
Efficient Parity Decision Trees and Their Connections
to Logical Proofs and Total Search Problems in NP

Faculty of Information Engineering, Computer Science and Statistics
Bachelor’s Degree in Computer Science

Simone Bianco
ID number 1986936

Advisor
Prof. Nicola Galesi

Co-Advisor
Prof. Massimo Lauria

Academic Year 2023/2024

Efficient Parity Decision Trees and Their Connections to Logical Proofs and
Total Search Problems in NP
Bachelor’s Thesis. Sapienza University of Rome

© 2024 Simone Bianco. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: bianco.simone@outlook.it

mailto:bianco.simone@outlook.it

«Either mathematics is too big for the human mind,
or the human mind is more than a machine»

— Kurt Gödel

iii

Abstract

In computability theory, a search problem is a type of computational problem based
on finding a specific property, object or structure in a given instance of a particular
entity. Search problems describe any input-output-based problem, even everyday
problems, ranging from number factorization to complex graph theory questions.
For a given instance, some problems may even take the age of the universe to be
solved by a machine. Complexity theory studies computational resources to identify
what can and cannot be computed in a reasonable amount of time.

In recent years, the interest in total search problem, i.e. search problems that have
at least one solution for all possible instances of the problem, has grown. Extensive
study of these problems has shown that it is sufficient to restrict our interest to a
small set of problems, each corresponding to a basic combinatorial principle, defining
what is now referred to as the TFNP hierarchy. This hierarchy is deeply linked
with other complexity theory branches, such as logical proofs, circuits and protocols.
These connections inspired researchers to extend the known results in the hope of
achieving an universal theory.

The thesis has two main goals: to summarize the main results in the TFNP world
and to show new ones obtained through the introduction of Parity Decision Trees,
an extension of the decision tree computational model based on linear forms in F2.

In the first chapter, we discuss the origins of computability theory, the basic
concepts of computational complexity and the reasons behind studying such concepts.

In the second chapter, we discuss the differences between decision problems and
search problems, while also defining the decision classes P, NP and the functional
classes FP, FNP and TFNP. Then, we explain reductions between problems, how they
lead to the concept of completeness and how they apply to total search problems,
giving birth to the TFNP hierarchy.

In the third chapter, we focus on the black-box version of the TFNP hierarchy.
We discuss how this model characterizes relativization through oracles and how
this translates to the use of decision trees. Then, we explain how the connections
between decision trees and proof complexity give an alternative lens under which
this model can be studied.

In the final chapter, we introduce the concept of parity in the black-box model
through parity decision trees. We show how parity defines a computational model
stronger than the traditional one, introducing a new class FPpdt, i.e. the class of
TFNP problems efficiently solvable by a PDT. Then, we show that this class is
characterized by the Tree-like Linear Resolution over F2 proof system, proving that
the complexity of PDTs is equivalent to the complexity of proofs in this system.
Finally, we show that short proofs in TreeRes⊕ can be converted into short proofs
in the Nullstellensatz proof system, which characterizes all problems reducible
to the Polynomial Parity Argument (PPA) principle. These results define new
relations between our new class FPpdt and the already known classes, in particular
the inclusions FPdt ⊊ FPpdt ⊆ PPAdt and the non-inclusion PLSdt ̸⊆ FPdt.

iv

Contents

1 Introduction 1
1.1 Computation and Turing machines 1
1.2 Complexity measures . 4

2 Search problems 7
2.1 Decision vs. Search . 7
2.2 The complexity classes FP, FNP and TFNP 9
2.3 Reductions between problems . 12
2.4 The TFNP hierarchy . 14
2.5 White-box TFNP . 17

3 Black-box TFNP 21
3.1 Oracles and decision trees . 21
3.2 Proof Complexity . 24
3.3 The Black-box model and Proof complexity 27
3.4 Reductions through CNF formulas 30

4 Parity in black-box TFNP 33
4.1 Parity decision trees . 33
4.2 Linear Resolution over F2 . 37
4.3 Characterization of FPpdt through TreeRes⊕ 39
4.4 Known relations with other proof systems 41
4.5 Nullstellensatz over F2 and the class PPAdt 42
4.6 From TreeRes⊕ to F2-Nullstellensatz 45

Conclusions 50

Acknowledgements 52

Bibliography 53

1

Chapter 1

Introduction

1.1 Computation and Turing machines

Throughout history, humans have been solving problems through a wide variety of
models capable of computing valid results, ranging from their intellect to mechanical
devices capable of solving problems. In particular, a computation made by a model
can be described as a list of sequential operations and initial conditions that will
always yield the same result each time the computation is executed.

In modern mathematics, this idea is formalized through the concept of algorithm,
a finite list of unambiguous instructions that, given some set of initial conditions,
can be performed to compute the answer to a given problem. Even though this is
a straightforward definition, it isn’t as “mathematically stable” as it seems: each
computational model could have access to a different set of possible operations,
meaning that the same problem could be solved by different computational models
in various ways. This innate nature of computational models makes life difficult for
mathematicians, who want to prove results that are as general as possible.

In 1933, Kurt Gödel - one of the greatest logicians of all time - tried to capture
the concept of computation through logic, formalizing the definition of the class
of general recursive functions, i.e. the class functions f : N → N that are
“computable” in an intuitive sense. Formally, this corresponds to the smallest class
of functions f : N→ N that is closed under composition, recursion and minimization
while also including the value zero, the successor operator and all the projection
operators. Gödel’s thesis states that every mechanically calculable function can be
in some way defined using general recursive functions [Dav82]. However, Gödel’s
definition of computation wasn’t good enough due to general recursive functions
being a hard tool to work with.

In 1936, inspired by Gödel’s ideas, Alonzo Church defined lambda calculus, a
formal system in mathematical logic that expresses computation through abstraction,
function application, variable binding and substitution. Church [Chu36] and his
student Stephen Kleene [Kle36] were able to prove that a function is lambda-
computable if and only if it is general recursive, showing that the two models were
equivalently able to capture the concept of computation. Despite lambda calculus
being simpler to work with compared to the axioms of general recursive functions, this

1.1 Computation and Turing machines 2

model was still considered too abstract compared to “real” computations that were
being executed by the very distant ancestors of modern computers. In 1936, Alan
Turing - another of Church’s distinguished students - defined the now-called Turing
machine, an abstract machine capable of capturing the concept of computation
itself through simple - but sufficient - operations.

Informally, a Turing machine is made of:

• A tape divided into cells, where each cell contains a symbol from a finite set
called alphabet, usually assumed to contain only 0 and 1, or a special symbol

, namely the blank character. The tape is finite on the left side but infinite
on the right side.

• A read-write head capable of reading and writing symbols on the tape. The
head is always positioned on a single cell of the tape and can shift left and
right only one cell per shift.

• A finite set of states that can be assumed by the machine. At all times the
machine only knows its current state. The set contains at least one state that
is capable of immediately halting the machine when reached (such states could
be unreachable, making the machine go in an infinite loop).

• A finite set of instructions which, given the current state and the current
cell read by the read-write head, dictate how the machine behaves. Each
instruction tells the machine to do three things: replace the symbol of the
current cell (which can be replaced with itself), move the head one cell to the
left or one cell to the right and move from the current state to a new one
(which can be the current state itself).

Initially, the machine’s tape contains only an input string, while all the other
infinite cells contain the blank character. At the end of the computation, the tape
contains only the output string, which is the result of the computation.

0 1 1 0 1 0 1 1 ␣ ␣ ␣

q1

q2q3

q4

q0

Figure 1. A Turing machine.

1.1 Computation and Turing machines 3

Definition 1. A Turing machine is a 7-uple M = (Q, F, Γ, Σ, q0, δ) where:

• Q is a finite set of states, F ⊆ Q is a finite set of halting states and q0 ∈ Q is
the initial state taken by the machine.

• Γ is a finite set of symbols, usually called the tape alphabet. The tape alphabet
always contains the symbol , i.e. the black tape cell symbol.

• Σ is a finite set of symbols, usually called the input alphabet, where Σ ⊆ Γ−{ }.
The input string can be formed only of these characters.

• δ : (Q − F) × Γ → Q × Γ × {L, R} is a partial function, usually called the
transition function, where L and R represents a left or right shift of the read-
write head. Intuitively, if δ(q, a) = (p, b, L) then, when the machine is in state
q and reads the symbol a on the current cell of the tape, it transitions to the
state p, replaces the symbol a with b and moves the head to the left.

Turing [Tur37] showed that a function can be computed by his theoretical machine
if and only if it is lambda-computable, proving that the two models are equivalent.
Turing’s characterization of computation was acclaimed by Gödel himself, who
deemed it «an absolute definition of an interesting epistemological notion». The
computational characterizations devised by Church and Turing would later be referred
to as the Church-Turing thesis, constituting a formal definition of algorithm and
computation.

Moreover, Turing proved the existence of an Universal Turing machine, a TM
that is capable of simulating any other Turing machine. In other words, an UTM is
capable of computing any function computable by another Turing machine. This
result shouldn’t be a surprise: modern computers are nothing more than a UTMs
that can execute any given algorithm, producing an output for a given input.

The concept of Universal Turing machine also allows us to easily prove that
many other computational models are capable of characterizing computation: if a
model is capable of simulating an UTM then it is capable of making any possible
computation. This idea is known as Turing completeness.

After achieving a mathematically stable definition of computation through Turing
machines, Church and Turing’s focus shifted to understanding which problems are
computable. In particular, they showed that some functions are uncomputable
by proving that there cannot exist a Turing machine capable of carrying out their
computation without going in infinite loops, i.e. never halting and thus never
finding a solution. The main example of such a problem is Turing’s famous Halting
problem which asks «does the given machine halt or not for a given input?». Turing’s
proof is based on Cantor’s diagonal argument, a technique first used to show the
non-numerability of real numbers.

The existence of uncomputable functions - and thus uncomputable problems -
gives a negative answer to the Entscheidungsproblem (german for decision problem),
a question posed by David Hilbert in 1928 which asks if there is an algorithm that
for each input statement answers “yes” or “no” according to whether or not the
statement is universally true.

1.2 Complexity measures 4

1.2 Complexity measures

Once the existence of the absolute limits of computation was discovered, researchers
shifted their focus on the “practical” limits of computation. A “good” algorithm (or
TM) should be able to solve a problem, in an efficient way. But what does it mean
for a computation to be efficient? To formally describe this idea, computer scientists
defined complexity measures to quantify the amount of computational resources
needed by a Turing machine. An efficient TM should be able to solve a task with
low computational resources. Above all, we are interested in studying the amount of
steps needed and the amount of cells needed to achieve such computations. These
two concepts are referred to as the time complexity and the space complexity of a
Turing machine.

Definition 2. Given a Turing machine M that halts on every input, we define the
time complexity and space complexity of M as the two functions t, s : N→ R+ such
that t(n) and s(n) are respectively the maximum number of steps and cells used by
M during the computation for any input of length n.

Even between small exponents, there is a huge difference in resources. For
instance, an algorithm that requires n steps is clearly a lot more efficient than one
that requires n2 steps. In complexity theory, we consider as efficient any solution
that requires a “reasonable” amount of resources, even when they are huge: an
algorithm that requires n1000 steps is still considered “reasonable”, while the same
doesn’t hold for an algorithm that requires 2n steps. In other words, efficiency
dictates whether a problem is feasible or not in the real world: if a problem is
computable by a TM but requires an immense amount of time or space to get to the
result, then the computation is practically unachievable. These problems are often
referred to as intractable problems [AB09; Sip96].

Time and space complexity are intrinsically related to each other. For instance,
if a machine has time complexity t(n) then the number of cells that can be used is
limited by t(n), hence s(n) ≤ t(n). Usually, these two measures are proportionally
inverse: if we allow our algorithm to use more space then the computation can be
sped up, while if we want to lower the amount of space needed then the computation
will require more steps. Larger inputs require a larger amount of computational
resources, making the values t(n) and s(n) proportional to the size n of the input.
For this reason, as the input size grows, we are interested in the asymptotic behavior
of these measures. This concept is captured by the so-called big-Oh notation.

Definition 3. Given two functions f, g : N→ R+, we say that:

1. f is in big-Oh of g, written as f(n) = O(g(n)), if there are two constants c ∈ R
and N ∈ N>0 such that ∀n ≥ N it holds that f(n) ≤ cg(n).

2. f is in Omega of g, written as f(n) = Ω(g(n)), if there are two constants c ∈ R
and N ∈ N>0 such that ∀n ≥ N it holds that f(n) ≥ cg(n).

3. f is in Theta of g, written as f(n) = Θ(g(n)), iif there are two constants c ∈ R
and N ∈ N>0 such that ∀n ≥ N it holds that cg(n) ≤ f(n) ≤ dg(n).

1.2 Complexity measures 5

In other words, as the input size n grows the function f can dominate, be
dominated or both by a function g, defining the lower and upper bounds of the
value f(n). In particular, when f(n) = Θ(g(n)) the two functions can be considered
to be almost the same due to them following the same growth pattern. Additionally,
its easy to see that f(n) = Ω(g(n)) if and only if g(n) = O(f(n)) and likewise that
f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In general, we consider an algorithm as time efficient if it can compute the
answer to any input in at most a polynomial amount of time, i.e. in O(nk) time for
some k ∈ N. Likewise, it is considered space efficient if it can compute the answer
to any input in at most a polynomial amount of space.

For example, consider the following informally defined Turing machine M which
takes the binary encoding ⟨m⟩ of a natural number m ∈ N as the input string and
returns

〈
m2〉

as the output string. The computation made by M is achieved by
repeatedly adding the value m.
M = "Given the input string ⟨m⟩:

1. Copy the string ⟨m⟩ on a blank set of contiguous cells. This copied string will
be referred to as the value k.

2. Copy the string ⟨m⟩ on a blank set of contiguous cells. This copied string will
be referred to as the value y.

3. Repeat while the value k is bigger than 1:

3. Copy the string ⟨y⟩ on a blank set of contiguous cells. This copied string
will be referred to as the value x.

4. Compute x + n and store the result on the space occupied by the string
⟨y⟩. In other words, compute y ← x + n.

5. Compute k − 1 and store the result on the space occupied by the string
⟨k⟩. In other words, compute k ← k − 1.

6. Write on all the cells on the tape, except for the cells of the string ⟨o⟩.

7. Halt the machine and return the output string ⟨o⟩."

We know that any natural number m ∈ N can be encoded in binary with log2 m
bits. This means that the length n of the input string ⟨m⟩ is log2 m.

Consider now the values k and o obtained in the computation. These values are
natural numbers and they are bounded by cm for some c ∈ R. This means that
k, x, y = O(m) and thus that they can be encoded with O(log m) bits (asymptotic
notation allows us to drop the subscript of the logarithm), therefore requiring
3 ·O(log m) cells, which is asymptotically equivalent to O(log m) cells. We conclude
that the space complexity of our TM is O(log m) = O(n).

To copy a string of length ℓ, the Turing machine needs to copy ℓ cells but also
requires to make additional shifts in order to repeatedly move from the original
string to the copied one, making the total amount of steps required O(ℓ). In a
similar fashion, binary addition (or subtraction) between two numbers a and b can

1.2 Complexity measures 6

be computed in O(log a + log b) steps. Since we initially set k = m and the machine
decrements the value of k by 1 on each iteration of the loop, the computations inside
the loop get executed m− 1 times. This means that the total number of loop steps
is O((m− 1) log m). By adding the initial two copy procedures, the total number of
steps done by the machine is O(2 log m + (m − 1) log m), which is asymptotically
equivalent to O(m log m). Thus, we conclude that the time complexity of such TM
is O(m log m) = O(2nn).

These complexity measures clearly imply that this TM is highly time-inefficient
since it requires an exponential amount of time. But does this mean that the problem
is intractable? Modern computers can square a number in milliseconds, so the answer
to this question should clearly be no. In fact, even by implementing the common
column method for multiplying numbers usually taught to kids, this problem can be
solved efficiently.

