
Page 1 of 17 Team Gundam
Final Project: Jurassic Park

TEAM GUNDAM

Final Project

Jurassic Park

Larry Freil, Farzon Lotfi, & Alex Strange

4/30/2011

Page 2 of 17 Team Gundam
Final Project: Jurassic Park

Table of Contents
Part 1: Escaping ... 3

Question 1 overview: .. 3

Improvements from the previous project .. 3

Theoretical algorithms we implemented but did not use .. 4

The simpler algorithms ... 5

Why we choose this algorithm ... 6

Why we did not choose the other algorithms .. 6

Improved movement algorithm .. 7

Full Algorithm .. 8

Future Improvements: Getting to Goal .. 12

Part 2: The Third algorithm -Playing defense ... 13

Options considered ... 13

Why this algorithm .. 13

Pseudo-code: .. 14

How it performed.. 14

Future Improvements: Attacking Robot ... 15

Video ... 17

References .. 17

Contributions .. 17

Page 3 of 17 Team Gundam
Final Project: Jurassic Park

Part 1: Escaping

Question 1 overview:

There were several alternative options considered for the parts of the algorithm. One was to use the

approximate cell decomposition algorithm we implement in project 3. This algorithm might have been

able to handle moving obstacles more easily, because we could have merely updated each grid cell

whenever an obstacle moved in and out of it. Then we could have just checked to see if any of the cells

it moved into were part of our desired path; this would quickly tell us if we needed to re-plan. With the

visibility graphs, each time we want to re-calculate our obstacles, we have to re-generate the visibility

graph, and therefore have to re-plan every time. However, this re-planning was fairly quick, and it took

much less time during that first run to generate the first plan, so overall visibility graphs were much

faster, which would hopefully allow us to avoid the enemy robot more easily.

 The other options were in the execution of robot movement. In project 3 we used an algorithm

that attempted to line us up in a straight line towards our desired point, and then travel in a straight line

till it reached the point. However, this algorithm was not robust enough to handle the robot traveling in

the slightly non-straight line that usually occurred, since Rovio has an extremely imprecise response to

turn commands. We decided to change this algorithm for the third project, to one that would allow the

robot to drive sideways, which would reduce a lot of our uncertainty in turning, and to continually try to

check and update the direction it is traveling in, even on the straight line path. This allowed us to reliably

get from the current location and target location.

Improvements from the previous project

For this project there was a lot we wanted to do different from the first 3 projects. The most important

step was to rework our algorithm for

orientation and movement to allow more

degrees of freedom. We noticed from

LOLCodes success in project three that we

needed to use more of the utility that the

Rovio provided us. There was another, even

more important reason - in project three we

realized that even with re-planning, our

attempts to detect if we turned the right

amount meant that we could never go the

angle we intended. Both of these failed

because blob detection is not perfect which

causes noise to throw off your orientation

direction enough that you can’t tell if you overshot the angle. To fix this we made turning a much less

prevalent part of our code and decided to use moving right, left, and diagonal a lot more. To make our

Figure 1: This example represents how we would get
Arrows depict robot movement

Page 4 of 17 Team Gundam
Final Project: Jurassic Park

movement more robust we also tried to analyze when the Rovio was stalling or moved out of the

picture. We did this by storing the current point globally and after each movement checking if the

pointed had moved out of our target range. If the target range was not achieved we would move the

opposite perpendicular vector/direction from that point.

Theoretical algorithms we implemented but did not use

Using knowledge from taking CS3600 last fall we came to the conclusion that a good algorithm to

implement for this project would be a game tree.As such we made the assumtion that our enemy would

pick the most optimal path. The first problem we

encountered was those algorithms are really best for a

more defined world. So we thought about switching from

our visibility graph back to our approximate cell

decomposition algorithm from the first project. While this

would have solved the first problem, it came nowhere

close to solving the second problem, which is that game

trees like the alpha-beta tree we used assume optimality

of the enemy and complete control of the user. Everytime

we made a wrong move we would have to rebuild the

tree. Furthermore after seeing some of the robots the

night before the demo we realized that an assumption of

an optimal enemy would be flawed. And thus we decided

to go with more simple algorithms but keep the path weighting aspect of alpha-beta.

