{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Important: This notebook will only work with fastai-0.7.x. Do not try to run any fastai-1.x code from this path in the repository because it will load fastai-0.7.x**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Forest from scratch!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"from fastai.imports import *\n",
"from fastai.structured import *\n",
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
"from IPython.display import display\n",
"from sklearn import metrics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load in our data from last lesson"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"PATH = \"data/bulldozers/\"\n",
"\n",
"df_raw = pd.read_feather('tmp/bulldozers-raw')\n",
"df_trn, y_trn, nas = proc_df(df_raw, 'SalePrice')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def split_vals(a,n): return a[:n], a[n:]\n",
"n_valid = 12000\n",
"n_trn = len(df_trn)-n_valid\n",
"X_train, X_valid = split_vals(df_trn, n_trn)\n",
"y_train, y_valid = split_vals(y_trn, n_trn)\n",
"raw_train, raw_valid = split_vals(df_raw, n_trn)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_sub = X_train[['YearMade', 'MachineHoursCurrentMeter']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic data structures"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class TreeEnsemble():\n",
" def __init__(self, x, y, n_trees, sample_sz, min_leaf=5):\n",
" np.random.seed(42)\n",
" self.x,self.y,self.sample_sz,self.min_leaf = x,y,sample_sz,min_leaf\n",
" self.trees = [self.create_tree() for i in range(n_trees)]\n",
"\n",
" def create_tree(self):\n",
" rnd_idxs = np.random.permutation(len(self.y))[:self.sample_sz]\n",
" return DecisionTree(self.x.iloc[rnd_idxs], self.y[rnd_idxs], min_leaf=self.min_leaf)\n",
" \n",
" def predict(self, x):\n",
" return np.mean([t.predict(x) for t in self.trees], axis=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class DecisionTree():\n",
" def __init__(self, x, y, idxs=None, min_leaf=5):\n",
" self.x,self.y,self.idxs,self.min_leaf = x,y,idxs,min_leaf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m = TreeEnsemble(X_train, y_train, n_trees=10, sample_sz=1000, min_leaf=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<__main__.DecisionTree at 0x7f645ec22358>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.trees[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class DecisionTree():\n",
" def __init__(self, x, y, idxs=None, min_leaf=5):\n",
" if idxs is None: idxs=np.arange(len(y))\n",
" self.x,self.y,self.idxs,self.min_leaf = x,y,idxs,min_leaf\n",
" self.n,self.c = len(idxs), x.shape[1]\n",
" self.val = np.mean(y[idxs])\n",
" self.score = float('inf')\n",
" self.find_varsplit()\n",
" \n",
" # This just does one decision; we'll make it recursive later\n",
" def find_varsplit(self):\n",
" for i in range(self.c): self.find_better_split(i)\n",
" \n",
" # We'll write this later!\n",
" def find_better_split(self, var_idx): pass\n",
" \n",
" @property\n",
" def split_name(self): return self.x.columns[self.var_idx]\n",
" \n",
" @property\n",
" def split_col(self): return self.x.values[self.idxs,self.var_idx]\n",
"\n",
" @property\n",
" def is_leaf(self): return self.score == float('inf')\n",
" \n",
" def __repr__(self):\n",
" s = f'n: {self.n}; val:{self.val}'\n",
" if not self.is_leaf:\n",
" s += f'; score:{self.score}; split:{self.split}; var:{self.split_name}'\n",
" return s"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m = TreeEnsemble(X_train, y_train, n_trees=10, sample_sz=1000, min_leaf=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 1000; val:10.079014121552744"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.trees[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,\n",
" 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\n",
" 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,\n",
" 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,\n",
" 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,\n",
" 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,\n",
" 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,\n",
" 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n",
" 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,\n",
" 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,\n",
" 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,\n",
" 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,\n",
" 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,\n",
" 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279,\n",
" 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,\n",
" 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,\n",
" 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339,\n",
" 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,\n",
" 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,\n",
" 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399,\n",
" 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419,\n",
" 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,\n",
" 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,\n",
" 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,\n",
" 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499,\n",
" 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,\n",
" 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539,\n",
" 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,\n",
" 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579,\n",
" 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599,\n",
" 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619,\n",
" 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639,\n",
" 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659,\n",
" 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679,\n",
" 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699,\n",
" 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719,\n",
" 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739,\n",
" 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759,\n",
" 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779,\n",
" 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799,\n",
" 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,\n",
" 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839,\n",
" 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859,\n",
" 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879,\n",
" 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899,\n",
" 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919,\n",
" 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939,\n",
" 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959,\n",
" 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979,\n",
" 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999])"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.trees[0].idxs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Single branch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Find best split given variable"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['YearMade', 'MachineHoursCurrentMeter'], dtype='object')"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ens = TreeEnsemble(x_sub, y_train, 1, 1000)\n",
"tree = ens.trees[0]\n",
"x_samp,y_samp = tree.x, tree.y\n",
"x_samp.columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 1000; val:10.079014121552744"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = RandomForestRegressor(n_estimators=1, max_depth=1, bootstrap=False)\n",
"m.fit(x_samp, y_samp)\n",
"draw_tree(m.estimators_[0], x_samp, precision=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def find_better_split(self, var_idx):\n",
" x,y = self.x.values[self.idxs,var_idx], self.y[self.idxs]\n",
"\n",
" for i in range(self.n):\n",
" lhs = x<=x[i]\n",
" rhs = x>x[i]\n",
" if rhs.sum()\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = RandomForestRegressor(n_estimators=1, max_depth=2, bootstrap=False)\n",
"m.fit(x_samp, y_samp)\n",
"draw_tree(m.estimators_[0], x_samp, precision=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def find_varsplit(self):\n",
" for i in range(self.c): self.find_better_split(i)\n",
" if self.is_leaf: return\n",
" x = self.split_col\n",
" lhs = np.nonzero(x<=self.split)[0]\n",
" rhs = np.nonzero(x>self.split)[0]\n",
" self.lhs = DecisionTree(self.x, self.y, self.idxs[lhs])\n",
" self.rhs = DecisionTree(self.x, self.y, self.idxs[rhs])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DecisionTree.find_varsplit = find_varsplit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 1000; val:10.079014121552744; score:658.5510186055565; split:1974.0; var:YearMade"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree = TreeEnsemble(x_sub, y_train, 1, 1000).trees[0]; tree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 159; val:9.660892662981706; score:76.82696888346362; split:2800.0; var:MachineHoursCurrentMeter"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree.lhs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 841; val:10.158064432982941; score:571.4803525045031; split:2005.0; var:YearMade"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree.rhs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 150; val:9.619280538108496; score:71.15906938383463; split:1000.0; var:YearMade"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree.lhs.lhs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"n: 9; val:10.354428077535193"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tree.lhs.rhs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cols = ['MachineID', 'YearMade', 'MachineHoursCurrentMeter', 'ProductSize', 'Enclosure',\n",
" 'Coupler_System', 'saleYear']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 325 ms, sys: 3.98 ms, total: 329 ms\n",
"Wall time: 328 ms\n"
]
}
],
"source": [
"%time tree = TreeEnsemble(X_train[cols], y_train, 1, 1000).trees[0]\n",
"x_samp,y_samp = tree.x, tree.y"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = RandomForestRegressor(n_estimators=1, max_depth=3, bootstrap=False)\n",
"m.fit(x_samp, y_samp)\n",
"draw_tree(m.estimators_[0], x_samp, precision=2, ratio=0.9, size=7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict(self, x): return np.array([self.predict_row(xi) for xi in x])\n",
"DecisionTree.predict = predict"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if something:\n",
" x= do1()\n",
"else:\n",
" x= do2()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = do1() if something else do2()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = something ? do1() : do2()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict_row(self, xi):\n",
" if self.is_leaf: return self.val\n",
" t = self.lhs if xi[self.var_idx]<=self.split else self.rhs\n",
" return t.predict_row(xi)\n",
"\n",
"DecisionTree.predict_row = predict_row"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 94.4 ms, sys: 0 ns, total: 94.4 ms\n",
"Wall time: 93.4 ms\n"
]
}
],
"source": [