Efficiency is one of the lingering questions in modern computer scientists. We
know that some problems are computationally unattainable, but where is the line
that separates tractable and intractable problems? What property defines problems
that cannot be solved efficiently? Finding an answer to these questions may seem
easy but, after more than 70 years of research, it still persists in the minds of
complexity theorists.

7

Chapter 2

Search problems

2.1 Decision vs. Search

For many years, the study of decision problems has been the main focus of
computability theory. These problems can be described as simple questions with a
«yes» or «no» answer, such as asking if some input object has some property or not.
Given a language Σ∗, where Σ is an alphabet of symbols and Σ∗ is the set of all
strings on Σ, each decision problem can be described as a subset of Σ∗, where a string
⟨o⟩ that encodes an object o is in the subset if and only if the answer to the problem
for that object is positive. A «yes» answer is represented by a 1, while a «no» answer
is represented by a 0. For example, given the language N, the question «is n a prime
number?» is modeled by the decision problem PRIMES = {n ∈ N | n is prime}.
Since any symbol of an alphabet Σ can be encoded as a unique sequence of bits, we
can assume that {0, 1} is our unique alphabet of interest [AB09; Sip96].

Definition 4. A decision problem for a property P is a subset L of a language
{0, 1}∗ such that L = {x ∈ {0, 1}∗ | P (x) = 1}.

A decision problem is said to be decidable if there is a Turing machine that
answers the question posed by the problem with 0 or 1 for any input x ∈ {0, 1}∗.
This also implies that the machine has to halt for every input. Decidability theory
plays a large role in mathematics and computer science since most problems can be
modeled through it. However, by their nature, decision problems are limited. Some
problems require a more complex result than a simple yes-or-no answer. Instead of
asking the question «does this object have the required property?», we may be more
interested in the question «what gives this object the following property?».

These kinds of questions are modeled by functional problems, i.e. any problem
where an output that is more complex than a yes-or-no answer is expected for a given
input. Functional problems are by nature “harder” than decision problems, describing
any possible type of computation achievable through the concept of computable
function, even decidability itself (any decision problem is just a functional problem
with only two possible outputs).

2.1 Decision vs. Search 8

Functional problems are described through the concept of relation: given a set
of inputs X and a set of possible outputs Y , a functional problem is as a relation
R ⊆ X×Y such that the pair (x, y) is in R if and only if y is the output to the input x
for the given question. For instance, the question «what is the prime factorization of
n?» is modeled by the functional problem FACTOR = {(n, (p1, . . . , pk)) ∈ N× Nk |
n = p1 · . . . · pk}.

We observe that questions like «is y a valid output for the input x?» are still
modeled by decision problems due to them requiring a simple yes-or-no answer, while
a function problem would ask the question «what is the output for the input x?».
For example, the question «is p1, . . . , pk the prime factorization of n?» corresponds
to the decision problem FACTORIZATIONn = {(p1, . . . , pk) ∈ Nk | n = p1 · . . . · pk}.

Even though decision problems can indeed be modeled as functional problems
whose outputs are only «yes» and «no», they aren’t effectively a subset of functional
problems due to them being defined differently: the decision problem PRIMES can be
converted into the functional problem {(n, b) ∈ N× {0, 1} | b = 1 if n is prime, b =
0 otherwise}, but they aren’t effectively the same problem despite answering the
same question.

Another important thing to notice is that, even though the name implies a
correlation to standard mathematical functions due to the concept of input-output
being involved, the given definition also includes partial and multivalued functions,
i.e. functions for which not all inputs have a corresponding output and functions
for which one input can have more outputs. For these reasons, the term functional
problem is considered to be slightly abused. In recent years, this issue was solved
by the introduction of the more general term search problems, describing the
idea of finding a valid output for the given input, better suiting the previous formal
definition.

To give a more detailed definition of search problems, we assume that these
problems all share the language {0, 1}∗, describing all inputs as a sequence of bits.
Since each problem could have inputs of different lengths, researchers have defined
search problems through the use of a sequence of relations rather than a single
relation [BCE+98; RGR22; BFI23]. This also allows separation between different
types of outputs based on the length of the inputs.

Definition 5. A search problem is a sequence R = (Rn)n∈N of relations Rn ⊆
{0, 1}n ×On, one for each n ∈ N, where each On is a finite set called outcome set.

Since it includes partial functions, this definition allows search problems to be
“undefined” for some inputs, meaning that there is no answer for some inputs. A
search problem is said to be total if for each Rn in the sequence it holds that
∀x ∈ {0, 1}n there is an answer y ∈ On such that (x, y) ∈ Rn. In other words,
a total search problem has at least an output for all possible inputs, removing
partial functions from the context, while multivalued functions are still allowed.
For example, FACTORING is a total non-multivalued search problem due to each
natural number having a guaranteed unique prime factorization by the Fundamental
Theorem of Arithmetic.

2.2 The complexity classes FP, FNP and TFNP 9

2.2 The complexity classes FP, FNP and TFNP

In complexity theory, decision problems are grouped into numerous categories, each
defining a subclass. The most important subclass corresponds to the set of problems
that can be efficiently solved. This class is referred to as P, i.e. the class of
problems solvable by a Turing machine in polynomial time. Not all decision problems
are efficiently solvable, i.e. the so-called intractable problems (see Chapter 1). Several
problems for which there is currently no answer regardless of whether or not they
are efficiently solvable have been shown to be efficiently verifiable, meaning that
there is a Turing machine called verifier that given an additional input c, namely
the certificate, is capable of telling in polynomial time if the value y is the output of
an input x.

Definition 6. A verifier for a decision problem L is a Turing machine V such that
for each input x ∈ Σ∗ there is a certificate c ∈ Σ∗ for which V (x, c) = 1 if and only
if x ∈ L.

The class of problems that are verifiable by a polynomial time verifier with
certificates of polynomial length is referred to as NP. This class is equivalent to the
class of problems efficiently solvable by a non-deterministic Turing machine, a TM
that on each step of the computation can choose between a set of possible actions,
branching the computation. Originally, the class NP was defined through this type
of TM - hence the name of the class being an abbreviation for non-deterministic
polynomial time - but it quickly got replaced with the verifier definition due to NTMs
being only a theoretical computational model that is physically unrealizable [AB09].
For our purposes, we will consider the modern definition of NP.

Definition 7. We define P as the set of decision problems that can be solved by
a polynomial time TM. We define NP as the set of decision problems that can be
verified by a polynomial time verifier.

It’s easy to see that P ⊆ NP since every efficiently solvable problem can also
be efficiently verified by simply ignoring the certificate and solving the problem.
However, it is currently not known whether P = NP or not. The answer to this
question is considered to be one of the most important questions in mathematics.
In fact, if P = NP were to be true, a lot of key problems in mathematics that are
currently only efficiently verifiable could be solved in a reasonable amount of time by
a modern computer. On the other hand, a large number of current technologies are
based on the assumption that P ̸= NP. Examples include the field of cryptography,
which assumes that it’s easy to check that each encrypted string is the result of
the encryption scheme being applied to the original message, which works as the
certificate, and very hard to find this message only through the encrypted string.
If P ̸= NP were proven false, we would have to reconsider a large portion of the
modern world, even digital currencies themselves.

In the context of search problems, we define the class FP - functional P - as the
class of search problems efficiently solvable by an algorithm and FNP - functional
NP - as the class of search problems whose solutions are efficiently verifiable by a
verifier.

2.2 The complexity classes FP, FNP and TFNP 10

Definition 8. We define FP as the set of search problems R = (Rn)n∈N whereby
∀n ∈ N there is a polynomial time TM Tn such that Tn(x) = y if and only if
(x, y) ∈ Rn. We define FNP as the set of search problems R = (Rn)n∈N whereby
∀n ∈ N there is a polynomial time verifier Vn such that ∃w ∈ {0, 1}nk for which
Vn(x, y, w) = 1 if and only if (x, y) ∈ Rn.

An important remark to be made is that, even though any decision problem can
be transformed into a search problem with only two possible outputs, since they are
defined on two different types of problems it doesn’t make sense to say that P ⊆
FP or that NP ⊆ FNP. However, an important result shows that it can hold that
P = NP if and only if FP = FNP [BG94; DK14]. This implies that, despite search
problems being by definition more complex than decision problems, the functional
version of the conjecture is as hard as the decisional one.

Theorem 1. P = NP if and only if FP = FNP

Proof. Since each decision problem can be translated into a search problem with
only two possible outcomes, we trivially get that if FP = FNP then P = NP.

Suppose now that P = NP. We already know that FP ⊆ FNP, so we have to
show that FP ⊆ FNP. Let R = (Rn)n∈N ∈ FNP be a search problem verifiable in
polynomial time.

For each n ∈ N, let Ln be the set of pairs (x, z) such that z is the prefix of
an outcome zw for the problem Rn with input x, formally Ln = {(x, y) | ∃z ∈
{0, 1}k, k ≤ n s.t. (x, zw) ∈ Rn}. It’s easy to see that Ln ∈ NP since each pair
(x, z) is certified by the string zw itself and the correctness of this certificate can be
polynomially verified given that R ∈ FNP.

Since Ln ∈ NP = P, we know that there is a polynomial time algorithm Partialn
that decides Ln. Thus, for each n ∈ N, we can construct the following polynomial
time algorithm Solven which directly concludes that R ∈ FP and thus that FNP ⊆ FP.

function Solven(x)
y = ε ▷ ε is the empty string
while True do

if Partialn(x, y0) = True then
y = y0

else if Partialn(x, y1) = True then
y = y1

else
return y

end if
end while

end function

2.2 The complexity classes FP, FNP and TFNP 11

As discussed in the previous section, not all search problems are total, meaning
that a solution could not exist for some inputs. A lot of real-world problems have a
guaranteed solution for each input, ranging from simple number functions to harder
problems, making total search problems more interesting than non-total ones.

Definition 9. We define the class TFNP as the subset of FNP problems that are
also total.

For simplicity, we assume that each search problem in FP is also total: since
problems in FP are solvable in polynomial time, when a solution doesn’t exist we
can output a pre-chosen «doesn’t exist» solution, making the problem total. This
assumption easily implies that FP ⊆ TFNP ⊆ FNP, giving us a proper hierarchy. For
natural reasons, this assumption wouldn’t work for FNP problems: the only way to
polynomially verify that a solution doesn’t exist would be to solve the problem itself
and find that there is no solution, implying that FP = FNP would be trivially true.

Another way to view total search problems is through the lens of polynomial
disqualification. In decisional problems, the class coNP contains all the problems
whose complement is in NP. If the complementary problem is polynomially verifiable,
this means that there is a polynomial verifier that can decide if an input doesn’t have
the required property, effectively disqualifying it. Proving that a decision problem is
in coNP is also equivalent to proving that for each input of that problem there is
no string capable of certifying that the solution is correct. Researchers currently
believe that NP ≠ coNP, even though this is still an open question. If the answer to
this question is proven negative, we would also have a direct answer to the P ?= NP
question: we know that if NP ̸= coNP then P ̸= NP [AB09; Sip96]

For search problems, we define the class FcoNP in the same way. In particular, the
class TFNP corresponds to the class F(NP ∩ coNP), which contains search problems
whose inputs can be certified and disqualified in polynomial time [MP91].

Proposition 1. TFNP = F(NP ∩ coNP)

Proof. If R = (Rn)n∈N ∈ TFNP then we know that every input x has an output y.
However, this means that the complementary problem R is empty, meaning that
each input is trivially verifiable in polynomial time and thus that R ∈ FNP. Hence,
we conclude that R ∈ F(NP ∩ coNP).

Vice versa, if S ∈ F(NP ∩ coNP) then trivially we have that S ∈ FNP. Moreover,
since S ∈ F(NP ∩ coNP) we know that each input x can be easily certified or
disqualified in polynomial time, meaning that each input must have a solution
polynomially verifiable and thus that S ∈ TFNP.

2.3 Reductions between problems 12

2.3 Reductions between problems

One of the most interesting aspects of computable (and uncomputable) problems is
the ability to be transformed into another problem in order to achieve a solution.
Suppose that we have an instance a of problem A and that we know an algorithm
that transforms a into an instance b of a problem B such that a is a «yes» answer
if and only if b is a «yes» answer. Then, by solving b we would get an answer to
a. In computer science, this concept is known as reduction: a problem A is said
to be reducible into a problem B, written as A ≤ B, if any instance a of A can be
mapped into an instance b of B whose solution gives a solution to the former.

In decision problems, this concept is described through many-to-one mappings,
computable functions that map instances of the original problem to instances of
the reduced problem. This particular type of reduction from A to B is denoted by
A ≤m B.

Definition 10. A decision problem A is many-to-one reducible to a decision problem
B if there is a computable function f such that x ∈ A if and only if f(x) ∈ B.

To better understand how reductions work, consider the 3COL problem, which
asks the question «is this graph 3-colorable?». A graph is said to be 3-colorable if
we can color each node of the graph with a color different from all of its neighbors
by using at most 3 colors.

Figure 2. Example of a 3-colorable graph.

This problem can easily be reduced to the SAT problem, which asks the question
«does this propositional formula have an assignment that satisfies it?». This problem
is clearly in NP: if ϕ is a satisfiable formula, we can use an assignment α that satisfies
ϕ as the certificate, which can easily be done in linear time. To reduce 3COL to
SAT, we construct the following sub-formulas:

• For each node v ∈ V (G), we define the sub-formula ϕv = (rv ∨ gv ∨ bv) which
imposes that each node must have at least one color assigned

• For each edge (u, v) ∈ E(G), we define the sub-formula ϕ(u,v) = (ru ∧ rv) ∧
(gu ∧ gv) ∧ (bu ∧ bv) which imposes that the nodes of each edge must have
different colors.

Then, we construct the final formula that encodes the 3-colorization of G:

ϕG =

 ∧
v∈V (G)

ϕv

 ∧
 ∧

(u,v)∈E(G)
ϕ(u,v)

2.3 Reductions between problems 13

By definition of ϕG, it holds that G is 3-colorable if and only if ϕG is satisfiable.
In particular, there is a bijection between G’s color assignments and ϕG’s variable
assignments. This concludes that 3COL ≤m SAT. Moreover, this reduction can be
computed by a Turing machine in polynomial time. When this happens, we write
3COL ≤p SAT

Many-to-one reductions between problems are transitive: starting from a problem
A, we can reduce it to a problem B through a function f and then reduce it to
a problem C through a function g. This implies that the composition g ◦ f is a
reduction from A to C. For instance, the 4-COL problem, a variant of the 3-COL
with four colors instead of three colors, can be reduced in polynomial time to 3-COL,
giving us the reduction chain 4-COL ≤p 3-COL ≤p SAT.

Reductions between decision problems map any «yes» answers of problem A to
some «yes» answers of problem B and the same goes for «no» answers. In search
problems, however, there is no concept of a negative answer: even if a problem has
only two possible outputs, both of them are still a solution. Some people could
argue that an input for which there is no solution is a negative answer to the search
problem. But how could we map inputs without solutions to other inputs without
solutions? What if one of the two problems involved is total and the other isn’t?
This clearly doesn’t make sense and, even if it did, we are only interested in finding
solutions. We give the following definition of search problem reduction:

Definition 11. A search problem R = (Rm)m∈N, where Rm ⊆ {0, 1}m × Om

is said to be many-to-one reducible to a search problem S = (Sn)n∈N, where
Sn ⊆ {0, 1}n×O′

n, if for all m ∈ N there is an n ∈ N for which there is a computable
function f : {0, 1}m → {0, 1}n and a computable function g : {0, 1}m × O′

n → Om

such that:
∀x ∈ {0, 1}m (f(x), y) ∈ S =⇒ (x, g(x, y)) ∈ R

In other words, the function f maps inputs of R into inputs of S, while the function
g maps solutions of S into solutions of R.