Alpha-Beta Tree psedo-code

1

2

3

4

5

6

7

8

9

10

11

12

class AlphaBetaAgent:

 def alphaBeta(self, dNode, alpha, beta):

 LActions = dNode.getGameState().getLegalActions(dNode.getAgentTurn())

 #removing STOP

 if dNode.getAgentTurn() == 0:

 if Directions.STOP in LActions:

 LActions.remove(Directions.STOP)

 #terminal test

 if (dNode.getGameState().isLose() or dNode.getGameState().isWin() or

dNode.getDepth() == 0):

 return self.evaluationFunction(dNode.getGameState())

 else:

 #our robot case

 if (dNode.getAgentTurn() == 0):

 for action in LActions:

 if alpha >= beta:

 return alpha

 nextNode =

Figure 2: example of our approximate cell
decomposition running with alpha beta

Page 5 of 17 Team Gundam
Final Project: Jurassic Park

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

decisionNode((dNode.getAgentTurn()+1)%dNode.getAgents(),dNode.getGameState().gene

rateSuccessor(dNode.getAgentTurn(),action), dNode.getDepth()-1)

 value = self.alphaBeta(nextNode,alpha, beta)

 if value > alpha:

 alpha = value

 return alpha

 #their robot

 else:

 for action in LActions:

 if alpha >= beta:

 return beta

 nextNode =

decisionNode((dNode.getAgentTurn()+1)%dNode.getAgents(),dNode.getGameState().gene

rateSuccessor(dNode.getAgentTurn(),action), dNode.getDepth())

 value = self.alphaBeta(nextNode,alpha, beta)

 if value < beta:

 beta = value

 return beta

 def getAction(self, gameState):

 #robt = 0

 alpha = -float("inf")

 beta = float("inf")

 LActions = gameState.getLegalActions(0)

 if Directions.STOP in LActions:

 LActions.remove(Directions.STOP)

 for legal in LActions:

 dNode = decisionNode(1,gameState.generateSuccessor(0,legal),self.depth)

 value = self.alphaBeta(dNode,alpha, beta)

 if value > alpha:

 alpha = value

 bestAction = legal

 return bestAction

The simpler algorithms

For our goal-finding algorithm, we decided to implement a simple method that selected a goal that was

both nearby and far away from the enemy, planned the shortest path using a visibility graph, and then

followed the path with occasional checks to see if the enemy robot was obstructing us.

The first part of the algorithm was to select which goal we should travel towards. In order to do this, we

first calculated the Euclidean distance between ourselves and the goal, then calculated the Euclidean

distances between the enemy and the goal. From this we tried to choose a goal which was far from the

enemy and close to us. So, if we were right next to a goal, and the enemy was a little further away, we

would still travel to this goal. However, if the enemy was blocking the goal, and therefore closer to it

than we were, we would select a farther goal in order to attempt to avoid them.

Page 6 of 17 Team Gundam
Final Project: Jurassic Park

The second part was to use a visibility graph to determine the desired path around obstacles that would

get us to the goal. We chose this particular algorithm because, although we had also implemented

approximate cell decomposition in the previous project, the visibility graph took significantly less time to

calculate. Therefore, since we wanted the option to recalculate several times, we wanted the algorithm

that completed more quickly. Also, since the visibility graph should give us one of the shortest paths (we

added a buffer space around each obstacle in an attempt to avoid collisions, so skirting closer to these

obstacles would give us a shorter path) we believed this would give us the best possible chance of

getting to the goal before the enemy got to us.

 The third part was to actually follow the path

and recalculate the path if necessary. This part

was achieved because our visibility graph

returned us a set of points on the total path we

needed to travel to in order to reach the goal, so

we could create a simple algorithm for our robot

that traveled in a straight line between these

points. Once we reached a point in the path, we

checked to see if the enemy robot had gotten in

between us by rechecking their distance. If the

enemy had gotten ahead of us, we switched our

intended goal, and re-planned to the other goal.

If the enemy was not in the way, we just traveled down the next segment of our path. We repeated this

process until we reached the goal.

Why we choose this algorithm

The reason why we chose this particular algorithm is because we believed that it best balanced the

trade-offs of speed, accuracy, and optimality. Because we chose a faster planning method, we had to

lose the option of easily and accurately calculating interceptions by the enemy robot, but we could

recalculate much more quickly, which allowed us to actually check frequently. We chose planning

algorithm also because it would give us a close to shortest path to the goal, while still avoiding the

obstacles correctly. As for optimality, if you assume optimal to be the path that gets you to the goal

most quickly while still avoiding the enemy, then our algorithm should achieve close to these results.