"%time preds = tree.predict(X_valid[cols].values)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVmIZdma3/dbw57OEGNGZmUNeev27XmSZJfbg4SRMRpoGguEBWobY7Chn/QugR9k/Gb8KBmsRjRCYEv4pbFAstUC2TRtue3bbXe37lR3qFtVOUdmRJxpj2vywzoRGZkZ50RkZERm3br7B0XW2XGGfYb9rW99w/8TIQR6enp6en58kG/7BHp6enp63iy94e/p6en5MaM3/D09PT0/ZvSGv6enp+fHjN7w9/T09PyY0Rv+np6enh8zesPf09PT82NGb/h7enp6fsw41/ALIX5LCLEvhPjGqWP/nRDiO0KIPxFC/LYQYmvFY/+yEOJjIcT3hRB/6ypPvKenp6fncojzOneFEP8+sAD+YQjhF5fH/iLwL0MIVgjx3wKEEP7mC49TwHeBvwDcA74O/HoI4VvnndSNGzfChx9++Orvpqenp+fHlD/8wz98GkLYu8h99Xl3CCH8rhDiwxeO/c6pm78P/MdnPPRXgO+HED4BEEL8Y+CvAOca/g8//JA/+IM/OO9uPT09PT1LhBCfXfS+VxHj/y+A//WM4+8Bd0/dvrc81tPT09PzFnktwy+E+K8AC/yPZ/35jGMr40pCiN8QQvyBEOIPnjx58jqn1dPT09OzhksbfiHEfw78GvCfhrMTBfeAD07dfh94sOr5Qgi/GUL4KITw0d7ehcJUPT09PT2X4FKGXwjxl4G/CfxHIYRqxd2+DvyUEOKrQogU+OvAP7ncafb09PT0XBUXKef8R8D/BfyMEOKeEOK/BP4uMAb+hRDij4QQ/8Pyvu8KIf4ZQAjBAn8D+OfAt4H/OYTwzWt6Hz09PT09F+Tccs63wUcffRT6qp6enp6eiyOE+MMQwkcXue+55Zw9PT1vh6qzHJUtrQ1kWrA9zBik51+yxnnqzmI9aAlFqklU36T/ReJtf0f9r6Gnh3ghzuqOw7JjVncY59/q+VSd5eGkxgfBMNP4IHg4qak6u/ZxxnnmjSEgSLUkIJg35q2/n55nfBG+o97w9/zY80W4EF/kqGxJtSLV8RJNtSTViqOyXfu4urMoKVEyVlMrKVBSUp+zYPS8OerO4gNUreGo7Khagw+80e+oD/X0/EhwnVvjs4wlRGOZFOmVvMar0tqAFIGHk5rOBVIl2BpkmHNSctZDYwyPpzW18RSJ5NZmQZ70l/oXhcZ4Fq3BWk9AIAho7RhlCRvFmzmH/tfQ84Xn2CNXUpJqgfOBeWMY58mVGH/rIdXP9xsqKejs2yt8cN7zcNowyDSDVGGs5/5hxc3NfO3jqrbjX987om4dXghkCDyaVvzS+9vsDN/OIvZF5m3E2qvOULaWPNFoGX/PZWuJfsf67/eq6EM9PV94rjt8oSU4/7yRdz6g3+LVIQkY7ykbw6wylI3BeI9c3fwOwL3DisezFiEVozxBSMXjWcu9w1XtNj++vK0Qn/cBH2DRGGZVx6KJoR7v35yj0Xv8PV94rtsjL1LNvDFAXFycDzjvGefJlTz/ZXBBME4Vh5WldYZMKXYGGhfOUkJ5xqNZw81xAVJgXSBLFTd1waNZ84bO/O1XrFyU41h721qcDygpSHR0KIySl6qouggegQgghCAsgz0ixONvit7w93zhOfbIjz1+uFqPPFGScZ5Qd5bOxue9qjDSZemspTKeYa4ZLi/Tyngye84uR4ANHtN4rAtoJUgSebZy1jVw3WG5q+So7Nif1zgPeSIZ5ympV5Tec/dwzqf7NZW1DLTmw5sF/8aHe5c2/qcXw6YzVF1cbGwALSBNFJvyzZnjL9Y30dNzBkWqcd6fhGOOPfJixUV4mdLMREk2ipSdYcpGkZIo+XZLPIWk6tyJ8bYuUHUOxPpL9sYw4f5BRWs9WaZoref+QcWN4ZvZvfyoVBVVneX+pKazASEE08ry2UHJvO74xqMJX/90QusswzShdZavfzrhW3cPLvVaL4aUhBA8WXTUNpAoSWM9T2cN08a8sd9Zb/h7vvAce+SCQGc9grDSg7yquO3bLvGUInBrMydRgqZzJEpwazNHivXhrd1Rwa2NnACUjSEAtzZydkdvplzEep7bmUG8bb9gbQRHZUuqBJ2LO6MiUygED6Y13/58irWOu4cV33ww4e5hhbWOP7o3u9RrvbgYdtazO8wYpopUxt/XxiDDOv/Gfmd9qKfnR4JEyQuVVl5VaebbLvHMtIbgGI6Tk7yDsY5Mq/WPSzS/dGebJ7OWxjjyRLG3kaHkm/Hxrjssd1W0NpBoxTCAB5wLZJlCdMTwT4BxljAuNG3neDRraDp3qdd6MUclhKBIFd4HkkQhlw6MFG/ud9Yb/p4vFVeVCH7bJZ5bg4TDErz3eC+AaKi2ButDNpkW+KD52q1nRqOz/tydwmleJzl7OlHuQyxT7Kxjs0gwzn9h4vyZFsxCQAjwLiCApnPx8/MB4wIug7rzBMBYj72kF64lNMZhbAxXhhAIAbSStMaSJQolBIl65mRc9++sN/w9XyquyuN8257rRpFilwaIAAhIlGDjHC9we5jx3YdTppXB+oCWgs1Bwk/f3rzQ675ucvY4LDerOyaVPamIkUJ8oZK828OMe4cVk6oDBG65CNwYDbi9OeR7Tyb88HENUoF3jIqEd7Yu9hm+iFaST/affSfGe1prubMzRktJ3TlSJbi5MQTezO/s7X8DPT1XyKsmgq/7eS5LoiQ7w4yNXDPINBu5ZmeYnWs0jfNUxuKBREs8UBl74ZjxVSRnEyVJlOTGOGNrec5ftCRvoiTDTBEA62LeaJgqlJQMMknwHi+WNfcCgveM8vVhtlUcLhoOqg4hBINUkypJawLzqkUIMM7iPCxay6TqaIy99t9Z7/H3fOkIITCpungxZ/qkSudVuM4Sz+usc384qdgqcvLNZ0aq6RwPJxWbF4gZX2WoTIhAVZuT95mnmldVgb+uz6ruLEWa8MGOpHOxgt76gHWOzgZCkKRCxFpLJwlBYC6Zb30wbdjIU4o0fieyjVVa+4uWjWFG01qeTjvuHpXsDlJubw/YGWav/R7X0Xv8PV8ajsMUWil2RxmbgwwhLl/AflaJ51Wd43nVQpetKqqNJ0+f90zzVFFf0GpdVRdzCJ5p1T13/tOqI4SLW8/rrKyy/jiUJ9ks0uX3nIGQHJQ1SgpqbylbR+0tSgoO55drguusPxHbAyhbw7y1WBeoW8vDScu0NkghCAHuHpQ8ntWv/R7X0Xv8PV8a3nYlzkW46Dle9r0UiWTeGAQxTCGlICyPX4Sr7GK2LtDaeC4BUEKc9EZcxINf11n7ut+nlsTPxoWT5zbWoyVMSkNjLJtZyvHJN8byZL5eGXUVm4OERW0ZZBoll4uXcWyPMx5MKo5qw6dPF3TO88FWwZ2dIVmqeH97+FrvcR294e95I7yJNv63XYlzES56jpd9LzfGOf/qe/tMyo4gQATYGqb8ez9180Lnd1UhLuuJVT2NxXmPkpI8kUyqQJEmF0oc18ZTthZj/cnikWi5DN+90um8RJFqrKv5+OGUjx/OqI1nb5jw7/zkDZQMPJyUTCuHE6ACbA4UNzcuF365szPkm/ePOFy00fDXcQdxa5zxzbsTfu/jR9yf1AQJ31Tw3u4Gf+kXb/Nnf/Ji39ll6A1/z7Xzptr4z6vEWbf4nPU34MoXq4tWCz0rAXQnr59oRarWh64WtWFeW6a1w+FRSJS0LGrDjdHFlB8v2jOxjqYztNYzLp71IRwsWkbZxXcxdWd4Om/prMeHgBQx5CNFxuuqWBrn+eTJnH/1vf0ol1BkLJzj939wwH5Z83DisA60Bmuh6hxfvXW5xPQg1by3NeDJvKVzgZ1hQpIoprXhf//4Lh8/siRAmsFBA0/LGcNM8Z/9uZ98rfe4jj7G33PtvKk2/nWVOOvixWf97bBsOSzbK48vX7RaSCvJtOqWnr/EephWHfqchefjRxOkFHx1b8TP3t7kq3sjpBR8/GjyWuf9qlgPL65RIURJstOs6+otOxt3LiHmKUKASdlRXsHv5uFRybfvTbm9PeC9nSGZlighkVrw6aMKHGyMYHuUsDECHNx9Wl7qterOsjXM+dl3t/jlD7b5hfe3aTuP8/DowGKJTWRCgFLxs/vW/aPXfo/rONfjF0L8FvBrwH4I4ReXx/4a8F8DPwf8SgjhzMnoQohPgTngAHvRQcA9Xy7eVAhmXZhiVncrY+bAMpb8rAKlMS52dmZXmy+4aCil7ixVZ/nuoxmtdWwNUj7cHZ7bRPRkYRgkCcY5GhtQQpBpzZOFufA5XkVYLlECrRKMdRgbUBLGgwRnHfPaPBezX7WLqVrLtG35v7//hGln2Uw1P/vBBtvt6+sO7S8MxgeUUDyeNlgfyJREIai7aIAfLgDi57ajoDYX/wxP86zCKeYqDhctWwPNk3nLoYlGvwbqZe5YAvNrVtG+SKjnHwB/F/iHp459A/irwN+7wOP/gxDC01c/tZ4vC2+7GQrWLz7WLScinWqWKlvL1vB6FqvzQinGee4dVtw7qlBCMkpicvD7Txb8lFjfxJUncZEb5gmJlhgbKJuOUXGxGvSrCssNM828sQyyZ6EeW7W0PmB9INWSznqqquP21tkB+weTit/7eB8hBUWScNC0/N7H+6Q/fwXDd5zFWs/ni5LNIiHTirqzPC0bWgsv+vaHDgbt5b77EDyHCxObxIBHk4aH04pFYzlLBMID9TVrG537CYYQfhc4fOHYt0MIH1/bWfV8qXhTzVDrwjnryhTjRCSHEAK9VE9sjWPR2jPvf93UneXpoqWsLfvzis+OSp6WNU+nLQ/PKfN7f2uACx63FB9zzuOC5/2twYVf+yrCchtFutSj8TFG7z1aS97bHqJlLHHUEjYH6cpdzHfuzbEeiiQuOkWSYH08/rqM84Q80VhrsN4TQhxZqfB0Kx5TXrLC0jhP2ZoTmYaH0wXfuj/Br5mtcLn6oYtz3cndAPyOECIAfy+E8JvX/Ho9X0ASJckT9dJgi1fxIC8SflhXAlmkmsOyfUkCYWeY4eYtxjpmVXcic5BogbHuZKfyJoezWA+TuuXjRzMOyprOQapga5AzHq733D/YHdFYx73Diqo2pErytZsjPtgdXfi1LxuWe/E7yhOFddHwZ1pQJJosUTSnFpF1Mf5J07E3LJAJSARaCzJZMGlWmeaLszcu2N3QGD/i/mROZ+HmOOHf+snb/C9/fHaA4rx5x6tobWBrmC3DXp5J5dgsMro1YbvrNszX/fx/NoTwQAhxE/gXQojvLHcQLyGE+A3gNwDu3LlzzafV8yYxztMYxyhP2Vwa0ca4k9b+izz+IuGHY6NlnKfpnhltKQUn0ZFlglGEpfUHrHOUJtauJ1rifKB1jmGql1LQb7ZzV0v49HHJDw8X5DqGOaqu47OjBTcfry8pzBPJrY2CcZGe1PEPEkV+wTr+y4blXvyOGuN4Om/ItSRRihACi7aj6izD7Fk557TqGOdnm6GNXMdFwUta70mlRCnPxhUMjlcS8kSzuxG4tXkDKQSjXLGRJKza21w2pXw8Z+vkeVxAa8nBYnVD2HULW1yr4Q8hPFj+uy+E+G3gV4AzDf9yN/CbAB999NEXp/C657V50RP3IVC1lnlj2R4ka5OHxnn2ZzXGRUXF/OS+Lydaj5OydedOEoed9XjrmC0v9ONkLUSDVneWzge0UAxyfeLdV63FC84VRXtVLrKIFanm0axGBkeS5AQBWiek4fxQT3x8wuYgO3kv3SuI4V+2gev0d2yc5/GsZlJ2FKnm1oZCCEltPM4ZvD/pi0LK1eGOP/XBFr/zzceMC82oSFnUHfPa8hd/4daF388q5o1hZ5RHZ0FFTaNZZWhNheaZ4T39/5dd8lOteDStKRJNoiVKwycP5+xtvJnB6mdxbYZfCDEEZAhhvvz/vwj8N9f1ej1fXKwH6x2TsouCYctBFKlWJ3H4s7zpYyNpPRSpwvnAojGMlvd9MfxQpJqjSYUUz4wWBIZ5wqK1bBTyTO2YTClEETs3gw8EYFwkpNegIvmsG9U8V59/ehE7FjWTKmV/WuM9DFLJ9qA4Z9Q6CCHZHEiaLoYV1FKd86IaOZdt4DquXJktWia15XDRMCoSQgjMG8s412gpOFgYqs5hXCBRgt1RjvVnLyo//942f3R3yp98/pTSBoZa8Mt3bvDz721f7M2soTYe4z1/8tlT7k0bUin56Xc2+NrNTbYyeLoMsp/2vDcvliZ5iUQJrHV8e39O2TmO5g3OOxbN5aqEroKLlHP+I+DPAzeEEPeAv01M9v4dYA/4p0KIPwoh/CUhxLvA3w8h/CpwC/jtpVaKBv6nEML/dj1vo+eLTGctj6ctWaKWXpPg8bzhnXGOkimryiSPvchUyVPhB0nTWWSWvBR+iAnAmEg+Th4eLxLTqmVaBVKtXgozDDOFthKvw0l4REpBpld7o5elMZ7Wuuc8/rqzeK1OulGN8xRa05oFN0YFiZa0xjOpS97Z2F37/FpCQDAunhlT5wPiFfT4L9PAFStXOmaNJYRAaR1m4dkexZ1HbRyzxjCvLF/ZG51U9UzKjlQLbp3h/d47WhDw/NIHO2idYK0h4Ll3tODDvfErnd9Lzz0p+ZffuI8Qkp9/b4umdTw4WlBkGrli3oq+ZKXNtOy4e1ThEQyLBI8kTRVvbBDyGZxr+EMIv77iT799xn0fAL+6/P9PgD/1WmfX86WgMY6qNezPag7LNhoWLREI8lStVG08jtnnqWLRRN9LSUHdebLk7PBDnkgC6qUYdbz94oUWb28PMx5OarJEnRikzjq2h1e/FTfOAeK5BLTzYnk8UneWr9wo+M7TCd+5/xSLRAXH3vaQD2+s1iqoOsth2XJUdTF+PcrItHrlpPRl6vhj5YrDOE+mJcEF7s0q6s4StgIeOJo3DDJF0znazsXdixBUKyqG/vjzGZnWCCHBewaDHAh8496cP/fTty/8fs7i00cLjIdBqpayEiCU5OkslnMecxySAnCX3AB+erAgBEGWKCCgZEAG2CquV4FzHb1kQ8+1M68NB1WLs2B8YFq35IlilOkT1cazEnynZQuazrJoDR4YplE35SxjpJXkyawhED32RCukYKkPc3YIZJBqbowzHk4qni48RSK5vTVgcA2a6FopuuUkpmfhqHj8GOvBWJjMWiZ1AOnAg5q1NN3ZbmfVWT4/KAk+kCjFvO6Y14Y7uwN2R/mFk9LGeR4cVTyZN3QukCrB3jjn3e3B2ueIlSspT2cNk0XHINWMsoSjyhCoKVJFbeNM2Y8fzamNoUgS3t3KGaQvL7DGeSZ1y+NZxf2DisoGcgVfvTXm/e2LVSito7ae4D3fezShswGlBDdGKQKBOBXYP+2P6Ev+HOaNxXqPbTxSSqSQ+CC5f3i5TuCroJds6Ll2nixavIXxIGVrKYHrfOBocVyWd/aW91i2oDEeF+Ic2lRJtgZZXBDOkDJujGOYJ2Ra0rlA2RryRFEkEiliCGRrmDIuEqQQaBkftziu/1ex/n9xTQOvi0RSpAoBJ+JjRaqeU8/UEv6fHz6h6gw3xjm3N0fsjjLqzvL7P3xy5vPGBLhHa8Ug1WwPc4pUnVRPXZTH05pPDxaAYKNIAMGnBwseT9cnlcUpE+mBxrp4LplimCVs5QnOB777aE6mBO9uD8iU4Af7c6r25ar1urNMFi3/+vNDWhsY5QmdDfy/nzzhcHY5eeTTOOu5e1hhXKDINanWPJi0PJ22zFaU1JSX7aYVAWc9UkmEiLvS1lqcfHs1LL3H33PtuGXl5KIxsYY7RB1046PhW5V8tM4zzDQPJzWt8RSpYpRrwvLxq6SMUynIk+hBOx87c9dVqxwsGh5OGwigpcD6OCs2hLAcgfhq0gXrQiVFqrGNOZHoPauZrUg1D2Y1WZKgtUIQ0FoxFCn3VxjgeWPIk9gla52nsTHPUU5r3tseXtj4P5xWaCGZNZaDsiVRikxJHk4r3t9ZLROcasW9w5JF47DB872Hc3wIvLczYG+Ukqcatz8HBdZ7ZmVc9EeZYt68HFSPvQxRo761BlsLnLNIITioXr+9KUs1dWcw3lF1Gh9C/F2OMlYt9+aSNZa7o4xpWRKsI9OKpvNIIdnbKIDr1eRZRe/x91w7w1QhZJwENW0NrQkME8XeOHvO836R2niMC+RacXMzZ5BpjAs0xp/Z+GM9z8X24VmD0HG1SqzLj6P2jqtVHs9anAskWqK1PEmmfvq0fGWRtvOGh6w7j2MSJVEhhlkIARcCiYzPx4rXF1KeLHLHi5YUAsSricvNKsukNngfyBOF94FJbZhV51m9AELQWsfRwjDIBFvDhFxL9hcdnXU459lZdvRmiaJIFVujHONfXvW1hLq1bI8KtFYEAkpJtkcFTbsi+/oKVF3HZp6Rquh0BGCUJISVZv9YtefVuTEquLmRI7ygbDqMd7y7UbB3QbXU66D3+HuunXGm+f7DOZ0PIAJHTUfdwZ0bg7V14naZCD1uqjr2kI1zK6WM1zUfrapWqTpzsoPwHqSEzjrsqee6qEjbRcs1z6ua+fDmBv/fZ0/RylIkGfOuwzrLn7lz48z73ximPJ622GUJa1k7qs5yazPFBy4sLidEoF26to2NQbjWWIrk5e/n9M7moOwYZ5qns5qAZ5gmSCmxLi5aVefi99hZhFg2TwtoO8vu+OUkZ5FqUqU4WJQYD60LJBI0nuwKku6LyqIzycAn+CSQaI3DUVarzftlDX+RSLYGCUpKWqfZmbY4HG339so5e4+/59rxweOEoGkNbecRwYMQNMae6fEekyiFcY7OOY7KlqOyxXqHlPJMrZ/LagKlSrE/rdmfNjydN+xPG/ZnzcmM1GPWyQsc05hoDE97/HVnaV5hYKtxnp+9tcko0wjnqY3BGsswS/kzH5xdzrk7ytkaaA7LhvuHFYvWsDtK2Brkr/T6W4MUG8AYBwSMcdgQj794jqd3NsZ5DssOpRRf2R2xs5HTGsu8jYNYprXh1mZO56K2vZaSqnPx+BmGP1GSWxspD2aeo7lHCs28DNyfOXaHry+bkaeKedVRdTHkVDYds7JhsKb66bLLjUDQuLjw7Qwz8kxx97AmnDNb4TrpPf6ea2d/3lFogRpmGOdIVEqqBI0Naztj1dKD10IwzDSNsbTGMcr0mYvFZZuPMgWHiy6KhS3r94zz3Nl9vmPnYtIF55drnlcuWXeW8VDxb354i3uTktZ4Ui14f2vIeI3KZp5qtgcpG3nsctY65jNC4LnXX8cg03xlZ8C8MTTWMyriZz3InjcVL45FNMbTdY6yjZLLUgqyRKNkIASW0suCdzYLvn1/wrSxbOaaX7izhRfizHGMlXW8OxYcdYGqMyS54FYWj78uWkmGWcJRW/NoWpMq2CwSdtYsKpf1zytj2R7kCALOx0XnvZ0B5pJqn1dBb/h7rp2yiRoteqkN752jcoG8Od/jSZQizZ4lZDvrGedqpTG/TPNR1UXlSOtimAQERaZZtOa5ENNF6uHPK9e8iGSD9SBRvLOdc3MzQwqBD9GAerF6Pm2eaG6MchadjSWwxvN4WrE9zBlm6y/148XIhzib4J1lOauxns45xvkLzXUmJo+PpTG0ENTWkcoozLaoDJ3xjPKEAGwXCd/dX/DZYcn7u0N+tkhY1Ia7T0uUktzZGT33eeSJYl45RsMhu5tx8lhjPI5A3b5+tVUio95/miV8MNJUxlEfS3Ov4LL+uRSSXAfkUtJCScFmkWGS11/ALktv+HuuHY9gf9rweNZQG0eRKG5t5GwN1xvoy8oPvGoD0lHdoQQYH6dxJUoy1Amd868s0lYk8mRw9/E5F+mzkYkXGaKuZVzAjPEc1bGcNVeCrUFGtmLLcdzsJlVMIM4qS+s8SkQtms1i9aV+ejHaHmQQ4PGiQSEY55q9cf5Sn4V9YWcjlaTIFJ1x5FnC4aLFeE9jHbezHC8knx9UCEBIwbTs0FqileRw2r70eRyVLUpDaC2HpVtWZilGmSBNXz9CHRDkieDTpw3OtxQp7AwS5mtKdy5rLIeZorUB7z3GBhIpmdqO9u2F+PsYf8/1U7eGT54uQAZubg5ABj55uqA+55evJStr71dxXlXNWZSt5d6kojbRA6uN496kojWejSJlZxh7Dy5SElmkGiliyGRrmDLI9LKBLJqNdZVHp59Dabh3VOJDYGeUYUPg0bxZOa3qOLHdtIZpbchTze44Z5AlHFXdWj3904uRUgIX4Nao4N2tghvjgtb6l0Y+Jip2oZ7kU4KnaR1CKMZpQpYKUr1cNIoUIWLCfNE5rPUoJbA29mf4FypplBRMa8POIOOodBQJ3N7KwTuezAwf7r6eXAMsxf+mLeNMcGsjQyvJ47mh61Z74Zc1ltvDjBACWRJ/E6Ms4cm0YZS/PfPbe/w9187jmWFrqFnUnlm1INOKraHm8Wy94T/R0F92fArCSYJsFRfxqF+kNY55bZGAUIrgHH55/FU5L8/wrBv5WTjoxfGDiZKUtWOUKQ5Ky1HZcWs84J2tlMWKUsbjPoVJbdgaZFgfaI1js1hqFTWW91ec82kNfucCnTF8vD9nUhne3cj56Xc2XhqWkicSKePMgs7GBSDVikSLZbBMIokDYY7JlMTYjs55bBfQSuCdJ0ue/16O9Yv2tnNuTVI+eVzS2JpEwNdu5byz8/pVPVVryRLBrPYcNS1aQa7gqFrdHHbZKQAvdobPm46fuDniweT1G9EuS2/4e66dxljqziMEDIsUZx1152ku2hEjBOK4/u8cLjNIxPrYvDNvHXE8dGCYqWVp5KuzLs+gleTJvF6KxZ09fnBadzyatRRFys9uJCACZeNByJXndLzg2BCrqJrWI4lzD7QS+DVh8dNlsI+mJd96OCfXig9v5OAC37w3Q8nnRz4+a0SLTWOHZYNeymYjogZOJyQ2eKzzBGBvM2P+xJJrxXgjYV4Zms6wO0hfyqUUiaasLdMy8O7ugEGSsGg7Zk0UPXtdvIjy0ULCTp40hG/oAAAgAElEQVTgQywTbtdUP13WTBsXF/nbW0OUFHz8cMq9o+rcUOd10hv+nmsneE9rDVpqus4hZaC1lrDOGvEsYXmWhv5Kw3oBj/pFOuspG0PlHN6BVEDwr6Rjf1Gs82wO0qWnHBVEixfGDz6cVGwNFI0RzDuLMY4gYV4J7myvFmkDSCV86/4M4wRJAlooci34ufc2Vj7mdFfzp09Lmtbw8KgmhMAgS9guND98suBnbm+dPObFnQ1ApiVtZ2mcp7Wexhh0kpHK2Bh3Y5hhveeP7x4wrSybA82f/Yk99jbzl3Ip9cDyeFIiheH+oaG1sfrqnY2Ez54sXu9LACQBFaBsYFIatIZRAoPstCzb1VB3lgcHC/7k/pRpY/j2/Qk4R7KmzPi6DXMf4++5dsZ5hvcKrWBrlKEVeK8Y5+vVCS8SD3+RY30f62NYyC7ll1+MUZ+maT1zaxkkCXsbBYMkYW4tZe2Y1R2HZces7q5Eu8f6OJJwXKRsD1PGRRpHFJ566tp43t8aMqkMqRS8s5UzSjQHi4bbK4Z3HOc2auOYtwaHw3tB5xyHdUuzDFsZ5196T6e7iR9Nau4e1Sgl2B6nWO/57Khi/wypiETJkxzIIFXUXdRPsiZ2WwskwTmOmo7WWKrO8sP9OXsbA/7MhzvsbQz4kwdHTMv2pVzK9jDj8bTj3tSgRWxQE8CDmeHB5JLDb08hURxWkKZwa1OSp7BoQIurH635w8cz/o/vPsG6wO2tAY2xfGe/YramWexHegJXTw/A5kDx/uaAj59MKJ9WDDPFz+xtsTlYPz/2dAgijlO0tDaQKDD52ZU6dWeRUlC2HfNGMM7UyUDvVdU+XXDcKAoaa5lVHVoJdrKcedcyq81JfqE2jp1XnBV81ns6Vhw93dl7ekdSJJJA4Ks3hnx2WHIwb9Ep/NStMdmKsszj3Makip2wT2YdB4uKQaL4yo0BT0tzbilpUqQ4ByIE9qc1nz1xFKki15JZvT7f4X2gc44nsw4XPIIoN5FlKTtFBhLuHla0NnBwWNIZR5ooxrnmWw/mfO3WxnPzmAeppu4apIHSwLTqSFUswzxcXFYt7RmzpmGQwoMKntaeBNjOwYTXDyO9yDcexFDZvLMcVh3T2lGowIP524vx9x5/z7WTKMmjec0HOyP+3Z+8yQc7Ix7N6/NLI5eduI2J04qOdwBZos+s1DHOM6ksmVZsD/PYbbqcxtWY1dU+g0STppLNQcatzYLNQYYXHhEkUkpSHf+tu7gDeB2e7Ugg1RLreWlHcntrwKK1GOf5mVub/OmvbPPVrQ12xvnK8NPxZ7NoGg4XHbmS3BznpFpysGhZ1M2Zie9jqYpjlIT7s5rSWIZFQmks92c15611ZWtxPs5O2CgyrAssrGWyaE4mzu5PG57MGvCeUZGC9zyZ1nxvf4oPsUnPB8HDSR01+qXECFAadjcThIQ6KlS/Nk+rmidVfC5NbM7ab6C+Blf7sGyZN46qjTMIjHfMOh8bJt4Svcffc+001jPKBI+nNT98WjJIJHujhOYCMfQQAo9nDcZ5UiUZJBpjY9z+LHXOTEeJhHnT0bmAEtCYGIrIkvTMap+9ccb+tKYNlrIVaB0QPnBjnMXZu8tO1ERLytay+xpy8HY5qOTJvKExjnwpVnc6xr9ZpLyzlfODRyWfHSzwzseGqqU0wlkc7yTKzvO9hxOmtcP4QJYobo8zNj/cvVDiu7OBnUFGa2I1UaZgZ5CtTY5D1LeXxPLbsjX44DBd4FHXMng8Z5wnPFpUMcxUC1pTkSVx6H0QcLhoaG38bIpUxzp+KRkqqBwcTA1KwlCBkq/vrz48LDnW+Dxt6ydr0geXbeByHsq2Y5AkNC4gBchgMfbtSTb0Hn/PtTPvDKXxDDPF7a2CYaYojWe+RqTqdD2+81C3ccLTscBX3TnqFyowrI/Dux9NaqyLZXQhCO4fVlgXVuYL9kYpnfEcLRpmdcfRoqHs3HKaF2gd/y0bS7ems/NCn0VjOapMHEK+WUQjVxnmzfOuZqE1Wku+emPML3+4yzBLeDhrcCte/3gnMV903Jt0LEwHQtBZw6dHNWXZnoTOTvOiDEWaCdJE8e72iF94f5N3t0ekiSLN1hupVEKQAu9jh/GidUwquwypKZCxP+LutGZeNmglmZcN96Y1xlhciL0PLsCkaplWht3RACNhewhffWfI9hCMhN3RJYffnmJVlGXdfu6y3QPvbec0naHsujjWU4CTiptnaBS9KXqPv+famSwMS2Fd2tbFsIa3PJ40HJbdSr0aH2BWG6ZlQ+cDrg5Mq5b3d4ZkWiFfmCOrZQyb5IlkUhkez+IQ7e1hQm3sSuXOaW3IEsGWGOAIKARtFxuhThPlkV/vs5g3HSHEeHhjYj6CEI/DM4PWWMfeOMMBnXFkWRxq0qzQqTmuFro/qygSaIxk1nTkWjJOA99+POPXnMf6QJ48PwvgtAzF3jD2ANw/qLh35Bimivd2B+yt6Z0AyLOEoQmIPCFPFQ8mFSE4RNDky/mypnUIBxPjOahKlIBExAX1qOpwzqOUJJECJS03Rgl3NhIeLgyzw5JMwZ2NhBuj10/A2hWS/usyGWp9SmolW8OUD/fGfPJkwdPFHBEEP7E7IDlD8fRN0Rv+nmsnVYKjymNth0o01hgCipsbMX6+Sq9mVnc8nTcsOk/VmWWYByZ1xzDV7OrnjVGRaiZ1x6JyBBFIpcQ4R2UkWRIVPc8axPJ41pBnCZtDhVIS5zwHi5gDWNQdxkdp4WGuKdLXu1hDiJ5vouRJHX+srHn+UnQEqtYSgOLUBLFVeZHjaqHOeGalw3qDl5q6qmmymCzVSmG9xTqH8/JMGYq9ccY3H865vT1ga5AyqToOF4Zffndz7fvaGWTUrWVSdcxbi3ee7VHKKNcclYadoaYVgaaDPINhquk6S9PApG3pjGeQKarWMTWWUTZge1xQ3Z8xSDWbicZZR4vmxubre/zFADhj8qFitfGvHGeKyZ1HKiVCSP70nV2GueZf3z3ik/0526+oKXWVnHvWQojfEkLsCyG+cerYXxNCfFMI4YUQH6157F8WQnwshPi+EOJvXdVJ9/xo4UOslqiNZVI1zDuDCx1h6XyflWQMwfNoWkeRNhUN3lHVUjYmxp6XwzlOkyiJC4F528WB3svxf1VrKY1bOQDFhNiJ2rnAYhnOKTKFtR4fZ5ngxXGF0fnv96ySyWPi6D0VRz4u6/jzRD3Xm1Z1lrbzlJ3l7lHNH9874o/uTuicZ3tF089xGGdmHJO2praBurV03jNrKubGoaQgT6KxWiVDkaean7m5QQiCh5OGEAQ/c3MjNmatIU8kRRInWR2ULa33PJk13Hta8v39GQ8nDVXZ4B1MK9ifWKYVdB6Ci52/T2cNzge2igTjPKa1EDoaG383i85AaBGvGW4DWCXCuS7r1MIrD+YBSBLN3ihlURs+3V9gjWN3lKIuu4W4Ai7i8f8D4O8C//DUsW8AfxX4e6seJIRQwH8P/AXgHvB1IcQ/CSF869Jn2/MjSdd5nFNsDpJYkVN11M7TnRocfnZ37XH7P1jjybVmmGnSRNJad6bi5LwxfPq0AgGjLGF3lKKlxHu/sqN2K0/4/uOGVEuUUjjnOCqbqGq5HNLeWU97xpzfFzmvZHIjT5cjDfUpj9+xcUr9cn9Wk4pnw01ubWQcLTq+c3/Kz98+uxHrpAnLe5wLaA1aSoJXdN6eVJCc18XsEWyPMopcx+2JEORa4c9JbRrnaZ3DhkChFamQPJo1bA40gzyJi2AVjWcqoRgI6ipQemi7KImcbWa0XRR2CwEO65Z22dSVSA3e0phwJaMXV/UOnrekvOpgnuWrYYkjRrdlSm3ihJv3dtY3410n5/ovIYTfBQ5fOPbtEMLH5zz0V4DvhxA+CSF0wD8G/sqlz7TnRxYnHDeHCVLJKPiVSm4OE7x8tql+MckohOT2Ro71sYO2yDTDTNE4x0auGWYJx5fpsYf9yeMZ33mwYJhJtoqExho+P6xItFjrXd3cypEKjAMbAmZZMvjV3SFaxRm2Wgm2hyntedUt55RMjpZql1IEqs4iRWBvnDM6pX45aywOyU/sDslTRdNZxgPNjVHKoj273vC4CUtJzc44i6JoziBkYHdcoJeVMOfNFJAi1vEfzzwYZRoRYiXKOso2hq8WtaFzAeMDexsFWaIIIibd03RZGSOgbgIISAGhQKuYsNcKdoYpjjj/VwiBljKqei63RY9mZ8RoXhFzBQU1FxnMA3H9xMfftA+BVCgGWUrdXUVh6uW4zhj/e8DdU7fvAf/2Nb5ezxcE4zwHi5bDssF6QecgSEiCwAZIZIxXZzLut89KMobgQQpSJVFKIKVAC8nWQHJjXESVTiWf87AfTGtuDBRl55FCsDPMqTvDw6OKn9xbPSi80JIPt4Z8/2DBbN4yzDTvbg/Jc/3cOcWZtusbmc4rmSxSjfWBW5uDlcPWlRRUnWVrlLFFzGMYG/D+5Uqm01SdRQXPbNHiAK2SKJfRGka747UzBU70+H3gqO6QMg5Q9y6gFLyXrvdOW2vJtSbRCjpH3RmUTgjL3MMg0wwyxdHCgQOhITjIJOQaMq3JU4jD2QKFlrSdw7pYShuWek1RfO71Qz1FlnDWaJUBsKo97MW91kUG80AM79XWcTBvsQFmVYOXga8MXl9l9LJcp+E/a01d+Y0JIX4D+A2AO3fuXNc59Vwzxnn2Zw1P5g1FokkSwSiRfPdBzXCQMFjq3LcuVq0c69WcTjKaZfWJIEraOh9YtIZMC3ZGGamSJ/o7pz3ssnPsbQ3pDhcY65AScqVZWMPGYPV2vOk8M+N4d3tAniga45gsWqqme048rLPuJV36F7nI3N/zpoTtDlO+4z2PJw1IcDZ63HtbGcWKsqJp3fGDx3MGqaL14Ax0qUF5aB0UmV455vL04nkcq5/WHd4FMi3JswR9zpjAVGs64/HeM6s6KuuwrSNPBLNKs1UkpGoZulOxKcsFsC7mFQIe60AJKJIE7z1pktL6DuE9UgSsC2jFS0NhLsN2nnGW4U81rJorP8zhRTG58wbzQKxamlYdkti0lyrJ06qleouC/Ndp+O8BH5y6/T7wYNWdQwi/CfwmwEcfffT2Wtq+ZFSd5ahsX2qHvy7qzjKru2j0l9auyBJSLXh4UCKkIpFwayPDLOPfo0xRvPAceaJJdQxzbA8zpIi16nkSu3mlh6LImDf2xMMeporDsqNIE6ZVi3QCGzzb+Xot/bIzZCrq+izqaAC3hik2CLz3OB8lG4pUrR0VCc8Lnq0yEOdNCdsoUt7ZzPiTz6YIFQepSAR1K7kx3j7zMQ8nFXmiMQQ2MkUjHQ6BlIHtYQbWrzz3urNUreXJvOFbD2YcLjqMj7ILW0X8Hrpzuky3BwmHpaH1gaOqpekc09aRypheGGU6JuqlpXUgl42riYBhnp4oVx4vsPPWs1VI7h5AYyAQkETJhnVDZS7KaMUwF2dXV/YoxSsP5oFYYtwahwhxR2O8X4bwVu8er7vC/zoN/9eBnxJCfBW4D/x14D+5xtfreYGqszycRAngYRZHAj6c1NzeKq7N+FsfPbnslGd6VFlKAxuDlK1RzrxsOSwtk7IjUZJ547C+PdHBOQ6XKARJkZKnHpZaOTFG/Mz7PO1h39kd8ulBSdNZhmmy3AXAra187bDxQBwkkkhJkaVYE5OUo1yxUSSvVL532bm/z32GzrMzzLmzZzmcNwQh2SwSdof5yhRrbTybRUrVeoZFxsZAIkVMgo8LRblGAntSdnx+VJLp+Ju4P1kgUNzeLnABfvhkwdY5tfMbRYr14WR2wuYgYZhqGucoW0fVWmSiUAlkdunxR1UGhFTPGdTNQRrzH2i0giwFLWPORglIr6DvtPOCMTBf3tZEY39siiXPV/go4s/uvIX/LBadJ4hYSqxVzCMFYsXZKq57L3Du1S+E+EfAnwduCCHuAX+bmOz9O8Ae8E+FEH8UQvhLQoh3gb8fQvjVEIIVQvwN4J8TP7ffCiF887reSM/LHJXtie47cPLvUdlem+HXMm7XjfUnHv+jyYJMeEyQPJ21SAWDXLI/q1AylscZ90xu+cVwSdNZEqUoEs24eJYXqDv7nIe9M8q5tZVz70mFkjAuND93e4M8TV5qkDpNIiXbRU6QAWsD+SBBeEFyAf3/M5/vHI/+3GHrxjOpLTc3cnbHOXaZQUzXSEYUSRxRmajYEFZ1lsZGmYtxpkmS1d/3k0VDIhVFqng6b9kZFogAjfG8vzOgaRyPzhkaEktEM4zx7AzTKG89jLORvXcUWmNbwyCBdJgeFwzRdR113TA+9Xk5H0NbAc87WzlNB53z7BQZRSZorkCtpwuOIochYJZzhr0H6aAJS0MPJ1VlkstLNoQQyFWCUrEEeZSmzFrWzqO47rTvuVd/COHXV/zpt8+47wPgV0/d/mfAP7v02fW8Fq2NA0VOc2w8TvOqM2rXUaSajSLlybwBdJzSZDyfH7XM23gBOWCrgI334oZWSYG34aRC4tiYGwfGOvbnLc7FASmfH8aW991RxjBL2Cie97C3spTBbR3jwVIsR/sF9Ioh5QA3N3M+MxVFklCMFXXrWLQGrST3jypciIvZRpFycyN/LXXOCw1bdw7vPY2NchFpImMeol6dq7i9NeAHS02c7z6c4oNHKU3jLY8mnl96f3UDlg/R857VhnrZ/9A5TwiwP03YzPWFFOqN8yADdecpW0ueKQiQaEmeKvI8xSwM5bwjTaHrIMsgy18exDLOU4ZFykHdYq1DSEFnPWmmGV1BjP/O5ogf3F9ggOMGWu9hMAQzhWPJnpw4gMUBu+PLNe/dGKU8njfUZdyxTBtDZx3ba/JO193T23fufonJtKBciowdC41JKchOVZ1cxBC9ComS3NzIT6YytUZwUJY8baPHdKKEWMNnR1PmtSHRMR5+OgHqQ+AH+ws66+mMpeo8gcBGkaCk5O7TkpubBTvD9MTDNs4jZWBR2uhOhoC28UlHG6ujprc2CvDwyUHJ/cmCLE3YSOMupOocSgjaEFi0cYfyzubl668vMhoyUQohoTOeRAucF0gCXrJSMmKzSPnarTFSeBIdsBa0UqQiDmRZV4yUpyrKakhBqkRcaENgkGY01tIuHD99a3VVFMQdxucHJTooFm1LbaPxHxeaEDwb+Si+BwuEGLeXAbAwytRLsXMtBYUWlPMOS0CRxKqmRSC9glLMO3tDdsawP4POxvj9KIW9YUHV1Jg2/k47ovc/EjA6Z37EKgaZRgSQMuaLgo8hy9EKiW1YLx1xFfSG/0vMKE94/HhOnuiTZFJjLF+79ayM7DIzas8jUZJ3NosTA3lQRlc+J15gwUVFxKezWL1Tlh03xulJSWPVWe4fVYyzhHys+MHjGXcPK7ZHCWJZ9WG8ozXmufOc1R1uKU9cpHG3Ubd2mSxe3eY/yhO+b2akSnJ7awgB7h6V8fxF9LqFj2MMH8+q1zL8F1HIzBPJdpGhaGmsj5o2iWIjkWslIzaLlEJlfLi3jQseHSRWeJSQVCtm9QJsFwlHi5ZEJ+yOc+4dlWRJyge7BZmUTOuOYo2Rgth0Zpxnc6QZTjU+OBrnWDQdm4MUpUAKtazigTxLadqOzsZZvC/FzlNNQJCkKpb0SoW1ced1FWrGN8YZ4+EA42sIx42Cnq1RxnZnybPY6SylxroWiaS4pLaODbBRJNxKcrRW3D0sT/Jbq3jroZ6eH10E8O72gFndUXWWVAneHQ2ei1XaZd10VT8TMctTFZtOroiui1vXGk5cGQG0BnwIbBaaPFEnF8KxJG8U94LWeXINk3nHorGMUsMg10wb91wDTdlaRnnKME+YVV0MDWjBINekevVPve4sXRtrxo1zaATNsrnG2ECmo3FOlKRaU4lxEc4r94RYveSDRwiJlg6CQIrAzjAjP0clzktLkQhmTaD0lkQKRrnAyxjeOyusN8hSPrwx4vODksMyhtW+8fkB/+fHnu1Bwn/4C++h5XpTMW8MiVLU1uG84N7TBZX1ZInkve0xAjDBsTOCSQ1V2aEF7G0o7BnyxImShOC5sZVzUHZ01pGlkhuj7OKzmtfQWcco1XxWBuZdQAN7G5ArxXu7Ix5OZuxPHc45sgTe2VDsjC835F0EeH97wMNpzVFt6DrH+9sF7TWM9rwoveH/EmN99GZHL9Qanx7mEYJnVjtSHWvjnQ9MK8M4vzodkc69XKUQlv/d2R2+dE6tjaP7jg1k2zlsELTBszdMKdKEqjUczJvY6HXynCJ6hMShHrmPR6WQaxttHs9ahFDc3s5RMuqnHzY1T2ctNwZxe+98iENb0vM/l3U5kyLVHJYtxoWTzGGiBDtL9Uvj4uCZzSJlUpbUxqOUoJAJi9ayM1ofbtgaDvje4wM2csnGIKNuOh7PDHdubGCcf+m1a+MIIVC2cdrW/qTiD+8eMkg1X9neoOkafucbDyiU5M/91N7K1/VBcFC2PDzq+GyywIrYAGad5f9n701+LMu2NK/fbk57O+u8j+512WdVJrwqqQAhJAbUBBgxgAkDSqX6D2DGNMWIKQwQjJAYQYkJQiWVaoAolKUsVWa+rNfEi+cR4Y11tz/t7hjsY+Zm5tZ4mEeo3sv0T3KZm9m1e8895561117rW9/3+dGK/VGKd4HGwMEsJVUJvTN0Xax3X4eAoO8tsyyDDLQUdL0llPcLwBfxs1cbnp+sEQk8zCWeyL755XzLx7sli42jUJCVGV3fcbQx/DvF/Uo9SsLxpiVTkqxU9L3laN3w8cF7GDu8Jz4E/t8Q3KcB+y7ZZcTV9P7bHaPIFVTX3NuZvP6YMi3oLINhevy3rFoCAi0FwQeCB51dfiPjLAqyLeuePFFIKag7R6q51XO37s2lTFpJeDAu+Wpe4YgB33vQAh7d4Hl7hnfumYToSyXCGW8k4qz01juPCw5nA51x+BAoEk3T21sZWTupYn+kIzOo6lEC9keanVSxbnqa3g+aRGJgRnk2bcfJukNIyV++XuAMOBWPJVEJwbf88+en/KO3ztubGZFN23O07vh6sWK5NXTWE0IglYJVbfhyvkYKSRDQ9RYrBc5bGLR9rjuPmVZsG0eeQ5GkbLoObwPTJ+/f3P1yUbGp4zCZkQFCwAeo244Xy4AMcWcimg7v4cEM2lv8I25DoSWLpo91fqWoesO2d/g7psC/S3wI/L8BuG8D9l2GiYSQzMqU9gLvfFam32qpJ09BN5edjuTw8+uOaXeU8WrZIEQ0LtFKUuaKXEUJ5SJR7E8ynswKxAW2zrRIWVY9ozzBWIczgVGmeTjNLzlcXUWZJhw2NSeLKsoba0WmBA9nObujFCEESsO0yNgf3x747+qZnA2njbLLi/HZ789Kb1+dblm1FuGjMmjdGOrCsqjljcdQ95bGe0ZZggsdCEmuoshbnidsu7izu3hsqZa8WtSM8wwhBNvGMsoTamvoNhWjNGUyKlhdMQa/OiOSqriwHK06ahOlsb2AIoEex9EyYZprcglV7/G+Q0rYyTWT0dthqOktqdZMRgmHi5rOt4y14OmDMWX2/pyXrenxAYKNvHoZQCdxl3y67ql66AIkATIV9Xa+ON3c/cTXoDaecZoyr3pcbzBOMsok5/K01+C7dsj6EPh/A3DfBmyiJHmi3prcvbhYaBm31Fd51EJ8s8h/244k0fGDfMaF9sP/zyYhry5gZap5slPw5emWREmezHI652hah/PgnEMiGGf60k4hUZJxkVJm4VK/AmBZ36yjPkoELxc1jXV4D3PnSbXi3//RAZ/sj77RLuuu5u2bnoo5f9481ecLrZYw33acbHvazpMkAhAIAadVS3JDpeksECskEMiTBOeJvHfn46DUsHupOzc0waPRe20COyMRr4uETWPIUkFAooHTxYaD2eXF5uqMiJQwzVNa07HtHMZHfaZtA8ZbamNJU0Vl4rXXWuBdoLUW798OgJvWUnWG5daAlORSYIVnsTXIe85XXEQSFK0ZPotmKD12MMlh28afFzp+Rk0PizWUaXUvPf5FY1BC8NFugZAw33Q0xmGRZMB1WqPfdRHoQ+D/DcC7MEGuw1m9eJynzIaMvx1MQC7WnO/aFdyFu3Yk40LRb+K2diSh8jH73xndLIFQppqH05JUS56fbGhfb9l0FqVEpAKuG57u5JfEzSDekM0FvfYY6OKu4SbTl2Vjor1jG7DBo4UkyyTtLTIHN+Gu8lrsqdghaIqhp9KfawAVqea02nKy6Xg537Jqo6nMk2nBJ/sjHk2vZyedBeIkkThgXCSkUtEZg/eeTCpSrXi9as7lNIz1bKuOURo5/EWqeTwrOZxvabrAdAyrpqM18HeuTI1dnRFxHiZFEmcgqmHoSUUtnt7ApmyZhBRnYxlJ+lhaCQbW3duGh/O642hbU3cdQqlYJnKeum6Z1803uibXYTyUCS1vgmALpH38vgVsrETRh8hJ6Kwb9Pi/Ge1ZhoCU0VtYIlBKIEwgeMdOAofXVJB2rlff/tbwIfD/BuDda/WX8W6c8feXGLjrdVKdommwxKAP8YOX6tuD6pmB+E8PN3E34TybxiGUQAvB4bblb184zrjQeZZ1ZAVJBG1vGOUps1LfeA6+nDdUnWXb9ueBQCv45UnNbz3+ZhneXc3biKsZ65vvEyWpmpav51tebRpU1DTmF6831Mbw+0+vjwhnOzprHKM05XhdRy5/An/48V5UR1WCUZbgfTifBh5lCXaUU3WxyTvNUnbG8NUWtmtHAXz/oWT3is9tpoeBquFDKIjKpca/4b+fMbhKojplX3U4Fzn8Z3o4ZRJ9B65m0tu6Z7mxBAHWOlyIWjcyE2yq9xc0SNOEWQGHTWSbCaKn7iiDzkJtBpXO4T0oIFP6XrTnaZmwqHpO17FP1RhL8IFJJriJn3SXDPb74kPg/w3AfbPyd90p3CUxcBfuep1t25xroaTEoKCHn98E4zx173i5rHl+tL7IHGIAACAASURBVCEIiZCScSGZ5Qmdd3x9Wg+2hTH4nNFWhRA0vcF46DrHuLws0nb1HLw+rXi1rhhlGaNB6vnFcktvLIGn9xtsG5q31jraPq4ARSJxPhpytL3DWI+SUdfmYk/ltIquXblSJErhg6D20dFr2VwfKpQIvFrUnGwNh+saLQSzUTRsX2w7Ho4zhJAcTDLa3l2h7gbKzHOyaTltWnoHn82gyAuwlqZ3nNSXxYrP+jAQp8GN8WxaizFvDMvPgnsNrLcBLR2tj8JsOou+t52BRVW/lUmvG4t1PZ7I0hIi4H2UbujM+wd+13t6B7NkKLX7WN7JMmi7N/2ojPh+PJDll6/7u+y6ASaDd8Ss0CilmFeBxbalzEuaG97K5v0tB27Fh8D/G4D7ZuX33Sl8U9z1Otsm3jxjCUkKSRtH4hcbeLGo3lIMPSsdWefZH+c4Kajqjp1RzihVQ48gKmdezLiWdY9xgXTQ9XE+sAgd29bE6dwbzkFlAsYKjDrj7nsaM2Sm3zDDu9i8Nc6zbQNaCbwP59melMm55tDZ8VzsqRgf6IxnU1sckR9/3kC9piwCcXNxtG4JeLQKJFJhrGVSxrpyCP5CP+fya6daIJzk8azE+sAolxRJRpFqRKrYNj3z7eVK9FkfZlF1VJ1FKPh0v8QM6paaN8NWFjAerIy7gSKJOyoSaHrw9u3zbImSE8YaZmVKqhV111E3DiHfn2rcehdtMFPIdIILsfcRfCzv5MT3oTRgIReQXnndd72XUq14tDMieI8Xgs5atB6RaH1e3xfE1/TEmn/7/qMKt+JD4P8NwX2y8ncrO3wzXNfEvboj2baGk21HqmSs/euYOW08sXhKHOhK0sj/vqoYelY6CgjyRPLZTsHPrcP2jlaCM4G8kDyeFpcGuBob6/MXg0iZxWO7TUe9SAWJEpxuW7wNSC1IEkWRffMM7+JA3KrpEEIyzvT564+yhNeLitZ6ehdIleDBJOPp7htJBC0FJ3WLIOCCpGl6Nm10BAvh+khTDQJtX8+3HG466s4yKVLqzvFvf7pLlrx9nc7ORZ4oNk3Hou4wNqqVHa0ahIyB8WBcosXboeIsISk81MaSa0Wew7iGelBpdcSAJiSUOWxamPecbwsKoLiiJ6WkYJZn7I4y1k3L4aqLzWgBj2eK3dH78/jzRDMbSU62nqo1KBV9eBOVsL9jmK9h6+KiNE7hwURSZtdpCt3dC0u04OPdgtPK0BiLloq9cYIU8f1vibfnxf1v9h3rMn/XrKEP+HVAGGzJ35OjeZaJXzWcBs6NzNd1z+G6oUw1szLFD5S1q0UdA2g9GFPoyDw6g/WxkXayafjiZItWkkIpgoyZUaIF40TzcFZcyrhKHTV+3DDTH1UeBXvl9SbrZ5gWKYu6Y151zHvDvOpYVd1bnr7vkuGF4DnZdKybnnUbde5Pth1hOPe9dbxed/gAZaLwAV6vW+oLRvNaCLRQLBuL9R6dCIy1nNY9kxt05F/Ma/7i5Yok0WSJYJQqOhvobODlusUNnsPXGc73xnNadRCiuc18TczctcDZqPVfXBHIORsGWzeGqrMEF0tFu4Uk+FjSy2Ws70tgbwymfVMGOkMDb/HZnQ88mcUdx7YPuD42Wo0hUlLvMIV5F8wyTd/7aP04lHp6C1kuSJOENIGxhiyJzemq9zyZlrd+jm5CniiqzrE7ihPS++OM43VDbx035WA733Hg/5Dx/zXGXZzx+zyfD9B1b6iIiVY0vWVapCRFyqY17I3yS1LQ4YY5lbaGXxyueDQtkPLNDdRby+GqizZ+OMpUk6US0UZzkFEmKTNNkahLrJ5ZmeKrnqq3rOqO3kGeCD47GN/KzrHWMa878HHAxjrPxrthgOybZXjGBarOUCSaXEt6GwZmVTzOl8uGaa45uDD+3/aOV8ua2XCMXsCjScG66emNBxEY5ymZlsgbAs2rZU2Qgbo3bBtLmWkyqTDesmkdx+u4GJ2pp17E8Ta6pY1yTZFK/LDAOht9cTsDm66/VJaLw2COVKthZ5XwetUyneaI4zqqXvqYyaYSPn4w5v/96fa6Q2e+eNvZ6snuiLrt2NaQZzDSUWhuU8PrxfXP802gpaR1cVeSJtC30Dgw1pBrxWpYpM58ulbbuFjcR49/kiccrhuOljU2EC0YXUAgbhTluUWS6VvBh8D/1xj3pYHehNZ4Ousu0Tab3uK14qyEfkbzM87T9g7vo3n5dfACghf84vWGTy944rYm2iZmOgp0zZVhlqXUwvJgVpAowSRLLy0WEDP3TWvZth15qpkoiQjR+q6+ZeL1xbJmryyQweOFPP96WrXf2HGpt47dURYbt0qCs0yL5HwRqTrDk9llhkyeKlbNm1xYCEmSCH70eIYNnuAF3luKJMHeIG9gvUcEifHwYFqw7SyNjT4GP3g4Icg3O7Sr78MHzqmurYPHO3Fi1os4Xb07TnFOXCrLVZ09D/oQ+yJZKtnLCz55ZHlx2uMlKA9P9hKejWbU3BD4ud7ZatFaHuwIVBAEqVHB4Ut4sbmO+f7NYJxnfyw53Ub56bKMaqHbPtC0NjagA8gEhIm1/lfr2z0JboLz0ZqyzCAIwbJpCSG6yaUpZCbW9c9SgQRQ6rsNzR8C/19jnNEhjXWXMvT7bpWNcxgX6Iy9JPMsxZtgdCYFbayPBula4m5YZ5yDqre01tFc8B/1QZBIwa+O1