When a reduction can be efficiently computed by a TM with a time (or space)
complexity that is in the order of the complexity of B, the problem A can be solved
by a machine that first computes the reduction and then solves the problem B.
For instance, if A ≤p B through a function f and B can be solved in polynomial
time then we can build a machine that first computes f(x) for a given input x and
then compute whether f(x) ∈ B or not. Since both the reduction and the final
computation in this case require polynomial time, we conclude that A can also be
solved in polynomial time.

Reductions play a critical role in computer science. In particular, they allow us
to define the concept of completeness. A problem is considered complete for a class
C when every problem from its class can be reduced to it under a specific constraint.
This constraint usually depends on the complexity constraints dictated by a subclass
D ⊆ C: if every problem in C is reducible to B under the same constraints that
define the subclass D and we can show that B ∈ D, then the whole class C collapses
onto its subclass, that is C = D.

2.4 The TFNP hierarchy 14

For instance, since P ⊆ NP, the completeness constraint behind NP-Completeness
would be to maintain polynomial-time reductions. In P-Completeness, instead, the
completeness constraint would be to maintain logarithmic space reductions due to
how L ⊆ P, where L is the class of problems decidable in logarithmic space.
Definition 12. A problem B is said to be NP-Complete if B ∈ NP and ∀A ∈ NP it
holds that A ≤p B.

From this definition, we derive that an NP-Complete problem can be solved in
polynomial time if and only if P = NP. The SAT problem previously described is
actually the first ever known NP-Complete problem, a seminal result proven by Cook
in 1971 [Coo71] and later by Levin in 1973 [Lev73]. In particular, Levin proved this
result through the functional version of this complete problem FSAT, which asks
the question «which assignment satisfies the following formula?», modeling what he
called universal sequential search problem. In fact, the functional versions can be
used to prove that the decisional versions are complete and vice versa [BCE+98].
Theorem 2. The decisional problem A is NP-Complete if and only if the functional
problem FA is FNP-Complete.

Since Cook’s result, many important problems have been shown to be NP-
Complete, such as Karp’s 21 problems [Kar72]. Nowadays, thousands of problems
fall into this class. Since most researchers believe that P ̸= NP, once a problem is
proven to be NP-Complete they start looking to approximations of the problem, due
to a general optimal solution being out of reach. Proving that P ̸= NP would imply
that all such problems are actually intractable, making approximation algorithms
the best we can hope for.

2.4 The TFNP hierarchy

Currently, it is not known if there is a FNP-Complete problem that is also total. For
example, the problem FSAT isn’t total due to some formulas being unsatisfiable,
thus no satisfying assignment can be returned as a solution. Researchers believe
that the existence of such a problem is very unlikely.

For these reasons, in the TFNP world the concept of completeness is studied
under a different approach: instead of considering problems that are complete for
the whole class, we consider important problems that have a lot of TFNP problems
reducible to them. These important problems form additional subclasses of TFNP.
With a slight abuse of notation, we denote with S the class of problems efficiently
reducible to the search problem S.
Definition 13. Given TFNP problem S, we define the class S as the subset of
TFNP problems efficiently reducible to the problem S in polynomial time, formally
S = {R ∈ TFNP | R ≤m S in polynomial time}

The extensive study of TFNP classes has been successful in capturing the com-
plexity of many branches of mathematics, such as problems from cryptography, game
theory and economics that are reducible to TFNP complete problems. Unexpect-
edly, a vast majority of total search problems can be characterized with very few
subclasses, which form the TFNP hierarchy.

2.4 The TFNP hierarchy 15

Each of these subclasses is characterized by a complete total search problem that
describes an elementary question, such as determining if a mapping doesn’t have
collision or not - or equivalently, if a function is injective or not [RGR22; BFI23].
These complete problems are guaranteed to be total by the very combinatorial
principles that dictate them:

• PLS (Polynomial Local Search): the class of search problems designed to
model the process of finding the local optimum of a function or the class of
problems whose solution is guaranteed by the «Every directed acyclic graph
has a sink» principle. It is formally defined as the class of search problems
that are polynomial-time reducible to the SINK-OF-DAG problem.

• PPP (Polynomial Pigeonhole Principle): the class of problems whose solution
is guaranteed by the «Every mapping from a set of n + 1 elements to a set of
n elements has a collision» principle. It is defined as the class of problems
that are polynomial-time reducible to the PIGEON problem.

• PPA (Polynomial Parity Argument): the class of problems whose solution is
guaranteed by the «Every undirected graph with an odd-degree node must have
another odd-degree node» principle. It is defined as the class of problems that
are polynomial-time reducible to the LEAF problem.

• PPADS (Polynomial Parity Argument - Directed with Sink): the class of prob-
lems whose solution is guaranteed the «Every directed graph with a positively
unbalanced node (out-degree > in-degree) must have a negatively unbalanced
node» principle. It is defined as the class of problems that are polynomial-time
reducible to the SINK-OF-LINE problem.

• SOPL (Sink of Potential Line): the class of problems that are polynomial-time
reducible to the SINK-OF-POTENTIAL-LINE problem. It has been proven
that SOPL = PLS ∩ PPADS [GHJ+22a]

• PPAD (Polynomial Parity Argument - Directed): the class of problems whose
solution is guaranteed the «Every directed graph with an unbalanced node must
have another unbalanced node» principle. It is defined as the class of problems
that are polynomial-time reducible to the END-OF-LINE problem.

• CLS (Continuous Local Search): the class of search problems designed to
model the process of finding a local optimum of a continuous function over a
continuous domain. It is defined as the class of problems that are polynomial-
time reducible to the CONT-LOCALPOINT problem. It has been proven
that CLS = EOPL = PLS ∩ PPAD [FGH+22; GHJ+22a], where EOPL is the
class of search problems that are polynomial-time reducible to the END-OF-
POTENTIAL-LINE problem.

2.4 The TFNP hierarchy 16

FNP

TFNP

PPPPLS PPA

PPADS

SOPL PPAD

CLS

FP

Figure 3. Hierarchy of the main total search problem subclasses.
An arrow from class A to class B means that A ⊆ B.

Interestingly, lots of complex problems have been proven to be reducible to
these basic problems. For example, the NASH problem relative to finding a Nash
equilibrium of a given game has been shown to not only lie inside PPAD but to also
be PPAD-Complete [DGP06; CDT09]. One should ponder what it really means for
a problem to be complex.

Proving any unconditional separation between these subclasses, which can be
achieved by showing that one of them is not efficiently reducible to the other, would
directly imply that FP ̸= TFNP, answering the P ?= NP question. By the hardness
of the question itself, finding such unconditional separation seems to be completely
out of reach. However, it turns out that the TFNP model indeed has conditional
separations, in particular relative to oracles (see Chapter 3).

2.5 White-box TFNP 17

2.5 White-box TFNP

In computer science and engineering, systems and models are distinguished between
white-box and black-box systems. A system is white-box if its internal workings are
known, meaning that given any input it is possible to know how the system achieves
a result. Contrary, the computational process is unknown in a black-box system.
Black-box models allow us to consider only the result for a given input, ignoring
how that result is achieved. For example, a programmer uses both white-box and
black-box systems: personal functions are white-boxes, while ready-to-go library
functions are black-boxes.

Each TFNP problem can be analyzed through the lens of both white-box and
black-box systems. Originally, these two models were characterized by solvability and
verifiability through Turing machines [BG94; BCE+98]. In recent years, researchers
have shifted to another characterization: the white-box TFNP model is studied
through Boolean circuits, while black-box TFNP is studied through decision trees
[GHJ+22b; GKR+19; BFI23]. Any reader who has come this far will have asked
himself the following question: why shift to other computational models? The answer
is pretty straightforward: they are easier to work with. This shift of perspective
allowed researchers to perform complex reasoning more easily, reaching otherwise
unintuitive results. In this section, we will briefly discuss the white-box model, while
the black-box model will be extensively discussed in the following chapter.

In this context, Boolean circuits are defined as sets of logical AND and logical
OR gates connected by cables. Boolean circuits have been proven to be Turing
complete due to Turing machines and families of circuits being capable of simulating
each other up to a logarithmic factor [AB09]. Again, none should be dumbfounded
by this result: any modern computer is just a large amount of Boolean gates wired
together. We give the following definition of a Boolean circuit. [RYM+22]

Definition 14. A Boolean circuit is a directed acyclic graph whose nodes, called
gates, are each associated with either an input variable, its negation or a Boolean
operator. Each input gate has in-degree 0 and unlimited out-degree. Each Boolean
gate has an out-degree gate equal to 1 (except for the output gate which has out-
degree 0) and in-degree equal to either 1 or 2. All the 2 in-degree gates compute the
logical AND or the logical OR of their given input variables or Boolean function.

Each gate v is associated with the Boolean function fv computed by it. A
function f is said to be computed by a circuit with output gate u if for all inputs
x ∈ {0, 1}n it holds that f(x) = fu(x).

The complexity of Boolean circuits is measured in terms of their size and depth,
i.e. the number of gates of the circuit and the length of the longest directed path
from an input gate to the output gate. However, differently from protocols, the
circuit complexity of a function f is defined as the size of the smallest Boolean
circuit that computes it.

2.5 White-box TFNP 18

∧

∧ ∧

∨

∧ ∧

x1 x1

∨

∧ ∧

x2 x2 x3 x3

Figure 4. A Boolean circuit of size 15 and depth 4 computing x1 ⊕ x2 ⊕ x3.

One of the most interesting properties of circuits is their strict relation to protocols.
Suppose that we have two parties, namely Alice and Bob, who want to cooperate
in order to achieve a common objective, like computing a function. To reach their
goal, Alice and Bob must carry out separate computations, communicating the
result to the other party in a pre-defined sequence of steps. This idea serves as
groundwork for a definition of protocols, algorithms that dictate such alternations
between computation and communications. We give the following formal definition
of protocol. [RYM+22]

Definition 15. Let X be Alice’s input set and let Y be Bob’s input set. A protocol
π is a rooted directed binary tree whose leaves are associated with outputs and
internal nodes are owned by either Alice or Bob, where the owner of v is noted by
owner(v). Each leaf is labeled with an output o ∈ O, where O is the outcome set.
Each internal node v is also associated to a function gv : Z → {0, 1}, where Z = X
if owner(v) = A and Z = Y if owner(v) = B.

When given the input (x, y) ∈ X × Y , the protocol computes the associated
function of the current node (starting from the root), proceeding on the left child if
the output is 0 and on the right child if the output is 1. When a leaf is reached, the
protocol returns the associated output. The output of the protocol for a given input
(x, y) is denoted with π(x, y). A function f is said to be computed by the protocol
π if for all inputs (x, y) it holds that f(x, y) = π(x, y).

The complexity of protocols is measured in terms of their size and depth, that
being the number of nodes of the protocol and the length of the longest directed
path from the root node to a leaf. The communication complexity of a function
f is defined as the depth of the smallest protocol that computes f , corresponding
to the minimal number of bits that must be communicated by Alice and Bob to
compute f for all possible inputs.

2.5 White-box TFNP 19

v1

v2 v3

v4 v5 v6 o7

o1 o2 o3 o4 o5 o6

0 1

0 1 0 1

0 1 0 1 0 1

Figure 5. An example of a protocol of size 13 and depth 3 where the red nodes are owned
by Alice and the blue nodes are owned by Bob. The green path shows the computation
given by fv1(x) = 0, fv2(y) = 1 and fv5(y) = 1 for the input (x, y).

A protocol encodes all possible messages that may be sent by the parties during
any conceivable conversation, producing the expected output. This means that
a protocol always returns an answer for all possible inputs, making any function
computed by a protocol total. This makes protocols are also a valid way to solve or
verify total search problems.

In particular, for each TFNP problem R, we denote with Rcc the equivalent
TFNPcc problem, where cc stands for communication complexity. Due to them being
defined on two inputs instead of one, communication search problems are defined on
two sets of input values instead of one.

Definition 16. A communication search problem is a sequence R = (Rn)n∈N of
relations Rn ⊆ {0, 1}n × {0, 1}n ×On, one for each n ∈ N, where each On is a finite
set called “outcome set”.

A protocol is considered to be efficient when its communication complexity is
polylogarithmic with respect to the bit-size of the inputs, i.e. equal to O(logk n).
This ensures that there is a Turing machine capable of simulating the protocol in
polynomial time. We give the following definitions of FPcc and FNPcc

Definition 17. We define FPcc as the set of communication search problems
R = (Rn)n∈N for which there exists a polylogarithmic depth protocol πn such
that πn(x, y) = z if and only if ((x, y), z) ∈ Rn. We define FNPcc as the set of com-
munication search problems R = (Rn)n∈N for which there exists a polylogarithmic
depth protocol Vn such that Vn((x, y), z) = 1 if and only if ((x, y), z) ∈ Rn.

In this case, the certificate is the protocol itself: it defines a schema through
which a Turing machine can verify the solution. The concept of reduction also
applies to communication search problems, but only under a pre-fixed value t of
the maximum amount of bits usable in the reduction, i.e. the maximum depth of
the reduction protocol, which is necessary for computational reasons that we won’t
discuss. This allows us to define a t-bit TFNPcc hierarchy that follows the same
structure as the standard one.

2.5 White-box TFNP 20

Definition 18. A communication search problem R = (Rm)m∈N, where Rm ⊆
{0, 1}m × {0, 1}m ×Om, is said to be many-to-one reducible into a search problem
S = (Sn)n∈N, where Sn ⊆ {0, 1}n × {0, 1}n ×O′

n, if for all m ∈ N there is an n ∈ N
for which there are two functions fX , fY : {0, 1}m → {0, 1}n and a t-bit protocol
g : ({0, 1}m × {0, 1}n)×O′

n → Om such that:

∀(x, y) ∈ {0, 1}m × {0, 1}m (fX(x), fY (y), z) ∈ S =⇒ (x, y, π((x, y), z)) ∈ R

In other words, the functions fX , fY map inputs of R into inputs of S, while the
protocol g maps solutions of S into solutions of R.

Circuits and protocols are related to one another through the Karchmer-
Widgerson game. The game has a simple objective: given two inputs with
different outputs, Alice and Bob have to cooperate to find a bit that differs between
the two inputs. When the function is monotone, that being a function for which
given any pair of inputs x, y such that x ≤ y it also holds that f(x) ≤ f(y), the
game is also called monotone.

Definition 19. Given a Boolean function f : {0, 1}n → {0, 1}, we define the
Karchmer-Wigderson game of f , denoted with KW(f), as the following communica-
tion problem: given the two inputs x and y, where f(x) = 0 and f(y) = 1, find an
index i ∈ [n] such that xi ̸= yi.

If f is a monotone Boolean function, meaning that given two inputs x, y if x ≤ y
then f(x) ≤ f(y), the monotone Karchmer-Widgerson game of f , denoted with
mKW(f), finds an index i ∈ [n] such that xi < yi.

These games were originally introduced in 1990 by Karchmer and Widgerson
[KW88] to show how the communication complexity of a game for a function f is
equal to the circuit complexity of a Boolean circuit that solves the game on f .

Theorem 3. Given a function f : {0, 1}n → {0, 1}, there is a circuit of depth d that
computes f if and only if there is a protocol of depth d that solves KW(f). Moreover,
if f is monotone, the circuit is monotone and the protocol solves mKW(f)

A surprising result [Gál02; GKR+19] proved that any communication search
problem is equivalent to the monotone KW game of some Boolean function. This
result implies that TFNPcc exactly is the study of the monotone Karchmer-Widgerson
game.

Lemma 1. For any communication search problem R = (Rn)n∈N, where Rn ⊆
{0, 1}n × {0, 1}n × On, in t-bit TFNPcc, there is a function f on 2t |On| variables
such that R is communication equivalent to mKW(f) under t-bit mapping reductions.

These results further extend the already known connections between search
problems, communication complexity and circuit complexity, establishing that any
result obtained in one of these models can be in some way established to the others.

21

Chapter 3

Black-box TFNP

3.1 Oracles and decision trees

In the previous chapter, we have briefly shown how TFNP subclasses are defined
in terms of basic existence principles that capture white-box total search problems
solvable by protocols reducible to Karchmer-Widgerson games. From now on, we
will shift our focus to the black-box model.

Black boxes have been used by complexity theorists since the early days, mostly
through the concept of oracle, a device capable of instantly solving an instance of a
designated problem. In particular, these problems may even be uncomputable, an
assumption that allows us to view oracles as magical devices. Turing machines can
be allowed to query such oracles to an additional oracle tape. The machine writes
a string on such tape, asking the oracle to solve the problem for that input. The
output of the oracle is then written on the same tape, which can then be read by
the Turing machine. Any query made to the oracle requires Θ(1) time, meaning
that they don’t influence the cost of the computation.

Definition 20. An oracle for a problem A is an external device that is capable of
instantaneously solving an instance of A. An oracle Turing machine is a Turing
machine provided with the ability to query an oracle. We write MA to describe a
Turing machine provided with an oracle for the problem A.

Given a class C and an oracle for a problem A, the relativized version of the class
C, written CA is the set of all problems of C solvable (or verifiable) with access to the
oracle of A. For example, PSAT is the class of problems solvable in polynomial time
by a Turing machine with an oracle for the SAT problem. More generally, given two
classes C,B, we write CB to denote the set of all problems of C solvable (or verifiable)
with access to an oracle for any problem that lies in B. In other words, we have that
CB =

⋃
A∈B CA.

Oracles proved to be surprisingly useful for studying the relationship between P
and NP by considering the relationship between PA and NPA for an oracle A. In a
celebrated result [BGS75], Baker et al. showed that there are two problems A and B
such that PA = NPA and PB ̸= NPB. This fact makes many commonly used proof
techniques useless against the conjecture, meaning that any answer to the P ?= NP

3.1 Oracles and decision trees 22

question will require techniques that are invariant with respect to the presence of an
oracle.

Oracles provide a simple yet effective way to generalize the concept of reduction
through the so-called Turing reductions: if a Turing machine provided with an oracle
for the problem B is capable of resolving a problem A then the problem A can be
reduced to solving multiple instances of the problem B. When A is Turing reducible
to B, we write A ≤T B. Clearly, if the oracle machine MB can solve A then any
query to the oracle can be replaced with a call to a subroutine that solves B. This
conversion is often referred to as de-relativization. Many-to-one reductions can be
seen as a specific case of Turing reductions, where the machine makes exactly one
query to the oracle and then returns the output of such query.

In the particular case of total search problems, it was proven that the reducibility
between search problems is strictly connected to the reducibility of their relativized
versions up to all oracles [BCE+98].

Theorem 4. Given two black-box search problems R, S ∈ TFNP and their relative
classes it holds that R ≤m S if and only if RA ≤m SA for all oracles A.

This result implies that proving any relativized separation is equivalent to proving
a non-relativized separation, allowing us to use the intuitive nature of oracles to rule
out possible collapses in TFNP subclasses. Many TFNP subclasses have been proven
to be different through separations between the respective query search problems.
[RGR22; BFI23]

Definition 21. A query search problem is a sequence R = (Rn)n∈N of relations
Rn ⊆ {0, 1}n×On, one for each n ∈ N, where each On is a finite set called “outcome
set”.

A good eye will surely notice that the previous definition does not vary from the
normal definition of search problems, unlike communication search problems. The
only true difference resides in their computational models: query search problems
are solved (or verified) through decision trees.

Definition 22 ([LNN+95]). A decision tree is a rooted directed binary tree whose
nodes are associated with either an output value or an input Boolean variable. Each
leaf is labeled with an output o ∈ O, where O is the outcome set. Each internal
node is labeled by a variable and the two outgoing edges are labeled by the two
possible values of that variable.

Decision trees can be viewed as nothing more than the black-box version of
protocols: we don’t care about who computes the next step or how they do it, we
only care about the result being either a 0 or a 1 to proceed with the computation.
In fact, like protocols, decision trees encode all possible ways to obtain a result,
making them total. Likewise, the complexity of a decision tree computing a function
follows the same complexity measures as a protocol, i.e. its size and its depth. A
function f is said to be computed by the decision tree T if for all inputs x it holds
that f(x) = T (x).

3.1 Oracles and decision trees 23

x1

x2 x3

x3 x3 x2 o7

o1 o2 o3 o4 o5 o6

0 1

0 1 0 1

0 1 0 1 0 1

Figure 6. An example of a decision tree of size 13 and depth 3. The green path shows the
computation made for the input x = 011.

Decision trees give an easier way to describe the computation of an oracle Turing
machine: if MB solves (or verifies) a problem A then the i-th query made by the
procedure corresponds to a variable xi for the decision tree where xi = 1 if the query
returns a positive result and 0 otherwise. In other words, the computation tree of
an oracle Turing machine can be viewed as a decision tree.

Proposition 2. Given a search problem A ∈ TFNP, if there is an oracle Turing
machine MB that solves (or verifies) A then there is a decision tree that solves (or
verifies) A.

The above proposition gives a strong result that allows us to characterize black-
box TFNP through decision trees instead of oracles: any decision tree separation
implies a relativized separation for some oracle [RGR22; BFI23]. As in the commu-
nication complexity formulation, given a TFNP problem R, we denote with Rdt the
equivalent TFNPdt problem, where dt stands for decision tree. We will omit this
notation when the context makes it clear.

Definition 23. We define FPdt as the set of query search problems R = (Rn)n∈N
for which there exists a polylogarithmic depth decision tree Tn such that Tn(x) = y
if and only if (x, y) ∈ Rn. Likewise, we define FNPdt as the set of query search
problems R = (Rn)n∈N for which there exists a polylogarithmic depth decision tree
family {Ty}y∈{0,1}m such that Ty(x) = 1 if and only if (x, y) ∈ Rn.

Like protocols, in query search problems the certificate is the verifying decision
tree itself. Decision tree reductions are based on a more fine-grained definition,
where the function that maps inputs of the first problem to inputs of the second
problem is computed by many decision trees with output {0, 1}.

Definition 24. A query search problem R = (Rm)m∈N, where Rm ⊆ {0, 1}m ×Om

is said to be many-to-one reducible to a query search problem S = (Sn)n∈N, where
Sn ⊆ {0, 1}n×O′

n, if for all m ∈ N there is an n ∈ N for which there is sequence T =
(Ti)i∈[n] of decision trees Ti : {0, 1}m → {0, 1} and a decision tree T o

y : {0, 1}m → Om

for each y ∈ O′
n such that:

∀x ∈ {0, 1}m (T (x), y) ∈ S =⇒ (x, T o
y (x)) ∈ R

where T (x) := (T1(x), . . . , Tn(x)).

3.2 Proof Complexity 24

The difference in notation between T1, . . . , Tn and T o
y underlines the fact that

the former return a {0, 1} output, while the latter returns an output in On. The size
of the reduction is the number of input bits to S, that being n. The depth d of the
reduction is the maximum depth of any tree involved in the reduction, meaning that

d = max({depth(Ti) : i ∈ [n]} ∪ {depth(T o
y) : o ∈ Om})

The complexity of a reduction from R to S, written as S(R), is equal to the sum
of the log of the size and the minimal depth of a decision tree reduction from R to
S, that is S(R) = log(m) + d.

Definition 25. Given S ∈ TFNPdt, we define the class Sdt as the subset of TFNPdt

problems efficiently reducible through decision trees to the problem S, formally
Sdt = {R ∈ TFNP | S(R) = O(logk n)}

3.2 Proof Complexity

Like the white-box model, black-box total search problems can be studied under
multiple lenses, such as proof complexity. This branch of complexity theory
studies the complexity measures needed for a propositional formula to be proved
by propositional proof systems, that being any system of rules that can prove the
truthfulness of a propositional formula, i.e. a string made of logical operators applied
on a set of n variables, such as F = x1 ∧ (x1 → ¬x2 ∨ x3).

Any statement can be encoded by propositional formulas, which is either a
tautology (a statement that is always true), a satisfiable formula (a statement that
can be true or false based on the assignment) or an unsatisfiable formula (a statement
that is always false). Proving that a formula F is a tautology is equivalent to proving
that ¬F is unsatisfiable.

Proof systems can be viewed as an algorithm that manipulates propositional
formulas, producing a new formula. When a formula G is derived by the formula

F in the proof system S, we write F
S
⊢ G. Proof systems must be sound: if F

S
⊢ G

then G is a logical consequence of F , which means that F → G is a tautology. In
1979, Cook and Reckhow gave the following formal definition of propositional proof
system - often called Cook-Reckhow proof systems.

Definition 26. A propositional proof system (or pps) is a polynomial time com-
putable surjective function f : Σ∗ → TAUT, where TAUT is the set of logical
tautologies.

Given a formula F ∈ TAUT a string s ∈ Σ∗ and a proof system f , we say that s
encodes F for the pps f if it holds that f(s) = F . This idea justifies why we want
proof systems to be surjective: any true statement must have a valid encoding in
the proof system. This property is called completeness of the proof system.

The most studied proof system is Resolution (or Res). Given a formula
F ∈ TAUT, this proof system can prove that it is a tautology by proving that
¬F ∈ UNSAT.

3.2 Proof Complexity 25

A conjunctive normal form (CNF) formula F is a conjunction of m clauses
C1, . . . , Cm, where Ci is a disjunction of ki literals, that being either a variable
defined on F or its negation. For example, the following formula is in conjunctive
normal F = (x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2) ∧ x3

Any formula can be expressed as an equivalent CNF formula, making Resolution
a complete and sound proof system. Resolution proofs are based on repeated
applications of the following simple rule called the resolution rule:

C ∨ x D ∨ ¬x

C ∨D

Given a CNF formula F = C1 ∧ . . . ∧ Cm and a clause C, we have that F
Res
⊢ C

if there is a sequence of clauses D1, . . . , Dk such that Dk = C and each Di in
the sequence is either an axiom of F (meaning that Di = Cj for some j) or is
obtained by applying the resolution rule on Dp and Dq for some p, q < i. Resolution
is able to prove that a CNF formula ¬F is unsatisfiable by deriving the empty
clause ⊥ starting from the axioms of the formula itself. A Resolution proof is
often referred to as a refutation. Given the following unsatisfiable CNF formula
(y ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ ¬z, a Resolution proof is given by:

D1 : ¬y ∨ z Axiom
D2 : y ∨ z Axiom
D3 : y Res. on D1, D2
D4 : x ∨ ¬y ∨ z Axiom
D5 : ¬z Axiom
D6 : x ∨ ¬y Res. on D4, D5
D7 : ¬x ∨ ¬y ∨ z Axiom
D8 : ¬x ∨ ¬y Res on D7, D5
D9 : x Res on D3, D6
D10 : ¬x Res on D3, D8
D11 : ⊥ Res on D9, D10

Each refutation can also be graphically represented by connecting clauses with lines:

¬y ∨ z y ∨ ¬x x ∨ ¬y ∨ z ¬x ∨ ¬y ∨ z ¬z

x ∨ ¬yy ¬x ∨ ¬y

x ¬x

⊥

Figure 7. Dag-like refutation of the previous formula.

3.2 Proof Complexity 26

Through this representation, each refutation produces a directed acyclic graph
(DAG), also known as dag-like refutation. When each clause - thus excluding the
axioms - appears only once in a refutation, we say that it is a tree-like refutation
due to how the clauses form a tree. This restriction implies that we cannot “store”
intermediate results. Any dag-like refutation can be converted into a tree-like
refutation by deriving multiple times each clause that we have to reuse.

¬y ∨ z y ∨ ¬x x ∨ ¬y ∨ z ¬x ∨ ¬y ∨ z ¬z

x ∨ ¬yy ¬x ∨ ¬yy

x ¬x

⊥

Figure 8. Tree-like refutation of the previous formula.

This subset of proofs defines a more specific proof system called Tree-like Resolu-
tion (or TreeRes). Generally, this type of refutation produces a proof of exponential
length compared to the number of variables defined on the formula itself. Resolution
and Tree-like Resolution are separated, meaning that some proofs are easy for the
former and hard for the latter, making Resolution a stronger proof system.

Resolution has three main complexity measures: size, depth and width. The
size of a Resolution proof is the total number of nodes appearing in the proof. The
depth of a Resolution proof is the length of the longest path from an axiom to the
empty clause. The width of a Resolution proof is the maximum number of literals
appearing in a clause of the proof. For example, the proof shown in Figure 8 has
size 9, depth 3 and width 3. These three complexity measures are highly related.
For example, if a Tree-like Resolution proof has depth d the size of such proof is
O(2d+1) since a d-depth tree can have at most 2d+1 nodes.

But why are we interested in proving or refusing propositional formulas? We
discussed how the SAT problem is NP-Complete. This clearly implies that the
problem SAT is coNP-Complete. This fact can be used to show that SAT ≤m

UNSAT ≤m TAUT, implying that both UNSAT and TAUT are also coNP-Complete.
Showing that any of these problems is also in NP would answer the NP ?= coNP
question.

Proof systems are essential to work on this question: given the encoding Π of
a proof of F in a proof system, a verifier can follow the rules defined by the proof
system to prove that F is indeed a tautology. In this case, Π serves as a certificate
for F while the pps defines the verifier. We give the following equivalent definition
of a propositional proof system.

3.3 The Black-box model and Proof complexity 27

Definition 27. A propositional proof system (or pps) is a polynomial verifier V
such that F ∈ TAUT if and only if there is a string Π ∈ Σ∗ such that V (F, Π) = 1.

At first glance, one could think that this definition implies that any complete
and sound pps proves that TAUT ∈ NP. However, we must also consider the
length of such proofs: to be an efficient verifier, the length of the certificates must
be polynomially bounded by the length of F . In other words, it must hold that
|Π| = O(|F |k) for some k ∈ N. This means that in order to prove that NP ̸= coNP,
or equivalently that TAUT ∈ NP, we must find a polynomially bounded proof
system, a pps that uses only polynomially bounded proofs for all tautologies.

Proposition 3. There is a polynomially bounded proof system if and only if NP ̸=
coNP.

We already discussed how researchers believe that NP ̸= coNP is the expected
answer to the conjecture. Proving this statement is no easy task: we would have
to prove that there is a particular formula F that strictly requires an exponential
length encoding for every discovered and undiscovered proof system.

3.3 The Black-box model and Proof complexity

Proof complexity is highly related to other branches of complexity theory, includ-
ing the study of total search problems. In order to get to this relation between
proof complexity and TFNPdt, we have to restrict our focus to CNF formulas. By
construction, a CNF formula can be unsatisfiable if and only if for all assignments
α(x1, . . . , xn) there is a clause Ci that is false. It’s easy to see this fact implies that
any CNF formula gives rise to an associated search problem: finding a falsified clause
inside the formula (if there is any) for each possible assignment.

Definition 28. Given a CNF F = C1∧. . .∧Cm over n variables, we define Search(F)
as the following search problem: given an input assignment α(x1, . . . , xn), return an
index i such that the assignment falsifies Ci.

This problem is usually referred to as the false clause search problem. When
F is an unsatisfiable CNF formula, Search(F) is a total search problem since for any
input assignment there will always be an unsatisfied clause. Moreover, the search
problem of any unsatisfiable formula can easily be solved (or verified) by a decision
tree for any formula F : if the assignment α(x1 = b1, . . . , xn = b2) falsifies the clause
Ci, define a path x1 = b1, . . . , xn = bn on the decision tree and let Ci be the output
of such path. In other words, for all ¬F ∈ TAUT it holds that Search(F) ∈ TFNPdt.

3.3 The Black-box model and Proof complexity 28

y

z z

x

x ∨ ¬y ∨ z ¬x ∨ ¬y ∨ z ¬zy ∨ ¬zy ∨ z

10

0 1

0
1

0 1

Figure 9. Decision tree for the previous unsatisfiable formula.

