{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# %load ../../preconfig.py\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set(color_codes=True)\n", "plt.rcParams['axes.grid'] = False\n", "\n", "#import numpy as np\n", "#import pandas as pd\n", "\n", "#import sklearn\n", "\n", "#import itertools\n", "\n", "import logging\n", "logger = logging.getLogger()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3 Linear Methods for Regression\n", "=================\n", "\n", "### 3.1 Introduction\n", "For prediction purposes linear methods can sometimes outperform fancier nonlinear models, especially in situations with small numbers of training cases, low signal-to-noise ratio or sparse data.\n", "\n", "linear methods $\\to$ basis-function methods.\n", "\n", "an understanding of linear methods is essential for understanding nonlinear ones." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2 Linear Regression Models and Least Squares\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }