
Project 1: Dead Reckoning and Tracking

Group Name: 
Gundam

Group Members:
Larry Freil

Farzon Lotfi
Alex Strange



p. 2 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

Part 1: Odometry

Algorithm:
For this part of the project we used a simple forward-and-turn-right algorithm. The code was a 

simple loop where we repeatedly sent the Forward command to the robot for a certain amount of time, 
then a turn 90 degrees command, and then repeat the whole process four times. In order to determine 
how long we needed to send the forward command, we timed the robot using a stopwatch and just sent 
a continuous forward command from the web interface and measured how many seconds it would take 
the robot to go one meter. Then using that value, we determined how many times we needed to send the 
robot the Forward command in order to get it to achieve this distance. We tested various turning speeds 
and times to determine one that most closely achieved a 90 degree turn. Once we had both of these 
components, we just put them together in sequence to get a square.

Questions:
1 & 2:

Displacement from desired location: 
First Corner Second Corner Third Corner Final Corner

1st Trial .17m .09m .12m .21 m
2nd Trial 0.25m 0.36m 0.25m .03m
3rd Trial .18m .22m 0.18m .05 m
Average .2 m .22m .18m .1m

All final orientations ended up being within +/- 5 degrees of the original position during the 3 
trial runs for the above graph. However, we have sometimes observed larger errors in the final 
orientation depending on how smoothly the robot performed its run.

3: The reasons for some of this error is the inherent lack of precision in controlling the robot by just 
telling it to go Forward over a period of time. Without the robot actually doing the timing, the time has 
to be estimated by the controlling laptop. Therefore interruptions and delays in communication can 
sometimes cause jittery robot movements, and can affect the final position of the robot. Also, without 
the ability to measure exactly how far the wheels have turned, there is no way to correct for the 
variations in the speed the wheel motors turn when the battery voltage starts to drop. To account for 
some of this, we tried to always keep the robot as fully charged as possible so the robot would behave 
more consistently. 

In addition to just the difficult in ensuring the proper speed of the robot, it is hard to get the 
robot to turn precise amounts for similar reasons. Also, there is an additional fact that the robot does not 
have a precise Turn 90 degrees command, so to get the robot to turn correctly, we had to try a mix of 
turn for a time, and turn by 20 degree increments (which there is a command for) in order to 
approximate a 90 degree turn to the best of our abilities.



p. 3 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

Part II: Tracking

Algorithm:
In order to track the robot, we decided to go with the blob detection 

method discussed in class. To do this, we needed the robot to be a 
distinctive color that easily differentiated it from its surroundings. 
Therefore, we covered the robot with a red piece of construction paper. 
Then we modified and made some improvements on the code Ana showed 
us in class in order to make it work better with our robot. We also found 
that in many cases, the construction paper would reflect light from the 
overhead lights back into the camera, thus causing the construction paper 
to appear white. To account for this, we increased threshold, which caused 
the algorithm to detect brighter colors in general. Also, we added to the 
algorithm a filter that would remove any detected blobs that were to large 
to be our robot. This fixed a problem we occasionally had where if the 
camera tried to auto-adjust the brightness and contrast settings, it could 
temporarily change almost every pixel to a color that would be detected as 
the desired color. Filtering out large blobs prevented any of these 
background blobs from being detected. The dark blue in the images to the 
right is the detected robot blobs.

Once we had the robot detected, we used the center of the blob as 
the robots position. For each frame of the video from the webcam, we 
detected the robots location, and saved it to a list of all of its locations. 
Using the first recorded position of the robot, we could use the camera 
transform to calculate the corner positions of the one meter square and to 
draw it on the image with a green square (usually hidden under the purple 
square). Once the robot started moving we displayed the list of robot 
positions as cyan dots to represent everywhere the robot has been. Also, 
using the average distance and directions between the past several 
positions allowed us to calculate the direction the robot was traveling in. 
Using this information, we could determine which part of the square the 
robot was in, and update our predicted path accordingly (in purple). 

Questions:
1. The world coordinate frame is a 3D coordinate system consisting 

of scenes from the object coordinate frame that have been rotate and 
translated into a scene yielding object coordinates in the world coordinate 
frame. The purpose is to relate objects in three dimensions. The camera 
coordinate frame is a 3d coordinate system whose purpose is to represent 
objects with respect to the location of the camera. Therefore, what a 
Homogeneous transform from the world coordinate frame to the camera 
coordinate frame would do is translate the points of the world coordinate 
system into a direction with reference to the camera.[1] For example let’s 
say the object reference frame in the world coordinate frame is (-5,3,2) 
and we want to translate the point into the direction of the camera (4,3,0,1)



p. 4 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

 This gives us the point (9,6,2) . This is useful since we may want to look at our scene from a particular 
viewpoint (the “camera”). What this does is set the camera to the origin of the coordinate system which 
orients the scene so the camera is looking down one direction of the z-axis. The "up" direction is 
typically the positive y direction. 