Similarly, we can show that any total query search problem R can be associated
with the search problem of the formula F that describes the set of decision trees
that verify R. Consider a decision tree T made of the paths p1, . . . , pk, each leading
to the leaves ℓ1, . . . , ℓk. The DNF encoding of T , written as D(T), is the disjunction
over the conjunction of the literals α1, . . . , αh along each of the accepting paths in T .
In other words, we have that DT = p1 ∨ . . .∨ pk where each pi = α1 ∧ . . .∧αh ∧ ℓi is
an accepting path of T . By De Morgan’s theorem, ¬D(T) is a CNF.

Proposition 4. Given a total query search problem R ⊆ {0, 1}n×O, for each n ∈ N
there exists an unsatisfiable CNF formula Fn defined over |O|-many variables such
that Rn = Search(Fn). This formula is called canonical CNF encoding of Rn.

Proof. Since R = (Rn)n∈N ∈ TFNPdt, for each y ∈ On there is a polylog(n)-depth
decision tree Ty that verifies Rn. Consider the CNF Fn :=

∧
y∈On

¬D(Ty). Since

R is a total search problem, for each input x there is a valid output, implying
that at least one tree Ty will have an accepting path, meaning that D(Ty) with
input x accepts and therefore ¬D(Ty) with input x rejects, concluding that Fn is
unsatisfiable. Moreover, this formulation also concludes that:

(x, y) ∈ Rn ⇐⇒ (x, y) ∈ Search(Fn)

and thus that Rn = Search(Fn).

This result clearly implies that (R)n∈N = (Search(Fn))n∈N, where F1, F2, . . . is
a family of CNF formulas, and by extension that black-box TFNP is exactly the
study of the false clause search problem. Like in the communication TFNP case, the
upshot is that it is sufficient to restrict our interests to the study of search problems
associated with unsatisfiable CNF formulas.

Furthermore, we also notice that the width of each CNF encoding of a given
search problem in TFNPdt corresponds to the maximum depth of the decision trees
that solve or verify it.

3.3 The Black-box model and Proof complexity 29

Through this connection, Göös et al. [GKR+19] showed that many important
proof systems are characterized by an associated TFNPdt search problem and vice
versa. Given a proof system P and an unsatisfiable CNF formula F , the complexity
required by P to prove F is given by:

P (F) := min{log size(Π) + deg(Π) : Π is a P -proof of F}

where size(Π) is the the total number of symbols in Π and deg(Π) is the degree of Π
associated to P , which varies from proof system to proof system. For example, in
Tree-like Resolution the degree is the depth of the proof, while in Resolution the
degree is the width of the proof. This degree measure will be specified for the proof
systems analyzed in the following sections.

To make things more readable, we will refer to Search(F) as SF . Since each
TFNPdt problem is equivalent to SF for some formula F , the complexity parameter
defined above can be used to give another characterization of TFNPdt problems.

Definition 29. We say that a proof system P characterizes a TFNPdt problem R
(and reflexively that R characterizes P) if it holds that

Rdt = {SF : P (F) = polylog(n)}

where F = (Fi)i∈N is a family of formulas. In a stronger sense, it must hold that
Rdt(SF) = Θ(P (F)).

Again, this implies that the encoding CNF formulas must have a polylogarithmic
width. Most of the TFNP subclasses discussed in previous sections have been shown
to have a characterizing proof system:

• FPdt(SF) = Θ(TreeRes(F)) [LNN+95]

• PLSdt(SF) = Θ(Res(F)) [BKT14]

• PPAdt(SF) = Θ(F2-NS(F)) [GKR+19]

• PPADSdt(SF) = Θ(unary-NS(F)) [GHJ+22b]

• PPADdt(SF) = Θ(unary-SA(F)) [GHJ+22b]

• SOPLdt(SF) = Θ(RevRes(F)) [GHJ+22b]

• CLSdt(SF) = Θ(RevResT(F)) [GHJ+22b]

3.4 Reductions through CNF formulas 30

TFNPdt

PPPdtPLSdt PPAdt

PPADSdt

SOPLdt PPADdt

CLSdt

FPdt

Res =

unary-SA =

RevRes =

RevResT =

= F2-NS

= unary-NS

TreeRes =

Figure 10. Black-box TFNP classes and their characterizing proof systems.

3.4 Reductions through CNF formulas

Intuitively, the characterization given in the previous section shows that any TFNPdt

problem can be transformed into a proof system for refuting unsatisfiable CNF
formulas of polylogarithmic width: since any TFNPdt is equivalent to the search
problem for some unsatisfiable CNF formula, any efficient decision tree reduction
between problems is nothing more than an efficient proof in the characterizing
proof system and vice versa. To formalize this idea, we introduce the concept of
reductions between CNF formulas [BFI23].

Suppose that C is a clause over n variables and that T = (Ti)i∈[n] is a sequence
of depth-d decision trees, where Ti : {0, 1}m → {0, 1}. We refer to C(T) as the CNF
formula obtained by substituting each variable xi in C with D(Ti) and rewriting the
result as a CNF, or more conveniently:

C(T) :=
∧

i∈[n]

∧
r : rejecting
path of Ti

¬r

3.4 Reductions through CNF formulas 31

Definition 30. Let F = C1 ∧ . . . ∧ CmF be an unsatisfiable CNF over nF variables.
We say that a CNF formula H made of mH clauses over nH variables reduces
to F via depth-d decision trees if there exist two sequences of depth-d decision
trees T = (Ti)i∈[nF] and T o = (T o

j)j∈[mF], where Ti : {0, 1}nH → {0, 1} and T o
j :

{0, 1}nH → [mH], such that given the following formula:

FH :=
∧

j∈[mF]

∧
p : path
in T o

j

Ci(T) ∨ ¬p

it holds that if F is unsatisfiable then FH is unsatisfiable and by consequence that
H is unsatisfiable.

In particular, we notice that FH can also be written as a CNF by simply
distributing each ¬p inside Ci(T). Each clause Ci(T)∨¬p must be either tautological
(since it could contain a variable and its negation) or a weakening of the corresponding
clause of H - meaning that it is a formula Q such that H → Q - indexed by the
label at the end of the path p. Moreover, we notice that through this formulation
any depth-d decision tree reduction from SH to SF induces the search problem SFH

.
By construction, reductions between CNF formulas are just a formal way to say that
reductions between search problems reduction are actually proof systems.

Definition 31. Given a problem SF ∈ TFNPdt the canonical proof system of
such problem, written as PF , is a proof system that refutes an unsatisfiable formula
H over nH variables if H is reducible to an instance of F over nF variables.

A PF -proof of H consists of the decision trees that make such reduction possible.
The size of such proof is given by nF , while the degree is given by the maximum
depth among the involved decision trees. Hence, the PF complexity of H is given by:

PF (H) := min{log size(Π) + depth(Π) : Π is a PF -proof of H}

This definition directly implies that given SF ∈ TFNPdt, the characterizing
proof system of Sdt

F is equivalent to the canonical proof system PF . Canonical proof
systems are sound, since by construction any valid substitution of an unsatisfiable
CNF formula is also unsatisfiable, and also efficiently verifiable, since it suffices to
check that each of the clauses of FH is either tautological or a weakening of a clause
in H, which can both be done in polynomial time compared to the size of the proof.

The following theorem plays a crucial role in TFNPdt characterization through
proof complexity, stating that the proof system PF has a short proof of H if and
only if SH efficiently reduces to SF . In other words, an efficient proof of a formula
in a characterizing proof system automatically gives an efficient reduction to the
corresponding complete search problem.

3.4 Reductions through CNF formulas 32

Theorem 5. Let SF ∈ TFNPdt and let H be an unsatisfiable CNF formula. The
two following results hold:

1. If H has a size s and depth d proof in PF then SH has a size O(s) and depth
d reduction to SF

2. If SH has a size s and depth d decision tree reduction to SF then H has a size
s2O(d) and depth d proof in PF

In particular, this implies that Sdt
F (SH) = Θ(PF (H)).

Proof. Suppose that T = (Ti)i∈[nF] and T ′ = (T o
j)j∈[mF] is a PF proof of H of size s

and depth d. Given any assignment α such that (α, i) ∈ SF , let Ci be the clause
of F falsified by T1(α), . . . , TnF (α) and let p be the path followed by T o

i (α). It’s
easy to see that a clause of the formula Ci(T) ∨ ¬p must be falsified by α. In
particular, such clause is also the weakening of the T o

i (α)-th clause of H, concluding
that (α, T o

i (α)) ∈ SH . In other words, the PF proof of H corresponds to a reduction
from SH to SF of size nF = O(s) and depth d.

Vice versa, suppose that T = (Ti)i∈[nF] and T ′ = (T o
j)j∈[mF] is a decision tree

reduction from SH to SF of size s and depth d. Then, we can construct FH as
previously described through the use of these decision trees. Let L be a clause of
Ci(T) for some i ∈ [mF] and let p be any path in T o

i . If the formula Ci(T) ∨ ¬p
is tautological, then it can be ignored since FH is a CNF. Otherwise, let α be an
assignment that falsifies L∨¬p. Then, it holds that T1(α), . . . , TnF (α) falsifies Ci(T)
and that T o

i (α) follows path p. Thus, the Ti(α)-th clause of ¬H must also be false,
implying that L ∨ ¬p is a weakening of such clause. This concludes that FH is a
PF -proof of H of depth at most d (due to how FH is constructed) and thus that the
size is at most s2O(d).

33

Chapter 4

Parity in black-box TFNP

4.1 Parity decision trees

The concept of parity is extensively studied in computer science. In our case, we are
interested in exploring parity through the lens of linear forms modulo 2, i.e. linear
combinations defined on n variables over the algebraic field F2. In this field, each
term can either be a 0 or a 1, with the defining characteristic that 1 + 1 = 0.

Definition 32. Given n variables x1, . . . , xn, we define a linear form as a linear
combination over F2. In general, a linear form can be expressed as

n∑
i=1

αixi, where
α1, . . . , αn ∈ F2

Intuitively, each sum in a linear form is nothing more than an application of the
XOR operator: the linear form x1 + x2 is equal to 1 if and only if x1 is different
from x2 (i.e. if x1 = 1 and x2 = 0 or if x1 = 0 and x2 = 1). Additionally, in F2 the
concepts of addition and subtraction are equivalent: since 1 + 1 = 0, we easily get
that 1 = −1. Through these properties, parity can be used to determine if two or
more objects are equal or not. For example, consider the following system of linear
forms:

x1 + x2 + x3 = 1
x1 + x2 + x4 = 1
x1 + x3 = 1

By simplifying the linear system we get that:
x1 + x2 + x3 = 1
x1 + x2 + x4 = 1
x1 + x3 = 1

−→

x2 = 1
x1 + 1 + x4 = 1
x1 + x3 = 1

−→

x2 = 1
x1 = x4
x1 = 1 + x3

which tells us that x2 = 1 and x1 = x4 ̸= x3 must hold.

4.1 Parity decision trees 34

But what happens if we apply the concept of parity in decision trees? What if,
instead of querying variables to know their value, we ask the parity of a set of values
by querying linear forms? This idea gives rise to the extended model of parity
decision trees.

Instead of being labeled by single variables, the nodes of a parity decision tree
(PDT for short) are labeled by a linear form f . Each node has two outgoing edges,
one labeled by f = 0 and the other by f = 1. Every path from the root of the PDT
to one of its nodes defines a system of linear forms given by all the labels of the
edges on the path. In general, given the PDT T and a node v, we denote this system
with ΦT

v . Given an assignment α(x1, . . . , xn), the output of a PDT is dictated by
the parity queries made by each node.

x1 + x2 + x3

x1 + x2 x1

x2 + x3 x2 x2 o7

o1 o2 o3 o4 o5 o6

0 1

0 1 0 1

0 1 0 1 0 1

Figure 11. An example of a parity decision tree of size 13 and depth 3.

In the above example, the green path defines the following system of linear forms:
x1 + x2 + x3 = 0
x1 + x2 = 1
x2 = 1

which once simplified corresponds to the assignment x0 = 0, x2 = 1, x3 = 1. We
define the class FPpdt as the set of TFNPdt problems that are efficiently solvable by
a PDT, where the complexity measures are defined as in normal decision trees.

Definition 33. We define FPpdt as the set of query search problems R = (Rn)n∈N
for which there exists a polylogarithmic depth PDT Tn such that Tn(x) = y if and
only if (x, y) ∈ Rn.

It’s easy to see that FPdt ⊆ FPpdt since any decision tree is just a PDT with all
the queries defined only on one variable. Any PDT can be converted into a normal
decision tree simply by “splitting” each linear query. Given a node v labeled with the
linear form f + xi, let u and w be the children of v respectively given by f + xi = 0
and f + xi = 1. Let Tu and Tw be the two subtrees with root u and w.

4.1 Parity decision trees 35

f + xi

Tu Tw

0 1

Figure 12. The initial subtree of a parity decision tree.

We replace v with the node v′ labeled with the linear form xi and introduce two new
nodes u′, w′ such that u′ is the child of v′ when xi = 0 and w′ is the child of v′ when
xi = 1. We label u′ with the linear form f and let a copy of Tu be the children of u′

when f = 0, while a copy of Tw is the children of u′ when f = 1. Symmetrically,
we label w′ with the linear form f and let a copy of Tw be the children of w′ when
f = 0, while a copy of Tu is the children of w′ when f = 1.

xi

f f

Tu Tw Tw Tu

0 1

0 1 0 1

Figure 13. The subtree after the splitting process.

By repeating this process until all queries are defined on a single variable, we obtain a
decision tree equivalent to the original PDT. This final decision tree has exponential
size and polynomial depth, which may not be the smallest possible decision tree
that solves the search problem solved by the initial PDT. However, we can easily
prove that parity decision trees are indeed much stronger than decision trees.

Theorem 6. FPdt ⊊ FPpdt

Proof. Any decision tree is also a parity decision tree, thus we trivially get that
FPdt ⊆ FPpdt. Let PARITY be the n-bit parity search problem, i.e. the problem of
determining the parity of n variables for a given assignment α. This problem can
be solved by a PDT of size and depth O(1) by making a single query x1 + . . . + xn,
concluding that PARITY ∈ FPdt.

Claim. Any decision tree solving PARITY on n variables has depth Ω(n).

4.1 Parity decision trees 36

Proof of the claim. Suppose that PARITY on n variables can be solved by a decision
tree T with depth less than n. We use an adversarial argument: we think of an
execution of T , where some adversary answers each query of T on the value of every
input bit. The adversary can respond with xi = 0 on all the first n− 1 bits. Until
the last bit xn is revealed, the tree has no way of determining the final output since
it can either be 0 or 1 until the value of xn is revealed, concluding that it requires
at least another query.

By definition, FPdt contains all the problems with a decision tree of polyloga-
rithmic depth. Since PARITY requires a decision tree with depth Θ(n), we get that
PARITY /∈ FPdt.

Since a system of linear forms can have multiple solutions, many assignments could
be mapped to the same output. However, some systems could also be unsatisfiable,
meaning that the node is unreachable by any assignment. When this happens we
say that the node is degenerate.

Like normal decision trees, PDTs can be used to solve the false clause search
problem associated with any unsatisfiable CNF. A parity decision tree for a CNF
formula F is a PDT defined on the same variables of F where for each leaf v one of
the following conditions holds:

1. The leaf is degenerate
2. The leaf refutes a clause C of F , meaning that the system ΦT

v is satisfiable
and every one of its solutions falsifies C

3. The leaf satisfies a clause C of F , meaning that the system ΦT
v has only one

solution and it also satisfies C

x + y

x x

x ∨ y ¬x ∨ ¬y x ∨ ¬y ¬x ∨ y

0 1

0 1 0 1

Figure 14. A parity decision tree for (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y).

We observe that if a node doesn’t meet any of the previous conditions then it cannot
be a leaf node. Moreover, we also observe that the system associated with the root
of any PDT is always satisfiable due to it containing no linear forms. Since we
are interested in studying PDTs for refusing unsatisfiable CNF formulas, the third
case will never be true for any leaf. However, we still need a way to exclude the
first case since an unsatisfiable system cannot be associated with any assignment.
Luckily, each degenerate PDT can be conveniently converted into a non-degenerate
one through a very simple process [IS20].

