
Comp Photography
Final Project

Computational Photography @ GT

Full Name1: Daniel Kane
GTID1: 902970183
Full Name2: Farzon Lotfi
GTID2: 902462754

Spring 2019

Application that resizes images with minimal distortion
using graph cuts.

Ripping at Seams

Computational Photography @ GT

Original project scope: Growing/shrinking the width/height or an image using
seam carving. Stitch two images together using seam carving.

What motivated you to do this project? We talking about the subject in class but
never discussed the details beyond square differencing or had an assignment
about it. So we decided to implement it ourselves.

The Goal of Your Project

Computational Photography @ GT

Scope Changes
● Did you run into issues that required you to change project scope from

your proposal?
○ Yes, we had speed issues that required us to change languages and

timing issues that required us to drop stitching.
● Give a detailed explanation of what changed. Stitching two images

together using seam carving proved to be too time consuming and difficult
alongside resizing images so we decided to just implement the resizing
features. We also changed from JavaScript/OpenProcessing to using C++
because seam carving was too slow on the browser.
○ Don’t just take our word for it feel free to try out our working js demo

and watch your browser slow to a crawl when you swap test.jpeg for
test.jpg computing only 10 seams for removal.

https://www.openprocessing.org/sketch/695701

Input

Computational Photography @ GT

Output
Showcase

Shrink the height

Shrink the width

Grow the width

Grow the height

Notice how the prominent feature (the big branch) remains largely unchanged after resize.

Project Pipeline

Computational Photography @ GT

Input Image
and input

parameters

Get Horizontal
Seams

Get Vertical
Seams

Add Seams to
image

Remove Seams
from Image

Input Image
and input

parameters

Vertical/
Horizontal?

Grow/
Shrink?

Project Pipeline
How To get and
remove Seams:

Demonstration: Result Sets

Computational Photography @ GT

Shrunk 200 Pixels Horizontal ⟵ Original Image ⟶ Grown 200 Pixels Horizontal

YouTube Video Demo: https://youtu.be/Curd1u6-itE

https://youtu.be/Curd1u6-itE

Demonstration: Result Sets

Computational Photography @ GT

Original Image

Grown 200 Pixels Horizontal

Shrunk 200 Pixels Vertically

Project Development
● Our progress is code complete. We started by first writing the

gradient function. Originally we tried to do a convolution of partial
derivatives for X and Y like mentioned in the paper (see
GetEnergyImg in source code for more details on this approach).

● But this turned out to not give good results when we were trying to
compute our Intensity Matrix (where the score/edge weight of or
minimum weight path resided). So we swapped this out for a
similar technique that used the Sobel edge detector. (see
computeGradientMagnitude for more details in functional desc.
slide).

● Next we wanted to compute the Intensity matrix. Here we wrote a
DP algorithm to computed a path for the minimum intensity from
the current path of the 3 next pixels in our graph (see
computePathIntensityMat in functional desc. slide).

● At this point we get the least important path returned as an int
vector of rows mapped to minimum columns, this is the same for
both the growth and shrinking cases we covered. (see
getLeastImportantPath for More details on this in function desc.
slide).

Project Development
● The remaining two functions we had to write are complements of one another

removeLeastImportantPath and addLeastImportantPath. Here we take the seam we just got
and in the removal case memcpy a row up to the min seam and then after the min seam col for
every row.

● Difficulties encountered initially after doing the removal was were were able to scale the
columns but not rows. We quickly found that the minimum code to get rows working was to
transpose the image and run the original algorithm then transpose the final image.

● Next in the addLeastImportantPath case To perform this we need two image clones of the
original, one that would shrink per seam and another that would grow per seam. The image that
would shrink per seam is where got the least import path from and then we would add this seam
to the right of the growing image.

● At this point the rest of the project was just UI level changes. First and foremost we wanted a
CLI mode were we could precisely pick the seams we wanted to remove/add and the images
we wanted to work with. Next we wanted a slider so we could dynamically resize our image.
While the app was running.

Computation: Code Functional Description
● computeGradientMagnitude:

○ Computes this function √dx2 + dy2 where dx is the image gradient in the x direction and dy is the image
gradient in the y direction. We use openCV’s Sobel filter to compute these gradients on the image.

● computePathIntensityMat:
○ Uses the energy matrix computed by computeGradientMagnitude to find the paths with the least

accumulative energy for each row/column in the image. It does this by choosing the smallest energy pixel
of the three neighboring pixels in direction of path for each pixel in the image.

● getLeastImportantPath:
○ This function finds the finds the smallest value pixel of the last row/col of the matrix computed by

computePathIntensityMat. It then works its way backwards picking the least valued neighboring pixel and
adding it to the seam. Once it hits the other side of the image the resulting seam will be the path with the
least energy in the image.

● removeLeastImportantPath / addLeastImportantPath:
○ This function removes/adds the least important seam by doing mem-copies for the length of the

seam/path. If we are removing a path we copy everything except the pixel represented by the seam. IF
we are adding a path we copy everything to the left of the seam pixel the seam pixel again and then
everything to the right of the pixel (in the new image row or column).

Computation: Code Functional Description
● OpenCV:

○ We used OpenCV for C++ in every part of the project. OpenCV’s Mat object is useful for
storing images and has several useful functions that can be used with it. Any large scale
matrix computation was done using openCV.

○ The simple Slider GUI was done using openCV’s highgui.

Any additional details?

● Read the dependencies file for how to build with more details:
● For all make sure you have c++17 standard compiler.
● For Mac

○ brew install opencv
● For Linux

○ sudo apt-get install libopencv-dev pkg-config
● For Windows

○ install the linux subsystem for windows and Xmig for X11 windows
○ run the linux steps
○ Or build\find windows binaries from somewhere

● After installing dependencies you can now call make
Computational Photography @ GT

Teamwork

● Describe your original division of labor, and how that worked out.

○ Daniel Kane

■ Growing Images

○ Farzon Lotfi

■ Shrinking Images

Computational Photography @ GT

Resources

Computational Photography @ GT

● Dolphin photo:
○ https://www.natgeokids.com/wp-content/uploads/2014/06/dolphins-facts-3s.jpg

● Landscape Photos
○ https://www.shutterstock.com/image-photo/beautiful-scenery-lake-sky-575688598

○ https://image-cdn.hypb.st/https%3A%2F%2Fhypebeast.com%2Fimage%2F2019%2F04%2Fearth-day-fashion-indu
stry-tips-tw.jpg?w=960&cbr=1&q=90&fit=max

○ https://image.ibb.co/ey311m/pexels_photo_459225_75.jpg

○ https://www.victoriatrails.com/images/photos/lone-tree-hill-3.jpg

○ https://ortega3d.files.wordpress.com/2010/03/ortega_arvore_port011.jpg

● Paper resource
○ https://perso.crans.org/frenoy/matlab2012/seamcarving.pdf

https://www.natgeokids.com/wp-content/uploads/2014/06/dolphins-facts-3s.jpg
https://www.shutterstock.com/image-photo/beautiful-scenery-lake-sky-575688598
https://image-cdn.hypb.st/https%3A%2F%2Fhypebeast.com%2Fimage%2F2019%2F04%2Fearth-day-fashion-industry-tips-tw.jpg?w=960&cbr=1&q=90&fit=max
https://image-cdn.hypb.st/https%3A%2F%2Fhypebeast.com%2Fimage%2F2019%2F04%2Fearth-day-fashion-industry-tips-tw.jpg?w=960&cbr=1&q=90&fit=max
https://image.ibb.co/ey311m/pexels_photo_459225_75.jpg
https://www.victoriatrails.com/images/photos/lone-tree-hill-3.jpg
https://ortega3d.files.wordpress.com/2010/03/ortega_arvore_port011.jpg
https://perso.crans.org/frenoy/matlab2012/seamcarving.pdf

Appendix: Your Code
Code Language: C++

List of code files:
● Main.cpp
● SeamCarving.cpp
● SeamCarving.hpp
● SeamCarvingHorizontal.cpp
● SeamCarvingVertical.cpp

Credits or Thanks

● Shai Avidan and Ariel Shamir for writing paper on Seam carving that was
actually comprehensible.

Computational Photography @ GT

