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Part 1: 

 There were two main tasks in this part of the project. First, identifying the robot's position, 

orientation, and the fruit locations. Second, calculating the best path and the rotations needed in order to 

get the robot to reach the lemon. For each task, we then thought up a few possible implementations. For 

the robot detection, we tried to use the six blue running lights on top of the Rovio to determine the robot's 

position and orientation. This could be done using the known relative distances between these points. The 

longest distance between any of the lights on the robot was the diagonals; using this we could construct a 

rectangle that represented the outer edges of the robot. The front of the robot was the shortest side of the 

rectangle. Using the center of the rectangle, we draw a line from the center of the square through the 

midpoint of the front line. This worked very well, and could calculate the orientation accurately to within 

a few degrees. However, a common problem was that we could only detect five of the six lights on the 

robot. This still allowed us to construct the overall position of the robot, but unfortunately, it often caused 

the orientation of the robot to be detected at about twenty to thirty degrees off. 
 This error could cause longer times to find the lemon because sometimes our path planner would 

correct for orientations that didn't need correcting. Because of this, we decided to change our detection 

method by attaching blue and green felt to the top of the robot. With blue on one half, and green on the 

other half, it became possible to detect the orientation by finding the two color blobs, and drawing a line 

between them. Then taking a line that is at a right angle to the line between the two color blobs. This 

gives a slightly larger error than the best case scenario of the six light 

point method, but significantly less than the average cases where we 

can't detect all of the lights. The average error was around 5-10 

degrees using the new method. This still required periodic corrections 

as we got closer to our target object, but caused fewer incorrect 

adjustments and overcorrections.  
 Secondly, in order to determine the path to use, we first 

implemented a simple algorithm that uses the positions of the robot to 

determine the angle from the robot to the fruit. We would check at the 

next frame to see if we lined up and then proceed forward. Then you 

can find the difference between the orientations of the robot and the 

fruit. This tells you how far you need to turn to point at the fruit. Then 

you can merely turn this distance and then proceed forward checking 

the camera frames as a reference. Unfortunately, this tended to 

generate some problems, as we sometimes received slightly old 

images from the camera, so the robot would finish its turn, and we 

would receive an image from half way through the turn, which would 

cause us to calculate that we needed to keep turning, causing us to 

over correct. Eventually we would center in on the fruit and then proceed forward (correcting the angles 

periodically if the fruit either changed positions, or we were not pointed exactly at the fruit) until we had 

reached the fruit. 
 

The premise of our improved algorithm was a straight line is the shortest path.  We achieved this 

by setting our reference frame to the location of the robot. From here we use basic geometric features of 

circles and triangles to get position and orientation. The first step is to find the x and y location of the 

lemon. This line segment between the robot and the lemon is the radius.  We then find the current 

orientation of the robot. This direction plus the length of the radius will be our current vector that we will 

need to translate to the point of the fruit (lemon). This vector will point at the point (Robot’s x, Robot’s + 

radius) I will refer to it as the parallel point from here on.   Now that we have the point of the lemon and 

the parallel point, we can get the length of the cord between them. A perpendicular line from the midpoint 

of the parallel point and the lemon to the robot will allow us to turn this problem into a simple right 

triangle. Now we perform an arcsine on half the chord divided by the radius. This gives us an answer in 

radians so multiply by 180 and divided by 𝜋 to get the answer in degrees. Then multiply by 2 to get the 

Figure 1: example of our blob detection algorithm 
detecting the different colored pieces of felt and 
the lemon. 
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angle between the orientation of the robot and the fruit (lemon). Now we need to handle cases larger than 

90 degrees. We can do this easily by breaking the problem into a semicircle. We now have a right side, a 

left, and a center (for special cases where a triangle can’t be constructed). For degrees larger than 90 for 

either side just subtract the angle from 180 degrees. Using this Formula we get the angle of rotation and 

the distance of the robot from the lemon in pixel coordinates which can be converted into real-world 

coordinates since we know the height of the camera. Since we calculate distance on the first image we 

deal with lag time from the web camera a lot less. Also since we make sure  our distances are slight 

underestimates we never run the risk of overshooting the lemon. 