4.2 Linear Resolution over F2 37

Proposition 5. Let F be an unsatisfiable CNF formula. If SF can be solved with a
degenerate PDT of size s and depth d, it can also be solved with a non-degenerate
PDT of size at most s and depth at most d.

Proof. Let T be a degenerate PDT of size s and depth d that solves SF . Let U
be the set of degenerate nodes of T . Notice that since ΦT

r is empty, thus always
satisfiable, we know that r /∈ U . Consider the node u ∈ U with the minimal distance
from the root r. Since u is not the root of T , there must be two vertices p and s
such that p is the parent of u and s is the sibling of u.

We notice that ΦT
s must be satisfiable: if we assume that this is not true then both

ΦT
s and ΦT

u would be unsatisfiable, which can be true only if ΦT
p is also unsatisfiable,

but we chose w as the node in U with minimal distance. Since ΦT
s is satisfiable,

the label f = α on the edge (p, s) must be already implied ΦT
p , meaning that each

assignment that satisfies ΦT
p also satisfies ΦT

s .
We construct a new PDT T ′ by removing the subtree Tu with root u from the

initial PDT T and by contracting the edge (p, s), merging the two nodes p and s
into a single node v. In other words, the subtree Tu gets removed and the children of
s become the new children of p. Each assignment that satisfies ΦT

p also satisfies ΦT ′
s ,

concluding that T ′ also solves SF . By repeating the process until U is empty, we get
a non-degenerate PDT that solves SF of size at most s and depth at most d.

4.2 Linear Resolution over F2

Once we have defined the class FPpdt, we are interested in finding a proof system
that characterizes it. Consider a system Φ of linear forms defined on F2. This system
can be viewed as the conjunction of the linear forms that it describes:

f1 = α1
f2 = α2

...
fk = αk

⇐⇒ (f1 = α1) ∧ (f2 = α2) ∧ . . . ∧ (fk = αk)

We can rewrite these conjunctions as a negation of a disjunction:

k∧
i=1

(fi = αi) ⇐⇒ ¬
k∨

i=1
¬(fi = αi) ⇐⇒ ¬

k∨
i=1

(fi = 1 + αi)

which implies that the negation of the system is equivalent to a set of disjunctions:

¬
k∧

i=0
(f1 = α1) ⇐⇒

k∨
i=0

(f1 = 1 + α1)

We define such a set of disjunctions as a linear clause. More generally, a linear
CNF formula over Fq is a conjunction of linear clauses defined on Fq.

4.2 Linear Resolution over F2 38

Definition 34. A linear CNF formula is a conjunction of m disjunctions of linear
equations over Fq.

m∧
i=1

ki∨
j=1

(fj = αj)

Linear CNF formulas can assume a complex structure such as the following:

((x1 + x2 = 0) ∨ (x1 = 1)) ∧ ((x2 + x3 + x4 = 3) ∨ (x2 + x4 = 0))

We define Linear Resolution over Fq (or ResLin(Fq)), an extension of standard
Resolution (see Chapter 3) based on the following two rules:

1. Resolution rule: given two linear clauses (f = 0) ∨ C and (f = 1) ∨D defined
on Fq, we can derive the linear clause C ∨D

2. Weakening rule: given a linear clause C, we can derive any linear clause D
such that C =⇒ D.

Like in normal Resolution, in ResLin(Fq) any derivation of a linear clause C from
a linear CNF F is a sequence of linear clauses that ends with C, where every clause
is either an axiom of F or it can be derived from previous clauses through one of the
two derivation rules. A linear CNF is unsatisfiable if and only if the empty linear
clause can be derived from it.

Any standard CNF formula can be described as a linear CNF formula over F2
simply by treating each clause as a disjunction of linear forms made of a single term.
The CNF (x1∨¬x2)∧ (¬x3 +x1) can be written as the following linear CNF formula:

((x1 = 1) ∨ (x2 = 0)) ∧ ((x3 = 0) ∨ (x1 = 1))

We call this the linear encoding of a CNF. From now on, we will restrict our
interests to Linear Resolution over F2, also called parity Resolution (or Res⊕).
The weakening rule makes this proof system powerful thanks to how semantical
implications can be used as “shortcuts”. For example, consider the following linear
formula:

(x = 1) ∧ (x + y = 1) ∧ ((x = 0) ∨ (y = 1))

By rewriting the last linear clause as a negation of a conjunction, we notice that:

(x = 0) ∨ (y = 1) ≡ ¬((x = 1) ∧ (y = 0))

By simple substitution, we get that:

¬((x = 1) ∧ (y = 0)) =⇒ ¬((x = 1) ∧ (x + y = 1))

which is equivalent to:

¬((x = 1) ∧ (x + y = 1)) ≡ (x = 0) ∨ (x + y = 0)

concluding that (x = 0) ∨ (y = 1) |= (x = 0) ∨ (x + y = 0). Proceeding with the
resolution rule, we get the following Tree-like refutation.

4.3 Characterization of FPpdt through TreeRes⊕ 39

⊥

(x = 0)

(x = 0) ∨ (x + y = 0)

(x = 0) ∨ (y = 1)(x + y = 1)(x = 1)

Figure 15. TreeRes⊕-proof of the previous linear formula.

It was shown that the weakening rule can be simulated through these simple three
rules [IS20]:

1. Simplification rule: given a linear clause C ∨ (0 = 1), we can derive the linear
clause C

2. Syntactic weakening: given a linear clause C, we can derive the linear clause
C ∨ (f = α)

3. Addition rule: given a linear clause C ∨ (f = α) ∨ (g = β), we can derive the
linear clause C ∨ (f = α) ∨ (g = β)

Proposition 6. Any clause obtainable through the weakening rule can also be
obtained through a sequence of applications of the previous three rules and vice versa.

This result makes working with the weakening rule easier: any clause D derived
through k applications of these three rules starting from a clause C is automatically
a weakening of C, implying that we can replace those k applications with one single
use of the weakening rule.

4.3 Characterization of FPpdt through TreeRes⊕
TreeRes⊕ proofs and parity decision trees can be viewed as two sides of the same
coin. Any tree-like Res⊕ refutation of a linear CNF F can be used to construct an
(almost) equivalent PDT that solves SF and vice versa [IS20].

Lemma 2. Let F be a linear CNF formula. If there is a TreeRes⊕ refutation of F
with size s and depth d, there also is a PDT of size at most s and depth at most d
that solves SF .

Proof. Let T be the proof tree that refutes F . We label each edge of T whose
associated clauses involve a resolution rule, while all the other weakening edges
remain unlabeled. In particular, if a resolution rule is applied to the clauses

4.3 Characterization of FPpdt through TreeRes⊕ 40

(f = 0)∨D1 and (f = 1)∨D2 obtaining the clause D1 ∨D2, we label the edge from
the first to the third with f = 1, while the other edge is labeled with f = 0.

By induction on the depth of a node of T , we show that the clause written in v
contradicts the system ΦT

v . The root node contains the empty clause and is labeled
by an empty system, making the statement trivially true. Assume now that the
statement holds for a generic node v. We have to show that the hypothesis also
holds for its children u and w.

Suppose that v is the result of a resolution rule application, where D1 ∨D2 is
the clause inside v. Assume that u is the node that contains (f = 0) ∨D1 while
w contains (f = 1) ∨ D2. By the inductive hypothesis, we know that D1 ∨ D2
contradicts the system ΦT

v . This means that the set of equalities in D1 contradicts
ΦT

v . Moreover, we know that ΦT
u = ΦT

v ∧ (f = 1), concluding that (f = 0) ∨ D1
contradicts ΦT

u . Likewise, we can show that (f = 1) ∨D2 contradicts ΦT
w.

Suppose now that v is the result of a weakening rule, where u is the only child.
Since (v, u) is unlabeled, we get that ΦT

v = ΦT
u . Furthermore, since v is the result

of a weakening applied to u, we know that the clause in u semantically implies the
clause in v, but by inductive hypothesis we know that the clause in v contradicts
the system ΦT

v , meaning that u must also contradict the system ΦT
v = ΦT

u . Finally,
if v is a leaf then the statement is trivially true since it refutes a clause of F .

By contracting all the unlabeled edges given by the weakening rules, we get a
parity decision tree that solves SF . Due to this final step, the size of the PDT is at
most s and its depth is at most d.

x

x = 1 x + y

x + y = 1 (x = 0) ∨ (y = 1)

0 1

0 1

Figure 16. The PDT obtained from the proof shown in Figure 15.

Lemma 3. Let F be a linear CNF formula. If there is a PDT of size s and depth d
that solves SF , there also is a TreeRes⊕ refutation of F with size at most 2s, depth
at most d + 1 and the weakening rule applied only to the axioms.

Proof. Let T be a PDT of size s and depth d that solved SF . By Proposition 5, we
assume that T is non-degenerate. We label every node v of T with the negation
of its associated linear system. In other words, every node v is labeled with the
linear clause ¬ΦT

v . Every node is the result of the resolution rule being applied to
its children, where the root node is the empty clause.

Since T is a PDT that solves SF , each leaf refutes a linear clause of F . Hence,
for each leaf u we have that ΦT

u =⇒ ¬C for some linear clause C of F , which
equivalently means that C =⇒ ¬ΦT

u , concluding that the linear clause of each leaf
is actually the weakening of a clause of F . Then, for each leaf u we can add a new

4.4 Known relations with other proof systems 41

neighbor node w and label it with the clause C, where the edge (w, u) becomes an
application of the weakening rule. This process increases the depth of the tree by 1
and increases the size by at most s.

⊥

(x = 0)

(x = 0) ∨ (x + y = 1) (x = 0) ∨ (x + y = 0)

(x = 0) ∨ (y = 1)(x + y = 1)(x = 1)

Figure 17. TreeRes⊕-proof obtained from the PDT shown in Figure 16.

We conclude that problems efficiently solvable parity decision trees are indeed
characterized by Tree-like Linear Resolution over F2.

Theorem 7. FPpdt(SF) = Θ(TreeRes⊕(F))

4.4 Known relations with other proof systems

After defining the class FPpdt and proving that TreeRes⊕ characterizes it, we’re
interested in studying where this class lies in the TFNPdt hierarchy. It’s a well-known
fact that any TreeRes proof is also a TreeRes⊕ due to the latter being an extension of
the former. However, the reverse simulation easily doesn’t hold due to TreeRes being
a weaker proof system: the pebbling formulas on the XOR function are hard for
TreeRes but easy for TreeRes⊕. This separation between the two proof systems also
follows more naturally from our results since FPdt ⊊ FPpdt as shown in Theorem 6,
also raising the following question: parity clearly makes PDTs stronger than decision
trees, but how much stronger?

We know that Tree-like Linear Resolution over F2 is strictly related to polynomials
over the F2. In fact, it is already known [GK18] that TreeRes⊕ can be converted
into a small proof in Polynomial Calculus over F2, an algebraic proof system.
This proof system, as shown in [BFI23], characterizes the “non-canonical” class
IND-PPAdt, whose complete problem is IND-LEAF, i.e. the inductive version of the
LEAF problem. Thanks to Theorem 5, the previous result immediately concludes
the following inclusion.

Proposition 7. FPpdt ⊆ IND-PPAdt

This inclusion rings a bell: looks like PDTs aren’t actually that strong. Another
proof system strictly related to polynomials over F2 is Nullstellensatz, another

4.5 Nullstellensatz over F2 and the class PPAdt 42

algebraic proof system. Nullstellensatz can be efficiently simulated by Polynomial
Calculus, even over the field F2. This implies that PPAdt ⊆ IND-PPAdt.

Our first hypothesis was that TreeRes⊕ could act as an intermediate step between
the two algebraic systems. We tried to prove this result by showing that LEAFdt ∈
FPpdt, which appeared to be out of reach. We quickly shifted our perspective on
trying to show that the simulation holds in the other direction. Indeed, we were
capable of proving in our main theorem, i.e. Theorem 8, that any TreeRes⊕ can be
converted into a small F2-NS proof, providing a stronger black-box inclusion for
our new class and a stronger simulation between these two proof systems.

Moreover, in the seminal paper [IS20], Itsykson and Sokolov discussed how
TreeRes⊕ cannot efficiently simulate regular Resolution (or RegRes) - a restricted
proof system derived from Resolution - due to the presence of harder types of pebbling
formulas that separate them. Due to any regular Resolution proof also being a
Resolution proof, this result also implies that TreeRes⊕ cannot efficiently simulate
Res. Again, thanks to Theorem 5 and to the fact that PLSdt(SF) = Θ(Res(F)), we
conclude the following black-box separation.

Proposition 8. PLSdt ̸⊆ FPpdt

4.5 Nullstellensatz over F2 and the class PPAdt

In 1893, the mathematician Hilbert proved a theorem that established the basis of
algebraic geometry, a field that studies the relations between algebra and geometry.
This theorem is now known as Hilbert’s Nullstellensatz (german for zero-locus
theorem).

The weak Nullstellensatz, a corollary of the stronger theorem, states that given
m polynomials p1, . . . , pm defined on F [x1, . . . , xn], where F is a generic algebraic
field, the system p1(x) = p2(x) = . . . = pm(x) = 0 is unsolvable if and only if there
are m polynomials g1, . . . , gm defined on F [x1, . . . , xn] such that

∑m
i=1 gipi = 1.

This weaker version of the theorem has been used to define an algebraic proof
system, that being a proof system based on polynomial algebra. Intuitively, these
proof systems are based on the idea of showing that a set of polynomials p1, . . . , pm,
called axioms, doesn’t share a common root, which serves as a proof for the poly-
nomials. In this case, a Nullstellensatz proof is given by the set of polynomials
g1, . . . , gm through which we get that

∑m
i=1 gipi = 1 [BIK+94].

Any CNF formula can be translated to an algebraic encoding, a set of polynomials
p1, . . . , pm for which the CNF formula is unsatisfiable if and only if there is a
Nullstellensatz proof for p1, . . . , pm. Given the clause C =

∨k
i=1 xi ∨

∨h
j=1 ¬yj , the

algebraic encoding of C, written as pC , is given by pC :=
∏k

i=1 xi ·
∏h

j=1(1− yj).
To clear things up, we notice that through this formulation the concept of

truthfulness is inverted: the boolean values 0 and 1 respectively correspond to the
algebraic values 1 and 0. For example, the boolean clause C evaluates to 1 when at
least a literal inside it evaluates to 1, while an algebraic clause evaluates to 0 when
at least a literal inside it evaluates to 0.

The algebraic encoding of a CNF formula F = C1 ∧ . . . ∧ Cm is given by the set

4.5 Nullstellensatz over F2 and the class PPAdt 43

of polynomial equations pF = {pC1 = 0, . . . , pCm = 0, x2
1 − x1 = 0, . . . , x2

n − xn = 0}.
These last polynomials are necessary to impose that the values of x1, . . . , xn are
either a 0 or a 1. A Nullstellensatz refutation for F is given by the polynomials
g1, . . . , gm, h1, . . . , hn such that:

m∑
i=1

gipCi +
m∑

j=1
hj(x2

j − xj) = 1

In order for the CNF F to be satisfied by an assignment x, each clause must evaluate
to 1, while in Nullstellensatz the polynomials inside pF must all evaluate to 0.

0 −→ 1
1 −→ 0

xi −→ xi

¬xi −→ 1− xi

C ∨D −→ C ·D
C ∧D −→ C + D

Figure 18. Mappings from boolean encoding to algebraic encoding.