yzqntN1R6IkWSJ4OMkYZRopJVLwFjVVENgdpejh2IqhnLKo4nNcN2RWGce4ELStiKUVKShzwbq1bFpzTpXUF+YfbkJAnA/OTUgwLtaQOxcQBPbGkVWDjFIUSkrw4ZKX7oNx/DvhoqRA23u8CByMJJXx55n7xWPJtabCEXxg3Vu8i+bsSZqQKEGZCJQUGBeVNIs0OT8Hk1xTdY62s7jexcnlSUJjAtNCk2gIw5QvxHMZEKybntNtR2scq7pnlGqUkDycFGw6S2M8qYRZkSCTm5MNwfXOVj54DsY5nZNY59EqIVOe/luQOjBArhJGSUfrQStBmSRs6p5lE+U5emKNP9GRdnpY3WTDfjs2bc84TTgYJq5b61hsOl4tKjr3RnvfE43nxylxN/Ad4kON/68xtJKshonVVEdLw1Xd36pbcxXGxUAzr3o2reV007KsO6resqw7VnXPRR767ihj00aP0cY4jjctNxBR4odeK57slGw6H408gN4Yfna0oek9vQ04Ar843fD8tOZfPp/zVy9XHC0blJSXmrsALgimRYIUcTK06SN7o+rcpZr0ujFD49szSlJenDYcVz1V6ziuep4fRz6dD1Hw7SzbvViLvw4X9YJWdU/VxUb1s52caZHyZFZwWnU0nY0LUWc5rbpLpZ/9cc6TacFXm4YvDzec1C1V3bPtPLulPs/cz84XwINZxvP5lt50vFo2fD1vONn2NHXLn3+14ME4u9SYv9ij2SlTDpc1X88b8jzh1bpn27RMywRnLUerhr08Y9MapIi7uuAdnx9uMDYwKRKcg18cV2xbw5+/XLHaeoyD9RZ+cVzj+pv8z+CmWaWPZiNONx2J8BxMMhLhOd10fDS73RvgXTBNFa+WHY2LDmzOBY7XPToV1AFWfnDmAjY2lpjCTRnMHZBCEvCsmjivsKx6vppHAb48i83dDijTKCFxWsPsntr/73xM3+mzf8C/UVjnmZUx+zU2ZrKzMr1Vt+YirjZzjXNUvQVE1KlXCohSxmcoU81ukVIZw9GqxVjHTQonNfBwmg1sl9grgNjAMzby+POBlrltekzwFHlC0zpO645l3b3VbJUisKh6AlFHPwCLqqfuo7uUlHGCV0pJ0zvWTc84T+h6C94jpADvqdqeWZFe6lVcbUJfhyLVWO/xPjKpvA9Y7897EamS/PDRhETHadlEww8fTUgvLMZSSpSW7BSavUnOOFVIFSdtOxNr4UrK8/MF0BlHkWqMk7E27yOjpveeIAVVa2iHa3f2WmfPs6o6hIzKpnujjP1CoZRkNcwTHIxS9kcJm8ZwtG5RIrDpHbMiIUsU1gXKTCGF5/npEtPHxr0glkr6Fn5+uryxvHDTp/Hv/vAhu+OM3nlWtaF3nt1xxt/94cNbr8G7IE8SUhVdt0KIn+c8AVyg4I16rFSxUd3CrdLetyHVgs5GIbgQoGqH/ohUsQlOpI52w3kbZSA+1Pg/4L6wPjIK8isCL/3VNPkGXJ3IBUiVorOeUsXnVFKes2jO4AnkWlNMBOEOpc9fHW+RAv7wo53z7L21niezgp+8XBF84HDdMS0KNo1lsTUY5zgQgVfrhj/+dP/S8+WJYlUbnH9DWfTeD3x1dYnqmWo12FB6DsYFXy8r+sqQKpjlBVcrYtfZVl6FdZ6DSf5Wee1ssbUeskQxzhJSHemcWaIu7Vy892zqjkwpegLOOco8JcsUh6vm/Pgv9mqO1h2jJMEJOJgmdL3HE/BBclCk/PK04cf2sn7R2fN8tew4mBQU+4rn84ZcK14ta1adpUwkH81GTMss9nQ6y4NphnWBh7OC1tion1QmfKamLKuob9ObWKYSHnbGsdzhiWWNSCjl/PubCje//XjCf/zHn/CXXy3Ydo5xpvj9j3f57ceTG/7i3SE1fPxwyum6iT2VNCNVgsWmYVJ6Uju8h8F/d5rDLL9fuMwThQ/d4MIlqHvHpMzYGadIpdgdOc7yqZ3Bm0KKb08W/Tp8CPx/jfG+A1xvN4cFQgqMcYgQjaODiCJiF7GqOp6f1nQ2UNykKjZg2RgeTTK2naPMYvSTAqrGUWaKk03PyaZl0xuMdfTOsj8uGBvFYmvipO5wrFrGxujeKOX5aUXVO0ap4tP9EYsbJl4Dgqox/Op0yeEinPvrttOeJ1XG5tzVK2bimb699moHB7CLA5lKivPAHhlLLVmiKVNFbz2vFjWPZjkQ7SNbGxfn3nmqxtH4QAgBBSzq+D7eGkJrHS+Wa56/bNgQs9UcGCc9v5xv+NiVJCouOhd7A84HfHCoQe/fOMfrZcXxumbdenZHCfNE8TSUaAVP90r80JOIvQoJwiOFIFGxJr4Y2DxnEd2s4akO5AX0A6/3bJ0TQH6DoVmRSGa55tOHE0zvOJgVfLZfsDt6f1nmMkuY5or51nO6NrgAuyWMs5RUR3ZUJeP70CnsFIrJLR65t0EKSZkoTrZxpsb6gHOev3hxyqp2NF2ccUi0YpQmSB0o77m7eOdjuusBQoj/SQhxJIT4iws/2xNC/N9CiJ8PX3dv+FsnhPiXw79//G0e+AfcjSLVg579G167u1B2uAtnC8cZlARCYFamTMuUcR5r6RdbBnVv+XrZQiBO2d7hk/dkmhMQHG2aOGgGTDLFsu6pesPLVY21jqrtyaTAesE41QghkHh+dby5NFcw37YcrVsOJgU/ejTlYFIwr3pSGfnXF89Fbz3jTPGXL+d8MQ/oBB7spugEnq/gpy8X9DaQDLTMZdW9ZWpzFSF4VnV/6ZhWdX9uGBMZS5eHzKSUtAP1qekts1zRD5pDWSrZLTWd85zULc0wjHb1Op6san7yasVgaRtfizh9/NXxhs5ZHk4LpOCtz8NemXGy7nAucLqp+dXpFhA83R0zyhJeLmtM73myM6IYLBEPJvmlXsW6tnx+GHdvZ69fEgP7lmgg/6h4w+MfDetnDzy6JvDXvaXqLS+WLTtZyicPxnSd5/Oj+lav2nfFbpny/HRN1Toe7xU83smpDXgXFzAlJM/2Cr73YMJumaC0YOeeBjB1HxeWJzsjvvdgwt4o5V+9WNK5wJP9hCDjdXq0U7I7TvEWPtu72Sr028C75H7/M/D3r/zsvwH+SQjhR8A/Gb6/Dk0I4Y+Gf//J/Q/zA+6DmwZ23lWA7erCkSpNnsQhHzsYbYwyRXmBdLyoOhIpyFNNmSXsjm/Pkja9xVqHFOLcianMUvamCZ+/3rBc96yaPjJjTOxTHG5qEikoszSaoV8IotZ7jOetwKqUJFGwauIOYtX0JCqySb6a12RA1cOLRdRiz4GjlePr+ZY/e37K1/Mt01y/I9fiZhE2H0TU+Aes9Qhgd/Rm0M16mI0yhBi04euOZRUbuXmqMD5cex1fVh25klzlnXTAdJRSdTcPcD2e5cOwlovexmWC9dFrt+kdozThL14ueDGvWdU94yzSbD89GGGc4+tFzbrtmI005sI6XzPw+IkMriR581moLjzu4s/PsKjiFPH3DsYgA/OqI0kCe6O4M3lfeO8ZZxlaCU43DcumZZQqJiPNzqhgVuZsm5ZF1ZEngk/2Jjya3q/w7n3AWM/RquXr04ovDrdMckXTWYLX7OWgArxYbGg7yx88273ki/1d4M6lM4Twz4QQn1358X8K/AfD//8X4J8C//W3eFwf8C3hfQTYrmoEFalknJeEEG6kh3Y2MB1l8UMdAu6Oe3Sap3TW0ZkoeQvQ9Yau9yRasTuV6CTymlPl6K1HS8nBNEf4gLpStxJCMinkeWCVMgbaM2nmSRYzVkE4ZzddFMrKFBgXA2YwsDvOebqnaHrH601Lqm+Wkj57/VkpbxRhy7TABy7p5fTWn5eQtITeBZJUsz9OsDYOGSmp2BvlTIrrh4ia1hLQaIbSF3G5UcDOqEAO5/a6z0OZpfzukxmHqyaeJ6n5eC8lSEndGoyz1NZhvMe2jqe7Ba2JC8n3H05RUvAvv5zTGk/wMBXxmIUC4aAsYtVn3ffMJHT+TY0/k/HnV9HZQOdiqbDcHZ9bYtZdZJe9LzrrGecZSkg8AqXkwASLyccffLJL1YyxHhIFj6fFvc3WexfOSRFaS7a9RUnNJBWDWY3E+4CQir/3o0eMtWT8HrIq74L77pkehRBeAYQQXgkhbmqz50KIPyV+Dv8khPC/3/SEQoh/CPxDgE8++eSeh/UBV/Eulo3vauuYJwrrA0WaXJqyvFhyyLRglOpoZecv2wpeh6/nW/JUMs1SxoNmy7p3hCAwLrCuejbWsG1bOmPJEsMkS3l+XHOwk7IzLEyLqqN3gS9PNvQDxbBINY8mGSFETvhNU8xKcj5a1F7oNBZEU5LTQXdIS8HxtuWTW7xSbxJCOxNhu6pq2VtPbx1PdmK9o0g1i0VNMJ4vjpYsa48EDiYphVLMnlyfCQrh6fo4YHS2jgViuaduOz55Equx111rLaOQ2ONZyd604KujBcu6w4T42sHD490S5zy7Zcq2PXsFcb6zCiEgfGBawqs6BnrphrJPA997kjJfRGpxAjAMd1n/pu5/EZkW9MZxXBtqY+kdlIlgkiXfimRxpmX00l3XnG7iYq+Bp7vwZH9K18chwkJptAwYAtPyfuEyzobEaXMlBakSNLZHiIxSKrZKEYisrGmmccGyW/wbrvG/Jz4JIfwY+C+A/14I8YObHhhC+B9DCD8OIfz4wYObTZ3/puIin37d9Jc43Lf9zXXaOhf/9rbHXP2dHpg81rkbS0e7o8iOyLWiyDT6jmbo63XL1ycNUr0Z4jGDhMKqavn8dMsXr9ecbA2rbaC3UaP9i9M1fRfLUJ8fbXi1anl+suEXR1sO1zUCgXOBnx1umG8apnl6qckNb5quN8jfANEJyvoQZxjqLjY0b8FdfZUzVUspAlVnkSJcEqhLlOT1YstPD9e8PPE0NWw6+OXrnr94eUqaXB8QHkxKVi3X6ru/3rY8muU3XusAw7xH4Mk457SF07Wn6eFkDcsKdvKEqnMcb1vWjUGrOJ29rHpWVY8NjpOqY2cizlk6nhj4t8D392eUJVTABmh8/FoRp2avYpwnrJuev3ix4HDVURvD61XL8baj+AZzKDfh2azgxarm8yUsXTyOFfCzBVSdYdsaXq8aXqwqXiy3VE3PTnG/jD9Vimmh8SFgnWdvmtN0kekklaRzlvm2w/vA6bZlnCa3+ip/G7jvsx8KIZ4M2f4T4Oi6B4UQXg5ffymE+KfAHwOf3/M1/8bivp6772LEcttj4veXf5cnGkG41Tnr4/0Rx+uGVevuZME8HOf0zkZNmgHL2nC0qhFIJkVC1XR0PYwzmOY5+6OMTw/G1K3l5arGW0GSSKrO82RW0jnHvGp5MC3ItSQIwTjXNzKcjm8YyNxAdEsavgYD3R0L7rtIaJepvvHGNs7zL56v2TYNeR5nEaSQNM5SNZ6fvlhe+3etMYwUnF49HuDRKOf1sr3xWm/bnlmZxgW3aXhYSNoMVq0nT6HUUPcOIQSnmx4tBQ+nedzRibP3lKKVoW4DYy6UmiRMMlg0HUK80eg/W6AUg0jaFTS9w4TA450y7oqMo0gSHu7kNO84h3IbGmuZX3MqPfD5q4bP/tYO03EKXtBbiw+CZX2/EtMoU3RWknmP8/BonFM9cCzWDV+valSA33oy5eO9Cb/zZEpj3YVd1XeD+wb+fwz8l8CfDF//j6sPGJg+dQihE0IcAP8u8N/d90D/JuO+nrvvotVz12Puo/VTpppPD96tOfVgkiFkDuGN/ELVRIE24wcbxESB9GQKikxjicG0s46v5w2f7I2wzrOoO3bKFCkEtXHslgl5oql6S5FqjtYN68acUzanRcLDaXGt5+kZUinJUknXe6z0ZMnd2eb79FWa3lL1PVWIchOdjwNygiht/Py0ulayoe0DRZGi6v68xi+JN/ioyJhv2xuvdWcDZRYpqJvWsTMdM8k187qn7yOFdtW6OLUsoRvYV1oJSh3LF1VnOFIaDzw7SOisR0lFoqDUCY2xOC8Yy0CaRVppZxx9B+4az9151TJJEw5GRRwuk9D3HuscdxDF3gnzykTZBqI3wEBYo/OwsjDONYlS0QHM6MjWumkE/Q7sjjJ+ebSJPZAQaJ0jEYK//ek+e6cV69YQRJRAOZP86O45JfyuuDPwCyH+V2Ij90AI8TXw3xID/v8mhPivgC+B/2x47I+BfxRC+AfA7wL/gxDizFv7T0IIP/lO3sVfQ1ysxW5aQ5EqnLtsIn6XyvK78Pjvesy3YeQyeFlcDxGnWVP9husulWZaBGrrscMNIH2IejGJQhOHxoSHqutZVQnGRy/bw1XDg1HOuFQEBKfbjnGhh13TMLkqBS7E8s3uKDJrbjqVL5YV284yzjTfezBip/xum27Ww06Z4o1l20Z3KKGipLFWsVdxrdia9DjbXxqG8kTZ4+PVhtHBzo3XWorA62VN27thLsOyqjzr2pApSa4FQsfMvEg0iYpN7FRLXq8qWhPYNB17I02ZaFa1wQQIOBIBIet5Ot6hd46261jUsG4cmoE7fw0/3npBkUpqEy0hRYBES7zg3J/4fdBbd77zCEMvQhLppflwXo7WG6yBJIn0Vf0eBjC9dRytW4wPrCqLlIHjTcuLdYPwgSLVtJ2j7R3jXPEO+cV74V1YPf/5Db/6D6957J8C/2D4//8D/OF7Hd3fUFwt7XjvebXo2R2lZIkaDLoNk/z2D+K7WDbe9Zj7WD5ebSCOgesLFPDzV2vSRPLj7+2fLyhlJnmxNDyZZmw6yzgb8cvjLcJ7tn2P0/ByWfHDBzM2neFfPD9Bq5iVLZueV4uazw7GjJIVRab5eC86RSkhqK2jt1FOuEyiBMOUWN+9DtvWImT8+vPDio927uZX39Usr4dm9Jn420UHMi3htx6OaXpY9lBKwEHvh6qKhLoz53LYZzsL4QUnN5SsDhee7z8IN15rQuDreYXzgifjlD/7uiJXkmmZsa0aVl3gd5+VbFtDlkqeTMf01vGL12uOh53EpjUE75mMNb88sSigHEEz2Cv+vR+OEDLwyxdRZqMchrnWNfzWx2/z48tEIIJgU7ekSUKiBevaMCs1T97hGtyFVGmmEk4GaYtSw3rITg7K6Ga2M84odMKqbZhv+3P5jm+KF4uKpvc83ilJtWS+bfjzLzdkuWacK+brdihrFWRasG4sD6fvbzZzGz5o9fwa4rrSjpTQXNI3vnsr+C48/tsec6YyuW17jtYt27YnvzL5eRXXNRBvUphVQD4ExcW2PX9He6OMaZ4wKVJkiCqbsyJBKoW3sFcmfLxTErxjvm0YlQmTTFMbx3Ib3ZS0ltGnVwi8h1VtmNc9bsiunA/M655VbW49k9Z6rItf103P69XtCo3GeY7WDS8WNS+XNS8WNUfr5ryhXveWV8vmRvE3rSQ6UTyYpYxktCxsbKzV708lu0UceGt6S3uhL9JZh72hLDweQWXtjdd6UfW4AFIJnu1PeDBNIQSWdYcNgf1S8WRnjLOeqrHkieLVquaL4y0CGfWfjOfLeUNnAgeTQd2yi7uEp7s5UglyFWWIdTKUoRJIU8iv+YDkiSbNFI+nBUp4to0h4PnR48m5b8H7YFoonjzImBHvpI2NC+uTMXz/yZS9cQou0PWWaZLy6YPxvfUyT7Y9RabPF46qjfpJXefJpSbRCT44No3FA0WuKG5jHHwL+CDZ8GuIq7VYISS7o4xt2w889mg68i6GWjHQ1DTGUySSJzvlWzfOTTVp4/xgIpIyk2+ayk1vEUJem83GpqbncF1xsu0QwE09MQ+kiWCUJjgRLRtnRco4T3m6V/KLwxV173B4DkYZ6X7Jp7tTHkwzfvBowr/+akUQkt085XTTs6l7JI7aRH2fPEl4Ns14uW5IpKDvHBWO3jlSpUiATfA3ishBDApdZ0m1ZJQqfnla8e9dOD9XM/vTbcvJpouSDEmka55sOpQUPJ6VLKqOVKtL4m8QB5bKVGOdRwjJo1mJ8J55a2kMFOqNjkvM1sUlcbxF3fJwCtv12+9hf5TRdv7Ga31aG1KtEAKkkvzu4wNONzUvVx1PZhnjPCeTip1xSplotp3lxaLmYFIgZdQnShPN3jilaqLfQKp6OufItebRTsa67Qk+8DvPpiy2hs55slKyO04I1xTtfQh8tj9m21oObE6q1VB3/3bkipNE81tPd8jyNSfLBh9glEg+eTDl8WzE3/lsj5PK4LxjlKccjDLMt9FcAOrOkirJ6aZn3Vkk0Sd6VRu0kjwcZ7Gh8x3iQ+D/NcTVWqyWw0RnkZ3zw68aIyH/IQAAIABJREFUdF+HVdPz+eEm+osWKW0fpXR/8OjdsqarOw8fosyxVpKdUl/LLtq2lhfLilXlKIbR+jOatiBOcZ41UwPwaDaKGjy9p+piIOs6w+evNzzbHfFoNuLlsuark4qDNGNSaLSAk01HZS1KCJaNYTpKSbaKVxuDb1o+3h3TGcNPDls8gY/2R5zULUWSUGSKpnOsjOFAZpeOKefcFhiANFWMSx0lGxpzboRyE9PqcB11eC4Hds1p1fN4Vp4b1VzERfE364EQGKeK51bwcFKitWK5bZjXhmIo9QHn9FqI2Xp1A9llXvf84OHN5RElo1lNnmiEDwQRKPKEPRs4mOQkWrJXpuyOcsxA5TU+UOaKZEhQ6s7S+7hwvVrXTNKMnUlBU3d8cVzzR59kZKnG2MCzfX3uAe1tILuG4RQQFKm6JJHhfHgnGvO7YFYoRoliL8958vGYgKfpHIVO+GgnnvOP997cI8Y59u6pEfRgnPJ63QHxc1H3jtfLht1JRiIUJ9sebywPHpTsFCmr1pw7tn1X+BD4fw1xtRabaEVd9xRDE+xda+2vlrEssWp7TraeREsyJS/Z/MHNNemrO4+2j65LZ/o717GL1m3PYhtNpbcmGqqcKTIGeItB83JeU6SSaZHgBz2bZWPQSnC07ti2jpfLmqo3/OpkQ6Iku2US9XOMI88kSg6LUN3T9w3WBZ6fVDyYZOS54nBjOJg6ZnlKbSzHG0uuBbM8xfrAQQkvhgrOVY+lrxdV3JpIkCGwcxDV49/YUNrzRToZbmolBIu6x1hHohWTTJ2LkmVasK57anO511AOi4GWMes2wZEknsNVTWvjjfpophFRQZgivTwxfTDOOV1dX+tRPvDoFumMvTLlZLPieNPw9aLmZFuTagWBWGIRkYve2shGSbXk8TTjaNUzKVISHZkoh6sa5+F4A1/TIejIgZ0CEgGf7I75v159ybq2BCmGgS/Nf/TR2wOb40yxqAytc3S9xfuoofN45wZFt2+InVHOXplxtG7YtgYtBdMi5dFOxtP9kpfLODCYqFhqLFPFH31yrSTZnXi6O6LqLPO6x/tAZSxJIim1Zt0awOEIVI2jtY5UxSb2d4kPgf/XEGe19YsNwFmZ0JloIHLWELxLc2dR9bTWkyoVdV5sYGUM3QX7vttmBK7uPOygUnmRFXKV3ln3li9ONkgV1brCLV5CgjjEsmo8s3LGJI/BaVH3bFvHF0dbjqqObd1ESh+Bl3lC73Ja68kThUAwTRWVidr6p61logWLxlA7S6EVO3mKkIJF27HYdmdxnN1xxtNZQXNL2f4nX55ihUIHx8F0xB99OuxijI9ZrnvDCkqVJDg/GMRHPZuq7znZOH74MNJbs0Txk5crtIjXeFm1NMbw+093WDfRJCcVgcXWM1872mgFjBfghCSEOAF6dWL6o90p/+rL64tWRtyuJZ8nivk2Gq6cbFuOti1JkMxGOV8t6mh2nyhezSuyTPNv7e4yOxizaU7pjcMFwba1nKy72MwdnjcQd3uhgXVt+f4BLLaWqgGVRhN15y3XDakWqeb1qmHTxjKbkFEG4izrf1e9qUvn4UKC462jNi4qbrYWawNSwNPZiKZ37JWaVwvDso+9kcfTnLum0G9CoiTjTLOsDb2P0id1rzmtWlaNpbOGUZqRpoIQQAiBum644VvEh8D/a4irtfUza7tZmTIr41a/Ne68AXvb8wQHySBTkGhB14MRb7bLt80IXN15nPmizsrL2+8zsoNxntNND4Koajk8503s50Bs4iUySg6f0fReLxs+P1oiRJzgbDvLvDZM09jErI1ld6SRAh6OMzadR+noopR60GpoTgtBNbB8jHUs1j1SRW65c7BY9zyapMxvuRbjUUamFJ1zbLqWV8u4J2h7w7ZzF2rugW1nqb0jMAwmDVruhugpCwx9jITeehrjsMEzyVJaF2marXHUzrNuanoH45EgUSpy6bc9R9vttU36RdWQJW+f7BSYZYqvFpsbfYdfzCtaa3kwKXi5qhlpDUIhhmvSWsemMwgpUSHQO8fBOOfH39/n+cmWbefonefZXkk9vL4e/p1RJn92NKcPjnEu2J2kSCHxwWNMz//3/DRqtVyAdZ4yjVx6Bh37ZCAL3DW/ch2uJjjLxrLtDYmUfLQ7RnhwwnOy7Sit46NpyY+e7MR7xnja3vL1ouLx7JvvOE63LdvO82gWWT1/9qtTXtiaaRb1+LsuGgYlQjLOVPQ3eJcG3nvgQ+D/NcTVYGysJ9UKY98EmncZ4NopUw7XLV3vz4eQHJ6DC/Kytw1wvS3SFrV65JCNXC05Nb1FacEky6j6OGTk7yjJ/s7TGb2xl1yqKuNJVMLJdovSSewNiKjTv1ummN5SpAkET55qHs1Sikzzz37+mpkPpIlif5SglWAVoDaGurOMCs0kT9FaYG1g08adxW14tjdCCYkLPk4Kz6vz83a1z6gE9J3ne/tjtp2J5yzTPMkK+mHvvmkNu6McJQXbtsf4QNd7Xi4a9sqMREuO1y0Kxc4okCcpWgl6KzHW4s31/rTLbcdumbOuWixxwfHEG3xcFODFeQP5Kl6uWnaKHK0EIkimRU4i4bSx/Ghvgg2OXGm+/3BC01kWQ3Q/GOfnPrLzTUOiCgJR4yhNokF5N8wfbDs43HbsT8bnmjXOB+ou5XD79gid9bGHUWZXdKWsf8tu811w9Z5aVj0PxznrzpBrOQyheU6rKAlR94YvTqvzBGh/lLCs78fjP6l6suRNQz/RmnGiKTLFfpIx30paZxjlmjzVdNaRyg/N3b9xuBqMnY8G518sa7RS5ElkiOQ36LacYX+ckUjJou7ZNJYikXy0UzK9kLHfNcB1lQVytl2+To7AephkCVUepzxfnTao5PYt609eLNgpUp7t5+fPk8pYAvjpi1gztsBIQyNg3fRRUdGDC3Gqd1wmnG4atINxoVlVPZ83ljJRPNsr2B/lKKVQ2vFnz+dsO8M4S/jtZ+NhYOmWa2E9lbFkieSgzGkHJk2iBFolGOswNqAkjPLk3KLx0YX+i7EeF+LfCSnprMP7wPGmp3cebx2IaF6eaMWm6umDJ3jH8brBCxilsDfOyLPr+zoqTdDGUV3zu1TD7jSN9n/XvccQ6I3jZGOo+sFDWSucczFYOfBD83OU63PfhJNte57xfzFvGGlFloLro768M7E4MktjzX6UaZrOsGp6jAskSpDqSGu9Ci3jLuniZ9MNEhH3odO/xZSTgmmRcbys+fnRFmfje3tSpvQh8Fev10zzhJ1Rwqax/OywZnJPH4DgPeqCIVGZSj57MOOLoxVrDFki+WQ6RssoevdoEhfh7xIfePy/hrhqgFL3hp8drvGDkbj3gs9fb6j72/U8dkcZaaL4eH/MH3y0w8f7Y9JEsXtB8vV9zVquHreWgtermjQR/ODplI92bzfGzlPFounxgXMu+6rq+eefz/EeVBID/9zGgOJ95OifVC2FjNz6nSLld5/u8v1HUxbblixTPN0tmRSa18uGh9Mcayx/+vkc4x07ZYbxjj/9fI41t+uv9NYPRiyeF6uKj4bBmlGm6YcADlFzvbeOZ3sljbGYIS011tMYy94o/t1OrplvOzrrccGzrnuWnWV3nCKl5GTTcLjusNZwvIkBSwBNC6t1x6d715