{ "cells": [ { "cell_type": "markdown", "metadata": { "hide_input": true }, "source": [ "## The data block API" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [], "source": [ "from fastai.gen_doc.nbdoc import *\n", "from fastai.basics import *\n", "np.random.seed(42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data block API lets you customize the creation of a [`DataBunch`](/basic_data.html#DataBunch) by isolating the underlying parts of that process in separate blocks, mainly:\n", " 1. Where are the inputs and how to create them?\n", " 1. How to split the data into a training and validation sets?\n", " 1. How to label the inputs?\n", " 1. What transforms to apply?\n", " 1. How to add a test set?\n", " 1. How to wrap in dataloaders and create the [`DataBunch`](/basic_data.html#DataBunch)?\n", " \n", "Each of these may be addresses with a specific block designed for your unique setup. Your inputs might be in a folder, a csv file, or a dataframe. You may want to split them randomly, by certain indices or depending on the folder they are in. You can have your labels in your csv file or your dataframe, but it may come from folders or a specific function of the input. You may choose to add data augmentation or not. A test set is optional too. Finally you have to set the arguments to put the data together in a [`DataBunch`](/basic_data.html#DataBunch) (batch size, collate function...)\n", "\n", "The data block API is called as such because you can mix and match each one of those blocks with the others, allowing for a total flexibility to create your customized [`DataBunch`](/basic_data.html#DataBunch) for training, validation and testing. The factory methods of the various [`DataBunch`](/basic_data.html#DataBunch) are great for beginners but you can't always make your data fit in the tracks they require.\n", "\n", "\"Mix\n", "\n", "As usual, we'll begin with end-to-end examples, then switch to the details of each of those parts." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Examples of use" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's begin with our traditional MNIST example." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fastai.vision import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/home/jupyter/.fastai/data/mnist_tiny/models'),\n", " PosixPath('/home/jupyter/.fastai/data/mnist_tiny/valid'),\n", " PosixPath('/home/jupyter/.fastai/data/mnist_tiny/test'),\n", " PosixPath('/home/jupyter/.fastai/data/mnist_tiny/labels.csv'),\n", " PosixPath('/home/jupyter/.fastai/data/mnist_tiny/train')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_TINY)\n", "tfms = get_transforms(do_flip=False)\n", "path.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/home/jupyter/.fastai/data/mnist_tiny/train/7'),\n", " PosixPath('/home/jupyter/.fastai/data/mnist_tiny/train/3')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(path/'train').ls()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In [`vision.data`](/vision.data.html#vision.data), we can create a [`DataBunch`](/basic_data.html#DataBunch) suitable for image classification by simply typing:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = ImageDataBunch.from_folder(path, ds_tfms=tfms, size=64)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a shortcut method which is aimed at data that is in folders following an ImageNet style, with the [`train`](/train.html#train) and `valid` directories, each containing one subdirectory per class, where all the labelled pictures are. There is also a `test` directory containing unlabelled pictures. \n", "\n", "Here is the same code, but this time using the data block API, which can work with any style of a dataset. All the stages, which will be explained below, can be grouped together like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = (ImageList.from_folder(path) #Where to find the data? -> in path and its subfolders\n", " .split_by_folder() #How to split in train/valid? -> use the folders\n", " .label_from_folder() #How to label? -> depending on the folder of the filenames\n", " .add_test_folder() #Optionally add a test set (here default name is test)\n", " .transform(tfms, size=64) #Data augmentation? -> use tfms with a size of 64\n", " .databunch()) #Finally? -> use the defaults for conversion to ImageDataBunch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can look at the created DataBunch:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGoCAYAAAB2X4O/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXtsm+l15/89JEVSd1FXy5JsSbbGl5mJPZ7JzGQGk06atM0mbSYLtEWyi2S6m2IWxWaR4LeLTdq/+sfvB6SL3W6LAk0x22SRolmktxRJgaLZIpNBZpqLx/bY47FlS7Yl636/UbyTen5/vHyOn5cmLVKXly/J8wEMUa8o8rHew+c85/uccx5SSkEQBEEQnMJT7gEIgiAItYU4HkEQBMFRxPEIgiAIjiKORxAEQXAUcTyCIAiCo4jjEQRBEBxFHI8gCILgKOJ4doGItnP+ZYjoT8o9LsHdENFfEtE8EW0R0RgR/Xa5xyS4k1qcY0gKSIuHiBoBLAL4hFLqx+Uej+BeiOhxAHeUUgkiOg3gTQCfVEpdLu/IBDdTK3OMRDyl8esAlgC8Ve6BCO5GKXVDKZXQ32b/nSjjkITKoCbmGHE8pfEqgL9QEiYKRUBEf0pEUQC3AMwD+McyD0lwPzUxx4jUViREdAzABICTSqmJco9HqAyIyAvgQwBeBvAHSqlUeUckuJVammMk4imezwN4u9oNQjhYlFIZpdTbAPoB/E65xyO4mpqZY8TxFM/nAXyr3IMQKhYfZI9HeDQ1M8eI4ykCInoBQB+Avyn3WAT3Q0TdRPQZImoiIi8R/QqAzwJ4o9xjE9xJrc0xvnIPoEJ4FcB3lVLhcg9EqAgULFntz2At7u4D+LJS6ntlHZXgZmpqjpHkAkEQBMFRRGoTBEEQHEUcjyAIguAo+3I8RPRxIrpNRHeI6KsHNSihehGbEUpB7KU62fMeT7YwbgzALwGYAfAOgM8qpW4e3PCEakJsRigFsZfqZT9Zbc/CaoJ4DwCI6DsAXgFQ0CiISDIZyoxSisr49iXZjNiLK1hRSnWV6b1ljqlAiplj9iO19QGYNr6fyV6zQUSvEdElIrq0j/cSqoNdbUbsxXXcL+N7yxxTpewn4snn1R5abSilXgfwOiCrEWF3mxF7EQxkjqlS9hPxzAAYML7vBzC3v+EIVY7YjFAKYi9Vyn4czzsARohoiIj8AD4D4PsHMyyhShGbEUpB7KVK2bPUppRKE9EXAfwAgBfAN5VSNw5sZELVITYjlILYS/XiaMsc0V/LT5mz2kpC7MUVXFZKPVPuQRSL2Ez5OeysNkEQBEEoGXE8giAIgqOI4xEEQRAcRRyPIAiC4CjieARBEARHEccjCIIgOIo4HkEQBMFR9tOrTRBqEiKC1+sFAHg8Hvh81sfI5/Px9Z2dHezs7PBjAFBKIZPJAABSqRRfF4RaQxyPIJSIx+OB3+8HAPj9frS2tgIA2tra0NzczM8hsuro6urqAADBYJB/j4igi7ej0ShmZ2cBAEtLS4hEIgCAeDzOjsrJQm9BOGxEahMEQRAcpSIjHr2SNFeVRJT3eqHn6K/FsrOzw6tO/dW8lvt6+nulVF6pRX8VKg+v18uRS1NTE7q7uwEAx44dQ29vLwArytGRTlNTEwCgo6MDoVAIABAIBPjnm5ubuHz5MgDg3XffxczMDABgeXmZox/T1gSh0nGt4/F6vfB4rICsp6cHfX3W+U/d3d38QW5qakI6nQYApNNpnuzNDzWAvI5nZ2cHqVQKgKW368fJZJJfM5PJ8PV4PI54PM6P9Vf9c/N9TNLpNJLJJL92LBYDYMkr4nzcibY7U1JrbGxEQ0MDAEtS6+qyDuXs7Oxkx9Pb28uP6+rq+He1FNfd3c0/b2pq4teLRqMs0cViMbaLSCTCtqaUEscjVA0itQmCIAiO4tqIx+PxcNTS29uLp556CgBw9uxZHD16FAAwMDCAcDgMANje3ubsopaWFo6KcuU1vZpNJBL8u+FwGNvb2/w6epWZSCQQjUYBWHLIxsYGAGBra4u/6ueamJFPMpnk14hEIrxqNTeOBXehM9Pq6urQ2NgIwLJBbXfHjh3DiRMnAADHjx9HS0sLAHtU5PF42NaCwSAAK8rRdun3+/nndXV1OH78OADg+eefZ/uJxWIcUW9vbyORSBzi/1oQnMN1jkd/6EOhENra2gAAw8PDOH36NADgySefZNltaGgI6+vrACzHoB1Va2srSxcmpkOIxWLsSMLhMGvppryRTCb5semcTEeiJwbztc3H6XSaXyMWi2FtbQ0AsLa2htXVVQDAysoK/z/S6TRLfSKtOI+ZKu33+9mO+vr6cObMGQDAE088gccffxwAcOLEibyyrnnv9DWv12tLwzYdj7Zpv9/PDmZlZYVtLp1Oi+M5YIiIZVBzzjDT4omooJyvF7pKKZucru9TIpHI+ziZTNZ8Kr1IbYIgCIKjuC7i0RuyPT09GBwcBACMjIzg5MmTAOzSBgDU19cDsFaQepUSCATyvra5CvX5fLzCCQQCvPJJpVK25AIthyWTSVsygv6qVy6mpKe/B+zJBWa9xtzcHO7duwcAGBsb46SDRCIhtRtlRttPS0sLenp6AFiRjY5yTp48yckFjY2NNhvR99rMQjOlOx0d5UptnZ2dAKxkBR393rt3DwsLCwDA14T9Y0rvOstwcHAQ/f39AOySqd/v5/ubTqd5vjly5AjbQCAQsM0ZhaIffT33cb6oyNwG0AqLmWASj8f5OaZKk0gkeH7KZDKunUNc53j0h76jo4N178HBQXZCx44dsz1fG4L+Wiw+n49DZa3jHwapVIqNKRKJYHJyEoCV4aSdrCnpra+vsxFr4xScRdtgW1sbp0ebcm9fXx/bWzqdxubmJgBgYWEBS0tLAOzSrHY8zc3NvNgZGhri19aTHGDveACUnvYvPBpT7vT5fDyfXLhwgRcWgUCA9+Xq6ur4fmQyGb5X/f39vOfX2NjIiwiv12uTW02ZTj82s2jT6bQto1Y/1guN1dVV3lOur69n24xEIpibmwMAzM7O8gLFtMHl5WWW9vV7uwWR2gRBEARHcV3EY65GtCxhRieVhlkLAoBXufX19TaJRjM5OckrZYl4nIeIeLUbCoX4fg0ODnImWygUsq1YV1ZWAAC3bt3CzZs3AQDz8/O8CtWrYbOO5yMf+QjLPGbEYxYcp9Pph/q9CfvD/DzW19fzPX3uuefw9NNPA3g4E9a8B2amopkhm1tcrn/XfF9TctW/W6jwXctrZuasmRWZTCaxuLgIwIp4JiYmAAB3797F2NgYv6+Oxt0W8bhuNi/kePT1SsMM7f1+PxvOsWPH+P9narGxWAzT09MArBRat2q01YzeQxwYGOCJqaOjg+9XMplkpzI/P4/x8XEAwM2bNzE6OgrA6rmmJQ99/1dWVjiT8vHHH7cVH2t2dnZs3S3MrhfCwUJEtv28jo4OAPaMw0LZqub+r7lnYy4WTadiLp7NOcHr9dqazOrH+v0DgQDf+0wmw4tSpRTLvf39/TbnqPeLFxYWXCvV7iq1EdEAEf2IiEaJ6AYRfSl7vZ2I/pmIxrNfQ4c/XMHtiL0IpSI2U3sUE/GkAfxnpdQVImoGcJmI/hnAbwH4oVLqa0T0VQBfBfCV/Q7IzAbTIWY0GuWQcXV1laWJuro6W1GnmQ2mVx6RSIRrdBoaGmy/Wwx6ZdLS0sKZb+bKRa9M9oLeaD569CivUubm5vh9zDqhfKtjl+KovRwG+r6YhaKhUIhtIRKJcJTzs5/9jLMTp6ameMM31+6Ah+9hPtsx+/ml02lbX8AqxjGbMVtlxeNxjlzv3Llj+3zrz/jOzg7fR7O4PJVK2aIcM0vNjGD0PGPOPfX19bakKH3dzKYzpVwzQUHbhvl6bW1ttohHz5W3bt1yrd3s6niUUvMA5rOPw0Q0CqAPwCsAXs4+7VsA3sQBTCT6g5ZMJjms3Nra4iyPpqYmW9aI1tfn5+f5Zu3s7LBGurKywpkd7e3taG9vB2BptMU0DNWheE9PDz/WewD7cTrAgwmuv7+fJ7Xx8XGWetbX1/nvUSmOx2l7OWiUUvyB7u7u5hTb1tZWvkfb29ssqf3gBz/gFPmtrS2epPRrAQ/sK5lM2q7ls7tCUptbJ5CDwEmb2dnZ4YmciHihMDo6aisO1Z/1ZDLJ93dmZobnoVgsZisM1/NNNBplx2P262tubrb1mNSZtI2NjXmP1TD7QZoF7TpDdnh4GGfPngVgScJ67J2dnVwC0NLSYus76CYbKmmPh4gGATwF4OcAerIGA6XUPBF1F/id1wC8tr9hCpWI2ItQKmIztUHRjoeImgD8HYAvK6W2it20Ukq9DuD17GvsukOqV3vb29vcUmZubo5XoZubm9xKx+fz8YplYWGhYMSjVynt7e2cSaSjluy4Cm7e6hVLZ2cnb/rr8NncGDRXNy0tLTzGxsZG23NMdLitozDAWlmbcmClZvM5ZS8HjVKKC/MWFhb4iAIzo2lzc5OjaLPOwuwsbaJXz11dXRgaGgJg3XNtD6btpdNpW39ALcHWQl8/J2wmN2tQ318AHNmYn+VMJsNy/traGqswiUTCFvHo+6S/Gv+nh14zEAjw42AwyJFQS0sLR0LapjY3NzmKNqOsX/iFX8gru7W3t3PmZEtLi62tjzk/lpuiZjUiqoNlEN9WSn03e3mRiHqzK5FeAEsHMSCzT5UOicPhME/6jY2NPGETka1hp74Rpo4bjUbZGExt1Sz0AgpnDekbZ6YymhkvprPRYfLg4CBGRkYAWMWGhfaVtHQTDAb5d4PBIE9UPp9v33JeOXDSXg4DPbksLCxgamoKgD0Nd319nR2Pme6a6xy0fel7Ozw8jPPnzwOw0upNx6Mng1gsxvLx1NQUL5oqRWrdK07ajP6sp9NpXrguLi7aFpRmTz2zgNTMMjSzzQotDMz3Mh+b+9fa3jY2NmyZk4AlteXrchCNRvl6JpPheaq5udnWdcHMnHUTxWS1EYBvABhVSv2h8aPvA3g1+/hVAN87+OEJlYbYi1AqYjO1RzERz4sAPgfgOhFdzV77PQBfA/DXRPQFAFMAfuMgBmSGlfPz8wDsntvMFAFgC3fzrUYedYCWeb3Qc/TKx2xXYUYhOjTu6enh3k3RaNQWPuvX0NdyX9uMvswwvEIjHkft5TDQK9D5+XnOWPN4PLyqXF9fZxk4HA7nLfQl4wgOvXls9nvr7u62RTx6RRqLxbj+Z2pqyrUFgAdM2WzGjEIO829stkJ6VPSaL+Ep39xk9v3LLYrV84pSKm89khsoJqvtbQCFRv3Rgx0O8oavpj5phsGAvWFnvurhgxpPoZNGzUaQegLq7e3F8vIyAMshaaNob2/P+7u5vbkq0NkwTtvLYaAdz8zMDN+jtbU13g+IRCK4f/8+gIclDH3v2traeO9OZx8NDw+z/m7294pGo+xsbt26hTt37gCw9H0trbhBlz8sqsFmDopi5zBz/9dcFPl8PtscWkzmbjmo3BlOEARBqEgqImUqt57BDIkPu87BzIDRq1tz9WBu/OmN4IGBAZZiNjc3eXNZKVUw4ilU3+G2lUotoOXeubk5Tl6ZnZ3l+qpUKsWb0rkRj47GOzs78dhjjwGwDo4DrKQTnVVp9uva3NzkHm8/+clPuDg1Go1KyxzBhnmUhim1mZGNOScVs+VQDirC8Zh/tHJJDrtlhZinQ8bjcR6vaRS5aAcajUY5hTYej7Osl0gkbMVubjKcakZ/cNPpNMtuq6urtj0Zfb9NuzCzHHt7e9nh6OMUent78x7BEQ6H2dm8//773PzRbZOFUB7yHcXe2dnJveWCwaAtK9I8WdnM9HUTIrUJgiAIjlIREU+l4ff7WV7r6OgoeNCcXllvbGxwXUg4HGapJxKJ8HNk5esc+aJr87RZ84AvALbu47pweGhoCOfOnePHwMNZjZpAIMBtToaHh231GTqrzVy9ii3UFmYHbX343IkTJ9iuWlpauOh5aWmJo+fZ2VlWUtx2Gqk4nkPA7/fzfkBXVxcXdOVKbnry2tra4iw4s9+X3l8QyoOZ5mz2UNM/0+iMovr6epY/zF5aut+bee6OSTAYtDke8+hiXcBqyrduKwYUDhdtNz09Pdy0dmBggDMk6+rqWJ69d+8en3K8tLTk2jO9RGoTBEEQHEUinn1itszRklooFOJVSjAYLHgEg9keSNeFrK+vu3aVUssU2ugnItvBcbpA9LHHHsORI0cAPCgyLtR3LxgM8nPT6TQ/v6Ojw9ZbUNf6rK+vV30LHeEB2r6OHTvGiSrd3d0swZkn1aZSqYo4SkUczz7RTqW1tZU7F4RCIdbzzUriXLSDMYsT19bWbBlygjsxu05o3f3555/H888/D8ByPHrxoZ9bKLuxvr6eHU9TUxMGBgYAAKdOncLx48cBWE7t0qVLAIB3333X1ZOKsH/M9GgtqY2MjLDj6erqsvV10/JrpTgekdoEQRAER5GIZ5+YEY9etZpSW11dXcG2FTq5YGNjgwsSJeJxP2Zbo7q6Ok4eeP755/HSSy8BsOwh98DAQhFPMBjk53Z2dvL1RCLBSQdHjhzhDLcbN25wx3W31WcI+0PbitkCR0e9586d49owM+Ix+8Cl0+mKiHjE8ewT0/H09vYCsHqy6Ymk0EmTwIPspK2tLc5KWV1dfehMD8FdBINBlteOHz+O5557DoCVkabTqQOBAN93s62+vreLi4t8/ksqleJFSCgUYkfW0tLCC5jBwUEMDg4CsApR9X6TmWYtVD65jqepqYnt4bHHHmMn5Pf7+blmxqUptbm5saxIbYIgCIKjSMSzT/TKxCzu6ujosB1WVwi9SgmHw1hYWAAALC8vS8TjUvS9bGhowJkzZwAAH/7wh/lwt/7+/rwHDeqVZzwe58y0n//853jzzTcBWG1OtLx69uxZfOxjHwMAnDlzhpNUmpqaOOI5evSorchYIp7qQduMeRyLtoHm5mbOZDPtKx6Pc5/IpaUllmTdnB0rEY8gCILgKBLx7AG96ggEAqzpd3R08B5PZ2cnr3xz0SvbZDLJ7SySyaSto6ybtdlaxdyra2howMmTJwFYCQVad29vb+cIeGdnh++17kCxsrKCW7duAQDefvtt/OhHPwJg6fL6/sdiMY5surq6bGnWx44dAwA8/fTTfADi4uKiqzeRhdLIjXiCwaAt6tV1gyaxWIxbbi0tLbG9udkuxPHsAe14mpubbY6nr68PgDVh7NafLRwOs+NJJBK2TBTJVHInZnai+djs7abv4+bmJk8G+mC369ev4/r16wCsA9+0PGIeeri0tITbt28DsOzIlFm04/noRz/Kkt3ly5cP8X8slJvc05dN9Dyxvr7OJ+XeuXMHKysrANzdWkmkNkEQBMFRJOLZAzrcbWpq4oinvb2dZZFCUptSiqOc1dVVXplEo1FbCqREPO4k3wF95rVMJsPymtkl+O233wYAvPHGGxgbGwNgRbb5uk0vLS1hdHQUgNUWRTeF7Ovr4wp2s9OBm1e1QunoqEZHOQ0NDayw5Lbe0pL86uoq29Xdu3c50nYz4nj2gHYqbW1taG9vB2BJIWZ/NjMsNtvp65NJ79y5w8ayvLxsa4XvpvblwgP0fUkmk1zwe/PmTZbMWlpa+DljY2O8n3P16lUAwMzMzK4Zi5FIBNPT0wCAyclJnkRisRhPNKlUih2cm3V8YXfMYmSPx8Ny/cjICACraFQvPnIXs/kWLn6/n2sIc5+f7zRSU+Z1EpHaBEEQBEcpOuIhIi+ASwBmlVK/SkRDAL4DoB3AFQCfU0q5N3H8ANGhb2trK0c8LS0tvBHc0NBga5Niri70sbT379/niGdpaYlXsDs7O1UR8VSbvSilOHINh8O4du0aAKvdkT6Dp7W1le/71NQURy66Rksfo/0ootEoN4y9f/8+RzyRSIRf24x4qsFWNNViM4VaZOWr6fN6vbbkgeHhYQDgbhgXLlzgpJLcjDYzUtEKS2NjI2c8ptNpm33ki3ISiYRNkXGKUqS2LwEYBdCS/f4PAPxPpdR3iOjPAHwBwNcPeHyuwcxkMtvW615ara2tbBhmcdfOzo4tVVo7noWFBT4KYXV1tRpPGq06e9H3JhKJsIw2OjrKkoZpA1tbW+xoSjk5NJVK8WmS4XDYJqnpCcp0PFVGxduM1+tlGwgEAraea/r+1dfXs810dXWxvHb06FGW2My9Pb2PnNvlXr/2iRMn8IlPfAKA5bC03UWjUXYq5jyUTCa5AHllZYXl/9XVVdtJyIcp5xYltRFRP4BPAvjz7PcE4BcB/G32Kd8C8OkDH51QkYi9CKUiNlNbFBvx/BGA/wqgOft9B4ANpZSudJwB0HfAY3MFOnLxeDwsdeiIp7u7m9vkhEKhvAd9mY0ht7e3OeJZXl5mSSUcDru6vcUeqHp7MaMXvekfiURY5ojH43uSMMyMRvP3TAk2mUzy+1QRVWEzdXV1fHCb2aE8EAhw8lFbWxtHMSMjI3jyyScBWE1A9XX9GlrWBx6W6vTPRkZGuOg4k8nYmtKaCQU6ckkkElxkOjs7y5LwzZs3cePGDQBWYouOhHQLnoNkV8dDRL8KYEkpdZmIXtaX8zw176eLiF4D8NqeR+gSPB4Ph7qm49GHdplV6wBsRYU6ZI1EInzDl5eXcffuXdtzq4FatBfteHSqPLC/vbp88kgsFmOpRillq2zXE0qlplZXk82EQiE+hfbs2bMsxXd1daG1tRWA5TC002hra+M9wvb29odSp3OdjbYHswu1eSyCSW6hs/ma2ja7u7vZljY2NrhjekNDw6E4HE0xEc+LAD5FRJ8AEISlv/4RgDYi8mVXJP0A5vL9slLqdQCvAwARVc8MKxRC7EUoFbGZGmNXx6OU+l0AvwsA2dXIf1FK/Vsi+hsAvw4r6+RVAN87xHGWDb1R2NraiuZmSwXQR1x3dnby4+bm5rxHXKfTad6wm52d5fA1Ho9XVaSjqUV7MbOFDpJEIsGtcVZWVjhr0ufzsRTT0dHBdURmxFVJVJPNtLe3c8Tz8ssvY2hoCABw7NgxvmdAfpUjX4FyLmb/P50gkEwm8yYAFDoLTCnFtppOpznK8vv9tmSIw2Q/r/4VAN8hov8XwLsAvnEwQ3IXOjxtaWlhJ6O/dnd3cwV5MBjM63jMFOq5uTmb46kxasJeDpJ4PI75+XkAVsaRbkZaV1fHi6BQKMQTUKU6nkdQcTazvr6O999/H4D12ddSW09PDzse0yHU19fz3k9zczPPJ3qOMVOod3Z2sLy8DMAqUNay2MbGBs8xHo8nb09B87r+Xj9HO627d+9iamqK/x+HOUeV5HiUUm8CeDP7+B6AZw9+SEK1IPYilIrYTG0gLXN2QUc8TU1N6OzsBAAuGg2FQnzNxGxJkUqleDUyPz9v688mCI/C6/Wy5OH3+3n1G4/H+XowGHzkYYOCs6ytrXFx8cTEhK19jbm5ryOOzs5OjoqGhobwwgsvAABnt5kRTzqd5gy0t956i99nenqaI+PchIJiHuu5Kh6Pc5RjHsd+GIjj2QUtnzU0NLAxaK09t2mfJpPJcPgajUZZXpuZmWEDKaaKXahtzKLDuro628SlJyRxPO4inU6z9JlKpWx7JtrZmCwtLbEz2dra4nOe8mWppdNpXrCur6/zvLK8vMyPKwXp1SYIgiA4ikQ8u6BXLPkinnynAQL2iCcej9uy2nTEo+t5BKEQjY2NvNnc3t7O9pZKpbgoOZlMVmz9TjWSTqdZosrdnM8XmS4tLXEklEwm8fLLLxd87UwmY+tQbtZ7VRrieHZByxvNzc2sxYZCIQAPtx3XJJNJ7re1ubnJTmZjY4NTX3drjy9UBuZkctDp8e3t7ZyO29HRwYugRCJhOzZdHI87ybWHQvah71/uvAFY2Wc63bmaHI9IbYIgCIKjSMSzCzriaW1t5S6y+iRI3Tonl0QiwSuWtbU1TiSIRCIc6cgBXpWNeXiX2R7pIKMe81Tb+vp6fu319XWut1heXq7WTtU1h1KK5w1dOOzxeFhhqaaIRxzPLpiOR5+LoScDvdeTi9mEb319ncPnaDTKTqgauxbUElpiM5s4FqogLwWPx2NL4ddyrlKK+3TNzc3x8djLy8uyiKkSdnZ2eK7QjqehoYGLhc2940p3PCK1CYIgCI4iEU8edGjb3NzM8lpHRwe3vNAtLgrV8cRiMc5kW1xc5CjHXKUIlYeOcvx+P7ehf/zxxzlhZHx8nE8bLdQxeDe8Xi/bV0tLC8u5ZmuTlZUVXhFX2XEaNU0mk2GlZHFxEYA175h91aol4hHHkwftYI4cOcLn7XR0dHBb890cTzwe58loaWmJw+fDrAQWDh/teILBIDeC/NSnPoV79+4BsIqCdSFfqYsMXajc0dHBRYQnT57kFH6llC1NV/Z1qg+zwNTMVNR2Z6Zqp9PpshxZfVCI1CYIgiA4ikQ8ORARJw10d3ejt7cXgLUS1Zt8OuLJ140asOfjr66ucgsNiXgqF7O/ld/vR39/PwDgzJkzbA8LCwu8Cp2fn2fZzTwFshA6ej569CjOnz8PABgcHGRbjMfjXLuzubkpElsV4vV6eU7RX82Tj83kAlPKFamtCiAibuzX2trKUkdjYyMX8JktxR/1OrmPpadWZaPvn9fr5X3AI0eOcEcB3QwWAC5dusQt7LVsopTKawsej4cXNYODgzhz5gwAq4GkdlaLi4t47733AAC3bt0Sx1OF+Hy+hxyP1+vl+cbc46l0xyNSmyAIguAoEvHkkBvx6JVtY2MjyyG7RTyFThKUiKc68Hg8bCOBQICPyThz5gxHP+ahXmaGoy4gTiQSvFIlIj74a3h4mJML2traOFq6f/8+3njjDQDWgV2VuKEsPBpTajMLlM2IR8v1lR7xiOPJgYjYwZinAwYCAZsx7PYa4nCqDz3ZJ5NJmzPRMtnAwAB3tRgcHMTTTz8NALhx4wYA4PLlyyy/bWxs8CTT1NSE06dPAwDOnz/Phcoej4fTpq9du4af/vSnAKwCUqH6SKVS3LlAn9sVDodZVt3a2uLr6+vrvOdXib36RGoTBEEQHEUinkMm97Q/oTLJPVVW1+vMzs7i+PHjAKwsSDMZRUtt+trRo0d59Wom4andAAAgAElEQVRKus3NzZw9OTQ0xBFUJBLhGqGLFy/yiZPSIqc6icfjHNHojMitrS2u2drY2OCIeX19nWVbkdqqgFznsBdnkSu17ee1BPdgSm26V9o//MM/cBba2bNnudNFY2Mjy2668PgDH/gAy7iBQIAdj9/v59fOZDKcir+4uIj3338fgHWMsmSyVTebm5u80NBn+SwvL+Pdd98FAIyNjeHq1asArDIN/ZxK3O8TqU0QBEFwFIl4cjgIaWxnZ4flkEQiwZkolbgyER5gRjy3b98GAExPT2NiYgKAtRH81FNPAQCOHz/+UGulYDBoi3jMAmRtL5ubm5iengYAXL9+nVe7uneXUL1sbGxwcsHdu3cBAG+99VZRBciVRlGOh4jaAPw5gCcAKAD/HsBtAH8FYBDAJIDfVEqtH8ooK4xMJsNh8Pb2Nj+ulc4F1W4vmUyGJ4jt7W2Mj48DsBYc+pyc4eFh3vvRezydnZ0sv3V3d9scj5bR7t+/z3LKxYsXcf36dQAPUrKrlWq3mWKpRieTj2Kltj8G8E9KqdMAzgEYBfBVAD9USo0A+GH2e0EAxF6E0hGbqSF2jXiIqAXAhwH8FgAopZIAkkT0CoCXs0/7FoA3AXzlMAbpJIUSA0ohnU5zlBMOhzn7pBLz7UulVuzFLN6bnZ0FYGUi6cyz48ePY2RkhB8DVlabjnhCoRDbxfr6Ostrd+7cYeluZmaGs5z00RrVSK3YjPCAYqS2YQDLAP43EZ0DcBnAlwD0KKXmAUApNU9E3fl+mYheA/DaAY330FFKcWHW2toaa+ttbW22lveApdlruWRzc5Mnh8XFRZZG1tfXuUlojaTB1oS9mFKIXmQAD+RUr9fL931sbAyAta+jFzWmXLe+vs7HaGhnVGPUhM0IDyhGavMBuADg60qppwBEUELIq5R6XSn1jFLqmT2OUagsxF6EUhGbqTGKiXhmAMwopX6e/f5vYRnFIhH1ZlcivQCWDmuQTqKU4shlaWmJD4ULhUJcvGWudnVvrtXVVS76mp2d5eeurq5yXUaN1GHUlL3kou/x4uIi5ufnAVT/RvEBUNM2ozFlfq2k1NXVcSZkKpVi+9rrCbduYVfHo5RaIKJpIjqllLoN4KMAbmb/vQrga9mv3zvUkTqEUspWwKePHu7q6mL5LBAIALCkNt23bX19nbX+ubk5djwrKyssn9RCVlut2UsuZiGoUBy1bjPayZhZj7pR7OnTp9HR0QHA6vV38eJFANa8orcEKlHCL7aO5z8B+DYR+QHcA/DvYMl0f01EXwAwBeA3DmeIQgUi9iKUithMDUFOygBEtAxLv11x7E2LoxPuGxNw8OM6rpTqOsDXO1RcbC+AO23mMMZUaTYThlX/4zbcaC9AmeYYRx0PABDRJbdtArpxTIB7x+Ukbv0buHFcbhyT07j1byDjsiO92gRBEARHEccjCIIgOEo5HM/rZXjP3XDjmAD3jstJ3Po3cOO43Dgmp3Hr30DGZeD4Ho8gCIJQ24jUJgiCIDiKOB5BEATBURxzPET0cSK6TUR3iKhs7c2JaICIfkREo0R0g4i+lL3++0Q0S0RXs/8+UYaxTRLR9ez7X8peayeifyai8ezXkNPjKgdiL0WNTezFwA02I/ZS5Fic2OMhIi+AMQC/BKsv0zsAPquUunnob/7wWHoB9CqlrhBRM6xOuJ8G8JsAtpVS/93pMRljmwTwjFJqxbj23wCsKaW+lv0whZRSVd0aXuyl6LFNQuwFgHtsRuylOJyKeJ4FcEcpdS971sZ3ALzi0HvbUErNK6WuZB+HYR041VeOsRTJK7DOIkH266fLOBanEHvZO7VoL4BLbEbspTiccjx9AKaN72fggptBRIMAngKgu+J+kYjeI6JvlkmiUAD+LxFdzp4xAuScSQIg75kkVYbYS3GIvTzAdTYj9lIYpxxPviM9y5rHTURNAP4OwJeVUlsAvg7gBIDzAOYB/I8yDOtFpdQFAP8KwH8kog+XYQxuQOylOMReHuAqmxF7eTROOZ4ZAAPG9/0A5hx674cgojpYRvFtpdR3AUAptaiUyiildgD8L1ihu6MopeayX5cA/H12DItZ3Vjrx1V9JkkWsZciEHux4RqbEXvZHacczzsARohoiKy2558B8H2H3tsGERGAbwAYVUr9oXG913javwbwvsPjasxuRoKIGgH8cnYM34d1FglQxWeS5CD2svu4xF7suMJmxF6Ko9jzePaFUipNRF8E8AMAXgDfVErdcOK98/AigM8BuE5EV7PXfg/AZ4noPKzwfBLAf3B4XD0A/t6yW/gA/B+l1D8R0TuosTNJxF6KQuzFwEU2I/ZSBNIyRxAEQXAU6VwgCIIgOIo4HkEQBMFRxPEIgiAIjiKORxAEQXAUcTyCIAiCo4jjEQRBEBxFHI8gCILgKOJ4BEEQBEcRxyMIgiA4ijgeQRAEwVHE8QiCIAiOIo5HEARBcBRxPIIgCIKjiOPZBSLazvmXIaI/Kfe4BHdDRH9JRPNEtEVEY0T02+Uek+BOanGOkWMRSiB7gNIigE8opX5c7vEI7oWIHgdwRymVIKLTAN4E8Eml1OXyjkxwM7Uyx0jEUxq/Duto2LfKPRDB3SilbiilEvrb7L8TZRySUBnUxBwjjqc0XgXwF0rCRKEIiOhPiSgK4BaAeQD/WOYhCe6nJuYYkdqKhIiOAZgAcFIpNVHu8QiVARF5AXwIwMsA/kAplSrviAS3UktzjEQ8xfN5AG9Xu0EIB4tSKqOUehtAP4DfKfd4BFdTM3OMOJ7i+TyAb5V7EELF4oPs8QiPpmbmGHE8RUBELwDoA/A35R6L4H6IqJuIPkNETUTkJaJfAfBZAG+Ue2yCO6m1OcZX7gFUCK8C+K5SKlzugQgVgYIlq/0ZrMXdfQBfVkp9r6yjEtxMTc0xklwgCIIgOIpIbYIgCIKj7MvxENHHieg2Ed0hoq8e1KCE6kVsRigFsZfqZM9SW7Y+YQzALwGYAfAOgM8qpW4e3PCEakJsRigFsZfqZT8Rz7OwelHdU0olAXwHwCsHMyyhShGbEUpB7KVK2U9WWx+AaeP7GQDPPeoXiEgyGcqMUorK+PYl2YzYiytYUUp1lem9ZY6pQIqZY/bjePK9+EM3nYheA/DaPt5HqB52tRmxF9dxv4zvLXNMlbIfxzMDYMD4vh/AXO6TlFKvA3gdkNWIsLvNiL0IBjLHVCn72eN5B8AIEQ0RkR/AZwB8/2CGJVQpYjNCKYi9VCl7jniUUmki+iKAHwDwAvimUurGgY1MqDrEZoRSEHupXhztXCBhcPkpc3JBSYi9uILLSqlnyj2IYhGbKT/FzDHSuUAQBEFwFHE8giAIgqOI4xEEQRAcRRyPIAiC4CjieARBEARHEccjCIIgOIo4HkEQBMFRxPEIgiAIjrKfXm2CIDiE1+uF1+vl79PpNABAKQU5vl6oNCTiEQRBEBxFIh5BOAS8Xi/q6uoAwPbV7/c/8rHf7+fHgUAAgUAAAJBIJBCLxQAAy8vLWFxc5OupVMqh/5UgHAzieA4QPWHU19fzhOHzPfgTZzIZfuzz+Vg6yWQySCQSAIBoNMoySiaTwc7ODgCInOIQPp8vrxMgIr4HHo8HRFY7KtNpNDU1obW1lR9rG9Bf/X6/7VowGHzocTAY5Mf19fVoaGgAACwuLmJuzjoR4OrVq4hEIgCAnZ0dm+wmCJWASG2CIAiCo0jEk0XLIeYqM/dxfX09P853Ta9UPR4PPB7LpyeTSWxsbAAAVldXkUwmAdg3i6PRKNbW1gAAKysrLKkAD1axspo9ePTf3+fzoaWlBQDQ3d2Nnp4eAEBbWxtfj0ajCIfDAKwoQ0eiwWAQjY2NAICenh4MDQ0BAHp7e9k2tA0Fg0HbNX29oaGBX8Pn83EE4/F42C5HR0dx69YtAEAkEsHS0hIAyy50tGxG1ILgZqrG8Xi9XtsHebfHuU6j0HX92Jw0TCnEvKYll0wmw7r7xsYGJicnAQD37t3jycvn8/Gksrm5yZp9IBDA1tYWAGB7exubm5sAwA5LODj04iAQCKC9vR0AcPbsWZw/fx4AMDg4iOPHjwMApqamMD09DQCIxWI82Tc0NKCtrQ0AcPz4cTz55JMAgIGBAZbj9NednZ28C4hwOMyOJBqNIhqNAgDa29vR19fHj4eHh3kss7OzAKw9Hr2wEccjVAoitQmCIAiOUhERj8fjQXNzMwAgFArhyJEjAICjR4/yZm4oFCookRWKZgpFLuZj/RwdneSiV7MAWH6JRCK8al1fX+fXCIVCHLn4fD5OPNjc3MT8/DwAaxNZr2bv37+PeDwOQCKew0BHPH6/H01NTQCsqOWDH/wgAGBoaIijjPb2dra1SCTCEY/f72fb7OzsZNspRRoNh8OcOLCxscFR7rFjx9DZ2QnAkv30GBcWFvj5KysrmJqaAgAekyC4nYpwPHV1dSw5nDp1Ck899RQA4MKFC+ju7gYAHDlyJK9EBtidg8lB7Jvkew2/38/v6fP52PH19/fzc0zHs7GxwY5nYWGBtfxEIsETjHC46EVDXV0dy27BYJDlq46ODr6nyWSS77vP5+OFRWNjI+/VAA/bRm6xp85Mm5mZwdjYGABgbW2N5VgiwsmTJwFYjk/bCxFhe3sbAGz7gYJQKYjUJgiCIDhKxUQ8epP3ueeew4ULFwBYG8Fa5tAyRD6czggz6z8aGxt5BV0Ic5UMWFEPYEVuWg4SDh4zY1BHPD6fj+UtHakCltSlkwh2dnZY+kwmkyyHbm1tcQLCxsYGRyP657FYzHZNX5+fn+fkknQ6zdl29fX1HBWZNpRKpTgqisViPHZBqBQqwvEEAgGcOXMGAPDhD38Yvb29AIDW1taCey/FoCeeQlLcbs9RStmuP+p1HoXH4+HCwsbGRpYJfT7fnl9T2B09YWcyGZau5ufnce3aNQDWnpye8NPptG2y11mL8XicncPGxgbvz83Pz7Nz0nsviUTC9lj/PBwOcyaj3+/nFO6uri6+bqZNm9mOkUhEHI9QcchyWhAEQXCUXSMeIhoA8BcAjgDYAfC6UuqPiagdwF8BGAQwCeA3lVLrhzHIQCDA2UVPPfUUSxFmt95ciolmiokm9vv7xeD1ejniaWho4M1qs91OpeAGeykWHSnE43Eu4B0dHeW/+7Fjx7ggVCmFlZUVAFbEYUY8OipZXV3FvXv3AFgZiTqiMetrCsm++j2bm5tx7NgxAFYdkZb7VlZWMD4+zmPU0lw4HK74iMdpm9Hytcfjsc0l5nX92U6n07YWVvpePkq+179rvs5BU6gree775daS5V43/09OUszMlgbwn5VSV4ioGcBlIvpnAL8F4IdKqa8R0VcBfBXAVw5roMVIXft5fj7MG2tWq5vvYd7YYvZjinGIFY4r7KUY9P1MJpPsSCYmJlh2W1hYYBnN6/Xy3tvW1hZPRslkkp8fDofZIWhnBNjtKN/9b2xsRCgUAgCcOHECH/rQhwBYWZt6X2l5eRk3btwAAIyNjXHB6fb2No+lgnHMZrxeL+/hdXV14ejRowCsjNOuri4AQEtLC+/RTkxM8GJiZmYGMzMzAKz7W6iriJZK29vbWTb3er0H+plPpVK8X5hKpXjhktucVi9ozQJ3v9/PDndiYgITExMAHuxFOsGuM6VSal4pdSX7OAxgFEAfgFcAfCv7tG8B+PRhDVKoHMRehFIRm6k9StJyiGgQwFMAfg6gRyk1D1iGQ0TdBX7nNQCv7W+YBceT93puZKNDyVQqZctG0pu1ZjTzqMd6VWG24DFXEcVEPMWsesyVVCX3aHObvRTCjGRzIxUz4tEb+rFYjKOMdDptSxjQ0U8qlcpbx6Mxo2Wfz8dJDCdPnsQLL7wAwMra1LY7NTXF9V1TU1P8Pul0uqJtJJfDthmv18u1f4899hg+8IEPAADOnTuHEydOALBqAvVn/OLFi3jnnXcAANeuXePP+OLiom1uMNHJT8eOHePox+xGfxDEYjG21Xg8zlGO3++3FcbrjNnm5mZ+XF9fz3PZ22+/zRJyKpVyrBt+0Y6HiJoA/B2ALyultooNG5VSrwN4Pfsau/5vzFTSwcFBAMD58+f5cTG6ae7PtYyytbXFN2tzc5MnklwHo//o5nWlFIfNHR0dAKxKdX0zzYaOef4GjxxvOp3mMDccDvOkEo/HK1a/d8peDppEIsF2EY/Hsby8rMdlW7Roh2Bq5KVo5YFAgEsBBgYGcO7cOQDAk08+yVJQJBLBnTt3AABXrlzB7du3AQBzc3Mss1SZ0zl0m/F6vSypnT59Go899hgAq0uF7ojS0NDAn+UTJ07wZ/zs2bP42Mc+BsC6N4WkNl3a0dLSwlKX2Tg4Z+xF/R9zMRc8Zgq+x+Nhp2Ie8VFXV8f/J3PvOB6Pc6+/iYkJdkJ6wXVYFJXVRkR1sAzi20qp72YvLxJRb/bnvQCWDmeIQqUh9iKUithMbVFMVhsB+AaAUaXUHxo/+j6AVwF8Lfv1ewcyoKw3bm1txbPPPgsA+NjHPsZZbWa4WihZwJSo0uk0Rzlmod7S0hKvZtPptK2mo9Bjs/29/qo3J/v6+jjEBexRV75+buZrb2xscL+tO3fu4O7duwDsxyhUCk7by0GTSqU4Qj7MVV8gEGA7GhkZwXPPPQfAKpDWK++VlRWOeG7cuMF2MT8/X1WHvzlpM0TEkWZvby/LYt3d3ZzIYaoq/f393OrKVEOKyWoz5VTzuok5h5WS/FRsVluh39XzyvT0NGdLhsNhrlU77IinGKntRQCfA3CdiK5mr/0eLGP4ayL6AoApAL+x38F4vV42hNOnT3NPtscff5zlLaDwH9eUPHQG0tTUFE/qMzMz3PtsbW2NU2gLOZtcCU6H0NrZ9Pb2skbc2NjI2rFJrjGZ76MnuPX1dR6jOcGsrKxUYsaSY/ZSyQQCAbb1EydOsJRcV1eHmzdvAgBu3rzJ+wt3797lBVQmk6kKh2PgmM1kMhmWk8bHx3kPprOzk/d1AoEAS1S5+3L5HhdiL4XpuffVPPl2v2PQ86NZ9LyyssJz5fr6umML3V0dj1LqbQCF/ocfPdjhCJWO2ItQKmIztYerKhTr6upw+vRpAMDLL7/M0cTAwADLWI/KZDOz13S+/cWLF7n+YWJigluamMkFZpTzqJWkDsX16nRra4vlktwuwYVWNDqC2d7e5iSCubk5jnju3bvHUdnm5mYlRjwCLLlGr6DN+hC92dzT08O2fuTIEb7/169f5+y1u3fvctfylZUV2wmoVRbxOMbOzg5HPGNjY7asL73ab2hosHW315gFp2aygBmVmPOQOa8U4iBqezwejy271nxsohUW8+DJ+fl5jng2NjbcE/E4ic/nYz318ccf58ctLS1F3SCzZ5Yu+jI/yMvLy1hftwqf4/F4yX9k7fy0szl58iTr8Y2NjTZnU2i82kGZIe7ExATu378PwNJcV1dXAVinUcqpkpWFnozMQsWnn34agGUv2oba29u58a3X68X169cBWNlrly9fBgC2YeHgyGQyPOnGYjF2QtevX+fzlswMMJPGxkaW5pqamtg5BQIBntRTqRTPMWtrayUXZe7FETU2NvJieGhoyPbYPB9KL1xu3LiBq1ctRfP69etcjByJRBxb6EqvNkEQBMFRXBXxEBHLE62trQ+FiruhN1+np6c5G+jmzZu8cjQ7Au8lktCrB51EMDIyYsv9L2a1oldAKysrmJycBPBwxKMjN5FTKg+zKFS3wdHZmR/60IdsK2Nti1NTUxgdHQVgRTlaAhYOnp2dHa5b2djYYEk+t1dbvpqbtrY2LvRta2vj7Lj6+npbEbGOIObn5w8tO8xs0dXZ2cltloiIo7KBgQFbcpSeH2/duoUf//jHACx70xGakyfYus7xmKc5lnrkgZax1tfXOYReWlri7LW9jEdnsjU1NdlCWP1VOyFTE85NkTQxW+FrSW1jY4OPyq62SvRqRd9fs8FrU1MT7wOGQiE+ykOfnhsMBlnumJub48XR2NgYL47m5uYOPZVVeIC5B2M+zreIXF9ft0nlZkGmua+jnxONRnmhcdCYHQpCoZCt2F5nS/r9fpbOTFlxYmKCpd1wOHxoY3wUIrUJgiAIjuKqiKcQxfZky/2Z+XWv76s3iI8fP44nnngCALjNxuDgIIe1hYpHc8egI57t7W0OccPhMIe5Eu1UBrrQORgMco3ZwMAAJwwMDAxgZGQEALj4uaGhge//4uIiHzh39epVltd05Cs4SzGtqdLptGvuT319PSdDHDlyhO1uZGTEdpCkjrCXlpZYzp+cnOQsynJREY4HyJ+efNhHC3g8Hk6FPXXqFB5//HEA4GaCfX19PAEVUyy2s7NjOyZZa8HmMcmV2put1jB7CmrHc+bMGe65dvz4cd7j0WnzY2Nj3G9tfHyc9xei0aikzQsl0dLSwgsaMwO4ubmZbZOIuDvLlStXuBhZl5SUE5HaBEEQBEepmIhnL/2M9ovH4+HV7MmTJ3mFoTNbzMOdCo1pZ2fHlsmkM2rm5ua4Nc7c3JytU7bgPjweD0sYoVCII+EjR45wssnZs2d5kzcQCPBm7qVLlwBYbfV1DcnKygpLrVKvJRRDXV0dZ/oeOXKEk1fOnTtnS2DRqkokEmF57d1338WVK1cAgOsHy0nFOB6NOcEfthPKdTx6gsnXTLAQpuOJx+M82ZiOZ21tjZ8jE5C70LKF3+/nwuEnnniCP/T9/f18VPXAwADv+a2urnLXAb2X88Ybb9jO8dESrNxzoRhaW1s5i/aJJ57gxrLPPPOMrZelXvDMzMxw9tp7773HMq+WfsuJSG2CIAiCo1RcxGOilGKJKhwOc6bG5OQke/1S2+L4fD7OUGtra+OVRHt7+0MZbIUSHcxILJFI8FhWV1cxPT0NwMpq0vVFUrfhXnSRnt/v5wzH5557Dr/4i78IwGqfpJMIAoEARy+xWIxrwMw2UHq1abag39zcPJAsTKG6CYVCLPefOnXKll2r7VQpxarKxMQE14rdv3+fZV43IBGPIAiC4CgVEfEUOiwpk8mwd5+ZmeHq7/HxcfbupUY8gUCAV7C9vb2cSGAeh2u208iNdHKvRSIRTpsdGxvD2NgYAKthqWj77ke3cBocHOR0+uPHj3MkbHbYMO3CtKNTp04BsKJpve8zNzfHXci3t7fZFiTiEQrR0dFhO6pb1/GYSU5KKY6q5+fnuTtKqc1KDxtXOZ5UKsWdpN98802cPHkSgCVVmCePaokiHA6zg1lYWGDHc+/ePb5eTP8hn8/H9TihUIg3i81z2AtNMPkmCvNaJBJhee3atWvieCoM7XjOnDmDF198EYDlSHRWm9/vz1vLZdqUtqf29na2hd7eXu715fF4eAG1sbEhmY0Cz3dNTU0s2Q4PD+Ps2bMArLlJS/8A8vaKM+U1tzkekdoEQRAER3FVxJNMJvksktXVVT4I7uTJkxxtZDIZjmxmZmZ4Yz4SiXCiwcbGBoebxUhtZnPHEydO8JHbTz75JG/mhUIhXsGa0Ve+o2VjsRivMBYWFniVOzk5yTn04XBYVrYVgG4AeuzYMT64LRgMcoSSTCbZxpLJJK8819bW2B71ivXkyZN8bHokEmGbA8Cp9dvb244dxiW4F213Q0NDLK89++yz3BljYGCAI2azPnBlZQUTExMArC0H3aXALa1+NK5yPOZ56IlEgmselpeX2fGk02nO1JicnOT6l3Q6bauRKIWmpiaW1E6fPs0txl944QU2gPr6+l3b42jHE4lE2BDm5+d5j2dycpLD4Gg0Ko6nAtALmHv37nHLkdbWVtuHXjsK83E8HmcnpPd4