{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "from utils import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computer vision" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### cnn_learner" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'cut': -2,\n", " 'split': ,\n", " 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_meta[resnet50]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): AdaptiveConcatPool2d(\n", " (ap): AdaptiveAvgPool2d(output_size=1)\n", " (mp): AdaptiveMaxPool2d(output_size=1)\n", " )\n", " (1): full: False\n", " (2): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (3): Dropout(p=0.25, inplace=False)\n", " (4): Linear(in_features=20, out_features=512, bias=False)\n", " (5): ReLU(inplace=True)\n", " (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (7): Dropout(p=0.5, inplace=False)\n", " (8): Linear(in_features=512, out_features=2, bias=False)\n", ")" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "create_head(20,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### unet_learner" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Natural language processing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tabular" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Wrapping up architectures" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }