxg7Ey4tQw48aNq9qJTcZ7r+hcR7HBoIoJJRQAiIs+qDuQWqyu\nLj2WLyEFCXkkVXqYj2nYBuACAAQnF7g5MkufYsmkAYCIL2spFSQfYWFeId2AzZS1PClF/nf7\n3JV/nyYmfRIzTJq2dvPsPdCtibwzV1CVEXScYKgseJ2pIXjvIh9ERsXGxn5Ky8rPzxeIaUZG\nRsZmVg5Ozk1d3dxcbNQdIELVEhgYCAAuXQZn55yJSuNe3Lvx0j6mibmZmZm5qRlbt8LR3sWL\nF6sqTIQUAOtCUQ2BSXpUC3T3tLrlnwAAF3YF91zds9L+r0+dkjbMW1XeGVWAEmdePnLgRuiz\nzLyKNpn7np//VfnnoKFvESM2evMWLAoO2DE+Injs6P7Odrb1rM3w61SN5GdBJ6/di4t7n5b7\nA795/MEjhKoAN4pWmS7DbS/6vgaAR1s3vTns7WjErKCzmP9+q3e4tG3Tu/fXNyih//ZQabNt\nc7lWw9NyWVlZVTsxr4hUbCQaLyYm5vuDRZkfYmLk+CYpcVZK9MX0QukLBUemTTyMmbF8EUWJ\nTrzJnuXy9RKhw7I3pBP5JJV4OwUcv7l0pAjxp15FKS//DQgKjXz6Mp0vbv7X4fXtOWU6CHNe\ne6/wjvyY8+UA9+Fd/0f/u9bmtxl/Tfm18h1HEaqR8Dqjdllvg333n4qMSytzvCAvm5uS9DYq\n8vrFk+Z2rmOmz+3iiPeKqLY6cOBAmSMUJcxK52alc9USD0LKg3Wh6oIT+svAJD2qBRoO+p0R\nsEVEUenP9m66xF402K2CdBg38uzaoGRp+9eRdioKURNRZMHOubP+Tcqvwrm6OPJRDXSmTd+B\nHYJ3BBUkP9+3+TkAEDS6PBWV/v7+Sg9Oo8Vd37bgcAgldwF9CQb+4BUEFzBACClDHc/5TQ5P\njysUiwvjlk9fNmH+rD5tGsnsmfzizu5tB6P5IgCgMzkz+zeUHs/7/PbGie2X4nMBgGnYaqAF\nTpxXPB2WmZmhDgCY6eMj6o+RWbTEDduzOOzHPkfX6OfKO6FytOxbDw7FAkDwho3ttq5pV5f1\n5R3aL2zdfzIF3LB9eTN9S6Z1SoSpd7MEAMDQwyfWH0CReWe2rDz/8H0FfSSi9PWzVz/PLjvj\nlqLIiOu7FxTRts/qpswYtUJiYuIP9SdodF09fT1dPT0DfSauFVRVeJ1Rr+iA7SuOBVe6wGRG\n/LOdiye/nLB+3gAn1QSGEEKoarAuVF1wQn8ZOAKCagEm231Jt3rr7iQBwMOTmyY98Zwxtn9T\nx28fMygyg/sxNPDiyesPSYoCAFPH8YOsWTI/EMnj0+2NpTP0DBabY2Yk5/M0Axdpr4aI48vX\nXXlZ+gglITXzT1BNIswJX3bkmww9nS7vSo1M/MFXDy5ggLSWRJgX/y6Ol5mbl58PDH1jIyNL\nG9vG9Szwl61YNAZn+bIhU1eeF1KUMO/tgbVzztR1bNusMYfD4XA4LBDw0nhpvLT415Gvk7Kl\npxAE0X3m2iZ6dADgcw+Pnn695A/EL3Nm4n+QPHbv3l3h+1RueurnzylJH6OC7kQUSihKoj90\nwcYeTlh5pjatp41Qdwi1mE33aabH/swSS4T5sRtmTnJo0Wry4j/s9XUAoIuH1T9XE0hB4rJd\nV33m9dcjCIrMObd1RQFJAYBBfRzjkxslOvzXrOvRlQzqPT+wUpqh1zV16t61dX1TWvzb2KiI\nZ8l8EQC8v73ruGfr8U3xUlMts2bNqtqJBI1pUadu/XqNmrf5uUOHttZGDMUGptnwOqNGqWEH\nlh4LLrkbNKrr0LZZEw6Hw7HkGDFEqVwul8t9HxURk5wHABQlundsqZHVwUluZdf5QKjm8/Ly\nUncICKkI1oXWFho/oZ+oQskgQqpHSfhHlky/9ia75AhB17M0lPByhADg3KR+YmJKfqmFvHTZ\nzbceWtNQD3dDq7rjE4dfSS8EAMfOw6aOGdDEwlDdEWmFnPcnx/5xuWpX5mvXrik8Hu3xwmfq\nivtcANDnNJ04bVSrn+w4JlgoqQpVXsDgwtWrejg9AtVSlPhV2K3Af25FRicJv/vxM40sWrt3\n692nT4uGbLVEp6k+Pzy92OdStlhSaU+Cptt9yvpZfRykL/NTdo2cflfatu89b+v0LkqMUisJ\n0t9eOOZ76X4CQdMft+XgIHv85f+YMmOpnz59AgCGEceKXdHODqUZmtdt5jFwzK8uig9OmyTe\n3DZrX3DJy9knL3Y30QUAMT9qzKi/pKkyOtOong07LSmF/+VaNGDH6Yl2xuqIt/aJu7L8j+PF\nU5n1LBwH9P+1lbMdp0FDc92vT/1kUdLo32cVkJSeaYe/Dyys/2VAgBR83r9kYVB8LgDosjtc\nPLVE9fFrkn79+lX/Qwi6QeehkyYP72qI827lhtcZtZCI0+eOnJIgIAGAafTT+Lmz+rSzlfWr\npT48CfTdcTwuXwgAOnqNj5zZZqqDP2+EEKq5InxnSutCAcDMsbgu9POZeX9c+gDSkXZZdaEn\ntgxSZ9C1X2VrMpWd0E/Xs5m+RpMn9GOSHtUaFJnjv2/L8duvKu1p6tBl2XIvB7mHpZBMk4cM\n5AlJU5dRxzcNx6cKlbn5x5h9cTkAoM9xHj6yn1MDG0tTQzm/f3Nzc6XGptk2jx4anlvENG5z\n4Phycx1cv15FhDnho8dtEUiqsoDBZX9//H9CtZEgI2rvZp/gN5UUAhIEvW3fyXMn9MYVIxRI\nkB59dP/ROxHvyPKfgOo6u4+b5uVma1RyRJqkZ1nb9x0+YVRXzGIqieTKysnHn6fr6DXecWpr\nA12caFt10uRZw35bfSfbqzsWrRMddGLb4QBeEQmlkmcAEO23Ysn5F9/3t3SdcGT1QJWGWGtR\nZPaU4ROk+4Baug7dsWK0zL+PqQ9XT9n0DADarD660tWi9Fuk4N2EkQulU7XGHTo32ApX3au6\njRs3AoAo//3TqLKbcwMAQZQdaWSw7Fo3t+TnZKalpaVn5JReMNyixdC9a0fj1Fv54XVG9T4H\n/zVt2ysA0NGzXXfIx6XCwUZh9ss/pq5KFJAA0GLhwXUe1iqKEiGE0I/DutAaTksm9GOSHtUy\n3Nfh/teu33sSIyBl/HQtbFv26TegXxdXBj7iVduwAf0FEmrA/rMT6xqoOxYtMmPowOQiUtek\nzeFjK9iYmFGhMYMG5IglrZYeWuNmpe5YtAguYIC0jTAnatn0VW8LRKUPEgTDzMpaX5LPTcsW\nf3tnburSb/f6SZinV6xCXlzow6cxMTEfk9PyC/ILRWBkZMw2r+Po7NyiXUfXxhZl+pNFSQlp\nerb1LPG/QalE/FdDRyyXUJTd8O07RjVWdzi1GCbp1Usiynn5+MnbxJTmA0c5llqP8eGZbXsv\nheZ8KWwlCHqL7qOWeA1m4f7c8kmL3Dhp7SMAYLAcD5z2tihnTu3deWN2xecAwLTjF/qY6ZV5\n9+mGyWse8wCg4cC/fSf8pOSQNRwp+LhuxqJnGQIAIOisNl37dvu5qaWlBceSY6gjSuPxeDxe\n3PP7AYFhWSKSIOi9ZvlM794EACiJ8PO7F7dvXLwS8kb6Ufajtm8djpf9H4DXGRULnDXqQGIe\nALRbfHC5e+VJd+799VN9ngCAccPpp317Kz0+hBBC1YB1oTWe5k/oxyQ9qpUokv/hTXR8cnp+\nfn6hUGJgaGRsyrF3dqlrWvY5HFXZn8MHvS0Uzz15seuXqdlIBQb17y+mqF82n/hTc5dwqZmk\ns1JmnLjQCy8jKoQLGCAtQx2cMfJGcoH0BZPduN/gfp3aNatjbc6kEQBAkYK0zykvHwVfvRKY\nkF+cyLfxXLzvD3e1hYyQCu0YO+zfbIGeaa8LJ2aoO5Za7MKFCwDAtu/Wo6WZumNB3xAXpDx/\n+T4ts8C8XqPGdnbmRjjA9wMil09c+zIdABwn797Sr4HsTpR4ytChqUISAKafuND7u7v6nPit\nY+aFAoBh3Sln9vdVbsSa7sKicaffZAFAffeRi6cPalDOgDVZmHrj6JYjQe8Igvjtr8NT2lmW\nvPX+f3v+2HWboig60/r4+QM4Q10h8DqjDPOGDYoXiAmCfvjSZUtG5Q+tElH60CGTRBSlo9f4\nyoXtKogQIYRQNWFdaE2m8RP6dSrvglDNQ9BZdi5t7HDBUWXqxGG9Tch9mVqISXpVMmPQeEKy\nVR1cfVHVmujrRBVNzsbwAAAgAElEQVSIxDhvTbWi+CIAcJk5DTP0SBtkvdlbkqHntBnuvXSE\nxbfDfARdj1PPrtsQu879+pzasPTKf+kAkBLic2ts654WOH8Iab4mejr/AgjzHwNgkr7qhg0b\npu4QkGw6BnXbuNVVdxS1VUhCnrTRp1O5ZayCzBupX9YjFZAyOuhbuAGEAoAw9wkAJumrLif+\nsDRDz24yZNei3ytIr9P1rfrP3EqmTDj+KvOfLUs9Tu53ZBWPQzbuOnN26NNd/6WTQm5AWuE4\na3wEVgC8zijDpyISAOi6DeXJ0AMAjWFhq0d/WygmhUlKDg0hpeO9i3wQGRUbG/spLSs/P18g\nphkZGRmbWTk4OTd1dXNzsVF3gAgphrWL+wwX9+lYF1ojMVjNPNm6/2YLUm7fhlEaOFaASXpU\n0yUFrlx6Nh4AdI3djuydqe5wtIjbJNdDK4MjdwdQvuNxlpjKdDHRPcfjf5I5qoSUqY+dcdSr\njKcxOX3d8cZLdYokFAD87KiZWwohVEbUiQhpg8XpvHvFyAq2X6Uzrcat2p0+eUJoeiFFSa6e\njus5r6mqwkRIbeKLxABAkfnqDkRbkBRg5SqqLT4UiQGAIJjuxuVWBnPvhUobNB2T3mYyJprT\nmfWkDVKYqoQYtcizg/eljSHLhspxGSH6LBx9fOwuUsjbe/HDrnFfNxpwm/7LrmlXACAqMgN+\nwyR9RXBkTI2MdWjpIpKS8OU/pVBCAQAQDGXFhJDyZb0N9t1/KjIurczxgrxsbkrS26jI6xdP\nmtu5jpk+t4sjLgWKNATWhdZYmj2hH5P0qKYT8LJyc3MBgC58o+5YtItFy/nD7P+78PbKsqMN\nVk/orFt+LgEpUOfRzue2RT7wezVuQXt1x6JdWs0aRJt+OPrQSUGHPyvInCHFwgUMkFa5k1Cc\neuy8bGKl1xmCxpryV5fQ+YEAkBZ5DQCT9HLZvXu3Yj9w1qxZiv1AVB5h7pN72UUAQGPWUXcs\nmqMwg5uSVdS4ScPSB3Peh/sevvzuY2J2IZjVse3Qpc+YwZ30cMdiVLPxhBIAoDEsdMr/qT6+\n/VnaMKgzXOZPmqAVZ+4lokzFh6hNrsXnAQBNh93fQl+e/rom3TjMPTwhmXL7Aoz7q+S4nnl3\ngCsAwP/0A+lP7YQjY2pkq0dPF5GkkPu8QNTSoPK8u5j/+pNQAgAMfXvlR4eQUkQHbF9xLFhU\n2S7JGfHPdi6e/HLC+nkDnFQTGEJIO2n2hH5M0qOazrxtA/BPAABSkPCaL3Zh4Y9WZYgRG715\nCxYFB+wYHxE8dnR/ZzvbetZmWHCjVHU6Le0bMOFG6OaLXQ8ObWmh7nC0CKtO3/Ujnyzzu79w\nu6PP/N8wT68auIAB0irxhdIqQPqYRsby9De2G8cg/hFRlKjglZJD0xy3b99W7Adikl41irJi\n9yzfQVIUAOibdVN3OJog7eXdfcfOP43nMVjNL51dV3I849nJaWsvCyXFQ64ZybHXT8WGhL/0\n3TrbtILkJyoFJwOphQGdEEgoiioqrwNF5lzhFSd6bfq1kNmHFPGkDRrDTOERapXEIhIAaAzL\nSnuWMNOh8YSkqOBl6YN0BkfaEGYKFRieRsKRMTXqZmcc8SIdAI6cjfadLPvyUlrsxUMURQGA\nceNeSg8OISVIDTuw9Fgw9SVDb1TXoW2zJhwOh2PJMWKIUrlcLpf7PioiJjkPAChKdO/YUiOr\ng5PcOGqNGiGlKOLn6+gbYjZEvTR+Qj/e1aGazsxlrptJxMNsAQCcCPq0ZWAjdUekRehMm74D\nOwTvCCpIfr5v83MAIGh0ecps/P39lR6cpiIYEzetyfhzxelV02J7j548pq81Pn6rStPha+cX\nee+8fHjs65DBI0b179xSD+/ClAwXMEBahQQKAGhMa5Z8FasEoVdHl5YoIIGSKDk0hBTv7Nmz\ncvWTFH1OTHgZ+V+mqPh37jz2ZyWGpR244Udnbrn6ffETReZu2BxQkqEvkRt/d5FP80NLPVUU\nXy2Hk4HUoi5TJ0MkpMSZyULShkn/vkP+p3OFX37bv7aXnTwWFbyQNujMcje2R/Iw0aGliUhS\nkJhDUmw5npgoMu+jQDpV8ZsqZFLIlTaYprgqeCVwZEyNnEa3hhdBAJB4fd2ZZrtHtq/oAsJ7\nemGN/wdp23WUoyriQ0ihJOL09btuSTP0TKOfxs+d1aedrawLPfXhSaDvjuNx+UKKkgRu3zSo\n7Tac8YlqF2FhXiHdgM2kyXiPIv+7fe7Kv08Tkz6JGSZNW7t59h7o1sRE5TEirZjQj7kfVOMR\nzPlbF6bO8Y7ni975bXjc0be9JRZcqkjE8eXrrnwz1Z2SkLhZulIFBAQAgH3nbq/PXHsSeCzi\nnxNsS5v6NpYMOW50V69erezwNJj0mwdjpx7N39988dZv16ozvgwzK2tra2sTg3J3vpRavHix\nKkLURLiAAdIqzQ0YD3OFElGGiAJ5ruqUhJ9SJAEABguXypTX6NGj1R0CKiZvkv5bLCvPBT9j\nFU61kIL4v7Zfl7k8afrzPXGFYgCg6bCHTJ/R2ob5+uG1k9eeAwDv0Y77OR082JXc8yCkLu5m\nuq8KhBRFXXyfO89Jxt63MScipA26XsOuJjI2pAcA3v3/pA1d0w5KilNLeJrqXuTxKUp44Fn6\noraV19NnvDokkFAAwDT+ZhoWn3tT2jB2kGuRIa2GI2PqY+Iwoxvn/l0en6KE5zfOiOs9ZuSA\nnk2sWGW6FfLeB109d/LGE7E0kWDZ1csR0zmo9kkN254gIAFAR892zd5NLuXeHBK27X7z3tvg\nj6mrEgWkWPB+28PUdR44Bw7VAikv/w0ICo18+jKdL27+1+H17cs+fgpzXnuv8I78mPPlAPfh\nXf9H/7vW5rcZf035VVZKH/0YnNBfBibpUS2gx2nrvWfVrg0+YXGp3l5zBk2a2NuzrbmejOnz\nSIFy3p9c74/r66ra0aNHS7+kKEk2Lymbl6SueLRHmW8eAChKlMFNyuDil69cuIAB0h59Wpk/\nDPlMSQR+iXnjGxpV2j87+qB0jM/4p9+UH52GGDZsmLpDQFVn2qTjyvVz9HFz9Or59M/eNCEJ\nADS68aCZ83q0bVry1rMTr6UN+1FrRv9qBwBOLm04/Blb7yZTlOTClQSPCT+pJebaBScDqYVL\n9zpwNA8Anuzyp/ZNLHOZoMRZh19mSNvGtsPLuYhITl9JlLY4Hjj7rVq6DLe96PsaAB5t3fTm\nsLejUUXze8T891u9w6Vtm969v75BCf23h0qbbZvLmHiBysCRMfWhTdk4N8prC1dIUhQZGXj8\n6T8nTSzrWHE4VlZW+lDI46WmpqZ+TsuWfJkhR2dy5myYgokcVBs9u/RR2nCdu7T8DH0xpknz\n5bNbT/V5AgAfLjwDj94V90dIvSgy78yWlecfvq+gj0SUvn726ufZZbdYoigy4vruBUW07bM0\ns5hblXBCfxmYpEe1QGBgIAC4dBmcnXMmKo17ce/GS/uYJuZmZmbmpmZs3QrTOVjhWmUP9tyR\nrm6kz3EePrKfUwMbS1NDHDRFCCkQLmCAtIrj1CnssPU5pOTm2oMDD/5R8fKwpPDztk1hAEAQ\n9CFezVQVI0IK06uX/Puw0i3rNbRr/FMLJzucplV9j/75JG20nLl5bDebr29Q4vPJBQBAEMTE\nXg1KDv88fjTc3QwAaeHPAJP0csDJQGpR99dxjGPLRRSVnxyw5nyr1cNblX73+bGVXGHxim+O\nv8teXzrh5qYnecUbn/fvZSOzD5JTHc/5TQ5PjysUiwvjlk9fNmH+rD5tGsnsmfzizu5tB6P5\nIgCgMzkz+zeUHs/7/PbGie2X4nMBgGnYaqCFvqpir8VwZEyN9Dluf2+Zu27NnjdZRQBAUZIs\nXnIWL/lNlIzOTLb9jJUr3a3LltojVCvc4RUCAEHQp7WTKxnG+Xk6g4gQURQ/9Q4AJulRDUaJ\nDv8163p0VsW9nh9YKc3Q65o6de/aur4pLf5tbFTEs2S+CADe39513LP1+KY4uVDVNHtCPybp\nUS1w4MCBMkcoSpiVzs1K56olHi1xLSkfAHRN2hw8sEKefeaQQsybN0/dIWgpLy8vdYegjXAB\nA6RVmEZtNs30nOl7rzAtZNYi+pLF0104stcp/fz6/pFde17kCQHAYfCa3t8tp4lQzTdjxgx1\nh6ClwnKLAIAgmPM71y19XJB9N11EAgDT2MOR9XUcgGnsbs6gZYgkwtyHAMNVHC1CcmKwms1s\nb7njEQ8AnvmtWvBxYN9Oro4OtlQuNzLozOHA4hJ5mo7pRBez709PCD+9+OATadvQZpAnW/Z6\n+EhONAZn+bIhU1eeF1KUMO/tgbVzztR1bNusMYfD4XA4LBDw0nhpvLT415Gvk7KlpxAE0X3m\n2iZ6dADgcw+Pnn6d+lJz/MucmTjcIA8cGVMvIztP78MugefOB968l5IvktmHwbLu1KvP8BG/\nWTFxhQNUW30qIgGArtvQkiHXYhA0hoWtHv1toZgU4jAOqtHi/NeUZOj1LBwH9P+1lbMdp4F5\n6T5kUZLP/5IBQM+0w98HFtb/slwNKfi8f8nCoPhcAAjcfGD8qSWqjV3T4IT+MjBJjxCSLVUo\nAYD2S2djhl6VunTpou4QtFTPnj3VHQJCSHPk5eXJPM5uP2ltIWPt4ds57/5dNu1RczfP9i3s\nra2srKys9InCVC6X+/nzf/f/CY1KkfZ3HTh3xZjmKgxcG5HCIjoTszVIc0jv4XX0G5W5h896\nGSJtmDh3L3NKPaZOhkhIijDNU0VJgSuXno0HAF1jtyN7Z6o7HI3V6c81N8fNiS0QAcC7cP9t\n4f7f97Hrt8SKWZxUoMSCzMzMT3HR4f+7fivig/QgQdObsgYnoyiAWYuRvkski30uZYslAJCX\n8ubflDfldSZout2nrPf6MnNIIuGXZOjte8+bo6ErlyLNQ2NY9h0z67dRkz7GxsTExH5Oz8nP\nzxeBjqGhIduijoODk6OTLUtDi/yQ9jDWoaWLSErCl/+UQgkFAEAwlBUTQtVGkdneZ4p3/rJ0\nHbpjxWgjWfmO9GdHCkgKAJrOnVy/1IYydL06071XPR65MFssKcp5cDmVPxhLKaoBJ/SXgUl6\nVAtghatamDFoPCHZqg7+yUEIKQte3pGmGjVqVKV9KJL/IuyfF2H/lNeBRmcXRN9asuhWo8EL\nZ+L4tYJQ4qwHwWGvXkW9jonLLijg8wtFJHXt2jUAEOZFXAnOc/f0qG+EA0zqJMz5xGTXU3cU\ntZg+jRBIKEoiLnP87fXi2T+2/eqXeUtYnC3DvEIVCXhZubm5AEAXlpukRNVHZ9qs37Ny9dz1\nr3PK7hIqxW7SY/3Yr2vdJ91cPuvQ29IdCILWbdqmzhxcWV0x6riNPnjQ9ej+o3ci3pFfku7f\nq+vsPm6al5utUZnjLGv7vsMnjOrqouQwNQc+OtUQBE3f1snV1slV3YEgpBS2evR0EUkKuc8L\nRC0NKn8sEvNffxJKAIChb6/86BCqovT/9vKEJAAwWI6bl4+SmaEHgFfni7erb93IsMxbdL2f\n5ra2WPOYBwDB/yQPxm3CkOJgkh7VAljhqhZdTHTP8fifBKS6A9EiWIWDtA1e3hGqgITMiY3N\nAQAiW6juWDTEm/uX9x88G58j+/skiz6cOXT63NFjnr9PnT3MAxcSUjFSkPE07H5ISMjDl/FX\nrl5Vdzi1mK2+TlaekCz6mCwkbUqW26VEfh9zpc0Btsal+1OSwniBGABoDAvVRqo5zNs2AP8E\nACAFCa/5YhcWDrMoi65Ziw1H9t08c8w/6BGv4Oty0zSGafehY8YM7VpBDauOfp1BM5aN9myo\nkki1hZ6Fs9fyrRN4caEPn8bExHxMTssvyC8UgZGRMdu8jqOzc4t2HV0bl7226JsP3LF3hG09\nS/xL+0Pw0QkhpALd7IwjXqQDwJGz0b6TW1TaP/biIeniKMaN5V+/GiFVSwiIkzYaj5xloVPO\nVg6U+PynfGmTkHWP0mSEIzzmAUDG4zeASXr5iETFd+wMBtZClAufHhFCsnUe7XxuW+QDv1fj\nFrRXdyzaAqtwVCY7u2RzRAabbaDeYBBCCKnAM78Vq8+/qLSbhMz5188nOi5177IhOpg9UD6K\n5L9+EhYSEhL2OEq6tCCqpu51DJ7lCSlK4ns72fu3BtKDGS/2c4XSDendnL9NIee8O1kkoQBA\n1+hn1UerGcxc5rqZRDzMFgDAiaBPWwY2UndEmozGtOgzfmGfccIPb95w0zMLSEadujY2Deqb\n6MneAZogCI5t03btO/Qb2NOqnD6omvQ5TXr0b9Kjv7z96br17XDBFIQQqpGcRreGF0EAkHh9\n3Zlmu0e2t66gM+/phTX+xRvKuI5yrKAnQuoVklC8I2GfTuX+pAWZN1KFxcWKMosW9S3cAEIB\nQJj7BKCv4qPURIMHD5Y2Dl8O4DDKmR6h9TBJjxCSrU6npX0DJtwI3Xyx68GhLbGwRhWwCkdl\nxo4dK20wDVpcOrsOADZv3lzlT1u8eLFiwkIIaQrp8umo5ki6vaskQ0/QjTp29bRv8hPj1Zn9\n979uwq3DcmpmY/AquQAAuI9PLjvbdMtIHGlSGkoc//JRSEjI/bDIdFy3SaGcJ7SCpf8CQMyR\npRfMl/duY1/4KWKzd7D03brdh5bunJdwf+WqIGnbvF0b1UaqQQjm/K0LU+d4x/NF7/w2PO7o\n295ST90xaTqCaevU3LbCLta/zN/XVtfExMRAD5+qEEI/7MOz4PsRz6PffszOzSskaWwTkwY/\nubRp7+np2kjdoSGkRCYOM7px7t/l8SlKeH7jjLjeY0YO6Nnku+23C3nvg66eO3njiZiiAEDf\nsquXo4k64kVILh+KxABAEEx3Y2Z5fbj3QqUNmo5JbzPd7zvQmcVzDElhqhJiRNoLn1UQQuUg\nGBM3rcn4c8XpVdNie4+ePKavNeaMlQyrcNQoPDxc3SEghBBSClKQsPLAv9I2277Twj+9mlvr\nA0Acz790Nwar2Ya9px6e27Dp7FMAiL24OnbgaQd9vPlRMO67ZyEhoaH3w5OyZOwqTRC0eo6Y\nKq4WE+fp7mYPwjMFFJl3etNiP4KgvuwVTdD0pgwtXuu7kHdz85brL94lS3eSJgj60N8bqStm\nDaDHaeu9Z9WuDT5hcaneXnMGTZrY27OtOdZtqxWTbWPDVncQCFWJn5+ftDHg95EGuAGPygnS\nX23b+PejuMzSB7PSUz/GxYbevHLSvuOCv+a6mMrI3yCkEWhTNs6N8trCFZIURUYGHn/6z0kT\nyzpWHI6VlZU+FPJ4qampqZ/TsiVf7jDpTM6cDVOwQhbVZDyhBABoDIsKVst7fPuztGFQZ7ie\nrB2UCFrxlV8iyvz+XYSqDEedUC1ECe+HPZano3nrn51ZuN1FFQUEBACAfedur89cexJ4LOKf\nE2xLm/o2lgw5nhBXr16t7PA0E1bhIIQQQoqWcmdPhkgCALrsNtu955e7BR0AEDpuI1bN/TR1\n530uRfIPXE/aNqziQk0kr9zk2NDQ4OCQ0LcpeTI7cBq3+OWXTr94dGxkgTc/1UIQerM3zX4/\ne5t0ffuSDD0AOAxZ0ezLw1FRdsSzt59K3mrUY6knG/MNVRcYGAgALl0GZ+eciUrjXty78dI+\npom5mZmZuakZW7fCHBuuyYRqu/ycHDEl734lbBMTzDlX6vz589JG92EjMEmvYkXZz+bOWPe5\nqNxlftLfhi2f9mHFgR2umKdHGkqf4/b3lrnr1ux5k1UEABQlyeIlZ/GS30TJ6Mxk289YudLd\numypPUI1igGdEEgoipIxTVyKInOu8PjStk2/FjL7kCKetEFjmCk8QqTNMEmPajZK/Do8KPhB\nRBIx1HuhS/ExSYGPj488Z7fbecrZFifPV9HRo0dLv6QoSTYvKZuXpK54tARW4aiGg4ODtKGj\nX7xUkZeXl/rC0V7jxo2r2olNxnuv6FxHscEghDTVw6uJ0obHolkVZei/8Jg6Zud9HwBIuRMB\nmKSvnqKsxPCQ0JDQkP/iZC8JaFLfycPjl04eHvY2xiqOTYOx6njs8DU+uOdI8KsEaZETTcfQ\nvf/kBaObfd+ZIHRa95ry17R2Kg9Toxw4cKDMEYoSZqVzs9K5MvsjpAGSnwWdvHYvLu59Wm65\nQ97f8/O/aoRZ52qjyLyVq7dI2+vWrVNvMJqF2r9oS+kMPdPAtEHDRsZE3seExMx8ofQgKUje\nvGCX35GFFVRkIlSrGdl5eh92CTx3PvDmvZR8kcw+DJZ1p159ho/4zYqJg5aopqvL1MkQCSlx\nZrKQtJH1i83/dK5QUjzj8Nf2ljI/RFRQvIMenVnuxvYIVQEm6VHNxXtxc+ueE2+4fACwdB34\no6cTBN1YjnFYhGoUrMJRje8n+vTs2VMtkWi5rKysqp2YV35lA0K1Aj8nLeVzhkjusjN7Rycc\n0K6ykJwiACBouhOcTeXpz2R7cJjbeEJSmBMGMEzJ0WkmsjA9Iiw0JCT00asPZDm/czqTs9bH\nu5mthYpj0xKsOi3mrd81I4ubmJpBN7SsZ2PJJL65iOiw7Nw8jOs2sm/n9otTPUN1xYkQqqXi\nrm9bcDiEkvtOpgQDB2kUQ/zixQt1x6CBcuKO/o9bXEmpw6o/avaCwe52Je8mPA7YuvNUQr4I\nAArT7+98NmFBa7yNQRqLxrDsO2bWb6MmfYyNiYmJ/Zyek5+fLwIdQ0NDtkUdBwcnRydblqwl\nwRGqgdzNdF8VCCmKuvg+d56TjGGBmBMR0gZdr2FXE9kLpfDu/ydt6Jp2UFKcSDthkh7VUM/O\nb1l3Jry8Qb0Sbdu2zsvKTP2UmCUoTtgQBL1zv2GtmjVt2tTZnIVT+apu3rx56g5BG2EVDkIV\n0GGZmRnqAIAZ7hKNaidKnHn5yIEboc8y836g5gyw7Kx6UoUSAKDrNpD/O7Rm0HlCkhR+VmZc\nGogiC6Ie3Q8OCQmPiOaTMm7jDa2bdOzY8dal4wBA0IwwQ69suqbWP5nKrvMwrDd66UIVh6PJ\ncE0mpFWEOeHLjnyToafT5R17KTNhCKEaJe70A2mDzuSsObi9mTGz9LsN2w/YdtB+1vi/PgtJ\nAHh+6hm0/lUNUSKkQgRN39bJ1dbJVd2BIFQtLt3rwNE8AHiyy5/aN7HMvQglzjr8MkPaNrYd\nXs6diuT0leIl+jge9kqLFGkjHONGNVHcdZ/VfmElL2k6xk2bmcjsuWLFKgCgJILYyBC/o8de\npPApivwg4MxrJ2MtR/RDunTpou4QEEIabvfu3RW+T+Wmp37+nJL0MSroTkShhKIk+kMXbOwh\na9IrQjUfRRbsnDvr36T8Kpyri2Vn1WBAJ4RiSiJKpwDkzAxwRSQAEDR9pQamOShR3PNHoSEh\noeFPM2WtdMKytHPv2LGjR8dWTawBQJqkR0iT4JpMSKvEHDwhkFAAoM9pOnHaqFY/2XFM8C8m\n0gT/e58rbTTov7hMhl6KYei8aEij+WfeAwCfexcAk/QIIVQL1P11HOPYchFF5ScHrDnfavXw\nVqXffX5sJVdY/Bjr+LujzE9IuLnpSV7xpif9e9koNVqkbTBJj2ocQWb4siPFGXqCzuo9ZurA\nXp04+hXNyyZoeo7teqxt43Hee/6ZR58/BO1cbWG1enhTlcSLkCJhFY4K+Pn5SRsDfh9pgJWp\natWgQYPKejRsCgAwYOTwtxeO+V66n7B36fSCLQcH2bNVEB5CivXp9sbSGXoGi80xM5LzGsTA\nsrNqaG/EvJUlkIizgjIFPc30Ku0vzHvIE5IAwDBorvzoNMGMsSOSc4TfH9cza9ihY0cPj46u\nDjb4C0YIIY1x60UWADCN2+zdv9wcNxlEGiSuUCxtePaqX14fm1+7wZn3ACAWfFRNVAghhKqJ\nwWo2s73ljkc8AHjmt2rBx4F9O7k6OthSudzIoDOHA4tL5Gk6phNdzL4/PSH89OKDT6RtQ5tB\nnmzZ6+GjCnxOSRYp4qbRxkYDZ0hgkh7VODfW7JNOyiboBlO99/dxkDcTQ9BYvy/1zZo1/mZS\n/n9nVof9erqjaeXjsAjVKFiFowLnz5+XNroPG4FJ+tpCz8J+7MKdhnmTjz9PP718dZtTWxvo\n4oYmqJb538U4acOx87CpYwY0scBNoFWku6fVLf8EALiwK7jn6sr/zr4+dUraMG+Ff5TlUiZD\nzzSp18G9Y0cPjzbO9TF1o1QZGcWrMpqam1f5q6bIvEVL1krbPj4+iogLIaThovgiAHCZOQ0z\n9EjDpIkk0kYLQ0Z5fUomcVISgSpiQgghpAid/lxzc9yc2AIRALwL998W7v99H7t+S6yYxfc2\nlFiQmZn5KS46/H/Xb0V8kB4kaHpT1gxXWcyaZMXsmQr5nGvXrinkc2oUTNKjmkWY9+T0xzxp\nu830LfJn6IsRzAnrZwaN3yKhhAfWXO64Y5TiQ0QIaTqKzFu5eou0vW7dOvUGg0qh9V0y/+SI\n5WLB+22XPu4Y1Vjd8SD0Y8JyhQBg6jJq8/zyNjlDStFw0O+MgC0iikp/tnfTJfaiwW4VTNDi\nRp5dG5Qsbf860k5FIWoKgs7qOe6Pqf3b4RQ41ZgwYYK0cfhyAIchI1VGSQqPnzhXpvN3xLGx\nsUqJD31BCovoTCy4QZqjSEIBwM+OuLQV0jQkRUkbhuXfytB0cKIt0hD9+vVT7AdqZPIMaQw6\n02b9npWr565/nVMkswO7SY/1Y7+udZ90c/msQ29LdyAIWrdpmzpzcIsfpGCYpEc1y+e75yUU\nBQBMozZLfy13dakK6Jm6j7c1PhqfkxN/PjB9cB8LLKZXDN67yAeRUbGxsZ/SsvLz8wVimpGR\nkbGZlYOTc1NXNzcXDVxpBGkx8YsXL9QdA5KBwWrmydb9N1uQcvs2jJqh7nAQ+jG5YgkAdJr9\nG6YvVYzJdl/Srd66O0kA8PDkpklPPGeM7d/U8dsEPEVmcD+GBl48ef2hdHzW1HH8IGuWWgKu\nvSiSf/Po+jsqMC4AACAASURBVId3XDp37tzZ85dGeB+udpTA37+4RqT8JD1SMEqc9SA47NWr\nqNcxcdkFBXx+oYikpMPWwryIK8F57p4e9Y3KrdFEqOZroq8TVSASU+qOAyGEEEJIbrpmLTYc\n2XfzzDH/oEe8AlHJcRrDtPvQMWOGdmXRyh2t0dGvM2jGstGeDVUSKdIumKRHNcub/3Gljfr9\nRutUdQzbbXijo5teAMDNy4l9ptkrKjatlfU22Hf/qci4tDLHC/KyuSlJb6Mir188aW7nOmb6\n3C6OpmqJUHtgFQ5CTfR0/gUQ5j8GwCQ9qmUa6NLfFoobsvD2Ww3azPTplzT92ptsAMh8E7xh\nWTBB17M0LF7RdMkfMxMTU/KFZEl/XXbztWv7qyfWWqihuV5CxtcVX7OTXvuffB1wal/Dpj93\n6dK5k0cbUyauh4y0xZv7l/cfPBv/7R4QJciiD2cOnT539Jjn71NnD/PANSdQLdXHzjjqVcbT\nmJy+7jgZCyGEEEK1Bo1p0Wf8wj7jhB/evOGmZxaQjDp1bWwa1DfRk72lJkEQHNum7dp36Dew\np1U5fZA8Zi5eaoLbJJUDRwlRzRKeWbzeiGtn6yp/CNvRHeAFAKQ/eQyYpK+e6IDtK44Fi6hK\nJslnxD/buXjyywnr5w1wUk1g2gCrcBD6XnyRGAAoMl/dgSD0wzpxWG8Tcl+mFnY1welWqkbQ\nWJM2+Zrt23L89ivpEYoU8HKK342OSyrd2dShy7LlXg3xCVxuvkfPfox6FBwcEno/Il1QPNeB\nosiPr8KPvgo/vse4RYdfOnfu7O76EwNTkkijPfNbsfp85asxScicf/18ouNS9y4bUuWJ6Qip\nUatZg2jTD0cfOino8KcegT9ihBCqlaq5vWPMvXNn70VTX0aMCQKfnlDtQTBtnZrbVtjF+pf5\n+9rqmpiYGOhhClUBWrVrL3ODNgSYpEc1TcqXGqaWhhWkHgk9vYrmazP0itcvFeZFAIxRWHDa\nJzXswNJjwSX3W0Z1Hdo2a8LhcDiWHCOGKJXL5XK576MiYpLzAICiRPeOLTWyOjjJjaPWqDUE\nVuEg9D1h7pN72UUAQGPWUXcsCP0wt0muh1YGR+4OoHzH42Vb9Qg6e9CsDR06h/tfu37vSYyA\nlDEB0cK2ZZ9+A/p1ccVc8o8h6I2auY9v5j7OqyDqcVhwcHB4RDT/yzcsEef+F3rjv9Abu9k2\n7p06d+7SWb3BIqQkSbd3lWToCbpRx66e9k1+Yrw6s/8+t6SPDsupmY3Bq+QCAOA+PrnsbNMt\nIx1lfxxCNRirTt/1I58s87u/cLujz/zfME+PEEK1UYsWLap2YlFm7NFdO24+Sy45wqrbcvq8\nuQqKC6Eagcm2sWGrOwikHTBJj2qWLFHxuqOm5S9/QdBNLly4UMGHEDom0gYp5FbQDVVMIk5f\nv+uWNEPPNPpp/NxZfdrZynr4pj48CfTdcTwuX0hRksDtmwa13WaKJSHVg1U4CH2vKCt2z/Id\n0r2i9c26qTschH6YRcv5w+z/u/D2yrKjDVZP6KyLI9rqYO3iPsPFfTrJ//AmOj45PT8/v1Ao\nMTA0Mjbl2Du71DXFZXurhaAbNOvQo1mHHl78tMf3Q0KC7z2O/iT5Mt1TmJN879rpe9dOS19S\nlLBQQumXv+0fQrUIKUhYeeBfaZtt32nhn17NrfUBII7nX7obg9Vsw95TD89t2HT2KQDEXlwd\nO/C0gz4Oy6Dap+nwtfOLvHdePjz2dcjgEaP6d26phzPHEUJI41HkkxtH9xwLzBIXD+ATND3P\nYdOn/94Z7+oRQqhq8GkQ1SxsHVq6iASADJGkHrOK6+SQIl5xi8A1NKouNWx7goAEAB092zV7\nN7mwmeV0JGzb/ea9t8EfU1clCkix4P22h6nrPKq+WwHCKhykPc6ePStXP0nR58SEl5H/ZX6Z\nyOU89mclhoWQshAjNnrzFiwKDtgxPiJ47Oj+zna29azNcExb9Qg6y86ljZ2LuuPQXHSWZYce\nQzr0GFKYFh8aEhwcHPI6MatMH7IoadTIKe08funk6dnepQHetaNaLeXOngyRBAB02W22e8+3\nqGDDRULHbcSquZ+m7rzPpUj+getJ24ZVvNYmQjVOQEAAAICxU4/m72++eOu3a9UZX4aZlbW1\ntbWJQXnjBsUWL16sihARQggpWkFS5J6dvmFvv97Vmzr8MnfuDNd6BmqMCiGEajtM0qOaxZGl\nE5ZDAsCjTEELgyputi3MfiJt0Jl1FRaZ9nl26aO04Tp3afkZ+mJMk+bLZ7ee6vMEAD5ceAYe\nvZUdnqbCKhykVeRN0n+LZeW54GfcVgPVSnSmTd+BHYJ3BBUkP9+3+TkAEDS6PCUH/v7+lXdC\nqObRt7TrMcSux5CJ6fEvgkNCgkPCEjMFJe+K+bwHQZceBF3Ss2j0yy+enTw7NWtkrsZoEaqy\nh1cTpQ2PRbMqytB/4TF1zM77PgCQcicCMEmPapujR4+WOUJRogxuUgY3SS3xaLD1i/8s5yGf\nLGn98ccflX7Otm3bFBWSllg1f265qxVSX7/82bNnV/w5vr6+igsKIbWhJPz/nd1/8GKIQFK8\nRBaNYdZ3wqzxfdrgjHOEEKomzOigmsXNihWWUwQAT8/Gw6Iqbo2TfP2ZtME0aqewyLTPHV4h\nABAEfVo7uZJhnJ+nM4gIEUXxU+8AYJK+irAKB6GKmTbpuHL9HFxIDdVSEceXr7vysvQRSkKS\n5fVGqkIK8tIyC/SMjNlGLLy4KImFXYshdi2GjJ/54dWj4OB7oWFPMwRff/uC9I+3rxy/feW4\nacOmnTt1Gj+khxpDRagKQnKKAICg6U5wNpWnP5PtwWFu4wlJYU4YwDAlR4cQqq0+xsVV2idO\njj7oRyUnJsjTLSFBrm4I1WrpMfd27jjw4jO/5Ej9Nn3mzZnwk0klBV0IIYTkgUl6VLPYD2oE\n3lkAkBZ5OEO8y7wK+2xT4vOhxauCW/7sqtjwtMqnIhIA6LoNLRlyrT9KY1jY6tHfFopJIU6f\nrzqswkFapVevXnL3pVvWa2jX+KcWTnY4UxvVUjnvT673f6XuKNBXwpyE6xfOBYb+l55TPOTE\nMOK0aNW29+Df29iy1RubxiLots3dbZu7j5+Z/+rR/eB7wWGRb0oqcgAgKyHqyskoTNKjWidV\nKAEAum4DI7lvU6wZdJ6QJIWflRkXQkrh5eWl7hAQQggpnUSYHnBk98lb/0mo4tt1Bqv+iJlz\nh3jYqzcwhBDSJJikRzWLRevJLPosPkmRgoR1p6N3jP/hzUJ5D7dF5Aml7e4D6is6QC1irENL\nF5GUhF951y8KpWOsRBX3KUCAVThIy8yYMUPdISCkOg/23KEoCgD0Oc7DR/ZzamBjaWqIc06U\nRJjz4ca1oIinUZ8zMgk9E45VnTadevbu0sbgS/6Mn3x/ztxtPOE3CxmI8niRoYFP799sP3TB\n0tEe+L+jPATdsLl7r+buvbz4vMchwcEhIRExn0qG/xCqdQzohFBMSUTpFICclw6uiAQAgqav\n1MAQUoaePXuqOwQN5+Hhoe4QtFTXrl3VHQJCNUXCk+s7fE+8zykeYycIwrnziDnTh9bRo6s3\nMIQQ0jCYpEc1C123/pKe9VcGJgLAB/+Vfi77RrX9gY2Hi7L+W739obRtaDOgnwUOeVSdrR49\nXUSSQu7zAlFLg8rz7mL+609CCQAw9HFCZdVhFQ5CCGmqa0n5AKBr0ubggRVsXBFCmRLun1yx\n/Uq2WFL8Oic/I/VTzMuIyxfarN66xJHNFPOjl/6xvUyGvgRFSR5d8FlGmGwa1Ux1QWsrHRbH\nvdcw917D+Lz3oSEhwcHB0UnZ6g4KoR/W3oh5K0sgEWcFZQp6mulV2l+Y91B6CWIYNFd+dAih\nWmbhwoXqDkFLzZ07V90hIKR+4oIEv907L4d/3UpDz8J50tx5PVpYqzEqhFBttHnzZmnDVI4F\ng7UWfjWoxmk+YUUDPToAUJTowsa5fvfeynliIfe/DfM2SRdpB4Bhy4crK0Tt0M3OWNo4cjZa\nnv6xFw9JCwSNG8u/fjUqS1rhJ63CkRNW4SCEUK0gnYbVfulszNArVeaLk3O3Xv6aoS+Fnxq5\nfOaaLDEV7LP1Q6EYAAiC1syz15iJMxYv/mPiqKEdHMxKOkdfWBmSXaS6uLUei9O459CJ3ntO\nHtm+Vt2xIPTDuntaSRsXdgXL0//1qVPShnkrrEhGCCGEUA1Bvbrr5zV+XkmGniAYbgOnHz60\nCTP0CKEqcPqCgcNg5cNKelTj0JhWa5b9Pm31GaGEosiC89v/jIwYOH74oBYNy90clCJzH966\ncuBIQNaXAdkmfRYPsDFQVciayWl0a3gRBACJ19edabZ7ZPuK7sZ4Ty+s8f8gbbuOclRFfBoK\nq3BUaf3iP8v5K/i1tvKPP/6o9HO2bdumqJAQQhrMjEHjCclWdVjqDkSTUWTumg0BJaum0/Ws\nmjW3r1/PvICX8uHNyw/pAmHuq2W7z6Q+ywAAum79+evW/uJo/vX84aMir+9ee+guAFAU6bc/\nutOSVur4d2g1y8Yt1R0CQj+s4aDfGQFbRBSV/mzvpkvsRYPdKpiOxY08uzYoWdr+daSdikJE\nqKqys4sXOCEIBpuNwywIIaSZBGmvD+/cefslt+SIcaP2M+fNdvtSxIUQQkgZMEmPaiLzlsN3\nzM+dte2GdIz1fZj/yvCABi5tXZs1dXH+ydLUxMjIkBAV5ubm8j69j4qKigh7lMIXlZxu0eL3\nLVPd1Re+hjBxmNGNc/8uj09RwvMbZ8T1HjNyQM8mVmVTC4W890FXz5288UQs3WfXsquXo4k6\n4tUQ3T2tbvknAMCFXcE9V1deWINVONXxMS6u0j5xcvRBCCF5dDHRPcfjfxLIXmIdKQTv0c4P\nArG0bd6i14pFk+2MirfsocjcG4c3Hwp8lfzveemRdgtWfZOhBwCgtek7Z3bEc9/n6QCQGXUL\nAJP0CKHKMdnuS7rVW3cnCQAentw06YnnjLH9mzp+m4CnyAzux9DAiyevPyQpCgBMHccPssaZ\nW6imGzt2rLTBNGhx6ew6KLVyaRUsXrxYMWEhhBBSFEoY7n9k36mgXLK4+I1GN/p1tNfkQe5M\nLH5FCCElwyQ9qqHqdZqy37juJp+jH/JFAEBRVELUk4SoJ/6Vndis19Tl0/ro4D2EAtCmbJwb\n5bWFKyQpiowMPP70n5MmlnWsOBwrKyt9KOTxUlNTUz+nZX+tV2Ny5myYgrtoVAdW4SBNNWLE\nCMV+4NmzZxX7gQgpW+fRzue2RT7wezVuQXt1x6Kxoi4Wb5Oko9/EZ9U0i1LbnhF0477T1me9\nHH0pKQ8ACIKY6Goh80Pcprn7zrgKAKK8JyQFuDsBqvmqtzgQzhxSjDYzffolTb/2JhsAMt8E\nb1gWTND1LA2LB7uX/DEzMTElX/j129ZlN1+7tr96YkWoesLDw9UdAkIIIcXI/fB4z87dD+Nz\nSo5YNes+d+6UppzKV/dECCFUfZikRzWXdas+2462PH/kWODdiDyy8h26Deq6DB01eZBHYxXE\npiX0OW5/b5m7bs2eN1lFAEBRkixechYv+U2UjM5Mtv2MlSvdsRakerAKRwU8PDzUHYI2Kigo\nUHcICKlZnU5L+wZMuBG6+WLXg0Nbyk4Po2r6Xypf2qjf26t0hv4L4rcZzS4tewAAQDCtmLIn\nFuqbdwK4CgAUhclLVDvg4kA1AUFjTdrka7Zvy/Hbr6RHKFLA+zLiHR2XVLqzqUOXZcu9GurR\nVRwkQgghhJAUReYFndp72P+BsKT4Std68LTZo7o1w1nKCCGkMpikRzUaXc9m5Mzlw8al/O+f\noCfPX0W/iS/4sut8CR2WhUvLlu06dOnl0RQL6BXOyM7T+7BL4LnzgTfvpeSLZPZhsKw79eoz\nfMRvVkwcZlIArMJRtoULF6o7BISQViIYEzetyfhzxelV02J7j548pq81C2/FFSypqPjvo2uP\nujI7GDbsBPAAAChJUXkfQtP5ugY+ltEjhORH0NmDZm3o0Dnc/9r1e09iBLImmlvYtuzTb0C/\nLq4MvLygWsLBwUHa0NGvJ214eXmpLxyEEEKK8de0yVG8wpKXli5d5swc1dCQkZOdXbUPNDHB\n/U8RQuiHERRVeYEyQjUERfI/JaXk5ubl5uaKCF22MZttYlqvnjXm5lWAkhR+jI2JiYn9nJ6T\nn58vAh1DQ0O2RR0HBydHJ1sWDf8PFIkic/xLVeFUQFqF48BmqiAqhKrj5MmTFXegJILLV25I\n20OGDKn0A0t2x0SotggICAAAiTjT/8y1HLGEIGhsS5v6Npby5GlWr16t7PA0Q79+/aQN73NX\nnGXNgSCFKQOHTJe2r127JvNDKDKr/8BxFfdBqCbw8fFR7AfiREYFokj+hzfR8cnp+fn5hUKJ\ngaGRsSnH3tmlrikuHosQQggh9St5dFIUfHRCCKEqwPIdVJsQdFb9Rk3UHYWWImj6tk6utk6u\n6g5EK2AVDtI8lebUKTKrJEmPCXikkY4ePVr6JUVJsnlJ2byk8vqj6rBgyF7KnkbXV3EkCCkP\n5tRrMoLOsnNpY+ei7jgQQgghhBBCCNVUmKRHCKEaytrFfYaL+3SswkEIIYQQQgghpHJpIoll\nOfPeqkDAe6XHaaaoT0MIIYQQQqi2wyQ9QkixqLdvYu0dHdUdhubAKhyEENIM8+bNU3cICCGE\nEEI/YN7C3Tt9ZpW3Ps0PeRl0bOuBqyevBFT/oxBCCFXfzp071R0CQgghTNIjhL4jEfIzs7IE\nlJ6lpZku/QfWUpcI02+d2LL/+hvchQghhBAqo0uXLuoOASGEkCoUFfJlbVclG4vFUmYsCFVL\nXvzdeQthR/Xy9GJ+wvG/va9FJCswMIQQQtVka2ur7hAQQghhkh4hVMq7h9fPXbvzIjpBSFEA\nQBD0Ok4/Dxw0tEc7u9LdxPy0l89eJqfn5Ofn5+XlC4qERUWCrLSUhI9JeUJSTbEjhBBCCCGE\nkNokPQs6eyM07v17bhZf/rNwfjOq4XLj785bROzYMrNqefrExwGbt59M4osVHhhCCCGEEEK1\nHSbpEUIAABQlvLr9z6PBH789SKZEh++JDo8cufKv39sAAEXmXtyx7nzoWxEld20Iqg5KeD/s\nsTwdzVv/7MxiKDschBBCCCGE0Pdi/X0WHQ+j8CkJaaLc93fmLYIfzdNT4qwr+3xO3IkqOcIw\nbKiE6BBCCCGEEKqtMEmPEAIAiDq1rEyGvrTHZ9Zuq3foj45WJxfPvPw2p+KPIogfWCEffUWJ\nX4cHBT+ISCKGei8s3oKekhT4+PjIc3a7naecbdnKjA8hhJASkcIiOlNX3VFojvt37xjryEgk\nUJKCkvadO3dknlu6D0IIyUOQFfwXZuiRJprRzW7f3XgAyH1/Z/5iYvsWLwtZf16/lxUbvGXz\n3tfpgpIjth0GL5o3WlmBIoQQQgghVAthkh4hBGJ+9JrL70pemjZxbevQsI4VO4/3OfFjdGRU\nEgDc37WuO9OpJENPEHRjc0tLCwtjfR2SlEgomoGxkbEx28bOuXVrV/X8M2oz3oubW/eceMPl\nA4Cl68AfPZ0g6DJTEQghhGomSpz1IDjs1auo1zFx2QUFfH6hiKSkKx4L8yKuBOe5e3rUN8L1\nUaruxL49lfbx9fVVQSQIIW0Qs99P+CVD79xtzIhfWzdqVI9Fx7nLqNbrNWc7jb5gT1AcAOTE\n3Z6/iNixZYZ5hc+eFFV0z2/XnothJcvv0ZmcoTMXjuzsoIqIEUIIIYQQqj0wSY8QgqQbh79s\nQk/8OvGv6f3alR5QSnp4Zo73eVKQuHxDkvRIE4+BU8aNcOLoqSVazfPs/JZ1Z8LJyipv2rZt\nnZeVmfopMUtASo8QBL1zv2GtmjVt2tTZnEVXfqQIIYQU4M39y/sPno3PEcp8lyz6cObQ6XNH\nj3n+PnX2MA9M8SCEUM1363WWtNFs7KYNQ1zUGwxCCkX0mPk3jbbQ9+ZbAMiJC5q3CHZs8TLX\nkX2Dwuc+9/X+Ozz+6/J7Vs17LFw4xZ7NVFG8CCGEEEII1R6YpEcIwYu7n6UNs6azZvZvV+bd\n+m4jF3cM3nifK12/0dRx3N8LB2PKQFHirvus9gsreUnTMW7azERmzxUrVgEAJRHERob4HT32\nIoVPUeQHAWdeu2YqihUhhFC1PfNbsfr8i0q7Scicf/18ouNS9y4bUs4wOEIIoZoiukAMAHSG\n5dKBzuqOBSGFI7rP8KHTF++48QakefrFsGPz93l66lng4b8PB+aREulrGt2o18T5U/u2wRsZ\nhBBCCCGEZMIkPUIIwnKKpI2Wk9vL7NB8TCe4f17a7jinBz5jK4ogM3zZkeIMPUFn9R4zdWCv\nThz9imriCZqeY7sea9t4nPeef+bR5w9BO1dbWK0e3lQl8SKEEKqWpNu7SjL0BN2oY1dP+yY/\nMV6d2X+fW9JHh+XUzMbgVXIBAHAfn1x2tumWkY7qCbcW8vPzU3cICCFtVEhRAKBr2tUQ1z9B\nmonoMnULjbZk27VoAMh5FzRvMezc7GX2JU8vyos/+vfmwGefS05gN3ZfsHh2S2uWeuJFCCGE\nEEKoNsAkPUIIPguLp7p3tJS9gr2uWSeA4iT9L+a4yr3C3FizTyChAICgG0z13t/HgS3niQSN\n9ftS36xZ428m5f93ZnXYr6c7muL/C0L/Z+8+46OoEz8A/zaNEAgBpKkgigoKVg4rosjZPVE5\nRdETG39F5EQ9Fc921sOKItazYwEVu55nOTvHnWIvoGIDpUkLYEjb7P/FYkQEEpLNbALP8+HF\n7OxvJt/MbiZDvjszUK/Fi7+76PZXktMFnfc4+6wh27RrHEKYOueJ5Ydl5219xS33Txx3xYix\n74YQPn/04s8PfaBLYwft1ZKfn5/uCMC6aOPcrC+KykJVt6+CBq33oCszM86/5smPQwiFX74w\n7NzYjVee0iIr9s2E8VeNenBG5U3ZMnL2OGLo0CP3yIn5zAoAAKxORroDAOlXeT26tjkrP4c7\nM7tt5XTzTPuN1Chd/PYD3y5OTvcYfHX1G/plYjnHX35qRiyWSJTefsljqc8HQErNeOnmeWUV\nIYRGBT2uv/KMZEO/crGsXQb8bVivdiGERLzo9memRxYSgBo4YMMmIYSSRW+VqulZq/U64Yrh\n/bZNThd+8a/Tzr3t4RvOGXbVmMqGPq/dtmdfe9eZA3pr6AEAoEpOygF+scr/SMeyf5n0f+0U\nmfnywxWJRAghJ7/HX/fpUIM15Lboedwmze7+urDw64efm/vHA1s5mZ76a8yYMasfkKgorv7g\nEMLAgQNrmwmiNfGpacmJXucMbZVV9Sfeep10zKg3rwkhzHjpndB/k7oNB0At9Dh1v3D6uHjJ\nDzf/d84Zu7RJdxyoQz2Pu+yvmRePePS9EELhF88/+MWy+bFYRvcDB5154oH5bvoAAADVo6QH\nSI8p/152B+IOff+UVdO/Y+xyxMZ3j/gwhPD8Y9MOPLlzqrJByo0fPz61g5X0NDivF5aEEGIZ\njY7v2qI643MKerXJGTmnNF5a+FYI/es4HQA116zTUWf1efPaV35447oLf3fddbt3bJruRFCH\ndjnm4gsyLr384UmVc3IKNh901jn7bdt2NUsBAAArcNlqgPSYML8kOdF9z3Y1XknBFj2TE3Pf\n/l8KMgFQZ2aXVoQQMhttVP0zzNplZ4YQ4qUz6zAWAKnQ67SRf9qtQ7x05nXDjrv05nFfzS+u\nehlosHY8+qKLjtqx8uHmfxiooQcAgDXlTHqA9JhRuuy+fds1zV71qFhu7uouYp+d2yk5Ubr4\nnRCOSVk4SLVmzZqlOwKkWZPMWGl5oqJsbiKEarb0s8riIYRYxqrvXg9AtK666qpVPpfYsHHG\n90srSie98NCkFx7KK2i1/vrrt1mv2erPjRg+fHiqM0IUehx5wcUZIy5+YGII4dMHL7wq+4rh\n/bZOdygAAGhIlPQA6bGgrCI50WLVdyaOZTZ/5JFHVrOSWFbz5ES8dFYKs0HKPfDAA+mOAGm2\nU37OvxYUV5QveGF+8X4tV/cBrKTSxRPnlMZDCNlNtqn7dABUy4QJE6o5sqhw7leFc7+q0zSQ\nVt37//WyzKsuvG9CCGHCvedfHa44R08PAADV5nL3AOlR8HM3P+/ntr4G4mVzlk3F7M8B6rW9\ney+7DOwjN75WnfGf3n9/cmK97fero0gAALWx7R+HX3F8r1gsFkJ4697zr3nik3QnAgCABsOZ\n9ADpsUVe1luF8RDCf+cXb9tkNVe8X53ShW8nJzJzNkhZMgDqQMd+R2Y/eXVZIjH3vVtGjC84\n54+7rObe9LMmjb30hR+S0/sc1SmiiABUZciQIemOANF56aWXqh7UdLvfd/rw5a8WhRDevOe8\n8qX/16P1Kq8YtPfee6cwHgAANGhKeoD02KVt3luFJSGEd8d+Hc7ZtmYr+eGZ95ITOfk7piwZ\nAHUgp6DnuXu1v+yl6SGEiWNGnPh271MGHrzVFr8u4BPxebO+feO5R8c8MzGeSIQQWmxxXL92\neWkJDMBv7befq5uwDhk9evSaLjJx3B0TV/2skh4AACop6YFf/GXQ8VVeM706Y+67777UBFqr\nde63cbhyQQjhx0l3ziu/cb2sVZ9QuSqJ8offWHYr+tY7d09tPABSrsep1/SdPvjpKQtDCPOn\nvHbFea/FMnNbN11205Nzzzx12rQZS0rjleMbFWxz6aUHpycrAAAAAFBnlPTALwoXLEjJGKqj\n1e8G5WUOLYon4sXfXfbAZzcc121N1zBn4sh3Fpcmp/c+pEOqAwKQYrGMvBNHjG5569X3vvhx\nck4iXjyncNmzn02dvvzgFl36nHfBkI65mRGHBGBNPfPMMyGE/E69endrXs1FPnjhn9NL41mN\nN91/r651GQ0AAIB6SkkPkB6ZjTqcu1+Hi56bFkL45omLHux269E7tKn+4iUL3r/4+mXXEWy6\n4SF9Jct9bwAAIABJREFUWzWuk5QApFQss6Df0Ct23XPCE08/8+rbk4vjid+OabXJdgf2PaRv\nn+7Za36NFQCid8cdd4QQOvbtUv2S/rvH7r9r1k/ZeVvtv9ff6zIa1MqDDz6Y7ggAALDWUtID\n4dBDD013hHXUNsdfuNG/B08rjicSZY/8fVg47ZKj9+xcnQWXznp/xPAR35csuyRy/wuOqMuY\nAKRYu249T+nWc3C86Jspn339w9wlS5YsLa1o0jS/WYs2nbt226BFbroDAlC3SisSIYTykm/S\nHQRWJz8/P90RAABgraWkB8Lxxx+f7gjrqIyctpecd+TJFz9UWpFIxH96+PqzJr1z6HFH9Nu2\nY8GqFknEF0381+O33/XkgvJl9zDe7MDhh2zYJKrIAKRMLDOvU7cendb4bicApNnkyZN/O7Nk\n/jeTJ8erXjhRvmDGZ4/OXZp8kOJkAAAANBCxRML/CQHS6fvX7xg68tmKn/fGsVhso247dN96\nq25dN2/donl+ftNY2dJFixbN+f6rTz755J23/jujqKxy2VbbHvmPS4/Kcj1kAACISt++fVOy\nntzmfR4Zc3pKVgUAAEDDoqQHSL9Z7z834pq7v1lSVvXQ5Wy9/0kXnHxg4wwVPUADMLWwdLOC\nnBosOOeTl9tstVfK8wBQY6kq6XsOv2N4z7YpWRUAAAANi5IeoF6IF//w8F33PPfyO4vjVe+W\nm2zQ7fCjB/XrtWkEwQBIiUMPG3TYkL8c3WfL6i9SUTb3yTtuHPPCh08+9VTdBQNgTQ0ZMmT5\nh99//30IITu/Tdtqfxir6XobbN3r0GP2ccsTAACAdZSSHqAeKV8y49//fOHtDz7+bMrXP/18\n1/lKWXmtum233Y679tm/11YucQ/QsCRPu9xox4PPPn1gx6bZVY7/ftJzI0fdM7WwNITw9NNP\n13k+AGoquYfv2Pfa0YM6pzsLAAAADUNWugMA8Iusphvs2//4ffuHRLzo++kzFi1avGjRorJY\no4JmBQXNW7Rv3043D9CgTXv7qdNPmHTUn/9yeK/NVjUmXjzj4VtuGPfalCiDAQAAAACRcSY9\nAADUuXeeueOme55b8PNVUjbtedhZw47eMDdzhWFTJzx2/eiHpheVJR9m53U4csiww3d3aiZA\n/fXII4+EEAo677Xvdi3TnQUAAICGQUkPAABRKFnw+d2jrn/+vRnJh9lNOh5z+lmH7NQx+bBs\n8bf3jx755H+/TT6MxWLd+hz155MPW/83RT4AAAAA0KAp6QEAIDqfvTL2xtsenVFcnny4RZ+j\nzhpy+I9vjBt1+/hZJfHkzMZtup142rB9tmmXvpgApEa8tCQzp1G6UwAAAFC/KOkBACBS5UXT\nH7p51Pg3v0g+zMzNixcXJadjsZye/f7vlD/tk58ZS19AAGooUb7gP6+99fHHn3w6eerCn34q\nKlpaFk88/fTTIYTSxe88/trinr17dcjPTndMAAAA0kxJDwAAafDd209fdOXdlXepDyHkb7zL\nsL8M3bFjfhpTAVBjU9587LZ/jP26sHSF+cmSfuncR4444YGMzILeR5705/69fBYLAABgXZaR\n7gAAALDOKV345b/+9cLyDX0IoXjO99OmzUxXJABq470HLzznmvt+29CvoCJe+MqD15zy9/Hl\nzpgAAABYhynpAQAgQon4pOfuPvnEc56bND05Y8Pue3XKzwkhlBVNH3PNWUMvu2NqVR0PAPXK\n9BdvvPjhD5PTscz8XvscdOKQMwf3arf8mKy8LbfesElyetb/xpw3dkrUKQEAAKg3XO4eAAAi\nUjTjg9tuGPXalHnJh5mN2h1+yhlH9dkyXjL7kZuvG/vassImM6fVwScOPXb/7q6FDFD/xYu/\nG3T0sHllFSGEgs57nH3WkG3aNQ4hTB0z7Mzx34SfL3cfQgiJ8onjrhgx9t0QQiwz7+qHHujS\nOCttuaEqL730UgrX1rxrzx02zEvhCgEAoEHzv0EAAKhziUTx6w/fftvDrxTFl31GtuOOB/9l\n2MCN87NDCJmN2g448+pdd33y2lH3f/dTWbx07uO3XvzG631OP/3kZNMDQL0146Wbkw19o4Ie\n1195RqusVV+zMJa1y4C/Dfv+pFFvzkrEi25/ZvrI/ptEFxTW0OjRo1O4ti2GbKmkBwCASi53\nDwAAde6yoSeMfOjfyYY+M3eDo868ZvQFJyYb+koddz7khntuPGy3TZMP5372yoWnnHDT+DfT\nEBeAapv41LTkRK9zhq6uof9Zr5OOSU7MeOmdOowFAABAPeZMegAAqHOTpi9JTmyyy6FnnnZM\nxyYrPw7PzN1w4DnX77rr+OtGP/TD0vJE/KcXx1wz9LBeESYFYM28XlgSQohlNDq+a4vqjM8p\n6NUmZ+Sc0nhp4Vsh9K/jdFBzO++886qeqiib9/a7X1Y+jMUy8lu0btuuXX5myezZs2f/uLD8\n59trZua0O3rwka2yMgo6t6zzxAAA0HAo6QEAIApZjTccMPQvh/farMqRm+122Ojtdxgz6ton\n//tdBMEAqI3ZpRUhhMxGG+Vnxqq5SLvszDml8XjpzLrMBbV13nnnrXR+edFX1519YXI6b/2u\n/Q7v/4fdt8vL+eUyEol4yef/e2ncuIff+7YwXjpr/Pj/XH79uZs19kdIAAD4hcvdAwBAndu0\n52Gj7hldnYY+KatJxxPOG331mQPaNcqs02AA1FKTzFgIoaJsbqLai8wqi4cQYhmN6ywU1J3E\nAxdcPGH6khBC98POeeC2K/vv1X35hj6EEMtstMWuf7j4xjEXH7dbCKFoxtuXnD+mvPo/IQAA\nsA5Q0gMAQJ27fvjADnlrfALZFr0H3HT3dXWRB4BU2Sk/J4RQUb7ghfnF1RlfunjinNJ4CCG7\nyTZ1mwzqwILJNz4+tTCE0Gq7Ey8euFvW6q4fEeve75zTdmkbQiic+uQ1/50TUUQAAGgIlPQA\nAFB/5eR3SncEAFZn795tkxOP3PhadcZ/ev/9yYn1tt+vjiJB3XnnzneTE4edvm91xvcacnRy\n4uP73qyrTAAA0AAp6QEAAABqqGO/I7NjsRDC3PduGTF+Yny11/SeNWnspS/8kJze5ygfw6Lh\n+ef0JSGEWGbe/i1zqzO+UUHv5lkZIYSl816u22QAANCgKOkBAAAAaiinoOe5e7VPTk8cM+LE\n4SP/98lXP61w/+1EfN7Mr56488pTLhsXTyRCCC22OK5fu7zo00ItTS+JhxAyMpqs7jr3v9Y4\nIxZCqCh1uXsAAPjFGt8XEwAAWFPHHntszRbc7LgrL9xz/dSGASC1epx6Td/pg5+esjCEMH/K\na1ec91osM7d104rks+eeeeq0aTOWlMYrxzcq2ObSSw9OT1aonaaZsQXliXjZj18XxzvlZlY5\nPl7y3ayyihBCRnbzuk8HAAANhpIeAADq3IIFC2q24OKSeNWDAEirWEbeiSNGt7z16ntf/Dg5\nJxEvnlO47NnPpk5ffnCLLn3Ou2BIx2q0m1AP7dIs55/zi0MId74y4+8HdKhy/MzX/pFIJEII\nOc161nk4AABoOFzuHgAA6p2svJZt2rRp06ZNy8Y+VgvQAMQyC/oNveIfI4bvv0vX3MyVXwi8\n1SbbHTvs4juvPr1LQU7E8SBV9tl3w+TE5LsvmfRj8eoHF89975I7PktOb3hAn7pNBgAADUos\n+WlWAACg7kybNm21zycWzZ09c+aM6d9+8sJL7yytSGTmbjj4kr/vu2WLiPIBkDqJeNE3Uz77\n+oe5S5YsWVpa0aRpfrMWbTp37bZBi9x0R4PaKi/69Pijzy+MV4QQshp3PP4vZx20Y8eVjpw2\n6dnrrr37m6LyEEJGVosrH7xrCx89BACAnynpAQCgHime+8Uj94we/+Z3sYzGx179j36dC9Kd\nCADgF189fukZ906qfLhep+12677l+uuv365du7xQNGvWrJkzZ0557633v55XOWbHE2644JBO\n6QgLAAD1lJIeAADqm4rHLxp07wdzs3I3veH+azdq5L7FAEA98uZd51/z1MfVHLxdv3MvPW7X\nOs0DAAANjpIeAADqnbKijw8fcEFFItHpiOtvOHrTdMcBAPiVb//z2PX/GPfN/JLVjMlr0/no\nk08/aIf2kaUCAICGQkkPAAD10Q0D+7+ysDi3xf6P3HdKurMAAPxGovTT//x7wrsfTZ78+cx5\ni4qKS2OxjEaNm7Rs16FLl87b7tBrj99tnhlLd0gAAKiXstIdAAAAWInNcrNeCaF0yf9CUNID\n1At9+/ZN7Qqffvrp1K4QIhXL6dZz/249908+SsRLKzJytPIAAFAdSnoAAKiPvi4pDyEk4kvS\nHQQAoGqxzJzMdGcAAICGIiPdAQAAgBWVLnr71YUlIYSMnPXTnQUAoFripau7RT0AAFDJmfQA\nAFC/lCz4/OYLbognEiGExi33SnccAJa57LLLarP45FfHjX31s0QikXwYiznrmIYtUb7gP6+9\n9fHHn3w6eerCn34qKlpaFk8kb+JQuvidx19b3LN3rw752emOCQAA9ZGSHgAA6tzYsWOrNa6i\nZOa07z6a9P78sorkjK4Dd67DWACsiW233bZmC5bM//zuG294/r0fKufkbbDd4NOHpSgXpMGU\nNx+77R9jvy4sXemz8ZJvHrrjgXF339P7yJP+3L+XG9UDAMAKlPQAAFDnqlvS/1pe295/2blN\nysMAEJ1E/O1n7775nucWlC/79FUsI7d3/8GDj9yzcYbekobqvQcvvPjhD6scVhEvfOXBaz6b\nOvuW8w7L8n4HAIDlKOkBAKA+arHZbhddfpoKB6Dh+mn6pJtHjX7riwWVc1p02X3YsFO6t2+S\nxlRQS9NfvLGyoY9l5u/2+96dN9s8++OHbntzVuWYrLwtt96wycc//BRCmPW/MeeN3erqo7ZI\nT1wAAKiXlPQAAFDn9t9//2qPzWzdvmOnTTffdstOrg0L0EAlKor+Pfa2fzz6enHFsjvQZ2S3\nPOj4occd2MO+nQYtXvzdRbe/kpwu6LzH2WcN2aZd4xDC1DlPLD8sO2/rK265f+K4K0aMfTeE\n8PmjF39+6ANdGvs7JAAALOPgGAAA6twpp5yS7ggARGTu5FdH3XD7hzOLKud06HHg6acdv3nz\nnDSmgpSY8dLN88oqQgiNCnpcf+UZrbIyVjk0lrXLgL8N+/6kUW/OSsSLbn9m+sj+m0QXFAAA\n6jclPQAAAEAKVJTOffKum8b86/2KxLIT6LPzOgw4ddhhvTqnNxikysSnpiUnep0zdHUN/c96\nnXTMqDevCSHMeOmdoKQHAICfKekBAAAAauu7t5+5YfR9XxWWJh/GYrGuew44bfDh6+dmpjcY\npNDrhSUhhFhGo+O7tqjO+JyCXm1yRs4pjZcWvhVC/zpOBwAADYaSHgAA6p1EfPFfzv5bcnrk\nyJHpDQPA6pX/9N2DN416bMLUyjm5rbqeOOz0fbdtl8ZUUBdml1aEEDIbbZSfGavmIu2yM+eU\nxuOlM+syFwAANDBKegAAqIfKp06dWvUoANIs8fHLD42+ffysknjycSyWvfMhJ546cP9m1a4w\noQFpkhkrLU9UlM1NhFDNt/issngIIZbRuE6DAQBAw6KkBwAAAFhjxT9+eueoUS9+NKtyTrON\ndzr19D/v0qlZGlNBndopP+dfC4oryhe8ML94v5a5VY4vXTxxTmk8hJDdZJu6TwcAAA1GRroD\nAAAAADQoidIJj9866KTzKxv6jMz8/Y4dfveo8zX0rN327t02OfHIja9VZ/yn99+fnFhv+/3q\nKBIAADRESnoAAACA6lr0zf9GnHHiVfc+vyhekZzTduu9L7/9riF/7JnjCves7Tr2OzI7Fgsh\nzH3vlhHjJ8YTqxs8a9LYS1/4ITm9z1GdIogHAAANhcvdAwAAAFQtEV/8wv233PnEf0oTy5rJ\nzEbt/njyn4/ea2vtPOuInIKe5+7V/rKXpocQJo4ZceLbvU8ZePBWW/y6gE/E58369o3nHh3z\nzMR4IhFCaLHFcf3a5aUlMAAA1E+xRGK1H3kFAAAil4gvOPjQY5PTTz/9dHrDAJB03qAjPpmz\ntPJh6259Tjv16I5Ns2u8wubNm6ciF0QqUVF017mDn56ysHJOLDO3ddOKOYWlIYSum3WYNm3G\nktJ45bONCra59o5LOuZmpiErAADUV0p6AACod5T0APVQ3759U7tCe3gaqES88Ilbr773xY+r\nHNmiS5/zLhjSpSAnglQAANCAuNw9AAAAAFBdscyCfkOv2HXPCU88/cyrb08uXtmt6Vttst2B\nfQ/p26d7trtBAADAbyjpAQAAAIA1065bz1O69RwcL/pmymdf/zB3yZIlS0srmjTNb9aiTeeu\n3TZokZvugAAAUH8p6QEAAACqNmrUqHRHgHonlpnXqVuPTt3SnQMAABoUJT0AAABA1TbZZJN0\nR4A0e+aZZ0II+Z169e7WvJqLfPDCP6eXxrMab7r/Xl3rMhoAADQkSnoAAAAAoGp33HFHCKFj\n3y7VL+m/e+z+u2b9lJ231f57/b0uowEAQEOipAcAgFR67rnnUrCWiqUpWAkAQLqVViRCCOUl\n36Q7CAAA1CNKegAASKXbb7893REAAFJj8uTJv51ZMv+byZPjVS+cKF8w47NH5yY/ephIcTIA\nAGjIlPQAAAAAwEoMHz78tzNnvXXz8LfWbD2N8ndOTSAAAFgrZKQ7AAAAAACwNvvdyQPSHQEA\nAOoRZ9IDAEAqPfbYY+mOAACQGu3bt1/+4ffffx9CyM5v07Ygp5praLreBlv3OvSYnm1THw4A\nABqsWCLhjlAAAAAAQBX69u0bQujY99rRgzqnOwsAADRgLncPAAAAAAAAABFxuXsAAAAAoGp/\n+tOfQggFnVulOwgAADRsLncPAAAAAAAAABFxJj0AAAAAsKKFCxcmJ2Kx7IKCJukNAwAAaxNn\n0gMAAAAAK+rbt29yIqfJtuPHXhZCuOqqq2q8tuHDh6cmFgAANHzOpAcAAAAAqjZhwoR0RwAA\ngLVBRroDAAAAAAAAAMC6wpn0AAAAAMCKunTpkpzIatw+OTFkyJD0xQEAgLWHe9IDAAAAAAAA\nQERc7h4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJZ6Q4AAAAAADQ8SwoLyxOJag4u\naN48VqdpAACg4VDSAwAAAADV9cN7L4x5+tWpU7/6cVFJ9Zd68Imn8jPV9AAAEIKSHgAAAACo\npqnPjPzLna8nqn0CfaVsd90EAICfKekBAAAAgKqVFk44765fNfSZmZnVXDYn5jR6AABYRkkP\nAAAAAFRt8j/uK65IhBAat9nqhJOP3n7zTm2aN053KAAAaHiU9AAAAABA1f714YIQQk6zHrfc\ndsF6Wa5fDwAANeRgGgAAAACo2idFZSGEbqeerKEHAIDacDwNAAAAAFStpCIRQth5i4J0BwEA\ngIZNSQ8AAAAAVG2zxlkhhPJEunMAAEADp6QHAAAAAKp2YKdmIYR3JxemOwgAADRsSnoAAAAA\noGrbD+2XEYt9dseY4oSz6QEAoOaU9AAAAABA1fLWP+jyo7Ypnv/m2dc/q6cHAIAaiyUcTwMA\nAAAA1ZJ4dcyVox77b06rzf844OiD99wuNzOW7kgAANDAKOkBAAAAgKo9+eSTyYmZ7z77/Idz\nQgixWHbLtu3atWvXvEnO6pcdPnx4necDAIAGIivdAQAAAACABuDuu+9eYU4iUTZv1vR5s6an\nJQ8AADRQ7kkPAAAAAAAAABFxJj0AAAAAULUhQ4akOwIAAKwN3JMeAAAAAAAAACLicvcAAAAA\nAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARLLSHQAAAAAAqF8OO+ywGiyV\nkZXbYr2W62+85S677rrnrtvmxFKeCwAA1gaxRCKR7gwAAAAAQD3St2/fWq4hf6Meg888o1en\n/JTkAQCAtYnL3QMAAAAAKbZ42qTrzhr63KcL0x0EAADqHWfSAwAAAAC/8sgjj9RgqYqy4gVz\nZ3w4adKMwtLknMycDa954KbNcjNTmg4AABo2JT0AAAAAkDKJiqJXH75p1LgJyT88tup++t0X\n90l3KAAAqEdc7h4AAAAASJlYRl6fAef8/U9bJR/Oe/+WKUvL0xsJAADqFSU9AAAAAJBi3Q77\nW4/8nBBCIlF6z5uz0x0HAADqESU9AAAAAJBqsZxj/9gxOTnjX1+mNwsAANQrSnoAAAAAIPVa\n9+qRnFg6+630JgEAgHpFSQ8AAAAApF5Ok+2TE/GSH9KbBAAA6hUlPQAAAACQehlZLZITFeU/\npjcJAADUK0p6AAAAACD1KuILkhMZWa3TmwQAAOoVJT0AAAAAkHqli99NTmQ22iC9SQAAoF5R\n0gMAAAAAqTf7jWUlfePWvdKbBAAA6hUlPQAAAACQYomK4nsfn5acXn+/zdIbBgAA6hUlPQAA\nAACQYu8+eOH7S0pDCLFYzvG7t0t3HAAAqEey0h0AAAAAAFh7xIt/fHbMzXc9+3ny4Xrbn7Jl\nnj9CAgDALxwfAwAAAAC/ctNNN9VgqYrykoXzZn/2yedF8URyTmaj9uef2zuVyQAAoOFT0gMA\nAAAAv/Liiy/WfiWZOW0GXzFi09zM2q8KAADWJkp6AAAAACDFWnfdY/DQU3Zon5fuIAAAUO8o\n6QEAAACAX2nfvn0NlsrIyi1o3rxtx8477bzLjt06xlIeCwAA1gqxRCKR7gwAAAAAAAAAsE7I\nSHcAAAAAAAAAAFhXKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACA\niCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAg\nIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACI\niJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAi\noqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICI\nKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAi\nSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiI\nkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKi\npAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo\n6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJK\negAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiS\nHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKk\nBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjp\nAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6\nAAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIe\nAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQH\nAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkB\nAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoA\nAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4A\nAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcA\nAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEA\nAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAA\nAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAA\nAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAA\nAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAA\nAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAA\nAAAAAIhIVroDALAOib99TrojpEbmjlenOwIAAERky2HPpTtCakwedWC6IwAANCRnPvxtuiOk\nxsgjNk53BFiRM+kBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjp\nAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6\nAAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIe\nAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAikra5\nIPyTAAAgAElEQVSS/tunfh+LxWKxWOtuT6YrA3Vh3Jatkq/sPi9MT3eWdUI93OAfXbVDMlLH\n/V9efv4f1stLzr9i+uJ0ZaNKq3r5SJfC7z6457oLDt53z+5bdWm3XrPsxk3bbrDRVjv2GXT6\nBWNf+SSx2mXr6FdtLd8k9XCvBWsrx9trKzvSiNXDDe54u5oS8SWPXnvaHjtt27Ygt1mrDfY5\ne1K6E9U5B/MRWzz9iljtFMZXf0Rf3znYWFvVw999a7d6uMEdbNQf9XNP6y9O9YEDvzRyEFg/\nd00NUUM9k/6cDs0q383v/1SW7jhUzUtGjXnzsG5a8t1bQw7YusUm3U8464qnX3zt/U+/mD1/\ncXnxT3NmTv/0nVfvGnXFUb/fuu1Wez8wcWYdBfCjB+s4O4EGx0tGja2Vb55EvPDE7hv3P3v0\nG29/NGdRyeJ5M7/5vijdoYBfWSt3Pms3Lxk15s0TbITl2BSwjrMTqNRQS3qglg5v3SS5E/TR\nV6iH3hg1uMNme9z6/CeJxOo+Vvnjpy8P3G3j429+O7JgUM/V5reb34xAatmrpNfXjwy456N5\nyen8jlv13nvvnbs1T28kAEgtBxtrDS8lwLopK90BAIBfefnKw/f+6/jkdCwW237vIwYc0X/3\n7TtvsEHb8oUzv/vuu2++ev+e60e+8eXCEEKiovS+P+/arO3UUYdtnM7QAAD1yftXL7u4/cYH\n3/rFE4OzY+mNw9opv/1ZCxcOXelTC778v012eDQ5PebrWX1b5q50WEGmtyYAQAPjIJBUaagl\nfYsOHTfOWpKcbhTzbm4AvGTUmDcP65TvnjypsqFv3GbXGx+8b9Bem/3ydNtWG3fZeo/wh+MG\nn/v6QyP6HX/J/LKKRCJ+y8C9j9vvs+2bZqcwiR89WMfZCTQ4XjJqbK1880xfvOyqid3+eqiG\nnroSa1RQ0Gilz8Tzfzkyb9KsWUFB46gyNSRr5c5n7eYlo8a8eYKNsBybggbPQWDt2AlUaqgl\n/V//8/Ff052BNeIlo8a8eVh3lP304X5H35ucbtx695c+e6Hneiv/uGWIZe9x9EUftlrcYb9r\nQwjlS6ce9ZcJk2/vncIwfvRgHWcn0OB4yaixtfPN8/MtgzJy3eYP6qm1c+ezVvOSUWPePMFG\nWI5NAes4O4FKDbWkXydUFP/7iUcnffJ5eZNO5591QrrTAFDnXvq/w6YUlYUQYhk5N058ZpUN\n/c/a73vN9Tvef8bbs0MIU8ccP/emr1pl+zN0rfn9C+sOP+8AQJ1ysAEAsA6q3kHgL3/KL5n/\n2b3Xnd//kAN2/d3WHdo0z8kr2LjzVrv12e+YUy9+bfLc6ny9Fx68adAff9+l00YFeY1atd9s\n1z4HHDf4zEdfn1LNwF++PPaMYw/aYrOOLZrmFrTtuEOvvQcOvfzDH4tXOvjbp34fi8VisVjr\nbk+udH7P25d93Znvv3DByf2267rZevm5BW077rj7PsedNuLT+SWrDxMvnv7AjRcf1Kt7x/Vb\nNWrUtMOmW+595Kn3Pfdu8tlxW7ZKfpWHfiyq5ndXpcrkvR/+KoSwZNpz+3TbYK/DBp578RWX\n/O26345f+MXr11345z17bN2hXavc3PxNtth2rwMOveiWx38sq6jya9XytV46+73Rl575+x22\nbt+2ZU5ufvtNuvTuN+j28a+v/gs36JesZlssVd9azTb4qnx01Q7JVOPnLtsUF2zULDln9/u+\nTMk3XjPF8yb0ap2XTNKkXZ//LvhlszToN89KzXh9/18lT5Q+P2Zk/9/vuMmGbXJzGrfrsGmv\nQwbd88/Jyy1R8fqDNw78Q89NOrRr0qjR+ptsuce+B597w7iF5YlVfIUQ6vLlq/H+J1Gx9M1X\nPzz1smf2Pen+zQ8c3aT36K5H3X/g2U+fc99HUxbFaxNp7RAv+e7Ex75JTm8+cPygTZtVZ6lj\n7hyQnCgv/vayrwpXPzglv2qrVNu9Vk2PKGq5r47g928tremXvunAjZLfWn6HI36qWPnu4tNb\nD0qOyW68yX8Wla5kRC0O8GqwrVpmZ8Zisbz1/pB8uHT2x7deelrP3221wXr5ufktO3XZqt+J\nZ4996bPfLrhGv91quWwaj8Ecb9eS4+36/JI53na8naqf9x8/7Jtc25lfL0zOeWa7Nsk5mw94\n47fja/CTvs4ezIdEadHU52e9dPX08Wd8ddeAz28d8PWDZ0x/9qo5k14oLS6rTSRW4GCjIe58\nVkjuYKMevmQONhxsVP/N83if9snxBRtfsNIBp7dftsFjsdjfvl302wFzPzyhcsC4H5euaiPU\n7H+ya7Snra76sf+vUmp/lKpjnT3wS1QsfeOx2085fsDevXa8e/D2Nx67/b3n9H3i2qFvPPnw\n/CUr+/MRqeAgsH7+UqiOGh8EhkQikUgkJtwybINGmataeyyWsf0Bp369tDyxCvM+HLtf15ar\nWnzLg878vKhshUW+ebJP8tlWXZ+oKF987cl9Yiu78UBmduuTrnvjt19x+cVXOn/X2yYnEvEn\nLh+QtdLVNmp36o3/WdW38/WzI7drtfKTF7c44NSPFpeO3WK95MMH5/y0qpWsqcrke4ybWjT7\nxd8td0OL7Lyuy4+sKC8c+eeDG2es/D4NOc06nXHHf1fzhWr5Wj931eA2OStfvGPvQe8WllRu\nnL3/NW2l32CDe8lqvMVS8q3VeIOvyodX9ljV99Lr3i9S8o1XfomN9ntp+fkHtlx2/5XLpy1a\nYZHiBf/r0y4v+WzjVru9+ePSlW7JBvfmWZUfXtuvMnlJ4fuDem24si0c+8O5jyQSibKiLwbv\nvelKE6637ZHfl6z8pzXlL19SbfY/C6c8tn/XFquKlJXT7MLLTyj/39kN5V9NX/zVmTp2n8pX\n/+Efi6q5VEXZgsMOPfSQQw455JBDzhz79fJP1dGv2tW/SWq516rBEUVS7ffVdf37tzZq9qVL\nl3zUNW/ZfbB6XjrxtwOKF7y2/s8v1sBxX/12QI1fjhpvqxZZGSGExi0PTCQSHz5yaYdGK7/m\n0zZ9T/vi11+6+r/dfqv6y6b3GMzxdu053q63L5nj7TX9xh1vr8acDw5a1Sbd7MjXlx9Z45/0\ndfNgvvMx5zVp2XSVkTJbt9rv1i1Oe7b+/1vNmye15k05qnL7PDa32sf2DjZ+Pb8B7XxWSO5g\no769ZA421vQbX8cPNn549Y/J8RmZTWeXxld4Nl46c/kf3t9d/sFv1/DWCV2SzzZqvsdqNkJ1\nXspa7mmro/7s/+v0L041s24e+K3+r7gZ2RvsfNpLZ4z7psH9q+GbYA05CFyeg8BQ1UFgVghh\n6gPH9Rxy3/JB8wpaN88pmz23MJ5IhBASiYr3/3nzzr0KZr1zxW+3x5z/3LzdnsNmli47CTIW\ny27Ztk3JvJlLfv5wx+RnRu6y0/wv37urZdZKrsGbSJTfMKD7WY9+GULIab7Rdt02zVo6e8qU\nL+YXlYcQ4mU/3nHWHq17zrp8pzYr3aar8fJ5ux86YkLzLfY9Z9gJu3fv3KhkzscfTrzh4is/\nmlccL5l1y7DdWu4089IdV1zt14+fv1X/EUvjyz7ZFMvIWa9tq7LCHwuLykIIU/55865dp/5f\noi4/K1RRcsbuR7xbuOyTIAVtNtiwfedfniybc8Y+29/42ozKObFYdutWuXN+XJx8WLro6+v/\nb+evpj361KWH/XbdtXytHz1rz/7Xvbb8nMbN1ssoXvhTaTyE8N1rd/b53ZILKmp+Omw9fMlq\nucVq+a3VxQZvs/Nx5567VwjhiRuv+7yoLISw+5Azd22WE0LYeOtffvWm6huvjrLFHxy69e9f\nmVUUQshtsdNzn7y42yr2oatRD9881REvnXl8j0Mf+rJwjxPOHrjvntt3yv/ykw9uu+S8V79d\nnEgknr2y/ynd3yy69OAxn8xv/bv+5ww6aJcduy7+dvI/77x09PNfhBDmfTiuz+DjPr973xVW\nW0cvX232P0vnPNtj+yOmLi2vnJPbJK9FVvnMwmWbt7x00eUX3de44ynndG5c7URrm5f//l5y\nokm7k/q3qu52iGU1f/Txx1c/pu5+1a6glnutGh9RpOY9X5e/f2ujxl86u8nWz489sePBt4UQ\nJl667+ODZvZbP2/5AVcdcERya2/Q56r7jui0wtet8cuRkm317ZNnbHfEqEQi0Xab3x9/xAFd\nNmq1ePb0t54f/+grHyYSiY+evnHH7We+88FDm+Uua/Gr+dttpaq5bHqPwRxvp5jj7f9v777j\no6j2Po7/tqWRhCSEDqF3EZCiCCqIKFwEbCgqKgrXqyI+iIiIDdSrYsGu1y5SVFSkdxuICCJG\nRXoJJbRQQnrbneeP2YQkW5LM7M7uks/7xR/D7vQzc843e6YEU5GRt3VueGVUq7wdVeeGSZM6\niMjG/732fXqeiLS864Eb6kSJSK1OjUtG80lrVa3CfMrn0wqKzp4LprCaFnNBUZ7z1kDFnnZi\nxQOm+M9q1Y6p9BqhPMKGW6FS+ZRH2AimIiNs6NzwyjjHwkadHlOspnlFiuKwZz2/78yrrcv8\nUZmx/+XcUg+r2/PpCnmsU7k5zFyWqg407Of+Xnzngqryl6yfatqgrf/L8XfdVaFqFfzK/Ypr\njUwIt+ZnZ2YXz/zwr28Osjb4tXvTCn5vQSURAt0KnkahaqoYAsVecLx5pPP3zfC4Hs9/vCQt\nq8DZn1+Ys3nl7Dt6nt3I5/edKXd1QGH2352iw9Rvw6JbP/nhwsPZhYqiKI78lC3fjRl8tn26\naEqZCz1KLiswW2JExBrRfOqMH7PtDvVbe/7h9x672Vx8iURci6merkrwdJ1F8xHDLSZT+1um\nZxY5So9QlLt/eFPnA4RrNptcbra5J1fXK74aKzy+438/W3Y8T726xLFj/eJRfZuW29v+uM6i\nziXNRcQa0eT+5z7dknKy3Ghf3Nm2ZOlJl9659Oc/0rIKFUU5fWjnsjkvdCh1dcawD7eWm1Zn\nWR9a+VDJt9aIRuNembnjmLr59r2/LX/omvPL7ZyqXmwbhEWmc4/p3DSdO7xCNyQ6u2pcL33V\nueFVuti2MPufoU2dv+OE1+y6IjXLdVVD8eDxruQazPDaEWZL1BNzNpf+1l5w7OZGZX7bumjM\n21n20pvmmFV8Qa4lvEFO2St6/VR8ir7657kLaqtfma0RD479165V49T70XN/HDN3wkWJVmdt\nH1uvS8BvkQ/gnfQdazhvem5x448+maGfmlpPB4nOWktzovBVXe2/9lcnnYue3r+R+m1C+7GF\npSqSfV+PVD+3RbX5PbOg3FSai0PnCqt30lsjmtQNs4jIjc/PKyxTrys7lr3ZsPjS4GbXf+K6\nvV5atwp5nzaAGYy87Voc2pC3g7DIyNvaNpy8XRnTm8epsx2cfNz1Wz1nenUO82KOSeg9vsXd\n36h3pbe5d1bDy260mM3FXw4K+I3yIX0nPWHD9fOQq3wIG0FYZIQNbRtO2Bjb0LlF543bUO6r\n3x/vXHqeFlvtsg29UpS711Z8i+TozWdziKedoHgtSp01rXfBVv/76RcnPapz8DPbEsa/OGPv\nyWz1NvT/m7Hp6jvHRFqcZ1xY4m0BvzP+nLmTnhDo+nmwNQoV0hwC5eiG25270ho/d4+bXyTt\nBceuq+1sJHq+Xf4IWHCD874rW1S7pQfdNMCvD23iHCGydenqqWSNRcRsjZv1zynXaZfc2664\nmKPLPVamwiIUkZikW3PKNpCqtD/GqyOYzLZyI7zTq76z/GpeVO6ZPIqiKI7Cl64vc5+ZP4pQ\nRKyRzRfuLn+2KIqSvvuVkkdGDHl+QflH7ShKQca2e7s661BrRLN9eWWeX6GrrB15lxbXBbYa\nHRfuczP5/Ef7lt45Vc3xQVhkOs8OXZume4dXyEv407nhlc/xhTk7h7WqqX4YFnP+4v2Zblc1\nFA8e70rinYh0e2qd6wiHVl9bMkJcy7GFLluWn/FLSW0wt+xz0f1UfHrqn4Ks5JLn0tz38n9c\nO7y3TXWmVZNJfv3xoYB3wAekk74w9+zLxq5Yut8n8/RTU+v+INFda2lOFD6sq/3U/uqhf9EF\nWZvbFD/0fsh7zs0vzP6rbfGH9y5wc7xpLg6dKxxf6prcDvfNc7tPjq59Wl2EyWR6LaV8efmp\nkz6QGYy8Td4uhbxd7lvyNnnbCy+d9DrP9Ooc5uMHf+za7d38qt7Fm2tqeu/8gHfDh2gnPWHD\n7ecSapUPYSMIi4ywQdjQdvBsmuzsmopp9GC5r55rHiciJpPlolhn+T5Xdv+f+Ovu4p0feyT/\n7Fmus5NeNNW03gVb/e+nX5z0qM7Bb8zCFPXD0v3cd97/L+fWmky3fLor4P3u50AnPSHQ7ecS\nZI1ChTSHQHPq4r/Uj2p3fn1YczfPJTPb6oy70vmmjczdmaW/KsrdfueCFHX4uo8XD2xUw3Xy\nMV+sTrRZRKQwd+ezBzJcRxCRzpOX3eruFRd9pkxWBxz2rEP5VX5Wyc1fvuL2FQ4JHR5RBxRH\n4a5ST+3IP/PDuPVHnau9cJ6bZ/KYrA/OWt2u+Edt/7n8nWWDW8S6fj5v1CuKoohIvZ4vLpg0\nxPXREraYtq//tKJRuFVEivL2jZqXUvpbPWV9dP39a4qfzzB24fLBTd1MPvS5Vfe2iqto47wJ\ntiLTs8fKqeqmGbPDPfHhhnthz08Z2e3Cr3adERFbjfZfJP88KMnjOw4rFGwHTyWZLJGfT+rh\n+nlCp5tLhq+d9ZjVZcvCYnp2j3au255S2yV+Kz499U/eqaVFiiIiJpPtld5uKrfm/fo2rV+z\naf2aTerV3JzjxydTBbPCzE0lw4nNtJ8LnvipqS2hs9bSkyh8eMz7qf3VQ/+ibTW6LJ/pzOtL\nHuj/85kCEflo+ODtOYUikjTozXeGJJWbRE9x+GpfWSOaLJk+xO1XdXs/8fbF9UREUZTXxn7v\ndhyfC2AGI2/7CXm7HPI2ebtCwXbw6OGr1qq6hXkRa51mbh5TGdZytC22ri22ri22Tl5hkesI\nqAzChiehW/kQNsohbBA2KhRUB0/r/9ykDmQdfvdgqbpLcWS/ejBTRKJq3/xsvwbqh/Pn7i89\n7c631qoDNZs/Vi/MzdOhNfNtTRvk9X+JwJ5KJapb8DOZbK9e3cR15jUveiK2dqPY2o1iExse\ny/PnM8OrDUKgJ0HVKFRJlUKguc2oz5OTk5OTk3/69npPc1SKH98vSpnPj2145FShQ0RsUW0/\nGtbM7bSWiJbPnN84Li4uLi7u799PuY5gMlnendDV7bQR8f1Lhh2eVs4Diy1xusvbCFRmW52I\n4qItfVzsn/dkgUMRkchaV798aX33s41o9sHtLau4LlVjtkT9b3gL188V+5kH1zmPsAfn/MfT\n5LYaXWYOd14M8tdza0p/paesk59ZqQ7UqHvbK5c38DC15amZwzzNuUJBWGR69liZdaj6phmw\nw73w1YZ7YS9IvfuibrO3nhYRa2SL2X/8cq27JqSSgvDgqaQadW4reaFymUWHNSwZfuT8Wm6n\nbRzunLBc++aP4tNZ/5jMzstdFaXwqyNu0pvFFrN7/t3qv7trBeCH2mBgL0wrGW7q7qjQw09N\nbWk6ay09icJXx7z/2l/NfLXoptd9+OLlDUXEnp964+BXjvw06Z5F+0UkLLrzsrn3uI6vuTh8\nuK8a9n+zSfFj7V0Ne9t5IB1aPUHPcVtJgc1g5G1/IG+7Im97mjF5WxWEB49mPmytqluYFynK\nzMh1M6UlscXIj9R/cVFVfgMxJNANEGHDHwgbrggbnmZM2FAF28ET0/ihFpFWEVEcec/tTi/5\nPOvw22mFdhGpe+ldHSZ0Vz/c/UGZy8fnLD6oDrSf4P7Sc218XtMGc/1fWmBPpRLVLfgpSuHc\nFDeXBZis9Ua9uVb9d35cVKXWCZ4RAj0Jtkah8qoaAs01mrTt1KlTp06d2jRyf0blnUh+evkh\nt19tf/1vdSChw9M13F3RoLpn077Tp0+fPn168fVuijmi1pAeMe67ZExm7X/dRdW9w8squf3i\n93edjxpueNXDHqcUOe/hf3n+0gciag1tFuHmV+ms1NfPFDlExBrZfEJTN1dhlDjvwU7Fk3xR\n+nM9Zf3R7yfUgdb3Puhl0XW6vRJr1Xh5YBAWmZ49VpqGTTNgh3vhqw33xF5wdOwlF3ycfFL9\nr+LIS6oXqXluEpQHTyXZos5z/0XxY09M5rA2ke77az2ttj+KT2f9E1Xn1rjiA/Xu2+e+/l1q\ngaY//85tJnNYybC6t33IT01taTprLT2JwlfHvP/aX818uOhxC+a3jLSKyJG1ky+46mX1wwe+\nXdw+yk0No7k4fLjCHcdf4GXyhHYTbSaTiBTl7ll8Ms/LmD4R2AxG3vYH8rZb5G23yNuqIDx4\nNPNha1UNw/yRzx87tWsbWd7nCBuehG7lQ9hwi7DhFmFDFXQHjyns6c6J6uBPb+ws+fjg/G/V\ngS7j2tY6/xH1wcVnUqblFf+QY88/8MHRbHX4/651cyOyZj6vaYO5/i8tsKdSiWoY/EZ3veK1\nr37hV1y/IgR6EnSNQqVVNQS61hqOk6kpu/fs2bNnz64d27b8nbxy5c8ZHnoLNv91Wh1ofG0b\n7Wscd3nFI1WdrYaHStOzlQey1IGmtzT1MlpU3VtFXtG2VpURHtvL7efpW39WB8yWmKeeeMLL\nHPLTnRfrFWRt8jJalcp6XfEjZTrf6C1bmCwxw2tHvX8ky+ty3QuFIqvCHitNw6YZsMOrQuOG\ne/LZkO57tp4p+a89P/XG4Z/sX+LxSrEKhcLB44GpwhumPd5IWmk+KD6d9Y/ZVnf++Iv6vPiL\niORlHnlo8pzJMbF9Lmx6aeeGvTs17N4qPsxLs1ltWMPPppyDp/N9O3M/NbWl6ay1fJIoimk8\n5g1sfyvLh4u2RXdbOWNE8xs/FZGj+XYRaTbso5euaOh2ZM3F4cMV7lf8UkO3zGENL4oNW3sm\nX0S+OpEzpJZ/b9oLbAYjb/sDebvyyNvkbVUoHDyV5cszvfqFeSV/5/FlD6d9Xzsq6YKoBu2j\nGrSPqF2fLK8fYcOT0K18CBuVR9ggbKiC8ODp/XhXGbRERA4u+kze66l++PN7u9WB8R1r2aLr\nX18r8usTOfb8w/87kjWuYbSInNnzQr5DEZGIuH7DEnVduFCOz2vaYK7/SwuWU6n6Bb+80xsf\nvLHXpLik+u16NmrbvUGbbvWaNLGQ/HyKEOhJEDYKlVTVEOisWXIOb/rwoy+WLVu+/o8dZ/Iq\n+wqxksf9x7TW8SibMPc/EOtktlT5HSQlmxPX1M2rF0pYI/X3H3hjtrl/hkPmLufTRQqy/nz2\n2T8rMytH4akMuxJbtuLUUNaKI/tIgfO5Ee1iwryP3LGGxkdVB22RaTs7Sqvqphmzwyukf8M9\nUUN8TNPBL1255573t4rIgaX3PL3puie71dY2w6A9eALIt8Wnv/65bNqaL2o9MP7J9w7n20Uk\nPzNjxeq/Vqz+S0RskdH9Lmk55NJWN17eNE5/mg1ZYbE9w80m9Q+5w0uPSPe6lZ9WKcrOyHaW\nco3Ymq6vv/JTU3t2BXTXWvoThQ/qaj+3vxr4dtHNhn0y9YIlT21OExGLLXHlZ3d4monm4vDh\nCjf3cPl5iRYRVrWT/sTRPPFzVR3ADCbkbf8gb1ceeVvI2yISxAePBgFs2SsvCMN8g3VDj/+6\nrMjuEBElPy1714rsXStExGSrFdXswpjmPWNadrZ4vtkF3hE2PAndyoewUXmEDSFsiEhQHjz1\nLnnCZFqqKEr20Y92573ZMsIqYn9pT7qIRMT3vzg2TETuvaze19/sFZG5Cw6Ou6+diOx85yd1\n8ob9J2tbric+r2mDuf4vESSnkl8FYfAr8ytu+oGU9QdS1n8pIuaIekldr2jR7co2PXqH013v\nC4RAT4KwUaikqoZAq4h8O+X20c/NVt89cHZGlshGLVq1a9ehV79/Nfz5qVFz97qZafH1F5Yo\nPf0qwXIyZzmcT+4weV0jk8lqNpkcir8e82EyuW9LCjMKNcwtq+zpqq2sTaZwi8lkVxSpRGm5\ndg75jwFFpvns0CMYdri/NzwmadDav77pGJ4244vm6zPyRWTaoFHjDi8w7JevIDnf/cTnxeeL\n+sdy08S3h9519/8eG7147Z4ft58ueRVOYW7W8pXJy1cmP1K/0YuPDvj3hfEalnUOMFlihiVG\nzTqeLSL7Zn8vT3Wu/LS/PXzRha9tERGTybI/N7+xmzd5+/fM0l9r6UwUPjnm/dr+auPbRdvz\n9izdneEcLjwx5duUWTe7eUOS6CgOH65wvqOCirekGrfn272PqV8AM5iQt/2DvF155G0hb2sV\nJOe7qwC27JUUnGE+tuu9Me0HpP/9XdbeDdnHj5a80FIpPJm9c2n2zqXHY8+rc/n/xSW5f/sj\nvCNs+FCQVD6EjcojbAhhQyt/HzxhMRfeXidqxrFsRSn877bTn3SpnXN89u7cIhFJ7DJWHafD\nhO7yzV4R2fXuGrmvnYjMne+827X/4+dXdYkV8fGODYn6PxhOJb8KzuCn/or7/jszFi1a9MPv\ne+zFp48j72jKulkp62atrd3j0n+/2PF8X77QoXoiBPpQiIZA6/opV103daX6n/C4ljePHN6r\ne7euXTu3bZUUWXwR9Pqtz7mduGXxTU7ZKdm61jo4tI60/plVICKn92dL+1qeRivKSwlIj110\n82h1oGaTp9JTpmiYg/ayNlmTwi378opEZHtWgfelbM/x5VWZ3vm7yPScHboEeof7e8OjGw34\n6e95nWJsIg3mfnlX44HvikjO8UWDpv2+dnI3/etfGUF+vuvhj+LTX/+oIhI7jR3Vd+yovjkn\nT63+7cC65NS1yYd+S8lQ93HmkUP3jfvk2Af3PH6e+zfonPNGX9lg1qxdInJm3zNbch44z93L\nwt1aNO+AOhARP8BdD73/6a619CQKv1dZPjr+A77oGbf335Bx9k0KX466ctzg7d2i3RQtL7cA\nABo5SURBVARHzcXhwxXemlMo4u3BgH9mOaNtzYZ+rzECmcHI28Yib7sibwt5W6ugPd8D2LJX\nRjCHeVNks/geo+N7jHbkHMo5+HdO6j+5h//JPXVC7bB3ZGw5uuDeomGfJtar8l0vIGz4UNBW\nPirChivChhA2tDLgfL93WNMZb/0jIute3S6f1T7646fq5x3GO18OndBxktk016Eo6btfKFT+\nYylMffdIloiYrXFT2yVoW6hhQqP+D/Sp5FfBHPwiEjs98OT0B56cnnN0+83//SZ1+6bU7RuP\nph4RRRGRgrSNq5/vn/P0+gtbeTz1UBmEQB8K0RBoveb579Shtre8vm7G2ISqXG7UqV6UHMgQ\nkUPz98u97TyNVvIYXpMlMja6gmeSBNDFceFfpeWIyIG5B2RgkqfRctPmGrhSZ9Vs73xqRP6Z\ntRomL8rZqqes+8dHqC90Sf7moDzmOWEoBV+k5WhYPW38WmQ695hOAdzhBmz42B+/6BLrrAoa\nDXhnSo9vpmw8LiLrpwz47t7UfvHhvl2cW0F+vmvmp+LTWf+4iqqVMGRAwpABnUUk8/iJeUv/\nmPTBn2lFiuKwT39sw+ML+vpkKSHngmcfkFljRcRRlH7Xa39vnNylMlMVZP467ZDzaTmJ3Uf7\ncf280llraU4UBlRZPj/+A7Lo1NUPj/pqn4jYanQcXnf/zL0ZRbl7r7n2zUOrxruOrLk4fLjC\nP6xLeyop1tO3+adX7Mp1dtJfnuDfF9JLoDMYedtI5G1X5G3ytmZBe74HsGWvUKiEeXNUo+g2\njaLbDBQRR9aBzG2Lj29Ybnc4RCk6tezrxDsDlkhDF2HDh4K28lERNlwRNggbmhlwvrcdN1Te\n+kdEDq/8UOSS31/frn7+n4ucTzO21eh8Q2Lk3LScoryUj49m33hmWp5DEZG4Fo/XsZk1L9cY\noVL/B2fdpV+oBL+oem1b9L61Re9bRaTg1M5da2au/erzXLtdlMJNr7974VuP+2Qp1RYh0IdC\nNASajxfYRcQW1W7TTI/ld2Z7htvPO41ppQ6kbXzRy5NGNz54YVxcXFxcXIdrvq/yihuoz23N\n1IFDS970MtqeT741ZHXKq9nC+TN6Xvr3q9PzvYyZtS953bp169at2/RPesmHacmP6Snr4Rc7\nk8eOd97ysuhTW586VuD3p86W8GuR6dxjOgVwhxuw4TXCyoTUiYs/rmk1i4i98ORtQ9/QPNsq\nCfLzXTM/FZ/O+mfHwq9mz549e/bshb+kuU4SUyfxjpH91zzpfD5S5vE/ikLs4QU+E9Pk/vHN\na6rDm6cOXHo8tzJT/fr0PYXFD/O54eVL/LVyFdFZa2lOFAZUWTqPfz18teiinG1XX+usXe/8\nfPHbP7wdaTGJSOrqh8YsOeg6vubi8OG+2vKct+p392dT1QFLWJ2Rdb29aMonApvByNtGIm+7\nIm+TtzUL2vM9gC17hYI5zGfs+DHryBnXSczRSTW739ekv/OGQkfWkuqa5XUhbPhQ0FY+KsKG\nK8IGYUMzA8732KaPNgi3iEjO8dlbcope3XJKRMKiO11b6+zF4vf0cb7qZdby1F3v/aAOt584\nWPNCDRMq9X9w1l36BXPw8/QrblhC6w7XPDP8vovV/xacnFnRuwpRAUKgD4VoCHS2puE1L6th\ndl9+jsK0ib8dd/tV40HjLSaTiOSl/zD+h8MeFu14/nPn2w5ajmypYdUN02r0f9SBnLS5T21y\nUweJiKPoxAOv/mPgSp1li+46qoHzeQgPPLrG43hKwcievXr37t27d+/xpQoua89JdUBbWXd8\nfKhzPoc/fHTNUU8Lf2PkR962wdf8WmQ695hOAdzhxm94ZO1BSx7pqg4fWTvxoR+P+GrOXgT5\n+a6Zn4pPZ/2z/ZmxI0aMGDFixMg7Z3matF7ns1e3hVKg9rVHPp+gNqz2gmO3XHzbX5kVvJfo\nzK45177+tzocWWvAc56f5ONvOmstzYnCgCpL5/Gvh68W/f7wgclZBSJS/9Ln3xucFJM0Ysl4\n53MaPrzp6u255R8Hp7k4fLivTm2d/Nn+TLdf2fP33/XE7+pwne7/jfT/zQmBzWDkbSORt12R\nt8nbmgXt+R7Alr1CwRzmD694+ciqHzxNam3g89fuVi+EDR8K2spHRdhwRdggbGhmwPluskQ/\n3T5BRBTF/tTaz9dn5ItIXJsJpcdpP6GHOrDjjV++/nq/Ojx+aGPNCzVMqNT/wVl36RfMwc/7\nr7hRbXuenU2VVg4uCIE+FKIh0Pm7Zt7p5WmFDtfJFEfO9BE9/852dhI4yo4TUeua5zslqsPv\nXXPdzyfyXOew/vkBC07miojJHP7CUI9PGAgGNerfPbGV891pLw0YvjnDzTtOZozpu/aMt+tZ\n/OqJdweoA9vfv3rK0r1ux1nyzOBvjuWIiMWW+PoNzUo+j2kVrw5oK+vETi9eGe+8QnD61QOX\nH3Lzjoo1L18/1cOh7yd+LTKde0wnI3d4QdkL3gKy4T2nLL+i+HnF71x7i9vl+lbwn+/a+K/4\n9NQ/zW9yVv7puycvPOG+1/mHL7apAxGxzcONe/hc0KnT4/Fv7jlPHT6z55uL21416yf3e1tE\njm2c2a/7XaeKC3H0Vx9FBO5RajprLc2JwpgqS8/xr5P+RR9cMnbMov0iYg1v/NUi5zWblz23\nckBipIgUZP/1rxGflZtET8Dz1b5SHIX39xm5O6/8BQSKI+fZ6y/bmOmstP/9wfVuJxeX1q1K\nXKcNYAYjbxuMvF0OeZu8rVkwn+8BbNm9C/Iwbz/zWVa2+/LKSf5JHTBFdKvGWV4XwoavBHPl\noyJslEPYIGxoZsz5fvlk59NiVo11/kHdZuyFpUdI6DDJbDKJyOkdz7x9JFtEIuKvvLZWpLbF\n6flLtqpCpf4PzrpLvyAPfum7Jy844v71AQeXLlAHrNF9LSQ/3QiBvhKiIdBsM5lEpCgvpft1\nz2w/UWrllII1X77+ry5NH567p+SzQ4s/3HqkTCV43+L/JdjMIpKfsaF/m4uem7UiLc95D2RW\n2o5Xx9/Y9/HV6n9b3TH3wpjgfV2B6rFl06MsZhHJPfn9JW0uee3rH9OLH7uc+vdPD113/l3v\nbzGZbBcUv3dB3XulTbukS6tiv2a6OQj0aHL1zDHnJYiI4ih4enDbGx58acOWPdnONVRS/1w1\n+c5eVz+1Uh354kcXdIm2lUyb0P4RXWVtsn46/0F1sCAzeUibjhPf/HLvKedMjm5dN3XkpX0m\nfisi0U2jfbvV3ukvMk/07jGdDNzhG387Wfq/AdlwszVh5vwH1OG89B8HPvGzzhlWRpCf79r4\nr/j01D+t7nw0zGwSEcWRN2LEV2+t3J9uL/mTQ0ndfeDpF764bo4zSXe5pZe2bT9nDHnjp4lX\nOR/+n334h9v6tOg84JYX/vfFpj+3Hjp26kTq3g0/rZzz8bv3D7u0Sc87fi9OFZ3+/ckbfRsE\nbq19UGtpSxTGVFl6jn+V5upC56ILs/8ccON76vCQt1f1Kn5loNlaa+byx00mk4jsmzdq8try\nl6JrDnj691WJzJR5Xdpc/u63azLUyR15v6/6fFj3ZlOWOG9NaHzVq1PbxXuavFzrViWu0wYy\ng5G3ydsiQt4WEfK2PuTt0nzYWvlWkId5UQoOz3ni9M5k+9n+A6XoxJ8nvp906I8U9f8RXW7V\nsuUgbPhU0FY+KsKGK8IGYUMz/x08JRpcMUkdyNx1Qh249coyP7/Yapx/U+1IESnK3Ztjd4hI\no6smadwefX/JahAa9b8vTiV+xdXwK+4tna988/PV6UUl3bqOrAO/rP9w+MIlO9T/1xk0Ttu2\nozRCoA+FYgiUube2LhnDbIk+r0uPflf173Zeq7hIq3Mta7Se9uGIknFMJkvjltcopWyfOS68\n1IMUzJbIuo2a1I49+14WEYlrNfxAXlHpqfbNv1z9KrH9t4oHjqKzL1fYV7nJKzNbRVEii1d4\nc1ZBua9+e+N2c6mCMdtq1E9qWicuqnjzzf/+4I85bZ3PE/4xPa/c5A83iimZ9nuXb72o5Jrn\nnVpzWf0y7141mSMaNmkYE2Ep/WGra6bmO8pPq7+s503sV2bRJlNMQt346PCST2KSrt3w01Xq\ncP/lByqzgQEvMi907jH9m6Znh1fo4cYxJZvW6/Ir+11y0W3fpvhkw/98oZv6edKAVaWXOCjB\neQ3pswcy3K7SK30aFC805tuj2RXuyYAfPJrP99QfnddMxbd8x+0I+Rm/ONfBHOlpJjckRrnd\nn34qPkVf/bPg7s5lJ7QkxEc3rVejhq1MQ1ir1Xmn1z9ctCEE/lW+uDVw2LOm3dJVKu3C26e5\n7nPFb02tl4NEZ62lLVEYU1frOf4VHdWFzkW/fEVD9dtaHR+0u8x51k0t1G/Da15cbq8qWotD\n5wrHW52Pg5g0/oqzk1vCE+vWjrSWeVJEbPMh/2QXutnVnlu3CnmfNrAZjLxdGnmbvO3DTSNv\ne9+TAT949DSg05s776IYnHzc9Vs9ZzphXkxWS2SCLSbBbCnTOlsSr2g9dlHbBxYH8z9PJeJz\nJ7ffUrJnvjmRU5lJCBtVmq0SlJUPYYOwQdgIubBRGdcVt9oiYg1Pcj0xfxhe5hHQ9/19wu18\nvGysl6LUWdNWKKjqf//94sSvuDp+xQ2LiK0bm1jHZi0zbUSTG8bM2fvgF/tC6F/ly10PQmAJ\nQqAr17I23zBj4+M391JfPOCwZ235Y+N3K1Zt2rIrPbdIRNpccefy7Zsn3vXJE1c2UidQFHva\niTKvCG0z4tVtC1/sUtfZQjvsuccO7U/LOPtghPaDJ2xMntk4vMzxFLS6jZ2x4YOHG0U4j2BH\nYfaRAynH03NExBqRNPWLze+P7nyy+OqhumFGb1R4/CWrdqy/518dSz5RHHmp+1Mziy9vMVui\nb33iky3zngxzuS5Qf1lfO2310hfvKdlqRVEyTx07neW8PKdh7zt/SP68SbjV51vtnf+KTP8e\n08mvO/zuZwarAw571rrvV3639teUM84rgwK14WO+nV3bZhERhz3z7oHP6Z9hhYL8fNfGf8Wn\np/4Z8r8Nb44ZYCluIBWH/dTprJSj2dmFzmvZTCZT74E9//hkQEzgHtgePEzmGhNnb9q2/P3+\nbT3eJayKadJjyswNv86Y6LrPA0JnraUtURhTZek5/nXSvOiUb0ZNWJ0qImZr3MernnU9t276\nZGnHGjYRyT/zS/97vi33reaA55N9deWTi5e+MDrOahYRxZ5/4lha7tlrt6X9wHt//eub9lFu\njiUvrVuFvE8b2AxG3jYSedsVeVvbzMnbEsTnewBbdu+CNszXPb+rSPEXSpE991Rh5imHvaR1\nNkW1Hd7spv8zV/0ORZQgbPhQ0FY+KsKGK8KGtpkTNsSQ833c1Y1KhmObTXA9MduPP/sAfLM1\nfmqbCn7McaXnL1mdQqX+D866S6egDX5lf8UtyMs4lnHieGGRc1oxmRteMva2/04L8/ASdFQV\nIdCHQi4EWk2Wms/M+fm+hxY8Pf2zLTt37d69+4wjqkGDxt37DLxu2G3DLm+njjd12c7u7738\n7Zo/JT6pfcc+5ebbbNCETYdGfv3hhwsWLfr1733Hjqcp4bG16zfteWmfG+647/peLQzbQp/o\nNmrarqG3vP/WR1/NX7kj5eAZe0Tjxk36XnPbfQ/c06VepIjsyS0SEZM5IikQx6UtpuO7S/56\neM3XH3+1cMX36w8cPXY6x9ykZatWrVq179zrttF3dmoQ5XZCn5T1wIff3Xf73R++P2vhopXb\n9h9OO5UTV7d+sw4X3XLHyHtuvjLMJDlJo15+ua+INGkb58/dUIafiswne0wn/+3wlnfMXlHU\n5pk352zbuy/XHFu/fv0OdZyXRwVqw8Pj+ix/plfXSWtEJO2P/45edPeHg/3+mpMgP9818Gvx\naa5/xBR2/1vLhv37uw9eGv/bvjMHj2UcOpaZqYQ1qR/bpH7NFs3q3TCgw2Utariftrpqe9W/\nV267a/uvqxYuXLhi7ebDR44ePXo0226Lj49PrN+sx8W9Lut39S1DLw6S7vkSOmstDYnCsCpL\n+/Gvm4ZFF2Zu7H+b82XzlzyzakhdN+tmjWy9eM7IJkM/EJGdM4a/OPboxAsSS4+gOeD5ZF8N\nfOSDA8NGvPH2jHlLf9p/+GhGkbV+/Qadeg0YNvyu2wZ29DSVl9atQhVOG9gMRt42EnnbFXlb\nyNtaBe35HsCW3YugDfPxfabGnPfnme1rck8eLco6UZiZ5pBIW2wdW0ydsITWMW37RdUyrkY6\nhxE2fChoKx8VYcMVYUMIG1r5+3zvMHGgfLpTHW4xqo/rCAkdJllMc+yKIiJxrZ5MtFX5BhQ9\nf8nqFyr1f3DWXXoEbfBTf8X9aOaXG7fuPXjw4La9BwqVqJjaDWNrN4pr2Kl17+sbJSW6nxZa\nEQJ9KLRCoElRlIonOvcojqKioqKiorDIqKrftGlvFBGemm+PrDU058R8t2Os/0/7i9/f9mN6\n3mU1w92OgCrzc5EFkq5NQyWcq+e7oqjbZYmItAVZN60X9o0TA70KvmHp8WKgVwGhh3hQoQSb\n5XSRQ0S+T8/ry14Kdedq+3sOI29DM853DUItzLf7vyWBXgXf2Pb6oECvAnyHyifkEDag2Tl8\n8MBA/IqrzfgvUwK9Cr4x/aamgV4F+Mg5FAJD7AEgPmMyW21hVltY6c+Kcrau+GGfiJitcQOv\n6uVp0swDb6Tm20WkRoNrPI2TezhXRBqEyMOxQ4OfiyyQ3G0afOlcPd9NJqvNZrXZjF4uAK2I\nB6heztX29xxG3oZmnO8aEOYB/ah8Qg5hA5qdwwcPDMSvuMA54hwKgdW1k96dotwdV199nYiY\nzLbNGdmda7ivNOfe95o60HXKZZ5mtW1XRlh0p1aR7F7/8mGRobrhfAdgPKoLgPY35JC3oRnn\nO4CAoPIJOYQNaMbBg6qiYgfOYSEaAnkAz1kRtYYOTIgUEcVReN0d0/McbsZJnnH/6CUHRMRs\nrfnSVY3cjOHI+3PhtIm705vdNN2/qwtfFRmqJc53AIaiugBEhPY3BJG3oRnnO4CAoPIJOYQN\naMbBgyqgYgfOdSEaAumkL8381ts3qEP7vpnU5opbP5i/NiU1La8o/9DuLasWzX1kRN9ud76j\njtD1kSUd3V2I8Wjzup2HTqrX7/4Vb3NpngF8UGSorjjfARiH6gIoRvsbcsjb0IzzHUBAUPmE\nHMIGNOPgQWVRsQPVQEiGQJOiKMYsKVR8NKbX6Hd+8T5OUv8JyUtfjLeaXL9aN3NOdrO2/Xpf\nwBurDKOzyFCdcb4bz75xYqBXwTcsPV4M9CoglFBdVFKCzXK6yCEi36fn9a0ZHujVgb/Q/oYc\n8jY043w/Z7T7vyWBXgXf2Pb6oECvAoxA5RNyCBvQjIMHlUHFrsf4L1MCvQq+Mf2mpoFeBfhd\nyIVAy5QpU4xaVmi4YNCoK1pa/9r8+5Ez+a7f2qKSRj328qIPHom1uG/Ukzp1bJFUnwcUGEln\nkaE643w3npK6KtCr4Bvmhv0DvQoIJVQXlTTtmafzHIqI3DHp8WYRvCXunEX7G3LI29CM8/2c\n8fbyXYFeBd+4f2DrQK8CjEDlE3IIG9CMgweVQcWux4p/0gO9Cr5x1XlxgV4F+F3IhUDupPfE\nsW3D2n927923b9/+Qyds0bHxCXXP73Fx797dEiO43Co4UWTQjIPHONxJD8AL7qSvZmh/Qw5F\nBs04eEIed9IjNFH5hByKDJpx8AD+wp30CEEh0yjQSQ8AMA6d9AAAAEDIoZMeAACgeqKTHvAf\nnvABAAAAAAAAAAAAAIBB6KQHAAAAAAAAAAAAAMAgdNIDAAAAAAAAAAAAAGAQOukBAAAAAAAA\nAAAAADAInfQAAAAAAAAAAAAAABiETnoAAAAAAAAAAAAAAAxCJz0AAAAAAAAAAAAAAAahkx4A\nAAAAAAAAAAAAAIPQSQ8AAAAAAAAAAAAAgEHopAcAAAAAAAAAAAAAwCB00gMAAAAAAAAAAAAA\nYBCToiiBXgcAAAAAAAAAAAAAAKoF7qQHAAAAAAAAAAAAAMAgdNIDAAAAAAAAAAAAAGAQOukB\nAAAAAAAAAAAAADAInfQAAAAAAAAAAAAAABiETnoAAAAAAAAAAAAAAAxCJz0AAAAAAAAAAAAA\nAAahkx4AAAAAAAAAAAAAAIPQSQ8AAAAAAAAAAAAAgEHopAcAAAAAAAAAAAAAwCB00gMAAAAA\nAAAAAAAAYBA66QEAAAAAAAAAAAAAMAid9AAAAAAAAAAAAAAAGIROegAAAAAAAAAAAAAADEIn\nPQAAAAAAAAAAAAAABqGTHgAAAAAAAAAAAAAAg9BJDwAAAAAAAAAAAACAQeikBwAAAAAAAAAA\nAADAIHTSAwAAAAAAAAAAAABgEDrpAQAAAAAAAAAAAAAwCJ30AAAAAAAAAAAAAAAYhE56AAAA\nAAAAAAAAAAAMQic9AAAAAAAAAAAAAAAGoZMeAAAAAAAAAAAAAACD0EkPAAAAAAAAAAAAAIBB\n6KQHAAAAAAAAAAAAAMAgdNIDAAAAAAAAAAAAAGAQOukBAAAAAAAAAAAAADAInfQAAAAAAAAA\nAAAAABiETnoAAAAAAAAAAAAAAAxCJz0AAAAAAAAAAAAAAAahkx4AAAAAAAAAAAAAAIPQSQ8A\nAAAAAAAAAAAAgEHopAcAAAAAAAAAAAAAwCB00gMAAAAAAAAAAAAAYBA66QEAAAAAAAAAAAAA\nMAid9AAAAAAAAAAAAAAAGIROegAAAAAAAAAAAAAADEInPQAAAAAAAAAAAAAABqGTHgAAAAAA\nAAAAAAAAg9BJDwAAAAAAAAAAAACAQeikBwAAAAAAAAAAAADAIHTSAwAAAAAAAAAAAABgEDrp\nAQAAAAAAAAAAAAAwCJ30AAAAAAAAAAAAAAAYhE56AAAAAAAAAAAAAAAMQic9AAAAAAAAAAAA\nAAAGoZMeAAAAAAAAAAAAAACD/D+uk7uBh2l96QAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig8_colors<-c(\"#FAA519\",\"#FCC975\",\"#286EB4\",\"#71A8DF\")\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig8_colors)+\n", " scale_y_continuous(breaks=seq(0,35,5)) +\n", " ggtitle(\"Figure 8: Participation rate per day in childcare, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 9: Participation rate per day in construction, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 5. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^const\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td> 2.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td> 5.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td> 4.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td> 2.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td> 1.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td> 1.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 6.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td> 4.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td> 1.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 0.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 2.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 5.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td> 5.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td> 0.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 0.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td> 1.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 0.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 4.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>13.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>13.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>13.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>14.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>12.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td> 6.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>20.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>17.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>10.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 5.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 9.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>14.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>20.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td> 8.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td>12.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>12.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 3.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Construction and repairs</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 9.9</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Austria & 2010 & 2.9\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Belgium & 2010 & 5.0\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 4.8\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Estonia & 2010 & 2.7\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Greece & 2010 & 1.9\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Spain & 2010 & 1.4\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Finland & 2010 & 6.5\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & France & 2010 & 4.2\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Hungary & 2010 & 1.5\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Italy & 2010 & 0.6\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Luxembourg & 2010 & 2.2\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Netherlands & 2010 & 5.2\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Norway & 2010 & 5.8\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Poland & 2010 & 0.7\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Romania & 2010 & 0.9\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Serbia & 2010 & 1.3\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & Turkey & 2010 & 0.6\\\\\n", "\t Participation rate (\\%) & Females & Construction and repairs & All ISCED 1997 levels & United Kingdom & 2010 & 4.0\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Austria & 2010 & 13.2\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Belgium & 2010 & 13.8\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 13.2\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Estonia & 2010 & 14.8\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Greece & 2010 & 12.8\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Spain & 2010 & 6.0\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Finland & 2010 & 20.9\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & France & 2010 & 17.0\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Hungary & 2010 & 10.7\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Italy & 2010 & 5.1\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Luxembourg & 2010 & 9.4\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Netherlands & 2010 & 14.1\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Norway & 2010 & 20.8\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Poland & 2010 & 8.5\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Romania & 2010 & 12.5\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Serbia & 2010 & 12.3\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & Turkey & 2010 & 3.3\\\\\n", "\t Participation rate (\\%) & Males & Construction and repairs & All ISCED 1997 levels & United Kingdom & 2010 & 9.9\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Austria | 2010 | 2.9 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Belgium | 2010 | 5.0 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 4.8 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Estonia | 2010 | 2.7 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Greece | 2010 | 1.9 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Spain | 2010 | 1.4 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Finland | 2010 | 6.5 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | France | 2010 | 4.2 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Hungary | 2010 | 1.5 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Italy | 2010 | 0.6 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Luxembourg | 2010 | 2.2 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Netherlands | 2010 | 5.2 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Norway | 2010 | 5.8 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Poland | 2010 | 0.7 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Romania | 2010 | 0.9 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Serbia | 2010 | 1.3 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | Turkey | 2010 | 0.6 |\n", "| Participation rate (%) | Females | Construction and repairs | All ISCED 1997 levels | United Kingdom | 2010 | 4.0 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Austria | 2010 | 13.2 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Belgium | 2010 | 13.8 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 13.2 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Estonia | 2010 | 14.8 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Greece | 2010 | 12.8 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Spain | 2010 | 6.0 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Finland | 2010 | 20.9 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | France | 2010 | 17.0 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Hungary | 2010 | 10.7 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Italy | 2010 | 5.1 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Luxembourg | 2010 | 9.4 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Netherlands | 2010 | 14.1 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Norway | 2010 | 20.8 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Poland | 2010 | 8.5 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Romania | 2010 | 12.5 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Serbia | 2010 | 12.3 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | Turkey | 2010 | 3.3 |\n", "| Participation rate (%) | Males | Construction and repairs | All ISCED 1997 levels | United Kingdom | 2010 | 9.9 |\n", "\n" ], "text/plain": [ " unit sex acl00 \n", "1 Participation rate (%) Females Construction and repairs\n", "2 Participation rate (%) Females Construction and repairs\n", "3 Participation rate (%) Females Construction and repairs\n", "4 Participation rate (%) Females Construction and repairs\n", "5 Participation rate (%) Females Construction and repairs\n", "6 Participation rate (%) Females Construction and repairs\n", "7 Participation rate (%) Females Construction and repairs\n", "8 Participation rate (%) Females Construction and repairs\n", "9 Participation rate (%) Females Construction and repairs\n", "10 Participation rate (%) Females Construction and repairs\n", "11 Participation rate (%) Females Construction and repairs\n", "12 Participation rate (%) Females Construction and repairs\n", "13 Participation rate (%) Females Construction and repairs\n", "14 Participation rate (%) Females Construction and repairs\n", "15 Participation rate (%) Females Construction and repairs\n", "16 Participation rate (%) Females Construction and repairs\n", "17 Participation rate (%) Females Construction and repairs\n", "18 Participation rate (%) Females Construction and repairs\n", "19 Participation rate (%) Males Construction and repairs\n", "20 Participation rate (%) Males Construction and repairs\n", "21 Participation rate (%) Males Construction and repairs\n", "22 Participation rate (%) Males Construction and repairs\n", "23 Participation rate (%) Males Construction and repairs\n", "24 Participation rate (%) Males Construction and repairs\n", "25 Participation rate (%) Males Construction and repairs\n", "26 Participation rate (%) Males Construction and repairs\n", "27 Participation rate (%) Males Construction and repairs\n", "28 Participation rate (%) Males Construction and repairs\n", "29 Participation rate (%) Males Construction and repairs\n", "30 Participation rate (%) Males Construction and repairs\n", "31 Participation rate (%) Males Construction and repairs\n", "32 Participation rate (%) Males Construction and repairs\n", "33 Participation rate (%) Males Construction and repairs\n", "34 Participation rate (%) Males Construction and repairs\n", "35 Participation rate (%) Males Construction and repairs\n", "36 Participation rate (%) Males Construction and repairs\n", " isced97 geo time\n", "1 All ISCED 1997 levels Austria 2010\n", "2 All ISCED 1997 levels Belgium 2010\n", "3 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "4 All ISCED 1997 levels Estonia 2010\n", "5 All ISCED 1997 levels Greece 2010\n", "6 All ISCED 1997 levels Spain 2010\n", "7 All ISCED 1997 levels Finland 2010\n", "8 All ISCED 1997 levels France 2010\n", "9 All ISCED 1997 levels Hungary 2010\n", "10 All ISCED 1997 levels Italy 2010\n", "11 All ISCED 1997 levels Luxembourg 2010\n", "12 All ISCED 1997 levels Netherlands 2010\n", "13 All ISCED 1997 levels Norway 2010\n", "14 All ISCED 1997 levels Poland 2010\n", "15 All ISCED 1997 levels Romania 2010\n", "16 All ISCED 1997 levels Serbia 2010\n", "17 All ISCED 1997 levels Turkey 2010\n", "18 All ISCED 1997 levels United Kingdom 2010\n", "19 All ISCED 1997 levels Austria 2010\n", "20 All ISCED 1997 levels Belgium 2010\n", "21 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "22 All ISCED 1997 levels Estonia 2010\n", "23 All ISCED 1997 levels Greece 2010\n", "24 All ISCED 1997 levels Spain 2010\n", "25 All ISCED 1997 levels Finland 2010\n", "26 All ISCED 1997 levels France 2010\n", "27 All ISCED 1997 levels Hungary 2010\n", "28 All ISCED 1997 levels Italy 2010\n", "29 All ISCED 1997 levels Luxembourg 2010\n", "30 All ISCED 1997 levels Netherlands 2010\n", "31 All ISCED 1997 levels Norway 2010\n", "32 All ISCED 1997 levels Poland 2010\n", "33 All ISCED 1997 levels Romania 2010\n", "34 All ISCED 1997 levels Serbia 2010\n", "35 All ISCED 1997 levels Turkey 2010\n", "36 All ISCED 1997 levels United Kingdom 2010\n", " values\n", "1 2.9 \n", "2 5.0 \n", "3 4.8 \n", "4 2.7 \n", "5 1.9 \n", "6 1.4 \n", "7 6.5 \n", "8 4.2 \n", "9 1.5 \n", "10 0.6 \n", "11 2.2 \n", "12 5.2 \n", "13 5.8 \n", "14 0.7 \n", "15 0.9 \n", "16 1.3 \n", "17 0.6 \n", "18 4.0 \n", "19 13.2 \n", "20 13.8 \n", "21 13.2 \n", "22 14.8 \n", "23 12.8 \n", "24 6.0 \n", "25 20.9 \n", "26 17.0 \n", "27 10.7 \n", "28 5.1 \n", "29 9.4 \n", "30 14.1 \n", "31 20.8 \n", "32 8.5 \n", "33 12.5 \n", "34 12.3 \n", "35 3.3 \n", "36 9.9 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^const\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td> 2.9</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Belgium </td><td> 5.0</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Germany </td><td> 4.8</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Estonia </td><td> 2.7</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Greece </td><td> 1.9</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Spain </td><td> 1.4</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Finland </td><td> 6.5</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>France </td><td> 4.2</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Hungary </td><td> 1.5</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Italy </td><td> 0.6</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td> 2.2</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Netherlands </td><td> 5.2</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Norway </td><td> 5.8</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Poland </td><td> 0.7</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Romania </td><td> 0.9</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Serbia </td><td> 1.3</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Turkey </td><td> 0.6</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td> 4.0</td><td>Construction and repairs, females</td></tr>\n", "\t<tr><td>Austria </td><td>13.2</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Belgium </td><td>13.8</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Germany </td><td>13.2</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Estonia </td><td>14.8</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Greece </td><td>12.8</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Spain </td><td> 6.0</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Finland </td><td>20.9</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>France </td><td>17.0</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Hungary </td><td>10.7</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Italy </td><td> 5.1</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Luxembourg </td><td> 9.4</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Netherlands </td><td>14.1</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Norway </td><td>20.8</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Poland </td><td> 8.5</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Romania </td><td>12.5</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Serbia </td><td>12.3</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>Turkey </td><td> 3.3</td><td>Construction and repairs, males </td></tr>\n", "\t<tr><td>United Kingdom</td><td> 9.9</td><td>Construction and repairs, males </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 2.9 & Construction and repairs, females\\\\\n", "\t Belgium & 5.0 & Construction and repairs, females\\\\\n", "\t Germany & 4.8 & Construction and repairs, females\\\\\n", "\t Estonia & 2.7 & Construction and repairs, females\\\\\n", "\t Greece & 1.9 & Construction and repairs, females\\\\\n", "\t Spain & 1.4 & Construction and repairs, females\\\\\n", "\t Finland & 6.5 & Construction and repairs, females\\\\\n", "\t France & 4.2 & Construction and repairs, females\\\\\n", "\t Hungary & 1.5 & Construction and repairs, females\\\\\n", "\t Italy & 0.6 & Construction and repairs, females\\\\\n", "\t Luxembourg & 2.2 & Construction and repairs, females\\\\\n", "\t Netherlands & 5.2 & Construction and repairs, females\\\\\n", "\t Norway & 5.8 & Construction and repairs, females\\\\\n", "\t Poland & 0.7 & Construction and repairs, females\\\\\n", "\t Romania & 0.9 & Construction and repairs, females\\\\\n", "\t Serbia & 1.3 & Construction and repairs, females\\\\\n", "\t Turkey & 0.6 & Construction and repairs, females\\\\\n", "\t United Kingdom & 4.0 & Construction and repairs, females\\\\\n", "\t Austria & 13.2 & Construction and repairs, males \\\\\n", "\t Belgium & 13.8 & Construction and repairs, males \\\\\n", "\t Germany & 13.2 & Construction and repairs, males \\\\\n", "\t Estonia & 14.8 & Construction and repairs, males \\\\\n", "\t Greece & 12.8 & Construction and repairs, males \\\\\n", "\t Spain & 6.0 & Construction and repairs, males \\\\\n", "\t Finland & 20.9 & Construction and repairs, males \\\\\n", "\t France & 17.0 & Construction and repairs, males \\\\\n", "\t Hungary & 10.7 & Construction and repairs, males \\\\\n", "\t Italy & 5.1 & Construction and repairs, males \\\\\n", "\t Luxembourg & 9.4 & Construction and repairs, males \\\\\n", "\t Netherlands & 14.1 & Construction and repairs, males \\\\\n", "\t Norway & 20.8 & Construction and repairs, males \\\\\n", "\t Poland & 8.5 & Construction and repairs, males \\\\\n", "\t Romania & 12.5 & Construction and repairs, males \\\\\n", "\t Serbia & 12.3 & Construction and repairs, males \\\\\n", "\t Turkey & 3.3 & Construction and repairs, males \\\\\n", "\t United Kingdom & 9.9 & Construction and repairs, males \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 2.9 | Construction and repairs, females |\n", "| Belgium | 5.0 | Construction and repairs, females |\n", "| Germany | 4.8 | Construction and repairs, females |\n", "| Estonia | 2.7 | Construction and repairs, females |\n", "| Greece | 1.9 | Construction and repairs, females |\n", "| Spain | 1.4 | Construction and repairs, females |\n", "| Finland | 6.5 | Construction and repairs, females |\n", "| France | 4.2 | Construction and repairs, females |\n", "| Hungary | 1.5 | Construction and repairs, females |\n", "| Italy | 0.6 | Construction and repairs, females |\n", "| Luxembourg | 2.2 | Construction and repairs, females |\n", "| Netherlands | 5.2 | Construction and repairs, females |\n", "| Norway | 5.8 | Construction and repairs, females |\n", "| Poland | 0.7 | Construction and repairs, females |\n", "| Romania | 0.9 | Construction and repairs, females |\n", "| Serbia | 1.3 | Construction and repairs, females |\n", "| Turkey | 0.6 | Construction and repairs, females |\n", "| United Kingdom | 4.0 | Construction and repairs, females |\n", "| Austria | 13.2 | Construction and repairs, males |\n", "| Belgium | 13.8 | Construction and repairs, males |\n", "| Germany | 13.2 | Construction and repairs, males |\n", "| Estonia | 14.8 | Construction and repairs, males |\n", "| Greece | 12.8 | Construction and repairs, males |\n", "| Spain | 6.0 | Construction and repairs, males |\n", "| Finland | 20.9 | Construction and repairs, males |\n", "| France | 17.0 | Construction and repairs, males |\n", "| Hungary | 10.7 | Construction and repairs, males |\n", "| Italy | 5.1 | Construction and repairs, males |\n", "| Luxembourg | 9.4 | Construction and repairs, males |\n", "| Netherlands | 14.1 | Construction and repairs, males |\n", "| Norway | 20.8 | Construction and repairs, males |\n", "| Poland | 8.5 | Construction and repairs, males |\n", "| Romania | 12.5 | Construction and repairs, males |\n", "| Serbia | 12.3 | Construction and repairs, males |\n", "| Turkey | 3.3 | Construction and repairs, males |\n", "| United Kingdom | 9.9 | Construction and repairs, males |\n", "\n" ], "text/plain": [ " geo values bd \n", "1 Austria 2.9 Construction and repairs, females\n", "2 Belgium 5.0 Construction and repairs, females\n", "3 Germany 4.8 Construction and repairs, females\n", "4 Estonia 2.7 Construction and repairs, females\n", "5 Greece 1.9 Construction and repairs, females\n", "6 Spain 1.4 Construction and repairs, females\n", "7 Finland 6.5 Construction and repairs, females\n", "8 France 4.2 Construction and repairs, females\n", "9 Hungary 1.5 Construction and repairs, females\n", "10 Italy 0.6 Construction and repairs, females\n", "11 Luxembourg 2.2 Construction and repairs, females\n", "12 Netherlands 5.2 Construction and repairs, females\n", "13 Norway 5.8 Construction and repairs, females\n", "14 Poland 0.7 Construction and repairs, females\n", "15 Romania 0.9 Construction and repairs, females\n", "16 Serbia 1.3 Construction and repairs, females\n", "17 Turkey 0.6 Construction and repairs, females\n", "18 United Kingdom 4.0 Construction and repairs, females\n", "19 Austria 13.2 Construction and repairs, males \n", "20 Belgium 13.8 Construction and repairs, males \n", "21 Germany 13.2 Construction and repairs, males \n", "22 Estonia 14.8 Construction and repairs, males \n", "23 Greece 12.8 Construction and repairs, males \n", "24 Spain 6.0 Construction and repairs, males \n", "25 Finland 20.9 Construction and repairs, males \n", "26 France 17.0 Construction and repairs, males \n", "27 Hungary 10.7 Construction and repairs, males \n", "28 Italy 5.1 Construction and repairs, males \n", "29 Luxembourg 9.4 Construction and repairs, males \n", "30 Netherlands 14.1 Construction and repairs, males \n", "31 Norway 20.8 Construction and repairs, males \n", "32 Poland 8.5 Construction and repairs, males \n", "33 Romania 12.5 Construction and repairs, males \n", "34 Serbia 12.3 Construction and repairs, males \n", "35 Turkey 3.3 Construction and repairs, males \n", "36 United Kingdom 9.9 Construction and repairs, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Construction and repairs, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Construction and repairs, males\",\"Construction and repairs, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Construction and repairs, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd),decreasing=TRUE)\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddWDT2B8A8KQyF+Y+BhuwDRmHDncdHK6HHS6H/A4ODofjcHd3PVyHu7tvYxsw\n5u7arc3vj0KbpG2atEllfD9/NdtL8pK8vJc8C4phGAIAAAAAAAAAAAAAAAAAAAAAAAAA7vH0\nHQEAAAAAAAAAAAAAAAAAAAAAAADgZwGN9AAAAAAAAAAAAAAAAAAAAAAAAICOQCM9AAAAAAAA\nAAAAAAAAAAAAAAAAoCPQSA8AAAAAAAAAAAAAAAAAAAAAAADoCDTSAwAAAAAAAAAAAAAAAAAA\nAAAAADoCjfQAAAAAAAAAAAAAAAAAAAAAAACAjkAjPQAAAAAAAAAAAAAAAAAAAAAAAKAj0EgP\nAAAAAAAAAAAAAAAAAAAAAAAA6Ag00gMAAAAAAAAAAAAAAAAAAAAAAAA6Ao30AAAAAAAAAAAA\nAAAAAAAAAAAAgI5AIz0AAAAAAAAAAAAAAAAAAAAAAACgI9BIDwAAAAAAAAAAAAAAAAAAAAAA\nAOgINNIDAAAAAAAAAAAAAAAAAAAAAAAAOgKN9AAAAAAAAAAAAAAAAAAAAAAAAICOQCM9AAAA\nAAAAAAAAAAAAAAAAAAAAoCPQSA8AAAAAAAAAAAAAAAAAAAAAAADoCDTSAwAAAAAAAAAAAAAA\nAAAAAAAAADoCjfQAAAAAAAAAAAAAAAAAAAAAAACAjkAjPQAAAAAAAAAAAAAAAAAAAAAAAKAj\n0EgPAAAAAAAAAAAAAAAAAAAAAAAA6Ag00gMAAAAAAAAAAAAAAAAAAAAAAAA6Ao30AAAAAAAA\nAAAAAAAAAAAAAAAAgI5AI73RwkpQtt3OKdH3UYGfgrupgFHK5PF4VrYO3pWr1mnQ8veJs3b/\nFxpbUKbvgwAAAGAoirNC8aVG8PqP+o4RAAD8ZIgvp5V73NZ3hIBBg4L755H2fLmAx0NR1Mqt\nT5FE37EBALDtWF9faU7ebMEDfccFAAAAMErQSA9UOlvdidRW+rqgVN+RAqpJit/dv7h81oS2\nzYID/Hzsrc0sbB19/Ws2bdlu6JSFFx6ElWH6jqGmMAwryM2M+xr1+vndfZuWjuwf4uvgNWDK\nsjcZ5bxbib7uQbj3ZeBUAACMAmRWALAIbigAQLnxZkXTHx3fTQ7E5+t47+Lirz3bzxdjGIIg\n/zu/xZxGBeSnR1c3L5szoEvLWoHVPF2dLEyF1vbOvtVqNGndfcbijdeehmtTq1FWEH9m1/L+\n3ToG16nh6WxnYm7j7RfYuEW7wX/Mv/QkWosNc77xmOfXNy2d1at9k8AqlZztrIWmli4ePjV+\nadh/1J/bDp+HMQxqGW+6IinJvsnj8aQ39ZxvuYzXx8rshHxUU23OxShustee4+6mfARBHi5q\nv+NTttaHCAAAAPx8MGCkJMWsJ4Zb2cX4PZwJdCQFeJUv0tfhAiqS0lsHlzX2saa+vpbuNf45\n9EjfccUwDHMz4bOSYk2sqq0NjdT30XBIX/cg3PsycCoAMApFmZfw92nDdR/0HSNdg8wKABbB\nDaUJ4stppe639B0hYNCg4KaQ8enx1qUzunduW69WQLUadVq3D/ljzqobL75osKnSgo/eZgLp\nSfbpfpj1qKq1vaePdO+uTVaoDXzv2LrOddxVv/1/5xLUcd1/98sYxkQsSl09NsROSFURYV+l\n0ZbrmpxnTjcedmlHrya+1OdEYOb+29SVEXlQVClhvOlKqU97m8u2PDsmh+nqJdl31J4KCq3P\nflW62VdLm0oDWLiEpIjE2h4kAAAA8JOBkfQAGLeS7DdDGnq2Hvz3o5g86pAFiR/mDWoc2GVS\nWGE56Wctyv/0Z0jA/0590XdEmMmKGoHvjPzbp0x9x+inA5eg3IBLCQAASkH2qAjOCQDAwJVk\nvp41uJWLf+NxM5efDb3x4l34pw+vbl27tOnfaW3rVQ7sMPJyRA6jDd74X6/Y4jIEQXhC+wP7\ne3MTa5XSXi4cczoGQRAU5a86MZ4ipESUtKBfUPP+U0JfJardbMrbK1P6NavWcXJ4Ht05TrI/\nnusU4Dd126WsUjFFsMyoxxPaV+k2bUeBhMGwau42LinLWDeuTWDI6FMPP1OHLCtOPLz6r9oV\nG+64HUs33vQYddFp1OlKlQ3zXmuzelFmqPZxUBQ07WxtKxMEQQpTLoUseMzFLgAAAIByTKDv\nCADWdBs7sZKZVgOUvUzZGd8MdCY3+mSbhoNfZDKYViH80sZmDXI/vt7jKjSUPjqtRk0IshRS\nBBAV5mVmpoa/fvb2cwrpXxgm3jCgftDHL8Oq2HIZRwAAAAAAAAAAgBMZrw63bTPiTbbKD7qF\nX9vdNejCvCN35vUKoLPB4szLfXZHSn/XnHSmmY0JOxGlSVI0oetK6U/XJht+c7NUGbA0bXBQ\n4JEIZrNkf766oU6lx5fD77V0MqMOWZR6I7hBn0+FtFpeMUx8fvWYOrF5H/+bKkDVh+du45ik\nYGa7mivuJNHZslRx5uuxbf1TLkfNbe9Bf63yyqjTlSo5nzdsjlMzOIda9oeX2qyuCk/gcHBR\nw5r/u48gyKsVXW/+ldSmgikXOwIAAADKJWikLz9GL1nR2U7NcyQoT8oKP4Q0GPwii9BCzxc6\nNO/ya6fWwd7ubialOQlx0XeuXLx4+1UJrtNu5sf99Tp5fr3+r1CL1wMW9Vq4fILql3a87M+P\nN69bvnDL+VLc4UhKM//ssmjYp1WcRRAAAAAAAAAAAOBEQcKFuk2GfStWM+OdWJS6oO8vwjsx\nM5u5qt3m/n6j88USBEGEFv5nFzdhJ6K0RezsdSKpAEEQFEXnHx5MEXLH4MaKLak+9dt1bd/2\nl2peDvbWhVlpcZFvrl+5cP35V3yY4oznXev0fhl5tqq5yopNcUncwHo9SS2pQkvv3kP7BPlV\ndq/Aj/369fXt06ceROEDRJ6Y1rl+s2t/NaA+Rk43fmhoPcUW+op1mjWqVT0gIMDHQRD9KSI8\nPPzZ7buxBfIIYJKihV3r+H3+PMDTinr75Z7xpiuVsJLpHedpuO4PSVcIiaqqvz+jsTveVipH\n1wSOP1Ztts+nwlJJWdbQ3jvjb/yhaRwBAACAnw400gOV7ILqBdsQHmoteYbRqAsQBEGQ2a3a\nPCC20AcPW7Bj5YyajoS+Gn9MW5AdcWPa+OG7b8fJ/phwc3HvPYPOjfDXUVxZUsG30eyNZ4f2\n3VG/7fhkkXxKsazI1XPezvw3yEGPceOCvu5BuPdl4FQAAIwCZFYAsAhuKACALmGSwkENBuBb\n6Gt2+9/fv3euV6+eGz/z5cuXd85sXbTnjgTDEATBJCXzOjTrlh4eaEFVm5cTvXn8zQTp75ar\nTvvodtJESVl6v6k3pb/tqs0f422tKmTirXHj/ovG/8XMocHWo3uHtQskhfzrn/XRd49OGjnu\ncrR8zv/8+EsdBx//cnKgqu2fHdH6LHHkcavJO44sH+5KOCHLvj35r2/IsGe4GQpvzmxz6fe0\nEEeqYTDcbTw7Yt2ww5/wf7Gu2Hr7oR0DmpI/Ti8uTty74I9xK86WYd+HMYhFqRNDFg94u5Qi\n5uWeUacrpbCyzGUDGu2IZvbBC0Vf7qXKfgvM/T6Fh2u5QRmeifvBSYENlr1FECTx1qSdccNG\nef3sPUUAAAAAunTx4XvABQl5hvNLmUX6jhPQneTHf5ISQO8VV6lWEBdtHFkbH15oEZAiEusq\nvgRuJoQ6gk2J+Uy3EHt5EunwPVuf5CKqXMiMHI6P+cCIDH3H6KcDl6DcgEsJpIoyL+FTQsN1\nH/QdIwD0DLJHRXBOuEV8Oa3U/Za+IwQMGhTceJ92h8hOBU9gu+DQY8Uw0de3+VvIx7AGjrtO\nvc1pAfbSkGb27XPLJNxEXKWIXe1kUR1yJ4Ei5G+uhBn1zCo0e5ZRTBFeLEr+q7kbfhUUFeyK\nyVUauDD1uJDYxarNv1dUbbko/UlTW8IE3Z5tdlPEhNONz6pqhw9s5dU1qqiMIvzbnUMRounv\n0ynC02ekRafxpislu0v5dHTLPw3clcw9OTsmh9GmMAwb7CLfjrXXX0xXp1acfUt2Ztybb2N3\n4wAAAEA5ZigfpQYAMDK73078YuV+O0781Z5qBZ7ZH9sfT6ztKPtDaWH4oCOfOYoe17w6rp/u\nWwH/l9TnK/QVGQAAAAAAAAAAQAMLZ96W/e658/H834IVw/i2HXP3xnzZYuTeEQW4D8CRJN2b\nvCo8U/p70JHd1nydzgWCifNHTL0n/W1iVXtLMzdVIfPiVh1OLpAtoij6z43T9e2pPmXNE7os\nvfa0Le47jxhWtnDUFaWBr0/4G/+ZPLuA8VdmdVC1ZTOHhidDZ6Co/Fwl3B5/O6dEVXjuNi7K\nvb8sSj6bC4ryV9455GdGNRdCrZH7VjR0wf/l6J8PKcKXb0adrhAEKS14f+LA9gUzJvXp0jaw\nkpu1q/+A8fOeJRZQrEKb5ApuWL+Nbys2tilnattq5Y8qx6T7f5xMLWJ3+wAAAEB5BY30ABif\nguQdu2Plk2vxhU6ndw9TvxrPbNmVjXzc68GT2es5iJ2OjJxXC78oynv2qUjNN/wAAAAAAAAA\nAAADUZJ19UhqofS3uX3I0aEBqkI6N5q9xP/7+Piy4thFX1RMfC0pntBnl/Snre/Y7R082Ywu\nDQm3Rj380QbpN3QzxedCwtfsxy/aVZv7V11HVYFl+KZee48NwP8l6f50kUKPBUlZxthz3/B/\nmRe6VEDZXcGl8cI1uFENmKRk+pZPSkNyuvGM96slmPx4rL2mja1sQ7VpBEEQZMRewjlJe7FR\n7SrllfGmK6ns6Nl9h45duGLjyUs3w2OSxZjK7jhMifKeppXKvxrp0cWLrS3L9N/6q/QHhpXN\nmHCbOjAAAAAApOCb9IBlJZmfzx47evz8rS9xcfHx8YU824oVK/pUCug2eMSQ7s3MjaRbSPTt\nAztO3w8PD08q4PkEDDi5ZxxF4NKc2KsXzp87d/nD1/ikpOSU1GwTG1sHB/cades3atq6z8Ce\nfnZUnXY18OXQLvyiR9vdQZZCVYHxLFz6r605cdK7dOliXsLmh7lrmtiYsBs93XBp0QJB7uH/\n8iRXVM1cTZ6WH//u+PFzT169eff+Q3xqVl5eXoEIs7K2sbax8fYNrFmzRpM2XXp0amSl9WgD\nRkmIXZik4Pn1C6dOnX78/ktiYmJSUjrf0tbBwb6i/y9NmjRt171/ywD176jaSH5/a9fu/fff\nRH379i0uIcPSydXNzb2if51uPXv36NLc3kSTXEBnF44dmCjs8Y2LFy9ef/gmKTk5OTklt0zo\n4uLi4uLsW7NRSEhIpw5NnSgHQ9CU+/XZrh07rz+LiI+Pj4tPKOVb2Ts4Vgtq0LRZm0EjfvOr\noLtbm36CN6hLqfvcmxoX9w6iq8PkKNNLCX908uTJC7eexickJiYliQS2Hh4enl6VWnXtO6B/\nd1/KMTFqGVRq1Dv95ieclFzGmRUXJLw9dvLSkydPnr+NSMvIzMrOQU2tKlSo4FLRv0GDBk3b\n/dq/Q13qumB26fF5Bk/vzzb0YmmUSU4nJBEPLhw8dOT+28+JCQmJyVkW9k6ubm6efkFdunXv\n9mt7LxtaLzKGhuvXXt0U36wnJ04LbsTIn2qUyk+UNyh6dfmbOofvPav6rCH3pb8f3E5B/Coo\nhok+1O/Mj1b/mecW674CZvcfV2W/x8ysRRHy/OlY/GKrrWNo7sKjzXov04NxJd/76JcVx5xO\nL+rvZI4Pk/76rySRvD3S0mXwFB/1Td0Dt/X6X8NtssXwDRuQmbsUg3G68eQbhNPi3bOn2i0j\nCFLBbxaCrJMtlmTfKZRgFqp7SOiCropFEuNNV1wrJn5npHJbV9Z34VxnpYfpvoQSMYIg3y6M\nTi6NdRUaSS0wAAAAoEf6nm8faIr7b9IXZ9/Cb7/esrfU4cuK4laM7WCu+jXAwrXGiguR0sCk\nr9DdylbygaivZ1vjw9D/cnmIvfwxukLlNXSO7lW+6Pvfs56PDQnC/8vKdaSqHYlyPi0Z08mc\nsvqex7dsPXT2i8QCmpGn42ANQkVk3wdJ9NeNPkaY0irkSqzSYAWph0kHwuKnJbX/Jj2GYQUp\n+0kxXBGn/JthUlnhV4e3rYWfSEAVE5uK45cdyVb36T5GSSg39l+1+yVtR3EXau9BTFJ6eevf\nfrZUtWkoyvulw5BLEdn0D03pfvEXceqX71vLiQrt0ciXYu8CM/c/Vp0sFKs5Djy2LpyOLgEm\neXRsZbCnki/G4fFNnH6ftyu5RP2JIEXgVHqh9O8l2W9GdaxDcVp4ArveM3ay+AVK7fNM/V5K\nEn3l3pgO7x3WD5OVcpO+zLDLQ5pXoog5yjNvN25VskiMMf+0LYslwurqDvjw6+Pz6B/jsdYe\n+HWHMSnNSehkVoaTnxCwVHKRNmqMWXHu55ujugabqKtPt/Gp/+/RZ8q3wEZJR/PW5vQpnUC7\nFAKlv+6o+CZ9+usTbavYqYowgiA8gc3AmdtSRCpPi4Fks3isv/aScFp8c5ecOC24uT4tXD/V\nUIi/JZ8oO3jjR+rA6R/7yAIH/f1CMYC4JLG21fcM063Jam6iTKUo46IsUZlVaEWdekjVAk9z\nVT66K1rsY4tfd1RkJinAzd6V8QGCN6g5t9+Ji/xw/f5RlP++oFQxFKcbfzSaMJtCk10RtDaO\nYR6mhPP5hfIz9hTYeNtiuVhkxHjTlVTqm640zz/Tb9LHXmmHX/1gCsvvuVJHW7jLdtHtbAwX\nuwAAAADKGWikN1oG1kif+mxHHWIPU6VQlN977lGxoTbSF2c9a+9BfpFQ9Vr+4dhsHwu6wz74\nQqdZB5TXqGpgmAshkjuSGDRy58WtxK9buedtpcEMv5E+J2Y+KYZbVG/n6bZR1BU6iuyq9/+o\nuoUPY5iEdFBHXJzxpGcdF1WbJeEJ7CZtfkjz0Gg20j87MMvFhFZHePvqIQ/TaeVXLF44HVyC\n0sLIEU296UfVzDFoz4s06jOgtF41/dWRevZmqjaL51hnZLLqWm9GtMwz9X4p8fSYe2O6une4\nOEzty036Li0aQDPBWHk1P/k5h1FdP7slQswFQj1a9T8e0zxGsSgJf90F5n5qO4dR0LiRXi/5\niTxK7JVcMkaaFT/aOK6CgMFIo7q/rSlVSC8sNtKrvbV100ivfQqB0l93lDXS31071opPK2Fb\nuNQ9+Ul5RxwDyWZluHjtxeO6+OYoOXFacOvgtHD6VEMt7W1v2b4Cx6lJ3t8utpUFrr/ynWKA\np/PrS/+L8kxPJHPSAkft+Qz50Hn/kQ8oQory3+LPs6lNY0Y7OlvLCb96z4/ppAADnS3wAZZR\ndujH2xpI6Bg0+I2SHJvTjT+fTph+oM6C17Q2LSk1JfYcylR8UKBHy7ctLopF+ow6XUmVFoQ9\nUGEVsdca00b6p1NqyNZFUaHGKYRa8pOhsr3YVp7FxS4AAACAcgYa6Y2WITXSp7/aReq0S631\nwjsG2EhfWhjZzl1JV1+lr+WPtowS0BiBR9J5QSjNQ6DWwpYwid+9nBL66xZnXsWva+P1t9Jg\nht9IH32kFSmGz/KUt6BE7BnJY36xEASpUGV4serXFkZJiOs64sKUuy1cLFRtUykU5Y3Zp7w6\nTING+qijYxnt3cK5xf00NVkWuxeO60tQnPXiV1/1M92R8E1cVt+IpzgJivWqOZ8POwgZ5Lde\nHTdSn2eatMkzDeFSyug398Z0cu9wdJhalpv0nZzZnlG0TSs0vPvlDP4vFHX9rJcIpUVR+CYo\nM7v2NA8z7nof/PZ9+13V7HRJadZIr6/8RIrdkuv7MRpnVvxiw2CUebKsO+EUaTtsNdLTubV1\n0EjPSgqB0l93FBrpo09MYpTfCsz9DrzNUNywgWSzUhy99srooPjmIjlxWnDr5rRw91SjVmHq\nEdm+LF2GUAfe38RNFnjQy1TSf0V5L2QdU/wGnuYsylQG4Jow/whTckfLFKQcwp9nG6+ZjHa0\nlThFh2x6KilJaQa+xZonqJBDu4/Ou5X18Vv+Zf4rUgBON45hWMyFNvgwTr/soLPlgmTC9OlC\ny5o0o6RIm7ctjopF+ow3XdERGuyG3wjTRvpjteVdEMzs2uL/lRUX8eTB3Uvnz169de/Nx08p\nWQzqGEnKij4Lf5wllCd8Rzn0BQAAAAAYhsE36YG2ijNv1m08VvrNIRkL18A+/fs2rFHZ3cU6\nOykh6u3DY0dOf84qkf739oK2CwK26COyVLb1a3s9sYBOyK8nxzSZsAvDMPwfnao17NGta70A\nHxdHy+zkpMg3D8+cORtG3GDogs4DnN4dHV9Ty6iKiYsZpRL662JYKX6xOOsKgizVMj56sX/B\nG/yi0CKwnpWS0RWivGdtx+2TEC+WmYP/bwNDKnt7e3p62glFCQkJCQnx9y8cuhuejg+WHbWn\n5+7pl0ZWoxkliiTEN/EIDg6W/hYXf3n+JlX2L8fa9fzM5FmxJfPvxolFCSE1Ot5NK8L/0dTe\nt0f//k2D/NzdKmTERIWFh7+8c/5eeIYsAIZJdgyv36Jt2gCF8SJM5UQdCh6yE/8XS49anVrU\n9fZyk+Slxn2LvHXtQRYxlRam3u1Yq19C3FlbFWNuWL9wnF4CTFIwuk7r819z8X9EUUGN5l17\ndm5R2cvTzrQsMSHh/ePrJ8/cSCkuk4URi1L+6ljTNy6+myutdghxcWy/RqMySr/nAa7Vm/Xv\n27N+QCUXB5O4yE/hYR+vHD/8LoWQEuKuTFwcNnB2oD3Tg1KLZp5pUJdS77k3CRf3DqLDw6Rf\nbtIXsbt376XXSH/kCWyadundqn6Ap4dLWXby1+i3Z4+eisz43iBUkv20czPy3CpKcVEiCMz8\nllS3n/Tue+DirGtbEgvGK6vlJznx52384tjljegcAov0m59wUXIZaVZckHSq5f8Ok25Yh4BW\ng7o08fHx8fZyKkiJj4mJeXr50KVXSfgwr7b03Tk1c1QleVU4WyUdF7c2U2ylECj9mR4UW/K+\nHWwwcL8svxVYuHXs1bdl3SoO9rbFmUnfvoZdPHHiAzGZlRVFj2jcsm7qq0ALQh2F4WSzXL/2\n6qb4Zj05cVpwI0b+VEOHudOA9nbDr2UVIwhSkHJgwpXFmzt6Kg2ZF3N49ONk6W+ewHZpDfIV\nuTSuf4pIjCAI38Tl2PYuXMZaueKs0KOphdLfPL7FLN8KFIEFpp7Tpk2TLVo692WyK8n2JMLF\nakUcxlCYfqZEIk8z5o49bGjPouT5aw3kr+eyxYRzUciCX3S2cQRBnIPHIMhN2WLGh7+f5Q1t\nYE312RcEQR4vWoNftK8+hWaUFGlcdOqsWKRgvOlKB64nF8p+mzt2RxAk+/PjrRs3Hj5z5WNs\nFj4kigqq1mvZsWPHwWPH1XVndlH4ZpVHuVpuScxHEASTlM66m3ShM4OZFQAAAICfkT57CABt\nGMxI+oXBhFkoeQKbEUuPK442k5Tl7JzeU9ahkscnPOfpfST9id2DZL9RnmmzboMWrtl548HT\nj5++pGYW4lcsyX5YyYxQc2Raofaq/x4pdqCViAvOrPuTNGqcJ7A7laDJwHE80hRb878x6D+b\n841QIYKiqNJJrgx8JH3Czemk6Lk3P6I05NXf/AjnX2g/a8tZFfN6ST7cPNqKWOVn7TFBVRw0\nTkKZkcPxKw6MUDnCgOY9eOJ3QqMRyjPtO3O3su9Hih8cnEM6+U515mm2X/x2zITy4U3mTvU2\nXXgmIu68ND/h2LLRdgoT+TacfV/VsXN34TAOLsH9eY1Jh+ZSr29oWJZiyLKi2OVj2pE+/2nn\nP65ERRd8UgQ6Nf2e3wotqiw6qOTsScpytk1uixB5dzxPcTZo0jjBG8ilxAwj98a4v3e4O0yN\n0wB9xVl3SCMUURRtPmxRdA55BIZEXHB+tcrpwVUNyOMoNcZe6YEPVuN/T9UeqSj/jRmuWtPc\noZvaVahpMJJej/kJxkHJhRltVry1PuFB2syu7o7zz5RNLS15cX4L/oOmCIK4NjqoPMZalHQ0\nb22uR9JzkUKg9OeWwsupTIvhS+KKFT6NLCl9cHCBryW5i61Pt+2K2zaEbBbj8rUX02HxzW5y\n4rrgNuqnGvpeLwqW7V1g6r3z9jfFMDmR11rhvrPgHXKAFKAg+aRsjG/9uU+4jrNSETubymKo\nasY+VmR8mIW/fCZWv5ACpH8chA9gX203/Y0XJO/Br2vtMUmXG5eaTuwT49V5KfXE5Jnv99gQ\nb64Zz8kTLWiG0dsWd8Wibug3XdGh5Uh6fA5Zuc/RtZO6CtX1UOQJbHpOXBZVUMpoR4/HBcq2\n4Fx3F6N1AQAAgJ8QNNIbLcNopI8NHYUPg/LN/7kaR7HN97uHI8rovZHe+sckilV+nfbwM9Vn\npZY1csWvaOXV5QnlzMOZH44HWRF6PTvVWUbzQFTZHUD4ElWjLWH01323gjDLFoIgj3OVzGRV\nnHklmKjn9BdaRltGy0b6pCd7PU3Js4DMeUv+WhiGYZiktBrx44VTLsdSb7w46y5+4yiKflWs\nVZSG1DQJsVtHnBW+Ev9yi6K88YfCKfae8nC1JfHjoLsVvlbItJFexi5g8GfV72/Zn84GEqti\neXwr5RkXlxcOY/sSFKWfJ32D06PN33mUE9892TCAdOq6HoiiEwEpoWX1U5FUL+S7f/PFhzez\na0cRmCYNE7zBXErMMHJvjOt7h8vD1DjTo29jU0LFE4qiv299ThE+7cU2R2UT9iqv6+csNZYV\nx+ArRs3tQ9Qe6ae9LfExqbeE6ovXdGjQSC+ll/yEi5LLSLPisqIv+MTDE9qfpewMlPyQUH0s\nMPXOFys/Ro1LOpq3NqdP6VykEAxKf66paKTvsOAaxUpFqfcbO5C/jL70E7lFxxCyWU5fezEd\nFt/sJiduC24jf6qhTyxKwY+TRlF+xwmrH7z6VFAmwbCyuIhXB5eOwvdv4AnsbmaRE9LqHzPh\nm1jVTixR1teLeztrOMoi6T/yIVe7kYjG+hHG6FcddpMUJPpIC3yAyr1u0xpO6hkAACAASURB\nVN98WVEUfl3FllpONy6VF3uG1D2lZr/58SreiaIuryc94voP3EQ/StToF52cFou6oO90RYc2\njfSivBf4dVEmEwhZeba6FM1gX6mvB8rWFZhX1k9+BAAAABgPaKQ3Wgr1IL3++N80jWx6nKJ0\nDzTqpySDXQmDzFqveak24qd+r6r4zKf3Rnqp2uN3UfdQzv22GR9eYOZ9WVklIEn664341xUU\nRbfH59E8FqVe/1MHH40KfvR7qZcNciVPDnkwRf0hsEvjRvq82JerpvU1U3idsA+YoTR8QcpB\nfDDbStPp7CW0mw9+rf/SlA+e0CwJYWzXES/DfVcMQZAaEy+rPcDrEwmzPtaaTq5K06yR3tSm\n0ds8Nd8bywo7ZE2sRq867IZiME4vHMb2JQjtT6jENHfsmCZS/x56chghJzS376R0HaXJbPa9\nJOqNi/Jf4ZsreIIKauOjlmYJ3nAupYHk3hjH9w6nh6lxpkdTYdpJ0niaBrOvq13r67nxirFS\nWtfPaWrc+gshK96ZpKZcm+xljTvhfOpPFNOhcSO9XvITLkouI82KMyPH4bfp1YH8mXlFvZ0I\no3L3q3iK07ikk1J7a3P6lM5FCsGg9OeaskZ6jzbr1K6XH3/Ridhq69Jwm2IwfWez3L726r74\nZiU5cV1wG/VTDVPpr7bYKEwzwDexcVb4oBuKouOPRpJWz/iwTBbg133k/+qKpDquU2nI7QSO\ndrN3dG3CCeGZnVJ4PCNVmNRd9IbRLvBP3Ty+hS43LpPyeD0pSZjYVP592vwdB47fe/bu2+ew\nW6Gnt6xZMrB1IELk3mpmgYoOfBqgX3RyWizqgN7TFR3aNNLnfFuIaEFg6nU8hm4HpqLMS/h1\nj6VyPh8JAAAAYNSgkd5oqZ5RkKnG25SPTVFbP5UbS/jqlbljCHU/WanSgndeCsOgDaGR3sqj\nd466+F/oXgm/Ssv1yrv8K7oygjBpZ+CExzRXVCovYSMp8uvClcwhpujLqcGKCWAjGxM4M0Jq\no2ozbjJ1P5LJf4wdMrBX/QAvUjWQFF/odOSL8reF9A/98CEbb6cahiUTsasJfq1dKiqDNEtC\nGKt1xMXZd/DnRGhR7UuRyjHHMiW5T01wHR2s3MYy3S+mrKFx+EUlEzMqujujLn4toYW/YiUC\npxcOY/USSMqySaMc/nqgptJTqrQwnDRr8ZIvSt6xFZOZa+PNdLY/r6INfi3FuViZ0izBG86l\nNJDcG+P43uH0MDXO9Gh6OpXQxmbu0DGLXk35XGLLDaKirp/T1Bh/sw8+mNIGQpmijPMoLuu2\nq7qQTkyoadZIr5f8hIuSy3iz4rjr7fEBGm1VPzfSpSbu+FWmfM5WGkybRno6tzZ3T+kcPdtg\nUPpzTeHlVOlgX6VeLG1GWJFvFVlInl1Gv9ks16+9Oi6+2UpOXBfcRv1Uo4HP5xYrnW8JD+WZ\njtpwV2FV8XhfW2kAC+fuRXpq5CzKOI+P6h4aPSqYKzsxqw3pnFQfr6Qj14NhhDTAaOpBDMN8\niDk8aWYCTjeOl/TkYBM38hALquSB8jtN3JDBak8TmkUn18UixwwiXdGhTSN93I0OimmGx7dq\nP+CP/RfuR36Jyy0qLczJ+Br5/vTedcN/rYcqVL5ZuHSg80iGYRiGifFfQukQSuttFwAAAPhp\nQSO90TKARvpHYwPwAZrRq+/GMOxKz8qkOBhCI32/m/Fqtispwb8/CMz90krpPlWX5D4W4J5x\nLV0G01xRlTE+hEoTC2f1j8vZEUeVvvYvjdX1hH5qax/oQ1HhlNNfVO0o5/PBBTinVY/HxYs+\nRpjEjH4jvfokhGEYq3XEEbua4gP4j7xHJwIYhv3tJU8/PIEN6UVeg0Z6C6d+NCsDxCXxrsR1\n53wlv1tyeuEwVi9BVuRUfABzxx50oip1h/jB3eqTlHw8UjGZzf5INaO7zOVmhFYcLhrp6SR4\nQ7mUhpR7c3jvcHyYGmd6NA10JowP7nxCZd5OkvVpHiliSuv6OU2NZSVxdvipmB27U2zz1fxf\n8NvsTq+XBjXNGun1kp9wUXIZb1ac+KATYe8TWfuKsDaN9HRube6e0jl6tsGg9OeawsupR+uj\ndFctzahMbLoY+DSZFEa/2Sy3r706L77ZSk7cFtxG/lSjmezwcwOaVUJUsAtou+OWki/1xF0Z\nKQsz6W6i7qMtlfykuywaKCrMZbvHQ2HK05EtK5LOiU2lvsnKhmvfIvbwaHEkmtG+6hA/mvCO\n+FEqTjdOUlb0bU4PcjailMCs8uarzGJCB82ik+tikTuGk67o0KaR/vlftUiHaevX4dRblcVB\n3JOTrdzJfUT8Bpyjubv/ecrns6nU/Rb9eAIAAAA/IWikN1oG0Eg/xs1K9l8U5T9V9mlzpTIj\nZpLioPdGer7QKUXdZFx58Wvxq3i1PU0zPlJTPHCTLvLMaI4zUCXl6V+kc2hbtdu9GFXzMEue\nHl+E78qKt1rr2ZuZYquRXmDqteIi+x8te/MvYbgqzUZ6OklIisU64m24z/4hCLKSdn+L98vG\n9cb5Rvy+nQaN9A1Xv6e5awzDTnf2xq/LdJo4VWheOIzVS/B8BuFdt+5iBseSG0vIUqy9/lIb\nAYFZJZp910k1CKw30tNP8Bpg/VIaVO7N3b3D9WFymgZKCz7ih2vwhU6xKr67qUxZM1tTwllV\n8WlbDdBPjbsauOBD7lMdsouD/CmFb+Icz8aHYzVopNdXfsJFyWW8WXFW9AR8AKFl9duUn1um\nT+OSjuatzd1TOkfPNhiU/lxTeDmd9DaN/tpXB/jh16065L5iGD1ms5y+9uq4+GYrOXFdcBv1\nU42W3l079veYfrUD/BxtLUwsbCv6BXQeOH7Hidslyu5oSVlehx/5qn3AVJ1HVg7/yGRiXZ/F\nLUvE+afWTa1oRp6Xwsy+4e105YXmtfZe+JDtLivp3EChTQUz/OqPibc8pxsnKruxa041G0LL\nLoUGff56kczyvOI0i06ui0UuGFq6okObRvqTdQllqF3gILWZtijvYy/ct2MQBOHxre7Q+3zM\niVryGVMqVF5NP54AAADAT4j81SsAaMLEeQdSC2SLZnYdG1jTfXmw9Z1mqvBZcf2ycB7kLFRz\nO6Q+PodfDJxRn9EuutZ1kP3GJMVnMooYrU7i3GDF8hBCa01O5LmWvm6/jpl9LPRhXFJ6cZmk\nMCfjS/jzg5uWdK3n0bDv3IQSsdJNWfMN61rQgfKELQZOvxMZ9leIn/rQTJQVhv25NkyDFekk\nIdbt/JYr+80T2E3ytKYIjFdjxpYTON4qOnDQN2mwr/pAPzT9lzBILvaUJiecROMLp6W3FxLw\ni51/Uzn2RZG153j8R1gLUw5J1K1iU/F/rE1DoR3uEjwXl9Kgcm8SFu8dHR8mu2mgIGUvhmGy\nRWuvqV4M8iX+7IbObMUEj1Fq7LSS0Ga5bmOE0mB5cesu4s6tW4uNHib6eRrXV37CRcllvFmx\ntcef+EnaSws+dgnqtD30HUub14RenmfwDOfZhoLxJjmdQVHh3/729MPXndMSv5h6/5FiGH1l\ns1y/9uq4+GYrOXFdcBv1U42Warbrt3TbsddhUWnZBSUF2TFRYZcObx7Vu6WJsqQUsbPX1cwi\nBEFQlLfg/FxdxxUn8Xqy7LepbVOKkIw8P72+hZ9brymrvxWX4f9u5d3uesSdlg5mylfDiIsM\nry0pWy4hLXO68R/yYq70b+TdduS/n3JFNLf87MTKht6VJ6w8h6kPyzIdF4vaM8R0xbF49+rB\nPzRtOfDh871qM22hVeD+x/vscXmjRJw/dupTOrtzqyd/BijOuqxZnAEAAICfhKG8hwDtXcrU\ncOTNwzH+GuyuKON8kRj3Wu4ziP66PIE9fhiNIbCt1l5tmPjT8fjFFtVsme2iOiH8y3y671qq\nTDv9uKc3oeJSIs6/sGPJgJCm3u5O5kK+ZQVH38AGQybOvvgySRamxqB13R0JJ9/RYOojqJlZ\n21f082/crte81buefEq9c3h5E28r9avRhIm+Rbw6uGp6cNUGtzRqgaOThNglLv76Mk+eiiyc\n+imtuNEBvolzb0cGd7RN5ZH4xcKkK5rvW+sLp6VrafKdoih/pCuDrwYiqMkg3DShYlHS8zw1\n2UKFGjWpA+gM+wmey0tpaLm3DLv3jo4Pk900kB32Gr/o0aUlo9X9fqc1EShdGqVG10Zr8DWM\nkTuWKw32Ys5W/OLAdW01jqaW9JKfcFRyGW9WzDervLm1B/4vBYl3xoYEVQru9PeybQ8/xqta\nkTu6f57BM5xnG2rGm+R0xtyhqxuTpnGbioRZJYpzbiuG0Vc2y/Vrr46Lb7aSE9cFt1E/1eiM\nuCSm19TvN4tHm80T/ZSfpcLED4c2LurfrVOjurWqVg9q0bbT8D//OXf3LbtNhI+/5sl+m9o2\n1H6Dic9PD2zm06DXlPu4LUsF9Z37MfJyUycVLakIIrAkDI8uzS5ltOusMsK5sSKOauB041IZ\nr3bXqf7rf08SZX9BUUGDriM37jv1JupbRk5BmagoPTn+xe3zaxZMrOWKL1OSt0zvXnfImjLd\nNtTruFjUhsGmK65NPn/z8Q/3bx8OsCBPIaCUpUfPowMJA2O+npxDZ0WHhvKeUiU59woluu86\nAgAAABgNWqUyAIpEeY/xiw71yJ9xotbBzvR0eiGrMdKKtYoXWryEd9n4xVneNrO02OOX5CLE\nt4IWG0B4Ju7HPjwe16Ht7sfJ6kMjCIIg1QeueXVgcmu7Gfg/VjMXahMN7W1KzJ/gxuQtTmuF\nmYmRkVFRUZFRUVHSH2EfP2WrmGmAJjpJiF0lxHvQ3FFvVUvmDj0Z1aGb2rZyMeGniL6fcFHe\nC5orcnHhtPQCV4MgMPdjOm6vlYv52gR57cDL/NKGlGOzrHzZ65iiHS0TvI4vpaHl3jLs3js6\nPkx2M72sV1n4RfdO7qpCKuXYoDaC3NVs12ylRp7QdWU9p2E/SuTCtONH0vYNdCK2zUiKp5yK\nkS2Z2jRaHMBgpCm79JKfcFRyGXVWPOi/AxsqdnxPbECKeXpl+dMry2eOs3Txa9qsWfNmzZo1\nbxYc5CfkvjpX988zeIbzbEPNqJOcbpjaMbt2QsvaPmaCmB8jGkvz3yqG0Vc2y/Vrr46Lb7aS\nE9cFt1E/1ejMwzndwwtLEQTh8S23HxumGEBc8m3djD8XbDqbL5a3DkaFvbt388retfNd63Zf\nuWbjoOaerEQmCjci2dRJq0flkqyPS6aM//fgfQlGbtizcKu/cP2maX0aUG9BaEuo4hBlMWv0\nzSY2ppKmHuR04wiCFKffaNZsXHShvAHYLrDrgRN7uwQ64IM5uHg4uHjUbdl1ytyl/y0eP3zh\nQVl3otcHpzZ1qPxkbXdGEdOGjotFzRh4ujJYzVYtQfb3li2W5Ny/mV3SpoIpxSoIglh4yTte\nYBJRTLE4kF63AAAAAOAnBGUk0JAo5xt+0cLbQlVIpdys9NwwTGLmqrK3rExsYZnaMPQVJ5M/\n3KgBoXX1nQ+iG8ybMH/VoWTKFgWBmdfU9XuWjG7LQ5BEkTwkyjPxM/8p8gFRVszVixcvXrx4\n+eaDuIwC9SswRCcJsausKAq/aO6mtwpcgXlVpqv4mglkDY3ikliKkFxfOC3h7ya+KbNKWwRB\nLD0tkFfyxdgSNZmMiT37tRWa0SDB6/FSGmDuLcXuvaPjw2Q30ytJLcEv2ngye6jgmzEbSc9R\nauywqj3S5IBscfWWTwPn18YHyPg4812BvDqvyvC1Av3VzuklP+Go5DLqrNjMvtW9Z4e7th32\nIFFJUixIib56Mvrqyb0Igpg5+nXt2btPnz5dWtcx52wWJN0/z+AZzrMNNaNOcrphYu2hPhCR\nL66RXlKarjSMXrJZrl97dVx8s5WcuC64jfqpRjdEuQ96rH8v/V11+MnOChN0F8Td7NW8x9UY\n8nBhmeSXZ4e0unx3zcWdk1mY1ycJVx1h6qimAU8lrOzi5r//mLH+m0ICEJh7jpi1aNGMIU40\nJgK0rEQYA8C0MTUT15iKonzSZ8s53TiCIEs6DgzHtdDbVx/64dUeirlJUJ5l/7n76we6BPRZ\nVfqj+fnZ+t7rRqVNCbRjFDeN6bhYZMwY0pXBMnfsFWxj+iRXnucfTSlU20hPygSSRNBIDwAA\nAKhkHNNcAwNEmtnJ1InZa5i5i2G9BvMt1Hf1zSljc0K4snx2XjxQnuXof/d9S/qwYf7kNvWq\n8FFyRZRDlYYT5q59Fhu5bHRbHoJgkiL8x+lNbRob5jyiLJKIUnbOGeLm4vvrkIk7jl+lbo/h\n8a1r1tCk4z+dJMQurIwwfsXMTW+fkBCYeTFdpaKZ/HRJxPlKp+PTzYXTClZWjJu3jW/iwnQD\n5u6Eq5at43kJtcAowev9Uhpm7o2wfe/o+DDZzfTExH5mrubMNs43odsaxGlqdK6/2tVEHvOI\nLStJAW7+7yR+cc6sWvQ3Xj5wUnIZf1ZcIaD37ej366f/hp/KW1FxevSJHcv6tqtr5+Q7auGe\nFBEn3zLV/fMMnuE821Ax/iSnA6bOjN/18Pkngigv0vSSzXL92muwTynUuC64jfqpRjdODhuS\nWSpBEERg6n1S4bMOpflvOgR1oWihl8IkJbumtBuy+6P28UnElUqmDpo00pdkvh7TxrfrxNWk\nllSewLbP/1aHJX/ZNmcYnZZUBEGsqxA+C5jzIYd+NMQl33JxyY9v6m1KrDDhdOO5X1Ysepkm\nW+QJ7U8/2E7n6yG+vVacHVlNtohh4n/77aAfMa0YdrFoLOnKkP3hSeg0+TVC/YELrQmr4Ltx\nAAAAAIAEOrIBDfFMCU+xJWklqkIqxfTrTYbAgjgbVZ2Gwdo0b1djdS4BEzv/iQvWTVywriQj\nPjI2MTUlJbuE7+Lq6ubm4etNeEcqybpagnuDMrXrwGI0DFBh8o2WQb8+T6X6qLCVo6e/v39A\nQMAvTdr27tlJFNrOr7+G0ybrFEqo+ygr0FGVnCKJmPEXxHNwL94oKlQc5GQcFw4VmPFQWZWE\nWJTCdAOiTELve3Oe8byp02YIl9Jgc2927x2DPUw6hDaE3aUUM6vHkZQpH3NJwnVq5AkdVzd0\n+e3+9w+IFqYeOZm+q7fj92pHSWnK5PtJssDWnhP6ORlkAySnuCi5ykVWLDCvNGn5oXFzll09\ne+b06dPnQ+9nqK7NLMn8smvBiKM7Dxy8frZHgM47qHHKYJ5tqJSLJMe1kjTGs87E44ZOonxb\npQ0meslmuX7tNdLim+uC20hPi87kxx8cdjZG+rvhwrPVFYaoLmzZ/mGW/DZ0b/Tbosn969ev\n72dX9ubVq8fXD89ZebzoRz52eExwSEhKP1dm0yGQEK4P8zbWxDsbW3ed9on48ReUJ2w9ePrS\nJbPquzOLm10QYQ7/rDdx9NcV5T7EL5rYNNLlxl/PIrSsV+57rIW6Icsy7dcdN90dJKvtyfw4\n+23Bn0GW3Cd+Ay4WjShdGTJXHyskLEO2SG9iOULRCZ+kBwAAAChAIz3QkIkdoQ9pYTyzD8yn\nZzGr3WAkR8zJ0CI3wvAOZPP1u8EcfChLS6YOnjUdqL4qV5h2Ab/o3LQJxzHSJ1HOi861fn2e\nRm6Pca5Uo2FwcHDDhvXrBAUEBHg6Ejr5ftZhDLXBN3HGLxbGMbsHWSQu/sp0lc+4bxbyhI6k\n/xrRhXMz4X/9cSzikm/UgRUVfCOM4nWm14XfiBjIpTTY3Jvde8dgD5MOy4qE2SNz4guR6g6q\nAisqo3EmdZMa267qiDTcI1tctjOy98wg6e+ke5OScc2u9RdPZrjt8oCjkqvcZMVCa88ugyd2\nGTxRIkq/e+nC5Wu37t69+yIiXvHjqQiCFCTc7VevyZWYF62NqrcH9VO64TzbUCs3SY47otx4\npqtE4wo4is/B6D6b5fq110iLb64LbiM9LTqzrvs06cTmpjaNzk4NIv035dG0xT9GY6Mof/jK\nU9v+7Cbr2dmojUejNl2H9OvTt8Pg22lFCIJIxPlTeu/o92CKNlFyM+VF/njIKslgVtsTdXZB\nvT6LconTJzjX6bV737YuNcmvinSYObREkCOyxeKsxwgykOa6JbmPCJuya6PLjf93n9DC3W1u\nPZpbRhBEYFHzby+bhd++j3LGMPH6mNw9TG5MjRlmsWhc6cqQWRA/aELqu6ZUaX4uftHd1Phm\nKwEAAAB0phzWCADdMLGpi1/MfJnAaPVnecy+3sTI5yJOht1U9CVU3H8oML7JABAEiT/7Dr9Y\ndRiz7/gal00hv97FtcegPGHT3hMvvohP+fL+/JGdsyaPbNesPqk9xogIrergF4vTwvUVE1H+\nc0bhxaJ4/E1qQjwQxKguXF1cdWFZUXQCw2ncXqYQ2gvrWpW3ykcDuZQGm3uze+8Y7GHSYVfH\nHr+YdCVJVUil8qLeqQ2jm9ToVGelB64SKmL9OtnvE3/ekv3m8a029a6k5b6MEUclV/nLinkm\njq16/L5i68GnYbH5KdFXTuydMaZfgJslKVhpYdhv3bbrJYYao35KN5xnG2rlL8mxrjjzEqPw\norwnxA9yqexGrPtsluvXXiMtvrkuuI30tOhG2st5c1+mSn93333YUUCu1jsxdr/s9y/TL++a\n2k1x3jLHX3qdf3nQkv993ZRH057laXWS3XH9Khg10ifenF+z1z+EmcCFTuNXnop7cVKzllQE\nQcwde5riRmMXZZwppT2QN+0BIXG6tauuy40/zSXkGCEMpzdoGmCLX/wazmA+dm0YYLFodOnK\nkBUmEHqnkdrslRKlE1Kyhwk00gMAAAAqQSM90JC5fQh+MffrEVUhlcBER9K4GhkjLv6cxM3n\njtzau+EXb8dRfcjWYJ3YFoVf/LOOhu8nhq848/y0R8myRZRvviw0+v6JDSF16X662MCZWgfb\n4GpkCpL3UATmVHHm5dgSBjddfsLmMgz/zQVCL3LjunDtHeTfGcUw8e5kRtmCeGeSPDyPb9nY\nplxV0xvOpTTY3Jvde8dgD5MOax/CscSfZ/a9gy97oqgD6Cw1ogL7tU3kF6IgZd/5jGIEQUoL\n3s36IJ8l0qnu6gCFmWl/BhyVXOU7KzZ3qtyh97Bl246FJea+ubS1dRVC/XvKkz+fcNnzlV1q\nn9IN59mGWvlOcqwozrwcw6SAy/m8Bb9o699eVUjdZ7Ncv/YaafHNdcFtpKdFF7Cyv3p875ti\n5T7wYC9yZxRJaers8Ezpb4Gp16VFKgfsWnn1OtjV+/tWMfH8O4naxKuKufyOK0nLprlWUer1\nZl2W4L/HZ+Ha/NKnz5un9dTmAwc8gUMPB/k0M+KShMOpdCug3hArTKr9VlGXG88mDvtm2rRJ\n+ri7KENHTwiGViwaY7rikuQzztcYxt8jSPySj1+s6WutKqQMvl0fRYUVzaCRHgAAAFAJGumB\nhgQW1RvbyD+OVZx58X0h3fHrBcl7M0s5mZEeQZDc2A0cbdm9M2EUxbN1ERztiAYx8SE7le5q\nxZ9Xx8lnnTJ37N6a9hfOjE7chVUYrjWr2u9np3fwprOi2i9HGgqeeX8neRfm0sKw0Cy6n//M\njpruhdMvNFabiGCYeG00g076UdtD8Ytu7YLxi8Z14WqHEFr4Lp1gcCYLkvfG4T6/au7Yx4pf\nrr5KaziX0pBybwJ27x2DPUw6LJwGmuEGpuTFr04QMXhO2H5LTbWyLlNjy5WE5px/90QhCBJz\nakoRrqKw64ZuTDdbTnBTcv00WTEvqPPYq2+fNKmArwrHVkfSbQvRO/VP6QbzbEPtp0lymsMw\n8T+v0uiHf7LwPn7Rb2QVisA6zma5fu010uKb64LbSE+LDsScG7o/Lk/6e+LZtUKF/KMo/bRs\n9HCFKv+6Us4c3mxBS9nv6KOMZynHa1RJ3m5Xkv2U5lr/thnwBfepC7vqfR99ut6hkvomQLVG\nNHXBLx56RLdhcnNEFn5xWnV7xTDcbdzbjNC76D3DOSSywwhzjNMZ8cwKQysWjTRdcYY3uE51\nP5mqgckM62PXx+fJfqMoOtSFPLeToown8m5zprZNLHnl8FEHAAAAYAs00gPNTa/nJPuNSUr/\ndzaG5ooflm/SYHekT0mp8m7lNQ02ToeNzywLvvyWiQ/9R0R7bitEUjygQ9tWP3T97Zh2ceF3\nCwqQPWNXqVojR0wrKhHbhuFrr6qOnqNdNAxa3Mk4/GK3mQ1prhh1jvFHNPVlcEfCy/D87ZE0\nV4zefTUex6mKjZYxOTnlBt2gmGjS1k/4PzQbR6iHNa4L5zeqNX7xw4ql9Nd9vWANftG97e/s\nxMlgGM6lNKTcm4zFe8eQD1MtnonrBHf5xLZiUco42g1sBUk7jqgbxaLL1OgYtMIHV8EavnYT\ngiBb57yU/UVoUW1tPWcla/4cuCi5jDQrLiuKaIbTrutcOmsJzP23zyd8fjglTEeT2VJg8Snd\ncJ5tKBhpktOxS5PO0QwpESWPvUzIpSe2c6cIr/tsltPXXiMtvrkuuI30tHANK8saOuyU9Ldj\n7XlL6itJ5+IS+YWwqaamS6K5cwPZ73ziYFmm3Nq7yn6X5N6nCCmT9mLWEtwEGOYOLZ8+PxzE\n0uQiNWc0xS++nk1rDoz8+M13s+Vz9Vs49W9krSQ+3G28s70ZfvHAy3Q6W5bZFkXot1cn0FZV\nSHYZVLFovOmKO3/Xl5diktLMafcZfKCkIGnfS9ykTeaOvWrSmKgm+WWm7LeZfWf6uwMAAAB+\nQtBIDzQXvJgwD+GTaXNLaLw5S0pTJ+6hW92G94b4nSrlGy/LHH34swYbp4Nv4rHA3062WJx9\ncxztGeGSHk4+du3mnR8S/f21jMyUSvLXLXFp2l+P1Xfgxcqyh817JltEUcE/U43pO1hMFSYS\nqn4CrYR01pKUpvyhbmCH4ajxd2/84ocVU2l211i+O1r2G+UJ//DU9jPMSXfHP8ihNZnel2ND\nH+fKX1D5Ji4LAwi9yI3rwlXwnedlKn9HLUw9svAlrXFjZUWRIw9G/5FiXwAAIABJREFU4//S\nfVYNliOnb4ZzKQ0q9yZvn717x5APk46hkwg7vTlmci69DO3YqMVqw+gyNaJ8mzXN5ZP05ift\nOBN9ch1uAIpPj03lcuAsTVyUXEaaFfOFzo8fPnzww83Q1Wn0BjbZBBCanzF6J5BTLD6lG86z\nDQUjTXI6lvZq8uF4Wm1+T/7tnoibG9/SZXBPB3OK8LrPZjl97TXe4pvTgtt4Twun3m/ofi+n\nBEEQFOUvPzdNaRi+ibyPS/5nNVPulRXJcyRTJ63m2HNtI+8QUJr/Jo9GYtgzeDt+cUrof/g5\n87XkVGe1K26u+KyI+TdwraSqPJi2Fr/o/8cMHW+8zQAf/OKj6fvUblYm98vmixny4pjHt5ji\nwcLYcToMqlg03nTFnbqzCROwXfhdfSYsEzp2IX7Rd+h0Oms9TpMnxQo16lKEBAAAAAA00gPN\nOddfW9NSXs1dkHSs9+5wtWs9XdTlOb1vZ5o6EToRP1+sfs60+3M7RhZxOOX1wPWEHqBHevWL\nLFI/2yEmzh3f55BsEUXRP0ZX1TImrefUwy/+N2Se2rEFpye1eIE78y7B634ldtMuZyx9CHNw\nfcinlTDOT2kfW0J3Bku9q1BlQWvcnLfFWTdClj9Xu1bKoxkn0+XtVRV85/lr/dYqLs3o32uL\n2mCi3FedR57C/8Wz3SbSHIzGdeFQgf3mEC/8X1Z2GUOnOeHUmC6fCuWHZmrbbHGALqe80wWD\nupSGk3uTsHjvIAZ8mHRUHb3cFDcRYmHq+Q7/3FG7VtrzpaNC49QG03FqbLaCMM3yqAFj8JPt\nT1hKdxx/ucRFyWWkWTEqsMd/dRWTFE26S6sJKvoYYUZijyA7VSG5w91TuuE821Aw0iSnY5ik\nZFKnecXqep7kfT3ZeSnhEjdaon6uLx1ns1y/9hpp8c1pwY0Y7WnhTllRRPfZj6S/vbvsHe6t\nvP3VzLG7+Y9OKlmR8/Mps6awjfIJTjy7e2oTPVu/4bLfGFZ2PF1N562ywg/zI+UTgFu6DF7S\ngM0JMHhCp61d5P0GMEw8ZuxJ6lWKM28MOxMjW0R5pismBeh44/4Tp+AX09/Nm3mb3qBnSdHc\nEMKUPA5By9xMdFTlazjFolGnK+64NdtaxVxeiuXGbh14KJoivEza8zWDL8ofO1GecPXsWjTW\nkxzHNdJXHeVLP6oAAADAzwgDRkpC/kDjpcwidvdQnH0Lv/16y94qhnmznDDXE09gu+ZBMsU2\nY0PnmSr7FtGt7GLFwNlfppI2fiWlkGLj8deXmyuMmahQeY3GR6eEpLizI2Fgh2vzybHFZZSr\nlG4ZVA2/imPQYlr7olRWHIvvwIsgSMu5oRThn+8dhw+M8kwPx+VRhC/OutaUqM/Ml9pHW8qN\nGPNNiflsbRnv/ZoG+L34j76udpUbqwbzUHISWqniRGmYhDAsM3I4fsUeb9NUhaSzi8i9hNor\nlGc+98JXir2L8j+0IQ5O+vUUOTyd/ZIuolSbWecodl1aENajMmHwH4oKDyUVkIJxfeEwti9B\nYepJUrbm0+WfIjFVhB+s6UeKbfsdERpHQKlb3SvhVyyW0FxPJQ1iYlCX0nByb+7uHQzj9jA1\nTo307e9EmJQVRXmjdr2mCJ/75bSfsna4hus+kELqIDXiScT5SiOGIIiFY286W2CKztUxnPyE\ni5LLSLPiY43d8AEsXLpmlFJGGsMKU67iB6uhKO9xboliMHZLOkWcPqVzkUIwKP3x21d4zu82\n5jHNXaik8HIqVX3odoqzUpB0s54tYfCuqU1wikjNXYDpI5vl9LXXMItvOsmJu4Ibwwz0tHBy\n+9BzbXzgj+RX4bbShPTDsmryzltt16u8IqK8VxVxX464kKFthVJ1XF+WkNvx1IHjrnbBX4Ka\n055puXdFBclHhLhnORTl/fsoRWVoScnMuk74KHm226uXjS9tRPjqucDUa/8r1e840s2L89cP\nCsSvhaK81R8zqdeig37RyWmxSJ+xpytqocGE58bZMTn0130wiTCPJt/EefOTVOpVMt/9V8uK\nMC1/5T7/0dlXceZV/FqHU5W9twIAAADgB2ikN1qG0UgvKcvt7UGYTJIvdJq0/mKp4ju8RHR6\n5dgKgu89eXl8wlp3lL1kiksSZOGlrDw6341X2qArubN3jiywmYt8/A3LjfQYlv5qlYBYa29b\ntcuh21FKA6e8vz65sx8+MMoz2xaZTXNf1O5Or0NKA61+X/gxi1xRW5oft3Vye1LIoD+oWvQx\nDCtIPUxapVL3W6xEG9NVI31+ImFwKo9vve52nKrAhcmvpvephygTvOqV0lXYaqRvtCVMVUha\nu5CUjA0gDKHj8a2HLzqcL1ZSkZYVEdqlKuG7dBZOvyqG1LiRHkGQBv1nhSkkQgzDPlzcWN/F\nghS41kQl6ZDrC4exfgkw7NaM+qS9ezUbeutzrmLIsqJvy0a3JbX8Vag2qlBF/YXhNKppEBOD\nupSYweTe3N07XB+mDhrpRXnPK5sR6u5RlNdm1NKveSKFsOJ7e+fga5ZR3FEr1vXrIDWSnO9S\nUfmFXvWewRmhzbga6bkouTDjzIqTH40mxdmj5aTnX1VUuUqKH57ZUoc4DZJjrX+VhmW9pCPh\n9CmdoxQCpb+M4nO+W7CaVwP1VDTSIwhSud24F0kKfTgkpff2z6uk0F479VYCzR3qOJvl9LUX\nM8jim05y4q7gNtjTwsntQ0Nx5lVr/vdEVXPyberAsZeHyaLH41stOqGknb44/fWwGvIhy/aB\n07WP5M4ajrIN+o98SB34bn/CxbLyqVZDC1+KlPfeOD6AMISXb+K65oaSJ0CxKHVWV0J8eAK7\na+pq2DjaeGHKGUs+oYTl8a1HLtkfV1iqNHz4neO9azsiRN4hu6gjTxOjty3uikX6ykG6oqBN\nI31pwQd8NxppZMavPpNdpiRzF5ekHFo+yUlIeG81rdD4Q4HyREiS9m6wbC2BmY+SghIAAAAA\nONBIb7QMo5Eew7DsT9vNFEYJ2HjXHjl98a79Ry5evnTswO4lM0bV9paPAuSbuGy4cQAf/pmS\n13gMw7B9Hb1IW+abuv02dcnRM5ffRMRkpSdFvHt5bMvibo3kwax9et7eLx/owHojPYZhl6f8\ngiio0qD9lPmr9h8+fulK6LH9O1csmju4Q23FQXgt/nlAf0fUxKLUVgrz1QvMvXsPHj1/6dpD\nRw9uWLl48vBfnU3JDUIV/IfmKHsQxysHjfQYJh5ekTT2lF+n0+97z1178TYsITUr4fPHW6Gn\nt61bNrpXcwvca7CJLeEVl8e36j3lnz2Hjx46RqgP0jgJZUVPwK9oatv0yJ23iWlZqQkxb188\nzsNdGpq7KEi+QHp9QhDE3DXgt4nztu85eD708rF92xfPnT6oa7CQeKuiPOHCx0o6fTNtpBeY\neRDOmMC2RY8Ri1es23f42J5tGxb8PaFRVXKtAYIgFi4hacrHC3J74bi4BJKy3H5e5AknUZ5Z\nvfb9l6zbcvTkucsXTu/ZtnHy4BA3hcpovtDpvNIh0UwioMgQGukN6lJKGULuzeW9w+1h6qCR\nHsOwqEO/KUaeL7Rr3Xu09Mzs3rp+3l+jfvEmJC3bKgP31pVPZamsrp/z1EiS8eFPxQNBUeH9\nHCVdMbRnZI30HJRcmLFmxeIRPjbEuCAoKqjbYdCSlet27Tt87tKVcycOb167Yub/RtZ0I/fX\n4QlsTihvF2e/pFPE3VM6xk0KgdJffnq5b6SfOa8T8bSYN+76+78r1u07fHTX5rVzpo4I8rRC\nFPj22EZ/hzrOZjGOX3sxwyu+aSYnzgpuAz0t+mqk39Xhe14qNK8SraLhEEc8qjKh91K9frNu\nPX2fXSLGMCwtJuzcztn4LjIoKtgczUJX1IgdTWTbtPH6mzrwHG9y8aeNcBUN2GXFMV2J3WtQ\nnrBp74knr9+P+JqYmRL39vmD3UumBLmTS9jh+6hao7ne+Ovtv6MK6Vlg7t6ux5CFK9ft3nfo\nvyMHt21aN2P8kEbVXRAFVl4hYfQaU9Vi9LbFXbFIXzlIVxS0aaTHMCzmLLlvKIIgpnZVf+0z\neOqsf7btPXxo7841Kxb93rOtp7UJKRhPYLOD9twMT3Cj9p1+2cH8QAEAAICfCzTSGy2DaaTH\nMCzi+HSls/kpxRPYrLyTVJRxEf9HVa8QxVm3PRTamCkILWveSS+KPtZC9hcuGukxcdHaoUoq\nC9SqP2a72vdpRnI/n/Jl+MVNa5+Q96rrhmTKRSM9lvF+tWJVGjWnekPfZcRVNFNyVh38j+I3\nrnESKkw9RhGBV/nyq0N/Fwm317mqGJ5Lod8G5ZO/MW2kd6594eT0Vox2be7Y5Kbql3BOLxxH\nl6Ao/XHHiso/DEmBb+q+7hbVVJCG06imWUwM51J+ZwC5N6f3DqeHqZtGegzDLszvoiqGSplY\n//IoqxhfaaW0rp/r1EgiERf6WwhJa9n7L+HmnBlfIz3GdsklZYxZcVb4Hhfm5wFBEBQVjt6u\nMiZclHTk08LZU7oU6ykESn8ZHTTSn0ov3DnYn9Fp8e4wK1ddN2LCDnWbzUpx99qLYQZXfNPP\n/DkquA3ztOilkT7n8zb+jybbNhtUnyucwpRr1RRuEJRn7mJH7uWPIEjIsvusxLMo45J8X3zz\nhBKqTqV1FVoBtaGqMRXDsIKkK6q+jqFKwz/P0jxk7jZ+49/uiv1O6LBwbfogg+prCIwwfdvi\nqFikr3ykK1W0bKTHMOzi/BANzgPfxG3p+c/09zLZQ54GQi7EMI0kAAAA8LOBRnqjZUiN9BiG\nRRyfSacezcyu9vY7CRiGFSTvwf9d6aSUUikP1yuOpFHKxrfDxcgcDMM4b6THMAwTH57+qwn9\nOhq+1dB/jnMxyVPGm8MNnc3VxwBBEARpOOif+BJaLU3lo5Eew7CPBybQrEpDUUHrYYul34IN\n2zFUMQBbjfQYhvV3VzJ4SErjevP0l3trOSipc1GKJ7T/c8c9VZvSoJEew7Cj07rw6dUj2Pl3\nepCmJr/i7sJxdwlE+R8HNXSnE2cpc5dfDr/NoD4PhtOopnFMDORS4ug59+b63uHuMHXWSI9h\n2JUlg0jzfKpi7dP67KdsjFhppaqun+vUSBJKvA0RBOl9JZbdEyVjjI30GKsll4wxZsVJd1ZV\nZFjPKzD3mn3sI/XeuSjpSDh6SpdhPYVA6S+lm0Z6SVnO8uFNEXoaDligdMZdarrMZmW4e+3F\nMMygim9GmT9HBbcBnha9NNL/XcNBui8zuzZqp8STSX99IMjWlPpcoSjabZb6Rxr6BjjLhw5P\nCFOd10lKmXadpEbRmIphWMbbE218aLUcozyTvrP3MZqdm7uNR1xYE8CwyfmXvrO/UJ4KDTB9\n2+KiWKSrHKUrpbRvpMcwLHTpcBsBrexaysqryamwLPrbLyuOkb1woajwjfJXcgAAAADIQSO9\n0TKwRnoMwwoSn0zoHKjyqRTlBXWe9DHn+/NZzrf5sn/xTdyot5z7+Xr/YB+Kp0aUZ9Zy2JJk\n0fee2jpppMcwDMt4Hzq8nZoxIijPpGHXkZc+MnioZaq0IGruiE5WlNUizoHN/jlMNfiMpNw0\n0mMYlvTkUJsAJVNGy68RilZrNeTcK8LkqDdWjHEmxpPFRvrsiMNVbZS/b2tTb15Wkrj174EV\nKN+4UFQQ3H3cJcq3LM0a6TEMi7u/v1VlqvnlBGbuE1YcV1c7+R1HF06Ko0uAYeK7h5bWc7ek\niDaCIHxT15EL96aK1H9zT4t61coCgdDM3MLK2sbOzl6PjfSYYVxKEj3m3jq4dzg6TF020mMY\nlh1xbVgrP1XRRhAE5QmbDFokG6RFs66f09RIkhk+Hb8K38QtmcZdrxmOG+lZzk/w2Cq5iIwv\nKy5Kfz21dzMLGk1cAjOXriMWfMhUP0iOs5KOgIundDx2UwiU/lK6aaSX/vnF4flVKXta2Pg0\n2RIartk+dZnN4nH32itlIMU308yfo4JbxkBOi+4b6ZMeyL/sMOwis24oRelPJ3avpzhxupSl\nR4MVJ96xG9vnM2rJtl9tuMqOU6UFH6kvJVPUjakYholFySvGdLKlLE2cA1rsfZCgwVFzt/GS\nnE+b547ytVXfVB/YeuCe0NcaRF4tjd62WC4WaSpn6UoRK430GIZlh18e2rGuUF03cVP7gOnr\nT9HvGCSV8ny4bAu2lWZqFkMAAADgp4JiGKbNIwsAJKnhD48cOXLu1rP4+PiEpCxLJ3dvb+/A\n4Pajx4xp5u8gC5b2ZoDzL98nzrJw6l2QekLtlr8+Pb/v+KWHjx5FfE3Oys5Czezc3N3d3D2b\nduo7ZHA/f2d57U9pbkxkXIH0N9/Ezb+KPauHSJbx+eWFCxcuXbkTHZ+UkpqanlloWcHO3tGx\nas0GTZs26dijX11vlV2PWVSY9ObIkTM3bt58Gf4tPS2tELHw8PT09PSsFFC//+ChnRpU1kEc\nDJjk3Y1jx87fePT4aXRcalZWFmph7+7u7uHp27xj1x49utf2qaC4TnHauzPn74VFJTv4+AUE\nBPgHBlV0ojucSy1xccL+VYsPXn4WExOTkF7k6Orm5ubm7u6+6eiRikwmj1VUlp9w4+KFc+cu\nvPwUm5KckpKWZWJt5+jo6F2tdsuWLdt17dOkqp328Xc3FSSJxNLfzrUvpLz+McslJnp96/x/\nx/+78yIyOTk5JTXbwsHZzc2ton+97r16de/a0onZ0XF44bi7BAhW8v7B9YsXL9549CYpJSU1\nJSVHJHBydnZxdvYNatylS5fOHZo5m2u3C+NjiJdSL7m3ru4dOQMppDST+unJ6dOnz197GJuY\nnJycnCc2cXNz9/DwCG7fe9iwQTVxH3rM//rpW2GZ9LeFm18le4qhYzoqEbKj/rGrKm+b8e50\n+ltoDyZH/xPhpOQywqy4JDP69LHTD1+8fvP2bWxyZl5eXl5BiZmVra2trYu3X506deoFt+zZ\nq50z7dyAw5KOiOundBZTCJT+JH2cLE+mF7oFhyY+7qQ+NBXs48cw2YK3f6A1/3vtPyYpfHTh\n6P5DZ95/+RYfn5CSVeLo5ubu7lGtXot+/fp3aRrIYEAfkX6zWe5ee6WMtPjmpuCWM6jTwt7t\noxom6utufyK5AEEQG5+RWV93anC/xD+7tO/4mUvXH8YkJKbnS1zd3avUbtK9R8+hA0Ns+WwO\nO0YQpDjzoqXjrxIMQxDE1LZ5YfZdjW9wLpTmx50/cuj4hTtf4+ITEuJT8ySu7h4eHh5Vfmn+\n2+DBHetrVWfC3cYlpRkPrl2/c+fO3Qcv4lPTMtLTs4swOwcHR0fHitVqt2jZslXrjsGBSj5O\nzxYNi07jLBY1wGm64k5+7KsjJy4+ff785Zuw1MzsnJwcsYm1i4uLi4tbreDWnTt3at+yrhXz\nLOJkW68+N+Olv7ue+Xq+uw/L8QYAAADKHWikB/rxcmbtesveSn/bV92a8WmsfuMDAGBEZUMj\nAIAS3Ds/j5OdK/a5HCtbnB2R+W81FvpIAQAAi7o4WFzKLKrY+UbMpTb6jgtjRpHNwmtvOWbU\ntw935le1/ycqS/p7bVzeFE9D7E0CAOACJs71sXKILS5DEIRv6h6XG+dmYlAddQAAAABDBIUl\n0I/bp+T1Ke6d6+gxJgAAAAAA7BKXxI6/kSBbNLVtvoCNWUwAAIBd0n5jlpXUTEpsgIwlm4XX\n3nLMeG8fTo3a1E72e8eSt3qMCQBAx9Lf/i1toUcQxLvzdmihBwAAAOgQ6DsCwIhlfdw0b9sn\n2WLt6UtHeNHqJS3KfTTnc7Zssf6QSuxHDgAAAABAT76dH5tWKpYtVhu9SsDyhLIAAKAtSWnq\n+4JSBEEq9vDUd1wY02U2C6+9QJFR3z6c8mizq7HNuUe5JQiCRB8Yl7fxrTXbk+oDAAzTiXGn\npT9QlL9ka2v9RgYAAAAwFtBIDzTHt0rZtGmTbLFaUa8Ru1rSWfHO/DElku/fWeDxLRcGcvvN\neAAAAAAAXVrz5wPZbxRFF8yoocfIAACAUskPZ5ZiGIoKZtRz1ndcGNNlNguvvUCRUd8+nEL5\n1rtXNg0YcxNBkNKC9xPuJR1o5a7vSAEA/s/encdXVd6JH39u9gRCCAgKgvpisHXDhdYFhWrV\n1r0jbccNdep0xNrNpZVS7dhxabX1J1ZbdDq2ilawbqXbtFPHVmtLWxfQcaGArYiAyg5JwHBJ\ncuePC5EfQgATviG57/dfzz33nHOf8LoJr5tPznN2uGzdtMufXZwf73bUbWftWtW58wGArsLK\nM7x3PQdcvGtZcevDv9137jN12a0etXTGbafd9nLrw/6H3jK4vLiN/QEAupDlL10zcUF968Pq\nwZeO7lvZifMB2ES2btGffnbTUSfdm1IacPT/O7qmrLNntH2Cf8z62MvGuvq3T4D3XfDjYT1K\n8+NfXvz9zp0MEOOlm7+Q/7u0TCbz9cnndfZ0AKDLEOl574rKBv7gY3u2Pmxeu/Cjh31q+rLG\nNg6Z8+ubDhxxeXbD9QQppUvu+uQOnCIAQKC3Fz/ziWO/tfGW42+7pLMmA/Buby99sLL3gKNO\nH/daY1Nlv5EP/+zizp7R9on/MetjL626+rdPjKLSXX580/qVrlfOue4/5tW3vT/Q1bWsW3z+\nzS/lxwOP+c5Fe1R37nwAoAsR6WmXj/7gR0Mq37lpwsrZ9x8x+B8+cdHX/uup2StXv3N5QeOy\n1x595O5/OWHY+08e92b2nXsHDvrIhPH71obOGACgA+WyB3zgyH8847wvXvr5c//p5EGDjnhi\nydutT5b3OvKuU/foxNkBbCKXa2rJ5Up7DDj5U//2l9mPjei1018HvBP8mPWxl7yu9+3TSfa9\naOonduuRUsrlctecc09nTwfYsWb/51kvr16XUioq6X33w2M7ezoA0JVkcrnc1veCLZv/y6v2\nOf3GNc0t736qvGdtv94V9StWrFq9mesMqvc6+S8v/2y/qpJ3PwXs5AaWl7T+5rH/wb9Y9Nyp\nnTsf6Cp873RDubWZoootPXnxr16//aTBkdMBaFuuuW7uwtUDBu1WWZTp7Llsm53jx6yPvaSu\n+O3TeZY8c3X/w65LKWUyxfcuXHXugB6dPSNgh8g1rTisz27P1mdTSsPH/2H6DSM7e0YA0JW4\nkp72GnzqN2b+1w17VZW++6m1DSsWLHhzs7+q6Hvwuc/4VQUA0H194DP3K/TAziZT3GvIHgO6\nR2KM/DHrYy+pe3377Gj9Dr32jtP3Sinlcs1XfHJiZ08H2FFeuHV0vtBX9T/p19ce2dnTAYAu\nRqSnA+x5wrjZC5//9wtOrC0t3urOlf2HjbvlgTnP3Pt+v6oAALqjopLeZ3918tN3nNXZEwHo\nnjrlx6yPvbBdLrz/sSNrylNKb/3pK//2zJLOng7Q8dY1PHfqVdNSSpmiigm/n9K/VGgAgO1j\nuXs6UtPqBT+//+Enn3r62enPz3tr2aqVK9c0F9fU1NT07r3LgCGHH3nUyJEjP3rCqNoSf3gO\nXZslu+G98b3THbXcecO4H/34l7Pmza9P1Xu/7337Dz/uy1+/4gMDqjp7YgDdw073Y9bHXthG\nS56+ccARVzbncj12++SShQ9V6nfQvTxw1tCzHvh7Sumoq5/84zWjOns6AND1iPQAAAAAAAAA\nEMRfsQIAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFKOnsCO4X5L/z+t9OmvzxzzuIVq+obGiuqa2r77X7AgQcdddxJBw6u3uJhuewZ\no/+psSW31fNXD7pi8u2jOnLGAAAAAAAAAHRBhR7ps3WvTLz+xsdnLdl4Y8Oq5Q2rls//24v/\nPXXKvkefecUXz+xbspklB7INL2xLoQcAAAAAAACAvIJe7r5pzZxxY8dvXOgzmeKa2p6ZTCb/\nMJdrmfnE/Z+7+IY3sy3vPjxb/3TQRAEAAAAAAADoFgr6SvrJV1776pp1+fHQD33igtHHDhm8\ne4+yomzD8rlzZky+8wfPL1yTUlqz6KnxX3vonm+fucnhdbPn5wfVg87/2hf2b+OFist33wHT\nBwAAAAAAAKCLKdxI37DwoUdercuPh5w2fsKFR7Y+Vdazz/uHH3/NxJG/nHDZnU8uTCmtmDX5\n3ldPOn9Ir43PsPzZZfnBLiMO3nffoVETBwAAAAAAAKCrKtyZIasFAAAgAElEQVTl7l+5+zf5\nQUnl0G9+esS7d8gUVZx62bf2qSrNP3z8hy9ussPcVxryg10P67vDpgkAAAAAAABA91G4kf4X\nf12ZHww4emxVUWaz+2SKe336mN3y4/q5j27y7NMN2fzgg/0rd8wcAQAAAAAAAOhWCjXS57LP\nNay/G/3eJw9sY8e+G66Sb2qc+/+doGXNS6vXpZQymeIRvcp3zCwBAAAAAAAA6FYK9J70TY2v\nNedy+fEBvdtK7GtXrL9cPlNSs/H2dfXT82co7XlQdXHmjRef+O8/vbhwwcI3Fy0v7tGrb79B\nww455KhjRu5WWbxjvgIAAAAAAAAAup5MbkOrLjAtjY3r63t5RcXmF7tPKaX0wBfGTJ5Xn1Lq\nOeCCKd8f3bq9/vVbxnz+8ZRSec2oUUNee+y5+e8+tris7/Fnjf3sJ0e0cf7t0tjY2Nzc3EEn\nAwAAAAAAAGA7VFZWFhW1d7n6Ar2SPqWiioqKre60avbD+UKfUtrnvBEbP7XypTfzg7Wr/vDY\nc5s/vDm77Df33jDzlXNvG39GcUeE+mw2m81mO+BEAAAAAAAAAGynbanMW1WwkX7rVs//4xVX\nTc6Py6oPuXzErhs/u/zZ5a3jTHH1R884+7iRh+3Rv29as3TevHl/e/mpqVN/tzTbnFKa/+f7\nrrpv3xvPGxY5eQAAAAAAAAB2QgW73H2bcs1P//zO70z6dUNzLqVUXNb/8ltvG7V71ca7PPiv\nZ923eE1KqbRq6Fdvuf6DA6o2OUfj0heuveTal+qzKaVMUeU3pkw+oKq9fxJRV1fnSnoAAAAA\nAACATlFbW1tcXNzOk4j0m3p9xqN33X3PjA2r3BeV1F787e+eMLTXJrv9+Ve/WJRtTintMfLE\n4btsfk2D1Qt+fc7n/iP/L7zn6Ju/e8He7ZybSA8AAAAAAADQWUT6DtYwf/pdd/7wsecXtG7p\nP+z4yy8bu98WGvy2ePjiMfcurE8pVfQ5+cFJn2nnDEV6AAAAAAAAgM7SIZHePelTSinX0vjE\nA3fc8cATjS3r/2ShrHqP08+/cMwJB2Xad+bDT9393u/PSill6/6UUnsjfWVlZXl5eTtPAgAA\nAAAAAMB7UFRU1P6TiPRp1d+n3Trhe8/OX51/WFze74Qzxpw9+sM1Je0M9CmlVHNAbX7Q0rSy\nrjnXq7hd5ywtLW3/lAAAAAAAAADoLIUe6V9/ctKXJ0zNX0CfyZQcetoFF5578q4V7V2goFWm\n5J0L30s7IPoDAAAAAAAA0IUVdKRfOv2eS26e2pzLpZSqBg7//JcuHbl37205cMWLM+asWZdS\nKqvZ55B9atrY8+2Fy/ODkoq9KotUegAAAAAAAICCVriRvunt2eO++dN8oe9zwCk3XXNhv9Jt\nvX/Aqjn3feOev6WUymuOfuhHX2pjz1d+tjA/6Dn49PbNFwAAAAAAAIAurwNua99Fzbh9wtJ1\nzSmlsl7Db71u7LYX+pTSbsd+ND9Yu+r3985auaXdmtbM+t7M9VfS73vWsHZMFgAAAAAAAIDu\noEAjfa65fuK0RfnxR66+tKZ4+xair6g98WO7VuXHU6/+2ot12Xfv09K09M4rr1/dnEsplVbt\nf+kHdmnflAEAAAAAAADo8gp0ufvVb01Z0dSSUspkig9vWTRnzuKtHlJU0nvokP6tD8/86lm/\nvOzullyuufH1fx97yWljzj/lQwf1q6lKueZlby2YO3vGT+778UuL304pZTJFH//qFW5IDwAA\nAAAAAEAml8t19hw6wbyffOkLk17ZrkMq+pzy4KSLNt7y/P3XXn3/sxtvKamoLmtevWZdS+uW\nTKbo6H/+5uUf3689swUAAAAAAACgeyjQ5e5XPLei/Sc5+Oyrr7voH2tL3vk3bGqs37jQV/QZ\nev6VExV6AAAAAAAAAPIKdLn7JUvXdsh5Djrl0z8YdeLvH/uf52a/vnjR4kWLF9WvK+5dUzNo\n6P4f/OARHzn20Cqr3AMAAAAAAACwQYEudw8AAAAAAAAA8Qp0uXsAAAAAAAAAiCfSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESk\nBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAA\nABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAI\nItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHp\nAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAA\nAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAA\nAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAA\nAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACC\niPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6\nAAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAg\nIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEe\nAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAA\nAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAA\nAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAA\nQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCI\nSA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQH\nAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAA\nAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAA\nAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAA\nEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUo6ewIAAAAAALDeuikDg1+x9Jw3gl8RAChwrqQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIh70gMAAAAAAERbN2Vg/IuWnvNG/IsCsAlX0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAA\nABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAI\nItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABCnp\n7AnsFOa/8PvfTpv+8sw5i1esqm9orKiuqe23+wEHHnTUcScdOLh6q4evWfjXR3/7u2kzZi5Z\numxVY6rt02fAXvuMOvrDxx05rDQTMH0AAAAAAAAAuoZMLpfr7Dl0pmzdKxOvv/HxWUs2+2wm\nU7Tv0Wde8cUz+5ZsacmB3J8fmXjLj/6nsWUz/4y17ztm3Fc/t3/f8o6bLwAAAABAd7ZuysDg\nVyw9543gV4S8+Hd78oYH2DkU9HL3TWvmjBs7fuNCn8kU19T2zGTWX/+ey7XMfOL+z118w5vZ\nls2eYfq9V95wz6OthT5TVFZdVdr67Io5T3z9i19/tbF5h30FAAAAAAAAAHQlBb3c/eQrr311\nzbr8eOiHPnHB6GOHDN69R1lRtmH53DkzJt/5g+cXrkkprVn01PivPXTPt8/c5PCVsyZd+8jM\n/LjH4BGfGXvOkQfuWZpJa5a/9tjPJ/9w6tO5XC5bP/Pq8ZPv+875kV8XAAAAAAAAADunwr2S\nvmHhQ4+8WpcfDzlt/IQv//Owfxjco6wopVTWs8/7hx9/zcRJF35o9/wOK2ZNvnfDzhu03H3j\nr/I3C6jY5aiJt44/+qA983egr+qz18c+ddVNYw/N71f36sNT5tbHfFEAAAAAAAAA7MwKN9K/\ncvdv8oOSyqHf/PSId++QKao49bJv7bNh+frHf/jixs82LLjn8eWN+fF5132+T0lmk8Pfd8pV\np/avyo9/dcuTHThzAAAAAAAAALqowo30v/jryvxgwNFjq4o2Tex5meJenz5mt/y4fu6jGz81\n98d/yQ8q+px42u49Nnv0xz97yPpj509e1ZzrgEkDAAAAAAAA0JUVaqTPZZ9rWH83+r1PHtjG\njn0P65sfNDXO3Xj71OeW5QcDjzthS8fW7n9OUSaTUso1N0x5a3V75gsAAAAAAABAN1Cgkb6p\n8bXm3PpL2w/oXd7GnmtXZPODTElN68Zcc11r43//h3fd0rHF5YMPr16/Wv7cF1a0Z8IAAAAA\nAAAAdAMlnT2BzlFSOfTBBx/Mj8sr2or0f/zp/PygsvbY1o3Z+qdaG//BNWVtHD68Z9mf67Ip\npWVPL08nDW7PnFNKjY2NTU1N7TwJAAAAAMBOq61f1+4YDQ0N4a8JKXXGuz15wwO0W1VVVVFR\ne6+EL9BIn1JRRUXFVndaNfvhyfPq8+N9zhvRun3dmjmt4/2qSts4w4BBVemNhpTS228sSOmg\n9zjZDbLZbDabbedJAAAAAAB2WvHZsrGxMfw1IaVOivTe8ADtVFlZ2f6TFOhy99ti9fw/XnHV\n5Py4rPqQy0e8s6x9S3ZlfpDJlNQUZ9o4SVnt+uvsW5pW7phpAgAAAAAAANBlFOyV9G3KNT/9\n8zu/M+nXDc25lFJxWf9Lvv2VnhvF+OyqDTeqL65u+0wlG+5JL9IDAAAAAAAAINJv6vUZj951\n9z0zNqxyX1RS+5kbJ4zaveo9nq4lt2GwtiNmBwAAAAAAAEAXJtK/o2H+9Lvu/OFjzy9o3dJ/\n2PGXXzZ2v102vXt9Wc36RexzzavbPmfT6qb8IFPap+NmCgAAAAAAAECXJNKnlFKupfGJB+64\n44EnGjdc+F5Wvcfp51845oSDNnvD+aKymvUH5rJrWnJVRVu8LX12xfqF8YtKOiDSV1ZWlpeX\nt/88AAAAAADkVVdv5a6m0J14wwO0U1FRUftPItKnVX+fduuE7z07f/018cXl/U44Y8zZoz9c\nU7LF9F5SuXdKj+bHf12z7gM9y7a05+KFb+cH5bW7tX+qpaWl7T8JAAAAAMBOa134K7oyis4S\n/25P3vAAO4dCj/SvPznpyxOm5i+gz2RKDj3tggvPPXnXiuK2jyrvdURR5vaWXC6l9L8NTW1E\n+hca1v8nu8uIXTtu1gAAAAAAAAB0SQUd6ZdOv+eSm6c253IppaqBwz//pUtH7t17Ww7MFNcc\n3KN0RkM2pfTyn5ek0Xtudrdc07JpdWvz48HD3ZMeAAAAAAAAoNB1wIr5XVTT27PHffOn+ULf\n54BTvvvdq7ex0OeNPnh9dH/zN3/Z0j518x5al8ullDLFVWMG9GjffAEAAAAAAADo8go30s+4\nfcLSdc0ppbJew2+9bmy/0u37pxhy9uH5weo373+6LrvZff54+7T8oHrQmF228/wAAAAAAAAA\ndD8FWo5zzfUTpy3Kjz9y9aU1xZntPUP1oE+Nqq1IKeVyLd+7/pHcu3ZY8fLk//xbXX580mVH\nt2e2AAAAAAAAAHQPBXpP+tVvTVnR1JJSymSKD29ZNGfO4q0eUlTSe+iQ/u88zhT/61dO/MP4\nn6aUVs66/4s3lVz52dEDepSklFKueda0h2+Y8FAul0sp1ex99pghvXbM1wEAAAAAAABAV5LJ\nh+RCM+8nX/rCpFe265CKPqc8OOmiTTY+M2ncdT+ZlR9niquHDN2zprxl0cJXFy5rzG8sqxl2\n853X7llR3P45AwAAAAB0e+umDAx+xdJz3gh+RciLf7cnb3iAnUOBLne/4rkVHXKeQz914xXn\nHltRlEkp5Zrr/z77pRkvzGwt9Lvsd+z13/26Qg8AAAAAAABAXoEud79k6doOOlPRqDMuHT7i\nI7/57e+mTZ+5dPnyurWptrbPgCH7f+iYY44/4oDtv9k9AAAAAAAAAN1WgS53DwAAAADATshy\n9xQOy90DFKwCXe4eAAAAAAAAAOKJ9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAA/B979x5kZ1nYcfw9u+fksmFZEqJICGoZFEJALuIFlYKIikWtpm0KS6RUO0qlVXvR\nilFgNFadzni/1FqmghBUCrS01QokxSIXMcIUMAREMEA2BElIsskm2bO7p3+cEEFDCHv5vbs5\nn89fz+w+5zzPvLy8O8OX5xwACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAA\nAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAA\nAAAgpFr2BgAAAACetfriWeEVa9094RUBAADYIzlJDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAA\nAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAA\nAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAh\nIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQA\nAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAA\nAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAA\nACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI\n9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMA\nAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQEi17A2MO6uvX/iez95Z65hzxbc/8wxTG/3z3/5HW4caz/ienbM/eOlXjx+d\n/QEAAAAAAAAwYTlJ/5uWXnb/bs7s33TH7hR6AAAAAAAAAGgS6Z+ib801332kbzcn9/feOqab\nAQAAAAAAAGAP4+Puf63e+8vPL7yw0djdw/Eb73moOeicfeZH/3LuLma2Tz5gpJsDAAAAAAAA\nYOIT6Yu+x9c8+ODKZTdc8/0lP+kdfBYfX79u2drmYOZxR82Zc/DY7A4AAAAAAACAPUdLR/pt\n65ecfc7X1vb2D+/lD/x8U3Ow38v3Hb1NAQAAAAAAALDHaunvpG8M9g670BdFceum7a899rlT\nR2lHAAAAAAAAAOzJWvokfbVjzoIFC578k741S6+8tmd3XtsY6rtrc70oikql/bi9J4/J/gAA\nAAAAAADYs7R2pJ96yPz5hzz5J+vuWr6bkb7e+9PBRqMoitpeR3a2V3ruvP6/b7pz1cOrVq9Z\n1z5t732fM/uIo49+9Ymved7U9jHZOgAAAAAAAAATUEtH+pHYtmFZc1Bpm/bF88+57vaHnvTL\nR1b+4t7bbll6yYXfPPm0d7/3D4+rjNKiW7ZsGRgYGKU3AwAAgAlsSnzF3t7e+JoArcgTntaR\nv9sLNzzAiE2bNq2tbaTfKS/SD9P6u1Y3B9s23HDd7TufM9i/9gcXf2r5zxd88cPz20cj1Nfr\n9f7+/lF4IwAAAJjg8v9Re9u2bfE1AVqRJzyto5RI74YHGKGOjo6Rv4lIP0zrlq3bMa60d75h\n/umve83Ln//cfYu+x1auXHnfz3581VVLH+sfLIrioZsvWXjJnE+/44jyNgsAAAAAAADAuCDS\nD9M9D25qDmodB5/7uUXH7v/E/zExeb850/ebc9TLXwply30AACAASURBVP/GEz7+/o/f1dtf\nFMXdVyy66w8uPbzD1QYAAAAAAABoabLxMB0474x39g8WRfH815xyzMydfCbNlJkvWfiZd3Wf\n84+NRqMxtOXr33ngS3/6ovg2AQAAAAAAABhHRPphOu733vKMc6bNftM7Zl1y8areoijW/HBJ\nIdIDAAAAAAAAtDaRfmy94s0HXPz1FUVR9G+8qSjOHuG7dXR0TJ06dTT2BQAAADw7XV1dZW8B\ngDHhCU9LccMDjFBbW9vI30SkH1tdh09vDoYG1m8cbOzdXhnJu1Wr/nkBAABAURRFPb5irVaL\nrwnQijzhaR35u71wwwOMD6PQ+dmFSnXyjnFtRIEeAAAAAAAAgAnPyezhePzO2+7tqxdFManr\n0KMP3dUnw2xZta45qE554dQ2lR4AAAAAAACgpYn0w7Hh3ks+edF9RVFM7jrh8m/9zS5m/vzf\nVzUHex34tsTOAAAAAAAAABjHRPrheN5Jbyguuq8oim0bfnjxinedeeg+O5020Lfiy8u3n6Sf\nc9oRuf0BAEDZ6otnhVesdfeEVwQAAACAYfCd9MMxZfopb92vozm+6ryP3rmx/7fnDA089o2P\nLNo82CiKotYx9wMvnRndIgAAAAAAAADjj0g/TH987mltlUpRFINbH7zg3e//5n/c/KsNfUVR\nFI3BtatXLrv+qo+efc73799YFEWl0jbv3A/6QnoAAAAAAAAAfNz9MHUe9LYLTrvjvMuWFUVR\n71t15Tc+deU3iuqUzkmDm/vqQzumVSptJ/zJ359x5IzydgoAAAAAAADAeOEk/fAddfp5n3jP\n70+v/voaDmztfXKhnzLj4DM/8pW/nndYGbsDAAAAAAAAYNxxkn5Ejjz1Xf98/Ck/vO7a2+95\n8NE1j655dE1vvX2frq7ZB8899thXvv6kl3X4lHsAAAAAAAAAniDSP8WMwy+4+upn95La3gec\nPO+sk8dmPwAAAAAAAADsSXzcPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABASLXsDQAAAAAAjDv1xbPyi9a6\ne/KLAgAQ5iQ9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAA\nAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAA\nECLSAwAAAAAAAECISA8AAAAAAAAAIdWyNwAAAAAA7Ep98azwirXunvCKAADQOpykBwAAAAAA\nAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABC\nRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekB\nAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAA\nAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAA\nAEJEegAAAAAAAAAIEekBAAAAAAAAIKRa9gYAAAAYHfXFs/KL1rp78osCZfGcAQAAGDkn6QEA\nAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAA\nAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAA\nQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACKmW\nvQEAgFZRXzwrvGKtuye8IgAAAAAAu+YkPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECI\nSA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0A\nAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACHVsjcAMC7UF8/KL1rr7skv\nCgAAAAAAQImcpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAA\nAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgpFr2BgAAAAAAAAAYffXFs8Ir\n1rp7witORE7SAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAA\nAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAA\nACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI\n9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMA\nAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgP\nAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAA\nAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhFTL3gAAkFZf\nPCu/aK27J78oAAAAAACMN07SAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAA\nAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABA\niEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9\nAAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQEi17A2MO6uvX/iez95Z65hzxbc/s5sv6Vt1\n9zVLlt542/JfPbZ2w9Zi+owZ+7/w0ONPeO3rXnVErTKmmwUAAAAAAABgIhHpf9PSy+5/NtMb\nN1/xlc9969qtQ40dP3rskb7HHnn4zluuu+zFJ37o3HPm7jt51DcJAAAAAAAAwETk4+6fom/N\nNd99pG/35//04o986qJrdhT6Stukzo7ajt8+fu/157/v/Pu3Do7yLgEAAAAAAACYmJyk/7V6\n7y8/v/DCRqPxzFOLoiiK9Su++fErljfH0w487ux3d7/qJS+oVYq+db+87upLL7zq1kaj0d+7\n/LwPX3rJ588cs10DAAAAAAAAMGGI9EXf42sefHDlshuu+f6Sn/QO7m6hL4qhf/n095pFf8rM\nV3/lCx+aUd3+/fMdM1741rMWHvqcRX/79VuLoth4/78ufuDt3b/TOSa7BwAAAAAAAGDiaOlI\nv239krPP+dra3v5hvHbTwxf9z7qtzfE7PvEXOwr9Di8+deGbrzr9Px/tK4rie5/73+4vnjrC\n3QIAAAAAAAAw0bX0d9I3BnuHV+iLonjg27c0B1NmnPKWA6btbEpl3nuPbo56H7p0w7M4ow8A\nAAAAAADAnqmlT9JXO+YsWLDgyT/pW7P0ymt7due1V92+tjmY9bo3Pt2c6XO72yo3DTUajcFN\nix/Z/OcH7DWS3QIAAAAAAAAw0bV2pJ96yPz5hzz5J+vuWr47kb4xuPH2TfXm+JDX7vd009on\nH/iKztrNG/uLonjgjscLkR4AAAAAAACgtbV0pB+2/t4fDza2f3z9UV2TdjHzmL0mNSP92lvX\nFW86cITr9vX11ev1Eb4JsFMdZSy6YcOGMpYFN3xp8lfeZadEbvhSeMLTUjxnSuE5UxY3fCnc\n8GVxw9M6PGeAAH9YR11nZ2db20i/U16kH4563707xod11HYxc//ZHUXPpqIotvQ8XBRHjnDd\ngYEBkR72JP6NpqW44UvhstNS3PBlceVpHe72srjypXDZy+LKl8Jlp6W44YGxtsc/ZxpPnOUe\niZFG/tY01L++OahUql3tlV3MnDR9+zn7oYH1Y74tAAAAAAAAAMY3kX44+jf0NweV9s5dz6x2\nbj9nL9IDAAAAAAAAINKPsaEnPu5gaFup+wAAAAAAAACgfCL9cEzq2v4h9o3BzbueObB5oDmo\n1GaM7Z4AAAAAAAAAGPeqZW9gQmqb1NUcNBr9fUONjran/Vr6/se3fzB+W3UUIv20adM6OjpG\n/j7Ab2s885TRt88++5SxLLjhS5O/8i47JXLDl8ITnpbiOVMKz5myuOFL4YYvixue1uE5AwT4\nwzrq2tpG4Ri8SD8c1akvKoprmuO7++ov3WvS0818dNWW5mDy9OeNfN329vaRvwmwU/UyFq1W\nPYQphxu+LPkr77JTIjd8KTzhS1FfPCu/aK27J7/oeOM5UwrPmbK44Uvhhi+LG57W4TkDBPjD\nOj75uPvhmLz3K9sq20/P/9+mgV3MvGPT9jt/5nH7jfm2AAAAAAAAABjfRPrhqLR3HTWt1hz/\n7OZfPd20xsDaGzdua44PPMZ30gMAAAAAAAC0OpF+mN5+1PbovvoHtzzdnI0rL683GkVRVNo7\nzth/WmhnAAAAAAAAAIxXIv0wHXT6K5qDzasvu3Vj/07n/OirNzYHnbPPmFlzqQEAAAAAAABa\nnXI8TJ2zzzp++pSiKBqNoS8vuqLxWxMe/9ml/3Tfxub4TX91QnZ3AAAAAAAAAIxHIv1wVdr/\n7O9OaQ7Xr7jsff9w+erNA9t/1Rhc8aPvfOBjlzcajaIoul50+hkH7V3WNgEAAAAAAAAYP6pl\nb2ACm37YOz82b8UnrlxRFMXKG7519k3/dtDBL+iaPLRm1f2r1m5tzpnUdcSiT84vdZsAAAAA\nAAAAjBdO0o/Iy8769AcXnDSlrVIURWOw9xf33HXbHct3FPqZh5206Evnv2BKe6l7BAAAAAAA\nAGC8cJJ+hNqOn/+BY457/Q+WLL3xp8sfW7du47Zi+vQZ+x8093dPPPHkVx7eXil7gwAAAAAA\nAACMGyL9U8w4/IKrr37Wr5p24Nx5Z82dd9bo7wcAAAAAAACAPYmPuwcAAAAAAACAEJEeAAAA\nAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAA\nAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCqmVvAAAAxlB98az8orXunvyiAAAA\nAMCE4CQ9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgP\nAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAA\nAAAAAISI9AAAAAAAAAAQUi17A8Bvqi+eFV6x1t0TXhEAAAAAAABak5P0AAAAAAAAABAi0gMA\nAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgP\nAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAA\nAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAA\nABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECI\nSA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0A\nAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAA\nAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAA\nQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEi\nPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAA\nAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhFTL3gAAAAAAAJRmzvv/K7zi\n3V84NbwiADCuOEkPAAAAAP/P3p0HWFXWfQB/7tyZYRgYBhBBRTQJCVzR1EQkwKUs8rXcFdf0\nNd+wKFNLUyM1dzM0bdHcEjVNMQ3LNQSFcsEUFVRcAEF2GJZhuDN37vvHRaJRcZxhnjPL5/PX\n473P3PPz8fE8557vPecAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIilMugAA2rTqu7aKvMWiY+dF3iIAAAAAAMB6rqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAe\nAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0A\nAAAAAAAARFKYdAEAAAAAAADE0H/U+MhbnD5meOQtAjR/rqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiKQw6QJaslzmyG8dUVWb\n+9SOZVufPfbGwREqAgAAAAAAAKA5cyV9w2VWvVKfhB4AAAAAAAAA8oT0DZdZ+VzSJQAAAAAA\nAADQkrjdfcOteGNOvlG29Qnnf2/HjfRMt+sZpSIAAAAAoAXrP2p8zM1NHzM85uYAAMgT0jfc\n0heW5BvdBg7o379PssUAAAAAAAAA0Py53X3DvfvWqnyjx16bJVsJAAAAAAAAAC2CkL7hnluV\nyTf26N4+2UoAAAAAAAAAaBHc7r6BcrWVr66uDiGkUumBndolXU6TqL5rq/gbLTp2XvyNAgAA\nAAAAAMQhpG+g6pUvZnO5EEJRx13L0ql50yb8ffK0ue/P/WDB0nSHTpttvvXOu+02aOi+W7RP\nJ10pAAAAAAAAAM2FkL6B1la8kG+kCjpc97ORT7w0Z4M35896+82p/3zqzj/cdsDRp3338IGp\nTbTR1atXV1dXb6IP+3Qdom1pA8uXL09is81L/JE37MGET44JnwgTPikmfCJM+KSY8Ikw4RNh\n2JNiP5MIEz4pJnwiEpnwkTXP/9BGnrajLcz2YMJD0hxJbnJlZWXpdGOv0xbSN9DyVz/IN9ZW\nTHripY/vk80sefSOy15/67jrfnJkelME9dlstqamZhN8UDPW6v8FmyfDnhQjnwjDnhQjnwjD\nnhQjnwjDnhQjnwjDngjDnhQjnwjD3kb4D50UI0+bYsJDW+P/+voQ0jfQ0heWrm+n0mVfOfKY\n/ffda5vum4XKxbNmzZr52r/GjXtqcSYbQpgz5c6f3tn/8uN3Tq5YAAAAAAAAAJoFIX0DvTF7\nVb5RVNrn3Gsv2WPL0nVvtOvRv0uP/gP2OvCrQy4addGrKzMhhOn3X/LqYWN3KjXaAAAAALQA\ngy/+V+QtTrrgS5G3CAAASREbN1CvQ0d8O5MNIWyz70G7dyv5aIeSbrv89IpTjh3521wul6td\n87s/vXv9ydtHLxMAAAAAAACAZkRI30ADv37wp/bpsPXXjt/qzjvmrgwhLHj6ySCkBwAAAAAA\nAGjbhPRN60vf6HnH72aEEDIrJodweiM/rWPHjrlcblPUVS+10ba0gS5duiSx2eYl/sgb9mDC\nJ8eET4QJnxQTPhEmfFJM+ESY8Ikw7Emxn0mECZ+UREY+smb4H9qwJ8XI03a0hdkeTHhImq9O\nm1w6nW78hwjpm1b5TutmYW3N8hXZXKd0qjGfVlBQsCmKqq9Ejg82ybRu6eKPvGEPJnxyTPhE\nmPBJMeETYcInxYRPhAmfCMOeFPuZRJjwSWkLKU4z/A9t2JNi5Gk72sJsDyY8JM1Xp+Ypaujb\nBqUK261vFzUqoAcAAAAAAACgxXMlfUMsmzb1zcrqEEJxeb/d+pVvpOeauUvzjcKSz7UvkNID\nAAAAAAAAtGlC+oaoePPOX9w+M4TQrnzIfX/80UZ6vvWXuflGx17fjFEZAAAAAAAAAM2YkL4h\nttjvK+H2mSGEtRVP3zHjlBP6df7YbjWVM379+ror6fsfvXO8+gAAAABai/6jxkfe4vQxwyNv\nEQAAaFM8k74hSroc9D89SvPtcReeP21F5qN9amsW33TeJauzuRBCUemOP/hit6glAgAAAAAA\nAND8COkb6Khzjy5IpUII2arZo08bddvDUxZVVIYQQi675INZL0wYd/7pI//2zooQQipVcOi5\nZ3sgPQAAAAAAAABud99AZb2/OfroVy68+4UQQnXl3AduuuyBm0JhSVlxdnVlde36bqlUwZAT\nLx2xa9fkKgUAAAAAAACguXAlfcMNOObCi79zSJfC/4xhTdXKDRP6kq59TjjvhjMP3SGJ6gAA\nAAAAAABodlxJ3yi7Dj/l5sEHPf3E4y+9MXvhgoULFi5YWZ3uXF6+dZ8d99hj7wP327PUXe4B\nAAAAAAAA+JCQvrGKOvU84NCTDki6DAAAAAAAAACaP7e7BwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIpTLoAAAAAgBag/6jxkbc4fczwyFsEAAAgAlfSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQSWHSBQAAAACfTf9R4yNvcfqYX5ZDogAAIABJREFU4ZG3CAAAAK2VK+kBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIpTLoAAAAAAAAAoDWrvmur+BstOnZe\n/I1CfbiSHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAA\nAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAA\nAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQSWHSBQAAANCC9R81Pubmpo8ZHnNzAAAAAJucK+kBAAAAAAAAIBIhPQAA\nAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkRQmXQAAAMAm0H/U+MhbnD5meOQtAgAAANAKuJIeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4A\nAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRFCZdAAAAtDb9R42Pubnp\nY4bH3BwAAAAA0BiupAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJIVJFwAAQFPpP2p85C1OHzM88hYBAAAA\nAFoWV9IDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIpTLoAAKBN6D9qfMzNTR8zPObmAAAAAACgnlxJDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABE4pn0ALQtkZ+MHjwcHQAAAAAA2IAr6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASDyTHgAAAAAAAIBNoP+o8ZG3OH3M8MhbbDxX0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAA\nAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAA\nAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIilMugCAtqv/\nqPGRtzh9zPDIWwQAAAAAAGBDrqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKYdAFA\n8vqPGh95i9PHDI+8RQAAAAAAAGgOXEkPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAETi\nmfQ0Lx6ODgAAAAAAQONJnWi2XEkPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQSWHSBbQG\nlXOnP/bkU89OfX3R4iUVVaFL165bfq7f4CHD9t9n56JU0sUBAAAAAAAA0GwI6RspN+X+G679\n4+NVtbn1Ly2eX7l4/vvT/vnE3X2HnnPuyB03a5dgfQAAAAAAAAA0H2533ygv3nHeZbc/tj6h\nTxUUl5UWrX932ZsTfvb9n71TlU2oOgAAAAAAAACaF1fSN9zyGbdddP/r+XaHXgNPP+3YfXbZ\ntigVKpe+98RDY/8w7rlcLpdZ+fqFPxl7569OSLZUAAAAAAAAAJoDV9I3WO2tlz+Sy+VCCCXd\nBt0w5idDdt02/wT60q6f+5+TfnrVaXvm+6145893vbsywUIBAAAAAAAAaCaE9A206v3b/7G0\nKt8+/uIzuham6nToO/yn3+hemm8/cu3EqMUBAAAAAAAA0CwJ6Rvo3Xv+mW+UdD3o4J4dPq5L\n6tDv7pZvrZwztiKbi1UaAAAAAAAAAM2UkL6Bxr20JN/Yav+vflKfLjseW5BKhRBy2VV3zV8d\nqTIAAAAAAAAAmishfUPksiteWlWdb39hWI9P6pZu1+tLZUX59ruvLItRGQAAAAAAAADNWGHS\nBbRImZX/yubW3b5+QHnxRnru3rF4yopMCGHJc0vD13o1crurV6+urq5u5IfU38fexL/1Wb58\nedIl1NUWRt6wJ8XIJ8KwJ6IZDnsw8gkx7Ekx8okw7IloC8MejHxCDHtSjHwiDHsimuGwByNP\nW9IWZnsw4fmQCZ+UtjDykYe9rKwsnU438kOE9A1RXfnm+vYOpUUb6bnl1qVh3qoQwpp574ew\nayO3m81ma2pqGvkh1GFIE2HYk2LkE2HYE2HYk2LkE2HYk2LkE2HYk2LkE2HYk2LkE2HYE2HY\nk2LkaVNMeNoUEz4RLXHY3e6+IWoz636OkUoVlqdTG+lZ3GXddfa1Nc3uhzMAAAAAAAAARCak\nb4hMRSbfSKXLNt6z8MNn0gvpAQAAAAAAAEjlPny2OvW3+OWfffuCl0IIBYVdHnzg9o30nHnb\n98984L0QQkn50Hv/eGYjt7tixYpMJtPIDwEAAAAAAACgAbp06dL4Z9K7kr4hisvX3cQ+l129\n8Z41q9c9AiFV1LVpawIAAAAAAACg2StMuoAWqaC4PN/I5TKVtbnSgk98LH1m2boL3wsKN0FI\n37FjR3c+AAAAAAAAAEhE4y+jD0L6hilsv30Ij+Xb0yurv9ix+JN6Lpy7Jt9o12WLxm+3oMCd\nDwAAAAAAAABaMKFvQ7TrtHdBat3V8y+vqtlIz1dWVecb3Qb2aPKyAAAAAAAAAGjehPQNkUqX\nD+hQlG+/NmXRJ3XL1Sx5dsXafLvX7p5JDwAAAAAAANDWCekb6FsD1oXuHzz6z0/qs2LWfdW5\nXAghlS4dsWWHSJUBAAAAAAAA0FwJ6Ruo9zFfyjdWf3D3cysyH9vnmRufzTfKth7RrchQAwAA\nAAAAALR1kuMGKtv6pMFdSkIIuVztry+5P/eRDsteG/v7mSvy7a/9cEjc6gAAAAAAAABojoT0\nDZVKn/rjg/LN5TPu/v5V932wumbdW7nsjGf+9IML7svlciGE8u2PGdG7U1JlAgAAAAAAANB8\npPJBMg3z/G3nXPzAjHw7lS7r3Wfb8na1C+a+M3dJVf7F4vKdr7npom1L0snVCAAAAAAAAEBz\nIaRvpNpJ9153/V3/qKr9mGHstsN+5/zku/06F8cvCwAAAAAAAIBmSEi/Caye89qjTz717Iuv\nL166dMXa0KVL1y177/jloUMP2HundCrp4gAAAAAAAABoNoT0AAAAAAAAABBJQdIFAAAAAAAA\nAEBbIaQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAg\nEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdLTAlz127teeOODpKuAZmr0\nyNNPPfXUS5+Ym3Qh8JnZvTdP2czapEuAhFlbE2HYaa0srE3EkSR8rGwu6QqAFsvaStthtrcg\nrftcQWHSBcCnm/TIPZMeuadsy75Dhg4bOmxI3y06Jl1Ra/P4449vwk/rvMOgPXuWbsIPZCNq\nqxdNn/vBmtpc9aMfhAN6Jl1O67GqoqImV99zG+WdO6eatJrWy+69OcjVLJs84Zlp0159bfrM\n5atXV1auqc7mHnrooRBCZuXzD0xYOWjo4F5lRUmX2RrMnj37M/VPFaTblbQvaVdS0qF9cYHd\nTDzW1kQY9qZQWbFo3gdLqut9SNO3X/+0nU2jWVijcSTZHNjPJGLNkvnzlq39fJ9tN3yx4u1n\nr7/5/rfem718Tei65Xb77Df8+MOGlDiG/CycHANrK22H2d5StPpzBUJ6WoyVH7z517vfHH/P\n77f6wh5Dhw4bOmTvHh1M4E3j+uuv34Sf1u+7/X0PabTc+zNefGn6e8tWVm60V82cl/+xpjYX\nQqitcoHOJjB36qN3PPSPmTPfXrTiM4zn2HF/KXOqqRHs3hM0Y9L9v/393e9UZD723ezad++6\n6c57brl16NGnfe/IwaZ5I51xxhkN+8NUQXG3LbfqtfXndtlj73322XML0U4DWVsTYdgTkKtZ\nev8ffvfXiVOXrvxsg+mQpvEsrPE5kkyE/UxSFr3yxG9u/dOL7ywsKt3lz3dfvP71JVPv+M5F\n92dq1/1aYsncNx7+4xtPP/vK9Vd/r0uhAa8vJ8cgz9pK22G2J8e5gnVMOFqAgTtt+9xrs7O5\nXAghl8vNnfH82BnP3/X7kn577Dt02LAv771TB9/xaEVqM/N/c/GFj748/zP91RcO+3wT1dN2\nzHz4lz+6+elcva8CWa/Io2Mayu49WVPHXjD6Ty9/arfabMVTY696feaCG8873Cm+RORqM4vm\nvrdo7ntT/zXh9t92GHbEKacetX9H/3d8FtbWRBj2ROSyq8eMOuOpOasa8LftHNI0joU1MkeS\nSbGfScr8Z28ZeeVfPnrfglx2xS+ueHB9Qr/eineeOOeqXW46d2ik+oCWz9pK22G2J8i5gg2l\nGpBGQHxVS2c9O3HSxIlPvzRzQZ230iXd9hw8ZNiwoV/aaVtf9xrm0ksv/aS3aquXPPfiW+v/\nMZUqKOuyeY8ttihLr12wYMGCRcvX3xI8XbzFiNOP7lZYUN53r9228mPhhrvr7BPueWP5Z/qT\n7l887MYLTyx25NAImYpnjzvxyqoNzmuk0+l6/u3948bZ+TSY3XtS5jx23chfP5Fvp9Jl++4/\ntG+f7Yum3fXbSfNDCPm78lZXThv9o0unzV2d79bv6CuvPLZfUgW3AvnVtnrV2y++uuij76ZS\ndQ/Li0p7f3GXzSsrli5atGjxkooNT8h22/WIGy86riRlv19f1tZEGPZEzPnbT0f+Ztr6fywq\nLe/etayeI3rDjTca+wazsCbCkWQi7GcSka1657TjfrQok83/Y3GHXddfSb/oxctO+fmUEEJB\nYfnhp//fF3sWvzbloTse+ncIIZUqOOuOeweXFydVdsvi5BgEayttidmeFOcKNiSkp4VZOe/N\niROffnrixBnvV9R5q3233l8eOnTosKE79uqcSG2tT03l29ecfcGzc1aFEEq33OHQI478xpcH\nlBb/Z2HKZde+8a/H77nnT1PfqwghlG611yXX/qRPe7foaLhVc+44duSf8+3SLfvuNaBf58K1\nM56ZMGPZ2hDCzl87uE9JYQihsmLRtOf+NW9VdQhhxxGjLzlyd7/ta6SXrzrtgknzQwjtu+/0\n7e+M2G373t07t0+6qLbF7j2mbNWsU0eMWlJdG0Io7zvk7LO+u8sW7UMIM+8Ydeaf3w0fZgkh\nhJCrmXLPLy67+8UQQipdeuVdd37BTr4RslXvXfx/50xdUhVCSKVL99j/4AP23mnzzbt137x7\nx8LqRQsXLly4cOa/Jz04/pll1dlUKv21M646/cA+IYRcbeaDt15+7K/3PfD0jPxH9R1x7dVH\ntc4fEW9y1tZEGPak3Pbtox5YvCaE0G/Ykacd/80+3TxbMQYLa+IcScZkP5OIWQ+c9b3b3gwh\nFKQ7HTryB1/dc6ce5SX5tx79/nE3vLcihNDvxF9deVjv/IsTr/u/q5+YG0LY9lvXXH/y9glV\n3Uo4OUbbZG2l7TDbY3KuoA4hPS3VondemTjx6YkTn3l38Zo6b3X//IChQ4cNHTpoaz8WbpTc\nbWee8MDMihDC7oefc/7x+37yzRhzUx+4avRtz4QQyvt889Zrvu22jQ029ZJTRz+3MITQ6fPD\nb7j6tPJ0KoRQU/nmiGPPXlOb6/edG64c3ivfM5etuPeXPxk7aW66Xa+f3XztALO9ca447ohn\nV6wt7rTH7247f7NCP5FMkt17BHMePmfkTTNCCO3K9/jNred3+3DOf0yWEEII4cmrThszaX4I\noc9xY3555HbR62097j3nxDtnLAsh9Bp07I9PP3SbT5jJ2TUL/nrLlX949K1UKvWNn978v3tt\nvv6tt5+84czrHsvlcuniLW770+/KW+t3lE3K2poIw56UUw//1sJMtsuOI2677Cg7iGgsrM2H\nI8kI7GcS8adTjx67sDKEsPv3fzP6gJ7/eSNX8+3Dj1hcnU2lUlfcfX+/0nXBcGbFs4cfd0UI\nobT7iHtuPiqJklsNJ8do66yttB1mewTOFdQhh6Cl2rz3Loed9L0xt9xzw+XnH/X1wVuW/ed/\n0YVv//veP1w78oRjzhx9zcMTplZU+yVKQyybfl3+S0i3AaeMPmEjX0JCCKndDz3n+wN7hBAq\nZj541T8XRiqxNZr81op841s/OX599FJY2veELTqEEOb9feb6nql0+ZFnXXtgj9Ls2jnX/Hxc\n/FJbmVcrq0MIO478joQ+cXbvEUz5y+x8Y/A5Z3Srx5wffNrx+ca8x59vwrJau4p3bs4n9OV9\nDr/unKM/KaEPIaTb9zhk5NUn7dw1l8s9cuW5Mypr1r/1+f1Hfm/AZiGEbGb+g4vqfmnkY1lb\nE2HYk7KipjaEMOR735ALxGRhbT4cSUZgP5OIZ1asDSGkUsU/HLbVhq9XLX9icXU2hFDcafD6\nhD6EUNxp0GZFBSGEzIopcSttbZwcA2srbYfZHoFzBXWIImjpUr122GvE6Wf/7s67rhn9o0P2\n27NL8brHSOdy1TOnPn3TL0efePQJP//lzRNfmpm15/wsnr/5xXzj8B98tT79B393RL4x7fZJ\nTVVTG/DK6uoQQipdekj3/3p02fZf7BpCWLvsuQ1fTKVKTjz3wBBCxcyx98xbHbHMVmhtbS6E\nsHe/8qQLYT279yb0dMXaEEKqoN3JO3SpT//i8sHdi9MhhEzFM01bWas29ffr1sfDzzuiHhfA\np4affVwIIZtZeON97274xsDTv5xvvPrCkk1dY+tkbU2EYU/KNu3SIYRtS91iNyoLa/PjSLIJ\n2c8kYkGmNoRQ2P5zdW6ktOyVp/ONzjscWOdPti4uDCFkq+dHKbDVcnIMPmRtpe0w25uQcwV1\nCOlpJapXLV20eMnyihVramrrvFVbXfHihIeu/tmZJ4w8/8FJ0xMpryV6ZM6qEEIqXfq1riX1\n6d+ufGjnwoIQwpolTzRtZa3a0uraEEJhu23q/Dq7655dQwiZVS9m/nvh77TdSZsXp0MIT42d\nGWiE/OPiahxXNT92700hf44v3W6bsnrfLH2LonQIIZv5oAnLau0eemdlCKGgsPyQbu3r079d\n5wPyEc68x+7d8PWSzdadga18v3JT19g6WVsTYdiTMqR7aQjhlQXutBGVhbXZciTZFOxnEtG+\nIBVCyNXW1Hn9zYfn5Rvb/U+vOm9l1j3h1C0PGsXJMajD2krbYbY3BecK6vC7V1q2qqWz/zll\nypTJk1949b3qXN14rUuvHcor33lvSVX+H1e+/8otV73y3IxRv/jf/X1H+VRz1mZDCAUFHeo/\nVu0LUstDqM24o1fDtStIZbK5XK7uF+/SrfqG8O9cbdWLqzIDN7jTTkilh3Rq9+fFlUv//dcQ\ndo1aa+syvHenV6cteXF6xcGD6vXFm6Zm996kOqRTmZpcbfXiXL1P2s2vzoYQUgX1Spf5WLPz\nC2vR5p/ac72uhQULM9nq1a9s+GK6qHu+kVma2YTltWLW1kQY9qQMPGX3my6c8MKvH8xdf5I1\nMRoLa3PjSLJJ2c8kYrv2hctWZrJr35ubyfb88Hq+kKse+966e8Z+c7tOG/bP1a55p6omhFBQ\n1C1upa2Nk2OQZ22l7TDbm5RzBXUI6WmRVs6fOWXy5ClTprz05rzaj+wou22706B9Bw3aZ1C/\nXp1DLjvzpWeefPKJf0x+pTKbCyG8+vCYa3be+ay9uydReEvSMZ1aVpPLVi96pyrbuyT9qf2z\na2fNr64NIRQUdW766lqtrdql36iszVbNWpnNbXghTnHHPUK4N4QwYe7qgf3+6zHGmxcXhBCq\nK1+NXGors9sZhxacfvPrN91Rtc9ZJSnHVImxe4/jS2XFf19WVVuz7NGlVQfV44qQzMopCzPZ\nEEJRh12avrpWq3NhwaLqbLZqdkU2V16PSy1z2ZXvVdWEEFKpog1fz2bW3bO0uEvRx/wZH2Ft\nTYRhT0q3AT88su9L9775wHm3bDP65GHtHNVEYWFtJhxJxmE/k4gDt+wwdWUml6u9/rG5l39j\nm/yLS17+7fxM/oH0A3f47wcQVLx1R/6Zbu3K9o5fbWvi5BhtnLWVtsNsj8O5gjqE9LQkS2e/\nPmXKlMmTJ097d9FH3+3ee5d99hm076BBfXtu8PPhVLrP7kP67D7k5IpZt15+4fjXloUQ/nXD\nrWHvH0cru4Ua2Kn4kaVVIYSbn5p36dfr3jbtoz6Y8PtcLhdCKO40qMmLa70Gdyp+o7I6l6u+\nfcbyM3b8zyMtC0v7dkynVmVzsx+bF/r916Mu52Wy0ctshUq3PPiSY587b+yks6/td9UPvyGn\nj8zuPbIDh/b4+7hZIYR7r5tw0OiDPrX/a3/8Y76x2W6f3plPMrRLu/sWVuZymd9NXXzOnp9+\nPf2SaTdV1eYX1v86tVo5/2/5RqcvdPqYP+MjrK2JMOzJSR1z6eULf3TOhAd/ddLzE0447pAd\nem+39RZd630XdhrCwposR5LR2c8kYIeTdwvnPhVCmP6Hc+/d7Pyv79F3zfvPX3H5hPy7Wx14\nxIadV86adOHPHs23N9trj7iVtjZOjtE2WVtpO8z2yJwrqENITwswf+bLkydPnjJl8htzK+q8\nlUqluvfeZdCgfQcN2mf7Lcs28iHF5duefN4Z40dcHELIrJhcWZsrLfANcmO+8tWej9z9dghh\n+i0/f2HPX++x+cauCKlaPPXnN72eb/f8+n4x6mulBhy8dbjpjRDChF9cutfVP99rq9IP3yn4\ncnm7R5ZWzX/mNytHXr/+V2a1mQVPLKsKIRSV9E6m4lZkp6Mu+uHay8fcf/MJrz192DEjDhk2\noMR5piZm956UbQ89uujBK6tzucVTb7zsz+XnHDZwI5N9/gt3X/To3Hz7K8fa1TTcfkdtd9/1\nr4UQ/nn1ZTNuvrxfWfFGOtdUvn315c/m2z2//vX/vJHLjLt2Yr655y5dPvqHfJS1NRGGPUHp\n4p4Hf2ufCb96dPXcf//min+HEFIF6fqsjePGjWvy4lopC2siHEkmyH4mvs47nD6o6+Rnl1bl\nsivvvOzHY1Op3IcX+aUKSv73iG3z7TUL/3bFlQ+//NbcbC4XQkil0kcc/bmkam4dnByjTbG2\n0naY7UlxrqAOIT0twGlnXlDnlVQqtUU715fMAAAgAElEQVSf3QYN2mfQoEGf79Ghnp9T1HHn\nD5uFxS6T/TTbHHJq+b0/rcjWZjMLLz3j7JN/dNbBe237sT1nv/DXa66+ZUEmG0IoKOxy2vCt\n41baqvQ88Dtdbj1rWU1tZtUbvxh5yhd23e3UH5/Zt31hCGG/wT0e+cusbNXs8677y1U/OKQk\nlcplK+65+oLV2VwIoUMvV+E0yoMPPhjC/7N333FNXW8DwJ+bhABhhCFhulABQRQZVlTqqP7q\n3nXhrFYR3HXi3lYtVlCsuw6Uqq0T63qVKtaKSkU2IgoIhABCJISQ5Oa+f0QREdnkSvJ8/7rc\nnPB5Guk5N+c55zkAhu2/7fjir+jkkMC1p4K0TMwtLCwsjPSqSqQBwLJluEyyjrB7pwub2315\nX5uNNzMA4MHxrdMje82ePKyDw8cPuxSZz391N+zs8csPlHN8xg5TR1pwKv2FqCYsey1se8gn\npUQuL0lZ5eM/beGcQe6tKm2ZGX1zT8CBeLEMAJhsnt+wd+NvUXbylWO7zqW+BQC2fucRzfAk\n4xrBsZUW+LHT6NFvqzb++az8HUpBqvPWgy8ADqy0wCdJGmE/o3oEoTN369wXcwOU9e2pcmV4\n7Uevdua8OwWptPBRVPLrspdafbuiF1dbxaGqGZwcQxoFx1akOfCvnS44V1ABJulRU0IQDCs7\n1+7du3Xr1s2WV+vpDLk4WXmhaz6MhR1mdVgcp3WTXBf+9hgA5CVpBzfN/dPWpYdre0tLSwsL\nCw6I+Xx+dnZ2YlTEf6n5Ze9yn7zWQRc7lrpj6rTd+MPXc/aFAwBFFidGRaSVzleOUrbjZ+ld\nWVlMUml3joy/f9bGmpubkSWWK5Rv7OnTicaw1cCRI0cq3KEoWT4/I5+fQUs8mga7d9Vz99sx\nNMPnUmIhALxJDN/sH04wdcz033Upyxf5padnicqVk9LmdtywYRg9saoLhhZvlf/omWt+l1KU\ntCh5/4Z5p6wcPJzb8Hg8Ho/HAYkgV5AryE2NexyXUah8C0EQ/fw2tNVhAoCYf2iiz+WyCdmv\n5/nhH3sN4dhKC/zY6SJ8cXzT+Ri6o9BEOLDSCJ8kVQz7GbpwLL1+CTI8sPdweEya8qxcBku/\n+7AZP050/rQxQbDcBvywclYXlYepbnByDGkmHFuR5sC/dhXDuYIKiPJLLxH6Mg0bNtzG3q17\nj+7du3Vr2ayqulKowd07vHLHxZp+/XYZuXzD1G6NGo+GiL9+LODQBUEpCQBzj5/tZ/Ru5Xt8\nyOrlv0d/2t7MddrhdSNUGqLaGTp0aJ3fe+nSpQaMRKNg904vihSe37f9txvVd/LG9n38V/na\nc6upKoFqIvvByWU7zhW+/45RBYKh3e+HTXMG2St/FGUFTvC5pby2G7hgpw/Wz6wdHFtpgR+7\n6v21aNK+FCEA6PIcx04Y2r6FtZmxfg0ni0xNTRs1NrWHA6uK4ZMkXbCfoV1pAT89J5+pb2Zj\nbVZh057o9cmg03lWrey6eH7d3kafrgjVD06OIQ2BYyvSHPjXTi+cKyiDSXrUBGQUSJobY0dJ\nm1f//LHrQOjLN6VVtOHw7LxnLRjigbW8GoxCJnz2MDI5PavjCO/y668fnAoIPndX+D67QxDM\nTv28l/uOwgNv6unatWt1fm///upZbEcFsHv/EvDj7p+/dPlOZIKErOSZsFlrl0FDhw/t46qF\nfUzDkeTFH/n1yM1Hz8nPP4dbOXafMsvXs/WHw8+USXqOhd2QsdO8v3FSSaTqBsdWWuDHrmKz\nvxuRWUpqG7kfOrqaW8W56KjR4MCqMvgkSRfsZ5BmwskxpAlwbEWaA//aaYdzBUqYpEcI1QAl\njfvn/+4/eZaQkJSd/1YskRIEQ1tXz8Siub29XScPr55u7fC7ucrIi7OePnuR+6bY1KZVG1tb\nUwPcgoOapIywNStOpwKAtqHn4WA/usPRdBQpfpkYn5qZJxKJSqQKPX0DQ2OenaOTFX5jaTQl\ngpS7D54kJCS8yswVFYtKZGBgYMg1tXRwdOzUpYdrm2YV2pOlGWm5Oq1tzHC8bQw4ttICP/bG\nMHLYMDlFff3TscXtjemORaPhwIrUGPYzSHPh5BhCCCHU+DRqrgCT9AihWqNIqYLBxi8eCKH6\neH507o/n0wCAqdPy/JkgusNBCCGE1MGM0SMEUnL+8bPfvC8YiBBCDQv7GYSUcHIMIQBY5+fz\nulRuO269f19rumNBqMGQ0lImG59zkCqwqm+CkArt2bOnYX/hnDlzGvYXIgAgmGwm3TEghJo6\nU48WcD4NAEhJWpxY7sTBZxKkzrB0BEJINfoYaYcKxK8lJN2BIKRqIqFQXuNdKFwjI0yr1Rn2\nM43t5s2bDfjbjBy7e1hzGvAXojI4OYaQQpabkJldoqBk17MBk/SoyaLkBf+ER8TExMYlpBQW\nF4vFJTKSunTpEgBIix79GV7UvZdXcwMtusNE6gknxNGX5caNGw37CzFJj75khYWFyguC0OJy\n9egNRqPgJ/8lMHGa72n06EGhBACOXX+9fUQruiPSUBQleR4Tm575pu+A/310nyzcuTe0dWv7\nr7y6NzdS57pSqiERFLx9+xYAmNJEumNRc9jD0wI/9i9H74mOoQGP/wmJmfLjV3THoqFwYFWx\nzKjrxy/dSUl5kfu2qoOiKwg5f9EAd7/WFfYzjS0oqCHLjDn4tsckPUKolqjXiU/+S3hVUCSu\nspU8I/pOiYICAIWkFqMwQl+UxHt//HrgdKpQWumrZOnLUwdPhh452mvczLljvPD5sbZwrqBa\nmKRHCNUI7ktoDJMnT1ZesPU6nTu9EQB++umnOv+2ZcuWNUxYGgA/+S8CwV64c0nOvG2pYtnz\nkM0PewR9ZYantKoURRbdPnP09MVwgVjOZFtUzCUopPduXb0HV08c2uMx0Hv29OGmLAZdoaoB\nLB2hMtjD0wI/9i+HZc8VQy5Mu3L3p7PfHPjOpRnd4WgWHFhVL+VywI+H/q7DMY5a+NnXA/Yz\nSJPh5BhSewopf9/GNdej+bV6l/2oNo0UD0KNKipk9brfo6ttpiCFt0N2xKfkBPuPZmHPXhs4\nV1AtnB9EX5aJEyfSHQL6CO5LULH79+/THYKGwk+eFjo8j2171wZu3hGRkrPNd97I6d8P7OVh\nqoMlA1WBlGYGLl16J7Wo2pYUJYsM+y3+WcqOXT9aY0HHusLSETTCHp4W+LHThtD6fuv6/MWr\nT66dlTRw4oxJQyxwVZBK4MCqelLhff/DH2Xomcyafp5sAr+u1gP2M42sa9eun3tJIcuPfPK8\n7EeCYBgYm5lbWBgwS3NycnJyC8vyx0y2hbfPuGYsBtfOpNEj1gA4OYY0R+jKpdeTCmv1Fp7b\nqKU9LRopHoQaT8aNwLIMPcE06PFNL7u27bRiTv1678MiFRanvbO1XkxmMQDwHx73P91h+wQH\nesJVFzhXUAE+RqMvy5gxY+gOAX2A+xIQQo0qLCwMAJz6jCoUnorN5Z8N3nJuH9vI1MTExNTY\nhKtd5XSGWq6dVKXz61eWJRIIgt2yvXOFBgTTYMygXg8fRqbliQFAlBGxenO7I+tHqDpQtYGl\nIxBCKnHhwgUAsOvdN+7Upciwo4+uHuOaWTe3NtOqQY5g3bp1jR2eGsOBVfUSDhyTKCgA0OV1\n+H6Wd+d2tjwjXbqD0gjYzzQ2f3//Su/LxS9+XrJaec2xdBz53ZjBX7tw2B/mXyiyNOnhzdDQ\n36NeCUkp/9y5fzbtWt5WF+d+6wsnx5DmEGUcD32foedY2nVxcTBilSZGhCcWlAKA84AhbXVY\nACAW5sZEPswSyQDAyXvdpjGuuBwFNTmkJG3N/tvKa65dzyWLfTta6AJAiuB8+WZaHOfNwSce\nhG7eevoJACSdXZc04qQ9jq2o4eAfE0KocrgvQQXs7e2VFyxdG+WFr68vfeFoEPzkvxD79++v\ncIeipAV5/IK82tVVQ7Ulyjh9POaN8rp1j3H+c8aYf7L/iWDoTpy1aOJM8p+zu38O+VtGUXn/\nHb3A/3a4BR5pWUdYOkI1sIenBX7sX44jR46U/5GiFIWCjEJBBl3xaAgcWGlxLboAANiG7sG/\nrsKzA1QJ+xmaUCdXrbufIQIA19FLV03q8Wm5XYKp7dBt8Lpug6L+3LHutwhxVuT6lceP/vw9\nFuatD5wcQxol+dhd5YVhm0F7d87kMgkAkHv3856wpERByVr0nzaoubIBRQrPBCwPuZeZeO5w\nTP8OLlw2bUEjVCdZN/fmyxQAoM1137VtYbMqHiYJluf4tfNfz9x9j0+R4v2XMwLGtFZdoE0c\nzhVUC5P0CKHK4b4EFdixY0eFO/3796clEk2DnzzScIkHbyoveJ5+u5d+W1VTgtltzCITMnPp\n6ecAEHY4efhKFxVEqJawdIRqYA9PC/zYkYbDgZUWsWIZADj5zcIMPdIEBQmBf6YIAaCZy/R1\nk3tU2ZZwHbl0XtLzwAc5wpQLO/4dvMKTp5og1RJOjiGN8s/zt8qLEcsncd9/RWVx7CZb6O3P\nEmVdS4H3SXqCyR2zeJcgeerNnIyf158/ETCWnogRqqsHF9OVF15L51SVoX/Pa+ak3fd2AEDW\nzUeASfoaw7mCamGSHqmndX4+r0vltuPW+/e1pjuWpgr3JSCEGhuunaTLjdR3X7y/9+tdk/bt\nRswjQudRFFWYeBMAcwl1hKUjEEIqsGDBArpD0EQ4sNKiVEEBQFcHLt2BaBzsZ2jx6NAT5cXo\nBVWuBHrPy9c78EEAAMQcuweeoxoxMnWHk2NIozwrlgEAweQM431U6aedmwlkiUoLIgE+POoQ\nhM6UFf1uLrgoTAkJzRo8zkpP1eEiVA9/C0sBgGBoT3M0rkl7NteLxw4QSEmpMAIAj2xGDQaT\n9EgNKWS5CZnZJQpKdj0bMElfV7gvASHU2HDtJF2SxHIAYLItuhnWqCQdU6dlGx1mSolcXpLU\nyKEhhNRBRtiaFadTAUDb0PNwsB/d4WiWPn360B2CJsKBlRZtdVmxxTJ5rQ+JRvWF/QwtrmaI\nAIBgcgaY6NSkvTa3lxHrl0K5oiT/FgAm6esOJ8eQRnkjUwAAS7tFhWMyTDxM4HK6VPRESgG7\n3EuGraeasa/kSsnbISnjlnRSbbAI1UuOVAEATO0WBlXWNSzPQospkJKkNLsx40IaB5P0qAmh\nXic++S/hVUGRuMpW8ozoOyUKCgAUklIVhaaOcF8CQlXDih2o6SomKQAgGLVY584kCABQyAob\nKyYNgKUjkOaQCArevn0LAExpIt2xIKQKOLDSYpCtYWxM/pME4ZDuNcpZItSkZZSSAMBg6NX8\nkHNdBlEIoJAKGi8qTYCTY0ijaDMIKUlRlLzCfY6VHcBTSiF5IpJ6GpRbkkgwexpqn8sTv3l6\nBQCT9Kgp0WMSUjmlkOVRADUcW/kyEgAIBh560sAU0qLU5ymCN2+LRCLQ0jU0MDCzbt3GplnN\nn3maNEzSo6ZBIeXv27jmenTt6sHaj2rTSPFoAtyX8CUQCYVyqqb/BlwjIw0Zur4EWLEDNWkt\ndJgpJXKyNC1fTpmyqu85KHnByxI5ADC1bRo/OrWFpSO+EDi2qoCpRws4nwYApCQtTix34uC3\nTqTmcGClRec5Ixk+h+IPHpd0W6xDYG+N1Jw+kyiQU6QsN1VC2uowq21PlqbxZQoAYGgZNX50\n6gwnx5BGsdJmJokVpCStiKTKby9m67sDnAGA8MxiT4eP6gaZsRkAIBPHqjhUhOrpKwP2tQKJ\nQl5w/Y2kfw2q1EiLHgikJABo6XVs/Og0AyWPibgWdvXa4/gM6SezNGyDZm7d+w4cNKhTSzVf\nJ4fTJahpCF259HpS7TYZ8NxGLe1p0UjxaALcl0CjzKjrxy/dSUl5kfu2FtUgQs5frHl9HvQZ\nWLHjS4cFDBrEQBv9wOeFFCX/9WHOyu7Vj5W5j/YrH5c55v0aPzqEGgWOrapk4jTf0+jRg0IJ\nABy7/nr7iFZ0R4RQ48KBlRYcyyGbJkT6h9xbssthx8LBmKdH6s3TkH31jQQADt3O2jKwebXt\ns8MPUBQFAGzD7o0enFrDyTGkUbwM2UliGUXJjiUWznH6cFA3i2OnzyREJJV+IwscPjrAO0tK\nqjxMhBpAv17m186nAcCZwPD+66rfUxF34oTywrQzbsBoAJL82OCfdoQnFnyugbQo78G10H+v\nn/UYMmP+tIFqPDODSXrUBIgyjoe+z9BzLO26uDgYsUoTI8ITC0oBwHnAkLY6LAAQC3NjIh9m\niWQA4OS9btMYV/X9P1cVcF8CXVIuB/x46G+qxpv8ymjh+Wj1gxU7vnxYwKChdJ7sBKvvA8Dj\n3Zv+s9/ZuVlV803St3Fbd0Uqr9uOd1dFfAg1NBxbVY1gL9y5JGfetlSx7HnI5oc9gr4yw3lt\negieP/7ncWxSUtLr3AKRSCSRMwwMDAxNzO3bO3Zw9fR0wsG0YeDASpcOYzcsLN22+49Dk+P+\nHjXee1hvFx2cBUBq6n/fWl89/QIAEo6sf+yxx73KgVWSF7X+YLzy2npgH1XEp75wcgxpFJch\nNnAwCQDCN2/psnN9FyvO+1cYX3O1r76R8CP2FfkFlWXLFNKcWwUSANDSsaUnYoTqquXIcVoX\ntssoKi8qeOs57tJRnlU8RfIfn95wPVN5/b8J+NdeX1Jh7Ko5a5OLZeVvEoSWibmFrkLEzy0s\nK39IUWTkpf1zXmTv2TRdXfP0RB3mqhBSsahNM9ZFCgDAsM2gvTtncpkEAMjFyd4TlpQoKIdZ\ne7cPereImCKFZwKWh9zLZGo3X3tolwuXXdXvRdWJ/X21f0h0y14/4L4ElZEK70+csl2i+NAz\nM5nVF7JT+uP8eUwl1MepJZNDa1+xI3jNFDb+z1FftShg8DBFCADclstOBOGOkHqgpD9NnXi/\nQAIATB2bsT6zR/buwK6kn1ekRIYF7z6WUiQFAC1O+6Mh2wzV9JkYqTEcW+kiyX8WuHlHRIqQ\nqW0xcvr3A3t5mNagPC9qKAXJ4UG/nnickltFG1Nb10k+8/t8vB0K1QUOrHS4cOGC8iL7yZW/\nogXwfmrPwsLCSK+aqYBly5Y1enzqa8qUKXV7Y9up21b3tmzYYDSHXBw3zXulkFQAAEu35bQf\nFw/p0rLSlumPr/y888hLsRwAGCzjbSGHHXRxj1a94OQY0hykJOX7CYsL5AoAIJh69p06z1i2\nyE6XBQDJh+cuvpgGAC17f79jwTAdgqBI4emfloT+ywcAY4clx7Z70Rs8QrX1KMhv480M5bWJ\nQ6/Zk4d1cLDNPrVg0bmXAHDp0iWgyHz+q7thZ49ffkBSFAAYO0w9tn0knUGrA+rA7AlXMouV\nP7C5bYaOGtqzi7OlhSmbQQAARUpys7Oe/Rt+8c+wNNG7RL51r2X7FqnnVDAm6VETsGfKmBsF\nEgCYcjB0lHnZCj4I85mwP0tk2HLhyaDeZTcpSrJn5tSbOWJuW+8TAWNpCFetUHeOb9v9x7/s\nZu1wX4JqRO+YufoeHwB0eR2+n+XduZ0tz0iX7qA0gijj+AS/c8prrNihSnUrYNBl0YFVvfBA\nk3oRpd/yW7BH+d0bALQMLDs5tTUzMzMzMzPQJvNyBAKBIC05OlVQomxAEOzxGw6M62RCX8gI\n1RGOrbQICwsDAKBk98+fis2VAABBsI1MTUxMTI1NuNpVDp+YPKu/+Au7Vh8Nl9Xgyz5BaPWe\ntmnB8PYqiEq94cCqekOHDq3zey9dutSAkWiaOn/yDr7B2/vbNGwwGuXFnxsW/va47EdTW5ce\nru0tLS0tLCw4IObz+dnZ2YlREf+l5pe16fL9L6uG44a/+sPJMaRB0v8KmLMvvOzHucfP9jPS\nBgC5OHaS98pikgIAJtvAxpqbm5Elfv/kM/yXk9/bGtIRL0J1RynEh5f7XEr8sGWLYOqY6SsE\nQikAOLZtnp6eJSp3oIM2t+POg+tb4tLz+ilI3Dtl6XXlNc997LYV45t9poYhKc05sXnFn//l\nAQBBMGYfDu1fZcWyJgqXUqIm4FmxDAAIJmcYj1P+fjs3E8gSlRZEAnxI0hOEzpQV/W4uuChM\nCQnNGjzOSk/V4aqLd/sSDNt/2/HFX9HJIYFrTwXhvoRGdy26AADYhu7Bv64yZeHmPdVJPnZX\nefFRxQ7vfsqKHbIW/ad9UrEj8dzhmP4dsGJHPYWuXHq99gUMlvbEDH196bfou3tz6cr1RzLE\nMgCQFWU//jf7c40JpsHw+VsxkVBPuO2MLji20mL//v0V7lCUtCCPX5BXu1VZqA5yIvavOBpe\nthzfwMrew7ktj8fjmfEMtGQ5fD6fz38R+yghswgAKEp25+gKA/MD0z15tEbd5OHAitDnsDgm\nJvosADDB/dz102bkmiUFK3dcjFH+mJ/69GLq0yrau4xcjhn6+sPJMaRpWgxYtI1hGnDogqD0\no8PmWZwOq0d3XP57NACQ0qK0l0VlL5m5TsMMPWqKCAZn+tYgk33bf7vxbmylSIlA+O7V+JSM\n8o2N7fv4r/LFDH39xR57pLzg8HrvWT2hihI1TLb5lLV78mZMu5tXQlGKiydT+i/ooKowVQef\nj1ET8EamAACWdgvWx//DmniYwOV0qeiJlILy5aYNW081Y1/JlZK3Q1LGLemk2mDVx5EjRyrc\noShZPj8jn59RaXvUIGLFMgBw8puFWQQV++f5W+XFiOWTuO8XxbM4dpMt9PZnibKupcD7JD3B\n5I5ZvEuQPPVmTsbP689jxY76EGUcLztiAAsYqJ5R+0G7j3QMPXT06p0nIrLy3ZYEwWjdudfk\nH2a6WnMqbYBqrqCgoG5vLPp4cgTVFo6tSKMo5HmbAq8pM/Rsg3ZT588Z1KV1ZcMm9TIyLOiX\n31JEUopShO3aOtIjwJiF42u94MCqYr6+vnSHoKH27NlT5evU27yc7OysjFex128+KlFQlEL3\nux+3fNseT9ZoAF7TNzdv/8euA6Ev35RW0YzDs/OetWCIB9YtaAA4OYY0kOO3Uw70Gf7sYWRy\nelZz7Q8pSUfvjSuIgOBzd4XvN9ATBLNTP+/lvsNpihSh+iKY3JFzNnfrff/8pct3IhMklT3D\nN2vtMmjo8KF9XLXw21JDuJkmUl709v++2kNkCAbnh5V97i4MA4Dcx5cAMEmPEB20GYSUpChK\nXuE+x8oO4CmlkDwRST0Nyi1fJZg9DbXP5YnfPL0CgEl61JSUKigA6OrApTsQjYMVO2iBBQxo\nx+I0nzhvzbjp2Y8e/peQkPAqK09ULCqRgb6+vqGJhV17x05uXR2sDegOU0PhtrOGgmMrLTB5\nRpeciF1pEhIAWDqt1wdvdfrsiEm07jJ4W3CLRTPXpktIueRFwIOcjV5YqKa+cGBVpf79+9Md\ngoZq0aJFdS1adgAAGD5hbPKZo0Hn7qUFr/Ap3n5gpB2OxQ2gVbdRuz2HxP3zf/efPEtISMrO\nfyuWSAmCoa2rZ2LR3N7erpOHV0+3drisGSFUHwwtrkuPfi6f3PecsMhj2Linz17kvik2tWnV\nxtbW1ADnZ1CTZ+HUfbZTdx9S/DIxPjUzTyQSlUgVevoGhsY8O0cnK2M1LLFOo9QSOQAQBHNS\nqxpV4DC0naJFXJVRlKw4ppFDowdO+aEmwEqbmSRWkJK0IpIyKPc9g63vDnAGAMIziz0dPnog\nMGMzAEAmjlVxqOoEp1Zp0VaXFVssk1d/fihqYFixgxZYwOALwdKz9Oxj6dlnIN2BqDncdkYX\nHFtpgckzukSde6W8cJ2/4vMZ+nfYRh1XzXWbuSMSAF6eiQIvHAgaBg6sCCnpNLObvGS3ftGM\n357mnVy1zv3EzhbaWCS2IRBsp+4DnLoPUP5EkVIFg41Z+UaCk2MIVcDSs3L3tKI7CoQaHsHk\n2Dq52zrRHYe6I4ECAAbbgsOo0bMLQehYajPSJSRQikYOjR6YpEdNgJchO0ksoyjZscTCOU4f\npqpZHDt9JiEiqfQbWeDw0RR2lhQLw9YXTq3SYpCtYWxM/pME4ZDuuEZPpbBiBy2wgAHSKLjt\njC44tiKNclNQAgAEwZzVpUZnzPO6+mgRj2QUJc65CYBJZYRQg2MMWb7w+PhVcsmLgHOvfvFu\nQ3c8aohgsnHtQ+PByTGkURIz8h2am9IdBUJftMS75xy+Hk13FE1YRz2tB2+lClm+jIKanCBA\nKcRZpQoA0OLYNXpwdMBzGVET4DLk3TFa4Zu3RGaJy73C+JqrDQD8iH1F5c4LUUhzbhVIAEBL\nx1aVcSJUf53njGQQRPzB4xIKd/yplJU2EwCUFTvK32fruysvwjOLK7wFK3bUX1UFDACUBQzK\nM2w91YzNBIDbISkqC1IDkdKqTrhEKqDcdjbVpRmlKDm5al06nklfPzi20uLy5cuXL18Ojyus\n+VueXr96+fLlv27FN15UmuB1KQkATO2WZlo1+rLP0GrWWocJAKQUz9ZF6m+dn8+MGTO23Mqk\nOxDNosVx7sXVBoCsGzfojgUhhFBVlvpNGz9j3s59x8Ij44RS9dy0ipBSskhW27eIs58FrZ65\ndOfxxohHcwzqbAoAlEISkl5Uk/aF8QfkFAUAhu0GN25kNMEkPWoCrPvNMmYxAEAqStrsN33p\nuu3JJe92u/bxMgcAUpLuH3hROfFKkcLQnauLSQoA9JrjclfUxHAsh2ya0FHy5t6SXVcwl6BK\nXoZsAFBW7Ch/X1mxAwDSb2RVeAtW7Kg/bQYBAJ8pYADKAgYfvUAwexpqA8Cbp1dUFKIGoOQF\n929d/nXX1rkzp0/yHjdqxLARo79TviQtehR6+XZGUa2/t6CGwBiyfCGDIJTbzugOpmnDsZUW\nBw8ePHjw4B8PBDV/S9ofJw4ePHjo0MnGi0oTGLIYAEApxNW2LFOioAAACK1GCkkDiYTCwhrD\nXkllFLLchMxsgUCQdD2b7lg0TlsdFgBIRQ/pDkR9YD+DEGokxYJXd//6I2DTisljJyxeve30\nxVvJrwvoDgqhhrfSb13CW2n17Q7imVQAACAASURBVAAAgCLfXj++c9rs1Tej+Y0alSZwmPkD\nl8kAgL82HBCS1TykkNLsgK0RAEAQzNG+zqqIT+Ww3D1qApg6bTf+8PWcfeEAQJHFiVERaaXz\n7XRZAGA7fpbelZXFJJV258j4+2dtrLm5GVli+buFfj19sAa1Sq3z83ldKrcdt96/rzXdsTRh\nHcZuWFi6bfcfhybH/T1qvPew3i46eLhc43MZYgMHkwAgfPOWLjvXd7Eqq77O+JqrffWNhB+x\nr8gvyOD9vwVW7GgQVtrMJLFCWcDAoNzfOVvfHeAMAIRnFns6fHSeLhYwaFiJ9/749cDpVGHl\nX0vI0penDp4MPXK017iZc8d4YVekYsptZ7cLJVk3boD3bLrDadpwbG0SpAoKAOSlL+kOpGlr\nrcPMk5GklP+0WOaiV33eXS6Oey1VAICWrnoWD1SlzKjrxy/dSUl5kfu2FjVpQs5fNMAeqV6o\n14lP/kt4VVBU5doUSp4RfUe5JEUhwaJBqpZaKgcAihTRHUiTh/1Mk4CTY0g9UKQ4Ofqf5Oh/\nTh8GA3NbNzdXNzc3V5f2BjUr14TQF660IGa135q1QRucjdhVt3wVeXnvvhNJ+RLVBKb22Abu\nW/16+QXdKcn9e85S5vJlPk68yo8mzI67dzhwb3SRFADsR60faM6ptFlTh0l61DS0GLBoG8M0\n4NAFwccVX1mcDqtHd1z+ezQAkNKitJcfSmSYuU773tZQ1YFqMOW+hBIFJbueDfg9pK4uXLgA\nAGDY/tuOL/6KTg4JXHsqSMvE3MLCwsJIr5onhmXLlqkiRDVl3W+W8dHFBXKFsmKHfafOM5Yt\nUi4G6uNlfvVimrJix44Fw3QIAit2NBQvQ3aSWKYsYDDHybjsvrKAgYik0m9kgYNx+bdgAYMG\nFBWyet3v0dU2U5DC2yE74lNygv1Hs3ByT7Xa6rBuv9t2hkn6usOxVTUSEhI+vVn65mVCQg36\nbUpekBV/Nq9E+UMDR6Zh+toaPorOA4DDp+ODZlS/ZDnp7EFKWTywzYBGD06tpVwO+PHQ31Tt\ny3XgRHd9KKT8fRvXXK/llib7UXgsukpJ30beKSwFAAbbku5YmjbsZ5oEnBxDTdqmlYtiYmJj\nY2MSX/LJcr1NUU5q+NXU8KvnCCanXcfO7u7ubq5u7ayNaAwVofqTCuPX+/mvCtzkYlp5kliS\nl3hs396wR2lldxhMbj/vH1QVYJNXVFR5QXvuV9M3lGhtOHRD+Py2/6x/O3r2+qqTnYW5ubm5\nuS5RksPn87Oz/7t39W7su7q2riPmr57UUYWBqxQm6VGT4fjtlAN9hj97GJmcntVcm/nhvvfG\nFURA8Lm7wvcb6AmC2amf93Lf4TRFqmZwX4JKHTlypMIdipLl8zPy+XhKaOPCih20wAIGNMq4\nEViWoSeYBj2+6WXXtp1WzKlf732Y5mZx2jtb68VkFgMA/+Fx/9Mdtk9woCdcTYXbzhoEjq2q\nUemCBn7E3mURtfs92gZdGyYgTdV+ohtEXweA9MsbTznvmfCVRRWNBU/OrD//rnSBqzf28HUn\nFd73P/xR5ozJZFbRvjw2gSvg6i505dLrSYXVtyuH5zZqac+q/r9ADau0IGnvql+UmR5dk750\nh9OEYT9DN5wcQxqh41e9On7VCwBIcX58bFxsbExsbGziiyzZ+86HIsXJ/91P/u/+KQADC1t3\nN3c3N7fOLg4GuKIfNTWOXHa8UCotSt44x39F4BZ3s4/y9JSi5O9zhw+dvvWWVJTdbP3VEL/Z\nk+1MtFUebFPl7e1dbRuKFEdHXI2OuPq5Bgwmtzj+2vKl11qNWuLXldegAX4RMEmPmhKGFtel\nRz+XT+57TljkMWzc02cvct8Um9q0amNra2pQzb4oVBO4LwFpFKzYoXpYwIAupCRtzf7bymuu\nXc8li307WugCQIrgfPlmWhznzcEnHoRu3nr6CQAknV2XNOKkvS4+PaoIbjtDmslt1ni6Q2ja\njOxn9+XduyUQU5T09y2zUwZOmjC8f9tPCgOWCF5cvxh6/EqkXJk5M/vG1wH3QtVdwoFjEgUF\nALq8Dt/P8u7czpZnpEt3UOpPlHE89H2GnmNp18XFwYhVmhgRnlhQCgDOA4Yoz0EXC3NjIh9m\niWQA4OS9btMYVyz7XU+nT5+uUTtFaXZ62rPH/72RvZvddpyMy7DqDvsZGuHkGNJATI6pc5ev\nnbt8DQBkSUFiXGxsbGxMTGxiymvp+4R9ET/1TljqnbAzDJa+XcfO29ctoTVkhGpnw96N6+eu\niSkolRWnbJmzbNnubV9ZvBtYs6Jv7N17JIb/YVWWTjOHKbP9Bnm0pClYjaYghUlJQgAgCis/\nrLOpw2lWpCZYelbunlZ0R6FucF+C6vn6+tIdgkbDih0qhgUM6JJ1c2++TAEA2lz3XdsWNmN9\nvgImwfIcv3b+65m77/EpUrz/ckbAmNaqC1SD4bazBoRjq2rY2NiU//H169cAoGXAM+fWdO2s\nvqmVs9eISd3NGz44zcL4Ycv8WN/tfClJUeTjsN+eXD1uZGZpzuOZm5vrQolAkJOTk5OdW6h4\nP8HKZPPmbf4BayHXx7XoAgBgG7oH/7rKtIpRFTWo5GN3lReGbQbt3TmTyyQAQO7dz3vCkhIF\nJWvRf9qg5soGFCk8E7A85F5m4rnDMf07uNS4X0KVqmmS/mMc814/quPmJ5XBfoZGODmGNBxT\n19jJ3cvJ3WssACkRJsXFxsbGxsbGxD/PkCrrRshFiVH3ADBJj5oStmH7dXs3b563KipPIi95\nuW3e4sW7dngY5Jzev/ePe8llzQgmp+fo6T+M62uAyzxR48AkPWoCLl++DAAGtl69nGq6vePp\n9asZUpKl22ZAX8fGDE2d4b4EWvTvj/uDaYYVO1QMCxjQ4sHFdOWF19I5VWXo3/OaOWn3vR0A\nkHXzEWCSvq5w2xldcGxVjeDg4PI/Dh06FACsei8NmmFHU0SaS5fn+fP2+RvX71U+t1OUokCQ\nWSDITIytpDGbazd7zZruFhW32qNaiRXLAMDJbxZmzlTpn+dvlRcjlk/ivv8WyuLYTbbQ258l\nyrqWAu+T9ASTO2bxLkHy1Js5GT+vP38iYCw9EWsw47Y91myap8vAyYK6w36GLjg5hlB5TG19\nY2MjY2MjY2NjQ52sPLGc7ogQqjstfbtVe7Ztm+8fmSMmJRk75y8wonLzZR/mJ607f+vn+30H\ncyxdU0eXLl2iO4QmAJP0qAk4ePAgALQcal/zJH3aHycO84u1OB0G9N3SmKGpM9yXgFAFWLGj\nkWABA9X7W1gKAARDe5qjcU3as7lePHaAQEpKhREAYxo5OrWF284QQipjYNtr2yGnsNDfw/66\no0wYfEqLY9FzwKCx4webs2t6qjH6nFIFBQBdHbh0B6JZnhXLAIBgcobxPlpl0s7NBLJEpQWR\nAL3LbhKEzpQV/W4uuChMCQnNGjzOSk/V4aqRAQMG1Lgt08ympW2bdp3a22LCsp6wn6ELTo4h\nBJQ043libGxsbFxsfFxifmWJeYLA9UOoSWJxbFcEbd+xYOk/WWJSys9/f5/NbTPBx3dk93Z0\nBoc0AybpkXpSFtuRl76kO5AmDPclIIRUBgsYqFiOVAEATO0WNa/WZaHFFEhJUprdmHGhinDb\nGWq6Jk6cCABcu2Z0B6K5GFpmQybNGew9/VVSQkJCUnaeUCQSyYClr6/PbWZpb9/eoX1rDnYv\nDaStLiu2WCan6I5DwyhLzrC0W7A+/kM28TCBy+lS0RMpBexyLxm2nmrGvpIrJW+HpIxbgmcn\n1d3s2bPpDkETYT9DF5wcQ5qJoiTpSQnKuvax8clCCflpG4IgmjW3c3Z27tChg7NzB9UHiVCD\nYOq0WBL4865FS+6mi5R3bAdMX/vDEGMsXdMIMsLWrDidCgDahp6Hg/3oDueLgEl69CVKSEj4\n9Gbpm5cJCZU8EFREyQuy4s/mlSh/aODINAnuS2gq1vn5vC6V245b79/Xmu5Y1AxVkP0qNSOn\nSCSSkQyOvr6RuXW71tZsnM1WLSxg0Bj0mIRUTilkeRRADf+i+TISAAgG1viqO9x2hjTKmDFY\ndeOLQDB0W7d3bd3ele5A1NwgW8PYmPwnCcIh3XXojkWDaDMIKUlRVMX9fBwrO4CnlELyRCT1\nLL++k2D2NNQ+lyd+8/QKACbpUROD/QxdcHIMaZTUuMfKvHxcwosiaeWJeVObds7OzsrcvAVW\njEBqgcm2XhSwS2vpov9LLQIA/pOYwqmDjTF32ggkgoK3b98CAFOaSHcsXwr8Q0NfomXLln16\nkx+xd1lE7X6PtgGe4Vp3uC+hSVDIchMys0sUlOx6NmCSvoEIkh/9de363//+l/dJeVgm28DB\nw2vQwEE9nJvTEhtCDeIrA/a1AolCXnD9jaS/SfXTfNKiBwIpCQBaeh0bPzq1hdvOvhCC54//\neRyblJT0OrdAJBJJ5AwDAwNDE3P79o4dXD09nXAwVTWSAlyMgpq6znNGMnwOxR88Lum2WIfA\nP2gVsdJmJokVpCStiKTKFwdi67sDnAGA8MxiT4ePkgdmbAYAyMSxKg4VofrDfoYuODmGNMqC\nFRs+vUkQhIl1W+d3OlhwtVUfGEKNjcE2n7tzN2v5wuvJQrEgcvnczVsD/W05mD9tYKYeLeB8\nGgCQkrQ4sdwJP2FM0iP15jZrPN0hNGG4L4FW1OvEJ/8lvCooElfZSp4RfadEQQGAQlKqotDU\nGinln9n7S2h4AkVVXoeDlBbF3b8ad//que6jF8/3ttHBM1xRk9Svl/m182kAcCYwvP+6/tW2\njztxQnlh2rn6xgh9sQqSw4N+PfE4JbfC/eKiQn5WRnLs48tnj5vauk7ymd/HwZiWCNVVST4/\nq6C0TduW5W8KX9wPOvTH81fphSVgYtm6W59Bk0b11MHq66hp4lgO2TQh0j/k3pJdDjsWDsb8\nmWp4GbKTxDKKkh1LLJzj9KHfZnHs9JmEiKTSb2TBx/15VmWbAlHVCgsLlRcEocXl4rZg2mA/\nQxecHEMaS9u4ZdevXDs4Ozt36GBljDU8UBNWadnmSvWaMvvVtoCkImmJ4PHyuZuXL/qu0vMH\n27dv36ABahATp/meRo8eFEoA4Nj119tHtKI7Ivphkh59iWxsbMr/+Pr1awDQMuCZ17iEjr6p\nlbPXiEndzRs+OI2B+xLoopDy921ccz2aX6t32Y9q00jxaA5Smvnz/MURmcXlbzK0ODxzHiEp\nEOS/Jctl7lPvn1v8IvPnPUut2Zinr7v09PRatScYTG0dXR1tHR09XTYmcuqh5chxWhe2yygq\nLyp46znu0lGeVWxj5T8+veF6pvL6fxNsVRQiQg0t/sKu1UfDZZ9Zg1UmPzVq97IZz6ZtWjAc\nv3U3gNxnt/Yd/f1JqkCL0/Hc6Y1l9/Ojjs/a8IdU8e6fIz8z6fKJpL/vPwvaOdeYhd17Td28\nebMBf5uRY3cPa0717dBndBi7YWHptt1/HJoc9/eo8d7DervoYI2IRuYyxAYOJgFA+OYtXXau\n72JV9gfM+JqrffWNhB+xr8gvqOzLrEKac6tAAgBaOvg8UwuTJ09WXrD1Oil78p9++qnOv63S\nuomohrCfoQVOjiGNJS3MSEjQZTAIAFA4OtqY4oMiaqrq9vghyX2ybsWTSl+6dOlS/SLSYAR7\n4c4lOfO2pYplz0M2P+wR9JWZpq8BwiQ9+hIFBweX/3Ho0KEAYNV7adAMO5oi0kS4L4EuoSuX\nXk8qrNVbeG6jlva0aKR4NMfFtf7KDD1BEO08+w/q29vJ1trMxED5LZySlwiys589DL98/uqr\nIikAiPkP/FdfOPbTKFqjbtrmzJlTtzcSDHYzS6vmNq06unft1s3DwkCrYQNTe2xu9+V9bTbe\nzACAB8e3To/sNXvysA4OH09YU2Q+/9XdsLPHLz9QrlAxdpg60gK/lqMmKSdi/4qj4WVVUgys\n7D2c2/J4PJ4Zz0BLlsPn8/n8F7GPEjKLAICiZHeOrjAwPzDdk0dr1E0e//4Rv+0XP10YQZFv\nN/90oSxDX+Zt6q2lOzoeXNFLRfE1fUFBQQ342xx822OSvs4uXLgAAGDY/tuOL/6KTg4JXHsq\nSMvE3MLCwsJIr5qF5pizrDPrfrOMjy4ukCukoqTNftPtO3WesWyRnS4LAPp4mV+9mEZK0v0D\nL+5YMEyHIChSGLpzdTFJAYBec6wMVC/379+nOwRNhP0MXXByDGmUju1sElMypRQFABSlEKQl\nCtIS71z9EwC4Fq0cHZ2cnJwcHZ3aWmPhMYRQHenwPLbtXRu4eUdESs4233kjp38/sJeHqQZX\nq8UkPUKocrgvgRaijOOh7zP0HEu7Li4ORqzSxIjwxIJSAHAeMKStDgsAxMLcmMiHWSIZADh5\nr9s0xhUX0NdTUfqJ3+IKAICp1WzGmi2DOlVc9ECwdM2b2/ZrbvvN0CEh21acfSwAgIKEY8fT\n/je5pQENEWs2SiHNzXyVm/kq6mH4sV/1en83fcbYb/Txf4PacPfbMTTD51JiIQC8SQzf7B9O\nMHXM9BXKV5cv8ktPzxKVm13S5nbcsGEYPbGqKTwZXWUU8rxNgdeUGXq2Qbup8+cM6tK6sv6C\nehkZFvTLbykiKUUpwnZtHekRgLu664yUpK7cdbnS0gV5T/emlMgBgMHijvaZ7WbNjntw6fil\npwAg+PeXe8JuXjWunoXQF+LIkSMV7lCULJ+fkc/PoCUeDcHUabvxh6/n7AsHAIosToyKSCud\nr0zS246fpXdlZTFJpd05Mv7+WRtrbm5Gllj+7jmnpw8WoEZND/YzdMHJMaRRNv0crJAKUxLi\nY+Pi4+PiEhJTi2TvRk8h/9UD/qsHt8MAQMfI0tHJUZmzt29tid+Z0BfO0tKS7hDQB2FhYQDg\n1GdUofBUbC7/bPCWc/vYRqYmJiamxiZc7Spnd9Vy3SEm6VETMHHiRADg2jWjOxDNgvsSaJF8\n7K7ywrDNoL07Z3KZBADIvft5T1hSoqBkLfpPG9Rc2YAihWcClofcy0w8dzimfwcXnM6un4Sj\n4QBAEMSYzQGDHIyqaMlgm01cvefNzKn/lyMGgL9/S5i8totqglQ/Xbt2BQCZ6MWT2IpHRAMA\nQRDUx9kdLY6tW0czsfBNbm5uXr5QmfuhyOLboYHPErKDN0zEoxlrjmBwpm8NMtm3/bcbMco7\nFCkRCN+9Gp/y0WSfsX0f/1W+LTV4WWvDwpPRVSwnYleahAQAlk7r9cFbnT47YhKtuwzeFtxi\n0cy16RJSLnkR8CBnoxcWqqmj11eDc6UkADCYhiP9Fnzr0aHspahjccoLO+/1E/9nCwDtndx5\n4tk7b2VSlOLMn2le09rREnOToxxGK6WQ5Uc+eV72I0EwDIzNzC0sDJilOTk5ObmF8vcjLJNt\n4e0zrhmLwbUzafSIEWpoLQYs2sYwDTh0QVD60b5VFqfD6tEdl/8eDQCktCjtZVHZS2au0763\nNVR1oE2Zvb298oKl++5cQl9fX/rCQUjVcHIMaRoGm2vXydOuk+dIAEohSU9OjI+Pi4uLi49P\nyiuWKdtICrOj7mdH3f8/AGDqGts7Ojo6dZg8ehCtgSP0Wfv376c7BPTBp/8cFCUtyOMX5NXu\n8F+1UXH6GyGEyqT/FaDcl6A09/jZfkbaACAXx07yXqn81sFkG1TYlzD8l5M461Fne6aMuVEg\nAYApB0NHmX+oOBrmM2F/lsiw5cKTQb3LblKUZM/MqTdzxNy23icCxtIQrhpZOX50TLHUoPnk\nkL2ja9K+6NVh73kXAYCt53zu9OZGjk6dkZJXG2cvjcqXAADB5Lh/M6Rv1w5mZs14Zjx9lixX\nIBAIBClP710IiyiQkQTBHDBnh0+/tgBAKaTZz6NvXDn759+Jyl9l571r59g2dP7HNE38uPvn\nL12+E5kgISt5JmzW2mXQ0OFD+7hq4fqHBlLDk9EBgCC0euPJ6A0hbI73/vQiAOiy7MCq7tUn\n3fn3Ns3cEQkAhi19TgYNbPT41NTvM8aFCMQA4Dpv37q+5SpDUPLvR3+XJyMJgvjp9B8OnHer\nxqVv74+e+BMAcHjeoYfwqaZe5OIXPy9ZfT9DBAAcS8eR340Z/LULh80oa0CRpUkPb4aG/h71\nSggAHKsum3Ytb6uLK/jr7tq1a3V+b//+mMWpL4VM+OxhZHJ6VscR3g7l/pIfnAoIPndX+P6L\nKkEwO/XzXu47isPAxxrU9GA/QyOcHEMIAAAUgrTkOKX4+Mx8cYWX8ZRuhFBNKM+2rhu17Gfw\nezhC6LNwX4LqPSuWAQDB5AzjfXQmaDs3E8gSlRZEAnxI0hOEzpQV/W4uuChMCQnNGjzOSk/V\n4aqR5yUyALAe+tkdaRUYtJzEJi5JKUpW8rz61ujz/lizVpmhb959wjKfkS0+2uGqZW7Tytym\nlbNrl6HjJ145sv3w9ed/7fmRyT30QxczgsG2sveYau/h5bJ3UeANiqJenP1JOHo/F4ve15KF\nU/fZTt19SPHLxPjUzDyRSFQiVejpGxga8+wcnayMdegOUK3gyei0uCkoAQCCYM7qUqNPktfV\nR4t4JKMocc5NAEzS11HE21IAIAj2wt5W5e9LCm/lyUgAYBt6lWXoAYBt2N1Ui5EvU0jfPgDA\nJH19UCdXrVNm6F1HL101qcenBUgJprZDt8Hrug2K+nPHut8ixFmR61ceP/rz91iqtM4wAUYv\nhhbXpUc/l0/ue05Y5DFs3NNnL3LfFJvatGpja2tqgOXHUFOF/QyNcHIMIQAAYPBaOvBaOvQe\nOEpalHP/xqUz565lvt9bj1DTkhG2ZsXpVADQNvQ8HOxHdziaBWsyVYBJevRlSU9Pb9hf2KJF\ni4b9hZrG8dspB/oMV+5LaK79odCxo/fGFUSl+xKG0xSpmngjUwAAS7tFhUlSEw8TuJwuFT2R\nUsAu95Jh66lm7Cu5UvJ2SMq4JXi2Yt0pP3CODae6hu8RbAttRrqEBAILgNedMPXQycQCAOC2\nHR24dFwV6XWmrvkwv51k1rTfYt5c3b7C6/ivZamdNt/4zb37JPC/PFLKv5BbMsWixv+IqByC\nybF1crd1ojsOtYYno9PldSkJAEztlmZajGobAwBDq1lrHWZyiZyU4iGvdZcjVQAAS7dVhbVT\nBc/+Vl4YOfar8BYbNitfJiVlGlrjrqEUJAT+mSIEgGYu09dN7lFlW8J15NJ5Sc8DH+QIUy7s\n+HfwClwShNQOS8/K3dOq+nYIIVQlnBxDiBTnxcXExjx79uzZs6T0XAWWZ0ZNmURQ8PbtWwBg\nShPpjkXj4LrDCjBJj74sc+bMadhfqJYVMFQM9yWokjaDkJIURckr3OdY2QE8pRSSJyKpZ/nP\nmWD2NNQ+lyd+8/QKACbp685Vn31XWFqUVARONTqQlVKIs0sVAMDW+/R/DlRTUQfuKS9G+39X\ngw3wxKAlE3+bHEhKBcFnXwZO+XBisafP14Gz/gSA2Mf5MBiT9OgLhSej08WQxciTkZSiYj3G\nKpQoKAAAQquxYtIAugxCoqAoRcVHmuTLWcqL1kObV3hJ+m6mD5ek1MujQ0+UF6MXfFuT9l6+\n3oEPAgAg5tg98BzViJEhhBBCTRlOjiENREoKE2NjYp49i4mJiU/NJitLzBtb27m5urq6uao+\nPITqzNSjBZxPAwBSkhYnljtxME+KaIN/fAihusN9CQ3OSpuZJFaQkrQikjIol7Rk67sDnAGA\n8MxiT4ePvu+ZsRkAIBPHqjhUNTOoG+/uXxkZFy8oRs6vyUbLwoRDyiOled2HNXZsauxSahEA\nMFjcYc10a9Je26gvj71XICWzbpyBKSvL7uuY9gP4EwDEr2uRhEOfQ0pLmWxtuqNQQ1HnXikv\nXOev+HyG/h22UcdVc92UJ6O/PBMFXlh0ve5a6zDzZCQp5T8tlrnoVZ93l4vjXksVAKCla9f4\n0amt1rqsgiIpWfoqU0pas99vOKNkIa/eKi+Ht/6oBiylKEmVyAGAodVMtZGqm6sZIgAgmJwB\nJjU6r0Sb28uI9UuhXFGSfwsAk/Sqs87P53Wp3Hbcev++1nTHglDt1LYCIsFgauvo6mjr6Ojp\nshm4Ekt1sJ9RGZwcQ+pEIS16Hv9ux3z889fSyhLzTG0jx06dXd3c3NxcW/H0VR8kQvVk4jTf\n0+jRg0IJABy7/nr7iFZ0R4Q0FybpEULoC+JlyE4SyyhKdiyxcI6Tcdl9FsdOn0mISCr9RhY4\nGJd/S5aU/OTXoFprN8XX9NbK/IL/2/DnN+tGdqi6MSnN3rXlLgAQTL0pE21VEqB6Si8lAYCh\nZVbzt5iwGAIpKSt+Vv4mU+tdeV7pG2kDhqchKHnBP+ERMTGxcQkphcXFYnGJjKSUdWikRY/+\nDC/q3suruQHuJ24AeDI6XfraGj6KzgOAw6fjg2ZUX3Um6exB5akEhm0GNHpw6qufpV5UkZSi\nFEE3MrcNfnf+VH70r3yp8kB6T8ePNysInx8vVVAAoG3QVfXRqpMM5djK0Kt5HkyXQRQCKKSC\nxosKVaCQ5SZkZpcoKNn1bMDkWUMQC3OzsvNlNS69a+fQvgZlnFDl6lwBkWCwm1laNbdp1dG9\na7duHhb4hNmYsJ9BCNXB+uXz4xJfSRSVjKcEQZi1dFRumu/UwVaHwHEUNWUEe+HOJTnztqWK\nZc9DNj/sEfSVWY2WOKPGpoEbhzBJj74sa9asoTsEhOjkMsQGDiYBQPjmLV12ru9iVVa4m/E1\nV/vqGwk/Yl+RX1DZJnuFNOdWgQQAtHQwVVwvLI7TT0sG/rA1LOo3/3W5kyd/N8TWpPIHgqJX\nkbu3BjwtkgKAx+RNXbCQXT0YsRi5MpKUpAtJiluDiVKKLHolkQMA8XENalL67gBjtjHO9NVO\n4r0/fj1wOlVY+eIGsvTlqYMnQ48c7TVu5twxXjiXXU94Mjpd2k90g+jrAJB+eeMp5z0Tvqrq\n7ADBkzPrz79UXrt6O6giwQ7FPQAAIABJREFUPjXlOK0zrLgNAAmHV5wxXTXQ3a7k9aOftoUr\nX7Xq9135xkVp99asva68Nu3irtpI1Y0+kyiQU6QsN1VC2uowq21PlqbxZQoAYGgZNX50ao96\nnfjkv4RXBUVVlvah5BnRd5THaigkpSoKTU1R8jd/HN5/5W7Um6LafZIh5y8a4JONylEKaW7m\nq9zMV1EPw4/9qtf7u+kzxn6jj/8QtYP9DEKoET2Jf1nhDovTrGNnV1c3V1dXV5uaFWpCqEnQ\n4Xls27s2cPOOiJScbb7zRk7/fmAvD9MafIFCDQg3DgEm6dGXxt0dZ+VosGfPnob9hXVeWY+s\n+80yPrq4QK6QipI2+02379R5xrJFdrosAOjjZX71YhopSfcPvLhjwTAdgqBIYejO1cUkBQB6\nzfvTHXuTx+s6c/di/dW7zkSFHf/vr987fd3fzaE5j2duzjNjSt/mCHIEOTnJ0f/e+++F8hQu\n274+M7sbCASf3XbG49Vos6wm62WsfVYgpijp/qi8pR7V76fPjzmoXNDNNvxon6WY/5fywtDe\nsJK3oc+IClm97vfoapspSOHtkB3xKTnB/qNZOIlaD3gyOl2M7Gf35d27JRBTlPT3LbNTBk6a\nMLx/W3NOhWYlghfXL4YevxIppygA0DX7xtcBc5Z1Z+To093kn/tvJBRZdHLrshCCoN7vcCUY\nOj9811J5XSL466ftl6OfZyrHVoJgfjeuFV0xqwdPQ/bVNxIAOHQ7a8vA5tW2zw4/oPynYRt2\nb/Tg1JpCyt+3cc31aH6t3mU/qk0jxaMJKLJ49/w5tzNEdXivdo3Wy6HKde3aFQBkohdPYnM/\nfZUo1+EraXFs3TqaiYVvcnNz8/KFyoIHFFl8OzTwWUJ28IaJuB2zhrCfaWw4OYaQEkEwrdp0\ncHVzdXVz62TfAucBkFoKCwsDAKc+owqFp2Jz+WeDt5zbxzYyNTExMTU24WpXuYhw2bJlqgpT\nneHGISVM0iOE4MaNGw37C/F7SJ0xddpu/OHrOfvCAYAiixOjItJK5yuT9LbjZ+ldWVlMUml3\njoy/f9bGmpubkSWWK5Rv7OlTff1eVIVZs2YpL1gsAuRAKUqfhl98Gl7VW1Jv/TrjVlUNlOv+\nUBX6jG19NigOAP7duTXx0DaHKssSyMUvdm67r7y2Hliu9DclPb/rrvLSo6Pxp29Elcq4EViW\noSeYBj2+6WXXtp1WzKlf732Y9WNx2jtb68VkFgMA/+Fx/9Mdtk/AjcV1hyej04fxw5b5sb7b\n+VKSosjHYb89uXrcyMzSnMczNzfXhRKBICcnJyc7t1DxPqnAZPPmbf4BMzj1QRA6c7fOfTE3\nQFnfvnzCxn70amfOu/8FSgsfRSW/Lnup1bcrenE1q7Rdg/vft9ZXT78AgIQj6x977HGvsmyj\nJC9q/cF45bX1wD6qiE99ha5cej2psFZv4bmNWtqzqtoeqGqvb2wpn6HX4nB5JgY1nL7Twqxw\nPfj7+5OSVxtnL1X+SDA57t8M6du1g5lZM54ZT58lyxUIBAJBytN7F8IiCmSkvCTNxGOOf7+2\nAEAppNnPo29cOfvn34kAkBd9dtWZbjvHYha5RrCfaWw4OYZQl16D3FxdO7t2sjDEspFIze3f\nv7/CHYqSFuTxC/JqtxgO1Q1uHCqDSXqEEPqytBiwaBvDNODQBUHpR4fNszgdVo/uuPz3aAAg\npUVpL4vKXjJznfa9LW4grpfs7Gy6Q9BElr0Wtj3kk1Iil5ekrPLxn7ZwziD3VpW2zIy+uSfg\nQLxYBgBMNs9v2LstmEXZyVeO7TqX+hYA2PqdRzTTVVXsTRspSVuz/7bymmvXc8li344WugCQ\nIjhfvpkWx3lz8IkHoZu3nn4CAEln1yWNOGmvi0+PdYQno9NIl+f58/b5G9fvTSwoBQCKUhQI\nMgsEmYmxlTRmc+1mr1nT3aLiVntUWxxLr1+CDA/sPRwek6ZcAMFg6XcfNuPHic6fNiYIltuA\nH1bO6qLyMNVNi2EzuGdWCkkFKRVsmbNk2o+Lh3RpWWnL9MdXft55JEdKAgCDZTxzkI1qI1Ur\noozjoe8zZxxLuy4uDkas0sSIcGWf4zxgSFsdFgCIhbkxkQ+zRDIAcPJet2mMqxrvCFGB/zub\norxw6D1m5qThbZvp0xuPRvljzdqofAkANO8+YZnPyBbc8rkcLXObVuY2rZxduwwdP/HKke2H\nrz//a8+PTO6hH7qYEQy2lb3HVHsPL5e9iwJvUBT14uxPwtH7a3L0lYbDfgYh1NgywtYkRqUm\nRt07Z+h5ONiP7nAQQmoLNw6Vh9OsCCGYOHEi3SGgjzh+O+VAn+HPHkYmp2c11/5wFo6j98YV\nREDwubvC9xvoCYLZqZ/3ct/hNEWqPthsXCNMA4YWb5X/6JlrfpdSlLQoef+GeaesHDyc2/B4\nPB6PxwGJIFeQK8hNjXscl/FuQoogiH5+G9rqMAFAzD800edy2e7Mr+f54QRUDWXd3JsvUwCA\nNtd917aFzVif3zBMsDzHr53/eubue3yKFO+/nBEwprXqAlUveDI6vQxse2075BQW+nvYX3eU\nM9ef0uJY9BwwaOz4weZsPIiuYXAsOy3YFDi7gJ+ek8/UN7OxNmN/vHuVxbH19DK0amXXxfPr\n9jaYYGsALI7TukmuC397DADykrSDm+b+aevSw7W9paWlhYUFB8R8Pj87OzsxKuK/1Pyyd7lP\nXuuAa7DqIfnYu6I+hm0G7d05U5lulHv3856wpERByVr0nzbo3dEDFCk8E7A85F5m4rnDMf07\nuHDxEbTuIt5KAcDYyfunhWPxIVCVhKmHTiYWAAC37ejApeOqyAEzdc2H+e0ks6b9FvPm6vYV\nXsd/deC862rafOM39+6TwP/ySCn/Qm7JFFwbVx3sZ1QAJ8eQhpMICt6+fQsATGki3bEg1Oh8\nfX3pDkFD4cahCtTwPwkhVFtjxoyhOwRUEUOL69Kjn8sn9z0nLPIYNu7psxe5b4pNbVq1sbU1\nrbJCOKqhc+fO0R2ChjLpNCFouWLZjnOFcgUAFGUl3s767LdBgqHd74dNvr2tlD8qFOKyDL3d\nwAXzuvJUELB6eHAxXXnhtXROVRn697xmTtp9bwcAZN18BJikrys8GZ12DC2zIZPmDPae/iop\nISEhKTtPKBKJZMDS19fnNrO0t2/v0L41h4GJnoanbWzRzrjyVSn6NhNXLFFxOOqvzcg1SwpW\n7rgYo/wxP/XpxdSnVbR3Gbl81XBblYSmtv55/lZ5MWL5pLINwSyO3WQLvf1ZoqxrKfA+eUYw\nuWMW7xIkT72Zk/Hz+vMnAsbSE7FaeCtXAEDPuYOx41axqAP3lBej/b+rwS5tYtCSib9NDiSl\nguCzLwOntCt7wdPn68BZfwJA7ON8GIxJ+mpgP6MCODmGNJypRws4nwYApCQtTix34mDmCKmz\n/v370x2ChsKNQxVgV4sQQk0MS8/K3dOK7igQajCWnhMPHHA98uuRm4+ek+UOLa7AyrH7lFm+\nnq0NKtznWNgNGTvN+xunRg5TrfwtLAUAgqE9zdG4Ju3ZXC8eO0AgJaXCCACcuqozPBn9i0Aw\ndFu3d23d3pXuQBBqRF7TNzdv/8euA6Ev35RW0YzDs/OetWCIBxa6r69nxTIAIJicYbyPEo3t\n3EwgS1RaEAnQu+wmQehMWdHv5oKLwpSQ0KzB46z0VB2uumihzUwukbfEFILKXUotAgAGizus\nZkdNaRv15bH3CqRk1o0zMGVl2X0d034AfwKA+LW4kUJVJ9jPIIQam4nTfE+jRw8KJQBw7Prr\n7SNa0R0RQkgN4cahCvDLDEIIIYRoptPM0XfVzmmClLsPniQkJLzKzBUVi0pkYGBgyDW1dHB0\n7NSlh2ubZhXepWs64pfg8a1tzHD7VG3lSBUAwNRuYVDjMyottJgCKUlK/5+9+45r6voCAH5e\nQsLeEFBcoGU6EbWIVFx11b3q3nvgqLPuieLPhXuL4laoShW1FRDqAKkDURRRQCCEvUJI8vJ+\nfwSRYoAISR6E8/3r5uXmfU4xfXnvnnvuTVVmXOoPd0anxc2bNwFA38bdw0neNQmeB/2ZJCQ1\ntJv37emozNAQUqJmnYftdR3w+p+/wp+9fPMmNjUzjy8QEgRDU1vXxLKxnZ1tmw7uXdv/gHsV\nK0SWSAIAGppNNP779zTpYAI3E4UFz4QUsMu8ZWA9yZx9K11I/u0X9+vSNqoNVn105ei8S8h7\nmVbUw0iT7ljql8RiEgAYLHP5P2KiweAJSVHhy7IHmaySdbCEWUIFhqeu8DqDEFI6gr1o59K0\nBV7xfNF7vy1Puvh0MteiOyaEkLrBwqFyMEmPEEIIyaWYX6ChrYdj2cqjzWnRe1CL3oPk7c/U\nbGyDtX/VosskhGJKIsqgAOT8RnNFJAAQDLnqpVAlcGd01Tt27BgANB1oJ3+SPuHa2RPcQpZO\ny749tyozNISUjGA7ufV1cusrfUWRQgmDjXcyyqDJIIQkRVHicsd1GtoCPKckgmcFQteye1QR\nzK4Gmlcz+FnPbwFg8qyaXKc6H1sbHLk/gPKZhN9rVTLSYKSLSFKQmEtShnJcUygy/5NADAAE\nwSp7nBRypQ22MUvGx9B/4XUGIaQCWpwOXgfW7dviHRaX5jVnwdCpU/p5dDDVwsdShJDCYOFQ\nOZikRwjJhfc+8p/I6NjY2M/p2QUFBQIxQ19f38DEws7BsaWzq6uTFd0BqiF+bnpKaqao4tW/\ny7G1d8BR12oTFuUXMXUN2bLW2KHIf+9evP73s8Skz2KWUcv2rh79hri2wC2iUR3WSZ99J1sg\nEWcHZQn6mFQ9NV6Y/4gnJAGApdta+dGpP9wZvfYTSigAEBd/pDuQOmzixInV+2CLSV5rujVQ\nbDBIimDixB9laajJjOVLSEFCPkmVHWxi67kAXAaA4ORCV3t22Y+YsxkAIOLLWkoFyces7aKR\ntv9efnd91ckm6yd30yTwp1NFPIw1r/D4FCU8EpWxrEPV9fSZr44JJBQAsA1+LHucz70tbRjY\nGSgjTjWD15laoiA3Vyz3KI2hkRFemFDdEhgYCABO3Yfl5J6PTudeObj16iG2kamJiYmpsYmh\nZqXDjsuXL1dVmAihOgwLh8rBJD1CqArZ74J9Dp+NjEsvd7wwP4ebkvQuOvLmFV9TG+fxszy7\n28u1RAmqHCXOunbiyK3QqKz8yvYQ/Zaf/x/yT0BDUikv/w4ICo189jKDL279+/HNnTjlOghz\nX3ut8Yr8lPvlAPfRff/Hf91w+WX279N/xo2iUR3Vy8Pijn8CAFzeF9xnfZ8q+78+e1baMG1X\ndWckJ9wZXXnevHnz7cHirI9v3pBVf5gSZ6fEXMkokr5QcGT1SXZ2dvU+mF8sxz8TQrWMuwE7\nli+iKNGZtznznL4+E2no2OoxiQKSSrybAv99VkoR4le95ojRW714S5YFB+yZFBE8YdwgRxvr\nRpYm+EikbN1HWV/xeQ0Aj3due3vcy16fXUlnMf/DTq9waduqX7+vb1BC/92h0maH1jiSUDW8\nztArOSrI98aDuLgP6XnfMVCDozSozjly5Ei5IxQlzM7gZmdwaYkHIeXBaeV0wcKhcjBJjxCq\nTEzA7jWngqss5s6Mj9q7fNrLyZsXDnZQTWDqiiIL93rO+zupoBqf1cSM8fegyPzzO9ZeevSh\nkj4SUcbm+euf55R/CKcoMuLm/iXFjN3zeiozxnoHixJUpunQX1kBO0QUlRF1cNtVw2XDXCsZ\nO+JGXtgYlCxt/zzGRkUhIlQDMms4uGEHlod933k09X+suhNSEA0dExM9DQAw0cZH1BpJTEz8\nrv4Eg6mppa2lqaWlq83GNTyqq+2ARnAsFgCCt2ztuHNDx4Y6X95h/GSo+WeWgBt2KH+uT2mq\nRiJMu58tAACWFv6w1giTbTVgSOfgPUGFyc8PbX8OAASDKc8X2d/fX+nBqa8GHotaHJ8VVyQW\nF8WtnrVq8qJ5/V2ayeyZ/OLe/l1HY/giAGCyOXMHNZUez099d+vM7qvxeQDA1ms3xEw966IU\nC68zNIq7uWvJ8RBK7mfVUiwcpUEIodoKp5XTBQuHysEREIRQhdLCjqw8FVz6HKLf0K5DqxYc\nDodjztFnidK4XC6X+yE64k1yPgBQlOjBqZX6FkenupavRUby+3x3a9kMPUvHkGOiL+dwKQsX\neJQfJTr++7ybMVXcjT0/slaaodc0dujVo31jY0b8u9joiKhkvggAPtzdd9qj/aSWWPZRU1iU\noHpsQ7cVPRttupcEAI98t0196jF7wqCW9v8dv6PITO6n0MArvjcfkRQFAMb2k4Za6sg8Iaoe\niTA//n0cLysvv6AAWNoG+vrmVtbNG5nhN7uWaD9zNN0h1GH79++v9H0qLyMtNTUl6VN00L2I\nIglFSbRHLNna2wF/VWtq3rx51fsgwWCbNWjYuFGz1i4/du7cwVIft4j+Dla9Zhqf+i1bLBEW\nxG6ZO9WuTbtpyxfbamsAQHd3iz//SCAFiav2/eG9cJAWQVBk7sWdawpJCgB0G6vnSJPKRJxe\nven6y7JHKAmJ46bKxmBxVq8aPmPtJSFFCfPfHdm44HxD+w6tmnM4HA6HowMCXjovnZce/zry\ndVKO9CMEQfSau7GFFhMA+Nzj42bdLB1n+GnBXLzzkQdeZ+gizA1fdeI/GXomU97dY9g4SoPq\nmjlz5tAdAkK1FE4rVxQsHCqHqMY0QIRQfSARZ3iOmZ4gIAGArf/DJM95/Ttay7pgUh+fBvrs\nOR1XIAQADa3mJ87vMtbA55BqOj1l1PWMIgCw7zZyxvjBLcz06I5IPcVdX734dMlwnpaZ/eBB\nP7dztOE0aWqq+fVhmyxOGvfrvEKS0jLu/L8jSxtrlbxFClIPr1gaFJ8HAJqGna+cXaH6+NVJ\ntYsSLv/xhxYOedQAJeGfWDHrxtuc0iMEU8tcT8LLFQKAY4vGiYkpBWVWyNQ0bL3z2IamWrid\nsSJQ4ldhdwL/vBMZkyT85svP1jdr79azX//+bZoa0hKdGig3tPT582cAYOlzLAwrW4+3LD3T\nhq3ch4z/2UnxwaFvCDLeXT7lc/VhAsHQnrjj6FBb/ObXyMCBA2t+EoKp223E1GmjeujhfDi5\nJd7eNe9QcOnL+b5XehlpAoCYHz1+7O/SVBmTrd/IyjA9KYUvlki7Dd5zbooN7sZdTbkffCcs\nvla9Qa0bN24oPJ76JvXRueXeV3O+fJkrQTA0e03fPK+/nfRlQcq+MbPuS9u2/RbunNVdiVGq\nF7zO0OKF94w1D7kAoM1pOWXm2HY/2HCMcO0HhBCq86pagaz8tHKmltWsDTitXDEifOZKC4cA\nwMS+pHAo9fzCxVc/gvRGXVbh0JkdQ+kMWmkwSY8Qki01+PeZu14BgIaW9aZj3k6VjmsLc14u\nnrEuUUACQJulRze5W6ooSrUzbfgQnpA0dhp7etsoHBNVEorMmT5qsnQzG3PnEXvWjJNZkJ32\naP30bVEA4LL+5Fpns7JvkYL3k8cslQ5ITTx2cZgF1hZXkzA3fNzEHQJJdYoSrvn749qBNUSR\nuf6Hdpy++6rKnsZ23VetnmMnd4ITVUKQGX1wu3fw2ypW8iAIZocB0zwn98MVI2pOmrNsOnCn\nzzRbumNBFZFcXzvt9PMMDa3me87ubKKJ84Gqb+vWrQAgKvjwLDr923cJovwIAEvHpn1rc35u\nVnp6ekZmbtldrszajDi4cRxOiZNfTNCZXccDeMUklEmeAUCM35oVl15829/cefKJ9UNUGqJ6\nub14/KG4XADQ5jiOGjPQoYmVubGenN9XU1NTpcZWTwgyYk4ePnkv4j1Z8dBiQ0e3iTPnuFrr\nlx6RJul1LG0HjJo8tgfOh/s+eJ1Rve3jRoTnFbMNXI6cXm2qgc+gCCFU7+C0coXDwqGyMEmP\nEJItcN7YI4n5ANBx+dHVblUn3bkPN8/wfgoABk1nnfPpp/T41NTIwYMEEmrw4QtTGurSHYva\nSo/cOnXjYwBg6dgfOedlVsFj9v2F4/fF5wLAzNOX+5tolXv32ZZpG57wAKDpkP/5TP5BySGr\nLSxKqA24r8P9b9x88PSNgJRxT2hm3bb/wMEDuzuzMEejCMLc6FWz1r0rFJU9SBAsEwtLbUkB\nNz1H/N87c2Ongfs3T8U8fQ1hkr5OEPFfjRi9WkJRNqN27xnbnO5w6jZS8GnT7GVRmQIAIJg6\nLj0G9Pyxpbm5Gceco6chSufxeDxe3POHAYFh2SKSIJh953nP6tUCACiJMPX9i7u3rlwPeSs9\nle3Y3TtH4T/Hd5CIcl8+efouMaX1kLH2ZVbCfHR+18GroblfClsJgtmm19gVc4bpyLN9OqrA\n7BFDkotJTSOX46fWGOJvJX2KeHGhj569efPmU3J6QWFBkQj09Q0MTRvYOzq26djFublZuf5k\ncVJCupZ1I3P8N6sevM6o2Pihg3PFknYrj21wtaA7FoQQQnTBaeUKhoVDpTBJjxCSbeHIofEC\nMUEwj1+9Zs6qerKwRJQxYvhUEUVpaDW/fnm3CiJUS7+NGvquSOzpe6XHlxnxSOEiV0/Z+DID\nAOyn7d8xsInsTpR4+ogRaUISAGadudzPuHySPjd+5/iFoQCg13D6+cMDlBux+sKihNqDIvkf\n38bEJ2cUFBQUCSW6evoGxhxbR6eG33z5UQ1QR2ePuZVcKH3BNmw+cNjArh1bNbA0ZTMIAKBI\nQXpqysvHwX9cD0woKEnkW3ksP7TYjbaQ1cLly5cBwNC2Z++2JnTHgiqzZ8LIv3MEWsZ9L5+Z\nTXcsddvlZRPPvc0GgMZuY5bPGtqkguEMsijt1skdJ4LeEwTxy+/Hp3c0L33rw18HFu+7S1EU\nk215+tIRTH8qhLgw5fnLD+lZhaaNmjW3sTHVV9thJpUZOmiQmKJ+2n7mN1x3FCEAwOuMckhL\nKWafudwXn4wQQqgew2nlyoCFQwCgUXUXhFC99LmYBACmZlN5MvQAwGCZWWsx3xWJSWGSkkNT\nZ105Ou8S8l6mFWGSXnlCEvKljf5dK1wiQpB1K+3LojoCUkYHbTNXgFAAEOY9BcAkfTVF80UA\n4DR3JmboaUcwdWycXGxwwVFlyn57sDRDz3EZ5bVytNl/f2EJphankU3P4TbdBvY/u2Xl9X8z\nACAlxPvOhPZ9zHBMsPpGjhxJdwhILi20NP4GEBY8AcAkffXlxh+XZugNWwzft+zXStLrTG2L\nQXN3kimTT7/K+nPHSnffw/Y6JeMDzXvMnR/6bN+/GaSQG5BeNNESd/ZRAA3dhi6uDemOQq2Y\nsBg8IdmuAX4/ESqB1xllaKGtEV0oEmONG6qXeO8j/4mMjo2N/ZyeXVBQIBAz9PX1DUws7Bwc\nWzq7ujpZ0R0gQqrD0mnlYaj5d44g5e5dGItPrIph6eQ228ltVv0uHMIkPUJINgMNRoaIpCR8\n+T9SJN1YmmApK6Z6wHWq87G1wZH7AyifSWo9RYxOH4vFAEAQbDeDCgsLuA9CpQ2GhlE/ExkT\nJpjsRtIGKUxTQoz1RbGEAoAf7XEzJ5VKCly78kI8AGgauJ44OJfucOqR6DMR0oYOp9v+NWMq\n2eaZybaYuG5/xrTJoRlFFCX541xcn4UtVRVmvUZSgAXDNIovFgMARRbQHUjdFnX0obQxfNUI\nOb7PRP+l405P2EcKeQevfNw38esOPq6zfto38zoAREdmwi+YBK0M/rDSpbuR5kUe/7PMGbUI\nIaQg/W0Mol9lPnuTO8CtXqQKEJLKfhfsc/hsZFx6ueOF+TnclKR30ZE3r/ia2jiPn+XZ3R7X\ns0H1BU4rV5J6XjiESXqEkGzWWswMEUkKuc8LRW11q867i/mvPwslAMDSxg1fq8+s7aKRtv9e\nfnd91ckm6yd306w4hYOqjSeUAACDZaZR8V/3yd1UaUO3wSgtWXv4EYySzL1ElKX4EOsNLEqg\nhYCXnZeXBwBM4Vu6Y6lf7iWUpB67rZpSSYZeimDoTP+9e+iiQABIj7wBgEl6xSjK5KZkFzdv\n0bTswdwP4T7Hr73/lJhTBCYNrDt37z9+WFeZF3+kPMK8pw9yigGAwW5Adyx12434fABgaBgO\nMtOWp7+mUU8O+wBPSKbcvQwTfy89rmXaC+A6APA/f8ec3foJf1jp0m2c48Vdkf/4vZq4pBPd\nsait/fv3K/aE8+bNU+wJEVK2dvOGMmYdjznmK+j8W5X38Aiph5iA3WtOBYuq2iU5Mz5q7/Jp\nLydvXjjYQTWBIUQvnFaOlAGT9Agh2XraGES8yACAExdifKa1qbJ/7JVjFEUBgEHzvkoPTp0R\no7d68ZYsCw7YMykieMK4QY421o0sTbCwT4F0mYRAQlFUcUUdKDL3Oq9kPNpqoOwvPyniSRsM\nFu5wXH1YlEAL0w5NwD8BAEhBwmu+2EkH7wZVJL5IuowHc3wzA3n6G9hMZBF/iihKVPhKyaHV\nC+kv7x86delZPI+l0/rqhU2lxzOjfGduvCaUlIxAZSbH3jwbGxL+0mfnfONKJnMhhSrOjj2w\neg9JUQCgbdKT7nDqtsRiEgAYLPMqe5Yy0WDwhKSo8GXZg0wWR9oQZgkVGJ5awh9WujTounJA\nwORboduv9Dg6oq0Z3eGop7t37yr2hJiklwfOjahVdBoM2Dzm6Sq/h0t323sv+gXz9EjtpYUd\nWXkqmPqSoddvaNehVQsOh8Mx5+izRGlcLpfL/RAd8SY5HwAoSvTg1Ep9i6NTXTm0Ro2Q0uG0\nclUq5hdoaOvVk4QIPj0ihGRzGNceXgQBQOLNTedb7R/TqcLduwGA9+zyBv+P0rbzWHtVxKe+\nmGyrAUM6B+8JKkx+fmj7cwAgGEx5yvn8/f2VHpxaaMjWyBQJKXFWspC0YjO/7VDw+WLRl2zN\nz51kj3GLCl9IG0x2Zf9roMphUQItTJw8XY0iHuUIAOBM0OcdQ5rRHVF9QQIFAAy2pY58JdoE\nodVAk5EoIIGSKDlv612KAAAgAElEQVQ09ccNPzl3xx/f1oJQZN6W7QGlGfpSefH3l3m3PrbS\nQ0XxqaMLFy7I1U9SnJqY8DLy3yxRyffcccKPSgyrHjDSYKSLSFKQmEtShnKMalBk/ieBdArR\nf5bOIoVcaYNtjFtZVQF/WGlDsKZs25D525pz62bG9hs3bfwAS5whgdQCzo2obVqO2rio2Gvv\nteMTXocMGz12ULe2WvUkb4DqH4k4Y/O+O9IMPVv/h0me8/p3tJb1dac+Pg302XM6rkBIUZLA\n3duGdtiFU5yRGsNp5QokLMovYuoashky3qPIf+9evP73s8Skz2KWUcv2rh79hri2MFJ5jCqF\nDzAIIdmM7Gb35Dy8z+NTlPDS1tlx/caPGdynhUX5DSmLeB+C/rjoe+upWPorZd5jjr2aXzeV\nLeL06k3X/1PJRElI3GhRgdxMNF8VCimKuvIhb6GDjK2z3nzZN5qp1bSHkYwN6QGA9/BfaUPT\nuLOS4qwPsCiBHgR70c6laQu84vmi935bnnTx6WSOKxmoQmtd1qM8oUSUKaKAJceXnZLwU4ol\nAMDSwX1kaoQUxP+++6bM1Roznh+IKxIDAEPDcPis2e2t2K8f3fC98RwAeI/3PMzt7G7IVnW4\n6kLeJP1/6Vh4LPkRq3BqxMNY8wqPT1HCI1EZyzpUXU+f+eqYQEIBANvgP9Mj+Nzb0oaBnVyL\nf9Rr+MNKk4CAAACw7dbz9fkbTwNPRfx5xtDcqrGVuTw/suvXr1d2eOph3LhxdIeAEM2klxow\ncOjd+sPtF+/89q0778MysbC0tLQ00q3iRnH58uWqCBEhxUkL250gIAFAQ8t6w8FtThU+DRHW\nHX/xOthk8Yx1iQJSLPiw61HaJncsYkF1CU4rV7GUl38HBIVGPnuZwRe3/v345k7lH/yFua+9\n1nhFfsr9coD76L7/479uuPwy+/fpP8tK6asJTNIjhCrCmL7VM3rODq6QpCgyMvD0sz99jcwb\nWHA4FhYW2lDE46WlpaWlpudIvox6M9mcBVumq/EVUwVyP/hu9sdljZXLqVcDOJkPAE/3+VOH\nppQbxKPE2cdfZkrbBtajKhjik5y7nihtcdwxeVYjWJRACy1OB68D6/Zt8Q6LS/Oas2Do1Cn9\nPDqYaslYWAIpUP92po9CUimJwC8xf1JT/Sr758QclU6AM/jhF+VHp84+/3kwXUgCAINpMHTu\nwt4dWpa+FXXmtbRhO3bDuJ9tAMDByYXDn73zfjJFSS5fT3Cf/AMtMddPxi26rN28QFu+pSZQ\nRbqPsr7i8xoAHu/c9va4l71+ZfkDMf/DTq9waduqX7+vb1BC/92h0maH1jJmNKJy8IeVFidP\nniz7kqIkObykHF4SXfGopZEjR9IdQn2EcyNqlXKXGgCgKFEmNymTi1cbpIairn6SNpw9V1ac\noS/BNmq9en77Gd5PAeDj5Shw71d5f4RqFZxWrjIUmX9+x9pLjz5U0kciytg8f/3znPK701IU\nGXFz/5Jixu55aruAASbpEUIV0ua4/m+H56YNB95mFwMARUmyecnZvOS30TI6sw1tZ69d62ZZ\nvtQefZd/DtyTLiqlzXEcNWagQxMrc2M9HKtWrIY/T2SdWi2iqILkgA2X2q0f1a7su89PreUK\nS1YusP9V9t4NCbe3Pc0v2Z91UF8rpUar3rAogS6BgYEA4NR9WE7u+eh07pWDW68eYhuZmpiY\nmBqbGGpWOk8C//LVZj9jumHY5lxScnvj0SFHF1e+DDUpTN21LQwACII5fE4rVcWonh7/+Vna\naDt3+4SeZS7alPhSciEAEAQxpW+T0sM/ThoH97cDQHp4FGCSvrr69u0rd1+meaOmNs1/aONg\ng9O0aq6Bx6IWx2fFFYnFRXGrZ62avGhef5dmMnsmv7i3f9fRGL4IAJhsztxBTaXH81Pf3Tqz\n+2p8HgCw9doNMdNWVex1GP6wIoQUCOdGIIToco9XBAAEwZzZUa40JOfHWSwiQkRR/LR7AJik\nR2oOp5VXByU6/vu8mzHZlfd6fmStNEOvaezQq0f7xsaM+Hex0RFRyXwRAHy4u++0R/tJLdVz\n+jgm6RFCldG38fA67hR48VLg7QcpBSKZfVg6ll379h81+hcLWdt7o+9yI6kAADSNXI4eWSPP\nNqKoGlg6reZ2Mt/zmAcAUX7rlnwaMqCrs72dNZXHjQw6fzywpESeoWE8xcnk248nhJ9bfvSp\ntK1nNdTDUPZ6+EgeWJRAlyNHjpQ7QlHC7AxudgaXlnjqCba+y7a5HnN9HhSlh8xbxlyxfJYT\nR/Z6yKmvH57Yd+BFvhAA7IZt6PfNXjPou4TlFQMAQbAXdWtY9rgg536GiAQAtoG7fZltjNkG\nbqYsRqZIIsx7BDBKxdGqjdmzZ9MdQj3FYHFWrxo+Y+0lIUUJ898d2bjgfEP7Dq2aczgcDoej\nAwJeOi+dlx7/OvJ1Uo70IwRB9Jq7sYUWEwD43OPjZt2kviyU9dOCuXg/Kg/8YaXFwoUL6Q4B\nIaT+5syZQ3cICKnO52ISAJiaTc1Zcq2UymCZWWsx3xWJSSEO46A6BqeVq0ac/4bSDL2Wmf3g\nQT+3c7ThNDEt24csTvL+KxkAtIw7/+/I0sZfFiQjBamHVywNis8DgMDtRyadXaHa2FUEk/QI\noSowWOYDxs/7ZezUT7Fv3ryJTc3ILSgoEIGGnp6eoVkDOzsHewdrHZxBpiBpQgkAdFo5HzP0\nStX1tw23Jy6ILRQBwPtw/13h/t/2sRm4woJd8kxCiQVZWVmf42LC/7p5J+Kj9CDB0Jq+AZM3\nCCEZ8vPzZR437DR1YxFr4/G7ue//XjXzcWtXj05tbC0tLCwsLLSJojQul5ua+u/DP0OjU6T9\nnYd4rhnfWoWBqyfpb6uGdrNyv63ZL0OkDSPHXuU+0oitkSkSkiLMrqE6yaTNGJ8VkuXeV3PE\nEgDIT3n7d8rbijoTDM1e0zfP+TKFRSLhl2bobfstXIBrOaJarHv37nSHgGQghcVMNs5jVrCk\nwLUrL8QDgKaB64mDc+kOp37p06cP3SEgpDoGGowMEUlJ+PJ/pEhCAQAQLGXFhJBy4LRyFaDI\nHK/zJZsMmjuP2LNmnL6slEdG1IlCkgKAlp7TGpfZMoyp1WCW17onY5bmiCXFuf9cS+MPU8ci\nFkzSI4TkQjC0rR2crR2c6Q5EzZmwGDwh2a6BGv7e1CpMttXmA2vXe25+nVt+qxspwxa9N0/4\nutZ90u3V8469K9uBIBg9Z27rxsEFYGsEixLogn95ZRs7dmyVfSiS/yLszxdhf1bUgcE0LIy5\ns2LZnWbDls7FPFkNaDMIgYSiJOJyx9/dLJkMYT2wcbm3hCVJSpwwRwNh7me2YSO6o6jzGriO\nO3rU+eThk/ci3pNfku7faujoNnHmHFdr/XLHdSxtB4yaPLaHk5LDVB/4w4rqLUqc/U9w2KtX\n0a/fxOUUFvL5RSKSunHjBgAI8yOuB+e7ebg31sfMTU0JeNl5eXkAwBRWOOkKIYRqzlqLmSEi\nSSH3eaGorW7VV28x//VnoQQAWNq2yo8OIVTHZPx7kCckAYClY7999ViZGXoAeHWpZLv69s30\nyr3F1PrBs73Zhic8AAj+M3mYOu5IiEl6hBCqRbobaV7k8T8LSLoDUX+aJm22nDh0+/wp/6DH\nvMKvWzkwWMa9RowfP6JHJetDaGg3GDp71TiPpiqJVJ1hUQJd8C9fJ0jI3NjYXAAgcoR0x1K3\nWWtrZOcLyeJPyULSqnRrHkrk9ylP2hxsbVC2PyUpiheIAYDBMlNtpPUaKch8FvYwJCTk0cv4\n63/8QXc46kDLzHHO6p2TeXGhj569efPmU3J6QWFBkQj09Q0MTRvYOzq26djFuXn5L7m26ZA9\nB0dbNzLHKSrfBX9YVQ8Li2uDtw+vHT56IT5X9o0KWfzx/LFzF0+e8vh1xvyR7rhUXE2YdmgC\n/gkAQAoSXvPFTjo4nIsQUoqeNgYRLzIA4MSFGJ9pbarsH3vlmHQRJoPm8q8cjpCqiUQlA78s\nFk4cVKmEgDhpo/mYeWYaFWyiQYkvfS6QNglZt4stRtvDEx4AZD55C5ikRwghpFTdxjle3BX5\nj9+riUs60R2L+mOwzfpPWtp/ovDj27fcjKxCktWgoZVVk8ZGZdbVKYsgCI51y46dOg8c0sei\ngj4IIYRqm14NdKPyhRQl8bmb7PVLE+nBzBeHuULphvSujv8d6c5971ssoQBAU/9H1Udb31Ak\n//XTsJCQkLAn0dIF7pBiaXNa9B7UovcgefszNRvb4EIGqC7AwmLaRfmtWX/pRZXdJGTu337e\nMXFpB1cN18A8fXWZOHm6GkU8yhEAwJmgzzuGNKM7IrWVk5MjbRAEy9BQl95gEFI9h3Ht4UUQ\nACTe3HS+1f4xnSwr6cx7dnmDf8mOkM5j7SvpiRC9hg0bJm0cvxbAYVWQKkZKEJJQshdk/64V\nXkwEWbfShCX1ijLrFrXNXAFCAUCY9xRggOKjpBsm6RFC//ExKvhhxPOYd59y8vKLSIahkVGT\nH5xcOnl4ODejO7R6oUHXlQMCJt8K3X6lx9ERbbGATyUItrVDa+tKu1j+tOhQB00jIyNdLfzd\nRAhVTbrKK6olHCe3g5V/A8CbEysvm67u52Jb9Dliu1ew9N2GvUaU7Zyf8HDtuiBp27Sji2oj\nrU8ocfzLxyEhIQ/DIjNwASGE0PfDwmJ6Jd3dV5qhJ5j6XXp42Lb4gfXq/OGH3NI+GjoOrax0\nXyUXAgD3ie+qCy13jMEUTnUR7EU7l6Yt8Irni977bXnSxaeTuRbdMamnCRMmSBts3TZXL2wC\ngO3bt1f7bMuXL1dMWAipipHd7J6ch/d5fIoSXto6O67f+DGD+7T4ZhPoIt6HoD8u+t56KqYo\nANA27zHH3oiOeBFCtdrHYjEAEATbzYBdUR/ug1Bpg6Fh1M9E89sOTHbJLHJSmKaEGOmHjzEI\noRKCjFe7tv7vcVxW2YPZGWmf4mJDb1/3te2y5HdPJ2MZF0qkSARryrYNmb+tObduZmy/cdPG\nD7DE8aZagG1oZWVIdxAIIYSqxchxlpvJP+FZAorMP7dtuR9BUF+26CYYWtNHlOxdUsS7vX3H\nzRfvk6UbeBMEc8SvzeiKWY1x30eFhISGPgxPyi7+9l2CYDSyx7kRqFbz8/OTNgb/OkYX1++m\nDxYW04gUJKw98re0bWjbdelvc1pbagNAHM+/bDeWTqstB88+urhl24VnABB7ZX3skHN22vh4\nW01anA5eB9bt2+IdFpfmNWfB0KlT+nl0MMUF3pQvPDyc7hAQUiXG9K2e0XN2cIUkRZGRgaef\n/elrZN7AgsOxsLDQhiIeLy0tLS01PUfy5ZGKyeYs2DIda5MRQt/iCSUAwGCZVbKc0pO7qdKG\nboNRWrI2nyUYJQkpiSjr23fVAN4cI4QAAIpzojxnb0otrrCSKeNd2OqZH9cc2eOMeXplCggI\nAADbbj1fn7/xNPBUxJ9nDM2tGluZs+QYAFy/fr2yw0MIqSdK+DDsiTwdTdv/6KiDO3ihOoYg\ntOZvm/9h/i7p+valGXoAsBu+ptWXr3RxTkTUu8+lbzXrvdLDEO95FCYvOTY0NDg4JPRdSr7M\nDpzmbX76qetP7l2amWFpoCIV5OaKKXn3ETA0MsKcc5UuXbokbfQaORqT9HTCwmL6pNw7kCmS\nAICmoctur0UV7jAKAISG6+h1np9n7H3IpUj+kZtJu0ZWvoQZqlBgYCAAOHUflpN7Pjqde+Xg\n1quH2EamJiYmpsYmhpqVXo6wnhshJD9tjuv/dnhu2nDgbXYxAFCUJJuXnM1LfhstozPb0Hb2\n2rVuluVL7RFCCAB0mYRAQlGUjAn6UhSZe53Hl7atBraR2YcU8aQNBstE4RHWBpikRwgBAHV4\n2Y6yGXq2rnGTps0MiPxPCYlZBULpQVKQvH3JPr8TS3EnOeU5efJk2ZcUJcnhJeXwkuiKByGl\nmjhxYvU+2GKS15puDRQbTH1BiV+HBwX/E5FEjPBa6lRyTFLo7e0tz6c77j3raI3LSqC6R6eB\n+x4fg6MHTgS/SpDWfDA09NwGTVsyrtW3nQlCo33f6b/P7KjyMNVQcXZieEhoSGjIv3GyF6Yz\nauzg7v5TV3d3WysDFcem3pKjgnxvPIiL+5CeV+GAyLf8/P/Qx6xzjVFk/tr1O6TtTZs20RuM\nesPCYro8+iNR2nBfNq+yDP0X7jPG733oDQAp9yIAk/TVdeTIkXJHKEqYncHNzuDK7I+qx87O\nTtrQ0C5ZXHfOnDn0hYMQPfRtPLyOOwVevBR4+0FKgUhmH5aOZde+/UeN/sWCjb+8CCHZGrI1\nMkVCSpyVLCStZF0rCj5fLJKUzCn/uZO5zJOICku2WGKyK9zYvk7DJD1CCHLjTv7FLZmypKHT\neOz8JcPcbErfTXgSsHPv2YQCEQAUZTzcGzV5SXvcKx0hpADZ2dnV+2B+xct+oErwXtzeeeDM\nWy4fAMydh3zvxwmCaSDHOCySBz83PSU1UyR3eautvQMmzmpIp0GbhZv3zc7mJqZlMvXMG1mZ\ns4n//E01dGxc3Q0aNrPt6PqTQyM9uuJUD2RRRkRYaEhI6ONXH8kKvudMNmejt1cra7yrVLy4\nm7uWHA+h5L7ClGLhNV4xxC9evKA7hnoBC4vpEpJbDAAEQ3Oyo7E8/dmG7hz2Lp6QFOaGAYxU\ncnQI1ci3c5f79OlDSyQI0YvBMh8wft4vY6d+in3z5k1sakZuQUGBCDT09PQMzRrY2TnYO1jr\nyFqYGiGESrmZaL4qFFIUdeVD3kIHGfeNb85ESBtMraY9jGSvZch7+K+0oWncWUlx0guT9Agh\niDv3j7TBZHM2HN3dyoBd9t2mnQbvOmo7b9LvqUISAJ6fjYL2P9MQZf2wcOFCukNAqPbS0DEx\n0dMAABPczPL7RV3asel8eEXZslIdOrTPz85K+5yYLSiZCUEQzG4DR7Zr1bJlS0dTHZwjXyOU\nOOvaiSO3QqOy8r+jthWwvFVxNI0tfzCWPflar9G4lUtVHI66ocjC6McPg0NCwiNi+KSMq42e\nZYsuXbrcuXoaAAiGPmbolUGYG77qxH8y9EymvJfucjNXEKrlsLCYLmlCCQAwNZvIf3NiyWLy\nhCQpTFVmXGoO67kRQqpHMLStHZytHZzpDgQhVCc59WoAJ/MB4Ok+f+rQlHI3jpQ4+/jLTGnb\nwHpUBbeVknPXS9Zw4rjbKi1SOuEYN0II/vqQJ200GbS8XIZeiqXnuGx4s0XnPwAAn3sfAJP0\nytK9e3e6Q0BIdfbv31/p+1ReRlpqakrSp+igexFFEoqSaI9YsrW3rKmXqHJxN73X+4WVvmRo\nGLRsZSSz55o16wCAkghiI0P8Tp56kcKnKPKjgLOwo4xVwdF3ocjCvZ7z/k4qqMZnNbG8FdVm\nlCju+ePQkJDQ8GdZslY60TG3cevSpYt7l3YtLAFAmqRHSvLm6BmBhAIAbU7LKTPHtvvBhmOk\nTXdQCCG1osskhGJKIsqgAOTM0nNFJAAQDLwcVR/WcyOEEEKobmn480TWqdUiiipIDthwqd36\nUe3Kvvv81FqusGQAwf5Xe5lnSLi97Wl+yV7Mg/paKTVaumCSHiEEcUViacOjb+OK+lj93BPO\nfwAAseCTaqJCCKm9Jk2aVNWjaUsAgMFjRr27fMrn6sOEgytnFe44OtQWt0X/DoKs8FUnSjL0\nBFOn3/gZQ/p25WhXVlhJMLTsO/be6OJ+yWvR+cepH4P2rjezWD+qpUriVVuf724tm6Fn6Rhy\nTPTlHNpmYXkrqsVmTxidnCv89riWSdPOXbq4u3dxtrPCb7DK3HmRDQBsA5eDh1eb4h4lSK1h\nYTFdOumz72QLJOLsoCxBHxOtKvsL8x/xhCQAsHRbKz86hKrPz89P2hj86xhdXMUKIYTUTmpK\nskgRj0hWVuqZLVY4lk6ruZ3M9zzmAUCU37oln4YM6Opsb2dN5XEjg84fDywpkWdoGE9xMvn2\n4wnh55YffSpt61kN9TCUvR5+XYdJeoQQpIsk0kYbPVZFfUofpymJQBUxIYRQGVpmthOW7tXL\nn3b6eca51etdzu5soonrrsvr1oZD0qpKgqk7w+twfzt5pzgQDJ1fV/pkz5t0O6ng3/Prw34+\n18W46nFYVJG/rsRJG/bdRs4YP7iFGe56rniZmSVLpRmbmlb7yZsi85et2Chtf7svKfpWuQw9\n26hRZ7cuXdzdXRwbY4pY9aL5IgBwmjsTM/RI7WFhMV16eVjc8U8AgMv7gvusr/pf4fXZs9KG\naTv8J0O12qVLl6SNXiNHY5IeIYTUz5r5cxVynhs3bijkPPVB19823J64ILZQBADvw/13hft/\n28dm4AoLdsnTKyUWZGVlfY6LCf/r5p2Ij9KDBENr+oZRKotZxTBJjxCC0i2K9Sp+CGFoYC4B\nIUQvxoAVi3xHrxYLPuy6+mnP2OZ0x1M3CPOfnvuUL227zNohf4a+BMGevHlu0KQdEkp4ZMO1\nLnvGKj7EeiMsTwgAxk5jty+qaKstVFOTJ0+WNo5fC+CwZGQoKUnR6TMXy3X+hjg2NlYp8ak7\ngqnTZ+LiGYM64rA2jYolFAD8aI9LziCElKXp0F9ZATtEFJURdXDbVcNlw1wruexzIy9sDEqW\ntn8eY6OiEOsfUljMZKtneVmtQpH5a9fvkLY3bdpEbzAI1dDAgQMVe0JMWyKEvsVkW20+sHa9\n5+bXucUyOxi26L15wte17pNur5537F3ZDgTB6DlzWzeO2u6ahEl6hBCqvXjvI/+JjI6Njf2c\nnl1QUCAQM/T19Q1MLOwcHFs6u7o64dI6qH5h6bTyMNT8O0eQcvcujJ1Ndzh1Q+r9SxKKAgC2\nvsvKnyvc06QSWsZuk6wNTsbn5sZfCswY1t8Mi+mrKU8sAYCu83/B9CWdKIG/f8nE7YqT9Kia\nKJJ/++TmR/ecunXr1s3jp2Z4uaBDC22N6EKRmKI7DoSQ+mIbuq3o2WjTvSQAeOS7bepTj9kT\nBrW0/28CniIzuZ9CA6/43nwkrQowtp801FKHloDVDyXO/ic47NWr6Ndv4nIKC/n8IhFJSdNj\nwvyI68H5bh7ujfUrXCgR1YD4xYsXdMeAEEII1SWaJm22nDh0+/wp/6DHvEJR6XEGy7jXiPHj\nR/TQYVQ4Tqah3WDo7FXjPJqqJFJ6YJIeIYRqo+x3wT6Hz0bGpZc7Xpifw01JehcdefOKr6mN\n8/hZnt3tjWmJECFatNDS+BtAWPAEAJP0cnn7F1faaDxwnEZ1k8Ouo5qd3PYCAG5fS+w/01ZR\nsdU3TTSZ74rETXXw9hupm6amWgmZX7dDykl67e/7OuDsoaYtf+zevVtXdxdjNq67rjr9bQyi\nX2U+e5M7wA0nSaB6DQuLlcplrvfApFk33uYAQNbb4C2rggmmlrleyT56KxbPTUxMKRCSpf01\nDVtv3DiInljVztuH1w4fvRD/371mSpHFH88fO3fx5CmPX2fMH+mOa9sghBBCpeYuX2mEm4LR\ngcE26z9paf+Jwo9v33IzsgpJVoOGVlZNGhtpyd7MlCAIjnXLjp06DxzSx6KCPmoDRwkRQqjW\niQnYveZUsIiqogYqMz5q7/JpLydvXjjYQTWBIUS7+GIxAFBkAd2B1BnhWSXLSTl3s6z2SQzt\n3QBeAEDG0yeASfrq6srReZeQ9zKtqIcR5gyQWvE5eeFT9OPg4JDQhxEZgpKUDEWRn16Fn3wV\nfvqAQZvOP3Xr1s3N+QcWpgqUr928oYxZx2OO+Qo6/6ZF4F8c1RdYWKxiBENn6jYfk0M7Tt99\nJT1CkQJebsm7MXFJZTsb23VftXpOU3UfYFWNKL816y9VXcktIXP/9vOOiUs7uGp4tefpIoTU\nWw23bHjz4OKFBzHUl6FLgsCLPKoD2nXsJHNfPKQiBNvaobV1pV0sf1p0qIOmkZGRrlZ9SV7X\nl/9OhBCqK9LCjqw8FVx6m6vf0K5DqxYcDodjztFnidK4XC6X+yE64k1yPgBQlOjBqZX6Fken\nunJojRohVRDmPX2QUwwADHYDumOpM1K+1DC11atkYJrQ0qqs4JKlVbJ+qTA/AmC8woKrZ1yn\nOh9bGxy5P4DymYSDpUitEMxmrdwmtXKbOKcw+klYcHBweEQMnyy5k5GI8/4NvfVv6K39hlZu\nXbt1696N3mDVnk6DAZvHPF3l93DpbnvvRb9gnh7VB1hYTAuCaTh03pbO3cL9b9x88PSNgJQx\nxdzMum3/gYMHdnfGSVoKkXR3X2mGnmDqd+nhYdviB9ar84cfckv7aOg4tLLSfZVcCADcJ76r\nLrTcMcZe9ukQQvVbmzZtqvfB4qzYk/v23I5KLj2i07DtrIWeCooLIVSvsQ2trAzpDkK1MEmP\nEEK1iEScsXnfHapkA+kfJnnO69/RWtaABvXxaaDPntNxBUKKkgTu3ja0wy5jnCGP1FpxduyB\n1XukW1pqm/SkO5w6I1tUsu6occUrehFMo8uXL1dyEkLDSNoghdxKuqHKmbVdNNL238vvrq86\n2WT95G6amDlDaodg6rbq3LtV595z+OlPHoaEBD94EvNZ8mXeoTA3+cGNcw9unJO+pChhkYTS\nrnjzOVRtLUdtXFTstffa8QmvQ4aNHjuoW1stTEsi9YWFxfSydHKb7eQ2i+R/fBsTn5xRUFBQ\nJJTo6ukbGHNsHZ0aGuO+GwpDChLWHvlb2ja07br0tzmtLbUBII7nX7YbS6fVloNnH13csu3C\nMwCIvbI+dsg5O20c/kUIKQJFPr118sCpwGxxyTgDwdDyGDlr1q/d8K4eIYSqB+/SEEKoFkkL\n250gIAFAQ8t6w8FtTobsCjoS1h1/8TrYZPGMdYkCUiz4sOtR2ib36q9ljRAtLly4IFc/SXFq\nYsLLyH+zvuSbHSf8qMSw1IuhBiNDRAJApkjSiF3NBehIEa+kReCyYDVBjN7qxVuyLDhgz6SI\n4AnjBjnaWDds/6kAACAASURBVDeyNMHcGVI/TB3zzr2Hd+49vCg9PjQkODg45HVidrk+ZHHS\n2DHTO7r/1NXDo5NTE7y4KEpAQAAAgIFD79Yfbr9457dv3XkflomFpaWlpZFuRTeWJZYvX66K\nEBFSHCwsriUIpo6Nk4uNE91xqLWUewcyRRIA0DR02e21yKySLXUJDdfR6zw/z9j7kEuR/CM3\nk3aNrHxlWYQQqlphUuSBvT5h777e1Rvb/eTpOdu5kS6NUSGEUF2HSXqE0FfrFnlWWFVAkaXN\n+fPnV34eHx8fxQVVv0Rd/SRtOHuurDhDX4Jt1Hr1/PYzvJ8CwMfLUeDeT9nhIaRY8ibp/0vH\nwmPJj7i/g7zsdTTCckkAeJwlaKNbza1YhTlPpQ0mu6HCIquXmGyrAUM6B+8JKkx+fmj7cwAg\nGEx5Sg78/f2r7oRQ7aNtbtN7uE3v4VMy4l8Eh4QEh4QlZglK3xXzef8EXf0n6KqWWbOffvLo\n6tG1VTNTGqNVDydPnix3hKJEmdykTG6SzP6o2jYv/62C8ZSvz02LFy+u8jy7du1SVEj1DRYW\no3rl0R+J0ob7snmVZei/cJ8xfu9DbwBIuRcBmKRHCNUAJeH/deHw0SshAknJElkMlsmAyfMm\n9XfBGecIIVRD+FiCEPoqOTFBnm4JCXJ1Q9Vwj1cEAATBnNlRrhwk58dZLCJCRFH8tHsAmKRH\n6s+4RZe1mxfgQmryc7XQCcstBoBnF+JhWTX3nEu+GSVtsPU7Kiyyeini9OpN11+WPUJJSLKi\n3gipETObNsNt2gyfNPfjq8fBwQ9Cw55lCr5+9wUZn+5eP333+mnjpi27de06aXhvGkNFSE6f\n4uKq7BMnRx9UbVhYXGuRgvz0rEItfQNDfR28a1eUkNxiACAYmpMdjeXpzzZ057B38YSkMDcM\nYKSSo0MIqa2MNw/27jnyIpVfeqSxS/+FCyb/YFRFZRFCCCF5YJIeIYRqkc/FJAAwNZuas+Ra\n9pXBMrPWYr4rEpNCrI5CdU/fvn3l7ss0b9TUpvkPbRxscKb2d7Ed2gy8sgEgPfJ4pnifaTV2\nYaXEl0JL1ow1/9FZseHVK7kffDf7v6I7CoRoRTCtW7tZt3abNLfg1eOHwQ+CwyLfllbkAEB2\nQvR132hM0tfEnDlz6A4BIRXBwuLaRpibcPPyxcDQfzNyS3I5LH1Om3Yd+g371cXakN7Y1ECa\nUAIATM0m+nI/DlmymDwhSQpTlRkXQkhtSYQZASf2+975V0KV3K6zdBqPnus53N2W3sAQQkid\nYJIeIQQ9evSgOwRUwkCDkSEiKQm/6q5fFEmHtolqrmKNEI1mz55Ndwjqz6z9NB3mPD5JkYKE\nTedi9kz67s1CeY92ReQLpe1egxsrOsB65J8D9yiKAgBtjuOoMQMdmliZG+vhnBNUPxFMvdZu\nfVu79Z3D5z0JCQ4OCYl487l0+A/VRJ8+fegOQc25u7vTHQIqgYXFqiTM/XjrRlDEs+jUzCxC\ny4hj0cCla59+3V10vySM+ckPF3ju4gn/s0KQKJ8XGRr47OHtTiOWrBznjrc9NaHLJIRiSiLK\noADk/EtyRSQAEAxtpQaGEFJLCU9v7vE58yG3ZCiAIAjHbqMXzBrRQItJb2AIIaRmMEmPEAJP\nT0+6Q0AlrLWYGSKSFHKfF4rayrF7tJj/+rNQAgAsbZzHihCSganZeEWfxmsDEwHgo/9aP6dD\nYzvItZuGVHH2v+t3P5K29awGDzTDMb7qu5FUAACaRi5Hj6wxxBUhEAIAAA0djlvfkW59R/J5\nH0JDQoKDg2OScugOCqHKLF26lO4QUAksLFaZhIe+a3ZfzxFLSl7nFmSmfX7zMuLaZZf1O1fY\nG7LF/JiVi3eXy9CXoijJ48veqwijbWNbqS5otdNJn30nWyARZwdlCfqYaFXZX5j/SPovwtJt\nrfzoEELqQ1yY4Ld/77Xwr1v2aJk5TvVc2LuNJY1RIVQT27dvlzaM5Vh7CSEVwy8lQgjVIj1t\nDKSNExdi5Okfe+WYtC7ToLn8y4YjhOqX1pPXNNFiAgBFiS5v9fR78E7ODxZx/92ycJt0Gw4A\nGLl6lLJCrB+kuYROK+djhh6hb+lwmvcZMcXrgO+J3RvpjgUhVDdIa7ilhcVywsLiash64eu5\n89rXDH0Z/LTI1XM3ZIupYO+dH4vEAEAQjFYefcdPmb18+eIpY0d0tjMp7RxzeW1ITrHq4lY7\nvTwspI3L+4Ll6f/67Flpw7QdrrCCEJIT9eq+35xJC0sz9ATBch0y6/ixbZihR3WawxcsHIxB\ntQ9W0iOEUC3iMK49vAgCgMSbm8632j+mU2U3wbxnlzf4f5S2ncfaqyI+hFAdxGBbbFj168z1\n54USiiILL+3+LTJiyKRRQ9s0rXBzUIrMe3Tn+pETAdlfBmRb9F8+2EpXVSGrJxMWgyck2zXQ\noTsQhGo18+Zt6Q6hLsnJKVl4gCBYhoZ4lUb1CxYWqwBF5m3YElC6HQlTy6JVa9vGjUwLeSkf\n3778mCEQ5r1atf98WlQmADA1Gy/atPEne9Ovnx81NvLm/o3H7gMARZF+h2O6rmhHx3+HOmg6\n9FdWwA4RRWVEHdx21XDZMNdKpn1yIy9sDEqWtn8eY6OiENXI5uW/VTBi/nW5iMWLF1d5nl27\ndikqJISUTZD++vjevXdfckuPGDTrNHfhfNcv1UQIIYSUAZP0CCFUixjZze7JeXifx6co4aWt\ns+P6jR8zuE8Li/IZnSLeh6A/LvreeiqWbm9s3mOOvREd8SKE6gbTtqP2LMqbt+uWdIz1Q5j/\n2vCAJk4dnFu1dHL8wdzYSF9fjxAV5eXl8T5/iI6Ojgh7nMIXlX7crM2vO2a40Re+muhupHmR\nx/8skL0SLEIIVcOECROkDbZum6sXNkGZtRyrYfny5YoJCyGV6OVhccc/AQAu7wvus77qWmEs\nLK4G3uO9HwViadu0Td81y6bZ6JdsykaRebeObz8W+Cr570vSIx2XrPtPhh4AgOEyYMH8iOc+\nzzMAICv6DgAm6auJbei2omejTfeSAOCR77apTz1mTxjU0v6/CXiKzOR+Cg284nvzEUlRAGBs\nP2moJc4Q/W6f4uKq7BMnRx+E6gZKGO5/4tDZoDyyZI4+g6n/87g504a6sbHsGCGElAyT9Agh\nVKswpm/1jJ6zgyskKYqMDDz97E9fI/MGFhyOhYWFNhTxeGlpaWmp6TlfqxnYnAVbpuPmJaiW\nGz16tGJPeOHCBcWeUO016jr9sEHDbd4nPxaIAICiqITopwnRT/2r+mCrvjNWz+yvgQ/nNdZt\nnOPFXZH/+L2auKQT3bGov5rVP+FEClSHhYeH0x0CQiqChcUqEH2lZJskDe0W3utmmpXZyZVg\nGgyYuTn75birSfkAQBDEFGczmSdxnenmM/sPABDlPyUpwG1/qs1lrvfApFk33uYAQNbb4C2r\nggmmlrleSVJtxeK5iYkpBcKvtzGahq03bhxET6wIoToi7+OTA3v3P4rPLT1i0aqXp+f0lpyq\nl6hBCCFUc5ikRwih2kWb4/q/HZ6bNhx4m10MABQlyeYlZ/OS30bL6Mw2tJ29dq0bTo1HtV5h\nYSHdISCwbNd/18m2l06cCrwfkU9WvX+rbkOnEWOnDXVvroLY6oMGXVcOCJh8K3T7lR5HR7SV\nPYqNFAXrnxBCSO1hYbEK/JXGlzYa95tTNkP/BfHL7FZXV/0DAECwLdiyp45rm3YF+AMAKAqn\nwdUIwdCZus3H5NCO03dfSY9QpID3JbMWE5dUtrOxXfdVq+c01WKqOMg6zd3dne4QEFIdiswP\nOnvwuP8/wtIqIE3LYTPnj+3ZCidTIYSQymCSHiGEah19Gw+v406BFy8F3n6QUiCS2YelY9m1\nb/9Ro3+xYONTN0JIXkwtqzFzV4+cmPLXn0FPn7+KeRtf+GXX+VIaOmZObdt27Ny9r3tLLKBX\nJII1ZduGzN/WnFs3M7bfuGnjB1jq4K04QqhG7OzspA0N7UbSxpw5c+gLByFVw8JiZUsqLvnr\nOfduKLODXtOuAP8AACUprugkDI2va+BjGX0NEUzDofO2dO4W7n/j5oOnbwSy5t2aWbftP3Dw\nwO7OLPxrf6elS5fSHQJCqvP7zGnRvKLSl+ZO3RfMHdtUj5Wbk1O9ExoZ4UacCCH03QiKqrqO\nCiGEEC0oSdGn2Ddv3sSmZuQWFBSIQENPT8/QrIGdnYO9g7UOA5+5UZ3h6+tbeQdKIrh2/Za0\nPXz48CpPWLoLL6oJiuR/TkrJy8vPy8sTEZqGBoaGRsaNGllibl4ZAgICAEAizvI/fyNXLCEI\nhqG5VWMrc3nGT9evX6/s8NSDt7e3Yk+IY7UIIVTLUWSuf5nC4kpIC4vtDNkqiEptDBw4UNrw\nunjdUdbkQlKYMmT4LGn7xo0bMk9CkdmDhkysvA+qBorkf3wbE5+cUVBQUCSU6OrpGxhzbB2d\nGhrjItUIoaqVXuEVBa/wCCFUDVi+gxBCtRfB0LZ2cLZ2cKY7EIRqqsqcOkVmlybpMQGvMgRT\np3GzFnRHUV+cPHmy7EuKkuTwknJ4SRX1R9WAOXWEEKpvsLBYNcxYspeyZzC1VRwJKkUwdWyc\nXGyc6I4DIYQQQghVFybpEUIIIYQQQgihOiZdJDGvIG1WDQLeKy1OK0WdDSEVs3Rym+3kNgsL\nixFCCCGEEEJ1BybpEUJIDVDv3sba2tvTHQZCCKEKLVy4kO4QEEJqZeHS/Xu951VU3vpdXgad\n2nnkD9/rATU/FUI0wsJihBBCSE579+6lOwSEEEKYpEcIodpBIuRnZWcLKC1zcxNN5neswygR\nZtw5s+Pwzbe4+RNCCNVm3bt3pzsEhJBayY+/v3Ap7KlZnl7MTzj9P68bEckKDAwhhJCyFRfx\nZe3tIJuOjo4yY0EI1UnW1tZ0h4AQQgiT9AghRLf3j25evHHvRUyCkKIAgCCYDRx+HDJ0RO+O\nNmW7ifnpL6NeJmfkFhQU5OcXCIqFxcWC7PSUhE9J+UKSptgRQgghhBBt8uLvL1xG7Nkxt3p5\n+sQnAdt3+ybxxQoPDCGEkDIkRQVduBUa9+EDN5sv/6dwQj9CCCGEUO2ESXqEEKINRQn/2P3b\nyeBP/z1IpsSEH4gJjxyz9vdfXQCAIvOu7Nl0KfSdiJJ7qjxCCCGEEKoH8j7cW7gMvjdPT4mz\nrx/yPnMvuvQIS6+pEqJDSIUo4cOwJ/J0NG3/o6MOS9nhIKRwsf7ey06HUTgsgBBCCCGkLjBJ\njxBCtIk+u6pchr6sJ+c37mp0bHEXC9/lc6+9y638VATxHSvkI4QQqm1IYTGTrUl3FAihumR2\nT5tD9+MBIO/DvUXLid075phpyJWnz44N3rH94OsMQekR687Dli0cp6xAEVI4Svw6PCj4n4gk\nYoTX0pIt6ClJobe3tzyf7rj3rKO1oTLjU0MP798zkHWFoSSFpe179+7J/GzZPqjaBNnBv2OG\nHiGEEEJIvWCSHiGE6CHmx2y49r70pXEL5w52TRtYGObzUhM/xURGJwHAw32berEdSjP0BME0\nMDU3NzMz0NYgSYmEYuga6BsYGFrZOLZv70zPfwZCCKHvR4mz/wkOe/Uq+vWbuJzCQj6/SERS\n0pVIhfkR14Pz3TzcG+tjkR9CqDJ9F+xmMJccCIoDgNy4u4uWEXt2zDatNE9PUcUP/PYduBJW\nuj4Tk80ZMXfpmG52qogYIUXgvbi988CZt1w+AJg7D/nejxMEU2ayGVXuzKEDVfbx8fFRQST1\n1pvDfsIvl27HnuNH/9y+WbNGOkycrI8QQgghVIdhkh4hhOiRdOv4l03oiZ+n/D5rYMeyz9dJ\nj84v8LpEChJXb0mSHmnhPmT6xNEOHC1aokUIIaQobx9eO3z0QnyuUOa7ZPHH88fOXTx5yuPX\nGfNHuuPQK0KoYkTvuf9jMJb63H4HALlxQQuXwZ4dc0w1ZF84+NznPl7/C4//uj6TReveS5dO\ntzVkqyhehGos6tKOTefDyaqKiTt0aJ+fnZX2OTFbQEqPEASz28CR7Vq1bNnS0VSHqfxIEVKw\nO6+zpY1WE7ZtGe5EbzAIIYQQQkghMEmPEEL0eHE/VdowaTlv7qCO5d5t7DpmeZfgrQ+50uXs\njO0n/m/pMMzUIIRQXRflt2b9pRdVdpOQuX/7ecfEpR1cNbyCdBtCCAEA0Wu2N5O5fM+ttyDN\n0y+HPdu/zdNTUYHH/3c8MJ+USF8zmPp9pyyaMcAFLzCoDom76b3eL6z0JUPDoGUrI5k916xZ\nBwCURBAbGeJ38tSLFD5FkR8FnIUdW6koVoQULaZQDABMlvnKIY50x4IQQgghhBQDk/QIIUSP\nsNxiaaPttE4yO7Qe3xUeXpK2uyzojUOoCCFU1yXd3VeaoSeY+l16eNi2+IH16vzhh9zSPho6\nDq2sdF8lFwIA94nvqgstd4yxpydchFDdQHSfsYPBWLHrRgwA5L4PWrgc9m6fY/IlTy/Kjz/5\nv+2BUamlHzBs7rZk+fy2ljr0xItQtQiywledKMnQE0ydfuNnDOnblaNdWU08wdCy79h7o4v7\nJa9F5x+nfgzau97MYv2oliqJV034+fnRHQIqUURRAKBp3EMP11lCCCGEEFIXmKRHCCF6pApL\nKpm6mMtewV7TpCtASZL+J1Nc5R4hhOo2UpCw9sjf0rahbdelv81pbakNAHE8/7LdWDqtthw8\n++jilm0XngFA7JX1sUPO2WnjTTtCqDIe07yYjN+9A14BQO77IM8VxD6v2cYaxMfwq9v3+qWU\nrvjNYHcdNW/er13ZBOZ4UB1za8MhgYQCAIKpO8PrcH87Qzk/SDB0fl3pkz1v0u2kgn/Prw/7\n+VwXY3y2kpe+vj7dIaASzbQ03vFFUNVeDwghhBBCqA5h0B0AQgjVU6XLjVqwZdd/MFkWpW0j\nJl6uEUKobku5dyBTJAEATUOX3V6LpBl62QgN19HrPN0tAYAi+UduJqksSIRQ3eU+ZcvyoW2k\n7dx3dxasOHxpzzLP7b6lGXodyzZLd55YPNoDM/SozhHmPz33KV/adpm1Q/4MfQmCPXnzXAZB\nUJTwyIZrio8PIeXrZ6ULAMV5YUJM0yOEEEIIqQssykEIIZpVOE5KsL42cSgV1XG+vr6Vd6Ak\nAvk7A8CECRNqGhNCqvXoj0Rpw33ZPDONqqdeuc8Yv/ehNwCk3IuAkdbKDQ4hpBbcJm1ayVy/\n7UoUAOS+u+33ruQ4QTCc+09bPLW/Pi6SjOqm1PuXJBQFAGx9l5U/N67GGbSM3SZZG5yMz82N\nvxSYMay/GRbTozrGZW4fWHiRLE4+8Ji3yJVDdzgIIYQQQkgBMEmPEEIIIaW7evWqYjtjkh7V\nOSG5xQDwf/buM06K+vAD8G+vcRwcRwcRBBEBwd6iIorERhJRCGKLBfUfEQu2iLHFEsWKImo0\ndiwoduwldkKi2GIBDYqA0qQKHtf29v9i4YLAwXFl9rh7ng8vZmd/M/vd3Tnmbr87M7G0BkN6\nNKvI+Ky83q2zRs0vihctfS+EwTWcDqgj9jz2sovTrvjrY5PL5mTlbX3yeecfvEOb9SwFtdzU\nf8xNTnTo/4eMyn7VZM8jOt078tMQwktPzvztKV2rKxtEo0nno8/r++4Nb/zwzo2X7HLjjft0\nbJzqRAAAVJXzJwMAQI2bV1QaQkhvsEXFj2Rtm5keQogXzanBWECds/sxl1569O5lN7f+3XEa\nejZ1ExcVJid23q9tpVeS171XcmLB+/+uhkwQud5njvrD3h3iRXNuHH7CFbc9+s2igg0vAwBA\nLeZIegCgxjVp0iTVESDFGqXHikoSpcULEiFUsKWfWxwPIcTSyr96PcC67HrkxZeljbzsoUkh\nhC8evuTazKtGDNwu1aGg8mYXxZMTOzbOLH9ULDt7fSexz8zunJwoWvZBCMdWWziobtdee225\n9yU2b5j2/YrSosmvPDL5lUdy8lputtlmrVs0Wf8xWCNGjKjujAAAVAMlPQBQ4x566KFUR4AU\n+1Vu1suLC0pLFr+yqODg5hu+FG7Rsknzi+IhhMxG29d8OqCu2Xnwn69Mv/aSByaGECbef9F1\n4arz9fRsshYXlyYnmmWU20XG0puOHz9+PSuJZTRNTsSL5lZjNqh2EydOrODI/KULvlm64Jsa\nTQMAQI1xunsAAKhxB/RZebrp8be8VZHxXzz4YHKixU4H11AkoG7b4fcjrhrSOxaLhRDeu/+i\n65/+PNWJoJLyVnXzC1e19ZUQL56/cirmozAAACD1HEkPAAA1ruPAIzOfua44kVjw0e0jn8g7\n//d7rufa9HMnj7vilR+S0wce3TmiiMAm5bXXXtvwoMY7/rrzp69/81MI4d37LixZ8X+7tir3\nTB4HHHBANcaDatQ9J+O9pfEQwr8WFezQaD1nvF+foiXvJyfSs9pVWzKoAcOGDUt1BAAAoqCk\nBwCAGpeV1+uC/dtf+dqsEMKksSNPer/Pqccdum33XxbwifjCud+988LjY5+bFE8kQgjNup8w\nsG1OSgIDtdyYMWM2dpFJj941qfx7lfTUWnu2yXlvaWEI4cNx34bzd6jcSn547qPkRFbu7tWW\nDGrAwQc7ixIAQL2gpAdIsXNPHrLB8y1WZMwDDzxQPYEAqBm7nnZ9/1lDJ0xdEkJYNPWtqy58\nK5ae3arxyjP3XnDOaTNnzl5eFC8b3yBv+yuuODQ1WQGg1ug6sFO4ZnEI4cfJdy8suaVFRvnn\noilPouSxd1Zeir7VHjtXbzwAAIBKUNIDpNjSxYurZQwAtVwsLeekkWOa/+26+1/9LDknES+Y\nv3TlvV9Om7X64Gbd+l548bCO2ekRhwSA2qblLifnpJ+eH0/EC2Zc+dCXN5/Qc2PXMH/SqA+W\nFSWnDzisQ3UHhBr33HPPhRByO/fu07NpBRf55JUXZxXFMxpu1W//HjUZDQCASlLSAwBARGLp\neQNPv2qv/SY+PeG5N9+fUhBPrD2m5ZY7/rb/Yf377py58QcKAvXHww8/nOoIEJH0Bh0uOLjD\npS/MDCFMf/rSh3v+7ZjdWld88cLFH19208pLPTTe/LD+LRvWSEqoSXfddVcIoWP/bhUv6Wc8\n+eA9c3/OzNm23/5X12Q0AAAqSUkPkBoDBgxIdQQAUqNtz16n9uw1NJ4/feqX3/6wYPny5SuK\nShs1zm3SrHXXHj3bNctOdUBgE5Cbm5vqCBCd7YdcssU/hs4siCcSxeOvHh7OvPyY/bpWZMEV\ncz8eOWLk94UrryYz+OIjajIm1CJFpYkQQknh9FQHAQBg3ZT0AKkxZMiQVEcAIJVi6Tmde+7a\neaNP2QsA9U5aVpvLLzzylMseKSpNJOI/P3bTeZM/GHDCEQN36JhX3iKJ+E+TXn7qznueWVxS\nmpzT5bcjDtu8UVSRoUqmTJmy9szCRdOnTIlveOFEyeLZXz6+YEXyRjUnAwCgmsQSCb+rAQAA\nAFCrff/2XaePer501QdZsVhsi5677bzdtj17bN2qWdPc3Max4hU//fTT/O+/+fzzzz9471+z\n84vLlm25w5F/v+LoDJeSYRPRv3//allPdtO+48eeVS2rAgCgeinpAQCgxk1bWtQlL6sSC87/\n/PXW2+5f7XkAYFM09+MXRl5/7/TlxRseuprt+v3x4lN+2zBNRc8mo7pK+l4j7hrRq021rAoA\ngOqlpAcAgBo3YNDJg4ade0zfbSq+SGnxgmfuumXsK58+8+yzNRcMADYt8YIfHrvnvhde/2BZ\nfMOfaDVq1/PwY04e2HurCIJBNRo2bNjqN7///vsQQmZu6zYV/tJn4xbttus94NgDXVoJAKCW\nUtIDAECNSx4OtcXuh/7prOM6Ns7c4PjvJ78wavR905YWhRAmTJhQ4/kAYJNSsnz2P1585f1P\nPvty6rc/r7rqfJmMnJY9d9xx97369uu9rVPcUwckf5Ps2P+GMSd3TXUWAACqR0aqAwAAQH0x\n8/1nzzpx8tFnnHt47y7ljYkXzH7s9psffWtqlMEAYNOS0bjdQYOHHDQ4JOL538+a/dNPy376\n6afiWIO8Jnl5TZu1b99WNw8AANRmjqQHAIAa98Fzd9163wuLVx3qt1WvQecNP2bz7PQ1hk2b\n+ORNYx6Zlb/yUruZOR2OHDb88H0cMgUAUH+NHz8+hJDXdf+Ddmye6iwAAFQPJT0AAEShcPFX\n946+6aWPZidvZjbqeOxZ5x32q47Jm8XLvntwzKhn/vVd8mYsFuvZ9+gzThm02VpFPgAAAACw\nSVPSAwBAdL58Y9wtdzw+u6AkebN736PPG3b4j+88OvrOJ+YWxpMzG7buedKZww/cvm3qYgIA\nsGmIFxWmZzVIdQoAADaOkh4AACJVkj/rkdtGP/Hu18mb6dk58YL85HQsltVr4P+d+ocDc9Nd\nShcAgDUlShb/8633Pvvs8y+mTFvy88/5+SuK44kJEyaEEIqWffDUW8t69endITcz1TEBANgA\nJT0AAKTAjPcnXHrNvWVXqQ8h5Hbac/i5p+/eMTeFqQAAqLWmvvvkHX8f9+3SojXmJ0v6FQvG\nH3HiQ2npeX2O/OMZg3v7zicAQG2WluoAAABQ7xQt+e/LL7+yekMfQiiY//3MmXNSFQkAgNrs\no4cvOf/6B9Zu6NdQGl/6xsPXn3r1EyWOzAIAqMWU9AAAEKFEfPIL955y0vkvTJ6VnLH5zvt3\nzs0KIRTnzxp7/XmnX3nXtA199goAQL0y69VbLnvs0+R0LD2394GHnDTsnKG9264+JiNnm+02\nb5ScnvvvsReOmxp1SgAAKszp7gEAICL5sz+54+bRb01dmLyZ3qDt4aeefXTfbeKF88bfduO4\nt1Z+kJqe1fLQk04/vt/OzlEKlOe1116rxrU17dFrt81zqnGFAFSjeMGMk48ZvrC4NISQ13Xf\nP503bPu2DUMI08YOP+eJ6WHV6e5DCCFRMunRq0aO+zCEEEvPue6Rh7o1zEhZbgAAyue3NAAA\nqHGJWDlCiwAAIABJREFURMHbj915x2Nv5MdXfke24+6Hnjv8uE65mSGE9AZtjjrnur32euaG\n0Q/O+Lk4XrTgqb9d9s7bfc8665TkJ7AAaxgzZkw1rq37sG2U9AC11uzXbks29A3ydr3pmrNb\nZpR/btRYxp5H/WX4938c/e7cRDz/zudmjRq8ZXRBAQCoMKe7BwCAGnfl6SeOeuQfyYY+Pbvd\n0edcP+bik5INfZmOexx28323DNp7q+TNBV++ccmpJ976xLspiAsAQK0x6dmZyYne55++voZ+\nld5/PDY5Mfu1D2owFgAAVeBIegAAqHGTZy1PTmy554Bzzjy2Y6N1/x6enr35cefftNdeT9w4\n5pEfVpQk4j+/Ovb60wf1jjApsGnYY489yrurtHjh+x/+t+xmLJaW26xVm7Ztc9ML582bN+/H\nJSWrLnuXntX2mKFHtsxIy+vavMYTA1BZby8tDCHE0hoM6dGsIuOz8nq3zho1vyhetPS9EAbX\ncDoAACpDSQ8AAFHIaLj5Uaefe3jvLhsc2WXvQWN22m3s6Bue+deMCIIBm6ILL7xwnfNL8r+5\n8U+XJKdzNusx8PDBv9tnx5ys/x12mYgXfvXv1x599LGPvlsaL5r7xBP//OtNF3RxxWKAWmxe\nUWkIIb3BFrnpsQou0jYzfX5RPF40pyZzAQBQeU53DwAANW6rXoNG3zemIg19UkajjideOOa6\nc45q2yC9RoMBdUvioYsvmzhreQhh50HnP3THNYP333n1hj6EEEtv0H2v3112y9jLTtg7hJA/\n+/3LLxpbkkhNXAAqolF6LIRQWryg4v9bzy2OhxBiaQ1rLBQAAFWipAcAgBp304jjOuRs9IGq\n3fscdeu9N9ZEHqBOWjzllqemLQ0htNzxpMuO2ztjfcdbxnYeeP6Ze7YJISyd9sz1/5ofUUQA\nNt6vcrNCCKUli19ZVFCR8UXLJs0viocQMhttX7PJAACoLCU9AADUXlm5nVMdAdhkfHD3h8mJ\nQWcdVJHxvYcdk5z47IF3ayoTAFV2QJ82yYnxt7xVkfFfPPhgcqLFTgfXUCQAAKpISQ8AAAB1\nwYuzlocQYuk5/ZpnV2R8g7w+TTPSQggrFr5es8kAqIKOA4/MjMVCCAs+un3kE5Pi6z3r/dzJ\n46545Yfk9IFH+7onAEAtpaQHAACAumBWYTyEkJbWaH3nuf+lhmmxEEJpkdPdA9ReWXm9Lti/\nfXJ60tiRJ40Y9e/Pv/m55JddfSK+cM43T999zalXPhpPJEIIzbqfMLBtTvRpAQCoiI2+LiYA\nALCxjj/++Mot2OWEay7Zb7PqDQPUVY3TY4tLEvHiH78tiHfOTt/g+HjhjLnFpSGEtMymNZ8O\ngMrb9bTr+88aOmHqkhDCoqlvXXXhW7H07FaNS5P3XnDOaTNnzl5eFC8b3yBv+yuuODQ1WQEA\nqAAlPQAA1LjFixdXbsFlhfENDwIIIYSwZ5OsFxcVhBDufmP21b/psMHxc976eyKRCCFkNelV\n4+EAqIJYWs5JI8c0/9t197/6WXJOIl4wf+nKe7+cNmv1wc269b3w4mEdK/BtLQAAUsXp7gEA\noNbJyGneunXr1q1bN2/oa7VARR140ObJiSn3Xj75x4L1Dy5Y8NHld32ZnN78N31rNhkAVRZL\nzxt4+lV/Hzmi3549stPXfWGTllvuePzwy+6+7qxueVkRxwMAYKPEkt+aBwAAas7MmTPXe3/i\npwXz5syZPeu7z1957YMVpYn07M2HXn71Qds0iygfUCeU5H8x5JiLlsZLQwgZDTsOOfe8Q3bv\nuM6RMyc/f+MN907PLwkhpGU0u+bhe7r7ShDApiMRz58+9ctvf1iwfPnyFUWljRrnNmnWumuP\nnu2aZac6GgAAFaKkBwCAWqRgwdfj7xvzxLszYmkNj7/u7wO75qU6EbAp+eapK86+f3LZzRad\nd9x7520222yztm3b5oT8uXPnzpkzZ+pH73387cKyMbufePPFh3VORVgAAACop5T0AABQ25Q+\ndenJ93+yICN7q5sfvGGLBq4nCmyEd++56PpnP6vg4B0HXnDFCXvVaB4AAABgDUp6AACodYrz\nPzv8qItLE4nOR9x08zFbpToOsIn57p9P3vT3R6cvKlzPmJzWXY855axDdmsfWSoAAAAgSUkP\nAAC10c3HDX5jSUF2s37jHzg11VmATVCi6It//mPih/+ZMuWrOQt/yi8oisXSGjRs1Lxth27d\nuu6wW+99d9k6PZbqkAAAAFAvZaQ6AAAAsA5dsjPeCKFo+b9DUNIDGy+W1bNXv569+iVvJeJF\npWlZWnmAWq5///7Vu8IJEyZU7woBAKgWSnoAAKiNvi0sCSEk4stTHQSoC2LpWempzgAAAAAk\npaU6AAAAsKain95/c0lhCCEta7NUZwHqiHjR+i5RDwAAAETGkfQAAFC7FC7+6raLb44nEiGE\nhs33T3UcYJOUKFn8z7fe++yzz7+YMm3Jzz/n568ojieSJz0uWvbBU28t69Wnd4fczFTHBOAX\nrrzyyqosPuXNR8e9+WUikUjejMWcRQUAoJZS0gMAQI0bN25chcaVFs6ZOeM/kz9eVFyanNHj\nuD1qMBZQR01998k7/j7u26VF67w3Xjj9kbseevTe+/oc+cczBvd2oXqA2mOHHXao3IKFi766\n95abX/roh7I5Oe12HHrW8GrKBQBANVPSAwBAjatoSf9LOW36nLtH62oPA9RtHz18yWWPfbrB\nYaXxpW88fP2X0+bdfuGgDD09wKYrEX//+Xtvu++FxSUrv+UZS8vuM3jo0CP3a5jm/3cAgFpK\nSQ8AALVRsy57X/rXM320CmyUWa/eUtbQx9Jz9/51n65dts787JE73p1bNiYjZ5vtNm/02Q8/\nhxDm/nvsheO2ve7o7qmJC0DV/Dxr8m2jx7z39eKyOc267TN8+Kk7t2+UwlQAAGyQkh4AAGpc\nv379Kjw2vVX7jp232nqHbTo7BzWwUeIFMy69843kdF7Xff903rDt2zYMIUyb//TqwzJztrvq\n9gcnPXrVyHEfhhC+evyyrwY81K2hzwcANiWJ0vx/jLvj74+/XVC68gr0aZnNDxly+gm/3dXv\nkAAAtZ8/wgEAoMadeuqpqY4A1H2zX7ttYXFpCKFB3q43XXN2y4y0cofGMvY86i/Dv//j6Hfn\nJuL5dz43a9TgLaMLCkDVLJjy5uib7/x0Tn7ZnA67/vasM4ds3TQrhakAAKg4JT0AAADUBZOe\nnZmc6H3+6etr6Ffp/cdjR797fQhh9msfBCU9wKagtGjBM/fcOvblj0sTKw+gz8zpcNRpwwf1\n7praYAAAbBQlPQAAANQFby8tDCHE0hoM6dGsIuOz8nq3zho1vyhetPS9EAbXcDoAqmrG+8/d\nPOaBb5YWJW/GYrEe+x115tDDN8tOT20wAAA2lpIeAABqnUR82bl/+ktyetSoUakNA2wq5hWV\nhhDSG2yRW+HLEbfNTJ9fFI8XzanJXABUVcnPMx6+dfSTE6eVzclu2eOk4WcdtEPbFKYCAKDS\nlPQAAFALlUybNm3DowBW0yg9VlSSKC1ekAihgi393OJ4CCGW1rBGgwFQBYnPXn9kzJ1PzC2M\nJ2/HYpl7HHbSacf1a1Lhr2QBAFDbKOkBAACgLvhVbtbLiwtKSxa/sqjg4ObZGxxftGzS/KJ4\nCCGz0fY1nw6AjVbw4xd3jx796n/mls1p0ulXp511xp6dm6QwFQAAVZeW6gAAAABANTigT5vk\nxPhb3qrI+C8efDA50WKng2soEgCVlCia+NTfTv7jRWUNfVp67sHHj7h39EUaegCAOkBJDwAA\nAHVBx4FHZsZiIYQFH90+8olJ8cT6Bs+dPO6KV35ITh94dOcI4gFQQT9N//fIs0+69v6XfoqX\nJue02e6Av955z7Df98pyhnsAgDrB6e4BAACgLsjK63XB/u2vfG1WCGHS2JEnvd/n1OMO3bb7\nLwv4RHzh3O/eeeHxsc9NiicSIYRm3U8Y2DYnJYEBWEMivuyVB2+/++l/FiVWftMqvUHb359y\nxjH7b6edBwCoS2KJxHq/Wg8AAEQuEV986IDjk9MTJkxIbRhgE5Iozb/ngqETpi4pmxNLz27V\nuHT+0qIQQo8uHWbOnL28KF52b4O87W+46/KO2ekpyArAWi48+YjP568ou9mqZ98zTzumY+PM\nSq+wadOm1ZELAIBqpqQHAIBaR0kPVFoivvTpv113/6ufbXBks259L7x4WLe8rAhSAVAR/fv3\nr94V+k0SAKB2crp7AAAAqDti6XkDT79qr/0mPj3huTffn1KwrkvTt9xyx9/2P6x/350znT0Z\nAAAAIqekBwAAgLqmbc9ep/bsNTSeP33ql9/+sGD58uUrikobNc5t0qx11x492zXLTnVAAAAA\nqL+U9AAAAFA3xdJzOvfctXPPVOcAoGJGjx6d6ggAAERBSQ8AAAB1wXPPPRdCyO3cu0/PphVc\n5JNXXpxVFM9ouFW//XvUZDQAKmTLLbdMdQQAAKKgpAcAAIC64K677gohdOzfreIl/YwnH7xn\n7s+ZOdv22//qmowGAAAA/I+SHgAAqtMLL7xQDWspXVENKwHYkKLSRAihpHB6qoMAAABAPaKk\nBwCA6nTnnXemOgJQX0yZMmXtmYWLpk+ZEt/wwomSxbO/fHxB8itBiWpOBgAAAJRPSQ8AAACb\npBEjRqw9c+57t414b+PW0yB3j+oJBAAAAFRAWqoDAAAAAKm0yylHpToCAAAA1COOpAcAgOr0\n5JNPpjoCUF+0b99+9Zvff/99CCEzt3WbvKwKrqFxi3bb9R5wbK821R8OAAAAKEcskXDlOQAA\nANjk9e/fP4TQsf8NY07umuosAAAAQLmc7h4AAAAAAAAAIuJ09wAAAFAX/OEPfwgh5HVtmeog\nAAAAwPo43T0AAAAAAAAARMSR9AAAALDpWbJkSXIiFsvMy2uU2jAAAABAxTmSHgAAADY9/fv3\nT05kNdrhiXFXhhCuvfbaSq9txIgR1RMLAAAA2BBH0gMAAEBdMHHixFRHAAAAADYsLdUBAAAA\nAAAAAKC+cCQ9AAAAbHq6deuWnMho2D45MWzYsNTFAQAAACrKNekBAAAAAAAAICJOdw8AAAAA\nAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEJGMVAcAAAAAqt/ypUtLEokKDs5r2jRWo2kAAACA\nVZT0AAAAUHf88NErYye8OW3aNz/+VFjxpR5++tncdDU9AAAAREFJDwAAAHXEtOdGnXv324kK\nH0BfJtPV8AAAACAqSnoAAACoC4qWTrzwnl809Onp6RVcNivmMHoAAACIiJIeAAAA6oIpf3+g\noDQRQmjYetsTTzlmp607t27aMNWhAAAAgDUp6QEAAKAuePnTxSGErCa73n7HxS0ynL8eAAAA\nail/tAMAAEBd8Hl+cQih52mnaOgBAACgNvN3OwAAANQFhaWJEMIe3fNSHQQAAABYHyU9AAAA\n1AVdGmaEEEoSqc4BAAAArJeSHgAAAOqC33ZuEkL4cMrSVAcBAAAA1kdJDwAAAHXBTqcPTIvF\nvrxrbEHC0fQAAABQeynpAQAAoC7I2eyQvx69fcGid/900/N6egAAAKi1Ygl/twMAAEAdkXhz\n7DWjn/xXVsutf3/UMYfut2N2eizVkQAAAIBfUNIDAABAXfDMM88kJ+Z8+PxLn84PIcRimc3b\ntG3btm3TRlnrX3bEiBE1ng8AAAAIIYSQkeoAAAAAQDW4995715iTSBQvnDtr4dxZKckDAAAA\nrJNr0gMAAAAAAABARBxJDwAAAHXBsGHDUh0BAAAA2DDXpAcAAAAAAACAiDjdPQAAAAAAAABE\nREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABCRjFQHAAAAADbOoEGDKrFUWkZ2sxbN\nN+u0zZ577bXfXjtkxao9FwAAALBhsUQikeoMAAAAwEbo379/FdeQu8WuQ885u3fn3GrJAwAA\nAFSc090DAABAvbNs5uQbzzv9hS+WpDoIAAAA1DuOpAcAAIBNzPjx4yuxVGlxweIFsz+dPHn2\n0qLknPSsza9/6NYu2enVmg4AAABYHyU9AAAA1COJ0vw3H7t19KMTkx8ItNz5rHsv65vqUAAA\nAFCPON09AAAA1COxtJy+R51/9R+2Td5c+PHtU1eUpDYSAAAA1CtKegAAAKh3eg76y665WSGE\nRKLovnfnpToOAAAA1CNKegAAAKh/YlnH/75jcnL2y/9NbRYAAACoV5T0AAAAUB+16r1rcmLF\nvPdSmwQAAADqFSU9AAAA1EdZjXZKTsQLf0htEgAAAKhXlPQAAABQH6VlNEtOlJb8mNokAAAA\nUK8o6QEAAKA+Ko0vTk6kZbRKbRIAAACoV5T0AAAAUB8VLfswOZHeoF1qkwAAAEC9oqQHAACA\n+mjeOytL+oateqc2CQAAANQrSnoAAACodxKlBfc/NTM5vdnBXVIbBgAAAOoVJT0AAADUOx8+\nfMnHy4tCCLFY1pB92qY6DgAAANQjGakOAAAAAEQnXvDj82Nvu+f5r5I3W+x06jY5PhwAAACA\n6Pg7HAAAADYxt956ayWWKi0pXLJw3peff5UfTyTnpDdof9EFfaozGQAAALAhSnoAAADYxLz6\n6qtVX0l6VuuhV43cKju96qsCAAAAKk5JDwAAAPVOqx77Dj391N3a56Q6CAAAANQ7SnoAAADY\nxLRv374SS6VlZOc1bdqmY9df7bHn7j07xqo9FgAAAFABsUQikeoMAAAAAAAAAFAvpKU6AAAA\nAAAAAADUF0p6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAA\nAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAA\nAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAA\nAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAA\nAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAA\nAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAA\nAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAA\nAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAA\nAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAA\nAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAA\nAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAA\nAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAA\nAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAA\nAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAA\nAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAA\nAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAA\nACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAA\nAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAA\nACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAA\ngIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAA\nICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAA\niIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAA\nIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACA\niCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAg\nIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACI\niJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAi\nkpHqAAAAdUrxI+1SHaF6ZB49O9URAKiPthn+QqojVI8po3+b6ggAAADUUo6kBwAAAAAAAICI\nKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAi\nSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiI\nkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKi\npAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgCAlFk645P7brz40IP223nbbm1b\nNMls2LhNuy223b3vyWddPO6NzxOpjgcp9+g2LWOxWCwWO/CVWanOQt30n2t3S25jHfu9nuos\nVIY9KayfPWldkogvf/yGM/f91Q5t8rKbtGx34J8mpzpRjbObBoA6LCPVAQAAqI+Wz3jv/FNP\nvePlLxKJXzQI8+f8PH/OrC8+ePOe0VcN77n/qLvG/mHPzVIVkoo7v0OT679flpz+aHnRTo0y\nU5uHus32BsGetM7xPxtR2hS3t0R86Uk7b3XffxaumjFn+vf5qQwEAFA1jqQHACBq74we2qHL\nvn976fM1eoU1/PjF68ft3WnIbe9HFiwah7dqlDwg5qpZy1KdZeNsuskB6hh70k10f7TpJoeU\n+3b8UWUNfW7HbfsccMAePZumNhIAQFU4kh4AgEi9fs3hB/z5ieR0LBbb6YAjjjpi8D47dW3X\nrk3JkjkzZsyY/s3H99006p3/LgkhJEqLHjhjryZtpo0e1CmVoQGg1rAnBeqhj69beXL7Tof+\n7eunh2bGUhsHAKCqlPQAAERnxjN/LOsVGrbe65aHHzh5/y7/u7tNy07dtts3/O6EoRe8/cjI\ngUMuX1RcmkjEbz/ugBMO/nKnxpvAeTjrrWYdOnbKWJ6cbhDzoSk1y/ZGfWZPWlf5n40obYrb\n26xlxcmJnn8eoKEHAOoAJT0AABEp/vnTg4+5PzndsNU+r335Sq8W2eseGsvc95hLP225rMPB\nN4QQSlZMO/rciVPu7BNRUDben//52Z9TnYH6w/ZGvWVPWof5n40obZLb26qLe6Rlu34rAFAX\nKOkBAIjIa/83aGp+cQghlpZ1y6Tnyu0VVml/0PU37f7g2e/PCyFMGztkwa3ftMysfx/JlRb8\n4+nHJ3/+VUmjzhedd2Kq07DJqrcbUr194tRR9qSV4f8BqkW93ZDq7RMHAKhh9e9vMwAAUiFe\nOOOkJ6cnp7c+7omTt2pSkaWOvfuo5ERJwXdXfrO0nFGlk56656wTBmzXfauWTRtlNcprv2XX\nfX53zMjbH5ldGC9vzd89++tYLBaLxXrdOTU5Z87Hr1x8ysAde3RpkZud16bj7vsceMKZI79Y\nVLieeInSFe88eeepQ446oPfundu1yG7cotv2u/U77IjzRt49da0F/3PtbslHfGJBfnLOxVs0\nSc7Z54H/rpGqz2PfhBCWz3zhwJ7t9h903AWXXXX5X25MjnlzQOfkmF0u/6S8YPk/PpIc0yB3\nl3LTlxa88vCtJ//+1906b5GX06Bl+y579f3NCUPPefztqVVJ3qrnM+U9Xqrepg0qXPTl/Tde\nNPiw3+y1y3YdWjfNysnr1HXbvfsefOxpl701ZUFNZ1sx76MxV5zz6922a9+meVZ2bvstu/UZ\nePKdT7xdWoVnVJENaXVLvn77xkvO2G/X7Tq0bZmdnbtl9x32/82AS29/6sficlM0z0yPxWI5\nLX636ll89rcrzuy1y7btWuRm5zbv3G3bgSf9adxrX24wahVf/DW2t4o/8Y364a262W/3+8XW\nkih6aeyowb/efcvNW2dnNWzbYaveh51834tTVlui9O2Hbznud7227NC2UYMGm225zb4HHXrB\nzY8uKUmU8wghVPbFrIhKbCFJEb/OdZ49qT2pPek62ZPW7T3pj5/2T0Y659slyTnP7dg6OWfr\no95Ze3wl3gu7abtpAEiNBAAA1afo4c3qxr9qf2WmjTsw+ftnLBZ77Mf8Ci5VWrx40IABhx12\n2GGHHXbOuG/XHrB02nOH7dK2vN91GzTd5tKHPlnnmqc/0zc5Zq87piQS8af/elTGuq7Hmd6g\n7Wm3/HOda1gy9cl+PZqV99AZ2VtcOu7L1cd/es2u5Q3uff/Xa6Ta99Fp+fNe3SWvQdmYzJwe\nyTFvHLZlcs7Ol31c3uv28/yHk2OyGu+8zgELPx13cI/m5eXZ5pBzvsovrlzylj2erlVv0wYz\npoQTAAAf0ElEQVRNvH14uwbp5WWLxdJ2+s1p364oqaFsL1w7tHXWuh+9Y5+TP1xaOK57i+TN\nA16eWfEnVZENKam0ZOmoMw5tmLbuK7tmNel89l3/WudDNMtICyE0bP7bRCLx6fgrOjRY90na\ntu9/5terbUtrqPqLv8b2VsEnvrE/vFX3w1sHJ1e+1x1TCpd+fHLvzdf1fGO/u2B8IpEozv96\n6AFbrTNbix2O/L5wHS9IogovZtkP+BYHv7b2vZXeQhJVeJ27n/l83fhXoY1jY9iT2pOWtxJ7\n0nU+tD1p3diTzv/kkPIeqMuRb68+stLvhd302mri1yEAYA1Odw8AQBRev/qj5ESjtn8c3LJh\nBZeKZTR9/Kmnyrt38Rf377bb/32zoqRsTk5ey2YN4vN+XFKSSIQQCpdMufLYnb+Z++5D5+61\nvmwX7jNg5MSm3Q86f/iJ++zctUHh/M8+nXTzZdf8Z2FBvHDu7cP3bv6rOVfs3nr1RVbMf37X\nnY6YttpDZzdp1SyzYM7CZcmbJQUzrzxmp5zuP4zYceVHw633OOGCC/YPITx9y41f5ReHEPYZ\nds5eTbJCCJ22W+sDstLCs/c54sOlKw9hyWvdbvP2Xdf7Um2E+f+8bcf9hs8pWnnUXSyW2bxN\n68KFc5avOtpmynOj9vzVov9+dE/zjLSNTr6WFL5NGzTtoRN6DXtg9Tk5ea2aZhXPW7A0nkiE\nEBKJ0o9fvG2P3nlzP7hq3R9/ViHb4+ftN/jGt1af07BJi7SCJT8XxUMIM966u+8uyy8uLffg\nyApZ74ZUWjz/7AN3uuWt2WVzYrHMVi2z5/+4cjMu+unbm/5vj29mPv7sFYPKe4Tvnjl7xyNG\nJxKJNtv/esgRv+m2Rctl82a999ITj7/xaSKR+M+EW3bfac4HnzzSJXvNvz2r68Xf2CdeiR/e\nahQvmjNk1wGP/Hfpvif+6biD9tupc+5/P//kjssvfPO7ZYlE4vlrBp+687v5Vxw69vNFrXYZ\nfP7Jh+y5e49l30158e4rxrz0dQhh4aeP9h16wlf3HrTGamvoxazKFpLa17musie1Jy2bY0+a\nZE9aH/akOa0HXXBBzxDC+3fc/MaSghBClxPPHNQ6J4TQYocO/8tbHe+F3bTdNABEKpXfEAAA\nqHNSfgR8rT2SfrtGmcnfP7ca/Fa1rLCkYGbfFisrilhagwFn3zT5m0XJu4qWfT/h7r/0WHXo\nTyytwW1fLFpj8bLjhDr/4cj0WKzH0aOWlZT+Yv0rZhzZaeWZhPO2vHCNxa/euVXyrrTM5udc\n98C3C39e+dDL5z0x5sKWmSsPlGnScdjayQe1zEne+9eZP5WXqnXvziGEjOyOp199/+ffLVx9\nTBWP/yv++bMdGmeturfrpXdPmP1zcSKRSJQWfvf5P047ZIeyvxT2uGzNI28qknyN47FS+zat\nX7xofueGKz/vbtB095H3vvDj8qLkXaXF+R+9+vDxe/6vDBg5fWn1Zvv+1XPLVp6R3f6sGx/8\nal5yK4p/+8HL5x62/Rp/uFXu+L/1bEiJROLRId3L1r/FPkNefO/jH5cXJxKJxd9//dIj1/Rc\n7eC5w+9e81Cq5PF/Gdkd22SlhxAGj3yq+BfPPvHVS2M2X3XE2Ja/v2+NxavrxS/v+L/1PPGq\n/PBWWtkheg1aZael51zyyEe/fDXmHdU+d/W3e4/TblseX/0FLX3oxG7Ju9IbtMuPJ365eJVe\nzPUcoleVLaQqr3PKj4CvtUfS25OWsSdd+VrZk65iT1rn96SJRGJU56bJNR/yyfy1763Ke2E3\nHdmbCACsTkkPAFCdUl6u186SvnjFf8s+JNr/xRnVss73/7xjcoWxWMaFT01be0D+/Lf3WPXh\nVG6HNT9gKvsIMoSQu8Ux+fHStdfw48fnrHyItMzVBxQt/6TsdKynTfhu7QW/fujwVdli7y8r\nWuPeinxAH0LIaNh5wrQ1P6dLVLlaeHZQ5+RdmTnbvDhr+drLjj6048oBDbv+8vPHylQLKXyb\nNmjuv49b+elkRrPx36z5jBKJRLxo3sBWK5/ynret+eFmlbKVFuyz6llnNtpuwvR1PPozf94v\nrKZy1cJ6NqQl026MrdqM+498Nr7WgKKfppy6y8oPcDOyt5xe8ItTsCarhaSew55aZ4y5716R\nfIhYLHbzd7/IUF0vfnnVQnlPvIo/vJVW9ul/CGHXv0xce8D3rw8oG9C0yxnFa21NhT/9s+z9\nGv/L85xX8cUs79P/qmwhVXydU16u186S3p50dfakq7MntSetD3vSxHpL+iq+F3bTa6i5NxEA\nWN3/fh0EAIAaUrxsctl0yy0bV32Fifiyk275Ijm99fHjrxqwjgtDNmy1z1MTTktOL5t1+5hZ\ny8pb21GP3bjOSzk27zli5cOVFv93tbNBFix6MXl22Vgs86bfdVx7wc6Hj+rUqVOnTp06duz4\n0fKiij6rX+p7+0uHbNWkcsuWp2TF1CHPfpecHnjv8/3aN1p7zGmPvp48eqZ4xdd/nflTVR4u\ntW/TBv3w/H+SE612HH1459y1B6Rltj7rwJUXJV02rdxglcg2d9Lp76w6f+wZE14+pNM6Hv3Q\nq187deumG34aG1LehvTUSTcmEokQQts9r3v2gv5r/2WYmdt99NuvtG+QEUIoKZh+0lPfrXP9\nGdkdXxjVf513tdn7ktv2ahtCSCQSN5/xxup3VeOLX551PvFofnjXI5becNwFu689v/kOR5VN\nD3joooy1tqas3D13a7zyKOpvfrmd19CLWZUtJOWvc51kT1oJ9qRrsCetHHvS1dXO/+Gr672w\nm06ymwaAaCjpAQCocfHiH8umO611Qc1KWD771s9+Lg4hxGJpo27sV96wzfa54ZBVZ4i9755p\n/9/efcdJVd0LAL+zy+7SuyAgVRDEspZgAwM2EBtYsCBENPpEk+gHnmJMYsVnbNGgz1hiSQKo\nscSIRBHbEyQgQUVQQOlVmvSyLLs774+ZXXCZGdid2dkVv9+/DjO3nHvOvfOD8+OcG3ObzKzG\nD8d5/WpGVpPqxePFu7/ONJQRnbkVDu98eVGMobTM7IMWFrv2wBjD93uVkVnzyUtjDMQnadUn\nt6zbWRQEQVbNTs/2axtzm8zq7Ycf2bJ+/fr169ef+em6ZE5Xud20Vx1//uL06dOnT5/+0esX\nxtsmXBguLsU9TjnqNn34+EihVtOBfzi1ebwD3zGyX9yz7pt4N1K4cOOQSSsj5SEvXBtv96xa\nR4+8NDphdMa9E2Ju0+KMx1oXL8a7p36PRy9h2Xs3Fe32eaoaP554F56GhzexWk0G7vlS4SAI\nMrNblJRvOTL2y19b5kR3LHWfV0RjJnmHVHo775dE0rISSUvXSiQtF5G0lCr4C5/CvhCmI4Rp\nAEgPSXoAACpcKCO7pLyxoCjBlvto+VtjI4Uajc4/u2H1BGe++ayDIqXFL30cc4uaTa+oFWvm\nVnT/mLs0ubx+8QqlVx97+h9f+Xd+2Yc+E6veqE/b6nGHa8ttzoiZkULDw+5OcNWDpy1cv379\n+vXrx14YO/2wjyq3m/aqVutOubm5ubm5HQ+qGXODvLXT7x63bK/HKUfdnv10baRwyHVDEhy5\nyU/+ULdaUv9ki3cjbVk+IvIkVqvR7qY2iaaZHj4kt3iXl2JucMTQYxLs3vDQYVmhUBAEBdvn\nj/0ur+TzVDV+PPEuPA0Pb2JZNQ+P/UXxqrOhjOyONWLnX+PdZBXRmEneIZXezvslkbSsRNJS\nRNLyEUlLqYK/8CnsC2EaAEinFPznawAASKxazq4R6qXrdyR/wDUfRycU1j7ossRbtrm8TTBy\nbhAEed9NCIJf7blBVq04g3HxZWQ1/efQE3o88O8gCPLWTx1ycddf1291Ss+e3U/u1q1b1+Ny\n22eXb6h7Nzl1uyZ7iFg+m7E+Umh5fseKOH4pldtNZVf03fJF8+bPnz9//tyvZ385c/r48R9v\n2odMWDnqNql4hd6jLo6xxGiJUGadSw+o+fS3W8p6/BLxbqQNs6IpnIzMOnfcdluCI+zYsDRS\nyN8yLeYGp3Wol2D3jOwWJ9TNnrhxRxAEr6zddl6jeBmmcjZ+PPEuPA0P716E9vpv8ORziilo\nzCTvkMpv5/2RSFpWImkpImn5iKSl61P1fuFT2BfCtDANAOkkSQ8AQIXLrntiTkZoR1E4CIIV\nb30bdGm67/uGC7Zu2hp9s2OtuvUi74DcsiA62FqrTcPEu9dqFV2RsiAv9uqvGZnleVlp9/sn\nvNTohqG3P7ViR2EQBDs2LBn38jPjXn4mCIKs2i1OP/e8Pn36XnLhGfX3fGXlvsnIir3oa5JK\nXuZa55AYb8RMuUrvpn2xbcW0Z5596e23x03+/OuNeWV4EW+JstYtXLT12/zoSqiH1slOvPER\ntbLKUaUS8W6kzXOjS5vmb/ninnu+2JdDFe1ct6kwXDez9C3dLs58shIHV68WSS2sXZkXfD+l\nlXzjx5PgCaroh7eypLYxk79D9td2rkQiaVmJpKWIpOUjku6pqv3Cp7AvKo4wDQDsyXL3AABU\nuFBmnX6Nows8Lhz9QZn2/c/NJ0Te6tqgQaOSAdld72vc68BRRnRkNly0vUzn3ZvMS4Y9Pn/Z\npyPuGnL6T9pnhnbVY+eW5W+/+MTgS3u16tDj6fGxB8r3KhRKakA5CMeejrO5eJpOZs3UrwAc\nqxrFhUrrpr14/c6ftWxz/I23/2Hc5K9KBkwzMmu0OuTIXn0uu/vRkc9e3C7lJw2FckpumL02\nTJJDo/FupJ2bdpbjaFsKY6yFGkkZJtqreIPCHd97SWuFNn7CJ6hiH95KkfLGTMUdsh+2c+US\nSctKJE0PkbRMRNKKkMK+qCDCNAAQk5n0AACkw9U9m48aNTcIgo0Lh3+57YbDa+7rX0Tf/MeS\nSKF6gzNb5kQHxGu3qx1MDoIg2LpoQ+Ldt69YHSlUq3FI2Wu9F9Ub595w+8M33P7wtpVz3n3/\n/z6e+PHEiROnzl4aDoeDINi8aMLg3oetmrT0thMqZDJfAoX5y2N+3r54qtbWRVvTUI0q0k3x\nTL6z1wV3jY+Uc+q3v2zQpV27/OTYY4/q1KFVjeI3406edW/qTxyq1ionc2FeQRAEc7bkJ952\nzrZUzoorUbtd7UihXus7Niy6M5lDzdq2MwhqJNjgiy3RceR6LXa9irXSGr9YlX14y6EiGjNV\nd8j+1M5VgUiaTiLpvhBJA5G0Cjy8KeyLiiBMAwDxmEkPAEA6HHPPDZFCUcGGq/44cx/3yt88\n5f5l0eUcG3e5uuTzxic2jhS2LHsp8REWv7A4Usiuc/y+17asah7Yqc/lgx98ctSUrxZvXDLz\n+f+57oCszCAIwkX5D116X8WdN56ty2K/aDP3wOjY7rJ/Lk6we7hg68aNGzdu3LhpbwPfiVW1\nbtpdwbZZfX//fqTcqf+IFWu+ef6R4Vf373N0x9YlA6YV54wG0RfKTn9taaLtwvkvrdlWERWo\n17lFpLBj48QkD/XhpDUJvt2x/p2526OphVMbRq+6chu/lKr28JZVBTVmCu+QiB96O1cRImk6\niaR7JZJGCiJppT+8KY9ZKSRMAwAJSNIDAJAOdVr/cmi7epHyZ3f1fmv1Pq3FOuXuwTuLV/i8\n6KGTSz5vce6ZkcL2ta+9u2FHgiM88s/o9MFWF/Qsa53j+XrMK6NHjx49evSYf8cYVK1z0GGD\nfvOnSX85LfLHzUv/VFAxq2kW5hfG++qLRz6P+XnuLzpECmumPhB35yCYOuT4yMLIh/Ut24rK\npVRuNyW2ZvpvV+cXBkGQVfPQaSN/1TDOYrgb52yqiLNfelJ0QtLXf/rfBJutm3XHqvi9nIx6\nBw+NFPI2fPBewq7ZsnD6pEmTJk2aNO2r2JM4v7z39QS7z/vbXZFCZnaTQU1rRcqV2PhV5OFN\noQpqzCTvkP2vnasIkTTlRNJkiKSRgki6u0r5hU9hX6ScMA0AJCBJDwBAmtzy4k2R9x0W5q/q\nf9LAGZv38jLFjXNfOH9EdKZgjUZn3tu5UclXdVrc2KlmVhAE4XDhjbe+H+8IKycOe3VtdPrU\nJdenbPXXOcN/NWDAgAEDBgy6clS8bQ48+ZSScmrHhkPF026+mxJ7Jd7CvPmDx8Se3tfy7KGR\nLsjb8OHQD1fEOUPR719cECm1H9Q+mapWbjcltmX+d5FCTr3uteLMZCrauWbYf1ZXxNmP+F2f\naDVWPHPrhJXxNnt00LMVcfYgCLJqH/vz5tGFUm+4dULc7cL5g07s2q1bt27dug2N0xTrZv3m\nb4s3x/yqcMfiq277NFJu0uV/ahT/67MSG79yH96KUEGNmeQdsv+1c9UhkqaESJoSIqlIGm+b\nNP/Cp7AvUk6YBgASkKQHACBNmhz3u9cGHx4pb5z/2kmdeo36aEG8jVdNHXlal6vW7SyK/PHq\nV56tvttfXUOZ9Z67tmOkPOfp8+8Zt2TPI2xf/VHfcx6NlGs3v+q3B9dLxUUEQRC0u6RVpLBh\n3m/e+Db2Gqof/PGFSKF6w7Ny4ixmmV9UnmkpdQ6pEyl8O+n6j9bvOXWm8ImfnbEoL/brV6s3\n6vv73OjCuU/1veDjtXl7bjP592e+8d32IAhCGTn39WmVTM0rt5sSq9OhQaSQt37cmuLbbHfh\nom0PDzhx5tZoAqwo1jbl1jj3gZ7F6/Q+fE7vcctivNh4wkMX3jUt0fq3SbrtiejszDlPn3Pn\nW7GfxH8NP/e1VduCIMjMajziorYxtwkX7fxlj0Hz9rjlwkXb7rmw+9TN0XWer/nzhSVfVWLj\np+rhrToqrjGTuUP2v3auOkTSUkTSQCQVSUXS1PVFygnTAEACkvQAAKTPeY9+NKxX60h564oP\nB/Y4+Kgz+9/35EvTvpi1bNW6tcsXfPLR+Beee+KX/X7a+sQrPt0YHTfPveb5R09pXupQx937\nRtf6OUEQhIvy7zjnsAG/e+qrFVsiXxVuX/XWX+7u0rHXJ5t2BEEQysi+560HUngVHa68NTsj\nFARBuCiv/1E9H3vxvQ0FJQNqRctnfHDn4B59H47OXDxm6J3xjjP1P9+V4+xtB54aKRTuWH5+\nt8vHztx1kK0rPv/1xUf96pWFWTU7tqleLebu1499smFWRhAEOzZ9ckbHE+4d9c6avOj0mC1r\nvn5k6MWn/O696GVe8fLxdbKTrHkldlNiDTvfkhUKBUFQkLeoywXD56zdLUkTzp/w9xFnHd3m\n5pfnl3y2bOwzs76NkQAop1C1v/xzSKSYv3n6eR2PGPbY3xesi9Zh5axJdw36aY9hrwdBULtN\n7ZSd9PtanzPyF4c3DIIgXJR/97mdLhry4Cdfzt8aXc80vPyLd39zZddz7hgf2fikW984unZW\nvENtXvSPozue+sTrEzZFdi/K+/TdF/t1aXvnv6LzUFv2euSuQxuUbF+JjZ/kw3v/yUd3KDZl\nc1LvmU6VimvMZO6QVP1IEpNIujuRVCQNRFKRNKV9kVrCNACQQCgc9lYZAICU2flC6RHwH6is\n/vFWcE1WuGjrgwO73/LCp/u4/fE/u3/CX4Zlx5rA8d30Px974vWLiycehUIZ9RsfWC+ncOW3\na/IKi0o+7P/gx6P++8RS+y5647S2fT8IgqBx59fXfNU33tlrZmZsLwoHQfDZlvyja+0a2xpz\n7dF9np5e8sdQRnaDxo3rVg+vWbl6626vPm2UO2jhp8/Vyfxe7Ye1qvvg0s1BEGRk1j6x+0nV\nd25qPvSlv/Vtvc+1KhzcsfFT32wovsBqzdt1PKR98+1rlkz7/JuCcDgjs/bD/17wZq9W72/I\ny659zI7NpZv661FDcq8YsaN4Dl9GZo0DmjUp2rRqzaZd0wHrd7h0xsxRLXMyk695JXZTYq8M\n6Hjx6G+KG6F25yM7N21Sb+PyRfPmL9ywvSAIgqxah9wz4rhbrh5VXMnMgw4+d8nc11NVt9dv\nOf2CB3atXRwKhWo3aFItf8P6LdEB3Dqtzn9v5Lbju78TBMEZ45aM79VyHy9tH+u2Y/3EXof1\n/mi3seBQRvXmLRttWrVyc96u27hD37u+/MftpZ7BhlmZ6wuKgiD49dDT73s4mo4KZeY0alx3\n63ffbd811BvUbXfe5Jmvda75vVxXBTX+vlx4Ug9vy7oPLouuSPzBhrxT6uXEPMWeVnzUu0WP\ncUEQNGj/p3Vzr9tzg/zNk3PqnhQEQSijRlFh7Dlt/Q6oFVnO+p4lm37bsk7J50k25oz7u+T+\neloQBK3OfHfx26fvfsZk7pBk2vnQG/8VswV+cGaPOLuCjiySiqQiaYRIGin/GCJpEASPHNxg\n6IINQRCcO331mNwDSn2bTF8I02XqRAAgVcykBwAgrUIZtYaNnjZ73NNndGqQeMs6rY+7c+Qn\nU/4aO68QBEGjo675Yvrfzy4epAuHi9avWbFo2aqSAeucBofePurzPQesk3fek5889oszI2+l\nDYIgXJS/bvWKRUu+LRnVCoUyTh5424ypz+45qvVfw8+NFIoKt0z6YPz7E6cs2limiUSZj/7n\nvX4nREeZw+GC5fO/+vCdd6d89nVBOJxT/8jHx8+68bjSA5e76zjgkdljHji6aY3iamxftWzx\n7nmFzufeNHX6yFJ5hXLXvBK7KbGL/jr1d5d1jXRiUeGWLz+f+v477077cm5kwLTj6VeOm/PZ\nsKuev63nQcU1L1yzNvYrY8vn/Pvfe+uBwU2zM4uPH968blVJXqFFtys/nP5i65zY8zhTIqfB\nye9+PXnwWUeUfBIuylu+eHnJwG5GZu3Lb3t+z4Hd3fW8fexb911dv1pGEAThwh1rV63ZPa/Q\nufd1U2aUzisEldr4yTy8VVPFNWYyd8j+185VikgqkoqkESKpSFoiJX1REYRpACCeCvx7KgAA\nxNOp1zXjZ181Z8q7Y8aMeWfiZyu+Xbly5cqthVkNGjRo3KztcSd17X7aOf37nLTXQbR6HS8Y\n+/l5E1997uUxYz+YMmPlqtWbdmYe0KRJu8OO6332uVddfUmzPcbHUyOU/cv/fbvfNe8/O/Lv\nU2ctWLp06dKlSzeHa7du07pN6zYHd+7S7/IrehzRNOau7a8Y/U5Bx+GPvTB7wcLtGXWbNWt2\nWJPqZTp5dt1jX568eMqrf3xk5Li5c+fOW7C8Wr0DWrQ85KyLB1x13cCOdbKCILj2nvt65xVk\nZseuQ9uzb5q2bNCrzzzzxptvTpm5cNXqNeGcugc0a3PiT3tcdMX1F3Y9OLU1r7RuSiiUWW/4\nCx9f/99v3P3w3778Zu68efM2FtVs3rxllx69L+g3sN+ph0Y2u+vtb7o89dDrE74IGrTqfESP\n1Nah981PLPzZfz3z9Kgxb46fvXjFmnXb6jdt1vawE/pfMWjwZT2zQ8G2Vj9/6KFTgiBo3al+\nak8dkVXniCf+NePmCa8+98qYdz6YvGTlqvXbMlq379ChQ4fOR3UdePWVuc1r7v0qbvnzkn4D\nHn38r/9466PFK1ZuKqjWrFnz3K5n9rv0qoG9j4i5S2U2fhIPb9VUoY1Z/jtkv2vnKkgkFUlF\n0kAkFUl3k5K+SDlhGgCIx3L3AACpZLn7/U24qKCgoKCgILtGTYtQVV1VuZuqct2SULJIb1nX\nqt0PTL6280lPz/6/DXnd03zh4XDkXsqsXiNrv57VZrn7/c1++jO4v6nK3VSV65YEkbQSImmF\n+tGEaQAgVcykBwCA+EIZ1bKyq2VlV3Y9SKgqd1NVrhvlsn3F9iAImmenfdJqKFQtK6ta1r6+\nKxqqCj+DPwhVuZuqct0ol0qLpBVKmAYAymh/+h+oAAAAULFmz92UXTu3Qw3/5R0AykMkBQAI\nzKQHAACAfVKU98XYEcPmbWg76JXKrgoA/ACJpAAAxSTpAQAAYO9ubdf0vsWb2vW84Z3Hu1d2\nXQDgh0ckBQAoIUkPAAAAe3fO8CdOadvptG7H7F8v0QWANBFJAQBKSNIDAADA3nUd2L+yqwAA\nP2AiKQBAiYzKrgAAAAAAAAAA/FiYSQ8AAEDZrNtZWNlVAIAfMJEUAOBHzkx6AAAAAAAAAEgT\nSXoAAAAAAAAASBNJegAAAAAAAABIE0l6AAAAAAAAAEgTSXoAAAAAAAAASBNJegAAAAAAAABI\nE0l6AAAAAAAAAEgTSXoAAAAAAAAASBNJegAAAAAAAABIE0l6AAAAAAAAAEgTSXoAAAAAAAAA\nSJNQOByu7DoAAAAAAAAAwI+CmfQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQA\nAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0\nAAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS\n9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAm\nkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQ\nJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAA\nkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAA\nAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAA\nAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAA\nAAAAkCaS9AAAAAAAAACQJpL0AAAAAAAAAJAmkvQAAAAAAAAAkCaS9AAAAAAAAACQJv8Pnv2i\n9XVaX3QAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig9_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig9_colors)+\n", " scale_y_continuous(limits=c(0,25),breaks=seq(0,25,5)) +\n", " ggtitle(\"Figure 9: Participation rate per day in construction, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 10: Participation rate per day in gardening and pet care, by gender, % (2008 to 2015)\n", "\n", "The data is again in the *tus_00educ* dataset as in Figure 5. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^garden\",sex=\"male\",isced97=\"^all\")`. This time we can use again the SDMX REST API to get the values are it is numeric. " ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>isced97</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>23.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>16.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td>10.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td> 9.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td> 3.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td>10.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td> 8.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>11.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td> 5.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 6.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td> 8.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>14.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td>10.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 8.2</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>10.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 5.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Females</td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 8.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Austria </td><td>2010</td><td>14.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Belgium </td><td>2010</td><td>13.6</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>13.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Estonia </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Greece </td><td>2010</td><td>13.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Spain </td><td>2010</td><td> 6.5</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Finland </td><td>2010</td><td> 7.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>France </td><td>2010</td><td>12.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Hungary </td><td>2010</td><td>15.7</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Italy </td><td>2010</td><td>10.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Luxembourg </td><td>2010</td><td> 8.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Netherlands </td><td>2010</td><td>10.0</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Norway </td><td>2010</td><td>12.1</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Poland </td><td>2010</td><td> 9.3</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Romania </td><td>2010</td><td> 9.9</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Serbia </td><td>2010</td><td>10.8</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>Turkey </td><td>2010</td><td> 4.4</td></tr>\n", "\t<tr><td>Participation rate (%)</td><td>Males </td><td>Gardening; other pet care</td><td>All ISCED 1997 levels</td><td>United Kingdom </td><td>2010</td><td> 9.2</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & acl00 & isced97 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl>\\\\\n", "\\hline\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Austria & 2010 & 23.7\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Belgium & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 16.2\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Estonia & 2010 & 10.9\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Greece & 2010 & 9.2\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Spain & 2010 & 3.2\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Finland & 2010 & 10.4\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & France & 2010 & 8.8\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Hungary & 2010 & 11.6\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Italy & 2010 & 5.2\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Luxembourg & 2010 & 6.8\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Netherlands & 2010 & 8.8\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Norway & 2010 & 14.9\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Poland & 2010 & 10.3\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Romania & 2010 & 8.2\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Serbia & 2010 & 10.7\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & Turkey & 2010 & 5.3\\\\\n", "\t Participation rate (\\%) & Females & Gardening; other pet care & All ISCED 1997 levels & United Kingdom & 2010 & 8.8\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Austria & 2010 & 14.1\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Belgium & 2010 & 13.6\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Germany (until 1990 former territory of the FRG) & 2010 & 13.5\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Estonia & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Greece & 2010 & 13.8\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Spain & 2010 & 6.5\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Finland & 2010 & 7.0\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & France & 2010 & 12.4\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Hungary & 2010 & 15.7\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Italy & 2010 & 10.3\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Luxembourg & 2010 & 8.4\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Netherlands & 2010 & 10.0\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Norway & 2010 & 12.1\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Poland & 2010 & 9.3\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Romania & 2010 & 9.9\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Serbia & 2010 & 10.8\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & Turkey & 2010 & 4.4\\\\\n", "\t Participation rate (\\%) & Males & Gardening; other pet care & All ISCED 1997 levels & United Kingdom & 2010 & 9.2\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | isced97 <chr> | geo <chr> | time <chr> | values <dbl> |\n", "|---|---|---|---|---|---|---|\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Austria | 2010 | 23.7 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Belgium | 2010 | 7.0 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 16.2 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Estonia | 2010 | 10.9 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Greece | 2010 | 9.2 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Spain | 2010 | 3.2 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Finland | 2010 | 10.4 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | France | 2010 | 8.8 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Hungary | 2010 | 11.6 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Italy | 2010 | 5.2 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Luxembourg | 2010 | 6.8 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Netherlands | 2010 | 8.8 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Norway | 2010 | 14.9 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Poland | 2010 | 10.3 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Romania | 2010 | 8.2 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Serbia | 2010 | 10.7 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | Turkey | 2010 | 5.3 |\n", "| Participation rate (%) | Females | Gardening; other pet care | All ISCED 1997 levels | United Kingdom | 2010 | 8.8 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Austria | 2010 | 14.1 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Belgium | 2010 | 13.6 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Germany (until 1990 former territory of the FRG) | 2010 | 13.5 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Estonia | 2010 | 7.0 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Greece | 2010 | 13.8 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Spain | 2010 | 6.5 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Finland | 2010 | 7.0 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | France | 2010 | 12.4 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Hungary | 2010 | 15.7 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Italy | 2010 | 10.3 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Luxembourg | 2010 | 8.4 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Netherlands | 2010 | 10.0 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Norway | 2010 | 12.1 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Poland | 2010 | 9.3 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Romania | 2010 | 9.9 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Serbia | 2010 | 10.8 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | Turkey | 2010 | 4.4 |\n", "| Participation rate (%) | Males | Gardening; other pet care | All ISCED 1997 levels | United Kingdom | 2010 | 9.2 |\n", "\n" ], "text/plain": [ " unit sex acl00 \n", "1 Participation rate (%) Females Gardening; other pet care\n", "2 Participation rate (%) Females Gardening; other pet care\n", "3 Participation rate (%) Females Gardening; other pet care\n", "4 Participation rate (%) Females Gardening; other pet care\n", "5 Participation rate (%) Females Gardening; other pet care\n", "6 Participation rate (%) Females Gardening; other pet care\n", "7 Participation rate (%) Females Gardening; other pet care\n", "8 Participation rate (%) Females Gardening; other pet care\n", "9 Participation rate (%) Females Gardening; other pet care\n", "10 Participation rate (%) Females Gardening; other pet care\n", "11 Participation rate (%) Females Gardening; other pet care\n", "12 Participation rate (%) Females Gardening; other pet care\n", "13 Participation rate (%) Females Gardening; other pet care\n", "14 Participation rate (%) Females Gardening; other pet care\n", "15 Participation rate (%) Females Gardening; other pet care\n", "16 Participation rate (%) Females Gardening; other pet care\n", "17 Participation rate (%) Females Gardening; other pet care\n", "18 Participation rate (%) Females Gardening; other pet care\n", "19 Participation rate (%) Males Gardening; other pet care\n", "20 Participation rate (%) Males Gardening; other pet care\n", "21 Participation rate (%) Males Gardening; other pet care\n", "22 Participation rate (%) Males Gardening; other pet care\n", "23 Participation rate (%) Males Gardening; other pet care\n", "24 Participation rate (%) Males Gardening; other pet care\n", "25 Participation rate (%) Males Gardening; other pet care\n", "26 Participation rate (%) Males Gardening; other pet care\n", "27 Participation rate (%) Males Gardening; other pet care\n", "28 Participation rate (%) Males Gardening; other pet care\n", "29 Participation rate (%) Males Gardening; other pet care\n", "30 Participation rate (%) Males Gardening; other pet care\n", "31 Participation rate (%) Males Gardening; other pet care\n", "32 Participation rate (%) Males Gardening; other pet care\n", "33 Participation rate (%) Males Gardening; other pet care\n", "34 Participation rate (%) Males Gardening; other pet care\n", "35 Participation rate (%) Males Gardening; other pet care\n", "36 Participation rate (%) Males Gardening; other pet care\n", " isced97 geo time\n", "1 All ISCED 1997 levels Austria 2010\n", "2 All ISCED 1997 levels Belgium 2010\n", "3 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "4 All ISCED 1997 levels Estonia 2010\n", "5 All ISCED 1997 levels Greece 2010\n", "6 All ISCED 1997 levels Spain 2010\n", "7 All ISCED 1997 levels Finland 2010\n", "8 All ISCED 1997 levels France 2010\n", "9 All ISCED 1997 levels Hungary 2010\n", "10 All ISCED 1997 levels Italy 2010\n", "11 All ISCED 1997 levels Luxembourg 2010\n", "12 All ISCED 1997 levels Netherlands 2010\n", "13 All ISCED 1997 levels Norway 2010\n", "14 All ISCED 1997 levels Poland 2010\n", "15 All ISCED 1997 levels Romania 2010\n", "16 All ISCED 1997 levels Serbia 2010\n", "17 All ISCED 1997 levels Turkey 2010\n", "18 All ISCED 1997 levels United Kingdom 2010\n", "19 All ISCED 1997 levels Austria 2010\n", "20 All ISCED 1997 levels Belgium 2010\n", "21 All ISCED 1997 levels Germany (until 1990 former territory of the FRG) 2010\n", "22 All ISCED 1997 levels Estonia 2010\n", "23 All ISCED 1997 levels Greece 2010\n", "24 All ISCED 1997 levels Spain 2010\n", "25 All ISCED 1997 levels Finland 2010\n", "26 All ISCED 1997 levels France 2010\n", "27 All ISCED 1997 levels Hungary 2010\n", "28 All ISCED 1997 levels Italy 2010\n", "29 All ISCED 1997 levels Luxembourg 2010\n", "30 All ISCED 1997 levels Netherlands 2010\n", "31 All ISCED 1997 levels Norway 2010\n", "32 All ISCED 1997 levels Poland 2010\n", "33 All ISCED 1997 levels Romania 2010\n", "34 All ISCED 1997 levels Serbia 2010\n", "35 All ISCED 1997 levels Turkey 2010\n", "36 All ISCED 1997 levels United Kingdom 2010\n", " values\n", "1 23.7 \n", "2 7.0 \n", "3 16.2 \n", "4 10.9 \n", "5 9.2 \n", "6 3.2 \n", "7 10.4 \n", "8 8.8 \n", "9 11.6 \n", "10 5.2 \n", "11 6.8 \n", "12 8.8 \n", "13 14.9 \n", "14 10.3 \n", "15 8.2 \n", "16 10.7 \n", "17 5.3 \n", "18 8.8 \n", "19 14.1 \n", "20 13.6 \n", "21 13.5 \n", "22 7.0 \n", "23 13.8 \n", "24 6.5 \n", "25 7.0 \n", "26 12.4 \n", "27 15.7 \n", "28 10.3 \n", "29 8.4 \n", "30 10.0 \n", "31 12.1 \n", "32 9.3 \n", "33 9.9 \n", "34 10.8 \n", "35 4.4 \n", "36 9.2 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ\",filters=list(unit=\"Participation rate\",age=\"total\",acl00=\"^garden\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we keep only the columns with sex, activities, countries and values. Before plotting the values we need to merge the columns sex and activities and cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>values</th><th scope=col>bd</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>23.7</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Belgium </td><td> 7.0</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Germany </td><td>16.2</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Estonia </td><td>10.9</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Greece </td><td> 9.2</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Spain </td><td> 3.2</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Finland </td><td>10.4</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>France </td><td> 8.8</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Hungary </td><td>11.6</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Italy </td><td> 5.2</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Luxembourg </td><td> 6.8</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Netherlands </td><td> 8.8</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Norway </td><td>14.9</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Poland </td><td>10.3</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Romania </td><td> 8.2</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Serbia </td><td>10.7</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Turkey </td><td> 5.3</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>United Kingdom</td><td> 8.8</td><td>Gardening; other pet care, females</td></tr>\n", "\t<tr><td>Austria </td><td>14.1</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Belgium </td><td>13.6</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Germany </td><td>13.5</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Estonia </td><td> 7.0</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Greece </td><td>13.8</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Spain </td><td> 6.5</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Finland </td><td> 7.0</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>France </td><td>12.4</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Hungary </td><td>15.7</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Italy </td><td>10.3</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Luxembourg </td><td> 8.4</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Netherlands </td><td>10.0</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Norway </td><td>12.1</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Poland </td><td> 9.3</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Romania </td><td> 9.9</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Serbia </td><td>10.8</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>Turkey </td><td> 4.4</td><td>Gardening; other pet care, males </td></tr>\n", "\t<tr><td>United Kingdom</td><td> 9.2</td><td>Gardening; other pet care, males </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " geo & values & bd\\\\\n", " <chr> & <dbl> & <chr>\\\\\n", "\\hline\n", "\t Austria & 23.7 & Gardening; other pet care, females\\\\\n", "\t Belgium & 7.0 & Gardening; other pet care, females\\\\\n", "\t Germany & 16.2 & Gardening; other pet care, females\\\\\n", "\t Estonia & 10.9 & Gardening; other pet care, females\\\\\n", "\t Greece & 9.2 & Gardening; other pet care, females\\\\\n", "\t Spain & 3.2 & Gardening; other pet care, females\\\\\n", "\t Finland & 10.4 & Gardening; other pet care, females\\\\\n", "\t France & 8.8 & Gardening; other pet care, females\\\\\n", "\t Hungary & 11.6 & Gardening; other pet care, females\\\\\n", "\t Italy & 5.2 & Gardening; other pet care, females\\\\\n", "\t Luxembourg & 6.8 & Gardening; other pet care, females\\\\\n", "\t Netherlands & 8.8 & Gardening; other pet care, females\\\\\n", "\t Norway & 14.9 & Gardening; other pet care, females\\\\\n", "\t Poland & 10.3 & Gardening; other pet care, females\\\\\n", "\t Romania & 8.2 & Gardening; other pet care, females\\\\\n", "\t Serbia & 10.7 & Gardening; other pet care, females\\\\\n", "\t Turkey & 5.3 & Gardening; other pet care, females\\\\\n", "\t United Kingdom & 8.8 & Gardening; other pet care, females\\\\\n", "\t Austria & 14.1 & Gardening; other pet care, males \\\\\n", "\t Belgium & 13.6 & Gardening; other pet care, males \\\\\n", "\t Germany & 13.5 & Gardening; other pet care, males \\\\\n", "\t Estonia & 7.0 & Gardening; other pet care, males \\\\\n", "\t Greece & 13.8 & Gardening; other pet care, males \\\\\n", "\t Spain & 6.5 & Gardening; other pet care, males \\\\\n", "\t Finland & 7.0 & Gardening; other pet care, males \\\\\n", "\t France & 12.4 & Gardening; other pet care, males \\\\\n", "\t Hungary & 15.7 & Gardening; other pet care, males \\\\\n", "\t Italy & 10.3 & Gardening; other pet care, males \\\\\n", "\t Luxembourg & 8.4 & Gardening; other pet care, males \\\\\n", "\t Netherlands & 10.0 & Gardening; other pet care, males \\\\\n", "\t Norway & 12.1 & Gardening; other pet care, males \\\\\n", "\t Poland & 9.3 & Gardening; other pet care, males \\\\\n", "\t Romania & 9.9 & Gardening; other pet care, males \\\\\n", "\t Serbia & 10.8 & Gardening; other pet care, males \\\\\n", "\t Turkey & 4.4 & Gardening; other pet care, males \\\\\n", "\t United Kingdom & 9.2 & Gardening; other pet care, males \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| geo <chr> | values <dbl> | bd <chr> |\n", "|---|---|---|\n", "| Austria | 23.7 | Gardening; other pet care, females |\n", "| Belgium | 7.0 | Gardening; other pet care, females |\n", "| Germany | 16.2 | Gardening; other pet care, females |\n", "| Estonia | 10.9 | Gardening; other pet care, females |\n", "| Greece | 9.2 | Gardening; other pet care, females |\n", "| Spain | 3.2 | Gardening; other pet care, females |\n", "| Finland | 10.4 | Gardening; other pet care, females |\n", "| France | 8.8 | Gardening; other pet care, females |\n", "| Hungary | 11.6 | Gardening; other pet care, females |\n", "| Italy | 5.2 | Gardening; other pet care, females |\n", "| Luxembourg | 6.8 | Gardening; other pet care, females |\n", "| Netherlands | 8.8 | Gardening; other pet care, females |\n", "| Norway | 14.9 | Gardening; other pet care, females |\n", "| Poland | 10.3 | Gardening; other pet care, females |\n", "| Romania | 8.2 | Gardening; other pet care, females |\n", "| Serbia | 10.7 | Gardening; other pet care, females |\n", "| Turkey | 5.3 | Gardening; other pet care, females |\n", "| United Kingdom | 8.8 | Gardening; other pet care, females |\n", "| Austria | 14.1 | Gardening; other pet care, males |\n", "| Belgium | 13.6 | Gardening; other pet care, males |\n", "| Germany | 13.5 | Gardening; other pet care, males |\n", "| Estonia | 7.0 | Gardening; other pet care, males |\n", "| Greece | 13.8 | Gardening; other pet care, males |\n", "| Spain | 6.5 | Gardening; other pet care, males |\n", "| Finland | 7.0 | Gardening; other pet care, males |\n", "| France | 12.4 | Gardening; other pet care, males |\n", "| Hungary | 15.7 | Gardening; other pet care, males |\n", "| Italy | 10.3 | Gardening; other pet care, males |\n", "| Luxembourg | 8.4 | Gardening; other pet care, males |\n", "| Netherlands | 10.0 | Gardening; other pet care, males |\n", "| Norway | 12.1 | Gardening; other pet care, males |\n", "| Poland | 9.3 | Gardening; other pet care, males |\n", "| Romania | 9.9 | Gardening; other pet care, males |\n", "| Serbia | 10.8 | Gardening; other pet care, males |\n", "| Turkey | 4.4 | Gardening; other pet care, males |\n", "| United Kingdom | 9.2 | Gardening; other pet care, males |\n", "\n" ], "text/plain": [ " geo values bd \n", "1 Austria 23.7 Gardening; other pet care, females\n", "2 Belgium 7.0 Gardening; other pet care, females\n", "3 Germany 16.2 Gardening; other pet care, females\n", "4 Estonia 10.9 Gardening; other pet care, females\n", "5 Greece 9.2 Gardening; other pet care, females\n", "6 Spain 3.2 Gardening; other pet care, females\n", "7 Finland 10.4 Gardening; other pet care, females\n", "8 France 8.8 Gardening; other pet care, females\n", "9 Hungary 11.6 Gardening; other pet care, females\n", "10 Italy 5.2 Gardening; other pet care, females\n", "11 Luxembourg 6.8 Gardening; other pet care, females\n", "12 Netherlands 8.8 Gardening; other pet care, females\n", "13 Norway 14.9 Gardening; other pet care, females\n", "14 Poland 10.3 Gardening; other pet care, females\n", "15 Romania 8.2 Gardening; other pet care, females\n", "16 Serbia 10.7 Gardening; other pet care, females\n", "17 Turkey 5.3 Gardening; other pet care, females\n", "18 United Kingdom 8.8 Gardening; other pet care, females\n", "19 Austria 14.1 Gardening; other pet care, males \n", "20 Belgium 13.6 Gardening; other pet care, males \n", "21 Germany 13.5 Gardening; other pet care, males \n", "22 Estonia 7.0 Gardening; other pet care, males \n", "23 Greece 13.8 Gardening; other pet care, males \n", "24 Spain 6.5 Gardening; other pet care, males \n", "25 Finland 7.0 Gardening; other pet care, males \n", "26 France 12.4 Gardening; other pet care, males \n", "27 Hungary 15.7 Gardening; other pet care, males \n", "28 Italy 10.3 Gardening; other pet care, males \n", "29 Luxembourg 8.4 Gardening; other pet care, males \n", "30 Netherlands 10.0 Gardening; other pet care, males \n", "31 Norway 12.1 Gardening; other pet care, males \n", "32 Poland 9.3 Gardening; other pet care, males \n", "33 Romania 9.9 Gardening; other pet care, males \n", "34 Serbia 10.8 Gardening; other pet care, males \n", "35 Turkey 4.4 Gardening; other pet care, males \n", "36 United Kingdom 9.2 Gardening; other pet care, males " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "dt<-dt[,c(\"sex\",\"acl00\",\"geo\",\"values\")]\n", "dt[,bd:=paste0(acl00,\", \",tolower(sex))][,c(\"acl00\",\"sex\"):=NULL]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Gardening; other pet care, females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(bd=c(\"Gardening; other pet care, males\",\"Gardening; other pet care, males\"),geo=c(\" \",\" \"),values=c(NA,NA))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Gardening; other pet care, females\",bd)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Turkey','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "bd_ord<-sort(unique(dt$bd),decreasing=TRUE)\n", "dt$bd<-factor(dt$bd,levels=bd_ord)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZYDURh8G8OzuuXJuHG6HF6dAcYfi2lIohWIt5W0p2iKlSLFCCxSnOMUdilPc\nXe6wg7vj3F12835Y2M16spvJZo/n92lzN0lmN//MTGaSiYSmaQoAAAAAAAAAAAAAAAAAAADI\nk1o7AwAAAAAAAAAAAAAAAAAAAB8KDNIDAAAAAAAAAAAAAAAAAAAIBIP0AAAAAAAAAAAAAAAA\nAAAAAsEgPQAAAAAAAAAAAAAAAAAAgEAwSA8AAAAAAAAAAAAAAAAAACAQDNIDAAAAAAAAAAAA\nAAAAAAAIBIP0AAAAAAAAAAAAAAAAAAAAAsEgPQAAAAAAAAAAAAAAAAAAgEAwSA8AAAAAAAAA\nAAAAAAAAACAQDNIDAAAAAAAAAAAAAAAAAAAIBIP0AAAAAAAAAAAAAAAAAAAAAsEgPQAAAAAA\nAAAAAAAAAAAAgEAwSA8AAAAAAAAAAAAAAAAAACAQDNIDAAAAAAAAAAAAAAAAAAAIBIP0AAAA\nAAAAAAAAAAAAAAAAAsEgPQAAAAAAAAAAAAAAAAAAgEAwSA8AAAAAAAAAAAAAAAAAACAQDNID\nAAAAAAAAAAAAAAAAAAAIBIP0AAAAAAAAAAAAAAAAAAAAAsEgPQAAAAAAAAAAAAAAAAAAgEAw\nSA8AAAAAAAAAAAAAAAAAACAQDNIDAAAAAAAAAAAAAAAAAAAIBIP0NovOl/DtbHq+tb8VgKWC\nHe04hb1UKnXz9ClVrlKdBi2+/HbKun+OvskusvaXAAAAschLPcqsNRotfWTtHAHwAIENxRVi\nGz5omt1E5XqctXaGQNRQYH44Em/8ZieVSiQSt6A+uQpr5wYA+Lajb3llSd5sxkVr5wUAOMMg\nPRi0v5qf1nDmnexCa2cKOMhPOy2VSpXH7qfXGRZurSg7et/a3/p369CoTvWS/l4Ozh6lKlT9\nuHnbQd9MP3L1OS8ZtgqaprMzUqJePbtz4/zfy+YO69+5vE/ogHHz7iYX83tWrHWCo2BRwU8B\nADYBhRXYHAQtAAAAiMfd+U2VDRKp1GFTdJbAe5fnverZbrqcpimK+t/BFc4shgLCL/+7fN5P\nA7q0qFm1cslAPxdHe3dv//KVqzdp1X3i7D9PXHtCW5Afor2LRDceeePksrlTerVrUrViWX8v\nd3tH14CQMtU/ath/+Pcrtx7EAz8m2W5cabG0v50u8rKXSczV+kCk7iZ7rd8Z7CijKOrSrHar\nw9Ms/ooAICwabJQij/dgOJOWx9zDvqq+WgluZxVY6+uCGcI3fKI6dlMj083ejrwgYdHIzl72\nMiPB412x8YqTL3nMvNmCHIzlkz0Ht8q/H42w9rchyFonOAoWFfwUADYhN+UI8zxtuOShtXMk\nNBRWxVLxDmwE7YeseMc2gAma3URlu5+xdoZA1FBgGpEcfuWvuRO7d2pTr2ZY5ep1WrXr/M1P\nC0/dNKfXqzD7USknO+WPXKb7Vt6zatKqnmWUew9sMt9k4v92LOlUJ5gyJaBWhyX/XCjimBOi\nvYtEN/74yOpeTcob/03snII/+2HB00y0OfWw3bjSy8L+9vy0cyZ/CiNa7X+ld7O35zZVJnAJ\n6BxfILf0SwKAgPAkPUCx9ce0O5ZvJO3RgY5hFX5YeSS1UG4kWcqzK2PaVew2fnW2wpIbH0Wk\nICv8+85h/9vz0toZ4Sb12VfM+ys/C0+xdo4+ODgExQYOJQAAANg0NGYAALjKT7kzZVDLgCof\nj5r82/6jp27efxL+8PaZE0eW/Tq+Tb1yVdsPO/Y0ndMGT/2v15u8IoqipPbemzb2JpNrgxJv\nzRyxN5KiKIlEtnDXaCMpFQWxM/rV+qT/uKO335rcbPy94+P6Navc4bsnmWwnKyLau0hu44qi\n5CWjWlft/PWeSy+MpyzKe7t10Y+1SzdcffYN23yzY9O1uU3HlSEW9rfnphy1PA+6ao3fX9vN\ngaKonPgjnWdcIbELACDEztoZAN50G/ltWSeLniEOdeTnEWQQg/QXfyyPyrRwI7kJpxo16BOe\nw6ptRNPyg4tG1HmT+eifH+wkFu6ZNy2Hj6nlam8kQUFOZkpKwpM71++9iNf6F03L/xhQv9aj\nl0MqepLMIwAAAAAAAAAAWFPy7a1tWn91N83g2w+fnFjXtdahadvOTesVxmaDeSnH+qyLUH6u\nMXZfMw8HfjLKkiJ3TNcFyo+BTf74LMjVYMLCxEG1qm57ym2W7Bf//lGn7JVjT/5r4edkPCXR\n3kVyG6cV2ZPb1ph/LpbNlpXyUu6MbFMl/tizn9uFsF+ruLLpuDLE8v72tIe3LFndEKmdz+ZZ\nDWv87wJFUbfndz39Y2zrEo4kdgQAvMMgffHx9Zz5nbxM1F7woaDzJ3SYZuE25PlRA+v11Grr\n2LuW6j24T60K5YJLyN68enXn7N49F58xE0TsGt+pfrMTPzawcO986TXztzGGr0OY0l5cWb7k\nt5krDhYybqtUFKZ832XWkPCFxDIIAAAAAAAAAADWlB1zqG6TIa/zTLxZXF6QMKPvR/bnIic3\nCzS5zY39vs6SKyiKsnepsn92E34yytrTNb12xWZTFCWRSKZvHWQk5epBH+uOpJap37ZruzYf\nVQ718XbPSU2Mirh78vihkzdeMdPkJd/oWqf3rYj9lZwNDjEQ7V0kuvEtg+vpjtCXrtOscc1q\nYWFhZXzsnoc/ffLkyfWz599kqzNAK3Jndq1T4cWLASXdjG+/2LPduDKIj/722OMaQVWpShVO\nM12XcjP4KFrV0TsqTy0TnlOoKEod3HtN9KlvzM0jAAgKg/RgkFeteo08NKpSV6lono8Gw+ii\nlHkDGq9+zm0CLl37v2q1X/PewJbfrd7229BAjRkX5r2++k/fzkOup6jffnd6cusjXyZ29rWx\nW0ZKlG889c/9g/uurt9mdFyBepak1IhFP92b/GstHyvmjQRrneAoWFTwUwCATUBhBTYHQQsA\nAACc0IqczxsMYI7Q1+j2v0lfdqpXr16QLOXWrVvn9v01a/05BU1TFEUr8qe1b9Yt6UlVF2P9\n6unPl48+HaP83GLh3jLCTl+qKErq98Np5WevytNHlHI3lPLtmVGj/nnO/IuTT4O/tm8Y0raq\nVsoff1n6/Pz2scNGHWN0OWZFH+kwaOfL3QMNbZ9o7yK5jac9XTJkazjzL+6lW63asnpAU+2X\n08vz3m6Y8c2o+fuL6HfP/MgLEr7tPHvAvblGcl7s2XRc6cVXf/vL/xJUn+2cK4Q/eWLhBlWk\nDsGbx1ZtMO8eRVFvz4xdEzVkeOiHfqcIgG0Q4sX3QIIiT+tQHknJtXaewMpy4sO3r/ilQbCe\nB8enRqZz21TCTnvN3szWvx43lDg36WpTT40pdEq2XmfxtzFTkIPGZc+yt1lct/Dm2FitX69k\nq90kskpCSsRQZs4HPk22do4+ODgExQYOJSjlphxhRkLDJQ+tnSMAHiCwobhCbDOhMfPB0ewm\nKtv9jLUzBKKGApMpfF1n1U8htfOcseWKbprnJ1dWcVE/w1p11Enj2xwf5q1M6eTdLqNIQSbj\nBj1d21aV1S/OxRhJ+VmgRi+iU4lm15PzjKSXF8T9+EkQcxWJxG5tZIbexER7F4lufEolL2Zi\nt9Cuz3KLjKS/t2YwpWnCgyQj6dmz0drcduNKz+7462+naXpQgHo77qE/cl3duLy0M6pfJviT\nlfxuHAAI4TSdBgCIS2H2g12bVs2YOLZPlzZVywa5B1YZMHra9bfZlm/55JhJzFnfvcJGH5/S\n3lBiJ5+Gu49OlEjUzaOYs6PPpht8iZfIhXZYOqF8CeZfEm7Mt1ZmAAAAAAAAAACAnJmTz6o+\n91xzZfpnjXTTlG8z4vyp6arFiA1fZTP6zbTE/vfdwicpys+fb1vnLhN0Uh9anvXVD/8pPzu4\n1V7RLMhQysyohVvj1L2IEonkl1N763sbe5W11D5g7olrbRhvXKXpopnDj+tNTLR3kdzGCzIu\nzHumnpZJIpEtOLelgpOxuRBqDvt7fsMA5l+2f3/JSPrizabjiiLZ305RiuOMx/o9yrfkY5tq\njp4tF9T2VX6OvfDN7oRcfrcPACRgkB7AhqU9n9p38MiZ8//cfeT0k8g4OW3w8oATRVHyyAOv\nmX+ZdnSundELioCPZy5+3wigKIpW5E9YEW4kvcgNm1aTuViQeT0818RryQAAAAAAAAAAwLbk\np/67LSFH+dnZu/P2wWGGUvo3njqnyrvn44vy3sx6aWDia0XemD5rlR89y49c1b4kn9llIebM\n8EvvxyArDF5u5L0/TxZvZC56Vf75x7q+hhKryBxDN+wYwPxL7IUJBTpdkkR7F4luPPnBIgWj\ni9U9dPzIch7GNk1RFEV9tUHjN0m8+afJVYor240rJUL97RRFFWReSyxUv2I1pEsoX1tW6f/X\np8oPNF00ccxZ44kBQAzwTnrgWX7Ki/07tu88eOZlVFR0dHSO1LN06dJlyoZ1G/TVF92bOdvI\nbSHPz25avffCkydPYrOlZcIG7F4/ykjiwvQ3/x46eODAsYevomNj4+IT0hw8PH18gqvXrd+4\naas+A3tW8DJ2q6AIJd35MZbxUnbXgEHjyphujA5c2et/DVeqFp/88Qc1eS2R/JEX0Lw5Rf3H\n/MvVjILKziYKzKzo+zt3Hrh6++79Bw+jE1IzMzOzC2g3dw93D49S5avWqFG9SesuPTo2drP4\nBmpO8ckvWpF94+ShPXv2Xnnw8u3bt7GxSTJXTx8f79JVPmrSpGnb7v1bhJludlsi7sGZtes2\nXrj77PXr11Exya5+gUFBwaWr1OnWs3ePLp94O5hTxAh24PhBFzy+curw4cMnL92NjYuLi4vP\nKLIPCAgICPAvX6Nx586dO7Zv6mf0/m6WMl5dX7t6zcnrT6Ojo6OiYwplbt4+vpVrNWjarPXn\nX31WoYSD5btgiX3Ai+pQiq1qIHHuUEJ9TUKFXvyTy7t37z505lp0zNu3sbEFdp4hISElQ8u2\n7Np3QP/u5Y3e5m+SqKLR6qxbnhBtmoqw6ica2JRQZ73V6yDeMyCeSyTBgpb335B0bJvBputW\nfpG4RhBhAUvZ5tF5T/H04qHNW7ZduPfibUzM27hUF2+/wKCgkhVqdenWvdun7UI97E1vQ3xI\nl642WusVj8aAkP0eWW/VA4qhXSYZH+3rPaXalC8uKD9fPBtPVSihm+b5ln773o/6Tz4wW/iu\n0HXf/Kv6PGJyTSMpD+59w1xs+dcIlrsIab001HFzVP67B1qK8iL3JuX293NmpiHau0h043Gn\nNH6WUj17mtwyRVElKkyhqCWqxfy0czkK2sXwHRJCEKoHSYvtxhVpeZrvGSnXJpD3XfjXWRDi\n+HdMvpyiqNeHvo4rfBNobyPjMQAfLGvPtw/mIv9O+ry0M8zt15t3z3j6otyo+SPbOxtufLgE\nVp9/KEKZWOvdV2fS9LyW5tX+Vsw07F8u3tlbXXmXKLeYzbe7nVXw7u+pN0Z2rsX8l1vgMEM7\nKkgPnzOio7PRfgGpzLXV4Kk332azzDwnCXe7Gtk1E6d35JzuXY65bqM/HrFaTZ5bgTGMLZHI\nHmQX6k2YnbBVK3s8vi3P8nfS0zSdHb9RK4fzo/S/Bkkp9cm/Q9vUlElMt7wdPEqPnrctzdTb\nyDjFZ8abX03uV2s7ursweYLTisJjf02q4Gmsg0AikX7U/osjT9PYfzW9+2UexB9evtta+rOj\nPRqXN7J3O6fgbxbuzpGb+B5MfB04gQ4Brbi8Y0GjknpegsUkc/D7ctrauHzTP4RWBvYk5Sj/\nnp92d3iHOkZ+FqmdV++Ja3h8qZ7lBbJ1D6UWK1YNgp07vH9NXipl9lIeH/vik7JGci6ROrcd\ntTCuQE5zf1snjzXComo+zPRLozPZf8cdrUKY6w65GMt+XS1sCivxlCdMvDdNmaxb9evdAtHA\npgmf9fzGjKiClmgcckI6aMn9hqRj2zibq1t5acxwwNM1ApMIC1haBNf+rBh4J33SnV1tKnoZ\nyjZFUVI7j4GTV8YXGAxZkbRJmEiXrjZU6zHZdGOA9CWAEdFn1BNlN/rTRA9Y0qM+qsS1Jt3U\nTSDPf1vb7V2pGNRkEZksG5ObfFgVVE4lWhqPHq0+tGsZHKqG2WU8mesOj0jRSkC0d5Hoxi9/\nrTGbQpO1T1ltnKZDHDV+z5dGX2NvBB+1Oc89SJzYblwpEepvp2n6zfG2zNU3xxNpM2xvHqza\nRbf9kSR2AQA8wiC9zRLZIH3C9dV1NO9r00sikfX+ebtcrIP0eanX24VoN18MXQw83DG1jAvb\nm81l9n5TNl1nmX/2CrMfXzRgoeZVNKdGw0B/F+a684yOTzP9VVVjp4PuJupNJv5B+vTI6Vo5\nXGF4O9dWDjd+jarLq1r/R0Y7xTjFpwAjxHnJV3vWCTC0WS1SO6+xyy+x/GosB+mvb5oS4MDq\n3l7vap0vJbEqDHk8cAIcgsKciK+almKfVSffWutv6j8BDWVA2VWUdHtbPW8nQ5tl8q0zLM5w\nRx4nFhbIVj+UTNatGoQ5d0h8TcsrZfaOzBrAMmDcQj/Z/SKdU/clvzVC5CGNroFq31xh+R3l\nBbHM427nXMHkAIYRZo93WqU8USHRNFWxetWvuzrRwKbJn/X8xox4gpZoHHIiQNAS+g1Jx7ZJ\nNle3CjlIz+M1gooIC1ja2g08DvQN0p//faSbjNUjdC4BdXeH67+XQiRtEhXSpatt1Xoqtt4Y\nIHoJYFzivd6qfVUdZSK8Xx9uo0pcf8F93QTXptdX/lciddwVZ4W7dm5MVD86X2XYRSMpC7Lu\nMX9nR4+POe1of00/5uo9HyVpJSDau0h04zcmaEw/UGfGHVabVhQ6at45lFJoZolnYW1OogeJ\nPZuOKyVC/e00TV8bV121rkRib3aEGBd3dbBqL57lppDYBQDwCIP0NktMg/RJt9dq3SpoXKuZ\n50Q4SF+YE9E2WM8NhnovBi6vGG7H4tZ+LZ1mHGX5FSx3tFEQc9fsGw2KwmRmm1JqVyKd9VX0\n/QX1mTv9aPptvcnEP0j/fFtLrRxez9Tf7/N0/TAp90igKKpExaF5hn9XTvFJeoQ4J/588wAX\nQ9vUSyKRjvhb/xW+GYP0z7aP5LR3F//mFxJNlIf8HjjShyAv9ean5U1P3qVF5hCw6FS0kR9B\nt6so/cVWH3sOhXlohz+N/84sWVIgi+FQqli9ahDg3CH0NS2slNnbPbkdp2w7lmh4/uU+5l+M\ndF/yXiMU5j5j9qo7ebVj+TWjTvZhbr98v3/N+7mUzBvvtFZ5okSoaaokhqpfa12igU0Lctbz\nGzMiCVqicciJMEFL4jckHdts2FzdKtggPb/XCEoiLGBpETTwONAZpH++ayynn9TOucKme8m6\nGxZJm0SJdOlqc7WeUjFoDJC7BDApJ2Gbal+uAV8YT7yxibq37fNbCVr/Lci8qboxpcLAvcSy\nbMwAxhDmN4/1nNEq2fFbmL+zR+hkTjv6S3OKDtV8M0pEexdJd11GHmrNTOP30Wo2W86O05g+\n3d61Bsss6bKkNifUg8Se7cYVG2b3tyvtqK2+BcHJqw3zX6lRT69ePH/k4P5/z/x391F4fGq+\nGdlTKsp9Yf/+V5JI7e/zMnkSABCDd9KDpfJSTtf9eKTyTScqLoFV+/Tv27B6ueAA97TYmGf3\nLu3YtvdFar7yv2dntJkRtsIamTVmZb82J99ms0n5aveIJmPW0jTN/KNf5YY9unWtF1YmwNc1\nLS424u6lffv2P9bc4NEZnQb43d8+ugaf+eZbTtK+fIX6qzn79vBg/ShDyU+rUz/eUC3GHHhG\nzfiI5/wJYuOMu8xFe5eq9dz03DBekHm9zai/FZqR4ORT5bOBncuVKlWyZEkv+4KYmJiYmOgL\nh7acf5LETJb2bH3PdROODKvMMktG4lPmENKoUSPlZ3neyxt3E1T/8q1dr4KTupx35f4qLHlB\nTOfqHc4n5jL/6Ohdvkf//k1rVQgOKpEc+ezxkye3zh3870myKgFNK1YPrd+8TeIAnVvguUp/\ntqXRF2uYf3ENqdmxed1SoUGKzISo1xFnTlxMLVQwE+QknO9Qs19M1H5PA6HL+4EjeghoRfbX\ndVodfJXB/KNEYlf9k649OzUvF1rSy7HobUzMgysnd+87FZ9XpEojL4j/sUON8lHR3QJZ9Z/K\n8970azw8ufBdYR5YrVn/vj3rh5UN8HGIigh/8vjR8Z1b78drRELU8W9nPx44tao31y9lEssC\nWVSHUmxVA4lzhxLwa7KvlNl7uq5377kntP4otfNo2qV3y/phJUMCitLiXj2/t3/7nojkd33c\n+WnXOjXTnltFLxI1gp1ThTnVvMfef5c4L/XEirfZo/V1XGrZ9f1Z5uLI3xqz+Qo8sm55QrRp\nKpKqn4loYFNCnfVWr4N4z4B4LpEEC1ref0PSsW0Gm6hbibZLVUhcI4iwgKXE18DjJPP15gYD\nN6p+UjuXoA69+raoW9HH2zMvJfb1q8eHd+16qJntotznX33com7C7aouGr2F4mmTkC5dbbTW\nKx6NAYrMJQAbzn4D2nkNPZGaR1FUdvymMcdnL+9QUm/KzMitX1+JU36W2nnOra59RI6M6h9f\nIKcoSuYQsGNVF5K51i8v9ej2hBzlZ6nMZUr5EkYS2zmWHD9+vGrR1b8vl10pVsVqHKyWno7M\nRaK9i6S7Lv0bjaCo06rF5IeTrmcObuBu7N0uFEVdmbWYuehdbRzLLOkyuzYXrAfJCNuNKwGc\njMtRfXb27U5RVNqLK3/9+efWfccfvUllppRI7CrVa9GhQ4dBI0fVDeZ2UGRO5YYHuq54m0VR\nFK0onHI+9lAnDjMrAIDQrHd/AFhGNE/Sz2ykMcGd1M7jq7k7dW9jVxSlr5nQU3Ubl1SmUbtY\n/Un6Xes+V32WSB2bdft85uI1py5eexT+MiElh7liftqlsk4a16uOJWov/Oey7m17Cnn2viXf\naz3YLbXz2hNjzrPdXJl9Z1/So8+ZK3pXXsd+p9lx65nruoeM1Z9M3E/Sx5yeoJW94E+26U35\n72cVNA6uvfeUFfsNTFWkeHh6e0vNXgz3kDGG8mB2fKZEDGWuOPCpwZumWZ7gu77U6OqSSB37\nTl6n75V48oubf9L68f3qTDNvv8ztONmrn9hw9qu37ND1As2dF2bF7Jj3tZed9hSODadeMPTd\nyR04msAhuDDtY62vFlCv79HHqbopi3Lf/DairdYbDb2qjMo3cFexVgY6Nn1XmNu7VJy1Wc+v\npyhKX/ldG0pTqQ4HjfwaLJkd8CI5lLRoqgbS5w65r2l2DLCXl3pO66EriUTyyZBZz9O1bypX\nyLMPLhpVQueXeff7GHjGiFA0vjneg5ms+v+umfymBVl3nRg9Nc4+3UyuYpwZDyVbsTyhSTZN\nafFV/aQDW7Cznt+YEUPQEo1DTgQLWp4PIuHYZs9261aaY2OGE96vEWjxFbC0aBp4HOh0E6k0\nHzonKk/n1ciKwoubZ5R31b4fvUy3VbrbFkObhCZcutpqrVdcGgMkLgHYuzOrkWrvdo6l1px9\nrZsmPeJES8Z7Fkp13qSVIDtut+oZ3/o/XyWdZ72ermmqyqFH6CRyO0p+OIV5+BzcPtJKQLR3\nUYCuywma98SEdpprfGLylAfrPTRProk3tCdaMA+n2pxcD5IwrBtXbFj4JD2zhCzXZ/vvY7va\nm7ppUmrn0fPbec+yCznt6Mqoqqot+Nddy2ldABAYBultljgG6d8cHc5MI5E5//JvlJFtPlg3\nlNLH6oP07u+nbqv46fhLL4y9zGZe40Dmim6hXa4ancAw5eHOWm4a91r61ZnH8otYwuxGw/Nt\nzZkrlut1lv1Oi3KfMdfVbUsp5aUcb6Sp54Sb7PdinIWD9LFXN5R01J5i5Kd72i9AommaVhRW\n1nwf27hjb4xvPC/1PHPjEonklW5HiTKlufHJ7whx6pMFzPa6RCIdveWJkb3HX1rkqvm+w3U6\nL2DjOkiv4hU26IXhJmla+P6qmr1LUpmb/lKR5IGj+T4EuUkHtV4rGNJ6UqbRubyu/jFA66fr\nuukZmwwo2btW2xNhrLhY91l5Znonr7ZGErNkZsCL5lDSoqkayJ47JL+m2YUee3821agWJRLJ\nl3/dMJI+8eZKX31zkOrvviQWjUV5kcy+Hmfvzia/afiGFsyc1Jtj8FUaLJkx3qlklfKEaNNU\nhFU/2cAW8KxX4itmrB60ZOOQEwGDlt/fkHRss2e7dStNbJCexDWCCAtYWjQNPA4MDNK3n3HC\nyEq5CRc+9tF+M/rccO0RHTG0SUiXrjZa6xWbxgCJSwD25AXxzOekJRJZhzGLLt4Ozy5S0HRR\n1NPbm+cOZ97fILXzOp2qHUiL3s+E7+BW+22+XOCvoLSmuq8qk1WGXSK1G0XByAoaz+hXGnJa\nKwnR3kUBui4z3+zTuj2lRr/p0QYqmmfHlmrVYlUGLmOfJePY1+ZEe5CEYO24YsOSQfqCzJvM\ndSVc5jRyK9nyyHMO+0q4M1C1rp1zOeuURwDADgbpbZbO1Vevb/433izLrsTr3QOL7i3FoECN\nu9dbLb5lMuN7vqykW9NYfZBeqfbotcbvi8x4vZyZ3s6p1DHd/gUdSXf+ZDaSJBLJquhMlt/F\nbGY3Gu78Uoe5Yt1Zdznt153R/yKVuXDPuKXMHqTPfHNr4fi+TjotJO+wiXrTZ8dvZibzLDuB\nzV6OdivDXOufRP33g5sXnzTfI8TzGK9Koiiq+rfHTH7Bk99qTGRXc4J274B5g/SOHo3vZZp4\nhVLq4y3umt1/lYac0k1G9MDRfB+Co/01+mWcfTskFphuWu8eolHMOnt31LuO3jCb+l+s8Y0X\nZN1mdrNK7UqYzI9J5gW8eA6leKoGoucO0a9pdqHHUk7ibq1HBBpMPWlyrVcHRuvmSm/3JdFo\n/OsjjaJ4TayJeu27UHfGDy6zfJDP7PFOa5QnZJumYqv6SQe28Gc9XzFj7c2r9fMAACAASURB\nVKAlG4ecCB+0vPyGpGObE9utW2lig/QkrhHEVsDSYmrgcaBvkD6k9RKT62VFH/bTHLUNaLhS\nN5m12yRkS1cbrfWKX2OAx0sArpJur/DQmWZA5uDhr/P2Q4lEMnp7hNbqyQ/nqRJ8+rf2f4Wi\nqMa4S6zz2RhCu9nwdW2NH0TqtEenBCbauyhM12X8laVaIeHgUe7L8dNXb9r53/X7r188PnN0\n74rFcwa2qkppCm45OVvOWxyzr82J9iAJwOpxxYYlg/Tpr2dSFrBzDN0ZyfYGptyUI8x1dyQQ\nn48EAMyGQXqbZXgeM64+Xqn/tneT3VsZbzTetePs29n43XlKhdn3Q3WeVBbDIL1bSO90U/k/\n1L0sc5UWS9l2+hz/SmM+wKpjrrBc0WxmNxouDtHIauMVjzntt4zmfabC3zus1Y/WetR3xm9S\n+e6bkV8M7FU/LFTrylZJZu+37aX+BlDSw37MlB+vMvb4iMrTtU2Ya601cH1rXnzSvI4Q56Wd\nY/4m9i6VX+YafOZYJT/jmgPjRge3oJFc90vr6wwdeljPXHO6zk+sy1zL3qWK7nUR0QNH83oI\nFEVpWjdu/3jRRD+OUmHOkwrOGivOeamnBNANs8CPl7PZ/rTSHsy1dKeX5Mq8gBfPoRRP1UD0\n3CH6Nc0u9Fi69oPG2ICzT4dUdp1/P2t2RlMGui+JRmP06T7MZLoDG0y5yQcljKLbq9JMNjkx\nzrzxTquUJ6SbpmKr+kkHtsBnPY8xY92gJR2HnAgctHz9hqRjmxPbrVtpMoP0hK4RxFbA0mJq\n4HGg002k92FfvW7ObaaxoswtIkd7ugjrtklIl642WusVs8YAv5cAZnhxYLbeCVSYJFLH4X+c\n11lVPrq8pzKBi3/3XCsNcuYmH2RmdT2LOyq4K9o1pbXWb1JttJ67tYj2LgrWdRl7dXOTII3b\ng0yEh0TW8ds/knm904RlbU66B4kwUcQVG5YM0kedaq8bM1KZW7sB32w8dCHiZVRGbmFOevKr\niAd7NywZ+mk9iU5PtUtAezbtLpqmaVrOfBNK+6Osmq8AYBUYpLdZIhikvzwyjJmgGbsLaZqm\nj/csp5UHMQzS9zsdbWK7inxmq8XOuUJiIdu6PD/jih2jZnUNGMRyRbOZ3Wg4o3kN1nzbc077\nraM5rdl9jq/MsZzJCyr2JBL7cXtfGtpR+ovNMxj2Gn4el+n5Do15mdh3JJmOT5qmeR0hfrq2\nKTNBlWH/sckATdOTQtX9CFI7D61rEzMG6V38+rG8vpHnRwdqrvvTK+3IJ3rgaF4PQWrED8wE\nzr492GRV6Zzmi0KrjdXzPjzdMJv6iFXX7bFmwcy1SAzSswl4sRxKMVUNBM8dwl/T7EKPpYH+\nGi8i7bTLYNmuJTV8mlbG9HZfEo3Govwo5uuNnX27G9nm7ekfMbfZnd1IknHmjXdapTwh3TQV\nW9VPNrAFP+t5jBnrBi3pOORE4KDl6zckXWhzYrt1K01mkJ7QNYLYClhRNfA40OkmCmm1ne2q\nhcnlNIcuBl6L00pj3TYJ2dLVZmu9YtYY4PcSwDxpTw4MaFaWMsArrM3qM3pexhF1fJgqzdjz\nb4XPtlLc1e6qbEgk9hl83/GQE39tWIvSWr+JR9m+cfoe1ybauyhk12VR7uufemgXI3rZOZVb\n/i+3nLDBsjYn3YNEjnjiig1LBulv/FhT62t6Vmi/557B6iDq6u6Wwdr3iFQYcIDl7v5XUj2f\nTdnuZ9jnEwAEhkF6myWCQfoRQW6q/0oksmsZ+SzznvJ0slYerD5IL7P3izc1BVBm9O/MVULb\n7GWZH6VxIYyp3qROLO9uNpvZjYYT7UKZK7Y19S5ALa1LaLzN7grrqOALX4P0do6h8w/z/x6m\nu79qPFLDsiOJTXwq8ThCvJLxJjOKoha8YTul0oN5o3ozvNZ8ZZcZg/QNFz1guWuapvd2KsVc\nl+vMV4awPHA0r4fgxkSN5nvd2Ry+S8YbjfLKPfRHkxmwcyrL8nZcrYsi3gfp2Qe8GXg/lKKq\nGsidO6S/JtEYKMx+xLwDXWbv98bAqwT1KWrm6ajxq1o83qPCPhrXNghgpvzbcMouPuomkMzB\nP5qP+WzMGO+0VnlCumlqHkJVP+nAFvis5zdmrBu04oxDTswLWr5+Q7EV2rZbt9JkBukJXSOY\nh9y1lagaeBzodBONvZfIfu1/B1Rgrlvpiwu6aazYJiFautporVfMGgNELwO5un9ix6QR/WqH\nVfD1dHFw8SxdIazTwNGrd53N13c2K4oy27/vh/QO+0HwzKoxS0UH9/o8blkhz9qz5IfSTtrz\nUjh5NzyblKt3FaK9iwJ2XRadWvtTZQ+NkV0jGvT58WYcz/OKs6zNSfcgkSC2uGLDkkH63XU1\n6lCvqp+bLLQLMh/1Yrw7hqIoqcztHLtrhF011TOmlCi3iH0+AUBg2u/aAWCJlmduSshWLTp5\ndWjgzrbJ4ll+vKPOm7+ty8X/c397E6dDwpUDzMWqE+tz2kXXuj6qz7Qib19yLqfVhUNrLnIs\nJBSai/kK/cnETCK1bz5wwrmIxz92rmA6NRdFOY+///2xGSuyiU/erXmdofostfMaW9LdSGKm\n6hNX7GIo5WjpbRNjB5U3nei9pr9qPNzzZo85P7gWsw+che4dimEudvrM4O38utxLjma+VzIn\nfovJc9Gj9P94m4bCMuQCnsShFHPVwOO5I/DX5DcGsuM30LS6bnMP/SGUQ7kkm9rQn6+cMHGK\nxo4LNG5bXPLnU73JMqOWHGb8tkHN/wxxsE5T3yrliTibpuSqftKBLfBZb/U6iK8MiDMOOTE7\naPn6DcVZaKvYbt3KF/FcIxC9trLRo6NFIrGfVMWbffq6P7VgLiZcuKybxlptEtKlq43WesWs\nMWCVfg9DarTtN3fljjuPnyWmZednp0U+e3xk6/LhvVs46Aulp2t6/ZuSS1GURCKdcfBnofPK\n8PZknOqzo2dTIyk5ubF3afMKQb3GLXqdV8T8u1uptiefnmvh46R/NaK9i4J0XWZGHu/fuFSb\nYb+GZxSw3PL1XQsalio3ZsEB2nRangncg2Q5McYVYdHB1Rq917TFwEs3NpgstO3dqm688rc3\no2xUyLNG/nCNze6C6qnbAHmpx8zLMwAIQCytH7DckRT9t5iZdGlEFTN2l5t8MFfOuBgo8zn7\ndaV23syH3cXAs3I7k2mi90YzF5tX9uS2i2oa6W9lsW3hCczOVeMGxsK0Qk6rpxZpNHDcZNbv\namTDyd27dIUqH7ftNW3R2qvhCee2/taklJvp1ViiC14/vb154YRGlRqcMauDhk188kue9+pW\npjpEXfz66b0WFYDMwb+3L4fiwqPcMOZiTuxx8/dt8YGz0IlE9U4lEtmwQA4vQqMkDp8zZj6U\nF8TeyDRR5pSoXsN4AsHwH/AkD6VoqwZ+zx2Bvya/MZD2+A5zMaRLC06rV/iS1dyGbJkVjYGN\nFzM7TSJW/6Y32c2f/mIuDlzSxuxsWsgq5Ym4mqbkq37SgS3wWW/1OoivDIgrDjmxOGj5+g3F\nVWhrsum6lReiuEYQ5NrKFo+OLmefrkFchsY9So9hLualn9VNY602CenS1UZrvWLWGBC+34MX\n8vzIXj+8O1lCWi//toL+Xynn7cMtf87q361j47o1K1Wr1bxNx6Hf/3Lg/D1+hwivvMpUfXb0\nbGj5Bt/e2DuwWZkGvcZdYGxZqVbfnx9FHGvqZ2AklXDvogBdl8m319Wp9uk/V9+q/iKR2DXo\nOuzPv/fcffY6OT27qCA3KS765tmDi2d8WzOQ2f0St2JC97pfLC4SdqBe4B4kS4g2rkj77uDp\nK+9dOLs1zEV7CgG9XEN6bh+o8RTZq90/sVnRp6H6Tqn89P9yFMLfOgIArLAqCwB0FWReYS76\n1NN+eYxx7b0c9ybl8Joji7gbaEYzxdxPYy5OKeUxxYI9vozLpcqXsGADpNh72jMXC1K5NcvS\nNJs77tYepF/2NmtMEJeGqcVyUt5GRDx79izi2bNnyg+PH4Wn5cst2Sab+ORXvuYJ7uxrtatl\nZ5+enPr+HD1bBjjI4gve/eAFmTdZrkjiwFnoJuOiyM65AtfnjVoGOP8eo77guZVV2NDo4yZu\n5fm7McUyFga8wIdStFUDv+eOwF+T30Iv9XYqczG4Y7ChlHr5NqhNUefN2zVf0Si1D1xQz2/I\nlXdPxuQk7tyW+PdAP83uZkXeuD2RqiVHj8azwzg8PMcvq5QnVmyaWqXqJx3YAp/1Vq+D+MqA\nrVwikQhavn5DKxbaJtl03coL4a8RrHVtZYtHR5ejF7cDZO9au4yTXeT7JxoLs+7pprFWm4R0\n6WqjtV4xawwI3+/Bi0s/dX+SU0hRlFTmumrHEN0E8vzXSyZ+P2PZ/iy5urvs2eP7/50+vuH3\n6YF1uy9Y/Ofnn5TkJTPPGE8kO/pZVOzkpz6aM270r5svKGjtgT2XoPozly4b36eB8S0Q7V0k\n3XWZl3SqWbNRz3PUA8BeVbtu2rWhS1UfZjKfgBCfgJC6LbqO+3nuP7NHD525WXU70Z3NPzT1\nKXf19+6cMmYJgXuQzCPyuBKtZgvnUBt7qxbz0y+cTstvXcLRyCoURbmEqm+8oBUFkXnyquxu\nCwAAgeHMBDMVpL9mLrqUcjGUUq8gN3vTiQTkFGjwHj2VNzlFJtOwlxen/bo4kXAtqzGkzbW5\nk8Jo7kgkMt0XCxVLBamR/x4+fPjw4WOnL0YlZ5tegSM28cmvotxnzEXnIKt1nds5V+K6Snkn\nO1VnqDz/jZGUpA+chd4WqPsfZY7c+qEoinIt6ULdVi++yTdRgjl4838BZh4zAt6Kh1K0VQO/\n547AX5PfQi8/IZ+56FGSW4tF5sTtoUxC0dh+YTuqySbV4qIV4QOn12YmSH40+X62usquOPR3\nO+t1OFilPBG4aWr1qp90YAt81lu9DuIrA2K+RCIdtHz9hgIX2pzYdN3KC2GuEaxewFK2eXR0\nObiHcF2lPGOQXlGYpDeNVdokpEtXG631illjQPh+D8sVZFzssfSB8nOlobs76UzQnR11utcn\nPf6N1H5cWCXu1v4vWh47v/jwmu94mAQrlnEPk6OviQE8g+iiw8snfTNx6WudALBzLvnVlFmz\nJn7hx+LFBER7F0l3Xc7pMPAJY4Teu9rgh7fXG5mbRCJ17f/zxvpVA8L6LCx8P/x8fWnvJcMT\nx1X14pQ3swncg8SZLcSVaDn79mrk4Xg1Q13mb4/PMTlIr1UIxBZgkB5ApHBmgpm05pNx9OPW\n+HMOEFfjW+Zi+gbD9CI+p6EqyuK7ucMT94oarxVMf5jOfl15/usMxq8kcyzlaBu3JJpPURC/\n7pcfJ83fmlJoOjykMvdqYbIHD9NMptTCJj75RRdp3JLvFGS1yVftnEK5rlLaSXb5/bsyFfKs\nIprS7RUS5sBZhC7KY0xFJXMI4LoB52CNo5Ym8FRrFuAU8FY/lKKtGvg9dwT+mvwWenLN5+0C\nnbltXObAtoObaDT6118U6LA17n3Py9MVC6jpW5kJTv9vN3Pxpyk1WW652BCsaSqSqp90YIu2\ncBM5cV4iWb2u5ESwQtsMNl238oL0NYJICljKNo+OLkd/zkVKoAPzxylS6HtHplXaJKRLVxs9\n4sWsMSB8v4fldg/5Qlle2TmW2q3zWofCrLvta3W5lGri7gRakb92XNt8t4ebvqpmYX7eFqgP\nmaOPOYP0+Sl3xvbuvvqs9tMOUjvPXt9Omz3j24oebG8oJNq7SHTjGS/nz7qVqFqU2nvvvbiK\nzdtDyveav3/Yoc5rnioXaVr+a7/V4x5MZJ8384m7B8lW4krMvinpdvWxepD+1dN0qrKJ+z/s\n3TVupmTexgEAooJBejCT1FGjdZKfmG8opV5c3xkjBi6ac+DUadjIkjfwVRbZXAIqXrU0ZtlK\nvRvFft2CjEvMRQePxvzkSaxy4k61qPXpjQRjr0J08y1ZpUqVsLCwj5q06d2zY8HRthX6k5qB\nk08Sjcu5omyr9a0r5JzfNJnOuJaQSOx1R+ht48BJ7JykEtVVlrwgnusGClI0bih2ltrOxQdr\nYjiUoq0a+D13RPs12bDXvOCPz+N2aaoo0v8YmRbS0Si1913UMOCzC+/eiZiTsG130lrVq5EV\nhfHfXYhVJXYvOaafn/XebG0lwjRNxVDsKJEObJs+661IhJdI4glaloQptM2DupXoNYKoYtUm\nj46O/ETOT/BHMx6dlMg89Q5JWaVNQrp0tdEjjsaAdWVFbx6yP1L5ueHM/dV0HlGd2aIdc4Q+\nuPFns77rX79+/QpeRXdv375ycutPC3bmvr/k3zqiUefO8f0CuU2HoEXj+HAfY3177s9WXceH\nZ2n0JEik9q0GTZg7Z0r9YG55I9q7SHTjd6asZi6W67ujualHllXaLdnpuK5W/vvDmvJo6r3s\n72u5kg9+Efcg2VBciVlgGTfqcbJqkd0kPRpVJ15JDyBaGKQHMzl4ady5lhPN7e2JSancrqk4\nSZfzebevSpDGTeXU8pPnGxF4PY/VOfm0oKhtqsW81CsUNZDluvkZlzU25dWax4yJTUH6zU41\nP72RqN2L5F+2esNGjRo1bFi/Tq2wsLCSvhr3Lb4QMIeWkDn4MxdzooR4Pape8rxXXFd5wXgN\nm9TeV+u/NnTgghxkr95/F3n+a+OJdWW/1pgd1J/FvGG2RSSHUrRVA7/njmi/JhuupTUmxEuP\nzqGq+RhKrKuIxS8pTDS2WdiBarhetThvTUTvybWUn2P/GxvHuC++/uzvOG67OBCgaSqSYkeJ\ndGDb9FlvRWK7RBJV0LIkQKFtNtSt5K4RxBartnh0dBVkRHNd5TkjYo2830H4Ngnp0tVGjzga\nA9a1pPt45cTmjh6N9/9QS+u/8ZfHz37/NLZEIhu6YM/K77upbtVq3DqkceuuX/Tr07f9oLOJ\nuRRFKeRZ43qv7ndxnCVZCnKURrwvR/OTuTUqnu2fUa/PrAzN6RP86/Ra9/fKLjW0+1XYINq7\nSHTj/1zQGOHu9nM9llumKMrOpcakUI+Zr9893k3T8qWRGeu5nJhmE2cPkm3FlZi5aL7QROve\nNb0KszKYi8GOtjdbCcAHAoP0YCYHj7oUtVO1mHIrhtPq1zO5vTOGkxe5RJ76LV3ejYpIUS0+\nzC4sltcnzr49HaUjVHd95ibvK6T/tGd3A2XixfvMxaC2lk7VJWbLOn96ntGLJJHaN+k5ctKk\niZ3rEpxjUzD2bnWYi3mJTyiqk1VyUpB1g1N6eUE0swRw0PwilE0duLruDqpLrKLc5zEF8hAH\nDk3qW/EavZx13YpbeSWSQynaqoHfc0e0X5MNrzrezMXY47FUew7zFWc+u28yjTDR6FdnQYjj\nxpj385o+XbqEmrxB+XnX92dUyaQyt2W9y/K4X1shQNNUJMWOEunAtumz3orEdokkqqBlSYBC\n22yoW8ldI4gtVm3x6OjKSzlCUSPZpy/IvBrDfKG1RxNDKYVvk5AuXW30iKMxYEWJt6b9fCtB\n+bn7uq2+dtoDZrtGblR9/mjCsbU/tNXdiO9HvQ7eogLL9s2WKyiKir88/nrmmAbu5j91Hczo\nMeA0SP/29PQavWblM+dLt/cbMWfl7z/0NHv6BKK9i0Q3fi1Do8TozHF6g6ZhntRr9Rzsr56k\nc7p7xmwi7EGyubgSs5wYjbvTtMbs9SpI0ohkTvEAAEIqbs/VgWCcvTszFzNebTOUUg+6YFsi\nqQdz5XkvYsm8ZCWoXRBz8WxUtqGUNk1q59PDRz0fnTw/ZmsC24N1d+Uz5mLlz0rzmTMxyUs5\nOP5ynGpRInOed/T5hV1/iLnHkxNH90YejIvM7Lj1RhITlZdy7E0+hzM6K2Z5Ea2+AHDUvDHW\ntg5cOx/1qxNpWr4ujlOZI18Tq04vlbl+7FGs+lPEcyhFWzXwe+6I9muy4V5G47tEH+Q2L+7L\n9c+MJxAsGiV23r83UR+I7Pi/DybnURRVmH1/ykP1xHd+dReF6Uy2+SEg3TQVT7GjRDqwbfqs\ntyJRXSKJLWhZIh3blkDdSugaQYSxaotHR1deyrFILhGb/mIFc9GzSjtDKYVvk5AuXW30iKMx\nYDV00Y89lig/ugUP3NxL+2YURWHC1Cfv7m+wcww9MsvgA7tuob02dy31bqu0fPq5t5bkq6Kz\n+ozLT0xjuVZuwslmXeYwR1JdAj85Ev5i+XjzR1Ipwr2LRDeepvnYN9ehTa2XuxckE3xKjUls\nPUi2GFckKV4wvIrk/D6Cty+zmIs1yrsbSqnCHNeXSOxLO2GQHkCkMEgPZrJzqfaxh/qVPHkp\nhx/ksH1+PTtuQ0ohkRnpKYrKePMHoS0Hd6rLXLy+5CmhHVndV00DmItbLrNtOix/mspcHF/N\n21BKWxd1aCHN6HGr/OX+Ce1LsVmRxKtGiZA69/dT35VZmPP4aCrbNxqmPZsQytDv6BtLMkLT\n8t+fp5tO996zVUeZi0FtGzEXbevA1e6s0S95ZBeHXzI7bkMU442Szr593GS8vVFMDMRzKEVb\nNfB77oj2a7Lh4jfQifFGvczoRTEFHBohq86Y6CkTMhpbLNDoof51/TOKoiL3jMtl9H10/aMb\n180WD6SbpuIpdpRIB7ZNn/VWJKpLJLEFLUukY9sSqFsJXSOIMFZt8ujooGn5L7cT2ae/OvMC\nc7HCsIpGEgvcJiFdutroEUdjwFoiDwzeGJWp/Pzt/t91n+LNTdqrmt+7RMVfA43OHN5sRgvV\n5+fbOc9SztS4rHrcLj/tGsu1fm094CXjVRde1fpeDj/ZvqzpIUCTiPYuktt4KSeNu4seZHOr\na9Iea8wxzuaJZ16IrQfJRuOKGOmgOtUqqFSqGsex2b80OlP1WSKRDA5wNZJYKfmq+rY5R88m\nrtJi1SsIUJxgkB7MN6Gen+ozrSj83/5Ilis+/G2ZGbvTeoGNIfcXnDBj42x4lJniIlOfMtFH\nfymgjSTXpMgb0L5Ny/e6fraDRA75UmNiU+binams7lLPil5+Pk09m5aLX//GxXcmtKjdUczF\nbpMbslzx2QHO7wW0lkEdNNr301dFsFzx+bp/oxn8KnpYmJPd406xTUoXjP0rnPmHZqM0upZs\n68BVGN6Kufhw/lz2696ZsZi5GNzmS37yJBriOZRirhp4PHfE/DVNkjoEjglWv8JWXhA/ivXN\nQ9mxq7eZujFfyGj0rTW/DKPP6MnvyyiK+uunW6q/2LtU/r2ev541PwxEm6biKXaUSAe2TZ/1\n1iXwJZIRYgtalkjHtoVQt5K4RhBhrNro0dF1ZOwBlikVBXEjj2kciG/bBhtJL3ybhGjpaqNH\nHI0Bq6CLUgcP2aP87Ft72pz6euJcnq8+EB6VTdx15OzfQPU5S/NhWa6C2gWqPudnXDCSUiXx\n5pQ5jAkwnH1aXLuxtRZP8/AR7V0kt/FO3k7MxU23kthsWWXlM405DOpU9eS0utlE1YNku3FF\nzqT66lpMUZgy/kIs+3WzY/++xXhvi7NvrxosJqqJu6V+X4mTt3XeYQoAbGCQHszXaLbG7GdX\nx/+cz6K9rihM+HY92yt5pruab8fRv/GilK+3vjBj42zIHEJmVPFSLealnR7Feh6q2Evf7Thx\n+tx7b6tUIZNHfvjVWRTImM0p9en0U2mm32V1cfzvzMUq30zkP2eikfNW42q2qhurd4YpCuO/\nIflwD7+qT+rNXHw4/4d0Oasr8t/WPVd9lkjtvynpZiQxG7HnR19MZzU/2Msdg69kqGNV5hAw\nM0zjxljbOnAlyk8LdVQ3u3MSts28xepRmKLciGGbnzP/0n1KdZ4zZ23iOZRirhp4PHfE/DXZ\nGDxWY6enR3yXwa5A2zF8tsk0QkajROax+BP1vKNZsav3Pd+9hHFPfZkey4rZtBmcEG2aiqfY\nUSEa2LZ+1luRwJdIRogwaFkiGtsWQt1K4hpBhLFqo0dHV+Lt77ZGsxrzu/pr97eMufFdAwb1\n9HE2kl74NgnR0tV2jzgaA8J78Ef3/9LzKYqSSGS/HRivN43MQX2PS9aLBOMbLMpVF4+Ofo5G\nUpoU2Fp9Q0Bh1t1MFsGwftAq5uK4o/8w58y3ENHeRXIbbz2gDHPx8oS/TW5WJePl8sPJ6u5r\nqcxlXAgPz46zIaoeJNuNK3LqTtWYUenQlxxarUdHzmQulh88gc1aVxLVoViiel0jKQHAujBI\nD+bzr/97DVf19XN27I7e656YXOvarC43Mln1azj6ady6eGO26ZmaLvzcISKX4PSMA5dq3He2\nrVe/iFzTc6zR8ozRfbaoFiUSyTdfV+I/c/yR2vv91UXdsqdp+YiRu42vkpdyasi+SNWiROo4\nf2wYoeyJgWsZjWmFHmaxirqD49q9yWc7KZ/Vlag4o1UJ9TmYl3qq8283TK4Vf3ni7iR1L1uJ\n8tOqWNwQlxcm9++1wmSygozbnYbtYf6lZNtlWtPK2daBk9h5L+8cyvzLgi4j2HSD7hnRJTxH\n/dUcPZvNDitu754Q1aEUbdXA47lDifhrslHp698cGXO75SQcbP/LOZNrJd6YO/xolMlkAkdj\ns/kaM8cOHzCCOUXwmLlsnz4slog2TUVV7CgRDWzKxs96KyJ9icSeCIOWJdKxbQnUrSSuEcQZ\nq7Z4dPTkR5E/tuO0PFOTEma+2t1prsZxbDznJ5MbF7hNQrp0tdEjjsaAwIpyn3afeln5uVSX\nDUNL6R9/dfLt7vz+JpXUiOlZRq/iH/+pnhC0ZPeSlmTPs8JQ1WeaLtqZZOJhp6Kch9Mj1BOA\nuwYMmtOAzwkwiPYuktt4lW/HMReT7k+bfJbdQ8+K3J87/8z8g0+teUEOAg2+iKcHyabjipyg\nZn9VdFbXYhlv/hq45bmR9CqJNxYPOqx+EYZEar9oak0W6yl2MgbpKw0vzz6rACA0GmyUQvvd\nb0dScvndQ17aGeb26827p5vm7m8aM8xI7TwXX4wzss03R6c56nsD88rYFgAAIABJREFUypm0\nPN3EaS9/0Nr48fgcIxuPPvmbs86d2iXKLTb72+mhyOvkq3E7eeAn373JKzK6SuGKzyszV/Gt\nNZvVvixztFEQc6dTI9M5rZ4dt81eov4xJRLpr5fjDaZW5E+u68fcXcm2G4xsPC/1RFNNfSbf\n4pQ9I4IYd1NSFLXsbRZfW2Z6sLgBcy9Vvj5pcpVTCwdJJdrxuSAqU29iM+OTplMihjJX7HEv\n0VBKNruI2KBxQS6ROv986JWRvRdkPWyt+bzFp3u007PZr9ZBVGo95YCRXRdmP+5RTmNefYnE\nfktstlYy0geO5vsQ5CTs1iozy3T5JVduLMMXF/fTym271U/NzoBeZ7qXZa6Yp2C5nkFm5ERU\nh1I8VQO5c4emyX5Ns6ORvY0dNeaZlEikw9feMZI+4+XeCvruMWq45KFWSgGikUkhz9KbMYqi\nXHx7s9kCV2yOjnjKE3JNU3FW/eQCm6ZFetaziRmrBy3RSyT2xBm0NLvfkGxsc2G7dSvNqTHD\nBe/XCCKNVcJHR/eiuNuIK6wyZjTPOtFKURRVbfAqIxcQ2bGn63lqPLzr6NEovsDoJYdyb4K3\nSciWrjZb632AjQEipw87J0ZXfR9+Jc4arabnVVZPQtBmqcEjUpB5uzTjzRGHki3t2q3GuJel\n89lo44mj/u3CPAQ1xl+3cO+6iPYuktv43MYabz23cwzdeNtEHaqQZy39vCpzLYlEuuhRivG1\n2GBfmxPtQWLP1uPKOEv62y+OrcZcV+bgv/xqgvFVUu7/U9NNY1r+cn3+YbOvvJR/mWttTdDX\nEAUAccAgvc0SxyC9oiijd4jGXNYye7+xSw8X6l45KAr2LhhZwu7d/YNSmcZa5/Q1beX5Mar0\nSm4hnc5H6x1zVZzb8JMqsVOA+tZ+ngfpaTrp9kI7ze4Az0pdtpx9pjdx/IOT33WqwEwskTqt\njEhjuS9LWDhIT9P0zgEaN9nJHAIXn4rSTSYvSJjSVeM7Su28ThiNxuyErVrRW7b7Ga7ZM0SY\nQfqstxoP0Ehl7kvO6vlxlHLibk/oU4/Sp9HC23pX4WuQvvGKx4ZSstqFIn9kmBczmVTmPnTW\n1iy5nr6B1KdHu1TSeNWWi9+nuinNHqSnKKpB/ymPU/N10z88/Gf9ABetxDW/PaqbkvSBo3k/\nBDR9ZmJ9rb2HNht85kWGbsqi3Nfzvm6j1V9ZovLwHAOXZOIZVDMjJ6I6lLRoqgZy5w7prynA\nIH1B5o1yThrdkRKJtPXwua8yC3TSyv/b8BOzs0zC+Na63ZcCRKOWg11K6z/QCx9w+EVYs/p4\nJyfkmqbirPrJBbaSCM96mxikJ3qJxJ44g5Zm9xuSjm32bLdupTk2Zjjg+xpBtLFK9OjoXhQH\nNTIYJ2wZGKSnKKpc21E3Y3WeeVAU/rdxWlmd8dofzsSw3KHAbRLSpauN1nofYGOAyOnDQl7K\nv+6yd0FV47uzxhO/OTZElT2pzG3WLj3j9HlJd4ZUVz+y7F11guWZXFPdV7XBKsMuGU98vr/G\nwXIrU7m6BV7m6r97g1zvIrmN58Tvc5Vp9EhLZe7D5myMyinUm/7JuZ29a/tSmkp1Xms88yxx\nqs3J9SCxVwziyghL+tsLsx8yb6NRZmb0on1pRXoKd3l+/JbfxvrZazREHUt8/DBbfxBqSbw/\nSLWWnVMZPRUlAIgGBultljgG6WmaTgtf5aRzb7JHqdrDJsxeu3Hb4WNHdmxaN2fi8Nql1A8T\nyBwC/ji1iZn+up6LB5qm6b87hGptWeYY9NkPc7bvO3b3aWRqUuzT+7d2rJjdrbE6mXuZnmc3\nqm+v5n2QnqbpY+M+onRUbNBu3PSFG7fuPHL86I6Na+bP+nlQ+9q6d/c3/+Ui+x1ZwvJB+qK8\nyK6aF8ASqX3T3t/uPnnh6au3KfFR925cXDdnXK1g7U6ooX+b6P0pBoP0NC0fWlrr+RhZnY5f\nbjhw4ua9xzEJqTEvHp05unflknlf9/rEhdGyd/DUaLVLZW69x/2yfuv2LTs0LnHNjs/U52OY\nKzp6Nt127t7bxNSEmMh7N69kMpp9LHeRHXdIq0VIUZRzYNhn305btX7zwaPHdvy9avbPEz7v\n2shesxyQSO1nXtFzHyvXQXo7pxCNX8zOs3mPr2bPX/L31h3rV/4xY9KYxpW0L4QoinIJ6JxY\nqPfCguyBI3EIFEUZ/UK159CTSJ3qtes/Z8mK7bsPHDu0d/3KP78b1DlIp39NZu93UO9jW1wy\noEsMg/SiOpRKYqgaSJ47ZL+mAIP0NE0/2/KZbuZl9l6ten+t/GXW/bV02o/DPyqlEVqeFQdu\nqKuenU9f9yXxaNSS/PB73S8ikdhfSNczXGQ5q493ckWsaSrSqp9YYL8jtrPeJgbpacKXSKyJ\nNGhZ/oakY5sl261bae6NGfb4vkYQaazSJI+OAIP0k6d11PzxnT/u+uWv85f8vXX72uW///TD\nV7VKulE6yvdYyX6HArdJaPKlqy3WevSH1xiw1iD92vbv+h7tnSs+NzBwyCAfXk7jFqV6/aac\nufYgLV9O03Ri5OMDa6Yyb5GRSOyWP+fhvu2nq5uotukROsl44p80Q8JCTwwMYJPrXSS68Tur\nvpToxLOdc3DbHl/MXLBk3d9b/tm2eeWyJRNHf9G4WgClwy2082N2g6kmcarNyfUgsVcM4soI\nC/vbI/d/rfsdHb0qfdpn0A9Tflm5YeuWDWsWz5/1Zc82Jd0dtJJJ7TxWs56b4SrjqX2/j1Zz\n/6IAIBwM0tss0QzS0zT9dOcEvXOI6SW181hwLjY3+TDzj4YaLnmpZ0Mc9T+7oJe9a41zSbnP\ndzRX/YXEID0tz/19sJ5LFJPqj1hlshXPF8sH6Wmazo49bmj+OkMafr/f9GaLwyA9nfxgkW7v\ngHF+9QbfT44q7aTnJ/Wpsp25cbPjMydhh5EM3M5Sd0aw30XM2SWBBh4hMqLfH/rns+I6SO9f\n+9DuCS057drZt8lpw9cVRA8coUOQm3SlQ2n977ozQuYYvOSMsdntxDOoZl5OxHMo3xFB1UD0\n3CH6NYUZpKdp+tD0LoZyqJeD+0eXU/OYVare7kvS0ahFIc+p4mKvtZZ3lTlkfjNRjHdyRahp\nKs6qnyYW2O+I7Ky3lUF6muQlEnviDFr2vyHZ2GbHdutW2ozGDBf8XiOIM1ZpmuDREWCQfk9S\nzppBVThlu1T7KRlc7t4QuE2iRLZ0tcFaT+mDagxYZZA+/cVK2fsh29Z/sKpccuJPVNY5QSRS\n5wAvJ0pH53kXeMlnbvIR9b5kzjH5xu4Sq6szCmgJQ4OpNLHeRdIbP/Vrd937TthwCWx6Mdmi\n+ZCYuNbmhHqQ2CsecWWI5f3th6d3NuN3kDkEzT34gv1evgtRx0DnQ5FcMwkAQsIgvc0S0yA9\nTdNPd05mc4nu5FV71bkYmqaz49Yz/653Zjyl+EtLdW/S18ujfPvDEek0TRMfpKdpmpZvnfCp\nA/srQ5nb4F92Cjm1DC+D9DRNJ9/b1boMq7adROrQd+rfbObPKR6D9DRNP9o0hmXvgERi12rI\n7ORCOU3Tj1cP1k3AY0dS/2A9z0MomTdCTNN00q0NNX30XEbqJbX3/n71f4Y2ZcYgPU3T28d3\nkbG7NPKq0vFioonCkNyBI3cICrIefd4wmE2elZwDPtp6L9n47yCeQTWzcyKSQ8lg5aqB9LlD\n7msKNkhP0/TxOZ9rTV1oiHuZVvvD02jNKtVQ9yXpaNRyVPM0pCiq9/E3/P5QKiIZ7+SKUNNU\nnFU/TSyw3xPRWW9Dg/Q0yUsk9kQYtJx+Q8KxbZrt1q1K3BszHPB4jUCLMlbfI3J0hBmkVxSl\n/za0KcVOwwEz9M64a5yQbRIVwqWrjdV6Kh9OY8Aqg/STqvso9+Xk1Tqd9ZmSdGdTLU9H47+V\nRCLpNsV0+5+9Af7qR4fHPDbcLaAo5Hp3lHFGBlNpMr2LAmz86aHFYRyHnD/qO/Wl0Z/CDFxr\ncxI9SGwVo7jSi5f+9qNzh3rYsSquldxCm+x5nMp++0V5kao2lURif9fiJh8AEIVBepslskF6\nmqaz314d06mqwbpQIq3Vaeyj9He1Qvrr6ap/yRyCjG8548XJ/o3KGKmrJFKnFkPmxBW8uz9U\nkEF6mqbp5AdHh7Y1cWe6ROrQsOuwI484VKW84GuQnqZpeUHc/BEdPY22HvzDmm+4yPbFdcVm\nkJ6m6dirW1qH6ZnWUh0AEknlll8cuK0xqeOp+SP8NfPJY0dS2tOtlTz0X0KYPUJM03RR/tu/\nJg0sYTQMJBK7Rt1HHTHacDRvkJ6m6agLG1uWMzZllp1T8Jj5O1l2ZxM6cEqEDgFNy89vmVsv\n2NVItimKkjkGDpu5IaHA9GvELOgqKmdnZ+/k7OLm7uHl5W3FQXpaHIdSixWrBgHOHUJfU8hB\nepqm056eGNKygqFsUxQlkdo3+XyW6rkTlt2XRKNRS8qTCcxVZA5BcSzOevMQHu/kuTxhItQ0\nFWHVr0QosFVEctaziRlRBS25SyT2xBa0XH9D0rFtnO3WrUrmNWbY4+saQUlsscrE+9ERZpBe\n+eebW6dXMno7hUeZJiuOPjFvn0K2SZhIl642VOsxfSCNAeEH6WMvqt/sMOQwt9tQcpOufdu9\nnu7E6UquIQ3m77rPb25vTKyp2n7loQbvjirMfmT8UHJlfDCVJtC7KMzG89PDl/88vLyn6aH6\nqq0Grj96x4zMm2RWbc5zDxJLxSyudPHV35725NjgDnXtTd336egdNmHpHvY3BinF3xiq2oJn\n2cnm5RAABCOhadqSghJAS8KTS9u2bTtw5np0dHRMbKqrX3CpUqWqNmr39YgRzar4qJIl3h3g\n/9G76Xpc/HpnJ+wyueVX1w7+vfPIpcuXn76KS01LlTh5BQUHBwWXbNqx7xeD+lXxV19zFmZE\nRkRlKz/LHIKqVPTm9StqS35x69ChQ0eOn3seHRufkJCUkuNawsvb17dSjQZNmzbp0KNf3VIG\nb3i0IYVZUQe3bdl56NyrqOiYmOiETEVgcEhISEjFjz75bNCgDvXLWTuDVqS4f2rHjoOnLl+5\n9jwqITU1VeLiHRwcHFKy/Ccduvbo0b12mRK66+Ql3t938L/Hz+J8ylQICwurUrVWaT+2j6GY\nJM+L2bhw9uZj1yMjI2OScn0Dg4KCgoKDg5dt31aay/sjdBVlxZw6fOjAgUO3wt/Ex8XHJ6Y6\nuHv5+vqWqly7RYsWbbv2aVLJy/L8BzvaxRbIlZ/9ax+Kv/N+4j664M6Zg//s/OfczYi4uLj4\nhDQXH/+goKDSVep179Wre9cWfty+HcEDR+4QUHT+g4snDx8+fOry3dj4+IT4+PQCOz9//wB/\n//K1Pu7SpUun9s38nS3bhe0R46G0StUg1LmjZtM1YEL41b179x48cenN27i4uLhMuUNQUHBI\nSEijdr2HDPm8BuPddVmvwl/nFCk/uwRVKOtt5GkYgWqEtGe/eFVSdzeX6rj39dEeXL79B4RM\n01R0Vb8KmcBWs+mz3orIXSKxJt6gZYl0bBtSDOpWgu3S93i9RhB1rBIqA/v4ue5OyglqdPTt\nlY6mUxtDP3r0WLVQqkpVd9m73n9akXP50PaNW/Y9ePk6OjomPjXfNygoODikcr3m/fr179K0\nKocH+jRZt01CunS10Vrvg2oM8Hf6GEYX9A323hWXTVGUR5lhqa/WmHG+RF8/8vfOfUdOXoqM\neZuUpQgMDq5Yu0n3Hj0HD+zsKePzsWOKovJSDrv6fqqgaYqiHD0/yUk7b/YJTgLR3kVyG1cU\nJl88cfLcuXPnL96MTkhMTkpKy6W9fHx8fX1LV67dvEWLlq06NKqq5+X0fDGzNv9gepBstNc6\n683tbbsOX7tx49bdxwkpaenp6XIH94CAgICAoJqNWnXq1LFdi7pu3IuI3W1C+5yOVn7uuu/V\nwe5leM43APAKg/RgHbcm1643757ys3elv5LDR1o3PwAgHgY7QwHAKJw7H47dnUr3OfZGtTj1\nacqvlXm4R+pDhqYpiAHiUIRQt4IAuvi4HEnJLd3pVOSR1tbOC2c20SZB6VqM2fTpQ870St6/\nPEtVfv49KnNcSTHeTQIAJNDyjDJuPm/yiiiKkjkGR2VEBTmI6kYdANCGUxSs4+we9VVccKc6\nVswJAAAAgA2R578ZfSpGtejo+ckMPmYx+cChaQpigDgE+DApbwRxLWtiUmIRspU2CUrXYsx2\nTx+ihi9rq/q8es49K+YEAASWdG+ScoSeoqhSnVZhhB5A/OysnQGwYamPlk1bGa5arD1h7leh\nrO7NLMi4/NOLNNVi/S/K8p85AAAAgOLo9cGRiYVy1WLlrxfa8TxHpq1C0xTEAHEIAJwoChMe\nZBdSFFW6R0lr54UzIdskKF1Bl02fPkSFtF77sceByxn5FEU93zQq88977nxPqg8A4rRr1F7l\nB4lENuevVtbNDACwgUF6MJ/MLX7ZsmWqxcq5vb5a24LNiuemj8hXvHvPglTmOrMq2XfGAwAA\nABQbi7+/qPoskUhmTKxuxcyICpqmIAaIQwDgJO7S5EKalkjsJtbzt3ZeOBOyTYLSFXTZ9OlD\nlETmvm5B07ARpymKKsx+MOa/2E0tg62dKQAgriDj0vc3E5SfA5v80T/Axbr5AQA2MN8FmM8t\naFSAg0y1+HzL5zcyCkyulXT7j65/PFIt+tf/PdRRZiQ9AAAAACilPJy5PDpTtegeOq6Hj7MV\n8yMqaJqCGCAOAYClgoz4ywcWNOm4iaKooOYLm3s6WDtH3AjcJkHpCky2fvoIoNKXO2q42is/\nHx61yrqZAQBhPFz0rfK+NIlEMn3rIGtnBwBYwSA9mE/qELz209KqRXl+TLsGQ24l5xlZJeLY\ngpqNvy94fxczRVHfre9NMIsAAAAAxUVuwo1erX5j/qXNH99ZKzMihKYpiAHiEADYyE3a6Vwi\nqEn3CZF5Rc5+TXcfGGXtHHEjfJsEpSuo2PrpIwypve+OBe9muk6LmLXydabx9ABg6xSFCV8s\neqj8HNxiyYhS7tbNDwCwhEF6sEi7tZvLOatfmpAWvr1RaPleI346ci08LVt9U3NecuSJPRuG\ntq9RudOE2AL1G8tKtl08KcxL0BwDAAAA2Aq6oHrdj7v1HTR23Def9+lUsmSjc4m5qn86eny8\nvkspK+ZOhNA0BTFAHAKASTRdpKBpe9egTkN+vhp+qrGH6J8DFkGbBKUrKNne6WMlYSP29Qp0\npSiKpumZAzdaOzsAQFb46v6PsgspipLaldiw+2trZwcA2JLQNG06FYBhUYenVuk+L0eu0P2X\no5uXXwmnzNTU9Gw9dze7l+l09dGBqi52uv8CgA9ZsKOdqjPFv/ah+DtdrJsfAFuBc6cYovMl\nUidD/xx19M2KjqFCZscmoGkKYoA4LDZQtwIhtDzjVUx2UMlAZ6nE2nlhRxxtEpSuQNni6WM9\niTem+TeYRVGURCLbFJP+eZCrtXMEAETQRakNvANvZhZQFFVn0oVbc5taO0cAwBaepAdLhXaZ\n/fjI3DIu9rr/ys9KjY6O1XuB5FP78xu4QAIAAAAwS92R2zFCrxeapiAGiEMAME4i8yhXKqh4\nDDEK2SZB6QpU8Tp9SPOr/8tf3ctQFEXT8h97L7d2dgCAlPtLeyhH6F38Ox775WNrZwcAOMAg\nPfCgdPsJ4TF3Z3zZwcteZjKxs3+NCb//E3FjU2VcIAEAAABwJLUrMWDy1ut/9bd2RsQLTVMQ\nA8QhABR7VmmToHQF4GT49lMfezpSFBV3eeLPNxKtnR0A4F9h1p0uUy9RFCWROi0+v83fHkN+\nALYE090Dn4qyow9u3/3ftes3b919HZecnpaWI5d5enp6lijhG1Su4cdNmjZt2q59My873O4K\nAAZhWlEA8+DcKY4Ua+ZO2Lzj8NPXUZmUe8VKlarVaT1++o91g1ysnTHbgKYpiAHi0KahbgV4\nT3RtEpSuACwlXp8X1GiKnKZdA3snxuxyxvgdQPHyT/8K/f95QVFUk2n/XZzZzNrZAQBuMEgP\nAAAAAAAAAAAAAAAAAAAgENw7BwAAAAAAAAAAAAAAAAAAIBAM0gMAAAAAAAAAAAAAAAAAAAgE\ng/QAAAAAAAAAAAAAAAAAAAACwSA9AAAAAAAAAAAAAAAAAACAQDBIDwAAAAAAAAAAAAAAAAAA\nIBAM0gMAAAAAAAAAAAAAAAAAAAgEg/QAAAAAAAAAAAAAAAAAAAACwSA9AAAAAAAAAAAAAAAA\nAACAQDBIDwAAAAAAAAAAAAAAAAAAIBAM0gMAAAAAAAAAAAAAAAAAAAgEg/QAAAAAAAAAAAAA\nAAAAAAACwSA9AAAAAPyfvbsPr7K8Dzh+n3PyDiEGFEWk9mK4iqIoq7W0IlbtfKFupdu0ltbV\ny0nf61t1VHvZVZ269iots9ht1ApOdL6Vrl3b6Wy1XZmrE3S+IEIrVaQWRAJJiOGQ5OyPByJD\nCGDiL4Tz+fx15zn3c587+feb534AAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQpKK/N7BXWPnkz3+6cNEzS5atadrQ0tpeU9/QeMDIcUePf+8pZxw9\nqn6nt5WKZ0/9i/au0i7Xrz/k8vk3T+rLHQMAAAAAAAAwAJV7pC82L5993Y0PLX1l24utG9a1\nbli38tdP/fuCO8ZOPufyz58zrGIHRw4UW5/cnUIPAAAAAAAAAJmyPu6+o23ZFdNnbFvoc7lC\nQ+PgXC6X/VgqdS15+M7PfOqGl4tdb7y92PJo0EYBAAAAAAAA2CeU9ZP086+85vm2zdl4zIl/\ndv7Uk0ePGjmoKl9sXbdi2eL5c77zxKq2lFLb6l/N+NI98756zna3Nz+3MhvUH3Lelz53ZA9f\nVKge+RZsHwAAAAAAAIABpnwjfeuqe+57vjkbjz5rxswL39P9UdXgoe+YcOpXZp/wbzMvmfOL\nVSmlpqXzb3v+jPNGD9l2hXWPvZoN9p94zNixY6I2DgAAAAAAAMBAVb7H3S+/9f5sUFE75voL\nJr5xQi5f84FL/u7wusrsx4dueWq7CSuWt2aDA9817C3bJgAAAAAAAAD7jvKN9D98dn02GDF5\nel0+t8M5ucKQC046KBu3rHhgu08fbS1mg3cOr31r9ggAAAAAAADAPqVcI32p+HjrlrfRH3bm\nwT1MHLb1KfmO9hX/b4Gutqc3bk4p5XKFiUOq35pdAgAAAAAAALBPKdN30ne0/7azVMrG4/br\nKbFvatryuHyuomHb65tbFmUrVA4eX1/I/e6ph//9v55a9dKql1evKwwaMuyAQ4469tj3nnTC\nQbWFt+Y3AAAAAAAAAGDgyZW2tuoy09XevqW+V9fU7Piw+5RSSnd9btr8F1pSSoNHnH/HP07t\nvt7y4jemffahlFJ1w6RJo3/74OMr33hvoWrYqR+e/uk/n9jD+nukvb29s7OzjxYDAAAAAAAA\nYA/U1tbm8709rr5Mn6RPKV9TU7PLSRueuzcr9Cmlwz82cduP1j/9cjbYtOE/H3x8x7d3Fl+9\n/7Ybliz/6N/POLvQF6G+WCwWi8U+WAgAAAAAAACAPbQ7lXmXyjbS79rGlb+8/Kr52biq/thL\nJx647afrHlvXPc4V6v/47HNPOeFdbxs+LLWtfeGFF379zK8WLPjZ2mJnSmnlI7dfdfvYGz92\nVOTmAQAAAAAAANgLle1x9z0qdT76gznfnPuT1s5SSqlQNfzSWX8/aWTdtlPu/qsP376mLaVU\nWTfmi9+47p0j6rZbo33tk9dcdM3TLcWUUi5f+7d3zB9X19t/iWhubvYkPQAAAAAAAEC/aGxs\nLBQKvVxEpN/ei4sf+O6t8xZvPeU+X9H4qa/edNqYIdtNe+THP1xd7Ewpve2E0yfsv+MzDTa+\n9JOPfOYfsr/woVO/ftP5h/VybyI9AAAAAAAAQH8R6ftY68pF351zy4NPvNR9ZfhRp156yfQj\ndtLgd8e9n5p226qWlFLN0DPvnvvJXu5QpAcAAAAAAADoL30S6b2TPqWUSl3tD9/17W/f9XB7\n15Z/Waiqf9sHz7tw2mnjc71b+fgPjLztH5emlIrN/5VSbyN9bW1tdXV1LxcBAAAAAAAA4E3I\n5/O9X0SkTxt+s3DWzG89tnJj9mOh+oDTzp527tT3NVT0MtCnlFLDuMZs0NWxvrmzNKTQqzUr\nKyt7vyUAAAAAAAAA+ku5R/oXfzH3CzMXZA/Q53IVx511/oUfPfPAmt4eUNAtV/H6g++VfRD9\nAQAAAAAAABjAyjrSr10076KvL+gslVJKdQdP+OxlF59w2H58JFhWAAAgAElEQVS7c2PTU4uX\ntW1OKVU1HH7s4Q09zHxt1bpsUFHz9tq8Sg8AAAAAAABQ1so30ne89twV138/K/RDx0352lcu\nPKByd98fsGHZ7X8779cppeqGyff882U9zFz+r6uyweBRH+zdfgEAAAAAAAAY8PrgtfYD1OKb\nZ67d3JlSqhoyYda103e/0KeUDjr5j7PBpg0/v23p+p1N62hb+q0lW56kH/vho3qxWQAAAAAA\nAAD2BWUa6UudLbMXrs7G77/64obCnh1EX9N4+p8cWJeNF1z9paeai2+c09Wxds6V123sLKWU\nKuuOvPiP9u/dlgEAAAAAAAAY8Mr0uPuNv7+jqaMrpZTLFY7vWr1s2Zpd3pKv2G/M6OHdP57z\nxQ//2yW3dpVKne0v/s30i86adt6UE8cf0FCXSp2v/v6lFc8t/t7t//L0mtdSSrlc/kNfvNwL\n6QEAAAAAAADIlUql/t5DP3jhe5d9bu7yPbqlZuiUu+d+YtsrT9x5zdV3PrbtlYqa+qrOjW2b\nu7qv5HL5yX95/aUfOqI3uwUAAAAAAABg31Cmx903Pd7U+0WOOffqaz/xp40Vr/8NO9pbti30\nNUPHnHflbIUeAAAAAAAAgEyZHnf/ytpNfbLO+CkXfGfS6T9/8D8ef+7FNavXrF6zumVzYb+G\nhkPGHPnOd777/ScfV+eUewAAAAAAAAC2KtPj7gEAAAAAAAAgXpkedw8AAAAAAAAA8UR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgSEV/bwAAAAAAAPrH2It+FP+lz86aEv+lAMDew5P0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABCkor83sFdY+eTPf7pw\n0TNLlq1p2tDS2l5T39B4wMhxR49/7ylnHD2qfpe3t6169oGf/mzh4iWvrH11Q3tqHDp0xNsP\nnzT5fae856jKXMD2AQAAAAAAABgYcqVSqb/30J+KzctnX3fjQ0tf2eGnuVx+7ORzLv/8OcMq\ndnbkQOmR+2Z/45//o71rB3/Gxj886YovfubIYdV9t18AAAAAAPrM2It+FP+lz86aEv+lAMDe\no6yPu+9oW3bF9BnbFvpcrtDQODiX2/L8e6nUteThOz/zqRteLnbtcIVFt115w7wHugt9Ll9V\nX1fZ/WnTsoe//PkvP9/e+Zb9BgAAAAAAAAAMJGV93P38K695vm1zNh5z4p+dP/Xk0aNGDqrK\nF1vXrVi2eP6c7zyxqi2l1Lb6VzO+dM+8r56z3e3rl8695r4l2XjQqImfnP6R9xx9aGUuta37\n7YM/mH/LgkdLpVKxZcnVM+bf/s3zIn8vAAAAAAAAAPZO5fskfeuqe+57vjkbjz5rxswv/OVR\nfzBqUFU+pVQ1eOg7Jpz6ldlzLzxxZDahaen827ZO3qrr1ht/nL0soGb/986eNWPy+EOzN9DX\nDX37n3z8qq9NPy6b1/z8vXesaIn5pQAAAAAAAADYm5VvpF9+6/3ZoKJ2zPUXTHzjhFy+5gOX\n/N3hW4+vf+iWp7b9tPWleQ+ta8/GH7v2s0Mrctvd/odTrvrA8Lps/ONv/KIPdw4AAAAAAADA\nAFW+kf6Hz67PBiMmT6/Lb5/YM7nCkAtOOigbt6x4YNuPVvzLf2eDmqGnnzVy0A7v/tCnj91y\n78r5GzpLfbBpAAAAAAAAAAayco30peLjrVveRn/YmQf3MHHYu4Zlg472FdteX/D4q9ng4FNO\n29m9jUd+JJ/LpZRKna13/H5jb/YLAAAAAAAAwD6gTCN9R/tvO0tbHm0ft191DzM3NRWzQa6i\noftiqbO5u/G/430H7uzeQvWo4+u3nJa/4smm3mwYAAAAAAAAgH1ARX9voH9U1I65++67s3F1\nTU+R/pffX5kNahtP7r5YbPlVd+M/pqGqh9snDK56pLmYUnr10XXpjFG92XNKqb29vaOjo5eL\nAAAAAADQj1pbW/t7CwDAm1RXV5fP9/ZJ+DKN9Cnla2pqdjlpw3P3zn+hJRsf/rGJ3dc3ty3r\nHh9RV9nDCiMOqUu/a00pvfa7l1Ia/yY3u1WxWCwWi71cBAAAAACAftTe3t7fWwAA3qTa2tre\nL1Kmx93vjo0rf3n5VfOzcVX9sZdOfP1Y+67i+myQy1U0FHI9LFLVuOU5+66O9W/NNgEAAAAA\nAAAYMMr2SfoelTof/cGcb879SWtnKaVUqBp+0Vf/evA2Mb64YeuL6gv1Pa9UsfWd9CI9AAAA\nAAAAACL99l5c/MB3b523eOsp9/mKxk/eOHPSyLo3uVxXaetgU1/sDgAAAAAAAIABTKR/XevK\nRd+dc8uDT7zUfWX4Uadeesn0I/bf/u31VQ1bDrEvdW7sec2OjR3ZIFc5tO92CgAAAAAAAMCA\nJNKnlFKpq/3hu7797bsebt/64HtV/ds+eN6F004bv8MXzuerGrbcWCq2dZXq8jt9LX2xacvB\n+PmKPoj0tbW11dXVvV8HAAAAAID+Ul+/i/eoAgB7rXw+3/tFRPq04TcLZ8381mMrtzwTX6g+\n4LSzp5079X0NFTtN7xW1h6X0QDZ+tm3zHw2u2tnMNateywbVjQf1fquVlZW9XwQAAAAAgH7k\nWSwAKHPlHulf/MXcL8xckD1An8tVHHfW+Rd+9MwDawo931U95N353M1dpVJK6X9bO3qI9E+2\nbs4G+088sO92DQAAAAAAAMCAVNaRfu2ieRd9fUFnqZRSqjt4wmcvu/iEw/bbnRtzhYZjBlUu\nbi2mlJ555JU09dAdTit1vLqweVM2HjXBO+kBAAAAAAAAyl0fnJg/QHW89twV138/K/RDx025\n6aard7PQZ6YesyW6v3z/f+9sTvML92wulVJKuULdtBGDerdfAAAAAAAAAAa88o30i2+euXZz\nZ0qpasiEWddOP6Byz/4Uo889PhtsfPnOR5uLO5zzy5sXZoP6Q6btv4frAwAAAAAAALDvKdNy\nXOpsmb1wdTZ+/9UXNxRye7pC/SEfn9RYk1Iqlbq+dd19pTdMaHpm/j/9ujkbn3HJ5N7sFgAA\nAAAAAIB9Q5m+k37j7+9o6uhKKeVyheO7Vi9btmaXt+Qr9hszevjrP+cKf/XXp//njO+nlNYv\nvfPzX6u48tNTRwyqSCmlUufShffeMPOeUqmUUmo47Nxpo4e8Nb8HAAAAAAAAAANJLgvJ5eaF\n7132ubnL9+iWmqFT7p77ie0u/s/cK6793tJsnCvUjx5zaEN11+pVz696tT27WNVw1NfnXHNo\nTaH3ewYAAAAAoG+NvehH8V/67Kwp8V8KAOw9yvS4+6bHm/pkneM+fuPlHz25Jp9LKZU6W37z\n3NOLn1zSXej3P+Lk6276skIPAAAAAAAAQKZMj7t/Ze2mPlopP+nsiydMfP/9P/3ZwkVL1q5b\n17wpNTYOHTH6yBNPOunUd4/b85fdAwAAAAAAALDPKtPj7gEAAAAAwHH3AEC8Mj3uHgAAAAAA\nAADiifQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAACA/2Pv3oPsrOs7jj+7ezaXDWFJ\niCJLqJZBYQmEi2hEpSCiYqNW0zaFEC3VjlJpjb1oxSgwilWnM2q81qZMFSGoFGhpozVAikWu\nIkwDJgEVDJCEIAlJNlmSPbs5/eOECEpC2MvnOZvzev31zObZ8/3Nb585/7zzOwcAgBCRHgAA\nAAAAAABCRHoAAAAAAAAACKmUvQAAAAAAAIrueYvDE1csmBmeCABA4SQ9AAAAAAAAAMSI9AAA\nAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAA\nAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAA\nISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0\nAAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACGVshcAAAAAAOxJdVFXeGL7nDXhiQAA0Dyc\npAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4A\nAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAA\nAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAA\nIESkBwAAAAAAAICQStkLaDhrb5z/vs/d097RfdW3P/sct9b6Zr/jj7ftqD3na06c+qHLv3ry\n8KwPAAAAAAAAgFHLSfrftPSKB/byzr4ty/am0AMAAAAAAABAnUj/DL3rlnz30d69vLmv544R\nXQwAAAAAAAAA+xgfd/9r1Z5ffmH+JbXa3h6O33zfw/WLiVPf9bG/mraHO9vGHjLUxQEAAAAA\nAAAw+on0Re8T6x56aNWdNy35/g0/7hl4Hh9fv+HO9fWLKScd1919+MisDgAAAAAAAIB9R1NH\n+u0bbzj3vK+t7+kb3K8/+LMt9YuDXnng8C0KAAAAAAAAgH1WU38nfW2gZ9CFviiKO7bs/N0T\nXzh+mFYEAAAAAAAAwL6sqU/SVzq6586d+/Sf9K5bevV1a/bmd2s7eu/dWi2KoqWl7aT9x47I\n+gAAAAAAAADYtzR3pB9/xOzZRzz9JxvuXb6Xkb7a85OBWq0oivb9jp3Y1rLmnhv/+5Z7Vj+y\neu26DW0T9j/wBVOPOf7415z62heNbxuRpQMAAAAAAAAwCjV1pB+K7ZvurF+0tE744oXnXX/3\nw0/7x0dX/eL+u25betkl3zj9zPe+/49OahmmoU8++WR/f/8wvRgAAAAAo8O4+MSenp74TErg\nD10WOw8Ao9eECRNaW4f6nfIi/SBtvHdt/WL7ppuuv/vZ7xnoW/+DSz+9/Gdzv/iR2W3DEeqr\n1WpfX98wvBAAAAAAo0c+0m/fvj0+kxL4Q5fFzgPA6NXR0TH0FxHpB2nDnRt2Xbe0TXzj7LNe\n/9pX/s4LDyx6H1+1atXPf3r7NdcsfbxvoCiKh2+9bP5l3Z955zHlLRYAAAAAAACAhiDSD9J9\nD22pX7R3HH7+5y8+8eCn/sfE2IO6Jx3Ufdwr3/CmUz4x7xP39vQVRbHiqovv/cPLj+6w2wAA\nAAAAAABNTTYepENnnf3uvoGiKH7ntWecMOVZPnJs3JTp8z/7njnn/VOtVqvtePLr33nwS3/2\n0vgyAQAAAAAAAGggIv0gnfT7b33OeyZMffM7uy67dHVPURTrfnhDIdIDAAAAAAAANDeRfmTN\neMshl359ZVEUfZtvKYpzh/hqHR0d48ePH451AQAAAMBudXZ2lr0EEvyhy2LnAWD0am1tHfqL\niPQjq/PoSfWLHf0bNw/U9m9rGcqrVSr+XgAAAABNpxqf2N7eHp9JCfyhy2LnKUv3vMX5oSsW\nzMwPBWhww9D52YOWythd1+1DCvQAAAAAAAAAjHpOZg/GE/fcdX9vtSiKMZ1HHn/knj6Y6MnV\nG+oXlXEvGd+q0gMAAAAAAAA0NZF+MDbdf9mnvvnzoijGdp5y5bf+dg93/uw/Vtcv9jv07YmV\nAQAAAAAAANDAfNz9YLzotDfWL7Zv+uGlKzfu7rb+3pVfXr7zJH33mcckVgYAAAAAAABAAxPp\nB2PcpDPedlBH/fqaCz52z+a+375nR//jCz968daBWlEU7R3TPvjyKdElAgAAAAAAANB4RPpB\n+pPzz2xtaSmKYmDbQxe9d943/vPWX23qLYqiqA2sX7vqzhuv+di5533/gc1FUbS0tM46/0O+\nkB4AAAAAAAAA30k/SBMPe/tFZy674Io7i6Ko9q6+euGnr15YVMZNHDOwtbe6Y9dtLS2tp/zp\nP5x97OTyVgoAAAAAAABAo3CSfvCOO+uCT77vDyZVfr2H/dt6nl7ox00+/F0f/crfzDqqjNUB\nAAAAAAAA0HCcpB+SY2e+519OPuOH1193930PPbbusXWPreupth3Q2Tn18GknnviqN5z2ig6f\ncg8AAAAAAADAU0T6Z5h89EXXXvv8fqV9/0NOn3XO6SOzHgAAAAAAAAD2JT7uHgAAAAAAAABC\nRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekB\nAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAA\nAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAA\nAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR\n6QEAAAAAAAAgpFL2AgAAAAAAYKfqoq7kuGUzium3L0xOBABwkh4AAAAAAAAAQkR6AAAAAAAA\nAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAABt7sM8AACAASURBVABCRHoAAAAAAAAA\nCBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESk\nBwAAAAAAAICQStkLAAAAYHhUF3Xlh7bPWZMfCgAAADB6OUkPAAAAAAAAACEiPQAAAAAAAACE\niPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQUil7\nAQA0teqirvDE9jlrwhMBAAAAAAB2cZIeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESk\nBwAAAAAAAICQStkLAAAAAABoONVFXeGJy2YU029fGB4KAECek/QAAAAAAAAAECLSAwAAAAAA\nAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAh\nIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQA\nAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAA\nAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAA\nACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI\n9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMA\nAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABASKXsBQAANIvqoq7wxPY5a8ITAQAAAADYMyfpAQAAAAAA\nACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQ\nkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCKmUv\nAAAAAAAAoOlUF3WFJy6bUUy/fWF4KAC/zUl6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAA\ngBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJE\negAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEA\nAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAA\nAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIqZS9AAAAAACgsXTPWxyeuGLBzPBEAAAoi5P0AAAA\nAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAA\nAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAh\nIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQA\nAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAA\nAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAA\nACEiPQAAAAAAAACEVMpeAAAAAAA8u+55i/NDVyyYmR8KAAA0DyfpAQAAAAAAACBEpAcAAAAA\nAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIqZS9AAAAAAAAAACGX3VRV3hi+5w14YmjkZP0AAAA\nAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACG+kx4AAAAAAACAYdA9b3F44ooFM8MTh85JegAA\nAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAA\nAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACA\nEJEeAAAAAAAAAEIqZS8AAAAAoNF1z1ucH7piwcz8UAAAAEaak/QAAAAAAAAAECLSAwAAAAAA\nAECISA8AAAAAAAAAIb6THhpOdVFXeGL7nDXhiQAAwKD5cnQAAAAY1UT637T2xvnv+9w97R3d\nV337s3v5K72rVyy5YenNdy3/1ePrN20rJk2efPBLjjz5lNe9/tXHtLeM6GIBAAAAAAAAGE1E\n+t+09IoHns/ttVuv+srnv3Xdth21XT96/NHexx995J7brr/iZad++Pzzph04dtgXCQAAAAAA\nAMBo5Dvpn6F33ZLvPtq79/f/5NKPfvqbS3YV+pbWMRM72nf96xP333jhBy58YNvAMK8SAAAA\nAAAAgNHJSfpfq/b88gvzL6nVas99a1EURbFx5Tc+cdXy+vWEQ086971zXj39xe0tRe+GX15/\n7eWXXHNHrVbr61l+wUcuv+wL7xqxVQMAAAAAAAAwaoj0Re8T6x56aNWdNy35/g0/7hnY20Jf\nFDv+9TPfqxf9cVNe85UFH55c2fn98x2TX/K2c+Yf+YKL/+7rdxRFsfmBf1v04Dvm/O7EEVk9\nAAAAAAAAAKNHU0f67RtvOPe8r63v6RvE72555Jv/s2Fb/fqdn/zLXYV+l5fNnP+Wa876r8d6\ni6L43uf/d84XZw5xtQAAAAAAAACMdk39nfS1gZ7BFfqiKB789m31i3GTz3jrIROe7ZaWWe8/\nvn7V8/Dlm57HGX0AAAAAAAAA9k1NfZK+0tE9d+7cp/+kd93Sq69bsze/e83d6+sXXa9/0+7u\nmTRtTmvLLTtqtdrAlkWPbv2LQ/YbymoBAAAAAAAAGO2aO9KPP2L27COe/pMN9y7fm0hfG9h8\n95Zq/fqI1x20u9vaxh46Y2L7rZv7iqJ4cNkThUgPAAAAAAAA0NyaOtIPWl/P7QO1nR9ff1zn\nmD3cecJ+Y+qRfv0dG4o3HzrEub29vdVqdYgvQuPriE/ctGlTfCbs5IGnqXjggZGWf58pvNU0\nDX/oUtj2sjTgzpfyDh9m20vRgNte2HmaSTM87YUHHsrWDG814feZiRMntrYO9TvlRfrBqPbe\nv+v6qI72Pdx58NSOYs2WoiieXPNIURw7xLn9/f0iPSPBc0VT8cDTVDzwQIC3mibhD10K214W\nO18K214K214WO09T8cADIy38PlN76iz3UAw18jenHX0b6xctLZXOtpY93Dlm0s5z9jv6N474\nsgAAAAAAAABobE7SD0bfpr76RUvbxD3fWZm485y9SA8AUIrOJdPzQze9cVl+KAAAAAAwKjhJ\nP8J2PPVxBzu2l7oOAAAAAAAAAMon0g/GmM6dH2JfG9i65zv7t/bXL1raJ4/smgAAAAAAAABo\neD7ufjBax3TWL2q1vt4dtY7W3X4tfd8TOz8Yv7UyDJF+woQJHR0dQ38dGlztuW8ZZgcccEB8\nJuzkgaepeOBLkd/2ws5THg88I8cfuhS2vSwNuPOlvMOH2fZSNOC2F3aeZtIMT3vhgYeyNcNb\nTfh9prV1GI7Bi/SDURn/0qJYUr9e0Vt9+X5jdnfnY6ufrF+MnfSioc9ta2sb+ovQ+KrxiZWK\ntwJK44EvRXVRV35o+5w1+aGNxgNfivy2F3ae8njgGTn+0KWw7WVpwJ0v5R0+zLaXogG3vbDz\nNJNmeNoLDzyUrRneakbj+4yPux+Msfu/qrVl5+n5/9vSv4c7l23Z+eRPOemgEV8WAAAAAAAA\nAI1NpB+MlrbO4ya0169/euuvdndbrX/9zZu3168PPcF30gMAAAAAAAA0O5F+kN5x3M7ovvYH\nt+3uns2rrqzWakVRtLR1nH3whNDKAAAAAAAAAGhUIv0gHXbWjPrF1rVX3LG571nv+dFXb65f\nTJx69pR2Ww0AAAAAAADQ7JTjQZo49ZyTJ40riqJW2/Hli6+q/dYNT/z08n/++eb69Zv/+pTs\n6gAAAAAAAABoRCL9YLW0/fnfn1G/3Ljyig/845Vrt/bv/KfawMoffeeDH7+yVqsVRdH50rPO\nPmz/spYJAAAAAAAAQOOolL2AUWzSUe/++KyVn7x6ZVEUq2761rm3/Pthh7+4c+yOdasfWL1+\nW/2eMZ3HXPyp2aUuEwAAAAAAAIBG4ST9kLzinM98aO5p41pbiqKoDfT84r5771q2fFehn3LU\naRd/6cIXj2srdY0AAAAAAAAANAon6Yeo9eTZHzzhpDf84IalN/9k+eMbNmzeXkyaNPngw6b9\n3qmnnv6qo9tayl4gAAAAAAAAAA1DpH+GyUdfdO21z/u3Jhw6bdY502adM/zrAQAAAAAAAGBf\n4uPuAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESk\nBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAA\nAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEIqZS8AAAAA\nRrHqoq7wxGUzium3LwwPBQAAAIaLk/QAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAIb6T\nHgAAGH75b+lun7MmPJG67nmLk+NWLJiZHAcAAAAw7JykBwAAAAAAAIAQkR4AAAAAAAAAQkR6\nAAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAA\nAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAA\nAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgpFL2AgAAGCnd8xaHJ65YMDM8sTGF\nd96213ngAQAAABgVnKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBE\npAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4A\nAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAA\nAAAACBHpAQAAAAAAACCkUvYCABpCdVFXfmj7nDX5oQAAAAAAAJTISXoAAAAAAAAACBHpAQAA\nAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAA\nAICQStkLAACaQve8xclxKxbMTI4DAAAAAIC95CQ9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAA\nAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAA\nACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI\n9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMA\nAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAA\nAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAA\nhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLS\nAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAA\nAAAAAAAhIj0AAAAAAAAAhIj0AAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAA\nAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI9AAAAAAAAAAQ\nItIDAAAAAAAAQEil7AUAQFT3vMXhiSsWzAxPBABoBtVFXclxy2YU029fmJzYmMLbXth5AABg\nX+QkPQAAAAAAAACEiPQAAAAAAAAAECLSAwAAAAAAAECISA8AAAAAAAAAISI9AAAAAAAAAISI\n9AAAAAAAAAAQItIDAAAAAAAAQEil7AUANK/ueYvDE1csmBmeCAAAAAAAwNM5SQ8AAAAAAAAA\nISI9AAAAAAAAAISI9AAAAAAAAAAQItIDAAAAAAAAQIhIDwAAAAAAAAAhIj0AAAAAAAAAhIj0\nAAAAAAAAABAi0gMAAAAAAABAiEgPAAAAAAAAACEiPQAAAAAAAACEiPQAAAAAAAAAECLSAwAA\nAAAAAEBIpewF0Liqi7ryQ9vnrMkPBQAAAAAAAMhwkh4AAAAAAAAAQkR6AAAAAAAAAAgR6QEA\nAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAA\nAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAA\nQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAAAABCRHoAAAAAAAAACBHp\nAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAIEekBAAAAAAAAIESkBwAA\nAAAAAIAQkR4AAAAAAAAAQkR6AAAAAAAAAAgR6QEAAAAAAAAgRKQHAAAAAAAAgBCRHgAAAAAA\nAABCRHoAAAAAAAAACBHpAQAAAAAAACBEpAcAAAAAAACAEJEeAAAAAAAAAEJEegAAAAAAAAAI\nEekBAAAAAAAAIESkBwAAAAAAAIAQkR4AAAAAAAAAQkR6AAD4f/buNDCq6u4D8JkkBAhLABFB\nwAURETdUtAIquL21tUrdF9Rqa5WK1lardZeqdV/q3rpLxV2x2tq61CIqtC5YQQURUUD2NSwh\nJJnM+2GQIiLGEM5NMs/z6TBzZubff27PHe9v7r0AAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\nSUHSBQAAAAAAAADUpm3P+lv8Dx1/y0HxP5T6SEi/HjLlRx16ZFlV5lsntuh07rA794pQEQAA\nAAAAAAB1mcvd11z50rHVSegBAAAAAAAAIEtIX3PlS95KugQAAAAAAAAA6hOXu6+5xR9Pyw5a\ndDrx4jO3W8fM/MYdo1QENRT/vixuygIAAAAAAEBuEtLX3IJ35mcHbXv33HbbrskWAwAAAAAA\nAEDd53L3NffZJ0uzg0123yjZSgAAAAAAAACoF4T0NffW0vLsoFe7pslWAgAAAAAAAEC9IKSv\noUxV6QfLKkIIqVR+75aNky4HAAAAAAAAgHrAPelrqGLJu+lMJoTQqPlOLfJTM8aN+MeocdO/\nmD5z9oL8Zi032rjTDjvv3Lf/nu2b5iddKQAAAAAAAAB1hZC+hlaUvJMdpPKa3XrZ4Ffem7ba\nk7OmfDpxzL9fffi+B/c/5tTTj+idqqUPXbZsWUVFRS292bdrFu2TVrNo0aIkPrZuSaTzkdXB\nP3QutD3ofEK0PRF1sO1B5xOi7UnR+URoeyJyoe1B5xOi7UnR+URoeyLqYNuDzpNLcmFrDzZ4\nckwd3OBzYamJ3PYWLVrk56/vedpC+hpa9MHM7GBFyeuvvLf2Oeny+S8OvfqjT46/9fyj8msj\nqE+n05WVlbXwRnVYg/8fSJY/dFJ0PhHanghtT4rOJ0Lbk6LzidD2pOh8IrQ9KTqfCG1PhLYn\nRefJKTZ4cooNPhH1se1C+hpa8M6CVeNUfov/O+rY/fbcfbN2G4XSeVOmTJn04X+GD391Xnk6\nhDBt9MMXPbztNSfskFyxAAAAAAAAANQJQvoa+njq0uygUVHXC26+sleHopVPNN5k29abbNtz\n9wO+3+/ysy7/YEl5CGH801d+cPiw7Yt0GwAAAAAAACCniY1rqPNhA39ang4hbLbngbu0bfL1\nCU3a7njRtT87bvAfM5lMpmr5nx7/7LaTt45eJgAAAAAAAAB1iJC+hnr/8OBvndOs0w9O2PTh\nodOXhBBmv/bPIKQHAAAAAAAAyG1C+g3rez/qOPRPE0II5YtHhTBoPd+tefPmmUymNuqqlqpo\nn7Sa1q1bJ/GxdUsinY+sDv6hc6HtQecTou2JqINtDzqfEG1Pis4nQtsTkQttDzqfEG1Pis4n\nQtsTUQfbHnSeXJILW3uwwZNj6uAGnwtLTeS25+fnr/+bCOk3rOLtV24TVZWLFqczLfNT6/Nu\neXl5tVFUdSXyf9pa2azru1xYLuvgHzoX2h50PiHanog62Pag8wnR9qTofCK0PRG50Pag8wnR\n9qTofCK0PRF1sO1B58klubC1Bxs8OaYObvC5sNTUwbZ/q6ihbw5KFTReNW60XgE9AAAAAAAA\nAPWeM+lrYuG4MRNLK0IIhcXdd+5evI6Zy6cvyA4KmmzRNE9KDwAAAAAAAJDThPQ1UTLx4d8/\nNCmE0Li435N/PmcdMz/5y/TsoHnnH8eoDAAAAAAAAIA6zOXua6L9vv+XHawoeW3ohEXfNK2y\ndMLtH608k37bY3aIURkAAAAAAAAAdZiQviaatD7wkE2KsuPhl148bnH51+dUVc6758Irl6Uz\nIYRGRdv9ate2UUsEAAAAAAAAoO4R0tfQ0Rcck5dKhRDSZVOHnHrWg8+PnltSGkIImfT8mVPe\nGTH84kGD/z55cQghlco77IJz3ZAeAAAAAAAAAPekr6EWXX485Jixlz76TgihonT6M/dc/cw9\noaBJi8L0stKKqlXTUqm8fj+5auBObZKrFAAAAAAAAIC6wpn0Ndfz2EuvOG1A64L/9bCybMnq\nCX2TNl1PvPCOsw/rkUR1AAAAAAAAANQ5zqRfLzsd9LN79zrwtVdefu/jqXNmz5k9Z/aSivxW\nxcWdum7Xq9ceB+y7W5Gr3AMAAAAAAADwJSH9+mrUsuP+h520f9JlAAAAAAAAAFD3udw9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEgKki4AAAAA\nAAAAaMgqHtk08ieO/V7Y8T/3RP5QqCZn0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAA\nkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAi\nEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQi\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAe\nAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0A\nAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIikIOkC4Cu2PetvkT9x/C0HRf5EAAAAAAAAIGc5kx4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAmD5u1QAAIABJREFUAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAg\nEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRFCRdQENQOn38S/989c0xH82dN7+kLLRu06bDFt336rfP\nfn12aJRKujgAAAAAAAAA6gwh/XrKjH76jpv//HJZVWbVQ/Nmlc6b9cW4f7/yaLf+510weLuN\nGidYHwAAAAAAAAB1h8vdr5d3h1549UMvrUroU3mFLYoarXp24cQRl/3yssll6YSqAwAAAAAA\nAKBucSZ9zS2a8ODlT3+UHTfr3HvQqcf12XHzRqlQuuDzV54bdt/wtzKZTPmSjy49f9jDfzgx\n2VIBAAAAAAAAqAucSV9jVQ9c80ImkwkhNGnb945bzu+30+bZO9AXtdnikJMuuv7U3bLzFk9+\n6pHPliRYKAAAAAAAAAB1hJC+hpZ+8dC/FpRlxydccUabgtQaE7oddNGP2hVlxy/cPDJqcQAA\nAAAAAADUSUL6GvrssX9nB03aHHhwx2Zrm5I67PSds6Ml04aVpDOxSgMAAAAAAACgjhLS19Dw\n9+ZnB5vu9/1vmtN6u+PyUqkQQia99JFZyyJVBgAAAAAAAEBdJaSviUx68XtLK7LjbfbZ5Jum\n5Tfu/L0WjbLjz8YujFEZAAAAAAAAAHVYQdIF1EvlS/6Tzqy8fH3P4sJ1zNyleeHoxeUhhPlv\nLQg/6Lyen7ts2bKKior1fJPqW+tF/BueRYsWJV3CmnKh89qeFJ1PhLYnog62Peh8QrQ9KTqf\nCG1PRC60Peh8QrQ9KTqfCG1PRB1se9B5ckkubO3BBs+XbPBJyYXOR257ixYt8vPz1/NNhPQ1\nUVE6cdW4R1Gjdczs0KkozFgaQlg+44sQdlrPz02n05WVlev5JqxBSxOh7UnR+URoeyK0PSk6\nnwhtT4rOJ0Lbk6LzidD2pOh8IrQ9EdqeFJ0np9jgySk2+ETUx7a73H1NVJWv/DlGKlVQnJ9a\nx8zC1ivPs6+qrHM/nAEAAAAAAAAgMiF9TZSXlGcHqfwW655Z8OU96YX0AAAAAAAAAKQyX95b\nneqb9/5lP73kvRBCXkHrZ595aB0zJz34y7Of+TyE0KS4/xN/Pns9P3fx4sXl5eXr+SYAAAAA\nAAAA1EDr1q3X/570zqSvicLilRexz6SXrXtm5bKVt0BINWqzYWsCAAAAAAAAoM4rSLqAeimv\nsDg7yGTKS6syRXnfeFv68oUrT3zPK6iFkL558+aufAAAAAAAAACQiPU/jT4I6WumoOnWIbyU\nHY8vrdi1eeE3zZwzfXl20Lh1+/X/3Lw8Vz4AAAAAAAAAqMeEvjXRuOUeeamVZ8+/v7RyHTPH\nLq3IDtr23mSDlwUAAAAAAABA3Sakr4lUfnHPZo2y4w9Hz/2maZnK+W8uXpEdd97FPekBAAAA\nAAAAcp2QvoYO7bkydJ/54r+/ac7iKU9WZDIhhFR+0cAOzSJVBgAAAAAAAEBdJaSvoS7Hfi87\nWDbz0bcWl691zht3vpkdtOg0sG0jrQYAAAAAAADIdZLjGmrR6aS9WjcJIWQyVbdf+XTmaxMW\nfjjs7kmLs+Mf/Lpf3OoAAAAAAAAAqIuE9DWVyj/ltwdmh4smPPrL65+cuaxy5VOZ9IQ3Hv/V\nJU9mMpkQQvHWxw7s0jKpMgEAAAAAAACoO1LZIJmaefvB8654ZkJ2nMpv0aXr5sWNq2ZPnzx9\nfln2wcLiHW685/LNm+QnVyMAAAAAAAAAdYWQfj1Vvf7Erbc98q+yqrW0sW2Pfc87//TurQrj\nlwUAAAAAAABAHSSkrwXLpn344j9fffPdj+YtWLB4RWjduk2HLtvt3b///ntsn59KujgAAAAA\nAAAA6gwhPQAAAAAAAABEkpd0AQAAAAAAAACQK4T0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6YO2u/+Mj73w8M+kqAL5iyOBBp5xyylWvTE+6kIYsXb4i6RJyXTqTdAWwgVln\ngET4JlkrHCtIhLbXI5Ya6i9LDbnD1l6PNOwda0HSBcB3trSkpDJT3aPXxa1apTZoNQ3X6y88\n9voLj7Xo0K1f/33679OvW/vmSVeUE6ZOnfqd5qfy8hs3adqkcZMmzZoW5tnYa0dpydwZM+dX\nVHud6dZ923y9j6KqYu746TOXV2UqXpwZ9u+YdDkNRKZy4agRb4wb98GH4yctWrastHR5RTrz\n3HPPhRDKl7z9zIglffvv1blFo6TLbGiWz581Y+GKrbpuvvqDJZ++edu9T3/y+dRFy0ObDlv2\n2fegEw7v18TaXqus8ImwzmwgL7/8ci2+W6sefXfrWFSLb9hQaXv95ZtkbXGsIBHaXl9YaqjX\nLDXkDlt7fdHgd6xCeuqN6WNeHPrcvyZN+nTu4u9w5s2w4X9p4djqelgyc+JfH534t8fu3nSb\nXv3779O/3x6bNLNubEBnnHFGzV6Yyits22HTzp222LHXHn367Nbeke7vLlO54On7/vTXkWMW\nLPlup/dZZ9Zb5osJ7743/vOFS0rXOaty2vv/Wl6VCSFUlTkFs3ZMeP3pP9796OSS8rU+m17x\n2SP3PPzY/Q/0P+bUM4/ay2ZeK+aOfeWuBx5/d/KcRkU7PvXoFasenz9m6GmXP11etTI8nj/9\n4+f//PFrb4697YYzWxdo/fqywifIOrPh3HbbbbX4bt1P31ZaXB3aXvf4JpkMxwoSoe3JsdSQ\nQyw15A5be3LsWFeywVE/THr+pnPufS1T7dOeVmnklg411Xv7zd/6cGo6kwkhZDKZ6RPeHjbh\n7UfubtK9157999ln7z22b+Ywal2SqSqfO/3zudM/H/OfEQ/9sdk+R/7slKP3a+5vVG2Z9LJb\nzjrj1WlLa/DaxtaZ9VBVPuuuKy598f1Z3+lV2xy+1QaqJ6eMGXbJkMff/9ZpVemSV4dd/9Gk\n2XdeeISweD3NevP+wdf95euncWfSi39/7bOrEvpVFk9+5bzrd7zngv6R6mugrPAJss4AG5Rv\nkolwrCAR2p4gSw25w1JD7rC1J8iOdXWpGqSeEFl5yZvH/+S6stWOXOfn51fztU8PH+7gao2V\nLZjy5sjXR4587b1Js9d4Kr9J29326rfPPv2/t/3mOlyLrrrqqhBCxdJP3/1g7tefTaXWXLQb\nFXXZdceNS0sWzJ07d978ktWDn7Y7HXnn5cc3Sfk+US3T/n7R4LvGrfpno6Lidm1aVLN3d9x5\npy7X2CPnnvjYx4u+00va7Xr4nZf+pFDT18+0l24dfPsr2XEqv8We+/Xv1nXrRuMe+ePrs0II\n2ctQV5SOG3LOVeOmL8tO637Mddcd1z2pghuAdNnkU48/Z255OvvPwmY7rTqTfu67V//sd6ND\nCHkFxUcM+sWuHQs/HP3c0Of+G0JIpfJ+M/SJvYoLkyq7AbDCJ8U6s6FlvzeuVVXF/Lfe/WTV\nP1OpvBatN96kffsW+Stmz549e+6iVbcPyy9sP3DQMW0L8oq77b7zpk7p/nbaXqf4JpkUxwoS\noe1JsdSQUyw15A5be1LsWFcnpKceeP/6Uy95fVYIoWm77X962sCdt+7SrlXTpIvKLUtmTBw5\n8rXXRo6c8EXJGk81bdtl7/79++/Tf7vOrRKpreFJl31+xS/OGzO/LISQyi/qtd/B+++x/cYb\nt223cbvmBRVz58yZM2fOpP++/uzf3lhYkU6l8n9wxvWDDugaQshUlc/85P2X/vrkM69NyL5V\nt4E333B0w/yJWa178KdHPzNveQih+z5HnXrCj7u2dSOiGJZOG3rc4Key46IO3Xbv2b1VwYoJ\nb4yYsHBFCGGHHxzctUlBCKG0ZO64t/4zY2lFCGG7gUOuPGoXP2ZdT+myKacMPGt+RVUIobhb\nv3N/c/qO7ZuGECYNPevspz4LX4ZnIYSQqRz92O+vfvTdEEIqv+i6Rx7epqnrMNXQlGd+c+aD\nE0MIefktDxv8q+/vtv0mxU2yT734y+Pv+HxxCKH7T/5w3eFdsg+OvPUXN7wyPYSw+aE33nby\n1glV3RBY4RNhnUlQZemnN557yZvTloYQijr0OOzIo360d8+iwv8dXMqkV3z8n5cfe+zxMZ+X\nhBCKNt39ypvP76rt60fb4/NNsi5wrCAR2h6TpYacZakhd9jaY7JjXYOQnnrg2uOPfHPxisKW\nvf704MUbFfjpUpLmTh47cuRrI0e+8dm85Ws81W6rnv3779O/f99OzvZbP0+c95OHJywMIXTu\ne9xvBx222Tf0M7189l/vv+6+Fz9JpVI/uujen+++8aqnPv3nHWff+lImk8kvbP/g438qbqh7\nsFp1yhGHzilPt95u4INXH61f0Yy58pQhb80JIbTc6qA7bjg1u61Wlk4ceNy5y6sy3U+747qD\nOmdnZtIlT9x0/rDXp+c37nzZvTf3tM6sn2nPnzf4ngkhhMbFve564OK2X+5b1xKehRBC+Of1\np97y+qwQQtfjb7npqC2j19tAPH7KMcPmlIYQdvnlXUP27/i/JzKVPz3iyHkV6VQqde2jT3cv\nWhnYlC9+84jjrw0hFLUb+Ni9RydRcgNhhU+EdSY5mQfPPvGZSSUhhF2OOO/iE/b85jsIZMY8\nc/2QB98IIRR3/fEDN/7UvQbWg7YnwDfJOsWxgkRoewSWGrDUkDts7RHYsa5B3kk98EFpRQhh\nu8GnSegTt3GXHQ8/6cxb7n/sjmsuPvqHe3Vo8b+Vcc6n/33ivpsHn3js2UNufH7EmJIKPwCq\niZLJ92YT+uKuR9x63jHflNCHEPKbbjJg8A0n7dAmk8m8cN0FE0orVz211X6Dz+y5UQghXT7r\n2blrfqVgrRZXVoUQ+p35I4dJYxr1yeLs4NDzT1j1a5KCom4ntm8WQpjxj0mrZqbyi4/6zc0H\nbFKUXjHtxt8Nj19qAzP6L1Ozg73OO6NtNfate516QnYw4+W3N2BZDd0bi1eEEFKpwl/vs+nq\nj5ctemVeRTqEUNhyr1UJfQihsGXfjRrlhRDKF4+OW2lDY4VPhHUmKQvH35qNitv2/NmQE9cR\nFYcQUrscdt4ve28SQiiZ9Oz1/54TqcSGSNsT4ZtkneJYQSK0PQJLDVhqyB229gjsWNcg8qQe\nWFGVCSHs0b046UJYJdW5x+4DB537p4cfuXHIOQP23a11YX72iUymYtKY1+65achPjjnxdzfd\nO/K9SWk7rO9izN2vZwdHXHhkNU6ATx107vEhhHT5nDuf/Gz1J3oP2js7+OCd+bVdY8O0WeP8\nEMLmRa44GtXYZRUhhFR+0YB2X7kb69a7tgkhrFj41uoPplJNfnLBASGEkknDHpuxLGKZDdBr\nJStCCKm8xif3aF2d+YXFe7UrzA8hlJe8sWEra9Bml1eFEAqabrHGBU4Wjn0tO2jV44A1XtKp\nsCCEkK6YFaXABssKnwjrTFLevvfd7OCIX32/OvP3On1gdjDuodc3VE05QNsT4ZtkneRYQSK0\nfQOy1MCXLDXkDlv7BmTHugYhPfVA9kZ9lda7uqdi6YK58+YvKlm8vLJqjaeqKkreHfHcDZed\nfeLgi599fXwi5dVHz01eEkLIKyge0LZpdeY3brV/9oj2jJeeWP3xJhutTHpKvyit7Robpn7t\nikIIY2e78EBUCyqqQggFjTdb44SzNru1CSGUL323/Ksrf8stT9q4MD+E8OqwSYH1kE2L8xtv\n1qLat8No3yg/hJAun7kBy2romualQgiZqso1Hp/4/IzsYMtDOq/xVPnK+1I5A3y9WOETYZ1J\nygvTloYQUvlFP2jTpDrzGxf3b1WQF0JYPv+VDVtZg6btifBNsi5zrCAR2r4hWGpgDZYacoet\nfUOwY12DE0qoBw7q0vKDcfPfHV9ycN9qHfJgQytbMPXfo0ePHjXqnQ8+r8is+euJ1p17FJdO\n/nx+WfafS74Ye//1Y9+acNbvf76fkOFbTV2RDiHkNdr4W2eu0qYgb055umLZ2NUfzG/ULjso\nX1Bei+U1YL1/tss9l4545/ZnM7edZEONpnFeqjydyWTWzCyLNu0Wwn8zVWXvLi3vvdqlpUIq\nv1/Lxk/NK13w37+GsFPUWhuWZvmp8spMVcW8TLXj31kV6RBCKq9avx9irbZsWrBwSXl6xefT\ny9Mdv/wVdshUDPt85ZW+frxly9XnZ6qWTy6rDCHkNWobt9KGxgqfCOtMUqZlv0zmNav+1t40\nL7UohKpy112vOW1PhG+SdZBjBYnQ9g3KUgNZlhpyh619g7JjXYOQnnpg5zMOyxt070f3DC3r\n85smKWtdYpbMmjR61KjRo0e/N3FG1df2T203377vnn379unbvXOrkElPeu+Nf/7zlX+NGlua\nzoQQPnj+lht32OE3e7RLovD6pFVB3tyKdLpsakk6U1yNM88y6SWfl1WGEFKpRqs/ni5feW3k\nwtaN1vIyvqZtz18f1e29JyY+c+H9mw05eZ/GlpooNm2c/3FpVbpsypJ0ZvVTLQub9wrhiRDC\niOnLencvXP0lGxfmhRAqSj+IXGoD870Whf9YWFZVufDFBWUHVuOcv/Ilo+eUp0MIjZrtuOGr\na7AO6NBszJLyTKbqtpemX/OjzbIPzn//j7PKszek793jq9djL/lkaPaOP41b7BG/2obECp8I\n60xSmuenFlZm0hVzJ5eluzTJ/9b56RVTZlVUhRDyGrXa8NU1WNqeCN8k6w7HChKh7XFYashx\nlhpyh609DjvWNQjpqQeKOhx85XFvXTjs9XNv7n79r38kp49swdSPRo8ePWrUqHGfzf36s+26\n7NinT989+/bt1nG18/9S+V136dd1l34nl0x54JpL//bhwhDCf+54IOzx22hl11P9Wzd+ck5p\nJlP+pzHzztvt28+nnz/unrKqTAihsOVXIpzSWX/PDlpu03ItL2MtUsdedc2cc84b8ewfTnp7\nxInHD+jRZctO7dtU+xq91MReLQs/Lq3IZCoemrDojO3+d9PigqJuzfNTS9OZqS/NCN2/cjPj\nGeXp6GU2QAf03+Qfw6eEEJ64dcSBQw781vkf/vnP2cFGO3/7ZL5Jj5N3Dhe8GkIYf98FT2x0\n8Q97dVv+xdvXXjMi++ymBxy5+uQlU16/9LIXs+ONdu8Vt9KGxwqfAOtMUnq3LHxhQVkI4d5X\nZ1z1wzVvovF1M0fcnclkv0z23eDFNVzangjfJBPnWEEitD0ySw25yVJD7rC1R2bHugYhPfXD\n9kdf/usV19zy9L0nfvja4ccOHLBPzyYOrG5gsya9P2rUqNGjR308vWSNp1KpVLsuO/btu2ff\nvn227tBiHW9SWLz5yRee8beBV4QQyhePKq3KFOX5w63Lvkdv+eRtH4YQ/n3D1RPuvaZ7i8J1\nTK4s/fSGa97Mjjv+8If/eyJTPvzmkdnhbju2/voLWav8wo4HH9pnxB9eXDb9v3dd+98QQiov\nvzob7PDhwzd4cQ1Uz4M7hXs+DiGM+P1Vu9/wu903Lfrymby9ixu/sKBs1ht3LRl826qfVVaV\nz35lYVkIoVGTLslU3FBsftgxjZ69riKTmTfmzqufKj7v8N7r2KnOeufRy1+cnh3/33E6X3Ot\negzq22bUmwvKMuklD1/922GpVObLn2an8pr8/MjNs+Plc/5+7XXPv//J9HQmE0JIpfKPPGaL\npGpuMKzw8VlnkvJ/3+/4wqOfhhDG3/+7d3a7vdfG67qMQdm8Mb+756PsuOMP941RXwOl7Ynw\nTTIpjhUkQtuTYqkhp1hqyB229qTYsa5BSE898Oyzz4YQQsttv7/jp39/f+KwWy975LZGbTZp\n3759+1bN1hVhhhB++1s/X6qhU8++ZI1HUqlU+6479+3bp2/fvltt0qya79Oo+Q5fDgsKXQXh\n23To/+uu9w6atLyycvmkiwddePKvzzio1xZrnTn9/Zdvv+nuj0orQgj5he0GD1iZ7iyZOfGv\nD9381OTFIYTC5jsf2taNXavr7QcvvuKZsas/kqlKN+Tf6dUBHQ84rfUDv1lYWVW+9OPfD/7Z\nNjvtfMpvz+7WtCCEsO9em7zwlynpsqkX3vqX6381oEkqlUmXPHbDJcvSmRBCs87Os1wvhcV9\nz9+/0xUvTwshjB569c/e6v+LEwds3/2rX3Yz6fmzPh/5tyeHPj86mxa37n7SYe2L1vqGVEcq\n1eTMq8/89Mybste3z6x28bRtjrhkh6KVdydZsejtMRO/WPXUFt+/oH9x48ilNjxW+PisM0nZ\nbMApxU9cVJKuSpfPueqMc08+5zcH7775WmdOfeevN95w/+zydAghr6D1qQd1iltpg6LtifBN\nMimOFSRC25NiqSGnWGrIHbb2pNixrkFITz1w//33r/FIJlMxf9a0+bOmJVJPrkml8jbttkvf\nvn369OnTpd13PmxaWToxO2i6yYAC+6lvk9eo3cUXHnHqpY+XZzLlSyb+6fJfPrJp99122Kpd\nu3bt2rUrCmVz5s6ZO2fu5A/f+XDaouxLUqnUAYMv79okP4RQOuve4wc9vyr42fuXg7W8mko+\nHXrl8HFJV5Fz8pt0veLne59x14gQQia9bMKYN6asOCv7tazLsac1++tFy9KZKf+6/9g3n+zU\nsXjutBmllVXZF/YbtFOCZTcMvQZff8i0Qc9NWBRCWDBhxO8vHJHKb7Jx85UdPv/swVOnzli6\n2uWkGhfvePnlA5KptQEp6rDXH25refcd940YNyV7h7O8guZ9B5xyzvE7fH1yKlWw6w9+ftFp\nu0cvs6GxwifFOpOIgqLthpywy68ffCeEULl8yj1XnvlMl5577rJthw4d2rdvXxRKZ82aNXPm\nzAlj3nhv8vxVr+p14mXdmzo4UHPangjfJBPnWEEitD0ySw25yVJD7rC1R2bHuobU6ifxQN10\nyCGH1Pi1zz33XC1WklMGDPhxp2127btn3759+mzedl0XbKTWzRz98G+vf2rRl3ugdUjlNT7g\n51eecdA22X8unXHrcYNeyY67/fBXNwxy/czq+vvZJ9w1qSSE0LRdj6OPO2TbzTpu3Lp5Nb9Z\nbbTRRhu0tgbvoxcfuuneZ+esSIcQzhz65AGtVp40/NGwS85//P2vz994l5PvG3Jo1BIbqEy6\nZPhd1z340reHl6232ffCi0/fpvhbrl4klZb6AAAgAElEQVRD9a1YOGvq7Pn5zTfu1HHjNX5q\nvfSLh297dN6mW3Tbvffe23ZqnlSFDYkVPkHWmaS8ft9F1/+lur9N6XnY+Zef1GeD1pMjtD0R\nvknG51hBIrQ9WZYacoSlhtxha0+WHesqQnrqgX/84x81fu2BBzbMi2BEMG1hWefW9k+JKZv3\n0f1/vP/ltz9Jf/MqvWmPvj857fTeW/7v1jjZkL6ofbeDjz554H7bRam0gfjFkYdOX5Fu3KrX\nvQ9cUryOu+ayYVRVlIz9z1sTp87Y8dCBq59SNvqRm+58amTJlz9YSaXydzpg4PmnH+4OT7Vo\n1odvDn/u+X+9Nb4svZbVpu2WPQ865MeH7LtLIy2n3rLCJ846k4jPRz19892PfbZgxTrmFLXr\nNvC0Xx28myuu1xptT4RvkpE5VpAIbU+cpYZcYKkhd9jaE2fHmiWkB6i7ls+ZNHL0u+PHj/98\n+tyly5YurwgtWrQs3qhD9x49dtp9z122arvG/PSKaVPmNtmy08YNc5e1IR02YEBlJrP3tQ/9\nZtvWSdfCV1Qum/HfsZ/OXbBso05bbNWly0YtnGS5QWTSpZ9N+Gjy9HlLly5dXl7VrHmLlq3b\ndeux3ab+i4X6zwpfR1hnEpAp/3DUP998d+z48R/PnL+4tKw8lcpr3LRZm/adt9mm20677dVv\n1639cKX2aXtd4ptkrZv2t0sveHRyCKFxy9733Tk46XKgTrDUAEAtyqkdq5AeAMIpRxw6pzx9\n1tAn9/vy6joANAxWeMjKpMur8grFw5FpOw3MJw+cec7wKSGE/CabD3/itqTLASBhQwYP+mJF\nZZdjfnfh/h2TrgVqTbp8RX6hAwjEUPDtU4CG7vbbb6/dNzzjjDNq9w1zhJMSErRvq8aPzSn9\noiyddCFAQ/Dyyy/X4ru16tF3t45FtfiGucYKD1mp/ML8pGvIQdpOA7PRbpuF4VNCCOmyKR+W\nVm5X5LhiMpaWlFRW+7Sr4lat/FII2BCqKuaOnz5zeVWm4sWZQUhPvZWpXDhqxBvjxn3w4fhJ\ni5YtKy1dXvH/7N13XFPX2wDw5yYhgTDCkIC4UQHBgQwrtdRR/dVZZ62Ks1p3XXVv66JqsYKj\nzlYtlaqtEyvqq1Sx1kVVQIaIAgIhjBAJIdzk5r5/RBGRQoAk14Tn+9fNzbl8nh7Tm5P7nOcc\nij579iwAkMV3/4gu7tYjsJm1GdNhItOEg2n03ikqKtIcEISZQGDJbDANxKVLl3T7BzFJXzcK\nseTly5cAwCaTmI6lwek51jMi5N7f4XETvvmA6VhMFt7e3080rXgSF5+RVdi73//eOk8VbdsV\n0aqV+weB3ZrZmvK6UvoQFqbLwjKPme0wSV8feIdnHN5nEEL1hyPJ94S919wA27u3ihQAcDjq\nxZahLZmOqGHJio06cvZaaurTvJdl2l8VfuqMNS7ooR281SAEAAD0i6T7/yY+lxTLq22lynx4\nrVRNA4BaUYubEkLvlaQbv/+471ialKzyXars2a/7f4k49FOPUVO/HhmIX6e1hV+sNcIkPXrv\njB8/XnPAtex08th6APjuu+/q/NeWLFmim7AQ0j8sSmBQ4+7LBp2edP76dyc+2fe5dyOmwzFN\neHt/39BU8dXjPx07Ey2Wq9hc58rJMzV548qFG3Dh6IGd/v2DZkwe4sBhMRUqQvWBd3gG4X2G\ncVhqyQjsdn3AkeT7guDO37Yod05wmlz5JHzj7Y/CPnA0ZzqmhiL1XMg3B/6qw76lZvjtqjW8\n1SCkJkV71q+Oeiiq1VXuw1vrKR6E9Co2fNXa3x7W2ExNSa+Gb32cmrt7+QgOjt1rA79Ya4QZ\nIGQEbt68yXQIJm7s2LFMh4AAsCiBWYTZl5vXFSxc9cuaacn9x04ZN8gZJ0noH97eGUSRWaGL\nF19LK66xJU0r70T+/PhR6tbt3zTBJXu107Vr1/96S60suHP/SflLgmBZ2zk6OTtbs8tyc3Nz\n84rK8zpsrnPQ9FGNOCyBm73eIzZteIdnCN5nGISllozAbjcwHEkyxVzoH7xrTejGrTGpucEz\n5wyb/GX/Hv4O5nj31i9SenP5wbcy9Gy2tn3OJfAmU3d4q0ENTcSKxVHJRbW6ROg7fHF3Zz3F\ng5D+ZF4KLc/QE2zrjz7p4damrVncrz/eeDNJhcNv16GJZVxWCQCIbh9Zfqz9ljEezIRrKvCL\ntRJ8PoUQgpEjRzIdAgIALEpg0unTpwHArWfvhF/P3on86e6FwwLHJs2aOJpp8TRj7dq1+g4P\nIZ07tW5FeeaMILgt2nWo1IBgW48c0OP27Tvp+XIAkGXGrNrY9tC6oYYO1DgtX768yvMq+dPv\nF63SHPMbew77fOTAj7353DfFTTRVlnz7ckTEb7HPpRQpOnny7w3bl7axwBF7veAdnil4n2EK\nlloyArsdNRyRkZEA4NVreJH01/g80Yndm07u4do62NvbO9jZC3jVTjoxyfonw0jcd1ihpgHA\nQtj+y2lBndu6Cm0tmA4KIWRqZJlHIl5n6PmN3bp4e9hyypJiopMkZQDQod+gNuYcAJBL8+Lu\n3M6WKQHAK2jthpE+OOEQGR1Kkb5671XNscCt+6KFMzs6WwBAqvhUxWZm/A4bdx+9FbFx87H7\nAJB8Ym3y0F/c8SkN0h38MKH3jru7u+aAY9FUczBz5kzmwkHIoLAogSmHDh2q+JKm1UXizCJx\nJlPxmCS8vb8/ZJnHjsQVao5bfTRq+eyRTu8UFhMsi7HTFoydSv19Ysf34X8paTr/359Oiz4d\n4oybo9cZ/cvKtTczZQDgM2LxynEfvbtIGsHmeXw4cO2HA2L/2Lr25xh59p11K4789P2XuJxa\nfeAdnhF4n2EKlloyArvdAHAk+f7Yu3dvpTM0TUryRZL82q2NjGrl4kMJAHBt/Hb/uBJ3h9Ef\nvNWgBi7l8HXNgU3rAbu2TRWwCQBQBfUJGrOoVE0rm/edNKCZpgFNSY+HLA2/kZV08mBc3/be\nAi5jQSNUJ9mXdxUo1QDAE/htD57fqJrvVoITMHrN3BdTd9wQ0ZR877nMkJGtDBeokcMv1hph\nkh69d7Zu3VrpTN++fRmJBCHDw6IEZMLw9v7+SNp/WXMgDJi1Y/Gn1TUl2B+OXGBPZS0+9gQA\nIg+mDFnhbYAITZIkMfSPVCkANPKevHb8R9W2JXyGLZ6T/CT0Vq409fTWfwYuCxAaJkiEdAXv\nM0zBUktGYLcbAI4kUQMXL1cCgNesaZih1yu81aAG7u8nLzUHQ5eOE7x+CMnhu413ttybLcu+\nmAqvk/QEWzBy4XZxysTLuZnfrzt1NOQLZiJGqK5uncnQHAQunl1dhv61wKnjdtzYCgDZl+8C\nJum1hl+sNcIkPUJIZ9bOmv6iTOU6at3y3k2YjsVYYVECU+bNm8d0CAgZzqW0Vz+8v5zVU5v2\nbYfOISLm0DRdlHQZAJNndXT3wH3NwYh51SYsXwucGRR6KwQA4g7fgIDheozM1OEdnhF4n2EK\nlloyArsdNShY/8SIMjUNAF09BEwHghAyZY9KlABAsPmDhW8tbdXW1x6yZWWSOwBvxvYEYT5h\nWZ/L885IU8MjsgeOcrE0dLgI1cNf0jIAIFi8SZ522rTnCgKF3BAxSZHSGADcOxjpDCbpEUK6\noVbmJWbllKppZVQOYJIeGZtevXoxHQJChpMsVwEAm+v8oY1WS9KxzVu0NmenlqpUpcl6Ds2U\nXciUAQDB5vezN9emPU/Qw5bzQ5FKXVpwBQCT9HWHd3hG4H2GKVhqyQjsdtSgYP0TI9pYcOJL\nlCq65pZIhzIjVy87lgYAPJuAg7tnMR0OQnpXqFQDAIfXvNKGa/b+9nAug5TdJ2ngVnjLptVE\nR+75PJK6Gp46alEnwwaLUL3kkmoAYPOaW1e7cm1FzmZsMUlRZI4+40INDibpkWnCkm7doV8k\n3f838bmkWF5tK1Xmw2ulahoA1IoyA4VmirAoASFkACUUDQAEqxbz3NkEAQBqZZG+YmoAMsso\nAGCxLLXffNiCRRQBqEmx/qJCSE/wPsMULLVkBHY7QkjfBrjaxMcV3E+UDuqm1XRPpBMKseTl\ny5cAwCaTmI4FIUPgsQiSomlaVek838UN4AGtVtyXkQHWFebgEuzuNryT+fLCB+cBMEmPjIkl\nmyBVtFqZTwNo+ZRGpKQAgGDhtlY6piaL056kigtfFstkYGZhY23t2KRV66aNtH96ZtQwSY9M\nEJZ064qaFO1ZvzrqYe0WWncf3lpP8TQEWJSAGjKZVKqita0NEdjaNpCxmj40N2enlqqosvQC\nFe3AqbkjaZXkWakKANi8pvqPzmRZsQmJiqaUeWkKytWcXWN7qixdpFQDAMvMVv/RIaRjeJ9h\nCpZaMgK7/X2AI0lk2jrPHsaafuDx/iOKDxeaE/j5NRAH/+ZwKh0AKEV6glzlxccH6cjEufDY\nyXI1pUgvpuiK5cVcKz+A4wAQnVUS4PHWQlmOXBYAKOXxBg4VoXr6wJp7UaJQqyRRhYq+Wqx3\nSBbfEpMUAJhZdtR/dA0DrYqLuRh54eK9x5nkO8N4rnUj3269+w8Y0KmFic+ExrEFMiJY0m1o\nESsWRyXXrphJ6Dt8cXdnPcWDEDJJWbFRR85eS019mveyFjft8FNntF+QClXSv6lV6JMimlb9\neDt3Rbeab9p5d/dqhst8pz76j85kBdhwLxQqAODA1exN/ZvV2D4neh9N0wDAtemm9+AQ0jW8\nzzAFSy0Zgd3OIBxJGgVc7LD++I0HbRhzZ3n4jUXbPbbOH4h5esOw95obYHv3VpECAA5Hvdgy\ntCXTESGkX4E23GS5kqaVh5OKZnu92aibw3ezYhMyis64lA0eb23gnU1SBg8TIR3o08Pp4ql0\nADgeGt13bc1VcwlHj2oOHDpjiZ0OKArid3+3NTpJ8l8NyOL8Wxcj/ok64T9oytxJ/U146I5J\nemQcsKTb8GSZRyJeZ+j5jd26eHvYcsqSYqKTJGUA0KHfoDbmHACQS/Pi7tzOlikBwCto7YaR\nPqZ7w0QI6V7quZBvDvxFa132VM4Mt3yth87jvWDVTQC4t2PDv+7bOjeqLqNAvkzYvP2O5rjN\naD9DxGei/vdpkwvHngJA4qF19/x3+jlW1+2K/Nh1+x9rjpv0xy3VdUn85N7f9+KTk5Nf5Elk\nMplCxbK2traxd3Jv59neJyDAC5MHuoH3GaZgqSUjsNuZgiNJo4CLHepK+y++nV8WvOP3A+MT\n/ho+OmhwT29zfP6ibwR3/rZFuXOC0+TKJ+Ebb38U9kG1Y3iEjJ33oKawPxkAojdu6rJtXRcX\n/ut3WB8LeBcKFaKYPcWzwsqzZWoy94pEAQBm5q7MRIxQXbUYNsrs9BYlTefH7t58UrB4eEA1\nX6qie8e+jcrSHP9vDH7a64uUxq+cvSalRFnxJEGY2Ts5W6hloryi8vWxaJq6c3bv7Kc5OzdM\nNtU8PVGHHzMIGd6vi8ZH1L6ke/fqCVzT/D/XEGI3TFl7RwwANq0H7No2VcAmAEAlTwkas6hU\nTXtM27VlwKsqQJqSHg9ZGn4ji81rtubAdm8Bt7q/i9B7acKECXW7sM3E4FU9G+s2mIaDlN4c\nO2GLQv1mKMJm17wGuMbvp07hw9W6o8nvJo69KVEAANu86RfTZwzr2Z5bRVJBnXoncveOw6nF\nJACY8dv9FB5sY6JjYgNQyRMmBa2QUmoA4Fi0mPTNwkFdWlTZMuPe+e+3HXomVwEAi2MXHH7Q\nwwJn1uqAJCU67Mej91Lzqmnj4OozbvrcXm9Xh6C6wPsMc+J/W7U8/GGLHl9hqaUhYbcbHo4k\nmVaLxQ5vp0oBQNBiydEwXB+ojk6fPq05yLl//s+HYnj9LNvZ2dnWsoaHMEuWLNF7fCZNUfAo\ndOPWmFQpm+c8bPKX/Xv4O2ixdxVCxohSpH45ZqFEpQYAgm3p3qnzlCUL3Cw4AJBy8OuFZ9IB\noEXPL7fOG2xOEDQlPfbdooh/RABg57Ho8JZAZoNHqLbuhs1afzlTc2zv0WPG+MHtPVxzfp23\n4OQzADh79izQVIHo+fXIE0fO3aJoGgDsPCYe3jKMyaBNAb1vxpjzWSWaF1xB68+Gf9a9S4fG\nzg5cFgEANKXIy8l+9E/0mT8i02WvEvlNeizZs8A0h5GYpEdGQJZ5ZMysk5pjLOk2mJ0TRl6S\nKABgwv6I4U7lEychcvqYvdkymxbzfwnrWX6SphU7p068nCsXtAk6GvIFA+EiVD+fffZZ3S70\nmLl7S1/cPbeOHm6duuqGCAAshO2/nBbUua2r0NaC6aAaClnGlVnzdmp+ewOAmXXjTl5tHB0d\nHR0drXlUfq5YLBanpzxME5dqGhAEd/S3+0Z1smcuZFPw9I9v5/98r/ylg6v3Rz7tGjdu7Ozs\nzAe5SCTKyclJio35N62gvE2XL39YOQSnaevA49PbV/0UrdTitw9BmPWctGHekHYGiMq04X2G\nOfS1I8E7fv+H26gtlloaEHa7oeFIkkF1W+ywy4J9K3vg7nh1VOdfrKBJM6C6ioyMBACglTdP\n/RqfpwAAguDaOtjb2zvY2Qt41d7qcXoEMkYZf4bM3hNd/vLrIyf62PIAQCWPHxe0ooSiAYDN\ntW7aRJCXmS1/PdQf8sMvX7raMBEvQnVHq+UHl04/m/SmNJRgmztaqcVSEgA82zTLyMiWVdjQ\ngSfouG3/uhY4T6t+JEm7JiyO0hwL/b4IXja60X8sckWRuUc3Lvvj33wAIAjWjIMRfatdos9I\nYVEOMgIph69rDt4q6Q7qoynpVjbvO+mdku6kkwfj+rbHku76eFSiBACCzR8s5Fc839bXHrJl\nZZI7AG+S9ARhPmFZn8vzzkhTwyOyB45ysTR0uKYC67mNBYdvb2/FAQB7LG+th4sPJQDAtfHb\n/eNKBw6WMxmUVfPeOzaWrVh3KFOuBABlcc69f3L+qzHBth4ydzNmzuqv9bDViyQrtp6J07ws\nSHtwJu1BNe29hy3FDL1O5MbsXfZTdPnsZGsXd/8ObYRCodBRaG2mzBWJRCLR0/i7iVnFAEDT\nyms/LbN22jc5QMho1EYP7zOMeFVqadPu045P/3yYEh665tcwLLXUO+x2RuBIkkERKxZH1X6x\nw8XdMUOPjM/evXsrnaFpUpIvkuTXbpIKQsaieb8FwSyHkAOnxWVvbTbP4bdfNaLj0t8eAgBF\nFqc/Ky5/y9FnEmbokTEiWPzJm8Ps92z5+dKrpzQ0pRBLX737ODWzYmM7917LV87EDH39xR++\nqzngC3vuXDWmmkXI2FynCWt25k+ZdD2/lKbVZ35J7TuvvaHCNBxMLSAj8PeTl5qDoUvHCV7P\nUeXw3cY7W+7NlmVfTIXXSXqCLRi5cLs4ZeLl3Mzv153Cku76KFSqAYDDa855+z5p728P5zJI\n2X2Shoq7Cdi0mujIPZ9HUlfDU0ct6mTYYE2HRCKp24XFbw+dUW3t3Lmz2vfpl/m5OTnZmc/j\noy7fLVXTtNri8282fdoO10Oul3i5EgC8Zk3D56qMsG03YMehjhEHfrpw7b6Mqrq8mCBYrTr3\nGP/VVJ8m/CoboNoKnLyxWbvft++LeFZYVk0zvtAtaNq8Qf64UIcOqFX5G0IvajL0XOu2E+fO\nHtClVVW/AulndyLDfvg5VUbStDpy++Zh/iF2HCyErRe8zxjeoUOHKp2haWWBKLNAlFlle6QT\n2O2MwJEkU2SZR8q3I8TFDg1m5syZTIeAEGooPD+dsK/XkEe376RkZDfjvUlJegatX0aE7D55\nXfq6gJ4g2J36BC2dOYShSBGqL4ItGDZ744c9b546e+7anURFVT9aG7XyHvDZkM96+ZjhSEYX\nLqfLNAc9l39Z4zZhBIv/1Ype1+dHAkDevbMAmKRHiAlY0s0IHosgKZqmVZXO813cAB7QasV9\nGRlgXaEuhGB3t+GdzJcXPjgPgEl6A8F6bl1p3rx5TS1atAcAGDLmi5TjP4WdvJG+e9n0ki37\nhrkJDBCeqSpT0wDQ1QP7kDEcfrOxc1aPmpxz9/a/iYmJz7PzZSWyUiVYWVnZ2Du7tfPs5NvV\no4k102GampYfDt8RMCjh7/+7ef9RYmJyTsFLuYIkCBbPwtLeuZm7u1sn/8Duvm3xQbau5MZs\nT1dQAMAxb7Vu92av/1xpiWjVZWDw7uYLpq7JUFAqxdOQW7nrA7Hmr77wPoMQ0hMcSTIFFztk\nRN++fZkOoYHC6RGoYWKZCbw/6uP9zvmAMQv8B4968OhpXmGJQ9OWrV1dHazx3o6MnrNXtxle\n3aZT8mdJj9Oy8mUyWSmptrSytrETunl6udiZ4BLrDEorVQEAQbDHtdRqBQ4b1wlmxAUlTStL\n4vQcGjMwqYOMAJZ0M8KFx06WqylFejFFW1dIFHCt/ACOA0B0VkmAx1vjMEcuCwCU8ngDh2pK\nsJ77/WfeyG38oh1WxVN+fpD/y8q1fke3NefhSkd11MaCE1+iVNW8QzTSL45l44BejQN69Wc6\nkIaE4Hp16+fVrZ/mFU2RahYXs/J6EnvyuebAZ+6y/87Qv8K17bjya9+pW+8AwLPjsRCI/1/o\nBt5nDAZzCYzAbmcEjiSZgosdogYFp0cgVAnH0sUvwIXpKBDSPYLNd/Xyc/ViOg5TRwENACyu\nM5+l1VMwgjBvzGNlKCig1XoOjRmYpEdGAEu6GRFow02WK2laeTipaLbXmxwwh+9mxSZkFJ1x\nKRs83soNZ5O44np9YT23kWANWjr/yOiVKsXTkJPPfwhqzXQ8xmqAq018XMH9ROmgbjgpFTVo\nBJuLk33057K4FAAIgj2ti1Z7zAu7Tjcj7ippWp57GQCTysjIYC6BEdjtjMCRJFNwsUOEEDJV\nSZkFHs0cmI4Cofda0vWTHh+PYDoKI9bR0uzWS1KtLFDSoM0OArRanl2mBgAzvpveg2MCbtyF\njIALjw0AmpLuiue5Vn6ag+iskkqXYEl3/XkPerUPbvTGTXey5RXeYX0s4AGAKGZPxX8RNZl7\nRaIAADNzV0PG2WBp6rknejei1aW/rFybgXvSG5YZv0MPAQ8Asi9dYjoWI9Z59jAWQTzef0RB\nYw0UQkhfXpRRAMDmtXA00+q3D8usUStzNgBQJG4mrS8UWcZ0CAgho4cjSaZUt9ghgGaxw4ps\nWk105LIB4Gp4qsGCRACwdtb0KVOmbLqSxXQgxu3cuXPnzp2LTijS/pIHURfOnTv355XH+osK\nIT1ZPGvS6Clztu05HH0nQUqaZtEqQhopMmVtL5HnPApbNXXxtiP6iKfhGNDZAQBotSI8o1ib\n9kWP96loGgBs2g7Ub2QMwSQ9MgKBNlwA0JR0VzyvKekGgIxL2ZUuwZLu+mvSZ5odhwUApCx5\n46zJi9duSSl9tZhBr0AnAKAUGctDz2geiNCUNGLbqhKKBgDLZlhHYjCsQUvnswhCU8/NdDAN\nThtzDgCQsttMB2LE+I0HbRjTUVF4Y9H28/h0lUEyqbRIa/jvpCvY7QZjw2EBAK2W19iyXKma\nBgAgzPQUUkNDqyQ3r5z7cfvmr6dOHhc0avjQwUNHfK55iyy+G3HuamZxrZ+PIIQQjiSZwmMR\nAPAfix2CZrHDt94g2N1teABQ+OC8gUJEAGplXmJWjlgsTo7KYToW47Z///79+/f/fkus/SXp\nvx/dv3//gQO/6C8qhPSnRPz8+p+/h2xYNv6LMQtXBR87cyXlhYTpoBDSvRWz1ia+JGtuBwAA\nNPUy6si2STNWXX4o0mtUDYHH1K8EbBYA/PntPilVwxieInNCNscAAEGwR8zsYIj4DA6Xu0dG\nwHtQU9ifDADRGzd12baui0v5imqsjwW8C4UKUcye4llh5fumY0m3TrDN26z/6uPZe6IBgKZK\nkmJj0svmullwAMB19DTL8ytKKDr92qHRN080bSLIy8yWq17Nr+w+HbcYMBxNPffVIkX2pUsQ\nNIPpcBqWtDIVANCUjOlAjFv7L76dXxa84/cD4xP+Gj46aHBPb3Pcl9tQsmKjjpy9lpr6NO9l\nLUpaw0+dscZ/o3rAbje8VubsfCVFkaIHJUpvy5rz7ip5wgtSDQBmFqa5lpqBJd34/cd9x9Kk\nVT/+oMqe/br/l4hDP/UYNfXrkYH4MWfE2lnTX5SpXEetW967CdOxNCDY7TqBI0lGuPDYyXK1\nZrHDiuMTrpUfwHEAiM4qCfDgVrwEFzvUHfpF0v1/E59LiqudfUirMh9e00w6VCtw9RpDI9U0\nAKjKnjEdCEL1QlPylId/pzz8+9hBsHZy9fX18fX19fFuZ63d+mQIvefKJHGrZq1eE/ZtB1tu\n9S2f3zm3a8/R5AKFYQIzeVxrv82zeswKu1aa99fsxeylS6Z7Caveuyon4cbB0F0Pi0kAcB++\nrr8Tv8pmxg6T9MgINOkzze6nhRKVWlPS7d6p85QlCzTZ4l6BThfOpGtKurfOG2xOEFjSrUPN\n+y0IZjmEHDgtfnspdQ6//aoRHZf+9hAAKLI4/dmblUkcfSZ96Wpj6EAbtjbmnKuv6rkxSW84\n5Ms714rKAIDFbcx0LEbs9OnTAAA27T7t+PTPhynhoWt+DTOzd3J2dna2taxhiLxkyRJDhGi6\nUs+FfHPgL7r2ZWf4e7w+sNsZ0dvV5u7DfAA4eOxx2JSapxImn9iv+Teyad1P78GZutjwVWt/\ne1hjMzUlvRq+9XFq7u7lIziYXzMsTallqZpWRuUAZosNBbtdJ3AkyZRAG26yXKlZ7HC2l135\nec1ihzKKzriUDR52FS/BxQ51Qk2K9qxfHVXLGj734a31FI+pSkxMfPdkWeGzxEQtPsa0SpL9\n+ER+qeaFjiNDSP82rFgQFxcfHx+X9ExEVfjdWpybFn0hLfrCSYLNb9uxs5+fn6+Pb9smtgyG\nilD9kdLH62YtXxm6wduh6iSxIj/p8J5dkXfTy8+w2II+QV8ZKkCjV1xc9YL2gg8mf1tq9u2B\nS9InV5dP+6djQI8POrk5Ozk5OVikgUcAACAASURBVDlZEKW5IpEoJ+ffGxeux79aP9tn6NxV\n4zoaMHCDwiQ9MgJY0s0gz08n7Os15NHtOykZ2c147Dfng9YvI0J2n7wufd3bBMHu1Cdo6cwh\nDEXacGE9t+GVSZJ3rfxB83PFwr430+EYsUOHDlU6Q9PKAlFmgQj3gdYvUnpz+cG3UsVsNrua\n9hVxCUyg1RF2O1PajfWFh1EAkHFu/a8ddo75wLmaxuL7x9edelX25BPkYYj4TFfmpdDyDD3B\ntv7okx5ubdqaxf3644032QUOv12HJpZxWSUAILp9ZPmx9lvGYLfrBJZaMgK73aBwJMkUXOyQ\nKRErFkcl12JndAAQ+g5f3L26kQ96V5WTeEQxu5bE1O7v8Ky76iYghAyo4wc9On7QAwAoecHj\n+IT4+Lj4+Pikp9nK1z9jaUqe8u/NlH9v/gpg7ezq5+vn6+vb2dvDGmfaImPjKeA+lpJkccr6\n2cuXhW7yc3wrT0+rS/86efDAsSsvKXX5yVYfDJo1Y7ybPc/gwRqroKCgGtvQlPxhzIWHMRf+\nqwGLLSh5fHHp4osthy+a1VWo0wDfC5ikR8YBS7oZxDITeH/Ux/ud8wFjFvgPHvXg0dO8whKH\npi1bu7o6WNdQr4B0Duu5deXYsWNatVOX5WSkP7r3b6Hy1RDNczz+8EbGJ3HfYYWaBgALYfsv\npwV1busqtLVgOijTh93OFFv3Gb2FN66I5TRN/rZpRmr/cWOG9G3zzjpppeKnUWcijpy/o9LM\nwXL8ZKYHlobUHaVIX733quZY4NZ90cKZHZ0tACBVfKpiMzN+h427j96K2Lj52H0ASD6xNnno\nL+4W+Cu1XrDUkhHY7ajhwMUOGSHLPBLxOkPPb+zWxdvDllOWFBOdJCkDgA79BrUx5wCAXJoX\nd+d2tkwJAF5BazeM9MEtIJjiO2000yEgVHdsvkOHLh936PIxAFClkqSE+Pj4+Li4+KTUF+Tr\nhH2xKO1aZNq1yOMsjpVbx85b1i5iNGSEaufbXevXfb06TlKmLEndNHvJkh3BHzi/ekST/fDS\nrl2H4kRv5t2aN/KYMGPWAP8WDAXboKkpaXKyFACIoqo30TN2+PgDGQ0s6X4PcSxd/AJcmI6i\n4cJ6bh3SNkn/Nr5Tj29McQafwcycOZPpEBqoiw8lAMC18dv940oHDi6kbiDY7cxhfbVpbvzM\nLSKSomnqXuTP9y8csXVs7CQUOjk5WUCpWJybm5ubk1ekfv28ic0Vztn4Ff4j1Uf25V0FSjUA\n8AR+24PnN6rmM09wAkavmfti6o4bIpqS7z2XGTKyleECNUVYaskI7HbDw5EkU3CxQ0akHL6u\nObBpPWDXtqkCNgEAqqA+QWMWlappZfO+kwY00zSgKenxkKXhN7KSTh6M69veW4DVFLXTtGnT\nii9fvHgBAGbWQiete9LKwaVD4NBx3Zx0HxxCTGBb2Hn5BXr5BX4BQCmkyQnx8fHx8fFxj59k\nkpqVgVSypNgbAJikR8aEa9Nu7a6NG+esjM1XqEqfBc9ZuHD7Vn/r3GN7d/1+I6W8GcHmdx8x\n+atRva1x1hvSD0zSI2OCJd2GdO7cOQCwdg3s4aVtGdmDqAuZJMWxaN2vt6c+QzNlWM9tROza\nfLR6wxwLFg7R6q5vXyymYUa8XAkAXrOmYarYkLDbGWQhDPh+y9z163Zpqs1oWi0RZ0nEWUnx\nVTTmCtxmrF7dzblyqT2qlVtnMjQHgYtnV5ehfy1w6rgdN7YCQPblu4BJ+nrAUktGYLczAkeS\nDMLFDg3v7ycvNQdDl44TvL53cPhu450t92bLsi+mwuskPcEWjFy4XZwy8XJu5vfrTh0N+YKZ\niI3W7t27K7787LPPAMCl5+KwKW4MRYTQe4TNs7Kzs7Wzs7Wzs7Mxz86Xq5iOCKG6M7NyW7kz\nOHju8ju5ckqRuW3uPFs6r0D5ZmzTpPOns2Z+2d4JF0Gso7NnzzIdghHAJD0yEVjSrXP79+8H\ngBafuWufpE///ehBUYkZv32/3pv0GZopw3pupvTr10/rtmzHpi1cW7ft1M4Vn6siI1WmpgGg\nq4eA6UAaFux2Zlm79gg+4BUZ8Vvkn9c0GbJ3mfGdu/cb8MXogU5cdpUNkPb+kpYBAMHiTfK0\n06Y9VxAo5IaISYqUxgCM1HN0pgxLLRmB3Y4aIFzs0MAelSgBgGDzBwvfmkfY1tcesmVlkjsA\nPctPEoT5hGV9Ls87I00Nj8geOMrF0tDhIoRMCU1mPkmKj4+PT4h/nJBUUFViniBwJjoyShy+\n67KwLVvnLf47W06RooLX57mC1mOmzxzWrS2TwaGGAZP0CCGd0axxpCp7xnQgDQvWc+vEjBkz\nmA4BIcNpY8GJL1GqaKbjaGCw2xnHMnMcNG72wKDJz5MTExOTc/KlMplMCRwrKytBo8bu7u08\n2rXi4/epjuSSagBg85prvyqgsxlbTFIUmaPPuEwflloyArsdNUy42KEhaVbR4/Cac97+XrX3\nt4dzGaTsPkkDt8JbNq0mOnLP55HU1fDUUYtwo4G6Gzt2LAAI3BoxHQhCBkXTiozkRM269vGP\nU6QK6t02BEE0aubWoUOH9u3bd+jQ3vBBIqQTbPPmi0K/375g0fUMmeaMa7/Ja74aZIeLIOpB\nZuTqZcfSAIBnE3Bw9yymw3kvYJIeGSlakvM8LTO3WCZTUiy+lZWtU5O2rZpw8bFqPSQmJr57\nsqzwWWJiFeOwymiVJPvxifxSzQsdR9aQYD03QtVbO2v6izKV66h1y3s3YToWIzbA1SY+ruB+\nonRQN3OmY2lAsNvfEwTLolU7n1btfJgOxMRZsglSRauV+TSAluMUkZICAIKFawnWC5ZaMgK7\nHaFKcLFDneOxCJKiabpyASvfxQ3gAa1W3JeRARUnQxDs7ja8k/nywgfnATBJX3cjR+ICP6gB\nSUu4p8nLJyQ+LSarTsw7NG3boUMHTW7eGdcEQiaBzW2yIGS72eIF/5dWDACi+3FFEwfaYe5U\nDxRiycuXLwGATSYxHcv7Aj9oyMiIU+7+eTHqr3/+zX9nnVI219rDP3BA/wEfdWjGSGzGbsmS\nJe+eFMXsWhJTu7/Ds8bN0esO67kRqoZamZeYlVOqppVROYBJ+nroPHsYa/qBx/uPKD5caE7g\nNB8DwW5HDcoH1tyLEoVaJYkqVPS1r3liCll8S0xSAGBm2VH/0ZkyLLVkBHb7+0D85N7f9+KT\nk5Nf5ElkMplCxbK2traxd3Jv59neJyDAC4eOyLi58NjJcjWlSC+m6Iqr1HCt/ACOA0B0VkmA\nx1vZMkcuCwCU8ngDh9pgUTRgBQUydvOWffvuSYIg7Ju06fBKe2cBz/CBIaRvLK7T19t2cJbO\nj0qRysV3ln69cXPoclc+5k91zMG/OZxKBwBKkZ4gV3lhD2OSHhkRihQd3/VDRHQiTVddqE2R\nxQk3LyTcvHCy24iFc4OamuNmoszwnTaa6RAQqkFRUZHmgCDMBAKsXmIc/SLp/r+JzyXF8mpb\nqTIfXitV0wCgVpQZKDQTxW88aMOYO8vDbyza7rF1/kBMGBsGdjtqUPr0cLp4Kh0AjodG913b\nt8b2CUePag4cOtfcGFUDSy0Zgd3OLElKdNiPR++l5lU6X1JcJMrOTIm/d+7EEQdXn3HT5/by\nsGMkQoTqL9CGmyxX0rTycFLRbK83n2QO382KTcgoOuNSNrz9Cc+uqgoW1UdpgShbUta6TYuK\nJ6VPb4Yd+P3J84yiUrBv3OrDXgPGDe9ujjsoIePHs2vR9QOf9h06dGjf3sUOV4NDRqzK9YOr\n1GPCjOfBIcnFZKn43tKvNy5d8HmVO8y2a9dOpwE2IPZecwNs794qUgDA4agXW4a2ZDoi5mGS\nHhkHisz6fu7CmKySiidZZnyhk5BQSMQFL6kKmfu0mycXPs36fufiJlzM09dC06ZNK7588eIF\nAJhZC520XrnIysGlQ+DQcd2cdB8cQjo1fvx4zQHXstPJY+sB4LvvvqvzX6tyFQqkJTUp2rN+\nddRDUa2uch/eWk/xNBztv/h2flnwjt8PjE/4a/jooME9vc2x7kP/sNv17fLlyzr8a7ae3fyb\n8Gtuh6rSYtgos9NblDSdH7t780nB4uEB1XzYRfeOfRuVpTn+3xhXA4VoorDUkhHY7Qx6fHr7\nqp+ilf8xlb9cQVrsjiVTHk3aMG8IPlStr4yMjFq1J1hsnrmFOc/c3NKCi5nLuvIe1BT2JwNA\n9MZNXbat6+JSPkRhfSzgXShUiGL2FM8KK78FqcncKxIFAJiZ4xerDuQ9urLnp9/up4nN+B01\nzxA0CmKPTPv2d1L96hZUkJV87mjyXzcfhW372o6Dn3Zk3MiizMRECxaLAAC1p2dTB/xlhIxV\n3Z7cKvLur112v8q3zp49W7+IGjCCO3/botw5wWly5ZPwjbc/CvvAsaHPAcIkPTIOZ9Ys12To\nCYJoG9B3QO+eXq5NHO2tNQNeWlUqzsl5dDv63KkLz4tJAJCLbi1fdfrwd8MZjdrI7N69u+LL\nzz77DABcei4Om+LGUEQIGc7NmzeZDqGBilixOCq5qFaXCH2HL+7urKd4GojTp08DANi0+7Tj\n0z8fpoSHrvk1zMzeydnZ2dnWsoaJWTgrpc6w2w0gLCxMh3/NY2Y7TNLXGVfQbWnvpusvZwLA\nrSObJ9/pMWP84PYeb+cJaKpA9Px65Ikj525pZtzaeUwc5ox9Xi9YaskI7Ham5MbsXfZTdPli\ne9Yu7v4d2giFQqGj0NpMmSsSiUSip/F3E7OKAYCmldd+WmbttG9ygJDRqI3e7Nmz63YhweI2\nauzSrGnLjn5dP/zQ39naTLeBmbYmfabZ/bRQolKTsuSNsya7d+o8ZckCNwsOAPQKdLpwJp1S\nZCwPPbN13mBzgqApacS2VSUUDQCWzXCJmvoS3Tw0a8uZdycD0dTLjd+dLs/Ql3uZdmXx1o77\nl/UwUHwI6U7Htk2TUrNImgYAmlaL05PE6UnXLvwBAALnlp6eXl5eXp6eXm2a4Mo0CKE6Mhf6\nB+9aE7pxa0xqbvDMOcMmf9m/h79DA14VG5P0yAgUZxz9OUECAGyzRlNWbxrQqXJuhuBYODVz\n7dPM9ZPPBoUHLztxTwwAksTDR9L/N76FNQMRI6QjuLEiMm2yzCMRrzP0/MZuXbw9bDllSTHR\nSZIyAOjQb1Abcw4AyKV5cXduZ8uUAOAVtHbDSB+sPa6nQ4cOVTpD08oCUWaBKJOReBoI7HbU\n0PjN2vpZ5vSzSUUAUJgUvXF5NME2d7RSa95dumBWRka2rEKekifo+O23g5mJ1YRgqSUjsNsZ\noVblbwi9qMnQc63bTpw7e0CXVlUNEulndyLDfvg5VUbStDpy++Zh/iFY4coIWk3mZT3Py3oe\nezv68I+WPT+fPOWLT6xwZK8dtnmb9V99PHtPNADQVElSbEx62VxNkt519DTL8ytKKDr92qHR\nN080bSLIy8yWq1594Xafjntq1AulSFux/VyVy3XkP9iVWqoCABZHMGL6DN8m3IRbZ4+cfQAA\n4n9+uCH9MFDrlSkRek9s+H63mpSmJj6OT3j8OCEhMSmtWPnqZiIVPb8len7raiQAmNs29vTy\n1OTs3Vs1xi9V9J5r3Lgx0yGgNyIjIwHAq9fwIumv8XmiE7s3ndzDtXWwt7d3sLMX8KodGZpk\nBQsm6ZERSPwpGgAIghi5MWSAh201LVlcx7GrdhZOnfh/uXIA+OvnxPFruhgmSNMzduxYABC4\nNWI6kAYKN1bUK3d3d80Bx+LVLg8zZ85kLpyGK+Xwdc2BTesBu7ZNFbAJAFAF9Qkas6hUTSub\n9500oJmmAU1Jj4csDb+RlXTyYFzf9t74sAMhVJWuXbv+11tqZcGd+0/KXxIEy9rO0cnZ2Zpd\nlpubm5tXpHr97JXNdQ6aPqoRhyVws9d7xCaNYPEnbw6z37Pl50txmjM0pRBLX737OPWt6Sl2\n7r2Wr5zZogFPn9cVLLVkBHY7I3JjtqcrKADgmLdat3uz13+OD4lWXQYG726+YOqaDAWlUjwN\nuZW7PhCXZao7zbetUvb0fnzln6sAQBAE/XY604zv6tvRUS4tzMvLyy+QapKdNFVyNSL0UWLO\n7m/HmhOY3tFK834LglkOIQdOi8veWoqDw2+/akTHpb89BACKLE5/Vlz+lqPPpC9dbQwdqGl5\ncWF3HkkBAIttM2zWvE/925e/FXs4QXPgFrRu7P9cAaCdl59QPmPblSyaVh//Iz1wUltGYkao\nPlhcgVunALdOAcMAaLUiIyXp8eOEhISEx4+T80uUmjaKopzYmzmxN/8PANgWdu6enp5e7ceP\nGMBo4Aj9p7179zIdAnrj3X8OmiYl+SJJfu32QjUZlYfOCL2HVoweEVdCWjcbH75rhDbti58f\nDJpzBgC4lh1OHtuo5+gQ0j0tN1YEAIIw64kbKyKjtXPCyEsSBQBM2B8x3OnN+saR08fszZbZ\ntJj/S1jP8pM0rdg5deLlXLmgTdDRkC8YCNeEXLx4sc7X9u2L6YQ6wm5nkEr+9PtFq25mygCA\n39hz2OcjB37szeeyyhvQVFny7csREb/FPpcCAN+ly4btS9tY4IRm3RAl3Dx19ty1O4kKqoqx\nTaNW3gM+G/JZLx8zzNHoSMafIZpSS42vj5zoY8sDAJU8flzQCk1umM21rlRqOeSHXzCRUx/Y\n7YYXOTtob0YxAHRZsm9lt5qT7qIbG6ZuvQMANi2m/xLWX+/xmTRK8Xz9jMWxBQoAINh8v08G\n9e7a3tGxkdBRaMVR5onFYrE49cGN05ExEiVFEOx+s7dO79MGAGg1mfPk4aXzJ/74K0nzp9yC\ntm/7ojWT/zHGRq2UPrp9JyUju+PQII8KY5Vbv4bsPnld+vr2QhDsTn2Cls4czmfh92u9/DZl\nVLhYDgA+c/as7V1hOUNa9eWIz/OVFEEQ3x373YP/6t+CfHlzxNjvAIAvDIo4gL9bkSlRi9NT\nEjQeP84qkFd6G3fpRghpQ7PJct2Y5H0GHzwhI/CkVAkATT77z9KoSqxbjOMSZ0maVpY+qbk1\nQu8Z3FgRNRyPSpQAQLD5g4Vv7UDc1tcesmVlkjsAb5L0BGE+YVmfy/POSFPDI7IHjnKxNHS4\nJgQzvozAbmcO/cvKtZoMvc+IxSvHffTueowEm+fx4cC1Hw6I/WPr2p9j5Nl31q048tP3X+LK\njTrh7NVthle36ZT8WdLjtKx8mUxWSqotraxt7IRunl4uduZMB2hqsNSSEdjthndZXAoABMGe\n1kWrn0LCrtPNiLtKmpbnXgbAJH29/L56jSZD36zbmCXThzV/axkDM6emLZ2atuzg0+Wz0WPP\nH9pyMOrJnzu/YQsOfNXFkWBxXdz9J7r7B3rvWhB6iabppye+k47YK8BF77XGMhN4f9TH+53z\nAWMW+A8e9eDR07zCEoemLVu7ujpY4/JjOhDzsgwACII7v6dLxfOKoiv5SgoAuDaB5Rl6AODa\ndHMwYxUo1eTLWwCYpEemhCVs4SFs4dGz/3CyOPfmpbPHT17Mel1bj5BxyYxcvexYGgDwbAIO\n7p7FdDgNCy5nWwkm6ZER0Dwe5Tfl19TwNYLrzGNlKCggcMFMrWRkZOj2DzZv3ly3f7DhwI0V\nUYNSqFQDAIfXvNKH197fHs5lkLL7JA3cCm/ZtJroyD2fR1JXw1NHLcK9FRFCWpEkhv6RKgWA\nRt6T147/qNq2hM+wxXOSn4TeypWmnt76z8BlOAdOdwg239XLz9WL6TgaBs9PJ+zrNURTatmM\n9+Y3kWfQ+mVElaWWQxiK1KRgtxvYizIKANi8Fo5mrBobAwDLrFErc3ZKqYoiM2tujf6bNO3A\nL0kSABC0GRG6eFQ16XW2hdPgWduo7Ek/xxVe2LIs8MiP5bnM1p/M+vr6/dB/8ylSdDqvdIKz\n1g980H/jWLr4BbjU3A7VRi6pBgCORctKU0kkj/7SHNh69ql0SVMup0BJUsoGumwvMlWUPD8h\nLj7u0aNHjx4lZ+SpcXlmZMwUYsnLly8BgE0mMR1Lg4MVLJVgkh4ZAR8r7nVpWXFyMXhptTMo\nrZbnlKkBgGv57txiVIXZs2fr9g+a5MIjhoEbK6IGhcciSIqmaVWl83wXN4AHtFpxX0YGVKz/\nINjdbXgn8+WFD84DYJIeIaSVuwfuaw5GzPtUm/aBM4NCb4UAQNzhGxAwXI+RIaRPWGrJCOx2\nQ7LhsPKVFK2uvNxuNUrVNAAAYaavmBqG2H03NAcjln+uRQE8MWDR2J/Hh1KkePeJZ6ET3mzR\nHTD949BpfwBA/L0CGIhJevSesmARCjVNqyv/aE05l605aPVZs0pvka+Sl1hHgYwepShKio+L\ne/QoLi7ucVoOVVVi3q6Jm6+Pj4+vj+HDQ6jOHPybw6l0AKAU6QlylRcf86SIMfjhQ0ZgwIfC\n639mZp45rR42V5sZ8kWJBzSbeQu7DdZ3bAjpVuzJ55oDn7nL/jtD/wrXtuPKr301Gys+Ox4L\ngbhmY93Vdj0JgsXmmVuY88zNLS24uMlfXbnw2MlyNaVIL6Zo6wpP+LhWfgDHASA6qyTA463/\nERy5LABQyuMNHCpaO2v6izKV66h1yytuxIj0DLtdJy5kygCAYPP72Wu1rDpP0MOW80ORSl1a\ncAUAk/R6QZFlbC6P6SgaLiy1ZAR2u861MmfnKymKFD0oUXpb1px3V8kTXpBqADCzcNN/dKbs\nbFoxALA4gsGNLLRpz7PtLeTuEpNU9qXjMGFF+Xlzhz4AfwCA/EUtZlogZGCtLDiSYpIqe55F\nUk24r1dJoZXhz19qDoe0emvjElpdmqZQAQDLrJFhI0VIN9Rk8ZPHryrmHz95QVaVmGfzbD07\ndfbx9fX19WkptDJ8kAjVk73X3ADbu7eKFABwOOrFlqEtmY4INVyYpEdGoO2EmQ5XVhRI/u/b\nPz5ZO6x99Y0pMmf7pusAQLAtJ4x1NUiACOkMbqzIlDqvJ0GwuI0auzRr2rKjX9cPP/R3tsa6\nnFoItOEmy5U0rTycVDTby678PIfvZsUmZBSdcSkbPOwqXpJNUu/8GaR3amVeYlZOqZpWRuUA\nZosNBbtdVzLLKABgsSy1n1FlwSKKANSkWH9RNSi0SvJ3dExcXHxCYmpRSYlcXqqkaM3CS2Tx\n3T+ii7v1CGyGX6AIoVrq7Wpz92E+ABw89jhsSs1rLCWf2K/ZVsymdT+9B2fSMjRfrGaO2l9i\nz2GJSUpZ8qjiSbbZq9+8ZCGpw/AaArk0LzunQKn1WtNuHu20WPMAVa1PY8vYYpKm1WGXsoIH\nvtrbseDhjyJSsyF9gOfb9ZfSJ0fK1DQA8Ky7Gj5ahOpp3dK5CUnPFeoqbi8EQTi28NQUzXdq\n72pO4G0FGTOCO3/botw5wWly5ZPwjbc/CvvAUas5/UjfGuCEfkzSIyPA4Xt9t6j/V5sjY39e\nvjZv/PjPB7naV/0/avHzOzs2hzwoJgHAf/yGLriEoHZWr17NdAjoFdxY0ejQajIv63le1vPY\n29GHf7Ts+fnkKV98YoWPQLTjPagp7E8GgOiNm7psW9fFpXyVS9bHAt6FQoUoZk/xrLDyIns1\nmXtFogAAM3Ocg6UT9Iuk+/8mPpcUV1u9RKsyH17TLA+rVpQZKDRTht1uaFZsQqKiKWVemoJy\nNWfX2J4qSxcp1QDAMrPVf3SmL+nG7z/uO5YmrToBQ5U9+3X/LxGHfuoxaurXIwPx+xMhpL12\nY33hYRQAZJxb/2uHnWM+qG7zL/H94+tOPdMc+wR5GCI+02XLYeUpKUqRIaVogRY3bpoqfq5Q\nAQDx9kYDFPlqx26uHc7T0gqtKvz94N7z12MLi2s3OAw/dcYav2LrynNSZ1h2FQASDy477rCy\nv59b6Yu73wVHa9516fN5xcbF6TdWr4nSHDt08TNspAjpwP3Hzyqd4fAbdezs4+Pr4+Pj01S7\nlckQMgrmQv/gXWtCN26NSc0Nnjln2OQv+/fwd9DiiQHSIZzQD5ikR8ZC2HXqjoVWq7Yfj408\n8u+fv3X6uK+vRzOh0MlJ6MgmX+aKc8W5uSkP/7nx71PN7jiuvadP7WYtFv9n/ZNQqFWZcgPh\n54e/HN4XuLEiU7p27QoAStnT+/F5775LEAT9dpmCGd/Vt6OjXFqYl5eXXyDVFDHQVMnViNBH\niTm7vx2Lc4q10aTPNLufFkpUalKWvHHWZPdOnacsWeBmwQGAXoFOF86kU4qM5aFnts4bbE4Q\nNCWN2LaqhKIBwLJZX6ZjN3pqUrRn/eqoh6JaXeU+vLWe4mkgsNsZEWDDvVCoAIADV7M39a+8\naei7cqL3ae75XJtueg/O1MWGr1r728Mam6kp6dXwrY9Tc3cvH8HB70+t7dy5U7d/sM4LCzUo\n2O3vD1v3Gb2FN66I5TRN/rZpRmr/cWOG9G3jVHlr81Lx06gzEUfO31HRNABYOH4y0wPnYNVL\nDzveCbGcpsm9sfmL/Wuupy+I268pyuTavFVYLBf9qTmwcbep4jL0Npoq2TF39tVMWR2u5WlV\nAoCqZus5vZv93zcLFTRV/MvmJeEVHg4QLPOvPm+hOS4V//ndlnMPn2RpHksSBPvzUS2Zihmh\neiIItkvr9j6+Pj6+vp3cm+P4HJmkyMhIAPDqNbxI+mt8nujE7k0n93BtHezt7R3s7AW8aie3\nLVmyxFBhmjKc0K+BSXpkBKZNm6Y54HAIUAGtLnsQfeZBdHWXpF35ccqV6hpo5uMg9L7BjRWZ\nsnz5ckrxfP2MxZqXBJvv98mg3l3bOzo2EjoKrTjKPLFYLBanPrhxOjJGoqRUpen2/rOX92kD\nALSazHny8NL5E3/8lQQA+Q9PrDz+4bYvMKlWM7Z5m/VffTx7TzQA0FRJUmxMetlcTZLedfQ0\ny/MrSig6/dqh0TdPNG0iyMvMlqvUmgu7T695RVNUvYgVi6OSi2p1idB3+OLu1dWooRphtzPi\nf582uXDsKQAkHlp3z3+nKq/XtgAAIABJREFUX7Wr2CnyY9ftf6w5btK/lyHiM12Zl0LLM/QE\n2/qjT3q4tWlrFvfrjzfezFPh8Nt1aGIZl1UCAKLbR5Yfa79lDFa4auvSpUu6/YOYLdYGdvv7\nhPXVprnxM7eISIqmqXuRP9+/cMTWsbGTUOjk5GQBpWJxbm5ubk5ekfp1Ro3NFc7Z+BXmK+up\n1xetToQlAMA/2zYnHQj2qHYJQ5X86bbgm5rjJv0rbNBGk6e2X9cc+ne0e/dCVMmLS5sqZujN\n+AKhvbWWz6vNcAZ5PRCE+debv376dYhmffuK0/fdR6zqwH/13Kas6G5syovyt1p+uqyHoGGt\n1otMQ5ceA3x9fDr7dHK2weVpkYnbu3dvpTM0TUryRZL82pVVoLrBCf3lMEmPjEBOTg7TISBk\nILixIoN+X70mtkABAM26jVkyfVhzQcUfJGZOTVs6NW3ZwafLZ6PHnj+05WDUkz93fsMWHPiq\niyPB4rq4+0909w/03rUg9BJN009PfCcdsVebtR9R834LglkOIQdOi8ve2myew2+/akTHpb89\nBACKLE5/Vlz+lqPPpC9dsdqmXmSZRyJep4r5jd26eHvYcsqSYqKTJGUA0KHfoDbmHACQS/Pi\n7tzOlikBwCto7YaRPvihrg/sdqY0HzxFcHyFlFJTpHjT7EWTvlk4qEuLKltm3Dv//bZDuSQF\nACyO3dQBTQ0bqUmhFOmr917VHAvcui9aOLOjswUApIpPVWxmxu+wcffRWxEbNx+7DwDJJ9Ym\nD/3F3QJ/pSKEtGIhDPh+y9z163ZpvkxpWi0RZ0nEWUnxVTTmCtxmrF7dzblyqT2qrcY95rc5\nMD21VKUqTV05ffmk+bMH+LWssmXWw8s7Q/Y9lisBgM0Vzhr86vu3OCfl/OHtJ9NeAgDXqvPQ\nRhaGit2I/d+JVM2BR8+RU8cNadPIitl4GhR+48Afwmz27ToYHZeumfTD4lh1Gzzlm7Ed3m1M\nEBzffl+tmNbF4GEiVF+ZkauTYtOSYm+ctAk4uHsW0+EghEwWTuivCB9/ICPA5eLcPdRQ4MaK\nTJGmHfglSQIAgjYjQhePqiYlxrZwGjxrG5U96ee4wgtblgUe+dGD/+rLtPUns76+fj/033yK\nFJ3OK52ATwC14/nphH29hjy6fSclI7sZ783mT55B65cRIbtPXpe+LqAnCHanPkFLZw5hKFLT\nkXL4Vd2STesBu7ZN1UwoUQX1CRqzqFRNK5v3nTTg1ZLgNCU9HrI0/EZW0smDcX3bewvwG7nu\nsNuZwuF7rR3nM//newCgKk3fv+HrP1y9P/Jp17hxY2dnZz7IRSJRTk5OUmzMv2kF5Vf5jV/j\nganiesi+vKtAqQYAnsBve/D8Rpz/rlwlOAGj18x9MXXHDRFNyfeeywwZ2cpwgRqzsWPHMh1C\nQ4Td/r6xdu0RfMArMuK3yD+vaaa4vcuM79y934AvRg904uI+ozrAMhOuXD5i6urfSJomi1P2\nfjvnVxcP/w6thUKhUCjkg0KcJ84T56Ul3EvIfDU9kSCIPrO+bWPOBgC56MDY6efKy5E/njML\npyNqI+YlCQB2XkHfzf8Ce8zw+I07zdsQOkMiysgtYFs5Nm3iyH17fQIO3zUg0MalpVuXgI/b\nNcUpFMgoKcSSly9fAgCbTGI6FoT0bubMmUyH0EDhhP5KTPA/CZmekydPMh0CQgaCGysyJXbf\nDc3BiOWfa1G0SgxYNPbn8aEUKd594lnohLblbwRM/zh02h8AEH+vAAZikl5bLDOB90d9vN85\nHzBmgf/gUQ8ePc0rLHFo2rK1q6tDtctpIi39/eSl5mDo0nHlSz5w+G7jnS33ZsuyL6bC62wx\nwRaMXLhdnDLxcm7m9+tOHQ35gpmITQJ2O4NaD1u9SLJi65k4zcuCtAdn0h5U09572NKVQ1wN\nEprJunUmQ3MQuHh2dRn61wKnjttxYysAZF++C5ik187IkSOZDqEhwm5/D7HMHAeNmz0waPLz\n5MTExOScfKlMJlMCx8rKStCosbt7O492rfgsTGvqkn2nMWFL1Uu2nixSqQGgODvpavZ/ZnQI\nFq/PVxtm9nTRvFSr5eUZerf+8+Z0FRogYBPwUqUGgO5fD8SPMoN4ds5t7aoupbBqOnbZIgOH\ng5COOfg3h1PpAEAp0hPkKi8+Zo6QKevbty/TITRQOKG/ErzVIoTQewU3VmTG2bRiAGBxBIO1\nW2uRZ9tbyN0lJqnsS8dhwory8+YOfQD+AAD5C7meQm1oOJYufgEuTEdhah6VKAGAYPMHC9+a\nStLW1x6yZWWSOwA9y08ShPmEZX0uzzsjTQ2PyB44ysXS0OGaCux2ZgVO3tis3e/b90U8Kyyr\nphlf6BY0bd4gf1zovr7+kpYBAMHiTfLUaqdhriBQyA0RkxQpjQHAJChCqNYIlkWrdj6t2vkw\nHUhD0Thg7L59Pod+PHT57hOqwi7dlbh4dpswbWZAK+tK5/nOboO+mBT0iZeewzQdzXnslFJV\nC8yZIYT0xt5rboDt3VtFCgA4HPViy9CWTEeEEDJBOKG/EhzbIYTQ+wU3VmRERhkFACwzR+0v\nseewxCSlLHlU8STb7FUhCFlI6jA8hHSrUKkGAA6vOeftShx7f3s4l0HK7pM0cCu8ZdNqoiP3\nfB5JXQ1PHbWok2GDNR3Y7Yxr+eHwHQGDEv7+v5v3HyUmJucUvJQrSIJg8Sws7Z2bubu7dfIP\n7O7bVov1VFDNckk1ALB5za217lBnM7aYpCgyR59xIYRMx7lz5wDA2jWwh5e2i4o9iLqQSVIc\ni9b9envqM7SGwryR58yV2yaJU6/fup+YmPg8K09WIitVgrW1jcChsYenZ6cuH/m0blTpKguH\noT/sHt2qqSN+39ZKdyE/Jf3lo9zST2x5TMeCEDJRBHf+tkW5c4LT5Mon4RtvfxT2gaM50zEh\nhEwNTuivBJP0yESUyWUcCyt8qIpMA26saHi2HFaekqIUGVKKFmhxK6Gp4ucKFQAQhFnF8xQp\n0hxw7cyquAyh9wOPRZAUTdOqSuf5Lm4AD2i14r6MDKi4swDB7m7DO5kvL3xwHgCzxXWE3f5e\nILhe3fp5deuneUVTpJrFxQGkPliyCVJFq5X5NICWHSxSUgBAsLRa0gYhhPbv3w8ALT5z1z5J\nn/770YOiEjN++369N+kztIbFQtjm08FtPh2sbXs2r5krLlhTewGTffavjr638zQdNhFHLggh\nPTEX+gfvWhO6cWtMam7wzDnDJn/Zv4e/gzk+eEQI6QxO6K8Ek/TICJClxaVsSwG3qrUvaOrf\nSxF/XL2fkflCZWbb3jegR/+hAW1wc25k9HBjRQPrYcc7IZbTNLk3Nn+xf8319AVx+xVqGgC4\nNl0rnpeL/tQc2Ljb6CNOEyaX5mXnFCj/e6nMStw82mFerc5ceOxkuZpSpBdTdMUxMdfKD+A4\nAERnlQR4cCte4shlAYBSXtWaHkg72O3vIYKNM9305QNr7kWJQq2SRBUq+trXXIJDFt8SkxQA\nmFl21H90DYj4yb2/78UnJye/yJPIZDKFimVtbW1j7+TezrO9T0CAVxOmAzRNMqlUpfWQRmBr\niyMagyHVNACoyp4xHQhCtdbIe/5It3+Pp/yx/FDztZN68gi8cxjIhAkT6nZhm4nBq3o21m0w\nCOlbZGQkAHj1Gl4k/TU+T3Ri96aTe7i2Dvb29g529gJetU9hlixZYqgwEUJGDCf0V4JJevT+\nyn509XTU9Xv3H+XLVR1XHNjwgbBSA1KaELwq+N5z6esToltXTv3zf2f9Bs5Y8dX/cItuZAJw\nY0WD6fVFqxNhCQDwz7bNSQeCPay51TRWyZ9uC76pOW7Sv/+bN2jy1PbrmkP/jlqt2INoVeHv\nB/eevx5bWFzdLtHvCj91RvsZl6iSQBtuslxJ08rDSUWzvd58Vjl8Nys2IaPojEvZ4PHWZzib\npAwepqnBbkcNSp8eThdPpQPA8dDovmv71tg+4ehRzYFD55obI21IUqLDfjx6LzWv0vmS4iJR\ndmZK/L1zJ444uPqMmz63lwcOWnQjKzbqyNlrqalP817WYlSDQxrtJSYmvnuyrPBZYqIWX5e0\nSpL9+ER+qeaFjiNDyBCI0ZuCxd8sjj79w8S70ePHDvZ0bdXU2R7vH/omkUjqdmFxGY7kkfHZ\nu3dvpTM0TUryRZJ8ESPxIKQ/OAeLKTihvxJM0qP3EU0V/7pl9W+3nlbTRq3M3/D12gdFlR9/\n0DR199zOb8pY22f31meMCCGT0rjH/DYHpqeWqlSlqSunL580f/YAv5ZVtsx6eHlnyL7HciUA\nsLnCWYNbaM4X56ScP7z9ZNpLAOBadR7ayDQn9+kWTZXsmDv7aqasDtfycCpWPXgPagr7kwEg\neuOmLtvWdXHhv36H9bGAd6FQIYrZUzwrrDxnoCZzr0gUAGBm7spMxCYBu50pGRkZtWpPsNg8\ncwtznrm5pQUXF62pqxbDRpmd3qKk6fzY3ZtPChYPD6gmiyC6d+zbqCzN8f/G4AdeBx6f3r7q\np+ga16cpSIvdsWTKo0kb5g1pZ5jATFjquZBvDvxFa11AX84MhzRaq7JETxSza0lM7f4Oz7pr\nzY2Q1nDpCINhc5sMGvph9A9RJVkP9nz3AP6fvfuMi+Lq4gB8ZpddivSyoNhAowhWbFEkYost\n9hZ7793EGnuJBWPvXRS7YlRi0LwRFGJBjQVrEEVEYaXXZXdn5/2wSIhSVtzG8n8+XWbvzO8I\nOMzcc++5RAyPr8qjSkBAgMaDgw+MzGxtzY2IyNYUo+4AAPoLc7B0BRP6P4LHBdA/nGzPT5PO\nPy7mLnlv50Jlht7Ypla7Ng0r2fCinj+LCL8bmyUjoheXNh3waTisNhaFQKmnkKZH/RMpTkpL\nz8gggamlhYWDs0u1ivYY2lAvnkA0f17vMQuPSzlOmv5859IpRyq4Na5TTSQSiUQiM5KI34vf\ni99HPbr9KCZFeQrDMO0mLq1uwieirLg9g8adzxuW/WbKRPyAVPHm0s/5M/QCMyuRrYWK3zoB\nCjx+Aed2Y232/5gsV0gznq2YOLJmvQajZs+oYWpERK29HX/7NZqVvJ636Vffad1MGIZjU4+t\nXZDJckRUrpJhPhBrB77tujJp0qSSncjwhPblK1SqWLVuo6+bN2/sZCFQb2CGTWjlNadtxWWX\nY4jout/Kkbd8xg/pVtvtvwl4jk2Me3U18KTf+essxxGRjduwnk5mBV4QVBcfunPu/uC8xxKL\nCjUb16kuEolEDiILgSw+Li4uLu5FRPiT2HQi4jjZlf1zLRx3jWz2cd0yUJ00NWze3v9k6Pl8\nVTfTEOKRRusaju2v6xAMAUpHaF/4gfnLzjzIf4RTsEgUaNqWLVuK/JxLS4h/9+5tzKuIoMvh\n2QqOU5j2+eHn9rUwIAml0oQJE3QdAoCewhwsdcGE/o8wJZjoDaBRkWfmzziQ+9ZhYu/Wvdu3\nDdxdRZWr2Bn/O8zB5sQM+n5SJsuZ2DT/ZefMSia5H7GSdzvmzAyKSiMiY6vmJw/N0X78AOrB\nyR+G/h742++3H8dIP7lRCy3sG3q17dS5c70qVjqJzlC9u354tu+pFLmi2J4Mz7jd6OWTOtdU\nfpnxdtOAcX8o2zU6TVs7rrUGozQgB0b0O5OQTURurfqOGdy9ur25riMqQ15fXDdpe3Del5P9\nTrazNiYieVbE4IE/KXPDfKFFRWer9zFvsz78p+i+4fAIV0tdxGsg8G3Xia5du375RRh+uVZ9\nRo7q18YcqQWVcYqsvXPGnXuakneE4Zs4mCvEqVIicq9e6fXrtxn59nQwtqq7dveSKiaqpjah\nQAp5wtQBo6MlLBEJLb4aNnVS5yYuBf3Wci9vBW7ecCAyQ0pERibV9h5ZZ2OEX+8Suu87ZsG1\nOCIyFdUeMXZgg69cRdYoqqR+H2UO3rx5Q0QCC5GjVVE7VeVnblehjnePwd96qD+4MqbEpSNO\n/PqrCSamlEjqC78hM06XbBT33Llzao8HPiVJeH5i/+ZT16IZnunQNbt61sBwDQCA/iqu5N7H\nc7D4Js7jlmAOlnqEb56onNBPRLZuuRP63x2ZNuPUS1I+txQ0of/gmp66DFpjkKQH/cKxKaP7\nDVduMuHg2WfDgkEFTrKOv7549Mq7RNRo8b6Fnvb5P2Il/wwfMFOZYxu6+1gvR6zFgdJHkhix\nbbVv8NNi6kkwDL9xl1FTh3fCWgQ1kiQ83rdj3+Xwf9jC/z5WcPcaOnZCMxeLvCPKJL2ZU40u\n/YYPbINRP1WN6t1DLGVtPAYeWNkPv8Ta9zjo4Lo9Z8U5LOXLFhPRY/8Fc47f/7S/g+fwvYt7\naDVEQ4Rvu/b9/PPPRCTLeHEn4uPNuYmIYT5+IRKYuTas65CVmvT+/fuExNT8BcPt6/XZtnQQ\nsguq49jUgO1rDlx6WGxPm5qt582fUFPlTBsU5l3wT2PXPSQiIxOXZbt9PYr8lkpTHswYs+i1\nhCWiejN3LfN20lKUBmf1oD5haTlCy0Y7D8y3M0L9ei1RzsGq0nXt5lE1dB1L2SJNDRs0dI1E\nUZLSEacDAvA/pGQuzhi8PTKViExF7v0GdK1V2dnBxlzFJxI7OzuNxgb5KM4sHHXgXoKRSbUN\nh9ZWNsbUQwCAUg9zsNQOE/rzQ5Ie9Mv72z+PXHqDiARmbjsPr7IvZIDjj2mDN0WlEtHYAyc6\n25p89OmdFaOW3BQTUZUev2we/pWGQwZQM2lqxLxxi55nyvIfZBiBraOTqSIj7n3KRxv+2Xh0\n3bJ8JPL06pUtjrx6/c6TJ09exb7PyMzIlpGFhaWVXXk3d/d6TVp4VrP/qD+bExP93sSlogN+\nDJ+lb/duEgXXfcfRERXK6TqWMkohS31w89bz12/r9hjolq9g1/Uj67adupr6YSU3w/DrtRs4\nZ0IvM+zPrQ74tmsfK3m1bPysu4kSImL4Zo3adGn7dW0HB3uRg8jcSPZeLBaLxZH3rp0NDE2W\nsQzD7zjJd1y76kTEKaTv/rl/6cLJMyFPlZeqMXD92n7VdPmPKYXiHoUFnDt/5dYTCVvAu6e9\nS/3OXbt3be0pwG+6OgROGrjzdToRNZm9a75X8Un3uGvLx/jeIiLLKuMOb+6k8fgM1OCe3VPl\nigZzdy9p5qjrWMoQJOl1BaUjdGJ8nx6xOayxdaM9+xdY4fVfj8myHvbpP1/Bca791m8YiIdG\nAADDgDlYaoYJ/XmQpAf9cnv+iKUPEojIbdSWNV0rF9yJk4/u0ydeyhLRuIMnOtl8nKRPjVo7\neNpVIjKvMPrIji6ajRhAzbhd4wdciM1UfiG0qta1V9eWTeqUd7IT8hgi4ljJ+3dvH9wI/vVM\nYHRGbiLf2Wf29hleOgsZoKR+7NfzebZ8qt/JNh8WE4P+kGe+vffgxfukTLuKVau5utpZGOzT\nsF7Bt11DTswaevhpMhFV8howe1zPyoW83bHZ8Rf2rdkb9A/DMN/9tGd0E4e8j178b+uMTZc4\njuMLnQ4c34nB8RLg2KyXTx9HxSZkZGRkSxXlzC0sbUQ13D0qfPIwD19iWt+eURI5w/D3nDrt\nICh+wapCltCn90gZxxmZVDtzYr0WIjRIynmH4w+e6IjfZy06ceIEEVnVaNu+vq2uYylbUDpC\nJ3p26ybnuG9WH/wRhXb13oYhff9MkZjYdDxxcLyuYwEAAPXAHCxNwIR+IjIqvguAFoVEpysb\nnVsWuuxDknQh/kOxCwlbQAdT+2ZEV4lImnaLCEl6KE2Sn27Ly9CLGvVbNbe//X9HVxm+iaii\na9verq26dj60Yu6ZvxOI6G2I7+9DGnawx5gglDItRWbPo9MexGcjSa+HjMpVaNSsgq6jKHPw\nbdeE1Kg9ygy9VfXem2Z9X0R6nW/q2G3iWvbt8AMPk35bM9fbb4ebWe7rUrU2EydfvbPp7wRW\nGnf2ffZQJ2yo9NkYvpmrRyNX7AmjYW9yWCLiG1dRJUNPRDyBvYsJ/3m2nJXGaDg0Q1bd1Cgi\nUybHCgjt6tu3r65DKKMismRE5DFxLDL02mQr4ImlbIPyeAIpBaqbGP1JJM24SYQkPZRu4n9u\n/3U74tmzZ2/eJ2dkZEjkPAsLC0tbx5q13Gt7Nmvm4azrAAG0R2BWx8fK+M8UydtLl2ggbu/q\n4eThNd7Da1zZntCPJD3ol5c5ciJiGKGXZaFLx+KuXFU2eEbWnWwLyOvwhRWVDVYar4EYATQo\n4mC4smEmarVlwYAidr3lCx2HLtqSMGr41YRsjlP8ejiyw7Ta2goTQD2ajfTcvTD49paz3OZh\nBj0nUr/EBC6cezSKiIwtm+3dNlHX4QBo3N1d15SN3vP6qLAAnuk8c9CBIZtYqXjbyZebhv67\ncVKzcd9sGnuGiCJuJ9J3GCIvCu4zOmRpxEuQsZwiS/VTspUbSzMCTcVUBnR2tYx4mHjnSWoX\nrzIxkFTqsByhAIoa5Sg4IvraDRuyalVra+Nj4qw3BS5VAT0TlSMnIo7N0HUgACWX/Dx4845D\ntyPff3Q8Mz0l7m3M84jb50/62bl6Dh43tbUbyntAWYE5WBpSxif0I0kP+kUsVRART2BvVPgr\n9M1L75SNcuX7mRS0SyvDy83cK2RJ6g8RQJMuR+e+xbWaN6KIDL0SwzMb/VPrq9MDiej97XNE\nSNKrZMuWLeq94KRJk9R7wbLDvv70vjX+PvH8zLx9lRcPb2Vc3O88qIVEnJyWlkZEfOlTXccC\noA3notKJiGdk1c1epR1zja3bioRbxVL27aUTNPSnvOMmdu2IzhBR1pvPSH+WTbjP6JCLCT9B\nxrLSuHuZsvrlis+7y7MevZEqiEhgil29S67BpJ68cXse7/aTNP+x2Gd40ITsxLi3yTnVqlfJ\nfzD1RdjmPaf/efU6JZtsy7s0b915cK+WBY4hwGdB6QidaDXI/di623/5Pxz6Q1NdxwJFkabd\nupKSQ0Q8YXldxwJQQo/Prl+wP1hW3C7JiVF3N84e9WD48mnda2knMADdwhws0AQk6UG/lOMz\nEgXHcTmFdeDY1DPi3IFR5671CuzDysTKBk+AremglInKVhaT4A+uaqlKf0vXoQLmNxnHyTIf\najg0w3Hp0iX1XhBJ+i/A9P95lfiHWcFnNwwLDx4yqJu7q0tFJ1ssddIou8aVKSCaiFhJ9KMs\nuYcZngbVD5OB9MrrHJaIeAKHYnvmsTXiiaWsLPNB/oN8gUjZkCZJ1RieQcJ9RofaulqG308g\nor1HH28eVfDrUn7PTu7mOI6ILKt11HhwhsusfJflA27N8782c72b7/TvkKfXpvcP/ti+//id\nKLHArO6po8vyjife9Ru79LRUkZtgSIx9dv7Qs5CwB5vXTrYpYk0AqAClI3SifMu5Xc4Ov3B1\n9ck2u/rUt9d1OFCwnORnW+dvYDmOiExt2+o6HICSiA/dOXd/MPchQ29RoWbjOtVFIpHIQWQh\nkMXHxcXFxb2ICH8Sm05EHCe7sn+uheOukc1EOo0aQOMwB0ubcrIyjEzNy8j4MIZLQL9UEBol\nyqScPClWyjoL+Z92yHhzLPvDa/a3TQsebJVl3lc2+MJCN7YH0E8scUTEEzqZqbbCg2FMyhvz\nXktY4hQaDg1AI/hC5y49mgdvCMqMvbd99T0iYnh8VX79AwICNB6cgbL1mNrMOvx6ioSIDga9\nWdOjqq4jMkCYDKRXrI1472UsK3mdynJWKrzkcWz6K4lyztx/ViGz0jhlQ2iDquDFwH1Gh2oN\nakj3g4jo9fllR+psGdC0qBci8Z0TSwJeKtueA920EZ/hqt1v6fScVRtP7xnyKKRX/4HdWtU3\nKSOjSjoVF7Zv4ppfP13qx7FpK1afzcvQ50mL+mOWb93dc320FJ+BQukI3WAEI1YuSfxxweFF\nY591GjRqcBcnzIHTiqNHj6rUT5Hz7nX0g9t/J8lyB2fch3ytwbAANEMhT1i+6Xdlhl5o8dWw\nqZM6N3Ep6EbPvbwVuHnDgcgMKccpAtev7Nl4HebAgQHDHCw1kmanZ/PLWQl5BXzGsX9fOnbm\nzzuvY97IBda1Gzbz6dSjWXVrrceoVXieA/3iZWv8MFPKcdzJF2nTahWwpc2TDzt2802qtLEu\nYEN6IhJf+1vZMLZprqE4ATSkbjnB9TSpQpYo40igwsMtp8h6m6MgIoEZKpSqatCgQboOAf4V\nfmD+sjP/WavKKVhstKhZjHD62pnxU1ZFZcn+8V9xs8Xmpg5YBQWGzMfG+KQ4i+OkO+8mzGpc\n/Hr6xIe7JQqOiISW/xlazYq7qGxY1lSp2k2ZhvuM7ljXHN9WdO0PcRbHSY//PD6y0+AB3TtU\ndzT7qFu2+EXQr8f8LtySK0eaHNpMcDPwsQ+NOnv2LBGRZa32dV9cvP/cf9OiI5sFto5OTk5O\n1uWERZ87e/ZsbYRoiFhJ1E/rzxdYjDfh3tbIbDkR8Yyseo8b39BZ+Oj6Ob9z94hIfGPDtdTm\n3lbF/FygCCgdoRPK+0yNVm0fHTl3K3B/+G8HrRycKzk7qDJusHjxYk2HZ8BUTdL/l5mjzw9f\nY2ExlD7xoeujJSwRGZm4LNm20qPQP5eMS5PvVm2rPGPMotcSVi55se56/DJvLJaD0gRzsLTs\n7YM/zwZdvX3nQUKWvO5Pe5Y3/fivpDT10aoFq26/Sv1wIO76HwE3/neu0Xfjfxr9bUEpfQOB\nJD3oF4925WlfOhHd2hTAbR/x0bsGJ0/e8yBR2bZ06VfIm4ji8JnXypbIG2lLKGU6N7C7HvKO\nU0j8X6cPq2JRbP+Ux7uUQ6uWX32n+egMRN++fXUdAuRKfeG3PAA7NeiAiajxqq2LNq3wDY2M\nXzVhSs+RIzr5NLYzKaCADZQMJgPpldb9XE5ufkREN9aufLpnlZtFUYkZedaLtavClG3nTp3+\n/YCTBqy/qmw2rlvARFL4CO4zusMb/fPUiAlr4qQsx7G3Aw/c+c3P2qG8o0jk6OhoStlicXx8\nfPy79ymKD6lNvlBkz8lkAAAgAElEQVQ0ZcVoAx710IJ9+/Z9dITjZIlxMYlxMTqJp4x489u2\n91KWiHh8y54Tp7VvXDvvo7sHHykbNQYuGfStKxHV8mgkyhq/9o9YjlOcOBPtPfwrncRsMFA6\nQvs+us9wnCJFHJMixk1GH9lUb7Fw+RRT1eojAuiVu6deKRueU+cWnqHPJbSuO39ywzG+t4jo\n5Ym75N2p6P4AegVzsLSGY9OPrFl4/PqLIvooZAnLJy++l/LxLtgcx4af3/JDDm/9JIMtYIAk\nPeiXCt8OFeyfL+O4jNizS443WNyvQf5P7+1fGCfNXWDp9n3B9RijL668lZ67UWi3js4ajRZA\n7dzGjLYKXZ7KKi4u3dVj14yiq/Ky0nfrVoYSEcPwe0+oo60YAdTmr62XlVXUTEXu/QZ0rVXZ\n2cHGHCMZWhAYGEhEHq17paQeiXgfd3Lbz6e2C63tbG1t7WxsrYyLvPNgwZ8qMBlIr5T3mV59\nz7jIbLk8O3L+uHnDp0/q3KhqgT1j71/esm7X4ywZEfGFoondqiiPp797fuHg+lNRaUQkNG/Q\nw95UW7GXYrjP6JCpqNkva6YuW7L1aXIOEXGcIlkcmyyOfRpRQGehVY3xCxd6OX281B5A/934\n7Y2yUX/i6iFt8737c/LjsZlExDDMiI6V8w5/PWwQ/bGaiN6H3SUk6b8ASkdAmdKxY0eV+/Id\nKlZxrfZVvVqumLUCpdRlcTYRMQx/bBOV0pCir8cJmHAZx2XFXyZCkh4MHOZglQQn2/PTpPOP\nk4vudW/nQmWG3timVrs2DSvZ8KKeP4sIvxubJSOiF5c2HfBpOKy2Ya6XQJIe9IvArM7Epg4b\nboiJ6K7/oh9e9ejS0tOtpguXFnc76MiewNwl8jwjmxEetp+eHh12ePauW8q2uXNPH6uC6+ED\n6C2hRaOVE30mbr6S/T5k0iz+nNnjPEQFl4d99+ja3k1b76dLiahmryWdPqliCqD/zsVkEJGx\ndaNdOxeoslE0qMvOnTs/OsJx0uSEuOSEOJ3EA6BRPIFo/rzeYxYel3KcNP35zqVTjlRwa1yn\nmkgkEolEZiQRvxe/F7+PenT7UUyK8hSGYdpNXFrdhE9EWXF7Bo07z31Yc/zNlIm4W6kC9xnd\nsnD1WbXHI/DY8cCLV95myArsIzBzatmxc7/+3zkKUeHgS02YMEHXIZRFoWk5RMQwwumtKuQ/\nLkn5I0HGEpHQ0tst36bdQksvOwEvUaaQpl0n6qflaA0JSkfoxLRp03QdQhk1fvx4XYcAoD1v\nclgi4htXcRCoVGWJJ7B3MeE/z5azUvwJgFIGc7C0IzJgSV6G3sTerXu3bxu4u4oq2+Xvw+bE\n+P4vlohMbJr/snNmpQ8V+FjJux1zZgZFpRFR4Oqdww7N0W7sWoIkPeidlj8uuTh0yrNMGRH9\nExawLizg0z6uXec4CnOfFTi5JCkp6U3k47D/nf89/KXyIMMzGb0Eb92g19LT0ws8btV05NJs\nwdI9l1L/+XPe2Bt1m/k0rVfDydHR0dHRlMmOj4uLe/fu72u/XY14q+zv2WPqgsF1tRh4WcRK\nc/hCTPpRv3ipgoiazp2MDD0YvJjAhXOPRhGRsWWzvdsm6jqcMse23oDNcxSzfU+lyBVElP72\n6Z9vnxbWmeEZtxu9fMKHlI9CkZWXoa/RadoUlLaDUoIncOgyeNJ3A0e+evbkyZNn7xJSMzIy\nZGRkbm5uZV++Zs1abrVczLAKRE06dOig6xDKIuWTpJFp1Y+eJJMfhCgb1u7tPjqlotAoUSZl\nZZgtBKVP69atdR0CABg+SyNegozlFFmqn5Kt4IiIGIGmYgLQDMzB0gKOTVl1JHcXKgfPPhsW\nDLIoaAQ44e7eTJYjotpTR1XKt0ce36T8uFWLbg6YmSJX5KT+dTo+q5chLlNEkh70Dl/ovHzr\nwsVTlz9K/XgLCiWr6u2XD/m31n3MxfmTdj/P34FheG3HrmwlQiVS0GsDBw4stg/HZt0P/e1+\n6G+FdeDxrTIf/z5n1u9Ve82ciLSBmnDy5L+CQx8+jHj0JDIlMzMrK1vGcufOnSMiaXr4meB0\nLx/vShZ4/VADWwFPLGUblDfAByw9hwV/2icRJ6elpRERX1pobhg0qnyzQbt2ee7bse9y+D/s\nh6T7pyq4ew0dO6GZi8VHx82canTpN3xgGw8Nh2k4cJ/REwzP1KWWp0stT10HAqB+pjxGouA4\nhfyj48/P585mdula6aOPpLn3f0xP+SK4wwOoQpr6RmhVUddRAHweFxN+goxlpXH3MmX1yxU/\n8CXPevRGqiAigWkNzUcHAKVMwt/bxFKWiARmbqvnDywwQ09ED4/nblffsKr5Rx/xTb6a2tB+\nyU0xEQX/FtvLELesQpIe9JGxbb0Ve7dfPLI/IOiGOPPf8ow8gU27PoMH92lTxJoPI9PyPcfP\nG+RTRSuRAuiYgk199iyViJgUqa5jMRBPr53esetoVGrB30825+WR3YeP7dvv8/2YyX29sfz7\nC7W2Nj4mznojYXUdSJmDBX/aZ9e4MgVEExEriX6UJfcww0O4DpjYu0+Yv3a4OPLq9TtPnjx5\nFfs+IzMjW0YWFpZWduXd3N3rNWnhWc3+o7NM7Xps2NbfpaIDbvmfBfcZANA0F1Oj5HQpm/Mq\nVso65+3awMn8X6Upm91dLPP35xTZURI5EfEEH9/q4bPgDq99qMlUirCSxDuh10JCQq4/iDrz\n66+6Dgfg87R1tQy/n0BEe48+3jyqXrH9n53craw6ZllN9crhANomk+UmmAQCrLnSquizkcpG\ntQGT7I0K2USDkx9/k6FsMgUNu1Tv70Y3xUSUePMpIUkPoDU8oX3nYTM7D5W+fPo0LiEpkxWU\nr+DsXLmStUnBOyYyDCNyqd2kafOuPTo4FtIHAKBod/0XLD5+v9huCjb1T3/fx5Hx2+b1NkLS\n5gu0GuR+bN3tv/wfDv2hqa5jAdAsW4+pzazDr6dIiOhg0Js1ParqOqKyy1RUvX236u27qdqf\nb1zJFYugACCflJQUZYNhBFZW5XQbTFnWrny5u+lSjlNsvhS76rvKyoOJ93fESZUb0jdz/++U\nuNR//HIUHBEZW3yt/WgBvgRqMuk/js16dCs0JCQk9GaEsmYvQGlUa1BDuh9ERK/PLztSZ8uA\npk5FdBbfObEkIHfnWc+BbkX0BNCtXr16KRt7Tp8VCQpJFYMGhETn7vbbuWWhNxNJ0oV4ae7y\nrQKXcZnaNyO6SkTStFtEXdQfpa4hSQ/6jRG61KrrUmQXp2+mb29sbG1tXc4Ev89QmijLp4P+\niLm0KS9Dz/AtWrTxqVH9K8HDIzuu/btppZFZrTrO5R7GZhJR3E2/eUdrrxmA95CSK99ybpez\nwy9cXX2yza4+9bGkCQwaI5y+dmb8lFVRWbJ//FfcbLG5qYOJrmMCAMPx8m7wtfB7j5+/SklL\nz2Z5VtbWlb/yaNTUx8ezqq5DM0BDhgxRNoTl6p06uoyIVq9eXeKrzZ49Wz1hlT3uwxvQ3D+J\n6MneuSfs5ndqVCP7TfjqVcHKTyu065O/c3r0tYWLgpRtuyaNtBspwJdCTSb9xcmjHtwICQm5\nFno7ASXioPSzrjm+rejaH+IsjpMe/3l8ZKfBA7p3qP7JJtDZ4hdBvx7zu3BLznFEZOrQZoKb\ntS7iBQC99jJHTkQMI/SyFBbWJ+7KVWWDZ2Tdydb40w58Ye6yCVYar4EYdQ9PdVDqCa2cna10\nHQQAlHKsJHrhzj+VbasaLWf+OKGukykRRYoD8ncTmNVZse3Q9WMrVh69Q0TPTi5+1uNwTVP8\nMS0pRjBi5ZLEHxccXjT2WadBowZ3ccJ4k7r5+/srG92/H1AOOzTolImo8aqtizat8A2NjF81\nYUrPkSM6+TS2Q/kfAPgykoSH637+5UZkUv6DyQnxryKfXb14xq9Gix9+muphU8BgB6hRWFiY\nrkMoi6zdx3nZ/hWWJOHY9MMrZ/szDJe75TwxPJPRfXK3wMsWX1y95vz9f2JZjiMihuH3+b6q\nrmIGKBnUZNJDcf/cDQm5evVaWExyzqefMgyvohvmA0FpxBv989SICWvipCzHsbcDD9z5zc/a\nobyjSOTo6GhK2WJxfHx8/Lv3KYoPf3P5QtGUFaOxNhkAPiWWKoiIJ7AvohLtzUvvlI1y5fuZ\nFLTJNcPLfZlVyJI+/dQAYCgcAACA3l7emihTEJGxVaP1q6YXuk0OETFGzfovmvpmzMZrcRyb\ntfN8zLq+Rdf7gEKdPXuWiGq0avvoyLlbgfvDfzto5eBcydlBoEIqefHixZoOzzAcP35c2WjX\ntz+S9LoVGBhIRB6te6WkHol4H3dy28+ntgut7Wxtbe1sbK2Mi/zpYJ2lGmWkpso5VWuQWllb\n47+NenDSa6E3Velo1/BrdzPsFKiqnJS7U8cve5dT6NK9hOeh88e+XLBzgyfy9GBwGMZk8srJ\nLyavU9a35/Ld22v2XlDnw50kJyX87vM3eR9VbT/Xxwr/HaC0QU0mvZEW++zq1eDgkKvP36YX\n2EFUrd4337T8xrtFVXv8jKBUMhU1+2XN1GVLtj5NziEijlMki2OTxbFPIwroLLSqMX7hQi+n\nj5faAwAQUTk+I1FwHFfAbDYljk09I85Stp271iuwDysTKxs8ga3aI9QHSNIDAADQ9V9fKxve\nsyYVlaH/wHvM4I3XfIno7eVwQpK+pPbt25f/S45TpIhjUsQxuoqnbOLY9IWL1yjby5Yt020w\nhm3nzp0fHeE4aXJCXHJCXIH9Qb1i7wb5nbsSGfnifVqh74ef8g/41QKzWz4XJ38UFhT8V3gM\n02fVTI/cY4pMX19fVc5usvGQuwvKZKmI2zFrTf4MvbCcTeUqVS2Z9FfRr5MypMqDrCR29Q+b\n/PfOLGL5AnyWmjVrKhtGprmlFydMmKC7cMo0s/LeGzZb7tq6N/hhtHJJH8/I3KvbqB8G1fm0\nM8MYNew4+qexTbQepqEZOnRoyU6sPmzVglbl1RtM2YGaTLqVk/w6LORqyNWQvyMLrrVrXamW\nt/c3Lb29azhbajk2ALWzcPVZtccj8NjxwItX3mbICuwjMHNq2bFzv/7fOQpxIwKAglUQGiXK\npJw8KVbKOhd0r8h4cyxbkTvR9tumDgVeRJaZuzstX1joxvalGpL0AAB6Kiv1/dt3iTKVV/vV\ncKuFPEKJhaTmEBHDMx7ubqNKf6GVt0i4TixlpamhRH01HB2ARsnv37+v6xgANCvy/Lof9oRw\nKv9JzSNA3cbPJL5/ce3Wg0/jsojIwbPH557OMHxLFabKgVJq5L7/xeUuOzAyqzRw8g+9vFzz\nPo2+eXbtxkPRGTIiyk64tvHu8B8a2usmUIPz6YyTDh066CQSICKz8vWmLd80PjnudXwi39yh\norODkPnPS5GRmWszb8sKVWs0afZNrYrmuorTkCQnJ5fsxPTCy35AsVCTSSfY7ITw0KshIVdv\nPHzJFvIkyReKlvququOCP7JgUHgChy6DJ303cOSrZ0+ePHn2LiE1IyNDRkbm5uZW9uVr1qzl\nVsvFrKDC1AAAebxsjR9mSjmOO/kibVqtAobcnxwMVzb4JlXaWBdc7Ep87W9lw9imuYbi1C0k\n6QEA9AsnTzq9d+eFq3eT0j9jqR9htd+XiZcqiIhvXFn176GTgC+Wsqz0nSbjMnDTpk3TdQgA\n2oN1lroiTQ2bt/c/GXo+X9XVHh9leqBod4+vWXYkrLAh7DyNGzdMT06Kf/M6WZKbrWEYfquu\nfRvUqV27trudGdbiqCry8F/KBl8oWrJrfR1LYf5PqzTtvm5XjUnDfnonZYno3qG71PBbHUQJ\noBXGNk5f2RS8tsa84qC5M7UcDvyHkZmtrbkREdmaYhCy5FCTSZs4NjPixrXgkJCw8MdZbAEP\nNuZO1Vu0aPH7qQNExPAskKEHQ8XwTF1qebrU8tR1IABQKnm0K0/70ono1qYAbvuIj4ZXOHny\nngeJyralS79CBl8Uh8/klr8VedfQWKS6hOdjAAA9wrGZG6dO+jMmowTnGmPh2Rcox2ekck4h\nS+CIVEzIxMlYImJ4phoNzLC1bt1a1yEAaA/WWerKk10HJQqOiExFtUeMHdjgK1eRNW7d6hd5\n3nexf2jelzwjy9p1rAvsuWDBIiLiFJJnt0P89+2//zaL49iXEtG0JgWUp4Yi/O9FmrJRudvs\njzL0SgJz91m9q04/8oKIsuL+IEKSHgDUYMuWLUV+zqUlxL979zbmVUTQ5fBsBccpTPv88HP7\ngpZPAegXThZ578bVkJCrYXeSCir8YObg6tWiRQvvFg2qOxGRMkkPAAAABarw7VDB/vkyjsuI\nPbvkeIPF/Rrk//Te/oVx0ty/tm7fuxV4heiLK2+l5+7j1q2js0aj1RUk6QEA9MibSz/nz9AL\nzKxEthYq5owFWO33BZpaCH9PlijkyUFJkg62JsX2l6ZfF0tZIhKUq6v56AAAoOR+v59MRELL\nRtt2zLdDKXXNkCSFzdubm6Fn+GadBo/p0bGlyLSoNfEMz8StSfuljbyPr5p+5Ma7l0EbF9s7\nLu5XWyvxGojIbLmy4dOxUmF9nL9tS0deEJFc8ko7URk8f39/ZaP79wPKoYoVlEmVK1curkeV\n2kRE3Qf0e35i/+ZT16K3zR2XuWZXzxpWWgjPUKEmkxaMH9I/NlX66XET2yrNW7Tw9m7hWdMZ\n930AgNLr3dtYmTrGBJydDTNbrHYCszoTmzpsuCEmorv+i3541aNLS0+3mi5cWtztoCN7AnOX\nyPOMbEZ42H56enTY4dm7binb5s49fawKrodf2iFJDwCgR/53MlLZcGvVd8zg7tXtsWmilrTz\ncfw9IJqITmwK7rC4+NWujw4dUjbsGmBpLACAXovIkhGRx8SxyNBrzoUl25XlChh+uTGrdnSu\nqWoahuGZfT93c/KkYRdjMv4+sjj028MtbIqfKgdK72UKZaOeuaCwPnmzCTmFRBsxlQHHjx9X\nNtr17Y8kvdYkJuZWwrSxsyvxrZxj02fNWaps+/r6qiMuKIaJfY0hMzeap486cC/h8PzFjQ6t\nrWyMPU1KCDWZtOCjDL3QumJzrxYtvL0buVfCQyQAgAFYMHmiWq5z7tw5tVynLGj545KLQ6c8\ny5QR0T9hAevCAj7t49p1jqMw9y8tJ5ckJSW9iXwc9r/zv4e/VB5keCajl/TTWsxahiQ9AIAe\nCU2TEpGNx8DV0wvbiAU0okrP7wVn18g4LuHutpWnrGb1albEoGvc7aNLg2KV7W8HuGopRAAw\naKw0hy80zEnBOpej4Ijoazes3tMUafqtw6/Sle1G49aonqHPxQiHL58YNGyNgpPuXHK6xYaB\n6g/RQLFc7i655oU/tfCMMONT2zg2feHiNcr2smXLdBuMwRg+fLiysef0WZGggGQZp8g+cPDY\nR50/IX/27JlG4oOi8LrMme7Xf75c8mLdqVcbBlbTdTwAxWP4Zh2GzhjTrQnmYoEB69q1q3ov\niLQlAHyKL3RevnXh4qnLH6XmFNjBqnr75UP+rXUfc3H+pN3P83dgGF7bsStbiQx210Ik6QEA\n9EiaXEFELSd/hzdBLRNaec1pW3HZ5Rgiuu63cuQtn/FDutV2+28CnmMT415dDTzpd/66cljc\nxm1YTycznQRskMT/3P7rdsSzZ8/evE/OyMiQyHkWFhaWto41a7nX9mzWzAO1pMBwcPLkv4JD\nHz6MePQkMiUzMysrW8ZyykENaXr4meB0Lx/vShaFLo2Fz1Ld1CgiUybndB2H4Xr3x3EFxxGR\n0KLR3G8LrbteBBMbr2EulvuiUlOjjgcm9Opsj8X0UKrJ79+/r+sYyh5OEhCQuy6n8CQ96IbA\nrI6PlfGfKZK3ly7RwPG6DgegeBybdXHf8uuXPVq1atXK55uqeDIBAAAoKWPbeiv2br94ZH9A\n0A1xpizvOE9g067P4MF92pjxCs2EGJmW7zl+3iCfKlqJVDeQpAcA0COVjfnPs+VVzHBz1oFG\nE327xow79zSFiJKeBq+YF8zwTRzMcwvJzpkx8fXrtxlSNq+/sVXdpUu76SZWg5P8PHjzjkO3\nI99/dDwzPSXubczziNvnT/rZuXoOHje1tZuNTiIEUKOn107v2HU0qqANL4mIzXl5ZPfhY/v2\n+3w/ZnJfbyzf+XKdXS0jHibeeZLaxQsDrBrx9H9xykalroOMSvob26xf1X0r7xPRxdOvO4+t\noa7YAABAH1Q3MfqTSJpxkwhJeo1ATSa1qGJnEp347+4wKTGPAvwenT20vUrtr1u3btXSu5GN\nEGXvAQBKsYmz51pjFzxd4AntOw+b2Xmo9OXTp3EJSZmsoHwFZ+fKlaxNCt4IiWEYkUvtJk2b\nd+3RwbGQPgYDeSAAAD3SUmT2PDrtQXx2G2u8YGsbwzMbuXKz7fY1By49VB7hWIk4NffTx5Ex\n+Tvb1Gw9b/6EKob+lKAdj8+uX7A/WMYVs8o1MeruxtmjHgxfPq17Le0EBqAJd/0XLD5e/ApL\nBZv6p7/v48j4bfN6lzjrCUoNJvXkjdvzeLefpPmPJgy+m+oXlpRbts6zlVOJL2Ll5kV0n4gS\nbt0kJOkBAAxLVI6ciDg2Q9eBGAjUZNKQzfuOvoq4ERwccvVaeIIkd4I+x7GvHobtexh2YKtl\nvebftGrVysvzKwGeKKH0+8JNeZ5cOXb0ymPuw0gOw2B8DEqBBk2aFrhxEmgJI3SpVdelyC5O\n30zf3tjY2tq6nElZSV6XlX8nAECp0Gyk5+6Fwbe3nOU2D8NLn/YxfKuek1Y0bxUWcO78lVtP\nJGwBaWN7l/qdu3bv2toTr+VqER+6c+7+4Lz3OosKNRvXqS4SiUQOIguBLD4uLi4u7kVE+JPY\ndCLiONmV/XMtHHeNbCbSadQAJRRzaVNehp7hW7Ro41Oj+leCh0d2XIvL62NkVquOc7mHsZlE\nFHfTb97R2msGuBV8OVCNWfkuywfcmud/beZ6N9/p3yFPr3ZvP5SZqW9eRD6AMTEpqpKBwCR3\nixlpejjRYLUFBwAAuiZNu3UlJYeIeMLyuo7FEKAmkwYx/Kp1vIbV8Ro6ITPiZmhwcHBY+OOs\nD8MCCnna31cv/H31whYrZ6+WrVq1bqXbYAG+UL169Up2Yk7Ss32bNly8G5t3xKxC/XHTpqop\nLgAo04RWzs5Wug5Cu5CkBwDQI/b1p/et8feJ52fm7au8eHgrYyQSdMHJw2u8h9c4Nuvl08dR\nsQkZGRnZUkU5cwtLG1ENd48KNqiWrDYKecLyTb9zuTsZfzVs6qTOTVwK+qXnXt4K3LzhQGSG\nlOMUgetX9my8zgaLi6G0YSXRC3f+qWxb1Wg588cJdZ1MiShSHJC/m8Cszopth64fW7Hy6B0i\nenZy8bMeh2ua4qH9i9Tut3R6zqqNp/cMeRTSq//Abq3qm2DQWn2SZblbw9gUXjmQ4VufOHGi\niIswRtbKBiuNK6IbAACULjnJz7bO38ByHBGZ2rbVdTilHmoyaQfDL1enefs6zdtPyHp/81pI\nSPCVm4/fKD7MLJemxl45d/jKucPKLzlOmq3gTAvfTxfAcHDsrQv7tu4PTJbnPv8zPBOfvuPG\nfd8K/wUAAEoG430AAHqF6f/zKvEPs4LPbhgWHjxkUDd3V5eKTrZIJWgfwzdz9Wjk6qHrOAxa\nfOj6aAlLREYmLku2rfSwEhbSkXFp8t2qbZVnjFn0WsLKJS/WXY9f5l3yosoAOvH28tZEmYKI\njK0arV813b6IjdAYo2b9F019M2bjtTiOzdp5PmZd36LrgUFRzp49S0RkWat93RcX7z/337To\nyGaBraOTk5OTdbnCbju5Zs+erY0QSzkrI16CjCWiRJmiorCEhS5ZmTi3xaD8IACAXjt69KhK\n/RQ5715HP7j9d9KHuVzuQ77WYFhlAGoyaR/fzKF5+97N2/fOfh91NSQ4ODjk0evkj/qwOTED\nB4xu4v1NSx+fph6V8RwDhioz5vbWjZtDn//7X8Cm5jdTp473rFhOh1EBAJR2SNIDAOgXvtC5\nS4/mwRuCMmPvbV99j4gYHl+VCakBAQHFdwLQJ3dPvVI2PKfOLTxDn0toXXf+5IZjfG8R0csT\nd8m7k6bDMzDLZ/9YyGMfm9eaMWNGsddZt26dukIqa67/+lrZ8J41qagM/QfeYwZvvOZLRG8v\nhxOS9F9g3759Hx3hOFliXExiXIxO4jE8bmZGoaksEd1IktQrV8IdcKUpt5QNvrCC2iIrMxZN\nn1roQknu35v85MmTi77O5s2b1RcUABgsVZP0/2Xm6PPD19iyquRQk0m3TB1c2/d2bd97RELU\n/eCQkOCQ0NdJkrxP5Vniv4JO/RV0ysS+6jff+LT0aVmnqp0OowVQL06R9b+jO3adDJEocutJ\n8AS2XYZPGta5EdYUAQB8ITylAQDol/AD85edeZD/CKdg2cJ6g7awkvT3SZkmFpZWFmZ4B1GX\ny+JsImIY/tgmKg3Yib4eJ2DCZRyXFX+ZCEn6z/MqMrLYPpEq9IESC0nNISKGZzzc3UaV/kIr\nb5FwnVjKSlNDifpqODqAkmvmaBaamkNEd45G0awS7m0Ze/6usiG0aKK2yMqM2NfRqnSLjlap\nGwCA2tlUb7Fw+RQUQ/4SqMmkJ+xd6/V2rdd72MSXD28EB1+5GnonUfLvgI0k4dWlMwcunTlg\nU6V2q5Yth/Vur8NQAdQi4cmVjRt23n+XlXekUqPO06YM/8q6mIUWAACgCiTpAQD0SOoLv+UB\nD3UdBfxLmhp9/sSxwKt/J6TmvpAILET1GjTu1Ov7Ri5Wuo3NALzJYYmIb1zFQaBSUUCewN7F\nhP88W85Ksf4VSp94qYKI+MaVLVRebuAk4IulLCt9p8m4DN+ECRN0HYKBq9GzKq1KJqL3t/ck\nyjfZlWDzW05+/GpuqV6Hrz3VGx4AAKhXx44dVe7Ld6hYxbXaV/VquWK15RdCTSb9wvBd6nq5\n1PUaNjHj4Qh5AQ8AACAASURBVI1rwVeCQ28/zVtkTETJ0RFn/CKQpIdSTSFNOLt3i9/vfyu4\n3N9tgVml/hOn9vauodvAAAAMCZL0AAB65K+tlzmOIyJTkXu/AV1rVXZ2sDHHaIaGSFNfXjgX\nFH4n4l1iEmNiLXIs36hlh06tG5X7MICUFXttytR1Yul/ChnI0sW3rwbeuXaxaZ8f5g7yxk/n\nS1ga8RJkLKfIKr7rB9nKgQ+mhOWUyyBvb29dhwC5yvEZqZxTyBI4IhVvHXEylogYnqlGAzN4\nHTp00HUIBs6+4Sgz/qQslmMl0csOP94wzONzryC+vi48Xapst+teSd0BGqw2bdroOgQAKIvG\njx+v6xDKItRk0k8M37yuV8e6Xh0nZIlvhgQHh4SEP3mTl9EEKL2ib53fsPngi9TcR3SGYdxb\n9Z8yrk95E75uAwMAMDBI0gMA6JFzMRlEZGzdaNfOBVZYa6BJ0df8Fqw/kyJX5H6dmpEY/+bJ\ng/DTJxotXjvHzUooz3o8d8b6jzL0eThOceOE7zzGeuXAOtoL2uC4mPATZCwrjbuXKauvwjbG\n8qxHb6QKIhKYYuK2qmbOnKnrECBXUwvh78kShTw5KEnSwdak2P7S9OvKW5CgXF3NRwdQcnzj\nSnM6VFoY+JqIXgYs9PfYPrDxZ+w6nJP89+L115Vtc+fuXe0xK0VVU6dO1XUIAACgJajJpOeM\nzEReHft6deybJX5xNSQkODj4cUyKroMCKAl5ZrT/lo2nw/7dC8/E3n3k1Gnt6znpMCqAL7F6\n9Wplw0aFUjQAWoZfSgAAPaJ88W46dzIy9BqVdN9v6trT/2bo88mKvz1/4pJkORfsu/ZltpyI\nGIZXx6fj4BHjZ8+eMWJgn+Y1bfM6Pz6xMCQlR3txG5y2rpbKxt6jj1Xp/+zkbmWpCctqqtfY\nBNAX7XwclY0Tm4JV6f/o0CFlw64BFoKDvqs7fEFlEz4RcZzsxM9T/a88V/HE7Li/V0xbqdz9\nhIj6zu+nqRABAABKM2W9N2VNJhWhJpNOmImqdegzYtVWv73rl+o6FoDPxT38w3/CsGl5GXqG\nETTrMW7P7pXI0EOpVusDAYbbQf9gJT0AgB6xFfDEUrZBeTNdB2LIODZtyYqzeQXo+CaOderW\nqFTRLlP89uXTBy8TJNK0h/O2HIm/m0hEfONK05ct/cbN7t/z+w28fX7L0t1/EBHHsf47Hrec\n00AX/w5DUGtQQ7ofRESvzy87UmfLgKZFvfWJ75xYEvBS2fYc6KaN+ADUqkrP7wVn18g4LuHu\ntpWnrGb1albEdKy420eXBsUq298OcNVSiAYhJSV30RLDCKysyuk2mLKDJ3RcMu/7sYuPSBUc\nx2YeX//j7fAew/r1rFfFqrBTODbt+u9ndu49m/xhzlz1zrO7O+NHBqXG8tk/FjKe8m8dphkz\nZhR7nXXr1qkrJAAwYKjJVOo4VKuv6xAAPoPk/aM9GzdeehCXd8SyatOJ0yY3+7C4AgAANAFJ\negAAPdLa2viYOOuNpOAS66AW4hsbX0rkyrZdvY4LZo1ytcgttM6xaRf2rN4d+DD2z+PKI01+\nWPSfDD0REa9RlymTw+9tvpdAREkRvxMhSV9C1jXHtxVd+0OcxXHS4z+Pj+w0eED3DtUdP56k\nki1+EfTrMb8Lt+QcR0SmDm0muFnrIl6ALyK08prTtuKyyzFEdN1v5chbPuOHdKvt9t8EPMcm\nxr26GnjS7/x1luOIyMZtWE8nzNz6DEOGDFE2hOXqnTq6jPKVtiuB2bNnqyesMsCufr8N09Mm\nrbugnAb3IjRgYdjZyh6NPevU9nD/ysHG2sLCnJFlp6Wlid+8iIiICA+98TZLlne6fb3v14zx\n0l34AJ/tVWRksX0iVegDAKCKdj6OvwdEE9GJTcEdFhdfZgk1mQBAVZw0LGDv9kNBaWzu3Fke\n3+LbQRNG9fQSYtkxAICGIUkPAKBHWg1yP7bu9l/+D4f+0FTXsRisiJO5NXiNTKv7Lhprn287\nIoZv2WXs8uQHg07FpBMRwzAjPO0LvEizsV6bx/9KRLL0WyxH2J2gpHijf54aMWFNnJTlOPZ2\n4IE7v/lZO5R3FIkcHR1NKVssjo+Pj3/3PuXfygdC0ZQVo7FbD5RSjSb6do0Zd+5pChElPQ1e\nMS+Y4Zs4mOcOhcyZMfH167cZ0n/naRlb1V26tJtuYjUgYWFhug6hrKjYcvQOyworffe9zJAR\nEcdx0RG3oiNuBRR3Yp2OY+aP7WyEP6YAUJwvK2CAmdCfrX///uq94NGjR9V7wbIDNZkAQBPS\nXt7cunHL9ajUvCOOddpNnTq6tqj4ih0AAPDlkKQHANAj5VvO7XJ2+IWrq0+22dWnfsHpYfhC\n/4vPUjYqdZqQP0P/AfPd+Dqn5v1FRMQIHYUFp4NN7VoS/UpEHIfBvi9iKmr2y5qpy5ZsfZqc\nQ0Qcp0gWxyaLY59GFNBZaFVj/MKFXlhVDKUWwzMbuXKz7fY1By49VB7hWIn4w3jI48iY/J1t\naraeN39CFRO+loME+BJODTqv21f/+N79gX+Ep7PFb5tbroJHn4GjenpX00JsAGrh7e2t6xDK\nNBQw0LLMzExdhwC5UJMJANSLY9ODDm3bE/CXNG9RhLFTr7GTB7atg6mzAABagyQ9AIA+YQQj\nVi5J/HHB4UVjn3UaNGpwFycz3KjVLCYnN63u2b5CgR3Mq7Qk+ouIOEVOYRfhGf1bAx/L6L+Q\nhavPqj0egceOB1688jZDVmAfgZlTy46d+/X/zlGIhCWUbgzfquekFc1bhQWcO3/l1hNJQVlM\ne5f6nbt279raU4Dby+erWbOmsmFkWlHZmDBhgu7CKYv4Js4DJs7vO/Tt/34LunXv4eOnUZkf\ndp3PY2Rm71G/fpPmrTt618YCeihdZs6cqesQAKCMQk0mAFCjn8aOihBn533p4NF6ysSBVcwF\nqSkpJbugtTX2JQQA+GwMxxW/vgEAALTj7NmzRKSQJwUcOZcqVzAMz8rBuZKzgyp5msWLF2s6\nPMPQtWtXZWPVsTPuBc2BYKVve/Qep2yfO3euwItwbHK3HkOL7gOfi1Nkv3r25MmTZ+8SUjMy\nMmRkZG5ubmVfvmbNWm61XMx4SOOAoeHYrJdPH0fFJmRkZGRLFeXMLSxtRDXcPSrYoLQgGA6O\nzXoT8zYtLT0tLU3GGFtZWllZ21Ss6ITcPACoztfXV70XxGQLFfn5+RXdgVNITp+5oGz37t27\n2AsOGTJEDWGVYRybGpCvJlMRlDWZaloJtRAVAJRGeYNj6oLBMQCAEsACTQAAPbJv3778X3Kc\nIkUckyKOKaw/fAl7QcGl7Hl8Uy1HAkoMz9SllqdLLU9dBwKgJQzfzNWjkauHruMA0CSGb1ap\nanVdRwEApRty6rpSbE6dY5PzkvRIwGsBajIBAAAAGBIk6QEAAAAAwBC8lykcCpmAVQIS8UMT\nUR11XQ0AAABALZw8vMZ7eI1DTSYAAACAUg5JegAAPTJt2jRdhwCg/7jnT5/VcHPTdRgAoHem\nzdyy0XdSYYVSPsuDoP1rd/7qd+bsl18KAAAAQO1QkwkAvsTGjRt1HQIAACBJDwCgT1q3bq3r\nEAC0QSHNSkpOlnAmDg62xvzPqMOokCb8fnDNjvNPsdsZlHY52VkFFSgtmJmZmSZjMRzpUX9M\nm0kbvixPL8+KPvDLqnPhsWoMDAAAAAAAQH+4uLjoOgQAAECSHgAAALTon+vnj527fP9xtJTj\niIhh+OVrfd2jZ5/2TVzzd5NnvX9w90FsQmpGRkZ6eoYkR5qTI0l+/zb6VUy6lNVR7ABqEHM3\n6OiFq5EvXsQlZ6l+FmalqC4t6o9ps5gNayaWLE//+ubZ1ev9YrLkag8MAAAAAAAAAAAgD5L0\nAAAAoA0cJ/11/Y/7gl/99yD79nHY1sdhtwcs/On7RkTEsWknNyw7fvW5jFN5lTFAKfEswHfW\ngVAOv9salvbi8rRZ9Ll5ek6efGa778HLEXlHBOZVNBAdAAAAwBfjpNdCb6rS0a7h1+5mAk2H\nAwAAAAAlgCQ9AECpwUpz+EJjXUdhOK79cdnSqID8DafIzGtfvny5wHPz9wEVRRya91GGPr+b\nR5auq7h7RgtHv9kTTz9PLfpSDPMZFfIB9IQkOfgnZOg1bHxb1+1/RBFR2ovL02cz69dMsC/o\nPv+p5GfBa1Zve5QgyTvi0rzXrGmDNBUoAAAAgIo4+aOwoOC/wmOYPqtm5m5BzykyfX19VTm7\nycZD7i5WmowPAAAAAEoISXoAAD3FyZP/Cg59+DDi0ZPIlMzMrKxsGcspKx5L08PPBKd7+XhX\nssCM+JI7uH1rsX02b96shUjKAnnW4yWn/8n70qa6Z+OaVco7WqWL371+9fh2RAwRXdu0rJ2w\nVl6GnmH4lnYODvb2lqZGLKtQcLxylhaWllbOru4NG3rq5p8B8AWe7PCXfsjQu7cd3P/bhlWr\nVjTjY8aJOnWcsp7H/2FrUCQRpUZemj6L2bBmvF2ReXqOy7niv2nrydC86h18oajPxJkDWtXU\nRsQAAAAAhRPfv7h268GncVlE5ODZ43NPZxh+gRPTAQAAAEAfIEkPAKCPnl47vWPX0ahUaYGf\nsjkvj+w+fGzffp/vx0zu640UD+i/mAt7PmxCz3w74qdxXZvk/72NuX5kyqrjrOT1/BUxyiPV\nvXuMHtq/lshEJ9ECaMLvj5KVjTpDVq7o7aHbYAwX037iLzzezM0XnxNRamTQtFm0Yc0EO6OC\n/1Jmxd3bvOqXsKh/q3c41m0/c+boGlZCLcULAAAAUIi7x9csOxLGFleHqXHjhunJSfFvXidL\nWOURhuG36tq3QZ3atWu725nxNR8pAAAAAJQEkvQAAHrnrv+CxcfvF9tNwab+6e/7ODJ+27ze\nhWQfAPTF/T/eKRu2tSdN7Nbko08rNRswu0Xwz9filJXAbdyG/jKzF36pwcA8zpQTEV/gMLeH\nu65jMWxMu/G+fP7sDReekjJPP5s2rP40T8/dDdzzy57AdFah/JrHt+g4YvqYLo1w8wEAAACd\nizzvu9g/NO9LnpFl7TrWBfZcsGAREXEKybPbIf779t9/m8Vx7EuJaFqTOlqKFQAAAABKBEl6\nAAD9EnNpU16GnuFbtGjjU6P6V4KHR3Zci8vrY2RWq45zuYexmUQUd9Nv3tHaawa46SbcUsjf\n31/XIZRFoak5ykb9UU0L7FB3cEu6dlzZbjGlPZJkYHiyOY6IjG3amKP+icYxrces4fHmrDv3\nmIhS/wmaNps2rp5g+yFPL0uP2vfL6sC77/JOsKrm9cPsyfWdzHQTLwAAAEA+kqSweXtzM/QM\n36zT4DE9OrYUmRa1Jp7hmbg1ab+0kffxVdOP3Hj3MmjjYnvHxf1qayVeAAAAACgJJOkBAPQI\nK4leuPNPZduqRsuZP06o62RKRJHigPzdBGZ1Vmw7dP3YipVH7xDRs5OLn/U4XNMUt3SVWFhY\n6DqEsuidNHetaguHgivYG9u2JMpN0n9jhyr3YICqmhg9z5JRcQVLQV18Rq3i837yPfuQiFL/\nCZo6h9m0aryNEfMy7NTqjf5v8+rB8oQt+02a9H1LIYPJEwAAAKAXLizZLlFwRMTwy41ZtaNz\nTSsVT2R4Zt/P3Zw8adjFmIy/jywO/fZwCxu8WwEAAADoKZ6uAwAAgH+9vbw1UaYgImOrRutX\nTVdm6AvGGDXrv2iqtxMRcWzWzvMxWgsSoATyCko7Cgte/8EXOOa1rfl4PgED1Mm5HBHlpIVK\nkabXFu8RK2b3rKdspz7/fcqcHcc3zJq62i8vQ2/mVG/m2r0z+vsgQw8AAAB6Qpp+6/CrdGW7\n0bg1qmfoczHC4csn8hiG46Q7l5xWf3wAAAAAoCZYdgkAoEeu//pa2fCeNcneqPg8pfeYwRuv\n+RLR28vh1NdFs8EBqEOhmTBG8G8TyTIwRI0mdqBpx9ic2K03xNObiXQdTlnhNWzZXP7ilSfv\nElHq84v+z3OPMwzPs/OoGSM7W2D3AQAAgEL4+fkV3YFTSFTvTERDhgz50pjKgHd/HFdwHBEJ\nLRrN/bZSCa5gYuM1zMVyX1RqatTxwIRene2xmB4AAABAHyFJDwCgR0JSc4iI4RkPd7dRpb/Q\nylskXCeWstLUUKK+Go4OAABKztJ1wI+tr639M/bqLwsa/vLLN1XMdR1RWdFs8OL5vKXLj9/O\nOyK0+mrUj7M61HMs4iwAAAA4deqUejsjSa+Kp/+LUzYqdR1kVNLJhM36Vd238j4RXTz9uvPY\nGuqKDQAAAADUCOVkAQD0SLxUQUR848qqL+xzEvCJiJW+02BYAACgDt5T1g1qUYmVvvtl6rCl\nW4+9SJIUfw6oQ5OBCxcOaJL35VffDUGGHgAAAPRTWFKOsuHZyqnEF7Fy81I2Em7dVENMAAAA\nAKABWEkPAKBHyvEZqZxTyBI4IhWz9HEylogYXuG71wMAgHatXr260M84Z1Pem2yF9HbQkdtB\nR8ys7MuXLy+ysyx65uzs2bPVHWOZ0+j7+Yt5Kxcfvk5Ej/wXrBasmN2zjq6DAgAA0GuWlpa6\nDqEseitllY365oLCezEmJkUVsReYuCob0vRwosFqCw4AAAAA1AdJegAAPdLUQvh7skQhTw5K\nknSwLX7fOGn6dbGUJSJBubqajw4AAFQSFhamYs+s1IQXqQkvNBoNfODZd+4y/uoFB8OIKOzA\nT2toxSzk6QEAAAp3+PBhXYdQFiXLFMqGjVGh0zgZvvWJEyeKuAhjZK1ssNI4NcYGAAAAAGqE\ncvcAAHqknU9u9d0Tm4JV6f/o0CFlw65BBw2FBAAAYDDq9Zq9Yrg3wzBEFHrgJ9+ACF1HBAAA\nAPAfVh9y84kfsvUlwMrEuS0GY78AAAAAegor6QEA9EiVnt8Lzq6RcVzC3W0rT1nN6tWsiL3p\n424fXRoUq2x/O8BVSyECAEBxJkyYoOsQyqjLly8X38m8fhvX+3+8SCOia/vnybNHN3IotHRN\nu3bt1BgeAAAAQLHczIxCU1kiupEkqVeuiIr3RZGm3FI2+MIKaosMAAAAANQKSXoAAD0itPKa\n07bisssxRHTdb+XIWz7jh3Sr7fbfBDzHJsa9uhp40u/8dZbjiMjGbVhPJzOdBAwAAJ/q0AHV\nTXRj8+bNn3vK9WO7rxf+KZL0AAAAoGXNHM1CU3OI6M7RKJpVr2QXiT1/V9kQWjRRW2QAAAAA\noFZI0gMA6JdGE327xow79zSFiJKeBq+YF8zwTRzMc8vczZkx8fXrtxlSNq+/sVXdpUu76SZW\ngM/3w6jhxdZbVKXPwYMH1RMQAAAAAACA3qjRsyqtSiai97f3JMo32RkVXl6vMJz8+NXcregd\nvvZUb3gAAAAAoC5I0gMA6BeGZzZy5Wbb7WsOXHqoPMKxEnFq7qePI2Pyd7ap2Xre/AlVTPha\nDhKgxFKTk9XSB6DUOX/+PBFZuHr7eFireMq9oN9ipKyRabWObd01GRoAAAAA6Av7hqPM+JOy\nWI6VRC87/HjDMI/PvYL4+rrwdKmy3a57JXUHCAAAAADqgSQ9AIDeYfhWPSetaN4qLODc+Su3\nnkhY7tM+9i71O3ft3rW1p+DzZ9UDAID27d69m4iqdK2pepI++vShvXGZArPaHdv+rMnQDIe/\nv7+uQwAAAAD4InzjSnM6VFoY+JqIXgYs9PfYPrCxSPXTc5L/Xrw+dzMfc+fuXe1NNRIlAAAA\nAHwxJOkBAPSUk4fXeA+vcWzWy6ePo2ITMjIysqWKcuYWljaiGu4eFWxMdB0gwGfo0aOHrkMA\nKH2kCo6I5DkvdR1IqWFhYaHrEAAAAAC+VN3hCyr/b9xrCctxshM/T6UpSwa2qqHKidlxf6+c\nvfJNTu4GeX3n99NkmAAAAADwRZCkBwDQawzfzNWjketn17cD0C/Dhw/XdQgA2vbkyf/Zu+/4\nqKq8D8Bn0gmG0EFBUUSqCvaCWFjLurtiw4Lu2ndV7N3XttbFtaCIurq2tYLYsZe1l13FXkDF\nBkjvJaRN5v1jQjZAEkJI7oTwPB//OHPn3Du/3JnMkfvNOXf8yhuL5v40fnx81TsnSudN/eax\n2UuTD+q5MgAAGrG0rA5XXHT4iZc/UlyWSMSXPHrTueM+OvCYww7q2yW/ul0S8YUfvPTknfc8\nPa+0LLml2+8vOKBT86hKBgBgtcUSCVf9AACgng0aNKhejpPTcuCYB86sl0MBALC2mPLWXacO\nf65s2ZXbWCy2UZ/ttt5i8z69N2vXqmVe3nqxkqULFy6cOeWHr7766qN3/zO1oKRi37Z9D//n\nlUdkuDseAEAjJqQHaEQmLijulp9Vhx1nfvVa+833rPd6AKiz+grp+19w1wX9O9TLoQAAWItM\n//T5Ydff+9PiklV3rWSLff9yyYm/b5YmogcAaNSE9ACNyIGDTxg89JwjB/aq/S5lJbOfvuuW\nB17+/Olnnmm4wgBYXUOHDq38cMqUKSGEzLz2HWr9x1jrtdlgiwEH/mlvtzwBAFhHxQt/ffSe\n+55/7aNF8VVfwm2+QZ9DjjzhoAGbRlAYAABrSEgP0Igkp11utP3+5515VJf1MlfZf8q454eP\nuG/iguIQwtixYxu8PgDqKvkN32XQDSNP6J7qWgAAWJuULp767xde/vCzL7+Z8OOSZXedr5CR\n27ZPv37b7zxw3wGbW+IeAGBtkZHqAgBY0aQPnznzuHFHnHbOIQO6VdcnXjj10dtvHv3mhCgL\nAwAAACKWsd4G+xx67D6HhkS8YMrkqQsXLlq4cGFJLDu/RX5+y1adO3eUzQMArHXMpAdoRD56\n9q5b73t+3rK/i9+0/+BzzziyU076Ct0mvvfETSMfmVxQfl+6zNwNDx96xiG7mpoJ0HiNGTMm\nhJDffc99+rVOdS0AAAAAQCoJ6QEal6J539474qYXP5mafJjZvMufzjz3gB26JB+WLPr5wZHD\nn/7Pz8mHsVisz8AjTjtx8PorBfkAAAAAAAA0QkJ6gMbom9dH3XLHY1MLS5MPew484tyhh8x6\ne/SIOx+fXhRPbmzWvs/xp5+x95YdU1cmAPUjXlyUnpWd6ioAAAAAgCgI6QEaqdKCyY/cNuLx\nd75LPkzPyY0XFiTbsVhW/4P+fPIf985Ld985gLVPonTe+2++++WXX309fuL8JUsKCpaWxBNj\nx44NIRQv+ujJNxf1333AhnmZqS4TAAAAAGgQQnqARu2XD8dedu29FXepDyHkbbzTGeecun2X\nvBRWBUCdTXjniTv+OerHBcUrbE+G9EtnjznsuIfS0vN3P/wvpx06wN9iAQAAAEDTk5bqAgCo\nVvH871966eXKCX0IoXDmlEmTpqWqJADWxCcPX3r+9fevnNCvoCy+4PWHrz/5b4+X+ntaAAAA\nAGhyhPQAjVIiPu75e088/vznx01Obui09Z5d87JCCCUFkx+4/txTr7pr4qoyHgAalcmv3HL5\no58n27H0vAF773f80LNPGtCxcp+M3F5bdGqebE//7wMXjZoQdZUAAAAAQAOz3D1Ao1Mw9bM7\nbh7x5oQ5yYfp2R0POfmsIwb2ihfNGHPbjaPeLA9s0rPa7n/8qUfvu7W1kAEav3jhLyccecac\nkrIQQn733c47d+iWHZuFECY+cMbZj/8Uli13H0IIidIPRl8zbNTHIYRYeu51jzzUo1lGyupe\nq7z66qv1eLSWvftv1ym3Hg8IAAAAAEmu9wE0IolE4VuP3nnHo68XxMv/gqrL9vufc8ZRG+dl\nhhDSszsMOfu6nXd++oYRD/6ypCRePPvJf1z+9lsDzzzzxGTSA0CjNfXV25IJfXb+tjdde1bb\njOpXtIpl7DTkr2dM+cuId6Yn4gV3Pjt5+KGbRFfo2mzkyJH1eLSeQ3sJ6QEAAABoCJa7B2hE\nrjr1uOGP/DuZ0KfnbHDE2dePvOT4ZEJfocuOB9x83y2Dd9k0+XD2N69fevJxtz7+TgrKBaDW\nPnhmUrIx4PxTa0rolxnwlz8lG1Nf/agBywIAAAAAImcmPUAjMm7y4mRjk50OPPv0P3VpXvW3\ndHpOp6POv2nnnR+/ceQjvy4tTcSXvPLA9acOHhBhpQCsnrcWFIUQYmnZx/ZuVZv+WfkD2mcN\nn1kcL17wbgiHNnB1TcSOO+5Y3VNlJXM+/Pj7ioexWFpeq3YdOnbMSy+aMWPGjFnzS5fdBSw9\nq+ORJx3eNiMtv3vrBq8YAAAAgHWSkB6gcclo1mnIqeccMqDbKnt222XwyK22e2DEDU//55cI\nCgNgTcwoLgshpGdvlJceq+UuHTPTZxbH48XTGrKuJuWiiy6qcntpwQ83nndpsp27fu+DDjn0\nD7v2y83633oGiXjRt/99dfToRz/5eUG8ePrjj79/9U0Xdmvm30oAAAAANAjL3QM0Ipv2Hzzi\nvpG1SeiTMpp3Oe6ikdedPaRjdnqDFgbAGmqeHgshlJXMTtR6l+kl8RBCLK1ZgxW1jkg8dMnl\n701eHELYevD5D91x7aF7bl05oQ8hxNKze+78h8tveeDyY3YJIRRM/fCKix8orf1bBQAAAACr\nQ0gP0IjcdMFRG+au9ry9nrsPufXeGxuiHgDqyw55WSGEstJ5L88trE3/4kUfzCyOhxAym2/Z\nsJU1dfPG3/LkxAUhhLb9jr/8qF0yalrIILb1QeefvlOHEMKCiU9f/5+ZEZUIAAAAwDpGSA/Q\nFGTldU11CQDUZK/dOyQbY255szb9v37wwWSjzVa/baCS1hEf3f1xsjH4zH1q03/A0COTjS/v\nf6ehagIAAABg3SakBwCABtfloMMzY7EQwuxPbh/2+AfxGpdSnz5u1JUv/5ps732EP8NaIy9M\nXhxCiKXn7ts6pzb9s/N3b5mRFkJYOue1hq0MAAAAgHWVkB4AABpcVn7/C/fsnGx/8MCw4y8Y\n/t+vfliywm3PE/E503546u5rT75qdDyRCCG06nnMQR1zo6+2KZlcFA8hpKU1r2md++U1S4uF\nEMqKb5SjPAAAIABJREFULXcPAAAAQINY7TsfA9Bwjj766Lrt2O2Yay/dY/36LQaA+rXtKdcP\nmnzS2AnzQwhzJ7x5zUVvxtJz2q1Xlnz2wrNPmTRp6uLieEX/7Pwtr7xy/9TU2oSslx6bV5qI\nl8z6sTDeNSd9lf3jRb9MLykLIaRltmz46gAAAABYFwnpARqRefPm1W3HRUXxVXcCIKViabnH\nDxvZ+h/X/euVL5NbEvHCmQvKn/1m4uTKnVv1GHjRJUO71CJUpmY7tch6YW5hCOHu16f+7Xcb\nrrL/tDf/mUgkQghZLfo3eHEAAAAArJMsdw+wFsvIbd2+ffv27du3buaPrgDWArH0/INOveaf\nwy7Yd6feOelVr7/edpN+R59x+d3XndkjPyvi8pqkvffplGyMv/eKcbMKa+5cOPuTK+76Jtnu\n9LuBDVsZAAAAAOuqWHKaCACNwaRJk2p8PrFw9oxp06ZO/vmrl1/9aGlZIj2n00lX/G2fXq0i\nqg+A+pOIF/w04Zsff529ePHipcVlzdfLa9GqfffefTZolZPq0pqU0oKvjz3y4gXxshBCRrMu\nx55z7n7bd6my56Rxz914w70/FZSGENIyWl378D09/Q0cAAAAAA1ASA+wViqc/d2Y+0Y+/s4v\nsbRmR1/3z4O656e6IgBopH548sqz/jWu4mGbrv122brX+uuv37Fjx9xQMH369GnTpk345N1P\nf5xT0Wf7426+5ICuqSgWAAAAgKZPSA+w9ip78rIT/vXZ7IycTW9+8IaNst23GACq9s49F1//\nzJe17NzvoAuvPGbnBq0HAAAAgHWZkB5gLVZS8OUhQy4pSyS6HnbTzUdumupyAKDx+vn9J276\n5+if5hbV0Ce3ffcjTzxzv+06R1YVAAAAAOsgIT3A2u3mow59fX5hTqt9x9x/cqprAYDGLVH8\n9fv/fu/jL8aP/3banIUFhcWxWFp2s+atO27Yo0f3vtsN2G2bzdJjqS4SAAAAgKYuI9UFALBG\nuuVkvB5C8eL/hiCkB2gUBg0aVL8HHDt2bP0ecN0Vy+rTf98+/fdNPkrEi8vSsqTyAAAAAERM\nSA+wdvuxqDSEkIgvTnUhALCWiaVnpae6BgAAAADWQWmpLgCAuite+OEb84tCCGlZ66e6FgBY\n+8SLa7pFPQAAAAA0BDPpAdZWRfO+ve2Sm+OJRAihWes9U10OAOWuuuqqNdl9/BujR73xTSKR\nSD6MxUz2rjeJ0nnvv/nul19+9fX4ifOXLCkoWFoSTyTvJlC86KMn31zUf/cBG+ZlprpMAAAA\nAJo4IT1AIzJq1Kha9Ssrmjbply/GfTq3pCy5ofdROzZgWQCsjr59+9Ztx6K53957y80vfvJr\nxZbcDfqddOYZ9VTXum7CO0/c8c9RPy4orvLZeNFPj9z10Oh779v98L+cdugAN6oHAAAAoOEI\n6QEakdqG9MvL7bD7OTu2r/diAIhOIv7hc/fedt/z80rL//oqlpaz+6EnnXT4Hs3SxMX14JOH\nL7380c9X2a0svuD1h6//ZuKM2y8anOHEAwAAANAwhPQAa7dW3Xa57OrTRTgAa68lk8fdNmLk\nu9/Nq9jSqseuZ5xx8tadm6ewqqZk8iu3VCT0sfS8XX6ze/dum2V++cgd70yv6JOR22uLTs2/\n/HVJCGH6fx+4aNTm1x3RMzXlAgAAANDUCekBGpF999231n3T23Xu0nXTzfr26mpJXoC1VKKs\n4N+j7vjnY28VlpXfgT4ts/V+x556zO+39d1eX+KFv1x25+vJdn733c47d+iWHZuFECbOfKpy\nt8zcLa65/cEPRl8zbNTHIYRvH7v82wMf6tHMP5cAAAAAqH+uOgE0IieffHKqSwAgIrPHvzHi\n5js/n1ZQsWXDbX9/5unHbtYyK4VVNT1TX71tTklZCCE7f9ubrj2rbUZatV1jGTsN+esZU/4y\n4p3piXjBnc9OHn7oJtEVCgAAAMA6Q0gPAACRKiue/fQ9tz7w0qdlifIJ9Jm5Gw455YzBA7qn\ntrAm6YNnJiUbA84/taaEfpkBf/nTiHeuDyFMffWjIKQHAAAAoAEI6QEAIDq/fPjszSPv/2FB\ncfJhLBbrvceQ0086ZP2c9NQW1lS9taAohBBLyz62d6va9M/KH9A+a/jM4njxgndDOLSBqwMA\nAABgXSSkB1iLJeKLzjnvr8n28OHDU1sMADUrXfLLw7eOeOK9iRVbctr2Pv6MM/fp2zGFVTV5\nM4rLQgjp2RvlpcdquUvHzPSZxfF48bSGrAsAAACAdZeQHmCtVjpx4sRV9wIgxRJfvvbIyDsf\nn14UTz6OxTJ3POD4U47at0Wtk2Pqpnl6rLg0UVYyOxFCLc/19JJ4CCGW1qxBCwMAAABgnSWk\nBwCABlQ46+u7R4x45YvpFVtabLzDKWeetlPXFimsat2xQ17WS/MKy0rnvTy38Letc1bZv3jR\nBzOL4yGEzOZbNnx1AAAAAKyL0lJdAAAANFGJ4vee/McJf7m4IqFPS8/77dEX3DviYgl9ZPba\nvUOyMeaWN2vT/+sHH0w22mz12wYqCQAAAIB1nJAeAADq38Kf/jvsrOP//q8XF8bLkls6bLHX\n1XfeM/Tg/llWuI9Ql4MOz4zFQgizP7l92OMfxBM1dZ4+btSVL/+abO99RNcIygMAAABgHWS5\newAAqE+J+KKXH7z97qfeL06UB8Lp2R0PPvG0I/fcQjofvaz8/hfu2fmqVyeHED54YNjxH+5+\n8lH7b95z+QA+EZ8z/ee3n3/sgWc/iCcSIYRWPY85qGNuSgoGAAAAoMmLJRI1ziUBoBFLxOft\nf+DRyfbYsWNTWwwASRedcNhXM5dWPGzXZ+DppxzZZb3MOh+wZcuW9VHXuitRVnDPhSeNnTC/\nYkssPafdemUzFxSHEHp323DSpKmLi+MVz2bnb3nDXVd0yUlPQa0AAAAArAOE9ABrMSE9QCM0\naNCg+j2gb/g1l4gveOof1/3rlS9X2bNVj4EXXTK0R35WBFUBAAAAsG6y3D0AANDExdLzDzr1\nmp33eO+psc++8eH4wqpuTd92k36/H3TAoIFbZ7otAQAAAAANSUgPAACsEzr26X9yn/4nxQt+\nmvDNj7/OXrx48dLisubr5bVo1b577z4btMpJdYEAAAAArBOE9AAAUJ9GjBiR6hKoSSw9t2uf\nbbv2SXUdAAAAAKyrhPQAAFCfNtlkk1SXwP88++yzIYS8rgN279Oylrt89vILk4vjGc023XfP\n3g1ZGgAAAADrKCE9AADQZN11110hhC6DetQ+pP/liQfvmb4kM3fzfff8W0OWBgAAAMA6SkgP\nkBrPP/98PRylbGk9HAQAqKS4LBFCKC36KdWFAAAAANA0CekBUuPOO+9MdQkA0ASNHz9+5Y1F\nc38aPz6+6p0TpfOmfvPY7OTfwCXquTIAAAAACCEI6QEAgKbkggsuWHnj9Hdvu+Dd1TtOdt6O\n9VMQAAAAACwvLdUFAAAANDrbnDgk1SUAAAAA0DSZSQ+QGk888USqSwCAJqhz586VH06ZMiWE\nkJnXvkN+Vi2PsF6bDbYYcOCf+neo/+IAAAAAIIRYIuFWiwAAQNM0aNCgEEKXQTeMPKF7qmsB\nAAAAgBAsdw8AAAAAAAAAkbHcPQAA0GT98Y9/DCHkd2+b6kIAAAAAoJzl7gEAAAAAAAAgImbS\nAwAATcT8+fOTjVgsMz+/eWqLAQAAAIAqmUkPAAA0EYMGDUo2spr3fXzUVSGEv//973U+2gUX\nXFA/ZQEAAABAJWbSAwAATdZ7772X6hIAAAAAYDlpqS4AAAAAAAAAANYVZtIDAABNRI8ePZKN\njGadk42hQ4emrhwAAAAAqIJ70gMAAAAAAABARCx3DwAAAAAAAAAREdIDAAAAAAAAQESE9AAA\nAAAAAAAQkYxUFwAAABCRxQsWlCYSteyc37JlrEGrAQAAAGCdJKQHAACauF8/efmBsW9MnPjD\nrIVFtd/r4aeeyUsX0wMAAABQz4T0AABAUzbx2eHn3P1WotYT6CtkujkYAAAAAA1ASA8AADRZ\nxQveu+ie5RL69PT0Wu6bFTONHgAAAID6J6QHAACarPH/vL+wLBFCaNZ+8+NOPHKrzbq2b9ks\n1UUBAAAAsE4T0gMAAE3WS5/PCyFktdj29jsuaZNh/XoAAAAAUs9VKgAAoMn6qqAkhNDnlBMl\n9AAAAAA0Ei5UAQAATVZRWSKEsGPP/FQXAgAAAADlhPQAAECT1a1ZRgihNJHqOgAAAABgGSE9\nAADQZP2+a4sQwsfjF6S6EAAAAAAoJ6QHAACarK1OPSgtFvvmrgcKE2bTAwAAANAoCOkBAIAm\nK3f9/a4+YsvCue+cd9NzcnoAAAAAGoNYwoUqAACgKUu88cC1I574T1bbzQ4ecuT+e/TLSY+l\nuiQAAAAA1l1CegAAoMl6+umnk41pHz/34uczQwixWGbrDh07duzYsnlWzftecMEFDV4fAAAA\nAOuejFQXAAAA0FDuvffeFbYkEiVzpk+eM31ySuoBAAAAAPekBwAAAAAAAICImEkPAAA0WUOH\nDk11CQAAAACwHPekBwAAAAAAAICIWO4eAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAi\nQnoAAAAAAAAAiEhGqgsAAACoB4MHD67DXmkZOa3atF5/41477bzzHjv3zYrVe10AAAAAsJxY\nIpFIdQ0AAABratCgQWt4hLyNtj3p7LMGdM2rl3oAAAAAoEqWuwcAAAghhEWTxt147qnPfz0/\n1YUAAAAA0JSZSQ8AADQFY8aMqcNeZSWF82ZP/XzcuKkLipNb0rM6Xf/Qrd1y0uu1OgAAAAAo\nJ6QHAADWdYmygjcevXXE6PeS/z5qu/WZ914+MNVFAQAAANA0We4eAABY18XScgcOOf9vf9w8\n+XDOp7dPWFqa2pIAAAAAaKqE9AAAACGE0GfwX7fNywohJBLF970zI9XlAAAAANA0CekBAABC\nCCHEso4+uEuyOfWl71NbCwAAAABNlZAeAACgXLsB2yYbS2e8m9pKAAAAAGiqhPQAAADlsppv\nlWzEi35NbSUAAAAANFVCegAAgHJpGa2SjbLSWamtBAAAAICmSkgPAABQriw+L9lIy2iX2koA\nAAAAaKqE9AAAAOWKF32cbKRnb5DaSgAAAABoqoT0AAAA5Wa8XR7SN2s3ILWVAAAAANBUCekB\nAABCCCFRVvivJycl2+v/tltqiwEAAACgqRLSAwAAhBDCxw9f+uni4hBCLJZ17K4dU10OAAAA\nAE1TRqoLAAAASLF44aznHrjtnue+TT5ss9XJvXL9WwkAAACABuHCEwAA0BTceuutddirrLRo\n/pwZ33z1bUE8kdySnt354gt3r8/KAAAAAKASIT0AANAUvPLKK2t+kPSs9iddM2zTnPQ1PxQA\nAAAAVElIDwAAEEII7XrvdtKpJ2/XOTfVhQAAAADQlAnpAQCApqBz58512CstIye/ZcsOXbrv\nsONO2/fpEqv3sgAAAABgebFEIpHqGgAAAAAAAABgnZCW6gIAAAAAAAAAYF0hpAcAAAAAAACA\niAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAg\nIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACI\niJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAi\nIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICI\nCOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAi\nQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiI\nkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIi\npAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI\n6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJC\negAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQ\nHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKk\nBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjp\nAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6\nAAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAe\nAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQH\nAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkB\nAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoA\nAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4A\nAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcA\nAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEA\nAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAA\nAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAA\nAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAA\nAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAA\nAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAA\nAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICIZqS4AAKBxKXlkg1SXUD8y\nj5ia6hIAYLX1OuP5VJdQP8aP+H2qSwAAAKCRMpMeAAAAAAAAACIipAcAAAAAAACAiAjpAQAA\nAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAA\nAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAA\nAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAA\nAAAAgIgI6QEAAAAAAAAgIkJ6AADWSGnBjFfH/PPUP+6/yw5bb7rR+s2zslq0arfxpj0G7jfk\n4mEj//PD/FQXuBpG92obi8VisdjeL09OdS3U0c/P/Cb5Jrbr83Sqa4FG7Yu/b5f8Zemy72up\nroW6MwrTqBiFaYQS8cWP3XD6bjv07ZCf06LtBnufNy7VFTU4QzwArBUyUl0AAABrq/jSybdf\nes6lI55YUFq23BPzZy+aP/uXH79747nRwy4+a8u9/njdLSP27pGfojLXeudv2OL6KYuS7U8W\nF2/VPDO19QDQGBiFo2EUhrVaIr7g+K03ve+LOcs2TPtpSkEqCwIAWMZMegAA6mLSKzdsucFm\np9/42IrZwPISifjnr9y/b5/Of77l7chqo8k7pF3z5PSgayYvSnUtTY1zC2sFozApZKRoOM5t\nvftxzJCKhD6vy+a777XXjn1aprYkAIAkM+kBAFhtX426YMc/3bAkXh4MZLfa7IBDD95/0N69\nunTq2D5//q8/T5w4ccKX79x5830TFxaHEMrii+8+Y7fZC9946pLdU1k3AKz9jMIAtfTpdeWL\n22+8/z++e+qkzFhqywEA+B8hPQAAq2fmB9dsdeT1pYlECCGWln3YucNvuPLETtnpFR06tuvQ\ns98Ofxh85NkXXzH6lr+d8n+3zi8tCyE8c9le1+7564U7tk9Z6WunVht22ThjcbKdHXNlEWCd\nZhSOmFEY1mqTF5UkG33+70AJPQDQqFjuHgCA1VC6dMIffntVMhtIy2h5+ZNfjfr70MrZQGVp\nWR2OOHfEhLdvaZGRFkJIJEqv/P0xxYlIC24C/u/9L39apneuv7IFWHcZhaNnFIa127IvvbQc\nl8EBgMbFvy4AAFgNr/x5v48WFiXbRz807rL9N13lLh12OuWdm5/pe+qrIYSlc1888c2p9+2x\nQcNWWVb476ceG/fVt6XNu1587nEN+1pQM5/G6DnnNF1GYVg9Po3Rc84BAGrHnxACAFBbpQXf\nHD3mp2S7814j7j1s1dlA0hYnPdFvvaxk+6X/e7O6bkVzv/nXjRcfesDvdt5miw3bt8zKzd+4\n++a7DPztn065/M3xs6vb6+dnfhOLxWKx2O6P/hBCWDzp+b37bLDn4KMuvPyaK/564wqdl874\nZOSVZ/9muy06d2idlZPXeZMeux90wp2Pv1VWy58khPnfvXXjpaftse0WG3Zsm5OTt0nPvnv+\n7sDLbn9yVkm1x6iosP+dE5Jbpn368iUnHtSvd7c2eTn5Hbpsv+vex5w+7Ou5RTXv3q7P0/V4\n2ArxwskP3XL5fgO27rJ+2+zs9TbctNdeh59y//MfJ58d3att8lUemVWwwo43bdoqtswbC1bx\nKtUo++DJe8485sAtem7atmXzrOb5nTfpvusfjhx2+yNTi+Ir9/7i79slX+7x2eXFXLJRi+SW\nXe//vrrX+P61UWcdvV/Pbl1arZeT36HLdgP2OurUqz+fVbjK4tbkva7Np7FKrTPTY7FYbps/\nJB8unfHlP648vf82m2/QJi8nr3XXHpsfdPx5o179pjaHWq3663Zuq1ZW+PLDt55w8G96dN0o\nPze7beduOw/83TEnnf3YWxNq3i+Cb4BQp7d1TUx9a9/lfk8TxS8+MPzQ32y/Saf2OVnNOm64\n6YADTrjvhfGV9ih76+FbjvpD/0027Ng8O3v9TXrtts/+F948en5pTdOf63bqaqPOpytRtvTt\nJ+48+dghew3YvusGbXLWa9Njy+32PeCwc4fdPWFVX0pUxygcjMKVGIVXZhQOwShcbtbng5KF\nnf3j/OSWZ/u1T27ZbMjb9VKYId4QDwBrKgEAQCXFD6/fNP5riJPzxfU7JP8fMhaL3Td18Wrt\nO+6as0844YQTTjjh5NP+XmWH924/Y4NqFuwNIcRiaVv97pQfl5auvONPTw9M9tlt9MSCGa9s\nk59dsVdmbu/KPZ//+0nts6p+iS67n/DxgqJRPdskH+710qSVX6isdMHw0/Zvllb13SyzWnQ9\n667/VPmjVVS48x3jE4n4U1cPyajqprbp2R1PueX9GnZv2/upejxs0o/PDe/XNqfKn6jn7075\nYlFxxTl5eOaSFfYd3rVlRefX5xdW9xLVWTDx2QO26VjlS4cQslv2uuyhz1bY5fNrt62u/4B/\nfbfy6SorXXTDiQNjVZ6WzHZ/ufHt6mpb8/d6lZ/G6rTKSAshNGv9+0Qi8fmYKzfMrnrxsy0H\nnf5dQUk91l+bc1sbcz4f9dveras7VK/9zv62mrIj+Aao89u6Jn5987fJ4+98x/iiBZ+eMKBT\nVT9d7A8XjkkkEiUF3520V9Wxa5u+h08pquLHX5NTV/Gmb/TbV1d+dk1O1/wJT+zbu1V1JWXk\nbHTZqG9qOGk9T3+uafy3ig/H6jMKG4UrMwqvzChsFK4w87P9qvtxuh3+Vr0UZohf2SqHeACg\nMsvdAwBQW/feXD5zKG+ji45Zv/lq7bvNRTfeVf2zEx86pv/Q+ytvyc1v1zKrZMbsBfFEIoSQ\nSJR9+sJtOw7In/7RNVVfTwohlBWdtethHy+bTJbffoNOnbtXPPnYuXsceuOblbs3a9EmrXD+\nkuJ4COGXN+8euM3iS8qqmDdWfuySmWftvdUtb06t2BKLZbZrmzNz1qLkw+KFP9705x1/mPTY\nM1cOrv4HDa9dtOuBw95r2XOf8884btetu2cXzfzy8w9uvvzaL+YUxoum337GLq13mHbl9u1r\nOEI9HvbHJy/e/NBhS+Pl03diaVltOrQtWTBrQUFJCGHCC7ft3HvinxPFq1tMbcz7+l/bbffn\nH5aWVmzJzW/bKjs+Y9b85L2Wi+aPv+pPW/8w/Z2Hztm5ok/7HY+58MI9QwhP3XLjtwUlIYRd\nh569c4usEMLGW6x4uTCRKL15yNbnPvZ9CCGr5Ub9+myasXTGhAnfzS0oDSHES2bdde5u7fpP\nv3qHFU9L/bzXNX4aa+Pnp8/qd9iIRCLRYcvfHHvY73ps1HbRjMnvvvj4Y69/nkgkvhh7y/Zb\nTfvos0e65az4b7q61b9a57Y6M9+/rd8eZ0wrjle8busO7YvmTFu8bErW+GeH77TD3O8/uad1\nxnKLukXwDVBfv8J1Fi+eduy2Bz7y/YLdjjvvqH322Kpr3vdffXbHFRe98fOiRCLx3LWHnrz1\nOwVX7v/AV3PbbXPo+Sfst9P2vRf9PP6Fu68c+eJ3IYQ5n48eeNIx3967zwqHrZ9Tt5I1OV1f\nYpKCAAAfyElEQVRLZz637VaHTaz0253Tol2rzMJpc8r3LS2cdNWRW+X2/PWCfm1qXREhGIWN\nwvXHKLxKRuG1fRTObT/4wgv7hBA+vOPm1+cXhhC6HXf64Pa5IYQ2fTes38IM8YZ4AKijVP6F\nAABA45PyGfCNdiZ9vGR2zrL5Fltd/kl9Hrl4Ztdm5Zc4s1tuP+ze52ctLk4+VVZS8MkrDx+9\n0/8u4A77acEKu1fM4Gk/oGsIISOny6l/+9dXP8+p3GfKK+dUHCEjp/OZNz747YzkjLT4jx+9\ndM4BW67wP8krz+EbfWzPimc32vXYF979dNbikkQiMW/Kdy8+cm2fStOGDrl7xekjFRV2/ePh\n6bFY7yOGLyotq9yhdOkvh2/cItknf5OLqtu9ujl8dTvs0jmvdVw2ozG71RbXPPDizMLkRJyy\nbz947vg9Nl7hnKw8h+/uXbfceJn3FxYlaq20cNLANs2Sh42lZR941k3jfpibfKp40ZSxd/+1\n97LzGUvLvu3ruSsfYXDb3GSHqyctrO50paXnhRAycrpecf+bS+LlZyZeNPXOi4ekLZvV13LT\nK1Y+eL281zV8GmuWnMOXkdOlQ1Z6COHQYU+WLPeuJr59cWSnZXOqNjn4vvqtP1Hjua1ZyZIv\n+y5bTztrve6X3T126pKSRCKRKCv6+at/n7Jf34rX3fHy5aZnRfANsOanpc4qptllt8tJS8+9\n9JHlvjzjxTOGdM6r/Iu24ym3LY5XfsvLHjquR/Kp9OwNCuKJ5Xdfo1NXwzS7NTldf9u6XfKp\ntMzWZ193/49zyr86ihfPeHzkRW0zyz+9LboMre6kpXwGfOOcSW8UrvNn0ii8AqNwDYzCTWwU\nTlRac2K/z2au/OyaFGaIr8MQDwBUJqQHAFhOysP1RhvSL552R8Ulm7O+n1ePR57+36PKL/dk\ntBrzQxVXJOPFMw5qV37Jcqfbqr0gG0LIaNZ17MQVr1Ilygp3XXa9KbP5FmN/quIlnv6/PSpf\nRFshHpg/8caKxVoHDXsmvtLuxQvHn7xN+UWrjJxNfipcbtnJyhXmbXRkQbxspQMkZn16drJD\nLC1zhQ6rjAfqdtjb+69ffuEvf8d3Zi1d6aSVXH9w18rnZOV4oM4+/L9+5VXFMi56cuLKHQpm\nvrXjsrcsb8MqLvPVJh4IIaRltHyoqnTh+ZN7lXdIX2+Fd7Me3+uqP42r0qrS5LY+Q5+sss/0\nd65MFhmLxW7+ebmXWMP6E2sQDzwzuPwDk5nb64XJVSzEPWL/LuUdmnWvfJG6wb8B6uO01FnF\nFfwQwrZ/fW/lDlNeO7CiQ8tup5Ws9HtctPD9iuLHzCqo/NQanrrqruCvyekqXvxZxYrfp4z9\neeWSvnvokOSzsVjsw0XFK3dICOmrYRSu86+wUXgFRuEaGIVX3nGtHoUTNYb0a1iYIX4FtRni\nAYDKllvdCAAAqlO04L2K9m9aV33/1KSCgoIlNSpKLNf/1+e+SDba9RtxSNe8lQ+Yltn+zL3L\n7/K4aOKiGl564O0v7rdpixU2Tv/g1LeXrb152tiX9tu4ipfY/2+vnrxZy5W3Jz15/I2JRCKE\n0HGn6565cNDK/w+dmddzxFsvd87OCCGUFv50/JM/V3eoIY/eWOUNIFv3uSDZSJSVfF9pDcla\nWt3DFi1448wPpifbp4x9cpeVb4gbyzjrodd65WaubiWrlIgvOv6Wr5PtzY4ec82BVdyes1m7\nXZ8ce0qyvWjy7SMn1/Sm16DfRS8eWdVdM3e//KJkoyy+eErRcqsr1+N7XeWnsfYycro8P3xQ\nlU912OXS23buGEJIJBI3n/Z6A9W/WkqXTjj2mfJDHXTvc/t2rmIh7lNGv5acYlWy9LurJy2s\n2N7Q3wAhdaelslh6s1EXbr/y9tZ9h1S0D3zo4oyVfo+z8nbabr3y38Qflv9yqMdTV9manK7C\nuS8k18qOxTJv+kOXlQ/e9ZDhyYm/Xbp0+WRxg6zj3VQZhYNRuD4YhWvJKFyhaYzCVaqvwgzx\nSYZ4AFhdQnoAAGqlZOHcinbnZet8Vqlbqxbr1eiQL2ZV7t/j+FGfffbZZ5999tZTB1d3zMSy\nO7aGRHVdQlp67h2HV3Gt+bOrXkk2mnf4040DN6hm7/S/PnhINS+94Kz3yq+kn/XIidW9embz\nrR48vHwO0xd/e7vq18hsO7yaO92mZbavWMe42lvyVqMOh/3lycuKyxIhhGZt/nDDrutXfdic\nTe46qttq1rJqi6fe+uWSkhBCLJY2/MZ9q+u2/q437LdsMd777plYhxeKxdL/ce42VT6V02qv\ninZZpe31+F5X92msvU57jexS/S/aIbeVf1ynvHZuxY9Qj/Wvrhn/vWBuSVkIITO35z2HbFJl\nn/ScbldtuWHLli1btmz55cf/+z5p6G+AFJ6Wypq3/9PKty4OIaRndapoX7Bl1Tdw3TC7fMcV\nvhzq69Qt33+NTlcsrXz2bSJRMubnKjKD9KzOPy1zYsfVu6v6Os4oHIzC9cEoXEtG4cqawCjc\noIUZ4pMM8QCwuoT0AACsttklZavuVGvNu/Ts27dv3759e3TOrbJD4ezPrnxpyiqPk9Nm/01y\nqrices/Hs5ON7iefVcPu7be9sUVGFf97vPjXEQtKy0IIGc26nrtxTVOyNj+r77JdRlfZIbfD\n0c2rmmmXVO0Tq1KHw378j++TjU77nFfD625+3u/qWlS1fn3huWSjWZsDf1/TZNDYeb/rnGz9\nMvrdOrxQTptB2+dVPQcxllb169bje13dp7H2tjh76xqebd3r/MxYLIRQuvSH5+YULium3upf\nXRNGfFleWJ8ra/g0njTup3nz5s2bN++5g/8XITT0N0AKT0tlmbmbV/3EspVjY2lZPZpVcYk/\nVP/lUF+nrrI1PF257Y9sueyL9IRt9rz5sfeLa5ccsFqMwlUyCteGUbiWjMIVmsYo3KCFGeIB\ngLqp+v8PAABgBVn5/5slNmFp6W9aZjfYS5XN+fXniT/88MMPP3z/7fivvvzslVfeXVi66kAi\nu0X/Kre/t2yV3X6HVrEwY4VYet7h7XL/OW3xCtvnf1N+bTotPe+vl15awxGK5k9ONooXj6uy\nQ2bzai7hrZk6HPaVSeU/5sZHbFxDt9wOR4ZwY92qqs6sd8tncK7XeUjNPTc+cuPw4PchhMI5\nb4dw2uq+UE7LgavutLx6fK+r+zTW3m82y6/h2bSsTju2yHpnQVEI4bHZBYPa5IR6rX91ffLF\nvGRjwwN7rPHB6vkbIIWnZTmxVf7re43ypBBCnU9dZWt4utIyOzx99o67X/d+CKFw3odnHdr/\nwpYb7bH33rsN2GWXXfpv37dbVp2D0HWeUdgoXC+MwrVkFG5qo/BK6rMwQ7whHgDqREgPAECt\nZLccGMJ9yfa/v1twyvrVrmE4tajqm7ne3aPNn7+bW+VTIYSCqePuvmf0iy++9MGn3y4oXO3b\nwYYQ0jKrWGw2UbZkWnH5+pG98rJqPsIWzauY8rXo+/LlHIsXf3711Z/XppKykrkL44kW6Ste\nqUpLr/aGu2uiDoetuDNuy41rWosyo9maX+pd0eIfy5OJ5hu3rrln843K1wUtLazLQruVlxit\npfp8r6v6NK6WrtXMuKqwaU5GMh6YPb0w9AihXutfXRWfqLzuVdw2tTYa6BsgpPS0RGPNT11l\na366dvv726PbnH72ZXdOLYqHEIrmT3ppzN0vjbk7hJC5Xqc99xu0//4HHHbwXi1XvjcvNTIK\nG4XrhVG4lozCq2utG4UbbWGVGeIBoGkT0gMAUCvN2h7cLvOYWSXxEMInN3wVdqvutrLV+mpJ\nSXVPPXX5USf87eG5y6/fm5berPOmm/Xq1af/b37X6d2/Hj/mx5qPH4tVcXE/Fvv/9u48Psrq\nXBz4mSwEENkEWZRNpSj+KFK3KljFFaoURK0W8ScqWqtWb23Fumv1WreLVay2qLUqiqLWBTdE\nsYpclKsWFQEVZUcgIBC2AMnM/WMmMV4mEZLhzTT5fv86zJz3nYdz3pnnk/f5nPMW5MZipYlE\n2IadbNPeUNpSVGnYVViX3RW+dfHU9pSxKmOMxfJyYrF4IqN7WZaf7HuHJyc1oYn4xmp90naP\nfwbnOu3VuF02xb9n2MsnsXRTqgBWi9fq2rK1XLmNq7NWbMf9AoQ6+hUul5GhqygTw5V76og/\nDzz7vNH3Pjx+/Pg3P/iytOw3ZMu6xa+Mve+Vsfdd1vknd/z1wfOOzfzztuswWXi7ZPlXWBZO\nSxauNlm4GrI2sHJSPADUeYr0AABsk1hOo6u7tbhkxooQwpJJ/1G4ZUbr/DTPjq1MIr7++ZXp\nb/JOvf64wTe8lmwXNN/rF8NO633gAfvvv9/eXTs2Knus5tSZN1c37ryOBblzi0tCCLPXba66\n7+wNaVaoNNmjSbLRrNN1q+ddX80wsswPGuV9tG5zCGHV/PWh+y6VdSspnpfh2kByPKeGEML6\neaur7rlxyfJkI6/RDzIbQ2Wyaq5nbtgSQqMqOny0LnWntdluqYeV1mL8e5WtOFw/b/32Hrtj\nfwGybFoza0cMXaaGq2GrnhdfO/Lia0duWDp74hv/fGfyO5MnT542a2EikQghrJ339vn99102\nZeE1P67patf6QxauS19hWTitrJprWbjOZ+GsDSxJigeA+mA7/qIDAKCeO+nO45ONLRtmnf73\nz7fr2ML3R8xLt0ljyYaZg/74RrK995C7lhR+/tCdNw4fMrBXt07ld6Bq6JgWDZON6c8srKpf\nYvMThRu2frlZ99R+rZvWTM5IPNng0LKHGS8Yt6CKbhsLx2X8o1sd0irZWLfoiap7zn98frLR\nYOeDMx5GWlk1129OKazi3U2rJnyxMVUeOLJl6gqvxfh7tk2VKBY9N7+KbomS9WvWrFmzZk1R\nWa0ugl+ArJrWDNpBQ5fx4Wrcdu+Bp59/+1/GvPvp/DULPnnoP3/VOj83hJCIb77jtFsy8hH1\nhyyckXiygSycVlbNtSxc57Nw1gYWpHgAqDcU6QEA2Fa7HXX/oNapm4CTLjpy/JJtXayTKF13\nwaCH075VOP2q5ZtLQwj5jfd5/9Fft6zkEYZrZhdtf7wppx2aWsbx2b33VNHtm5nXLSt7bm5F\nzfa8NNkoXj3p9dWbqjjDurnTp0yZMmXKlPc//Z7VabXuiDO6JBuLXhpVRbcvH3o24x+924B+\nycbGFc9MrHI873wuVbroOPjYjIeRVlbN9Yybqxr8OY/ckGzkNth1WJvUI41rMf6eF3ZNNgqn\n3ZbmW1Rm2m8Obt68efPmzfcdNCnVf8f/AmTVtGbQDhq6Gg7XZy889dhjjz322GMv/Hea+tbO\nu+877Mp7p/z9qOQ/1y68tyTDi4TrOFm4znyFZeG0smquZeGK6mQWztrAghQPAPWGIj0AANss\nlj/qkbOTzdLNX//ioBMnLdqGCkFi060/7/XM1+l7rvtyZbJR0OzwnSpZGhLfUjjif5ZXJ+AQ\nQgg9rh6Y+qwlD1zx9tLKut097MG0r+c32f+c9qnNIS++4u1KPyaxedghvfv06dOnT59LaxBt\nNLoO/2WysaFw3HXvp18rFi9ZcfGdn2b8o3fe7ZK9G+eHEBKJ0kuueKOybksnj3h6RWpJ5akX\nRLTRblbN9Tczr3xk/tq0b5Vumn/2NR8k27se+J+Nyv6qq8X4Oxx/aW4sFkIoXv3mpW8uqaRX\n/I9jU09O3WtY6kmlEfwCZNW0ZtAOGroaDtfsG389dOjQoUOHDjtrTGWHtj2sb3m7imISacjC\ndeUrLAunlVVzLQt/e1gdzcJZG1iQ4gGg3lCkBwBgO+zeb9QT5/VIttcvnthv7/1vfvj1zZWv\nk1j9xZtnHNrlin/MCSHkx9LcY9q5a4tko3jVq4Vb4lt3SMQ3jBx6yCfrU3uKxtP1qVqrnrcd\nW7bX7sgT+r+arqTx9h0n3VDJXfIQwjX3pZadzR59wvUvf5W2z0s3Dnhm2YYQQm5+q7tO7rK9\nQUZsp3bnjejaPNm+vd9pHxaleU7wwxf2nbymqkU21RPLbfa3X3ZLtmePPvGmV9Ps9Ltx+VuD\nTrg72W7S/uyr9mxW2dk2xzO8SCd75joR33LREcPmbLU9dSK+4aaTDp+2NjVl595/UsV3Mxj/\ndo1tw10G/bFnagvlvw4a/M6K4q37TP1jv+QjsWM5BbcM7Jh8MYJfgJBN05pBO27oajJce5ya\nmtnVc658/us0W5eHECb96fFko2HLnxZkZjflekQWrhtfYVm4Mtkz17JwUt3OwlkbmBQPAPWE\nIj0AANvn5/dOuaxf6n7NlvWfXTXsmDbd+lx4xS3PT5o68/O5hauKVixdNPvj98aO/q+zBxzU\nuttRY979OoRw0Ln3TDin29Zna9n98mTZoKR43oGDb5y9osL96MTmt5+866e9Ol827svy1xa9\n+MDMSpYDViqW9/fnfpNsbl47/WfdeowY9eRX36Q+aOnMKTcM+8kRI54NITTp3CTtCTqd8OiF\n/69lCCER3/yHAXuf/Jvb35vx5frUHo6JxR9NvPKs3idc91qy86FXPN+rSf72RVgbrnplZOPc\nnBDCxpWTDut22J+e/ufqsl0pF3/y1m8H//Ds0TNisfwfNWmQfHHr6s6th/XqWubdtWkKDJU5\n6ObnezcvCCEk4puvO2HfoVf/9dMl65JvlW5c9vLf/3Bgt+PeK9oUQojlNLjp5duqONW0/1m5\n7Z+7LbJqrtfO+0evbkfe9+zbRckA4sUfTBx7yoFdrn8p9cTZDsfdecM+LXZQ/Ns7the8+JeW\n+TkhhE1F7x3T7cc3j5lQWJxaQ7Wu8LM7L/1536tfT/6z65njDt45dV1F8QuQiWGp9tW+4+y4\noavJcHU964oGObEQQiJePGS/Y0eNfX11SXnlIL7440nXn3/EoJGfJP/9o0uvr9Z/vb6ThWXh\nJFlYFq5IFq6GrLreKpLiAaCeiCUSng8DAPCtLY+3r+0QMiN/SGV7XWZCYvP9l/Q7b9Sb29I3\nltPwlOvGPnntoJWfnNfqh/eHEAZMX/5Cz9blHZ4a2u3nj32ebOfkNun+w+5tdm22ZvG8OV/O\nXb2xJISQv9MPbrrroMuHp3ZWjMVyd99zwIIvUs8Knff8UV0GTQohtOr+bOGngyoL49nLjx58\n27fbusZisSYtds3bvHrVutRtr507nvj6oxsOPnxCCOGYVxe8dlyHiodvWjX5uH37v1Xh/lcs\np2H7DrsULVu6tvjb3Ry7Drphxj+ubfDdG+nbGGHj3JyN8UQI4cN1m3vtlP+9h9fwtCGE90ed\nefAlj8bL/iLIyd+pTbvWpUXLl6/eEEKIxXKGj/6g738dPWT2yhDCP1cXH96soOLhIzo0vX1R\naifYSauL+3733aqtnH7//odcML9sgVosltO8VdtmBaVLvy4sLo2Xvzjk9nfG/PaQrQ8f0bHp\n7QvXhhBycpsccvihDbcUtb/0iUcGddrGYUmUrsnJSy1hnFtc0rkgt+K7Ecx1FVrm564qiYcQ\nfn/p0beMTN1Pj+UW7NKq6fqVKzd+ezM0NN3jZ1M/eaZ747z/c4aaxB+qHNvv9dmY3/Q8865N\nZYv/cnIbtW63a7xoWWHRt0v6mnc97eNPxnSoMObR/ALUdFiqe7Uveav/bke8GkJosde933zx\nq607bF47taDpoSGEWE6jeGn6dWmntN4pue/0TQuKruqwc/nrNRy6j289sOfv3w8hdOw3cf4r\nR1f8xJoM1wu/7DVw9PQKBzZo0apV04aJwqXL11d44vguPYfN/eBvO+emWWe3zyUvpR2Hfzuz\n7jp+R51aFpaFZWFZeCuycFp37tni0q9Wh61++moemBRfjRQPAFRkJT0AANsv1uDcuyfNnTz2\n1N7fc9NwzyOHvfzJkievHRRCaN71ivx0T1U8+eFpV/+id/JRmvHSdTP+Ne2NCRPfn/FF8g5U\nt6PPenX2hyPOfuiaY3dP9k8kSgtXpH9KaBVOvPX1l287v02D3LKTJNZ+s6y8NrBbn7PenD62\nU8H/vdNarqDFYRM/m3r+T3uUv5KIFy+ev7j8ZlZObpPTr3ko7Y3FrHXArx9+7/7Ldm+Y+l/H\nt6z/esG8ZG0gr2HHG574cPTw/VaW3Y8uH7qM2GW/cz+a/uTxZbdKE4n4qsIl8xYtK68NFLTY\n59ox/0pbGwghnHfjgFTMpeumTHrtjcnvzluTsWVVWTLXx1774su3DG+elxNCSJRuWrGssGJt\noHv/X737cZraQM3jr8nYdht656wXbuvVplHZGTYuWzS/Ym2g+4DfTZv+aIfv1mOi+QXIkmnN\nrB03dDUZrp/95b1RF/bLLVv1m4hv/mb5knkLvi6/fR+L5Rx2xjUfT3vQ7fvqk4XrxFdYFk4r\nS+ZaFq4nWThrA5PiAaA+qPTvHwAAqFrnPqc98c5pt0z/5/jxL74y8Z15Xy9bunTp+nhB27Zt\n27breOixAwafeOJhPXYv75/bsMurT40r3FK6W+emFc8Ty2124+PvXPDb5/8w8pEZn38xZ86c\nNfHG7dt3OPCI/oNPOeOUI/dJdrvhlc8P/Osdz779UWjRsXuPI6oRcP/L7pv7/897YPSYF8a/\nNmv+ksJvNjRv067Lvj8ecuaw839xbINY2NDxnDvu6BtC6LR3860Pz9+5x30vfXzZ20//7akX\nJkyaumDpslUbcjrt1bVr167d9+t9xvCzerZvXI2oatcB59z6xcAho+958KnnXvts3sI1pQ07\ndOjUd9AZF1x8fq+2jUIIX24sCSHEchp2LMhkeSCE0Kzb4Bf/9bPJT/9t3AsvTnr346XLlhdt\nyW2966577HtQ/+MHnD381HaVf+JeZz42oaTbjaMen/XV3I05Tdu1a7fvrg0zGFuWzHX/y+9f\ncMrQu//88D9efmv+kqVFJXnt2rXv2bvfKaedfUb/HlUcWJP4azi2XY7/3fuLhj39wAPPjx//\n7idzly0vTBQ0bd2u8yE/OeLkMy84qfeeWx8S2S9AlkxrBu3Qoav+cMUaXHTPK6ec+8aDjz45\nbeZXCxcuXLhw4dpEk06dO3Xu1HnP7geecvqZR/Rok4kBqO9k4X/3r3CQhSuRJXMtC9eTLJyd\ngUnxAFAf2O4eAOA7bHdPrUnES0pKSkpKGjRqnMkNr2p02tLdGxYs3lTaaJeBG1Y8l7bH1F92\nP3T0rK234aV6yjfa3d7dXIlArV3tiUTyW5zbsFF+PViZZrt7aocsjCyc3erm1V7PUjwAUJGV\n9AAAkB1iOXn5DfLyG0Rw2pINMye8OTeEkJPXvP9xvSs7dO2CuxdvKg0h7NS+0oeMblyyMYTQ\nPqPb8EJ2qrWrPRbLy8/Py8///p5AtcnCkN3q5tUuxQNAPaZIDwAA9U7Jxs9OOGFwCCGWk/9h\n0fr9dkp/Z3DcBX9KNva//vDKTjXri6IGTXp2beQvC+o+VzuQEbIwVIOrHQCoYzK5gxcAAPBv\noeEuA/u3bBRCSMS3DD5zZHE8TZ/pD180/KUFIYScvGa3H7d7mh7x4o9euHXEnNVdTh25Y8OF\nWudqBzJHFobt42oHAOoiRXoAAKiHcu7588nJ1txnft/t6NPvf27yvMWFxSWbFs2ZMXH8uMuH\n9j3grHuTHfa//KUe6Rb5XbFHm/0G/r7tURdN+HOlK/ygbnC1AxklC8N2cLUDAHVSLJFI1HYM\nAABZZMvj7Ws7hMzIH7KktkMg2z14Ye/h9/531X06HvO76S/f1iIvtvVbUx59fH2XvY/q86O6\n9WjQWtYyP3dVSTyEMGl1cd9mBbUdDimu9ijtc8lLtR1CZsy66/jaDoGsJgtnIVk4O7naAYA6\nSZEeAOA7FOmpV94Zc9N/XH37B/OLtn4rv3HHYSOuufOac3bKSVMbYAdRHgBFeuoPWTjbyMIA\nAEQmr7YDAAAAak2foVe/P/TKWe9N/nTOV3Pnzp2/aEV+k6YtWrb54UGH9ulzQKuGFiwBwI4i\nCwMAQL2lSA8AAPVczj4HH77PwZ7xmRW+2VJa2yEAECVZOIvIwgAARCantgMAAAAAAAAAgPpC\nkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAi\nivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAAR\niSUSidqOAQAAAAAAAADqBSvpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAA\nAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAA\nAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAA\nAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAA\nAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMA\nAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4A\nAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQA\nAAAAAAAAEBFFegAAAAAAAACIiCI9AAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQH\nAAAAAAAAgIgo0gMAAAAAAABARBTpAQAAAAAAACAiivQAAAAAAAAAEBFFegAAAAAAAACIiCI9\nAAAAAAAAAEREkR4AAAAAAAAAIqJIDwAAAAAAAAARUaQHAAAAAAAAgIj8L7kcOXC8GFhMAAAA\nAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig10_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt, aes(fill=bd),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " scale_fill_manual(values = fig10_colors)+\n", " scale_y_continuous(limits=c(0,25),breaks=seq(0,25,5)) +\n", " ggtitle(\"Figure 10: Participation rate per day in gardening and pet care, by gender, % (2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 11a: Participation time per day in the most common secondary activities watching TV and listening to radio, (hh mm; 2008 to 2015)\n", "\n", "The data is in a different dataset then in the previous figures, this the data is in the *tus_00educ2*. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^tv|^radio\",sex=\"total\",isced97=\"^all\")`. This time again we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility, because we need the time values. " ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>isced97</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Austria </td><td>2010</td><td>1:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Belgium </td><td>2010</td><td>1:18</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:11</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Estonia </td><td>2010</td><td>1:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Greece </td><td>2010</td><td>1:28</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Spain </td><td>2010</td><td>1:17</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Finland </td><td>2010</td><td>0:58</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>France </td><td>2010</td><td>1:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Hungary </td><td>2010</td><td>1:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Italy </td><td>2010</td><td>1:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Luxembourg </td><td>2010</td><td>1:06</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Netherlands </td><td>2010</td><td>0:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Norway </td><td>2010</td><td>0:57</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Poland </td><td>2010</td><td>0:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Romania </td><td>2010</td><td>1:12</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Serbia </td><td>2010</td><td>1:03</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>TV and video </td><td>United Kingdom </td><td>2010</td><td>1:10</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Austria </td><td>2010</td><td>1:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Belgium </td><td>2010</td><td>2:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>2:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Estonia </td><td>2010</td><td>1:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Greece </td><td>2010</td><td>1:24</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Spain </td><td>2010</td><td>1:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Finland </td><td>2010</td><td>1:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>France </td><td>2010</td><td>2:10</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Hungary </td><td>2010</td><td>2:05</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Italy </td><td>2010</td><td>1:34</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Luxembourg </td><td>2010</td><td>1:31</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Netherlands </td><td>2010</td><td>1:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Norway </td><td>2010</td><td>1:35</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Poland </td><td>2010</td><td>1:25</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Romania </td><td>2010</td><td>2:29</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Serbia </td><td>2010</td><td>1:28</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Radio and music</td><td>United Kingdom </td><td>2010</td><td>1:44</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & isced97 & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Austria & 2010 & 1:01\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Belgium & 2010 & 1:18\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Germany (until 1990 former territory of the FRG) & 2010 & 1:11\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Estonia & 2010 & 1:27\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Greece & 2010 & 1:28\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Spain & 2010 & 1:17\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Finland & 2010 & 0:58\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & France & 2010 & 1:50\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Hungary & 2010 & 1:46\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Italy & 2010 & 1:39\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Luxembourg & 2010 & 1:06\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Netherlands & 2010 & 0:54\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Norway & 2010 & 0:57\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Poland & 2010 & 0:55\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Romania & 2010 & 1:12\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Serbia & 2010 & 1:03\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & TV and video & United Kingdom & 2010 & 1:10\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Austria & 2010 & 1:37\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Belgium & 2010 & 2:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Germany (until 1990 former territory of the FRG) & 2010 & 2:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Estonia & 2010 & 1:54\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Greece & 2010 & 1:24\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Spain & 2010 & 1:37\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Finland & 2010 & 1:48\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & France & 2010 & 2:10\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Hungary & 2010 & 2:05\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Italy & 2010 & 1:34\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Luxembourg & 2010 & 1:31\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Netherlands & 2010 & 1:46\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Norway & 2010 & 1:35\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Poland & 2010 & 1:25\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Romania & 2010 & 2:29\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Serbia & 2010 & 1:28\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Radio and music & United Kingdom & 2010 & 1:44\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | isced97 <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Austria | 2010 | 1:01 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Belgium | 2010 | 1:18 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Germany (until 1990 former territory of the FRG) | 2010 | 1:11 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Estonia | 2010 | 1:27 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Greece | 2010 | 1:28 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Spain | 2010 | 1:17 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Finland | 2010 | 0:58 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | France | 2010 | 1:50 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Hungary | 2010 | 1:46 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Italy | 2010 | 1:39 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Luxembourg | 2010 | 1:06 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Netherlands | 2010 | 0:54 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Norway | 2010 | 0:57 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Poland | 2010 | 0:55 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Romania | 2010 | 1:12 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Serbia | 2010 | 1:03 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | TV and video | United Kingdom | 2010 | 1:10 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Austria | 2010 | 1:37 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Belgium | 2010 | 2:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Germany (until 1990 former territory of the FRG) | 2010 | 2:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Estonia | 2010 | 1:54 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Greece | 2010 | 1:24 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Spain | 2010 | 1:37 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Finland | 2010 | 1:48 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | France | 2010 | 2:10 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Hungary | 2010 | 2:05 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Italy | 2010 | 1:34 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Luxembourg | 2010 | 1:31 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Netherlands | 2010 | 1:46 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Norway | 2010 | 1:35 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Poland | 2010 | 1:25 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Romania | 2010 | 2:29 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Serbia | 2010 | 1:28 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Radio and music | United Kingdom | 2010 | 1:44 |\n", "\n" ], "text/plain": [ " unit sex isced97 acl00 \n", "1 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "2 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "3 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "4 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "5 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "6 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "7 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "8 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "9 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "10 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "11 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "12 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "13 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "14 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "15 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "16 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "17 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "18 Participation time (hh:mm) Total All ISCED 1997 levels TV and video \n", "19 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "20 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "21 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "22 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "23 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "24 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "25 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "26 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "27 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "28 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "29 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "30 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "31 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "32 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "33 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "34 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "35 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", "36 Participation time (hh:mm) Total All ISCED 1997 levels Radio and music\n", " geo time values\n", "1 Austria 2010 1:01 \n", "2 Belgium 2010 1:18 \n", "3 Germany (until 1990 former territory of the FRG) 2010 1:11 \n", "4 Estonia 2010 1:27 \n", "5 Greece 2010 1:28 \n", "6 Spain 2010 1:17 \n", "7 Finland 2010 0:58 \n", "8 France 2010 1:50 \n", "9 Hungary 2010 1:46 \n", "10 Italy 2010 1:39 \n", "11 Luxembourg 2010 1:06 \n", "12 Netherlands 2010 0:54 \n", "13 Norway 2010 0:57 \n", "14 Poland 2010 0:55 \n", "15 Romania 2010 1:12 \n", "16 Serbia 2010 1:03 \n", "17 Turkey 2010 0:00 \n", "18 United Kingdom 2010 1:10 \n", "19 Austria 2010 1:37 \n", "20 Belgium 2010 2:00 \n", "21 Germany (until 1990 former territory of the FRG) 2010 2:00 \n", "22 Estonia 2010 1:54 \n", "23 Greece 2010 1:24 \n", "24 Spain 2010 1:37 \n", "25 Finland 2010 1:48 \n", "26 France 2010 2:10 \n", "27 Hungary 2010 2:05 \n", "28 Italy 2010 1:34 \n", "29 Luxembourg 2010 1:31 \n", "30 Netherlands 2010 1:46 \n", "31 Norway 2010 1:35 \n", "32 Poland 2010 1:25 \n", "33 Romania 2010 2:29 \n", "34 Serbia 2010 1:28 \n", "35 Turkey 2010 0:00 \n", "36 United Kingdom 2010 1:44 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ2\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^tv|^radio\",sex=\"total\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. We drop the values for Turkey as it is 0. Before plotting the values we need to cut the brackets from the name of Germany. " ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 34 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>TV and video </td><td>Austria </td><td>01:01:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Belgium </td><td>01:18:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Germany </td><td>01:11:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Estonia </td><td>01:27:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Greece </td><td>01:28:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Spain </td><td>01:17:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Finland </td><td>00:58:00</td></tr>\n", "\t<tr><td>TV and video </td><td>France </td><td>01:50:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Hungary </td><td>01:46:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Italy </td><td>01:39:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Luxembourg </td><td>01:06:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Netherlands </td><td>00:54:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Norway </td><td>00:57:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Poland </td><td>00:55:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Romania </td><td>01:12:00</td></tr>\n", "\t<tr><td>TV and video </td><td>Serbia </td><td>01:03:00</td></tr>\n", "\t<tr><td>TV and video </td><td>United Kingdom</td><td>01:10:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Austria </td><td>01:37:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Belgium </td><td>02:00:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Germany </td><td>02:00:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Estonia </td><td>01:54:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Greece </td><td>01:24:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Spain </td><td>01:37:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Finland </td><td>01:48:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>France </td><td>02:10:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Hungary </td><td>02:05:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Italy </td><td>01:34:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Luxembourg </td><td>01:31:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Netherlands </td><td>01:46:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Norway </td><td>01:35:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Poland </td><td>01:25:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Romania </td><td>02:29:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>Serbia </td><td>01:28:00</td></tr>\n", "\t<tr><td>Radio and music</td><td>United Kingdom</td><td>01:44:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 34 × 3\n", "\\begin{tabular}{lll}\n", " acl00 & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t TV and video & Austria & 01:01:00\\\\\n", "\t TV and video & Belgium & 01:18:00\\\\\n", "\t TV and video & Germany & 01:11:00\\\\\n", "\t TV and video & Estonia & 01:27:00\\\\\n", "\t TV and video & Greece & 01:28:00\\\\\n", "\t TV and video & Spain & 01:17:00\\\\\n", "\t TV and video & Finland & 00:58:00\\\\\n", "\t TV and video & France & 01:50:00\\\\\n", "\t TV and video & Hungary & 01:46:00\\\\\n", "\t TV and video & Italy & 01:39:00\\\\\n", "\t TV and video & Luxembourg & 01:06:00\\\\\n", "\t TV and video & Netherlands & 00:54:00\\\\\n", "\t TV and video & Norway & 00:57:00\\\\\n", "\t TV and video & Poland & 00:55:00\\\\\n", "\t TV and video & Romania & 01:12:00\\\\\n", "\t TV and video & Serbia & 01:03:00\\\\\n", "\t TV and video & United Kingdom & 01:10:00\\\\\n", "\t Radio and music & Austria & 01:37:00\\\\\n", "\t Radio and music & Belgium & 02:00:00\\\\\n", "\t Radio and music & Germany & 02:00:00\\\\\n", "\t Radio and music & Estonia & 01:54:00\\\\\n", "\t Radio and music & Greece & 01:24:00\\\\\n", "\t Radio and music & Spain & 01:37:00\\\\\n", "\t Radio and music & Finland & 01:48:00\\\\\n", "\t Radio and music & France & 02:10:00\\\\\n", "\t Radio and music & Hungary & 02:05:00\\\\\n", "\t Radio and music & Italy & 01:34:00\\\\\n", "\t Radio and music & Luxembourg & 01:31:00\\\\\n", "\t Radio and music & Netherlands & 01:46:00\\\\\n", "\t Radio and music & Norway & 01:35:00\\\\\n", "\t Radio and music & Poland & 01:25:00\\\\\n", "\t Radio and music & Romania & 02:29:00\\\\\n", "\t Radio and music & Serbia & 01:28:00\\\\\n", "\t Radio and music & United Kingdom & 01:44:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 34 × 3\n", "\n", "| acl00 <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| TV and video | Austria | 01:01:00 |\n", "| TV and video | Belgium | 01:18:00 |\n", "| TV and video | Germany | 01:11:00 |\n", "| TV and video | Estonia | 01:27:00 |\n", "| TV and video | Greece | 01:28:00 |\n", "| TV and video | Spain | 01:17:00 |\n", "| TV and video | Finland | 00:58:00 |\n", "| TV and video | France | 01:50:00 |\n", "| TV and video | Hungary | 01:46:00 |\n", "| TV and video | Italy | 01:39:00 |\n", "| TV and video | Luxembourg | 01:06:00 |\n", "| TV and video | Netherlands | 00:54:00 |\n", "| TV and video | Norway | 00:57:00 |\n", "| TV and video | Poland | 00:55:00 |\n", "| TV and video | Romania | 01:12:00 |\n", "| TV and video | Serbia | 01:03:00 |\n", "| TV and video | United Kingdom | 01:10:00 |\n", "| Radio and music | Austria | 01:37:00 |\n", "| Radio and music | Belgium | 02:00:00 |\n", "| Radio and music | Germany | 02:00:00 |\n", "| Radio and music | Estonia | 01:54:00 |\n", "| Radio and music | Greece | 01:24:00 |\n", "| Radio and music | Spain | 01:37:00 |\n", "| Radio and music | Finland | 01:48:00 |\n", "| Radio and music | France | 02:10:00 |\n", "| Radio and music | Hungary | 02:05:00 |\n", "| Radio and music | Italy | 01:34:00 |\n", "| Radio and music | Luxembourg | 01:31:00 |\n", "| Radio and music | Netherlands | 01:46:00 |\n", "| Radio and music | Norway | 01:35:00 |\n", "| Radio and music | Poland | 01:25:00 |\n", "| Radio and music | Romania | 02:29:00 |\n", "| Radio and music | Serbia | 01:28:00 |\n", "| Radio and music | United Kingdom | 01:44:00 |\n", "\n" ], "text/plain": [ " acl00 geo values \n", "1 TV and video Austria 01:01:00\n", "2 TV and video Belgium 01:18:00\n", "3 TV and video Germany 01:11:00\n", "4 TV and video Estonia 01:27:00\n", "5 TV and video Greece 01:28:00\n", "6 TV and video Spain 01:17:00\n", "7 TV and video Finland 00:58:00\n", "8 TV and video France 01:50:00\n", "9 TV and video Hungary 01:46:00\n", "10 TV and video Italy 01:39:00\n", "11 TV and video Luxembourg 01:06:00\n", "12 TV and video Netherlands 00:54:00\n", "13 TV and video Norway 00:57:00\n", "14 TV and video Poland 00:55:00\n", "15 TV and video Romania 01:12:00\n", "16 TV and video Serbia 01:03:00\n", "17 TV and video United Kingdom 01:10:00\n", "18 Radio and music Austria 01:37:00\n", "19 Radio and music Belgium 02:00:00\n", "20 Radio and music Germany 02:00:00\n", "21 Radio and music Estonia 01:54:00\n", "22 Radio and music Greece 01:24:00\n", "23 Radio and music Spain 01:37:00\n", "24 Radio and music Finland 01:48:00\n", "25 Radio and music France 02:10:00\n", "26 Radio and music Hungary 02:05:00\n", "27 Radio and music Italy 01:34:00\n", "28 Radio and music Luxembourg 01:31:00\n", "29 Radio and music Netherlands 01:46:00\n", "30 Radio and music Norway 01:35:00\n", "31 Radio and music Poland 01:25:00\n", "32 Radio and music Romania 02:29:00\n", "33 Radio and music Serbia 01:28:00\n", "34 Radio and music United Kingdom 01:44:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))][geo!=\"Turkey\"]\n", "dt<-dt[,c(\"acl00\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Radio and music*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(acl00=c(\"Radio and music\",\"Radio and music\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Radio and music\",acl00)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "acl_ord<-sort(unique(dt$acl00),decreasing=TRUE)\n", "dt$acl00<-factor(dt$acl00,levels=acl_ord)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2DUZB/A8dxd955AKXuDbFBBtiIbB4KgoLi3OF8UUQRFZIOIoAIqKkMEByA4\nAEFlyBJll01bOoAOSve494/CNXe93uWuSS53/X7+aq5PkidP8jzPL3kydEajUQAAAAAAAAAA\nAAAAAMrTuzoDAAAAAAAAAAAAAABUFQzSAwAAAAAAAAAAAACgEgbpAQAAAAAAAAAAAABQCYP0\nAAAAAAAAAAAAAACohEF6AAAAAAAAAAAAAABUwiA9AAAAAAAAAAAAAAAqYZAeAAAAAAAAAAAA\nAACVMEgPAAAAAAAAAAAAAIBKGKQHAAAAAAAAAAAAAEAlDNIDAAAAAAAAAAAAAKASBukBAAAA\nAAAAAAAAAFAJg/QAAAAAAAAAAAAAAKiEQXoAAAAAAAAAAAAAAFTCID0AAAAAAAAAAAAAACph\nkB4AAAAAAAAAAAAAAJUwSA8AAAAAAAAAAAAAgEoYpAcAAAAAAAAAAAAAQCUM0gMAAAAAAAAA\nAAAAoBIG6QEAAAAAAAAAAAAAUAmD9AAAAAAAAAAAAAAAqIRBegAAAAAAAAAAAAAAVMIgPQAA\nAAAAAAAAAAAAKmGQHgow5uvk9ntmvqu3CtC0mr5eDtUpvV4fFBpZp0GT9jf1fPj5N5Z8s+F8\ndpGrNwIA4Aby0jeIO5ROHxx2dY4gm/zM38U798Zp/7k6RwAAuB7BDwA4hNMKpQ2LDnRwdMUB\nvsEdSteSe+lbi3/dteF85TPfN8JfvMwGQzZUfplVh+wxSVb8e+IF9t92QZZ8QjoG6eGWfrgh\n2qKH+Ce70NWZggPyMzbr9frSfffmuStutHCPYTQas6+kxZ858c+ebV/Mf/+xEQMbRta+78Wp\nBy57+A0xrmo9aLVMKArnUG6AdlAfAQAAqjiPubZAZAu3w0GrGv+oYU/HBot/+et/31RymdkX\nFv6anif+ZdS0Wyq5TCiNSqcoBukBuMC5H94xGo3uuHAPVpSfvPKDcTfXazN34wlX5wUAAAAA\nAAAA4DIvvtNePJl27K1Kjs4enrlAPOkb0mlCo7DKLBBwdwzSA3CBeRP+cdOFe7yCq8dfHtj8\npTWnXZ0Rx6SfeFR8N9/I42muzlGVwy5wDuUGQAU0NZARhxMAwIN5TDfnMRsCp3EMQBb1h8/z\n1+tMk8aS/JdXn63MAictPSWebHDfDC9dRWmBKtGUebk6A6gS7nzq+fp+hsosobZvpWaHpmSe\nmvdRfJY7LtyN9Hr82TaB3jYSFORkpaWlHv1n97+nUiz+ZTQWz7vvxjaHTz/UOFTJPAIAAAAA\nAAAAHDDwqedqXS2wmyz1r2XL9140TQbWuOvxEfXszuXlW8v0t3dg62mto8YcKFvI/gmfCKNn\nOpbd67KTP92Qliv+5bkJbZ1bFOAxGKSHGp6YMn1AuJ+rcwFtMOaP7TfBLRfuVu6ZNO3ZmEAp\nKTNO7fxo7rRJC9YWlpR9I6CkMO3lQe8+dNzJkAsAAAAAAAAAILuH3p0mJdm+cb+LB+lD6j0x\nZ05/R9d1z9w+Y3ouM01mxc/5Jf29vuG+ji5HEIQjs+aLJ/0j73ymZpATywE8CYP0cEvhbTp2\nCskQ/xKo58UobsBYlDb1vs6fnsx0u4V7sLCGncd/+MPoez+9sfczyQXFpt/T42a9+e+4yW0i\nXZg3Jbiq9aDVMqEonEO5AdpBfQQAAKjiPObaApEt3A4HrcpqdJlXx/eb8/lFpZNGY8mbnx7v\n+1prJxb17ucnxZPNnntbhvxBeVQ6RTFID7fUY/nGna7OAxySmxr345pv5kyetvtCtnstvIqo\n1e2J3T8ertN/nvjHpS9vnbz5HldlSSGuaj1otUwoCudQboB2UB8BAACqOI+5tkBkC7fDQasy\nvVfEh31q3bnurOmXI7OnCq8td3Q5OSlL1l02e9f9hOebVz57UAGVTlEM0gNQRGH2wR/W7Dh8\n+PDhw0cOHz4cdy6l2Gi0P5sGFl5l1e73wdiGX04/VXZbXOqe6YLgaYP0AAAAAAAAAAApus96\nUFj3jmkyJ3XFFymLH6oe4NBCjsw2ezYsqObTd0XyfWSAQXoAysg4Of7e0evcceFV2WMTWk8f\n/YdpsiBr9/Hcoqb+9BQAAAAAAAAAUOWENZ7QI3Tatsx80y+z3j/40NybHVrI5CUnxJNtJ4yR\nJ3OAm2PoBVVIftqpH1auWLV2y+n4+ISEhBx9aN26devVb37nA48+eFc3f72r8yfNyd+//PS7\nP48ePZqUra/X/L7Vnz1tI3Fh5vlf1q398ceNh84kJCUlp6Rm+ISERkbWbNnhxs5dbx12/5BG\n4b6q5dwdXU34b9WqH3ftP/DfwUMJqelZWVnZBcag4JDgkJA6DVu0atWyy22D7u7fOcjgIV9h\nqd6jhyD8If5l15UCu4P0qpWSQwe/vIwl2Xt+W7dmzXc7D56+cOFCUtIlQ2BoZGRE3WbtunTp\nevtdI3o2j1I0A8kHtyxesvTPAyfOnTsXn3g5MLpGTEzNus3a3zlk6N2Dukf4ONN+udnhbSw4\nsnPT+vXrf9t+ICk5OTk55UqRd/Xq1atXr9awVeeBAwf279s12s9Q+fVcObN78aeLftt9LCEh\nIT4hsdAQFBEZ1bTNTV273Tbq0ZGNwnwqvwqXKCm49MvKL79c+dPx8wmJiYmZRT4xMTVjazfs\nO3TU6FF31Qn2Lj/LuQNbVq1atW7LnqSUlNSU1EKvoMjIqGbtOvW87Y7HHx9SzfGjTmtdkhLV\nSlBrMxVqD1OO7li9evW6LX8nJF64kJRU4BUaGxtbq3b9XoPvvW/EXQ0jKpVzN2tzFOaeTY3x\n5O5fVixf/uuuw8nJKampqUVeQRGRUY1bdeza9daRjz7QNNKZI0RrLYPrW0vF+rvsxH9Xrv5p\n165de/49dvFyWnpGps43KCwsrHrdZjfddFPX2+8Y0beDl5bqnyLRlyrhhOuPIu3kpArEb8rV\nLOWaR/etXIIC+9ozgh8Xnik7StEycflpe1WjUDPldhGLjLRzxqRwbVLktMIhsvcmnjHoYJNh\nxmNNbpp10DR9cunrJXN/l75lOSlf/Ch6171O5z3j/gay5vAa1eqRe8Uk6tNIY67OBYfKHgxG\nQHYleRaH2U9pufKuIS9ji3j5Haf+azt9UW789Kf6+usrrPcBNVpOXxdXmjg37Sfxv7Zk5JVf\n4JkfbhWnmX/hqsScD4zwN80V1mC2lK3bf7Xg2u/pe54a2Eb8r6Aaj1W0ooLM41Oe7O9vs7/R\nGwJvHT1+74VsiZl3SOqBwTZWLTb+bKamFl4q/egvj/RubdDZ7yt8Quo+M3V5RlGJ3WVmpy6z\nmLf+XVucy155MT5mlzykH5NmOUxZapHD6fFXbKSXvZQcOvivnJ9sd70Wyym/Cruth7GkcOPC\n1xuF2upNdTp9u74P/nQsQ/qmWV2veCe+cvra0jJPbLi7c0Mba/fyq/nczNU5xXa2Q0yuHafS\nLjCW7Fg5o1OtQNurMPhEPzxhcXK+/YKwyMCaSzmlv+dnHHi8X3sbxaL3Ch/62qIrEiq7bcqV\nW1HeGaubtuOzsbEBFd5tY/CpNmGF2dLyLv/7wqBmNjLmE9JwyneHpW+yC7sk1aqV7JspSzAg\nXdqRjQ92r28j5zq9/+1Pz0wuKDaWi5RunnvI9sJl7Cxm3RApTv9BQpb0bVx5a6x43of+SpI+\nrwUp9dHDmporp34b1q6ajYXovULufmVheqED2XZhy6DV1lLm/s7kyqnNjw/u5FPxqVCpkHo3\nTl6x2/oSnDqcnCdT9GWxUHmLVztHkXZyomiBu7xRLa/yNasiCjaP7lC5VNvX7hL8WC0Wu5Gh\nRkImMSWusZSp3LEt+wna5cOviv/lHdgq35GtOfGV2SXHkHqviP9rY71qnaEr1Uwp165atfvl\nVuLFNnnwD9vpr174yCInUS0/tj1LYc5xL/Nj/pc0KxeZja6+SmNG4YtgspxWaOp0TPZBB3nt\nfd2sj4jptMHpReVcXGWxaVNOO3DVfe84s5yEN37H6ZxUROnO101jErss2o1+WxPtFoXtnkIj\np5+KXqOT92BgkB4K0NggferuT9tH+wv26HSGoW+tKNbqIH1e+u4+sZbnvRVdlz+0cny9ACsP\nRlhl8I5+40sZolsLhdlH/qrATPPTRSfG0RVduNFo/Pvjx2234OWF3zDisL2LktofpM88+7ZF\nDhdUvBwlSsmhg1+F88+8y7uGtK8ucS16r/AxH22XuGkSB+l3f/lGdR9JT5xE3DBw+yVJLa2M\nO06FXVCYE/do1zrSs+oX1eazvRdtl4DVuOrS/uUdIyR9Ciuq/WOlYbHT1BykLym++v5o++8f\n0+l0d7+zrXQhKds/bBRovwfR6XRPrjghZXtd2yWpU62U2MzKBwPS/fTufRKbhaDa3VefynTo\nnFDezuLsOrO79G54bqfEbSwuSBLvdy//Ro5d+TXn9FUhN21q/v3itWrSak1km4eTpA0eu7Zl\n0GBrqUR/V2rHh0+HeTnw8E6HkbPLXxRVc5BexujLRIni1c5RpJ2cKFrgLm9ULchSs6xSrnl0\nl8qlzr52o+DHarHYjQw1EjIpWiYmlT+25T9BK8lrG2Q2xjk+Ll16cY2tGyKed9B3Z8y219WD\n9Ao1U8q1qxXJPGtWXAHV7red/tiiLhZ58PKrY/v2i9R9o81WEX2v1WQuv0pjovRFMLlOK7Rz\nOqbEoIO8ZBykNxqNT8cGi5fW6L7fpM97T5TZB+wHmLdsladC5+uOMYkU8g7Sa+T0U+lrdPIe\nDAzSQwFaGqS/tH9xrK8DL1W7ddJWDQ7SF+bE3V7Typ3pVq/L71jwuJeEW8YsDJhYqU7aIRs6\nxYhX7fTD7got/Nhnj+kdL0BBEMIaP5JnMzrX/iD9yeW9LHK4O8t6V6dQKTl08Ct9/pmTsq1H\n9YCKlmmVTqd/8gvrsZETg/QnVjzl0NoDqvX486KdxlbeHaf0LshL33tHw5CKllkRg0/1WZsS\nbBRC+bgq89SySG8Heora/T60Xc62qTlIv2R0C4nr0ul95h64dGn/4hhp58yCIOi9I7Zn5tve\nWJd3SSpUK4U2s5LBgHSrx/VxKNu+YTdvO/29+Bcb54SydxaFuSeCDGXne37hfSRuZvxvw8TL\nbzj8F+eKq5RzV4XctKk5u/YNu7fAm2W7/0K7eXN5y6C11lKh/s5oNO6d94DO8aLu8Owai+Wo\nNkgvb/SlaPFq5yjSTk4ULXCXN6pictWs8pRrHt2ocqmwr90r+LFaLHYjQ42ETIqWSSlZjm0l\nTtC2PNhE/N+G9/4qsbjy0jeJi8vgUyPBfKjStYP0CjVTyrWrtpTkNxJ93lGn0++t4ApYqSVt\nosvnYW6irddUbBvZWJy4xTNWbpfRwlWaUkpfBJPxtEIjp2MKDTrIS95B+uOf9RQvzTvwBokv\nIMxO+VI8o94QfCK3sDI5saBO5+t2MYlEMg7Sa+T0U4VrdPIeDHyTHp4sL21zh1ueSswvFv8Y\nUKPFsBH33tyyQc3qwRlJiSf+3b5y+Xen0vNL//v7xN4Tmy9wRWZt+Xh4798uZEtJeWb1k12e\nXWw0GsU/Rje9+e47B3dsXq96VGBGclLcge3ff//DEfMFbpg44L7o/1Y800qo2gqydvd++osS\n8wL0i2w28v6BDerUqVWrVrh3QWJiYmJiwp/rvt529JI4WcaJz4YsGfvTY03VzbKclk48IJ70\nDmjRMcjKTWdqlpKNg9/gE9upU6fSv4vzTu85kGr6V1Tbjo38yjq4QEdOA64tsCBxYMt+2y7m\nin/0jWh494gRXds0qhkTdvnsiSNHj+7buvaPo5dNCYzGkk8fubFH74v3lXugwVGZJ77u9OAi\n8S+Bsa379+hQp3ZMSVZq/Lm4Lb/+lV5YIk6Qk7qtX+vhifE/hFZwA6bsO07RXWAsyX6i/a1r\nz1wR/6jTebXsPnjIgB4NatcK9y26kJh4cOdvq7/flJJXZEpTXJDyv36tGsYn3FlD0ullcd75\n4Z0fv1x4raeocUO3EfcOubF5/eqRPvFxx48eOfzzqmX/pZgdCfE/P//ekfvHt4hwdKNKKVpu\nYjtm3Dlr6ZHSv/0im4948P7bb2ldI8xw5tiRg//tXv7F9xcLy/pHY0nBaz0Hf5C3J6ng2o/B\n9W96cOSIbu2bRvvlHz186MDeLV9+u62gpOz4KSlMe+z1PUcWWD5PYKK1LkmJaiWouJnSgwHp\nji0ZOvT9Xy1+1HuFdB00tNeNzWvFVi/KSD5z8t8fVqyJu3ztFsz8jL8HdLN87YpVSnQWXn6N\nptwQMea/a4nz0n9dcCH7GWtXqC18+/Lv4smnpnWWsgkyctOm5vKBj9u9+UlpxdcbAvvd9+jw\ne+9q16Re9VDDuRPHjx7Zt3jalD/PZJlle+PTM0/e92qj0IqWqbWWQXB1a6lcf5edtKbnS8ss\nijqyea9Rg7rUq1evTu3o7JSEs2fP/r3x65/2J4nT7F9w76JX0h6vXzb2pk7PpUT0pVo44fI+\nVyM58eD4zUTGmmVBuebRrSuX7Pva7YKfitiODLUTMilaJnId20p0cx3ffVL48hXTZPyGsYXG\nf7wlzH3i8/Hi4qrVZ2Gsj9RHEpXurxVqppRrV+3Q+UzuUG3EXxdKp4zGkvf3XVzdo2YFqYun\nxmWU/3Xld+dfeK7Ce+M++S1RPDn0leYWCbRzlUbpi2BKnFY4RPbexGMGHRxS/94P/B9rm3s9\nMizMPjzu8OW5rSJtzyUIwrEPZ4sno9pOFx+NlaRa5+teMYn6NHL6qc4FB5kPBht3BwBO0syT\n9JM6mb2iR+8V8uj7q8rfHlVSlLlo7BDv61VabzA7V3T5k/TfLhll+lun9+1256hJsxdt+uvv\nw8dPp6bliGfMz9he37yH8w1rO/ObHeVvCCspzv5+7ssWD0zovcLXJDrz+LWjtPwk/S8jG5mV\niXfEGwt+SLP+Cq2SQ5tX9DI/yw2OfdbGwjX+JH3i5rEW2avZfbnVlMqVktMHf1rcI+IZ7z92\nWeIqKmo9vn3YLD7T6X3vHbfE2vdjiv/66k2Lwo9uP8G59YqX4+dddh7uH91x/rrdBeYrL7ya\nuHLqE+Hl3iB08/g/K9p2RQ9v2XfBnxNusdi06h3v3XDEyksCi3LPT3vydovP/4Q3e7qi985Z\nZKB/12s9hXdA43e/slJ6JUWZH7/Q2yIzdfqttVEa0slbbhbP0pl0f2ZOYl6RReKc5O2D6wVb\nTa/TeT3w3vKscgd8yp4vmpq/LSogakhFGdZIl6R0tVJuM51uD6XLS99qceO/Tqfr/tC7JzMt\n70QuKc5eO6vCV5ZVdOO2Qm3O+Z/vFidr+dLfdre04OoBP9GZm3/knXZnsc2JRzfctKkxCWty\n90ZrLXBJ8dVV00Za3CzfcFiFrz3USMugqdZSuf5u4Y1mp0J+4R0+Xbvb2rMuJXvXLhA/SSYI\nQo3OX1WUYemHk6Nkj76MShavdo4i7eTEWDXiN4VqlqLNo3tVLkX3tZsGP+WLRUpkqIWQyajw\nSagSx7Z8J2gl/cxfgTvhpK0PeJuMrm5WAlNOWc4l8YRa9jN05ZophdpVKRI2m1WTOv1+qihl\ndvLngjURzeZVNEvB1QPiR3u9/BqUf+ZYI1dpjMpfBDOR5bRCC6djyg06yEveJ+mNRuO8tmav\nlKh9+7dS5ro32mzD7992oZLZEFOt83WvmEQ6uZ6k18Lpp2rX6OQ9GBikhwK0MUh/fsPj4jQ6\ng/87v8TbWObBJY8I1rh8kD74+jvKGt/x6vZTV2wsfGrnGuIZg2oP2mXzJb1ph1a1Mf9KVnT7\nqRI3pDK0O0hfUmhxBerFjedtz5GXvq2Wr/jtWLoz5a6FlSVO+7mTuSFj9zqQPZsqOUiftOtz\n8YaUevPfS1aSKllKTh/88p5/ph+dIb6KpNPpn/n6qI21p2yfFWgwC5WWJGc7sV6rLxoNb/7A\nqewK3wGVcfyHFuYfENUbgqw3uQof3vLugtxLay0+yBR72+vlrxqL7Zp3n0XRDf7S+jdTrZ4r\negfesCbOVnOxZGRDcXq/8NttJJZOhUH67m+tq2iZ2ck/BRmsRPlPL6swxE/49QVxSp1Od6GC\nD8VppEtStlopuZlOt4fSfdjVrMfU6XQPL9xjI/3FvR9HWXuXl/VzQsXanKK8syGis1P/iIF2\nt/T45z3FOek4xc6HNu1y4qpQKbdrakqF1B96PMfW2wh/fMrs+aHAaiMrSqmRlkE7raVy/V1R\n7mlxTdF7R/xg8/6G5O1viJfp5VvnarH1bCg0SK9E9KVoOKGdo0g7OakK8ZtyNUu55tHtKpei\n+9pNgx+jU5GhFkImRctEiWPbKOsJmsXYWKP7N9vedqPRmGP+aId/5J3l65WrBukVaqaUa1el\nKMw+7C26McU3tEdFKU983UOwxuBbM6eCDCTtGC5OGdNlhWUKzVylUeEiWCm5Titcfjqm6KCD\nvGQfpE/cOlK8QINvzYuFdl55b9GyGXxiUiV8qV0qFTtfeY8iZWMSR8gySK+R00/VrtHJezAw\nSA8FlBukv+e5l151yvydKVbXIKEzLnmghtldUbfO3mc342sebiKU4/JB+lJtn1ls/Q6w666c\n+0ic3suvzkZr5xsWLv3zofjsWqfTfZJg63NKstDsIH12ylfieUPrj5W0xjvrief65qKTTzRW\nktOD9Fnn98189V6/ci+HiWj+mtX0ipaScwe/Ue7zz6nmt4W2fH6j3Q387Xmzl+G0HmsZVzk3\nSO8b0vlfmx9FMxqN6Ue+DjY/O2ry0KbyyZQ+vOXdBRtGmAUx/lH9LkqI4Fc/ZNaG+0f0tzqP\n1cNs/B9JthdecHW/+CxU7xVmNz9SKD1IH3HDK7arz7KesRazNBq1zGaWS+6O8hen35xupZfU\nTpekaLVSdDOdbg8lyrm42uKZtpvGV/j0s8mZH58pnyur54SKtjkL25m10ouS7HR5L9Que2xU\npzNU/lKI01eF3K6pEQRBbwhaEW+nJhZmH/EXBRLeAU2tJtNOy6Cd1lK5/i4t7mlxmtp97X+0\ndaj5Ay5LU6zvHYUG6ZWIvhQNJ7RzFGknJ1UhflOoZinaPLpd5VJuX7t18ONcZOjykEnRMlHi\n2DbKeoKWc/EbcQKf4I52I/k9Y1uLZ+k8x8qR5pJBeuWaKeUiFolerW32gpl1l60P53zdsewJ\n0Wrd64pnmR5v/UaZTUPqi5PdvSnBIoF2rtKocBFMkPW0wtWnY8oOOshL9kH64sLLdcyf8hr1\nh53H4vdPbCdOX+u2VZXMg5j6na9bxCQOkWWQXgunn+pfo5PrZIRBeiig3CC902752PqNe3bb\nhSvnzb504h810PZt3aUKs/+rXe5hYi0M0gfFDs20l/91d5kFfz0/kNpA//yo2RuNWjy7U+KM\nTtPsIP2lQ2Z3ud7yia37Rk2OLTb7IuNiCa2/EiwGom57+gXbd8C88NxTD95/z43Na1vEBKUM\n3tHLT1s/zVC0lJw7+I2ynn/mZWwVl4l3QNPTuRXemGySf+VvH9GJRFDMU46u12htNPGR9efs\nrtpoNG57rYN4Lu+AZtnlbj9U+vCWcReUFGVYvJvof3/ZCXpKFeYctXhd0pTTVlqA8odZjVs+\nkrL8CXXNvnVX/j1mTlB6kP79o2m2M3B2/W3i9HqvkJ1X8m3PsuWeBuJZlqVaOSq00yUpWq0U\n3Uyn20OJ/n7F7KqKf2S/dGnj/2+ZX+0VKjgnVLTNSdg8TJzM6gVWk9zLa8VvTQxvMklKTmxz\n7qqQOzY1giA0HCHpOs6rtcqub+q9wq2m0U7LoJHWUtH+Lv63PuIEnRcesbvYn7qYfYT1xXLv\n1y2lxCC9EtGX0uGERo4i7eSkisRvCtUs5ZpHd6xcyu1rtw5+nIsMXR4yKVcmCp22G+U+QXss\nJkic5t3Ttt94X9I3vOwN+Tq9315r9xa7ZJBeuWZKuYhFogPvmZ333bb6tLVUJa1E71p7du/P\n4spy08yDVpd8Z2TZFWCd3vtwuXe5aeQqjToXwQRZTytcezqm9KCDvGQfpDcajT8OrideZrWO\nn9hOf181s7HYMf9erHweTFTufN0lJnGILIP0Wjj9VPkanYwnI5ZNA+AZDk1ZJJ7s+N7MIIOV\nkUgLXgGtFg2s0++704rly0kDv5wbYjv/xoKXfok3TXn5N/r2meYSF95rzhden91SZDSWTp5b\nvUCY38nZnLo3b/9BEyeWlVvrIXVtJDbxCtJiQ7p54QebnZ1Xp/N+/pu/76tv/XOVKpeS/YNf\nbmdXv1l8vToIgtDw/kX1/ay8TciCT/BNL8cGT42/UjqZc3F5kXGhV+UyHhA9fPHAOlJSdn3n\nxxpz6iYXFJdOFuYce/981rv1zIIANzq8M0+/eyavyDTpH3X39C41bKQ38fJvtnhEw56fHzf9\nsmzu0XEf3Gx3xkcXjZCy/M51goRzV6Sk1Ajf0G6vNwu3nSa0aSNBKGstwhq/0ynYx0Z6QRCi\nb4kS1tjsKDXcJclZrVTfTHnbww++OmWWpY8XhElrs15e+fS7Td+xm0zRNqdG19nhXmvSi0pK\nJ0989p4w7fuKEh+d97ZR1Kr3mP2QlFUowU2bmtdndZeSrFO4n5CQZSuFhlsGV7WWivZ3Bn+z\n6OXKEfsH1YC/Eo12EylDiehL5XDCZX2uZnJSReI3RWqWks2jB1QuQb597dbBT3lSIkOXh0zK\nlYl2Tttte+mNVouf32ma/GrSgTe/sP7WdEEQss7P+SW97Kmn6HYzOwR5V5RYVUo2Uy6PWBo9\n/Kgwfp9p8tD0HcI99S3S5F5cdTC7sPRvncH/zda3p0T6r76UU/rLiU9/FV5paTFLQdauHy/n\nmiaDY19qEWB5YGvkKo1qtUm20wpnydWbeNiggxO6z3pQWFfWLV468L9TeY82rOCwyb34zYrU\nHNOkd0CLqS0jZcyMyvXIXWIS9bm8MVf/goOMJyNaHFsCKm/pj2V1UqczzITr/joAACAASURB\nVLyvgY3EYjdNGS58974ymXKSwTt6XrcY22muXlhwMrfsPDmmy/QoL72N9GI+wZ2eqxk0N/Fa\nAJRz8duMoqUSOwYPE9Jg1NtvOzzX1ZNXFciLy3j51p6yZsv/Blqek5ioWUpSDn7ZbZ17TDz5\n6IS2Emcc+ezIk3svmiYvFBTX8bV/YmNDq9fflFgP9T6xC3rHDtlw3vTLxq/PvPum2d2ybnR4\nn1zym3iyxUsO5Lv9pKeEz18yTZ7/fo1g78Kfl1/9SS0ipCzcN9JXek60IKzxy3bT6L2ixJMN\nRveyO4tPpJ3r+FrukmSsVipvprztYVHOkRUXy64ZGbyjPx4s6d4FQRDCmkzoFjrtz8x828kU\nbXMMPrVmtI9+bHdK6WTupR+WpuSMrh5gNfGE+cdEM1abf3sth7MlBzdtanyC2j9WM9B+OkEI\nCLRzXqnllsFVraWi/Z1/DbPTn7jPHt06YW/PKD9Bk5SIvlQOJ1x1FGknJ1UkflOiZinaPHpA\n5ZJrX7t78GNBYmTo8pBJuTLRzmm7bY0enOE1plvZdf/vx5V8saOiGr5/4qfiybsXDKsgodoU\nbaZcHrEExjzZMfjFvVkFpZNphyYXGUdahJnJf5QNygbFPFvDW//MrTGrV10bY7tydlp2yUuB\n5h+RvLRvmniy6fOjyq9aI1dp1KlNMp5WOEfGyMGTBh2cE9Z4Qo/Qaduud4slRVde+Dl+/V31\nrCY+/vF08WSdwXP9y31xtTLUrEduFJOoz+WNucoXHOQ9GZGaUcCNGIuzvkzNNk36hfe7yd6T\nASahDV/1lbWrqLyAaqOqedupqqk7fxRPtnjtRodWMbhD2S1sxpK870U3e8K2opwjL8854upc\nyEOn9+5x/9itcUf+N7CRvEt2upSkHPyyWyS6u03vFT6mlvU3CpTX8rUF34pU/lR/zAMN7Se6\nruvkruLJ82tkOCxddXj/uy5RPDlgZIW3jJQXXOuZaO+yks9J+brE3iwhdV9S8KqMS4W1snwL\nlhXmPV54OzvP3gmCoBPs9JJa7pJkrFYqb6a87WF2yufiJ6WCa79S24EmyzD+5mpy5UTMoTan\n/wyzDw/N/fCY1WRZ8XPXi8o2pseHsT6uOf1x06YmpP7zci1Kyy2Dq1pLRfu74NiXxe8gLcw+\nPKhN/082/Cd9FWpSIvpSOZxw1VGknZxUkfhNiZqlaPPoAZVLrn3tAcGPmPTI0O1CJollop3T\ndtt8QrqMbxhqmsy/snN6RY/TGQte/rbs8yU+QW3ndJTQnqtC0WZKAxGLfmK3steBFOYcW5Kc\nbZFi7+yyY7LOkKGCINww9hbTL8UFqXMSLAf8/p2+Xzz55IMOnIfaoMRVGnVqk4ynFc6Rqzfx\nsEEHZxlmPNZEPL3jtWUVJZ01/7h48uEpNymVKcmcrkeeHZNUkssbc5UvOMh7MsIgPdTwU1qu\nxC9AWNj+ZDMnVpd7eW1usailq2fldsWK6L0ixJ+N14LQpn3spkn4LkE82aNpaEUpra/iBrP0\n+64WODR7VWQsOHds/1czx3ZqctMWd76nwS84om6jZrfcfs+EWYt3HU/dumxalzpB9meTqNKl\nJOXgl1dx3pl9WWXHf0D0cB8Xxc8Gn2pDoxxoi0IaPCaezEn62fl1u/rw/lV0P6lOZ3ishqS7\nra/P4DNK9LGr4oKkPVl2GrSwlq1sJ3Bf3qEOvx3RJ9ThJ/bK02yXJG+1Unkz5W0PM478I56M\nHdTTodkbPSz1WQFJnGpzanSeLb7KH/fpNKvJ9r65UDx5/9zeTmezkty0qQm7QbZ9rdmWQXBd\na6lof2fwa/DRrbHiX7IvbH1qYJv6nfq/PvXj7YfNdodrKRR9qRxOuOoo0k5Oqkj8pkTNUq55\n9IzKJde+9oDgR0x6ZOg2IZMjZaKd03YpRk81e2Xu0snWRyzSj7+9X1R/Gz30kbwPm1aGolGc\nFiKWjm/3FE8u/f68RYIZBy+b/u7xZGNBECJavOkt+o77j8vOWMwye1eq6W/f0C6PVPAGC6kU\nu0qjWm2S8bTCyQzI1Jt42KCD01q+/pZ4MuPkpN3WOvTcS2u+Ft3T4BvaY1wDxxoQOVW6Hnlm\nTCITlzfmKl9wkPdkhNfdwwMVZO0UT0Z2lPQxEpO+4b7fXcqxn04twY3stymJ/2WIJ9+oE/JG\nJdZ4OjlXaBhWiQV4mpy0C3FxJ06ciDtx4kTpH0cOH8/IL3Z1vmyZf+HqszGOXC6pNCVKScrB\nL69889bDP0rtuwTKVh05xKFTI9/QXtV9DCnXv59dkLVX4owaPLz3iiJ7L/9Gjj7c0Ku6/5zE\nsg+Y7btaeLPN+5qDGsp3YwoEQdBwlyRvtVJ5M+VtD9P3p4sna/av6dDsUTe1FYRtzq1arjZH\n711jRsfoh3YmX1vsxVXLL35xf7T5JY+SvBfXnDVN+YZ0fq+5pNeRKcFNm5rABrLFEpptGVxI\n6f5u1Ddfzqvb76D59YWzf/887e+fp417OrB6o67dunXv1q1b926d2jTydt1AgELRl8rhBKpO\n/CZ7zVKuefSMyiXXvvaA4EdMemSozZCpkmWindN2KWoP+CDI0Pxq8bXXRpz59o2SRX+Uf2Zu\n+2srTX/rdLqJb7dTK4P2KR3FuTxiiWozOdDwdfb1fXT8w18F0ZeM89LWmm4n0ul9X28YKgiC\nl3+TR2oEfpJ07QH6k0s2CuNam2bJz9i8KT3PNBl729sO5VrNqzSq1SYZTyucI1dv4mGDDk7z\njxr2dGzwwusdurGk8NWVZ/54vKlFsrhPzV7v32j0VNWeGFaiHnlATKIo1zbmKl9wkPdkhEF6\neKCCzHPiyYA6jt2uGBPk8MMHivKrYf/rHedziuymkS4vOc9+Ik9XkH72l/Xr169fv3HzX/GX\nLV91hVJKl5KUg19eRbknxJP+MS67/Ofl38R+InMN/bxMo4nF+Za3fotp/PC+UFAWNBt8HTvh\nEQQhsFaAIHqx3Pl8O82jTwTX3GWm2S5J3mql8mbK2x7mp5p9wCyklmORksHPsRu3FWpz+s7s\nI3T50jQ5a8Hx+982+4Di5cPj/ssuOz9s/Mgc+T5i7jA3bWq8Q2SLijXbMriQ0v2dX0SvP3Yv\nG9z7ob8uWKl32Sknf1l98pfVnwuC4BfVaPCQocOGDRt0a3t/1d+1p1D0pXI4gaoTv8les5Rr\nHj2jcsm1rz0j+DFxKDLUSMgkY5lo57RdCi//JtPbRj2z79pz1fmZf86Nz3q5ttkbxY3FV174\ntewRwJC6rwxz5AVgSlM6inN5xGLwrT2uXsibp64N8GSenpJVPCbYcK0apO5cYEoZWONx01up\nR99Z+5OPj5b+feX89MzisaGmWXbNFi//9gn2b7lw1VUa1WqTjKcVzpGrN/GwQYfKePHdDgsf\n2WqaPDBpvvD4hxZp5swz+8bKy2+0FpSkdD1y05hENa5tzFW+4CDvyQivu4cHKswoFE/6Rvs6\nNLt/dbXHBW0zBNi/Mz2zyO6n3BxQdLVKX4QqKUhZ9OaDMdUb3vHg85+u+sV2p643BLdq6fYP\ncjlBnVKScvDLy1hkdjOjX4zLToy9/Go7Oktdv7LiKim+WmS0ksYNDm9jUV5JWdYNPtUdXYB/\nTbO9lmG1IKAkzXZJ8lYrlTdT3vaw2Pz+8Rr+ji3c4BNrP5EgCAq3OdVunFXDpyznxxbMsEiw\n+aXV4sk3Fb4iANs02zK4jCr9XVjzob+fPPjB2JHidx2Xl3fp5LefTr339g7h0Q0fn/RZSoGc\nO8suRaIvwgmVVbECl7dmKdc8UrnEPCP4KcuPI5Ghy0Mm2ctEO6ftEt05y+zzAYvfO2iR4OL+\nV0/nlVXe7nOeVSNbkqkQxbk8Yhnyatmj88UFqTPPl73w45+Zh0x/1xp0n+nvpmNuM/1dUpg2\nO75slv3Tyz5qoPeOeLeFrVdTuPYqjdvVJpfzsEGHyqh/7wfir3JkJc5fl2Y2rpl3+fulKWXH\nc0D08Mp+96FibnC1U0S1mER9LmzM3fqCA0/SwwPpfc3uPsm/mF9RSqssulu3EGAwu8+5/c2d\nKvMNoaYedFufo3KSN/Vsc8eeVFtfpgmKqtWsWbPmzZu369J76JD+BRtubzRCiy+ZUY4nl5LO\nLLwuynbZGEBJscOfR8oUXeHS6bzLP/3gHjtO5+Wn15mu/RUXpDi6gII0sxcraedLflWHZrsk\neauVZjdTCovnGFLyHHvnW0nRJSnJlG5z9N5Rs26uPvLPC9dWl7p89aXFQ68/dVRSmPLCn0mm\nxMG1nh0ezSUnV3LrKqMItfo7L//6Y6Z9/fSbU3/54fvvvvtu7YY/LxdUWOXz004vnvjoikVf\nfvXbD3c3V+vSlRLRF+GEyqpegctYsxRsHqlcIp4R/DjHtSGTImWimdN2iWrc8kGMzzdJ11uJ\nM9+8Zfx4s/jQ//Xl9aa/DT41Fg6oo24G7VAninNtxFJv6EvC02WvMV+75OSkye1L/579T1n1\n7/ps2bvZwhq+EWBYkHP9Jfnrlp6adP0jBdP2XTQlC286Kdq7wockXd9ouFttcrkqOOhQEe/A\n1tNaR405UHa0T/zo2OC3yt7UErd4ijh9i5cr8/ZxW1xfjxykTkziKq5qzN36ggOD9PBAPuFm\nr43KSXDsWy+X0h3rXx2SWazIgykxPmZ3J33027ZOfDTRcQWZewe0vmPPRctOvVr9ljd36tTp\n5ptvbN+mefPmtaLM3v50SsUcaoFnl5LBp5p4MifeZV+KKs474+gsp0S33uu9oyz+60Y7LsbH\ncOb6thTnn7OduLzsc2Y3zFar+HwYCtFslyRvtdLsZkoRWNfsi4CZCTnCDZHSZy+SUJLqtDm9\nZ/YTbv7MNDl1UdzQcW1K/076Y0yy6FTwxvdecHDZkJlbVxmFqNnfeQfXGvTA84MeeL6k4NK2\nn9Zt/HXLtm3b9h5LKDFaeYY1O3Hb8I5dfj6791ZVbm1RKPoinFBZ1SxwWWqWcs0jlUvMY4If\n57gqZFKoTLRz2i6R3jtqXo+aw36LL53My9jyYeLVMbHXtrqk4MJLf6eaEtfquzDWR1ttoJpR\nnKsiFv+oYb3D/Uwfkj/95bfC5PaCIORnbPoj89pVYp3O+7Um4aZZ9D4xL8YGTTl/5dosS9cL\nb7cTBCEvbe3OK2UXltuM71/RSrXQaLhdbXI5LQ86qG/oB33H9PjaNHls3rvCW2tMk/PmHjX9\nrdPp3n3S4e8PSqGFeuQoFWISl1O/MXfrCw4M0sMD+YR0EIRVpsm0fYkOzb47q8B+ImedylXk\nnsS6DYOEuDTT5KHsQjdqhrRj/sA7tok6dZ3eu8uQp15//bWBHbT7Ghn1eXYpeQe1F0/mXTwq\nCANckpOCq3scSl9ckCBuXnzMN0Rwqx3XIdjHdOGvKPdkYkFxrI8Dr37al2IWmncIojFUm2a7\nJHmrlWY3U4rw9mZvXEz6OUno68C3ALJO/Gc3jTptTnT7GbG+SxOvvyzu2AdzhXGfl/797ctb\nTMn0hqD5Q+vLuF44wa2rjEJc0t/pfaJ63f1wr7sfFgQh9+LpP7b98fumn9euXX80yWzYrDDn\nyMg7P0na8aL0/DhNoeiLcEJlVbzAK1OzlGseqVxiHhP8OMdVIZNCZaKd03bpes0aIrT+wDT5\n6dRDYz7sVPr3hT9euFRYdp/Ek3N7qZ05e1wSxakfsbzRr9amFSdL/8668EFiweRYH8PFvWV7\nLaD6g438zJq7e0Y1mDLlwLVZ4melFY2P8NIn/2H2We43+9eqaI1aaDTcsTa5lpYHHdRX/ZYP\n6viuPJ9/LSrIufTdx0nZT8UECoKQl7ZuSXJZbQ2u9WK/cEVe9a+FeuQoFWIS7VCtMXfrCw7a\nujUPkIV/xEDx5JUzyx2Y2Viw/KJStw0W551Kqvj9HpUR0ydGPPl7vK0vr8CqvLS1r+5INk3q\nDP5TN5z889t5Wu7U1efxpeQb3CnEq6xnzE7+zEZiReWlbTyf70BzcTXxoyLR3Yi+4beJ/+te\nO65PZFngbjQWi8N6CYoXieI8vSHwlhC3ick8hma7JHmrlWY3U4rgembbkrDWsfe8nf7shO0E\nqrU5Oq+IOV3KdkR2yhdrL+cJglCY/d8bhy6bfo/uMKt5ALcmu5hbVxmFuLy/849u0HfoQ1M/\nXnnkwpUDPy28tXGo+L8pu17epcplRIWiL5cXb1VDgZs4WrOUax6pXGIeE/w4xyUhk3Jlop3T\ndukib3i/ZWDZu3NPLXvb9Pd3r2w1/e0fdde4BmaNhha4PIpTJ2JpM76f6W9jce7kuAxBEP6b\nWTYYFtvnIYtZGj5Wdv25pChzxrksQRB2Tz9s+jGw2qheoda/Wa6RRsMda5NraXbQwSX0XhHz\n+5rdhvLhu/+W/nHis3fFv7d/5yklMqCReuQopWMSzVK0MXd5V1UZDNLDA3kF3HBLSFkMlJe2\n/mCO1OfXs5M/TytU5I30giBcOT9PoSXXHNBBPLl77jGFVuTB4tfNNIoGY5o+/MPYvpI+A+ZJ\n3xOyy/NLSe8/IjrANFWYc2TD9ded2ZVxYmxtkeEbzlcmI0Zj8ZyTmdLTn/hkg3gy5vZO4kn3\n2nFtB5oF0z9960BJZid/Hp9f1uD7Rw0LMmj9m6aeR7NdkrzVSrObKUVA9P1+ok/AZiXMSixw\nIPj5ZMsF2wnUbHN6zjC7SjL5sxOCIJxd82JuSVkGBs+709HFQnZuXWUUoqX+Tt9mwFO//Lur\nS5h47M04Ky6jEsuUvnJFoi8tFW+VQIFbI6lmKdg8UrlEPCn4cY76IZOCZaKZ03YH6P3n3lnX\nNJWX/uvCC9mCIBTlHB13uOzJv7bjJ6uUH0doKYpTMGIJazopyrvsQfnfZx8VBOHDPWVfIuj0\nQlOLWULq/C9SNMvGz04KgvH9g2U3vtS/7/mKVqeVRsMda5NLaXbQwVW6zXxQPHlq2f+KjIIg\nCPNni951r/edrcyb7bRSjxykdEziDuRvzLXUVTmMQXp4prEdo01/G0sKX/rhrMQZD02b78Tq\nrhRJakn/m/GrEwuXIqTeGwGGsuqcsOGdAisf+KhASd59fXv3um7wyJVK5FD74lfHiyfvHHez\nxBlP/JigQHY0qiqU0gP9zK46vf1JnMQZTy75JUEkunFIJXOy+sVNUpMaC8YsPC7+odvTjcWT\n7rXjGj1+q3jy0PT3pc/7z8TZ4smavR+WJ09whJa7JBmrlZY30y69T41na5Z9kq24IOVpyZdU\nspM+XZ5q5/Z/NducqDbT6/mVPfJ1dM58QRAWvrnP9It3QNM5HatZmRPqcusqoxDl+rui3GPd\nRG4f/JaUZXr5N/vk7TbiX1KOOHBjU2UoEX0RTqisKhS4QjVL0eaRymXiScGPc9QPmRQtE+2c\ntkt345THxZMLZh4WBOH8+hdziq9dUdTp/T98TJFvNleScs2UpiIWvVfExGZln5xP2LCo4MqO\nn9OujVjrdIbXRP+99qMh9PV6ZYfQmWU/5F5ceeBq2ZOg977YrKLVaafRcMfa5FoqDzpoXFjj\nCT1Er4vIv7Jj8qmMvLQNnyZdNf0Y3nRSuyBva3NXlnbqkUOUjknUp4XG3K0vODBID8/U6b0+\n4sldr76VL6FalhSmPv+Z1FhE7ID5Z9WsL7wo7Yllp5xYuBQGn1hxKJmXsfnprVJvqkra/sLK\nXzdvve5CswojSM+Wc8Gsh2shLXooKUx5zhPuX5OqKpRSy9eHiicPTX8ls1hSrz5tyUnT3zq9\n93O1gmwkliJp2zN/ZUp6z8/plaN3Xsk3TRp8qk9qbvZ9I/facWENJ9T2Lbt+lJO6fNK+i1Jm\nLMqNe+yrk+Jf7nqjpcyZgwRa7pJkrFZa3kwpRo8xW+nmJ1+4Iq2tW/n4e3bTqNnm6Awhs7uX\nvdbsatKn359cPTchy/RLvbvne8oTme7N3auMEpTr7wze1XZu3/7XdZs3zLoo7amdkOZmV1eN\n0pqFylMi+iKcUFlVKHCFapaizSOVS8xjgh/nqB8yKVom2jltly6k7qu9RZ9kPrX0HUEQvnhj\nt+mX6HYzOygzjlVJyjVTWotY+o1vbfo7J/XrzdvLbkIKiB7RwtrHIPo9VXYn99WEuQc2LjRN\nevs3Hlu3wnFr7TQa7libXEvlQQfNM8x43Ozuoq9e33Vy6STxL11n3KfQurVTjxylaEyiPi00\n5m59wYFBenimajfOaSX62lN20sqhS47aSF/q73cH7ZH26QvfaD/x5J73/rY7y59v9YvLVfBV\nKvd/MEA8ufye4XG59t+3Yyy+8sywr02TOp3uuSe0eN+uCgLrBYonD12VtLPWvtjnfL7U9xp5\ngKpQSmGNJ94qetlOXvqmgdP22J0rZcdrqy+VhYZhDSc086/sx/yKCy+PuGeB3WQFV/YPeGyN\n+Jdat8+v4W3Wv7vXjtN5RXw0sLb4lxmDnpRylrjmyUHHc8o2zTe023vmo6pQjWa7JBmrlaDh\nzZSiyRPTfEUvWMtJXdv3na1257q45/3HN8TbTaZym9NtutmrWR+/70nxK++efV/q3fRQmltX\nGSUo19/pvCLEn3k2luSO2SbpCsXJlefEk7FtLJ8YU4gS0RfhhMqqQoErV7OUax6pXGKeFPw4\nR+WQSdEy0c5puyP0Ux4tG9DNTfvpo7ifp5wue2rw7gVDrc2lCQo1U1qLWGr1faMsM8aSR8eU\nfSi6Rq/HrM5Sb/hw098lxVcffnWvaTL6xvd8K77vRTuNhnvWJldSetDB7bR8zeyx6fgNL8yc\ndtg0qfcKm9dbqS/Ea6ceOUrRmER9GmnM3feCA4P08Ew6Q8hXE8xOMDY83XnO9hQbs8RvfLvX\ne3ttJBALiGkunjy3/oFfUm09TJ+4aXr/GVIX7pzYWxcNiPI3Teal/9Wj36vx+cW25jEWffzQ\nTT+klAVVka0nP1w9wMYcHiy6a7R4cp2EkHTzrAfvWXjQ4sf0iu8Uy8/4rZu5e9/Y71xuXUWF\nUpJFbn4llq/z+niO2Sscd7zVc8L6szbmKMw+PPKOD8W/dJs6yvkMiCRufqn3+LU2EhTlHB3R\nrpf4apdO5/3e4gEWydTfcZXaBYLQ++MZ4mg1O/n7tndNzrO5yO1zRoz46oT4lx4zFnm729Oz\nlSw37dBylyRXtRK0vZl2+Yb2+rSv2RX2v9/t/cSSAzZmyTrz/S09Jogv5lZE5TYnstXURqJL\nQpf3ln3XMyBq6Au1g6UspEpxVVPj1lVGIcr1d8/eYDb0tXbUM2n2vs+Vm/rr6BWnTZM6nf7F\nRqG2ZxHkOpyUib6qbDjhKlWhwBWqWQo2j1QuEU8KfpyjcsikbJmoddoub9R0w/9eE0++NXxk\n8fWjyyeo7ZyO0dZmkkclN0S5Zkq1iEUK37DbxB9oTzpZ9qqJG19qbm0OIajmc3VFH5I4frHs\n4vAt73SxsS4NXaXR0kUwt6D0oIPb8Y8a9kxsWQ9SmBu3NCXbNFmt46y6vgaFVu0Wna9VisYk\nLqGF0083vuBgBGRXkmdxmP2UlivvGvIytoiX33Hqv1ZyUXRlaKzZm3YM3tFjPlhfWFI+acF3\nM54K87p2z4reYDbX1oy88gsvzk80pS8VFDtgW8JVa5kt2fr5m6bEftXLbk4MazDb6a2z6tL+\nmV46s9Pc0CaDvv79hNXEKQd/e2FAI3Find7v47gMieuqjA2dYsTrHX82UwsLv3rB7NlKvSF4\n7u/xFSXOSd4/dlhHwZpOM/dXNFd26jKLxPXv2uLwFlYgxscs4pl/werRWFlKl5LTB39a3CPi\nGTsvOFJRSkmrKMl/qrnZvXt6Q/Aj7y67Wly++TCmH9swqIlZDBEQfUf5lFLWa7ETTW4a8caR\n9Pzy6Q+t//DGcnFD6+c3lE+pwuEt8y4wGre8dqPF2mt3G73l1JXyKYtyz019orfevPULa/p4\nTnGlMmAlS3fVF8+YZ+VwcJi85VaUd0acpuWLf9vNQObZ8eJZBu5KtjtL3BfdxLMsS822mkwj\nXZJy1UrpzXT6QJWuIGtPAz+zxx10Ov1tj79/JqugXNriPz5/U3z5SSfa6pvnHrJIrUKbY2Ht\noLrWd/TMgw6UiGRS9o4HNzVWiQMwvVd4Rck00jJoqrVUqL9L3vGExWJje47Zc6aCwLgkb/v3\nC9pHmL0qLKr1ZKtppR9OjlEg+jIqGU5o5yjSTk6MVSB+U65mKdg8ulvlUnRfu2/wI1dkqGbI\npHhAqMyxrXTUNLq62XOfJjc8t13K7NLXK/uGKNRMKdeuOmfnMy3K7x2dTrf/avlW4ppPW0dZ\nmUXvezyn0MaKNHWVxlUXwaySclrh8tMxRQcd5LX3dbNvfsd0qvDiRmUc/6xn+YOz1EM7kpRY\nYynNdr6ujUkcdeX8ZHE2+m1NLJ/GblFo5PRTg9fopBwMVeU9JKiCdIbgxVtmrW/+VF7JtTuM\nigsvznth0Bez2t47YlinG+rXqBZ69WLy6cO7Vq345sD5K6VpDD7V52yYMab3g6blBBisvHBC\n71Nzbu/Yh34ue8HI1cQNtzZsPOK55wd1bde8efO6Ub4pFy4c+OvnFV99/OPOa8mC6w1ZOym1\n1+i/FNrkyHavrHthWf+5/5h+yYxbP6rX+kk39RnYv0+7JnWiIoOyUhLPnz9/8K91y379t8T8\n3qvuEzc92Viem0/dUWDMk4/Uff2zc9eOhJLirJdurfdlvweff+q+VvVqxcTECFkXjh8/HhcX\nt//PDV//8FdO8bX7tnxCowoyL5mWs/u17sMSxg64sbGPoePI4Y2srMmdabaUdHp/8eT+cU+s\naPFRzxvqeBVkJiUlNWh7s2Nf19P5zPr9yzW177pYeO1uu5LirM/eGrnio8lDhg3r3q5xTI2o\nnNTzp06dOnrgj29++ruwpKwq6fTer61dFKiv7FMhXn6xRXmJpX/vXjml5eqPug0e2qdzq9jY\nGiVZqefPHv/lu292xl2ymCug+sDNs/uWX5oKO07mXSAIPd/bPHx5jLc+hQAAIABJREFU7Dfx\nZbeux/+59LbG33TofdeQAd3r14oN8y1OSkz8d/vPq1b/kmT+/iKDd/SXW+f6u8PbgmQvN+3Q\nYJckb7UqpcHNlM47qOMvi4c3HlV2A5nRWLJ50bhGX0zvceew225qERtbo/hKyrnTh9Z9880/\n1yMlQRBCG98/N2TTw/tSK1qy+p1Fl6n3COtnW/yo03nPetxD3oteSdppaty6yihEof6ueueF\nj9ZbueRsWc1N3DrvpgYL2vcZcU/vjtWio6OjI4WcywkJiQnn49avXH4wyeyDjnqvkIUbXrSa\nYaUOJ2WiryoSTmiHxxe4cjVLweaRyiXiScGPc9QMmRQvE2WObaWjpv+93nLpS5ZfzNTpdBPf\nbleZxZYn+4Yo1Ewp1646p/krdwsLjlj86B85pF1ghd+67vFSM+Fhyyu9wbVfbWLz9e/aukqj\ngYtg7kXRQQd3VP/eD/wfb5tb7ts3Xr51Zt9YXbn1ukvna5VyMYlLaOT0010vOEgc8AccoI0n\n6UsdWzXWV3KgoPcKmbE1KffyevGPR7Kt3/mYl/57rCNva/EObLX1Uu7JlT1Mv8j+JL3RaDQW\n584Z7Uxkf+OTnxQ5sJpK0eaT9Eaj8fLBWX4OhpXRHUf/dzm+rp+VyDuy2QqL5XvAk/RGhUvJ\n6YM/J3WljQyIb3mWvorE3+fWqOAZXBuGz9ttdWmOPklfre261WN7ObRq/6gum5OsP9VkVP7w\nVmIX5F7a2a+uwy9dNPjWnLsloaJlOpQBC0o83ipvuWnqWTqjURNdkqLVStHNVOFJ+lLr3h7k\nULZ9gtvtSM8T97ZWb9xWus2xUFKc0yzA8sJZRLMpypSZ6x/dcJQSTbQFiU/SG42aaBm01loq\n1N+lH/2suuORjCAIOp33E59UuOulH05OkDf6KqVQ8WrnKNJOTkp5fPymUM0yGpVtHt2ocqmw\nr90x+JErMlQ5ZFIhIJT92FY6asrL2GrQWZZJaP3/SS9VietVZEOUaaYUbFcdV1KcXf7wq3/X\nbzZmyU5ZWj5vN822/3YK7VylKaX+RTCr3OJJ+lLKDTrISJ0n6Y1G44dtrXywo07/7xVanYk2\nO1+XxyQOkeVJeqN2Tj81do1OysHgIXfrABVpOmzavytflxJk+IW3Xbjp6Ks9apQUmt2IVMfP\n+ry+YT33b5kd7S2p6Qlp2Pf7f/7qEelnP2kl6f1e/GLvsrF3+EiPEgxBo99Z9ffHTyj1fRj3\nEdHy5X1fPCMxwNLpvG596L1jOz9rFVFr47yRSudNO7RZSv7Rw0fUDLKfzhE1e75waOfi1pKr\nrd474uVP/1j5vOWLH512z7QtK14dVP4E3qrwZv1/O7rp1hoVfjVH6R2nxC7wi+y09vCuUTfX\nlD6Lf/V2X+4++EKvWHlzohwlyk1DtNclyVutrtHeZjpk0MR1P08ZFSjtFv7gereu2vt75zBf\nuylV7ix0ev/ZfWpZ/Hjr3Cr0ZUTbtNXUuHmVUYJC/V1Ys4cP/Dqtrs2nuMrz8q/9xooDnzzR\nusJVK3k4KRF9VYVwQlM8vsAVqlmCoGzzSOUS84zgxzkqh0wqlInsx7bSUZNvaI/X6oVY/Nh9\n9jOyr0iRDVGmmVKwXXWcTh8wuY3l6+vbv3KDjVkCqo1qVe45++dHNrC7Lq1dpXH5RTC3o9yg\ngzu65wMrLyC8d2Z3pdfrFp2vDQrFJC6hldNPd7zgIHHAH3CAlp6kL5V9YdezA6x8VaiUTqdv\nM2DM4cxr991knnvb9C+DT4ztJV859duITvVsVDGd3q/nQ1OSC659b03xJ+mvu3xwwyO3N7Nd\n/XV6n5sHP/bT4XQnll8Zmn2SvlTSrq9va27lg1KiA0bXtNeDP+5PEc+1afqT1czDMk99kr6U\nQqVUmYM/49iyJiE+VjNTmbvdi/IvLHz9ftPnoyrYWK9Odz390xFbVcmJJ+lLf4z/c2mvBpbn\n8GJefjWfnb7K6qfCylPu8DYqtguMxuJtX7/fsab1T/eZGHxrPDbp89SCCj5uKVKJmx8beHl5\n+/kHBAWHhIdHyPJ4q1HWclPtWTqDl7evn39QUHBYeMTqizl2Z3Fhl6RCtVJoM1V7kr5UxrFf\nH+pl661uOr13l1HvJuZfq2ISb9xWtM2xkHZ0rHgWg09MsoQGwTkKP7qh9abGKgeepL/OhS2D\nVltLmfu7UrmX/nllaDcp79L08qs++NGJh9LsfxpT4uHkNLmiL3MyF692jiLt5MSch8dvStQs\nE+WaR7eoXKrta/cKfmSMDNUMmUqpEBDKe2wrHTWdWtnHfBfUMB1mUkhfr3IbokQzpWi76pDz\nGy0fbN15Jd/2LCs7m12K9A3rIX11WrhKI6bmRTCrNPAkvWO9iXKDDrJQ7Un64sLLdcyfTfcJ\naitX3GWX1jpfjcQkEsn1JH0p7Zx+auQanZSDQWc0Wn4rAvBUqUe3L1++/MctuxMSEhKT0gOj\na9apU6dFpz5PPPlkt2aRpmQXD9xXrd2112gERA/NTv3W7pLP/L32i1U/bd+x49iZ5PSMdJ1f\neEzNmjE1a3Xtf++DDwxvVq3sJsTCK2fj4rNL/zb4xDRrHCHrJlq6fGrfunXrfvp568mEpJTU\n1EtpOYFh4RFRUU1a3dS1a5d+dw/vUEczj1VpS8l/m1auXLtpx86/T8anpqen6wIiatasGVur\nYfd+g++++6629cLKz5N38b/v1/5x5ERyZL1GzZs3b9aiTd1o5d+d4EqaK6XivMSlM9/7auPu\ns2fPJl7KjaoRExMTU7Nmzfkrltd15OMU5RVdTdy0ft2PP67bd/x8SnJKysV0n+DwqKioOk3b\n9uzZ8/bBw7o0Ca98/mv6eiUVXPsAWLW261L+uX5maCz4Z8vab1Z9s3VvXHJyckpqRkBktZiY\nmLrNOt51zz13De4Z7djWKbjjlNsFgjH/4F+/rV+/ftOOA0kpKakpKZkFXtHVqlWvVq1hm1sG\nDRo0oG+3av7ueg+yguWmJS7pktSqVmXcuudNPb7ru+++W/vr9vMXkpOTk7OKfWJiasbGxnbq\nM/Shh0a1qln2UoGrZ46fy7n2fdmAmEb1I2zcyq1SZ5Fx4p3wJmWXPOr0/+7chrsd2XrPp82m\nxq2rjCKU6e/y005+t/K77Xv/OfDvv+eT07KysrKy8/2CQkNDQ6vXadS+ffuOnXoOuef2apKP\nBBUOJ0WiL48OJ7TI0wtc9polplzzSOUSc+vgxzkuCpnUKBMZj21tRk1OUHRDlGimFG1XNUxz\nV2nUuQjmSZQbdIBkmu58pVAmJnEN7Zx+usUFBwbpAUv7xrXtOPXf0r8jmiy8fPwp1+YHQBVR\n4WgiAGdRraqO1QPqDtt43jQ5/lja5KZcOQIAADBDyAQArsKgA4Dy+CY9YOn3NWWnKzUHtHdh\nTgAAAGBXcf75ZzYlmiZ9Q7tP5NkOAAAAc4RMAOBCDDoAKM/LfhLADaUfnj/h4+OmybZj33+0\ntqQ3VxRc2fHmqQzT5I0P1pc/cwAAAJDPubVPXSwsNk02fWKml86F2QEAANAiQiYAqCQGHQDI\ni0F6eCZDUMr8+fNNk01z73l0cU8pM259+8n8kmvfgNAbAie1UPab8QAAAKik2S//Zfpbp9NN\nfK2lCzMDAACgTYRMAFBJDDoAkBevu4dnCop5urqPwTR58utRe64U2J3r0v55g+cdNk1Wu3FO\nbV+DjfQAAABwrbRDkz5KyDJNBtd+8e5IfxfmBwAAQIMImQCg8hh0ACAvBunhmfQ+NRffUdc0\nWZyf2Oemh/ZdzrMxS9zGGa07v1xw/Y42QRBe+GyoglkEAABA5eSm7rnn1mniX3rPe8FVmQEA\nANAmQiYAkAWDDgDkpTMajfZTAW6oIHNH85gep3OLTL94+de844GHH3nkgS4t64cF+pT+mHf5\n7B9bf1/56ezPfz0knr3W7bPjf31J1RwDqNpq+nolFVz7QGC1tutS/hnk2vwAHoBq5YGMBS07\n9mzYsGHdmqFpiac3/vhLWmGJ6Z++IbekpP0VauDzqgAAoGojZAIAZTDoAEBGDNLDk8WvH9/s\nrqk5xSXl/+UbFB4d5peVnp6ZbeVOt+B6A3Yd/rFFgJfyeQSAaxhNBGRHtfJAxnyd3q+ifz69\n4fyC/rXVzA4AAIAWETIBgGIYdAAgF153D09We9B7R356v16Ad/l/5V9NT0hIstpZRrYdtYfO\nEgAAwK10eGoFl5sBAABsI2QCgEpi0AGAXBikh4er23fs8cQDEx/uF+5tsJvYv1qrsXO+idvz\nZVM6SwAAADeh9wq7b9yy3QtHuDojAAAA2kXIBAByYdABgCx43T2qiqLshLUrVv/x9+69+w6c\nS76cmZGRU2wIDQ0NDQuLimlw8y1dunbt2qdvt3AvvsgFwDV4LzcgO6qVJypZ9P7Yr1auP3Yu\nPksIbtykyQ3tb3v17f91iAlwdcYAAAC0g5AJANTAoAOAymCQHgAAAAAAAAAAAAAAlfC6ewAA\nAAAAAAAAAAAAVMIgPQAAAAAAAAAAAAAAKmGQHgAAAAAAAAAAAAAAlTBIDwAAAAAAAAAAAACA\nShikBwAAAAAAAAAAAABAJQzSAwAAAAAAAAAAAACgEgbpAQAAAAAAAAAAAABQCYP0AAAAAAAA\nAAAAAACohEF6AAAAAAAAAAAAAABUwiA9AAAAAAAAAAAAAAAqYZAeAAAAAAAAAAAAAACVMEgP\nAAAAAAAAAAAAAIBKGKQHAAAAAAAAAAAAAEAlDNIDAAAAAAAAAAAAAKASBukBAAAAAAAAAAAA\nAFAJg/QAAAAAAAAAAAAAAKiEQXoAAAAAAAAAAAAAAFTCID0AAAAAAAAAAAAAACphkB4AAAAA\nAAAAAAAAAJUwSA8AAAAAAAAAAAAAgEoYpAcAAAAAAAAAAAAAQCUM0gMAAAAAAAAAAAAAoBIG\n6QEAAAAAAAAAAAAAUAmD9AAAAAAAAAAAAAAAqIRBegAAAAAAAAAAAAAAVMIgPQAAAAAAAAAA\nAAAAKmGQHgAAAAAAAAAAAAAAlTBIDwAAAAAAAAAAAACAShikBwAAAAAAAAAAAABAJQzSAwAA\nAAAAAAAAAACgEgbpAQAAAAAAAAAAAABQCYP0AAAAAAAAAAAAAACohEF6AAAAAAAAAAAAAABU\nwiA9AAAAAAAAAAAAAAAqYZAeAAAAAAAAAAAAAACVMEgPAAAAAAAAAAAAAIBKGKQHAAAAAAAA\nAAAAAEAlDNIDAAAAAAAAAAAAAKASBukBAAAAAAAAAAAAAFAJg/QAAAAAAAAAAAAAAKiEQXoA\nAAAAAAAAAAAAAFTCID0AAAAAAAAAAAAAACphkB4AAAAAAAAAAAAAAJUwSA8AAAAAAAAAAAAA\ngEoYpAcAAAAAAAAAAAAAQCUM0gMAAAAAAAAAAAAAoBIG6QEAAAAAAAAAAAAAUAmD9AAAAAAA\nAAAAAAAAqIRBegAAAAAAAAAAAAAAVMIgPQAAAAAAAAAAAAAAKmGQHgAAAAAAAAAAAAAAlTBI\nDwAAAAAAAAAAAACAShikBwAAAAAAAAAAAABAJQzSAwAAAAAAAAAAAACgEgbpAQAAAAAAAAAA\nAABQCYP0AAAAAAAAAAAAAACoxMvVGdCEnMSjv27esn3/kYuXLmfmCeERETH1mnXr0eu2W1p5\n6+zPHv/fts3b9x0+Epeanpl1Nc8vODQ8OrZl6zZdbuvfunZwZTJWUnD5jw2/7PnvYNzZC1lZ\nWYWCT1BwSK0GTVq2ublP31sifQxKbxoAAAAAAAAAAAAAQEY6o9Ho6jy4lnHnmo/mfPVbXomV\ncghv0nPsuGdviPStaOaCKyc+mjz192MXrf5Xp9M37zH8f2OGR3o588aCs3+tmDxvVWpesdX/\nGnyihz332v09m1S8gEptGgAAAAAAAAAAAABAdlV9kH7fl+MmrT5smtTpfYL8jFk5haZffIJb\nTF/yXgM/K8+sF+XEvfrIuNOixDqdISTM/0pGtrhUA6rfPOejcTE+jo3TJ2798Jk5m8TL8fIL\nCdTnZOYUiZP1enruS/0byL5pAAAAAAAAAAAAAAAlVOlB+oxjX4x+7fvSEgis3fmpJ+6/pXVd\nb52Qk3Z209plS77fXfqvkAZDv577YPnZl744as3pK6V/N+p+z8N339qgdmygj77gatqZuP3L\nFi0+kJhT+t/wZiOXTh8uPWNFOYdGjxyfVWwUBME7sMHIJx66pU3D6hHBOkHISkvet2nNZyt/\nyygqEQRBp/d/+6uv2gf7yLtpAAAAAAAAAAAAAAAlGCZOnOjqPLhKycJX3z+TWyQIgl9Ul4UL\nXmteM8ygEwRB8PYPa9q2e4eQU7/uSxQEIT/9iLHToFbhZm+Gv5r47eSv95T+3WDw63OeH1w9\nItTHoBMEweDjHxXToOeAQcEXduw/lyUIQt6lg4U3D2wTLvXd8oc/nbjxxBVBEAw+1SYtmtuz\nWWyQv2/pF+R9/YPq3XBTn1uq/fTz30VGQTAWxaW3G9S5moybBgAAAAAAAAAAAABQiDPfSvcM\nVxOW/p6WV/r3A+8+F+Gls0jQZOD4QdUCSv/eMOcPi/+e+PyX0j+8/BtNebRz+eXr9H6DXprW\nLMC7dPL3JQel523V9tTSP+re9XqrUMun5AVBCKx96wttI0v/vrxvncV//8/evcdZVdb7A3/2\n3jPDMDCMMyKKQHYIL6iI0sWoyHtqpKV5NEU9WkmW5aXS8BKelJNmv0gy9ZSpaKKlIp461pG8\nkEoqKRQqICaIiFwEBubGsGf2rN8fe5jGkRkYZmZtbL/ff31d63nW+i4WoL4+8zyri48GAAAA\nAAAAQA/J35B+6W+eyxbFFcedMKjP1oYkTv7GIdmqevm0jZl3fRfg9ws3ZIuBh40vSbZNwZvn\np/p95fA9mq+wdGabs1O/fNqJWyypz7Qcz9Qv+XtNOlsffvzg9vrf54RB2aKh9uXufTQAAAAA\nAAAAekj+hvQz5q3LFnsedWx7Y8oPOCOZSIQQokzNvatq/3kiSs+raciWe392zw7usuvHmte7\nN9Yv3c7GGjYtbqk/WlrY3rCiLSvso6b6Nhl7lx4NAAAAAAAAgB5TkOsGciPKVLWk7PsesXt7\nw1K9hhxaWvhsVTqEsHR+ZRjUN3u8sf6NTNScjB+4S0cfdN9c2bwmPlFQtp29FfYZMXHixGw9\nsCjV3rD18yqbx5d+uPVC/i4+GgAAAAAAAAA9J09D+nT18y0p+8Fb++h7i1F9i7JJ9ro568Px\nQ7IHC3oPu//++7N1r+KOQvpnHl6eLXqXH9nmVN/+AwYkN2XrwlYxe6po0Ec+Mqjj/hvrlt06\nfVm2/sBx/976VBcfbYfV1dU1NDR08SIAAAAAAAAAO63S0tJksqvb1edpSN9Q988t5fcvaXdL\n+RDCwMEl4e2aEMKmt98KYeSWw8ni4uJt3mXjqw9OW1adrfc7a3Sbs6fccNMp291wlGmora2t\nqamprnz7hdnPPDVr9oq6hhBCv6FHf//0D7Ue2eVH20GNjY1CegAAAAAAAOBfWBRF2x60LXka\n0jelN2SLRKKgLJXoYGRRefNi9KbGDZ26Re3yZy69clrzRUoP+fbodnee3x6//Mq4R9bXtz6S\nSBSOPOqLF379S+Xv7j+GRwMAAAAAAABgx+RpSJ/euOVT8anSjkcWlDYvRu9Ekh1l5vzuthun\n/rEmE4UQUkUDLrrhe307zMt3QN8PfvJzx32mf2HbvRR69tEAAAAAAAAA6II8Dek7oWnLfgVN\nm7dn+JtzZ95x511zt+xynywoP//6yWMGlXSxi4H7DN+/anMikUgkEo01by96Y3310lmTvjvr\nQ2POvu67XyxO7NBPAHTy0QAAAAAAAADoojwN6YvKmnd6jzK1HY9srG3MFonCio5H1ix/8Y7b\nbn/sb2+1HBkw4uhvXzJ+//7b/nr9Np14xQ9ObPWPby949s6fTnl+dd3rT9/9rU1Nt008teVU\nTzwaAAAAAAAAAN0iT0P6ZFFZtoiidF1TVJJsdyV6urJ59/hkQbtJdtRUP+u3t97621n1W9am\nF5V+4Atnnzfu2JHdvMf9FnvuP/rSyb3PPvvquky0+oV7pi47/py9mje3795H2359+vQpKenq\nhgEAAAAAAAAAO61ksu3nyHdAnob0Bb33DmFmtl5Y1/DhvkXtjVyzYlO26FW+x1YHbHx99pTJ\nP39hefOy9VSv3Y49ddzpJx1RVtBDAX2zotKDx+3R97YV1SGE2fe+cc7lI7LHu/HROiWVSnX9\nIgAAAAAAAAD/2vI0pO/V7+PJxC1NURRC+HtNYwdJ9vyahmzRf/Tu7z375lNTvzt5RnYBfSJR\n8NETzj3vzM/uXtyluPrv//PggrqGEMKuh3z2M/uVdTBy6NC+YUV1CKFmyWshNIf03fVoAAAA\nAAAAAHS7PA3pE6myg/sUzq1JhxBeefadcNJeWx0WNa6bXbU5Ww8Z1XZP+LUv3nXRT2ZkoiiE\nULLnqG9+5+JP7b1L13vb8NjD9y2rCiHsueqgjkP6xvpMc5UobDnYLY8GAAAAAAAAQE/I05A+\nhHDSwRVzn1kVQlj56HPtJdlVyx5oiKIQQiJVMm5gn9anGje9etkPH84m9BUHjv3xD87brbAb\nPj8QQhg4YpewrCqEsOGlv4ZwQAcj//5GTbbovdug1se7+GgAAAAAALCdhl/0SK5baLZwythc\ntwAA26V7cuX3o6GnH5otalfeN6cqvdUxz9wyO1uUDh7X/90Z/NxbJq9tyIQQivqNmnLt+O5K\n6EMIe44dlS02rfufOdVbbyyEkN747MNrmz8qP+zUD7Q+1cVHAwAAAAAAAKCH5G86Wzr4nDHl\nxSGEKGr6+aTp0XsGVL4y7Zf/qMrWx19yWOtTUab65tmrs/UxEy8uSyW6sbE+A780tLgghBBF\nmZuuvqsm897WQmbz6v++4qbGKAohpIr2/Or+79qvviuPBgAAAAAAAEDPyd/t7kMi9dXvHff0\nhIdDCBsW3Xfhjwuu+MZJA/sUhBBClFk0+8HrJj8QRVEIoWzv08cN7dd6au2qeysbm0IIiUTq\n0KbVixev2ebdkgW7DBs6oPWR6RMunlnZvBT+qp/dMqRXqrmvZMl3zh1xwa3zQggb//H7r317\n7X+M+/zIvT8woLxvIjRtWLPy9flP3fGrB5fXNWTHf+TcKwe0WQrfhUcDAAAAAAAAoOcksmFt\n3vrr1MuufWhRtk6kSocO26usV9PqFUtWrKvPHiwqG/GT267ZqzjVetayh77zramvdepGxRVj\n75/6tdZHpn75tIe27Fd/4/0zhra+RZT5zdVfvfdv61qPTxWX9m6qq0lnWh8cdsyFk791dDc+\nGgAAAAAAbD/fpAeAzsrf7e6zPnrO9ZeeeWRxMhFCiDLVr7/68tz5C1pi7P77HznppqvfG2NX\nzqvs2bYSqdP+8+bzjh+ZTPxzI/1MfXXrhD7Vq/8J51/bXkIfdvTRAAAAAAAAAOg5ebzdfbPk\nmFMvHjX6mEcff2L2iwvWrl9ftTmUl1cMHHrApw8//OiPH7jVz82/s3ZzT7eVSJac8PVrj/j8\ngj/O/PPLCxa+sXJdbW1tKOhd2q/f4KH7jRj5kaOP+WRFUcc/Y7EjjwYAAAAAAABAz8n37e4B\nAAAAAIAdZrt7AOisfN/uHgAAAAAAAABiI6QHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAA\nAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAA\nAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAA\ngJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAA\nICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAA\niImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAA\nYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACA\nmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAg\nJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACI\niZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABi\nIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICY\nCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAm\nQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJ\nkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIi\npAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI\n6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZC\negAAAAAAAACISUGuG9gp1K1YOPPxJ2bPXfDO2nUb60N5RcXAD+435rAjjvrEiMLEtqcvn//n\nx2e/+MqCxWsqN1bX1BeXlpXvNujAg0Z+8qjjDxpS2o19rpx15dcmv1RYMnz6b360jaFR+tST\n/r2+KdrmNUsHXzrtljHd0x8AAAAAAAAAHRLSR89Ov/mnv/7z9HlBAAAgAElEQVRT6zx77aq6\ntaveeum5x+7b5/DLLr/ggF17tTc5XfXazZOuf3LRO60P1mxcX7Nx/fJ/vPR/M+4dfthpl154\n2q4F3bNjwRP3LdnOkema+duT0AMAAAAAAAAQp3zf7v7Fu6+47q6ZLXl2IllUWlLYcrZy8ayr\nL7x6SX1mq3Mb6xZfNn5C64Q+kUiVlfdNJJpX30dR04JZ913w9etWppu63mrd6pn3r6rbzsHp\n6jldvyMAAAAAAAAA3SuvV9JvWDT1mukLsnWfIaPPH3/GJw7aqzAR6ta/8djvpt0+Y04URenq\nBRMnTLvnxrPfO33aFdcsqWvI1sM+/cVzTzpy6JBBfYqS6Zr1SxfPnXbbr/62oi6EULf6+QlX\nPXDXDad1pdWG6jduvPL2KNrexfFVry7PFqWDz77qWwd0MDLVa1BXGgMAAAAAAABg++VzSN90\n5/V/yMbexf0/efOUyyoKmlfAl1R88MRzrtxvt0nf/cWcEELVkgfvXXrSGf/2rq/L16x4YPqS\nqmw99IQJk8/7RMupor4V+446+gc3f+p/J19y21MrQgiVi6bdveT4s4f262yLdZWr33xz2QtP\nz/zj43+tznRi+/r1L6zLFv1HHzx8+LDO3hcAAAAAAACAnpC/293XvHXXk+vrs/VZ136zJaFv\nsc/YKz83oCRb/+GnT7U5+9qdj2aLgt7DfviV0e+9fiJZ/LlLfrTfls3zn7z9pU61t3nD4+eO\nO+VL/3HeZd+fdP/MOZ1K6EMIS1+ryRa7f2zXTk0EAAAAAAAAoOfkb0i/9DfPZYviiuNOGNRn\na0MSJ3/jkGxVvXzaxnfH5L9fuCFbDDxsfEmybcDfPD/V7yuH79F8haUz25yd+uXTTtzivZ+9\njzLV66rT2/00bc2paZ77kQG9d/giAAAAAAAAAHSv/N3ufsa85g3h9zzq2PbGlB9wRjLxl6Yo\nijI1966q/fqgvs0novS8muav0e/92T07uMuuH9s1/GF5CKGxfmmn2isoGX7mmWe2PlK3+omH\n/vT29syNmuperm0IISQSqdH9enXqvgAAAAAAAAD0nDwN6aNMVUvKvu8Ru7c3LNVryKGlhc9W\npUMIS+dXhi0hfWP9G5moeWH9gbt0lIJvrmxe0Z4oKOtUhwW99z311H1bH1n/8oLtDOkbql/M\ntlfYd2RpKvH2S7P+7y8vrXhrxcrV61N9+u262+ARhxzyycM/tUfvVKdaAgAAAAAAAKCL8jSk\nT1c/35KyH1xW1MHIUX2LsiH9ujnrw/FDsgcLeg+7//77s3Wv4o5C+mceXp4tepcf2eZU3/4D\nBiQ3ZevCre+Xv4M2b3whWySSfX529QWPzVve6uSqZa8vnvvcE/fcPvXoL43/ximju+vO9fX1\nmUzbTfsBAAAAACAetbW1uW4BgH99vXv3Tia7+k35PA3pG+oWt9T7lxR2MHLg4JLwdk0IYdPb\nb4UwcsvhZHFx8TbvsvHVB6ctq87W+501us3ZU2646ZROtNwJG15emS02b3z6sXlbH5NJr3v0\n7usWvHbmzyacmuqOoD6dTqfT6W64EAAAAAAAdN6mTZty3QIA//q2JybepjwN6ZvSG7JFIlFQ\n1mFGXVTevM6+qXFDp25Ru/yZS6+c1nyR0kO+PbrdTfW73foX1rfUiVTpZ049/ahPfewDA3YN\ndWuXLVv2j1eenzHjibXpTAhh+bP3XHnP8OvPGhFbbwAAAAAAAAD5LE9D+vTGLZ+KT5V2PLKg\ntHmdfSdC+igz53e33Tj1jzWZKISQKhpw0Q3f69sty9W3z6tv1mSLwpJhl/900kcGljSf6LX7\n8PLdhx/8sWOOPeyai655uTodQlg4fdLLX5x2YEme/k4AAAAAAAAAiJNodluaoi3F5u0Z/ubc\nmXfcedfcLbvcJwvKz79+8phBJR3P6l5DTh735XQmhPCBTx03qv9W9lso7n/QlT/6yhkX/HcU\nRVHTpl/8dulN5+4dZ4cAAAAAAAAA+SlPQ/qisuZN7KNMbccjG2sbs0WisKLjkTXLX7zjttsf\n+9tbLUcGjDj625eM339rMXmPGv3ZE7Y5ps/g48/a8567V1SHEFb/+fEgpAcAAAAAAADoeXka\n0ieLyrJFFKXrmqKSZLt70acrmzfGTxa0G9JHTfWzfnvrrb+dVb9l2X1R6Qe+cPZ5444dGd8e\n95136OcG3f2LRSGEdNVfQji/i1crLi4uKirqjr4AAAAAAKDT+vbtm+sWAPjXl0wmu36RPA3p\nC3rvHcLMbL2wruHDfdtNl9es2JQtepXvsdUBG1+fPWXyz19Y3rwiP9Vrt2NPHXf6SUeUFezM\nAX0IIZQdWJ4tmho3VGWifqkuNSyhBwAAAAAgh4qL497XFgB2TJ6G9L36fTyZuKUpikIIf69p\n7CCkn1/TkC36j979vWfffGrqdyfPyC6gTyQKPnrCueed+dndi1M903U3SxT0aqkLd/afKAAA\nAAAAAAD4V5CnIX0iVXZwn8K5NekQwivPvhNO2murw6LGdbOrNmfrIaPabne/9sW7LvrJjEwU\nhRBK9hz1ze9c/Km9d+nJrrdL5UtzF9c1hBCKyvY7ZL+yDkZuWrE+WxQUf7B3+xv+AwAAAAAA\nANBd8jSkDyGcdHDF3GdWhRBWPvpceyF91bIHGqIohJBIlYwb2Kf1qcZNr172w4ezCX3FgWN/\n/IPzdivshs8PdN3Gxff8113/CCH0KjvsgV9/p4ORr/3PimzRd8gX4ugMAAAAAAAAIO/tFLly\nTgw9/dBsUbvyvjlV6a2OeeaW2dmidPC4/u/O4OfeMnltQyaEUNRv1JRrx+8kCX0IYY8jP5Mt\nNm/8892LNrQ3rLFu0c8XNK+kH/6lEXF0BgAAAAAAAJD3dpZoOX6lg88ZU14cQoiipp9Pmh69\nZ0DlK9N++Y+qbH38JYe1PhVlqm+evTpbHzPx4rLUTrRXfHH5cSfuXpKtZ0y86qWt/fxBU+Pa\n266YVJuJQgiFJQdc/OH+sbYIAAAAAAAAkK/yd7v7kEh99XvHPT3h4RDChkX3Xfjjgiu+cdLA\nPgUhhBBlFs1+8LrJD0RRFEIo2/v0cUP7tZ5au+reysamEEIikTq0afXixWu2ebdkwS7Dhg5o\nfWT6hItnVm7K1lf97JYhvVLd81whnHb5l/73kjuboihT/+Z/jr/ohHFnj/30yN3KSkKUWbfq\nraWvzn3ont+8vGZTCCGRSJ58+aU+SA8AAAAAAAAQjzwO6UMo3//L3z950bUPLQohLHv61+f/\n5eGhw/Yq69W0esWSFevqs2OKykZM+q9T20xc9/zibBFFmYmXXbo99yquGHv/1K+1PlK9ZuXK\ntc0hfcN7F/J3QenQL/znl+ZPvO+FEEJD3YqHbrvuodtCQXFpUaa2rqGpZVgikTzsP344bmRF\nd94bAAAAAAAAgPbl73b3WR895/pLzzyyOJkIIUSZ6tdffXnu/AUtCX3//Y+cdNPVexW3XeNe\nOa8y7kY76eDTJ177tc+XF/zz/TbWV7dO6Isrhp19xc3fPnn/XHQHAAAAAAAAkKfyeiV9CCGE\n5JhTLx41+phHH39i9osL1q5fX7U5lJdXDBx6wKcPP/zojx+41c/Nv7N2c+x9dtrIsV/51Zjj\n/vzYn+a9+uaa1WtWr1ld3ZDapaxs8LADPvKRjx9z5EdL7HIPAAAAAAAAEK9E9rPrAAAAAAAA\nnTX8okdy3UKzhVPG5roFANgu+b7dPQAAAAAAAADERkgPAAAAAAAAADER0gMAAAAAAABATIT0\nAAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9\nAAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgP\nAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdID\nAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMSkINcNAAAAAADADhp+0SO5bqHZwiljc90C\nAPD+YCU9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAA\nAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAA\nAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAA\nAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAA\nABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAA\nAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAA\nADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxKch1AwAAAAAA\n71fDL3ok1y00WzhlbK5bAABgu1hJDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9\nAAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgP\nAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdID\nAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQA\nAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABCTglw3\nsFOoW7Fw5uNPzJ674J216zbWh/KKioEf3G/MYUcc9YkRhYltT18+/8+Pz37xlQWL11RurK6p\nLy4tK99t0IEHjfzkUccfNKQ0t711cToAAAAAAAAA3SgRRVGue8it6NnpN//013+qb9rKr0P5\nPodfdvkFB+zaq73J6arXbp50/ZOL3tnq2UQiOfyw0y698LRdC3Zsx4Iu9dbl6QAAAADANgy/\n6JFct9Bs4ZSxuW4hN7yCnPMKAKCz8n27+xfvvuK6u2a2xNiJZFFpSWHL2crFs66+8Ool9Zmt\nzm2sW3zZ+AmtE/pEIlVW3jeRaF6iHkVNC2bdd8HXr1uZboq5t65PBwAAAAAAAKDb5fV29xsW\nTb1m+oJs3WfI6PPHn/GJg/YqTIS69W889rtpt8+YE0VRunrBxAnT7rnx7PdOn3bFNUvqGrL1\nsE9/8dyTjhw6ZFCfomS6Zv3SxXOn3farv62oCyHUrX5+wlUP3HXDaXH21sXpAAAAAAAAAPSE\nfF5J33Tn9X/I7vZf3P+TN0+ZcNjIvbKfaS+p+OCJ51z54/EfzY6rWvLgvUur20yuWfHA9CVV\n2XroCRMmf/c/RnxoSJ+iZAihqG/FvqOO/sHNU8/79KDsgMpF0+7eMjiG3ro8HQAAAAAAAIAe\nkb8hfc1bdz25vj5bn3XtNysKEm0G7DP2ys8NKMnWf/jpU23Ovnbno9mioPewH35l9Huvn0gW\nf+6SH+23ZYf5J29/KbbeujgdAAAAAAAAgB6SvyH90t88ly2KK447YVCfrQ1JnPyNQ7JV9fJp\nGzNR63O/X7ghWww8bHxJsm0K3jw/1e8rh+/RfIWlM9ucnfrl007cos234bvYWxenAwAAAAAA\nANBD8jeknzFvXbbY86hj2xtTfsAZyUQihBBlau5dVfvPE1F6Xk3z1+j3/uyeHdxl14/tmi0a\n65fG1FuXpwMAAAAAAADQQ/I0pI8yVS0p+75H7N7esFSvIYeWNu9Xv3R+Zcvxxvo3MlHz6vMD\nd+nVwY02V6azRaKgLJ7eujgdAAAAAAAAgJ5TkOsGciNd/XxLyn5wWVEHI0f1LXq2Kh1CWDdn\nfTh+SPZgQe9h999/f7buVdxRSP/Mw8uzRe/yI9uc6tt/wIDkpmxd2Gq//C721sXpO6yhoaGp\nqamLFwEAAAAAdszmzZtz3UK+8wpyzisAIAZFRUWJxNY/hr798jSkb6hb3FLvX1LYwciBg0vC\n2zUhhE1vvxXCyC2Hk8XFxdu8y8ZXH5y2rDpb73fW6DZnT7nhplN6oLcuP9oO2rRpUzqd7uJF\nAAAAAIAdU11dnesW8p1XkHNeAQAxKC8vT6VSXbxInm5335TekC0SiYKyVEc/6VBU3rwYvalx\nQ6duUbv8mUuvnNZ8kdJDvj263Z3nu7e3GB4NAAAAAAAAgB2Tpyvp0xu3fCo+VdrxyIItH27v\nRJIdZeb87rYbp/6xJhOFEFJFAy664Xt9O8zLu7G3nn00AAAAgC3GXPt8rlto9vT3D811C7mx\n87yCkMdvAQAAOitPQ/pOaIq2FNv1MZs3586848675m7Z5T5ZUH7+9ZPHDCrZGXrr5ukAAAAA\nAAAAdFKehvRFZc07vUeZ2o5HNtY2ZotEYUXHI2uWv3jHbbc/9re3Wo4MGHH0ty8Zv3//bX+9\nvht764lHAwAAAAAAAKBb5GlInywqyxZRlK5rikqS7e5Fn65s3j0+WdBukh011c/67a23/nZW\n/Za16UWlH/jC2eeNO3bk9u5x3329de+jbb+ioqJkMtn16wAAAAB0VnFx59ZI0BO8hZzzCnLO\nK8g5rwCAGCQSO5AAt5WnIX1B771DmJmtF9Y1fLhvUXsj16zYlC16le+x1QEbX589ZfLPX1je\nvGw91Wu3Y08dd/pJR5QV7ODr6WJv3fhoneK/fgAAAIBc6du3b65bwFvIPa8g57yCnPMKAHi/\nyNOlz736fTy55Wcc/l7T2MHI+TUN2aL/6N3fe/bNp6ae950bsgl9IlHwsRPP++9f//L8fz9y\nhxP6rvfWXY8GAAAAAAAAQLfL05A+kSo7uE9htn7l2XfaGxY1rptdtTlbDxnVdk/4tS/eddFP\nZmS3uC/Zc9Sl/++Oq756wu7Fqdz21i2PBgAAAAAAAEBPyNOQPoRw0sHNyfTKR59rb0zVsgca\noiiEkEiVjBvYp/Wpxk2vXvbDhzNRFEKoOHDsTTdN/NTeu+wkvXVxOgAAAAAAAAA9JH9D+qGn\nH5otalfeN6cqvdUxz9wyO1uUDh7Xv/Bdv1Zzb5m8tiETQijqN2rKteN3K+zOX8ku9tbF6QAA\nAAAAAAD0kPxNZ0sHnzOmvDiEEEVNP580PXrPgMpXpv3yH1XZ+vhLDmt9KspU3zx7dbY+ZuLF\nZakd/wJ9t/fW9ekAAAAAAAAA9JCCXDeQO4nUV7933NMTHg4hbFh034U/LrjiGycN7FMQQghR\nZtHsB6+b/EAURSGEsr1PHze0X+uptavurWxsCiEkEqlDm1YvXrxmm3dLFuwybOiA1kemT7h4\nZuWmbH3Vz24Z0qvVx+y70Fs3TAcAAAAAAACgZ+RxSB9C+f5f/v7Ji659aFEIYdnTvz7/Lw8P\nHbZXWa+m1SuWrFhXnx1TVDZi0n+d2mbiuucXZ4soyky87NLtuVdxxdj7p36t9ZHqNStXrm0O\n6Rves9p9h3vrlukAAAAAAAAA9IT83e4+66PnXH/pmUcWJxMhhChT/fqrL8+dv6Alxu6//5GT\nbrp6r+JUm1mV8yp32t66azoAAAAAAAAA3S6vV9KHEEJIjjn14lGjj3n08Sdmv7hg7fr1VZtD\neXnFwKEHfPrww4/++IFb/dz8O2s377S9dd90AAAAAAAAALqZkD6EEPoMOeDkcw44+ZztHX/M\nrdOO6fJNz7njt9tzw8721r3TAQAAAAAAAOhG+b7dPQAAAAAAAADERkgPAAAAAAAAADER0gMA\nAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAA\nAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAA\nAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAA\nAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAA\nAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAA\nAAAAABCTglw3AAAAALAjhl/0SK5baLZwythctwAAAMD7hpX0AAAAAAAAABATIT0AAAAAAAAA\nxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAA\nMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABA\nTIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQ\nEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADE\nREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAx\nEdIDAAAAAAAAQEwKct0AAAAAAADvPw337pnrFrJuy3UDAACdYyU9AAAAAAAAAMRESA8AAAAA\nAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAA\nAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAA\nAAAQEyE9AAAAAAAAAMSkINcNAAAAwPvP8IseyXUL/7RwythctwAAAABsLyvpAQAAAAAAACAm\nQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJ\nkB4AAAAAAAAAYiKkBwAAAAAAAICYFOS6gZ1C3YqFMx9/YvbcBe+sXbexPpRXVAz84H5jDjvi\nqE+MKEx07lIrZ135tckvFZYMn/6bH/VMs2H17JvP+9GjIYQDL/3lD8fsEfN0AAAAAAAAAHaY\nkD56dvrNP/31n+qbopZDa1fVrV311kvPPXbfPodfdvkFB+zaa/sv98R9S3qgyX9Kb5w3YfKf\ncjUdAAAAAAAAgK7I9+3uX7z7iuvumtmS0CeSRaUlhS1nKxfPuvrCq5fUZ7bzanWrZ96/qq77\nu9wiiup/MeGGdQ1NOZkOAAAAAAAAQBfl9Ur6DYumXjN9QbbuM2T0+ePP+MRBexUmQt36Nx77\n3bTbZ8yJoihdvWDihGn33Hj2Nq/WUP3GjVfeHkXRNkfusHlTr/jTitpcTQcAAAAAAACgi/I5\npG+68/o/ZDP14v6fvHnKZRUFzd+fL6n44InnXLnfbpO++4s5IYSqJQ/eu/SkM/6tdKtXqatc\n/eaby154euYfH/9rdaYHE/oNix645uHXczUdAAAAAAAAgK7L35C+5q27nlxfn63PuvabLQl9\ni33GXvm5Gaf/75q6EMIffvrUGT8b22bA5g2Pn3/Breuq0zF0m6lf9oOJ9zVFUSLZuyK1ubNb\n1ndxOgAAsLMZftEjuW6h2cIpbf9fCQBi0HDvnrluocVtuW4AAID3mfz9Jv3S3zyXLYorjjth\nUJ+tDUmc/I1DslX18mkb37NKPspUdyWhn/rl007cYlufvY8e+MHE1+sbQwijzv3hvxV39kcr\nujgdAAAAAAAAgO6Rv3ntjHnrssWeRx3b3pjyA85IJv7SFEVRpubeVbVfH9S39dmCkuFnnnlm\n6yN1q5946E9vd3urS34/6d5XKkMIu+x32sTPf+ja+2OdDgAAAAAAAEB3ydOQPspUzatpyNb7\nHrF7e8NSvYYcWlr4bFU6hLB0fmVoE9L33vfUU/dtfWT9ywu6PaSvW/XkFXe8EEJIFe919TVf\narspfw9PBwAAAAAAAKAb5WlIn65+PhM1b19/cFlRByNH9S3KhvTr5qwPxw/pxh769h8wILkp\nWxe2E55HmcqffO/WukyUSCS++P1rPlSc6tQtuji9U5qamqKo7RcBAACAf3mZTMdf7yIO3kLO\neQU55xXsDLyFnPMKcs4ryDmvAIAYpFLdELnmaUjfULe4pd6/pLCDkQMHl4S3a0IIm95+K4SR\n3djDKTfcdMq2xjw55fK/VtaHED5w3OVnjijv7C26OL1Tampq0ul0j94CAADYCVVWVua6BbyF\n3PMKcs4r2BnE/BbK4rzZ+0T8fxC8hTb8XZRzXgEAMSgvL+96Tp/sllbed5rSG7JFIlFQlupo\nD/ii8uZ19k2NG3q8rXdb8+x/3zjr7RBC793GXD/+0JinAwAAAAAAANDt8jSkT29sXvOdSJV2\nPLKgtHmdfcwhfbp6/uU/eTSEkEyVXnzDt/p0+JME3T4dAAAAAAAAgJ6QpyF9JzRt+c560+bY\n7hlF6V9NuP6ddCaEMPrr14/etTjO6QAAAAAAAAD0kDwN6YvKmjexjzK1HY9srG3MFonCip7t\nqZX5v77y/5bXhBD6H3zO9z4zJObpAAAAAAAAAPSQglw3kBvJorJsEUXpuqaoJNnubvDpyuaN\n8ZMFMYX0GxdP/8/pi0MIhSX7XHPV52OevsNSqVRBQZ7+dgIAgHzmfwR2Bt5CznkFOecV7Ay8\nhZzzCnLOK8g5rwCA94s8/TdWQe+9Q5iZrRfWNXy4b1F7I9es2JQtepXvEUdnIVx/9b2ZKEok\nUuOu/f7golTM03dYnz59YrsXAACw89hll11y3QLeQu55BTnnFewMYn4LDXHe7H0i/j8I3kIb\n/i7KOa8AgPeLPA3pe/X7eDJxS1MUhRD+XtPYQUg/vxjafFQAACAASURBVKb5PzX7j949nt6W\n1TeGEKIoM/U7Z03tcOTLPx5/4o+b69E3T7t8SGnXpwMAAMD/Z+/e46yu6r2Brz1XGBimGUkF\nITwcb4AkmaZYJHkpfSjPkWOUYB7ydNKy1M7TxSQvT9LJ6vXKzOxUnMoboBlanmM9onIsRZS8\nPHkBskJJucpwmRmGYW6/5489TBMww2XPrN8e9/v913LvNWt/F19/ew+vD+u3AQAAgL5ToN9J\nnymumjCoNDt+ackb3U1LWmsX1+3IjkceH+876QEAAAAAAAB4UyrQk/QhhHMn1Dz7+LoQwtoH\nnwznjtrjnLpV97QkSQghU1wxY1ik27lXDBqctLX3MKGpsbEtSUIIxeUVA0oy2QfLd/5zixx/\nHAAA9sWYyx9Iu4QOy2+aknYJAAAAALAfCjekH33+SeHxX4YQtq2dv7Tu3HcN2cMd7x///uLs\noHLEjKGlkXLs/7xzbs8TvjrjvKfrm0MIYy77zr9POrR3fxwAAAAAAACAvlO4B6grR8ycVD0g\nhJAk7d+bvSDZbcLml+b+6E912fHZnzs1bnUAAAAAAAAAvAkV7kn6kCn+xJfOeuzKX4QQtqyY\nf9m3Sq769LnDBpWEEELStmLxz7/+7XuSJAkhVB15/ozRQ3r99RdcecXCzduz46989/sjy4t7\n/SUAAAAAAAAAyCsFHNKHUD32oqunrrj+3hUhhFWP3XHJE78YfcSoqvL29atXrq5tys4pqxo/\n+2vT+uLV6zesXbuxI6Rv2f0gPwAAAAAAAABvOoV7u/usE2fe8IULThtQlAkhJG31f/7Di88+\nv6wzoR869rTZN187aoAz7gAAAAAAAAD0goI+SR9CCKFo0rQrjp945oOPLFr8zLKNmzbV7QjV\n1TXDRo977+TJZ5x8bHEm7QIBAAAAAAAAeLMQ0ocQwqCR46bOHDd1Zq7r1Bx73f337+vkmT+5\n+8Be8Jq5Pz+gn+udHwcAAAAAAADggBX67e4BAAAAAAAAIBohPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAA\nkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAi\nEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQi\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQSUna\nBQBAv9Eyb3jaJXQonb4m7RIAAAAAAIAD4SQ9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJCVpFwAA0M+MufyBtEv4q+U3TUm7hHTkTxcKtgUAAAAAwIFxkh4AAAAAAAAAIhHSAwAAAAAA\nAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAA\nkQjpAQAAAAAAACASIT0AAAAAAAAARFKSdgEAAAAAAADQj425/IG0S+iw/KYpaZcA7J2T9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAA\nAAAAACCSkrQLAAD2z9ufmhOeeiDtKkIIYflNU9IuAQAAAAAA+hkn6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkZSkXUBeaFy9\nfOEjixY/u+yNjbVbm0J1Tc2ww4+ZdOr7Tj9lfGlm/5Za++isi7/9QmnFmAV3fSP3wtqba3/7\nqwd/9/wLL7+6pr6+viWUDa4cMmL0Ucced9L7P3DKQWXFe12hF7cGAAAAAAAAQI6E9MmSBbfc\neMdDTe1J50Mb1zVuXPf6C08+PP+oyV/88qXjDirf9+UWzV/ZW5W9+vj82d/92Yamti6PtW7e\n0bh547oXlv72Z7e99cOf+dL0yUd1v0Avbw0AAAAAAACAHBX67e6fuf2qr9+2sDPGzhSVVVaU\ndj67+eVHr73s2pV/E5P3pHH9wp+ta+yVwlY/evPl37qra0JfMmBIVcVf/1FFW/Mbd3378zf+\nutt/E9C7WwMAAAAAAAAgdwV9kn7Lilu/umBZdjxo5MRLPjn9lLePKs2Exk2vPnz/3B/ftzRJ\nkub6ZddcOffO71y419Va6l/9zqwfJ0my15l71dr44hdveji7VOmg0TM+OfOU4/7+kJrKTAj1\nm9Y98/CCn9z10JbW9hDCoz/88qnvueP4yrI+3RoAAAAAAAAAvaKQQ/r2n97wq2wQPmDou2+5\n6Ys1JR1f0l5Rc/g5M2cd89bZn//h0hBC3cqfz3vl3Ol/V7nHVRo3r//LX1Y9/djCXz/yu/q2\nXkjoQwjLf/r97FLFZQdf94Nvjq/6awZfWXPo5GmXnjhxzMc/e1NTe5K0b//Rf/7xB58b1xdb\nA9ijMZc/kHYJHZbfNCXtEgAAAAAAAPZP4d7uvuH12/5nU1N2/LHrP9MZY3c6asqsDx5ckR3/\n6sbf7r7Cji2PfHzGeR/953/94tWzf7ZwaW8l9CGEny3ekB2M+scruyb0nQaNPO3yCQdlx7XP\n/Ncuz+a+NQAAAAAAAAD6QuGG9K/c9WR2MKDmrA8dNmhPUzJTP/2O7Kj+tblbd8vgk7b62vrm\nAy7g1os+cs5OXb8bvq1p5e8bOpadfPaI7n78qA8dlh20bHtxl6dy3xoAAAAAAAAAfaFwb3d/\n33O12cHw0z/Q3ZzqcdOLMk+0J0nS1jBv3bZPHTa467MlFWMuuOCCro80rl9070NrciysZfvL\nneMTK0u7m1a284R90t6UhND1sHzuWwMAAAAAAACgLxRoSJ+01T3X0JIdH/2+Q7qbVlw+8qTK\n0iV1zSGEV57fHHYJ6QcePW3a0V0f2fTistxD+tJB46+55prseFhZcXfTNj23uWN+5Tu7JvS9\nsjUAAAAAAAAA+kKBhvTN9U+1JR33eJ+wpy9973T84LJskl27dFM4e2Qv1jB46MEHF23Pjku7\nxOzFZYedcMJhPf9sa+Oq/1iwKjt+21kf7vpUWlurr69vbj7wm/8DHIDa2trIrzgk8uvlvfgt\nYHe6kDotSJ0WpE4L8oEupE4LUqcF+SByF/wFbXf+mpw670Wp0wIILgToe295y1uKi7s9aL2P\nCjSkb2n86y3lx1Z0e0v5EMKwERVhTUMIYfua10M4rhdrOO+bN5+3z5OTtpZt27Y1NDTUb17z\n9OLHf/vo4tWNLSGEIaPPuPr8v+86M62tJUmSJL7bHojK207qtCAf6ELqtCB1WpA6LcgHupA6\nLUidFuQDXUidFqROC1KnBRBcCNBPFGhI3968JTvIZEqqijM9zCyr7jiM3t66pc/L6t6P/mXG\nA5uauj6SyZQed/o/Xfapj1b/bf39bmsAAAAAAAAAhaMo7QLS0by148bsmeLKnmeWVHYcRs+3\nJHvw4e/+4FnvH1q6awffBFsDAAAAAAAAeLMq0JP0+6F9511B2nekWMWwo8aMrduRyWQymUxr\nw5oVr26qf+XR2Z9/9O8nXfj1z//TgExPJ+a7lR9bAwAAAAAAACgcBRrSl1V13Ok9advW88zW\nba3ZQaa0pm9r6tE5V/2fc7r855plS356401PrW/882O3f3Z7+5xrpnU+1e+2BgAAAAAAAFA4\nCjSkLyqryg6SpLmxPako6vYkevPmjrvHF5XkUZI9fOzEL3x74IUXXtvYlqx/+s5bV509c1TH\nze3T2tqQIUNyXwRgvwwdOjTyK7ZEfr28F78F7E4XUqcFqdOC1GlBPtCF1GlB6rQgH0Tugr+g\n7c5fk1PnvSh1WgDBhQD9RIF+J33JwCM7x8sbe/plcsPq7dlBefWhfVvTfiqrnDDj0MHZ8eJ5\nr3Y+/ibYGgAAAAAAAMCbVYGG9OVDTi7a+T3uv29o7WHm8w0dOffQiYf0eVkhhBB+/8ufz58/\nf/78+QtXbO155ujRHSF9w8o/dj6Yz1sDAAAAAAAAKHAFerv7THHVhEGlzzY0hxBeWvJGOHfU\nHqclrbWL63ZkxyOPj3S7+y0P/2L+qroQwvB1b3//MVU9zGxtausYZUo7H8znrQEAAAAAAAAU\nuAI9SR9COHdCRzK99sEnu5tTt+qeliQJIWSKK2YMGxSnsGHj35IdbHnhdz3P/P2rDdnBwLce\n1vXxvN0aAAAAAAAAQIEr3JB+9PknZQfb1s5fWte8xzmPf39xdlA5YsbQ0kh/VsOnHJ8dbK/9\n5dL6PRcWQmjeuuQXGzu+VP6IaW/r+lTebg0AAAAAAACgwBVuOls5Yuak6gEhhCRp/97sBclu\nEza/NPdHf6rLjs/+3KnRChs07KOjB5SEEJKk7eZrb2to27200LZj/Q+uurk1SUIIxWXDPzH2\nb+5Xn7dbAwAAAAAAAChwhRvSh0zxJ750Vna4ZcX8y751z9ptrR1PJW0rHr/7iqvvSZIkhFB1\n5PkzRg/p9ddfcOUVF+/02o62zsczRRX/++Pjs+Otf/qvi//thoVLl63f3JCEEEL7lg2rn3l4\n/mX//OmHX+u41/0JH5918C5H4dPeGgAAAAAAAAB7VJJ2AWmqHnvR1VNXXH/vihDCqsfuuOSJ\nX4w+YlRVefv61StX1zZl55RVjZ/9tWl98er1G9au3Xm/+pa/Pe0+8qxrpi/5xLz/VxtCqH9l\nyfdmLwkhFA+oHNje2NDc1nXmEWdeNmvKyN0XT3drAAAAAAAAAOxRAZ+kDyGEcOLMG75wwWkD\nijIhhKSt/s9/ePHZ55d1xthDx542++ZrRw0ojl1Wpvgj193yr2cfV5TJdD7W1lTfNaEvLh/6\noUuu//Znz+hujTzdGgAAAAAAAEABK+iT9CGEEIomTbvi+IlnPvjIosXPLNu4aVPdjlBdXTNs\n9Lj3Tp58xsnHFmf2vkRfyBRVfOhT17/vH5b9euFvXly2/NW1tdu2bQslAyuHDBkx+pjxx51w\nxpnvrinr+d9Y5OnWAAAAAAAAAAqWkD6EEAaNHDd15ripM3Ndp+bY6+6/f18nz/zJ3Xt9wcHD\nx3545tgP51BSb20tdS3zhqddQofS6WvSLgEAAAAAAADyyJjLH0i7hA7Lb5qSdgl7V+i3uwcA\nAAAAAACAaIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRlKRdAAAAANCftMwbnnYJneakXQAAAADsNyfpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4A\nAAAAAAAAIilJuwCA/TPm8gfSLqHD8pumpF0CAAAAAAAA/YyT9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACCSkrQLgP7k7U/N\nCU89kHYVHZbfNCXtEgAAAAAAAID94yQ9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIStIuAAAAAID90zJveNolZM1J\nuwAAAID+x0l6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEElJ2gUAANBvtMwbnnYJneakXQAAAAAAwIFwkh4AAAAAAAAAIhHS\nAwAAAAAAAEAkbncfQgiNq5cvfGTR4meXvbGxdmtTqK6pGXb4MZNOfd/pp4wvzezfUmsfnXXx\nt18orRiz4K5v9Hqd+7F40jzt3A83tSd7XbNyxBfmfn9S79QHAAAAAAAAQI+E9MmSBbfceMdD\nXfPsjesaN657/YUnH55/1OQvfvnScQeV7/tyi+av7IMi93vx5obn9yWhBwAAAAAAACCmQr/d\n/TO3X/X12xZ25tmZorLKitLOZze//Oi1l127sqltH1drXL/wZ+sae7/K/V+8uX5pH5UBAAAA\nAAAAwAEr6JP0W1bc+tUFy7LjQSMnXvLJ6ae8fVRpJjRuevXh++f++L6lSZI01y+75sq5d37n\nwr2u1lL/6ndm/ThJ+uT8+v4uXveH17KDyhEXfuWz43qYWVx+WK7FAQAAAAAAALBvCjmkb//p\nDb/Kxt4Dhr77lpu+WFPS8f3zFTWHnzNz1jFvnf35Hy4NIdSt/Pm8V86d/neVe1ylcfP6v/xl\n1dOPLfz1I7+rb+vlhP6AF9/0dG12MHTihDFjjujdqgAAAAAAAAA4MIUb0je8ftv/bGrKjj92\n/Wc6E/pOR02Z9cH7zv/vDY0hhF/d+Nvp352yy4QdWx655NL/qK1v7ovyclz8lT82ZAeHvOug\n3isKAAAAAAAAgJwU7nfSv3LXk9nBgJqzPnTYoD1NyUz99Duyo/rX5m7d7SB70lafS0J/60Uf\nOWen3b/2PsfFlzZ0/OwJBw884EUAAAAAAAAA6F2Fe5L+vuc6bgg//PQPdDenetz0oswT7UmS\ntDXMW7ftU4cN7vpsScWYCy64oOsjjesX3fvQml4pL5fFk/bGF7e1hBAymeKJQ8p7pR4AAAAA\nAAAAclegIX3SVvdcQ0t2fPT7DuluWnH5yJMqS5fUNYcQXnl+c9glpB949LRpR3d9ZNOLy3ot\npM9h8Zb6Z9qSJIRQOvi4yuLMmhce/b9PvLD69dVr128qHjTkoLeOGP+Od7x78nsOHVjcK6UC\nAAAAAAAAsI8KNKRvrn8qG2OHECZUlfUw8/jBZdmQvnbppnD2yF6sYfDQgw8u2p4dl2Z6ceGw\nY+vT2UGmaNB3r7304ede6/LkulV/fvnZJxfd+eNbz/joJz993sTeeuXGxsaWlpZeWmwPKvpu\n6X5r69ataZdQ6LQgdfFb4L1oF66CfBC5C66C3bkQUqcFqdOCfODjIHV+NU2d96J84L0odd6L\nUue9KHVaAMGFAH1/FVRWVhYV5fqd8gUa0rc0vtw5HltR2sPMYSMqwpqGEML2Na+HcFwv1nDe\nN28+rxeX62LLi2uzgx1bH3v4uT3PaWuuffD2ry/74wXfvXJacW8E9a2trX0a0rM7f+Cp04LU\naUHqtCAf6ELqtCB1WpA6LcgHupA6LUidFuQDXUidFqROC1KnBRBcCND3V0Gy8yh4Lgo0pG9v\n3pIdZDIlVT1m1GXVHefs21u39HlZvWTT05s6x5niyvdPO//097zrbQcfFBo3rlq16k8vPXXf\nfYs2NreFEF5bcuesO8fc8LHx6RULAAAAAAAAUEAKNKRv3tqcHWSKK3ueWVLZcc6+H4X0f/hL\nQ3ZQWnHEl2+cfcKwnfedKj9kTPUhYya868wPnPrVy7/6Yn1zCGH5gtkv/tPcYysK9P8EAAAA\nAAAAgJhEs3vTvvN+Be07Uq1jP4ycOuOi5rYQwtvec9bxQwfsPmHA0LfP+sa/TL/0B0mSJO3b\nf3j3Kzd//MjoZQIAAAAAAAAUnAIN6cuqOm5in7Rt63lm67bW7CBTWtO3NfWeif/rQ3udM2jE\n2R8bfuftq+tDCOt/80gQ0gMAAAAAAAD0vQIN6YvKqrKDJGlubE8qirr9WvrmzR03xi8q6Tch\n/T466YOH3f7DFSGE5ronQrgkx9UGDx6cJMne5x2o9r5but+qrq5Ou4RCpwWpi98C70W7cBXk\ng8hdcBXszoWQOi1InRbkAx8HqfOraeq8F+UD70Wp816UOu9FqdMCCC4E6PuroLi4OPdFCjSk\nLxl4ZAgLs+PljS3vHFzW3cwNq7dnB+XVh8aoLKKqYzv+B21v3VLXlgwp7vZfKuyLoqKi3iiq\nW37j312vvAWQCy1IXfwWeC/ahasgH0Tugqtgdy6E1GlB6rQgH/g4SJ1fTVPnvSgfeC9Knfei\n1HkvSp0WQHAhQD+5Cvo2WM1b5UNOLsp0ZNK/b2jtYebzDS3ZwdCJh/R5WXFlSso7x6U5BfQA\nAAAAAAAA7JMCPUmfKa6aMKj02YbmEMJLS94I547a47SktXZx3Y7seOTx/eN295tfePblxpYQ\nQlnVMe84pqqHmdtXb8oOSgYcPrD7G/4DAAAAAAAA0FsKNKQPIZw7oebZx9eFENY++GR3IX3d\nqntakiSEkCmumDFsUNT6DtTWl+/82m1/CiGUV516zx3/u4eZf/zl6uxg8Mh/jFEZAAAAAAAA\nQMEr0NvdhxBGn39SdrBt7fyldc17nPP49xdnB5UjZgwt7R9/Voee9v7sYMfW39y+Ykt301ob\nV3xvWcdJ+jEfHR+jMgAAAAAAAICC1z+C575QOWLmpOoBIYQkaf/e7AXJbhM2vzT3R3+qy47P\n/typcas7cAOqzzrnkIrs+L5rvvLCnv79QXvrxjlXzd7WloQQSivGXfHOoVFLBAAAAAAAAChU\nhRvSh0zxJ750Vna4ZcX8y751z9ptrR1PJW0rHr/7iqvvSZIkhFB15PkzRg/p9ddfcOUVF+/0\n2o62Xlz5I1/+aFEmE0Joa/rLdZ+8/Nb/WvLG1sYQQkjaateuevrR+75yyaW/XlkXQshkiqZ+\n+Qu+kB4AAAAAAAAgjsL9TvoQQvXYi66euuL6e1eEEFY9dsclT/xi9BGjqsrb169eubq2KTun\nrGr87K9N64tXr9+wdu3G7dlxy+4H+XNQOfofr/vo89fMfzqE0NK4+t45X793TigZUFnWtq2x\npb1zWiZTdOo///uM42p687UBAAAAAAAA6F4Bn6QPIYRw4swbvnDBaQOKMiGEpK3+z3948dnn\nl3Um9EPHnjb75mtHDShOtcYDMeH8a66/+B+qS/7a39am+q4J/YCaIy686pZ/mzo2jeoAAAAA\nAAAAClRBn6QPIYRQNGnaFcdPPPPBRxYtfmbZxk2b6naE6uqaYaPHvXfy5DNOPra4394J/rgp\n//Kfk876zcMPPfeHv2xYv2H9hvX1LcVvqaoaccS4E044+czTTqxwl3sAAAAAAACAuIT0IYQw\naOS4qTPHTZ2Z6zo1x153//37OnnmT+7erxfcr8WzSoccdsbUmWfs3w8BAAAAAAAA0FcK/Xb3\nAAAAAAAAABCNkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIJKStAsAAAAAAAD2W8u84WmXkDUn7QIAoJ9xkh4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEUpJ2AQAAAADQz7TM\nG552CVlz0i4AAADYb07SAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEhK0i4AAADYDy3zhqddQtactAsAAAAAgH7JSXoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEUpJ2AQDsU/dGmQAAIABJREFUq5Z5w9MuIWtO2gUAAAAA\nAAD0V07SAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAA\nEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAg\nkpK0CwAAAAAAAADgQLTMG552CVlz0i6gP3GSHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIilJu4C80Lh6+cJHFi1+dtkbG2u3NoXqmpphhx8z6dT3nX7K+NLM/i21\n9tFZF3/7hdKKMQvu+kY+1NaLWwMAAAAAAAAgR0L6ZMmCW26846Gm9qTzoY3rGjeue/2FJx+e\nf9TkL3750nEHle/7covmr8yb2np5awAAAAAAAADkqNBvd//M7Vd9/baFnTF2pqissqK089nN\nLz967WXXrmxq28fVGtcv/Nm6xjyprXe3BgAAAAAAAEDuCvok/ZYVt351wbLseNDIiZd8cvop\nbx9VmgmNm159+P65P75vaZIkzfXLrrly7p3fuXCvq7XUv/qdWT9OkmSvMyPU1rtbAwAAAAAA\nAKBXFPJJ+vaf3vCrbKY+YOi7b7npylOPG5X9mvaKmsPPmTnrW588MTuvbuXP571S390qjZvX\nr/j90ju/N3vmhZc/uWF7ftTWO1sDAAAAAAAAoHcV7kn6htdv+59NTdnxx67/TE1JZpcJR02Z\n9cH7zv/vDY0hhF/d+Nvp352yy4QdWx655NL/qK1vzrfact8aAOSnlnnD0y4ha07aBQAAAAAA\n0F8V7kn6V+56MjsYUHPWhw4btKcpmamffkd2VP/a3K1tu97HPmmrzyWhv/Wij5yz0y7fDZ9j\nbblvDQAAAAAAAIC+ULgn6e97rjY7GH76B7qbUz1uelHmifYkSdoa5q3b9qnDBnd9tqRizAUX\nXND1kcb1i+59aE3qteW+NQAAAAAAAAD6QoGG9Elb3XMNLdnx0e87pLtpxeUjT6osXVLXHEJ4\n5fnNYZeQfuDR06Yd3fWRTS8uyz2kz7G2XtkaAAAAAAAAAH2hQEP65vqn2pKOe7xPqCrrYebx\ng8uySXbt0k3h7JG9WMPgoQcfXLQ9Oy7t8q3xOdaW1taamppaW1tzXKQH5X23dL/V0NCQdgmF\nLn4LXAi70ILUaUE+iNwFLdidCyF1filKnRbkAx8HqfNxkDotyAfei1LnQkidFqTOr6YQXAgF\nycfBLvr6KqioqCgqyvU75Qs0pG9pfLlzPLaitIeZw0ZUhDUNIYTta14P4bherOG8b958Xh/U\nltbWmpubm5ubc1ykB95fdtfU1JR2CYUufgtcCLvQgtRpQT6I3AUt2J0LIXV+KUqdFuQDHwep\n83GQOi3IB96LUudCSJ0WpM6vphBcCAXJx8Eu+voqGDhwYO6L5Bry91PtzVuyg0ympKo408PM\nsuqOw+jtrVv6vKzsC+VWWz5vDQAAAAAAAKDAFWhI37y148x3priy55kllR2H0aMl2TnWls9b\nAwAAAAAAAChwBRrS74f2ZOdgR6p17EmOteXz1gAAAAAAAADejAo0pC+r6rjTe9K2reeZrdta\ns4NMaU3f1rRTjrXl89YAAAAAAAAAClxJ2gWko6isKjtIkubG9qSiqNvvbm/e3HH3+KKSSEl2\njrWltbWBAweWl5fnvg77rrJyL99oQF/TgtRpQeq0IB/oQuq0IHVakDotyAe6kDotSJ0W5ANd\nSJ0WpE4LUqcFEFwI0PdXQVFRLxyDL9CQvmTgkSEszI6XN7a8c3BZdzM3rN6eHZRXHxqjspxr\nS2trpaWluS/Sg5Y+Xb1/8q8iUhe/BS6EXWhB6rQgH0TughbszoWQOr8UpU4L8oGPg9T5OEid\nFuQD70WpcyGkTgtS51dTCC6EguTjYBf94ioo0Nvdlw85uSjTccT89w2tPcx8vqHjf+yhEw/p\n87JCCDnXls9bAwAAAAAAAChwBRrSZ4qrJgzqOPn90pI3upuWtNYurtuRHY88PtLt7nOsLZ+3\nBgAAAAAAAFDgCjSkDyGcO6EjmV774JPdzalbdU9LkoQQMsUVM4YNilRZzrXl89YAAAAAAAAA\nClnhhvSjzz8pO9i2dv7SuuY9znn8+4uzg8oRM4aWxvuzyrG2fN4aAAAAAAAAQCEr3HS2csTM\nSdUDQghJ0v692QuS3SZsfmnuj/5Ulx2f/blT+1Ft+bw1AAAAAAAAgEJWuCF9yBR/4ktnZYdb\nVsy/7Fv3rN3W2vFU0rbi8buvuPqeJElCCFVHnj9j9JBef/0FV15x8U6v7WjrzdrS3hoAAAAA\nAAAAe1SSdgFpqh570dVTV1x/74oQwqrH7rjkiV+MPmJUVXn7+tUrV9c2ZeeUVY2f/bVpffHq\n9RvWrt24PTtu2e20e461pbs1AAAAAAAAAPaogE/ShxBCOHHmDV+44LQBRZkQQtJW/+c/vPjs\n88s6Y+yhY0+bffO1owYU98fa8nlrAAAAAAAAAIWpoE/ShxBCKJo07YrjJ5754COLFj+zbOOm\nTXU7QnV1zbDR4947efIZJx9bnOm/teXz1gAAAAAAAAAKkZA+hBAGjRw3dea4qTNzXafm2Ovu\nv39fJ8/8yd378oI51tZbWwMAAMgTLfOGp11C1py0CwAAAAD6pUK/3T0AAAAAAAAARCOkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIpCTtAgAA\nAAAAAGC/tcwbnnYJneakXQDQnzhJDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiKUm7AKB/aJk3PO0SOs1JuwAAAAAAAAA4QE7SAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEhK0i4AAACgP2mZNzzt\nErLmpF0AAAAAAAfCSXoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6APj/7N17nJVV\nvT/wtWfPDMPAMA2QikB6SE1AksxSLI73wl9pSUYqamQdsyzznJPlJcGjmFavk5XZyeziDckM\n7fL61VHRrESEVH4hIt5QVOQi15lhGGZmz/P7Yw+IDDMMzJ71jK/9fv/1ZWat/azhO2v2H5/9\nrAcAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEhK015Ar9Cw/Jn7H3xozpOL31izdmNjqBk4cMj+B48/\n+tjjjxpTlunx6btr1Zwb/+0794UQDrn4Z98ev8/OByVNk079dGNrsstXqxp28YyfjC/sCgEA\nAAAAAADYKSF9MnfWjdff/sD2efaalQ1rVr721GOzZx50zDcuvWD0oD49Nn23NW1ccMn3H9j1\nsPqFXUnoAQAAAAAAAIip2I+7f+K2y6699f5teXampLyqsmzbd9c/9/C0C6ctbcz10PTdlSSN\nN13y3bXNrbsc2VQ3v1AXBQAAAAAAAKBQivpO+g1Lbrlq1uJ83W/4uPPPO/Oo9+5XlgkN616e\n/YcZv7h3fpIkTXWLp14y444fnFPw6XtgwS2XPbB8U1dG1j77ar6oGnbOt746upOR2T5DC7Ay\nAAAAAAAAALqgmEP61l9d96ckSUIIFYM/dOMPvzGwtO0B8pUD9z9lyuUHv3P612+aH0KoXfrb\nO1869cx/qSro9N22YcndV/3uxS4OXvf42nwxeNzYkSMP6OalAQAAAAAAACiI4j3uvv61W/+y\nrjFfn331V7ZF7Nsc9LHLP75XZb7+0/V/K+z03ZVrXPZfU2e2JkmmpO+gsl137aXn6/PF3h8c\n1M1LAwAAAAAAAFAoxRvSv/Trx/JFxcAJJw/tt7MhmYlffl++qnt1xsZcUsDpIYRbzv3MKVvt\n6rn1yd3/NfXFxpYQwmGf+/a/VOz6/IP59U354vC9+u5yMAAAAAAAAABxFG9If++CtgPh9z3+\nox2NqRl9ZkkmE0JIcvV3rnzLw+C7OX23LP3j9DufXh9CeMfBn5n6iXfvcnzS2rBoU3MIIZPJ\njhvQZ4+vCwAAAAAAAEBhFekz6ZNc7YL65nz9nmP37mhYts/wI6rK5tY2hRBeWrg+DO1fkOm7\npWHlXy775eMhhGzFftOuOn3HU/V3prnuiVyShBDK+h9alc28/tTD//voU8tfW75i1bpsvwGD\n3jlszPve96FjPrxP3+werAcAAAAAAACAPVakIX1T3bx8jB1CGFtd3snIw/qX51P2tfPXhZOG\nF2R6Xv/Be+1Vsjlfl3WQvSe59f/9zf9pyCWZTOZTV1z17oouxepbNj6eLzIl/X407YLZC17d\n7psrl7343JOPPXTHL2454fTzvnzauK6k/l3R1NTU2tpaoBfbCR8oaK+xsTHm5bSgvcgtCLrQ\njhakTgt6A28HqbMRUqcFqdOC3sDbQepshNRpQW/gb1HqbITUaUHq4reA1NkF7dkIRchG2EFP\n74I+ffpkMt2NWIs0pG9ueG5bPaqyrJORQ4ZVhtfrQwibX38thEMLMj3vtO/ecNqu1vmXH176\nj/WNIYR3Tbj0rDE1uxreZsOiFfliy8a/z16w8zG5prX33Xbt4ufP+tElk7KFCOobGxubmpoK\n8EIdqO65l37bqq+vj3k5LWgvcguCLrSjBanTgt7A20HqbITUaUHqtKA38HaQOhshdVrQG/hb\nlDobIXVakLr4LSB1dkF7NkIRshF20NO7oKysLJvt7kcjijSkb23akC8ymdLqTjPq8pq2G+Vb\nWzYUanoXrZ770x88/HoIoe87x1933hFdn7ju8XXb6ky26iOTzjj+wx98116DQsOaZcuWvfD0\nvHvvfWhNUy6E8OrcOy6/Y+R1Z4/Z3bUBAAAAAAAAsAeKNKRv2th2z3cmW9X5yNKqthvlt0/Z\nuzm9SyusW3jpf98XQijJVl303a/225273Z99pe3jIWWVB1x6/fTDh1S2faPP3iNr9h459oMn\nfvToq7521aK6phDCM7OmL/rUjEMqi/Q3AQAAAAAAACAm0eyutCZbiy3RpidJ088vue6NplwI\nYdyXrhs3qGK3rjl84uRzm3IhhHd9eMJhg3cyt2Lwey//zufPvOCnSZIkrZtvuuulGz534G5d\nAgAAAAAAAIA9UKQhfXl12yn0SW5T5yNbNrXki0zZwEJN36WFt1/+v6/WhxAGj53yzY8M7/rE\nvHH/5+Rdjuk37KSz973jtuV1IYRVf30wCOkBAAAAAAAAel6RhvQl5dX5IkmaGlqTypIOD5Nv\nWt92sn1J6Zspezend27jc7OunPVcCKGs8qCrvvWJLs7aA0d8fOhtNy0JITTVPhrC+d18tfLy\n8mw2W4h10VV9+/ZNewnFTgtSpwWp04LeQBdSpwWp04LUaUFvoAup04LUaUFvoAup04LUaUHq\ntACCjQA9vwsymd14THlHijSkL+17YAj35+tnGprf37+8o5Grl2/OF31q9inU9M5dN+3OXJJk\nMtnJV18xrLwHY+/qQ2ryRWvLhtpcMmB3HnvfXkXF7p3Jv7uae/TV35769esX83Ja0F7kFgRd\naEcLUqcFvYG3g9TZCKnTgtRpQW/g7SB1NkLqtKA38LcodTZC6rQgdfFbQOrsgvZshCJkI+zg\nbbELijSk7zPgyJLMT1qTJITwz/qWTlL2hfVtv9iDx+1dqOmdW9bYEkJIktwt/3n2LZ2OXPS9\n8075Xls97sYZlw6v6uIl8jKlfbbVZQX4wAcAAAAAAAAAu1CS9gLSkclWj+1Xlq+fnvtGR8OS\nlrVzarfk6+GHvXlefTen96j1Tz05b968efPmLViysfORm5evyxelFfv37fjEfgAAAAAAAAAK\npUjvpA8hnDp24JOPrAwhrLjvsXDqfjsdU7vs7uYkCSFkspWTh/Qr4PROVPbrn+RaOxnQ2NCQ\nS5IQQrZPZUVpW7jeZ+vHLTY+d8c1t74QQuhTffTdt/9nJ6/z/O+X54v+wz/ZxbUBAAAAAAAA\n0B3FG9KPOOOI8MjvQwibVsycX3vqBwfs5Mj6R34yJ19UDZs8uKykgNM78fM7ZnQ+4KrJpz1e\n1xRCGHnhD749fsdH3e9z3EfCrS+EELZs/OttSz5/zsHv2OmLtDQs+fHitjvpR54+potrAwAA\nAAAAAKA7ivS4+xBC1bAp42sqQghJ0vrj6bOSdgPWPz3jZy/U5uuT/v3owk7vORU1E07ZuzJf\n3zv1W0/VNrUf09qy5ubLpm/KJSGEssrRF71/cLTlAQAAAAAAABSz4g3pQyb7hW9OyJcblsy8\n8Ht3r9jU0vatJLfkkbsuuuLuJElCCNUHnjF5xIACTw9h1iUXfXGrV7fkCviTfebS00symRBC\nrvGVK8/72i1/nPvGxob8wtauWPb4w/d+6/wL/ry0NoSQyZRMvPRiD6QHAAAAAAAAiKN4j7sP\nIdSMOveKiUuuvmdJCGHZ328//9HfjThgv+o+rauWL12+tjE/prx6zPRrJvXE9LrVK1as2Zyv\nm9vfid8NVSM+eeXpC6fOfDyE0Nyw/J6br73n5lBaUVWe29TQ/ObT7jOZkqM/++3Jhw4s5LUB\nAAAAAAAA6FgR30kfQgjhA1Ouu/is4ypKMiGEJFf34rOLnly4eFvEPnjUcdNvmLZfRbaHpvec\nsWdMvfqLn6gpfbO/LY112yf0FQMPOOeyG/9j4qj4awMAAAAAAAAoWkV9J30IIYSS8ZMuOmzc\nifc9+NCcJxavWbeudkuoqRk4ZMTofz3mmBOOPCS7i5Pguzm9Bx36sc//fPyEv85+YMGzr6xe\ntXrV6lV1zdl3VFcPO2D04YcfeeJxH6h0yj0AAAAAAABAXEL6EELoN3z0xCmjJ06JOn3KL+/a\nswtOnfHbLo4sGzD0hIlTTtijqwAAAAAAAABQcMV+3D0AAAAAAAAARCOkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAA\nAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAA\nAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAA\niERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQ\niZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACAS\nIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRC\negAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgktK0F9ArNCx/5v4HH5rz5OI31qzd2BhqBg4csv/B448+9vijxpRl\nenx6J1qb1v7tT/f9Y+FTz738el1dXXMo7181YNiIgw459IiPfPSoQeXZFNcGAAAAAAAAwO4S\n0idzZ914/e0PNLYm2760ZmXDmpWvPfXY7JkHHfONSy8YPahPj03vzMuPzJz+o9+sbsxt97WW\n9Vsa1q9Z+dT8v/3m1nd++ivfPPOYg1JZGwAAAAAAAAB7oNiPu3/itsuuvfX+bTF2pqS8qrJs\n23fXP/fwtAunLX1LTF7I6Z1Y/vANX/ver7dP6EsrBlRXvvmhilzTG7/+/tev//PS+GsDAAAA\nAAAAYM8U9Z30G5bcctWsxfm63/Bx55935lHv3a8sExrWvTz7DzN+ce/8JEma6hZPvWTGHT84\np+DTO9HSsOgbP5ydJEkIoazfiMnnTTnq0HfvPbAqE0LdupVPzJ71y18/sKGlNYTw8E2XHv3h\n2w+rKo+2NgAAAAAAAAD2WDHfSd/6q+v+lA/CKwZ/6MYfXnL0ofvlH9NeOXD/U6Zc/r3zPpAf\nV7v0t3e+VFfo6Z155lc/qcslIYRs+V5X/vS7E48du8/AqvwT5KsG7nPMpAv+54cXVpRkQghJ\n6+af/fz5mGsDAAAAAAAAYI8Vb0hf/9qtf1nXmK/PvvorA0szOww46GOXf3yvynz9p+v/Vtjp\nnfvNnNX5Yr9PXjKmese75EMI/YYf97Wxg/L12if+GHNtAAAAAAAAAOyx4g3pX/r1Y/miYuCE\nk4f229mQzMQvvy9f1b06Y2MuKeD0EMIt537mlK22fzZ8rnHpP+ub8vUxJw3raP0HnTw0XzRv\nWlTYHw0AAAAAAACAHlK8If29C9bmi32P/2hHY2pGn1mSyYQQklz9nSs3FXB6J5o3P7et/kBV\nWUfDyrfeYZ+0Nu6Qsffc2gAAAAAAAADojtK0F5COJFe7oL45X7/n2L07GpbtM/yIqrK5tU0h\nhJcWrg9D+xdkeufK+o2ZOnVqvh5Snu1o2LoF69vGV71/++Pse3RtAAAAAAAAAHRHkYb0TXXz\ncknb/edjd/bQ920O61+eT7LXzl8XThpekOl5/QfvtVfJ5nxdtl3Mni0fevjhQztff0vDsv+Z\ntSxfv2vCpwv4o+2xXC6XJI7Nj6qlpSXtJRQ7LUidFqROC3oDXUidFqROC1KnBb2BLqROC1Kn\nBb2BLqROC1KnBanTAgg2AvT8Lshms5lMZtfjOlWkIX1zw5tHyo+q7PBI+RDCkGGV4fX6EMLm\n118L4dCCTM877bs3nNblBSe55k2bNtXX19etf/3xOY/87eE5yxuaQwgDRpxwxRnv3n5kQda2\nBzZt2tTU1NTNF+lEdc+99NvWhg0bYl5OC9qL3IKgC+1oQeq0oDfwdpA6GyF1WpA6LegNvB2k\nzkZInRb0Bv4Wpc5GSJ0WpC5+C0idXdCejVCEbIQd9PQuqKmpyWY7PA29i4o0pG9tautNJlNa\nne3skw7lNW03o7e2vNnObk7fAz/7/OT/u65x+69kMmWHHv+pC790es1bFxB/bQAAAAAAAAB0\nUUnaC0hH08a2e74z2arOR5ZWtd2Mvn2S3c3pBdF//w99fMJHBpft2MHesDYAAAAAAAAAdqpI\n76TfDa1bn7PeuiWF6VsNOWjkqNotmUwmk8m01L++5OV1dS89PP3rD797/DnXfv1TFXv22IMC\nrQ0AAAAAAACALirSkL68uu2k9yS3qfORLZta8kWmbGChpu+BUy77r1O2++fri+f+6vofzlvV\n8OLfb/vq5tabp05KcW0AAAAAAAAAdFGRhvQl5dX5IkmaGlqTypIO70RvWt92enxJ6ZtJdjen\nd9++o8Zd/P2+55wzrSGXrHr8jluWnTQwCq5aAAAgAElEQVRlv6p011ZaWpokya7HUThlZWVp\nL6HYaUHqtCB1WtAb6ELqtCB1WpA6LegNdCF1WpA6LegNdCF1WpA6LUidFkCwEaDnd0Fmz844\nf6siDelL+x4Ywv35+pmG5vf3L+9o5Orlm/NFn5p9CjW9IMqrxk7ep//Ny+tCCHPufHnKpWPS\nXVtlZWX3X6QTzT366m9P1dXVMS+nBe1FbkHQhXa0IHVa0Bt4O0idjZA6LUidFvQG3g5SZyOk\nTgt6A3+LUmcjpE4LUhe/BaTOLmjPRihCNsIO3ha7oCTtBaSjz4AjS7Z+xuGf9S2djFxY3/aL\nPXjc3oWa3rl//v63M2fOnDlz5v1LNnY+csSI/vmifunzcdYGAAAAAAAAQHcUaUifyVaP7dd2\n0MHTc9/oaFjSsnZO7ZZ8PfywN8+E7+b0zm2Y/bt8SH/Pn1/rfGRLY27rgt48tKFH1wYAAAAA\nAABAdxRpSB9COHVsWzK94r7HOhpTu+zu5iQJIWSylZOH9Cvg9E4MGfOOfLHhqX90PvKfL9fn\ni77vHBpnbQAAAAAAAAB0R/GG9CPOOCJfbFoxc35t007HPPKTOfmiatjkwWVv+b/q5vRO7Pux\nw/LF5rW/n1+381cOITRtnPu7NW0PlT9g0rvirA0AAAAAAACA7ijedLZq2JTxNRUhhCRp/fH0\nWUm7AeufnvGzF2rz9Un/fnRhp3ei35DTR1SUhhCSJHfDtFvrc+1fO+S2rPrpZTe0JEkIIVu+\n7xdGveW8+p5bGwAAAAAAAADdUbwhfchkv/DNCflyw5KZF37v7hWbWtq+leSWPHLXRVfcnSRJ\nCKH6wDMmjxhQ4OkhzLrkoi9u9eqW3LavZ0oq//NzY/L1xhf++MX/uO7++YtXra9PQgihdcPq\n5U/MnnnhZ788+9W2s+4P/9zle+1wK3y31wYAAAAAAABATyhNewFpqhl17hUTl1x9z5IQwrK/\n337+o78bccB+1X1aVy1funxtY35MefWY6ddM6onpdatXrNh6Xn3zW+92Hz5h6plzv3Dn/1sb\nQqh7ae6Pp88NIWQrqvq2NtQ35bYfecCJF17+seEFXxsAAAAAAAAAPaGI76QPIYTwgSnXXXzW\ncRUlmRBCkqt78dlFTy5cvC3GHjzquOk3TNuvIttD0zuUyX7myhv/7aRDSzKZbV/LNdZtn9Bn\n+ww++fyrv//VE2KvDQAAAAAAAIA9VdR30ocQQigZP+miw8adeN+DD815YvGadetqt4SamoFD\nRoz+12OOOeHIQ7KZHp3eoUxJ5clfuvrYTyz+8/1/XbT4mZdXrN20aVMo7Vs1YMCwEQePOfTw\nE0780MDyzj9j0VNrAwAAAAAAAGDPCOlDCKHf8NETp4yeOCXq9Cm/vGuXM/rvO+rTU0Z9es+W\nFULo9o8GAAAAAAAAQAEV+3H3AAAAAAAAABCNkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4A\nAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAA\nAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAA\nAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAA\nAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAA\nAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAA\nAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEhK015Ar9Cw/Jn7H3xozpOL31izdmNjqBk4cMj+B48/+tjjjxpTlunx6V234uHLv/j9p8oq\nR8769Xd2MTRpmnTqpxtbk12+ZtWwi2f8ZHxh1gcAAAAAAABAp4T0ydxZN15/+wPb59lrVjas\nWfnaU4/NnnnQMd+49ILRg/r02PTd89DMpV0c2VS/sCsJPQAAAAAAAAAxFftx90/cdtm1t96/\nLc/OlJRXVZZt++765x6eduG0pY25Hpq+WxpW3f+blQ1dHNxUN78gFwUAAAAAAACggIr6TvoN\nS265atbifN1v+LjzzzvzqPfuV5YJDetenv2HGb+4d36SJE11i6deMuOOH5xT8Om7pbnu5R9c\n/osk6erN8bXPvpovqoad862vju5kZLbP0G6uDQAAAAAAAIAuKuaQvvVX1/0pH3tXDP7QjT/8\nxsDStgfIVw7c/5Qplx/8zulfv2l+CKF26W/vfOnUM/+lqqDTu6Rh/apXXln2+N/v//OD/6jL\n7cbx9eseX5svBo8bO3LkAXtwaQAAAAAAAAAKrniPu69/7da/rGvM12df/ZVtEfs2B33s8o/v\nVZmv/3T93wo7fZe2bHjwc5NPO/2z//aNK6b/5v75u5XQhxBeer4+X+z9wUG7e2kAAAAAAAAA\nekjxhvQv/fqxfFExcMLJQ/vtbEhm4pffl6/qXp2x8a0xeTenhxBuOfczp2zV/rn1Sa5ubV1T\n13+cHcyvb5t7+F599/hFAAAAAAAAACis4j3u/t4FbQfC73v8RzsaUzP6zJLMo61JkuTq71y5\n6UtD+xdq+i6VVo4866yztv9Kw6qH7nng9a7MTVobFm1qDiFkMtlxA/p0/aIAAAAAAAAA9Kgi\nDemTXO2C+uZ8/Z5j9+5oWLbP8COqyubWNoUQXlq4PmxN2bs5vStK+75n0qT3bP+VdYsWdzGk\nb657IpckIYSy/odWZTOvP/Xw/z761PLXlq9YtS7bb8Cgdw4b8773feiYD+/TN9v19QAAAAAA\nAADQfUUa0jfVzcvH2CGEsdXlnYw8rH95PmVfO39dOGl4Qabn9R+8114lm/N12Y5PtO+WLRsf\nzxeZkn4/mnbB7AWvbvfNlctefO7Jxx664xe3nHD6eV8+bVxBrwwAAAAAAABAZ4o0pG9ueG5b\nPaqyrJORQ4ZVhtfrQwibX38thEMLMj3vtO/ecNrur7wrNixakS+2bPz77AU7H5NrWnvfbdcu\nfv6sH10yKVuIoL62trapqakAL9SB6p576betNWvWxLycFrQXuQVBF9rRgtRpQW/g7SB1NkLq\ntCB1WtAbeDtInY2QOi3oDfwtSp2NkDotSF38FpA6u6A9G6EI2Qg76OldUFNTk81298DyIg3p\nW5s25ItMprS604y6vKbtRvnWlg2Fmt7T1j2+bludyVZ9ZNIZx3/4g+/aa1BoWLNs2bIXnp53\n770PrWnKhRBenXvH5XeMvO7sMdHWBgAAAAAAAFDMijSkb9rYds93JlvV+cjSqrYb5bdP2bs5\nvac9+0p9viirPODS66cfPqSy7Rt99h5Zs/fIsR888aNHX/W1qxbVNYUQnpk1fdGnZhxSWaS/\nCQAAAAAAAAAxiWZ3pTXZWmxJYfoeGT5x8rlNuRDCuz484bDBFe0HVAx+7+Xf+fyZF/w0SZKk\ndfNNd710w+cOjLY8AAAAAAAAgKJVpCF9eXXbKfRJblPnI1s2teSLTNnAQk3vaeP+z8m7HNNv\n2Eln73vHbcvrQgir/vpgENIDAAAAAAAA9LwiDelLyqvzRZI0NbQmlSUdPle+aX3byfYlpW+m\n7N2c3ksc8fGht920JITQVPtoCOd389UymUwm0+H/Az3Bf3jqtCB1WpA6LegNdCF1WpA6LUid\nFvQGupA6LUidFvQGupA6LUidFqROCyDYCPA22QVFGtKX9j0whPvz9TMNze/vX97RyNXLN+eL\nPjX7FGp6L1F9SE2+aG3ZUJtLBmS79ftaVVVViEV1qLlHX/3tadCgQTEvpwXtRW5B0IV2tCB1\nWtAbeDtInY2QOi1InRb0Bt4OUmcjpE4LegN/i1JnI6ROC1IXvwWkzi5oz0YoQjbCDt4Wu6Ak\n7QWko8+AI0u2fobin/UtnYxcWN/2iz143N6Fmt5LZEr7bKvL3gYfKAEAAAAAAAB42yvSkD6T\nrR7bryxfPz33jY6GJS1r59RuydfDD3vzvPpuTu9R6596ct68efPmzVuwZGPnIzcvX5cvSiv2\n79vxif0AAAAAAAAAFEqRhvQhhFPHtqXmK+57rKMxtcvubk6SEEImWzl5SL8CTu85G5+745pr\nrrnmmmu+fc3POx/5/O+X54v+wz/Z8+sCAAAAAAAAoIhD+hFnHJEvNq2YOb+2aadjHvnJnHxR\nNWzy4LK3/F91c3rP2ee4j+SLLRv/etuSDR0Na2lY8uPFbXfSjzx9TIyVAQAAAAAAABS94g3p\nq4ZNGV9TEUJIktYfT5+VtBuw/ukZP3uhNl+f9O9HF3Z6z6momXDK3pX5+t6p33pqZx8gaG1Z\nc/Nl0zflkhBCWeXoi94/ONryAAAAAAAAAIpZ8Yb0IZP9wjcn5MsNS2Ze+L27V2xqaftWklvy\nyF0XXXF3kiQhhOoDz5g8YkCBp4cw65KLvrjVq1tyBfzJPnPp6SWZTAgh1/jKled97ZY/zn1j\nY0N+YWtXLHv84Xu/df4Ff15aG0LIZEomXnqxB9IDAAAAAAAAxFGa9gLSVDPq3CsmLrn6niUh\nhGV/v/38R3834oD9qvu0rlq+dPnaxvyY8uox06+Z1BPT61avWLFmc75ubn8nfjdUjfjklacv\nnDrz8RBCc8Pye26+9p6bQ2lFVXluU0Nz67ZhmUzJ0Z/99uRDBxby2gAAAAAAAAB0rIjvpA8h\nhPCBKdddfNZxFSWZEEKSq3vx2UVPLly8LWIfPOq46TdM268i20PTe87YM6Ze/cVP1JS+2d+W\nxrrtE/qKgQecc9mN/zFxVPy1AQAAAAAAABStor6TPoQQQsn4SRcdNu7E+x58aM4Ti9esW1e7\nJdTUDBwyYvS/HnPMCUcekt3FSfDdnN6DDv3Y538+fsJfZz+w4NlXVq9avWr1qrrm7Duqq4cd\nMPrww4888bgPVDrlHgAAAAAAACAuIX0IIfQbPnrilNETp0SdPuWXd+3WjIGHXPmHP+zeJcoG\nDD1h4pQTdm8SAAAAAAAAAD2l2I+7BwAAAAAAAIBohPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAA\nAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA/H/27jw+put94PhzZ5LJQhIJIvYK\nItbaa6mirV+1qtpqVaXooii619pq6aqltJS2tpZWqWoppbV8S62trZaQIBSRRRZJZJvMZOb+\n/hg0SCOYmTuZ+bz/urlz7nheOTLPmfPccy4AAAAAAHASivQAAAAAAAAAAAAAADgJRXoAAAAA\nAAAAAAAAAJyEIj0AAAAAAAAAAAAAAE7ipXUALiEvIWbd/37ftvdwalp6llGCQ0Kq3hLZqXPX\nuzo09VYcfnnZjQ0AAAAAAAAAAAAAcF0o0qs7fpw57Zv1Rqt66VRacl5a8pmDf25YHNFl1Njh\njSv6OOzyshsbAAAAAAAAAAAAAOC6efp293sWjvtgwbpLZWxFZwjw9770asbRTW+98NYJo8VB\nl5fd2AAAAAAAAAAAAAAAN8CjV9Jnxn799o+HbcflarYfOrhfh2a1vRXJO3dyw8pF85bvVFXV\nlH34zTGLvv1kgN0vL7uxAQAAAAAAAAAAAABujCevpLd+NWmNqqoi4lup48xPx3S+tbbtMe3+\nIbc88OTrkwe3sbU7f2LZd/9k2/vyshsbAAAAAAAAAAAAAOAGeW6RPufMgo3njLbj/u+MCPFS\nrmgQ0eP1+0P9bcdrpm227+VlNzYAAAAAAAAAAAAAwA3z3CL9P0v+tB34hnTvWb1ccU2Uh4e1\nsB1lxy/Ksqh2vFxEvn76sQcuuuLZ8JrHBgAAAAAAAAAAAABwBM8t0i//O912UO2ue/6rTXDj\nfjpFERHVkvNdcq4dLy+7sQEAAAAAAAAAAAAAbpiHFulVy/m/c8y24wZdq/xXM71PzdsCvG3H\n/xzIsNflZTc2AAAAAAAAAAAAAMDN8NI6AG2Ysv+yqBf2eG8eZCihZcvyhh3nTSKSvvOc3FvT\nLpfblK8UGqrLtx17F3lqvCvEdgNyc3PNZvNNvkkJit2138NlZmY685+jC67m5C4QeuEqdIHm\n6AJXQDrQHH8ImqMLNEcXuALSgeb4Q9AcXeAK+CzSHH8ImqMLNOf8LoDm+Cu4Gn8IHog/hCs4\n+q8gICBAr9ff5Jt4aJHenHf00nEjf+8SWlat4S+JOSKSn3hG5Fa7XG7zyEczHnHV2G6AxWIp\nLCy8yTfBdeEXrjm6QHN0geboAldAL2iOLtAcXaA5usAV0Auaows0Rxe4AnpBc3SB5ugCzdEF\ngPCHAJSRvwIP3e7earpwA4WieAXplRJaGoIvLEa3Fv57z8VNXl52YwMAAAAAAAAAAAAA3AwP\nLdKbsky2A0UfUHJLr4sPbi9ayb7Jy8tubAAAAAAAAAAAAACAm+Gh291fB6t68aBAg8sd+uYO\njc3esv7vgNYhiIhs+T+tI9COi3SB0AsugC7QHF2gObrAFdALmqMLNEcXaI4ucAX0guboAs3R\nBa6AXtAcXaA5T+4CaM5F/gqEPwRoykX+EPgruC4eupLeEHRhp3fVkltyy8LcCw8tULxD7HV5\n2Y0NAAAAAAAAAAAAAHAzPHQlvc4QZDtQVVOeVfXX/eez200ZF3aP13n9W8m+ycvLbmwlKF++\nvKqq124HAAAAAAAAAAAAAGWTXq+/+Tfx0CK9l199kXW245g8c6vyhv9qmZKQbzvwCQ6z1+Vl\nN7YS6HQeuisDAAAAAAAAAAAAAJSehxZWfQLb6ZQLS8z35xSW0PJAjtl2UKl9FXtdXnZjAwAA\nAAAAAAAAAADcDA8t0iv6oOblvG3Hh3ak/lcztTB92/kC23HNlv/uCX+Tl5fd2AAAAAAAAAAA\nAAAAN8NDi/Qi8lDzC5XppLV//leb86d+MKuqiCh6/6iq5ex4edmNDQAAAAAAAAAAAABwwzy3\nSB/++G22g9ykxTvPm4pts3XWNttBQI2oSt6X/a5u8vKyGxsAAAAAAAAAAAAA4IZ5bnU2oMaT\nnYJ9RURVrZ+9+6N6VYOMQ4tmx523Hd/7cmf7Xl52YwMAAAAAAAAAAAAA3DDPLdKLoh80urvt\nMDN28QuTf0jKLbzwkmqJ3fr9S+N/UFVVRILqPx4VHmjny0V+HPPSkIviCywuFRsAAAAAAAAA\nAAAAwBEUW7HWY+36etQ7P8XajhV9QHi92kE+1rMJJxLSjbaThqCmH895u7av3u6Xf/30Yz+l\n5duOP1m6PPyqNhrGBgAAAAAAAAAAAABwBE8v0otYtyydPuO7jUZrMb+HSo3uHDVmWGQFgyMu\nv2aRXsPYAAAAAAAAAAAAAACOQJFeRCQ3/tDa//2+bc/htHPnzhdIcHBI1fDGd3Tpcne7JnrF\nUZeXokivWWwAAAAAAAAAAAAAAEegSA8AAAAAAAAAAAAAgJPotA4AAAAAAAAAAAAAAABPQZEe\nAAAAAAAAAAAAAAAnoUgPAAAAAAAAAAAAAICTUKQHAAAAAAAAAAAAAMBJKNIDAAAAAAAAAAAA\nAOAkFOkBAAAAAAAAAAAAAHASivQAAAAAAAAAAAAAADgJRXoAAAAAAAAAAAAAAJyEIj0AAAAA\nAAAAAAAAAE5CkR4AAAAAAAAAAAAAACehSA8AAAAAAAAAAAAAgJNQpAcAAAAAAAAAAAAAwEko\n0gMAAAAAAAAAAAAA4CQU6QEAAAAAAAAAAAAAcBKK9AAAAAAAAAAAAAAAOAlFegAAAAAAAAAA\nAAAAnIQiPQAAAAAAAAAAAAAATkKRHgAAAAAAAAAAAAAAJ6FIDwAAAAAAAAAAAACAk1CkBwAA\nAAAAAAAAAADASSjSAwAAAAAAAAAAAADgJBTpAQAAAAAAAAAAAABwEor0AAAAAAAAAAAAAAA4\nCUV6AAAAAAAAAAAAAACchCI9AAAAAAAAAAAAAABOQpEeAAAAAAAAAAAAAAAnoUgPAAAAAAAA\nAAAAAICTUKQHAAAAAAAAAAAAAMBJKNIDAAAAAAAAAAAAAOAkFOkBAAAAAAAAAAAAAHASivQA\nAAAAAAAAAAAAADgJRXoAAAAAAAAAAAAAAJyEIj0AAAAAAAAAAAAAAE5CkR4AAAAAAAAAAAAA\nACehSA8AAAAAAAAAAAAAgJNQpAcAAAAAAAAAAAAAwEko0gMAAAAAAAAAAAAA4CQU6QEAAAAA\nAAAAAAAAcBKK9AAAAAAAAAAAAAAAOAlFegAAAAAAAAAAAAAAnIQiPQAAAAAAAAAAAAAATkKR\nHgAAAAAAAAAAAAAAJ6FIDwAAAAAAAAAAAACAk1CkBwAAAAAAAAAAAADASSjSAwAAAAAAAAAA\nAADgJBTpAQAAAAAAAAAAAABwEor0AAAAAAAAAAAAAAA4CUV6AAAAAAAAAAAAAACchCI9AAAA\nAAAAAAAAAABOQpEeAAAAAAAAAAAAAAAnoUgPAAAAAAAAAAAAAICTUKQHAAAAAAAAAAAAAMBJ\nKNIDAAAAAAAAAAAAAOAkFOkBAAAAAAAAAAAAAHASivQAAAAAAAAAAAAAADgJRXoAAAAAAAAA\nAAAAAJyEIj0AAAAAAAAAAAAAAE5CkR4AAAAAAAAAAAAAACehSA8AAAAAAAAAAAAAgJNQpAcA\nAAAAAAAAAAAAwEko0gMOZzEVaB0CAI8w+Yvvdh9J0joKXJ8Jw4cOGjTo/Q0JWgcCwBNZVK0j\nAFwGGRnuh28HmqMLXBzzdS6LpAw3QzoAbownpAMvrQMA3I1amLF909aDB6MPxcRl5ubm5eWb\nLerKlStFxJS966dN2R27dKoZ4K11mGXY+vXr7fhuFRp1bFPd345v6LFOnz59Xe0Vnd7H18/X\nx9e3nJ9BpzgoKk+zZc2SLWuWBFSN6Nyla5eunSPCymsdEa7Bak6NSUjKt6rmtUlyd3Wtw3FD\nOVlZhWppi5BBFSrwYWRfeVmpiUnp5lJ3QURkQz19YG/56cmJGQV169UuejLr+LYZc388dvJ0\nZr6EVK3T4c4e/Xt39iUd3xCGpu6BjOxQpAOt8O1Ac3SBS2G+rqwgKcP9kA6AG+Ah6YAiPWBP\nsVt+/GL24hNZpmJftRT8892cb5fM/6pL38HP9+nEvMONmTFjhh3fLXJYQ2ZC7WLEiBE3dqGi\nM1SqWq1mjVuatW7XoUObML4S37TspKO/LD66esnsag1ad+nStUvndlXKke6dTD0Tu+fvmJMZ\n2XkltiqM378x36qKiNXIGg57SrCDHj4AACAASURBVNi7duHKjXFxx1PPX8cvdtHynwPIzfag\nFp77cd6Xv2zeey77+v5j0wX2lXpgw+dffb/nRIq3f7Nli9+5dD5978Ihb/9osl6olqUnHFn1\nzZE/th2YMeX5YC9+/9eNoalrIyNriXTgIvh2oDm6wBUwX+cCSMrwdKQDQERIB1fgUwCwm72L\nxk/4fv81m1ktWb8vmnw47uyscY8wEQqoVlNqwsnUhJN7/9q04ItyXR99ZtBjd5XnO/ENad+k\n9s5Dpy2qKiKqqibE7loUu+u72b6RrW/v0rXrHe2alOMX63hWU/Ln77y5dn/ydV3VoHddB8Xj\ngeJWTX117h9qqZfrXeLNY6DsQbXkfvriiN/jc27gWh+6wH6St80f/tHPV69bVS3n3/twxaUK\n/SXnT2wYNbnZnLFdnBQf4HhkZG2RDlwB3w40Rxe4CObrNEdShocjHQA2pIOrUaQH7CN+3fRL\nI35FH3D7XV0i6tX3PvjdF1v+/cTx8m/YtHq5gwm5IpL818Jxi5t81C9Sm3DLsnbt2v3XS1Zz\n+s49xy79qCi6gODKVcLCAvQFZ8+ePZuaeWnTY70hLGpo30peuqCIEIdH7Bls/WLOOb4nOvXq\nVxVFuaJg5u0f3qpZ5bysc6mpqWnpWbYqgmrJ/X3J9AMxSbPefsJXYXh63ca+P8N47tS2zVs2\nb/7j77iztpOq1Rizc0PMzg2zfSu16dS5a9cutzWpzcyn4yx5fdTaI5nXdUloq96jOoc5KB5P\nY8raNm7eZRV6vV5fymsNfOzYw5l17xctyXj7B4WGBJTyN+tNF9iJxXji9Wmrit1ZOm3fzLj8\nQhHReQU9MvS5VtUNh3asXLhyn4ik/PnJlqwOnYIMzg63jGNo6rLIyNoiHbgCvh1oji5wBczX\nuQKSMjwc6QCwIR1c7cqqCYAbYDGeGhT1YrrZKiJBEZ1HvjasWZifiMQtfPGVZf+IiO0ZVyIi\nauGOJe99sHiPiCh6/4+++7aBH/fK2Edh3vGPR47fFp8jIv5VGz38aJ/772jub/h3bKNaCo78\ntX7Jku/3nswSEf9qbd+dNqYev3/7sRhPvvPcqL3pRhFR9P6t7+p5d7smlStXCq0cWt7LnJqS\nkpKSErdvy4rVWzPMFkXR3zti8tBu9UREtZqSju1f98sPP/0Ra3uriKhpUx5z51vknCA78ejm\nzX/8sXlz7JmsK17yqxR+R5cuXbp2aVyzgiaxubGc+IX9hi+zHftXjWjbPLKCV0Hs1k2xGQUi\n0vTenvV8vUQkLyv14M6/EnPMItI4asK7fVpyz7S97J88ePyWZBHxC23y9JCoFvXDQyv4aR2U\nZ/n66cd+SssXkciufQb3f7BeJR62p4FTP732/NdHRUSnD3x4+Ev3tGlSJcjX9tLaF56YefK8\niEQO/OSj3uG2k5unPzdlQ4KI1H7o4xlP1dcoanfD0FRbZGTNkQ5cDd8ONEcXaIL5OldAUgaK\nIh3AY5EOikWRHrCD+FWjhs+JFRGfoNaff/VGJa8Ls2/FDPpFROR/kwd/uiVZROo98enUPnWc\nHq9bUr9+ZcBPcVki0vKRUW/0v/2/tyZT9/40ecLXW0UkqN6DX338NJuY2cvSUQO/jc0QkZod\n+40e+nCt/1iKZ8k/+8v8j+atPaYoyv2vz322beVLLx3/38xXpq9TVVVvCPv6+y+D3DsDO0vq\niQObN/+xefPWf9Lyr3gptG7zLl26dunSsQbrJu1k77uDJuxMEZHAuj1mThls+z9cmHc0qt/I\nfKsaOWTmRz1q2lqqlqylU8cs2pKg96n51txpzekCO/nwiUe3nS8wBLb+8us3KnpxD7oGBj3y\nUIrJEtw46usPHuNDXCvfD+q7KCVPRFq+8PmEu6v/+4Ja+PQjj6aZLYqifLj4x0j/C1PPpvPb\nHnniQxHxD41aMvcxLUJ2PwxNNUZG1hzpwGXx7UBzdIEzMV/nCkjKQLFIB/A0pINiMXcJ2MGO\nn0/bDjqNGlGpFCWBToP72w4S1+9yYFieJCNmum0atFLzZyYMKGEaVESUlg+PeqF9FRHJilsx\n+c8UJ4Xo7rJOzLVV6IPqPTJ9VN//qtCLiN6vSq/hU55sGqKq6pqPxsbmFV56qe5dw59vXlFE\nLKbkFalXjlBxYyqHN+v95POfzl8yc9Ibj93XqWrAv12Tcnzf0nnThg94/JUJH6/atDfLzH17\nN2v7sfO2g4fG9L90l4mXf8SAsHIikvhb3KWWij6oz2vTulXxtxTEfzxxufNDdVfReWYRaTx8\nCBV6rZwvtIpI5+fvpySjoa3nC0REUQwvd61W9Lwxc0Oa2SIihsBOlyr0ImII7FjRWycipvM7\nnBup22JoqjkysuZIBy6Lbweaowucifk6V0BSBopFOoCnIR0Ui+lLwA7+yCoQEUXn81Sj4NK0\nNwR1CjXoRcSUtdWxkXmMXXP32A4eeeme0rTvNCzKdnBwwRZHxeRh9s6+8Jt8ZNyjpVgAr/QY\n+YSIWEwps374p+gL7YfeYTuI3p1u7xg9nFKzUduooSO//Pa7jye82uvONsGGCw/qVlVz3N4/\n5kydMLDvgIlT527+O87C4P9GHcg1i4ii9+8V6l/0fP1WISJSkLGz6ElF8R04tpuIZMUtWpKY\n68Qw3VmBVRWRdpFBWgfiuWr56EWktj+7g2rprMkqIl5+t1yxJ03GgT9sBxUadbvikhoGLxGx\nmJMF9sDQVHNkZM2RDlwe3w40Rxc4A/N1roCkDJSIdABPQTooFkV6wA5sM6F6n1oBpd6dO8xb\nLyIWU5IDw/Ika+JzRETR+98b4lua9j5BXSp46UQkP32DYyPzGCtPZIuIziuoV6VSPf7Zp8Ld\ntq++ieuWFj3vW/FC2SDvTJ69Y4SIiDnnXGpaembW+fxC6xUvWc1ZezatnPLWKwOGv7FiS4wm\n4ZV158xWEfHyqXXFosmQNiEiYsrZY7r8C1VgnScrG/Qi8vuiOIE92B7nXMgXV+10DvUXkQNn\n2Q1FS346RURUa+EV54+uSrQd1Hmg5hUvmS48BI0lr/bB0FRzZGTNkQ7KCr4daI4ucCjm61wB\nSRkoDdIB3B7poFjc1AzYQTm9YipUreY0tdRTm8lmi4goulKVM3FN8QUWEdHpypV+atlPp2SK\nWE3sKWofp21d4F35mi0vCfHSpZgs5twDRU/qvUNtB6ZzJjuGB+O503/u2LFj+/bd0SfN6pUF\nzOCajYLyTpxMN9p+zD5zYP7kAztjX3zv2bso11wXH51isqiqemVhzL9ahMg+1Wrck2NqX2QH\nM1H0nQN9lqXlndv3i8itTo3VTfUID4w+mL4nJqtnx1IVxmB37Z9pOefNTbs/W6HOeJIPEK3U\n8fPKyDZZCk4mmCzVL67DENW86OSFzeUerBNYtL1qzT9hLBQRnXcl50bqthiaao6MrDnSgYvj\n24Hm6ALnYL7OFZCUgRKQDuA5SAfFokgP2MFtAYbfMozWwoy154zdS7FcxpS9I8VkERHvcs0c\nH51HKK9XMgpVizn1hNES7qu/ZntLwalks1VEdN4VHB+dR6jgpUs1WyzG01kWNagUt6irluyT\nxkIRURTvouctpgsb7RqCvYu5DNcpOzlux/btO3bs+PtoovWqsX6l2k063t6xY4eOkTUriGqJ\n+3vr//63YeP2A3kWVUSiV336cdOmr7UL1SLwsqqaj/5IntViPJVtUYuu1TCUby2yVEQ2JeS2\njzQUvaSyQSci5rxoJ4fqrlqMeFg3dO7hOQuNHV7zVfjSqoFKzV/uE/H30qM/jZtfa8JTXX3o\nBS10q1pub7ZJVa0z1iVMur+W7WT6/i+STbYH0rdvdPkG1FnHFtoeFeET0M750bolhqaaIyNr\njnTgmvh2oDm6wMmYr3MFJGXgaqQDeCDSQbEo0gN20K1Lld+WnxKRpdM3dZ/Q/ZrtD33zje2g\nYotrN0ZptA80rDlnFJG5vye+f9+VO7heLWnTbFVVRcQQ2NHhwXmGLsE+P6Tkqarpy71po9pc\nez19+sE5RqutCy6rB+Ql/2o7CGwQWMxlKJ1zpw/v2LFj+/btB/9JvfrV0PBmHTp0vL1jx4jq\nRX7Jir5ey871WnZ+KuvUV5PeXH0oQ0T+mvmVtBvttLDdQKdAw5E8s6qaF8Rmjmj871MPvfwj\nyuuVHIt6el2iRF72NMREk8XpYboz/6o93+23c9yiLSOnRU5++X7q9FpQHn9/Usqrozat+OTJ\nXZsGPNGrUXidGmEhpd5hFHbQ6KkWMvZ3EYmZN3ZpxTfuax2Rf2bXh5M22V6t1u3Roo2zT215\n8621tuOKbVs7N1K3xdBUc2RkF0A6cCF8O9AcXaAV5utcAUkZuIR0AE9GOigWRXrADmo/3Nd7\nxUdmVU3bO+uDZUGjercvYeoheffit9cm2I7/r1+4k0J0d/93T/U1i4+LSMz8ibvbfNa6ckn3\nRxvT9k6cc9h2XP2+O50Rnwe487E6P8w4JCJ/Tvkgdu6kyABDCY0L845PmbTNdlz9vvv+fUE1\nLZ+22XbYplnw1ReiZMlx+7dv375jx/YjCVlXvKQoSmh4s44db+/YsUP9qgElvIkhqPZT40as\njnpHREznt+dZVX8dk6ml1bxnDZlzREQ2vfd+2ykT21bzv/iK7o4gnzXnjMlbP88ePuPS7aJW\n09kNGUYR8fYlHdhNk8fefrlg0qc/zh1w6I/ej0f16trcl4KAc+kN1Xs+1GHTJ2tzE/Z9/uE+\nEVF0+tJ8kCxfvtzhwXmGCo2GdgzZvu2cUbVkf/vB6EWKol5cnKHofJ99tLbtOD/l1w8/WrX/\nWIJFVUVEUfSP9r1Fq5jdDENTzZGRXQHpQHN8O9AcXaA55utcAUkZIB0AQjr4DxTpATswBHUc\nc3eNd9bHi8iOhR88s7PLcwN6NYm8/LNDtaQnn9y8+oeFq3bYZkKDI598OMy/2DfE9arVa1DQ\n0tezLFaLKeX9ESOfevW1nm1rF9vy9O5fPp4y/6zJIiI6r+DBPWo4N1K3VbXLy/XmDo3LLyzM\nj3tj6LinXh7Ro/UtxbZM2L/+s6mzD+eZRURvCB3e60JPZScd/WXBtGUnzouIoXyLhyrxBLjr\nNviV8VecURQlrF6Ljh07dOzYsW6VcqV8H+/yTS8eehlYiHw9qncbEvzVaxmFVlPOkfeGP9Pg\n1haDRr8S4eclInd2qrLm51MW4+lx03+e/FIvX0VRLVlLpozPtagiUq4mCzXsY8WKFSIigQ3v\naXb81/1HF01/67sZ3iFVwsLCwiqUK+nmIREZPZr70O1j19dvvPPTgaJnVKvF/W9+diWK4vv8\nB88ff36qbX97tcj2iQ0eGd/U/8IDZQoyd+09eubSS7fcM7ZLkI+TQ3VXDE01R0Z2BaQDzfHt\nQHN0geaYr3MFJGWAdAAI6eA/UKQH7KP18MkPxA9dGZspIudiN703bpOi961c3mp7dcwrw0+f\nTswpsjuHT1Czt9/upU2s7sjLv/GE/i1f/nq3iBTmn5rz7vM/hTe/vWXDqlWrhoWF+UtecnJy\nUlJS7N6tf59Iv3RV6wFvRfrxMWgfOu/QN8Y9MvjN702qaso++uXbL3xXLbJN07qhoaGhoaH+\nYkxJTUlNST1xaPeh+EzbJYqidBv+dj1fvYjkJc99YuiqS1WEO14YzkjzZiiKrlpEy44dO3To\n0CE89LonFwrzjtoO/Kr08qInrofet947z94x4vNNIqJacmP3bj1V8KJtuBn++JByv7yea1FP\nbZz/+LYfalQPSo1PzCu8kCY6D71Vw7Ddyfz58684o6rm9OT49OR4TeLxQFnHF767/KDWUUD8\nq3b6ZEbg7JnzNh08ZXvGoc6rfMdeg159ounVjRXFq9W9z74+pK3Tw3RbDE01R0bWHOnApfDt\nQHN0gYaYr9McSRm4hHQAT0Y6KJZSdF0FgJuhWrKWf/7R1+uuPRMR3ODOcW8MaxB0jSV9uF5b\n5r0++efSzgQ1f3jM2092cGg8Hihpx7ejJy/LvJhBS6DofLo9++6IHg1sP+YkTu83dIPtOOK+\nl6YMZa/XG9Gr14M1GrTqeHvHjh061K5U0s66cKjDaxdMnbsipcAiIs8v/KFbhQsrUw8vGj/m\n+/1Xt6/c8ql5Ex5yaoju64EHHrjha1euXGnHSDzWr6/0/zwuS0T8Qhs91u+BhrWqVw4uX8rZ\ng4oVKzo0Ns9UkJF8+my6vnzlGtUrX7HYIufMtzMWp1W7JaJt+zsa1iivVYRujKGp5sjIGiId\nuAK+HWiOLnARzNe5ApIyPBnpALiEdHAFivSAnSUf2rZ85aqNO2OMlmL+uCrVad7jgQcfuLOl\nNze7OcbJ7T9Om73kn3MFJbTxD42IGvJSzzbsJuoQxrTD87+Yv37XMct/55dqjToOHDKsfZ1/\nn7RkK9L7h0X0fOypqLsaOyVSNxSfYawZzFjfJVjNWQf+2nn0dGKzh6KKLovc8d3UWcs2Z128\nkUVR9Ld2ixozrDcPErOX33777Yav7d7dnbfPcprnHn0oocDiU6H13K/GB5XwzE/AMzA01RwZ\nWSukA1fAtwPN0QUuhfk6zZGU4bFIB0BRpIOiKNIDDqFa8v6JPXwiIS0nJyffZC1XPiAwODSi\nUeNq5GMnUE2Htv9v254DMTFHktLP5xlNiqLz8SsXElazQYOIW9t06tyqPtNEjpafErd5x56Y\nmJiTCak5uTn5ZgkICAyqWDWyUaNb297esm6lK9pbCuJPpfrWqVGZnoHbK8xN3HfgeOq53Io1\nbqkbHl4xgFUacCsP9+pVqKp3fLjgtYbBWscCuAaGpq6KjOxQpAMgfvWbYxefEBGfwPbzZg3X\nOhxcwHydayIpAwDEI9MBRXoAbk61mKw6A1OfAAA4waBHHkoxWV5c+MNdF7csA1AUQ1N4CNIB\ncOyr519dfkpE9L61ly+doXU4AICyZMLwoWcKCsP7Thx3d3WtYwHgQF7XbgIAZZmiN+i1jsHt\nsUTA+T777DP7vuGIESPs+4YAPNOdFXyWpOSdMVq0DsRTrF+/3o7vVqFRxzbV/e34hrgaQ1N4\nCNKBC8rJyios9UKdoAoVuJvoJlVsU0uWnxIRi/HUobzCxv7MwQIASsVqTo1JSMq3qua1SUKR\nHnBrDBABO1NV47GD0acTzt197/9ddt6SOWXmkjp1GtzWqWPNCu6/TQc8ijEl4/z58yKiN8Vq\nHYunWLdunX3fkCL9DcjMzLQdKIp3UFA5bYPxTHSBC+r6RKMlU3dvX3Rw4Ku3aR2LR5gxw54r\n8yKHNaRIj7KIdOCCSAeuI2Hv2oUrN8bFHU89X1D6qxYt/zmATT9uTkjjF9tX2LUj0ygiC9ae\n+eihW7SOyNMxX+ccJGXgv6lnYvf8HXMyIzuvxFaF8fs35ltVEbEaryN3Ay6FdFBKFOkBu1Et\n2b8v/Wrxz5tS8gr1hrArB/1W05YNa7bImm/mftbmvqjnnnmwopdOq1DdHksEnIwlAvBMAwYM\nsB0Yyt26bPE7IvLhhx/e8LuNHj3aPmF5ErrABVXtPLbniqd+