 

KEY 

Robot point = rp 

Lemon point = lp 

Parallel point = pp 

Perpendicular line = pl 

Midpoint = mp 

 

 

1. 𝑟𝑎𝑑𝑖𝑢𝑠 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑝, 𝑙𝑝) =

√(𝑙𝑝. 𝑥 − 𝑟𝑝. 𝑥)2 + (𝑙𝑝. 𝑦 − 𝑟𝑝. 𝑦)2 

2. pp = Point(rp.x, rp.y+radius) 

3. 𝑐ℎ𝑜𝑟𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑝, 𝑙𝑝) = √(𝑙𝑝. 𝑥 − 𝑝𝑝. 𝑥)2 + (𝑙𝑝. 𝑦 − 𝑝𝑝. 𝑦)2 

4. 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝑝𝑝, 𝑙𝑝) = (
𝑙𝑝.𝑥+𝑝𝑝.𝑥

2
,

𝑙𝑝.𝑦+𝑝𝑝.𝑦

2
) 

5. 𝑝𝑙 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑝, 𝑚𝑝) = √(𝑚𝑝. 𝑥 − 𝑟𝑝. 𝑥)2 + (𝑚𝑝. 𝑦 − 𝑟𝑝. 𝑦)2 

arcsine (

𝑐ℎ𝑜𝑟𝑑
2

𝑟𝑎𝑑𝑖𝑢𝑠
) ∗

180

𝜋
= 𝜎 → ∀(2𝜎 < 90) ⇒ 2𝜎 → ∀(2𝜎 > 90)

⇒ 180 − 2𝜎

 

We can compute an even more time and memory efficient 

algorithm (it would not matter on today’s computers but would for a robot with an embedded processor).  

By getting the intersection of the robot's Y coordinates and the lemon's X coordinates. The resulting 

perpendicular line turns the problem into a triangle much faster than the above formula. All the angle 

computation will remain the same including dividing the problem up into two sides (ie the semicircles).  

Figure 2: diagram of the formula above Figure 3: demonstrates how we divided the 
problem into two semicircles 
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Formula (the key is the same as above): 

1. 𝑝𝑎𝑎𝑙𝑙𝑒𝑙 𝑝𝑜𝑖𝑛𝑡 = (𝑙𝑝. 𝑥, 𝑟𝑝. 𝑦) 

2. ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑝, 𝑙𝑝) = √(𝑙𝑝. 𝑥 − 𝑟𝑝. 𝑥)2 + (𝑙𝑝. 𝑦 − 𝑟𝑝. 𝑦)2 

3. 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑝, 𝑝𝑝) = √(𝑝𝑝. 𝑥 − 𝑟𝑝. 𝑥)2 + (𝑝𝑝. 𝑦 − 𝑟𝑝. 𝑦)2 

Step 4 is not needed to solve this problem but it helps to think about the problem in terms of a triangle.  

4. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑙𝑖𝑛𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑝, 𝑝𝑝) = √(𝑝𝑝. 𝑥 − 𝑙𝑝. 𝑥)2 + (𝑝𝑝. 𝑦 − 𝑙𝑝. 𝑦)2 

5. arccos (
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑖𝑛𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
) ∗

180

𝜋
= 𝜃 if 𝜃 > 90 → 𝜃 = 180 − 𝑎 

 

Figure 4: a visualization of the above formula. a = 𝜽 if 𝜽 ≤ 𝟗𝟎 

 The algorithm that probably gave us the best improvement was the switch from the six light point 

detection to the generic color blobs. This prevented many cases where the robot would keep trying to 

correct its position even when it did not need to because one or two of the six lights would not be 

detected. These almost continuous unnecessary corrections would lead to much longer search times for 

the fruit. Once we removed this, the required number of corrections were much fewer, reaching the fruit 

much more quickly. 
 Given more time, we would probably have tried to perfect the point matching algorithm by using 

a threshold to find every point that might be a light on the robot, then using the known pattern of the 

lights to find the most likely position and orientation of the robot. This could be done by assigning every 

possible light point on the robot to every possible light source in the image, and find if there was a 

rotation around that point where the pattern would best match other possible light sources in the image. 

This would allow us to filter many more possible points, and find the ones that are most likely to be the 

robot. This method would give us one of the most accurate representations of the robot, which would 

make pathing both easier and more reliable. 

 If we had better control ability, we would probably have improved this algorithm by calculating 

the complete path (including appropriate distances using homogenous transforms) between the robot and 

the fruit. Then we would figure exactly how far to turn and move, and how to measure it using the optical 

encoders on the wheels. With that we would send the robot the entire path, and tell it to travel it on its 

own, using the internal optical encoders to ensure it was on its path. Once it had started its path, we would 
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not recalculate a path unless we detect it was significantly off the path, it finishes its path, or we detect the 

lemon being significantly moved. 
 