The main loss of optimality is that we don't calculate the lengths of the paths that avoid obstacles to

either goal, just the straight line distances. The same goes for when we are calculating the enemy's

distances from the goal. However, we believe that our algorithm gives a close approximation of the

optimal plan/path.

Why we did not choose the other algorithms

As mentioned above we decided against the Alpha-beta tree simulation for two reasons. The first

reasons were the high upfront time cost approximate cell decomposition the second was the

exponential growth in memory and time of alpha beta trees even with pruning. We realized that this

would not be as feasible as we initially hoped because of error in our movements as well as the enemy

Figure 3: Example of our visibility graph

Page 7 of 17 Team Gundam
Final Project: Jurassic Park

movements. Other reasons that factored into this decision were flexibility and creativity. If we could

design our own algorithms instead of constraining ourselves to what’s already been implanted we

thought we might have an advantage to surprise other teams.

Improved movement algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

void giveOrders(CvPoint* point) {

 if(!running){

 savePoint = *point;

 running = 1;

 }

 if(!(point->x >= savePoint.x+5)||!(point->x <= savePoint.x-5) &&(!(point->y >=

savePoint.y+5)||!(point->y <= savePoint.y-5))){

 //this code sees if the robot point has moved out of the threshold for changing directions

// if it has not it first goes orthogonal to the previous direction then goes opposite the previous direction. Then

returns

}

 int counter = 0;

 double temp_angle = Angle;

 if(((temp_angle >= -110.0) && (temp_angle <=-80.0)) || ((temp_angle <=280.0) && (temp_angle >=

260.0)))

 {

 rovio_forward(4);

 moveMessage = 'f';

 return;

 }

 if(((temp_angle <= 110.0) && (temp_angle >= 80.0)) || ((temp_angle <=-260.0) && (temp_angle >=

-280.0))){

 rovio_backward(4);

 moveMessage = 'b';

 return;

 }

 //225 degrees

 if(((temp_angle >=-145.0) && (temp_angle <=-125.0)) || ((temp_angle <=235.0) && (temp_angle >=

215.0))){

 rovio_DiagForRight(4);

 moveMessage = 'e';

 return;

 }

 //315 degrees

 if(((temp_angle >=-55.0) && (temp_angle <=-35.0)) || ((temp_angle <=325.0) && (temp_angle >=

305.0))){

 rovio_DiagForLeft(4);

 moveMessage = 'k';

 return;

 }

 if(((temp_angle >=-10.0) && (temp_angle <=10.0)) || ((temp_angle <=370.0) && (temp_angle >=

Page 8 of 17 Team Gundam
Final Project: Jurassic Park

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

350.0))){

 rovio_driveRight(4);

 moveMessage = 'r';

 return;

 }

 if(((temp_angle >=-190.0) && (temp_angle <=-170.0)) || ((temp_angle <=190.0) && (temp_angle >=

170.0))){

 rovio_driveLeft(4);

 moveMessage = 'l';

 return;

 }

 temp_angle = abs(temp_angle);

 while(temp_angle >=0) {

 temp_angle-=20;

 counter++;

 }

 if ((side == DirLeft) || ((Angle <= 90) && (Angle >= -90)) || ((Angle <= 450) && (Angle >= 270))){

 rovio_turnLeftByDegree(counter);

 moveMessage = 'T';

 rovio_forward(4);

 }

 else{

 rovio_turnRightByDegree(counter);

 moveMessage = 'Y';

 rovio_forward(4);

 }

 savePoint = *point;

}

Full Algorithm

Pseudocode:

Select Goal:

 Calculate the Euclidean distance between the center of our robot and each goal.

 Calculate the Euclidean distance between the enemy robot and each goal.

 for (each goal)

 if(our_distance < their_distance):

if AddPathWeights(select goal) < AddPathWeights (select other goal)

 select other goal.

Page 9 of 17 Team Gundam
Final Project: Jurassic Park

 else

 selectGoal

 else:

 select other goal.

travel_to: target point

Calculate robot position and orientation using camera.