2fzhD3fNfrR5Ja3DAVwCQ1NH\nIx24INKBi4hbNfXVuX/cwJMuvZmuuHmK4eUpI8++MOlEnvnYovf+un3GbZV56rk2mK9zJpIy\nUCyrKfnzd95cuz/5uq5q0Luug+IBHI10UErUUQD7sJgSpo8atfFE9jVbqqp55+qvDx+Imzzt\n1ersdmlXLBHQCksEnO+JJ57QOgQUY9u2bVqH4OnoAu0p3k9/MDH9tfHfvjXkyH1PDOrfM4w7\ntxypXbt2//WS1Zy+c8+xSz8qii4guHKVsLAAfcHZs2fPpmZeKhvrDWFRQ/tW8tIFRYQ4PGJP\nwtBUQ6QD7ZEOXIApa9u4eZdV6PX60k5BGBQ+iOzAN7TNpJlvTX9v8ta4s5OGvfDwM0/f16VN\nRV8mgpyK+TrNkZQBEVny+qi1RzKv65LQVr1HdQ5zUDyA85EOisV3JMA+lk98/dKIX1EMtRs2\nvaKBog/o06PLX3/tPJWWJyI58VvHv1d//sSHnB2o+2KJgJZYIuB0ffr00ToEACjGihUrRCSi\n692Hvlu5c/VXu9YsCKpcvWb1yt6lmOqfMGGCo8NzP+PGjSv2fGHe8Y9Hjrcd+1dt9PCjfe6/\no7m/4d9Bj2opOPLX+iVLvt97MstiSl62bPu708bU8+Prod0wNIWHIx24gpjZC4xWVUT8Qps8\nPSSqRf3w0Ap+WgflWVavXi0ije/snZn1XXRq8g+z3l/2uaFCxZCQkIrBIUE+Jd6S5cYrxpyM\n+ToAmsuJX7jkYoXev2pE2+aRFbwKYrduis0oEJGm9/as5+slInlZqQd3/pWYYxaRxlET3u3T\nknt3AbfHLAxgBznxixcePGc7rnN733Ej+lS5apWAovN7YsgrTwy2bP/h048X/WFW1bS/v1qR\nfM+DYTz40w5YIqA5lgjAAzVo0MB24OVXw3YwbNgw7cLxRHSBC5o/f37RH1XVmpkSn5kSr1U8\nnkr99o0J2+JzRKTlI6Pe6H+711WDHUXvE9nh/gkdeuz9afKEr7fmJe6c+PrCrz5++uqWuAEM\nTZ2MdOCCSAeu4Lf9GSJiCGw964s32L5bE19++eUVZ1TVlJGWnJF2fdsd44YxX+d8JGXgakcX\nbLYdBNbtMXPK4CC9IiKFUd2i+o3Mt6rmWt2f6lHT1kC1ZC2dOmbRloTYZfMOdm/SPMigWdDA\nzSEdlJJyA7f2A7jC7jeffntfmoiEth8+d+w912wfu/jVUYuPiUiV296e83pzh8fnAfZPHjx+\nS7KwREA7tiUCopq3Lf8uOtUoIorCEgEA8DgPPPDADV+7cuVKO0biyTJiPh04+n8iUqn5M/Pf\n7nXN9hs+eHb6jrMi0n7s3LHtQx0enwdgaAqQDlxB/4cfzCq0thg7Z2L7KlrH4qH4Q9Ac83UA\nXMFnA/usyzCKyMA5S3pX+fcGoNVD+32ZmBNY++VvZ3S9dFJVjZ8NfnL92bygelHfTH1Mg3AB\nOBEr6QE7WHfivO3g6eFdS25pU/+hF5QlL6iqmhm7XoRBvx2wREBzLBEooyYMH3qmoDC878Rx\nd1fXOhYA7uCll17SOgTIrrl7bAePvHTtyWgR6TQsavqOqSJycMEWad/bgZF5DIamAOnAFRRY\nVRFpFxmkdSCeixVjmmO+DoArOJBrFhFF798r9LItOuq3CpHEnIKMnSL/fkYpiu/Asd3Wv/Rz\nVtyiJYn3961WztnhAnAiivSAHRzJKxQRvSGsQ2CptqDR+9au66uPyy8szD/i4NA8RXSeWUQa\nDx/CNChQelZzakxCUr5VNa9NEor0Ny1+9ZtjF58QEZ/A9vNmDdc6HEAbd955p9YhQNbE54iI\nove/N8S3NO19grpU8Poks9Can75BhCK9HTA0BUgHrqCen1d0rrmQDTS10717d61D8HTM1wFw\nBefMVhHx8ql1xcPFQtqEyKrTppw9JlUMRV4KrPNkZcMvqSbL74vi+o681bnBAnAqivSAHeRa\nVBFRdNdxX5teUUTEas50VEwehiUCmmOJgCtRz8Tu+TvmZEZ2XomtCuP3b8y3qiJiNRY4KTS3\nZkzJOH/+vIjoTbFax4LrwH4ScD/xBRYR0enKlf7Z5n46JVPEakpxXFQehaEpAFfQIzww+mD6\nnpisnh1Ldc8W4H6YrwPgCnx0ismiqmrhFef9q0WI7FOtxj05pvYBRe4lUvSdA32WpeWd2/eL\nCEV6uC2rKfvEsbiUc+ezc3LE2y8wIKBy9Tp1a1Qq/VSGG6BID9hBLV99XH6hpeBUeqFa0eva\nnyFqYcY/+YUiovep4fjoPAJLBDTHEgEXYTUlf/7Om2v3X99TBhr0ruugeDxKxTa1ZPkpEbEY\nTx3KK2zszyirDGA/Cbil8nolo1C1mFNPGC3hvvprtrcUnEo2W0VE513B8dF5BIamriYnK6tQ\nLW1/BFWo4FGzQnBjLUY8rBs69/CchcYOr/kq/L+GJ2K+zgWRlOGBqvnoj+RZLcZT2RY1QP/v\nf2pD+dYiS0VkU0Ju+8jLNvyobNCJiDkv2smhAs6gFh7c+tvqNb/tPhxvuiojGAIqtep49309\netxa2yPuemf6GLCD+2qUn34sU1ULv/jr7Osdw67ZPnXXl7ZPH/8q3RwfnUdgiQBgs+T1UWuP\nXN8t/6Gteo/qfO0PLlxTSOMX21fYtSPTKCIL1p756KFbtI7Ik7GfBDxa+0DDmnNGEZn7e+L7\n99W8ZvukTbNVVRURQ2BHhwfnGRiauoiEvWsXrtwYF3c89fx1fMgvWv5z0clToOzyr9rz3X47\nxy3aMnJa5OSX76dOXyawyZN9MV/nOkjK8GSdAg1H8syqal4QmzmicfCl817+EeX1So5FPb0u\nUSKDi16SaLI4PUzAGYzp0bM+nLwpNuO/Gpiy03b8tuTPtT+06Tnoxafuc/ssQJEesIMWAxrL\n+G0isvvTd/9uMKVFpZIm40znD30wbaftuN7jrZ0RnwdgiQAgIjnxC5dcrND7V41o2zyygldB\n7NZNsRkFItL03p71fL1EJC8r9eDOvxJzzCLSOGrCu31auvtox1kUw8tTRp59YdKJPPOxRe/9\ndfuM2ypTm9EA+0m4lJRju7fvjj5y5MiZ1IycnBxjoS4gICAwpEqDho2atGzfvjGzzw7xf/dU\nX7P4uIjEzJ+4u81nrUv8LDKm7Z0457DtuPp9PEPaPhiauoK4VVNfnfuHWuq1epd46xwRDqCN\nJo+9/XLBpE9/nDvg0B+9H4/q1bW5L0N/F8YmT3bHfJ2LICnDwzXvWUPmHBGRTe+933bKxLbV\n/C++orsjyGfNOWPy1s+zh8+4VIy0ms5uyDCKiLdvuDYRA45hyop+Y8RbR3PNRU8qindIlTA/\na05yaualrVZU1bJz5Zcjjid99u4z7l2nV24gOwK4kmr68MkntmUYRUTvW+Oxoc893LWJoZj5\nOGvcztWzPl0Ql20SEW//QNoCAAAAIABJREFUhl8tmhTo1h8xzhT9/fhxi/bX7vIsSwTgsfa+\nO2jCzhQRCazbY+aUwUF6RUQK845G9RuZb1Ujh8z8qMeF9ZSqJWvp1DGLtiTofWq+NXda8yBD\nSe+L62FMPzD9vclb47L0PmEPP/P0fV3aVCzFXtOwo+9GDlhy/ftJzHpzoIHUYVcZRzfN+OKb\n3XGpJbSpGN6y/9AX77x8xQBuXmHeoaeiXs+yWEXEy6/2U6++1rNt7WJbnt79y8dT5v+TVygi\nOq/gSYvmRfpxG7d9MDTVlilr2xMDPzJa/53u0OtLm45/XL6cisDNGzhw4I1dWO/JSeO7VrVv\nMB5rxYoVtoOkPb/8uj9FLs6BhoWFVSh3jfH/6NGjHR6fB7mOTZ7+issSkaDao7+ZwfY29sB8\nnQsgKQMWY9zT/V7LKLSKiKIv1+DWFoNGvxLh5yUiR+c9/9rPp0SkdtenJ7/Uy1dRVEvW4g9H\nLvkzWUSCI0cu+KiTtsED9qPOfq7fLwm5th8MQXUf6P1A57ZNq4ZVNOgUEVEtxtSkxAN/bvr5\np9Wnci4U8qt3Gf35K+48KKJID9hHzukNw1/6zJZrRcQ7oOqtjetVrly5cuXKAT6WtLMpKSkp\np47uP5GSb2ugKIbH357d99YQ7UJ2P+rGhZM+/fFPQ6X6LBGAZ/psYJ91GUYRGThnSe8ql27L\nldVD+32ZmBNY++VvZ3S9dFJVjZ8NfnL92bygelHfTH1Mg3Dd0erVq0VEVPO25d9FpxpFRFEM\nFSqGhIRUDA4J8inxQ4mZULvIiV/Yb/gy2zH7SWjo8Ipp47/aZC7FFw1F8e761LsvPdjQCVF5\nlOM/vf3y17sv/VgxvPntLRtWrVo1LCzMX/KSk5OTkpJi9279+0T6pTZtn/7kjQdZqGFHDE21\ntH/y4PFbkkXEL7TJ00OiWtQPD63gp3VQnuWBBx64sQsjh836qDuPgraPG+4FEVm5cqUdI/Fk\nN7bJU9tXZr/RhUeS2QfzdZojKQMicvrXqSM+33Tpx+cX/tCtgo+IFOZF9496PdeiiojeEFCj\nelBqfGLexY+sBz/59unwQC3iBewvI3bmwFFrbcehrR+bNPbxSv+xX4rFdPab98b+9HeaiCiK\n7rl5S7qXuBdOmcY6CcA+yte6+9P3Cl6fOD8+zywi5uyk3X8m/VdjRR/w4IsfMOK3owtLBAIb\n3tPs+K/7jy6a/tZ3M1gi4FSslXEFB3LNIqLo/XuF+hc9X79ViCTmFGTsFPm3SK8ovgPHdlv/\n0s9ZcYuWJN7ft1o5Z4frjr788ssrzqiqKSMtOSPt+mblcMOOLthsO7hsP4mobrb9JMy1uj91\n1X4SscvmHezehP0k7Ojs1i/HfrXp0q3AAdUatGlaLzQ0NLRyaIC3+WxycnJy8vHoXTEJ2SKi\nquaNX40NqDL7mfahmkbtbuo+/ObIjNcn/3zQ9mP6iX0/n9hXQvvmD4+hQm9HDE0199v+DBEx\nBLae9cUbFb1Yg1cGePmHhJT3EpEQ9vOAe1ny+qi117/J06jOVOjthvk6zZGUARGpde8rk3QV\np85dkVJw2cPmvfybjH+k2Zjv94uIxZR96p/sSy9VbvkUFXq4k+gFu2wH/qFdPxvfr4QN5/SG\nKgPf+ixt0FOb0/JV1frzt3HdX2rirDCdjS8/gN1UaNjj0/nNlsz9as3GPTmW4peOKYquTosu\nA54d3LK6f7ENcGPmz59/xRlVNacnx6cnx2sSjwfKyMi4sQuzLx+b4macM1tFxMunltflg5yQ\nNiGy6rQpZ49JlaIbegfWebKy4ZdUk+X3RXF9R97q3GABh9h+7Lzt4KEx/YMuLlr18o8YEFbu\ny8ScxN/i5GKRXtEH9XltWsrRJ9efjf944nL2k7AXa2Hau9N/s1XoDQH1n3xxRI+2dYr74qX+\ns3P1jE++jssxqap19bQPHm4zNdiLdcb21OmZ92o2/HHa7CX/nCsooZl/aETUkJd6tmHdqj0x\nNNVcdJ5ZRBoPH0IxQCufffZZia+r59POJiUlxp+MXrt+V75VVa1+j776/j0NeQCKPQ0bNkzr\nEDxdTvzCS49hYpMnDTFfpy2SMmDT6J6Bs+988MBfO4+eTqzp8+9DHxpFvTNWmTpr2easiwvo\nFUV/a7eoMcMe1ChSwCHWn8qxHXQd9/Q1Hwmn6Pyfff3OzS+vFpHU3StFKNIDKAUv/5pPvPBm\n32eSdv31d0xMzMnEtJzcnHyzlC9fPjAkLKJho1tbtYusHqB1mID2WCvjCD46xWRRVbXwivP+\n1SJE9qlW454cU/uAIgv4FH3nQJ9laXnn9v0iQpHeDpgJ1Rz7SWju7NZpp4wWEfHyrTNx1geN\n/3OLAqVO2/snzar1yuC3ThsthcbjU3ecfacTi8bs7JYOvT9t3/PQ9v9t23MgJuZIUvr5PKNJ\nUXQ+fuVCwmo2aBBxa5tOnVvVpxIA91NgVUWkXWSQ1oF4rlq1al2rRe0mIiIP9nvs6NKvZizb\ncmrW2KG5H81+OIJes5vu3btrHYKnY5Mn18F8nYZIysAlOu+g5rd3a37V+fb9XmnTq+++A8dT\nz+VWrHFL3fDwigEkAribE/mFIqIo+v63lGqLiMDwgd7KGrOqmnMPOjg0LVEaAezPq1zV9ndW\nbX/nfVoH4kEojGmOtTKuoJqP/kie1WI8lW1RA4qUXAzlW4ssFZFNCbntIy8b5Vc26ETEnBft\n5FDdFTOhmmM/Cc3tXXbSdtDyxbH/XaG/wFCh2RvPtxo8eaeI/LN0r3Ri7OQAiqFxx3sbd7zX\n9pNqMVl1BqryjsbQVHP1/Lyic82Fxa+WhGvxrRQxYOSn5bMHfb0v7ds3JrT+ZkqtImvLgDKN\nTZ5cDfN1miApA6XhVa5a6/bVtI4CcCCLqCKiM4T560o1JaEovlV9dKeNFlGtDg5NSxTpAbgD\nCmOaY62MK+gUaDiSZ1ZV84LYzBGN/70Bwss/orxeybGop9clSuRlN0YkmnjcANwK+0lobn1K\nvogoin5I21I9Yz603VBvZZdZVfPOrhdhwtThFL2B2pcTMDTVXI/wwOiD6Xtisnp29NU6FpSG\nrueYlxc+/kah8fjUZSc/iaqrdTyAfbDJEyAkZUAkNj49smZFraMANNasnPeO8yarOd2sincp\nyvSqNS+xwCoi3v4RDg9OOzwJBnA4i6mk54ACnsa2VubJ5pVUa/63b0w4zTPp7ad5zwtPFN70\n3vs7E/OKvKK7I8hHRJK3fp5d5Al8VtPZDRlGEfH2DXdmnG5s1apVq1at2nQos/SX7Fu7ZtWq\nVb9uOOy4qDxKNR+9iNj2kyh63lC+te1gU0LuFZewn4R9nSmwiIjep3Zl71J90dB5V6rjqxcR\ni4lndQOwmxYjHtYpyuE5C40qC/fKBm//pl2CfEQkcd06rWPxaBOGDx00aND7GxK0DsRNlLTJ\nk4htk6eiAus8WdmgF5HfF8U5LUjA0UjKwKjhTz0+6IUpny/YtPNQlsmd1wQDJejRoqKIqFbj\notPZpWmfeXh2oaqKSGD9+x0bmaYo0gN2phZmbNuw6otpHzw/+Jn+UX17P9TroUcetb1kyt61\nZNXv8dlmbSMEXICu55iXdYpiWyujdTDuo3q3IcFeOhEx5Rx5b/gzoyZ8dDT/wnriOztVERGL\n8fS46T/bvhirlqwlU8bnWlQRKVeTBX/2MWfOnDlz5vy4I6X0l5z68Zs5c+bMnfut46LyKJ0C\nDSJi20+i6HnbfhIicnpd4hWXsJ+EfQV66UREteZds+Ul+VZVRETxdlBIyMnKyiw1pk7hHvyr\n9ny3XzPjuS0jp/1CSaCsqOfrJSKmnL+0DsRzWc2pMQlJKSkpR9YmaR2Lm/DRKSLyH5s8iW2T\np8teUPSdA31E5Ny+X5wUoodhUKQJkjIgIrkpJzf/+uPUd8cOeKzfa+MnLf55w9EzGVoHBThV\n5OBng/Q6Efn17dlZlmukA4spaeoHW0VEUfSPDGvqjPg0wnb3gD3Fbvnxi9mLT2SZin3VUvDP\nd3O+XTL/qy59Bz/fpxNPA9XWhOFDzxQUhvedOO7u6lrH4olsa2V+zzQmrlsnUc9pHY6b0PvW\ne+fZO0Z8vklEVEtu7N6tpwpejPDzEpHwx4eU++X1XIt6auP8x7f9UKN6UGp8Yl7hhbt3Ow9l\nl2/NmKyqiBQW/KN1IG6iec8aMueIiGx67/22Uya2rXZpZ1HdHUE+a84Zk7d+nj18RsDFHMx+\nEnZXx1efZrZYTMn7cs3Ny1277l6Yd+iMySoi3n7uvH2ZJhL2rl24cmNc3PHU89exq9Oi5T8H\nMEjVAkNTu2vy2NsvF0z69Me5Aw790fvxqF5dm/vyf9u1nSgoFBHVkqN1IO5HPRO75++YkxnZ\nJd5CpxbG799ou3POamQ7QPuo5qM/kme1bfJUNL0ayrcWWSoimxJy20cail7CJk+OwKBIcyRl\n4BLVknd0//aj+7cvnicBVcJbtWrZqlWrls0bBpRuLzqg7DIEtP5geJfhMzbmp/4xYpR+zOih\njUOLfwxK0qEt86bP3J9tEpEGvSfeV8W/2GbugSI9YDd7F42f8P3+azazWrJ+XzT5cNzZWeMe\n8WJEqhHbEoF8q2pemyTMhGqknq/X7xfWylCkt5ta974ySVdx6twVKZc/R8DLv8n4R5qN+X6/\niFhM2af++Xdbocotn3o6PNDZgbqLmJiYq08WnPsnJqYUi7PVwozEwz+k5dt+sHNknqp6tyHB\nX72WUWi17SfR4NYWg0a/YrtV5c5OVdb8fMq2n8Tkl3r5Kgr7STjC3eGBu/anici8xYdnDLr2\nDUBHfpij2rYvq3uvw4PzJHGrpr469w/1+tcqMTWkCYamdrdixQoRkcCG9zQ7/uv+o4umv/Xd\nDO+QKmFhYWEVyhlKvnb06NHOCBGXM53fuTGzQER0hqpax+JWrKbkz995c+3+5Ou6qkHvug6K\nx9N0CjQcyTPbNnka0Tj40nnbJk85FvX0ukSJDC56CZs82R2DIs2RlIF3X3/l4MHo6OiDsf8k\nW4p8HGWfPbFpzYlNa5Ypev/6zVq0bt26VctW9atX0DBUwC6ys4vf0D7otmfezvd+e+66rGO/\njxvyZ7P2XW67NSKsSpUqVar4Kflnk5OTk5L+3rJmc/SFXTBbPvTi+P7NnBi4BijSA/YRv276\npQq9og+4/a4uEfXqex/87ost/34Z9vJv2LR6uYMJuSKS/NfCcYubfNQvUptw3RZLBMoS1so4\nSKN7Bs6+88EDf+08ejqxpo/+3/NR74xVps5atjnr4gJ6RdHf2i1qzLAHNYrUHRQ7ZZC8debo\nrdf3Pj4B7ewTkMdjPwnNNXyilexfKyKnV73zXdPP+t0WVkLjlD1LJy6/sI1EyygGRXZjyto2\nbt5lk9F6vb6E9kUZFO4htSOGppqZP3/+FWdU1ZyeHJ+eHK9JPChZQcaRmW98Ypuz9gu5W+tw\n3MqS10etPZJ57XZFhLbqPapzSekbpccmT5pjUOQKSMpAs9u6NLuti4hY8tIPRx+Kjj4YHR0d\nezzRfPHTSbXkHf1729G/t30nEhAW3rpV61atWrVoHhnACj+UTVFRUddso1ry9m9ds3/rmv9q\noNMH5R7+bcyo327pPXJ4u1C7BuhCKNIDdmAxnnrzy99tx0ERnUe+NqxZmJ+IxKUsL9rM27/p\ne7O+2bHkvQ8W7xGRIz9MOPLQtw38+DO0D5YIlC2slXEonXdQ89u7Nb/qfPt+r7Tp1XffgeOp\n53Ir1rilbnh4xYBr3LcO52g15HGtQ3Af7CehrQoNnrs7dMuGlDxVNX3//nNx9/Xv92D3eldt\nTZafcnztz0sW/rKz0FaSqXzXsEiWC9hNzOwFRqsqIn6hTZ4eEtWifnhoBT+tg/I4DE3h4RYv\nXlyqdtaCpNOnDuz++5z5wm1zjQZw56Ld5MQvXHKxQu9fNaJt88gKXgWxWzfFZhSISNN7e9bz\n9RKRvKzUgzv/Sswxi0jjqAnv9mnJLtT2wiZPmmNQBMCl6P0rNm17R9O2d4iIJT8j9lB0dHT0\nwYPRsXFnTBcL9tnJJzauPrFx9VKdV/mIZi0+mjBS05ABzVgtWUeOZImIkln806XdA9VBwA4S\n189MN1tFxCeo9bRJL1fy+u8tsRSv9o+/9eKZwZ9uSVYteV+uip/ap47zAnVrLBEoQ1groyGv\nctVat6+mdRTuo0aNGkV/PHPmjIh4B4RWCSrt3Q/lK1Zr2umh/h2r2D84D8Z+EprSPfv+i9HD\nPko2WVTVsnv113vWLKxQuWqV0NAqVar4SX5KytmzZ88mpWZaL85B6A2hL7z3LPuJ2tFv+zNE\nxBDYetYXb1QsYVwKR2Joqq1hw4ZpHYKnK22R/nL+Vbq86r6rZJzv6ILNtoPAuj1mThkcpFdE\npDCqW1S/kflW1Vyr+1M9atoaqJaspVPHLNqSELts3sHuTZqXeiiLkrHJk+YYFLkCkjJQLL1f\ncOPWnRq37vSYiMWYdeRQdHR0dHT0wcPH4k22TbYKc2L3bhGhSA+4M4r0gB3s+Pm07aDTqBEl\nVegv6jS4/6dbJotI4vpdQpHeHlgioDnWyriCVatWiUhAeKcujUu7IHXf2jXxJouXX917727k\nyNDc1qxZs4r++MADD4hIta6jZgyK0CgiXMB+EhryC23/8UcvvjNxpi0Lq6o1IyUhIyUhNrqY\nxoagiOfefLNj2JVL7XEzovPMItJ4+BAmo7XC0FRz3buzCLXsCa53+5vvvuCn48/AbrYfO287\neGhM/6CLny9e/hEDwsp9mZiT+FucXCzSK/qgPq9NSzn65Pqz8R9PXP7N1Me0idgdscmTthgU\nuQKSMnBNep/ywcEVgoMrBAcHB/ompuUVah0RcFNWrlypdQhlBkV6wA7+yCoQEUXn81Sj4NK0\nNwR1CjVMTTFZTFlbRfo4ODqPwBIBzbFWxhXMmTNHRGo/0KD0RfpTP34zLznX27/JvXe/78jQ\nABfCfhJOEBDeZdLcxquXfL/61422AuTVvP3DOt/b47HH769iKO2TQVFKBVZVRNpFBmkdiOdi\naArce++9pW6rr1yjdnjd+rc2DOc+Ffs6kGsWEUXv3yv0spvh6rcKkcScgoydIl0vnVQU34Fj\nu61/6eesuEVLEu/vW62cs8N1X2zypCEGRQBcl2qKPxYbHR0dfSj68KHY9OIK84rCDUaAm6NI\nD9jBWZNVRPQ+tQJKPakQ5q1PMVkspiRHxuVBWCJQFrFWxhXYdtAqLPhH60DcxBNPPCEiQRGV\ntA4E0J7Ou3LP/iPuj3rm5JGYmJgjSWlZOTk5ZvEqX758UKWqDRo0jGxYx58U4Bj1/Lyic82F\nqtZxeDCGpsBzzz2ndQgQ2+5lXj61vC7PtyFtQmTVaVPOHpMqhiIvBdZ5srLhl1ST5fdFcX1H\nst26PbHJk1YYFAFwKapqPH0kxravffTho1lGy9VtFEWpVDOiadOmTZo0adq0ifODBBwhfvWb\nYxefEBGfwPbzZg3XOhwXQpEesINyesVUqFrNaapIKSebk80WEVF0fg4NzHOwREBzrJXRRExM\nzNUnC879ExNTzCj/SmphRuLhH9LybT/YOTJP1acPm6O4IDUj6eSJ+LPZOTlmi86/fPkKVarX\nr1PdwOePUyg6vzoNW9Zp2FLrQDxLj/DA6IPpe2Kyenb01ToWD8XQFIAr8NEpJouqqleuzPOv\nFiGyT7Ua9+SY2hctCSv6zoE+y9Lyzu37RYQivZOwyZNDMSgqoyYMH3qmoDC878Rxd1fXOhbA\nDk4c2m2ryx+KOZ5tKr4wX7FG/aZNm9pq82FsrwW3Y0zJOH/+vIjoTbFax+JaKNIDdnBbgOG3\nDKO1MGPtOWP3kGuP+03ZO1JMFhHxLtfM8dF5BJYIaI61MpoYPXr01SeTt84cvfX63scnoJ19\nAkKpWVThJhVHSzm669ff1v7x599pV223rjcERLbp1OO+Hrc3ralJbIBDtRjxsG7o3MNzFho7\nvOar8FmjAYamribl2O7tu6OPHDlyJjUjJyfHWKgLCAgIDKnSoGGjJi3bt29MAQDuqZqP/kie\n1WI8lW1Ri277ZyjfWmSpiGxKyG0feVkZoLJBJyLmvGgnhwo4CIOisshqTo1JSMq3qua1SUKR\nHm7hpbFvX31SUZSQ6vWaXtAkLMjH+YEBTlOxTS1ZfkpELMZTh/IKG/tTm76AXwRgB926VPlt\n+SkRWTp9U/cJ3a/Z/tA339gOKra4dmOUBksEgJvRasjjWofghvLTkxMzCurWq130ZNbxbTPm\n/njs5OnMfAmpWqfDnT369+7sy47f9mYxJS+d+cmSTTGqWvwuERZT9qFtaw5tW7Os4yOvvRhV\nw5dnosOt+Fft+W6/neMWbRk5LXLyy/czJe18DE1dR8bRTTO++GZ3XOoV53OzM5MT449G7171\nw8KK4S37D33xzshgTSJ0D5mZmbYDRfEOCmI3CFfRKdBwJM+squYFsZkjGv/7P9zLP6K8Xsmx\nqKfXJcrl//MTi1veB5RdDIpciXomds/fMSczsvNKbFUYv39jvlUVEauxwEmhAU7kE1y73W0t\nmzRt2rRJk2rBbPIBTxHy/+zdd1xT1xcA8POygDDCDNMBIiA4UVRU6m7de4OrLlRcte69cVQt\n7j3q1rrROn4WFWoVpSogoIiyQ5hhhPCSl/f7I0gRIyINCSbn+9flvfvyObWQd98979zrMcvb\nNPxRngQAjt1K2TSwvqYjqi0wSY+QCtQbNIJ9eZOUprMidm+4wJs/2LuS+kjB09Orb6Uq2t+P\nclJTiNoOSwSQbnJwcCj/Y0pKCgCwjfnWVV4Xy8jCronPwNHtrVUfnA7LfHl3z5GzzxKEbG7T\nC6fXlB3Pjjg+ZfXvpLw0bZydGnftt7j7YS93bJlhxsLZIpWhyNRfZv0cmlpU/iCDzeVb8wlJ\nrjA7nyqXuU8Iu/Dz29Rfds6352Ce/qvduXNHhZ9m6t7ey5775X6oahoPXz2nJPDX3w+Oib4/\neKRv/87N9XH5DjXCoWkt8erytmVHQqSfeWGrTHZCxK8LJr4cv3b2gEbqCUz7jBkzRtHgGDZT\nDH42btxY7U9TulgUqobmfR3gQBwAhKxb33rLqtZ2ZfdZxnc8vRs5EkHonoLpO8q+puRkxt1c\nCQCw9XGmQjWSkpK+qj/BYOrpG+jr6esbGnDwRV4VwUFRbSAnBXvWLL/1QvBVV7kOblBD8SCk\nQWReckyMAYNBAIDc3d3BAp+CkW4gOHO2zMuYGZgglr45ue5xhx1trPAlFQBM0iOkEhxe+4Xd\nHNbcSQaAR8c3THjSaeqY/o3dPn6spalswfsHweePX3ukSA+YuY0bZIO3YdXAEgGkm3bv3l3+\nx379+gGAXef5Oya6aCgiBIKww9M3Xfk0H0BT+es2Xi7L0JfJT7g7f3PTA4s6qSk+HXBlxWJF\nhp4giIbePXp36+zhZG9lbqyYiqNlxcL09JePQ65duvG+gAQAseDR4mWXj20crNGov0k7duxQ\n4ae5TWuESXpVuXz5MgCASaMfmr69+eL1yaAVp3awza1tbGxsTA2/8BYX5sZUAoemtUFG6L5F\nR0LKllQxtnP1auLM5/P5VnxjtjRDIBAIBG+jwmNSCwCApqV/HllkbL1/gjdfo1Frj7CwME2H\ngMC++xSzIz/nyuRkYdy66RNcm7WYuOAnFwMWAHTxsb5xJZGSJC0OurJ5dn99gqAp0Zkty4oo\nGgAM6+Caf6oREBBQvQsJBsfS1q6OQ/2mrdq2a+dlY8xWbWC6AwdFtcSZJfNvxeV91SX8loPn\nd7SpoXgQUrOmDR1i41NJmgYAmpYLE2OFibF/3rgIADyb+u7uHh4eHu7uHs72uLAT0mb6fK/A\nXSuC1m0Ojc8InDZz0IQfe3XystD5tS0xSY+QarSavrlfsv/V2DwAyIkNWbc4hGDqWxnJFWcX\n/jQ9KSmtsNzUmx6v6erV/TUTqzbCEoHaBjf+RLqJkiQs2XZNacVe1vNd8cUyAGCweEP8p7a0\n50Q/unr86nMAEP69/aGonU+V1z9AlShI+u1odC4AMNmWE5ev792s4rQOwTKwruPUvY5T1359\nTwYuOv9UCAC5MceOJ34/pp6xBiJGqAYcPny4whGalmYLkrMFyRqJRwfh0FTj5LKstUF/KDL0\nHOOG42YF9G7tqKxwkn73JHjH9qPxhSRNy4O3bRjktRWXt0Fag6nvvGbSdwF7QgCApopiI0IT\nS2YpkvROI6cYXl9SRNGJfx4eGXbewZ6XmZwmlpXOYHT0x303NIyWk5mp7zNT30c8Djm217Dz\n0AkTh3c1wvrvr4eDotqgMPn4mQ8Zeq6tS+vmbqasktjQkNjcEgBo0rOvsz4LAMSizMgnj9MK\npQDg4bty7TBP/JVHWmPtL7vlpCg+5lVU9KtX0dExsQkF0tJ7rkjw/pHg/aN7wQCgb2rr7uGu\nyNm7OtrimBRpmeDgYADw6DI4T3QqKlNwfvf6C3s4phbm5uYWZuY8vUq/9LX4zTlM0iOkGgSD\nO2HDDvM9m47ejlQcoSmJUFR69lX8R6N/M9cui5dOq6fzbwmpEJYI1B648acG+fn5AQDPxVLT\ngeiulBu7M0kKABhMk0HTZ//g1bjsVMSxaEXDxXeV3/dOANDIoxVfPHXL3VSalp+7mOgzvqFG\nYtYyMUdCAIAgiGHrtvZ2M62kJ4Nj5bdsZ87kcf/LEAPA/aMxY1a0Vk+QWqNt27afOyWXZj95\n9qbsR4JgGJtZWdvYGDNLMjIyMjLzZB/eZWFybHz9R1iyGDwX8xqPGCF1waGpxmWEbkuUUADA\n0ndctXuDx2ffhCMcW/cJ3F33p8krkiSUTPJ266OMNT5Yt/fVXF1dFQ2WQelmTNOmTdNcOOhf\ndXv+FMiw2HrwsrDko+U6WNzGy4Y0XXj2BQBQZEHiu4KyU1ae4390MlF3oFpKMViSFr59FlXx\nARkACIKgP367l805S2kvAAAgAElEQVR1atnUSizKyczMzMoWKd79pamie2eCXsak717th1uq\no2/R62MPFA2TBr13bZnMYxIAIPPt7jtqXrGcltbtMb53HUUHmhKd27rw5MPU2AuHIns0bo4v\nsiMtwuDwXJp5uzTzHgRAyyVJr2NfvYqOjo5+9Souq0iq6CPJS48IS48I+x8AMA3MXN3d3T0a\njxnSW6OBI6Qy+/btq3CEpsncLEFu1tdthqJlKg4HEUL/kSA67NLVa38+iZFQSv64LB2b9+43\noF8XTzY+WKla0s2tihIBhRnHz3c31QMAmThqtO8Sxbwnk2NcoURgwPYTOAGhQlXc+BMACILd\nGTf+RFrn7MQRJ4ViAPCcuWdlt3IrRtCyH4cMzZJSBEFsPP27G7f0LUkyP2yI30YA4PJ9zxwc\nromQtc2SkUMii0jjOmNO7hpSlf4F7w/5zrwCABzDJhdOr6vh6HSFTPz2l3nLwpILAYBr6z5o\n6LA+3zXnchhlHWiqJO7xnTNnzka8FwEA16712m0LnQ3w7WGV+eOPP6p9bY8emCRWDRyaalZw\ngO++pAIAaL1g/9L2X066Cx6unbz5CQCY1PM/saNXjceHkHrJpaKXj5+8TkprOtDXrdwN99Gp\nrbsvPBB9+AoiCGaz7r4Lpw3m4m7oqkNJ3q+ZOj8iWwIABJPbqmvfbm0bW1lZ8q34RixpplAo\nFArjnz+8HByaK6UIgtkzYLN/d2cAoOVk+psXt6+fv3g/VvFRLr7btgzHLbq/Dg6KaoOdY4fd\nzpUAwNgDZwZb/7u/VbD/qH1phSb15pzY0bnsIE1Ldk4edydDzHP2/W0rPiMjXSAXJr6OVnj1\nKjVbXOH01atXNRIWQiqn2Ke1erT4DwHnwhBSMRuP9lM92vtT4nexrxJSswoLC4tJuaGRsYkZ\n38Xdw85MX9MBai0sEdA43PgTodD8EgAgCM6cznblj0vy7mZJKQDgmPiUZegBgGPS3oLNyJbK\nyfxHADgBoQJviqUAYN/vsxXeFRjXG80hrpI0LS1+8+XeqEroE0tXKjL0nkPmLx3d4dM1+gim\nnlu7Pivb9Y64uHnl0VBx2pNVS44f+eVHXM1PVXBOuTbAoalm3REWAwBBMKe0rtJQk9/Wn02E\nS2lanHEHAJP0SNsw2LzmHbo3/+S496ifvPqPeP7ybWZOkYVD/QZOThbGWLeqYr8vX6HI0Ndp\nP2qB/6C6H1UGs60d6ls71G/i2brfSL/rhzcduvXm5s65TN7BSa2tCAbHztVrnKuXT/NdPwXd\npmn67fmNoiH7eLgC+NfAQVFt8LJICgAEk9ufzy1/vGFLc0grLMl9AvBvkp4g9Mcu6n5n9hVR\n/MkzaX1G2BmqO1yE1I3Br+fGr+fWuddgsiAj7PbVcxf+SP1QW4+QNsGltpTCJD1CNYJgcp08\nWjl5aDoOHeP+w9j9XQYoSgTq6P27m4C775pFhNISgQEailQL4cafapaUlKTaD6xbt65qP1A3\nZZByAGAZ1K8wd5b78r6iYerevcIlDhxWtpSkpDq9spMKKb5OuA7cL3X8gODY6DGSJBQQuAeN\nauTGBF2MFwGAZfMJK8d0qLQv4Tlo/sy4N0GPMkTxlzf/3WcRvraFtAsOTTUopYQCAKZePSs2\n44udAYDBtnTUZ74ullEk7lKMdAvL0K6Vt92X+6FqESUcPBGbCwA85yFB80dUkl5nGlj3n76F\nSht/NDLnxqZFPsf3lr3a26Dr9BkPngX9k0WRgsuZxWNtqjzQRah2yJHKAYClV7fC3I+5lzlc\nSyILn5E0cMqdMnEcZ8W5nklS907Gj5jXTL3BIqRulDgrOjIq8uXLly9fxiVlynHda6S98M05\npTBJjxDSKlgioCm48aeaBQQEqPYDtXjVIHUyYBASOU3LZRWOv76Wpmg49qtT4RRZ+gCGr6qo\nhqcR54GopCCuADyqtME5LRenl8gBgGP46a0DVUf4wWeKxpDZP1Slv88036BHWwEg8thD8B5c\ng5EhpAk4NNUUExYjS0rR8orrhVaiWE4DABDsmooJIaR7IvY/VDSGLB5ahQJ4ovc8v6NjgihS\nuPv8u6CxDctOePt/FzTlIgBEPc2GPpikR98YPQZBUjRNV3xM5tq5ADyn5ZJnhaR3+YEQwexo\nonchS5zz/DoAJumRFqIkebFRkZEvX0ZGRr5KSKeUJebN7F1aenp6tvRUf3gIIXXCJD1CNY4i\nS5gcPU1HgbBEoGZFXHivaHjOWvT5DH0pjmnTpTNaKjb+fHcuAnxwTVGkJRwNWLkFJFXyPpWk\n7DkfiiZp6cn3+YrmAMeP1jGm5cUJEhkAMNiW6o1Ua/Vux39wMzn5ymX5oFlVqZ3MizkopWkA\n4LfvX9Ox6YgbyYUAQDC5Pc2rtMWPHq+TKWt7nkxenH0XAJP0GrNyun9KicxpxKrF3ew1HYuu\nwKFpjXLUZ2ZJKYoUPC+SNjf8ct5dJo5OIeUAwDZwqfnodMLXLvtEMJh6+gb6evr6hgYc3BAd\naYurCQUAwGDx+lsaVKW/nmk3PmeXkKTSbp+DsUvKjutbdAe4CADilK949whVDw6KVM5Ojxkn\nllOSxAKKNi73ugrHqBXAOQAISS3ydvtoHsmKwwAAqThKzaEiVHPkZMGbV6UV86/epJDKEvNM\nPVP3Zi08W7Zs2dKzPt9I/UEihNQPk/QIqRgty/0rJDQyMio6Jj6vqEgsLpZStKJElSwIvxhS\n0L6TTx1jrM9A2gY3/kQIALrbGkYUkDQt33E7NbBP6Q4C2S/2CkjFhvTe7tyPhl6iN8dL5DQA\n6BlXdQ91VLmGY6dZ3F2Snfu/1Re7rhzUuPLOFJm+bf0DACCYhmP9nNQSoPZLLqEAgMEwrHqC\nxYBB5AHISWHNRYUqJ5dmxqSmF8tp6a10wPlopBW6OZmEv8gCgEOnX+2Y+OUivLjzBxTbNpk0\n6FnjwemGai/7RDA4lrZ2dRzqN23Vtl07Lxt8dlYRsSgzLT1bWuVFdF3cGuHW5/9dkmJcxLaq\n+iXmLIaQpKRFL8sfZLJLn7LJHFKF4aFP4aCoJviYcOLEUpqWHovNC/AwKzvO4roYMYlCik66\nnQZuZuUvSSMptYeJUA1atXBWdOx7iVzJXZggCKt67oqi+WaNnfQJvPsiHaWzla6YpEdIlWIf\n/r53/+kEkfKnJqrk3akDJ84cPtJpxOQZw3zwiRdpE9z4U82WL1+u6RCQEu7jW8CiewAQc2jR\nOYulvVq5FKeEbwwMUZy16z60fOeCxIfLV9xStC1at1JvpFqLxfXYOK/XpA3BEUcXr8wcM2Zo\nXydz5UP8gvdPft2w9XkBCQBeY9a2xoWmVcSISeTKaEqamSChnPSZX+xPlSQKpHIAYLBNaz46\nXUOnxD77J+Z9bkGlVXe0LPnFn4qFvuWSEjWFhlANa+TXEl7cAoCka2tONdk5qk1lmysJn51b\ndemdou3p66aO+NDn0XIyM/V9Zur7iMchx/Yadh46YeLwrkb48FxdtCzn90P7rj+IyCn4um/4\nk5euGOM/+39mymJkSilKkiSiaF4V/j1pquC9RAYAxMdbb1CkQNHgmOFrK9WDgyJNat7XAQ7E\nAUDIuvWtt6xqbVe2ZQPjO57ejRyJIHRPwfQdZd85cjLjbq4EANj6+CI10hLPXr2rcITFtWza\nwtOzpaenp6dD1VahQ0ibYKVrGUzSI6QyESeXrTz74ovd5JTo3snNr+Izdi8ewsJn3q+3c+dO\n1X6gyvf21k248aeatWqFOd3ayNTdv735X2E5EpoqOLFhwUmCoD+UKxEM/UlD6ynaxcKbGzdd\ne/EmVbHxGEEwh46or6mYtQ+/7eRffzZatu1cRPDxf26ebfZdj5Zudfh8a2u+FZPMzxBmCDMy\nXr/4++E/bxX//k7d/Ce3NxYKP1vGzedXaYEQpOBtwrmRIwGAg/fS1veq88X+6SH7FX8mHJP2\nNR6cLpGTgj1rlt96Ifiqq1wHN6iheLQYDk1rJ1PXqd34D+8KxTRNnl0/Nb7X6FEDejhbV9zI\nuVj49taVM8evP5HRNAAYWHWd5oYvDKlG27ZtAUBa+PZZVOanZ4lyYyQFNtepZVMrsSgnMzMz\nK1ukKPimqaJ7Z4JexqTvXu2HhWXVQFNFv84KuJdcWI1r9ar06jX6gk5meueFYpom90Vkzff6\ncj19duQBRZ0lx+SjdbbEgpuKhomriZLLUKVwUKRx9t2nmB35OVcmJwvj1k2f4NqsxcQFP7kY\nsACgi4/1jSuJlCRpcdCVzbP76xMETYnObFlWRNEAYFinh6ZjR0iVCIJp16CxZ0tPz5Ytm7nW\nxbwA0llY6VoeJukRUo3k20FlGXqCadyhaycX54bsyFN7H/77GMDiNmpibxiZWgQAgsfHF59u\nvGkUFmp8tdu3b6v2A3EmVCVw40+EAIAg9GdsmPF2xlbF+vblZ59dhyxrwi390yjJC494nVJ2\nqv4PizrxdHFBp5owZcoURYPFIkAGtLzkeciV5yGVXZJwd+/Eu5V1ULzJi6ro+x/sb5x+CwAx\nh1c99drZyqqymgBJVsSqA68UbfteXdQRn844s2T+rbi8r7qE33Lw/I6VVRsjpXBoWlsxJq2f\nFTVtk4CkaJp6Gnz02Y3jpla21ny+tbW1ARQLhRkZGRnpmXnyDzdrJoc/c90kzEuqyuLFiynJ\n+zVT5yt+JJjcVl37dmvb2MrKkm/FN2JJM4VCoVAY//zh5eDQXCklK0409wpY3N0ZAGg5mf7m\nxe3r5y/ejwWArBfnl55rt2U4Jsy+Wsrt9eUz9Gwuj29uXMV5Tja+FaEKXYY7nt8RDQB/b9kQ\nezDQrdKlm2Tit1sCwxRt+17ltoSjyUvbHiiaXk3NPr0QVQ4HRRrH1HdeM+m7gD0hAEBTRbER\noYklsxRJeqeRUwyvLymi6MQ/D48MO+9gz8tMThPL5IoLO/p/ecMahL4JrTv1bunp2cKzmY0J\nruGHdB1WulaASXqEVICSJC7fd0/R5rl0nPfztKY2BgAQL7xUvhub22Td7t8enVm34fQzAIg7\nvzJu4AlXA/wzRNoAN/5ESIFr67N9h8n+XYdCIhMV8/4MllH7/hPn+jX5tDNBsFr2nLRkSmu1\nh6m10tPTNR2CrqvbfyLv3BIRJadI4fqAeePn/ty3dT2lPZOeXv9ly+EMkgIABstscm8H9Uaq\nzQqTj5/5MBnNtXVp3dzNlFUSGxoSm1sCAE169nXWZwGAWJQZ+eRxWqEUADx8V64d5qn1r6gj\nnWLA9/5l06w1q3YpfvNpWp4rTM0VpsZGKenM4blMXb68vU3FUnv0X/y+fEVEtgQA6rQftcB/\nUF1e+VlptrVDfWuH+k08W/cb6Xf98KZDt97c3DmXyTs4qbUVweDYuXqNc/Xyab7rp6DbNE2/\nPb9RNGRfVVYLR+X973y8ouHWedjk0QOcLY00G48Osu00x/mgf3yxTFYcv9R/8fg5Ab1b1Vfa\nM/XFnZ1b978SSwGAyeFP7186fCpIf3392LYLCfkAwDFqMdDSQF2xawkcFNUSdXv+FMiw2Hrw\nsrDko83mWdzGy4Y0XXj2BQBQZEHiu4KyU1ae4390wqUjkDZIDl4eG5EQG/Hwgon3od3TNR0O\nQpqEla6fwuwgQiqQdmdXtlQOAHq8VtsC51iyPl+AQbC8R66YlTL514cCmhLvu5a8dZij+gLV\nCn5+fpoOASmBG38iVIZr22z22qCpuYKkjGymkZWDvRXn41IkFtfJ28fErr5La+/vGjngbKkq\ncTj4WrqGsbgeK0d7zjn6FABkxYkH1s646NS8g2cjW1tbGxsbLogFAkF6enpsROg/CdllV7Ua\ns8INX1tUndfHSuvtTBr03rVlsiKtJfPt7jtqXrGcltbtMb536U4ENCU6t3XhyYepsRcORfZo\n3JyHf0FfDYemtZmxU6fAgx7BZ84G3/xTkXr5FJtr07Fn7+Ej+1hzmGoOT7uJEg6eiM0FAJ7z\nkKD5IypJdzENrPtP30KljT8amXNj0yKf43vduKV3hAZdp8948CzonyyKFFzOLB6Lb1F8pdB8\nEgDMPHw3zhmOCUeNYLD5SxcPmbz8LEnTZMHrfatnnrJz82rSgM/n8/l8LkiEmcJMYWZC9NPo\n5NJEMkEQ3aevdtZnAoBYcNDP/1rZ6lzfzZyO/x+/Fg6Kag/3H8bu7zLg5eMnr5PS6uj9e891\n912ziNi6+8ID0YcCeoJgNuvuu3DaAA1FipCKSYS5+fn5AMAkYzUdC0KahJWuSmntfxhC6vTo\nSpKi4TM/oLIM/Qc+k0f/+nAzAKTdCQdM0n+lYcOGaToEpARu/IlQBXpmNg3NlL+tYuTgt2ie\nmsPRFRcuXNB0CAgaDFo+L3fJ5iuRih+zE55fSXheSf/mgxYuHeCkltB0xV9v8hWNgQtHlxWe\nsrguY2wM96UVpv0RDx/mowkmb9jP24Svx93JSP5l1aXftg7XTMTfMhya1nIMtlXf0QF9fCe8\nj4uJiYlLzxIVFhZKgWVkZMSztHV1beTWyJHLwLSX6kXsf6hoDFk8tAoFqUTveX5HxwRRpHD3\n+XdBYxuWnfD2/y5oykUAiHqaDX0wSf918mVyAOg4ow/+imuQebNROxbKF2y+kCeTA0BBWuy9\ntM8maQiGXvdJa6d1tlP8KJeLyzL0Lr1mz2zLV0PAWgYHRbUKg81r3qF780+Oe4/6yav/iOcv\n32bmFFk41G/g5GRR6d4QCH1bLLzqwqVEAKAkidFimQcXU3JIR2Glq1L4jYCQCtwXlQAAwdAb\n716l7cE4PB8+Z6uQpEhRKADO6yHtgBt/IoQQKuUzYV2dRr9v23/mXU5JJd24fBffKbP7euFC\n9yr2skgKAAST25//UUKrYUtzSCssyX0C0LnsIEHoj13U/c7sK6L4k2fS+oywM1R3uAjVPIJh\n4NjI07GRp6YD0SFXEwoAgMHi9a/a6tx6pt34nF1Ckkq7fQ7GLik7rm/RHeAiAIhTxDUUqhar\nq8d8XSyrh8kATbP19tu/3/Pw3sN3wt9QHx6HP2Xn3n7slGnejsYVjnNtXPoOH+/b1aOGw9RO\nOCj6VrAM7Vp522k6CoRqhLnHLG/T8Ed5EgA4ditl08D6mo4IIc3ASlelcKSOkApkkHIAYOrV\nNa7yplU2bKaQpCgSt85F2gM3/kQIIVSmfrvBv3r3jf7rf2HPXsbExKVn54slJEEw9AwMzW3q\nuLq6NPPy6diyIe73WRNypHIAYOnVZX38z2vuZQ7XksjCZyQNnHKnTBzHWXGuZ5LUvZPxI+Y1\nU2+wCNWIa9euAYCxk08nj6ou2vT81o1kkmIZNOjZzb0mQ9MVSSUUADDYVlW/xJzFEJKUtOhl\n+YNMdmnpMJlDqjA8HdGRz32dmP8yo7irqZ6mY9F1+pbu05ZuGS+Mf/DoWUxMzPvUzMKiwmIp\nGBub8Cxs3dzdm7Xu4NnAssJVBhYDt+8e6ehghcOlasNBEUJI8wjOnC3zMmYGJoilb06ue9xh\nRxsrfU3HhJAGYKWrUpikR0gFDJkEKaPl0iwaoIrPTgIpBQAEo0pVBQh9K3DjT4RQ7VciLmQZ\nGGFuWB0Ijkf7nh7teyp+oilSzuDgv7wa6DEIkqJpWlbhONfOBeA5LZc8KyS9yy8iSjA7muhd\nyBLnPL8OgPPRSBscOHAAAOr1c616kj7x998OCYrY3MY9u62vydB0hSmLkSmlKEmSiKJ5Vfjq\np6mC9xIZABAEu/xxihQoGhwztpLLUKW8J3geWB7ydOdlesc4vP3WBgZ85x/6O//Qv6r9mXp1\nnHC9of8GB0UIodpAn+8VuGtF0LrNofEZgdNmDprwY69OXhb6OC+KdAtWuiqFSXqEVKCNMeeP\nXIlclnsrR9LD/MuvwpEFj4QkBQBsw6Y1H50uEr55+tfTqLi4uJTM3MLCQomMYWxsbGJu7drI\nvbGnt7eHvaYD1Ga48SfSZWPHjq3ehc7jApd1tlVtMLqJLC4oZhryOMpWzaKpf26fuXjvWVJy\nioxt2rild6deA72dq5q8Qf8dwcSXs9TETo8ZJ5ZTksQCii7/9MsxagVwDgBCUou83T7a6dOK\nwwAAqVjZ6jfoPysUiWSfX9+4Ap6pKY6TNIKU0wAgK3mn6UC0RCczvfNCMU2T+yKy5nt9uZ4+\nO/KARE4DAMekbfnjYsFNRcPE1aQm4tRuls3nDHP559zri4sP1105vrMegd8uSOfgoKi2EYsy\n09KzpVUeF7m4NcJ3fJEWCA4OBgCPLoPzRKeiMgXnd6+/sIdjamFubm5hZs7Tq/S3fMGCBeoK\nE6GahZWuSmGSHiEV6N7J+o9LiQBwLiikx8oeX+wf/dtvioZFiy93Rl8l93XIjr2/PY3PrHC8\nqCBPkJb8OurptfPHLZw8R/vP6uJWpWVVUPXgxp9IN+Xm5lbvwoISSrWR6Jq0l/cu33rw9NnL\nLLGs6ZKDa9vwK3QgRdGBywKfvhd9OCB4dPfS3/+72qrP1CWTvv/yRlgIfVN8TDhxYilNS4/F\n5gV4/DvgYXFdjJhEIUUn3U6DjwdCaSR+C6leasSt41f/jI9/m5lfUvWrTl66UvXCAlQmJibm\n04MlOe9iYqrwu03LctNenc8qVvyg4sh0VZfhjud3RAPA31s2xB4MdDPmVNJZJn67JTBM0bbv\n1evfEzR5adsDRdOrKT6+VQMxcn2gcO78kMvbx4WHjPHr7+7k6GBjjt8xSHfgoKiWoGU5vx/a\nd/1BRE7BVwyKAMdFSFvs27evwhGaJnOzBLlZAo3Eg5BGYKWrUpikR0gF6g0awb68SUrTWRG7\nN1zgzR/sXckAUvD09OpbqYr296Oc1BSibnh1eduyIyFffCE3OyHi1wUTX45fO3tAI/UEhhBC\nSrG45uZGLAAwN8AhWTXRVMGpTcvPPnpbSR+5NGvtjJXP8yrOB9E0FX5t59wSxraAbjUZo25J\nSkr6qv4Eg6mnb6Cvp69vaMDBdVZUpHlfBzgQBwAh69a33rKqtR33wxnGdzy9GzkSQeieguk7\nymY85WTG3VwJALD1cWiqMvHXts49eJ+ucqFYGTa+N1QtSmuMBKG7FoR+3efoGbf9cidUBbad\n5jgf9I8vlsmK45f6Lx4/J6B3q/pKe6a+uLNz6/5XYikAMDn86f3rKY4XpL++fmzbhYR8AOAY\ntRhoqc0FNDWHybHvO7BdyPZbRanP92x8DgAEg1mV++2lS5dqPDjdgwurqB8OimoDmir6dVbA\nveTCalyrh+MihBDSFljpqhTOCCOkAhxe+4XdHNbcSQaAR8c3THjSaeqY/o3dPh7Q01S24P2D\n4PPHrz2iaBoAzNzGDbLhKv1AVA0ZofsWHQkpmwk1tnP1auLM5/P5VnxjtjRDIBAIBG+jwmNS\nCwCApqV/HllkbL1/gnfFakukKnKyIOFNvDAnv6CwENgGJsbGVvaODRwscaIBabGdO3dWep7O\nz8pIT09Lfh916054sZym5QZD567/oRFWhlUXLT24JODaqy8sYPB833JFhl7PrFH3ri3rmDES\nXsdFhUekiqUA8PZ20NFOLcc1xv8LqhEQEFC9CwkGx9LWro5D/aat2rZr52VjjHsPV5999ylm\nR37OlcnJwrh10ye4NmsxccFPLgYsAOjiY33jSiIlSVocdGXz7P76BEFTojNblhVRNAAY1tHm\nR191IkVhiw99lKFnMqu62wMH16PWqJZTRmo6BC3BYPOXLh4yeflZkqbJgtf7Vs88Zefm1aQB\nn8/n8/lckAgzhZnCzITop9HJeYpLCILoPn21sz4TAMSCg37+18r+iL6bOR3/MKon/OjSNRdf\nlj9CyyksE1YzXFhFg3BQVBuk3F5fPkPP5vL45sZV/OVm47gIaYVp06ZpOgSENA8rXZUiqvFq\nP0LoU7RcfGih/9XYvLIjBFPfykguFJEA4O5cJykprbDckll6vKZbDqyqp497s6qGXJY1a9Sk\nRAkFABzjhuNmBfRu7ajsS55+9yR4x/aj8YUkALD0Gxw6tdWMhSN+laJlkaF/BN/44+mrZPKT\nWwzH2LJl+269evduVo+nkegQqiUkWa/PHdlx4WEiwTAYu2n/IBf8i6iO+ItLfzpaOu+sb+k2\noP/3Ldyd+HXrWej9e3ulSpL9RgQUUbS+Wbtf9s2r8+HOS0nS9y6cdyshHwD0eO3O/7ZQ/fFr\npX79+v33DyGYhp2HTpg4vKsRzk1XV9LNrQF7Qsp+nHH8fHdTPQCQiaNG+y5RzD4zOcYO9rzM\n5DSxTK7oNmD7iR+dcNdnFXixefKyhwIAMOA3/nGKb4uGTnxTLAKuWRWmPlNSUgCAbcy35lW2\nynp5RhZ2TXwGjv7eQ/XB6bD0RycWbL6Q9+FLphIEQ6/7pLUBvV0VPxamBY3yv6tou/SavcW/\nSw1Gqb1Eb4+P+en36s37Xb16VeXx6KZqL6xy7soVfUxPqgIOijTu6I/DL2YVA4Bb52GTRw9w\ntjTSdEQIIYQ0I3zHdEWlKwCYu5VWuqafmv3ThXegGH8qq3Q9tmmQJoOuYZikR0hlaEp0ac+m\no7cjv9jTzLXL4qXTXKs8YYS+KD1kyZStkQDA0ndcc2CzR6X/tmTey58mr0iSUADQbN7+NT42\naopSB0iyo3Zv3BwS+4WqVoJgevWdOGt8L6wMQLpNfnH5xKPPs1j6Dbb/tqWuHr629XVoKm/S\n8PGK7amsPIduX+an9Csl49HKSRsiAKDVysPLPS3Ln6Ikb8aPmqfIHIw9cGawNS5vowLr168H\nAGnh22dRmZ+eJYiKTx9srlPLplZiUU5mZmZWtqj8njWWzYbuXu2H09PV9urWsa0HLwtLKCg3\nHw0Ar04uW3j2xaf9rTzHH1o5UK0haq+NfkPD8ks4Jq32HV1qwcJ1WjVA8cJQvX5bdkx00XQs\nuk6S9erw3sN3wt9Qn599snNvP3bKNG9H47IjiiQ918al7/Dxvl3xzYlquvnT6D3xIgAw4LsP\nH9WvUV17K9HDDh4AACAASURBVDOjKt5WLSwsajQ2HUGKwvzGbpLIq7Owyu+XLuH9Q1VwUKRZ\nE4cMFJKUmYfv0Q3DcWSPEEK6DCtdP4VJeoRUTBAddunqtT+fxEgoJX9clo7Ne/cb0K+LJxuH\npSoVHOC7L6kAAFov2L+0/ZeT7oKHaydvfgIAJvX8T+zoVePx6QZSFLXYf8XrImn5gwTBNre2\nMZAXCjLzKmy/Z+bRb+faCZinR7pMKo4cOnKpnKadhm/b7ttA0+F8YzKfrp+w+m8AYHPd9p0I\ntPxMGuzu7NFBCSIAmHL0XG9z/Qpnn62buOqxEADqDfxlx/iGNRyyrqAk79dMnR+RLQEAgslt\n1bVvt7aNraws+VZ8I5Y0UygUCoXxzx9eDg7NlVIEwewZsNm/uzMA0HIy/c2L29fPX7wfq/go\nF99tW4bjn0b1yaWil4+fvE5KazrQ183g353OHp3auvvCA9GHWjGCYDbr7rtw2mBuVbYpRlUw\netAAkUzeYtGBVd7Wmo5FR2GSvrYpFsY/ePQsJibmfWpmYVFhsRSMjU14FrZu7u7NWnfwbGBZ\noT9VkpyYqe/oYIXfSv/F1KEDU0soPdNWB48s4+Fjlybgwiq1Bw6KNGjYgP4SOT1g7+kf7Qw1\nHQtCCCENw0rXCnBPeoRUzMaj/VSP9v6U+F3sq4TUrMLCwmJSbmhkbGLGd3H3sDOrmB5AKnFH\nWAwABMGc0rpKe8zz2/qziXApTYsz7gBgkl4l6KML15Vl6Dm8Bv0G9+vYuomtjQWHQQAATUky\n09Ne/h1y5WJwYqEUAHKjr87/tdGen9prMmqENIrNbdKJp3cvT5J2+zb4TtV0ON+YxMvxikaD\nUQGfy9ADLTubUrr9odJ6bOeRbvBYCADZj2MBk/Qq8vvyFYoMfZ32oxb4D6r70QMV29qhvrVD\n/SaerfuN9Lt+eNOhW29u7pzL5B2c1NqKYHDsXL3GuXr5NN/1U9Btmqbfnt8oGrIP8wrVxmDz\nmnfo3vyT496jfvLqP+L5y7eZOUUWDvUbODlZGGv5c6+alchpAGjrhluZaIyfnx8A8Fwqpn6R\nphjwnX/o7/xD/6r2Z+rVcXKoyYB0QwYpB4A2i2bgnVRT/niRCwAck1a79+LCKhqGgyINqqvH\nfF0sq8fFNARCCCEgmLxBAevadcZK11J4d0SoRhBMrpNHKydclk9dUkooAGDq1bNiV+m5l8G2\ndNRnvi6WUWRyDYemK3Jjd19PLVK0+a2GBy4aafnx/wuCqc93cOo2xKlzv96/rVt08Z8sAEi7\nv/mPMS17WOLLK0h3Oeuz7gGQhY8BMEn/de4nFigavTt+dgEVSc71jA/LZEkoJR0MLL0BHgAA\nmf8EoK/qo9Q9ooSDJ2JzAYDnPCRo/ohKkgJMA+v+07dQaeOPRubc2LTI5/hetw8zdw26Tp/x\n4FnQP1kUKbicWTzWBnciUD2WoV0rbztNR6G1nA1YUUVSGS5apznDhg3TdAgIaZ45myEkqRa2\neBvVmCixFAA8pk/BDH1thoOimtaRz32dmP8yo7jrh40GENJxwjdP/3oaFRcXl5KZW1hYKJEx\njI2NTcytXRu5N/b09vaw13SACNU4rHQtg0l6hP6r5ODli04nAICeifeh3dM1HY6OMmExsqQU\nLRdX/ZJixbZwBLumYtIxUcfCFQ0uv/POZaMq2UKYybEeu2Jn1sTxD7KKaVp+5UR8j9mN1RUm\nQrVOQokMAGiqUNOBfHvelcgAgCA47U0+W+wi+POBosFgmfYyVzIlxOSUlulRZEYNxKiLIvY/\nVDSGLB5ahbI9ovc8v6NjgihSuPv8u6Cx/y5m4O3/XdCUiwAQ9TQb+mB2AX1jejuZREVmP4sR\n9W2vQ5ML3yiKBqwxRtqqi6neGaE4RemLikgtcGEVzcL5ulrCe4LngeUhT3depneMw1su0nG5\nr0N27P3taXxmheNFBXmCtOTXUU+vnT9u4eQ52n9WFzczjUSIkDphpStgkh6h/04izM3PzwcA\nJhmr6Vh0l6M+M0tKUaTgeZG0ueGX8+4ycXQKKQcAtgHuUqkadxJLU4ydF/9YSYZegWBwJy3p\n8mBOMABkPr0KgEl6pKPI/Cd/5pUAAINjq+lYvj1CUg4ADLYl6/NfOY9vpysahrbD9ZXtK0kw\nSjP3cmmO6kPUSVcTCgCAweL1t6zSlqt6pt34nF1Ckkq7fQ7GLik7rm/RHeAiAIhTvuINPIRq\niRYBgxj+B18dOC5p9/MXx0WophVnC9JySxo41yt/UPQ2bMfB39+8T8orBnNbx3Zdeo8e3FHp\nnQJ90c6dO1X7gQEBAar9QJ3V2c/9zNanf52MHDu3jaZj0VG4sIpm4XxdLWHZfM4wl3/Ovb64\n+HDdleM76+HQCOmqV5e3LTsSIqW/cFfIToj4dcHEl+PXzh7QSD2BIYQ0CJP0CP1XFl514VIi\nAFCSxGixzAP3WNKEbk4m4S+yAODQ6Vc7Jjb7Yv+48wdomgYAkwY9azw43ZBQrChpZY6ub1KV\n/iZOY9nEDSlNS4siazg0hGqpkty4XUu3UzQNAAbm3TQdzrfHkElI5DRNl3yuA02JLgpL87v2\n/ZTfGiipUNFgsM1VHqFuSiqhAIDBtqr6JeYshpCkpEUvyx9ksvmKBplDqjA87YO5sdqJa9t3\n7agni08+nLfNbfOcPpin15TMl3f3HDn7LEHI5ja9cHpN2fHsiONTVv9OyktnSLNT4679Fnc/\n7OWOLTPMKnnzC33G7du3VfuB+EWkKrYdF/W9PP76g43nu+4f2txS0+HoIlxYRbNwvq7WIEau\nDxTOnR9yefu48JAxfv3dnRwdbMxxJRukUzJC9y06EkJ/yNAb27l6NXHm8/l8K74xW5ohEAgE\ngrdR4TGpBQBA09I/jywytt4/wZuv0agRUrcScSHLwEinbhA4OkHovzL3mOVtGv4oTwIAx26l\nbBpYX9MR6aJGfi3hxS0ASLq25lSTnaPafHZ/YgAQPju36tI7RdvT100d8ekACmgAYHBsuFWr\nQCIIfVs9RpKEAlpew6EhpD6nT5+uUj95SXpS4sun/+RIS3//3ce0rcGwtJQdh5UtJWlZTipJ\n2XOYn3YoTDlT/CEB830b5TljadELRYPJqezGgarOlMXIlFKUJElE0bwqPFfRVMF7ieI1r48W\nwqFIgaLBMcONaSqDubFaq/Hw1XNKAn/9/eCY6PuDR/r279xcX6dmGmoBQdjh6ZuufFqrRFP5\n6zZeLsvQl8lPuDt/c9MDizqpKT6E1IBg/7hhVfbPy06smBLXy2/i6L42mKRUL1xYRbNwvq72\nYHLs+w5sF7L9VlHq8z0bnwMAwWBWZfbo0qVLNR4cQjVPLstaG/SHIkPPMW44blZA79aOyv4C\n6HdPgndsPxpfSNK0PHjbhkFeW/EVUqQ1yOKCYqYhj8NQco6m/rl95uK9Z0nJKTK2aeOW3p16\nDfR2NlV7jBqAo3OE/jOCM2fLvIyZgQli6ZuT6x532NHGCl+RVjdT16nd+A/vCsU0TZ5dPzW+\n1+hRA3o4W1fcwrZY+PbWlTPHrz+RKUpXrbpOc9OJ73o1aGrIfpRPyqXZUhrYVRg90nJxWokc\nANhc3HEAaY+qJuk/xrXuNLctvhz91dqb60UWkTRNn3+bP7uRkt3aYo6FKxpM/XpdTZVsSA8A\nwof/KBp6Zu1qKE5d08lM77xQTNPkvois+V5frqfPjjwgkdMAwDH56FUVseCmomHiWqUFWhCq\nVS5fvgwAYNLoh6Zvb754fTJoxakdbHNrGxsbG1NDTuXXLliwQB0hajtKkrBk2zWlq4lmPd8V\nXywDAAaLN8R/akt7TvSjq8evPgcA4d/bH4ra+fC+8P8IVeDn56fpEJByiu8il87dok9dfRJ8\nJPzGMZ6VfR17q6o8r61cubKmw9MFuLCKhuF8Xa0RfnTpmosfrZtFyylKU9EgpHYZodsSJRQA\nsPQdV+3e4PHZ0Sbh2LpP4O66P01ekSShZJK3Wx9lrPHBigL0bUt7ee/yrQdPn73MEsuaLjm4\ntk3FKVBSFB24LPDpe9GHA4JHdy/9/b+rrfpMXTLpe2Upfa2CSXqEVECf7xW4a0XQus2h8RmB\n02YOmvBjr05eFvpKqvpQjWFMWj8ratomAUnRNPU0+OizG8dNrWyt+Xxra2sDKBYKMzIyMtIz\n8+QfpuqYHP7MdZO0/ltebXq3sHh0P52WS04mFYyrZ/zF/nmv9itelTBp2Kfmo0Oo9jJz7rB8\n7UwD3AT363l0t4XDBQDwJOgSvefHCv+CtCz34MtsRdvEcfhn/n3lJy4mKVp8H3xhSDW6DHc8\nvyMaAP7esiH2YKCbcWW5Lpn47ZbAMEXbvlevf0/Q5KVtDxRNr6ZK3sBAZTA3VjsdPny4whGa\nlmYLkrMFyRqJRwel3NidSVIAwGCaDJo++wevxmWnIo5FKxouvqv8vncCgEYerfjiqVvuptK0\n/NzFRJ/xDTUS87dr2LBhmg4BKVfhu4im5XnC5DwhfhGpFS6solk4X1cbiN4eX3sJNzpEOi3i\nwntFw3PWos9n6EtxTJsundFy8uYnAPDuXAT49Kq8P0K1Fk0VnNq0/Oyjt5X0kUuz1s5Y+Tyv\n4l6WNE2FX9s5t4SxLUDLdwjFJD1CKhAcHAwAHl0G54lORWUKzu9ef2EPx9TC3Nzcwsycp1fp\nAxjWyqiKAd/7l02z1qzaFZtbAgA0Lc8VpuYKU2OjlHTm8FymLl/e3qZiqT2qNrfJk3iha0WU\n/Obq/QP3/1T5EscUmb51QygAEARzyLQm6ooRoRrXs2fPKvdlWjnUc2rQsFkjJ5ymqx6778ey\njyyV0nRh6uVVZ1usHN6i/NnnR5YLyNLaDLcRync2Sby54UlB6X7n/Xva12i0usO20xzng/7x\nxTJZcfxS/8Xj5wT0blVfac/UF3d2bt3/SiwFACaHP71/PcXxgvTX149tu5CQDwAcoxYDLQ3U\nFfs3CXNjCCn1940URaP59I1jupX7hqdlZ1OLAIAgiB971i073HacH9zdCACZYRGASXqEkIrg\nwioah/N1tcFfu+4oVvk24LsPH9WvUV17KzMjfAhGOuWOsBgACII5pXWVllHkt/VnE+FSmhZn\n3AHAJD36NtHSg0sCrr3KrbzX833LFRl6PbNG3bu2rGPGSHgdFxUekSqWAsDb20FHO7Uc11ib\nizcwSY+QCuzbt6/CEZomc7MEuVkCjcSjs4ydOgUe9Ag+czb45p9phVKlfdhcm449ew8f2cda\n2QbGqNo4xq02TO80fcefxZn3A+YzFy7w9+ArX0cuPfrhoaBdLwpIAHAdvKrXJ7sSIPTtmjp1\nqqZD0CFsbpPpbay2/y0EgIiTK+a+H9i3o6ebqyOdL3h669TB4NISeQbL7EcP808vTww7sWD/\nE0XbyH5QJ57y9fDR12Kw+UsXD5m8/CxJ02TB632rZ56yc/Nq0oDP5/P5fC5IhJnCTGFmQvTT\n6OQ8xSUEQXSfvtpZnwkAYsFBP/9r9Idlb76bOR3n79C3aNq0aZoOQdeF5pcAAEFw5nS2K39c\nknc3S0oBAMfEx63c5twck/YWbEa2VE7mPwIYruZoEaohs2fP1nQIug4XVtE4nK+rDa4mFwKA\nnmmr/fuWVV7RgZC2SimhAICpV8+KXaVFXRlsS0d95utiGUXi/QJ9q+IvrSrL0Otbug3o/30L\ndyd+XYvyfaiS5M3/SwUAfbN2v+ybV+fDUjeUJH3vwnm3EvIBIHjjvnG/LVRv7GqFSXqEkFZh\nsK36jg7o4zvhfVxMTExcepaosLBQCiwjIyOepa2rayO3Ro5cXFb6vykoKFB6nNdmwupi9uqD\nt0Vv7i2e8ndT705tmrnYWFtbW1sbEMUZAoEgPf2fhzceRKUp+nsOnLVsdFM1Bo4Q0jYdf151\nc+zMuCIpALwJu7Q17NKnfZz6LbTmlD4G0zJJTk5OSvyrsP9d+yP8neIgwdCftArzMapk3mzU\njoXyBZsv5MnkAFCQFnsvLfZznQmGXvdJa6d9yKLJ5eKyDL1Lr9kz21apzgCVlxy8fNHpBADQ\nM/E+tHu6psPRUT169NB0CLoug5QDAMugfoVkQO7L+4qGqXv3Cpc4cFjZUpKSYtpGHSiyhMnB\n1+NqXJcuXTQdAkIIld6U2yyagRl6pLNMWIwsKUXLxVW/pFhOAwAQ7JqKCaGaRFN5gadKdxmz\n8hy6fZmfsbJbQFbEoSKKBoDGsybWKbcZDVPf1j9wxeNR8/Jk8hLRX79niAdrb5kfJukRUgGs\nlaltCIaBYyNPx0aemg5EO/n6+n6xD02JX4TeeBF643MdGExe0as/Fs7/o/7gedMxB4N0HilK\n4fAcNB3Ft4fJsV+7a/nKWWujRRU3r1LgOf+wdsy/a90n31wacOB1+Q4Eweg2ZUNnPi6ormK2\n3n7793se3nv4Tvgb6kPS/VN27u3HTpnm7Whc4TjXxqXv8PG+XT1qOEztJBHm5ufnAwCT/Oy7\nEQhpPQMGIZHTtFxW4fjra6Vvizr2q1PhFFn6ZYX5A9WjZbl/hYRGRkZFx8TnFRWJxcVSir56\n9SoAkAXhF0MK2nfyqWOMc9BIC+Fkkcbh/4LawJzNEJJUC1utza8g9EWO+swsKUWRgudF0uaG\nXx7zyMTRKaQcANgGLjUfHUKql/XPbiFJAQCb67Zxqa/SDD0ARJ4t3a6+ZX2jCqeY+g1ntbRc\n9VgIACE3Ugdr75ZkmKRHSAWwVgahryWnRHFxIgAg8khNx4KQxlCS7GehD+/fv//oZcLFK1c0\nHc43Sc+82bpDe26eOnLp1t/Con83OmGwzboPHT16aNdKVk9hGdgOmrrYr1M9tUSqc/Qt3act\n3TJeGP/g0bOYmJj3qZmFRYXFUjA2NuFZ2Lq5uzdr3cGzgWWFqwwsBm7fPdLRwQqzZNVm4VUX\nLiUCACVJjBbLPLj4xId0kaMBK7eApErep5KUfdkuV7T05Pt8RXOAo0n5/rS8OEEiAwAGu+L3\nEvqPYh/+vnf/6QSR8jE/VfLu1IETZw4f6TRi8oxhPlhjqUK4sEptgJNFGof/C2qDLqZ6Z4Ti\nFAml6UAQ0phuTibhL7IA4NDpVzsmNvti/7jzBxQrzJk06FnjwSFUAxIvxysaDUYFWLI+s8sD\nLTubUqhoEsqeApxHusFjIQBkP44FTNIjhBBCCCGVoClx9JPQ+/fvhz6OUizrhP4LBsey97h5\nvceS72JjBVk5RRTb1s7evm4d03IrZZVHEATfsXHrNu36Dexh/Zk+SFUM+M4/9Hf+oX9V+zP1\n6jjhohL/jbnHLG/T8Ed5EgA4ditl08D6mo5I++Xl5SkaBMHm8Qw1GwxS6G5rGFFA0rR8x+3U\nwD51FQezX+wVkIoN6b3dP35/RfTmeImcBgA947bqj1aLRZxctvLsiy92k1Oieyc3v4rP2L14\nCAvz9CqCC6sghGqJzn7uZ7Y+/etk5Ni5bTQdC0Ka0civJby4BQBJ19acarJzVBubSjoLn51b\ndal0ez5PX7dKeiJUa91PLN0tt3fHz/62S3KuZ5Cl728pfY/LwNIb4AEAkPlPAPqqPsraAZP0\nCKFv2LuIkIfhz1+9fp+XX1BMMXimpnUberRq06mTZ31Nh6bNFEtTIoS+Gi1LePn3/fv3H4Y+\nzcIyApUjOI6NmjpW2sXmuzl7vPRMTU0N9XEMjLQXwZmzZV7GzMAEsfTNyXWPO+xoY6Wv6Zi0\n3JgxYxQNjmGzC6fXAMDGjRur/WkLFixQTVi6zX18C1h0DwBiDi06Z7G0VyuX4pTwjYEhirN2\n3YeW71yQ+HD5iluKtkXrVuqNVJsl3w4qy9ATTOMOXTu5ODdkR57a+1BQ1ofFbdTE3jAytQgA\nBI+PLz7deNMonIxWDVxYBSFUS9h2XNT38vjrDzae77p/aHNcsQbpIlPXqd34D+8KxTRNnl0/\nNb7X6FEDejh/ssd2sfDtrStnjl9/IqNpADCw6jrNzVQT8SL0X70rkQEAQXDam3A+10fw5wNF\ng8Ey7WWu92kHJqe0hoMiM2ogxtoCx+gIoW+SJCty6/pf/o7PKX8wNyvjfXzcg5sXj7t0mLtk\nloeZki93hBBSP8GbiPv3Hzx4GJacq2TrdIJgOLhhSkAdODx7e56mg0Co5unzvQJ3rQhatzk0\nPiNw2sxBE37s1cnLAteNUKOwsDBNh6DrTN3925v/FZYjoamCExsWnCQIunTLeSAY+pOGlm50\nUiy8uXHTtRdvUimaBgCCYA4dUV9TMWsZSpK4fN89RZvn0nHez9Oa2hgAQLzwUvlubG6Tdbt/\ne3Rm3YbTzwAg7vzKuIEnXA1wqkoFcGEVpGtOnjypaAwYMcoQN8+oVQj2jxtWZf+87MSKKXG9\n/CaO7muDrw0hncOYtH5W1LRNApKiaepp8NFnN46bWtla8/nW1tYGUCwUZmRkZKRn5sk/DFmZ\nHP7MdZM+s0o4QrWdkJQDAINtWckqWY9vpysahrbD9ZVtVUkwSpM7cmnOp2e1Bt4REaoBNPkw\n9HFVOlq0bOvOZdd0ONqnJC9i1tQ16SWfrUPNeh26dMq7Zfu2e2KeHiGkOfmpcQ8ehITcf/A6\nrUBpB36DZt991/E7nw71LbHOFWmnQpFIRld1TweeqSnOp6pEcHAwAHh0GZwnOhWVKTi/e/2F\nPRxTC3Nzcwszc55epdPWWMaNtANB6M/YMOPtjK2K9e3pcl9ErkOWNfnwCFaSFx7xOqXsVP0f\nFnXi4eODaqTd2ZUtlQOAHq/VtsA5n92KEgAIlvfIFbNSJv/6UEBT4n3XkrcOq3xlHFQ1uLAK\n0jFnz55VNLoPG4lJ+lrl8uXLAODSuVv0qatPgo+E3zjGs7KvY2/FrsL/pZUrV9Z0eAiphwHf\n+5dNs9as2hWbWwIANC3PFabmClNjo5R05vBcpi5f3t6mYqk9Qt8KQyYhkdM0raRUSYGmRBeF\nYkXbvl8zpX0oqVDRYLDNVR5h7YFJeoT+G1oWHXYr5K/wZGJo4DyP0mPyos2bN1fl6ta//ubu\niDV9X4veO39T+Qw9x9Csbr36JkTB+8SknEJScZCSpG6cG3Ty0Dzc1BAhpGYluUlh9x/cf3D/\nn3jlyzGZ1mnk4/NdRx8fF3sTNceGkHqkRtw6fvXP+Pi3mfmffST71MlLV4xxRlUV9u3bV+EI\nTZO5WYLcLIHS/ug/cnV1VTRYBqXL8U2bNk1z4aBSXFuf7TtM9u86FBKZqKhJYrCM2vefONev\nyaedCYLVsuekJVNaqz1MrfXoSpKi4TM/oLIM/Qc+k0f/+nAzAKTdCQdM0qsILqyicWPHjq3e\nhc7jApd1tlVtMIimCpav3KRor1mzRrPB6JTDhw+X/5Gm5XnC5DxhsqbiQUhTjJ06BR70CD5z\nNvjmn2mFUqV92Fybjj17Dx/Zx5qD92v0DbPjsLKlJC3LSSUpe2W/zIUpZ4rlpS9Sf9/GSumH\nSItKd85icj67sb0WwCQ9QtUnfHFzy65jsQIxAFh5DvzaywmCaVKF2QpUgSj+8P8Epa9Zsbh1\nfGfMHdzeqexs4uPLW379LbFQCgDFWQ9/jRg/tyXud6VuYlFmWnq2tMqlky5ujTApg7QAVZwV\nHvrg/v0Hf0e+oz7z+8/k8FdvDmziiN9LSJvFX9s69+B9usp3gTJsHBahb9Onr+f26NFDI5Gg\nCri2zWavDZqaK0jKyGYaWTnYW3GIjwadLK6Tt4+JXX2X1t7fNXIw0lScWum+qAQACIbeeHez\nqvTn8Hz4nK1CkiJFoQDDajg6XYELq2hcbm5u9S4s+PzCgeg/kL148ULTMSCEdBqDbdV3dEAf\n3wnv42JiYuLSs0SFhYVSYBkZGfEsbV1dG7k1cuQqW/cboW9Le3O9yCKSpunzb/NnN1LyOBBz\nLFzRYOrX62qqfDEz4cN/FA09s3Y1FGdtgEl6hKop4uymNafCPpeGKePl1bIgNycjJSlXUvqI\nRRDMzv2GtWjSuHFjdwsuvhP31eJP/KVoMDn8Vfu3NTHhlD9br82ArftdAsYtSScpAHj+WwS0\n/F4DUeokWpbz+6F91x9E5BR8Rd0kYOkk+sbRVFHU3w9D7t8PC38lppTcFIxsnDt06PDHhaMA\nQDCMMUOPtBspClt86KMMPZNZ1dFOheQZqjYs40aoPD0zm4ZmymsvjBz8Fs1Tczi6IoOUAwBT\nr27Vx/k2bKaQpCgyvSbj0i24sMo3h8U1NzdiAYC5AU7YIu0xe/ZsTYeAUO1CMAwcG3k6NvLU\ndCAI1RSP7rZwuAAAngRdovf8WOF5gJblHnyZrWibOA7/zNOC/MTF0qW5+D4uNRap5uGYD6Hq\niL+2eeXJ0LIfGSyTxk1MlfZctmwFANBySdzT+ycPH3mRJqZp6p2EP7u1klUWUVX8722+olG3\n/4IKGXoFtpH7/CH155x6CwBiwV0ATNKrA00V/Tor4F5yYTWu1cPSSfQtoqXxz/9+cP/+g7Bn\nOcoqXbhWTu07dOjg06GFsw0AKJL0CGm9mP3HJHIaAAz4jX+c4tuioRPf1EDTQekcLONGCGmc\nIZMgZbRcmkUDVDFLL5BSAEAw8K6BtMfOnTsrPU/nZ2Wkp6clv4+6dSe8WE7TcoOhc9f/oKzg\nDKFvV5cuXTQdAkIIIbWy+34s+8hSKU0Xpl5edbbFyuEtyp99fmS5gCydSnUb4ab0ExJvbnhS\nULqvcf+e9jUarWZhkh6hrybJCVt8qDRDTzC5vUZPHtizI9+gsioxgqHv1vqH1a18zgbOOfV3\n+rtbv660tF45vLFa4tU28cUyRaNTzzqf62P/fTc49RYAZJL36okKpdxeXz5Dz+by+ObGVZyP\nY2PpJPoGTR0zMlVEfnpc37xeuw4dfHw6eLra42820kF/vMgFAI5Jq917l1rgtj5IB5w8eVLR\nGDBilCGuDITQB22MOX/kSuSy3Fs5kh7m+l/sTxY8EpIUALANm9Z8dLoCF1bRuLp1636pR73G\nAAADTNolXgAAIABJREFURg1/fe7IjgsPE3cv8i/atH+QC08N4SGEEEII1QQ2t8n0Nlbb/xYC\nQMTJFXPfD+zb0dPN1ZHOFzy9depgcGmJPINl9qOH+aeXJ4adWLD/iaJtZD+oE0/5evjaAZP0\nCH2166v2KErECKbh5MC9vV2r+uxEMLgjFu3IDRh3M7nwn1MrQ78/0cHsy7MVqIJMqVzRaGbE\n/lyfspkdWi5RR0wI4H/n4xUNt87DJo8e4GyJm3oiLVchQ88xdWjXvkMHH59W7nUwLYl0WZRY\nCgAe06dghh7piLNnzyoa3YeNxCS9RmRnl66UaGZhUe3vHZoqmL9wtaK9efNmVcSl67p3sv7j\nUiIAnAsK6bHyy8t7RP/2m6Jh0QLXAlEZXFjlG6Jv6TJm3q9GBROPPs86sXRlq9+21NXD7RER\nQggh9K3q+POqm2NnxhVJAeBN2KWtYZc+7ePUb6E1p/QZjpZJcnJyUuJfhf3v2h/h7xQHCYb+\npFXD1RazRmCSHqGvQxY8OfG+QNFu5b+p6hn6UgRn/Nrpt8ZtktPkvlW/d9juq/oQtR31YZtb\no89PgzJYmCFWt9B8EgDMPHw3zvncRjIIaSeCye0x9qfJ/VtjagYhACiR0wDQ1g3Lv2oviixh\ncrT5PfTahqYKlq/cpGivWbNGs8FopfHjxysaB3+/zGcrSdPT8uKjx85U6PwJWVxcXI3Ep6vq\nDRrBvrxJStNZEbs3XODNH+xdyUhJ8PT06lupivb3o5zUFCJCtQ6j78I5x0culUnebr3wfrtv\nA03HgxBC6Kv169dPtR949epV1X4gQurB5Niv3bV85ay10aISpR14zj+sHfPvWvfJN5cGHHhd\nvgNBMLpN2dCZr+WbYWGSHqGvk373rJymAYBj3GrR959dbr0S+mbtxzmaHE4QiRLOBmcN7m2J\nxfRIG+TL5ADQcUYfTFMiXUNT4puH1z6649G5c+fOnb6rj9/qSLc5G7CiiqQyWtNxoA9oWe5f\nIaGRkVHRMfF5RUVicbGUohUTPWRB+MWQgvadfOoYf3Z1IqQKshcvXmg6Bt1GSy79n707j4ui\nfvw4/pldWC5xQRHwiiTzwiszS4k8stT8RmlqHmmafj3QRC3FTMs08yoV0dJMLbzNK49fqZV4\nZSlZpuLxxQsUEVFEEGFhdn5/LJIVcjW7A+zr+ddnh8/M422HwLxnPp/Nue9tPLikh8oMxsDx\n7WtM3R0vhDgUOX3g4TbD+r3UsN5fC3hFvpF4cd+OryO3HbI8iu1Zr39XX1dNAgOlgaNrozZG\npx9vZSbs2iX6DNM6DmAVSf+L/in6xJkzZy5fT0lPT8/M0bm7u1es5FO3foOGzVq2DCjPGw8D\ngF1xqtRk2tLPvl29fPPOn5PuZOcd1zl6Pte9b9/uz7rqHtgkOLhU7Tpswmtt/GySVEuU9EDx\nnP4h0TKoGfyaQ0nbyJavPrxs+jEhxLcb4zoPqaNWNkBDDznpz97N8XPl2wrshV9l50s3/txQ\n41b8yc2RJ7es+Myv4VPt2rVtHdTc08Ba37BHnf0rnjh+49dTqS8G8sCK9k7v37jo8zXn/7o9\nRx4568LqJSvXLlvepufgN3sEsRwIAHU1Hz47OH7o1tO3hBA3T0dNmxAl6Z2rVMjdvGz8mOFx\ncQnpJjlvvpOx8ZQpL2mT1S6xsErpVNvZ4UchTOm/CEFJj/Im5WxUxKIV0bHX/3b8TtqtxIT4\nsyeit30dWdm/Wd+hoe3qeWqSEACgLp3Bq3P/sZ1fN104fTox+eYd2bFqterVH6rp4Zz/tj6S\nJHnXatjiyVbBXTr6PGBOOUObAhTPwZu5q3M0a+tb4osY6wUKcUwIkXz4F0FJj3Khtbfr2Uu3\n/7h291kPbvTALkQsW3PxxM9RUXv37T+SnJl7f1lR5IvHDy47fvDLhRWbtHqmbdu2gc0edaT3\ngj15bERX3dAvYpZEZrZ621niv34tHV01afK6wl/gNsupP66aHRN77dMJ3Ur8BCoA/JOkcx04\nPaLSZ7O+3HXcckSRM5NSc78aExt//2TPuu0mTAzxs487cZpgYZWy4nxWjhBCkdO1DgKoLGbL\n3EnLo7KVQlbcunH+aHjYoD8GfDjq5fq2CQao61/ub3Vqz9o1e2KUe/+nSBI/GqFckAy16jeu\nVeAU32dGf/aEk4eHh5uzfdXW9vWnBf69hHtP+jetUMCvr5Kzc0Fvjzk6567yZ0o7IkRf1cIB\n2mk5sNmS96KiF2xRIvpzhx92QdI/3Ciwf6PA10PunPjlQFRU1MEjMRly7u9R5pzbv+3b/tu+\n7QuM1QNbt23brq22YQGbca364oe9D09YtX/s3HqzR/+Hnl4r8bvm5zX0kt796Wfb1Kn9qOPx\n1Yv2J+bNcXCt36i62/Erd4QQib9ETljTcFbvevlfDgBKRNIbu46Y1qrtwc1bt+05fCpTzqeb\n8arVtHPwy8HtmvFco/WwsEpZYbp9eM+tLCGEzlBV6yyAmq4dWPzO8qi83tG9Wt0nGtX29vb2\nruLt7ph9LTExMTHx3Ikjp66kCSEUJXvP8nfcfT4f2NJb09RASTRp0qRkJ2bdPLNs/rxvj17J\nO+JarenQUaEq5QJKO4OxenWj1iG0QEkPFE9Kdu7qfJ4OD1zHWNJ7rF+/voCLSA4eloFsSixg\nGlCGeDUd3aPOb+vPbpqw7KHJA9o60crAbkh6t0atOjRq1SEk4/ov+/fujdrzS8xl8727D6bU\nK3u2rtyzdaXlo6KY7poVlwdvuQSUAw1fnTI6a0b4xi/6ndz7Sq8+L7Vt6sz9ftuSMy+9t/hH\ny9hYp/XYt0Ma+7oIIWKTNt8/zdG10bRPVxxaO236ml+FEGe+nnymy8q6LvyGCEBlvgGBwwIC\nh8oZF07HnL+SnJ6eftdkdqvgXtHTu06DgGqebI9iXSysUlZkpZxZOHGerChCCJdK7bWOA6jG\nnJP84fzvLA29wf3R/qEjOreold9fM8qFwzsi5n0Zm25SFPOOudO7PjHHk7+PYA8U+fD2ZQuX\n70jJye0dJJ1zmx5Dh/Zsy+0joNzjFgxQPEYHXXK2LIS4kW2uYSjhgjNydlLuSGLHYpQbUq+P\nZiS9NS5qy7z+R6L6vfZSA/9aNXwr0cvAfuhdq7Tq0K1Vh253r5/ftzcqKmrvybiUv82Rs+L7\n9P5vi6BnWrdp82TAQ3wPQPmzZcsWIYSoWL9D43PfHju7av77qyMcK/n4+vr6ergZCj43LCzM\nFhHtQMLuhTeyzUIIJ2PzuTNGez340VIhObTs9X7o5cHh+xMVOWPxtvg5PQpegg4ASkjSu/oH\nNPcP0DqHnWFhFW2tWbOmSPPMWVfjLv0R/dvNe6+FNOj3lBVjAbZ17cDcS5myEMLBudYHn04P\nMD7olwKpVov/zPj0oTGD34/LlHMyz805dG1qUMk3GwXKhDvx0QvDIw6c/fP2kWfdZ0JDhzWr\n4aZhKgA2Q0kPFE89V4cDqbIQ4uebmU3cSrhhm+nWYctAb6imWjL78/7o0Ac+UKvIecM333yz\n4OtERESoF8qu6Q3VX+zSKmrezjtXfv9s5u9CCEmnL8oTn5s3by58ElB2uFTx79DNv0O3N5LP\nH4vauzdq74G4m5l5X83JSPpp54afdm5w9nr4mWfatG7TutHDlTVMC6hr2bJlfzuiKNk3EuNv\nJMbnOx/WcOibOMsgaNyIghr6e4IG9w3fP1sIkbD7iKCkB4DygoVVNFfUkv6vXH3avPUUq3yX\n3Idhbz/gP98/7xSNGTOm0OvMmTNHrUh27uiGi5ZBs9B3HtzQ5zJ4NJ745uODZx8WQlxYf1QE\nvWDteIBWFHPGD2sWff713kxz7lqMOsdKLw4Y0b9zc155AuwHP3MDxdPSx/VAapYQ4tc158W4\nEu4xc2XbUcvA4N5CtWT250rcpaJMu3SpSNPw7x35cuLUTX/cf0Qxy/KDZgN2wMu/STf/Jt36\nD79w/OeoqD37Dvx6I/PP/ycyky/u2vTlrk1fevo1bNu6df9uHTSMCqA82ZuaJYSQdE4DGngW\nZb7BGORtmJNkkk2pB4ToYeV0ACCEEHJm2vWbd5zdKxrdXbkRbSUsrFIWedZ++r0PR7K+8b9x\nMTa20DmxRZgDtexOuiuEkCT9kBZFevrE+6mhjtKRbEXJuLZbCEp6lE/Jp/aEz1t87GpG3pGa\nzTuPGjngUY9CHmQBUM5Q0gPFU6frw2JGihDievQXN3LmVy7B3khKzrp9uSvLVXmqmbrxAK2k\nnov8cPNxrVMApZKkr9U4sFbjwP7D04//vD9qT9SB6NN5D0oLIVIundgUeYKSHuVDSEiI1hEg\nrpnMQgi900PuRX4Fw9dRn2SSZdNVa+YCAGFKvbRt/dod+35LTs29K+3o7t3ksSdeeKVn81pG\nbbOVPyysorlOnToVea6+Sg0//0cebVLfnxcoUc5czpKFEHonvyqORdrwTefoVctZf/Zujmxi\nLS6UQ2ZT8palCyK/+82s5N4XcnSt2Wt4aLegOtoGA6AJSnqgeLweH+SqH5EhK3LmpakrY+b1\nL/aWekmH5hxJM1nGz71cU+2A5d+zzz6rdQTk46eFuxVFEUK4eDd4tXdw/YeqV/GswL0F4H6S\nvkLjwE6NAzuFZCT9sjcqau/eI6cu5/1WBpQPHTt21DoChJteMuUo5uxkRYgifi9OzJaFEJLO\nxarBAJRvptQL27fuPPLrias3bkrOHt4+VZu37vhCu+Zu9yrHjCv7R4bOSTL9ZbGt7LSk6H07\nft3/7ZPd33rntSB+g1ARC6tobtiwYVpHsCNBQUFaR0D+KjrokrNlxZxR+NR77loeapdKuM0o\nUGpdOrxtXsRX51JzqwFJkhq07TVyaPeqznptgwHQCiU9UDx6p5rjO9Z8b0ecEOLC5vdWBXzW\n54libBWWlfLb5LmHLOMK1V8O9uJOaLGFhoZqHQH52BqfLoRw8mj++eJJRp78Bwrk4Ood2KlH\nYKceGUnn9u3dGxUVFRN/S+tQAMqPJ90N36VkmnNSdt7M7FjJudD5prRDls7M0a2x9dMBKJ8u\n7Y+cNHfTrRxz7ufU9BvXLp/648jG9c0nfzy+ntGQkxHzzpi5f2vo8yiK+ef1sydIHtP7NLJd\n6PKOhVVgV8aOHat1BOSvlrM+OVuWTYm/38lu6lZ4756TcfKyySyEcHThxWKUHzl3Lq1aEL7x\n4J97bTh7NRgYOqpDE18NUwHQXJEWmQFwv8YDJj3krBdCKEr2+o9CV+05W8QT7yb+Nm3UdMsq\nT0KIHhNftVZEwOYsN4CefOdNGnqg6Fy9H+nY/Y0ZCyOXzp2idRYA5cdzbXwsg/Xzo4oy/+SK\nFZZB5cdYCAFASdw8Fhn68cY/G/r7ZFyLnjj8g5QcJWr2xxfu5gghJEnXqE2nvm8MCwsb80af\n7q3qVsqbHLP+vb23smyXu7yzrGFgWViliFhYBYDq2vtXtAyWrokpyvwzXy+xrNRY8ZGibxgB\nlGbK8e9XhfQfldfQS5Jjyy5Dv1gynYYeAG/SA8WmM/h8MKHnkMmrTWZFke+sm/t29JEu/V/t\n2sTvgVvoKfLtQ99tWrx0S8q92xa1O4e9XN3NVpEBq6vkqEsyyY9VddU6CFAmVXmkqdYRgJK4\ndSt3EQhJcjQa+cGmtPDr2tNxy6xsRUk++un0DcZxr7Qs4Am6xOg1U3ZesYyf7+1vo4jl0Ydh\nbz/gt+s/3xseM2ZModeZM2eOWpEA21Dk2x9M25K3g4/e2adR4zo1a1S+k5Rw4fQfF5IzTbeP\nT1iw+trRG0IIvVPN0VOnPFOv8p/nv9onetuCKUu+F0IoirxqUUzr8Y9p8ecoh1hYBUBpUP+1\nx8WxnUKIuG1TVzda0PvJglrJpF/Xf7D5gmXcrE89W+QDrCnz+skvwsN3/ZGYd6Tiw08OH/Vm\ny3sPrwCwc5T0QElUbvrqvNG3R8zZbrkTce7A5vcObnko4IlmjRoGNHi0iqeHu3sFKfvu7du3\nky6fO3HixJEDPydkZOed7tWk56zBgdrFB9TXzsNpbVLG5cz8l68EAJRL/fr1swwMbk02rJkq\nhJg5c2aJrxYWFqZOLLtnMAaOb19j6u54IcShyOkDD7cZ1u+lhvX+WsAr8o3Ei/t2fB257ZCs\nKEIIz3r9u/rysF3JXYyNLXRObBHmAGVO0s/hFzJzLOPKTTpNGjfI3z13NWNFvr39i5lLdhy/\n8uM6y5EWb73/l4ZeCCF0zV8c+eaR3yN+TxZC3DzxnRCU9Op4ro3Pd5svCSHWz4/qOLnwtVJY\nWAWANXjUHdbee//3SRmKYlr30bDYF/r2frljbZ+//9h5N+nczm/WRm4/nKMoQgiXKs+G1PPQ\nIi+gEsV0cPPSz1bsvC3nvrOn07s//1rIoK6BBhYhBXAPJT1QQjVa/3dRxWrTZy+7kJ4thFAU\n5dKJw5dOHN5c2ImNOg2eOKSzA9+MUb60fa3B2jnRP606/vpbT2qdBQCgmYMHD2odAUII0Xz4\n7OD4oVtP3xJC3DwdNW1ClKR3rlIh9/bQ+DHD4+IS0u/bGdrJ2HjKlJe0yQqo5N8tZsCTpiV3\n4uvcDeAcXGrPfn+Il8Of+ypK+oovDvkw5Y/XNsSnCSEkSXqjmVe+F2k5JDBi2DdCiOy0w7Ii\n2EFLFSysYku9evVS94Jr1qxR94KAdnT//Sj0RMisRJOsKHL0ji9//b9IjypVfby9fXx8XMTd\npKRr165du3r91p+Lshi8R077L9v0ouy6feGXheELDp1PzTvi0+i50ND/NvQufGEbAHaFkh4o\nOd/HOs9Z1nTd0uU7vj+SJhe+y5tbtYDufQZ1DXrEBtkAG6va+p0XtwzYvm/m189+3r1p/rfe\nAACAbUg614HTIyp9NuvLXcctRxQ5M+nePaKY2Pj7J3vWbTdhYoifs97GIcuHoKAgrSMgF4sZ\naOWHaxmWQc0XQu5v6O+R/jOs0YYJPwkhhGTwMeTfubhUbi3EN0IIReGBCdWwsIot3blzR+sI\nQOnl4t3yk1mhUz9YeDolSwihKOaUpCspSVdOn8hnssFYZ9h77wXyFxHKJkVO27ni0y82/2TK\ne+jEyfeVIW/2ad+IRxAB/BMlPfCv6J2r9x4+scfrCT/8387Dvx+POX3+zr1d5/M4uHoFNG3a\nolW7TkENeYEe5Zbk+Mb0D268PWnl+0POvPDaoL4v+rryLQYAyrm6detaBg4uNSyDkJAQ7eLg\nLyS9seuIaa3aHty8dduew6cy83ui1KtW087BLwe3a+bIz6glNXbsWK0jABqLz8qt1Zt1qJbv\nhAp+rYX4SQihmLMedBGdw59r4PMavYpYWAVAKeHu32bGFwE71q7b8e2ehPTsfOc4uvq27tT5\n1V7/8THw8CjKqneHDDqRdDfvY5WAdiOH9/Gr4Jh661bJLujhwb4PQHkmKUrhr/8CKCJFzrgc\nn3D7dtrt27ezJSdjRaPRw7NGDV+6eZR7W7ZsEUKYc25uXr01NccsSTpjleo1q1cpyk3/yZMn\nWzseAAD2TJEzLpyOOX8lOT09/a7J7FbBvaKnd50GAdU8WW4RZd7s2bPVvSAPXhRXcHCwZTBj\n7aYG+T2nK5sSunQbahlv3bo134socspLXV4veA5KRpFTN9+3sEoBLAur1DUabJCq/ImMjCx4\ngmLO3Lhpu2XcrVu3Qi/Yr18/FWIBpY9ivnvxzKlTp85cTU5NT0/PFg4VKlQwelWtW7d+vfq1\nXHXcQkXZlvdzkVr4uQgo33jNEVCTpHet+XBtrVMAGli2bNn9HxXFfCsp/lZS/IPmAwAAm5H0\nrv4Bzf0DtM4BWAGdeunh5Zj/UvY6vYuNk+B+LKxiG4V26oqcklfSU8DDnkk6l1r1m9Wq30zr\nIAAAaI+SHgAAAECxXc82V3lAH1MCmUnHnb0bqXU1AABwP9+AwGEBgUNZWAUAAAAoNSjpAQAq\nGDVqlNYRAAA2NWrsgvDZIx703mSx/LFz+ceLv4nctOXfXwoAADwIC6sAKDuUs6fP1KlXT+sY\nQPGEh4drHQFAWUJJDwBQQbt27bSOAACwqbTz348aK+b9u54+J+PSl5/M2HrkiorB8DdZdzPy\nW9s4f66urtbMAgAAAHthNmXcTEnJVJyrVKnkpC/GdhpmU/J3X81atO00u3GjzKlVq5bWEQCU\nJZT0AAAAAEri9vnvR42T5s0aXrKePu6XLTPnRsZn5KgeDEKI+KM712zfF3vuXGJKRtHP4k4o\nAAAA/qX/Hdq2duvuYzGXTIoihJAkfdX6T3Xp2r1DC//7p+VkXP/j6B9XklPT09PT0tIzs0xZ\nWZkp1xMuXYxPM8kaZQcAwHYo6QEAAACU0O1zu0eNE8Xt6ZWclE2fzf5q94m8I44V/KyQzn6d\n2Tx73JcHFKXIb9ADAMo9xbT/wC9FmVj58acauDpaOw6AcklRTN/MfXtZ1MW/HpQTYg4ujDkY\n3fu9d3s2F0Io8u2v501dt+9sNj+vAgDsGCU9AMDqZFOW3uCkdQoAgJqGtff/7PvzQojb53aP\nDpPmzgrxcihST59yJmrWzE9PJmfmHanV6pVxo16zVlD7k5kS9S4NPQCb2//97or5fSNQzHfy\nxrt378733PvnQAVKzsmDO6N+OhIvdZ8xNncLesV8Z/bs2UU5u0X4iga1jNbMB6DcOrFiwt8a\n+vv9snrKnBpLxjztExk2fOPZ1IIvJUnFWCEfAICyiJIeAKAyJSflp6gDx4+fOHkq9tadOxkZ\nd7NlxbJ8rintyKaotMA2QTXdeTMDAMq2TiPn6vRvLdwZK4RIjd01epw0b9awygX29IqStWfV\n/IVfH8h7Y0Zv8O4+fGzvtnVtkdhunFq0ynTvn3CD9n17Pf/4ww/XcC3OPqAAUAJffbaw0DkR\nERE2SGLnko59+/HCr04nZgghqjTrUtzTJUmf78MWAFConIyYDzb+L++jZ+1mT9T1q+pjTEu6\nGncxJvpEvBBi//ypzxnq5zX0kqSvWLlKFS+vii4Osmw2Kzq3iu4VKxqr+zd4/PFm2vwxAACw\nFUp6AICaTu/fuOjzNedTTfl+Vc66sHrJyrXLlrfpOfjNHkH0BQBQlkkdhn+i042N+PasECI1\ndueocWLerJDKDvn/5Z6R+HvEjE8Onv/zjRmfxh3Gjv1vHaPBRnntxncnUyyDRv2mT+sWoG0Y\nAIAtHV03a+rqg3Jhi6k88cTjaSk3r12OS8nM3fVZkvRtg3s81qhhw4YNKrvqrZ8UQDkUv/2L\ne5vQS8+/8e7Q4Bb33/aJP7R65Ix1cmbcxGnxliO1g7r89/Ve9b2dNUkLAIDmKOkBAKo5umrS\n5HXHCp1mllN/XDU7JvbapxO6PaDKAQCUCdJzw2br9WHztp8Wlp4+TMyb+c+eXjm644tPvtiR\nJpstn3V6905vjB78YnO+CVhDzJ0cIYTesco7XRponQUAYDux22ZPXnUg76POoWLDRh75zpw0\n6X0hhGLOPBO9d9Wy5ccSMhRFvpDpPapFIxtlBVAeHfv+qmVQqeGI4S+1+NtXa7bsHfZ01Ef7\nEy27MnnWe/2Tsa/w6wAAwJ5R0gMA1BG/a35eQy/p3Z9+tk2d2o86Hl+9aH9i3hwH1/qNqrsd\nv3JHCJH4S+SENQ1n9a6nTVwAgDqkdoNn6XTj52yNEUKk/m/nqDARPjOk0r2ePjvt/LJPZu44\nejXvBOMjgW+FvdnU11WbvHbgrqIIIZw8n63AkjUArG/VqlVaR4AQQmTePDhhaW5DL+ldX+g7\nuEun1t4uBb0TL+mc67XoMKV50LoZo1f/fPXCzvDJXj6TX21ok7wAyqEDqVmWQdNBT+Y7oXHf\n1mL/Osv46ZEd+FEVAGDnKOkBACqQMy+9t/hHy9hYp/XYt0Ma+7oIIWKTNt8/zdG10bRPVxxa\nO236ml+FEGe+nnymy8q6LnwzAoCyrc2gGXrdu7O3HBdCpP5vZ+h4af6MYZ4O0oWDG2aGr0rI\nW0pXZ2j96ogRPVsbJO7IWdHDzg5nM7JFYWsdA4Aq3N3dtY4AIYTY/sFnmWZFCCHp3QbPWNS5\nrrGIJ0o6157vRKSM6P9tfPpvqycfeH7l054sPQ2gJK6actfNerpK/n+NOFVqLURuSf9MZf6q\nAQDYO53WAQAA5UHC7oU3ss1CCCdj87kzRlsa+vxJDi17vR8a5CuEUOSMxdvibRYSAGA9QW9M\nC+vaxDJOPfvdyPGL1s0bFzozMq+hd/VtMvbjpWN6taGht7YXqrsJIbJuHzBR0wOAfTClHV55\nMc0ybj50VtEb+lySYcCHw3WSpCimxR9sVD8fAPuQt7mVjyH/ZTz0jj55Yw89xQQAwN7x8iIA\nQAWHvomzDILGjfByKPwXraDBfcP3zxZCJOw+InrUsm44AIBNBPaf+o5+8vSvjwohUs9+u+ps\n7nFJ0jXrPGjMwM7urL5uE82HdxSj1spZVxb+nDS6pbfWcQAAVnf1+3VmRRFCGNybv/N8zRJc\nwdkzsH+tisvOp6aeX7cj+ZXOXrzhWjyRkZEFT1DMmUWfLITo16/fv80EaOeBT+VKjn8O+c0A\nAGD3KOkBACrYm5olhJB0TgMaeBZlvsEY5G2Yk2SSTakHhOhh5XQAABtp2XfyRN2UD9dF5x0x\nGB8d9Pa4jk18CjgL6qro3/vtdvs//vHKvk8mPf7JJ8/4VdA6EQDAuk7/kGgZ1Ax+zaGkvVfL\nVx9eNv2YEOLbjXGdh9RRK5ud2LBhg7qTKekBAADKPVaVAQCo4JrJLITQOz1U9LckfR31QgjZ\ndNWKsQAANteiz3vv9W6R9/HR//Sjobe9oJFzXnu6pmy6+klo/ykL1567mVn4OQCAMuvgzSzL\noFlb3xJfxFgv0DJIPvyLCpkAAAAAFIg36QEAKnDTS6YcxZydrAhRxJY+MVsWQki6B+9eDwAo\nm5r3nDhZN33yykNCiJOrJs10nBbWtZHWocqnmTNnPvBrSnUX3eW7ZlP0ztXRO1e7Gr2qVq2E\ngRx4AAAgAElEQVTqXbliwY9ph4WFqZ0RAGB1CSbZMmhawfHBsyRn54IWsXd09rcMTGlHhOir\nWjj7ULFiRa0jAAAAoIyhpAcAqOBJd8N3KZnmnJSdNzM7Vip8/0JT2qEkkyyEcHRrbP10AABb\na9bjnan6mZO+OiiEOPjlu7PEtHH09FZw8ODBIs7MSE0+l5p8zqppAAAaSck2WwaeDg98FkvS\ne6xfv76Ai0gOHpaBbEpUMZudWLlypdYRAAAAUMaw3D0AQAXPtcldynj9/KiizD+5YoVlUPmx\njlaKBADQVpNXwqYNCJIkSQhx4Mt3Z28+oXUiAADKJ+O9bv7Gvba+BOTspNyRxN1CAAAAwOp4\nkx4AoAK/rj0dt8zKVpTko59O32Ac90rLAvamT4xeM2XnFcv4+d7+NooIAFDV7t27C59Uoemz\n/se+P3dbCLF/+YScu/9tXuWBq60899xzKsazEyEhIVpHAABor56rw4FUWQjx883MJm4FrHhf\nENOtw5aB3lBNtWQAAAAAHoCSHgCgAoMxcHz7GlN3xwshDkVOH3i4zbB+LzWs99cCXpFvJF7c\nt+PryG2HZEURQnjW69/V11WTwACAfykiIqK4pxxau+TQg79KSV8CHTuyIA0AQLT0cT2QmiWE\n+HXNeTGuSckucmXbUcvA4N5CtWQAAAAAHoCSHgCgjubDZwfHD916+pYQ4ubpqGkToiS9c5UK\nucstjh8zPC4uId0k5813MjaeMuUlbbICAAAAQHlRp+vDYkaKEOJ69Bc3cuZXdnjwsmYPouSs\n25e7FX2Vp5qpGw+AvXlr0IBCt80oypyvvvpKnUAAAJRKlPQAAHVIOteB0yMqfTbry13HLUcU\nOTMpNferMbHx90/2rNtuwsQQP2e9jUMCAFDubdu2TQjh7h/UJsCjiKf8vvP/4k2yg8sjndo3\nsGY0AIBVeD0+yFU/IkNW5MxLU1fGzOsfUNwrJB2acyTNZBk/93JNtQMCsC+pKSmqzAEAoHyj\npAcAqEbSG7uOmNaq7cHNW7ftOXwqU1b+OcerVtPOwS8Ht2vmWPy3OwAApceqVau0joD8LVmy\nRAjhF1y36CX9pY0rlibecXRt2Kn9R9aMBgCwCr1TzfEda763I04IcWHze6sCPuvzhHfRT89K\n+W3y3NwdaSpUfznYy8UqKQEAAADch5IeAKAy34DAYQGBQ+WMC6djzl9JTk9Pv2syu1Vwr+jp\nXadBQDVPZ60DAgBU4O7urnUEqMZkVoQQOVkXtA4CACihxgMmPfTD0LhMWVGy138UKkZ+0Kdt\nnaKceDfxt+lh0y9n5W5M1mPiq9aMCaA869Kli9YRAAAoSyjpAQBWIeld/QOa+xd7nUUAAFA8\np06d+ufBrJsXTp2SCz9ZyUlJiPk6+a7lg8rJAAC2ojP4fDCh55DJq01mRZHvrJv7dvSRLv1f\n7drEz/igUxT59qHvNi1euiUlx2w5Urtz2MvV3WwVGUB5M2DAAK0jAABQlkiKwo0YAAAAACir\ngoODVbmOs0e79ZGjVLkUAEATl/cuGTFnu/nevT5Jkh4KeKJZo4YBDR6t4unh7l5Byr57+/bt\npMvnTpw4ceTAzwkZ2XnnejXp+fmU3g7sSgYAAADYBCU9AEAFsamm2kZDCU5MOvG9d8P2qucB\nAMB+qFXSB4YtCQv0UeVSAACtJP62Y/rsZRfSswufep9GnQZPHNLZRUdFDwAAANgIJT0AQAVd\nug3qFvJWn3b1i36KOTt5y5L5kTuPbfnmG+sFAwCg3AsJCbn/4+XLl4UQju7ePkV+fq5C5WqN\ngrr0fZ5dagCgPJAzr6xbunzH90fS5MJv+rlVC+jeZ1DXoEdsEAwAAABAHkp6AIAKLO/wPdTi\npbGj+vlVcCx0/uXoHXPCl8emmoQQW7dutXo+AADshuWbsl/wxxGD6midBQCgmZz0hB/+b+fh\n34/HnD5/596u83kcXL0CmjZt0apdp6CGLHEPAAAA2J6D1gEAAOVH3OFvRr0R3fvNt7oH1X7Q\nHDkzYd2n89ZGnbZlMAAAAACwKw4VqnXoMaBDD6HIGZfjE27fTrt9+3a25GSsaDR6eNao4Us3\nDwAAAGiIN+kBACo4sm3JguU7Uu69n/FIYLe3Q/tUd9b/bVrswY1zI1bHZ+Tuj+joWrNnSGj3\nZ3jPDwAA1axfv14IYazTvkPTSlpnAQAAAAAAQD4o6QEA6shKObMsfO63RxMsHx3d/PqOevvl\nJ/0sH7PTLq6ImLPl54uWj5IkBbTr/eaQblX/UeQDAAAAAAAAAACUY5T0AAA1xfy4Zv6irxMy\ncywf67Xr/XZI9+v71oYv3pCYJVsOungHDBwZ+nxjX+1iAgBgp2RTlt7gpHUKAAAAAAAAu0ZJ\nDwBQWU5G/OqF4Rv2n7V81Du7ypkZlrEkGQK7/nfYa8+769n/EAAAq1NyUn6KOnD8+ImTp2Jv\n3bmTkXE3W1a2bt0qhDClHdkUlRbYJqimu6PWMQEAAAAAAOwLJT0AwCouHd763oxlebvUCyHc\nH24Z+taIFn7uGqYCAMB+nN6/cdHna86nmv523FLS301e/+obK3V6Y5ueg9/sEcTjcwAAAAAA\nADaj0zoAAKAcMt3633ff7by/oRdCZCZdjou7qlUkAADsytFVk8bN/uqfDf3fmOXUH1fNHvbR\nhhwe3gYAAAAAALAVSnoAgKoUOXrHsiEDx+2IjrccqN6svb+7QQiRnREfOfvtEVOXxBZWGAAA\ngH8jftf8yeuOWcaS3j3o+RcHhowZGuR7/xwH1/qNqrtZxom/RE5Yc9rWKQEAAAAAAOwVy90D\nAFSTkfD7onnhUadvWD7qnXy7Dxvdu119Oeva+oWfrInKvfuvN3i9NHDE652asbAuAJRdu3fv\nVvFqHg0Cn6juquIF7ZmceWlQn9Ab2WYhhLFO67FvhzT2dRFCxEaGjtlwQdxb7l4IIZScQ2un\nTV/zqxBC0rvOWr2yrouDZrkBAAAAAADsBrdgAAAqUJTMvesWL1r3Y4ac++yXX4uX3grt97C7\noxBC7+TTa8ysVq22fBy+4tKdbNmUvOmzyfv2ths1aoilNgAAlDkREREqXq1eSH1KerUk7F5o\naeidjM3nzhjt5fDg5dMkh5a93g+9PDh8f6IiZyzeFj+nRy3bBQUAAAAAALBXLHcPAFDB1BFv\nzFn9g6Wh1ztX6z1mdsTEgZaGPo/fUy/PWz6/29OPWD4mx/w4adgbCzbs1yAuAADl16Fv4iyD\noHEjCmro7wka3NcySNh9xIqxAAAAAAAAcA9v0gMAVBAdn24Z1GrZZczIvn5u+X9/0TtX7zdu\nbqtWGz6JWH3lbo4i39kVOXtEtyAbJgUAqOOpp5560JfM2TcO//q/vI+SpHP3rOLj6+uuz7p2\n7dq167dy7m25pTf49hna08tBZ6xTyeqJ7cbe1CwhhKRzGtDAsyjzDcYgb8OcJJNsSj0gRA8r\npwMAAAAAAAAlPQBAJQ4u1XuNeKt7UO1CZ9Z+ulvEY09Ehn+85edLNggGALCGCRMm5Hs8J+Pc\nJ2MnWcauVRt07d7jP880dTX8+T63Imed+WX32rXrjl5MlU2JGzb89OHc8bXZCl0910xmIYTe\n6SF3vVTEU3wd9UkmWTZdtWYuAAAAAAAA5GK5ewCACh4J7Ba+PKIoDb2Fg5vfGxMiZo3p5euk\nt2owAIBtKSsnTj4Yny6EaNZt3MpFM3q0b3Z/Qy+EkPRO9Vr9Z/L8yMn9nxZCZCQc/uDdyBxF\nm7jlkpteEkKYs5OL/g81MVsWQkg6F6uFAgAAAAAAwJ8o6QEAKpgb1q+ma7FfgqzXpteCZZ9Y\nIw8AQBMpp+Zvik0VQng1HTi539MOBb3ILTXrOm5kSx8hRGrsltk/J9kooh140t0ghDDnpOy8\nmVmU+aa0Q0kmWQjh6NbYuskAAAAAAAAghKCkBwBoy+Dur3UEAIBqjnzxq2XQbVSHoswPCulj\nGRz/ar+1Mtmf59r4WAbr50cVZf7JFSssg8qPdbRSJAAAAAAAANyPkh4AAACAOv4vPl0IIeld\nO1VyLsp8J2MbDwedEOLuje+tm8ye+HXt6ShJQojko59O33BILnDV+8ToNVN2XrGMn+/Nk3MA\nAAAAAAC2QEkPAAAAQB3xWbIQQqdzK2id+79y0UlCCLOJ5e5VYzAGjm9fwzI+FDl9YNicX06c\nu5Pz165ekW9cPbf5ixnDpq6VFUUI4Vmvf1dfV9unBQAAAAAAsEPF3j8YAIB/ev3110t2Yu3+\nMya1rapuGACAViropZQcRc6+fj5T9nfWFzpfzrqUmG0WQugcPayfzo40Hz47OH7o1tO3hBA3\nT0dNmxAl6Z2rVDBbvjp+zPC4uIR0k5w338nYeMqUl7TJCgAAAAAAYH8o6QEAKkhJSSnZiWlZ\ncuGTAABlRMuKhv+7mSmE+OLHhI9eqFno/KtRnyuKIoQwVAy0ejh7IulcB06PqPTZrC93Hbcc\nUeTMpNTcr8bExt8/2bNuuwkTQ/yK8FAFAAAAAAAAVMFy9wAADTi4VvL29vb29q7kwuNiAFB+\nPN+humVwatkH0dczC56cmXz0gyUxlnH1F9pZN5n9kfTGriOmfT49rFPLBs76/Pcf8KrV9PXQ\nyV/MGlXXaLBxPAAAAAAAAHsmWd5cAQDg34iLiyvw68rt5GtXrybEXzyxc/eRu2ZF71x96Acf\ndajvaaN8AACbyMk4OaDPu6myWQjh4OI34K23X2zhl+/MuOjtn3y87EJGjhBC5+A5Y9XSejy2\nZTWKnHHhdMz5K8np6el3TWa3Cu4VPb3rNAio5umsdTQAAAAAAAB7REkPALCpzOSz65dHbNh/\nSdK5vD7r8651jFonAgCo6dymKaO/jM77WNm/6dPN6letWtXX19dVZCQmJl69evX00QO/nb+R\nN6fFG/MmvuyvRVgAAAAAAABAA5T0AADbM296b9CXvyc7OD8yb8XHDzmxCS4AlCv7l747+5vj\nRZzctOv4Kf1bWTUPAAAAAAAAUKpQ0gMANJCdcbx7r4lmRfF/de68Po9oHQcAoLKLP22c+/na\nCzezCpjj6l2nz5BRLz5Rw2apAAAAAAAAgNKAkh4AoI15/Xr8eCvT2bPT+q+GaZ0FAGAFiunk\nTz8c/PWPU6fOXL1xOyPTJEk6Jxe3Sr4169at0+SJoNaPP6qXtA4JAAAAAAAA2JyD1gEAAHaq\ntrPDj0KY0n8RgpIeAMojyRAQ2CkgsJPlkyKbzDoDrby6goOD1b3g1q1b1b0gAAAAAAAA/omS\nHgCgjfNZOUIIRU7XOggAwBYkvUGvdQYAAAAAAACgNNBpHQAAYI9Mtw/vuZUlhNAZqmqdBQBg\nI7KpoC3qAQAAAAAAADvBm/QAAFvLSjmzcOI8WVGEEC6V2msdBwBgFUpOyk9RB44fP3HyVOyt\nO3cyMu5my4plNXVT2pFNUWmBbYJqujtqHbNsmzp16r85/dSetWv2xCiKYvkoSSx2AAAAAAAA\nYAuU9AAAFaxZs6ZI88xZV+Mu/RH9281ss+VAg35PWTEWAEAjp/dvXPT5mvOppny/KmddWL1k\n5dply9v0HPxmjyA2qi+xJk2alOzErJtnls2f9+3RK3lHXKs1HToqVKVcAAAAAAAAKAglPQBA\nBUUt6f/K1afNW095qx4GAKCto6smTV53rNBpZjn1x1WzY2KvfTqhmwM9vc0o8uHtyxYu35GS\nk/vAnKRzbtNj6NCebV10/GsAAAAAAACwBUp6AIA2PGs//d6HI+kDAKCcid81P6+hl/TuTz/b\npk7tRx2Pr160PzFvjoNr/UbV3Y5fuSOESPwlcsKahrN619Mmrp25Ex+9MDziwNmUvCOedZ8J\nDR3WrIabhqkAAAAAAADsDSU9AEAFnTp1KvJcfZUafv6PPNqkvj/rGwNAOSNnXnpv8Y+WsbFO\n67FvhzT2dRFCxCZtvn+ao2ujaZ+uOLR22vQ1vwohznw9+UyXlXVd+N3EihRzxg9rFn3+9d5M\nc+4O9DrHSi8OGNG/c3O+HQMAAAAAANgYN8IAACoYNmyY1hEAANpL2L3wRrZZCOFkbD53xmgv\nB90Dp0oOLXu9H3p5cPj+REXOWLwtfk6PWrYLameST+0Jn7f42NWMvCM1m3ceNXLAox4GDVMB\nAAAAAADYLUp6AAAAAOo49E2cZRA0bkRBDf09QYP7hu+fLYRI2H1EUNJbgdmUvGXpgsjvfjMr\nuS/QO7rW7DU8tFtQHW2DAQAAAAAA2DNKegAAAADq2JuaJYSQdE4DGngWZb7BGORtmJNkkk2p\nB4ToYeV0dufS4W3zIr46l2qyfJQkqUHbXiOHdq/qrNc2GAAAAAAAgJ2jpAcAaECR094a+75l\nPGfOHG3DAADUcs1kFkLonR5yL/I+576O+iSTLJuuWjOX3cm5c2nVgvCNB2Pzjjh7NRgYOqpD\nE18NUwEAAAAAAMCCkh4AoImc2NjYwmcBAMoUN71kylHM2cmKEEVs6ROzZSGEpHOxajB7ohz/\nfnXE4g2JWbLlsyQ5PvXywOH9OlUs8pMTAAAAAAAAsCpKegAAAADqeNLd8F1KpjknZefNzI6V\nnAudb0o7lGSShRCObo2tn678y7x+8ovw8F1/JOYdqfjwk8NHvdnSv6KGqQAAAAAAAPA3Oq0D\nAAAAACgnnmvjYxmsnx9VlPknV6ywDCo/1tFKkeyFYjq46bNBg9/Na+h1eveOr4ctC3+Xhh4A\nAAAAAKC0oaQHAAAAoA6/rj0dJUkIkXz00+kbDslKQZMTo9dM2XnFMn6+t78N4pVXty/8Mn30\nwJlffntbNluO+DR67sPFS0NeCTSwwj0AAAAAAEDpw3L3AAAAANRhMAaOb19j6u54IcShyOkD\nD7cZ1u+lhvX+WsAr8o3Ei/t2fB257ZCsKEIIz3r9u/q6ahK4rFPktJ0rPv1i808mJfeBCL2T\n7ytD3uzTvhHtPAAAAAAAQKklKUqBr7cAAGAFipzyUpfXLeOtW7dqGwYAoCLFnLF0/NCtp2/l\nHZH0zlUqmJNSTUKIBrVrxsUlpJvkvK86GRt/vOQDP2e9BlnLvgmDXj2RdDfvY5WAdiOH9/Gr\n4FjiC3p4eKiRCwAAAAAAAAWhpAcAaICSHgDKMUVO3fzZrC93HS90pmfddhMmhtQ1GmyQqlwK\nDg5W94J8UwYAAAAAALABlrsHAAAAoCZJb+w6Ylqrtgc3b9225/CpzPy2pveq1bRz8MvB7Zo5\nsiw7AAAAAAAA7AwlPQAAAAD1+QYEDgsIHCpnXDgdc/5Kcnp6+l2T2a2Ce0VP7zoNAqp5Omsd\nEAAAAAAAANAGJT0AAAAAa5H0rv4Bzf0DtM5RToWHh2sdAQAAAAAAAMVGSQ8AAABAHdu2bRNC\nuPsHtQnwKOIpv+/8v3iT7ODySKf2DawZrXyqVauW1hEAAAAAAABQbJT0AAAAANSxZMkSIYRf\ncN2il/SXNq5YmnjH0bVhp/YfWTMaAAAAAAAAUFpQ0gMAimfHjh0qXMV8V4WLAADKPpNZEULk\nZF3QOggAAAAAAABgI5T0AIDiWbx4sdYRAAClxalTp/55MOvmhVOn5MJPVnJSEmK+TrY8tqWo\nnAwAAAAAAAAorSjpAQAAAJRQWFjYPw8mHlgYdqB413Fyf0qdQAAAAAAAAECpp9M6AAAAAAB7\n9/iQXlpHAAAAAAAAAGyEN+kBAMWzceNGrSMAAEqLGjVq3P/x8uXLQghHd28fo6GIV6hQuVqj\noC59A33UDwcAAAAAAACUSpKisPsjAAAAABUEBwcLIfyCP44YVEfrLAAAAAAAAEApxXL3AAAA\nAAAAAAAAAADYCMvdAwAAAFDHa6+9JoQw1vHSOggAAAAAAABQerHcPQAAAAAAAAAAAAAANsKb\n9AAAAABK4tatW5aBJDkajW7ahgEAAAAAAADKCt6kBwAAAFASwcHBloHBrcmGNVOFEDNnzizx\n1cLCwtSJBQAAAAAAAJRuvEkPAAAAQB0HDx7UOgIAAAAAAABQ2um0DgAAAAAAAAAAAAAAgL3g\nTXoAAAAAJVG3bl3LwMGlhmUQEhKiXRwAAAAAAACgbGBPegAAAAAAAAAAAAAAbITl7gEAAAAA\nAAAAAAAAsBFKegAAAAAAAAAAAAAAbISSHgAAAAAAAAAAAAAAG3HQOgAAAACA8ik9NTVHUYo4\n2ejhIVk1DQAAAAAAAFA6UNIDAAAAUNOVozsjt+6JjT13/XZW0c9atfkbdz01PQAAAAAAAMo/\nSnoAAAAAqondNuetL/YqRX6BPo8jO3EBAAAAAADAPlDSAwAAAFCHKfXghKV/aej1en0RzzVI\nvEYPAAAAAAAAu0BJDwAAAEAdpz7/KtOsCCFcvBu+MaTPY4/6e3u4aB0KAAAAAAAAKF0o6QEA\nAACo47tjKUIIQ8Xmny6aWNmB9esBAAAAAACAfHDjDAAAAIA6TmRkCyEChg+hoQcAAAAAAAAe\nhHtnAAAAANSRZVaEEE/VM2odBAAAAAAAACi9KOkBAAAAqKO2i4MQIkfROgcAAAAAAABQilHS\nAwAAAFBHZ/+KQohfT6VqHQQAAAAAAAAovSjpAQAAAKjjsRFddZIUsyQyU+FtegAAAAAAACB/\nlPQAAAAA1OFa9cUPezfOvLl/7Nzt9PQAAAAAAABAviSFe2cAAAAAVKPsiZwRvvFng9ejr/Tq\n81Lbps56SetIAAAAAAAAQClCSQ8AAABAHVu2bLEMrv66/dtjSUIISXKs5OPr6+vr4WYo+Nyw\nsDCr5wMAAAAAAABKAQetAwAAAAAoJ5YtW/a3I4qSfSMx/kZivCZ5AAAAAAAAgFKIPekBAAAA\nAAAAAAAAALAR3qQHAAAAoI6QkBCtIwAAAAAAAAClHXvSAwAAAAAAAAAAAABgIyx3DwAAAAAA\nAAAAAACAjVDSAwAAAAAAAAAAAABgI5T0AAAAAAAAAAAAAADYCCU9AAAAAAAAAAAAAAA24qB1\nAAAAAABlT7du3Upwls7B2bNypaoP12/ZqlXbVk0Mkuq5AAAAAAAAgNJOUhRF6wwAAAAAypjg\n4OB/eQX3h5oPHTM6yN9dlTwAAAAAAABAWcFy9wAAAAA0kBYX/cnbI3acvKV1EAAAAAAAAMCm\neJMeAAAAQLGtX7++BGeZszNTkhOORUcnpJosR/SG6rNXLqjtrFc1HQAAAAAAAFB6UdIDAAAA\nsCnFnLFn3YLwtQctv4x4NRu1bHI7rUMBAAAAAAAANsJy9wAAAABsStK5tus17qPXGlo+3vjt\n09N3c7SNBAAAAAAAANgMJT0AAAAADQR0e7+5u0EIoSim5fuvaR0HAAAAAAAAsBFKegAAAABa\nkAyvv+JnGSZ89z9tswAAAAAAAAA2Q0kPAAAAQBtVgppbBnevHdA2CQAAAAAAAGAzlPQAAAAA\ntGFwe8wykLOuaJsEAAAAAAAAsBlKegAAAADa0Dl4WgbmnOvaJgEAAAAAAABshpIeAAAAgDbM\ncoploHOoom0SAAAAAAAAwGYo6QEAAABow5T2q2Wgd6qmbRIAAAAAAADAZijpAQAAAGjj2r7c\nkt6lSpC2SQAAAAAAAACboaQHAAAAoAHFnPnlpjjLuGrH2tqGAQAAAAAAAGyGkh4AAACABn5d\nNem3dJMQQpIMA57x1ToOAAAAAAAAYCMOWgcAAAAAYF/kzOvbIxcu3X7G8rHyY8Pqu/KLCQAA\nAAAAAOwF98IAAAAAFNuCBQtKcJY5J+vWjWsxJ85kyIrliN6pxrvj26iZDAAAAAAAACjdKOkB\nAAAAFNuuXbv+/UX0Bu+h06Y/4qz/95cCAAAAAAAAygpKegAAAAAaqNKg9dARw56o4ap1EAAA\nAAAAAMCmKOkBAAAAFFuNGjVKcJbOwdno4eHjV+fJp1q2CPCTVI8FAAAAAAAAlHqSoihaZwAA\nAAAAAAAAAAAAwC7otA4AAAAAAAAAAAAAAIC9oKQHAAAAAAAAAAAAAMBGKOkBAAAAAAAAAAAA\nALARSnoAAAAAAAAAAAAAAGyEkh4AAAAAAAAAAAAAABuhpAcAAAAAAAAAAAAAwEYo6QEAAAAA\nAAAAAAAAsBFKegAAAAAAAAAAAAAAbISSHgAAAAAAAAAAAAAAG6GkBwAAAAAAAAAAAADARijp\nAQAAAAAAAAAAAACwEUp6AAAAAAAAAAAAAABshJIeAAAAAAAAAAAAAAAboaQHAAAAAAAAAAAA\nAMBGKOkBAAAAAAAAAAAAALARSnoAAAAAAAAAAAAAAGyEkh4AAAAAAAAAAAAAABuhpAcAAAAA\nAAAAAAAAwEYo6QEAAAAAAAAAAAAAsBFKegAAAAAAAAAAAAAAbISSHgAAAAAAAAAAAAAAG6Gk\nBwAAAAAAAAAAAADARijpAQAAAAAAAAAAAACwEUp6AAAAAAAAAAAAAABshJIeAAAAAAAAAAAA\nAAAboaQHAAAAAAAAAAAAAMBGKOkBAAAAAAAAAAAAALARSnoAAAAAAAAAAAAAAGyEkh4AAAAA\nAAAAAAAAABuhpAcAAAAAAAAAAAAAwEYo6QEAAAAAAAAAAAAAsBFKegAAAAAAAAAAAAAAbISS\nHgAAAAAAAAAAAAAAG6GkBwAAAAAAAAAAAADARijpAQAAAAAAAAAAAACwEUp6AAAAAAAAAAAA\nAABshJIeAAAAAAAAAAAAAAAboaQHAAAAAAAAAAAAAMBGKOkBAAAAAAAAAAAAALARSnoAAAAA\nAAAAAAAAAGyEkh4AAAAAAAAAAAAAABuhpAcAAAAAAAAAAAAAwEYo6QEAAAAAAAAAAAAAsBFK\negAAAAAAAAAAAAAAbISSHgAAAAAAAAAAAAAAG6GkBwAAAAAAAAAAAPD/7d1nYBVV3gfgcxOS\n0EIiTZSOdBdBsYNdUaygiwpiQd1X7IpY1wLWVZrY3df2roLYhbVgr+iuBbABFopSpEmvaff9\nMAERkgAJGVSe59M/9545cyaZGUh+95wBYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCeoU3uYwA\nACAASURBVAAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAA\nAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAA\nAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAA\nAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAA\nAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAA\nAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAA\nAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAA\nAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAA\nACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAA\nAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAA\nAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAA\ngJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAA\nICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAA\niImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAA\nYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACA\nmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAg\nJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYVNjaAwAAACgvucN33NpD2DLSesza\n2kOA35dWF7+8tYewxUwcetTWHgIAAACxMpMeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAA\nACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAA\nAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAA\nAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAA\ngJgI6QEAAAAAAAAgJkJ6AACAbcvS6bckymZxfjKEMLRdrejLChl15uQWbPL+kwdtVynasFr9\nC8vvMOM3olXN6Lg6vTZ9a49l4/5Yo2VzfXxu6025litWydqhfuOOh59w+U33ffnziq07Zufk\n5vIdAwCAPy4hPQAAAKXRbchhUZGfM+fSMbM3catlM+9+d9GqqG53/fnlMrJtwxX1q62NWsct\nz93aw+EPafWKJbNnTBvz+vMDrz+/Xb2a3a99bGVBcmsPan1OdTbKSQIAwB+OkB4AAIDSqNPx\nrroZqVH91mWjNnGrr2//Z1QkEml3nNykXEYGbL5kwcoRt/Rqf/p9W3sgAAAAf35CegAAgG1L\nZr2+i4ox9dNua5v9a8rs4pplpSZCCClpNe8+uG7UeP4XV/ywKn9T9t5/2OSoyG567d6Z6Vv6\n4IDfSK/atrgL+ZfZP33xyYcjn36kx/47rW0/8YkLLnhn1lYcMAAAwLagwtYeAAAAAPFKZGRl\nZRT5Tn5m2tq6SrVqWVmVSu7pwEHdw6u3hxAK8pdeMnr6S10aldx++ewHRy8oXOt+r9tO3fQh\ns6Ht6jdsVGFZVGckElt3MPyOpWZlZRX9TlZW9e3r77JHh2O79br40bP3OvPh6OUnzrz/nqk3\nxTfAjXGqs1FOEgAA/nDMpAcAAKCUtmt5055rZsN/dOWwjbafMOjeqEhJrTr0yPrlOLJtwNUf\nfTV1jdaVfQSfMtmz10N9GlSL6iU/DZyfW7B1x7Mupzob5SQBAOAPR0gPAABAaSXSBp/aNCoX\n/dD/s2W5JTe/5dEfoqJGm380ryRHgd+RHj0aR0WyYNXnG7uWAQAAKAshPQAAAKXX7rrLoiJZ\nkNv3makltFwx918jf1kZ1QcP6lK63a1eMOGxQX8/scuR+7ZvU792dnrlrEbN/9Lx4CNOPb/f\nuxPnF7fVtJGHJBKJRCLR4cFJ0Ss/j3vt2nOOb9e6aY3MilnbN9xz/05nXHTbNwtWl7z3lXPG\n3n1jn0P2aFNv++rpFTPrNW5x4PFnP/jse6WbdPzNkL2jUaWmVZ+VU1Ifr3ZtErWsVL3T2nZr\nD6rWzi+W02gXfffeoOsuPGj3NvXr1KxYMbNxy7aHHtn1+vuen7dJ06wLPn7+4UvO6Nqm5U41\ns6ukV8mq17j5/kefctt9w2etzt/kIRCfzBaZa+vF+UX/iEt3Aa5VunNyo6d6uZ5sf6Z7TmTW\ne51/M7Zkzqv/GnziIXs2rlu7YnqlOvV32q/L2Y++MnGdLQreG3bXaUd3aFy/TpWMjB0atzrg\n8OOuunPEorzkhp2/s+Zm1b7/+OIGsGLe8KhNRmb7IhskC1a+/9yD5/bqfth+ezbZsUbFqjVa\n7LJH5y4n9b3toUnFfMc2fpIUrHpt2D1nn3BIiyYNsipn1KzXdN+Djzyjd59n3ptU3DgBAKBc\nJZLJIv5LDQAA8CeQO3zHrT2ELSOtx6x4drTg21NqtBwe1c/NX3F8jY08kz5y6vZVn5i7PIRQ\nrf6li38aXFyzsdft2v7m8SGE1LRaM5bNrpO+2Z8a/+j+S7pdek9xqVsikdKu87nPPTe0ccXU\n9d6aNvKQxl3eDiHs+8DEMec0f/GWnt2uG5G3wa/DqRl1eg94/p4L9ymy/1fuOLfXdf87N6eI\nvTc88OznR9773V47dp/0SwjhsNE/vX74xhfzX73ojcrVDy9IJkMIp3w464kOOxTZLFmwslVm\n1rcrckMIu/YbO/aGXdc7qJqtX5j3zfofeijjaJP5S+689LS/3ztqZUERfzRIr9bk/EHDB5+9\nV3GHtmTyS6ef9LcXP59d5LsZ2a2uvOfJ/qe0LW7zTdHq4pfLsvnvysShR23xPj8+t/W+D0wM\nIaRX3W310s83ZZNxN+y2243jQgiJRMrkFTkbXkelvgAjpT4nSz7Vy/Vk+5PdcyKz3utc98DR\n0dje6b7q/KOPfuiDmRscWuKoK5/6923d8lZ+f+FxnR94Y/KG/dRoe/IXnzxRN/03x/5O1yYH\nvzg1hLBbv3Gf39CuyAGsmDe8Su1TQjEn5+Jvn+9+/NmvTlhY5LYVKja45tHR/U9utd7rJZ8k\nC74ccUr380dPWFBkn62O6fPiU7db3AUAgJiZSQ8AAECZXHVNm6hYOuPO1xYWOzF0wIPfRcX2\n+9xZioT+hyfO6HDe0HXTsspZtXaslZ2aSERfJpMF4165d+/9ri/5o+hvXrN/12ufrNqi0633\nP/Xhf8d9+v5rj9zdb5caFUMI+atn33dxx+s/mbvhVs/0PeioKx9YNy2rVK1GlTXp1I/vPnRw\n+9NnFJWllSAj+7CL6xXOXX7nqneKa7ZgwjVRQp9IpN5+cetN6bmMoy3InXvJoa363D1ybUKf\nSKTVrvXrNOucJVOG/G3v465/tsjNF37z2G5tuq4bmlbOqlm39nYV1vykVi+aeNOpu/Uc9NGm\nHAuxGTWscCWMKnXO2jB1LuMFWB5XUCjnk+3Pd89ZT37Oz712P/ChD2YecOblDz/1ythPP3jq\n0bsPapQZQkgmky/948Rzn/nwrD33fuCNybXanzjg/sc//PzzV5974sLOzaPNf/lixMG93yzL\nADa0cu5Lu+960roJfcVqtXao8evNJ2/VTzedsuvt43/Z9D7nfnTvX/bouTahTyTSatSpWzXt\n13+DJv578D57/W1BXlmWJwAAgM0mpAcAAKBMmvUaEEViyWTyuoe+K7LNyvlPj5i3IqqPHnTo\n5u6iIHfe4f8zLKozsve87ZGX5y3LWb5o7sy5C3Nzlo99fdjp+9SO3p372a23T1tSXD+zP+x/\nxD8+at1j8PSvX72694kd9my3+36del1ww9gZ357cqFoIIZksuOvkoettNfONvicOejeqK1Ss\nd8mgx7+ds3zF4vnLVudM+XT0ZV12CSEs/mHE5VMWbe5xnXNd4QTfOZ9esTi/6KRvzJUvREV2\n02sPy87YaJ9lH+0z5xxw17uFizc02L/XKx+Om7t0xZy5SxbO+O7V4f/YOatwDKNu6nbiwxPX\n2zZ/9fS/HnDe5JV5IYRESkbXS4d8NnnB8kXzZsxZsGLJ9FEP3dA6KyOEkEwWDL/i4PuKmSxL\n/KaMvLLf5MJToucj16/3bhkvwHK6gsr1ZPuz3nPWNf6mI0dMyb1u+Nh3H77jzBM777p7xxPP\nuODN737ovubDQw+cuN+/vl6w9/n3Tv1kRN/ePTvsttsRx59y1yuTnjizRdRg8vAzV27RaPvO\nzmf+sDIvhJCSVr3PHf835ZflKxfPnTV/Sc6yOc/efU3NtNQQQrJg9a1d1j9Fi5O34utOh/f5\nOSc/hJBetfn1D42auWzF/J9nLF29ctrXb51/TOEdeMFXjx11y6db8kgAAGBjhPQAAACUSXq1\njtc3y47qCQNvL7LNdw/eERUVKjUZuGutzd3FvHF9p0TJTYXtHv/8zat6HVmzSlr0VqJCpV0P\n6/HIe18dX6ty9MqoV9ZfunmtKU+MqFy/x2ePX1I1NbHu66kVG9z9wtlRveTHAb9Z4z25uke3\ne6IyrUqb5ydOGNKnZ/Pa0b5SGu9++MAXvnjx6oM294gijU++Pfp8Q/7qmVd/XcTc0GT+0kvf\nLjycA4acufEeyzzaxZMHd3/s26g+9raRU997pHOHdjWrVAghZNdtdkT3K8dNH39u+8Kf4AsX\nHDXttyuBj+1/7Nu/rAwhJBIVrn72m+cHX9K+yXaF46la95iz+n32/et7R9Fpweqrjrh240dE\nuSnIXT5z6rcfvzvywhP2bd51QPTiETe8cv8R9dZrWaYLsNyuoHI92f6s95x1rZ63ardr37ix\n+67rvpiSVnvAY79+jiq76YUf3H1elZR1B5/oduejicIb16yXFqws+0giucu/uH7c/Kg+97mx\ngy4/rXH1wu9wWpXaJ1xwy0ePHh99ufSn+z9dlrspfb5y+nFfLMsJIaRVbvXixLH9zzpmh8oV\nQgghkd5w54PvGTV+6HENo5af337a8qKe7gEAAOVESA8AAEBZnTZwv6hYPnfY43NXbNjgzrsn\nRUW9w4Zm/jas2hQzX/oyKmq1G9qtSeaGDVLSal/SqW5UL/1haQlddX9qUKWUIgZQfecroyJZ\nkPv9yry1r8/++IL3Fxeu4X/hqNHHNCpi78fd+sa5az6msFnSM/e5qnG1qH75mo83bPDLV1dN\nWZUXQkhNr3PfYetHpxsq+2ifP2tQMpkMIdTZ546RVx274V8N0jJbDn3vtXoZFUIIeaumnvX8\ntLVvJfOXnnXXN1Hd7PSnb+m604b9V6q1//Ojzo/qpdPvu3t6ST8syi5n2dhEMVLTq9Zr0nLf\ng7rc8/zH+clkerUW1z/yzqv9Om/YSVkuwHK6gsr7ZPuz3nPWlUit9ORVexYxsLbd19Zdn/h7\nhQ3Gnp65zx5VCz+yMHmdkZfRqgWv5CWTIYREIm3I0Q03bNCk2+BGjRo1atSoYcOGY5flbLTD\nvJWTeo2cFtXHP/JS53pVNmxz/og3own6uSu/u/mnYldEAACALU5IDwAAQFnV63R39TWP+B0w\n4Jv13l21YNRjc5ZH9cl3dChF/y3OenL8+PHjx49/74UTimuTXLtcfPGTIVPTag7es3aRb6Wk\n1a64Jkhbd274+Jtej4oq25866OAdi+v4hse7FbvXEp1x8x5R8fO7V6zaYOHo9y4fFRV1D7l3\nh/SN/wpfxtEm8xdfOqbw8d6XDj+nuL2kVdn18ZObRPWXt76/9vVls+75anluCCGRSBk8qIis\nN7LD/gOPqVEpqh99+IfimhGnRCLl7Lse6d/rwCLfLcsFWE5XUHmfbH/ie85aVWqf2rRihSK6\nTq+7tr5ylxpFbls/o3DD/CLfLpVESuGjNJLJ3KenFfG5h9T0elPXOKdOEYn7eub898oFuQUh\nhLTKLR/u1rjINqkVm960S/3s7Ozs7OyvPl9QhuEDAMDmEdIDAABQVqkZDe7cu05Uf//wtesl\nVj88ektUpFfdrX/z7UrRf5WGLdu2bdu2bdsW9SoX2WDV/PE3jp6x0X4qb396laKmtEaKfOPh\nzwuXX25+7qUl9Fx790HVKpTmV+wGxw7KSEmEEHJXTOr/w2+eMJ3MW3TpB4WR+el3HrwpvZVx\ntMtmDl2cVxBCqFCpSd9G1Uro4S+Xtl2zyYi1L8585aWoqFSj61HVKxa/deLyIwtXBfhxxIcl\n7IXYJJMF953RYaeDzp68qojUtSwXYDldQeV9sv2J7zlrpVX+SzHDKhxXIiW9RaUiUvxQzMjL\nqHLtU7LXHNHZ7Q+985mPcsq2/PykoV9FRfWdbyzhp9D7s6kLFy5cuHDhSycUHeQDAEB5KPq/\n2gAAALBZjrizS2h/Xwhh1cLXh/y0tE+DX5dovnfQhKho9NfB6Vsm2yn4Zea0HyZPnjx58vff\nTvz6q/Gvv/7hkrwN5qFvIK1KMaFU8casWXe63YlFLL+8ViI18+Ralf/587LN7T+tyi43ttju\nyokLQgjP9ht72/Bfw/h54y6fvjovhFAx++B+zTdpaesyjnbRhMIUMyU184brriuhh9WLpkdF\nzrLPfh3wh/Oiomq97kVss45GpzQKj38fQlj1y/shXFhyY8oivWrbuTPeK+bN5IJZU7/7dsKj\nt/V96pPZIYQp7z58wNFtZrx58cZ63YwLsJyuoNhPtj/PPWedLjb6V8HU0ne++VLStn+xz94H\n3vFRCGHVwk8uPbHDVdkNDurU6YD9Onbs2GHPtk0395+PsV8ujIr6XVts8dECAEAZCekBAADY\nAmq2G9C68v9OWJEbQvhnv7F9Hjkgen31wtcfnF241v3/9N+tLLtYMeuzhx4e8eqroz8e9+3i\nVaV5EHJK6mY+97pg+c85hROLW2Wml9y4TZW0UgwphHDSP/a58riXQwg/vXR1Qfjv2rmxb/V9\nJSpaXjBgUybMln20S78vXGI6Z9kXN9/8xSbsMxTkLliSn6yWmgghLJtSmBdWaVS95K2qNChc\nQztvleXuy1tqVlZWce9lZe3auNWuhx930qGntv7bsO9DCLPevuztRb0Pzs7YsHEpLsDyu4Li\nOdn+rPec360Dbn9/RI2L+lz/4KzV+SGE1Yt+Gv30Q6OffiiEkFa17qHHHHvccV1OOuGw7Aqb\nFNd/v7LwR5bZPLPklgAAED/L3QMAALAFJFIq39W1cN7n1Gcvy12zTPHkYf2SyWQIoeJ2ndad\nXr+5Xuh3Wv1Ge118/aDRH3+zNi1LSa3UoPkuhx/X/ca7Hn/4xCZlOoCiJBIZqWtXft5Y402L\njYpQ97AhVVNTQgg5Sz8Z9FNhTF6QO7/Pf+aEEBKJlNv6tI5ntLlLcjdxzOtatuGTuTe6+5TC\ncDFZsLIUe2QLS1Q4/YFh0WMXksn8u74u4sncpbsAy/EKKv+T7U98z9nKkiWsQJB60hX3Tp7x\n+dD+lx66e9O134oQQu6yma8+eX/vkw9v0OzAf76+SZ+3WLpmqYPUyrEuCQAAAJvCTHoAAAC2\njD1v7R2G9Q0h5Cz9/IbvFt7aYrsQwv/e/nX0bvOzby51ovRxv8OP7/96VGdkN+1+xskd9ti9\nfft2LZs1qLTmScMfT7i1bMMvSqJCg4zUqavyQgiTluWU3HbSitJMtA0hVKjU7La/1Ljwi3kh\nhMdu//rye/cJIcz99LLZOfkhhKydrjliuxIeub0lR1u1SdWoyGp4w6Jp/Tb9EH7d/OMQQlg+\nbVHJLVfOmhsVFSo139y9UB7Squ7RtUalEfNWhBBmjpkXOu6w7rulvwDL7Qoq75Ptz33P2bry\nc2aW3KBizbYXXT/4ousHr5g96Y233v3wgw8/+OCDTyZOjz7vtXTa+7077zxnzPTr9q5dcj9N\nKxX+2XP5tOVbZOQAALAFmUkPAADAlpHZ4LKjqleK6iev+CiEkLP4vbtmFq5KfXnfnUvXbd6K\nCV1ueyuqW/YYOmved48OuensHsft2qLh2rSs/By2JiAf/9z0ktolc6KAs3S6DCx8OsCUETdG\nxWt9CwPC/Qedven9lHG0Wa3rRsXqxR9s+k7XqrlPzahYNmNEyS1/HP5jVKRn7lWKHVEedqta\nuLj6ssm/ecx5GS/AcrqCyvVk2xbuOVvR8hmfbWLLynVaHndK7wEPPPGfb35c/NNXj95ybq20\n1BBCsiBn4Mn/2OjmbetUjooZL/5YQrNk3vLFixcvXrx4ycY+FQEAAFuQkB4AAIAt5qaLWkbF\njDcuXpqfnPrMdQXJZAihSu2ePWtXLl2f88b/fW5OfgghrXKrzx6/sHoxSzwvnrSkdP2X7OR9\nCydrfnvfPSU0WzDhhjlrniRdCjvsP6R6WkoIYdWC0Y/MWVGQM7vvZ/NCCKnpte87ol5so83a\nqU9UrFr09puLVpfQw7Kp48eMGTNmzJjPvvl1HnPdY46IipXzn3ujxM2HvPhTVDQ4vlMJzYhT\nxTXx8+r5v/nZlfECLKcrqFxPtm3hnlPe8osf2xdDxhX5+rejnhk2bNiwYcNGfTRvw3cz6+18\nxjX3jXnskOjLpdPvy0tu2Oo32p7fLCrmfXJHCd+pTy7dKzs7Ozs7e+cub2+kRwAA2HKE9AAA\nAGwxrS68KZFIhBDyVk6+fPz8R2/+Inq9dd8rSt3nssm/REVG1gFVipnGWpA774pP55Z6FyVo\nc+1xhcOY9dDV788urtldZzxclr2kptcbsFutqL773kmzP7p0fm5+CGHHg+6tm74ZT1Mu42jT\nqrY/a8fCFe8vuvr9YneTzDljnw4dO3bs2LFjn3W+7Zl1L25ZOS2EkEzmX3z1W8VtPfuDK56d\nXzgD+KTzLHf/e5GTLMw8c375zXziMl6A5XQFlevJti3cc8pJYs2365f/FL2mff6qyb1HFT2v\nfdJNF/bs2bNnz55n9HqiuP7r7HfQr11tbDD1j+oTPdV+1aJ3+rwzq5hWBbc9OSWqmp7RdGNd\nAgDAFiOkBwAAYIupWP2oPvUzo/q5/7l14E9LQwiJRMotfyt9FpvZbLuoWLVw9Lzcgg0bJAtW\nDO65z1fLc6MvC4pqU2o1297Rac3q04OP7jx6RhHPNn5/4An9Pyti6udm6TywcJrv9/+88+XL\nCyd0njb0kM3qpOyjve7+wgnKk/55dL9XphTZ5uWbjnluzooQQmpazaF/bbz29URq1iPntFiz\nedebR/+04bYr577X5ei7orrqjmf+faesjR4U8Vg7L3n1gpXrvl7GC7CcrqByPdm2kXtOechs\nXnj//3nMee8t3HCFg/z7Tzts2qq8IrdtclKDqFj0wzUjfy56Jf+37xweFRWrH5mxsScPVKzR\n5ba2hY9FeLDL8R/OX7Vhm49vO2LkLytDCImUjH8c12AjPQIAwJYjpAcAAGBL6n3rnlExf+yd\n+clkCCGz/iWHZWeUusPqra9Mi2bnr5q2x/E3TVp3Le5kzvtPDT1y10aXPz157WszXnpows9F\nxFqllKjw2IuXRmXO0vHHtmhzxd1PTVlQOIbZE8b0P2P/A694IYRQtVHVsuxn+70G10lPDSEs\nn/P4xePmhRAysg/o32K7mEfb8OjHz/9L9RBCsiDnxmNa/vXSAf/9evLywvw2OfOLN67p1eHo\nG16PGu979chdq6atu/met47skJ0RbX7D0Tv3vPbBb2YVPuA8f+WcVx67cY8Wh/93yeoQQiIl\n/eZX7ti8o6M8Za1Z1H31wvfWfb2sF2C5XUHld7JtI/ec8tD41IOjIn/1zK4dT3npq1/WvrV8\n1rirTmx34TNT0yq3aFSxwobbNut1dXpKIoSQLFjVo12nu598c1He2k8/FMz88u1+vQ/sMvir\n6Ovd+vTblPGc99ID0ZNEVi/572Et9r71idfmrSqcgb9s3rdD+px40LVvFu799Kf3ykzf3OMF\nAIBSE9IDAACwJTXqeleV1N/8srlb/3PK0mF6tX2H9Sh8tPCPL/XbuU7NNrvtdegRnfZo03y7\nKlUOOPmS0V/OS6vS/PaHekZtlvz48F/qZjVo1rUsO13XDvvf+vwVhTPac1dMHXDRyU1rVqpW\no071zIo77Nyx3/99kEwmMxt0fev/OpRlLylpNYfsWyeqV+YnQwgtzx20GSvdb6nRplQc9P6L\nB+xQJYSQLMh97s4r9m7TNDOjcr1G9apVSqvXrtNtj30UNWzWpf+b/fZdb+vUik1GvnN3w4oV\nQggF+cuG3dK7Tb2s6rXrNq5fp2rmjkf1uuGbRatDCIlESo873r24bY3NPz7KS9MmhXOgV8wd\n9uPqX5cSL/sFWE5XUPmdbNvIPac8VG894Jzm2VG9cMJzx7atU6/pXw4+otM+7Vtm12t/+zNf\np6RWHfDOBzsVFdJXrNH1mbPbRvWKuWMu6nFY9YxKNbav27jhjlUz0uu1PaT/g4UfH6nR9oxX\nr2izKeOpUvf4jx65KCMlEUJYteCLv596RJ2qmXXqN6qdVSmzdss+Q55ZXZAMxYsrqwAABn9J\nREFUIWQ3O/nN+48q++EDAMCmE9IDAACwJVWo3GrAmhWGQwiJlPSB66yIXjp//b9Pru3eIXq6\ncEH+sq/HffLWa2989vX3i1bmhRBaHNpr9KSxV5z56HWd6kXtk8n8efOXlnGn6+p6+5uv3NF7\n+zWPh08mk0sXzFm4rHBua92Ovd4Z/2TDjCJip81yyMBfU6JEIuWWvjtvldFmbLffG99+3PvI\nXzOwZMGqmT/OXLpmBmpKatVTrnv06+evTy9queka7f72xfinjmpba83eCxbOmzVtxpxV+QVr\n+m91/RPjnrhsn9IdHeWk0amNoiI/d94xfYetu4B72S/AcrqCyu9k20buOeUg9a5P3+y2d/3o\ni2Qyb+bkb9557Y3/jP02L5nMyN7l3tcnXLxnreI2PvaB/959/hHRtz2EkCzIWTB31rSffl6e\nU3jzSSRS9jv1ui8/eTgzdWOL3a/RoueQiaPu2HX7StGXBfkr58z4cd6SX5e+b31M30/GP14/\noxSfiQIAgNL7Hf5vHgAAgD+2Lnceft7+j0f1ds36t//tiuilkEjNumn4h+ddNvLGwf/6+rvv\nf/jhh8UFlXfcsf4eB3Y+vtup3Q5uFTXr/+p3ezw48IX3vwjbNWjd5sAy7nQ9nS+/f+pp//PQ\nP58Y9e/XJ/44a96CFdnb79B45717nH5G7+6d0hNhRYOzBg48KITQsGV26XZRs92ARhUfiR7Y\nXK3xlUdVr7i1RpuW2eb+l7+8/P1nH3lm1Gtvf/zT7DkLV6Q0bNqsWbNmrdt1OPXsXm13rFzC\n3rNaHP/SuGM/ePaRp0e99PZ/vpw9Z+6S3NRatWs32XnPzkcdc+bZJ+0gD/v9qde5byLxQTKZ\nDCF8dc/pA67semW9wrn1W+QCLKcrqJxOtm3knlMe0qu1f/rjH//z7J1DHh/9/fff/zBlZoWs\nWnXrNz/yxJ5nnntqi8y0EMI5N/+j86q81PTt1984kX7BPa92+9tbDz/+1CcTpkyfPn369OlL\nk1UbNmrYqGGjnVrv0e2U0w9ss8FWG9P4qL6fzTjj2YceGvnvf//nq6lz5s5LZlSrtUOjffY/\n8K+nn3dCh522yIEDAMBmSUS/fQEAAPz55A7fcWsPYctI6zFraw9h25AsyMvLy8vLS69U2bpz\nv3OtLn55aw9hi5k41Drb26o/7j0nmYxGnlqxUtqmzmkHAAB+ZSY9AAAAhBBCSKRUSEuvkJa+\ntccBbBv+uPecRKJCWlqFtLKukgIAANusP9jndAEAAAAAAADgj0tIDwAAAAAAAAAxEdIDAAAA\nAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAA\nAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAA\nAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAA\nAAAAMUkkk8mtPQYAAAAAAAAA2CaYSQ8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMh\nPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERI\nDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHS\nAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0\nAAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9\nAAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgP\nAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdID\nAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQA\nAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0A\nAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQk/8HMuCCfN4H/3gAAAAA\nSUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig11_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=acl00)) + theme_minimal() +\n", " geom_bar(position=\"dodge\",stat=\"identity\",width=0.7)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/96)) +\n", " scale_fill_manual(values = fig11_colors)+\n", " ggtitle(\"Figure 11a: Participation time per day in the most common secondary activities watching TV and listening to radio, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 11b: Participation time per day in the most common secondary activities socialising with family visiting and feasts (hh mm; 2008 to 2015)\n", "\n", "The data is in a different dataset then in the previous figures, this the data is in the *tus_00educ2*. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^social|^visit\",sex=\"total\",isced97=\"^all\")`. This time again we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility, because we need the time values. " ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>isced97</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Austria </td><td>2010</td><td>1:18</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Belgium </td><td>2010</td><td>1:40</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Estonia </td><td>2010</td><td>1:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Greece </td><td>2010</td><td>1:36</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Spain </td><td>2010</td><td>1:34</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Finland </td><td>2010</td><td>1:18</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>France </td><td>2010</td><td>1:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Hungary </td><td>2010</td><td>0:30</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Italy </td><td>2010</td><td>1:29</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Luxembourg </td><td>2010</td><td>1:34</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Netherlands </td><td>2010</td><td>1:18</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Norway </td><td>2010</td><td>1:42</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Poland </td><td>2010</td><td>1:35</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Romania </td><td>2010</td><td>1:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Serbia </td><td>2010</td><td>1:35</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Socialising with family</td><td>United Kingdom </td><td>2010</td><td>1:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Austria </td><td>2010</td><td>0:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Belgium </td><td>2010</td><td>1:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Estonia </td><td>2010</td><td>1:49</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Greece </td><td>2010</td><td>2:12</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Spain </td><td>2010</td><td>2:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Finland </td><td>2010</td><td>1:34</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>France </td><td>2010</td><td>1:56</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Hungary </td><td>2010</td><td>0:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Italy </td><td>2010</td><td>1:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Luxembourg </td><td>2010</td><td>2:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Netherlands </td><td>2010</td><td>1:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Norway </td><td>2010</td><td>0:56</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Poland </td><td>2010</td><td>1:30</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Romania </td><td>2010</td><td>1:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Serbia </td><td>2010</td><td>1:56</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Total</td><td>All ISCED 1997 levels</td><td>Visiting and feasts </td><td>United Kingdom </td><td>2010</td><td>1:33</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & isced97 & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Austria & 2010 & 1:18\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Belgium & 2010 & 1:40\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Germany (until 1990 former territory of the FRG) & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Estonia & 2010 & 1:55\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Greece & 2010 & 1:36\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Spain & 2010 & 1:34\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Finland & 2010 & 1:18\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & France & 2010 & 1:37\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Hungary & 2010 & 0:30\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Italy & 2010 & 1:29\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Luxembourg & 2010 & 1:34\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Netherlands & 2010 & 1:18\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Norway & 2010 & 1:42\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Poland & 2010 & 1:35\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Romania & 2010 & 1:59\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Serbia & 2010 & 1:35\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Socialising with family & United Kingdom & 2010 & 1:08\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Austria & 2010 & 0:51\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Belgium & 2010 & 1:08\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Germany (until 1990 former territory of the FRG) & 2010 & 1:47\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Estonia & 2010 & 1:49\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Greece & 2010 & 2:12\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Spain & 2010 & 2:47\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Finland & 2010 & 1:34\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & France & 2010 & 1:56\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Hungary & 2010 & 0:50\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Italy & 2010 & 1:07\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Luxembourg & 2010 & 2:01\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Netherlands & 2010 & 1:39\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Norway & 2010 & 0:56\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Poland & 2010 & 1:30\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Romania & 2010 & 1:01\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Serbia & 2010 & 1:56\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Total & All ISCED 1997 levels & Visiting and feasts & United Kingdom & 2010 & 1:33\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | isced97 <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Austria | 2010 | 1:18 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Belgium | 2010 | 1:40 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Germany (until 1990 former territory of the FRG) | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Estonia | 2010 | 1:55 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Greece | 2010 | 1:36 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Spain | 2010 | 1:34 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Finland | 2010 | 1:18 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | France | 2010 | 1:37 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Hungary | 2010 | 0:30 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Italy | 2010 | 1:29 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Luxembourg | 2010 | 1:34 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Netherlands | 2010 | 1:18 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Norway | 2010 | 1:42 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Poland | 2010 | 1:35 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Romania | 2010 | 1:59 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Serbia | 2010 | 1:35 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Socialising with family | United Kingdom | 2010 | 1:08 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Austria | 2010 | 0:51 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Belgium | 2010 | 1:08 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Germany (until 1990 former territory of the FRG) | 2010 | 1:47 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Estonia | 2010 | 1:49 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Greece | 2010 | 2:12 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Spain | 2010 | 2:47 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Finland | 2010 | 1:34 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | France | 2010 | 1:56 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Hungary | 2010 | 0:50 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Italy | 2010 | 1:07 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Luxembourg | 2010 | 2:01 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Netherlands | 2010 | 1:39 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Norway | 2010 | 0:56 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Poland | 2010 | 1:30 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Romania | 2010 | 1:01 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Serbia | 2010 | 1:56 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Total | All ISCED 1997 levels | Visiting and feasts | United Kingdom | 2010 | 1:33 |\n", "\n" ], "text/plain": [ " unit sex isced97 \n", "1 Participation time (hh:mm) Total All ISCED 1997 levels\n", "2 Participation time (hh:mm) Total All ISCED 1997 levels\n", "3 Participation time (hh:mm) Total All ISCED 1997 levels\n", "4 Participation time (hh:mm) Total All ISCED 1997 levels\n", "5 Participation time (hh:mm) Total All ISCED 1997 levels\n", "6 Participation time (hh:mm) Total All ISCED 1997 levels\n", "7 Participation time (hh:mm) Total All ISCED 1997 levels\n", "8 Participation time (hh:mm) Total All ISCED 1997 levels\n", "9 Participation time (hh:mm) Total All ISCED 1997 levels\n", "10 Participation time (hh:mm) Total All ISCED 1997 levels\n", "11 Participation time (hh:mm) Total All ISCED 1997 levels\n", "12 Participation time (hh:mm) Total All ISCED 1997 levels\n", "13 Participation time (hh:mm) Total All ISCED 1997 levels\n", "14 Participation time (hh:mm) Total All ISCED 1997 levels\n", "15 Participation time (hh:mm) Total All ISCED 1997 levels\n", "16 Participation time (hh:mm) Total All ISCED 1997 levels\n", "17 Participation time (hh:mm) Total All ISCED 1997 levels\n", "18 Participation time (hh:mm) Total All ISCED 1997 levels\n", "19 Participation time (hh:mm) Total All ISCED 1997 levels\n", "20 Participation time (hh:mm) Total All ISCED 1997 levels\n", "21 Participation time (hh:mm) Total All ISCED 1997 levels\n", "22 Participation time (hh:mm) Total All ISCED 1997 levels\n", "23 Participation time (hh:mm) Total All ISCED 1997 levels\n", "24 Participation time (hh:mm) Total All ISCED 1997 levels\n", "25 Participation time (hh:mm) Total All ISCED 1997 levels\n", "26 Participation time (hh:mm) Total All ISCED 1997 levels\n", "27 Participation time (hh:mm) Total All ISCED 1997 levels\n", "28 Participation time (hh:mm) Total All ISCED 1997 levels\n", "29 Participation time (hh:mm) Total All ISCED 1997 levels\n", "30 Participation time (hh:mm) Total All ISCED 1997 levels\n", "31 Participation time (hh:mm) Total All ISCED 1997 levels\n", "32 Participation time (hh:mm) Total All ISCED 1997 levels\n", "33 Participation time (hh:mm) Total All ISCED 1997 levels\n", "34 Participation time (hh:mm) Total All ISCED 1997 levels\n", "35 Participation time (hh:mm) Total All ISCED 1997 levels\n", "36 Participation time (hh:mm) Total All ISCED 1997 levels\n", " acl00 geo \n", "1 Socialising with family Austria \n", "2 Socialising with family Belgium \n", "3 Socialising with family Germany (until 1990 former territory of the FRG)\n", "4 Socialising with family Estonia \n", "5 Socialising with family Greece \n", "6 Socialising with family Spain \n", "7 Socialising with family Finland \n", "8 Socialising with family France \n", "9 Socialising with family Hungary \n", "10 Socialising with family Italy \n", "11 Socialising with family Luxembourg \n", "12 Socialising with family Netherlands \n", "13 Socialising with family Norway \n", "14 Socialising with family Poland \n", "15 Socialising with family Romania \n", "16 Socialising with family Serbia \n", "17 Socialising with family Turkey \n", "18 Socialising with family United Kingdom \n", "19 Visiting and feasts Austria \n", "20 Visiting and feasts Belgium \n", "21 Visiting and feasts Germany (until 1990 former territory of the FRG)\n", "22 Visiting and feasts Estonia \n", "23 Visiting and feasts Greece \n", "24 Visiting and feasts Spain \n", "25 Visiting and feasts Finland \n", "26 Visiting and feasts France \n", "27 Visiting and feasts Hungary \n", "28 Visiting and feasts Italy \n", "29 Visiting and feasts Luxembourg \n", "30 Visiting and feasts Netherlands \n", "31 Visiting and feasts Norway \n", "32 Visiting and feasts Poland \n", "33 Visiting and feasts Romania \n", "34 Visiting and feasts Serbia \n", "35 Visiting and feasts Turkey \n", "36 Visiting and feasts United Kingdom \n", " time values\n", "1 2010 1:18 \n", "2 2010 1:40 \n", "3 2010 0:00 \n", "4 2010 1:55 \n", "5 2010 1:36 \n", "6 2010 1:34 \n", "7 2010 1:18 \n", "8 2010 1:37 \n", "9 2010 0:30 \n", "10 2010 1:29 \n", "11 2010 1:34 \n", "12 2010 1:18 \n", "13 2010 1:42 \n", "14 2010 1:35 \n", "15 2010 1:59 \n", "16 2010 1:35 \n", "17 2010 0:00 \n", "18 2010 1:08 \n", "19 2010 0:51 \n", "20 2010 1:08 \n", "21 2010 1:47 \n", "22 2010 1:49 \n", "23 2010 2:12 \n", "24 2010 2:47 \n", "25 2010 1:34 \n", "26 2010 1:56 \n", "27 2010 0:50 \n", "28 2010 1:07 \n", "29 2010 2:01 \n", "30 2010 1:39 \n", "31 2010 0:56 \n", "32 2010 1:30 \n", "33 2010 1:01 \n", "34 2010 1:56 \n", "35 2010 0:00 \n", "36 2010 1:33 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ2\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^social|^visit\",sex=\"total\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. We drop the values for Turkey as it is 0. Before plotting the values we need to cut the brackets from the name of Germany. " ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 34 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Socialising with family</td><td>Austria </td><td>01:18:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Belgium </td><td>01:40:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Germany </td><td>00:00:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Estonia </td><td>01:55:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Greece </td><td>01:36:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Spain </td><td>01:34:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Finland </td><td>01:18:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>France </td><td>01:37:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Hungary </td><td>00:30:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Italy </td><td>01:29:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Luxembourg </td><td>01:34:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Netherlands </td><td>01:18:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Norway </td><td>01:42:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Poland </td><td>01:35:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Romania </td><td>01:59:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>Serbia </td><td>01:35:00</td></tr>\n", "\t<tr><td>Socialising with family</td><td>United Kingdom</td><td>01:08:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Austria </td><td>00:51:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Belgium </td><td>01:08:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Germany </td><td>01:47:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Estonia </td><td>01:49:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Greece </td><td>02:12:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Spain </td><td>02:47:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Finland </td><td>01:34:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>France </td><td>01:56:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Hungary </td><td>00:50:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Italy </td><td>01:07:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Luxembourg </td><td>02:01:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Netherlands </td><td>01:39:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Norway </td><td>00:56:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Poland </td><td>01:30:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Romania </td><td>01:01:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>Serbia </td><td>01:56:00</td></tr>\n", "\t<tr><td>Visiting and feasts </td><td>United Kingdom</td><td>01:33:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 34 × 3\n", "\\begin{tabular}{lll}\n", " acl00 & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Socialising with family & Austria & 01:18:00\\\\\n", "\t Socialising with family & Belgium & 01:40:00\\\\\n", "\t Socialising with family & Germany & 00:00:00\\\\\n", "\t Socialising with family & Estonia & 01:55:00\\\\\n", "\t Socialising with family & Greece & 01:36:00\\\\\n", "\t Socialising with family & Spain & 01:34:00\\\\\n", "\t Socialising with family & Finland & 01:18:00\\\\\n", "\t Socialising with family & France & 01:37:00\\\\\n", "\t Socialising with family & Hungary & 00:30:00\\\\\n", "\t Socialising with family & Italy & 01:29:00\\\\\n", "\t Socialising with family & Luxembourg & 01:34:00\\\\\n", "\t Socialising with family & Netherlands & 01:18:00\\\\\n", "\t Socialising with family & Norway & 01:42:00\\\\\n", "\t Socialising with family & Poland & 01:35:00\\\\\n", "\t Socialising with family & Romania & 01:59:00\\\\\n", "\t Socialising with family & Serbia & 01:35:00\\\\\n", "\t Socialising with family & United Kingdom & 01:08:00\\\\\n", "\t Visiting and feasts & Austria & 00:51:00\\\\\n", "\t Visiting and feasts & Belgium & 01:08:00\\\\\n", "\t Visiting and feasts & Germany & 01:47:00\\\\\n", "\t Visiting and feasts & Estonia & 01:49:00\\\\\n", "\t Visiting and feasts & Greece & 02:12:00\\\\\n", "\t Visiting and feasts & Spain & 02:47:00\\\\\n", "\t Visiting and feasts & Finland & 01:34:00\\\\\n", "\t Visiting and feasts & France & 01:56:00\\\\\n", "\t Visiting and feasts & Hungary & 00:50:00\\\\\n", "\t Visiting and feasts & Italy & 01:07:00\\\\\n", "\t Visiting and feasts & Luxembourg & 02:01:00\\\\\n", "\t Visiting and feasts & Netherlands & 01:39:00\\\\\n", "\t Visiting and feasts & Norway & 00:56:00\\\\\n", "\t Visiting and feasts & Poland & 01:30:00\\\\\n", "\t Visiting and feasts & Romania & 01:01:00\\\\\n", "\t Visiting and feasts & Serbia & 01:56:00\\\\\n", "\t Visiting and feasts & United Kingdom & 01:33:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 34 × 3\n", "\n", "| acl00 <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Socialising with family | Austria | 01:18:00 |\n", "| Socialising with family | Belgium | 01:40:00 |\n", "| Socialising with family | Germany | 00:00:00 |\n", "| Socialising with family | Estonia | 01:55:00 |\n", "| Socialising with family | Greece | 01:36:00 |\n", "| Socialising with family | Spain | 01:34:00 |\n", "| Socialising with family | Finland | 01:18:00 |\n", "| Socialising with family | France | 01:37:00 |\n", "| Socialising with family | Hungary | 00:30:00 |\n", "| Socialising with family | Italy | 01:29:00 |\n", "| Socialising with family | Luxembourg | 01:34:00 |\n", "| Socialising with family | Netherlands | 01:18:00 |\n", "| Socialising with family | Norway | 01:42:00 |\n", "| Socialising with family | Poland | 01:35:00 |\n", "| Socialising with family | Romania | 01:59:00 |\n", "| Socialising with family | Serbia | 01:35:00 |\n", "| Socialising with family | United Kingdom | 01:08:00 |\n", "| Visiting and feasts | Austria | 00:51:00 |\n", "| Visiting and feasts | Belgium | 01:08:00 |\n", "| Visiting and feasts | Germany | 01:47:00 |\n", "| Visiting and feasts | Estonia | 01:49:00 |\n", "| Visiting and feasts | Greece | 02:12:00 |\n", "| Visiting and feasts | Spain | 02:47:00 |\n", "| Visiting and feasts | Finland | 01:34:00 |\n", "| Visiting and feasts | France | 01:56:00 |\n", "| Visiting and feasts | Hungary | 00:50:00 |\n", "| Visiting and feasts | Italy | 01:07:00 |\n", "| Visiting and feasts | Luxembourg | 02:01:00 |\n", "| Visiting and feasts | Netherlands | 01:39:00 |\n", "| Visiting and feasts | Norway | 00:56:00 |\n", "| Visiting and feasts | Poland | 01:30:00 |\n", "| Visiting and feasts | Romania | 01:01:00 |\n", "| Visiting and feasts | Serbia | 01:56:00 |\n", "| Visiting and feasts | United Kingdom | 01:33:00 |\n", "\n" ], "text/plain": [ " acl00 geo values \n", "1 Socialising with family Austria 01:18:00\n", "2 Socialising with family Belgium 01:40:00\n", "3 Socialising with family Germany 00:00:00\n", "4 Socialising with family Estonia 01:55:00\n", "5 Socialising with family Greece 01:36:00\n", "6 Socialising with family Spain 01:34:00\n", "7 Socialising with family Finland 01:18:00\n", "8 Socialising with family France 01:37:00\n", "9 Socialising with family Hungary 00:30:00\n", "10 Socialising with family Italy 01:29:00\n", "11 Socialising with family Luxembourg 01:34:00\n", "12 Socialising with family Netherlands 01:18:00\n", "13 Socialising with family Norway 01:42:00\n", "14 Socialising with family Poland 01:35:00\n", "15 Socialising with family Romania 01:59:00\n", "16 Socialising with family Serbia 01:35:00\n", "17 Socialising with family United Kingdom 01:08:00\n", "18 Visiting and feasts Austria 00:51:00\n", "19 Visiting and feasts Belgium 01:08:00\n", "20 Visiting and feasts Germany 01:47:00\n", "21 Visiting and feasts Estonia 01:49:00\n", "22 Visiting and feasts Greece 02:12:00\n", "23 Visiting and feasts Spain 02:47:00\n", "24 Visiting and feasts Finland 01:34:00\n", "25 Visiting and feasts France 01:56:00\n", "26 Visiting and feasts Hungary 00:50:00\n", "27 Visiting and feasts Italy 01:07:00\n", "28 Visiting and feasts Luxembourg 02:01:00\n", "29 Visiting and feasts Netherlands 01:39:00\n", "30 Visiting and feasts Norway 00:56:00\n", "31 Visiting and feasts Poland 01:30:00\n", "32 Visiting and feasts Romania 01:01:00\n", "33 Visiting and feasts Serbia 01:56:00\n", "34 Visiting and feasts United Kingdom 01:33:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))][geo!=\"Turkey\"]\n", "dt<-dt[,c(\"acl00\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Visiting and feasts*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(acl00=c(\"Visiting and feasts\",\"Visiting and feasts\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Visiting and feasts\",acl00)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2AT5f/A8STdpbR0AW3ZewoyFARkiDIdIAgK7j1xfXH+FBUREAEXqOCWoYKD\n6QAElSFLkL1HWzqATrpHfn8UkkuaJpf0nrtL+n791Uufu3tuPJ/73D03jGaz2QAAAAAAAAAA\nAAAAAMQzaV0BAAAAAAAAAAAAAABqCjrpAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56\nAAAAAAAAAAAAAABUQic9AAAAAAAAAAAAAAAqoZMeAAAAAAAAAAAAAACV0EkPAAAAAAAAAAAA\nAIBK6KQHAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAAAFAJnfQAAAAA\nAAAAAAAAAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAAAJXQ\nSQ8AAAAAAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI66QEAAAAAAAAA\nAAAAUAmd9AAAAAAAAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAAAAAAKqGTHgAA\nAAAAAAAAAADUZi67sPqzKWOHXd0oPjY0KDCqXsOOXXu+lZirdb0gHJ30EMBcZFTaH9lFWi8V\nfJ3tfttsxB9aV8g98UH+brUpk8kUFhHdqFmrLlf0u/vxFz/9dtXpvFKtFwIA4AUKM1dJDyg9\n3t2ndY2gmKLsP6Qbt/u0/7SuEQAA2iP5AQChchPflIbZIRvOaF0j+DIdnvYWpK2/sX3Dofe+\n9O2qvxJTzhUUl2SmJ+3duWVvfonWVdMjH4sYdNLDK/3UPtaux/HfPAKWNynKWmsymSq23cun\ncrxo4j7DbDbn5WQknjjy77YNX3zw1n1jhzWPbnjrk1N3nffxG2K0ih5ELQtWhWdYb4B+0B4B\nAABqOJ+5tkBmC4OX7AY+0+jgLp/fBOXFqbd0Gb78UJbWFdEFn9/cldFJD0ADp3563Ww2e+PE\nfVhpUerid1+4skmn2auPaF0XAAAAAAAAAAB82f73R604k6d1LaAZOukBaOC9V/710on7vOIL\nh54e1vappce1roh7Mo/cK73DbtyhDK1rVOOwCTzDegOgAkINFMTuBADwYT5zmPOZBQEAmbw3\n7s2csUs62HjAPT9v2Hoq5Vx66pn3mtfRqlZQjb/WFUCNcONDjzcN9qvOFBoGVWt06Er2sfc+\nTMz1xol7kf73P9qpVoCTAsX5uRkZ6Qf+3br7WJrdv8zmsvdu7d5p3/G7WkaIrCMAAAAAAAAA\nADWRuSznq7R8y2Bw5KCdv86P8jdqWCWojE56qOGBKdOHRgZrXQvog7lo4uBXvHLiXuXm16Y9\nGldLTsmsY5s/nD3ttTnLSsqt3wgoL8l4evgbdx2aIayCAAAAAAAAAADUUKX5B8sk3+1tOvpV\neuhrGjrp4ZUiO3XrEZ4l/aWWieDlBcylGVNv7fnJ0Wyvm7gPq9O850vv/3TnLZ90H/hIanGZ\n5ffMw++8vPuFyZ2iNaybCFpFD6KWBavCM6w3QD9ojwAAADWcz1xbILOFwUt2A59pdHCXb2+C\n8nKbr9HXaibroTsf5tub2yE66eGV+i5cvVnrOsAtBemHf1767azJ07aeyXNdWk8TryEa9Hlg\n68/7Gg15T/rjl0+vn7z2Zq2qJIhW0YOoZcGq8AzrDdAP2iMAAEAN5zPXFshsYfCS3cBnGh3c\nxSaoUWrg5qaTHoAQJXl7flq6ad++ffv27d+3b9/hU2nSN7foeeI1VsPB705s/tX0Y9Zb1dK3\nTTcYfK2THgAAAAAAAAAAQFt00gMQIuvoS7fcudwbJ16T3ffKZdPv/NMyWJy79VBBaesQjhQA\nAAAAAAAAAACKoesFNUhRxrGfFi/6btm644mJSUlJ+aaIxo0bN2na9sbb773jpj4hJq3rJ8/R\nP7765Ie/Dhw4kJJnatL21iWfPeykcEn26V+XL/v559V7TySlpKSmpWcFhkdER8d36Nq9Z+8B\no28b2SIySLWae7Pyg38v//qbhX/tPnYmOflMamZoVGz9uLgGLToNv/GmG2+4rmF4gNY1VEa9\nvn0Nhj+lv2zJKXbZSX8h6b/vvvt5y85d/+3Zm5SemZubm1dsDqsdXjs8vFHzdh07duh1zfAR\nQ3qG+VX3+zFu7fzKMpfnbft9+dKlP2zec/zMmTMpKef8akVER0c1bnN5r169r71pbL+2MUIr\nkLpn3fxPv/xr15FTp04lJp+vFVs/Li6+cZsuN44cNWL41VGBnsQv1TacMszF+zevWbFixe8b\nd6WkpqampuWUBtSrV69evbrNO/YcNmzYkEG9Y4P9qj+fnBNb538y7/etB5OSkhKTkkv8wqKi\nY1p3uqJ3n2vG3zuuRZ3A6s9CE+XF535d/NVXi1ceOp2UnJycXRoYFxef0LD5oFHj7xx/U6Pa\nDoLYqV3rvvvuu+XrtqWkpaWnpZf4h0VHx7S5vEe/a264//6Rdd3f6/R2SBLRrAxqLaageJh2\nYNOSJUuWr/snKfnMmZSUYv+IhISEBg2b9r/+llvH3tQ8qlo197KYI5h3hhrz0a2/Llq48Lct\n+1JT09LT00v9w6KiY1p27Na794Bx997eOtqTPURvkUH7aCnseJeXvHvxkpVbtmzZtvvg2fMZ\nmVnZxqCwOnXq1Gvc5oorruh97Q1jB3X111P7E5J9qZJOaL8X6acmNSB/E9eyxIVH721cBgHb\n2jeSHw3PlN0ldJ1oftpe0wgKU5pnLKIqIDJOarXz6/8UT/PdqYLiBy/f6OPQKyGnvYKo0wa1\nP6fweWZAceWFdrvZyowCZedQmLVOOv1uU3c7L19akDj9oUEhpirjUWj9DtOXH64oXJCxUvqv\ndVmFlSd44qcB0jIfnLkgs+bDokIsY9VpNlPO0u28UHzx98xtDw3rJP1XWP37qppRcfahKQ8O\nCXEagk1+tQbc+dL2M3kyK++W9F3XO5m11Esns3Uxcdv9tulN6yp+Pvfv9wNbRjpbjf7ht73w\nUVpxmcs55KUvsBvXMpfqiwu0SeXl75M2NUz70q6G0xNznJTPPPDrPQMv8zO6PtIHhjd+ZOrC\nrNJy5xVwa+fPOT3Z5XztplN5Fi6jh7m8ZPXc51tEOMuYjUbT5YPuWHkwS/6iOZyvdCM+c/zi\n1LKPrBrRs7mTufsHxz82Y0m+6x3QSqkNp9ImMJdvWvx2jwa1nM/CLzD27lfmpxa5XhF2FVh6\nLr/i96KsXfcP7uJktZj8I0c9Ny/H1W7skrj1Vlp4wuGibfpsYkJolXfb+AXWfWWRzdQKz++e\nMLyNk4oFhjef8sM++Yus4SFJtWal+GIqkgzIl7F/9R1XN3VSc6Mp5NqHZ6QWl5krZUpXzt7r\nfOIKHizeaR8tLf9uUq78ZVw8IEE67l1/p8gf146c9uhjoSbn2O+jL6/rZCIm//ARz8zNLHGj\n2hpGBr1GS4WPdxY5x9bef32PwKpPhSqEN+k+edFWx1PwaHfynELZl91ElV29+tmL9FMToStc\n86BaWfVbVlUEhkdvaFyqbWtvSX4crhaXmaFOUiYpxdeJjert24qfoJ3f96z0XwG1Oha5szRH\nvra55Bje5Bnpf53MV60zdFFhSlxc1boConI8s1nVa1ZSirdou7138PrkalZSwa2pq7M/xfs4\n5Nj6dEfpdFrd8afz8hfOfGhXq5gOHzkfpST/kL/tWvo1w1pb1eKeiNNexyp1n1XltoPnHU5A\n8Taon3MKOS3OecTQNgvyIAegkx4C6KyTPn3rJ11iQwyuGI1+o/5vUZleO+kLM7del2Cfz1V1\nXX7v4peahMp9ttsvIPbFr5TPbkvy9v9dhRm2gdKDTnohE3fUSb9h1kNhfrLu7Qqt13XJIRcX\nMvTfSZ998lW7Gs6pejr/fHS/81OyyiLbj93n9NKtWzu/Cuefhee3jOxST+ZcTP6RT3y4Ueai\nyeyk3/rVi/UCZd1JHdV+2MZzsiKtghtOhU1Qkn/43t6N5Fc1OKbTZ9vPOl8DDs+dzu1c2C0q\nWM4sYrrclyrjphwn1OykLy+78NadV7qckdFoHPH6hoqJpG18v0Ut10cQo9H44KIjcpZX20OS\nOs1KxGJWPxmQb+Ubt8oMC2ENr15yLNut69TKHixOLre5S6/9Y5tlLmNZcYp0u/uHtHDvyq8t\njy/TeGmo2f3Fc3XltZroTnenyLuwqG1k0GG0FHG8q7Dp/Yfr+LvxpELXcTMrX3RSs5NewezL\nQsTq1c9epJ+aCF3hmgdVO4q0LIfEhUdvaVzqbGsvSn4crhaXmaFOUiah68Si+vu28ido5YWd\nw2w6TV86nCl/dU1sHC4dd/gPJ2yWV+tOekFhSlxclUlQBcTleGbVr1lZiGjRynbSK7s19XP2\nJ6KPQ47skzZbJ7Tubc7LH5zXy65K/sGNnPdTpu+402YWsbdI/6tO3BNx2lul6nXSi2iD+jmn\nqH4nvcZZkPs5AJ30EEBPnfTnds5PCHLjZUEDXluvw076kvzD18Y7uOPS4XX5TXPu95dxF5Wd\noZNWyVyE6lvVI046aw866YVMvFIn/dHvnzC5syb9Q1p8tdvx3W0V9N9Jf3Rhf7sabs11fPw+\n+Nl9bq0cizot7ymUnfg63/lFn3/mp23oWy/UraUzGk0PfuH4eo0HnfRHFj3k1txD6/b966yL\nYKvshhO9CQozt9/QPLyqaVbFL7DeO2uSnKyEyudO2ccWRAe4caRoOPh95+vZOTU76T+9s53M\neRlNgbN3nTu3c36cvHMSg8FgCojamF3kfGE1PySp0KwELWY1kwH5lrxwnVvVDqpz5YbjP0p/\ncXKdWvGDRUnBEenNc8GR18lczMTfR0un33zMr56trgqeXabx0lBzctmLLh9Asan2kLku66Z5\nZNBbtBR0vDObzdvfu93o/qru+uhSu+mo1kmvbPYldPXqZy/ST02ErnDNg6qUUi2rMnHh0Ysa\nlwrb2ruSH4erxWVmqJOUSeg6qaDIvi3iBG3dHa2k/21+y28yV1dh5hrp6vILrJ9k2xWkbSe9\noDAlLq7KJKgC4nI8sxbXrCoIatEKdtIrvjV1cvYnqI9DlvKiFpJvoRqNpu1VXC6u8Gmn2Mr1\nmZ3s7GnmDeNaSgu3e8SmV1WFuCfitNeZanTSC2qD+jmnqH4nveZZkLs5AN+khy8rzFjb9aqH\nkovKpD+G1m83euwtV3ZoFl+vdlZK8pHdGxcv/OFYZlHFf/+YNHBS2zlaVNaZj8YM/P1MnpyS\nJ5Y82OvR+WazWfpjbOsrR9x4fbe2TerF1MpKTTm8a+OPP/6033aCqyYNvTX2v0WPdDTAYDAY\nDLmnvr7iti/LL61J/9C4wTff0q9ry+ioiMKMlFMn9q/4/vu9tuuwtODovVf165q+s13VL4HR\nuS8n7ZIOBoS26xbm4Pa34tytAx/+otx2NwuObjPutmHNGjVq0KBBZEBxcnJycnLSX8u/2XDg\nnLRY1pHPRn46ceV9rWVWycnO7xeY0KNHj4q/ywqPb9uVbvlXTOduLYKtW6GWO2nWxQkWJw/r\nMHjD2QLpj0FRzUeMHdu7U4v4uDrnTx7Zf+DAjvXL/jxw3lLAbC7/5J7ufQeevbXSAw3uyj7y\nTY875kl/qZVw2ZC+XRs1jCvPTU88dXjdb39nlpRLC+Snbxh82ZjkxJ8iqribUvENJ3QTmMvz\nHugyYNmJHOmPRqN/h6uvHzm0b7OGDSKDSs8kJ+/Z/PuSH9ekFZZaypQVp/1vcMfmiUk31pd1\nvlpWeHpMz/vPl1w8UtRv32fsLSO7t21aLzow8fChA/v3/fLdgv/SbPaExF8ef3P/bS+1i3J3\noSoIXW9Sm96+8Z0v91f8HRzdduwdt1171WX16/idOLh/z39bF37x49kS6/HRXF78XL/r3y3c\nllJ88cfaTa+4Y9zYPl1axwYXHdi3d9f2dV99v6G43Lr/lJdk3Pf8tv1z7G+RttDbIUlEszKo\nuJjykwH5Dn46atRbv9n9aPIP7z18VP/ubRsk1CvNSj1xdPdPi5YePn/xHLIo65+hfexfu+KQ\niIOFf3CLKe2jnvjvYuHCzN/mnMl7xNEVajvfP/2HdPChaT3lLIKCvDTUnN/10eUvf1zR8E1+\ntQbfeu+YW266vFWTehF+p44cOrB/x/xpU/46kWtT7dUPzzh667MtIqqapt4ig0HraCnueJeX\nsrTfUwvsVnV02/7jh/dq0qRJo4axeWlJJ0+e/Gf1Nyt3pkjL7Jxzy7xnMu5var2mrM6RS0T2\npVo6ofkxVyc18eH8zULBlmVHXHj06sal+Lb2uuSnKs4zQ/2kTELXiVL7tojDXLc3HjR89Yxl\nMHHVxBLzvwEyxj7y+UvS1dXgurkJsr/dK/p4LShMiYurMgmqgNA4qdU1KzWjnGc0350qKH7w\n0riPwxg4uWvdsX+fqRgym8vf2nF2Sd/4KkqXTT2cVfnXxT+cnvBYlZ2+H/+eLB0c9UxbmVXT\n7WmvK0ZLtc1lOf9s22/5R1ijyzrEW9u+dBEMKrZB/ZzdeEDzLMjtHMCzewEAZ3TzJP1rPWze\n+WPyD7/3re8q3zFUXpo9b+LIgEuR2uRnkwNp/iT995+Ot/xtNAX1uXH8azPnrfn7n32Hjqdn\n5EtHLMra2NQ2cAfV6Tzj202V75EqL8v7cfbTdjc3mfwjlyZ78vi1u7ziSXqpvvdMSSwsrVS+\n5O+vJzWv9AqXJjd+XNUcdP4kffLaiXbVi796ocOSv45rYbPnBES9OOenDMdvhirfu3ZRf9uj\nYO2ER6uqg8c7f8bhe6QjVvXBnsqzqCp6fH+3TcpiNAXd8sKnjr4RVfb31y/brfzYLq94Nl/p\ndIIDrOfhIbHdPli+tdh25iUXkhdPfSCy0vu7rnzpr6qWXdyGMwvYBH+9cpXdotXrdsuq/Q5e\nEFRacHrag9fafYcpss3DVb1Ky64CQ3pfPFIEhLZ842sHa6+8NPujCQPtKtNo8DIna0M+Zdeb\n3X2vFlc/Miu5UhDLT914fZPaDssbjf63v7kwt9IOn7bti9a2LzYMjRlZVYV1ckgS3azELabH\n8VC+wsz1dnfiG43Gq+9642i2/U3x5WV5y96p8oWBVT1MJijmnP5lhLRYh6f+cbmkxRd2BUtO\nyEOib3Q5inMePEvhpaHGok6rEasdReDysgvfTRtn96hK89G/VzV9nUQGXUVLcce7ud1tToWC\nI7t+smyro9cylm9fNkf6cIzBYKjf8+uqKix/d3KX4tmXWeTq1c9epJ+amGtG/iaoZQkNj97V\nuIRuay9NfiqvFjmZoR5SJrPgk1AR+7ZyJ2jlg21fc/3KURdfSKxwZz2bNTDlmP1YMk+oFT9D\nFxemBMVV+QRVQFycNGt0zcosskUr9SS9iK2ph7M/cX0cMiWttTmmNBq8sqqSeamfGxyJavNe\nVaMUX9glfTTcP7hZvu02Ex33LJQ67XWLW68zEdcG9XNOUf0n6c3aZ0Hu5QB00kMAfXTSn151\nv02A8At5/ddEJ9Pc8+k9Bkc076SvfentHC1veHbjsRwnE5/as750xLCGw7c4fUlvxt7vOtl+\nISO2y1SZC1Id3tVJP2iSsxeSFKT/dVW0/eeF3jrk+EMjhRm/9LA1cuJ2dxewKtXspE/Z8nmD\nIPsXALy8+5yDouUldsfUJ1efdj7xwswN0okbjcYTlW96qCjp6c6v7Pln5oG3pWdHRqPpkW8O\nOJl72sZ3avnZXL75NDXPg/k6fClQZNvbj+WVVDXrrEM/tbO9U8TkF+Y45IrccGalN0HBuWV2\nX1dKuOb5yhme1Jb3brVbddd/5fj7Rg5z8YBa7ZcedhYuPh3XXFo+OPJaJ4XlU6GT/ur/W17V\nNPNSV4b5Objy+PCCKl/gmfTbBGlJo9F4pooPcenkkCS2WYlcTI/joXzv97Y5YhqNxrvnbnNS\n/uz2j2Icva/P8XVqYTGntPBkuOSKeUjUMJdLeujzftKadJvi4kObLnlwmaaC14WaCuFNRx3K\nr7LJmM3mnx+yeSSiVt1xVZXUSWTQT7QUd7wrLTgubSmmgKifnN7fkLrxRek0/YMaXShzXA1B\nnfQisi+h6YR+9iL91KQm5G/iWpa48Oh1jUvotvbS5MfsUWaoh5RJ6DoRsW+bFT1B2/58J2mB\nFretdb7sZrM53/bRjpDoGyu3K6066QWFKXFxVSZBFRAaJ7W6ZiW0RSvSSS9oa2p+9ie0j0Om\nkrx9AZL+y6CIvlWVPPJNX4dz9wuKz6+itaZsGiMtGddrkV0BdTrpFTztdYsbnfQi26B+zikU\n6aTXPAtyKwegkx4CVOrsvPmxp571yAeb0xzOQUZbLb+9vs2NQgNm7nBZ8aV3tzJUonknfYXO\nj8x3fFPUJTmnPpSW9w9utNrR+Yadc/++L80ajUbjx0nOvhCjCC/qpE+4ZrbL8S4krYi1PW+v\nd+VH1VoGj3jcSZ97eseMZ28JrvTOn6i2zzksn5f2tbRYRNOJcuay6sYm0rG+Pev4uU/Pdn6z\n0uefUzvbfDypw+OrXS7g74/bvLftson213o866QPCu+52+l3nsxmc+b+b2rbZkWt7lpTuZjQ\nDWdWehOsGmtzohISM/hsseOeYKkld9nE8JCoIQ7HcbibvfRnivOJF1/YKT2tNfnXcVkfOUR3\n0ke1f8Z581nQL8FulBbjFzitcvmImBBp+bWZDo6S+jkkCW1WQhfT43goU/7ZJXbPalzxkuvb\nwE/8/EjlWjm8Ti005sy93CZKz0txccib0NB6i7fR6FedaxMVPL5M43WhxmAwmPzCFiW6aIkl\neftDJIlEQGhrh8X0Exn0Ey3FHe8yDj8sLdNwkOuPto6KtXnU5ss0x1tHUCe9iOxLaDqhn71I\nPzWpCfmboJYlNDx6XeMSt629OvnxLDPUPGUSuk5E7NtmRU/Q8s9+Ky0QWLuby0x+28TLpKP0\nnOVgT9Okk15cmBKXscgkqAJC46RW16yEtmhFOukFbU2tz/7E9nHI92xDmyenl593fJvON92s\nD/3XvbqxdJTpiY7vKlszsqm02Ig1SXYFVOikV/C0113yO+mFtkH9nFMo0klv1joLcisHoJMe\nAlT92nB3XfWR4zsBXbbVnNMzpQVCYoY5v12xQknefw0rPUysh076sIRR2a7qv/wmm+NZv3er\nvGvJzi/32rwiqd2jm2WO6DFv6aQ3+Uc6PFRUtv2tPjYj+oUddnrnnQh2HVHXPDzB+R0wEx57\n6I7bbu7etqHddYoKfgGxC487zpzO7bW5vfGqj53drmtxcL7NN2bmV3E659nOb1b0/LMwa710\nnQSEtj5eUOXj4xZFOf8EShK1sLiH3J2v2VFv4j0rTrmctdls3vBcV+lYAaFt8irdnSp0w5kV\n3QTlpVl2r9H7398uTmwqlOQfsHtZ2ZTjDiJA5d2s/lUfypn+K41tPk5W+cViHhDdSf/WgQzn\nFTi54hppeZN/+OacIuejrLu5mXSUBekO9gr9HJKENiuhi+lxPJTpn2dsLtOERA/OlNf//3+2\n5zmGKq5TC405SWtHS4s5vMBqUXB+mfStdJGtXpNTE+c8u0zjjaHGYDA0H7tKziyebWA9oTX5\nRzoso5/IoJNoKfR4l/j7ddICPefudznZlb1sviv5ZKX361YQ0UkvIvsSnU7oZC/ST01qSP4m\nqGWJC4/e2LjEbWuvTn48yww1T5nErRNBp+1mpU/Q7osLk5Z547jzN96XD4q0vqnRaAre7uje\nYk066cWFKXEZi0wiKiA0Tmp4zUpolFOkk17Q7qTt2Z/oPg75dr1pc5HkmiXHHZUq7yh5MeGj\n23+RHlmumLHH4ZRvjLZ2lxhNAfsqvfhQhU56BU973SW/k15oG9TJOYVZuU56zbMg+TmAfVsF\nfMPeKfOkg93enBHm56An0o5/aMd5wxoN/uG4sHp5aNhXs8Od199c/NSviZYh/5AW3z/SVubE\n+8/6wv+zq0rN5orBU0vmGD7o4WlNfUrc1XMG1AmSU7LLsz81e63e8cLSisHysguT9pxfcEU9\n52MJtXbuu2s9HddoDHj8239uber40zIBIcMnTbLuXZeNbOywmB3/MA8PN653fqWdXPJy2aXm\nYDAYmt82r2mwgzcc2gmsfcXTCbWnJuZUDOafXVhqnutfvYqHxo6ZP6yRnJK9X/+5/qzGqcVl\nFYMl+QffOp37RhObRF/lDVcd2cffOHGpNRkMhpCYEdN71XdS3sI/pM38sc37fX7I8suC2Qde\nePdKlyPeO2+snOn3bBRmOJUjp6ROBEX0eb5NpPMyEa1bGAzWaFGn5es9agc6KW8wGGKvijEs\ndXqg1PEhSclmpfpiKhsP3/36mE2VPppTR17Menrxw2+0ft1lMaExp37vmZH+SzNLyysGj3z2\npmHaj1UVPvDeq2ZJVO878y45sxDBS0PN8+9cLadYj8hgQ1KusxI6jgxaRUuhxzu/EJvsJWe/\n651q6N/JZpeFxBCRfamcTmh2zNVNTWpI/iakZYkMjz7QuAzKbWuvTn4qk5MZap4yiVsn+jlt\nd+6pFzvOf3yzZfDr13a9/IXjF0EbDIbc07N+zbQ+PRJ7+YyuYQFVFVaVyDClecYiogJC46SG\nO7/+LytpvjtJKXXw0k8fR4u77zW8tMNasembDDc3tStTcPa7PXklFX8b/UJevuzatOiQJefy\nK3458slvhmc62I1SnLvl5/MFlsHaCU+1C9XgUqRip70iqdkG9XN24zHNsyD5OQCd9PBNX/5s\nTR+NRr8ZtzZzUljqiiljDD+8JaZSHvILiH2vT5zzMhfOzDlaYM3/4npNj/E3OSkvFVi7x2Px\nYbOTLx5g8s9+n1X6pcyTVd9286yBMksa/aPmjmgyaNFRyy/bPzxi0LST3mP+QQ2nLF33v2H2\naZZFeLPxr77q9mQvHL3gQWXk7PyKWz/7oHTw3lc6yxxx3KPjjm4/axk8U2Q94QkAACAASURB\nVFzWKMj1mZITHZ9/WWY7NAUmzBmYMHLVacsvq7858cbLNh+/UXPDVdPRT3+XDrZ7yo16d3nt\nIcPnT1kGT/+41ODqwp9/cNPX2kXJmXhQtKy7dvSjTsunXZYx+cdIB5vd2d/lKIHRLnJuPR+S\nFGxWKi+msvGwNH//orPW02C/gNiPrpd174LBYKjT6pU+EdP+yi5yXkxozPELbPB2l9j7tqZV\nDBac++nLtPw764U6LPzKBwclI9b94NoGbldLCV4aagLDutwXX8t1OYMhtJaL80o9RwatoqXQ\n411IfZvTn8Of3bv+le39YoINuiQi+1I5ndBqL9JPTWpI/iaiZQkNjz7QuJTa1t6e/NiRmRlq\nnjKJWyf6OW13rsUdb/s/0cfaRf3jC+VfbKqqhe+c9Il0cMSc0VUUVJvQMKV5xiKiAkLjpIY7\nv/4vK2m+O1komKjop4+jVtyD3Wo/uT23uGIwY+/kUvM4u3Oy1D+ttxSExT1aP8D0yIC4Jd9d\nvEku5+S0vPKnatl+cfXcjmnSwdaPj1ewzjIpeNorlJptUD9nNx7TPAuSnwPIPaYCXsRclvtV\nep5lMDhy8BWu7uKxiGj+bFClj3NrK7Tu+LoBLppq+uafpYPtnuvu1iyu7xpt+dtcXvij5P61\nGstoDHi+jax0qkLXl/tJB9P/2qRwhcQzmgL63jZx/eH9/xvWQtkpl+bvf3rWfg9GlLPzK26e\n5A5Wk3/kEw0cv1Ggsg7Pzfleovqn+k/c3tx1oUt6T+4tHTy91JMVbsfjDVdNu5cnSweHjqvy\nlpHKajd4JDbAuubz074pdzVKeOOnBF6V0VSdjvZv5nTA9ogXebmL+2QNBoPR4OIoqedDkoLN\nSuXFVDYe5qV9Lr1HuHbDZxq6EbL8XrqyrlI1kXIr5gx52+bDQ7PfP+iwWG7i7BWSdRvX9/2E\nQG1Of7w01IQ3fVypSek5MmgVLYUe72onPC19qWlJ3r7hnYZ8vOo/+bNQk4jsS+V0Qqu9SD81\nqSH5m4iWJTQ8+kDjUmpb+0DyIyU/M/S6lEnmOtHPabtzgeG9XmoeYRksytk8vapHZs3FT39v\nfdVwYFjnWd1kxHNVCA1TmmcsIiogNE56y85fQeXLSprvThZKHbx01sdhmtTH+k6IkvyDn6bm\n2ZXYPtO6uRuNHGUwGNpPvMryS1lx+qwk+w7j3dN3SgcfvMONizZKUfC0V288boP6ObupDm2z\nIPk5AJ30UMPKjALPvtyw8cE2Hsyu4PyygjLJ2VcTN+7AMvlHST8brwcRra9zWSbphyTpYN/W\nEVWVdDyL9jbld1wodmt0nxQSfX2cO+E4vPGj0sHC7D+UrpEQwbWjGrdoc9W1N7/yzvwth9LX\nL5jWq1GY69FkMhefOrjz6xkTe7S6Yp1HF9Pl7PzKKis8sSPXuv+Hxo4J1OimHb/AuqNi3IhF\n4c3ukw7mp/zi+byrveGq6TfJMy5Go9999WXdzXpphMDxda03RZYVp2zLdRHQ6nTo6LyA9wqI\ncPvtiIERCtzTqttDkrLNSuXFVDYeZu3/VzqYMLyfW6O3uFvuzfuyeBRz6vecKb16dfiTaQ6L\nbX95rnTwttly35GjOC8NNXXaK7atdRsZDNpFS6HHO7/gZh8OSJD+kndm/UPDOjXtMeT5qR9t\n3GezObQlKPtSOZ3Qai/ST01qSP4momWJC4++0biU2tY+kPxIyc8MvSZlcmed6Oe0XY47p9q8\n3f3LyY77CzMPvbpT0n5b3PVhiG6eIBKaxWmesYiogLg46TU7v0aXlTTfnSyUOnjprY+j26v9\npINf/njarsDbe85b/u77YEuDwRDV7uUAyae+f15g/+HzmVvSLX8HRfS6p4oHnYVS8LRXL6rd\nBvVzdlMdmmdBMnMAXncPH1Scu1k6GN1N1vc5LAZFBv1w6VspelC7hev0N/m/LOngi43CX6zG\nHI+nFhia16nGBHxBUKR73SEBtTo3CfY/eemjUyUXdguolBs+OHPh0Th3TgOqLT/jzOHDR44c\nOXzkyJGKP/bvO5RVVFadacrZ+ZVVZBs9QmLUvkvAOuvokW6dawVF9K8X6Jd26fvZxbnbZY4o\nYsNV03bJOad/SAt37+/uXy9kVrL1A1E7LpRc6fRG47Dmyt2YAoPBoONDkrLNSuXFVDYeZu7M\nlA7GD4l3a/SYKzobDBs8m7VSMccUUP/tbrF3bU69ONmz3y08+8VtsbbXIMoLn1x60jIUFN7z\nzbZuvCNHWV4aamo1UyyX0G1k0JDo4934b796r/HgPbaXwk/+88u0f36Z9sLDteq16N2nz9V9\n+vS5uk+PTi0CtLvCKyj7UjmdQM3J3xRvWeLCo280LqW2tQ8kP1LyM0N9pkzVXCf6OW2Xo+HQ\nd8P82l4ou/g49InvXyyf92flJ0I2PrfY8rfRaJz06uVqVdA10Vmc5hmL4hUQFyf1ufPr6rKS\n5rtTBaUOXnrr44jpNLmW3zd5lwLaofd/Mzxi/UR6YcYyyz0lRlPQ880jDAaDf0ire+rX+jjl\n4gP0Rz9dbXjhMssoRVlr12QWWgYTrnlVk5MSBU97NaGrNqgrmmdBMnMAOunhg4qzT0kHQxu5\ndwdWXJjbNwoJFVzf9bdzTueXuiwjX2FqoetCvi6wdoLrQraaSzrpy0vOKV0jPSrOPPnrihUr\nVqxYvfbvxPP27ziqPjk7v7JKC45IB0PiNLv85x/Syt1Rmgf7W3oTy4rs72aVEr3hqulMsTWP\n9Aty7wzEYDDUahBqkLwr63SRi/AYGMU1d4Xp9pCkbLNSeTGVjYdF6TYfVQ1v4F6m5Bfs3m3m\ngmLOoBnXGXp9ZRl8Z86h2161+SLj+X0v/JdnvTrT8p5Zyn3E3G1eGmoCwhXLinUbGTQk+ngX\nHNX/z60Lrh94199nHLS7vLSjvy45+uuSzw0GQ3BMi+tHjho9evTwAV1CVH/XnqDsS+V0AjUn\nf1O8ZYkLj77RuJTa1r6R/Fi4lRnqJGVScJ3o57RdDv+QVtM7xzyy4+KjokXZf81OzH26oc0r\nys1lORN+sz7jG974mdHuvABMNNFZnOYZi+IVEBcn9bPz6/aykua7UwWlDl566+PwC2r4QpPw\nl49dvHEn+/iU3LInavtdPGakb55jKVmr/v2Wz8rceWPDjz86UPF3zunp2WUTIyyjbJkpnf61\nr2hzf5KCp72q0W0b1BttsyCZOQCvu4cPKskqkQ4GxQa5NXpIPbX7BZ3zC3V9x2V2qctPubmh\n9AIXoQxBdd3eDeoHSreUoptEf8qL0+a9fEdcveY33PH4J9/96jwbMPnV7tjBk8fd5Oz8yjKX\n2jxgERyn2Ymxf3BDd0dpHGxdXeVlF0rNDsqos+GqxVxaWG6tul9gPXcnEBJvs9WyHK4IiKTb\nQ5KyzUrlxVQ2HpbZ3lJdP8S9ifsFyr2PTWjMqdv9HemR9+Cct+0KrH1qiXTw5RcvM0A7uo0M\nmlHleFen7ag/ju55d+I46Vv+Kis8d/T7T6becm3XyNjm97/2WVqxqmmskOyLdEJlNWyFK9uy\nxIVHGpeUbyQ/1vq4kxlqnjIpvk70c9ou043v2Lw4d/6be+wKnN357PFCa+O9etajBj1RIYvT\nPGNRsgIi46Qedn79X1bSfHdSkA77OEY+a310vqw4fcZp61sf/p2x1/J3g+G3Wv5u/cQ1lr/L\nSzJmJlpH2Tnd+vZvU0DUG+00e/WdF9F/G9QVzbMgOTkAT9LDB5mCbO4+KTpbVFVJh+yOf14h\n1M/mDp8uV/aozkeJWuvsXQKaKDrr9hNaSZKbW41+ET58D1R+6pp+nW7Ylu7skzZhMQ3atGnT\ntm3by3sNHDVySPGqa1uM9fD1gKoy2uS7pXma9QGUl7n9xaBsyZmb0RhQ+b4/79hwRv9gk9Fy\nTltWnObuBIozbF5rpp8v+dUcuj0kKdusdLuYctjdJ55W6N5r0MpLZb0tRnTMMQXEvHNlvXF/\nnbk4u/SFS87NH3XpqaPykrQJf6VYCtdu8OiYWL1fwPVtXt1khFDreOcf0vSJad88/PLUX3/6\n8Ycffli26q/zxVU2+aKM4/Mn3bto3ldf//7TiLZqXc0RkX2RTqis5q1wBVuWwPBI45LwjeTH\nM9qmTELWiW5O22Wqf9W7cYHfplyKEie+/T/zR2ulu/5vT6+w/O0XWH/u0EbqVtAFdbI4zTMW\nxSogNE5qvfPrM8pVpvnupBQd9nE0GfWU4WHrS/iXfXr0tcldKv6e+a/1WNn7UeuLDOs0fzHU\nb07+pTd+L//y2GuXvugxbcdZS7HI1q/FBvjw1XRleEsb1A/NLxzJyQHopIcPCoy0eWVEfpJ7\nH185l+neAc8t2WVC7suLs3mG2/Dh7xt68NHE6inOSXJdyNZRyY3PHrxU2VsUZ28fetkN287a\nZwN1m3a4skePHlde2b1Lp7Zt2zaIsXnp1jEVa1gdfoF1pYP5iUp+usktZYUn3B3lmGQPNAXE\n2P3XizZcXKDfiUvLUlZ0ynnhyvJO2dxDWpcUX3W6PSQp26x0u5hy1Gps88W17KR8Q/to+aOX\nyliT6sScgTMGG678zDI4dd7hUS90qvg75c8nUiUXYrq/OcHNaUNhXt1kBFHzeBdQu8Hw2x8f\nfvvj5cXnNqxcvvq3dRs2bNh+MKnc7OAZ1rzkDWO69frl5PYBqtzaIij7Ip1QWc1c4Yq0LHHh\nkcYl5TPJj2e0SpkErRP9nLbLZAqIea9v/OjfEysGC7PWvZ984YmEi0tdXnzmqX/SLYUbDJqb\nEKivGKhmFqd5xqJUYBcUJ7Xd+fUc5RzSfHeqPh32cYTEjB4YGWz5kPzxr743TO5iMBiKstb8\nmX1xdkZjwHOtIi2jmALjnkwIm3I65+IoX64wvHq5wWAozFi2Ocdaw04vDVG8tj7G69qgTmh7\n4UhODqCvoz6giMDwrtLBjB3Jbo2+NbfYdSFPHSsQcpNj4+Y2wXdvnve9DEBvCjNWulW+OHdL\nsuQFekHhvZSukV58MOyGDZJswGgK6D3q8RXbk9KO71m2cN6LE+67tk93u2zAiwSEdZEOFp49\noFVNii9sc6t8WXGSNLwE2i6Iwas2XFfJCX9pwdHkqu93dmhHmk222jWspncCqU+3hyRlm5Vu\nF1OOyC42L5FL+SWlqpIO5R75z2UZdWJObJe3E4IkLy57d7bl7++fXmf52+QX9sGoptWcF6rJ\nq5uMIJoc70yBMf1H3D197tf/7D99Ie3oL99//tyDY9rG1bIrVpK/f9yNH7tVH48Jyr5IJ1RW\nw1d4dVqWuPBI45LymeTHM1qlTILWiX5O2+Xr/85I6eAnU60vhT7z54RzJdZ29ODs/upVSx5N\nsjjNM5bqVEBcnNR259dzlHNO893JY/rs43hxcAPL37ln3q3Yw89uf9fyY2i9O1oE29zcc/P4\nZtZREt/JKC03GAypf74vLfPykAYGOOW9bVBbml84cpkD0EkPHxQSNUw6mHNioRsjm4sXnhV1\nH2JZ4bEUNzMzmeKui5MO/pHo7GMkkKMwY/XJIjc2VvaxOdLBiDbXKV0jXSjMWPbsplTLoNEv\nZOqqo399/96wrnI/0adzQbV7hPtbj4x5qZ85KSxUYcbq0+7sgReSPyyV3AscFHmN9L/eteGu\ni7Z+NMtsLvs01a2AVjYvxVre5FfrqnAvu8jrA3R7SFK2Wel2MeWo3cRmWZKWuffqs+OfHXFe\nQLWYY/SPmtXLuiHy0r5Ydr7QYDCU5P334t7zlt9ju77TNpT3h2nMq5uMIJof70Jimw0addfU\njxbvP5Oza+XcAS0jpP9N2/L0FpH3LlsIyr40X701DSvcwt2WJS480rikfCb58YwmKZO4daKf\n03b5otu/1aGW9TXvxxa8avn7h2fWW/4OibnphWY2QUMPNM/iNM9Y3K2AuDip4c6v8ygnn+a7\nk1v02cfR6aXB1pmUFUw+nGUwGP6bYb2bLeG6u+xGaX6fdUHKS7PfPpVrMBi2Tt9n+bFW3fH9\nI4IMqJrPtEH1aX7hyGUOQCc9fJB/aPurwq1hvTBjxZ58uc+v56V+nlEi5I30BoMh5/R7gqYc\nP9Tmxrqtsw8KmlHNYTaXvb7zrOtyl2x57S/pYIv7WipdI11IXD7DLOmyan33TxMHyfpYmojP\nIAlhChkbG2oZKsnfv+rSG5xcyjoysaHEmFWnq1MRs7ls1tFs+eWPfLxKOhh3bQ/poHdtuM7D\nbPLLld+7sSbzUj9PLLIG/JCY0WF+ev+mqe/R7SFJ2Wal28WUIzT2tmDJpw1zk95JLnYj+fl4\n3RnnBdSMOf3etrlsMfmzIwaD4eTSJwvKrRW4/r0b3Z0sFOfVTUYQPR3vTJ2GPvTr7i296kiv\nKZvfOZxVjWnKn7mQ7EtPq7dGYIU7IqtlCQyPNC4JX0p+PKN+yiRwnejmtN0NppDZNza2DBVm\n/jb3TJ7BYCjNP/DCvgzL751fmqxSfdyhpyxO04xFdgUExkntdn79Rzn3ab47uabPPo46rV+L\nCbA+l/zHzAMGg+H9bdbPdvSY0NpulPBG/4uWjLL6s6MGg/mtPdb+0aa3Pi6iqr7EF9ugejS+\ncOQqB6CTHr5pYrdYy9/m8pKnfjopc8S90z7wYHY5pbKOef+9/ZsHE5cjvMmLoX7W5py06vVi\nB5/XqUJ54a2DBva/5Ppxi0XU0ButfOJnmSXLi1MfWp0o/eXxa+MF1Eh7iUtsFvPGF66UOeKR\nn5MEVEeI2wfbnE29+vFhmSMe/fTXJInYluHVrMmSJ9fILWoufmLuIekPfR62uU3EuzZci/sH\nSAf3Tn9L/rj/TpopHYwfeLcydYI79HxIUrBZ6XkxXTIF1n803voOtLLitIdlX6PJS/lkYbqL\n+/HVjDkxnaY3Cbbe7Hxg1gcGg2HuyzssvwSEtp7Vra6DMaEur24ygog73pUWHOwjce31/ydn\nmv4hbT5+tZP0l7T9btzYVB0isi/SCZXVhBUuqGUJDY80LgtfSn48o37KJHSd6Oe0Xb7uU+6X\nDs6Zsc9gMJxe8WR+2cUrikZTyPv3tVKtPvKJC1OaZyyCKiA0Tmq18+s/ymm+Owmich+HHCb/\nqEltrJ+cT1o1rzhn0y8ZF+8XMRr9npP89+KPfhHPN7HucicW/FRwdvGuC9aXFtzyZBtBtfUZ\n+m+Deqb5hSPnOQCd9PBNPd60edn4lmf/r0hGBllekv74Z3KTG6ldtp8Lcjzx0owHFhzzYOJy\n+AUmSI+OhVlrH17v4kZvi5SNExb/tnb9JWfacFC86OzOCQuSLsgpuWXyTWckr1CuVe/2kdEh\nwuqlpfwzNtcm2oUFVFVSqrwk7TFXTx7oR4fnR0kH905/JrtM1gnotE+PWv42mgIea1DdjwCl\nbHjk72xZb9k6vvjOzTlFlkG/wHqvtbX55qJ3bbg6zV9pGGTNnPLTF762Q9ZrLUoLDt/39VHp\nLze92EHhykEGPR+SFGxWel5MOe58wmamax+ckCMv1i2+/02XZdSMOUa/8JlXW19cdiHlkx+P\nLpmdlGv5pcmID3zliUzv5u1NRgRxxzu/gLqbN278+5K1q945K+8xmvC2NpdrzfLCQvWJyL5I\nJ1RWE1a4oJYlNDzSuKR8JvnxjPopk9B1op/TdvnCGz87MNL6wO6xL183GAxfvLjV8kvs5TO6\nyltLKhMXpjTPWARVQGic1Grn13+U03x3EkTlPg6ZBr90meXv/PRv1m603okSGju2naN3hg9+\nyPrYw4Wk2btWz7UMBoS0nNhYvVumvJT+26CeaX7hyHkOQCc9fFPd7rM6Sr70kJeyeNSnB1yO\n9c8bw7fJ+/BMUGywdHDbm/+4HOWv/xt8uEDg20Vue3eodHDhzWMOF7h+AY65LOeR0d9YBo1G\n42MP6PG+XU2Yy4ueGPJKoauMLvfEkqFvbZP+0nPKywKrpalaTWpJB/dekLVLL3vyutNFcl/H\npLk6LScNkLzqqjBzzbBp25yUr5C26bkl56zZUp3mr7QJqe5nbMpKzo+9eY7LYsU5O4fet1T6\nS4NrP6gfYHN8964NZ/SP+nBYQ+kvbw9/UM5p59IHhx/Kty5aUESfN217VaEa3R6SFGxWBh0v\nphytHpgWJHnpa376skGvr3c51tltb92/KtFlMZVjTp/pNi8lu//WB6VvgXv0Lbk3mEM0r24y\nIog73hn9o6SfLzWXFzyxQdalmaOLT0kHEzrZPwQjiIjsi3RCZTVhhYtrWeLCI41LypeSH8+o\nnDIJXSf6OW13h2nKvdY+qoKMlR8e/mXKceszuyPmjHI0li4IClOaZyyCKiA0Tmq18+s/ymm+\nOwkiuo/DMw0GvWj522wuv/eJDZbB+v3vczhKkzFjLH+Xl124+9ntlsHY7m8GcV+9K/pvgzqn\n9YUjZzkAnfTwTUa/8K9fsWlaqx7uOWtjmpNREle/2v/N7U4KSIXGtZUOnlpx+6/pzh6mT14z\nfcjbcifumYQB84bGWJ/eLsz8u+/gZxMlj3c7YC796K4rfkqzZmnRl02+u16okzFqmoy9s7rd\n84mTbvr81HUDLh+fLfneQVB4jwW3t3BYuCjr9z62bnlxp9JVFiu2d6x0cLmMM4G179xx89w9\ndj9mivkqkkVBUTWmb/T/aJbNq8k2/V+/V1acdDJGSd6+cTe8L/2lz9TxnldAInntUwNfWuak\nQGn+gbGX95eexRmNAW/OH2pXTP0NV61NYDAM/Oht6RW0vNQfO9802fkdMxtnjR379RHpL33f\nnhfgbVl+Ndebfuj5kKRUszLoezFdCoro/8kgmytH/7wx8IFPdzkZJffEj1f1fUV6GlMVlWNO\ndMepLSTXmM5vt37XMzRm1ISGteVMpEbRKtR4dZMRRNzx7tH2Npd0l41/JMPV97kK0n+7c9Fx\ny6DRaHqyRYTzUQxK7U5isq8am05opSascEEtS2B4pHFJ+FLy4xmVUyax60St03Zls6b2/3tO\nOvh/Y8aVXdq7AsM6z+oW62gkZVRzQcSFKdUylqoIqoDAOKnRNSuviHKa704iiO7j8ExQnWvG\nxlqbc8pR6xPJ3Z9q62gMQ1j8Y40l7xs/dNbak3LV670E1NF3rrBV8Io2qGeaXzhykgMYzIDi\nygvtdsGVGQXKzqEwa510+t2m7nZQi9KcUQk2r+7xC4h94t0VJeWVixb/8PZDdfwv3rNi8rMZ\na31WYeWJlxUlW8pXCEsYuiHpgqPKlq///GVL4eB61rsd6zSb6fHSOXRu5wx/o036FtFq+Dd/\nHHFYOG3P7xOG2vQlG03BHx3Okjmv6ljVI04635dOZuti4pX2W4tm1z68PSW/UvmSP798pWml\nO0+fWZdc1Rzy0hfYFW560zpPF9ReXKCfdMofnHG4N1bXhTM2T6Ca/GrP/iOxqsL5qTsnju7m\ncJX2mLHT4Sge7/wZh++Rjthzzv6qSsqaRXnRQ21t7pw1+dW+540FF8oqhw9z5sFVw1vZZPCh\nsTdULilnvnYb0eKKsS/uzyyqXH7vive7VzrFvezxVZVLit5wZsU3gdm87rnudnNv2OfOdcdy\nKpcsLTg19YGBJtvoV6f1/fll1aqAgyrd1FQ6YqGD3cFtyq630sIT0jIdnvzHZQWyT74kHWXY\nllSXoxz+oo90lAXpeQ6L6eSQJK5ZiV5Mj3dU+YpztzULtjmKGY2ma+5/60RucaWyZX9+/rL0\njNooWeorZ++1K61CzLGzbHhjxxt6xh431ohscraOD4cah6QJmMk/sqpiOokMuoqWgo53qZse\nsJtsQr8ntp2oIjEuL9z445wuUTavCou5bLLDsvJ3J/cIyL7MItMJ/exF+qmJuQbkb+JalsDw\n6G2NS+i29t7kR6nMUM2USXhCKGbfFp013VnP5lFIi/aPbZQzuvz5Kr4ggsKUuLgqk7gKiIuT\nmlyzEt2ic05PlhYbvN7BxVWXlRS0NTU/+xPax+GxzY+0q7x9jUbjzguVD6kXfXJZjINRTEGH\n8kucz0uruFeZzNNet8isjOg2qJ9zCjkrRE7EqEzlC0eVVZUDqPlWH0BVRr/a89e9s6LtQ4Xl\nF+9JKSs5+96E4V+80/mWsaN7tG9av27EhbOpx/dt+W7Rt7tO51SU8QusN2vV208MvMMynVA/\nBy+cMAXGzx6YcNcv1peeXUheNaB5y7GPPT689+Vt27ZtHBOUdubMrr9/WfT1Rz9vvlisdpOR\ny15L73/n34IWOfryZ5ZPWDBk9r+WX7IPrxjff8VrV1w3bMh1l7dqFBMdlpuWfPr06T1/L1/w\n2+5y2/vBr5605sGW+rpbUEMvvDLkrddXV/x9/Pe53RO+6Dls7NA+nRok1CvNSj15fO/yb7/d\nXemL9c1HfDSjf7zqlVVPrbgH72n8/GenLraX8rLcpwY0+WrwHY8/dGvHJg3i4uIMuWcOHTp0\n+PDhnX+t+uanv/PLLt6dFxgRU5x9zjKdrc9dPTpp4tDuLQP9uo0b4/jFA24xmkKkgztfeGBR\nuw/7tW/kX5ydkpLSrPOV7n1Xxhj4zh9fLW1409mSizeGl5flfvZ/4xZ9OHnk6NFXX94yrn5M\nfvrpY8eOHdj157cr/ykptzYloynguWXzapmq+1SIf3BCaWFyxd9bF0/psOTDPtePuq5nx4SE\n+uW56adPHvr1h283Hz5nN1ZovWFrZw6qPDUVNpzCm8Bg6Pfm2jELE75NtN6Nm/jXl9e0/Lbr\nwJtGDr26aYOEOkFlKcnJuzf+8t2SX1NsX7XnFxD71frZId7wtiDF15t+6PCQpGyzqqDDxZQv\nIKzbr/PHtBxvvYHMbC5fO++FFl9M73vj6GuuaJeQUL8sJ+3U8b3Lv/3230uZksFgiGh52+zw\nNXfvSK9qyuofLHpNvdmwYqbdj0ZjwDv3+8h70atJP6HGq5uMIIKOd/V6zr23yeJPT1pbbvL6\n965oNqfLdWNvHtitbmxsbGy0If98UlJy0unDKxYv3JNi841Dk3/4aMZZ9gAAIABJREFU3FVP\nOqywqN1JTPZVQ9IJ/fD5FS6uZQkMjzQuCV9KfjyjZsokfJ2I2bdFZ03/e77Dl0/ZfzHTaDRO\nevXy6ky2MsUXRFCYEhdXZRJXAYFxUotrVl4R5TTfnQQR2sfhsbbPjDDM2W/3Y0j0yMtrVfmt\n9L5PtTHcbd8tUrvhs60U+vKIfk57RfCKNqhzml84qioH4El6CKCPJ+krHPxuYpDszMPkH/72\n+pSC8yukP+7Pc3wzV2HmHwlBjp/PcyigVsf15wqOLu5r+UXxJ+nNZrO5rGDWnZ5k9t0f/LjU\njdlUi1c8Sb/0XP6829u4tQ4bDXoxp9TZoxk+8CS92Ww+v+edYDez+dhud/53PrFxsIOUK7rN\nIunEPd7589MXO6mA9C5O+bNI/mN2/SqewXVizHtbHU7N3Sfp63ZevmRif7dmHRLTa22K46ea\nzII3nKBNUHBu8+DGbr9uyC8ofva6pKqm6VYF7Ih4vFXZ9aaf+14v0sEhSWizErqYKjxJX2H5\nq8PdqnZg7cs3ZRZKj7aVHyYzi485dsrL8tuE2l8LiGozRcw60/5ZCneJCNF23HikQAeRQW/R\nUtDxLvPAZ/Xcz2QMBoPRGPDAx1Vuevm7kweUzb4qCFq9+tmL9FOTCj6fvwlqWWaz2PDoRY1L\nhW3tjcmPUpmhyimTCgmh4vu26KypMGu9n9F+nUQ0/Z/8tSpzvkIWREyYEhhX5RFXAUFxsoL6\n16yEtmhFnqQ3i9maOjn7E9fH4ZnysrzKW7bpTb87GSUv7cvKVb1ipuuHmLWMe7Y0fJLeLLgN\n6uecQtyT9CpnQZVVlQPo+y5loNpaj562e/HzcrKW4MjOc9cceLZv/fISm5ujGwU7HjeoTr+d\n62bGBsg68Ic3H/Tjv3/3jQ52XbSaTMFPfrF9wcQbAuUftv3C7nz9u38+esCTFMan3fv5P9Pu\n6S2z8JW3Tvpv5eTa3nxHnkxRHZ7e8cUjMvNCo9F/wF1vHtz8WceoBqvfGyeuViGxY8bGh7ku\n5474fhP2bp5/mexmawqIevqTPxc/bv9CM4/dPG3domeHVz54OxTZZsjvB9YMqF/lZ3pFbzgR\nmyA4useyfVvGX+nG2ylC6l3+1dY9E/onKFsTcUSsNx3R3yFJ2WZ1kf4W0y3DJy3/Zcr4WvLu\nqa/dZMB32//oWSfIZUmVDxZGU8jM6xrY/ThgttufWvRV+go1Xt5kRBB0vKvT5u5dv01r7OaD\nKf4hDV9ctOvjBy6rctYidycR2VdNSCd0xedXuKCWZTCIDY80LinfSH48o3LKpMI6UXzfFp01\nBUX0fa5JuN2PV898RPEZCVkQMWFKYFyVR1wFhMZJ9a9ZeUWU03x3EkdcH4dnjKbQyZ3sX1/f\n5Zn2TkYJrTu+Y6Xn7B8f10ypKunrtFcAr2iDeqb5haMqcwDVbhNADaKnJ+kr5J3Z8uhQBx9K\nqWA0mjoNfWJf9sXbqbJPvWr5l19gnPMp5xz7fWyPJk7antEU3O+uKanFF78jJPxJ+kvO71l1\nz7UuHgQ3mgKvvP6+lfsyPZh+dXjLk/QVP29f8GorpylveJNec1YdkDMH33iSvkLKlm+uaevg\nS0LWvctobN3/jp93pknHWjP9wbq29VTw+YCsgwtahQc6rEx1bpYsLToz9/nbLN9zqmJh/Xvc\n9PDK/c6akgdP0lf8mPjXl/2b2R+/pfyD4x+d/p3Db49VJmjDVRC0Cczmsg3fvNUt3vFneyz8\ngurf99rn6cVVfbTNqho3ODfz9w8IDgkNqx0eGRmlyOOtZkXXm2r3vfr5BwQFh4SF1a4TGbXk\nbL7LUTQ8JKnQrAQtpmpP0lfIOvjbXf2dvejMaAroNf6N5KKLTczlw2QVhMYcOxkHJkpH8QuM\nS5UREDwj+FkKvYcahzx4pEDDyKDXaKnw8a5Cwbl/nxnVR87LLf2D611/76S9Ga6/VSlzd/KY\nUtmXLYVXr372Iv3UxJaP528iWpaFuPDoFY1LtW3tXcmPgpmhmilTBRUSQmX3bdFZ07HF19lu\ngvqW3UwO+fMVtyAiwpTQuKp1BYTkeBXUvGZVQVCLVupJ+grKbk1dnf2J6+PwwOnV9m+m2ZxT\n5HyUxT1trtsH1ekrZ0Z6iHsVtH2SvoKgNqifcwpxT9KbtciC7DjMAYxm2y/EAD4s/cDGhQsX\n/rxua1JSUnJKZq3Y+EaNGrXrcd0DDz7Yp020pdjZXbfWvfzi21FCY0flpX/vcson/ln2xXcr\nN27adPBEamZWpjE4Mi4+Pi6+Qe8ht9xx+5g2da1dvCU5Jw8n5lX87RcY16ZllKKLaO/8sR3L\nly9f+cv6o0kpaenp5zLya9WJjIqJadXxit69ew0eMaZrI1++v8xN5n37rJ/SadSmneWxeHN5\n/qbli7785sc9x08lJSWnZRbFxMXFxye07tZ3zJixw3u3q6nvJCn/b83ixcvWbNr8z9HE9MzM\nTGNoVHx8fEKD5lcPvn7EiJs6N6lTeZzCs//9uOzP/UdSo5u0aNu2bZt2nRrHKvaGibLC5C9n\nvPn16q0nT55MPlcQUz8uLi4uPj7+g0ULG7vzcYrKSi8kr1mx/Oefl+84dDotNS3tbGZg7ciY\nmJhGrTv369fv2utH92oVWf36xwf5pxRf/KJY3c7L0/69lOyai/9dt+zb775dv/1wampqWnpW\naHTduLi4xm263XTzzTdd3y/WvaUTuOHEbQKDuWjP37+vWLFizaZdKWlp6Wlp2cX+sXXr1qtb\nt3mnq4YPHz50UJ+6Id76jKXA9aYnmhyS1GpWVl595E0/tOWHH35Y9tvG02dSU1NTc8sC4+Li\nExISelw36q67xneMt75U4MKJQ6fyL343MTSuRdMoJ4+XqXSwyDryemQr6zWIRkN+OLVqhDtL\n7/v0GWq8uskIIeZ4V5Rx9IfFP2zc/u+u3btPp2bk5ubm5hUFh0VERETUa9SiS5cu3Xr0G3nz\ntXVl7wkq7E5Csi+fTif0yNdXuOItS0pceKRxSXl18uMZjVImNdaJgvu2PrMmDwhdEBFhSmhc\n1bgCIuOkOtesJHQd5Sw0353EEdfH4QN8JoA75R1tUIf0eeGITnrA3o4XOneburvi76hWc88f\nekjb+gCoIarsTQTgKZpVzbFkaOPRq09bBl86mDG5tbKXogAAALweKRMA1BD0cQB29JkF1dTn\nP4Gq/bHU2lDjh3bRsCYAAABwqazo9CNrki2DQRFXT1L4YREAAACvR8oEADUHfRyAlG6zIH+t\nKwAIkbnvg1c+OmQZ7DzxrXsbynrJUnHOppePZVkGu9/RVPnKAQAAQDmnlj10tqTMMtj6gRn+\nRg2rAwAAoEekTADgXejjAJSi2yyITnr4Jr+wtA8++MAy2Lrg5nvn95Mz4vpXHywqv/gNCJNf\nrdfaif1mPAAAAKpp5tN/W/42Go2TnuugYWUAAAD0iZQJALwLfRyAUnSbBfG6e/imsLiH6wX6\nWQaPfjN+W06xy7HO7Xzv+vf2WQbrdp/VMMjPSXkAAABoK2Pvax8m5VoGazd8ckR0iIb1AQAA\n0CFSJgDwOvRxAIrQcxZEJz18kykwfv4NjS2DZUXJ111x147zhU5GObz67ct6Pl186RYzg8Ew\n4bNRAqsIAACA6ilI33bzgGnSXwa+N0GrygAAAOgTKRMAeCP6OIDq03kWZDSbza5LAV6oOHtT\n27i+xwtKLb/4h8TfcPvd99xze68OTevUCqz4sfD8yT/X/7H4k5mf/7ZXOnqDa2cm/vaUqjUG\nULPFB/mnFF/8NE7dzsvT/h2ubX0AH0Cz8kHm4g7d+jVv3rxxfERG8vHVP/+aUVJu+WdQ+FVp\nGX9H+Onjw2IAAABaIWUCAJ9AHwfgNq/Kguikhy9LXPFSm5um5peVV/5XUFhkbJ3g3MzM7DwH\nt57VbjJ0y76f24X6i68jAFxEbyKgOJqVDzIXGU3BVf3z4VWn5wxpqGZ1AAAA9IiUCQB8BX0c\ngHu8KgvidffwZQ2Hv7l/5VtNQgMq/6voQmZSUorDo1d05/HbOHoBAAB4la4PLdLViRYAAIAO\nkTIBgHehjwNQig6zIDrp4eMaD5p4KHnXpLsHRwb4uSwcUrfjxFnfHt72VWuOXgAAAF7C5F/n\n1hcWbJ07VuuKAAAA6BcpEwB4Kfo4gGrSbRbE6+5RU5TmJS1btOTPf7Zu37HrVOr57Kys/DK/\niIiIiDp1YuKaXXlVr969e183qE+kv16+RQGgpuG93IDiaFa+qHzeWxO/Xrzi4KnEXEPtlq1a\nte9yzbOv/q9rXKjWFQMAANAPUiYA8EH0cQAyeFMWRCc9AAAAAAAAAAAAAAAq4XX3AAAAAAAA\nAAAAAACohE56AAAAAAAAAAAAAABUQic9AAAAAAAAAAAAAAAqoZMeAAAAAAAAAAAAAACV0EkP\nAAAAAAAAAAAAAIBK6KQHAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAA\nAFAJnfQAAAAAAAAAAAAAAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAA\nAAAAAAAAAJXQSQ8AAAAAAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI6\n6QEAAAAAAAAAAAAAUAmd9AAAAAAAAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAA\nAAAAKqGTHgAAAAAAAAAAAAAAldBJDwAAAAAAAAAAAACASuikBwAAAAAAAAAAAABAJXTSAwAA\nAAAAAAAAAACgEjrpAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAAAAAAAABU\nQic9AAAAAAAAAAAAAAAqoZMeAAAAAAAAAAAAAACV0EkPAAAAAAAAAAAAAIBK6KQHAAAAAAAA\nAAAAAEAldNIDAAAAAAAAAAAAAKASOukBAAAAAAAAAAAAAFAJnfQAAAAAAAAAAAAAAKiETnoA\nAAAAAAAAAAAAAFRCJz0AAAAAAAAAAAAAACqhkx4AAAAAAAAAAAAAAJXQSQ8AAAAAAAAAAAAA\ngEropAcAAAAAAAAAAAAAQCV00gMAAAAAAAAAAAAAoBI66QEAAAAAAAAAAAAAUAmd9AAAAAAA\nAAAAAAAAqIROegAAAAAAAAAAAAAAVEInPQAAAAAAAAAAAAAAKqGTHgAAAAAAAAAAAAAAldBJ\nDwAAAAAAAAAAAACASuikBwAAAAAAAAAAAABAJXTSAwAAAAAAAAAAAACgEjrpAQAAAAAAAAAA\nAABQCZ30AAAAAAAAAAAAAACohE56AAAAAAAAAAAAAABUQic9AAAAAAAAAAAAAAAqoZMeAAAA\nAAAAAAAAAACV0EkPAAAAAAAAAAAAAIBK6KQHAAAAAAAAAAAAAEAldNIDAAAAAAAAAAAAAKAS\nOukBAAAAAAAAAAAAAFAJnfQAAAAAAAAAAAAAAKiETnoAAAAAAAAAAAAAAFRCJz0AAAAAAAAA\nAAAAACqhkx4AAAAAAAAAAAAAAJXQSQ8AAAAAAAAAAAAAgEropAcAAAAAAAAAAAAAQCV00gMA\nAAAAAAAAAAAAoBI66QEAAAAAAAAAAAAAUAmd9AAAAAAAAAAAAAAAqIROegAAAAAAAAAAAAAA\nVEInPQAAAAAAAAAAAAAAKqGTHgAAAAAAAAAAAAAAldBJDwAAAAAAAAAAAACASuikBwAAAAAA\nAAAAAABAJXTSAwAAAAAAAAAAAACgEjrpAQAAAAAAAAAAAABQCZ30AAAAAAAAAAAAAACohE56\nAAAAAAAAAAAAAABUQic9AAAAAAAAAAAAAAAq8de6AgAAAAAAAAAAwFu1nbBS6ypcdODdYVpX\nAQAAWeikNxgMhvzkA7+tXbdx5/6z585nFxoio6LimrTp07f/NVd1DDC6Hj3xvw1rN+7Yt/9w\nemZ27oXC4NoRkbEJHS7r1OuaIZc1rK14bdM2fnj/tF8NBkOH/30ypU99x4XMxbeMGF1YbnY5\ntdoN/rdgTh9lawgAAAAAAAAAAAAAcIhOevPmpR/O+vp3aX/2udT8c6lJe7asWdSq38QXHm0f\nHVTVyMU5Rz6cPPWPg2elP17IzriQnZF4dM8vPy5s23fM/54YE+2v2GcFirP/fX7m766LXfhP\nTg89AAAAAAAAAAAAAEBNNf2b9Du+evGtL3+z9GcbTYG1QwMs/808vP7VJ179f/buPb7Lsv4f\n+PXZZxtjbMwNRBHQvoQGKqKkGZ7wmBpqaf48oaaZZFmeSkUxLCU1e4SaYQdSwURLRez8lTxl\nkkmK5QERE0REBYHBToxtn92/P+6xJrCxsXHPb5/n86+393Vd9/2+mY+HPHztuu5FtZnNrm2o\nWXjFuPEtE/pUKl1SWpRKNe2+j6LG+U/df+FXb3yvrrFLuo2i2p+Nv3lV/ZbvVlc5t0ueCAAA\nAAAAAEAXyuqd9GsWTLtu5vy47jVo1AXjzjhgr13yUqFm9VuP/XbGnbPmRlFUVzl/4vgZ9956\n9qbLZ1x93aKa+rgecsgXzj3x8MGDBvTKz6mrWr144bwZU3/xz2U1IYSa5c+Nv+bB6Tef2vmG\nX5x29Z+XVbdnZsXrS+OieODZ13xjjzZmpnsM6HxjAAAAAAAAALRHNof0jXff9McoikIIBX0P\nnHLbFWW5TTvgC8s+dsI5E4ZuP+lbP5sbQqhY9NB9i088438+9HX5qmUPzlxUEdeDjx8/+fwD\nmofyi8o+MfLI70456PeTL5369LIQQvmCGfcsOvbswb070+6aBQ9e98ib7Zy8+vlVcdF31N7D\nhg3pzHMBAAAAAAAA6CrZe9x91TvTn1xdG9dnXf/15oS+2W5jJhzXrzCu/3jL0xuNvnH3o3GR\n23PIDeeN2vT+qZyC4y79/tANh+c/eefLnek2U7vkuxPvb4yiVE7PPnlb/qktfqMqLnb4VJ/O\nPBcAAAAAAACALpS9If3iX/09LgrKjjl+QK/NTUmd9LV94qpy6Yy1majl2O9eWxMX/UePK8zZ\nOOBvWp/ufd6hOzbdYfHsjUanfenUEzZo7bP3G0QPfnfim7UNIYSR597wPwVbPv9gblVdXOzb\nr+cWJwMAAAAAAACQjOwN6We92HQg/E5HHN3anNI9zshJpUIIUabqvvdbfAw+qnuxqulr9Lt+\ndqc2ntJnw0b2htrFW93qot9Nuu/V8hDCdkNPnfi5j29xftRY80p1fQghlUqP6t1jq58LAAAA\nAAAAQNfK0m/SR5mK5pT9E4ft0Nq0dI9B+xfnPVtRF0JY/FJ5GFAUX2+ofSsTNW2s33O7tlLw\n9eVNO9pTuSVb12rN+09efdfzIYR0wS7XXnfa5vfsf1h95Qtxe3lFI4rTqXdffup///bysneW\nvbd8dbpX7z7bDxy+zz4HHnrQjj3TW9cSAAAAAAAAAFsnS0P6usrnmlP2vUvy25g5sig/DulX\nzV0djh0UX8ztOeSBBx6I6x4FbYX0zzyyNC56lh6+0VBR3379ctbFdV4r2XuUKf/hlT+pyUSp\nVOoL377u4wXtitXXr30+LlI5vX507YWPvbi0xeD7S95cOO/vT9x757QjTxv3tZNHtSf1b4/q\n6ur6+vouuhkAAAAAAHTMmjVrursFAP77FRcXp9Od3QudpSF9fc3C5nr3wrw2ZvYfWBjerQoh\nrHv3nRBGbLicU1BQsMWnrH39oRlLKuN66FmjNho9+ebbT97SHZ687ap/lNeGEHY+5qozh5du\n8YmxNa+8Fxfr1/71sRc3PydTt+rRe26c/8aZPxp/SrorgvpMJtPQ0NAFNwIAAAAAgI7z/6gB\n+L8iS0P6xrqm36dLpXJL2syo80ub9tk3NnTsV/Cqlz5z+YQZTTcp3ueyUa0eqt+aFc/+9Nan\n3g0h9Nz+4JvG7d/+haufX91cp9LFnznl9CMO+tTO/fqEmpVLliz596vPzZr1xMq6TAhh6bP3\nTrh32E1nDe9obwAAAAAAAABshSwN6evWbvhUfLq47Zm5xU377DsQ0keZub+deuu0P1VlohBC\nOr/fxTdfWdTB7ep1lS9d9cNHQwg56eJLbv5Gr44sf/3tqrjIKxxy1S2T9u1f2DTQY4dhpTsM\n2/tTRx09+rqLr3ulsi6E8NrMSa98YcaehVn6bwIAAAAAAABAkkSzW9IYbSjWt2f62/Nm33X3\n9HkbTrnPyS294KbJBw8obHvVRqKo7hfjb/qgLhNCGPXVm0b12fLR+i0NOmnsl+oyIYSdDzpm\nZN/NrC3ou9eE7593xoU/jaIoalz3s18vvv3cXTv0CAAAAAAAAAC2QpaG9PklTYfYR5nqtmc2\nVDd9wyaVV9b2zKqlL9w19c7H/vlO85V+w4+87NJxu28uJm/bS7+c8L9Lq0IIffc+58rPDOro\n8lGfPX6Lc3oNPPasne69Z1llCGH5Xx4PQnoAAAAAAACAbS9LQ/qc/JK4iKK6msaoMKfVw+Tr\nypsOxs/JbTWkjxprn/r1T37y66dqN2y7zy/e+fNnnz/26BEdO+M+hBDC2oUzvzNzYQghr3C3\n6675XMdv0F77Hzfgnp8tCCHUVfwthAs6ebeioqIoirY8DwAAAAAAtoHS0tLubgGA/37pdLrz\nN8nSkD63564hzI7r12rqP1mU39rMFcvWxUWP0h03O2Htm3Num/zj55c27chP99j+6FPGnn7i\nYSW5WxHQhxDCTdfel4miVCo99vpvD8zvgp9xa0r2bPr7SmPDmopM1Lsjn73fVE5OTlc0BQAA\nAAAAW6NLUhMASECWhvQ9en86J3VHYxSFEP5V1dBGSP9SVX1c9B21w6ajbz897VuTZ8Ub6FOp\n3P2OP/f8Mz+7Q0Gn/h6wpLYhhBBFmWnfPGtamzNf+cG4E37QVI+aMuOqQcUdelAqt0dzndep\ngB4AAAAAAACAdsnSkD6VLtm7V968qroQwqvPfhBO3GWz06KGVXMq1sf1oJEbH3e/8oXpF/9w\nViaKQgiFO438+jcvOWjX7bZl1+1S/vK8hTX1IYT8kqH7DC1pY+a6ZavjIrfgYz1bP/AfAAAA\nAAAAgK6SpSF9COHEvcvmPfN+COG9R//eWkhfseTB+igKIaTShWP792o51LDu9StueCRO6Mv2\nHPOD756/fV7XnPde2KsoyjS2MaG2piZ+brpHYcGGQ/V7bHj42oX3fm/6v0MIPUpGP/jLb7Zx\nnzd+sywuigZ9vtNdAwAAAAAAALBl2RvSDz59//DMb0II1e/dP7fixE/13syJ98/cMScuigeO\n7fvhDH7eHZNX1mdCCPm9R952/biSzn3QvaVf3Duj7QnXjT35+cq6EMKwi2694eAdNxrd8fDP\nhOn/DiGsX/uXexacd/bQzW/ub6hZ8OP5TTvph502vLNNAwAAAAAAANAOXbP5+/+i4oHnHFxa\nEEKIosYfT5oZbTKh/NUZP/93RVwfe+nolkNRpnLKnOVxfdTES7owoe+8gtJjTtihMK5nTbzm\n5Yq6Tec0NqycevWk6kwUQsgr3OOST/ZNtEUAAAAAAACAbJW9O+lDKv3lK4/56/hHQghrFtx/\n0Q9yr/7aif175YYQQpRZMOehGyc/GEVRCKFk19PHDu7dcmn1+/eVNzSGEFKp9P6NyxcuXLHF\np+XkbjdkcL+WV2aOv2R2+bq4vuZHdwzqke6a9wrh1KtO+/2ldzdGUab27e+Mu/j4sWePOWTE\n9iWFIcqsev+dxa/Pe/jeX72yYl0IIZXKOemqy32QHgAAAAAAACAZWRzSh1C6+5e+fdKC6x9e\nEEJY8tdfXvC3RwYP2aWkR+PyZYuWraqN5+SXDJ/0vVM2WrjquYVxEUWZiVdc3p5nFZSNeWDa\nV1peqVzx3nsrm0L6+k038ndC8eDPf+e0lybe/3wIob5m2cNTb3x4asgtKM7PVNfU/+dr96lU\nzugv3jB2RFlXPhsAAAAAAACA1mXvcfex/c656fIzDy/ISYUQokzlm6+/Mu+l+c0Jfd/dD590\n+7W7FGy8x738xfKkG+2gvU+feP1XPlea+5+fb0NtZcuEvqBsyNlXT7nspN27ozsAAAAAAACA\nLJXVO+lDCCHkHHzKJSNHHfXo40/MeWH+ytWrK9aH0tKy/oP3OOTQQ4/89J6b/dz8ByvXJ95n\nh40Yc94vDj7mL4/9+cXX316xfMXyFcsr69PblZQMHLLHvvt++qjD9yt0yj0AAAAAAABAslLx\nZ9cBAAAAAAA6atjFf+juFpq8dtuY7m4BANol24+7BwAAAAAAAIDECOkBAAAAAAAAICFCegAA\nAAAAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoAAAAAAAAASIiQHgAA\nAAAAAAASIqQHAAAAAAAAgIQI6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4AAAAAAAAAEiKkBwAA\nAAAAAICECOkBAAAAAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAA\nAAAAACAhQnoAAAAAAAAASIiQHgAAAAAAAAASIqQHAAAAAAAAgIQI6QEAAAAAAAAgIUJ6AAAA\nAAAAAEiIkB4AAAAAAAAAEiKkBwAAAAAAAICECOkBAAAAAAAAICFCegAAAAAAAABIiJAeAAAA\nAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoAAAAAAAAASIiQHgAAAAAAAAASIqQHAAAA\nAAAAgIQI6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4AAAAAAAAAEiKkBwAAAAAAAICECOkBAAAA\nAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoAAAAA\nAAAASIiQHgAAAAAAAAASIqQHAAAAAAAAgIQI6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4AAAAA\nAAAAEiKkBwAAAAAAAICECOkBAAAAAAAAICFCegAAAAAAAADi5saKAAAgAElEQVRIiJAeAAAA\nAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoAAAAAAAAASIiQHgAAAAAAAAASIqQHAAAA\nAAAAgIQI6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4AAAAAAAAAEiKkBwAAAAAAAICECOkBAAAA\nAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoAAAAA\nAAAASIiQHgAAAAAAAAASktvdDXwk1Cx7bfbjT8yZN/+DlavW1obSsrL+Hxt68OjDjjhgeF5q\ny8uXvvSXx+e88Or8hSvK11ZW1RYUl5RuP2DPvUYceMSxew0q7kxjjXWrnv7jo/946eWFb71b\nWVlZH/KLinsPHLzbniP2/8zRB/TJT2/rVwMAAAAAAACgC6WiKOruHrpX9OzMKbf88s+1jZv5\ncyjd7dArrrpwjz49WltcV/HGlEk3Pbngg82OplI5w0afevlFp/bJ3ZoTC9565v5JP3pgRW1m\ns6Pp/O3/39evPOPQ3Vq/QadeDQAAAAAAtmjYxX/o7haavHbbmO5uAQDaJdtD+hfuueq7D73a\n/I+pnPyigqiypr75Sn7x7jff+b3BBZvZs95Qs/BbX7pqUYvJqVS693Y9K9ZUt/xTLdxh/1um\nXNU/v2M5/bKnbv/aLY+1vE9uQe9eOTVraxpaTjvsq7deeuzgLn81AAAAAABoDyE9AHRUVof0\naxZM++KVs+I/gV6DRl0w7owD9tolLxVqVr/12G9n3DlrbjzUe/DJ99569qbLp19y5sxFFXE9\n5JAvnHvi4YMHDeiVn1NXtXrxwnkzpv7in8tq4tHSoWOn33xq+xtrqHnli2MnVGaiEEJer8Fj\nx51zwIiP71BWnAqhcvX7Lzw2865f/XlNQ2MIIZXT89pf/nJkcX7XvhoAAAAAALSHkB4AOmpr\njmH/b9F4901/jLPqgr4HTrlt/OgRu8SfaS8s+9gJ50z4wbj94nkVix66b3HlRourlj3YnNAP\nPn785G99cfjHB/XKzwkh5BeVfWLkkd+dMu38QwbEE8oXzLhnw+T2eO3uO+KEPp3f7zs/vfmk\nw/besaw4/oJ8cdmOh55y4U9uu6ggJxVCiBrX/fwXb3TtqwEAAAAAAACwjWRvSF/1zvQnV9fG\n9VnXf70sN7XRhN3GTDiuX2Fc//GWpzcafePuR+Mit+eQG84bten9UzkFx136/aGFefE/Pnnn\ny+3v7YE5K+Jil8+PH16y8S75EEKvQYdfvHefuF71wu82Gu3kqwEAAAAAAACwjWRvSL/4V3+P\ni4KyY44f0GtzU1InfW2fuKpcOmNt5kPfBfjda2viov/ocYU5G6fgTevTvc87dMemOyyevdHo\ntC+desIGi2ozzdcztYv+VVUX14ceO7C1/nc7vmmbfn31K137agAAAAAAAABsI9kb0s96cVVc\n7HTE0a3NKd3jjJxUKoQQZarue7/6PwNR3YtV9XG562d3auMpfT7VtN+9oXZxOxurX7ewud6v\nOK+1afkbdthHjbUbZeydejUAAAAAAAAAtpnc7m6ge0SZiuaU/ROH7dDatHSPQfsX5z1bURdC\nWPxSeRhQFF9vqH0rEzUl43tu16ONB60vb9oTn8otaWdveb2GT5w4Ma7756dbm7b6xfKm+cWf\nbLmRv5OvBgAAAAAAAMC2k6UhfV3lc80p+96b++h7s5FF+XGSvWru6nDsoPhibs8hDzzwQFz3\nKGgrpH/mkaVx0bP08I2Givr265ezLq7zWsTs6fwB++47oO3+G2qW/GTmkrje+Zj/13Kok6+2\n1TKZTBQ5Nh8AAAAAgO7R0NDQ3S0A8N8vnU6nUpv/GHr7ZWlIX1/znyPldy9s9Uj5EEL/gYXh\n3aoQwrp33wlhxIbLOQUFBVt8ytrXH5qxpDKuh541aqPRk2++/eR2Nxxl6qurq6uqqirL331+\nzjNPPzVnWU19CKH34CO/ffrHW87s9Kttperq6rq6uk7eBAAAAAAAts6aNWu6uwUA/vuVlpam\n062eht5OWRrSN9Y1/ac6lcotSbf1mw75pU2b0RsbOvZf9+qlz1w+YUbTTYr3uWxUqyfPt8fP\nzxv7h9W1La+kUnkjjvjCRV89rfTD/SfwagAAAAAAAABsnSwN6evWbvhUfLq47Zm5xU2b0TuQ\nZEeZub+deuu0P1VlohBCOr/fxTdfWdRmXr4Vij524HHHfKZvXs5G17ftqwEAAAAAAADQCVka\n0ndA44bvrDeub8/0t+fNvuvu6fM2nHKfk1t6wU2TDx5Q2Mku+u82bPeK9alUKpVKNVS9u+Ct\n1ZWLn5r0rac+fvDZN37rCwVb99mDDr4aAAAAAAAAAJ2UpSF9fknTSe9RprrtmQ3VDXGRyitr\ne2bV0hfumnrnY/98p/lKv+FHXnbpuN37bvnr9Vt0wtXfPaHFP747/9m7b7ntueU1b/71nm+s\na5w68ZTmoW3xagAAAAAAAAB0iSwN6XPyS+IiiupqGqPCnFZ3oteVN50en5PbapIdNdY+9euf\n/OTXT9Vu2JueX7zz588+f+zRI7r4jPsNdtp91OWTe5599rU1mWj58/dOW3LsObs0HW7fta/W\nfrm5uVEUbXkeAAAAAABsA3l5ed3dAgD//VJbd8b5h2VpSJ/bc9cQZsf1azX1nyzKb23mimXr\n4qJH6Y6bnbD2zTm3Tf7x80ubtq2ne2x/9CljTz/xsJLcbRTQN8kv3nvsjkVTl1WGEObc99Y5\nVw2Pr3fhq3VIYWFnj/QHAAAAAICtVlJS0t0tAEC7ZGlI36P3p3NSdzRGUQjhX1UNbSTZL1XV\nx0XfUTtsOvr209O+NXlWvIE+lcrd7/hzzz/zszsUpDvT279+89D8mvoQQp99PvuZoW39lWLw\n4KKwrDKEULXojRCaQvquejUAAAAAAAAAulyWhvSpdMnevfLmVdWFEF599oNw4i6bnRY1rJpT\nsT6uB43c+Ez4lS9Mv/iHszJRFEIo3Gnk1795yUG7btf53tY89sj9SypCCDu9v1fbIX1Dbaap\nSv3nDJ8ueTUAAAAAAAAAtoWc7m6g25y4d1My/d6jf29tTsWSB+ujKISQSheO7d+r5VDDutev\nuOGROKEv23PM7bdP7JKEPoTQf3jTfda8/I+2Z/7rraq46Ln9gJbXO/lqAAAAAAAAAGwj2RvS\nDz59/7iofu/+uRV1m53zzB1z4qJ44Ni+eR/6s5p3x+SV9ZkQQn7vkbddP277vC77k9xpzMi4\nWLfqN3MrN99YCKFu7bOPrGz6qPyQU3ZuOdTJVwMAAAAAAABgG8nedLZ44DkHlxaEEKKo8ceT\nZkabTCh/dcbP/10R18deOrrlUJSpnDJneVwfNfGSknSqCxvr1f+0wQW5IYQoytx+7fSqzKat\nhcz65T+9+vaGKAohpPN3+vLuHzqvvjOvBgAAAAAAAMC2k6XfpA8hhFT6y1ce89fxj4QQ1iy4\n/6If5F79tRP798oNIYQos2DOQzdOfjCKohBCya6njx3cu+XS6vfvK29oDCGkUun9G5cvXLhi\ni0/Lyd1uyOB+La/MHH/J7PKmrfDX/OiOQT3STX3lFH7z3OEX/uTFEMLaf//uK5et/OLYz43Y\nded+pUWp0LhmxXtvvvT0Xb94aGlNfTx/33Mn9NtoK3wnXg0AAAAAAACAbScVh7VZ6x/Trrj+\n4QVxnUoXDx6yS0mPxuXLFi1bVRtfzC8Z/sOp1+1SkG65asnD3/zGtDc69KCCsjEPTPtKyyvT\nvnTqwxvOq7/1gVmDWz4iyvzq2i/f989VLeenC4p7NtZU1WVaXhxy1EWTv3FkF74aAAAAAAC0\n37CL/9DdLTR57bYx3d0CALRL9h53H9vvnJsuP/PwgpxUCCHKVL75+ivzXprfHGP33f3wSbdf\nu2mMXf5i+bZtK5U+9TtTzj92RE7qPwfpZ2orWyb06R59j7/g+tYS+rC1rwYAAAAAAADAtpPF\nx903yTn4lEtGjjrq0cefmPPC/JWrV1esD6WlZf0H73HIoYce+ek9N/u5+Q9Wrt/WbaVyCo//\n6vWHfW7+n2b/5ZX5r7313qrq6uqQ27O4d++Bg4cOH7HvkUcdWJbf9u9YbM2rAQAAAAAAALDt\nZPtx9wAAAAAAwFZz3D0AdFS2H3cPAAAAAAAAAIkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0A\nAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8A\nAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMA\nAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAA\nAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAA\nAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAA\nAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAA\nAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAA\nAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAA\nAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAA\nAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAA\nAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAA\nAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAA\nAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAA\nAAAACcnt7gY+EmqWvTb78SfmzJv/wcpVa2tDaVlZ/48NPXj0YUccMDwvteXlS1/6y+NzXnh1\n/sIV5Wsrq2oLiktKtx+w514jDjzi2L0GFXdhn+89NeErk1/OKxw281ff38LUqO6UE/9fbWO0\nxXsWD7x8xh0Hd01/AAAAAAAAALRJSB89O3PKLb/8c8s8e+X7NSvff+flvz92/26HXnHVhXv0\n6dHa4rqKN6ZMuunJBR+0vFi1dnXV2tVL//3y/866b9joUy+/6NQ+uV1zYsET9y9q58y6qpfa\nk9ADAAAAAAAAkKRsP+7+hXuuvnH67OY8O5WTX1yY1zxavvCpay+6dlFtZrNrG2oWXjFufMuE\nPpVKl5QWpVJNu++jqHH+U/df+NUb36tr7HyrNctnP/B+TTsn11XO7fwTAQAAAAAAAOhaWb2T\nfs2CadfNnB/XvQaNumDcGQfstUteKtSsfuux3864c9bcKIrqKudPHD/j3lvP3nT5jKuvW1RT\nH9dDDvnCuScePnjQgF75OXVVqxcvnDdj6i/+uawmhFCz/Lnx1zw4/eZTO9NqfeVbt064M4ra\nuzm+4vWlcVE88OxrvrFHGzPTPQZ0pjEAAAAAAAAA2i+bQ/rGu2/6Yxx7F/Q9cMptV5TlNu2A\nLyz72AnnTBi6/aRv/WxuCKFi0UP3LT7xjP/50Nflq5Y9OHNRRVwPPn785PMPaB7KLyr7xMgj\nvzvloN9PvnTq08tCCOULZtyz6NizB/fuaIs15cvffnvJ83+d/afH/1GZ6cDx9aufXxUXfUft\nPWzYkI4+FwAAAAAAAIBtIXuPu696Z/qTq2vj+qzrv96c0DfbbcyE4/oVxvUfb3l6o9E37n40\nLnJ7DrnhvFGb3j+VU3Dcpd8fuuHw/CfvfLlD7a1f8/i5Y08+7YvnX/HtSQ/MntuhhD6EsPiN\nqrjY4VN9OrQQAAAAAAAAgG0ne0P6xb/6e1wUlB1z/IBem5uSOulr+8RV5dIZaz8ck//utTVx\n0X/0uMKcjQP+pvXp3ucdumPTHRbP3mh02pdOPWGDTT97H2UqV1XWtfttNja3qmntvv16bvVN\nAAAAAAAAAOha2Xvc/awXmw6E3+mIo1ubU7rHGTmpvzVGUZSpuu/96q8OKGoaiOperGr6Gv2u\nn92pjaf0+VSf8MelIYSG2sUdai+3cNiZZ57Z8krN8ice/vO77VkbNda8Ul0fQkil0qN69+jQ\ncwEAAAAAAADYdrI0pI8yFc0p+ycO26G1aekeg/Yvznu2oi6EsPil8rAhpG+ofSsTNW2s33O7\ntlLw9eVNO9pTuSUd6jC35ydOOeUTLa+sfmV+O0P6+soX4vbyikYUp1PvvvzU//7t5WXvLHtv\n+ep0r959th84fJ99Djz0oB17pjvUEgAAAAAAAACdlKUhfV3lc80p+94l+W3MHFmUH4f0q+au\nDscOii/m9hzywAMPxHWPgrZC+mceWRoXPUsP32ioqG+/fjnr4jpv8+flb6X1a5+Pi1ROrx9d\ne+FjLy5tMfj+kjcXzvv7E/feOe3I08Z97eRRXfXk2traTGbjQ/sBAAAAACAZ1dXV3d0CAP/9\nevbsmZPT2W/KZ2lIX1+zsLnevTCvjZn9BxaGd6tCCOvefSeEERsu5xQUFGzxKWtff2jGksq4\nHnrWqI1GT7759pM70HIHrHnlvbhYv/avj724+TmZulWP3nPj/DfO/NH4U9JdEdTX1dXV1dV1\nwY0AAAAAAKDj1q1b190tAPDfrz0x8RZlaUjfWLcmLlKp3JI2M+r80qZ99o0Nazr0iOqlz1w+\nYUbTTYr3uWxUq4fqd7nVz69urlPp4s+ccvoRB31q5359Qs3KJUuW/PvV52bNemJlXSaEsPTZ\neyfcO+yms4Yn1hsAAAAAAABANsvSkL5u7YZPxaeL256ZW9y0z74DIX2UmfvbqbdO+1NVJgoh\npPP7XXzzlUVdsl29fV5/uyou8gqHXHXLpH37FzYN9NhhWOkOw/b+1FFHj77u4uteqawLIbw2\nc9IrX5ixZ2GW/psAAAAAAAAAkCTR7JY0RhuK9e2Z/va82XfdPX3ehlPuc3JLL7hp8sEDCtte\n1bUGnTT2S3WZEMLOBx0zsu9mzlso6LvXhO+fd8aFP42iKGpc97NfL7793F2T7BAAAAAAAAAg\nO2VpSJ9f0nSIfZSpbntmQ3VDXKTyytqeWbX0hbum3vnYP99pvtJv+JGXXTpu983F5NvUqM8e\nv8U5vQYee9ZO996zrDKEsPwvjwchPQAAAAAAAMC2l6UhfU5+SVxEUV1NY1SY0+pZ9HXlTQfj\n5+S2GtJHjbVP/fonP/n1U7Ubtt3nF+/8+bPPH3v0iOTOuO+4/Y8bcM/PFoQQ6ir+FsIFnbxb\nQUFBfn5+V/QFAAAAAAAdVlRU1N0tAPDfLycnp/M3ydKQPrfnriHMjuvXauo/WdRqurxi2bq4\n6FG642YnrH1zzm2Tf/z80qYd+eke2x99ytjTTzysJPejHNCHEELJnqVx0diwpiIT9U53qmEJ\nPQAAAAAA3aigIOlzbQFg62RpSN+j96dzUnc0RlEI4V9VDW2E9C9V1cdF31E7bDr69tPTvjV5\nVryBPpXK3e/4c88/87M7FKS3TdddLJXbo7nO+6j/RgEAAAAAAADAf4MsDelT6ZK9e+XNq6oL\nIbz67AfhxF02Oy1qWDWnYn1cDxq58XH3K1+YfvEPZ2WiKIRQuNPIr3/zkoN23W5bdt0u5S/P\nW1hTH0LILxm6z9CSNmauW7Y6LnILPtaz9QP/AQAAAAAAAOgqWRrShxBO3Lts3jPvhxDee/Tv\nrYX0FUserI+iEEIqXTi2f6+WQw3rXr/ihkfihL5szzE/+O752+d1wecHOm/twnu/N/3fIYQe\nJaMf/OU325j5xm+WxUXRoM8n0RkAAAAAAABA1vtI5MrdYvDp+8dF9Xv3z62o2+ycZ+6YExfF\nA8f2/XAGP++OySvrMyGE/N4jb7t+3EckoQ8h7Hj4Z+Ji/dq/3LNgTWvTGmoW/Hh+0076YacN\nT6IzAAAAAAAAgKz3UYmWk1c88JyDSwtCCFHU+ONJM6NNJpS/OuPn/66I62MvHd1yKMpUTpmz\nPK6PmnhJSfojdFZ8QekxJ+xQGNezJl7z8uZ+/6CxYeXUqydVZ6IQQl7hHpd8sm+iLQIAAAAA\nAABkq+w97j6k0l++8pi/jn8khLBmwf0X/SD36q+d2L9XbgghRJkFcx66cfKDURSFEEp2PX3s\n4N4tl1a/f195Q2MIIZVK79+4fOHCFVt8Wk7udkMG92t5Zeb4S2aXr4vra350x6Ae6a55rxBO\nveq03196d2MUZWrf/s64i48fe/aYQ0ZsX1IYosyq999Z/Pq8h+/91Ssr1oUQUqmck6663Afp\nAQAAAAAAAJKRxSF9CKW7f+nbJy24/uEFIYQlf/3lBX97ZPCQXUp6NC5ftmjZqtp4Tn7J8Enf\nO2WjhaueWxgXUZSZeMXl7XlWQdmYB6Z9peWVyhXvvbeyKaSv33QjfycUD/78d057aeL9z4cQ\n6muWPTz1xoenhtyC4vxMdU19Y/O0VCpn9BdvGDuirCufDQAAAAAAAEDrsve4+9h+59x0+ZmH\nF+SkQghRpvLN11+Z99L85oS+7+6HT7r92l0KNt7jXv5iedKNdtDep0+8/iufK839z8+3obay\nZUJfUDbk7KunXHbS7t3RHQAAAAAAAECWyuqd9CGEEHIOPuWSkaOOevTxJ+a8MH/l6tUV60Np\naVn/wXsccuihR356z81+bv6DlesT77PDRow57xcHH/OXx/784utvr1i+YvmK5ZX16e1KSgYO\n2WPffT991OH7FTrlHgAAAAAAACBZqfiz6wAAAAAAAB017OI/dHcLTV67bUx3twAA7ZLtx90D\nAAAAAAAAQGKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACcnt7gYAAAAAAGArDbv4\nD93dQpPXbhvT3S0AAP832EkPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAA\nAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAA\nAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAA\nAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAA\nAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAA\nAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAA\nAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAA\nAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAA\nAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAA\nACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAA\nAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAA\nQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAA\nkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAA\nJCS3uxv4SKhZ9trsx5+YM2/+BytXra0NpWVl/T829ODRhx1xwPC81JaXL33pL4/PeeHV+QtX\nlK+trKotKC4p3X7AnnuNOPCIY/caVNy9vXVyOQAAAAAAAABdKBVFUXf30L2iZ2dOueWXf65t\n3MyfQ+luh15x1YV79OnR2uK6ijemTLrpyQUfbHY0lcoZNvrUyy86tU/u1p1Y0KneOr0cAAAA\nAOCjbtjFf+juFpq8dtuY7m6he/gRAEBHZftx9y/cc/WN02c3x9ipnPziwrzm0fKFT1170bWL\najObXdtQs/CKceNbJvSpVLqktCiVatqiHkWN85+6/8Kv3vheXWPCvXV+OQAAAAAAAABdLquP\nu1+zYNp1M+fHda9Boy4Yd8YBe+2Slwo1q9967Lcz7pw1N4qiusr5E8fPuPfWszddPuPq6xbV\n1Mf1kEO+cO6Jhw8eNKBXfk5d1erFC+fNmPqLfy6rCSHULH9u/DUPTr/51CR76+RyAAAAAAAA\nALaFbN5J33j3TX+MT/sv6HvglNvGjx6xS/yZ9sKyj51wzoQfjNsvnlex6KH7FldutLhq2YMz\nF1XE9eDjx0/+1heHf3xQr/ycEEJ+UdknRh753SnTzj9kQDyhfMGMezZMTqC3Ti8HAAAAAAAA\nYJvI3p30Ve9Mf3J1bVyfdf3Xy3JTG03YbcyE42ad/vsVNSGEP97y9Bk/+tDHbN64+9G4yO05\n5IbzRm16/1ROwXGXfv+vz5+7oKY+hPDknS+f/b0Dk+mtk8sBAAAAgHbyNW4AADoqe3fSL/7V\n3+OioOyY4wf02tyU1Elf2yeuKpfOWJuJWo797rU1cdF/9LjCnI1T8Kb16d7nHbpj0x0Wz95o\ndNqXTj1hg42+Dd/J3jq5HAAAAAAAAIBtJHtD+lkvrkJ/aKwAACAASURBVIqLnY44urU5pXuc\nkZNKhRCiTNV971f/ZyCqe7Gq6Wv0u352pzae0udTfeKioXZxQr11ejkAAAAAAAAA20iWhvRR\npqI5Zf/EYTu0Ni3dY9D+xXlxvfil8ubrDbVvZaKm3ed7btejjQetL6+Li1RuSTK9dXI5AAAA\nAAAAANtOln6Tvq7yueaUfe+S/DZmjizKf7aiLoSwau7qcOyg+GJuzyEPPPBAXPcoaCukf+aR\npXHRs/TwjYaK+vbrl7MurvNanJffyd46uXyrVVZW1tXVdfImAAAAAMDWWbVqVXe3kO38CLqd\nHwEACdhuu+3S6XQnb5KlIX19zcLmevfCvDZm9h9YGN6tCiGse/edEEZsuJxTUFCwxaesff2h\nGUsq43roWaM2Gj355ttP3ga9dfrVtlIURVHk2/YAAAAA0D3837lu50fQ7fwIAPi/IkuPu2+s\nWxMXqVRuSTrVxsz80qbN6I0Nazr0iOqlz1w+YUbTTYr3uWxUqyfPd21vCbwaAAAAAAAAAFsn\nS3fS163d8Kn4dHHbM3M3fLi9A0l2lJn726m3TvtTVSYKIaTz+11885VFbeblXdjbtn01AAAA\nAAAAADohS0P6DmjccDxO4/r2TH973uy77p4+b8Mp9zm5pRfcNPngAYUfhd66eDkAAAAAAAAA\nHZSlIX1+SdNJ71Gmuu2ZDdUNcZHKK2t7ZtXSF+6aeudj/3yn+Uq/4Udedum43ftu+ev1Xdjb\ntni1/8/evcdZVdb7A3/23BgGhmlGvIAQHfIGiBJdlIrjJS39UZZkpGAe8pRaltqvNJXEjlJZ\nvY5Gpl3soilgGmp2rCNeshRR8vLLC5AlSspVrjPDAHNbvz/2OE7AjMDsedae9vv917e9n/Xs\n7+LZS4Y+86wFAAAAAAAAQE4UaEhfVFaVLZKksaE1qSjq9F70jRva7h5fVNJpkp20bn3oVz/8\n4a8e2vr63vSyyrd+7IzPTvnQ4bt6j/vc9ZbbU9t1AwYM6P4kAAAAAMCeGThwYNotFDpLkDpL\nAEBvUaAhfUnfA0OYl60XNzS9s39ZZyPXLN+SLfpU77fTAZtenD/z6h888UrbtvXiPnt/aNKU\n004+pqpkDwL6HPSWw1MDAAAAAAAAILeK0m4gHX0GHFmUaQvR/1Lf3MXIZ+qbssXAcfvu+O4/\n/nTjZ7/8nWxCn8mUvOekz/7o5p+c84lj9zih735vuTo1AAAAAAAAAHKuQHfSZ4qrxvQrfaq+\nMYTw/ILXwsnDdjosaV43v3Zbth46dvt7wq998qbz//vOliQJIVQMHvuFL1/w/gPfknpvOTk1\nID81zR6cdgttSievSLsFAAAAAACAXqlAd9KHEE4e05ZMr7z3sc7G1C67vSlJQgiZ4oopg/p1\nfKt5y18v+uZd2YS+5tAJ1147PScJfU566+bhAAAAAAAAAPSQwg3ph592RLbYvHLOwtrGnY55\n5Pr52aJyyJSBpf/0Z/XU9VevbWoJIZQNGDvzyrP2Ls3ln2Q3e+vm4QAAAAAAAAD0kMJNZyuH\nTB1fXR5CSJLWH8yYm+wwYMPzs37y99psfeKXjur4VtJSd9381dn6+OkXVBXv+RPoc95b9w8H\nAAAAAAAAoIcU6DPpQwghU/yZr57w8MV3hRA2Lplz3ndLLv38yYP6lYQQQtKyZP6vv3X17UmS\nhBCqDjxtyvABHQ/dvGr2hubWEEImU3xE6+oXXljzpp9WVPKWA4bv0/GVuRdfMG/Dlmz9te9f\nP7RPcU56y8HhAAAAAAAAAPSMAg7pQ6geeeZlE5dceceSEMKyh28+59G7hh8wrKpP6+rlS5ev\n25odU1Y1esY3Jm134LrHX8gWSdIy/aILd+Wzymsm3Hbj2R1fqVuzcuXatpC+aYfd7nvcW04O\nBwAAAAAAAKAnFO7t7rPePfWqC08/trwoE0JIWupe/OtzTz2zqD3GHjjy2BnXXj6svHi7ozY8\nvSFve8vV4QAAAAAAAADkXEHvpA8hhFA0ftIFY8cdf+8DD85/ctHa9etrt4Xq6ppBw0f9+9FH\nH3fkoTt93Pxra7flbW+5OxwAAAAAAACAHMtkn00OQP5rmj047RbalE5ekXYLAAAAkBdGnH9P\n2i20WTxzQtotpMMSpM4SAMDuKvTb3QMAAAAAAABANEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIpCTtBgAAAACAPTHi/HvSbuENi2dOSLsFAABSkz8/mvaKn0vt\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiKQk\n7QYAAAAA2D1Nswen3UKb0skr0m4BAACgl7GTHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI\n6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHS\nAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEUpJ2\nAwAAAAD0Soc9fkN4/J60uwghhMUzJ6TdAgAAwK6ykx4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIikJO0GAAAAAPbEiPPvSbuF\nNotnTki7BQAAAHoNIX0IITQsXzzvgQfnP7XotbXrNm0N1TU1g952yPijjvnAe0eXZnZvqpUP\nTTv76mdLK0bMvfXbPdNsWD3/us9++94QwqEX/uSb4/eLfDgAAAAAAAAAe0xInyyYe901N9+3\ntTVpf2ntqoa1q1599rH75xx09EWXnDtqrz67Pt2Dc5b2QJNvaNz09MVX35fW4QAAAAAAAAB0\nR6E/k/7JX176rZvmtSf0maKyyorS9nc3vPDQ5eddvnRryy7O1rB63m2rGnLf5euSZOuPL/7O\nuqbWVA4HAAAAAAAAoJsKeif9xiU3XjF3UbbuN3TcOWdNfu9hw0ozoWH9y/ffPetndy5MkqSx\nbtH0i2fd8r0z3nS2prqXvzftZ0mSvOnIPfb0jZfet3xzWocDAAAAAAAA0E2FHNK3/uKq32Uz\n9fKB77tu5kU1JW3Pn6+oedtJU6cdsveMr/x4YQihdumvZ7908uR/q9zpLA0bVv/jH8ueeHje\n7x/4c11LDyb0G5fcfsVdL6Z1OAAAAAAAAADdV7ghff2rN/1h/dZs/akrv9Ce0Lc7aMK0D995\n2v+saQgh/O6aP03+/oTtBmzb+MA55/5wXV1jhG5bti77r+lzWpMkU9S3pnjb7t6yvpuHAwAA\nAAAAAJAThftM+pdufSxblNec8JH9++1sSGbi59+RrepembVph13ySUtddxL6G8/85Emve7PH\n3ie3/9f0F7c2hxDGfvqb/1a+u79a0c3DAQAAAAAAAMiNws1r73x6XbYY/IEPdTametTkosyj\nrUmStNTPXrX5c/v37/huScWI008/veMrDasfvOO+FTlvdelvZ8x+fkMI4S2HfHL6R99+5W1R\nDwcAAAAAAAAgVwo0pE9aap+ub8rWBx+zb2fDivsMPaKydEFtYwjhpWc2hO1C+r4HT5p0cMdX\n1j+3KOchfcOqP1z68ydCCMXlwy6/4tTtb8rfw4cDAAAAAAAAkEMFGtI31j3ekrTdvn5MVVkX\nI8f2L8uG9OsWrg8nDs1hD/0H7rNP0ZZsXdpJeJ60bPjvr/6woSXJZDIfv+yKt5cX79ZHdPPw\n3dLc3Jwk2z8RAPhX1dTUlHYLAACQR/yEnDpLkA+sQuosQeosQeosAQCh5/86KCkpyWS6uzO6\nQEP6poYX2uuRFaVdjBw0pCKsqA8hbFnxagiH57CHU75z7SlvNuYPMy/584atIYS3nnDJ6aOr\nd/cjunn4bmloaGhsbOzRjwCq0m6g3aZNm9JuAQAA8kj8n5Dz518HecI/UvKBVUidJUidJUid\nJQAg9PxfB9XV1cXF3d0aXZSTVnqd1saN2SKTKakq7uo3Hcqq2/bZtzZv7PG2/tmaBT/63kMr\nQgh99x5/1VlHRD4cAAAAAAAAgJwr0JC+cVPbnu9McWXXI0sq2/bZRw7pG+ueueS/7w0hFBVX\nXvCdL/br8jcJcn44AAAAAAAAAD2hQEP63dD6+nPWW7dF+8wkafzpxVe91tgSQhj3uavG7VUe\n83AAAAAAAAAAekiBhvRlVW03sU9aNnc9snlzc7bIlNb0bE8dPHPztP99pT6EMHDM1K9+cGjk\nwwEAAAAAAADoISVpN5COorKqbJEkjQ2tSUVRp3eDb9zQdmP8opJIIf2mF+Z+fe4LIYTSioOu\n+NpHIx++x0pLSzMZN9WHQtGnT5+0WwAAgDziJ+TUWYJ8YBVSZwlSZwlSZwkACD3/10FOItEC\nDelL+h4Ywrxsvbih6Z39yzobuWb5lmzRp3q/GJ2FcNXls1uSJJMpnnLlZUPKiiMfvsf69u0b\n7bOgYDWl3UC7ysrKtFsAAIA8Ev8n5Pz510Ge8I+UfGAVUmcJUmcJUmcJAAi95K+DAg3p+ww4\nsihzfWuShBD+Ut/cRUj/TH3bP3sHjts3Tm/LtjaHEJKk5cYvf+rGLkc+992zTvpuWz3uulmX\nDK3s/uEAAAAAAAAA9JwCfSZ9prhqTL/SbP38gtc6G5Y0r5tfuy1bDx0b75n0AAAAAAAAAPxL\nKtCd9CGEk8fUPPXIqhDCynsfCycP2+mY2mW3NyVJCCFTXDFlUL84jVX065+0tHYxYGtDQ0uS\nhBCK+1SUl7Q986DP679u0c3DAQAAAAAAAOg5hRvSDz/tiPDIb0IIm1fOWVh78nsG7OSO949c\nPz9bVA6ZMrA0Uo7901tmdT3giimnPFHXGEIYcd73vjl+v9weDgAAAAAAAEDPKdwN1JVDpo6v\nLg8hJEnrD2bMTXYYsOH5WT/5e222PvFLR8XtDgAAAAAAAIB/QYW7kz5kij/z1RMevviuEMLG\nJXPO+27JpZ8/eVC/khBCSFqWzP/1t66+PUmSEELVgadNGT4g558/9+IL5m3Ykq2/9v3rh/Yp\nzvlHAAAAAAAAAJBXCjikD6F65JmXTVxy5R1LQgjLHr75nEfvGn7AsKo+rauXL12+bmt2TFnV\n6BnfmNQTn163ZuXKtW0hfdOOG/kBAAAAAAAA+JdTuLe7z3r31KsuPP3Y8qJMCCFpqXvxr889\n9cyi9oR+4MhjZ1x7+bBye9wBAAAAAAAAyIGC3kkfQgihaPykC8aOO/7eBx6c/+SitevX124L\n1dU1g4aP+vejjz7uyEOLM2k3CAAAAAAAAMC/CiF9CCH0Gzpq4tRRE6d2d56aQ79+9927Onjq\nz3+1Zx84fdav9+i43BwOAAAAAAAAwB4r9NvdAwAAAAAAAEA0QnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIJKStBsAAAAAAACA3dY0e3DaLbyhdPKKtFsAeg076QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAA\nAAAAAAAQSUnaDQAA7Kqm2YPTbqFN6eQVabcAAAAAAECvZCc9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkJWk3AAAAAL3PiPPvSbuFNyyeOSHt\nFgAAAIBdZSc9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAA\nAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIpSbsBAAAAAOhlmmYPTruFrBvSbgAAANhtdtID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASErSbgAAAAAAgN6nafbgtFvIuiHtBgAAdo+d9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkZSk3QAAAL1G0+zBabfwhtLJK9JuAQAA\nAABSljf/l90NaTfQm9hJDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAA\ngEiE9AAAAAAAAAAQSUnaDQAAALDbRpx/T9ottFk8c0LaLQBQiJpmD067hXY3pN0AhStvLgRX\nAQDsHjvpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAA\nAAAiEdIDAAAAAAAAQCQlaTcAAAD0PiPOvyftFtosnjkh7RYAAAAAYDfYSQ8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiKUm7\ngbzQsHzxvAcenP/UotfWrtu0NVTX1Ax62yHjjzrmA+8dXZrZvalWPjTt7KufLa0YMffWb3e/\nsdbGdX/63b1/fubZF15eUVdX1xTK+lcOGDL8oEMPP+KDH3rvXmXFbzpDDk8NAAAAAAAAgG4S\n0icL5l53zc33bW1N2l9au6ph7apXn33s/jkHHX3RJeeO2qvPrk/34Jyluers5UfmzPj+bWu2\ntnR4rXnDtoYNa1c9u/BPt9209ye+8NXJRx/U+QQ5PjUAAAAAAAAAuqnQb3f/5C8v/dZN89pj\n7ExRWWVFafu7G1546PLzLl/6TzF5VxpWz7ttVUNOGlv+0LXnf/fWjgl9SfmAqoo3fqmipfG1\nW6/+yjW/7/R3AnJ7agAAAAAAAAB0X0HvpN+45MYr5i7K1v2GjjvnrMnvPWxYaSY0rH/5/rtn\n/ezOhUmSNNYtmn7xrFu+d8abztZU9/L3pv0sSZI3Hfmmmhueu2jm/dmpSvsNn3LW1Pce/vZ9\nayozIdStX/Xk/XN/fut9G5tbQwgP/fiSo95/89jKsh49NQAAAAAAAAByopB30rf+4qrfZYPw\n8oHvu27mxUcdPiz7mPaKmredNHXad896d3Zc7dJfz36prrNZGjasXvKXhbf8YMbUM85/bM2W\nnHS2+BfX17UkIYTisn2+/qPvTDxmzH41ldknyFfW7Hf0pHN/OPO88qJMCCFp3fKTn/6th04N\nAAAAAAAAgNwq3JC+/tWb/rB+a7b+1JVfqCnJbDfgoAnTPrxPRbb+3TV/2nGGbRsf+PSUU079\nj89edNmM2+YtzMbqOXHb/DXZYtjHLh5dtf0u+RBCv6HHnj9mr2y97snfbvdu908NAAAAAAAA\ngJ5QuCH9S7c+li3Ka074yP79djYkM/Hz78hWda/M2rRDBp+01K2ra9zjBm4885Mnva7js+Fb\nti79S33btEefOKSzww/6yP7Zomnzc9u91f1TAwAAAAAAAKAnFO4z6e98el22GPyBD3U2pnrU\n5KLMo61JkrTUz161+XP79+/4bknFiNNPP73jKw2rH7zjvhXdbKxpywvt9bsrSzsbVvb6Dvuk\ndWsSQsfN8t0/NQAAAAAAAAB6QoGG9ElL7dP1Tdn64GP27WxYcZ+hR1SWLqhtDCG89MyGsF1I\n3/fgSZMO7vjK+ucWdT+kL+03evr06dl6UFlxZ8PWP72hbXzlOzsm9Dk5NQAAAAAAAAB6QoGG\n9I11j7ckbfd4H7Ozh763G9u/LJtkr1u4Ppw4NIc99B+4zz5FW7J1aYeYvbhs/3e9a/+uj21u\nWPbDucuy9VtP+ETHt9I6tS1btjQ3N3dzEqBr5Wk30K6uri7tFihQroLU5c8ShAJeBbbjm5A6\nS5APrELq4i9BXv2lnA8sQT6IvAqWYEcuhNRZgtT5oagA5dVV4BtIWvLqQsgHPX0x9uvXr6io\nu8+UL9CQvqnhjVvKj6zo9JbyIYRBQyrCivoQwpYVr4ZweA57OOU7156yy4OTlqbNmzfX19fX\nbVjxxPxH/vTQ/OUNTSGEAcOPu+y0t3ccmdapNTU1NTY2dnMSoGv58xfttm3b0m6BAuUqSF3+\nLEEo4FVgO74JqbME+cAqpC7+EuTVX8r5wBLkg8irYAl25EJInSVInR+KClBeXQW+gaQlry6E\nfNDTF2NFRUX3JynQkL61cWO2yGRKqoozXYwsq27bjN7avLHH2+rcT/5zyj3rt3Z8JZMpPfwD\nHz/vc6dW/3P/ve7UAAAAAAAAAApHgYb0jZva9nxniiu7HllS2bYZPd+S7P5ve9+HT/jgwNLt\n76XwL3BqAABv6rDHbwiPP552FyGE8PBlR6TdAgAAAADQmxRoSL8bWpPXizTvUjLooBEja7dl\nMplMJtNcv2LJy+vrXnpoxlceevv4M771lY+XZ7raMd+p/Dg1AAAAAAAAgMJRoCF9WVXbnd6T\nls1dj2ze3JwtMqU1PdtTl0669L9O6vA/Vyxa8ItrZj6+uuHFh3/5xS2tN0yf1P5Wrzs1AAAA\nAAAAgMJRoCF9UVlVtkiSxobWpKKo053ojRva7h5fVJJHSfbgkeMuvLrvGWdc3tCSrH7ilhuX\nnTh1WNvN7dM6tYqKir59+3Z/HqBXqKqqSrsFSJmrgHa+DKmzBKmzBPnAKqTOEqTOEuQDq5A6\nS5A6S5A6S0C6fAMhT/T0xVhUtP3jyPdAgYb0JX0PDGFetl7c0PTO/mWdjVyzfEu26FO9X4zO\ndllZ5Zgp+/W/YXldCGH+7JenXjI6+3pap1ZSUqDfJYipKe0G2pWWlqbdAgXKVZC6/FmC/FGw\nX4b8YQlSZwnygVVIXfwl8JfydixBPoi8CpZgRy6E1FmC1PmhqADl1VXgG0ha8upCyAe94mLM\nQc7fG/UZcGTR689x/0t9cxcjn6lv+2IPHLdvj7cVQgjhL7/59Zw5c+bMmTNvyaauRw4f3j9b\n1C/9W/uL+XxqAAAAAAAAAAWuQHc/Z4qrxvQrfaq+MYTw/ILXwsnDdjosaV43v3Zbth46NtLt\n7jfef9ecZbUhhMGrDvvgIV3djaF5a0tblXnj90Hy+dQAerum2YPTbqFN6eQVabcAAAAAAADs\niQLdSR9COHlMWzK98t7HOhtTu+z2piQJIWSKK6YM6hensUGj35ItNj77565H/uXl+mzRd+/9\nO76et6cGAAAAAAAAUOAKN6QfftoR2WLzyjkLaxt3OuaR6+dni8ohUwaWRvqzGjxhbLbYsu43\nC+t23lgIoXHTgrvWtj1U/oBJb+34Vt6eGgAAAAAAAECBK9x0tnLI1PHV5SGEJGn9wYy5yQ4D\nNjw/6yd/r83WJ37pqGiN9Rt06vDykhBCkrRce/lN9S07thZatq3+0aXXNidJCKG4bPBnRv7T\n/erz9tQAAAAAAAAAClzhhvQhU/yZr56QLTcumXPed29fubm57a2kZckjv7rgstuTJAkhVB14\n2pThA3L++XMvvuDs172yraX99UxRxZc/PTpbb/r7b8/+v1fNW7ho9Yb6JIQQWjeuWf7k/XPO\n+4/P3/9K273u3/XpaftstxU+7VMDAAAAAAAAYKdK0m4gTdUjz7xs4pIr71gSQlj28M3nPHrX\n8AOGVfVpXb186fJ1W7NjyqpGz/jGpJ749Lo1K1e+fr/6pn/e7T70hOmTF3xm9v9bF0Koe2nB\nD2YsCCEUl1f2bW2ob2zpOPKA48+bNmHojpOne2oAAAAAAAAA7FQB76QPIYTw7qlXXXj6seVF\nmRBC0lL34l+fe+qZRe0x9sCRx8649vJh5cWx28oUf/Lr1332xMOLMpn211q21nVM6Iv7DPzI\nOVde/cXjOpsjT08NAAAAAAAAoIAV9E76EEIIReMnXTB23PH3PvDg/CcXrV2/vnZbqK6uGTR8\n1L8fffRxRx5anHnzKXpCpqjiI5+78piPLvr9vD8+t2jxyyvXbd68OZT0rRwwYMjwQ0Yf/q7j\njn9fTVnXv2ORp6cGAAAAAAAAULCE9CGE0G/oqIlTR02c2t15ag79+t137+rgqT//1Zt+YP/B\nIz8xdeQnutFSrk4NAAAAAAAAgO4r9NvdAwAAAAAAAEA0QnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAS8KihAAAIABJREFUAEQipAcAAAAAAACASIT0\nAAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkB\nAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMA\nAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAA\nAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAA\nAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAA\nAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKSdgNA79A0e3DaLbyhdPKKtFsA\nAApX3vxcdEPaDaTGEgAAAAC9mp30AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIJKStBvICw3LF8974MH5Ty16be26TVtDdU3N\noLcdMv6oYz7w3tGlmd2bauVD086++tnSihFzb/12zvvcjcmTxkknf2Jra/Kmc1YOuXDW9eNz\n0x8AAAAAAAAAXRLSJwvmXnfNzfd1zLPXrmpYu+rVZx+7f85BR190ybmj9uqz69M9OGdpDzS5\n25M31j+zKwk9AAAAAAAAADEV+u3un/zlpd+6aV57np0pKqusKG1/d8MLD11+3uVLt7bs4mwN\nq+fdtqoh913u/uSNdQt7qA0AAAAAAAAA9lhB76TfuOTGK+Yuytb9ho4756zJ7z1sWGkmNKx/\n+f67Z/3szoVJkjTWLZp+8axbvnfGm87WVPfy96b9LEl6ZP/67k5e+9dXskXlkDO+9sVRXYws\n7rN/d5sDAAAAAAAAYNcUckjf+ourfpeNvcsHvu+6mRfVlLQ9f76i5m0nTZ12yN4zvvLjhSGE\n2qW/nv3SyZP/rXKnszRsWP2Pfyx74uF5v3/gz3UtOU7o93jy9U+syxYDx40ZMeKA3HYFAAAA\nAAAAwJ4p3JC+/tWb/rB+a7b+1JVfaE/o2x00YdqH7zztf9Y0hBB+d82fJn9/wnYDtm184Jxz\nf7iurrEn2uvm5C/9rT5b7PuevXLXFAAAAAAAAADdUrjPpH/p1seyRXnNCR/Zv9/OhmQmfv4d\n2arulVmbdtjInrTUdSehv/HMT570uh0fe9/NyRfWtx37rn367vEkAAAAAAAAAORW4e6kv/Pp\nthvCD/7AhzobUz1qclHm0dYkSVrqZ6/a/Ln9+3d8t6RixOmnn97xlYbVD95x34qctNedyZPW\nhuc2N4UQMpnicQP65KQfAAAAAAAAALqvQEP6pKX26fqmbH3wMft2Nqy4z9AjKksX1DaGEF56\nZkPYLqTve/CkSQd3fGX9c4tyFtJ3Y/KmuidbkiSEUNr/8MrizIpnH/rfR59d/urylavXF/cb\nsNfeQ0a/4x3vO/r9+/UtzkmrAAAAAAAAAOyiAg3pG+sez8bYIYQxVWVdjBzbvywb0q9buD6c\nODSHPfQfuM8+RVuydWkmhxOHbZueyBaZon7fv/zc+59+pcObq5a9+MJTjz14y89uPO7Usz5/\nyricfjIAAAAAAAAAXSnQkL6p4YX2emRFaRcjBw2pCCvqQwhbVrwawuE57OGU71x7Sg6n62Dj\ncyuzxbZND9//9M7HtDSuu/eX31r0t9O/f/Gk4lwE9bW1tY2NjTmYiHxVlXYDHa1duzbtFtKR\nP6tgCVJnCVJnCWhXsF+G/BF/CVwI27EE+cB/i1LnQkidJcgHkVfBEuzIhZA6S5A6PxQVoLy6\nCnwDSUteXQj5oKcvxurq6uLi7t6wvEBD+tbGjdkikymp6jKjLqtu22ff2ryxx9vKkfVPrG+v\nM8WVH5x02gfe/5637rNXaFi7bNmyvz//+J13Pri2sSWE8MqCW6bdMuKqT41Or1kAAAAAAACA\nAlKgIX3jprY935niyq5HllS27bPvRSH9X/9Rny1KKw645JoZ7xpU0fZGn31HVO87Ysx7jv/Q\nUVecf8VzdY0hhMVzZzz38VmHVhToNwEAAAAAAAAgJtHsm2lNXi+2pdrHbhg6ccqZjS0hhLe+\n/4SxA8t3HFA+8LBp3/7Pyef+KEmSpHXLj3/10rWfPjB6mwAAAAAAAAAFp0BD+rKqtpvYJy2b\nux7ZvLk5W2RKa3q2p9wZ938+8qZj+g058VODb/nl8roQwuo/PhCE9AAAAAAAAAA9r0BD+qKy\nqmyRJI0NrUlFUaePpW/c0HZj/KKSXhPS76IjPrz/L3+8JITQWPtoCOd0c7ZMJpPJdPrHCLnl\ny5Y6S5A6S5A6S0A7X4bUWYLUWYJ8YBVSZwlSZwnygVVInSVInSVInSUgXb6BkCd6xcVYoCF9\nSd8DQ5iXrRc3NL2zf1lnI9cs35It+lTvF6OziKoOrc4Wrc0ba1uSAcXd+r5WVlbmoinyV1Pa\nDXS01157pd1COvJnFSxB6ixB6iwB7Qr2y5A/4i+BC2E7liAf+G9R6lwIqbME+SDyKliCHbkQ\nUmcJUueHogKUV1eBbyBpyasLIR/0iouxKO0G0tFnwJFFr/8OxV/qm7sY+Ux92xd74Lh9e7yt\nuDIlfdrr0l7wCyUAAAAAAAAAvV6B7qTPFFeN6Vf6VH1jCOH5Ba+Fk4ftdFjSvG5+7bZsPXRs\n77jd/YZnn3qhoSmEUFZ1yDsOqepi5Jbl67NFSfnb+nZ+w38AAAAAAAAAcqVAQ/oQwsljap56\nZFUIYeW9j3UW0tcuu70pSUIImeKKKYP6Re1vT2164ZZv3PT3EEKfqqNuv/nLXYz822+WZ4v+\nQz8WozMAAAAAAACAglegt7sPIQw/7YhssXnlnIW1jTsd88j187NF5ZApA0t7x5/Vfsd+MFts\n2/THXy7Z2Nmw5oYlP1jUtpN+xKmjY3QGAAAAAAAAUPB6R/DcEyqHTB1fXR5CSJLWH8yYm+ww\nYMPzs37y99psfeKXjorb3Z4rrz7hpH0rsvWd07/27M5+/6C1ee0Nl87Y3JKEEEorRl3wzoFR\nWwQAAAAAAAAoVIUb0odM8We+ekK23LhkznnfvX3l5ua2t5KWJY/86oLLbk+SJIRQdeBpU4YP\nyPnnz734grNf98q2lhzO/MlLTi3KZEIILVv/8fWzzr/xtwte29QQQghJy7qVy5546M6vnXPu\n75fWhhAymaKJl1zogfQAAAAAAAAAcRTuM+lDCNUjz7xs4pIr71gSQlj28M3nPHrX8AOGVfVp\nXb186fJ1W7NjyqpGz/jGpJ749Lo1K1eu3ZKtm3bcyN8NlcM/9vVTn5k+54kQQlPD8jtu+NYd\nN4SS8sqyls0NTa3twzKZoqP+45tTDq/J5WcDAAAAAAAA0LkC3kkfQgjh3VOvuvD0Y8uLMiGE\npKXuxb8+99Qzi9oT+oEjj51x7eXDyotT7XFPjDlt+pVnf7S65I31bd5a1zGhL6854IxLr/u/\nE0em0R0AAAAAAABAgSronfQhhBCKxk+6YOy44+994MH5Ty5au3597bZQXV0zaPiofz/66OOO\nPLS4194J/vAJ//nT8Sf88f77nv7rP9asXrN6zeq6puK3VFUNOWDUu9515PHHvrvCXe4BAAAA\nAAAA4hLShxBCv6GjJk4dNXFqd+epOfTrd9+9q4On/vxXu/WBuzV5VumA/Y+bOPW43TsIAAAA\nAAAAgJ5S6Le7BwAAAAAAAIBohPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJGUpN0AAEAvc9jjN4TH70m7izaLZ05IuwVia5o9OO0Wsm5IuwEAAAAA6JXspAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiKQk7QYAgN1z2OM3\nhMfvSbuLEEJYPHNC2i0AAAAAAEAvYyc9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAYD/z969x1lV1vsDf/bsuTHDMM1IKgrpIbUAUTJLsTje\nS49lSUYqZmQdsyzznJOlktpRLKvXyczsVHbxhmSGdvlVR0SzEhGOyi9URCuUFLnIdWYYYG7r\n98ceEIEZBvaeZ21++/3+62Hmedb6Lr7zvGa/Xp9ZawEAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkZSnXUBRaF3y\n7IwHH5r15IJXV65atzE0NDYOOfCt4449/sRjRldkdu1QSx+e/KlvPVVRM2L6z75eDLUV8NIA\nAAAAAAAAyJOQPpk9/eYb7nhgY1ey5Usrl7WuXPbyU4/NnHbIcV+8/KJRe1X1/XAPTVtUNLUV\n+NIAAAAAAAAAyFOpP+7+iduv+NptM7bE2Jmyyrqaii3fXfP8w1dffPWijZ19PFrr8hk/X9Za\nJLUV9tIAAAAAAAAAyF9J30m/duGt10xfkBvXDht74QXnHHPYARWZ0Lr6xZm/nvrj++YmSdLW\nvOCqy6be+e3zdnq09uYXvz35x0mS7HRmhNoKe2kAAAAAAAAAFEQp30nf9dPrf5fL1KsHv+vm\nGy879vADcq9pr2k88PRJk795wTty85oW/eKuF5p7OkrrmuUL/zL3zu9OmXTe5x9bsaE4aivM\npQEAAAAAAABQWKUb0re8fNsfVm/MjT967WcbyzPbTDjktMnv27smN/7dDX/a/gib1j748Yln\nnvWxf/3ilVN+PmNuc2dh7qHPv7b8Lw0AAAAAAACA/lC6j7t/4WeP5QbVjae8f//aHU3JjP/M\n2/7PV2aFEJpfmrqu81/qs69Lu5PO5lXNbbtdwK3nf+Teld133n/75/cNr84Wqrb8Lw2gF4fN\nuSXM+W3aVYQQwrM3npZ2CQAAAAAAALumdEP6++atyg32O/G9Pc1pGHVOWebRriRJOlvuWrb+\n0/sP3Pq75TUjzj333K2/0rr8oXsfeCX12vK/NAAAAAAAAAD6Q4mG9Eln07yW9tz4Lcfv09O0\nbNWwo+oqZje1hRBemL8mbBPSD3jLhAlv2forq59ekH9In2dtBbk0AAAAAAAAAPpDiYb0bc1z\nOpPuV8iPqa/sZeYRAytzSfaquavDqcMKWMPAwXvvXdb9uPuKrR42n2dtaV1ae3t7V1dXngeh\nmJWlXcDWNm3alHYJ6SiqLhSD+D8JWrANLSgGkbugBduzEVKnBanTgmJQsp+Qi4eNkDotKAY+\nmqbORkidFqTOh6ISVFS7wE8gaSmqjVAM+nszVlZWZjL5vkm8REP69tbnt4xH1lT0MnPI0Jrw\nSksIYcMrL4dweAFrOPMbN53ZD7WldWkbNmxoa2vL8yAUs/q0C9hac3Nz2iWko6i6UAzi/yRo\nwTa0oBhE7oIWbM9GSJ0WpE4LikHJfkIuHjZC6rSgGPhomjobIXVakDofikpQUe0CP4Gkpag2\nQjHo783Y0NCQzWbzPEiJ/mlFV9va3CCTKa/P9vaXDpUN3Tejd3Ws7feycifKr7ZivjQAAAAA\nAACAEleiIX3buu57vjPZut5nltd134weLcnOs7ZivjQAAAAAAACAEleiIf0u6Eo2D4rvVSJ5\n1lbMlwYAAAAAAADw/6MSDekr67uf9J50ru99Zsf6jtwgU9HYvzVtlmdtxXxpAAAAAAAAACWu\nPO0C0lFWWZ8bJElba1dSU9bju9vb1nQ/Pb6sPFKSnWdtaV1aZWVlNpvN/zjQFwMGDEi7BIqC\nn4TUaUEx0IXUaUHqtCB1WlAMdCF1WpA6LSgGupA6LUidFqROC0iXn0AoEv29GTOZHuPXvivR\nkL58wMEhzMiNn21tf/vAyp5mrliyITeoatg3RmV515bWpVVXV+d/EIpZe9oFbK22tjbtEtJR\nVF0oBvF/ErRgG1pQDCJ3QQu2ZyOkTgtSpwXFoGQ/IRcPGyF1WlAMfDRNnY2QOi1InQ9FJaio\ndoGfQNJSVBuhGOwRm7FEH3dfNejoss1/4/CXlo5eZs5v6f7BHjx2n34vK4SQd23FfGkAAAAA\nAAAAJa5EQ/pMtn5MbUVu/MzsV3ualnSsmtW0KTcedkSkx93nWVsxXxoAAAAAAABAiSvRkD6E\ncMaY7mR66f2P9TSnafE97UkSQshkayYOifdghDxrK+ZLAwAAAAAAAChlpRvSDz/7qNxg/dJp\nc5vadjjnke/Nyg3qhk4cXBHv/yrP2or50gAAAAAAAABKWemms3VDJ41rqA4hJEnXd6dMT7ab\nsOaZqT/8W1NufOq/HbsH1VbMlwYAAAAAAABQyko3pA+Z7Ce/dEpuuHbhtIu/ec/S9R3d30o6\nFz5y9yVX3pMkSQih/uCzJw4fVPDzT7/skk9t9tKmzkLWlvalAQAAAAAAALBD5WkXkKaGkedf\nOX7htfcuDCEs/vMdFz76y+EHHVBf1bV8yaIlqzbm5lTWj55y3YT+OHvziqVLV27Ijdu3u9s9\nz9rSvTQAAAAAAAAAdqiE76QPIYTwjknXX3ruCdVlmRBC0tn89+eefnL+gi0x9uCRJ0y56eoD\nqrN7Ym3FfGkAAAAAAAAApamk76QPIYRQNm7CJUeMPfn+Bx+a9cSClatXN20KDQ2NQ4aP+ufj\njjvp6EOzmT23tmK+NAAAAAAAAIBSJKQPIYTaYaPGTxo1flK+x2k89Cu//nVfJ0/6yd19OWGe\ntRXq0gAAAAAAAADIX6k/7h4AAAAAAAAAohHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAA\nAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIikPO0CAAAAAAAAYA922Jxbwpzfpl1FCCE8e+NpaZcA\n7Jw76QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABE\nIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhE\nSA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQ\nHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9\nAAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk5WkX\nALBrDptzS5jz27SrCCGEZ288Le0SAAAAAAAA2MO4kx4AAAAAAAAAIhHSAwAAAAAAAEAkQnoA\nAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEUp52AbAnGfH536Zdwmue\nvfG0tEsAAAAAAAAAdo076QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBI\nytMuoCi0Lnl2xoMPzXpywasrV63bGBoaG4cc+NZxxx5/4jGjKzL9vnxXLZ91879+/f4QwqGX\n/vCr4/bd8aSkbcIZH97Ylez0aHVDL536vXGFrRAAAAAAAACAHRLSJ7On33zDHQ9snWevXNa6\nctnLTz02c9ohx33x8otG7VXVb8t3Wdu6eZd964GdT2uZ35eEHgAAAAAAAICYSv1x90/cfsXX\nbpuxJc/OlFXW1VRs+e6a5x+++uKrF23s7KfluypJNv7gsm+sau/a6cy25rmFOikAAAAAAAAA\nhVLSd9KvXXjrNdMX5Ma1w8ZeeME5xxx2QEUmtK5+ceavp/74vrlJkrQ1L7jqsql3fvu8gi/f\nDfNuveKBJev7MrPpuZdyg7qh5335c6N6mZmt2r8AlQEAAAAAAADQB6Uc0nf99PrfJUkSQqge\n/K6bb/xiY3n3C+RrGg88fdLkt75xyhd+MDeE0LToF3e9cMY5/1RX0OW7bO3Ce6755d/7OHn1\n46tyg8Fjx4wYcVCepwYAAAAAAACgIEr3cfctL9/2h9Ubc+OPXvvZLRH7FoecNvl9e9fkxr+7\n4U+FXb6rOjcu/s+rpnUlSaZswF4VO+/aC39tyQ32eedeeZ4aAAAAAAAAgEIp3ZD+hZ89lhtU\nN57y/v1rdzQlM/4zb8uNml+auq4zKeDyEMKt53/k9M129t765J7/vOrvGztCCEd8/Kv/VL3z\n5x/MbWnLDY7ce8BOJwMAAAAAAAAQR+mG9PfN634g/H4nvrenOQ2jzinLZEIISWfLXcte9zL4\nPJfvkkW/mXLXM2tCCG9460eu+sCbdzo/6Wp9en17CCGTyY4dVLXb5wUAAAAAAACgsEr0nfRJ\nZ9O8lvbc+C3H79PTtGzVsKPqKmY3tYUQXpi/Juw/sCDLd0nrsj9c8ZPHQwjZ6gOuvuasbZ+q\nvyPtzU90JkkIoWLg4XXZzCtPPfw/jz615OUlS5evztYO2uuNQ0e/7W3vOu7d+w7I7kY9AAAA\nAAAAAOy2Eg3p25rn5GLsEMKY+speZh4xsDKXsq+auzqcOqwgy3MGDt5777INuXFFD9l70rnm\nv770362dSSaT+dCV17y5uk+x+qZ1j+cGmbLa71x90cx5L231zWWL//78k489dOePbz3prAs+\nc+bYvqT+fdHa2tre3l6gg9En69ati3m6mpgn20NEbkHQhe1oQeq0oBj4dZA6GyF1WpA6LSgG\n8bvANmyE1GlBMfDRNHU2Quq0IHU+FJUgu2B7NkIJshG20d+7oK6urqws38fVl2hI3976/Jbx\nyJqKXmYOGVoTXmkJIWx45eUQDi/I8pwzv3HTmTur8w83Xv6/azaGEN50yuXnjm7Y2fRua59e\nmhtsWvfnmfN2PKezbdX9t39twV/P/c5lE7KFCOo7OjqE9JH5D0+dFqROC1KnBcVAF1KnBanT\ngtRpQTHQhdRpQeq0oBjoQuq0IHVakDotgGAjQP/vgmTzvdz5KNGQvqttbW6QyZTX95pRVzZ0\n3yjf