hoeHed8nlUqxHcXjcbadcDjM7evj8bjYSA1hniSq95ZPnz6Nl156CYBVoKxl27a2Nl4Ax2IxzpCdmpri7N6ZmRne43HyyINiEKlNEARBcBRXRTzAg3PBt7a2WH5YXFzkaAOArZOv2YBzr6vDjo4OTmQwj7NubW21HWWc73AojVKK3z+RSHACxPr6Oq86lpeXORLKZDKSwVQB6Oat09PTeO+99wBYdqE3dlOplG1jVz82ZTedvXb79m2W2k6dOoXGxkYAwAc/+EF+P7MebWVlRWS3GsLv93Ommq79OnfuHD7ykY8AsOR+HWmbmWypVIrnmImJCba31dVV3opwWxPaoh0PEXkBXAIwq5T6VSIaAvAdAO0ArgD4nFJq358SPXknk0mW3fTXw8JMUzxx4gSnyvp8vl17sWmIiB1JOp3mCSORSNjkwFpJm3XKXg4bfR+XlpZ48RMIBFiCzd3jySe7mXuD+qiEX/7lX+b07Oeff54llpmZGV5Y6X2kWqFabGavNDU18fEG2jZGRkb4Wl1dHctr8XicF7ezs7O4efMmAKsLte7PVq5D3oqhFKntSwBGje//AMD/VEqNAFgH8IWDHJhQ8Yi9CKUiNlMjFBXxEFE/gE8C+P8A/D9kLf9/EcC/yT7lWwB+H8DXD2GMh04wGOTNvFAoxLUbZvZaPnKblJoRjym/mBFPLWwWV5O9aIlibW2NMxXNe55KpWzdx83H+aJa/fPBwUFu+Hj8+HGOoHw+H0u6j5J2q41qspm90trays1ntfw6MDDAiVXmfLS5uclJVu+//z5+8pOfAAB++tOfspzvtoQCk2Kltj8C8F8BNGe/7wCwoZTSwuEMgL58v0hErwF4bT+DPGz2erhc7nNNTf/GjRsArJRGLRW6TWc9RKrGXrTz2NzcZAlsP2jNfWZmhvdyTp06xVKb6XicOv7DJVSNzZRCU1MT7xeOjIzwKcf6a09PDzsccw9xenqau55fuXIFo6NWoDgzM8Nyvpvnm12XVET0qwCWlFKXzct5npp300Ip9bpS6hml1DN7HKNQQYi9CKUiNlN7FBPxvAjgU0T0CQBBAC2wVidtROTLrkj6Acwd3jAPDr2K9Pl8trNWzBqdvR46p6WY2dlZXo3cvn2bi5FSKVkAACAASURBVEbdvAI5QKrKXg4aXci3tLTEtRexWIw7nre0tHC2m5ZYaoCatZmuri5OOLlw4QIXzetrWvYHrGhZqyfj4+NcbH/p0iWuD6yULMhdHY9S6ncB/C4AENHLAP6LUurfEtHfAPh1WFknrwL43iGO88DQH+a2tjauHB8YGMDAwAAAyxD0SZO5TidXszcb8sViMa4Svn//PsbHxwFY6Y36ObXgeKrNXg4aLaO1trbyMQt+v5+lts7OTrZLfa3aqWWb6ejo4I4YZ86c4ZNEdVq1x+PheWdhYYGz165evcp9H2dnZzntv1KyZfeze/kVWJuAd2Dpsd84mCEJVYrYi1AqYjNVSkkFpEqpNwG8mX18D8CzBz+kw0VHPKFQiIu0+vv7+XFXVxdnGBXCLFrVIe709DRHOffu3eOCrmg0yplMlbIaOSiqwV4OGh1Ft7a28lHawWCQI6H29vaai3hMas1m2tvbuYbw5MmTnF2rpX+zMH1qagr/8i//AsCKeHS9ztbWVsVly7quc8Fho51Kf38/nnzySQCW1KZD2/r6+rzHHpgFovomZzIZbjt+48YNzmTLdTz6+bXmeISH0bbg9XptjkXbpdkGvxYdTy1QV1dnO4ZFd0rp7Oxkmd9M49d7gaOjozzHTE5O2rqgVBq1UyggCIIguIKai3h09lB/fz9nkPT393MmkcfjKVjXoyMWvcJIJpNYXl4GANy5c4cPsVtcXOTspXQ6LZGOwJgd1M3sSR3dNDY2cj8uiXiqC62kBAIBnm/a2tpYXmtubuZ7rrPTpqenuUbn+vXrnFCwsLBQkZGOpiYcj76ZwWCQT448evQoNwbt6elhh+T1egs6inyOR+/xjI+P4/bt2wCstGqdWq2UEscjMNrxZDKZvGn7kUiEpZVKSY0VikPLaz09PXy8gXmMupbZgAenLN+9e5e7EoyPj3MRs1t7sBWLSG2CIAiCo9RExKOjmc7OTm5L39fXh97eXgBWiGtmkeQrGjWjFjPJQOfPr66ucqKBIBRCRzzJZJIjZzP6WVtbYztyc68toXR0Rm1fXx+fcjwyMsIRTyAQsB0LA1hRzttvvw3AmmP0fFPp1Kzj6enp4SaNZpZJoU4Fe+3nJggm2vGkUinOcNvZ2WEntLq6yp0uqmWSESz0vGHu8QSDQZ574vE4S/e6AejU1BQvRKLRaEXv65iI1CYIgiA4Sk1EPHrTrru7myOe1tbWvO3GSyGf/CYIhQgEAtyJuLOzk6XeeDzO2UpTU1OYn58H8KCvm1BdEBHPOWbNYCQS4Y7lOkN2Zmamout1ClETjkcX53V0dLDjaWtrY8dTSDordN6OOBxhL4RCIZw4cQIAMDw8zJlNMzMzLK3Mzs7KXmEVoR1LXV0dLzr6+/v5hNGjR4/yVsDm5ib3ddTZa/F4vOK6EhSDSG2CIAiCo9RExKPJTRAodMKj2SbnUZg1OhL5CLvR1tbGJ0wODw+zBLy8vIyrV68CAFZWVmz1PUJloyW1YDDIbbkGBwdx7tw5AJYKo+3AzFrTkU+11nLVlOMxeZRTKcbhAFY2kkwOgom2HY/Hw2ephEIhAFbb+6effhqA1R9QFwnev38f77//PgBwJwyhOtB994aGhnjRMTQ0xI1gzd6Q0WgUMzMzAKzCUcBKr6/GOUakNkEQBMFRaiLi2WvdzW7JBWbEU42rEqF0zM1k3YNLnyZ5/vx5vPTSSwCsrDYd3UxNTXE2ky4cFKoDHfGMjIzgmWesk7mHhoY40cA8ZTYSiXDEo5NNdJf7aqMmHI9JKU4o1+noSnKtv0YiEU5xFMcjAA8cT3NzM5/x9MQTTwAATp06xfLb+Pg4fvzjHwMArl27xllMiURCbKmGSKVSPK9sbm5y6rRpD9WISG2CIAiCo1RtxGNGKzqzpK6ujh8XE/mYUhsR8WpEh8GTk5P8WEdBQvVDRDa70HJJMBjkNkwnTpzgYzcuXLjA13TLnDt37uCtt94CALz//vtYX18H8KCljlBdFMqAjcfjLK+ura2xHehrktVWYZjZRfpYhPr6ek5dNLXVR6GlNCJio9DHH1y5coWzT3SGklD5mLajpbNcZ2M+1gWAoVAIQ0NDAICXXnoJL774IoAHezyRSIQXKtevX7ft61RjkaDwYP6IxWI8R0QiET42ZWJiAjdv3gQAXLx4kfd4tMRWTd0KTERqEwRBEBylaiMeU17TG7rNzc0c8eiOsJp8RaM7OzssocXjce4aPD09DcDaINbdZKWvVvWgoxy/318w4tHXGxoa+HDBgYEBrtUYGRnh5//0pz8FANy7d48jnhs3bnBWW7W2RREeRCzxeByRSIQfawltYWEB169fBwCMjo5iZWUFQOUf9LYbRTkeImoD8OcAngCgAPx7ALcB/BWAQQCTAH5TKbV+KKPcA9qx1NfXo7OzE4CVxjg8PAwAnM4IFD6DJ5PJsLGsra1x88bZ2Vn+qn9e7YZSCpVoLxoiYmm2vb2diz+bmpr4SOrm5mZ+3NLSwvZ19OhR9PX18WOdmaSLQ9955x2Mj48DAJaWlnhRI/s6lW0zj0IvgBsaGnjOaWxsZHl2aGiIFx1+v5/lON2vL51OV6XcVqzU9scA/kkpdRrAOQCjAL4K4IdKqREAP8x+LwiA2ItQOmIzNcSuEQ8RtQD4MIDfAgClVBJAkoheAfBy9mnfAvAmgK8cxiD3glnIp1ekw8PDHPGYRyE8KsNNRzLRaJRXsLqoa2lpiX8uEY9FpdqLjnJaWlq4/uYDH/gAHnvsMQDWMRo6+mlvb+fi0I6ODpba6urqOPPx/v37LKG89957ACypTSeoJBIJkdeyVKrNFIPZq00f/lZfX8/21tfXx+1zEokEbty4AcCS3QBLlqvGiKcYqW0YwDKA/01E5wBcBvAlAD1KqXkAUErNE1F3vl8motcAvHZA4y0araFGIhHOGnnzzTe5CZ8po5gTSW7RqJ4cUqkUv6bOOEkmk7ZTJAUAFWoveiLo7OzE6dOnAQCf+tSn8Gu/9msA7OmwW1tbvPjY2trivb9IJMIa/bVr19jx6H2dxcVFzmZKp9NSKPqAirSZUih0r/1+P885ra2t7IS0LKeUYpupJoqR2nwALgD4ulLqKQARlBDyKqVeV0o9o5R6Zo9jFCoLsRehVMRmaoxiIp4ZADNKqZ9nv/9bWEaxSES92ZVIL4ClwxrkXtDSVzqd5vB1c3MTFy9eBGBJJDrKMSMe83FTUxNHN5FIxBbpmF8BaZljUJH2YqKj4sXFRU4GMNvX3717l08Mjcfjtlb2OuL52c9+xr+rE1Cqtf3JAVDxNlOIfHU8sViME0qCwSAnQrW0tKCjowMAeHsglUqxxF9N7Op4lFILRDRNRKeUUrcBfBTAzey/VwF8Lfv1e4c60hLRBaJ1dXUcvno8Hp4Mfvazn3F1sOmEzMfm8dhExOmvOoVanM3DVKq96EXExsYGF/GNjY3hyJEjAKz06IGBAQBWx4rLly8DsPb+dCr99va2LSvJlNWEwlSqzRSDtgc97wBAT08Pn0AKPDghubGxkW1MFx0nk0nOpq0miq3j+U8Avk1EfgD3APw7WDLdXxPRFwBMAfiNwxmiUIGIvQilIjZTQ5CTq3YiWoal36449qbF0Qn3jQk4+HEdV0p1HeDrHSouthfAnTZzGGOqNJsJw6r/cRtutBegTHOMo44HAIjokts2Ad04JsC943ISt/4N3DguN47Jadz6N5Bx2ZFebYIgCIKjiOMRBEEQHKUcjuf1MrznbrhxTIB7x+Ukbv0buHFcbhyT07j1byDjMnB8j0cQBEGobURqEwRBEBxFHI8gCILgKI45HiL6OBHdJqI7RFS29uZENEBEPyKiUSK6QURfyl7/fSKaJaKr2X+fKMPYJonoevb9L2WvtRPRPxPRePZryOlxlQOxl6LGJvZi4AabEXspcixO7PEQkRfAGIBfgtWX6R0An1VK3Tz0N394LL0AepVSV4ioGVYn3E8D+E0A20qp/+70mIyxTQJ4Rim1Ylz7bwDWlFJfy36YQkqpimoNXypiL0WPbRJiLwDcYzNiL8XhVMTzLIA7Sql72bM2vgPgFYfe24ZSal4pdSX7OAzrwKm+coylSF6BdRYJsl8/XcaxOIXYy96pRXsBXGIzYi/F4ZTj6QMwbXw/AxfcDCIaBPAUAN0V94tE9B4RfbNMEoUC8H+J6HL2jBEg50wSAHnPJKkyxF6KQ+zlAa6zGbGXwjjlePId8VnWPG4iagLwdwC+rJTaAvB1ACcAnAcwD+B/lGFYLyqlLgD4VwD+IxF9uAxjcANiL8Uh9vIAV9mM2MujccrxzAAYML7vBzDn0Hs/BBHVwTKKbyulvgsASqlFpVRGKbUD4H/BCt0dRSk1l/26BODvs2NYzOrGWj+uuDNJ9oDYSxGIvdhwjc2IveyOU47nHQAjRDREVtvzzwD4vkPvbYOICMA3AIwqpf7QuN5rPO1fA3jf4XE1ZjcjQUSNAH45O4bvwzqLBKjQM0n2gNjL7uMSe7HjCpsReymOYs/j2RdKqTQRfRHADwB4AXxTKXXDiffOw4sAPgfgOhFdzV77PQCfJaLzsMLzSQD/weFx9QD4e8tu4QPwf5RS/0RE76DGziQReykKsRcDF9mM2EsRSMscQRAEwVGkc4EgCILgKOJ4BEEQBEcRxyMIgiA4ijgeQRAEwVHE8QiCIAiOIo5HEARBcBRxPIIgCIKjiOMRBEEQHEUcjyAIguAo4ngEQRAERxHHIwiCIDiKOB5BEATBUcTxCIIgCI4ijqcIiOgviWieiLaIaIyIfrvcYxLcCxFt5/zLENGflHtcgjupRXuRYxGKgIgeB3BHKZUgotMA3gTwSaXU5fKOTHA72UO3FgF8Qin143KPR3A3tWIvEvEUgVLqhlIqob/N/jtRxiEJlcOvwzpO+K1yD0SoCGrCXsTxFAkR/SkRRQHcAjAP4B/LPCShMngVwF8okRaE4qgJexGprQSIyAvgQwBeBvAHSqlUeUckuBkiOgZgAsBJpdREuccjuJtasheJeEpAKZVRSr0NoB/A75R7PILr+TyAt6t9EhEOjJqxF3E8e8MH2eMRdufzAL5V7kEIFUPN2Is4nl0gom4i+gwRNRGRl4h+BcBnAbxR7rEJ7oWIXgDQB+Bvyj0Wwf3Umr34yj2ACkDBktX+DJajvg/gy0qp75V1VILbeRXAd5VS4XIPRKgIaspeJLlAEARBcBSR2gRBEARHEccjCIIgOMq+HA8RfZyIbhPRHSL66kENSqhexGaEUhB7qU72vMeTLaYcA/BLAGYAvAPgs0qpmwc3PKGaEJsRSkHspXrZT1bbs7AaZ94DACL6DoBXABQ0CiKSTIYyo5SiMr59STYj9uIKVpRSXWV6b5ljKpBi5pj9SG19AKaN72ey12wQ0WtEdImILu3jvYTqYFebEXtxHffL+N4yx1Qp+4l48nm1h1YbSqnXAbwOyGpE2N1mxF4EA5ljqpT9RDwzAAaM7/sBzO1vOEKVIzYjlILYS5WyH8fzDoARIhoiIj+AzwD4/sEMS6hSxGaEUhB7qVL2LLUppdJE9EUAPwDgBfBNpdSNAxuZUHWIzQilIPZSvTjaMkf01/JT5qy2khB7cQWXlVLPlHsQxSI2U34OO6tNEARBEEpGHI8gCILgKOJ4BEEQBEcRxyMIgiA4StUfBEf0YJ9Lzh4SBEEoP1XveFpbWxEKhQAALS0taGpqAgAEAgGk02kAQDqdRjweBwDEYjFsb28DACKRCGKxGAAgmUwik8k4PXxBEISqQ6Q2QRAEwVGqPuIJhUIYHh4GAAwNDeHYsWMAgJ6eHpbh/v/2zi227fzK758fRVLUzbpfrJtlj8f23D0ZO5lMgsEikxbtZtBNgN1FF0WQtgGmD90iC7RosnnqQx/Sot3uPm0x3WyRhy3SdC9InjZNnAkmnQkmGnt8Gd8tW5J1oW4UdaNEUeSvD3/+jv/00BY1lqg/qfMBBqI5FPWzePw753x/53eOtZa1tTUAVldXmZ6eBmBsbIzJyUkAZmdnWVxcBCjIlBRFUZSdUfWOJxaL0dbWBsDAwADPPvssAP39/SSTScBzNs3NzQBks1k6OjoAz2m1tLQAUFdXJ1Lb8vIyoI5HURTl06BSm6IoilJWqj7jqa2tlWymq6uLgQGv2W1fX5/IaBcuXJDiAmstDQ0NALS1tXH48GEAXnnlFSk6uHfvHgDj4+NMTEwAEI/HpRBha2tLK+gURVEeQdU7nmQyyfj4OACdnZ309vYCnnQ2NeV1WL9+/bo4lWw2K685e/YsL7zwAuDJdM6BXb58Wb5+8MEHAAwPDzM7Owt41XBaAacoilIcldoURVGUslL1Gc/s7KxIYP57OePj45K5TExMsLKyAkA6nWZmZgaAubk5rly5AkBvby99fd7U3draWsCT4l555RUAOjo6JLOampqS7GdhYUF+Zi6XUwlOUZQDz4Eai9DR0cHJkycBTzq7f98b5z42NiaOZ21tTarVQqEQdXV1gHc+1N3dDcDnP/95AM6cOUNXVxcATU1NzM/PA3D79m1xah9++CGjo6OAdzl1vyvhdCyCskN0LIKyI3QsgqIoihI4ql5q87O6usrdu3cBmJ+fl4KC5eVlNjc3AU8Oc1hrpdptbm6OVCoFQDQaBTxZ7qmnngLg2LFj0o7n5MmTkilZa6mpqQHg/v37JBIJeV4pD6GQF1+Fw2EikQjgXSBub28HPMnU3fWqr68v+F4nk6ZSqR0VjNTU1MjPcp9/LpcT+6qrq5PqyVwuJ7aVTqdFyo1Go/Ie4XCYTCYDwMrKitxBm5iYYGRkRNaoBAtne7W1tcRiMcCzB2cTLS0toqS0tbWJTTg79NuMtVYe+59/+LHb15aWllhYWAC8Iwd3/9Bau+/7z4GS2p6EUCgkRuSMoqmpiZ6eHsC7kOoup7700kuykSWTSW7dugXAT3/6Uy5cuAB4G8x+yG4HUWoLh734qra2VgKCkydPMjQ0BHgdLY4ePQogmwB4/0CdfLqwsCDBSSlEo1GxExeoZDIZ+cw7OjrkZ21tbcmZ4PLyMocOHQK83oJuvXV1ddJdY3JyUs4TP/roI959910A6ayxy6jU9gQ422ttbZVAJxaLyed66tQpzpzxfr0nTpwQm3D9Jf3nwn6H8bCz8T8fj8cB79rHpUuXAPjVr37F9evXAc/e9rLqVqU2RVEUJXAcKKntSfBHGC5lXV5elihzampKno9GoxLFnDx5Ui6tjo2NcfPmTXm//S40OCj4C0Rc1Pn0009z4sQJAIaGhiTjcReGwYsw/dWJu53xuCrJTCYj/QH9GU9zc7PIt42NjSKbRKNRiVjv3bsnEk4kEpHn/ZKxsjvU19eLktHY2ChyWSgUKpqV+C+jDwwM0N/fL9/rnj927JgUPPX29spn72z20+B+zsDAgLzP+Pi4XHzf2NjY93uG6niekHQ6DXgyx40bNwDvLMmVZH/ta1/jyJEjALS3t4thbW5uyvmBsre4f+T9/f3iYJ577jmef/55wHM2TtpobGwsmOHkNpfm5uZdOeNx79HQ0CBnOZFIRKojm5ub5flYLCZOKxwOy/vEYjH5O8VisYIzIWeP6nh2n5aWFk6fPg14DsM5/Gg0WuBs/Gcyrtfj0aNHJQCtr6+XoKShoaHgs3TS3JPg1tXV1SUNkvv6+mTvyeVyEkTt11nPtlKbMWbAGPOOMea6MeaqMeZb+efbjDE/M8bczn9t3fvlKkFH7UXZKWozB49S3OsW8G+ttReMMU3AeWPMz4B/Dpyz1n7PGPMd4DvAt/duqcHERbDZbFYOolOplEQur7/+urTdaWlpoampCUDuDVUhgbMXFwG2tbWJDDE4OCgSR3t7e4FE5eSwbDYrWYb73MCbausKTSKRiGQ2frLZ7CcqJSORiGQw/som/32xh3EZzOrqqlQrpVIpqbbMZrOylpqaGnlcYQTCZtxn09HRIR3q4cEU42eeeYbPfe5zgCfPFst4gILsx9lNT0+PyLz+akV/dr1buPeORCIiHff09EjGE4Tqx20dj7V2GpjOP14xxlwH+oDfAX4r/7IfAL/kADoeP07yOHz4cEFa7chms7KR7LfGulcE0V781T+uJHljY0NKkjc3N4tOoHVfHW6TqKmpkc+6paVFNhT/JrK8vCyBiHvv9vZ2kdQaGhrk/MZteMVw7zEzMyMXnkdGRqSEemRkRIKYSp2SGxSbcbLYG2+8wRtvvAEUSpxdXV1SxdrU1FTg8Is5Hvf94J3ZOJsJhUJ74nCK4XeCQWJHgqIxZgh4GfgA6M4bDNbaaWNM1yO+5y3grSdbplKJqL0oO0Vt5mBQsuMxxjQCfwP8kbV2uVSPba19G3g7/x7Bcru7gIuGIpGIRExHjhyRQ73a2lqRXDKZjES/1V7RFiR7cdFeNpuV3/v6+rpUIaZSKcka/JmKqyJzuM86HA7LgXBfX59Evv6/4+zsLGNjY8ADWfXIkSMFspy/KOBRuKzs/v37Urxy6dIluZ+xvLwsr6n0cRz7bTOu+/yrr77KV77yFaBQSvVnP8aYsmUtT4L/fs/Dz+0nJTkeY0wEzyD+ylr7t/mnZ4wxh/ORyGFgdq8WGVSMMaLh9vb28vTTTwPw2c9+Vkp1k8kk77zzDuCNX3Dl184BVSNBsxdXPRiPx8VJLC8vyyylUCgkEujjpDb3vaFQSJzG3bt3JeDws7a2Jo7LBR6JRIK5uTnAq4pyF46dE3OvdTaytLQkzubjjz/m9u3bgFca65zN+vq6yGtB2FA+LUGwGedUamtrC85J/OcxztnshdPxny86m1laWhJ7aG1tlXLu2traktZSrMw7CJRS1WaA7wPXrbV/4vtfPwG+kX/8DeDHu788pdJQe1F2itrMwaOUjOcLwNeBK8aYi/nnvgt8D/iRMeabwDjwe3uzxGDgj3bcgWE4HJbqlxMnTsiIhFdffVWktnPnzvGLX/wCgGvXrrG0tARU9T2LwNmLk7pGR0cl46irqyuoJHOfRzablQIE99XhjzBddByNRotKZVtbW5JFuUwpHo/L1Ft4cNHPf2k1k8mI1Dc9PS3tls6fPy+PV1ZW5O+UzWYDFcl+SgJhM4/KePzy2l6Sy+VECXEZ7a1bt7h69Srg3T178cUXgU/Kfo+imNQWBEqpavt/wKP+Zm/s7nKCSzQaFXllcHAQgOPHj8uFxKGhITo7OwGvoaiTcYaHh8Vw5ubmqmGTeCxBtBfnANLptGzq5cRdTm1qapLHmUymqC1kMhmR6EZHRwtGd7gGt9VGUGzGbeAPV50V29gf17DTj7O9paUlOVPc3NwUKc0f0G5ubsprnA1cu3ZNeqyFQiHZb5qbmx9ZOu+X11zwtLW1VXCxdb/3oYos+lcURVEqF22ZU4RiEU5tba1cwHIXD7/85S/zzDPPAN7lRBddfPDBBwwPDwNeBZKLWKpEFlF2iJNt/BdY29raikp0mUxG5MC7d+9Kp2Ftr7T3+ItHtsNaK4UAmUxGMpiH+/m51lmXL1/m2rVrgNdey99J3O03/nt+rhP53NycZD+Dg4O8/vrr8lontRVbG3hZjrOb9fV12Z+CILup48njbiE3NDRI5cjhw4fp7e0FPLnEySTuazQalcZ7ly5dKphAeufOHcDT9XfSXFKpPvyOx10s7ujoEJvz93Db2NiQmU3j4+PSpDQIt82rHbfpx+NxpqamgMIzvIdlMVf1uLKyUtA42BEKhWR8xW9+85sCx+POev2BqF+yc/bgH2Hgb1T7uADWOcSNjQ1Zz+rqaqAcj0ptiqIoSlnRjCePiz47OzulIu3s2bMy3qCjo0NaozgpZGRkRKKYCxcuSNXR2tqaRKgPV0YpBw8XMbe2tsrwua6uLqmq80fPiURCotREIiHVa2pHe4+Tt27cuCED2R6V8SwvL8soi+npaXkcj8clGwmFQvL5zc3NSZbjLy7w4z/0d3Kff1JtX1+ftFmqqal5ZDWbs6XJyUkpbLp3716g7hCq48njzm+OHTvGSy+9BMDzzz/PqVOnAM8xOefkNNdEIiFVRxMTE5KeZ7PZiuyZpewNTmprbW2VUent7e2yoaTT6YJxxW6D8jselWv3Hr/j8V+dKHaB1P9vf3JyUs7idmsKrLuy0dDQIGNV+vr6pPfj4xyPs59bt25x5coVwKuKdDYWhHNmldoURVGUsqIZTx7Xp+nkyZO8/PLLgHdPx6Xcm5ubBUPfwIt0XJazvr5eEb2blPLQ2NgoNuU6Gh86dEhaLNXV1UlV0tLSEqOjowDcuXNHouelpSWRbKu9t18QcL/r27dvS6FQKBQqelEznU5LNuqX1ncLJ7W1tbVJ+y1/xvO4Dtf+foRuXZubm4HIdBzqePK4D2ttbU1uDcfjcUl5t7a2Cl4DXom1a3MPiP66srIiae3GxkbBKIQgVJQoe09DQ4PYhgteDh06JOc60Wi04LzAVT/dvHlTgplkMim2po5n73H/TqempuQz2O4iKezNhUy373R2dsqVjd7eXrGfUkcrBHUsgkptiqIoSlnRjCePkzfef/99aWff3d0tMkl7e7v0ZXNVLqdOnZLDYn8X2bGxMXmPeDwul8hSqdQnplIq1UlDQ4NkOu4uWHNzs7Rd8g8PS6VSIu1MTExI8UoqlZIoXNkfHjXgba/xV7W57uf19fWP7M/mz2xc1dry8rJkzEErdlLHk8c5jWQyKWXR/jbkQ0NDUmbt78/mNpV0Oi0feEtLixhLe3u7aP2JREIqTtbW1mRTqfQ5KsonaWxslKDFXRptbW2VDcV/WdBf1ZZMJkWX1+BEeXjuz3Z947LZrBwVTExMSEATtABGpTZFURSlrGjG8xDWWklLV1dX5bG/Xb3LiFpaWiSbaWhokOKCQ4cOyYHgM888I9FIPB5nZGQE8PpwuW7D8/PzVTHMS3kQkfqlNtfNvLW1VaSSXC4nsqs/4G73IwAAEoRJREFU41lcXBR5RDOeg4fLiJ0k699X/AUpD+NsJZPJSMul+/fvy54VtHtgmvEoiqIoZUUzniK47COVSone7qIIKBwI5roZ9PX1SWT72muvSfeD3t5eKUqIx+NcunQJ8A6a3ZlQKpWSx0GLTJTSqampkYzGX07tbp63t7dLRLu6uir3QPzdChYWFjTjOaCEw2HZT1y2fPz4cZ5++mnAu9NTrCO1v1P2xsaGlILfunVLiqaCdsajjucxbFfRYoyRD3RhYUEcVi6Xk3sZg4ODcrjc3NwsxQpuWil4m5TrZu16PimVR01Njdy/aGxslM3DtV0Kh8PiePydg5eXlwvujjk7ClolkrK3hMNhad3V19cHeI7HBS719fVFRzb4jwfW19dlyu3o6KgUTQVNwlepTVEURSkrmvE8Af4UN5lMSgQ7PT3Nhx9+CEB/f7+kyp/5zGf44he/CHjyi7sPFI1G5XBZM57KpaenR+S1vr4+KTxxbU78UWc8Hpcs9+7duyLlBk0SUcpHKBSSPcEVFDQ3N4v9RCKRosUFuVxO9o94PC7d8zc2NgKX6TjU8Twh/ml/Dv85jTGmoMbe/b+hoSHp2/Xyyy9Lp9uxsTE5VwpC+3KldLq6uqSv1sDAgMgmxZiZmZGW9Tdu3JDqI+XgUszxNDU1ybnPw3d6HFtbWyLVjo+PSxATZKlWpTZFURSlrJSc8RhjaoAPgUlr7ZvGmKPAD4E24ALwdWutlmQ9xOrqqhQaLC0tycHfqVOnePPNNwE4ffo0169fB7zZ7C76reSMp9rtxUWeoVBIDnw7Ojqkq8XAwIBIbY5cLieZ8dLSEhMTE4B3w9xVtR1kqt1mtqO+vl4KkZw876+EfBSZTEYk+suXL0slW5Aznp1Ibd8CrgNOP/hPwH+z1v7QGPPfgW8Cf77L66t4/F2tNzc3WV9fB7wKKFdO29jYKC12WltbpZy2wqlqe3GOJxqNyqCwtrY2qUDyOx4nx/pHa6yvr8vnvLq6qmc7HlVtM9vR0tLCiy++CHjnwYBcxXgcGxsb3L59G4Bf//rXEtAEuaN5SVKbMaYf+ArwF/k/G+BLwF/nX/ID4Kt7sUCl8lB7UXaK2szBotSM50+Bfw805f/cDiSttc6lTgB9xb7RGPMW8NaTLLJa2Nrakih3fn5eDgSttVK50tLSIt2JQ6FQpV4irHp7cfJHJBKRw9/W1laRSo4cOfKJjCedTkvhyPr6ulQirays6MXhA2AzxfAXDHR2dvLcc88BSJHKowpUcrmcSGmJRIKbN28CcPXqVamuDfLesa3jMca8Ccxaa88bY37LPV3kpUXr9qy1bwNv598rmLV9+4C/o2w4HC64kew2qkqcaHpQ7MV9XrFYrGCqqAsg6uvr5TKpcyrJZFLO75LJpEit/nEZB5GDYjPFiEQiMtytr6+voMsFPOjZ9jArKyvSoWB4eJgbN24A3mVkJ9sGtZQaSst4vgD8E2PMbwMxPP31T4EWY0w4H5H0A1N7t0ylglB7UXaK2swBY1vHY639Y+CPAfLRyL+z1v4zY8z/AX4Xr+rkG8CP93CdVUE4HJZIpre3V9Louro6yX5WV1cruprtoNiLP+Nxdy7q6upoaGgAvIIR9xonqS0tLclQQH/Gs7y8HGhZZK85KDbjx6kZsViM1tZWwCtI6e/vBxCZ9lGqx+LiIhcvXgTgvffek073a2trgc50HE9ygfTbwA+NMf8R+Aj4/u4sqXqJRqPSv+vo0aMi0aRSKTn7WVlZqWjH8xiqyl7cuU5PT480h+3o6JDna2pqZNNwn+fExAQff/yxPHaOJ8jVR/tMVdmMH3dG2N3dLQ2Fn3vuOQlGt5PZs9lsQZNhJ9VWgtOBHToea+0vgV/mH98FPrv7S1KqBbUXZaeozRwMtGXOHhAOh+VQsLGxUVLp/v5+Tp8+DcCLL74o9z/ee+89ORxMJBI6+rgCcAfCvb290n26p6dHnvfj7m7dv3+fCxcuAF5rE1d9pBw8XMYzMDAg/RtPnTolUu12Gc/D464rba9Qx7MHRCIR0f17eno4fvw44KXSr732GgBnzpzh/fffB+DcuXMFjsdtVEqwcJtFTU2NOBh/t4LOzk6R2vxkMhnA0+XdBNq5uTkJMJSDgbOfaDQq41FOnDghl0Z7e3sfWcUGhTJaJpMRqS2dTge6S0ExtFeboiiKUlY043kCjDESxcRiMUmT/QfOg4ODMtSpp6dHopRLly5x/vx5AK5cuSK9lvSgObi4ezm1tbXyWbe0tHD48GHAu0Dqugv7cZFqLpeTQ+Ctra2Kk0eUJ8NJ6+3t7Tz11FOAp4K4x62trWJjxfDLa+vr6wX3wCpt36hox2OMkZJV/z/4bDZbMA10t/6B+xtDgmdIzpgGBwc5duwY4Gm17gayK48E7yKhG3/w3nvv8dFHHwHw8ccfS5NIJ8sowcPZWm1trUhtzc3N9Pb2Ap4TcnZorS1wOODZpft8t7a2KqYCSdkdnP0cOnRIgtGBgQHpx1ZbW1v0bMff688FrvPz8wWl+ZV2AVmlNkVRFKWsVFzG459rf+jQIZE5BgYGJGuYmZmRKXzpdFpaSDxJ5uOX1fySi4t8h4aGOHv2LAAvvfQSJ0+eBKChoUGynJmZGSkiuHjxIqOjo0BlRiwHEfe5x2Ix+dzr6urk7oW/TY5fCnFtctbW1sQWM5mMSm0HDJfN1NTUSGYciUQkE3rcoDfwphPfunULgHfffZfh4WEARkdHK65QpWIcj/tAIpGIVH50dXXxwgsvAHD27FnZyK9cuSIpqTFG5I1cLicbQ01NjXzgoVBIHofDYXlNfX29VKfV19fLZuOea2trK+hE4MYeb25ucvnyZcBzKq5l+e3bt6VleTwel3LaStNnDyrFAo76+nopl6+trZXgZHl5mcXFRQBp+ppKpcQu1fEcPPxVba76MRqNFjieYrj94d69e5w7dw7wxh+4y8grKysVJ9uq1KYoiqKUlYrLePzpaCwWkwFq7e3tEhkYY0SCW1tbk3Y0/oP7XC4n72OtLch4XBrc3d1dcHDsKpmctNLZ2UlnZyfgHRy7nzM5OVkwUfTq1asA3Llzp+IiE+UB7nPv7++X8QctLS2SgfsrktbW1qR7sMtyk8mk2GAlXvpTPj3GGNmrTp8+zZe+9CXAK0rabsKoX2q7cuUKAFNTU5I9V+KeUjGOx/1y/bKUf4rj2tqaXMrq6emRTWB1dVW09o2NDTlL2dzclMq3bDZbIOW5NPjIkSPieFy7e3jgBMPhsKxnampKznJGRkZEXhsdHS2Yu6NULq5x45EjR6SC0T+a2C+V+NvWOwl4YWFB7C+bzao9HAD8AbOT5c+ePcurr74KIM7ocfj3GDd3J5FIVLREr1KboiiKUlYqMuNxmcr6+rpUc6yuror80dfXJ7LI4uKiZDxra2sFbSb88pqLTDY3NyUqTafTEq1ms9mC58GLal02E4/Hpa5+fn5eDparuNv0gcDJaNFoVCLWgYGBgozH2Y5/KuTKyopcCnY2ND8/L1GqymwHD1eQ0t3dLbYUiUS27cvmbGVtbU0KktLpdEVnzBXjeBz+i3mrq6vyj9pay/j4OOBJba7SqKamRjYPfyl2LBYT6aStrU0+/GQySSKRALyNIh6PA54D889VAa/Ro9tcVlZWpMdaJafASiEugGlubqanpwfwHM/Q0BDwYFIkFJbuJ5NJkdpcf7aFhYWK66ml7A7GGDk7bmhokD2plCnDzvHkcrmKdjZ+VGpTFEVRykrFZTx+/BnP7OystJ7o6OiQx93d3dKewl+ZVltbKwUDsVhMshV/pDo2NiYFA4uLi/IaJ+8tLi5KccPm5qbKJ1WGMUbubHV0dMg9rcHBQZ599lmAgoqkzc1NsQe/HV26dKmcy1YCil9tcTL/dvj7s+1m+6/9pqIdz/r6esFFUXeWk0wm5dJeIpFgdnYWKOyFFAqFCi5xOacyPz8vUlsikZAznPX1dTnjcSWx6XRanqumNFjx8Duezs5OqUDyXxT1l/dPT09LoKLzdpSHKVb9+CjcXmKtlf0mk8kUPF/JqNSmKIqilJWKznig0PO7rCWXy4nkMTc394nO1VDYln5ra0syp/X1dTkgrvSoQnlyXMbT3t4uGU8sFit66W9+fl4KCe7fv68Zj1LAw93tH4e/s3mxjKfSqXjH47DWfuIMRlGeBGOMVEcODg5KN4ympibZAPwjOBYWFhgbGwO8bgWu+lFR4IHDKcXxuMB5ampKxqfcuXOnai4gq9SmKIqilJWSMh5jTAvwF8DzgAX+JXAT+N/AEDAK/L61dnFPVlkilRwBVBOVYi/bYYyRNkzHjh2TuzstLS1ia5lMRqTZRCIhGc/Y2JhmPDugWmzmceykuMAVNV28eJF33nkHgLt370rGU+l7XalS258Bf2+t/V1jTBSoB74LnLPWfs8Y8x3gO8C392idSmVRNfbizgebmprkvCcajcr54MbGhki7S0tLcqF4cnJSO1bsjKqxmWJYa2Uu0+XLlyWgaW5uliseoVBInJLrgnL16lWuXbsGeFJupTscx7ZSmzHmEPA68H0Aa+2mtTYJ/A7wg/zLfgB8da8WqVQOai/KTlGbOXiUkvEcA+aA/2mMeQk4D3wL6LbWTgNYa6eNMV17t0ylgqgae7HWyp2ukZERIpEI4LVecn23UqmUyCL+QW/pdFpbJ5VO1djMw/gzFJcN//znP5figeeff57jx48DhS293CiNO3fuMDk5CTwoOKgGSnE8YeAzwL+x1n5gjPkzvJS3JIwxbwFvfcr1KZVH1diLtVYuIo+MjEini66uLrq7uwHP2bizHP+FZq2s3BFVYzOPwlpbcG7j+j4mEgkpu49GoyLtugnGIyMjYoPuLLEaKKWqbQKYsNZ+kP/zX+MZyYwx5jBA/utssW+21r5trT1jrT2zGwtWAo/ai7JT1GYOGNtmPNbauDHmvjHmpLX2JvAGcC3/3zeA7+W//nhPV6pUBNVkL9Za5ubmAE/ycBFnPB6Xy6SpVEqym+vXr2sl26egmmzmcbhseGZmRu4cxuNxhoeHAa+Xm5PanLw2NjYm31dNnc1NKVUSxpjTeKWOUeAu8C/wsqUfAYPAOPB71trENu9THSUZFYy1dvtaziekmuzFjUWor6+X6qP6+nqRRLa2tuQsZ3l5WWSRKpLazpcjk6gmmznolLLHlOR4dgs1iv2nHI5ntwiCvajjKY/j2S2CYDMHnVL2mHK3zJkH1vJfg0QHwVsT7P66juzie5WDfbcXd/BbpO9aEG1mL9ZUaTazinfxNGgE0V5gn/aYsmY8AMaYD4MWQQVxTRDcdZWToP4OgriuIK6p3AT1d6DrKkR7tSmKoihlRR2PoiiKUlb2w/G8vQ8/czuCuCYI7rrKSVB/B0FcVxDXVG6C+jvQdfko+xmPoiiKcrBRqU1RFEUpK+p4FEVRlLJSNsdjjPlHxpibxpg7+dka+4IxZsAY844x5rox5qox5lv55/+DMWbSGHMx/99v78PaRo0xV/I//8P8c23GmJ8ZY27nv7aWe137gdpLSWtTe/ERBJtReylxLeU44zHG1AC3gH+A1xBwGPgDa+21Pf/hn1zLYeCwtfaCMaYJrwX7V4HfB1attf+l3GvyrW0UOGOtnfc995+BhG8YVqu1tiKHYZWK2kvJaxtF7QUIjs2ovZRGuTKezwJ3rLV3rbWbwA/xhjyVHWvttLX2Qv7xCnAd6NuPtZTIQRyGpfby6TmI9gIBsRm1l9Iol+PpA+77/jxBAD4MY8wQ8DLg2rH/oTHmsjHmL/dJorDA/zXGnM/PGIGHhmEBFTcM61Og9lIaai8PCJzNqL08mnI5nmJN4/a1jtsY0wj8DfBH1tpl4M+Bp4DTwDTwX/dhWV+w1n4G+MfAvzbGvL4PawgCai+lofbygEDZjNrL4ymX45kABnx/7gemyvSzP4ExJoJnFH9lrf1bAGvtjLU2a63NAf8DL3UvK9baqfzXWeDv8msoaRhWlaH2UgJqLwUExmbUXranXI5nGHjaGHPUGBMF/inwkzL97AKMMQb4PnDdWvsnvucP+172NeDjMq+rIX8YiTGmAfiH+TX8BG8IFlTBMKwSUXvZfl1qL4UEwmbUXkqjLGMRrLVbxpg/BH4K1AB/aa29Wo6fXYQvAF8HrhhjLuaf+y7wB8YbRmWBUeBflXld3cDfeXZLGPhf1tq/N8YMAz8yxnyT/DCsMq+r7Ki9lITai48A2YzaSwloyxxFURSlrGjnAkVRFKWsqONRFEVRyoo6HkVRFKWsqONRFEVRyoo6HkVRFKWsqONRFEVRyoo6HkVRFKWs/H9GJgg+egepYwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data.show_batch(3, figsize=(6,6), hide_axis=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at another example from [`vision.data`](/vision.data.html#vision.data) with the planet dataset. This time, it's a multiclassification problem with the labels in a csv file and no given split between valid and train data, so we use a random split. The factory method is:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "planet = untar_data(URLs.PLANET_TINY)\n", "planet_tfms = get_transforms(flip_vert=True, max_lighting=0.1, max_zoom=1.05, max_warp=0.)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