/PSSJ4/rrlupz08+Mte1lxo27SNNX86nRDb+HRNKd3nuNNQ5qoyOW3jqezEc5Hs/NJJjnZtvz5V0usiwnGk0nO16cVD8a8cQATMbPc1PAHz/b4vcc7fHXY8uK4Y9n0vDju+Oqw5fce77x1TMVgtjOvWuZVx7KKxvWJEvf+bF68p3ZHCb98veQvX69YrRs2veX1fMPzTcfRvEYLiQ+wbiwueEZpSnWHQN9NmOQJ27Y/N1tXSvD1fE2ZK3bHWXyfjeHhJKXQEhfCtYvht4kPGf+vIa7W1ufb6I7U9pYXC4dCIJVgWXW3BtYzJchF1VF1lkyLS0qQcH0j+abG8V1icVpJNq3lwbRg2xiOVy0+RNGu7VvPFoeSNrVlWmpUeFOK+Onxmq6PWYkzbzxZjx3srCuePZiiQ6BxAScC67Z/06MQkm3T0RmBwFCmKVmqWDeWujNsmx5UD84hZZySvA1fzbdIqfHeMsk0v/N0cn6N+lUTaZhCwHCzfrQ3YlH1HG8ajIta7g8mBfvj7PzvHk4yauOpW4OSgp0ipRh2b+vG0JhAliYQDGsDfljf8wwe71wvGSGG36+u0pKAXEtOtg1KClZNz7Y1l651nkmmWUbAk6cpQjQkCkZS0RpDCJoiFazbHgLMipTnJ1vKVDMa+jI/ejzBOM+/Pp6TzVtaoB/i7JMCfvujXdZVS1BQeeiauKBPVdSjvw5aCTId3diMC4xSycPp3aSG63D1nhqnms8XW7ZdTyoThA9YK2kazyvR8LvTnFUT2T6F1uyME+6r2LA7yjhct4PshEIRmFeWWSkhSJZNi7MC82jMsjWMUnWvxe2b4EPg/zXE1dp61TuSRMWAL2PW60Ng092dgdymBAnXD2nd1Di+SyzOOs8o17TW8sVJR9MZRnl2bfkBYtNzf5KSacm8Nec8/terir2JoHWBzsKo4/w5Hu9PmKSKIARNHwjGM8r0wHjqOZjlrOserRWJUOxNUg6XLblSjIuUzhlEkIQkkKmEw/XtwlsPRzkWgUazP8kH+l08F5lWaKXOWT1KRFXJIlU82Rmdc9UvDh0JIXm0U9L2kREkJWhEHNwiXlvnYlY4yiE7oyBZyKXk1fqayA5se8+z/YLDF2/E7bPhTz+ajQcml+Dzww07o2zYsXheLRusE/z+RzNerRpenjZ89mBMkcaBok/2xpGdFaLC6U6R4gJsO3e+mEGcwP69ZzP+zz+XPNuJjVutMoSwpInmq+M1Xy5r9saCHS9AKvAOKQN//vJtQY+zz1qeKJ7tjoa+k2dZ90PT95sF/6v3lAnRCH6vLJBakUiJngictRwtW378yQPyTGNs9BMmeMo7/KNvggCe7ZQcb1oa41huLT94UIJQ9MZxUBZkiaTpA7MiRYnYwP4upZk/BP5fU1ysrSdKsKx6TreG2hjKJGF/nFzicd+Eu3Rjvony522N4Lq3fLmoeTGv+dnLDaNMkpY5VXu7JIJxHu883odzHj8usoJaC8ZwyU4wF5JcJ4yKlE3d4ERx3mStesemjT2AVEsUULeObdpRS4UgkKokNstVlC7Y3qG4+PGDKdY69FC/fj6Pjciqs5RZ8lZvZF617I1y6s6e0w6nRXJ+Ps8ctiB6Eje9I80UeaIo08jTlzqlaQzjDEyI6pkkIIXny5Pr9k5xjXHGMiI2dZWM+j5KgMWz6Qy/ONwgReDV0pIoRaYlRaqx3rPY9LxcNrxY1aQauk4jpWSaJRzMMpQU/OjRDGM9nbWMM0XV2vOMP75/qFvL490RiX4jg22s5YtFw3xdkauEpEjwITbrTW84Xr2dGlgffRkufjZTLWlNuBerBy7fU0UikUqiRCBVEiUEWglaG6mv296gEKSZpu0Mp53nb310Px5/a6K3RZkljDJovYMg2LQdm9ZSZpqdNPZOdsp0YIg59m/2+3lvfKjx/wbAes9fvV7SOsPuKKV1hr96vcTeQZl5FyMW6y/z8uGNQclVXK2TwplpedSfUQFq42iN5atlTecs5R0TiJvW8Wrb4kI45/E/3i04aWBj3rhJneH5vOL1usYbjxQKZwOrxqCkQjjP4aqjtVEqoHeew00LSMa54vWqp+kM5dBkfL3qGd8hg2i9o8w11jv+f/berMfWLL3z+q3hnfcU84kzZmZlZZVdtsttygaE1AKaBi4Y7kBc9QXDVwAkpJYAIT4Dgm76hu6+QIK+QKBWS4BAbtOtNtiiXE5XZebJPFPMe3zHNXCx3tgnIk4MJzNPFi75/KXUyQhFxN773ftd61nP8x8Ozmo6F04l/gZO97K2HC0anA+brPNwtGjWcYFayT70hHVLbVq1eO9x3rM/Sbk3Suis53gFTRfC3vHBT+YmS+ydUcassWv6aNkPxa2HL09XjDLNF0dLPj1Ysqxt0AJ4mPaZvn/47IxV2yJlEGJ9drIiVQLjHV8dr6g7189/PLHWIQ+hNaz617WqDWVrGGQhsMUYS6olxlhWjSVRnjTWzOqWqg1T36rtmNUt6TWVrZYhfvHqxhr3wsJvC60kaaxo6g7jHNZ7TpctTWV4sJlzbyNH6lB5ay3ZmxR3hgrdhKqn/koh0EriLfzxszOOlsHMaFY2/PT5DHtBXyNuLZe+Pd5X/L8CmK46toqUs2XLwbyh0IqtQcp0dftw922qeS2h7kI+7EUF6nWniZvcHesuKFCTSGFNCOxY1oZ5vWIyuF1dvGo6IhXiGs95/HvjnLGuODZw9R6fLlukd3y4HXJYh7mmaiyfHcw5XjbYGn6+bPns8JRYwcMticOxkaUU8YqnR0tW3YIiEjzaykiS2yvHsu1Y1hYpHQpPrsNxf5AojuYNZWexzqGkJI8UHo/q1a0QqlTnAnUUcox1fehJuN5xJDktLb84nLMzTHmwkfPjRxP+u9+HxgSfI185CgW7KfgbbDp2i5iPdkZM51Mu7g0VoHoP+J8fzEhTtb7OsZZ0xvHF0ZLtQlMbWDU1DkmsPS9nNeMs5bSsmbUdeRSETHvjgq1Byq/dH/HpqzlHxzWjVPP9vQEPxwX/95eHPD8G44NZ26SA7+/sMk4TDmdHHM9bhGrxFtIIPtoeX/tZE6vgTRVrud50slh9I1bPVcRS8KO9Cb9fdhzNS1yf0bC/MeDJ5pBBFJFNFN55vAQtxI2sqLvQOS4JsjrvaJ2jnJVEcYRtDVorzkrDbNUgpPjG9hBvi/cL/68AqjYM/DYHCQ96n5myc6FyugVvE8SilQwMjt44rDWOsmzXGbAXcVO61LTsyPq7MY0Vh8uGWEsMjugOs6nHWwVSQGtZh587A1kG17mnVQ2sYsO07rg3zKmM5+nJilgplq7jqN8sJjG4Fr46dTwYt4gdz9HKkGaKrWHMyrQcrQwf33Fq8s4T9bz/WMu1ZYBWklndIhDEStJax8xaIiko247n05KmsySRYiOP1tx744JSNo0U86rlbNUySmO0DIPMpycrIuHJ0xg1b0kVREGyQG0hktffskUaEceK3Q2Bn3oaFyp/S9hAvAOtNMfLmiJa8YP9MW1PGapMx96kYISgbi3z2uCsY9FZTqsaISGWis56XswbHmwVdDZoS378eAvViwwPZiVKwlk/ZhgXmq41zJqgkj63mtDCIrTGG0Mcax5vvUlQiJRkZ5RytKipu1DpZ7FCCt7J4NN6wQc7BZ8dz4Mtg5BIFTbQSa5YVh2uLzta7yhizR3WWDciVoJIhXmBMY6yaYm1QEhNHiuWziGkpzIhJOjcn/+7xPuF/1cCklg5ys4zXbXEsSJW59ERN+Ntqnljw3B0XrXMKk+sgmeJ6dtB180IrgqIEi3WlVmsJYJwCkjjmO6OKums3zQ+2H79mNO6ZZxpXi3MG62eBaAWMNSaPJEcnJXcG+VIJTg9M+sTwrRv3UcGvprOuD/L0SIoiw9dSyLDYPnl2U2j54BBHFF1jkEcsT1MSONQ8S/rjmEScVaGNk4aCTbyhONFxfGioepcCFEpYVE2/NqDyZX3xPLpqwXCe2SsUDJsmssafn5SEysYZVA2gcqZaMg0GHs9CymPNaNYcroIi35E6PsPet77i5MFT7aGbKQps1VwWA2+RzF5HFPWHUkUUVmLEo5OeJxwjDJNZR1l3eKcI9GSV9OSWEnKxnC0aKg7y7I1dJ3jxbzkwVBxWlnmlWGUKR4OI07mDZvDhI+2RyyNpTWeWAs2Ur0O27nuNd2f5LfOqL4pnHcczhs2iwwlFc57Mq3YGCUsWstGLnBOIAUMoigkdH3D9kuRaL48WXEwq2iM5/lpb8sdhb5+kcZI4Wm70OOPtFzfC98V3i/8vwLYKGK+PF0xSCO2NjPmVceiNny0c/tx8G2q+apzdNYz6MPIgxeKDzbO8dtl/W4UCS+nocwzFp5sjfn50RQtecOJ8ir2hgl1P8SrO8cog2Eccbq0dNfkdsVAlsDORsbJvKazjk/2xyRare0CIDBaIDgYnMw8R/Oa05WhyCL2s4R51XC6MmTx9SyZczzZGVCkEau6Y1HZta/MrOpYNIY8jhjnoWWyaAwvpiWtEYzSiDRV1LVlXnfMyuaN98Q6RxZpFpVhdxSesZCCV9MS76HzMMohjWPKumXWcmOfOZLBt19r2EhCb9+XhISzWCMjQR7FzNqa7UHC461ByLI1lt94MOT3f3FCkTjSSHOwanHeM8kijA++MfujjDyJaYzh1axmmMZ8dVaSaMUwi3h6tGDROhalIY5z7iUOHSlM54jjiFVr2BQJRabZy3ISrWj6UBx3y4L6bWIsb4NWki9PVjTWMC4SpIdF22E6i+k8H2wOEDKYz3XWhZbPN/TP6Wxop8VKM0g1QgkOTlc82RiwOUipmpZ57Xi4odbuu+27GGTcgvfD3V8BDFLNx9tDvBO8mFZ4J/h4e3indet5P1lLLvn4X6wmTK9EvTwHCN+/bkag5Osg9nOc6wWk8NQm8JP/uU92+XBndMnX5zpkseL+JCOO1NpffneUcm9y/YYREXqmwgsmeUSkBAqBc57qws81hIpXA1ULi9YwyiVZFAJbskgzyuWdopxl4/jicMmycTzYTJD6tT0FfRwgsB7Ani47Hm1m6Di4h+pY8mgzY95bQ7x+TwRahg1jmOn1e7KsOiQCvGUUskDC8BfYSiXSX7/41MbzcCNjlCmUh0wHTyKpgpe/lpIkkewOMiZpwqoxSOHZn2Q83hrwO0+2GCQR1lh2hxEf7wxQvncFHWXEsQ4WzF7QGMvxsiaSof0CYIVACWjajsbUWA9NG7QSibBEOsxAxmnw9AfII80kjRl8x22N62CsI9GAlyzrhnlryCON6O05dsZJKHCkYJhG7IyTt2LRXYfnZyXbRUqWajrnmCQx9yYZrbGUdYfAszmI0SgWVUfd2Xcyx7gN7yv+XwEMYs0X1qBk2ASkh8qaO2+Yi/3ki7hYTUQqVF7nraDA2vFESgXVqPCU1Wvr4Zuyfs/1Ar9+b8w//OyEcl4hlQbrUMB1y2sG7I2zngfv1v7ynzwY8QdPD659TR5QCl5MSz7eHTDKIrQUFEnEkMsRiucHgJ0UdgYZT08tjTFoqWicRUvJzijjenlZwN4wQW9kGOOoWkvUN3qzSLNwZt3iOu+Xp4kCEYbV3nms95SNpfNBZVz1uoM0Unz/3pBPD+YsKoMgMHga59iZxEgSlm0wajNd2MjyNGS/XocsFviV4P7WgM8PFzSdRWgwNZzVhkdbCbNVzf2NAT9+MuGjnddcwWEa83g7Z2eY8ngz52TZ4WUQG3kh6IynGEbUncM4x+4owXlw3vJy2uG853TRsGoNuxs5J3NHXTU4EYGrocj50YOCh5sFrVswiPT6NFRaw8f7oxuv/1105G8K5yBLYo6XS4QSaOmZNQ2ZlXywPUIJwUYRrd/bpjOM0m928piWHUIE5pNzMMg1pYlZ2JYsVjTGM4g0D7cyjPM3ztjeJd4v/L8CaK1lXlnmqxYnQHrwxLT29mr1bXr8aSSRUoQwlH5gm8WaWIngtrnscM6vRUrLxrBZ3FzFSxV+8qxsQYTNKuEyF3/92BI+P1pSxIoPtvK1gvPlac2r0+tfWwMMHCzqhuOl5nc+3GYrj/n8aHljwyBP4eFmzufHC9qmo/QOLSwyifhoqwCObr6IMoirkCGkXfXmWeM8wlrHq0VD2XTkScS9YcLjzZyX85JMaaQWzFYtnXX81sNJcN9sTdhAI9WreFOO5k047QjJw0mGt55YW8o6UDL72F3OZpamDbL/qwvgII1wlDjvqVtH3YD34T3LY3g4zimSCIEjumIAViSKw5nndNVwsGxYLFqyJLQdtAj95qptGcaavVGyVoO/mLYI53FSYHGsmpZxGrNsSw5ODVVnGKYhevHRVsGHOwVaSn72YsbzacUw0fzo0YRP9obXXvq7lOLfBrZnaKWRoHNgrEcQjAkfbqQM+vnNuafQRp6wPbxeNX0XjPccnFWksUYKQaw0i3pJ0vsUJbFECRhkwQo9u3Iq/y7wVgu/EOJvAP8acOi9/43+e5vA3wU+AL4A/i3v/dk1v/vXgP+k//I/997/rW//tP9i4XBWsag7DB7vPE4EPv7hrLr197SSvJyusD546BjnUQIeXWBRZLHG1N1ajHTRq6dcNqyajizS6J76t2q6NR3wOryaVljnGeXhJgn5U9fD92lTxjrmrVkv3P/bnz67Ma4xBvIITsqWtnP8+OGENEq5N85IY7hOiOslbBYxChFuPqVxNrSI7mqX/aOfH7JqLUWs+LUHm6jtsOAkkeLFtMQ4QRJr2s7xYlpyfyOjNY66tSxKg/OCrM8NKJuOJFLMyoY60iyqDms9G4OYYRqR9vGHf/pywbRpgw0D4QIaA87Dq2Wz1mNcXAC1hD/5as6nr+a0wfMNqWFjAJuDjLPGsGMdVes4KS+7YbbW8WpRM0pjvAgpa2d1w+ONEXEU8hR2RxkPNnKUCJqBeRMsMBKliJVCCoFHYozDdrCRJ9yLIrJEoJQgS0IK3KKZ8/29Yd//t2vm03U4PyHh7fq0ed5q/LZ9/1gKtBYM06TPjBBY55gMIkZZhBCQxxHee4QQiG/BJsrUa2p1kWrwIWrx/ijlQW+50nnHuM+Zhj8/Pf7/FvhXr3zvPwL+gff++8A/6L++hH5z+OvAPw38HvDXhRDfTP72FxjPZzWdM0FJqIN1Q+cMz68zZrmAqjVIGaoJ3/OU5ZUe/W1h662xbBQJSgazMSXDILc111fjnXU8n1UUScTWMGGjSBhl0RvMnPXPA0kUAtFjqVj2dgifH5gbPfyLBFSsSaWiw/P5ScmithRpdGm4exHTKSyqlv2NjDxRaCXmPtsXAAAgAElEQVTIE8X+RsarxZuWwBehteB+L975o2enHC3CNT9bNWil6Gn9aBVshM/Kjh/sT/je3pjdUc6DccYHOwOEEpdD0r2nMUHs5n2oND1QtpbOOarKh9wAQtUuBUQJHM3qa2ctf/RVSNDyHvJMkMSwamFZQpEkwUxOyH4AfblgOF21PNwoyGLF8aJFScn2MMfi2R1lxJFm1RjGmebRVkEeazpj2R/nRJGi7gyxVOwOUpatZWuQMh6EZC5nPYmUHM4aTquOjTxmPEjIYsV4kLA9SIKQ6epnwzqmpUGKcx/+EOvpvH8nAi6lgp5hc5j0CWIh7OjeKMM6QRpphlnEOI8ZZhFppN+Ybb0tdBTx/b0RsZLMVy2Rlvz24w3yNELKcOr+aHcQdmsuu+N+V3irLcx7/78LIT648u1/E/jn+///W8D/CvyHV37mXwH+vvf+FEAI8fcJG8jf/kbP9i8oqtqgkWS5JnAEPVXlqerbP4jLxlL03ufnuE4OfhNzwiPWJm4Xf/+m3NNAEVS0raFtAwdeIKgIFcZ2Aa0Jxmu1C+KiSZEghaDq7Fogc3PHHTaLKAyTN3OWVcez04p/9uPAWjr/PUUYAkOIUjx1cLJqSSPFzihf5xNEUtx5asqjFCcceRTSeD99MYcfw9GyZWOQrIVaEKq0L0+WfLw3ZpBGeBzeh+g+17faqs4hRXjdZWtxUXh/6tYwzGKa1jDKE1xwRmY41Fhr0EpijaMyYXO8qsf44xdnbA5jtJKBjaIV1YsldQ2pklhgUkSUleF4dnmH7KxnmIUT3+hYMYg0vs/hzZNg7aAk6+oUwvyoSCO2e7fSo3nNP/nqlNY47o0LjLcYA0msUFpyVndMVw2DTON92BBUH2k4v2bHDl5Il5PeIFhljN5BHm0kIU00EyEYpTHWuuCXJAXW2XVmwDm+jY3CIFYoIdgahhwG54Mf1qOtgifbBWVrqWpLpF6fuO+KVf22+DZXcM97/xLAe/9SCLF7zc88AL668PWz/ntvQAjxH0AI4nn8+M0Mzr+IOB9sRbHm+emM8nQVggxFSFXau/+mne1F3CT7fls5+CBRLOrgyX7eBmqNY5hefzQ3DrZzzf/5bMaL2ZLK+tCfIIiqTvv42vNtIwc+P1oQKcU4j/ieDnfVhoSzG6q6l6cdk6LjiyPFRhaj5WtZf0wY6FouD5NzQCH49NWCummQOsaZljRJ+Hjn5hBygBezBd6BkLA9SNYsIHnDNcwiuR74aqWo25BONc4irAu2DLGSLKqWsjXUXWhjeIK1c20co0iQxZLZ0lEbEzzanCNP4ZNhuEZvVIUelJI0xjCvDEKF762AZ6dLtkYZnx3MSbR8QzA1yTSHiwZnHdPGcrqswHtGacLPXk05mtXkcaD7fnJvxL1xzjiNOFzUNP3z74xHIxhlmoN5hfMehUB3glhKHm0VtFZwsmhC6wSPR6CkZ3fy5sD6fGNZXlCKA7TGksXXD7i/DrI4YqOIOZgtMM71CXNhJhZF1//9b2qjsDtKeX5WBlqoF2wUMZ8dLxkDdesoG0ttDA+2Btemq30X+K7pnNfxn669et77/8p7/xPv/U92dna+46f15x8XfXbGefACt8ITxQqpPcvWMrijz3nuGX/Ra7819q29vkdZTBZLnPd0xgWRSyyvTYCC0Gde1IYX85LWegZxRKIl5z999XyyWUCsNLOy4XBWrXu9G9fP+oAg4HKEttWyDa2Dsg88v+lVJTKkcC3qGpQOCmGlWdT1nW2DUZawNcoYZQkH8zA8hbAJlG237sW2xlG2HY+3ButrpiXEkSKLVOjfA4kOLTSPIIkUzoUWhgcQAuMsi8bxYCMnz0PVL1R4vWkEuxvptZkJ+8OUg+mSWIaBoTOw6KMfY60okggHNJ1lcCXMZXuYMitb6s6RKEHdGVaNQ0j4/NWK1rqQaWDg//rshFezknEeEcvgWd9aR6QDvXarSFECMqWIlKBrLcY6NouIUSI4K2usdySJwnrH0aJ+I8kM+tB5IRhcaEM6FzbQd7EoppEkloLdUcr2IGErT9gbpmwNEyIhvtV9cxVbgzCDKmKFVpK9ccaP9ieM0mCBkijBJ3tDnmwNGGXxd77ow7er+A+EEPt9tb8PHF7zM8943Q4CeEhoCb3HHbjIoXfWsDPOgpJQQ0SKkA5/g4rzHKMsxjjfs3pClZXF6saF+yrO+/9nq4bGBv/2817n4hp6XRZrPj9aMskVZSepWocQkkEMpy2MRVjEShM+eKNcU3WGQRpxf5TSdOeaAtYsoqtIgaaFhxsFiVZsDDNiLalae6mKufj7QsCysuyMcrRSfZSixtiIzvgbHwvA+yBqWhiDR7EzCtfu/kZB3YUhbmkdEphkMU+2B0Qq9N9jJZnXLVpKtAwBG845kp7HLjwoJciVZpJqBr0dhsezNyo4XgSqpJSBEKuAURJfWxX+cH/Cnx2VOBvSxRLp6VxoTTzaHjBMYgappu2CP9BFWOf54b0RZ1XH8+mKe6Mh4zzi+emKnXFGHEkEnkEenvenr+b86MGEzWESqL1r+2l4flZhPAjvEVKhpA8La5EgpOCDrQHLzrKsO2Kt+GBrcC09+NwXSknJMIvfeQskizWtFWwVCUmvRTC9m2oY5KpvfN9cRaTkOvwotDOD/fI4jy+dpH+Z+DYL/98D/hrwX/b//o/X/Mz/AvwXFwa6/zLwH3+Lx/yVwbflHwc3xJAvWlvPqIh4erxiNTVMipiPdwfcdWC7uHC3xpFo8bWOketTh4f//g++4O/94VOmJQxi+Cu/fo9//XefME41j7cHa4/0xsC87gdz0pPHmiwG3cLMsy77c4Lo6NVZxb2NHK3VuscfRwn3i4bn17gpNAAdDJOYHz/ZYF53PNjIOV3VpCks+3n3xbUkTcOGk0jJl2cz6i5Uz48nI/Qd0ZDPzlYsXs4Ypprf/XCbvVFoDeWx5t4k4+nxkqqxDBLFvT7k5uIMpOocy6rCI4kUJEoxKTQHs2o9KMZ7pmXL7tCRacnmICXWwVPoy+MFxgsy6fnBwy12x+m1C9D+VsG/8dsP+J9/+oLFqsE5x/ZAoqXi1arkYNHwZJLyca9yvnRNjWdzmLI5TGk7iwCWneMXh3P2N3O08DRdaElkieJk1SCEpEg0r2YldedJo9DDfriRk0aSr05LbNeyv1nw4faASCukFAwzgcMjRQiIGWYR6prPY6RC0fNyugoq8kiyP8nfWTUcKck4U0wrw7RsA28/j8iSYI29WSTvTD/QWceLs5JnZysa4zHGMcwUr+YlrfHkseTJ1gBxh6/Vu8RbPZIQ4m8Dvw/8QAjxTAjx7xIW/L8qhPgz4K/2XyOE+IkQ4r8G6Ie6/xnwj/r//tPzQe+vOjobBDmnq8Crvnizv40d8l1/u+pMb7ImaTrHn7yY0xlHnmocnj89WNz59y6GrOyOUgZpHHj9b/k85lVL1Vr+7u9/zt/8P57yfBWUpC8b+Dt/+Ir/4Q++4NW85suTJZ0NnuMSz+FshcAihWRZd7xYvm7znC85U2A2s6Sp4mRR8fODOas6DPlac/2iD72AiyCvfzWte/MuzeOtIdUNJKcXK/DG8rOjOTjYLHJw8LOjOYm8qVsfsDVI+OTemK1BwudHS3Tfay5bw6zs2B3l/HA/MHhmZciTPX/vF3XHybym6jyxDEZgr2YVPz9YksWaSR5RtZaqc2HRiTUnVUsqPXVjmJcdT7bHfH9vwvZ4wLRqadvrn22iBFms+Bc/uc9vPdnihw82yXSwWFBO8Wicsr8x5HBRv/H+J1pQNqZ/3iHXINeS+xs51lrwklGe4L3ncFaTR6FddTivKeK4b2PEfHVccrSsmDctH+wM+M3HG+SR4quzEi1gmCieTcPil0aaxnieTVcMr7H1KFvD8aKhSGLuT3KKJOZ40azjOb8tgj9+WORHiSaPFMvGsKxbtoq4z1GI2Szib91+eX624tOXc4SXbBQxZWf4/V+csqwMDzZysiji6dHqzijVd4m3ejXe+3/He7/vvY+89w+99/+N9/7Ee/9XvPff7/897X/2H3vv/70Lv/s3vPcf9//9ze/qhfwycdfC/rZWBzehag1F34e1zmM6S1V1tNZRJBHeeRZVyCC96+98m+exagyxVvydP3hKTQg8j2IoRFjI/6c/OkAgOF21VK2hasNpRAlFa4Kl1bmI6BwXj5gnDiQS34eNnKdbXWPRcwnnNfofPT/hRw/GrxkfN/y8B04aQwYoKTEueANlQO3crcfeSAYKbSQFbWPW1MOzVbP2QALWIesvp+X6mh8uKhDBddMSdBV1ZzkrG5QUNMah+8jK1oQBYxYpSuvJohAkb5zDeximmlhKmhtEe9uDmM7A2aqirEzgf0pNkSUIPKueOprpICK6iMH5qbBz7I3T9et7PEkoa4uxlkmhKRtL2bNRmi58tmR/7Z3vrac9FHEMPlBTnfdoIdFKoKUg1xolAmdeifC1lm+eum66vmer2+m3b4uqNUzyhEEcPJOs9+BD2++btnRuwmdHS4okIutJEdY5RonmoE9Ti7REa8n0Hb22t8F75e43wLxqmdeGpgsCnWGiyJLXKUtvY4d8G9bhKN4zKztezVsGqeaz4wWfHc7JtObX7g+Z30HnNA6ss+GmtsF5M/Dy3656OQ8bOe7ZdosrDzfzgW1i20BTrDuLQ/BkN+fVWc2yMSRXJndXP9ovT1dsj1LyRL0etMaaR6nhqxsq+CXB1XN/kLC/UXAwrzi9hgt+EVXr+NGTLV5Oa8rOMsoz9icpq8aRK1jaN73/ARBwtqrJY8mH+yOOe4XYeWbtog7KZtkv2lXn1htR1TpwMG07qrZjs0iDnXGk1wPLjVwHRW8XNBS7o4yX0xInJJt5zFenFZYwxP54ZxgW9GswLjJ+/Dgwlzrv0UYwyiRap+A8R4uGcRzzu9/beaPHL4D7GznzqqW1MM4VnTGBd19ETMuWP/5qyiSL+N0PNtgaZEzLls0ipurC8LbtK2ilFFjPL44XmNaxO0750f0JSik6R9BOzGrKPlrw3jiju+bCN8a/YfAXa3lnsfO2MA6894yymM4268jMIoneuWq2MY5hoigb29NCHToSfH60RIhAwvhou7j2OnxXeL/wf0101vFqGj64ojfaOrMO4zxFEjHKvl64yXXw3jGvAo1yc5BQNg0/ezEl0jBIM7qu5Y+eTon07W9fayyfHy3ojOvViZ6TZcOHO7fQZi7gnM5523Z1MGvYGsZrK4IiUkQIJoOUTeEJWq+bmfkqEsHX3jt+40EI5HDdzYv+OU4WNbmWfPZqRuu4Uf15jjwWNJ3lyfZgPVBbVA2RhlTDvC+kIy6nfu1NBsRK0FrPvGwZJmHRVMJzOK9ZTzbxLCoRRFf9ey7xvFjU5FpTxBpjHGerjr0NxTCL2R5YGmtpO7fmrLcmBL6smpanxwuU0sRSsChbPj2a8Zcn9659fVJ4tNb88MGIw0WMlpI/fTXldNUyjCU7ecrOKOXZ6ZInOwWnq3bduzb99Rv6iOmqpWwte5OcJNUcTWt2Rznf2yvQUnFWd2w2HYkOJxa8x3uoW8Oqs6zqltY6Hm4UaCWoWsuX05JHWymx1pyuQuJWkUQh9WrVsnvNZnbR6vsc53OqdwEt4bDsmPcJYKM8pmoti6ZjWZt3WvWPEsXRvGaQBVFbbTp+8XLBvVHOg82Cprb87OWCT+693X35LvDenfNrYl61LJoWIYLfihCBzraozdpd8nW8XojNM84zK9t10Mjb4fVy+2q5ourAI5FSgpeU1vJyfpvUCaarmmnZIoQkSxRCSKZly3R1x6ra45zOeRsSJfDeUaQRRRqRJ6oPke5YNJauu91PSEnFfNkwrTo2+/Dut2l1euExzvCzlzMiJS8tENfh957ssmwsZR2cLsu6ZdlYPt4ck1+4xy8+25iQ+0r/b9UadgbBPEspybLqsC4c1a0LzppFGoXWgfMkkSJWMgwzZZD9bw+DBXBrHHmiOJ23rJrw2lvjma4aFq2hMYbW+RDXpxWtMUyXzY36gTRSOOfYKGKkEJyuGpz3CO+ojCOOAj2y7CxZf73OW5StsczKFo/grGyJpaYznmXZkSWaItEcL7q+eFFMq5ZBGjFdNbQmfMar1tG2LrRtfCiInAVnIdOCxoL1PkQ1OtBKgAsiMXsNredcIX6RLnuuJH8XyGLNvG7xXqwTvpQUFHHEvL49h/nr4sFmCBvqjMNYT1UZpBJs9eI3oQRCvv6s/TLwvuL/mlg2liyOaIxlXnYIQoVXS8veOCwKd4Wb3AUhJOM85mxZc1p2LEtLnsCsdCzbFRIYpoL2jpbgtOpII8XLWUXVdWRRxM4wZlpdXlkvMpB8H3guhERL3nD2vIpBrhml8frntocJmQ5VZOd82Ahuwf/74oz9IuWjnWLNNqne4r57MCrQkWLRGqSA+R0xlD/53jbzsuOffHnE58crBrHkdx7v8MHegDhW7BeWV6vX7Z4NQEVgreVs6VDS8/3dId/fD1WZc577mzmL+nWoyf3NHNUXBGerhrINp7aqs5ytWtJIsj9JyWKNFJ6qs+xNEpSSeA+REtwf5PzDny8RMkRRvjit6DzkGu5v5ZQ30P5irdksYr46WWI6R920VI1BKYXDMy8Nz8WSv/ThJkgVBv+toTGeZd2gpKLpAq9+kMZIB8Z5Rmmo0qdlQxYrdocxnfUX2kPh9SeR4P4kY1Z35Jnny+M5q9aykSeM8pyyteSxZm+SUjWWurVIAXuTFBDMq/YSg+bc6vts1bBqgop3v2dNvQtESjJII8rW0hhLpCR5HDyVhHi3rqCjLOEH90f89OWMw2WHcYLf/WCb2lgOpyVZEvG97QHddxuzewnvF/6vCUEQ5lSO9ZTRC0IV038u6i4wXC6HmzjqTjB6C7dVLcNgbNUGsY2MoC4hjSFPEvAG6y1O3f5JmTeG43nLINaM8oi2dbycNWyPXpe4Fx0QhfDMq+AOM85jWhtOKreh6xxRIdYVUxJJrIBJHuMdZKm+xJOXXO6lf7BVYIzFIun6JKblHW3cnBAXqJzB2YLOeYrs9o/ysmqQGn7yvV2UlFgX2hTGBJuJWFk+3oxQWuOtYbrqGOXwkw921v3orUG0PpV4AotmcIFXbp3vvXgCk2p7mNC2DpVKhqlGISg7x9ZA8WCjIIuja08qjfEcLUsWjWNvkhFpxbJqmK5aZjdscK0xnK5aNgYpD7Ysj7YL/p+nx5yUDTvDjHuTnLZ1fHlaEanAtlJSksWS05VHWEMUBXuGtnP9zMVztKyJpGJvXJBGihfTmnvjBOPCUPj89S+qjtOy4dNXC5Ztx0c7I6QQWO85W7VsZiFAfpBEjNJ4PRdx3lO2tidKXHbgPLf6/q4w7j14nPPr5yOlQAr/Tl1BWxOYW7++v0GkJf/4syOmVcfDjZztUYp1sKo6hvkvbzl+v/B/TRRJ4GAvqg5HEOEIKdi8EDgSWj7iEpvGOrFuBd2FLNZ8eRoCoFtjyFXEs8qgY+hcgww5HXy8d3sfUjiPtZbaCro6MBestQj3esO4yPwpK7NeiOrWAAJxR+qQ6HvZ1jmCkYFnWbVY74iVpu4sCcEzBy4v+hkhxFpEktmyfWtjKgWUteXeKCGNNS/PyjvbaF+dBeonSmKtJw7N+KCS3cz4469aikSQJxGLskOo0N/fGyVEOqczFi9gfxJ4/INEcTgPQ8HzsPUsVuRxULM2jWFZGTrvGEQRsQqsFJrXMxMtX88DzmGdZ5QputbQtR0rJ/CNobOORFjaG0R7dRfaIi9nFYu6JVWKzgk6A89PS55PS7I4YquImFXx+j23vZ+SEgJrHDujlOdnFW3XM8Aag1Wwv5GGFCrnibV647mnsSJpFEkkWU075lVHJIIZXhpr8lSyM0z46mQZyAUikBesczzaGlwJAno3Dpx34Tw5LoleJ9S1xq5dQN/Vc7rKgNobZRwvWha1YXsEbRssGz4efgMjoG+I9wv/10QWh8Wsagyt90g8iVZkcbZmpWilKBsTBsCEajdWkvwtJd+RCo6atbUIIRinEVFcMW9DxSyB0QC28tv7nVms0YLg2tj7zWym0SWp/0UGku1nEgCt8RhnmVe395PGaYTtN7mX0xU/P1hRdR1nqxakRIubVbEV8MXBgt3NDCc8aRw2z1EC9S0PuyL0+Ed5SqL7x55d5/j/Gos6WBIsFjXOh6pumMaM8Pz2422qzvOLV3NezVq0gB/eH/Kb9ydUxjGtgp3yw0m6rkC1knx+vOCr4xWd80RS8Gi74Ad7I6o2+NfEkeTeOGVaGmaVYW+kuL+ZrZWqWaw5XQXP99fqV8GDjYJRlnKwaDmZt72rKiSFQt/AyCoby6ozlHWYJb2cVTw7XfFytmARrHfIY7i/lfU5s+eGYJ4kkhwvapaV7U3U4IvjBYueiSS858VpySDVfG9nSBLptbL23EdHijDYrlpL3Vm+OlmCCMExv/fRDlIqikSzbDua7nWFnWjJ4Mp9cc6A+65CWM5xUzupvsDMuvqcvgmsF5cYUKMs5icfbvD0ZMXZqqWIFT9+tEHxDYNevgneL/xfE+dWx5MiRWvRO3l7jH8dY6hl6I9eXPHM17RaFQLyKCKNFasu2BFs54SbRQm6znF4x5BWCBBKspMneCEQ3uPE2v11/VzPK7fXCVzh+2erloPZ7Qt/3TmsdxwvGmKtUQqGacRJZcikII70JQrnVXuE7c2cxaphnrbr+YK5Y7hbAFprjlcr7rcZ40zw4fbNKU4A01UXUpSKFK0ExnqWZUPdxjzezrg/zsiUQghBEouQe4DkwUbOMI3Wsvp51bI1SPnsYM6z04pBGtoFdWd4dlqhpeDX7m8EJpcK1f/2UKEEod1iHFJcWUB8MCwTPqz+eayw1hEBu8OeIukcHsOyuf7izJsO03mKJKarWu5Ncg5/+iUHcxgnsDmIcc7y9LRikBxSd4+JlWSQas5WNavKolSg59bGslkkbI7SEL+oBPcmGVJKprUhi9VaFV61Zh3gM68CSybWkt94tIXHs6oMXxwu2CoiDmYVkdRsjF9nPyzqjlezcu1DD+Hz6P13F8JyEde1k4xtrz2JfVOr5EQLnGdtNyGFoDWKHz9OuN87noaT1y+vyf9+4f+aWDWGYRZhbahYgjOho2w67o0uuvr5sMD684X2672psZR8drZEeMF01eA9LEpQylMLT55BeQdjRstAiVtWBi88wgsG2WXBzMXKLY0Vs7LjvMe/aMydT/tgUbM7Soi1oukMRRrRGEfe3yVXR7tX/1zbGbySKAT1+eu5pbskCPouLSyrVjFdGbyr6Pzt1yLVinndspyXxELSehdaEWmQ6cda8mRnSJFE1MZwMK1C8PisWlensZJra95PDxdMsogoUljnyfsF6enRil+7P8G6cA1fTetQrad63Uo4j9U7b7M56dfaDdUriZ0IrSWER0lwOGIZ9ZvDm5CAEyHmsWwcceSZ9Yq2RQPLpiVVEAs4mlVh5tC3MxaNIdKSjWHMtO/HW+85XlYMkzDreTEt2cwTjPO4/g26aud9sAgD4LbzaBWM6mKtmNUtxjkO5y2TPEbIsLFGWrKRRxwtWj7a9RdOIaEAeJftlq+Dq6eZb+sTdN5SgqBFkDIY4d0fhLbhL8uK+SLe0zm/JjyCRCnSOLgtmr6/k0aatBfG2AsCLA/gzz/Ub/cYZWtYtIbNLCFPI9rWUHahCo8TQEJdQ93cPnhtbIhT9CJUGV6EFs5F9efFIJagEA0BFd4HP/27hqZ4mJcGIcLrHicxrbNkiUQKSXSHF45GcG+YkiR6fZSW6s0N4xwZvZe6jmiN5eV0FQLF72AfJZmiiGKUd9TWo7yjiGJiHZSlH2yPQxhM06G85OFmjpDB4E73rJtlY4KFAQRHUDzee7QSeO+xeDrhyWLdkwAku6OYPA50z/Nw8/MKs+5cb8r2WgFetYZF1RGrlK1BghaStmuRXrIzySiS6y2Dk0iTKgXSM8kjQNC2vZMp4XPjgFbAqrKXwnekEOxNUiIZchG0DicBhGCYRcRaUbYhfnJSRNeaqkFQ7yoh2SgiOhs854UIosFYaxIdxEy+N6fzPgyyYy3eCAISQl7bbvlleJndFk70TXDeUpLCr1tK39sbksfqnfz9b4L3Ff/XxCBR62i9czZA5xyT7HXvvLOWSKm17QIEHvLV4e5NPcyzVcMwjemMYygFSSxpcFQORMk6ku+mG/Acs9KghO95yo5YSZTwzK7kGt4UxDIuQgV41/WojWVRhmQh0TOcfvbyDGMgu2WukQP7m0PqLkT4ub7Vk8Wv1cJXUQKZg5NlDTKoLzsT0qxuQy4kywQe5qN1xVnZDuVD+lIkBUUi0VYEVlXjMNbSuiDcQoSFLY/DddocxLw4rQMbqveWt85xb5zQdIZ51WH71LPNImF3lL1xY3fWUrWWsq3Xyuo8jjic12wPNLMqMGekTsA5yrph/8n29e9DLHlx0rJYdVR9wD3hrSDLwkKrEsFs7iC7/J7vj1NentUsmo6zZc1ctoyzmFyr4ChqLbESqH5zP3+fytYE59ZexRxLmNctxoTkMq3CiW6vGHJ/EuykPz1YsqwNxlq0UgxSzSd7gzcEU69FkHZ9f0RavbUI8tvipnvi2/y9YRqRfUfziq+L9xX/18QoCxUcHjrn8KJXPWavF3mtzj05/KV/z78Pt/v9BLm6puipkK1xazZMTLiZSwKV8jZY65g1BmMcsVIYE762b3n0GCfR+rnfBKXC8LnqHFJKPj9a8HJa0Vko0vgNh4GLh9mNHJw3CO8ZDSLy3q54lN9evacSjpYNZeeYFMEn/y7zriINRlydNRjn6KwhjxSDPGacaI4WJSdlEyInreflvAQPaR+Scn7Nov49fLJZUBtLZQwIqIyhNpYHk5SzVcuqCQSAVRM4/NcZ4xnrOVxUGBuqQmPhcFH1KVMJwgVRlrX9CcNpPhY6sb0AACAASURBVNi7nvnROc9xGXj7nbVUxjHMIRXQNGGDbDpHksHDzcsK0TQKTpFN59gaZVSt5eWsIk0kB7OSVWfZGaY0nedwXhFLSdkaXk4rnA/+/43x1MayNUgo25Zl3dF1HiUEWni2hylaCE6WNZ0NHlCdNZwsa/Q1zLHXIsjQHjGObyCC/POBb2va+F3gfcX/NREpGapMazHWk0WCvVFKccGrJ4vkuvffnZtvxZerlesM1M57mOduidaHxKbpBYHuxUHp6R2Ed+dhkmqsh9pYkkiSCckda/kaSgn2hrenHVXGsDvIuN8HhPz0+RlJDB9uj2h8oLvmJ3NKwlDWEDavjNDSKaKI/d2U/VGG6q9P3VgyAuvnOpw5eJKHdtu8bPl4b8iyvb3irzvHOEl4WpUsl2EouzNISJTAAI83hzw9XvByWgZmzSRnb5QyKmLySK853udTijTW/PajDZ6elCybjnEa82QrZ9V58lRc8lqvO8vRvOLJ9uUFt+oMoyQGKXoPn6D0fdqtkB72t1JOlwbrHONhyu44Q97w3h3Oa+4NU9rCsd0mQRw2zkhVhROKxlo20pj7E80HV57HtGy5PwlitNo4doYprXF8cbTi/jijyGM8IUZxlGla5zhbNVjn+4Xc0RlPJBVFovhgd8is7NBCcH8j5fHWMPxs2fJgnNNYH+ZBRUaiBCfXaEWMdYzzeH0PaSnI8rcXQf55wnX3etUG2+vQAgvtsO9Ss3AV7xf+r4myNbw4q1FKksXgHBzMah5syjXVLos1pu7WuZ3XJSYZB0J4ysqsGQRprPA+HO9/cbAIc4NYcbGLMYpg3hM77jLZHKURp6s2iI+GmrIOFNPRWw+RBOaOftLPns/Z+CRha5D2+bwRRZIiEWRSYIwnVmED+MG9nI0i4WhR0xjPOFX85R/eozYhR/W8mnZApKG65vVJ+g+tU1gXRGpSC+7nt0coWjxfnqwY5RGPNjPOVi2fnyx5sp1RtgbjPZ/sT4hjSds6Dpc1WmsSpRgX50Egfl1xOg95GvFbjzfWHPDOOl5OVzzavMxLTyPFrH5zY5JCEkfnQ129fow0DsEvRRJzbzTAeMuqDEybm9BZT5FqfGsYpBrr4Hceb/MHnx3z8f2CcZpSdi3z0vCXPty69LuLOug3dkYZ3nsWtQHvaa3h4dYARPgsCRGyg4WAWdWxqINiOYs187LmeNVRN5bffryJdeCdQ8pA6WyMp+4cUaTIEkmkEzrjA4vompOrceEkclU5/ssOLHkXuGraWLWGo0Ud5h9JGPq/nFbvVJl8F94v/F8TR/MK5x1tY5lWLWXnEN5Td4YfPQgZuFHPaPj8YMayD+k4T2Y6x0Ujtqj3CpmVHcNUIZBMipgXZyXLM3vJNGx+4QvvuGS2dbVnuDGImZcdf3a4ZNm0DJKY7+8O2Bi8be/SvxHacRV745S6MevHjrSkrBsWpaPthU2NDcZnnx+UfCZKhIdBAhLNHz8749FGzv44Ww/Hi1jzbHb9ruYIubony4rdScwwyTib1zxtbw9N71rH/ijhaNVyNG8oEsX+KGHRWJJYUzUdn748Y9G4ECpSJCRaUhvL8aLu/dkjsv45huLfc7psqI0l1WEoHsJo7BtqUH2hVD+f7XTOUdYdVReq2nOP/iKWbOUpT0/mvJpVSAG7RUKs/Y1akEkecbpoeDlvOF3VdAY62/HJbkFVW54uluwMY/6lH+3zw/3L1FfZD/2LVLBsbLCJbi1ZHAqPzoRWxTiLibQk0YJXs2DBfC74E1KQSMlh6/jpszPmjcN4x+4gZpRGjPOINJLMVx1La2iMJdGKVAlGxZuFyE3itm9KqbwJV+cU30XlffW1nAcj1Z1d233kseZs1fzSFv5fvYbZ/8+Y9W6Vnx4sOFt1RFLgEfzJ8xltfwydVS1fHq/IoohHmwVZFPHl8YrZGyY0V6vp8PWiNqwaw84w45O90aW++KV4QcGtPUMt4MW84t4k5Z/6aJt7k5QX84q3NzjsHRhvQRbrdX+9s479YcrZqqO0DUUa4bBYQotHCLi3keI8HJRBBfvR9jC0QpbV+mp0GO7yaVu2cDBvibRiWCT8cO92Z8Mogs6Hx/zNRxP2JzmdD9VXbS1/+mpKaRw7owwpJD8/XHIwX1Ekmu1h8NdZNWZd8UdScrpqiKRkd5Suv97IIs4W4cbW/UngbNGsh5cX+73DRHM4r2k7x9YwQUnBwbxGS48nsIU+2B7w4eaQxnvOKsN2fv2mvVXEfH5SYjqHMR5jLWXrubeZ8zsf7PDv/wvf49/+Zz7i/iRbz1LOsT1I6Zyjai3ehYSozjk+2CzwPrCUhklEEim892wUCVmkEeJ1ZKB3jtZaOms5XrYoIBGC02XL50cLkkixWcQcrlq892wN+2CXVbB3vu5zdW52B1x7av62uDqncF7wclq9s7CXc1x9LWdlCHA6Py05H743q/6cBbG8xwV4y6evFpyuWj47WvKHX5zy7GS1Vj8CvJyWeMJx+NnJilkVko1eTl+rS8+N2C5SxsZ5jBCSRd2ihFyraC/WsheX4bLvHtwUsDKrDfujjMZYvjhe0hjL/ihjdoeP/4UXe20Q9kW0nUf3pl+H84rGeXYGCc4Fq4BVY1AEBo8DXpzWWBfCXL46XfJ8WpFFmkRqln0Qy7Oju5/ZMAblII4kDyYZrb99g1JCESlFWTtenVWUtetbS4KjacPeJGenCNGDaazY3UgQTkL//mgJ4ws95s45NouEzlkOZzWdC60YpSTbozS08VqDEJ7tUbqmm17s99ad48FmQR4rzsqOJBI82MiZ147tYczD8YBF1XK0aoi1ZDtPkDeUvLVx/OjBiNZavBSMUs2j7QGTNGariHk5rYm1ZG/4epZyjo0i5oOtAi0Fy97v/tFmzr2NnO1BwrJuOVw2rJqW7WGoiMd5xCCJqNugeXDeh/ZXErE9SlGRQCvJJE/QKlhiayX5wb0BSSSZLhuSKHx93cD2XVMqr8N3HfZyjquvpekseazWp7dYB7LI2wYkvQu8b/V8TTgPn76aheCNOEYIOFrWjIuEs95A62zVhcVCSdJEBYvb2l7qT4b3WryhWBTi/2PvTX4k29brvt/ep2+iyz6rr7rte/c11ONrKFkkbdEeULZhSPbAIwMeSJDBgfQXeChAHtqCTRDgxBOOCAsGJBGQO9owSUPk63jJ93ibd5vqs43u9Gef7cGOiIzMjIjMqqyqe3lVCyhUVWRknDb22Xt961tLI4WEueXhsnnAfN/uopbycVnTCNhthziupCobcqUYX/IGqxtjsLUKj4cpNzbXJy6VDeO0RAnB3c0OrcCjqmv+8OdHOBK22jau63I0MppUrQXrkUta1gSVnGXuLkvSmsIGPNdF65rQMjO13fZqjj/wLQ4OC2LfZt0PGOUV47zi3kbAQWLki55tY9umLjHIS3SjCVyH3tyMdHoNmwaEEJN8XDOzr5WZ1e10A/LSPVe7Mef0hO+tJu377cAUMbtz27EsgR9YvNfuIQUkhXnKl0uKm1nVsNuNOE6rWSNQPy05TiqurUekRcVmyz9Vp5idG9embjT3Apc7m/Gsic+2TPDJRiugEzrGdK2ZGhA6PB3kdEOPna7FOK/4+GBMaEs2Wr6Rt9YNviPRwiSsSSFZjwO22uEpy4gl2TIvXFJ5Fi877GUe88eyEfuMi2qWN1DWDUJoAufVNXC9HvifEcO8wpImbvDpIEerhjB0ORgUVNsT73aleNBPeHhkUqhiz+b6ms/NSXs2rO4OjDwTXai0vrSKYRH/KbUxM/t0lJCVNYFrs9XyF2acLkJW1hcuezueha7NTObJIGUvLSnLmoNBSqVGSEuSA3kDHNeUukZhlpq5q/jpgwHrkY3Smrd3VtsuTFEDqi7pdQMC3yJ0LWq1uggd2BY3ugGfHSR8fpjS8Wxub0TEgYuUkr1BbozOCoVn2TgIgsA+dU7nz7GURsY7beKzpcCSphAvJ41PYAb3JDeaflua2o5qxMzSYRq5OB2Ly7pho+UxyCqyTHE4qrAsWAtdepMHxMLjcyR5qUyWbdnguRIaiDzB8SR8fZyXJmPhTALXvP3CtIkPTJf6NEt5XFQze/Fs4kE1Te1KyxrfkdzuBuwnJqcZYWIrx0WNYwk820RQzt/XU68e4wpbvjRPnmXwbEFS1OfqMZ4tXqpPUCc0KV9Phxlp2eDagm7gwuQ8vIrjf031PCMGE16/1KZNf63jo7Xifn88GxSSvOKHnxyRVzWbbY+8qvnhJ0ck+cncfdVSthd5NNoUVjtLON15LOM/pRR8sNdHi4adno8WDR/s9WcugRdhb5jx04f9le95/9GQTw/H7I8MheNYkqSqGWbGw0fPWSkoDaFvCr0FELugtOKj/QF7o/yUxfEqhJPf7/gWvcjDsy022j7rS95/3QHPFYxLxe3NmL/11ia3N2PGpcK24N3dNkmtsNBst0NsCUlZc3vNWCLD+XPcmvQoeLZFO3TxbAspYKPlz/jcSjUzLXo7cNAI6sYIAVSj6UYuRWWycH33xNLh1lrIuKyRjuTGms9m7JEWJa4jcZaYtO12Q/Kqpu1aFKpmmFTUWuMIidTw7m6HwHVO1SnmMR8uvh77rMc+tjQZwVKY4mOjBfuj3DRgTWyZr/Ui7mzEXOtF3N1uEXs2ealwhAQEWVUhhHnv2fvas62ZF/4XoXE/CZM5qcf0kwLPsV6q7t5zLA6TknbgcXvDJJsdJqXJ035Fx3+lgV8I8Y+FEO8LIf5CCPFPFvz83xdCDIQQP578+W+vsr0vAxqtqdGs+S402qQwaeh6zqyd/OFxznY7QDeSx8cZupFstwMeHp82VZv/srUDd/aUP9vivQqr+M9xXrPT9Rnnig8ejxjnavL/yy1l7x9mhBdYIfiO4INHQ3QzsaPWDXVRUxQwyCCdS5eogOkpCIC0NKlEoWs80S9bc66ANd+i7Xm8s9NCo3ncTwmWuNq2OxILSTdyOEpLfvZowFFa0o0cagWtwOW7t7oIS/DgeAxo/vZb67x9rWtiFxec45Zvs9k6zeVvtnx6oUujNR89HfD/fbzHZ4cJUmjjuCoFvmO8kqaWDtsdj9bEx2dq6eDYFm9sRHQci/3jkoOkIAw8Yx/sLP7KdgKXrbbHUVpwMM55OsyQ0tBO97bj2XY7S7TwaVnz8DjhF/tjHh4npGXNcFJrmufALSEZ5uVMqTKP2HfZ7QTEgc3BOGeY5lxvB7yz20Fw/r6WwthLTHMrYHm96mVgumqxLXP8tmX+X1TqnO7+Re5TUSlu9EJ816KfloSezc216XZfzfE/N9UjhPgG8A+A72MUdn8ghPiXWusPz7z1/9Fa/ydX2McvFbqxCZFo0HRCDy0aylIRRw5icqNklXHw7LUkvuORVw1l1ZBVl7+Ylw2hWKSImCItK6pasNsJCCdhz1mlSC+TbYjx5F/GKU8xyjWWrMhqhUAgG+hXEAYQ+C6Smr20wcPYLYe+xSgz6UuRC7c2IoqyMZa+VXNhUE3HAUdAGMYkeYNnW+x2I1zbwrFMZ7AE4tCE19QYfxghTFjIRuhxaz0izYwnTh44DLKK6+ttbm12ZjP72DeeNMuyV6e8+HYnPEXVlaqZKbq22yZ28/MjkxfQDqZNXXLuc89//pNBznrLZ5DVbHVDfM8iLxSH4wLH6izcn0FWsjcsuLXe4u3dLnmp2Btl3No4b4dwVgs/Vbe4tjWhGY2u3GTc2rNaxfRvIcRCqlKgsSzJOzsd3BsnvQ2d0J1Nis5aF2Qv2AL5WXA2TGaKvWFO5yXuU1Fr2qFLG+MxNV2BTWnVV3H8V+H4vwb8idY6BRBC/CHw94D/7kXs2JcJ81pfpTTd0DQhPToaU+qGtdCm7caz2XHg2ORVSZrV9EemgGNZ4pmLN1Oe8XkhkOim4cFRxrhsiF3JWuQhziz0lkUvagTlRdvXFQKbwLFoGk3S1ESWURxVeUnbs7Ax1ExVw7hUNBVkGmjgoycDNloe661wZmu9CoPJM6t7PCDe6VAoM+A+6OeM0pOg9GLOnr9WxtcosCQHaUneT/FdmzXfYlwoXNsiL2tGRU1Zm9leUdZsdZY/hUyzmnVOA/754RjLktSNecBKIbGl4Okgpx24l9Kie7YgLxSRa/N4kJPVNZ6UbHf8pRTA435KUSke9jNGWYktJa4l+PDJkG/dWputVBZtf5G6BaCfFsS+pJlIPKUUMx3/ouO3pDDB4qOcsjZ9ABuRS1k3+L6kUs25/IGirNHamN29ak+eZb0Cni0Wvv6iegjmg+Tl5KHZNHp2zC+jX+EsrvLx7wO/JoRYF0KEwN8Fbi54398UQvxECPGvhRDvLfswIcQ/FEL8qRDiT/f3L6Hne0U4q/UNHJu8MJ13oedwrRviSJv9cTG7WLc3QwZZgbBgZ81HWDDICm5vrlaezGNe7/288F2Lzw5ThBTcWg8RUvDZYYrvLvYMEgJGuWKUG7fNdiD54OnqQPejRLHVDhECWoGDLWwCz8a3YbcTGm+jyXvbPtzoxdTahJqvdQQKwad7I+pGX1igncIC+iUcpwWPj8cUtaYXnO5qnR+y1aSJ4CCtiRzJrY2IyJEcpDUaoyp5NDAzXKO51tw/PukrWAQTpWkiFrfaPrHvkleK46SiaRo0gshzJr5AmlFRXVqL3otMcXdvlNMJHK53I3zXpqqNZ88iPOlnfHqYUFQK17aplLFIeHycMkiNV9Cy7RuHzNNDgWtLAsdGaxMa34ncUzr+Rcd/NC4YlcbQbaPl4zsWh2nJMC1Md29WkpXGDdSxpfGlV5qHx+kX4smzrFegF3kvtYdgPkg+cCzTyFXVk+2++H6FRXjus6u1/hnwz4B/A/wB8BPMynoePwRua62/DfwPwL9Y8Xm/o7X+rtb6u5ubm8+7Wy8cZ2dDQgpSZbp198c5Hz8dcjQu6Pg2g4nHwFrk8dZmi0f9hD/68IBH/YS3NlsrW+7P4qy/x/MgL02hsG7g84OEuoFbayH5nK+NCdJoeDrI+PDJkMNxbvxlypq6EbxzgdJmJ3aIPZvIs+knBVlVEgU2vdgnyQqyukFKE14uLPjswDxIIqAsNTaaN3c65KXiOL2cfloDXc/UBx4e50hh6LX5rub53odBBmjNTstDAQfDHAXstDwEgkFWEXk2tWo4GhcUtaIdnPQVLMIi/xVLSmOQVjQTSk1hCUleVNQTKuQyWvTQtXFtKBvFx/sjPnjUpygqtG54MsgYZudN344S48FcqIa0qpGWQGqoGmN4NsrKpdufzkDnUdYNndBho+WRFCWP+ukpHf+i40+rBt1oWoFDWlTG+6eoKZWpcZjV1enfkcLsnz3xtlpVh3jRWCawCF37hfcQVMqE+BwlJbUyyi0ptMmucMykcpTXjPMS37FeuqrnSo8VrfXvAr8LIIT4p8CDMz8fzv37Xwkh/kchxIbW+uAq232VmC5jR3lF02geHSeMsgqlTVelkDBKS56Mco4mA1eSVxykNe9d69EOXYZpyUFan1L1XISz/h7PhaZBWoI7ayGBZ5MVtQlvaU6+VKO8nnUROrbxnT8YF/RCl7rRK2sIAP1CU1UN+6Octcjnves9fvTZEappeGurTVk3ZHlBreHt3S5lDQ+PR5RKc60b8+ZuG1tIatUwvGTR2QNqLJTSlJWaec3Mz9AjCcnkMBtMpGEjNFuxP+PM06qiMxnghRCzhppKKTzHmmnnF2HR9bGkIPZsng4LAscm9C3SXFFruNcLl9YLzqJSDUXZoGrNtU6AbUsOxwVPhhktvzVTfswPRo5tMcxrGtUQeg55qSgaTcuRdENDtyzb/tmgkKm6aKNlZqC73ehUHaNSzcLjty1BWplVcug5hJNjmf5ZlDClNHi2POVuC6/Ok2dZr8CL7CGYrqrn08RU07A1KWhNfzZv6udY8qUO/ldV9WxN/r4F/H3g9878fEdM0rqFEN+fbO/wKtt81bCEZm9oJGxJWbM/NN4sgWt4e4HxrW9UQ5KZgeJgXLLZ8ohcm3LC1W62PA7Gq5uh5rFINfGsCHyHtcAx/jmTlKW1wCGYK2aZLmExmYmZm88SgnFRnjJOW4atlsOwKAhtozjZjI3NRNv3yMqa9ZbPVsdlp+VhWRa5MlREx7dQkwjCtGrw3cvzugVgoZBCT6yfBY3WRJNfF5hB38HQQpFjBsadVoBtwTivsC3YaQV0Iw/ftWhUM1EWadq+i0TOfOcXYdH1UY3x0rm9HuHYglFW4diC2+vRKXrtImRlTa1N4d5xzLWLXIvYd6iahkXKj05gsx752NJilJlek43Iox04F3LGi9Q2u90AwfkUrOl2Fx2/kbQatZKeqLR8x+x3VtZEnk1Zq1MUStM0eGeUY6+C436VWLY6zMp65c9eJq5KJP2+EGIdU1P7La31sRDiHwForX8b+C+A/0YIUWNW3/+l1hfFh3y5YEkjX4tck39rW8bUqmo0x8McYZkCauBZtMOT01k1ik+PEioFjgXX1yKW50qdxyyI+woznxu9kD8bFiRlhRSCpKyJXIev905qDVJIFIpBplCqYVzW+LaFb1nc6IX8eDxYvREhcKXEdczy+EbX56+eDKi1oj8uKVVDUUIrsjkeZGQNHA8LpA2NkDw8zAh9yU6rzUZ8OSqswUhB12KXuxvBLAP2zjWfHz/M5zx/DN7YiegGLsOiohWGBK5FViqKumYz9rEsyZE2BcvpjFdpTWdF+PWyBry276K0pht5p16/6AE6j7oB1xEcJQqkaRZzLUk2yWUYZSW+a58K4rneDdkbHc8UZ2lZI4HtdvzcsX7LVjVlrWn554PiQ0dyDIyLiqyoGeXm4fzGdovjtGKzZaIbq9o0sQlMvcC2ToqpX0QM4cvGiRNvNStgz1+/Zef4ZeKqVM+vLnjtt+f+/c+Bf36VbXzRUBpu9CJGuelQXG95xK7D/jBH2AJV10gJm25Ae7JcbYRRq3iOYzJIa8VHTwb88r3nqF0sCKm4LAJvohlvoEJjY3J451OxXFswLiZSPCmJHIu81gSu8Zj55vXVD55hVtGNXJrGKIP20pJRVtJPSxO+LgRKax73E7qeh0Zi21CUYNEwLko0kji0Z8HTLWB0wbFZEjZbHrc2WlgSjrMCucSs3rahHTqsxUaNNcwqAkeyux7PrpklBcOsmrklbrY8whWz9EVh4y3fMTnHSlPVavZ64NrPpFIp65pGGwomKxUHaU5ZKG6ux+y0AzSCQVrS8k+uo+dYeLagkMYKQ6ERUuI61oX89DI5Z+RZWNJZrW6ZC4q3LQtXwINhAQikEPi20ar7tkVemclBPaGKpucGOHcev8h0qhcN48RbT2qFYuLEW87cXF+FC+lZvLZsuAAC40441fq6luDH3hH3q4qyaQzF4NgIqfEnN2tZKdJK8XRUIbV5ELR8SXlBOPo8TAFPP2tG++nPyM0XTgUOZdPgSjkLHZ/Cdyy0LmgwkYNCSkJXsz2JCszC1bNwx5bYGCviJ8OMz/ZSjvMKhMDzLMOtq4Yih9w2M1bXEfi2ZKMd8tZ2B1tqgok1LazMWscDNmLYWYsIbAuBptGCluswTAomkcT4rrGtrmt4OkzwHQvXtrgXtM9lJFSqoZ+kE/M6TejaqMYicC9fjJ8icG2ySUgJmO3IpiEILv9ZeaWIHJuf7w8ptUY0ICxJVSu22tNgnNNnqZ+VbMQBt9Zbs+ObhvlcNIguk3PmlZG6LrIVycoa37GJvJP96CcFhdJ0A49cKRw5KdoqTdmYiUWtFtcaXnaA+jK8TGuG0zh7V5v/v+hg98viq/NYfUk4y0uOshqlIQodYsem4zk4k+7OaUfs0bigURJLKxMcrhWNkhyNL6daqVRDP61nsrfnxdG4Iq0VWmt820jx0lpxND4pMgshjf0ApqAmMXYEQkiKykj2VuG962tsdPyJ5YDmMMnJyobYNZ3IdaNJ6gbLgapSNEpjC2PWVlSGS7671UGLk+McrtieKwx1thF5+L7LKFfY0uih8xJagSHU1ES734qgrgWuvVipAWbgS0rTNWlbknFR008XxyVOcWGcnjD1n+dZsQ0zY+DViR1C2yJTCqHBti0sS5q6UmgCyU/2R7Meewhh0quEgPXYM5OHC7BMztlosVTdUjdwVnFWKs2oULQCs9JrGk2pGoKJSd2rCku/LF5VJKJx4nUQGCXa/PV7FS6ki/B6xn8B2oF7ipcc5iVKae722nRbZpZS1g3DpOTJ0Azs+4Oc0JPc2Vqbfc7eIGN/kC/cxllM4xevimFa4klBt3PC6fdHhQkPn6BWptFm3hPIOE0qRnmFZ6++RXbaPo02M+fNtkvk2LQDG9+28JzJAFBphAW3tjs4liCvFGlWToq7gkFSsrt2QcvuBJtd09G80fKJHYtRUXF9zahObAmihO01Y6Xg2RbHgxRhL186Z2XNMK+JPGc2+KlGU9dqZTDGsujM46Qg9t1TM2HV6Fks52XQT0uUhuu9GGsdklKRZhVSgj9RwEydXKcIHEmtNLF3MlPMS3XOkG0R5huKpjBdu2KpumVR81NR1QS2RExM6rSGZvLdcSc8/pepaLsq/vRFrkBOnHhPrs389XvZLqQL9+mVbu2vIaYeKw+GGeNC0c+MJvvHn+zzyXFOWRnrga/d6PKNmyaBqxO7/Nn7D/n9H1bUmJP87qbD3/nG9VOffTb9J/bNrOBgXKJ1Q1IWz1QUPItOYHP/OOd4L0FIjW4EviPZaJ3cZI5lTYpxkyYuNLYtiT0HKRTH2epVynFW8jdudnAtSey5tAIbcdjwYJiiapCOpNYgGngyTGgUxuq5gSiS/Ouf3men7XF3/caljmn/uCaOap70c75/bx1v0j1a1g3XejE/+mzM/lGOi2kSCwV8+07PaNnPSOpGeUWtTNdkMMfnW1LQyBOb6EVYVvgsak2olxfy4GJ6wbEsDpMR7z84ZlQobEuzFnvcWYupGxbSAbvdkPcfZ+bfpwAAIABJREFUHFMPtFEfNBrbEbyz27nQ+XKZnHO3u/xhvIiiMGZugg+ejlBK0TTgOZLItdnt+ORV/Uy9LC8bq4rXLxJfFJ2zCl+i5++XE2fTtELb5v37R/z5UzN7D31IC/jhp30+eWpKkn/1eMj7+xUKaNtmAHp/v+KvHp+QGGc7gota8/HTEWmpjB66bNCahdrny8J4/RtvBENVNYA+lQFgTWV5c9SEmclBUdd8erC6zHpvI6IT+ji2xHck222fTmScK6czwtgzjTqOEKCF6UAtwcLkyyaV5s8fDBcklJ1HBjgSbGH6ByplGr805oE7RTk5WgvYaAXUqlnacCXl6QammcxwxaprmZxTClO4m6cPBmk5s8K4DL1QqJqP90YkZU3o2UgteHycGfqprhfSAY4liT2bRkLdNDST1UFRqQupjGVyzlVeUYsoCs8WDIqGXmATOhZZVXM0LmmFNoH35VPpLLuGL3pV8kXROavwesZ/AR73U/YGKT97OmaYVvSTgs8PSkrgaG6cihX88L5pUfjxx0eAGXKHc3Lc6etwvqDWNBrfMW3tgWNC2oWWF3Lsq+DbAt1odNOAkGjdoBuJf2ZAcyxr1lGpmpM4vUFesddfnWW72Q5wJxJX1ZjVwrhUWMKiF9s4jiRJc6Qt8FybQilCD0oXfNtlLQyQAu4PUu4fjuncWFu5PQ+IPZfdbkhS1oyTCs+16acV9/cTXAG+BMczAe9ouD9Ilobb25ZF24cn/ZxECDTGKz72bHorZqfLZnG+YzHOFUVdIczmseZ4/svQCwfjAs+2EVIgENiOxFKKrKjphO7C4uhxUrAWB+x0TzIfjsYFw6yiMynQr6IyzpqnTQelVauTsxTF50cJgWUhXBspBa3Ao2kaAtumG7rPTHm9bLzKmfjZczXt5H3VGQRTvJ7xX4APHg/4o18copqG3Z7PqMyZd6+ZnsAEeHRgsqOeLmnQnX/9bEGtaTS+a1EqbbpIXYuyUuRXWHbmdYPj2GhtCoJaSxzHJp+b3a4qPH38eMBfPl1VajW+KkmhaPkORd1wMMxJi5rAs7Fs08hT1RrfMQVjrRtDjzkSx7aotQn5UI2mn13ctKKApCqRQlKohoO0ohO5JtUoL3A80JMHkRTGh/9gkFDWNYPURGA6ky7fQVphS0N1hJ5F1ShU0xB5xud/1Rdx2SxOCFNoZvLQQZtchOkpX1QUPVv0LMqG7W6AxKxIhBZsd0PKRrOs7rioQGuktKfft6jAumwVkpb1MxU/s1LhOBKBQDWmru1PvGiWbfuLxBc1E39VReVVeD3jvwAfPh6bBiVLkpaKWp/cFJE0oqy6MTGIgzOZgfPs/Nl5+9mCmlGlGIMrSwqSQhF5Du0rePUcjktix2J9pzVLGCrymsO5DuJVhaefPRriXaBK0Q0cJNOitaaoNDttH8918B0TO/n4aEStCq511hCAUjW60YzzmqyqqWuFa7k4l9C6u5bRqfuexcE4peW28WxrYhcMKGMG5zkeliPIUhNmbgafs59vRsVaNVzrRdw8o6W+aHa6qChXK9NuH831SkyL5bDcEXJ+zA4ci1FWcnMtxJ6szoZZaWiyJQ6miwq0Sp/PTF5EZVxUqL5s8VMK811oBSaIXSMoSoUtX53r5LPiiyisvqqi8iq8HvgvQCU0g7zi0/0RpYbHRycz4OTMA3qjd/pbtoqkMRa+CePczMwKpRjmJVutgKJS7CcFbc80HT0vXEvw46d9PtgbUFbgOvD2Vofv3znJqjq73M0rRVJUBI5NWioG5epZiAYi18TxSSEplaKflzx62KfWmsC3aYQkyyseDBKyXHM0aihr2OhUPDxOcKWgE9pzGvXlGCpIhpo//ugJd9fbXF+PeDJIedzPqIGDCqggoKDCUEN/43Y0kSbaphCsjAVuL/IQQs6KfJVqJuZ0ZoAuJzOzedvlizISZsXysp51tNqWmKltLkMvvLPb4udPRjw4zoz9AWY2/yv31rGXFPt7kccHjwcMUiM+sKUg9i12uuGFXbHLaLCi1it96c/SQN3Q5f5RyjCtGJUl/XGJ40i+eb1zigr7IimOebw6Df/pbY3yCscSjHMTbelYkm7kYi9JV3sZ+JI9f798EAoe9kcoISaSueUD4XrLDNKtJT+ff90sM21AUzYNaE3smk5by5J0PJtGc6Xl3+N+xk8/7yMak+kpGsFPP+/PFBwn+2GWu0lhjOQizyH0bCypORiutmV2LEErsCdqExNddzgqsCzT2JXk5kFiCUwcn9C4tpm5W1JiCxMs3gt9ggvSvqbwgKo2ctO9fsIn+wllZXj5Kebn97VsKKqapKiJfZfNlrERTooarRtsafx7ngxS+llFUSn6iSnqm0BuEzv4uJ9dmEE8K5ZrbdYTWs+K5WfP9zJ6IfQc1mMHR0qq2ngItXyHjdhfKs+sJq6cDYbKajBOnSYXeDWVoXWzkAazhF5a/FxEV2jMA/QoLSlrTS/2aPsux2k1afgytM8XSXFM8SrplrPbKquaj56OqJSRQTcaHh9nlPXLTx2b4vWM/wJYEmxh0QlMUs8vnk5LdsZaWFqQKeNHHQdmxhp6MJqoIOddIuebYLPSDELTwtsom87UjBon9u0r+5L/1dMBbd9io23i/Kra4WCY8VdPT/vvnCx3S3zHmy1BO4GHa9mcuN6ch+MI3ImGvqgVrmXjOzZhKHFdlzSv+KQsiXyHd3a6HI4LPMemUYp25PGd22ukmaLreyvlk1MEQCeEG2stPE/whx8c8P27G3Ril0ZpYgzl4AcQWFAqKMpqYqx3tmhnjtO2JA+PhxSV6Syua8VxVnKtE9JMBr4phTKv7V80YzTn08L1zhfLz5/vxdgbZOy0Ajq+Q4Np4msazdOk5OtLVhyP+yndwMfvnDw881JxMMp5d7d74Xk93yKu8RzjV7+sc/csXWFLQ4e+sRXjuxbT3GHXkqimWaisetUUxxSvkm45u62yMd3UpWoIJtuWkisJOZ4Vrwf+CxB4Nu/udvjR58ckRc240DiYoTCBGZ+z4ULHM4N4O3apdMlReTLor7nm9SnOaohVo2caajCDQyd0GV1C4rgMeaHZ6AR8vJeQVwrfsXhjKyIvzkfvHScFe6OCyLXoTiiNbjvgG9c1P3q8XNnT8hyktCYdr4pWbLGRR+yNEookJfJsulHIWujy4DDh8TBDNQrfsxmlFXmpubUZg15s23sWvg2VNilnrmUxLmp8T3I8KqgUtCMYJ3CcQuXARlviCAcQhJ5lwrUnVE93QvVkZc24qHg8KCnLCtu2yApF7NXEgaLFxK7DlrMM5EVWu6O8QjWmOJ6Xiqo2Tpqd0OFZrAkHWYVCMy4UhdJI3dAKHOq6XkpFZFVD58yA5bsWh+P8QmpFCFOTOEuDWdKsShf56IwW2TJLaZRqjmWsm+uGvFYM6oakVNxaE6caBeHVxSyexavS8C/altamq3pclJN7ZBrO8upWPq+pngtgCcHnxwlv77T51Xe2WYvs2fzXBaZzyIMSDscm769RZtDv2rDbknRtI/1s1Omi6vwy2ppoyeeLX1IIuuHzzz5cV/Dh4wHtwObeZkQ7sPnw8QDXPbkJ5/sJWp4JH386MJRGIOEgXd1tPMgMJZBXCs8W2FgIobizGfO9NzZ4c7tN01QcjDLWOybv1rUlSapoezaulDzpp+cKostQKvBss0Ia5DnrkQONYKcbEHuScQ6eB7sdi622yzBpaBoFGO+aeaonnVA9h6Ocw6TCAtbbIW3fQTUNj46SU9TOtJsVVgexyEnnajdyaQUOUohnKmpmZc3xuKAbelzvBWy2TRD3KqfWwJGnAnbAcMmN5kI6Q+tmKQ3mTLKC1yIjI50+NBbahguzH55l/ozLGrTAt20soTkY5efCbb6ogu+r0vAv2pZrCWqlafve5B5x0ZoX0q1/Wbwe+C+A71pG+aLNxdP65OJMm4SmOBwZWY9nTdQ+kzGjrs3/vTkKO3Bt8sp4wvSTkqI2XLhjmze9iAi2a3FAVTekWckgq0kzM8O4Fp90ZM73E/iuNfHjl/STgshz8C/oHG4HLuPJIHi9F2HbEktCXTeMs4qsqvB915i5aYlnS0BSNSVpVfNoMGJ/kJnw6UsssatJF/BxXmIj+cHdNcZFZbTvnoPQkBWghXG5tB2IYw/ftlhmlHWc19ha4E26d23bhJcM85qyMld42s061fYvk2XalnXl2D7PsdAI6klgTj2JcjzrWz+P3W5IXtWzwT8vFYOs4Ho3uKTX++JzswyLYgsdS7DZCsiq2kSRCkmjjUJsqx3QClwOZgZ2Lz7S8FmwLHbxZezL2W21A5e8qo3sl/P31qvAa6rnAviuRdd1+T9/9oikgPTMd2Y6x4qARpiBKwhi3uqN+eAYxiPz5X27Z16fR600o8z4slgTc62P94bkVUPsWVzvhWTl888CopbHve2Yf/vxMUWV4TnwvTd6RK2TG8wUL82A4liSyLfJS8WoMI1R37q5xv/y58sD01q+zXFqHlzjvCb2JeutkA+e9OmPC9ZCj57nYoWCH31+wMG4RClYiy2Ghcmo3W0HVNXJTHDNgaMlZYUS2E/g3jZ85+4ab+70+OxgyJ/+4ojjUUnoQF5Dkip8B+5tx9zqxniOvZSCcaTR/qtJjqzWZvC/0TMdyUlhvJPmu1ntCSdb1epUSHjgmOLo435CVjXG/rkbPpNapBP6iEbw6WHCo+OKyHW4sx7RXuGU2glcbm1EfHYwZn+cE3sWNzohke+YxLiJWseyBFmpTlE/QkikqPnF3sikZ7m2yWgWy/d5Udh6PLGlzivFp/sjYt+lGzpstPzZgJpXJl5wXin1Rah6ltlqv4x9Obut0LV4Y7vFOK8W3luvAq8H/gvw0eMR/9eHT1iLXO7thPzkF33KBTRgAtSVoUUaXbE/hLsdi8D3yPKC/aEiCk9Gs2luaic0xdR+UnD/MKUbe9xcixjnFT97NOSt7WUaoYvx+CDh072Ed3bbtEKHUVrx6V7CRngy4z+r/3YsiXYgcCW/2Bvx8cFqVc8or6mV4vFxhudYdH2HBypjM3J5d7dD13f5P35+n4dHOXc3Wviey9P+mMOR4p1dj3d3uwyykk+PMg7HBTudgNGKhEob2I7AtR2yVPOon3D/KOft3S73+ykfPOzTsQQ7azGRbzFKS0LXxrPFjIKZYtqv0PYdLJ1SadNwJLSgqmvW2gFvbMasx+dlprYl2R9ls9VSWTekaUkndBikFZHn0ovM6wejAmfOdvoitF3B/aLm9kZM4Jl6wyCvuLG2XO5aKRNi/uZ2Z1aI3R9mHI4KQs/Gmdg37A1L2oGNa8tZXWKYFnx+lBG4Nt3IJSsVnx4k3NtkafTmfNh6ZzLYH4wKOqHLjbUIjZnIzA/sSWFUR9PfeVUxg8vwKjX8i7Z1tibzKvGa6rkAP396jG8JAt/MtpwV3dzTBqSO56E0qMasB1SjUPqk+AvmS+BOGo8ADsY5kefMVCQI46GyP7qco+ciGIM1Y7T24Dg/9f8pepFHWlQcjgsGacnhuCAtKnqRR1E3yAuW/E3TIDCqBEsKKkxdQAnDx2dVw+GoMLNqIahqkypl23CcVSAwKw6lOZo0gq1KJraAVJnfeTQa8+A4w7MNt2YJU0TTCPppjVbg2jaxa+wXli3tY99lox3Q9c0AaVsa37NYj5fTT7Vq6ITuuZDwg1F+ztvetc3M+LJwXYf12Pgd5ZVCCliPXdxzqqQTLK45CLL6hPfPKjW7TifvkTyZPJjm99mxpLk+l9xeVTe4tmWuL6Z42TQmjxoMnTHKSjYi75LU02u8THylZvxn3S4v03BzEbIK7u302BvmjFaEgYdA4BuflF4ccHMj5S/2ahiZgu97Wza9OW5dnxlQ86rBs00k4DArGU5yU/uj5/9SZIXCc1wOhhlKlFhas9EOyOZCxB1L4jkW+6NsFhO52TIhLFLAjbVwxRZgtxfy8DglcCyeDlM+20uoa03ZKPaGA3q+TdMIunHIIC3p5xVlBYFrCsP9tGQr9ghdSd2Yc3IimD2PwIGqhvUopMFQB65l8YunKUdJBQ4cHVeU/Yq8LPn2zR7t0CKcqFkWLe1d2+LWesT945RRWmJ7DtfaHt3IXzoTrRuzOvDP8O5Z1dCLznvbT9VAl4HWELkWH++PySpFL3R4e7uNtaLBZ3H4uUXsiYmOX6O1mYHPK4wsKSiqht1OQF7VVLXpOViPPZKyXtrkdDZOMClKYt+dWTKErs1uL2BvlM/ojI2WT1krfvzZkKRURK457/GKiMvXeDn4ygz8y+LjrsqddUKLfpJxrRdjSajKgsO5blbJJAMWyAszyD8dD/lkr2bThXbsMRwXfLJX04lPun5jz2KUq5k5mkBzMMxnnbpZqShKRTd6fsOoUiuGac7uegvPsSgqxeFgTGsuG3g4kYte78VzunPz8CkqxfsP+yu34dkWoHkyzAhdB8+WFEpRlprdTkAv8PjJ5wc8PEp470aXjcjn04MhadWwFjq0PYf9cUF3p03HN4