1bG2UMv7aMXs73/74VdCCAPeOO76C47q+8LVj6/eMs5k694z4ewT3/3ON+29V2hduXjx\n4r89M+e++x5a2dYZQnhp9p2T7xxx/UdH72ptAAAAAAAAAOyGEg3p29a15QaZbF3vM8vrum+U\n3zplz3N5nypsnn/5f90fQijL1l3yjc/V7srd7s/9oyU3qKg56PIbphw5ZPNTLqr2GdGwz4gx\n7zz5vcde8/lrnm5uCyE8O33K0x+aemhNif4kAAAAAAAAAMQkmt2Zrs3PK+jaFG15krT96LLr\nX23rDCGM/fT1Y/eq3qVzDhs/8fy2zhDCm959yhGDd7C2evBhk7/+iXMu+n6SJEnXhh/c/cJN\nHz94l04BAAAAAAAAwG4o0ZC+sr77KfRJ5/reZ3as78gNMhWNhVq+U/PvmPw/L7WEEAaPmfSl\n9wzr+8Kcsf/y/p3OqR166kf3u/P2Jc0hhOV/fDAI6QEAAAAAAAD6X4mG9GWV9blBkrS1diU1\nZT0+TL5tTfeT7cvKX0vZ81zeu3XPT//K9OdDCBU1h1zz5Q/0cdVuOOp9+9/+g4UhhLamR0O4\nMM+j1dbW1tTU7HwehfOGN7wh5umSnU8pOZFbEHRhO1qQOi0oBn4dpM5GSJ0WpE4LikH8LrAN\nGyF1WlAMfDRNnY2QOi1InQ9FJcgu2J6NUIJshG309y4oKyvL/yAlGtKXDzg4hBm58bOt7W8f\nWNnTzBVLNuQGVQ37Fmp5766/+q7OJMnS4hhMAAAgAElEQVRkshOvvXJoZbaPq3ZD/aENuUFX\nx9qmzmTQrrz2fnvZbD+Wyg6Vl0fdv+0xT7aHiNyCoAvb0YLUaUEx8OsgdTZC6rQgdVpQDOJ3\ngW3YCKnTgmLgo2nqbITUaUHqfCgqQXbB9myEEmQjbGOP2AV7QIn9oWrQ0WWZ73UlSQjhLy0d\nvaTs81u6f7AHj92nUMt7t3hjRwghSTpv/Y+P3trrzKe/ecHp3+wej7156uXD6vp4ipxMedWW\ncUVeAT0AAAAAAAAAfVKAm/H3RJls/Zjaitz4mdmv9jQt6Vg1q2lTbjzsiNeeV5/n8n615qkn\n58yZM2fOnHkL1/U+c8OS1blBefWBA3p+Yj8AAAAAAAAAhVKid9KHEM4Y0/jkI8tCCEvvfyyc\nccAO5zQtvqc9SUIImWzNxCG1BVzei5ragUlnVy8TNra2diZJCCFbVVNd3h2uV23+c4t1z995\n3W1/CyFU1R97zx3/0ctx/vqrJbnBwGEf7GNtAAAAAAAAAOSjdEP64WcfFR75VQhh/dJpc5vO\neOegHTyy/pHvzcoN6oZOHFxRVsDlvfjRnVN7n3DNxDMfb24LIYy4+NtfHbftq+73PeE94ba/\nhRA2rfvj7Qs/cd5b37DDg3S0Lvzugu476UecNbqPtQEAAAAAAACQjxJ93H0IoW7opHEN1SGE\nJOn67pTpyXYT1jwz9Yd/a8qNT/23Ywu7vP9UN5xy+j41ufF9V335qaa27ed0day85Yop6zuT\nEEJFzahL3j44WnkAAAAAAAAApax0Q/qQyX7yS6fkhmsXTrv4m/csXd/R/a2kc+Ejd19y5T1J\nkoQQ6g8+e+LwQQVeHsL0yy751GYvbeos4JV95PKzyjKZEELnxn985YLP3/qb2a+ua80Vtmrp\n4scfvu/LF170+0VNIYRMpmz85Zd6IT0AAAAAAABAHKX7uPsQQsPI868cv/DaexeGEBb/+Y4L\nH/3l8IMOqK/qWr5k0ZJVG3NzKutHT7luQn8sb16xdOnKDblx+/Z34uehbvgHv3LW/KumPR5C\naG9dcu8tX7v3llBeXVfZub61/bW33WcyZcd+7KsTD28s5LkBAAAAAAAA6FkJ30kfQgjhHZOu\nv/TcE6rLMiGEpLP57889/eT8BVsi9sEjT5hy09UHVGf7aXn/GXP2Vdd+6gMN5a/1t2Nj89YJ\nfXXjQeddcfO/jx8ZvzYAAAAAAACAklXSd9KHEEIoGzfhkiPGnnz/gw/NemLBytWrmzaFhobG\nIcNH/fNxx5109KHZnTwJPs/l/ejw0z7xo3Gn/HHmA/Oe+8eK5SuWr1je3J59Q3390INGHXnk\n0Sef8I4aT7kHAAAAAAAAiEtIH0IItcNGjZ80avykqMsn/eTu3TvhVVN/0ceZFYP2P2n8pJN2\n6ywAAAAAAAAAFFypP+4eAAAAAAAAAKIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAA\nkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAi\nEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQi\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERI\nDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAe\nAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0A\nAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAA\nAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAA\nAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAA\nAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAA\nAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAA\nIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRlKddQFFoXfLsjAcfmvXkgldXrlq3\nMTQ0Ng458K3jjj3+xGNGV2T6fXkvutpW/el39//v/Keef/GV5ubm9lA5sG7Q0OGHHHr4Ue95\n7zF7VWZTrA0AAAAAAACAXSWkT2ZPv/mGOx7Y2JVs+dLKZa0rl7381GMzpx1y3Bcvv2jUXlX9\ntrw3Lz4ybcp3fr5iY+dWX+tYs6l1zcplT839089ve+OHP/ulc447JJXaAAAAAAAAANgNpf64\n+yduv+Jrt83YEmNnyirraiq2fHfN8w9fffHVi14XkxdyeS+WPHzT57/5s60T+vLqQfU1r/1R\nRWfbqz/71hdu+P2i+LUBAAAAAAAAsHtK+k76tQtvvWb6gty4dtjYCy8455jDDqjIhNbVL878\n9dQf3zc3SZK25gVXXTb1zm+fV/DlvehoffqLN85MkiSEUFE7fOIFk445/M37NNZlQmheveyJ\nmdN/8rMH1nZ0hRAe/sHlx777jiPqKqPVBgAAAAAAAMBuK+U76bt+ev3vckF49eB33XzjZcce\nfkDuNe01jQeePmnyNy94R25e06Jf3PVCc6GX9+bZn36vuTMJIWQr9/7K978x/vgx+zbW5d4g\nX9e473ETLvrvGy+uLsuEEJKuDT/80V9j1gYAAAAAAADAbivdkL7l5dv+sHpjbvzRaz/bWJ7Z\nZsIhp01+3941ufHvbvhTYZf37uezVuQGB3zwstH1294lH0KoHXbC58fslRuveuI3MWsDAAAA\nAAAAYLeVbkj/ws8eyw2qG095//61O5qSGf+Zt+VGzS9NXdeZFHB5COHW8z9y+mZbvxu+c+Oi\nv7S05cbHnTq0p/oPef/+uUH7+qcLe2kAAAAAAAAA9JPSDenvm7cqN9jvxPf2NKdh1DllmUwI\nIelsuWvZ+gIu70X7hue3jN9RV9HTtMrNd9gnXRu3ydj7rzYAAAAAAAAA8lGedgHpSDqb5rW0\n58ZvOX6fnqZlq4YdVVcxu6kthPDC/DVh/4EFWd67itrRV111VW48pDLb07TV89Z0z697+9aP\ns+/X2gAAAAAAAADIR4mG9G3NczqT7vvPx+zope9bHDGwMpdkr5q7Opw6rCDLcwYO3nvvsg25\nccVWMXu2cv8jj9y/9/o7Whf/9/TFufGbTvlwAS9ttyWJZ+bH5v88dVqQOi1InRYUA11InRak\nTgtSpwXFQBdSpwWp04JioAup04LUaUHqtACCjQD9vwsymczOJ+1MiYb07a2vPVJ+ZE2Pj5QP\nIQwZWhNeaQkhbHjl5RAOL8jynDO/cdOZfS446Wxfv359S0tL85pXHp/1yJ8enrWktT2EMGj4\nSVee/eatZxaktt3Q3Nzc1taW50HYJatWrYp5uvqYJ9tDRG5B0IXtaEHqtKAY+HWQOhshdVqQ\nOi0oBvG7wDZshNRpQTHw0TR1NkLqtCB1PhSVILtgezZCCbIRttHfu6ChoSGb7fFp6H1UoiF9\nV9va3CCTKa/P9vbHDpUN3Tejd3WsLdTy3fDDT0z87eqNW38lk6k4/MQPXfzpsxpeX0D82gAA\nAAAAAADooxIN6dvWdd/zncnW9T6zvK77ZvStk+w8lxfEwAPf9b5T3jO4omybrxdDbf2hfsZh\naZeQc0vaBQAAAAAAAAB7sBIN6XdB1+aXFnRtSmH5ZkMOGTGyaVMmk8lkMh0tryx8cXXzCw9P\n+cLDbx533te+8KHq3XvzQYFqAwAAAAAAAKCPSjSkr6zvftJ70rm+95kd6ztyg0xFY6GW74bT\nr/jP07f65ysLZv/0hhvnLG/9+59v/9yGrluumpBibQAAAAAAAAD0UYmG9GWV9blBkrS1diU1\nZT3eid62pvvp8WXlryXZeS7P334jx176rQHnnXd1a2ey/PE7b1186qQD6tKtraysLJvN5n8c\n+s5/eOq0IHVakDotKAa6kDotSJ0WpE4LioEupE4LUqcFxUAXUqcFqdOC1GkBBBsB9pBdUKIh\nffmAg0OYkRs/29r+9oGVPc1csWRDblDVsG+hlhdEZd2YifsOvGVJcwhh1l0vTrp8dLq1DRw4\nMP+D9KK9X4++Z2poaIh5Oi3YXuQWBF3YjhakTguKgV8HqbMRUqcFqdOCYhC/C2zDRkidFhQD\nH01TZyOkTgtS50NRCbILtmcjlCAbYRt7xC4oS7uAdFQNOrps83vc/9LS0cvM+S3dP9iDx+5T\nqOW9+8uvfjFt2rRp06bNWLiu95nDh3fn4i2L/hqnNgAAAAAAAADyUaIhfSZbP6a2Ijd+Zvar\nPU1LOlbNatqUGw874rVnwue5vHdrZ/4yF9Lf+/uXe5/ZsbFzc0EVcWoDAAAAAAAAIB8lGtKH\nEM4Y051ML73/sZ7mNC2+pz1JQgiZbM3EIbUFXN6LIaPfkBusfep/e5/5lxdbcoMBb9w/Tm0A\nAAAAAAAA5KN0Q/rhZx+VG6xfOm1uU9sO5zzyvVm5Qd3QiYMrXvd/lefyXux32hG5wYZVv5rb\nvOMjhxDa1s3+5crul8ofNOFNcWoDAAAAAAAAIB+lm87WDZ00rqE6hJAkXd+dMj3ZbsKaZ6b+\n8G9NufGp/3ZsYZf3onbIWcOry0MISdJ509W3tXRuf+zQuWn596+4qSNJQgjZyv0+OfJ1z6vv\nv9oAAAAAAAAAyEfphvQhk/3kl07JDdcunHbxN+9Zur6j+1tJ58JH7r7kynuSJAkh1B989sTh\ngwq8PITpl13yqc1e2tS55euZspr/+Pjo3Hjd337zqX+/fsbcBcvXtCQhhNC1dsWSJ2ZOu/hj\nn5n5Uvez7o/8+OS9t7kVPu/aAAAAAAAAAOgP5WkXkKaGkedfOX7htfcuDCEs/vMdFz76y+EH\nHVBf1bV8yaIlqzbm5lTWj55y3YT+WN68YunSzc+rb3/93e7DTrnqnNmfvOv/rgohNL8w+7tT\nZocQstV1A7paW9o6t5550MkXTz5tWMFrAwAAAAAAAKA/lPCd9CGEEN4x6fpLzz2huiwTQkg6\nm//+3NNPzl+wJcYePPKEKTddfUB1tp+W9yiT/chXbv7XUw8vy2S2fK1zY/PWCX22avD7L7z2\nW587KXZtAAAAAAAAAOyukr6TPoQQQtm4CZccMfbk+x98aNYTC1auXt20KTQ0NA4ZPuqfjzvu\npKMPzWb6dXmPMmU17//0tcd/YMHvZ/zx6QXPvrh01fr160P5gLpBg4YOf+vow4886eR3NVb2\n/jcW/VUbAAAAAAAAALtHSB9CCLXDRo2fNGr8pKjLJ/3k7p2uGLjfyA9PGvnh3SsrhJD3pQEA\nAAAAAABQQKX+uHsAAAAAAAAAiEZIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQH\nAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8A\nAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAA\nAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAA\nAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAA\nAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASMrTLqAotC55dsaDD816\ncsGrK1et2xgaGhuHHPjWcccef+Ixoysy/b6875Y+PPlT33qqombE9J99fSdTk7YJZ3x4Y1ey\n02PWDb106vfGFaY+AAAAAAAAAHolpE9mT7/5hjse2DrPXrmsdeWyl596bOa0Q4774uUXjdqr\nqt+W75qHpi3q48y2lvl9SegBAAAAAAAAiKnUH3f/xO1XfO22GVvy7ExZZV1NxZbvrnn+4asv\nvnrRxs5+Wr5LWpfP+Pmy1j5ObmueW5CTAgAAAAAAAFBAJX0n/dqFt14zfUFuXDts7IUXnHPM\nYQdUZELr6hdn/nrqj++bmyRJW/OCqy6beue3zyv48l3S3vzityf/OEn6enN803Mv5QZ1Q8/7\n8udG9TIzW7V/nrUBAAAAAAAA0EelHNJ3/fT63+Vi7+rB77r5xi82lne/QL6m8cDTJ01+6xun\nfOEHc0MITYt+cdcLZ5zzT3UFXd4nrWuW/+Mfix//84zfP/i/zZ278Pj61Y+vyg0Gjx0zYsRB\nu3FqAAAAAAAAAAqudB933/LybX9YvTE3/ui1n90SsW9xyGmT37d3TW78uxv+VNjlO7Vp7YMf\nn3jmWR/71y9eOeXnM+buUkIfQnjhry25wT7v3GtXTw0AAAAAAABAPyndkP6Fnz2WG1Q3nvL+\n/Wt3NCUz/jNvy42aX5q67vUxeZ7LQwi3nv+R0zfb/r31SWfzqua2vl/ONua2dK89cu8Bu30Q\nAAAAAAAAAAqrdB93f9+87gfC73fie3ua0zDqnLLMo11JknS23LVs/af3H1io5TtVXjPi3HPP\n3forrcsfuveBV/qyNulqfXp9ewghk8mOHVTV95MCAAAAAAAA0K9KNKRPOpvmtbTnxm85fp+e\npmWrhh1VVzG7qS2E8ML8NWFzyp7n8r4oH/CWCRPesvVXVj+9oI8hfXvzE51JEkKoGHh4XTbz\nylMP/8+jTy15ecnS5auztYP2euPQ0W9727uOe/e+A7J9rwcAAAAAAACA/JVoSN/WPCcXY4cQ\nxtRX9jLziIGVuZR91dzV4dRhBVmeM3Dw3nuXbciNK7Z9o31eNq17PDfIlNV+5+qLZs57aatv\nLlv89+effOyhO39860lnXfCZM8cW6sybNm3q6uoq0MF2oER/Unu1YcOGmKfTgu1FbkHQhe1o\nQeq0oBj4dZA6GyF1WpA6LSgG8bvANmyE1GlBMfDRNHU2Quq0IHU+FJUgu2B7NkIJshG20d+7\noKqqqqws33fKl2jX2luf3zIeWVPRy8whQ2vCKy0hhA2vvBzC4QVZnnPmN246c9cr74u1Ty/N\nDTat+/PMeTue09m26v7bv7bgr+d+57IJ2UIE9Zs2bWprayvAgXpQ33+H3mOtX78+5um0YHuR\nWxB0YTtakDotKAZ+HaTORkidFqROC4pB/C6wDRshdVpQDHw0TZ2NkDotSJ0PRSXILtiejVCC\nbIRt9PcuqKzs7RbuPirRkL6rbW1ukMmU1/eaUVc2dP8vd3WsLdTy/rb68dVbxpls3XsmnH3i\nu9/5pr33Cq0rFy9e/Ldn5tx330Mr2zpDCC/NvnPynSOu/+joaLUBAAAAAAAAlLISDenb1nXf\n853J1vU+s7yu+0b5rVP2PJf3t+f+0ZIbVNQcdPkNU44cUtP9jap9RjTsM2LMO09+77HXfP6a\np5vbQgjPTp/y9IemHlpToj8JAAAAAAAAADGJZnemK9k82JTC8t0ybPzE89s6QwhvevcpRwyu\n3n5C9eDDJn/9E+dc9P0kSZKuDT+4+4WbPn5wtPIAAAAAAAAASlaJhvSV9d1PoU86d/JOgo71\nHblBpqKxUMv729h/ef9O59QOPfWj+915+5LmEMLyPz4YhPQAAAAAAAAA/a9EQ/qyyvrcIEna\nWruSmrIe3yvftqb7yfZl5a+l7HkuLxJHvW//23+wMITQ1vRoCBfmebSqqqqKiopC1EVf1dbW\npl1CqdOC1GlB6rSgGOhC6rQgdVqQOi0oBrqQOi1InRYUA11InRakTgtSpwUQbATo/12QyfQY\nDfddiYb05QMODmFGbvxsa/vbB1b2NHPFkg25QVXDvoVaXiTqD23IDbo61jZ1JoOyef08VVVV\nFaKoHrX369H3TAMGDIh5Oi3YXuQWBF3YjhakTguKgV8HqbMRUqcFqdOCYhC/C2zDRkidFhQD\nH01TZyOkTgtS50NRCbILtmcjlCAbYRt7xC4oS7uAdFQNOrps8984/KWlo5eZ81u6f7AHj92n\nUMuLRKb8tVi9ogB/8AEAAAAAAADATpRoSJ/J1o+p7X42+zOzX+1pWtKxalbTptx42BGvPa8+\nz+X9as1TT86ZM2fOnDnzFq7rfeaGJatzg/LqAwf0/MR+AAAAAAAAAAqlREP6EMIZY7pT86X3\nP9bTnKbF97QnSQghk62ZOOR1by/Ic3n/Wff8ndddd91111331et+1PvMv/5qSW4wcNgH+78u\nAAAAAAAAAEo4pB9+9lG5wfql0+Y2te1wziPfm5Ub1A2dOLjidf9XeS7vP/ue8J7cYNO6P96+\ncG1P0zpaF353Qfed9CPOGh2jMgAAAAAAAICSV7ohfd3QSeMaqkMISdL13SnTk+0mrHlm6g//\n1pQbn/pvxxZ2ef+pbjjl9H1qcuP7rvryUzv6A4KujpW3XDFlfWcSQqioGXXJ2wdHKw8AAAAA\nAACglJVuSB8y2U9+6ZTccO3CaRd/856l6zu6v5V0Lnzk7kuuvCdJkhBC/cFnTxw+qMDLQ5h+\n2SWf2uylTZ0FvLKPXH5WWSYTQujc+I+vXPD5W38z+9V1rbnCVi1d/PjD9335wot+v6gphJDJ\nlI2//FIvpAcAAAAAAACIozztAtLUMPL8K8cvvPbehSGExX++48JHfzn8oAPqq7qWL1m0ZNXG\n3JzK+tFTrpvQH8ubVyxdunJDbty+/Z34eagb/sGvnDX/qmmPhxDaW5fce8vX7r0llFfXVXau\nb23v2jItkyk79mNfnXh4YyHPDQAAAAAAAEDPSvhO+hBCCO+YdP2l555QXZYJISSdzX9/7ukn\n5y/YErEPHnnClJuuPqA620/L+8+Ys6+69lMfaCh/rb8dG5u3TuirGw8674qb/338yPi1AQAA\nAAAAAJSskr6TPoQQQtm4CZccMfbk+x98aNYTC1auXt20KTQ0NA4ZPuqfjzvupKMPze7kSfB5\nLu9Hh5/2iR+NO+WPMx+Y99w/VixfsXzF8ub27Bvq64ceNOrII48++YR31HjKPQAAAAAAAEBc\nQvoQQqgdNmr8pFHjJ0VdPuknd+/Siv/H3n3GR1F9DRw/s5tsQiAJBAihS8BQRaQJRKQojwUR\nBVQkCqIIKNilgwI2FAQFKyAIiqCiIAhK+WukKk16AoYaUkghCWmbbfO8WIzUEGB3Ztn9fV/d\nzN5Zzmcvd+beOTN3wpqMX7bsyv4J/5Dqd/Z44s4r2wkAAAAAAAAAAAAA4C6+vtw9AAAAAAAA\nAAAAAACaIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0A\nAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAA\naIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAAAAAAAAAAAACgEZL0AAAAAAAA\nAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQA\nAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAAAAAA\noBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAAAAAA\nAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBGSNID\nAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAA\ngEZI0gMAAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAA\nAAAAAACARkjSAwAAAAAAAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkP\nAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAA\nABohSQ8AAAAAAAAAAAAAgEZI0oDjCCYAACAASURBVAMAAAAAAAAAAAAAoBGS9AAAAAAAAAAA\nAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAAAAAAAAAAAACgEZL0AAAA\nAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKAR\nkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAA\nAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAA\nAAAAAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBG\nSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAA\nAAAAgEZI0gMAAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGvHTOwCP\nUJAUt/p/v23csT89IzPHLBXCwqre0KB9h053tLvJX3H77tdvbAAAAAAAAAAAAACAK0KSXt38\nw8fTvlpjdqjFmzJSCzJST+z5c+3CqI7DRw1pXDHAbbtfv7EBAAAAAAAAAAAAAK6Yry93v33+\n6HfmrS5OYysGU3CQf/GnWQdjX3/+9cNmu5t2v35jAwAAAAAAAAAAAABcBZ9+kj47/suJP+x3\nlsvWbDt4YJ92TWv7K1Jw6ujaZQu+WLJFVVVL7v7XRi74+oO+Lt/9+o0NAAAAAAAAAAAAAHB1\nfPlJesfcSStVVRWRwErRH384ssPNtZ2vaQ8Ku+H+J8ZMHtjKWe/04cXfHMl19e7Xb2wAAAAA\nAAAAAAAAgKvku0n6vBPzfj9ldpYff2NomJ9yXoWormPuCw9ylldOW+fa3a/f2AAAAAAAAAAA\nAAAAV813k/RHFv3pLASG3d2tetmLVVF6PHuLs5SbuCDHrrpwdxH58slH7v/Xee+G1z02AAAA\nAAAAAAAAAIA7+G6Sfsnfmc5CtTvuulSdCo37GBRFRFR73jep+S7c/fqNDQAAAAAAAAAAAABw\n1Xw0Sa/aT/+dZ3WW63eqcqlqxoCatwb7O8tHdme5avfrNzYAAAAAAAAAAAAAwLXw0zsAfVhy\n/7KrZ9Z4bxZqKqFm83KmzactIpK55ZTcU9MluzuVqxQebih0lv3Pemu8J8R2FfLz861W6zV+\nSQkuumq/j8vOztbyn6MJLqRxEwitcAGaQHc0gSfgdKA7OoLuaALd0QSeQPtWwHnoCLqjCTwB\nQ1Pd0RF0RxPojkGRD6IXXIiO4IPoCOdxdy8IDg42Go3X+CU+mqS3FhwsLjcK8i+hZtUaQZKc\nJyKFySdEbnbJ7k693pvRy1Njuwp2u91ms13jl+CK8IPrjibQHU2gO5rAE9AKuqMJdEcT6I4m\n8AS0gu5oAt3RBJ6AVtAdTaA7mkB3NAEgdATgOukFPrrcvcNy5gYKRfELNSol1DRVOPMwusP2\n3z0X17j79RsbAAAAAAAAAAAAAOBa+OiT9JYci7OgGINLrun374vbz85kX+Pu129sAAAAAACE\nrm6qdwjFZukdAAAAAAAAV8xHk/RXwKH+WyjSYXe3frlbY3O1nP/brXcIIiLr/0/vCPTjIU0g\ntIIHoAl0RxPojibwBLSC7mgC3dEEuqMJPAGtoDuaQHc0gSegFXRHE+jOl5sAuvOQXiB0BOjK\nQzoCveCK+Ohy96bQMyu9q/b8kmva8s+8tEDxD3PV7tdvbAAAAAAAAAAAAACAa+GjT9IbTKHO\ngqpaChxqkOGS7263ZJ1ZPd7g918m+xp3v35jK0G5cuVUVb18PQAAAAAAAAAAAAC4PhmNxmv/\nEh9N0vuVuVFktbMcV2BtUc50qZppSYXOQkCFCFftfv3GVgKDwUdXZQAAAAAAAAAAAACA0vPR\nxGpASBuDcuYR8115thJq7s6zOguV2lZx1e7Xb2wAAAAAAAAAAAAAgGvho0l6xRjarKy/s7xv\nc/qlqqm2zI2ni5zlms3/WxP+Gne/fmMDAAAAAAAAAAAAAFwLH03Si8iDzc5kplNW/XmpOqeP\nfW9VVRFRjEExVcu6cPfrNzYAAAAAAAAAAAAAwFXz3SR95KO3Ogv5KQu3nLZctM6GTzY6C8E1\nYir5n/NbXePu129sAAAAAAAAAAAAAICr5rvZ2eAaT7SvECgiqur46M0f1AsqZO1bMDPhtLN8\nz0sdXLv79RsbAAAAAAAAAAAAAOCq+W6SXhTjgBF3O4vZ8Qufn/x9Sr7tzEeqPX7Dty+O+15V\nVREJvfHRmMgQF+8u8sPIFwf9K7HI7lGxAQAAAAAAAAAAAADcQXEma33W1i+Hv/FjvLOsGIMj\n69UODXCcTDqclGl2bjSF3vT+rIm1A40u3/3LJx/5MaPQWf7guyWRF9TRMTYAAAAAAAAAAAAA\ngDv4epJexLH+u+kzvvnd7LjI71CpUefhI59tUN7kjt0vm6TXMTYAAAAAAAAAAAAAgDuQpBcR\nyU/ct+p/v23cvj/j1KnTRVKhQljVyMa3d+x4Z5smRsVdu5ciSa9bbAAAAAAAAAAAAAAAdyBJ\nDwAAAAAAAAAAAACARgx6BwAAAAAAAAAAAAAAgK8gSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAA\nAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAA\nAAAAAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBG\nSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAA\nAAAAgEZI0gMAAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAA\nAAAAAAAAAACARkjSAwAAAAAAAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAa\nIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAA\nAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAA\nAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAAAAAAAAAAAACgEZL0AAAAAAAAAAAAAABo\nhCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAA\nAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMAAAAAAAAAAAAAoBGS9AAA\nAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACARkjSAwAAAAAAAAAAAACg\nEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAAAAAAAIBGSNIDAAAAAAAA\nAAAAAKARkvQAAAAAAAAAAAAAAGiEJD0AAAAAAAAAAAAAABohSQ8AAAAAAAAAAAAAgEZI0gMA\nAAAAAAAAAAAAoBGS9AAAAAAAAAAAAAAAaIQkPQAAAAAAAAAAAAAAGiFJDwAAAAAAAAAAAACA\nRkjSAwAAAAAAAAAAAACgEZL0AAAAAAAAAAAAAABohCQ9AAAAAAAAAAAAAAAaIUkPAAAAAAAA\nAAAAAIBGSNIDAAAAAAAAAAAAAKARkvQAAAAAAAAAAAAAAGiEJD3gApM/+2bbgRS9o8CVGT9k\n8IABA95em6R3IL6LJnA5jkUAAFxf7KreEXgpBkXXI2YHGrNbivQOAdAZvQCANhiaAlfHFyYI\nfnoHAHiD9SsXrV+5KLhqVIeOnTp26hAVUU7viHAZDmt6XFJKoUO1rkqRO6vrHY4vogncgWOR\nRynISU9OybSqpU2/RDVoaFTcGpG3WbNmjQu/rXyj6FbVg1z4hRB6gSboCJ6vMDM1Oauobr3a\nZ2/MObRxxuwf/jl6PLtQwqrWade56+M9OwQa6AAuw6DousPswN1UW9am2A179uzdF5eQnZ9f\nUFBotavLli0TEUvu1h9jc6M7tq8Z7K93mN7m+PHjV1RfMRgDAssEBgQGli1j4qTgavQCD5GX\nk2Mr9QQhtHx5egK8AENT4Cr4yASBJD3gMrkpB39eeHDFopnV6rfs2LFTxw5tqpSli2lMPRG/\n/e+4o1m5BSXWsiXu+r3QoYqIw8x9065FE+iPY5G+VNupH774/Od1O07lXtn/7QVLfgomP3kl\nZsyY4cJva/BsQ3KTrkIv0BIdwZOl71776dxvtx9O8w9qunjhG8XbM3fMHzTxB4vjzOXpzKQD\ny7868MfG3TOmPFfBjy7gSgyKPACzA48Qv/6Hz2YuPJxjuein9qIj38z6etGcuR17D3zu4fac\nil1o6NChV7ejYjBVqlqtZo0bmrZs065dqwgyx9eMXqC7pB2r5i/7PSHhUPrpKzjOM0GAN2Fo\nCogIE4TzcBQAXKBtk9pb9h23q6qIqKqaFL91QfzWb2YGNmh5W8dOnW5v06QsA0r3c1hSP33j\ntVW7Uq9or/o967opHh9EE+iOY5HuVHv+hy8M/S0x7yr2DeAdRPAK9ALAKXXjnCHv/XThShKq\n/fRb7y4tztAXO3147fDJTWeN6qhRfN6OQZEnYHbgIXYsGDf+212Xreaw5/y2YPL+hJOfjO7F\n/UK6Ux2W9KSj6UlHd/wVO++zsp0eemrAI3eU48B1tegFuktYPvWV2X+opX6Avpg/EwR4BYam\ngBMThAuRpAdcYNTbM8ynjm1ct37duj/+Tjjp3Kg6zHFb1sZtWTszsFKr9h06dep4a5PajC3d\nZ9GY4asOZF/RLuEteg7vEOGmeHwQTaA7jkW6O7H67bNzk/5BoeFhwaWcafkrTMmuTJs2bS71\nkcOauWX7P8V/KoohuELlKhERwcaikydPnkzPLl5f0WiKiBncu5KfITQqzO0R+wZ6gcboCJ7J\nbj48Ztryi77rIWPnxwmFNhEx+IX2GvxMi+qmfZuXzV+2U0TS/vxgfU679qEmrcP1RgyKPAGz\nA0+QuHp6cW5SMQbfdkfHqHo3+u/55rP1/10b9QtqeFP1snuS8kUk9a/5oxc2ea9PA33C9TrO\n07Q179D2vekXfqooynk5S/+gyBZNKxfknEpPT8/IzHGeR1R7/m+Lpu+OS/lk4mOBDJauHL1A\nd5acjaO/OCdDbzQaS7mvif/z8AoMTQEnJggXOn84COAa5SYfXLfujz/WrYs/kXPeR2UqRd7e\nsWPHTh0b1yyvS2xeLC9xfp8hi53loKpRrZs1KO9XFL8hNj6rSERuuqdbvUA/ESnISd+z5a/k\nPKuINI4Z/+bDzblP0VVoAk/DsUgXXz75yI8ZhSLSoNPDAx9/oF4lXjOmA1vBofeHjduYmCci\nQVUb9Xjo4ftubxZk+m+qq9qLDvy1ZtGib3cczRGRoGqt35w2sl4Zbl11DXqBh6Aj6OvYj68+\n9+VBETEYQ3oMefGuVk2qhAY6P1r1/GMfHz0tIg36ffBez0jnxnXTn5myNklEaj/4/oz+N+oU\ntddiUKQLZgeewG4+NiDmhUyrQ0RCozoMe/XZphFlRCRh/gsvLz4iIs63cYuIqLbNi956Z+F2\nEVGMQe9983V9zgguYjcffeOZ4TsyzSKiGINa3tHtzjZNKleuFF45vJyfNT0tLS0tLWHn+qUr\nNmRZ7YpivGfo5MFd6omI6rCk/LNr9c/f//hHvPOromKmTXnEm58kcwd6gSfYNXnguPWpIlIm\nvMmTg2JuuTEyvHwZvYMCdMPQFD6LCcJFkaQH3CX98O516/5Yt27DkYzC8z4Kr9usY8dOHTtG\n1+BBGRfZ8eaA8VvSRCSkbtePpwwMNSoiYis4GNNnWKFDbTDo4/e61nTWVO05300duWB9kjGg\n5uuzpzWjCVyEJvBYHIu0NKDXg2kWe4XGMV++84hXDyA9mfrly31/TMgRkea9ho99/LZLr1Sp\n7vhx8vgvN4hIaL0H5r7/JGtaugS9wDPQEXT27YDeC9IKRKT585+Ov7P6fx+otid7PZRhtSuK\n8u7CHxoEnbn6bzm9sddj74pIUHjMotmP6BGyT2BQpCVmB54gcfnwIbPiRSQgtOWnc8dW8jtz\nq9ZF0pMiIvK/yQM/XJ8qIvUe+3Dqw3U0j9c7fTe839fxWSJSM7rPiME9al3if7i98OTPc977\nYtU/iqLcN2b2060rF3906H8fvzx9taqqRlPEl99+HurdF6pdjV7gCd597KGNp4tMIS0//3Js\nRT+eEwbOYGgKX8ME4aI4LwLuUjmyac8nnvtwzqKPJ4195N72VYP/O5SkHdr53RfThvR99OXx\n7y+P3ZFj5V6Za7Xpn9POwoMjHy+esvoFRfWNKCsiyb8mFNdUjKEPvzqtS5Uge1Hi+xOWaB+q\nt6IJPBbHIi2dtjlEpMNz93HlTC9ZcdOdiclKzZ4a37eExKSIKM17DH++bRURyUlYOvnPNI1C\n9Hb0Ak9AR9DdhtNFIqIoppc6VTt7uzl7bYbVLiKmkPbFGXoRMYVEV/Q3iIjl9GZtI/UtDIq0\nxOzAE2z+6biz0H740EqlSIy1H/i4s5C8Zqsbw/IlOYdnOzP0ofV6TR/e+1IZehExlqnSfciU\nJ24KU1V15Xuj4gtsxR/VvWPIc80qiojdkro0/fxEDkpGL/AEewusItJ4yCAy9MDZGJrC1zBB\nuChOjYC7KTUbtY4ZPOzzr795f/wr3Tu3qmA68+IlVbUm7Phj1tTx/Xr3nTB19rq/E+yccK/W\n7nyriCjGoO7hQWdvv7FFmIgUZW05e6OiBPYb1UVEchIWLErO1zBMb0YTeDyORVqoFWAUkdpB\nrIuom62ztzsLvV68qzT12z8b4yzsmbfeXTH5GHqBJ6Aj6O6kxSEifmVuOO95x6zdfzgL5Rt1\nOW+XGiY/EbFbUwVux6BIC8wOPMEfOUUiohgC+jeqUJr6ptD24SajiFhyNrg3Mp+xY+aZE2uv\n0Q+V4gF4peuwx0TEbkn75PsjZ3/QdvDtzsLebZmujtHL0Qs8QZFDFZE2DUL1DgTwTAxN4SuY\nIFwUSXpAI9a8U+kZmdk5pwttjvM+clhztscum/L6y32HjF26Pk6X8K53p6wOEfELqHXes2Jh\nrcJExJK33XLuICakzhOVTUYR+W1BgsAVaILrBccit+oQHiQiu0/ygItuVibmiYhiDLonLLA0\n9QNCO5b3M4hIYeZa90bmM+gFnoCOoLsyBkVEVIftvO0Hlyc7C3Xur3neR5Yz76FjEQrtMChy\nK2YHnsB5w5AxoFZwqRdIj/A3iojdkuLGsHzJssO5ImLwC+1eqVRv4A4of6czQ5y8+ruztwdW\nPHNrV8GJAlfH6OXoBZ6gXhk/EbGRXARKxNAUXo8JwkXxjAvgXuZTx//cvHnzpk3b9h61qucP\nSCvUbBRacPhoptn5Z+6J3XMm794S/8JbT9/B9bkrEmBQLHZVVc+/EhpULUpkp+owb8+ztD1r\n1SBRjB1CAhZnFJza+bPIzZrG6qVoAg/HsUgbbZ9qPuu12G0fLVVnPMFPp4vEIruIGAxlS//7\nlzEo2SIOC6t8uwa9wBPQEXRXp4xfVq7FXnQ0yWKv/u+jMKJaFxw9s77fA3VCzq6vOgoPm20i\nYvCvpG2kvohBkTaYHXiCskbFYlMd1gy11HcApVrtIqIYSpVRxmUdd56R/StftmaxMD9DmsVu\nzd999kajf7izYDllcWF4voBe4Am6Robs3ZO5PS6nW3Sp7h8FfApDU/gOJggXRZIecIvc1ITN\nmzZt3rz574PJjgvOr5VqN4m+LTq6XXSDmuVFtSf8veF//1v7+6bdBXZVRPYu//D9m256tU24\nHoFfr6oFGA8UOOzmY7l29ez7o03lWop8JyKxSfltG5zz+rfKJoOIWAv2ahyqt6IJPBPHIo1V\navbSw1F/f3fwx9Fzao3v3ylAYdKktXJGJcum2q3ph832yEDjZevbi46lWh0iYvAv7/7ofAK9\nwBPQEXTXpWrZHbkWVXXMWJ006b5azo2Zuz5LtThfSN+20bmvhMj5Z75zJdiA4DbaR+sjGBRp\njNmBJ7g12PRrltlhy1p1ynx3KdZWseRuTrPYRcS/bFP3R+cTyvsZ0q12u/l4jl0NLcWT3Ko9\n96jZJiKK4n/2drvlzMtQTBX8L7IbLo1e4AluGdrDMHj2/lnzze1eDWR2AIgIQ1P4JCYIF0WS\nHnClU8f3b968edOmTXuOpF/4aXhk03btom+Ljo6qftajM4qxXvMO9Zp36J9zbO6k11bsyxKR\nvz6eK21GaBa2F2gfYjpQYFVV67z47KGN/3vTmF9QVDmjkmdXj69OlgbnvIEs2WLXPExvRhN4\nFI5F+lEefXtS2ivDY5d+8MTW2L6PdW8UWadGRFip11bEtWobYlp5yiwis39Lfvve81eTvlBK\n7ExVVUXEFBLt9uB8Bb1Af3QE3TXqf4uM+k1E4r4Y9V3Fsfe2jCo8sfXdSbHOT6t1eejsyrnH\n1r/2+ipnuWLrltpG6v0YFOmF2YEn6NKxyq9LjonId9Nj7x5/92Xr7/vqK2eh4i2Xr4zS6Fgh\n4Pu0AlW1fL4jY3iryz9Pn7lnltnhPCOfc89WQeovzkJI/ZCL7IZLoxd4gqCq3d7ss2X0gvXD\npjWY/NJ95OnhyxiawpcxQbgokvSAC6Qm7Nq0adPmzZsOJOWc95GiKOGRTaOjb4uObndj1eAS\nvsQUWrv/6KErYt4QEcvpTQUONcjAsLW0mnWrIbMOiEjsW2+3njKhdbWgfz8x3B4asPKUOXXD\np7lDZhTfouWwnFybZRYR/8BIfSL2OjSBJ+BY5AmMpurdHmwX+8Gq/KSdn767U0QUg7E0P+GS\nJUvcHpwP+L+7qq9ceEhE4uZM2Nbqo5aVS3pcxpyxY8Ks/c5y9Xs7axGfb6AX6I6OoLvyjQZH\nh23aeMqs2nO/fmfEAkVR/30+RjEEPv1QbWe5MO2Xd99bvuufJLuqioiiGB/qfYNeMXsZBkW6\nY3bgCWr36O2/9D2rqmbs+OSdxaHDe7Yt4Z651G0LJ65Kcpb/rw+t4BqdH6nz/Yx9IvLnlHfi\nZ09qEGwqobKt4NCUSRud5er33vvfB6plybR1zmKrphUu3BEloBd4iCaPTHypaNKHP8zuu++P\nno/GdO/ULJB7eOFLGJoCwgThEkjSAy4w8OVx521RFCWi3i3R0e2io6PrVilbyu/xL3fTv0U/\nEzeWXonqXQZVmPtqls1hyTvw1pCn6t98y4ARL0eV8RORzu2rrPzpmN18fPT0nya/2D1QUVR7\nzqIp4/LtqoiUrcnN0a5BE3gCjkWeYOuXY9/48ZxXSKoOu/ff9ukxanUfEPrdmBy7w25Je3vo\nsP6vvNqtde2L1jy+7ef3p8w5abGLiMGvwsCuNbSN1JvRC3RHR9CdogQ+985zh56b6lzfXj1r\nBcv6vcbdFHRmseKi7K07Dp4o/uiGu0Z1DA3QOFRvxaBId8wOPIEpNHrknTXeWJMoIpvnv/PU\nlo7P9O3epMG5VzlVe2bq0XUrvp+/fLPzhqEKDZ7oERF00S/Elara8aV6swcnFNpshQljB4/u\n/9LQri1vuGjNpF1rPpo6c3+BVUSMpvAh3c+cuHNTDv48b9riw6dFxFTulgcr8aL0K0Mv8ARL\nly4VEQlpeFfTQ7/sOrhg+uvfzPAPqxIRERFRvmxJd66IyIgRPCsMb8DQFBAmCJdAkh5wJUUx\nVItqHh3drl27dpHhVzygtxUcdBbKVOnux3n2ShgD673x9O1DP40VEdWeH79jw7GiF5yH+MhH\nB5X9eUy+XT32+5xHN35fo3poemJygc3h3LHD4Jt1DNub0AQehWORXnIOzX9zyR69o/BpfkGN\nxz/e/KUvt4mIrfDYrDef+zGy2W3NG1atWjUiIiJIClJTU1NSUuJ3bPj7cGbxXi37vt6gDKNi\n16AXeAI6gicIqtr+gxkhMz/+InbPMedrJg1+5aK7D3jlsZsurKwofi3ueXrMoNaah+n9GBTp\nhdmBh2g5ZPL9iYOXxWeLyKn42LdGxyrGwMrlzvzaI18ecvx4ct5Z64gGhDadOLG7PrF6I4N/\n+NjRvQa+9q1FVS25Bz+f+Pw31Rq0uqlueHh4eHh4kJjT0tPS09IP79u2LzHbuYuiKF2GTKwX\naBSRgtTZjw1eXnyn1+3PD+E4dBXoBbqbM2fOeVtU1ZqZmpiZmqhLPICOGJrClzFBuCjl7Jv6\nAVyd7t0fqFG/RfRt0dHt2tWuVNKConCr/avmTZ29NK3ILiLPzf++S/kzjyLtXzBu5Le7Lqxf\nuXn/L8Y/qGmI3o4m0BfHIt398vLjnybkiEiZ8EaP9Lm/Ya3qlSuUK+W8qWLFim6Nzaes/2LM\n5J9Kmydu1mPkxCfauTUen0Iv8Bx0BA9RlJV6/GSmsVzlGtUrn/e8S96Jr2cszKh2Q1Trtrc3\nrFFOrwi9EoMiD8HswBOo9pwln7735erLnxEq1O88euyz9UMv82ArrlTK5q9HTF6c/e+F5hIo\nhoAuT785tGt95595ydP7DF7rLEfd++KUwbyV5irRC/R1//33X/W+y5Ytc2EkgF4YmgLFmCCc\nhyQ94AKJWeaaFTi/egSHNWf3X1sOHk9u+mDM2U+Dbf5m6ieL1+X8OytWFOPNXWJGPtuTl/e4\nHE2gI45FunvmoQeTiuwB5VvOnjsulHfs6eroph+mzVx05FRRCXWCwqNiBr3YrRXre7sSvcCj\n0BHgsxgUeQ5mBx4idd/GJcuW/74lzmy/yGXASnWadb3/gfs7N/fn53cPc8b+OZ/NWbP1H/ul\nL8NWaxTdb9Czbev890Jiaeq/MAAAIABJREFUZ5I+KCKq2yP9Y+5orEmk3oxeoJdff/31qve9\n+25vXuIYvoOhKXA2JghnI0kPXKvEFa+NWnhYRAJC2n7xyRC9w8El2fKTd+4+lH4qv2KNG+pG\nRlYM5s5ordEE8Ho9une3qert7857tWEFvWOBiGrZt+l/G7fvjos7kJJ5usBsURRDQJmyYRE1\n69ePurlV+w4tbiSJ7HL0Ao9DRwDgqZgdaE+1FxyJ3384KSMvL6/Q4ihbLjikQnhUo8bVyBxo\nojAtYd3m7XFxcUeT0vPy8wqtEhwcElqxaoNGjW5ufVvzupXOq28vSjyWHlinRmVO1C5ELwAA\nwGP54ASBJD1wrf6Z+9wrS46JiDGw9pLvZugdDgBANwN6PZhmsb8w//s7/l2sCZ5DtVscBhPJ\nSHejF3g4OgIAAAAAeLjxQwafKLJF9p4w+s7qescCwI38Ll8FQIkqtqolS46JiN18bF+BrXEQ\n3QqA23300Ueu/cKhQ4e69gt9U+fyAYvSCk6Y7XoHgotQjCaj3jH4AnqBh6MjuNyaNWtc+G3l\nG0W3qh7kwi+EU15Ojq3UzyeEli/PfSwArh3LLgIAro7Dmh6XlFLoUK2rUoQkPeDVyCYC1yqs\n8Qtty2/dnG0WkXmrTrz34A16R+T9srOznQVF8Q8NLatvML6JJtDd6tWrXfuFJOldotNjjRZN\n3bZpwZ5+r9yqdyyAPugF8DUzZrhyJa0GzzYkSe9CSTtWzV/2e0LCofTTRaXfa8GSn4JZbuIK\nMTvwfKpq/mfP3uNJp+685//O2W7PnvLxojp16t/aPrpmee9fUFRL5rSs06dPi4jREq93LBCh\nF2iFMwJwaeqJ+O1/xx3Nyi0osZYtcdfvhQ5VRBzmKxjEAh6F00EpkaQHrpliemnKsJPPTzpc\nYP1nwVt/3Tbj1sq8yMq9+vbt6yyYyt68eOEbIvLuu+9e9beNGDHCNWH5EpoAuKiqHUZ1W9r/\n53Xvfn/HzIeanf9SSWiPRye1Ry/wQHQE+KaE5VNfmf3HVbzgz9/gjnC8HLMDT6bac3/7bu7C\nn2LTCmxGU8T56UmHZf3aletl5VezP2p1b8wzTz1Q0Y8+4Bosu+g56AVa4owAXJTDkvrpG6+t\n2pV6RXvV71nXTfEA7sbpoJQYIAIuEBjeatLHr09/a/KGhJOTnn2+x1NP3tuxVcVAFhPVzsaN\nG/UOwdfRBBp77LHH9A4BF6P4P/nOhMxXx339+qAD9z424PFuEVyM0wOPTuqJXuAx6AjaaNOm\nzaU+clgzt2z/p/hPRTEEV6hcJSIi2Fh08uTJk+nZxTdPGE0RMYN7V/IzhEaFuT1i32DJ2Tj6\ni3My9EZjaWdnJoUu4ALMDjyE3ZI0ffjw3w/nXramqlq3rPhy/+6EydNeqc6rUVyBZRc9BL1A\nd5wRABFZNGb4qgPZV7RLeIuewztEuCkeQHucDi6KS2aAC6xYsUJEGnfumZ3zzd701O8/eXvx\np6byFcPCwipWCAsNKPFCpxffBATAfR5++GG9Q8BFLF26VESiOt2575tlW1bM3bpyXmjl6jWr\nV/YvxdX+8ePHuzs8H8Gjk/qiF3gIOoJmRo8efdHttoJD7w8b5ywHVW3U46GH77u9WZDpv99X\ntRcd+GvNokXf7jiaY7ekLl686c1pI+uVYYbuGnEz55kdqoiUCW/y5KCYW26MDC9fRu+gAB0s\nmTCmODepKKbaDW86r4JiDH64a8e//tpyLKNARPISN4x768Y5Ex7UOlCvxLKLnoFeAEB3eYnz\nF/2boQ+qGtW6WYPyfkXxG2Ljs4pE5KZ7utUL9BORgpz0PVv+Ss6zikjjmPFvPtyc26cBr8cl\nAMAFPv/88/O2qKolKyM1K+PKVrBBKdWvX99Z8CtTw1l49tln9QvHF9EEwEXNmTPn7D9V1ZGd\nlpidlqhXPD6IRyd1Ry/wBHQED6B+PXb8xsQ8EWnea/jYx2/zu+B3VYwBDdrdN75d1x0/Th7/\n5YaC5C0Txsyf+/6TF9bEVfh1V5aImEJafvLZWFYt1gCzA8+Ul7hw/p5TznKd23qPHvpwlQuW\nt1EMZR4b9PJjA+2bvv/w/QV/WFU14++5S1PveiAiSPN4vRDLLuqOXqA9zgjAhQ7OW+cshNTt\n+vGUgaFGRURsMV1i+gwrdKjWWnf371rTWUG153w3deSC9Unxi7/Yc3eTZqEm3YIGrg2ng1JS\nruLpCgDnuf/++69632XLlrkwEgCAjjgd6G7X5IHj1qcKj07qh17gCegIusuK+7DfiP+JSKVm\nT82Z2P2y9de+8/T0zSdFpO2o2aPahrs9Ph/weI8HcmyOW0bNmtC2it6xALrZ9tqTE3dmiEh4\n2yGzR9112frxC18ZvvAfEaly68RZY5q5PT4f4Fx2UVTrxiXf7E03i4iisOyipugFADzBR/0e\nXp1lFpF+sxb1rPLfDUArBvf5PDkvpPZLX8/oVLxRVc0fDXxizcmC0HoxX019RIdwAWiIJ+kB\nF+AmIADXqfFDBp8oskX2njD6zup6x+INXnzxRb1D8HU8Oqk7eoEnoCPobuvs7c5Crxcvnw8Q\nkfbPxkzfPFVE9sxbL217ujEyn1HkUEWkTYNQvQMB9LT68Gln4ckhnUqu6XTjg88ri55XVTU7\nfo0I6UkXYNlF3dELAHiC3flWEVGMQd3Dz1mi48YWYZKcV5S1ReS/Y5SiBPYb1WXNiz/lJCxY\nlHxf72pltQ4XgIZI0gMucPfdd+sdgk9LXPHaqIWHRSQgpO0XnwzROxzguuGwpsclpRQ6VOuq\nFCFJ7wqdO3fWOwRft7fAKiKNhwwiMakXeoEnoCPobmVinogoxqB7wkr1+uGA0I7l/T7ItjkK\nM9eKkKR3gXpl/PbmW22sGwjfdqDAJiJGU0S7kFItlmsMrF030JhQaLMVHnBzaIBG6AUAPMEp\nq0NE/AJqnfdmq7BWYbL8uCVvu0UV01kfhdR5orLp53SL/bcFCb2H3axtsAA0RZIewHXPnJZ1\n+vRpETFa4vWOBfAE6on47X/HHc3KLSixli1x1++FDlVEHOYijUID3IxHJwGhI3iAxCK7iBgM\nZUv/fvkyBiVbxGFJc19UPqVrZMjePZnb43K6RZfqPgnAK+XbVRFRDFfwBJ5RUUTEYc12V0w+\nhmUXdUcvuE6x5h+8TIBBsdhVVbWdtz2oWpTITtVh3p5naRt81r1EirFDSMDijIJTO38WIUkP\nr+Ww5B7+JyHt1OncvDzxLxMSHFy5ep26NSqVfh7tBUjSA7juVWxVS5YcExG7+di+AlvjII5s\n+svLybGppX12KbR8eZ869bqVw5L66Ruvrdp1Zcsn1u9Z103xABrj0UlA6AgeoJxRybKpdmv6\nYbM9MtB42fr2omOpVoeIGPzLuz86n3DL0B6GwbP3z5pvbvdqoMJIU3/MDnRRK9CYUGizFx3L\ntKkV/S7/o6q2rCOFNhExBtRwf3Q+gWUXdUcvuB6x5h+8T7UA44ECh918LNeuBhv/OxaZyrUU\n+U5EYpPy2zY4Z8GPyiaDiFgL9mocKqAF1bZnw68rVv66bX+i5YI5gim4UovoO+/t2vXm2j7x\n4AGpLEAf3BPqQmGNX2hbfuvmbLOIzFt14r0Hb9A7It+VtGPV/GW/JyQcSj99BU9mL1jy09kj\nVFyLRWOGrzpwZbf8h7foObxDhJviATTGo5OA0BE8QNsQ08pTZhGZ/Vvy2/fWvGz9lNiZqqqK\niCkk2u3B+Yagqt3e7LNl9IL1w6Y1mPzSfeTp9cLsQF/31ig3/Z9sVbV99tfJMdGXH/Cnb/3c\neZ00qEoX90cHaIFe4ElY8w++q32I6UCBVVWt8+KzhzauULzdLyiqnFHJs6vHVydLgwpn75Js\nsWseJqAFc+beT96dHBufdakKltyMzb8u+nPV9626DXih/71ePy8gSQ/ogHtCXUwxvTRl2Mnn\nJx0usP6z4K2/bptxa2UuSesgYfnUV2b/oZb6EZli/rww10XyEucv+jdDH1Q1qnWzBuX9iuI3\nxMZnFYnITfd0qxfoJyIFOel7tvyVnGcVkcYx4998uLm3j3bgQ3h00tOk/bNt07a9Bw4cOJGe\nlZeXZ7YZgoODQ8Kq1G/YqEnztm0bMwpyCzqC7v7vruorFx4Skbg5E7a1+qhliUNTc8aOCbP2\nO8vV7+2sRXy+ockjE18qmvThD7P77vuj56Mx3Ts1C2TEoy1mB7q7pW9jGbdRRLZ9+Obf9afc\nUqmkY5Hl9L53pm1xlus92lKL+AD3oxd4CNb8g49r1q2GzDogIrFvvd16yoTW1YL+/cRwe2jA\nylPm1A2f5g6ZUZyMdFhOrs0yi4h/YKQ+EQPuYcnZO3bo6wfzrWdvVBT/sCoRZRx5qenZxYtv\nqap9y7LPhx5K+ejNp7w7T69cxXwJwCVcwT2hfyXkiEho7RFfzeBxGdcwZ+6e/tbkDQk5xoCI\nHk89eW/HVhVLsbgoXMWSs/Gxfu+ZHf+dU4zG0v7+PyxZwoU4l9jx5oDxW9JEJKRu14+nDAw1\nKiJiKzgY02dYoUNtMOjj97qeeZhPted8N3XkgvVJxoCar8+e1izUVNL3otT69et3dTvWe2LS\nuE5VXRuMz9r77bjRC3bV7vg0j07qK+tg7IzPvtqWkF5CnYqRzR8f/ELnc58YgEvQEfRlK9jX\nP2ZMjt0hIn5lavd/5dVurWtftObxbT+/P2XOkQKbiBj8Kkxa8EWDMtxJ7wJLly51FlK2//zL\nrjT599JPRERE+bKXGfaMGDHC7fH5AGYHHkG1vPvEYxuzzCJiDKzxyOBnenRqYrrIScGRsGXF\nJx/OS8i1iIh/UMO5CyaFePXFUPgQeoFn+GZY30VXvubfJ6/1M9EI8Ap2c8KTfV7NsjlERDGW\nrX/zLQNGvBxVxk9EDn7x3Ks/HROR2p2enPxi90BFUe05C98dtujPVBGp0GDYvPfa6xs84Drq\nzGf6/JyU7/zDFFr3/p73d2h9U9WIiiaDIiKq3Zyekrz7z9ifflxxLO9MIr96xxGfvuzNGTSS\n9IBrXN09oa1fnjm2I6tMu8CKFStERFTrxiXf7E03i4iimMpXDAsLq1ghLDSgxJkVl+FcYtfk\ngePWp4pImfAmTw6KueXGyPDyZfQOyud81O/h1VlmEek3a1HPKsW35cqKwX0+T84Lqf3S1zM6\nFW9UVfNHA59Yc7IgtF7MV1Mf0SFcb3T//fdf3Y4Nnv3kvbt566GrqL/Pn/ThD3+aKt3Io5N6\n2b902ri5sdZSTDQUxb9T/zdffKChBlH5GDqCzg79OPGlL7cV/1kxstltzRtWrVo1IiIiSApS\nU1NTUlLid2z4+3BmcZ3WT34w9gGelXGNqz4ji8iyZctcGInPYnbgIfKOrx3y4kfOrICI+AdX\nvblxvcqVK1euXDk4wJ5xMi0tLe3YwV2H0wqdFRTF9OjEmb1vDtMvZMDF6AW6y0uc32fIYmeZ\nNf/gs47/MnXop7HFfz43//su5QNExFaw9/GYMfl2VUSMpuAa1UPTE5ML/j1kPfDB109GhugR\nL+B6WfEf9xu+ylkOb/nIpFGPVrrEClp2y8mv3hr1498ZIqIohme+WHR3iWvhXNe4SR9wDd4D\nra/PP//8vC2qasnKSM3KuLLbJnDVft2VJSKmkJaffDa2oh+Pvuhjd75VRBRjUPfwoLO339gi\nTJLzirK2iPyXpFeUwH6juqx58aechAWLku/rXa2s1uFCxC8oLKycn4iE8dyki5x5dDKk4V1N\nD/2y6+CC6a9/M4NHJ7V2csPno+bGFt8KHFytfqub6oWHh4dXDg/2t55MTU1NTT20d2tcUq6I\nqKr197mjgqvMfKptuK5RexU6gieo2+O1YVljJv+0x/ln5uGdPx3eWUL9Zj1GkqGHN2F24CHK\n1brzw7eKxkyYk1hgFRFrbsq2P1MuVVkxBj/wwjvkJl2IdbY8Ab1AdwfnrXMWzlnzL6aLc80/\na627+1+w5l/84i/23N2ENf/gTWrd8/IkQ8Wps5emFZ3zsnm/oCbjejUd+e0uEbFbco8dyS3+\nqHLz/mTo4U32ztvqLASFd/poXJ8S1vwzmqr0e/2jjAH912UUqqrjp68T7n6xiVZhao0rwoAL\n8B5oYG+BVUQaDxnENTgdnbI6RMQvoJbfuceWsFZhsvy4JW+7RZWzF4sLqfNEZdPP6Rb7bwsS\neg+7WdtgvdNHH31U4ufq6YyTKSnJiUf3rlqztdChqo4yD73y9l0NWevbZebMmXPeFlW1ZqYm\nZqYm6hKPD3LYMt6c/qszQ28KvvGJF4Z2bV3nYuMd9ciWFTM++DIhz6KqjhXT3unRamoFPwZG\nrkFH8BDtn3qrZsMfps1cdORUUQnVgsKjYga92K0V66m40rPPPqt3CL6O2YHnKN+w64dzmi6a\nPXfl79vz7Bdf5EZRDHVu6dj36YHNqwddtAKuTlZW1tXtmHtuCgfXiF6gr03/nHYWHhz5eOi/\nV0L9gqL6RpT9PDkv+dcE+TdJrxhDH351WtrBJ9acTHx/whLW/IOXaXRXv5mdH9j915aDx5Nr\nBvz3GqBGMW+MUqZ+snhdzr8P0CuK8eYuMSOffUCnSAG3WHMsz1noNPrJy76VTzEEPT2m87qX\nVohI+rZlIiTpAVwa94TqjstwuityqCLSpkGo3oH4tACDYrGrqmo7b3tQtSiRnarDvD3P0jb4\nrMOOYuwQErA4o+DUzp9FSNK7QK1atS5Xo3YTEZEH+jxy8Lu5MxavP/bJqMH5783sEUXfgZc4\nuWHaMbNdRPwC60z45J3GlxzqKHVa3zfpk1ovD3z9uNluMx+auvnkG+1ZYQje5oZ2PT9s223f\npv9t3L47Lu5ASubpArNFUQwBZcqGRdSsXz/q5lbtO7S4kTt3Xe7uu+/WOwRfx+zAo/gF1Xzs\n+dd6P5Wy9a+/4+LijiZn5OXnFVqlXLlyIWERUQ0b3dyiTYPqwXqHCdbZciN6gY5Y8w8oZvAP\nbXZbl2YXbG/b5+VW3Xvv3H0o/VR+xRo31I2MrBhM1gDe5nChTUQUxfj4DaVaIiIksp+/stKq\nqtb8PW4OTU+M+QAX4J5Q3XEZTnf1yvjtzbfaLv/2YbhRtQDjgQKH3Xws164Gn3W931Supch3\nIhKblN+2wTmj/Momg4hYC/ZqHCoCK0X1HfZhudwBX+7M+Hrs+JZfTal11m3UuGrcs6W7HYuP\nOgvNXxh16Qz9GabyTcc+12Lg5C0icuS7HdL+XneH5yPoCJ5FMTWOvqdx9D3Ov1S7xWEwkZWH\n12N24IH8ylZt27lq286cbbXDOluehl6gC9b8A0rDr2y1lm2r6R0F4EZ2UUXEYIoIMpRqPqwo\ngVUDDMfNdlEdbg5NTyTpARfgnlCga2TI3j2Z2+NyukUH6h2L72ofYjpQYFVV67z47KGN/7uy\n4xcUVc6o5NnV46uTpcE5V3ySLayjqCNDt5EvzX90rM18aOriox/E1NU7Hm/APVu6W5NWKCKK\nYhzUulTvmA9vM9hf2WpV1YKTa0S4YOoadARPphhN3JMFX8DsABDW2QJEhDX/AJH4xMwGNSvq\nHQWgs6Zl/TeftjismVZV/EuRplcdBclFDhHxD4pye3D64d1ggAuUdE+oiPOe0LOF1Hmissko\nIr8tSNAsSO+2fPny5cuXx+7LLv0uO1etXL58+S9r97svKp9yy9AeBkXZP2u+WeV5Gd0063bm\ndbaxb729JbngrE8Mt4cGiEjqhk9zz3oDn8Nycm2WWUT8AyO1jBPF/INu6hgaICLJq1frHQvg\nGieK7CJiDKhd2b9UEw2Df6U6gUYRsVt4XToAPY0fMnjAgAFvr03SOxAvwewAuCLOdbaeaFZJ\ndRR+PXb8cd5Jrwm7pUjvEHxCtQCjiDjX/Dt7u6lcS2chNin/vF1Y8w9eZviQ/o8OeH7Kp/Ni\nt+zLsXjzM8FACbreUlFEVId5wfHc0tTP3j/TpqoiEnLjfe6NTFck6QEXCDAoInKJe0LFeU/o\nOR8oxg4hASJyaufPGoXo7WbNmjVr1qwfNqeVfpdjP3w1a9as2bO/dl9UPiWoarc3+zQ1n1o/\nbNrPXInTS/Uugyr4GUTEknfgrSFPDR//3sHCM8elzu2riIjdfHz09J+cDaTacxZNGZdvV0Wk\nbE2eudRNvUA/EbHk/aV3IIBrhPgZRER1FFy2ZrFChyoiovi7KSRAd3k5OdmlxihKFw5relxS\nSlpa2oFVKXrH4iWYHXggjkUez9Bt5EsGRXGus6V3MF5ItWVtXLv8s2nvPDfwqcdjevd8sPuD\nvR5yfmTJ3bpo+W+JuVZ9I/RW7UNMIuJc8+/s7c41/0Tk+Ork83ZhzT94n/y0o+t++WHqm6P6\nPtLn1XGTFv609uCJLL2DAjTVYODToUaDiPwycWaO/TKDTbslZeo7G0REUYy9nr1Ji/h0wnL3\ngAvwHujrkcWhioit6IjegXiPJo9MfKlo0oc/zO6774+ej8Z079QskBeuassYWO+Np28f+mms\niKj2/PgdG44VvRBVxk9EIh8dVPbnMfl29djvcx7d+H2N6qHpickFtjN373YYzApyujlcZBMR\n1Z6ndyC+a/yQwSeKbJG9J4y+s7resXiDOoHGDKvdbkndmW9tVvbyeXdbwb4TFoeI+Jfx5uXL\nPB8dwR2Sdqyav+z3hIRD6aev4EG9BUt+CmYE5TLqifjtf8cdzcot8c4h1Za463fnDUMOM09V\nugyzAw/Bseg64lxn67dsc/Lq1RLzjN7heJX49T98NnPh4RzLRT+1Fx35ZtbXi+bM7dh74HMP\nt+f/vms161ZDZh0Qkdi33m49ZULrasWvCjXcHhqw8pQ5dcOnuUNmFB9zWPMP3k21Fxzcteng\nrk0Lv5DgKpEtWjRv0aJF82YNg0u3Fh1w/TIFt3xnSMchM34vTP9j6HDjyBGDG4df/MVYKfvW\nfzH94125FhGp33PCvVWCLlrNO5CkB1yA90BrLy4u7sKNRaeOxMWV4odVbVnJ+7/PKHT+4eLI\nfNXSpUtFREIa3tX00C+7Di6Y/vo3M/zDqkRERESUL2sqed8RI0ZoEaJvqHXPy5MMFafOXpp2\n7gKJfkFNxvVqOvLbXSJit+QeO/LfskKVm/d/MjJE60AhIiKW01t+zy4SEYOpqt6x+Cjno5OF\nDtW6KkXITbrCnZEhW3dliMgXC/fPGHD5G4AOfD9LdS5fVvcetweHS6AjuEPC8qmvzP5DvfIH\niLk65yoOS+qnb7y2alfqFe1Vv2ddN8Xja5gdeAiORdedeoF+v51ZZ4skvcvsWDBu/Le7LlvN\nYc/5bcHk/QknPxndy488vetU7zKowtxXs2wO55p/9W++ZcCIl52PE3RuX2XlT8eca/5NfrF7\noKKw5h+80ptjXt6zZ+/evXvij6Tazzop5548HLvycOzKxYox6Mamt7Rs2bJF8xY3Vi+vY6iA\nS+TmXnxB+9Bbn5pY6D9x9uqcf34bPejPpm073npzVESVKlWqVCmjFJ5MTU1NSfl7/cp1e8+s\nsNL8wRfGPd5Uw8B1QJIecAHuCdXeRS/cpG74eMSGK/uegOA2rgnI582ZM+e8LapqzUxNzEzl\nHcNaa3RXv5mdH9j915aDx5NrBhj/2x7zxihl6v+zd99xTV1vA8CfmwWEEWaYDhCZ4gBR0VJ3\n6951gasuVOpo6x7VukfVilr3at3Wjfu1uGpVpCobEWWHAEIYIdzk5r5/RCkiQvQXcjF5vn8d\nbs7N5xG5J7n3Oec520/dlrxdQE8Q7Bbdg+ZNHcBQpPquvCBx26LNqtszI8tuTIejY3DpJGM8\ng/3g6VUASLuw/IjP1pFt7WroLH58YtmZNyVtfIM8tBGffsELgTGk5N6Cve9kxdhsdg39K+MR\nmBbQjGML51xNLKy9XyVCv8FzOtY0aiH14d1BfYBj0ecI62xpXPq1LRUZeoJt+kXXTm6uTbnR\nR3bc+W8WF4fv6eNoHJ1ZCgCiB4cWHG22biR+NdUYrPmHUPO2nZq37QQAlDQ/LiY2JiY6JiYm\n4UWW/O1nNE1Jk/69l/TvvSMApnYurf1a+/n5tWrpYYozhtDnKSgoqNY+NCV9evfS07uXPtSB\nxRaUxl2ZN+dK48Gzp7UTajTAegST9AhpAM4J/Xz5TR7BdAgIaR6LK2j5RfeW7x0PGPm9f//h\nT569yH1dauXUuImLi5VpLSuZ0Ec5evSoWv2U5dlpqc8i/30tf/P0wWs0ThjSGFw6ySxz9ynd\nhHduiKU0TR5fNSW516iRA3q4vlearEz84uq5Y4cuPlSo5qnYdJ3qgcsFNAkvBGbF7zooU9IA\nYCRs9u3koFZNXYTmRkwHpV9K0g8de5uh59u7tWnpYc4pT7gbkVBQDgA+Pfu6GnIAQCrJjX74\nIKtEDgDeQUtXDPXFEsdIl+BY9NnBOlsaR8lSl+y8qWoL3DrO/nFqczsjAEgWn6ncjcv3Wbn9\n9/vHVq4++hgAEk8uTRz4h7sRPjbXGKz5h5AKm2/l0+ZLnzZfAgBVVpAQGxMTExMdHZOQnEG+\nTdgXi1L+Ck/5K/wEi2Pi1rzVuqWzGQ0ZIcYoKUliogQAiMLqd6vRDfhtAyENwDmh2ufk5FT5\nx4yMDADgmgptBepmHE2sHHwCB47qYKv54PTS1KlTmQ4BqYVj7NA6wIHpKHSWukn6d/FtO/2g\nuxNCtQ+XTjKNNXHVjJip60QkRdNUZPiBx5cOmdvY2wqFtra2RlAmFufk5ORk5xYq3z6DYPOE\n01dOxKq6moUXArOuPC0AAJ5Z6+07Fllx8K+bAUkHb6saZk16b9swScAmAEAR1D1o5OwyJS1v\n2GNc7waqDjQlObFx3uE7mQmn9kb3aNZS7bsJVDO8O6gPcCz6vGCdrbqQdX1bvlwJAAaC1pvW\nzLKu4UIgOAEjfpqRMenXOyKaku68kL5xqLP2AtUDWPMPoSrYRhberQO9WwcOA6BkksTYmJiY\nmJiY6Ljn6aSqzpnraZsXAAAgAElEQVSiJCHqDgAm6RHSZZikR0gzcE6olm3fvr3yj/369QMA\nh85zwia4MRSRvuvRA8tCMO/ChQsAYOoS2Mlb3QWpT65eSicpjlGTnt286jI09EEWrl8sWTHd\niIUL9zQDl07WB0bCgF/WzVi+bJvq107TygJxZoE4MyGmms48gduUJUs62FVdao/+F3ghMC5G\nKgcA72mTMSvGlL+fF6kaA+eNErz9y+bw3UbbGe/MKsm6kgxvk/QEWzD0x03ipLHXc9J/WXbm\n943DmIlY5+DdQX2AYxHjsM4W4+6fS1M1AueE1pShfytw0qhf76wHgKzrjwCT9JqGNf8Q+hC2\ngYmFhbmFhbmFhYWZYVaeVMF0RAj9T86fP890CJ8NTNIjpDE4JxQhxKzdu3cDQKN+7uon6VP/\n/H2vqJTLb9az26q6DE1f9OzZU+2+bBunRi5NmrbwdMGsmAbh0sl6wtSl05o93uHHjodf/kuV\nA34fl2/XsWfvYSP62PLU3R8XqQkvBMaVK2kAaOchYDoQ/fWsVA4ABJvfX/jOHKCmfpaQVVJe\n8BCgc8VBgjAcM7/79ZnnJMmHj2X1Ge5grO1wEaobOBYxDutsMe6WpBwACJbBOC8LdfrzBIFC\n3kYxSZGSuwBD6zg69B+s+Yf0EU2mP0+IiYmJiY2Ji03Iry4xTxA4zQ4hHYdJeoQ0CeeEMiU4\nOBgABG7WTAeC0GdGVUFLUf6S6UB0xJQpU5gOQd/h0sn6g8W16TsqtE/Q+FeJ8fHxidl5kpKS\nEjlwTExMBNb27u6eHp7OfKwhUTfwQmCcqxEnplSuoJmOQ4+pVqNyDBpy3h1mLP0t4UIaWfKY\npIFX6SUz57E2vIu5JHXzcPLw2bglGdIROBZ9jrDOlmblkEoAYBs0NFV7ZrQdly0mKYrMrsu4\nEEJ6iqZlaYnxqrr2MXFJEhn1fh+CIKwbuPn4+DRr1szHp5n2g0SoLqSHL5l/NAUADMwC9m6f\nxnQ49Qgm6RHSEpwTWqeGDsUJzp+fpdNCMsoVLsOXLejmyHQsn6v4+Pj3D5a/fhkfX823/Kpo\nRUFW3Mm8MtUPGo4MIYbg0sn6hmAZOXv6Onv6Mh2IfsELgXG9XcxiovMfx0v6djBkOhY9ZcAi\nSIqm6aoLkvgObgBPaKXscQkZUHnaNMHuaGZwKk/6+slFAEzSIx2BYxHjsM4W44zZBKmglfI8\nGkDN36tITgEAwTKq08D0Hl2Q/SolPae4pEROsfgmJua2jk2dHXn4x490VEpspCovHxv/opis\nPjFv5dTUx8dHlZu3wwpnSOfIxAVFRUUAwCYTmI6lfsEkPUJIv1A04B1vfaCU58ZnZpcpafnV\nbMAk/aeaO3fu+wdFd7fNvftx72NgilseIh2BSycRArwQ6oFWoYNYIXvidh+Stf/RkMCvngxw\nMGAnSpWULLWYoiuvnuSZtAY4AQARmaUBHu88/bThsQBALo3Rcqh6Qvw88u/ImMTExIzcgpKS\nEpmCZWpqamZp6+7p1cw3IMAbbwfqBI5FjMM6W4xra8q7UiBTKgquvpb1sKx9tgpZfF9MUgDA\nNW5e99HpI3HSo8tXrt7659+897bEYvNMPfwDe/fq/YVPA0ZiQ6juzJz/8/sHCYKwdHT1eaOZ\nncBA+4EhpDVW/g3hTCoAULLUWKnCm4+56TfwF4EQ0jVl+aKsgvImro0qH5S8uBe258/nr9IK\ny8DS3rl9l96jBnc0xApymkdnJDz+N/5VQbG0xl6K9Kd/lSlpAFDKyrUUGvowv8kjmA7hs1RY\nWKhqEARXIMC1p/UCLp1ECPBCqAf49n1XjHy44PCd2Zs81s/qg7kx7Qs04yVK5TQtP5hQGOr9\n3z7EHL6bCZsooei0a1ng8c7+xFnVrWpC/7uCpIiwHb9HJudWOV5aXCjKSk+Kibxw8pCVi++o\nkBldPNTaMRqpD8cihLp3sr1yJhUATmyJ6LG0R639Y3//XdWwalV7Z/RRKFJ0YtvmYxHxNF19\nJT+KLI69dyn23qVTHYb8OCPIyZCt5QgR0g4Di0bt2vo28/HxadbMwQJL3SB9Yek9I8D80f1C\nGQAcvJqxbmBjpiOqLzBJj5AGpKWlfVR/gsU2MDQyNDA0NDbiYZ5Yc3Kf3fht//HHKWIuv/mp\no8srjudHHZr885+qvbcBID8z8cLvibfuPQvb8J0FB3//GqMkRb8tX3L1qeijznIf3KSO4tEH\nTk5OlX/MyMgAAK6p0FbtulgmVg4+gQNHdbDVfHB6YPTo0aoGz7iFasxZu3btJ79btXUR0MfC\npZPadP36dQ2+m7lXB39Hfu39kBrwQqgPmg37eVb5ml//3DM69tbgEUH9O7c0xGpOWtSyrxPs\nTgSAiJWr2mxY1sahYnhhfSkwuPRaJrr7W/G0sIoLREnm3CiQAQDX0IWZiHVU3NlNi/dHyD+Q\nj6mQnxL169wJz8atmDnAUzuB6Q8ci5CeazRoOPfsOjlN50VtX31KMGdwQA1XgCjy6M9XM1Xt\nr0bix4EmUWTmLzN+vJtZWvkgi8sX2goJWYE4v4iq9EmRcu/Ujy8yf9k6x5GHeXqkg8jC9Ph4\nIxaLAACll5eTFd4FI/1A8GZtmJ0zfU2KVP788MoHX4S1tcFJKgCYpEdII0JDQz/tRILFs7Z3\naODUuHnrdu3b+9uZcjUbmF4R3ds3bd259x8A0VTRyrVnKzL0FYpSbsxZ33z3/E5aik8PHFs4\n52pi4UedIvQbPKejXR3Fow+2b99e+cd+/foBgEPnOWET3BiKSN/du3eP6RD0HS6d1KawsDAN\nvpvHVE9M0msKXgiMO3v2LACAmefXzV9cfpp0eMtPR8K4lrZ2dnZ25sa1TKTDOVsa4dh9ssX+\nHwsUSrIkceW08e4tWk2Y+72bEQcAugTaXjqXSsnSFmw5t35mf0OCoCnJsQ2LSykaAIwb4NJJ\njcm5u3P+/oiKFZOmDu7+Pq5CoVBoIzTlynNEIpFI9CLmUXxmMQDQtPyv/fNNbXeNDxAyGrVO\nwbEIIZ6gw7xuTsuvpwPA/UOrxz/sNGV0/2Ye7ybgaSpf9Op2+MlDF+6rUsUWHmMH2eH3Uk06\n99MCVYaeIIimAT16d+vs7eJoY2mqmjJBK8rE2dnPHkRcOHPpVTEJAFLR/QWLzx5cO5jRqBHS\nmOZNnRKSM0maBgCaVopTE8SpCX9dOg0AArvGXl7e3t7eXl7ero5YVQjpMkOh/5ptP21Zuf5u\ncs6aqdMHjf+2Vyd/K72vm4JJeoSYRCvJ3MxXuZmvoh5EHNxh3Pmb8ROGdTXBie0fj5KlLNx0\nodolGnlPtiWXKQCAxREMCZni58iLvX/+0PknACD+Z/MdSftAtdccoxqUpB869jZDz7d3a9PS\nw5xTnnA3IqGgHAB8evZ1NeQAgFSSG/3wQVaJHAC8g5auGOqLf+8IIQ3CpZMIAV4I9cC+ffuq\nHKFpeb4oPV+Uzkg8eoht6Lp84pehv0UAAE2VJkTdTS2foUrSu4yYbHxxYSlFp/61b8S9k06O\ngtz0LKlCqTqxYwju+KAZSkXeii1XVBl6nmnTsTNCe7dxru6LP/3yYXjY5gPJJSRNK8M3rR7k\nvxGrnWkKjkX1jfh55N+RMYmJiRm5BSUlJTIFy9TU1MzS1t3Tq5lvQIC3I9MB6qbW09b3Sw85\nn1AIAK8TIlYuiCDYhjYmb4b9ed9PS0vLKqk0W9FA0Pznn/szE6uOKk77/UBsAQCwudYTlqzq\n3aLqUg2CY2TbwKV7A5eu/foeXjP/ZKQYAAriDx5K/Wp0I1MGIkZI01b8sl1JSpLj42Ji4+Ji\nY+MTUorlb0YhiejVfdGr+zfDAcDQ3N7L20uVs3d3tscvREjHhIeHA4B3l8GFkiMxuaKT21ed\n+o1nbmVpaWllYSkwqDFJoMPzRzFJj5AGtGvXDgDkJS8ex1TdaQ8ACIKost8Sl+/i19xGKnmd\nm5ubly9RpZZpqvTmsS3P4rO3/xyMe8V9rIxL23NJCgBYbLNB02Z+7d+s4qWog7GqhlvQsuCv\nXADA07u1UDplw41MmlaeOJ0aOK4pIzHrmKSDt1UNsya9t22YJGATAKAI6h40cnaZkpY37DGu\ndwNVB5qSnNg47/CdzIRTe6N7NGuJkyQ0Jzg4GAAEbtZMB6Iv3N3dVQ2O0Zt9B6ZOncpcOAgA\nl05ql+r7T7WU8vyHj59X/EgQLFMLG1s7O1N2eU5OTk5uoeLtVyM2zy4oZLg1hyVws6zziPUG\nXggIAUDDnt+vYVlt3HNWXP5OoQgOv9niIc3nHX8KABRZnPqyuOIlG99x37qYaTtQHZVzd1Oq\njAIAjqHzsu2rvT/4nZ9wbtNnzfaG30/6KU1GKWQvNt7PWR6IpbaQrilIigjb8XtkctVHRqXF\nhaKs9KSYyAsnD1m5+I4KmdHFA5dRahjB4o9fHWb527oD16JVR2hKJpa8eTUu+Z05KxbuXRYs\nmtpI71f1aVb8/ggAIAhi6MqNvT3Ma+jJ4tkEL976etLY/8uRAsCtA/Gjf2qjnSARqmssnsCt\nRYBbi4BBALRSlpaUEBcXGxsbGxeXmFcqV/WRFWZH3cuOuvd/AMA2snD38vLybjZ6SG9GA0dI\nY3bu3FnlCE2TBXmigryP2zxXx1TNHSKEPg0le7V8ypyofBkAEGx+6659u7VrZmNjLbQRmnDk\nuWKxWCxOfnLnbPjdAjlFEOyeoetDursCAK0ks58/vXbx5OlbCaq3cgvatGEY7tL9cY5PGH5Y\nLAUA3+m/Le1Wafo5rfh2yDd5coogiLVH//Tgv5mZRBbdGxK8FgD4wqBje4YxEbKu2Tpm6LUC\nGQCM2X1ssO1/deHCQ0buzCoxazTrj7DOFQdpWrZ10tjrOVKBa9DvG/H3jxDSpLTLG1VLJ1W+\nO3Syu7kBACikMaOCFqoykWyeaZWlkwM2/4GJGU1RSF/8MnvxvfQSAODbew36ZmifL1vyeayK\nDjRVnvjg+rFjx6NeSQCA79BmxaZ5rkY4e1iT8EJg1pUrVz753B49cKqEJinlkmcPHialZTUf\nGORRaZy5f2Tj9lO3JW//+AmC3aJ70Lypg/ksnC2tGeGhQTvTigGgzdxdizrUnnQX3Vkxaf1D\nADBrFPJHWK86j08/4FhUT8Sd3bR4f0S1lf+qIAhu53ErZg7w1EJUekgUe+/M+Qt/PYyXUdX8\nX1g7t+zdb0C/Lr5c/BzQtIUjhkSXkqYNRh/eNkSd/sWv9gZNPwcAPGOfU0dX1nF0CDFOKU5N\nilWJi8vMl1Z5+fz584yEhZDGqfZp/TQ6fCHgszCENOPPJT+pMvQNOoycGzKo4TsLBbi2To1t\nnRr7+LbpNyL44r51e68+v7z1B7Zgz8Q2NgSL5+DuP9bdP7Dltu+3XKNp+sXJtZIhOwVYBPxj\n3C0qBwCC4M3q7FD5uKzwRp6cAgCeWWBFhh4AeGYdrLisfLmSLLoPgEliDXhWKgcAgs3vL3xn\n57amfpaQVVJe8BDgvyQ9QRiOmd/9+sxzkuTDx7L6DHcw1na4CCHdhUsnmUb/sWipKkPvO2TO\nolFfvF+jj2AbeLTvs7R976jT65ceuCvNerhs4aH9v3yL1fw0CC8EZmFyq/5gcQUtv+je8r3j\nASO/9+8//MmzF7mvS62cGjdxcbEyxfJOmnRdXAYABMGe3EatPeaF7UK4xCM5TUtzrgNgkl4z\ncCyqD3Lu7py/P6JiiZSpg7u/j6tQKBTaCE258hyRSCQSvYh5FJ9ZDAA0Lf9r/3xT213jA9S6\ncNBHsfPuMMW7QwglfZkQl5KZV1JSUkYqjU1MzSyEbl7eDhaGTAeos56XyQHAsd8Hq3BVYdpo\nFI84T9K0vOx57b0R+uyxhI08hI08OvcaTBbn3Lt2/sSpK5lv19YjpEuw/mi1MEmPkAZIUvb8\nkVAAAALXIVvmDK8hvc42su0/bQOVNe5A9OtL6+YHHtpRkTlu0nXad7cfb/k3jyJFZ3PLxtjx\nP/gu6D05pBIAOEaNq0xuKHh2S9Uw9+pe5RQnHidfTlJyva6mokGv5UoA4Bg0rJJisfS3hAtp\nZMljkgZepZfMnMfa8C7mktTNw8nDZ+Penx8tLS1Ns2/YsGFDzb4hQgzy+nrMri4DVEsnGxj8\nV6zSK2j5fKLapZMDGIpUBxXEbzmdLAEA65bjl47+osa+hO+gOdMTn2+5nyNJPrv+nz7z8Xm0\nRuGFgFDNOMYOrQMcau+HPklGOQUAbINGNlxWrZ0BgMW1djZkJ5UpKBK3S0e6Q6nIW7HliipD\nzzNtOnZGaO82ztU9MaJfPgwP23wguYSkaWX4ptWD/Dda4OzFukGw+S7erV28mY5Dn6j+lvlO\naj/nJHh2Bqw0GQUE7juAdB8lzYuNjol+9uzZs2eJablKrHuNdBfOH60WJukR0oCoXXdUjSEL\nvlFjATzRe3bwgdFbKFK8/eTLLWP+2xA9IOTLLZNPA0BMZD70wST9RzBiETIlTSsVVY4nXchS\nNZz7NajyEvnmSw/e92qGAYsgKZqmq/4X8B3cAJ7QStnjEjKg8vokgt3RzOBUnvT1k4sAmKT/\naKGhoZp9Qx2uGoT0Ey6dZMqjPY9VjSEzv1anf+DUoC33NwJA9ME7EDC4DiPTS3ghIISYYsZh\n5ckpWlm1ZGsNypQ0AADBrauYENK6nLubUmUUAHAMnZdtX+0t+NCnLeHcps+a7Q2/n/RTmoxS\nyF5svJ+zPLD2fSIQ+iz4mvBuS8qLE4vB21Kd/rRSml2uBACe8ftfYxHSBZSsMCEmOvrZs+jo\n6LiUbKq6xLyFo5ufr6+vn6/2w0MIaRMm6RHSgPMpxQDA4gj6Wxup09/AvJuQt01MUlnXTsCY\nhRXHDa26A5wGAGnGRzzLQADgbMQpKCap8leZJOXIezvTlpYfflWkag5wfqd8K60sS5EpAIDF\ntdZupDrLwYCdKFVSstRiijatNFeFZ9Ia4AQARGSWBni880jChscCALk0RsuhIlR3PrbCAcFi\nGxgaGRoYGhob8XATXG3BpZN16lJ6CQAQbH5PS7VKhhoIOplzNhcqlGX5NwAwSa89eCHUN0un\nhWSUK1yGL1vQzZHpWBDSAGdDdp6cokjRk1J5S+Pa8+4KaWwGqQQArpFb3UeHPgjHIs2KOvVK\n1fCdMf/DGfo3eObNF33nN2n9QwB4eSIKAnHfhzpHkeVsngHTUei+3u2Fty+np587qxw0Q53i\nKoXxe+Q0DQDCDv3rOjaEtEZJFj+Pe7NiPu55BlldYp5tYO7VopWvn5+fn29joYn2g0QIaR8m\n6RHSgLRyCgBYXBv1T7HksMQkJS99Vvkgm/umyiv5mtRgePqgu71xVDFJ08qwa5lr+ryp2p3/\ndIeIVG1IH+DFf2e4kzw/VK6kAcDAVN09sVDNAs14iVI5TcsPJhSGeltUHOfw3UzYRAlFp13L\nAg+LyqdkkdR7b4PQ5+2TKxwQLJ61vUMDp8bNW7dr397fzhTXkKHPVbrqSxHLWP1ZJ0YsohBA\nSYrrLiqE6jmlPDc+M7tMScuvZgMmxjRNKsnNys6Xq1071M3DU43qaKgW3VzMHj3NA4C9R+PC\nJtReNyvx5G5VSXCzJj3rPDj0ATgWadx1cRkAEAR7chu19vQRtgvhEo/kNC3NuQ6ASXoNoxUF\nf0fcjY6OiY1PLiwtlUrL5BStKilHFj86HVHcoVNgA7wRqwNNx0y1urEwv+D/fj7ddemgZjV3\npsjsTatuAwDBNh4T7KKVABGqc8vmzYhNeCVTVvN1lCAIm0ZeqkXzLZq5GBL4NRTpKb2dOYdJ\neoQ0wJzDypVTlCxNQtECNZ7o0FTxK5kCAIh3S/lR5Jv90XkWeFfwcbzGtYL5NwEgfu/8E1aL\nerV2K8t4tHZNhOpVh+7fVO5cnHpnyU9XVW2rNq21G6nOatnXCXYnAkDEylVtNixr41CxXwPr\nS4HBpdcy0d3fiqeFVSyyV5I5NwpkAMA1xJuuT7FkyRKmQ0CaRCvJ3MxXuZmvoh5EHNxh3Pmb\n8ROGdTXBFAH6DJmwiQIFTclzU2SUi2Htu0hS5akiuRIAWFzzuo8OIS2jMxIe/xv/qqC4xipZ\ntCL96V+qQt9KWbmWQtMDtOL1n3t3Xrwd9br4436rh8+cM8WP4P+ZZ7AfPL0KAGkXlh/x2Tqy\nbU2Fu8WPTyw781LV9g3y0EZ8+gXHIsZklFMAwDZoZMNVZ/0wsLjWzobspDIFRabXcWh6J+HO\nnzt2HU2RVL8khip/eWT3H8f27e80fNJ3QwPxQ0CzOHzvtbN7TVwdHnVgwdLc0aO/6etiWX0a\npvjVw19Xb3xSTAKA/+gVbXA/JqQrHse9rHKEw7du3srX18/X19fXSb0qdAjpEpw5VwGT9Ahp\nQCcLg5NiKU2TO6Py5vjXvp4+P3q3auocz+ydZdxS0WVVw8zdrJrT0IeZe4V0sPz73msZTRX/\nsXruYYKg366VIViGE79ppGqXiS+vXXfh6fNM1WY/BMH+ZnhjpmLWMY7dJ1vs/7FAoSRLEldO\nG+/eotWEud+7GXEAoEug7aVzqZQsbcGWc+tn9jckCJqSHNuwuJSiAcC4QQ+mY/8stW6N80vq\no3bt2gGAvOTF45jc918lKg1NKly+i19zG6nkdW5ubl6+RLXIj6ZKbx7b8iw+e/vPwTiHugZb\nt27V7Bt+ciEEVFmAGe/SaxkA7LmZtapXg1r7Z0fsUl0XPLMOdR6cLsILod5SkqLfli+5+lT0\nUWe5D25SR/HoG5oq/XVG6M30kk8410CtVBqqhbn7lG7COzfEUpomj6+aktxr1MgBPVxt+VW6\nlYlfXD137NDFhwqaBgAjm65TPXDOlibhWMQsMw4rT07Ryo/Y0FA1TwIIvXgqrTVRhxcvPf60\n1m5KSnLz8Pq45JztC4Zw8D5Mo4TtJv36o8niTSeiwg/9e/l4iy97+Hk0EAptbYU2bLIoR5wj\nzslJevrPnX9fqJ7XuXQLmdTBVCz+YKktoVCt6hQI1SsEwXZo0szXz9fXz6+Fe0McZ5Dewplz\nlWGSHiEN6DLM+WRYLAD8s2F1wp41HjXO9FRIX2xYc0/VduxVqXwZTZ7ZdFvV9G9u8f6JqAYE\nYfjd6u9efLdRVd++chrMfchiH/6b+9vywkdRSRkVLzX+en4ngT4WUakLbEPX5RO/DP0tAgBo\nqjQh6m5q+QxVkt5lxGTjiwtLKTr1r30j7p10chTkpmdJFUrViR1Daq9+idDnYsGCBZTs1fIp\nc1Q/Emx+6659u7VrZmNjLbQRmnDkuWKxWCxOfnLnbPjdAjmlKEu19A9d0N0VAGglmf386bWL\nJ0/fSgCAvKcnF51ov2EYPiH9oGvXrmn2DTE3qRFffe146egLAIjftyzSf2trm5rWBMjyopbt\njlO1HXt10UZ8OgcvhHrr2MI5VxMLP+oUod/gOR1rWm2M1JdxbVXlDD2XLxBamqr5eIeLM+Q0\ngzVx1YyYqetEJEXTVGT4gceXDpnb2NsKhba2tkZQJhbn5OTkZOcWKt/eu7F5wukrJ+IcCc3C\nsYhZzobsPDlFkaInpfKWxrXn3RXS2AxSCQBcI7e6j05fpF/bUpGhJ9imX3Tt5ObalBt9ZMed\n/yavcPiePo7G0ZmlACB6cGjB0WbrRmJVD42ZPHmyqsHhEKAAWln+JOLck4iaTkm5sWPCjZo6\nqFZbIvS5aNOpt5+vbyvfFnZmWB8C6TucOVcFJukR0gD7TrNc94QklykUZcmLQhaMmxXau3Xj\nantmPr2+deOuOKkcANg84bT+b1Z4F2cnXTy46VRKEQDwTFoNtDbSVuy6g28fuDnMbNe2vRHR\nqaoHPSyOSYf+E34I9nm/M0Fw/HpOXDi5jdbD1GUNe36/hmW1cc9Zcfk7m81z+M0WD2k+7/hT\nAKDI4tSXxRUv2fiO+9YF60YgnfLnkp+i8mUA0KDDyLkhgxoKKt+AcW2dGts6NfbxbdNvRPDF\nfev2Xn1+eesPbMGeiW1sCBbPwd1/rLt/YMtt32+5RtP0i5NrJUN2qrOLCkL1R8P+EwQnFkoo\nJUWKV4XOHvfDj33bNKq2Z1rkxV827MshKQBgcSwm9XbSbqQI1aGS9EPH3mbF+PZubVp6mHPK\nE+5GJBSUA4BPz76uhhwAkEpyox8+yCqRA4B30NIVQ31xyNeU/zuZrGp4dB46adQAV2sTZuPR\nT0bCgF/WzVi+bJvqL5+mlQXizAJxZkJMNZ15ArcpS5Z0sKu61B79L3AsYlw3F7NHT/MAYO/R\nuLAJtU9PTzy5W7XkwKxJzzoPTj9QstQlO2+q2gK3jrN/nNrczggAksVnKnfj8n1Wbv/9/rGV\nq48+BoDEk0sTB/7hboSPzTUjOzub6RAQYlJ6+JKEqJSEqDunzAL2bp/GdDgIMQlnzr0Pv20g\npAEsrnDRgiGTlhwnaZosTtr58/QjDh7+Pk2EQqFQKOSDTJwrzhXnpsRGxqa/uUMmCKL7tJ9d\nDdkAIBXtCQ65ULH4+8vp0/CO+NPw7VvMXLFlSoEoLSefbWLj5GjDe3cdDIfvEhBo5tDYrU3A\nl55O+KhO87y+HrOry4BnDx4mpWU1MPhvK2KvoOXziY3bT92WvF1ATxDsFt2D5k0dwFCkCNUJ\nScqePxIKAEDgOmTLnOE1PN9kG9n2n7aByhp3IPr1pXXzAw/t8OC/+VbWpOu0724/3vJvHkWK\nzuaWjcGn1R8QHBzMdAioGhy+99JRvrMORAKAoix194rvTru0/MLX097e3s7Ojg9SkUiUnZ2d\nEHX335T8irNaj/7JAx+DfhK8EOqnpINv6mOZNem9bcMk1XQrRVD3oJGzy5S0vGGPcb3fbAZB\nU5ITG+cdvpOZcGpvdI9mLQW4tkYz7haRAGDhHbR21jC8t2KQqUunNXu8w48dD7/8lyoH/D4u\n365jz97DRvSx5bGr7YA+GY5FjPMM9oOnVwEg7cLyIz5bR7atqUSB+PGJZWfebFrsG6TLD6O1\nKev6tny5ErFy34gAACAASURBVAAMBK03rZllzflwtQ6CEzDipxkZk369I6Ip6c4L6RuHOmsv\nUJ3G4+GQgvSaTFxQVFQEAGwygelYEGISzpyrls7+wxDSMssWI8PmKeeuP1WoUAJAcVbCzawP\nfu4SLIPuE1dM7eyg+lGplFZk6N16zZzeDvdV+p8YWNg1taj+1tfEKXj+bC2Ho3dYXEHLL7q3\nfO94wMjv/fsPf/LsRe7rUiunxk1cXKxq3BgCoc9R1K47qsaQBd+osQKJ6D07+MDoLRQp3n7y\n5ZYxTSteCAj5csvk0wAQE5kPfTBJX72hQ4cyHQKqXpNBS2YXLFx/Llr1Y37Kk3MpT2ro33LQ\nvEUDXLQSmg7CC6F++vt5kaoxcN6oioIoHL7baDvjnVklWVeS4W1ijGALhv64SZw09npO+i/L\nzvy+cRgzEeucIoUSADp+1wcz9IxjcW36jgrtEzT+VWJ8fHxidp6kpKREDhwTExOBtb27u6eH\npzOfhf9RdQLHIsaZu0/pJrxzQyylafL4qinJvUaNHNDD1bbq1/sy8Yur544duvhQQdMAYGTT\ndaqHORPx6qD759JUjcA5oTVl6N8KnDTq1zvrASDr+iPAJL2GnDp1iukQEGKSlX9DOJMKAJQs\nNVaq8OZjSg7pKZw5Vy0cERDSGPuA4F27fPft2Hf90XOq0p7oVTh4dRgzeWqAs2mV43w7t77D\nxgV19a7jMBFiDMfYoXWAA9NRIFSHzqcUAwCLI+iv3q4lBubdhLxtYpLKunYCxiysOG5o1R3g\nNABIM6R1FCpCdSpw/MoGnn9u2nXs5evyGrrxhW5Bk2f29cdC90jXPCuVAwDB5vcXvpOJaepn\nCVkl5QUPATpXHCQIwzHzu1+feU6SfPhYVp/hDsbaDlcXNTRgJ5UpGuEz0HqDYBk5e/o6e/oy\nHYh+wbGoHmBNXDUjZuo6EUnRNBUZfuDxpUPmNva2QqGtra0RlInFOTk5Odm5hcq3D5HYPOH0\nlRNrTyYj9dySlAMAwTIY52WhTn+eIFDI2ygmKVJyFwCnQiKENMDSe0aA+aP7hTIAOHg1Y93A\nxkxHhBAzcOZctfCWFSFNMrT2mrpowzhx8u37j+Pj419l5paUlpTJwdTUTGBl7+Hl1aLNF75N\nrKucZWQ1cPP2Ec5ONrh8ACGEPmtp5RQAsLg26p9iyWGJSUpe+qzyQTb3TUkV8jWpwfAQ0qbG\n7Qf/GtA39u//u/f4WXx8YnZ+kVRGEgTLwMjY0q6Bu7tbC//Ajn5NcddbpJNey5UAwDFoyHn3\nL9zS3xIupJElj0kaeJVeMnMea8O7mEtSNw8nD59d+6bFqFYdhfyk1KJnOWVdzQ2YjkVPXbhw\nAQBMXQI7eau7IPjJ1UvpJMUxatKzm1ddhqZHcCyqD4yEAb+sm7F82baEgnIAoGllgTizQJyZ\nEFNNZ57AbcqSJR1wuyvNySGVAMA2aGiq9pdOOy5bTFIUiduoI4Q0hODN2jA7Z/qaFKn8+eGV\nD74Ia2tjyHRMCDEAZ85VC5P0CGmekdD16/6uX/dXtz/boIELLiFDCKHPnzmHlSunKFmahKIF\najwGoqniVzIFABAEt/JxihSpGjwLbjWnIfS5IHjeHXp6d+ip+ommSCWLh1l5pA8MWARJ0TSt\nqHKc7+AG8IRWyh6XkAGV9/0h2B3NDE7lSV8/uQiAiTENCBjvu3tJROTWs3TYWBx1GLF7924A\naNTPXf0kfeqfv+8VlXL5zXp2W1WXoekRHIvqCVOXTmv2eIcfOx5++a+sEnm1fbh8u449ew8b\n0ceWx9ZyeLrNmE2QClopz6MB1Pw4EMkpACBYapVGQ5pSLi3hGJngnQLSVYZC/zXbftqycv3d\n5Jw1U6cPGv9tr07+VoY44CP9gjPnqoVJeoSQLhgzZsynneg6ds3izvaaDQZJJblZ2fnyD2/6\nUIWbhyfeiSHd0MnC4KRYStPkzqi8Of61r6fPj94tU9IAwDNrV/m4VHRZ1TBzN6uLOPWH+Hnk\n35ExiYmJGbkFJSUlMgXL1NTUzNLW3dOrmW9AgLcj0wHqF4KNT52ZUSKRKNT+UBaYm+Nn8v/O\nwYCdKFVSstRiiq78AIJn0hrgBABEZJYGePAqn2LDYwGAXFrdykr08axbzhrq9u+JpNML9jVc\nOq6zAYF/158BUkkDgKL8JdOB6A4ci+oPFtem76jQPkHjXyXGx8cnZudJSkpK5MAxMTERWNu7\nu3t6eDrzWThSaV5bU96VAplSUXD1tayHZe1LV8ni+2KSAgCucfO6j05fkGXFZWxjAa+6ysY0\n9e+1Y6dvPk5Lz1BwzZv5BXTqNTDAVd3ZXQh9LsLDwwHAu8vgQsmRmFzRye2rTv3GM7eytLS0\nsrAUGNT4VHTu3LnaChOhuoUz56qFSXqEkC4oKCj4tBOLyynNRqLPaMXrP/fuvHg76nVxTTsQ\nv+/wmXPqT6BDqD7rMsz5ZFgsAPyzYXXCnjUeprwaOiukLzasuadqO/bq9d8LNHlm021V07+5\nWgWg0PsKkiLCdvwemZxb5XhpcaEoKz0pJvLCyUNWLr6jQmZ08cBfMtJNmVFXD53/Kzn5RW7R\nR3wu44eyRgSa8RKlcpqWH0woDPX+b5Dh8N1M2EQJRaddy4J3B58sEr+UahYxYtUa8Q9zIs5u\nHvsoYnRwfy8XZyc7S/zrrjvx8fHvHyx//TI+Xo2/bVpRkBV3Mq9M9YOGI9NjOBbVNwTLyNnT\n19nTl+lA9Ej3TrZXzqQCwIktET2W9qi1f+zvv6saVq1q74xqlvXs5tmrtyMfP8uTKpov3LOi\nrbBKB1ISu2bxmshXkrcHRPdvnPnn/8637jNl4cSvat+sGKHPx86dO6scoWmyIE9UkCdiJB6E\nGIEz56qFSXqENA+XK9V/HL6lpQkHACyNcBjUDJoq/XVG6M30kk841wDvvZCusO80y3VPSHKZ\nQlGWvChkwbhZob1bN662Z+bT61s37oqTygGAzRNO699Idbw4O+niwU2nUooAgGfSaqC1Ls8V\nrTtxZzct3h9Raz2P/JSoX+dOeDZuxcwBntoJTB+kpaV9VH+CxTYwNDI0MDQ0NuLhAjLNSb6w\n8Yc9t2i1v5FW4OKHsia07OsEuxMBIGLlqjYblrVxqNhdmPWlwODSa5no7m/F08Iq5kMoyZwb\nBTIA4Bq6MBOxLmLzHPsObB+x+Wpp5pPf1j4BAILFVmeYOXPmTJ0Hp4uqXeYlurtt7t2Pex8D\n03a1d0LqwbEIoUaDhnPPrpPTdF7U9tWnBHMGB9QwW0sUefTnq5mq9lcj8Sr4dDRVfGTdkuP3\nX9TQRynPW/Hd0ieFVeeS0jT16MLWH8pZm0K71WWMCCGEtA1nzlULs1MIaQwuV2LQ1q1ba3yd\nLsrLyc7OSn8Vc/X6ozIlTSuNvvlh1deeuHpSYzKuraqcoefyBUJLUzX/srlYgBTpChZXuGjB\nkElLjpM0TRYn7fx5+hEHD3+fJkKhUCgU8kEmzhXninNTYiNj0wtVpxAE0X3az66GbACQivYE\nh1yoSKp9OX0aXhufIOfuzvn7Iyp+jaYO7v4+rkKhUGgjNOXKc0QikUj0IuZRfGYxANC0/K/9\n801td40PqLqwA32a0NDQTzuRYPGs7R0aODVu3rpd+/b+dqZczQamV0jJvQV738nQs9nqbjXA\nww9lTXDsPtli/48FCiVZkrhy2nj3Fq0mzP3ezYgDAF0CbS+dS6VkaQu2nFs/s78hQdCU5NiG\nxaUUDQDGDXT56YOWPTqwaPnpZ5WP0EoK1wjXf36TRzAdgu7AsageUpLFKc+Txa+LiktKgGtk\nZmpq4+jcxMkaP33rCE/QYV43p+XX0wHg/qHV4x92mjK6fzOPdxPwNJUvenU7/OShC/cpmgYA\nC4+xg+z41b4hqh0t37Mw9EJcLQUvn+xcosrQG1h4du/q18CClZKUGPMoKlMqB4AX17Yc6OQ3\nthk+tUM6YurUqUyHgBDzcOZctYhPWF2BEHrfJy9XOnHunCE+DNUiWV7Sif1hp+6kEiyjMet2\nDXITMB2Rjjjw7bDTeWUA4NF56KRRA1ytTZiOCCHGZN//Y+76U4UKZa09CZZB94krQnu7q34s\nydoyMuSGqu3Wa+aGkC51GKWOUiryZoycmCqjAIBn2nTsjNDebZyr+5SlXz4MD9t8ILmEBACO\nYZO9RzZacPDjWAP69ev3v78JwTbu/M34CcO6muBExk/ydP2kxXdEAGAkbPbt5KBWTV2E5liW\nQ9vSLm8M/S2i4sfvDp3sbm4AAAppzKighao0GJtn6uQoyE3Pkr79yBiw+Y9vXcyYiFfXSF4c\nGv39n5/2uOP8+fMaj0cfVHn6nJGRAQBcU6GtoKbdfyozsXLwCRw46itvzQenx3Asqi9oRfTd\nK+GXrkTGpZPvDU08U2u/Dt169e7dohE+oNA8WindOy/kfEJhxRGCbWhjohRLSADwcm2QlpZV\nUmmjBwNB8w27lzUyVHeCI6oi+fSi7w+8mSRnaO0xoP9XrbxchA0bWRn89yulytODh4eWUrSh\nRftfds5u8Pa3Tcmyd8ybfTWlCAAMBO1P/j5P+/EjhBCqO4/CpqlmzgGApcebmXPZR2Z+f+ol\nqG7Eqps5d3DdICaDrmOYpEdIA0jJveAx62TKT1mu9OeZM1hVVOuUp5dMOPAkj2PYZPPvGxoa\n4K2XBkwYMlBMUhbeQQdWD8OMCkKyvLh9O/Zdf/Sc+vAXLQevDmMmTw1wNq04okrS8+3c+g4b\nF9QVn1B/iuyIhZM3RgMAx9B5+e713jUmBsjCZ99P+ilNRgFAi9m7lgfaaSlKnbZq1SoAkJe8\neByT+/6rBFH17oPLd/FrbiOVvM7Nzc3Ll1TepMC6xTfbfw7GuYyfYG3wN/eKynlmrXceWGTF\nwW+ajIm7enDjnrPicgoqJcYAIO7w4nnHn77f38Z33N6lA7Uaou66/P2o35IlAGAk9Bo2sp9n\nQ0cbCxM1RxMrK6s6jU1PqOZsNeq3IWyCG9Ox6Dscixgny4/ZvnZ9REItC4sJgu3fd8KMcb2w\n2qLG0ZTkzG/rDlyLrrWnhXuXBYumuqs9uwhVQVOFE4eNU20hbOP7zebFwdX+PefcXzpxdRQA\ntF66b4mvdeWXKNnzcSNnq6a8j9l9bLAtljRACCHdgTPn3odJeoQ0AJcrfXbk0uhvRixS0rTL\nsE2bg5owHY4uGDqgv0xJD9hx9FsHY6ZjQai+KBMn377/OD4+/lVmbklpSZkcTE3NBFb2Hl5e\nLdp84dvEukp/qjw9NdfQ2ckGH8t9svDQoJ1pxQDQZu6uRR1qT7qL7qyYtP4hAJg1CvkjrFed\nx6cfKNmr5VPmROXLAIBg81t37dutXTMbG2uhjdCEI88Vi8VicfKTO2fD7xbIKYJg9wxdH9Ld\nFQBoJZn9/Om1iydP30pQvZVb0KYNw/Bj+qONGjRAolC2mr97WYAt07HoO6Vc8uzBw6S0rOYD\ngzyM/tts7v6RjdtP3Za8XbRKEOwW3YPmTR3MV2fLdKSGKd8MzCynDMxb79m/WIDpLiZgkr5e\nwbGIQaQkZkHIT0ml8soHCYJraWtnpCwR5RYq3n0wa+Hdb+uK8Zinrwui2Htnzl/462G8jKrm\nYbi1c8ve/Qb06+LLxd/9/yA3ctX4n/8BAC7fY+cfa6w/MFv0xsxRW1IkADD5wIneloZVXn28\ncsKyB2IAaDTwl7BxTes4ZIQQQlqFM+eqwD3pEdKAK08LAIBn1nr7Dlyu9Hng8n06CQxuFsqy\nrl2DoClMh6MLGhqwk8oUjfj4sYLQf4yErl/3d/26v7r92QYNXJzqMiA9cF1cBgAEwZ7cRq09\n5oXtQrjEIzlNS3OuA2CSXjP+XPKTKkPfoMPIuSGDGr5zQ8W1dWps69TYx7dNvxHBF/et23v1\n+eWtP7AFeya2sSFYPAd3/7Hu/oEtt32/5RpN0y9OrpUM2YkJto9VrqQBoJ0HlsxlHosraPlF\n95bvHQ8Y+b1//+FPnr3IfV1q5dS4iYuLlamOP3rQshxSCQBt53+HAwhTgoODAUDgVnVKImIE\njkXMoQ/MW1mRoecJmvQb3K9jGx97OyseiwAAmpLlZmc9+yfi3Onw1BI5ABTEnp/zq+dv33dg\nMmodZefdYYp3hxBK+jIhLiUzr6SkpIxUGpuYmlkI3by8HSyqporRJ0g9m6xqNBkZ+qEMPdCK\n4xklqma1NbNcR3jAAzEA5D9IAEzSI4SQbiHYgkGhK9t3xplzb2A2BSENiJHKAcB72mTM0H9G\nXA05NwHIkgcAmKTXgI5CflJq0bOcsq5vyycihJD2ZZRTAMA2aGTDVesTmcW1djZkJ5UpKDK9\njkPTF5KUPX8kFACAwHXIljnDa8iOsY1s+0/bQGWNOxD9+tK6+YGHdni8nenVpOu0724/3vJv\nHkWKzuaWjbHDKpcfx9WIE1MqV2DFtPqNY+zQOsCB6Sh0liWXJSapVvY4ejBm6NChTIeA1IJj\nUZ0qSNh+MbNU1Ra2HrZm/gjrd7+jEmxDoZNLtyEunfv1/n3l/NP/5gFA1q31V0b79bDGnHGd\nINh8F+/WLri3WN24lVqsavTu+MGqZrLXF3PeljKWUdV0MLIOALgNAGTRQ4C+mo8SIaaJn0f+\nHRmTmJiYkVtQUlIiU7BMTU3NLG3dPb2a+QYEeDsyHSBCdQ5nzlXAJD1CGoDLlT5HKeUKAKCp\nEqYD0REB4313L4mI3HqWDhurB1PcEEL1lBmHlSenaKVU/VPKlDQAAMGtq5j0TNSuO6rGkAXf\nqLF+leg9O/jA6C0UKd5+8uWWMf8tlAkI+XLL5NMAEBOZD30wzfZxeruYxUTnP46X9O2gR3e2\nCFXWxdzgmFiaUe2zf1TPUDRgvYO6kB6+ZP7RFAAwMAvYu30a0+HoqZiDj1QNvrDz1sUjDatd\nNQwAAGye7ZiftuZNGHc7r4ymlef+SO4xs5m2wtRZeBVo38tyBQAQBK+D2QfLcoj+uq1qsDjm\nvSyrWebB5r2pL0eROXUQI0JMKkiKCNvxe2RybpXjpcWFoqz0pJjICycPWbn4jgqZ0cXDgpEI\nEdImnDkHmKRHSCNwudJnhyx6+FdhOQCwePZMx6IjrFvOGur274mk0wv2NVw6rrPBh58+IKQb\ntm7dqtk3DA0N1ewb6idnQ3aenKJI0ZNSeUvj2vPuCmlsBqkEAK4R7pirGedTigGAxRH0tzZS\np7+BeTchb5uYpLKunYAxCyuOG1p1BzgNANKMj5hygVRahQ5iheyJ231I1v7HGvIBCOmwzsFe\nxzZG/n04eswPbZmOBUFZviiroLyJa6PKByUv7oXt+fP5q7TCMrC0d27fpfeowR0NcSt0zZGJ\nC4qKigCATSYwHYv+up76ZlVA5wXf1vqJTLD4Exd2uT0rHAByI88DYJL+f4VXgfaJSSUAsLjW\nnA//vT+4lq1qGNsPq3bYJ1hvMvdK+WvNh4gQc+LOblq8P0JO15JCyE+J+nXuhGfjVswc4Kmd\nwBBCDMIkPUIagMuVPi/lBYnbFm2maBoAjCy7MR2OziBGrFoj/mFOxNnNYx9FjA7u7+Xi7GRn\nictikK66du2aZt8Qk/Qa0c3F7NHTPADYezQubEKLWvsnntxN0zQAmDXpWefB6Ye0cgoAWFwb\n9U+x5LDEJCUvfVb5IJsrVDXI16QGw9MTfPu+K0Y+XHD4zuxNHutn9cE8fZ3COVv1k33H+X3P\njrt4e+3Jrru+aYnbojMm99mN3/Yff5wi5vKbnzq6vOJ4ftShyT//SSrfPKTOz0y88HvirXvP\nwjZ8Z1FDYgd9DCv/hnAmFQAoWWqsVOHNxweADEgpU60qZo9qbKZOfzOXMVzikpym5aXRdRya\nXsCrQPuM2YRMSdN0+Yc60JTktPjNHFzHftXfr1FysarB4lpqPEKEmJJzd+f8/RH02wy9qYO7\nv4+rUCgU2ghNufIckUgkEr2IeRSfWQwANC3/a/98U9td4wOEjEaNkLaVS0s4RiZ6lVDAbycI\naQAuV2Lc0aNH1eqnLM9OS30W+e9ruVJ1wGt0uzoMS8+weY59B7aP2Hy1NPPJb2ufAADBYquz\nGObMmTN1HhxCSD94BvvB06sAkHZh+RGfrSPbfnArRAAQPz6x7MxLVds3yEMb8ekBcw4rV05R\nsjQJRQvUuK+iqeJXMtXz63cqH1CkSNXgWeBOBJ+i2bCfZ5Wv+fXPPaNjbw0eEdS/c0tDvbrN\n1SKcs1VPEdxvVy/L/3HxHz9NTuwVPGFUXzvMzWid6N6+aevOvb9cjKaKVq49W5Ghr1CUcmPO\n+ua753fSUny6ztJ7RoD5o/uFMgA4eDVj3cDGTEekjyigAYDFs+OrVyWCIAztDVhpMgpoZR2H\nphfwKtA+Bx4nX07SiteZJOXIY7/foSTjWNnb8f+rttXP65WXPlU12Lya7uYQ+owoFXkrtlxR\nZeh5pk3Hzgjt3ca5ug8G+uXD8LDNB5JLSJpWhm9aPch/I85fRDqDLCsuYxsLeKxqXqOpf68d\nO33zcVp6hoJr3swvoFOvgQGu5lqPkQF4m4qQBuByJcapm6R/F9+20w/tcEKixjw6sGj56XfW\nQdJKCjcCRboqODiY6RBQNczdp3QT3rkhltI0eXzVlOReo0YO6OFqW3VH8zLxi6vnjh26+FCh\nqqpi03Wqh1589deCThYGJ8VSmiZ3RuXN8a99PX1+9G6ZkgYAntk70+akosuqhpm7WivPUGVn\nz54FADDz/Lr5i8tPkw5v+elIGNfS1s7Ozs7c+IP7g6rMnTtXGyEiVMdUV4Fb526xR84/DN//\n6NJBgY1jA0cbrho3akuXLq3r8PQBJUtZuOlCtQVd855sSy5TAACLIxgSMsXPkRd7//yh808A\nQPzP5juS9oGCWkYqpBaCN2vD7Jzpa1Kk8ueHVz74IqytDVb+07bmxtz7RaRSni+nQZ3xh1ZK\ns8qVAMDl405MmoBXgdZ1sDSILiVpmj75omimZzU7ascffKRqsA0bdTWvZkN6ABDf+VfVMLBo\nX0dxIqRlOXc3pcooAOAYOi/bvtr7g191COc2fdZsb/j9pJ/SZJRC9mLj/ZzlgThbBX3esp7d\nPHv1duTjZ3lSRfOFe1a0rZqOISWxaxaviXwleXtAdP/GmX/+73zrPlMWTvyqupS+TsEkPUKa\ngcuVPjsWrl8sWTHdCHc91BDJi0MrzmBFPqRHhg4dynQIqFqsiatmxExdJyIpmqYiww88vnTI\n3MbeVii0tbU1gjKxOCcnJyc7t1D5Nm3A5gmnr5yo81/6tabLMOeTYbEA8M+G1Ql71niY1pRo\nUUhfbFhzT9V27NXrvxdo8sym26qmf/Nqnu6hmu3bt6/KEZqW54vS80XpjMSj23DOVv1U5Sqg\naWWhOL1QjJeA9mRc2p5LUgDAYpsNmjbza///dteOOhirargFLQv+ygUAPL1bC6VTNtzIpGnl\nidOpgeOaMhKz7jEU+q/Z9tOWlevvJuesmTp90Phve3XytzKsZm0rqiO9W1ndv5VNK2WH04rH\nNjKttX9h3C7VFFKzpn3qPjq9gFeBlnl3t4d9xQDwcMsZ+rdvqzxxoxUFe57lq9pmzsM+8DxO\n+cfpNFVLGIizVZCOiDr1StXwnTH/wxn6N3jmzRd95zdp/UMAeHkiCgJ71dwfoXqLpoqPrFty\n/P6LGvoo5Xkrvlv6pLDqPik0TT26sPWHctamUB3frRiT9AhpAC5XYlzPnurvJcy2cWrk0qRp\nC08XnEehQX9vu66q2mQk9Bo2sp9nQ0cbCxP8BSOEtM9IGPDLuhnLl21LKCgHAJpWFogzC8SZ\nCTHVdOYJ3KYsWdLBrupSe/TJ7DvNct0TklymUJQlLwpZMG5WaO/Wjavtmfn0+taNu+KkcgBg\n84TT+jdSHS/OTrp4cNOplCIA4Jm0GmhtpK3YEfoUOGcLoWr9cylD1Wg5be3obo7/vUArjmeW\nAgBBEN/2bFhxuN3YYLixFgBy70UBJuk1JDw8HAC8uwwulByJyRWd3L7q1G88cytLS0srC0uB\nQY33w/ikQiM8Jk0U3F0hoZSXf941cNf3Ne8ERJHZG1ffBQCCYA+Z6qOtGHUcXgVa5vDVGO7+\nRXKaLsk8u+x4q6XDWlV+9cn+JSLyTb1Fj+HVbzeWenn1w2JS1e7f07HaPgh9dq6LywCAINiT\n26hV0lXYLoRLPJLTtDTnOgAm6dHniZbvWRh6Ia6g5l5Pdi5RZegNLDy7d/VrYMFKSUqMeRSV\nKZUDwItrWw508hvbTJcXb2CSHiENwOVKjJsyZQrTIei78+klAGBg3nrXzsXqbEKMEEJ1x9Sl\n05o93uHHjodf/iurRF5tHy7frmPP3sNG9LGtbq9E9MlYXOGiBUMmLTlO0jRZnLTz5+lHHDz8\nfZoIhUKhUMgHmThXnCvOTYmNjE0vVJ1CEET3aT+7GrIBQCraExxygX5b5+DL6dPwE+UTTJ06\nlekQEGLYzJkzmQ5B390tKgcAguDN6uxQ+bis8EaenAIAnlmgB/+/R1I8sw5WXFa+XEkW3QcY\npuVoddXOnTurHKFpsiBPVJAnYiQePcQzbb16WqdpYX+V5d4KncOeNzfEW1h9ufXs2Dt7t2x7\nWkwCgPvgZb3e260JfRq8CrSMy/eZ1tZm8z9iAIg6/NMPrwb27ejr4e5MF4kirx7ZE/5miTyL\nY/Gtt+X7p6fe+2PuroeqtonjoE6C6uvhI/TZySinAIBt0MiGq1YVPxbX2tmQnVSmoEhMLqDP\nVfKZZRUZekNrjwH9v2rl5SJsaFW5D1Wevv7/MgHA0KL9LztnN3hb6oaSZe+YN/tqShEAhK/d\nOfb3edqNXaswSY8QQkgDckglALSd/x1m6BH6EIosZ/PwKYOWsLg2fUeF9gka/yoxPj4+MTtP\nUlJSIgeOiYmJwNre3d3Tw9OZjzue1A3LFiPD5innrj9VqFACQHFWws2shA91JlgG3SeumPo2\nhaNUZLucXAAAIABJREFUSisy9G69Zk5vp9Y6A1RFjx49mA5Br6WHL5l/NAUADMwC9m6fxnQ4\neqpLly5Mh6DvVHcHHKPGVe4OCp7dUjXMvbpXOcWJx8mXk5QcM2fos1RcXFztcUHb8T+XcX/e\nc03y/OaCyf80D+jUtoWbna2tra2tEVGWIxKJsrP/vXPpdkyWqr/vwBmLRzXXYuAIaVjHH5dd\nHjM9sVQOAM/vndl478z7fVz6zbPlvUlV0grZ69evM5Lj7v3fhSuPXqoOEizDictwwhbSHWYc\nVp6copVS9U8pU9IAAAS3rmJCqC7RVOGaI2+2uLLx/Wbz4mDT6lIGeVF7SykaAJrNmNCg0mY0\nbEP7kDU/PRg5u1ChLJf8/WeOdLDuzl/EJD1CGoDLlT5fpCSDJ3BiOgpdYMlliUmqlb3Ofl4i\n9LFoRcHfEXejo2Ni45MLS0ul0jI5RZ8/fx4AyOJHpyOKO3QKbGCKt1t1i2AZOXv6Onv6Mh2I\n3rEPCN61y3ffjn3XHz2n3ibd3+fg1WHM5KkBzlW3aOXbufUdNi6oq3cdh4lQnZCJC4qKigCA\nTX5wegpCOs+IRciUNK1UVDmedOFNJtK5X4MqL5FvPi9wCp3G4JMKbQoKCqq1D01Jn9699PTu\npQ91YLEFpXFX5s250njw7Gk4VVET8CrQPjbPccW2JUtnrIiVVN1gWEXg+vWK0f/Vuk+/vCh0\nd1LlDgTB6jZ5dWchbnqFdIezITtPTlGk6EmpvKVx7Q+CFNLYDFIJAFwjt7qPDiHNy/t3u5ik\nAIDL91i7KKjaDD0ARB9/s129X2OTKi+xDZvO8LNe9kAMABGXMgfr7n5YmKRHSANwudJnh5Ll\nP75759atW/efpZw+d47pcHRBF3ODY2JphoxiOhCE6oWEO3/u2HU0RUJW+ypV/vLI7j+O7dvf\nafik74YGYvkJpJMMrb2mLtowTpx8+/7j+Pj4V5m5JaUlZXIwNTUTWNl7eHm1aPOFbxPrKmcZ\nWQ3cvH2Es5MNXhbo82Xl3xDOpAIAJUuNlSq8+XjTrW1YzKA+cDbiFBSTVPmrTJJyrNhZhpYf\nflWkag5wNqvcn1aWpcgUAMDiVv1oQJ8Mn1R8dpSUJDFRAgBEYfX3Eehj4VXACAPLFiv3/nb5\nyP4zV/8Rl/63+xiLa9H9m1GjvulaQ0kzjpH9oCkLgjs10kqkCGlJNxezR0/zAGDv0biwCS1q\n7Z94creqwpxZk551HhxCdSD1bLKq0WRkqDXnA7s80IrjGSWqJlHdx4LrCA94IAaA/AcJgEl6\nhBDSATQljX1499atW3cfxKhKqSBN6RzsdWxj5N+Ho8f80JbpWBBiWNThxUuPP621m5KS3Dy8\nPi45Z/uCIRxMSCIdZSR0/bq/69f91e3PNmjgggVuPlJhYaGqQRBcgcCY2WAQAFh6zwgwf3S/\nUAYAB69mrBvYmOmI9A4WM6gPutsbRxWTNK0Mu5a5pk9D1cH8pztEpGpD+gCvd+evSJ4fKlfS\nAGBg2k770SKEENIsFs+699jZvceQLxMSRHmvSymuvYOjY8MG5pWqGVdGEITQuVmbtu37Dexh\n+4E+CH2+PIP94OlVAEi7sPyIz9aRbe1q6Cx+fGLZmTdbP/gGedTQE6F661bqm22Aenf84F+7\n7PXFHPLNer9q1/0ZWQcA3AYAsughQF/NR1k/YJIeIaQHaEXKs39u3bp1525kHi71rhv2Hef3\nPTvu4u21J7vu+qYlLn9B+iv92paKDD3BNv2iayc316bc6CM77vy3wSqH7+njaBydWQoAogeH\nFhxttm4k3nf9T15GRdx59CQu6VVhUXEZxRKYmzds6t26badOvo2ZDg2hOjd69GhVg2fc4tTR\n5QCwdu3aT363uXPnaiYsfUbwZm2YnTN9TYpU/vzwygdfhLW1MWQ6Jv2CxQzqA69xrWD+TQCI\n3zv/hNWiXq3dyjIerV0T8f/s3XlcVFUfx/FzZ2DYGVAE3DLJ3HDLzFIklyw1nyjN3TRNc0ET\nl9QyNZfMhVLRLM2tcN9N8zGzEhey1Cxz98EVF0QEWYWBO/f5Y5CsAAFn5uLM5/3XmTvn3tdX\nX8oM93fP75jerfBi5/snp17eP/HDXaZx2caNrJsUMA/TtlYA/kbSVa1Vr2qhU/yfH/HFM05e\nXl5uznxew2Z51Rjc2nf/D/EZimJY9/HgmJd79XitbbV/7bF9N/78rm/WRn57KEdRhBAu5V4I\nremlRl7gYV3MyhFCSJIuyFNX0Jy4PftMA42D18tlnP49QavLXcMhG25aIGNpwYcfAFsW97+j\ne/fu27c/OjYpn62wJElTqSb3gMxEcnxr+uTb705Y+eHAsy+/0b/XK/7cD4X9kTMvT1z0k2ms\nr9589Luh9fxdhBAx8Vvun+boWnfa5ysOrp02fc1vQoizGyad7bCyhgv/ZUoiM+H47I8//SUm\n8f6DSQk3L8Wc3bdzc2T1ZqM+CAv0zue7PmDDoqOj1Y5g75x9n5mx4MN508IPxNycETqsY7+3\nXm7xTFmWhVkLzQxKA6/ag4LK/BydmKnIqSunj10lSUrulvNC0ji/3Tm3j/Hd+J0zZ20/9r9r\nsqIIISRJ27nb42plfqStWrXKNHitWw839lIC8OjQ6StW1KsdArA4zdsfh50InRVnkBVFPrLj\nq9/+G+lVrryfr6+fn5+LuBsff/PmzZs3bt0x3vu+pNX5Dpv2dgFdwoHSLt5gFEJoHH0KaR36\n6/c3TAO38l2d89sGRdLk3s0zZif++12bwe1gADYo5drZffuiovbuO3c9Nd8Jvk/Uf/755s8H\nN3vch4VN5rF161YhRPWWrU+u3nZox/LD//1aX65i5YrlHItwg2jSpEmWjgdYx/XdC25nG4UQ\nTvpGc2aMKHDXJSGE5NCk+4dhVwdE7I9T5IxF22Nndyl8gQHykXXnaNjgqTeyCmyRknDuwPiB\nFycsmtuQOr1K0pKTc5Si7i+j9/KiqgDbsGPHDiFEYKvX7ySvPnErbsPnH2/8QudVtkyZMmW9\ny+idCq2f0czADGhmUApIkvM70985/85sU3975b7PghqdJtR1dTSNs+4cPnruat5bj7d5v4We\nj+ySWLdunWnwYpfuFOmBAimG/Qd+LcrEsk8/V/veTyoAeHguvk0+nRU2dfKCM0lZQghFMSbF\nX0uKv3bmRD6TdfrqgydODPL/51J74FHhppUyjYqi5LNs0kSRkzfHZ5jGFUPq5ztHzo43DTSO\nZcyesPSgSA+YwZtvvlmyE6v1mTGhZXnzhrFnWUlXovfu27tv7+8x+bdA8apcKzj4+ebBwdUr\nelo5m81btmzZ/S8VxXgnPvZOfKxaeQBVHPzmimkQPGZoYRX6e4IH9IrYHy6EuL77sKBIX2zK\nwjGz7q/Q69y8H6vyuKeUeunylcQ0g+mgnHlt5qh5q5aOLuTpXZjdtaO7IrftiYk5fyulwF/J\n/m3Vlm88qCsUX40aNUwDB5fcXnChoaHqxYEQQixatOgfRxTFkJQQl5QQl+98mB3NDEoD1/LB\nc+d7frlgadTxy6ZlYRoH96BX+496o+6/J0uSw9Pt3v5gYGOrx7QXipw6cdIs03jq1KnqhgGs\nQck5Gb0r6ufDsVLnGaMDc48Z08PDw4tyduOIFbWrsr4bgDl5BLSYsSRwx9p1O3buuZ6Wne8c\nR1f/5u3ad+3+Hz8dX1zxCKugc7idbVByEq8Z5Ir5/WNOu7r2rjH3Kd6Xni2X70Wy03O3E9Xq\nCtzY3gZQpAfMICkpqWQnpha8+A9FJ99NOHxg3969+345flEuYLmeVuc7JXxG3arslQ7AgvYm\nZwkhJI1T39reRZmv0wf76mbHG2RD8gEhulg4na1Jjln2Y1zuU7cOrpV7vjPq9aCAvHcv/7r1\nk4gVl9OyhRB3E/ZHHO076mk+AqwkZvvsUUv2KkVeQJ/HkV5+JfLve81t27ZVJQlQetDMoJRw\nLV9/+EfzBifFXbl5W+terlLFcjrpb3/5Dq4BTYI9KzxevXGT52tVclcrp33IOXbsmNoZ7FpG\n8q3rN25nF/kLUvWatXh2scTij+38ZMHXZ+IyhBDlGnYo7umSpPUswiPXAFBcGsdyr/Qa+p+e\n/S6dPX369NkbCclpaWnZwsHd3V3vU75GjVo1a1V1za/vN/BoCSrjdDzdoCjKhvMpw2vlc4/0\n9NeHTQOtc5UXvPLvpBW//3fTwMm7qYVylgYU6QEVOLiWKePuIIQoww7ED0GR00/8sj9q797o\nw6cy5Hx+0XX3r9asWbPvNn4lhJA0HlToLWr48OFqRwDUd9NgFEJonR4r+mpgf0dtvEGWDTcs\nmcs2xaz82TTQ6nwnfzmnrqfu/nerPPva7C+rD+3zwQ2DLIT4Y8VR8fRLKqS0P4bk6HFL/1ah\n12qLugLgH5Ub4NFFMwPV0cygVHHy9n/SO//lL+6V3nh/tJXjAFal5CRuWrro231HE1OL0V5I\n0GHoIRxdN2vq6uiClnDkeeaZp1OTEm9evZKUmbt+RpK0LUO6PFW3Tp06tcu6soYVgKVIGpeq\ntRpWrdVQ7SCApQS+WF4sSxVCHJq3RfnirX98oVFykpb8eds09qzatYCvO8aVm3P7lfoGV7dY\nUvVRIATM4LPPPiv0fSUl4eaNG9djL53YtfvwXaOiGF06j/q4TX7PEOHBlOyYP37Zt3fvvujf\nEvNrReBaLiCoWbNmwc2equYvhDAV6WFprVq1UjsCoD43rWTIUYzZCYoQRbyjFpctCyEkjYtF\ng9mkH8+nmAaPvTr2HxV6E0f32mM6PT5i9XkhREbcD0JQpLeG019+nWlUhBAuvnXeGtjzqScD\nfL345w27QzMDAIAQQpHTI8KG/hSbVoJznVjIXSIx28MnrTqQ91Lj4Fmnrle+MydM+FAIoRgz\nzx7Zu2rZ8mPXMxRFvpjpO7xxPltyAACAoqvw0puOy8dnK0rata2T1z01qetT97/7x/KJcYbc\nsk7NbjXzvcLlndMPpeZuZPlqu4oWTasuivSAGTz22GMPmlGljhBCvNaj67n1y+dv3H/58/cH\npc/6smN1NrgqtsG9u19LNvz7uHOZKk2bNQsObtawRkWeNgegimc9dN8lZRpzknYlZrYt4/zA\n+YbUg/EGWQjh6FbP8ulsTczdHNOgRbvKBc2p+FJrsfq8ECIn85J1UuG7Y0lCCJ1no88Xji9L\nm1DLW7VqlWnwWrcebqy3A+6hmQGA0uDq9x/fX6F3dNX7lvEo4qe1Ix2Gii8zMXrc0twKvaR1\nfbnXgA7tmvu6FLYmXtI412zcZkqj4HUzRqz+5cbFXRGTfPwmda1jlbwAANgmR9e6Q54tN/eX\neCHE0VUfjrrU4ZXmDWvWqKqkxB3ZtXrJjtwl8hoH77cCy/z79MvRK8d+ecg0dq/YsYU+/374\ntoEiPWBVzj7Ve4+OcE/t/9UfCSvHT2q04pPHnOigVTz/qNDrvCo1DWrWLDi4Ue3KlAIAqOvF\nFn7fbbkshFg/L6rtpAcvozy5YoVpUPYp1lwW261so2lQ392xoDl5Tz8oxkxrZIIQJzKyhRCB\nQwZSobeOdevWmQYvdulOkR7IQzMDa7p9O7dZpXfZsiX+0a/IqWPem2Iah4eHmyMXoL4fN8SY\nBjVbdhnQ67VqPu7q5rF5307+wtTSSdK6DZixsH2Noi6MkTSu3d6fnzS0z87YtN9XTzrw0spm\n3g9+5BoAABSk+buTd7457Gx6thDif9FbZkdv+fecgJD3/HS5v0AoOZmJiYlXY05F/7j9u8MX\nTQcljfPbk7taLbMqKNID1qd55b0Rkd3H52Sen73x0tyeT6id51ElaV3bvjlywKuNuSMNoJSo\n0rGb49ZZ2YqScPTz6Rv1Y15vUsgPqLgja6bsumYav9QjwEoRbUjeNpPuBf8taxy4E2ptWUZF\nCPFcTXoFlRaKnDpx0izTeOrUqeqGgYlsyNLqbHkpAOxN3759TYMlm7b6OuZTpleMd7/6eu0/\nJv9LztmzZy2SD1DPgRSDEMI7sOfMEQXttwqzMaQeWnkp1TRuNGhW0Sv0uSRd34+G7Oozy6gY\nFk3e1GxuT/NHBGAHQkJCzHvBbdu2mfeCgHVodRU/WjBxUthHJ5Oz8p2gr9bmo95/9bqP3Tl+\n6OJz90+QJE3rgdNb+tr4FooU6QEVOLrWbaF3+ulO5vXvvxc9B6sd51GlyBk7l310cHdgy5Yt\nW7Z4/nEfHnMuReL/d+TnIyfOnj179VZSWlpaZo7Gw8PDs4xfjVq16zRs0iTQljeSgT3T6YPe\na11p6u5YIcTByOn9DrUY3PvVOjX/XoBX5Ntxl/bt2BC5/aCpzOxds09Hf1dVAgNmV83F4UR6\ndo6idg78JefYsWNqZ7BrSk7Sz1EHjh8/cfJ0zJ309IyMu9myYrrXZkg9vDkqNahFcGWPAjuC\nALZAydyyJXfpTMFFesAGpeQYhRDN3/kPFXoruPHDOqOiCCF0Ho3ef6nA/bAK4ewd1Keq57IL\nyckX1u1IeL09d5kAAHgITmXqT1v6xc7Vy7fs+iU+PTvvuMbR+8XOvXp1fsFVU+BXJAeX8h0H\nj3ujRRWrJFUTRXpAHdWcHX4SwpD2qxAU6YunSlnny7f/6lp8J/bklsiTW1d8UaXOc61atWwe\n3MhbR39dNSWdi5q/cMWRmFv/OJ6eeifueuy5E0e2b4gsG9Cw16CwVjW9VUkIWFSjIeEhsYO2\nnbkjhEg8EzVtXJSkdS7nntuY/b2RQ65cuZ5mkPPmO+nrTZnyqjpZAQtoH+B54vjt304nvxLE\nbU1AnNm/aeGXay78fbemPHLWxdWLV65dtrxFtwHvdAmmO5TV0MwAgHU85qQ9dzeniit3X63h\nzI9xpkHlkDccSvqR2qTr48umHxNC7Nx0pf3A6ubKBgCAfdLofNr3Gd3+TcPFM2fiEhLTZcfy\nFSpWfKyyl3P+e0BLkuRbtU7jZ5uGdGjrV8AcG8PXREAdF7JyhBCKnKZ2kEfP/GVrLp34JSpq\n7779hxMycwtdiiJfOh697Hj0Vws86zd9vmXLlkENn3TkRqfVndo6Z8LyqGzlASsob184GjG2\n/599Pxr+Wi3rBAOsRtK49ps+v8wXs776/rjpiCJnxifnvnsqJvb+yd41Wo0bH1rFPr50wk48\nNbSjZtCSU4sjM5u+6yzxSQy7dnTVhEnrHtzGwCgn/7Qq/FTMzc/HdSpxUQGFoJkBALU093U9\ndznlz5t3X/DiwSCLi07M7abbsKV/iS+irxkkxDEhRMKhXwVFegDF95BbjJ3es3bNnlPKvTur\nksT9ItgESVe1Vr2qhU7xf37EF884eXl5uTnbV9navv60QClhSDm0506WEEKjK692lkeQpH28\nblCfukFvhqaf+PVAVFRU9OFTGXLudxdjTsrv+779fd+3n+krBjVv2bJVS3XD2pWbBxa9vzwq\n73ukR4Uaz9St5uvr61vO18Mx+2ZcXFxc3PkTh09fSxVCKEr2nuXve/h92a+Jr6qpAfOTtPqO\nQ6c1bRm9Zdv2PYdOZ8r5PLbiU7VB+5DXQlo15HEi2BjX8q981OPQuFX7R8+pGT7iP9TpYbdi\nv5+XV6GXtB7NXmhRvdqTjsdXL9wflzfHwbVW3Ypux6+lCyHifo0ct6bOrB41878cSopmBgBU\n1KRfw8UTo458tlWZ34cfMJZ2/V67sgbuhTx3JTk7F9btydE5d6syQ+phIXqZLRwAu1G/fv2S\nnZiVeHbZvLk7j17LO+JaocGg4WFmygWUdjp9xYp6tUOogSI9YG1ZSWcXjJ9r2ofYpUxrteM8\nwiStW92mbeo2bROacevX/Xv3Ru359dRV470KsSH52p5tK/dsW2l6qSiGu0bFpeBtTvCQjDkJ\nH837TsndAe7JPmFD2zeumt9ft3Lx0I75c7+KSTMoinHHnOkdn5ntzaox2CL/wKDBgUGD5IyL\nZ05duJaQlpZ212B0c/fw9PatXjuwgjedwGGz6nSdMiJrRsSmJb1P7n29e89XWzZwpvAFOyNn\nXp646CfTWF+9+eh3Q+v5uwghYuK33D/N0bXutM9XHFw7bfqa34QQZzdMOtthZQ0Xfkk3G5oZ\nAFCXT4MRXar/vv7c5nHLHpvUt6UTDy9aUlJ27hZj3g4F7oEoab3Wr19fyEUkBy/TQDbEFTIN\nAMxJkQ99u2zB8h1JObk/xySNc4sugwZ1a8mtbMDm8fs/YAZr1qwp0jxj1o0rl/888nvivd8c\navd+zoKx7IbWtVzTNp2atul099aFfXujoqL2nryS9I85clZszx5vNw5+vnmLFs8GPsau9WZ3\n88Ccy5myEMLBuerkz6cH6nUFTJSqNv7PjM8fGzngwyuZck7m+dkHb04NLnkzOqCUk7SuAYGN\nAgLVzgFYy9atW4UQwrNWm3rndx47t2reh6vnO5bx8/f39/dyK+ijIdfYsWOtERGwvOu7F9zO\nNgohnPSN5swY4VNwtUBIDk26fxh2dUDE/jhFzli0PXZ2l8K7AKKoaGYAoBSQun88I37UmKit\nc/scjur9xqu1A6pW8i/D44uWoHfQJGTLQojb2cZKuhI2iJaz43NHEveNAFhDeuyRBRHzD5z7\n61a2d43nw8IGN6zkpmIqAFZDkR4wg6IW6f/O1a/FqOdo9G1OLuUC2nQKaNPprYQLx6L27o3a\ne+BKYmbeuzkZ8T/v2vjzro3OPo8//3yL5i2a1328rIppbczRjZdMg4Zh7xdcoc+l86o3/p2n\nB4QfEkJcXH9UBL9s6XgAbNiHI8IKXPioyHnDd955p/DrzJ8/33yh7NeyZcv+cURRsm/Hxd6O\ni1UlD6CKg99cMQ2CxwwtrEJ/T/CAXhH7w4UQ13cfFhTpzYFmBrBbH419t4B/wX99KRo5cuQD\nrzN79mxzRbJzWl3FVzo0jZq7K/3aH1/M/EMIIWm0RVkYuWXLlgdPwn1qujocSJaFEL8kZtZ3\nK6TjfWEMdw6ZBlpdBbMlA4D8KMaMH9cs/HLD3kxjbl9YjWOZV/oO7dO+Ec9yAfaDXz4BdXhX\nazbxo2G0rLEQn4D6nQLqd+oz5OLxX6Ki9uw78NvtzL9uSWQmXPp+81ffb/7Ku0qdls2b9+nU\nRsWoNmN3/F0hhCRpBzYu0qMnvs8NcpQOZytKxs3dQlCkh72QM1NvJaY7e3jqPVz5ADCXa1cu\nF2Xa5ctFmgYAD29vcpYQQtI49a3tXZT5On2wr252vEE2JB8QoouF09kFmhnAbl2KiXngnJgi\nzIG5HP5q/NTNf95/RDHKckGz8RCa+LkeSM4SQvy25oIYU8I9oa9tP2oa6Dwamy0ZAPxLwuk9\nEXMXHbuRkXekcqP2w4f1fdLrAQufANgYivSAGbRr167Ic7XlKlUJeOLJ+rUCeCbO4iRt1XpB\nVesF9RmSdvyX/VF7og4cOZP3cKIQIunyic2RJyjSm8XVLFkIoXWqUs6xSE3hNI4+VZ215+7m\nyAbWVsL2GZIvb1+/dse+3xOSc38Bc/Twrf/UMy+/3q1RVb262QDzCg0NVTsCoL6bBqMQQuv0\nmEeRv/H7O2rjDbJsuGHJXHaEZgYASoPk85EfbTmudgp7Ub3j42JGkhDi1pElt3PmlS2w11bB\nlJx1+3K3RCn3XEPzxgMAE6MhYevSzyK/+92o5N6jdnSt3H1IWKfg6uoGA6AKivSAGQwePFjt\nCCiMpHWvF9SuXlC70Iz4X/dGRe3de/j01bxvQjALTwdNQrasGDMePPWeu6YHJqQStqEDSglD\n8sVvt+06/NuJG7cTJWcvX7/yjZq3fblVI7d7hZmMa/uHhc2ON/xtwUx2avyRfTt+27/z2c6j\n3n8jmKe2SuCFF15QOwLy0bZtW7UjAOpz00qGHMWYnaAIUcSf8HHZshBC0rhYNJj9oJkB7E1w\ncLDaEZCPnxfsVhRFCOHiW7trj5Baj1Us5+3ON38L8Xm6v6t2aIasyJmXp648NbdPYHGvEH9w\n9uFUg2n84muVzR0QAMTlQ9vnzv/6fHLujxpJkmq37D5sUOfyzlp1gwFQC0V6AHbEwdU3qF2X\noHZdMuLP79u7Nyoq6lTsHbVD2YiqztqEbFk2xP2Rnt2gCNu/5WScvGowCiEcXXhQFI+wy/sj\nJ8zZfCfHmPs6Oe32zaun/zy8aX2jSZ+8V1Ovy8k49f7IOf+o0OdRFOMv68PHSV7Te9a1Xmhb\nERYWpnYEAMjfsx6675IyjTlJuxIz25ZxfuB8Q+pB0yeFo1s9y6ezCzQzgL0ZPXq02hGQj22x\naUIIJ69GXy6aoKebooVpnSq/17byxB1XhBAXt0xcFfhFz2eKtBmfSVbS75PmHDSN3Su+FuLD\nY3MAzCkn/fKqzyI2Rf+144yzT+1+YcPb1PdXMRUA1RWpKTEA2BhX3yfadn5rxoLIpXOmqJ3F\nRrQO8DQNlq45VZT5ZzcsNi0p8Hyi6LtFAKVL4rHIsE82/VWhv0/GzSPjh0xOylGiwj+5eDdH\nCCFJmrot2vV6a/DYsSPf6tm5aY0yeZNPrZ+4906W9XIDACzsxRZ+psH6eVFFmX9yxQrToOxT\n9KIwD1M/G1MzgyKimQEAszM9MPTs++9QobeOen0nPOasFUIoSvb6j8NW7TlXxBPvxv0+bfh0\n0y5+Qogu47taKiIAe6Qc/2FVaJ/heRV6SXJs0mHQksXTqdADYCU9ALtW7okGakewEbXeeFoc\n2yWEuLJ96uq6n/V4trBvmfG/rZ+85aJp3LBnTWvkA8xNkVMmT9uat3GG1tmvbr3qlSuVTY+/\nfvHMnxcTMg0px8d9tvrm0dtCCK1T5RFTpzxfs+xf53fteWT7Z1MW/yCEUBR51cJTzd97So0/\nB/BQ7tzJbUgjSY56vZu6YezcR2PfLeBXu786eYwcOfKB15k9e7a5ItmzKh27OW6dla0oCUc/\nn75RP+b1JoVUZ+KOrJmy65pp/FKPACtFtHU0MwBQGpRx1MQb5KfKu6odxF5odH6Tx3UbOGlv\nCJYoAAAgAElEQVS1wagocvq6Oe8eOdyhT9eO9avoCzpFkVMOfrd50dKtSfeeva7WfuxrFfla\nC8A8Mm+dXBIR8f2fcXlHPB9/dsjwd5rcW+wEwM5RpAcAmIFXjcGtfff/EJ+hKIZ1Hw+OeblX\nj9faVvP7582Iu/Hnd32zNvLbQzmmnfnKvRBa00uNvMDDiv8l4mJmjmlctn67CWP6B3jkbvSg\nyCnfLpm5eMfxaz+tMx1pPOrDv1XohRBC0+iVYe8c/mP+HwlCiMQT3wlBkR6Pnt69e5sGOrf6\nG9dMFULMnDmzxFcbO3aseWLZpUsxMQ+cE1OEOTALnT7ovdaVpu6OFUIcjJze71CLwb1frVPz\n7wV4Rb4dd2nfjg2R2w/KiiKE8K7Zp6M/hRzzeLGF33dbLgsh1s+Lajvpwf0JaGYAwBJaeTmt\njc+4mpn/1lewhLINus4dkTJ09remx6nPH9gyMXrrY4HPNKxbJ7D2k+W8vTw83KXsuykpKfFX\nz584ceLwgV+uZ2Tnne5Tv9usAUHqxQdgQxRD9JalX6zYlSLnPgOk0Xq89EZo/45BOrqrALiH\nIj1QPN27dzfvBdesWWPeCwIq0bz9cdiJ0FlxBllR5CM7vvrtv5Fe5cr7+fr6+fm5iLvx8Tdv\n3rx549adv1Ye63yHTXubbVfwiDqxIbd3ooNLtfAPB/o4/PVvWdJ6vjLwo6Q/39gYmyqEkCTp\nrYY++V6kycCg+YO/EUJkpx6SFUEXTNiA6OhotSMApUKjIeEhsYO2nbkjhEg8EzVtXJSkdS7n\nnnuH7r2RQ65cuZ5m+Kts46SvN2XKq+pktUU0M1DFw7X0oIoJG9TyjdprZx/5edXxN0c9q3YW\nO1Kp+dsLPStMD192MS1bCKEoyuUThy6fOLTlQSfWbTdg/MD2DvxSBuChpVz8dUHEZwcvJOcd\n8av7YljY23V8H9zhCYBdoUgPFE96erraEYBSysW3yaezwqZOXnAmKUsIoSjGpPhrSfHXzpzI\nZ7JOX33wxIlBLBfDI+vHmxmmQeWXQ++v0N8j/Wdw3Y3jfhZCCEnnp8v/cRSXss2F+EYIoSjc\nmAZQEsHBwWpHQP4kjWu/6fPLfDHrq++Pm44ocmb8vdt0p2Ji75/sXaPVuPGhVZy1Vg5pw2hm\noApaegD/UL75+69s7fvtvpkbXviyc4P8H9uFJfg/1X72sgbrli7f8cPhVFl54Hy3CoGde/bv\nGPyEFbIBsG2KnLprxedLtvxsyFuk5OT/+sB3erauyyNAAP6NIj0AwGw8AlrMWBK4Y+26HTv3\nXE/LzneOo6t/83btu3b/j5+OO9F4hMVm5ZbVG7apkO8E9yrNhfhZCKEYswq6iMbhrx74LKPH\no6hGjRqmgYNLJdMgNDRUvTj2aPTo0WpHQIEkrb7j0GlNW0Zv2bZ9z6HTmfkVCXyqNmgf8lpI\nq4aOfAqYG80MAKhPcnxr+uTb705Y+eHAsy+/0b/XK/6u3Im1Eq1zxR5Dxnd58/qP/9116I/j\np85cSL+363weB1efwAYNGjdt1S64DgvoAZjFBwP7n4i/m/eyXGCrYUN6VnF3TL5zp2QX9PJi\nn1DAlkmK8uDHCQHkiYyMLHyCYszctPlb07hTp04PvGDeZq6ALVGMdy+dPX369NkbCclpaWnZ\nwsHd3V3vU75GjVo1a1V11fDrLx55ISEhpsGMtZtr53evTTZc79BpkGm8bdu2fC+iyEmvdniz\n8DkAABugyBkXz5y6cC0hLS3trsHo5u7h6e1bvXZgBW86XlqQIidvua+ZQSFMzQxq6HVWSGV7\nwsPDzXtBHj+Czdi6dasQwpiTuGX1tuQcoyRp9OUqVq5YrigPZk2aNMnS8eyKImdcjb2ekpKa\nkpKSLTnpPfV6L+9KlfypzQMwr7ybRebCzSLAtvH8JlA8D6ypK3JSXpGeAjzslqRxqVqrYdVa\nDdUOAlicj2P+rew1WhcrJwEAlFqS1jUgsFFAoNo57AzNDKyDmjpQkGXLlt3/UlGMd+Jj78TH\nFjQfliNpXSs/Xk3tFAAAAH9DkR4AAABAsd3KNpYr4CGVEsiMP+7sW9dcVwOAPP6BQYMDgwbR\nzAAAAAAAUJpQpAcAqEg5d+Zs9Zo11Y4BACi24aM/iwgfWlAziWL5c9fyTxZ9E7l568NfCgDy\nRTMDANY3fPhwtSMAAKwqIiJC7QgAHiUU6QEAD8VoyEhMSspUnMuVK+OkLUafUKMh4buvZy3c\nfobdlQDgUZR64Yfho8Xch6vT52Rc/urTGdsOXzNjMKC0ybqbkV+f9fy5urpaMgsAwHpatWql\ndgQAgFVVrVpV7QgAHiUU6QEAJfS/g9vXbtt97NRlg6IIISRJW77Wcx06dm7TOOD+aTkZt/48\n+ue1hOS0tLTU1LTMLENWVmbSreuXL8WmGmSVsgMAzCDlwg/Dx0hzZw0pWZ3+yq9bZ86JjM3I\nMXswoDSIPbprzbf7Ys6fj0vKKPpZPLwIAAAAAIA9oEgPACg2RTF8M+fdZVGX/n5Qvn4qesGp\n6CM9Jn7QrZEQQpFTNsydum7fuWylyMvHAACPlJTzu4ePEcWt0ys5SZu/CP9694m8I47uVSyQ\nDlDN2S3hY746oPAVqJRQDPsP/FqUiWWffq62q6Ol4wAAAAAAQJEeAFBsJ1aM+0eF/n6/rp4y\nu9Likc38IscO2XQuufBLSVIxOuQDpdD+H3Z7OuRTm1SM6Xnj3bt353vu/XOAR87g1gFf/HBB\nCJFyfveIsdKcWaE++f1f+Leks1GzZn5+MiEz70jVpq+PGf6GpYICVpeZFPUBFXq1KDkno3dF\n/Xw4Vuo8Y3TuFvSKMT08PLwoZzeOWFG7qt6S+QAgl2zI0uqc1E4BAAAA1VCkBwAUT07Gqcmb\n/pf30rtaw2dqVCnvp0+Nv3Hl0qkjJ2KFEPvnTX1RVyuvQi9JWs+y5cr5+Hi6OMiy0aho3Dw9\nPD31FQNqP/10Q3X+GICZfP3FggfOmT9/vhWSAFbWbtgcjXbUgl0xQojkmO9HjJHmzhpcttA6\nvaJk7Vk1b8GGA3kdVrQ6385DRvdoWcMaiQFrOb1wleHeP/LarXt1f+npxx+v5KrlwUSLiz+2\n85MFX5+JyxBClGvYobinS5I23wfvAODhKTlJP0cdOH78xMnTMXfS0zMy7mbLimmLE0Pq4c1R\nqUEtgit70MkDAADAjlCkBwAUT+y3S+5tQi+99NYHg0Ia33/POfbg6mEz1smZV8ZPizUdqRbc\n4e03u9fydVYlLQDAYqQ2Qz7VaEbP33lOCJEcs2v4GDF3VmhZh/wrkRlxf8yf8Wn0hb86rPjV\nazN69NvV9Tor5QWs5buTSaZB3d7Tp3UKVDeM/Ti6btbU1dHygxoYPPPM06lJiTevXknKlE1H\nJEnbMqTLU3Xr1KlTu6yr1vJJAdidM/s3LfxyzYVkQ77vylkXVy9euXbZ8hbdBrzTJZhnugAA\nAOwERXoAQPEc++GGaVCmztAhrzb+x7uVm/QY2yzq4/1xphav3jXf/HT069xkAAAbJb04OFyr\nHTv32zPCVKcfK+bO/HedXjm6Y8mnS3akykbTa43Wo91bIwa80ogPCNikU+k5QgitY7n3O9RW\nO4u9iNkePmnVgbyXGgfPOnW98p05YcKHQgjFmHn2yN5Vy5Yfu56hKPLFTN/hjetaKSsAO3N0\n1YRJ6449cJpRTv5pVfipmJufj+tUwBOPAAAAsCkU6QEAxXMgOcs0aND/2Xwn1OvVXOxfZxo3\nG9aG2wuwSatWrVI7AlBKSK0GzNJo3pu97ZQQIvl/u4aPFREzQ8vcu7ucnXph2aczdxy9kXeC\n/omgUWPfaeDvqk5ewPLuKooQwsn7BXeWQ1pFZmL0uKW5FXpJ6/pyrwEd2jX3dSlsTbykca7Z\nuM2URsHrZoxY/cuNi7siJvn4Tepaxyp5AdiR2O/n5VXoJa1HsxdaVK/2pOPx1Qv3x+XNcXCt\nVbei2/Fr6UKIuF8jx62pM6tHTXXiAgAAwIoo0gMAiueGIXcdZLNy+XewdyrTXIjcIv3zZely\nD9vk4eGhdgSgFGnRf4ZW80H41uNCiOT/7Qp7T5o3Y7C3g3QxeuPMiFXX83pKa3TNuw4d2q25\nTqJyCVv2uLPDuYxs8aC+6zCXbyd/kWlUhBCS1m3AjIXta+iLeKKkce32/vykoX12xqb9vnrS\ngZdWNvPmuysAs5EzL09c9JNprK/efPS7ofX8XYQQMfFb7p/m6Fp32ucrDq6dNn3Nb0KIsxsm\nne2wsoYL92wBAABsnEbtAACAR0xes2I/Xf7rk7SOfnljLy0fNABgF4Lfmja2Y33TOPncd8Pe\nW7hu7piwmZF5FXpX//qjP1k6snsLKvSweS9XdBNCZKUcMFCmtzxD6qGVl1JN40aDZhW9Qp9L\n0vX9aIhGkhTFsGjyJvPnA2DHru9ecDvbKIRw0jeaM2OEqUKfP8mhSfcPw4L9hRCKnLFoe6zV\nQgIAAEAtPJUJFE9kZGThExRjZtEnCyF69+79sJkAlRRYZZEc/xpSiAEAuxHUZ+r72knTNxwV\nQiSf27nqXO5xSdI0bN9/ZL/2HrT+hn1oNKStGL5Wzrq24Jf4EU181Y5j4278sM6oKEIInUej\n91+qXIIrOHsH9anquexCcvKFdTsSXm/vw2J6AOZx8JsrpkHwmKE+Dg9+fj14QK+I/eFCiOu7\nD4suVS0bDgAAAGqjSA8Uz8aNG807mSI9AACwGU16TRqvmfLRuiN5R3T6J/u/O6Ztfb9CzgJs\njGdAj3db7f/kp2v7Pp3w9KefPl/FXe1EtuzMj7n7OlcOecOhpA8CNen6+LLpx4QQOzddaT+w\nurmyAbBze5OzhBCSxqlvbe+izNfpg311s+MNsiH5gBBdLJwOAAAAKqMLMQAAAACzadxz4sQe\njfNePvmf3lToYYeCh81+o1ll2XDj07A+UxasPZ+Y+eBzUCLRiVmmQcOW/iW+iL5mkGmQcOhX\nM2QCACGEEDcNRiGE1umxojcT8nfUCiFkww0LxgIAAEDpwEp6oHg8PT3VjgAAAFCqNeo2fpJm\n+qSVB4UQJ1dNmOk4bWzHumqHAixi5syZBb6nVHTRXL1rNBzZtfrIrtWuep/y5cv7lvUs/En5\nsWPHmjujjbtukE2DBu6OBc+SnJ0La2Lv6BxgGhhSDwvRy2zhANg3N61kyFGM2QmKEEWs0sdl\ny0IISVPw7vUAAACwFRTpgeJZuXKl2hEAAABKu4Zd3p+qnTnh62ghRPRXH8wS08ZQp4ctio6O\nLuLMjOSE88kJ5y2axi4lZRtNA++C93uWtF7r168v5CKSg5dpIBvizJgNgJ171kP3XVKmMSdp\nV2Jm2zKFPSpkYkg9GG+QhRCObvUsnw4AAAAqo909AAAAAPOr//rYaX2DJUkSQhz46oPwLSfU\nTgTABunv1eZv36vWl4CcHZ87krhJAsBsXmyRu+PP+nlRRZl/csUK06DsU20tFAkAAAClByvp\nAQAAABTb7t27HzzJvcELAcd+OJ8ihNi/fFzO3bcblStwGdmLL75oxniAdYSGhqodwd7VdHU4\nkCwLIX5JzKzvVkjH+8IY7hwyDbS6CmZLBsDuVenYzXHrrGxFSTj6+fSN+jGvNylkb/q4I2um\n7LpmGr/UI8BKEQEAAKAeivQAAAAAim3+/PnFPeXg2sUHC36XIj0eRW3bsthRZU38XA8kZwkh\nfltzQYypX7KLXNt+1DTQeTQ2WzIAdk+nD3qvdaWpu2OFEAcjp/c71GJw71fr1Px7AV6Rb8dd\n2rdjQ+T2g7KiCCG8a/bp6O+qSmAAAABYE0V6AEAJjerf94H9QIsy5+uvvzZPIAAAANiZ6h0f\nFzOShBC3jiy5nTOvrEPBy1QLouSs25e7FX255xqaNx4AO9doSHhI7KBtZ+4IIRLPRE0bFyVp\nncu5527P8d7IIVeuXE8zyHnznfT1pkx5VZ2sAAAAsC6K9ACAEkpOSjLLHAAAAFuyfft2IYRH\nQHCLQK8invLHrv/GGmQHlyfata5tyWg2yOfp/q7aoRmyImdenrry1Nw+gcW9QvzB2YdTDabx\ni69VNndAAHZN0rj2mz6/zBezvvr+uOmIImfGJ+e+eyom9v7J3jVajRsfWsVZa+WQAAAAUAVF\negAAAADFtmrVKrUjAKXU4sWLhRBVQmoUvUh/edOKpXHpjq512rX+2JLRbJDWqfJ7bStP3HFF\nCHFxy8RVgV/0fMa36KdnJf0+aU7uRhzuFV8L8XGxSEoAdkzS6jsOnda0ZfSWbdv3HDqdKSv/\nnuNTtUH7kNdCWjV0LH43EAAAADyiKNIDAIqnQ4cOakcAAKjPw8ND7QiA7TAYFSFETtZFtYM8\nkur1nfDYj4OuZMqKkr3+4zAxbHLPltWLcuLduN+nj51+NSu30XSX8V0tGROAXfMPDBocGDRI\nzrh45tSFawlpaWl3DUY3dw9Pb9/qtQMreDurHRAAAADWRpEeAFA8ffv2VTsCAABAKXL69Ol/\nH8xKvHj6tPzv4/+k5CRdP7Uh4a7phZmT2QeNzm/yuG4DJ602GBVFTl83590jhzv06dqxfhV9\nQacocsrB7zYvWro1KSd3Z+hq7ce+VtHNWpEB2ClJ6xoQ2Cig2PtyAAAAwAZJisJdAAAAAAAA\nSigkJMQs13H2arU+crhZLmWHru5dPHT2t8Z7tzgkSXos8JmGdesE1n6ynLeXh4e7lH03JSUl\n/ur5EydOHD7wy/WM7Lxzfep3+3JKDwe6TAMAAAAArIUiPQAAAAAAJWeuIn3Q2MVjg/zMcin7\nFPf7junhyy6mZT946n3qthswfmB7Fw0legBmFpNsqKbXleDE+BM/+NZpbfY8AAAAKFUo0gMA\nAAAAUHKhoaH3v7x69aoQwtHD16/ItRn3shXqBnfo9RIdkB+WnHlt3dLlO344nCo/+F6HW4XA\nzj37dwx+wgrBANihDp36dwod1bNVraKfYsxO2Lp4XuSuY1u/+cZywQAAAFAaUKQHAAAAAMBs\nTAvrq4R8Mr9/dbWz2KmctOs//nfXoT+OnzpzIf3ervN5HFx9Ahs0aNy0VbvgOrS4B2A5po+D\nxxq/Onp47yrujg+cf/XIjtkRy2OSDUKIbdu2WTwfAAAAVOWgdgAAAAAAAACzcXCv0KZL3zZd\nhCJnXI29npKSmpKSki056T31ei/vSpX8qc0DsJorh74Z/taRHu+M6hxcraA5cub1dZ/PXRt1\nxprBAAAAoC5W0gMAAAAAYDbr168XQuirt27ToIzaWQAAqjm8ffFny3ck3evn8URQp3fDelZ0\n1v5jWkz0pjnzV8dmZJteOrpW7hYa1vl5erEAAADYOIr0AAAAAAAAAGBmWUlnl0XM2Xn0uuml\no1uVXsPffe3ZKqaX2amXVsyfvfWXS6aXkiQFturxzsBO5f9VyAcAAIDtoUgPAAAAAICVyIYs\nrc5J7RQAAOs59dOaeQs3XM/MMb2s2arHu6Gdb+1bG7FoY1yWbDro4hvYb1jYS/X81YsJAAAA\nq6JIDwAAAACARSg5ST9HHTh+/MTJ0zF30tMzMu5my8q2bduEEIbUw5ujUoNaBFf2cFQ7JgDA\nsnIyYlcviNi4/5zppdbZVc7MMI0lSRfU8e3Bb7zkoZXUCwgAAABro0gPAAAAAID5ndm/aeGX\nay4kG/5x3FSkv5uwvutbKzVafYtuA97pEkxpBgBs3uVD2ybOWJa3S70QwuPxJmGjhjau4qFi\nKgAAAKhCo3YAAAAAAABszdFVE8aEf/3vCv0/GOXkn1aFD/54Yw7PzwOATTPc+d933+26v0Iv\nhMiMv3rlyg21IgEAAEBFFOkBAAAAADCn2O/nTVp3zDSWtB7BL73SL3TkoOC/7TTs4FqrbkU3\n0zju18hxa85YOyUAwDoU+ciOZQP7jdlxJNZ0oGLD1gEeOiFEdkZsZPi7Q6cujnnQQ10AAACw\nMbS7BwAAAFBsu3fvNuPVvGoHPVPR1YwXBFQkZ17u3zPsdrZRCKGv3nz0u6H1/F2EEDGRYSM3\nXhT32t0LIYSSc3DttOlrfhNCSFrXWatX1nBxUC03AMACMq7/sXBuRNSZ26aXWif/zoNH9GhV\nS866uX7Bp2uicp/Q0up8Xu039M12Ddn8BAAAwE7w+z8AAACAYps/f74Zr1YztBZFetiM67sX\nmCr0TvpGc2aM8HEouIOd5NCk+4dhVwdE7I9T5IxF22Nnd6lqvaAAAEtSlMy96xYtXPdThpy7\nRKpK41dHhfV+3MNRCKF18us+clbTpls/iVhxOT1bNiRs/mLSvr2thg8faHq0CwAAALaNdvcA\nAAAAAJjNwW+umAbBY4YWVqG/J3hAL9Pg+u7DFowFALCuqUPfmr36R1OFXutcocfI8Pnj+5kq\n9HmqPPfa3OXzOjV7wvQy4dRPEwa/9dnG/SrEBQAAgHWxkh4AAABAsT333HMFvWXMvn3ot//l\nvZQkjYd3OT9/fw9t1s2bN2/eupNzb8strc6/56BuPg4affUyFk8MWMve5CwhhKRx6lvbuyjz\ndfpgX93seINsSD4gRBcLpwMAWMmR2DTToGqTDiOH9arilv9tWK1zxd5j5jRtuvHT+auv3c1R\n5PTvI8OHdgq2YlIAAACogCI9AAAAgGIbN25cvsdzMs5/OnqCaexavnbHzl3+83wDV91fi4kV\nOevsr7vXrl139FKybIjbuPHnj+a8V419uGFDbhqMQgit02Me2qLuLOzvqI03yLLhhiVzAQCs\nzcGlYvehozoHV3vgzGrNOs1/6pnIiE+2/nLZCsEAAACgOtrdAwAAADAXZeX4SdGxaUKIhp3G\nrFw4o0vrhvdX6IUQktapZtP/TJoXOalPMyFExvVDkz+IzFHUiQtYgptWEkIYsxOK/u86LlsW\nQkgaNiEGANvxRFCniOXzi1KhN3Fwq/LWuPmzRnb3d9JaNBgAAABKA4r0AAAAAMwj6fS8zTHJ\nQgifBv0m9W7mUNgqYqlhxzHDmvgJIZJjtob/Em+liIDlPeuhE0IYc5J2JWYWZb4h9WC8QRZC\nOLrVs2wyAIAVzRnbu7JrsXsF1WzR/bNln1oiDwAAAEoVivQAAAAAzOPwkt9Mg07D2xRlfnBo\nT9Pg+Nf7LZUJsLoXW/iZBuvnRRVl/skVK0yDsk+1tVAkAMAjROcRoHYEAAAAWBxFegAAAADm\n8d/YNCGEpHVtV8a5KPOd9C28HDRCiLu3f7BsMsCKqnTs5ihJQoiEo59P33hQLrTrfdyRNVN2\nXTONX+pBVQYAAAAAALtAkR4AAACAecRmyUIIjcatsD73f+eikYQQRgPt7mE7dPqg91pXMo0P\nRk7vN3b2ryfOp+f8vVavyLdvnN+yZMbgqWtlRRFCeNfs09Hf1fppAQAAAACA9RV7YyQAAAAA\nyJe7VkrKUeTsWxcy5QBn7QPny1mX47KNQgiNo5fl0wHW02hIeEjsoG1n7gghEs9ETRsXJWmd\ny7kbTe++N3LIlSvX0wxy3nwnfb0pU15VJysAwDLefPPNkp1Yrc+MCS3LmzcMAAAAShuK9AAA\nAADMo4mn7r+JmUKIJT9d//jlyg+cfyPqS0VRhBA6zyCLhwOsSNK49ps+v8wXs776/rjpiCJn\nxifnvnsqJvb+yd41Wo0bH1qlCM+1AAAeIUlJSSU7MTVLfvAkAAAAPOJodw8AAADAPF5qU9E0\nOL1s8pFbmYVPzkw4OnnxKdO44sutLJsMsDpJq+84dNqX08e2a1LbWZv/FhA+VRu8GTZpyazh\nNfQ6K8cDAJQ2Dq5lfH19fX19y7iwqgoAAMD2SaaVKwAAAADwkHIyTvbt+UGybBRCOLhU6Tvq\n3VcaV8l35pUj3376ybKLGTlCCI2D94xVS2tyPxq2S5EzLp45deFaQlpa2l2D0c3dw9Pbt3rt\nwArezmpHAwBYypUrVwp9X0lJuHnjxvXYSyd27T5816honSsOmvxxm1reVsoHAAAAVVGkBwAA\nAGA25zdPGfHVkbyXZQMaNGtYq3z58v7+/q4iIy4u7saNG2eOHvj9wu28OY3fmjv+tQA1wgIA\nAKgvM+Hc+uXzN+6/LGlc3pz1ZcfqerUTAQAAwOIo0gMAAAAwp/1LPwj/5ngRJzfo+N6UPk0t\nmgcAAKDUM26e2P+rPxIcnJ+Yu+KTx5y0aucBAACAZVGkBwAAAGBml37eNOfLtRcTswqZ4+pb\nvefA4a88U8lqqQAAAEqt7IzjnbuPNypKQNc5c3s+oXYcAAAAWBZFegAAAAAWoBhO/vxj9G9/\nnj599sbtlIxMgyRpnFzcyvhXrlGjev1ngps//aRWUjskAABAqTG3d5ef7mQ6e7db//VgtbMA\nAADAshzUDgAAAADAFkm6wKB2gUHtTK8U2WDU6KjKw8aEhISY94Lbtm0z7wUBAI+Qas4OPwlh\nSPtVCIr0AAAANo4iPQAAAACLk7Q69lYFAAAoxIWsHCGEIqepHQQAAAAWp1E7AAAAAAC7IBsK\n26IeAADAnhlSDu25kyWE0OjKq50FAAAAFsdKegAAAADmp+Qk/Rx14PjxEydPx9xJT8/IuJst\nK6ZW3obUw5ujUoNaBFf2cFQ7JvBQpk6d+jCnn96zds2eU4qimF5KEv0mAMBOZSWdXTB+rqwo\nQgiXMq3VjgMAAACLo0gPAAAAwMzO7N+08Ms1F5IN+b4rZ11cvXjl2mXLW3Qb8E6XYDaqx6Or\nfv36JTsxK/Hssnlzdx69lnfEtUKDQcPDzJQLAKC+NWvWFGmeMevGlct/Hvk9MdtoOlC793MW\njAUAAIDSgSI9AAAAAHM6umrCpHXHHjjNKCf/tCr8VMzNz8d1cqBOD/uhyIe+XbZg+Y6knNxi\njKRxbtFl0KBuLV00/E8AANtR1CL937n6tRj1nK/ZwwAAAKC0oUgPAAAAwGxiv5+XV6GXtB7N\nXmhRvdqTjsdXL9wflzfHwbVW3Ypux6+lCyHifo0ct6bOrB411YkLWFd67JEFEfMPnA54o48A\nACAASURBVEvKO+Jd4/mwsMENK7mpmAoAUEp4V2s28aNhPLMFAABgDyjSAwAAADAPOfPyxEU/\nmcb66s1Hvxtaz99FCBETv+X+aY6udad9vuLg2mnT1/wmhDi7YdLZDitruPC7CWyZYsz4cc3C\nLzfszTTm7kCvcSzzSt+hfdo3YscHALBJ7dq1K/JcbblKVQKeeLJ+rQA+FAAAAOwEN8IAAAAA\nmMf13QtuZxuFEE76RnNmjPBx0BQ4VXJo0v3DsKsDIvbHKXLGou2xs7tUtV5QwLoSTu+JmLvo\n2I2MvCOVG7UfPqzvk146FVMBACxq8ODBakcAAABA6UWRHgAAAIB5HPzmimkQPGZoYRX6e4IH\n9IrYHy6EuL77sKBID1tkNCRsXfpZ5He/G5XcBfSOrpW7DwnrFFxd3WAAAAAAAEBFFOkBAAAA\nmMfe5CwhhKRx6lvbuyjzdfpgX93seINsSD4gRBcLpwOs7fKh7XPnf30+2WB6KUlS7Zbdhw3q\nXN5Zq24wAAAAAACgLor0AAAAAMzjpsEohNA6PeZR5P1U/R218QZZNtywZC7A2nLSL6/6LGJT\ndEzeEWef2v3Chrep769iKgBAaabIqaNGf2gaz549W90wAAAAsDSK9AAAAADMw00rGXIUY3aC\nIkQRq/Rx2bIQQtK4WDQYYEXK8R9Wz1+0MS5LNr2WJMfnXus3pHc7zyI/vAIAsEs5MTExD54F\nAAAAm0CRHgAAAIB5POuh+y4p05iTtCsxs20Z5wfON6QejDfIQghHt3qWTwdYXOatk0siIr7/\nMy7viOfjzw4Z/k6TAE8VUwEAAAAAgNJGo3YAAAAAADbixRZ+psH6eVFFmX9yxQrToOxTbS0U\nCbASxRC9+Yv+Az7Iq9BrtB5t3xy7LOIDKvQAAAAAAOAfKNIDAAAAMI8qHbs5SpIQIuHo59M3\nHpSVwibHHVkzZdc10/ilHgFWiAdYSMrFX6eP6Dfzq50pstF0xK/uix8tWhr6epCODvcAAAAA\nAOBfaHcPAAAAwDx0+qD3WleaujtWCHEwcnq/Qy0G9361Ts2/F+AV+XbcpX07NkRuPygrihDC\nu2afjv6uqgQGHpIip+5a8fmSLT8blNxnUrRO/q8PfKdn67pU5wEAAAAAQEEkRSl0eQsAAAAA\nFJlizFj63qBtZ+7kHZG0zuXcjfHJBiFE7WqVr1y5nmaQ89510tf7ZPHkKs5aFbICD21c/64n\n4u/mvSwX2GrYkJ5V3B1LfEEvLy9z5AIAPHoUOenVDm+axtu2bVM3DAAAACyNIj0AAAAAc1Lk\n5C1fzPrq++MPnOldo9W48aE19DorpAIsISQkxLwXpCoDAHaLIj0AAIBdod09AAAAAHOStPqO\nQ6c1bRm9Zdv2PYdOZ+a3Nb1P1QbtQ14LadXQkZ7gAAAAAAAAsDMU6QEAAACYn39g0ODAoEFy\nxsUzpy5cS0hLS7trMLq5e3h6+1avHVjB21ntgAAAAAAAAIA6KNIDAAAAsBRJ6xoQ2CggUO0c\ngGVERESoHQEAAAAAADx6KNIDAAAAMI/t27cLITwCglsEehXxlD92/TfWIDu4PNGudW1LRgMs\nomrVqmpHAAAAAAAAjx6K9AAAAADMY/HixUKIKiE1il6kv7xpxdK4dEfXOu1af2zJaAAAAAAA\nAEBpQZEeAAAAgGoMRkUIkZN1Ue0gAAAAJbRjxw4zXMV41wwXAQAAwCOCIj0AAACAEjp9+vS/\nD2YlXjx9Wn7wyUpO0vVTGxJM96MVMycDAACwlkWLFqkdAQAAAI8YivQAAAAASmjs2LH/Phh3\nYMHYA8W7jpPHc+YJBAAAAAAAAJR6GrUDAAAAALB3Tw/srnYEAAAAAAAAwEpYSQ8AAACghCpV\nqnT/y6tXrwohHD18/fS6Il7BvWyFusEdegX5mT8cAACAVWzatEntCAAAAHjESIrC7o8AAAAA\nzCAkJEQIUSXkk/n9q6udBQAAAAAAACilaHcPAAAAAAAAAAAAAICV0O4eAAAAgHm88cYbQgh9\ndR+1gwAAAAAAAAClF+3uAQAAAAAAAAAAAACwElbSAwAAACiJO3fumAaS5KjXu6kbBgAAAAAA\nAHhUsJIeAAAAQEmEhISYBjq3+hvXTBVCzJw5s8RXGzt2rHliAQAAAAAAAKUbK+kBAAAAmEd0\ndLTaEQAAAAAAAIDSTqN2AAAAAAAAAAAAAAAA7AUr6QEAAACURI0aNUwDB5dKpkFoaKh6cQAA\nAAAAAIBHA3vSAwAAAAAAAAAAAABgJbS7BwAAAAAAAAAAAADASijSAwAAAAAAAAAAAABgJRTp\nAQAAAAAAAAAAAACwEge1AwAAAACwTWnJyTmKUsTJei8vyaJpAAAAAAAAgNKBIj0AAAAAc7p2\ndFfktj0xMedvpWQV/axVW77x0FKmBwAAAAAAgO2jSA8AAADAbGK2zx61ZK9S5AX0eRzZiQsA\nAAAAAAD2gSI9AAAAAPMwJEePW/q3Cr1Wqy3iuTqJZfQAAAAAAACwCxTpAQAAAJjH6S+/zjQq\nQggX3zpvDez51JMBvl4uaocCAAAAAAAASheK9AAAAADM47tjSUIInWejzxeOL+tA/3oAAAAA\nAAAgH9w4AwAAAGAeJzKyhRCBQwZSoQcAAAAAAAAKwr0zAAAAAOaRZVSEEM/V1KsdBAAAAAAA\nACi9KNIDAAAAMI9qLg5CiBxF7RwAAAAAAABAKUaRHgAAAIB5tA/wFEL8djpZ7SAAAAAAAABA\n6UWRHgAAAIB5PDW0o0aSTi2OzFRYTQ8AAAAAAADkjyI9AAAAAPNwLf/KRz3qZSbuHz3nW+r0\nAAAAAAAAQL4khXtnAAAAAMxG2RM5I2LTLzqfJ1/v3vPVlg2ctZLakQAAAAAAAIBShCI9AAAA\nAPPYunWraXDjt293HosXQkiSYxk/f39/fy83XeHnjh071uL5AAAAAAAAgFLAQe0AAAAAAGzE\nsmXL/nFEUbJvx8XejotVJQ8AAAAAAABQCrEnPQAAAAAAAAAAAAAAVsJKegAAAADm8X/27jsw\nimLxA/hcOj1U6UVFRUTsFey9Yu/dp9gVsVdExQYo9q5PQR829Nl796fPgh2kV+k1QEhI7vfH\nHaGFkIRkE+Hz+WuyN7s7t5mdg3xvZs8///yqbgIAAAAAVHeeSQ8AAAAAAAAAEbHcPQAAAAAA\nAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABCRtKpuAAAA8M9z9NFHl2OvlLSs\n+g0bNGvbYedddtlzl84ZsQpvFwAAAABUd7F4PF7VbQAAAP5hDjvssLU8Qp3W23XvcVnXDetU\nSHsAAAAA4J/CcvcAAEAVmD/++749L3zr9zlV3RAAAAAAiJSZ9AAAQJkNHjy4HHsV5ufOnjH5\n5++/nzw3L7ElNaPF3c8/sHFWaoW2DgAAAACqLyE9AAAQqXjhwk/+88B9L36V+M9Io20uferm\nvaq6UQAAAAAQEcvdAwAAkYql1NzrhCtvP3mLxI8zf3po2KIlVdskAAAAAIiMkB4AAKgCHY++\nabs6GSGEeDzv6S+mVnVzAAAAACAiQnoAAKAqxDJOO6pNojj53RFV2xYAAAAAiIyQHgAAqBqN\nu26XKCya+mXVtgQAAAAAIiOkBwAAqkZGra0ThYLFk6q2JQAAAAAQGSE9AABQNVLS6icKhUum\nV21LAAAAACAyQnoAAKBqFBbMThRS0hpXbUsAAAAAIDJCegAAoGrkzf8hUUjNbF61LQEAAACA\nyAjpAQCAqjH182RIX6Nx16ptCQAAAABERkgPAABUgXhh7jOvjk+Umx2wcdU2BgAAAAAiI6QH\nAACqwA8Db/gpJy+EEItlnLFb06puDgAAAABEJK2qGwAAAKxfCnKnv/nvB598c3jix4Zbn9eh\npv+YAAAAALC+8LcwAACgzB544IFy7FW4ZPGcmVP/+G34woJ4YktqZsvrrt6jIlsGAAAAANWb\nkB4AACiz999/f+0PkprRpPttfTbKSl37QwEAAADAP4WQHgAAqAKNN9+9+4Xnbd+yZlU3BAAA\nAAAiJaQHAADKrGXLluXYKyUtq1529gZtNtlxp5136NgmVuHNAgAAAIBqLxaPx6u6DQAAAAAA\nAACwXkip6gYAAAAAAAAAwPpCSA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAA\nAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAA\nAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAA\nAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAA\nAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAA\nAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAA\nAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAA\nAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAA\nAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAA\nAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAA\nAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAA\nAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAA\nAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAA\nAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAA\nAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAA\nAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAA\nABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAA\nAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAA\nABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAA\nQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAA\nEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAA\nRERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAA\nERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABA\nRIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQ\nESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABE\nREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAR\nEdIDAAAAAAAAQETSqroBAABAFcgf1Lyqm1Ax0k+cXNVNAChJh0vequomVIw/7zu4qpsAAACw\njjCTHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAA\nIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACA\niAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAg\nIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAgJIsnDz0\n4TuvP/HQPTfZsE3DerXTMms2atpi0047HnfmRfc+/eaMvMKqbmB0frlz+1gsFovF2hz4YVW3\nheKNfX3vxO+occchlXSKeEHOS/dcvPuOnTeol1W3UfP9rvi+kk4UAV26Ct23VePExU/LbDo1\nv/QDaXzP+jUSO9ZtdVElto/q5MUOjRK/9P3em1DWfdelIQsAgHWJkB4AAKB4SxaOvumUvRq2\n2ub8q2974c1PR4wZP2vegoK8RTOnTv7rt+8GP/3AZWce2rxB23PufDkvXtVtXdGVrerGlvpp\nQf4/7nQRt796qp4XIV4w96xt2h57xf2ff/fLtHmL58/8e8zEhVXdqDWrnhdzPXdM/30ThYK8\nqZd9NaWUe+VMuv/TObmJ8lY3XlC0vZqMQnpadfMPHbIAAFgfCOkBAACKsXDKh7u02eKW5z/J\nLVyWwKek1axfK335avkLJjx+9THtdrt41pL1aEo9VeuYxrUSKeBtE+ZHfOrRg094+peZiXKd\nNlvsse++O3XMjrgNrBuadhnQIjM1Uf7o8jdKuddvdz6WKMRi6Xcdv2GltGxNqvAGpKzWySFL\nDwQAWDcI6QEAAFZWkDfx4C0P+9+MRYkf67Xf/Z6Bb/86YsLCxTmzcvLmTps49NsvHr+9x9aN\nayQqTP7y/m2OeLDq2gsR+emu5ErRbQ9/eOaYXz95//3nrt+yapvEP1RKeqP792qRKM/4+cqR\nuQWl2avXwFGJQvbG1+9UJ6OyGse6wpAFAEC1lVbVDQAAAKh2vrzmkE+nJxP6w3q9MviGIzNj\ny16t27hF58YtOu/Q5YwePW48fJfb3xsfQhj35sW9fz7xhs4Nq6TBK6nfqk3btJxEOTMWK7ly\nNTxdxO2vnqrnRZgwP7mCd8drjkivLo1as+p5Mdmj7wnhnTtDCIUF8y99d8Kb3dqWXH/BlEff\nnZVc637HPqcs/1I1GYX0tOrmHzpkAQCwPhDSAwAArKgw95yH/0gUW+474PUbj1xdxdTMFr3f\n/PHbJi0/mp0bQnj4gvdv+PKEiBpZomu+/vWaf/LpIm5/9VRNL8LShz+kZP2TVuarphdzvVd/\ns9471On/3fy8EMLXVw0M3a4ruf4ffZMLlqSk1r7voFbLv1RNRiE9rdr5Zw5ZAACsD/wLFQAA\nYAXzJ9/316Lk3Lt/PXJqyZVT0ho+ePd2ifL0H671XHqA0oql9ztl40Rxzshe3+fkl1z9tqdH\nJgoNO92xSQ3TTgAAgH8wIT0AAMAKcqf/X1H52Ga11li/xQFHJQpLcsf+umB1IVPhN68+eenp\nR3TabKNG2bUyatVr2W6T3Q45qc9DgyYvLsWTmAtz3xv4wNlH7b3phq3r1cxs1HLjXfY66PTu\nPV76bFix1ce+vncsFovFYo07Dim2wuJZfzzT97pjux20y7adWjXJzqhZr+0mW3TZ64BTLrj5\n0z9nrLk9ZTldvHDR5688et4ZJ+zbdYcNmzfMqt1w0y23P7DbcT37PDFs1uIyHbBo+66PJt/4\n3z+9d/25R261+cYN62TV26DNDrvtd/rFfX5fzWGLFOROeH7AzYd23aZNs0aZmbVbbdRh3+Mv\nePatHxKvvtihUeIsg6YvLM3bf3Wvlon69dpeX2yFS1vWjS1109h5q1aY8fOZRRVeXPqchVUv\nwi93bp/Y8vKMZMOub5088m7Pjlhd80Z8+MJlpx262cZt6tfOqrdBm+277nvqhbf+PD23NG+t\nyPSfD0ucqMfoOYkt/92qSWJL+xM+X6ly+XrX5M8OXOGXG89759/9jt17h3YtmmRl1GjaaqOu\n3c5++u0/l9uj8LOBA049ZNd2rZrWysxs1q7D7vsffvW9L85ZEl/14Gu8I4rkzf+/tJSUROUH\nJueUULNX+/rJK3DihyUfkxJsdcPliUK8ML/nS2NKqLlw2r9fn5m8O/bq222lVyMYhUpzA/6z\nxq6VlO/Orai3tmjqj/ff0mPv7Tu13KBBRladlu023ePIsx99+bPyffWtTENWCGHOX5/1veGi\nPbfr1Kppo6ysOu0267zPQUfc+NCr0/PXfP61+TwtU88s/UdAOTo8AADR871jAACAFSyetSze\nGJO7ZLM1zdes0ejIRx6pkSg3Si/mm9DzRr152nH/GvLDlOU3Tho7b9LYEV+8NajXdbde9cAL\nvU7qvLrjz/rlxZNOuODdP2Ytt/OobyaN+uaTd559tH+HQ3sM+c+dZZpU+vXDlx5z2QMrfTlg\n3Ijfx434/atP3hv4cO+tDjzvlVfua5eVWvpjrs7c4a+ecOTZ7/wxe/mNf/06669fv3/39cH3\n3dL72qff7XV8h3Idu3DIbScfc8OLS+JLQ9mc8f+bNv5/X3zw/GMDut/96gMX7VzsbmPe6n/k\n6dcOnbEspZ44etjE0cM+/M9Ddxx0weD/9C9rO3a6cafwySshhJyJ903Lv6XJin2gMH/KY38v\ny3rfGjim13Ur/66HD/g6UcjM3v34xjXK2oDViRfk9Lvg8Cse+yRedIkWjP9+2vjvv/xw0GMD\nzrrjlUd7dK2ocxWpkN6VN2/oBYcc8sQXk4q2TJ04eurE0V+98dSrV/3nv32OWbJoxEWHH/jI\nB6OKKiwcO2zK2GGfv//GE8+8/vN3z7fIKGfvzaiz0xVt6t4xdm4I4bG+f17Yd/viWzj/m1tH\nzU2Uz+2zY/nORQihVtMzT25y8fPTFoQQfrrpkXBGv9XVHHZ/8t5MTW98b5dmpT9FZY5C5VNd\nxq7lVdDnQjnf2tt3nXfGDY9Py1t29klj/5o09q/PXnuyzx5nv/r6g2vz1koWL5h372WnXvfg\nG4sKl32/Z+zwX8YO/+Wjd4bcec2GF/Qd1O/s1d7ja3PdKqlnVr8ODwBA8YT0AAAAK6jdZqOi\n8pXXv3vggytP2VxJambrc889d3Wvzv79me23/9eoRUuKttSs16h+ZsHU6XMSMcbiOX/2PmWb\nUVO+eP7yXVbdfdrXD2615yV/L40uYrH0Bhs0WTzz75yl0/v+/G+/nXecNeLHJxuklWqltJHP\nn77r+c8uv6VmvcbZGflTZ8wtiMdDCPF44U9vP7hT13pT/ndbrDRHXL1F097cbuvjRi733rPq\nNq6fnvv3zPmJH5fkju990tY1N5t01VYNy3rwD6/d7Yg+X2Vvtv+Vl5y52zabZC6e9uvP39x7\n8x2/zMwtWDzloUu6NNjx71t2aLLSXqNfvW6LY/ssKkiGMbGUjIYbNMqfO33uwvwQwrC3H9xl\n85H/iueVqSVNdrg5Lfbqkni8sCCnz5i5/Tepv/yr88bds3z2M+qZ98IqIf1z7yTT6BZ7Fz8X\nP3minU6/+up9QgivDeg7fGF+CGG383vsUjcjhNC2U/2VKsfjS+49YZueL40IIWRkt96q40Zp\ni6YOG/bXrIVLQggF+dMf77l7412n3LrjypeoWDWbHH311R1DCN89cu/Hc3JDCBufefHRTWqG\nEBp2XvZo8ArpXQV5f5+x3RGDRszd/cwrTt1/z603rDPit6GP9Lr2k7Hz4/H4m3cce942Xyy8\n5fB//zar8bbHXnn2oTvvsPn8sX++/cQt97/zVwhh5s8v7tX99OFP7V+a91Ws06/f8o6zvwgh\njHz2ttC3+Jn3owddmbh/azQ4uGebOuU+FyGEq6/t9Pyl/xdCmD/x3vdm99m/fmax1e5+9K9E\nYYOd722aUdqFIStwFCrTDViC6jN2Famoz4XyvbWXeu55bN9Pl99So27DlNw5C/IKQgjjPn1i\nr21zri8sxZIzy7e/dENWYf60y/bbesCnk4u2xGLpjRtlTZue7B5580b3/9dOo8a/9PotR696\nlrW5buXomaXpgZX6sQsAQMWy3D0AAMAK6rS8Intp4P37w0cdefkDU0qx4G2xChZPOHr38xMJ\nfSwl84jL+n8/ataCOdMnTp21cN6EN564afN6mSGEeLxw0JV7PbTivLcQwpKFv+23f49EQp9R\ne5Mbn3hjUs7CGX9PnL940djfPrrg0GTWO+vXZw6+7X+laU9h/vT9zxmYKGdm79Dnqbem5+Qt\nmDNt0rTZ+XkLfnx/4Gk7J+OTad/ffmdxC7OXyb0HnpmIClLSG/S469nRMxcsmjtt8ox5eTlT\nX77/2kbpqSGEeOHi27vdWNYjT/my1wF3fL35if0m/PbONd2P3XWHrbbrut8ZF97048Thx7et\nG0KIxwsHHH/fSnvlzvpo1xPuTKRcmfU73fbvd6YuXDh98qQ5CxYP/+bNs/ZsG0LImfBe/4nz\ny9SYtJpbnNe8dqL84cMrLzs/+tmPlv9x/rh7FhSusB57Qe6Yp6YuSJT3WiW/X17T3S/o06dP\nnz59OtVMT2zZ7+qbE1vO3abRSpVn/3Vmj5dGpGVt2OvZT2fPHPvtlx9/9cPv02ePf/S6E1Ji\nsRBCPB5/8KRHSvkeazU7NXGiQxpkJbZ0uPj6xJaex7dLbKmo3jW090Evjs6/YdCPnz5515nH\nHrj1dl2OPf3CD/8aeULLZBb+yLFd//3brJ0ueHDMdy/27H7yrttsc8CRJw14e9jzZ26aqDBq\n0JmLynnLhhBCu2NuS43FQgiLZr7+/LTilw1/oPfPicJmF/Uu/5kIIYTQ/oy7tfr+egAAIABJ\nREFU05b2yRue+KvYOotmDH5x6RLuh/Tdp/QHr8BRqEw34OpUq7EroaLu3PK9tUkf9CxK6NOy\nWl7a97nhUxcsnDsjZ3He6P+9e3m3LUMIc0e+eMXSVetLqTRDVgjhpXN3L0roW+92xttf/jRt\n/sKp0+bNnvjXO4Pu6Fgv+X2RN3ofc+yTf650irW8buXomaXpgZX3sQsAQIUT0gMAAKwgNavd\nc6cl0754vPC1fhe1abzhEWf1HPTO1zNL8/z45fzY67CPZy4KIcRiade8/Pur/S7ddsPkdLf0\n2i0OPevm70e8v1Mipy9cfPUBK8+ifvu0w3/OyQshpNfsMOTPH3uddWizmmkhhBDLaNNxrwfe\nGHrf4W0SNX+489SVot9iTf+p5+jEn+/T6j/3w4dXn3FQo1rJv/XH0mpsve+JT33265GNaya2\nvPH2pNUeqBTyF/x840/Jx/Ge98qPfa84tV2D5JHTazU56sLbvn76yMSP88c//L+c/DIdfPTz\nL9ZsdeL3z11aO3WF2YmpWa3vf+3sRHneuLsXrXhNnj7slCl5BSGEzHo7ffjXd9eeckDjzMQS\nxLFNdjr4iY9G3H3UhmV8l0mnnZbccdzLL6700nuDxoYQYrHUnepmhhAK8qcPmLTCk87njLgj\nvzAeQkhJq9u7Y4VNbSwsmJ+Slv3MD9/feOruNVOSVyklo9k5tw76b/fNEj/OG3v3WmTZK6uo\n3rV4eu42139wywlbL78xJb3J3c8si2azN77oi/vPr5Wy/G8/dsy9T8disRBCweLJb85aVO43\nklG36yVLvxDQ/9FiMuPcWW88OGl+CCEWi/W+2KrRayujbpcb22cnyn/cc2exdf569K5EIa3G\nhvds3biUR67UUah8qtvYFSruzi3PW4svPvGYBxLF9FqdXv3zj/49Tt6kSeJcKe222/+e134e\ncs2e5X5rJZs7qt8JzwxPlA/r8/qYz546cNetGtVKCyFkt2h/wAlX/TRh6HnbJjvbaxcePHbF\nfwCszXWrpJ5ZDTs8AAAlENIDAACs7KCHP738wGWZR97ccUOe6nvSQbs2qV1/2z0Pv+q2Bz74\ndljemjLxeMH8swb8nii3P23wbUdstGqdGo13e/WNCxLl+RMeun/CsnmQSxYNO+P1sYnykU+9\neWDLWqvufsGLHyYmxuUv+uvW8Wue+D7pzV8ShcZb3XfMhsWs0Z2S3uTS/Vok2zOyPJMyi+TO\nejuxHngslt7/kDarVtjwmH5t27Zt27ZtmzZtfswp8yrNJ/ynb42UYtZdbtDxqkQhXpg/Yrkl\nfxfP/eTSb6Ykyhe88WqXRlkr7xlLu+z5DzssnaFYJpuce1yikDP54QnLBTnxwgX9J8wPIdRs\nfMKtezdPbBwyeNzy+/71wBeJQr0Nryv9It6lsdW175y0eTGrcO9x87WJQmFBzsQyfu+kBBXV\nu2KpNV64eodVtzfofEJR+Yjnr0tb5ZefUWfn7Wsnf33LP2CiHP51badEYfhDA1Z9dfhDtyQK\ndVr1OLjBKh2Jsjv1nq6JwoJpA58rbvWCe+8flii03Pe+OqmlfRBHZY9C5VOtxq5QoZ8LZX1r\nU7658PO5ixPli95499C2xZz98Ns/OG/pdzgq1qtn9Y3H4yGEpjvf9frVh606+KbX2ey+z95r\nmZkWQliSO+asV8cu/+raXLdK6pnVs8MDALA6QnoAAICVpaQ3ueet4c/fcHq7ehnLby9cMv/H\nT9+46/qL9tupQ53slvscefrdT705czWL4edMfuDXBfkhhFgspV/fA1d3rma73XNowxqJ8tNP\njizaPvXbq2blF4YQ0mtu9uQx7YrdNzVr495btsrOzs7Ozv71h1lrfF+bnvXC0KFDhw4d+tlr\nR62uTnzpM4/DmmfmlySWklwoOB7PHzy2mFwnNaPlmKXObVrMVxBKkJreqN8qDzZOSElvkrU0\nJVo+fx736o15hfEQQo2Gh9yzW7PiD5vV7vFTNy5TSxLqtLp8oxppIYR4Ye7tI5cty5wz+cHp\n+QUhhA12O7Njz+0TG0c+/vHy+w56c0KisHnPw8px6tWJxVIf7rltsS9l1d+3qFyBM+krqnfV\nanLKxllpq25PzWhRVL5qy+KXHGiVmdxxLb960O6E3omHAiyY8vTbs3JXevXWAcmFr3e4vfva\nnYeklvvd3yA9+Requ+/+faVXc2e98czSR0Icf9eupT9spY5C5VPdxq5QcXduOd7a0N7vJwq1\nNjil717NV3fgm547ZrVnLa94wdzLvkp+9eGyQeeurlp6ra2fOz75jb1fbv98+ZfW5rpVUs+s\nhh0eAIASCOkBAACKE0s76ZanR82c/tGLD5xz3IEbNqqx0ut58yZ99NqzV551aPOGG516Rb+Z\nS1aOOye9/WaiUKPhESVOt41dcVDLRGnci18WbR1236+JQoOOt9Qqbm5iQvfvx8yePXv27Nlv\nHlV8kL+8Wm0269y5c+fOnTdtWbPYCrkzht7y7sQ1Hqc0ajY5KTst+V/Os7fd596Xvl7j2gNl\nOPgGp5VwTYp94YelT4tvsf8VJczD3eKKg8rToFjGLVslHwn82YBlC6RPGPJaorD1pZs13PKq\nxGLsc8fembu0sxQsHv/4lGT6eMkRxUx8LLeshoftUKf4mbWxlEqZ/F1RvSu95hbFvxBL/t5i\nKRmb1igmxQ+r+dWXQ2a9PS9sXjtRvnXg6OVfWjDliZenLwwhpKTWHnBE2wo64fouNbP1vTs1\nTZRHPHn9SkPFyKdvSxQyam/Ta5NiFodYnUodhcqn2o1dFXfnluOtPflDcm32Tc67rIQjN9mu\nb920Cv4DZs6k++YuKQwhpNXYsGfbuiXU3OKyzkt3WeFpJmtz3SqpZ1bDDg8AQAmK/28tAAAA\nIYRYat29jrtgr+MuCKFwzM9fffjhhx999NFHn3w7I3fZgr1588c+d8/lb3/4/fsfP71N/cyi\n7dO/nJ4o1G55wsrHXVHbk9qG50aEEHJnfh7CRYmNP/4yO1FodcSmFfiOVlQ4c9LYkaNGjRo1\nasTwP3/7dej77385b5VvG5RPSvoGQ3rstMddX4cQcmd/d9mxu16d3XrP/fbbvWuXLl123aHz\nxhlrEaim11pNjrt6749PPgm+7YltS6hWc4OTQuhbjiZ1uX7bcPBbIYQJ//13eHTnxMYvH00u\njdCjU8P02s2Oaljj5RkLCxZPfuTvnEtb1A4hzB11x+LCeAghK3vvY1b5IsjayMreqwKPVi7l\n7V2xNf6lIrUimrcG5161xYCLvwkh/Hb3E+GifkXbf7393kSh0VZ3dajpjyoV5oB7u4VtHwoh\n5M5+v//4+T1aL1s//MG+fyQKbY/uV6Zxo1JHofKphmPXKsp555bjrX21dK37rY4t6StKsdQ6\nxzeu+djfOWU9fgnm/JH8SlxKap2bbrihhJqL5yQXO8nL+b7EQ5bhulVSz6yGHR4AgBL4/yQA\nAEBppLTr3PVfnbv+6/Je8cIFv3zz3YzFsYyMtFHfvvPvxx/8ZPjcmUNf2G2LRWPHvdJo6Ty2\nnNHJRKFW2wYlH7pW6+Ta3Utyly13X/Tg3jqbFPOw27WxcPL3Tzz54jvvvPvNT8Pn5q7Vo7tL\ntvudn7/Y8OIeNz46eXFBCGHxnPHvDn7i3cFPhBDSa7fY59DDDj+823FH7Zu96tPF1yQltcyP\nKC66ntltS1rjN61GOb8S0bTrDbHY2/F4fMGUJ0fm3r9xVloIBXePmhNCyKq/7y51M0II5+3e\n9OVXRocQBr8+4dLzO4QQ/nros8TuLfa9tnznXZ3lF4ePUmS9q7JtdPLNsUsOiMfjORMHfD3v\njsRvMITCq/6dvEkPuLdbFTZv3dNoq7s3r/n4HwvzQwiP3fxjj6d2T2xfPPv9R5euNnFOr23K\netjKG4XKpxqOXQlrf+eW9a3FCxf8nZdc/L5DnYySK3eqVfy6IOU2f0RyNfi8nJ9vvfXn0uxS\nmD9rXkG8buoKXaXc162SemZ16/AAAJTAcvcAAADL5Of8cOdScwuKXyg2llKr86577r3XHl27\ndDn98ts+/HXYoY1rhhAWTB5y5MPDltUr2nuNfwxPScYP8cJFRdvmL52Bl1qzIucNv3bzqa3a\n7njJjX3f/eb3okQhJbVG60223P/wE24Z8NyTx25YcWdLPe7KB0dN/OG+Xpfts93GqbFlFyI/\nZ9I7Lzzc/fj9W7ff47H3R5ZwiIqSU5j8fcRK/HXEYmkpJddYjYw6O57apGYIIR7Pv+3P2SGE\nhdMGjly0JITQaOvk6ghFj6Uf8XDy2caDhyTnaO57/ZblOGmJqiCDibZ3Va7M+vt1b1YrhBCP\nF1z3+rjExnlj7vh87uIQQlpW26Ll2akQsZSaA5Y+8WHMy5fnLx0/Rw28OR6PhxCy6u+3/PT6\nUqtGo1D5VPbYFarozo3FMot+HWtsd4Vnyvnz8suxV86K/ypYu+tWST3zH9/hAQDWH0J6AACA\nZfIX/nn1Uv+bn1eaXVLSm95+VXKZ3x9vv6doe+0Nk8+0XjB2TslHWDR5WqKQVmOToo0bL33q\n9oKxC0rX9jX75ub9j+z13Kz8whBCZvbGp196/eMDh/w4bGxO3oJxw39+d8igGy46uUODzDUe\np0yyGnW++MZ+H/xvxLzJfwx5/uGe55604+atY0uTg/ljP+9+YMfe/zetYk+6qk2WXs/Z40q6\nnktyxxbGy/kU3/OOaZsofNV/WAhhyqfPJH7s2CP5SOMGna5OpGhzRt6RHw+FeZMe/jsnhJCS\nlt2rwxqWW6j+qqR3Varze26eKAzt9UKi8N11TycKLfe/v76pqBVth9u7Jwp583+46a/k8z4e\nv/O3RGGTs28t9xWvJqNQ+VT22FVld24srXVm8itow3LW8Gk7bGEFL8tR9AFdr81N8VJrnrHs\n76gVct0qqWf+ozs8AMD6Q0gPAACwTGa9rkV/yH52+BrC9SK1N0r+uX/htEEz8pMz4Bvt3ChR\nyJn4Ysm7jxuUnKebUWfHoo2dm9ZMFCYOGVfCvvElC+bOnTt37tx5awo5liz8o1ufjxLlzU68\nb/L0v57u3/vsEw/fetM2NVKiiBtrNt3s8JO63/3I8//3+7i54399+rbzGqenhhDihXn3HH9H\nZZ99l+xkWDJ+8PgSqi2aPrjcp9js0sMThcnvPxFC+OG+5LIK5+7UJFFIr7XV0Y1qhBCW5I59\nasqCuaPvzC2MhxCyN7q+Sfo/+7/nVd67KsPGp92YKMwdc/uvC/JDYe5lbyRvxlPv7lJ17Vpn\n1Wl9+cENaiTKL1z5dQghb+5nAyYlnxtyRc+Oa3+Kqh2FyqdSx66qvXP3rZ+VKAx9ZUJJ9eJ5\nL05fWLGnrrd58oEgi+d+UY7dK/y6VVLP/Cd2eACA9cc/+68AAAAAFSs1s80RDZMp0QeXPl/K\nvSb8d1KikF6rU4OlaWuLQw9IFBbNeOWDOYtL2L3/kGT00vrI/Yo2dr6gfaIw/bu7Cla/73eX\n7ZidnZ2dnd2x28clN3L60Oum5RWEENJrdvj+uYsarGYe8Nxh80o+TikNf+OlgQMHDhw48I2v\np6/6ap2WHU+/9qGvntk78eP8CQ8tKef09dLa45R2icLEt+4vodqop18r9ynqtr2meWZqCGHh\ntIG/LVzS/7dZIYSM2p2PaJhVVKf7Hs0SheffnTTi0U8S5c2vPLTcJ60mIu5d0chqcPBZTWuF\nEOKFi6/6YNLMP679bUF+CCGz3m43ti/zk8Upjd4Xb5YoTPzgkvkF8TEv3ZCYHV6rycknN6lZ\n1qNVt1GofCp17KraO/f4XZJfYBr+0AMlVJv1x01T80r4GCyPehv1SBRy53z8YYkf0Dljhn71\n1VdfffXV978v+97eWl63SuqZ60aHBwBYfwjpAQAAVnDtOck156f+X8+er45aY/2C3JEXDR6T\nKDftekPR/7LqtLhks5rpIYR4vOCSaz5a3e5Tvrjy5RnJOYLHnb9suftWB/dIPE02d84nPT6Z\nvJq9C/u8MDpR2vj0jUtuZ86omYlCZr3da61mql9h/vQr/1cxS+AO633RySeffPLJJ59+xmq/\n69C0655F5QpOYFbR/uxzE4WF0wff9H0xAUYIoXDJjIv7/17uU8RSa9+yeYMQQjxecNMXL3wz\nb3EIIXvTnsvX2bznDonC8AFfv/xyclp2j8Nblfuk1UTEvSsyl1yWXPH+u+tf/7znK4nyJmfd\nnVp1TVq3dbiod2ItkyWLRl0xdMbTt/6c2L55zyvLcbTqNgqVT6WOXVV753a6Prn6SM7kJ675\nfMrqqg04/ckKP3V67W3Pap5cAufiaz5fbb143uk779qlS5cuXbr0WO4irOV1q6SeuW50eACA\n9YeQHgAAYAWdb3hp05rpiXL/47a57MH3C1dfeeGkn7rvuevPOXkhhFgs7ZoBexS9FEut99S5\nmybKwx474tZ3i1mpeNG0z7odMiBRrt38zOs2qlf0UlbDbn06JxfMf7TbkV/OyF1192/6HPD6\nzEUhhFhK5h2Hty75fdVpXz9RyJ397vT8Yt5TvHBhv5N3/nVBfuLHwuLqlN6GxyXbM2fkta//\nXfxKxR/fOyhRyGpwUGYlr6xcq9k5Vy6d/Xz3Acf/OK+YpwM8e8GeX8wtaUrlGu11bfLx8x9c\nlJymuelFOy5foUHH5GPpZw/v/eDfC0IIWfX3K1q8oazyCqvLRMiIe1dk2p91TaIwe9j1F32a\nXDDjmqs7VV2L1nFZDQ7u0apOovzKObffM35+CCEWS7ntX5uUuF/xKnsUiuYGrNSxq2rv3Ead\n79pv6Yr3/Q458N2JC1at8/k9R/VazVcT1tINDydXuxn22CE3vz262Dpv9T70lakLQwip6Y3u\nO7pd0fa1vG4V1TNX6oHV7WMXAICSCekBAABWkJa18dtPnZeYxV64ZN69F+7feNOuV9/xwNuf\n/TBm/KTZc+dOHjfy+68/e/2lf19wzG4NW2/7xP8lp8ptfe4r3Tequ/yhdrj99V2zM0MI8cK8\nmw7pePL1j/4+Ofl85YJFU99+5pbtN93/23mLQwixlIxb375rpZac/+YjicXzF8/7dt9Nd7r9\n+fem5yZnvuVMH96/x7F7Xv9h4sf2pw3esU5Gye+rweZXpSemqOaO3f7I3sNmLJfoxPM+/899\nB23d9orBy1YOmPjmE3/8XUxkUkrtz7gmIyUWQogX5p641X73v/DhnCVFKUXhpF8+vrn7Ht36\n/Zr4eZseN5f7RKV33Tv9aqamhBAWzfy466Zd73350zlLV/ud9Otnlx+55ZmP/RaLpW9TO3kl\nE5erTJrvc3WiMH/EjEThpP2aL18hvdaWxzWuEUJYsmj0woLCEELL/a8u5/sJ4bv/zSz3vhUr\n4t4VmayGR5y2Qa0QQmFBzqTFBSGE2s3OOaFxOb9UQWl0vz252sSMH+8tiMdDCHVaXbrv0uey\nl0llj0KR3YCVN3ZV8Z0bS3tmyGWJYt78oYdt2unK+/8zelayDVP++KrX6bvtceVrIYTabWtX\n2EmXanPIcxds0SCEEC/Mu+XQzY6+7O5vfxu1IHlh45N+/uDaM3Y95Kb3E5V3ueb1rWunF+27\nltetonrmSj2wGn7sAgBQAiE9AADAyjY87r5vHjw7EYqEEGb99eWd11x08B7bbdimZYPs7BZt\n22+/6x7djj3toZe/yF06j22nMx/89qHDVjpOataGr39yf5ustBBCYUHOwNu6d2pZr0GTFu1a\nNa1dp/nBZ9z0+5zFIYRYLOXEuz69pHPDlXav1eLIr5+6ODMlFkLInfXzdacc0LR2naat2jap\nV6NOk8169H9pcWE8hJDd/vgPHz54jW8qo+4uA09MPud+3Js3d2zaqNM2O+5zwH7bd9qkfq1a\nux9/6bu/TE+vtcmdT5ycqDNv3JNbtKjXuv0R5bqEIavhES+dnZxWvnDaVxefuG+DzBoNN2jR\nrk3z2pkZLTvv3evRzxKvNux8+jtXRjE1ue5GZ3zW/+TERPaFU7677Jg9G9as07xNuw3q12q5\n5R79Xvs1Fks5+7HverZMTuRtkl7m/zJnZu99ZKNlT85Oy2x9RtNaK9U5Z68VYvv9rtuyrGdp\nVyO52vr7x2/ZZe/999lt51OHjCvrQSpWxL0rSpddtNnyP25982VV1ZL1RNsjBtRKXeHW26bX\nueU7VCWNQtHfgJU3dlX5ndtst9tfvTL5lPT8hWPuvvj4jRvVqNuwaYM6Wc06drn52S/i8Xid\n1kd89OyuFXXGZVKy+n4+ZPdmtUII8cL8V+69cqdOG9fJrNmybcu6NdJbbrVfn2e+TlRs363X\nhzfvsvyua3nd1rJnrq4HVsOPXQAASiCkBwAAKMb25z02/sdXjtplDQ96DyE0aL9L/yG/fPPk\n+WnFzV1suNW/fh76n4M7N078GI8Xzp4+eezEqbkFyfltmfU73Pj8T89fvnOxB9/05P5/vnHX\n1hskZ+4WFiyaOnHc9HnLlr7f/NCe3w19rlVmqZ6RffSz311/wq7JRQIKcn776buP3vvg+99G\nzFm0JISw6T5nvDvsxyvPfPqG/VoubW3B9BnzS3PkYh32yLf3X3BA6tI5nfHCvFnTJo8d//eC\nvOR6ALFYStdTbvjluyfrpEa06u52Fz377eNXtMxKS/xYmL/g7/Fjp81ZGEJIy2rd68UfHzt7\nq5lLpx5ukFGeJ49fekjLonLddj0zVnlnm/dYtgB+Slr9XpvWL+spzul9aKJQWJDz1cfvf/TF\n/42dW8wK2BGLuHdFZpNzryoqx1Iy+5+4URU2Zn2QVrPD3Uuf9BFCiKVk3LPcMuNlVRmjUJXc\ngJU3dlX5nXvEnR++fVf3ojbH4/H5s6bOzknOTW/R5YxPhr7QJjOtAs9YJLN+1w+Gf9P9oGVx\ndbwwd9K4SfOXLlqTklr7pBue/u3VG1cdydfyuq1NzyyhB1bDj10AAFanUv6NCwAAsA5ouGW3\nl7/qNuXXj59/5Z3vvvvupz9Gz5ozZ15OblbtetnZ2a3ab7H9dtvtcdBR3bp2KPlP3fU2PfLN\nnw774uWnBr/x5sf/98uUqdPm5ac2btJkw447HHjwoWeefVyzEiP2dgf3/H7i6S8/8cTr//3v\n//06Zuq06fHMuo2btd15tz2OPu38o3YtQ2QYS63Xe9CX51/++i39/v3bXyNGjhw5t7Bm8+at\ntt/jwCOPOeWYvTokqvV656/tH73ntc9/DvVbb95pj9Iff5XzZVz4wDvH/OujJ5/7z3d/jJ4w\nYcKECRPmx2u3adumbZu2G22+/TEnnbZHpw3Kf/xy2e6sO0ccfuJjDzz50pD3h4+dMLcgq1Wr\nNnt2O+X8i7tv3bRGCGHUoiUhhFhKVuvSffVhJR2vPDA881eivNFZe6xaoUHHq1NjgxLreGe3\nv7FR2efrb3zawPeWbNr7/kF/jh6zKKVus2bNOjbJKkdTK1bUvSsqNRodc3yTmi9OWxhCaLD5\nrdsut+Q1laTbvfufv9tziXL99r3W6ppXwihUVTdgJY1d1eHOPfCKh8eces4Tjz3/xn/f/3Pc\n5OmzFmZv0Kxdx51OPO307ifslxELC1ufdc89e4YQ2myWXbGnTq/T6eG3frni85efeumN9z7+\nZvyUqbMXprTZuH379u0332rXU84+o3PzmsXuuLbXbS16Zkk9sFp+7AIAUKxYPB6v6jYAAABR\nyx/UfM2V/gnST5xc1U2g+okXLlmyZMmSJRk1apZ9+biCllmZkxYX1Gh4+MIZQyqhcVSmeDzx\nq0/NqpFeUdNE4/ldsut8NW9xCOGY9ycM3rflGvdYSYdL3qqgplSxP+9b82M1WCvr8Ni1Vm8N\nAADWQWbSAwAAsG6JpaSlZ6SlZyy/bcnCP977ZEwIISUt+8D9V/t44/njB0xaXBBCqNW8W2U3\nk4oXi6Wlp6elV+Rk95m/X5tI6FMzNhiwxzry9SaqqXV47CrurQEAwPpMSA8AAMC6b8mi4Ycc\ncmQIIZaS/uO8BVvVKj7HHXz+vYnCtjfvHl3jqMbeveiFRKH57vc3LfuzCWAtGbsAAGCd5L+X\nAAAArPuyGh5+YIMaIYR4Yf6Rp/XLLSymztBnLzz7rfEhhJS0enfvX+ZVzVn35Of874Iv/06U\nj+23V9U2hvWTsQsAANZJQnoAAADWBykPPHh0ojTmlas33eekx4d8MXbS9NwliyeO/O2D/w6+\n6uQ9tzvjoUSFba96q9NqpquyPvhtxPgF+Uumj/v+igMPm7ukMIRQs8lRfTo2rOp2sX4ydgEA\nwDooFo/Hq7oNAABA1PIHrSNPVk4/cXJVN4F/kicv2PXsh74uuU7rfXsOffuu+mmxaJpENRSL\nrfzbP+PdCU+Vd4Jyh0veWusWVQt/3ndwVTdh/WXsAgCAdYyZ9AAAAKwvznrwqy+e671tm7rF\nvppes/W/bn78j3elXKxghwsHljuhhwph7AIAgHWMmfQAALA+MpOe9Vvhn99+8fvI0WPGjBk3\ncUZ67br1G2yw5Q67dOmyXaOs1KpuG1WvW5cO73wzfEksq/Um25x9Va+rT9t7bbqFmfRUHGMX\nAACsI4T0AACwPhLSA5SkMC83pGelVMC8ZCE9AAAAK0mr6gYAAAAAVDMpGVlV3QQAAADWVZ5J\nDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHS\nAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARGLx\neLyq2wAAAAAAAAAA6wUz6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAA\nAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAA\nACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAABGAmtEAAABeklEQVQA\nAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAA\nAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAA\nAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAA\nAICICOkBAACA/2/PjgUAAAAABvlbz2JXaQQAAABMJD0AAAAAAAAATCQ9AAAAAAAAAEwkPQAA\nAAAAAABMJD0AAAAAAAAATCQ9AAAAAAAAAEwkPQAAAAAAAABMJD0AAAAAAAAATCQ9AAAAAAAA\nAEwkPQAAAAAAAABMJD0AAAAAAAAATCQ9AAAAAAAAAEwkPQAAAAAAAABMJD0AAAAAAAAATCQ9\nAAAAAAAAAEwkPQAAAAAAAABMJD0AAAAAAAAATCQ9AAAAAAAAAEwkPQAAAAAAAABMAnRQ3Pv6\n7vE2AAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig11_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=acl00)) + theme_minimal() +\n", " geom_bar(position=\"dodge\",stat=\"identity\",width=0.7)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/96)) +\n", " scale_fill_manual(values = fig11_colors)+\n", " ggtitle(\"Figure 11b: Participation time per day in the most common secondary activities socialising with family visiting and feasts (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 11c: Participation time per day in childcare as secondary activity, by gender, (hh mm; 2008 to 2015)\n", "\n", "The data is in a different dataset then in the previous figures, this the data is in the *tus_00educ2*. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^child\",sex=\"male\",isced97=\"^all\")`. This time again we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility, because we need the time values. " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>isced97</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Austria </td><td>2010</td><td>1:09</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Belgium </td><td>2010</td><td>1:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Estonia </td><td>2010</td><td>1:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Greece </td><td>2010</td><td>1:10</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Spain </td><td>2010</td><td>1:15</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Finland </td><td>2010</td><td>1:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>France </td><td>2010</td><td>1:09</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Hungary </td><td>2010</td><td>1:26</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Italy </td><td>2010</td><td>1:10</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Luxembourg </td><td>2010</td><td>0:49</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Netherlands </td><td>2010</td><td>0:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Norway </td><td>2010</td><td>1:04</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Poland </td><td>2010</td><td>1:18</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Romania </td><td>2010</td><td>1:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Serbia </td><td>2010</td><td>1:10</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>United Kingdom </td><td>2010</td><td>1:11</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Austria </td><td>2010</td><td>0:53</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Belgium </td><td>2010</td><td>1:02</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>1:22</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Estonia </td><td>2010</td><td>1:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Greece </td><td>2010</td><td>0:59</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Spain </td><td>2010</td><td>1:07</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Finland </td><td>2010</td><td>0:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>France </td><td>2010</td><td>1:02</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Hungary </td><td>2010</td><td>0:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Italy </td><td>2010</td><td>0:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Luxembourg </td><td>2010</td><td>0:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Netherlands </td><td>2010</td><td>0:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Norway </td><td>2010</td><td>0:52</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Poland </td><td>2010</td><td>0:56</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Romania </td><td>2010</td><td>1:11</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Serbia </td><td>2010</td><td>1:11</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Childcare, including teaching, reading and talking with child</td><td>United Kingdom </td><td>2010</td><td>1:01</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & isced97 & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Austria & 2010 & 1:09\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Belgium & 2010 & 1:07\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Germany (until 1990 former territory of the FRG) & 2010 & 1:59\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Estonia & 2010 & 1:39\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Greece & 2010 & 1:10\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Spain & 2010 & 1:15\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Finland & 2010 & 1:27\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & France & 2010 & 1:09\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Hungary & 2010 & 1:26\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Italy & 2010 & 1:10\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Luxembourg & 2010 & 0:49\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Netherlands & 2010 & 0:54\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Norway & 2010 & 1:04\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Poland & 2010 & 1:18\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Romania & 2010 & 1:44\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Serbia & 2010 & 1:10\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & United Kingdom & 2010 & 1:11\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Austria & 2010 & 0:53\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Belgium & 2010 & 1:02\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Germany (until 1990 former territory of the FRG) & 2010 & 1:22\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Estonia & 2010 & 1:07\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Greece & 2010 & 0:59\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Spain & 2010 & 1:07\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Finland & 2010 & 0:51\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & France & 2010 & 1:02\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Hungary & 2010 & 0:51\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Italy & 2010 & 0:47\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Luxembourg & 2010 & 0:45\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Netherlands & 2010 & 0:43\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Norway & 2010 & 0:52\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Poland & 2010 & 0:56\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Romania & 2010 & 1:11\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Serbia & 2010 & 1:11\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Childcare, including teaching, reading and talking with child & United Kingdom & 2010 & 1:01\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | isced97 <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Austria | 2010 | 1:09 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Belgium | 2010 | 1:07 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Germany (until 1990 former territory of the FRG) | 2010 | 1:59 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Estonia | 2010 | 1:39 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Greece | 2010 | 1:10 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Spain | 2010 | 1:15 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Finland | 2010 | 1:27 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | France | 2010 | 1:09 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Hungary | 2010 | 1:26 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Italy | 2010 | 1:10 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Luxembourg | 2010 | 0:49 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Netherlands | 2010 | 0:54 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Norway | 2010 | 1:04 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Poland | 2010 | 1:18 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Romania | 2010 | 1:44 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Serbia | 2010 | 1:10 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | United Kingdom | 2010 | 1:11 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Austria | 2010 | 0:53 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Belgium | 2010 | 1:02 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Germany (until 1990 former territory of the FRG) | 2010 | 1:22 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Estonia | 2010 | 1:07 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Greece | 2010 | 0:59 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Spain | 2010 | 1:07 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Finland | 2010 | 0:51 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | France | 2010 | 1:02 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Hungary | 2010 | 0:51 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Italy | 2010 | 0:47 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Luxembourg | 2010 | 0:45 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Netherlands | 2010 | 0:43 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Norway | 2010 | 0:52 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Poland | 2010 | 0:56 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Romania | 2010 | 1:11 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Serbia | 2010 | 1:11 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Childcare, including teaching, reading and talking with child | United Kingdom | 2010 | 1:01 |\n", "\n" ], "text/plain": [ " unit sex isced97 \n", "1 Participation time (hh:mm) Females All ISCED 1997 levels\n", "2 Participation time (hh:mm) Females All ISCED 1997 levels\n", "3 Participation time (hh:mm) Females All ISCED 1997 levels\n", "4 Participation time (hh:mm) Females All ISCED 1997 levels\n", "5 Participation time (hh:mm) Females All ISCED 1997 levels\n", "6 Participation time (hh:mm) Females All ISCED 1997 levels\n", "7 Participation time (hh:mm) Females All ISCED 1997 levels\n", "8 Participation time (hh:mm) Females All ISCED 1997 levels\n", "9 Participation time (hh:mm) Females All ISCED 1997 levels\n", "10 Participation time (hh:mm) Females All ISCED 1997 levels\n", "11 Participation time (hh:mm) Females All ISCED 1997 levels\n", "12 Participation time (hh:mm) Females All ISCED 1997 levels\n", "13 Participation time (hh:mm) Females All ISCED 1997 levels\n", "14 Participation time (hh:mm) Females All ISCED 1997 levels\n", "15 Participation time (hh:mm) Females All ISCED 1997 levels\n", "16 Participation time (hh:mm) Females All ISCED 1997 levels\n", "17 Participation time (hh:mm) Females All ISCED 1997 levels\n", "18 Participation time (hh:mm) Females All ISCED 1997 levels\n", "19 Participation time (hh:mm) Males All ISCED 1997 levels\n", "20 Participation time (hh:mm) Males All ISCED 1997 levels\n", "21 Participation time (hh:mm) Males All ISCED 1997 levels\n", "22 Participation time (hh:mm) Males All ISCED 1997 levels\n", "23 Participation time (hh:mm) Males All ISCED 1997 levels\n", "24 Participation time (hh:mm) Males All ISCED 1997 levels\n", "25 Participation time (hh:mm) Males All ISCED 1997 levels\n", "26 Participation time (hh:mm) Males All ISCED 1997 levels\n", "27 Participation time (hh:mm) Males All ISCED 1997 levels\n", "28 Participation time (hh:mm) Males All ISCED 1997 levels\n", "29 Participation time (hh:mm) Males All ISCED 1997 levels\n", "30 Participation time (hh:mm) Males All ISCED 1997 levels\n", "31 Participation time (hh:mm) Males All ISCED 1997 levels\n", "32 Participation time (hh:mm) Males All ISCED 1997 levels\n", "33 Participation time (hh:mm) Males All ISCED 1997 levels\n", "34 Participation time (hh:mm) Males All ISCED 1997 levels\n", "35 Participation time (hh:mm) Males All ISCED 1997 levels\n", "36 Participation time (hh:mm) Males All ISCED 1997 levels\n", " acl00 \n", "1 Childcare, including teaching, reading and talking with child\n", "2 Childcare, including teaching, reading and talking with child\n", "3 Childcare, including teaching, reading and talking with child\n", "4 Childcare, including teaching, reading and talking with child\n", "5 Childcare, including teaching, reading and talking with child\n", "6 Childcare, including teaching, reading and talking with child\n", "7 Childcare, including teaching, reading and talking with child\n", "8 Childcare, including teaching, reading and talking with child\n", "9 Childcare, including teaching, reading and talking with child\n", "10 Childcare, including teaching, reading and talking with child\n", "11 Childcare, including teaching, reading and talking with child\n", "12 Childcare, including teaching, reading and talking with child\n", "13 Childcare, including teaching, reading and talking with child\n", "14 Childcare, including teaching, reading and talking with child\n", "15 Childcare, including teaching, reading and talking with child\n", "16 Childcare, including teaching, reading and talking with child\n", "17 Childcare, including teaching, reading and talking with child\n", "18 Childcare, including teaching, reading and talking with child\n", "19 Childcare, including teaching, reading and talking with child\n", "20 Childcare, including teaching, reading and talking with child\n", "21 Childcare, including teaching, reading and talking with child\n", "22 Childcare, including teaching, reading and talking with child\n", "23 Childcare, including teaching, reading and talking with child\n", "24 Childcare, including teaching, reading and talking with child\n", "25 Childcare, including teaching, reading and talking with child\n", "26 Childcare, including teaching, reading and talking with child\n", "27 Childcare, including teaching, reading and talking with child\n", "28 Childcare, including teaching, reading and talking with child\n", "29 Childcare, including teaching, reading and talking with child\n", "30 Childcare, including teaching, reading and talking with child\n", "31 Childcare, including teaching, reading and talking with child\n", "32 Childcare, including teaching, reading and talking with child\n", "33 Childcare, including teaching, reading and talking with child\n", "34 Childcare, including teaching, reading and talking with child\n", "35 Childcare, including teaching, reading and talking with child\n", "36 Childcare, including teaching, reading and talking with child\n", " geo time values\n", "1 Austria 2010 1:09 \n", "2 Belgium 2010 1:07 \n", "3 Germany (until 1990 former territory of the FRG) 2010 1:59 \n", "4 Estonia 2010 1:39 \n", "5 Greece 2010 1:10 \n", "6 Spain 2010 1:15 \n", "7 Finland 2010 1:27 \n", "8 France 2010 1:09 \n", "9 Hungary 2010 1:26 \n", "10 Italy 2010 1:10 \n", "11 Luxembourg 2010 0:49 \n", "12 Netherlands 2010 0:54 \n", "13 Norway 2010 1:04 \n", "14 Poland 2010 1:18 \n", "15 Romania 2010 1:44 \n", "16 Serbia 2010 1:10 \n", "17 Turkey 2010 0:00 \n", "18 United Kingdom 2010 1:11 \n", "19 Austria 2010 0:53 \n", "20 Belgium 2010 1:02 \n", "21 Germany (until 1990 former territory of the FRG) 2010 1:22 \n", "22 Estonia 2010 1:07 \n", "23 Greece 2010 0:59 \n", "24 Spain 2010 1:07 \n", "25 Finland 2010 0:51 \n", "26 France 2010 1:02 \n", "27 Hungary 2010 0:51 \n", "28 Italy 2010 0:47 \n", "29 Luxembourg 2010 0:45 \n", "30 Netherlands 2010 0:43 \n", "31 Norway 2010 0:52 \n", "32 Poland 2010 0:56 \n", "33 Romania 2010 1:11 \n", "34 Serbia 2010 1:11 \n", "35 Turkey 2010 0:00 \n", "36 United Kingdom 2010 1:01 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ2\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^child\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. We drop the values for Turkey as it is 0. Before plotting the values we need to cut the brackets from the name of Germany. " ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 34 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>sex</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Females</td><td>Austria </td><td>01:09:00</td></tr>\n", "\t<tr><td>Females</td><td>Belgium </td><td>01:07:00</td></tr>\n", "\t<tr><td>Females</td><td>Germany </td><td>01:59:00</td></tr>\n", "\t<tr><td>Females</td><td>Estonia </td><td>01:39:00</td></tr>\n", "\t<tr><td>Females</td><td>Greece </td><td>01:10:00</td></tr>\n", "\t<tr><td>Females</td><td>Spain </td><td>01:15:00</td></tr>\n", "\t<tr><td>Females</td><td>Finland </td><td>01:27:00</td></tr>\n", "\t<tr><td>Females</td><td>France </td><td>01:09:00</td></tr>\n", "\t<tr><td>Females</td><td>Hungary </td><td>01:26:00</td></tr>\n", "\t<tr><td>Females</td><td>Italy </td><td>01:10:00</td></tr>\n", "\t<tr><td>Females</td><td>Luxembourg </td><td>00:49:00</td></tr>\n", "\t<tr><td>Females</td><td>Netherlands </td><td>00:54:00</td></tr>\n", "\t<tr><td>Females</td><td>Norway </td><td>01:04:00</td></tr>\n", "\t<tr><td>Females</td><td>Poland </td><td>01:18:00</td></tr>\n", "\t<tr><td>Females</td><td>Romania </td><td>01:44:00</td></tr>\n", "\t<tr><td>Females</td><td>Serbia </td><td>01:10:00</td></tr>\n", "\t<tr><td>Females</td><td>United Kingdom</td><td>01:11:00</td></tr>\n", "\t<tr><td>Males </td><td>Austria </td><td>00:53:00</td></tr>\n", "\t<tr><td>Males </td><td>Belgium </td><td>01:02:00</td></tr>\n", "\t<tr><td>Males </td><td>Germany </td><td>01:22:00</td></tr>\n", "\t<tr><td>Males </td><td>Estonia </td><td>01:07:00</td></tr>\n", "\t<tr><td>Males </td><td>Greece </td><td>00:59:00</td></tr>\n", "\t<tr><td>Males </td><td>Spain </td><td>01:07:00</td></tr>\n", "\t<tr><td>Males </td><td>Finland </td><td>00:51:00</td></tr>\n", "\t<tr><td>Males </td><td>France </td><td>01:02:00</td></tr>\n", "\t<tr><td>Males </td><td>Hungary </td><td>00:51:00</td></tr>\n", "\t<tr><td>Males </td><td>Italy </td><td>00:47:00</td></tr>\n", "\t<tr><td>Males </td><td>Luxembourg </td><td>00:45:00</td></tr>\n", "\t<tr><td>Males </td><td>Netherlands </td><td>00:43:00</td></tr>\n", "\t<tr><td>Males </td><td>Norway </td><td>00:52:00</td></tr>\n", "\t<tr><td>Males </td><td>Poland </td><td>00:56:00</td></tr>\n", "\t<tr><td>Males </td><td>Romania </td><td>01:11:00</td></tr>\n", "\t<tr><td>Males </td><td>Serbia </td><td>01:11:00</td></tr>\n", "\t<tr><td>Males </td><td>United Kingdom</td><td>01:01:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 34 × 3\n", "\\begin{tabular}{lll}\n", " sex & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Females & Austria & 01:09:00\\\\\n", "\t Females & Belgium & 01:07:00\\\\\n", "\t Females & Germany & 01:59:00\\\\\n", "\t Females & Estonia & 01:39:00\\\\\n", "\t Females & Greece & 01:10:00\\\\\n", "\t Females & Spain & 01:15:00\\\\\n", "\t Females & Finland & 01:27:00\\\\\n", "\t Females & France & 01:09:00\\\\\n", "\t Females & Hungary & 01:26:00\\\\\n", "\t Females & Italy & 01:10:00\\\\\n", "\t Females & Luxembourg & 00:49:00\\\\\n", "\t Females & Netherlands & 00:54:00\\\\\n", "\t Females & Norway & 01:04:00\\\\\n", "\t Females & Poland & 01:18:00\\\\\n", "\t Females & Romania & 01:44:00\\\\\n", "\t Females & Serbia & 01:10:00\\\\\n", "\t Females & United Kingdom & 01:11:00\\\\\n", "\t Males & Austria & 00:53:00\\\\\n", "\t Males & Belgium & 01:02:00\\\\\n", "\t Males & Germany & 01:22:00\\\\\n", "\t Males & Estonia & 01:07:00\\\\\n", "\t Males & Greece & 00:59:00\\\\\n", "\t Males & Spain & 01:07:00\\\\\n", "\t Males & Finland & 00:51:00\\\\\n", "\t Males & France & 01:02:00\\\\\n", "\t Males & Hungary & 00:51:00\\\\\n", "\t Males & Italy & 00:47:00\\\\\n", "\t Males & Luxembourg & 00:45:00\\\\\n", "\t Males & Netherlands & 00:43:00\\\\\n", "\t Males & Norway & 00:52:00\\\\\n", "\t Males & Poland & 00:56:00\\\\\n", "\t Males & Romania & 01:11:00\\\\\n", "\t Males & Serbia & 01:11:00\\\\\n", "\t Males & United Kingdom & 01:01:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 34 × 3\n", "\n", "| sex <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Females | Austria | 01:09:00 |\n", "| Females | Belgium | 01:07:00 |\n", "| Females | Germany | 01:59:00 |\n", "| Females | Estonia | 01:39:00 |\n", "| Females | Greece | 01:10:00 |\n", "| Females | Spain | 01:15:00 |\n", "| Females | Finland | 01:27:00 |\n", "| Females | France | 01:09:00 |\n", "| Females | Hungary | 01:26:00 |\n", "| Females | Italy | 01:10:00 |\n", "| Females | Luxembourg | 00:49:00 |\n", "| Females | Netherlands | 00:54:00 |\n", "| Females | Norway | 01:04:00 |\n", "| Females | Poland | 01:18:00 |\n", "| Females | Romania | 01:44:00 |\n", "| Females | Serbia | 01:10:00 |\n", "| Females | United Kingdom | 01:11:00 |\n", "| Males | Austria | 00:53:00 |\n", "| Males | Belgium | 01:02:00 |\n", "| Males | Germany | 01:22:00 |\n", "| Males | Estonia | 01:07:00 |\n", "| Males | Greece | 00:59:00 |\n", "| Males | Spain | 01:07:00 |\n", "| Males | Finland | 00:51:00 |\n", "| Males | France | 01:02:00 |\n", "| Males | Hungary | 00:51:00 |\n", "| Males | Italy | 00:47:00 |\n", "| Males | Luxembourg | 00:45:00 |\n", "| Males | Netherlands | 00:43:00 |\n", "| Males | Norway | 00:52:00 |\n", "| Males | Poland | 00:56:00 |\n", "| Males | Romania | 01:11:00 |\n", "| Males | Serbia | 01:11:00 |\n", "| Males | United Kingdom | 01:01:00 |\n", "\n" ], "text/plain": [ " sex geo values \n", "1 Females Austria 01:09:00\n", "2 Females Belgium 01:07:00\n", "3 Females Germany 01:59:00\n", "4 Females Estonia 01:39:00\n", "5 Females Greece 01:10:00\n", "6 Females Spain 01:15:00\n", "7 Females Finland 01:27:00\n", "8 Females France 01:09:00\n", "9 Females Hungary 01:26:00\n", "10 Females Italy 01:10:00\n", "11 Females Luxembourg 00:49:00\n", "12 Females Netherlands 00:54:00\n", "13 Females Norway 01:04:00\n", "14 Females Poland 01:18:00\n", "15 Females Romania 01:44:00\n", "16 Females Serbia 01:10:00\n", "17 Females United Kingdom 01:11:00\n", "18 Males Austria 00:53:00\n", "19 Males Belgium 01:02:00\n", "20 Males Germany 01:22:00\n", "21 Males Estonia 01:07:00\n", "22 Males Greece 00:59:00\n", "23 Males Spain 01:07:00\n", "24 Males Finland 00:51:00\n", "25 Males France 01:02:00\n", "26 Males Hungary 00:51:00\n", "27 Males Italy 00:47:00\n", "28 Males Luxembourg 00:45:00\n", "29 Males Netherlands 00:43:00\n", "30 Males Norway 00:52:00\n", "31 Males Poland 00:56:00\n", "32 Males Romania 01:11:00\n", "33 Males Serbia 01:11:00\n", "34 Males United Kingdom 01:01:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))][geo!=\"Turkey\"]\n", "dt<-dt[,c(\"sex\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(sex=c(\"Males\",\"Males\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Females\",sex)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "sex_ord<-sort(unique(dt$sex),decreasing=TRUE)\n", "dt$sex<-factor(dt$sex,levels=sex_ord)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZWAURwMG4D2JuxtBgwQp7lDcobhDoQWKFSnlgyJFWlyKFHeH4g7FKe5uCR53\nI57cfj8Cl93TvcvO3l54n1/Zy+zc7Ozc6IqEpmkKAAAAAAAAAAAAAAAAAAAAyJOaOgEAAAAA\nAAAAAAAAAAAAAABfCyzSAwAAAAAAAAAAAAAAAAAACASL9AAAAAAAAAAAAAAAAAAAAALBIj0A\nAAAAAAAAAAAAAAAAAIBAsEgPAAAAAAAAAAAAAAAAAAAgECzSAwAAAAAAAAAAAAAAAAAACASL\n9AAAAAAAAAAAAAAAAAAAAALBIj0AAAAAAAAAAAAAAAAAAIBAsEgPAAAAAAAAAAAAAAAAAAAg\nECzSAwAAAAAAAAAAAAAAAAAACASL9AAAAAAAAAAAAAAAAAAAAALBIj0AAAAAAAAAAAAAAAAA\nAIBAsEgPAAAAAAAAAAAAAAAAAAAgECzSAwAAAAAAAAAAAAAAAAAACASL9AAAAAAAAAAAAAAA\nAAAAAALBIj0AAAAAAAAAAAAAAAAAAIBAsEgPAAAAAAAAAAAAAAAAAAAgECzSAwAAAAAAAAAA\nAAAAAAAACASL9AAAAAAAAAAAAAAAAAAAAALBIj0AAAAAAAAAAAAAAAAAAIBAsEgPAAAAAAAA\nAAAAAAAAAAAgECzSAwAAAAAAAAAAAAAAAAAACASL9EAAnSnh28WkTFMfFYAY+VrJDfopSaVS\neye3oiXLVKvV+IdRkzf+c/Jjao6pDwIAAMxARsJJZoNSZ9kzU6cIhJaZdJFZBmrOfyxwAlJC\nZjMT0OZyOI+Ro4QDgABQ1QCIAnvesmTni6ZOEIgaqm7uYu7Ml0ulEonE3qd7uoL1L6JDCZOP\nUwAAjIZFejBLhyt4qCw9PkjNNnWiwACZieelUmneuZv6IdmMIjd3NE2nJseHvAt+cOfylhVz\nB/dqV8rNv/fYeQ/jCvl1MKaqNFBZKSErjIN8AxAP/B6JQvYCAMDXCWNVACgccjPedWk5PZem\nKYr65egqG6w7gSm8uv7vynlTe7dv/E35skW8PWytLBxcPUuVrVi/aaeJs/8+c+sFXYDIc1JD\nD22Y36tj6zrVKhbxdLG0cSwaUL5eoxb9f55+4ubrAqacaOTv75xdMXdy15b1y5cu4eniYGFl\n5+VXvGLV2r2GjFuz8yhu4dOLaLmS85ZMAADOPhz+g6YLUneZLPLCJyczcs+ySQc3bpm/99jY\nNqVNnRwAAAAAAAAAAAAwJxv7Nr2amElRlHf9BX/W9DB1cuCrc+WfZfMWLDh5X+1xa1kxnxJi\n3gY9u37xyIKplFfl1pMmT/m5RwOZIZErsmOWjv5h1sbTCdm5zM9D3rwIefPixn/ndqz8w7V0\n3Vmrdg5vXsLQlBON/MXJ9b/PmX/g2huVz6PDP0SHf3j28PY/G5bIrX17jvzl9xljytpbGBp/\noSdAucIVTQBgAsunPTDTyAurrE+vxrUL/OXAW1MnxDAJwYOYF/73fRVv6hR9dXAKjIN8AwAA\nAAAoxApNh7/QHAgAEBVzb+bQg+8pipJIZIv2jTB1cuDrosiKmNGz8re9xmpYSVUT9ej02J4N\ny7Ye8yKF6/NjEp8daRMY8OuaEyqL6Crig2+MbFm64/h1qQoD7h4kF7kiJ27p8Gbl2/2kvkKv\nIicjfOfi/1UpVnvdxY9c082NWfciBCtXuJMehNBx2KgS1gZdRKLK36pAu4OoJL1ZvjIkxRwj\nF78mQ0ZWttN1yVtWWkp8fPSLB7cfvYlS+RdN5y7vXbPys7cDSzuRTCMAAAAAAAAAAAAUCor0\nkR0W5v3pXX95Xx870yYHviqK7Jj+lcvveplo0F5v/l1ercSNUy/+a+xhrTtkevS5OrW6v0rj\ntPJK07lHFw+t9jHl2T+/yiX6w5OLnFakTmpRacGlCC4x58mIfzCsebmoU8G/t/TjvldhJWS5\nwiI9COGnOQvauugpl/C1oDMntJ5mlpGbg64z54/k1hVOfHNj5dL5M1cdzWZcf6fIjh/X/s+B\nrxYRSyAAAAAAAAAAAAAUEi/Xd90XkUpRlEQimb6zv6mTA1+Xdf3rqa+kFq/ZokPL5lXL+ru5\nOqQlxIQEPTx7+tjZO++YYTLi7nSo1u1e0OEyNloXSXMzQ/rU6KKyiG5hV7TbgO6VA0r6Oss+\nvnv34OLBA1eDmQGC9o1vW7Phmf/V0p1yopHvGFBDfYW+WLWGdb+pEBgYWNxN/vrVyxcvXty+\nePljan4CaEX6zA7VAt686V3EXnf8hZ6Q5QqL9GCWXCrXqOPI+pHYSTlcmwSmRufEz+tdd93r\nJLOLvPBxLlV3yt+HB/RYV7P5iMis/MfpJAQtnvpo0qzKbiZMGwmmqjRQWSkhK4yDfAMQD/we\niUL2AgDA1wljVQAwa4qc2J6/ns/726Xs9KFFHUybHviqhF8YPvyf18xPrN1qrd69eWCL8ioh\n//fHsteXd48ePPwUY+3gU+iJ1v33vt3fR1v8hwc1Pcx+ZG+TMet2zf/Rm/XU53kfbv7To93A\n2/EZyo/OT2p24oeYdu66blslF3niy6UDd75ifuJQrOnaHet6NyilEjI3I3zzjJ+HLzicQ3++\niy83K3pUu9m9H83VkfJCT+ByhUV6MEuNdp26Yeo0gEHSo4OOHPhnyaz5t8NTzSvywq1Iw59u\nH3lWtM1y5odbx12adb6rqZJEiKkqDVRWSsgK4yDfAMQDv0eikL0AAPB1wlgVAMxa8NY+j1Oz\n8v5uv2aIaRMDX5sJfbczN62dG/4XdLamq5XGwAGNeh9/3vS35lUX/pd/i/n7gwM2fugwqJiG\ni0vSY/b13s16m3uzWafPTWmlHrJYnZ6Xg4q3KNXoalJm3ieK3E/Deu0KOfejtpQTjXxhxz8U\ndP6jc+39O9x/eShA09uoZda+g+cdrBUwsPKQrcoP4x7Pm/h0/PyKhe0WPu4ELldSPtIMAKAq\nO/XJvm1rZ0wc3b198/IlfBy8y/UeMY2vRXSikX9t/Fsvm1DKmflJ9J0FpkoMAAAAAAAAAAAA\niB+d+2nQr//l/W1pX2VVQx/Tpge+Kikhi3ZG5i8HSCSSP84d1LaSmkdq4TX3zK3mjPcy03TO\nzCGnNQY+O/I35ltiXQJHnJ6sYRE9j7Vb7f0nJ0ok+c+kCbs44uKXZXUhI89KvjIvOP9JORKJ\nbOGlHRpX6JW+GbxlQW0v5ie7x13TEb5wE75cYZEeAIhIfD2lx4BhMxf8vf/E+RfvI3MZV2+J\nPPKv0OBp3zA3s1Juv0rPMVViAAAAAAAAAAAAQOTCLgy59mWlMGDASrw1A4T04q+tzE2Xsr//\nr7q73r1kVv6b9/RmfhJxZUKW2tqCIidu2JEPzE+mnZwr11nAverN/KtKfgJoReaEVa80hiQa\nedyTxczb6B38xw8r6agraoqiKGrQZlaexNz9W+8uhZUJypWRKQUwQ5nxbw7v2b336IW3ISGh\noaFpUqdixYoVLxHYsf+g7zs1tDGTS1ZeX9y27uCVFy9eRKRKiwf23r9puI7A2Ukf/z129MiR\nU0/fhUZEREZFJ1o6Orm5+VasXrNug6bd+3QJcNF1ERDQitQ7Z48dOHDwxpO34eHhERGxMjsn\nNzfXYuWq1q/foEWnXo0D9dfR4ufVqBFF/cf85GZyVlkbPQ3Ep9DHe/ceuXn/4eMnT0OjE1JS\nUlKzaHsHRwdHx6KlyleqVLF+s/ad29S1lxW0g25QmeeXyQtA5JMLGzZuvfIw+MOHDyFhcXYe\n3j4+vsXKVevYpVvn9t+6WhpTbQl24vhBZz2/ce748eNnrz2MiIyMjIxKzrHw8vLy8vIsValu\nu3bt2rRq4KHzalCOkt/d3rBu/dnbL0NDQ0NCw7Jl9q5u7mUr12rQsFm/QX0DnC0L/hUmociK\n/XfPtm17Trz6GBoWFpaUY+nj4+vnX6pVt34D+nUq6mChvsuHhxf27t177MKdiKio6KjobLm9\nm5t7uap1Gjf7bsiQLp6GlzqxtUQkflaUUIdJqD6MenF9//79xy7cCg0LD4+IyJI7+fn5FfEv\n0aRDj969OpXSeb2wXmZW5xBm2qqGcKNGv7797+5du87cfBYZGRUdHZ0jt3d1cy9dqUaDBk37\nDupf1s1kfU6iJZxEroqziyWSypxc5qSGPdqz/8TNmzfvPHoZExefkJgksbJ3dnb2KlauVq1a\nDVp816tVdd0TZwVELgHkzh2RWsVs+36FozE14cjLUETzxOTDQDApxcurx7bv2HXl0ZvwsLDw\nyARbVw9vH58iAZXbd+zU8buW/o4axlDiR3pGVJh+gnlV3ZSZDxI52vjzv8q/h076RkdInYgO\nJcQyThHD/IzYUlJARw9+ZG42WT2U445+zZb5W20Pyfx8i1pOxvuDsem9PGyYYWIf/C8iK1e5\naefVf2xx/UvdfdZ0/aX2GuXmi+XLqUkb1IMRjTzyHCtbinbpojdmiqKcAyZT1FLlZmbipTQF\nbWvay26EGheoMEG5ogF4p8hQKaAn4tP5/YaMxAvM+GvMe6Q7fE56yIJhrWy0Vyu23hUXHAvK\nC5wef4L5rwuJGeoRvjvclBlmRfgnjilv55r/s3Qu+ReXo7v/Kevz5wl3hrWrzPyXvfdgbV+U\nlfRqztA2NjpHpFKZXdMBU+6Gp3JMvEGiH3bQ8dVMU94niSryzxTZp1b/FuCkq4svkUirtvr+\nxMtE3TGlRu9U2bFEpwtGpkqNjyWrKeJeFFkpjNqqksIFIck6wie8+PfH5t/IJPrbaUvHYiPm\n7UrMUehOgEFlPvnjLL3fqxKP+lforTT4KgBcvpd5En99+zm2pOCTneuW0vHtcmvfnxftT8vV\ncxxMfJ04gU4Brbi+Z2GdIna6v0Jm6fHDtA2RmfozQiUBB2LT8j7PTHw4pHU1Hdkilbt0m7g+\nWV8x1otcvuVkvNN4aNc3TfCz1Xq1jczSc9puVmwZcY/GtC+nI2GWjqXmHHzG/ZBN2BIJ9rPi\n/TB56QNwF//81PffltCRconUpsXwRZFZubRaB6n20qe6I+exsVhcgfUutGWhKdyPcU9TP+a+\nA69GcN9XBZffo8mrGs0IN2rJb852r+qpI3Kp3LHzr6sTsnUdHZfsValIW18K033cREs4j31F\nJdN2sbRFYvJhRR7eM0cp+c35IR3qWOqbgXIsXnPW7tskDo1cAgieOwLl33z7fubSmGrMFr3V\ngkiaYCZytQFNF7Rs897hj3s2nvkvC7tKmYYcTfB21syVY/Ffmf/V8b2GHogIy4ke7HlL5RRN\n7IN9zUu76Dheqdyxz6Q1UVlaqyARZgXvM6IqiI6GzLTqJp0tpAeJ3KXHHVeeFGvnJrpz3yRD\nCV4iN4h45mfEkxJa7QRRFOVT56TBmatGZVb8VnKW/n2+mF3cibnvkKB4lQDnu5VkBqiznNts\nWG56AOO2N4lE9iQ1Wz0U0civ/xTIjLz+hpecIqdpPytWfr5Nz+G4owrjukNsPI8LDCJ8ucIi\nPRAgskX66NvrqrGvWNFIIpF1+313rlgX6TMSbrf0U62YtPW9nu6ZUtyW67W9MguPydv4n2/K\nTn1+VYtF7EGLEevoRCOnaToj7maXal4UN1K5y+iV13TEJv5F+qT301VSuEp7PLfWDNE9zFDn\nUqHXM62NLk0bWOYFWCHmsQAYt0h/e9tkL0tOVwK6Vmh3LZZTBcvjiRPgFGSnBQ1qUJR7Uq3d\nK2+6G6M7BzSO9mPv76rhaq0tWib3aoMjtc/FcCHkIr0i99PcAbX1fpFEIun8x+W8SKKu/R1g\np7/hkEgkQ3cHczle07ZEwvysSBxmwfsA3J34szfHasHe/9v9b5IMmpzit7F4f4x1cV6Fn29w\nPMbcrAjmeZfbBBg2U89m9CK9kFWNhiQRbtQebZnoye3H5Vb5hwjt42feF+mJlnB++4p5TN7F\n0hiDGIYVhDInz/W/hzvLDbj1p3rfv/ibxSWbAHLnjkT5N9++nxk1phqzRW+1IJImmGieKBW8\nbPPf4VdkVLFnXTEwJSiBe3ZNKMa6La/9wXes4+VvkV5s5UQ/TYv0l5cMs5dxqpBtvarvf6X5\nCiSxZQWJGVEm0qMhc6y6BcgWooNEg9yZmH/rfLnBV3UHFn4owVfkBhHP/Ix4UqJ+gig+Fumz\nPj1iRmjlWM+g3Q9/48HcvcuzWJUAfTxtmQHm6byfjWl1edbaRP+HGrqsRCO/M4H1TItqMx5w\nilqRbcW+nCve2GFPARfpSYwLuDNJucIiPRAgpkX62PsbVC4C0q3pzEsiXKTPTgtq4avh0iGN\nfa/rq4bIOVxUrqLtDB6uX+PoZB0f5lcbf7M7mcjToi438rKlDCGRSIdu0dpHF/8i/etdTVRS\neDtF8yzGy02DpYaXLoqinEv/mKG9ZTeozJNeIea3ABixSB+8e5hB327r2ehKjJ46lt8TR/oU\nZCTc/a6U/qc8qZBZei0+F6ojE9RH+0lvdrpZGNBA+Lf+W3c+6ybkIv3GAeU5fpdEarn0YWzs\n/Q0+3MauFEVJLVyvJWXqPliTt0QC/KwIHWYB+wDc7Z/U0qBkWznXvvz2EPMTHZNTvDcW2enB\nzDlTa5eWHA8z5Gx3Zvylev5rXHblMW6RXuCqRgXpRu390cl6b/9lHV2b1dqSyu8iPdESzntf\nkRZHF0t9d5NX5kQzh6bpu8v7SwyPufrIA3wdGrkEkDt3JMq/+fb9zKsx1ZgteqsFkTTBRPMk\nDy9lm0SH/8L3ZZj/LdXjDMfsykg4x8wumaV3KHsJisdFelGVE07UFulf7xttUOmS2wRsexSn\nHrGosoLQjKiSAKMhs6u6hckWcoNEQ/VmrDb9/FzDL4JJ4KEEj5EbRDzzM+JJifoJovhYpE+N\n2sGM0NF/kkG7r2Y/N0X5CMY8iuw45oq1VO6cxPnCqccLazJjrjr9vkoAopHTNP3+WDNmGI+q\n67jEnBrJenK+hV0ljklSV5BFekLjAu5MUq7wTnoozDLiz1evNywsM5f5oa13+e69etSuWNLX\nyyExIiz40bU9uw6+ScjM++/FGc1nBK4yRWJ1WdOz+dnwVC4h3+0fWn/kBpqmmR96lK3duWOH\nGoHFvdztEiMjgh5eO3To8HN2hCdntO3t8Xj3iEp8ptsM5WaFtavY+nJMOvNDK9dSnXv1alA5\nwNfHOe598PMXL+5dOvrfizhlAJpWrPuxZqPmMb3VLmI1C1tnPGRuWtiWr2Gv4TLJrJTbzYdv\nUbBLl7Vbub592pUsWrRIkSIuFllhYWFhYaFXju24/CKWGSwxeFOXjRNODC7LMUk6yrzM0q9O\nnTp5f+dmvL3zMFr5L/cqNQKs89s1O8NfnGPyApAUvKPO9+uZn9j5fdOmUfWi/j6KlOiQD0EX\nzlxNyFYwA6RFX279Tc+wkMNOWq4E5/3EET0FtCL1p2pNj75LZn4okcgrftuhS9tGJf2LuFjl\nhIeFPblxdv+hc1EZOcowuVlR/2tdqVRIaEdvTpNruRkfe9YdEpf9uYHwrtCwV48uNQNLeLlZ\nhgS9evH82em9Ox9HsUpCyOlRs5/3mVLe1dCDykM035iuL+y4eOvzvL+t3QJ7fd+nRb1vvJ1l\n714+f/L49q4th2Ky85tFWpE1sXGHZRl3lK9EcihR6/u+vRpWK+thnfni2dOHdy9s23c5S5Ff\nfhTZ8YN/u/N8VX1tCRBbS0TiZ0UJeJjc+wDcvdzYrdvcMyofSuWODdp3a1IzsIifV05i5LvX\njw7vPhAU93kGMzPxVtuGqo9d0YhEYyG3DphTwXX048+BMxLOrApPHaFpWkrFvnEXmZvD5tfl\ncgg8Er6qYX074UYt7uGaqlPX5tUPUpld696DevboVLVMcS8n2YfgVy+e39swf86Vdymsozs1\nfNHr3uMDnLREyQ+iJZxEroqki6VCJJU5ucxJjTjQ+JedKgfoFtikX/v6xYsXL+rvkRoV+v79\n+1undpy4H8EMc39Vj/W/xg8pYfDkkWAJIHfuSJR/8+37mV1jqo3uakE8TTDRPOGrbJPo8Nf4\ncyi17VflZsjJCdn0AwsOewdvnsLMriItV/txfmewoQcinnJinJQP22v12arMLrmtT+uuPRpX\nL+3m6pQRH/Hh3fPj+/Y9Zf9MctJfD6rXuHr0/fLsp0aLJytIz4gK008wr6qbMvNBoqEyEk7u\njk7L+1sqs51cytmg3YkOJcQzTjH5/IwIU8IXuVWR8ePzXwpj59nDkL0VayNYv6AmTlbMzbTY\nQ5mMo7Nx7+zI+UE+Rb6rSP3vjnIz7EgwNaOqYJFTFOVZZyhFnVduxj397XbKgFoOul7lQ1HU\njT//Ym66VhjLMUnqjO4OCTYu0ME05YqHqwsAVIjmTvqZdVhPKpPKHQfN3at+AbUiJ2n9hC4W\nXyoFqYz1Yzb5nfT7NvZT/i2RWjXs2G/mX+vPXb317NXb6Pg05o6ZiddKWLOGB1bOVRb9c139\nWixFbuqhpeNUroaTyl0OhBlzH7ahxHwn/b4fWON2idSqx6SNml5qlXt1+1SVDPSoNk1jnCK/\nkz7s/ASV5Pl+u0tjyH/7BrAKjIXr5FWHtTz6RvH0/O4m7IGog99IbWkwuszHB/3I3LHPS63X\n7XKsNHgvAIbeSW9tkT9vYuNRY8Wx21nsL8/+FLZn3k8uao9FrT3lirZjJ3fiaAKn4Mq0eiqH\n5lWjx8nnGh7qmJP+cf7QFiovpXMpN1zbaxpVEtCmwecGwsK29J/bNeSeIidpzZjmKokp2vqo\njtzgjt98U7k+WunbEUvCMlTfIJUWea1DcQeN4SUSef/Zu1LUCnzUnS1l2Q/rs3Xvoi3BImmJ\nSP+syB2m0fUhdxkJl1RuqZFIJN8O/PN1kuolzIrc1KOLtT6HWdsdJITqnI+nOzODVfzllt4j\nzfr00Jox5LNx66h3F92MuJPetFUN6UZNyblM51OaKmpF7qe98/uq3ChcqvtZjanl60560iWc\nRF9RhF0skVTmNMnMWV2TNVS0dqm+7uhtTc85Vdw9uor59keKorzrbi/4oRFKANFzR6L8m2nf\nz0wbU/Vs4VItiKEJpgkPakiUbf46/IrW7Ad9T3ut+UHrKgZ4sXJgzhvVvTgO0DgeiEjKCVdq\n85ZKjX6cE6I2hqIV2Ve3zyil9szn4h3XqsctkqwgNyNKCzgaMq+q26wHiUZ4ub6BMhmO/r/p\nDS/kUILfyA0invkZ8aSEJvZOeqPFPZ3MTIylfVWVALHP+jEDuJbdyD3y1MhNzH0d/EYLGXme\nCewLlfzbztX96Pr4J5sc2TXexDvR3FOlK2bO3SGa5LhAGEaXKyzSAwHiWKT/eHIIM4xEZvPH\nvyE64nyy8UdKE5Mv0jt8eVJW6e/GX3uj6w0l8+p6M3e0929/U+fTeuOf7q3Mfr2ZR7V5HA+k\nIES7SJ/wYiGzcpdIpCN2vNARPuraYjv2G8s2RqaqB8uIP12HrcuEuwYfmBYFXKSPuLm5iJXq\nI1WmPlJ9XQpN07QiW6XvNfbUR92RZyRcZkYukUjeqY9180IaW+b5XekkUQAMXaRXcgns/yY1\nW9tXJ746XJ49QSCV2WuuaUmeOJrvU5Aee1TlzXB+zX5THwkw3VzeWyXrOmzT/B4sjWM2C7sK\nB4J01RIb+5Zihrd2aaEjMHcCLNJ/+/sxbXGmRp7Q+LbF4Tu1PrUv9MwYZkiJRBKu5YVtImmJ\nyP6sSB6m0fUhd383YDWUEonkh9V3dISPubvGXdMTJjVPThGrc3Iy3jMHjTau7fQe6avNjZkp\nqTFH61s2ODJikT6PSaoaARq1PI4lur1K0/rLomn6yDDWYxXtPPtqDMbXIj3REk6kryjKLpZI\nKnOCVUr6W2aVIrVwPazzqoLIa6wJF7lV0U+5BZoBIpcAcueORPk3376fmTamtFHVghiaYKJ5\nQmgegMcO/93fKjMDBPQ5r/vYaZpOY98qYOPWUf13xe8ivSjKCXdaFulbzdD1NoH06Cv13FTf\njD73lerigRiyguiMKC3gaCiPeVTdZj5INML6iu7KJJUbfE1veCGHEvxGbhDxzM+IJyU0TWel\n3FWZG283+Lq2aIlTZA0LYD34ocxA1Yb19a5GzAAlu17kHn1OejBzX/WVWqKR50n5eEjlmqFK\nPaeHaukIBZ9aptLLKtdnBfck6ca9O0R0XCCEApQrLNIDAWqd3a4//zLeKCtuRGn8Bg5jCUV/\nb9ZVw03/uqc34Qd+KEOpMfkifZ4qIzbovuIp+cNKZni5ddFTmgaKKmIf/M2s/iQSydrQFI7H\nYjTRLtLPq+LB3LfiqFN6dzk7ivUoqm8m6Orfk2D0In3Kx3uLxvewVnvInmvgRI3hU6O2M4M5\nlZjA5VtOdizO3OufGM2X9BpX5mm+VzpJFADjFumtHOs+SlG9lFtFwvMdDuzec5mB59SDET1x\nNN+n4GQv1tDaxr11TJbm/j3T/oGsqtvGtY3GfTQWsyn/ReiOPOvTfeYcnFTurDc9XJBepHet\n8Kvun8/Oxn4quwT026kzyYrO7jbM8OcTNDSO4mmJiP6siB6m0fUhR2kx+1WuNa41Rf/tAu+O\njFBPlcbJKaJ1zuqqrFp6fYSeJm+Mf/6tABKJTPc7NbkwepHeJFWNAI0aRVFSmf3uED0/2OzU\n5zaM/oaFbVmNwXhZpCddwknkqgi7WOKpzMllTnzQcGYY/1b63/LezYN1c+HWKP15ogOhBBA9\ndyTKv5n2/cy6MTWuWjB5E0w0TwjNA/DY4U+L+YcZwNKhht6e4Z0J3zB3qbtEQ0njd5GeFkE5\nMYCmRXq/Zkv17vcp9LgHe9XWq/Ya9WCmzgqyM6LCj4bMouo260GiURQVGNe4t7uo4dpZFUIO\nJfiN3CDimZ8RT0rEZvNPVZhplkitD6j1EB78UY0ZpvqfDw36CubMklRmK2TkSlE3lqncHG/p\nWPKH8dPXbdv73+3HH948v3Dy4Kq/5vRpyrpUhaIo3yaTUgt2OTIT914E0Zz1EbMAACAASURB\nVHGBAApSrrBIDwRof2yUoeqt0Xz9st6xRPJH1ls0bNzb6b7uJk926mN/tbuKxbBIb+/XLUlf\n+o91KsHcpfEyrZe5qTg9iPVgt/Ijb3Dc0WjiXKTPSLzE7K9b2JZ9m6717mGlzORbloz+nL3P\nsIIl32AqC1HNho/RfeHLmJ+Hfd+na81Af5XBSR6Zhceut5ovwo192pMZst5aXfcWKL3cwHoX\n0QYtQxTjyjzN68QHoQJg3CL9j8c/6P1qmqYvT6zO3MvCtpx6L4roiaN5PQWKnESVyzz/d1XP\nUDxPdtoLlWfAznmr4YevXsy8663kEv+0Yqx3vqo/IdAIpBfp576I152A98ebMcNL5Y43kjN1\n73Kha0nmLjujNZQK8bRERH9WRA/T6PqQo1u/suaUbdxaJ3Cb2vmdPdVIaZmcIlrnhJ7vzgym\n+8K49LijzKcXupSZySUluhm3SG+SqkaYRo2iqFK9OD2lcHyR/KlnqdxFS5p5WKQnWsIJ5aoI\nu1jiqczJZU7I2ZbMMHVXP9cb7Yn6vsxdxqo9ONoghBJA7tyRKP/m2/cz68bUuGrB5E0wuTwh\nNw/Ab4d/sI89M8yfb3VXQYpWLvk3fEuk1nc1XavK+yK9ycuJAdTmLaVyF45rS3fnNmTtKLMP\nUrtV17RZQXpGVODRkLlU3WY9SDRCetxRZno2cbgiQcihBL+RG0Q88zPiSYmY5Oyb3IydK1SF\nERouzrs6kPXDrLtKf1+dqTi7i6vygAGikTNF3Nxe34d1zZZuEomszajlcbxe/sOxF0F6XEBY\nQcsVFumBABEs0l8fFsgM0JDbEI6m6dNdSrKTIIpF+p7nQ/XEq8hk1kdym4CYbK6XDWUm35Az\nxgN2Xv057mg0cS7Sv9zQgLljucH/cdzxN//8kYBU7ijwdawaH+lsHInEYuzBt9q+KOnN9hkM\nB7XfWs30eg/rKS7cp4r0l3mapnmd+CBUAIxYpLf16MmxEOVmhnqz9536TrXAEz1xNK+nICHo\nV2YAG/fOXJKa5xL7LZIVRt/UmwCKoqY80/UmJKVTDVlz4uJfpLdyaqg3AQnBQ5m7uAbqv2vk\nyeJazF00DL3E1BIR/FkRPkyj60OO+niybsRsu09rta8i4dU0lYRpnJwiWufkZIa4MJ8d6t5J\nR5z3p1dlxtmJ21Uauhm3SG+SqkaYRo2iqPXc3ju+v5IHI1qCi/RESzihXBVdF0tMlTm5zAm/\n2oYZpsIoDT0HoogkgOS5I1H+zbfvZ9aNqXE9DZM3weTyhNw8AL8d/md/12WGKTPgko60JX9Y\nzAzsWV3zQ2t5X6Q3eTkxgNq8pV/T3Vx3zY4ryV5I6HMrUiWMabOC7Iyo4KMh86i6zXyQaITI\nm52UiZFILJI5XDEg5FCC38gNIpb5GTGlRCTSom4NblxMpZw4lugRqel27Qvsy24a7Xpt0HdV\nY7/J4jH7xYtEI1eRk/5hamfVul0juXXJlf8alhIuOPYiSI8LyOGlXKleIgdQOGw9EqL8WyKR\nLerNqTKiKKrWnJ7UwblkEmUkmYXH8oY+usN8Cl/1Oj1HuelTf4E7+3kmOlg61PnZ135pWEre\nZlrMvsScrc5yDbdZF26Xlr5kbg6aVkVbSBV9R/Z9fTdGuRmelVvUireFc8HIrfznHLjwv3Yl\ntAVwLNlv+nSDo/30+pMRieFS5nknngJQ6bepHH9+Uku/Vc39upz8qPzk1I53f05lvbBQyBNX\nQK83nmVulv/FgHRXmzmM2vyLcvPjoQPUstq6d5Fbl5hZ3pVL5FZuVtxTIgbOpcfpDSOVuzM3\nSw5ooncXSzdL3QHE3BLx+LMS+DD5rQ9z0p7vjklnRr6mQ1GO+zqXmdbQaf6VpEzdwYjWOTLL\nIgureQy+HZW3mR57eGtU2gAvW42Bp614ydjRc0WLIgYniw+mqmqEadQs7asN9uV0Yb6tnRCj\nTtIlnFCuiq2LJarKnFzm2HizhodBmwZdmna3sbvqm4bJIZEAoueORPk3076fuTemKjj2NEze\nBJPLE/EMA3UL+H6hfHTDHJrO2/xwaJJiy3Vtv/D7M9YxNzuv6q4lIM9MXk4KouuS5hxDSuSu\nqzsXb7X7tfKTuyuDqVpezDCmzQqiM6IC9xPMpeo260GicSLP5RczC/sqDjKD+3tEhxLiGaeY\nan5GzCkRHq1IPfT39HG/LfuQkcP83Nq19pE7W70sNPxac9JYIS1dDDtMF3YNkJqrECxyttxL\nO9fvOx/KJdqcjLdbN6ytXXlmdS8b/aH5JvC4gBc8liuuDQaAGaFzU7ZFpyo3rV1a13LgWtk5\nlRpvpfaWbtOy9eznqelXzRR94whzs/zEmgZ9RYfqbsq/aUXGobh0HYELq/UfkpV/S+UuoxnP\nO9Kt4sRV+xjMboVeIrVo1GfCpaDn/2sXwG/MOWnPxy15bsSOXMo878RTAEb3L6U/0BcNZrHu\n/Ph4wJgMV2H0iSugR8fCmJtt+2q9ZESdQ5ERzFcDpkXt0NFFzeNY7Bcz+61y5lxJ9XF8GrAb\nOpeqLhz20NM4irkl4vFnJfBh8lsfpkZtpr/M7VIU5eD/q78BVZZsSm1PvlLCZFCd02Yh61FG\nS/9+qTFYSsjS44y89Wn0t5+laUY9pqpqhGnUHEuMKlAq+Ua6hIunq0C0iyXmypwLjpnj4DeO\n+ajq7NRn7Su3WXvyMcmkEU8A0XNHovybad+vEDSmTNx7GmbXBHPME/HU7bpZOtafUspJuZmZ\nfGMBI+UsdNa4ffl3T1raV1lSg8PogCdmV07ySCQWv5XjtBKcp/rUxszN6CvX1cOYKitIz4gK\n3E8wl6rbrAeJxgk/G6n828qpgY6Q2hAdSohnnGKq+Rkxp0Rgdw4uaxTg03XsYpWVVPuiLc6+\nvNTYTcs1sjR708AfnEq/NFNlm2jkX6S8P92rbtHmg2e9Ss7iGPPtfQtrFy05cuERWn9Yngk8\nLig4fssVFulBCCfi0417XsS1oeWM+Lr0uKPpuYy+V/F+3PeVyl2ZT6QXA6eyLfWGCT3IuiSq\nUVknbSE1f0UFVvh7n7jW3YVGbsa7eyn5R23r0dNS7H2MArF2cC0WUK5ei67TFm+4+Sr60s75\n9Yva69+NIzrrw8v72xdNqFOm1gWjZma5lHl+iacAyCw9u7kbUAU5lhzM3EyLOG38dxf4xBXQ\nGcaF7RKJbLC3Aa9NoiSW/RgPr8vNiriToqcec65YSXcA82XhZGHoLpZOPFz7LNqWiN+flcCH\nyW99mPj8AXPTr31jg3YP+IHrXTicGFXneNf9izn6Clo3X2Owu1NXMzf7LOV6axTvTFLVCNao\nOVfgtUgUGNESLoqugiBdLNFW5noYmDky65Irm/oxP0kNvzSsXeUSddr8Nm/NtWecbjcpCBIJ\nIHfuCJV/M+37FYLGlIl7T8NsmmBD8kQUdTtnA+bVYW5unaX5sp6EV9PvM36/AQNX2gh4I4rZ\nlBM2G7cOPoYsjTsWG8nczEi6qB7GVFlBekZU4H6CuVTdZj1INM6NdynKv62cjLlplehQQjzj\nFFPNz4g5JYIJv3OwT8PitbqOvcIornkq9/j9WdCpBh5an2IlZz9iITsx26CvTshhLRPbsx81\nQTTyPHH3N1ar8N0/N8OVn0gk8lodBv+95cDD4A9xSak5WemxkaF3Lx79a8aob7yZnerIVRM6\nVf/+rxxhF+oFHhcUBIlyhcfdQyGUlXKDuelWQ/W1ELq1crE6GJvGa4oKxCFAf98u7HEic3Ny\nUcfJBfjGt5HpVCnnAkRgfjLZZcbG3fT9XeOsCP800seQZqzA0uLDg4KCg4ODgoOD8/54/uxV\nYmZuQeLkUub5JZ4CYOPWxaCJISunJl6WsqiszxmelXKX444kTlwB3WV0oeQ2AYbejNLEy2ZJ\nWH736N6n7No67xiwL8XfhSlAUZSIWyJ+f1YCHya/9WHC/QTmpm8bX20hNXKvVYWiLhv31XzV\nOVIL74U1PAbe+HzfRlrM3l0xW/p4sCcTFRljD7xXblk51p0daMCtUfwySVUjWKNmV1LQLode\nREu48F0FU3WxRFuZM/GSOf3+2ba8WOsn7Hnw97dOz791ev6k4XZeAQ0aNvy2YcOG3zasUznA\ngsAKF+8JIHfuCJV/M+37FYLGlIl7T0OcTXAB80Q8w0Au/Nsus5cFfvryVNt3+yYr1v+nvrB8\nbeIe5d8SiWQG+33npImznOhl5WLYqbewq1LcWv7+y81z2Z8eqYcxVVaQnhEVuJ9gLlW3WQ8S\njRPMuHnUysOYzh7RoYTYxikgsMyEZ3PGjpi1/YqCVl1qtvWpOXPZivHda+mOQeWahqwEwxZ9\nE9nr6CrvgyAaOUVRGbHnGjYc/jotf+3fpXyHbfs2ty/vxgzm5uXn5uVXvXGHsb/P/Wf2iB9n\nblde4/Vg+68N3EreXNLJoIQVhMDjAuOQK1dYpIdCKCvpA3PTtqjm1z5p42Nv8JVlRFl76383\n4Uf2Cy0KKCMyg8fYzEJOejBz08YHq3e6ZCW8//f48ePHj586fzUkLlX/DgbiUub5JZ4CILcp\nY+gupazlytXE3MyPOkKSPnEFFJ6VP5smszJsKoGiKLsittT9/M2PmXpqRUtX874iWIRE2xLx\n+7MS+DD5rQ8zo1lvUnQsYlgHSWZt2O0IhOqcVotaUvW3KTcXr3rVZzrr9bFxzyY9Ts0f4JX+\ncUkB3ohdUCapagRr1CwcxdVnJlrChclVMXSxRFuZ85451q5N/ru9s0PzgVfDNcSWGvX63/2v\n/92/maIoa/eADl26de/evX3Tajb8PYuQ9wSQO3eEyr+Z9v0KR2OqZFBPQyRNMI95Ip5hIBdy\nmzILqriPuBedt5mZdGVpSMo4f9bz+enc5DFn8u/odSz2a3dDHijFC5GUE4NYOvjpD8RWirFI\nr8iO1RjGJFlBekZU4H6CuVTdZj1INE4E43IoK3crI2IgOpQQ2zgFhEPnHF/5288Tl31Q+1XK\nbYoMmvznnxO/9+Dwtgi7EqzrPAxdR49nrKNLJLJi1qxFWKKRUxQ1p3WfF4wVetcKA57e36Tj\ngTESqV2v37fWLO8V2H1R9pfl59vLui0dEjO2vP5XHvBC4HGBwQiXKzzuHgohlYeEWHkY1lew\n8TJ9X4dJZqv/0qGkHD7ftZHzie+KTPToHNZFtdY+4nrlgXgosqLWT/3ex6vUd9+PWrf3X91z\nIlKZQ6WKxlxOy6XM80s8BUBu7W/oLsWs87NLkftJ4/OIhDlxBULnZCjyky6z9DI0Ahtf1llL\nFPjBTCDilojfn5XAh8lvfZjLvrHM28awyGWWXKcvidY5njUXe1vmp/zlqoUqAc7/sp+5OXXy\nN9wjLxzE06gJjGgJJ52r4uliibAyJ5c5zoHdLr5+smxCX+YTidVlxL7et25ejxbVXTxKDZm5\nKSqLtyziNwHkzh2R8m+2fb/C0Zjmp8eQnobJm2De88TsWsyOi1nPQt8w+4lKgJj7498ybm/9\ndslISnAmLydGsPI0eBqQeYwUpbn+NUlWkJ4RFWE/gQvSVbdZDxKNE87ojVi5GbNID8C7zPgH\nQ5uV6jBqscpKqlTu1P2Xxc8j366ZOpDLSipFUQ6lWdfAJT1N4p6M3MwPyYw6QWZV1Ip9ARbR\nyJPfLvjzXoxyU2rhevDqWi6vdCnVdcHhwWWVmzSdO6vnOu4JKxBxjwsEKFe4kx4KIakV61eR\nGZOpLaRGhr4IRAxs2Q82qVa7TkFepVZWZM8SEIKE1aHMSf3qLlPgIi3yXOPK392J1vViP3v3\nIuXKlQsMDKxav3m3Lm2yTrYI6GXk4xwFJZoCoMg1+F2SSYyeh0RioX7pvXmcOIncWipR9sly\ns6IMjSArnnXlqZBvXoQ8om2J+P1ZifYwuVC5nyAqw7AH5CpyNN8kpIJ0nSO1cF9c26vvlc8v\nV0uL3rU/dkO3L3eJKbKjxlyJUAZ2KDKyp4fYJ9z5J5pGTWBkSzjJXBVVSy22Wo505shtSoye\nv2P41Hn/Hj508ODBoyevxGVpLTmZ8W83zBi0e/227WcPdw7k54pGHhNA8NyRKP9m2/crHI2p\ncUzbBBPJE3NrMb3rLfOx/CfiSy3x7p/f6TXnmUX/zLjjyr9llt6r2xYVNoEUZepyYpzMGIOf\n+xLKuEtPInPSODdvkqwgPSMqtn4CR6SrbjPNloJgHR9ukQARCL/0d9MO41+x3yQlkVo07T9h\n7pzJNX0Ne36GS+UizM2EhyHc981KvsbctHSsK2TkDyazVtZL9tjTyJnrZTQtl+612lg580v/\nPP7ZlEep4yrbka+RRDwuEKZcYZEeCiFLF9Y1KWmhhr1gPjbBsC6sQZJy+by4UsmHdQ0vtfLs\n5ToEXrxRiMksPZmbaSGGlZmvQVbS3bbffHcnRnVOxLNExdp16tSpXbtmtcqBgYFF3FlPCHwj\nYAoLQjwFIDfjnaG7vGHcKiG1cFf5rxmdOB9L2bsvx5Kb+UF3YHWpH1h30nhyu4YReCTalojf\nn5VoD5MLu2KsJ2slhaZRFdy0BVaXwyEnhalzmi9qTdXepNyctz6o26TKeX9H/Dc6krG+VXP2\nGAPjLgzE06gJjGgJJ5erYmupRVXLCZY5Fg5F2vcf1b7/KEVW7OUTx06duXD58uW7L0PVXzdI\nUVRq2OWeNeqffn+3KX8LS7wkgNy5I1T+zbTvV2gaU+OYqgkmlCdm12JKLdyXN/LtfvbzlG5G\n4oW/wz6N9vt81Iqs8F9uRSsDF2m12o/DnXMkmF1XLSs5VH8gtteM8YKOt2sJnxWkZ0RF1U/g\njnTVbabZUhA+VtKgL1VyZhzBiXQALoIPz6jR/c9k9jMtPKt13bhlTftKqjOlXFi7NaaoXcrN\njIQbFNWH476ZyddZUbk0EzLyf66wVrg7/l6DY8wURcltK/3m7zjzw+fbu2k6d9n75E2G1JZG\nE+e4QLByhSlsKIQsHaszN+PvhRm0++0Uw14EYpA36UQuzS5WijUWfZpqfg8DMC0L+2rMzYyY\nF6ZKiWitaPfdZcaciERq0aDbqON3Q6PePjm6a/3kMYNbNKypMidiRsRTALI+3TEofG5WKLNW\nsWQfCGVWJ646YxCbk/46TPttZBrdi2LN2VW3L+RDYhESbUvE789KtIfJhUs1V+ZmxOkIbSE1\nSgl+rDeMMHWOR7WFflaMZ4cuW6r8e9+4C8q/pTL7Fd1KFPC7zJF4GjWBES3h5HJVbC21qGo5\n4TNHaunepPMPC1Zvv/X846eo16f3bZ44tGegj51KsOy05307ruXxe3lJALlzR6j8m2nfr9A0\npsYxVRNMKE/MscVssrgLc3PdvKfKv8P/GxObnf87Grq0iXDJYjO7rlpG/AmDwmel3AxjvpDb\nsb62kMJnBekZUVH1E7gjXXWbabYUhC/jugQs0oNphZ+fXqnrH6yHwFt4jFh4IOTufuNWUimK\nsnHvYsW4Gzs97lA25ydGxFxl1Rg+LSoIGfmtZFY13s7bsFu9GwQ6MTffvTDgUfwFIcJxgZDl\nCov0UAjZuLZjbia/26UtpAZ01q4YUldP52a8iTCwiuHIp6UPc/NiiK53s4E6K4c6jvL8+jA1\ncpOOwF+hjPij469HKjclMpt5J19f2be8XXWur1QUOfEUgIz4Ux8zDaglPoWtzGHcYmXFvoLS\nvE5cS7f8t9/RdO7GSIPqsdz1EfnhpTK7eo5YpBeaaFsifn9Woj1MLhyKs44l9KhhD8V9uylY\ndwDB6hyJ3HVJ/fwTkRq15WhcBkVR2amPJz+NU37uUX1xoO3X+Ngw8TRqAiNawgnlqghbavHU\ncibPHBuPkq26DZy3Zs/z8OSHJ1Y3Lc2asYq6Oe4myWu7jUgAuXNHqPybad+v0DSmxjFJE0wu\nT8yxxXSrMLci48Gzb3ZOV/598NdLyr9t3DtNKsmqNIRkdl21jPhT7w0ZLyS9WcXcdCrXUltI\n4bOC9IyoePoJBiFddZtpthREaZv8EpsZk2jClMBXLj36bMP2czIZbzS39f72xKs3K8d3Kchb\nJ6Ryt85u+c+sys0M2xnNdcHo4RpWjVG2bzEhI09k3/btx37Oh14qL3fPiiM73lES27hA4HKF\nRXoohOS2Feo55r9sIyP++JM0rvevp0Zujs8m8kR6iqKSPy4nFLNvW9alsreXviT0RYWW1KaX\nR/6VZdlpz08mcH0nWWLwBH+Gnic/kkmiKYUcW0QzlqzK/nB4QitOL7fT+z4zsRBNAaDp3CWv\nDbhKMXjtSeamT4s6zE3zOnFV2rFm2U7sMyAnUyM3hzBeCmjj3t1eJtB7SUFJtC0Rvz8r0R4m\nF7YefawZF+2mhC4OyzKgz7P2QrjuAELWOY0XsuYfZ20Kpijq/YGx6YxBVIflHQ2NtpAQTaMm\nMLIlnEyuirClFk8tJ6bMkVZuO+zfRzfrOzMnj+jFQYJNSXNKAMFzR6b8m2nfrzA1psYRvgkm\nmCfm2GJKbZZ2zJ+Rz0g4szo8laKonLQXk57FKz+vMmWWQOnRwry6ajSd+8f9GO7hb868wtwM\nGFxaR2CBs4L0jKh4+gkGIV11m2m2FETdEvkvVshMvGXClMBXblaz3m8Z7x9xqdDj+quzrUo4\n6NiFo0ENvJibO65zfVH6ypcJzM3xFVzVw5CLvKg165KvJwY+2CPxeTJz07aIYTfiG01s4wKB\nyxUW6aFwmlDDQ/k3rcj+5fB7jjs+nb/CiK9TeTWFNo8XnjEici4ci0+2leX/nENP/pHF+TEp\nlCKjd6vmTb7o0HcPiRSKX//WrMZg+togjju+3vhvKINHaUcCqTOxkP0hzM2Ok2pz3DH4iMGv\ndjMV8RSA/WPPcQ1KZ41e/Yr5QcPhrNkB8zpxAUOaMjefLpjLfd8HM/5ibvo2/4GfNIEhxNwS\n8fizEvNh6iW19B7pm/8kxtysqOGcJ5RTI9bt0ndxt5B1jnvlBcUZg88XS1ZQFLV66j3lJxa2\nZZfU8NSw59dBPI2akEiXcBK5KsKWWjy1HLnMyUl/2ZChRYffuUQrtym3dnpl5idRz418/COh\nBBA9dyTKv5n2/QpTY2oc4Ztgonliji1mzTlDmJurFj2jKOrj8bFpuZ8npiRSm78Ha31LujDM\nrqt2YvQRjiEVWZHDTrHK5KgWvjrCC58VRGdExdNPMAjpqttMs6UgfFp6K//OTL6iIyQAOTF3\nJ89hPJXExq3xrTs7K/P0dKVKExswNx9M4fRgkk+hKy8n5r8AwtajV10HDekhF3lbV2vm5rZ7\nsVxiVloTzLoIuFp5gZ7KI6pxgfDlCov0UDjVmc162NTN8b9ncugeKbKjR23iOiRjesh+74Xm\nyHPif9r5xojIuZBZ+s0o56LczEg8P/ySnss8lSKujdlz5vylL8LLlSOTRrGr+Fs35ubTBb8m\n5XLqU8/f+Fr5t0Rq8XMRUbzem19p4awBSXl7C20hmRTZUT/ru9xYPMRTACIuj7iaxOlpQm/3\nDLiRnN85k1l6zQxkXUFpXifOudQ0f6v8yYu06F0z73G6myEnPWjw9tfMTzpNrshz4oADMbdE\nPP6sxHyYXAwYzfrS80PHJHOr6/YMma03jJB1jkTm+Ne3+U+V/BSx7tDr/UtDU5SfFO+84mt+\nooZ4GjWBES3hJHJVhC21eGo5cpkjs/C8ce3a1S/On1wcw+1Rao6BrEU4mlsBECwBRM8difJv\nvn2/QtOYGkf4Jphonphji+lYbHxzl/wp+Ddb/6Aoasvk28pPPKouqs4tl8gxu65azP0xO0M/\ncQl5c1ancMaz8e28+ndxs9ERXvisIDojKp5+gqGIVt3mmy1G826W/0ST7E8PU4ztFAEUxKb+\na5mbY0/+w3wRQwF5VFvszXhWfMLL6ecYC+TaXB2/hLlZ7ueJAkferHdx5ub1CVv0RquU/Hbl\n8bj8RS6pzHasHw/3jnMhqnGB8OUKi/RQOHnWXFKJ8Zqu1Ig93Ta+0LvXrT/b3+H2ZkErD9ZF\nSXdm63+wz5XfWwelE3wAXZ9lbZmbu7r2DErX/0grOjd5RPcdyk2JRPLzTya+4NpUnEvPaMp4\ngGRGwrl28+/o3Svq+sT9sflTBs6lppXjr9YWD7vidszNp584leSjY1t+zOT6XDWTE08ByM2O\n69V1ld5gWcn32w4+wPykSIsV3hasZt28TpxE7rqynT/zk4Xth3KZIzswtP2rtPxDs3JqODtQ\nw7OkQACibYl4/FlRIj5MLsr8NN+K8aTHtOijrf64pHevmDtzh5wM0RtM4Dqn4QLWc0GH9B7K\nfBbuyLlcb7MrlMTTqAmMaAknkavibKlFUsuRyxyJ3JX5nkJakT76MqeZ9Nd7PjA3/Sq7aAtp\nqgSQO3ckyr/59v0KU2NqHIGbYKJ5Yp4tpnTOoPxHPaXHn1gZdHrO2/xHa3Re1U3TXkIzr64a\nrcgc3WZahr4rplLe7W87l1VC6s6ZqjdygbOC9IyoSPoJhiJadVNmmy1Gcwr4Ufk3TefsjdV/\n9xoAv3LSnk4Pyn/2u51X/zm1+HwqidTCY3X7/ItRaDp36LD9unfJiD838NB75aZEarVgdKDA\nkZcbNZa5Gft42qSLEbpj/kyR/ns71vO93CrP87EUaPlYPOMCk5QrLNJD4SSROW6fxurmnhxe\nd8k1Xa/3CDk1vcnsuxzjt/VhVYIfjvf/N1pXdyTs3II2C7lGbhy/puvbuudfvZuRcLVR6/Eh\njMt7NaBz1gysdTgqf2zp9s2sH7wEeteI6Ejka5awnqxy/ffG046/17FHduqzvt/9zfyk4bx+\n6sEyE882ZOsx+T4fKRaORwMP5uYxDtMW5xd/33X1E5UPE7jdJGS09MwCxE+sABgh7Pwvzacc\n1REgJ+1Fr6pNmL0QicRi9oa2KsGEP3EFOgUU1XzNQuawOTXyUJVOs3RPlFxb0qvX9mDmJ40W\nrrcQ0S0ZnBQw38RDzC0RXz8rStyHqZeVU5N1rVgjn1t/Nv9p40MdyeFzfgAAIABJREFUu6S8\nO1Sv0TTmTKI2Atc5bpXmBTAmxOPu5r+H1da92xh/ga74FikxNWpCIlrCSeSqOLtYIqnliGbO\nSPbrG4/2GxGv7/1l6dFnBux+q9yUSKRjA4x//COhBBA8d2RqFTPt+xWmxtQ4AjfBZPNEqBaT\n3w5/hf+xbp77vWff3C+ly9K+ypIaHpp24gf3A+GrnKjPqHQadpN7grmLf7qkxo/rdBxeWuSF\nplX7JTGqayvHOjv7B+iNWeCfDOkZUZH0EwxFtpco1mwh9/Oxdm1fgXEtyKEXCToCA5AoipFX\nJ2Uq8n+eJfuPKmCE6lqumm0hye9lvtv7/ewb0VpD01l/tOwTlZX/q/drtqaZs5XAkdt6DZhb\nl/XW80Vtam97oOeh97QidfmAGssZL7yXSKS/bed/QkBHL0Ik4wKTlCuKBuCdIkOl5J2IT+f3\nGzISLzDjrzHvkYZU5CR382M9cExm4TF62fFshXrQrIMLhznLP1+zIpWx9rqUmKEeeW5mmDJ8\nHnu/tpdDP2lKrOLS5qnKwNZe+ddoO5f8y+ij0yj2/iK5hFUPOZVpv+NisMbAUU/OjmnLGktI\npNZrghI5fldBnKzjw/zeKe+TxBK5InNYIOt+FKnM4cc/d37KVS80dMLLk+3LsObFbD2+0xgy\nNXonxVai0wWjD1CFD+MBKRRFrQjXWAgL6lM46w5Uqcxh6cUQbYHTIu9P6F6D0qTOovsadzG6\nzMcH/cjcse6q59pCcvoKAgWAy/eqnESlWr0mP0/IVA//9PjfNdWGbd+MOqkekvSJo3k/BTR9\nYWJNlW/3bzjgwptk9ZA56R/m/dRcyq70nMsOScstUAI0JKlTCeaOGRqKg8H4zbecjHfMMBXH\n3tKbgKT3U5i7tLsZqXeXoC0NmbvsjE7VGEwkLRG5nxXpwzS6oHKXlXKnpDXrZi+JRNpsyNx3\nKVlqYXP/2zy1GCOwhHHUtZc+VQktQJ2j4mj7YppP9KInBuQIZ1zOjoiqGhM1ahoxu2dSuYvG\nMFwiT/44ixmm9aUw9TDkSjhN85+rou1iiaEyJ5o5kdd/Ugnm13j0nXdaBg6KjGuHVlVjv9/R\n/ZtZBTk6cgkgeO7IjJXMtO9nvo0pXz0NIZtg4h0MMmWb94GSigFerAcMKFX4+RqX3bl/L/cD\nUcdLOVGfUfGpo7WXzpXavKVSyRbD70akqYXP/m/rtBJqz0v49YKGrohGAvdaic6I0qIcDZm2\n6hZtthD5+XyxvqK7Mtpyg/XXPCYfShgduUHEMz8jnpTQZIri5V6sX5B98bIVC+Bteo7Gb9nb\nuxTzW2SW3n+d09AJyc2KntyBlR6p3OWMvhUxQpGnRR2yk7HWraQyh8FztoakZWsM/+LS3m5V\n3Cm2ou026E48Rwb1IsiNC7gzSbnCIj0QII5FepqmE1+ttZaqXjzjWLTK4AmzN2zddfzUiT3b\nNs6ZOKRK0fx3+8ksvZaf28YMf1tDX42maXpLa3+VmGVWPn1/nbP70KmHL98nxEa8fHxvz6rZ\nHevmB3Mo3uXi1gb5FQffi/Q0TZ8aW5VSU7pWy7HTF23duffE6ZN7tq5f8Ofv/VtVUanFKIpq\n9MdV7l9UEOJdpKfp1MhjHhaqSzs23oF9R01bu2n70ZOn9mxZO/v3Cf061LFgFy2J1GLmjSjN\ncZr/Ij1N5/5YjPUKTIlEVq3ND5uPnLn76HlYdELYm2cXTh5cs3TeT12/tWX0AyydWG28VGbf\nbewfm3bu3rGHNUoxuswnvB7J3NHKqcGuS4/CYxKiw94/unsjJSd/WMbxK3gvAIYu0sut/Vg5\nJndq1HnQ7AVLt+zcs2nN8hm/jaxbRrXbRFGUrVe7mGyN3RCyJ47EKVDkJPdUu5NAIrWu0bLX\nnKWrdu8/curYwU1r/h7Tv52P2hSJzMLjaITm8QD3BKgjsUjPb76JauhFi6MlIvmzInuYAizS\n0zQdvKOveuJlFi5Nu/2UlzMbVy+b9r8hVYuyKhCn0n02V89/zJemySnidY6KuKfj1A9EIrG4\nkqThUoyCM7NFehM1ahoJuUhPEyzhJHJVpF0sWhSVOdHMyR1UnBU5RVESibx6q35zFi7dsGXn\nkROnj+zbuXLJgkm/DK7ko3oVl1TuuE/z9dkGHB25BJA7dyTGSubb9zPTxpSvnoawTTDxDgaJ\nss37QEnF0yUanpEukUj2xagtMGvB8Xu5H4g6XsqJAIv0k6a1YZ9Wm3odfpi1YOmWnbs3rFwy\n9ddBlYvYU2pKdV7D/QsF7rXShGdEafGNhkxddYs0W4gu0r9cV18ZraP/b3rDm3woYXTkBhHP\n/Ix4UkKTKYpTi6r2pQvihZYF7JyM9x3Y1zxJpBYNuo3af/bKy3fh8VEhj+5c3ThnbGVf1e76\nj1v0X9NGLvIHa3+QqFUychvfFp2/n7lw6cYtO/7ZtX3NiqUTR3xft4IXpcbev93zVM0ZYiiD\nehHkxgXcmaZcFTzdAKpEs0hP0/TLvROs1Hql2kjljgsvRaTHHWd+qK1Kyki46Gel+UY9jSzs\nKl2KTX+9p5HyExKL9HRu+pIBGnqEetUculbzhT0EiHmRnqbpsItLvbXcgqlDz+W3tUVYKBbp\n6bgni9UHeLp51BjwOC6kmLVqq0lRlFu53czIjS7zadF7dCTg/qf88ST3r+C3ABi6SO9Z5dj+\nCU0M+mob9/rntfdCiJ44QqcgPfZG62IGP/FPZuW79EKotjgNSoAKEitn/OabqIZeNC2Klojo\nz4roYQqzSE/T9LHp7Q1KtqVD1esJGcxGVuPkFOk6R4UiN62crYXKXq7l5pDJM/NbpKdN0ahp\nJPAiPU2shOfhN1fF2cWiaVFU5kQzJ+HFJi/DzyNFURKJxU9reaicCSaA5LnjfaxEm3Pfzxwb\nU756GgI3wQJ0MHgv2yQGSkwZiZdkavPvTiX+xz1XOX4v9wNRx0s5EWCR/kBs2vr+5XQcprqi\nrSYn67xAQfULhf3J5CE3I0rTohsNmbzqFme2EF2kT487oYxWIrMJy9RzB6vJhxJGR24Q8czP\niCclNJmiWN3BkuKPtsVUmqZTI04HqC0J61Z73GGOR0Eu8nOzOqlfDMSFrXeDq3GaH6NiBEN7\nEYTGBdyZpFzhnfRQyJXtPv/Rnt+4jLWsXaqsPvdifCNvRTbr/R9FrTXva+Xc+P6Fv9SvttbI\nsVSrQw+uNnKz1h+0gKTWY7fc3TnhO0vuHXGZ/YA/9t5a85MxU0SFkW/jMU9vbPiG88mSWriO\nW/ffnlGqz2MpZFwrjru3ZQTHAZ5EIm86cPbLG5squRY5tVzDdcp8sfHo2ctXwyXtBWHyAtB1\n/oXd49urT7ho5FKuzdkX55p6a31pGekTR+IUWLvVOfrsZr/avtx3sfGquu32kzFN/PQHFQcS\n+SYi4muJ+P1ZfSa+wzRI+xnHTs/pp/IMNG0cijfde/diXe1vU1MSuLGQSG3+allE5cOmS83v\nTerkmLxRMxVCJTwPv7kqzi4WRYmiliOaOc7lfnh4Zn4xAyfF5Db+k3c/XPvTNwbtJXQCSJ47\nErWK+fb9CkdjahyBm2AB8oT3sk26w2/l1Gii2gM5vv1rBO9fVJADMaOu2qDNt+b/2EB/OIqi\nKKp27xmPT8xykBmw+GGSrCA3I0pRougnGIdoL9F8s8UI1q5te3t+HjXTuelz3iSaNj3wdaFz\nnqVmC/NVtt6tbt3c3aw4p5VjidSyx5QtVxd1NHnkzaYcen50caCBS85Ve0x5+vZifVfOlZ4+\nhvYiTDwuMFW54uX6AgAWMd1Jnyc1/ObItuW1/SQkEmnltqOfJX2+cifpw3Tlv2SWPrpjTn5z\ntled4jp+bxKpdeOBcyKzPl9OSPxO+i/inpz8sYWeC4ElUsvaHQafeJZgRPwFIfI76fPkZIav\n/q2P8r1cWkqOvE6n4See68nAwnEnfZ6ImzuaBWp4LjQjTyRlm3x/5D7riX/nFgz1ZKeTx/s5\nEl/uLOOoucNRkLsT+CoARtxJn/dhyJWtTUrqesCO3Np35IK9Gl9/qI7QictD6BTQdO7lHXNr\n+Gp+1aKSzMp78MzN0Vn6XzpUgEvyS8rlFtY2tvYOji4urnzd3spjvgl2fbRMbmFlbWNv7+Ds\n4rqfw4M0TdgSCfCzInSYgt1Jnyfx5ZmBTQK0JZuiKInUon6/P5V3RXC8g4RonaMi/sUE5i4y\nS59IDhWCcQjfSU+kqskjZKOmkfB30uchVMLz8NhXpEXZxVIy+bCCaJWSHvvg124NbTnM1Mut\nvToMmvE0nrfbSgRIALlzx2/5/8Jc+37m1Zjy2NMQsgnOI0AHg9+yTWyg9NmbPS3Zp8Bb752s\nTNy/l+OBaFTwciLMnfR5H9/dOb2Mzgs1HIvXX3XyhXHfKfxPJg+5GdE8IhkNiaTqVhJJthC9\nk56m6TsT868aLPvjf7oDm3woYXTkBhHP/Ix4UkITKIrZqc8oXum44zlPblbkgqFtnHT2EDwD\nG22+qmeIKnDkmUmvVv4+pJST/qX68k37bDr5wIjE62VUL4LncQFHpipXEpqm+f1iANGKfnFt\n165dRy7cDg0NDYtIsPPwLVq0aPk6LX8aOrRhOTdlsJiHvT2rfn4Qh61Ht9TofXpjfnfr6Ja9\nJ65dv/7yXWRCYoLE2sXH19fHt0iDNj2+79+znGd+Fz87+X1QSGre3zJLn3KlXXk9RFVxb+4d\nO3bsxOlLr0MjoqKjY+PT7JxdXN3dy1Sq1aBB/dade1YvWnhv5eRDzqewc8ePHTly7N6rj1GR\nUVExCZYOLu7u7kXLVmncuHGLDt3rl3ExdRqFp3h8bs+eo+eu37j1OiQ6ISFBYuvq6+vrV6TU\nt607dO7cqUpxZ/V9MmIeHzr63/PgSLfiAYGBgeXKVy7mwduDJXIzwrYumr391O3379+Hxaa7\ne/v4+Pj4+vqu2L2rmCHvpFAnTAHwtZJHZOXm/e1Z5VjUgy/PXqOzHlw4+s/efy7dDYqMjIyK\nTrR18/Tx8SlWrkanrl07dWjsYdjRETxx5E4BRWc+uXr2+PHj564/jIiKio6KSsqSe3h6enl6\nlqpcr3379m1bNfS0Mbsrzj8jmG9iYpKWSKifVT6zbnCjX908ePDg0TPXPoZHRkZGpuRa+vj4\n+vn51WnZbeDAfpUY7z/79O7Vh7ScvL9tfQJK6Lq8WqDGIjH4D5cy+ZOJRdsc/HCysyFH/xX5\nans1ZEr4Z7zmqui6WEymruXIZk5m/OuDew5eu/vg4aNHHyPjU1JSUlIzre2dnJycvIoGVKtW\nrUadxl26tvAk1joTTQC5c0ekVjHbvp9ZN6bGMVETLESe8Fi2C02H3+gD4becdPew2x+b5lPn\nZPiNNvpD60I/e/Y8P1Xlyitvi6cVadeP7d6649CTtx9CQ8OiEjLdfXx8ff3K1mjUs2ev9g3K\nG/1MWtP2WsnNiOYxdT/BSER7iZTIsoW/n0++jPjjdu7fKWiaoigrp2/TEi/joc2gF4miKJjs\nTyFHd+3Ye+zSu5DQsLDQ6BSFt6+fn59f6arf9u3fv3XNkuKMXJEdd/XM2UuXLl2+ejc0OiYu\nNjYxnXZxc3N3dy9Wtkqjxo2bNG1dp7yGl9PzxchehNmOCwyFRXoAVfcmVakx71He365lVse9\nGmba9ABA4aZ1NREAjIWf1ddjf9ti3U99VG5OeRk/q2zhXGkGAAAQFTTBwAW/5aS9m+2J+PRi\nbc+9P9GMj9QJyix+MpgRLcQI/Xyml3H9Izgh7+8lISlji4jxagwQFbOuyQFIwOVNAKouHsjv\nNPu2rWbClAAAAACANrmZH0ecC1NuWjl9O6OQ3gsOAAAgKmiCgQvey0neZbh2JfQ8/1aEzOUn\ngxnRQozQz2fIihbKv9fNecRv5FAomW9NDkCI3NQJACAi4dmKaWteKTerTJg7yJ/TpXxZyden\nvklUbtb8vgT/iQMAAACAAvtwdFhMdq5ys+xPi+QSEyYHAADga4EmGLjgt5wosqOfpGZTFFWs\nc5GCp01gQv5kMCMK6sj9fPyabajneOR6ciZFUa+3DU/5+5Hy5REA6sy6JgcgBIv0UDjJ7KNW\nrFih3Cyb3nXQhsZcdrw0fWim4vM7IKQyu5nlyb4zHgAAAACM89e4q8q/JRLJjIkVTZgYAACA\nrweaYOCC33ISeW1SNk1LJPKJNTwLnDShCfmTwYwoqCP385HIHDYubBA49DxFUdmpT0b+F7Gt\niS+/XwGFiVnX5ACE4HH3UDjZ+wz3spQpN1/v6HcnOUvvXrH3l3dY/ky56Vlzib+VTEd4AAAA\nADCJ+KczV4amKDcd/Md2drMxYXoAAAC+EmiCgQsey0lWctT1Iwvrt9lGUZRPo0WNnCz5SaJQ\nBP7JYEYUmAT4+ZT5YU8lO4u8v48PX8t7/FA4mHtNDkAOFumhcJJa+m74rphyMzczrGWtgffi\nMnTsEnRq4Td1x2V9uWiUoqgxm7oRTCIAAAAAGCU9+k7XpvOZnzRfPsZUiQEAAPh6oAkGLngs\nJ+mxe22cfep3mvA+I8fGo8H+I8P5SKBwhP/JYEYUlIT5+Ugt3PcsbJr3d2LQn2s+pOgOD18h\nc6/JAYiS0DStPxSAGcpKuh7o0+hteo7yE7mN73f9f/jxx/71K5Zwtvt8uVZG3Pv/Ll3cs+6v\nzWeeMncv0uKvkDO/CJpiAPgq+VrJI7I+v53Os8qxqAftTZsegEIAP6tCiM6qWKNxqVKlivk6\nxYe9PXXk3/hshfKfVo71ouKvOuH1hwAAALxDEwxcECsnaTG77Dz7Wtj5tOg+eO5fU75xseIv\n0WSI4CeDGVHII9jPh1akd/fzOBCZSlGUd72/I679TOiLwEyZX00OICAs0kNhFnJ8SrlO89Jy\nFer/srJ38XC2TklISErVcDGpQ/G2N58dKW8rJ59GAPjaYTURgHf4WRVCdKZEaq3tn8NPflzV\nxl/I5AAAAHwt0AQDF8TKCZ2b/C4s1aeIt43UTK4FEcdPBjOiQAn784m5M82z1p8URUkksm1h\nSf187Eh/I5gR86vJAQSEx91DYebffvbzE3OL21qo/yvzU0JoaITG/qhblX530B8FAAAAMAfV\nh+3G8gAAAIDw0AQDFwUsJxKZY8miPoVjXUfInwxmRIES9ufjUfOP1Z2KUxRF07n/67ZSgG8E\nM1KYanIA3mGRHgq5Yq0mvAp7OOOH1i4WMr2BbTwrTVjyT9CdbWXRHwUAAAAQN6ncufeknbdX\n9zJ1QgAAAL4uaIKBC5QTJZNkBWZEQWBDdp+r52RFUVTk9Ym/34kxdXIAAMwDHncPX4uc1NCj\nu/f/d+v23XsPP0TGJSUmpuXKnJycnJyd3X1K1q5Xv0GDBi1bNXSR45IuABAUnssNwDv8rAoj\nxfq5E7bvOf7yQ0gK5VC6TJkK1ZqNn/6/6j62pk4YAABA4YYmGLhAOVESXVZgRhQEE3N7nk+d\nybk0befdLSZsnw3uDwUA0AeL9AAAAAAAAAAAAAAAAAAAAALB5UwAAAAAAAAAAAAAAAAAAAAC\nwSI9AAAAAAAAAAAAAAAAAACAQLBIDwAAAAAAAAAAAAAAAAAAIBAs0gMAAAAAAAAAAAAAAAAA\nAAgEi/QAAAAAAAAAAAAAAAAAAAACwSI9AAAAAAAAAAAAAAAAAACAQLBIDwAAAAAAAAAAAAAA\nAAAAIBAs0gMAAAAAAAAAAAAAAAAAAAgEi/QAAAAAAAAAAAAAAAAAAAACwSI9AAAAAAAAAAAA\nAAAAAACAQLBIDwAAAAAAAAAAAAAAAAAAIBAs0gMAAAAAAAAAAAAAAAAAAAgEi/QAAAAAAAAA\nAAAAAAAAAAACwSI9AAAAAAAAAAAAAAAAAACAQLBIDwAAAAAAAAAAAAAAAAAAIBAs0gMAAAAA\nAAAAAAAAAAAAAAgEi/QAAAAAAAAAAAAAAAAAAAACwSI9AAAAAAAAAAAAAAAAAACAQLBIDwAA\nAAAAAAAAAAAAAAAAIBAs0gMAAAAAAAAAAAAAAAAAAAgEi/QAAAAAAAAAAAAAAAAAAAACwSI9\nAAAAAAAAAAAAAAAAAACAQLBIDwAAAAAAAAAAAAAAAAAAIBAs0gMAAAAAAAAAAAAAAAAAAAgE\ni/QAAAAAAAAAAAAAAAAAAAACwSI9AAAAAAAAwP/Zu/c4q8pC4ePP3ntmGAaGcUZEUYkOeQNF\nieoodki8VHpQO5YHU8xDnjK7qZ3ynlrKKdM3lUztaBakiKmop17rFa9HJYxCj6hAliApNwUG\nZoZhmJk96/1jDzQiM1xmz7Oh/f3+9bD286z9rJl//PibtRYAAABAJCI9AAAAAAAAAEQi0gMA\nAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAA\nAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAA\nAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAA\nAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABA\nJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi0gMAAAAAAABAJCI9AAAAAAAAAEQi\n0gMAAAAAAABAJCWF3sBOoXHJ/BlPPDnzhXnvrFy1tilU19QMfP9Bo486+tgjh5emtr78zbn/\n88TMOa/Oe+3t2rX1DU3llVXVe+xzyKGHffTYEw4dVFnYvXVzOQAAAAAAAAB5lEqSpNB7KKxk\n1vRbbrzrsaa2Lfwcqg8Yc9GlXz14916dLW6u+/MtE699asE7W/w0lUoPPeq0C887bfeSHXti\nQbf21u3lAAAAAAAAAORZsUf6Ob+49LsPvLrpn6l0Wd/ypL6xZdORssph1935n0PKM+9d29r4\n2rfOvnRhh8mpVKbfbr3r1qzr+FOt2PPwG2+5dGDZdnf67uyt+8sBAAAAAAAAyLuijvRrFkz+\nt4sfyv0E+gwade45Zxx56ODSVGhc/cbjv5p650Ozcx/1G3Lq3Ted9d7lUy44c/rCutx4v499\n5vOnHDNk0D59ytLNDasXvfbC1Dt++r9LGnOfVh80fsp1p8XcWzeXAwAAAAAAANATMt/5zncK\nvYdCabvtW99ftL41hFDe/6O33Xrx0L13y6RCCKG0924HjvjYh/q9PmPOkhDChtp5yREnDq9+\n15PhG5bcP/HuP+TGQ0665Mavn7RnTVVZJhVCyJT17j9wyJh/PrFy6e9eWFwfQmha+XLL4WMP\nq972Z8t3a2/dXg4AAAAAAABAj9ixd6X/PWh4a8pTq5ty489d87WaktRmEw4Ye/mJAypy49/c\n+Mxmn/7554/mBiW99/vev4967/lT6fITv/GDgypKc/986s6Xo+2tm8sBAAAAAAAA6CHFG+kX\n3ft8blBec/xJ+/TZ0pTUp7/ywdyo/s2pa7Pvei/Ar+evyQ0GHnVORXrzCt6+PtPv38fs1X6G\nRTM2+3Ty2aedvNHCpmwe99bN5QAAAAAAAAD0kOKN9A+9uCo32PvYT3Y2p/rgM9KpVAghyTbc\ns3zd3z5Iml9saMkN9//nvbv4lt3/cffcoLVpUaS9dXs5AAAAAAAAAD2kSCN9kq3bVNkPPHrP\nzqZleg06vLL9efWL5tZuOt7a9EY2ab/7/JDdunqh+4ba5twgVVIVZ2/dXA4AAAAAAABAzykp\n9AYKo7n+95sq+4iqsi5mjuxbNquuOYSwavbqcMKg3MGS3vvdd999uXGv8q4i/XMPv5kb9K4+\nZrOP+vYfMCC9Pjcu7fC8/G7urZvLd1hTU1M2m936PAAAAAAAAIBdU+/evdPp7t4JX6SRvqXx\ntU3jYRWlXcwcuG9FWNoQQli/9K0QDtt4OF1eXr7Vb1n7pwemLq7PjQ/63KjNPj31uptP7YG9\ndfvSdlBzc3Nzc3M3TwIAAAAAAACw09qWTLxVRfq4+7bmNblBKlVSlUl1MbOsuv1m9LbWNdv1\nFevefO7Cy6e2n6Tyg/8xqtMnz+d3bxEuDQAAAAAAAIAdU6R30jev3fiq+Exl1zNLNr64fTtK\ndpKd/as7bpr824ZsEkLIlA04/7qL+3bZy/O4t569NAAAAAAAAAC6oUgj/XZoSzYONmzL9L++\nMONnP5/ywsan3KdLqs+99obR+1TsDHvL83IAAAAAAAAAtlORRvqyqvYnvSfZdV3PbF3Xmhuk\nSmu6ntnw5pyf3XHn4//71qYjA4Yf9x/fOGdY/+17LUE399YTlwYAAAAAAABAXhRppE+XVeUG\nSdLc2JZUpDt9Fn1zbfvT49MlnZbspK3p6V/edtsvn27aeG96WeX7/uWsL47/5GHb+oz7/O0t\nv5e27crLy8vKyrp/HgAAAAAAAICdUzqd7v5JijTSl/TeP4QZufH8xpYP9e20Lr+9ZH1u0Kt6\nry1OWPv6zEk3/PiPb7bftp7ptccnx40//ZSjq0p2INDnYW95vLTtotADAAAAAAAAbFUeOv+u\nqFe/I9Kp9oj+UkNrFzPnNrTkBv1H7fneT//6zOQvfvO6XKFPpUr+8eQv/uSu28/912N2uNB3\nf2/5ujQAAAAAAAAA8q5II30qUzWiT2lu/OqsdzqblrSumlm3ITceNHLzZ8KvnDPl/B8+lHvE\nfcXeIy/8Pz/79hdO2rM8U9i95eXSAAAAAAAAAOgJRRrpQwinjGgv08sefb6zOXWL729JkhBC\nKlMxfmCfjh+1rv/TRd97OJskIYSaQ8befPOV/7T/bjvJ3rq5HAAAAAAAAIAeUryRfsjph+cG\n65ZNm13XvMU5z906Mzeo3Hd8/9J3/axeuPWGlS3ZEEJZv5GTrjlnj9J8/iS7ubduLgcAAAAA\nAACgh5QUegMFU7nvhNHVjz5b25QkbT+eOH3Kdadv9hr52ldhs9blAAAgAElEQVSn3v6Xutz4\nhG8c1fGjJFt/y8wVufHHr7ygKrPjb6DP+966vxwAAAAAALbR0PMfKfQW2s2fNLbQWwCAbVK8\nkT6kMl+4+PhnL3k4hLBmwbTzri+57CunDOxTEkIISXbBzAe+f8P9SZKEEKr2P338kH4dl65b\nfk9ta1sIIZXKHN624rXX3t7qt6VLdttvyICOR6ZfcsGM2vW58bd/dOugXh1eZt+NveVhOQAA\nAAAAAAA9I5WLtUXrD5MvuubBBblxKlM5ZL/BVb3aVixZuGRVU+5gWdXwH95x9eDyTMdVix/8\n5tcn/3m7vqi8Zux9k7/U8cjks097cGV7pL/pvoeGvPsrdnhv+VoOAAAAAABb5U56ANhexf4y\n8o9MuPbCM48pT6dCCEm2/vU/vfLC3HmbMnb/YcdMvPmq92bs2hdrd9q95Ws5AAAAAAAAAHlX\nxI+7b5cePe6CkaM+/ugTT86cM2/l6tV1G0J1dc3AIQd/bMyY4444ZIuvm39n5Yaddm/5Ww4A\nAAAAAABAnhX74+4BAAAAAIAd5nH3ALC9iv1x9wAAAAAAAAAQjUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQSUmhN7BTaFwyf8YTT858Yd47K1etbQrVNTUD33/Q6KOOPvbI4aWp\n7TvVsqcv/9INL5dWDJ1+7w96ZrNhxcxbvviDR0MIh1x4+/dG7xV5OQAAAAAAAAA7TKRPZk2/\n5ca7HmtqSzYdWrm8ceXyt15+/vFpB4y56NKvHrx7r20/3ZPTFvbAJv+mee2Ll9zwWKGWAwAA\nAAAAANAdxf64+zm/uOz7U2ZsKvSpdFllRemmT2tfe/qq865a2JTdxrM1rphx3/LG/O9yoyRp\n+q9LrlvV0laQ5QAAAAAAAAB0U1HfSb9mweSrp8/LjfsMGnXuOWcceejg0lRoXP3G47+aeudD\ns5Mkaa6fd+UlU+++6aytnq2l/o2bLr8zSZKtztxhL06+7LEl6wq1HAAAAAAAAIBuKuZI3/bz\na3+Ta+rl/T96y6SLakra3z9fUfP+kydcftAeE7/1X7NDCHULH7hn0Sln/EPlFs/SWLvir39d\n/MdnZ/z2iT/UZ3uw0K9ZcP/VD79eqOUAAAAAAAAAdF/xRvqGt6Y8tbopN/7cNV/bVOg3OWDs\n5Sc+dPr/fbsxhPCbG58540djN5uwYc0T5371tlX1zRF2m21a/N0rp7UlSSrduyazYXsfWd/N\n5QAAAAAAAADkRfG+k37Rvc/nBuU1x5+0T58tTUl9+isfzI3q35y69j13ySfZ+u4U+slnn3by\nRlt77X1y/3evfL2pNYQw8vPf+4fy7f3Tim4uBwAAAAAAACA/irfXPvTiqtxg72M/2dmc6oPP\nSKd+15YkSbbhnuXrvrxP346fllQMPfPMMzseaVzx5IOPLc37Vhf+euI9r9aGEHY76LQrP/WB\na+6LuhwAAAAAAACAfCnSSJ9k615saMmNDzx6z86mZXoNOryydFZdcwhh0dzasFmk733guHEH\ndjyy+pV5eY/0jcufuuxnfwwhZMoHX3X1Zzd/KH8PLwcAAAAAAAAgj4o00jfX/z6btD++fkRV\nWRczR/Yty0X6VbNXhxMG5XEPffsPGJBenxuXdhLPk2ztDy++rTGbpFKpz1xx9QfKM9v1Fd1c\nvl1aWlra2rzqHgAAAACAwtiwYUOhtwDA37+ysrJUqrt3RhdppG9pfG3TeFhFaRczB+5bEZY2\nhBDWL30rhMPyuIdTr7v51K3NeWrSpX+obQohvO/4S88cXr29X9HN5dtl/fr1zc3NPfoVAAAA\nAADQmfr6+kJvAYC/f9XV1ZlMd2+NTudlK7uctuY1uUEqVVKV6eovHcqq2++zb2td0+Pbere3\nZ/3kpqeXhhB67zH62nMOj7wcAAAAAAAAgLwr0kjfvLb9nu9UprLrmSWV7ffZR470zfVzL/3h\noyGEdKbyguu+3qfLvyTI+3IAAAAAAAAAekKRRvrt0JZsHMR7mU2SNP/0kmvfac6GEEZ9+dpR\nu5fHXA4AAAAAAABADynSSF9W1f4Q+yS7ruuZretac4NUaU3P7qmDuXdd/v/ebAgh9B8x4eJP\nDIq8HAAAAAAAAIAeUlLoDRRGuqwqN0iS5sa2pCLd6dPgm2vbH4yfLokU6de+Nv07018LIZRW\nHHD1tz8VefkOKysrS6eL9G8+AAAAAAAouPJyj5UFoMelUnl4z3iRRvqS3vuHMCM3nt/Y8qG+\nZZ3NfHvJ+tygV/VeMXYWwrVX3ZNNklQqM/6aK/Yty0RevsP81w8AAAAAAAXUt2/fQm8BALZJ\nkUb6Xv2OSKdubUuSEMJLDa1dRPq5DS25Qf9Re8bZ2+Km1hBCkmQnf/Nzk7uc+cr155x8fft4\n1C1TLx1U2f3lAAAAAAAAAPScIn0+eSpTNaJPaW786qx3OpuWtK6aWbchNx40Mt476QEAAAAA\nAAD4u1Skd9KHEE4ZUfPCc8tDCMsefT6cMniLc+oW39+SJCGEVKZi/MA+cTZW0advkm3rYkJT\nY2M2SUIImV4V5SXt7zzotfHPLbq5HAAAAAAAAICeU7yRfsjph4fn/juEsG7ZtNl1p/xjvy08\n8f65W2fmBpX7ju9fGqlj//TuqV1PuHr8qX+sbw4hDD3vpu+N3iu/ywEAAAAAAADoOcUb6Sv3\nnTC6+tFna5uSpO3HE6dPue701Lsn1L469fa/1OXGJ3zjqPg7BAAAAACga0PPf6