 

Basic algorithm 

Difference in angle the robot is facing and the angle 

from the robot to the lemon. Zero means the robot is 

pointed straight at the lemon: 

Time (approximate number of seconds): 

0 10 

20 13 

40 17 

90 20 

120 30 

180 35 

240 38 

270 21 

320 15 

340 12 

 

The ones where it had to turn the most (considering that it always turns the shortest angle) generally had 

the longest times to reach the goal, because it would often over turn, because of the delay in receiving 

images. Sometimes the image received would be from before the robot finished the turn, causing our 

algorithm to think that the robot needed to turn some more. This usually wasn't a problem for the shorter 

distances (even the ones as large as 90 degrees), because the camera wouldn't update during the turn. 

However for the greater turning angles, this could become a serious problem where we could way 

overshoot our intended angle. Our algorithm that only turned a small amount at a time significantly 

reduced these times because it allowed us to wait for the most recent image, and thereby avoid 

overcorrection. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Improved pathing algorithm. The main difference is we would only rotate a short segment at a time before 

attempting to recalculate our desired orientation. 
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Difference in angle the robot is facing and the angle 

from the robot to the lemon. Zero means the robot is 

pointed straight at the lemon: 

Time (approximate number of seconds): 

0 11 

20 15 

40 12 

90 15 

120 18 

180 19 

240 17 

270 15 

320 12 

340 11 

 

We generally had better times with this algorithm, because we rarely over corrected. The main difference 

in time was merely the number of times we had to correct our path as we moved either due to minor 

orientation miscalculations, or our robot tending to drive slightly to the left, and getting further and 

further off angle as it drove. 
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2.1. Rovio Guard Questions 

 

1. What is the most significant difference between overhead vision and onboard vision? 

 

The most significant difference between the overhead camera and the Rovio’s onboard camera is the 

limited field of view. Because the camera is on the front, it naturally limits vision to what happens to be 

ahead of the camera, whereas the overhead camera can see objects behind the robot. Furthermore, Rovio’s 

FOV is narrow even in one direction, which makes it easy to lose sight of an object - if it’s not in the 

center of view, driving forwards may drive past it, and raising or lowering the camera head may lose it as 

well. 

 

A secondary problem we found is motion blur in the camera output; it was necessary to ignore camera 

frames for up to several seconds after issuing a movement, because the frames were blurred and we were 

unable to find objects in them. 

 

2. What did you have to add to your controller to get it to work in the new perceptual context? 

 

To make more efficient use of time, and because the view from the overhead and onboard cameras was so 

different, we implemented them as separate programs. Comparing the implementations, the largest 

difference is that it does not attempt to track the actual locations of target objects. It was difficult to 

estimate distance of an object without stereo vision or a non-moving camera, so instead we attempt to 

move the robot such that the object is centered in its vision, and then move straight ahead towards it. 

 

 

3.  Repeat the experiments in Part I for both the simple controller and your improved controller. Repeat 

the plots of relative orientation vs. time. What is the improvement? 

 

The simple controller does not have the ability to issue turn commands or commands to change the 

camera height - it can only drive diagonally and the camera is fixed at mid-height. 

 

1. Straight ahead 1m: 25 sec (drove slightly to the right and lost sight) 

2. Robot started right of the object, facing forward, with the object at the edge of view: 20 sec (drove 

slightly to the right and lost sight afterwards) 

3. Robot started left of the object, facing forward: 15 sec (it seems the robot drifts right) 

 

We changed the controller to turn towards objects on the edge of vision, and to adjust the camera height 

to better see its target. 

 

1. Straight ahead 1m: 15 sec 

2. Robot started right of the object, facing forward: 24 sec 

3. Robot started left of the object, facing forward: 33 sec 

4. Which improvement to your algorithm was most significant in giving you better results? 
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The automatic adjustment of camera height was the most useful improvement, as moving closer to the 

object appears to make a lower-height camera more beneficial for tracking. 

 

Although turning should be an improvement over moving diagonally, it did not improve times for some 

orientations. Turning the robot caused the targeting to sometimes choose a new incorrect target, as it is 

unable to estimate how the real target will move in its view after a turn. Also, issuing turn commands to 

Rovio appears to make it move much more slowly than only issuing drive commands, which affected the 

speed at which it could reach the target even when it saw it. 

 

5. What other improvements might you consider if you had more time? 

 

The largest problem with the current implementation is that, given any frame with an object in it, it will 

probably detect something as either a lemon or a face and try to head towards it, causing it to move 

forwards practically all the time. It needs better abilities to reject false positives, as well as an ability to 

head back to its home base when it is not currently chasing something. This would avoid the problem of 

having to manually bring it back after it finds something. 

 

A second addition would be a scanning ability; since it only looks forwards, it can’t see things traveling at 

angles to it. Occasionally turning in place would make it more likely to notice objects in other orientations 

to it. 

 

 