When a polynomial q can be derived from a set of axioms P , we write P
NS
⊢ q. If F

is a CNF formula and P
NS
⊢ 1 then we get a Nullstellensatz refutation. Consider the

CNF formula x1 ∧ (¬x1 ∨ x2)∧ (¬x2 ∨ x3)∧ (¬x3 ∨ x4)∧ x4. The algebraic encoding
is given by p1 = x1, pi = (1 − xi−1)xi when 2 ≤ i ≤ 4 and p5 = 1 − x4. To refute
this CNF, we must find the polynomials g1, . . . , g5, h1, . . . , h4 through which

5∑
i=1

gipi +
4∑

j=1
hj(x2

j − xj) = 1

To simplify things, we let h1, . . . , h4 = 0 in order to have
∑4

j=1 hj(x2
j − xj) = 0. Let

g1, . . . , g5 be equal to:

g1 = x2x3x4 g2 = x3x4 g3 = x4 g4 = g5 = 1

We easily get that:

5∑
i=1

gipi = x1x2x3x4 + (1− x1)x2x3x4 + (1− x2)x3x4 + (1− x3)x4 + (1− x4)

= x2x3x4 + (1− x2)x3x4 + (1− x3)x4 + (1− x4)
= x3x4 + (1− x3)x4 + (1− x4)
= x4 + (1− x4)
= 1

concluding that PF

NS
⊢ 1 and thus proving that the CNF is unsatisfiable. In

Nullstellensatz, the size of a proof is the total number of monomials of the polynomials

4.5 Nullstellensatz over F2 and the class PPAdt 44

that make the proof, i.e. the total number of terms in the sum once fully expanded
without simplifying any addition (or subtraction). The degree of the proof is
the maximum degree of any polynomial gipi or hj(xj + xj). For example, the
polynomial (1−x1)(1−x2)x2x3 has size 4 and degree 4 since (1−x1)(1−x2)x2x3 =
x2x3 − x2

2x3 − x1x2x3 + x1x2
2x3. The previous proof has size 1 + 2 + 2 + 2 + 2 = 9

and degree 4.
Nullstellensatz’s degree measure vaguely resembles Resolution’s width measure.

For example, the algebraic encoding of a CNF clause C of width w clearly has degree
w. Moreover, it’s easy to see that a degree upper bound d for the Nullstellensatz
refutation of a CNF formula defined on n variables implies a size upper bound of
nO(d). This result enables us to restrict our interest to the degree of the proof.

Proposition 9. Given a CNF formula F defined on n variables, if PF

NS
⊢ 1 with

degree O(d) then the size of the proof is nO(d).

A common result shows that in Nullstellensatz proofs we can assume that
polynomials are multilinear (short for multivariate and linear), meaning that each
variable of each term has algebraic multiplicity equal to at most 1. For example,
the polynomial xy + yz is multilinear, while x2y isn’t. This assumption affects the
degree of the proof only by a constant factor, allowing us to work more easily.

As shown in Figure 10, F2-Nullstellensatz characterizes the black-box version of
the class PPA, the class of total search problems that are reducible to the Polynomial
Parity Argument (PPA), first defined by Papadimitriou [Pap94].

Suppose we are given a polynomial-size circuit C with n input bits and n
output bits. For each possible input x ∈ {0, 1}n, the circuit provides a pair (p, s) ∈
{0, 1}n × {0, 1}n where p and s are the predecessor and successor of x. This circuit
generates a graph GC with 2n nodes, where (u, v) ∈ E(GC) if and only if u is the
predecessor of v and v is the successor of u. By construction, each node has at most
two neighbor nodes and some nodes may even be disconnected.

The canonical PPA-Complete problem is LEAF: given a specific node - usually
assumed to be the 0 . . . 0 node - with an odd number of neighbors inside the graph GC

generated by C, we are required to find another odd-degree node. The solution to this
problem is guaranteed to exist thanks to the Handshaking lemma, which states
that every undirected graph has an even number of odd-degree nodes. The hardness
of the question comes from the impossibility of using common path-traversing
algorithms to find the solution: the graph has exponential size with respect to the
input size!

0000

0001

0010

1110

0100

1011

0110

1101

1000

1001

1010

0101

1100

0111

0011 1111

Figure 19. The circuit input is made of 4 bits and the generated graph has 24 vertices.

4.6 From TreeRes⊕ to F2-Nullstellensatz 45

Through Theorem 5, we know that an efficient proof for a formula F directly
implies that its search problem SF is actually efficiently reducible to the black-box
version of the LEAF problem. In the following section, we show how to convert
an efficient TreeRes⊕ into an efficient F2-Nullstellensatz proof, proving that each
problem efficiently solvable through a PDT is reducible to an instance of LEAFdt,
which implies that FPpdt ⊆ PPAdt.

4.6 From TreeRes⊕ to F2-Nullstellensatz

We prove that Nullstellensatz over F2 is capable of efficiently simulating TreeRes⊕.
Given the linear clause C =

∨k
i=1(fi = αi), the algebraic encoding of C, written

as pC , is given by pC :=
∏k

i=1(fi + ai). The algebraic encoding of a linear CNF
formula F = C1 ∧ . . . ∧Cm is given by the set of polynomial equations pF = {pC1 =
0, . . . , pCm = 0, x2

1 − x1 = 0, . . . , x2
n − xn = 0}.

To achieve our result, we first convert the TreeRes⊕ proof into an (almost)
equivalent proof through the method shown in Chapter 4 and then balance the
degree of the F2 − NS proof obtained from the tree-like proof. The following result
follows from Lemma 2 and Lemma 3.

Corollary 1. Every TreeRes⊕ proof of size s and depth d can be converted to a
TreeRes⊕ proof of size O(s), degree O(d) and with the weakening rule applied only
to the axioms.

Next, we prove some basic Nullstellensatz inspired by the ones shown in [CEI96],
which allow us to manipulate and combine different types of proofs. We will use
these properties to inductively simulate the resolution rule.

Given a formula F , we denote with F|f=α
the formula obtained by substituting

f with α inside F . This is usually called restriction of F on f = α. In particular,
we notice that if F is a CNF formula then by restricting it on f = 0 any clause
C ∨ (f = 0) becomes C ∨ (0 = 1), which is equivalent to C through weakening. If
we restrict F on f = 1, any clause C ∨ (f = 0) becomes C ∨ (1 = 1), which directly
evaluates to 1. In a similar fashion, given the polynomial p we denote with p|f=α

the
restriction of p on f = α, i.e. the polynomial obtained by setting f equal to α in p.

Lemma 4. Given the multilinear polynomials p1, . . . , pk over F2 of degree at most
d and a linear form f , it holds that:

1. If p1, . . . , pk, f ⊢ 1 with degree d then p1, . . . , pk ⊢ 1− f with degree d + 1.

2. If p1, . . . , pk, 1− f ⊢ 1 with degree d then p1, . . . , pk ⊢ f with degree d + 1.

3. pi, f ⊢ pi|f=0 with degree d

4. pi, 1− f ⊢ pi|f=1 with degree d

5. If p1|f=0 , . . . , pk|f=0 ⊢ 1 with degree d and p1|f=1 , . . . , pk|f=1 ⊢ 1 with degree
d + 1, then p1, . . . , pk ⊢ 1 with degree d + 1

6. If p1|f=0 , . . . , pk|f=0 ⊢ 1 with degree d + 1 and p1|f=1 , . . . , pk|f=1 ⊢ 1 with degree
d, then p1, . . . , pk ⊢ 1 with degree d + 1

4.6 From TreeRes⊕ to F2-Nullstellensatz 46

Proof. We proceed claim by claim:

1. Since gk+1f +
∑k

i=1 gipi = 1, we easily get that:

(1− f)gk+1f + (1− f)
k∑

i=1
gipi = 1− f

Moreover, since (1 − f)f = 0 due to f being defined on F2, we can remove
f from the proof, concluding that (1 − f)

∑k
i=1 gipi = 1 − f with degree

incremented by one due to f being a linear form.

2. Similar to claim 1 of this lemma: multiply the whole proof by f .

3. Let p = fp1 + p0, where p1 and p0 are independent of f . By restricting p on
f = 0 we get that p|f=0 = 0 ·p1 +p0 = p0 = p−fp1. Since p has degree at most
d and f has degree 1, p1 must have degree at most d− 1, thus p− fp1 = p|f=0
is a proof of degree at most d.

4. Similar to claim 3 of this lemma: by restricting p on f = 1 we obtain that
p|f=1 = p1 +p0 = p1 +p0 +fp1−fp1 = p+(1−f)p1, thus p+(1−f)p1 = p|f=1
is a proof of degree at most d.

5. Through the previous claims of this lemma p1, . . . , pk, f ⊢ p1|f=0 , . . . , pk|f=0 ⊢
1 with degree d. Then, by the first claim of this lemma, we know that
p1, . . . , pk, f ⊢ 1 with degree d implies that p1, . . . , pk ⊢ 1−f with degree d + 1.
Likewise, we have that p1, . . . , pk, 1 − f ⊢ p1|f=1 , . . . , pk|f=1 ⊢ 1 with degree
d + 1. Finally, since p1, . . . , pk ⊢ 1 − f and p1, . . . , pk, 1 − f ⊢ 1 both with
degree d + 1, by concatenating the two proofs we get that p1, . . . , pk ⊢ 1 with
degree d + 1.

6. Similar to claim 5 of this lemma: invert the roles of the two initial proofs and
use the second claim of this lemma.

Lemma 5. Given two disjoint axiom sets P1, P2 of multilinear polynomials over
F2, if P1, p ⊢ 1 with degree d1 and P2, 1− p ⊢ 1 with degree d2 then P1, P2 ⊢ 1 with
degree d1 + d2.

Proof. Assume that P1 = {p1, . . . , pm} and P2 = {q1, . . . , qk} and let pm+1 = p and
qk+1 = 1 − p. Since

∑m+1
i=1 gipi +

∑n
j=1 aj(x2

j − xj) = 1 for some g1, . . . , gm+1, we
that:

m∑
i=1

gipi +
n∑

j=1
aj(x2

j − xj) = 1− gm+1pm+1 = 1− gm+1p

Likewise, since
∑k+1

i=1 hiqi +
∑n

j=1 bj(x2
j − xj) = 1 for some h1, . . . , hk+1, we get that:

k∑
i=1

hiqi +
n∑

j=1
bj(x2

j − xj) = 1− hk+1qk+1 = 1− hk+1(1− p)

4.6 From TreeRes⊕ to F2-Nullstellensatz 47

We notice that:

(1− p)

 m∑
i=1

gipi +
n∑

j=1
aj(x2

j − xj)

 = (1− p)(1− gm+1p)

= 1− p− gm+1p(1− p)
= 1− p

with degree d1 + d2. In the last step, we used the fact that p(1− p) = 0 holds in F2.
Similarly, we get that:

p

 k∑
i=1

hiqi +
n∑

j=1
bj(x2

j − xj)

 = p

again with degree d1 + d2. By summing these two proofs, we get that

(1− p)

 m∑
i=1

gipi +
n∑

j=1
aj(x2

j − xj)

 + p

 k∑
i=1

hiqi +
n∑

j=1
bj(x2

j − xj)

 = 1

concluding that P1, P2 ⊢ 1 with degree d1 + d2.

Next, we prove that a Tree-like Linear Resolution over F2 can be efficiently
converted into a small F2-Nullstellensatz proof. The very same proof can be used
to also show that standard Tree-like Linear Resolution can be simulated by F2-
Nullstellensatz, an already known result.

Lemma 6. Let F be an unsatisfiable CNF. If T is TreeRes⊕ refutation of F of size
s and width w that uses only the resolution rule then there is F2-NS refutation of F
of degree w + log2 s.

Proof. Let F = C1 ∧ . . . ∧ Ck. We proceed by strong induction on the size s of T .
When S = 1, one of the axioms of F must be the empty clause, hence pCi ⊢ 1 for
some i and by extension that pCi , . . . , pCk

⊢ 1.
Suppose now that s > 1. Let f = 0 and f = 1 be the two clauses that derive the

empty clause ⊥ in T . These two clauses are derived through two subtrees T0, T1 of
sizes s0, s1, where s = s0 + s1 + 1.

By restricting T0 on f = 1, the tree T0|f=1 is a TreeRes⊕ proof of the formula
C1|f=1 ∧ . . . ∧ Ck|f=1 of size s1. Since T uses only the resolution rule, T0 also does.
Then, my induction, we have that pC1|f=1

, . . . , pCk|f=1
⊢ 1 with degree w + log2 s1.

Using a similar argument, the tree T1|f=0 produces a proof pC1|f=0
, . . . , pCk|f=0

⊢ 1
with degree w + log s2.

If s1 < s
2 , then w+log2 s1 ≤ w+log2 s−1. Thus, the proof pC1|f=1

, . . . , pCk|f=1
⊢ 1

is also a proof of degree w + log2 s − 1, while the proof pC1|f=0
, . . . , pCk|f=0

⊢ 1 is
also a proof of degree w + log2 s. By the fifth claim of Lemma 4, we conclude that
pCi , . . . , pCk

⊢ 1 with degree w + log2 s.
If s2 < s

2 , instead, we get a symmetric proof, where the role of the two proofs is
swapped. By the sixth claim of Lemma 4, we again conclude that pCi , . . . , pCk

⊢ 1
with degree w + log2 s.

4.6 From TreeRes⊕ to F2-Nullstellensatz 48

⊥

f = 0

T0

f = 1

T1

Figure 20. Representation of the idea behind Lemma 6.

The weakening rule is generally hard to simulate through F2-Nullstellensatz. However,
if D is derived through weakening from an axiom clause Ci of a CNF formula F , we
can easily simulate this rule. This result is enough for our purposes but it can also
be extended to derivations from a non-axiom clause with a little blow-up in degree.

Lemma 7. Let F = C1 ∧ . . . ∧ Cm be a CNF formula and let D be a linear clause.
If Ci =⇒ D then pCi ⊢ pD with degree d + k, where d is the width of D and k is
the width of Ci.

Proof. Let C := Ci. Assume C =
∨k

i=1(xi = α1) and D =
∨d

j=1(fj = βj). We notice
that any polynomial q(1 + q) can be derived with degree 2 from axioms.

(y1 + . . . + yt)(y1 + . . . yt + 1) =
t∑

i=1
y2

i +
t∑

i=1
yi + 2

∑
i ̸=j

yiyj =
t∑

i=1
y2

i + yi

since 2 = 0 in F2. This implies that for each j ∈ [d] we can derive fj + βj + 1 with
degree d + 1.

Since C =⇒ D, this can only happen if each xi + αi is a linear combination
of (f1 + β1 + 1), . . . , (fd + βd + 1), concluding that each pD(xi + αi) is derivable in
F2-Nullstellensatz with degree d + 1. Finally, we notice that:

pD = pC +pD(x1+α1+1)+pD(x2+α2+1)(x1+α1)+. . .+pD(xd+αd+1)+
d−1∏
i=0

(xi+αi)

which is a derivation of pD from pC with degree d + k.

Theorem 8. Let F be an unsatisfiable CNF. If T is TreeRes⊕ refutation of F of
size s and width w then there is NS refutation of F of degree O(w + log s).

Proof. Let F = C1 ∧ · · · ∧ Cm and let T be a TreeRes⊕-proof of F with size s and
width w. Through Corollary 1 we know that there must also be a TreeRes⊕-proof of
size O(s) with the weakening rule applied only to the leaves. Let Ĉ1, . . . , Ĉm be the
linear clauses obtained through such weakening rules and let T ′ be the subtree.

Let T ′ be the subtree of T with root ⊥ and leaves Ĉ1, . . . , Ĉm. Since T ′ only
uses the resolution rule, by Lemma 6 we conclude that p

Ĉ1
, . . . , p

Ĉm
⊢ 1 with degree

O(w + log s). Clearly, this also implies that deg(p
Ĉi

) = O(w + log s) for all i.

4.6 From TreeRes⊕ to F2-Nullstellensatz 49

Since each Ĉi is a weakening of Ci, by Lemma 7 we know that pCi ⊢ p
Ĉi

with
degree O(w + log s). We trivially get that pCi , (1− p

Ĉi
) ⊢ 1 with degree O(w + log s).