TQW2g3f9LY\nQm8BANg1FG+kD6nMFy4+/tlLHg4hrFkw7bzrSy77yikD+5SEEEKSXTDzge/fcH+SJCGEqv1P\nHz+kX96/f/olF8yoXZ8bf/tHtw7qlcn7VwAAAAAAAACwUyniSB9C9bCzr/j0gmseXBBCWPzs\nXef+7uEh+w2u6tW2YsnCJauacnPKqoZP/M9xPfHt9W8vW7ayPdK3JD3xDQAAAAAAAADsXCK9\nZ32n9ZEJ11545jHl6VQIIcnWv/6nV16YO29Toe8/7JiJN181uNw97gAAAAAAAADkQVHfSR9C\nCCE9etwFI0d9/NEnnpw5Z97K1avrNoTq6pqBQw7+2Jgxxx1xSCa19VMAAAAAAAAAwLZI5V67\nDgAAAAAAu5yh5z9S6C20mz9pbKG3UBh+BQCwvYr9cfcAAAAAAAAAEI1IDwAAAAAAAACRiPQA\nAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAA\nAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAA\nAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAA\nAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAA\nEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACR\niPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlI\nDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQAAAAAAAAAEIlIDwAAAAAAAACRiPQA\nAAAAAAAAEElJoTcAAAAAALCrGnr+I4XeQrv5k8YWegsAAGwTd9IDAAAAAAAAQCQiPQAAAAAA\nAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAA\nQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABE\nItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQi\nPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAA\nAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAA\nAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAA\nQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABE\nItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQi\nPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAA\nAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQlhd7ATqFxyfwZTzw584V5\n76xctbYpVNfUDHz/QaOPOvrYI4eXprbvVMuevvxLN7xcWjF0+r0/6P7G2ppXPfObR/8w9+XX\n3lhaX1/fEsr6Vvbbd8gBhxx2+Cc+eeTuZZmtniGPlwYAAAAAAABAN4n0yazpt9x412NNbcmm\nQyuXN65c/tbLzz8+7YAxF1361YN377Xtp3ty2sJ87eyN56ZN/NF9bzdlOxxrrd3QWLty+cuz\nn7lvyh7/+rWLzxhzQOcnyPOlAQAAAAAAANBNxf64+zm/uOz7U2ZsytipdFllRemmT2tfe/qq\n865a+K5M3pXGFTPuW96Yl40tefrm86+/t2OhLynvV1Xxtz+qyDa/c+8N37rxt53+TUB+Lw0A\nAAAAAACA7ivqO+nXLJh89fR5uXGfQaPOPeeMIw8dXJoKjavfePxXU+98aHaSJM318668ZOrd\nN5211bO11L9x0+V3Jkmy1Zlb1dr4ykWTHs+dqrTPkPHnTDjysA/sWVOZCqF+9fI5j0//2b2P\nrWltCyE8/V+XHvVPd42sLOvRSwMAAAAAAAAgL4r5Tvq2n1/7m1wIL+//0VsmXXLUYYNzr2mv\nqHn/yRMuv/6cj+Tm1S184J5F9Z2dpbF2xYKXZt/944kTzjr/+bfX52Vn839+a302CSFkygZ8\n5yfXffroEXvVVObeIF9Zs9eYcV+9bdJ55elUCCFpW3/7T//cQ5cGAAAAAAAAQH4Vb6RveGvK\nU6ubcuPPXfO1mpLUZhMOGHv5iQMqcuPf3PjMe8+wYc0Tnx9/6mf/7YsXXTHxvhmzc1k9L+6b\n+XZuMPhfLhletfld8iGEPoOOOX/E7rnxqjm/3uzT7l8aAAAAAAAAAD2heCP9onufzw3Ka44/\naZ8+W5qS+vRXPpgb1b85de17GnySrV9V37zDG5h89mknb9Tx3fDZpoUvNbSfdswJ+3a2/ICT\n9skNWta9stlH3b80AAAAAAAAAHpC8b6T/qEXV+UGex/7yc7mVB98Rjr1u7YkSbIN9yxf9+V9\n+nb8tKRi6JlnntnxSOOKJx98bGk3N9ay/rVN449UlnY2rWzjHfZJW1MSQseb5bt/aQAAAAAA\nAAD0hCKN9Em27sWGltz4wKP37GxaptegwytLZ9U1hxAWza0Nm0X63geOG3dgxyOrX5nX/Uhf\n2mf4lVdemRsPLMt0Nm31i7Xt8ys/1LHQ5+XSAAAAAAAAAOgJRRrpm+t/n03an/E+Yksvfd9k\nZN+yXMleNXt1OGFQHvfQt/+AAen1uXFph8yeKdvnwx/ep+u1rY2Lb5u+ODd+3/H/2vGjQl1a\nknhmPgAAAAAUjP9BV3B+BQXnVwBABKlUauuTtqZII31L498eKT+sotNHyocQBu5bEZY2hBDW\nL30rhMPyuIdTr7v51G2enGRb1q1b19DQUF+79I8zn3vm6ZlLGltCCP2GHHfF6R/oOLNQl1Zf\nX9/c3NzNkwAAAAAAO2bVqlWF3kKx8ysoOL8CACKorq7OZDp9Gvo2KtJI39a8JjdIpUqqMl39\nsUNZdfvN6G2ta3p8W527/d/HP7K6qeORVKr0sGM/c96XP1v97v3vcpcGAAAAAAAAUDzShd5A\nYTSvbb/nO5Wp7HpmSWX7zeg7W8nu+/6Pnnj8J/qXbv4b/Du4NAAAAAAAAIC/V0V6J/12aNv4\nDpu2DQXcxcADhg6r25BKpVKpVGvD0gVvrK5f9PTEbz39gdFnff9bnynfsTcf7ByXBgAAAAAA\nAFA8ijTSl1W1P+k9ya7rembrutbcIFVa07N76tLJl3335A7/XDpv1s9vnPT7FY2vP/uLr69v\nu+PKcZs+2uUuDQAAAAAAAKB4FGmkT5dV5QZJ0tzYllSkO70Tvbm2/enx6ZKdqGTvPWzUhTf0\nPuusqxqzyYo/3j158QkTBrc/3L5Ql5ZOpzOZTPfPAwAAAADsAP93ruD8CgrOrwCAXUWRRvqS\n3vuHMCM3nt/Y8qG+ZZ3NfHvJ+tygV/VeMXa2zcoqR4zfq+8dS+pDCDPveWPCpcNzxwt1aX37\n9u3+SQAAAACAHVNdXV3oLRQ7v4KC8ysAYFeRLvQGCqNXvyPSG9/j/lJDaxcz5za05Ab9R+3Z\n49sKIYTw0n8/MG3atGnTps1YsLbrmUOGtHfxhoV/3nRwZ740AAAAAAAAgCJXpHfSpzJVI/qU\nvtDQHEJ4ddY74ZTBW5yWtK6aWbchNx40MtLj7tc8/vC0xXUhhL2XH/qJg6q6mNnalG0fpUo3\nHdyZLw0AAAAAAACgyBXpnfQhhFNGtJfpZY8+39mcusX3tyRJCCGVqRg/sE+cjQ0cvltusObl\nP3Q986U3GnKD3nvs0/H4TntpAAAAAAAAAEWueCP9kNMPzw3WLZs2u655i3Oeu3VmblC57/j+\npZF+VnuPHZkbrF/137Prt7yxEELz2lkPr2x/qfx+497X8aOd9tIAAAAAAAAAilzx1tnKfSeM\nri4PISRJ248nTk/eM6H21am3/6UuNz7hG0dF21ifgZ8dUl4SQkiS7M1XTWnIvndrIbthxU8u\nu7k1SUIImbK9vzDsXc+r32kvDQAAAAAAAKDIFW+kD6nMFy4+Pjdcs2Daedffv2xda/tHSXbB\nc7+84Ir7kyQJIVTtf/r4If3y/v3TL7ngSxu9uSG76XgqXfHNzw/Pjdf+5ddf+o9rZ8yet6K2\nIQkhhLY1by+Z8/i08/7tK4+/2f6s+w9//vIBm90KX+hLAwAAAAAAAGCLSgq9gUKqHnb2FZ9e\ncM2DC0IIi5+969zfPTxkv8FVvdpWLFm4ZFVTbk5Z1fCJ/zmuJ769/u1lyzY+r77l3Xe7Dzr+\nyjNmfeGe/10VQqhfNOvHE2eFEDLllb3bGhuasx1n7vfx8y4fO+i9Jy/spQEAAAAAAACwRUV8\nJ30IIYSPTLj2wjOPKU+nQghJtv71P73ywtx5mzJ2/2HHTLz5qsHlmdjbSmVO+84tXzzhsHQq\ntelYtqm+Y6HP9Op/0rnX3PD14zo7x056aQAAAAAAAABFrKjvpA8hhJAePe6CkaM+/ugTT86c\nM2/l6tV1G0J1dc3AIQd/bMyY4444JJPa+il6QipdcdKXrzn6U/N+O+N/Xpk3/41lq9atWxdK\nelf267fvkIOGH/bh4z7+0Zqyrv/GYie9NAAAAAAAAICilcq9mxwAAAAAgO019PxHCr2FdvMn\njS30FgrDr6Dg/AoAYHsV++PuAQAAAAAAACAakR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAA\nAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAA\nACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIikp9AYAAAAAgB0x9PxHCr2Fv5k/\naWyhtwAAALsGd9IDAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEItID\nAAAAAAAAQCQiPQAAAAAAAABEItIDAAAAAAAAQCQiPQAAAAAAAABEUlLoDQAAAACwSxp6/iOF\n3kK7+ZPGFnoLAAAA28qd9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQSUmhNwAAAAAAAGy3lnv2LvQWQghh7uHh0N/fUehdAMCuxJ30AAAAAAAAABCJSA8AAAAA\nwP9n787jtKru+4GfZ3ZmGCYzEBGEaKkboojGiCShGpdES2IitURFLTGt2tiqXUxU4lIl0SSv\nVo0xrSGmLiyxBkntz7SiElMXhKq8gghoFIOKLLLODAPMdn9/PCNSlmGGeebcmT7v91/nxXPu\nud/rd+48CR/OvQAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIrSLgAAAABgfwy/6vG0\nS2iz9K5xaZcAAABAr2EnPQAAAAAAAABEIqQHAAAAAMz/A04AACAASURBVAAAgEiE9AAAAAAA\nAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIpCjtAnqEhpVL5zw99/lXlnywbv3mbaG6pmbQIUeOPflzp336mOJM55Za\n9czky/7p1eLy4bN+/r2c19mJxZPGCef86bbWZJ9rVg65ZvqPx+amPgAAAAAAAADaJaRP5s26\n546Hntw5z163umHd6vdeffGpmYef8s3rrhjRv7Tjy82dubwbiuz04o31izqS0AMAAAAAAAAQ\nU74/7v7lB6+/7YE5O/LsTEFJZXnxjk83vvHMTVfetHxbSwdXa1gz599WN+S+ys4v3li3oJvK\nAAAAAAAAAGC/5fVO+k3L7r9l1pLsuGLomMsvveDTIw8uzoSGDb9/6rHp981ekCRJY92SG6+d\nPu3Oi/e5WlPd7++cfF+SdMv+9c4uXvv6u9lB5ZCLv/3XI9qZWVh6UFeLAwAAAAAAAKBj8jmk\nb/3X23+Vjb3LBnzmnru+WVPU9v758ppDzp40+ciPT/n7exeEEGqX/2LG2+dc8AeVe1ylYeOa\nd95Z8dKzc/7z6f+pa8lxQr/fi294aX12MGDMqOHDD81tVQAAAAAAAADsn/wN6evfe+DXG7Zl\nxxfd+lc7EvodDh83+Yuzz/9/axtCCL+6478v+OG4XSZs3/T05Vf88/q6xu4or4uLv/27+uxg\n4In9c1cUAAAAAAAAAF2Sv++kf/vnL2YHZTVnfumgij1NyYz/xnHZUd270zfvtpE9aanrSkJ/\n/yVfPftDu7/2vouLL6hvO/aEA/rs9yIAAAAAAAAA5Fb+7qSfvbDtgfCDT/vC3uZUj7igIPNC\na5IkLfUzVm/5y4P67vxpUfnwCy+8cOc/aVgz99En389JeV1ZPGltWLylKYSQyRSO6Veak3oA\nAAAAAAAA6Lo8DemTltqF9U3Z8RGfG7i3aYWlQ0dXFs+rbQwhvL1oY9glpO9zxIQJR+z8JxsW\nL8lZSN+FxZvqXm5JkhBCcd9jKwsz77/6zH+98OrK91auWrOhsKJf/48POea44z5zymcP7FOY\nk1IBAAAAAAAA6KA8Dekb6+ZnY+wQwqiqknZmHt+3JBvSr1+wIZw1NIc19B1wwAEFW7Pj4kwO\nFw7bN7+UHWQKKn540xVPLXx3pw9Xr3jrjVdenDvtvvtPP+/Sb5w7Jldnrq+vb2pqytFiAAAA\n0Jts3Lgx7RLynRb0BLqQOi1IXfwW9N33lPziLgAggn79+hUWdnUvdJ6G9E0Nb+wYH1Ve3M7M\nQUPKw/v1IYSt778XwrE5rOHc7999bg6X28mmxauyg+2bn31q4Z7ntDSuf+LB25b87sIfXjuh\nMBdBfWtra0tLSw4WAgAAgN7G/yNOnRb0BLqQOi1InRakTgsA6C3yNKRvbdyUHWQyRVXtZtQl\n1W377FubN3V7WTmy4aUNO8aZwsrPTzj/tM+e+IkD+oeGdStWrHjztfmzZ89d19gSQnh33rTJ\n04bfftEx6RULAAAAAAAAkEfyNKRv3NyYHWQKK9ufWVTZts++F4X0r79Tnx0Ulx963R1TThhU\n3vZB6cDh1QOHjzrxjC+cfMtVtyyuawwhLJ01ZfGfTD+6PE9/EgAAAPbP2Fvnp13CR569YXTa\nJQAAAAAdJZrdl9bkw8H2VOvohKHjJ17S2BJC+MRnzzx+QNnuE8oGjJz8va9fcMW/JEmStG69\n9+G37/7aYdHLBAAAAAAAAMg7eRrSl1S1PcQ+adnS/szmLc3ZQaa4pntryp0xf/ylfc6pGHLW\nRYOnPbiyLoSw5jdPByE9AAAAAAAAQPfL05C+oKQqO0iSxobWpLxgr6+lb9zY9mD8gqJeE9J3\n0OgvHvTgvctCCI21L4RweRdXq6zcx4sDAAAA6Cb9+/dPu4R8pwWp04KeQBdSpwWpi9+C5sjn\n6/HcBQBEkMnsNVnuuDwN6Yv6HBbCnOx4aUPTJ/uW7G3m2pVbs4PS6gNjVBZR1dHV2UFr86ba\nlqRfYZd+nnLy4wgAAMB+8P/IUqcFqdOCnkAXUqcFqdOC1GkBAL1FQdoFpKO030kFH35b/7a+\nvX9uuKi+KTsYMGZgt5cVV6aodMe42P90AQAAAAAAAOh+ebqTPlNYNaqi+JX6xhDCa/M+COcc\nvMdpSfP652u3Z8dDj+8dj7vf+OorbzQ0hRBKqo487siqdmZuXbkhOygqO6TP3h/4DwAAAAAA\nAECu5GlIH0I4Z1TNK8+tDiGseuLFvYX0tSseaUqSEEKmsHzioIqo9e2vzW9M+84Db4YQSqtO\nfuShv2tn5u/+fWV20HfoV2JUBgAAAAAAAJD38vRx9yGEYeePzg62rJq5oLZxj3Oe+/Hz2UHl\nkIkDinvHf6sDT/18drB9828eXLZpb9OaG5b9aEnbTvrh5x0TozIAAAAAAACAvNc7gufuUDlk\n0tjqshBCkrT+aMqsZLcJG1+b/pM3a7Pjs/7m5LjV7b+y6jPPHlieHc++8duv7unfH7Q2r5t6\n/ZQtLUkIobh8xNWfHBC1RAAAAAAAAIB8lb8hfcgU/vm3zswONy2beeUPHlm1pbnto6Rl2XMP\nX33DI0mShBCqDjt/4rB+OT//rGuvvuxD725vyeHKX73uvIJMJoTQsu2dmy+96v7/mPfB5oYQ\nQkha1q9a8dIzs799+RX/ubw2hJDJFIy/7hovpAcAAAAAAACII3/fSR9CqD7qkhvGL7v10WUh\nhBXPPnT5C78cdujBVaWta1YuX7l+W3ZOSdUxU74zoTvOXrd21ap1W7Pjpt038ndB5bCv3Hze\nohtnvhRCaGpY+ejU2x6dGorKKktatjQ0te6YlskUnPxn3514bE0uzw0AAAAAAADA3uXxTvoQ\nQgifmnT7NReeWlaQCSEkLXVvvb74lUVLdiT0A446dcrdNx1cVphqjftj1Pk33nrZl6uLPupv\n87a6nRP6sppDL77+nr8df1Qa1QEAAAAAAADkqbzeSR9CCKFg7ISrjx9zxhNPz33+5SXrNmyo\n3R6qq2sGDRvxR6eccvpJRxf22ifBHzvu6z8de+Zvnnpy4evvrF2zds3aNXVNhR+rqhpy6IgT\nTjjpjFM/Ve4p9wAAAAAAAABxCelDCKFi6Ijxk0aMn9TVdWqOvvmxxzo6edLPHu7UCTu1eFZx\nv4NOHz/p9M4dBAAAAAAAAEB3yffH3QMAAAAAAABANEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAA\nAAAAAACRCOkBAAAAAAAAIJKitAsAAACg04Zf9XjaJbRZete4tEsAANLRNGNw2iWEEMKi0WHk\n/KlpVwEAqekh38ghhOIL3k+7hF7DTnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEVp\nFwAAAJ02/KrH0y6hzdK7xqVdQjq0AAAAAICd9ZC/L+oVf1lkJz0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAA\nAJEI6QEAAAAAAAAgkqK0CwAAOmf4VY+nXUKbpXeNS7uEdPScFoQ87gIAAAAAQC9lJz0AAAAA\nAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAA\nAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAA\nABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAA\nIBIhPQAAAAAAAABEUpR2AQD0MsOvejztEtosvWtc2iUAAClomjE47RJCCGHR6DBy/tS0qwDI\nXz3k6yD4RgAAoPPspAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAk\nQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE\n9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjp\nAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdID\nAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcA\nAAAAAACASIT0AAAAAAAAABBJUdoFAAAAAAAAQC82/KrH0y6hzdK7xqVdArBvdtIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACR\nCOkBAAAAAAAAIBIhPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEVpFwBARzXNGJx2CSGEsGh0GDl/atpVkKfcBQAAAAAA9HZ20gMAAAAAAABA\nJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKUdgE9QsPKpXOe\nnvv8K0s+WLd+87ZQXVMz6JAjx578udM+fUxxpnNLrXpm8mX/9Gpx+fBZP/9eT6gth5cGAAAA\nAAAAQBcJ6ZN5s+6546Ent7UmO/5o3eqGdavfe/XFp2Yefso3r7tiRP/Sji83d+byHlNbji8N\nAAAAAAAAgC7K98fdv/zg9bc9MGdHjJ0pKKksL97x6cY3nrnpypuWb2vp4GoNa+b82+qGHlJb\nbi8NAAAAAAAAgK7L6530m5bdf8usJdlxxdAxl196wadHHlycCQ0bfv/UY9Pvm70gSZLGuiU3\nXjt92p0X73O1prrf3zn5viRJ9jkzQm25vTQAAGCHphmD0y4hhBAWjQ4j509NuwoAAAAAOi2f\nd9K3/uvtv8pm6mUDPnPPXdeefOzB2de0l9cccvakyT+49FPZebXLfzHj7bq9rdKwcc2y3y6Y\n9qMpky6+6sW1W3tGbbm5NAAAAAAAAAByK39D+vr3Hvj1hm3Z8UW3/lVNUWaXCYePm/zFA8qz\n41/d8d+7r7B909Nfm3jueX/2F9+8Ycq/zVlQ15KbPfRdr63rlwYAAAAAAABAd8jfkP7tn7+Y\nHZTVnPmlgyr2NCUz/hvHZUd1707fvFsGn7TUra9r3O8C7r/kq2d/aJd3w3extq5fGgAAAAAA\nAADdIX/fST974frsYPBpX9jbnOoRFxRkXmhNkqSlfsbqLX95UN+dPy0qH37hhRfu/CcNa+Y+\n+uT7qdfW9UsDAAAAAAAAoDvkaUiftNQurG/Kjo/43MC9TSssHTq6snhebWMI4e1FG8MuIX2f\nIyZMOGLnP9mweEnXQ/ou1paTSwMAAAAAAACgO+RpSN9YN78laXvG+6iqknZmHt+3JJtkr1+w\nIZw1NIc19B1wwAEFW7Pj4p3eGt/F2tK6tK1btzY3N3dxEaB9ZWkX0NPU1dWlXUK+i98Cd8Hu\n3Aip04LU+V2UOi3oCfwuSp0WpE4LeoLIXfB1sDtfyqnTgtT5OoDgRshLvg520d13QUVFRUFB\nV98pn6chfVPDGzvGR5UXtzNz0JDy8H59CGHr+++FcGwOazj3+3ef2w21pXVpTU1NjY2NXVwE\naJ8v2l1s37497RLyXfwWuAt250ZInRakzu+i1GlBT+B3Ueq0IHVa0BNE7oKvg935Uk6dFqTO\n1wEEN0Je8nWwi+6+C8rLy7u+SFdD/l6qtXFTdpDJFFUVZtqZWVLdthm9tXlTt5eVPVHXauvJ\nlwYAAAAAAACQ5/I0pG/c3LbnO1NY2f7Mosq2zejRkuwu1taTLw0AAAAAAAAgz+VpSN8JrcmH\ng573eJAu1taTLw0AAAAAAADg/6I8DelLqtqe9J60bGl/ZvOW5uwgU1zTvTV9qIu19eRLAwAA\nAAAAAMhzRWkXkI6CkqrsIEkaG1qT8oK9vru9cWPb0+MLiiIl2V2sLa1LKy8v79OnT9fXAei4\nqqqqtEvId1rQE+hC6rQgdVqQOi3oCXQhdVqQOi3oCXQhdVqQOi1InRZAcCNA998FBQU52Aaf\npyF9UZ/DQpiTHS9taPpk35K9zVy7cmt2UFp9YIzKulxbWpdWVJSnP0sQU1PaBfQ0xcXFaZeQ\n7+K3wF2wOzdC6rQgdX4XpU4LegK/i1KnBanTgp4gchd8HezOl3LqtCB1vg4guBHykq+DXfSK\nuyBPH3df2u+kgkzbFvPf1je3M3NRfdsP9oAxA7u9rBBCl2vryZcGAAAAAAAAkOfyNKTPFFaN\nqmj7NxSvzftgb9OS5vXP127PjoceH+lx912srSdfGgAAAAAAAECey9OQPoRwzqi2ZHrVEy/u\nbU7tikeakiSEkCksnzioIlJlXa6tJ18aAAAAAAAAQD7L35B+2Pmjs4Mtq2YuqG3c45znfvx8\ndlA5ZOKA4nj/rbpYW0++NAAAAAAAAIB8VpR2AampHDJpbPUTz27cliStP5oy64Hvn5/53xM2\nvjb9J2/WZsdn/c3Jvai2nnxpAECv1jRjcNoltFk0OoycPzXtKgAAAAAAOi2Pt1BnCv/8W2dm\nh5uWzbzyB4+s2tLc9lHSsuy5h6++4ZEkSUIIVYedP3FYv5yff9a1V1/2oXe3t+SytrQvDQAA\nAAAAAIA9yt+d9CGE6qMuuWH8slsfXRZCWPHsQ5e/8Mthhx5cVdq6ZuXyleu3ZeeUVB0z5TsT\nuuPsdWtXrVq3NTtuSnJcW7qXBgAAAAAAAMAe5fFO+hBCCJ+adPs1F55aVpAJISQtdW+9vviV\nRUt2xNgDjjp1yt03HVxW2Btr68mXBgAAAAAAAJCf8nonfQghhIKxE64+fswZTzw99/mXl6zb\nsKF2e6iurhk0bMQfnXLK6ScdXZjZ9xI9tbaefGkAAAAAAAAA+UhIH0IIFUNHjJ80Yvykrq5T\nc/TNjz3W0cmTfvZwR07YxdpydWkAAAAAAAAAdF2+P+4eAAAAAAAAAKIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQA\nAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEA\nAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAA\nAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIJKitAsAAAAAepOmGYPTLqHN\notFh5PypaVcBAAAAnWMnPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAA\nACIR0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAA\nRCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACI\nREgPAAAAAAAAAJEI6QEAAAAAAAAgkqK0CwDonOFXPZ52CW2W3jUu7RIAAAAAAADoZeykBwAA\nAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgPAAAA\nAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAERSlHYBANBrNM0YnHYJIYSwaHQYOX9q2lUAAAAA\nAAD7w056AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKkBwAAAAAA\nAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRFaRcAAAAAAAAAndY0Y3DaJbRZ\nNDqMnD817SqAXsNOegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQi\npAcAAAAAAACASIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkRWkXAAAAAEDnNM0Y\nnHYJIYSwaHQYOX9q2lWkQwsAAID9Zic9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJ\nkB4AAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR0gMAAAAAAABAJEJ6\nAAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARFKUdgHQmwy/6vG0S/jI\n0rvGpV0CAAAAAAAA0Dl20gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAA\nACASIT0AAAAAAAAARCKkBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAA\nQCRCegAAAAAAAACIREgPAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACA\nSIT0AAAAAAAAABCJkB4AAAAAAAAAIhHSAwAAAAAAAEAkRWkXAAAAdELTjMFplxBCCItGh5Hz\np6ZdBQAAAAD0PnbSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIh\nPQAAAAAAAABEUpR2AT1Cw8qlc56e+/wrSz5Yt37ztlBdUzPokCPHnvy50z59THGm2w/vrDXP\n3/MX33sihHD0NT/57tgD9zwpaZxwzp9ua032uVrlkGum/3hsbisEAAAAAAAAYI+E9Mm8Wffc\n8dCTO+fZ61Y3rFv93qsvPjXz8FO+ed0VI/qXdtvhnda4eeG1//TkvqfVL+pIQg8AAAAAAABA\nTPn+uPuXH7z+tgfm7MizMwUlleXFOz7d+MYzN1150/JtLd10eGclybZ7r/3++qbWfc5srFuQ\nq5MCAAAAAAAAkCt5vZN+07L7b5m1JDuuGDrm8ksv+PTIg4szoWHD7596bPp9sxckSdJYt+TG\na6dPu/PinB++Hxbef/2TK7d0ZGbt6+9mB5VDLv72X49oZ2Zh6UE5qAwAAAAAAACADsjnkL71\nX2//VZIkIYSyAZ+5565v1hS1vUC+vOaQsydNPvLjU/7+3gUhhNrlv5jx9jkX/EFlTg/vtE3L\nHrnll291cPKGl9ZnBwPGjBo+/NAunhoAAAAAAACAnMjfx93Xv/fArzdsy44vuvWvdkTsOxw+\nbvIXDyjPjn91x3/n9vDOatm24h9unNmaJJmCPv2L9921t39Xnx0MPLF/F08NAAAAAAAAQK7k\nb0j/9s9fzA7Kas780kEVe5qSGf+N47Kjunenb25Jcnh4COH+S7569of29d765JF/uPGtbc0h\nhOO/9t0/KNv38w8W1DdmBycc0GefkwEAAAAAAACII39D+tkL2x4IP/i0L+xtTvWICwoymRBC\n0lI/Y/X/ehl8Fw/vlOX/MWXGaxtDCB878qs3fvkP9zk/aW1YvKUphJDJFI7pV7rf5wUAAAAA\nAAAgt/L0nfRJS+3C+qbs+IjPDdzbtMLSoaMri+fVNoYQ3l60MRzUNyeHd0rD6l9f/7OXQgiF\nZQffdMt5uz5Vf0+a6l5uSZIQQnHfYysLM++/+sx/vfDqyvdWrlqzobCiX/+PDznmuOM+c8pn\nD+xTuB/1AAAAAAAAALDf8jSkb6ybn42xQwijqkramXl835Jsyr5+wYZw1tCcHJ7Vd8ABBxRs\nzY6L95K9Jy0b//Fb/9zQkmQymT+54ZY/LOtQrL5980vZQaag4oc3XfHUwnd3+nD1irfeeOXF\nudPuu//08y79xrljOpL6d+ik27e3trbmaDE6ZOvWrWmXkO/ityBPf2XvnRakTgt6gshd0ILd\nuRFSpwWp04KewNdB6twIqdOCnsDvotS5EVKnBanzV6Z5yF2wOzdCHnIj7KK774LS0tKCgq4+\nrj5Pu9bU8MaO8VHlxe3MHDSkPLxfH0LY+v57IRybk8Ozzv3+3efuq85f33Xd/2zcFkL4xJnX\nXXhM9b6mt9m0eFV2sH3zs08t3POclsb1Tzx425LfXfjDaycU5iKo3759e2NjYw4WosO2bNn/\ndyiQE/FbUBX5fD2eFqROC3qCyF3Qgt25EVKnBanTgp7A10Hq3Aip04KewO+i1LkRUqcFqfNX\npnnIXbA7N0IeciPsorvvgpKS9rZwd1CehvStjZuyg0ymqKrdjLqkuu2/cmvzplwd3kFr5/3L\nnc+8H0Lo8/Gxt186uuMHbnhpw45xprDy8xPOP+2zJ37igP6hYd2KFSvefG3+7Nlz1zW2hBDe\nnTdt8rTht190TGdrAwAAAAAAAGA/5GlI37i5bc93prCy/ZlFlW0b5XdO2bt4eIcqrFt03T8+\nEUIoKKy8+vt/XdGZ3e6vv1OfHRSXH3rdHVNOdPMbtAAAIABJREFUGFTe9kHpwOHVA4ePOvGM\nL5x8y1W3LK5rDCEsnTVl8Z9MP7q8p/8kVM0ZmXYJIYSwaHQYOX9q2lUAAAAAAAAAvVVPj2bT\n15p8ONge7fAkafzptbd/0NgSQhjzl7eP6V/WqXMOHT/xksaWEMInPnvm8QP2cGzZgJGTv/f1\nC674lyRJktat9z789t1fO6xTpwAAAAAAAABgP+RpSF9S1fYU+qRlH+8kaN7SnB1kimtydfg+\nLXpo8n+9Wx9CGDBq0rc+P7TjB2aN+eMv7XNOxZCzLho87cGVdSGENb95OgjpAQAAAAAAALpf\nnob0BSVV2UGSNDa0JuUFe32YfOPGtifbFxR9lLJ38fD2bX5j1s2z3gghFJcffsu3v9zBo/bD\n6C8e9OC9y0IIjbUvhHB5F1crLS0tLi7ORV10VEVFRdol5DstSJ0WpE4LegJdSJ0WpE4LUqcF\nPYEupE4LUqcFPYEupE4LUqcFqdMCCG4E6P67IJPpxGvK9yZPQ/qiPoeFMCc7XtrQ9Mm+JXub\nuXbl1uygtPrAXB3evttvmtGSJJlM4cRbbxhSUtjBo/ZD1dHV2UFr86balqRfZ157v7vS0tJc\nFLVXTd26eu/Up0+ftEvId/Fb4EbYhRakTgt6gshd0ILduRFSpwWp04KewNdB6twIqdOCnsDv\notS5EVKnBanzV6Z5yF2wOzdCHnIj7KJX3AV5GtKX9jupIPPj1iQJIfy2vrmdlH1RfdsP9oAx\nA3N1ePtWbGsOISRJy/1/d9H97c5c/INLz/5B23jMPdOvG1rZwVNkZYo+itWLc/APPgAAAAAA\nAADYh4K0C0hHprBqVEXbs9lfm/fB3qYlzeufr92eHQ89/qPn1Xfx8G618dVX5s+fP3/+/IXL\nNrc/c+vKDdlBUdkhffb+xH4AAAAAAAAAciVPd9KHEM4ZVfPKc6tDCKueeDGcc/Ae59SueKQp\nSUIImcLyiYMqcnh4O8or+iYtre1M2NbQ0JIkIYTC0vKyorZwvfTDf26x+Y1p33ngzRBCadXJ\njzz0d+2s87t/X5kd9B36lQ7WBgAAAAAAAEBX5G9IP+z80eG5fw8hbFk1c0HtOSf228Mj65/7\n8fPZQeWQiQOKC3J4eDt+Om16+xNumXjuS3WNIYThV9753bG7vur+wFM/Hx54M4SwffNvHlz2\n9YuP/NgeF2luWPajJW076Yefd0wHawMAAAAAAACgK/L0cfchhMohk8ZWl4UQkqT1R1NmJbtN\n2Pja9J+8WZsdn/U3J+f28O5TVn3m2QPLs+PZN3771drG3ee0Nq+bev2ULS1JCKG4fMTVnxwQ\nrTwAAAAAAACAfJa/IX3IFP75t87MDjctm3nlDx5ZtaW57aOkZdlzD199wyNJkoQQqg47f+Kw\nfjk+PIRZ11592Yfe3d6Swyv76nXnFWQyIYSWbe/cfOlV9//HvA82N2QLW79qxUvPzP725Vf8\n5/LaEEImUzD+umu8kB4AAAAAAAAgjvx93H0IofqoS24Yv+zWR5eFEFY8+9DlL/xy2KEHV5W2\nrlm5fOX6bdk5JVXHTPnOhO44vG7tqlXrtmbHTbvvxO+CymFfufm8RTfOfCmE0NSw8tGptz06\nNRSVVZa0bGlo+uht95lMwcl/9t2Jx9bk8twAAAAAAAAA7F0e76QPIYTwqUm3X3PhqWUFmRBC\n0lL31uuLX1m0ZEfEPuCoU6fcfdPBZYXddHj3GXX+jbde9uXqoo/627ytbueEvqzm0Iuvv+dv\nxx8VvzYAAAAAAACAvJXXO+lDCCEUjJ1w9fFjznji6bnPv7xk3YYNtdtDdXXNoGEj/uiUU04/\n6ejCfTwJvouHd6Njx339p2PP/M1TTy58/Z21a9auWbumrqnwY1VVQw4dccIJJ51x6qfKPeUe\nAAAAAAAAIC4hfQghVAwdMX7SiPGToh4+6WcP798Jb5z+iw7OLO530OnjJ52+X2cBAAAAAAAA\nIOfy/XH3AAAAAAAAABCNkB4AAAAAAAAAIhHSAwAAAAAAAEAk3kkPdEjTjMFpl9Bm0egwcv7U\ntKsAAAAAAACA/WEnPQAAAAAAAABEIqQHAAAAAAAAgEiE9AAAAAAAAAAQiZAeAAAAAAAAACIR\n0gMAAAAAAABAJEJ6AAAAAAAAAIhESA8AAAAAAAAAkQjpAQAAAAAAACASIT0AAAAAAAAARCKk\nBwAAAAAAAIBIhPQAAAAAAAAAEImQHgAAAAAAAAAiEdIDAAAAAAAAQCRCegAAAAAAAACIREgP\nAAAAAAAAAJEI6QEAAAAAAAAgEiE9AAAAAAAAAEQipAcAAAAAAACASIT0AAAAAAAAABCJkB4A\nAAAAAAAAIhHSAwAAAAAAAEAkQnoAAAAAAAAAiERIDwAAAAAAAACRCOkBAAAAAAAAIBIhPQAA\nAAAA/H/27j3OyrJQ9PizZs0Mw8AwzUgoCuEhtQQJMkux3OKl0mO6i8xUysjaZllm+5R5SW0r\n7tz1OZmZ7e6piZiGdvkcOxKapYSSl5MXJCuQFAGFAeYGzO09f7wDIjDjMLPW88581vf71+PM\n86z1wOPL/PGb910AAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQ\niUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI\n9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgP\nAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAA\nAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAA\nAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAA\nAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGI9AAAAAAAAAAQiUgPAAAAAAAA\nAJGI9AAAAAAAAAAQiUgPAAAAAAAAAJGUZ72BQaF11TML7r1v0WNLX163ftOWUFdfP3b/Nx91\n9DHHHTmlIlf05b3oalv/x7vv+fMTTz773ItNTU3toXJkzahxEw86ZOrh73nvkXtV5jPcGwAA\nAAAAAAB7SqRPFs+/4dqf/W5LV7L9S+vWtK5b88KTDy2cd9CMCy8+b/Jew4q2vDfPPThvzrdv\nf2lL5w5f69iwtXXDujVPLvnj7Te9/kOf/fKZMw7KZG8AAAAAAAAA9EOpP+7+0Zsv+dpNC7Zn\n7FxZZU11xfbvbnj2/ivOv2L5qzJ5IZf3YtX913/+G7ftWOjLq0bVVr/ySxWdbS/f9s0vXvvb\n5fH3BgAAAAAAAED/lPSd9BuX3Xjl/KXpeMT46eeec+aRb5lQkQutDc8t/PXcH9+1JEmStqal\nl18095ZvnVXw5b3oaH3qwusWJkkSQqgYMXHWObOPnPrGvetrciE0Nax5dOH8n9z2u40dXSGE\n+79/8dHv+tmhNZXR9gYAAAAAAABAv5XynfRdP73m7jSEV41+5w3XXXT01Anpx7RX1+9/yuxL\nv3HO29N5jct/ceuKpkIv780zP/1uU2cSQshXjvnq974+85hp+9TXpJ8gX1O/z4zTzvvv686v\nKsuFEJKuzT/40d9i7g0AAAAAAACAfivdSN/8wk2/b9iSjj961Wfry3M7TTjopEvfN6Y6Hd99\n7R8Lu7x3ty96KR1MeP9FU2p3vks+hDBi/LGfn7ZXOl7/6G9i7g0AAAAAAACAfivdSL/itofS\nQVX9CSfvN2J3U3IzP/PWdNT0/NxNnUkBl4cQbjz7w6dss+Nnw3duWf6X5rZ0POPEcT3t/6CT\n90sH7S1PFfaPBgAAAAAAAECRlG6kv+vx9elg3+Pe29OcuslnluVyIYSks/nWNS0FXN6L9s3P\nbh+/vaaip2mV2+6wT7q27NTYi7c3AAAAAAAAAAaiPOsNZCPpbHy8uT0dv+mYvXualh82/vCa\nisWNbSGEFU9sCPuNLMjy3lWMmHL55Zen47GV+Z6mNTy+oXt+zdt2fJx9UfcGAAAAAAAAwECU\naKRva3q4M+m+/3za7j70fbtDR1amJXv9koZw4viCLE+NHD1mTNnmdFyxQ2bPV+532GH79b7/\njtaV/z1/ZTp+wwkfKuAfrd86OjqSxGPzo2pvb896C6XOEWTOEWTOEQwGTiFzjiBzjiBzjmAw\ncAqZcwSZcwSDgVPInCPInCPInCOA4EKA4l8F5eXluVzutef1/iIF2cqQ0976yiPlJ1X3+Ej5\nEMLYcdXhxeYQwuYXXwhhakGWp079+vWn9nnDSWd7S0tLc3Nz04YXH1n04B/vX7SqtT2EMGri\n8Zed8cYdZxZkb/3Q2tra1tY2wBfpRW3xXnrI2rRpU8y3cwS7inwEwSnswhFkzhEMBn4cZM6F\nkDlHkDlHMBj4cZA5F0LmHMFg4N+izLkQMucIMhf/CMicq2BXLoQS5ELYSbGvgrq6uny+x6eh\n91GJRvquto3pIJcrr8339psOlXXdN6N3dWws1PJ++MEnZv2fhi07fiWXq5h63AfP//Tpda/e\nQPy9AQAAAAAAANBHZVlvIBttm7rv+c7la3qfWV7TfTP6jiV7gMsLYuT+73zfCe8ZXbHzCQ6G\nvQEAAAAAAACwWyV6J/0e6Nr2OetdWzNYvs3Ygw6e1Lg1l8vlcrmO5heXPdfQtOL+OV+8/41H\nnfW1L36wqn8fe1CgvQEAAAAAAADQRyUa6Stru5/0nnS29D6zo6UjHeQq6gu1vB9OueQ/Ttnh\nP19cuvin11738NrWfzxw8+c2d/3w8tMy3BsAAAAAAAAAfVSikb6ssjYdJElba1dSXdbjneht\nG7qfHl9W/krJHuDygdt30vQvfXP4WWdd0dqZrH3klhtXnjh7Qk22e6uoqMj174Z++mvYsGFZ\nb6HUOYLMOYLMOYLBwClkzhFkzhFkzhEMBk4hc44gc45gMHAKmXMEmXMEmXMEEFwIUPyroCBJ\ntEQjffnwA0NYkI6faW1/28jKnma+tGpzOhhWt0+hlhdEZc20WfuM/OGqphDColufm33xlGz3\nNnz48IG/SC/ai/rqQ1NNTU3Mt3MEu4p8BMEp7MIRZM4RDAZ+HGTOhZA5R5A5RzAY+HGQORdC\n5hzBYODfosy5EDLnCDIX/wjInKtgVy6EEuRC2MmQuArKst5ANoaNOqJs2+84/KW5o5eZTzR3\n/489evrehVreu7/86hfz5s2bN2/egmWbep85ceLIdNC8/G9x9gYAAAAAAADAQJRopM/la6eN\nqEjHTy9+uadpScf6RY1b0/H4Q195JvwAl/du48JfppH+zt++0PvMji2d2zZUEWdvAAAAAAAA\nAAxEiUb6EMIHpnWX6dX3PNTTnMaVd7QnSQghl6+eNXZEAZf3YuyU16WDjU/+ufeZf3muOR0M\nf/1+cfYGAAAAAAAAwECUbqSfeMbh6aBl9bwljW27nfPgdxelg5pxs0ZXvOrvaoDLe7HvSYem\ng83rf7WkafevHEJo27T4l+u6P1T+gNPeEGdvAAAAAAAAAAxE6dbZmnGzj6qrCiEkSdd35sxP\ndpmw4em5P/h7Yzo+8QtHF3Z5L0aMPX1iVXkIIUk6r7/ipubOXV87dG5d+71Lru9IkhBCvnLf\nT0561fPqi7c3AAAAAAAAAAaidCN9yOU/+eUT0uHGZfPO/8Ydq1s6ur+VdC578OcXXHZHkiQh\nhNoDz5g1cVSBl4cw/6ILPrXN81s7t389V1b9vz4+JR1v+vtvPvXv1yxYsnTthuYkhBC6Nr60\n6tGF887/2GcWPt/9rPvDPn7pmJ1uhR/w3gAAAAAAAAAohvKsN5CluklnXzZz2VV3LgshrHzg\nZ+f+6ZcTD5hQO6xr7arlq9ZvSedU1k6Zc/VpxVje9NLq1dueV9/+6rvdx59w+ZmLP3nr/1sf\nQmhasfg7cxaHEPJVNcO7WpvbOnececC7z7/0pPEF3xsAAAAAAAAAxVDCd9KHEEJ4++xrvvSR\nY6vKciGEpLPpH3996rEnlm7P2KMnHTvn+ismVOWLtLxHufyHv3rDv504tSyX2/61zi1NOxb6\n/LDRJ5971Tc/d3zsvQEAAAAAAADQXyV9J30IIYSyo0674NDp777n3vsWPbp0XUND49ZQV1c/\nduLkf5kx4/gjDsnnirq8R7my6pM/fdUx/7r0twv+8NTSZ55bvb6lpSWUD68ZNWrcxDdPmXrY\n8e9+Z31l779jUay9AQAAAAAAANA/In0IIYwYP3nm7MkzZ0ddPvsnP3/NFSP3nfSh2ZM+1L9t\nhRAG/EcDAAAAAAAAoIBK/XH3AAAAAAAAABCNSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAA\nABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAA\nkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAA\nABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAA\nkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAA\nAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAA\nABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAA\nkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJ\nSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0\nAAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8A\nAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAAAAAAABCJSA8AAAAAAAAAkYj0AAAA\nAAAAABBJedYbGBRaVz2z4N77Fj229OV16zdtCXX19WP3f/NRRx9z3JFTKnJFX953q++/9FPf\nfLKi+uD5t/3Xa0xN2k77wIe2dCWv+Zo1474097tHFWZ/AAAAAAAAAPRKpE8Wz7/h2p/9bsee\nvW5N67o1Lzz50MJ5B8248OLzJu81rGjL98x985b3cWZb8xN9KfQAAAAAAAAAxFTqj7t/9OZL\nvnbTgu09O1dWWVNdsf27G569/4rzr1i+pbNIy/dI69oFt69p7ePktqYlBXlTAAAAAAAAAAqo\npO+k37jsxivnL03HI8ZPP/ecM498y4SKXGhteG7hr+f++K4lSZK0NS29/KK5t3zrrIIv3yPt\nTc9969IfJ0lfb45v/Ovz6aBm3Flf+dzkXmbmh+03wL0BAAAAAAAA0EelHOm7fnrN3Wn2rhr9\nzhuuu7C+vPsD5Kvr9z9l9qVvfv2cL35/SQihcfkvbl3xgTP/R01Bl/dJ64a1//znykceWPDb\ne//c1LkHj69veGR9Ohg9fdrBBx/Qj7cGAAAAAAAAoOBK93H3zS/c9PuGLen4o1d9dnti3+6g\nky5935jqdHz3tX8s7PLXtHXjvR+fderpH/u3Cy+bc/uCJXtU6EMIK/7WnA72fsdee/rWAAAA\nAAAAABRJ6Ub6Fbc9lA6q6k84eb8Ru5uSm/mZt6ajpufnbnp1Jh/g8hDCjWd/+JRtdv3c+qSz\naX1TW9//ODtZ0ty99rAxw/v9IgAAAAAAAAAUVuk+7v6ux7sfCL/vce/taU7d5DPLcn/qSpKk\ns/nWNS2f3m9koZa/pvLqgz/ykY/s+JXWtffd+bsX+7I26Wp9qqU9hJDL5aePGtb3NwUAAAAA\nAACgqEo00iedjY83t6fjNx2zd0/T8sPGH15TsbixLYSw4okNYVtlH+Dyvigf/qbTTnvTjl9p\neGppHyN9e9OjnUkSQqgYObUmn3vxyfv/75+eXPXCqtVrG/IjRu31+nFT3vrWd8541z7D833f\nDwAAAAAAAAADV6KRvq3p4TRjhxCm1Vb2MvPQkZVpZV+/pCGcOL4gy1MjR48ZU7Y5HVfs/In2\nA7J10yPpIFc24ttXnLfw8ed3+Oaalf949rGH7rvlxzcef/o5nzl1ekHfGQAAAAAAAIDelGik\nb299dvt4UnVFLzPHjqsOLzaHEDa/+EIIUwuyPHXq168/dc933hcbn1qdDrZuemDh47uf09m2\n/p6bv7b0bx/59kWn5QsR6hsbG9va2grwQj2oLd5LD1nr1q2L+XaOYFeRjyA4hV04gsw5gsHA\nj4PMuRAy5wgy5wgGAz8OMudCyJwjGAz8W5Q5F0LmHEHm4h8BmXMV7MqFUIJcCDsp9lVQV1eX\nzw/0geUlGum72jamg1yuvLbXRl1Z132jfFfHxkItL7aGRxq2j3P5mvecdsZx73rHG8bsFVrX\nrVy58u9PP3zXXfeta+sMITy/+JZLbzn4mo9OibY3AAAAAAAAgFJWopG+bVP3Pd+5fE3vM8tr\num+U37GyD3B5sf31n83poKL6gIuvnXPY2Orubwzb++C6vQ+e9o53v/foKz9/5VNNbSGEZ+bP\neeqDcw+pLtH/EwAAAAAAAABikmZfS1eybbA1g+X9Mn7mrLPbOkMIb3jXCYeOrtp1QtXot1z6\nX58487zvJUmSdG3+/s9XXP/xA6NtDwAAAAAAAKBklWikr6ztfgp90tnS+8yOlo50kKuoL9Ty\nYpv+P09+zTkjxp340X1vuXlVUwhh7R/uDSI9AAAAAAAAQPGVaKQvq6xNB0nS1tqVVJf1+Lny\nbRu6n2xfVv5KZR/g8kHi8Pftd/P3l4UQ2hr/FMK5A3y1srKyfD5fiH3RV/7CM+cIMucIMucI\nBgOnkDlHkDlHkDlHMBg4hcw5gsw5gsHAKWTOEWTOEWTOEUBwIcAQuQpKNNKXDz8whAXp+JnW\n9reNrOxp5kurNqeDYXX7FGr5IFF7SF066OrY2NiZjMr3+KsGfTFy5MhCbKpH7UV99aGprq4u\n5ts5gl1FPoLgFHbhCDLnCAYDPw4y50LInCPInCMYDPw4yJwLIXOOYDDwb1HmXAiZcwSZi38E\nZM5VsCsXQglyIexkSFwFZVlvIBvDRh1Rlutu0n9p7uhl5hPN3f9jj56+d6GWDxK58mHbxxUD\nCvQAAAAAAAAA9EmJRvpcvnbaiIp0/PTil3ualnSsX9S4NR2PP/SV59UPcHlRbXjysYcffvjh\nhx9+fNmm3mduXtWQDsqr9h/e8xP7AQAAAAAAACiUEo30IYQPTOuu5qvveainOY0r72hPkhBC\nLl89a+yIAi4vnk3P3nL11VdfffXV/3n1j3qf+bdfrUoHI8e/v/j7AgAAAAAAAKCEI/3EMw5P\nBy2r5y1pbNvtnAe/uygd1IybNbriVX9XA1xePPsc+550sHXTH25etrGnaR2ty76ztPtO+oNP\nnxJjZwAAAAAAAAAlr3Qjfc242UfVVYV8jsLyAAAgAElEQVQQkqTrO3PmJ7tM2PD03B/8vTEd\nn/iFowu7vHiq6k44Ze/qdHzX5V95cne/QNDVse6Hl8xp6UxCCBXVky942+ho2wMAAAAAAAAo\nZaUb6UMu/8kvn5AONy6bd/437ljd0tH9raRz2YM/v+CyO5IkCSHUHnjGrImjCrw8hPkXXfCp\nbZ7f2lnAP9mHLz69LJcLIXRu+edXz/n8jb9Z/PKm1nRj61evfOT+u75y7nm/Xd4YQsjlymZe\n/CUfSA8AAAAAAAAQR3nWG8hS3aSzL5u57Ko7l4UQVj7ws3P/9MuJB0yoHda1dtXyVeu3pHMq\na6fMufq0Yixvemn16nWb03H7rnfiD0DNxPd/9fQnLp/3SAihvXXVnT/82p0/DOVVNZWdLa3t\nXdun5XJlR3/sP2dNrS/kewMAAAAAAADQsxK+kz6EEMLbZ1/zpY8cW1WWCyEknU3/+OtTjz2x\ndHtiHz3p2DnXXzGhKl+k5cUz7YzLr/rUv9aVv3K+HVuadiz0VfUHnHXJDf8+c1L8vQEAAAAA\nAACUrJK+kz6EEELZUaddcOj0d99z732LHl26rqGhcWuoq6sfO3Hyv8yYcfwRh+Rf40nwA1xe\nRFNP+sSPjjrhDwt/9/hf//nS2pfWvrS2qT3/utracQdMPuywI9597NurPeUeAAAAAAAAIC6R\nPoQQRoyfPHP25Jmzoy6f/ZOf79GK+kO++utf79lbVIza7/iZs4/fs0UAAAAAAAAAFEupP+4e\nAAAAAAAAAKIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEe\nAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEA\nAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAA\nAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAA\nAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAA\nACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAg\nEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR\n6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgEpEeAAAAAAAAACIR6QEAAAAAAAAgkvKs\nNzAotK56ZsG99y16bOnL69Zv2hLq6uvH7v/mo44+5rgjp1Tkir586O4NAAAAAAAAgD0i0ieL\n599w7c9+t6Ur2f6ldWta16154cmHFs47aMaFF583ea9hRVs+dPcGAAAAAAAAwB4r9cfdP3rz\nJV+7acH2jJ0rq6yprtj+3Q3P3n/F+Vcs39JZpOVDd28AAAAAAAAA9ENJ30m/cdmNV85fmo5H\njJ9+7jlnHvmWCRW50Nrw3MJfz/3xXUuSJGlrWnr5RXNv+dZZBV8+dPcGAAAAAAAAQP+U8p30\nXT+95u4kSUIIVaPfecN1Fx09dUL6Me3V9fufMvvSb5zz9nRe4/Jf3LqiqdDLh+7eAAAAAAAA\nAOin0o30zS/c9PuGLen4o1d9tr48t9OEg0669H1jqtPx3df+sbDLh+7eAAAAAAAAAOi30o30\nK257KB1U1Z9w8n4jdjclN/Mzb01HTc/P3dSZFHB5COHGsz98yjY7fTZ85nsDAAAAAAAAoBhK\nN9Lf9fj6dLDvce/taU7d5DPLcrkQQtLZfOualgIuH7p7AwAAAAAAAKDfSjTSJ52Njze3p+M3\nHbN3T9Pyw8YfXlORjlc8saFQy4fu3gAAAAAAAAAYiPKsN5CNtqaHO5PuZ7xPq63sZeahIysX\nN7aFENYvaQgnji/I8tTI0WPGlG1OxxU7fGr8YNhbP7S0tLS3tw/wRXqx26f2l7iNGzfGfDtH\nsKvIRxCcwi4cQeYcwWDgx0HmXAiZcwSZcwSDgR8HmXMhZM4RDAb+LcqcCyFzjiBz8Y+AzLkK\nduVCKEEuhJ0U+yqoqanJ5/MDfJESjfTtrc9uH0+qruhl5thx1eHF5hDC5hdfCGFqQZanTv36\n9acO1r31Q2dnZ0dHxwBfhD3iLzxzjiBzjiBzjmAwcAqZcwSZcwSZcwSDgVPInCPInCMYDJxC\n5hxB5hxB5hwBBBcCDJGroEQfd9/V1v0LFLlceW0+18vMyrrum9G7Ol75nYsBLh+6ewMAAAAA\nAABgIEo00rdtaksHuXxN7zPLt31w+44le4DLh+7eAAAAAAAAABiIEn3c/R7oSrYNtmawvKgv\nXtS9Fdqm9zyR9Ra6PfCerHeQkcFzBMEpDAKOIHOOIHOOYDBwCplzBJlzBJlzBIOBU8icI8ic\nIxgMnELmHEHmSvYIyNzguQqCC4HsDJ4LwVXQdyV6J31lbfeT3pPOlt5ndrR0f2hBrqK+UMuH\n7t4AAAAAAAAAGIgSvZO+rLI2HSRJW2tXUl3W42e3t23ofnp8WfkrJXuAy4fu3noxcuTIJEle\nex4AAAAAAADA0JTP5wf+IiUa6cuHHxjCgnT8TGv720ZW9jTzpVWb08Gwun0KtXzo7q0XZWUl\n+lQGAAAAAAAAgL4r0bA6bNQRZbnuW8z/0tzRy8wnmtvTwejpexdq+dDdGwAAAAAAAAADUaKR\nPpevnTaiIh0/vfjlnqYlHesXNW5Nx+MPfeWZ8ANcPnT3BgAAAAAAAMBAlGikDyF8YFp3mV59\nz0M9zWlceUd7koQQcvnqWWNHFHD50N0bAAAAAAAAAP1WupF+4hmHp4OW1fOWNLbtds6D312U\nDmrGzRpd8aq/qwEuH7p7AwAAAAAAAKDfSrfO1oybfVRdVQghSbq+M2d+ssuEDU/P/cHfG9Px\niV84urDLh+7eAAAAAAAAAOi30o30IZf/5JdPSIcbl807/xt3rG7p6P5W0rnswZ9fcNkdSZKE\nEGoPPGPWxFEFXh7C/Isu+NQ2z2/tHFR7AwAAAAAAAKAYcmmsLVl/vvHCq+5clo5z+ZqJB0yo\nHda1dtXyVeu3pF+srJ3yv3945YSqfMGX33j2h+9ctzkdf+v2uybuMifDvQEAAAAAAABQDKUe\n6UPoeuD2b19/6++3dO3m72H0pGMvvOgzb35dZTGWv2akz3BvAAAAAAAAABSDSB9CCC3PP33P\nvfctenTpuoaGxq2hrq5+7MTJ/zJjxvFHHJLPFWt5HyJ9ZnsDAAAAAAAAoBhEegAAAAAAAACI\npCzrDQAAAAAAAABAqRDpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAA\nIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACAS\nkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAAAAAAIhHp\nAQAAAAAAACASkR4AAAAAAAAAIhHpAQAAAAAAACASkR4AAAAA4P+zd99xTdz/H8Dfl4QAQQhD\nhuKoqIjiXhWpFa3+6qhaR124tWrF1lH3aJ11Vltx1F2tKHXUbV3firviqAMEFAcgEJYQCSEk\nudzvjygiUkSb5GLyev51XD6Xx/vhx899cve+z/sAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAAT\nQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAA\nAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAA\nAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAA\nAAAAAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAA\nAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAA\nAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAA\nAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIe\nAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwE\nSXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAAAAAA\nMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAA\nAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAA\nAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAAAAAAAAAAAAAAMBEk6QEAAAAAAAAA\nAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAAAAAAAAAAAAAAAAAADARJCkBwAAAAAA\nAAAAAAAAAAAAMBEk6QEAAAAAAAAAAAAAAAAAAEwESXoAAAAAAAAAAAAAAAAAAAATQZIeAKwL\ny/EdAYA5mRMyesSIET+cTuY7EKvAqgv4DsHaoQtMYNkvO6/FpfIdBQAA8AzTAcC7wQUa79AF\nBocZAQCjAODdWMOkLOI7AABLkJiY+FbtGYHQ1s7eztbOzsFeLGCMFJXVys+SpWQXVK9RtehO\n+YOLoZv23X+cmJNPrhWqtWzbeWDP1nb4xzcOpTwjJTVLw5X1gQhfv9pCdAUfdJqMmOTUfB2n\nOZFK7bz5DsfScNrsSxEX7tyJio6Jz8nLUyrzNSx36NAhIlLnXv0jIjcwqFVlRxu+w7Rk6AJe\nnD8Wfv5YuGMF39ZBbYLatPb1Ksd3RNYOk7I5UMjl2jJ3gdTZGT3wVk6dOmXAb3OuE9jMW2LA\nL7RamA5MDAPBMuACjXfoAmPAjACAUQDwDqxkUkaSHsAAxo4d+24HMgJx+QoVK1f6oH7TFi1b\nNvNCquC/ybh9et3W368/TLeR1N+7a37h/qwb20fN26fWPb83mpUcd/i3uLMXb4cu/9pFhLug\nBsNpn+7bvP7IuRtPc99urWrY/oOOSAgYEvck9vo/MY+zc5WlttIm3TqTr+OISKfC8mIDiz2/\n75cNux7K1SV+yhY82rlxR/iWrUF9R37duxX++xsDuoBfuan3juy6dzR8Q8VaTYOC2gS1buHp\ngOsOk8KkbA6Sb5zYfuhMfPyDjGdv0QvogrcVGhpqwG/zG1MbuUkDwnRgMhgI5g0XaLxDF/AP\nMwIARgEAEWFSLgZnAQA+cTp1RvLjjOTHN65EbPvFoc0Xw0f0+aQc7sq9E9nFLSFLD76+UIxj\nny1ccqAwQ1/o2cPTU5bV3zg9yETxWTqOzft53Ni/khTvcKwtXr1iODq1bN38707ckr3VUbV6\nVjdSPNbpRtjsOb/femMzHSv/K2zZ3fi0tTN64Xkhw0IX8CigbtXI6ESW44iI47jk2KthsVd3\nbrDza/pRUJs2H7eo64DfOcaHSdkcxB9e8e2ms1yZF9AXskEXgEXAdACghws03qELeIcZAQCj\nAEAPk/LrkKQHMIAWLVoQkUbx4HpUxuufMgxT7PacjcSnSX13pfxpRkZGZpZcn1fm2Ly/wlfd\njkldO2+AHYOJ+e2wqoczVx4usZRr5s018flaIhKIpL1Gf9XEWxx9+dD2QzeJKP3vn87LW7aS\nik0driV6cvKHoskAG4nUw9WxjP+PbfAf3nDCZ045EZfzVod4NOk5pbWXkeKxQkknVxWmhxmh\n40efBPnWqGlzZ+cv51/+ABVJatfzdriTnEdEsivbZ+yqu7S/Hz/hWiJ0Ab+m/xCqeppw8dz5\nc+fO/hOfpt/J6VQxkadjIk9vsCvfrFXrNm2CPqxbFYlI48GkzDu1/OKMza9k6IVCYRmPFaML\n3pL+WqxEOk1W5PX7hX8yjMDRxd3Ty8tRWJCWlpaWkVP4GgKh2Ct4dN/yIoHU19XoEVsHTAcm\nhoFgtnCBxjt0Ae8wIwBgFADoYVJ+XfHcIQC8G1b1eP5XU25kqYiIEUqaftKlXYu67u7lPdw9\nyok0Genp6enp8TfPHzh6IVvDMoyw49hlo9vXICJOp069f+vkkT1/nI3Vf5Vv8MrlfSz54SBj\nSPhj0te/3iMigdCpR8j4T5vV9ZTa6T868c2ANY+fEZHf4J+W9vTR7zy36qvlp5OJqGr3H0OH\n1uQpaovy67A+f2TmE5Ffm94jB35eozzersQDRdL2/iF79duSCr7NG/o5iwpiL0TEZhcQUb2O\nXWrYiYhIKc+4E3klRaEhIv/gOQt6N8YDu4bCqhJGBI/L0uiISOrbevKkMfW97Ikofvu4iXsf\nEZH+hehERJz2cvjCRbuuExEjlCzduaOWPR6dNAB0gVnJTbl37tzZs+fOxT6RF/vIvrzPx0FB\nQW2C/Cs78xKbZcOkzLtby0bOPi8jInuPusNGBTeq6ePhbM93UFZHq3zw4+TZF5MURCSpUKfH\nF70/+7ihRPzyzifHFsRdORUe/vuNx3IiklRsvmDltBqYC4wA0wGPMBD4hQs03qELzA1mBACM\nArBamJRLhCQ9gGHsnjJ4R2w2EVUO7D91dI8q/7I4m81PO7Jl6eYT9xmG+Wzmpi+buxd+9OB/\nayauOslxnFDs9evv66WWfe4xtN9H9A1LVxJR42/WzWnn/fIDTjus1xeZGpZhmCW79vlJnt9r\nUD+72GvAEiKSeASHb+rDR8iWZkSv7ulq1sU/+NdFffB/ly83FoyYE5lORE7VO69ZPlJ/GtEq\n7wX3n5yv4/xGrVnaubK+JcfKd6+YFnY+WWhb+ftNKxuinoSBJB2eErIxlohspU3XbZ1VXvT8\nBmgJGWIiIvrfspE/n5cRUY0BP6/oXc3k8VogdIF5ynh4+9y5s+fOXXiUmV/sI4/qDYOC2gQF\nBVbCichwMCnzbsmALy4+KxA7NV3/6yw3EdbD8IL7deKgP+LlRNS415RZAz/699eacDf+WDbn\n1wtEJK3x+dYfh+EFKMaD6cDkMBB4hgs03qELzBZmBACMArA2mJRLhPsFAAYgf7hJn6GX1ui1\nakrff8vQE5HQ3rNbyPIh9Vw5jju2dHqsUlv4UfVPQr5u6EZErFp2IKP43Aylu/CsgIgYRjyh\nTcWi+1U5pzM1LBGJnVoVZuiJSOwU6GYjICL1s8umjdRiPdPqiKj115/hZg6PLt1/pt/oPm1g\n4YM+IonvIC8HIko5Hl/YkhFKe09a2d5TwhYk/Th3v+lDtVSXDybqN1pNGVu+DFmZViMH6jdS\nTl01YljWBF1gntx96vcc8vXPW8LXLJ7Vp1OrCo4vfymlP7i5e/PKkEH9Js758XDEDbkGDxAb\nACZl3kUpNUTkHzIKGXq+ZMes0icmyzccPmdQKYlJImIa95jyTYAnEcnjDyz7O91EIVolTAcm\nhoHAO1yg8Q5dYLYwIwBgFIC1waRcItwyADCAGxvO6zd6zfiiDAvgmc6TBxARq05fu+dR0Q8C\nRn+s34i6lmXoGC1cmlpHRCL7D4pVIMi+fVa/4VynfbFDKolFRMRqZASGUMVWSERVJaiLyKfb\neRoiYoSSbh6SovtrNnElooLsyKI7GcZu8PT2RCSPDwtPyTNhmJbsrLyAiBiB7dA6LmVpL5a2\n8hALiUgtv2DcyKwGusC8MZXrNA8ePXn9jp0/zvm2W9tmLuLnb+nmOE38jbMbV8wZ3HfQ3BWb\nzv0Tz+IuxH+ASZl3BTqOiFr4SfkOxHpd3XRdv9Fr/Kdlad9qTLB+486288aKCV7CdGAiGAi8\nwwUa79AFZg8zAgBGAVgLTMolQpIewAAOPcwlIoFI2q18mV42aevcTp8SSDm5u+h+O7fniWTl\nE6WhY7Rw9gKGiDidttj+e4dT9BvVulYu9pH6+cs+sMbMMFp7SIjodhqKQPDpqUZHRCLbKsVW\nybg2cyUiteK6+tVf807VhriLhUT0V1g8gSHoHxgS2lZxLPMrS7xshETEqlONGJY1QRe8FzSK\npxmZWTnyZ/laXbGPdBr59YhDy7+fOChk1oHzMbyEZwEwKfNO/zpnLW6i8edYkoKIGKGko6td\nWdrbSoOcRQIiys86bdzIoAhMB8aGgcA7XKDxDl3wvsCMAIBRABYPk3KJsLoCwAASC1giEti4\nv7FlIVeRIF3NavJuF90ptPHQb6ifqg0YnjWoZi/KzlWzBY+T1az3i+cNidOEPX5eROXzak5F\n23O6/IcqLREJbMqbNlKLFTC88cbvIq6tPsCFDsGDD3yxFTBqluO44k+rSCr6Et3kdKrrCnVA\nkfJZxAhbO9nuzVQ+vXmEqIFJY7VQDkJGreV0mkyuzE8AyTQsETGCMj3jBW+ELjBnqqeJf1++\nfPnSpWtRjzVc8eylS+U6UuXDx1kq/Z+5T25vWXY7Mnbcwi8/wbTytjAp866zj1PUnazrMfIu\ngWVKjIHBJekv0AQOZR8C9gImh0inRpVvo8N0YDIYCLzDBRrv0AVmDjMCAEYBWA9MyiVCkh7A\nAJxFggwNy6oS5SwnLcPSPY7NfazSEhHD2BTdz6qfl14Xu9iUcBj8u/YVHG7kqjlOF3oyefFn\nVfQ7s279IlPrX0gfUOfViq/y+9v1ZUhtHVuYPlqLVL7hhN6+/+y+98eMLVXmDG1jy+C3Ig8q\n2grjlDpWlZDLckWXEYvLNSXaTUQRyXkBfuKih7iLBUSkUUaZOFRL9aGj+Hi2SqfNPvFU1aEM\nK5bUuZfT1SwR2TjUN350VgFdYIZyZfGXL126fPnyP/dSdK/ddChftW7gR4GBLQP9KjsTx8b/\nc+F//zt95tJtJcsRUdThn3+sV29SCw8+An+PYVLmXaOxPQSjN93duF3VcpId/v35UE7IZGs5\nVpPxUMX62Anf2J4tSJBpdEQksHE2fnRWCtOB6WEg8A4XaLxDF5gnzAgAGAVghTAplwhJegAD\nCHKx3ZOu5Dj1+huZU5q9eT191p2NKh1HRGKnVzLEStmf+g2nWk4lHAb/rs7QRjT9LyKK2Tx9\nt9usTk19859cXbI4Qv9pxfZfFG2cm3D+u+9P6Lfdmjc1baQWjOn3w+L0b6dEHPhpyNWIQQO6\n1fGpVsnLtcwFp8EAWjmJ45QajtNsi80Z6//yhdwiiW85IaNgucSTKeT3you6U9SsycO0ZO2D\nPI/vTyCi3asiOszp8Mb20b/9pt9wa/TmxlAW6ALz8TTx7uXLly9dunTnUcbrn3r41G/ZMvCj\nwEBf7yK/eRhhjcatazRuPVSesHXxd0ejs4noypqt1GKqycK2FJiUeSap0GVB/8gZYecnr/Rb\nNuEz5OlNL8BJfOypiog2/ZXyQ6fi7716XWrEBo7TX6AFGj04K4PpgEcYCLzDBRrv0AVmBTMC\nAEYBWDNMyiVCkh7AANr2qbYnNJqI/l6+KHbTYj9HcSmNtcoHyxdf1G97d+r08gNOvX/lOf1m\ns/ourx8IpXCuMzrQ9dLFpyqOzd2xaGoYw3AvHkJkBHZfflFVv52f/ueSpYdv3U9mOY6IGEb4\nRd8P+IrZ8gjF3l26t4z46URe8s11S24SESMQCspwU3r//v1GD846NOxSiTbGEVHEwh+aL5/b\nvKLkxSeCj6W2x56qZBfW5YaEFj6rqFOnnc5WEZGNnQ8/EVucqj362hxYquG4zBtrF+2VTukZ\nUEpKTHZt17wTyfrt/+uPLjAMdAHvZPG3Ll26dPnypbhkebGPGIbx8KkfGPhRYGDLmhUcS/kS\nsbTq0BljjwbPJyL1s0tKHScpy4xHA2EAACAASURBVHQCRWBS5l3dPvMmFCz+ed+mQdFne/YL\n7tamoR2ekjCh//vU+9iuB0QUs2XutWarm7qXVltFlXlj7sa7+m3vTm1NEZ8VwHRgDjAQeIcL\nNN6hC8wBZgQAjAIAwqT8L5CkBzCACkETamwaHZ+v1ebHzxo9Y+iEsZ2bflBiy+Rbp1av2HBX\nqSEiodgjpNvz5HFu6r0j21buffiMiMTlGnUvjzfjvh2Gsft60dcPvl6hr2/PFSkTVKvX7HqS\n568PKMi5euPek8KPPvh0epDU1sShWrCrv86a/8ftons4HWv5T7uZE+/2o1y2TsrW6tSKuIUh\nw2s1aDRi6kRfexERtW3leexgAqtKnLHq4LLx3ewYhmPl4ctn57EcETlUxhpiwxBLA6e1qzT/\nVBIRXd6+aHhk0FeDutX1e/WnJMdmyR6fO7pn++HL+geGXPyG9PCSlPiF8LbQBbwbOXF2sT0M\nw3jVaBQY2DIwMLC6p0MZv8emXL0XmyIxViG/PUzK/Dpw4AARkVPtT+s/+PPWvbBV3+8MtXH1\n9PLy8nJ2KO1xXiKaOhVrYgygSrcR0t0z5ayOVaf/MHby0G8ndWletcSWideO/Lh8S5qaJSKB\nyGVk50qmjdRiYTowBxgIvMMFGu/QBeYAMwIARgEAYVL+F0jSAxiAwMZj1oxeI7/7Xc1x6tx7\n6+d9s7OiX7N61T08PDw8PCSkSs9Iz0jPeBh9LTopR38IwzDtQ+bVsBMSkVK2acDow4V55Y+/\nCcEc+w4kFVr9FOq0Yc3miDsJ+nf5CETlAruN+HZAvdcbM4yoSccvZ45qbvIwLZb8wfYF++/w\nHYW1E9rVmP/lx2PXRRARx+bF3riQUDBO/1vHp98ohyMz81gu4cyWfhf3VPKWZiSlKLU6/YGt\nRzfgMWwL0zRkWdek0Ydic4joaWzEwhkRjNDOvdzzf+ppE0MSE1MURYo12Urrz5vXjZ9YLRS6\nwEwwjKCib+PAwJYtW7b08XjrZyC0ynv6DXvPbiL8MHpLmJR5t2XLlmJ7OE6TJUvKkiXxEo8V\nEkn85wxsPOHXa0SkzU/YuODrP3waftS4doUKFby8vCSklMlkqampsTcu/PMwq/CopoO+97PH\nTRIDw3TAIwwE3uECjXfoArOCGQEAowCsGSblEjFF15sCwH+RennH1GV7c16cO0rBCGzbf7lg\nbOda+j8VKav6jz6t3/btNH75aFSW+08KsmWJaVnCcu6VvN2LPVSoeLIjdFdmxQ98mwd8XLtS\nOb4itEh/Thy4Ll5ORPYedfr071q7ire7S7ky/lx0c3MzamzW5u6JbSs2HUgvYIno6+172js/\nLxdxN2z2tN9vvd7evfHQzXO6mzRES8ex8v3rlv568s0ZMpdabWfMGlNL+oZVlfC20AU86tbt\n80q1mgR+FBjYsmXV8qWV1QXjwaTMu65du77zsYcOHTJgJFbu/OaZyw6W9YGVhj2mzRvS0qjx\nWBVMB+YDA4F3uEDjHbqAX5gRADAKAAphUi4GSXoAQ1Jl3t3yy5ZTV++z/z6yKtYJHDxqTEC1\nl++Y0SfpJV6+XfoMDf7E3ySRAhjYV190Ty5gbZ2bbto6W4pXrvJNp5HfvhJ5LzGlfvfgoutg\nLu9csXbvOfmLZ4kYRtigffC0MT3xFitjkEVf3H/o8JnIGBVbwoxQvlrDzl0/79q2sQ3+7Y0G\nXcCLpGxVZRfcdOAZJmXeHT9+/J2P7dDBkkv5md7jS/tWbgh/9LSglDYSD9/gUeO7NEN9b0PC\ndGBWMBB4hws03qELeIQZAQCjAKAoTMpFIUkPYHj56fHnLl+PiYl5nJyhyFPka8jR0UnqVsGv\nTp0GzT9qXL18sfZsQVJChl21Su6WfLIBS9ejWzctx328ZNuk2i58xwKl0eal3Lz9IONpnlul\nD6r7+Lg5YgGxcXGs8lHs3YfJmQqFIl+tcyjn6OTi4VvHvyIuz0wFXQBWCJMywCs4dfSl/128\nfjsmJi4165lSpWYYga29g6tX5Vq1fBs0a9W6SU08zWJYSUe/m77rIRHZOgVsXhvCdzhARBgI\n5gsXaLxDFwAAAJgJK5yUkaQHAAADGNGre7qaHbd9zycvatQAAAAALzApA5SCY9U6gRjJSKO6\nv/Xrb/cnEJHQrur+3aF8hwMlwEAAAAAwZ3NCRj8p0Pr0nTujnTffsQCAEYne3AQASoVVAiZ2\n6tQpA36bc53AZt4SA36h1WrrbBuernyiYvkOBAAATGT16tWG/cKxY8ca9gutFiZlgFIwQrGQ\n7xgsnluzKrQ/gYhYVUK0Uusvwa0ns4OBAAB8Ucjl2jIvGpQ6O+NpIrBCOk1GTHJqvo7TnEgl\nJOkBLBqulAD+K1V69rNnz4hIqI7lOxarEBpqyKUYfmNqI0lvEG0G1Alfce1S2J3B337IdyzW\nIicnR7/BMDZSqQO/wcDrOE51/05UYvLTdh3/75X9bM7yNeHVqtX6sFVgZWfLr9rEI3SBsZ08\nedKwX4gkvaFgUjYxzMgAxbj6jwtwvno5R0VE2048Wdr9A74jAjAFTAe8QxeYs+QbJ7YfOhMf\n/yDjWUHZjwrbf9ARRT/AcnBPYq//E/M4O1dZaitt0q0z+TqOiHSqtxgvAGYFk3IZIUkP8F9h\nlQAAEVVoPb3LgaFHzi3Z88mGLxqW5zscqzBo0CD9htihwd5d84loyZIl7/xtU6dONUxYQMSx\nuX/t3rrrYES6UisUexXPEOvU508fO0/Hftu0ulmn4K+Gf+4mEvAVqqVCF4CVw6RsYpiRzR8W\n7ZkaI56wfHLaN4sfKjX3wxZe+Sj0Q3c7vmMCDASjw3TAO3SB2Yo/vOLbTWff4a27NrhQA0uh\nU8vWzf/uxC3ZWx1Vq2d1I8UDYGyYlMsI2USA/wqrBEysRYsW//aRTpMVef1+4Z8MI3B0cff0\n8nIUFqSlpaVl5BTekhCKvYJH9y0vEkh9XY0esZVgbIYtmps1afaO70fFdRowYmAXLzywYnIX\nL17kOwQgVp28asqUMw9z39iS4zSRR3+9ezt+2cpvvVFw1HDQBSYzYMAAvkOAf4FJmW+Ykc0E\nFu3xyM6j2eI1369auOxCfNriMd/0GD6sU1AzNzvMtjzAQOARpgPeoQvMgVp+ccbmVzL0QmFZ\npwMxgxMRWIjwmVNOxOW81SEeTXpOae1lpHgATA+TcolwswbgP8MqAdOaMWNGifu1ygc/Tp6t\n35ZUqNPji96ffdxQIn75zC3HFsRdORUe/vuNx3JWLdu799KCldNq2OM0aBgHDhwgIt827aJ3\nHoo8uvXqsW1Sd+/K3u42ZbiemjNnjrHDAzCZ/XNnFqaHGUZctXa9Yg0YoWPvzkFXrkQmZCqJ\nSJF0YfbCmlvmdjd1oJYLXWAyvXv35jsEKBkmZQDCoj2+HT16lIj82/bMke+MypDtWfvD3nVi\nZzdXV1c3F1epbanZXwteKGN6GAgAwLuYDdtUOo6I7D3qDhsV3Kimj4ezPd9BAZiUIml7+IsM\nvaSCb/OGfs6igtgLEbHZBURUr2OXGnYiIlLKM+5EXklRaIjIP3jOgt6N8bwcgMVDdgrAALBK\nwAxwO2bNuZikIKLGvabMGviR6LUfMYzQ1q/lZ3Nadr7xx7I5v15QpkTOnbl964/DXm8J72DL\nli1F/+Q4XU56Uk56El/xWINatWrpN0T2lfQbY8aM4S8cICJSJO3afuepfrvaR31njO3t+drq\nVUZgP2DUxAEj2Ut7fv4x7KyG4zL/2XpA9unnXhKTx2uB0AUAhEnZ5DAjmyEs2uPd+vXri+3h\nOHV2piw78+2qvMJ/gYFgYpgOeIcuME/Hb2UTkdip6dpfZuFFY2Cd7m07p99wqt55zfKRUiFD\nRNrg9sH9J+frOE2VDkM7V9Y34Fj57hXTws4nx+7dfKdD3YZSMW9BA/w3mJTLiHmHx2kBoBj9\nKgHiNBf374zKUBERw2CVgEllx/w8eOr/iKh8w+Fb5nV7Y/vTi75cdTmNiAKmb5oe4GH0+KxA\n165d3/nYQ4cOGTASAB5d+27YvJuZROQRELJp+qdvbB+769spu+4TkeeH8zbObGj0+KwAugCA\nMCkDEN1aNnL2eRlh0R5/cCIyBxgIAGAOBvb4XK7VNZq+cW6AJ9+xAPBj9eDeJ7NVRDR4Y3hP\nz5fLA46O7r8+ReFUdcKO0DaFOzlOtXrkkFNpSmmN4N9W9OEhXAAwIaykBzAArBLg3dVN1/Ub\nvca/OSVDRK3GBK+6vIKI7mw7TwE9jRiZ1Rg/fjzfIQDw7+TDZ/qNYSFtSm+pV7P7N0z4NxzH\n5cSeIkKG2ADQBe+jOSGjnxRoffrOndHOm+9YLAQmZQAs2uMdFsqYAwwEADAHBTqOiFr4SfkO\nBIA3t/M0RMQIJd08XingV7OJK6UoCrIjiV7ewWAYu8HT258af1AeHxae8lnfig6mDhcATAhJ\negCwBMeSFETECCUdXe3K0t5WGuQs+ilHq8vPOk2EJL0BtG3blu8QrF3S0e+m73pIRLZOAZvX\nhvAdjpWKU2qJSCj2aulUpopkQruq1e2E8flabX6ckUOzFuiC945OkxGTnJqv4zQnUglJegPB\npAwQpdQQkX/IKCQm+dKhQwe+QwAMBAAwCzXsRVF5Gi2K+YIVe6rREZHItkqxl666NnOlw4lq\nxXU1R+IiHzlVG+IuPpKhZv8Ki+87uYFpgwUAk0KSHsAAsEqAd0kFLBEJBA5lf2+evYDJIdKp\n040XFYApqdKznz17RkRCdSzfsVivPJYjIkbwFo85CxmGiHSaHGPFZGXQBWaDexJ7/Z+Yx9m5\nylJbaZNuncnXcUSkUxWYKDQAs4SSEoaFRXsAhIEAAOahs49T1J2s6zHyLoFlWlcDYHlsBYya\n5ThOW2y/pKIv0U1Op7quUAc4FllpwAhbO9nuzVQ+vXmECEl6sFg6de7D+/HpT5/lKhRkY+/k\n6OjuXa16pfJlT/FYACTpAQwAqwR4V07IZGs5VpPxUMX62Anf2J4tSJBpdEQksHE2fnQApuDW\nrArtTyAiVpUQrdT6SzDF86CKnTA+X8sWJGRpOTfRm39SctrsR/laIhLaVjJ+dFYBXWAOdGrZ\nuvnfnbj1di/9qdWzupHiATB/KClhcFi0B0AYCOZHIZdrubL2h9TZ2aruUJsGuoAXjcb2EIze\ndHfjdlXLSXYM/lHBGlW0FcYpdawqIZflHIUvR4G4XFOi3UQUkZwX4PdKOUB3sYCINMooE4cK\nYAqc9s6F40ePHb92N0n92rwsdizfJLBdp86dG1S1iidNcQcfACxBgJP42FMVEW36K+WHTpXf\n2D41YgPHcUQkdgo0enAAJuHqPy7A+erlHBURbTvxZGn3D/iOyBp1qlRu1f0cjtP+ciVtZqDX\nG9tnXF2v/zEq8Wxv/OisArrAHITPnHIi7u0qE3g06Tml9Zv7C+B9g5ISvMGivfcR6kkYHAaC\nmUi+cWL7oTPx8Q8ynr3FST5s/8GiiRz4L9AF/JJU6LKgf+SMsPOTV/otm/AZ8vRghVo5ieOU\nGo7TbIvNGevvUrhfJPEtJ2QULJd4MoX8XIoekqJmTR4mgCmosqLWLlkWEZv9bw3UuZmXj4f/\nfWJPsy4jxg3tZPFzMZL0AGAJ/u9T72O7HhBRzJa515qtbupe2j0IVeaNuRvv6re9O+GlrWAp\nGPGE5ZPTvln8UKm5H7bwykehH5Y6EMAYGg3yp9kXiejazwv+qbW8UfnSukD9LHrRykj9do1+\nTU0RnxVAF/BOkbQ9/EWGXlLBt3lDP2dRQeyFiNjsAiKq17FLDTsRESnlGXcir6QoNETkHzxn\nQe/Gln7Zxaf0+9cuXYuKi4t7kpGtUChUWoGjo6OTq2et2nXqNg4I8EcyzChQUoJfWLT33kE9\nCWPAQDAH8YdXfLvpLFfm1duFbATGCMcaoQvMQd0+8yYULP5536ZB0Wd79gvu1qahHX79gzVp\n2KUSbYwjooiFPzRfPrd5RcmLTwQfS22PPVXJLqzLDQktTEbq1Gmns1VEZGPnw0/EAMahlkfN\nGvv9vTxN0Z0MY+Pq6WWvU8gycgoL3nAcG3lo/dgHqasXDLfsPD3zDr9RAADMjVYZPTR4ppzV\nEZHIvurQbyd1aV61xJaJ1478uHzLI6WWiAQil8Vhm/3s8biSAQwePPjdDqwxZPHsNhUMG4w1\nU2XdXrVw2YV4udDWq8fwYZ2CmrmV4QUQYDCcesmQARezVUQktKvUZ/RXPdrUFZdwS1QXH3l0\n7c/b4nPVRGQjqb01bLGTRf/iNB10Ad9uLBgxJzKdiJyqd16zfKRUyBCRVnkvuP/kfB3nN2rN\n0s7PC95wrHz3imlh55OFtpW/37SyoVRc2vfCO8m+FxH6y2/X4jNKaePm03jg6HFtX123Af/d\nzsmDwt++pMTa7waLcSoykKjfZ88Iu1U16Ess2uPVW9STuBIvJyJp1am/haLamcFgIPBLLb84\nYPBSle7lrVehsKxXZ/v270eO+L9DF5iDAwcO6DdSrx/581Y6vcjHeHl5OTu84RJg6tSpRo8P\nwPhYVfyw/pOytToiYoQOtRo0GjF1oq+9iIjubf560sEEIqraZtiy8d3sGIZj5buWTA7/W0ZE\nLn6Tty1txW/wAIbDbfiq/5HkPP0fYmn1rj27tm5er4KXm1jAEBHHqjJSU27/HXHwj6MJiueJ\nfO+gqesmWvLVAZL0AGAhHvwxb8Kv1wr/dPNp+FHj2hUqVPDy8pKQUiaTpaamxt648M/DrMI2\nzYf9NOtzPJBoGF27dn23A/3GrF3aAa+CNoyjR48SEXGai/t3RmWoiIhhxM5urq6ubi6uUttS\nE5C49DUUReLpkPGr9ZdeRGTjWKGBfw13d3d3d3dHWzYzLT09PT3h3q2H6fn6Bgwj7jdvQ98G\nrvyFbGnQBfxaPbj3yWwVEQ3eGN7Ts3B9AB0d3X99isKp6oQdoW0Kd3KcavXIIafSlNIawb+t\n6MNDuBbt7oGVs7dGaMpwuccwNm2GLhj/eW0TRGUlFEnb+4fs1W+jpAR/uDPbF/+8729x+ZpY\ntMeLd6sn0XzihllBeAGKAWEg8OnWspGzz8uIyN6j7rBRwY1q+ng42/MdlHVBF5iDd75fRESH\nDh0yYCQAPEr8c8XYdRGFf369fU97Z1si0iqjBgbPzGM5IhKKHSt5SzOSUpQvbmh8/tOOYT5O\nfMQLYHjZsWsGTzmh3/Zo2mfx9H7l/6VqDatO+23h9D/+ySQihhF8tTm8Q6mVMt9rWD8KYABY\nQ2wOqvf4bnL2zGUH7+j/zHp48+DDm6W0b9hjGjL0PBJJXF3LiYjIFZUMDGf9+vXF9nCcOjtT\nlp35dvdG4b8oV6XdzwsLZs7dkqTUEJEmN/Xa36n/1pgROn4+bhHSw4aFLuDX7TwNETFCSTcP\nSdH9NZu4UoqiIDuS6GWSnmHsBk9vf2r8QXl8WHjKZ30rOpg6XMuVdmH99K0RhQ9kO1as1axe\nDQ8PDw93D0cbTZpMJpPJHkRdjUnOJSKO05zZOt3Rc8PwAA9eo7Yc97ad02+8UlIiuL2+pISm\nSoehr5WUiN27+U6HuigpYSjPF+051f60/oM/b90LW/X9zlAs2jO18JlTTrx9PYkprZGhNxgM\nBN4dv5VNRGKnpmt/meUmwqpsHqALAMBMVOk4cbHAbcWmA+kFr7xsXiSpO7tX/Wm/3yIiVp2b\n8Ci38CP3xkORoQdLErXtqn5D4tFm9ez+pRR5Eoo9B3+/OnPE0HOZ+RynO7gjvsP4uqYK09SQ\nGgEwgOzs7Hc7MPfVWRn+o1bDF1auvW/lhvBHTwtKaSbx8A0eNb5LM6zeNqTVq1eX+jn3LDMt\nNTUl6XHUiVNX83Ucp7P/4tsfPq2N4rpggZxrd/55S/3wTVuPnbmuYEtew8owgmqNggZ9ObKx\nt6TEBvBfoAt49FSjIyKRbRXRq1dbrs1c6XCiWnFdzVHRat5O1Ya4i49kqNm/wuL7Tm5g2mAt\nlk6buWDVcX2GXuxYc8i4sZ2bVyvp8pd7FHk09Kdf4xVqjtMdXbmoR7MVLiKssDSAS/ef6Te6\nTxsofbFoVSTxHeTlsD5FkXI8nl4k6RmhtPeklen3hpxKS/px7n6UlDCULVu2FNvDcZosWVKW\nLImXeKyQIml74RsfUE+CLxgIvItSaojIP2QU0sN8QReYgzFjxvAdAoBZqPPp4A1tP799JfJe\nYkpl25ev3qgTPH86s2Lt3nPyFwvoGUbYoH3wtDGf8xQpgFGcSlDoN9rMGPbG1zAxAsmXM9ue\nm3CUiDKuHSJCkh4ADAdriI3ng5Y9fw7oEn3pfxev346JiUvNeqZUqRlGYGvv4OpVuVYt3wbN\nWrVuUhO3fgyuSpUqb2pRtS4R0ef9+9zbvTV07/mEtdNH5y3d0MNXaoLwrAQufc2HSFJ5wDff\n9R2eevXKPzExMY9TMhV5inwNlStXzsnVy7d2nQZNWvh5O/IdpiVDF/DFVsCoWY7jtMX2Syr6\nEt3kdKrrCnWAY5HVe4ywtZPt3kzl05tHiJCkN4y0CysTVCwRieyqzV27yP9fF2cz1Zp/tnht\nlYkjv09UsVrVgxWX0+a3whpWA0BJCQDUkwAgogIdR0Qt/HDNyxt0gTno0KED3yEAmAuBjbTh\nR+0bvrY/oP/EZt363rz9IONpnlulD6r7+Lg54hcRWJqH+VoiYhjhwA/KVCLCyWewDXNMw3Ga\nvDtGDo1PSBACGADWEJsXRuwf2NE/sKP+L45V6wRiZOXNh11530GTfy6XO+LXm5k7Zs1p+tvy\nKkWeHoX/Ape+5kbkUCGgbYWAtp34DsR6oQtMr6KtME6pY1UJuSznWGT2FZdrSrSbiCKS8wL8\nXrnd4C4WEJFGGWXiUC3Yjb2P9RuNx03/9wz9c2Ln+rO+bjJyWSQRPdp9g1phvBgASkrwDk8u\n8g71JMwBBgLvatiLovI02pLrOoEpoAsA4H0hcqjYNKAi31EAGBFLHBEJxF4SQZlSNQxjV8FW\nkKhiidMZOTQ+IUkPYABYQ2zOGKEYGWDzI+gybcL2frO0qgcr9j7+Kbg63/EAAIBhtHISxyk1\nHKfZFpsz1v/l84giiW85IaNgucSTKeT3ynOKKWq8/cfATqXnExHDCEc1L9M75j1ajLZhrmo4\nTpl2ighJegNASQne4clF3qGehDnAQOBdZx+nqDtZ12PkXQLt+I7FSqELAMAcxCZl+VV24zsK\nAJ7Vd7C5/Eyt02RpOLIpQ5qe0ylTCnREZCPxNXpw/MH7eABMSr+GeEjD8pwuf8esOYl4Jz1Y\nKxtJvSCpLRGlnDzJdyyW4/Dhw4cPH46Izin7ITdPHDt8+PCfp+8aLyoA88GqC/gOwfI17FJJ\nvxGx8IfIFGWRTwQfS22JSHZhXS77cjWTTp12OltFRDZ2PqaM07I9KWCJSGhb1d2mTJd7Apvy\n1eyERMSq8ZZiw6hoKyQifUmJovvF5ZrqNyKS84odgpISYGFKqydBpK8nUZRTtSHuYiER/RUW\nb7IgAYyt0dgeAoa5u3G7isNSbn6gC95Tc0JGjxgx4ofTyXwHAmAYU0KG9hvxzfJ12yIio+Vq\nS14TDFCKzo3ciIjTqcISc8vSPufuBi3HEZFTzc+MGxmvkKQHMD1Bl2kTBAyjX0PMdzCWSSGX\n55QZLtT4UsNORERqxRW+A7EcGzdu3Lhx477L6WU/JGHfbxs3bty0aYfxorJmOBfxi9NmXzx9\n+JeVi74eOXxgcN+e3bt17/WF/iN17tXww38l5Wr4jdAiebcf5SISEJFaEbcwZPiUOUvv5T9f\nTNy2lScRsarEGasO6u+Tcqw8fPnsPJYjIofKWO1nME4iARFxOuUbWxbK13FERIyNkUKyNq2c\nxESkLylRdL++pAQRJZ5MKXYISkqAhbEVMET0L/UkSF9P4pUPGGFrJ1sienrziIlCBDA+SYUu\nC/rXVz09P3nlESSJeYEueB/pNBkxyanp6elxJ1L5jgXAYPLSH5/7c9+KBdMH9ek/afbiXQdP\n33uSzXdQACblN/JLqVBARH/O2yBn3zAps+rUFYsuEBHDCHuNqWeK+HiCcvcAPNCvIf4rR5Vy\n8iQFf8V3OJYj+caJ7YfOxMc/yHj2Fmslw/YfdMQr6/nwsEBLRByr4DsQq6bWcUSkLXjEdyAW\nBecicxB7ft8vG3Y9lKtL/JQteLRz447wLVuD+o78uncr/MMbkNCuxvwvPx67LoKIODYv9saF\nhIJxvvYiIvLpN8rhyMw8lks4s6XfxT2VvKUZSSlK7fNlBK1Ho8S3wVSzE2ZqWFYtu5mnaejw\n5ry7Vhn9RK0jIht7Sy4iZ0oNu1SijXFEFLHwh+bL5zavWFjuW/Cx1PbYU5XswrrckNDC0z5K\nSpiDOSGjnxRoffrOndHOm+9YLEFFW2GcUqevJ1H0F464XFOi3UQUkZwX4CcuegjqSZgDDASD\nq9tn3oSCxT/v2zQo+mzPfsHd2jS0w09P00IXmA3uSez1f2IeZ+eW+iApp026dUb//KhOhUJo\nYIE4Vnnv1qV7ty7t2kyOnj5NmjRu0qRJ44a1HctWBQ3g/SV2bLooJCgk9Ex+xtmxU4TTpo72\n9yj5ZTSp0ec3r1pzK1dNRLV6zu3kKSmxmWVAkh6AHzXsRH89X0OMJL1hxB9e8e2ms9zbPxmN\nn0C8UD+LPJNTQEQCcQW+Y3mPxcTEvL6z4OmjmJgyrMbjtNkpd/dk5uv/MHBkVgznInNwI2z2\nnN9vvbGZjpX/Fbbsbnza2hm9RLhTZzhVOk5cLHBbselA+quv9RFJ6s7uVX/a77eIiFXnJjx6\nWd/MvfHQYT5Opg7UcrXzcbp6K5OINu+6GzrizU8/xO3ZqD9rOVXvaPTgrIN3+1EuWydla3X6\nkhK1GjQaMXWi/mmVtq08jx1M0JeUWDa+mx3DoKSEOdAv2svXcZoTqYTcpCG0chLHKTX6ehJj\n/V0K9+vrSShYLvFkCvm5d9ov5wAAIABJREFUFD0E9SR4h4FgcAcOHCAicqr9af0Hf966F7bq\n+52hNq6eXl5eXs4O4tKPnTp1qilCtHToAjOhU8vWzf/uxC3ZWx1Vq2d1I8UDYGILZk68cycq\nKupO7CMZW+R+UW7aw4hjDyOO7WWEkpr1GzVt2rRJ4yY1vZ15DBXAIHJzSy5oL/1w+Lx8m3mb\nTsrv/zVj1N/1A4I+bODr5enp6elpz+SnyWSy1NR/zh87F/W88lzj7uNmD6xvwsB5gCQ9AD+w\nhtiw1PKLMza/khUTCoVlPFbMIDNjagXZcWtm/aT/VWrv2o7vcN5jJd41kF1YM/XC232PrWML\nwwRk9XAuMgdJJ1cVZugZoeNHnwT51qhpc2fnL+df3hISSWrX83a4k5xHRLIr22fsqru0vx8/\n4VqoOp8O3tD289tXIu8lplS2fTkK6gTPn86sWLv3nPzFAnqGETZoHzxtzOc8RWqZag9oQrdO\nEFHi4fk7663u/6FXKY3Tr++eu/95PZXGwRgIhoGSEmYDi/Z4g3oS5gQDgTdbtmwptofjNFmy\npCxZEi/xWCF0gZkInznlRFzOm9sV4dGk55TWpf2IBXiP1P8wqP6HQUTEKrPuRkVHRd2JioqK\nfZCieXH7iGOV9/65eO+fizuJHL18mjZp2qRJk0YN/RyxngDeT8HBwW9sw7HKWxeO3bpw7N8a\nCITSvLvHp005/kHPySEtPAwaoBlBkh6AB1hDbHAxG7apdBwR2XvUHTYquFFNHw9ne76Dsi67\ndu0qUztdQWpiwu1r/zzVPL8ZXWcQ0sP8azKqH98hWAici3jHqhK+W/+Xflvq23rypDH1veyJ\nKD59f9FmNpJ6C9f+djl84aJd14kobs+cuO47atnjh7EhCWykDT9q3/C1/QH9Jzbr1vfm7QcZ\nT/PcKn1Q3cfHzfENy5jgbTnX+qqdx/nT6UqOU//+w1fxnQb2/7xDjdcKxOWnPzhxMHz7kUit\n/rE590/G+GHRhsGgpATvsGiPX6gnYSYwEACAd4qk7eEvMvSSCr7NG/o5iwpiL0TEZhcQUb2O\nXWrYiYhIKc+4E3klRaEhIv/gOQt6N8Z7CcDyCCVu9Zp/XK/5x0TE5mfHRkdFRUXduRMVG/9E\n/SJhnyt7eObowzNHdwtE5XzrN1o6ZzKvIQPwRsfK4+LkRMTklPwuS8uAe5EApoY1xMZw/FY2\nEYmdmq79ZZabCDWjeVDWJP2rJJ5B31ruc3AmUKlSpaJ/PnnyhIhsHD08pWXNeJVzq1ivVfeB\ngZ6GD84q4VzEu5RTa7I0OiKylTZduXhC+VJ6gREF9Pt+3JORP5+Xcaxy/eGkFb2rmS5Q6yZy\nqNg0oCLfUVg2wZc/jIsas1SmZjmOvXb01+vHtju7V/D08PD09LSn/PT0tLS0tNSMHN2LO0FC\nscc3C7/EacuwUFKCX1i0xy/UkzATGAj8GjNmDN8hWDt0gTm4t+2cfsOpeuc1y0dKhQwRaYPb\nB/efnK/jNFU6DO1cWd+AY+W7V0wLO58cu3fznQ51G5b5zgbA+0ho7+LftJV/01Z9iFiVPC46\nKioqKirqzt37SWp9YRutIvbGeSIk6QEsGZL0AAaANcS8i1JqiMg/ZBSyYu8RlxoffbfgG3sB\nHo1+d2vXri36Z9euXYmoYpspoSN8eYrI2uFcxLvLBxP1G62mjC0tQ/9Cq5EDfz6/jIhSTl0l\nJOkN4fDhw0Tk6NMqyL+sa7JvnjiWpGZF9tU7tqtjzNCsi71HwI9Lx82fu0a/RInjdNnpydnp\nybFRJTQWS32/+u67QK/iS+3hv0NJCb5g0Z45QD0J3mEg8K5DB1SG4Bm6wBxcuv9Mv9F92kDp\ni/OLSOI7yMthfYoi5Xg8vUjSM0Jp70kr0+8NOZWW9OPc/b+t6MNPxAAmJ7Qt5+Li7OLi7OLi\n4mSXkqnU8h0RwH9y6NAhvkN4byBJD2AAWEPMuwIdR0Qt/KR8B2K9OnbsWOa2QvdKVX2q12xQ\n2wd3f8DC4FzEu7PyAiJiBLZD67iUpb1Y2spDvCJdzarlF4h6Gzk6q7Bx40Yiqtq1VtmT9An7\nftssy7OR1O3Y7gdjhmZ1HH2CFm/yPxr++9E/z+hTL6+zkXi17ti5T7/PPMXCEhuA8aCkhFFh\n0Z6ZQD0JfmEgAIA5uJ2nISJGKOnm8cojoTWbuFKKoiA7kqhN4U6GsRs8vf2p8Qfl8WHhKZ/1\nrehg6nABTIZTJ92PjYqKioqOuhsdm1VSYp5hsAIEwMIhSQ/AD6whNqwa9qKoPI2W4zsOK/bV\nV1/xHQLQgAEDiEjqW57vQKwXzkW8S1PriEhoW8WxzA8BedkI09Usq041ZlxQGn0pP23BI74D\nsUACG/cuA8d+Fjz8cVxMTExcaqZcoVBoSFSuXDlp+Qq1atX2q11Ngp+jYImwaM98oJ4EjzAQ\nAMAc6OuJimyriF791enazJUOJ6oV19UciYt85FRtiLv4SIaa/Sssvu9kvAMFLArHqRLjYvR1\n7aPu3pOr2NfbMAxTvrJvvXr16tatW69eXdMHCWAMSUe/m77rIRHZOgVsXhvCdzhmBEl6AAPA\nGmLedfZxirqTdT1G3iXQju9YAHjTuzfWAfMM5yLeOQgZtZbTaTI5ojJOszINS0SMwN6ogVmw\nmJiY13cWPH0UE1PC7YbiOG12yt09mfn6PwwcGbzACOyr1W5crXZjvgOxclx26uOHSWm5CoWG\nFUjKlXP29K5ZzVuMKwLjwKK99wLqSRgbBgLAO5gTMvpJgdan79wZ7bz5jsVC2AoYNctxXPFV\nwpKKvkQ3OZ3qukIdUPQ5LUbY2sl2b6by6c0jREjSgyV4GH1Nn5ePjnmQqy45Me9WqWa9evX0\nuXkvlLQBi6NKz3727BkRCdWxfMdiXpCkBzAArCHmXaOxPQSjN93duF3VcpIdg5udAG/AcoTn\nhIwB5yLefegoPp6t0mmzTzxVdXB986MS6tzL6WqWiGwc6hs/Oss0derU13fKLqyZeuHtvsfW\nsYVhAgIwM+n3rv55/MTZv//JfO2lA0Kxo1+zVp07df6oXmVeYrNgWLQHQBgI5if9/rVL16Li\n4uKeZGQrFAqVVuDo6Ojk6lmrdp26jQMC/JES5p9OkxGTnJqv4zQnUglJegOpaCuMU+pYVUIu\nyxUteCYu15RoNxFFJOcF+L2SknQXC4hIo4wycagARjJ++rzXdzIM4+pdo95zdb2ktqYPDMBk\n3JpVof0JRMSqEqKVWn8JctPP4R8CACyBpEKXBf0jZ4Sdn7zSb9mEz5AbM7acnBz9BsPYSKVY\nY2GO8rNkKdkF1WtULbpT/uBi6KZ99x8n5uSTa4VqLdt2HtiztR0KHRsOzkW8ax/keXx/AhHt\nXhXRYU6HN7aP/u03/YZbozc3BqNqMqof3yEAGBirlu1e81N4RAzHlVwoglXnRl88Fn3x2N7A\nXpPGBVeyE5bYDN4BFu0BEAaCOcm+FxH6y2/X4jOK7c/LzZGlJN2LunZ4z3Y3n8YDR49r6+fC\nS4SWjnsSe/2fmMfZucpSW2mTbp3J13FEpFMVmCg0K9DKSRyn1HCcZltszlj/l//DRRLfckJG\nwXKJJ1Po1f/5KSUtNQawDLYuVVt82LhuvXr16tat6IIqjGAtXP3HBThfvZyjIqJtJ54s7f4B\n3xGZCyTpAcBC1O0zb0LB4p/3bRoUfbZnv+BubRraYaWw0QwaNEi/IXZosHfXfCJasmTJO39b\niasw4Z1l3D69buvv1x+m20jq63tHL+vG9lHz9unf/UxEWclxh3+LO3vxdujyr11EGCwGg3MR\nv6r26GtzYKmG4zJvrF20VzqlZ0Ap//yya7vmnUjWb/9ffx8ThWhxKlWqVPTPJ0+eEJGNo4dn\nmQv0lXOrWK9V94GBnoYPzgqcOnXKgN/mXCewmbfkze2gDFh18o/jJl1Iziu6U2Aj8fD0YFTZ\n6VnP2CKZ+4cX9056kPzj6ineYuTpDQOL9niXmJj4Vu0ZgdDWzt7O1s7OwV6MR0gNBAPBTNw9\nsHL21gjNvzywVSjr4Y2fp464PXTB+M9rmyYwK6FTy9bN/+7ELdlbHVWrZ3UjxWOFGnapRBvj\niChi4Q/Nl89tXrHw16bgY6ntsacq2YV1uSGhhacpnTrtdLaKiGzscI0GFkidkxQTYy8QMESk\nq1Onkhuuv8A6MOIJyyenfbP4oVJzP2zhlY9CP3THQypESNIDgGU4cOAAEZFT7U/rP/jz1r2w\nVd/vDLVx9fTy8vJydnhDkgAZYoO4ePEi3yEAEZHs4paQpQdfvwHEsc8WLjlQmKEv9Ozh6SnL\n6m+cHmSi+CwdzkW8E0sDp7WrNP9UEhFd3r5oeGTQV4O61fV79eYOx2bJHp87umf74cv6JJmL\n35AeXrgwfkdr164t+mfXrl2JqGKbKaEjfHmKyLqEhoYa8Nv8xtRGkt5QDn4/Q5+hZximZkCH\nzu3a+Pt4u7s66m8/c9r89NTU21ciDu8/9jhXTURK2eUZsw9sW9KT16gtBxbt8W7s2LHvdiAj\nEJevULFypQ/qN23RsmUzL0cbwwZmVTAQzEHahfXTt0YUllRxrFirWb0aHh4eHu4ejjaaNJlM\nJpM9iLoak5xLRBynObN1uqPnhuEBHrxGbVHCZ045EZfzVod4NOk5pbWXkeKxQt7tR7lsnZSt\n1akVcQtDhtdq0GjE1Im+9iIiatvK89jBBFaVOGPVwWXju9kxDMfKw5fPzmM5InKojGpnYCHq\n16wUG5+s5jgi4jhdekJsekLsmWN/EJHU64M6dfz9/f3r1PGv4Y1iKmDJ7DyaLV7z/aqFyy7E\npy0e802P4cM6BTVzs/p6ckjSAxgeXjNmelu2bCm2h+M0WbKkLFkSL/EA8IJVPZy58nCJSzQy\nb66Jz9cSkUAk7TX6qybe4ujLh7YfuklE6X//dF7eslWZ17xCKXAuMgdNQ5Z1TRp9KDaHiJ7G\nRiycEcEI7dzL6fSfTpsYkpiYoihyA9pWWn/evG78xAoAFio38bdfo7OJSGhTfsR3P3RuUPxG\nPyOy96zs076yzyddu4Qtnr7nWjoRZcds257wf4OqOvIQscXBor33F6dTZyQ/zkh+fONKxLZf\nHNp8MXxEn0/KoS7RO8FA4J1Om7lg1XF9hl7sWHPIuLGdm1cr6X8z9yjyaOhPv8Yr1BynO7py\nUY9mK1DtzCAUSdvDX2ToJRV8mzf0cxYVxF6IiM0uIKJ6HbvUsBMRkVKecSfySopCQ0T+wXMW\n9G6Ms44BCe1qzP/y47HrIoiIY/Nib1xIKBinT9L79BvlcGRmHsslnNnS7+KeSt7SjKQUpfb5\ntVvr0XjvBliIBT+u1anl8TF3o6Lv3o2Ojol9mKt5/v9cLnt8Wfb48l9HicjOuUId/zr6nH2t\nahUwD4CFOXr0KBH5t+2ZI98ZlSHbs/aHvevEzm6urq5uLq5S21KnXgte2oQkPYAh4TVjYCVq\n1aql3xDZP69yPGbMGP7CgeeeHFuboWaJSCB06hEy/tNmdQs/urEtWr/hGzx3wP/5EFFt/6Ye\nyq+Wn07mON3uPxJaDa3JS8wABscIJMMXhbquW/rryTv6PRyrSpc///Ru/CsPTLjUajtj1piq\nVv/crgENGDCAiKS+5fkOxFq0aNHi3z7SabIir98v/JNhBI4u7p5eXo7CgrS0tLSMHO2Lh7qE\nYq/g0X3LiwRSX1ejR2wdYrZGEBHDML0Xrujs51xKS4HYfcDs1U9HDvlfmpKIzv4aM+j75qYJ\n0rJh0R7v9GcnjeLB9ajiV8dExDAM9+pzpTYSnyb13ZXypxkZGZlZcv1Tpxyb91f4qtsxqWvn\nDbBjcKP6rWEg8C7twsoEFUtEIrtqc9cu8v/XB6OZas0/W7y2ysSR3yeqWK3qwYrLafNbYSW3\nAdzbdk6/4VS985rlI6VChoi0we2D+0/O13GaKh2Gdq6sb8Cx8t0rpoWdT47du/lOh7oN8RS7\nQVXpOHGxwG3FpgPpBa+U6xBJ6s7uVX/a77eIiFXnJjzKLfzIvfHQYT5Opg4UwGgEYqlvgwDf\nBgE9iDidKvFe7N270dHR0XfvxmXmafRtVDmpNy6m3rj4PyIS2rvUqlOnjn/dQb068xo4gMGs\nX7++2B6OU2dnyrIz3+6VNBam+HURALyzMr5mjIgYxqYNXjNmUMePH3/nYzt0wA0IsBC/j+gb\nlq4kosbfrJvTrkjRDk47rNcXmRqWYZglu/b5SZ4/oqd+drHXgCVEJPEIDt/Uh4+QLQ3ORWZF\nFn1x/6HDZyJjVGwJU3P5ag07d/28a9vGNrjnD5ZIq3zw4+TZF5MURCSpUKfHF70/+7ihRCwo\nbMCxBXFXToWH/37jsZyIJBWbL1g5rYY9nuE2jJn9et3JUztWHhS2pldZ2uc+3hz8zUEiEjvU\n27troZGjsxaJf67QL9rT+3r7nvbOtkSkVUYNDJ6pz0QKxY7FFu19/tMOpAQMhVU9nv/VlBtZ\nKiJihJKmn3Rp16Kuu3t5D3ePciJNRnp6enp6/M3zB45eyNawDCPsOHbZ6PY1iIjTqVPv3zp5\nZM8fZ2P1X+UbvHJ5H7wf+l1gIPDr6Njg9Ym5RNR86oZZgW9OusvOLxi5LJKInKqO3hHayejx\nWYHVg3ufzFYR0eCN4T09X77T5+jo/utTFE5VJ+wIbVO4k+NUq0cOOZWmlNYI/m0FLpANT6eR\n374SeS8xpX73YL8iPzsv71yxdu85+YtTEMMIG7QPnjamp0SASzWwBrr0hHvRenfvJmcpi318\n6NAhXsICMDj96xHfjQUPBNyFATAMvGaMX0huARDRhWcFRMQw4gltKhbdr8o5nalhiUjs1Kow\nQ09EYqdANxtBlkanfnaZCPcgDADnIrPi5R/4lX/gaFb5KPbuw+RMhUKRr9Y5lHN0cvHwreNf\n0cWO7wABjIfbMWuOPkPfuNeUWQM/er1SIiO09Wv52ZyWnW/8sWzOrxeUKZFzZ27f+uMw1FQ0\niPv5GiLy7vqvdQ6Kcaw6UMwcUnOcJv/+m1tD2WDRHu/2ffe9PkNfObD/1NE9qryyLNXGs9IH\nnpU+qNe4edd+A45sWbr5xP0/V38rlG76srk7IxBXrNVsSK1mrRqumbjqJMdxD/YskfdaL0X5\n6beHgcCvU+n5RMQwwlHNy3Tzx6PFaBvmqobjlGmniJCkN4DbeRoiYoSSbh6SovtrNnGlFEVB\nduT/s3ffcU1dbwPAn5sFhBFmAHGBiAwn4kCk4qqrzrq3dSuuWmeddeH4ufeudWvFbdVWGVoH\niAMUUETZIewVwk1u7vtHkCIGjLwhV5Pn+9fx5tx8HhNyc3Oe85wD8F+SniAMxyzqenv2pby4\nE6dTfxhay1jb4eo6FlfQvH3X5p8c9x7+c6u+Q5+9eJuRXWRVu34DJycrU1zJAOkPlrCeq7Ce\na8eeP5IF6fdvXT57/q+UD7X1COkSXIhXJUzSI6QBuM0YQuhrkE4qAIBjVL/CCGbOi2Blw9y9\na4VTavM4WTKSkun1skJItxFsvpOHl5MH03HoosTERM0+Yd26dTX7hHorJ3r7hbg8ALBuPn7F\n6PZV9iU8B8yfGftm+4P0vLiLGx/+sAinkGqC8gafX5v/uY4fEDw7A1ailAICd9/QJPduY/Z3\n6qcs2qtj8N9r6z5i1SJCZdFeP4Yi1UF58QePx+QAgMB54Pb5Q6tIr7ONbPtO30SljjsamX19\nwyLfY3vLJpU26Dx9RsiT7U8zKVJ0MaN4jJ3anylUDn4QGJRcQgEA26CeDZf12c4AwOJaOxqy\nXxfLKTLp872RGrJlCgDgGNStMPZm2coSriSShU9IGnjlHjJzHGvDu5pBUndOxA2dhxuiaw/H\nuJaXd63P90NI51CSzJeRUZEvXrx48SI2MUOB614j3YWlTSphkh4hDcBtxhBCXwMjFiFV0LRC\nXuH46yupyoZjnzoVHiJL7/5xthBC6Iv5+/tr9gl1ePkyLQs7+ETZGDi7mzr9faeN2P5gMwBE\n/h4K3j/WYGR6w9OEF5JXUhBbAB6W6vSnFZK0EgUA8Iw/rS5D/y9YtMeUiP2hysbAxYPUKIAn\nes0beXT0dooU7z73bvuYhmUPeE/5bvvkCwAQFZ4FP2CSvprwg8AUMw4rU0bRioprF1ehWEED\nABDcmopJzxiwCJKiabrib2R+LReAZ7RC+qSQ9C7/Z0+wO5gZnM+UZD+7CoBJeoRQjaCkuTFR\nkZEvXkRGRr6KT6NUJeYtHFxaenp6tvTUfngIIW3CJD1CGhBx/r2y4TlrUeUZ+lI886ZLZrRU\nbjP27mwE+OIKZsxYMX1KconcaejKxeW37kbV9aX1lASLbWBoZGhgaGhsxMNtxjTE0YiTU0BS\nJe9TSMqB96FKhpadeJ+vbPZz/GjhSlpRHC+VAwCLa63dSNF/8FqkTRRZwuYZMB0FQjXuelIh\nABBsfg9LtbZ1MBD4mXO25soVxVl/A2CSXgN6tROG3EhKunRRMWCWOrWTudEHZTQNAEKfvjUd\nGyqDRXs16nJ8AQCwOIK+1kbq9Dcw7yLk7RKTVOqtszDm17LjhlZdAS4AgCT5C9KcSH34QahR\njobsTBlFkaJnRbLmxp/Pu8slL5NJBQBwjVxqPjq9UMuAHStRUNKEAoo2LTdjiGfiBXAWAIJS\nirxdPxrHs+GxAEAmidJyqAgh3aYgC968Kq2Yf/UmmVSVmGcbmLs3a+HZsmXLlp71hSbaDxIh\npH2YpEdIA3CbsW+OQpYRnZJWrKBlN9MAE2OaUO16SoLFs7avVad2/aZebdu1a2VnihUD1dfV\n3jiigKRpxY5bKQE/lK4anfV8r4hUbkjv7c7/6Hs/782xEgUNAAam6m6aizQLr0U1ipbn/Bt0\nLzIy6mV0XG5RkURSLKNoZa02WRB2IajAx8+3Dl5zkC5KKqEAgMUyVn8SnBGLyAVQkOKai0qv\nNBwzzervX7Ny/vntQucVAxpX3Zki07asDQEAgm08ZqSTVgJEqMYlKi9EXBv1T7HksMQkJSt6\nUf4gm1v6E5vMJjUYHkLa0cXJLOx5JgAcOvVqx4TPl2XHnjug3EjRrEGPGg9OP/ia8WIlMpqW\n/R6T6+9hUXacw3cxYROFFJ14KxVcLcqfkkpSWg9Tj0jyMlLTsmRqL+jt4uqmxnIsCH3tVi6c\n9TLmvVSh4i+fIAibeu7KovlmjZ0MCfyLR3pKb+tqMEmPkAbgNmNfDTo55snT6Pc5BVWWWdDy\npOd3lYvIKaQlWgoNVYJWkBkp7zNS3kc8Cvp9r3HHQeMnDOlsgj/CqsV9XAtYdAcAog8tOmu1\npKeXS3Fy2PqAIOWjtboOKt+5ICF02fKbyrZVay/tRqrz8FrEvJjQP/fuPxWfp3pAnyp5d/LA\n8dOHj/gNnTRjsC9ecqpn2bJlTIeAVDNhEzlympJlxEspJ8PP73FOlSSIZAoAYHHNaz46vcDh\ne6yf13PiumsRRxevyBg9elBvJ0vVww0F7x9vW7f5WQEJAK1Gr26NC00jXWHOYWXIKEqamEfR\nAjW+aGmq4L1UDgDEx6t8U6RI2eBZ4Lw69O1xG9kSnt8EgMQrq0422Tm8TVXbHYqfnF0Z+E7Z\n9hzhqo349EDz3rXhQCwABK1Z23rTyta1ynbNYH0nMLieLRXd21MwfUdZkb2CTP87RwoAXEOc\nNqdJtDz7z0P7roZEZBd82S/fE4GXTPHXGvr2PXn1rsIRDt+6aQtPz5aenp6etdVb/wwhXYJ1\nNWUwSY+QBuA2Y18DBSnas2rZzeeiLzqr0Y8NaigefdO2bVsAkBW+fRKV8emjBEHQH0+U5vKd\nWja1keRlZ2RkZGblKadR01TRndPbX0Sn7f5tJE4drQZz9yk+lv/ez5bSVMHxdQtOlHvZCZbh\nxEH1lO1i8Y31G648f5Oi3PWKINiDhtZnKmbdg9eir0HEiaUrzjz/bDcFlXfnxMZXcem7Fw/k\n4CXny3l54fyer5S3Ge96thQADt5JXduzzmf7pwXtV35f8Mx8ajw4vSFsO2nbLyZLt5yNuHbs\n6Y0zzb7r3tK1jlBoayu0YZP56eJ0cXr66+cPQ5++VX4dO3WZMsnHVCyudDEDoVCtJbv00M6d\nOzX7hNVeIAqV52dhcE4soWlyX0Tm/Fafr6fPijygLC/jmX20wpNEdEPZMGtkpuI09AF+EL5O\n5o2mdhGG/i2W0DR5Zu3UuJ6jhvfr7mzLr9CtWPz25qXTx64+ltM0ABjZdJ7mitPmNMOh62SL\nI7/kyBVkYeya6eMbNWsxYcHPLkYcAOjka3v9UgIlTVy8/dLG2X0NCYKm8k5vWlpE0QBgXKc7\n07HrDpoq2jbL/05SYTXONVCrGAqhbwNBsGs1aOzZ0tOzZctmjeriKATSW1hXUx4m6RHSANxm\n7Gtw+tf5N2Nzv+gUYcsf53eoaiY7Ut/ixYsp6ftVU+cr/0mw+V6de3dp29jGxlpoIzThyDLE\nYrFYHPcs9OK1ezkySl6cYNnKf3FXZwCgFWTam+e3rp67EBwDAJnPzy05227TEMxZfjGCMJyx\nbsbbGZuV69uXnxjRaODSJvzSq1NJbljE6+Syh+p3W+Qn0MfVhGoIXosYl3Rre1mGnmCbtu/s\n5+LckBt5cm/ofzMnOHy3Jg7GkSlFACB6dGzxqcYbhmO5EtId33dzuH7qLQBEH14Z3mqnl01V\nlRnSzIiVB14p2w49O2kjPj0wefJkZYPDIUAOtKLkWdClZ0FVnRL/994Jf1fVQVlVgD5169Yt\nzT4h5iY1otMQx3M7XgLAw03rYg4GuFa5SoRc8nZTwH1l26Fnuf3gaDJwS4iy2aqpxacnojL4\nQfhasSaunRU1bYOIpGiaCr929Mn1Y+Y29rZCoa2trREUi8Xp6enpaRm5ig+/3dg84cw1EzEv\nqSlsQ+dVE7/z3xMEADRVFBNxL6FkljJJ7zRssvHVX4soOuHu4WH3z9V2EGQkpUrkCuWJHaZ8\nfnsCpKbkW2vLZ+gAMiIzAAAgAElEQVS5fIHQ0lTNnAsX6zeQTmjt16ulp2cLz2Z2ZrhuFtJ3\nWFdTASbpEdIA3GaMcYVJx05/yIrx7V1aN3c155TE3AuKySkBgCY9ejsbcgBAkpcR+fhRaqEM\nADxGrFg92FPnp2Jp05/LlkdkSQGgjs/wBVMG1BWUv+/k2taub1u7fhPP1n2Gjbx6eMOhm29u\n7JzLFhyc2NqGYPFqNWo1tlEr3+a7ft5+i6bpt+fW5w3cp87CmKgCvr3v1h1m+3cdCopMUA70\nsDgmPn0nzB3Z5NPOBMFp2WPir5Nbaz1MnYXXIsZR0oRl++4o2wKXDvN+mdbUzggA4sSB5btx\n+U3W7P7jwek16049AYDYcyti+x9vZIQ3xkhH1O07QXD21zxKQZHitf7zxs39pXfreip7JoZf\n/d+mw+kkBQAsjsWkXrW1G6nOSktLYzoEhBhm7zfH+eCUuGK5vDhuyZTF4+b49/Kqr7JnyvPb\nOzfvfyWRAQCbJ5zet/R6VZD2+urvW87H5wMAz6RFf2sjbcWOkCYZCb3/t2HWqpW7lL8IaFqR\nI07JEafERKnozBO4TF22zMeuYqk9+v+o2+PnAJbV5oMXxSUfbTbP4TdeOrDpwjPPAYAiCxLe\nFZQ9ZOM57icnXL1DY/45F6dsuHYcPGlUP2drE2bjQUjLkq4ti4mIj4kIPW/mfWj3dKbDQYhJ\nWFfzKRyLREgDcJsxxr3+vbTAwqxBr12bJimTu/IRXUcMn1esoGV1u4/rVbrWK03lnd288ERo\nSsz5Q5HdGzcX4ARGzciLP3g8JgcABM4Dt88fWkXGkW1k23f6Jip13NHI7OsbFvke2+vKL/0y\natB5+oyQJ9ufZlKk6GJG8Rgcm6gWvn2z2au3T80RJaZnsU1sajvY8D6ee87hO3n7mtWq79La\n+zu32vjzWJPwWsS41Nu7smQKADAQeG0JmGPNqbwMieB4D1s+K3nStlARTUn2XUnaPNhRe4Ei\nVJM4fI8VozznHA0HAHlxwoHVMy44NW/v6WZvb29nZ8cHiUgkSktLi4m49zQ+q+wsr9HLXXGq\niobweHhV156RI0cyHQJSgcUVLlk8cNKyMyRNkwWv9/0282Qt11ZNGgiFQqFQyAepOEOcIc6I\nfxn+Mql0giNBEF2n/+ZsyAYAiejgyClXytaF+m7mdJzQWDX8IHzNTJ38Ag56XDt95tqNu8p5\nup/i8u069Og1ZNgPtjy2lsPTB+7dxuzv1O/Fo8evE1PrGPz3CruPWLWI2Lz7fEjehwJ6gmA3\n6zpi4bR+DEWqm+7lkwBg4TFi/ZwheDFHekgqzsnPzwcANhnDdCwIMQnralTS2f8YQtqE24wx\n7t83+cpG/4WjysqvOXyX0XbG+1ILU/+Kgw+JMYItGPzLFvHrsbfTk/63MvCPzUOYiVjnROwP\nVTYGLh6kRk0w0WveyKOjt1OkePe5d9vHNCx7wHvKd9snXwCAqPAs+AGT9NVnYGHX0EL1hCGT\n2iMXzdNyOPoCr0WMe3ApUdnwne9fVYb+A99Jo7aFbgSA1NthgEl6pEMaDFg2L+fXjZcilf/M\nin92Kf5ZFf2bD1i4pJ+TVkLTC+fPn2c6BD0yePBgpkNAqlk2G75joWLBxvO5cgUAFKTG3Emt\ndGyaYBl0nbh6Wsdayn8qFJKyDL1Lz9kz2wq1EPA3DT8IXzkW16b3KP8fRox/HxsdHR2blplX\nWFgoA46JiYnA2r5RIzdXN0c+C9OXNYjFFTRv37X5J8e9h//cqu/QZy/eZmQXWdWu38DJyarK\n7TlQNeTLFQDQYcYP+CeO9JNVq7oQmAAAlDThpUTuwceUHNJTWFejEl4RENII3GaMYS+KZABA\nsPl9hR+ldRu2tITUwpKcxwAdyw4ShOGYRV1vz76UF3fidOoPQ2sZaztcXXQ5vgAAWBxBX/UW\nojQw7yLk7RKTVOqtszDm17LjhlZdAS4AgCRZUkOhIlRz8FrEuOC8EgAgWAbj3NXauZYn8BXy\nNotJisy7B4Cj20in+I5fU8ftzy37T7/LLqmiG1/oMmLy7N6tcKF7hJDm2XuP3L/f8/Dew7fD\n3lAffgt/qpa7z5jJ07wdTSsc59u59B4ybkRnjxoOEyEtIVhGjm6ejm6eTAeCPsIxruXlXYvp\nKHRZXQP262J5PUxMIn1l6THL2zzsQa4UAH6/mbyhf32mI0KIGVhXoxJ+OyKkGbjNGLOyZQoA\n4BjU5Xw8L9eylSVcSSQLn5A08Mo9ZOY41oZ3NYOk7pyIGzqvmXaD1U2JJRQAsLg26p9iyWGJ\nSUpW9KL8QTa3tEqGzCY1GB5C2oHXIsalkwoAYBvUNVVjTQ8lOy5bTFIUiRtIIx1Uv92P27x7\nv/z3n/tPXkRHx6Zl5UukJEGwDIyMLe3qNGrk0qyVb4eWDdX+uCCE0BcztHaftmTTOHFcyIMn\n0dHR71MyCosKi2VgamomsLJ3dXdv1rq9ZwPrCmcZWfXfunuYY20bvD6hb9qVK1cAwNTJ189D\n3WUUn928nkRSHKMGPbq412RoCGlPByH/dUL+i/TizuYGTMeCEBMI3pxN89JnBsRLZG9OrHnU\nfkcbG0OmY0KIAVhXoxIm6RHSGNxmjEEGLIKkaJqWVzjOr+UC8IxWSJ8Ukt7llywj2B3MDM5n\nSrKfXQXAxJgGmHNYGTKKkibmUbRAjcF+mip4L5UDAEFwyx+nSJGywbPgqjgNoa8bXosYZ8wm\nSDmtkGXSAGoO64tkFAAQLLVWAUHo20PwPHx6ePj0UP6LpkgFi4dZ+a9BiaSQY2SC7wXSE0ZC\n5259nbv1Vbc/26COEy7wgb59Bw4cAIB6fRqpn6RP+POPQ6IiLr9xjy5razI0hLTHe7zngWVB\n4Tsv0jvG4o0P0k+GwlYBu5ZvX7PxXlx6wLSZA8b/1NOvlZUhZgeQfsG6GpUwSY+QJuE2Y0yp\nZcCOlSgoaUIBRZe/yvNMvADOAkBQSpG360f7itnwWAAgk6ha6wB9OT8Lg3NiCU2T+yIy57f6\nfD19VuQBqYIGAJ5Z2/LHJaIbyoZZI7OaiFO3jRkzpnonOo8NWNrRXrPB6Ce8FjGujSnvrxyp\nQp5zM1va3fLzk9PJggdikgIArnHTmo8OIeYRbJwoqg1kcUEx21jAU7WCH009vXX6wp0niUnJ\ncq5545befj37ezurm7xB1SN+E/5veFRsbGxyRk5hYaFUzjI1NTWztG3k5t7Y09vbw4HpABHS\nhsK8PHnlmw5UIDA3x5ELRpAKGgDkJe+YDkQHSfIyUtOyZGp/Clxc3XAunUZYN58z2OXp2dcX\nFh+uu2JcRwMCX1akd65duwYAHp1+zM07GZUhOrd77fk9PHMrS0tLKwtLgUGV15oFCxZoK0yE\nahbW1aiESXqENA+3GdM+XzNerERG07LfY3L9Pf5bL4XDdzFhE4UUnXgrFVw/WkcllaS0HqYu\n6zTE8dyOlwDwcNO6mIMBrqa8KjrLJW83BdxXth169vzvAZoM3BKibLZqqta6N6i8nJyc6p1Y\nUIIfB83AaxHjuvrZ/hWYAABntwd1X9H9s/1f/vGHsmHV4vOdEUKoaqkv7ly8GRL+5EWmRN70\n14Or2wgrdCDzXgYsDQh/n/fhgOjB34EP/7ns9cPUXyd+//lN+dCXy3kdtGPvH+FxGRWOFxXk\nilKTXkeFXzl3zMrJc9SUWZ1c8eYT6aaUiJvHLt+Ni3ubkV+i/lknAi+pX+SEykRHR396sCT7\nXXS0Gvf8tDwn9dW5zGLlPzQcmR6j5dl/Htp3NSQiu+ALPgKAnwJNIoatDRDPnR90cevYsKDR\nI/u6OznWtrPEVxfpj3379lU4QtNkTqYoJ1PESDwIMQLralTCJD1CSBc0710bDsQCQNCata03\nrWxdi//hEdZ3AoPr2VLRvT0F03eU/b5SkOl/50gBgGvoxEzEOsfeb47zwSlxxXJ5cdySKYvH\nzfHv5VVfZc+U57d3bt7/SiIDADZPOL1vPeXxgrTXV3/fcj4+HwB4Ji36W+vyFLmvBIdvaWnC\nAQBLI7wf0Ay8FjGu3oCh3IsbZDSdGbF73XnB/B+9qxj6EYWf+u1mirL9/XB8C5DuSExM/KL+\nBIttYGhkaGBoaGzEwzWfqoWmCk5uWHbmwdsq+ihkmatnrHiWWzFDQNNU2JWdc0tYW/y71GSM\n+ujVxS1LjwR9tmgyKz5i24IJL8atnt3PTTuB6SGs4WZK3JXNcw8G02q/+GW4OG+oWlTWO4ru\n7Vpw78uex8C07ec7ITXQVNG2Wf53kgqrca4Bfgo0h81z6N2/XdDWm0Upz/asfwYABIutzl1n\nYGBgjQeHEEJIK7CuRiUclEeoRijIgvg3ceLs/ILCQuAamZma2jg4NqhtjWMNNcSh62SLI7/k\nyBVkYeya6eMbNWsxYcHPLkYcAOjka3v9UgIlTVy8/dLG2X0NCYKm8k5vWlpE0QBgXEeXL/Ha\nxOIKlyweOGnZGZKmyYLX+36bebKWa6smDYRCoVAo5INUnCHOEGfEvwx/mZSrPIUgiK7Tf3M2\nZAOARHRw5JQrZYNH382cjh+Wati5c2eVj9P5melpaalJ76Nu3g4rVtC0wmjQ3LXd3LBuTGPw\nWsQ4nsBnYZfaq24nAcCDY+vGP/abOrpvY9ePE/A0lSV6H3Lt3LErDyiaBgAL17ED7PgqnxCh\nb5G/v3/1TiRYPGv7WnVq12/q1bZdu1Z2plzNBqazaNnBX/2vvPrMejbP9i1TZugNLNy6dm5Z\nx4IV/zo2KiwiRSIDgLe3th/1azm2MX4pa0z6vX2LjgSV3V6a1mrUqomzUCgU2ghNubJ0kUgk\nEr2NCotOKQAAmpbdPbLI1Hb/eO+K6x+g/w+s4WYWmXd/8aGPMvRstrp7nvBwPWpGtZw8jOkQ\ndETyrbXlM/RcvkBoaarmHzcXPwWaE3Z0yaoLL8ofoRUUrimH9Me0adOYDgEh5mFdjUpENabT\nIoQqRcsj7/117fpf4a+SyE8+XDxT65Y+XXr26tWsnoCR6HRb4o3N/nuCyv4549i5ruYGACCX\nRI0a8asyDcbmmdZ2EGQkpUrkCmW3fluP/+SEe59rTNqD4ws2ns/98PJWgWAZdJ242r9XI+U/\nC1O3D5/yt7Lt0nP2pimdajBKBCDNfH32yI7zoQkEy2jMhv0DXPCipDF4LWIcrZAcWjjlckxu\n2RGCbWhjohDnkQDg7lwnMTG1sNwuAwaCppsOrKxniPt0I93Rp0+f//+TEGzjjoPGTxjS2QRT\nZZ8Td2HJz0dLx50NrV379f2+hbuTsG49K4P/LixUSdLIof5FFG1o0e5/++bV+XDNoaRpexfO\nuxmfDwAGgnbn/lio/fh1kkKeOWv4xAQpBQA804ZjZ/n3au2o6k+Zfvf42o6tR+MKSQDgGDY4\ndHKzBQf/5jWj2jXcZy9dMsTcmCY83zhpaagIAIyEjX+aPKJFQyehOS5XVrMqpGGSk5MBgGsq\ntBVUtR9ceSZWtZr49h/1vYfmg9NLR38aciGzGABcOw6eNKqfs7UJ0xHpo7y3x0b//Gf1chCX\nL1/WeDwIIYSYErZjurKuBgAsXUvratJOzv75/DtQXvNV1dX8vmEAk0HXMEzSI6Qx0qyo3es3\nBsV8poaGINitek+YNa4nFgdo3Kubv28+eFFcQkG5xBgAvDqxdOGZ55/2t/Ecd2hFf62GqAek\nma8O7z18O+wNVfn3Sy13nzGTp3k7mpYdUSbp+XYuvYeMG9EZxyO0Q3Fh2YSjzzI5hg22/rGp\nrgFmKDUGr0WMo6m8wD0bjt6K/GxPi0adFi+Z1kjtYVOEvglr164FAFnh2ydRFffhBgCCqPgb\nkMt3atnURpKXnZGRkZmVV35tcOtmg3b/NhKzZVWgqdyJQ8Ypt8qz8Ry0delIlTf56Q9WTFwX\nAQBeKw4v87Qu/xAlfTNu+DzlHMcxB07/aIsLe2hAWtCvkzdHAgDH0HHVgY0eVV7nydwXP09a\nniilAKDZvP2rfO20FKVOI/PujxyzQaqoTg33n4GBuMi0RqwfOeh+fgnPzGvf0SVWHHxRGaCc\nNlevz6YdE1yYjkVPTRjYX0xSFh4jjq4bgnczTLnx86g9cXkAYCR0HzK8j1tdBxsLEzXfDisr\nqxqNDSGEkDZhXc2nMEmPkGaQeVGLpyx/XSQrf5AguJa2dkaKQlFGboUd+Cw8+uxcPR7z9Bqn\nkOW9ePT4dWJq0/4jXMtts/3g5Obd50PyPhStEgS7WdcRC6f9yMeNV2tGsTgu5MGT6Ojo9ykZ\nhUWFxTIwNTUTWNm7urs3a93es4F1hf5USVJChqFjbRt8P7RJJokcNGyJgqadhmzZOqIB0+Ho\nFLwWfQ1EL+8HXr5y93G0lFJxu2vt2LxXn359Only8bVHuoiSvl81dX5ElhQACDbfq3PvLm0b\n29hYC22EJhxZhlgsFovjnoVevHYvR0YRBLuH/8YpXZ0BgFaQaW+e37p67kJwjPKpXEZs2TQE\nvyMqlRG+dvxvDwGAy3fddzzAupI02N+zR22PzwOAyUfP9rI0rPDokzUTVj4SA0C9/v/bMa5h\nDYesF675j9iXWAAArRfsX+Lz+aS7KHT1pI2PAcCs3pTjO3rWeHx6AGu4vwajBvTLkytaLDqw\n0tuW6Vj0FCbpGTe4X1+pgu6399RPtYyZjkV/TR3UP6WEMjD3OnhkqQAHQhFCSL9hXU0FuCc9\nQhpBH124pixDzxM06PNjnw6tm9jbWfFYBADQlDQjLfXFw6BLF64lFMoAIOfl5fnb3Pb87MNk\n1LqIxRU0b9+1+SfHvYf/3Krv0Gcv3mZkF1nVrt/AycnKVMev78wyEjp36+vcra+6/dkGdZxq\n12RASBUuv4mfwOBOrjT11i0YMZXpcHQKXou+BnYePlM9fKZQkncxr+JTMgsLC4tJhbGJqZmF\n0MXdo5ZFxSQZQrrkz2XLlRn6Oj7DF0wZUPejn7Vc29r1bWvXb+LZus+wkVcPbzh0882NnXPZ\ngoMTW9sQLF6tRq3GNmrl23zXz9tv0TT99tz6vIH7cES1MgkX45SNBsP9K8vQAy0/k1y6Ia7K\nVQmch7nCIzEAZD2KAUzSa8JtcTEAEAR7cmu19pgXtp3CJcJkNC1Jvw2ASXoN+Ot5DgDwzLx2\n78UabsaUKGgAaOuKO1sxZuTIkQAgcKk4SR1pTV0D9utieT0+DoAzKZ1UAECbRTPwfhIhhBDB\nFgzwX9OuI9bVlMJ7FIQ0ICdm99WUImVb6DUkYNEwa+5HwxAE21BY26nLQKeOfXr9sWbRhaeZ\nAJAavPGv0S27W2OSQEs4xrW8vGsxHQVCXxdnQ84dALLwEQAm6bUEr0VaRrD5Th5eTriNBtIn\nefEHj8fkAIDAeeD2+UOrGA5lG9n2nb6JSh13NDL7+oZFvsf2un4YxW7QefqMkCfbn2ZSpOhi\nRvEYO1yDXbXghAJlo1eHSsu1pdlX0z8s2SelVHQwsvYGCAEAMv8xQG/NR6l/kksoAGAb1LPh\nqpUeZnGtHQ3Zr4vlFJlUw6HpiyiJDAA8pk/GDD2DnI04UUUyOS6gyZzBgwczHYK+6yDkv07I\nf5Fe3PnDHmRI+yy5LDFJtbDHm0mESonfhP8bHhUbG5uckVNYWCiVs0xNTc0sbRu5uTf29Pb2\ncGA6QIRqHNbVlMEkPUIaEPV7mLLBF3bcuXR4Fdt2snm2Y5bvzJwwLiSzmKYVl47HdZ/dWFth\nIoRQRfElcgCgqUKmA9EFSdeWLToVDwAGZt6Hdk9nOhx9hG8BQkoR+0OVjYGLB6lRsET0mjfy\n6OjtFCnefe7d9jH/lXF7T/lu++QLABAVngU/4Liqau9K5ABAEDwfs0pXRhHdDVE2WBzznpYq\nkgRsXumCQhSZXgMx6iMzDitTRtEKifqnFCt3Tye4NRWTnsEa7q9BLyezqMisJ9F5vX30aKDz\nG0XRgDXGNcF7vOeBZUHhOy/SO8biC8yUTuYGp8WSZJUTFRHSMzmvg3bs/SM8LqPC8aKCXFFq\n0uuo8Cvnjlk5eY6aMquTqwUjESKkTVhXA5ikR0gjbieU5rc6Lv6pigy9EsHiT/y1U8icawCQ\nEX4ZAJP06Buzc+dOzT6hv7+/Zp8QqYnMf3w3twQAWDx7pmPRBVJxTn5+PgCwyRimY9FT+BYg\npHQ5vgAAWBxBX2u1doA2MO8i5O0Sk1TqrbMw5tey44ZWXQEuAIAk+QsynfpGTCoAgMW15lT+\nI+DRrTRlw9h+iCFLRT+CVZq5V8iyNR+iXnI0ZGfKKIoUPSuSNTf+fN5dLnmZTCoAgGuE+0Zr\nBtZwfw1a+A9gTTn46sAxabtfPjtSgWpacZYoNaekgXO98gfz3t7fcfDPN+8Tc4vB0t6xXade\no37soPKbAlWPdfM5g12enn19YfHhuivGdTTADwITOo50P705/N8TkWPmtmE6FoSY9OrilqVH\ngmT0Z26PsuIjti2Y8GLc6tn93LQTGEKIQZikR0gD4ouVBTTsUfXN1Olv5jSGS1yX0bSsKLKG\nQ9NBmCFm3K1btzT7hPgWMKIkJ3bXkq0UTQOAkWUXpsPRBVat6kJgAgBQ0oSXErkHbnyodfgW\nIKSUWEIBAItro/4plhyWmKRkRS/KH2RzSzfzJrNJDYanY4zZhFRB03RJZR1oKu+CuHSWg0Of\nZir7UDKxssHiWmo8Qv3Uxcks7HkmABw69WrHBNUve3mx5w7QNA0AZg161Hhw+gFruL8GfPve\nq4c/XnwidN4W141zfsA8PVMyXvy958iZJ/FiLr/p+VOryo5nRRyb/NufpKI0W5OVEnvlj9jg\n+y92bJphUcXML/RliGFrA8Rz5wdd3Do2LGj0yL7uTo617Sxx3QJtsu+wqPfFcVdD1p/rvH9Q\nc2umw0GIGen39i06EkR/yNCb1mrUqomzUCgU2ghNubJ0kUgkEr2NCotOKQAAmpbdPbLI1Hb/\neG8ho1EjpG0lkkKOkYlefU3j2CVCGkABDQAsnh1fvfnOBGFob8BKlFJAK2o4NB2EGWKEKnPq\n1Cm1+ilK0hITXoQ/zZaVXoLcR7etwbD0hqXHLG/zsAe5UgD4/Wbyhv71mY5I7+BbgJCSOYeV\nIaMoaWIeRQvU+HVLUwXvpcoppx8VHFOkSNngWeAC4JWqxeNkyUhanp1CUg489qcdCpNPF39I\nwHzfRvXMCVnRc2WDzat0Y3v0RdxGtoTnNwEg8cqqk012Dm9T1QsrfnJ2ZeA7ZdtzhKs24tMD\nWMP9lWg85Lc5JQHb/jw4+mXwj8NG9O3Y3FCvRj2/AqL7h6dvuPRp3SRN5a9Zf7EsQ18mP/7v\n+RubHljkp6X49ACb59C7f7ugrTeLUp7tWf8MAAgWW53Ru8DAwBoPTk8Q3J/Wrcz6Zenx5ZNj\ne46cMKq3HU6nRnpGIc9cvf0vZYaeZ9pw7Cz/Xq0dVV2H6HePr+3YejSukKRpxbUt6wa02ozT\ntpDOIIsLitnGAh5LxWM09fTW6Qt3niQmJcu55o1bevv17O/tbK71GBmA34gIaUBTY+6DfFIh\ny5LRwFXje5NWSFJLFADA5eNqiujbM3LkSKZDQKqpm6T/GN/Wb25bnJmrCQRvzqZ56TMD4iWy\nNyfWPGq/o40Nlo5pF74FCAEAgJ+FwTmxhKbJfRGZ81t9vp4+K/KAVEEDAM/sozlbEtENZcOs\nkVqLReknH0uDyCKSpulzb/Nnu6nYOTL69zBlg21Yr7O5ig3pAUAc+lTZMLBoV0Nx6hvzRlO7\nCEP/Fktomjyzdmpcz1HD+3V3tuVX6FYsfnvz0uljVx/LlWsL2XSe5qoXI0FagDXcX4OLFy8C\nAJi5dWv69sbz1ye2Lz+5g2tpa2dnZ2duzKv63AULFmgjRF1HSeN/3XJF5crGmc92xRXLAYDF\nEQycMrWlA+/lg8vHLj8DAPHDraF57XwFn3mPkJrCji5ZdeGjtYJoBYW7o2uT8lrk0rHLy5OX\nH187Enb9d4GNQx0HG3VGUFesWFHT4SGkBen3tiRIKQDgGDqu3L3Oo9IrPOHY+oeA3XV/nrQ8\nUUrJpW83P0hf5YuzeNG3LfXFnYs3Q8KfvMiUyJv+enB1m4qj0GTey4ClAeHv8z4cED34O/Dh\nP5e9fpj668TvVaX0dQom6RHSgF4trB4Ep9EK6YnEgrH1TD/bP/fVfuUwkFnDH2o+Ol2DGWLG\nDR48mOkQkMZYOLdftnqmEe56qCGGwlYBu5ZvX7PxXlx6wLSZA8b/1NOvlZWhisJKVEPwLUAI\nADoNcTy34yUAPNy0LuZggKtpVaP8csnbTQH3lW2Hnj3/e4AmA7eEKJutmqrIPSMlj672cLgA\nAB5vD6T3/FThC5WW5xx8kaVsmzkOqeTrVnH8QqKyJfTFKbyawpq4dlbUtA0ikqJpKvza0SfX\nj5nb2NsKhba2tkZQLBanp6enp2XkKj4kz9g84cw1E3V+DEibsIabcYcPH65whKZlWaKkLFES\nI/HooeTruzNICgBYbLMB02d3a9W47KGI318qGy4jVo783gkA3Dy8hJKpm/5OoWnF2QsJvuMa\nMhKzjsl7e2x1IG40ybAK1yKaVuSKk3LFeCFCeiTi/Htlw3PWosoz9KV45k2XzGg5aeNjAHh3\nNgJ8e1bdH6GvFk0VnNyw7MyDt1X0UcgyV89Y8Sy34v5xNE2FXdk5t4S1xV/HN2nFJD1CGuA6\naaLg3uo8SnHjt/399/9c9bKiFJm2ed09ACAI9sBpTbQVo+7ADDFClenRQ/1dVNk2tes5NWjY\nzM0JB0s16Nq1awDg0enH3LyTURmic7vXnt/DM7eytLS0srAUGFT5WmO5kkbgW4AQANj7zXE+\nOCWuWC4vjlsyZfG4Of69vOqr7Jny/PbOzftfSWQAwOYJp/etpzxekPb66u9bzsfnAwDPpEV/\nayNtxf7tqfX9GO6RJTKaLky5uPJMixVDWpR/9NmRZSKytFrPdajqddQTbqx7XEAq2317ONRo\ntHrFSOj9v2dC1mIAACAASURBVA2zVq3cFZNTAgA0rcgRp+SIU2KiVHTmCVymLlvmY1ex1B5V\nG9ZwIwQAD68nKxvNp68f3aXcFZ6Wn0kpAgCCIH7qUbfscNuxI+Hv9QCQcT8CMEmvCf/uuq1c\nX9pI6D5keB+3ug42Fib4CxghpGW3xcUAQBDsya3VWslS2HYKlwiT0bQk/TYAJunRt4mWHfzV\n/8qrnKp7Pdu3TJmhN7Bw69q5ZR0LVvzr2KiwiBSJDADe3tp+1K/l2Ma6XDaASXqENIBn6rVu\nut/0HXeLM4L957MXLpjiIVS9vm7ay9BD23c9LyABoNGPK3t+suIiQghV29SpU5kOQd/t27ev\nwhGaJnMyRTmZIkbi0UP4FiAEACyucMnigZOWnSFpmix4ve+3mSdrubZq0kAoFAqFQj5IxRni\nDHFG/Mvwl0m5ylMIgug6/TdnQzYASEQHR065Qn8oL/5u5nQcy64Cl99kehubrQ/FABBxYvnc\n9/17d/B0beRI54vCb548eK20RJ7FsfjJw/LT0xPuH1+w/7GybeIwwE+gej18VD2mTn4BBz2u\nnT5z7cbd1EKZyj5cvl2HHr2GDPvBlofLrmgS1nB/DaZNm8Z0CPruXn4JABAEb07HWuWPS3P/\nzpRRAMAz83Uttzk3z8zHisvKkinI/AcAQ7QcrU66nFQIAAbmXvv3La26ogbVnNmzZzMdAkIM\nSy6hAIBtUM+Gq9ayTSyutaMh+3WxnCLxxgl9q+ICV5Zl6A2tXfv1/b6Fu5OwrlX5PlRJ0sZ/\nUgDA0KLd//bNq/NhIUxKmrZ34byb8fkAcG39vrF/LNRu7FqFSXqEvkxBQYHK44I2438r5v52\n8FbemzuLJz9s6u3XppmLna2tra2tEVGcLhKJ0tKehl4PiUpV9vfsP2vpqKZaDFyXJV1btuhU\nPAAYmHkf2j2d6XCQChRZwubhoDNCCCGkJZbNhu9YqFiw8XyuXAEABakxd1JjKutMsAy6Tlw9\n7UP+QKGQlGXoXXrOntlWrWoPfdbhl5U3xsyMLZIBwJv7gZvvB37ax6nPQlte6ZAcLZdmZ2cn\nx726/8+Vv8LeKQ8SLMOJKzEfo3ksrk3vUf4/jBj/PjY6Ojo2LTOvsLBQBhwTExOBtX2jRm6u\nbo583PcH6aju3bszHYK+SycVAMAxql8hPZzzIljZMHfvWuGU2jxOloykZDjBVDOUb0GbRTMw\nQ8+gTp06MR0CQgwz47AyZRStkKh/SrGCBgAguDUVE0I1iaZyA06W7uxj4zlo69KRpqq+iDMj\nDhVRNAA0njWhTrmtKtmG9lMClj8aPi9XrijJ+/fPdMmPulvsikl6hL7MiBEjPtuHpiTP711/\nfu96ZR1YbEHRq78Wzv+r/o/zpuO45/+bVJyTn58PAGyy0tFnpE20POffoHuRkVEvo+Nyi4ok\nkmIZRV++fBkAyIKwC0EFPn6+dUzxLvMrQuYl8wS1mY5CF2C5EuPwLUCojL33yP37PQ/vPXw7\n7A31Ien+qVruPmMmT/N2NK1wnG/n0nvIuBGdPWo4TF3A5jms3rVsxazVL/MqbqSnJHDutnr0\nf2vdJ91Y4n/gdfkOBMHqMnldRyFuK1BTCJaRo5uno5sn04HoEfxGRggAjFiEVEHTCnmF46+v\nlNZvOPapU+EhsvQrGzPKmmHJZYlJqoW9zo7sI4S+CY6G7EwZRZGiZ0Wy5safHxGVS14mkwoA\n4Bq51Hx0CGle5tPdYpICAC7fdf2SESoz9AAQeaZ0u/qW9U0qPMQ2bDirpfXKR2IACLqe8qPu\nbgOESXqEGKCg8mJj8wCAyCWZjkUXWLWqC4EJAEBJE15K5B58vLIxKSb0z737T8Xnqf7bpkre\nnTxw/PThI35DJ80Y7Itz2ZlFSbOe3AsNDg5+8CL+wqVLTIejC7BciXH4FiBUnqG1+7Qlm8aJ\n40IePImOjn6fklFYVFgsA1NTM4GVvau7e7PW7T0bWFc4y8iq/9bdwxxr2+C3tPoMLJutObTn\nxskjgTcfiov+W1adxbXoOmjUqEGdq6jV5hjZD5i6eKRfPa1EipCW4DcyQgDgaMTJKSCpkvcp\nJOVQtqcGLTvxPl/Z7OdoVr4/rSiOl8oBgMWt+O2MqqeTucFpsSRZSjEdiP7CxS8RAoAuTmZh\nzzMB4NCpVzsmNPts/9hzB5Rrm5k16FHjwSFUAxIuxikbDYb7W3Mq2eWBlp9JLlQ2CVU/l52H\nucIjMQBkPYoBTNIjhNBXy9Jjlrd52INcKQD8fjN5Q//6TEekvyJOLF1x5vlnuymovDsnNr6K\nS9+9eCAHMwBaR1OSl4/vBQcH33sUpVxTCCGEkA4zEjp36+vcra+6/dkGdZxwdZUvx+JZ9xo7\nr9cY8l1MjCgzu4ji2tdycKhbx9xQ9U7nBEEIHRu3btOuT//utpX0QQgh9eXm5iobBMEVCIyZ\nDQYpdbU3jiggaVqx41ZKwA91lQeznu8VkcoN6b3dP64xyHtzrERBA4CBaVvtR6uTOo50P705\n/N8TkWPmtmE6Fj2Fi18iBABuI1vC85sAkHhl1ckmO4e3sauis/jJ2ZWBpVtieY5wraInQl+t\n4ITSPaN7daj0r12afTWdLJ1Fp3I2nZG1N0AIAJD5jwF6az7KrwMm6RH6Msolu9HXheDN2TQv\nfWZAvET25sSaR+13tLExZDomfZR0a3tZhp5gm7bv7Ofi3JAbeXJv6H/b6XH4bk0cjCNTigBA\n9OjY4lONNwzH201toeXxLx4GBweH3gvPxEoChBBCqCYQPEe3po5VdrH7bs6eVgbm5ubGhvh7\nXMPeRQSFhj179fp9bn5BMcUSmJvXbejh1cbPz7M+06EhVONGjx6tbPCMm50/tQoA1q9fX+1n\nW7BggWbC0m/u41rAojsAEH1o0VmrJT29XIqTw9YHBCkfrdV1UPnOBQmhy5bfVLatWntpN1Kd\nZd9hUe+L466GrD/Xef+g5rg+AQNw8UuEAMC80dQuwtC/xRKaJs+snRrXc9Twft2dP9lju1j8\n9ual08euPpbTNAAY2XSe5mrORLwI/X+9K5EDAEHwfMx4lfUR3Q1RNlgc856WBp92YPNKqwco\nMr0GYvxa4PciQkgXGApbBexavn3Nxntx6QHTZg4Y/1NPv1ZWWJOkRZQ0Ydm+O8q2wKXDvF+m\nNbUzAoA4cWD5blx+kzW7/3hwes26U08AIPbcitj+xxsZ4ZdRzRK9iQgODgkJvZ+Uo2KvXIJg\n1XbFMaAvduLECWWj39DhxrhzA0IIIbXxBA4OAqaD0DnSzMjNa//3MC67/MGczPT3cbEhNy4c\nc2k/99dZHhYqhn4Q0mH3799nOgR9Z+4+xcfy3/vZUpoqOL5uwQmCoEu3nAeCZThxUOlGJ8Xi\nG+s3XHn+JoWiaQAgCPagofWZilnXENyf1q3M+mXp8eWTY3uOnDCqtx0mibULF79ECAAAWBPX\nzoqatkFEUjRNhV87+uT6MXMbe1uh0NbW1giKxeL09PT0tIxcxYevCTZPOHPNxEpWCUfoaycm\nFQDA4lpXsYbuo1tpyoax/RBDVdvDEazSn28KWfanj+oMvC9BCOmCa9euAYBHpx9z805GZYjO\n7V57fg/P3MrS0tLKwlJgUGX+DEsENCL19q4smQIADAReWwLmVLrZDAAQHO9hy2clT9oWKqIp\nyb4rSZsHV11vhqopPyU2JCQoKDjkdWqByg7CBs2++67Dd77t61vj4hNf7MyZM8pG18HDMEn/\n9aLJ0HuP1Olo1bKtO59b0+EgxIjCvDw5re7mJgJzc7yioW9OSW7ErKmr0koqXSgo8/W9JZPf\nLd231RPz9AghLSIIwxnrZrydsVm5vj1d7uu40cClTT7cfJbkhkW8Ti57qH63RX4CvFhpxsWL\nFwHApWOXlycvP752JOz67wIbhzoONlw1bndWrFhR0+HpBVz8EiEAADASev9vw6xVK3fF5JQA\nAE0rcsQpOeKUmCgVnXkCl6nLlvnYVSy1R+hbYcwmpAqaplVUiynRVN4FsUTZdujTTGUfSiZW\nNlhcS41H+PXAJD1CSBfs27evwhGaJnMyRTmZIpX9kcY9uJSobPjO968qQ/+B76RR20I3AkDq\n7TDAJL1GleQk3g8OCQ4Jfhqnei0g8zpuvr7fdfD1dXEw03JseoWmCpat2KBsr1q1itlg9AIt\nf3n/ZtC/YUnEoIB5HqXHFEUbN25U5+zW2/5wd8TKVqRTUiJuHrt8Ny7ubUZ+pT+MP3Ui8JIp\nTjxC3xh67/wN5TP0PGOLuvXqmxEF7xMSswtJ5UFKmrJ+7vYTh+ZVUcyBNGjMmDHVO9F5bMDS\njvaaDUZPNGrUSNngGJUuDTpt2jTmwkGl+Pa+W3eY7d91KCgyQVkfyeKY+PSdMHdkk087EwSn\nZY+Jv05urfUwddbhw4fL/5OmFbnipFxxElPx6Cdc/BIhJVMnv4CDHtdOn7l2425qoUxlHy7f\nrkOPXkOG/WDLw88I+obV4nGyZCQtz04hKQdVf8yFyaeLFaWTF79vY6PySWRFpfvqsnmVbmyv\nAzBJj5CGSfIyUtOyZGqXK7m4uuFAKNIBwXklAECwDMa5W6jTnyfwFfI2i0mKzLsHMLiGo9ML\nVHFm2L2Q4OCQh5HvqEouQWye8LeNAU0ccSs+7ZA/f/6c6Rj0hfj5jU27fo8RSQDAxrP/l55O\nEGwzNWYXIfQNibuyee7BYFrtO9IyXPwooG9NXtzhf0SlRRgcfp0RM+b+6ONU9mjCo4ubtv2R\nUCgDgOLM0G0R4+a2xBshbcjJyaneiQWVr4iAqvbpxMTu3bszEgmqgG/fbPbq7VNzRInpWWwT\nm9oONjzio2EgDt/J29esVn2X1t7fudU2YSpOhGoILn6JUBkW16b3KP8fRox/HxsdHR2blplX\nWFgoA46JiYnA2r5RIzdXN0e+qnW/Efq2+FgaRBaRNE2fe5s/201FsiD69zBlg21Yr7O56gWE\nxKFPlQ0Di3Y1FOfXAJP0CGkGLc/+89C+qyER2QVfUKsEWK6kIVgiwLh0UgEAbIO66v8923HZ\nYpKiyLSajEv30VRR1MPQoODg+2GvJJSKZIyJnXP79u3/On8UAAiWKWboke6JOLNh1cn7lc1N\nKdOqVcuCnOz05MQcaenoP0GwO/YZ3KJJ48aN3a34OEsd6Q4y7/7iQx9l6Nlsdf/CK6QNEPr6\nxR3/V9lg84Qr929pYsYr/2i9Nv0273fxH/trGkkBwLM/IqDl9wxEiT6Hw7e0NOEAgKURjlMh\n3WRgYdfQQnUdmEntkYvmaTkcfTF79mymQ0C4+CVCFREsI0c3T0c3T6YDQaimeHS1h8MFAPB4\neyC956cKowy0POfgiyxl28xxSCVjEIrjF0oX7hX6utRYpMzDHz8IaQBNFW2b5X8nqbAa5xpg\nuZImYIkA44zZBCmnFbJMGkDN0X2RjAIAgmVUo4HpLFoW9+xhSHBwyP0n2arqjfg2Tj7t27f3\nbd/C2Q4AlEl6hHRP3JWNK07cK/sni2PWuIm5yp5Lly4HAFohjQ0PPnH4yPNUCU1T76TC2a1V\nrDWK0Dctev/vUgUNAEbCxj9NHtGioZPQHL9tkc76522+slG374IKGXolron7/IH155x8CwAS\n0d8AmKTXhp07d1b5OJ2fmZ6Wlpr0Purm7bBiBU0rjAbNXdtNVZ0NQghVW6dOnZgOASGEENI7\ntb4fwz2yREbThSkXV55psWJIi/KPPjuyTESWjma7DnVV+QwJN9Y9LijduaxvD4cajZZZmKRH\nSAOSb60tn6Hn8gVCS1M185RcLFdCOqGNKe+vHKlCnnMzW9rd0vCz/cmCB2KSAgCucdOaj04H\nTR09LCWP/PS4oWW9du3b+/q292zkgBcXpPOk2fcXHyrN0BNsfs9Rk/r36CA0qqpimGAZurbu\n9puX75mAOScfpr27uW2Fte2KIY21Ei9CWvLX8xwA4Jl57d67xAq3ckC6Lq5Yrmz49ahTWR+H\n77vAybcAIJe+105UqG7dup/rUa8xAEC/4UNenz2y43xowu5FU4o27B/gItBCeLrnxIkTyka/\nocONca0+hNDXBBe/RAghfcPlN5nexmbrQzEARJxYPvd9/94dPF0bOdL5ovCbJw9eKy2RZ3Es\nfvKw/PT0hPvHF+x/rGybOAzwE6heD183YJIeIQ3451ycsuHacfCkUf2crXELMaR3uvrZ/hWY\nAABntwd1X/H5hQ1e/vGHsmHVAldBqI4KGXqeee12Pu3b+/p6udfBbAzSH1dX7lGWCxNs40kB\ne3s1UndYn2Dxhy7akeM/9kZS4dOTK+59f7y9xednFyH0rYiSyADAY/pkzNAjfZAhUygbzUy4\nlfUpmxVKK6TaiAl9CUNrl9HztpkUTDj6LPP4khVef2yqa4B70HyxM2fOKBtdBw/DJD0jsrJK\nV221sLKq9rcvTRXMX/ibsr1x40ZNxIUQ83DxS4QQ0kMdfll5Y8zM2CIZALy5H7j5fuCnfZz6\nLLTlld430XJpdnZ2ctyr+/9c+SvsnfIgwTKcuHKI1mJmBCbpEdKAe/kkAFh4jFg/p7ItNBCT\nKLKEzdPl+VZfg3oDhnIvbpDRdGbE7nXnBfN/9K5iaEgUfuq3mynK9vfDnbQUoo4i2PzuY36e\n1Lc1jsUhfUMWPD7+vkDZ9pqyQf0MfSmCN2719JtjNyhoct/KP9tvHaH5EBFiSImCBoC2rliN\nivQCRdPKhknlN0MsDs6i/sqxei+cc2zYErn07ebz77eOaMB0PDqIpgqWrdigbK9atYrZYHTS\nuHHjlI2Df14UclWk6WlF8dHfT1fo/Al5bGxsjcSHEEJIK/r06aPZJ7x8+bJmnxAh7WDzHFbv\nWrZi1uqXeSUqOwicu60e/d9a90k3lvgfeF2+A0Gwukxe11Go45v3YZIeIQ3IlysAoMOMHzBH\n9jWg5Tn/Bt2LjIx6GR2XW1QkkRTLKFp5Q0MWhF0IKvDx861jWmmdDaoensBnYZfaq24nAcCD\nY+vGP/abOrpvY9ePE/A0lSV6H3Lt3LErD5TDqRauYwfY8RkJWGfQlOTG4dUPbnt07Nixo993\n9a2xGhjpi7S/zyhoGgB4pl6Lvq90ieMqGFr4jHU0Oxyflxd/5lrmj73w44N0hbMRJ6pIJqeZ\njgMhhNTG5TfxExjcyZWm3roFI6YyHY5Okj9//pzpGPQbLQ0MLK0hqzxJj2qW+E34v+FRsbGx\nyRk5hYWFUjnL1NTUzNK2kZt7Y09vbw9d3vIWIYQQ0jIDy2ZrDu25cfJI4M2H4iJZ2XEW16Lr\noFGjBnXmsyrNp3GM7AdMXTzSr55WImUSJukR0oC6BuzXxfJ6fPxAMS8m9M+9+0/Fq9qrGwCo\nkncnDxw/ffiI39BJMwb7YuWxZnlN39gnacrlmFwAyI4JWrM4iGAb2piULkC68OfpiYmphSRV\n1t9A0PS33/oyE+u3r56VYULWf+u15ia9DDz28uIfe+o1btupU8cOvl4WPFziGOm4mH9Eykad\nPiM51b2eew+pf3jdcwC48Wdir8kumooNIWb1cjKLisx6Ep3X2wenniCEvhnOhpw7AGThIwBM\n0iOENCznddCOvX+Ex2VUOF5UkCtKTXodFX7l3DErJ89RU2Z1crVgJEK9hYtfIoSQDmPxrHuN\nnddrDPkuJkaUmV1Ece1rOTjUrWNuqHp/K4IghI6NW7dp16d/d9tK+ugYzCkipAEdhPzXCfkv\n0os7m+NtJZMiTixdcebzxQEKKu/OiY2v4tJ3Lx5Y7bwO+hTB4o9ft8Nyz4ajtyKVR2hKKs4r\nffRVXFL5zhaNOi1eMq2efnzX1oQdh0+9j3oYFBQcEhqWKS2d+kDT1PvI+4cj7x/dZdas3Xcd\nO3b08WzIxT9ypKPuZ5eul+XZ0a7aTyJw9QF4DgCZjx8BJumRrmjhP4A15eCrA8ek7X4xJPBr\nACH0bYgvkQMATRUyHQhCSNe8urhl6ZEgGf2ZVYay4iO2LZjwYtzq2f3ctBOYHsLFL5HO+3/u\nKRN99/Spu6/oD9crgsCBU6QTCJ6jW1PHKrvYfTdnTysDc3NzY0P9Slvr1/8WoRriPd7zwLKg\n8J0X6R1jcRyUKUm3tpdl6Am2afvOfi7ODbmRJ/eGisr6cPhuTRyMI1OKAED06NjiU403DHdV\n/XSoWgi2YID/mnYd7wdevnL3cbSUUvEb2Nqxea8+/fp08sTk8f8Lwa7fxGdsE58x04qiHt0L\nCgq6H/ZK8uEFV8jzn4ZcfRpydafAwadDx46dOjIbLEI1IfXDyhzNTaoYxCEMDauqJOYalu7K\nQRaEAYzSWHAIMYpv33v18MeLT4TO2+K6cc4PmKdHCH39yPzHd3NLAIDFs2c6FoSQTkm/t2/R\nkaCyjJdprUatmjgLhUKhjdCUK0sXiUQi0duosOiUAgCgadndI4tMbfeP9xYyGrVuwsUvkT5o\n1qxZ9U4syY49vH3rjYiUsiP8Ws2nzJ6lobgQ+trxBA4OAqaDYAIm6RHSAOvmcwa7PD37+sLi\nw3VXjOtogCOhWkdJE5btu6NsC1w6zPtlWlM7IwCIEweW78blN1mz+48Hp9esO/UEAGLPrYjt\nf7yREV4JNczOw2eqh88USvIu5lV8SmZhYWExqTA2MTWzELq4e9SywKV3NYlgGzdp161Ju27T\nJBmPQoODg+4+epWs+DAAQeal3L18/O7l48p/0jRZrKCNKt/vB6FvSI6sdDcNC06lmzsQbPOz\nZ89W8SQEx1zZoEhRFd0Q+uY0HvLbnJKAbX8eHP0y+MdhI/p2bG6II50Ioa9VSU7sriVbKZoG\nACPLLkyHgxDSHQp55urtfykz9DzThmNn+fdq7ajqloh+9/jajq1H4wpJmlZc27JuQKvNFrj0\nokbh4pcIVYqmHl89vOvItRx56SgHwTL0GzxlytCOOIKHkM7D1BRCGkEMWxsgnjs/6OLWsWFB\no0f2dXdyrG1niWOhWpN6e1eWTAEABgKvLQFzrCtP2ADB8R62fFbypG2hIpqS7LuStHlw1Uut\noGoi2HwnDy8nD6bj0Btsvk27bgPbdRtYnBEfEhwUFBT8MjGnQh+qJGnE8Imtfb/r4OfXxqMu\n7lqPvmkCDitTRgFAlkxRm1fNJeAombi0ReAHAumOixcvAgCYuXVr+vbG89cnti8/uYNraWtn\nZ2dnbsyr+twFCxZoI0SEkK47deqUWv0UJWmJCS/Cn2Z/mHvnPrptDYaFENIz6fe2JEgpAOAY\nOq7cvc5DUNmNEOHY+oeA3XV/nrQ8UUrJpW83P0hf5Vv9TbVQBbj4JUKVKUoK37Vtx73X/43g\nWTT6btasqZ61jRmMCiGkNZikR0gz2DyH3v3bBW29WZTybM/6ZwBAsNjqzHULDAz8fCf0OQ8u\nJSobvvP9q8rQf+A7adS20I0AkHo7DDBJj3SLkY1Tt4FO3Qb+lBn/PCg4OCj4XmK2tOxRuUT8\n783z/948b2hd/7vv/Dr4dWhS34rBaHXA6gW/VHI7RZW1fv75588+z+bNmzUVkp5w5XPu5VEA\n8DBb2sy4mtsWkrmPlQ02r5bGIkOIaYcPH65whKZlWaKkLFESI/EgpB3L58yqtOSO/u9LecaM\nGVU/z44dOzQXlP5SN0n/Mb6t39y2uMQ0QkhjIs6/VzY8Zy2qPENfimfedMmMlpM2PgaAd2cj\nwLdnTYenJ3DxS4RUohWSf07t3X8uWKooXQ6TxbXsPc5/bC8vLPxDSH/g9xxCmhF2dMmqCy/K\nH6EVFFVZb6RpwXklAECwDMa5W6jTnyfwFfI2i0mKzLsHMLiGo0MAAJS0ICO7yNDUTGDKx1tN\n7bB2ajbQqdnAsdPfRT4MCrobcu9JlvS/y5I08/2tC0dvXThqUa9xxw4dxg7sxmCo37T3cXGf\n7ROnRh/0pbxt+ffySgDgyal4mF/NXd9SrkQoGzzT1hqLDCGEEBNSEhPU6ZaQoFY3pH0Wzu2X\nrZ6Jy7oihDTotrgYAAiCPbm1WhOAhG2ncIkwGU1L0m8DYJJeM3DxS4Q+lRl9d9vWfc/TJGVH\n6nj1mj1zXEPzz0wnQgjpGEzSI6QBeW+PrQ6MZDoKvZZOKgCAbVDXVO2phnZctpikKDKtJuNC\nQOYlXDl7+lrI08y80vtOrqmwWYtWPX8c6uUoYDY2fUGwHZv6ODb1GTu9MPJhaNDdoHvhMWWz\ndAEgJyHqwrEoTNKjb47LgPoQkAMAGeEHs+TbraqxYyEtPxNSur6iTVtPzYaHEIOmTZvGdAgI\nIX3Xo0cPtfuybWrXc2rQsJmbE9aNIYQ0K7mEAgC2QT0brlqbW7G41o6G7NfFcorE9Yc0Bhe/\nRKg8BZl58dDOY389VdClQ3Ncfp1h02cN9HVhNjCEECMwSY+QBvy76zZN0wBgJHQfMryPW10H\nGwsTHF7QJmM2QcpphSyTBlDzlRfJKAAgWEY1GphuI/PeXb18M+xJVFpWNmFoLrS19+rQvWcn\nL+MPo2uSlNCZszaLyY8WlZAViMNDrj0JvdFm0NxFI33xk6I1BNukqU+Ppj49pknEj4KDgoKD\nw6KTy34SoC/l6+vLdAj6zrrlBD7bX0LRlDRh1fFXW8d6fOkziB9sDisgle2u/epoOkCEGNO9\ne3emQ/g/9u40Pqrq4APwmUwSIBACyqZiqWgBQVworkhF6kZ9i0rd960qiIIrFpei1qLghrgv\nqCgiuIO0IlZRQKqirQUBLYqCIiIawhJCyGTeD4ORKkvEyR1InufTuTfn3t/fInYy/3vPgej8\n9re/zXQE1qFnz56ZjgAQ6mdnLV6dSJYXb3zqd1amnmiPbeJ2WvyYxS+hwmdvj7196KMfF635\nIiIWi7U98IQLzztmm9rxzAYDMkVJD2kwZv7yEEKtBh3vv+/qAg//Z8Le+bkvFZaUlxWO/7bk\nsK1qb3R+6bKpqeY4p+6uVZ+uevps0vCrb3t2SVn5muOi5d989fms/7zzzOiOA26+ok1Bblnx\nzD9dYxvKRAAAIABJREFUfNsPGvoKyWT5P0cP7h9rMPCk9tGFJoQQQnZek07dju3U7djiRR+/\n8frrEydOnDl/SaZDbXkuu+yyTEeo6eK1tr/isO2vGTcvhDD3uWtGtLvnpD1/wi62qwr/NeC2\nqalxve2O7N7IM1sAW6Q+ffpkOgIAm6kdascXr04kShf+e8Xq3etuvHcvK/7g89LyEEJOHa+0\npo3FLyGEULbisxF3DnlmyvebIdZu1PasPn0P3a1ZBlMBGVeppX6ADUt93Nz7Txdo6DPl4C5N\nU4PRd0yszPwPHnssNdh6D6+abYpv3x/e5+Znvm/o11L81bSrzr+2sCw5cfDNc1eWhRBisaz2\nXbqdcmbPfv0uPvOkY/ZrvVXF5Jmjr3l9yarocvO/8prseNgxZ9541/CHbrsu01lgU+x6xtW/\nqB0PISSTq0f/tc+I1z6q5IUrF/7rhr4DU6tfhhCOveq4qooIAABkyEEt66cGD42cWZn5Hz71\nQGqlzPo7Vn7PDjYitdpiavHLSrL4JdVLcvorI3qd3reioY/FcvY96rwHHxiooQe8SQ9psFVO\n1qLSxB7b5GU6SM3VosfxOc8PWp1MLn7v7oFPF1z+h3038LzEwmkjrxv/RWp8yIktI4pYjSQT\nS6+94fmKZdLjtZu237XV9s23XrFowdzZ/5m7uKR06fT+dz7x1XvfhBDitba/6PrrftNm6++v\nP+6kaWPvvO6BV0IIyWRixL0zD7hij0z8c/C9xjvunukIsCmycpte2//4cwc8UVqeTCZWjLrt\n0mnvHHX6cT12a1GwvkuSiaVTX3r2voeeL/zuMaOdDu935HZ1o4oM6bdkyZrVUGKxnIIC/zID\n1Gh/6Xfper7p+36Fs4svvnij97n11lvTFQkyaOeTfx3eHx9CmDf2+ifa33ni3hvqwxa9O/ra\n5+amxh1OahNFvprB4pfUZCVff/DgkCEv/2dhxZn6v9z7/L4X7PvdI0RADaekhzTo2qDWk4uK\nPy9Z97LeRCC3oNMVBzW/fsL8EMLU4QPPertLz1OP2KXN/xbwycQ3Cz99Y9xTw8dOTSSTIYSG\nbU7v0cyjFT/Zon8OmVtSlhpvvVu3qy8/u2X+mlXjkomlLz540wPjpn/x6qjUmb0u+fP/NPQh\nhJDV8fcXXvDOv4f+e3EI4dsZL4WgpAc20da7H3f7RUt73/pi6smhjyc/d82U53/Rbs8O7Xdp\n1/ZXjRs2yM+vF1u9cunSpYs+/3jGjBnvTP7nguLVFZc32u34Qed0ylx8SINTTz01Ncitu9vT\nI68PIdx0002bfLd+/fqlJxYAmfDpnDkbnTOnEnOgemjQuudBTSa9sqg4mSwd9deec353yolH\nHrZT0x9+EbRy0cfjX3hy+ItvlyWTIYQ6jX/bq02DTOStng7u0vSl5z4LIYy+Y+JhAza+nqXF\nL6kmkqVTnnvonsfGL02seUMgK55/yMm9zu7RKddSvMB3lPSQBgee3PbJW6e9OWL6aZfsneks\nNVfH8wd3n3/emNlLQgjfzp54Q/+JsXjtxvXWfAy64uLz581bsHyt/dFrFex63XVHZCbrFm7G\nU2sWlM6us9PgP5/bKPv7nVNi8fq/P/cvhf85+en5y0IIsVjszA6N1nmTfc/tNLTnCyGE1cve\nTiSDnSKATdb8gD/eW3/bgYOHzV2+OoSQTCY/m/H2ZzPefm5jF7bvds5V5x6e7b8/VDtTpkzJ\ndASgBjnhhBPSe8ORI0em94YQpZ+3mIF3P9Iu649/7TOj16CFpYlkMjFt3CPv/m14g8bbNG3S\npGnTpnXCykWLvvrqq6++/HrJ94sF5ja58IY/2iA2jSx+SQ20dO5bdw25c+onRRVnmrY/uE+f\nP+7SZOOLSQA1ipIe0mCbA/70++fPePGNm5767f3H7L7uSpKqFsvKO2vg0K3uGfTIy9NTZ5KJ\nkkXffRaaOWf+2pMbtu7a/6peLWrHIw5ZPfzjq+LUYPvf9Vq7of9O7P96tn+6/5shhBDLbZq7\n7t9t62x9QAgvhBCSSV9DAD9Xsz0Ov3XY7qMeenjcK+8sS2x8r8O627Y75qSze3TeMYJsAFC9\nrVixItMRCJ07d850BNawmMHmpk6TfW8Z1Of6a++aXbgqhJBMlhcu+qJw0RezZ6xjcm5Bq57X\nXNPJmotpZfFLapRkYtn4x+5+8Lk3Syse/anV7A/nXnDSQe29IAD8mJIe0iGWc+bAa7+59OrH\n/3zuh787+exTft8sz1+uDIjFC3r0vmG/A6c8N2bsa2/PKllXT9Noh90P735k964dcnwy2lTz\nV62p1Tscuu06J9RrcUAIb4YQkuWr1neTrOzv18D3Gj3w88Vrb3fi+Vcde9qCf/xt/Nv/nj5z\n9icrvtt1vkJ2XqN2u+++135du3XexQv0VButW7dODbLrNE8NevXqlbk4AGTAZZddlukIsPnK\nb9nlxgfbjXty1Li/v7Zg+ep1zsnJa3ZAt8OPO+H/muZ6nSP9LH5JzXHluWfPWLSy4rBxu64X\nnn9Si3o5RUuWbNoNGzSw+wZUZ7FkcuMvGwEb9vzzz4cQysu+fe6JMUVl5bFYVkHj7bbfrnFl\nauABAwZUdbyaKZkonjt75idfLF6+fPnK0vK69fLrN2zSqm27bRtaVujn6t69e2pw45PPtl3X\n8yiJ0gVHHX1eajxmzJh13iSZKDziqNM2PAdgkyUTxZ/PX7B06bKlS5eujtUqqF9Q0KBh8+bN\ndPMAkF7Dhw/f8IRkeckzz76YGh999NEbveGpp56ahlgQrcGDB6f3hh68qArJ8pWffjhr1qwP\nv1xctHz58tUhu169egWNtmndeuc2O++Ql+VXhSqUTBQ9t9bilxuQWvyydUFuBKkg7Sq+NU0X\n35pC9eZlX0iDYcOGrX2YTJYvWTR/yaL565tPBGLxvJbtOrZsl+kc1VqjnHUvZZ8VrxNxEoAf\niMXztv/lTplOAQDV30Y79WSisKKkV8BTXenUtwixrDo77Nxhh507ZDpITWTxSwD4MSU9AADA\nFunr1eWN1/PM3CYoWTS9dpP26bobAACsrVm7Tj3bdTrP4pcAEEJQ0kNa9O3bN9MRAACocfpe\ndueQwb3Xt7bNT/Kf8Q/ffN8Lw599/uffCgBgS5b8aPaHrdq0yXSMasvil1RjQ4YMyXQEYEui\npIc06Nq1a6Yj8D9WrSxe17pZ65aXl1eVWQAAqsqyT17pe1m4/ef19GXFnz1yy41j3vkijcEA\nADKovLT428LCkmTtxo23qhX/CYunl5cufunRQfeOnW0faGAT7LDDDpmOAGxJlPRA9TH/vfEj\nX3xjzscfLywsrvxVfu8CALZcSz95pe/lsdsHnb9pPf28t56/6bbh84vL0h4MACB6/5069skx\nE96f+VlpMhlCiMXi2+y8z1E9jjl0r5ZrTysr/vo/7/3ni8VFy5cvX7Zsecmq0lWrSgq/XvDZ\np/OXlSYylB0AqFmU9EA18eFzgy9/ZHIyWek36AEAqoWlH0/oe3n4qT19sqzw2XsGPzphRsWZ\nnHotqiAdAEAUksnSF267dNjET//3ZGLBzCl3zZwy7cRrrjy+YwghmVj61O3Xj3rjo9W+QcqI\nZOmkyW9VZuLWv96nbV5OVccBgAxS0kOVS5SuiufWynSKaq6kcOKVGvrITXplQv3sdZQByfIV\nFeMJEyas89q15wAAm6bnQS3veeWTEMLSjydc1C9226Bejdb1f80/VvjhxEE33f3B4pKKMzvs\n94fL+55cVUEBAKrYjMf6/6ChX9tbT1x3a/MHLt6/6fB+5z/zUdGGbxWL/YQV8lmvZNkHU8ZP\nfPOd+bFjbrxszRb0yfIVgwcPrszVew15rO0OBVWZDwAyTEkPaZYsK3xz4uTp02d8MGvOkhUr\niotXrk4kUwuqly5759mJyzp16bx9vudA02zWvSNKv2vo2x50ygmH/PqXv2ye91N2HWMTPHrP\nXRudM3To0AiSAEDN1O3C27Lil9w1fk4IoWjOyxddHrt9UM+tN9jTJ5OrXhtxx11PTa54eyye\n2+SY8y878cDWUSQGAKgCZcUzr33mvxWHDXfqsGfrFts0LVi26Mt5n86cNmN+CGHSHdcfnLtz\nRUMfi8Xrb924caNG9etkJxLl5cmsuvXz69cv2K5l21//ukNm/jGqkUXv//3mux6dvbA4hNC4\nw1E/9fJYLL7O10IAoDpR0kM6zZ70zL33j/ykqHSdP02smvvEA48/OezhLsefc8GxnTXIafTS\nB4WpQftTB95wdLvMhgEAiErs0PNvycq6bOjfPwohFM0Z3/fycPugXltnr/uDZvHCfw+98ZYp\nn3z/9ljTXQ+97LI/tirIjSgvAEAVmP/ig99tQh875Mwrz+u+19pfu82f+sSFN45KlMy76ob5\nqTM7dT7qj6edsHOT2hlJW+29N2rQ9U9MSWxswcs99/z1ssJvv/p8XmFJInUmFosf2P3YPdrv\nsssubbfOi1d9UgDIJCU9pM17I64eMOr9jU4rTxS9OmLwzDlf3d3/6PV8fcpPNnNFWQghntP4\nT0e1zXQWAIAoxQ7uOTge73f7i7NDqqfvF26/6cc9ffK9cQ/e8uC4ZYny1HFWPL/bmRed8/uO\nPpACAFu691/5MjXYapfe5x+x1w9+uv2+J/bbf+JfJy1M7ZPYsM1pt1z2Bx+BqsicsYMHjJhc\ncZiVXX+X9g3WOfPqq/8cQkiWl3w47fURwx5+f0FxMpmYW9Kk717tI8oKABmlpIf0mP/yHRUN\nfSyev/9vu7Ta6Vc505+4d9LCijnZeTu3367u9C9WhBAWvjW8/8hdBp3YJjNxq52VyWQIoVbD\n39azQEHVGzFiRKYjAABri3U9Z1BW1hW3jpkZQij67/i+/cKQm3pt9V1Pv3rZJ8NuuWnce19W\nXFCwY6dL+l2we7O8zOQFAEiryUWrUoPdz957nRN2PeWAMGlUarz/hYf68qiKlHw7pf9Daxr6\nWDzvd6ecc1S3A5rU2dA78bGs2m32OvS6jp1H3XjRE//8cu74IQMaNR1w3C6R5AWATFLSQxok\nSj675r5XU+OCVgdcdmmvXZvVCSHMWfTc2tNy8trfcPdjU5+8YeDId0MIHz414MOjHm9dx1/D\nNPhl7eyPileHja2jRVrk5+dnOgIA8ENdzr4xnnXl4OenhxCK/ju+zxWxO27s2TA7NnfK0zcN\nGbGgYhHRrNwDjuvd+/gDcmO+nQYAqokvS9esFbR/43WvYF9rqwNCWFPS/2Zrq9xXlRevvaek\nPBlCiMXrnnPjvYe3LqjkhbGsvOP/NLSw9+l/n7/8X08MmHzI4/s39McEQDWXlekAUB0smHDX\nN6vLQwi1CjreduNFqYZ+3WLZ+57w5z6dm4UQkoni+8bOjyxk9fa77eqGEFYtnVyqpgcAaqrO\nZ97Qr8duqXHRRy9deMW9o26/vM9Nwysa+rxmu11280MXn9BFQw8AVCcVG/o0zV33S9vxnKYV\n4wZxX4lXidJlbz/+6bLUuON5gyrf0K8Ryz3jL+dnxWLJZOl91z6T/nwAsJnxCi+kwdQX5qUG\nnS/v3Sh74x/0O59zypBJg0MICya8E47doWrD1Qwdzz8s9H0yseqLu/656KJ9m2Q6DgBAZnQ6\n/fo/xQcMfOq9EELRR38f8dGa87FYVofDz774rMPz7Q0EpNXw4cM3PCFZXlL5ySGEU0899edm\nAmqw9T6JGMv5fujTUNX48pVR5clkCCE3v+OfDtl+E+5Qu2Gn03eoP+yToqJPRo1b/IfDG3mZ\nHoDqTEkPafB60aoQQiyr1hltG1Zmfm5B5ya5ty4qTZQWTQ7h2CpOVyPUb3nipV0n3fzqF2/c\ncvWvb7nlNy3qZToRAEBm7HvKgKuyrvvLqGkVZ3ILfnX2pZcftlvTDVwFsGmefvrp9E5W0gNs\noWb/Y2FqsH33k7M39UmIfY/75bCB74cQ/v7MvMPPbZWubACwGbK2D6TBV6XlIYR4rV9U/s2k\nZjnxEEKi9MsqjFXDdL7w1pP33z5R+uUtfU6/7q4nP/62ZOPXAABUR3uddM01J+5Vcfir/ztV\nQw8AQJWa8u2q1KDDgc02+SYFbTqlBovffisNmQBgM+ZNekiDuvFYaVmyfPXiZAiVbOkXrk6E\nEGJZ69+9nvW46aab1vuz5HZ1sj5fWV46bfwT08Y/kVfQaJtttmmydf0NP47Ur1+/dGcEAMiw\njsdfNSBr4IDHp4YQPhhx9U05N/Tr0T7ToYBqqH79+pmOAMBmYUFpIjXYvV7O+mfFatfe0CL2\nObVbpgaly94J4ZS0hQOAzY+SHtJg7/zclwpLyssKx39bcthWG98tqXTZ1EWliRBCTt1dqz5d\ndTNlypRKziwuWvxx0eKPqzQNAMDmqsOxf7o+ftPVj04JIUx55MpB4YbL9fRAuj3++OOZjgDA\nZqFwdXlq0DB7ve/LxOINRo8evYGbxLIbpAaJ0oVpzAYAmyHL3UMaHNxlzfKho++YWJn5Hzz2\nWGqw9R6HVVEkAADY7Q/9bjijcywWCyFMfuTKwc/NyHQiAACqp4LvuvlvvmvrN0Fi9aI1o5jm\nAoBqzpv0kAYtehyf8/yg1cnk4vfuHvh0weV/2HcDe9MvnDbyuvFfpMaHnNgyoojVSK9evTId\nAQBgszBhwoSNT6q3+29bvv/Kx0tDCJMe7l+28o8dG6935aeDDz44jfEAAKg52uRlTy5KhBD+\n+W3JbnU3sOL9hpQueTs1iOdum7ZkALBZUtJDGuQWdLrioObXT5gfQpg6fOBZb3fpeeoRu7T5\n3wI+mfhm4advjHtq+NipiWQyhNCwzek9muVlJPAW7bDDLD8AABBCCEOHDv2pl0x98oGp6/+p\nkh4AgE2zb9O8yUWrQgjvjvwkXL7bpt3ki7HvpQa5+XulLRkAbJaU9JAeHc8f3H3+eWNmLwkh\nfDt74g39J8bitRvXW7O40xUXnz9v3oLlpYmK+bUKdr3uuiMykxUAAAAAqp1Lzj5jo4ukV2bO\no48+mp5ANUmrHr8MNxaGEL6e9uA3ZXdsnb3+hUbXJ1k26o01W9E33qdDeuMBwOZGSQ/pEcvK\nO2vg0K3uGfTIy9NTZ5KJkkVFa346c878tSc3bN21/1W9WtSORxyyGhs7dmwIIb9l5y7tGlTy\nkn+P/9v80kR2nR27HdS2KqMBAAAAEIWiwsK0zGETNPr12Xnx3sWJZKLks+sfn3n76e1+6h0W\nTb31nWWlqfHBR26f7oAAsHlR0kPaxOIFPXrfsN+BU54bM/a1t2eVJJI/ntNoh90P735k964d\ncn76s6RswAMPPBBCaNG9deVL+s+eeeyhhSty8nbpdtBfqzIaAEBVGTFiRKYjAABACCHEa21/\nxWHbXzNuXghh7nPXjGh3z0l7Nqn85asK/zXgtjX7MtXb7sjujepUSUoA2Gwo6SHNmrXr1LNd\np/MSxXNnz/zki8XLly9fWVpet15+/YZNWrVtt23D2pkOyBql5ckQQtmquZkOAgCwifLz8zMd\nAQAg84466qhMRyCEEHY94+pf/OO8eSWJZHL16L/2CRdee9KBrSpz4cqF/xrYb+Dnq9ZsFXrs\nVcdVZUwA2Cwo6aFKxOJ5Ldt1bPmTV3WismbNmvXjk6u+nTtrVmLjFyfLChfMfGrxytRBmpMB\nAAAAEKEzzjgj0xEIIYSs3KbX9j/+3AFPlJYnk4kVo267dNo7R51+XI/dWhSs75JkYunUl569\n76HnC8vKU2d2OrzfkdvVjSoyAGRMLJlUUAFbnu7du6flPrUbdB09vG9abgUAAAAANdznrz/Q\n+9YXy7/rHWKx2C/a7dmh/S7t2v6qccMG+fn1YqtXLl26dNHnH8+YMeOdyf9cULy64tpGux1/\n/3UnZtsnFIAaQEkPaTCnqHSngtxNuHDRjFea7HJQ2vPUBOkq6Tv1e6Bfp6ZpuRUAAAAAsPBf\n4wYOHjZ3+eqNT11L+27nXHXu4XWyVPQA1AhKekiDo44+++hel5zUdefKX1K+evHzD9wxfPz7\nz7/wQtUFq8Z69eq19uHnn38eQsjJb9K00k9L1Nt62/adjzrlEHsSAAAAAEA6JUq+GPXQw+Ne\neWdZYuMFRN1t2x1z0tk9Ou8YQTAA2Ewo6SENUm91/2KvIy7re2qLejkbnf/5tHG3Dnl4TlFp\nCGHMmDFVnq8GSP0RtOh+89CzW2U6CwAAAAAQypYv+Mffxr/97+kzZ3+y4rtd5ytk5zVqt/vu\ne+3XtVvnXSxxD0BNk53pAFB9zHv7hb5nTjvxgkuO6bzT+uYkShaMuvv2JyfOjjIYAAAAAEDE\nsutte+ixZxx6bEgmij+fv2Dp0mVLly5dHatVUL+goEHD5s2b6eYBqLG8SQ9p8M7YB+58eFzh\nd0+D7tjp6Ev7nLRd7fgPps2Z8sxtQ5+YX7xmN6acvO2P79XnmN948zsNRo8eHUIoaHXQobtv\nleksAAAAAAAAsF5KekiPVYUfDhty29/fW5A6zKnb4pS+lx65d4vU4eplnz429Nbn//lp6jAW\ni7XreuIF5x69zY+KfAAAAAAAAKAaU9JDOs18deQd9z61oKQsddim64mX9jrm6zeeHHLf0wtX\nJVIn6zRpd9aFfQ7ZtVnmYtY4idJV8dxamU4BAAAAAAAASnpIt7Li+U/cNeTpSR+lDuO18xIl\nxalxLJbbqccfe558SH7cbktVKFlW+ObEydOnz/hg1pwlK1YUF69cnUiOGTMmhFC67J1nJy7r\n1KXz9vk5mY4JAAAAAABATaSkhyrx2dtjrrlxWMUu9SGE/F/u2+eS3nu1yM9gqppg9qRn7r1/\n5CdFpT84nyrpVy4efdyZj2fFC7ocf84Fx3b2sAQAAAAAAAARy8p0AKiGSpf896WXxq/d0IcQ\nShZ9Pm/el5mKVEO8N+Lqywc/+uOG/gfKE0Wvjhjc869Pl3lICQAAAAAAgGgp6SGtkolp44ad\ne9bl46bNT53YrsNBLfNzQwiri+cPH3xp7+sfmLOxCplNM//lOwaMej81jsXzOx/y+7N6XXxe\n52Zrz8nO27n9dnVT44VvDe8/cnbUKQEAAAAAAKjZLHcPaVO84N/33j5k4uxvUofxWs2O6XnR\niV13Tqz6avRdt4ycuKYPjuc2OuKs3qd162Cp9TRKlHx29kl9vlldHkIoaHXAZZf22rVZnRDC\nnOF9Ln56bvhuufsQQkiWTX3yhoEj3w0hxOJ5g554vHWd7IzlBgD4GSZMmJDGuzVo22nP7fLS\neEMAAAAA1kk1BWmQTJa8Puq+e0e9WpxY89RLi72OuKTPqb/MzwkhxGs1PeHiQfvt9/zNQx77\nbMXqROniZ+8Z8MbrXfv2PTdVJPPzLZhwV6qhr1XQ8bYbL2qUvf5lQmLZ+57w5z6fnzNk0sJk\novi+sfNvPXaH6IICAKTP0KFD03i3Nr12VtIDAAAARMBy95AG1/c+89Yn/pFq6OO1tz3x4sFD\nrzor1dBXaLHPkbc/fMfR+++YOlw889Wre55559OTMhC3Opr6wrzUoPPlvTfU0H+n8zmnpAYL\nJrxThbEAAAAAAADgf3mTHtJg2vzlqcEO+x518YWntKi77r9Z8drbnXr5bfvt9/QtQ5/4YmVZ\nMrHi5eGDex/dOcKk1dbrRatCCLGsWme0bViZ+bkFnZvk3rqoNFFaNDmEY6s4HQBAldhnn33W\n96Py1d+8/e5/Kw5jsaz8ho2bNmuWH1/11VdfffX1krLvNj6L5zY76bzjG2VnFbTaqsoTAwAA\nAKCkh3TJrrPdCb0vOabzThududP+Rw/dY8/hQ25+/p+fRRCshviqtDyEEK/1i/x4rJKXNMuJ\nLypNJEq/rMpcAABVqH///us8X1b88S2XXZ0a523Ttscxx/7fb3bPy/1+taFkYtWHb0148slR\n731alChd+PTTb/7ltit2quPXQwAAAIAoWO4e0mDHTkcPeXhoZRr6lOy6Lc7sP3TQxSc0qxWv\n0mA1R914LIRQvnpxstKXLFydCCHEsupUWSgAgIxIPn7VgCnzl4cQOhx9+eP33njsQR3WbuhD\nCLF4rTb7/d+AO4YPOH3/EELxgrevvXJ4WeU/SAEAAADwMyjpIQ1u63fq9nk/+cWjNl1OuHPY\nLVWRpwbaOz83hFBeVjj+25LKzC9dNnVRaSKEkFN316pNBgAQrcJZdzw7pyiE0Gj3swacun/2\nhpYZinXocfmF+zYNIRTNeX7wPxdFFBEAAACgZlPSQybl5rfMdIRq4uAuTVOD0XdMrMz8Dx57\nLDXYeo/DqigSAEBGvPPgu6nB0X0Prcz8zr1OSg2mPzqpqjIBAAAAsBYlPVAdtOhxfE4sFkJY\n/N7dA5+emtjgYq0Lp428bvwXqfEhJ3pOAgCoVv42f3kIIRbP67ZV7crMr1XQpUF2Vghh5Tev\nVG0yAAAAAEIISnqgesgt6HTFQc1T46nDB57V79a3Zny84gcbqyYT33z58XMP3tjz+icTyWQI\noWGb03s0y4s+LQBA1Zm/KhFCyMqqu6F17v9XnaxYCKG81HL3AAAAAFH4ybtoAz922mmnbdqF\nO51+49UHbpPeMDVWx/MHd59/3pjZS0II386eeEP/ibF47cb1ylM/veLi8+fNW7C8NFExv1bB\nrtddd0RmsgIAVJl68VhhWTKx+utPShIta8c3Oj+x6rOFq8tDCFk5Dao+HQAAAABKekiHwsLC\nTbtw2arExidRObGsvLMGDt3qnkGPvDw9dSaZKFlUtOanM+fMX3tyw9Zd+1/Vq0UlvrYGANiy\n7Fs/92/floQQHnx1wV9/t/1G53858f5kMhlCyK3fqcrDAQAAAGC5e8iI7LytmjRp0qRJk63q\neFAmnWLxgh69b7h/YL9u+7atHV/3Cq+Ndtj9tD4DHhzUt3VBbsTxAAAicMih26UGs4ZdO+3r\nkg1PLln83rUPzEyNt/td16pNBgAAAEAIIYRY6p0J4OeYN2/eBn+eXLr4qy+/XDD/0xnjJ7ye\nfXH5AAAgAElEQVSzsjwZr73dedf+9dCdG0aUr0ZKJornzp75yReLly9fvrK0vG69/PoNm7Rq\n227bhrUzHQ0AoAqVFX9wxklXFiXKQwjZdVqcccmlv9+rxTpnzpv24i03D5tbXBZCyMpueOOI\nh9p4hBQAAACg6inpIVIliz8a/fDQpyd9Fsuqc9qg+3u0Ksh0IgAAqpuPn73uokemVRxu3XL3\n/TvsvM022zRr1iwvFC9cuPDLL7+c/d7kf33yTcWcvc68/aojW2YiLAAAAECNo6SH6JU/e83Z\nj/x7cXbtHW9/7OZf1LItOgAAaTbpoSsHvzC9kpN373HFdafvV6V5AAAAAKigpIcMWF08/ZgT\nripPJlsed9vtJ+2Y6TgAAFRDn775zG33Pzn321UbmJPXpNVJ5/b9/Z7NI0sFAAAAgJIeMuP2\nU499dUlJ7YbdRj/aM9NZAACoppKlH7z5jynv/mfWrA+//GZpcUlpLJZVq07drZpt37p1q932\n7HzAr38Vj2U6JAAAAEANk53pAFBD7VQ7+9UQSpe/FYKS/qfp3r17em84ZsyY9N4QAGBzEctt\n16lbu07dUkfJRGl5Vq5WHgAAACCzlPSQGZ+sKgshJBPLMx0EAICaIhbPjWc6AwAAAABZmQ4A\nNVHp0rdfW7IqhJCVu02mswAAUIMkSje0RT0AAAAAEfAmPURtVeGHd111eyKZDCHU2eqgTMfZ\n8lx//fU/5/JZrz058rWZyWQydRiLeZ0MAKi2kmWFb06cPH36jA9mzVmyYkVx8crViWRqr5/S\nZe88O3FZpy6dt8/PyXRMAAAAgJpFSQ9pMHLkyErNK1/15bzP/jPtX9+uLk+daHvqPlUYq5ra\nbbfdNu3CVd9+OOyO2//+3hcVZ/K23f28vn3SlAsAYPMye9Iz994/8pOi0nX+NLFq7hMPPP7k\nsIe7HH/OBcd2tlE9AAAAQGSU9JAGlS3p/1de0y6X7NMk7WFYh2Ti7ReH3fXwuMKyNY9HxLJq\ndzn2vPOOP7BOli+kAYBq6L0RVw8Y9f5Gp5Unil4dMXjmnK/u7n90to9FAAAAAJFQ0kNmNNxp\n/2v+cqGGOAIr5k+7a8jQyR8VVpxp2Po3ffr07NC8bgZTAQBUnfkv31HR0Mfi+fv/tkurnX6V\nM/2JeyctrJiTnbdz++3qTv9iRQhh4VvD+4/cZdCJbTITFwAAAKCGUdJDGnTr1q3Sc+ONm7do\nueOvdtu5pTVFq1qyvPgfI++9/6nXS8rX7ECflbPV78/offrhHf2PDwBUV4mSz66579XUuKDV\nAZdd2mvXZnVCCHMWPbf2tJy89jfc/djUJ28YOPLdEMKHTw348KjHW9fxGyIAAABAlfMVDKRB\nz549Mx2BH1o867Uht9/3/pfFFWe273h43wvP+FWD3AymAgCoagsm3PXN6vIQQq2CjrfdeFGj\n7Kz1To1l73vCn/t8fs6QSQuTieL7xs6/9dgdogsKAAAAUFMp6YHqprx08fMP3Tn8pX+VJ9e8\nQJ+Tt/0J5/c5unOrzAYDAIjA1BfmpQadL++9oYb+O53POWXIpMEhhAUT3glKegAAAICqp6QH\nqpXP3h57+9BHPy4qTR3GYrG2B55w4XnHbFM7ntlgAADReL1oVQghllXrjLYNKzM/t6Bzk9xb\nF5UmSosmh3BsFacDAAAAQEkPmZBMLLvksj+nxrfeemtmw1QbZSs+G3HnkGemzKk4U7tR27P6\n9D10t2YZTAUAELGvSstDCPFav8iPxyp5SbOc+KLSRKL0y6rMBQAAAMAaSnrIiLI5c+ZsfBaV\nlZz+yhND73t64apE6jgWy9nnyLPOP7Vb/Up/Nw0AUD3UjcdKy5LlqxcnQ6jkJ6GFqxMhhFhW\nnSoNBgAAAECKkh7YspV8/cGDQ4a8/J+FFWfq/3Lv8/tesG/L+hlMBQCQKXvn575UWFJeVjj+\n25LDtqq90fmly6YuKk2EEHLq7lr16QAAAAAIWZkOALCpkqVTnr3n7HOurGjos+L5h53Wb9iQ\nKzX0AECNdXCXpqnB6DsmVmb+B489lhpsvcdhVRQJAAAAgLUp6YEt0tK5bw286KybHvn70kR5\n6kzT9gf/5b6Hev2hU64V7gGAGqxFj+NzYrEQwuL37h749NREckOTF04bed34L1LjQ05sGUE8\nAAAAACx3D2xhkoll4x+7+8Hn3ixNrvnKOV6r2R/OveCkg9pr5wEAcgs6XXFQ8+snzA8hTB0+\n8Ky3u/Q89Yhd2vxvAZ9MfLPw0zfGPTV87NREMhlCaNjm9B7N8jISGAAAAKCmiSWTG3yxAqgC\nyUThEUedlhqPGTMms2G2OP3PPm7GopUVh43bdb3w/JNa1MvZ5Bs2aNAgHbkAADYXyfLih644\nb8zsJRVnYvHajeuVLyoqDSG03Wn7efMWLC9NVPy0VsGuNz9wbYva8QxkBQAAAKh5lPSQAUr6\nn6N79+7pvaE/AgCg+kkmip67Z9AjL0/f6MyGrbv2v6pX64LcCFIBAAAAECx3DwAAUP3E4gU9\net+w34FTnhsz9rW3Z5Wsa2v6Rjvsfnj3I7t37ZBj0yAAAACACCnpAQAAqqdm7Tr1bNfpvETx\n3NkzP/li8fLly1eWltetl1+/YZNWbdtt27B2pgMCAAAA1ERKemALM2TIkExHAADYksTieS3b\ndWzZLtM5AAAAAAghKOmBLc4OO+yQ6QgAAJuvsWPHhhDyW3bu0q5BJS/59/i/zS9NZNfZsdtB\nbasyGgAAAAAhKOkBAACqkwceeCCE0KJ768qX9J8989hDC1fk5O3S7aC/VmU0AAAAAEJQ0sNP\nNW7cuDTcpXxlGm4CAADpUFqeDCGUrZqb6SAAAAAANYKSHn6a++67L9MRAADge7NmzfrxyVXf\nzp01K7Hxi5NlhQtmPrU49QhpMs3JAAAAAFgXJT0AAMAWrF+/fj8+uXDyXf0m/7T71MrfJz2B\nAAAAANigrEwHAAAAIPN+fe4JmY4AAAAAUCN4kx5+mmeeeSbTEQAA4HvNmzdf+/Dzzz8PIeTk\nN2lakFvJO9Tbetv2nY86pVPT9IcDAAAA4EdiyaR9BwEAAKqJ7t27hxBadL956NmtMp0FAAAA\ngHWw3D0AAAAAAAAARMRy9wAAANXHySefHEIoaNUo00EAAAAAWDfL3QMAAAAAAABARLxJDwAA\nsKVasmRJahCL5RQU1M1sGAAAAAAqw5v0AAAAW6ru3bunBrl1d3t65PUhhJtuummT79avX7/0\nxAIAAABg/bxJDwAAUH1MmTIl0xEAAAAA2JCsTAcAAAAAAAAAgJrCm/QAAABbqtatW6cG2XWa\npwa9evXKXBwAAAAANs6e9AAAAAAAAAAQEcvdAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAA\nAABEJDvTAQAAAKgqy4uKypLJSk4uaNAgVqVpAAAAAFDSAwAAVD9fvDd++JjX5sz5+Oulqyp/\n1YjnXsiPq+kBAAAAqpaSHgAAoFqZM/bWSx58PVnpF+gr5NgPDQAAAKDqKekBAACqj9KiKf0f\n+p+GPh6PV/La3JjX6AEAAACqnJIeAACg+ph1/6Ml5ckQQp0mu5x57kl7/KplkwZ1Mh0KAAAA\ngO8p6QEAAKqPl94vDCHk1u94971XbZ1t/XoAAACAzY6vbAAAAKqPGcWrQwjtzj9XQw8AAACw\nefKtDQAAQPWxqjwZQtinTUGmgwAAAACwbkp6AACA6mOnOtkhhLJkpnMAAAAAsB5KegAAgOrj\n8Jb1QwjvzirKdBAAAAAA1k1JDwAAUH3s0btHViw284HhJUlv0wMAAABsjpT0AAAA1UfeNr//\ny4m7lnw76bLbXtTTAwAAAGyGYknf2gAAAFQrydeG3zjkmX/mNvrVH0446YgDd68dj2U6EgAA\nAABrKOkBAACqj+effz41+PLdF//+/qIQQiyWs1XTZs2aNWtQN3fD1/br16/K8wEAAADUeNmZ\nDgAAAEDaDBs27AdnksnV3yyc/83C+RnJAwAAAMAP2JMeAAAAAAAAACLiTXoAAIDqo1evXpmO\nAAAAAMCG2JMeAAAAAAAAACJiuXsAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEA\nAAAAAAAgItmZDgAAAMCmOProozfhqqzs2g233mqbX+687377HbjfbrmxtOcCAAAAYENiyWQy\n0xkAAAD4ybp37/4z75D/i47nXXxR55b5ackDAAAAQGVY7h4AAKCGWjZv2i2X9h73wZJMBwEA\nAACoQbxJDwAAsEUaPXr0JlxVvrqkcPGC96dNW1BUmjoTz91u8ON37lQ7ntZ0AAAAAKybkh4A\nAKDGSZYXvzbqziFPTkn9StioQ99hA7pmOhQAAABAjWC5ewAAgBonlpXX9YTL/3ryLqnDb/51\n9+yVZZmNBAAAAFBDKOkBAABqqHZH/7ljfm4IIZksfXjSV5mOAwAAAFAjKOkBAABqqljuaX9o\nkRoueOm/mc0CAAAAUEMo6QEAAGquxp07pgYrv5qc2SQAAAAANYSSHgAAoObKrbtHapBY9UVm\nkwAAAADUEEp6AACAmisru2FqUF72dWaTAAAAANQQSnoAAICaqzxRmBpkZTfObBIAAACAGkJJ\nDwAAUHOVLns3NYjX2jazSQAAAABqCCU9AABAzfXVG2tK+jqNO2c2CQAAAEANoaQHAACooZLl\nJY88Oy813uawnTIbBgAAAKCGUNIDAADUUO+OuPpfy0tDCLFY7hm/aZbpOAAAAAA1QnamAwAA\nABC1RMnXLw6/66EXP0wdbr1Hz53z/HoIAAAAEAXfwgAAAGyR7rzzzk24qrxs1ZJvvpo548Pi\nRDJ1Jl6r+ZVXdElnMgAAAADWT0kPAACwRXr55Zd//k3iuU3Ou2HgjrXjP/9WAAAAAFSGkh4A\nAKCGatz2gPN699yzeV6mgwAAAADUIEp6AACALVLz5s034aqs7NoFDRo0bdFq73323atdi1ja\nYwEAAACwQbFkMpnpDAAAAAAAAABQI2RlOgAAAAAAAAAA1BRKegAAAAAAAACIiJIeAAAAAAAA\nACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAA\ngIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAA\nICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAA\niIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAA\nIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACA\niCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAg\nIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACI\niJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAi\noqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICI\nKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAi\nSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiI\nkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKi\npAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo\n6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJK\negAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiS\nHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKk\nBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjp\nAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6\nAAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIe\nAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQH\nAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkB\nAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoA\nAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAD+v707Da+quvcA\nvE5CQoAEkEnKDIqCShERqwKVtlTFCWoLiqIVta1W0cJVQC1UweuAhUpR0T4qbRXUOlUvAhX1\nyqTPpaCIVFCJIBiQQaaEKdO5H04aIwQMJNkx9X0/rbP3Wuv88zxrfYDf2WsDAAAAABARIT0A\nAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8A\nAAAAAAAAERHSAwAAAAAAAEBEhPQAAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMA\nAAAAAABARIT0AAAAAAAAABARIT0AAAAAAAAARKRGVRcAAADAf4i8ac2quoSKkXLJuqougcPR\n8cZXqrqEirF84rlVXQIAAACVyJP0AAAAAAAAABARIT0AAAAAAAAARERIDwAAAAAAAAAREdID\nAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8AAAAAAAAAERHSAwAAAAAAAEBEhPQA\nAAAAAAAAEBEhPQAAAAAAAABEREgPAAAAAAAAABER0gMAAAAAAABARIT0AAAAAAAAABARIT0A\nAAAAAAAARERIDwAAAAAAAAAREdIDAAAAAAAAQESE9AAAAAAAAAAQESE9AAAAAAAAAERESA8A\nAAAAAAAAERHSAwAAQKXLyRofK6HBMWMPafjj32tacvj1mdsqsLal93ZLTNu6z2sVOC3fKNO7\nHBk7dCfesriqC4+CLQAAAERMSA8AAABR25Y5dlFOXhk7F+Zm3fzupkqtBwAAAIiMkB4AAACi\nFi/MG/7C6jJ2/vyt/9qSV1iZ5QAAAADRqVHVBQAAAMC30eLRj4XL7ylLzxk3v1nJtfAtkv6d\nX362fFwZOyenZVRqMQAAAN9OQnoAAACI1FG1amTuzs9e8/u528d8v17qwTsX5H42fMmmEEKN\ntFax3LV5hfFIauQ/Vyy1Xr16VV0EAADAt5rj7gEAACBSY/u1DiHE4wW3TMv82s6fzx+2Nb8w\nhPCdnn/wQ3sAAAD4DyCkBwAAgEh1vePKROP9/37wazu/MnxOonH+uO9XYk0AAABAVIT0AAAA\nEKm6rW/uWa9mCCFn3UMzt+45SM+CvWtHvLc5hFAjrd09nRp+7cx7t3zw5/G3Deh3zuldO7Vs\nUj+1dr02x5zQ44dnX3bd7W8u31yemrd9NGf8qCE/OLlTy6aN0tIy2nbo3Pucn4x+6IVNeYUH\nHxgv3D33+UeuHTzwxz1PadesYVp6w2O/261Pv4tuuvvRFVv2lqckqtBhrId1c/rEYrFYLNb9\nkRUhhBDPnfnXCQN+dErb5k3SUms1bXlUz35XT5mxvMSIwjlT/3j5ed3btmxap2bN77TteMZZ\nfUfe//S2/IO98cEWAAAAqoVYPO5tdgAAAFSAvGnNqrqEipFyyboKnzMna3xGi5sS7fW5BZk3\nnNDj4eUhhG7jli68udOBRmW93r9F7+dCCK36/P3TGX1rJyftLoyHEK5bufWBo+rv0/mtyb/p\nP/SBdXsLSp0qFks6sc+1zz8/sW1a8j63lt7brfPIRSGEVmfP/nRm733uxgt23D/08tsefDnx\n1ftIrdvuuvHTJlz9vVK/dPuHLwy88OqZH2wt9W6NtFa3Tpl1x8UdS717GDre+EpFTVW1lk88\nt8LnnN7lyPOXbAwhpDe7Pjtr0mHPc9jrYd2cPs17zQohnP7w8v8duOe68857dF7WPn1isdi5\nI575n7v75+/+eEjfPg/PLuV9EA07X/zewiebp+67jIMtAAAAVB+epAcAAICodf7ttYnGB+PH\nH6Tb9OFzE41+9/Y4+IQrn7yi+68nlowna9dr3Kxx/eRYLPExHi98d8aDp/YcfUg/1S/M2/ib\n3h2HTXqpOJ6MxVKaNM4o7pC745M//OLUvqOf23/s7o3TT+5yUcl4Mq1u4+80/HJs/p41Yy/t\ncu+SLw6lIqpSedZDsYLc9YNP7vXovKwzrrz5sWdmvPPPec9MmfSDNhkhhHg8Pv2eAdc+O/+q\nU059eHZm464D7pv8xPzFi2c+/+SQPsckhn/x3tM/vOa1/ae1BQAAgGpESA8AAABRS28+5Kwj\n0kIIOzf85dnNu0vtU7B3zYilm0MIKbXa33V8g4PMVpi36axfTk20a9Y/5e7HX9mUk7tz28as\njVvzcne+8+rUn5/WJHF346K77l29o+x1PvurM/74ZtG5Aq2+P3jG/Hc3Zu/asHHH1s8+mjnt\nnuPr1Uzcenls/wGPLd9n7P19rly5Oz+EkJTSYNi4v3zyxc7d2zeu27wjN2fDc5NubZSSHEKI\nF+69q9/ostdD1SrPeii2ZOw5T3+SN2raO28+Nu7KAX26nNxjwBXXv/bRyoEtitLrhwf0/Ouy\nLade9+CqhU/fdM2g7ieddPaFl/5xxoonrzw20SFz2pW7v3rGvC0AAABUL0J6AAAAqAJjBrdP\nNO5+YEWpHdbPHbY9vzCE0Lz3hDpJsYNMtendmz5JZIE1jnhi8WsjB5/TqE5K4lasRq0uP77k\n8TnvX9i4duLKyzP2PWP8QLZnThj45w8T7QvufmnVnMf7dD+xUZ0aIYT6zdufPXDEu2uXXNu1\ncaLDi9efu7rEQ8x5O98b/W7RK8Cvff6d8Tdf3rZBUQEpdZr89Pr/fmvKhYmP2Wsm/zMnr4wl\nUQHieTvLYNfu/H3GlWc9lLR3056Tfjt7zMAuJS8mpTS5789fnjNf/+gh8yb9+qvLPtb//imx\nWCyEULB33fQtX/lpiy0AAABUL0J6AAAAqAInDL8x0fjwwbtK7fA/I4rOuv/pPacffKqs6UsT\njcYnTuzfLmP/DkkpTX5zZvNEO3tldhkrfOGq8fF4PITQ9LRxL428YP//QUjJ6DBxzj9a1KwR\nQsjfs+qqF1YX39qzZUZ+PB5CiMVS/nBe6/0nb9d/Qps2bdq0adO6det3cnLLWBLll7P+kfQy\naH7Cvu+tL896KCmWXOupkafsf71B54HF7Z88eVuN/X6XkppxWrf0oug986u/IbAFAACA6kVI\nDwAAAFWg9pFX/aRRrRDCrs3PTdmwa5+7BXs/Hfn+FyGElNodx3Y42Fn3IYRjr3pqyZIlS5Ys\nmfPiTw/UJ17w7zdxl+2N3PGC7UMXfJ5oD532qwN1S6nT5YmL2yXaS++aW3w9llR0DHg8nve3\n1aVkosmpLVb926+a1ilTTVSdcq6Hkuo0uezotBr7X09ObV7cHvHdhqWObVmzaOA+D+nbAgAA\nQPUipAcAAICq8dtri96x/Yf7lu1za/3cYTvyC0MILc6eUOvr/u1ep3WHzp07d+7c+dgWtUvt\nsGfzkjGzPjuk2nKyJiYO269Rq91NbeoepOcJQzv/e8jTxRdrN7m0fo2iuq/u2vv+Z9/KLVsy\nyjdTOddDSSm1Tyh9ZKzo2flYUuqxtUpJ8UMIB3rrgy0AAABUL6X/mwcAAACobB2HjAxjLw4h\nfDzld+H3M0veenn4vERjwF3fO/SJC7/IWr0yMzMzM/PjD5cve3/Jq6/OT0T+Zbftg/mJRlJy\nxu9GjTpIz73b1iYauTmLii8mpRz592Gn9hr3Vghhz9aFQwd0H1m/1Q/OPPOMnj169Oh+Suej\nUw8Ut1LJ0ptdn52171H2X6uc6+ErYl/7n1HJh1jd/mwBAADgG01IDwAAAFWjVuOLLjvyqic2\n7NyzZdakrJwhzdMT1wv2rLpl2RchhJQ6ncYcc0QZZ9u1btGjjz09c+ast9/9cPue/K8fcFDZ\nHxcd0J2b896dd75XliGFeVt2FMTrJhdlj2fcO/fphjcMG/3Iur0FIYS929bM+tujs/72aAgh\nJb157/Mv6Nu330U//XH9/d89zjdP+ddDBGwBAACgunDcPQAAAFSZm4Z2TDQml0gB180pOuu+\n1bnjy/i47Yu3X96yzfduHD1+1tv/Ko4nk5JrtTrmu2f1HTjmj088NqDdIRWWtyPvkPon5BSU\nPNE7+aLhD2Z+tnjiHUN7n3x0cuzLvyQvJ2vmU5OvufisVu17/enVlYfxRUSsItZD5bIFAACA\nasST9AAAAFBljvnF6DDyghDCJ0/dUjh5buKn9C+NKDpn+5I7u5VlkrdvP+vCO15NtGvWP3rg\nFRd373Zy164ndmjfqlZSUS749gd3HVJh6e2KHuuv1/p321bffkhjS0pr1PmG0RNuGD1h1+cr\nZr/+5vx58+fNm7dw+dp4PB5CyF4995o+x29YsHbUqU0O+yuIQEWth0piCwAAANWLkLWjvIoA\nAAh4SURBVB4AAACqTFqD869plv7wupy92+eNW71jZJu6BXtW3bpsSwghNf2kUUfX/9oZ8nd9\n0O/u1xPtDpdMXPCXIQ0q4vTsesc1TzT2bp9X/tlCCLWbduh7aYe+l14TQsj+7F/P//XB4bf/\naVNeQbww9/cX3zNq9YQK+RYqSYWvhwpkCwAAANWO4+4BAACgKg0ZeUKi8fjod0II6/53aHZB\nYQih1QX3pZQhaty05LaNuQUhhJTaHRc9ccB4cvuKHYdUVb2jhiUae7a98dq2vQfpmbNqyYIF\nCxYsWLDoX9uKL3748rNTp06dOnXqy29t2n9IRovjr7j1oQV//lHiY/bah/KjOxadw1HO9VCp\nbAEAAKDaEdIDAABAVTrqsjuTYrEQwqd/vykvHv4+ckHi+mVju5ZleE7mF4lGzXpn1EkqPZ4s\nzNs0/J8bD6mqlPSuVzUrOu77hlvmHrBfPPeK07r36NGjR48ew0p8xYqxQwYNGjRo0KArBj95\noKFNe/6guF1wSMURuXKuh0plCwAAANWOkB4AAACqUs36P/pNy4wQQm724tHLFt/6ry0hhNSM\nU25tW68swzPaH5Fo7Nk6a1Ne4f4d4oW7Jgw67f2deYmPhaX1KdWoyWcnGiv+dN7tMz4ptc8r\nY89/fsOuEEJySqOJP2tbfL3dRa0SjW0rb31p/a5Sx75x/7REI63BOTUr4HhyKld51kOlsgUA\nAIBqR0gPAAAAVeyXo09MNCYPOC+noDCE0ObCcWV8rXaD40akxGIhhPw9q7tdOHbF5hLncsdz\n5z4z8ZwubW7+W2bxtc+mP/rB+p1lmbn1eU9cd0KDEEK8MHfM+R1+NvS+/1uWubPoVO541nuz\nbx3c/bzfvZrofPotL3VJTyke237wLalJsRBCvHDPJSeeOemp17blFyejhVlL37j9ml79Jryf\n+HzSsNvL9KdSpcqzHiqVLQAAAFQ7sXjcO68AAACoAHnTmlV1CRUj5ZJ1FT5nTtb4jBY3Jdrr\ncwuapnzlR/O52W/Xqdc9v8S/0O9etX1km7r7TFI7OWl3YTyEcN3KrQ8cVb/4+rODjh0w9aNE\nOyk5/bjvHndkk3rbs1avzFy1bXd+CCGlzjF3TjxlxNVFx27HYsktjjp/zccvJj4uvbdb55GL\nQgitzp796czeJb9x79Z5Zx3fZ06JRDOWlNasZcMdGz7P3vPl+dzt+92x7IXRqV/9VcHLv+rS\n909LSgxMPaJRo7pp8U2fb9yZ++XYhp2vWLX48YzkCniOuOONr5R/km+C5RPPrfA5p3c58vwl\nG0MI6c2uz86adHiTlGc9rJvTp3mvWSGEI45+aMvH1+4/eW722zXrnh5CiCXVKiwo/dHz/o3r\nPLd5VwjhzjU7bmuZUXzdFgAAAKoXT9IDAABAFUvNOG1k2y8j+Zp1uw/fL6E/iJ/9ZeFvB3ZP\njsVCCIUFOcveXfj6P2YvWvZxIp48tvfgWSveGX7llFFntkj0j8cLNm3OLsvMNY/oOfvDt685\np1PxlXjhnqxPs4rjyaTk9EtHTdk/ngwhXPDw/0267uxEVSGEeGHulo3rVq9ZXxxPxmJJPS8b\ntXThY+LJ6qI866FS2QIAAED1UqOqCwAAAADCz8d0vXPQG4l22wF3H9Jv6mPJ9cZOm//r/3pp\nzIS/Lvvo45UrV24vrN2sWctuvfpc2P+y/j/smOh2x8yPuj3y+xfnvheOaHVcp15lnDwlo9Pk\nV5bePPe5x599+R9vvL3m8w1bdyW1Prp9+/btjzux+2VXD+7crPYBykq9/oGZ/X/x+mNPPLPw\ng0/Wrl27du3a7Hh66zat27Ruc9Rx3fpf+vNenY48lD+Uqnf466Ey2QIAAED14rh7AAAAKobj\n7qlajrv/zxeP5+fn5+fnJ6fVSvHwOQAAUG15kh4AAACA6iAWq5GSUiMlparrAAAAKBfvpAcA\nAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEA\nAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAA\nAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAA\nAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIrF4PF7VNQAAAAAAAADAt4In6QEAAAAAAAAg\nIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACI\niJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAi\nIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICI\nCOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAi\nQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI6QEAAAAAAAAgIkJ6AAAAAAAAAIiI\nkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJCegAAAAAAAACIiJAeAAAAAAAAACIi\npAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQHgAAAAAAAAAiIqQHAAAAAAAAgIgI\n6QEAAAAAAAAgIkJ6AAAAAAAAAIiIkB4AAAAAAAAAIiKkBwAAAAAAAICICOkBAAAAAAAAICJC\negAAAAAAAACIiJAeAAAAAAAAACIipAcAAAAAAACAiAjpAQAAAAAAACAiQnoAAAAAAAAAiIiQ\nHgAAAAAAAAAi8v8OopXWt7iSiQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig11_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=sex)) + theme_minimal() +\n", " geom_bar(position=\"dodge\",stat=\"identity\",width=0.7)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/96)) +\n", " scale_fill_manual(values = fig11_colors)+\n", " ggtitle(\"Figure 11c: Participation time per day in childcare as secondary activity, by gender, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 11d: Participation time per day in household and family care as secondary activity, by gender, (hh mm; 2008 to 2015)\n", "\n", "The data is in a different dataset then in the previous figures, this the data is in the *tus_00educ2*. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^house\",sex=\"male\",isced97=\"^all\")`. This time again we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility, because we need the time values. " ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>isced97</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Austria </td><td>2010</td><td>0:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Belgium </td><td>2010</td><td>0:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>0:53</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Estonia </td><td>2010</td><td>1:06</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Greece </td><td>2010</td><td>0:51</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Spain </td><td>2010</td><td>0:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Finland </td><td>2010</td><td>0:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>France </td><td>2010</td><td>1:17</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Hungary </td><td>2010</td><td>1:06</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Italy </td><td>2010</td><td>0:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Luxembourg </td><td>2010</td><td>0:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Netherlands </td><td>2010</td><td>0:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Norway </td><td>2010</td><td>0:49</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Poland </td><td>2010</td><td>0:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Romania </td><td>2010</td><td>0:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Serbia </td><td>2010</td><td>0:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>United Kingdom </td><td>2010</td><td>0:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Austria </td><td>2010</td><td>0:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Belgium </td><td>2010</td><td>0:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>0:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Estonia </td><td>2010</td><td>0:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Greece </td><td>2010</td><td>0:34</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Spain </td><td>2010</td><td>0:47</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Finland </td><td>2010</td><td>0:23</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>France </td><td>2010</td><td>1:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Hungary </td><td>2010</td><td>0:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Italy </td><td>2010</td><td>0:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Luxembourg </td><td>2010</td><td>0:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Netherlands </td><td>2010</td><td>0:32</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Norway </td><td>2010</td><td>0:26</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Poland </td><td>2010</td><td>0:33</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Romania </td><td>2010</td><td>0:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Serbia </td><td>2010</td><td>0:37</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>Turkey </td><td>2010</td><td>0:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>All ISCED 1997 levels</td><td>Household and family care, except childcare</td><td>United Kingdom </td><td>2010</td><td>0:35</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 7\n", "\\begin{tabular}{lllllll}\n", " unit & sex & isced97 & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Austria & 2010 & 0:47\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Belgium & 2010 & 0:55\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Germany (until 1990 former territory of the FRG) & 2010 & 0:53\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Estonia & 2010 & 1:06\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Greece & 2010 & 0:51\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Spain & 2010 & 0:48\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Finland & 2010 & 0:44\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & France & 2010 & 1:17\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Hungary & 2010 & 1:06\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Italy & 2010 & 0:39\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Luxembourg & 2010 & 0:48\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Netherlands & 2010 & 0:39\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Norway & 2010 & 0:49\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Poland & 2010 & 0:37\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Romania & 2010 & 0:46\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Serbia & 2010 & 0:47\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Females & All ISCED 1997 levels & Household and family care, except childcare & United Kingdom & 2010 & 0:50\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Austria & 2010 & 0:33\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Belgium & 2010 & 0:47\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Germany (until 1990 former territory of the FRG) & 2010 & 0:37\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Estonia & 2010 & 0:46\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Greece & 2010 & 0:34\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Spain & 2010 & 0:47\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Finland & 2010 & 0:23\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & France & 2010 & 1:08\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Hungary & 2010 & 0:45\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Italy & 2010 & 0:27\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Luxembourg & 2010 & 0:45\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Netherlands & 2010 & 0:32\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Norway & 2010 & 0:26\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Poland & 2010 & 0:33\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Romania & 2010 & 0:44\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Serbia & 2010 & 0:37\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & Turkey & 2010 & 0:00\\\\\n", "\t Participation time (hh:mm) & Males & All ISCED 1997 levels & Household and family care, except childcare & United Kingdom & 2010 & 0:35\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 7\n", "\n", "| unit <chr> | sex <chr> | isced97 <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Austria | 2010 | 0:47 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Belgium | 2010 | 0:55 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Germany (until 1990 former territory of the FRG) | 2010 | 0:53 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Estonia | 2010 | 1:06 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Greece | 2010 | 0:51 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Spain | 2010 | 0:48 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Finland | 2010 | 0:44 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | France | 2010 | 1:17 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Hungary | 2010 | 1:06 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Italy | 2010 | 0:39 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Luxembourg | 2010 | 0:48 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Netherlands | 2010 | 0:39 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Norway | 2010 | 0:49 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Poland | 2010 | 0:37 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Romania | 2010 | 0:46 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Serbia | 2010 | 0:47 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Females | All ISCED 1997 levels | Household and family care, except childcare | United Kingdom | 2010 | 0:50 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Austria | 2010 | 0:33 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Belgium | 2010 | 0:47 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Germany (until 1990 former territory of the FRG) | 2010 | 0:37 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Estonia | 2010 | 0:46 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Greece | 2010 | 0:34 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Spain | 2010 | 0:47 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Finland | 2010 | 0:23 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | France | 2010 | 1:08 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Hungary | 2010 | 0:45 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Italy | 2010 | 0:27 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Luxembourg | 2010 | 0:45 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Netherlands | 2010 | 0:32 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Norway | 2010 | 0:26 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Poland | 2010 | 0:33 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Romania | 2010 | 0:44 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Serbia | 2010 | 0:37 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | Turkey | 2010 | 0:00 |\n", "| Participation time (hh:mm) | Males | All ISCED 1997 levels | Household and family care, except childcare | United Kingdom | 2010 | 0:35 |\n", "\n" ], "text/plain": [ " unit sex isced97 \n", "1 Participation time (hh:mm) Females All ISCED 1997 levels\n", "2 Participation time (hh:mm) Females All ISCED 1997 levels\n", "3 Participation time (hh:mm) Females All ISCED 1997 levels\n", "4 Participation time (hh:mm) Females All ISCED 1997 levels\n", "5 Participation time (hh:mm) Females All ISCED 1997 levels\n", "6 Participation time (hh:mm) Females All ISCED 1997 levels\n", "7 Participation time (hh:mm) Females All ISCED 1997 levels\n", "8 Participation time (hh:mm) Females All ISCED 1997 levels\n", "9 Participation time (hh:mm) Females All ISCED 1997 levels\n", "10 Participation time (hh:mm) Females All ISCED 1997 levels\n", "11 Participation time (hh:mm) Females All ISCED 1997 levels\n", "12 Participation time (hh:mm) Females All ISCED 1997 levels\n", "13 Participation time (hh:mm) Females All ISCED 1997 levels\n", "14 Participation time (hh:mm) Females All ISCED 1997 levels\n", "15 Participation time (hh:mm) Females All ISCED 1997 levels\n", "16 Participation time (hh:mm) Females All ISCED 1997 levels\n", "17 Participation time (hh:mm) Females All ISCED 1997 levels\n", "18 Participation time (hh:mm) Females All ISCED 1997 levels\n", "19 Participation time (hh:mm) Males All ISCED 1997 levels\n", "20 Participation time (hh:mm) Males All ISCED 1997 levels\n", "21 Participation time (hh:mm) Males All ISCED 1997 levels\n", "22 Participation time (hh:mm) Males All ISCED 1997 levels\n", "23 Participation time (hh:mm) Males All ISCED 1997 levels\n", "24 Participation time (hh:mm) Males All ISCED 1997 levels\n", "25 Participation time (hh:mm) Males All ISCED 1997 levels\n", "26 Participation time (hh:mm) Males All ISCED 1997 levels\n", "27 Participation time (hh:mm) Males All ISCED 1997 levels\n", "28 Participation time (hh:mm) Males All ISCED 1997 levels\n", "29 Participation time (hh:mm) Males All ISCED 1997 levels\n", "30 Participation time (hh:mm) Males All ISCED 1997 levels\n", "31 Participation time (hh:mm) Males All ISCED 1997 levels\n", "32 Participation time (hh:mm) Males All ISCED 1997 levels\n", "33 Participation time (hh:mm) Males All ISCED 1997 levels\n", "34 Participation time (hh:mm) Males All ISCED 1997 levels\n", "35 Participation time (hh:mm) Males All ISCED 1997 levels\n", "36 Participation time (hh:mm) Males All ISCED 1997 levels\n", " acl00 \n", "1 Household and family care, except childcare\n", "2 Household and family care, except childcare\n", "3 Household and family care, except childcare\n", "4 Household and family care, except childcare\n", "5 Household and family care, except childcare\n", "6 Household and family care, except childcare\n", "7 Household and family care, except childcare\n", "8 Household and family care, except childcare\n", "9 Household and family care, except childcare\n", "10 Household and family care, except childcare\n", "11 Household and family care, except childcare\n", "12 Household and family care, except childcare\n", "13 Household and family care, except childcare\n", "14 Household and family care, except childcare\n", "15 Household and family care, except childcare\n", "16 Household and family care, except childcare\n", "17 Household and family care, except childcare\n", "18 Household and family care, except childcare\n", "19 Household and family care, except childcare\n", "20 Household and family care, except childcare\n", "21 Household and family care, except childcare\n", "22 Household and family care, except childcare\n", "23 Household and family care, except childcare\n", "24 Household and family care, except childcare\n", "25 Household and family care, except childcare\n", "26 Household and family care, except childcare\n", "27 Household and family care, except childcare\n", "28 Household and family care, except childcare\n", "29 Household and family care, except childcare\n", "30 Household and family care, except childcare\n", "31 Household and family care, except childcare\n", "32 Household and family care, except childcare\n", "33 Household and family care, except childcare\n", "34 Household and family care, except childcare\n", "35 Household and family care, except childcare\n", "36 Household and family care, except childcare\n", " geo time values\n", "1 Austria 2010 0:47 \n", "2 Belgium 2010 0:55 \n", "3 Germany (until 1990 former territory of the FRG) 2010 0:53 \n", "4 Estonia 2010 1:06 \n", "5 Greece 2010 0:51 \n", "6 Spain 2010 0:48 \n", "7 Finland 2010 0:44 \n", "8 France 2010 1:17 \n", "9 Hungary 2010 1:06 \n", "10 Italy 2010 0:39 \n", "11 Luxembourg 2010 0:48 \n", "12 Netherlands 2010 0:39 \n", "13 Norway 2010 0:49 \n", "14 Poland 2010 0:37 \n", "15 Romania 2010 0:46 \n", "16 Serbia 2010 0:47 \n", "17 Turkey 2010 0:00 \n", "18 United Kingdom 2010 0:50 \n", "19 Austria 2010 0:33 \n", "20 Belgium 2010 0:47 \n", "21 Germany (until 1990 former territory of the FRG) 2010 0:37 \n", "22 Estonia 2010 0:46 \n", "23 Greece 2010 0:34 \n", "24 Spain 2010 0:47 \n", "25 Finland 2010 0:23 \n", "26 France 2010 1:08 \n", "27 Hungary 2010 0:45 \n", "28 Italy 2010 0:27 \n", "29 Luxembourg 2010 0:45 \n", "30 Netherlands 2010 0:32 \n", "31 Norway 2010 0:26 \n", "32 Poland 2010 0:33 \n", "33 Romania 2010 0:44 \n", "34 Serbia 2010 0:37 \n", "35 Turkey 2010 0:00 \n", "36 United Kingdom 2010 0:35 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00educ2\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"^house\",sex=\"male\",isced97=\"^all\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with activities, countries and values. We drop the values for Turkey as it is 0. Before plotting the values we need to cut the brackets from the name of Germany. " ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 34 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>sex</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Females</td><td>Austria </td><td>00:47:00</td></tr>\n", "\t<tr><td>Females</td><td>Belgium </td><td>00:55:00</td></tr>\n", "\t<tr><td>Females</td><td>Germany </td><td>00:53:00</td></tr>\n", "\t<tr><td>Females</td><td>Estonia </td><td>01:06:00</td></tr>\n", "\t<tr><td>Females</td><td>Greece </td><td>00:51:00</td></tr>\n", "\t<tr><td>Females</td><td>Spain </td><td>00:48:00</td></tr>\n", "\t<tr><td>Females</td><td>Finland </td><td>00:44:00</td></tr>\n", "\t<tr><td>Females</td><td>France </td><td>01:17:00</td></tr>\n", "\t<tr><td>Females</td><td>Hungary </td><td>01:06:00</td></tr>\n", "\t<tr><td>Females</td><td>Italy </td><td>00:39:00</td></tr>\n", "\t<tr><td>Females</td><td>Luxembourg </td><td>00:48:00</td></tr>\n", "\t<tr><td>Females</td><td>Netherlands </td><td>00:39:00</td></tr>\n", "\t<tr><td>Females</td><td>Norway </td><td>00:49:00</td></tr>\n", "\t<tr><td>Females</td><td>Poland </td><td>00:37:00</td></tr>\n", "\t<tr><td>Females</td><td>Romania </td><td>00:46:00</td></tr>\n", "\t<tr><td>Females</td><td>Serbia </td><td>00:47:00</td></tr>\n", "\t<tr><td>Females</td><td>United Kingdom</td><td>00:50:00</td></tr>\n", "\t<tr><td>Males </td><td>Austria </td><td>00:33:00</td></tr>\n", "\t<tr><td>Males </td><td>Belgium </td><td>00:47:00</td></tr>\n", "\t<tr><td>Males </td><td>Germany </td><td>00:37:00</td></tr>\n", "\t<tr><td>Males </td><td>Estonia </td><td>00:46:00</td></tr>\n", "\t<tr><td>Males </td><td>Greece </td><td>00:34:00</td></tr>\n", "\t<tr><td>Males </td><td>Spain </td><td>00:47:00</td></tr>\n", "\t<tr><td>Males </td><td>Finland </td><td>00:23:00</td></tr>\n", "\t<tr><td>Males </td><td>France </td><td>01:08:00</td></tr>\n", "\t<tr><td>Males </td><td>Hungary </td><td>00:45:00</td></tr>\n", "\t<tr><td>Males </td><td>Italy </td><td>00:27:00</td></tr>\n", "\t<tr><td>Males </td><td>Luxembourg </td><td>00:45:00</td></tr>\n", "\t<tr><td>Males </td><td>Netherlands </td><td>00:32:00</td></tr>\n", "\t<tr><td>Males </td><td>Norway </td><td>00:26:00</td></tr>\n", "\t<tr><td>Males </td><td>Poland </td><td>00:33:00</td></tr>\n", "\t<tr><td>Males </td><td>Romania </td><td>00:44:00</td></tr>\n", "\t<tr><td>Males </td><td>Serbia </td><td>00:37:00</td></tr>\n", "\t<tr><td>Males </td><td>United Kingdom</td><td>00:35:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 34 × 3\n", "\\begin{tabular}{lll}\n", " sex & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Females & Austria & 00:47:00\\\\\n", "\t Females & Belgium & 00:55:00\\\\\n", "\t Females & Germany & 00:53:00\\\\\n", "\t Females & Estonia & 01:06:00\\\\\n", "\t Females & Greece & 00:51:00\\\\\n", "\t Females & Spain & 00:48:00\\\\\n", "\t Females & Finland & 00:44:00\\\\\n", "\t Females & France & 01:17:00\\\\\n", "\t Females & Hungary & 01:06:00\\\\\n", "\t Females & Italy & 00:39:00\\\\\n", "\t Females & Luxembourg & 00:48:00\\\\\n", "\t Females & Netherlands & 00:39:00\\\\\n", "\t Females & Norway & 00:49:00\\\\\n", "\t Females & Poland & 00:37:00\\\\\n", "\t Females & Romania & 00:46:00\\\\\n", "\t Females & Serbia & 00:47:00\\\\\n", "\t Females & United Kingdom & 00:50:00\\\\\n", "\t Males & Austria & 00:33:00\\\\\n", "\t Males & Belgium & 00:47:00\\\\\n", "\t Males & Germany & 00:37:00\\\\\n", "\t Males & Estonia & 00:46:00\\\\\n", "\t Males & Greece & 00:34:00\\\\\n", "\t Males & Spain & 00:47:00\\\\\n", "\t Males & Finland & 00:23:00\\\\\n", "\t Males & France & 01:08:00\\\\\n", "\t Males & Hungary & 00:45:00\\\\\n", "\t Males & Italy & 00:27:00\\\\\n", "\t Males & Luxembourg & 00:45:00\\\\\n", "\t Males & Netherlands & 00:32:00\\\\\n", "\t Males & Norway & 00:26:00\\\\\n", "\t Males & Poland & 00:33:00\\\\\n", "\t Males & Romania & 00:44:00\\\\\n", "\t Males & Serbia & 00:37:00\\\\\n", "\t Males & United Kingdom & 00:35:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 34 × 3\n", "\n", "| sex <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Females | Austria | 00:47:00 |\n", "| Females | Belgium | 00:55:00 |\n", "| Females | Germany | 00:53:00 |\n", "| Females | Estonia | 01:06:00 |\n", "| Females | Greece | 00:51:00 |\n", "| Females | Spain | 00:48:00 |\n", "| Females | Finland | 00:44:00 |\n", "| Females | France | 01:17:00 |\n", "| Females | Hungary | 01:06:00 |\n", "| Females | Italy | 00:39:00 |\n", "| Females | Luxembourg | 00:48:00 |\n", "| Females | Netherlands | 00:39:00 |\n", "| Females | Norway | 00:49:00 |\n", "| Females | Poland | 00:37:00 |\n", "| Females | Romania | 00:46:00 |\n", "| Females | Serbia | 00:47:00 |\n", "| Females | United Kingdom | 00:50:00 |\n", "| Males | Austria | 00:33:00 |\n", "| Males | Belgium | 00:47:00 |\n", "| Males | Germany | 00:37:00 |\n", "| Males | Estonia | 00:46:00 |\n", "| Males | Greece | 00:34:00 |\n", "| Males | Spain | 00:47:00 |\n", "| Males | Finland | 00:23:00 |\n", "| Males | France | 01:08:00 |\n", "| Males | Hungary | 00:45:00 |\n", "| Males | Italy | 00:27:00 |\n", "| Males | Luxembourg | 00:45:00 |\n", "| Males | Netherlands | 00:32:00 |\n", "| Males | Norway | 00:26:00 |\n", "| Males | Poland | 00:33:00 |\n", "| Males | Romania | 00:44:00 |\n", "| Males | Serbia | 00:37:00 |\n", "| Males | United Kingdom | 00:35:00 |\n", "\n" ], "text/plain": [ " sex geo values \n", "1 Females Austria 00:47:00\n", "2 Females Belgium 00:55:00\n", "3 Females Germany 00:53:00\n", "4 Females Estonia 01:06:00\n", "5 Females Greece 00:51:00\n", "6 Females Spain 00:48:00\n", "7 Females Finland 00:44:00\n", "8 Females France 01:17:00\n", "9 Females Hungary 01:06:00\n", "10 Females Italy 00:39:00\n", "11 Females Luxembourg 00:48:00\n", "12 Females Netherlands 00:39:00\n", "13 Females Norway 00:49:00\n", "14 Females Poland 00:37:00\n", "15 Females Romania 00:46:00\n", "16 Females Serbia 00:47:00\n", "17 Females United Kingdom 00:50:00\n", "18 Males Austria 00:33:00\n", "19 Males Belgium 00:47:00\n", "20 Males Germany 00:37:00\n", "21 Males Estonia 00:46:00\n", "22 Males Greece 00:34:00\n", "23 Males Spain 00:47:00\n", "24 Males Finland 00:23:00\n", "25 Males France 01:08:00\n", "26 Males Hungary 00:45:00\n", "27 Males Italy 00:27:00\n", "28 Males Luxembourg 00:45:00\n", "29 Males Netherlands 00:32:00\n", "30 Males Norway 00:26:00\n", "31 Males Poland 00:33:00\n", "32 Males Romania 00:44:00\n", "33 Males Serbia 00:37:00\n", "34 Males United Kingdom 00:35:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))][geo!=\"Turkey\"]\n", "dt<-dt[,c(\"sex\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(sex=c(\"Males\",\"Males\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Females\",sex)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "sex_ord<-sort(unique(dt$sex),decreasing=TRUE)\n", "dt$sex<-factor(dt$sex,levels=sex_ord)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2DUZB/A8bteN6WlpQVatiBDQZAhW4aDraCgKLhFxL1eHLgHAqLgAhRERRnK\nULYLBJWNCLL3aEsH0En3yPtH4Zobvctd8+SS+v381Vwznjx58oz8MsySJJkAAAAAAAAAAAAA\nAIB4fr5OAAAAAAAAAAAAAAAA/xUE6QEAAAAAAAAAAAAA0AhBegAAAAAAAAAAAAAANEKQHgAA\nAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0\nQpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAAAAAAANAIQXoAAAAAAAAA\nAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEAAAAAAAAAAAAA0AhBegAA\nAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQ\nCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAACg\nJqnkwpo5E0YMvLZBXExoUGBU7fqt23d5Nz7b1+kCAAAAAF0gSA8BpAKz2n7PLPD1XgEVyk9f\nLS+unT/cp30a4oL8PTqn/Pz8wiJqNrisWbtret33+EtffLf6dE6x9skGABiOHlo9KFeQ+bv8\neHWc9K+vUwRvGPc4Zse/I095/w1nVFw51VHlicvDvJT1N19Zf8AD479b/Wd80rm8wqL01IS9\nO7fszS1SaxNVidAzBQB0goYb0AXb2M1lQ3/3dYKga1Tdyp3dPsnfz89sNofFDs8rtfmXixE9\nQXoY0o9XxthFHP/JYahvJAUZa/38/MqO3cunsgy08ipDkqScrLT4E0f+2b7hq0/efXDEwCY1\n69/x1MRd56v4DTG+qj2otazICu+Qb4B+cD4CgGulhcm3tRu04lCGrxOiC7QaAABUhMt0AKqG\nkvwTt9z4WokkmUymp5dPD1EceydID8AHTv34piRJRlx5FVZckLzwwxc7NWozbc0RX6cFAAAA\ngFHt/3jYyjM5vk4FAAAAAGjhi5F9/sooMJlMdbpNfqtjjPIFCdID8IGPXv3HoCuv8govHHpm\nYMunlxz3dUI8k37kAfndryMPpfk6Rf85HALvkG8AAKDq+WDKLvlkwz73L9uw7VTSudTkMx81\nqeGrVAEAAG1UmWsdVWZHAAh19u83xiw9aTKZzGbLlEWPeLSsv5AUAbZufvjxxsGWyqyhflCl\nFoeuZB776NP4bCOu3EB6j360TbUAFzMU5manpaUe+Gfb7mMpdv+SpJKP7ujYZt/xey+PEJlG\nAAAAAFWNVJI1NyXXOhkc2Xfnz7Oj/M0+TBIAAAAACFGa9+jg98r+rNPto5Gx1TxamiA9tPDQ\nhMkDIoN9nQrog1Qwrt+rhly5odz6xqRHlbUHGcc2fzpt0hvTlxeVln8joLQo7ZlBb917aIqw\nBAIAAACogopzD5bIvj7WePhrROgBAAAAVEkHZ926KCnHZDKZzebX5t3l6eIE6WFIkW06dA7P\nkP9SzY9hvwFIxWkT7+jy+dFMw628CqvRpMv4j3+857bPO17/SHJhifX39MPvv7z7xbfb1PRh\n2kTwVe1BrWVFVniHfAP0g/MRAFwoLbX5Gn21yzx7lKTqodUAAKAiXKYDYGilxeduf3Zt2d+R\nzV8b06C6p2sgSA9D6jl/zWZfpwEeyUs9vGzJd1PfnrTtTI77ufW08v+Iej0e2rZsX4P+H8l/\n/PqZ9W+vvdVXSRLEV7UHtZYVWeEd8g3QD85HAIBytBoAAFSEy3QADO3I13f+m1NY9vegmaO9\nWANBegBCFOXs+XHJpn379u3bt3/fvn2HT6XI33mo55X/Z9Xv9+G4JnMnHyu/jTR1+2STqaoF\n6QEAAAAAAAAAALwmlVx44Nk/yv4ODGs7vUesFyshSA9AiIyj42+7Z4URV/5f9uCrV02+5w/r\nZGH2tkN5xc1DaCkAAAAAAAAAAABMJpMpcd3ojZkFZX83vedT776aQegF/yEFacd+XLjg++Xr\njsfHJyQk5PpFNGzYsFHjljff9cDdQ3qE+Pk6fcoc/X3u50v/PHDgQFKOX6OWdyyeM9bFzEWZ\np39esXzZsjV7TyQkJSWnpGYEhkfUrBnXqn3HLt37DL/zlqaRQZql3IhSDmxavHjxinVbExLP\nnElKKvSPqFu3br36jXsPvu2OEUOaRFW13Kvds6fJ9If8ly1ZhW6D9BcS/v3++2Vbdu76d8/e\nhNT07OzsnEIprHp49fDwBk2uaN26VbfrBg3t3yXMUtlvO3lU+NUlleZs/3XFkiVLN+85fubM\nmaSkc5ZqETVrRjVscXW3bt1vGDKiV8tooQlI3rNu9hdf/7nryKlTp+ITz1eLqRMbG9ewRbub\nbxk2dNC1UYHe1F+aHTh1SIX7N/+2cuXKXzfuSkpOTk5OySoOqF27du3atZq07jJw4MD+fbvH\nBFsqv52sE9tmfz7r120HExIS4hMSiyxhUTWjm7e5pnuP60Y9MLJpjcDKb8InSgvP/bxw7tyF\nqw6dTkhMTMwsDoyNjatbv0nfYaPuGTWkQfUAx0VO7Vr3/fffr1i3PSklJTUltcg/rGbN6BZX\nd+513U2jR99Sy/NSp7cmScRpZdJqNwXVh0JbPYPVOYLppqqRjm77ecH8+b9s2ZecnJKamlrs\nHxZVM/ry1h26d+8z8oG7mtf0/KBrVV2rKydx98LFq7Zs2bJ998Gz59PSMzLNQWE1atSo3bDF\nNddc0/2Gm0b0be/vVdnUpE6ogsdRP51wzeou1asF/eShR7TJcD30i6oGEaMkfY4uddKPFZc5\n4tpBnydA3LETcpXAsMPeqjGO8OFFJ08JzROfXwGDT5Ue/GvFN9/O/3P3sTOJiWeS00OjYurE\nxtZr2mbQzUNuvunG+uFOukn6JzoqpE0/wVhVt8ng18cU+uKxn61/j3nxKi/XIgGqK823K2ar\n0vLU3UJ+xjr5+jtM3O16/uK8+MkP9w2p+E6W0DqtJq84XDZzXtoq+b/WZeQ7rvDEj33k83xy\n5oLClA+MCrEuVeOyD5Ts3c4LhRd/T9/+8MA28n+F1Xmwog0VZh6aMKZ/iMvemJ+lWp97xu84\nk6Mw8R5J3TXYxablxp/M1NXKy6TtX3P3tY1drNnsF3LD2CnJhSWSQ5npNG2v03XmpM6zW0nj\nIeu8S56j2ECbcZryMmmTwpSv7VI4OT7LxfzpB36+//qrLGb3nf7A8IaPTJyfUVzqOgEeFf6s\n02+73a7dehw34bb2kEqL1sx4oWmEq46O2ex3dd+7Vx3MUL5rTrcrP4jPHr+4tswjq4d2aeJi\n6/7BcY9NWZxb4mY/5NQ6cBodAql008L3Oter5noTlsCY+16dnVzgPiPsErDkXG7Z7wUZu0b3\na+ciW/z8I4c9PyvLXTF2S1y+FeefcLprm+aMqxta4d02lsBary6wWVv++d1PDmrhImGB4U0m\nLN2nfJd92CRpdlqpvpuqdAaUE9HqWanYWLx/ZU35/B8mZCvfx4V96sqXvfevJOXL2lFyPvq8\nqnGb2qxjvw6/upaLw+HnHz702RnpRcpTonJ1LbS/bZV1bO3owZ0D3d3wHt6o49sLtilMQBmh\ndYKBjqNdq9dvfaLr+YVWRx4R3dEVVy34Jg8dLgJU5M6D552uQPUM10+/SEmr4fpM0UnzZ0Ol\nUZKcb0eXFa3E55dWyqieOVbi2kGfJ0DgsRNQ/o077DXKOMJptritFnRY/YqrDSSpsmVb9Wsd\n5/c9J/9XQLXWBZ7szZFvbEYT4Y2elf/XxXY93REdlhM3bLtt1qvT5/5ZdP3lkS72188//M4X\nZ6YUVlgF6TArVI8K2RE66DNo1S06W0RfH1Mu7/xK60EJrtHbde67GNETpIcAOgvSp277vF1M\niMkds9ky7JUFJXoN0uenb7uxrn1nvaJ6Z+/C8Y1Cld7XZgmIeWmu+mOtopz9f1Vgim2D7UUc\nXejKJUla9dYdrluR8kNQ/9rFxzKrTJA+8+RrdimcXvF6ts4crTCXrCKvHLFP1hF35FHh1yBC\nnH9+yy3taivcip9/5BOfblS4awqD9NvmvlQ7UNFt8lFXDtx4TlFNq+KB0+AQFOUefqB7A+VJ\nDY5uM2fHWdc54LTLe27n/A5RwUo2Ed3uweSKByRKaBmkLy258O49ndxuyGw2D31zQ9lKUjZ+\n3LSa+xbEbDaPWXBEyf76tknS5rQSsZuV7wwoJ6jVK6NuY3Fyhc1delc+tlnhPpYUJsmPu39I\nU88uV9nyOkivZVXjOrW7v3q+lrIToWab+5IUXAgWUV1rEKTf9PHYGv4ePDfRfuQHCoPdousE\nAx1Hj4L0Qqsjj2jQ0RVULfgsDysXpBeR4frpF1U+SK+T5q98j9QbJVn5fHTpdA16uLQiKHPK\niGsHFTJQQ2wlovwbd9hroHGE02xxWy3orfoVVxtIapRt9a91lOa3DbO5Y2D84XTl2TWuYbh8\n2UFLT9jsr3pBer2VE/ecBek3TH04zKKoQg6t3X7xIed3IOktK0REheRED/qMWHVrkC1Cr495\nZPvz5Y/Ot3jwL9czuxrRa5Ja/MfoKUh/bufsukEevAmqzxvrdRikL8o9fEOck9tpndY7m6aP\n9ldwQ6WdAa+vVrgLlbe6c6x8014/7C5o5YtfvNGjrAuq0WnD8R/kvxg3SH90fm+7FG7Ldt6V\nPzjnQT/Pi5nJZKpx+f35FfeyPCr8oiPEuSkbetYO9WjvzGa/MV85P/peBOmPLHjYo62H1ur5\n51k3la26B070IchP33FTk/CK1lkRS2Dt939LcJEJjl3ezGPzagZ40FLU7/ex63x2Tcsg/Rf3\nXKFwW2a/wGm7zp3bOTtWWbzHZDL5BURtzCxwvbM+b5I0OK0E7WYlOwPKiWv1JAGNRVHeEfmF\ng+DIGxXuZvyvw+Xrb3L7z95lVxnvgvQaVzUuUnty+Utun1ezSUn/GW42Iaa6Fh2k3/HRXWbP\ny2f7R5e4TYAGdYKBjqPyIL3Q6sgj2nR0RVQLvszDSgTpBWW4fvpFlQ/S66T5K6PuKKmMHkaX\njov7vB8rNHMkke2gQsZqiMuIKP/GHfYaaxzhNFvcVgu6qn7F1QaSSmVbxLWOdXc3k/+3yW2/\nKMyu/PTf5NllCayTYHvHqopBel2VE0UcgvRHFz3hUenyD2k6d7eT2y51lRWCokJWGgz6DFd1\na5Mt4q6PeeqOWuXV5mP7nb8tzMrFiJ5v0qMqy09b277rw4kFJfIfQ+tcMXzEbZ1aXRZXu3pG\nUuKR3RsXzl96LL2g7L+/v3796y2n+yKxrsy8/fpfz+QomfPE4jHdHp0tSZL8x5jmnYbePLhD\ny0a1o6tlJCcd3rXxhx9+3G+7wtWvD7gj5t8Fj7RWM90GdPCLYcPe/cXuRz//8O6DhvXu2LJe\n3drFGcknju7+ccGSw+cvdmgKMrYO6GH/ALpBff36LvlkQOgVHcKc3PhWmL3t+rFfldoWs+Ca\nLUbeOfCyBg3q1asXGVCYmJiYmJjw54pvNxw4J58t48icW74Yt+rB5gqT5KLwWwLrdu7cuezv\nkvzj23elWv8V3bZD0+DyBq6aJ5ewL66wMHFgq34bzubJfwyKajJ0xIjubZrGxdY4f/LI/gMH\n/l6//I8D560zSFLp5/d37Hn92TscbuXzVOaRbzvfPUv+S7W6V/Xv2b5B/djS7NT4U4fX/fJX\nelGpfIbc1A39rro9Mf7HiApuh1T9wAk9BFJpzkPt+iw/kSX/0Wz2b3Xt4FsG9Lysfr3IoOIz\niYl7Nv+6+IffUvKLrfOUFKb8r1/rJvEJN9dRNMIsyT99e5fR54suthR1ruwx4rZbOrZsXLtm\nYPzhQwf27/vp+3n/ptiUhPifHn9n/53jr4jydKfKCM03uU3v3fz+1/vL/g6u2XLE3Xfe0PWq\nOjUsJw7u3/Pvtvlf/XC2qLx9lEoLn+81+MP87UmFF3+s3viau0eO6NGueUxwwYF9e3ftWDd3\n0YbC0vLyU1qU9uAL2/dP71ZRAvTWJIk4rUwa7qbyzoByQls9EY2Ff3DTCVdGPfHvxZnz03+Z\nfibnEWdjMzuLnvldPvnwpC5KdkFF2lc1FTm/a+bVL39Wdi77War1u+OB228bcnWzRrUjLKeO\nHDqw/+/Zkyb8eSLbJiVrxk45esdzTSOcrlCz6lpdOUlLej09z+7Mrdmy96hB3Ro1atSgfkxO\nSsLJkye3rvl21c4k+Tw7p98269m00Y0rvJiuTZ1Q9Y6jfjrhmnV0Va8WfJ2HZmv3RirJ2rp9\nv/UfYQ2uahVXXjzkXR2Thhnu835RZein+RMxStLJ6NKOTvqx4jJHXDuokBEbYhHl37jDXsON\nIyriulrQT/UrNE/UKtsirnV0eGuMae6z1sn41eOKpH8CFCx95Mvx8uyqd+OMuoFK39vh6Y7o\np5x4J/vUN9fc+bU1u/xDY/vdeluv9pfXjIrIT0s6dWL/ykWL9tqeJsV5Rx/o2qt96s4rbD8h\npJ+sEB0V0qafYKyq22Tw62Oeyk9fvSA1t+xvP0voS01qeLS4fETPk/QQQDdP0r/R2eYtPX7+\n4Q+8+73jzYOlxZmzxt0ScKl/4Gex6eD6/En6RV+Msv5t9gvqcfOoNz6Y9dtfW/cdOp6alitf\nsCBjY2PbSx5BNdpO+W6T4+2SpSU5P0x7xu6xAD//yCWJ3jx+7SndPkmfn77e7g47s9l87b1v\nHc20f5q8tCRn+fsVvpbNoE/SJ64dZ5e8uGvnO53z55FNbUpOQNRL039Mc/7WudK9axf0tu2N\nVa/7aEVp8Lrwpx2+X75gRZ+6dNxERbXHovtsRi9mv6DbXvzC2ad9Sv765mW7zI9p96p325Wv\nJzigvHSFxHT4ZMW2QtuNF11IXDjxoUiHQthp/J8V7bu4AycJOAR/vtrVbtdqd7ht9X4nbzYr\nzjs9acwNdl9mimwxtqJvldkloH/3iy1FQOjlb33jJPdKizNnPnm9XWIa9FvuIjeUUzff7J4Y\ns7r2kamJ+cV2M+cmbxzcqLrT+c1m/7vemZ/tUOBTtn/V3PaNVaHRt1SUYJ00SaJPK3G76XV9\nqJzoVk9QnXP6p6Hy2Vo9vdXtnhZe2BUsuwwUUvNmt4u45sWT9D6sauxSYlWj2dA1zirV0pIL\n308aafdkW5Phv1a0fnHVtdD+9oyONsOE4Mj2ny/f5uzNgKU7lk9vGmJzmtfp8k1Fm9asTjDQ\ncVTyJL3o6sgjmnV01a0WdJWHHn3bSFyG66dfVPkn6SV9NH+SgFGSpMvRpU76sZLIzBHUDipn\nuIZYElP+DTrsNeg4wjFblFQLOql+hV7PEVG21bvWUdrP9kXfrx51/qJ1O/fUtsmBCcfsl1LY\nXVG4IzopJ0pV/AKknvdPiHfoJkmlRX9983oThw8ANbr5M8d16yQrxEWFJA0Hfcaqug19fcwL\nB2d1tyYjvP4Lbud3MaInSA8B9BGkP716tE2lYwl58+d4F+vc88X9Jmd8HqSvfuktMZff9NzG\nY1kuVj6xSx35gmH1B21x+ZLetL3ft7H9tE9Mu4kKd6QydBuk/7i7zbJms/m+GdtdzH92x8xo\nZy+cqaityk/7qbOtW8bt8Gz3KlbJIH3Sli/rBdm/W+Xl3eeczFpaZHc16qk1p12vPD99g3zl\nZrP5hGOHr2xObwu/upHO9APvyYe+ZrPfI98ecLH1lI3vV7P9btMXyTlebNfp6zQjW951LKeo\nok1nHPrxCttesp8lzHmVK/LASWofgrxzy+0+j1T3uhccr43KbfnoDrusGzzX+ZdBnfaKAqpd\nueSwq+rii5FN5PMHR97gYmblNAjSX/vKiorWmZO8yuknx8bOq/ACfcIvT8rnNJvNZyr4yLFO\nmiSxp5XI3fS6PlRObKsnrM4pzj8ZLhsrhkQNdLunh77sJU9JhwmuwkVKeBGkL+OTqsZpSsIb\nDzuUW+FZIEnSsodtXgpdrdZIp7MJra7F9beL847LS5FfQNSPLqMpyRtfkqfEP6jBhRLn+6hZ\nnWCg46gkSC+6E+4BDTu6ZdSqFnSUhx4F6UVmuH76RaoE6fXQ/IkYJelzdKmTfqzA3pSwdlAh\nIzbEIsq/cYe9Bh1HSF5VC3qofoXmiZC6XdVrHTteaCOfoemda13vuyRJubZPSYXUvNnxvFI3\nSK+LcqJcBUH6vq+7+ppAXuqfXWvafxn93UP2NxXpISuERoUkzQd9xqi6DX59zAuzWkVbk9Ti\nwY1u53cxoidIDwEcKvpbH3v6Oa98sjnF6RYUtKOld9WxuWOuzwd/u034kvuamRz4PEhfpu0j\ns53fH3lJ1qlP5fP7BzdY46yTZOfcPx/LhwRms/mzhGyF++I1fQbpc88utrsl+ZrxFT5sZHVi\n2SOOB0utz2F6xOsgffbpv6c8d1uww5umolo+73T+nJRv5LNFNB6nZCurb24kX+q7s87va/Ou\n8EtqRzonto2Rz9Pq8TVud/DXx21eyHPVOPtejndB+qDwLruz7e9ntJO+/9vqtgOkZvf+5jib\n0AMnqX0IVo+w6V+GRPc7W+g8Eiy3+F6bOjwkqr/TZZwWs/F/JLleeeGFnfKBqJ9/DbfpUUJ0\nkD7qymddnz7zetW1W6TpqHkuk1w6NDpEPv/adCetpH6aJKGnldDd9Lo+VEh0qye0zplxtU0t\nPSvJTZP3ZP3yhyPNZovrD8sp4XWQ3idVjWNK/CxhC+LdnFxFOftDZH2DgNDmTmcTWl2L62+n\nHR4rX3P9vu6/bjssxuahiq9TnJzsGtcJRjmObkOPuuqEa9/RVaVa0FUeSp4E6YVmuH76RaoE\n6SUdNH8iRkk6HF3qpx8rLnMEtYPKGbEhFlH+DTrsNfQ4wrtqwefVr9A8EVG2JVWvdeSe/U4+\nQ2D1Dm4HxdvHXSVfpMtUJyVN3SC9pINy4gFnQfq6101zu9yFhJUxtlHb2p1mOs7m66wQGxXS\n/kKQIapuQ18f80rplbLHewb+7qTrbsfFiJ4gPQSo+JUpnuo60/m9e27b0azTH8hnCIke6Ppe\n1DJFOf/Wd3iYWA9B+rC6wzLdpX/FkMbyRXp9qPTyyk8P2LzU6IpHNytc0Gv6DNJvfdamixlS\ns1+6spr+Fdueh0kfQfrrxj7p+g6YJx97+O47b+3Ysr5dC13GEhAz/7jzO9HO7b1dPmfXz1zd\nYGt1cLbN1xlnV9BOe1f4JVV7//kZ6+V5EhDa/HhehY+PWxVkbQ2UXQQPi33Y0+1KzqKJ9688\n5XbTkiRteL69fKmA0BY5Dg8WCD1wkqqHoLQ4w+79SP/7y01/tExR7gG7FyFOOO6kBnAsZnW6\nfqpk/a82tPnwoeNrsrwgOkj/7oE01wk4ufI6+fx+/uGbswpcL7Lu1svki8xLdVIq9NMkCT2t\nhO6m1/WhQqJbPaF1TsLa4fLZnF4Vsso7v1z+xu/IZm8oSYlr3gXpfVXVOKakyYjVShZ8rl75\ntRI//0jHGURX1+L62/G/3ihfc5cZ+92uc1W3OPkiTzm8MFPSvE4wynF0G3rUVSdc446uWtWC\nrvJQ8iRILzTD9dMvUitI79vmT9AoSYejS/30Y8VljqB2UDnDNcQiyr9xh72GHkd4Vy34fPQh\nLk8E1e2S2tc6HowNk8/z1nHXVVBp38jyB77NfsE7nN2mr3qQ3uflxAMOsRs//0inNxo62vFu\nD5sFLWGHHd7s5dusEB0V0njQZ5Sq29DXx7yQd365PD1zFNyR4GJEb1/ygKph74RZ8skO70wJ\nsziJRNrxD209a2CDfkuPC0uXlwbOnRbuOv1S4dM/x1un/EOaLnqkpcKV9576lf+crsWSVDZ5\navF00yedvU2pgX34zTH5ZO+Z02v4uy8zJpPpmYVj32r+pphEeW/tjA/Xerus2Rzw+Hdb72js\n/KOMASGDXn+9vHRddUtDJev0D/OyuXFf+NV2cvHLJZdOB5PJ1OTOWY2Dnbzbx05g9WueqVt9\nYnxW2WTu2fnF0gxlJahCoTG3zx7YQMmc3d9cVmdqw+TCkrLJotyD757OfquRTf9M4wNXGZnH\n3zqRX2ydDIkeOrlbHRfzW/mHtJg9okmvLw9Zf5k37cCLH3Zyu+ADs0YoWX+XBmGmU1lK5tSJ\noIgeL7SIdD1PRPOmJlN5bVHj8jc7Vw90Mb/JZIrpGm1a4rKh1HGTpOZppfluqlsfim71hNY5\ndbp/EOm/JL24tGzyyJx3TJN+qGjmAx+9Jslq9Z4f3KtkEyLop6p54f1rlczWOTLYlJDtYgbt\nq2u1WEJsWvas/e4zfMBfiZLrOTSvE6rMcdRVJ1zj/pJa1YKu8tAjWma4z/pF6vFt8ydolKS7\n0aWe+rHiMkdIO+gJwzXEIsq/cYe9hh5HOFIyyPL56ENcnujnCphrT7/Uevbjm62T37yx6+Wv\nelY0c/bpqT+nlwehY66e0j7M/mPqIvi8nFRG7LXT+9QIUjJnu+d+vOyN2scvVV+lJRde33N+\n3jU2H4D3bVaIjQpp3k8wRtVt8OtjXsg8Msf6t9kcMMz23VoKlY/ohdxIgP84HTxJP0Z2h53Z\nbNnq7v53q7SDL9qlwedP0lsCYlLcvfAqO2GqfJH61y9VmJ4yT9WVvVXGL1jhjVRe0+GT9EU5\n++R37VkCYk5X/O1tB8U9Imz6MXp4kt5r/kH1J690/kmzytj1ts0zqQpvalZS+MuoeIvuTNkX\nZUwm03unlX7bZs/EscNkTtkWIS+epO/0/h6Fm5YkaekAm7hj+7d2KV/WBYUHTlL1EGx/3ua9\nZO3f8WBfsk7bVIbV6//PbQL8gxsrPNvX2d4Wqv8n6Wt3+MFtAjJPjHe7WjuHvuouX8TxiTFd\nNUniTivRu+l1faiEbls95XXObNurAF9VPOegmuVdL0tgrQRnXwv2lBdP0qt4fYcAACAASURB\nVPuwqrFLSWBYO4ULyvtUTp/AFl1di+tvpx99VL7mgGpX/u7ya3lKaFwnGOg4un4+WLfVkUe8\n6+iqVS3oMA89+Ca9VxRmuE76RZJ6T9JLPm3+BI2SvCNudKmrfqx3lGSOiHbQI4ZriEWUf4MO\ne3XY6JQRfdHJt6MP7yjJE3F1u7rXOgoy//KXFbyg8C4usnX9fTYP5o7Z6vW3dD3bEclA5cQh\ndvPE7rPKl/75jqbyZZvd/afjPD7MCqFRIY0HfUapug19fcw78go2sHpHJYu4GNHbfG4TqBqk\nkuy5qTnWyeDIfte4u//dKqLJc0EOH+f2rdBao2oFuDlVUzcvk09e8XxHjzYxuH1N699Saf4P\n5/M8WrwKyEn5UpLdtVe9/rP1g5THvC3jO9USkSqNmf0Cet45bv3h/f8b2NT93J4ozt3/zNT9\nXiyopPCrbpbsxkM//8gn6jl/o4CjVs9PXyTTwIMi5NwTdzVxP9Ml3d+2uT54eok3GW7H6wNX\nSbtXJMonB4xsXNGcjqrXe0T+fazclG9L3S0S3vBpde5w0Z8are3fSeWEbYsXebWbJ8xMJpPZ\n5KaV1HOTpOJppfFuqlsf6rPV86jO6f+eTfh22scHnc6WHT9tpSxvY3t+XDfQN8Mf/VQ14Y0f\nV2tVGlfXKqpe9xn5KzqLcvYNatP/s9X/VmadGtcJVeY46rM68ojX/SW1qoUqkIce8TrDfdUv\nUpcPmz/9jJKEji713I9VQmHmiGgHPWK4hlhE+TfosFefjY4GF50MN/pQmCf6qdtdCwzvNr5J\nhHWyIGvz5IoeGpYKn1lUfpdeYFjbqR0UdABUYrhyUsZsDnihRZTy+du/3Es+mfrnJsd5fJUV\noqNCWg/6DFJ1G/r6mHfO/Jps/TsooruLOSsiH9ETpIcWVqV5eUvsxjEtvNhc3vnleSWyeqfR\nKOXL+vlHyR++0YOI5je6nSdhaYJ8smfziIrmdL6JK23m//tCoUeLVwEZ+/+RT9Yd1MujxZve\nd5n7mXQpuHpUw6Ytut5w66vvz95yKHX9vEndGoS5X0whqfDUwZ3fTBnXudk167y6PKGk8Kur\nJP/E39nl5T805vZAH920Ywms5dGrcsIve1A+mZv0k/fbrvSBq6RfzpZv1Gy2PFinmgcLmwNH\n1Qq1TpUUJm3PdlOh1WjV2vUMxhUQ4fEr3QIjlI5eXNBtk6TuaaXxbqpbH+qr1fOqzqnT5QP5\npcnDn09yOtuOl2fIJ++cdr3Xyawk/VQ1Na5U7fBpXF2ryBJ82ad96sp/yTmz/uGBbRp37v/C\nxJkb9yVUtKALGtcJVeY46qs68kil+0tqVQsGzkOPVDrDfdUvUpevmj9djJI0GV3qth/rhoeZ\nI6Id9IixGmJB5d+gw159NToaXnQyzOjDkzzRRd2u2D0Tbd6A/fXbzm/rST/02k7Z+dv03k9D\nNHwYzzDlxFZIzcGxnoTGwxvavA0lP/N3x3l8lRWio0JaD/oMUnUb+vqYdzafKP+iXFCEN1/u\nk4/o+SY9qqDC7M3yyZodFH2qx6pvZNDSc7mqpqhSqjd1X68l/pshn3ypQfhLldji8eQ8U5Ma\nlViB8aTvTJdPxvWP82jx6GvamkwbVE1RZX1y5sKjsZ6M8SotN+3M4cNHjhw5fOTIkbI/9u87\nlFFQUpl1Kin86iqwrT1Con3W6ofUvMWj0VFQRO/agZaUS9/PLszeoXBBEQeuknbIRon+IU09\nvSO7d+2QqYnlXaW/LxR1cnnbbFgT9W5Mgclk0nGTpO5ppfFuqlsf+rDVU6vO8Quo816HmHs3\nX7x5Offs9/PPfnVnjO2IujT/qSUnrVNB4V3eaenB8wHq0k9VU+0y1boHGlfX6hr13dyPGvbb\nYzv+P7n1p0lbf5r04thqtZt279Hj2h49elzbo3ObpgEKqg6N64QqcxyN0gkX0V9Sq1owSh56\nRIcdVJ3wVfOn/SjJV6NL3fZj5VTJHNXbQU8ZqCEWVP4NOuytAuMIOeWDLH2OPiqZJ/q5AqZE\n/QEfhllaXii5+NqIE4teKp31h2NgeePzC61/m83m11+7WqsEmkx6LSduBUV6dugDqrVtFOx/\n8tJn6Ysu7Hacx1dZIToqpHE/wShVt6Gvj3nnyKXybzKZgmK86ezJR/QE6VEFFWaekk+GNgit\naE6nYsM8vsVeqOA6wW7nOZ1b7HYe5fKT7b9MU+UVpBbIJ8PreVZmLMEGeQBFbYXpJ39euXLl\nypVr1v4Vfz7H/QIeUlL41VWcd0Q+GRLrs5iKf0gzTxdpEuxvjSaWFJx2MafoA1dJZwrLh5SW\nIM/60yaTqVq9UNPO8snTBW6qx8Ao3T0jZXS6bZLUPa003k1160ONWz1BdU7fKTeaus21Tr4/\n/dCdr7WVz3B+34v/5pRf/bz8/qn+vns0RD9VTUC4ah1djatrdQVH9f5j27zB19/71xknZTIn\n5ejPi4/+vPhLk8kUHN108C3Dhg8fPqhPu5CKnzDRuE6oMsdRz51w0f0ltaoFPeehR3TeQdUP\nnzR/2oyS9DC61G0/VvXMUb0d9HkCxB07QeXfoMPeqjGOsPJokKWT0YeKeaKfK2BK+Ic0m9w2\n+pG/U8smCzL/nBaf/Ux9m/fzSyVZT/5S/kRveMNnh3vyLj1V6KSceCSwel33M9lqIgvSlxad\nczqPT7JCdFRI436CUapuQ18f806S7HaooOggL9YgH9HzuntUQUUZRfLJoBjPzpOQ2r4/z+Us\noe5vp80sVvM7nsUXNL1IqgcltveZ1gnx7BZmS6DHvRmjKy1MmfXy3bG1m9x09+Off/+z64GB\nn6V661be3FOmpPCrSyq2ubUwONZnH7/wD67v6SINg8uzq7TkQrHkZB5tDlylSMX5peVJtwTW\n9nQFIXE2Ry3DaUZAJN02SeqeVhrvprr1oWatntA6p1bH9+sElqf84PT37GZY+/Ri+eTLL12l\nfOVwz/jVdY2Ww34/uufDcSPlb2J0lH/u6KLPJ952Q/vImCaj35iTUuj83Ndt1eeGr4+jPjvh\nBugvyegzDz1irAz3OZ80f6JHSfoZXeqwMheXOeq2g14wSkMspPz7uv31WtUYR5Snx5NBls9H\nH6rniX6ugCl08/s270Kf/c4euxnO7nzuuOzx1munPmrSnM/LiReCankcCpHvo8nkvP71SVaI\njgrpsJ+ghOiq29DXx7xzRtYbCarpTZBejifpUQX5BdncfVJwtqCiOZ2yq80NIdRic6dZu06d\nK/MZoeY6e5eABuyeRkrJ9+x9WaXFzu8ZrKpyk3/r1eam7amuvm4VFl2vRYsWLVu2vLrb9cNu\n6V+4+oamI3T3Ik0nzDbNanGOz25YKS3x+INqmbJhudkc4Hj/qTEOnNk/2M9svWBRUpji6QoK\n02xemajl58dQRrdNkrqnlW53UwltWj3RdY5fQPT7nWqP/PPMxc2lzl98bvawS49KlBalPPln\nknXm6vUevT1G71edDKZKVNf+IY2fmPTt2Jcn/vzjD0uXLl2++s/zhRWeDgVpx2e//sCCWXO/\n+fXHoS3tL3oatU7w9XHUYSfcGP0lGR3moUcMl+E+55vmT+QoSVdlQG+VuejMUbEd9I4xGmIR\n5d/X7a/XqsY4wju+HX0IyRPdXAFTqE7XD2MDv0u6VEuc+O4VaeZaedH/5ZmV1r8tgXVmDGig\nbQJNJl+XE+8UnPX4vS8Jsrd3mC0RTp8D9klWiI4K6a2foJDoqtug2VIZNvtX6dvkCNKjCgqM\ntHnXTW6CZx+YP5fuWfXtkcwSNW8ssoq1uX/N9OmvGzpr+FHPKqBaQ5vvemYm5JqurKl88eL8\nE2qnSL8KM3cMuOqm7WftBwa1Grfq1Llz506dOrZr07Jly3rRNq/JOqZhCivDElhLPpkb71nt\noaISzwvVMdn9wn4B0Xb/NdCBiw20nLi0LyUFp1zP7CjnlM3t5LUCeGmQ1nTbJKl7Wul2N5XQ\noNXTps65fko/U6c51smJsw4Pe7FN2d9JfzyRLLvI2/GdJz1cN9zTbXXtaX87oHq9QXc9Puiu\nx0sLz21YtWLNL+s2bNiw42BCqeRktJ2TuOH2Dt1+Ormjj+1VJOPWCb49jnrrhBuov2Sltzz0\niBEzXA+0b/7EjZL0VgZ0VZlrljmqtIOVofOGWFD5120/yrUqM47wjq9GH4LyRD9XwBTyC4j+\nqGfc8F/jyybzM9Z9nHjhiboX97q08MzTW1OtM9frO6NuoG8uBxlulFqYleB+JltHZZdKXHxY\nUPusEB0V0lU/QTnRVbdBs6UyYoP8Dl+qkgvOVzaYSJAeVVBgeHuT6XvrZNrfiR4tvi270P1M\n3jqWJ+S2xIZNwkyH06yTe3OKqnxVqK7IdlHyyaSfkkx9PXgrcvaRf9VOkX59MvCmDbKBgdkv\noNstD7/wwvMD2/v+VZmVFxDWTj6Zf/aAyTTAJykpvLDdo/lLChPk1Uug7Y6YDHXg2lcPtF6t\nKM47mlhYUjfQgxcZ/Z1iM3BtH0ZlqDXdNknqnla63U0lNGj1tKlzYtq9Vzfo68RLr247+OE0\n04tflv296Jl11tn8LGGfDGus4nZRRrfVtdf9bb/A6N5D7+s99D6TyZR39vgfG/74/befli9f\neSDJ5jp4Ue7+kTd/lrTpKfmPxq0TfHsc9dYJN1B/yUpveegRI2a4Hmjf/IkbJemtDOiqMtc+\ncyrTDvo8AeKOnaDyr9t+lGtVZhzhHV+NPgTliX6ugCnX+/1bTFd9aJ38fOLeJz7uXPb3mT+e\nPFdUHvQdM6231om7xHCj1Py0VSbTw8rnL8zekij/IHd4t4rm1D4rREeFdNVPUE501W3QbKmM\nOFmTXfkgPY+XoQoKiRoon8w6Md+DhaXC+WdF3TlYkn8sqeI3d1VG7I2x8snf4119lwiOqje6\nTj6ZsNyzd2Qdn3NE1eToV37a8uc2JVsnzZaQiauP/rnoIz0MllQRVL1zuH95y5iTPMfFzELl\np605XeBBdXEh8dNi2XMGQZE2RdpYB+7GmuWfgJKkki+SParQSmbJruD4Wap1Da/i/UId0m2T\npO5ppdvdVEJ0q6dZnWP2j5rarfxA5KR8tfx8vslkKsr596W9562/x7R/v2UotyarT5/VtVr9\n7ZCYy/oOu3fizIX7z2TtWjWjz+UR8v+mbHlmi+0VHOPWCb49jrrqhBurv2Slqzz0iEEzXA+0\nb/4EjZJ0WAb0U5n7PHM8bQd9ngBxx05Q+ddnP8qtKjOO8I5PRh/i8kQ/V8CUq3nlu62qlb8K\n+9i816x/L312vfXvkOghL15mU2loyXCj1Py0NSc9uVSSeWy6fDKixY0Vzal9VoiOCumnn+AR\n0VW3QbOlMi4PKS+xBWczKrk2gvSogvxDr+waXv5Znfy0lXtylT5Pk5P8ZVqRkDfSm0ymrNMf\nCVpz3ID28slt0w4K2lBVFRpzZ7DsC17ZCe8nFnpQDD5bd0ZAovQofsUUSRayan7fj+P6KvrC\nk9uP+uiFX8iImFDrVFHu/tXpSr/MlHFkXH2Z21efrkxCJKlk6tFM5fMf+Wy1fDL2hs7ySWMd\nuLYDbYaaqxZ5kJM5yV/Gy76MFRI9PMyi0cf5YKXbJknd00q3u6mE6FZPyzqn13s2g/C35xwx\nmUwnlzyVV1qegMEf3ezpaqGEPqtrAf1tvzYDHv5595ZuNeQX06X3D9sMxY1bJ/j2OOqqE26s\n/pKVrvLQIwbNcJ3QuvkTM0rSYRnQT2Wup8xR1A6K5OuGWEz512c/yq2qNI7wjvajD4F5opsr\nYB7wC5l2c0PrVH76LzPO5JhMpuLcAy/uK3+Qt+34tzVKTwWMNUqVpJI3d55VPv+WN/6UTzZ9\n8HIXM2ucFaKjQvrpJ3hEdNVt0GypjC6Nyz+sUJCxtZJrI0iPqmlchxjr31Jp0dM/nlS44N5J\nn3ixuaxiRfXav+/94sXKlQhv9FKopfx0Tlj9ZqGTT3dVoDT/jr7X975k8MiFIlKoc36BdR6N\nK/90U0lhyljF/cucpM/np+r9u01qiV8cL5+8+cVOChc8sszj7xv5yl39bIbKr312WOGCR7/4\nOUEm5vLwSqZk8VO/KZ1VKnxixiH5Dz3G2nSRjXXgmo7uI5/cO/ld5cv+8/oH8sm46+9TJ03w\nhJ6bJBVPKz3vpluiWz0t65zoNpMbBZffwnxg6icmk2nGy39bfwkIbT61Qy0nS6LSNK6u1epv\nF+cd7CFzw+BXlKzWP6TFZ6+1kf+Sst/mph/j1gm+bXZ11Qk3Vn/JSld56BGDZrhOaN/8iRgl\n6bAM6KcyF5c5gtpB5YzYEIso/wYd9lalcYR3tK9+heaJfq6AKddxwmj55PQp+0wm0+mVT+WW\nXBwsmP1CPn6wwq+ka8Nwo9RVTyxTOGdpYfLDa2zK5OM3xLmYX/usEBoV0k8/wSOiq26DZktl\nxN5Yx/p3QdafLuZUgiA9qqbO79i8aGXLc68UKKgaSotSH5+jtDsit8v2W1DOV16c9tC8Y16s\nXAlLYN3XW0RaJ/Mz1o5dr/SRiKSNTy78Ze36S860aCEmjXp3zxM2O752zJNZJYrak4Wj3xGT\nIj3KPWPTKl8RFlDRnHKlRSmPGedlA61eGCaf3Dv52UxlJWHSF0etf5v9Ah6rF+ZiZiWSNjzy\nV6aiVwgeX3jP5qzy799YAmu/0dLma0PGOnA1mrxaP6i8B5+bOv+NvxXd0lucd/jBb47Kfxny\nUiuVEwcF9NwkqXha6Xk3lRDa6mlZ55gt4R9cW/5qtQtJn/9wdPG0hGzrL42GfsIbNQTRuLpW\nq79tCai1eePGvy5Zu/r9s8peoxXe0ubio2R7yhi3TvB5s6ufTrix+kty+slDjxg3w/VA++ZP\nxChJh2VAP5W5uMwR1A4qZ8SGWET593n767UqM47wjvbVr9A80c8VMOXCGz53fWT5ezWOff2m\nyWT66qVt1l9irp7SXlkuiWO4UerZnU/OS7igZM4tbw85I3s3frXad91SM8TF/NpnhdCokH76\nCZ4SWnUbN1u8Vue68jeaFF3Yle1tp6gMQXpUTbU6Tm0t+0RNTtLCYV8ccLvU1rcGbVf2Va2g\nmGD55PZ33L/U4s9X+h3OE/jypTs/HCCfnH/r7Yfz3L/ORSrJemT4t9ZJs9n82EM+vtnQV5o9\nNClI9uKX3NTlfd9c73aps9vfHb063u1sVUa1RtXkk3svKCrSy5+68XSB0pcL+VyNy1/vI3uN\nXn76bwMnbXe7VMqm5xefKx841WjyaouQyn5OqaTo/Ihbp7udrTBr54AHl8h/qXfDJ3UCbNp3\nYx04s3/UpwPry395b9AYJQPFJWMGHcot37WgiB7v2EZVoRndNkkqnlYmHe+mEkJbPY3rnB6T\nbV6ON/qOMfIXQj76rtJnTeAp0dW1oP622T9K/t1WqTTviQ2KriAcXXhKPlm3TaTdDAatE3ze\n7OqnE26s/pKcfvLQI8bNcJ3QuPkTMUrSZxnQSWUuLnPEtYMKGbEhFlH+fd7+eq0qjSO8o3H1\nKzRP9HMFzBN+Ex4of8tdXtqqTw//NOF4+as1hk4f5mwprRlrlCqVFjzR/9V8d3dMZZ9YPOBd\nmxLSZcLLbleucVaIjgrppJ/gKdHjBYNmi9cimt5v/VuSir8/5/6JAhcI0qNqMlvCv3nVpopf\nPbbL1I0pLhaJX/Na73d2KFx/aGxL+eSplXf9nOrqVEz8bXL/95Su3Dt1+8waEF1+51p++l89\n+z0XL7u1zQmpeOa91/yYUt6vqnnV2/fVDnWxRBUWFNH78742A6Stb13/0Be7XCySfeKHrj1f\nlXcsXCvI+LWHrdte2ul9in0hpnuMfHKFgr772vfvvnXGHrsf05XdKe+1vIJKrN/sP3OqzXvn\nNr3S69WVJ10sUZSzb+RNH8t/6TFxlPcJkElc+/T145e7mKE498CIq3vLh+hmc8A7swfYzab9\ngavUITCZrp/5nrzvmJP8Q9shb7seLWycOmLEN0fkv/R8b1aAju5LVqSS+aYfem6S1DqtTPre\nTbeEtnoa1zk1W09sKrsqdH5H+ccIQ6OHPVm/urOFoA6h1bW4/vajV9pcy14+6pE0d+/Sz0v9\n5Z4Fx62TZrPfU00j7OYxbp3g22ZXg064Qkbp6DrSTx56xLgZrhNaN38CRkn6LAM6qcyFZo6g\ndlA54zXEYq4SGHTYW5XGEd7RuPoVmydaXQFT91rHlf97Xj75yu0jSy6VrsCwtlM7xDhbSB3K\nd0StcuJ4MXnIw1uUJ1i5tL1TO9z/uYvdy01e1+fqUZmy6joovPO8u5q6XbPGp4zoqJBO+gme\nEj1e0Ge2iDt9gqMGXSm7F+SHA+mVWp0EqK40366YrUrLU3cL+Rnr5OvvMHG3k1QUZw2ra/Oy\nHUtAzBMfriwqdZy1cOl7D9fwv3jPip/FZqn1GfmOKy8pSLTOXyas7oANCRecJbZ0/ZcvW2cO\nrl1+f2KNyz7weu+cOrdzir/Zpm8e0WzQt78fcTpzyp5fnxxg046a/YJnHs5QuK3KWN05Vr7d\n8SczdbLywuztlwXb3PtpNvtdN/rdE9mFDvOW/PHlyw1lM5tlOd9p2l6n689JnWey1XjIOm93\n1F5soEW+5k/OOC2NlXXhjM0TqH6W6tN+j69o5tzkneOGdzA503nKTqeLeF340w7fL1+wy/T9\nFc2paBOlBQ+3tLkr389S/f635l0ocaw+pPSDqwc1s7k6EBpzk+OcSrZrdxCtrhnx0v70Asf5\n9678uKND3+Wqx1c7zin6wEmqHwJJWvd8R7ut1+9xz7pjWY5zFuedmvjQ9X62tV+N5qNzSyqV\nACdJGtJYvmC+k+LgMXXzrTj/hHyeVk9tdZuAzJPj5YsM3JLsdpHDX/WQLzIvNcfpbDppksSd\nVqJ30+uCqpy4Vk+DOsfO8kENnR/oKXs8yBHFlBwd/VQ1XqdE3qfy84+sMMHCqmtx/e3kTQ/Z\npblurye2n6ig01iav/GH6e2ibB7rj77qbafz6rBO8PlxzDr9tnzOfusTHecR3QlXSLcdXSXV\ngk7ysIzCPRWd4frpFynJECVniiONmz/VR0m6Pen00I8Vmjni2kGFjNgQi7hKIBl22GvccYRa\ngywtq1/hYysxZVv1a0R27qlt84IBqysf26hkceXbVb4jjlQpJ44Xk2M7V3iBQimH2I3VZTeM\n3ZGU6zB/0R9fv9rY4X0Jz65T1F2RNO+xCI0KSboc9OlhvKDDbBFy+lwyq1W0dbUtHnRf87jY\nC4L0EEAfQXpJkjIOfRbsZ39DaXiDtg+Oe2f21/NXrlm1cO4XE54f3bZB+XetLIG1P/ptrnz+\nbU7qKUmSpK/61bdbsyUoduSzExb8sGbXwZPp55IO/vv3wunv3NylfLbqjW75/evu1knVg/SS\nJK156mqTg8uvufGp16Z8Pe/7VT+tXvj1rMlvvXJX37Z2PXuTydTzzb+Ub6gydBuklyTpyLcj\nHTPQEhDZZ9hD70ye9tW8hV/M+PDV/42+uoHNt9AiLr/zy/a1rJNVOEgvSSX3N7TZd7PZ0q7/\nfV8u+2XH7v2JqemJx/atW7105rSJD916bail/MJ6YES0fCk/S9iwp96cM2/BtwttmmqvC3/6\n0UflCwZFdJ+/fveZs+mpiSd379icXVzeN1G4iZzkFTEB9rG9kDotRz7+6mdzvlm+es3Crz57\n55VxowZ3DrCtZMx+AW9sTnFcoadBev/gujY55h/Rc+gDZYVwzsyPXn/h0S7NbLK0TGjtgWeL\nnI7RxR44EYegtDjrdofbac1+wR1uHDFh2vQFi5etWbF0zsyPn7xrYKzDOMESELM8yXnkWHkC\nHIkI0qubb/q5GF1GD02SyNNK7G5qEKSXBLZ6wuscO+f3PuO4I2ZzwJ+ZTm7FqDyC9HLiqmtJ\nYH+75IFG4XZrNpv92/cdNeG9abO/mrds1U/LFs37dOrkF59+sHWs/Y07fv7hi5zfKyBJ+qsT\nfH4cFYYehXbCFdNpR1dhtaCPPPRoT8VmuH76ReKC9Bo3f5L6oySdnnSSLvqxQjNHYDuocO8M\n1xBLAq4SSEYe9hp0HKHWIEvb6lf42EpE2Vb9GpGdvVOdvCPdbDYvOusQYK6Awu0q3xFHqpQT\nDYL0L77a3/awhnQdfN/bk6d9NW/B7E+nvvzsA23qhZkcNBk6U/kGte+xCI0KSfob9Pm66tZp\ntggN0h/8vJt1teH1X3A7P0F6aEs3QXpJkg5+Py7IoUauiJ9/+Hvrk/LOr5T/uD+nyHka0n+v\nG+T8+TynAqq1Xn8u7+jCntZfRATppZK8qfc4qQ3d6jjms2IPNlMpeg7SS5K04rVBHmVdYPWr\nN6Xny7dbpYP00vk97zv2clyL6XDPv+fjGwbbDylNJlPNFgvkK/e68OemLnSRgJ0XyjtVyjeR\n+Pu0OhU8g+vC7R9tc7o2T4P0tdquWDyut0ebDonutrbiIbrQAyfoEOSd29yvocevvbIExU1b\nl1DROj1KgB0RQXp1800/F6Mv0kGTJPS0Erqb2gTpJWGtnug6x05pSW6L0AC7paJaTBCTZwTp\n7QmqriWR/e30A3Nqe97Km0wmszngoc9c5qHO6gSfH0floUdxnXDl9NnRVV4t6CEPPdpToRmu\nn36RuCC9xs1fGXVHSfo86SRJF/1YoZkjsB1UxnANcRl1y38Z4w57jTiOUGuQpXH1q8HYSvWy\nLeIakVx+xnqLQ5AvovH/lOeqwu0q3xFHqpQTDYL0S87lzrqrhYvddNSg70tZLm9QsN+gL3os\n4qJCkqS7QZ/Pq259ZovQIH3e+VXW1ZotIYkFrh7vkVzuBd+kRxXXfPik3QtfUNLPCI5sO+O3\nA8/1rFNalCr/vUGw82WDavTaue4DxzsNnQpv0veHf/7qWTPY/ayV5Bf81Fc75o27KVB5I2QJ\nu+fN77fOfMib4VFVNOj1FT9NGFXNoqh6rN6oz/c7fu9SI0h0qvQjTqJ0XQAAIABJREFUqtUz\nf3/1iMJejtns3+fedw5untM6qt6aj5zcrKeWkJjbR8Q5ua+zMuJ6Pbl38+yrFJ+2fgFRz3z+\nx8LH7d9W57VbJ61b8Nwgx1GHU5Et+v964Lc+dSr8co/oAyfiEATX7Lx835ZRneKULxJS++q5\n2/Y82buu+1n1QUS+6Yj+miR1T6uL9LebHhHU6mncWJj9Qj64sZ7dj32muf84IlQhrroW19+u\n0eK+Xb9MaujwUJpr/iH1X1qw67OHrnI1k2HrBJ83u3rohOuzo6ucHvLQI0bPcJ/zSfOn7ihJ\nv2VAB5W50MwR2A4qY9CGWMRVAp+3v16rGuMI72hc/WqQJ6qXbdHXOoIiej7v8EKOaz94RPUN\nVWZHDDRKfeDLrZPu7+5+PpPJZDJ1uuP1f1e9Xd3iwY0jPskKcVEhk0kX/QTviB0vGDZbvBAc\nNeCOWhcvGEoleROOZXi/LrVuHADK6elJ+jI5Z7Y8OuCKis4Cs9mvzYAn9mVevPct89Rr1n9Z\nAmNdrznr2K8jOjdycYqZ/YJ73TshufDirTTCn6S/5Pye1fff4OYmOLNfYKfBD67al+7F+itD\n50/Sl8k4+Mu9vZuaKmb2C+g26i3rTVL/nSfpyyRt+fa6lk7eC12eP2Zz8953L9tp89qr3yaP\nqWWbThVvas44OK9ZeKDTxFTmFt3igjMzXrjT7pu4Djvr33nI2FX7XZ1KXjxJX/Zj/J9f977M\nfuAh5x8c9+jk751+A8yRoANXRtAhkKSSDd++2yHO+ffGrCxBdR5848vUQjf3LXqVgIvWDbnM\n3z8gOCQ0rHp4ZGSUKk/SS6rmm2ZPjFn8A4KCQ8LCqteIjFqs4G1yPmySNDitBO2mZk/SlxHR\n6kmC6xw7aQfGyRexBMYmK6gQvCP4SXqVqxoNnsC+ROXq2kpEf7tM3rl/nh3WI1TBFQr/4NqD\nH3h9b5rzrxI6pZM6wefH0dPngwVVRx7RW0fX02rB53no6Z4KynD99IvEPUkvadv8yak1Siqj\nt5NOzueXVoT2poS2g0oYqCGWU7f8X2LUYa+xxhEqDrK0r341GFupW7aFXSO66NjCG20PQR23\nT7LKKd+uwh1xqvLlRJsn6ct+3jHvtWYub9QIb9Rt+uoD3m3TVz0WcVGhMjoZ9Omk6rbSSbYI\nfZJekqTtz5ffNdj8/j9cz+xiL8ySJLnOLKDKSD2wcf78+cvWbUtISEhMSq8WE9egQYMrOt/4\n0JgxPVrUtM52dtcdta6++Cqb0JhhOamL3K75xNblX32/auOmTQdPJKdnpJuDI2Pj4mLj6nXv\nf9vdd93eolZ581aUdfJwfE7Z35bA2BaXR6m6i/bOH/t7xYoVq35afzQhKSU19VxabrUakVHR\n0c1aX9O9e7d+Q29v36DqPsGphtRDW5YuXbr8l42nzyQnJydnlwTGxsbVrVu3843D7r13VOu4\n8scrL5w4dCq3uOzv0NimjaP+C8/Wl/7728KFy3/btHnr0fjU9PR0c2hUXFxc3XpNru03eOjQ\nIW0b1XBcJv/svz8s/2P/keSajZq2bNmyxRVtGsao9oaJkvzEr6e8882abSdPnkw8lxddJzY2\nNjYuLu6TBfMbevKyXEfFFxJ/W7li2bIVfx86nZKcknI2PbB6ZHR0dIPmbXv16nXD4OHdmkVW\nPv1xQf5JhSVlf9dquyLln0svIJIK/1m3/Lvvv1u/43BycnJKakZozVqxsbENW3QYcuutQwb3\nivFs7wQeOHGHwCQV7Pnr15UrV/62aVdSSkpqSkpmoX9MrVq1a9Vq0qbroEGDBvTtUSvEcLdd\nXiQw3/TEJ02SVqdVOUO3vGJaPY0ai4wjb0Y2Kx9RN+i/9NTqoZ7sPVQirLoW198uSDu6dOHS\njTv+2bV79+nktOzs7OycguCwiIiIiNoNmrZr165D51633HpDLa+qBaPWCb5udnXQCdddR9dT\nOshDjxg+w33Ft82fqqMkXZcBX1fmYjNHaDuohEEbYiFXCXzd/nrN0OMI7/io+tUiT1Qs21Xm\nWofXO6JuORkeU23xudzYzqvPbO7vfm5XpH379penqsUV1sfipdLcTSsWfP3tD3uOn0pISExJ\nL4iOjY2Lq9u8Q8/bbx8xqPsVXr+X27c9FnFRoTK+7id4SfR4QVfZot7pUy4/bWW16JtKJclk\nMgVFXJubscG7E4QgPWDv7xfbdpi4u+zvqGYzzh962LfpAfAfUWE0EYC3OK3+OxYPaDh8zWnr\n5PiDaW83V+H2KQAA9IzmDwB8guoXSqhbTgbVDF2VltdwwG8nV12nRuo0ZYhThqhQFSbo9Hmt\nWdSbR9LL/p4an/1UPW9uO+Cb9IC935eUNxhxA9r5MCUAAABwq6Tg9CO/JVongyKufV2NF5wA\nAKBnNH8A4BNUv1BC9XJS9gRCtcZuvouhQ0Y5ZYgKVWGCTp/Rn9xg/fvzCbu9W4m/SokB9CV9\n3yevzjxknWw77t0H6iu6jaUwa9PLxzKskx3vbqx+4gAAAKCeU8sfPltUYp1s/tAUf7MPkwMA\ngBZo/gDAJ6h+oYS65aS0KHVPTpHJZGo4tF7l06YxLU8ZokJwJO70qXvd7K7hyzZlFZhMpqNz\nx2Z/vNv68QjlCNKjarKEpXzyySfWyeZ5tz4wu5eSBde/Nqag9OI3IPws1d64Quw34wEAAFBJ\nHzzzl/Vvs9n8+vOtfJgYAAC0QfMHAD5B9Qsl1C0nyRtfLJIks9n/+Q61Kp00rWl5yhAVgiNx\np4/ZUv2L97q3HLPWZDIV5ex59I+kub3jPF0Jr7tH1RQWO7Z2oMU6efTbUduzCt0udW7nR4M/\n2medrNVxav0gi4v5AQAA4Ftpe9/4NCHbOlm9/lNDa4b4MD0AAGiA5g8AfILqF0qoWE4Ks1I2\nLXuvW/+5JpMptueUnhGB6iRRKxqfMkSFIKfB6dPsvoWtqwWU/b1y7GderIEgPaomv8C42Tc1\ntE6WFCTeeM29f5/Pd7HI4TXvXdXlmcJLN0yZTKYn5wwTmEQAAABUTl7q9lv7TJL/cv1HT/oq\nMQAAaIPmDwB8guoXSqhYTvLOfR9SI7bbkHEn84tDYrovXjZWjQRqR/tThqgQrLQ5ffwCohe+\n16fs74zDb808le16fkdmSZLczwUYUGHmppaxPY/nFVt/8Q+Ju+mu++6//65urRrXqHbxrpn8\n8yf/WP/7ws8/+PKXvfLF693wQfwvT2uaYgD/bXFB/kmFFz/RVKvtipR/Bvk2PUAVwGlVBUmF\nrTr0atKkScO4iLTE42uW/ZxWVGr9Z1B415S0vyI8/wYYAAC6RvMHAD5B9QslhJWT3LPzq9Ua\nGVAt9obhD777wfirIoPUS7QYOjhliAqhjGanj1SaN7xuzJLkHJPJVKfrx0kbH/NocYL0qMri\nV45vMWRibkmp47+CwiJjagRnp6dn5ji5kap6owFb9i27ItRffBoB4CKiiYDqOK2qIKnA7Bdc\n0T/Hrj49vX99LZMDAIAWaP4AwCeofqGEsHIilWSdSMyJrVcnxM8g94Lo45QhKgSTtqfP2e2v\n1rrmLZPJZDZb5iZmjoqtpnxZXnePqqz+oHf2r3q3UWiA478KLqQnJCQ5rYtrth21nboYAADA\nUNo/vIBrZACA/xqaPwDwCapfKFHJcmK2hF/WINYwEXqXtDxliArBpO3pE9PxzRlDGplMJkkq\n+d+wTz1aliA9qriGfccdStz1+n39IgMsbmcOqdV63NTvDm+f25y6GAAAwCD8/Gvc8eK8bTNG\n+DohAABoh+YPAHyC6hdKUE6sfJIVRIWgsdELfusaEWQymZI3Pf/K9rPKF+R19/ivKM5JWL5g\n8R9bt+34e9ep5POZGRm5JZaIiIiIGjWiYy/r1LVb9+7db+zbI9K/KtyYBsCIeC83oDpOq6qo\ndNa7475ZuPLgqfhsU/XLmzW7st11z732v/axob5OGAAA4tD8AYBPUP1CCcqJle6ygqgQNHN2\n28TYzi+VSFK1OsPOJi4KUfaMPEF6AAAAAAAAAAAAAAA0wuvuAQAAAAAAAAAAAADQCEF6AAAA\nAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAAAAAAANAI\nQXoAAAAAAAAAAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEAAAAAAAAA\nAAAA0AhBegAAAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAA\nAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAj\nBOkBAAAAAAAAAAAAANAIQXoAAAAAAAAAAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAA\nAAAAQCME6QEAAAAAAAAAAAAA0AhBegAAAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAA\nAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACN\nEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAAAAAAANAIQXoAAAAAAAAAAAAAADRCkB4AAAAAAAAA\nAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEAAAAAAAAAAAAA0AhBegAAAAAAAAAAAAAANEKQHgAA\nAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0\nQpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAAAAAAANAIQXoAAAAAAAAA\nAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEAAAAAAAAAAAAA0AhBegAA\nAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQ\nCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAA\nAAAAANAIQXoAAAAAAAAAAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEA\nAAAAAAAAAAAA0AhBegAAAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABA\nIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAA\nAAAAAEAjBOkBAAAAAAAAAAAAANAIQXoAAAAAAAAAAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcA\nAAAAAAAAAAAAQCME6QEAAAAAAAAAAAAA0AhBegAAAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAA\njRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAAAAA0QpAeAAAAAAAA\nAAAAAACN+Ps6AQAAAAAAAAAAwKhaPrnK10m46MCHA32dBAAAFOFJegAAAAAAAAAAAAAANEKQ\nHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAIwTpAQAAAAAAAAAAAADQCEF6AAAAAAAAAAAA\nAAA0QpAeAAAAAAAAAAAAAACNEKQHAAAAAAAAAAAAAEAjBOkBAAAAAAAAAAAAANAIQXoAAAAA\nAAAAAAAAADRCkB4AAAAAAAAAAAAAAI0QpAcAAAAAAAAAAAAAQCME6QEAAAAAAAAAAAAA0AhB\negAAAAAAAAAAAAAANEKQHgAAAAAAAAAAAAAAjRCkBwAAAAAAAAAAAABAI/6+ToAu5CYe+GXt\nuo079589dz4z3xQZFRXbqEWPnr2v69o6wOzZqpLWjx/zwZ6A0JZLFk5SPZ0erFwqvG3o8PxS\nye06q9f737zpPdRJHwAAAADg/+zde5yV9X3g8d+ZCwMDwzhIxAsU4xp1xAtaE8XEeksaXRJb\nXRcVLzW2NTamYnerVUmkVRJN8npViTG7xnXjDUhikGy62IpKTKKCrMoroIAmgqgIKNeZYYAZ\nZp794wxIlfs58z1Mz/v91+8153ee83048sIXH57nAQAAANgpkT6bOeXeux55atuevXJ568rl\n786b9fTkI8648eZrh+1fs/uHmzF5UTcMuccHb2uZuzuFHgAAAAAAAIBI5X67+5cfvuWOh6Zv\n7dm5il51tdVbX13zxrPjrhu3aGPHbh6tdcX0ny1vLf6Ue37wtubZ3TQGAAAAAAAAAHutrK+k\nX7vwwdumzM+v+w4Zcc3Vo089bmh1LrWufuvpX058YOrsLMvamuffetPER+++YpdHa29+6+6x\nD2RZt1y/vqcHb3r9nfyibvAV3/jbYTvZWVlzSKHDAQAAAAAAALB7yjnSd/74zify2bv3wM/e\nO+HGAVVdz5+vHXDoeVeOPeoT4//+vtkppaZFP5+0+PzRn6zb7lFa16x4++0lL/12+r8+8/+a\nO4pc6Pf64KtfWpVfDBwxvLHx8OJOBQAAAAAAAMDeKd9I3/LuQ79avTG/vvz2r28t9FsdMXLs\nl6Ze8n/fb00pPXHXb0Z/f+RHNmxa+8w11/6PVc1t3TFegQdf/PuW/GLQZ/Yv3lAAAAAAAAAA\nFKR8n0m/+Cez8oveA8758iF9t7cld8HXTsivmt+ZuO5jF7JnHc2FFPoHr7rovC0+/tj7Ag8+\nu6XrvScd0GevDwIAAAAAAABAcZXvlfRT53TdEP7gs7+4oz0Nw0ZX5F7ozLKso2XS8vV/c0i/\nbV+tqm287LLLtv1J64oZjz/1XlHGK+TgWWfrq+vbU0q5XOWI/jVFmQcAAAAAAACAwpVppM86\nmua0tOfXR545aEfbKmuGnFxXPbOpLaW0eO6a9JFI3+fIUaOO3PYnq1+dX7RIX8DB25tf7siy\nlFJ1v+PrKnPvzXv2316Yt/TdpctWrK7s23//Tww+9oQTPnvG5w7sU1mUUQEAAAAAAADYTWUa\n6duaX8xn7JTS8PpeO9l5Yr9e+Ui/avbqdO6QIs7Qb+ABB1RsyK+rc0U8cNq07qX8IlfR9/vj\nrn16zjvbvLh8yZtvvDJrxqMPPPj5i6/+2oUjivXJzc3NbW17f39+AAAAAAAoxKpVq0o9AgD/\n8e23336VlYVeC12mkb699Y2t66Nrq3ey86DBtem9lpTShvfeTen4Is5w4XfvubCIh9vG2leX\n5Reb1v326Tnb39PRturJh++Y//vLvn/TqMpihPosy7It/+4BAAAAAACC+TtqAHqKMo30nW1r\n84tcrqp+p426V0PXdfadm9d2+1hFsvql1VvXucq6Px11ydmf+8wfHbB/al25ZMmSP7z24tSp\nM1a2daSU3pn56NhHG++8/NjSDQsAAAAAAABQRso00ret67oxe66ybuc7q+q6rrPvQZH+9bdb\n8ovq2sNvvmv8SQfVdr1QM6ixYVDj8M984Yun3zbmtleb21JKC6aMf/W/TDymtkz/SwAAAAAA\nAACIJM3uSueW2+N0birpHHtgyAWXXtXWkVL6o8+dc+LA3h/f0HvgcWO/85ejr/2fWZZlnRvu\n++nie77yqfAxAQAAAAAAAMpOmUb6XvVdN7HPOtbvfOfm9Zvzi1z1gO6dqXhG/Ocv73JP38Hn\nXn7wow8vbU4prfj1M0mkBwAAAAAAAOh+ZRrpK3rV5xdZ1tbamdVW7PCx9G1rum6MX1HVYyL9\nbjr5S4c8fN/ClFJb0wspXVPg0fr371+MoQAAAAAAYG8MHDiw1CMAwG6pKPUApVHV58MLxxe0\ntu9k5/tLN+QXNQ0Hdu9M4eqPacgvOjevberIdr4ZAAAAAAAAgMKVaaSv6X9KRa7r6vnftWze\nyc65LV0Jf+CIQd0+VqxcVc3WdfUObyUAAAAAAAAAQNGU6e3uc5X1w/tWv9LSllJ6beYH6fyh\n292WbV71fNOm/HrIiT3jdvdr5r3yRmt7SqlX/VEnHFW/k50blq7OL6p6H9pnxzf8BwAAAAAA\nAKBYyjTSp5TOHz7gleeWp5SWPTlrR5G+aclj7VmWUspV1l56UN/Q+fbWujce/dZDf0gp1dSf\n/tgj/30nO3//f5bmF/2G/HnEZAAAAAAAAABlr0xvd59SOuySk/OL9csmz25q2+6e5374fH5R\nN/jSgdU949fqwLP+NL/YtO7XDy9cu6Ntm1sX/mB+15X0jRcfGzEZAAAAAAAAQNnrGeG5O9QN\nvvK0ht4ppSzr/MH4KdnHNqx5beKP/tCUX5/7d6fHTrf3ejecc96g2vx66q3fmLe9f3/QuXnl\n/beMX9+RpZSqa4dd/8cDQ0cEAAAAAAAAKFflG+lTrvKv/uGc/HLtwsnXfe+xZes3d72UdSx8\n7qfXf/OxLMtSSvWfuuTSw/oX/fOn3HT9V7d4Z1NHEY980c0XV+RyKaWOjW//49VjHvyXmR+s\na00ppaxj1bIlLz079RvXXPuvi5pSSrlcxQU33+CB9AAAAAAAAAAxyveZ9CmlhqOv+uYFC29/\nfGFKaclvH7nmhV8cdvjQ+prOFUsXLV21Mb+nV/2x4781qjs+vfn9ZctWbsiv2z9+IX8B6g77\n83+8eO6tk19KKbW3Ln38/jsevz9V9a7r1bG+tb1z67ZcruL0v/j2pccPKOZnAwAAAAAAALBj\nZXwlfUoppU9feecNl53VuyKXUso6mt98/dVX5s7fWugHHn3W+HvGDe1dWdIZ98bwS269/at/\n1lD14fe7eWPztoW+94DDr7jl3v92wdGlmA4AAAAAAACgTJX1lfQppZQqTht1/YkjvvDkMzOe\nf3n+ytWrmzalhoYBBx027E/OOOPzpxxT2WPvBH/8yL/8X6ed8+unn5rz+tvvr3h/xfsrmtsr\n96uvH3z4sJNOOuULZ3261l3uAQAAAAAAAGLl8o9dBwAAAAAA2FONY6aVeoQuCyaMLPUIALBb\nyv129wAAAAAAAAAQRqQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAA\nAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAA\nAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBE\npAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItID\nAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABCkqtQDAAAAAAAAe6x90sGlHiGllOae\nnI578f5STwEAPYkr6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIUlXqAQAAAAAAeqrGMdNKPUKXBRNGlnqE0vAVAAA9jivp\nAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAA\nAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAA\nAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAA\nAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACC\niPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6\nAAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAACfhJh6AAAgAElEQVQAAAAQRKQH\nAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAA\nAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAA\nAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAA\nEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEKSq1APsE1qXLpj+zIznX5n/wcpV\n6zamhgEDDjr0qNNOP/PsU4+tzu3ZoZY9O/ar/zyvurZxyk++sy/MVsRTAwAAAAAAAKBAIn02\nc8q9dz3y1MbObOuPVi5vXbn83Xmznp58xBk33nztsP1rdv9wMyYv2mdmK/KpAQAAAAAAAFCg\ncr/d/csP33LHQ9O3ZuxcRa+62uqtr65549lx141btLFjN4/WumL6z5a37iOzFffUAAAAAAAA\nAChcWV9Jv3bhg7dNmZ9f9x0y4pqrR5963NDqXGpd/dbTv5z4wNTZWZa1Nc+/9aaJj959xS6P\n1t781t1jH8iybJc7A2Yr7qkBAAAAAAAAUBTlfCV954/vfCLf1HsP/Oy9E246/fih+ce01w44\n9Lwrx37v6k/n9zUt+vmkxc07OkrrmhULfzf70R+Mv/KKMbPe37BvzFacUwMAAAAAAACguMo3\n0re8+9CvVm/Mry+//esDqnIf2XDEyLFfOqA2v37irt98/Aib1j7zlUsvvPgv/vrGb47/2fTZ\nzR3FuYa+8NkKPzUAAAAAAAAAukP5RvrFP5mVX/QecM6XD+m7vS25C752Qn7V/M7EdR9r8FlH\n86rmtr0e4MGrLjpvi488G77A2Qo/NQAAAAAAAAC6Q/k+k37qnFX5xcFnf3FHexqGja7IvdCZ\nZVlHy6Tl6//mkH7bvlpV23jZZZdt+5PWFTMef+q9ks9W+KkBAAAAAAAA0B3KNNJnHU1zWtrz\n6yPPHLSjbZU1Q06uq57Z1JZSWjx3TfpIpO9z5KhRR277k9Wvzi880hc4W1FODQAAAAAAAIDu\nUKaRvq35xY6s6x7vw+t77WTnif165Uv2qtmr07lDijhDv4EHHFCxIb+u3uap8QXOVqpT27Rp\nU2dnZ4EHAQAAAAD2zoYNG0o9QrmL/wrK9O/3d8zvAgAC1NTUVFQU+kz5Mv1DvL31ja3ro2ur\nd7LzoMG16b2WlNKG995N6fgiznDhd++5sBtmK9Wpbdq0qa2trcCDAAAAAAB7Z/369aUeodzF\nfwX1wZ+3z/O7AIAAvXrt7DLp3VRo5O+hOtvW5he5XFV9ZW4nO3s1dP0qd25e2+1j5T+osNn2\n5VMDAAAAAAAAKHNlGunb1nVd852rrNv5zqq6rovRw0p2gbPty6cGAAAAAAAAUObKNNLvgc5s\ny2JTSefYngJn25dPDQAAAAAAAOA/ojKN9L3qu+70nnXs4hE1m9dvzi9y1QO6d6YtCpxtXz41\nAAAAAAAAgDJXVeoBSqOiV31+kWVtrZ1ZbcUOn93etqbr7vEVVUElu8DZSnVqNTU11dXVhR8H\nAAAAANgLffv2LfUI5c5XUHK+AgAC5HI7zK+7r0wjfVWfT6U0Pb9e0Nr+x/167Wjn+0s35Bc1\nDQdGTFbwbKU6tZqamsIPAgAAAADsnT59+pR6hHIX/xW0B3/ePs/vAgB6ijK93X1N/1Mqtvwb\nh9+1bN7JzrktXf+fM3DEoG4fK6VU8Gz78qkBAAAAAAAAlLkyjfS5yvrhfbvuzf7azA92tC3b\nvOr5pk359ZATg253X+Bs+/KpAQAAAAAAAJS5Mo30KaXzh3eV6WVPztrRnqYlj7VnWUopV1l7\n6UFxD7MpcLZ9+dQAAAAAAAAAyln5RvrDLjk5v1i/bPLsprbt7nnuh8/nF3WDLx1YHfdrVeBs\n+/KpAQAAAAAAAJSz8q2zdYOvPK2hd0opyzp/MH5K9rENa16b+KM/NOXX5/7d6T1otn351AAA\nAAAAAADKWflG+pSr/Kt/OCe/XLtw8nXfe2zZ+s1dL2UdC5/76fXffCzLspRS/acuufSw/kX/\n/Ck3Xf/VLd7Z1FHM2Up9agAAAAAAAABsV1WpByilhqOv+uYFC29/fGFKaclvH7nmhV8cdvjQ\n+prOFUsXLV21Mb+nV/2x4781qjs+vfn9ZctWbsiv2z92tXuBs5X21AAAAAAAAADYrjK+kj6l\nlNKnr7zzhsvO6l2RSyllHc1vvv7qK3Pnb83YA48+a/w944b2ruyJs+3LpwYAAAAAAABQnsr6\nSvqUUkoVp426/sQRX3jymRnPvzx/5erVTZtSQ8OAgw4b9idnnPH5U46pzPXc2fblUwMAAAAA\nAAAoR7n8s8kBAAAAANhTjWOmlXqELgsmjCz1CKVRzl9B+6SDgz9xR4578f5Sj5BSGf8uAKDH\nKffb3QMAAAAAAABAGJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIEhVqQcAAAAAAPZG45hppR7hQwsmjCz1CAAA0DO4kh4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAIFWlHgAAAACAHqlxzLRSj9BlwYSRpR4BAABgd7mSHgAAAAAAAACCiPQAAAAAAAAA\nEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEKSq1AMAAAAA7I3GMdNKPUKXBRNG\nlnoEAAAAegxX0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAASpKvUAAAAA0PM0jplW6hE+tGDC\nyFKPAAAAAOwuV9IDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEqSr1AAAAAAAAANCDNY6ZVuoR\nuiyYMLLUIwC75kp6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQH\nAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAA\nAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAIFWlHgAAAOh5GsdMK/UIXRZM\nGFnqEUrDVwAAAADQQ7mSHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIEhVqQcAAIA91jhmWqlH\n6LJgwsjgT2yfdHDwJ27X3JPTcS/eX+opAKBk/IkMAADbKue/r9sLrqQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIUlXqAQAAepjGMdNKPcKHFkwYWeoRAACgBNonHVzqEbrMPTkd9+L9pZ4C\nAICeRKRPKaXWpQumPzPj+Vfmf7By1bqNqWHAgIMOPeq00888+9Rjq3Pd/vY9teL5e//6O0+m\nlI654UffPu3A7W/K2kad/183dma7PFrd4Bsm/vC04k4IAAAAAAAAwHaJ9NnMKffe9chT2/bs\nlctbVy5/d96spycfccaNN187bP+abnv7HmtbN+emf35q19ta5u5OoQcAAAAAAAAgUrk/k/7l\nh2+546HpW3t2rqJXXW311lfXvPHsuOvGLdrY0U1v31NZtvG+m767qr1zlzvbmmcX60MBAAAA\nAAAAKJayvpJ+7cIHb5syP7/uO2TENVePPvW4odW51Lr6rad/OfGBqbOzLGtrnn/rTRMfvfuK\nor99L8x58Janlq7fnZ1Nr7+TX9QNvuIbfztsJzsraw4pwmQAAAAAAAAA7IZyjvSdP77ziSzL\nUkq9B3723gk3DqjqeoB87YBDz7ty7FGfGP/3981OKTUt+vmkxeeP/mRdUd++x9YufOy2X7y5\nm5tXv7Qqvxg4Ynhj4+EFfjQAAAAAAAAARVG+t7tvefehX63emF9ffvvXtyb2rY4YOfZLB9Tm\n10/c9Zvivn1PdWxc8k+3Tu7MslxFn/2rd/2tLf59S34x6DP7F/jRAAAAAAAAABRL+Ub6xT+Z\nlV/0HnDOlw/pu70tuQu+dkJ+1fzOxHUdWRHfnlJ68KqLzttiV8+tzx77p1vf3Lg5pXTiV779\nyd67vv/B7Ja2/OKkA/rscjMAAAAAAAAAMco30k+d03VD+IPP/uKO9jQMG12Ry6WUso6WScv/\n3cPgC3z7Hln0L+MnvbYmpbTfURfd+mf/aZf7s87WV9e3p5RyucoR/Wv2+nMBAAAAAAAAKK4y\nfSZ91tE0p6U9vz7yzEE72lZZM+TkuuqZTW0ppcVz16RD+hXl7XukdfmvbvnfL6WUKnsPHXfb\nxR+9q/72tDe/3JFlKaXqfsfXVebem/fsv70wb+m7/5+9e4+zuqwXPf6suTHMMEyDpIKQHjJP\nQCCZRVhszbT0WJZkplJuuhyz3Kl7dxNN9Cjt3PnamZnd6OINqIys3as6ErqtJIS8nNCQzFBS\nRJD7DAPMbZ0/1oDEZRxm1nx/w2u93389Mc+z5qGH3yz1w++3Vq1es6G8dvAhrxwx7vWvf8tJ\nbz18YHkP9gMAAAAAAABAj5VopG9pXFzI2CmlCfVVXcw8blBVobKvX7IhnT6yKMsLBg099NCy\nbYVx5X7ae759439+/pvN7flcLve+q659dXW3svqOzQ8VBrmy2q9dffGCR5/d7YsvrPzbk488\neN+d37v1lHMv/OTZk7pT/bsjn9/zef4AQABvwZlzBJlzBJlzBP2BU8icI8icI+gPnELmHEHm\nHEHmHAEkFwL0/VWQyxWhr5ZopG9tfnLXeExNZRczh42oSc83pZS2Pf9cSscWZXnB2V+++eyX\n2+d/3zT9jxu3p5Reddr0D45reLnpnTY9vrow2LH59wse3fec9pb199z+pWV//eDXLj+nvBih\nvrGxsaWlpQgvBAAciPXr12e9hVIXfwT1wd+v33MVZM4R9AdOIXOOIHPekfuD4FNwBHvzsyhz\nfhZlzlUAyYUAfX8VNDQ0lJf39oHlJRrpO1o2FQa5XEV9l426qqHzRvmOtk3FWt5Naxd966v3\nP59SGvjKyddfOLH7Czc8tGHXOFde945zznv7W9/0qkMPSc3rVq5c+dSfF999933rWtpTSs8u\nuvPKO0df/6FxB7o3AAAAAAAAAHqgRCN9y+bOe75z5XVdz6yo67xRfvfK3svl3dph49Lp/3lP\nSqmsvO6yL3+q9kDudv/L35sKg8qao6ffOPP4YTWdXxhw2OiGw0ZPeNOp7zzx2kuvfbyxJaX0\nxLyZj79v9utqSvRPAgAAHKj6+eOz3kJKKS2dmMYvnpX1LgCAkuafiwAAekaafTkdOz+0oGNH\n2PJ8vuW7l1//Ykt7SmnSJ66fdEj1AX3PkVOmfqSlPaX0qreedtzQfaytHjr+yv/46PkXfyuf\nz+c7tn37R0/f/OHXHNC3AAAAAAAAAKAHSjTSV9V3PoU+376165ltW9sKg1zlkGItf1lL77jy\n/z7blFIaOmHa598xsvsLCyb9r3e/7JzaEad/aPidt69qTCmt+e29SaQHAAAAAAAA6HslGunL\nquoLg3y+pbkjX1O234fJt2zsfLJ9WcVLlb2Xy7u2+cl518x7MqVUWXPMtV94TzdX9cDEdx1x\n+7eXp5RatvwhpYt6+WplZWXl5eXF2BcAcAC8/2bOEWTOEWTOEfQHTiFzjiBzjqA/cAqZcwSZ\ncwSZcwSQXAhwkFwFJRrpKwa+JqX5hfETza1vGFS1v5lrV20rDAY0HF6s5V27/uo57fl8Llc+\n9bqrRlT14Z+h+tc1FAYdbZu2tOcHH8jH3u9t0KBBxdgUAHBgGhoast5CqYs/gtbg79fvOYLM\n+UHUHziFzDmCzHk76A+CT8ER7M2FkDlHkDnvyJBcCHCQXAUlGukHDH5zWe4bHfl8SulPTW1d\nVPalTZ3/nDN00mHFWt61ldvbUkr5fPutn/7QrV3OfPyGC8+8oXM86ZbZ00fWdfNbFOQqBuwa\nV/Yq0AMAAAAAAADQLWVZbyAbufL6CbWVhfGfF724v2n5tvULt+wojEce99Lz6nu5vE9tfOyR\nxYsXL168+NHlm7ueuW3VhsKgovqogft/Yj8AAAAAAAAAxVKid9KnlM6aMOSRB15IKa2+58F0\n1pH7nLNl5V2t+XxKKVdeM3VYbRGXd6GmdlC+vaOLCdubm9vz+ZRS+YCa6orOuD5g51+32Pzk\nnV+87amU0oD6E++649NdvM5ff76qMBg08r3d3BsAAAAAAAAAvVG6kX7UeRPTAz9PKW1dPXfJ\nlrPeNHgfj6x/4BsLC4O6EVOHVpYVcXkXvnvn7K4nXDv17IcaW1JKoy/56r9P3vOj7g8/+R3p\ntqdSSjs2//b25R+94LWv2OeLtDUv//qyzjvpR587rpt7AwAAAAAAAKA3SvRx9ymluhHTJjdU\np5Ty+Y6vz5yX32vCxj/P/s5TWwrj0//1xOIu7zvVDaedeVhNYXz3jC88tqVl7zkdbetmXTFz\na3s+pVRZM/ayNwwN2x4AAAAAAABAKSvdSJ9y5R/7/GmF4ablcy+54a7VW9s6v5RvX/7Ajy67\n6q58Pp9Sqn/NeVNHDS7y8pTmXX7Zx3d6dkd7EX9nH5h+blkul1Jq3/73ay689NZfLHpxc3Nh\nY+tXr3zo/ru/cNHFv16xJaWUy5VNmf5ZH0gPAAAAAAAAEKN0H3efUmoY85Grpiy/7qfLU0or\nf3/HRX/42aijj6wf0LFm1YpV67cX5lTVj5v5xXP6Ynnj2tWr120rjFv3vhO/F+pGvfeac5fO\nmPtQSqm1edVPZ33pp7NSRXVdVfvW5taXPu0+lys78Z//feqxQ4r5vQEAAAAAAADYvxK+kz6l\nlNIbp13/2Q+eXF2WSynl2xv/9pfHH1m6bFdiHzrm5Jk3X31kdXkfLe87E86bcd3H39NQ8dL5\ntm1v3L3QVw85+oIrbvm3KWPi9wYAAAAAAABQskr6TvqUUkplk8+57LhJp95z730LH162bsOG\nLTtSQ8OQYaPG/tNJJ53y5teVv8yT4Hu5vA8de8ZHvzv5tN8u+M2jf/n72jVr16xd09ha/or6\n+hFHjz3++DefevIbazzlHgAAAAAAACCWSJ9SSrUjx06ZNnbKtNDl077/o559wxmzf9LNmZWD\njzhlyrRTevRdAOi3Rl/6y6y30OmJm84I/o6tc4YHf8d9WjoxjV88K+tdAAAAAABwUCr1x90D\nAAAAAAAAQBiRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAA\nAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAA\nAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nIBVZbwDgwIy+9JdZb6HTEzedkfUWsuEIAAAAAAAAesyd9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEqch6A3AwGX3pL7Pe\nwkueuOmMrLcAAABANlrnDM96CymltHRiGr94Vta7AACAkubfDg5G7qQHAAAAAAAAgCAiPQAA\nAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAA\nAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAA\nAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAI0bq04AACAASURBVACCiPQAAAAAAAAA\nEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIEhF1hsAAACAA9A6Z3jWW0gppaUT0/jFs7LeBQAAAHDwcSc9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAhSkfUGAAAAgINJ65zhWW+h09KJafziWVnvAgAAAA6MO+kBAAAAAAAAIIhIDwAAAAAAAABB\nRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9\nAAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAA\nAAAAAACCVGS9AeiW1jnDs95CSiktnZjGL56V9S4AIDP95B05eVMGAAAAAA5a7qQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIUpH1BgDortY5w7PeQkopLZ2Yxi+elfUuAAAAAAAADkrupAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIJUZL2BfqF51RPz\n771v4SPLXly3fvP21DBkyLCjXjv5xLe9/YRxlbk+X96Fjpb1v/vVPX9c+tiTzzzf2NjYmqoG\n1Q0eMeqY1x078R3vPOGQqvIM9wYAAAAAAADAgRLp84vm3XLjHb/Z3pHf9UvrXmhe98Jzjz24\nYO4xJ31u+sVjDxnQZ8u78swDc2d+7cdrt7fv9mttG3c0b1z3wmNLfvfj2175/n/5/PknHZPJ\n3gAAAAAAAADogVJ/3P3Dt1/xpdvm78rYubKquprKXV/d+OT9V19y9Yp/yOTFXN6FVffffOkN\nP9y90FdUD66veekvVbS3vPjDr3zmxl+viN8bAAAAAAAAAD1T0nfSb1p+67XzlhXGtSMnXXTh\n+SeMP7Iyl5o3PLPgv2Z/7+4l+Xy+pXHZjMtn3/nVC4q+vAttzY9/7qYF+Xw+pVRZO2rqhdNO\nOPbVhw2py6XUuOGFhxfM+/4Pf7OprSOldP+3p5/41juOq6sK2xsAAAAAAAAAPVbKd9J3/OD6\nXxVCePXQt9xy0+UnHntk4WPaa4Ycdea0K2+48I2FeVtW/GTO043FXt6VJ37wjcb2fEqpvOrQ\na7715Slvm3D4kLrCJ8jXDTn8pHMu/uZNl1SX5VJK+Y5t3/nuXyP3BgAAAAAAAECPlW6kb3ru\ntv/esL0w/tB1/zKkIrfHhGPOuPJdh9YUxr+68XfFXd61Hy9cWxgc+d7Lx9XveZd8Sql25MmX\nTjikMF7/8C8i9wYAAAAAAABAj5VupH/6hw8WBtVDTnv3EbX7mpKb8snXF0aNz87e3J4v4vKU\n0q0f+cCZO+3+2fDt21f8qamlMD7p9BH72/8x7z6iMGjd+nhxf2sAAAAAAAAA9JHSjfR3P7q+\nMBj+9nfub07D2PPLcrmUUr69ac4LW4u4vAut257cNX5jXeX+plXtvMM+37F9j8bed3sDAAAA\nAAAAoDcqst5ANvLtWx5tai2M/+fbDtvftPIBIyfWVS7a0pJSenrpxnTEoKIs71pl7bgZM2YU\nxsOqyvc3bcOjGzvn171h98fZ9+neAAAAAAAAAOiNEo30LY2L2/Od959P2NeHvu9y3KCqQsle\nv2RDOn1kUZYXDBp66KFl2wrjyt0ye3nVEccff0TX+29rXvnNeSsL41ed9v4i/tZ6bNu2bW1t\nbb18kS5U991LH7QaGxuz3kKpiz8CF8IeXAWZcxX0B8Gn4Aj25kLInCPInCPoD7wdZM6FkDlH\n0B/4WZQ5F0LmHEHm/MciSC6EkuTtYA99fRXU1taWlfX2cfUlGulbm196pPyYmv0+Uj6lNGxE\nTXq+KaW07fnnUjq2KMsLzv7yzWd3e8P59tatW7c2NTU1bnz+oYUP/O7+hauaW1NKg0edctV5\nr959ZlH21gOtra0tLS29fJEu+Pmytx07dmS9hVIXfwQuhD24CjLnKugPgk/BEezNhZA5R5A5\nR9AfeDvInAshc46gP/CzKHMuhMw5gsz5j0WQXAglydvBHvr6Kqipqen9i5RopO9o2VQY5HIV\n9eW5LmZWNXTejN7RtqlYy3vgOx+d+ssN23f/lVyu8ti3v++ST5zb8I8biN8bAAAAAAAAAN3U\n2zvxD1Itmzvv+c6V13U9s6Ku82b03Ut2L5cXxaCj3vKu094xtHLPE+wPewMAAAAAAABgn0r0\nTvoD0JHfOejRgxF6uXynYceMHrNlRy6Xy+VybU3PL39mQ+PT98/8zP2vnnzBlz7zvupcV3fM\n9/XeAAAAAAAAAOimEo30VfWdT3rPt2/tembb1rbCIFc5pFjLe+DMK/7Pmbv9z+eXLfrBjTct\nXtP8t9/f/qltHbNmnJPh3gAAAAAAAADophKN9GVV9YVBPt/S3JGvKdvvnegtGzufHl9W8VLJ\n7uXy3hs+ZtJnvzLwgguubm7Pr3nozltXnj7tyLps91ZTUzNw4MDevw7dV19fn/UWSp0jyJwj\nyJwj6A+cQuYcQeYcQeYcQX/gFDLnCDLnCPoDp5A5R5A5R5A5RwDJhQB9fxWUlRXhA+VLNNJX\nDHxNSvML4yeaW98wqGp/M9eu2lYYDGg4vFjLi6KqbsLUwwfNWtWYUlo455lp08dlu7eKir79\ns9Tap69+cKqsrMx6C6Uu/ghcCHtwFWTOVdAfBJ+CI9ibCyFzjiBzjqA/8HaQORdC5hxBf+Bn\nUeZcCJlzBJnzH4sguRBKkreDPRwUV0EROv/BaMDgN5ft/Bz3PzW1dTFzaVPnH+yhkw4r1vKu\n/ennP5k7d+7cuXPnL9/c9cxRowYVBk0r/hqzNwAAAAAAAAB6o0Qjfa68fkJt59+h+POiF/c3\nLd+2fuGWHYXxyONeeiZ8L5d3bdOCnxUi/U9//VzXM9u2t+/c0Et/H6RP9wYAAAAAAABAb5Ro\npE8pnTWhs0yvvufB/c3ZsvKu1nw+pZQrr5k6rLaIy7swbNwrCoNNj/2x65l/eqapMBj4yiNi\n9gYAAAAAAABAb5RupB913sTCYOvquUu2tOxzzgPfWFgY1I2YOrTyH/6/6uXyLgw/47jCYNv6\nny9p3Pcrp5RaNi/62brOD5U/+pxXxewNAAAAAAAAgN4o3TpbN2La5IbqlFI+3/H1mfPye03Y\n+OfZ33lqS2F8+r+eWNzlXagddu6o6oqUUj7ffvPVtzW17/3aqX3Hmm9dcXNbPp9SKq8a/rEx\n//C8+r7bGwAAAAAAAAC9UbqRPuXKP/b50wrDTcvnXnLDXau3tnV+Kd++/IEfXXbVXfl8PqVU\n/5rzpo4aXOTlKc27/LKP7/TsjvZdv54rq/n0h8cVxpuf+sXH/+36+UuWrdnYlE8ppY5Na1c9\nvGDuJf/8yQXPdj7r/vgPX3noHrfC93pvAAAAAAAAAPSFiqw3kKWGMR+5asry6366PKW08vd3\nXPSHn406+sj6AR1rVq1YtX57YU5V/biZXzynL5Y3rl29eufz6lv/8W73kafNOH/Rx+b8v/Up\npcanF3195qKUUnl13cCO5qaW9t1nHn3qJVeeMbLoewMAAAAAAACgL5TwnfQppZTeOO36z37w\n5OqyXEop3974t788/sjSZbsy9tAxJ8+8+eojq8v7aPl+5co/cM0t//v0Y8tyuV2/1r69cfdC\nXz5g6Lsvuu4rnzolem8AAAAAAAAA9FRJ30mfUkqpbPI5lx036dR77r1v4cPL1m3YsGVHamgY\nMmzU2H866aRT3vy68lyfLt+vXFnNuz9x3dves+zX83/7+LInnlm9fuvWraliYN3gwSNGvXbc\nscefcupbhlR1/Xcs+mpvAAAAAAAAAPSMSJ9SSrUjx06ZNnbKtNDl077/o5ddMWj4mPdPG/P+\nnm0rpdTr3xoAAAAAAAAARVTqj7sHAAAAAAAAgDAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAA\nAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAA\nAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAA\nQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCI\nSA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQH\nAAAAAAAAgCAiPQAAAAAAAAAEqch6A8DBoXXO8Ky30GnpxDR+8aysdwEAAAAAAAA94U56AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAIBVZbwAAAAAAAAAOWOuc4VlvodPSiWn84llZ7wI4aLiT\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESk\nBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAglRkvQEAOGi0\nzhme9RZSSmnpxDR+8aysdwEAAAAAAPSEO+kBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAA\nCCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR\n6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQA\nAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAA\nAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAA\nAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAA\ngoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCR\nHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8A\nAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAA\nAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAA\nAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAg\niEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESk\nBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMA\nAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAA\nAAAAIEhF1hvoF5pXPTH/3vsWPrLsxXXrN29PDUOGDDvqtZNPfNvbTxhXmevz5d23+v4rP/6V\nxyprRs/74X+8zNR8yzlnvX97R/5lX7NuxGdnf2NycfYHAAAAAAAAQJdE+vyiebfceMdvdu/Z\n615oXvfCc489uGDuMSd9bvrFYw8Z0GfLD8x9c1d0c2ZL09LuFHoAAAAAAAAAIpX64+4fvv2K\nL902f1fPzpVV1dVU7vrqxifvv/qSq1dsb++j5Qekec38H7/Q3M3JLY1LivJNAQAAAAAAACii\nkr6TftPyW6+dt6wwrh056aILzz9h/JGVudS84ZkF/zX7e3cvyefzLY3LZlw++86vXlD05Qek\ntfGZr175vXy+uzfHb/nLs4VB3YgLvvCpsV3MLB9wRC/3BgAAAAAAAEA3lXKk7/jB9b8qZO/q\noW+55abPDano/AD5miFHnTntyte+cuZnvr0kpbRlxU/mPH3W+f+jrqjLu6V545q//33lQ7+f\n/+t7/9jYfgCPr9/w0PrCYOikCaNHH92Dbw3/n707D7CqrPsA/tzZGRgGEBEEXAgRccM1ARHc\nSjM1zdxQ0zIl0TIrc9dc0tS0JFvcJXFNMS3f3BEFXDFxARVRQPZ1WIZhZu6c94+LiGwOcOec\nYe7n89fTvc9z+TWP5znn3u9ZAAAAAAAAgKzL3dvdL/783hfnVWXaJ1919oqIfYVuh1383Xal\nmfZTN4/I7vCvtWzB86cNOOb4H/7k/EuvfviZ19croQ8hfPrx4kxji703W99/GgAAAAAAAIAG\nkrsh/acPvppplLQ55PCOzdfUJXX0WbtlWoumDK34aky+kcNDCPf86LgjvrD6c+uj9KK5i6rr\n/39nFa8vXj52z3bNNvhDAAAAAAAAAMiu3L3d/bC3l98QfssDv722Pq13PDEvNaouiqL04vtn\nLPlpxxbZGv61Ckp3OOmkk1Z+pXLmC489O60+Y6O6yveW1IQQUqn8Xi2L6/+PAgAAAAAAANCg\ncjSkj9IL315ck2lvv/8Wa+uWX9z5m2WFoxdWhxA+HTs/fJGyb+Tw+ihotv2xx26/8ivz3vug\nniF9zaK30lEUQihssWtZfmrau8P/O+rdqZ9PnT5zXn7zlptt3mnn3Xbr03/f9s3y618PAAAA\nAAAAABsvR0P66kWvZWLsEELP8qJ19Ny9RVEmZZ/7+rxwaOesDM9o0bZdu7ylmXbhqk+03yjL\nKt7MNFJ5zW+5fNBzb09Z6c0Zkz75aMyrL9x35z0HHX/GWcf0yta/XFtbG0Wr3tKfBlVTU5N0\nCbnOFCTOFCTOFDQGZiFxpiBxpiBxpqAxMAuJMwWJMwWNgVlInClInClInCmAYEOAht8KCgoK\nUqmNjVhzNKSvqfxoRbtHaeE6enboVBqmLQ4hLJ32eQi7ZmV4xjHXDz5m/SuvjwXvTc80llW8\n/Nzba+6Trp779JBrP/j4pFsuODY/G0F9ZWVldXV1Fj5oLcob7qM3WRUVFXH+c6ZgdTFPQTAL\nqzEFiTMFjYHdQeJsCIkzBYkzBY2B3UHibAiJMwWNgbUocTaExJmCxMU/BSTOVrA6G0IOsiGs\noqG3gtatW+fnb+wNy3M0pK+rXpBppFIF5evMqItaL79Qvq52QbaGN7R5b85b0U7ll33r2BMO\n3HfvrdptFirnTJo0acL7rw0b9sKc6nQIYcro+y6+b4frTt45ttoAAAAAAAAAclmOhvTVFcuv\n+U7ll627Z0HZ8gvlV07ZN3J4Q/tw8uJMo7C064U3X71nh9LlbxRvsUPrLXbouffB3+535c+v\nfG9RdQhh3KNXv/f9oTuV5uh/CQAAAAAAAABxEs1+nbovnrNetyyB4Ruk89EDflSdDiFste8h\nu7ctWb1DSdtdLv79j08c9LcoiqK6pX9/6NPBp20XW3kAAAAAAAAAOStHQ/qi8uV3oY/SS9bd\ns3ZJbaaRKmyTreENrdd3Dv/aPs07HXrylvcNmboohDDzpeeDkB4AAAAAAACg4eVoSJ9XVJ5p\nRFF1ZV1UmrfW58pXz19+Z/u8gi9T9o0c3kh887sdh/x9fAiheuGoEAZu5KcVFhamUmv9O9AQ\niouLky4h15mCxJmCxJmCxsAsJM4UJM4UJM4UNAZmIXGmIHGmoDEwC4kzBYkzBYkzBRBsCNDw\nW0FWItEcDekLmm0XwjOZ9rjKmj1aFK2t56ypSzON4tbtszW8kSjfqXWmUVe7YGE6apm/Uf89\nNWvWLBtFrVVNg376pqmsrCzOf84UrC7mKQhmYTWmIHGmoDGwO0icDSFxpiBxpqAxsDtInA0h\ncaagMbAWJc6GkDhTkLj4p4DE2QpWZ0PIQTaEVWwSW0Fe0gUko7jlPnlfnOPwzuLadfQcu3j5\nf9hte22RreGNRKrgy7NICl0DDwAAAAAAANDwcjSkT+WX92xemGm/P3r22rpFtXNHLlyWaXfe\n/cv71W/k8AY1/90xr7322muvvfb2+Ip191w6dV6mUVCyTbO137EfAAAAAAAAgGzJ0ZA+hHBU\nz+Wp+fSnX11bn4WTHqmJohBCKr90QIfmWRzecCo+uu+aa6655pprfnfNHevu+fG/pmYaLTp/\nr+HrAgAAAAAAACCHQ/ouJ3wz01gy/YHXF1avsc8rfxmZaZR1GtC28Ct/q40c3nDaH/CtTGNZ\nxUtDxi9YW7fayvF//mD5lfQ7HL9zHJUBAAAAAAAA5LzcDenLOp3at3VJCCGK6v589aPRah3m\nvz/0tgkLM+1Df9Evu8MbTknrQ47YojTTHnbZJe+u6QSCuto5t1909ZJ0FEIoLN3x3D3axlYe\nAAAAAAAAQC7L3ZA+pPJP/80hmeaC8Q/87IZHpi+pXf5WlB7/ykPnXvpIFEUhhPLtThjQpWWW\nh4fw6AXnnvmFKcvSWfx/dtyFx+elUiGEdNXkK874+T1Pjp5dUZkpbO70SW8OH3bJwEH/N3Fh\nCCGVyjv6wl97ID0AAAAAAABAPAqSLiBJrXv86NKjx1/12PgQwqSX/zFw1ONdum5dXlw3c+rE\nqXOrMn2Kyne++ppjG2L4olnTp89ZmmnXrH4l/kYo6/K9K44fe9kDb4YQaiqnPnb7tY/dHgpK\nyorSSypr6lZ0S6Xy+v3wdwN2bZPNfxsAAAAAAACAtcvhK+lDCCHsdep1vz7pgJK8VAghSi/6\n5MP3xoz9YEXE3rbHAVcPvnzrkvwGGt5wep5w2VVnHtm64Mv5ra1atHJCX9Km6ykX3Xre0T3i\nrw0AAAAAAAAgZ+X0lfQhhBDy+h577u69Dn76+RdGvvXBnHnzFi4LrVu36dBlx/369z9on53y\nv+ZO8Bs5vAHtetiP7+h7yEvPPfv2h5NnzZw1c9bMRTX5rcrLO3Xdcc899zn4gL1K3eUeAAAA\nAAAAIF5C+hBCaN55x6NP3fHoU2MdfupdD63XiDY7XfHEE+v3TxS27HjQ0acetH6DAAAAAAAA\nAGgouX67ewAAAAAAAACIjZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAA\nAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAA\nAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAA\nAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAA\nAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAA\nAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAA\nAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6A5HdngAAIABJREFUAAAAAAAAAIiJkB4AAAAA\nAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAA\nAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAA\nAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAA\nAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAA\nAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAA\nAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAA\nACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAA\nAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAA\nAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAA\ngJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAA\nICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAA\niImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAA\nYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACA\nmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAg\nJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACI\niZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABi\nIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICY\nCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAm\nQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJ\nkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIi\npAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI\n6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZC\negAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQ\nHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKk\nBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAeAAAAAAAAAGIipAcAAAAAAACAmAjp\nAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQHAAAAAAAAgJgI6QEAAAAAAAAgJkJ6\nAAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkBAAAAAAAAICZCegAAAAAAAACIiZAe\nAAAAAAAAAGIipAcAAAAAAACAmAjpAQAAAAAAACAmQnoAAAAAAAAAiImQHgAAAAAAAABiIqQH\nAAAAAAAAgJgI6QEAAAAAAAAgJkJ6AAAAAAAAAIiJkB4AAAAAAAAAYiKkBwAAAAAAAICYCOkB\nAAAAAAAAICZCegAAAAAAAACISUHSBTQKlVPHPfP8CyPHfDB7ztyKqtC6TZsO23Tv22//A3vv\nXJhq8OGbbm0AAAAAAAAArBchfTT60Vtv/sezVXXRipfmzKicM+Pzd1997oFu/c+/cNCOmxU3\n2PBNtzYAAAAAAAAA1luu3+7+rSEXXXvvMyti7FReUVlp4Yp35380/PKfXT6xKt1Awzfd2gAA\nAAAAAADYADl9Jf2C8fdc+egHmXbzzr0GnnFi7122LkyFynmfPffE0DuHvR5FUfWiDy67YOh9\nfzwl68M33doAAAAAAAAA2DC5fCV93d3XPRVFUQihpG2fW/90Qb9dt848pr20zTZHnHrxDWfs\nlem3cOI/7/90UbaHb7q1AQAAAAAAALCBcjekX/z5vS/Oq8q0T77q7DYFqVU6dDvs4u+2K820\nn7p5RHaHb7q1AQAAAAAAALDBcjek//TBVzONkjaHHN6x+Zq6pI4+a7dMa9GUoRXpKIvDQwj3\n/Oi4I76wyrPhE68NAAAAAAAAgIaQuyH9sLfnZhpbHvjttfVpveOJealUCCFKL75/xpIsDt90\nawMAAAAAAABgg+VoSB+lF769uCbT3n7/LdbWLb+48zfLCjPtT8fOz9bwTbc2AAAAAAAAADZG\nQdIFJKN60WvpaPk93nuWF62j5+4tikYvrA4hzH19Xji0c1aGZ7Ro265d3tJMu3Clp8Y3hto2\nwJIlS2pqajbyQ9ZhjXftz3ELFiyI858zBauLeQqCWViNKUicKWgM7A4SZ0NInClInCloDOwO\nEmdDSJwpaAysRYmzISTOFCQu/ikgcbaC1dkQcpANYRUNvRWUlZXl5+dv5IfkaEhfU/nRinaP\n0sJ19OzQqTRMWxxCWDrt8xB2zcrwjGOuH3xMY61tA6TT6dra2o38ENaLP3jiTEHiTEHiTEFj\nYBYSZwoSZwoSZwoaA7OQOFOQOFPQGJiFxJmCxJmCxJkCCDYE2ES2ghy93X1d9fITKFKpgvL8\n1Dp6FrVefjF6Xe2X51xs5PBNtzYAAAAAAAAANkaOhvTVFdWZRiq/bN09C754cPvKSfZGDt90\nawMAAAAAAABgY+To7e7XQ130RWNZAsMb9MMbtLZsq/jW2KRLWO7lbyVdQUIazxQEs9AImILE\nmYLEmYLGwCwkzhQkzhQkzhQ0BmYhcaYgcaagMTALiTMFicvZKSBxjWcrCDYEktN4NgRbQf3l\n6JX0ReXL7/QepZesu2ftkuUPLUgVtsnW8E23NgAAAAAAAAA2Ro5eSZ9XVJ5pRFF1ZV1UmrfW\nZ7dXz19+9/i8gi+T7I0cvunWtg4tWrSIoujr+wEAAAAAAABsmvLz8zf+Q3I0pC9otl0Iz2Ta\n4ypr9mhRtLaes6YuzTSKW7fP1vBNt7Z1yMvL0bsyAAAAAAAAANRfjgarxS33yUstv8T8ncW1\n6+g5dnFNptG21xbZGr7p1gYAAAAAAADAxsjRkD6VX96zeWGm/f7o2WvrFtXOHblwWabdefcv\n7wm/kcM33doAAAAAAAAA2Bg5GtKHEI7quTyZnv70q2vrs3DSIzVRFEJI5ZcO6NA8i8M33doA\nAAAAAAAA2GC5G9J3OeGbmcaS6Q+8vrB6jX1e+cvITKOs04C2hV/5W23k8E23NgAAAAAAAAA2\nWO6ms2WdTu3buiSEEEV1f7760Wi1DvPfH3rbhIWZ9qG/6Jfd4ZtubQAAAAAAAABssNwN6UMq\n//TfHJJpLhj/wM9ueGT6ktrlb0Xp8a88dO6lj0RRFEIo3+6EAV1aZnl4CI9ecO6ZX5iyLN2o\nagMAAAAAAACgIaQyYW3OeuOe8696bHymncov69J16/LiuplTJ06dW5V5sah85z/cfuXWJflZ\nH37Pj457bM7STPuPDw/rslqfBGsDAAAAAAAAoCHkekgfQt3LD98y+P4Xq+rW8Hdo2+OA8y84\nq3urooYY/rUhfYK1AQAAAAAAANAQhPQhhLBkyvtPP//CyLc+mDNv3sJloXXrNh267Lhf//4H\n7bNTfqqhhtcjpE+sNgAAAAAAAAAagpAeAAAAAAAAAGKSl3QBAAAAAAAAAJArhPQAAAAAAAAA\nEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAA\nxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAA\nMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABA\nTIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQ\nEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADE\nREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAx\nEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSAwAAAAAAAEBM\nhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER0gMAAAAAAABATIT0AAAAAAAAABAT\nIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE9AAAAAAAAAAQEyE9AAAAAAAAAMRE\nSA8AAAAAAAAAMRHSAwAAAAAAAEBMhPQAAAAAAAAAEBMhPQAAAAAAAADEREgPAAAAAAAAADER\n0gMAAAAAAABATIT0AAAAAAAAABATIT0AAAAAAAAAxERIDwAAAAAAAAAxEdIDAAAAAAAAQEyE\n9AAAAAAAAAAQEyE9AAAAAAAAAMRESA8AAAAAAAAAMRHSA03BDX+7/80PpyddBfWSjpKuABqT\nKwYNPP3003/33NSkC8ldpgAg16SrlyVdQtPnCxpsGIem2WUtavzslMkF1iLYMLlwXFSQdAGw\niXn22Wez+GmtevTZq2NpFj8wZ7381IMvP/VgWYdu/frv33//ft3at0i6opy2dO6MafOXfaPr\n1iu/WPHJyMF3PPrxZ5MXLA1tOmzb+4DDTv5+v5K8VFJFbuqsRU1DXc3scVOnL62Lap6eHg7q\nmHQ5ucgUNLTFFRW1UX1Pzipv1cpeISsmT568Xv1TefnFJc1KiktKmjcrsmvOtsqK2dOmz62p\n94bQrfsO+SYhq6La+aOGv/Luu++9P27CgiVLKiuX1qSjJ554IoRQveiNx4Yv6tO/b+eywqTL\nbGp8QWtsrEWbBIemWWctamzslMlN1iLYADlyXCSkh/UzePDgLH5a97N2EIxl0aLpH/37gY/+\n8+BtW26/Z//++/fvt88Wza1ysZo99rm/3v3QWxNnFZbu8s8Hrlrx+twxQ8688tHquuU/Cc2d\n+uGT//jwpZFjB994TusCv/1sCGtR4xZ9Pv6tt8d9Nn9R5Tp71U5558WldVEIoa7K1QPZZQoS\nNnXM00OeeHHChE9mL1yPP+zQYf8qEwhkw9lnn71hA1N5RW07bNm50za77LlP7957tfcL6UaI\nauc9euff/z1izLxF67e82BCya/zLj/7ttgcmVlSv8d30sk/vv/2+B++6u//xZ5xzbF9/+Kzz\nBS1x1qLGwaFpwqxFjYSdMjnOWgQhBMdFq7AKAE1Br522fv39yekoCiFEUTR1/BtDx79x/20l\n3ffct//++++3z07NHd03vBkj7xp0/b9WvzgjSi+85vePr0joV1g48bnzb9jl9gv7x1QfxKKu\nesZfr7rs6XdmrNeo7b//jQaqJweZgsRNePKmX97xUlTva/VWKPQkrqRFddWzp342e+pnY14b\nfu/fmu//gx+fftyBLRxErb8oveRPPz/7hSmLN2BssQ0he8YMvfSKh9752m516YoXht7wwYSZ\nf7noGKePZosvaI2BtagxcGiaLGtR42GnTC6zFkGG46LVCelh/eyzzz5re6uuZu7rb3284n+m\nUnllrTffon37svxlM2fOnDl7wYrbveYXtR8w8Pi2BXnl3do0eMW54cLfDa6aN2nkiJdHjHjp\n7QkzMy9GdVXjXn9u3OvP3VbSdq++/fbfv/83d9raTw0NJF018eKbn1zj7RPn/O/WCUtrQwh5\nBeXHDPzpHh2L3h/9xJAn/hdCmPXqH1+u6N23vCjucjd91qJG68GLz3/6wwXrNaTdHt8/v1/7\nBqonB5mCZFVXjLzozq8k9Pn5+fUcW5Tyw0R2ZPYRNYs/eeu92au/m0qlVjmForC0yx67bF5Z\nMW/27Nlz5lZk9uZReskLD94ydtz0v1x5UompWU+fP/O7lVOxwtLydm3K6vlHLPTXzpIpz9yy\nIgxI5Zfte2D/bl23K3z3/r+9/OVPQgWlO+zcsfm7U5eEEGa8NuSiB3a6/sTuyZTb5PiC1hhY\nixoDh6bJshY1EnbK5DhrEWQ4Llrdqj/QABumtvKTP/z60pFTFocQSjv0OPoHx353v56lRV/u\nWKP0sg9fe/bBBx8a81lFCKF0y72vvvmCrs2cKJN9i6Z9NGLESy+NGDH+84pV3mrWtst+/fv3\n37//jp1bJVJbEzbpsV+dc89HIYS8/JZHDzr323vttEV5Seatp3920q2fLQwhdP/hH6//fpfM\niyNu+emNz00NIWx91B8Gn7ZdQlU3QdaiZC2eMuTEQf/MtEs7dNu7Z/dWBcvGvzJ8/PxlIYSd\nDz28a0lBCKGyYva7r782bXFNCGHHAVdcfezuzpnOFlOQuHduOOPSl2eEEJq12+lHZw7Ybbsu\n7Vo1S7qoXJSu+uyqn54/Zm5VCCGVX7rngYcftM9Om2/ett3m7VoU1MyeNWvWrFkT/vfy4/95\nZX5NOpXKP/TsGwYe3DWEENVVT//4nWf+/chjL43PfFS3ATffeFxTPm+9Idzzo+Mem7M0hNB9\n/2PPOPl7Xdt66mTc0lWTTh/w87k1dSGE8m79fv2rs3Zp3yyEMGHIz8/756chhMzjb0MIIaod\n/eA11z7wVgghlV96/f33be+4KNt8QUuKtShxDk0bFWtRUuyUYWXWInKW46I1EtJDVkT3nHfK\nYxMqQgi7H3P+JSfvu/Y7MkVjHrvhinteCSGUd/3e3X/4kXs3NZzZE8eOGPHSiBGvfDpn6Spv\ntftGz/799+/fv08n13BnyUOnHz90VmUIYfef/fWKgzp++UZU+6NjfjCnJp1KpX7/wKPdS5d/\nv6peOPKYk34fQihtN+DBO45LouQmyVqUsDFXn37F67NCCC2/cditN55Rnp8KIdRWfjTgxF8v\nrYu6n3nr9Yd1zvSM0hUP33TB0Jen5hd3vvyOm3tai7LEFCTu9yf9YOTCZUUt9/z7PZdsVuAy\ngMQ8fP4P7xs/P4TQuc+Jvxl49FZr+S88vXTmv++6/s6nP06lUt+9+I6f7L35irc+ef7W8255\nJoqi/KL29zz09/Km/bU4204/5qhZ1enWOw6459rj/OESMeXJ8wfdPj6EUFy+51/vvqTtF8vR\nGvKAEEIIz99wxp9enhFC6HrSn246dtvY680VvqDFzFqUOIemjZO1KGZ2yrBG1iJyjeOiNfLD\nGWTB/HG3ZFKxtj1/fMUp60jFQgip3Y8+/2e9tgghVEx4/IZXZ8VUYk7avMsu3z/1nD/d9eCt\n111y3Hf6dij7cjWf9cn/Hr7z5kGnnHDeFX94cviYihqnK22sVxYuCyGkUkW/2H/LlV+vWvDc\nnJp0CKGoZd8VCX0Ioahln80K80II1QtHx1tpU2YtStyojxdmGkddcPKKQKugtNsp7ZuHEKb9\nd8KKnqn88mN/dfPBW5Sml035w2+HxV9qU2UKEvdeZU0IYcdBZ0roE1Qx8Y5MQl/e9Zhbzj9+\nbQl9CCG/2RZHDrrx1J3bRFH01PUXjq+sXfHWNw4cdE7PzUII6eoZj89e9Wcj1m1hbV0Iod85\n35WKJWX0vyZnGn3PP7ttPZajvmecnGlMe/aNBiwr5/mCFjNrUeIcmjZO1qKY2SnDGlmLyDWO\ni9bIb2eQBW/c8Vamccy5365P/75nDcg03r335YaqiS+lOvfYe8DAX//9vvv/cMUvjzxgr9ZF\nyx+OG0U1E8a8dPtNV/zw+FN+e9MdI96ekHbMs6FmVteFEAqabbPKlXbzx76UabTqcfAqQzoV\nFYQQ0jUzAlliLUrc2CU1IYRUfumR7UpXfn27PdqEEJbNf33lF1Opkh9eeHAIoWLC0AenLYmx\nzKbMFCRuWV0UQtine3nSheS0MbctX9WPuegH9bgAPnXYr08KIaSrZ/3lkU9XfqPXwP0yjffe\nnJvtGpu4rYrzQwhbl7pBa2JeqlgWQkjlFZ/Wo3V9+heV921XlB9CqK54pWErIwRf0GJjLUqc\nQ9PGzVoUEztlWCdrEbnCcdEaCekhC56asjiEkMovPbRNSX36F5f3b1WQF0JYOve5hq2MldQs\nnjd7ztwFFQuX1tat8lZdTcVbw5+48fLzThl0yeMvj0ukvE1ds7xUCCGqq13l9Y+enJZpbHtE\n51Xeql7+vBXXdWSNtShx82rqQggFxVutchuDNnu1CSFUL36r+qtfqFpue+rmRfkhhBeGTghk\ngylIXNdmBSGEWr8dJOqJiYtCCHkF5Ue2bVaf/sWtDsr8EjrtmYdXfr1ks+Un2FV+XpntGpu4\nfu1KQwhjZ7oDQWIy54/mF29VVu8nNbQvzA8hpKunN2BZfJUvaA3NWpQ4h6abBGtRQ7NThvqw\nFtHkOS5aI6fTQhZMWZYOIeTlNa9/2NgsL7UghLpqt5hucFXzJr86evToUaPefO+zmmjV0KB1\n5x7llRM/m1uV+Z+LPh971w1jXx//82t+cqDoeL1s26xg/qLq9LLPplanO35xymeIaoZ+tvw+\nNt/btuXK/aO6pROrakMIeYVt4620KbMWJa44L1WdjqJo1bNVSrfsFsL/orqqtxZX91rpDmYh\nld+vZfE/51TO+9+/Q9g11lqbKFOQuMO6tHzv3blvjas4vE+9zhaiIUzO7A4KN//aniu0Kcib\nVZ2uWTJ25RfzC9tlGtXzqrNYXi7o9ePdb79s+Jt/fjwafKpDykQ0z09V10Z1NXOiep8QOqMm\nHUJI5dXr1BY2hi9osbEWJc6haWNmLYqNnTKsg7WI3OG4aI2E9JAFLfJT82ujdM3siVXpLiX5\nX9s/vWzSjJq6EEJeYauGry5HLZoxYfSoUaNHj377o2l1qx3itN16pz779unTu0/3zq1ClJ7w\n9ivPP//ci6PGVqajEMJ7T/7pDzvv/Kt92iVR+Kbq4A7NxyyqjqK6wc9Mve67W2VenPvO32ZU\nZx5I36vHV++yWPHxkMwtkYvL9om/2qbKWpS4LYvzP6ysS1dNWpSOVr5KoKjFniE8HEIYPnVJ\nr+5feTj05kV5IYSayvdiLrWpMgWJ2+3so/MG3vHB7UOqev+qJOV3g2S0KsibXZNOV02uSEfl\n9bhiKUov+qyqNoSQShWu/Hq6evkjaYpaF65hGGvXtucvju329sMfPXbRXVtdcdr+xbaF2H2z\nrOi/86vqauc/Pa/qkHrcYah60ehZ1ekQQmHzXRq+uhzlC1r8rEWJc2jaCFmL4menDKuzFpGD\nHBetkZAesqBXy6Kn5lWFEO54YdrvvrPqPb1XN334bVEUhRCKWvZp8OJyzLzJH4wePXrUqFHv\nfjp79Xfbddmld+8++/bp063jSld1p/K77t6v6+79TquYdPd1l/3n/fkhhNduvTvs85vYym4C\nepy2W7jwhRDCuDsvfHizS76zZ7eln7/x++uGZ97d8uAfrNx50aSXL7v86Ux7s733jLfSpsxa\nlLi+LYs+rKyJopp7xy84e8cvn7dXUNqtRX5qcTqa/My00P0rz+GbVp2OvcymzBQkrrTD4Vef\n+PpFQ1/+9c3db/jFd+X0iejfuviRWZVRVP33MXPO3+vrr6ef++7tVXWZ3cFXzpyrnPF/mUbL\n7VuuYRjrkjrhd9fN+uX5wx//46lvDD/lpCN7dNm2U/s29b7JKxvr4P5b/HfYpBDCw7cMP+SK\nQ762//v/+EemsdluX9+Z9eILWqKsRQlzaNp4WIsSZKcMK1iLyGWOi9ZISA9Z8K1vd3zqgU9C\nCOPu+u2be/15z83XdVpo1Zwxv739g0y743cOiKO+HDBjwjujRo0aPXrUh1MrVnkrlUq167JL\nnz779unTe7sOZev4kKLyrU+76Oz/DLgqhFC9cFRlXVSa59eL+mrVY2CfNqNGzquK0ovuu/Y3\nQ1Op6IvzQFN5JT/5wdaZ9tJZ//f765985+Op6SgKIaRS+T84fpukam56rEWJ63l4p3D7hyGE\n4df8bu8bf7v3lqVfvJO3X3nxU/OqZrzy10WDBq84XbSueuZz86tCCIUlXZKpuMkxBY3BTsdd\n+Ytl1/3p0TtOef+l758w4Mj9e5ZIA+J1wHHbPjL4/RDCqzdeO/6O67qXFa2jc23lJzdeNzLT\n7vid73z5RlQ97OYRmeZeu7RefSDrll/U8fCjeg//49NLpv7vr7//XwghlZdfn0PLYcOGNXhx\nOWDro48vfPz6miiaM+Yv1/6z/Pzv91rHOjTjzQeufHpqpv2tE+0OssMXtEbCWpQsh6aJsxY1\nBnbKYC2C4LhoLYT0kAVbHXl6+cMXV6Tr0tWzfnf2r0/75a8O33vrNfac/Oa//3DjXTOr0yGE\nvILWZxzWKd5Km6wzzrt0lVdSqVT7rrv16dO7T58+39iieT0/p7DFzl80C4pc/Lc+UqmSc649\n55Nzbsrc3z5a6U5N2x9z6c6ly2+Tu2zX6KAQAAAgAElEQVTBG2M++nzFW9t8+8L+5cUxl9qE\nWYsS1/HgM1vf/av5tXXViz+8ZtCPt991t9N/c163ZgUhhAP6bvHUvyalqyZfdMu/bjj3yJJU\nKkpXPHjjpUvSUQiheWeXCGSHKUjc448/HkIILXf49i6f/N87Hw295fL7Bxe22aJ9+/btWzVf\nV1QcQvjNb1wKkB0d+v+i6x0DJyytrV064ZKBF532i7MP23ObNfac+s6zf77ptg8qa0II+UXt\nBh25fK+xaPpH/7735n9OXBhCKGqx21FtPRB0vb1xzyVXPTZ25VeiunTTvwqg0Sgq73PBQZ2u\nenZKCGH0kGt//Hr/n55y5E7dv/rjTpSeO+OzEf95ZMiTozPnj7bufurR7UvX+IGsL1/QGglr\nUbIcmibOWtQY2CmDtQiC46K1ENJDFhSU7njFybv/4p43Qwi1SyfdfvU5j3Xpue/uO3To0KF9\n+/aloXLGjBnTp08fP+aVtyfOXTFqz1Mu797MNphlqVTelt1279Ond+/evbu0W++j+drKjzKN\nZlscWeBQZz2Vduj7x8Etb7v1zuHvTso8TimvoEWfI0//5Uk7r945lSrY49CfXHzm3rGX2ZRZ\nixKXX9L1qp/sd/Zfh4cQovSS8WNembTs55nDzS4nnNn83xcvSUeTXrzrhJGPdOpYPnvKtMra\nuszAfgN3TbDspsQUJO6uu+5a5ZUoqpk7Y8rcGVMSqSc35RW2u+SiY8647KHqKKpe9NHfr/zZ\n/Vt232vnb7Rr165du3aloWrW7FmzZ82e+P6b709ZkBmSSqUOHnRl15L8EELljDtOGvjkivPt\n9vvZIMdE66vikyFXD3s36Spy3Z6DbjhiysAnxi8IIcwbP/yai4an8ks2b7F82b/gvEGTJ09b\nvNLtE4vLd7nyyiOTqbVJ8wUtQdaixDk0bTysRcmyU4YMaxG5zHHRGqVWvtgR2Bgv33nxDf+q\n7xfgnkdfcOWpvRu0npxy5JHf67T9Hn327dOnd++t267rFt/EYNn8GZNnzs1vsXmnjpuvcl7n\n4s/vG/zAnC236bZ3r/126NQiqQqbNmtR4j54+t6b7nh81rJ0COGcIY8c3Gr57SI+GHrpBQ+9\ns3r/zXc/7c4rjoq1xKbOFCToiCOO2OCxTzzxRBYrYfro+35zwz8XfPG1dh1SecUH/+Tqsw/b\nPvM/F0+75cSBz2Xa3b5z7o0DPRJlvf3feSf/dUJFCKFZux7HnXjEDlt13Lx1i3r+jLbZZps1\naG05JUpXDPvr9fc88/XHRa23P+CiS87avvxrbvhB/fmC1hhYixoJh6YJshY1HnbK5DJrEazg\nuGgVQnrIps9GPXrzbQ9+Om/ZOvqUtus24MxzD9/LzaWzacr8qs6tHeLActaixNXVVIx97fWP\nJk/b5agBK9+oYPT9N/3lnyMqvsjMUqn8XQ8ecMFZ3/cgsawzBUn573//u8FjDzmkKd/BLBFV\ncz646293PfvGx+m1f+nbskefH555Vq9tv3z8YSakL23f7fDjThtw4I6xVNrU/PQHR01dli5u\ntecdd19avo7HrhKLGe+PHPbEky++Pq4qvYYNoe22PQ874ntHHLB7oYnKKl/QGgNrUePh0DQp\n1qLGxk6Z3GQtgpU5LlqZkB6yLap+f9TzI98aO27ch9PnLqysqk6l8oqbNW/TvvP223fbda++\n/fbYzrdjoMFZixqr2iXT/jf2k9nzlmzWaZtvdOmyWZnrA+JmCsg1S2dNGDH6rXHjxn02dfbi\nJYuX1oSyspblm3Xo3qPHrnvvu/s32q7SP71syqTZJdt22txeYoMdfeSRtVG03+/v/dUOrZOu\nheWidOWn4z+YOHXO4sWLl1bXNW9R1rJ1u249dtzSD6Y0XdaiTYJD04Yz5T+XXfjAxBBCccte\nd/5lUNLl8CU7ZQDWKAePi4T00LCidHVdXpEkDEiWtQgAYnP6MUfNqk7/fMgjB35x7z6A+FmL\nyHEf333OL4dNCiHkl2w97OHBSZcDsB6uGDTw82W1XY7/7UUHdUy6FqABFXx9F2AjpPKL8pOu\noYn585//nN0PPPvss7P7gU3es88+m8VPa9Wjz14dS7P4gayRtQggR7horDE4oFXxg7MqP69K\nJ10INBaLKypq632JSHmrVs4szQprETlus722CsMmhRDSVZPer6zdsdTP4MCmoa5m9rip05fW\nRTVPTw9CemjSHJ0Am5hnnnkmux8opF9fgwdn8wz07mftIKRnE7VgwYJMI5UqLC9vnmwxuckU\nJM4UNEJVs+YvXLgwhJBfPT7pWnLX/if1ePCmN0cNffeHv/xm0rUQoqjq43ffmzx13kGHfusr\nr6cX3Hjrg9tuu/03+/bp3Krp30cxEVPHPD3kiRcnTPhk9sJl9R81dNi/ytwAKhusRTFzXNTY\ntNnx571avTF6QVUI4d6nP7/+qG2Srgg7ZXJc9Pn4t94e99n8RZXr7FU75Z0Xl9ZFIYS6qvU4\ngoJGxXFRPQnpIftcJQA0BtaihnbKKf/P3n3HNXW9DQB/bhISCCMMCYi4EAHBgQwrtdRR/dW9\n68K9B62jdY+6d7GKo+6t1L2wrlepYq2LqmxEFBAIYYRICOEmN/f9I0oREZAmuZg8379ubs7l\n82jg5N7znPOckZoDrnmrU8dXAMC6detq/NPmzp2rnbCMCX4EjMOPoBbCRWO1Qd3283udG3Pp\n9rqT3+z6zrsO0+EYL5oqvHli//HzEWK5is11LJ8PUJN3bly+A5cP79nq3z1oyri+dhwWU6Ea\npOSLIT/u+bMGeyya4OegJdgX6RneF9U6BHfmxtnZP6xNkSufH111/6vQL+xxy3PG4JcyMnJq\nUrRjxZKrT0WfdJX7gCY6igchXcP7omrCIRuEtAZXCejH8OHDmQ7B2LVt2/Zjb6mVeQ8ePy99\nSRAsSxt7B0dHS3ZJdnZ2dk5Bac6YzXUMmjykDoclcLPVecRGBvsiBt29e5fpEIwdfgSMw4+A\ncbhorFYgTMauWZb30+IjP09K7D58/IhejjhbQu8oMmPLnDm3UgqrbEnTygfhB+KeJW/Y9GM9\n3CBIS0jp3QV738vQs9nV/b/lEnhTqiXYFzEN74sYZyr0X7vt5y2rNkQmZ6+d+kP/cWO7d/C3\nM8WuXt/wSxmhsIVzriYWfNIlQt8Bc9o76igehPQP74sqhHfnCGkHrhLQm0GDBjEdgrFbsGBB\nhedV8he/zF6sOebX9ez/3aCeX3vzuf/+itNUSeL962Fhv0e9klKk6NSpv1Zumudqht9E2oR9\nEUIIGTtcNFYLnDt3DgDcOnaOPXbhQfj+h5cPCuzr1a9nb1KNzOPSpUt1HZ6ROLtsYWkygCC4\nDZu1KNeAYFsO6tHh/v0HqblyAJClRy5e1XTfsn76DtRAxe86qFDTAGAmbD52UlDrpi5CazOm\ngzI62BchFB4eDgBenQYUSI/F5IhObl99agfX2s7W1tbOxlbAq3SeugEv2tM//FJGRk6Wfijs\nXYaeX9etjbeHNackITIiQVICAC269XI15QCAXJoT/eB+pkwJAF5BS1cO8sHVNAgZPEyNIKQF\nuEoAIQD6yKKld9NlAOAzcM6iEV9xPvjVJtg8jy97Lv2yR9SZDUsPRMozHyxbeGj/L2M/bIlq\nBvsiPXN3d9cccMycNQdTp05lLhxjhB8B4/AjqJ1w0Rjj9u3bV/YlTasLxOkF4nSm4jFCsvTj\nh6LzNceNvxqyIHiQwwcLiAmW2fBJs4ZPpP46ufmXo38qaTr3n/3nRN/2deTrPV4DdOWpBAC4\nVn7bf1uEJYuZgn2RnuF9US20c+fOcmdompTkiiS5n1ZxGv0X+KWMUNLB25oDqyY9tm2cKGAT\nAKAK6hI0bHaxmlY26DqmR31NA5qSngiZd/RORsKpvdFdm3sLuIwFjdB/g/dF1UTUYLEdQqic\npxsmLr4jAlwlgIyYJH7zqLn/BwB1vMftW96nyvY31kzYci8bAALm75kfINR5fMYB+yKEEELw\nbtEY0Mq7Z4/F5CgAgCBw0Zhe9e7du8bXXrhwQYuRGK1HS8Yuf5ILAMKAaXvmf1tl+4TjP845\n/hwAHL5Yvnuht87jMwIj+veVqtSt5+9eFuDAdCzGC/sihPCvoDbAL2WEto4adE2iAIBRu8MG\nOPw79SR88rCdmTKrhjOPhHYsPUnTiq0TR1/Plgtcgw6HDGYgXISQHuFKeoS0AFcJfI6WTpv8\nukTlMmTZgs71mI7FEDzc81hzMHBG1U9cABA4NWjLvRAAiD54BwIG6DAyY4J9EUIIIcBFY7XA\njBkzmA7B2F1LeaM5GDutY+UtNZr2+4EI+4Gm6YKE6wCYD9CCEjUNAG09BEwHYtSwL0IIF+3V\nBviljNCzIiUAEGx+H+F7xSGa+tpCpqxE8gDg378OgjAdNb/L9RnnpclHwzJ7DnEy13e4CCE9\nwiQ9QloQI1cCgNe0SZgV+1yolTnxGVnFalp5NQswSa8Nl9NlAECw+d1sq7XxLU/QwZrza4FK\nXZx3AwCT9NqBfREycunhS+YfTwEAnlXA3u3TmA4HIWS8OnXqxHQIxi5RrgIANtfxS6tq1Qhl\nmzZsYspOLlapihN1HJqxcDXjxBQpVVi6kVHYFyHUtWtXpkNA+KWMEOQr1QDA4TUot+Onrb8t\nXEwjZY9JGrhl3rJqPNqeeymHpG4eTR4yu5V+g0UI6RUm6RHSAlwlUGvQrxMe/xP/SlIor7SV\nKv3prWI1DQBqRYmeQjN06SUUALBY5tXf2NyMRRQAqEmx7qIyNtgXISOnEEvevHkDAGwygelY\n0CfA2jZah4vGECqiaAAgWJ+w8IhNEACgVhboKiYj08PFKiY673G8tFe7ak3hRQghZKjwSxkh\nHosgKZqmVeXO853cAJ7QasVjGRlgWWYWC8Fub8U7lSvPf3IJAJP0yGCpycKU58ni/DeFMhmY\nmFlZWtrXa9zEuU718wsGAJP0CGkBrhKoDdSkaMeKJVefflodV/cBTXQUj7GxYBMSFU0pc1IU\nlIspu8r2VEmqSKkGAJaJte6jMxbYF9U2MqlURVf38xBYWxvVPagu2Pk3gLOpAEApUmPlKi8+\n3uh+BrC2jS7gojGEGpiyk4tVVElqnoq241T9BUurJC+LVQDA5jnrPjqj0Dq4P2vynrjdhxRf\n/mRK4D0OQgD4dICMFX4pI+TEYyfK1ZQitZCiLdn//hVwLfwATgBAREZRgMd7pSbsuSwAUMpj\n9BwqQvpAq6Ijr4RfvvIoLp384NaIa1nHt13n7j16tGpoFOvQcOwSIS3AVQK1QdjCOVcTP22O\nrdB3wJz2jjqKx9gEWHEv5ysAYM/NzNXd61fZPitiF03TAMC1aqfz4IwG9kW1REbU1UMXbiUn\nv8h58wm1Oo6ePV/2UQ3VgK3X9ADrh/cKFABw8Orr9f0aMR2RMcPaNgghJnV3ttjyvICmVb/d\nz17Yruob/pyHOzXDQ3yHLrqPzijw6/ZaOezBgqN3Zm/y2DCzJ+bpkTHDp4PPCxZ50jr8UkYo\n0IqbKFfStPJgQkGwl03peQ7fzYJNyCg67VomeNiUvSSTpPQeJkL6oMiL2b5uQ0SC5GMNyMLc\ne1fC/r560r/X+Oljuhv87RAm6RHSAlwlwDhZ+qGwdxl6fl23Nt4e1pyShMiIBEkJALTo1svV\nlAMAcmlO9IP7mTIlAHgFLV05yMfQO3n9+d+39S4ffwEA8fuWPfLf6mdfWZJYkRu1bHec5rhe\nd9woUWuwL6oNki+G/LjnT7raS2RKmbB0EY6RIbgzN87O/mFtilz5/Oiq+1+FflFpX4R0BGvb\nIFSO+Pmjvx7FJCYmvs6RyGQyhYplaWlpZevg3syzuU9AgBfmALSv9UgvWHwXAB5tXvmP+8bW\ndSr7OiDfxK7Z9EBz7DrUTx/xGYfmg5fPLFm7+fSekbF/Dhga1Kejtyk+fSHjg08Hnxcs8qQL\n+KWMkHcvZ9idCAARq1a32bisjRP/3TusrwW8y/kKUeSOwmmhpclINZl9Q6IAABNTF2YiRkg3\nSGnMouCfk4qUZU8ShImtg6OZWibKKSitOUTT1IMLO4NfZG1dOc6w8/REDW4TEUIfivl98YKj\nTxt2mICrBBgRtXL80gdiALBq0mPbxokCNgEAKnlS0LDZxWraY9K29T3eru2mKemJkHlH72Sw\nefV/3rPJW8Ct7OeialPJY8cELZRSagDgmDUc8+NPvdo0rLBl2qNLv2zc91KuAgAWx2bt0b0e\nZjhjTGuwL2IWKb07fNR6hfrfmys2u+rdHzROnz2LA3Faoch7tmXVhshkKZvn2H/c2O4d/O2q\nsQcH0qJjs0eGfXptm+1LRnGx00IGR5IUEfrb4UfJOZW0sXPxGTF5eqf3l86g/4om140eflei\nAAC2qfPgyVP6d2zOreDWSJ38IHz75oPJhSQAmPCb7T+61sqgx4D05ty5c5qDrMeX/ngqhnej\nb46OjtbmVTyCzZ07V+fxGYdRo0bV7ELX0WsXd6yr3WCMEz4d1BqfUOTpfrIUAAQN5x4OxbJ/\nWoJfysjoUYrkscN+kqjUAECwzd1btR4/d5abGQcAkvZ+/9P5VABo2HHshhl9TAmCpqTH180O\n+1sEADYesw+uD2Q2eIS0h941ZdiljCLNC66gSe8Bvdu3aVHX0Y7LIgCAphQ5WZnP/o44fyY8\nVfY2kV+vw9wdswz5GxmT9AhpC33r0NrNp//m1mmKqwT0b+uoQdckCgAYtTtsgEPpbEQInzxs\nZ6bMquHMI6EdS0/StGLrxNHXs+UC16DDIYMZCNdAvTizfOaBR6Uv7Vy8v/JpVrduXUdHRz7I\nRSJRVlZWQlTkPyl5pW3ajP11UV+cE6pd2Bcx6emGiYvviADATNh87KSg1k1dhNZmTAdlXMLD\nwwEAaOXds8dichQAQBBcaztbW1s7G1sBr9I/B0wJaIUs/dCwaac0x1jbBhm5uHObFu+PUFbj\niZsgTDqOWTmjbzM9RGU8ZGk3ps3YqhkMBQATy7qtvFzt7e3t7e0teVRutlgsFqcmPU0RF2sa\nEAR36PJdQ1rZMheyQendu3eNr71w4YIWIzFmNf4UPKZuX98Vt4LWAnw6qA1qVuSpzaxdizrg\n9ohag1/KCKX9ERK8I6L05feHTnax5gGASh4zImhhEUUDAJtr6VxPkJOeKX/3x9L31yNjXayY\niBch7ZMkbBs156rmWOg3eO38oXU+UjiIIrMPr5p/5p9cACAI1pS9YV0rrcLyWcPFiwhpwdtV\nAlbNvm354o+nSUe3/HwsFFcJ6NWzIiUAEGx+HyG/7PmmvraQKSuRPAD4N0lPEKaj5ne5PuO8\nNPloWGbPIU7m+g7XQDXpv2S2ZOGG89Gal3kpT86nPKmkvXf/eZih1y7sixh35akEALhWftt/\nW2THwaUvDNi5c2e5MzRNSnJFktxPG5VDNZZ08Lbm4L3aNkFdNLVtlA26jvmgtk3Cqb3RXZtj\nbRstwqWTtUF25M75+yNK58RbOrn7t3AVCoVCe6GliTJbJBKJRC9iHsZnFAIATStv7Z9v6bBr\nXICQ0agNikWDzptXlSxcti9drgQAZWHWo7+zPtaYYFv2nb4GkwHIyHH4trYWHACwxVJnWoJP\nB7VB2MI5Vz+9yNOc9pih1yb8UkaoQbdZa1l2IXvOiUve22yew2++eGDLeb8/BQCKLEx9WVj6\nlr3PGMzQI0MSc/Ch5oAv7Lh18bBKSsCyuQ6jft6aO37M7dximlafP5LcdUZzfYWpb3jbjZAW\n7Nu3r9wZmlbmidLzROmMxGOE8pVqAODwGnDe79tt/W3hYhope0zSULaIrlXj0fbcSzkkdfNo\n8pDZrfQbrCELHLeqfrPTm3aFvcwvqaQZX+gWNGlGL39cnKFl2BcxLkauBACvaZNwDA4Zrb+e\nv9Ec9Js3QvBudTyH7zbS0XxnpizzSjK8S9ITbMGgnzaJk0Zfz07/ZdlZrG2jRRKJpGYXFr4/\nYIRqTK3KXbnliiZDz7VsOnp6cI82jSsagaBfPggP/fVAsoykaXX4pjX9/UNsOFhWQmusm/XY\nvK9l2J79l289llEVlzQgCFbj1h1GTpjoU49fYQNUM1OnTmU6BARbt26t9H36TW52VlZm+quY\nq9cfFqtpWm323Y+rv22Gu29oDT4dME6Wfqh0GyYs8sQs/FJGyPPbUbs69X12/0FSWmZ93r+7\nn3gGrZhPhGw/dVv6bgE9QbBbdQmaN7UvQ5EipBPXU2Wag44Lxla5SSvB4k9Y2On2zHAAyHl0\nAQCT9AghVIvxWARJ0TStKnee7+QG8IRWKx7LyADLMkv0CHZ7K96pXHn+k0sAmKTXpkZfDtgc\n0Cv2r/+7+/hZfHxiVt4buYIkCBbPzNzWsb67u1sr/8D2vk3xiRcZpBI1DQBtPQRMB2K8MCXA\nOKxt8znCpZNalx25KVVBAQDHtPGy7Wu8Ploogmjcpufa7Q1mTfw5TUGpFC9C7mWvCMSle9rE\n4dcf/sOSIeOyHt7/Jz4+/lVmrqxIVqwECwsLK1tHt2aerXzbetSzZDpMA9S1a1emQ0DQoEGD\nqlo0bA4A0HfY4KQT+0NP3UndPn9y0fpd/d3wblY78OmAcVjkqVbBL2WEWCYC76+6eH9wPmDY\nLP8+Q548e5GTX2Tn3KiJi4udJfZCyNCkFKsAgCDYIxpVq0SElcsoE+KykqaVRdE6Do1JOAqD\nkBZgSoBxTjx2olxNKVILKdqyTPqXa+EHcAIAIjKKAjzeu7mx57IAQCmP0XOoRoHgerXr5tWu\nm+YVTZFqFhez8nqAfRHjXM04MUVKVdW7DyNdwZQA47C2TW2ASycZF3XqlebAZ/r8j2fo3+Ja\nt1z0ve/EDQ8A4OWJKAjsruvwjBDHvG5Ap7oBnfD/FqGKmdZxGzl7s0Xh+ANPco8sWup3eGOD\nMiv8UI3h0wHjsMhTLYRfyghViGPu5BfgxHQUCOkQBTQAsLiOfFa18gQEYVqXx0pTUECrdRwa\nkzBJj5AWYEqAcYFW3ES5kqaVBxMKgr3+HWLm8N0s2ISMotOuZYLHe0PPmSQWdNUTgs3FAR79\nwL6IcT1crGKi8x7HS3u1M2U6FoSYgbVtagNcOsm46+JiACAI9qQ21dpjXth2sgnxUEnT8uzr\nADhmjRBiBKvXvJmHhi5SKV6EnHr1a1ATpuMxBPh0wDgs8oQQqg0S0vM86tsxHQVCDGtpbnLv\nDalW5ilpMKlGmp5WyzNL1ABgwnfTeXDMwS2REEKGwLvX293NI1atfpApL/MO62sBDwBEkTsK\ny2x5pSazb0gUAGBi6qLPOBFChq11cH8WQcTtPqSgcb0MMy5evHjx4sWI2ILqX/Lk6uWLFy/+\ncSNOd1EZFSceGwA0tW3Knuda+GkOIjKKyl2CtW0YpFk6Odq7Dq0uPrJoaRruSa8lr0soAGDz\nGtqbVOuJm2VSp7EpGwAoMl23kSEAAKDIEqZDQBVYOm3y+PHjV9/IYDoQ42XCb9FBwAOAzGvX\nmI7FQODTAeMqK/IEoCnyVJZV49H2XDYA3DyarLcgEUIGb860MUPH/7Bxx8GIB7FS0pDXBCNU\niR6t7QCAViuOphVWp31B3C4VTQOAVdOeuo2MUZikRwgZgnpdJtlwWABAyhJXTRs3Z+n6pOK3\na/g6BToAAKVIW7DlvObBmKakYRsXF1E0AJjXx5XHOiGTSguqDYcrkMHg1+21clhLRf6d2Zsu\n4UgcI3bv3r179+7T98TVvyT19OHdu3fv2XNEd1EZlUArLgBoatuUPa+pbQMAadcyy12CtW2Y\nxuo1byaLIDRLJ5kOxkBYcVgAQKvlVbYsVaymAQAIEx2FZMxoleTujYu/bVrz/cRxI4KGDOjX\np9/A7zRvkYUPwy7eTC9UMhshAgC1Mic+I0ssFidezWI6FqPmasoBAFJ2n+lADAQ+HTCOxyIA\n4CNFnkBT5Om9Nwh2eyseAOQ/uaSnEI0Pjhch41QkfnX7j9MhK+ePHDzsp8Vrj5+/kfRawnRQ\nCOmVx8QJAjYLAP5YvktKVdHBU2RWyJpIACAI9sCpLfQRH0Ow3D1CzFg6bfLrEpXLkGULOtdj\nOhZDwDZ1XTHh6+AdEQBAU0UJUZGpJdPdzDgA4DJ0kvmlhUUUnXpr39C7J53rCXLSM+Wqt5MW\n20/GyrralBF19dCFW8nJL3LefML6pKNnz1vilvUMwb5I65oPXj6zZO3m03tGxv45YGhQn47e\npvjrXbuRahoAVCUvmQ7EQHj3cobdiQAQsWp1m43L2jiVVhZlfS3gXc5XiCJ3FE4LLe32sbZN\nbaBZOnmzQJF57RoETWE6HEPQ2JSdq6QoUvSkSOltXnXeXSWPfU2qAcDEzJDr+DEi4c7p33Yd\nT5GSFb5Llbw8tvtI2L79HYZM/H5QIH5j6wD9OuHxP/GvJIWVzlmhVelPb2mmqqgVWOeASSkl\nKgCgKRnTgRgOfDpglhOPnShXa4o8lR124Fr4AZwAgIiMogAPbtlLsMiTjuB4EUIaNCVPevpX\n0tO/ju8FSwcXX18fX19fH+9mltUrwYXQ54tr6bdmWodpobeKc/4MnsOeN3eyl7Di/YCyYu/s\n3bLtaSEJAO4DlnV34FfYzDBgkh4hBmhWCRSraeXVLMDEmJY06DZrLcsuZM858fuVWjn85osH\ntpz3+1MAoMjC1Jf/VlOx9xkz1sVK34EaruSLIT/u+ZP+9PUBeBfKFOyLtO7cuXMAAFbNvm35\n4o+nSUe3/Hws1MTWwdHR0dHanFv5tXPnztVHiAYnPj7+w5Ml+S/j46uxOJtWSTLjTuYWa15o\nOTJjVa/LJJv9P0lUak1tG/dWrcfPnaWZNtcp0OHy+VRNbZsNM/qYEgTWtqk9XE05N98uncQk\nvRZ0drF6+DQXAPYejwsdX/WU0MSTuzV3UFZNuuk8OGMSdXTx0t+fVtlMTUlvHt0Ql5y9fcFA\nDiYCtEdNinasWHL1qeiTrnIfgDPD+iIAACAASURBVFuhM4Z88+BWQQkAsLh1mY7FQODTAeMC\nrbiJcqWmyFOwl03peU2RJxlFp13LBA+bspdgkSddwPEiZORWLpwVHR0TExOd8FJElflDKMxO\nibicEnH5FMHmN23Z2s/Pz9fHt2k9awZDRUgrCgsrLmgv+GLc8mKT5XuuSZ/fXDDp75YBHb5o\n5ebo4ODg4GBGFGeLRKKsrH/uXL4d87YEo0+/6YtHtNRj4AzAJD1CWoSrBBjm+e2oXZ36Prv/\nICktsz6P/e/5oBXziZDtp25L3y2gJwh2qy5B86b2ZShSA0RK7y7Y+94TF5vNrqR9WVwCR0O1\nC/sixuzbt6/cGZpW5onS80S4x7CuVDh8KYrcNjfy034Oz7KtdgIyeljb5jOFSye1q9lwX3h6\nFQDSLq441mLrsC8cK2ksfnxi2dm3xTx8gjz0EZ9xSL+2pTRDT7Atv/qmg5trU5PoY7/d+Tdn\nzOE3a1HPPDqjCABE9w8tON58/TD8CLQmbOGcq4kFVbcrQ+g7YE77yv5ekO6USBK3LfpVkzkw\ns+3MdDgGAp8OGIdFnmoDHC9CqOUXHVp+0QEAKHleXExsTEx0TExMwotM5bu/C5qSJ/1zN+mf\nu8cALB1d/Hz9fH19W3t7WOIEUvR5CgoKqrINTcmfRl5+Gnn5Yw1YbEFR3JV5c640GjB7Wluh\nVgOsRTBJj5B24CqBWoJlIvD+qov3B+cDhs3y7zPkybMXOflFds6Nmri42FlWMW8dfZL4XQcV\nahoAzITNx04Kat3URWhtxnRQxgj7IoRqxnfSUKZDMBxY2+azg0sntc7afUpn4Z0bYjlNk7+v\nnpLcfcSwvl1dP6jRVyx+cfV82KFLD1SarJj9N1M9cN2MdlCK1CU7b2qOBW7tZ/80taWjGQAk\ni8+WbWbCb7Fq++F7YavWHH8MAIknlyb2O+JuhuMkWiBLPxT2LkPPr+vWxtvDmlOSEBmRICkB\ngBbdemn2PpdLc6If3M+UKQHAK2jpykE+WNVYi44fP16tduqSrLTUZ4/+yVe+nTnnORInLyID\ngUWeagMcL0KoFJtv16LN1y3afA0AVLEkITYmJiYmOjomIfk1+S5hXyhKuRWeciv8BItj4day\n9fqlsxkNGSHGqClpYqIUAIiCijcvMwz48ImQduAqgdqPY+7kF+DEdBQG68pTCQBwrfy2/7bI\njoP1yBiDfRGzpk6dynQIRsfZ2bnsy9evXwOAiaXQQVDdmVgWdk4tAvuNaOeg/eCMGNa2+Yzg\n0kndYE1YPT1m6noRSdE09Sj8wOPLh6zt6zoIhQ4ODmZQLBZnZ2dnZ+UUqN8NxrG5wh9WTcBb\nKG3JvL4tT6kGAJ7Ab9PamXUquTslOAFDf57+euLmOyKaku+8mB4yqLH+AjVcSQdvaw6smvTY\ntnGigE0AgCqoS9Cw2cVqWtmg65ge9TUNaEp6ImTe0TsZCaf2Rndt7l3tb3BUpeom6d/Hd+jw\no+GuVdIzfDpgHBZ5qg1wvAihCrHNbLz8Ar38AgcDUAppYmxMTExMTEx03PN0UlP2UiVLiLoD\ngEl6hAwZJukR0gJcJcC4ixcvAoClS2AHr+ouP3py9XI6SXHMmnTr7KnL0IxFjFwJAF7TJuET\nF4OwL2Jc16643kLftm/fXvZl7969AcCp45zQ8W4MRYTewto2DMKlk7WBmTDgl/XTVyzbpvkW\npmm1RJwhEWckxFTQmCtwm7JkSTvH8kvtUY3dO5+mOQicE1xZhv6dwIkjNt/ZAACZ1x8CJum1\n4a/nbzQH/eaNELy71+Tw3UY6mu/MlGVeSYZ3SXqCLRj00yZx0ujr2em/LDt7OGQwMxEjAACw\ncf1qycofzFj4eKAd+HRQG2CRJ8bheBFCVWLzLGxsrG1srG1sbKxMM3PlKqYjQug/uXDhAtMh\nfDYwSY+QFuAqAcbt3r0bABr2dq9+kj719OG9oiITfvNunVfrMjRjUaKmAaCth4DpQIwa9kUI\noc8C1rbRNVw6WUtYunRYu8crPOz38D9uaebGfciE79i+W4/BQ3s6cKu7OSuqjj+lJQBAsHhj\nPG2q054rCBRyQ8QkRUojAQbpODqj8KxICQAEm99H+N7sk6a+tpApK5E8AOhYepIgTEfN73J9\nxnlp8tGwzJ5DnMz1Ha6B6tatW7Xbsu2dG7o0adqqmQvO30WGB4s8MQvHixCqGE2mP0+IiYmJ\niY2Ji03IqygxTxA4tQUhA4dJeoS0AFcJfI40hYNUJS+ZDsRAuJpxYoqUKprpOIwb9kUIDR8+\nHAAEbnWYDgShzwwundQRlol9rxHBPYPGvUqMj49PzMqVymQyJXAsLCwEdeq6uzfzaNaYj//t\nOpBNqgGAzWtgWe18o6MJW0xSFJmly7iMiKZEB4fXgPP+J2DrbwsX00jZY5IGbpm3rBqPtude\nyiGpm0eTh8zGKtPaMWXKFKZDQKi2wCJPDMLxIoRK0bQiLTFeU9c+Ji5JqqA+bEMQRJ36bi1a\ntGjevHmLFs31HyRCupAevmT+8RQA4FkF7N0+jelwahFM0iOkBbhKQP/i4+M/PFmS/zI+voKb\nm/JolSQz7mRuseaFliMzVj1crGKi8x7HS3u1M2U6FuOFfdHnaOm0ya9LVC5Dli3oXI/pWAzB\noEG4/LEWoiVZr1LSswtlMiXF4ltYWDvUa9q4HhfzkjqDSydrG4Jl1riZT+NmPkwHYkTM2QSp\notXKXBqgmr/aIiUFAATLTKeBGQ8eiyApmqbLrwnjO7kBPKHViscyMqBsJoxgt7fincqV5z+5\nBIBJeoSQ/mCRJ13D8SKEUmIfafLysfEvCsmKE/N2zk1btGihyc07YsFLZHAUYsmbN28AgE0m\nMB1L7YJJeoS0AFcJ6N/cuXM/PCmK3DY38tN+Ds8S917VjtbB/VmT98TtPqT48idTAof5mYF9\n0WdHrcyJz8gqVtPKq1mASXr9omjAlKSuiZMe/nHl6p9//5P7QaFvNtfSwz+wR/ceX7Woz0hs\nhg2XTiL0hSX3ikShVkmu5iu62ladEiAL74lJCgBMzFvqPjqj4MRjJ8rVlCK1kKLL1jPgWvgB\nnACAiIyiAI/3BqDtuSwAUMpj9BwqQnojfv7or0cxiYmJr3MkMplMoWJZWlpa2Tq4N/Ns7hMQ\n4IWPA8gw4XgRQjPmL//wJEEQtvVcW7zV3FHA039gCOmNnX8DOJsKAJQiNVau8uJjbvot/I9A\nSAtwlcDny3fSUKZDMBD8ur1WDnuw4Oid2Zs8Nszsic9djMC+qNagXyc8/if+laRQXmkrVfrT\nW8VqGgDUihI9hWZMivNEmZKSJq4Ny56Uvrgbuuf081dpBcVgW7fxl516jBjQ3hRrTWsbRYpO\nbPs1LCKepiuuWEORhbF3L8fevXyq3cCfpgc5m+Ju3AghberSweHK2VQAOLElouvSrlW2jz18\nWHNg17rqxqg6Aq24iXIlTSsPJhQEe9mUnufw3SzYhIyi065lgodN2UsyK1pYhqqvoKBAc0AQ\nJgIBVsmqXSRJEaG/HX6UnFPufFFhgSgzPSnm0cWTh+xcfEZMnt7p/b8LhAwAjhchVBbPpmHb\nL3yat2jRonlzJxssL4GMha3X9ADrh/cKFABw8Orr9f0aMR1RbYFJeoS0AFcJ6J+zs3PZl69f\nvwYAE0uhQ7XLAVnYObUI7DeinYP2gzNWzQcvn1mydvPpPSNj/xwwNKhPR29TXKaqX9gX1QZq\nUrRjxZKrT0WfdJX7gCY6isc45Ty7sWP/749TxCb8lqeOryg9nxd1aNLy06T6bdo4LyPx4uHE\nP+8+C934vQ0H+yutociMX6b/FJlRVPYky4QvdBASCok47w1VJnOfcvfUTy8yftk6px4X8/To\ns3T9+nUt/jRrz3b+9fhVt0NVadh/iMm59Uqazo3avuaUYM6AgEpuS0WPji+/mqE5/t8wFz2F\naOi8eznD7kQAiFi1us3GZW2cSn+xWV8LeJfzFaLIHYXTQktvWdVk9g2JAgBMTPEjqKGRI0dq\nDrjmrTT3P+vWravxT6uwdh2qmbhzmxbvj1B+ZOZiqbyUqM1zxz8bs3JG32b6CcwYpKWlfVJ7\ngsXmmZqZ8kxNzc24OJFXe3C8CKFSZEF6fLwZi0UAgNrT09kOb/6RcSC4MzfOzv5hbYpc+fzo\nqvtfhX5hj5NUADBJj5BW4CoB/du+fXvZl7179wYAp45zQse7MRSRsTt37hwAgFWzb1u++ONp\n0tEtPx8LNbF1cHR0dLQ2r2LmBA4AaQv2RbVB2MI5VxMLPukSoe+AOe0ddRSPERLd3Tdt/fkP\nh0Fp6s2qdedKM/Sl3qTcmLOh5e75HfQUnxE4//MCTYaeIIimAV17dO7o5VLP3tZSMw5Hq4rF\nWVnP7kdcPHv5VSEJAHLRvQWLzx1cN4DRqBGqodDQUC3+NI+pzTBJrxVcQbt5nZ1XXE8HgHuH\n1ox70GHKyD7NPd7P/tJUnujV7fCThy7e00wesvEY3d8R//+1o16XSTb7f5Ko1KQscdW0ce6t\nWo+fO8vNjAMAnQIdLp9PpRRpC7ac3zCjjylB0JQ0bOPiIooGAPP6WMxAa+7evct0CAiyI3fO\n3x9RWlvI0sndv4WrUCgU2gstTZTZIpFIJHoR8zA+oxAAaFp5a/98S4dd4wKEjEZtOIKDg2t2\nIcHi1qnrVN+5UUu/tl9+6e9oaaLdwIwKjhch1LKpc0JyBknTAEDTanFqgjg14dblMwAgcGzk\n6enl5eXl6enlWg+LqSBDZir0X7vt5y2rNkQmZ6+d+kP/cWO7d/C3M/rCipikR0gLcJUAQvv2\n7St3hqaVeaL0PFE6I/EYJ+yLGCdLPxT2LkPPr+vWxtvDmlOSEBmRICkBgBbdermacgBALs2J\nfnA/U6YEAK+gpSsH+eAqAm2hFCkLN12scKFS7pNtycUqAGBxBAMnT/Gtx429d+HQhScAIP77\n1zvSLwOrXYsFVaIw7fCBWAkAsE3qjF+yuker8hNQCI6ZQ32XLvVdvund6+ja+ScfiQFAEn/w\nUOr/Rja0ZCBiI4A74CLj5DdtQ+/0yRcSCgAgPyFi1YIIgm1qb6HWvDtv1rS0tExZmdmKPEHL\n5cv7MBOrIWKbuq6Y8HXwjggAoKmihKjI1JLpmiS9y9BJ5pcWFlF06q19Q++edK4nyEnPlKve\nfjTtJ+MeTMhwqFW5K7dc0WTouZZNR08P7tGmcUU3/vTLB+Ghvx5IlpE0rQ7ftKa/fwjWeWIW\nrSZzMl7lZLyKuh9x8Dfzjt+NGz/4Gwt8bKsRHC9CaOUv29WkNDk+LiY2Li42Nj4hpVD59s5H\nKnp1T/Tq3s1wADC1ruvp5anJ2bs3rovfA8jAhIeHA4BXpwEF0mMxOaKT21ef2sG1trO1tbWz\nsRXwKv2SNeA5W5ikR0gLcJUA44YPHw4AArc6TAeCEJOwL2Jc0sHbmgOrJj22bZwoYBMAoArq\nEjRsdrGaVjboOqZHfU0DmpKeCJl39E5Gwqm90V2be2N6WEteX96eQ1IAwGJb9Z8241v/5qVv\nRR2M1Ry4BS0b/j8XAGjm5SeUT9l4I4Om1SfOpAaOacpIzAYmfn8EABAEMWhVSA8P60pasrj2\nwxdvzZ84+v+y5QDw54H4kT+30U+QxgN3wNWDtm3bfuwttTLvwePnpS8JgmVpY+/g6GjJLsnO\nzs7OKVC9m1HE5joGTR5Sh8MSuNnqPGKjQbD449aE2u5Yf+BatOYMTSnE0rfvxiW/lxiwce+0\nYNHUhka/jEO7GnSbtZZlF7LnnLjkvdJNHH7zxQNbzvv9KQBQZGHqy8LSt+x9xox1sdJ3oIbC\n3d1dc8Axe7s33NSpU5kLBwEAZEduSlVQAMAxbbxs+xqvj97zE43b9Fy7vcGsiT+nKSiV4kXI\nvewVgVhqSws0X9NK2YvHMeVvhwCAIAj6/dm9JnwX35b2cml+Tk5Obp5UM/eXpopuhm15Fp+1\nfflw3E8dIVQzLK7ArVWAW6uA/gC0WpGWlBAXFxsbGxsXl5hbpNS0URRkRd3Nirr7fwDANrNx\n9/T09Go+cmAPRgNHSGt27txZ7gxNk5JckST30/YMNTDl70UQQjWT9keIZpWAxveHTnax5gGA\nSh4zImihJg3G5lqWWyXQ99cjOAaBDMOVK1dqfG3Xrpgh1hrsi5i1ddSgaxIFAIzaHTbA4d96\nueGTh+3MlFk1nHkktGPpSZpWbJ04+nq2XOAadDhkMAPhGqLfxw85KpYDgM8PO5Z2LrM+mFaN\nHfhdrpIiCGLd8dMe/LcTVck3dwcOXwcAfGFQ2B78FLRg4dCB0UWkZf2RR7cNrE77wld7g344\nDwBc8xanjq/ScXTGpZo74AIAQZh0xB1wtU0lf/HL7MV302UAwK/r2f+7QT2/9uZzWaUNaKok\n8f71sLDfo15JAYDv1GblpnmuZjiNXvtEsXfPXrh460G8gqrgz6FOY+8evfv27uRjgmkX3VAr\npc/uP0hKy2zZL8ijzG/4vWMh20/dlr67HSUIdqsuQfOmDuDjJtDIgIQHB+1MKwSANnN3LWpX\nddJddGflxA0PAMCq4eQjod11Hp9xoBSvVkyZE5WnAACCzff7plfnts3t7esI7YUWHGWOWCwW\ni5Of3DkXHilRUgTB7ha8YXIXVwCg1WTW86fXLp0882eC5ke5BW3aOLgJk/+YzxOOFyFUKbU4\nNSlWIy4uI09e7u0LFy4wEhZCWqfZsLhmDPgPAYcAENIOXCWAjBw+ONUS2Bcx61mREgAINr+P\n8L0dbZv62kKmrETyAODfJD1BmI6a3+X6jPPS5KNhmT2HOJnrO1xDFPmmBAAIgjuzo1PZ84qC\nG7lKCgC4VoGlGXoA4Fq1szNh5SnV5Jt7AJik14LnxUoAqNf7o2uLy7FsOIJLXCBpWln8vOrW\nqNpwB1ym0UcWLdVk6H0Gzlk04qsPi1USbJ7Hlz2Xftkj6syGpQci5ZkPli08tP+XsVjWUusc\nvdpN8Wo3mZK/TIhLyciVyWTFpNrcwtLKRujm6eVkY8p0gAaOZSLw/qqL9wfnA4bN8u8z5Mmz\nFzn5RXbOjZq4uNhZYmEhZGiui4sBgCDYk9pU6xtW2HayCfFQSdPy7OsAmKTXjtNLftZk6Ou3\nGzZ3cv8G79UzMHFwbuTg3KiFT5veQ4df2rd+79Xnf2z9kS3YM6GNPcHiOrn7j3b3D/TeNmvL\nNZqmX5xcJx24U4BF7z8RjhchVCmWsKGHsKFHx+4DyMLsu9cunDh1JePd2nqEDAkWeaoQJukR\n0hrPb0ft6tRXs0qgPu/fSomeQSvmExWuEujLUKSft7S0NO3+wAYNGmj3ByLELOyLGJSvVAMA\nh9egXIrF1t8WLqaRssckDdwyb1k1Hm3PvZRDUjePJg+ZjTuwakE2qQYAjlmjcmNnkmd/ag6s\nPbuUu8SZy8lTkpTSqItraZHml5/vzK+q4TsE15HHSlNQQGCVaa3BHXAZJ4nfciZZCgB1vMct\nHflVpW0Jn/5zfkh8vuVetjT53Ia/e87HqRK6QbD5Ll5+Ll5Mx4HK4Jg7+QU4Vd0Ooc/W6xIK\nANi8hvYmrCobAwDLpE5jU3ZSsYoica9u7ZCm7DmSIAEAgevALXOGVJJeZ5s59Jm2kcoccyA6\n//L6+YGHfiud2tvkm2nf33685Z9cihSdyyke5VjtG12EEKoKJc+NjY6Jfvbs2bNniWk5aqx7\njQwXztmqECbpEdImXCWgB8HBwdr9gQZcLAUZLeyLmMJjESRF07Sq3Hm+kxvAE1qteCwjA8r+\nnxPs9la8U7ny/CeXADBJrwVmLEKhpml1+Y8g6WKm5qBx7/rl3iLfPgNjYlI7fCy4t6UlhYmF\n4FWtrbVptTyrRA0AXPMPOy1UQ7gDLuMe7nmsORg449vqtA+cGrTlXggARB+8AwEDdBgZQggh\nPbLisHKVFK0uX7u4EsVqGgCAMNFVTEYmatcdzcHABd9VYwE80WP28AMjt1CkePvJl1tGNS19\nI2Dy11smnQGAmEd50BOT9Aih/4RSFCTEREc/exYdHR2XkkVVlJi3qefm6+Pj4+uj//AQQvqE\nSXqE9ARXCSBUztJpk1+XqFyGLFtQdt9opGPYF+mUE4+dKFdTitRCirYsMwjEtfADOAEAERlF\nAR7vZcvsuSwAUMpj9ByqoWpsxpEUklTJqwySqsd9tzKbVh599UZz2Lfxe5s70OriFIUKAFgm\ndfQbqcHq8aXw9h/p6efPqftPr86SsYL4PZpN04Xt+ug6NuMRdeqV5sBn+vyPZ+jf4lq3XPS9\nr2YH3JcnoiAQi+tqweV0GQAQbH4322qVUucJOlhzfi1QqYvzbgBgkl7nKLKEzeUxHQVCOvep\nVegIFptnambKMzU1N+OycP6iFjQ2ZecqKYoUPSlSeptXnXdXyWNfk2oAMDFz0310RuFCSiEA\nsDiCPnXMqtOeZ91ZyN0mJqnMaydg1MLS86Z2XQDOAID89SdMuUA1huNFyPCoycLncW9XzMc9\nf01WlJhn86w9W7X28fX19fVpJLTQf5AIIf3DJD1CCCEGqJU58RlZxWpaeTUL8KELGYpAK26i\nXEnTyoMJBcFeNqXnOXw3CzYho+i0a5ngYVP2kkyS0nuYhqxLXfOoQpKm1aHXMtb2fLubSd7T\n30SkZkP6AE/+e3e/0ueHStQ0APAsq7uHOqpc01FT7W4szJP83/Iz3yzt37zyxhSZtWn1bQAg\n2OajhrvoJUCjgDvgMi69hAIAFsu8+jkuMxZRAKAmxbqLymjRKslfEZHR0TGx8ckFRUVyebGS\nojXFtMjCh2ciCtt1CKxviYtWdUguzcnMylNWu3yrm0cz3PFZK2pchY5gcevUdarv3KilX9sv\nv/R3xD+QmursYvXwaS4A7D0eFzq+6rpZiSd3a3arsWrSTefBGYc0zTeyiX31L7HlsMQkpSx6\nVvYk2+TtPRWZT2oxPFQhHC9ChmfZvOmxCa8U6gruhQiCsG/oqVk036q5iymB90DISBntRGpM\n0iOEPjNLlixhOgRUCfp1wuN/4l9JCiudXU6r0p/e0tTxUytK9BQaQrrn3csZdicCQMSq1W02\nLmvjVFoIkfW1gHc5XyGK3FE4LbR0kb2azL4hUQCAiSmmJ7XDc0xrmH8TAOL3zj9ht6i7n1vx\n64fr1kZo3nXq8l3ZxoWpd5b8fFVzbNfGT7+RGiwO32vd7O4T1oRHHViwNGfkyO96udhW/JRV\n+OrB5jUhTwpJAPAfubIN7r6hPbgDLuMs2IRERVPKnBQF5WLKrrI9VZIqUqoBgGVirfvojEvC\nndO/7TqeIq04p0KVvDy2+0jYvv0dhkz8flAgJoa1i1bln96789LtqPzCT7vhP3r2vCV+GIyi\n1WROxqucjFdR9yMO/mbe8btx4wd/Y4EfyqdrNtwXnl4FgLSLK4612Drsi8r2lBE/PrHs7EvN\nsU+Qhz7iMwLWHFaOkqIUaVKKFlTjd5imCl8pVABAvL/jAEWKNAdcG5yzUmM4XoSM1+O4l+XO\ncPh1Wrb28fH18fHxca5e8S2EDAlOpC6FSXqEPs3WrVu1+wO1vsO6wfPzwzxKLaUmRTtWLLn6\nVPRJV7kPaKKjeAwb9kW1U70uk2z2/yRRqUlZ4qpp49xbtR4/d5abGQcAOgU6XD6fSinSFmw5\nv2FGH1OCoClp2MbFRRQNAOb1uzIdu4Gw9pzczvavu/kKmio8smbuUYKg363bI1imE75rqDku\nFv+xbv3Fp88zNHu/EQT7uyGNmIrZ8AjbTtz8k8XiTSeiwg/988fvrb7u6utRXyh0cBDas8k3\n2eJscXZ20tO/7/zzQvP/79J58sR2lmLxRxcQC4XVWg6OSuEOuIwLsOJezlcAwJ6bmau716+y\nfVbELk1nxbVqp/PgjEnU0cVLf39aZTM1Jb15dENccvb2BQM5mIXUEpoq2jw9+Ga6rAbX8qo1\nvwhVrW3btgCglL14HJPz4btEmdskDRO+i29Le7k0PycnJzdPqil+QFNFN8O2PIvP2r58OC7v\n+1TW7lM6C+/cEMtpmvx99ZTk7iOG9e3q6lB+R/Ni8Yur58MOXXqgomkAMLP/ZqoHztnSjg42\nvJNiOU2TO6Ny5/hXvZ4+L3q3Zqkr1+q9Olty0R+aAyt3qwouQ1XB8SKEAIAg2E5Nmvv4+vj4\n+rZyb4C3ncho4UTqsjBJj9CnuXbtmnZ/ICbGkMEIWzjnamLBJ10i9B0wp31liwnQx2BfVDux\nTV1XTPg6eEcEANBUUUJUZGrJdE2S3mXoJPNLC4soOvXWvqF3TzrXE+SkZ8pVas2F7SdXXf0S\nVQdBmH6/5vsX34do6tuXHXp2H7i4Bf9tArKk4GFU0uvStxp9O7+DwBhraunCpEmTNAccDgEq\noNUlTyLOP4mo7JKUG7+Nv1FZA81kalR9uAMu4/73bb3Lx18AQPy+ZY/8t/rZV7Y4RpEbtWx3\nnOa4XvdO+ojPOKRf21KaoSfYll9908HNtalJ9LHf7vybIeDwm7WoZx6dUQQAovuHFhxvvn4Y\nrl7VjtfXVpfN0JvwBUJby2qOsJlgJlhLFixYQClerZgyR/OSYPP9vunVuW1ze/s6QnuhBUeZ\nIxaLxeLkJ3fOhUdKlJSqONXWP3hBF1cAoNVk1vOn1y6dPPNnAgDkPj256MSXGwdjwuxTsSas\nnh4zdb2IpGiaehR+4PHlQ9b2dR2EQgcHBzMoFouzs7Ozs3IK1O/uWtlc4Q+rJuBMFW3pNLjx\nydBYAPh745qEPWs9Ki3dpJK/2Lj2rua4XvcyGwDR5NlNtzWH/i1tPrwQVQnHi5CRa9Ohh6+P\nT2ufVo5WWEAOGTucSF0OJukRQghpgSz9UNi7Jy5+Xbc23h7WnJKEyIgESQkAtOjWy9WUAwBy\naU70g/uZMiUAeAUtXTnIx+BnwyFj06DbrLUsu5A958Ql7202z+E3Xzyw5bzfnwIARRamviws\nfcveZ8xYF1yQoTX8uoG/cpED+wAAIABJREFUhlrt2rY3IjpVM9zJ4li06zP+x+EtPmxMEBzf\nbhMWTmqj9zANVlZWFtMhINwBl3kN+owXnFgopdQUKV4dPHvMjz/1atOwwpZpjy79snFfNkkB\nAItjM7GHs34jNViUInXJzpuaY4Fb+9k/TW3paAYAyeKzZZuZ8Fus2n74XtiqNccfA0DiyaWJ\n/Y64m+E4iRb838lkzYFHx0ETR/R1rWPBbDxG6/SSn6PyFABQv92wuZP7NxCUzQ2YODg3cnBu\n1MKnTe+hwy/tW7/36vM/tv7IFuyZ0MaeYHGd3P1Hu/sHem+bteUaTdMvTq6TDtxZnYLhqCwz\nYcAv66evWLZN82hM02qJOEMizkiIqaAxV+A2ZcmSdo7ll9qjGqvbYabrnsnJxSpVcfKiyQvG\nzAzu4deowpYZT69vDdkVJ1cCAJsrnNbn7Rd3YVbSpYObTqW8AQCuRet+dcz0FbvhwPEiZOTS\nw5ckRKUkRN05ZRWwd/s0psNBiEk4kfpD+PCJ0KcZPnw40yEgVBslHXw7r9yqSY9tGydqxm5U\nQV2Chs0uVtPKBl3H9Hhb65WmpCdC5h29k5Fwam901+beApxDWhPYF9Vmnt+O2tWp77P7D5LS\nMuvz/t2K2DNoxXwiZPup29J3C+gJgt2qS9C8qX0ZitRg8eu2mrFyyxSJKC07j21h71zPnvv+\nmjwO3yUg0MqpkVubgK+bOWPaQJu4XOzVmYc74DKOw/daOsJn5oFHAKAqTt298vszLt5f+TSr\nW7euo6MjH+QikSgrKyshKvKflLzSq/xG/uyB6WEtyby+LU+pBgCewG/T2pl1OB9flUpwAob+\nPP31xM13RDQl33kxPWRQY/0Fargi35AAYOMVtG7mYEyyMEWasudIggQABK4Dt8wZUkm6i23m\n0GfaRipzzIHo/Mvr5wce+s2D/7Y7avLNtO9vP97yTy5Fis7lFI/C/PGns3TpsHaPV3jY7+F/\n3NIkID9kwnds363H4KE9HbjsChugmmGZCBctGDhxye8kTZOFSTuX/3DMycO/RROhUCgUCvmg\nEOeIc8Q5KbGPYtPfZpEJgugybbmrKRsA5KI9wydfLK3O9fUP07BDqwEcL0JGTiGWvHnzBgDY\nZALTsSDEJJxIXSGD/YchpCODBg1iOgSEaqO/nr/RHPSbN6J0dQWH7zbS0XxnpizzSjK8e+gi\n2IJBP20SJ42+np3+y7Kzh0MGMxPxZw77olqOZSLw/qqL9wfnA4bN8u8z5MmzFzn5RXbOjZq4\nuNhVWnER/Rc8G8emNhXnJi2ch8+fredwjMWpU6eYDgHhDri1QpP+S2ZLFm44H615mZfy5HzK\nk0rae/eft6ivi15CMwr3zqdpDgLnBFeWoX8ncOKIzXc2AEDm9YeASXpteKNSA0D773tiQotB\nUbvuaA4GLviuGgtSiR6zhx8YuYUixdtPvtwyqmnpGwGTv94y6QwAxDzKg56YpK8Jlol9rxHB\nPYPGvUqMj49PzMqVymQyJXAsLCwEdeq6uzfzaNaYz8I/F52wbTUsdJ567oZTBSo1ABRmJtzM\n/GiejGDxukxYObWjk+alWi0vzdC7dZ/xQ1uhHgI2PDhehIycnX8DOJsKAJQiNVau8uJjSg4Z\nKZxIXSHsERBCCGnBsyIlABBsfh/he6M2TX1tIVNWInkA0LH0JEGYjprf5fqM89Lko2GZPYc4\nmes7XISYwzF38gtwYjoKhJBhwx1wa4XAcavqNzu9aVfYy/ySSprxhW5Bk2b08sdC99r0p7QE\nAAgWb4xntTYP5goChdwQMUmR0kgAnAqpBQ147KRiVUMchmbUhZRCAGBxBH2qV6CbZ91ZyN0m\nJqnMaydg1MLS86Z2XQDOAID8tVxHoRoJgmXWuJlP42Y+TAdidOoGDN+1y2ffb/uuP3xOvbv5\n+ZCTZ7tRk6YGNLYsd57v6NZr8Jigb7x0HKbBwvEiZORsvaYHWD+8V6AAgINXX6/v14jpiBBi\nBk6krhA+LyGEENKCfKUaADi8Bpz3Z//b+tvCxTRS9pikgVvmLavGo+25l3JI6ubR5CGzq94u\nFyGEEELVhzvg1hKNvhywOaBX7F//d/fxs/j4xKy8N3IFSRAsnpm5rWN9d3e3Vv6B7X2b4par\nWpdNqgGAzWtgWe3/XEcTtpikKDJLl3EZkfZCflLqm2fZxd9Y85iOxXillVAAwDKxr/4lthyW\nmKSURc/KnmSbvF09TOaTWgzPGFy8eBEALF0CO3hVt1bNk6uX00mKY9akW2dPXYZmdEzreE5d\ntHGMOPn2vcfx8fGvMnJkRbJiJVhaWgns6np4erZq85VPkzrlrjKz6/fr9qGNne3xi/q/wPEi\nZOwI7syNs7N/WJsiVz4/uur+V6Ff2JsyHRNCDMCJ1BXCJD1CCCEt4LEIkqJpWlXuPN/JDeAJ\nrVY8lpEBZct6E+z2VrxTufL8J5cA8KELIYSMSIlcxjGzwKykruEOuLUFwfVq182rXTfNK5oi\n1Swu/v7rmjmbIFW0WplLA1TzP1ukpACAYFVrwTGqUsA4n91LIh5tPUeHjsbfd6ZYc1g5SopS\npEkpWlCNfoemCl8pVABAECZlz1OkSHPAtTGp4DL0cbt37waAhr3dq5+kTz19eK+oyITfvFvn\n1boMzUiZCV2/7eP6bZ/qtmfz6rtgpZv/DMeLEDIV+q/d9vOWVRsik7PXTv2h/7ix3Tv425ni\nIxgyLjiRukKYpEdI+8TPH/31KCYxMfF1jkQmkylULEtLSytbB/dmns19AgK86jEdIELa58Rj\nJ8rVlCK1kKLLftFyLfwATgBAREZRgMd7e2/bc1kAoJRXtKYPaYNMKlV9vJRfOQJraxw/1S65\nNCczK09Z7Y/AzaMZ5mz+u1GjRtXsQtfRaxd3rKvdYIwTWVxYzDYXcCsqXEZT/1wLO3PzcVr6\na5WJdXPfgA7d+wW44iboOoQ74NZCBBsnROjDF5bcKxKFWiW5mq/oalv1WiWy8J6YpADAxLyl\n7qMzCnW8Zw5y++dE0pkF+xosHdORR2BXw4AONryTYjlNkzujcuf4V72ePi96t0JNAwDXqm3Z\n83LRH5oDK3crXcSJyiLVNACoSl4yHQhCWoPjRQiFh4cDgFenAQXSYzE5opPbV5/awbW2s7W1\ntbOxFfAqHQyaO3euvsJESLdwInWFMEmPkDZJkiJCfzv8KDmn3PmiwgJRZnpSzKOLJw/ZufiM\nmDy9k0e1anog9LkItOImypU0rTyYUBDs9e+vN4fvZsEmZBSddi0T3v+1zyQpvYdpFDKirh66\ncCs5+UXOm8p2wC3n6Nnz1Z/GiCpBq/JP79156XZUfuEn/P8DfgRaIpFIanZhYQn2SP9J5rOb\n567efvT4Wa5c1XLhnpVfCMs1IKWxaxevffRK+u6E6N6Ns3//3wW/nlMWTvgfboWuU7gDLjJC\nXTo4XDmbCgAntkR0Xdq1yvaxhw9rDuxaV90YVQ8xdPVa8Y9zIs79OvphxMjhfTxdGjs72uLN\njj51Gtz4ZGgsAPy9cU3CnrUeltxKGqvkLzauvas5rte9+79v0OTZTbc1h/4tcRyjCvHx8R+e\nLMl/GR9fjVtNWiXJjDuZW6x5oeXIEGIOjhchtHPnznJnaJqU5IokuSJG4kGIETiRukKYpEdI\na+LObVq8P6LKRZN5KVGb545/NmbljL7N9BMYQnrg3csZdicCQMSq1W02LmvjVLqvLetrAe9y\nvkIUuaNwWmhpDlJNZt+QKADAxNSFmYgNVPLFkB/3/ElXe/V2KRNMkWkDTRVtnh58M11Wg2t5\n+BEwgcO3tbXgAICtGd4V1xBNFR5bv+T3ey8qaaNW5q78fumTgvIzV2iaenhx648lrE3BnXUZ\nI0L6lpaW9kntCRabZ2pmyjM1NTfjYm0DbWjYf4jJufVKms6N2r7mlGDOgIBKcsOiR8eXX83Q\nHP9vGN6aag2bW69Xvy8jfr1alPFkx7onAECw2NX5BT979qzOgzMOdTvMdN0zOblYpSpOXjR5\nwZiZwT38GlXYMuPp9a0hu+LkSgBgc4XT+jTUnC/MSrp0cNOplDcAwLVo3a+OIS9j0ooK1zuK\nIrfNjfy0n8OzbFt1I/TpsNocI3C8CCGEEOBE6o/A4UiEtCM7cuf8/RGliTFLJ3f/Fq5CoVBo\nL7Q0UWaLRCKR6EXMw/iMQgCgaeWt/fMtHXaNCyi/zgyhz1S9LpNs9v8kUalJWeKqaePcW7Ue\nP3eWmxkHADoFOlw+n0op0hZsOb9hRh9TgqApadjGxUUUDQDm9Q35W1bPSOndBXvfy9Cz2dUt\nqcvFGqTa8Pra6rIZehO+QGhrWc3/WRP8CLRh69atlb5Pv8nNzsrKTH8Vc/X6w2I1TavNvvtx\n9bfNcFlYTdHKPQuDL8ZVUcDgyc4lmgw9z6ZZl29869uwUpISYx5GZciVAPDi2pYDHXxHN8dP\nQYfUZGHK82Rx/ptCmQxMzKwsLe3rNW7iXAf7HR0JDg6u2YUEi1unrlN950Yt/dp++aW/oyVu\n/1xDXEG7eZ2dV1xPB4B7h9aMe9Bhysg+zT3eH+unqTzRq9vhJw9dvEfRNADYeIzu78iv8Aei\nGnh4YNGKM8/KnqHVFC6N1CeWiXDRgoETl/xO0jRZmLRz+Q/HnDz8WzQRCoVCoZAPCnGOOEec\nkxL7KDa9QHMJQRBdpi13NWUDgFy0Z/jki6UPF1//MA2/NfTGd9JQpkMwKFhtjlk4XoTQ1KlT\nmQ4BIebhROoKETVYbIcQKketyp0+bEKqggIArmXT0dODe7RpXFEPQ798EB7664FkGQkAHNMm\ne4+F2HDwjh8ZiLQ/QoJ3RJS+/P7QyS7WPABQyWNGBC3UPGKxuZbO9QQ56ZlylVrTrO+vR8a6\n4NaG2vF0w8TFd0QAYCZsPnZSUOumLkJrXOyiVwfGDj6TWwwAHh0HTRzR17WOBdMRoY9S5Cad\n2B966k4qwTIbtX5XfzcB0xF9lpLPLJp14G0CxrSOR98+/2vt6SJs0NCO9+8MIaokffiQ4CKK\nNrX58peds+ubvn2LUmT9Nm/21ZQ3AMATfHny8Dz9x2/4aFV05JXwy1cexaWTHzz3cS3r+Lbr\n3L1Hj1YN8fdfy3r37v3ffwjBNu/43bjxg7+xwAxBjdBq+d55ky8kFJSeIdim9hZqsZQEAE/X\n+mlpmbIy1XR5gpYbdy9raFrdCY6octIXh0bOOl2zEacLFy5oPR5jlnXvyNwNpwrePX9VgmDx\nukxYGdzDXfNSlrll2OQbmmO37jM2Tu6kwygNRbk0zOvXrwHAxFLoIKhsr4GyLOycWgT2G/E/\nL+0HZ6xqXG3uxPnzpjiRWktwvAghhBAAPAydpplIDQC2Hm8nUmcdmzHr1EvQPAVUNJH64Pr+\nTAatY5ikR0gLsiIWTgqJBgCOaeMVuzd4Vfr0RRY8mzXx5zQFBQCtZu9aEeiopygR0r24qwdD\n9pwTl1BQ5qELAOKOLp73+9MP29v7jNm7tJ9eQzRo64Z/d/dNCdfKb+eBRXYcLJ7OgPED+4lJ\nysYr6MCawTic8zlQn1ky/sCTXI5pk18Pb2zAw8TMp6GpggmDx2h2CLP3+e7XxcMrXGyUfW/p\nhDVRAOC3dN8Snzpl36IUz8cMm61JG4zaHTbAARewapMiL2b7ug0RCVXUOSAItn+v8dPHdMe1\nYlq0evVqAFDKXjyOyfnwXYIo/xhuwnfxbWkvl+bn5OTk5knL7p9Vp9V325cPxyRBzdCU9OyO\n9QeuRVfZ0sa904JFU92rnUVDVfpj1ogdyVIAMBN6Dh7Wu1mDevY2FtX8Pbazs9NpbEZIkRu3\n77d91x8+pz4+Bujk2W7UpKkBjS1Lz2iS9HxHt16DxwR9gznjmtDM2WrYe2PoeDemYzFSpPTu\n8FHrFeqaVJs7ffYsPlRrEY4XIYQQwonUH8IkPUJaEB4ctDOtEADazN21qF3VSXfRnZUTNzwA\nAKuGk4+Edtd5fAjpkVopfXb/QVJaZst+QR5l9ni+dyxk+6nb/8/efcY1dbZhAL9PQsImgCzF\nBVpFEQeuKlJxrzrr3rbWgQOtddY96qB1710UFXdVqqhvBYE6QOvAWRyIIET2DElOzvshSK2y\nzcDk+n96cvLk/K6qzTj3ee4n/d0N0QzDb9Rp2Bzvb0yw8arqjOjXJ12uaDJ315JW9trOoqcG\n9uktUXB9th/+toqptrNAqchy7g8YMl/Bcc6D1q0fVkvbcT4zbyN//m7pdSISmLjsOLjKpoh7\ngy5PG7HxeToRjd9/tIe10QfP3loxdskNMRHV6PvrpjFfqDmyHpGmR82bsOhptuz9gwwjsLZ3\nMFZkJbxN+2BDVivXXpuXf4c6vQqxkpfLJs66nSwhIoZv0qxDz45fNrC1tbGztTMzkL0Vi8Vi\ncfSd0NOBYakylmH43Sb7TuhUm4g4hfTNP3cvnjt2MuSx8lR1hq37ZRDeoMov4UH4qTNnr9x8\nJGELufph49S4R68+vdq7C/DPX6UmDugbl8caWjbbvW+BCO8tFUOuOPrqtVuPHj16Gfc2Kzsr\nV0bm5haiSpVd6tdv1KKNey2bD+azebExb42cqtri76/cUKTXOnSbq1BwvQgAAHAj9QewJz2A\nClwS5xIRw/DHtyjVHvN2X04QMBEyjstJvESEIj3oFJ5A1LhNp8YfHW819IfmvQffuffsbUp2\npao1azk7VzLX8Y9YzctTcET0pQu6FmtNdUP+01x5DRN8v/psCEzcvESGf6ZJ4i9epGETtR3n\nMxNzOlo5qDV0clEVeuLkAa+zlMNCVwLXHuJCN8RElHzjMaFIrzLc/jkrCir0QlGtXt/0atvC\nrbJDJSGPISKOlbx9E3/vevDvJwNjsmRElPrgzKwN9bb94KHN1LrlxMJFygp9NY+hsyf0q/6f\nKwsC+6o17avWdHNv0WvI8HN71+wJ+uf85hl80e7vW9gyPGGVus1H123u2XjLDxsvchz37Njq\n9P47UOYsNwdXj4muHhPYnBePHz6PS8rKysqVKkzNzC2s7OrUd61i9eHNQ6ASiVIFEbWcOwX/\ndCsOY7vaXXrX7tK7tPP5htWcq6ozkB4YPnw4EYnqfHgDBGjMhbupRCS0aLZ1O7rNaR+uFwEA\nAMMX9Zu8onU73EidDxeRAVTgdR5LRHzDGraCUn3j5wlsnIz4T3PlrDRWzdEAKhAD0yrNWlXR\ndgpdVtvYICpbJkeLHO1pa2fyNCbjXmJuh3e9+6Diq21k8CeRNOsGEYr0ZRMSk6kc9GhbZBsh\nScq5xHedyiRsIROMbVoRXSUiacZNop6qT6mXUh9vPReXrRzbNRu0au4Qm/9+R2X4RnZVnTv2\nd27Xq8eBFXNP/p1ERPEhvhdGNu1qg4KlCqQ/333wcSoRiWr33zhrcDE1Sr6xfe9Jv7DxY/bf\nT/ljzVxPv+0u7+70qtVh0pSrtzb+ncRKE06/zR3lgP0gPgnDN3F2beaMjt2aYi3giaVsk8r4\ndwt6beDAgdqOoO+icmRE5DppPCr0FRyuF4FeEf8T+Vdk1JMnT16/Tc3KypLIeebm5hbW9nXr\n1W/g3qqVq6O2AwKoHW6kLoAiPYAKWBjwkmQsp8gp/UtylRtiMQJ1ZQIA/dPD2SLqfvKtR+k9\nPfToq0yF0uo7910LgyM3n+Y2jdaDez11xPM8ORFxbJa2g3x+XuTJiYhhhB4WRa50SbhyVTng\nGVh2ty7k5hW+MH+NHitNVENGPRX1W4RyYGLXbvOCocVsZ84X2o9atDlp7JirSbkcp/j9YHTX\naQ00FVOX3d4Zqhz0nzegFKuImR4zh+8fuZGVircee7Fx1L8tJVpN+Grj+JNEFBWZTF+j2Fla\nsYEL5x5+TkSGFq32bJ2k7Th6qr2l4RFxzutC788CgI+wHKHrhDqg25zW4UMZ4H2pT4M3bT8Q\nGf32g+PZmWkJ8bFPoyLPHvOr5Ow+YoJPexcrrSQE0CTcSE0o0gOohJMRP0nGstKEO9myxqYl\n193lOQ9eSxVEJDDGtmQAoDJNJvfjTdj9cJefpPWPxZRkQH1sGk8fWOfvo09PzttbffGYdob4\nW6jwpBk3r6TlERFPWFnbWT4/YqmCiHgCG4Oi/6XfuPhGOTCtPMiosE0lGV5+5V4hS1F9RH11\nKSb/ppN2874t8eOA4Zl8/1P7q9MDieht5BkiFOlV4MzzTCLiGYh625Rq41tDy452wi1iKRt/\n8SiN+qnguFGlTkQniSjndRnuBgaJODUjI4OI+NLH2s6iv9oNr39kbeRf/vdHzWip7Sx6YfPm\nzao94eTJk1V7QshNTohPzatVu8b7B9OfhW/afeKfl6/Scsm6slPr9j1GfNO20K9MUD7oNqd1\n+FAGKPDw9LoF+4JlXAlvScnPb2+YPfbemOXT+tTTTDAA0CIU6QFUoKOzRcTdJCLac/jhprGN\nSpz/5NgujuOIyKJWN7WHA1A1XACqsEwq91w+9OY8/9CZ61x8p3+NOr02MEN+XiWeMSv49PrR\nEcEjh/eu7+xU1cEay2IqprzUJ1vmr2c5joiMrTtqO87nx5TPSBQcx+UVNYFj00+K8yuLjr0K\n/4LEysTKAU9grfKEeut5rrLJAX9ETYvSzLdwHiVg/pBxnCz7vpqj6YtXeSwR8QS2pX+JtQFP\nLGVl2ffeP8gX2CkH0hSpCuPpvErNq9OpGCJiJTEPcuSuJrjuoQWV287teXrMuaurj3XYOaAx\nNuRWu4sXL6r2hPiNpkJv713eti/g1nOxwKTh8cPLCo4n3/Ybv/SEVJFfrUmOe3L2wJOQ8Hub\nfpliVcwtkFAW6DandfhQBlBKDNsxd18w965Cb16lbnO32nZ2dna2duYCWWJCQkJCwrOoiEdx\nmUTEcbIr++aa2+/8rpWdVlMDaFpeTpaBsZleXUfF5yKACtQb3pTuBhHRq7PLDrltHtqyyJ1Z\niUh86+iSUy+UY/dhLprIB6BSuABUkTUYtHR63qoNJ3aPfBDyzZBhvds1NtKr7zUVAF/o2LNv\n6+D1Qdlxd7atvkNEDI9fmsUwp06dUns4PXD48OFSzVPkvXkVcy/y7xSZQnmg/sgv1RhLR1UR\nGiTLpJw8JU7KOgr5H0/Ien0k9911584tC69WyrLvKgd8YXFfn6BMWOKIiCd0MCndUjyGMaps\nyHslYYlTqDmavrA04L2VsazkVTrLiUrxQcyxmS8lylsr/tOUi5UmKAdCK2ySVQbWrj6tLCOu\npUmI6Leg12v61tR2Ir3ECL5duST5xwUHF41/0n342BE9HVCYAb2UEL530prfP143ybEZK1af\nLqjQF8h4fnmWb8Ndc700lE/Xoduc1uFDGYCIFPKk5RsvKCv0QvMvRvtM7tHCqbC3JO7FzcBN\n6/dHZ0k5ThG4bmW/5mtx2xboDGluZi7fVCTkFfIcx/598cjJP2+9in0tF1g2aNrKq3vfVrUt\nNZ5RC/AbCUAFLOtO7GgXelmcw3HSgJ8nRncfMbRP19r2H24bmSt+FvT7Eb9zN+XKRXu2Hbxd\n9OKNBgA04/Tp00REFvW6NHx2/u5T/42LDm0SWNs7ODg4WJoWuWO00uzZszURUQ9E7J+/7OR/\n1kFyChbbsWpMaYv0/2Vi7zXjS9yfXmYe1ob3s6Ucxx17ljGtXiEb5j16tzM636hGB8tCNqQn\nInHo38qBoVVrNeXUQw1NBdcypApZsowjQSku6XCKnPg8BREJTLATk2p4WRkeE+dwnHTH7aRZ\nzUteT598f5dEwRGR0OI/NwzlJJxXDizqlqopAuRjhNN/mZk4ddXzHNk//itutNnU0hYLKDVN\n+b20TruODw6duRm4L+KP30S2jtUcbUvzprR48WJ1x9M9w4cP13YEKAQref7TurOFdjZOurMl\nOldORDwDUf8JE5s6Ch9cO+N35g4Ria+vD01v7Skq4RcclAa6zWkfPpQBiBLD1sVIWCIyMHJa\nsnWla5Hv8IxTi69Xba3+w7hFrySsXPJs7bXEZZ64nR0+b/H3/jwddDXy1r2kHHnDn3Yvb/nh\n9Tdp+oNVC1ZFvkx/dyDh2uVT1/93ptnXE3/6vnNhJX2dgiI9gErwvv/ZJ8p7TYKU5Tg2MnD/\nrT/8LG0r29vZ2dvbG1OuWJyYmJj45m2a4t1vM77QbuqK73X+LQZ0Ei4AVVh79+794AjHyZIT\nYpMTYrWSRw+lP/NbfgrNoj8zVrXbLFw+1Rh7f5ada6fKtDeTiG5uPMVt+/aDP0FOnrr7XrJy\nbOE0qIg/X8XBk6+UIztPlIdVpkeTStdC3nAKif+rzNE1zEucn/Zwp/IWUosvvlZ/Or3QfpDT\nsU0PiOj6Lysf717lYl5coUWe8+yXVeHKsWP37v8+wUlPrbuqHDZvWMh9MFAMI7vmq7Ys2rjC\nNyw6cZX31H7ffdvdq3klo0J6foCafPC9lOMUaeLYNDG+lKrLwIEDtR0BCvH6j61vpSwR8fgW\n/SZN69K8QcFTt397oBzUGbZkeGdnIqrn2swuZ+Ivl+M4TnH0ZIznmC+0kln3oNuc1uFDGeD2\n8ZfKgbvP3KIr9PmElg3nT2k6zvcmEb04eps8uxc/H6DC4tjMQ2sWBlx7VswchSxp+ZTFd9I+\n3EiR49iIs5tn5PHWTdbx7SlRpAdQDWO7Vr+u8Vm2ZMvj1Dwi4jhFqjguVRz3OKqQyUJRnYkL\nF3o4fLjUHuCzgAtAAEX5a8slZfsyY7v6g4b2qlfd0dbKDFeANKlbt26lnsu3rVrDudYXjeo5\n4zJd+VTpPEqwb76M47LiTi8JaLJ4UJP3n72zb2GCNL+LhMvgwvf3iTm/8mZm/k7bvbs5qjWt\nXnEZ970obHk6qzi/dGffnT8U326dlb5ZuzKMiBiG39/bTVMZdVxlr+m1d0+IzpXLc6PnT5g3\nZvrkHs1qFjoz7u6lzWt3PsyRERFfaDepdw3l8cw3T8/9tu748wwiEpo16WtjrKnsOiIwMJCI\nXNt/k5Z+KOptwrGjrqRtAAAgAElEQVStPx/fJrSsZG1tXcnKWmRY7P8UaC8EAKpy/Y/XykHj\nSatHdnzvqw4nD4jLJiKGYb7tVr3g8Jejh9Pl1UT0Nvw2oUivCug2VxHgQxngkjiXiBiGP75F\nqXr42X05QcBEyDguJ/ESEYr08HniZLt/mnz2YWrxs+7sWKis0Bta1evUoWk1K97zp0+iIm7H\n5ciI6NnFjfu9mo5uoMv3rKNID6Ay5s5eq3a7Bh4JCDx/JT5LVugcgYlD2249Bg352r6wrVsB\nAD6Ft7e3tiPouzOxWURkaNls544FpdmEGFRu4sSJ2o6gRwQmbpNa2q6/Liai2/6LZrzs27Ot\nu0tdJy4jITLo0O7A/CXyPAOrb12tP355TPjB2TtvKsdmjv28RIX3w4dyEJo3WznJa9KmK7lv\nQybP4s+ZPcHVrvC2om8ehO7ZuOVuppSI6n6zpPtHuzVB+fAEdvPn9R+3MEDKcdLMpzuWTj1U\nxaW5Wy07Ozs7OzsTkojfit+K3z5/EPkgNk35EoZhOk1aWtuIT0Q5CbuHTzjLvWvB9dXUSfhE\nKasdO3Z8cITjpKlJCalJCVrJo4emTZum7QgA2heWkUdEDCOc3q7K+8claZeTZCwRCS08XUz+\nvTYrtPCoJOAlyxTSjGtEgzScVieh21xFgA9lgNd5LBHxDWvYCkrVV5cnsHEy4j/NlbNSvFnB\n5yr61JKCCr2RjUuf3p2b1He2q17p/TlsXqzv/+KIyMiq9a87ZlZ712SFlbzZPmdm0PMMIgpc\nvWP0gTmaza5RKNIDqBJPYNtzxOSvh3338smjR4+evElKz8rKkpGBmZmZyKZy3br1XOo5maCh\nLuic2MCFcw8/JyJDi1Z7tk7Sdhz91bVrV21H0HeJUgURtZw7BRV60BNtf1xyftTUJ9kyIvon\n/NTa8FMfz3HuNcdemH8lgpNLUlJSXkc/DP/f2QsRL5QHGZ7R90twGbqcMjMzCz0uavnd0lzB\n0t0X0//5c9746w1bebVsVMfB3t7e3t6YyU1MSEh48+bv0D+uRsUr57v39VkwoqEGg+s+60ZD\nN81RzPY9niZXEFFm/OM/4x8XNZnhGXb6frn3uxKOQpFTUKGv033a1C9LteAGoEJp3769tiNA\nCVhpHl+IO+TUS/nrwMC45ge/DlLvhSgHlvU7ffCSqkKDZJmUlaF4CQCgOywMeEkyllPklP4l\nuQqOiIgRqCsTgDpxbNqqQ/k7+9i6D1i/YLh5YVdKk27vyWY5ImrgM7bae9ug8I0qT1i16MbQ\nmWlyRV76XycSc77R3RUFKNIDqB7DM3aq5+5Uz13bQQA0RCJOzcjIICK+tMirzwD6wFrAE0vZ\nJpV19oujDpOmvxaKqmo7xeeHL3RcvmXhYp/lD9I/3D9MSVS7y/KR//a6jz0/f/Kup+9PYBhe\nx/Er29mhlXc5DRs2rMQ5HJtzN+yPu2F/FDWBxxdlP7wwZ9aFmt/MnIR6sOpUbjV85073vdv3\nXor4h31XdP9Ylfoeo8Z7t3Iy/+C4iUOdnoPGDOvgquaYugnthQA+wMlT/woOu38/6sGj6LTs\n7JycXBnLnTlzhoikmREngzM9vDyrmaMSoGLGPEai4DiF/IPjT8/m3yTn1KvaB09J8z8vcMuv\nauDjoCLA3wKAkxE/Scay0oQ72bLGpiV/2spzHryWKohIYFxH/ekAVC/p761iKUtEAhOX1fOH\nFVqhJ6L7Afnb1TetafbBU3yjL3ya2iy5ISai4D/ivtHdbYBQpAcAgE9VqXl1OhVDRKwk5kGO\n3NUEHy6gp9pbGh4R57yWsNoOAqXFSpJvhYWGhIRcu/f85O+/azvOZ8nQutGKPdvOH9p3Kui6\nOPvf7X54AqtOA0aMGNChmB5CBsaV+02cN9yrhkaSQpEUbPqTJ+lExKRJtZ1F1xjZ1Pee/8sY\ncfTVa7cePXr0Mu5tVnZWrozMzS1ElSq71K/fqEUb91o2H7zKuFLf9VuHOFW1RYmm3NBeSLvQ\nZ6uieRx6YvvOw8/TC3+TZ/NeHNp18MjefV6Dx00Z6ImGUCrkZGyQmill817GSVnHgk0POZn/\nywzlsI+TxfvzOUXuc4mciHiCDz8aoHzwcVAR4G8BoKOzRcTdJCLac/jhprGNSpz/5NguZWMt\ni1rd1B4OQA1iTkcrB7WGTrYxKGKXB04e8DpLOWQK+/5Ze4gL3RATUfKNx4QiPQAAQFGsXX1a\nWUZcS5MQ0W9Br9f0rantRHohLa1gF1uBSGSq3TCg1G54/SNrI//yvz9qRkttZ4HicGzOg5th\nISEhYTeilJ214FPwhDY9Rs/sMUr64vHjhKSUbFZQuYqjY/Vqlu81K3sfwzB2Tg1atGzdq29X\n+yLmAOgSY7vaXXrX7tK7tPP5htWc0doDPmfos1Wh3PZfsDjgbonTFGz6n/6+D6MTt87rb4A6\nvYp0qmx6O1PKcYpNF+NWfV1deTD57vYEqXJD+lb1/3uDe/o/fnkKjogMzb/UfFoAAFCTesOb\n0t0gInp1dtkht81DWzoUM1l86+iSU/l7w7kPcylmJkCFFRKTvzFfj7ZF/muXpJxLlOYvcyp0\nuZOxTSuiq0QkzbhJ1FP1KSsGFOkByu/F7eDQiDsPn75My8jMZXkiS8vqX7g2a+nl5V5T29EA\nNIsRTv9lZuLUVc9zZP/4r7jRZlNLWyNtZ9J9I0eOVA6Epo2OH15GRKtXry732WbPnq2aWPqt\nctu5PU+POXd19bEOOwc0xvKXioeTP793PSQkJDQsMgkND1SOETrVa+hU7BSHr6Zva25oaWlp\naoSfIaqh7FQMAFChoM9WxRF7cWNBhZ7hm7fp4FWn9heC+4e2h/675bmBST03R9P7cdlElHDD\nb97hBmuGoiSgGvXHNKG5fxLRoz1zj1aa371ZndzXEatXBSufrdJpwPuTM2NCFy4KUo4rtWim\n2aQAAKBGlnUndrQLvSzO4ThpwM8To7uPGNqna+2P9tjOFT8L+v2I37mbco4jImPbDt4ultrI\nC/CpXuTJiYhhhB4WwqLmJFy5qhzwDCy7Wxt+PIEvzL91nZUmqiFjRYFfSgDlIUm6v/bnX69H\np7x/MDUp8WX0k6vnT/rVaTPjJx9Xq0LeWQB0lZFd81VbFm1c4RsWnbjKe2q/777t7tW8EtZH\nalZ4eLi2I+g9RvDtyiXJPy44uGj8k+7Dx47o6YCr0hVDwj+3Q0KuXg0Nj00tZOt0huFVdcGV\nUE0QihwdRdoOAQAAaoY+WxUEK4lZuONP5VhUp+3MH70bOhgTUbT41PvTBCZuK7YeuHZkxcrD\nt4joybHFT/oerGuML7EqYFl/gof1X+EpEo7NPLhytj/DcPlbzhPDM/p+QP6OP7ni86vXnL37\nTxzLcUTEMPwBg2tqKzPAp/D391cO+gweaorNMwD+xfv+Z58o7zUJUpbj2MjA/bf+8LO0rWxv\nZ2dvb29MuWJxYmJi4pu3aYp3HxN8od3UFd8X0SUcoKITSxVExBPYFNOf6cbFN8qBaeVBRoXt\nk8jw8utrClnKx8/qDHznBiizvLTbPhOXvckrcgVe0tOw+eNfLNix3h11etAbgYGBROTa/pu0\n9ENRbxOObf35+DahZSVra+tKVtYiw2J/m2ENN+iM06dPE1Gddh0fHDpzM3BfxB+/iWwdqzna\nCkpxdWLx4sXqjqeHMuKeXL0aHBxy9Wl8ZqET7Go1+uqrtl95tqlpg/4fAKAuWenpcq60O2uI\nLC1xSVv1OGlo2I3STKzU9Mv6JgJ1x9F96LNVMcRf2pIsUxCRoajZulXTi9wQlIgYg1ZDFvm8\nHrchNIFjc3acjV07sPjmOFAqDGM0ZeWUZ1PWKvvbc+99FtTtv8Dt3btNXlrE7aevC56q2WWu\nlwhXk+CzFBAQoBx0GjgERXqA9xnbtfp1jc+yJVsep+YREccpUsVxqeK4x1GFTBaK6kxcuNDD\n4cOl9gCfC1M+I1FwHFfIOhkljk0/Kc5Rjh17NSp0DisTKwc8gbXKE1YcKNIDlBW3fdaa9yv0\nQlOr6jVqWjCZL2NepWRJlQdZSdzqGRv998zEXm6gJ3bs2PHBEY6TpiYlpCYlFDofPl3dunWV\nAwPj/OY/3t7e2osDRER79+59/yHHKdLEsWniWG3l0Vt5qa/CQ66GXA35O7rwjliW1ep5en7V\n1tOzjqOFhrMBgP6Iux3kd+ZKdPSztxlFXpv4mP+p381xUftTcPIH4UHBf0XEMgNWzXTNP6bI\n9vX1Lc2rW2w4UN8JHT9UAH22KoJrv79SDjxnTS6uQv+O57gRG0J9iSj+UgShSK8iJpU912+y\n2LllT/D9GOX6SJ6BmUfvsTOGu308mWEMmnb7/qfxLTQeU2eNGjWqfC+sPXrVgnaVVRsGiIhj\nMxcuXqMcL1u2TLthADTM3Nlr1W7XwCMBgeevxGfJCp0jMHFo263HoCFf2wvxrQk+Y1WEBsky\nKSdPiZOyjoX9Y856fSRXkX/zYueWtoWeRJadv2cTX1jkxvY6AEV6gLJJj977v4T8e3wMTKoN\nmzLjGw/ngmdjbpz+ZcOBmCwZEeUmhW64PWZGU+xJDABq8fG15q5du2olCUAFweYmRYRdDQm5\nev3+C7aIRat8od1S31VuTvh0Bn2Rk/42/k2yrNTLuOu41EOBWCWiz66dsTuEK/WffAEBmlp+\nAvHd879s+e1xQg4R2br3LevLGYZvUYpCJpQG+mxVBCHpeUTE8AzH1LcqzXyhyNNOuFYsZaXp\nYUQD1ZxOj5hUbjRt+caJqQmvEpP5ZrZVHW2FzH/+FzAwcW7laVGlZp0Wrb6qV9VMWzl1Umpq\navlemFl0+0z4NPK7d+9qOwOA1vAEtj1HTP562Hcvnzx69OjJm6T0rKwsGRmYmZmJbCrXrVvP\npZ6TSWF9vwE+Lx7WhvezpRzHHXuWMa1eIV9EH/0WoRzwjWp0sCy8gZA49G/lwNCqtZpyVgQo\n0gOUTfTBv5QDvtBuyc51bhbC95+t0bLP2p11Jo/+6Y2UJaI7B25T085aSAmgcVjDDUBE06ZN\n03YEfcSx2VHXQ4NDQsIjHuawhdTDzBxqt2nT5sLx/UTE8MxRoQd9wMlTTuzZce7q7ZTMMqzh\nJizjVhFpevi8Pf+p0PP5pV0K80HlBkrvdsCaZYfCi7pJq0Dz5k0zU1MSX79KleQXYBiG367X\nwCZuDRo0qF/JBIuWVAN9tiqCRKmCiPiG1Uv/xu4g4IulLCt9o85cesrQyuELq8LXgZlVHT53\npobjQOEMTKytzQyIyNoY18wBQF0YnrFTPXeneu7aDgKgLq6dKtPeTCK6ufEUt+3bD76JcvLU\n3feSlWMLp0FFfE9VHDyZ3xTKzrOO2pJqH75wAJTN/55lKAfVe8/+oEKvJDCrP6t/zemHnhFR\nTsJlIhTpQS9gDTcAEbVv317bEfQJJ4u+c/1qSMjV8Fspha10MbF19mjTpo1nmya1HYhIWaQH\n0Accm73BZ/KfsVnleK0hVhGrwqOdv0kUHBEZ2zX4dvywJl8421kaazuUjos+67vYP6zgIc/A\nooGbZaEzFyxYREScQvIkMsR/77678Tkcx76Q2E1rUUjraYDPmimfkco5hSyJIypllT5BxhIR\nw8NbFuiIzZs3F/s8l5GU+OZNfOzLqKBLEbkKjlMYD5jxc5fC1vwBAABAKVXpPEqwb76M47Li\nTi8JaLJ4UJP3n72zb2GCNP86nstgl0LPEHN+5c3M/K2le3dzVGta7UKRHqBsonPlyoFXt2pF\nzXHs3JEOPSMiueSlZlIBgL7x9/dXDvoMHmqKJY+glyaOHBKXLv34uJF1jdZt2nh6tnGv64j/\nN0A/vb748/sVeoGJyM7avJT/OwiwjFsVLtxNJSKhRbOt2+dXQvt09ZOkhM/bk1+hZ/gm3UeM\n69utrZ1xcWviGZ6RS4suS5t5Bqyafuj6mxdBGxbb2C8e1EAjefUC+mxVBC3NhRdSJQp5alCK\npKu1UYnzpZnXxFKWiASmDdWfDkATqlevXtKMGg2IiPoMHfT06L5Nx0Njts6dkL1mZ786Ig3E\nAwAA0EkCE7dJLW3XXxcT0W3/RTNe9u3Z1t2lrhOXkRAZdGh3YP4SeZ6B1beu1h+/PCb84Oyd\nN5VjM8d+XqLC++HrBhTpAcrmrUyhHDQyExQ1p+AHLaeQaCITAOifgIAA5aDTwCEo0oN++qBC\nL7Ss2tqjTRtPz2b1q6EgBnruf8eilQOXdgPHjehT2wa722paVI6MiFwnjUeFXjPOLdmmbF3A\n8E3Hrdreo25pKysMz2Tw3E2pk0efj836+9DisM4H21iVXMiE0kCfrYqgk5f9hVMxRHR0Y3DX\nxSX/jTw4cEA5qNQEf31llpyc37XVqlKlcr/1c2zmrDlLlWNfX19V5ILSMrKpM3LmBrPMsfvv\nJB2cv7jZgV+qG2IDFAAAgHJq++OS86OmPsmWEdE/4afWhp/6eI5zrzn2wvzvTZxckpKS8jr6\nYfj/zl6IeKE8yPCMvl8ySGOZtQJFeoCyKdjj0KzoqhjPAFdCAf6Dlebxhbp8y1sFxLGZCxev\nUY6XLVum3TAAasXwTbqO+mFc7xa4XwVAKSxDSkRWrsNWTy9qdzdQrzwFR0RfumARniZIM28e\nfJmpHDebsKb0Ffp8jHDM8klBo9coOOmOJSfarB+m+ogAWlKj32DB6TUyjku6vXXlcdGsb1oV\n82UpIfLw0qA45bjzUGcNRdQhY8aMUQ52nzhtJyikTM8pcvf/duSDyR+RP3nyRC35oFR4PedM\n9xsyXy55tvb4y/XDamk7DwB8fnr16qXaE545c0a1JwTQDL7QcfmWhYt9lj9Izyt0gqh2l+Uj\n/+11H3t+/uRdT9+fwDC8juNXtrPT8W2YUKQHAAAV4+SpfwWH3b8f9eBRdFp2dk5OrozllN8p\npZkRJ4MzPbw8q5kX2YsCVER+9+5dbWfQd+J/Iv+KjHry5Mnrt6lZWVkSOc/c3NzC2r5uvfoN\n3Fu1ctXlHZU0iWNzzu9dfu2Sa7t27dp5fVXTBosgQd9lyBVE1HbK16jQa0ttY4OobJmc03YO\n/fDmcoCC44hIaN5sbucityQrhpGVx2gni73P09OfBwQmfdMDnyOgK4Qijzkdqy67FEtE1/xW\nfnfTa+LI3g1c/luA59jkhJdXA4/5nb2mXJNg5TK6n4OJVgLrOE5y6lT+GrKii/SgZQITNy+R\n4Z9pkviLF2nYRG3HAQAA+IwZWjdasWfb+UP7TgVdF2fLCo7zBFadBowYMaCDCa/IixYGxpX7\nTZw33KuGRpJqE4r0AACgSo9DT2zfefh5YRtFExGb9+LQroNH9u7zGjxuykBPLHsFXZX6NHjT\n9gOR0W8/OJ6dmZYQH/s0KvLsMb9Kzu4jJvi0d7HSSkIdUKOSUUzyv9vKpMU+OOX34PSBbTUa\nfNm+fbu2ns2shOgyDXqquiH/aa68hgl+62lND2eLqPvJtx6l9/RAuVftHv8vQTmo1mu4QXm/\nW7YaVHPvyrtEdP7Eqx7j66gqGxQFfbY0ptkk316xE848TiOilMfBK+YFM3wjW7P8Xfzm/DDp\n1av4LClbMN9Q1HDp0t7ayQpQMdQ2MviTSJp1gwhFegAAgE/CE9r0GD2zxyjpi8ePE5JSsllB\n5SqOjtWrWRoVvqcMwzB2Tg1atGzdq29X+yLm6BhcuAEAAJW57b9gcUDJq7cVbPqf/r4PoxO3\nzutf7mupABXWw9PrFuwLlnElrKBMfn57w+yx98Ysn9annmaC6ZhNew+/jLoeHBxyNTQiSZJ/\ncZnj2Jf3w/feD9+/xaJR66/atWvn4f6FAO8zoGfa2pk8jcm4l5jbwRI1MO1oMrkfb8Luh7v8\nJK1/NGLwHqRe4Sn57RPd2zmU+yQiFw+iu0SUdPMGoUivauizpUUMz+S7lZust63Zf/G+8gjH\nSsTp+c8+jI59f7JV3fbz5nvX0I/roQBFeZ4nJyKOzdJ2EAD4LH3ijpOPrhw5fOUh9+6CEsPg\nQxl0AiN0qtfQqdgpDl9N39bc0NLS0tRIv8rW+vVfCwAA6hN7cWNBhZ7hm7fp4FWn9heC+4e2\nhyYUzDEwqefmaHo/LpuIEm74zTvcYM1Ql8JPB/B5SgzbMXdfcMEPKvMqdZu71bazs7OztTMX\nyBITEhISEp5FRTyKyyQijpNd2TfX3H7nd63stJr688Twa7p5jHbzGOWdHXUjLDg4ODziYQ6b\n/yevkGf8ffXc31fPbRY5erRt1659O+2GBdCkVt+571oYHLn5NLdpNOrDWmFSuefyoTfn+YfO\nXOfiO/1r1OnVKv7dIuDGZsVUeRkjo+K6GgiM8huASzMjiEaoLBygz1YFwPBF/SavaN0u/NSZ\ns1duPpKwhdxIauPUuEevPr3au+PWRtBz0oybV9LyiIgnrKztLADwWWrUqFH5XpiX8mTvxvXn\nb8cVHDGp0njCNB8V5QKo6IQiR0eRtkNoA4r0AACgAqwkZuGOP5VjUZ22M3/0buhgTETR4lPv\nTxOYuK3YeuDakRUrD98ioifHFj/pe7CuMT6MQEco5EnLN17g8nfG/WK0z+QeLZwKu9TJvbgZ\nuGn9/ugsKccpAtet7Nd8rRXaSpQXwzd1a93FrXUX75y3N0JDQoKv3Hj4WvHuPglpetyVMwev\nnDmofMhx0lwFZ1z0rlcAOsCm8fSBdf4++vTkvL3VF49pZ4gKsTY0GLR0et6qDSd2j3wQ8s2Q\nYb3bNTZC+VE9UmX5jbutDIrc5YThWx49erSYkzAGlsoBK00oZhqUFfpsVRwOrh4TXT0msDkv\nHj98HpeUlZWVK1WYmplbWNnVqe9axQp7cwBQXuqTLfPXsxxHRMbWHbUdBwD0BsfePLd3y77A\nVHn+11qGZ+Q1cMKEwe1w7QJA56EuAgAAKhB/aUuyTEFEhqJm61ZNtyn6IikxBq2GLPJ5PW5D\naALH5uw4G7t2YPHdbgA+G4lh62IkLBEZGDkt2brSVSQsYiLj1OLrVVur/zBu0SsJK5c8W3st\ncZln+Zv0ghLfxLZ1l/6tu/TPffv8akhwcHDIg1epH8xh82KHDf2+hedXbb28WrpWx671oKOY\nIT+vEs+YFXx6/eiI4JHDe9d3dqrqYI0ascacPn2aiMiiXpeGz87ffeq/cdGhTQJrewcHBwdL\n06I+GvLNnj1bExF1iMiAlyRjiShZpqgqLGdHUFYmzh8x+GRQGfTZqoAYvomzazNnV23nANCU\nw4cPl2qeIu/Nq5h7kX+nvLvxq/7IL9UYCwDgnezYyC0bNoU9/ffahVXdr3x8JrpXNdViKgDQ\nGBTpAcpp0XSfIu/x59iC4ZQpU4o/z6ZNm1QXCkBrrv3+SjnwnDW5uAr9O57jRmwI9SWi+EsR\nhCI96Irbx18qB+4+c4uu0OcTWjacP6XpON+bRPTi6G3y7K7uePrD2Na5S3/nLv2/TXp+Nzgk\nJDgk7FWKpOBZeY74r6DjfwUdN7Kp+dVXXm292rrVrKTFtADqwBc69uzbOnh9UHbcnW2r7xAR\nw+OXZhnGqVOnSp4EJdm7d+8HRzhOlpwQm5wQW+h8+BQuJgZh6SwRXU+RNDIt577m0rSbygFf\nWEVlyfQb+mwBQEVQ2iL9f5nYe834EvuRfZLls38s4q3830umP/zwQ4nnWbt2raoiAVQ0nCLn\nf4e37zwWIlHkNwLkCax7jpk8ukcz3F0NoD/wywegnOJexZRmWkxMqaYBfO5C0vOIiOEZjqlv\nVZr5QpGnnXCtWMpK08OIBqo5HYCGXBLnEhHD8Me3KNU1HbsvJwiYCBnH5SReIkKRXvVsnBv1\nd27Uf/SkF/evBwdfuRp2K1ny71UhSdLLiyf3Xzy536pGg3Zt247u30WLUQFUK2L//GUn771/\nhFOwbFGzAT5nrexNwtLziOjW4ec0q5ybgMadva0cCM1bqCyZfkOfrc8CK8l8m5JtZG4hMjdB\nOQBAyap2m4XLp6LF9Cd6GR1d4pzoUswB0FVJj65sWL/j7pucgiPVmvWYNnXMF5YlrPcAAB2D\nIj0AAKhAolRBRHzD6ualvtvTQcAXS1lW+kaduQA06nUeS0R8wxq2glI1y+UJbJyM+E9z5awU\nayvVieE7NfRwaugxelLW/euhwVeCwyIfF9yrTkSpMVEn/aJQpAedkf7Mb/mp+9pOode8vb21\nHUGP1OlXk1alEtHbyN3J8o2VyrGlOScPuJrfgN32S3fVxtNb6LNVkUnTY84ePRJ49e+k9Pza\ngMDcrlGT5t2/GdzMSaTdbACq1a1bt1LP5dtWreFc64tG9ZyxhhUA1EchTTq9Z7Pfhb8VXP5F\nCYFJtSGTfPp71tFuMADQChTpAcqmQ4cO2o4AUBGZ8hmpnFPIkjiiUv6eTZCxRMTwjNUaDECT\nLAx4STKWU+SUPPWdXGWpmClne14oE4Zv1tCjW0OPbt454hshwcEhIRGPXhf8MAbQGX9tucRx\nHBEZ29UfNLRXveqOtlZmuNqsSV27dtV2BD1i03SsCX9yDsuxkphlBx+uH13m3bbF19ZGZEqV\n4059qqk6oJ5Cny1tkaa/OHcmKOJW1JvkFMbI0s6+crO2Xbu3b2b6ruqYExc61WetWPqf7iqy\nTHHk1cBboedbDpgxd7gnPjJAZ0ycOFHbEfSLp6entiMAVGgxN8+u3/Tbs/T8b54Mw9RvN2Tq\nhAGVjfjaDQYA2oIiPUDZ+Pj4aDsCQEXU0lx4IVWikKcGpUi6WhuVOF+aeU15YUhg2lD96QA0\nxMmInyRjWWnCnWxZ41JsiyvPefBaqiAigTHumNYoAxM7j24DPboNzBE/uxoSEhwc/DA2Tduh\nAFTmTGwWERlaNtu5Y4EIa8FA1/ENq83pWm1h4CsienFqob/rtmHNy7CRcF7q34vXXVOOzRz7\n9LLB/aOqgT5bWhET6rdg3ck0uSL/cXpWcuLrR/ciThxttviXOS4ioTzn4dwf1n1QoS/AcYrr\nR33nMZYrh5kgr0YAACAASURBVLlpLjQA6JCZM2dqOwJABSXPjvHfvOFE+L+7PBjZ1P/OZ1qX\nRg5aTAUAWleqXqwAAADF6+Rlrxwc3RhcmvkPDhxQDio1wVIz0B0dnS2Ugz2HH5Zm/pNju5Sr\nXS1qlb4NI6iSiV2trgO+XbXFb8+6pdrOAqAyytpYy7lTUKEHPdFwzILqRnwi4jjZ0Z99/K88\nLeULcxP+XjFtpXK3GiIaOH+QuiLqH+W6bWWfrVJCn61PlHLXz+eXE/9W6N+Tkxg5f9KSVDkX\n7PvLi1w5ETEMz82r24hvJ86e/cO3wwa0rmtdMPnh0YUhaXmayw0AAKDjuPuX/b1HTyuo0DOM\noFXfCbt3rUSFHgCwkh4AAFSgRr/BgtNrZByXdHvryuOiWd+0KqYukBB5eGlQnHLceaizhiLq\nqOWzfyzis/zf9TE//PBDiedZu3atqiLps3rDm9LdICJ6dXbZIbfNQ1sW93NLfOvoklMvlGP3\nYS6ayAdFs63VWNsRAFTGWsATS9kmlU20HURfpKXlt+JgGIFIZKrdMPqJJ7RfMm/w+MWHpAqO\nY7MD1v0YGdF39KB+jWoUubs2x2Zcu3Byx57Tqe8qmrV7zO7jiL8+lUGfLQ3j2IwlK04XbOLD\nN7J3a1inWtVK2eL4F4/vvUiSSDPuz9t8KPF2MhHxDatNX7b0K5dK/75+0LDIs5uX7rpMRBzH\n+m9/2HZOE238dwAAAOgUydsHuzdsuHgvoeCIRc2Wk6ZNafVujQcA6DkU6QEAQAWEIo85Hasu\nuxRLRNf8Vn5302viyN4NXP5bgOfY5ISXVwOP+Z29xnIcEVm5jO7ngBLCJ3kZHV3inOhSzAGV\nsKw7saNd6GVxDsdJA36eGN19xNA+XWvbf/iPPFf8LOj3I37nbsqVm0bbdvB2sdRGXgDQTe0t\nDY+Ic15LCu9mDCo3cuRI5UBo2uj44WVEtHr16nKfbfbs2aqJpWcqNR60fnrG5LXnlEXKZ2Gn\nFoafru7a3N2tgWv9L2ytLM3NzRhZbkZGhvj1s6ioqIiw6/E5soKX2zQavGach/bi66BOXvYX\nTsUQ0dGNwV0Xl9w6C322PpH4+oYXErlyXKlRtwWzxjqb52+9xLEZ53av3hV4P+7PAOWRFjMW\n/adCT0TEa9Zz6pSIO5vuJBFRStQFIhTpAQAAPgEnDT+1Z9uBoAw2/5ZQHt+883Dvsf08hOh3\nBgDvoEgPAACq0WySb6/YCWcepxFRyuPgFfOCGb6RrVn+N9E5P0x69So+673tDw1FDZcu7a2d\nrADqwvv+Z58o7zUJUpbj2MjA/bf+8LO0rWxvZ2dvb29MuWJxYmJi4pu3af+ucxLaTV3xPfYf\nAgAVaje8/pG1kX/53x81o6W2s+ip8PBwbUfQR1Xbfr/dospK370vsmRExHFcTNTNmKibp0p6\noVu3cfPH9zDA1VKVQp8tDYs6lr/Lg4Fxbd9F420M/v12yfAteo5fnnpv+PHYTCJiGOZbd5tC\nT9JqvMemib8TkSzzJssRtkwpn09rdYYb7MpvyJAhqj3h4cOHVXtCANAfGS9ubNmw+drz9IIj\n9m6dfHy+b2BXcnshANArKNIDAIBqMDyT71Zust62Zv/F+8ojHCsRv/s6+jA69v3JVnXbz5vv\nXcOIr+GQOsPT01PbEaBwxnatfl3js2zJlsepeUTEcYpUcVyqOO5xVCGThaI6Excu9EA/CQBQ\nqcpt5/Y8Pebc1dXHOuwc0LjwSgyATnJo0mPt3sYBe/YFXo7IZEveDN20iuuAYWP7edbSQDZ9\ngz5bGva/xBzloFp37/cr9O8wX090Oz7vLyIiRmgvLPwGUeNKbYl+JyKOQ6m4/NDqTFuys7O1\nHQEAgDg2M+jA1t2n/pIWrM0wdPhm/JRhHd1w8xsAfAxFegAAUBmGL+o3eUXrduGnzpy9cvOR\npLBrozZOjXv06tOrvbsAX04/wcyZM7UdAYpk7uy1ardr4JGAwPNX4rNkhc4RmDi07dZj0JCv\n7YW4VQUAVI0RfLtySfKPCw4uGv+k+/CxI3o6mOB3nxrVrVtXOTAwrqoceHt7ay+OvuMbOQ6d\nNH/gqPj//RF08879h4+fZ7/bdb6AgYmNa+PGLVq37+bZAAvo1Qd9tjQpNi//T9K9S5VCJ5jV\naEv0FxFxiryiTsIz+LcHPpbRAwAAlMNP48dGiXMLHtq6tp86aVgNM0F6Wlr5Tmhpie0RAXQZ\nw3El310OAABQVhyb8+Lxw+dxSVlZWblShamZuYWVXZ36rlWs0NkJ9AWnyH355NGjR0/eJKVn\nZWXJyMDMzExkU7lu3Xou9ZxMeLj2CQBqcfr0aSJSyFNOHTqTLlcwDE9k61jN0bY0t8ctXrxY\n3fEANIljc17HxmdkZGZkZMgYQ5GFSGRpVbWqA2rzmsGx6afe67NVDGWfrboioQZS6aRevXop\nB6uOnKxf2I1ZrDS+b/8JyvGZM2cKPQnHpvbuO6r4OVAUX19f1Z4Qt2WXlZ+fX/ETOIXkxMlz\nynH//v1LPOHIkSNVEAsA9EzBJ7Kq4BMZQLdhRQUAAKgFwzdxdm3m7KrtHADaw/CMneq5O9Vz\n13YQANAve/fuff8hxynSxLFp4tii5gPoMIZvUq1mbW2n0F/os6V5NoLCW9nz+MYaTqJvUFPX\nuhJr6hybWlCkRwEeAAAAKgIU6QEAAAAAAADK461MYVtESawcJOL7RnZuqjobQAXh4Oox0dVj\nAvpsAQAAAAAAvAdFegAAAADt4p4+flLHxUXbMQBAR0ybNk3bEfTItJmbN/hOLmrpapncC9r3\ny47f/U6e/vRTAVRA6LMFAAAAOm/Dhg3ajgAAnxMU6QEAQPXycnMKa2ZZOBMTE3VmAdAEhTQn\nJTVVwhnZ2lob8svQrVUhTbrw25rtZx9jmzEAUJX27dtrO4IeyXx+edpMWv9pdXp5Tsz+X1ed\niYhTYTAAAAAAANAwJycnbUcAgM8JivQAAKAysbeDDp+7Gv3sWUJqTulfhdokfNb+uXb2yJlL\ndx/GSDmOiBiGX7nel337DejSwvn9afKct/du34tLSs/KysrMzJLkSfPyJKlv42NexmZKWS1l\nBwAAFch4fnnaLGb9mknlq9O/unF69Tq/2By5yoMBAAAAAAAAQIWFIj0AAKjGk1O+s/aHcVyp\nV9ADfOY4Tvr7uh/3Br/870E2/mH4lofhkUMX/jS4GRFxbMax9csCrj6V4f8OAAAdlfHs0rRZ\nVNY6PSdPPbnN97dLUQVHBGY11JAOoALgpKFhN0ozsVLTL+ubCNQdBwAAAAAAQOtQpAcAABWQ\npAb/hAo96JmoA/M+qNC/78ahpWur7vqhjb3f7EknnqYXfyqGKUOHfACAT8FK8/hCQ22n0B0T\nOzpvu/yciDKeXZo+m1m3xtvGoFR1+tQnwWtWb32QJCk44tT6m1nThqsrKIDGcPIH4UHBf0XE\nMgNWzczfgp5TZPv6+pbm1S02HKjvJFJnPh0XevmSRWHvQpwiu2B86dKlQl/7/hwAAAAAAFA3\nFOkBAEAFHm33l76r0NfvOGJI56Y1a1Y1KcvO3ACfF3nOwyUn/il4aFXbvXndGpXtRZniN69e\nPoyMiiWi0I3LOgnrFVToGYZvUcnW1sbGwtiAZRUKjmdqYW5hIXJ0rt+0qbt2/jMAQNdx8tS/\ngsPu34968Cg6LTs7JydXxnLKjWakmREngzM9vDyrmWPRavl1m7qOx5+xJSiaiNKjL06fxaxf\nM7FSsXV6jsu74r9xy7Gwgg4rfKHdgEkzh7arq4nEAOokvnv+ly2/PU7IISJb975lfTnD8Ast\nMEPp/bZtS4lzNm3apIEkAAAAAABQPBTpAQBABS48SFUO3EauXNHfVbthADQg9tzud5vQM52/\n/WlCrxbv35QSe+3Q1FUBrOTV/BWxyiO1Pft+P2pIPTsjraQFAP30OPTE9p2Hn6dLC32WzXtx\naNfBI3v3eQ0eN2WgJ+6sKy+my6RfebyZm84/JaL06KBps2j9Gu9KBoX/geYk3Nm06tfw5/92\nWLFv2GXmzO/riIQaygugNrcD1iw7FM6W1FurefOmmakpia9fpUpY5RGG4bfrNbCJW4MGDepX\nMuGrPykAAAAAAID2oUgPAAAq8DBbTkR8ge3cvvW1nQVAE+5efqMcWDeYPKl3iw+erdZq6Ow2\nwT+HJij3gLByGfXrzG9Q/wIATbrtv2BxwN0SpynY9D/9fR9GJ26d17+IsjKUiOk00ZfPn73+\n3GNS1uln0/rVH9fpuduBu3/dHZjJKpSPeXzzbt9OH9ezGf7gQQdEn/Vd7B9W8JBnYNHAzbLQ\nmQsWLCIiTiF5Ehniv3ff3fgcjmNfSOymtXDTUFYAAAAAAIAKAEV6AABQgVyOIyJDqw5mWIgH\n+iEsPU85aDy2ZaETGo5oS6EBynGbqV3wPwYAaFLsxY0FFXqGb96mg1ed2l8I7h/aHppQMMfA\npJ6bo+n9uGwiSrjhN+9wgzVDXbQTVxcw7cet4fHmrD3zkIjS/wmaNps2rPa2flenl2U+3/vr\n6sDbbwpeIKrlMWP2lMYOJtrJC6BSkpTweXvyK/QM36T7iHF9u7W1My5uTTzDM3Jp0WVpM8+A\nVdMPXX/zImjDYhv7xYMaaCSvDvL399d2BAAAAAAAKBsU6QEAQAVqGhk8zZFRSc0tAXTGG2n+\nOsg2toV3sDe0bkuUX6T/qhK63AOA5rCSmIU7/lSORXXazvzRu6GDMRFFi0+9P01g4rZi64Fr\nR1asPHyLiJ4cW/yk78G6xviFWH5eY1fxeT/5nr5PROn/BPnMYTaummhlwLwIP756g398QWdv\nnrDtoMmTB7cVMriDC3TEuSXbJAqOiBi+6bhV23vUFZXyhQzPZPDcTamTR5+Pzfr70OKwzgfb\nWOFbU3mYm5trOwIAAAAAAJQNT9sBAABAF3R3NCWivIwwKcr0oB8KmhXbCwtfJcYX2BeMLfn4\nxgUAmhN/aUuyTEFEhqJm61ZNV1boC8cYtBqyyMfTgYg4NmfH2ViNhdRVnt+umN2vkXKc/vTC\n1DnbA9bP8lntV1ChN3FoNPOXPT8M8UKFHnSGNPPmwZeZynGzCWtKX6HPxwjHLJ/EYxiOk+5Y\nckL1+QAAAAAAACokrJMAAAAVaDapK007wubFbbkunt7KTttxADSnyCoLI/h3iEIMAGjQtd9f\nKQeesybbGJR8k5DnuBEbQn2JKP5SBA10Um84PeAxetlc/uKVx24TUfrT8/5P848zDM+9x9gf\nvuthjr2BQLe8uRyg4DgiEpo3m9u5WjnOYGTlMdrJYu/z9PTnAYFJ3/SwwWJ6ACgzPz+/4idw\nCknpJxPRyJEjPzUTAAAAQLFQpAcAABWwcB76Y/vQX/6Mu/rrgqa//vpVDTNtJwIAANBTIel5\nRMTwDMfUtyrNfKHI0064VixlpelhRAPVnE4vtBqxeD5v6fKAyIIjQtEXY3+c1bWRfTGvAvhM\nPf5fgnJQrddwg/LegtJqUM29K+8S0fkTr3qMr6OqbACgP44fP67aySjSAwAAgLqh+SoAAKiG\n59S1w9tUY6VvfvUZvXTLkWcpkpJfAwAAAKqWKFUQEd+weulXbDsI+ETESt+oMZaeaTFs4cKh\nLQoefvH1SFToQVeFp+QpB+7tHMp9EpGLh3KQdPOGCjIBAAAAAABUeFhJDwAAZbN69eoin+Mc\njXmvcxXSyKBDkUGHTEQ2lStXtqtkUfwdYbNnz1Z1RgAAAP1lymekck4hS+KISlmlT5CxRMTw\nit69Hsqu2eD5i3krFx+8RkQP/BesFqyY3c9N26EAVC9eyioHjc0ERc9ijIyKa2IvMHJWDqSZ\nEUQjVBYOAPSGhYWFtiMAAAAAlA2K9AAAUDbh4eGlnJmTnvQsPemZWtMAAADAf7U0F15IlSjk\nqUEpkq7WJW/tLM28JpayRCQwbaj+dPrFfeDcZfzVC34LJ6Lw/T+toRWzUKcHnZMqUygHVgZF\n3prL8C2PHj1azEkYA0vlgJUmqDAbAOiPgwcPajsCAAAAQNmg3T0AAAAAAIDu6OSV31b96Mbg\n0sx/cOCAclCpSVc1RdJnjb6ZvWKMJ8MwRBS2/yffU1HaTgSgYqJ3tfnkd9X6cmBl4vwRg+tU\nAAAAAACgF7CSHgAAysbb21vbEQAAAKBINfoNFpxeI+O4pNtbVx4XzfqmVTF70ydEHl4aFKcc\ndx7qrKGIOuTSpUslTzJr3MH57uVnGUQUum+ePPf7ZrZFdjjo1KmTCuMBaICLiUFYOktE11Mk\njUyL6XhfHGnaTeWAL6yismQAAAAAAAAVGIr0AABQNl27YpkdAABAxSUUeczpWHXZpVgiuua3\n8rubXhNH9m7g8t8CPMcmJ7y8GnjM7+w1luOIyMpldD8HE60E/qxt2rSprC+5dmTXtaKfRZEe\nPjut7E3C0vOI6Nbh5zSrUflOEnf2tnIgNG+hsmQAAAAAAAAVGIr0AAAAAOU3Y+yYEruylmbO\nb7/9pppAAABEzSb59oqdcOZxGhGlPA5eMS+Y4RvZmuV3op7zw6RXr+KzpGzBfENRw6VLe2sn\nKwB85ur0q0mrUonobeTuZPnGSgZF9+4oCicPuJq/Fb3tl+6qjQcAAAAAAFAxoUgPAAAqcPbs\nWSIyd/b0crUs5UvuBP0RK2UNjGt161hfndEA1Cs9NVUlcwAAVIjhmXy3cpP1tjX7L95XHuFY\niTg9/9mH0bHvT7aq237efO8aRnwNhwQA3WDTdKwJf3IOy7GSmGUHH64f7VrWM4ivrY3IlCrH\nnfpUU3VAAAAAAACAighFegAAUIFdu3YRUY1edUtfpI85cWBPQrbApEG3jj+rMxoAAIA+Yvii\nfpNXtG4XfurM2Ss3H0lY7uM5Nk6Ne/Tq06u9u6DsC19Byd/fX9sRALSMb1htTtdqCwNfEdGL\nUwv9XbcNa25X+pfnpf69eF3+FhBmjn162RirJSUAAAAAAEAFgyI9AABoh1TBEZE874W2gwCU\nR9++fbUdAQCgZA6uHhNdPSawOS8eP3wel5SVlZUrVZiamVtY2dWp71rFykjbAT975ubm2o4A\noH0Nxyyo/r8JryQsx8mO/uxDU5cMa1enNC/MTfh75eyVr/Pyd98YOH+QOmMCAAAAAABUICjS\nAwBAeTx69Ojjg3kpLx49Yj8+/iFOnhr/8FhSrvKBipMBaMSYMWO0HQEAoLQYvomzazPnMreg\nBgAoFZ7Qfsm8weMXH5IqOI7NDlj3Y2RE39GD+jWqISrqJRybce3CyR17TqfKFcojtXvM7uNo\nqqnIAAAAAAAAWsZwHKojAABQZr169VLJeYws2x/1m6aSUwEAAAAAgLa8Dtk1ee05xburTAzD\nVHdt7u7WwLX+F7ZWlubmZowsNyMjQ/z6WVRUVETY9fgcWcFrbRoN3rl0qAG23gAAAAAAAL2B\nIj0AAJSHqor0HrN3zfawV8mpAAAAgIii06W1RcJyvFAcddmuQUeV5wEA/ZHwd+BK370vsmQl\nT32PW7dx88f3MOahRA8AAAAAAHoERXoAACgPb2/v9x++fv2aiATmdvalrgqYVari5tl3RGf0\n3gUAAFClvv3H9veeMax9vdK/RCFLOr1ro1/Q3dO//66+YACgD1hJXMCefYGXIzLZki83mVZx\nHTBsbD/PWhoIBgAAAAAAUKGgSA8AACqgXFhfo9cvm8bW0XYWAAAAvab8UK7eovfMaSNrmAlK\nnP86MnDthn3R6VIiOnPmjNrzAYAekGfF/++PoJt37j98/Dz73a7zBQxMbFwbN27Run03zwZo\ncQ8AAAAAAPrJQNsBAAAAAAAAQMVe3fx92reRQ6fMGOBZu6g5rCQ+YOv6I8GPNRkMAPSBgVmV\nLgPHdBlIHJvzOjY+IyMzIyNDxhiKLEQiS6uqVR1QmwcAAAAAAD2HlfQAAKACR48eJSJRnY5d\nGltrOwsAAIBeizi7a/O+wNR3S1drefT/0WeYoxH/g2nR4SfWbToUm5O/dbTApNpgb58BX6Ej\nDgAAAAAAAACA2qFIDwAAAAAAoFPyUp/s3bDu/O145UOBaY0R037s07KG8qEs8+WBTWtPX3+p\nfMgwjGv7oVPG96/8USEfAAAAAAAAAADUAUV6AABQO1aaxxcaajsFAACAfnn45+GN24/FS+TK\nhy7th/7oPeDt1SMbdhxPyGOVB43tXL+b6tO5oYP2YgIAAAAAAAAA6B0U6QEAQMU4eepfwWH3\n70c9eBSdlp2dk5MrY7kzZ84QkTQz4mRwpoeXZzVzgbZjAgAA6D55TuyhLRuOhz5VPuQbmbCS\nHOWYYYQe/b6fOLyzOR9bQwMAAAAAAAAAaBSK9AAAoEqPQ09s33n4ebr0g+PKIn1u0tFB3x7k\n8UVeg8dNGeiJogAAAIAGxNw8s3DV3oJd6onIvGYrnxmTW9Qw12IqAAAAAAAAAAC9xdN2AAAA\n0B23/RfM8v3t4wr9BxRs+p/+vhN/Pi7HfWIAAABqJk3758KFoPcr9EQkEb9+9eqNtiIBAAAA\nAAAAAOg5FOkBAEA1Yi9uXBxwVzlm+OaenXt+5/3DBM//7HFrYFLPzdFUOU644Tfv8GNNpwQA\nANAfHBsZuHf8d7MCI2OVBxzdOzqbC4lIlhPr5/vj5GW7oku6tQ4AAAAAAAAAAFQO7e4BAEAF\nWEnM2GE+yTIFEYnqtJ35o3dDB2Miivbz+eH4C3rX7p6IiJNfO7Ji5eFbRMTwTdYcOljX2EBr\nuQEAAHRUTvyd7es3BD9OVj7kGzoMmDh9aPt6bF7i0S2/Hg7Ov0+OL7Tp/d3kUd3csQVN+Vy6\ndEmFZ7Os79Hc0USFJwQAAAAAAACAigl1EQAAUIH4S1uUFXpDUbN1q6bbGBTdqYUxaDVkkc/r\ncRtCEzg2Z8fZ2LUDnTQXFAAAQNdxnCQkYMf2gP+zd99hUlUHH4DPbGMpywLSBAREOipiiwpE\n9DNRLGiIErG3L4JijQrBEhVjF0XsUTT22MWuiQ2RLwYVG2AEUZDe+7aZ+f4YskFAXGD2zsK+\n719n7px79sfz3Hl09zf33LdXxdd8IbvV3kf+4byTWhfkhhCyazTpf+GN++33ws0jHvl+ZWm8\nZMFzd1/5/nsHnn/+makv2LFJRo4cmcbVOp7VSUkPAAAA1YHt7gFIg3EvTk8Nel4yaGMN/X/0\n/P2JqcGst/5VibEAoPoZNui04Y//I9XQZ+c3O+7Cm0ZednqqoS/Xap+jbnvw9qN77JR6uWDi\n25cPPO2OZ8ZkIC4AAABA9eNOegDS4L2lxSGEWFaNUzvXr8j8vMKejfOGzyuJlyz9IIR+lZwO\nAKqR8TNWpAY77vubC889sVXtDf/Sl53f/KRLbt1vv2duGfn4zNVlyfjKNx++adDRPSNMui3Y\nZ599fuqtROnCjz7+pvxlLJZVUL9Rk6ZNC7KL586dO3f+krL/PHsuO6/p8QOObZiTVdi+QaUn\nBgAAAKoAJT0AaTC3JBFCyK7RsiC7os+0bZqbPa8kHi+ZXZm5AKA6yqnZvP+gPxzTs+3Pzmzb\n4+iR3fZ6eMTNL/zf9xEE2/YMHTp0g8fLVk295eLLU+Na23fue0y/w3+5W628/+42lIwXf/3P\nt5588m+ffLc0XjLnmWc+vObWIW1r+g0dAAAAqgXb3QOQBrWzYyGEROmCZIVPmVMaDyHEsjz+\nFgDSaafuR494cGRFGvqUnNqtThs68sYL+zetkV2pwaqT5KOXXTl2xooQwu5HX/LoPdf3O2j3\ntRv6EEIsu0bH/Q6/8vaHrzylRwhh1ayPrrr04bKK/48UAAAAsDVT0gOQBr8oyAshJMoWv7Go\nqCLzS5aPm1cSDyHk1t61cpMBQDVz6+CTdqi1yTdkd+zV/45Rt1RGnmpo8aTbn5uyNITQcLfT\nrzypR87GthmK7d73knP3bRJCWDrlhZv+b15EEQEAAICMUtIDkAa/6tUkNXjq9ncrMv+rRx5J\nDbbrdkglRQIANkleQZtMR9hG/Ov+j1ODo88/uCLze551fGrwxV/HVFYmAAAAoCpR0gOQBq36\nHpsbi4UQFnxy13XPjItvdLPWOeOfuPqNmanxr4/TBwAA25RXZ6wIIcSya/VukF+R+TUKe9XL\nyQohrF7498pNBgAAAFQNSnoA0iCvsPuQg1qkxuMevu70wcP/+eXUles8WDUZXzh76vP3Xz9w\n2JPxZDKEUL/jKX2b1oo+LQBA5ZlRHA8hZGXV3tg+9z9WMysWQkiU2O4eAAAAqoVNflQhAGzQ\nnmff1GfGgNGTl4QQFk1+989D341l5zeqk0i9O+TCs6dPn7WiJF4+v0bhrldffWRmsgLAtuvk\nk0/evBPbnnL95Qdsn94w1VOd7NjismS8dP63RfE2+dk/Oz9e/P2c0kQIISu3XuWnAwAAADJP\nSQ9AesSyap1+3cgGd9/40JtfpI4k40Xzlq55d+KUGWtPrt/hwKGXndWqAn+2BgA2yeLFizfv\nxOXF8Z+fRAXsWzfv1UVFIYT735517aE7/Oz82e/el0wmQwh5dbtXejgAAACgCrDdPQBpE8su\n7Dvoz/ddN7j3vp3zsze8w2vDHXc7+bwr77/x/A6FeRHHAwDWl1OrQePGjRs3btygpu9wp8ev\nD26eGkwaddX4+UUbn1y04JOr/jIxNW5+6IGVmwwAAACoGmKpL+wDQHol46umTZ747cwFK1as\nWF2SqF2noG79xu07d2lWPz/T0QBgWzZ9+vSNvp9ctmDu7NmzZnz35Rtv/Wt1Ipmd33zAVdce\n3Kl+RPmqgbJVX516/KVL44kQQk7NVqf+4aIj9m61wZnTx798y82jpq0qCyFk5dS//rEHOvqq\nBAAAAFQDSnoAAIDqqGjBv596cOQzY76PZdU8+cb7+rYvzHSibcfU566+4KHx5S+3a7Nbj907\nbb/99k2bNq0VVs2ZM2f27NmTP/ng028Xls/Z+7TbLjuqTSbCAgAAAFFT0gMAAFRbieeuOOOh\nCQtyI1dPlQAAIABJREFU8ne67ZGbW9bIznSebceYBy696cUvKjh5t75Drj5lv0rNAwAAAFQd\nSnoAAIDqq3TVF8f0vyyRTLb53a23Hb9TpuNsU7778Nlb73ty2qLijcyp1bj98Weef8ReLSJL\nBQAAAGSckh4AAKBau+2kfm8vKcqv3/upvw7MdJZtTrLkqw//MfbjzydN+nr2wmWrikpisawa\nNWs3aLpDhw7tu+7Vc/892mXHMh0SAAAAiFZOpgMAsJXp06dPehccPXp0ehcEADZJ2/yct0Mo\nWfHPEJT06RbL69K9d5fuvVOvkvGSRFaeVh4AAACqOSU9AABAtfZtcVkIIRlfkekg275Ydl52\npjMAAAAAGZeV6QAAAABkTMmyj95ZUhxCyMrbPtNZqoV4ycYeUQ8AAABUB+6kB2DTDBs2bEtO\nn/TOk0+8MzGZTKZexmJuJwOAjCle/PWdl90WTyZDCDUbHJTpONugZNniD9/94Isvvvxq0pQl\nK1euWrW6NJ5MPeunZPm/nnt3efdePXcoyM10TAAAACBSSnoANk3Xrl0378TiRV+Puv221z6Z\nWX6kVrPdBpx/XppyAQAhhPDEE09UaF6iePb07z8f/+mi0kTqQOeT9qnEWNXS5DHP3nPfE98u\nLdngu/HiaY//5dEnRz3Y69jfn9OvpwfVAwAAQPWhpAeg8iXjH7086s4HX1lctqYGiGXl9+o3\nYMCxB9TM8gdpAEinipb0P1arSa8/7NM47WGqs08eu/zKv332s9MS8aVvP3bTxClz7xp6dI7/\nLQIAAIDqQUkPQOVaOWP8nSNGfvDvxeVH6nf45XnnDdy9Re0MpgIAytVv2+OKa871zbk0mvHm\n7eUNfSy7oMf/9Grftl3uF4/fM2ZO+ZycWp12aV77i5krQwhz/vnw0Cd2vvG4jpmJCwAAAERL\nSQ9AZUkmVv3jiXvue/q9osSaJ9Bn5TY44tRBpxy2pw1dAaCS9O7du8Jzsxu1aNVmp3ZdO7Xx\nn+Y0ihd9f8W9b6fGhe33v/iis3ZtWjOEMGXe82tPy621y5/vemTck3++7omPQwhfP33l1795\ntENNv6QDAADAts/v/wBUigWT3hlx272fzV5VfmSHPQ87/9xT29XLy2AqANjmDRw4MNMRqrtZ\nb925sDQRQqhRuOet11/QMCfrJ6fGcvbt/6fzfvj9iDFzkvFV9740Y3i/HaMLCgAAAGSIkh6A\nNEuULHjhgTsefv3TRHLNDfS5tXbof/Z5R/dsn9lgAAARGPfi9NSg5yWDNtbQ/0fP3584YsxN\nIYRZb/0rKOkBAACgGlDSA5BO33/00m0j/zp1aUnqZSwW63xA/3MHHLN9fnZmgwEAROO9pcUh\nhFhWjVM716/I/LzCno3zhs8riZcs/SCEfpWcDgAAAMg8JT0A6VG28vvH7hjx7Ngp5UfyG3Y+\n/bzzD+7aNIOpAICNS8aX/+HiP6XGw4cPz2yYbcPckkQIIbtGy4LsWAVPaZqbPa8kHi+ZXZm5\nAAAAgKpCSQ/Alkt+8ffHR977zJzieOp1LJa7z1Gnn31S77oV/ts0AJAhZVOmTPn5WVRY7exY\nSVkyUbogGUIF/09oTmk8hBDLqlmpwQAAAIAqQkkPwBYpmv/V/SNGvPn5nPIjdVv/4uzzz9m3\nTd0MpgIAyJRfFOS9vrgoUbb4jUVFhzTI/9n5JcvHzSuJhxBya+9a+ekAAACAzMvKdAAAtlrJ\nkrHP3X3G7y8tb+izsgsOOXnwqBGXaugBgGrrV72apAZP3f5uReZ/9cgjqcF23Q6ppEgAAABA\nlaKkB2BzLJv2z+suOP2Gh15bFk+kjjTZ5VfX3PvAWb/tnmeHewCgGmvV99jcWCyEsOCTu657\nZlw8ubHJc8Y/cfUbM1PjXx/XJoJ4AAAAQMbZ7h6ATZOML3/jkbvuf/7DkuSaPzln12j62zPP\nOf6gXbTzAAB5hd2HHNRi2FszQgjjHr7u9I96DTzpyJ07/riAT8YXzvnu/VeefvilcfFkMoRQ\nv+MpfZvWykhgAAAAIGKxZHKj3+oHgB8besbvvpy3uvxloy4Hnnv28a3q5G72gvXq1UtHLgBg\ncyTji4/8zcmp8ejRozMbZpuRTKx6YMiA0ZOXlB+JZec3qpOYt7QkhNC57Q7Tp89aURIvf7dG\n4a43/+WqVvnZGcgKAAAARE5JD8Cm6dOnT3oX1AcAQAYp6StJMr70+btvfOjNL352Zv0OBw69\n7KwOhXkRpAIAAACqAtvdAwAAQJrFsgv7DvrzfgeMfX70S+98NKloQ4+mb7jjbof1OarPgbvn\nemgQAAAAVCdKegAAAKgUTbt0H9il+4D4qmmTJ347c8GKFStWlyRq1ymoW79x+85dmtXPz3RA\nAAAAIAOU9ABsmhEjRmQ6AgDA1iSWXatNlz3bdMl0DgAAAKBqUNIDsGl23HHHTEcAAKi6Xnrp\npRBCQZuevbrUq+ApE954dUZJPKfmTr0P6lyZ0QAAAIAqQUkPAAAAafOXv/wlhNCqT4eKl/Tf\nP/vIA3NW5tbaufdB11ZmNAAAAKBKUNIDAABslV555ZU0rJJYnYZF2DIliWQIoax4WqaDAAAA\nAFFQ0gMAAGyV7r333kxHIIQQJk2atP7B4kXTJk2K//zJybLFsyY+vSD1VYlkmpMBAAAAVZKS\nHgAAADbf4MGD1z8454M7B3+waevUKNgnPYEAAACAqi0r0wEAAACAsMeZ/TMdAQAAAIiCO+kB\nAAC2Ss8++2ymIxBCCC1atFj75Q8//BBCyC1o3KQwr4Ir1Nmu2S49f3Ni9ybpDwcAAABUPbFk\n0kPvAAAAID369OkTQmjV5+aRZ7TPdBYAAACgKrLdPQAAAAAAAABExHb3AAAAkDYnnHBCCKGw\nfcNMBwEAAACqKNvdAwAAAAAAAEBE3EkPAAAAm2nJkiWpQSyWW1hYO7NhAAAAgK2CO+kBAABg\nM/Xp0yc1yKvd9ZknhoUQbrjhhs1ebfDgwemJBQAAAFRh7qQHAACAtBk7dmymIwAAAABVWlam\nAwAAAAAAAABAdeFOegAAANhMHTp0SA1yarZIDc4666zMxQEAAAC2Ap5JDwAAAAAAAAARsd09\nAAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBEcjIdAAAAALZZK5YuLUsmKzi5sF69WKWm\nAQAAAKoAJT0AAACk2cxP3nh49DtTpkydv6y44mc99vyLBdlqegAAANjGKekBAAAgnaa8NPwP\n97+XrPAN9OVyPZIOAAAAqgElPQAAAKRNydKxQx/4UUOfnZ1dwXPzYm6jBwAAgG2fkh4AAADS\nZtJ9fy1KJEMINRvvfNqZx3dr16ZxvZqZDgUAAABUIUp6AAAASJvXP1scQsiru+dd91y2XY79\n6wEAAIB1+XsBAAAApM2Xq0pDCF3OPlNDDwAAAGyQPxkAAABA2hQnkiGEfToWZjoIAAAAUEUp\n6QEAACBt2tbMCSGUJTOdAwAAAKiqlPQAAACQNoe1qRtC+HjS0kwHAQAAAKooJT0AAACkTbdB\nfbNisYl/ebgo6W56AAAAYAOU9AAAAJA2tbY/4prjdi1aNObiW1/W0wMAAADriyX9yQAAAADS\nKfnOw9ePePb/8hq2+23/4488YLf87FimIwEAAABVhZIeAAAA0uaFF15IDWZ//PJrn80LIcRi\nuQ2aNG3atGm92nkbP3fw4MGVng8AAADItJxMBwAAAIBtx6hRo9Y5kkyWLpwzY+GcGRnJAwAA\nAFQ1nkkPAAAAAAAAABFxJz0AAACkzVlnnZXpCAAAAECV5pn0AAAAAAAAABAR290DAAAAAAAA\nQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEcnJdAAAAADYKh199NGbcVZWTn79\n7Rps37rTvvvtd8B+XfNiac8FAAAAVGmxZDKZ6QwAAACw9enTp88WrlDQcs8BF17Qs01BWvIA\nAAAAWwXb3QMAAEBmLJ8+/paLBr3y1ZJMBwEAAACi4056AAAA2BxPPfXUZpyVKC1avGDWZ+PH\nz1pakjqSndf8pkfvaJufndZ0AAAAQBWlpAcAAICoJROr3vnbHSOeHJv6rbzh7uePuvLATIcC\nAAAAomC7ewAAAIhaLKvWgf0vufaEnVMvF3561+TVZZmNBAAAAERDSQ8AAACZ0eXoP+1ZkBdC\nSCZLHhwzN9NxAAAAgCgo6QEAACBDYnkn/7ZVajjr9W8ymwUAAACIhpIeAAAAMqZRzz1Tg9Vz\nP8hsEgAAACAaSnoAAADImLza3VKDePHMzCYBAAAAoqGkBwAAgIzJyqmfGiTK5mc2CQAAABAN\nJT0AAABkTCK+ODXIymmU2SQAAABANJT0AAAAkDElyz9ODbJrNMtsEgAAACAaSnoAAADImLnv\nrynpazbqmdkkAAAAQDSU9AAAAJAZyUTRQ89NT423P6RtZsMAAAAA0VDSAwAAQGZ8/Njln64o\nCSHEYnmn/rJppuMAAAAAUcjJdAAAAACoduJF819++M4HXv469XK7bgM71fIbOgAAAFQL/gQA\nAAAAm+OOO+7YjLMSZcVLFs6d+OXXq+LJ1JHsGi0uHdIrnckAAACAKkxJDwAAAJvjzTff3PJF\nsvMaD/jzdTvlZ2/5UgAAAMBWQUkPAAAAmdGo8/4DBg3cq0WtTAcBAAAAoqOkBwAAgM3RokWL\nzTgrKye/sF69Jq3a/2Kffffu0iqW9lgAAABA1RZLJpOZzgAAAAAAAAAA1UJWpgMAAAAAAAAA\nQHWhpAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAA\ngIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAA\nICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAA\niIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAA\nIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACA\niCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAg\nIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACI\niJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAi\noqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICI\nKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAi\nSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiI\nkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKi\npAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo\n6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJK\negAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiS\nHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKk\nBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjp\nAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6\nAAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIe\nAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQH\nAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkB\nAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoA\nAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAAAAAAAIiIkh4A\nAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcA\nAAAAAACAiCjpAQAAAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEA\nAAAAAAAgIkp6AAAAAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICI5mQ4A\nAADANqL08WaZjpAeucfNynQENken817JdIT0mDTisExHAAAAoBK5kx4AAAAAAAAAIqKkBwAA\nAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAAAAAAACKipAcAAAAAAACAiCjpAQAA\nAAAAACAiSnoAAAAAAAAAiIiSHgAAAAAAAAAioqQHAAAAAAAAgIgo6QEAAAAAAAAgIkp6AAAA\nAAAAAIiIkh4AAAAAAAAAIqKkBwAAAAAAAICIKOkBAAAAAAAAICJKegAAAAAAAACIiJIeAAAA\nAAAAACKipAcAAAAAAACAiCjpAQAAAAAAACAiSnoAAACodCtm3hJbS4P2wzbp9FG/aLr26YOm\nLkljts9v2Cu1bKvef0/jslQpL3drEtt0u/3x40wHj4KPAAAAEDElPQAAAERtydRh41eUVnBy\nomTmxZ/Or9Q8AAAAQGSU9AAAABC1ZKL0kue+q+DkOR/+YVFpojLjAAAAANHJyXQAAAAAqI4+\nvuKBcNL1FZn56sXvVnIWqpE62//+h0k3VnBydn5BpYYBAAConpT0AAAAEKmdauZMXV22fPrN\n7y+9+peFeRufHC/54ZIJ80MIOfktYyUzShPJSDKy7YrlFRYWZjoEAABAtWa7ewAAAIjUsKNa\nhRCSyfgfH5/6s5PnfHDh4rJECGH7nrf6oj0AAABsA5T0AAAAEKk9rjotNfjiz3f+7ORXLnkv\nNTjixl9WYiYAAAAgKkp6AAAAiFTdVhf3LKwRQlgx667XFhdtZGa8eMbgzxaEEHLy21y/y3Y/\nu3LxookP3XJpv6MO3W+PXXZoXC+vVmHr9jv3OPCQE8++8t1JC7Yk85J/v3fL5eccsOcuOzRt\nmJ9fsGPHrgcd+psr7npufmli4ycmE6vff/begaf2/1XPvds02y6/znYddt2r91G/u+i6+ycv\nKt6SSGTQZlwPs97rHYvFYrFY93snhxBCsuS1h4f3+5+9d2zeOD+vZtMddup51BkPvjpprTMS\n7z12+0mHd99xh6a1a9TYfsdO+x985JDbnlxStrEnPvgIAAAAW4VYMulpdgAAAKRB6ePNMh0h\nPXKPm5X2NVfMvKWgxUWp8eyS+NRzd+5xz6QQwl43fv7Rxbv81Fkz/3FMi4OeCSG07P3C968e\nWSs7a3UiGUI4e8riO3aqt87kD+8+/5gL7phVHN/gUrFY1m69Bz777Igd87PXeevzG/bqOmR8\nCKHlIW99/9pB67ybjC+77YKTLr1zdOpHryOvbpuzb3l8+Bm/2OAPXfr1c/37nvHaxMUbfDcn\nv+XQB1+/6thOG3x3M3Q675V0LZVZk0YclvY1X+7W5IgJ80IIdZoNWj5z5Gavs9nXw6z3ejfv\n9XoIYb97Jr3Tv+jsww+/f8zMdebEYrHDBv/tpeuOKVv9zTlH9r7nrQ08D2K7rsd+9tGjzfPW\nvYyDjwAAALD1cCc9AAAARK3rZQNTg4m33LKRaS9f8n5qcNQNPTa+4JRHT+l+1oi168lahY2a\nNaqXHYulXiaTiU9fvXOfnlds0lf1E6Xzzj+o04UjXyyvJ2Ox3MaNCsonlCz79tb/3efIK55Z\n/9zV817es9vv1q4n8+s22n67/55bVjR92PHdbpiwcFMSkUlbcj2Ui5fMPnXPXvePmbn/aRc/\n8LdXP/nXmL89OPKA1gUhhGQy+fL1/QY+/cHpe+9zz1tTG+3R76a7H/ng449fe/bRc3q3T52+\n8LMnDxzw9/WX9REAAAC2Ikp6AAAAiFqd5uccXD8/hLBy7l+fXrB6g3PixdMHf74ghJBbs921\nXRpsZLVE6fyDf/9Yalyj3t7XjXpl/oqSlUvmzZy3uLRk5SdvPnbyvo1T784bf+0N3y2reM6n\nz9z/9nfX7CvQ8penvvrBp/OWr5o7b9niH/792uPXdymskXpr9LBj+j0waZ1zb+t92pTVZSGE\nrNwGF974128Xrly9dN6sBctKVsx9ZuTQhrnZIYRkovjao66oeB4ya0uuh3IThh365Lellz/+\nybsP3Hhav97d9uzR75RBf//3lP4t1rTX9/Tr+fCXi/Y5+85pHz150YATuu+++yF9j7/91cmP\nntYhNWHq46et/vEe8z4CAADA1kVJDwAAABlw9antUoPr7pi8wQmz379waVkihND8oOG1s2Ib\nWWr+pxd9m+oCc+o/8vHfh5x6aMPauam3Yjk1u/3quFHvfdG3Ua3UkdGvrrvH+E9ZOnV4/4e+\nTo37XPfitPdG9e6+W8PaOSGEes3bHdJ/8KczJgzco1FqwvODDvturZuYS1d+dsWnax4BPvDZ\nT265+KQdG6wJkFu78W8H/fnDB/umXi6ffve/VpRWMBJpkCxdWQGrVpetc96WXA9rK55ftPtl\nb13dv9vaB7NyG9/00H/3ma/X9pwxI8/68WUfO+a2B2OxWAghXjzr5UU/+mqLjwAAALB1UdID\nAABABux8yXmpwdd3XrvBCS8NXrPX/W+v32/jS818+fPUoNFuI45pU7D+hKzcxuf/unlqvHzK\n8gomfO70W5LJZAih6b43vjikz/p/Qcgt6DjivTda1MgJIZQVTTv9ue/K3ypa9GpZMhlCiMVy\nbz281fqLtzlmeOvWrVu3bt2qVatPVpRUMBJbbsXse+tUQPOd131u/ZZcD2uLZdd8Ysje6x9v\n0LV/+fg3j16as973UvIK9t2rzprqfeqPv0PgIwAAAGxdlPQAAACQAbWanP6bhjVDCKsWPPPg\n3FXrvBsv/n7IFwtDCLm1Og3ruLG97kMIHU5/YsKECRMmTHjv+d/+1Jxk/D9P4q7YE7mT8aUX\njJ2TGl/w+Jk/NS23drdHjm2TGn9+7fvlx2NZa7YBTyZLn/puA51odl6Laf9xZtPaFcpE5mzh\n9bC22o1PbJufs/7x7Lzm5ePBu263wXN3qLHmxHVu0vcRAAAAti5KegAAAMiMywauecb2rTd9\nuc5bs9+/cFlZIoTQ4pDhNX/ud/farTp27dq1a9euHVrU2uCEogUTrn79h03KtmLmiNRm+zk1\n21zUuu5GZu58Qdf/nPJk+cFajY+vl7Mm9xl7HHTb0x+WVKwZpWrawuthbbm1dt7wmbE1987H\nsvI61NxAix9C+KmnPvgIAAAAW5cN/84DAAAAVLZO5wwJw44NIXzz4J/Cza+t/dboS8akBv2u\n/cWmL5xYOPO7KVOnTp069ZuvJ335xYQ33/wgVflX3JKJH6QGWdkFf7r88o3MLF4yIzUoWTG+\n/GBWbpMXLtyn140fhhCKFn90Qb/uQ+q1PODXv96/Z48ePbrv3bVt3k/VrVSyOs0GLZ+57lb2\nP2sLr4cfif3sH6OyNzHd+nwEAACAKk1JDwAAAJlRs9HvTmxy+iNzVxYten3kzBXnNK+TOh4v\nmvbHLxeGEHJr73J1+/oVXG3VrPH3P/Dka6+9Pu7Tr5cWlf38CRu1/Js1G3SXrPjsmms+q8gp\nidJFy+LJutlrusf9b3j/ye3OvfCKe2cVx0MIxUumv/7U/a8/dX8IIbdO84OO6HPkkUf97re/\nqrf+s8eperb8eoiAjwAAALC1sN09AAAAZMxFF3RKDe5eqwWc9d6ave5bHnZLBW+3ff7Kk3Zo\n/Yvzrrjl9XFfldeTWdk1W7bf9eAj+199+yMP9GuzScFKl5Vu0vyUFfG1d/TO/t0ld0794eMR\nV11w0J5ts2P//ZeUrpj52hN3Dzj24Jbtet335pTN+EFELB3XQ+XyEQAAALYi7qQHAACAjGn/\nv1eEIX1CCN8+8cfE3e+nvkr/4uA1+2wfd81eFVlk3JUH973qzdS4Rr22/U85tvtee+6xx24d\n27WsmbWmFxw38dpNClanzZrb+gtb/WnJd1du0rlry2/Y9dwrhp97xfBVcya/9Y93PxjzwZgx\nYz6aNCOZTIYQln/3/oDeXeaOnXH5Po03+0cQgXRdD5XERwAAANi6KOkBAAAgY/IbHDGgWZ17\nZq0oXjrmxu+WDWldN140beiXi0IIeXV2v7xtvZ9doWzVxKOu+0dq3PG4EWP/ek6DdOyeXdi5\neWpQvHTMlq8WQqjVtOORx3c88vgBIYTlP3z17MN3XnLlffNL48lEyc3HXn/5d8PT8lOoJGm/\nHtLIRwAAANjq2O4eAAAAMumcITunBqOu+CSEMOudC5bHEyGEln1uyq1A1Th/wqXzSuIhhNxa\nncY/8pP15NLJyzYpVeFOF6YGRUve/vuS4o3MXDFtwtixY8eOHTv+qyXlB78e/fRjjz322GOP\njf5w/vqnFLTocsrQu8Y+9D+pl8tn3FUW3bbobI4tvB4qlY8AAACw1VHSAwAAQCbtdOI1WbG8\nQWe+AAAHaklEQVRYCOH7Fy4qTYYXhoxNHT9x2B4VOX3F1IWpQY3C/WtnbbieTJTOv+Rf8zYp\nVW6dPU5vtma773P/+P5PzkuWnLJv9x49evTo0ePCtX7E5GHnnHDCCSeccMIppz76U6c27XlA\n+Ti+SeGI3BZeD5XKRwAAANjqKOkBAAAgk2rU+5/zdygIIZQs//iKLz8e+tWiEEJewd5Ddyys\nyOkF7eqnBkWLX59fmlh/QjKxavgJ+36xsjT1MrGhORt0+d2HpAaT7zv8yle/3eCcV4Yd8ezc\nVSGE7NyGI47esfx4m9+1TA2WTBn64uxVGzz37dseTw3yGxxaIw3bk1O5tuR6qFQ+AgAAwFZH\nSQ8AAAAZ9vsrdksN7u53+Ip4IoTQuu+NFXysdoPOg3NjsRBCWdF3e/UdNnnBWvtyJ0ve/9uI\nQ7u1vvipqeXHfnj5/omzV1Zk5VaHP3L2zg1CCMlEydVHdDz6gpv++eXUlWt25U7O/Oytoad2\nP/xPb6Ym7/fHF7vVyS0/t92pf8zLioUQkomi43b79cgn/r6krLwZTcz8/O0rB/Q6avgXqde7\nX3hlhf6pZNSWXA+VykcAAADY6sSSSc+8AgAAIA1KH2+W6QjpkXvcrLSvuWLmLQUtLkqNZ5fE\nm+b+6EvzJcvH1S7sXrbWb+jXTVs6pHXddRaplZ21OpEMIZw9ZfEdO9UrP/70CR36Pfbv1Dgr\nu07nXTs3aVy4dOZ3U6ZOW7K6LISQW7v9NSP2HnzGmm23Y7HsFjsdMf2b51MvP79hr65DxocQ\nWh7y1vevHbT2TyxePObgLr3fW6vRjGXlN9thu2Vz5ywv+u/+3O2OuurL567I+/G3Ckaf2e3I\n+yasdWJe/YYN6+Yn58+Zt7Lkv+du1/WUaR+PKshOw33Enc57ZcsXqQomjTgs7Wu+3K3JERPm\nhRDqNBu0fObIzVtkS66HWe/1bt7r9RBC/bZ3Lfpm4PqLlywfV6PufiGEWFbNRHzDt54f06j2\nMwtWhRCumb7s0h0Kyo/7CAAAAFsXd9IDAABAhuUV7Dtkx/9W8jXqdr9kvYZ+I47+60eX9e+e\nHYuFEBLxFV9++tE/3nhr/JffpOrJDged+vrkTy457cHLf90iNT+ZjM9fsLwiK9eo3/Otr8cN\nOHSX8iPJRNHM72eW15NZ2XWOv/zB9evJEEKfe/458uxDUqlCCMlEyaJ5s76bPru8nozFsnqe\nePnnHz2gntxabMn1UKl8BAAAgK1LTqYDAAAAAOHkq/e45oS3U+Md+123Sd+pj2UXDnv8g7P+\n8OLVwx/+8t/fTJkyZWmiVrNmO+zVq3ffY0485sBOqWlXvfbvve69+fn3Pwv1W3bepVcFF88t\n2OXuVz6/+P1nRj09+o23x02fM3fxqqxWbdu1a9eu827dTzzj1K7Nav1ErLxBd7x2zP/+44FH\n/vbRxG9nzJgxY8aM5ck6rVq3at2q9U6d9zrm+JN77dJkU/6hZN7mXw+VyUcAAADYutjuHgAA\ngPSw3T2ZZbv7bV8yWVZWVlZWlp1fM9fN5wAAwFbLnfQAAAAAbA1isZzc3Jzc3EznAAAA2CKe\nSQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR\n0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU\n9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBEl\nPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARGLJZDLTGQAAAAAAAACgWnAnPQAAAAAA\nAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAAAAAAAARERJDwAAAAAA\nAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAAAERESQ8AAAAAAAAAEVHSAwAAAAAA\nAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAAABFR0gMAAAAAAABARJT0AAAAAAAA\nABARJT0AAAAAAAAARERJDwAAAAAAAAARUdIDAAAAAAAAQESU9AAAAAAAAAAQESU9AAAAAAAA\nAERESQ8AAAAAAAAAEVHSAwAAAAAAAEBElPQAAAAAAAAAEBElPQAAAAAAAABEREkPAAAAAAAA\nABFR0gMAAAAAAABARJT0AAAAAAAAABARJT0AAP/fnh0LAAAAAAzyt57FrtIIAAAAAICJpAcA\nAAAAAACAiaQHAAAAAAAAgImkBwAAAAAAAICJpAcAAAAAAACAiaQHAAAAAAAAgImkBwAAAAAA\nAICJpAcAAAAAAACAiaQHAAAAAAAAgImkBwAAAAAAAICJpAcAAAAAAACAiaQHAAAAAAAAgImk\nBwAAAAAAAICJpAcAAAAAAACAiaQHAAAAAAAAgImkBwAAAAAAAICJpAcAAAAAAACAiaQHAAAA\nAAAAgImkBwAAAAAAAIBJKwwHvVpiDKgAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig11_colors<-c(\"#FAA519\",\"#286EB4\") #\"#FCC975\",\"#71A8DF\",\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt, aes(x=geo, y=values,fill=sex)) + theme_minimal() +\n", " geom_bar(position=\"dodge\",stat=\"identity\",width=0.7)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/96)) +\n", " scale_fill_manual(values = fig11_colors)+\n", " ggtitle(\"Figure 11d: Participation time per day in household and family care as secondary activity, by gender, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Figure 12: Participation time per day in unpaid work (main activity), by gender, (hh mm; 2008 to 2015)\n", "\n", "The data is this time in the *tus_00npaywork* dataset. We use the same method as for Figure 3. We apply the same filter to the data for the year (`date_filter=yr`) and a modified one for the values in the graph (`filters=list(unit=\"Participation time\",age=\"total\",acl00=\"main\",sex=\"male\")`. Again in order to get the data we have to apply the filter locally (`force_local_filter=T`) on the dataset retrieved from the bulk download facility. " ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Forcing to apply filter locally. The whole dataset is downloaded through the raw download and the filters are applied locally.\n", "\n" ] }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 6</caption>\n", "<thead>\n", "\t<tr><th scope=col>unit</th><th scope=col>sex</th><th scope=col>acl00</th><th scope=col>geo</th><th scope=col>time</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Austria </td><td>2010</td><td>4:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Belgium </td><td>2010</td><td>4:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>4:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Estonia </td><td>2010</td><td>4:14</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Greece </td><td>2010</td><td>4:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Spain </td><td>2010</td><td>4:57</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Finland </td><td>2010</td><td>3:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>France </td><td>2010</td><td>4:13</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Hungary </td><td>2010</td><td>4:57</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Italy </td><td>2010</td><td>5:30</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Luxembourg </td><td>2010</td><td>4:00</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Netherlands </td><td>2010</td><td>3:43</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Norway </td><td>2010</td><td>3:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Poland </td><td>2010</td><td>4:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Romania </td><td>2010</td><td>5:14</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Serbia </td><td>2010</td><td>5:08</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>Turkey </td><td>2010</td><td>5:22</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Females</td><td>Productive unpaid main activities</td><td>United Kingdom </td><td>2010</td><td>4:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Austria </td><td>2010</td><td>2:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Belgium </td><td>2010</td><td>2:50</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Germany (until 1990 former territory of the FRG)</td><td>2010</td><td>2:45</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Estonia </td><td>2010</td><td>3:03</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Greece </td><td>2010</td><td>2:13</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Spain </td><td>2010</td><td>2:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Finland </td><td>2010</td><td>2:44</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>France </td><td>2010</td><td>2:55</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Hungary </td><td>2010</td><td>3:04</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Italy </td><td>2010</td><td>2:27</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Luxembourg </td><td>2010</td><td>2:20</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Netherlands </td><td>2010</td><td>2:39</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Norway </td><td>2010</td><td>3:01</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Poland </td><td>2010</td><td>2:54</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Romania </td><td>2010</td><td>2:48</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Serbia </td><td>2010</td><td>2:46</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>Turkey </td><td>2010</td><td>1:49</td></tr>\n", "\t<tr><td>Participation time (hh:mm)</td><td>Males </td><td>Productive unpaid main activities</td><td>United Kingdom </td><td>2010</td><td>2:26</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 6\n", "\\begin{tabular}{llllll}\n", " unit & sex & acl00 & geo & time & values\\\\\n", " <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Austria & 2010 & 4:39\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Belgium & 2010 & 4:08\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Germany (until 1990 former territory of the FRG) & 2010 & 4:00\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Estonia & 2010 & 4:14\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Greece & 2010 & 4:43\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Spain & 2010 & 4:57\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Finland & 2010 & 3:55\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & France & 2010 & 4:13\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Hungary & 2010 & 4:57\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Italy & 2010 & 5:30\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Luxembourg & 2010 & 4:00\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Netherlands & 2010 & 3:43\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Norway & 2010 & 3:46\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Poland & 2010 & 4:50\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Romania & 2010 & 5:14\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Serbia & 2010 & 5:08\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & Turkey & 2010 & 5:22\\\\\n", "\t Participation time (hh:mm) & Females & Productive unpaid main activities & United Kingdom & 2010 & 4:01\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Austria & 2010 & 2:54\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Belgium & 2010 & 2:50\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Germany (until 1990 former territory of the FRG) & 2010 & 2:45\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Estonia & 2010 & 3:03\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Greece & 2010 & 2:13\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Spain & 2010 & 2:46\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Finland & 2010 & 2:44\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & France & 2010 & 2:55\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Hungary & 2010 & 3:04\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Italy & 2010 & 2:27\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Luxembourg & 2010 & 2:20\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Netherlands & 2010 & 2:39\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Norway & 2010 & 3:01\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Poland & 2010 & 2:54\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Romania & 2010 & 2:48\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Serbia & 2010 & 2:46\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & Turkey & 2010 & 1:49\\\\\n", "\t Participation time (hh:mm) & Males & Productive unpaid main activities & United Kingdom & 2010 & 2:26\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 6\n", "\n", "| unit <chr> | sex <chr> | acl00 <chr> | geo <chr> | time <chr> | values <chr> |\n", "|---|---|---|---|---|---|\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Austria | 2010 | 4:39 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Belgium | 2010 | 4:08 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Germany (until 1990 former territory of the FRG) | 2010 | 4:00 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Estonia | 2010 | 4:14 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Greece | 2010 | 4:43 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Spain | 2010 | 4:57 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Finland | 2010 | 3:55 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | France | 2010 | 4:13 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Hungary | 2010 | 4:57 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Italy | 2010 | 5:30 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Luxembourg | 2010 | 4:00 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Netherlands | 2010 | 3:43 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Norway | 2010 | 3:46 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Poland | 2010 | 4:50 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Romania | 2010 | 5:14 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Serbia | 2010 | 5:08 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | Turkey | 2010 | 5:22 |\n", "| Participation time (hh:mm) | Females | Productive unpaid main activities | United Kingdom | 2010 | 4:01 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Austria | 2010 | 2:54 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Belgium | 2010 | 2:50 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Germany (until 1990 former territory of the FRG) | 2010 | 2:45 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Estonia | 2010 | 3:03 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Greece | 2010 | 2:13 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Spain | 2010 | 2:46 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Finland | 2010 | 2:44 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | France | 2010 | 2:55 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Hungary | 2010 | 3:04 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Italy | 2010 | 2:27 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Luxembourg | 2010 | 2:20 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Netherlands | 2010 | 2:39 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Norway | 2010 | 3:01 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Poland | 2010 | 2:54 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Romania | 2010 | 2:48 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Serbia | 2010 | 2:46 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | Turkey | 2010 | 1:49 |\n", "| Participation time (hh:mm) | Males | Productive unpaid main activities | United Kingdom | 2010 | 2:26 |\n", "\n" ], "text/plain": [ " unit sex acl00 \n", "1 Participation time (hh:mm) Females Productive unpaid main activities\n", "2 Participation time (hh:mm) Females Productive unpaid main activities\n", "3 Participation time (hh:mm) Females Productive unpaid main activities\n", "4 Participation time (hh:mm) Females Productive unpaid main activities\n", "5 Participation time (hh:mm) Females Productive unpaid main activities\n", "6 Participation time (hh:mm) Females Productive unpaid main activities\n", "7 Participation time (hh:mm) Females Productive unpaid main activities\n", "8 Participation time (hh:mm) Females Productive unpaid main activities\n", "9 Participation time (hh:mm) Females Productive unpaid main activities\n", "10 Participation time (hh:mm) Females Productive unpaid main activities\n", "11 Participation time (hh:mm) Females Productive unpaid main activities\n", "12 Participation time (hh:mm) Females Productive unpaid main activities\n", "13 Participation time (hh:mm) Females Productive unpaid main activities\n", "14 Participation time (hh:mm) Females Productive unpaid main activities\n", "15 Participation time (hh:mm) Females Productive unpaid main activities\n", "16 Participation time (hh:mm) Females Productive unpaid main activities\n", "17 Participation time (hh:mm) Females Productive unpaid main activities\n", "18 Participation time (hh:mm) Females Productive unpaid main activities\n", "19 Participation time (hh:mm) Males Productive unpaid main activities\n", "20 Participation time (hh:mm) Males Productive unpaid main activities\n", "21 Participation time (hh:mm) Males Productive unpaid main activities\n", "22 Participation time (hh:mm) Males Productive unpaid main activities\n", "23 Participation time (hh:mm) Males Productive unpaid main activities\n", "24 Participation time (hh:mm) Males Productive unpaid main activities\n", "25 Participation time (hh:mm) Males Productive unpaid main activities\n", "26 Participation time (hh:mm) Males Productive unpaid main activities\n", "27 Participation time (hh:mm) Males Productive unpaid main activities\n", "28 Participation time (hh:mm) Males Productive unpaid main activities\n", "29 Participation time (hh:mm) Males Productive unpaid main activities\n", "30 Participation time (hh:mm) Males Productive unpaid main activities\n", "31 Participation time (hh:mm) Males Productive unpaid main activities\n", "32 Participation time (hh:mm) Males Productive unpaid main activities\n", "33 Participation time (hh:mm) Males Productive unpaid main activities\n", "34 Participation time (hh:mm) Males Productive unpaid main activities\n", "35 Participation time (hh:mm) Males Productive unpaid main activities\n", "36 Participation time (hh:mm) Males Productive unpaid main activities\n", " geo time values\n", "1 Austria 2010 4:39 \n", "2 Belgium 2010 4:08 \n", "3 Germany (until 1990 former territory of the FRG) 2010 4:00 \n", "4 Estonia 2010 4:14 \n", "5 Greece 2010 4:43 \n", "6 Spain 2010 4:57 \n", "7 Finland 2010 3:55 \n", "8 France 2010 4:13 \n", "9 Hungary 2010 4:57 \n", "10 Italy 2010 5:30 \n", "11 Luxembourg 2010 4:00 \n", "12 Netherlands 2010 3:43 \n", "13 Norway 2010 3:46 \n", "14 Poland 2010 4:50 \n", "15 Romania 2010 5:14 \n", "16 Serbia 2010 5:08 \n", "17 Turkey 2010 5:22 \n", "18 United Kingdom 2010 4:01 \n", "19 Austria 2010 2:54 \n", "20 Belgium 2010 2:50 \n", "21 Germany (until 1990 former territory of the FRG) 2010 2:45 \n", "22 Estonia 2010 3:03 \n", "23 Greece 2010 2:13 \n", "24 Spain 2010 2:46 \n", "25 Finland 2010 2:44 \n", "26 France 2010 2:55 \n", "27 Hungary 2010 3:04 \n", "28 Italy 2010 2:27 \n", "29 Luxembourg 2010 2:20 \n", "30 Netherlands 2010 2:39 \n", "31 Norway 2010 3:01 \n", "32 Poland 2010 2:54 \n", "33 Romania 2010 2:48 \n", "34 Serbia 2010 2:46 \n", "35 Turkey 2010 1:49 \n", "36 United Kingdom 2010 2:26 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt<-get_eurostat_data(\"tus_00npaywork\",filters=list(unit=\"Participation time\",age=\"total\",acl00=\"main\",sex=\"male\"),date_filter=eval(yr),label=T,ignore.case=T,exact_match=F,perl=T,stringsAsFactors=F,force_local_filter=T)\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then again we convert the values from characters/factors to time values using the *chron* package and keep only the columns with sex, countries and values. Before plotting the values we need to cut the brackets from the name of Germany." ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 36 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>sex</th><th scope=col>geo</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Females</td><td>Austria </td><td>04:39:00</td></tr>\n", "\t<tr><td>Females</td><td>Belgium </td><td>04:08:00</td></tr>\n", "\t<tr><td>Females</td><td>Germany </td><td>04:00:00</td></tr>\n", "\t<tr><td>Females</td><td>Estonia </td><td>04:14:00</td></tr>\n", "\t<tr><td>Females</td><td>Greece </td><td>04:43:00</td></tr>\n", "\t<tr><td>Females</td><td>Spain </td><td>04:57:00</td></tr>\n", "\t<tr><td>Females</td><td>Finland </td><td>03:55:00</td></tr>\n", "\t<tr><td>Females</td><td>France </td><td>04:13:00</td></tr>\n", "\t<tr><td>Females</td><td>Hungary </td><td>04:57:00</td></tr>\n", "\t<tr><td>Females</td><td>Italy </td><td>05:30:00</td></tr>\n", "\t<tr><td>Females</td><td>Luxembourg </td><td>04:00:00</td></tr>\n", "\t<tr><td>Females</td><td>Netherlands </td><td>03:43:00</td></tr>\n", "\t<tr><td>Females</td><td>Norway </td><td>03:46:00</td></tr>\n", "\t<tr><td>Females</td><td>Poland </td><td>04:50:00</td></tr>\n", "\t<tr><td>Females</td><td>Romania </td><td>05:14:00</td></tr>\n", "\t<tr><td>Females</td><td>Serbia </td><td>05:08:00</td></tr>\n", "\t<tr><td>Females</td><td>Turkey </td><td>05:22:00</td></tr>\n", "\t<tr><td>Females</td><td>United Kingdom</td><td>04:01:00</td></tr>\n", "\t<tr><td>Males </td><td>Austria </td><td>02:54:00</td></tr>\n", "\t<tr><td>Males </td><td>Belgium </td><td>02:50:00</td></tr>\n", "\t<tr><td>Males </td><td>Germany </td><td>02:45:00</td></tr>\n", "\t<tr><td>Males </td><td>Estonia </td><td>03:03:00</td></tr>\n", "\t<tr><td>Males </td><td>Greece </td><td>02:13:00</td></tr>\n", "\t<tr><td>Males </td><td>Spain </td><td>02:46:00</td></tr>\n", "\t<tr><td>Males </td><td>Finland </td><td>02:44:00</td></tr>\n", "\t<tr><td>Males </td><td>France </td><td>02:55:00</td></tr>\n", "\t<tr><td>Males </td><td>Hungary </td><td>03:04:00</td></tr>\n", "\t<tr><td>Males </td><td>Italy </td><td>02:27:00</td></tr>\n", "\t<tr><td>Males </td><td>Luxembourg </td><td>02:20:00</td></tr>\n", "\t<tr><td>Males </td><td>Netherlands </td><td>02:39:00</td></tr>\n", "\t<tr><td>Males </td><td>Norway </td><td>03:01:00</td></tr>\n", "\t<tr><td>Males </td><td>Poland </td><td>02:54:00</td></tr>\n", "\t<tr><td>Males </td><td>Romania </td><td>02:48:00</td></tr>\n", "\t<tr><td>Males </td><td>Serbia </td><td>02:46:00</td></tr>\n", "\t<tr><td>Males </td><td>Turkey </td><td>01:49:00</td></tr>\n", "\t<tr><td>Males </td><td>United Kingdom</td><td>02:26:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 36 × 3\n", "\\begin{tabular}{lll}\n", " sex & geo & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Females & Austria & 04:39:00\\\\\n", "\t Females & Belgium & 04:08:00\\\\\n", "\t Females & Germany & 04:00:00\\\\\n", "\t Females & Estonia & 04:14:00\\\\\n", "\t Females & Greece & 04:43:00\\\\\n", "\t Females & Spain & 04:57:00\\\\\n", "\t Females & Finland & 03:55:00\\\\\n", "\t Females & France & 04:13:00\\\\\n", "\t Females & Hungary & 04:57:00\\\\\n", "\t Females & Italy & 05:30:00\\\\\n", "\t Females & Luxembourg & 04:00:00\\\\\n", "\t Females & Netherlands & 03:43:00\\\\\n", "\t Females & Norway & 03:46:00\\\\\n", "\t Females & Poland & 04:50:00\\\\\n", "\t Females & Romania & 05:14:00\\\\\n", "\t Females & Serbia & 05:08:00\\\\\n", "\t Females & Turkey & 05:22:00\\\\\n", "\t Females & United Kingdom & 04:01:00\\\\\n", "\t Males & Austria & 02:54:00\\\\\n", "\t Males & Belgium & 02:50:00\\\\\n", "\t Males & Germany & 02:45:00\\\\\n", "\t Males & Estonia & 03:03:00\\\\\n", "\t Males & Greece & 02:13:00\\\\\n", "\t Males & Spain & 02:46:00\\\\\n", "\t Males & Finland & 02:44:00\\\\\n", "\t Males & France & 02:55:00\\\\\n", "\t Males & Hungary & 03:04:00\\\\\n", "\t Males & Italy & 02:27:00\\\\\n", "\t Males & Luxembourg & 02:20:00\\\\\n", "\t Males & Netherlands & 02:39:00\\\\\n", "\t Males & Norway & 03:01:00\\\\\n", "\t Males & Poland & 02:54:00\\\\\n", "\t Males & Romania & 02:48:00\\\\\n", "\t Males & Serbia & 02:46:00\\\\\n", "\t Males & Turkey & 01:49:00\\\\\n", "\t Males & United Kingdom & 02:26:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 36 × 3\n", "\n", "| sex <chr> | geo <chr> | values <times> |\n", "|---|---|---|\n", "| Females | Austria | 04:39:00 |\n", "| Females | Belgium | 04:08:00 |\n", "| Females | Germany | 04:00:00 |\n", "| Females | Estonia | 04:14:00 |\n", "| Females | Greece | 04:43:00 |\n", "| Females | Spain | 04:57:00 |\n", "| Females | Finland | 03:55:00 |\n", "| Females | France | 04:13:00 |\n", "| Females | Hungary | 04:57:00 |\n", "| Females | Italy | 05:30:00 |\n", "| Females | Luxembourg | 04:00:00 |\n", "| Females | Netherlands | 03:43:00 |\n", "| Females | Norway | 03:46:00 |\n", "| Females | Poland | 04:50:00 |\n", "| Females | Romania | 05:14:00 |\n", "| Females | Serbia | 05:08:00 |\n", "| Females | Turkey | 05:22:00 |\n", "| Females | United Kingdom | 04:01:00 |\n", "| Males | Austria | 02:54:00 |\n", "| Males | Belgium | 02:50:00 |\n", "| Males | Germany | 02:45:00 |\n", "| Males | Estonia | 03:03:00 |\n", "| Males | Greece | 02:13:00 |\n", "| Males | Spain | 02:46:00 |\n", "| Males | Finland | 02:44:00 |\n", "| Males | France | 02:55:00 |\n", "| Males | Hungary | 03:04:00 |\n", "| Males | Italy | 02:27:00 |\n", "| Males | Luxembourg | 02:20:00 |\n", "| Males | Netherlands | 02:39:00 |\n", "| Males | Norway | 03:01:00 |\n", "| Males | Poland | 02:54:00 |\n", "| Males | Romania | 02:48:00 |\n", "| Males | Serbia | 02:46:00 |\n", "| Males | Turkey | 01:49:00 |\n", "| Males | United Kingdom | 02:26:00 |\n", "\n" ], "text/plain": [ " sex geo values \n", "1 Females Austria 04:39:00\n", "2 Females Belgium 04:08:00\n", "3 Females Germany 04:00:00\n", "4 Females Estonia 04:14:00\n", "5 Females Greece 04:43:00\n", "6 Females Spain 04:57:00\n", "7 Females Finland 03:55:00\n", "8 Females France 04:13:00\n", "9 Females Hungary 04:57:00\n", "10 Females Italy 05:30:00\n", "11 Females Luxembourg 04:00:00\n", "12 Females Netherlands 03:43:00\n", "13 Females Norway 03:46:00\n", "14 Females Poland 04:50:00\n", "15 Females Romania 05:14:00\n", "16 Females Serbia 05:08:00\n", "17 Females Turkey 05:22:00\n", "18 Females United Kingdom 04:01:00\n", "19 Males Austria 02:54:00\n", "20 Males Belgium 02:50:00\n", "21 Males Germany 02:45:00\n", "22 Males Estonia 03:03:00\n", "23 Males Greece 02:13:00\n", "24 Males Spain 02:46:00\n", "25 Males Finland 02:44:00\n", "26 Males France 02:55:00\n", "27 Males Hungary 03:04:00\n", "28 Males Italy 02:27:00\n", "29 Males Luxembourg 02:20:00\n", "30 Males Netherlands 02:39:00\n", "31 Males Norway 03:01:00\n", "32 Males Poland 02:54:00\n", "33 Males Romania 02:48:00\n", "34 Males Serbia 02:46:00\n", "35 Males Turkey 01:49:00\n", "36 Males United Kingdom 02:26:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt$geo<-gsub(\" \\\\(.*\\\\)\",\"\",dt$geo)\n", "if (is.factor(dt$values)|is.character(dt$values)) dt<-dt[,values:=chron::times(paste0(values,\":00\"))]\n", "dt<-dt[,c(\"sex\",\"geo\",\"values\")]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then calculate the gender gap values as females minus males." ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table class=\"dataframe\">\n", "<caption>A data.table: 54 × 3</caption>\n", "<thead>\n", "\t<tr><th scope=col>geo</th><th scope=col>sex</th><th scope=col>values</th></tr>\n", "\t<tr><th scope=col><chr></th><th scope=col><chr></th><th scope=col><times></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>Austria </td><td>Females </td><td>04:39:00</td></tr>\n", "\t<tr><td>Belgium </td><td>Females </td><td>04:08:00</td></tr>\n", "\t<tr><td>Estonia </td><td>Females </td><td>04:14:00</td></tr>\n", "\t<tr><td>Finland </td><td>Females </td><td>03:55:00</td></tr>\n", "\t<tr><td>France </td><td>Females </td><td>04:13:00</td></tr>\n", "\t<tr><td>Germany </td><td>Females </td><td>04:00:00</td></tr>\n", "\t<tr><td>Greece </td><td>Females </td><td>04:43:00</td></tr>\n", "\t<tr><td>Hungary </td><td>Females </td><td>04:57:00</td></tr>\n", "\t<tr><td>Italy </td><td>Females </td><td>05:30:00</td></tr>\n", "\t<tr><td>Luxembourg </td><td>Females </td><td>04:00:00</td></tr>\n", "\t<tr><td>Netherlands </td><td>Females </td><td>03:43:00</td></tr>\n", "\t<tr><td>Norway </td><td>Females </td><td>03:46:00</td></tr>\n", "\t<tr><td>Poland </td><td>Females </td><td>04:50:00</td></tr>\n", "\t<tr><td>Romania </td><td>Females </td><td>05:14:00</td></tr>\n", "\t<tr><td>Serbia </td><td>Females </td><td>05:08:00</td></tr>\n", "\t<tr><td>Spain </td><td>Females </td><td>04:57:00</td></tr>\n", "\t<tr><td>Turkey </td><td>Females </td><td>05:22:00</td></tr>\n", "\t<tr><td>United Kingdom</td><td>Females </td><td>04:01:00</td></tr>\n", "\t<tr><td>Austria </td><td>Males </td><td>02:54:00</td></tr>\n", "\t<tr><td>Belgium </td><td>Males </td><td>02:50:00</td></tr>\n", "\t<tr><td>Estonia </td><td>Males </td><td>03:03:00</td></tr>\n", "\t<tr><td>Finland </td><td>Males </td><td>02:44:00</td></tr>\n", "\t<tr><td>France </td><td>Males </td><td>02:55:00</td></tr>\n", "\t<tr><td>Germany </td><td>Males </td><td>02:45:00</td></tr>\n", "\t<tr><td>Greece </td><td>Males </td><td>02:13:00</td></tr>\n", "\t<tr><td>Hungary </td><td>Males </td><td>03:04:00</td></tr>\n", "\t<tr><td>Italy </td><td>Males </td><td>02:27:00</td></tr>\n", "\t<tr><td>Luxembourg </td><td>Males </td><td>02:20:00</td></tr>\n", "\t<tr><td>Netherlands </td><td>Males </td><td>02:39:00</td></tr>\n", "\t<tr><td>Norway </td><td>Males </td><td>03:01:00</td></tr>\n", "\t<tr><td>Poland </td><td>Males </td><td>02:54:00</td></tr>\n", "\t<tr><td>Romania </td><td>Males </td><td>02:48:00</td></tr>\n", "\t<tr><td>Serbia </td><td>Males </td><td>02:46:00</td></tr>\n", "\t<tr><td>Spain </td><td>Males </td><td>02:46:00</td></tr>\n", "\t<tr><td>Turkey </td><td>Males </td><td>01:49:00</td></tr>\n", "\t<tr><td>United Kingdom</td><td>Males </td><td>02:26:00</td></tr>\n", "\t<tr><td>Austria </td><td>Gender gap</td><td>01:45:00</td></tr>\n", "\t<tr><td>Belgium </td><td>Gender gap</td><td>01:18:00</td></tr>\n", "\t<tr><td>Estonia </td><td>Gender gap</td><td>01:11:00</td></tr>\n", "\t<tr><td>Finland </td><td>Gender gap</td><td>01:11:00</td></tr>\n", "\t<tr><td>France </td><td>Gender gap</td><td>01:18:00</td></tr>\n", "\t<tr><td>Germany </td><td>Gender gap</td><td>01:15:00</td></tr>\n", "\t<tr><td>Greece </td><td>Gender gap</td><td>02:30:00</td></tr>\n", "\t<tr><td>Hungary </td><td>Gender gap</td><td>01:53:00</td></tr>\n", "\t<tr><td>Italy </td><td>Gender gap</td><td>03:03:00</td></tr>\n", "\t<tr><td>Luxembourg </td><td>Gender gap</td><td>01:40:00</td></tr>\n", "\t<tr><td>Netherlands </td><td>Gender gap</td><td>01:04:00</td></tr>\n", "\t<tr><td>Norway </td><td>Gender gap</td><td>00:45:00</td></tr>\n", "\t<tr><td>Poland </td><td>Gender gap</td><td>01:56:00</td></tr>\n", "\t<tr><td>Romania </td><td>Gender gap</td><td>02:26:00</td></tr>\n", "\t<tr><td>Serbia </td><td>Gender gap</td><td>02:22:00</td></tr>\n", "\t<tr><td>Spain </td><td>Gender gap</td><td>02:11:00</td></tr>\n", "\t<tr><td>Turkey </td><td>Gender gap</td><td>03:33:00</td></tr>\n", "\t<tr><td>United Kingdom</td><td>Gender gap</td><td>01:35:00</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.table: 54 × 3\n", "\\begin{tabular}{lll}\n", " geo & sex & values\\\\\n", " <chr> & <chr> & <times>\\\\\n", "\\hline\n", "\t Austria & Females & 04:39:00\\\\\n", "\t Belgium & Females & 04:08:00\\\\\n", "\t Estonia & Females & 04:14:00\\\\\n", "\t Finland & Females & 03:55:00\\\\\n", "\t France & Females & 04:13:00\\\\\n", "\t Germany & Females & 04:00:00\\\\\n", "\t Greece & Females & 04:43:00\\\\\n", "\t Hungary & Females & 04:57:00\\\\\n", "\t Italy & Females & 05:30:00\\\\\n", "\t Luxembourg & Females & 04:00:00\\\\\n", "\t Netherlands & Females & 03:43:00\\\\\n", "\t Norway & Females & 03:46:00\\\\\n", "\t Poland & Females & 04:50:00\\\\\n", "\t Romania & Females & 05:14:00\\\\\n", "\t Serbia & Females & 05:08:00\\\\\n", "\t Spain & Females & 04:57:00\\\\\n", "\t Turkey & Females & 05:22:00\\\\\n", "\t United Kingdom & Females & 04:01:00\\\\\n", "\t Austria & Males & 02:54:00\\\\\n", "\t Belgium & Males & 02:50:00\\\\\n", "\t Estonia & Males & 03:03:00\\\\\n", "\t Finland & Males & 02:44:00\\\\\n", "\t France & Males & 02:55:00\\\\\n", "\t Germany & Males & 02:45:00\\\\\n", "\t Greece & Males & 02:13:00\\\\\n", "\t Hungary & Males & 03:04:00\\\\\n", "\t Italy & Males & 02:27:00\\\\\n", "\t Luxembourg & Males & 02:20:00\\\\\n", "\t Netherlands & Males & 02:39:00\\\\\n", "\t Norway & Males & 03:01:00\\\\\n", "\t Poland & Males & 02:54:00\\\\\n", "\t Romania & Males & 02:48:00\\\\\n", "\t Serbia & Males & 02:46:00\\\\\n", "\t Spain & Males & 02:46:00\\\\\n", "\t Turkey & Males & 01:49:00\\\\\n", "\t United Kingdom & Males & 02:26:00\\\\\n", "\t Austria & Gender gap & 01:45:00\\\\\n", "\t Belgium & Gender gap & 01:18:00\\\\\n", "\t Estonia & Gender gap & 01:11:00\\\\\n", "\t Finland & Gender gap & 01:11:00\\\\\n", "\t France & Gender gap & 01:18:00\\\\\n", "\t Germany & Gender gap & 01:15:00\\\\\n", "\t Greece & Gender gap & 02:30:00\\\\\n", "\t Hungary & Gender gap & 01:53:00\\\\\n", "\t Italy & Gender gap & 03:03:00\\\\\n", "\t Luxembourg & Gender gap & 01:40:00\\\\\n", "\t Netherlands & Gender gap & 01:04:00\\\\\n", "\t Norway & Gender gap & 00:45:00\\\\\n", "\t Poland & Gender gap & 01:56:00\\\\\n", "\t Romania & Gender gap & 02:26:00\\\\\n", "\t Serbia & Gender gap & 02:22:00\\\\\n", "\t Spain & Gender gap & 02:11:00\\\\\n", "\t Turkey & Gender gap & 03:33:00\\\\\n", "\t United Kingdom & Gender gap & 01:35:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.table: 54 × 3\n", "\n", "| geo <chr> | sex <chr> | values <times> |\n", "|---|---|---|\n", "| Austria | Females | 04:39:00 |\n", "| Belgium | Females | 04:08:00 |\n", "| Estonia | Females | 04:14:00 |\n", "| Finland | Females | 03:55:00 |\n", "| France | Females | 04:13:00 |\n", "| Germany | Females | 04:00:00 |\n", "| Greece | Females | 04:43:00 |\n", "| Hungary | Females | 04:57:00 |\n", "| Italy | Females | 05:30:00 |\n", "| Luxembourg | Females | 04:00:00 |\n", "| Netherlands | Females | 03:43:00 |\n", "| Norway | Females | 03:46:00 |\n", "| Poland | Females | 04:50:00 |\n", "| Romania | Females | 05:14:00 |\n", "| Serbia | Females | 05:08:00 |\n", "| Spain | Females | 04:57:00 |\n", "| Turkey | Females | 05:22:00 |\n", "| United Kingdom | Females | 04:01:00 |\n", "| Austria | Males | 02:54:00 |\n", "| Belgium | Males | 02:50:00 |\n", "| Estonia | Males | 03:03:00 |\n", "| Finland | Males | 02:44:00 |\n", "| France | Males | 02:55:00 |\n", "| Germany | Males | 02:45:00 |\n", "| Greece | Males | 02:13:00 |\n", "| Hungary | Males | 03:04:00 |\n", "| Italy | Males | 02:27:00 |\n", "| Luxembourg | Males | 02:20:00 |\n", "| Netherlands | Males | 02:39:00 |\n", "| Norway | Males | 03:01:00 |\n", "| Poland | Males | 02:54:00 |\n", "| Romania | Males | 02:48:00 |\n", "| Serbia | Males | 02:46:00 |\n", "| Spain | Males | 02:46:00 |\n", "| Turkey | Males | 01:49:00 |\n", "| United Kingdom | Males | 02:26:00 |\n", "| Austria | Gender gap | 01:45:00 |\n", "| Belgium | Gender gap | 01:18:00 |\n", "| Estonia | Gender gap | 01:11:00 |\n", "| Finland | Gender gap | 01:11:00 |\n", "| France | Gender gap | 01:18:00 |\n", "| Germany | Gender gap | 01:15:00 |\n", "| Greece | Gender gap | 02:30:00 |\n", "| Hungary | Gender gap | 01:53:00 |\n", "| Italy | Gender gap | 03:03:00 |\n", "| Luxembourg | Gender gap | 01:40:00 |\n", "| Netherlands | Gender gap | 01:04:00 |\n", "| Norway | Gender gap | 00:45:00 |\n", "| Poland | Gender gap | 01:56:00 |\n", "| Romania | Gender gap | 02:26:00 |\n", "| Serbia | Gender gap | 02:22:00 |\n", "| Spain | Gender gap | 02:11:00 |\n", "| Turkey | Gender gap | 03:33:00 |\n", "| United Kingdom | Gender gap | 01:35:00 |\n", "\n" ], "text/plain": [ " geo sex values \n", "1 Austria Females 04:39:00\n", "2 Belgium Females 04:08:00\n", "3 Estonia Females 04:14:00\n", "4 Finland Females 03:55:00\n", "5 France Females 04:13:00\n", "6 Germany Females 04:00:00\n", "7 Greece Females 04:43:00\n", "8 Hungary Females 04:57:00\n", "9 Italy Females 05:30:00\n", "10 Luxembourg Females 04:00:00\n", "11 Netherlands Females 03:43:00\n", "12 Norway Females 03:46:00\n", "13 Poland Females 04:50:00\n", "14 Romania Females 05:14:00\n", "15 Serbia Females 05:08:00\n", "16 Spain Females 04:57:00\n", "17 Turkey Females 05:22:00\n", "18 United Kingdom Females 04:01:00\n", "19 Austria Males 02:54:00\n", "20 Belgium Males 02:50:00\n", "21 Estonia Males 03:03:00\n", "22 Finland Males 02:44:00\n", "23 France Males 02:55:00\n", "24 Germany Males 02:45:00\n", "25 Greece Males 02:13:00\n", "26 Hungary Males 03:04:00\n", "27 Italy Males 02:27:00\n", "28 Luxembourg Males 02:20:00\n", "29 Netherlands Males 02:39:00\n", "30 Norway Males 03:01:00\n", "31 Poland Males 02:54:00\n", "32 Romania Males 02:48:00\n", "33 Serbia Males 02:46:00\n", "34 Spain Males 02:46:00\n", "35 Turkey Males 01:49:00\n", "36 United Kingdom Males 02:26:00\n", "37 Austria Gender gap 01:45:00\n", "38 Belgium Gender gap 01:18:00\n", "39 Estonia Gender gap 01:11:00\n", "40 Finland Gender gap 01:11:00\n", "41 France Gender gap 01:18:00\n", "42 Germany Gender gap 01:15:00\n", "43 Greece Gender gap 02:30:00\n", "44 Hungary Gender gap 01:53:00\n", "45 Italy Gender gap 03:03:00\n", "46 Luxembourg Gender gap 01:40:00\n", "47 Netherlands Gender gap 01:04:00\n", "48 Norway Gender gap 00:45:00\n", "49 Poland Gender gap 01:56:00\n", "50 Romania Gender gap 02:26:00\n", "51 Serbia Gender gap 02:22:00\n", "52 Spain Gender gap 02:11:00\n", "53 Turkey Gender gap 03:33:00\n", "54 United Kingdom Gender gap 01:35:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "casted<-dcast(dt,geo~sex,value.var=\"values\")\n", "casted[,gap:=Females-Males]\n", "dt<-melt(casted,measure.vars=c(\"Females\",\"Males\",\"gap\"),variable.name=\"sex\",value.name=\"values\")\n", "dt[,sex:=gsub(\"gap\",\"Gender gap\",sex)]\n", "dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We make the graph again with *ggplot*. We have to order by increasing value of *Females*, add the empty spaces before the EFTA and accession countries. Finally adjust scaling, remove vertical grid lines, column width and resize the plotting area to better see the figure. " ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "dt_sep<-data.table::data.table(sex=c(\"Males\",\"Males\"),geo=c(\" \",\" \"),values=c(chron::times(NA),chron::times(NA)))\n", "dt<-rbind(dt,dt_sep)\n", "geo_ord<-dt[(geo %in% eu_ctry_names)&grepl(\"Females\",sex)]\n", "geo_ord<-geo_ord[order(values)]$geo\n", "geo_ord<-c(geo_ord,' ','Norway',' ','Serbia','Turkey')\n", "dt$geo<-factor(dt$geo,levels=geo_ord)\n", "sex_ord<-c('Males','Females',\"Gender gap\")\n", "dt$sex<-factor(dt$sex,levels=sex_ord)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"Removed 2 rows containing missing values (geom_bar).\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACowAAAcICAIAAACDi+atAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOyddWDbOBfAHSgz89atHbRjZmb6xox3t92YbrvxDW7MDDdmZmZm5q7tunZlZkyb\n+PujW2IHHDuxHKd7v79iR5YlWdJ7ek8gwHEcAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUJD\nJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfhXASQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAFO\negAAAAAAAAAAAAAAAAAAAAAAAAAAAADgCHDSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABHgJMe\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgCnPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBHgpAcA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAjgAnPQAAAAAAAAAAAAAAAAAAAAAAAAAAAABwBDjpAQAA\nAAAAAAAAAAAAAAAAAAAAAAAAAIAjwEkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwBTnoAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAA4Ahw0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR4CTHgAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA4Apz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAR4KQHAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAI4AJz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAQ46QEAAAAAAAAA\nAAAAAAAAAAAAAAAAAACAI8BJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAU56AAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAOAIcNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEeAkx4AAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAOAKc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEeCkBxCAFwjY5k5GgaFz\nBQD64mkmZlTthUKhtZ1TqbLla9Zt/tv4WbuOXY7MKTJ0JgAAAAAjID/tMlGg1F//ydApAoBf\nCGiA6JjmYysvWBuPEYZODomkF8vFQqFAILD26J0nM3RqAABQx9E+fsUdSJP5Dw2dFgzDlK1n\nZbvfMXSCAF4DCgZ9KIRyQcYdYjHWWf6exfcijRwAAABAhwG1RHDSA0bJ2UouSu7MNzmFhk4U\nwICC9FtCobD42835nqlnbMGPr21eNqd/5+ZVAyt4u7tYmpnYOLr6VajcqGW36Ys3Xn8WhLOS\naM7BcTwnMzUqPPTNi3t7Ny0d3q+Tn5NP/0nL3qaU8Dkrhmrg0LHIgaLQDSg3AOAP0B4BaqCG\nAOwizQ/v0XaeFMcxDJt8fovFL2logWbFH2A8pYmeu497mokwDHu0sO324HRDJwcAACSAUAb4\nAFJjdVFO9Jmdy/t1bV+/ZmVvVwdTC9tS/oENm7UZPG7epadf9Uw50sgjXtzYtHRWz7aNAsuV\ncXWwMTGzcvPyrVyjXr8Rf207dB4Wp2nFeOuVEvr6hvAiBxORQFdanYtQjdKQWiIOAKwjy2e9\not5Ozye+4Uygs1KA19kSQ2UX0IHgPU3l3252RIbO8dw/uq5jTU+t9cetWvt1xx4UsZgBnfAw\nFbHSHEytK6y9HGLo3CDEUA0cOhY5UBS6AeUG8Ie81EvEqlhv3UdDp4hroD0C1CCtIdAA0fG3\nt428YK3dhxs6OQr+6+FbnCr3RisMnRaDAR0vf4DxFAWvlzYuTpulW6cEidTAqSFbz8p0u23g\n9AD8BhQMmlAL5fz028RirL3sHYuvRho5YCwgNVZLJYmrR3VyMKGyMDuWa7DlxjcdUo408s+X\ntvds5EddJmJzz4FTVn7J4p3ywAeMt16pRU/fUEH6Xa1FQUHLs+FqozWUlghzyQAAMAAb5r7R\nMwaZJG5+32pN+026/DpWa+CEd1cn9W1Sof3EoCx+TeTXDUl28F+dAiaf+mbohDAjLfQP4py1\ngcGphk7RLwd8At2AcgMAAAAAgIKkVwtGno7AMEwgEK06McbQyQFKLCVGKTVsRqpNPVvd2hTD\nsNyES53mP+Hy1QAAcAAIZcCAoDZWp3861yHAf8q2S2mFUopgqaFPxrYt13Xq9hwZg2XV6CKX\nFaWsG90qsNOfpx6FUYcsyo89tPrv6qXrbb8TSTfd9DBqJcqo65Um9PQN5aVe1j8NqhhKSxRz\n9ibgV6brqPFlzPVaQ+xjxs4SZIAPZIRt2ByVpU8MssKkwdUCD39htvFI2LUNNcs8uRJ0v7mL\nuT5vZ4sWI8ZWszKhCCDJzUpNTQx68/xdWILSXzgu3dC/TrVP34aVs0OZRgAAAAAAAAAANCPL\nG9tlZfFP90YbBnpYGTY5AABQIxQ7HVhYr8rkBxiGvV7R5dbfca3szQydKAAAWAKEMmA4UBur\n8xJv1q/bOziXlucVx6XnV4+sGZn16dgUsUB7eHSR47KcmW2qrLgbRyfmYvJT34xqXTHhSug/\nbb3oP1VSMep6pQn9fUPpH1/p87gmDKUlgpMe4II/l6zo6MALtyhgePCCae3n6hnH9sENVYWT\nb502Xdq2rlHBx8nRJjctKSrk7Y2rF268CCeGyU950aVmr1chZ8tbGL7367lg+Vh6A4b0sCeb\n1y1fsOV8IWGqmqww9a/OC4cFr0KWQAAAAAAAAAAAqPiyo+eJuBwMwwQCwbxDgw2dHAAAtBM4\n5miF2b7BuYWyorShvXZE3xxn6BQBAMAOIJQBA4LUWC0tiBpQu4eSJ9XEqlSvob2r+Zf1tBdF\nhoe/uXP61MNQYoCQE1M71mly/e+61ClHGvnBobVVPfSlazZpULVSQECAr5P4a/CXoKCg53fu\nReYoEoDL8hZ0qekfFtbf25o6/hKP8dYrjbDhG4q7SqpU5StWZLRjfClrjcsmDaIlGt5NBQA6\n4FCtdn1bUvdkJdRj9g7AFXhR6rL+DbZ/zdAnktjbo0cf+0q8Y+5Ud+uRPcPaBCqF/Pvf9V/v\nHZkwfPQVwhuzoy+1H3z828kB+qSBY+z9GszeeHZon+11Wo+Jlyh2nkkLWT3n3cxF1ZwMmDYU\nGKqBQ8ciB4pCN6DcAIA/QHsEqIEaArCCrCi575Rbxb8dKswbWcrGsOkxLNCs+AOMp6gRmnoe\nmBBYd9k7DMNib0/YETVshM+v7gMAgBIACGXAgKA2Vp/9o+VZ8srjFhO3H17+uztp7+Fl358e\n69Np2PPUfPmtWzNbXfotqZMz1eJJdJGnf1k37FAw8Y5N6Zb/Hdzev7Hy4fTS/Ng988eNXnG2\nCP+xPk0qSRzfaXH/d0spUl7iMep6pRZWfEMYhn27nyj/LbbwDw4K0jNCOYbRErk4+B741ZDl\nK1WzS6l5hk4TYGByE4KPbPm3rqeaheOzIzIYRTXQnRSJuX2T5yn5FOGlkvi/m3oQHxEIxDsj\nMvXLkC54mJJObdgUm800hsgrE5RKz7vlSRRJRUFqyO/ElA/4kmLoFP1ywCfQDSg3wBjJS71E\nrLf11n00dIoA4BcCGiA6/vZWGNyt3YcbOjn4l51t5OkZcjfG0MkBSjglRinlQ0by02+b/JxA\n4Nl0G/cJ+AHZelam222DpQQwBkDBoIamUM5Pv00sxtrL3rGYBqSRA3wGqbE6N/G4CXnSW6tF\nVzXFnJf8tLEdaYNu71a7KFKCNPJZ5R2Iga19uoTmFVGEf7djKEZm2odkivD04YPuoQPGW6/U\nvI493xCO44PdFPHY+PzN9HFquNcSGW0DAAAAQJfCnA8n9v83f/qE3p1bB5bxsHGv2H/M3Oex\nOXpGmxW16lC8IhKBQPDvzdN1HKlOBxGauC29/qw14cAFHC9aMOKqnikxCD7t10/zsyfeSXyx\nwlCJAQAAAAAAAIBfFlya/ceU+8W/Ta2rb2niQR0eAAD+YGbXYmV15+LfcQ/GnUzMM2x6AADQ\nExDKgAFBbay+MXYG8fxTh4AxV2e10xSzuVO9k5enCwQK52vMnTF3Mgo0hUcXuSTzwbJQxf46\nAoFo5d2D/uYitYGLqTp874p6bsQ7R/56RBG+ZGPU9QpD5hvCMAzDZFcJy/pt/VqwEacC7rVE\ncNIDAICE9K+z+wwdtWDFxpOXbgVFxEtxXPszNAhas4946VDhn79rOWt9SmTms+dof+KduAfT\nJOykiGuGz61KvJRkPQ/OKzJUYgAAAAAAAADg1yTm9ohHPy1T/kM383NbbwAANNFv6/+Kf+B4\n0fSxdwybGAAA9ASEMmBAkBqrZUUpo859J96Ze3mpmLKCuzVcsKa6IgG4rGDalmC1IZFGnvJh\ntYzgDrDxmTqqrC1V1BiGYdgfe0hlkvRyo9ZHSirGW6+KQeQbwjBMkvUsqVBxHLBXZx+2YpbD\nsZYIZ9IDvxAFqWFnjx45fv72t6io6OjoXKFd6dKlfcsEdB38x5BuTSyMZMrK1zv7t59+EBQU\nFJcj9A3of3L3aIrAhRmR1y6cP3fuysfw6Li4+ITEdFNbOycnz8q16jRo3LL3gB7+DlTTr3jI\n+dORxMsWW0fSfNCr1XofswNRBT/82UX5EaeT8/q5WLCcPvS4NWuGYfeJd55mSipYaOnMs6Pf\nHz9+7unrt+8/fIxOTMvKysqR4NY2tja2tqX8AqtUqdyoVefuHRpYi/QdxjCqn+yCy3Je3Lhw\n6tTpJx++xcbGxsUli6zsnJwcS1es0ahR4zbd+jUP0K7K6EP8h9s7d+178Db0+/fvUTEpVi7u\nHh6epSvW7NqjV/fOTR1NdeliOPtw7IBLPj+5efHixRuP3sbFx8fHJ2QWmbi5ubm5ufpVadCp\nU6cO7Rq7UM6ZpUlm+POd23fceP4lOjo6KjqmUGTt6ORcoVrdxk1aDfpjoL+9qf6vMAgySfK1\no/v3H70UHBkdExOTUWTq4eHp5ePXrtegoYO6lbIxUX3k+9vbx48fv3D7RVxCQmJCYqHY2snJ\nuWKN+s1b/W/EiB6uzGsd36QGimaFcZVNRP1hQtDjkydPXrj9LDomNjYuTiK28/Ly8vYp06JL\nn/79uvlRzqrWipH1OYgpqV2NEuiyWSLFItIGaBxwJesNqFLSZ9e4a/LfI2dWpQhJgcGlv8Gb\nFRHDdrxIi8LgQxVAFdeaK73M9sYUSDEM+37hz/jCSHcTXlmFZF8eXjhw8PCDd2GxMTGx8WmW\nji7uHh7e/tU6d+3W9X9tfWzV9A/8B7Vdjhs9n/XOCrWCYdTDH5qwIpQxDP/6/NqRw4evP/0U\nH5+QmJhYJLZ2dHIuV6V248YtB/4xuIKTPgWFNHIGGFz34GFK9ASpsTr5zd9xEoU/0spt8CRf\n7a7uAdt6Tq63TX4ZtGEDNnOnajCkkcffJBVLqR49tMaMYZi9/ywMWye/LEi/myvDLQ077Yar\nEZASxluvUJNPPvylbGt31l/BtZbIwZb6wC8H+jPpmZ7xU5QXtWJUOwvNHbqle+UVF0KKAysd\n8nQ7Xc1RH+FnWxLD0D9cvJOjokO0L7uGTu5eZ0t+3E97MapTNeJfFAcxSjKCl4zsYEFpQRCK\nrFoOnf0yNodm4hmR+LYLxauJMDp3ROlY92eZEvrPLva1Iz47IiRVNUxO4iGl5LF4LJz+Z9Lj\nOJ6TsE8phSui1B8tU0xa0LXfW1cVCbRrM6a2pccsO5xeJKNOAKP6mRm5SOt7leJRfYX2Q7xk\nhVe2zvC3oxoJCwTCGu2GXPqSTj9rat9L/IhTvv2ILSP0cvcGfhRvF5t7jlt1MleqJR9E2Ppw\nHH0CXPb46Mr63moOFiIiMnX5be7O+ALtBaGUgFPJucX3C9Lfjmhfk6JYhGKHXtN3ZGqrxlpB\nV25F+eFqs/Z49zQvS42zbUSmrnOPkGLLT3k3sXNFioSZ2votOf2JfpYNKDU4a1asZ5MVeU2f\n1M9XhjQtQ5FygdCizehV8RIpzvzEShaFxepKTsTw66Oz6OfxaEsv4rPDHsbRf1YJOu3R4F2N\nHC4VS3azaXRiUVOxaJV0SBugJp7/VYUYT/kh96nDZ8duVkqVc2UtR+gV5gaLyaV6LVXTMYdo\nZT3NLpTpmfQfDkxSOmqx4fh9rDTdvJSL8gppbt+COk5+Sn+DNCv+dLxEWC8KEvoNVVhXSlM+\nTSX+ZWJVpYBJbkIPkASWre8U4r8U72WaEW7UiSPNPOXBup6NYFAQbKHhTPrkNydalyOd46uE\nUGw7YOa2BInGzpYn+hgR1u1ySiDV89F1VqgVDKMe/tCHkVDW1FNlht3oXcOVqqDEtt2nbE0r\npIoeaeSM4I/uwZ+U4CofCMMwj/qXGReuCkiN1bd6lSUGqL+BnqYnzfMnLOgSCEQfcgpVQyGN\n/PGfAcTIG+38QityHPcyI5XnN8pj7CnQTYkiw/IIiBHGW6+KQeQbwnE88mob4uMHEpD4trjU\nEsFJDyCAZ076xOfba9JYMC0QiHr9c0TKVyd9ftrztl7KIkGT1vvx6GxfS7qzqkUmLrP2P6eZ\nfvoU5nx+qIFV5OEi/Y5Ykv2O+KCZbUNGSTpb1YX4eI9Pyaph+O+kz4iYp5TCLZrjebZtBPVg\nTBWHSv0+aVRNcJxh/eTAQ5yf8rRHTTdN0SohFDtM2PyIZtZoOumf75/lZkprvqRjpU6Pkml1\nhix+OA4+QWFuyB+NS9FPqrlztd0vk6hLQK1NJPn14dqO5pqiJeJcc3i8ZosVHbh00suk2UuH\n1tP6IoFA0P3fe8WRJDza6G+lvZMXCAQjj4TSya9hpQY3zQpFNvWX1/S5tLA/zW7B2qfpybAM\nRiY8doVFxAXSSKzSuCc08yiVxBG/u9jCn5kXhIzOviIuuxo53Dvp2cqm0YlFTcVCLemQNkAK\nMiJIwsjSdQB1+C87GimlR2xeitr9lvhqKOkVLn3UBuNA1tPsQhk56T/sn6jkoW888QD1I/R5\nMV2xSq/i8IfUgXko/Q3VrPjT8SItCkV+9R6qsK+UyvKrW5NmDMwOSaNfXNNKk1ZZdT4dTsov\ne056btSJ+KeKPtCu7Cz65cAa6pz099aOshbRWq1l6VbrZLD6aeg80cfkoLDLEUGt5yPqrFAr\nGEY9/GEEI6Gstqd6t3e6Kz0N1qnab3GaXXFII2cEf3QP/qRE9QNhbDjpURurB7haEgMso1yp\nRWRrIMn8PvitGuUcaeQvppH2tKg5/w2tqGWFZmQFPlXXySt6OulRjIDoY9T1qhgUvqFink2q\nLH9WIDDRuYZQw6WWCE56AAF8ctInv96pNP2KmpYL7vLQSV+YG9LGU82kLbVa7+MtI8Q0FgEo\n0XE+CzMHaXK5vgfx1fQ74pyEg8QHbX1mMnrvVvJUdPl6L9IreO+k/3q4hVIKn2eptxB92T1c\nyLwmYBhmX+73fM3SjVH9RO0hzk2418zNUlOcahEIhCP3qh/K6uCkDz0yitHbLV2bPUjS0h+y\n++FQf4L8tJf/89O+IZISIlO31TejKQpB1SaSEXbIyYRBZ+7TfiN1OVPDpZN+19BAmu8SCE3X\nvU1Ofr3Tg94IH8MwoYnjo4wC6swaXGpw0KwQZVNPeU2fkzPbMkq2mX29e9/OEO9QmPBYFxaF\neaFEy7K5Q1ua2Yy60ZsYv1/fa7oVVzG6+Yo47mrkcOykZzGbRicWNRULhaRD2gC1ICsgr1QQ\nvtSg9RWzq5qLSnKwdTFUqyfvDSxHDBw4Ro0XhxtZT7MLpe+kf79vgpKHvunkQxThmdKfYNga\n9zmFOjDfpL8BmxV/Ol6kRVEMK0MVFErp7SHlif/69blOs7jy024Si0tk6h5Ndiax6KTnRp0o\nyguTdxQCocl7enMv2ETFSf/1xARGdVJs4b//nZouiCf6WDGI7HJyONDzUXRWqBUMox7+MIWR\nUFbtqSLOzzJlspm2T4etBomcEfzRPfiTEtUPhLHhpEdqrJYVphA91kKxfQbtiVPvV9Yhxlxj\n3mulAEgjx3E84kIrYhiXGtvpxJwTT9o+3cSqCs0kqaKPkx7RCIg+xluv6KCzb6iYo9UVw15z\nh9bEv9Kivjx9eO/S+bPXbt9/+yk4IU2LRZQCLrVEOJMeKMnkp96q1XBU8ekRcizdA3v361Ov\ncllPN5v0uJjQd4+OHj4dllZQ/O+d+a3nB2wxRGKp2Na39Y3YHDohw0+ObDR2J47jxJsuFep1\n79qldoCvm7NVenxcyNtHZ86c/UyO8PL8jv1d3h8ZUwXjMWIz76lTFbvzWbn2YfK07L84UpZb\n2BnluaH75r8lXppYBta2VjOZVJL1vPXovTJyTTB3qjhwQKeypUp5e3s7mEhiYmJiYqIfXDh4\nLyiZGCw9dHePXdMuDa9AM0kU9VNk6lW/fv3i39L8by/eJsr/cq5e299cIYOsmB8vJJXEdKrc\n/l5SHvGmmaNf9379Glfz9/SwT4kI/RwU9Oru+ftBKfIAOC7b/nudZq2T+qvM9WZKRujB+kN2\nEO9YeVXt0KxWKR8PWVZi1PeQ29cfphXKiAFyE++1r9o3JuqsnYb58qx/OKSfAJfl/Fmz5fnw\nTOJNgUBcuWmXHh2blfXxdjArio2J+fDkxskzNxPyi+RhpJKEv9tX8YuK7upOy3ApzY/s22BE\nSuGPzty9UpN+fXrUCSjj5mQaFRIc9PnT1eOH3ieQakLU1fGLPw+YHejINFPFIC03Io9Xdl29\n73Pxb3OngH5DBrRpWNXdXhT+5fOH988P7z2TVKgQYbhMMr15l/X5L+QHR9mUqTtkYL8mNSu4\nmBcEffr49uXt/SfuSWSK+iMrTB0+48XnLcprK+XwTWqgaFYYh9mkL6/p82VXr15LryvdFIpt\nG3fu1aJOgLeXW1F6fPjXd2ePnApJ+WHnLUh/1rGJ8rYrakEhLMTm/ksqOU54/yNwftr1LbE5\nY9QZ75Q48dcd4uWo5Q3oZIFFuO9qDAK6bBqFWGQK0gaoHYHpolqu/R7GFl/huGzpq6SThG33\nyEiXhaSr3j16OnLiOI2W0P9uxBAve00JUArAmazHWO1CP+yfWGvYxkJCzWk25cjdVf1YiRzD\nsPy0y0cSc4t/C0WWs/zsGT1uWOlv8GZFxLAdL9KiYGuogkIprb1wJLZ/ivwy6vK0QvyNCY2n\nQ/fMJhaXd9utXrRP/2WaEW7UCZF52RHuVltiszEMw2WFs+7FXejIYM0c62R9P1B3wD55IYst\nPdr37NO8VjknR7v81Ljv4Z8vnjjxkdxPFuV9/aNh81qJrwPJu0bzRx9DbZfjRs9nvbNCrWAY\n9fCHKXoK5ZS322rM+a9YjApFVu37/9G3T7ca5X3d7ETfQ4ODPr/auXzJg/As4iNRV0av+tp/\nqr+dhig5ipwRBrc88DAlbIHUWJ2bfKaAkDsL5+62tLf/8f5fZezvF/LLmHOh2PwanEWOYZhr\n/ZEYdkt+mfJxxvOsoXVtqA4AwjDsycI1xEvHSpNoJkkVnZUoLkdAmjDeesUBN+Jz5b8tnLth\nGJYe9mTrxo2Hzlz9FJlGDCkQiMvXbt6+ffvBo0bX8mT2UTjVEtH5/4FfF96spF9Qn7SznFBs\n+8fS46oT3mVFGTum9ZBPjRGKSC3W4CvpT+waJP8tEJo16TpowZodNx8++xT8LTE1l/hgQfqj\nMuakgZmZffVVxx6rToWSSXPOrPtLaR6iUOxwKkaXtd1M0XO2lG6kfJxFfKmpdQ21wXi+kj7m\n1jSl5Hk2Paw25LWB/qSPa+I4a8tZDdu/yD7eOtKCPFy38RqrKQ0618/UkN+JDw74onF2M80G\nfuI3klFMIDTrM3OXurPfpA8PzFEqfJeac3V7LzEecxOFTcrCpfamC88l5JcXZsccXfang1jZ\ndFVv9gNNeUf34XAEn+DB3IZKWXOr3efyZzUbZhblRS4f2Ubp6D6HiqM17cGrlIAOjX905iaW\n5RYeUFN6sqKMbRNbKyWmVPvzFKVBH3bLTWkWuZymY9bG5Cufs5Ub/6iLr43a8AKBePDiw1kq\nFT7hxd4K5C0NLZ17aEowT6QG6maFLps694f0yU+7q7TwSCAQNB228GuG8hxemTTn/OrR9iol\n86N8NKyzQdTnRF7tTgxWefIzrTmVZL81JwyMLZy6an2EGh0WdBqwq+FSsWQ3m8YrFmnVEMQN\nkA7Rt0itqVT7S5pC5sTvUft2x4obND0iyX5LXK8pNi+bq7LBKmeynmYXSmcl/bu9403IyWjx\n9zFNhaAbX3Y0lkdu6zNDa3heSX8DNyvedLw4YsWb9aEKzqZSKmtP3rJ77lf1W6YrMdSNVAJL\nwpSfojmIoJkRbtSJJ6MV05hca+3UGp5lVKxncpr9viRKpX/AZYUPD8z3U9nz2bfrf6px80Ef\nw1Ha5XAO9Xx2OyvUCoZRD390gKlQVl1LXYx9+e5X1Gk4Mmn28eUDBWTVwq/3De4jZwR/dA/+\npARHdia9zmg1Vid/GkQM4FhhF/3Ic+J3E5+18ZrAZeTFTCNPVPLpuJR6Y/LUD7ttyT3e9BeJ\n9FNFFTNtJQpHOQLiBsPWKzro6Rsiiq2yvY+sndDFRNtcVaHYtsf4ZaE5hYxexJmWCE56AAH8\ncNJHXh5BDCMQWfx7LYoizg+7fsfUYXAnvc3PPcrK/W/qozCqA0KWNXAnPmjt0/kp5Q6iqR+P\nVyMfR+dScxnNjOiDAZz0Mskof9Jc2vLDbqkNmJ96tT6ZHtNespUKPZ30cU/3eJspb38y553y\noTI4juOyQiUNddKVSOrI89PuESMXCAThqhaB4pC61k92PZ1pQSuJOpBAIBxzMIji7QmPVluR\nD/bbFZ+jw3vVbrHlEDA4TLOYTw8+G0g2owhF1up7RZQfDmf7E+Qln1c6P8+r1QzV8RKRpxv6\nKxVdl/3qTwtTO7I1sap0KoSqu9g10I8Y3tyhDUVg+nDgpG/6zwVNcebEX1J7JuXoQxpdPtHX\nJxJDCgSCWA3H2vFEaqBtViizqXN/SJ+NjUkSUyAQ/Lb1BUX4pJfbnNXtw6nehIeszynKjyAO\nrS0cO2nNafCe5sSU1F5CdUA4HXTwFRVjkK6GS8WS3Wwar1ikU0PQNkB6FKAkCOUAACAASURB\nVOZ8IloczOyaaQoZerCZ6qsxDBOZeeZK1UvnuMd9iSE9Gh1RCsClrKfZhWp10r/bM07JQ99q\n+gmKBOvGjsrO8vgrDlc+RFwVHkl/Qzcr/nS8SIsCxVAFZ1UpfTmjGjGA/wD1o2MiueTp7BZO\nXVX7Anad9NyoE4lvBsjDiy3KsnMWNH00OOnbzac6gyAv8UFDJ+WT0ZcGKzsP+KCPIbXL4Rzq\n+cWw1VmhVjCMevijA0yFstqPa1umV3AulfPm3CjSvkRWrgO5j5wR/NE9+JMSHMclWS+VrL6d\nhj/WFC1yaBirvx4mafhle96hH31RXijxWVVPLdLIi8mKPKM0Z6hK33nRGtSn0CvrlXSzigM2\n0U8SNfSVKKQjIC4wdL2igz6+IUnWS+KzAib7m1p7t7j0lcG7ONMSwUkPIEBlmNFz3OSpOrHp\nSYLaN9AY+8kGu5Nmebdc80prwk/9Vh5TweBO+mKqj9lJPdcs8/tmYnixeakr6gb2SiS/2UgU\nPAKB4L9oqnMrWYF7J/2eP6sT3ygQmp9K4m5WrxydnfRZka9WTe1jriJ1HAOmqw2fk3CAGMyu\nzDQ6b7nc1Zf41DENRaRb/cTZ9nQuq046dbXy+CtaM3hjPGnHtqrTlIfBujnpzWwbvKM8IBbH\n8bTPB23IY4zyw26qBkP64XC2P8HlfiQDhIVz+ySJdnXl5DBSN2vh2EHtM2qr2ez7cdSRS7Jf\nE+2bQrG91vTQAbWT3rHSFOrmc6i5l9Ij/oOoT9WVdXe2IIa/laZGkPFHaiBtVkizqXN/SJPc\npJNKM7Lrzta+qCL83BjVVKk14SHtc7bWIPXSO+K0iLyJPgrHm0Agoj55lA46+4oM0tVwr1iy\nlU3jFYtaawjqBkifqT6k5UQXUtTb2Q/WVixVdG1amvjIiij1dvObPcoQg3VXOUCRe1mvtQul\ndtKreujbzDylNcHMkVUiTDTpdCdG6wP8kf6GbVaqYYoxSMeLtChQDFVwVpXS3KRjxACmNrW1\nai8vplUlPtJgrZqejV0nPc6JOqF09vnRRG4NBeqc9F6t1ml9Ljv6ogvZa+tWb5tqMEPrY2jt\nctzr+ax0VqgVDKMe/ugEY6GsmguhyPpIlJZRbWHOZwuCUc7EsgL3kTOCP7oHf1LCN+gYq9/8\nW5MYptbCt4xeQRxzCUWWXEYuJ+HJeqXF8aa2ZX+bOm/7/uP3n7//Hvb59uXTW9YsGdBS+Xwu\nzxYzczRMNdYB+roH0hEQBxi8XtFBH99QxvcFmB6IzXyOR9CdVcaZlghOegABmjfsYkrDbern\nm2sd+2VGks4vsXDuRD3jqZjCnPc+KiuV+eCkt/bqlaEt/Re6kaxszdfTtQZe/YO0EV/g2Cc0\nH9QZbp30RSdmtVIqz0pjtFtJUKBkyG41eiL1JJWJ40YNGdCzToCP0hCuGJGJy+Fv6oVK8kfS\nuqiG/1Gt25DzZSfpxKadGgZyutVPnFWjUn76XWKZmFhW+Jancfm4nILMZ6aEYY+1xyim78XV\neSN+v/hd66txHL83vRbxKRPLiqq6JtIPh7P6CWRF6UqTYf9+qMVgUUxhbpC/BenBJd/U9ACq\n1cy94WY68c8tbUt8SnUfRR1A7aRfGpRKnYCIi6ROTCi2fZJZQP3I7Z5liY8cSlRTK/gjNZA2\nK6TZ1Lk/pMmzKSR7vYVT+zR6BrB/yAZZTIMJD2mfE32rNzGYWmeDnLyU88Q9Hh3KL6CTEmp0\n8xUZqqvhWLFkMZvGKxa11hDUDZA+bxeTyqrVyW/qQsmqECzUY19eJbapuqs+qI25q5Oi/giE\nJp/I+x9wL+vpdKEUTvq3u8eKyTpzu9ln6CSYKXkp54lv2U3D+cEf6W/YZqUaBjNcx4uuKBAN\nVXC2ldLhHtbEMAu/Ue94L2vnoFi6LRCav1Q3H4t1Jz0n6oSUuPF4u8u0pBhrqFjPhGIHmr6l\nl0ubkB4UWYeoLNU1rD6G2i7HsZ7PVmeFWsEw6uGPDugglFVz4deP1obnUwlKiFDswH3kjOCP\n7sGflPAJusbqh8NIDbPBls+MXuNLVuaVNhhAGjmRuKcHGnmQ5mxRIxCIOozfkMLq9B+augfq\nERBieFGv6KCPbyjqZjvVOiMUWbftP27fhQch36Iy8wpzM1LCQz6c3rPu9//VFqh4VSzd2tFR\nznEc50xLBCc9gAAeOOkfjwogBmhCb8iN4/jVHmXJSeCFk77vLeV1LcrICoiSQGzhn1RIt38s\nyHxCtGdZuQ2m+aDOcOakz014Nrw5aSERhmG2ZfrE05gBhwK1W8LqhkBgMum0WhMtjuN4RtiB\n+QRO09s24OtR0l439J302usnjuOsGpW+7GxMDFBx+H06CcBxfIaPYsAsFNsq6Xs6OOktXfrS\n1BmlBdHu5GfnhCvXfKQfDmf1E6SFTCEGsHDuTiepxdwln9BZacJTrQnAMGz2J6rzouRcaeJJ\nfIr/TnozuyZaE5AWOpL4iGOA9rU1H1bXJT6iZoDKJ6mBsFkhzqbO/SFNBriSDuPseEJjt69E\nWvBcpYSpNeEh7XOKCqKIR49bOHejiPP1vBrEOLvR8/JSo5uvyFBdDceKJYvZNF6xqLWGoG6A\n9MmO3UKMza3uQdUwuYlH5QEEIos4ibSXsyL9DuVXqz5SkPmEGK2tj/IyYu5lPZ0uVJOT/s3u\nMUoe+g7/nKOfYEbEP+2mKG2BibpTxpXhi/Q3dLNSDYMZruNFVxSIhio420rpp40NiGHKD71L\nkbbM76uJgV1rqd9+lnUnPTfqxGRCx1Km222aT7GDivXMq6XyySMaHy1MKUu2kg94Fq8UxrD6\nGFq7HOd6PludFVoFw8iHPzqgg1BWzcWOGFq698kqinkS9J30LEbOCP7oHvxJCU9gZKy+TZ52\n0+zwV0bvqkk+yeI9eUou0siVKMr7Pqe7ct+uFrF52c3XmKWEDjR1D9QjIHTwp17RQR/f0Iu/\nSXs7YRhm59/u1DuNMjrq6ckWnspzRPz70x0qcqMlKk9OBICSwb5zUfLfAoFoVX9aYgDDsLpL\n+mKnl6JJlI6ITFw2NPGgDpMdu+VrXpH80qPRCmfyTjIUmNrUH+dpvS4mq/gyN+lEetE+ezGD\n8zx4CC7LObNx3l8z1n/PLyLeN3esd+7FPjcTuoXDT8RmPktO3f67UxlNAWzLDpo3j3G02V+z\ndUgMnfrJOnfXfSFe/jG3uqaQSgwcO/DryyT5ZaxEWspMr5kTVWbModlUhKZeW1p79bgcKb9z\n5WD4wjmkwyC5/HB68nXXDeJl4GQG6a65YBS2Z7L8MvLMKWx9PepHxOZlFgQ60onczMmMfkr4\ngH25v7SGEYqdiZdlh7bQ+oipkyl1AD5LDRabFcfZZLc/LMr9fCQpjxj5ti6laD5rX35uE7vl\nDzIKqIMh7XNEpt4ra7oMf55QfJmXfHZfQu5QN0u1gedu+kJ40HVTG2/GyWKDEtzVEEGazRIj\nFjlogPSx8hhZ22bSyyxJ8WXqx0VF+ECl3ij+/g75b2uPse4mwjEtPU4eDyu+kxmxPEc22Yp8\ncFLyq+XEywrjBym9l2NZr08X+nb32DrDtxbhuPxOp3kXLs7vrFtsWom/qRhpmlhXtxExloCG\nkv4Y/7RNA3a86IqCP0MVavyHrBRPaCJvON/PzJTtfaxJT3o9fzvxsvuW3hoCsgw36kRDR/O1\n0T9UvrT3bzBMe3NDR8+1rWmGFIgdt3b3bXfkq/zOy82hWF03YhjD6mNI7XIc6/lsdVaoFQyj\nHv7ohv5C2dS65nAV/41aLK0Yu1GQRs4IA+oevE0J9+hgrC7KJYU0dWCWTQdyD5AjlXEWORnp\n3UM7TtyKphNtUf63fTv/q1dtQS03C+2h2YbjERAr8K1eoeb77QRSYgIHvXu910ezzuxdr+e1\n4ID+gfVPRWXJb347PvDe1uRmdtrHF9xoicbtqQIAteDSrP2JOfJLc4f2dW3o9jV2flPNVE7+\nNiyWroNctTmVE5+cI14GTq/D6BVdajnJf+Oy/DMpeRSB+c+L0+ub+Xv0nLRaSThZl2pz48vd\n5k7mmh7kPwKhSbMB0+6GfP67kz+7MRflfv5r7WcdHqRTP1lnx/dM+W+h2GGCtw1FYCKVp285\nQUB/s9eEwX7aA/2k8SLSqprIU7oUuBI6fzg9eXchhnjZcaDGKSOq2HiPIR6gmJtwUKs2Z1t6\nMkILpUGxr6K8aaEayELJoYYDjSe0CDI+Sw0WmxXH2WS3P8xJ2IMTHE42PlMoRh0qiGbXc2Ur\nJUQY9TkdVpJWh6/b+EVtsKyodRcJZevRbKOXqWFGKCW4qyGCNJslRizyrAEK5zdxl18U5n7Z\nFZ+jFOLlGkWuS/XohWFYpWkN5XekksS10cqexXcrXhMvRw5R/nYcy3qdu9A3u8coeegxDGvQ\npb4OUdEk9ka8/LeZXWOKkJowlPTXDaTapnF1vDSLgj9DFWpMbRvN9rOTXxZkPllBSDkJXPLX\nCcU6SFPr6mtr06jDLMGBOuFRW+F8zU+7wjyNrCEQmMyoSMsTXEytOc2Jl4kPHquGMZQ+htou\nx7Gez1ZnhVrBMOrhj27oL5Rty4xnLzmcRs4I/uge/EkJx+horMbJlwwbnJIGXqB0jTTyn2RF\nXO3XoFTr4YuCMyU0Y35+YmW9UmXHrjyHaw/LMhyPgPSHj/UKMdGeler/pHHzAY9e7NEqSU2s\nA/c92etIEFgyafaoKc/ovI4bLRGc9AAXXErN022rh0cjK+rwuryU83lSgtbrq7wuhAKh2JG4\ncSgfsKvQVmuY6NOkyWjNKthpCqn+FZVI4V9l05WafCP2xekBTXzr9pz0IDxL6a9qff75FHKl\nsYvxeejNbRxL+1ds2Kbn3NU7nwYn3j20vFEpa+2P0QSXfP/y+sCqafXL172tk5uNTv1kF2l+\n+KssRRW1dOlraiBVXGTq2suZQXdhW3Y48TI37qru79b7w+nJdcL0f4FANNydweFSmMB0EGGL\nP6kk7kWWlj7HvnIV6gDGi4mdifZAZEztWJghzlupwW6z4jib7PaH6Z/fEC+9Ojdn9Lj/b3TX\nKtFCpz7HvcEa4hg1ZPtytcFeztlKvBywju4CMtYpwV0NEXTZLElikV8NEMNqzyMlYN+ZSKUA\nKz+kyH83G1kOwzDHwDkmhE1rzx1SPg10zdNE+W8zu0a/qyys5FjW69aFvtk1us7wbUoeegzD\nlnQYll6Eyqz3hDDQMLPTZX2MoaQ/MzjRNo2j42VSFPwZqtBh6DLSdJZ9i96rDZYWPO81QQvy\nH7bZgsOFDRyoE071FI7Jgoz7uTLunQI/sHDq4sHENW5beizxMj/jjmoYQ+ljqO1yHOv5bHVW\nqBUMox7+6Ib+Qtm+EstqG2eRM4I/ugd/UsIZ+hirxeQtFgrTCxm9Oq2I5D61Jm81gTTyYlJe\n76pZ6X/HnsbK7wgE4rpdhm/ce+pt6PeUjJwiSV5yfPTLO+fXzB9f1Z04fIjfMq1brSFrkGn0\n6uF4BKQPvK1XqJl4/taTnzy4cyjAktY2JFZePY4MIK14DD85h86D3GiJsN09UAKRZJFOWHSq\nrXwgBzXtHMxOJ+eymiK9sPHXrlXHvE8nXs4qZTtLjzd+i8/D/Oz1iMAAFKR9WjJpzKIDD2Qq\nRjpLjzoL1m+a2ruu2gcNyKbY7LEeTIS93uSmxoaEhIaGhoSGhhb/+PwpOL1Aqk+cdOonuxSQ\nG7iFs8GGhRZOPRgZ3czsWriZihIkPwpckvWS5oMoPpyevCQommILf6YLfVq4WayNUSiRr7IL\n61Guq7D2Y29iCoBhGI+lBrvNiuNsstsfpr1OI156dvDUFFItznWrY9g93V7NVp8jNHFfWdtl\n2JMfq1tyk44fTto7wIVscpXlTzoVIb8ys22wOIDBAjJ2+UW6GnTZLEli0YANUH2E1RZZiQ7K\nNxIM3ngdG6M46Dc/9bzcACQQms3ws8MwTGxR/nd3q//ifiyg/7rrCjZTcXpfQfqtm2mKg5C9\nWs1T/XQcy3odutC8lHN1RiRLVZR/DMNyky61W/D42cJGTOOkQyhhnYqZi5ENmjRhKG2Thx2v\nnkXBn6EKHXw6rrcWBWT/7FvCT8yS7biv6iJ+NP2o/LdAIJhPPrkcNRyoE5Y+CpM6LpNE5EsD\n6Rl8WcfMgVmFMbGq7msujvjZKRVmv1MNYyh9DLVdjmM9n63OCrWCYdTDH93QXyhblUVol0Ma\nOcB/9DdWK81pkKQxc/qmk52pSudBII0cw7D85JtNmoz+mqtwADsEdtl/Yk/nQCdiMCc3Lyc3\nr1rNu0z6Z+mxxWN+X3BAPsfrzYEpjZ3KPl3bjVHC9IHjEZBu8Lxe8ZYmq5Zg+3rJLwsyHtxK\nL2hlr2XHe260RHDSAyUQScZ34qVlKfUHbmnCw5rxnD6kmLtrX/wdST5KRE/y4/O1B+IPeNHF\nzTPGTV//XaUQxBbef8xauHD6EBdDb8BlQCRpEdcuXrx48eKVWw+jUpQ3R9UfOvWTXYryQomX\nFh4GM+2JLcozfcTPXCz3RkgLlJfBEUH94fQkVqKwVIrMmBlcMAyz8rbECJvsRhZo6cFMHY17\n3jQP4a3UYLdZcZxNdvvDgkTSeZO23syUGZE5s0UbiPqcdqvaYo32yy9XbwkeMI90NG/Kp5nv\ncxQDwnK/r6U8+BItv0hXgy6bJUksctwAtUdo5jPT13ZO2A/Le8a3JVnSCXJrSOKTLfKQVu4j\n5Nv9De3q89+2oOLfmZErMqTT7OSPPF1DjL/NXDUuN45lvQ5dqLRQcXq3iVXgtB5Fiw+EyO+8\nXNrh9Nj4Hu7Mvh0d4gj+WjNnlg9K5xI+aJs86XhZLAr+DFXoILYov6K685hXP/bVKMh4sC4q\n6y8f0v78uDRz4nXF2lzb0lN6M9k0hRVQqxNKDTlOYjAnvamNF9NH/AhOellhstowBtHHUNvl\nONbz2eqsUCsYRj380Q39hbKJLUIjMNLIAV7DkrHaqgxpngdTZ2oqwZkqEIhKm5OkG9LIMQxb\n0n5AEMFD71hp6MfXuyk2jBEIrfr9s69OoFtA71WFP93Pz9f3WjciaVKg9iMPWIHjERBjjKFe\n8RYL5571bc2eZioE8ZGEXK1Oem60xF/XcQWUYJT26DBzYaalWbgZXsskIrLUPmkro4jN0z+K\nstkWIcgoSH0zspVfl/GrlYSTUGzXe/Lqz/Hfts0Z9st66GWShB1zhni4+f1vyPjtx69R25uE\nIpsqlXWZdEynfrILXkSae27uYbDzKcTmPkwfKW2uKC6ZNFvtrk3cfDi9wIvyCdv7iEzdmEZg\n4Un6aug2pAU0wVupwW6z4jib7PaHUvKiPXcLZpGLTOkaeZH2Oa51VrubKlL+ZctKpQC3Jp8k\nXs6ZVRUDjJaSJBY5a4D06TFVsXReKklcFalYovFm1Uf5b+/O/eW/K0xoJf8tK0xdE6V45PUK\nxabWQhPHhYEqKyY5l/X6dKGm1lWOv3vy7847je0U4z6ZNOvPtnNRnJAYK1HEauZklE56I9A2\nuYL1ouDPUIUmXVeTdjXfufiDUoCk11O/ERaqNl07FuMc1OqEiQ1pLgXRQM8xZq6MjVHEksEw\n9bqvQfQx1HY53g5nqEGtYBj18Ec3SoBQBkoeLBqrbcqRZs5lfMygnwxpwfdMQp8gMitlRp6A\nhTTyzG8rFr5STKgVmjiefvgfnSNd/HquODu8gvwSx6WL+m6nnzC94Le101jqFZ8Z501S+cK/\naM84N1qicUxzAABGCM1I/VFBUoGmkGpheg4HH7Ak7ytSs159fY6+q8CzvQQ0EXt3Y8suU4PJ\np2QJhCYtB09bumRWHU/2180YEbnxN5tX+9+LRKpDE62dvStWrBgQEFCjUetePTpILrfx78fm\n1qyoEJDGXUU5BptTIpMyPp4zg6CfCQQmqgsUjOPDCcTmQoFcc5VKEphGIEklNVsuT7UEiuGt\n1GC3WfE2m3RQWnWRkM9sJCArUr+USgnUfY7QxHl1PbeBD34cQZebePhk8k75seWywoSJD+Lk\ngW28x/Z14bszA6CgJIlFbhogI3x7TcZGK7YOPr/r64JFNYt/r3mjeF3jsYr9DOz9ZlmKtuT+\n3Mj6wr6wBT83qV5OMJk5VFigxppjPLLezLb6yfcPOpe2xjDbY2fGebVcLf8r5cPqAYdGHx3o\nx+4bSTkxwnmGxqFtcgKSouDNUIUm7g3Xe5gei/tpcAw/9g++7Raxkl//66L8t8jUfWvHUtwm\nEMO4UCdIfaDhjqTHCpIYb08VTVilJxDZqbXNG0QfQ22XM1I9H7WCYaTFog/GLpSBkge7xmqH\nat7Ey7S3UfSflWQ+Il6a2jbgMvI3s0ie9bJ9jjbTtmRZTtt1x812VSv4KY9TP81+l/NXNSv0\nPRKPR0BGVK/4jLuvNfY5RX5Jb1tQLrREcNIDJRBTB9JsoNxoZgfMJ6cxGzwwIkOKYjkH5kGa\nPY1tvnGvPoIjT3hF6Nn5tXsvzCRPE3at2XPX3m2dqzgbKlU8QZLxsmPV/71IUrY3uZapXK9+\n/fr16tWpWS0gIMDbmTQXLIzDFOqDyNSVeJkbxayBs4g0P5zpI2GEZShCE+WKakQfzsNUFP4z\nL9KC79SBVcn5Tlql5PqrbndhQHgrNdhtVrzNJh2sSpP2H8uIzsUqOWkKrEoRjZLkps9pvao9\nVm+3/HLZjpBeM6sV/467PyGeMA25zuKJDOMGUCmWulGSxCIHDZApFs69WzuYyw+S/7b/BLao\nJoZhBek372f8GLwIBCbTyyu2ghSaekzysl4SmfnjkX0XsXk1MAzLTz3/hLDLX7XZHdS+0Shk\nvZl9rbPv77X3+fG9PFusWtfq6KRbMfIAp0d0+NDtUxVWjXoeZsKQn7WyIAXhyBEFRqRtogZR\nUfBnqEIToYnzhmaevW/8MM7mp9/eGJM9wetHrmWS2MnPEuWBvdtt9aKxBg4FSNWJwuxM4qUn\nwwNoWUSSGa09EJmvBElKce4M9/oYarucker5qBUMIy0WfTBqoQyUPFg3Vps7Nceww/LL/LQn\nGDaA5rMFmY9JUTm0UgqANPJjD0ge7q7/1KYZM4ZhYssqM3xsF3z/scoZx6XrIzJ3M+ktdYaf\nIyDjqld8xpJ8yozShEK1cKMlglkcKIGY2tYiXqa+itEUUi3Ps5idw8GIsDwkU+lL+5FsBx9z\njG8zAEbE3ppXpee/pM1VTFzGrDwV9fIkeOgxDNvU6X/3CPYmgdCkca/xF19GJ3z7cP7wjlkT\nh7dpUkfJ3mREmFjXJF7mJwUZKiWS7BeMwksl0cQewJScEcyoPlwtwlC/KO9rDMPdfl4lkOyh\ntaxLuOGAh/BWarDbrHibTTo41CTtPh13NU5TSLVkhb7XGoabPsel5kovwjDmy/p18t8n/rot\n/y0UWW/qVUbPd/2CIFIsdaMkiUUOGqAOzGqvWPGQFbu+WPgmvVwvv2npNsTfnGQ16DlIcXht\nVtTq4uMD4+9vJIaZ04G0kEIO/2W9iUW5i5/uyz30xYw+c4LY5xTmhf5v0EF23+tJcIEYnT/A\niLRN1CAqCv4MVejTYnUP4uX2ZYoTNGLvT0wuVLT9ketacJcsMkjVCUkyyQTkZWowJ31+6iVG\n4SVZT2OIB3LbNtIUknt9DLVdzkj1fNQKhpEWiz4YtVAGShgojNUWzj3MCKux81LOFNJeyJv0\nkNRjeLSpxGXkzzJJ3Xgnd2ZLvRsH2BEvw4MY7MeuDzwcARldveIzuTGkKYNKPnu1cKMlgpMe\nKIFYOHYiXmaGH9YUUg245HASqtnu0vywODQHV3i09SBe3omiOkvP2MlLvNGk85ICwvYilu5N\nLwWHbZ7aQ5+NvEoM+annpz6Ol18KRBbLLn99cGJDp1rsH49qEMxs6tuKFcIrJ343RWCk5Kde\niSxg0KKzYzYX4Yp6a0aebGhcH66tk+KMQByX7opn1OdId8QpwgtFVg1twUnPNbyVGuw2K95m\nkw42vqS8RJ9nts/wt92h1AE463MEYse1jRQfIidh7/mUfAzDCnPez/qo2GfMpdbqAEvY4osZ\n6BRL3ShJYhF1A9SNarPby3/j0rxFIekYhr1fpbCSeLUdpvSI33DFsEhWlLHyexaGYc9XfJLf\ntHId1MJO/c6T/Jf1ZnbNWqts7Whq0+D6uvbEO9/P/bHwRRLGHuUsFJ1VQVI6izGjxri0TaSg\nKwr+DFXo41RpaWXCbhNhh+bJf5+eclf+28K528yyJIs5lyBVJ4gWW4HApLS5AZ30VyKYSNKM\nsC3ES7uKbTWF5F4fQ22XM1I9H7WCYaTFog/GK5SBEgYiY7VQ7NTdSXEEibQg5lAiXbfF222k\nHqPCwNJcRp5OXvbN1LWpdLi7JAXhikoifBsBGWO9QoksjEB4BOPzCGK/ZRMvq/jZaAophxst\nEZz0QAlEbFmpoa3C2JSfevFDLt1lRjnxe1ILUW0cmhm5AVHMnh1Jk5Sfr/uC6EV8YFGr/t8I\nW7o5VOrzOPhGuzLae9VfhKgLq3CCybvCb2entaN1cKDWU9/4gtCin4vCIFuY+/lyGt2j+9JD\np/kQ6Hs5Up+E4Lh07VcGczlD/7tMvPRoU594aVwfrnonkgXz0gkGJZkTvyeKcHSihXNvaxHM\nr+Ea3koNdpsVb7NJB0uXAeaEqc1Z0atjJAz0k/9ux1IH4LLPab6SZKVdtDsUw7CIU5PyCEPN\nLhu6Mo0WQKdY6kZJEouoG6Bu2FdY4GyiMArcWROEYdjGF4qdqOtPrKD0iG2pv50Ij1zZ/RXD\n8KUfFP6YMv3Ha3qd8cr6wJFnRvgrXIk4ji/tODS1iLXzAxsQxh0F6c/YipYDjEvbRArCouDN\nUIUBQot1XRUG1vy061tjczAMK8oNmvkpVX6/+uxFHKVHA+jUiZSnil7RzK6RFXsnyDIFx6X/\nvmYwqejpggfES//h5SgCc6yPobbLGamej1rBMNJi0QfjFcpACQOdnsSq1gAAIABJREFUsfqP\nxm7Ey4OP6TomN39JI15OreSoGgZd5KXMSVO+PjDc2CP9M2mPcTornlmBbyMgI61XyBAOrlnJ\nX075wHiGXrz10Vny3wKBYKibFUXgYrjREsFJD5RMptV2kf/GZYWTz0bQfPDj8k06vE7pUBBN\nvF95XYfI6WDrO8tSpGjO0Zf/ldA3Q8ny+7dr3eInXQYeRZFCtkh6OWsJYaK3hVPzZy8OVYNl\nuASiTkYRL7vOrEfzwdBzjA/AMxSD25N0pnn/hdB88Ouua9EEXMrZ6pmSk5Nu0g2KSyZsDSbe\naDKaZEMxrg/nP6Il8fLjiqX0n30zfw3x0rP1b+ykCWACn6UGi82Kz9nUitDUfaynYr9KqSRh\nNG1jfU7c9sPa5kFz2ec4V1vhSxiiB63dhGHY1jmv5HdMLCusre2q5slfFYMrljpTYsQi6gao\nY6rEjvMrKo6cj768Q5L5+GrqD/+fQCCaTvj3x02R3QxfhbYTfuhsXtLRt9mKlSh9JlXU9Doj\nlvUCk9U31pO2cEy+0m7uA4onGOHR1l3+uyCTtWg5wLi0TaQgLQr+DFXoU2fJCOLlllWfMAyL\nvDgpV/pDHgmEFhuHazzvnBvQqRPxrxRzEcwdO+qRRha4NOEczZAySfyoK6SaPL6NJ0V47vUx\npHY5I9XzUSsYRlos+mC8QhkoSSA1VleZ3ph4+WY2rY1JsqM330tXHABh6dKvgY2a9KCLvKOj\nOfFy/6tkOjHL2RZK2hijZiBHe/nwagRkvPUKHTPqKFQLWWHq1AcMTo3Jidv7inCYjoVzzyo0\ndg/iRksEJz1QMqm/mLTN19Op/xTQUExlhYnjd9MdQhN5Sz5xRH3kRal/HgrTIXI6iEy9iDa7\n/PRbo+/SXcET92ji0eu37v4ktqJGUx0f2D34P+LlpMvHiHtbARiG5caShm2B1iaaQhKRFSaM\nQ7PqCwWVZ/QiXn5cMSVDSmvouXzXV/lvgdBknLe+J27G3RvzMIPWnkvfjg59kqnQY0SmbgsC\nSJMNjevD2fvN9TFTNL3cxMMLXtFa81GUFzL8wFfinW6zKrOcOIAGfJYaLDYrPmeTDkMnkF56\na+TETHp93dERi7WG4bLPEYhs1zRV7L2ZHbf9zNeT6whTmH27b4IdNYgYXLHUmZIkFpE2QJ1p\nP7uq/Hdu4sFbjxRmI0uXfoHqrAztRylmP2RHr3t7Zav80sSi3LTSGr2ARi3rbXyHnh9XhXjn\n9YpOJ+PY2fXXvZViyXVh9tssehWDDxi8WfEHpEXBn6EKfWxLT23toDCmh+37F8OwvbOey++4\n1FhVi14poQOdOvEkSSF27SvXogjJAUmvJx6KztYeDsOeLuoWS9gb38ptcA8nC4rw3OtjSO1y\nxqvnI1UwjLdYdMZ4hTJQkkBqrHapudqdsFd82pd5NwleUk08nLqWeFlx3HSOI2/V35d4+Xja\nXq3Rysn8tvliikI0C0WWk7w42kCXVyMg461X6Kg1m7T93oXfGAy9L49aQLz0GzqNzlPcaIng\npAdKJq511lYhHKuWE3e0164grU89W9j5RRYtw6KZC2k62IvF2rdUevBP+5A8hPsEDlhPmstz\nuGffkDztm4nh0swxvQ/KLwUCwbg/DTxBnoKi3I/zQhR7qli5DV5SFxbeKWPlS9qq5WM2rVp3\nflLbyAK6u88ZHPty81vaK9pgftrNTstfaH0q4fH0k8kKe5y939yKeis30sKUfj23aA0myXzd\ncfgp4h3vNpvcTUgi2Lg+nEDsuLmTD/HOys4j6dgfT43sHJyryJqZXZPFAVzujAQo4K3UYLFZ\nYTzOJh3K/7mcuBI0N/F8u3/van0q6cXSEZejtAbjuM9psoK0e+qI/iOJ+wyPXUp3CWNJhYeK\npW6UJLGItAHqjHe7WfLfOC77Y4LiLFv3FsPVPuLbt6/8t0ya/dvUl/JLlzqLzTS7Y4xd1rde\nda0pQV2USbNHtp7Nyqlmdv6/y3/jeNHxZO2zaniCwZsVf0BaFPwZqjBBuOQPxYSevNRLm0Ou\nLvmmOMGk+5Ze6p7iGjTqhOw4wfxafoSfjoljCVxWMKHD3HxtvVVW+MmOS0n1qsGSOVoj51gf\nQ22XM1I9H7WCYaTFojPGK5SBEgNqY7XQxGVrZ8VkFByXjhx1kvqR/NSbw85EyC8FQrMVEwI4\njrzi+EnEy+T3c2feobfoWZb3T6d/iDecqi3zMOXIicmfEZBR1yt0eDTZWs5CoVpkRm4dcPAr\nRXg5SS/WDL74XX4pEJqsJkx/1wxHWiI46YGSiUBke2AuaYBxeXSDtY+oTteIujKvxeKXFAGI\nWHqQ+qDvFwdfS6RSBGNuruiwkm7kuuHVckdHZ8W86fy0h83aT40iTKxWA160bVjdswkKW4BT\n1UW/uXF0yosOxD+cWUA4L63sYI2HaOpMQfqNJmT6zHrN+luQ4tLYhXh5gYZJ6NbqIT23flC6\nmcbwWBem5BXoEb9AvG0taQOix/80n3sxguKJwpxPA/+3kXinybJBuieAQMytya1nn6cIUJQb\n1K9GC6KuJhCYLN6pvEMO9x9Or0+AYa23rSQaF3Liz1TvtojanPRobb9+B0KJd5qt3GFibKtn\n9Sw3/sBnqcFWs8L4nU2tmNm12N6OND58trD1n7veUjySFX6mYbO5RHurJjjuc5yqLPMnOBtS\nXip2DLN07jXRh6N58byFh4qlzhivWFQCaQPUGTP7VsTjruO+KlZA1pms3kRi7TmuNGF/42CC\nlaHhv42oX2fUsl5o4n70LGmwkPp5vVLadMPcsXMlgtvpTFAaRWBeYfBmxR/QFgVXQxV2ldJK\nf5PWQv3Td6D0Z29mal19bW0XdQ+xA/2MoFAnCtJuEudeDK2nMaeqtoJuo57q8EatpH5cW/v3\n7RSFkht/u2WNQRmEw3HMbOsfGuyvNWaO9THUdjkj1fNRKxj8LBZ0zcd4hTJgEFBURQ6M1W23\nLDYRKPTp8ONDFj9J1Bgal/zbdkCCRNHqvVpta2VvxnHklm5DlzYgnXq+qkO9/W+0bHqPy3I2\nDK29gXDquUAgnHGAHfstEQrdgycjIGOvV4gQip33jCDNITv+R6Mtz7TsdpD24XjrlqTyLNPz\nYBsaiaevJeoLDgCsI8tXqmaXUvPYfUN++m1i/LWXvVOTiqLMXl6kDeJEJi4T1l8slKkGlZxe\nOcpe/GPOilBEeupuer5q5NKCGHn4Yqy9Ot6LzlaXWNndPXPkgc3dFHPq7cuu0Tl3akl+vUos\nIEkAu/KdD94JVRs44cONiR1JoziB0HxbSDrNd+nD5foexPfOjsig+eC9fqQEW/tWqKwH3/KK\nVF+Rk3hIqfaW6XabrYx7ELaRwTBsU6zaCqMv2bGkFWxCkc26O1GaAufGv57WuzamjvqrXqt9\nROf6mRryO/HBBls+awpJ6xWyglEBpINXhSKb3xceypaqtnA87cvlzuVJxxdZuvxPNSSd9yp9\nRDl1+836nFagGv7jxY11VAa3VcdfVg2J+sPhrH8CHL89vY7S232aDL0dlqkasijv+7I/WwvJ\nHZR9hRG5Ur0SoCZJ3coQH8xXUx0Yw265FeWHE8NUnvRMawIyImYTH+n0NF7rIyF7mxAfOZSY\nozYYT6QGumaFOps6V1T6SLJelDUnLaQTCIStRiwNz5KohJXe3zOH6IoTEHJdb91HpdAc9DlK\nnO9cWv2HXvWBQYnQhs7X4U9Xw0/Fkk42jVcs0ikWdA1QH56MCVTNpkAgeJ2tmqofbK/qrOYR\noVlwbqHW1/FN1v/trfAhWbsP1xp+Q1tv4lvEFn5vNRcUfXZUVhRpxeGPtIbnifTnQ7PiSceL\nXAgiGKrgCJR5JYa6kTYYkFNpnPZKzui99DOiCuvqRNL7wfJIxOa+auxFP1G1FXjU16h/0kXF\neianbJvRL+NyVcIX3t83t4zKLgtTbsfQfCHH+hhSuxzOSz2fTmeFWsHgYbEgaT4/YSqUdc4F\n0ZgpFDtwHzkjeKJ78ColOJqqyIGxGsfx4/1JS3hFpu5rbqpRXaSSxFldSOkRih2ua/PLIIo8\nN+GMlYg0yBWKbIYv2RelYQwSdPd4r+rKw5ZSnXZSJ54mjHQPdCMg+pSAekWBzr4hHMcLcz4S\n52YVJ2bM6jPpRWokrrQg4eDyCS4mJKuFmX3DjznaB8I4Ey1RT+AsZ6DEIhDZ7Ly9+mLAqPyf\n02SkhUkbJnbeu7p6n36961cq4+5ql50U/+3T0+NHjr2NzCwOIzJ1W3t55YTWQ+TxWIrUbDgh\nNPVc19pr2FXFZlPZMZdb+pXrN25858Y1AgICSjubJcTGvn149ciBbeee/Ahm49vj/ILEFkMf\nIsqyU40pFyYe6rDujfxORsjFQS0uLqjbtlOHtjXKl3J2ss5KiImMjPzw8MKh6+9k5Hm4Teff\nHFnOTiVWHnHjMWk+V3ZE8Ec9YitAuc7JgFh5jPy99Izd339UaZk0a3JL3/3th4wf1b+Kr7eH\nhweWFRscHBwSEvL6weWDZx/mSn/MBjS1c5ZkKKY0Pp/etHf0tI51ypmKag/sq31WvlYEQtIJ\nea9n/nkkcHPzSqXEkoy4uLiy1esxOwBPYLr6zv5TPt2SCn9M4pNJs3b/M/DI5kU9evduWqOc\nh7tzbmJkWFhY0Nv7xy49KyRMlxMITaaf32El1HdVl9jcqyg/pvj386NLKp/c3KRLr7YNqnh5\nucuyEiMjgq+dPvYkRHmWqKVbp1tr2qnGxsGHY/kTYFjzxbf6HvY6FqVYxhf1YF+rcsdqte7W\no2PTMt5e9mbSuJiYd4+uHj95LY68yZ7IxGX/3XUWxrChD+vlxh94KDXYbVbF8DCb9DGxrn1t\nZ99ygxSmBByX3dox03/vimZde7eqG+jl5S7NTPj+7eOFY8fe/FRmMAyzKzdgne3N315pnAfN\nvbBotKwndnGN0k2BwGT1COPYSxMp/FQsmWJ0YlEr6BqgPgRM6Y5t+ax008KpRw0rjcdFN5tc\nEftNuZ7Y+EwtT2MzbWOX9SNPnlzl0li+AKIoL6xr/30R59UfDUCfJhMqYH/+qGax1y5gWEM9\nI+QGPjQrnoC8KNAMVVArpX/PqLxvsvJ5KwKBYP68GvpEq4o+GWFdnQjbqdg5zyFgltigev3M\nuR2W/nul+Pe3G1vreO1t0KlfxybVvL3citLjI759vHDs2DuVE+v9um9b1cKT5is41seQ2uUw\no9XzUSsYRlosOmOkQhkoMXBjrO6x51aX+5UvxPwQAVJJ/JS2ZU/3GDVpZJ/K/n6ultKoyO8v\nb5zcsGn7u9hc4oPDdj5q42CuLkrkkVu4dnu4ZWjNUXvxn5mSSbN2zhq6d+HMFu1bN25Y09vF\n2doUT0tNCf/8+v69a08+KW+1Yu3T6erxodSJpwkj3YMPI6ASUK8QIbasdOnQb77dtsvvyIrS\ntkzpvmtR+Xat65UrV65cOT9rLDcxKf7D03s3btyPJp+hIxTbbnx0sZIlLbc4d1oiKu8/8CvD\nj5X0xXw5Ps2MtitOKLZdeTcuL+Ui8eZnDTNr8tPueJmpXzykFhOrKneT874ebSa/w/qCJxzH\ncWne2qG6DKHrjPxP/ZQqBOg8W6qWjakOWdNEkLqJeyVgJT2O4ykfVpsz9EC71B76PiWqtLka\nEeVU8Qgxcp3rZ27iUYoEEJd/0X9FzJ117hrW8FHQd8NztbExXUnvWv3CyWktGL3awrnRrTj1\n83lxxB8O0SfIS37SvjTjfRFFZp7rbkdripNRApRAsZKe3XLj1SxyHOeF1EDarJBmk4OV9MVc\nmNeZUbJNbWo8TssnSlu162xQ9zlKyKS5FS2VnYiOFZegKTNjWtD5IzH8UyyZrqQ3LrFIv1gQ\nNUCdkUlzVDNYptsNikdyEvapprPuGrqLJnkl65mupMdx/PN/yl9w3tMEWjnXTF7KJXlsApFF\nTIGWxTL8kf4Gb1b86Xg5EILsDlVwNMo8kfz0uyKBcpnYlfmbfqnSfC/9jKjCujox0UvRq3S6\nEEERkoOV9KeSc3cMrkhROKqUajcrU93SMY0v5FYfKwadXQ7Heafn0++s0CoYPCsWpCvpmQpl\nWEmvCVhJrxscGKt/JD7uqj+NKbZE6v11lmYu0EV+c1E3oYp2QQdL98YPU9Rvo6IDTHUPRCMg\n+pSMeqUJfVbSF3NxXicdykFk6rH0fBj9t9DXEvXEGJawAYAeVOi9/N3RGXTGxuYO1bfeDJra\nzF1WSJqpVMpc/bNm9s1f316jtF2GJmz92p1587CZE/oZRkLzSXtfHpr2P1P6QyCR9dB/jz/b\n9idj+wHH4EWfcgq1BwMwzLHyX6/2jqE5DBYIxC2HLf7yZHcVR+8rGwaiS5WFS99+ntbawzHB\ns/nEj092VqXdsoQmjn9tv390vPK2RTrTc/ntI1M7qxqz1OJQscONoJst3TUe7Yb6w6H4BOZO\n9c9/ejqoHt2lGxiGWbjV2P/8w8QWXuymBB0oyo1H8E9qsNusfsC/bDKi8/wLV5cMstKwhEgJ\nG9+Wx1/eaUDjeC2OhYVAaLGGvO80hmEt17F/vJyRwlPFkiHGJRZpgqgB6oxAaLmomvI+kDWn\nVKJ4xNJ1UBWVdfbjB5al+UZjl/UBI86MLGdPvLOi0+BkwlnOOmDu2LG/64+qi0vzloSl6xMb\nl/CkWfEBDoqC9aEKaqXUzK7ZdF9bpZtN14xh/UX6ZIRddUJa8H1b3I/VYwKByWLa69HR8cee\nZ8t/b0wzcL3+899fWmTDZAcFg+hj6OxyGGbEej5aBcNoi0UHjFcoAyUBDo3Vlu7tnj090sqX\nludYIDTtM3vvw1VdDR55q9lnPp9fHcDQ5Vyjz+yP3+40cmRtVMVU9zDwCKik1Ct0dJp/8fLS\n323FDLzb1j6Njr/9PKML3VEwl1oiOOmBkk+F3kvCIh6N7ajm+MZiBAJhtY4TXkU8/7OZJ4Zh\nRQXf5X+JTD0o9sR2bTgh7MvVfvV9Kd4uEJo3H7YkJOhyp3LKw11kCAcsPxf37tLvbbRMwRYI\nTet1GX7hfdTef3rzf7PmoryQfFnJ3KAeBYGDN0U8PtAqQM0RpHIEAkGFFkPOvoq5tWeWo1iI\nYVjAiL03V4x0Zb7ggybbbv9X3pbNmYAYhjnVHPY69tvWGQPsKQWzQCCu3230hXdhq0c0oQim\nA/1WXoi4v7dFWaoGLjb3HLvieNSnS42ctRjpUH84FJ/AxCrwwNOoeweX1vZUf4ylHJGZ+/AF\ne75HvRxQ1ZHdNBAQiMUm5haW1ja2Dg6svQVFuaFGJDYxM7ewtraxd3A00+Iw453UYLdZ/YR3\n2WREu5kHYj5dHdaCaldhgdCk0aCFX4JvdC1Pd4NKjoVF/aW9iZciU49NLXnhw2MOkq6Gf4ql\nLtk0LrFIE0QNUGeazVc+HntqNSfKJ4SzycfSm9k3G+SqbXoTAZ7JeoYIxCtvbLAgjOnyUq63\nn31fz1j/+k1RH26u+qRnbGxBR/rzpFkxh/2Ol4OiYH2oglop/WNpPeKlyNR9W8dSKF6kT0ZY\nVCdSPvxb8NPIYOs7tZrmc0M4QyCynbbrwctD88pTTu+w9W205XLQ08Pz7JifcWAQfQydXQ7D\nMJ7p+Qw6K8QKBq+KBS38FMq/CEwsDyUwJRwbqx2r9roeErpiZAc7Sr3CNaDZ7vvhxxYNZbQ7\nN7rIK3Se/Db6w+Z/RvjZaRf9gS0H7L785vWxRWUYLu/WClPdw4AjoJJUr9DRYcauyA+Xhrav\nZaKtvZs5Bkxbfyom/EGPAHvqkES41BIFeAk9lRkAVEkMenT48OFzt59HR0fHxKVZuXiWKlUq\nsH7bP0eObFJRYdhKetvftcaPLVAsXXrlJJ7QGnP4s/N7j1969Pjxl/D4tPQ0gbmDh6enh6d3\n4w59hgzuW9FVMbgqzIwIicop/i0y9ahYDq31KiXs1YULFy5dvfs1Oi4hMTE5NdfK3sHR2bl8\nlbqNGzdq371vrVIld3kogGEYJnt/8+jR8zcfP3n2NSoxLS1NYOno6enp5e3XtH2X7t27VfdV\nI5zyk96fOX//c2i8k69/QEBAxcBqpV1YW6snzY/Zt2rxgSvPIyIiYpLznN09PDw8PD09Nx05\nXJrJNr+qFGXH3Lx44dy5C6+CIxPiExKS0kxtHJydnUtVqN68efM2XXo3Ku+gf/o9zcRxkh9H\nS7pWv5Dw5ucOdbjkze3zx44fu/syJD4+PiEx3dLJ1cPDo3TF2t169uzWpbkLs9wh/HDoPgGG\nF3x4eOPixYs3H7+NS0hITEjIkIhdXF3dXF39qjXs3Llzx3ZNXC2Mbl7+DxCWG58wiNTgqlkp\nMGrhmBj89PTp0+evP4qMjY+Pj8+Smnp4eHp5edVv22vYsEFVPBVet+zw4O+5P05Hs/TwL0M1\nCZ0jYZEe+q9D+Xnyy1IdTn+/3J1J7n8VeKtYqlICxCIj0DRAo6JEy3pG5KdetHL+X/E5vmZ2\nTXPT7xnbAgi+NCsewEVRsDhUKTFKqc4ZYVGdONnap/et6OLfXc6En+/mS/PB3i5WJ5NzPepf\njn3SQbdX/wT/9Omz/KJUxUD5snhclvv4wpF9B898+PY9OjomIa3A2cPD09OrQu1mffv269w4\nUOc+x7D6GDq7XDFGquejVjB4VSzsNR8Fxi+UAQOAoipyRmF21PnDB49fuBseFR0TE52YJXP3\n9PLy8ipXo+nAwYPb16G7VpjjyGWFKQ+v37h79+69hy+jE5NSkpPT83AHJydnZ+fSFao3a968\nRcv29QPd9Ek8NTrqHr/MCAhpvUJHduTrwycuPnvx4tXbz4mp6RkZGVJTGzc3Nzc3j6r1W3bs\n2KFt81rWzCc16qwl6gA46QFAmVczq9de9q74t2P5rSnBowybHgAA+INGbwQAALoCzerX4WTH\n0r2vRMovZ39JXVSBhelTgAGB9gv8yswr7/hvaFrx77VRWZO8+ej4AYCSB1vqBC7N9LV2iswv\nwjBMZOYZlRnlYUrXr9fZyfJSal7pjjcjLrXS4dWGxSj0MbDLlWAQNR8QygBTjLonBwAAKfpo\niToAE8sAQJk7pxTDFc+ONQ2YEgAAAAAAgJKBtCByzM0Y+aWZXdP5bGxwAgAAYChGbGoj/719\nyTsDpgQAfh1YVCeS380otr1iGFaq43+MbK/FE9SsymjZ/5aHGIs+Bna5Egyi5gNC+f/s3Xlg\nXWWd8PHn5iZd0qYhpRYKrSACWkqloiwFOiC4gEUUZJD9rTjD4kIZZ9iFyo4yihVwRUWgIC8i\nbtUBUVH2fWRpCwpYoZSla9J0yXbmjxtC7ZK2uTe/LPfz+etJcs49z3kgN7f55pzLpuq7z+RA\ndyvmVWIXlPitHaCXWPzM1ed/59mODyeccdlnxmzUH1E21d//peeXdHy42/HvKP3kAADKzNxf\nnvxGc2vHh+868b97yTuZAXTN1gdcu9ewX9xfvyql9LfrT2m46i81m34fRWCTlPDlxK2n/Kww\nyOXyl357/43fsa359acam1NK2xw6uovH7jmRr8f8Xo61dd+3jx/KbJI+/UwOdLcuv0rsGpGe\n/ik/9LWrr76648N3rfjkZ67db2N2vHvaSava2t8DoiI/5IKdot/aEwCg//n6F+/tGOdyuS+f\nuXMPTgageLl8zQ+u2GfsSb9PKTU3PvW5P8+//gNb9fSkoJ8r1cuJpvr7vvjo64Xxlnt/88gt\nqjvffnWv3nd2c5blcpVnvn9k147egyJfj/m9HGvrvm8fP5TZJH36mRzoVsW8Suwat7unfxo6\n6pQtBuQ7Pvzbjcc+Ut+0wb0WPP7Nj33zmY4PR+525ZiB+U62BwBggxY9fcE1Lzd0fFgz5rRD\nNx/cg/MBKIkdP/2T8UOqCuNfn/Ldnp0M9HslfDnx9Ne+UMjAuVxu2ozjNnKvpvrX7v/FFXsf\ndH1KadS+/71v7YCuHb2nBL8e83s5Vhfw7eOHMhujrz+TA92ta68SiyHS0z9VDNjq2kO26fiw\nddW8D+8+5bGFKzvZ5bnfXvGeiV9sevPPdVNKU394eDdOEQCgDKx4/ZFP7v+V1T/zwW9O7anJ\nAJRQRdWIn1zRfv/DJc9d9J25DZ1vD3RZCV9OtDW/fvzXni6Mt9rvGye9vWajJrDg/w/ebNTe\nnzjj7ytbBr9tn5/+4pSuHb2nxL8e83s5OsR8+/ihzAb19WdyoLt17VVikUR6+q0PX3vDdoPf\nekOHJc/evOeYd37ypC/NfOjZJY1v/fXuyoV/v/O2H53wkfHv+ugZ85veemuu0R/6+llj60Jn\nDADQD2RNO79vr48fcdypp33+2H/96OjRe979xoqOLw4cttcPD357D84OoITGnnT7J7ccklLK\nsuyCo3/c09OBfqTbXk48+70jn2lsTilVVG72o5+euLHTyVrasqxqyKiPTjnvwWfvmjis1198\n2Qtej/m9HAVh3z5+KNO5vvdMDsTq2qvEIuWyLNvwVtA3vfTrc9/9icuXt7at/aWBQ+vettmg\nhsWLlzau4894a7b96IPP/GKn6sq1vwSUs60GVnb81mDkhF+99sTBPTsf6Ad8W/VD2apcxaD1\nffGU3/zjWweNiZwO3cf3L6SU3njk/JG7X5RSyuXy189beuyoIT09I+gXuuflRNayePfhWz7a\n0JRS2vWsex67bJ+N3bG1/sV5jaNGbzm4IteF4/aA3vF6zO/lSLHfPn4o04m+90wOBOryq8Qi\nuZKe/mzMwZfMmnnZttVVa39p1bLFL788f53/Eth8wrGP+JcAAECpve/kmxV6oJ95224XfvsT\n26aUsqz19MOv6enpQP9XzMuJJ6cfWvjda/XIg3574V4bv2MuP2y7t4/qH10n8vWY38uRYr99\n/FCmE/3pmRwouS6/SiySSE8/t81Hznh23v9++dMH1lXlN7jx4JHjz7jyluceuf5d/iUAAFA6\nFZWbHXX2jIe/fWRPTwSg9P795rv2qh2YUnr1/jPPe+SNnp6kDodNAAAgAElEQVQO9FtFvpxo\nXvbEwefel1LKVQz6+p9uGllVdr8U7ZHXY34vRzA/lAHYVD34KtHt7ikXLY0v//Lmn/75oYcf\nfex/5766cOmSJctb87W1tbWbbTZi1HZ77LX3Pvvs8+GPTKqr9Md0wHq5ry+UnG+r/qjt+5ed\nccNPfj1n7ksNqWaHHXcct+sB/zXt9PeNqu7piVFivn+hwxsPXz5qz3Nas2zIloe/Me/WwWXX\n/qDkSv9y4pYjtz/yludTSnuf/+d7L5hUuqn2Tr3u9ZjfyxHGD2UANkkPvkoU6QEAAAAAAAAg\niD8kAwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi\n0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekB\nAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAA\nAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAA\nAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAA\nBBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI\n9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoA\nAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACBIZU9PAAAAAAAA+oCxU2dGHm729MmRhwMAwriSHgAA\nAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCVPb0BAAAAAAAAADoJ8ZO\nnRl8xNnTJwcfsUiupAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAA\nAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACA\nIJU9PQEAAAAAALpi7NSZwUecPX1y8BEBAPofV9IDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAA\nAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAE\nEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAglT2\n9AQAAAAAAAAAusvYqTODjzh7+uTgI9K3uJIeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgSGVP\nT6BXWD5v9p2//8N9j896Y8HCpStT3fDho7Z996R9P3DAXuOrcuvfLWs64tB/XdmWbfDxa0af\nPuNbk0LnVqLdAQAAAAAAACghkT574LZrrrzhd6u39gWvLl/w6stPPXjXzTvud8bZnxu3+cB1\n7tm07MmNKfQ9MrdS7A4AAAAAAABAiZX77e4fu/6cy358Z0fGzlUMqKmu6vjq4ufunnbqtBdW\ntq5z36aGh3vt3IrfHQAAAAAAAICSK+sr6ZfMue7C22YVxkPGTDz5xKP3es82Vbm0fNHf7/rl\njB/c/nCWZU0Ns84/a8aN3zh+7d3rn32pMKgZffyXvjCukwPlB24dPLcidwcAAAAAAACgO5Rz\npG/70eW/ybIspTRoxN7XTD9jeGX7m7RXD9/2kCnnvvttF//Xdx9OKdW/8NObXjz06HfUrLH/\nokcXFgYjJk4YO3b73jS3Yk8NAAAAAAAAgO5Qvre7X/byj/+4aGVhfNxFn+/I2B12nHzuwSOr\nC+PfXPnntR/hxb8uKwy22H3zXjW34k8NAAAAAAAAgO5QvpH+xZ88WBgMGn7gx7Yesq5Ncod9\n9r2FUcNLM5a2Zmt8+eFlTYXB+0cO7sIErjvhU4e8aY33hi9ybsWfGgAAAAAAAADdoXwj/e1P\ntN+sfqsDPrK+berGHV2Ry6WUstZlN73auPqXsrblTzc2p5RyufzEYQN71dyK3B0AAAAAAACA\nblKm70mftdY/say5MH7XB7ZY32b5gWP2qKl6oL4ppfTik4vT1kM7vtTc8FhrlqWUqobuUpPP\nvfLU3f9z/1PzXp43/7VF+SHDNn/b6PHvfe/e++2z5eB88NyKPzUAAAAAAAAAukmZRvqmhocK\niT2lNKF2QCdb7jp0QKFkL3x4UTpoTMfnVy19tDDIVQz55rTP3fXES6vt9Orc5597/ME/3PiD\n6z545ImfPXzimu8Jn1JKaeiIkSMrVhTGVattUeTcij+1rmlsbGxubi7yQQAAAACA3mzJkiU9\nPYUyYrUB+i7P4cEiF7ympiaf3+TrtNdQppG+eflzHeOdqqs62XLU6Or0yrKU0opXXk5pl47P\nL3l6fmGwauk9dz2x7n1bmxbecf1ls/567DfPOiK/Vqg//KtXHd4Ncyv+1LqmtbW1paWlyAcB\nAAAAAHozvwOMZLUB+i7P4cH63IKXaaRva2r/Y4pcrrJ27X6+mgF17Rejt7X8099fLHp0Ucc4\nl6/58BFHHbDP7m8fuXlavmDu3Ll/e+ah22//w4Km1pTSSw/ceO6NYy8/bnzM3Io/NQAAAAAA\nAAC6SZlG+qalTYVBLl/T+ZaVNe0Xo69Rsp/9x7LCoKp6+7OvvPj9o6rbvzBwi7F1W4ydsPuH\nPrLvhVMvfLqhKaU0+7aLn/7kjJ2rN2q1i5xb8acGAAAAAAAAQDcp00i/CdqyNwerVv/0mMOO\nOaGpNaX09n0O3HXEoLX3GzTiPed+5TNHf+47WZZlbSu+e8uLV316h5i5Be0OAAAAAAAAwCYq\n00g/oLb9Tu9Za2PnW7Y0tr+BQa5q+Oqfn/jRj23wKENGH3TcVjdeP68hpfTan36fNi7SFzm3\n4k8NAAAAAAAAgG5SppG+YkBtYZBlTcvbsuqK9b53e9Pi9rvHV1R2pWTvcfDW1393Tkqpqf7+\nlE4OmFvYqa1h6NChWZZteDsAAAAAoM+qq6vr6SmUEasN0Hd5Dg8WueD5fL74BynTSF85eIeU\n7iyMZy9vft/QAevb8vV5KwqDgXVbduFAtTu3/w/R1rKkvjUbll9vMi/V3MJObQ0VFRXFPwgA\nAAAA0JuV5LfSbCSrDdB3eQ4P1ucWvEzD6sBhe1bk2nv5X5a1dLLlk8uaC4MRE7fowoFylQM7\nxlUbDvQlmFvYqQEAAAAAAACwqco00ufytROGVBXGzzzwxvo2y1oW3le/qjAes+tb94Rf/NTj\nDz300EMPPfTEnKWdH2jFvEWFQeWgbQev/87zJZxbkbsDAAAAAAAA0H3KNNKnlA6d0F6m59/x\n4Pq2qZ97a3OWpZRy+epjRg3p+PzS52685JJLLrnkkksvubbzo/z1F/MKg6FjPhEzt+J3BwAA\nAAAAAKCblG+k3+6oPQqDxvk3P1zftM5t7v3WfYVBzehjRlS9tVZb7v/hwmDV0j9dP2fJ+g7R\nsnzO1bPar6Qfe+T4mLkVvzsAAAAAAAAA3aSypyfQY2pGT5lUd8c9i1dmWdvVF9/2468etcbN\n6Bc/M+N7f6svjA/6j31X/9KgugMP2eK6X762PKV0+/lfeu+1Xx8/bMAaj9/WsuD751zc2Jql\nlKqqx532vhExcyt+dwAAAIB+Y+zUmcFHnD19cvARexULDgAAG1TGl1Dn8v925oGF4ZI5N596\nxa3zG1vav5S1zrn3ltPOuzXLspRS7Q5HHbPdsDX2/tTZR1bkciml1pX/+PKJU6/71QNvLF1e\n2Hfh/LmP3n37l07+3G9fqE8p5XIVh519+tpvSH/bWaed9KaXVrWWcG7F7g4AAAAAAABA9yjf\nK+lTSnU7nXDeYXMu+tmclNLce244+f6fb7f9NrUD216b98K8hSsL2wyoHX/xJUesvW/Ndp/4\n8pFPnn/zoyml5uXzfvb9y372/VQ5qGZAa+Py5raOzXK5in3/36XH7DJ87UdoeH3+/AUrCuPm\nrJRzK353AAAAAAAAALpDGV9Jn1JKabcpl59+7P6DKnIppay14flnn378yVkdGXvETvtffNW0\nbQbl17nvhKPOv+ikj9dVvrWGLSsbVi/0g4Zvf/w513zxsJ3i51b87gAAAAAAAACUXFlfSZ9S\nSqli0hGn7TrxQ3f8/g/3PTZrwaJF9atSXd3wUduN+5f99vvgnjvn17xL/T/ZZfJnrp104J/u\n+t0Tz/7j9ddef+311xqa85vV1o7eftz737/nh/bfrXqtu9yHza3o3QEAAAAAAAAoMZE+pZSG\njBl32JRxh03pyr5Vw7b+4GFTPrjpO0754S0bc8Bi5lb87gAAAAAAAACUULnf7h4AAAAAAAAA\nwoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFE\negAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0A\nAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAA\nAAAAAIJU9vQEAAAAAMrI2Kkzg484e/rk4CMCAADQCVfSAwAAAAAAAEAQkR4AAAAAAAAAgoj0\nAAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAA\nAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAA\nAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAA\nAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIEhlT08AAAAA6Elj\np84MPuLs6ZODjwgAAAC9hyvpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAA\nAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAA\nIIhIDwAAAAAAAABBRHoAAAAAAAAACFLZ0xMAAACAfzJ26szgI86ePjn4iAAAAEDZciU9AAAA\nAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAA\nAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAA\nQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAi\nPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4A\nAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAA\nAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAA\nAIAgIj0AAAAAAAAABBHpAQAAAAAAACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABA\nEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhI\nDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcA\nAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLS\nAwAAAAAAAEAQkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEA\nAAAAAAAgiEgPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAAAAAAQBCRHgAAAAAAAACCiPQAAAAA\nAAAAEESkBwAAAAAAAIAglT09AQAAgD5g7NSZkYebPX1y5OEAAAAACONKegAAAAAAAAAIItID\nAAAAAAAAQBC3uwcAgD4p+O7ryQ3YAQAAAKAUXEkPAAAAAAAAAEFEegAAAAAAAAAIItIDAAAA\nAAAAQBCRHgAAAAAAAACCiPQAAAAAAAAAEESkBwAAAAAAAIAgIj0AAAAAAAAABBHpAQAAAAAA\nACCISA8AAAAAAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQ\nRKQHAAAAAAAAgCAiPQAAAAAAAAAEqezpCQAA0E+MnToz+Iizp08OPiIAAAAAQJFcSQ8AAAAA\nAAAAQUR6AAAAAAAAAAgi0gMAAAAAAABAEJEeAAAAAAAAAIKI9AAAAAAAAAAQRKQHAAAAAAAA\ngCAiPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABCksqcn0Cssnzf7zt//4b7HZ72xYOHSlalu+PBR27570r4f\nOGCv8VW5rjzga/dd8+9fuSOltPPp37t00pY9OLeSnxoAAAAAAAAAXSbSZw/cds2VN/xuZVvW\n8akFry5f8OrLTz1418077nfG2Z8bt/nATXrEpqVPnPX13/WCuZX+1AAAAAAAAAAoRrnf7v6x\n68+57Md3dmTsXMWAmuqqjq8ufu7uaadOe2Fl68Y/YJat/O5ZX13Y3Nbjcyv5qQEAAAAAAABQ\npLK+kn7JnOsuvG1WYTxkzMSTTzx6r/dsU5VLyxf9/a5fzvjB7Q9nWdbUMOv8s2bc+I3jN/Ix\nn7junN/Na+zxuXXHqQEAAAAAAABQpHK+kr7tR5f/JsuylNKgEXtfM/2sfXfZpvA27dXDtz1k\nyrlXnLhbYbv6F35604sNG/OIS+bceuHPn+8Fcyv9qQEAAAAAAABQvPKN9Mte/vEfF60sjI+7\n6PPDK3NrbLDj5HMPHlldGP/myj9v8AFbV8694Pyb27IsVzF486qiFrbIuZX81AAAAAAAAAAo\nifKN9C/+5MHCYNDwAz+29ZB1bZI77LPvLYwaXpqxtDXr9PGyWy84//mVLSmlXT996TsGbfh9\nBK474VOHvGmN94Yvcm6lPjUAAAAAAAAASqN8I/3tTywsDLY64CPr26Zu3NEVuVxKKWtddtOr\nnb3T/Au/uvimZxanlDZ796fO//g7e3ZupT01AAAAAAAAAEqlTCN91lr/xLLmwvhdH9hifZvl\nB47Zo6aqMH7xycXr22z5q38854ePppTyg7aZduGRa95cPnZupT01AAAAAAAAAEpow3dl75ea\nGh5qzdrv8T6hdkAnW+46dMAD9U0ppYUPL0oHjVl7g6x18dfO/Pby1iyXy33yvAvfOSi/kXMY\nOmLkyIoVhXHVamG/yLmV8NQ2SWtra5a5bT4Avcv4/7wj+IhPfW29t7GhO7S0tPT0FMqLBY9k\ntYNZ8GAWPJgFD2bBg1nwYBY8ktUG6Ls8hweLXPB8Pp/LFXnVdrlG+ublz3WMd6qu6mTLUaOr\n0yvLUkorXnk5pV3W3uCP089+ZPHKlNLbDzz72PF1Gz+Hw7961eHdMLcSntomaWxsbGpqKvJB\nAKCvW7JkSU9PobxY8GAWPJLVDmbBg1nwYBY8mAUPZsGDWfBIVhug7/IcHixywevq6vL5jb1s\ne33K9Hb3bU3t/51yucrafGd/6TCgrv1i9LaWdfynff2B73zj7ldSSoPfNunyE/foDXMr1akB\nAAAAAAAAUHJleiV909L2a75z+ZrOt6x8843b1y7ZTQ1Pnv21O1JKFfma0776hSGdFvGwuZXk\n1IDyMemih4KPeM95pfmTpj7KggMAAAAAQJkr0yvpN0Hbm++z3rZq9U9nWdO1Z13+RlNrSmni\nKZdP3HxQ/NTWN7eg3QEAAAAAAADYRGUa6QfUtt/pPWtt7HzLlsaWwiBXNXz1zz95w7n/89Ky\nlNKICVPO/PCY3jO34k8NAAAAAAAAgG5Spre7rxhQWxhkWdPytqy6Yr13qm9a3H73+IrKt0r2\n0udu+/Jtz6WUqqp3vPBLH+9Vcyty9y6rrKzMsmzD2wFlr6qqqqenUF4seDALHsyCB7Pgkax2\nMAsezIIHs+DBLHgwCx7Mgkey2gB9l+fwYJELnsuV4D3QyzTSVw7eIaU7C+PZy5vfN3TA+rZ8\nfd6KwmBg3ZYdn7x82k2tWZbL5Y+56LzRA/K9am5F7t5l1dXVxT8IUA5qa2t7egrlxYIHs+DB\nLHgwCx7Jagez4MEseDALHsyCB7PgwSx4JKsN0Hd5Dg/W5xa8TCP9wGF7VuS+1ZZlKaW/LGvp\npGQ/uay5MBgxcYuOT85d2ZJSyrLW6/7zuOs6PdDTV5x4yBXt44nXzDh7TE13z63I3QEAAAAA\nAADoPmX6nvS5fO2EIe03PXjmgTfWt1nWsvC++lWF8Zhdg964vci59eZTAwAAAAAAAChzZRrp\nU0qHTmgv0/PveHB929TPvbU5y1JKuXz1MaOGdHy+esjQIZ3Kv/lWBPmB1R2fHLjRi13M3Irf\nHQAAAAAAAIBuUqa3u08pbXfUHuneX6SUGuff/HD9obsPW8dt4e/91n2FQc3oY0ZUvdXYr71x\nRucPfuExhz/a0JRSGnvqNy6dtMnv+F7M3IrfHQAAAAAAAIBuUr51tmb0lEl1g1JKWdZ29cW3\nZWttsPiZGd/7W31hfNB/7NuH5tabTw0AAAAAAACgnJVvpE+5/L+deWBhuGTOzadecev8xpb2\nL2Wtc+695bTzbs2yLKVUu8NRx2w3rOTHv+2s005600urWks5t54+NQAAAAAAAADWqXxvd59S\nqtvphPMOm3PRz+aklObec8PJ9/98u+23qR3Y9tq8F+YtXFnYZkDt+IsvOaI7jt7w+vz5C1YU\nxs1rXe1e5Nx69tQAAAAAAAAAWKcyvpI+pZTSblMuP/3Y/QdV5FJKWWvD888+/fiTszoy9oid\n9r/4qmnbDMr3xbn15lMDAAAAAAAAKE9lfSV9SimliklHnLbrxA/d8fs/3PfYrAWLFtWvSnV1\nw0dtN+5f9tvvg3vunM/13bn15lMDAAAAAAAAKEcifUopDRkz7rAp4w6bUrIHPH/GTze4zZQf\n3rIxByxybiU/NQAAAAAAAAC6rNxvdw8AAAAAAAAAYVxJD/QuY6fODD7i7OmTg48IAAAAAABA\n2XIlPQAAAAAAAAAEEekBAAAAAAAAIIhIDwAAAAAAAABBRHoAAAAAAAAACCLSAwAAAAAAAEAQ\nkR4AAAAAAAAAgoj0AAAAAAAAABBEpAcAAAAAAACAICI9AAAAAAAAAAQR6QEAAAAAAAAgiEgP\nAAAA8H/s3XecXWWdP/Dn3DItk94LBAKEUINIiFhRQfL/vU0AACAASURBVECwgF1Xia69u+ou\nyoq46q4/1xVd1BXRVVcFkSKoIKGIIEgTkURCTSGE9GSSzGRmbj2/P2ZyM6SR5N6cmdx5v/96\nzplzvuebh7wyw/3M8xwAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoA\nAAAAAAAASIiQHgAAAAAAAAASIqQHAAAAAAAAgIQI6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4A\nAAAAAAAAEiKkBwAAAAAAAICECOkBAAAAAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcA\nAAAAAACAhAjpAQAAAAAAACAhQnoAAAAAAAAASIiQHgAAAAAAAAASkunvBgAAAAAAAOhPR3zi\n+oSf+Mi3z0z4iQADh5X0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAA\nQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAA\nkJBMfzcA+4EjPnF9ko975NtnJvk4AAAAAAAAIDFW0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0A\nAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8A\nAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMA\nAAAAAABAQoT0AAAAAAAAAJCQTH83AAAAAAAAAMD+LI7L65eXVy2OO9vPKt7bFRrbotalqXFr\no2H93dlAJKQHAAAAAAAAYM8VC4X5fyzcf33x0bvj9nU95/61z9dXp0bclzr85vTz/5I+rGSX\n9y2E9AAAAAAAAADsibicv+e63LUXldcv38VV48obzirfe1bx3sWpCf+TPeuO9DGJNTiQCekB\nAAAAAAAA2F2lhX/t+tkXSs88tvu3HFxe+fXcDx9KTftaw1sWpybsu972C0J6AAAAAAAAAHZL\n/q6run5+QSjmtzm/fHPx7+vzyzcXu4txSzaa0po5ZlTj2OZ032tmlhf9MHfRFxveeWf66ARb\nHnCE9AAAAAAAAAA8t+6r/l9u7qV9z2zIlX+wYOOVT7Y/sbGwzcVRCEePbnzbYa3vnjG8ORP1\nnBwSd38998NvN7z+iszJyfQ8AAnpAQAAAAAAAHgOubmX9k3o8+X4koc3fvNvbW258g6vj0OY\nvy43f13uv+dt/PzzR77z8GE9QX0qxJ/MX9sWDb0p/fxEGh9wUv3dAAAAAAAAAAADWvHvd3Rf\n843K4fpc6Q2/X/GFe9ftLKHva2Vn8eN/WvPWuSvaC70XRyE+P3f5UeWn9lW7A5uQHgAAAAAA\nAICditvXdf7gE6Fc6jlc1lF8+bXP/GlF1x4Vmft056t/t3zDllC/MRS+mvtJY9h2k/zBQEgP\nAAAAAAAAwE51//biuKu9d1yM33nLyqfa9yZcn78u9+4/rCyW457DCfH6NxXuqFmX+w8hPQAA\nAAAAAAA7Vl6zNP+nKyqHn7hzzYNrc3td7bZnuv7jr22VwznFm4fFm6vqbz8kpAcAAAAAAABg\nx3JzLw3F3nXzf12T+9WT7VUW/O78DU93FHvGrXHXG0t3VllwvyOkBwAAAAAAAGBHivnC/ddX\njr50/7q46pLdpfg//rq+cnh64S9Vl9zPCOkBAAAAAAAA2IHiwgfjzk094yc3Fm5f3lWTstcs\n7NiYL/eMD4xXT4nX1qTs/kJIDwAAAAAAAMAOlJ64vzKeu7RmL4/vLsV/WNZZOTyutLBWlfcL\nQnoAAAAAAAAAdqC0Ymt8ft/qXA0r37e6uzI+qLyqhpUHPiE9AAAAAAAAADsQr19RGS/cmK9h\n5UUbC5Xx+LithpUHPiE9AAAAAAAAADsQ57Zucb+pUK5h5Q35rdWGhO5dXFl/hPQAAAAAAAAA\n7Ei0NVBOhaiGhVN9ipVrWnngE9IDAAAAAAAAsANRc2tlPKqpluHy6KZ0ZdweNdew8sAnpAcA\nAAAAAABgB1JjD6yMp49oqGHlw/tUWxGNrmHlgU9IDwAAAAAAAMAOpCZNr4xfOKGphpX7VlsY\nTaph5YFPSA8AAAAAAADADmQOP7EyPuPAIdlUbV4eP6Ix9eKJvVvcxyF6MH1ITcruL4T0AAAA\nAAAAAOxA+oAjUqMn94zHNqffeEjrrq/fTe89Ynhjujfvn586aH00tCZl9xdCegAAAAAAAAB2\nJEplTzq7cnT+80c1patdTD+mKf2JmSMqh9dnZldZcL8jpAcAAAAAAABgxxpPmRO1DO8ZT2nN\nfPq4kVUW/Mrs0UOzvTn1M6nRN6RP3PX19UdIDwAAAAAAAMCORUNGNL76g5XDzzxv5DnT9n7T\n+w8ePfyth23d3P5/Mq8pROmq+tsPCekBAAAAAAAA2KnGV7wrNe6gnnEUwndeOvYVk1v2os6b\nD239yomjK4cPpabdmjmuJh3uX4T0AAAAAAAAAOxctnHIR74fNfcuoG/JpH512oQPHj189wuk\novDFWaMvOXl8JtX7Svs10fDzG98dh2rfcL8/EtIDAAAAAAAAsCupSYe2fODikOrdmj6Tir72\ngjE3v3bySROanvPekyc33/a6KZ+aOaISyOdC9rzGf1wbDdtn/Q5oQnoAAAAAAAAAnkPmqJe0\nvPe/ouzWVH7WuKYbzpp81ekT33ro0PHN275a/oDWzJwZw248a/K1Z0yaOaaxcr49tHym6X0P\np6Ym1PfAk+nvBgAAAAAAAADYD2RnnZUaO7Xzux8sb1jVcyYK4ZQpLadMaQkhrO0uLesodpfi\nlkx0YGt2ROMOVowvicZ/tul9T0djE+17gBHSAwAAAAAAALBb0gcd0/qv13Zf+838n68J5VLf\nL41pSo9p2nY9fUU+ZK7OvPhHDad3hOZ93+aAJqQHAAAAAAAAYHdFw8c2n/sfDae+J3fNNwrz\nbgtxedfXF0P65szzfpB99YpodDIdDnBCegAAAAAAAAD2THrSYS0fvaS8fkXhgRuLj/65tHhe\n3L6u7wWroxELUlPvSx9+W3pmW9TaX30OQEJ6AAAAAAAAAPZGatTExlPf3Xjqu0MIcVdH3NH2\n2i/f2B03rk0NzYWG/u5ugBLSAwAAAAAAAFCtqLk1am5dGE0KUX+3MrCl+rsBAAAAAAAAABgs\nhPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQ\nIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRE\nSA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR\n0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE\n9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAh\nPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERI\nDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACRHS\nAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0\nAAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9\nAAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAkREgP\nAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJEdID\nAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACRESA8AAAAAAAAACcn0dwMAAAAAADAglUul\nZY+Wlj1WXrM05Do/lV/YHWVXRaMWpyYsSB2YC9n+7g8A2C8J6QEAAAAA4FmKj96T//NVxYf+\nEHduqpx8S58L8iHzQPqwuZkTbkk/rxjSyXcIAOy/hPQAAAAAANCrtPih7qu/Xnzs3l1f1hCK\nJ5UeOan0yHtTv/9+9qxb08fFIUqmQwBgfyekBwAAAACAEOe6un7+r4V7fxPiePfvmlJe+5Xc\nT96WmvqFxjnLo1H7rj0AoG4I6QEAAAAAGOzK61d0fvcDpaULtjm/cGPh7lXdj2/It+XKhXI8\nvCF1yPDsrHFNx45uTPdZOX9U+an/7f7GeQ3/+Lf0IYn2DQDsh4T0AAAAAAAMaqVnHt980bnx\nxjWVM+U4XPFk+3fmb3h4fX6Ht0wckjn38GEfPWZ4azbVc2ZEvPni/He/lH3nLZnnJdE0ALDf\nSvV3AwAAAAAA0G/ijrbO77y/b0J/54quF13z9IduX72zhD6EsGJz8Wt/Xf+8Xy396aObKiez\ncekL+V8cXV6yTxsGAPZ3QnoAAAAAAAarUrHzko+V1y6rnPjJo5vO/v2KR9p2Gs/3taar9Ik7\n17zvtlXdpd7X2DeGwv/L/WhcecM+6RYAqAtCegAAAAAABqncTT8sPnpP5fDfH1j/yTvXFMrx\nHhW5cmHH225aUblrdLzpXwq/qmWXAEB9EdIDAAAAADAYxZ0bc3N/WDm8dnHHfz7Ytnelbnum\n63P3rKscvqj08Anlx6vtDwCoU0J6AAAAAAAGo9z134s39+5Lv7S9+MHbV+/ZCvpn++GCjb9Z\nvLly+KH876JQTT0AoG4J6QEAAAAAGHTiXFf+9ssrh199YH13sdpM/YL71uW3bHp/VPmpY8uL\nqywIANQlIT0AAAAAAINO8W83x7nOnvGjG/JXLmyvvuaS9sLlj2+tc1rxL9XXBADqj5AeAAAA\nAIBBp7jgzsr4ssfbyzXamf7nfUL62eVHa1MUAKgvmf5uAAAAAIBBpHDZpCQfN292OPbeS5N8\nIrC/KC58sDK+ZVlnrco+sKZ7fa40qjEdQphcXjc63rQuGlar4gBAfRDShxBC5zOP3HTrH+76\n64I1a9dt7A4jR42aeNCMl7zs5a984THZ6DnuLefX3XHD3PvnzX98yfL29vZCaGgdOmzKtOlH\nz5z9qtNeOLoh3Y+9VX87AAAAAEAdKhbKa5b2DLuL8aNt+VoVLsfhobX5l09u7jk8MF4jpAcA\ntiGkj++++rsX/ezm7j6bGa1d2bl25bL599xy+fST//lzHzlqdOPObl5y5+Vf+e9fre4u9TlX\nbMt1tq1dOf++O37107Fv+ui/vP3k6f3SW9W3AwAAAADUp3hzWyj3fq67tKNYq73uezzVXgih\nN6QfXd7krbMAwDYGe0j/wP99/j+uerhyGKUaWpvi9s5Cz2Hb43/84sdXf/1HX53WtIMF8c/8\n8eJPXHRLHG/98S3TNGxIqnNjZ7HnsJRf88tvfmZV17c+dca0hHur/nYAABjg7JYMAMBei3Nd\nlfHmYrm2xdsLWwu2hO7aFgcA6sCgDuk3PPqTf7t6Qc94yAEnffD9b3/hsVOzUehcv+SW3/zi\nR7++L47jfPuCC877xc+/9a5t7i12/v2fv92b0GeHTHvH++e8cOYh40cNjUJoX7/ygVuu/t9f\n3ryhWA4h/PGSz73sxT87fmhDYr1VfzsAAAAAQD3LZCvDhlSN3wzat2BhcH8IDwDs0GDeZ6f8\n46/d0JOyN4150Xe/fd7LZk7teU17y6iDXjvn/P98/6ye6zYtuuqyxe3b3PzIj7/XXopDCOmG\ncRd+/+vnvPy4CaOG9vzkNXTUhJPf/JH/+fbHm1JRCCEud/3gh08k2VvVtwMAAAAA1LOoZXhl\nPK65xruNTmjZWnBT1FLb4gBAHRi8IX3Hsp/etr53o6F3fvmjozLb/rLk9DPPP2tc789PN1x0\nxzZf/dVdq3sGU19/3jHDd7BKfsgBr/jEcaN7xuse+G2SvVV5OwAAAABAfYuahkTDxvSMxzan\nx9Y0pz9yVGNlvCwaU8PKAEB9GLwh/eJf3tMzaBp1+msmD9nRJdE5H35ez6j96V9sLG1993yp\ne9FDHfme8clnTNnZI6a/ZnLPoLD579t/9Sfvectrt1jUXapVb9XfDgAAAABQ99IHHFEZv2Ri\nc63KTmjJHDq8dy/9zqhxWWpsrSoDAHVj8Ib0v35wXc9g0itP29k1I496eyqKQghxqeOylZsr\n5wtdj1fGs4Zmd3BnCCGEhi0r7ONy9x7F4NX0Vv3tAAAAAAB1LzPjpMr4DYe01qrsOdNaK1ub\n/jV1WGkQfwgPAOxMpr8b6B9xadODHYWe8eEvH7+zy9KNB8wemr17Uz6EsHheW5jc+4Nadsgx\nF1xwQc94YsNO90Fa/2Bb7/VDn7/tjvP7rLcqbwcAAAAAGAyyzz+9+5r/DHEcQjj9wCFHjGx4\npC1fZc2mdPTho7e+7f4P6ZlVFgQA6tIgDenz7feW4t7F7cft6I3yFce3NvQk2evuWx/OOKDn\nZLph8gknTN71I4qdT/3P1U/1jA88/U3bX9A6Zty4VFfPONsnw6+ytypv32vd3d3FYrHKIvTo\n6Ojo7xYGFxOeMBOeMBOeMBOeMBOesIE24Y3Pfcl+bKDNdt0z4Qkz4QkbaBNe3/+Ah4E34XXP\nhCesria8eVR06Kz4iftCCOkofHHWqLfetLLKkh84aviU1t5P3dtDyx+rC+nrarbZc42/mZ7k\n4+bNDsfee2mST/Q3nPrmb3jCkpzwlpaWVKranXIGaUhf6Ny6X/2RLTvdrz6EMHFKS1jeEULo\nWr4shF39RBWXCps3b+7o6GhvW/6Xu+684493PdNZCCEMm3bKF952yPbXv/HrF79xH/S2L/5o\nuyOfz+fz1f6eKT26u7v7u4XBxYQnzIQnzIQnzIQnzIQnbKBNeH1nPANttuueCU+YCU/YQJvw\n+v4HPAy8Ca97JjxhdTbh0Snvzzx5f2Ux/TnTWq9ZtPcf8R8+ouEzzxtZOfxJ9tTOqKp/8+ps\nttlTvmPCfs3f8IQlOeHNzc3VFxmkIX05v6FnEEWZ4eldbUXfMLJ3MXq5uGHXNX/wj++4fv2z\n/vNHUXbmK9/w8Q+9deQuH1Hb3vbFHw0AAAAAoP7EBx5dPvLk1MO39Rx+72XjnmovPLAmtxel\nRjSmLjt1wtBs77q61dGIq7IvqVmjAEB9qXYl/n4qv7F3zXeUHrrrKzNDexej70WS3XrQi846\n/VVjsns2yVX2lswfDQAAAACgDpRf/dHQ3PtRalM6uvxVE2ePb9rTIhNaMtecPumQ4b2fuMYh\n+kb2jbmwq41OAYDBbJCG9HugHG8ZPMevT06cfsSRRx551FFHHX300TMOGhVCaF/8x6985j2f\n+s+rure8JL6/etsntwMAAAAA7OfiUZOLb/1KSKV7Dsc1p3/z6knvPHzY7m+O+oLxTX98/eTj\nx27dm/xH2dPvyBxT604BgPoxSLe7bxjeu9N7XNq86yuLm4s9gyg7atdXvvbzX3ptn8PlC+7+\n8UXfvndV58I//d/HusqXXvDmZHrbF380AAAAAIB6FU+fXTrz4+nfXtRz2JiOLn7J2HMPH3rB\nfev/vLJrFzceNDT7hRNGnXNIa99E/w/pmT/KnrYv+wUA9nuDNKRPNQzvGcRxvrMct6R2+muR\n+bbe3eNTmT1LsicdedJnv9n8rnd9sbMUr/rLz3/y1Blzpj7H/vM16S2BP9oONTc3NzY2Pvd1\n7IahQ3frrwq1YsITZsITZsITZsITZsITZsKTZLYTZsITZsITZsITZsITZsITVrcTftp7S0OG\nFa78aij1Lm06YVzTDWdNemht7rrFm/+8quuxtnxbrhxCaM5Ehw1vOHF802kHtLxiSkv62Z+/\nXpc56RvZN8Vh99fh70rdzjaEEPwNp975G56wJCc8larBXvWDNKTPNB8Wwk0940c6C89vbdjZ\nlauf6f1NycaRE/b0KQ1Dj3vHhNZLn2kPIdx12ZI5n9utDY6q7C2ZP9r2slkvWKoZv+6QMBOe\nMBOeMBOeMBOeMBOesIE24YX+bmCfGmizXfdMeMJMeMIG2oTX9z/gYeBNeN0z4Qmr5wl/5TuL\nU6Z3fv8jcceGyrmZYxpnjtn6Ry6W48xOlkWVQurbDWf/KvPSGnZUz7PNbvAdE/Zr/oYnbL+b\n8EH6TvrGYS9IRb0/Sz3UUdzFlfM6er8PjjlpfOXkQ9dddfnll19++eU3Pbpx1w+aNq21Z9Cx\n6IlkeqvydgAAAACAwSlz+OyhX7658fQPhMyO1z7tLKG/P3X4nKbP1DahBwDq2CAN6aP08OOG\n9K78fvjuNTu7LC6uu2tTrmd8wPFb94TfcMu1PSH9Nb9ftusHFbtLWx65uwvNq+ytytsBAAAA\nAAatqHVk0xs+O/RLN2RPen2Ubdr1xeUQ/SU9/SONH/1Y04efSE1OpkMAoA4M0pA+hHD2cb3J\n9Iq59+zsmk1PXVmI4xBClG55x8QhlfMTjxnRM9gw//5dP+WhJR09g+axe/AjWjW9VX87AAAA\nAMBglhp3UMt7vjH0v+5p+dB3Gl7+D5nDZ6dGTYxahnWFhnXRsAWpA2/InPjVhre9rvlLH238\nyAPpw/q7XwBgPzNI30kfQpj2ttnhzutCCJtXXH7fprNPHLaD/Yvu/N5dPYOhU94xJrv1Fxom\nnXl8+N3SEELXuuvua3/7iUN3vPdRfuPd167tfe/7oW8+MJneqr8dAAAAAICouTV7/OnZ40+v\nnJn9iev7sR8AoG4M3nR26JQ5LxnZFEKI4/J3vnJ1vN0FbQ//4gdPbuoZn/Gpl/X90pCJb53W\nlAkhxHHp4i/+tKO0/d2hlFv1/c9fXIzjEEK6YdJ7j9yDLeWr6a362wEAAAAAAADYRwZvSB+i\n9Hv/pfdXIDc8evnH//PKFZuLvV+KS4/eecUnv3BlHMchhOGHve0d04Y969ZUy6fffUzPeOOT\nv/3AP33tpvsWrGrriEMIobxh9TMP3HL5x8/98C1P9+51f8K7zx+33Wr1q8/75Ae2eDpXetbX\nquitBrcDAAAAAAAAsG8M3u3uQwgjj3zPF8559MvXPBpCeOpPP/vgn6+ddujU4Y3lVc8semZd\nd881DcOP+cpX37z9vQecfsHb737vZX9bF0JoX3z3d75ydwgh3TS0udzZkX9W4n7oqR8//8wD\ntq/QvnrFii2b4Re2W+1eTW/V3w4AAAAAAADAvjCIV9KHEEKYNedrn/2HVzSlohBCXGpf+Njf\n/zpvQSXGHnPkK75y8RenNqV3cGeUfsuF333fGTNTUVQ5V+pu75vQpxvHvOaDX/7mx05Jurda\n3A4AAAAAAABAzQ3qlfQhhBBSL3nzJ48/6dS5t/7hrgcWrF2/flMujBw5auK0o1568smnvODo\ndLTTO6NUy2s+9OWXv27B72+6/e8LHlmyYt3mzZtDpnnosGFTps04ZuYJp5z6olEN1fwaxN73\nVovbAQAAAAAAAKgxIX0IIQw54Khz5hx1zpy9ubd10pFvmnPkm/b8xjn/e8XuPLCa3qq/HQAA\nAAAAAIAaGuzb3QMAAAAAAABAYqykBwCA2ihcNinJx82bHY6999IknwgAAAAAVM9KegAAAAAA\nAABIiJAeAAAAAAAAABJiu3sAAACeW5IvdPA2BxLmfSUAAAAkyUp6AAAAAAAAAEiIkB4AAAAA\nAAAAEiKkBwAAAAAAAICECOkBAAAAAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcAAAAA\nAACAhAjpAQAAAAAAACAhQnoAAAAAAAAASIiQHgAAAAAAAAASIqQHAAAAAAAAgIQI6QEAAAAA\nAAAgIZn+bgAAgH2lcNmkJB83b3Y49t5Lk3wiAAAAAMB+x0p6AAAAAAAAAEiIkB4AAAAAAAAA\nEiKkBwAAAAAAAICECOkBAAAAAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABKS6e8GAAAAAADq\nROGySUk+bt7scOy9lyb5RAAAqmclPQAAAAAAAAAkREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0\nAAAAAAAAAJAQIT0AAAAAAAAAJCTT3w0AAAAAAPtK4bJJST5u3uxw7L2XJvlEAGB/5EcUBjkr\n6QEAAAAAAAAgIUJ6AAAAAAAAAEiI7e4BBhab/AAAAAAAANQxK+kBAAAAAAAAICFCegAAAAAA\nAABIiO3ugeeW5Absdl8HAAAAAACgjllJDwAAAAAAAAAJEdIDAAAAAAAAQEKE9AAAAAAAAACQ\nECE9AAAAAAAAACRESA8AAAAAAAAACRHSAwAAAAAAAEBChPQAAAAAAAAAkBAhPQAAAAAAAAAk\nREgPAAAAAAAAAAkR0gMAAAAAAABAQoT0AAAAAAAAAJAQIT0AAAAAAAAAJERIDwAAAAAAAAAJ\nEdIDAAAAAAAAQEKE9AAAAAAAAACQECE9AAAAAAAAACQk098NwN4oXDYpycfNmx2OvffSJJ8I\nAAAAAAAA1CUr6QEAAAAAAAAgIUJ6AAAAAAAAAEiIkB4AAAAAAAAAEiKkBwAAAAAAAICECOkB\nAAAAAAAAICFCegAAAAAAAABIiJAeAAAAAAAAABIipAcAAAAAAACAhAjpAQAAAAAAACAhQnoA\nAAAAAAAASEimvxsAAAAA+k3cuWlMvDEfMrmoIRey/d0OAAAA1D8hPQAAAAwm5VLxkbuLD99e\nfOKB8qpFcVfH70IIIcQhWh2NeDI16YHUYbenj30mNbqf+wQAAIA6JaQHAACAwaGQy93289xN\nP4o3rt7+i1GIx8dt40ttLyo9/LHCdQ+mD7kke+ZDqWnJtwkAAAD1TUgPAAAA9S6O83f/Onfd\nt8rrl+/O5VGIjy89eUnp23ekj/lu9jVPpcbv8wGU+AAAIABJREFU6wYBAABg8BDSAwAAQD2L\nC91dP/184d7f7OBLIazYXGwvlBvT0ajG9LCG1DYXvLQ0f1bpsS82vOuOzDGJNAsAAAD1T0gP\nAAAAdSveuHrzdz9UWvxQ35MrO0tXPNk+d2nng2u7u4px5fzEIZkXT2h6/bTW0w5oyaSinpPN\nIf+1/I8ujV/9k+ypcYgS7R4AAADqkZAeAAAA6lPcvXnzRe8uPfNY5cyGXPlb89q+//DG7j7Z\nfMWKzcUrF3ZcubDjsOHZ808Y9bqDW3sy+VSIP1C4vhxSP82eklTvAAAAULe23cgOAAAAqAfl\nUueln+yb0P95ZdcJVy791kMbdpjQ9/XExsKcW1e9/eaVHYVy5eQHCr97aWn+vuoWAAAABg0h\nPQAAANSh7t9eXJx3W+XwF4+3v/6GFWu7S7tf4fdPbT71N88s6yj2HKZCfGH+Z1PKa2vcKAAA\nAAwyQnoAAACoN+UNq/Jzf1g5vHVZ58f/tDpffo4F9Nt7pC3/xhtXtG9ZT98S5z5c+E3NugQA\nAIBBSUgPAAAA9Sb362/Ghe6ecc/e9aU9Duh7Pboh/6HbV1cOX16ad1T5qeo7BAAAgEFLSA8A\nAAB1pbx6Sf6eayuH59+ztr3Pq+X3wu+WbJ77dGfPOArx+wvXV9UfAAAADG5CegAAAKgr+buu\nDuXed8/fuaLrpi35ejUuvG9dZS3+rNLj48obqq8JAAAAg5OQHgAAAOpK4W83V8bfmb+xJjUf\nacv/YVlv2J8K8UvL82tSFoC9Fuei8uZUuT01JV7bEuf6ux0AAPZApr8bAAAAAGombl9XXrGw\nZ9xRKN+6rAbL6Htct7jj1ANaesbPLz15VeYltaoMwG4qt6dKqzOlDVHckY63vMnkqvDlEMLq\naMS81MH3pmfclp7ZETX3Z5cAADwXIT0AAADUj9Kyx0LcuzH9/atzhXK86+t3310ruyvjQ8rL\na1UWgN1RWpcuLGood0Q7u2BcvOGU0oOnlB78TLjqusxJP86e1ha1JtkhAAC7z3b3AAAAUD/K\na5+ujB9ry9ew8lPthe4t76WfFK+LQs3ifwB2odyRyj3YmJvXuIuEvq/GUHhz8Y6ru//tPYW5\n2bi0r9sDAGAvWEkPAAAA9SPu6qiM13bXMpspx2F9d2nSkEwIIRNKTaHQFRpqWB+A7ZVWZnKP\nNYTytueL5fip9uKa7lJ3MR7VlDqgNTuy8VnLsVri3PsLN8wuPXZe43ssqQcAGGiE9AAAAFBH\nysXKsBTXeLF7sU9KlI5LYbeWdAKwV+JQWNRQWPqsz2+7i/GVC9uvWdRxz6ruruKz/pGfNix7\n6gEt/zB96DGjGysnZ5YX/m/3Nz/d+L5FqYkJtQ0AwG6w3T0AAADUj6hxSGU8tKHG/9c/fMsy\nzThEXVHjri8GoBqFp7J9E/pyHK5d3HHi1Us/9qc1tz3TtU1CH0JYtKlwycMbX/rrZXNuXbVo\nU6FyfmK87uLc98aVNyTUNwAAu0FIDwAAAPUjGjmhMp42LFvDyqOb0sO3pP7romElHykA7DOl\nNenCkq3/hrflymf/fvmcW1ctbS/u4q4QQhzCtYs7Trr66V8+0V45OTre9I38pU1xfl+1CwDA\nHvJ/1AAAAFA/0hOmVcazxjXVsPKscVuXzi+JxtewMgB9xZ1RfkFj2LJUfvGmwiuuW3b78q7d\nr5ArxR+6ffW/P7C+cmZ6edmnC1fXtk8AAPaakB4AAADqR2r8wdHQ0T3jyUMyR49qqFXl0w7c\nupH+39KH1KosANvIL2qIy73jjkL5bTevXNxn+/rdFIfw9QfbfvTIpsqZM4v3Hl5eVqsmAQCo\nhpAeAAAA6kgUZY9+aeVozoxhNak6rCF19sGtlcN70jNqUhaAbZQ3pUtr05XDf/zDqkfb9n6b\n+vPuXnvPqu6ecSrEHy78ptr+AACoBSE9AAAA1JXsC15XGb9rxrCDa/Fm+k/NHDmisfczhGWp\nMQ+nplZfE4DtFRZnKhvd37h089ynO6uqVo7Pu3vtlnphdumxY8uLq+oPAIBaENIDAABAXckc\n8aL0Qcf0jBtS0Zdmja6y4NSh2Q8dNbxy+NPMqXGIqqwJwPbifFRq611GX4rDhfev3/X1u+Nv\na3NXL+yoHL66eF/1NQEAqJKQHgAAAOpLFDW96XOVo9cePOTDR4/Y62JNmeinrxzflOlN5ZdE\n42/InFhthwDsSGlturKM/vblndVsdN/XJQ9vrIxfWpofVZ4BAHWvHOLNqVJburQ+Nav82CHx\n8qa4Nt9eoUqZ/m4AAAAAqLHM9BMzx5xcnP/HnsMvzx69pL1ww1Ob97ROQyr60cvHHzemsXLm\nOw2vLfmNf4B9o7Rh69vof7t4j//R3pn7V3ev2FycOCQTQhgVt0+NVy+JxteqeL8rXDYpycfN\nmx2OvffSJJ8IwF4od0SlVdlSW6rckar8ctrF4Xs9g8Wp8X9JT78l/bx5qWk2CaO/+P9qAAAA\nqEMt5/5HatTEnnE6Cj87ZcInZ+7ZevrRTelrzph45tQhlTNXZF52Z/roWnYJQB/x5q2f1t69\nqruGlftWO7i8ooaVAWBAKW9K5x5s7L6/ubA0U25P7XD7mIPLq95U+NMl3f99WffXXlx6OPEe\nIQQhPQAAANSlaPjYlo98P2po7jlMR+HCWaMvO3XCocOzz3lvKgpvPrT1T2dPefHE5srJ+9Iz\n/rvh9fuqXQBCiLck6aU4LNpYqGHlxzdsrTapXINX3QPAQBPnotzfG7v/2th3Z5pdO7i88hu5\nH1zS/d+Hlpfv095ge7a7BwAAgPqUPvCo5vd/u+vST8S5rp4zr5465NQDWi57vP2nj216cE1u\n+1UlQ7KpM6e2fOToETP7bHEfQvh76qDzG8+10T3APhSHuNi74+7mQjlfruWb49d3lyrjIXEt\n1+gDwEBQ3pTOzW+I89vuXZ8rxY9vyC/tKBbKcRTClNbs4SOyrdln/X/NzPLCH+Yu+lLDO25L\nH5dgywx2QnoAIDleFggACcvOfEXqn6/o/O4Hyut7NzfOpqJzZww7d8awNV2lB9bkFm3Kb8qX\nG9LRmKb0jJENzxvTmE1t+8HW7zOzvtbwllx47iX4AOy9KIQo9OzKW9OAPoQQyn3Gqai80+sA\nYD9UWp3OPdLY97tdKQ6/XtRx+RPtd63s6i4+69tqJhWdMLbxDYe0vnP6sKZM7//7NMX5f8/9\n5AfZV/84+6okO2cwE9IDAABAPUsfeGTr56/p+tm/Fh66te/5sc3p0w9sCaFlF/d2RM2XZs+4\nIvOyfdwjACGEEKXiuBSFEFqzUToKpdpF9SMbty4Z3Bw11awuAPS30vpUbkFD33fP37i088L7\n1z3alt/h9cVyfM+q7ntWdV/00IbPHT/yHdOH9fyWchTiDxSu3xS1XJ15cSKNM9jZpw4AAADq\nXDR8bMtHLxnyz5enp+3u/o35kPll9uQ3NF0goQdITlNvwpBJRQcNq+X+JYcM31ptVTSyhpUB\noB/FXan8gsYQ9y6IL5bjC+9f99abVuwsoe9r+ebix/605s1zV2zKb12D/0/5q08oPb6v2oU+\nhPQAAAAwKGQOm9V63pVDPntZw0vekho1cYfXlELq76mDvtPw2nOav/it7Nkbo12tswegtlIt\nW0OCWeNqud59dp9qi6MJNawMAP0mjnLzG+JCb0LfXYzfOHfFtx7asEc1blnW+arfPLOys9Rz\nmA7lr+Z/PDzurHGrsB3b3QMAAMCgEUWZ6Sdmpp8YQiive6a8clG5beW/X35fMWQ6Q9PS1NjF\n0YTOqLG/uwQYpNIjyqU1veMzpw755RPtNSk7Y2TDwVvW5W+KhixMTapJWQDoX8UV6fLm3tXI\ncQgfv3P1H5/p2os6j27Iv/WmFTeeNbnnFfXD4853F+d+K3t2LXuF7QjpAQAAYDBKjZ6cGj05\nhHDFlZbLAwwI6dGl8GToeavuqw5omdKaWdZRrL7sPx4xrDK+O31EOUTV1wSA/hWXQ2HJ1pe5\nfG/+hl892bHX1f62NnfePWu/9eKxPYfnFO68IvPSFdHoaruEnbPdPQAAAABA/4ua49Sw3h3v\nG9PR+c8fVX3NacOy587YGtLfmD6h+poA0O9KyzNxrvfXztZ2l77217YqC/7fY5vmr8v1jBtC\n8Z2FW6ssCLsmpAcAAAAAGBCyUwuV8ZsPHXr82KpeQRKF8NXZoxtSvRnGgtSB96RnVNUfAAwM\nxRVbNwv/r7+1tRfKVRYsx+HC+9dXDk8tPtgQarCfDeyMkB4AAAAAYEBIjy6lR/bGDOkoXHbq\nhIlD9v6NpZ8+buQZU4dUDr+XfU1sr3sA9n9xPip39Eac3cX4F4+316Tsrcs6n9jY+9tyQ0Pn\n0aUlNSkLOySkBwAAAAAYKLKH5CtJ+oSWzM9eOX5k4958ivvGQ1o/32fD/DvTR/8lPb0mHQJA\n/ypv2Pqd8fYVXZvy1S6jr5i7dHNlfHz5iVqVhe0J6QEAAAAABorU0HL2kK2b3p8wrukPr5sy\nY0TD7leIQvjkzBE/OHn8ln3uw8po1L83vrW2fQJAfyl3bs0371vVXcPK9/SpdnC8soaVYRtC\negAAAACAASR7QCEzsVQ5PHhY9pbXTf6nmSObM8+9Wf3zxjT+9sxJF84aXUnou0LDp5vetz4M\n3UfdAkDC4q6t3xCf2JivYeUnN2z9PbkJ5bYaVoZt7P0LjQAAAAAA2BcapufiYkNpTe/nt63Z\n1AWzRr3vyGGXLNj460Wbn2ovbHN9Uzp6yaTmf5g+9LUHt/ZN8jtC8+ea3r0wmpRU4wCwz8Wl\nrd/rNuRqttd9CKEtt/WX5IbEtVyjD9sQ0gMAAAAADDCp0HhUvvBUXFiSDXHvuYlDMhfOGn3h\nrNHLOoqPtOVXdhZLcWjNpg4elj1qZEPTduvsn47GfrbpfUui8Uk3DwBJee5NZvaoWp9ycW1L\nw7MJ6QEAAAAABp4oZA8qpFrL+Seycfez3ls6pTUzpXVXH+2WQ3RjZtZFDWe3h5Z93CUAJC3q\n8z1wZGO6hpX7VusMTTWsDNsQ0gMAAAAADFDpMaXmUaXC8kxxSTYu7Naavj+njvxew2ueTNni\nHoD6FDWVQ+hN0w8bka1h5b7VVqRG1bAybENIDwAAAAAwgKVCdkoxM6lYXpMursmUN6S2T+vL\nIXoiNfme9Iwb07MWpyb0S5sAkIzUkLgynj2+luvdTxrfXBkviibWsDJsQ0gPAAAAADDQRamQ\nHl9Kjy+FOMT5qNyVCoUQ4ugjT35sbTRsaTSuO2ro7x4BIAmpEaUQhRCHEMKLJzaPaExtyJWr\nLxuF8OqpW18T80D60Oprws6knvsSAAAAAAAGiChEjXF6RCk9tpQeV/xz+sjHU1Mk9AAMHlE2\nTg0t9Yyb0tG5hw+rSdnTDhwydWjvdvcboiEPpw6qSVnYISvpARjUCpcl+oq+ebPDsfdemuQT\nAQAAAADqTGZCKb+p97X0n5o58v8e29RW3WL6dBQuPHHrS+jnpk8obnntPewLVtIDAAAAAAAA\n+43MxGLU2Ptm+hGNqS+cMLrKgu87aviMEb3b0uRC9ufZV1ZZEHZNSA8AAAAAAADsP1IhO61Q\nOXrPEcPmzNj7Te9fMKHp307cGvP/MvuyNdHwqtqD5yKkBwAAAAAAAPYnmQnF1NCtW9x//YVj\nzpg6ZC/qzBzT+ItTJjSkop7DddGwn2VPqU2LsHNCegAAAAAAAGA/03h0Lsr2bnrfkIouO3XC\necePivakwusPbr3xrMmjm3pfP18M6fMb5nSE5lp3Cv+fvfuMj6O69z9+zpTdVbckW7YsF3AH\nY2yMKcYUA6aFUAIxKSSEGwLhppCb/C8J6YWQAiEJoaWRQHKB0EINLRRDbLDBBXdjcFe3etky\nOzPn/0Dr3bUsyZJ2tNJKn/ejM6OZn3469ktlv3vOdEZIDwAAAAAAAAAAACDDyIDyzYnE004p\nxE3zC5+7cPzxY/yHvXdKvnn/2WP/evbYLCMR6//M98n39KkD1C2QzBjsBgAAAAAAAAAAAACg\nz/QC139MxNrsU04sa19UmvXKJRNe2ht8+IPWZRXBZstNvj7LkKeMy1o6NffyqbmmlojnHaH9\nznfp88aJae0eIxghPQAAAAAAAAAAAICMpBc7/vnhyMaACsdCdynE+ZOyz5+U7SixpzVa3mY3\nRdw8n1aao0/JN31a5x3x22TW93xXr9Rnpb13jFyE9AAAAAAAAAAAAAAylZarAseHozt9drUu\nVOK8LsWUfHNKvtnDvSv02b/1fWyfHDPgXQJJCOkBAAAAAAAAAAAAZDDpU75ZEWOiFt1pOvUH\nRfXd2axNvtu8eK0+beC7AzojpAcAAAAAAAAAAACQ8bQc1z8nokKaXaO7jZrboquDHkkvolL/\nQJat1me+os/brk0YpDYBQnoAAAAAAAAAAAAAw4XMcs0jXHGEEEqoiFRRqWxx5bbvtsqsSlns\nCG2wGwQI6QEAAAAAAAD0l7Kk26i5rZob1JQthSvuidzZJHL2aGM3a5PXadPaZWCwewQAACOV\nFDKgZEAJIbZokwa7GyCBkB4AAAAAAABAnzk1ul1hOi1ap2e+zhcfCiGEI4QQljDe0mf/wzjj\nPX3qILQIAAAADEmE9AAAAAAAAAD6wGnQozt8bps87JU+YS921i921q/QZ99tXrRTK01DewAA\nAMAQx0MXAAAAAAAAAPSKcmRkky+y3t+bhD7ZImfz/4V/eU30Rdlp3T0AAAAw8rCSHgAAAAAA\nAMDhqbCMbPK7rQct+4m66vWK0JuVoS0NVlXQDtkq15ST8sxji/1LJmQtKEk8kF4T6troC0e6\n1Tf7Px0RvrS3DwAAAAwVhPQAAAAAAAAADkOFZXhNQFmJBfRhR/15S/Nv1zfVhZ1OF29qsJ7f\n0/6LtWLGKPM7xxddcmRu/LYlzrqScNNXA1+OCDNdvQMAAABDC9vdAwAAAAAAAOiJcmRk40EJ\n/bKK0ILH9n5vVf2hCX2y7U3Rq1+tOeeZil0t0fjJY91dN1n/GMB2AQAAgKGNkB4AAAAAAABA\n95SwtvqSH0L/xy3NH3+pqrzN7mWB1bXhs5+ueLMyFD9zgb36s/YrHvcJAAAAZAhCegAAAAAA\nAADdcup0Z78eP7x3U/M336qzXdWnIg0R5/IXq5ZXJXL666LPT1B1nnUJAAAAZA5CegAAAAAA\nAADdUMLalXh4/OsVoe+/U9+/SlFXXfVKze7W2L73pnKuib7gQYcAAABApiGkBwAAAAAAANA1\nu9pQ7bGXEIO2e/2ymr6uoU/WEHH+34rE6vnz7DXT3YpUWwQAAAAyjTHYDQAAAAAAgINEHxqf\nzk+34SRx7Ko/pfMzAsggdnni9cM7NzbXhJwUC75aHny9InRmWZYQQhPqUvut23xLU6wJAAAA\nZBZW0gMAAAAAAADoggpKty32+mHIVndvbPKk7K3rGuLjs511muj/0nwAAAAgExHSAwAAAAAA\nAOiC05hYRv/C3vYWy/Wk7Mrq8N5Wu2M8SrVPY8d7AAAAjDCE9AAAAAAAAAC64LYmXjxcVhHy\nqqwS4o3KYPzwaHevV5UBAACAjEBIDwAAAAAAAKALKijj400NEQ8rb2qw4uNJqtbDygAAAMDQ\nR0gPAAAAAAAAoAuunRhXttvdX9hn5W2JagVusIcrAQAAgOGHkB4AAAAAAABAV5zESvqQrTws\nnFzNL6wergQAAACGH0J6AAAAAAAAAF3RE1F6liF7uLCvss1EtbD0eVgZAAAAGPoI6QEAAAAA\nAAB0QTMTIf2EXNPDyhNyjfi4SeR6WBkAAAAY+gjpAQAAAAAAAHRBZidC+mOLvVzvPrfYHx/v\n0Uo8rAwAAAAMfYT0AAAAAAAAALqg5bvx8Zll2Z6VlWLx+Kz44RZ9kleVAQAAgIxASA8AAAAA\nAACgC/qoREh/zsTsIr/uSdnTSrNKc2Lb3dfL/J2y1JOyAAAAQKYgpAcAAAAAAADQBZnlxhfT\nB3T59XmjPCn77eOL4uNX9OOUkJ6UBQAAADIFIT0AAAAAAACArplldnx87dEFE3KNFAteODnn\n5LGBjrEjtCfNRSkWBAAAADIOIT0AAAAAAACArunjbC0vsZj+vjPH+vX+L3wfl23cvmh0/PBZ\n4+TdcmyqLQIAAACZhpAeAAAAAAAAQLfMI6Px8UljA7cvGtO/OlmGfOTcceOyY2vxI8L3Z/MC\nD/oDAAAAMg0hPQAAAAAAAIBu6cWOMS6x6f1nZuT9cfHYQB/X05fmGP+6sGzuaH/8zO98l9TJ\nfM+6BAAAADIHIT0AAAAAAACAnvhmWlq+Ez+8Ylruvz5aNqvQ18vbl0zIfv2SsvljEgn9E8ap\nTxinetwlAAAAkCEI6QEAAAAAAAD0SBP+YywZcOMnjh/jX3HZxDtPGzM5z+zhvhNKAk9eMP7x\n80vju9wLIVbpM3/ju2wAuwUAAACGNuPwlwAAAAAAAAAY2aRfBY6PWJv8TnNs2Y8uxWdn5n9m\nZv67teE3KkJbGq3KdjviqGxDm5xnzB3tP3tC9vSCzhH+08bCX5lLbaGn/SsAAAAAhgpCegAA\nAAAAAACHJ33KPy9sfeCzqwyhDpwU4sSSwIklgcPebgnjTvPSx8zTBrZLAAAAYMgjpAcAAAAA\nAADQO5rwzbSMUie6w3Caersa3hXyJeP4P5gXVsuiAe0OAAAAyAiE9AAAAAAAAAD6QMt3/Mc5\nTr1uVxpOvSaU7O7KNpH1ujH3UeP0D7SydHYIAAAADGWE9AAAAAAAAAD6TC929GJHOdJt1Nx2\nzQ1KEZXClctajm2UeXtkySb9iM3aZB4/DwAAAHRCSA8AAAAAAACgn6Su9NGOPtqJn7lx1bWD\n2A8AAAAw9GmD3QAAAAAAAAAAAAAAACMFIT0AAAAAAAAAAAAAAGlCSA8AAAAAAAAAAAAAQJoQ\n0gMAAAAAAAAAAAAAkCbGYDcwJAQrtr786msr1m7ZX1ffHBaFRUWlR8w67Ywzzz5ljikPf/u+\nDW+8umLN5i3baxubW9vCgbyCwjFlxxw7d9HZFxw7MW9we0vxdgAAAAAAAAAAAACAhwjp1dtP\n3P2bv/877Kr4qbrqYF11+caVrzw8Y/E3v/3l2cX+7m62Wj64+6e/eH3b/uSTbc0Nbc0N+z7c\n+OKTDx11xiduvOETxUb/dixIqbeUbwcAAAAAAAAAAAAAeGykb3e/5m/f+fkDL8djbKn58rLN\n+Ecbty/74Q0/3Bl2urzXDm7/5nU3JSf0UuoFhblSxpaoK+VuWfbwl//751WWm+beUr8dAAAA\nAAAAAAAAAOC5Eb2Svmnb/T95YkvHOGfiwuuv+/Qpx042pQg27H7lmQfve/IdpZTVuuUHNz34\nf7+96tDbH/zOT3YGox3jaadf/l8fO2vKxLIcn2a1NezavvbBP/35vYqgECJYs+qm7z32wK2f\nSGdvKd4OAAAAAAAAAAAAABgII3klvfvXXzyvlBJCBEYvuvuOm86YO7njMe3ZRUdcfPV3b7vu\nhI7rWnY+/tCu1k43t1U89sTOlo7xlItu+vX/fm7O1Ik5Pk0I4cstmjl/yY/vvv/a08s6Lmjc\n9uDfDlycht5Svh0AAAAAAAAAAAAAMCBGbkjfVv7A6w3hjvFnb/5KkSE7XTDjwu9+tCS7Y/z8\nb97s9NEP/vpSx8DImvazaxYeWl9qgY9+/ZezDuww//p9G9PWW4q3AwAAAAAAAAAAAAAGyMgN\n6Xf9Y2XHIFB0/kVlOV1dIi/70nEdo9Z9DzY7Kvljz25t6hiUnnFdttY5BY/dr+dfs3hcrMKu\nlzt99P7Pf+LiAzo9Gz7F3lK8HQAAAAAAAAAAAAAwQEZuSP/kuvqOwfizz+vumsLZn9akFEIo\np+2h6vbEB5S1ri32NPrpHxnfw2cpPrG4Y2CHd6Wpt5RvBwAAAAAAAAAAAAAMkBEa0iunJZ6y\nzzxzbHeX6f6JJ+XF9qvftaExft4O73ZUbPX5MaP8PXyiSKPVMZBGQXp6S/F2AAAAAAAwEFRY\nOg2aU6PblcaFzqrTnE1HutWGcA5/JwAAAABgeDEGu4HBYbWuiqfs8wp8PVw5P9f3doslhKh/\np0FcMLHjpJE17dFHH+0Y+wM9hfTLn9rXMcgqPKvTh3JHl5RooY6xmbRffoq9pXg7AAAAAADw\nkNOoOTWmU68pK/HH//fFQx2DkPCt06a9Zsx7XZ/bLgOD1CMAAAAAIK1GaEgfDW6Pj4/ONnu4\nsnRCtqhsE0KEKsuFmHvgtBYIHP4v5+b3H39wT2vHeNZnF3b66MdvvfPjA9Bbyl9aP7W0tFiW\nlWKR3uvtvgSZqa6ubrBb6IwJT6fhPduCCU87JjzNmPA0Y8LTjAlPp6E224IJT6/hPdtixEy4\nU69Hd/rcNtnDNVnCOsXdcoq15Qb59APGksfN0yKip7/l+2eETPjQwYSnGROeZkx4Og212Uaa\nDe//3oL/4SMe/8PhrXROeGFhoa7rKRYZodvdu1ZTx0BKo0Dv6a9lX2FsMbprN/XpU7TvW37j\ndx+MFck77hsLu9153tve0vClAQAAAACAHqiQFnnPH9ng7zmhT5av2r8affrR0C2nOxsHtDcA\nAAAAwKAboSvpreYDj4rX83q+0jjw4PY+JNnKeeeZP/32/hfaHCWE0H0lX7v1W7k95uUe9jaw\nXxoAAAAAAOiR06Rbm3wq2vl1gJqQs6Eusqc12hZVfl2Oy9aPKvLNHOVLvm6savxl5L4/m+f/\nxTxPid6+kgAAAAAAyCwjNKTvA1cdGER6c/netS//5a8PrD2wy71mFF7/i1+fVpY9FHrz+HYA\nAAAAAHAwu9qwtplCJfL1sKMe2Nby4PbWDfVd/PU9Nku/bGruV+aMKsuJvUQjhbo2+sKRqvqH\nvquckboDIgAAAAAMbyM0pPcVxHZ6V057z1fa7XbHQJpFPV/Ztm/NX/503yvvlcfPlMxZ8o2v\nX3f06MM/vd7D3gbiSwMAAAAAAIflNOj2mfdOAAAgAElEQVTWNp9QiTOPfNh68+qG8ja7u1tq\nQs69m5r/urXli7MLbjyuMNeMpfJL7HXNIuc239KB7hkAAAAAkH4jNKTXfAUdA6WsoKuytW53\nkLMaY7vHa0a3SbZyw8seuffeR5aFD6xN9+VNuvSqa688b24/dqZLsTdvv7Tek1JKyUZ83mAm\n04wJTzMmPM2Y8DRjwtOMCU8zJjydmO00Y8LTbFhOuApKa7M/ntBHHPWNFfsf3N7am3vDjrpj\nQ9O/9rQ/fG7p9ILYw+kut5fv1EqfME5NvbdhOeFDGROeZkx4mjHh6cRsY3jjfziGN/6Hp1nG\nTfgIDemNrOlCvNwx3hqMHp/r6+7K2opQx8BfOK7LC5p3rLjj13et3hdbtq77x5x3xZWf+tiZ\nBUY//yuk2JuHX1qf5OXlpV6k96Lp/GRpV1xcPNgtdMaEp9Pwnm3BhKcdE55mTHiaMeFpxoSn\n01CbbcGEp9fwnm0xLCdcicjmgDqwYD5sq0tfrFxZHe5TjQ+bo+c9U/HUR0qPLfZ3nPm69c+1\n2rRdWqp/tg/DCR/amPA0Y8LTjAlPp6E220iz4f3fW/A/fMTjfzi8lXETPkKfbebPP1k78H6K\n9d1vOieE2NAW+y4xeuHYQz+69837r/1/t3Yk9FIaJ1587e///sfrl57V74Q+9d68+tIAAAAA\nAEAv2dW62xb7Y1wJ8ZX/1PY1oe/QEHGueKm66sDz6QzhfCn6rGddAgAAAACGhhEa0ku9YF5O\nbPu4zW/v7+4yZdevaIl0jCfO77wnfN2aB752+5MdW9xnj59/46/+8r0vXDQ2oA9ub558aQAA\nAAAAoLdcEd2V2Mfu95uaH9/R1u9i1UH72mW18cPTnE1z3Z0ptTcCucJp0qN7Tet9X2SjP/Je\n4JeR+75rPfyZ6KsL3O3+4b9qCwAAAMBQN0JDeiHEx+bFkumql1Z2d03LnseiSgkhpJ59ZWlO\n8ofs0Pvf/NlTjlJCiKJjLrzzzh+cOn3UEOktxdsBAAAAAEDv2dWGisSW0TdG3F+ua0ix4PKq\n0HO72+OHn7P+nWLBkcNt0SNbfaHlWZF1/ugO0640nDrdadTOcDZcZK/8SvSZu8J3vxz89k8i\nf5vr7hjsZgEAAACMXCM3pJ/yqZM6Bu1VD7/TYnV5zfJ7VnQM8iZcOdo8aK7W3vPruqgjhPDl\nz7/j5uvGmF7OZIq9pXg7AAAAAADoPacmsaneHRsamyJu6jV/srreVbHxSe62ItWaes3hTQVl\nZJM/vNbvVBvK6ekphH4RPddZ84fw726P/HGKW5W2DgEAAAAgbuSms3kTrj6tMCCEUMq966dP\nqEMuaNz84B8/bOkYX/D1M5I/pJzWu1fUdIzP+cH/FOj9fwK9572lfjsAAAAAAOglZUunOfbq\nStRVf3/fmzR9e1N0eVWoY6wL9yTnfU/KDk9KRHeboXcCzn5dHPoiSPcWOZv/Hr71v6PPan26\nDQAAAABSZgx2A4NH6l/41vn/uekpIUTTtodvuM34zpc+VppjCCGEcratePznv35MKSWEKJj+\nqSun5Cff2l79UKPtCiGk1E9ya7Zvr+2i/sE0Y9S0KSXJZ5646X9eboz9vf29390z0Z/0MPsU\nevPgdgAAAAAA0DtuiyZU7L37q2sj9WHHq8ov7G0/fXxWx3iuu+MFscCrysOJcoW11e/U6p3O\nb220Xq8Ibqi3KtvtFsvNM7XxOcacYt8Z47PmFPvjl+nC/Vz0lSlu9Q99VwWlXwAAAABAWozg\nkF6IwqM///3Ltt38z21CiD3/+fv1bz01ZdrkAr9bU7Gzoj7ccY2vYM5Pb7mi0431q7Z3DJRy\nfvDNG3vzuQJFFz56/xeTz7TWVlXVxUL66CHv2O53b57cDgAAAAAAesMNJnbXe7c27GHl1bWR\n+PhIt8bDysOGckVknd9tOSihf2FP+8/XNm6ojxx6/SMfCiHEUYW+m+YXXnxkbvxf7jRn0x8i\nd1zvv6FdBga6ZwAAAAAQI3m7+w4nXP2LGz9zVkCTQgjltO54f9PaDVviMfboo8/66Z0/nBzo\n/HbsxnWNQ7Y3r24HAAAAAACHF06E9Dtaoh4W3tGcqFaimjysPEwoYW31JSf0u1qiFzxX8al/\nV3eZ0MdtbbQ+92rNOc9UbG9KzPB0t+In1t904Q5gwwAAAABwwIheSS+EEEI77Yr/mb/wnJde\nfW3Fmi11DQ0tEVFYWFQ6ZfbpixcvOfmYLh83v7+upz/2Brc3724HAAAAAACHoZzEX9ctlpcR\nb7OV2Dk/W4Q8rDw8RHebTm3ida3/VIU+90pNQ6S3jxtYXRte8kz5fWeOPWdidseZRc7m/7ae\nu8t3sfe9AgAAAMDBCOmFECJn4uzLrp592dW9vf6cex88J+VPevVfHunNJ+xrb97eDgAAAAAA\neiITT7Dz9t3wukyUcxQ74R1EtWvRPQcl9Je9UBV1D3maYI9aLPeTL1c9dG7peQdy+ivt114x\njtumTfSyVwAAAAA4xEjf7h4AAAAAAKDfpJGI0os9fahccVaiWpvM8rDyMGDtNIWKzfye1uh/\nvVrT14S+g6PENa/VbG20Og6lUDdEn/KsSwAAAADoBiE9AAAAAABAP8msxBb3M0b5PKw8a5QZ\nH1doxR5WznRus+bUJd7BcN2y2rpwb3e5P1Rb1P3istp4xD/f+fAk5/0UOwQAAACAnhHSAwAA\nAAAA9JOWnQjpF40LeFj5lHGJ1fM7tVIPK2e6aEXi7QvP7W5fVRNOseCG+shjO1rjh0vtN1Is\nCAAAAAA9I6QHAAAAAADoJy1fST22CntWoW9G0vL3FF10RE58vEab7lXZTKdc4e5PLKP/xdoG\nT8r+Ym1jfLv8k51tuSrkSVkAAAAA6BIhPQAAAAAAQH9JpRUn9lr/8jGjPKm6ZEL2rMLY5vnt\nMrBGJ6SPcZs1dWDzgk0N1qYGy5Oyu1qiq6pjK/IN4cx3P/SkLAAAAAB0iZAeAAAAAACg/4xx\niZD+yhl5qS+m16T48YmJh9D/W58fEZ4t0M90bkvitazXyoMeVn69IlHtaHePh5UBAAAAoBNC\negAAAAAAgP7Tix2tILa429DkrQvH6DKlgtfNLphdFFtGHxHm/eY5qTU4rKhg4rWsjfURDyuv\nr08syp/s7vewMgAAAAB0QkgPAAAAAACQEt+0qDgQzC8uy7r5pOIeL+/JwnGBnyQto3/MOL1a\nFqXY3nCiool3QOxrtz2svK8tGh8XilYPKwMAAABAJ4T0AAAAAAAAKdHyHX1MYtP7Lx0z6htz\nC/tR5+SxgYfOKfVpsRy6Thb8zTzbmxaHDTcxDNnKw8LBpGoB5c2j7gEAAACgS4T0AAAAAAAA\nqfLNsrTcRMr7gxOK/rC4JGD0YeP7z8zIe/oj4wv9sddqIsL8lv+aFpnjcaOZTk8MAyk+V+Bg\nWUn/WBHh87AyAAAAAHRCSA8AAAAAAJAqqSv/nLA0Ezn9J6blrVk66epZ+YeNkmcV+v5xbuld\np5f4ky79le/jm7XJA9RtBjMSMzw+x/CwcFlStWYt28PKAAAAANCJl3/MAAAAAAAAjFgyoPzz\nwpGNARWOZe1lOcZvTx1z/TEFD29vfaU8uK3RcpI2aC/NMc4ozbpsau6SCdlaUpAflfqvzKXP\nGient/3MoGWr+HMFjinyPbnTs8pzivzx8V5Z4lldAAAAADgEIT0AAAAAAIA3tFwVWBC2Nvqd\n5sTmhbNG+X58YvGPTyyOOGpfm90Wdf26HJdtxHe2T9Ykc27yXfOePjWNXWcSLTfxUPrFZdk3\nr27wqvIZZVnx8VY5yauyAAAAAHAoQnoAAAAAAADPSFP554Wj+wx7r0/ZB33Ir8tpBWZ3N7pC\nvmQcf695Ua0cNeBdZixtlCs0IVwhhJg/xj+twPywOZp62dIc49TSWEjvCG2NPj31mgAAAADQ\nHUJ6AAAAAAAAT2nCnGwb4x17j2FXGso5zEPpXSFXakfd6/voB1pZehrMXFJXepHj1OlCCCnE\njccVfnFZbeplb5xXqB/4V1qjz2iSOanXBAAAAIDuENIDAAAAAAB4T5rKnBY1jrTdOs1p0J0W\nXYWEUInAfr8seF+b+K4+fZk+t0YWDmKrmcUoi3aE9EKIpVPz7tzQtKnBSqXg9ALzqpl58cMn\njEUp9QcAAAAAh0NIDwAAAAAAMFCkrvSxjj7WEUIIJVVUCEees/6XzTI7InyD3V1G0otcvdB1\nGjUhhCbF7xePPfeZiqDtHvbGLgV0ee8ZJYYWe/PEZm3ym/ocz3oFAAAAgK4Q0gMAAAAABpmy\nhdtoOE2aatfcsBSOeDb6g6AMVMqiHXL8On3qan06cSaGA6mkTwiheOp8isxpEefd2CPkjyny\n/XFxyVWvVruqP6V+tWjMgpJA/PAe8yIlDvN4AgAAAABIESE9AAAAAGDQuK1adI/h1Bvi4EWw\nY0SzUM2TRc1CsfUz9qtB6X9VP+5+49wKrXiQOgUwhGi5ypxgR8tjr2t99Iicv5419r/f2N+n\n9fQBXf72tDGfnJbY6P4ZY+EafbrHvQIAAADAIQjpAQAAAACDQIU0a5fp1Oi9uThbRS6yV57v\nvPtP/dT7zXMbZe5AtwdgiDOnRd2gdBpi30MuOTL3yHzzutdrtzX16vn0UwvMP5xRkryGfr02\n5TZz6YD0CgAAAAAH0wa7AQAAAADAiOPUGuF3Ar1M6ONM5XzCfuMf4VsWuNsHqDEAGUMq3+yI\nzEksnT+22L/8sgm/O21MWU5Pi1LGZum3nTJ65eUTkxP6Cq3424HPR2XfvikBAAAAQP+wkh4A\nAAAAkEZKRHeb0T2mOPjp0e/Uhl/Y0/5ubeTDZqvZcjUpR/m0maN8J48LXHxEzqzCxAPpC1Tw\nt+Hf/8r38aeMU9LdPIChRBoicFzY2hxwGmOrUAxNXjUz/8oZ+SuqQq9XBDfUW/vaopYjTE1M\nyDWOKfKfOSHr9NIsQzvoqfPrtSnfDny+QeR19UkAAACA4SD60Ph0froNJ4ljV/0pnZ8x4xDS\nAwAAAADSx/rAZ1cc9KfoaxXBH73TsKE+cvCFqj3qVrTbr1UEf7am4YzxWT8+sXjeaH/Hxwzh\n3GQ9kiWsh43FaeobwJAkTeGfG7E+NO3yxDcWXYrTx2edPj6rNxWeNU6+zbfU4iUyAAAAAGnE\nXyAAAAAAgDSxK8zkhL4p4n5xWc1L+4KHvfGNytCZT5V/blb+LxeO9uuxJbBfsZ7eo5W8pR09\nUO0CyAhS+aZbRokd3eFzmvvwYMfN2uS7fJes06YOXGsAAAAA0CVCegAAAABAOjhNuvVB4o/Q\nD5qjn3q56sPmaC9vV0Lcv61lW6P1tyXjSrJ0IYQu3J+E//b5rG/slSUD0jGAzKEVuP75Yade\nt8sNp1Hv9ECNZK6Q6/RpjxunLtPnKiG7vQ4AAAAABgwhPQAAAABg4CkR3W4KFcvDakLOpc9X\nVrTbfS2zsiZ8+YtVL100PtvQhBC5InSD9dT/+q/zuFsAmUkvdvRiR1nSbdLdVum2ayoqhJIb\n249slHn75Oit+qTV2owGyePnAQAAAAwmQnoAAAAAwICzq3W3PbYNddhRV/67uh8JfYeN9ZEv\nvbH/r2eP7Qj8T3U2z3N2vKezYTWAGOlTeomtJ22xcc2qbwxeOwAAAADQWR+e1AUAAAAAQH+4\nIrrLFz+6d1Pz6tpwKvWe2tX23O72+OGXos+mUg0AAAAAACCdCOkBAAAAAAPLqddVJLbRfVPE\nvWNDY+o1f/xufdSNPXT6WHfXFLcq9ZoAAAAAAABpQEgPAAAAABhY9v7Eo9b+uKW5KeKmXvPD\n5ugzuxKL6c9y1qdeEwAAAAAAIA0I6QEAAAAAA8ttTPzt+cSONq/KPr4zUeoEZ7tXZQEAAAAA\nAAYUIT0AAAAAYACpiFRWbK/7mpDzfpPlVeXllaEDG96LGe4+KVSPlwMAAAAAAAwJhPQAAAAA\ngAHkhmV8vKXBs4ReCNEadfe1RTvGWcIqVi0eFgcAAAAAABggxuEvAQAA/aUc6TZpbqvmtmsi\nKpUt7orc3S4Ce7Sx78sJa/VpjTJ3sHsEAGCA2YmQviZoe1u7KuhMzjM7xnkqVCcLvK0PAAAA\nAADgOUJ6AAAGhNusRctNp04X7kHnF4jtQgjhCCGEK+RaffqT+qLXjLlKyC6qAAAwDDiJn3ER\nx+Md6ZML+kXU2+IAAAAAAAADgZAeAACPqXbN2mk6dfphr9SEWuBsX+Bs32pPutu8aLU+Iw3t\nAQCQbloiR882PX7mWo6ReAdASPi8LQ4AAAAAADAQeCY9AADeUSK62wy9G+hNQp/sKHfvXZG7\nfxT5O0sAAQDDj/QlQvpJuR6/Uzy+170Qol7me1scAAAAAABgILCSHgAAbyhXWNv8Tk3neH5d\nXeS18uCGemtfW7TFcnNNbWyWPrvIf/r4rNPGZ+lJm9yf76yeFK79pv/aOjIGAMAwInOUkEIo\nIYQ4pshnajLqerPpfVmOMSYr9pO3Qea1ySxPygIAAAAAAAwoQnoAALzgCuu9gNN80BY1z+1u\nv2VNw9ZG69DLX9oX/PX6xnHZ+tfnFv7XUfk+LZbVH+3u/Uv49i8Evl4rR6WjbQAABp7UlZbt\nuu2aECLH1E4aG1heFfKk8pKJ2fHxJv0IT2oCAAAAAAAMNLa7BwDAA9b7vuSEfndr9LxnKz7z\nSnWXCX1cddD51tt1Jz2+763qRFZRoppui/zJL3q6EQCAzKIXOfHxZ2bkeVX209MTpVZps7wq\nCwAAAAAAMKAI6QEASFV0r2lXJzanWVEVOvvpilU14V7evqsleunzVQ9sa4mfmemWfz/ykMdd\nAgAwePSxiZB+6bS8WYW+1GueNzH7pLGBjrEjtNf1uanXBAAAAAAASANCegAAUqLCMrrLjB+u\nrAlf9mJVfdjp4ZZDWa762vL9921N5PRLnHWnOps96xIAgEGl5blagdsx1qX4wYKiFAsamvzh\nCcXxw5eMBQ3SswX6AAAAAAAAA4qQHgCAlFi7TBELHcS+NvuqV6ojjupfqW+9XfdmZWLf+69Y\nT+vx0gAAZDjftKiQsfFHJudce3RBKtVuOan46KLYcvyIMP9gfiTF9gAAAAAAANKGkB4AgP5z\n2zUnaaP7r/1nf22ob2vok9muuv6N2rAdy/iPUDUX2O+m2iIAAEODlu/ooxM/JX9+cvGZZVn9\nK/W5WflfnJ3I+B8zTq+Rhan2BwAAAAAAkC6E9AAA9J9dkUjol1eFXqsIpliwst2+d3Nz/PBy\ne3mKBQEAGDp8Myzpj70XzdDkP84tvXJG3/aol0L8z9xRv1k0Jn7mA63sPt/5XnYJAAAAAAAw\nwAjpAQDoP6dWj49vWdPgSc07NjTGF9Mf5e6d4NZ5UhYAgEEnfcp/TCT+Z6hfl3efXnL7ojFF\nfr3H+2Im5hr/d864H51QrB3YNr9B5N3o/0JI+AamXwAAAAAAgAFBSA8AQD+5bZqKxlKCva32\nyuqwJ2WbIu5L+9rjhye473tSFgCAoUDLd/1HRYRU8TPXHJW/7hOT/t+8wtGBbqP6ibnGT08q\nfnfppAsn58RPtsvAtwOfr5ZFA9sxAAAAAACA14zDXwIAALritiTe6/ZGZVD1cGkfvV4RuuTI\n3I7x0e7eJ8Ui72oDADDI9BLH77OsTb74e90KfNr3FxTdNL9wdW1kZU34g2ar1XI1KUf5tZmj\nzIXjsuaN9suDi5TL0Tf6r92ljUt//wAAAAAAACkipAcAoJ9UMJEXbKy3PKy8qSFRbZK738PK\nAAAMBfooJ3B8JLLZ57Ym3vFmanLhuMDCcYHD3v6WfvSPfZ9tltkD2SMAAAAAAMBAIaQHAKCf\n4uv/hBAV7baHlcvbovFxvmjzsPLwp4TbLt1WXQWlsqWyxU3WIy0yZ68cs1mbzIJLABg6ZJYb\nWBB2anRrp0+F5eFvEEII8YFWdrd58Up91oD2BgAAAAAAMKAI6QEA6CflJhKFsOPhbvciaCeq\nZaloD1cizm3X7ErDqdWVdVDSc6l4Kz6uk/mvGPP/aSzaK0vS3iAAoAv6WCdrTMiu0Z1qw2nW\nRTc/TiPCfFef+S/jhDf0ua7obaIPAAAAAAAwNBHSAwDQT1JLJAkB3cvAINtI7P0bkj4PKw9L\nKiyju0y7+vC/1YxWLZ+MLlsaffMZY+F95nl1siAN7QEADkMTRqljlDrKlm6L5rZrKiyFI/+5\n/9SQ8FdoxTtk6Sb9iIgwB7tRAAAAAAAAbxDSAwDQT9KXCOkn5Hr5I3ViUrVmmeNh5eEnuteM\n7jKF24dbdOF+zF5xgfPu78xL/2ksGrDWAAB9Iw2lFzl6kdNx+LPmTw5uPwAAAAAAAAOEkB4A\ngH6S2YmQfk6x38PKc4oTq+fZmL1brrDe9x26gL68zX6zMrSxIVLV7rRG3TxTm5BrHFPsWzw+\ne1y2Hr8soKxvWo9Ocat+47vMEZoAAAAAAAAAACAtCOkBAOgnLS+xfHvx+CwpunuQbp+dWZYd\nH2/WJntUdVhRrrDeCzjNB4Xrb1aGfrmu8a2qUJf/EJoUi8dn33R84YklgfjJj9v/maD2/6//\nOlvoXd0EAAAAAAAAAIDHWDcGAEA/ablufMf7CbnGotIsT8oW+rVzJiZC+tXaDE/KDitKWFv9\nyQn9vjb74y9WXfx85YpuEnohhKvEaxXBc5+p+Owr1bUhJ37+ZGfb/1qPD3DHAAAAAAAAAADE\nENIDANB/+hg7Pv7O8YWe1PzGvMKALjvGm7XJFVqxJ2WHk+ge06lNLHxfWRM+6+nyV8qDvbz9\n2d3tZz5VvqE+Ej9zqf3WFfabHncJAAAAAAAAAEBXCOkBAOg/o8wRsTxdnDIu69ykFfD9MyHX\nuPbogvjh48ZpKRYcftx2LbrbjB8urwpd8nzl/qSV8b1R0W6f/2zl2v2JnP4r1tOlqt6zLgEA\nAAAAAAAA6AYhPQAA/afluMbYxGL63502pjTH6Hc1U5N/OKMkvox+hxz/krEg1RaHnegOUxzY\n0X5vq331qzURp7sd7nsStN1P/7uqsj32z+cT9nXR571qEgAAAAAAAACA7hDSAwCQEvPIaPzH\n6bhs429nj42n7H11+6LRyQ+2v9t/kSv6WWq4cpo1pz620b0S4prXa+rCfVtDn6w66Nzwn/3x\nw/PsNdPdilRbBAAAAAAAAACgR4T0AACkRAaUOdWKH55QEnjqI+NLsvQebjmUX5f3nF5y1cz8\n+JkX9QVvaUd71uVwYe9LbHT/9K62d2vDKRZ8pTy4rCLUMdaE4sn0AAAAAAAAAICBRkgPAECq\nzAm2UZpYz33y2MBrl0w4NWlNfM+mF5jPXjj+0zPy4mc2a5N/7v+kx11mPmXL5GX0P1/T6EnZ\nW9Y0xMdnOe+Zqv9L8wEAAAAAAAAAOCxCegAAPOCbEdFHJcLdCbnGcxeOf+S80mOL/T3cVZZj\n/HrRmLcvn3hiSSB+sloWfcv/hYgwe7hxZHKbNeHGxmtqw+83WT1e3lvv1oa3N0U7xjkqfLTa\n40lZAAAAAAAAAAC6ZAx2AwAADAua8M+NWO/77OrEz9bzJmafNzF7c4P1WkXwvbrInlY7bLuG\nJifkGrMLfWeUZZ08Nks7+KHzG/UjbvJdUy/zO9dHR0h/wKsH9qj3xGvlwRmjCjrGxzi712tT\nPCwOAAAAAAAAAEAyQnoAADyiCd9RlsxR0Z2GUInsfXaRb3aRrzcFnjVOvs231OKnczfcUGJW\n19dFPKz8Xn2i2hGqxsPKAAAAAAAAAAB0QgwAAICXzElRY4xt7TSd/YZQvb1ro37EXeYlLOA+\nDCsR0u9tjXpYeE9StULV6mFlAAAAAAAAAAA6IaQHAMBjMkv5Z1tuix2tMNz9unJkd1c6Qlul\nzXrKPOVNfU46O8xQyk3MZNDu9TsgeqE9mqiWJbx51D0AAAAAAAAAAF0ipAcAYEBo+a4/31Iz\nhdusuy2aCkplSeHIla1HNcrccjl6mz5xrTatTWYNdqcZQya928Gnd/vWh34IJFWLCNPDygAA\nAAAAAAAAdEJIDwDAAJKa0AsdvdCJn/nqqi8NYj+ZzUysdy/N1rc1ela4NCfxG1GzzPasLgAA\nAAAAAAAAh9AGuwEAAIBe0bLc+Hh2kd/DyrOLfPFxuRzjYWUAAAAAAAAAADohpAcAAJlBy0uE\n9KeP9/IxAcnV3tcmeFgZAAAAAAAAAIBOCOkBAEBm0Ea54sCz4xeXZY0O6J6UnZhrnFgS6Bjb\nQl+nTfOkLAAAAAAAAAAAXSKkBwAAmUH6lZYfW0zv0+QNx47ypOz/zivUDmT/K/Wj2mXAk7IA\nAAAAAAAAAHSJkB4AAGQMc7wdH183u6Asx0ix4MxRvitn5MUPnzJOSbEgAAAAAAAAAAA9I6QH\nAAAZQx9razmxxfQBXd55+hgjvgq+7/y6vCupwnptynJ9tgddAgAAAAAAAADQPUJ6AACQOaQw\np0bjR2eVZf/0xOJ+F/vVKaNPKElsbn+P76KUegMAAAAAAAAAoBcI6QEAQCbRix19jBM/vP6Y\ngltOKtb7uJzep8k7Th3z2Zn58TPPGiev16Z41SQAAAAAAAAAAN0hpAcAABnGd5Sl5ar44Zfn\njPrHuaUlWXovby/LMZ7+yPjPzUok9Bu0I2/zLfW4SwAAAAAAAAAAukJIDwAAMozUlX9OWPoS\nOf05E7PXXTHppvmFuWZPv9sU+LQfnVC8ZumkheMSu9xXy6Kb/NdYwhjAjgEAAAAAAAAAOIDX\nowEAQOaRARU4PhLZ4HPbY6l8jqndNL/oq3NGPb83+Fp5cHODVd5mW67y63JSrjGn2H9mWdYF\nk3ICxkE742/RJn3Tf22DzBuMLwIAAAAAAAAAMBIR0gMAgIwkA67/+Ii12efUJza6zzG1pVNz\nl07N7U2FF/UFP/d/MiLMAesRAAAAAAAAAIDOCOkBAECmkrryz4k4dYa1w1QhefgbDtipld5t\nXrRCnz1wvQEAAAAAAAAA0CVCemcqgR0AACAASURBVAAAkMmk0MfYWaMdu0q3y4347vfd2aZN\nfMw87UX9BEcc5koAAAAAAAAAAAYCIT0AAMh8UhnjbWO8rdo1p1FzWzU3pClLCEfui45pkHl7\ntZKt2qR39Jn75JjB7hUAAAAAAAAAMKIR0gMAgOFD5rhGjpt85uOrvj9YzQAAAAAAAAAAcCg2\negUAAAAAAAAAAAAAIE0I6QEAAAAAAAAAAAAASBNCegAAAAAAAAAAAAAA0oSQHgAAAAAAAAAA\nAACANCGkBwAAAAAAAAAAAAAgTQjpAQAAAAAAAAAAAABIE0J6AAAAAAAAAAAAAADShJAeAAAA\nAAAAAAAAAIA0IaQHAAAAAAAAAAAAACBNCOkBAAAAAAAAAAAAAEgTQnoAAAAAAAAAAAAAANKE\nkB4AAAAAAAAAAAAAgDQhpAcAAAAAAAAAAAAAIE0I6QEAAAAAAAAAAAAASBNCegAAAAAAAAAA\nAAAA0oSQHgAAAAAAAAAAAACANCGkBwAAAAAAAAAAAAAgTQjpAQAAAAAAAAAAAABIE0J6AAAA\nAAAAAAAAAADSxBjsBgAAAJCpVES6jbrbJt2QJqJSueKu8N1NWs5uOW6zNnmdNjUsfYPd47Ci\nQtJp1N02qUKacqRwxZ3he+q0vD1y3HvalC36ZItf7wEAAAAAAIAhj1fxAAAA0EdK2DWGXWm4\nzZ23ZVogtgs3No4I8019zj/MxZu1yenucHhRrrArDafScNs7T/gJ4v34hLfJrFf1eQ8ZZ+7R\nxqa7RQAAAAAAAAC9RkgPAACAPnD269YuUx2SFh/KL6LnOGuXOOte14/9ve+je2VJGtobbpSw\nq/XoLp+KyMNem6tCl9hvf9Re9axx8p/N8+tkQRoaBAAAAAAAANBXPJMeAAAAvaJsGdnoj2zy\n9yahj5NCneWsfyj0i0/ZywasteFJWTK8JmBt8/cmoY/ThXup/dbj4Z8ucdYNXG8AAAAAAAAA\n+o2V9AAAADg8FdLCG32d4vmIo16vCL1ZGdraGKkJOcGoGuXXJuYa80b7l0zInjvaH7/SEM7X\nrCenupW3+q7guem94bZokU2d4/m2qPvyvuBb1eFtjVZd2Ik4qsivTc4zF5T4z5mYM73AjF8Z\nUNbNkQeONKv/bJ6vRB8yfgAAAAAAAAADjVdIAQAAcBgqKMNr/SqayHpDtrpnU9NdG5saI+5B\nl7aK9+oiz+5uv3l1wzFFvu8tKD5/Unb8gx+1V5Wo5m/4r7OFnrbmM5HTpFvr/Sppahsizu3v\nNf11a0vQPmjCdwmxZn/knzvbvrOyflFp1g8WFJ00NtDxISnUNdEXS1TTLb5PpbN5AAAAAAAA\nAD1ju3sAAAD0RNkivDGQnNC/uDd43KN7b17d0DmhP9imBuuTL1d99F+Vle12/OSJzravW/8c\nwHYznwpp1iZfckL/wLaW4x7Ze/fGpk4JfScrqkLnPVtx9as1LVbisovslZ+Ovj5w3QIAAAAA\nAADoK0J6AAAAdE8Ja3NABRMJ/R0bmj7976rqoN3DTcmWV4XOfKr83dpw/Mzl9vLL7BUe9zlc\nKEdGNvrib4mwXfXNt+q+tnx/s9VTPJ/sqV1tS54p39EcjZ/5cvSZhc5W73sFAAAAAAAA0C+E\n9AAAAOiWXWM4DYnfGG9b1/jDd+pd1bciNSHn4ucr19dF4me+aj1VpFq9anI4sfcabntiwm9Y\nvv+PW5r7WmR7U/SC5yoqDmxgoAv3W9ajfhHt+S4AAAAAAAAA6UFIDwAjlRLKFioiC1UbyQ2A\nrrkiutOMHz23u/3naxv6Vylkq0+8XF11IDbOEtY10Rc96HB4UVFp7zPih3dubHpoez/fylAb\ncj75cnV8e/xxquHy6HIPWgQAAAAAAACQMuPwlwAAhg1XOI26U6+5zboKah0PPH5BfFcIUauN\n2i4nrNGnL9PnVMniQe4TwNAQrTBVJLbvemPE/cp/avu6hj5ZddD+9sr6+88e23F4if32w8aZ\n5dro1PscNqK7DOXEJvyD5uiP3+3nWyI6bKyP3Lqu8UcnxL6lX23/+xnz5DaRlWqXAAAAAAAA\nAFLDSnoAGBGUI6O7zNBbWZENfrvCdNtiCX1cidt0qrPpa9aT/wzdfGf4ntnunkHqFMCQoYRd\nocePbn+vsSnS28eid+fpXW3vHHg4vSGcS+y3Uyw4nChHOtWJd9D++N16O5X3RAghhPj9puby\nttjuBfmqfYm9LsWCAAAAAAAAAFJHSA8Aw59dYYZXBqK7TRWVh71YCnWC+/6fw7/5WeQvE1Rd\nGtoDMDS5rZoKxX5XbIy4f+77k9EPpYS4fV1j/HCJQ2ac4NZr8WX0Wxqsf+1uT71m2FF3bmyK\nHxLSAwAAAAAAAEMBIT0ADGfKkZGNfmu7qazO8bztqvI2e3ODtaM52mx1Xh0rhTrLWX9/6Fen\nuFvS1SyAocVpTPyi+PSutrCT6qruDq9WhOrCTse4VNXzZqA4pyGxb8GjO1q9mW4hHt/RFv+n\nm+Pu8ouoR4UBAAAAAAAA9BPPpAeAYUuFtcgGn9t+0Pux9rbaD3/Y+sq+4Pq6iJW0kXJpjnFa\naeBjR+aeOylHPxDo54rQbeE/3eW75GFjcRobBzAkuK2JzHhZRcirsrarlleFLj0yt+PwKHdv\nuc5j6YUQwm1LfLv2cMLrw87G+si80X4hhF9Ep7mVm7XJXhUHAAAAAAAA0A+E9AAwPKmoDL/n\ni29VLYSoDzt3bmy6d1NzpKvlsFXt9qMftj36YdvMUb5vH18Yz8904X7NetIR2qPG6WlqHcDQ\noIKJHTg2NUQ8rLyp3rr0yNh4klsr9B6vHjHiE+4osbXR8rDypgarI6QXQkxy9xPSAwAAAAAA\nAIOL7e4BYDhyhbXpoIT+5X3B4x7d+9v1TV0m9Mneb7KufrXmv16rCdmJK79mPXmis22gugUw\nJCk7EdJXtNseVi5Pqpavgh5WzmCuiD+Qvi7sHPZ7dZ+UtyVNuPDgUfcAAAAAAAAAUkFIDwDD\nkLXD5zQllqb+flPzp16uajnkwfM9eHJn2/nPVVQHY8+N1oV7S+SBEtXkcaMAhjInEdKHbS8z\n4+T3AGUJL5eMZy6V9B06bPfh23VvhJIKBhTPpAcAAAAAAAAGGSE9AAw3KijtikRC/9Sutm+v\nrOvHmsz1dZFPvFwVz9LyRPC66PNeNQkgA2iJbxwBQ/ZwYV9lJ1ULCZ+HlTOXTPqtPGB4/Ct6\nVlLBsDS9LQ4AAAAAAACgrwjpAWC4sXb4hIoFYOvrIte/UdvvBbDr6yJfX74/fniB/e4Utyrl\nBgFkBpmUnk/MNTysnFytWcvxsHIG04TUY9+txwR0b98VMSlpwpsEEw4AAAAAAAAMMkJ6ABhW\n3DbNqUsso//W23UpblL9jw9bV1SFOsa6cK+LvpBSfwAyh8x24uNji/0eVk6utkeM9bByRpPZ\nsW/XmhTHFHk64aMT1fZqJR5WBgAAAAAAANAPhPQAMKzYlYmE/vk97StrwqnX/OG7DfGcf5G7\naZRqT70mgKFPy0u8xefMsmyvypqaPLU0K364WZ/kVeVMp+Unnhx/ZllWD1f2ydgs/ejC2K4I\nEWHu0MZ7VRkAAAAAAABA/xDSAxgqlCNVULqt2ky3vFTVG8I5/D04hFOX2NP4zo1NntRcXRte\nVR0L+03lLHS2eFIWwBCnFya+D190RE62Rw9KP29S9ih/rNQ+OaZaFnlSdhhInvArpuVpHm14\n//GkUuv0qZbw8skFI4UrVEhzWzW3VZvg1vlFdLAbAgAAAAAAQGbjRToAg0m5wt2v2w2626Sr\ncCxDeEDcJoSwhb5XK1mjT3tTn7NGm+EKL5/OO1ypkFSR2ETVhJyV1R4so+/w1O62k8cFOsYL\nnA9eME7wqjKAIUvLc2W2UkEphMj3aV+ZU3DrusZUa0px47zC+OG/jfkpFhxO9GJHGkLZQggx\nvcC8fEruYzvaUqyZY2o3HDsqfsiE94GSToPm1OlOs6aCUqjYj9fHxc1KyEqtaL02dYU2e7kx\nOyLMwe0UAAAAAAAAGYeQHsDgULa09xp2uaGcrtN3QzhT3KopbtXS6H+qZdGffOe/qJ/gsP9H\nj9z2xPysrA6l9Cz6g71Vlcj7p6pK7woDGNLMsqj1QWyn9K8eO+qv21r2h1La5uSKaXlzDzwf\n3RLG08bCVFscTjRhlEaj+2KJ7/cWFD2zuz3ipPS9/KtzRo3Nij0GpUHmvaYfl2qTI4GSdqUe\n3WPG3/fWiRSqzK0vc+s/It5ptbIfMs98yFwcEb40twkAAAAAAIDMRdwF/H/27jzOrrK+H/hz\nzt1myWSyLyQxIUCAsG+ySQEBhYpYlVoRUWpdW19W+/tVadFqlba22rr782VrRUVAKWqtGyiK\nCMoioWwxsu9ZyGSZZJa7nt8fM5kZCFnvnZPMve/3X889Oee53/vlMpncz32ewx5QeSo7eGtb\n+fHcthL655mTrPtQ8cpvDP7Li6srxru2Ca02MPpT/fcbGrkZ7wMbS7UtOdG8Wk8DZwb2Ztl5\n1ah9+H/+rlz85dNmZ+vYhH1hV+4fjp8+8vC/cqesjqZu5/wWlF1UjrZ8h3ZhV+7fTp5Zz2zH\nz2573xGjy+i/kjt7QJC8I9W1mYHb20oP5LeV0D9PV+h/R/mH1w587JWVW8e7NgAAAACahpAe\nSFVSjYr3FkoP5pPy8z/73liq3b22eOPTA798ZuB360tbrx1cXFv56eKXLi7/NAoNXCLeXMYs\ncO0ZrGu16/MMVpK+Sm1o3BEG/SeAVhEl+cWlkUenz2v/2Iunb+f07ejKxd96+ZzpbcOrujdH\n7Zdnz2pAhc0lyobsi0a/YnXhkq63L+3evanmT8p+48w5hczw37ZPRjPtW7BD5UfyxXsLQ7d4\nGGuwkixfV/rlMwM3Pj1wT09xU7n2vBNmJL2Xlq76cOkKt6sHAAAAYGfY7h5ITzIYFe9tq21+\nzmffD20sf/33vdc90f/7DaWxx7NxdMzMwnmLOt+wZPLUwvA3iuKQvLP8g8W1lZcV3lDyE2xr\nY1KD+jZIfgFbMvoQhyQOSTXs/mpaYALJzKxmZlSra4fD9Xcd2t2Wjd7/67Xl2i78lHlRV/aq\ns+YeNGV0Gfe/5s7vjTobXGtTyC0oV9dmar3Df/F9/MQZk/Pxv/7v+l36oX7EjMKVZ82ZtWWj\n+0rI/GPhgkrINLrY5pFUo9L9+WrPc1r07ED1igc2/c9jm+9e+5yvDkYhHDwt/4qFnW9c0rWw\na/SG9OdU7lhQe/b9hbeui7pSqxwAAACAichKeiAlSTUq3lMYm9CvHaxecuvaE6598rP3bHhe\nQh9CqNSS21YPXnpbz2FXP/7xZesHK6Ofjr+seufflK5Oqe6JZUy4MDnXyJ/wmShMyg3/tytG\nuaq/PqB1RCG/tBRPGv0h/KcHTf7eOXMXT85t56Kx/nBh589fNf+QaaMJ/RW5M36cPbbBdTaN\nOBQOK0aF4YbHUfjgsdP+86WzR24tv4Oro/Dmgyb/5Nx58zpHv8r2r/nX3hXvNy7VNovS8uck\n9P2V2qfv3nD0t5/4+zt6lj37/M19khCWryt94q71x17z5HtvfnbNwOjWNYfWHvtU8UuF8Pzf\nagAAAABgLCkLkJLS/fla3+jPnF88PXDsNU986b6NlR2txdxcrn182bqXfv+pxzeNbiF7TuWO\niyo/G69aJ6y4MNrMxd07m5/tjBd15XJbbkTtHtLQaqJMUjhsMBrzE+bkue23nb/gEyfN2Kdz\ne5uanDin7Ufn7nPlWXNmtI3GnzdlD/ti7pXjWO7EF+WTwqHFKDPa8FcvnrTsdS/6m2OmTSts\nM6rPROHsF3Xe/OoFn3nJzPbs6FfivpU97bvZk8e34gmu/Eh+ZK+IEMLDG8unfe+pj9zRs/W2\n9s+/sJZcvqL3xGufvHnlwMjBA2tPfbh4hfvCAAAAALAdNosG0lB+LDd2gdpXV/T+9a/X7jCe\nH2v5utJL//vpq18257hZbUNH3lX6wf3RomWZ/Rtc60QWdYzGCcfOKjRw5uPGzPZ4PKuBMwMT\nQtSWtB07WLy3MLINey6O3ra0+88O7r519cBNzwwsX19a2Vct15KObLxocvbIGYUz53dsvdr+\nW9nTPpt/Vc39MnYknlwrHFMs3pNPBocb3pmLP3DU1PcdMeWmZwZuWTmwYkN5TX+lmoTJ+Xjf\nybljZxbOWtAxp+M5v9tXQ/yF3HlX5k7fE69gwqj2ZMqPj/btpmcG3vizVb2lHcTzY/UMVl/7\nk5WfO2XW6/afNHTkpdW7X1e56VvZUxtcKwAAAADNQkgPjLukFFWeGP1p87On+v/vLc/uxh3T\newarf3Ldqp//0bxFXbkQQhyS95W/8+bMXwt7RsRdSZRJkmoUQjhwSn5RV+6xMdsP1OPlC0Zv\nHX1X7IsR0IqifFI4arC0olBdPfqlqzgKJ81pP2lO+w4vL4b8J/Ov/Z/sCeNZY1OJO2ttxxZL\n9+er60cbno+jM+d3nDm/Y4eXb4w6/r5w0a/jpeNZ48SXRKWHR79K8uDG8kW7mNAPKVaTv7hp\nzdzOzClzh/9feFv5xz/OHNsbdW7/QgAAAABak+3ugXFXfiw3FBuHEB7aWL74htW7kdAPWVes\nvvGnq0pbluAfUHv6zOqyhhTZJKIknjocLUQh/OnBkxsy66z2zCsWjsYMt8YHN2RaYMKJ4lBY\nWiwcVYwn70KKWQ3x/2RPOL/9gxL6XRXlksIRxcKhxahjF/7iLIbcFbkzzm//kIR+hyorM8mW\ne/H0lWuvv37lxl1P6IeUa8nFN6xe2VcZejgpGXhT5YbGVAkAAABA0xHSA+MrGYwqz4wuAfzw\n7T2bd3SH1+27b13pP3/XO/Lwz8rXue3rWNk5lZHx25d2z93u7aJ30geOnta25fbGK+IFj8az\n658TmLgyU6ptRw8WDi1mple3v5XJptDx3ezJb2z7wD/kL3g26k6rwOYShczMavuLB/MHFePu\nHewdszaafGXu9D9u++Dnc+dtCjtebd/qkqj82Ogy+s/du/HhjXVtP9MzWL3sznUjD/+4fFN3\n0l/PhAAAAAA0K9vdA+OrsjobkuFI4bbVgz98vK/+OT951/oLl3R15eIQwsLa6kOrj9+bWVT/\ntM0hM6MaddaG1gW2Z6O/O3bau365pp4JD56af/OBXSMPv5Y7s94SgSYQhczMamZmNamE2oZM\nbVNcG4hDJYRadGPv4euirsfiOfdFi5ZnXlT1ldCGiJLs3Gp2bjUpRbUNcW1zXBuMQzmEJPrF\npiOeDd2PRXP+N7P44Xgft4DZedV1cVIcbtezA9XP37uh/jmvfnDTuw+bcvDUfAihEMpnVpdd\nm31J/dMCAAAA0GSE9MD4qq4djWe+vHxjQ+ZcO1j9r4c3/+lBw3u5n1y7T0g/Kgr5/crFewpD\njy44oOuONYNj9x7YJVMK8RVnzsnGwxnG/fHCGzNHNKZOoClE2ZCZUc3MqI4c+evb3rYH62l6\nUT7JzKpmZo02/P23vXUP1jOhVdeO7vRzxQOb6tzpZ3jOJPz78o3/dvLMoYcnV+4X0gMAAACw\nNWubgHGUVKPapuGfM+Va8uPHG7bp6/88Oroi/5jag42atjlkplcz3aNJwz+fOOOM+buz6XFH\nNv7aGXP26x7eCjgJ0Wfzr0qs0QSgKVQ3jv5T6AePbW7UtD94rG/kNjxH1R7KhAZk/wAAAAA0\nGSE9MI6SgWhkr/t7ekr9lYZ9Tn3bmsHalo/AF9dWNWrappE/pBgVhhuUi6Nvv3zue4+Ysksz\nzO3M/vDcfU7dp33kyFdyZ98d79fIKgFgT6mFpH/4V5TBSnJ3T6lRE68ZqD605d727aE0N1m3\n/fMBAAAAaEFCemAcJQOjq64f3Niwj79DCH3l2jN9laFxZzLYnTRsjX5ziApJ4ZDiyM/4TBQ+\nctz0r50xe9/JuR1em42jiw+a/KtXzz9qRmHk4C8yR34l9/JxqhYAUpYU45HvET7cW66MfPWv\nER7cMPo7z9ykp4EzAwAAANAc3JMeGEdJdTSkXz/Y4O1e1xWr8ycN/xDrDIMbw+7s6N7E4u5a\nYWmpuDw/ss/uq/addM7Czit+v+kbv+/937XFreOIKYX4vEWT/uKw7gOn5McevyM+8O/zF9ro\nHoCmkVRHx+uL1W2fuDvWFUd/5+lMBhs7OQAAAABNQEgPjKdkNAhOQiPXqIUQxq55i93w9YVk\nZlbajkqK9+aT0nC+no+jtxw8+S0HT352oHrX2uIjG8uD1SSEMKczc/CU/KHTC5mtgvhrcqd8\nOveaqp1XAGgmY36LaOgq+qEJR2f01ycAAAAAWxPSA+Moyo5Gvt35TGMnn1oY/dy7L7Q1dvKm\nEU+uth03WFqRr/Y8p/8z2zMvW9ARFmzv2vXRpM/nz/th5vjxLREAUhdlR3P0KYUGJ+lTC6N/\n5/oVBQAAAICtCemBcRQVRhe479e947uh77y2TDR/0vCEg1F+Q9TZwMmbTJRPCocXq+sz5Ydz\ntU07lUMMRvkrM6dfkTujPyrs+GwAmHAKoyH94sm5OGrkevr9x/zOszqe0rB5AQAAAGgWQnpg\nHEUdox94Hzm9UMhExWpjPgI/ZlbbyMbsj0Wz3S59hzJTq5ljqtWNmerqTHVdJhl8gY6VQva+\nzKIbM0dcnznG9x4AaGJRHKL2WjIQhxAm5eKDp+bvX1dqyMxTCvGSKfmhcTHknopmNGRaAAAA\nAJqJkB4YR1E2ibtqQ6u327LR6fM6fvJEX0NmfsXCjpHxXfF+DZmz+UUhM6WamVINISTFqNYX\nJaU4VMNHH7toY9TxdDTj8Xh2MTRywwMA2GtlpiSVgeHxKxZ2NiqkP3tB58j3CO/LLKqEBt/u\nBwAAAIAmIKSHF5BUo1pvVOuLw0Cc1EII4b3l766Mpj0Sz7k32ncwyu/pAieSzLTqyBbrb106\nuSEh/aRc/Lr9u0Ye3pI5pP45W01USDKFJIRaCOF7T520p8sBgLRlplcqK4cT9IsOnPyZezY0\nZL+ftyydPDK+JfYrCgAAAAAvQEgPYyRRdU1cWZWtro9D8pzNwF8fbhwaVELmzsz+P86++KeZ\no6thp27v3eKycyrlJ3IhCSGEM+d3nDK3/VcrB3Z00Q685/ApM9qGP1VfE09ZljmgzgkBgFaT\nmV6NciEphxDCgknZPzu4+4v3bahzznMXdb54VtvQuBri67PH1DkhAAAAAE1JxAjDqmszA7e3\nFZcXqusyz0vox8qG6vHV33+k+I0rBz9+evV/o9CYO6w3sagjycysjDy87Pjp+biu+8cv7Mq9\n+7DukYeXZ19Wc0N6AGBXxSG7oDzy6P8eNWV2e11b03dk448cN33k4f9kT1gbTd7O+QAAAAC0\nLCE9hKQUFe8qFO8tJP27kPUurK3+p+JXvzT42ZnJxvGrrTnk96uM/LA5YkbhM6fM3O2pOnPx\nVWfN6cgOT/dENOv72RPqrxAAaEHZBeWobfgLl9MKmW+cNaeQ2c1v/kUhfOEPZu7fnRt6WAy5\n/8y9vDFVAgAAANB0bHdPq6ttiov3FJLScz6QrSZh2bODt60efHBjeWOxFkKYnI8PmJI7fnbb\nMTPbxn54e0Ttka8OfvIDhbfeHy9MufIJJGqr5faplJ8a/oFzwQFdj/aW/+Wu9bs6T1s2+s+X\nzl46LT9y5PP58yqhrkVvAEDLiuKQ27dc+t3wrxYvntX2/06d9c4b15Rqu7ZVUhTCR4+f/urF\nk0aOfCN35ppoSiNrBQAAAKCJCOlpadV1mdK9haQ2eqS/UvvifRu/8rvelX2VF7xkTkf2LQdP\nfvdh3SOLuWckvV8c/NzfFN7y68zSFGqeoHL7laq9Ua13OFD/22OmLZmSf/ev1gxWdvZD8Lmd\n2W+eOefomYWRI1fnTrspc1jjawUAWkZ2TqW2Ia6sHP5n0WsWT5rXmb3oZ6vWDFR3coaObPyl\nU2edt2/nyJE74gO/mntZ42sFAAAAoFnY7p7WlfTFpfvzYxP6bz206ehvP3HZb9dtK6EPIazq\nr/zjneuO+tYTVz+4aeRgIZQvK12+uLZyXAue2OJQOKwUFUYj+fP3m/Tz8+aftaBjh5fm4ujt\nS7tvfvX8sQn9rZmDPpd71biUCgC0kvySUtw9+hvh8bPbbnr1/IsOnLwzO9+fu6jzplfPH5vQ\nPxnNvLTw5qp/ZwEAAACwbT48okUl5TB4byGpDH/4Wk3CR+7oeceNa1b179SqqdUD1Xf+cs17\nb362vGU31I6k+K/Ff5+abB6viie+KJ8UjiiOzemXTstf8/K5P3zFPufvN2ly/gV+HM3rzL7z\n0O7bzl/wLyfNmN42uq39ssz+Hyxc7ONvAKAB4lA4tBhPHv0lcE5H9nOnzLzltQveurR7dvsL\n3FhnaiF+/QFd158374oz54zchz6E8GQ086/a3tEbdW59CQAAAACMsN09Lar8SD4ZGE7okxDe\n9ovV33lkl/P1y1f0ritWL3/pnDgKIYS5Sc+7S9//WOENjS21mcSdtbZjB4v3FWobR/P1k+e2\nnzy3vZqE368vPbqp3DNYzUbRjPbMgVNyC7tyW0/ynezJ/5Z/rVvRAwCNEuWTtqOKxRWF6urR\nXzAOmpL/5EkzPnnSjEd6yw9sKPcMVmtJMr0ts7g7t6Q7H2+1zv6O+MBLC2+W0AMAAACwQ0J6\nWlHSH1VWjn4C+8/L1u1GQj/k+4/2/dOydZceM23o4TnV26+unfpgPK8BVTapKJ+0HTlYfjRf\nfiobxtxrIBOFpdPyS6flt3Pt2qj7i7lzf5R98bhXCQC0mjgUlhYr3bnyo9mk/JwEfvHk3OLJ\nL/DFwRGDUf6K7Eu/mnu5bX4AAAAA2BlCelpR6ZF8SIY/e7111eA/L1tfz2yfvGv9afu0nzy3\nPYQQh+Rd5R/8VeEdDaiyicUht18pO79cfiRXWbVTP4X6o8IV2TOuzJ4+GG0vxQcAqEd2Xjkz\nu1J5Ilt5MpfUdnx+NcT/TVzp0AAAIABJREFUnT3xK7mze6LJ418dAAAAAE1CSE/LSQaj6trR\nZfQfvqMn2c7ZOzNhCB+6veeGV80fiv1Pqi5fWFv9eDy7vlmbX1RI8geXcvuWK6sztXWZam8m\nbPVR+OaofVm8/y+zh90YH9EXte2JMgGA1hJlk9zicvZF5erqbHVdprY+TqrP39q+GHL3xvve\nkj3kp5mj1kbde6ROAAAAACYuIT0tp7IqG7bE8tc/2X/b6sH651z2bPEnj/eds3D4FqRnVZf9\nR3xO/dO2gqgtyS2shIWVkETJQKgVo1CJ//KBP98ctT8TT1sdTU3CVnd8BQAYZ1E2ZOdVsvMq\nIYRkMK4NRKEaQhLe9uBfrY6nPhNNt7M9AAAAALvNR0u0nNr60bf9Nx/Y1Khprxgz1XHVBxo1\nbQuJkqgjyUytZWZWbsoetiyz/6pomoQeANjjorZaZmo1M6OamVn9bWbJk9FMCT0AAAAA9fDp\nEi2n1ju81301CTc+3d+oaX/5zEC5NrxCf2ny+Ats3Q4AAAAAAAC0PCE9rSUZjJIt6fmjveWN\npYZF6ZvLtYc3lofGuaS6T9LTqJkBAAAAAACApiGkp7UkpdH3/BOby42d/PHNlZHxtKRhG+kD\nAAAAAAAATUNIT2tJqqPj/nLS2Mk3j1mX35EUGzs5AAAAAAAA0ASye7qAvUL/07+7/oaf37Js\n+bNrezYOhqnTps1ddNApp55+xkmH5aJdm2rljZe+49/uzXUcfO3V/7w31NbAl9Ycong0mM9l\nGtyCtuzohMWQa+zkAAAAAAAAQBMQ0ie/ufYLn/rGTwdro9nt2lX9a1c9de+tP7tqyWnv/5u/\nOGR6Yeen+/lVj+w1tTX4pTWHaMxbfm5HprGTz+kYnb036mjs5AAAAAAAAEATaPXt7u/8+t/+\n09euH4mxozjf1TG6AHr9Azd++D0ffmSwuo2rn69/9fXfXtW/l9TW2JfWNKL2Wtiy3P2A7nw+\nbthi+mwcHThluMNJiJ6KZjRqZgAAAAAAAKBptPRK+g0rLv/otcuHxp0LTnzn299w0uELc1Ho\nX/fYz77/za989/YkSUqblv/dJd+84tNv2uFs5U2PffrSryRJY25zXmdtjX1pTSUOcUet1heH\nENqz0bGz2n69aqAhEx89ozApN/ytl8ejWYNRviHTAgAAAAAAAM2klVfS17768R8NZeptM07+\nwmcuOfWIhUO3ae+Ytui8iy/9xNuPGzqv95H/uvLRTduapX/96hV3337F5y+7+E1/eeuaxsS9\nddfWmJfWrDJTayPj1+43qVHTvmbMVL/NLGnUtAAAAAAAAEAzad2QfvNTX/vFusGh8UUfe/e0\n7PO3PV/yikvPnTV8W/EffeqmrWcobrjhTy88//Vvftv7P3TZt6+/fVO1MWvo66+t/pfW3OJZ\nlZHxhUu65nU2YD+Jme2ZNy7pGnl4Q/ao+ucEAAAAAAAAmk/rhvSPXn3r0KBt2tmvnNf5QqdE\nr/nz4ah105Pf3LhVBp9UN/VsKu12AZe/5U/O2+J594avs7b6X1pzy0yuxZ3Di+nbMtElR0+t\nf86/PWbayF73j0Wz744X1z8nAAAAAAAA0Hxa9570372rZ2iwzxkv39Y5Uw95Qxz9upYkSXXz\nlav63jXvOVujZzsOfuMb3zj2SP/qn3/np8/s8drqf2lNLgq5/crFewpDj96wZPL3Hu274an+\n3Z7v9HntF41ZRv+l/Ctq4fm7FwAAAAAAAACElg3pk2rvXZvLQ+MDT5+9rdMyhQXHd+V+01sK\nITx6z/rwvJC+/cDXve7AsUfW3be8/pC+ztoa8tKaXmZ6NTO1Wl2fCSFkonD5GbPP+v7TK9bv\nzr4IC7ty/3H67Gw8nMrfHy/8ZebwRtYKAAAAAAAANJEWDelLm26rJsN7vB/Znd/OmUdPyg8l\n2T23rwvnLGhgDZNmzJoVDwyNc2PWXddZ2556aaVSqVar1TnJzsvUPUNu/3LtzkxSCyGErlx8\n7dlzL7h+1T09xV2a5NBp+ateNnd623A5xZD7RP6Pk7qX0Q8ODtY5Q8PV3/C92d7W8ObudtDw\n1Gl4yjQ8ZRqeMg1P097W7aDh6WrubgcNT52Gp0zDU6bhKdPwNO1t3SZlzf32Dt7hLc87PGUa\n3kCFQiGK6k0DWzSkL/c/MDJe2pHbzplz53eEZzaHEAaeeSqEIxpYw/n/8rnzx6G2PfXSBgcH\nS6XdWYm+e7rrniGeVMsfXCwuL4QkhBDmdWave+W8v7x5zbcf2ryTM5y/36TPnjKzIzt8K/ok\nRP9UeP2KuAHf5Ni8eWdrSE39Dd+b7W0Nb+5uBw1PnYanTMNTpuEp0/A07W3dDhqerubudtDw\n1Gl4yjQ8ZRqeMg1P097WbVLW3G/v4B3e8rzDU6bhDZTL5TKZer/2EDeklAmnVtowNIiibHdm\ne990yE8dXoxeq2wY97KGnqi+2vbml7a3ycyq5haVRx62Z6Mvnzb7ulfOO2F22/YvPG5W24/P\nnfcfp88eSehDCF/PnfGTzLHjVSsAAAAAAADQFFp0JX1p4/Ca7yjTtf0zs13Di9FTS7LrrG1v\nfml7odyicsiE8sO5MHyLgHD87LafvHLePT3FHz7W95vVgw9uLK8vVkMIUwuZA7pzJ8xue8XC\nziNmFMZOUgvR/8uf+43smenXDwAAAAAAAEwsLRrS74LalvC2tmt3K09DnbXtzS8tRbkF5biz\nVrq/kFRGDx4+vXD49MK2Lxo1EPIfzr/ppuxh41UfAAAAAAAA0ERaNKTPdw/v9J5U+7Z/ZqVv\nOLmNctPGt6Yt6qxtb35pe63MtGrbiwfKj+UqKzMh2d49AsaqhviH2eO/nPvDtdHkcS0PAAAA\nAAAAaBotGtLH+e6hQZKU+mtJR7zNXLa0fnj3+DibUpJdZ2176qXl8/lMJlP/PHtKVEjyB5Zy\nC6LS47nammxS297JxZC7MXvE5dmzHo3njEcx7e3t4zEt26LhKdPwlGl4yjQ8ZRqeMg1Pk26n\nTMNTpuEp0/CUaXjKNDxlGp4m3aa5eYfT3LzDU5Zmw6NoZ1f8bkeLhvTZ9gNCuH5o/Lv+8jGT\n8ts6c83TA0ODwtRxiWO3Vmdte+qltbW11T/JziuPz7RRR1I4uJQsKdfWx7UNca0vrg3GoRJC\nFJ4ozXomnvZYNPfOzP6/jZf0Rzu1Gf7u6ezsHL/Jd884NXwvsbc1vLm7HTQ8dRqeMg1PmYan\nTMPTtLd1O2h4upq720HDU6fhKdPwlGl4yjQ8TXtbt0lZc7+9g3d4y/MOT5mG721aNKQvTD4h\njr5YS5IQwt2bK9tJsu/ZPPymnXHi7AlR29780iaKKJNkZlQzM6pjD/7xbR/cU/UAAAAAAAAA\nTSPe0wXsGVGm+8jO3ND4/t88u63TkkrPLb3FofGCo1Pa7r7O2vbmlwYAAAAAAADQ4lo0pA8h\nvPrI4WR65XW3buuc3sevKSdJCCHKdFw4N71NEuqsbW9+aQAAAAAAAACtrHVD+sUXHD806Ft5\n1e29pRc85+Yv3jI06Jp/4Yxcer2qs7a9+aUBAAAAAAAAtLLWTWe75l98ytS2EEKS1D5/2bXJ\nViesv/+bX36od2h8zvtOnUC17c0vDQAAAAAAAKCVtW5IH6LMWz9w9tBww4qr3vOJa1b2VYb/\nKKmuuPlb7/3QNUmShBC6D7jgwsWTG/78117y3nds8WSx2sja9vRLAwAAAAAAAOAFZfd0AXvS\n1KVv+dBrVnzsOytCCI//6hvv/PX3Fu+/sLtQW/30I0/3DA6dk+8+7LJ/eN14PPumNStXrh0Y\nGpe3Wu1eZ2179qUBAAAAAAAA8IJaeCV9CCGE4y7++F+/8aVtcRRCSKqbHv79fcvuWT4SY89Y\n+tLLPvfhhW2ZiVjb3vzSAAAAAAAAAFpTS6+kDyGEEJ/yuvcefeJZ193w81vuXL523breYpg6\nddrcxYf8wWmnnXnCoZlo4ta2N780AAAAAAAAgFYkpA8hhM4Fh7zm4kNec3G980w79CPf//7O\nnnzxf35rZ56wztoa9dIAAAAAAAAAqF+rb3cPAAAAAAAAAKkR0gMAAAAAAABASoT0AAAAAAAA\nAJASIT0AAAAAAAAApERIDwAAAAAAAAApEdIDAAAAAAAAQEqE9AAAAAAAAACQEiE9AAAAAAAA\nAKRESA8AAAAAAAAAKRHSAwAAAAAAAEBKhPQAAAAAAAAAkBIhPQAAAAAAAACkREgPAAAAAAAA\nACkR0gMAAAAAAABASoT0AAAAAAAAAJASIT0AAAAAAAAApCS7pwsAAAAAAABgT0iiZCDUilGo\nRC+p3t8XtT0dpq+Jp+zpsgCanJAeAAAAAACghSTFqLIqW+vJVDfFoTZ88JPhy0ODTaFjWWb/\nGzOH35g9YiDk91iVAM1LSA8AAAAAANASksGo9Giuump78VBX6D+1es+p1Xv+T+naK3JnXJU7\ntSiqB2go96QHAAAAAABodrVQfig3cFv79hP6sSaFgXeWf3DtwMfOqdwxrqUBtBor6QEAAAAA\nAJpZUoqK9xZqvc9fulmpJQ9sKD+6qbyhWMvEYUZb5sAp+QWTnhMezUh6P1y64uDaE5/Jv7pq\n8SdAIwjpAQAAAAAAmlZtc1y8u5CUorEHb3pm4PIVvT99sn9Tufa88xdMyp6376S3L528sCs3\ncvB1lZsWJWsuyb+lPyqkUTRAU/ONJwAAAAAAgOaUFKPnJfT39hRf8+OV5/3ome88snnrhD6E\n8OTmyhfu3XDcNU9ecuvadcXqyPEXV1d8tPT1OCRp1A3Q1IT0AAAAAAAATSipheJ9z0nov/77\n3jP+++mfP92/w2tLteRL9218yXee+t+1xZGDL6ne967SD8alVoBWIqQHAAAAAABoQuUH82Pv\nQ//3d/S851fPlmq7sBT+mb7KH/7gmRueGg31L6r87KTq8kZWCdB6hPQAAAAAAADNJumPKisz\nIw+veGDTp+7esBvz9Fdqb75h9e/Wl0aOvKf0vUx4gX3yAdhJQnoAAAAAAIBmU3o4H5Lhje5/\nu2bwfTc/u9tTbS7XLvzpqsHK8BL8RcnqP6zc3oASAVqVkB4AAAAAAKCp1Prias/oMvoP3tZT\n3pVd7rf2SG/5S/dvHHn4p+XrolDXhACtTEgPAAAAAADQVKqrsiMZ+o8f77t19WD9c37q7vUb\nisO73O+TrDu89kj9cwK0JiE9AAAAAABAU6n2jAZA//G73obMubFUu+bhTSMPT6oub8i0AC1I\nSA8AAAAAANA8knJU6x8OgPrKtZueGWjUzD96vG9kfFT14UZNC9BqhPQAAAAAAADNo9Y/er/4\nZWuLdd6Nfqzb1xRH5lqcrGrUtACtRkgPAAAAAADQRAajkeFDG8sNnLivXFvVVxkaT0oGJoWG\nrdEHaClCegAAAAAAgOaRVEZD+o3FWmMnXz9mwo5asbGTA7QIIT0AAAAAAEATicYMo22ftlvi\nMRMmDZ8doDUI6QEAAAAAAJpHlB29Cf3UQoOToKltmZFxX2hr7OQALUJIDwAAAAAA0DyiMdH5\nku58A2fuzsez24dD+g1RZ39UaODkAK1DSA8AAAAAANA8oo7R28YfObPQlmnYpvQnzhnN/x+N\n5jRqWoBWI6QHAAAAAABoHlE2iScN5/RtmejMBR2NmvmViyaNjO/MLGnUtACtRkgPAAAAAADQ\nVDIzqyPjdx7S3ZA5Z7dn/mjfzpGHN2cOaci0AC1ISA8AAAAAANBUsrOrYcsm9y+Z2/6yRiym\n/8DR0zpzw7nSI/HcFfGC+ucEaE1CegAAAAAAgKYStdeysysjDz96/PSObF2R0FEzCm86sGvk\n4b/nzq5nNoAWJ6QHAAAAAABoNrn9ytGWFOigKfkvnzYrjrZ7wbbNbs9ccdac7Jbr748X3pg5\nohE1ArQoIT0AAAAAAECzifJJ9kXlkYfnLur8xxNmZHY9p5/ZnrnqZXPndWaHHlZD/Nn8HyVh\ndwN/AIT0AAAAAAAATSm3qJyZVh15+M5Dur/18rnd+V3Ihg6Zlr/hvPlHzyyMHPlc7lV3x4sb\nWSVA6xHSAwAAAAAANKMo5A8pRh3JyIEz53fc+toFFx80eYdL6qcU4o8cN/2GV81/UVd25OCP\ns8ddnTttfGoFaCHZHZ8CAAAAAADABBRlQ9sRxeI9+Vrf8LrNuZ3ZT79k5rsO7f767zdd90Tf\nQxvLY8/PxtExMwuv2rfzggMmTy08Z6nnj7PH/WPugvRKB2heQnoAAAAAAICmFbXVCkcXS8vz\n1Z7MyMEDp+T/4fjp/3D89PXF2kMbS33lJIQwqz2zuDvXttUq+1qIvph75RW5M1KtG6B5CekB\nAAAAAACaWZRNCocXy0/mKo9nk/JzMviphfi4WW3bufbBeN5n8n/023jJONcI0EKE9AAAAAAA\nAM0vt6CcnVuuPJ6vPJ1Jqju6KX0IK6PpX86dc1322FrY8ckA7DwhPQAAAAAAQEuIsiG3Xym7\nKKo+m6n2ZGob46T4nAC+GuIn4ll3xEtuyhy2LHOAeB5gPAjpAQAAAAAAWkiUSbJzKtk5lRBC\nUolCMUqq4fX3f3BT6FgTTSlHmR3OAEA9hPQAAAAAAAAtKsomIZtEIayIF+zpWgBaRbynCwAA\nAAAAAACAViGkBwAAAAAAAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcA\nAAAAAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAAAAAAgJQI6QEA\nAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAAICVCegAA\nAAAAAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAA\nAAAAAABSIqQHAAAAAAAAgJQI6QEAAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAA\nAAAAAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlAjpAQAA\nAAAAACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAAAAAAgJQI6QEAAAAAAAAgJUJ6AAAA\nAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAA\nAAAAAFIipAcAAAAAAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAA\nAAAAgJQI6QEAAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAA\nAAAAICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlAjpAQAAAAAAACAlQnoAAAAA\nAAAASImQHgAAAAAAAABSIqQHAAAAAAAAgJQI6QEAAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAA\nAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcAAAAA\nAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAAAAAAgJQI6QEAAAAA\nAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAAICVCegAAAAAA\nAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAAAAAA\nAABSIqQHAAAAAAAAgJQI6QEAAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAA\nAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlAjpAQAAAAAA\nACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAAAAAAgJQI6QEAAAAAAAAgJUJ6AAAAAAAA\nAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAAICVCegAAAAAAAABIiZAeAAAAAAAA\nAFIipAcAAAAAAACAlAjpAQAAAAAAACAlQnoAAAAAAAAASImQHgAAAAAAAABSIqQHAAAAAAAA\ngJQI6QEAAAAAAAAgJUJ6AAAAAAAAAEiJkB4AAAAAAAAAUiKkBwAAAAAAAICUCOkBAAAAAAAA\nICVCegAAAAAAAABIiZAeAAAAAAAAAFIipAcAAAAAAACAlGT3dAF7hf6nf3f9DT+/ZdnyZ9f2\nbBwMU6dNm7vooFNOPf2Mkw7LReN++cStDQAAAAAAAIBdIqRPfnPtFz71jZ8O1pKRQ2tX9a9d\n9dS9t/7sqiWnvf9v/uKQ6YVxu3zi1gYAAAAAAADALmv17e7v/Prf/tPXrh+JsaM439WRG/nT\n9Q/c+OH3fPiRweo4XT5xawMAAAAAAABgN7T0SvoNKy7/6LXLh8adC05859vfcNLhC3NR6F/3\n2M++/82vfPf2JElKm5b/3SXfvOLTb2r45RO3NgAAAAAAAAB2TyuvpK999eM/SpIkhNA24+Qv\nfOaSU49YOHSb9o5pi867+NJPvP24ofN6H/mvKx/d1OjLJ25tAAAAAAAAAOym1g3pNz/1tV+s\nGxwaX/Sxd0/LRs87YckrLj13VsfQ+Eefuqmxl0/c2gAAAAAAAADYba0b0j969a1Dg7ZpZ79y\nXucLnRK95s+PGhptevKbG6tJAy8PIVz+lj85b4vn3Rt+j9cGAAAAAAAAwHho3ZD+u3f1DA32\nOePl2zpn6iFviKMohJBUN1+5qq+Bl0/c2gAAAAAAAADYbS0a0ifV3rs2l4fGB54+e1unZQoL\nju/KDY0fvWd9oy6fuLUBAAAAAAAAUI/sni5gzyhtuq2aDO/xfmR3fjtnHj0p/5veUgih5/Z1\n4ZwFDbl8yKQZs2bFA0Pj3Ji7xu8Nte2Gvr6+crlc5yQ77wU38W8aGzZs2NMlPJ+Gp6m5ux00\nPHUanjINT5mGp0zD07S3dTtoeLqau9tBw1On4SnT8JRpeMo0PE17W7dJWXO/vYN3eMvzDk+Z\nhjdQV1dXJpOpc5IWDenL/Q+MjJd25LZz5tz5HeGZzSGEgWeeCuGIhlw+5Px/+dz5e2ttu6Fa\nrVYqlTonYYhOpkzDU6bhKdPwlGl4yjQ8ZRqeJt1OmYanTMNTpuEp0/CUaXjKNDxNuk1z8w6n\nuXmHp2zCNbxFt7uvlYa/TBFF2e5MtJ0z81OHF6PXKqPfv6jz8olbGwAAAAAAAAD1aNGQvrSx\nNDSIMl3bPzO75cbtY5PsOi+fuLUBAAAAAAAAUI8W3e5+F9SSLYPiHrh8XCcf19rG2caX3ZPy\nM/7qZSk/4d4l5YbrdsrPqOEpP6OGp/yMGp7yM2p4ys+o4Sk/o4an+XS6nfIzanjKz6jhKT+j\nhqf8jBqe8jNqeMrP2OINJ03e3jQ37/CUafjepkVX0ue7h3d6T6p92z+z0jd8A4MoN61Rl0/c\n2gAAAAAAAACoR4uupI/z3UODJCn115KOeJv3bi+tH949Ps6OJtl1Xj5xa9uOSZMmJUmy4/MA\nAAAAAAAAJqZMJlP/JC0a0mfbDwjh+qHx7/rLx0zKb+vMNU8PDA0KU+c06vKJW9t2xHGL7soA\nAAAAAAAAsPNaNFgtTD4hjoaXmN+9ubKdM+/ZXB4azDhxdqMun7i1AQAAAAAAAFCPFg3po0z3\nkZ25ofH9v3l2W6cllZ5beotD4wVHj+4JX+flE7c2AAAAAAAAAOrRoiF9COHVRw4n0yuvu3Vb\n5/Q+fk05SUIIUabjwrmdDbx84tYGAAAAAAAAwG5r3ZB+8QXHDw36Vl51e2/pBc+5+Yu3DA26\n5l84I/ecXtV5+cStDQAAAAAAAIDd1rrpbNf8i0+Z2hZCSJLa5y+7NtnqhPX3f/PLD/UOjc95\n36mNvXzi1gYAAAAAAADAbmvdkD5Embd+4Oyh4YYVV73nE9es7KsM/1FSXXHzt977oWuSJAkh\ndB9wwYWLJzf48hCuveS979jiyWJ1r6oNAAAAAAAAgPEQDYW1LeuOy9//se+sGBpHma7F+y/s\nLtRWP/3I0z2DQwfz3Yf9679/dGFbpuGXX/6WP/nO2oGh8ae//d3FW52zB2sDAAAAAAAAYDy0\nekgfQu1X3/7s5678xWDtBfowY+lL33/Jnx80JT8el+8wpN+DtQEAAAAAAAAwHoT0IYTQ9+T9\n193w81vuXL523breYpg6ddrcxYf8wWmnnXnCoZlovC7fiZB+j9UGAAAAAAAAwHgQ0gMAAAAA\nAABASuI9XQAAAAAAAAAAtAohPQAAAAAAAACkREgPAAAAAAAAACkR0gMAAAAAAABASoT0AAAA\nAAAAAJASIT0AAAAAAAAApERIDwAAAAAAAAApEdIDAAAAAAAAQEqE9AAAAAAAAACQEiE9AAAA\nAAAAAKRESA8AAAAAAAAAKRHSAwAAAAAAAEBKhPQAAAAAAAAAkBIhPQAAAAAAAACkREgPAAAA\nAAAAACkR0gMAAAAAAABASoT0AAAAAAAAAJASIT0AAAAAAAAApERIDwAAAAAAAAApEdIDAAAA\nAAAAQEqE9AAAAAAAAACQEiE9AAAAAAAAAKRESA8AAAAAAAAAKRHSAwAAAAAAAEBKhPQAAAAA\nAAAAkBIhPQAAAAAAAACkREgPAAAAAAAAACkR0gMAAAAAAABASoT0AAAAAAAAAJASIT0AAAAA\nAAAApERIDwAAAAAAAAApEdIDAAAAAMD/Z+++45q4/z+Avy+BAEEIQ4biqKiI4l4VqRVt/VVr\n1TqqVpzVutBqrXsVt1WrVarWXbUoddRtXd+Kk4qjKiBDRAGBsIQIhJDkcr8/ooiojEAuEl7P\nvy53n/B490w/9/nc+96fAwAAAOAJkvQAAAAAAAAAAAAAAAAAAAA8QZIeAAAAAAAAAAAAAAAA\nAACAJ0jSAwAAAACLjeSBAAAgAElEQVQAAAAAAAAAAAAA8ARJegAAAAAAAAAAAAAAAAAAAJ4g\nSQ8AAAAAAAAAAAAAAAAAAMATJOkBAAAAAAAAAAAAAAAAAAB4giQ9AAAAAAAAAAAAAAAAAAAA\nT5CkBwAAAAAAAAAAAAAAAAAA4AmS9AAAAAAAAAAAAAAAAAAAADxBkh4AAAAAAAAAAAAAAAAA\nAIAnSNIDAAAAAAAAAAAAAAAAAADwBEl6AAAAAAAAAAAAAAAAAAAAniBJDwAAAAAAAAAAAAAA\nAAAAwBMk6QEAAAAAAAAAAAAAAAAAAHiCJD0AAAAAAAAAAAAAAAAAAABPkKQHAAAAAAAAAAAA\nAAAAAADgCZL0AAAAAAAAAAAAAAAAAAAAPEGSHgAAAAAAAAAAAAAAAAAAgCdI0gMAAAAAAAAA\nAAAAAAAAAPAESXoAAAAAAAAAAAAAAAAAAACeIEkPAAAAAAAAAAAAAAAAAADAEyTpAQAAAAAA\nAAAAAAAAAAAAeIIkPQAAAAAAAAAAAAAAAAAAAE+QpAcAAAAAAAAAAAAAAAAAAOAJkvQAAAAA\nAAAAAAAAAAAAAAA8QZIeAAAAAAAAAAAAAAAAAACAJ0jSAwAAAAAAAAAAAAAAAAAA8ARJegAA\nAAAAAAAAAAAAAAAAAJ4gSQ+gdyxn6AgAym71b/tuRSUbOgoAAKhgrDLf0CEA+fmOHzNmzPIL\niYYOpKrACdcfdClQ2WHWA1AYrpjlgf4EjBt+4QBF4KKpM/QnhZkYOgAAY5CXIU3KzK/foG7h\nnbJH1/y3H374JD4rj+xq1OvYteew/p3NBYyhgqxEzp8/X4F/zaaJVzsXcQX+wSriyunAK6cD\nrWq4dfbu4t2ls5tzNUNHZOTi4+PL1J4RCM3MLczNzM0tLUToWMpBLktLSs5QcaV9nMrNvbEQ\n57sccMJ5xqkzrwddDQ0NC4+IycrNlcvzVCx3/PhxIlJm3/wrKNvLu1NtK1NDh1m1aFRpEYnJ\neRpOdTaZPnUxdDjGDye8AqFLqViY9bwPMOsxoByZTF3qMaHExgZDQn3DFbOc0J+AccMvHKAw\nXDTLA/1JYUjSA5RL2v0Lm3f9eTs21VTc/ND+JQX7M+7sGbf4sFLzYsKZkRh1Ym/UpWv3/ddM\ntjXB1LIE/v7+FfjX3Cc2xu0qnWUnR5/cH30qcGvNRm29vbt4d+7gZIkLh15MmjRJty8yAlH1\nGjVr1/qgedsOHTu2c8ad8dLh1M8O79hy8vKdZ9llKwEMOHLMCknjssMJN4jIK4d/27o/VqZ8\n61E2//G+bX8E7tzlPXjs5IGdcJrLjXsaefu/iCeZ2fJiW6kT7l3M03BEpFGgBLk8cML5hi6l\nwmHW8/7ArIdPiXfO7jl+MSbmUdrzMnTLGBOWA66YvEJ/AsYNv3Awdrho8gf9iVZV/G8GqCjS\nazt9Vx17sxyQY58v++loQYa+wPPYCzNXN982x5un+ADKwbNp3ZDweJbjiIjjuMTImwGRN/dt\nNXdv+5F3ly4fd2hqiVsk7wdOo0xLfJKW+OTOjaDdv1l2+Wr0mEGfVMO/TrE4Nnf9lEn/JOTo\n8F0zvCmo7HDCDeJOwAK/P++V2EzDyv4JWP0gJmXT3AF4jFBnGqV085KFZ+9Jy/StRv3r6yke\no4cTzj90KWCsMOvhWcyJtT9sv8SVuoC+gCnGhDrBFZNP6E/AuOEXDkYPF03eoD8pjNFhZAwA\nRMQqYscO/SFNyWo/iixbFFTSp91eMXpRMBEJTCQDxk9o4yIKDz6+5/hdImIYwfQ9BzpJRIYK\nu1JYvnz5uw5pVBkhtx8WfGQYgZWtg5Ozs5UwPyUlJSUtq2C5PKHI2Wf84OomAolb+1Y1UVOi\nC8WzuGuXr1y+fOm/mJQih4Tm1dt16tyli/eHTevibkmF0P7sVTmPboelvXmUYYper03Frm2a\nO8hlz9LS0tIzZIWfFqre4qtNi4eaM1VoNFNWCX/P890cWvDRVCxxtLMq5fnauGkTzmxZ4YTz\nL+HcBt9fL2i3GaHVR594uzVoaBq677crUiLSrk2tkof6/bA8NDFX28x98KpVQ9wNFXBlt2/G\n8MCorDJ9xbFN/00LR4jw+9YJTjjP0KXoCWY97wnMenijlF0bOmKVolA9g1AoLOV3Dx85gn8C\nHeCKyTP0J2Dc8AsH44aLJp/QnxRAkh5AR3F/TZ/8ezQRCYTW/XynftauqZPEXHvo7HdDNz55\nTkTuI35Z1d9Vu/PyhglrLiQSUd2+P/uPamigqCs3tfzRzzMWXEvIISJxjSb9vhr4xcctxaJX\nfTXH5kfdOB8Y+OedJzIiEtdsv3Td7AYWWDKkvLKToi9fvnTp8uXIp7Iihyyqu37s7e3dxduj\nto1BYjMmrOLJkgkz72QoiIgRitt+0uvTDk0dHKo7OjhWM1GlpaampqbG3L1y9NTVTBXLMMIe\nk1aP79aAiDiNMvnhvXMnD/51KVL7p9x81q0ZhAc53+n3bwb9lZ5HRO5dBo4d9mWD6lX61Uc8\nwAnnGauIG+MzJUOlISKJW+cZ0yc2d7Ygopg9U6YdekwvM2pERJw6OHDZiv23iYgRilft+6MR\nLppll5OwZ4jvIe22uIZb+5buNib5kVeDIjPziahZj14NzE2ISC5LCw25kZSjIiIPH7+lA1tX\npUfDKxJOOM/QpfAPsx5DwaxH3+6tHrvgipSILBybfjPOp1VDV0cbC0MHZcxwxTQg9Cdg3PAL\nB+ODi6ahoD9Bkh5AR3+OGRyQKiei1t9t9vvU5dUBTv3NgK/SVSzDMD/tP+wufnGvRPn82oCh\nPxGR2NEncPsgQ4Rc2XG/Txv+V4yMiFoPmDl/2EfvXkKTu/PXar/frxKRpMGXu37+BottVpS0\n2PuXL1+6fPnq4/S8Iocc67f09u7i7e1VCwtF6OrAzBF/RGYSUW2vIbPG96vzjjPJ5qWc3Llq\nx9mHDMN8MW/7t+0dCg49+t/GaRvOcRwnFDn//ucWCcaJ7zBmQN9UJWvr4fP7ikE4RzzACedZ\nwomZvtsiichM0nbzrvnVTV7kdd6SUSMiov+tHrv+ipSIGgxdv3ZgPd7jrfTuLB3jF5JKRNb1\ne25cM1bb96rl0T5DZuRpOPdxG1f1rK1tybGyA2tnB1xJFJrV/nH7upa4YuoEJ5xn6FJ4h1mP\n4WHWoyc/Df3q2vN8kXXbLb/PtzepCpVRBoYr5vsA/QkYN/zCwWjgomlwVbY/wZgYQEdXn+cT\nEcOIvu9Ss/B+RdaFdBVLRCLrTgUZeiISWXvZmwqISPk8mN9IjURmxAbtvarqLUf7DS/mXhUR\nMa37zfzO04mIZDFHV/+bylOIVYCDa/P+Iyev3xm4ceX8QZ93qmH16rqY+ujugR3rfId/Pc3v\n5xNBd2QqPAFWNrLY7doMvaTBgA0zB78rQ09EQgunPr5rRjaz4zju9Ko5kXJ1waH6n/hObmlP\nRKxSejSt6IAGCjxXa4io8+QvcCubHzjhPAs+Fq/d6DRzUvVS3AHvNHaYdiPp/E09hmW8rj98\nrt3oO3tYwdNRJmK34c6WRJR0JqagJSOUDJy+rpuTmM1P+HnREf5DNQ444TxDl8IzzHreB5j1\n6EmYXEVEHr7jkKHnB66Y7wP0J2Dc8AsHo4GLpsFV2f4Ew2IAHaUoNURkYvFBkVrVzPuXtBs2\nTboV+UotkQkRsSopLwEam5vbb2s3Bkz9rDTtO0300W6E7r6ir5iqLqZ2k/Y+42ds+WPfz34/\n9Onazlb04lWCHKeKuXNp21q/EYOHL1q7/fJ/MaxRXTT16M7WFz/UAXO/KkUBPNNzxlAiYpWp\nmw4+LnzAc/zH2o2wWxkVHaPxqGMmJKK6YqwKyxOccJ5dkuUTESMwG9XEtjTtRZJOjiIhESll\nV/UbmZG6n6siIkYo7uP42tugG7axI6L8zJDCOxnGfMScbkQkiwkITMrlMUzjgRPOM3QpPMOs\n532CWU8Fy9dwRNTBXWLoQKoKXDHfJ+hPwLjhFw6VHi6a740q158gSQ+gIwsBQ0ScRl1kf/SJ\nJO1Gvd61ixxSvni7BCoJdXE6IYeIGKG4h515adqbSbxtTARElJdxQb+RVWGqnGdp6RlZsud5\nak2RQxqV7HbQ8TU/ThvuO//olQiDhFe5HI/NJiKBiaRP9VK9l9HM5lPtHfCkcwcK7ze3f/F4\nkPypvKJjNB6dHcVEdD8Fiw3wBCecZ9rnCIVmdaxK/c4LZ1MhEbHKZD2GZbyeqTREZGJWp0jB\nq107OyJS5txWvj5vtK430kEkJKJ/AmIIyg4nnGfoUniGWc97CLOeitLAwoSI1EZxO7VSwBXz\nPYT+BIwbfuFQeeGi+b6pOv0JSpoAdFTPwiQzW8nmP0lUsi4vH+chThXw5MXSKF/Wsy7cntPk\nxSrURCQwrc5vpEYiIZ8lIoHAsvTPOFgImCwijRILP1YwxbP4f4ODg69fvxX2RMUVvcViW7uJ\nRB77JEOh/Zj99P7O1fdDIqcs+/YTPJ9SjHjtL9zUocSWBexMBKlKVpV7v/BOoamjdkP5TFmB\n4RkZz9Gtty0MuvXrUc5/JH6WPMAJ55mlkFGqOY0qnSv1g4FSFUtEjKBUDwlBEWYCRslyHFf0\nwU1xTTeiu5xGcTtH6VlooTZihJ2tzQ6ly5/dPUnUgtdYjQJOOM/QpfAMs573B2Y9Fa6nq3VY\naMbtCFkvr1I9gwLlhCvm+wP9CRg3/MLBCOCi+Z6ogv0JkvQAOupWw/JOtpLjNP7nEld+UUe7\nM+Peb1Kl9oX0nk1eX9dX9nCPdm03M6sO/EdrBKoJmUw1x6rSYhWsq7mwxPZsfpxUpSEigamN\n/qOrErKlMcHXrwcHB/8XnaR54xpZvW5Tr4+8vDp6ude2IY6N+e/q//534eL1+3KWI6KwE+t/\nbtZsegdHQwReOdiYCNJULKuIl7GcpBSVahyb/UShJiKGMS28n1W+eKGGyNb0LV8DIiKq3vL7\ngW7/HYj+a+7OOn6jupgxlXcgVznghPPsQyvRmUyFRp159pmieykKMZXZwalKlohMLZvrPzoj\nVNNMGCXXsIq4bJYrXGosqtaW6AARBSXmerqLCn/FQSQgIpU8jOdQjQNOOM/QpfAMsx6Dw6xH\nf1pN6icYv/3Btj2KjtPNMSDUP1wxDQ79CRg3/MLBmOCiaVhVuT9Bkh5AR01GtaI5/xBRxI45\nB+znf97WLe/pzZ9WBmmP1uz2VeHG2XFXFv54Vrtt374tv5EaCU9r0elnCiLa/k/S8s+Lvkrg\nTclBWzmOIyKRtZfegzNqz+IfBAcHX79+PfRx2ptHHV2bd+zo9ZGXl5tLoaUjGGGD1p0btO48\nSha3a+XCU+GZRHRj4y7qMIu3sCsdb1uzg6lyjlNuuZM+s13J9fQZodsUGu0v/LXnfuTSv7Ub\n1o2s3/I1eIH5evnK1B9mBh39ZeTNoOFD+zRxrVfL2a7U6/hCWeGE86qbt9OZI3FEdGBDUHe/\n7iW2D9+7V7th36rkxvCmTtaiKLmK41S7I7Mmebx6abeJ2K2akMlhufhzSeT+2su8k5Qs72Ea\nD5xwnqFL4RlmPYaCWQ8PxDV6LR0SMjfgyox17qu//wJ5en3DFdNQ0J+AccMvHIwSLpoGgf6E\nkKQH0JlNk/FedtevPVNwbPYfK2YFMAz38hkfRmD+7Vd1tdt5qX//tOrEvYeJLMcREcMIvxr8\ngaFirtT+7zOX0/sfEVHEzkW32v3a1qG4Oh5F+p1F2x5ot10+78pHfEZHGnPv+vXrwcHXoxJl\nRQ4xDOPo2tzL6yMvr44Na1gV80dEkrqj5k465bOEiJTPr8s1nFiAGzFv13VQvYP+4UT075oV\nkdtXuluJimmslj9as/Kadtvl889fHeCUR9Zd1m62a2775hehgFDk0qtvx6BfzuYm3t38010i\nYgTC0vw8jxw5ovfgjBFOOJ/q9htsenSViuPS72xacUgys79nMc9DSG/tX3w2Ubv9f0NceQrR\nuLTsVYu2RRFR0LLl7dcsal9T/PKI4GOJ2elnCunVzdm+/gUP42uUKRcyFURkao4TrguccJ6h\nS+EZZj08w6yHZ00HLf4+f+X6w9uHh1/q/7VPny4tzfHYpt7giskz9Cdg3PALB+OGiyaf0J8U\nhiQ9gI4YxnzyismPJq/Vrm/PFVqFo9GABc3ELxaazs+6eSf6acGhDz6b4y0x4zlU41CnzxjJ\ngXkyVsMqU5dPmjHqh+m92td9a8v4Wyd/XrMzRckSkcDEdmzPWvxGaiTGTltQZA/DMM4NWnl5\ndfTy8qrvZFnKv2NardnLTRMRSiXerYb39w22j4/JU6vzYuaPnzvq+0k9237w1paJ987/unbr\nA7mKiIQiR98+L/5HyE6OPrl73aHY50Qkqtaqb3W8CLY4N3+fv+Sv+4X3cBoWT8DqD044n0QS\nr9mf1lpyPoGIgvesGB3iPWF4n6bur88bOTZD+uTyqYN7TgRrnyO0dR/Zz1n81j8IxXPpNs52\n1/RMtUaZE7XMd3SjFq3GzJrmZmFCRF07OZ0+Fscq4uduOLZ6ah9zhuFYWeCaBbksR0SWtVFn\nrAuccJ6hS+EZZj08w6yHT0ePHiUism78WfNHf9+LDtjw4z5/UzsnZ2dnZxvL4p5RJqJZsypr\ndZQB4YrJM/QnYNzwCwfjhosmn9CfFIYkPYDuxDU6/eJvvXXjjqDQOO2rMgQm1bz6jPlhaLM3\nGzOMSZse384b1573MI2EidjDb1jr73+/RUTqvLhtSyf/5dryo9aNa9So4ezsLCa5VCpNTk6O\nvHP1v9iMgm+1Hf6juwU6unJhGEFNt9ZeXh07duzo6ljmm61qebR2w8Kpj0llvVbyQWDqOH/u\ngLEL/1RynDI7esvi7/bVdG/XrL6jo6Ojo6OYFKlpqWmpabHht8ITsrRfYRimm+/iBuZCIpJL\ntw8df6LgaaGPv/PFyS6G7NGepUdCDR1FFYITzr+2vqt7J4w/HplFRM8ig5bNDWKE5g7VNNqj\ns6f5xscn5RRamc1M0nzx4j6GibXyE5o3WPLtx5M2BxERx+ZG3rkalz9FO5l3/Xqc5cl5uSwX\nd3Hn19cO1nKRpCUkydUv/iE6j29hwLArL5xw/qFL4RNmPYaCWQ8Pdu7cWWQPx6kypAkZ0gSD\nxGP0cMU0FPQnYNzwCwejhIumQaA/ISKmcPkvAOgmP1Man5IhrOZQy8WhyDM7OU//8N+fXvMD\nt/aeHzeuVc1QERqNKzvmrT5W2kxPy36zF4/sqNd4jFifPl/WatTG6yMvr44d61YvbplNqEDJ\nwX/MWn0o6+U4rxiMwKzbt0sn9Wyk/ZiTtGHI+AvabbfPp64Zj/VOi/P3tGGbY2REZOHYZNCQ\n3o3ruDjYVivlWM7e3l6vsRklnHCD4FjZkc2rfj9X8kXTtlHXufMnNpKUUMEGxXtwdvfa7UdT\n81kimrznYDebFysnPQhYMPvPe2+2d2g9aodfX15DNC444TxDl8IzzHp4g1kPn3r37q3zd48f\nP16BkVQpuGLyBv0JGDf8wqEqwEWTH+hPCkOSHgAqmSfXD6/bGvj4WX4xbcSObj7jpvZqhyUf\ndZeQqahtW9WvkQahSH+w87ed528+ZN99ga7ZxGvEuIme9V69mEebpBc7u/UaNMrnEw9eIq3E\nJnzVNzGfNbNpu33XAgnegql/OOEGJA2/duT4iYshEQr2LV1K9Xote/b+snfX1qb4Z6kIGpXs\n/o2Q6Pik5n19Cpe0Bu9bu+nQZdnLB7AYRtiim8/sif0r6fvS3h844fxDl8InzHr4gVkPn86c\nOaPzd7t3x1qyusMVkx/oT8C44RcOVQQumjxAf1IYkvQAUAlxyvDr/7t2+35ERFRyxnO5Qskw\nAjMLSzvn2o0aubVo16lzm4ZIA0Gllpcaczn4dkRExJPEtJzcnDwVWVlZS+xruDdp0qL9R63r\nVy/Sns1PiEszr1fLAT/80ujXp4+a4z7+aff0xraGjqVKwAk3OI6VP458EJuYnpOTk6fUWFaz\nsrZ1dGviUROTIr6oc5Pu3n+U9izXvtYH9V1d7a1QZKxfOOF6hS6FP5j16FnCqYVz9scSkZm1\n545NvoYOB8AAcMUEAAAoJVw0QR+QpAeASo9jlRqBCPenAKCUxgzom6pkp+w5+MnLdatAr3DC\nAQAAyg+zngr3cNfkH47EEZHQvO6RA/6GDgcAAMCo+PmOf5qvdh28aO6nLoaOBQAqDVaZLxRV\nofuHJiU3Aajyzp8/X4F/zaaJVzsXcQX+QWCEIqGhYzB6OTKZutQPdUlsbHDzsExQxMOzrjZm\nganypwrW0IFUFTjhAAAA5YdZT4Wzb1eHjsQREauIC5erPcS4RQYApfLrr79W7B+cNGlSxf5B\nAIPTqNIiEpPzNJzqbDIhSQ8A78CpM68HXQ0NDQuPiMnKzZXL81Qsd/z4cSJSZt/8Kyjby7tT\nbStTQ4epR5iBAJTM378in6l3n9gYSXqoLBLvnN1z/GJMzKO058W9DrOIgCPHrFDjUxaK1Mzn\nz58TkVAZaehYqoQuQ5sErr11PSB0xA8fGjqWKgEn3IA4TvEwNCw+8dmnPf7vtf1s1pqNgfXq\nNfqwk1dtGyzRVgZZWVnaDYYxlUgsDRtMVYAT/l5BlwJGxs5jiqfNzeAsBRHtPvt0Vd8PDB2R\nUUEHzjOccD6dO3euYv8gkvRQeXBPI2//F/EkM1tebCt1wr2LeRqOiDSKMtxRBOAHLprvicgr\nh3/buj9WpnzrUTb/8b5tfwTu3OU9eOzkgZ2MNduAJD0AVEoo7OZBzIm1P2y/pMNbUUwF+gjH\nmKGIh2c1Os/pdXTUycs/Hfxk61ctqxs6HOOHE24QHJv9z4Fd+48FpcrVQpFz0YyaRnnlwukr\ndHrv9l/bfe4zYfSX9ibou0tl+PDh2g2RZYtD+5cQ0U8//aTzX5s1a1bFhGW8cMLfE+hSDAWz\nHv1iRN+vmZHy3cpYuephwLIbH/l/6GBu6JiMBzpwnuGEA4C+aZTSzUsWnr0nLdO3GvWvr6d4\nAHSGi+b74E7AAr8/75XYTMPK/glY/SAmZdPcASbGONtBGgCgZB06dHjXIY0qI+T2w4KPDCOw\nsnVwcna2EuanpKSkpGUV3FIRipx9xg+ubiKQuNnpPWLjhcJu3ihl1+bueC1DLxSWdn1NEYOz\nXTYo4uEbY/rNikUZ0xf88eO4qM+HjhnWyxkPRugVTjjvWGXihpkzL8Zml9iS41Qhp35/cD9m\n9bofXLCOsk6uXbtm6BCqFpxw/qFL4R9mPbwxd2y3cuOPG5atvhqTsnLid/1Gf/O5dzt7c/x6\n9QIdOM9wwvVn6NChhg4BwAAC5808G5VVpq84tuk/s7OznuIBqEC4aPIs4dyGggw9I7T66BNv\ntwYNTUP3/Xbl1WNAJuLGzVwsQxNziUh6Y8/c/U1XDXE3TLj6hDukACWbO3fuW/er5Y9+nrFA\nuy2u0aTfVwO/+LilWPSqaoRj86NunA8M/PPOExmrlB46dH3putkNLPD/nY5Q2M2niK27FRqO\niCwcm34zzqdVQ1dHGwtDB2W8UMTDr6NHjxKRW5dPw/cdDzm16+bp3RIHl9ouDqaluK3t5+en\n7/CMD044/44smleQTmMYUd3GzYo0YIRWA3t637gREpcuJ6KchKsLljXcuagv34ECQGWALoVn\nmPXw6dSpU0Tk0bV/lmxfWJr04KblhzaLbOzt7Ozsbe0kZsU+9ICqKYAqa+DAgYYOAYBvOQl7\nAl9m6MU13Nq3dLcxyY+8GhSZmU9EzXr0amBuQkRyWVpoyI2kHBURefj4LR3YGg8QAkARrCJu\n4ZZ/tNsSt84zpk9s7mxBRDGpRwo3MxU3W7Zpb3DgshX7bxNR1EG/qL5/NDK65Jqx/fcA8Ij7\nY77ftYQcImo9YOb8YR+9udoGIzRz7/iFX8eed/5a7ff7VXlSyKJ5e3b9/I1Rrsuhbyjs5tmZ\ne5lEJLJuu+m3+ViwlAco4uHTzp07C3/kOE1WakJWaoKh4jF6OOE8y0nYvyf0mXa73keD504a\n6PTG0gWMwGLouGlDx7LXD67/OeCSiuPS/9t1VPrZl85i3uOtZBo1aqTdMLGopd2YOHGi4cIx\nfjjhBocuhWeY9fBsy5YtRfZwnDIzXZqZXra1fOFN6MB5hhMOAHoVvfuydsO6fs+Na8ZKhAwR\nqX26+QyZkafhVHW6j+pZW9uAY2UH1s4OuJIYeWhHaPemLSUigwUN8A64aBpW0vmNGSoNEZlJ\n2q5b+X31YlIPjInn1z9OeTp2/RUpx8q3nEhYO7Aef4HyAkl6AB1lRmz4K0ZGRNVbjvYb/lGx\nbZnW/WZ+F/VwQ3CKLObo6n+/mOPpyE+QxgSF3TwLk6uIyMN3HDL0/EARDwBUlMht57Ubjp6+\n62d+VlxTRthx4DQ7NnHm/odEdGpH9JfzWvIQYaW2evXqInu6d+9ukEiqCJxwg0OXwjPMesBo\noAPnGU44AOjV9YfPtRt9Zw+TvLxJZSJ2G+5suSUpJ+lMDL1M0jNCycDp61KjR55PSfh50ZG9\nawcZJmKAd8NF07CCj8VrNzrNnFRchv6lTmOHrb+ymoiSzt8kJOkBQOvm9tvajQFTi71X9VKn\niT4bgtcSUejuK+TZX4+RGSkUdvMsX8MRUQd3iaEDqSpQxMOnqVOnGjqEqgUnnGfnYl/cPfnG\nt0tp2jfs+x0T+B3HcVmR54mQUQOA16BL4RlmPTxD1RQAGJCf7/in+WrXwYvmfupi6FgASnA/\nV0VEjFDcx/G1pZIatrGjpJz8zBCiV2NFhjEfMafb+anHZDEBgUlfDK5pyXe4APAeuyTLJyJG\nYDaqiW1p2osknRxFa1OVrFJ2lcjY3jiDJD2Ajk4n5BARIxT3sCvVq6PNJN42Jr9kqTV5GReI\nkKQvMxR286yBhUlYrkpd5ldhAlQCXbt2NXQIVQtOOM+i5GoiEoqcO1qXal1BoXnd+ubCmDy1\nOi9Kz6EBlKS/HPwAACAASURBVFfCqYVz9scSkZm1545NvoYOp0pAl8IzzHp4hqopADAUjSot\nIjE5T8OpziYTkvTw3num0hCRiVmdIm9xtWtnRyfilTm3lRyJCh2yrjfSQXQyTcn+ExAzeEYL\nfoMFgPdailJDREKzOlbFrh1bmLOpMFXJsspkfcZlGEjSA+goIZ8lIoHAsvTv/bMQMFlEGmWq\n/qIyYijs5llPV+uw0IzbEbJeXqV6DAXKCUU8AFBRclmOiBhBGYoVhAxDRBpVlr5iAqggitTM\n58+fE5FQGWnoWKoKdCk8w6wHoDDUGUMlxD2NvP1fxJPMbHmxrdQJ9y7maTgi0ijyeQoNoBzM\nBIyS5ThOXWS/uKYb0V1Oo7ido/S0KvRMJyPsbG12KF3+7O5JIiTpofLRKLNjH8akPnuenZND\nphbWVlYOLvXq16pe+mQQvIulkFGqOY0qnSMq5fmUqlgiYgRG+CIwJOkBdFRNyGSqOVaVFqtg\nXc2FJbZn8+OkKg0RCUxt9B+dEUJhN89aTeonGL/9wbY9io7TzRkMP/QORTwAUFHqmAtj8tRs\nflyGmrM3KbkD59SZj/PURCQ0q6X/6Ixfjkym5ko7XpHY2OASWyb27erQkTgiYhVx4XK1hxjz\nWb1Dl8IzzHoACqDOuGJhiMIDjVK6ecnCs/fK9tK6Rv3r6ykegApU00wYJdewirhslitc/Cqq\n1pboABEFJeZ6ur+28JKDSEBEKnkYz6EClAunDr165tTpM7ceJCjfuG6KrKq38fr08549W9TF\nM7W6+9BKdCZToVFnnn2m6F6KZaqV2cGpSpaITC2b6z86vuGmBoCOPK1Fp58piGj7P0nLP69d\nYvvkoK0cxxGRyNpL78EZIxR280xco9fSISFzA67MWOe++vsvkKcHAKgsPq9VbcPDLI5T/3Yj\nZZ6Xc4nt025u0c48xU7d9B+d0Uq8c3bP8YsxMY/SnpehFirgyLHSL+8GRGTnMcXT5mZwloKI\ndp99uqrvB4aOyPihS+EZZj3vP9R2lxvqjHmFIQqfAufNPBtVtoVkHNv0n9m55MsrgMF1shZF\nyVUcp9odmTXJ49VrpE3EbtWETA7LxZ9LIvfXXi+dpGR5DxOgXBQZYZt+Wh0UmfmuBsrs9OAz\ngf+ePdiu15gpoz7HtVI33bydzhyJI6IDG4K6+5Vctxa+d692w76VERa5IUkPoKP/+8zl9P5H\nRBSxc9Gtdr+2dSjuHooi/c6ibQ+02y6f49W8ukBhN/+aDlr8ff7K9Ye3Dw+/1P9rnz5dWppj\n5AHGKPXhreu3wqKiop6mZebk5CjUAisrK2s7p0aNmzRt7enpgduvUMm0Gu5BC64R0a31S/9r\ntKZV9eKGKMrn4SvWhWi3G3zdlo/4jFHMibU/bL/Elbo6rYApXjldVozo+zUzUr5bGStXPQxY\nduMj/w+LHYRD+aFL4RlmPe851HaXE+qMeYYhCp9yEvYEvszQi2u4tW/pbmOSH3k1KDIzn4ia\n9ejVwNyEiOSytNCQG0k5KiLy8PFbOrA1brRApdCyVy3aFkVEQcuWt1+zqH1N8csjgo8lZqef\nKaRXN2f7+hfkLDXKlAuZCiIyNXc1TMQAZaSUhc2f9GN0rqrwToYxtXNyttDkSNOyChak4Tg2\n5PiWSY+Sf106Gnl6HdTtN9j06CoVx6Xf2bTikGRmf89izqL01v7FZxO12/83xAj7E0aHgRoA\nEJFaHj7KZ56M1RCRiUXdUT9M79W+7ltbxt86+fOanY/laiISmNiuDNjhboHnY3QR9ueCuQH3\n6np/i8JuHhw9elS7kXz75N/3UunloMTZ2dnGUlTsV2nWrFl6jw+gImRGB/n/tvdWTFoxbexd\nWw8bP6Xr68+DQ5mMGDFCty82GLlyQZcaFRtMlcApfxo59FqmgoiE5rUGjZ/Qr0tT0Vuum5qY\nkFOb1u+OyVYSkam48a6AldaYXpadUnZt6IhVCs2rWZVQWPKLkLQOHzmCe+A6UGTc37Bs9dUY\nmdDMud/obz73bmdfipdPgY7QpfAOsx5DKENt940YGRFJ6s7a649F8sps34zhgWWvM960cIQI\n/yuUHYYoPLuzdIxfSCoRWdfvuXHNWImQISK1PNpnyIw8Dec+buOqni+W4eRY2YG1swOuJArN\nav+4fV1LSQn3WADeB6wi5psh0zPVGiJihJaNWrQaM2uam4UJEUXvmDz9WBwR1e3yzeqpfcwZ\nhmNl+3+aEfivlIhs3WfsXtXJsMEDlAK3dcKQk4m52g8iSf3e/Xt3bt+shrO9SMAQEccq0pKT\n7v8bdOyvU3E5LxL5Lt6zNk/DgFAXN/19l5xP0G7buXtPGN6nqbtr8r6p0w49JqLjx48Tx2ZI\nn1w+dXDPiWCW44jI1n3k7lX9DBm0fiBJD6C7R38t/v73WwUf7V1bftS6cY0aNZydncUkl0ql\nycnJkXeu/hebUdCm/Te/zP/SCJ/34Qt3cc/K9Yf/FVVviMJufevdu7fO3z1+/HgFRgKgJw+O\nrluwK0hVioEQw5h2GbV06peNeYjKKOncn7hP3LSqO15prIuc+Au+U3/V3kAhIlOrGi08Gjg4\nODg4OFiZsekpqampqXHR92JT87QNGEb09eKtg1vYGS7kSuze6rELrkiJyMKx6TfjfFo1dHW0\nsTB0UMbs1KlTRESc6tqRfWFpCiJiGJGNvZ2dnb2tncSs2MEhniPUDboU3mHWwyvdarvbT9s6\n3xsrVJdNTsKeIb6HtNuoM+YBhig8+3XEwHOZCiIasS2wv1NBkTGdGj9kS1KOdd3v//DvUrCT\n4xS/jh15PkUuaeCzd+0gA4QLUHbxf6+dtDmo4OPkPQe72ZgRkVoeNsxnXi7LEZFQZFXLRZKW\nkCR/OXT88pc/vnG1NkS8AGWQGblxxMyz2m3HtoNWzvm6+jtWlWGVKXuXzfnrv3QiYhjBhB2B\n3YtdbAzeitPId8wefzzy1bObjNDcoZomVaYkoiYNasfHJ+UUemWGmaT5mm2L6hrj0/ko5wXQ\nXf1+C2dkzlt9LFT7MSP27rHYu8W0b9lvNjL0OntR2G3d+LPmj/6+Fx2w4cd9/ijsBuOBUmOe\npVzdMmdXUMGjilY1G7Vr1sDR0dHRwdHKVJUilUql0kdhNyMSs4mI41QXd82xcto62tPRoFFX\nFSZiO7tqJkRkh4VndFWtzqfrl+XPW7QzQa4iIlV28q1/k9/VmBFafTllBdJpOjtzL5OIRNZt\nN/02394EVWd6t2XLliJ7OE6ZmS7NTC9bgg1KD10KnzDr4R/eIc2b6N2XtRuv1Rn7dNPWGavq\ndB/1Rp1x5KEdod2bos5YNxii8Ox+roqIGKG4j6O48P6GbewoKSc/M4ToVZKeYcxHzOl2fuox\nWUxAYNIXg2ta8h0uQNnV6TFtpcB+7fajqfmvvWzeRNx0wYDms/+8R0SsMjvucXbBIYfWo5Ch\nh0ohbPdN7YbYscuvC4YUs5yVUOQ04sdf08eMupyex3GaY3/EdJ/alK8wjQcjEI9e4W+3edXv\n514k1zhWkSp7cfRBTELhxraNus6dP9EoM/SEJD1AOXUavax248PrtgY+fpZfTDOxo5vPuKm9\n2qEcUHc7d+4ssofjVBnShAxpwlvbQzlNnDjR0CFULZmZmbp9Mfv1qRGUhkadvnTDGW2GXmTV\ncOSUST3b13vb6Jt7HHLK/5ffY3KUHKc5tW5Fv3ZrbU1QyFNmv/76a7HHuefpKcnJSQlPws6e\nv5mn4TiNxVc/LP+sMV4xUC42jXuu39k8cPuu0xdv57BvXzGCYQT1WnkP/3ZsaxfxWxtAaYTJ\nVUTk4TsOt7/BiKFL4Q1mPTzDO6T5dP3hc+1G39nDJC/PoInYbbiz5ZaknKQzMfQySc8IJQOn\nr0uNHnk+JeHnRUdQZ6wbDFF49kylISITszpFpox27ezoRLwy57aSo8IvbrCuN9JBdDJNyf4T\nEDN4Rgt+gwXQUZPPRmzt+uX9GyHR8Um1zV4lzJr4LJnDrN106LLsZQE9wwhbdPOZPfFLA0UK\nUDbn43K0G13mflPiC6cYgfjbeV0vf3+KiNJuHSdCkl4XjFDSb9Kyjl2uHTl+4mJIhOJt08zq\n9Vr27P1l766tTY137I0kPUB5fdCx/3rPXuHX/3ft9v2IiKjkjOdyhZJhBGYWlnbOtRs1cmvR\nrlPnNg0xh4fKpXv37oYOAYqDUuPySLm6Lk7BEpGJeb1Fm1Z4vLM0h6nX/ouVm+pMG/tjvIJV\nKx6tDU5Z0glVU2VWp06dklrUbUpE9OWQQdEHdvkfuhK3ac743FVb+7lJeAjPiJmIaw/9buHg\n0ck3b/wXERHxJCk9JzcnT0XVqlWztnN2a9ykRZsO7i5Whg6z0svXcETUwR0/V57gOUJDQZcC\nRgm13XxCnTHPMEThmZmAUbIcx6mL7BfXdCO6y2kUt3OUnlaFug5G2Nna7FC6/Nndk0RI0kOl\nITCVtPyoW8s39nsOmdauz+C79x+lPcu1r/VBfVdXeytcK6HSiM1TExHDCId9UKq1H6xdR5gy\np1Ucp8oN1XNoRs7Zw2uCh9d4Vv448kFsYnpOTk6eUmNZzcra1tGtiUdNW+N/lQDu7ANUBEbk\n4dXDw6uH9hPHKjUCEbLyFQs3ZMG4odSYT3cOPdFutJ4y590Z+hdENs3nT24zdnUIET0+cIc6\nfa7v8Koy8+puw2esr5Y95ve76X/M92u7d00dM+NczIpPJpY1PLvW8OyKn66+NLAwCctVqd9e\nWgwVD88RGha6FH3DrIdnqO3mE+qMeYYhCs9qmgmj5BpWEZfNclaF7gmKqrUlOkBEQYm5nu6v\nTT8dRAIiUsnDeA4VQE9MLGu29axp6CgAdMESR0QCkbNYUKqkDsOY1zATxCtY4jR6Dq1KYIRi\nV4+2rh6GjsMQkKQHqHiMUISUQoXDDVkwbig15tP51DwiYhjhuPalese8Y4fxpsxNFcfJU84T\nIS2hb4Jes7/f8/V8teLR2kNPfvGpb+h4AErQ09U6LDTjdoSsl5fxP+INAPqGWQ/PUNvNJ9QZ\n8wxDFJ51shZFyVUcp9odmTXJ49Xz9CZit2pCJofl4s8lkftrz9knKfH2Oqg0IhMy3GvbGzoK\nAH1pbmka/FypUWWoOCrNyuqcRp6UryEiU7Gb3oODlyIvH3L/eICho6hgeCkRAABUDD/f8WPG\njFl+IdHQgRg5banxyJbVOU3eH/P94vFO+rJ7ms8SkdCsroNpqQZCAtPq9cyFRMQq8TpYPpiK\nm3lLzIgo6dw5Q8cCULJWk/oJGObBtj0KDqVqfDhx4sSJEyeCwrNK/5W7Z0+fOHHi7wsP9BdV\nlcUq8w0dAkC5FFfbTaSt7S7Mut5IB5GQiP4JiOEtSKNR00xIRNo648L7RdXaajeCEnOLfAV1\nxuWBIQrPWvaqpd0IWrY8JEle6IjgY4kZEUmvbi7849coUy5kKojI1NyVzzgBdDPTd9TXY75b\ns3l3UEi4TInSYTA2PVvZExGnUQTEZ5emfdaDrWqOIyLrhl/oNzJjFJ2jKutX5Mn3/ReMnblm\njz7iMSwk6QEqRo5MllVqmB6B8dGo0iISk1NTU6POJhs6lqpA0Gv29wKG0ZYaGzqYysfaREBE\nnEZeYssCeRqOiIgx1VNIUEQDcxMiUubcMHQgxgBDFH0T1+i1dEhzxbMrM9adxE1wHmzbtm3b\ntm2Hg1NL/5W4w3u3bdu2ffsf+ouqiuDUmdcunPht3YrJY0cP8xncv2+fvgO+0h5SZt8MPPFP\nQnaZ77YAGJaZgCGid9R2k7a2+7UDjLCztRkRPbt7kqcQjUgnaxERaeuMC+/X1hkTUfy5pCJf\nQZ1xeWCIwjOXbuNsTQREpMyJWuY7eqbfqui8F31L105ORMQq4uduOKb9t+BYWeCaBbksR0SW\ntbGGClQOualPLv99eO3SOcMHDZm+YOX+Yxein2YaOiiAiuE+9luJUEBEfy/eKmNLuGiyyuS1\nK64SEcMIB0xsxkd8xmWer1/Ec2XJ7YiIiGOfn92zZtSEBefvSfUalaFguXuAckm8c3bP8Ysx\nMY/SnpehiCTgyDErvLJe//x8xz/NV7sOXjT3UxdDx1J5cU8jb/8X8SQzu9h0JqdOuHdRm8XU\nKFBQxQdtqfE/WYqkc+fIZ4Khw6lk6pkL01Usq5TezVW1tCw5766Whz9VaojI1AJrWPEkNl9N\nRBybY+hAKjEMUfjUdNDi7/NXrj+8fXj4pf5f+/Tp0tIcp/F9otRwRKTOf2zoQCq3yCuHf9u6\nP1b29pspbP7jfdv+CNy5y3vw2MkDO+H/AD5h1lMeeIc0n1r2qkXboogoaNny9msWta9Z8IoB\nwccSs9PPFNKrm7N9/Qv+IVBnXH4YovBJaN5gybcfT9ocREQcmxt552pc/hQ3CxMicv16nOXJ\nebksF3dx59fXDtZykaQlJMnVL2qRO4/H2xygkuFYefS969H3ru/fQVZOrm3atG7Tpk3rlo2t\nSrdaIcB7SGTVdoWvt6//xby0S5NmCmfPGu/h+PaXxSSHX9mxYeO9bCURNeq/6HMn8VubQTHy\nM0MX+C780X9xMxtR8S2fhJzYuHlvVIaCn8AMAkl6AN3FnFj7w/ZLXNmfR8aIhQfawu48Dac6\nm0y4XaUTjVK6ecnCs2V8SK1Rf7xAmicNzE3+eVFqjCR92Xzqan3zXjoR7dj/wH9MyTdEog5u\n03b11vV76D04IFI+D7mYlU9EAlENQ8dSWWGIwqejR48SEVk3/qz5o7/vRQds+HGfv6mdk7Oz\ns7ONZQkTzlmzZvERYiUXERHx5s78Z48jIkpRXsmpM5MeHEzP036o4MiqkjsBC/z+vFdiMw0r\n+ydg9YOYlE1zB5ggDcQLzHrKCe+Q5pNLt3G2u6ZnqjXaOuNGLVqNmTVNm8Ls2snp9LE4bZ3x\n6ql9zBkGdcblhyEK/+r0mLZSYL92+9HU119LZyJuumBA89l/3iMiVpkd9/jVWsoOrUd942rN\nd6AAZbd03rTQ0LCwsNDIx1K20EwzOyU26HRs0OlDjFDcsHmrtm3btmndpqGLjQFDBShedvbb\nF7SXfDh6cZ7p4u3nZA//mTvu3+ae3h+2cHN2cnJycrJg8lKkUmly8n9XTl8Oe7HwT+u+UxYM\na85j4EZFKXuwyHfu/A1LW9q//WEIRXrk7s0bT92MK9gjEEq6+XzLV4D8QZIeQEdK2bW5O167\n/S0UCkv5XRGDW1Y6Q2E3fwLnzTwbVYYXvhKRY5v+Mzs76ykeKAKlxjprPLQN3TtLRPEnluxr\n9uuQD4v70abePrDoyIviy9Y+7nzEV7XlZ0ZtnP+Lds5vYfepocOplDBE4dnOnTuL7OE4VYY0\nIUOaYJB4jM9b8wTSqxtnXS3b3zGz6lAxAVU9Cec2FGToGaHVR594uzVoaBq677crrx7lNBE3\nbuZiGZqYS0TSG3vm7m+6aggumuWBWQ9PUNvNJ9QZ8wxDFINo8tmIrV2/vH8jJDo+qbbZq0F4\nE58lc5i1mw5dlr38YTOMsEU3n9kTvzRQpABl0/xD7+YfehMRK894EBYeFhYaFhYW+ShJ9XLi\nybHy6P+uRf93bR+RlbNr2zZt27Rp06qluxWe3IT3jI+PT4ltOFZ+7+rpe1dPv6uBQCjJfXBm\n9swzH/Sf4dvBsUIDNH5NJKIHMqUyO3rJpLlzNixv6/Banp7T5F06tGP7/gvPWU3Bznof9vKd\nMNzNzoz3YPUOSXoAHUVs3a3QcERk4dj0m3E+rRq6OtpYGDooI4fCbj7lJOwJfJmhF9dwa9/S\n3cYkP/JqUGRmPhE169FL+8ZouSwtNORGUo6KiDx8/JYObI3F8/iBUuPysGk04VPHKxdS5Ryn\n/HP5hJjPhw35snuDN9anykt9dPZY4J6TIWptwtjhk4nueBhcF/v37y9VO01+cnzc/Vv/PVO9\nGIU3GY6Mmi4wRAF4qzbjvjZ0CJUSq4hbuOUf7bbErfOM6RObO1sQUUzqkcLNTMXNlm3aGxy4\nbMX+20QUddAvqu8fjSxww0EXmPXwCbXdPEOdMVQFAlNJy4+6tXxjv+eQae36DL57/1Has1z7\nWh/Ud3W1typhSQOA95BQbN+s/cfN2n9MRGxeZmR4WFhYWGhoWGTMU+XLhH22NPbiqdiLpw4I\nTKq5NW+1ym+GQUMGqHgaVhYVJSMiJqu071aHAos3Llk0eWFoZr4qN2b5pFmz1q/80PnFbauk\ne+c2btwZKn31pLJ5dfcRE3x7tqtroGD1DnNmAB2duZdJRCLrtpt+m29vgsVh+YDCbj5F776s\n3bCu33PjmrESIUNEap9uPkNm5Gk4VZ3uo3rW1jbgWNmBtbMDriRGHtoR2r1pSwkmmXqHUuNy\nE3y7fErYxFVSJctx7K1Tv98+vcfGoYaTo6OTk5MF5aWmpqSkpCSnZWlezjCFIsfvln2Lvl43\npU3Sv07s5P0DHkbWCYYoPJs4caKhQzBytWrVKvzx6dOnRGRq5ehU6iFHNfuazTr1HeblVPHB\nVQFJ5zdmqDREZCZpu27l99WL6VUYE8+vf5zydOz6K1KOlW85kbB2YD3+AjUimPXwCbXd/EOd\nMW8wRHkPmVjWbOtZ09BRAFQYoYWtR9tOHm07DSJiFbKo8LCwsLCwsNAHDxOU2pV+1DmRd64Q\nIUkPAK+IrBv7bVy27Lv5d9IV6rzHK7+bPn3d6nZWKfu3bDx8JbqgGSMUdx4w+tvBn1oZdVEg\nkvQAOgqTq4jIw3ccbn/zA4XdPLv+8Ll2o+/sYZKXJ9FE7Dbc2XJLUk7SmRh6maRnhJKB09el\nRo88n5Lw86Ije9cOMkzElRxKjXlm4ej586opSxZt1PYhHKfJTE3MTE2MDHtLY5HEbcLChV7O\nRUvtQX9sG3y0cOl3FgL04LrAEIVn3bujmFK/Nm3aVPhj7969iahml5n+Y9wMFFHVEnwsXrvR\naeak4jL0L3UaO2z9ldVElHT+JiFJX3aY9fAPtd38Q50xPzBE4dmJEyeIyMq1k7dHaRdgu3v2\ndIKSNbGo3+PTJvoMDYAPQrNqtrY2trY2tra21uZJ6XK1oSMCeLvjx48bOgQg02pu839duXLK\n3JAUOatIWDNlqg2XlqF6NRp3afWZ78RvmjoZ/8KQSNID6ChfwxFRB3eJoQOpKlDYzbP7uSoi\nYoTiPo6vJSYbtrGjpJz8zBCiLgU7GcZ8xJxu56cek8UEBCZ9MbimJd/hVn4oNeaflav3yu0e\npwL/PPX3Re097jeZip079+g56OsvnESlfaU3vKlHjx6lbit0qFXXtX7DFo1dkWzQGYYoAFCB\nLsnyiYgRmI1qYlua9iJJJ0fR2lQlq5RdJRqo5+iMEGY9BoHa7vcH6oyh8tq2bRsR1e3dqPRJ\n+rjDe3dIc03FTXt8ulyfoQHoDadMeBgZFhYWFh72IDwy422JeYbBs+MA8BYmYtc5/qtWT515\nPUnOKqUZL/eLJPWHjJ/Yz6uhIYPjEZL0ADpqYGESlqtSc4aOo8pAYTfPtIXaJmZ1TF7Pk9m1\ns6MT8cqc20qORIUOWdcb6SA6maZk/wmIGTwDaz/yAaXG5Scwdeg1bNIXPqOfREVEREQlp8ty\ncnJUZFKtWjVJ9RqNGjV2b1xPjDNcbhMmTDB0CFULhihg3IYOHUpEErfqhg6kqkhRaohIaFan\n9GsMOpsKU5Usq0zWZ1xGC7MeQ0FtNwDwT7seuDr/saEDASgDjlPER0Vo17UPexAtU7BvtmEY\npnptt2bNmjVt2rRZs6b8BwlQJgmnFs7ZH0tEZtaeOzb5GjqcKkRoXmfGhp/XTZtxOT5Hu8e1\nx+gfv+1lW5UWhkSSHkBHPV2tw0IzbkfIenmZGzqWKgGF3TwzEzBKluO4os/Aimu6Ed3lNIrb\nOUrPwvenGGFna7ND6fJnd08SIUlfZig1NiBGYFGvcet6jVsbOhCAioEhChi3gQNRnM0rSyGj\nVHMaVTpHVMpxh1TFEhEjMP6VCfUBs573EGq79YnLTH4Sm5CSnZOjYgXiatVsnFwa1nMRYZpj\nIH6+45/mq10HL5r7qYuhY6kEIiIi3tyZ/+xxRMRbcpZFcerMpAcH0/O0Hyo4MgA9iA2/pc3L\nh0c8yla+PTFvX6ths2bNtLl5Z6zxA5WHIjXz+fPnRCRURho6lipHKHKZtnad6cxp/4vNJiLp\n7dCskV/YVqXEdVX6bwWoUK0m9ROM3/5g2x5Fx+nmDGaQeofCbp7VNBNGyTWsIi6b5QoXTomq\ntSU6QERBibme7q8NuB1EAiJSyd/2Tm8oCUqNAaCiYIhiWKkPb12/FRYVFfU0LTMnJ0ehFlhZ\nWVnbOTVq3KRpa09PD9zy5g/LEZ5mK78PrURnMhUadebZZ4rudiU/+qPMDk5VskRkatlc/9EZ\nIcx6oIpIjb7595mzl/79L/2N104JRVbu7Tr1/LznR81qGyS2KkujSotITM7TcKqzyYQkfSnM\nmjXrzZ3SqxtnXS3b3zGz6lAxAQHo09Q5i9/cyTCMnUuDZi80dZaY8R8YQPnZt6tDR+KIiFXE\nhcvVHmKkTXklEDlNXrPeZPb3Z6Nl8tSQ2ZOXrdgw17XK/CtUlf9OgAonrtFr6ZCQuQFXZqxz\nX/39F7gJrm8o7OZZJ2tRlFzFcardkVmTPF69gtRE7FZNyOSwXPy5JHJ/7dWkSW97kBYAqpqs\nrCztBsOYSiQo6TMADFEMJTM6yP+3vbdi0orsz83OkiYlRIfdOnFwj71r62Hjp3R1L9W7vaFE\neRnSpMz8+g3qFt4pe3TNf/vhh0/is/LIrka9jl17Duvf2RzvLtFVN2+nM0fiiOjAhqDuft1L\nbB++d692w75VyY3hTZj1gNFjldIDG38JDIrguLdXD7PK7PBrp8OvnT7kNWD6FJ9a5kKeIzQ6\n3NPI2/9FPMnMlhfbSp1w72KehiMijSKfp9CAiIjajPva0CEAlI2Zbd0OH7Zu2qxZs6ZNa9pi\n/TaokxfDfQAAIABJREFU9Ow8pnja3AzOUhDR7rNPV/X9wNARGY+3rjrzVt4jJjxZuTYqW5mX\nemv25GWzp3311ne8Nm7cuEIDNDwk6QF013TQ4u/zV64/vH14+KX+X/v06dLSHNU6eoPCbp61\n7FWLtkURUdCy5e3XLGpfs2C9TcHHErPTzxTSq5uzff0L/i00ypQLmQoiMjV3NUzEAG9z/vz5\nCvxrNk282rmIS25XtQ0fPly7IbJscWj/EiL66aefdP5rby1PgRJhiMK/B0fXLdgVpHpHvqFA\nRuyd9bPG3B+1dOqXxjax5Fna/Qubd/15OzbVVNxc29VoZdzZM27xYe0bXokoIzHqxN6oS9fu\n+6+ZbGuC/wt0UbffYNOjq1Qcl35n04pDkpn9PYvpTqS39i8+m6jd/r8hGBPqArMensXHx5ep\nPSMQmplbmJuZm1taiPD0T9mxysSfp0y/mphbeKfAVOzo5MgoMlMznrOFrqSx1w5Nf5T4868z\nXUTI0+tIo5RuXrLw7D1pmb7VqH99PcVjZGrVqlX449OnT4nI1MrRqdSrfFezr9msU99hXk4V\nHxyAPimzEiIiLAQChog0TZrUssd9EqjkGNH3a2akfLcyVq56GLDsxkf+Hzrg6ZOKodttPUXa\nbb85t9966Pjx4+WL6L2DJD2Ajo4ePUpEZN34s+aP/r4XHbDhx33+pnZOzs7OzjaWJQzHkXLQ\nAQq7eebSbZztrumZao0yJ2qZ7+hGLVqNmTXNzcKEiLp2cjp9LI5VxM/dcGz11D7mDMOxssA1\nC3JZjogsa6NqCt4j/v7+FfjX3Cc2RpJeB9euXTN0CFULhij8S7m6Zc6uoIKKQKuajdo1a+Do\n6Ojo4GhlqkqRSqVS6aOwmxGJ2UTEcaqLu+ZYOW0d7elo0KgrMem1nb6rjr35SATHPl/209GC\nDH2B57EXZq5uvm2ON0/xGReRxGv2p7WWnE8gouA9K0aHeE8Y3qep++sJeI7NkD65fOrgnhPB\n2gSbrfvIfs64YuoCsx6eTZo0SbcvMgJR9Ro1a9f6oHnbDh07tnO2Mq3YwIzVsR/najP0DMM0\n9Oze89MuHq4uDnZW2ucdOHVeanLy/RtBJ46cfpKtJCK5NHjugqO7f+pv0KgrscB5M89GZZXp\nK45t+s/s7KyneIzMpk2bCn/s3bs3EdXsMtN/jJuBIgLQo+YNa0XGJCo5jog4TpMaF5kaF3nx\n9F9EJHH+oEkTDw8PjyZNPBq4YM0wqJTMHdut3PjjhmWrr8akrJz4Xb/R33zu3c4ey/mA/iFJ\nD6CjnTt3FtnDcaoMaUKGNMEg8Rg9FHbzTGjeYMm3H0/aHEREHJsbeedqXP4UbZLe9etxlifn\n5bJc3MWdX187WMtFkpaQJFdrtF/sPB7LbFYAvNIYAHSGIQrPNOr0pRvOaDP0IquGI6dM6tm+\n3tuKK7nHIaf8f/k9JkfJcZpT61b0a7cWtd06YBWx89adeOuiBel3N8bkqYlIYCIZMH5CGxdR\nePDxPcfvElHqv79ckXXsVOrKNiisre/q3gnjj0dmEdGzyKBlc4MYoblDtRdjv9nTfOPjk3IK\n5YnNJM0XL+5jmFgrP8x6KgtOo0xLfJKW+OTOjaDdv1l2+Wr0mEGfVMO6NcXKjt/7e3gmEQlN\nq49ZuLxni6KZYMbEwqm2a7farp/07hWwcs7BW6lElBmxe0/c/w2va2WAiCu5nIQ9gS8z9OIa\nbu1butuY5EdeDYrMzCeiZj16NTA3ISK5LC005EZSjoqIPHz8lg5sjR8yALxp6c+bNEpZTMSD\nsPAHD8LDIyJjs1UvRoMy6ZNg6ZPgf04RkblNjSYeTbQ5+0b1amC6A5XFqVOniMija/8s2b6w\nNOnBTcsPbRbZ2NvZ2dnb2knMir00otqhGDVq1DB0CO87JOkBoHJAYTf/6vSYtlJgv3b70dT8\n16pzTMRNFwxoPvvPe0TEKrPjHmcXHHJoPeobV2u+AzUueKVxxerQocO7DmlUGSG3HxZ8ZBiB\nla2Dk7OzlTA/JSUlJS1L/TIDJBQ5+4wfXN1EIHGz03vElV+jRo20GyYWL5Z/nDhxouHCAdC7\nlKvr4hQsEZmY11u0aYXHO9PATL32X6zcVGfa2B/jFaxa8WhtcMqSTqhUK7OnpzelKVkiEgit\n+/lO/axd04JDd3aHazfcfBYN/T9XImrs0dZRPmHNhUSO0xz4K67TqIYGibmyYwTi0Sv87Tav\n+v1cqHYPxypSZS+OPoh57QEg20Zd586fWBdFJ7rCrIdn2rGiKufR7bCiw28iYhimyHvTTcWu\nbZo7yGXP0tLS0jNk2geGODb3n8AN9yOSNy0eas4gHfFOEbuCiIhhmIHL1vZ0tymmpUDkMHTB\nr8/GjvxfipyILv0eMfzH9vwEaUyid1/WbljX77lxzViJkCEitU83nyEz8jScqk73UT1raxtw\nrOzA2tkBVxIjD+0I7d60JZ5p08nQoUOJSOJW3dCBAOiLQCRxa+Hp1sKzHxGnUcRHRz54EB4e\nHv7gQVR6rkrbRpGVfOda8p1r/yMioYVtoyZNmng0HT6gp0EDByjZli1biuzhOGVmujQzvWyv\njIEi3jyxUETR+QYAlNKZM2d0/m737riBoov4v9dqC7u1Ju852M3GjIjU8rBhPvO0N6eEIqsi\nhd1f/vIH0sbloVHJ7t8IiY5Pat7Xx93i1aNdwfvWbjp0WfbyPDOMsEU3n9kT+4vxasZyKOUr\njYmIYUy74JXG5aCWP/p5xoJrCTlEJK7RpN9XA7/4uKVYJChowLH5UTfOBwb+eeeJjIjENdsv\nXTe7gQWeboRKAEMUnp2a5LMlPpuI2s/aOt+r5KS79MrSsatDiMi67vg//D/Xe3xG588xgwNS\n5UTU+rvNfp8WWlqGU38z4Kt0FcswzE/7D7uLX/TYyufXBgz9iYjEjj6B2wcZImTjIQ2/duT4\niYsh/8/efcc1dX0BAD8vCwh7heUCKSA4UbSIKK66995aFyqutu69cfzU4t57W3GhVVvLsg4U\nByhDRAGBEPYK4SUv7/dHkCIyApIEwvn+dXm5L5/TNL7c986950aIqDLGKibWrfsNHDywmzMb\nB4PfB+96lIwSfdowa3FouggACCa3XfcBPX5sbmpqwjPl6bDEqQKBQCCIeRV03S84U0wRBLOP\n13bPnrYAQEvJ5Pev79++ci0gUvZWduN27RiFm3mXa8WY4WH5pG7Dief2DZenf+6nY+Pm3QAA\njnaLqxc2KTg6NbR30sj7mSIAmHTk4jCz/7Yg8fMceygpT6/xwrN7uhYfpGnR3hmTH6QI9W3H\nndmJP5cIoSqRCuKi38q8e5eYLiz1svrtIY3Uj2zLkurBbzj6HvisGaFqwqfYyocLu1WCwdZv\n3aln62+Ou479xWXQ6FdvPqRm5Bs3aNLUxsZYF6fbfxfc0liJ6LMr18oy9M7DF6+c0OnbCmwE\nU8OhY/+1HfuFXtu+9mSwMOnZuhWnT/zvZ6zVhmo/HKIo2QNBAQAQBHNme7kuyLwfPdlEiJim\nhSkPADBJX2XBOYUAQBCchV0tSx4XZf2VJqYAgKPnXpyhBwCOnpsxm5EulpI5jwEw6/BdzJ3c\nZjm5eVLCj5HvYhPT8vLyCkipto6uniHPztHJ0lBT1QGqCbzrUbI/Vq+RZegbuo1d4jm00Vdr\niNlmDZqYNWjSwrn9wDHjbx/fduze+7t7f2XqH53e3pRgcCztXSbbu7i33veLz32apj9c2Zo9\n/JA+1govx/sCMQBYDSy30lUpuo0ncIibJE2LC95X3ht9402+GAAIJncQj1vy+A9tjSAprzDz\nGcB/SXqC0Jy0rOeDBTeyY85dTOo/2lJb2eEihOowBq+xA6+xQ9e+w8jclEf3b16++mfil7X1\nCNUJWANSaRL8Vi+7EAsAGnqux/bPUXU4qodJeoRQXeLYa9LhboNlC7sbavxXRdNx3IZlRJkL\nuwerKNJ6gaVt2c7VsvJ+SA64pbEyZUb4XIvJBgCT1lPXTuxUYV/CeejieVHvfR6nZMdc3/6k\n/zKcFYEQ+trnQgoAmBqNTdmMSjsDAINtYq3JjC6QUGRC5b3RN1JIKQCwtJqUSoNlvgmQNQwc\ne5Y6pQGHlS4mKTEWKqwZBJNr49TOxknVcag1vOtRmuzYo2cjMwFA33a4z+LRFaTXmVpmg+bs\noJKmnAzLuLNtmfvpg8XzgZp2nzM38IXPyzSK5F9PLZhkzi33Xeo32V0Lt4Hcnw/BMddgxIso\nIHAHjerIEEsBgKXRqNT9opGLEdyKJ/NekDRwSrykZz3ZlHM7laQenosZvaiVcoOtY+Lj42v2\nDRs1alSzb4iQMlHCtLdh4WFv3rx58yYqPlWKlZtRHYSrHZRGJMjMyckBACYZqepYagVM0iOE\n6hhc2I3UEm5prEwhR1/IGsMX9JKnv/vscT6PdwJA2KkgcB2mwMgQQnWQHouRJqZoaemijhUo\nkNIAAARbUTGpNS0GIZLStFRS6nj0rSRZw3pgw1IvkUUPCnFOG6pL8K5HOUIPB8kaw5ePkGMB\nPNFv0fiTE30oUrD/ykefST8Uv+Dq2dln5jUACH+eDv0xSV82Zx1OYHZhblQuOBnJ05+WCpML\npQDA0f72nwKqnAaDICmapkv/YnIt7QBe0VLRizzSteQFhGB20dO4mibMeHUbAJP0FfHy8qrZ\nN8RSyajOoURZkeFhYW/ehIWFvYtNpspKzBta2bV1dnZu66z88BBCtZaxSyPwjQMAShT3Vihx\n4tb3JHV9/+9HSJnWzvH8XCixGb1uecntM1HNwYXdqO4KvfpJ1nCev6z8DH0RjkHLlXPbyrY0\n/ng5FNyxWnLV3EnIAwCCye1jJFdhXg19DwPW7iyJtCD9LwBM0ldZVReaEAymhqaWpoamprYW\nh4FJNWXAIcr3sNZkpokpiuS/yhe31q487y4Rvv1MSgGArWWn+OjUkLUWKzOXpAo/JZKUFefL\n2kpafO5Tjqw52Pqrot+0tCBWJAEABttEuZHWCxRZyORoqDqKegfvemrQzdhcAGCw9AeZaMnT\nX8OgB4+zT0BSSfcvw6QVxcc1jXsCXAMA4ecqzNmqb/p15AXeTUi4cV06dL48xWeyIo6KaRoA\neG6DFB2bWrLUYEYJpZQoLpeidUtMQuHotAO4DAD+ifmuDl/de5pyGAAgFoYrOVSEUJ0gJXPf\nvytaMf/u/WeyrMQ8U8PAsVUb57Zt27Z1bsLTUX6QCKFazshpvqtByOMsEQCcuvd525Amqo5I\nxTBJj5CSSMWpEYnJBVJafC8Z8Ak4qlOE2alJyeliuctV2Tk0w30Yqwq3NFamhEIKABgMbfm/\np1oMIgtASgoUF5Uaq/ZCE4LBMbGwbNigSct2P3bs6GKui8uOFQKHKN+ph41eyOs0ADh24d2e\naZUvO4u6ckS2uYle0z4KD04d9bTQDs0laVq6536id/+i2rDprw/ySdmG9K6OX8/Ez35/ulBK\nA4CGrry7IKPy0JLMf/2Dw8LC30bEZOXnC4UFYoqWLf4jc0Ou+ee6ebg3xGs1qlPiZcNCtqn8\npxixGAKSEue/KXmQyS4aw5MZZA2Gp2Z+mDTb+K8V6Zl/r7/Wfe3Q5hV3psjkXZsDAYBgak8a\nb6OUANWNux4nSiimafGpyCwvJ8Pi4yyunQ6TyKPo+PtJ4GBY8pQkklJ6mAihumHd0vlvIz+J\npGU8GyQIwrSxo2zRfKvmNpoEPhNE6ganJtckgrNwx6KUed6xQvH7c5uedtrTwVSuNVTqCpP0\nCH0n+nPki5cRnzJzK5wvT0sSXv8jK20qFRUqKTSEvg8tyfjj2KHbgaEZuVX70p7zvaGLWfoq\nwi2NlUmHSWRKaEqcGiuibDQr3+GSKozji6UAwGAbKD469B9aSqYmfkpN/BT61P/UQe2uI6ZO\nG9VdBy8v8sIhipI0G98WXt8DgPhbG8632Du2Q0VbkAheXF7n+1HWdh7noIz41I7jlDaw7CEA\nRBxbdtl4Zd92dgWfQ7Z6+8tetew5omTn3Lig1WvuydrG7dspN1J1Exn0x8HDF2Kzy05AUoUf\nzx85e/H4CY/RM+aOdMdLNaorDFiMVDFFieKzKVpfji8uTeV+EkkAgPh6yxKK5MsaHEOcp1Iu\nFtdp66K+07f4hZ5cvjZ14sQRA2yMyn7enfvp2e9bdr7KJQHAZeLG9rinQ7W0HtAAjkQBgP+m\nze13rGtvWbwRA6OzvsadDBE/+EDunD3FN+9SMuWvTBEAsDVxVkQlVq9ereoQEFK2F+8+ljrC\n4pq0bOPs3NbZ2dm5gXx1ChGqE3BqsqJp8ly8963x2bQ9OCbFe/a8oVN/7uvhYizHE1q1hEl6\nhKpPSvIPbFh97zW/SmfZD2uqoHjUxt69e2v2DWt8t7D6gKbyf5/v9TAhrxrnasiVZUZfwS2N\nlclVj3MnQwQARx8mbe5beuvibyX7H5Yte+XouSk8OHX0448/AoA478OL8NRvXyUIgv66UAeb\na9O2pakwOyM1NTUtPVtWxoOm8h9e9HkTkbx//XicmF8pHKIok4H9rB68oL8EQpomL22eFdN3\nwtjBvW3NSm9IXCD4cO/GxdO3n0loGgC0TLvPdsB5P9Vh4OjpZvTvowwRTeWe3bLkXIlrCMHQ\nnD6isaxdILi7ddut1+8TZRtkEgRzxOgmqopZDYSeW7X20utKu0mp7Ifntr+LSdm/fDgLL9WV\nwbue2sDDUOOKQEjT5KHQtMUula+nTw87IltEyNH7qjiHkH9X1tCz1yvjNPQF78cZv/+ms2rX\n5VC/0y/vXmrVuXdbh4Y8npkZz5RJ5qQIUgQpKdGvnwS9/CC7etv08JzhpisQlFvOiseTqw5Z\n/WTVc6bhid8yJVIyL2rTnKn2rdpMW/KLnRYLALq5m925EUeJ4pf73Ni+YJAmQdBU9sUdq/Ip\nGgC0G/ZWdey1Xbt2OPMP1VMEwbRs2ty5rbNz27at7BvheA+pH5yarAR+fn4A4NRtWFb2+fBU\n/pX9m68e4BgYGxkZGRsa6WtU+LEuWbJEWWEqCSbpEaq+iysW34vKqtIpvLbDFnepaH0VAoD7\n9+/X7Bvi46pq+Hx/c8kMPZurzzPSlXPgwcb8WdXhlsbK9FMvqzsXPgBAxPF1z132tquwqpIo\nLXTdkXeytlXfbsqIT+0sX76cEn3aMGux7E+CyW3XfUCPH5ubmprwTHk6LHGqQCAQCGJeBV33\nC84UU5KCOCMXr+U9bQGAlpLJ71/fv33lWkAkAKS9vrLycscdozCXXAkcoigXY/rm+eGzt/FJ\niqap534nX9w5bWBqYcbjmZmZaUGBQJCSkpKSnJol/ZJLZnJ48zZNxylt1UMQmnO3zP0wd6es\nvn3JWT72w1e14Bb9hhZmhYRGfy5+qUmvZR76WJ+wmhLu+xRn6AmmbqfuHna2P7DDzh8M+m8m\nEIvbrIWVdlhiPgDwn55efqH5trFYK6ISeNdTG3QbZX1lz1sAeLJjS+RRb4cKV2xLhB92eD+S\nta36lthwiiZ9dwXKmi4tDb89EcnMnDlT1mCxCJAALS185X/jlX9Fp8T+dXDaXxV1kC1rQ2Vi\natpumN7Z64A/ANBUfmRocFzhfFmS3mbMTO3bK/IpOu6f42MeXWlgpZ+akCSUSGUndvGsfPse\nhFB9096jX1tn5zbOrcz1sLoJUls4NVk5Dh06VOoITZOZafzMtKotNVEPmKRHqJryEk5f/PL4\nm2th1761gwGrMDLYPzKzEABa9Blgq8kCAGF2atizp0l5YgBwGrd240hnnGCF6oS/r8TIGg5d\nR86YMNjWREe18ag93NJYmRoNmqZ/eUU2JaVIwWavRVN+/W1A+8Zl9ox/fvt/O46nkBQAMFiG\nM/o1UG6k6uOP1WtC00UA0NBt7BLPoY30S97Vs80aNDFr0KSFc/uBY8bfPr7t2L33d/f+ytQ/\nOr29KcHgWNq7TLZ3cW+97xef+zRNf7iyNXv4IXkK0tZbOERRPi2e6/+2zd+wbp/sQ6ZpaaYg\nMVOQGBleRmeOvt2s1avdzEsvtUfy41q4796jd3jfMf+wONnUBwZLx23QtF/Ht/i2M0Gw2vaZ\nvmJme6WHqSYoUdzqQw9lbX27Lot+m93SXAsAYgS+JbuxuS027T/z+OKmLRdeAEDUlbVRQ87a\na+EDB1TbWXgstD3qGVMgkRTErPRcPmWhV792Tcrsmfj6wd6dh98JxQDA5PDmDCoaPeYmR98+\ntetqbA4AcHTaDDHRUlbsdU9ycrKqQ6h3GvX5xZthvPPodUHhV5vNs7jNVw1vufTSawCgyNy4\nj7nFL5k6T/nZBgtCIIS+kuC3OjI0NjI06Kqe67H9c1QdDkIKgVOTkUrgPTNC1RR9qmimvF7T\nfvt2zJBlCyTjeo4bu6hASosb9Z7Sr6iEMk1lX9659FxQYuTVY2G9m7fWx/mGlRg/fryqQ0AQ\nnEMCgKHTuK0LR2HWRglwS2NlYnGd1k5wXnjyOQBICuKObJx7zaZ1J+dmFhYW5ubmXBDy+fzk\n5OTI0OCXsenFZ7WbuMYBkw3Vkh179GxkJgDo2w73WTy6gkwwU8ts0JwdVNKUk2EZd7Ytcz99\n0IFb9Jk37T5nbuALn5dpFMm/nlowCROc5cMhikro2nh4H3Xyu3jJ7+4/sqkP32Jzzbv06Tdq\nTH8zTj3da60GcS1aLdjoMyuTH5+SztQxbWBlyvm6kA+La+PqrmfZxK69a+dmDXCuYfUlPdiX\nLpYCgIZ+u13eC01Y5deAIFiuY9bM/zzj9yA+TQkP3UrYOdJaeYHWQXjXUxsw2LyVy4fPWH2J\npGkyN/rQ+nnnLR1cWjTl8Xg8Ho8LIkGqIFWQGvv2+duEoglwBEH0nLPeVpMJAEL+0fGet4pL\nenSeNwdvnSrA4eBIQwUce0063G3wm6fPouOTGmr8NwJxHLdhGbFz/9XA7C8L6AmC2arnuKWz\nB6soUoRQ7SUSZObk5AAAk4xUdSwIKQROTVam2bNnqzqEWgS/PQhV07/vc2SNIUsnFK/nY3Ht\nJpprH0rKS/ozBr48ASeY+iN/2yWInvwgJeF/63zP7BylmojrjpEjR6o6BAQ5EikAdJnbHx8z\nKQduaaxkTYeuXpS5YvuNMNmf6bGvbsS+qqB/66FLVw62UUpoaij0cJCsMXz5CDnWahP9Fo0/\nOdGHIgX7r3z0mfRD8Quunp19Zl4DgPDn6dAfk/TlwiGKqjDYpgMmePUfN/VTVERERFRyWnZe\nXp4YWDo6OvomFvb2zRyaWXMZ+LtakzQMzX8wLHtam06D8csWKTkc9fT4Rrys4b7Yq6IM/Rfu\nMyb8HrQdAJIehAAm6SuEdz21hFGrsXuWSpdsv5olkQJAblLkw6RyMxAEQ6Pn9I2zu1rK/pRK\nhcUZeru+C+b9iPujV+Tq1auqDqGeYrD1W3fq2fqb465jf3EZNPrVmw+pGfnGDZo0tbExrnDH\nB4RQvWXs0gh84wCAEsW9FUqcuJhUQuoGpyYrU+/evVUdQi2C11OEqulNvhgACCZ3EO+rPMEP\nbY0gKa8w8xlA1+KDBKE5aVnPBwtuZMecu5jUf7SltrLDRaiKGmkwowskjXHYrTy4pbGyuU/d\n1LDZH7sOX/yYUVhBNy7PbtzMBQNcsNB99d2MzQUABkt/kHwFYDUMevA4+wQklXT/MkxaUXxc\n07gnwDUAEH4WKihU9YBDFNUiGFrWzZytmzmrOhCEakZAdiEAEAyNKY5y7bTN0XfncXYKSIrM\nDgbAJDSqGyxcxx8+7Hz84PEHIe+pL4Ptb1k6uk2aOdvVWrfUca653YBRU8Z1d1JwmAjVPJa2\nZTtXS1VHgRCq7Yyc5rsahDzOEgHAqXuftw1pouqIEKphODUZqQpmXxCqpgyxFABYGo1YXy+I\nMnIxglvxZN4LkgZOiZf0rCebcm6nktTDczGjF1W+4TRCqtWFx42Oy3mTUtDdQEPVsdQXuKWx\n8jXpOOx31wFv//370Ys3ERFRyek5QhFJEAwNLW0j84b29natXNy7tP0BN+r+TvGFFAAw2Kby\nn2LEYghISpz/puRBJrtodRqZQdZgeOoHhyhKduvWLQDQtXH3cJK3tMmre3cSSIql1bRPD0dF\nhoZQDUghpQDA1GikK/fPoTmbKSApisTNp1FdomniOHvljimCmMDHLyIiIj4lpubl5xWIQVdX\nT9/YwsHRsVX7Ts5NTUqdpWU8ZPf+MdYNTHG0iBBCSJ0RnIU7FqXM844Vit+f2/S0054Oppqq\njgmhmoRTk5GqYJIeoWrSYBAkRdO0pNRxrqUdwCtaKnqRR7qWLBRGMLvoaVxNE2a8ug2AT8BR\nbec61fnIav/ne6/TeybjIyelwS2NVYDgOLn1cXLrI/uLpkgpg4NZ+ZplwGKkiilKFJ9N0fpy\nfLg0lftJJAEAgmCXPE6RfFmDY8gu4zT0BQ5RlOzIkSMA0HigvfxJ+rg/zhzj57O5zfv02KzI\n0BCqAdpMgpTQUnEaDSDnzyNfTAEAwZCregpCtYoWz7bXINteg+Ttz9RoaIPllmpUoTCPpaWD\no3GEEKptNHku3vvW+GzaHhyT4j173tCpP/f1cDHWxAdTSE3g1GSkKpikR6iaLDWYUUIpJYrL\npeiS126OTjuAywDgn5jv6vDVbl6mHAYAiIVlrYpFVZSXnS0pvw5hKfoGBniPX1UmrReOtHt5\nOfra8uON1k7pqkHgR6gkuKWxahFMnPtQ8zwMNa4IhDRNHgpNW+xS+Xr69LAjIikNABy9H0se\nF/Lvyhp69nqKiFNt4BCl9iOlNABICj+qOpA6adKkSdU70Xay96quFjUbTH3QQZfzZ6ZIKsm8\nlyHqbVT5kiky97GApACArd1S8dGpP8H75/8+D4+KivqcmpmXlyeSMHR1dfWMzOybOTZ3dnV1\nslJ1gAhVAVmQW8DU1ueUVUKWpl7ev3jt4Yv4hM8StkHztq4efYe42so7+w1VSpidmpScLpYx\n7ctaAAAgAElEQVT7KYqdQzOcKoEQKsnPzw8AnLoNy8o+H57Kv7J/89UDHANjIyMjY0MjfY0K\nLxlLlixRVpgIVRNOTUaqgkl6hKrJXY8TJRTTtPhUZJaX039VUFhcOx0mkUfR8feTwOGr6ihJ\nJKX0MNVNYui90zf/iYn5kJpT0R7SpZzzvSH/JDj0BTFms7fg18X+13dPDvGfOH6Qo411A3Mj\n/CCVA7c0Ruqk2yjrK3veAsCTHVsij3o76HIq6CwRftjh/UjWturb978XaNJ3V6Cs6dJSruJj\n9RYOURQtIiLi24OFGR8jIuT4GGlJZtK7K2kFsj9qOLL6ITMzs3on5hbi97w6enqY/ekbBwCX\nffx7r+1daf+3Z87IGsZtKu+MKpAZ7b/n4JnnMamljufnZvGTEqLDn9+6ctrYxnmC5/xuDviz\niGq1pDcPr98LfP7iTZpQ0nLF0Y0deKU6kNlvvVd5P/+U/eUA//Ffvk/+vtmu/6wV03+qfFdY\nVD5akvHHsUO3A0MzcqvwCAXwKQpC6BuHDh0qdYSmycw0fmYaXyXxIFSzcGqyMuHM+5IwSY9Q\nNbUe0ACORAGA/6bN7Xesa29ZvDM0o7O+xp0MET/4QO6cPcV3NVIy5a9MEQCwNW1UE3HdF3Nr\n569HA2i5p34XY+NtfbUwOVYDhnT0330vP/HVga2vAIBgMOVZwu3r66vw4BD6DvHx8VXqTzCY\nGppamhqamtpaHCxjUHUWHgttj3rGFEgkBTErPZdPWejVr12TMnsmvn6wd+fhd0IxADA5vDmD\nGsuO5yZH3z6162psDgBwdNoMMcF5yhXBIYqilbkQhB+8b0lw1d5HQ/fHyjuh78biGhnpsADA\nSAtvfquj8dDR7OvbxDSdFrp/y1X9xcNcK8ja8J9fWH8vUdb+aSxeUqrv3fVdq074V7rmNT02\n9Pcl095M2bhgcDPlBKb2sGBbzaKp3PPbVl96/KGCPlJx2sa5a19llU4h0zQVcmvvr4WMXV49\nFBmjOqOp/N/nez1MyKvGuRr4FAUhhFB9glOTlQln3peEzykQqiarnjMNT/yWKZGSeVGb5ky1\nb9Vm2pJf7LRYANDN3ezOjThKFL/c58b2BYM0CYKmsi/uWJVP0QCg3RAv3NVBZj9afuyrDD2T\nKW9Rag6Waq+WkJMrN1x7U/IILaXU8JewtpKSubHvYwQZObl5ecDW0tPVNbWybtrABL/N38/L\ny6t6JxIMjomFZcMGTVq2+7FjRxdzXdwZXS4MNm/l8uEzVl8iaZrMjT60ft55SweXFk15PB6P\nx+OCSJAqSBWkxr59/jYhS3YKQRA956y31WQCgJB/dLznreLrf+d5c/BfQcVwiFJXtJ05RtUh\n1El79+6t8HU6Jy0lOTkp4VP4vQchBVKalmqN+HVzr2a41LiaOPpuS3s02PAgAQAen94y9ZnH\nrImDmjt8nYCnqXT+p0C/K6dvPaZoGgAMHSYPNeeW+YaoUinBh5ad8C/+4dO1tHdpYcvj8Xim\nPF22OIXP5/P5H8JDIhJzAYCmxf+cWKZrdniqa+nVyUh+WLBNIWjx0RVet95V8hD21aHVsgy9\nhmGznt3bNjRkxEZHhYeEJgrFAPDhvs9Jj7aTm+M1vDo+399cMkPP5urzjHTl/Mqy8SkKQuhr\ns2fPVnUICCkQTk2uzdR75j1RjTWpCCGZ+Ls7vQ74F/859/SVngYaACARhk8Yt0L2vJvJ0W1g\npZ+akCSUSGXdBu8++7MNbqZbZa+3z1gVxAcALV7zn2eOa/ODDc8AV1IqUPaH0xN/+aN6vxE3\nb96s8XjqEVoSFvyn350/n79LIL/5/Dm6Jm3devTt169VY32VRKceBg4c+P1vQjC1u46YOm1U\ndx18OCuf5Mdnl2y/mvXl17ACBEOj5/SNXv3sZX/mJfmM9fxL1rbru2CHZzcFRqkucIiiUKWe\nT33+/BkA2Lo8M/2KtnIoScfYsoX7kAk/OdV8cKgEUVr05RN7rgbFEQytSdsOD7XDn85qoqXC\nY0s9b0ZmFR8hmJqmOlJBNgkAjrYN4+OT8krsmqGh33LHkXWNNeWdUItKkkrS5o+dHieiAICj\n+8Pk+V792luXNdSgPz7z27P7ZEweCQAszabHzu80ZOGYpDqqXbDt8o0bmpjILF/MtZW/nCya\n861p4jB40E9tHG14jRoba/x3caAKE8aP9sqnaE3Djv87tKjhl+sGJUo+uHTRvdgcANDQ73jl\nzFLlx68GTv486lpaAQA4dB05Y8JgWxMdVUeEEEII1V4he+bIpiYDgJFD0dTk5PMLfrn6EWSP\nu8uamnxq21BVBl03VVbitPTMe6amlec6tZ15j0l6hL7Lu3undh69LiikoMQTcAB4d27V0kuv\nv+1v6jzl2NohSg1RXWwdP+JRTiFHr92hkyuNWVh5TeHu/jLhQEw2AGjxHEeNHdiskZWpoY6c\nj6CMjY0VGpsaE6WH79+63T+ykuUmBMF0GTBt/pS+uHanejZv3gwA4rwPL8JL7/MKAARRenTE\n5tq0bWkqzM5ITU1NS88uWXvWpNWI/evH4/NZOYnS3h0/ePxByHuq/PGnpaPbpJmzXa11i4/I\nkvRcc7sBo6aM645JTXnhEEVpZPN+Gg/csWeanapjQd+SXls97eSrNJZm091ndjTSwLRxNdFU\ntu+BbSfvh1Xa09C+2/KVs+3lnrOCSkn2XzFzZxgAsDStNxzZ7lThJ0lmvfllxpp4EQUArRYd\n3uBurqQo1QiZ/Wj8pG0iaXUKtv3h64v3peWhqazpo6bI9mo1dR6xe9X4Mu9cUh6vnb4lFADa\nrT2+2tmk5EuU6P2UsYtk8zsnHbk4zAyLc1TZtOFDBCRl6DTu5JZReLuCEEIIVQynJtdC9WHm\nPSbpEfpeUnH2m6fPouOTWg4Z51Ci4Mbj8zv3Xw3M/rI6jSCYrXqOWzp7GBf3M66WCUMHZ0uk\nbZYdWedqpupY6oVZI4YkFlIaBu2Onlilj5lgpSCzw5d7ronOF5c8SBBsIzNzLWkePzWr1AaZ\nhk4D926cinn66qFEnzbMWhyaLgIAgslt131Ajx+bm5qa8Ex5OixxqkAgEAhiXgVd9wvOFFME\nwezjtd2zpy0A0FIy+f3r+7evXAuIlL2V3bhdO0Y1VeV/TF1TIIgJfPwiIiLiU2JqXn5egRh0\ndfX0jS0cHB1bte/k3NSkVH+qMCEuVdO6gSl+16sKhyjKgUn6Wk4sDBsxZqWUpm1G7do9Di/X\n34X/9pHvzVv/PIsQUWU8RjCxbt1v4OCB3ZzZeC35Dn5e4w7F5wJA+yWHV7pVnnTnB22csf0Z\nAOg19jy7p6/C41M7WLBNQVKfb566/gkAsLkOh856m5Qzz/6vBRN8YrMBYObJy/2MNEu9+mLT\ntHVPBQDQeMj/9kz5QcEhq6GRgweJpPTggxd+ttRWdSwIIYRQHYBTk2slNZ95j0l6hBRIkp/0\n6s2H1Ix84wZNmtrYGOviVbv6ZLeXs05d7mNY+tYdKcLQQYMkNN1566nf1LSSTO1DH5419nZi\nvuwPjn7TgcMGdmnfwsLcmMMgAICmRKnJSW+e+N+45heXV5TIt/JYcuAXN5WFXJddXjzpbGQm\nADR0G7vEc2ijckbVVEHK7ePbjt17TxBE/xVHp7c3LX7pw9/7fvG5T9M0k2N+8tIhnMuC6hYc\notSgy5cvA4C+XY9erY1UHQsq2+6JIx9miTQN+1w+NUvVsagDmhJ+jHwXm5iWl5dXQEq1dXT1\nDHl2jk6WOEqvCQtGDo0VSQiCefTqH6bsytdpS8VpI4ZPFdM0S7Pptcu7lBChmsGCbQryfOXP\n69+kAYDDtL3bBjYquxMtmT5iRApJAYDnqct9v7mGZMfumLAgEAB0LKefPzhAsRGro99GDY0u\nkMw/faX7l4pKCCGEEKoUTk2ubdR75j2r8i4IoepiaVu2c7VUdRRqwlaLFZ4vluC0ImUxYjME\nJNXGAosKKklm5P7iDD2v3SjvZWNMvn4sSzA1eQ1segy36Tqw35lNy669TAOApIDtf05s29sE\nn4lXTXbsUVmGXt92uM/i0RWk15laZoPm7KCSppwMy7izbZn76YMO3KKxU9Puc+YGvvB5mUaR\n/OupBZPM8R8LqktwiFKDRo4cqeoQUCVsNVkPAci8pwCYpK8BBJNr49TOBrcfUYzPhRQAMDUa\ny5OhBwAG28RakxldIKHIBAWHpp7ChWIAcJozEzP0NSsgLlfW6Nel3IIQoozbKV9qxoqoMjpo\nmbgCBAIAmfMMAJP0VdaFx42Oy3mTUoBJeoRQjRO8f/7v8/CoqKjPqZl5eXkiCUNXV1fPyMy+\nmWNzZ1dXJytVB4hQ9Zk7uc1ycvPEqcm1BpvbwkNf42GWKOn+fRinbjf1mKRHCNUN/Wz0wsPS\nX0RkD3DDH0Jl6GagcVEg/FzmwxKkAOGnQmQNLq/r3lVjK9jjnMkxm7Rmb9q0KYFpBTQtvXE2\npveC5soKU02EHg6SNYYvHyHHAnii36LxJyf6UKRg/5WPPpP+q7Tp6tnZZ+Y1AAh/ng79MUmP\naoUEv9XLLsQCgIae67H9c1QdDvoKRQMW3VCJ2EIJANBUnqoDqXvwkqJ8eixGmpiipUL5TymQ\n7adOsBUVk1orlNIA8KODGm5vqVofCyUAQBAcN71yq/Xw/wmUNRgsg75GZWSRmZwGsgZFpigg\nRvXnOtX5yGr/53uv03sm4wAEIVRTMqP99xw88zwmtdTx/NwsflJCdPjzW1dOG9s4T/Cc380B\na3OiOgynJtcqajzzHpP0CKG6oY3XUIbn0XdHTos6/lZB/hLVlK7jHS/ufP7vubBJv3ZQdSz1\nwoO4osxB1+U/V/oNJxjc6Su6BS70A4DU5zcBMElfNTdjcwGAwdIfZCLXnqMaBj14nH0Ckkq6\nfxkmrSg+rmncE+AaAAg/V+FJunrbu3dvzb6hl5dXzb6h2hMJMnNycgCASUaqOpb6qCCdn5RZ\n2NS2ccmD2R8e7Tn6x/tP8VkFYGRh3bFbvwnDumgycDCjJGTOs3+yCgGAwbFQdSx1D15SlM9a\nk5kmpiiS/ypf3Fq78ry7RPj2MykFALaWneKjU0NYsE1BBKQUABhsE1b5P3dP7yfLGtoWo8r8\nWSQYRZl7qTij5kOsB0xaLxxp9/Jy9LXlxxutndJVAx+kIIS+27vru1ad8BdXtoFyemzo70um\nvZmyccHgZsoJDCGk3tR45j0m6RGqHKYcagOuxYCNY58tPxe0aJfD9oX9MU+vaBZdlg24PuV2\n4NYr3Q+PaG2i6nDUX2yBbK0Jc0ITPXn669lMYhN3xDQtzg9TcGhqKL6QAgAG27TSnsWMWAwB\nSYnz35Q8yGTzZA0yg6zB8Oq0+/fv1+wb4i9mVRm7NALfOACgRHFvhRInLo72lST1zV8HTlx6\nEStgc1tevbCh+Hh66OmZ6/8gpUWPsdITo26diQp49GbPjrmGFSQuUA0pzIzat3I3RdMAoGXU\nQ9Xh1D14SVG+HjZ6Ia/TAODYhXd7prWqtH/UlSM0TQOAXtM+Cg9OHWHBNgXRZhIiKU3TheV1\noKnsa4Kiea5WA8v+qlNigazBYBvVeIT1AzFms7fg18X+13dPDvGfOH6Qo411A3MjrOuDEKqe\nlOBDy074018y9LqW9i4tbHk8Hs+Up8sWp/D5fD7/Q3hIRGIuANC0+J8Ty3TNDk915ak0aoRq\nTKEwj6Wlgz+jyqfeM+/xHhuhymHKoZZoPmr9wkLv3/84OvFtwLAx4wZ1ba2Jv4qKQ7B/3rIu\n/bdVZ9fMjOo7ftqEAeb4WFaRKKABgMEx58q3tpIgNC00GPEiCmipgkNTQwYsRqqYokTx2RSt\nL8dlhKZyP4lksyi+WtBGkXxZg2OIBWZRbWHkNN/VIORxlggATt37vG1IE1VHVC/wHx2fs+3G\ntwtKaCpn09brxRn6Yjmxfy3e3vLIMg8lxadeLly4IFc/aWFyfNyb5y8zxEU/lI4Tf1RgWGoK\nLynK12x8W3h9DwDib20432Lv2A7l7ucNAIIXl9f5fpS1ncc5KCM+tYMF2xTEksNKF5O0JCOR\npKw4zG875H2+WPDl9/GnDmXPnRXnv5Y1mJyK/iGgCjA5VgOGdPTffS8/8dWBra8AgGAw5bnj\n9PX1VXhwCKE6RSpJ2+jzpyxDz9H9YfJ8r37trcu6nNAfn/nt2X0yJo+kaanfri1DXXbi7GRU\n+5EFuQVMbX0Oo4zXaOrl/YvXHr6IT/gsYRs0b+vq0XeIq62B0mOsp9R+5j1mXBBCdcP169cB\nAPSa9Wr54e7r6HM+a87vYRuZmZubmxtol7vLncySJUuUEaJ6kX3gdl17vD1/85nfiZA7p/RN\nrRpambLlGFevXbtW0eGpn5ba7Mc5pFScLqZBng+ZlgqTCqUAwOZiadMq8zDUuCIQ0jR5KDRt\nsUvl6+nTw46IpDQAcPS+SvAI+XdlDT17ueof1Afjx49XdQj1HsFZuGNRyjzvWKH4/blNTzvt\n6WCKSwMVixLFrth1q8ySj2mv9sUUSACAwdIf7jmrrRXn7eObp2++AgDBk91B2R3d9SsZw6Bv\nyZuk/xrXzOPXH3ERT9XhJUXpDOxn9eAF/SUQ0jR5afOsmL4Txg7ubWvGLdWtQPDh3o2Lp28/\nk8geV5l2n+2ADwqrAwu2KYibkUZYPknT9JUPOQualbEnccSpEFmDqdm4u0EZG9IDgCDopayh\nYdhRQXGqvZCTKzdc+6oYGC2lKFVFgxCqy1KCd8WJKABgaVqv27/FqdwbGcK6fX/v/Y1+mbEm\nXkRJRB92Pk7Z4I5zrVAtlfTm4fV7gc9fvEkTSlquOLqxQ+l7RjL7rfcq7+efsr8c4D/+y/fJ\n3zfb9Z+1YvpPZaX0UeVw5n1JmKRHqHKYcqgNjh8/XuoITYvT+Qnp/ASVxKP2Sn3gNC3NEiRk\nCfDTVpR+bYwfByTTUtG5+NzJjXUr7Z/17rDsmazeD/0VH5266TbK+sqetwDwZMeWyKPeDroV\nJckkwg87vB/J2lZ9+/73Ak367gqUNV1alvHksX4aOXKkqkNAoMlz8d63xmfT9uCYFO/Z84ZO\n/bmvh4uxZhmL2FCN+HxnfypJAQCDqTd0zoJeLs2LXwo99VbWsBu3bvxPNgDQzKkdTzhrx1+J\nNC29fC3OfcoPKom5vjG07bR64zwt+WrVoFLwkqJ0jOmb54fP3sYnKZqmnvudfHHntIGphRmP\nZ2ZmpgUFAkFKSkpKcmqW9MvcICaHN2/TdHxEWG1YsE0RnHpawPFcAHjm40sf+LnUB0pLMo++\nSZe19axHlfNxS89ei5e1eO44L7k6sj+c3uiLm6MhhGpG6NVPsobz/GXlZ+iLcAxarpzbdsb2\nZwDw8XIouPetuD9CykdTuee3rb70+EMFfaTitI1z177KKr19D01TIbf2/lrI2OWlhgu7lQBn\n3peESXqEKocpB4SQojnMmK4fvDGbkt5df3jI4V8qrsFOkck7twQDAEEwh89uoawY1YeFx0Lb\no54xBRJJQcxKz+VTFnr1a9ekzJ6Jrx/s3Xn4nVAMAEwOb86gxrLjucnRt0/tuhqbAwAcnTZD\nTLSUFTtClfPz8wMAp27DsrLPh6fyr+zffPUAx8DYyMjI2NBIX6PCywvWnqmGJ3c+yxqt52yd\n2MPqvxdoyaXEfAAgCOLnPo2KD/84eTz8tRUAUh+FAibpq65PH/k33maaNmhs0/SHVs1sMONW\nbXhJUT4tnuv/ts3fsG5fZGYhANC0NFOQmClIjAwvozNH327W6tVu5qWX2iM5YcE2BbH8aRL7\nxEoxTeclXl93qc3aUW1KvvrqxGo+WbSc22F02Ts1xN3d8iyXlLUH9bEqsw+q2L/7HsgKU2vx\nHEeNHdiskZWpoQ7+HiKEqueBoAAACII5s71cSTLej55sIkRM08KUBwCYpEe1DC0+usLr1rvM\ninu9OrRalqHXMGzWs3vbhoaM2Oio8JDQRKEYAD7c9znp0XZyc1y3owxqPPMek/QIobph9uzZ\nqg6hflmwYIGqQ6hfOLrttszxmLPnn4LUAK/FzKVLPJ14ZZeTTX4bdMxn3+tcEgDsh63r+035\nU1QpBpu3cvnwGasvkTRN5kYfWj/vvKWDS4umPB6Px+NxQSRIFaQKUmPfPn+bkCU7hSCInnPW\n22oyAUDIPzre8xb9Zfla53lz1HCEiOqyQ4cOlTpC02RmGj8zja+SeNRecE4hABAEZ2FXy5LH\nRVl/pYkpAODouTtw/7vt4ui5GbMZ6WIpmfMYYJSSo1UDs2bNUnUI9QteUlRC18bD+6iT38VL\nfnf/ScoTl9mHzTXv0qffqDH9zcra8BvJCQu2KQib22JOB9PdTwQAEHpuza+fhgzo4uxgb03n\n8J/fO3/Ur2iJPINl+LOT0benxz06u+TwM1lbx2qoh37Z9fBRxW4m5AGAhkG7w4dWVTwLHCGE\nKvW5kAIApkZjU7Zc5XsYbBNrTWZ0gYQi8ScV1ToxvuuKM/SaJg6DB/3UxtGG18i4ZB+qMGH7\n34kAoGnY8X+HFjX8UkuMEiUfXLroXmwOAPhtPTT5zFLlxq4OcOZ9SZikR6g6EvxWL7sQCwAa\neq7H9s9RdTj1Qu/evVUdQv3SrVs3VYegtnJzc8s8rt9h6voC9vqj97PfP1w+80lLV48OrezM\nzczMzMy0iIIUPp+fnPwy6E5geJKsv/OQ+asmtFRi4GrFqNXYPUulS7ZfzZJIASA3KfJhUmR5\nnQmGRs/pG2d/Sb9JpcLiDL1d3wXz1LHUkjJRZCGTgw9eUR2WQkoBgKXVpNTj78w3AbKGgWPP\nUqc04LDSxSQlxhwnQqhcDLbpgAle/cdN/RQVERERlZyWnZeXJwaWjo6OvomFvX0zh2bWXHVc\nSoLURpff1t2dNC8qXwwA7x/57nzk+20fm4FLzThFyR5aIsrIyPgc8+7R37f+DPkoO0gwNKev\nwwlt1SQbonRYNhcz9Aih76fHYqSJKVoqlP+UAikNAECwFRUTQtVCU1ne54t2pjN1HrF71Xjd\nsn4o00KP5VM0ADSfP61hid2+mJoWnt5rno5dlCWRFmb/+0eKcBguoKoinHlfEibpEaoOkSAz\nJycHAJhkuUkdhBAq07hx4yrtQ1PC18F3XgffKa8Dg6mf/+7PpYv/bDJs0RxMEleLhev4w4ed\njx88/iDkPfUl6f4tS0e3STNnu1rrljrONbcbMGrKuO5OCg5T3dCSzH/9g8PCwt9GxGTl5wuF\nBWKKvnnzJgCQuSHX/HPdPNwb6uI9/HfB2jNKpsUgRFKalkpKHY++VTSnynpgw1IvkUXXHHxi\nrlRk9meOfgNVR1H34CVFtQiGlnUzZ+tmzqoORG3hN1xxmByrjftWr52/8W126Z1cZfRte22c\n+F+t+4S7K72ORJfsQBCMHjO3dOXhxlLVZMRmCEiqjQVmDhBCNcBak5kmpiiS/ypf3Fq78nt2\nifDtZ1IKAGwtO8VHh1AVpL3cLyApAGBzHbauHFdmhh4Awi4VbVfftolOqZeYmj/Mb2uy7qkA\nAPzvJA7DbezQd8AkPULVYezSCHzjAIASxb0VSpy4+E8JqRWsFVH7SansqKhsACCySFXHUodp\nmjjOXrljiiAm8PGLiIiIT4mpefl5BWLQ1dXTN7ZwcHRs1b6Tc1OTUmdpGQ/ZvX+MdQNTTK9V\nVWTQHwcPX4jNLvtLSxV+PH/k7MXjJzxGz5g70h0X/FQb1p5RMmstVmYuSRV+SiQpq+Ki07T4\n3KccWXOwtV7J/rS0IFYkAQAGu/TlBSkCJUp/ERwUEBDw+E3stRs3VB1O3YOXFKTe8BuuUBpG\nrTYdO3D3/Anfe08E+f9t3MBgG/YcMWHCiO4VVINgaVkMnbV8vEdjpUSqnroZaFwUCD+LKFUH\nghBSBz1s9EJepwHAsQvv9kxrVWn/qCtHZDUI9ZrKX9caIWWIux4jazQd62XCKmf7Blpy6XOe\nrEmUNVqxHeMATwUAkP40EjBJXz6xuGgEyGbjgpyyYWYRoeowcprvahDyOEsEAKfufd42pImq\nI1I3WVnF+0Cz9fW1VRtMPYS1IlC9osWz7TXIttcgefszNRra4FLMqgs9t2rtpdeVdpNS2Q/P\nbX8Xk7J/+XAW5ulRXdDTQjs0l6Rp6Z77id79G8kOpr8+yCdlG9K7On49mzP7/elCKQ0AGro/\nKj/a+oOmhG+fBQcEBAQ/DZdVKUQIIaR8DI5Jv8mL+k0iP0ZG8tMy8im2haWVVaOGBiXKxpZE\nEATPunn7Dh0HDultVk4fJKeu4x0v7nz+77mwSb92UHUsCKE6r9n4tvD6HgDE39pwvsXesR3M\nK+gseHF5nW/RxiXO4xwq6ImQ8gXEFe1D2q9LuV9jUcbtFLJolluZs920TFwBAgGAzHkGMKDm\no1QXw4YNkzWO/nGdxy5nSkT9hkl6hKqF4CzcsShlnnesUPz+3KannfZ0MNVUdUxqZeLEibIG\nR7vV1QsbAGDr1q3VfrclS5bUTFj1BtaKUChZZW+E6pWE+z7FGXqCqdupu4ed7Q/ssPMHg/7b\nk5vFbdbCSjssMR8A+E9PL7/QfNtYvJlHdYDjlDaw7CEARBxbdtl4Zd92dgWfQ7Z6+8tetew5\nomTn3Lig1WvuydrG7dspN9L6gZbEvnkSEBAQFPw8DdcOorrjY6h/UMird9GfsnJyCyiGvoFB\nox+c2nXw8HBuourQEKoJBMe6WUvrCruYd154wEXDwMBAWxNvP2uGRZdlA65PuR249Ur3wyNa\nY/0ehNB3MbCf1YMX9JdASNPkpc2zYvpOGDu4t+03W3EXCD7cu3Hx9O1nEpoGAC3T7rMdDFQR\nL0Ll+lgoAQCC4Ljpccrrw/8nUNZgsAz6Gml824HJKVq+Q5EpCogR1SM48EWomjR5Lt771vhs\n2h4ck+I9e97QqT/39XAxxoneCvPo0SNVh1CPYK0IhFANokRxqw89lLX17bos+m12S0pm/zMA\nACAASURBVHMtAIgR+Jbsxua22LT/zOOLm7ZceAEAUVfWRg05a6+Fg9WKnDt3TtYYPHqsNu4Q\noCIGjp5uRv8+yhDRVO7ZLUvOEQRdtOU8EAzN6SOK6vQWCO5u3Xbr9ftEiqYBgCCYI0Y3UVXM\naon/PjQgIDAw6FFCZhmbHxMEo4EDzopAtZEoLWzn5v89ickoeTAzLeVTTFTg3Wun7Tr9umK+\nk2EZTwYRUjMcfSsrfVUHoWYI9s9b1qX/tursmplRfcdPmzDAHOffI4SqjzF98/zw2dv4JEXT\n1HO/ky/unDYwtTDj8czMzLSgQCBISUlJSU7Nkn65G2JyePM2TceVs6i2EZBSAGCwTSoo3/j0\nfrKsoW0xSrOs3XkIRtH4XCrO+PZVhOSHgzOEqsnPzw8AnLoNy8o+H57Kv7J/89UDHANjIyMj\nY0MjfY0KH5Tjwm5U22GtCFSf5GVnS2h5KyHrGxhgIrSqkh7sSxdLAUBDv90u74Xl7vgFAATL\ndcya+Z9n/B7EpynhoVsJO0dWvOaqvrt06ZKs0XPkGEzSqwpBaM7dMvfD3J2y+vZ0ieuJ/fBV\nLbhF+64VZoWERn8ufqlJr2Ue+ph1qwE5iVGBgf7+AYHRSbllduA1bdW5c5fO7p2amOBgpibQ\nZFDwU3k6Grf90ZGL+w5WojArdP6sDcmF5VZ9SIsOXjnz46pDu50xT48QqqLr168DgF3XHm/P\n33zmdyLkzil9U6uGVqZsOcaMa9euVXR4CKE6R4vn+r9t8zes2xeZWQgANC3NFCRmChIjw8vo\nzNG3m7V6tZt56aX2CKmcNpMQSWmaLmNutwxNZV8TCGVtq4GtyuxDiQWyBoNtVOMRonoFk/QI\nVdOhQ4dKHaFpMjONn5nGL7M/qhJ7e3tZg6VVVDpm9uzZqgunPsJaEUjtJYbeO33zn5iYD6k5\n5Y7Lv3XO94YupkKr6PGNeFnDfbFXRRn6L9xnTPg9aDsAJD0IAUzSfx+ayl29dpusvWHDBtUG\no8a4Fu679+gd3nfMPyxOtnCEwdJxGzTt1/Etvu1MEKy2faavmNle6WGqlcLM+EcBgQGBAS9j\nyq4uaNCwmbt75y7u7nZWekqOTX3QkreP7vn/G5JAjPBe5FR0TJq/fft2ec5u//sZR2tcFVsx\n+uDibSUz9Bxtw0aNm+gRuZ/i4jPySNlBSpS49Vefc8cWVbDWB1XbpEmTqnei7WTvVV0tajYY\nhGrW8ePHS/5J09IsQUKWIEFV8SCE1ICujYf3USe/i5f87v6TlCcusw+ba96lT79RY/qbcfAp\nIqqNLDmsdDFJSzISScqqrG9p3ueLBdKiyfc/dTAt803E+UVbOjI55W5sj5A8MEmPEKqNvn32\n17t3b5VEUm9hrQgVEmanJiWni+Ve223n0AyzxlUVc2vnr0cDaLk/5GJsrNRWdQHZhQBAMDSm\nOBrK05+j787j7BSQFJkdDDBSwdGpPcnr169VHUO9wLVotWCjz6xMfnxKOlPHtIGVKYf46tLM\n4tq4uutZNrFr79q5WQMdVcVZ11EFaSHBgQEBgU/CPlLlXMOZHN767d4trHHz3e8ieH13x75T\nkXwhAJg6D6nq6QTB1JNjVlY9lx1z/G9+0RodFrfhuLm/DnOzKX417un1Hb+ficsTA0BBWtDv\noVN+bYvf6pqXmZlZvRNzy69/gBBCCKkxBtt0wASv/uOmfoqKiIiISk7LzsvLEwNLR0dH38TC\n3r6ZQzNrblnlwRGqJdyMNMLySZqmr3zIWdCsjOdUEadCZA2mZuPuBmWXsxIEvZQ1NAw7KihO\nVE9gkh6hasKF3Ui9Ya0I5aMlGX8cO3Q7MDQjtwoLuwHXdlcdmf1o+bGvMvRMprzzu0tl3ZA8\nUkgpADA1Gsn/RTVnMwUkRZHJiowLoZqnYWj+g2HZ8+h1GoxftkjJ4agPmsoPfxLkHxDwKOSd\nkCojN69jbtupU6c/r54EAIKhixn67xR6aduG84/KmwZRzMWlbW5mRsrn+ExRUbaSIJhdB45s\n06J58+aOxlxcO1WJmLP/yhpMDm/d4V0t9DglX23cYfDOw3Zek1ckkxQAvDoTCm1/UkGU6Gss\nrpGRDgsAjLTweRqq7RYsWKDqEBBCaotgaFk3c7Zu5qzqQBCqMqeeFnA8FwCe+fjSB34u9aCK\nlmQefZMua+tZjyrnMZb07LWimpE8dzuFRYrqBbypQKiacGE3QqgG0VT+7/O9HibkVeNcDVyo\nVkURh0+JpDQAaPGa/zxzXJsfbHgGWqoOSp1pMwlSQkvFaTSAnFl6vpgCAIKB/18Qqt9occyr\nJ4EBAYGPXmSUtWiVa2rj1qlTJ/dObWzNAUCWpEffKebW9rXngov/ZLD0mrcwKLPnqlVrAICW\niqKeB5w7fuJ1kpCmqY8i3oL2ZWz0gL7194ccWaPRoCWlMvQybB3HxcObLDz/AQCE/L8AMElf\n8/bu3Vvh63ROWkpyclLCp/B7D0IKpDQt1Rrx6+ZeZS26Qqi26datm6pDQAghhGody58msU+s\nFNN0XuL1dZfarB3VpuSrr06s5pNF954Oox3KfIe4u1ue5RZtTTWoj5VCo0VqD5P0CKFa59y5\nc7LG4NFjtXF9sIpgrQgl+3x/c8kMPZurzzPSlfPbz8a13VX05+tMAODotdt/cKUxFuNVvA66\nnD8zRVJJ5r0MUW8jzUr7k7mPBSQFAGztloqPDiFUe82aOCYxm/z2uKZR446dOrm7d3K2t8Kf\nwJolyni0/FhRhp5gcvtOmDGkTxeeVkVr4gmGpkP7XuvbuV/yXnj+SfLHe7+vNTFbO6q5UuKt\n22IKJLKGR5+G5fWx+qkHnP8AABLRJ+VEVd80atSosh6NmwMADB47KvryiT1Xg+L2L/PM33Z4\nqJ2+EsJDCCGEEEI1i81tMaeD6e4nAgAIPbfm109DBnRxdrC3pnP4z++dP+pXtESewTL82cno\n29PjHp1dcviZrK1jNdRDv+x6+KiU5KREcU08g7WyUrdZEZikRwjVOpcuXZI1eo4cg0l6VcFa\nEUr295UYWcOh68gZEwbbmuB2xQoULhQDgNOcmZihV46eHmZ/+sYBwGUf/95rK7+2vD1zRtYw\nboMXIlS7pKcXVb0zNDau9uWDpnIXL10va2/fvr0m4lJbpTL0HIMGHd06dXJ3b+fYEC/fCnJ7\n3QFZsRmCqT3D+2A/e3nTkASDO3rZnkyvyXcT8l6eXxv809lOhpXPyqrnUsVSWaOVDru8PsXz\n1WipSBkxofJpmthNXPS7Tu60k6/Szq5c2+7MjkYauKcDQgghhFDd0+W3dXcnzYvKFwPA+0e+\nOx/5ftvHZuBSM07RfSctEWVkZHyOeffo71t/hnyUHSQYmtPXjVJazHXdqrlzauR9bt68WSPv\nU3tgkh4hhaDIQiYHZ1EpCk3lrl67TdbesGGDaoNBqEYE55AAYOg0buvC8rY7QjWmUEoDwI8O\nuP5JSRoPHc2+vk1M02mh+7dc1V88zLWC+Vf85xfW30uUtX8aa6OkEBGSz5QpU2SNo39c57HL\nSBPT0oKTpy6W6vwNSVRUlELiU18Ek9t70i8zBrXH2ZsKReY+O/spV9Zu57lN/gx9EYIzZeOc\ne5O3SWny0Lo/Ou0eV/MhqheKpmUNnfK/2QwWTtysVRgDli48PWalRPRh59VPu8c1VXU8CCGE\nUM0bOHBgzb6h+iXVUF3H5Fht3Ld67fyNb7MLy+ygb9tr48T/at0n3F3pdSS6ZAeCYPSYuaUr\nD3dpRN8Lk/QI1QBakvmvf3BYWPjbiJis/HyhsEBM0bLxB5kbcs0/183DvaFuucsjUNVJXr9+\nreoYEKpJORIpAHSZ2x+zD0pgq8UKzxdLaFXHUW9w9N2W9miw4UECADw+vWXqM49ZEwc1d/g6\nAU9T6fxPgX5XTt96LEtaGDpMHmrOVUnACFUfLfL1LZqDX36SHlUZTQnvHt/4+IFT165du3p0\nbmKCS7QVIvmvS1KaBgCObrtlP5VbgL0CmoZuk631jsdmZ8de8ksb1g//TyG1w+a28NDXeJgl\nSrp/H8bNUnU4CFWB4P3zf5+HR0VFfU7NzMvLE0kYurq6ekZm9s0cmzu7ujqpW/FYhBBCqAIa\nRq02HTtw9/wJ33tPBPni4uMMtmHPERMmjOjOZZT7jJalZTF01vLxHo2VEilSc5ikR+h7RQb9\ncfDwhdiy9ssEAKrw4/kjZy8eP+Exesbcke64+gepB6wVUeMaaTCjCySNufi7rAz9bPTCw9Jf\nRGQPcMPkgZK0m7N9YILnzcgsAMiI9N+03J9gaprqFJX5XfrLnPj4pDySKu6vod9y/fpBqokV\nIVRrNDbWjEv/r8R3VsJb39Nvr5850Lj5j926de3i3s6Qg2Xva1Lk33xZo+HA8azq3ra4jmpy\nfMtrALj7R3y/mXY1FRtCtYetJushAJn3FACT9KhuyIz233PwzPOY1FLH83Oz+EkJ0eHPb105\nbWzjPMFzfjcHQ5VEiBBCCCkfg2PSb/KifpPIj5GR/LSMfIptYWll1aihgWbZWxoRBMGzbt6+\nQ8eBQ3qbldMHlWfOkmUGuOtoWTAZgNB3CT23au2lypd0S6nsh+e2v4tJ2b98eLUfeCGkKlgr\nQgm68LjRcTlvUgq6G+DsB4Vr4zWU4Xn03ZHToo6/aRJ4UVYGgsGdumWP0YFtJ++HyY7QlEiQ\nXfTqu5iEkp0N7bstXzm7Md7wIFTv7Tl+4VP4E3//gMCgkDRR0TwemqY+hT06Hvbo5D69Vh07\nd+3a1c35BzZey2vCo4yiYo/OXc2r/Sb6Dm4ArwEg7dlTwCQ9UkexhRIAoKk8VQeCkFzeXd+1\n6oS/mK6kjFh6bOjvS6a9mbJxweBmygkMIVRrfefWohH/XLzwzzv6y2WHIPDWHtVuBMe6WUvr\nCruYd154wEXDwMBAWxMzqtXUpn2HMjcNRPiVQqj6Eu77FGfoCaZup+4edrY/sMPOHwziF/dh\ncZu1sNIOS8wHAP7T08svNN821qHst0OoVsJaEcrhOtX5yGr/53uv03sm46eoaFyLARvHPlt+\nLmjRLoftC/tjnl45CKb+UK9NHbs+8r15659nESKqjAeFJtat+w0cPLCbM+bbEEIAAASzSQu3\nyS3cJs3OD38a7O/v/yjknfDL1UMqyXkZePtl4O29+lZuXbp27dZVtcGqgaQvFU1a61Qw+ZLQ\n1KyoDg1bs2g3EzI3BGBCjQWHUO1A5jz7J6sQABgcC1XHglDlUoIPLTvhX5wq07W0d2lhy+Px\neKY8XbY4hc/n8/kfwkMiEnMBgKbF/5xYpmt2eKorT6VRI4RUrFWrVtU7sTAj6rjP7ruhicVH\nuJatPRfMr6G4EFIZjr6Vlb6qg0BqCpP0CFUTJYpbfeihrK1v12XRb7NbmmsBQIzAt2Q3NrfF\npv1nHl/ctOXCCwCIurI2ashZey38p4fqBqwVoTQmrReOtHt5Ofra8uON1k7pqoFpYwVrPmr9\nwkLv3/84OvFtwLAx4wZ1ba2Jc0yUwtzJbZaTmycl/Bj5LjYxLS8vr4CUauvo6hny7BydLA1x\nAwKEUBkIpnaLjr1adOw1W5j6NCggwP+fp+8+S7+kHMjsxH9unv3n5lnZnzRNFkhprfJ3EETl\nyRQX7UJiWH4dQoJpcPny5QrehGAZyBoUya+gG0J1UWFm1L6VuymaBgAtox6qDgehSkglaRt9\n/pRl6Dm6P0ye79WvvXVZv470x2d+e3afjMkjaVrqt2vLUJedhnhjjxCqEpp6dvv4vhN+mZKi\n8STB0PQY6ek5uisOyxFCqAKYKUSompIe7EsXSwFAQ7/dLu+FJhXsqEGwXMesmf95xu9BfJoS\nHrqVsHNkxQVUEKoVsFaEchFjNnsLfl3sf3335BD/ieMHOdpYNzA3wsSxIly/fh0AQK9Zr5Yf\n7r6OPuez5vwetpGZubm5uYE2p+JzlyxZoowQ1R3B5No4tbNxUnUcCKG6hsk17dhreMdewwtS\nYwMD/P39A97GZ5bqQxUmjBs7vb175y4eHh2cGmFBPfnpsxhpYgoA0sXSBpxqFialxIKiFoGf\nPaoDLly4IFc/aWFyfNyb5y8zvsxlcZz4owLDQqgmpATvihNRAMDStF63f4uTfnl3OoR1+/7e\n+xv9MmNNvIiSiD7sfJyywb36+54ghOqb/ITn+37fExz937Dc0L7z/PmznBtoqzAqhBCqEzBJ\nj1A1Pb4RL2u4L/aqKEP/hfuMCb8HbQeApAchgEl6VOthrQjlY3KsBgzp6L/7Xn7iqwNbXwEA\nwWDKM+HY19e38k6ohOPHj5c6QtPidH5COj+hzP4I1X4bl/xWzpWXKm798ssvlb7Pzp07ayok\nhBRKy9Sm13CbXsN/Tot97R8Q4B8QHJ8hKn5VIhT8e+/qv/euapo06dzZo4tHlxZNjFUYbV3h\nwGUFZ1MA8CRD1Eq7gor3FSGznskaTI5ljUWm7tYsnF/umlX6v8v43LlzK36fPXv21FxQ9YW8\nSfr/s3en8VFVBx+Az2SSAIEQUDYXSkUFBVeKK1KRulHfolLc96UqiIIr1q2otSgoirjvoojg\nDtKKWEUBcUGtBQEtioACIhrCEsIkk3k/DKZqWUJIZkjyPJ/OvTn3/v7ya7PM/95zfi6neZfL\n9rceOFu6j577Kjno0PfP62/o18putMe1F/3mvMHvhxDmjv4odP59VccDaoBEaeE/R97/4LNv\nFZWuXeMqI2urP5zV58yjOnrnBKA89ChQQW8VrAkhRDLqnNWucXnmZ+d1bpY9ZEksHiuYHMLx\nVZwONpe1IlLvg8evvemFf//0TKI0Hl/fbKhB4kUrvvthVd3chnm5Of6Qr5iv5szZ6Jw55ZgD\n1U6T1nv2bL1nzzMvnDv93YkT33x78offF/33h2fR0q9ee+Hx1154vHGr3Q45+OAzex6Rxqhb\nvgOa50wuWBNC+HDkl+HKCu5F+s3Yj5KD7Nx9Ky1ZTffN/HnlmTZvXrmmUdUa73TQ9X+92OK9\nbPkmLFkdQohEoufvW65nSprtf0FW5IPiRKLw2wkhKOmBjVg6682hdz7wyaLCsjMtOx7V7+Kz\ndm60kaeCACijpIcK+jZWGkKI1vlVbrmfDGyRFV0Si8dji6oyF1QOa0WkWMEXw//64vR0p6gt\nevfune4IhBBCrGDe2NHPjHv746UFa/+qz8pttufe+/z+jyd23CEvvdmAaiYS3WGPTjvs0enM\nC1dOf3fSxDcnTp42u+yFnhBC/rwZLwyfoaTfsDY9fh1uyQ8hfDft4e9L7tq6AhsSJ0pGvb12\nX6Sm+3eo3HhQFbp161buudGm27dqvePOe+7a2tuBVAtfr4mHEKJ1WjXNKtf+IxlZTXaoG/18\ndUk8ZoExYENKY0tfeuTu4a9+XJpY+/t2Vk7Lky7s27Nzm/QGA6h2lPRQQfWjkVhJorR4aSKE\ncv6Fvrg4HkKIZNSr0mBQKawVkWLv3DMhkUiEEOo1a3fCyd13/dV2TRs38OlfFTnyyCPTHaHm\nixXMfWXM+A8+nLHo+x8idRs1a75Nx4OP/H3XjvV//FS78JtJF/cdsiT2s9Uiilcsmfb2uA8n\n/WO/4y7786md/V9gozp37pzuCLBliUQb7NGp2x6duvUuXPLeWxMnvvXWB7O+Lvv0kA1r8ptz\nc6J9CuOJeNG8m56aeeeZ7Tf1DkumDvlgRSw5PuyYlpUdsKb53e9+l+4IhF69eqU7AlSVhpkZ\nS4vjidLCjU/90erk822RCu54AtQG894fe+ewJ74oWPsrXyQSaXfISRdfcNw2daPpDQZQHSnp\noYL2y81+Nb+otCR//A9FR25Vd6PzYyumJquIrPp7VH062FzWikixMQtWhhDqNOr44APX5Xk3\nh2pu3qTh193xwrKS0rXHBSu///brWf/+4PnRHQfcdtUuedklhTP/fOkdv2joyyQSpe+OHnx1\npNHAU3ZPXejq6Yorrkh3BNhCZeY069Tt+E7dji9c8sXbb701ceLEmQuWpTvUli5ap+VVR7a8\nftz8EMLcF68f0f6+U/bZhF231+R/POCOqclxg+2O6d7Eo8kb0bdv33RHAGqyHepGlxbH47HF\n/1pVvFf9jffuJYWffh0rDSFk1fMuLLAOJavmjbh76PNT/ruNWt0m7c7p2++IPVukMRWwJbv1\n1luTg8blWKm3dvLvAhV0WJfmycHouyaWZ/6nTz6ZHGy9tzc4qQaSb7sm14ooJ2tFbI7kUxH7\n/fkiDT3V3Q+fDO972/P/beh/ovDbaddeeEN+SWLi4Nvmri4JIUQiGbt36Xba2b3697/07FOO\nO7DtVmWTZ46+/q1la1KXG6ihcprteORxZ99yz/BH7rgx3VmqgT3Ouu5XdaMhhESiePTf+o54\n8/NyXrh68cc39xuYXFo5hHD8tSdUVUQAyufQ1g2Tg0dGzizP/M+efSi5ulvDHcu/DQRQSySm\nvz6i95n9yhr6SCTrgGMvePihgRp6YAN2/VGWD7zXw5v0UEGtepyY9dKg4kRi6Uf3Dnwu78o/\nHrCBZm3xtJE3jv8mOT785NYpilj9/bX/5ev5JvXfly8vvfTSjd5nyJAhlRWp9rBWRIptlZWx\nJBbfe5ucdAepgZYtW/vqZCSSlZdXP71harxEfPkNN79UtrJ0tG7z3fdo03L7rVctWTh39r/n\nLi2KLZ9+9d1Pf/vR9yGEaJ2Wl9x042932fq/159wyrSxd9/40OshhEQiPuL+mQdftXc6/juA\nGqjpjnulO0I1kJHd/IarTzx/wNOx0kQivmrUHZdP++DYM0/osWervPVdkogvn/rqCw888lL+\nj49n7XRU/2O28wMXIM12PfU34ZPxIYT5Y296eve7T95vQ0Xakg9H3/Di3OS4wym7pCIfUE0U\nfffpw0OHvvbvxWVnGv56vwv7XXTAj08CAVBhSnqooOy8Tlcduv1NExaEEKYOH3jO+116nX70\nbrv8vIBPxL9f/NXb454dPnZqPJEIITTe5cweLZRw5fXVnDkbnTOnHHOogMO6NH/1xXkhhNF3\nTTxywMaXf7BWxGbq2qjOM0sKvy5a9+rfbI7TTz89Ociuv+dzI28KP1lqqQL69+9fObFqqCXv\nDp1bVJIcb71nt+uuPLd17tqlNRPx5a88fOtD46Z/88ao5Jl9L/vLzxr6EELI6PiHiy/64F/D\n/rU0hPDDjFdDUNIDpNTWe51w5yXL+wx5JfnE1ReTX7x+yku/ar9Ph913a99u56aNG+XmNogU\nr16+fPmSr7+YMWPGB5PfXVhYXHZ5kz1PHHRep/TFB2CtRm17Hdps0utLChOJ2Ki/9Zrz+9NO\nPubInZr/8iOp1Uu+GP/yM8Nfeb8kkQgh1Gv6u967NEpHXmDLk4hNefGR+54cvzy+9lnMjGju\n4af2PrdHp2wvxQJUBiU9VFzHCwd3X3DBmNnLQgg/zJ5489UTI9G6TRus/a3lqksvnD9/4cqf\nbLhbJ2+PG288Oj1ZYRNZKyLFDjm13TNDpr0zYvoZl+2X7iw135QpU9Idocaa8ezahZEz6+00\n+C/nN/nJjlORaMM/nP/X/H+f+tyCFSGESCRydocm67zJAed3Gtbr5RBC8Yr344lgCwi2QJu3\n2I/nsdjSbX/wn+5vuO3AwY/OXVkcQkgkEvNmvD9vxvsvbuzC3budd+35R2X6vs0W6aSTTqrc\nG44cObJybwiVLeNPf+s7o/egxbF4IhGfNu7xD/8+vFHTbZo3a9a8efN6YfWSJd9+++23i75b\n9t91sLKbXXzzn+yNCoQQls99756hd0/9sqDsTPPdD+vb90+7Ndv4cpsAlJOSHioukpFzzsBh\nW9036PHXpifPJOJFS3781WXmnAU/ndy4bderr+3dqm40xSGro86dO6c7AtaKSLVtDv7zH146\n65W3b332dw8et9e6m0vY8v3z28LkoOXve/+0of9R5P967f7c1e+EEEIku3n2uj8ArLf1wSG8\nHEJIJHSZbKEs9kON12Lvo4Y8uteoRx4b9/oHK+KJjc6vv2374045t0fnHVOQDSpm1apV6Y4A\nqVav2QG3D+p70w33zM5fE0JIJErzl3yTv+Sb2TPWMTk7r02v66/v5C96qPUS8RXjn7z34Rff\niZU9wVOnxR/Pv+iUQ3f3KCZA5VLSw2aJRPN69Ln5wEOmvDhm7Jvvzypa1wdYTXbY66jux3Tv\n2iHLLzLlc8UVV6Q7AiFYKyLFIllnD7zh+8uve+ov53/2+1PPPe0PLXL8jK4cbdu2TQ4y622f\nHPTu3Tt9cWq4BWvWfk/ocMS265zQoNXBIbwTQkiUrlnfTTIy/7sGvtfoAdIlWne7ky+89vgz\nFv7z7+Pf/9f0mbO/XPXjrvNlMnOatN9rr30P7Nqt825eoAfYAuW27nLLw+3HPTNq3D/eXLiy\neJ1zsnJaHNztqBNO+r/m2V4sAcI15587Y8nqssOm7btefOEprRpkFSxbVrEbNmpkEw2AdYsk\nEht/KB4oj0S8cO7smV9+s3TlypWrY6X1G+Q2bNysTbv22za2ChDVVSJe8OJP1orYgORaEW3z\nslOQqkZ66aWXQgilJT+8+PSYgpLSSCQjr+l2LbdrWp6HewYMGFDV8aCcunfvnhzc8swL7db1\noEk8tvDYnhckx2PGjFnnTRLx/KOPPWPDcyAtBg8eXLk39GAi1UgiXvj1goXLl69Yvnx5caRO\nXsO8vEaNt9++hW6e6mL48OEbnpAoLXr+hVeS4549e270hqeffnolxIJUSZSu/uqzWbNmfbZo\nacHKlSuLQ2aDBg3ymmzTtu2uu+y6Q06G7+bAWmV/11cWf9cDrI+39KDSRKI5rdt3bN0+3Tmg\n8lgrImUeffTRnx4mEqXLlixYtmTB+ubDFq5J1rqXss+I1ktxEqhEOnVqs0g0p+Wvd0p3Cqi4\njXbqiXh+WUmvgKfmiWTU22HXDjvs2iHdQQAAWEtJD8BGtGjfqVf7ThdYK4JqEACI8AAAIABJ\nREFU6Lvi0qbraYsroGjJ9LrNdq+suwEAAAAAUDsp6QEoF2tFVKl+/fqlO0LN1O+Ku4cO7rO+\nt7o3yb/HP3bbAy8Pf+Glzb8VAADAFinx+ezP2uyyS7pjAGkzdOjQdEcAqC2U9FA51qwuXNdC\n4OuWk5NTlVmA6qdr167pjlAzrfjy9X5XhDs3r6cvKZz3+O23jPngm0oMBgAAUBVKY4U/5OcX\nJeo2bbpVnegm7EtXGlv66hOD7h872wbSUJvtsMMO6Y4AUFso6WGzLPho/MhX3p7zxReL8wvL\nf5W/dgBSZvmXr/e7MnLnoAsr1tPPf++lW+8YvqCwpNKDAQAAVKL/TB37zJgJn8ycF0skQgiR\nSHSbXfc/tsdxR+zb+qfTSgq/+/dH//5macHKlStXrFhZtCa2Zk1R/ncL5321YEUsnqbsAAC1\njpIeKu6zFwdf+fjkRKLcb9BD9ZWITZr8Xnkmbv2b/dvlZFV1HNgky7+Y0O/KsKk9faIk/4X7\nBj8xYUbZmawGraogHQAAwGZJJGIv33H5oxO/+vnJ+MKZU+6ZOWXayddfc2LHEEIivvzZO28a\n9fbnxT7LAgBINyU9VFBR/sRrNPTUSImST6eMn/jOBwsix91yxdot6BOlqwYPHlyeq/cd+mS7\nHfKqMl9tFI+tiWbXSXeKaqnXoa3ve/3LEMLyLyZc0j9yx6DeTTLL1dPnfzZx0K33frq0qOzM\nDgf+8cp+p1ZV0Bpn0usTGq7rnzpRuqpsPGHChHVe+9M5AADARs148upfNPQ/9d7TNw7Z/qFL\nD2o+vP+Fz39esOFbRSKbsEI+AAAVpqSHCpp1/4jYjw19u0NPO+nw3/z619vnbMpeX7AFWvLJ\nP26754nZiwtDCE07HLupl0ci0XXWcmySREn+OxMnT58+49NZc5atWlVYuLo4nkhukxFb8cEL\nE1d06tK5Za7lCsql28V3ZEQvu2f8nBBCwZzXLrkycuegXltv8H+licSaN0fcdc+zk8teLolm\nNzvuwitOPqRtKhLXFE/cd89G5wwbNiwFSQAAoGYrKZx5w/P/KTtsvFOHfdq22qZ53ooli+Z/\nNXPajAUhhEl33XRY9q5lDX0kEm24ddOmTZo0rJcZj5eWJjLqN8xt2DBvu9btfvObDun5zwAA\nqGWU9FBBr36anxzsfvrAm3u2T28YqBQfjRp009NT4htbH2KffX6zIv+Hb7+en1+0drO6SCR6\nSPfj9959t912a7d1TrTqk9Zksyc9f/+DI78siK3zq/E1c59+6KlnHn2sy4nnXXR8Z88FlUPk\niAtvz8i4Ytg/Pg8hFMwZ3+/KcOeg3ltnrvvfrnDxv4bdcvuUL//7cknzPY644oo/tcnLTlFe\nAACATbHglYd/3IQ+cvjZ11zQfd+f/qm4YOrTF98yKl40/9qbFyTP7NT52D+dcdKuzeqmJS0A\nAElKeqigmatKQgjRrKZ/PrZdurNAJZgzdvCAEZPLDjMyG+62e6N1zrzuur+EEBKlRZ9Ne2vE\no499srAwkYjPLWrWb9/dU5S15vpoxHUDRn2y0Wml8YI3RgyeOefbe6/uuZ6umZ+KHNZrcDTa\n/85XZodkT98/3Hnr//b0iY/GPXz7w+NWxEuTxxnR3G5nX3LeHzr6NwYAALZYn7y+KDnYarc+\nFx697y++2vKAk/sfNPFvkxYnd2xsvMsZt1/xR3/jAACknZIeKmh1IhFCqNP4dw28ykr1V/TD\nlKsfWdvQR6I5vz/tvGO7Hdys3obeiY9k1N1l3yNu7Nh51C2XPP3uornjhw5o0nzACbulJG/N\ntOC1u8oa+kg096DfdWmz085Z05++f9LisjmZObvuvl396d+sCiEsfm/41SN3G3TyLumJW81E\nup43KCPjqiFjZoYQCv4zvl//MPTW3lv92NMXr/jy0dtvHffRorIL8nbsdFn/i/ZqkZOevNXW\niBEj0h0BAABql8kFa5KDvc7db50T9jjt4DBpVHJ80MVH+BgLAGBLoKSHCvp13czPC4vDxhYG\nh2rhlRvuKypNhBAi0frn3XL/UW3zynlhJCPnxD8Py+9z5j8WrPz46QGTD3/qoMZWzKuIeNG8\n6x94IznOa3PwFZf33qNFvRDCnCUv/nRaVs7uN9/75NRnbh448sMQwmfPDvjs2Kfa1vPTvFy6\nnHtLNOOawS9NDyEU/Gd836sid93Sq3FmZO6U524dOmJh2fYNGdkHn9Cnz4kHZ0d8eLXJcnNz\n0x0BAABql0WxtYuBHdR03X+P19nq4BDWlvS/3drf7AAAW4SMdAeA6ur329UPIaxZPjmmpqea\ni614/6mvViTHHS8YVP6Gfq1I9ll/vTAjEkkkYg/c8Hzl56sdFk645/vi0hBCnbyOd9xySbKh\nX7dI5gEn/aVv5xYhhES88IGxC1IWsgbofPbN/XvsmRwXfP7qxVfdP+rOK/veOrysoc9psecV\ntz1y6UldNPQAAEC1ULZjV/Psda+HF81qXjZuFPVpMADAFsG7d1BBHS88MvR7Jr7mm3veXXLJ\nAc3SHQcqbtHro0oTiRBCdm7HPx/esgJ3qNu405k7NHz0y4KCL0eNW/rHo5p4MH+TTX15fnLQ\n+co+TTI3/qFJ5/NOGzppcAhh4YQPwvE7VG24mqXTmTf9OTpg4LMfhRAKPv/HiM/Xno9EMjoc\nde6l5xyVaxMTAIAaZ/jw4RuekCgtKv/kEMLpp5++uZmgsq33UeNI1n+H/twBANgyKOmhghq2\nPvnyrpNue+Obt2+/7je33/7bVg3SnQgqaPY/12553rL7qZkV/XP9gBN+/ejAT0II/3h+/lHn\nt6msbLXHWwVrQgiRjDpntWtcnvnZeZ2bZQ9ZEovHCiaHcHwVp6tpDjhtwLUZN/511LSyM9l5\nO597+ZVH7tl8A1cBAFB9Pffcc5U7WUkPAABsDgscQcV1vnjIqQe1jMcW3d73zBvveeaLH4o2\nfg1seab8sCY56HBIiwrfJG+XTsnB0vffq4RMtc+3sdIQQrTOr8r/GneLrGgIIR5bVIWxaq59\nT7n++pP3LTvc+f9O19ADAAAAAJAa3qSHjbv11lvX+7XEdvUyvl5dGps2/ulp45/OyWuyzTbb\nNNu64Yaff+nfv39lZ4SKWxhbuxv3Xg2y1j8rUrfuhhaxz6rbOjmIrfgghNMqLVytUT8aiZUk\nSouXJkIoZ0u/uDgeQohkrH/3ejao44nXDsgYOOCpqSGET0dcd2vWzf177J7uUAAAVImGDRum\nOwIAAMB/Kelh46ZMmVLOmYUFS78oWPpFlaaBypZfXJocNF7/VuiRaKPRo0dv4CaRzEbJQTy2\nuBKz1R775Wa/ml9UWpI//oeiI7fa0PMQSbEVU5fE4iGErPp7VH26GqvD8X++KXrrdU9MCSFM\nefyaQeHmK/X0AAA10VNPPZXuCAAAAP9luXuA2i7vx27++x/b+gqIFy9ZO4r4yVIRh3VZu9b6\n6Lsmlmf+p08+mRxsvfeRVRSpltjzj/1vPqtzJBIJIUx+/JrBL85IdyIAAAAAAGo4b9LDxvXu\n3TvdEaAK7ZKTObkgHkJ494eiPetvYMX7DYktez85iGZvW2nJapNWPU7MemlQcSKx9KN7Bz6X\nd+UfD9jA3vSLp428cfw3yfHhJ7dOUcTqacKECRuf1GCv37X+5PUvlocQJj12dcnqP3Vsut7F\nDA477LBKjAcAAAAAQC2kpIeNO/JIL6pSkx3QPGdywZoQwocjvwxX7lmxm3wz9qPkIDt330pL\nVptk53W66tDtb5qwIIQwdfjAc97v0uv0o3fb5ecFfCL+/eKv3h737PCxU+OJRAih8S5n9miR\nk5bA1cWwYcM29ZKpzzw0df1fVdIDAAAAALCZlPQAtV2bHr8Ot+SHEL6b9vD3JXdtnbn+N7jX\nJ1Ey6u21W9E33b9D5carPTpeOLj7ggvGzF4WQvhh9sSbr54YidZt2mDtHgRXXXrh/PkLV8bi\nZfPr5O1x441HpycrAAAAW5jLzj1ro/vPlWfOE088UTmBAABYPyU9VNDYsWNDCLmtO3dp36ic\nl/xr/N8XxOKZ9Xbsdmi7qowGm6bJb87NifYpjCfiRfNuemrmnWe239Q7LJk65IMVseT4sGNa\nVnbA2iKSkXPOwGFb3Tfo8demJ88k4kVLCtZ+deacBT+d3Lht16uv7d2qbjTFIQEAANgyFeTn\nV8ocAABSQEkPFfTQQw+FEFp1b1v+kn7e808+snhVVs5u3Q79W1VGg00TrdPyqiNbXj9ufghh\n7ovXj2h/3yn7NCv/5WvyPx5wx9rVwRtsd0z3JvWqJGXtEInm9ehz84GHTHlxzNg3359VFE/8\n75wmO+x1VPdjunftkLXpSx7UQiNGjEh3BAAAAAAA+BklPaROrDQRQihZMzfdQeCX9jjrul/9\n84L5RfFEonj03/qGi2845ZA25blw9eKPB/Yf+PWatWuwH3/tCVUZs7Zo0b5Tr/adLogXzp09\n88tvlq5cuXJ1rLR+g9yGjZu1add+28Z10x2wOsnNzU13BAAAgCp07LHHpjsCAACbTEkP5TVr\n1qz/Pbnmh7mzZsX/9/wvJUryF858dunq5EElJ4PNlpHd/IarTzx/wNOx0kQivmrUHZdP++DY\nM0/osWervPVdkogvn/rqCw888lJ+ydpN03c6qv8x29VPVeSaLxLNad2+Y+tN3nwAAACAWuSs\ns85KdwQAADZZJJHQF0K5dO/evVLuU7dR19HD+1XKraByff3WQ32GvFL648+FSCTyq/b7dNh9\nt/btdm7auFFuboNI8erly5cv+fqLGTNmfDD53YWFxWXXNtnzxAdvPDnTAuwAAAAAAAAbpKSH\n8qqskr5T/4f6d2peKbeCSrf443EDBz86d2Xxxqf+xO7dzrv2/KPqZajoK25OQWynvOwKXLhk\nxuvNdju00vMAAAAAAABVREkP5dW7d++fHn799dchhKzcZs3L3as12Hrb3Tsfe9rhVq9mixYv\n+mbUI4+Ne/2DFfGN/4Cov2374045t0fnHVMQrGY7tue5PXtfdkrXXct/SWnx0pceumv4+E9e\nevnlqgsGAAAAAABULiU9VFDyxfpW3W8bdm6bdGeByleycuE//z7+/X9Nnzn7y1U/7jpfJjOn\nSfu99tr3wK7dOu9miftKkfyW8qt9j76i3+mtGmRtdP7X08YNGfrYnIJYCGHMmDFVng8AAAAA\nAKgkmekOAMCWKLPBtkccf9YRx4dEvPDrBQuXL1+xfPny4kidvIZ5eY0ab799C918VZj//sv9\nzp528kWXHdd5p/XNiRctHHXvnc9MnJ3KYAAAAAAAQGXxJj1U0OjRo0MIeW0OPWKvrdKdBaj2\nPhj70N2Pjcv/cdGCHTv1vLzvKdvVjf5i2pwpz98x7OkFhcXJw6yclif27nvcb63nAQAAAAAA\n1YaSHgC2CGvyP3t06B3/+Ghh8jCrfqvT+l1+zH6tkofFK756ctiQl979KnkYiUTadz35ovN7\nbvM/RT4AAAAAALAlU9JDlYjH1kSz66Q7BVD9zHxj5F33P7uwqCR5uEvXky/vfdx3bz8z9IHn\nFq+JJ0/Wa9b+nIv7Hr5Hi/TFBAAAAAAAKkhJD5UgUZL/zsTJ06fP+HTWnGWrVhUWri6OJ8aM\nGRNCiK344IWJKzp16dwyNyvdMYHqoaRwwdP3DH1u0ufJw2jdnHhRYXIciWR36vGnXqcenhuN\npC8gAAAAAABQcUp62FyzJz1//4MjvyyI/eJ8sqRfvXT0CWc/lRHN63LieRcd31mtBpTTvPfH\nXH/Lo2W71IcQcn99QN/L+uzbKjeNqQAAAAAAgM2Uke4AUL19NOK6Kwc/8b8N/S+UxgveGDG4\n19+eK/FUDFAOsWX/efXV8T9t6EMIRUu+nj9/UboiAQAAAAAAlUJJDxW34LW7Boz6JDmORHM7\nH/6Hc3pfekHnn+0SnZmz6+7b1U+OF783/OqRs1OdEqheEvFp4x49/5wrx01bkDyxXYdDW+dm\nhxCKCxcMH3x5n5semrOxB4MAAAAAAIAtluXuoYLiRfPOPaXv98WlIYS8NgdfcXnvPVrUCyHM\nGd730ufmhh+Xuw8hhETJ1GduHjjywxBCJJoz6Omn2tbLTFtuYAtWuPBf9985dOLs75OH0Tot\njut1ycldd42v+Xb0PbePnLj2KZ9odpOjz+lzRrcONtDYqAkTJlTi3Rq167TPdjmVeEMAAAAA\nAGohTSFU0MIJ9yQb+jp5He+45ZImmetflyKSecBJf+n79XlDJy1OxAsfGLtgyPE7pC4oUB0k\nEkVvjXrg/lFvFMbXPjzXat+jL+t7+q9zs0II0TrNT7p00IEHvnTb0CfnrSqOx5a+cN+At9/q\n2q/f+cnHg1ifYcOGVeLddum9q5IeAAAAAIDNZLl7qKCpL89PDjpf2WdDDf2POp93WnKwcMIH\nVRgLqJ5u6nP2kKf/mWzoo3W3PfnSwcOuPSfZ0Jdptf8xdz52V8+DdkweLp35xnW9zr77uUlp\niAsAAAAAAFSUN+mhgt4qWBNCiGTUOatd4/LMz87r3Cx7yJJYPFYwOYTjqzgdUM1MW7AyOdjh\ngGMvvfi0VvXX/QM6Wne706+848ADn7t92NPfrC5JxFe9Nnxwn56dU5i0mtl///3X96XS4u/f\n//A/ZYeRSEZu46bNW7TIja759ttvv/1uWcmPWwJFs1uccsGJTTIz8tpsVeWJAQAAAACo6ZT0\nUEHfxkpDCNE6v8qNlndX6BZZ0SWxeDy2qCpzAdVVZr3tTupz2XGdd9rozJ0O6jls732GD73t\npXfnpSBYtXb11Vev83xJ4Re3X3FdcpyzTbsexx3/f7/dKyf7v8uiJOJrPntvwjPPjProq4J4\nbPFzz73z1zuu2qmeX5wAAAAAANhclruHCqofjYQQSouXJsp9yeLieAghkmEDaeCXduzUc+hj\nw8rT0Cdl1m919tXDBl16Uos60SoNVkMlnrp2wJQFK0MIHXpe+dT9txx/aIefNvQhhEi0zi4H\n/t+Au4YPOPOgEELhwvdvuGZ4Sfm/4wMAAAAAwHoo6aGC9svNDiGUluSP/6GoPPNjK6YuicVD\nCFn196jaZEA1dEf/01vmbPJb2rt0OenuR2+vijw1W/6su16YUxBCaLLXOQNOPyhzQ+uhRDr0\nuPLiA5qHEArmvDT43SUpiggAAAAAQM2lpIcKOqxL8+Rg9F0TyzP/0yefTA623vvIKooE1ELZ\nua3THaH6+eDhD5ODnv2OKM/8zr1PSQ6mPzGpqjIBAAAAAFBrKOmhglr1ODErEgkhLP3o3oHP\nTY1vcA3kxdNG3jj+m+T48JM1agDp9PcFK0MIkWhOt63qlmd+nbwujTIzQgirv3+9apMBAAAA\nAFALKOmhgrLzOl116PbJ8dThA8/pP+S9GV+s+sV+xYn494u+ePHhW3rd9Ew8kQghNN7lzB4t\nclKfFoAyC9bEQwgZGfU3tM79z9XLiIQQSmOWuwcAAAAAYHNt8va3QJmOFw7uvuCCMbOXhRB+\nmD3x5qsnRqJ1mzYoTX71qksvnD9/4cpYvGx+nbw9brzx6PRkBbZsZ5xxRsUu3OnMW647ZJvK\nDVPjNYhG8ksS8eLvviyKt64b3ej8+Jp5i4tLQwgZWY2qPh0AAAAAADWckh4qLpKRc87AYVvd\nN+jx16YnzyTiRUsK1n515pwFP53cuG3Xq6/t3aocbRBQC+Xn51fswhVr4hufxM8d0DD77z8U\nhRAefmPh337fcqPzF018MJFIhBCyG3aq8nAAAAAAANR0lruHzRKJ5vXoc/ODA/t3O6Bd3ei6\nF05ussNeZ/Qd8PCgfm3zslMcD6ipMnO2atasWbNmzbaq53m7TXb4EdslB7MevWHad0Ubnly0\n9KMbHpqZHG/3+65VmwwAAAAAgFogknwzDNh8iXjh3Nkzv/xm6cqVK1fHSus3yG3YuFmbdu23\nbVw33dGALd38+fM3+PXE8qXfLlq0cMFXM8ZP+GB1aSJad7sLbvjbEbs2TlG+mqWk8NOzTrmm\nIF4aQsis1+qsyy7/w76t1jlz/rRXbr/t0bmFJSGEjMzGt4x4ZBdPRQAAAAAAsHmU9ABQnRQt\n/Xz0Y8OemzQvklHvjEEP9miTl+5E1dIXL9x4yePTyg63br3XQR123WabbVq0aJETChcvXrxo\n0aLZH03++Mvvy+bse/ad1x7TOh1hAQAAAACoUZT0AFDtlL5w/bmP/2tpZt0d73zytl/ViaY7\nT7U06ZFrBr88vZyT9+px1Y1nHlileQAAAAAAqCWU9ABQ/RQXTj/upGtLE4nWJ9xx5yk7pjtO\ndfXVO8/f8eAzc39Ys4E5Oc3anHJ+vz/ss33KUgEAAAAAULMp6QGgWrrz9OPfWFZUt3G30U/0\nSneW6iwR+/Sdf0758N+zZn226PvlhUWxSCSjTr36W7Vo2bZtmz336Xzwb3aORtIdEgAAAACA\nGiQz3QGgGujevXvl3nDMmDGVe0OgFtqpbuYbIcRWvheCkn4zRLLbd+rWvlO35FEiHivNyNbK\nAwAAAABQdZT0AFAtfbmmJISQiK9Md5AaJRLNjqY7AwAAAAAANVtGugMAAJsstvz9N5etCSFk\nZG+T7iw1TTy2oS3qAQAAAABgM3mTHjbupptu2pzLZ735zMg3ZyYSieRhJOItTWCzrMn/7J5r\n74wnEiGEelsdmu441VuiJP+diZOnT5/x6aw5y1atKixcXRxPJDclia344IWJKzp16dwyNyvd\nMQEAAAAAqDmU9LBxe+65Z8UuXPPDZ4/edec/Pvqm7EzOtntd0K9vJeUCao6RI0eWa17pmkXz\n5/172sc/FJcmT7Q7ff8qjFXTzZ70/P0PjvyyILbOr8bXzH36oaeeefSxLieed9HxnW1UDwAA\nAABApVDSQ9VIxN9/5dF7HhuXX7K2SItk1O1y/AUXnHhIvQw9D/BL5S3pfy6neZfL9m9W6WFq\niY9GXDdg1CcbnVYaL3hjxOCZc7699+qemb5/AwAAAACw2ZT0UPlWLZh2z9Bhkz/PLzvTuO1v\n+/bt1WH7+mlMBdQwjXc66Pq/Xuy5n4pZ8NpdZQ19JJp70O+6tNlp56zpT98/aXHZnMycXXff\nrv70b1aFEBa/N/zqkbsNOnmX9MQFAAAAAKAGUdJDZUqUFv5z5P0PPvtWUenaHegzsrb6w1l9\nzjyqo3WSgQ3o1q1buedGm27fqvWOO++5a2vfWComXjTv+gfeSI7z2hx8xeW992hRL4QwZ8mL\nP52WlbP7zfc+OfWZmweO/DCE8NmzAz479qm29fzuBAAAAADAZvFBM1SapbPeHHrnA58sKiw7\n07LjUf0uPmvnRtlpTAVUC7169Up3hFpk4YR7vi8uDSHUyet4xy2XNMnMWO/USOYBJ/2l79fn\nDZ20OBEvfGDsgiHH75C6oAAAAAAA1ERKeqgEpbGlLz1y9/BXPy5NrH2BPiun5UkX9u3ZuU16\ngwHwv6a+PD856Hxlnw019D/qfN5pQycNDiEsnPBBUNIDAAAAALB5lPSwuea9P/bOYU98URBL\nHkYikXaHnHTxBcdtUzea3mAArNNbBWtCCJGMOme1a1ye+dl5nZtlD1kSi8cKJodwfBWnAwAA\nAACghlPSQ8WVrJo34u6hz0+ZU3ambpN25/Ttd8SeLdKYCqgNEvEVl13xl+R4yJAh6Q1T7Xwb\nKw0hROv8KjcaKeclLbKiS2LxeGxRVeYCAAAAAKBWUNJDxSSmv/70sAeeW7wmnjyORLL2P+ac\nC0/v1rDclQ/AZiiZM2fOxmexLvWjkVhJorR4aSKEcn7LXlwcDyFEMupVaTAAAAAAAGoDJT1s\nsqLvPn146NDX/r247EzDX+93Yb+LDmjdMI2pACin/XKzX80vKi3JH/9D0ZFb1d3o/NiKqUti\n8RBCVv09qj4dAAAAAAA1XEa6A0C1kohNeeG+c8+7pqyhz4jmHnlG/0eHXqOhB6guDuvSPDkY\nfdfE8sz/9Mknk4Ot9z6yiiIBAAAAAFB7KOmhvJbPfW/gJefc+vg/lsdLk2ea737YXx94pPcf\nO2Vb4R6g+mjV48SsSCSEsPSjewc+NzWe2NDkxdNG3jj+m+T48JNbpyAeAAAAAAA1m+XuYeMS\n8RXjn7z34RffiSXWNjnROi3+eP5Fpxy6u3YeoNrJzut01aHb3zRhQQhh6vCB57zfpdfpR++2\ny88L+ET8+8VfvT3u2eFjp8YTiRBC413O7NEiJy2BAQAAAACoSSKJxAZfHwNCuPrcE2YsWV12\n2LR914svPKVVg6wK37BRo0aVkQuovRLx/KOPPSM5HjNmTHrDVEeJ0sJHrrpgzOxlZWci0bpN\nG5QuKYiFENrt1HL+/IUrY/Gyr9bJ2+O2h25oVTeahqwAAAAAANQsSnrYuO7du1fuDTVqwGZS\n0m++RLzgxfsGPf7a9I3ObNy269XX9m6bl52CVAAAAAAA1HiWuwcAaqNINK9Hn5sPPGTKi2PG\nvvn+rKJ1bU3fZIe9jup+TPeuHbLsbgIAAAAAQCVR0gMAtVeL9p16te90Qbxw7uyZX36zdOXK\nlatjpfUb5DZs3KxNu/bbNq6b7oAAAAAAANQ0SnrYuKFDh6Y7AgBVKBLNad2+Y+v26c4BAAAA\nAEAtoKSHjdthhx3SHQGASjN27NgQQm7rzl3aNyrnJf8a//cFsXhmvR27HdquKqMBAAAAAFDz\nKekBgNrloYceCiG06t62/CX9vOeffGTxqqyc3bod+reqjAYAAAAAQM2npAeAlBo3blwl3KV0\ndSXchHKLlSZCCCVr5qY7CAAAAAAA1Z6SHgBS6oEHHkh3hFpn1qxZ/3tyzQ9zZ82Kb/ziREn+\nwpnPLk0+FZGo5GQAAAAAANQ+SnoAoIbr37///55cPPme/pM37T51cvevnEAAAAAAANRiGekO\nAABQPfzm/JPSHQEAAAAAgGrPm/QAkFLPP/98uiPUOttvv/1PD7/++usWuYKwAAAgAElEQVQQ\nQlZus+Z52eW8Q4Ott92987GndWpe+eEAAAAAAKhlIomE3VUBgFqke/fuIYRW3W8bdm6bdGcB\nAAAAAKDWsdw9AAAAAAAAAKSI5e4BgNrl1FNPDSHktWmS7iAAAAAAANRGlrsHAAAAAAAAgBTx\nJj0AUJMtW7YsOYhEsvLy6qc3DAAAAAAAeJMeAKjJunfvnhxk19/zuZE3hRBuvfXWCt+tf//+\nlRMLAAAAAIDaypv0AEDtMmXKlHRHAAAAAACg9spIdwAAAAAAAAAAqC28SQ8A1GRt27ZNDjLr\nbZ8c9O7dO31xAAAAAACo7exJDwAAAAAAAAApYrl7AAAAAAAAAEgRJT0AAAAAAAAApIiSHgAA\nAAAAAABSJDPdAQAA0mllQUFJIlHOyXmNGkWqNA0AAAAAADWdkh4AqI2++Wj88DFvzpnzxXfL\n15T/qhEvvpwbVdMDAAAAAFBxSnoAoNaZM3bIZQ+/lSj3C/RlsuwUBAAAAADA5lHSAwC1S6xg\nytWP/Kyhj0aj5bw2O+I1egAAAAAANouSHgCoXWY9+ERRaSKEUK/Zbmeff8reO7du1qheukMB\nAAAAAFBbKOkBgNrl1U/yQwjZDTvee/+1W2davx4AAAAAgJTywTQAULvMKCwOIbS/8HwNPQAA\nAAAAqeezaQCgdllTmggh7L9LXrqDAAAAAABQGynpAYDaZad6mSGEkkS6cwAAAAAAUCsp6QGA\n2uWo1g1DCB/OKkh3EAAAAAAAaiMlPQBQu+zdp0dGJDLzoeFFCW/TAwAAAACQakp6AKB2ydnm\nD389eY+iHyZdcccrenoAAAAAAFIskvDZNABQ6yTeHH7L0OffzW6y8x9POuXoQ/aqG42kOxIA\nAAAAALWCkh4AqF1eeuml5GDRh6/845MlIYRIJGur5i1atGjRqH72hq/t379/lecDAAAAAKBG\ny0x3AACAlHr00Ud/cSaRKP5+8YLvFy9ISx4AAAAAAGoVe9IDAAAAAAAAQIp4kx4AqF169+6d\n7ggAAAAAANRe9qQHAAAAAAAAgBSx3D0AAAAAAAAApIiSHgAAAAAAAABSREkPAAAAAAAAACmi\npAcAAAAAAACAFMlMdwAAgKrSs2fPClyVkVm38dZbbfPrXQ848MBDDtwzO1LpuQAAAAAAqL0i\niUQi3RkAAKpE9+7dN/MOub/qeMGll3RunVspeQAAAAAAwHL3AADrtWL+tNsv7zPu02XpDgIA\nAAAAQA3hTXoAoMYaPXp0Ba4qLS7KX7rwk2nTFhbEkmei2dsNfurunepGKzUdAAAAAAC1kZIe\nAGAdEqWFb466e+gzU5K/LDXp0O/RAV3THQoAAAAAgGrPcvcAAOsQycjpetKVfzt1t+Th9x/f\nO3t1SXojAQAAAABQAyjpAQDWq33Pv3TMzQ4hJBKxxyZ9m+44AAAAAABUe0p6AID1i2Sf8cdW\nyeHCV/+T3iwAAAAAANQASnoAgA1p2rljcrD628npTQIAAAAAQA2gpAcA2JDs+nsnB/E136Q3\nCQAAAAAANYCSHgBgQzIyGycHpSXfpTcJAAAAAAA1gJIeAGBDSuP5yUFGZtP0JgEAAAAAoAZQ\n0gMAbEhsxYfJQbTOtulNAgAAAABADaCkBwDYkG/fXlvS12vaOb1JAAAAAACoAZT0AADrlSgt\nevyF+cnxNkfulN4wAAAAAADUAEp6AID1+nDEdR+vjIUQIpHss37bIt1xAAAAAACo9jLTHQAA\nYEsUL/ruleH3PPLKZ8nDrffutWuOX5wAAAAAANhcPmsGAGqsu+++uwJXlZasWfb9tzNnfFYY\nTyTPROtsf81VXSozGQAAAAAAtZWSHgCosV577bXNv0k0u9kFNw/csW50828FAAAAAABKegCA\n9Wra7uAL+vTaZ/ucdAcBAAAAAKCGUNIDADXW9ttvX4GrMjLr5jVq1LxVm/32P2Df9q0ilR4L\nAAAAAIBaLJJIJNKdAQAAAAAAAABqhYx0BwAAAAAAAACA2kJJDwAAAAAAAAApoqQHAAAAAAAA\ngBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAA\nAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAA\nACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAA\nAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAA\nAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAA\nAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAA\nAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAA\nAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAA\nAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAA\nAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAA\nAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAA\nAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAA\nAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMA\nAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4A\nAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQA\nAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQH\nAAAAAAAAgBRR0gMAAAAAAABAiijpAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9\nAAAAAAAAAKSIkh4AAAAAAAAAUkRJDwAAAAAAAAApoqQHAAAAAAAAgBRR0gMAAAAAAABAiijp\nAQAAAAAAACBFlPQAAAAAAAAAkCJKegAAAAAAAABIESU9AAAAAAAAAKSIkh4AAAAAAAAAUkRJ\nDwAAAPD/7d13YFRF4gfw2fTQpQtIFREVAbsCZy+oCOqBDRTr2dsJduxdVMRez44Ny6lgV7Dc\neaKISBGQJr23QOr+/tgQETYhkGWjPz+fv2bfzpudwHsD2e+bGQAAAEgSIT0AAAAAAAAAJImQ\nHgAAAAAAAACSREgPAAAAAAAAAEkipAcAAAAAAACAJBHSAwAAAAAAAECSCOkBAAAAAAAAIEmE\n9AAAAAAAAACQJEJ6AAAAAAAAAEgSIT0AAAAAAAAAJImQHgAAAAAAAACSREgPAAAAAAAAAEki\npAcAAAAAAACAJBHSAwAAAAAAAECSCOkBAAAAAAAAIEmE9AAAAAAAAACQJEJ6AAAAAAAAAEgS\nIT0AAAAAAAAAJImQHgAAAAAAAACSREgPAAAAAAAAAEkipAcAAAAAAACAJBHSAwAAAAAAAECS\nCOkBAAAAAAAAIEmE9AAAAAAAAACQJEJ6AAAAAAAAAEgSIT0AAAAAAAAAJImQHgAAAAAAAACS\nREgPAAAAAAAAAEkipAcAAAAAAACAJBHSAwAAAAAAAECSCOkBAAAAAAAAIEmE9AAAAAAAAACQ\nJEJ6AAAAAAAAAEgSIT0AAAAAAAAAJElaZXcAAABIqvwXG1V2FxIj/cTZld0FNlnbi96t7C4k\nxvhBR1R2FwAAAIA/KzPpAQAAAAAAACBJhPQAAAAAAAAAkCRCegAAAAAAAABIEiE9AAAAAAAA\nACSJkB4AAAAAAAAAkkRIDwAAAAAAAABJIqQHAAAAAAAAgCQR0gMAAAAAAABAkgjpAQAAAAAA\nACBJhPQAAAAAAAAAkCRCegAAAAAAAABIEiE9AAAAAAAAACSJkB4AAAAAAAAAkkRIDwAAAAAA\nAABJIqQHAAAAAAAAgCRJq+wOAAAAAECFFRUW/PxNwYT/FM4cXzR/ejRnWSjIj2RVjdSok9Kw\nZVqrXdJ27JJSr2ll9xIAAEBIDwAAAMCfWXTl0tz3H8/78rXoikXrv5WzLCyeXTjtx/z/vBVC\nSG3ZIfPg09N3PSxEIpXRUwAAgBCE9AAAAAD8SUXzVud98mzusEejOcvLU7/wl9E5j16Q2nzn\nrGP7pW2/95buHgAAQFxCegAAAAD+fIoWzMx54KzC2ZM29cTCaWNWDeyT8bfjs0+6IaSkbom+\nAQAAlCGlsjsAAADwh7By1sDIOmpvd9Mmnf7Ung3XPf38KUsT2Lcxd+wea7ZZ148S2Cx/NO90\nbBDZdB2uHFXZHU8GdwHrKZj435W3Hr1eQv/ryoLBPy497v05O788veHTv9R6YkrTZ6d2eePX\nC0YueHvqqtzC6LqV80YMWTX4zHJOwa90BTnzPnzlsfN7d++85y6tmm5dNSOjxlb1mrdqc0C3\nE66+bfB/EvqPTiUa0rZu7E4/5P2Zld0XAADYgsykBwAAiGPplJu+XXnFbtXSy1O5KG9Wv+8X\nbOkuARBTMOHrVfedGgoLSo7MWFFwy6jFr05ZUfS7ID4szyv6cVHuj4tyn5u4vF52av+OW/Xd\nvkZ6SvGG9AVjR6y65+Sq/V+KZGQns/+bpHD1zIeu/ee1g15fVlD0uzeWLlyxdOH0X37+9J0h\nt119yc4H977z/kGHtKlZSd0EAAA2gZn0AAAAcUSL8vsPnVbOynO/+ufi/KKN1wOgwormT895\n5IJ1E/r7xyzd/bUZL09eP6Ffz4LVhf2+Wrj36zPHLc4rOVg4fezqp/uHaJlnVp4ZH9y9c6PW\nFw58df2E/vei0cIfPnim645Nzrx/RNL6BgAAbDYz6QEAAOIbNeDJcPLt5an5Xr/PtnBf+Gup\ntvVZv46/s5yVU7Oqb9HOwB9KNHf1qgfOiq4qXt09tzB60RcLhkxaUf4WJi/LP/jfsx7fr/7h\nzarGjuR/Oyy3ycOZR5yb+O5WzNiXLt+rz92rCovj+cytWvfodWz3ow5p26xxw/o1l86aNnny\n5Ak/jnz0vqcnL88LIRQVrnzion0XLv/0jWv2q8x+AwAAG2MmPQAAwPpaZaeFEFbMuHvEsryN\nVi7M+7X/6AUhhLSspiVLKEOFRDJqllu1TL/a8xeS9+GTRXOmlLy87KuFm5TQx6zKLzr543mf\nz15dcmTNuw8WLZqVmC4myPyvb+l40l2xhD6Sknl8/wenzBk/5JHbTjh8/w47btewXoPtO+x5\n5N9PuuyGRyYumPHCXRfWSiseCt4acPDt/5lfqX0HAAA2wm/yAAAA67upR7MQQjRaeOWLUzZa\nee4Xly4pKAohbN3lXouVAWw50ZVLcj94ouTloDFLn5u4fPOaKiiKnvrxvKnL84tf5+fmvj2o\n4j1MlILVE4487KaCaDSEkJJW6/qhY1+649zGmalxK6dkNDjxskETRtxfIy0lhBCNFtx4RN+8\nP+j6/QAAQAhCegAAgA3tesNpscKPtzy40crv9v88Vuh259+2YJ8A/vJyhz0SXb0yVp66PP+W\nbxdXpLXFuYWXf72w5GXe128Wzp5Uof4lzgdndvvf8txY+ZTnvx3QfduNntJg7/NG3ndgrLx6\n8bB/fDZ7C/bv/4GiNR+//twdN1xzy91PVXZXAAD4KxLSAwAArK9Gs35damaGEFbOfmjYkjVl\n1CzMnXn5DwtDCGlZLW9vV2ejLecuHvevgVf36nH4Pru226Z+rYwqNZtvt1PnAw7rc971n41f\nuNHTy7D0588HXnvB/ru126Zh3ays6i22b3/Q4UcPeGjogvyisk+MFq0e8fqj55x6wsFd9mjZ\nqE5WtTptdt69a4/jLrvtiQmLcyvSJSrXZlwSsz/vGolEIpFIp0cnhBBCNG/Ys/f0OnCPFo3r\nZ2VkN9ymVZceZzz93vh1zij6/IX7Tz6yU4ttGlbNzNy6Rdt9D+1+xX1DlhaUNYfXXcBmKsjP\n+2poyaubRy3OK6robPEPZub8tuh9tCj/y9cq2GBCFOSMO+WVqbFyk4MHPXVcq3Ke2O7s1ztU\ny4iVh1/5WRk1N+NmmfbWgb8bH0KY8/371/zjmA47bFunelbNBs32+NshfS+87aeN3TKr5303\n+MZLD9y9XZMGtTOyqjdp0Wa/Y8549LXPN3KXJqjz+708JYSwcsa7h+zY6KC/n3zF9bfccN3A\ncn9yCCEUrpn5/P3Xd+uyS7Ot62ZmVtumVduDjz/vmXdHxd4d0rZu7INeXJAT9/TNGwBrp6dG\nIpEqdY6MvVw978eHb7yw0647NapTPat67ZZtdjrm9H4vfThuk34QAAAqVyQatfoVAAD8heS/\n2Kiyu5AY6ScmeI7gylkDqze5LFaek1c45cKdOj8yPoSw+51jvunXrrSzZn3cs8lBr4UQmnZ9\nc/p73aukpqwuioYQzpu85IFWtdar/NXDF/e85IHZuYVxm4pEUjp0Pef11we1yFp/QeMxd+ze\n/opvQwhND/tw+rCD1ns3Wrj8vktOvvrBt1fHy6syarQ8b+CL95yxZ9wPXTZx6AnHnDFs3JK4\n76ZlNb3q6eE3HN827ruboe1F7yaqqco1ftARW6LZdzo26DZ6fgihWqPzV8wavNntbPYlMfvz\nro33Gx5C2OeR8Z+esOa8I498YuT6u3RHIpEjLn/537f1LFg96YLuXR/5MM6WEHXaH//DN883\nzoizNLe7gM1W8NPIVfedGitPW5Hf8eUZCflKa//G2W90Lf6XMaV2o+p3jEhEqxXy49177dzv\nvyGESCTy1KwVfbeuWv5zR936z0emLg8hpGe3fuj+/htW2OybZdpbB7bo8UkIYZ9Hxn/5j+3e\nvKV3z2uHFGzwvWJqZsOz7xr6wAV7x+3ee3eec+q1j8/PizMCNNvvjKFvPfjzno1OmLAohHDw\n8BkfHLpNwju/75DJw/b/pct23UYtK36YIL3KDnmrforb2w1NfffeY/peNXphnKf3tj/8vFde\nvven3beO9f+F+atOrFdlvTqbPQDWTk9dUlCUXfuInEXvjHn1piP73Dgzt2DDFnY+6sLXhgxs\nnW3vHQCAPwEz6QEAAOJof805scK4gWXNsXunf3Gc0+OOzmU3OPn5vp3OHbTuV/NVatZrVK9W\naiQSexmNFn3/3oN7dRmwSbFTUf78iw9qe+ngt0oSi0gkvX696iUV8pb/cu+Ze3UfEGd66Or5\n7+zW8bh1s8msGvW2rvPbuQVrZtx0Usc7Ri/alB5RySpySZQozJtz6m77PTFy1r6n9Xvy5fe+\n+9/Il58evH/z6iGEaDT6zu29znn1i9P32OuRD6fU27XXXQ8/98WoUcNef/6CrtvFTl/0w5AD\nzv5ow2bdBVREwYSvS8pDf1mZqEknn89evWB18TVZtHh20fzpCWp48z11X/GU6OpNr9qkhD6E\nsOtVAx9//PHHH388bkKfkPEhhPDRVX87+pqXqrU55NaHX/7iv9//b8T7Tw2+fuc6WSGEwty5\nD13UecA38zc869XL9j/i8kfWTeiza9SpuvZpnumfPXHArqf8Gi+/T2Tni3Iv+dtxJQl9zfqN\nWm+/Xdk/bIlfhl69Y/d/liT0kZSMuls3qlklPfZywnsP7rNDt29W5pV2ekIGwGlvXtLhuOtm\n5hY02PnAK24Z+PRzz9x/9829DuwQiURCCGPevn+PjidOXhMnvwcA4I9GSA8AABBHtcYXHLpV\nVghh1bxnXl24Om6dwtwZl49ZGEJIz2596461y2itKH/BoWe9ECtn1trjtqfeXbAyb9XS+bPm\nL8nPW/XdBy+csnf92Lvzv731jmnLy9/PV/+x7/1rNx5u+rdT3/vi+/krcubNX77k15+HvXj7\njjUzY2+9fVPPXk+OX+/c+7qeNnl1QQghJb32pXc+88uiVauXzZ+9cHneynmvDb6qbnpqCCFa\nlHtrjwHl7w+VriKXRInRNx0+5Jf8a1/87rMn7zytV9eOu3Xu1ff8j36efEKT4jzskV5dnh27\neK/zHpz6zZDLzu7daZddDjvmpPvfm/D8aW1iFaa8eNrq36887S6gggpn/Laa98jZ8YflzVAU\nDV/O/a21dT+lUhQVLHpkzspYudWpxya28YSMD3O/uOGw27/a4cR7Zo4dduXZvTrt0WG3Loec\nev513/068fjmNUII0WjR/ccPWu+sWR9e1mvgZ7FyWlaTiwc+N3HeqpxlC1fm5v3yv+H/7LFz\nCGHZ5CH9flm6RTs//uFuj05ckpbV7Pxb/zV22qKl82b9NOqNsv7I1lqz+ONOJ9yxujAaQsjc\nqt0tzw6bl5OzYPaspatyJ379zun7Nw8hrJz5/r2/roh7ekIGwPycsXsdNzgajfa6beivoz+6\n7apL+/Y++YJ/Xv3yR99PeO/+xpmpIYSlE189pPfz5fmJAACoXEJ6AACA+G48tXWscNsDE+JW\nmDPi0mUFRSGExgfdUzUlUkZTC76/7JdYEJi21XOjPrri1MPrVi2eexdJy+548IlPff7jMWvX\nxX37vfUXGC/Nsin3nPCvibHyUbe9NfXzp7p26lC3aloIoVbj1oedcPn3M0efs2u9WIU3zj9i\n2joT+PJX/TDg++Ltb895/buB/U5uUbu4A+lV6x97/i1fPX1M7OWKGQ//b2V+ObtEYkTzV5VD\nzur1p0tW5JJYV+6CNbtc8+GNJ3Rc92BKev27/vXbOvO1tr1g5OBzf3/lR3re93RsQmdh7ux3\nFv8uRnUXUEFF86eVlMcvKXW+8mYYt/i31tb9lEqxeuFra9bOFN/vpBYJbDlR48Mvzw+pss2J\n3z53cbXU3/3Dl5rVdPAbZ8TKy6ff9bsV6aO5J/Z8IFZMr9pu6Phx917ae7v6sdstpcVuh979\nxg9vXrl/Ejo/f+Qvadkth44dM/jKU3ZsVtbTdet5+qg+c/MKQwiZNff66OdvrupzWL3M2BoA\nke32OuKJjyfddWzLMk5PyABYsGb6vLzCHc8d+vIVR6f9/j8d2x12/qiProsNv9OGnjZo+iY8\n5wQAQKUQ0gMAAMS3U/+LYoWJD94at8K/Ly9e6/7Y2/cpu6lZ74yJFep1GNSzZfUNK6Sk17/4\nkMax8orJ8efhbWjo6QOj0WgIoeHed751xVEb/oKXXn37QZ+/3yQzLYRQsGbq6UOnlby1ZvF7\nsb2EI5H0e49stmHjLXve07x58+bNmzdr1uy70tfvZUtYOefRauXQeKf1962vyCWxrkhq9ktX\n7LHh8drtTygpH/381WkbPJqSUX3v3asVJ09Tfv8MgbuACormFOeORdEwL6fURdE3w9x1Wovm\nLEtgy5shd9mXJeUDa2eVUTMnJ6fs53hyf79seqLGhxDCCS8PzI73aFrtHS+PFaJF+ZPWGQHm\nfn3+iLUrzF/w9vBuzeOMAN1v/fCc1rVK+8QEdv6Ah4Z1a1WjtHfjyl326cVfz42Vz3t7aOe6\nG/y9RNIuef6jtmuXvt9QogbAtKxm795zVNy3GnS+9sF9GoYQotHofRd8UloLAAD8QQjpAQAA\n4qvS4PSj62aHEHIWvvb0vJz13i3MnX7Fj4tCCOlV2t60/UZm47U5/aXRo0ePHj368zdKXbs4\nWrg2TinfTsvRwmWXfFmcGVzy4j9Kq5ZeteNzxxdP7xtz64iS45GU4pWBo9H8V6bFyQNSM5pM\nXesfDTdtU2QqRQUviXVVrd9n26y0DY+nZjQuKV++c524526TWXzieiGqu4CKyi9+TiK/KJqo\nDeljcgt/ay+an5vQtjdZ/vLFJeUmxXO149t2qxplP8fTc8yCksoJHB9S0+ves0f9uG+lpNfP\nWhverzsCjL7pg1ihaoM+Aw9oVMqHp173XM+4bySw8ympVR45vlVpLZRm+tABeUXREEJ2nSPv\n/tvWceukZrV4/ORtS2shUQNg44MHNyv9quj5YPEf4K8fXVZUWiUAAP4YhPQAAACluuac4g22\n771r7HpvzRlx6fKCohBCk8Puyd7Yr1ZVm23fvn379u3bt2lSJW6FNQtH3zj8103q28pZg2KL\n7adlt7yseVmTAne6pP3aU4aUHKxS/6RaacX9PmPXg+579au8xKZeJF0FL4l1pVfZKf6ZkeL4\nLZKS0SY7ToofQiht4wd3ARWVVXzlZKZG0svcYWRTVUv/rbVI5h/oaYyF+QlLWhM4PlRpcEoZ\nO7zEfePJUcX7Smx3ziVlfHT93QbWSIvzD2oCO59Vp3uLrLIefYhr1MOTYoXGh/Yr48rbqd/h\npb2VqAGw3aW7lPFu7bb90yOREELB6invLFqz0dYAAKhE8X+jBgAAIITQ9oIrwk3HhxAmPX1d\nuHvYum+93X9krNDr1j03veGiRbOmTZ4yZcqUKZMmjh/74+gPPvgiFvmX39JxX8QKKanVr7v2\n2jJq5i6dGSvkrfy25GBKeoM3L91rvzu/CiGsWfLNJb06XVGr6f6HHLJvl86dO3fao/22GYmM\nwNg01Rqdv2LW+kvZb1QFL4nfiWz064JNTrk24C5g06TUqFu4oniWebPqaZOX5Seq5eY1flul\nPFKzbqKa3TwZNX+bpD5hdcGBtTIT0mwCx4f0qqU8xFO6L9eudd+hV5x9JUpEUqsfX6/KY3NW\nrnc8gZ3PrNGpPB1ezwczirvU/MTmZVSr0uCkEAaWr8nNHAAPbPz+NWoAABP9SURBVF2zjHdT\nMhrvVSNj5LLcEMKrC3OOqlPWdgkAAFQuIT0AAECpsusd16fB6c/NW7Vm8fDBs1Ze0Lha7Hjh\nmqlXjl0UQkiv2u7G7bYqZ2s5s7994skhw4YN//r7icvWFGz8hDKtmFS8Onfeyh9uvvmH8pxS\nlL94eWG0Rmpx8LjvHSOG1Lnw0gGPzs4tDCHkLp0x/JUnhr/yRAghvVrjg7od1b17j+OOPbjW\nhhuP84dU8UsiCdwFbLaUBi0LZ/0cK3eom5nAkL5D3d+C8NQGLRPV7ObJrHVACE/Hyh//vOy8\nrUud2T87N/4d9ESbOmf+vHi9gwkcH1JSS905Pq5o0ao5ecWL37etnlF25XZV42zrnsjOp8df\nqL9sk1YX/1HXal7WQgtp2W3KbqfiA2DLUpYwKdEqKy0W0i+cuyZspDsAAFQmy90DAACU5bJL\n2sYKD68TDMz+vHit+6ZHDCznXNs3rj95m+Z7XjRg4PCvfyr5aj4lNbvpdjsf2v2EG+9/7sle\nm5YM5S/fnIBqZeG6y3mnHtf/wSm/jhp0wyUH7bZtauS3nyR/5axhLz189vGHNm2932MfTN6M\nDyL5EnFJbFnuAioitVXHkvJBpawZvhlqZKTsUX/thOOU1NSW7RPV8ubJrntsvfTilSq+u3v9\nnVbKY+yqOPdFJY4PkUhmyZ210X8w4z4Pk8DORyJxHgLYeFNF0bWnl1UtEklLKb1GQgbA3KKN\n/I2UdLUwt3CjrQEAUImE9AAAAGXZ7swBscIvL11ZshDtW5cXL7174s27l6eRr68/9Jgbnluc\nXxRCyKy1bd+Lr3n8hTe/mzBtZd6q6RN/GP7mi9de0Ltt7U1b07hay+Jp/TWbXRctt0YZ6/8a\nmFW3/YUD7vnwf5OWzx735vMPX/aPk/bcoWlkbcywYtqIs7vueNN/5m9S36gUibokthB3ARWU\ntsNvC5V3a161ZoIu3b+3qpa5dr51avN2kSplLSeeBJGU7GvaFC/QMvuTixds4rb00aJVby1a\nveHxyhwfImlNM4sfO5iwMq/suhNy4swvr/TBbbu189eXTF9VRrWCNdOKovFD9EQNgONyNvK8\nwg8riyvUbJywB1kAANgShPQAAABlyard7exG1UIIuctG3jlteQihcM3Uq8YuDiFkVNvl2m03\nvupvQc64Hrd9HCtvf+Kg2Qt+fvrem844sXvHNs2yUzZ/De2aOzSOFXKXjdzsRtZVpeH23U86\n+65Hnv/PT9OXzfjx6VvOic3mjBbl3X387Qn5CLaohF8SCeQuoOJSm2yf2rh4/e6q6SkXty/v\nViNlyEqL/LPDb+1k7HlUxdusuGPvPSJWyM8Zf9K/ft6kcxd8239avHXUK3d8OHir4rUKRr8+\ns6x60bwhC3I2PFzpg9s+tYrj8xmvzCij2uoFr8Q9nsAB8NMvF5Txbu6S9yetLg7pD6htQ3oA\ngD80IT0AAMBGXHDFTrHCUwO+CyHM/vSSFYVFIYSmR92VXo5v1xeMvnp+XmEIIb1K22+fu6B2\nKZtbL5uwfJN6VbPVpbHCmqWffLQ0t4yaK6eO/vLLL7/88stvf1pacnDi26++8MILL7zwwttf\nxfnGv3qTHfte9dCX/zow9nLFzIcKkrcmOpupgpfEFuUuICEyDupbUj5nx5qNq25kf+6NOm+n\nWiWNRKrVSt+rRwUbTIjGBz7eo17xNOhPzj/g37PLmr29rmjhynN7PBP3rcodH47fp3gn+IkP\nPVBGtcXjrpuXF2eR9kof3Pbr0yJW+PXdwWVUm/L0G3GPJ3AAHHtr/I+ImfzsDbFCakb9vg2q\nbrQ1AAAqkZAeAABgI1r1uTm2y+z0Ny/Lj4Y3r/gydrzPTbuW5/SVUxbFCpk1961aypy5ovwF\n/f+3aYtpp1fb9fRGxSsAX3jliFLrRfP67t2pc+fOnTt3vnSdj5hw0wW9e/fu3bt331OfL+3U\nhl32Lynb2/aPr4KXxBblLiAhMvY5JrVR61g5Ky3ywsENs0rJO8tjzwZZ/Tv+No0+8/DzIlVq\nVLSLCRFJH/zsabFiYd6cE/Y4+pNfy5HTR3Pv6NXx9Tnxa1bu+NDumu6xwsrZT1w5Ym5p1e7v\n+2Tc45U+uLU+4x+xQs6CV677Nv5c9qKChRfe+1PctxI4AC4ed9Wz01fEfaswd/pp146Klevv\nfku2L30BAP7Y/H8NAABgIzJrHXjxNtVDCHkrRg0YO+qqnxaHEDKq73FVi3JtXVy9dXEItGbJ\n8Li7C0eLcu7pvfePq4qXqC0q9w7E1z58WKww4bEjr3/vl7h13r2p2+vzckIIqel1B/29Rcnx\nlsc1jRWWTr7qrTlxlhcOIXxy34uxQlbtwzM3PwgjeSpySWxR7gISIyU185h+Ja861M0c1Lne\n5m2Y0Kx6+vMHNSzZjT6lTpPM/U9KSB8Toslhg4ec1S5WXjXrw8O23/XWZz7KK30th6WTPu2z\nT4srh04OIaRH4v+JVOL4ULf9nYesXfH+niO7Do/3zMGIu4+9oZT8O1T24FZ167P6ty7e3eau\nw47/bnnehnWeOW//kcviz/JP4AAYLco/f7++kzfY0SBalHPzsft+s6K4Y2c+fmxZPw8AAH8A\nQnoAAICNO2tAh1jh4V5HriwsCiE0P+bOck7grL3D5bHIpGDNtN2PuWnCwnW+xI/mjXh50OEd\nm/d7ZUrJsV/feWJcKVMh19PsyOfO26l2CCFalHdjt+3/fsld/x07ZVXxktzRWT98eNWpnY68\n7oNY5X2ufKtjtfSSc1ufemVGSiSEEC1ac2KHQwa/9NHSgpJUoGjWmE+uP3u/Hvf8GHu9y6XX\nl+tHpbJV5JLYotwFJEp6+wMy/nZ8ycvjtq3+8iFb18jYtC+49myQ9cFRjetlpxa/Tk3LPvWO\nkJaRwH5WXK+Hvux3WHHSnL9q4tV9D27QpvN5V97+1idfj/t56oIlyxfO/XXCmP++9NjA07rt\nUa/Ngc//Z04IYY8zH3j/9DZxG6zM8SGS9q83L4kV81aMPqpNu/6DX/5lcfE4MHfclzf0/dt+\n/d8IIVRrXu0P1/kQQghXD7unSmpKCGH1ok+6tOly32ufLV27AcasHz//5zE7n/bY2EgkfZdq\nxVfRuo9KJHYAXDFtaMc2Bzz8xojlsQ4UrRn14Us9d29x/bvTYxW2OfTeG9puVdrpAAD8QUSi\nUTuqAQDAX0j+i40quwuJkX7i7MQ2uHLWwOpNLouV5+QVNkz/XeSTt+LrqjU7FazzC9RtU5dd\n0Xz9hZGrpKasLoqGEM6bvOSBVrVKjr/au02vF36OlVNSq+2w8w4N6tdcNmva5ClTl64uCCGk\nV93u5kF7XH5G8ZrbkUhqk1bdZkwq3np2zB27t7/i2xBC08M+nD7soHU/MXfJyEN37Pr5Ot/m\nR1KyGm1TZ/m8uSvW/LY4d+seN4wdOiDj908VvP2Pjt0fG73OiRlb1a1bIyu6YO78VevsClyn\nfd+po56qnpqAScRtL3q34o38EYwfdMSWaPadjg26jZ4fQqjW6PwVs8ra+bgMFbkkZn/etfF+\nw0MIW2370OJJ52zYeN6KrzNr7BNCiKRkFxXGn3res17V1xbmhBBunrH86m2qlxx3F5AwBfmr\nBvYpmPxtyYEJS/Iu+XLB13PXbPTUrNTI2TvVvGrX2hnrTMDPPvnWjC69tkhXKyia9/hFh501\n+NPy1I2kZPW87qWXB/RY9ONZdXd+PITQbfT8t9vXW7dORW6WaW8d2KLHJyGEuju8seCnHqV1\no+Tfwe9W5nWs+ruk/I3LDzrmzo9/++hIpNpW9dPyli5ZWRxaV2969EfP5ey57/shhIOHz/jg\n0G2S3PmyfTv4lD0veq5o7f8EUtKrNti6XuHy+fOX5oQQIpGUMx4btf/Ag06csCiE8NnSNfvW\nzCw5t4IDYO301CUFRSGEKy496PZ7Piquk5pZp26NVYsWrf7t6aJQo+VRX//4+g5V0jbvZwQA\nIGnMpAcAANi4jOp7X9Hit0g+s0an/hsk9GX4+zPfXHNCp9RIJIRQVLhy7PfffPz+h9+OnRT7\nar7NQacOn/Bd/9OevvaQJrH60WjhgoXxN51dT+ZWXT6c+PXZh7crORItWjNr+qySxCIltdpJ\n1z69YWIRQjjqkf8OPu+w1LWz/aJFeYvnz542Y05JNhmJpHTpc+2Yb56UTf6JVOSS2KLcBSRM\nWnqVcx9M2bpVyYHtt8oYdmTjlw5uuEf9rNJOqpqe0qdNjW97Nr1+9zrrJvSZXc/+gyb0IYRI\nxpn3fzJ15EvHdWpWdsVWB/R978fZLw/oEUKo1frK9FL2AKjc8eHoOz56786zG2QUL2AQjUZX\nLJ5XktA37nzqp6NfapZZarpc6YPbbhc889/H+zXJKu5hUf6qOTOmxRL6tKymNwz57rEzOixa\nm5eX/JgxiRoADxnwznu3n1ErLSWEEC3MXThvwboJ/Q5dz/nPGAk9AMCfg/+0AQAAlMspN+56\nc+9PYuUWvW7bpEeeI6k1b3rxi3P/+daN9zw79udJkydPXlZUpVGjbXbfr+sxPfv0PKBtrNoN\nw37e/dG73xjxQ9iq6Q7t9itn4+nV2z387ph+I1576tW33//k6xlz5y3JSWm2bevWrVvv0KFT\nnzNObd+oSindyjj/gWE9z/z4yede/mbcLzNnzpw5c+aKaLVmzZs1b9a81Q679zzplP3aNdiU\nH5Q/hM2/JLYkdwEJFKlep9qVr+U8dnHB2M9LDnZtVrVrs6q/riwYOWf1uMV581YX5BWGaumR\n5jXSO9bN3KdhdvZ6m5SkpWefeH1Gl+OS3ftN1Lzz8UO+OP720Z/9+9/vDPvwi2lz5s2dO3dV\nUWbDhg0bbt10n0O6HXP00V3aNSmpn5rVYvirryzIL2wc72Gyyh0fuvZ7eOrJZz3x2PNv//uD\n8dNnL1icU6vB1i123OvEU/qefcIhGZGQ0/T0u+/eP4TQbPtaG55e6YPbbqffMan7iY898OSr\nb34wcdrMZYVZ22zTbP8efc698OyODbNDCFNWF4QQIilZTTN/F9IncADsevnjM3r2vv/BZ4a+\n9/n02XOXF6RtvXWj9p0O63n8aX26tot7CgAAf0CWuwcAgL8Wy91TiSx3/5cQjRYUFBQUFKRm\nZaebfM4WVVS45o17cj98MhQWbOqpKbUbZZ8+MG273bdEv/7SokWxESAju8pfbwHPwiZZmbNy\nC7PrdM9Z+GYC2y1Z7v6TpWv2X2cVfQAA/rzMpAcAAAASJxJJS09PS0/feE2ooJTUrGP7ZXT+\n+5qhA/O/fz+UbyJKpErNzMPPyTygT0gXdm4BkZS09Iy09IzK7kciFeSMe//TqSGElLRaXQ/t\nVFq1FTPun5VbGEKo2mgzt70HAOCvQ0gPAAAAwJ9VSoMWVc55oHDaj3lfvJL/3fvRFYvj14tE\nUrfZIX2v7hmdjo1UqZncPvLnVrB64pFHHhNCiKSkf7d8VYeq8R9CeuXc+2KFXa/fN3mdAwDg\nz0lIDwAAAMCfW2rzdtnN22WfdGPhrImFM8YVLZgRXbU0FBZEMrMjNeqlbN0qrWXHSPXald1N\n/pSy6nTvWjt72OLV0aL8Y065Z9wrl2dtsJT/6GfOP+PdGSGElLSadx3apBJ6CQDAn4qQHgAA\nAID/FyKR1CbbpzbZvrL7wf8zKQ88+PdWJzwXQpj6+hVtDhpzzYVnH7z79g0b1Fg4bdL48eM+\nevnhgS9+Hqu66+Xvtitlqj0AAJQQ0gMAAAAAlKrl8c8+MXLKGQ99FUKY8emLZ336YtxqTQ++\n7P3r90lu1wAA+FPaYG0mAAAAAADWcfqDX4587qZdm9WI+256laZnXv/4uOF3bpUWSXLHAAD4\nMzKTHgAAAABgIzr3vubb3leN/+/Inyb/MnXq1Om/LkyvVmOr2g123mOfzp13q5uVWtkdBADg\nT0NIDwAAAABQHilt99y37Z77JvMjF+cXJvPjAABIAsvdAwAAAAAAAECSCOkBAAAAAAAAIEmE\n9AAAAAAAAACQJEJ6AAAAAAAAAEgSIT0AAAAAAAAAJImQHgAAAAAAAACSREgPAAAAAAAAAEki\npAcAAAAAAACAJBHSAwAAAAAAAECSCOkBAAAAAAAAIEmE9AAAAAAAAACQJJFoNFrZfQAAAAAA\nAACAvwQz6QEAAAAAAAAgSYT0AAAAAAAAAJAkQnoAAAAAAAAASBIhPQAAAAAAAAAkiZAeAAAA\nAAAAAJJESA8AAAAAAAAASSKkBwAAAAAAAIAkEdIDAAAAAAAAQJII6QEAAAAAAAAgSYT0AAAA\nAAAAAJAkQnoAAAAAAAAASBIhPQAAAAAAAAAkiZAeAAAAAAAAAJJESA8AAAAAAAAASSKkBwAA\nAAAAAIAkEdIDAAAAAAAAQJII6QEAAAAAAAAgSYT0AAAAAAAAAJAkQnoAAAAAAAAASBIhPQAA\nAAAAAAAkiZAeAAAAAAAAAJJESA8AAAAAAAAASSKkBwAAAAAAAIAkEdIDAAAAAAAAQJII6QEA\nAAAAAAAgSYT0AAAAAAAAAJAkQnoAAAAAAAAASBIhPQAAAAAAAAAkiZAeAAAAAAAAAJJESA8A\nAAAAAAAASSKkBwAAAAAAAIAkEdIDAAAAAAAAQJII6QEAAAAAAAAgSYT0AAAAAAAAAJAkQnoA\nAAAAAAAASBIhPQAAAAAAAAAkiZAeAAAAAAAAAJJESA8AAAAAAAAASSKkBwAAAAAAAIAkEdID\nAAAAAAAAQJII6QEAAAAAAAAgSYT0AAAAAAAAAJAkQnoAAAAAAAAASBIhPQAAAAAAAAAkiZAe\nAAAAAAAAAJJESA8AAAAAAAAASSKkBwAAAAAAAIAk+T9QKOBhaiN8CQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 900, "width": 1350 } }, "output_type": "display_data" } ], "source": [ "fig12_colors<-c(\"#FAA519\",\"#286EB4\",\"black\") #F06423\n", "\n", "options(repr.plot.width=9, repr.plot.height=6,repr.plot.res=300)\n", "ggplot(dt,aes(x=geo,y=values)) + theme_minimal() +\n", " geom_bar(data=dt[sex!=\"Gender gap\"], aes(fill=sex),position=\"dodge\",stat=\"identity\",width=0.6)+\n", " geom_point(data=dt[grepl(\"Gender gap\",sex)],aes(shape=sex),colour=\"#F06423\",fill=\"black\",size=3)+\n", " scale_y_chron(format=\"%H:%M\",breaks=seq(0,1,1/24)) +\n", " scale_fill_manual(values = fig12_colors)+\n", " scale_shape_manual(values=c(\"Males\"=NA,\"Females\"=NA,\"Gender gap\"=21))+\n", " ggtitle(\"Figure 12: Participation time per day in unpaid work (main activity), by gender, (hh mm; 2008 to 2015)\") +\n", " ylab(\"\")+\n", " xlab(\"\")+\n", " theme(legend.title = element_blank(),\n", " legend.position= \"bottom\",\n", " axis.text.x = element_text(angle = 90, hjust = 1),\n", " panel.grid.major.x = element_blank(),\n", " panel.grid.minor.y = element_blank())" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.0.5" } }, "nbformat": 4, "nbformat_minor": 4 }