Calculate relative orientation to target point (the number of degrees we would need to turn to

face this point).

while(not near target point):

 Call giveOrdersFunction above and give it the current robot point.

Once at point, return.

Follow Path:

Using the obstacles, generate a visibility graph.

Using the selected goal and the visibility graph, find a path as a series of verticies between you

and the goal

For(each vertex along path)

 travel_to(vertex)

 if(select_goal selects a different goal):

 restart follow path algorithm.

How the algorithm performed.

Under the conditions we tested under our algorithm worked very well. These conditions included

obstacles of varying shapes, sizes, and colors, and moving enemies of a different color than our robot.

The main difficulties that emerged occurred when the enemy had the same coloring scheme as us, or

when our robot or an enemy robot hit an obstacle of a similar color to our robot, especially if the

obstacle moved. This caused the obstacle to appear after background subtraction, which threw off our

blob detection. Luckily it was not as damaging to our orientation algorithm because we only ran our

orientation algorithm when both of our colors were detected and intersecting circles could be drawn.

Even so lighting conditions at the demo because of the chaired arena made the entire state space darker

which made color detection much harder. As a result there were frames were we did not detect any an

entire side of our robot causing our robot to stall. Because of these unknown variables before the demo

our robot did not do as well as in our timed trial runs. Watching our videos that will be sent in with this

report will show the effectiveness of our algorithm under the same conditions as the first three projects.

The graphs below show the time trials of our robot running the above algorithms to reach the goal

under conditions with and without an enemy robot.

Page 10 of 17 Team Gundam
Final Project: Jurassic Park

Figure 4: The above graph represents the ability of our algorithm to decide on a goal based on the number of obstacles. The
maximum number of obstacles we tested was 4 with the minimum being 0. The time scale for reaching was at worst 3 and a
half minutes and at best 20 seconds. It’s important to note that this data does not represent the time when an enemy is
present. It’s also important to note that the obstacles were of variable size and that their colors were never the same as the
robot.

Table of data

Obstacles Trial 1 Trial 2 Trial 3 Trial Averages

0 30 25 20 25

1 120 90 100 103.33

2 115 120 117 117.33

3 180 160 175 171.66

4 150 160 200 170

Figure 4: The above time is represented in seconds

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time to obstacles

Trial 1

Trial 2

Trial 3

Page 11 of 17 Team Gundam
Final Project: Jurassic Park

Figure 5: The most noticeable trend in the above data is how much farther off all of the data is from trial to trial. We figured
this out after the demo. After we construct our path using the visibility graph, we add weights to each position of the graph
based on how close the enemy robot is from us. We do this to determine if we need to re-plan. Unfortunately it resulted in
our robot literally being to scared to move for long periods of time until it realized that the enemy robot had moved. We also
built in some fail safe movement code that would use a combination of dead reckoning and obstacle collision to try and get
to the closest goal in the event that we lost orientation (this would only happen if we hit an obstacle or a robot of the same
colors as our own).

Table of data

Obstacles Trial 1 Trial 2 Trial 3 Trial Averages

0 25 85 35 48.33

1 160 100 133 131

2 125 160 145 146

3 167 143 170 160

4 205 240 187 210.66

Figure 6: The above time is represented in seconds

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time with Enemy and Obstacles

Trial 1

Trial 2

Trial 3

Page 12 of 17 Team Gundam
Final Project: Jurassic Park

Future Improvements: Getting to Goal

If we had more time to work on the algorithm, the first thing we would do is work on improving the

vision for case where we hit an obstacle. This was a major problem for us in the demo because when we

or the opponent hit obstacles we would have blob detection of our robot on obstacles. Our orientation

algorithm was smart enough to try and only detect the robot when both of its sides were detected in

the image. Still, there were instances where we failed to detect one of our colors on our robot which

would cause us to loose orientation for long enough that we would stall. If we could detect the robot

more reliably, we would achieve much greater performance. The first step to this might be trying to

avoid detecting the robot by colors of any sort, and try to rely on the shape of the robot, or of the design

we covered the robot with. Doing this might allow us to detect the robot in even the poorest of lighting

conditions, allowing us to more easily control the robot. Also, we could have implemented something

that would make sure that the halves of the robot we 'detected' were right next to each other as

additional insurance that we had detected the robot correctly. Something like a Kinect that gives cloud

laser imaging might make this easier, but learning some shape classification algorithm might work just as

well.