Moreover, since p
Ĉ1

, . . . , p
Ĉm
⊢ 1 with degree O(w + log s), by Lemma 5 we get

that pC1 , p
Ĉ2

, . . . , p
Ĉm
⊢ 1 with degree O(w + log s). After repeating this process

for each weakening clause, we finally conclude that pC1 , . . . , pCm ⊢ 1 with degree
O(w + log s).

⊥

T

Ĉ1 Ĉ2 · · · · · · ĈmĈm−1· · ·

C1 C2 · · · · · · CmCm−1· · ·

Figure 21. Representation of the idea behind Theorem 8.

Finally, thanks to Theorem 5 and the fact that PPAdt(SF) = Θ(F2-NS(F)), the last
theorem proves that our new class is indeed contained inside PPAdt, meaning that
any total search problem efficiently solvable by a parity decision tree can be reduced
to an instance of the parity argument problem.

Theorem 9. FPpdt ⊆ PPAdt

Proof. Suppose that R ∈ FPpdt. By definition, there is a PDT that solves R with
size s and depth d, where d + log s = O(logk n) for some k ∈ N. We know that each
TFNPdt is equivalent to the false clause search problem of some CNF formula F ,
thus R = SF .

By Lemma 3, we know that there is a TreeRes⊕ proof of F with size O(s)
and depth d. Then, by theorem Theorem 8, we know that there must be a F2-
Nullstellensatz refutation for F with degree O(w + log s) and size nO(w+log s), where
w is the width of the tree-like proof.

We get that the total Nullstellensatz complexity of the proof F , given by the
sum of the depth and the logarithm of the size, corresponds to (w + log s) +
log(nO(w+log s)) = O(logk+1 n), hence F has a polylogarithmic F2-NS refutation.
By Theorem 5, this implies that there is an efficient reduction SF ≤m PPAdt,
concluding that R ∈ PPApdt

50

Conclusions

The relations between total search problems, protocols, circuits, and proofs make
TFNP an interesting and multifaceted theory that holds the potential to capture
several key aspects of complexity theory under a single, unified framework. How-
ever, despite these promising connections, such universal characterization remains
fuzzy and incomplete: tools such as query-to-communication lifting theorems and
interpolation theorems do not yet provide a sufficiently strong bridge to unify these
approaches.

In our study, we have shown that introducing parity to the black-box model
leads to the definition of a new class based on a more powerful computational model,
i.e. parity decision trees, providing a new lens through which we can study the
complexity of total search problem. We have also shown how parity decision trees
are characterized in a natural way by Tree-like Linear Resolution over F2. Through
this connection, we have gained insights into the inherent computational limitations
of parity decision trees, suggesting that their applicability may be confined to specific
problem classes.

FNPdt

TFNPdt

PPPdtPLSdt PPAdt

PPADSdt

SOPLdt PPADdt

CLSdt

FPdt

FPpdt

Proposition 8

Theorem 6

Theorem 9

Theorem 6

Figure 22. TFNPdt hierarchy extended through our results. An arrow A→ B means that
A ⊆ B while a dashed arrow A 99K B means that A ̸⊆ B.

4.6 From TreeRes⊕ to F2-Nullstellensatz 51

These findings raise several questions for further exploration regarding the use of
parity decision trees in the black-box model:

1. Strengthening the inclusion. We proved the stronger inclusion FPpdt ⊆ PPAdt

by efficiently simulating TreeRes⊕ through F2-NS. Does the the even stronger
inclusion FPpdt ⊆ PPADdt also hold? Is unary Nullstellensatz (u-NS) also
capable of efficiently simulating TreeRes⊕ or are the two systems separated?

2. Modeling the TFNP hierarchy with parity decision trees. We have shown that
parity decision trees are computationally stronger than classical decision trees.
Can the entire black-box TFNP hierarchy also be effectively modeled using
PDTs? Does the introduction of parity decision trees create a fundamentally
stronger model? What is the precise relationship between these two hierarchies?

3. Reductions through Parity Decision Tree. In the current black-box model,
reductions between problems are captured using decision trees. Can such
reductions be generalized to parity decision tree reductions? Do the same
inclusions and separations between classes also hold in the TFNPpdt hierarchy?

4. Generalizing to finite fields beyond F2. Our results have so far been based on
the field F2. Can these techniques and characterizations be extended to a
general finite field Fq? Is Tree-like Linear Resolution over Fq able to define a
broader class of computational models that generalize parity decision trees?

5. Connection to Communication Complexity. Parity decision trees are linked to
communication complexity [Yao15]. Is there a white-box model in TFNPcc anal-
ogous to FPpdt that could be characterized by specific types of communication
protocols or circuit classes?

52

Acknowledgements

This thesis represents the culmination of a long journey, one that would have
been impossible to complete without the unwavering support, encouragement, and
guidance from the remarkable people around me. I am profoundly grateful to all
who played a part in this process and contributed to this achievement.

First and foremost, I would like to express my deepest and most sincere gratitude
to my advisors, professors N. Galesi and M. Lauria. Your expert guidance and
insightful feedback have been the lantern of this endeavor.

To my parents, no words can capture the depth of my gratitude. Thank you for
always believing in my abilities and for the countless sacrifices you made to ensure I
had every opportunity to succeed. Your unwavering support has been the foundation
upon which my confidence and resilience are built. I owe everything to your love
and faith in me.

To my brother, my dual entity in this life: you are my opposite, yet we are
inseparably connected. You challenge me, balance me and push me to see the world
in ways I never would on my own. You’ve showed me the other side of the river. I
wouldn’t be the person I am today without you by my side.

To my friends and university colleagues, your loyalty and unwavering support
over the years have been invaluable. Your friendship has been a continuous source of
joy, laughter, shared experiences and constant growth. A heartfelt thank you to my
closest friends — Riccardo, Francesco, and Simone. You’ve been my companions for
almost ten years, in both good times and bad, always ready with support. You have
been my pillars through thick and thin and I am forever grateful for the memories
we’ve created together.

Finally, to everyone who has contributed to my personal and academic growth
along the way — whether through direct support or quiet encouragement — thank
you. This thesis is the result of not just my efforts, but of the unwavering support
and inspiration from those around me. Thank you.

53

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. 1st. USA: Cambridge University Press, 2009. isbn:
0521424267.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, et al. “The Relative Com-
plexity of NP Search Problems”. In: Journal of Computer and System
Sciences 57.1 (1998), pp. 3–19. issn: 0022-0000. doi: 10.1006/jcss.
1998.1575.

[BFI23] Sam Buss, Noah Fleming, and Russell Impagliazzo. “TFNP Characteri-
zations of Proof Systems and Monotone Circuits”. In: 14th Innovations
in Theoretical Computer Science Conference (ITCS 2023). 2023, 30:1–
30:40. doi: 10.4230/LIPIcs.ITCS.2023.30.

[BG94] Mihir Bellare and Shafi Goldwasser. “The Complexity of Decision
Versus Search”. In: SIAM Journal on Computing 23.1 (1994), pp. 97–
119. doi: 10.1137/S0097539792228289.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of
the P ?= NP Question”. In: SIAM Journal on Computing 4.4 (1975),
pp. 431–442. doi: 10.1137/0204037.

[BIK+94] P. Beame, R. Impagliazzo, J. Krajicek, et al. “Lower bounds on Hilbert’s
Nullstellensatz and propositional proofs”. In: Proceedings 35th Annual
Symposium on Foundations of Computer Science. 1994, pp. 794–806.
doi: 10.1109/SFCS.1994.365714.

[BKT14] Samuel R. Buss, Leszek A. Kołodziejczyk, and Neil Thapen. “Fragments
of approximate counting”. In: The Journal of Symbolic Logic 79.2
(2014), pp. 496–525. issn: 00224812, 19435886.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. “Settling the complexity
of computing two-player Nash equilibria”. In: J. ACM 56.3 (May 2009).
issn: 0004-5411. doi: 10.1145/1516512.1516516.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. “Using
the Groebner basis algorithm to find proofs of unsatisfiability”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Association
for Computing Machinery, 1996, pp. 174–183. isbn: 0897917855. doi:
10.1145/237814.237860. url: https://doi.org/10.1145/237814.
237860.

https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.4230/LIPIcs.ITCS.2023.30
https://doi.org/10.1137/S0097539792228289
https://doi.org/10.1137/0204037
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860

Bibliography 54

[Chu36] Alonzo Church. “An Unsolvable Problem of Elementary Number The-
ory”. In: American Journal of Mathematics 58 (1936), p. 345. url:
https://api.semanticscholar.org/CorpusID:14181275.

[Coo71] Stephen A. Cook. “The complexity of theorem-proving procedures”.
In: Proceedings of the Third Annual ACM Symposium on Theory of
Computing. STOC ’71. Shaker Heights, Ohio, USA: Association for
Computing Machinery, 1971, pp. 151–158. isbn: 9781450374644. doi:
10.1145/800157.805047.

[Dav82] Martin Davis. “Why Gödel didn’t have Church’s thesis”. In: Informa-
tion and Control 54.1 (1982), pp. 3–24. issn: 0019-9958. doi: https:
//doi.org/10.1016/S0019-9958(82)91226-8. url: https://www.
sciencedirect.com/science/article/pii/S0019995882912268.

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. “The complexity of computing a Nash equilibrium”. In:
Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing. STOC ’06. Seattle, WA, USA: Association for Com-
puting Machinery, 2006, pp. 71–78. isbn: 1595931341. doi: 10.1145/
1132516.1132527.

[DK14] Ding-Zhu Du and Ker-I Ko. “Models of Computation and Complexity
Classes”. In: Theory of Computational Complexity. 2014. Chap. 1,
pp. 1–44. isbn: 9781118595091. doi: 10.1002/9781118595091.ch1.

[FGH+22] John Fearnley, Paul Goldberg, Alexandros Hollender, et al. “The
Complexity of Gradient Descent”. In: J. ACM 70.1 (Dec. 2022). issn:
0004-5411. doi: 10.1145/3568163.

[Gál02] Anna Gál. “A characterization of span program size and improved
lower bounds for monotone span programs”. In: Comput. Complex.
(May 2002), pp. 277–296. doi: 10.1007/s000370100001.

[GHJ+22a] Mika Göös, Alexandros Hollender, Siddhartha Jain, et al. “Further col-
lapses in TFNP”. In: Proceedings of the 37th Computational Complexity
Conference. CCC ’22. Philadelphia, Pennsylvania: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2022. isbn: 9783959772419. doi:
10.4230/LIPIcs.CCC.2022.33.

[GHJ+22b] Mika Göös, Alexandros Hollender, Siddhartha Jain, et al. “Separations
in Proof Complexity and TFNP”. In: 2022 IEEE 63rd Annual Sympo-
sium on Foundations of Computer Science (FOCS). 2022, pp. 1150–
1161. doi: 10.1109/FOCS54457.2022.00111.

[GK18] Michal Garlík and Leszek Aleksander Kołodziejczyk. “Some Subsystems
of Constant-Depth Frege with Parity”. In: ACM Trans. Comput. Logic
19.4 (Nov. 2018). issn: 1529-3785. doi: 10.1145/3243126. url: https:
//doi.org/10.1145/3243126.

[GKR+19] Mika Göös, Pritish Kamath, Robert Robere, et al. “Adventures in
Monotone Complexity and TFNP”. In: 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019). 2019, 38:1–38:19. doi:
10.4230/LIPIcs.ITCS.2019.38.

https://api.semanticscholar.org/CorpusID:14181275
https://doi.org/10.1145/800157.805047
https://doi.org/https://doi.org/10.1016/S0019-9958(82)91226-8
https://doi.org/https://doi.org/10.1016/S0019-9958(82)91226-8
https://www.sciencedirect.com/science/article/pii/S0019995882912268
https://www.sciencedirect.com/science/article/pii/S0019995882912268
https://doi.org/10.1145/1132516.1132527
https://doi.org/10.1145/1132516.1132527
https://doi.org/10.1002/9781118595091.ch1
https://doi.org/10.1145/3568163
https://doi.org/10.1007/s000370100001
https://doi.org/10.4230/LIPIcs.CCC.2022.33
https://doi.org/10.1109/FOCS54457.2022.00111
https://doi.org/10.1145/3243126
https://doi.org/10.1145/3243126
https://doi.org/10.1145/3243126
https://doi.org/10.4230/LIPIcs.ITCS.2019.38

Bibliography 55

[IS20] Dmitry Itsykson and Dmitry Sokolov. “Resolution over linear equations
modulo two”. In: Annals of Pure and Applied Logic 171.1 (2020),
p. 102722. issn: 0168-0072. doi: https://doi.org/10.1016/j.apal.
2019.102722.

[Kar72] Richard Karp. “Reducibility Among Combinatorial Problems”. In:
vol. 40. Jan. 1972, pp. 85–103. isbn: 978-3-540-68274-5. doi: 10.1007/
978-3-540-68279-0_8.

[Kle36] S. C. Kleene. “Lambda-definability and recursiveness”. In: Duke Math-
ematical Journal 2.2 (1936), pp. 340–353. doi: 10.1215/S0012-7094-
36-00227-2.

[KW88] Mauricio Karchmer and Avi Wigderson. “Monotone circuits for connec-
tivity require super-logarithmic depth”. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing. STOC ’88.
Chicago, Illinois, USA: Association for Computing Machinery, 1988,
pp. 539–550. isbn: 0897912640. doi: 10.1145/62212.62265.

[Lev73] Leonid A. Levin. “Universal Sequential Search Problems”. In: Problems
of Information Transmission 9.3 (1973). url: https://www.mathnet.
ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&
option_lang=eng#forwardlinks.

[LNN+95] László Lovász, Moni Naor, Ilan Newman, et al. “Search Problems in
the Decision Tree Model”. In: SIAM J. Discret. Math. 8.1 (Feb. 1995),
pp. 119–132. issn: 0895-4801. doi: 10.1137/S0895480192233867.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. “On total functions,
existence theorems and computational complexity”. In: Theoretical
Computer Science 81.2 (1991), pp. 317–324. issn: 0304-3975. doi:
10.1016/0304-3975(91)90200-L.

[Pap94] Christos H. Papadimitriou. “On the complexity of the parity argument
and other inefficient proofs of existence”. In: Journal of Computer
and System Sciences 48.3 (1994), pp. 498–532. issn: 0022-0000. doi:
https://doi.org/10.1016/S0022-0000(05)80063-7.

[RGR22] Susanna F. de Rezende, Mika Göös, and Robert Robere. “Proofs,
Circuits, and Communication”. In: ArXiv abs/2202.08909 (2022).

[RYM+22] Anup Rao, Amir Yehudayoff, A Mir, et al. “Communication Complexity
and Applications”. In: 2022.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. 1st. Inter-
national Thomson Publishing, 1996. isbn: 053494728X.

[Tur37] A. M. Turing. “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical
Society s2-42.1 (Jan. 1937), pp. 230–265. issn: 0024-6115. doi: 10.
1112/plms/s2-42.1.230.

[Yao15] Penghui Yao. “Parity decision tree complexity and 4-party communi-
cation complexity of XOR-functions are polynomially equivalent”. In:
arXiv preprint arXiv:1506.02936 (2015).

https://doi.org/https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1145/62212.62265
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=eng#forwardlinks
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=eng#forwardlinks
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=eng#forwardlinks
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

	Introduction
	Computation and Turing machines
	Complexity measures

	Search problems
	Decision vs. Search
	The complexity classes FP, FNP and TFNP
	Reductions between problems
	The TFNP hierarchy
	White-box TFNP

	Black-box TFNP
	Oracles and decision trees
	Proof Complexity
	The Black-box model and Proof complexity
	Reductions through CNF formulas

	Parity in black-box TFNP
	Parity decision trees
	Linear Resolution over F2
	Characterization of FPpdt through TreeRes
	Known relations with other proof systems
	Nullstellensatz over F2 and the class PPAdt
	From TreeRes to F2-Nullstellensatz

	Conclusions
	Acknowledgements
	Bibliography