2. 
 The pixel coordinate frame is a 2D coordinate system. Each pixel in this frame has integer pixel 
coordinates. Therefore to convert to this frame you must first convert the camera frame to an Image 
plane coordinate frame which will describe the coordinates of the 3D points on to the image plane. 

Here we perform the Homogeneous transform and drop the last two coordinates since pixels have no 
depth associated with them. 

3. 

This overall perspective transform can be used to convert real world coordinates into pixel coordinates 
directly, without the use of any intermediate transforms. 

4. (see images on previous page)

5. At the end of the first segment, the robot was approximately 31 pixels distant from the desired 
location. By the end of the last segment, the robot stopped about 53 pixels distant from the desired final 
location.

6. Naturally there is a linear relationship between the errors in pixels, and the errors in physical location 
of the robot because we are not really changing distances from the camera, we are only changing the 
scale of movement. Therefore, distances in our world coordinate system simply require a scalar (in this 
case) to covert to distances in our pixel coordinate system.



p. 5 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

Part 3: Analysis

We designed a trajectory for the robot in the shape of an hourglass/figure 
eight:

The robot units mentioned refer to the number of times we sent the Forward 
command to the robot.

1 meter = 24 robot units
       <-
------------
\             /(34 robot units)
  \         / 
    \     /  ^
      \ /   /
       x
      / \
    /     \  \
  /         \ v
/            \
-----------
     <-

The starting point was in the lower left corner. The trajectory was enclosed 
in the same square meter as Part I.

First Corner Second Corner Third Corner Final Corner
1st Trial .05m .08 m .15 m .04 m
2nd Trial .06m .10m .08m .03m
3rd Trial .05m .13m .25m .12m
Average .05m .10m .16m .06m
The orientation for the first two final positions was within +- 5 degrees of the 
desired orientation, however during the third trial, there was a momentary 
loss of signal, and the final orientation was about 20-25 degrees off from the 
desired direction.

The main difference between this part of the assignment, and the first part of the assignment, is that it 
seems that sometimes turning smaller amounts reduces the overall error in the turning so that we are 
more in line with the desired direction we want the robot to travel. Also, due to the rules of 
trigonometry, if we are slightly off in one of our diagonals, there is a much smaller effect on the next 
leg of the path.



p. 6 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

2.

When using dead-reckoning, there is no way to correct the trajectory, because the only thing we know 
is that the robot has finished its last predetermined command.

We can improve this by adding sensors. Because the robot heads in vectors with arbitrary 
angles, we need to correct for two kinds of errors - the possibility of it traveling at the wrong angle and 
the possibility of it finishing at the wrong distance along the vector.

a. We can plot the expected route on the camera’s image and correct the robot’s path if it falls off it.

Pseudocode:
// at a target point

drive(next point - current position)
while (current position != next point) {

if (next point is not straight ahead)
drive left/right to correct sideways drift

if (stopped)
drive(next point - current position) // correct 

stopping too far/not far 
enough

}

b. Without the overhead camera, we need to use some other sensor. On Rovio, the possibilities are:
- using the encoders on the wheels. These are not accessible to us, and the robot itself already uses them 

to drive forwards. Any errors are caused by inaccuracies here, so reusing their data probably 
won’t help.

- the beacon on the Rovio base. This gives the robot x/y coordinates relative to the base - we can save 
coordinates for the target points and correct it by driving towards those. This should work if the 
base is available, but there might be some problems due to the imprecise sensor.

- the onboard camera on the Rovio. In this case, we move the robot to each target point and save the 
image from the camera. As long as the appearance of the environment doesn’t change, when the 
robot is placed nearby the same area, the program can correct its path by trying to find the same 
view. Sideways drift can be corrected by shifting the robot so the center of the image is in the 
same place. Incorrect distances can be corrected by making sure some landmark is the correct 
size. This should be the best method, but requires the most work to get perception working.



p. 7 of 7 Project 1: Dead Reckoning and Tracking            Team: Gundam

References:
1. Nvidia – The Cg Tutorial - http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter04.html 

-Used this to find more information on how to use homogenous transforms.

Contributions:
Larry -

-Developed our blob detection software and robot tracking
-Worked on the write-up
-Taped construction paper to the robot

Farzon-
-Calculated our homogenous transforms.
-Wrote the program that drove the robot in a square.
-Worked on the write-up

Alex -
-Programmed the alternate hourglass route
-Assisted the development of the program that drove the robot in a square.
-Worked on the write-up