The second part of the algorithm we would improve would be the planning around the enemy. If we

modified the goal selection algorithms to plan a path between the each robot and each goal, and then

used the lengths of these paths to decide which goal to select, it would allow us to guarantee we were

close to the goal than the enemy. Because we were a Rovio group, we generally assumed that we could

probably travel any path as fast as any of the other robots on the field, so we didn't have to worry about

them getting ahead of us too much if we had less distance to travel. Also, we would have updated our

path planning algorithm to maybe try less direct paths in favor of paths that take us further from the

enemy robot.

Other improvements we would have liked to include, if we had time, would be to figure out a way to

implement some kind of Bayesian network with particle filtering in order to better predict the path of

our enemy. Our current algorithm used use blob detection to find the enemy then had a 5 element

array/list of cvPoints – in every frame we added another point to this list, and when the list fills up we

would have a predicted path; based on intersections with our path to the goal and its nearness to our

robot we would add weights to our path which would be grounds for re-planning if our threshold for re-

planning was met. Then we would clear the list/array. This resulted in problems where our robot would

freeze and was not always accurate with Rovios because of the many directions they can go. Thus it was

possible for a robot to go right and trick our algorithm into thinking it was oriented in that direction.

With particle filter it might have been possible to have real- time analysis not dependent on orientation

of the enemy robot.

Page 13 of 17 Team Gundam
Final Project: Jurassic Park

Part 2: The Third algorithm -Playing defense

Our third algorithm was the one we used to defend against the enemy robots. Because of implantation

time, and the uncertainty of the enemy's planning algorithm we chose the simplest option of just

planning and following path to the enemy robot. After each portion of the path, we would re-plan the

shortest path to the enemy robot.

Options considered

We considered several other options before selecting this algorithm. One option was to plan a path to

the goal that the robot was most likely headed towards. This would make it easier in that we would

haven't to keep re-planning the path to account for the enemy robot moving. This could save time in

planning, but it could be more complicated trying to pick the correct goal, and determining how far in

front of it to wait. Also, it could be possible that we might initially move towards the wrong goal if we

guessed the incorrect goal.

A second option we thought of was trying to calculate the most likely plan between the enemy robot

and its best goal, and then try to calculate a path between us and some midpoint on their path. This

would avoid making us always travel to the goal, and instead just try to get us somewhere in between

them and the goal. We would still be blocking, but hopefully have to spend less time and distance

traveling around the map. The downside to this, is we cannot guarantee which goal the enemy is

heading towards, much less the path they will choose to get to that goal. If we pick the wrong path, we

could find ourselves on a path the enemy robot won't take, and in order to detect and prevent these

cases, we would have to re-plan almost constantly in order to make sure that they don't start traveling a

different path.

Why this algorithm

In the end we chose the simple chasing the enemy robot algorithm because it removes a lot of the

uncertainty about the expected plan of the enemy robot. Since we can't know exactly what planning

algorithm, or goal selection criteria, the other robot is using, we cannot perfectly predict the enemy

planned movement. This could end up in our robot wandering around the map continually trying to re-

plan. This could be less effective overall than just chasing down the enemy robot. This algorithm should

only average give a relatively optimal solution. This is because though we may not always find the

shortest path to block the enemy robot, it won't ever accidentally plan a path to the wrong end of the

game area, and have to travel significantly further in order to correct later. Also, with this algorithm we

would hopefully earn the points for eventually running into the enemy robot.

Page 14 of 17 Team Gundam
Final Project: Jurassic Park

Pseudo-code:

Find enemy:

When using background subtraction for any blob of pixels that is not our robot or an obstacle.

If (only one blob not us or obstacle):

 Select blob as enemy robot.

else:

 Track each blob for 5 frames.

 Select blob that moved the most over 5 frames as enemy.

Defending:

Find enemy.

Using visibility graphs, plan path to enemy.

Move to first vertex on path (using the movement algorithm from the previous part of this

project).

if(not at enemy):

 Restart algorithm.

else:

 Finish.