PoKkFdUkHXh1SVXG9FCCH56OmItZaHLQQH/Roh4cZmwE7H5xd7I7ba4axDctHSXuuGsm642Yuw1uPZOVjFPiyzXggcudTb/jKoVMPxOOPhcc5mHGDbkrys+fQw4a2ti91C5/dHYPTiUzdWW4pZr8j8PseeZbz85wbgfOISu0iy2vKdc3GCaWksHjpzVJpnW9zqhbNV06f7Q/7i4WBCg7mkueLP7x/z3vXOUkrpNV4OvjJUz6L4uGddYi/Cf/i1XQap4snx0PChZ3wa5v83LYb1+8Ym2J3cy65rBrN+/2Rf2oFL4BrVQ1WbODopwHUkxYQ6qJuGyH/+h1Yv8rEth6pSVEpTVQrbcuhFJ1xxUpg2/b1hymeHY/aGKaoxXbylahAslxD6mG5d37YQUw8jS5oOXUwsJQI6oYtqjMrGsoSJYwTWuj6OJej5Di3XYrN9cRhLBdBAnjfc2QxpuxLPEegGhpUJcZ/60wjdYFs2R6PsEnTC1VUtqmnY7YaUtZppsp9VsZGVNVUDjrSQUmBJsCxJU3PKXO8y++PYEmcSgAKmK7es1Tnl2O2N+JwiKK9qeoGzULJ6ci5PzlHgWDQNC6m0KZ6MjOvoVD3luRaebfNkdLXv6Gs8O6408Ash/rEQ4n0hxF8IIf7Jgp8LIcR/L4T4SAjxUyHEd66yvVVYFh93mW7QVfilW+v8x9++gWVZPOpn2I7hmedLri5wow2eawbUSti8d7OFkIJRUSCk4L2bLSpx8iVwLMla5NH2bULP+NT80p01PFvST0sC1+LrNzqX0rYvw/VuxC+/uUYQOCYdKXD45TfXuD5n3ZuWir1hjtaC0LXRWrA3zElLo0f/3r1NFs3FOgLWIkOXeI7NtTVjr2wJWI9D1mOfo3HB/jDn+nqLX3t7A9e22R+XbHYjfuOdXe6utdnoBHzrdo+dXjhbmXVtaC8Zd6/HEAeCH9zbZKMVEngOv3R7ndi3KErNeuyz1Q2RQuB5Dne2Ykq92hVylUPpMiyzXugE7jN728+jbkBKye66P+P4HSnY6vnn6MGL9mct8liLvNlrrmXUI+4kKnS6zxuxzxvbLaTUDLISKTVvbLcIPZdFklVD85w+Z44l2e0FSCmX2kMUVcNG2zNGfbU5mo22R1F9iSw7/x3Bc48qQohvAP8A+D5GZfcHQoh/qbX+cO5tvwm8NfnzA+B/mvz9wuHZgsNRznFazrpUe6FLJ7yat3ZW1dQYzxKlGoRlZrqWBeuu+aLagFaYZiLM34PxmMhxcS2NIwVJMmY9Ps2XT7s/i1pT1jWx57DTCfEdm6bREzXH6s7do6Rc2pH51m7M//3zBBcNjo2L+czv3T2RldZKUTcNWcXER4VJe72iF7o8HWZ4mAs8D6Gh5cmJOZvGkha73ZCbayGPj8eUSuFaFmKi6d/YaPMfvNclLSqOxyWfHyeMi4pBWtILHLa7J7diN4QHS9ygt1o+662A650AxxIEns3BoCDJNUIK0jRHAZbtcDDKqeuaa51oZWPORdF4y/AyVCG2NA0+Wgu2Ov5sX5Kipmmaldd7HpVqqLISIeSknrH6/dMHh2vrWeSimAT4LHMSLc94Pksh6IXO0oJ47FkUVUM8t4pN8prYu5xH02u8OFxlxv814E+01qnWugb+EPh7Z97znwH/szb4E6ArhNi9wjaXwpKCj/ZGFKVpby/Kho/2RudmLM+KP/vFAf/izz4jyyu2OyFSG+lmX0GZgSNgUMBhAt+9bVwvf/3tHR72NYNxQeQ7DMYFD/uaX397Z/a5ZxO4pJB8+HTEOK8IXYvHw4wP90YrM28tWNmRuRk4PO7nZHVN4Fhkdc3jfs7m3AAnJ/7xqtGTQd/YN0shudZ2+fHnfVoLvsd94K2tDhozSCSF0SSXtSKvGkaZuQ6eJbEs+OwwoarMZ//ZZ0fsDVPubLSolOLf/uKANM1n+393M2IZMXP/KGctsvmsnyIxTXE/fXhEWpVsRy5PhnA0NCuRPCv54OmIrdhb2ZjzIpt5zl7Xy5q7ze/LZssjKyuyUqEazTCtSIuK7Xaw9HrPG4EJAaNcMcprhOBCA7Jl+zydBCw6L7YlGaQl9YRSqht9obfU7Y2YtKxJJiKJJK9JSyNbfY1Xi6sM/O8DvyaEWBdChMDfBW6eec914P7c/x9MXjsHIcQ/FEL8qRDiT/f39595Z/ppyfVeONM9B5MGqH76/F43AP/7zx7T8iW9tqFH1tvRjPoQQJJDz4NfvhfMfD7aocuvf22dwIO9fkLgwa9/bZ32nP3C2ZqEFLAWe4yLiqRUWGg2Yh+1wuRlqs1ZJov7+ZOE79xa4+vX1tns+Hz92jrfubXGz5+cBAeYAG/TnVxNLCN820JK6OeK799dp17w7LzhweFEeTRt1CnrmlFes90KeGOnReyZwPU7vRZv70RkdcWHT4ZstV1u9NqMc9OpfHc95MGgnO3/54fJQnoJ4OaaT1potlo+o6Jmb1jy3m6XzdhjXGrubNpstWGUZUShx9d3O2S1fq5QlefRll+11uRYkmu9iHubMRpTTHUdYXoiopMkrbPXe15emZdqtt28rC+UTS7b5/GkkLvovJzIWZlZjXRCd6V77Ubs882bXWwLDscFtgXfvNllY0GfxGu8XDw31aO1/pkQ4p8B/wYYAz+BcxO1RdPthSOZ1vp3gN8B+O53v/vMxLyR0Z0voF0mx3UV+nnNTjuafXlU0xB7UBbwn//Nm9jCGLmhBYeTh8xRWvIb37jOb5wJV79/eDLgznfMAqiGWXdf23cYBy6ha6/8Is1jkcHUUVpyfT2irBuapkFKo9V+eJTO3hO4NoejEs+xaAWWKeyVio2WRz+reHOnTeALvrsVI4TpNk7KiuvdkIdHY0ZZhe9auLbNVtvmRi9HK83duRyBw1FO4Fjc2WxRVgopQxzbFAMDz0Y3mmFazHj44xTe3Y34ZC/BcqHKQNowqmG7F5ru0olyKytrbqybGeOPPj/mzmZM02jGacW3b/ewLMFhcvE98KJom7PXFZ5dzulYkhtrMTfWzHEdJeX5dK0z13tezjkt7AKz96wyIFu1z8vOyzI560VGYxux/3qg/xLgSnJOrfXvAr8LIIT4p5gZ/TwecHoVcAN4dJVtLkPgSPaHGeNckVU1gWMT+9aVOf6NyOP9TwYcnrmfHeCPPnhKpRSRY3FzK+br2z0A1kKX9+8fc/84mSRpWdzsRdydW9Ke7Zi1JBwMTaD2I5mRZCXdyGOtdTk1yCKDqY7v8JcP+4zSkqJu8GxJK3S51Tsp7tpSsNn2ScvaWNJaknbgY0tBN3DYH+Z4luRn90fMB4wNBwX3dlsz7/aWb5nAb99mkNUcZiWOtIGGqm4IexZN01ArSIuSXuhhW8bXZ5CZmf90/9s+PNpPSBWoqTHoZNx8uJ8Q+MZ6YacXUNWK/qjE8Sw8R3I4ShkVNUpr7h95RIHFdnyxWuhF9YAsSsJ6FjnnIlwmtWv+PVNZ7vT1Re+/6j5fZp9e48uLq6p6tiZ/3wL+PvB7Z97yvwL/1UTd8yvAQGv9+CrbXIbYs/lob0xa1LQCh7So+WhvfCqc43ngWM1s0J8fPiqgVhWR73KYlvz0syOuT1rqu6HNn3x0QJKVbLV9kqzkTz46oDunnzc2rCeyv6Ss+XBvjOdabLY8HNvio70RaV6zbNiaPkaWcdLXui5/+WDAuKjoTmikv3ww4Fr3ZAZnWxaBa7PVDri1HrPVDiYcrsWbWzH3j1M8W88G/en87kkJa/F0e5NBxpI4UtCLXdK8ZlwWZGWDZUGSK9q+wzvXYopaszfMEEIwzirSQnFvM5jt/6++dY3D+nyCWQDUQnJz3WdvVNALHN7dbfN0nDNKSm71Qj47SEiygrc2O2RVxUdPxry7E7EKV+Xl53H2ur4IA67L1CDm3+O71my7vmtfWLN4nn1+lSZnr/HicdWr9PtCiHXMOPhbWutjIcQ/AtBa/zbwrzDc/0eYHqf/+orbW4pxUfPmVsworxjlFYEn2erEjJ9hib0I73+ezDpJz7rSO65PVirWWz493+HhkbEc+GQv5ds3OxynFcejknbgcXvd4ZO9E4oldG12uwHHSUFS1AzSkre2YnzPKHp2ewGBa3GY5EstDBQn/OoiTvo4q/nBG+s87GccDHMi3+XtnQ7Hc6HmgWN44apuZuZlgWsZ61jP4W+9sc7v/b+/mDWqKcxqJxImiF6g6YTGVnbK+76xGRO5NvvjAktC5NrcXA/xXYsNO+RX7mo+3s/YG2b0Io9fvt3hjZ3ObP9vb8b82hsRf/RxMjt2I7GEN9ZDNuOItzbNtb3WDfnVtzb4+ZMhh0nFe9c7lMo0pq23PL59s0ezQpYJiznu6evPOus/e11fhAHXZQzF5t+jNbSmzXDadNiuqlk8zz6/SpOz13jxuCrV86sLXvvtuX9r4LfdEyLrAAAVtElEQVSuso3LIqsaNtvBuSagq3L8SQX31jzQmgbTmj5IoQB+/Z0tABqtyUs14/gP05K3r51PPfp0/3Qae+jasy/XICvPmTZ1Q49BVqIwlhACcDyoipMH0aqOx1FW8/Zuh3evn+xL02geH5/m+Ou8mkQtilMzt4NxyZ3NNlLCt67HSGFqEXWtCDybh0cjWoE7kz7WjVlBrLd8trsn0tXDcU7bNzWLyLdp+Q5v7vRQjaYdOOdyYMdlzX/0jdvc3hxSVhVH45LAc+gnOb90Z5NOaLPRCRhMAkZubrS4udGi0bDRmkgga008WWHtDVf7Hb0IXn4e89f1ReEyNYir1CmeZ5+/iKDy13gx+MqsywJH8qSfcJhUJIXJjV2PrhZWDhC78PHRYkXGH/z5A4RWrMU+252I93bMALseunzweEA/rUhLRehadEOH3fZy35tpkIbvno7OCxxJCCf8+tyuBKzW8W+1ffrjkm7sIqWgaTT9cXkq1HzVzG3K/bY9wcO9MdqGsjSFVhfoRfJcHJ/gRBY6fZCYbZvVxLQOMA36WKSg2Yw98qKmG7iMhWRkVwzSgpbnsBF7xL6cnZt5rrnl2YyzmsCzERPueZzWtC/ofn4ZvPxrvMaXGV+ZdZlvS95/OCTNa7qRR5rXvP9wiH/FatP19eVf/qZRoOHz/ZxPnvR595ph3e9uhfzk8z6DNKcXuwzSnJ983ufu1vKBf1GQRl7V7HZDtpY4M2+Fq3X837u7RqEahklFPfm7UA3fu7t26n3LUpam3O/Xr6+xX8EgAz8QZAXsFfDtG5unBu7ANe6WljC68rJuqFRD6FgIKWZKEykEoWsavua3N8UP7q0xLGtCW9IKbDbDAN9x+NbNHrY10ehPzs081/zmdotRXjJOS3xHMk5rxmXF2zvtped9/jhfJC//Gq/xZcZXZuA/TEre3DQe7OO8IvIt3tyMLyXlW4WHh8uVpZaQlAo6PmyvRTM5Yj+t+ZU3NogCh71hThQ4/MobG/TPpLhUqmGYlRwlJQK4tRGda5vvBC7LWhGmH7dMp31ns81vfnOHdmiC29uhzW9+c4c7m6sHwimm3K/v2ry3IfCBwVgTSPjOdZfumQfF1IaiF7n4tqDWZta81fZN5OIZq4BlfPCbO13+02/t0goclFK0fIe/87VNbq1HdCOHTujMzs28Br8b+Xz3To8otDlMCmwbvn9vnZ3OaofR6XE+r83Ca7zGXzd8Ze7scaHY6p7XvxyOr2YANSrhTteZNR/s9Suj6AH+9ju7NNpQHaOspj/xLz9KS75xq8c3bvVOfda8jn9RWLcUgje22ucGxFyZ2b0F2I5NWdamsDt3aMt02nc225ce6BchdG1qBL/yzk1+8LbZRxOnJzha8ERyLMl67C8ML3kWvLnT5c2d83WSRZjnmtci99K/N4+Xwcu/xmt8WfGVudNjz2JvEhKe1w2+bRKPrqrjDy34tL9YV/O//cVD0ND1JJu9mO7ECmEtdPnJ50d8djgmzRWhb3F7PebNzRPOZlFwBphZ+9mCWduHJ+NpQImZ1dvA9txE9mVqqLuuzV9+fsDjQUaqNKEl2O0EfP3a2sW//Bqv8RpfOnxlqJ71yOWjvTFJroh9hyRXfLQ3Zv2KPt+rJo+Ocffi/qBhfzhmY6IiafkWf/zhPklWstkxOv4//nB/JrGD5WHdixof7+5EM1lja/KoroEbW2aF87I11K4ref9RSl5pttoReaV5/1GK635lbp/XeI1/p/CVmfHndcM3r3U4SEsGSUHoO9xaC1d6mF8GTwfLf1Y3GsuCrTasdyIOJqT7h4/HfON6h1FR009LupHPzTWbDx+f5Nc+S+djmjVsWHCsjG2BBXQkFHmzUsf/ovDB0yFvbLuMCximBXHostMzr7/Ga7zGXz98ZQb+rGrY7oVs904X8q6q409ruNt1EEIghODxUUGJmXH/e29uA0auOBpXM47/IC15+1rn3Gd9snfC8QeuzSivAHlKPz+vZz/ZB827tztowBICpY2X+VFSvJLkolGhuLvVxZJyxvGrpuHh8dmWttd4jdf464CvzFp9qoOfx1TrfRW0PTjqV2g0jdY48sSJrpkMwHlZ47lixvFvhC4Hw9NF5YNhwcacO+ezOEJuxS5ZVmKJySpDQJaVbMWvpnnmWstjOC75/9u789g4rvuA49/fzOxNLnfJpXhIoimJsmxLPioxLu3IR+MgSd20jp0UDdyijpugSIHCbdF/jAYo0H9apAcKuOk/qXu4QJEGMNLWNWzYThxFTgG1YZwokm1FtyxZ4rHk7pJ77+y8/jFDiqRI8VhyV+S+DzDY5fLN7Pvt8fbNzJv3U8rNS6CUYipbpneF8whpmnZr2TI9/p5YmP949zLD50aZKiqiQWFwTxdPHlw4U/TqPP3ALv72yAUyqfkneFuBk1fS2JUShgEP7u7lwA73hMBjd3XywttnGD5XAMsC2ybWGuK5T+ydt42VXvn4q/ds5++OnCKZLRAKBikUi4glPD3UX1NsK/XEwR38+WsnOH4xjeEHpwzxmMmfPH53XZ5f07T1tWV6/B9cnuDoqVHKDnRFg5QdOHpqlA8uT9S03WRm8cv9y0CpUgEH2sIhomH/bBIKyzTwmSaOYaAUOIb7982SVNzMQHeU/T3uPObZQhHLhP09MQaWuTBpvViGYImJWCAGiAWWmFg1JrnRNK0xtkyP//UTI3S2BtjW5o506SbEWKbA6ydGGLp97Um/vv0TdzLRNp83P07FHVZZAj53qB8EHNsBB06PTNHdFubIqST7uqM8uLdzdjsT0yWOnEpyoC+x6jqc/GiKe3ckOLirC9upYhkm1UrVffy21W9vtV49fpV9PW08dMf18ydjmTyvHr/K4Tt6N/z5NU1bX1umxz+eLc82+jO2tYUYz9Z2crcMRK2ZWQ7nTxVsmYKBoAyoKMWUl1JuIu/ODDlXR2tgdhK31UoVytgoHKdK0DJxnCo2ilSNJ65XKpmtsG3B1a/b2sIks0vNG6pp2q1syzT8nS1+xjLzR5mMZQp0rsMJ0CnbO8Qh1+ejnyVQsRWOw+xkYB1hPxPT80/uTkyX6AivrS5B08RxFJaX8s4yDRxHETTrk6Q60eJjLJOf99hYJk+ipbaL4zRNa4wtc6jnl+/u5oXvn+XCWBrLF8CulLB8fp77pYGatvtQf5h3LubJlN0ZKWf6uAbwnR9dQFUdIiE/9+7omJ0M7NE7Erz4wwucGUljWRa2bRPw+/jK4V1rqsO+nhZe/r+LnB2fpuIIPkMx0NnKF+7vrym2lfrsvb38zRunOXE5id8XpFwp0hoM88efvr0uz69p2vraMj3+7niEvvYISkw3GYWY9LVH6I7fPPvScj7/sV30ezMtzBxYMYC4DyzDwO+zsKsVJvNF0ln3RHCsJUh3NIQSKJSrKIHuaIjYGuevmZwqcn68AA5EAn5w4Px4gcll5plfL7Gwn7YWH5ZAybaxBNpafMTWuAejaVpjbZke/7uXUtyzPc79exI43hzwxWKVdy+lapqkLFeq8sm7dxDwWRginB2d5mcXklh+6E9EMUwhYAqWafDDMxPcsb2dk1fS7O+N8cCck7tTuQonr6RnE2ivxtHTSbqifhKxGJZhYDsOyXSeo6eTPPGxte1FrMaRU0n298QY2t2Jg/vDN12orPlktaZpjbVlevzJXMmdO0a5wylR7hwzyVxts3NWFeyMRwj4LUxTsB0bwzIIBwKEghZ+U3CQebNVpgsVopH5x7+jEd/slb2rlSna9HVGMXBn9TSAvs4omWJtaSVXajxbIhK0QLwpJUQRCbqpFTVN23y2TMMf8Vlk8xUMb2y5YQjZfIWIr7admpaAhc802REPsSMeJhoM4BeHilOlYldxlMK2bVKFEu3eoY9YyMdUbn4jP5WrzF7Zu1qJFh+pXJHWkJ9Y2E9ryE8qV6zbydVowCKdK2OI99qKkM6VidaYyF7TtMao6ZsrIn8EfAV3iPsJ4FmlVHHO/78E/BXwkffQN5RSL9bynEs5sD3Kvx27yMX3p7BtE8uq0h+P8ps1Xt26r6eVF39wlveujFOwDUpFB58fgnaV0UwRp+qQK1fojAU4vLfDrcuOGP989Dxnx9OUbCFgKQY6Yzz78O55286XbVK5EiVbEbCEeCSw6Jzwn723l298/ywj6TzhgJ98qYyDwbOHd9009eJ6eWCgnX/5n/MMXyrifmRsEuEgX/r47uVW1TTtFrTmlkJEtgPPAYNKqQO4Ix2/uEjRbyul7vOWDWn0AdKFMldTBahA0G9ABa6mCqRrHOv+/kcZfvrhBLYDsXCQKpDKgl1VpAslsqUKbSGD3e2tJLyx7iOTWS6lsjgOtAYsHAcupbKMTF6fnTNftrmWLuAoIRKwcJRwLe3mE1hooCfGfX3tGIaQypdBhDu7WhnYFr1p6sX1YpqCAlQVUO6t8h7XNG3zqXVf3QJCIlIBwsDV2qu0NkdPjdPbHqIz2oEh4CgYn8pz9NQ4j9Rwdemrx6/Q2RJkWyyMiBD2G5y+lqVsw7MP7XITv5SrdEfDXEpmSbQEefO9MXrbwnS2XR/FM54p8uZ7YwwOdAOQypXwW+Zsgu+Z21SudEOv//TIFPf3J/jEXe66uaJNtmBzfjxHdzxy0yQu6+HYuRT9Ha0c2t05+9pOZIocO5fiF714NE3bPNbc41dKfQT8NfAhcA3IKKXeXKTo50XkZyLysojUNmPaTUzmK3TFwpRKVbIFm1KpSlcszGS+tqtLU3mb3g53JE7VUYgBsRDkSu7ewFimRGvARzhgkS251/WO58q0twQplh3yJYdi2aG9Jcj4nPy/JVvNNvYz/JZBaZH0iVNFG8OADyfynB6Z4nIyh2kK2dL12JZK4rIe0oUK22IhChWHqWKVQsVhWyy05pPVmqY1Vi2HeuLAE8AuoBeIiMhvLSj230C/Uuoe4LvASzfZ3u+KyLCIDI+Pj6+6Pu1hHyPpAgG/SUvIIuA3GUkXaK8x9WJHxEcyk8dvmQR9JoYYpAsQ9MGerlaiIR+j00VyxTItAfdK2ljYx9V0FgVYpntY5Go6S2xOXQKWm3h8rrLtJidfyIfi9FgGx1G0BH2A4sxYBpnzG7GRqRfbQhZjmQJByyAaNAlaBmOZAm0hfXJX0zajWpqKTwIXlFLjSqkK8B3gwbkFlFITSqmZMX//ABxaamNKqW8qpQaVUoOdnZ1LFVvS4X2dTOcrTGTdaRsmsgWm8xUO71v9tub6wmAf6XyVsbSbRCWZnsYQuHNnK7m8TdBnEfFbJKfL3JZw9wweuT3BVL7KZM6ty2SuwFS+yiO3Xx/zHo8EKNvV2ca/bDuU7SrxyI1z3EdCPqo2VGd+KEzBthVh74dko1MvDu2OM12okMm7b2UmX2K6UGFod3yZNTVNuxXV0lJ8CAyJSBgoAI8Bw3MLiEiPUuqa9+evAR/U8Hw3dW9fAlPg7fdHuTiWpSPi4+mhPg7srO0Co1+5rw+Al4c/5OzoND7T5MmDXezfEWciVyJbson4TXpjQRLelbn33NaJYQhvvz/GpfEs7WE/Tw/1zKtL2G/REwuRypXIlWwCltATCy06qicS9HOoP875ZI6J6SKRgMXQQAcgdUm9eHtvB0+J8M7pCS5P5IkFfTx1aDsDPTrZuqZtRqLUjceUV7yyyJ8Bv4GblOonuEM7vwYMK6VeEZG/wG3wbWAS+D2l1Knltjs4OKiGh4eXKzbPVKGMQm7IYSsoout4wvPHF5PkSlUqjqJadTBNA58hRAImh/oTG1KXU9fSOI4Q9F+flK1YrmIYijt6bpINfp3U67XVNG3tROTHSqnBFZWtpeHfKGtp+CtVh+liBdO4MYftevaEk9kiJy6nCfstIkGLXNEmX7a5e2dstse/3nXJFMqcG50m6LMI+k2K5SrFis2erlba6tDw1uu11TRt7VbT8G+Zb+1qctjWItES5O6dbjasiWwJy2Reo78RdWkL+dnT1YphKDKFMoah6tboQ/1eW03T6mNLDctYaQ7bWiVagvMa+nrUpS3kr1tDv5h6vbaapm083WXTNE1rMrrh1zRNazK64dc0TWsyuuHXNE1rMrrh1zRNazK64dc0TWsyt+QFXCIyDlxqdD3WIAEkG12JOmq2eKH5Ym62eGHzxnybUmpFk5Pdkg3/ZiUiwyu9cm4raLZ4oflibrZ4oTli1od6NE3Tmoxu+DVN05qMbvjX1zcbXYE6a7Z4oflibrZ4oQli1sf4NU3Tmozu8WuapjUZ3fCvgYj8gYicFJH3ROQPF/m/iMgLInLWSzR/sBH1XC8riPdREcmIyE+95U8bUc9aiMg/iciYiJyc81i7iLwlIme820VzTYrIM16ZMyLyTP1qvXY1xlud816/Ur9a12aJmH/d+1w7IrLkSB4R+YyI/Nz7Tj9fnxpvIKWUXlaxAAeAk0AYd1rr7wJ7F5R5HHgdEGAI+N9G13uD430UeLXRda0xzoeBg8DJOY/9JfC8d/954OuLrNcOnPdu4979eKPj2ah4vf9lG13/dYz5TmAfcAQYXGI9EzgH7Ab8wHHgrkbHU8uie/yrdydwTCmVV0rZwA+AJxeUeQL4V+U6BsREpKfeFV0nK4l301NKHcVNDzrXE8BL3v2XgM8tsuqngbeUUpNKqRTwFvCZDavoOqkh3k1rsZiVUh8opX6+zKr3A2eVUueVUmXg33Ffq01LN/yrdxJ4WEQ6vETzjwM7F5TZDlye8/cV77HNaCXxAjwgIsdF5HUR2V/fKm6YLqXUNQDvdtsiZbbSe72SeAGCIjIsIsdEZEv9OCxhK73HwBbLwFUPSqkPROTruD27LO5un72gmNywImzK4VMrjPdd3MvFsyLyOPCfwN761rRhtsx7vQp9SqmrIrIbeFtETiilzjW6Uhtoy73Huse/Bkqpf1RKHVRKPYy763hmQZErzO8V7wCu1qt+6225eJVSU0qprHf/NcAnIokGVHW9jc4covNuxxYps5Xe65XEi1Lqqnd7HvfY+C/Uq4INspXeY0A3/GsiItu82z7gKeBbC4q8Avy2N7pnCMjM7EJvRsvFKyLdIiLe/ftxP1cT9a7nBngFmBml8wzwX4uUeQP4lIjEvVEwn/Ie24yWjdeLM+DdTwAfB96vWw0b40fAXhHZJSJ+4Iu4r9Xm1eizy5txAd7B/bAfBx7zHvsq8FXvvgB/jzsS4ARLjBbYLMsK4v194D3v/8eABxtd5zXE+C3gGlDB7eF9GegAvoe7h/M9oN0rOwi8OGfd3wHOesuzjY5lI+MFHvQ+08e92y83OpYaY37Su18CRoE3vLK9wGtz1n0cOO19p7/W6FhqXfSVu5qmaU1GH+rRNE1rMrrh1zRNazK64dc0TWsyuuHXNE1rMrrh1zRNazK64dc0TWsyuuHXNE1rMrrh1zRNazL/Dy4G7uM/Ff4OAAAAAElFTkSuQmCC\n",
"text/plain": [
"