How it performed

This algorithm performed well in that it would always reach the enemy robot eventually. Since we only

followed the enemy, there was a chance that the enemy robot would make it to the goal anyway before

we reached them. However, we figured that overall, this would be the most likely way to touch the

enemy before they reached the goal. The main times our algorithm failed completely was when our

vision detection of the enemy robot failed. This rarely occurred unless their color scheme matched our

own. If we couldn't find the enemy robot we couldn't know where to plan our path to. This sometimes

resulted in us having to just travel to the last known location of the robot, and hope we rediscovered it

at some point. Also, in one or two cases, even with the tracking the movement of the unknown blobs,

we would sometimes still detect an obstacle that got moved as the enemy robot. This would cause us to

chase down an obstacle instead of the enemy robot.

The data below Is based off of reaching an enemy robot that spins around in a circle. For the most part

the robot is immobile. As few of the other groups wanted to spar, moving our second robot around in a

circle was as close to the real thing as we could get. We had a couple of off trials where the robot both

spun and hit an obstacle which screwed up a couple of frames and made it take longer to find the robot.

In other cases we got lucky and found it quickly. There was also more variability in this trial than the

Page 15 of 17 Team Gundam
Final Project: Jurassic Park

previous two we think this probably has more to do with the difficulty of hitting a moving object is much

higher than that of a still one. Other factors could have been that the obstacles where never set up

exactly as they were for each previous run.

Figure 7: The data bellow represents only the successfully completed trials

Table of data

Obstacles Trial 1 Trial 2 Trial 3 Trial Average

0 30 63 28 40.33
1 120 93 114 109
2 110 84 120 314
3 142 190 161 164.33
4 221 200 207 209.33
Figure 8: the numbers above are time in seconds

Future Improvements: Attacking Robot

If we had more time, we would have probably implemented some sort of path tracking algorithm for the

enemy robot. If we could track their position over several frames, we might be able to determine their

most likely path (or provide additional weight to their most likely path) and using this we could then

plan an intercept path with much greater confidence. Also, if we could more reliably handle moving

obstacles, we would have liked to implement an algorithm that would have tried to move lighter weight

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Trial 1

Trial 2

Trial 3

Page 16 of 17 Team Gundam
Final Project: Jurassic Park

obstacles (using a trial and error strategy to see which ones could be moved), to try to block off the

goals because many of the enemy robots would either have difficulty re-calculating their paths if the

goals moved, or would have difficulty finding a path around the obstacles because we believe most of

the other teams tried to avoid obstacles at all costs, even if they might be moveable. However, as with

the first part of the project, given more time we would have worked much more on getting our vision

detection of our robot to be much more reliable under all lighting conditions.

Page 17 of 17 Team Gundam
Final Project: Jurassic Park

Video

http://www.youtube.com/watch?v=ZOO36BOUfes&feature=channel_video_title

http://www.youtube.com/watch?v=fJdwRdgYH8I&feature=channel_video_title

http://www.youtube.com/watch?v=14_B97a-wbI

References

http://cbcl.mit.edu/publications/ps/yokoyama-ICCV-2005.pdf

http://www.sarnoff.com/downloads/research-and-development/vision-technologies/embedded-

vision/moving_object.pdf

Contributions
Larry –

 Wrote the attack enemy algorithm

 Wrote the escape algorithm

 Designed the obstacle

 Wrote the re-planning code

 Worked on the write-up

Farzon –

 Rewrote the movement code from scratch to include more degrees of motion

 Rewrote the orientation code

 Wrote the Approximate cell decomposition with Alpha-beta

 Worked on the write-up

Alex –

 Improved the background subtraction algorithm

 Improved the orientation code and made it only work if both sided of the robot are detected

 Wrote visibility graph reused from last project.

 Cleaned up code from last project.

 Brought the obstacle

 Edited the write-up

http://www.youtube.com/watch?v=ZOO36BOUfes&feature=channel_video_title
http://www.youtube.com/watch?v=fJdwRdgYH8I&feature=channel_video_title
http://www.youtube.com/watch?v=14_B97a-wbI
http://cbcl.mit.edu/publications/ps/yokoyama-ICCV-2005.pdf
http://www.sarnoff.com/downloads/research-and-development/vision-technologies/embedded-vision/moving_object.pdf
http://www.sarnoff.com/downloads/research-and-development/vision-technologies/embedded-vision/moving_object.pdf