image_nametags
0train_31112clear primary
1train_4300partly_cloudy primary water
2train_39539clear primary water
3train_12498agriculture clear primary road
4train_9320clear primary
\n", "
" ], "text/plain": [ " image_name tags\n", "0 train_31112 clear primary\n", "1 train_4300 partly_cloudy primary water\n", "2 train_39539 clear primary water\n", "3 train_12498 agriculture clear primary road\n", "4 train_9320 clear primary" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(planet/\"labels.csv\").head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = ImageDataBunch.from_csv(planet, folder='train', size=128, suffix='.jpg', label_delim = ' ', ds_tfms=planet_tfms)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the data block API we can rewrite this like that:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/home/jupyter/.fastai/data/planet_tiny/labels.csv'),\n", " PosixPath('/home/jupyter/.fastai/data/planet_tiny/train')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "planet.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
image_nametags
0train_31112clear primary
1train_4300partly_cloudy primary water
2train_39539clear primary water
3train_12498agriculture clear primary road
4train_9320clear primary
\n", "
" ], "text/plain": [ " image_name tags\n", "0 train_31112 clear primary\n", "1 train_4300 partly_cloudy primary water\n", "2 train_39539 clear primary water\n", "3 train_12498 agriculture clear primary road\n", "4 train_9320 clear primary" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(planet/\"labels.csv\").head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = (ImageList.from_csv(planet, 'labels.csv', folder='train', suffix='.jpg')\n", " #Where to find the data? -> in planet 'train' folder\n", " .split_by_rand_pct()\n", " #How to split in train/valid? -> randomly with the default 20% in valid\n", " .label_from_df(label_delim=' ')\n", " #How to label? -> use the second column of the csv file and split the tags by ' '\n", " .transform(planet_tfms, size=128)\n", " #Data augmentation? -> use tfms with a size of 128\n", " .databunch()) \n", " #Finally -> use the defaults for conversion to databunch" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHwCAYAAACMiJRaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXvQbdtSF/brHnOutfc+914eF0NE7oUgmvKFFilDxRA1kTKiWGAhUmDUa5RgQCUG30UZVKikKvEZ4qMgRhGwgkmBBtGgIjEoCFpSJIVRhPBQKeRxH+ec/X3fmnN054/Rr7m+tR/ncM49697Mrtr7W2uu+RhzzDHH6P51969JVbHLLrvssssuu+xyTcJvdAN22WWXXXbZZZddzmVXUHbZZZdddtlll6uTXUHZZZdddtlll12uTnYFZZdddtlll112uTrZFZRddtlll1122eXqZFdQdtlll1122WWXq5NdQXmDhIiUiD76fencRPSFRPQVr/V5n3CtX0tE3/DeuNYuu7yvChH9dSL6DT/Bc/xiIvoXr1WbXkshoj9PRF/0RrfjSfJa9P/7qryea5jLrqC8F4SIvomIfvMb3Y73JVHVr1TVX/pGt2OXXa5ZVPUTVfUvvJbnJKLvI6JPeC3P+f4qr0f/75KyKyivo9CQvY9foRDR9F681v6Mdnmfk2set+/N9/fVyk+0je/t/n8N2nv1z+SSXOUAvwYxK+L3EdF3EdE7ieh/IqIHRPRBRPR1RPQjtv3riOjDy3HfRERfTER/D8BjAH8RwH8A4EuI6CUi+pKz6/x8IvrhOoCI6FOJ6Due0b5GRL+fiL6HiF4kon9ERG+7sN8HENGXW3u/n4i+wF+sc5cNEX2kwXaTff+3iOj/sPP/TQAfUvb9a0T0286u9Z1E9Cn2+euI6PeW35SIfjsRfS8R/SgR/belHe8gor9HRH+MiH4cwBfatm8+O/5ziOi7rT1/mIh+KhF9CxG9h4i+mogOtu8rfUafT0T/6OxePp+IvvZpz2CXXV6NENHvLe/tdxHRr7LtjYj+iL0f/y8R/daz9/F83H4UnaGzRPRZRPRPyrk/1rZv4Hh6guuEiP4igLcD+N9svvrddMEFRAVlsXnkfyGiryCi9wB4BxFxuc8fs/fzg8vx30lEn1m+fzwR/X0iehcR/SARveMJffdJRPQdtt/fJ6KPeVa/2m+X5pi323nefrbPf09E7yai/4eIfkk5x1P7/+wa77K57hfY9h8kon9NxR1ERL+CiP6xzV8/SERfWH7zufg3EdEPAPhGenVz7ucS0XcD+G7b9guI6Nvt/r6diH5B2f83lrHzvUT02WfX+l1E9ENE9K+I6D+99Hxec1HV/d+FfwC+D8D/DeBtAD4YwN8D8EUA3grgUwE8AvBmAH8ZwNeW474JwA8A+FkAJgCzbfvNZ+dXAB9tn78LwCeW374GwOc/o32/C8D/BeDfBkAAfi6At14495cD+CvW1o8E8M8A/Cb77QsBfEU550fasZN9/xYAfxTAEcAvBPCi7w/g1wD4B+XYnwvgxwAcntBeBfB3rC/fbu34zfbbOwCsAH6b9dlD2/bNZ8f/VQBvsb69A/C3AXwUgA+wPvwNtu8rfUZHAD8O4GeUff4xgE99o8fh/u/97x+ATwPwYRgG4qcDeBnATwbwW2wcfziADwLwt87ex6fOLXbefwng59uc8NEAPsJ+iznBvv95AF9kn38xgH9Rfvs+AJ9Qvm9+P9/H5pEFwKfYPT0E8F8A+Fa7lyOAPwvgLz2hP95uc8tn2D29FcDPu9DOjwXwrwF8HIAG4DdYO45P61f77R04m2MutMP3+R3Wjk8H8G4AH/yc/e/H/0Zr3xfZ/v+D9cEvtft8U+nXn2Pt/RgAPwzgU+y3j7Rn9uUAXrA+fTVz7t/EmHMf2t93Avh11v7PsO++bvwKAD8VY+z8Igwl7GPtt19m7fvZ1p6vwtmYel3elTf6Zb3Wfzbwf0v5/ssBfM+F/X4egHeW798E4A+d7ROD+GzwuBLxewB8pX3+YBsYP/kZ7funAD75KQPzo+0luQPwM8tvnw3gm+zzF+IJCgrGpLECeKH8/lVIBcUX9Z9m3/87AH/qKe1VAL+sfP8cAH/bPr8DwA+c7f8O3FdQ/v3y/R8B+D3l+x8B8MefcO3neUZ/GsAX2+efZS/u8Y0eh/u/9/9/AL4DwCcD+EYAn122fwLuKyhPnFsA/O8APu8J13i9FZS/e/b7PwHwS8r3n4yhxEwX2vb7AHzNE9pd2/mnAfzhs9//KYBf9LR+tc/35pgL+78DwL8CQGXbtwH4dc/Z/+8A8N3lt59j/f6hZduPwZSvC9f/4wD+mH3+SDv2o8rvr2bO/Y/K918H4NvO9vkWAO94wvFf6+MJwJ8D8N+U3376+Zh6Pf7tLp6nyw+Wz98P4MOI6BER/Vka7pL3APi7AD6QiNoTjnse+QoAv5KI3oShJf+fqvpDzzjmbQC+5xn7fAiAg7Xd5fsB/JTnaNOHYSzqL58dCwBQ1TsAXw3gP6HhqvkMDHfW0+Refz7htyfJD5fPNxe+vwkAXuUz+gsAPpOICONF/mq7x112eU2FiH59cVO8C8Mq/RCM96GOy0vvxNPek+eZE14vOW/XRwD4mnKP/wRAB/ChF4593nZ/BIY79l3lvG+DzSNP6dcntfGS/Eu1Fdjklc5T53MSVPVJ89THEdHfoeGKfjcGglbbu7neazDnfhi2awFQ1gMi+kQi+lYi+nHrv19e2nM+Ns/P87rIrqA8XWpMx9sxtOvPx3CrfJyqvgXD9QEMWMylDvBL37c/qv5LDE32V2Esjs8adMAYLD/1Gfv8KIbV8hFl29sxYGBgQKCPym//Zvn8QwA+iIheODu2yl8A8GsB/BIAj1X1W57Rnkv96fLUPnqF8oqfkap+K4ATRrzQZ+L5nsEuu7wiIaKPAPClAH4rBrT+gRiuZMJ45z687H4vpgxPf0+eNic8xpPf9WddYzNPmKL/k55xzA9iuK0/sPx7YHPdK2n3+X5ffHbOR6r6l57Rr09q4yX5KWakuLye89RXYbit36aqHwDgz2Db3kvXe6Vzbj3+X2G7FgC2HhDREcD/ioHKfKj139eX9vwQ7s/fr7vsCsrT5XOJ6MMtuOv3A/ifMWIabgC8y7b/V89xnh/GiJV4mnw5gN+NAQt+zXOc88sA/GEi+mk05GOI6K11B1XtGBr3FxPRm+0l/i8xEBtgQKC/0ILFPgADavVjvx/APwTwB4noQEQfD+BXnp3/WwAIhntls6Bb8NgXnrX5d9EIYH0bgM/D6M/XQ17NMwLGM/gSAKuqfvOzdt5ll1chL2AsGj8CjMBEDEsfGO/q5xHRTyGiD8Rw/b4S+TIAv5OI/h2bEz7a3nlgvOufSSMQ95dhxBg8Sc7nq38G4IEFdc4AvgDD3fA0+TMY885HAAAR/SQi+mT/kUaQ7Tvs61cC+AQi+jVENBHRW4no510455cC+C2GPBARvWBtejOe3q8XpQSifmTZ/G8A+O1ENBPRpwH4GRgL9eshbwbw46p6S0T/LoZh9FR5FXNula8H8NOJ6DOtnz8dwM8E8HUYSPsRo/9WIvpEjJgZl6/GCH7+mUT0CM8/p/6EZFdQni5fBeAbAHyv/fsiDD/hQwx04lsB/I3nOM+fAPCraWSU/Mkn7PM1MFj0zK3yJPmjGIPmGwC8B8D/aO06l9+GYQF9L4Bvtnv6cwCgqn8TQ0n4ToyYjq87O/YzMQLSfhxjQH75hfN/OYZSdU7g9jaMwOIqf8Wu8x0A/pq1+fWQV/OMgPHC/2zs6Mkur5Oo6ndhLC7fgqEI/Bzke/KlGO/zd2IEaX89RhxYf85z/2UAX4zxjr+IEUPgmTOfh2FgvAvDAn9ahtp/DeALzFXyO1X13RgxY1+Ggb6+DOBZxG5/AgMd+AYiehHjPfw4AKCRbfdW2wZV/QEMd8LnY8w134ERAHp+f/8QwGdhGBHvBPDPMeI+ntWvT5K3YbgqKqrzDwD8NIy544sB/GpV/bFnnOfVyucA+EPWP38AYz5/Hnklc26I3ccnYfTzj2EYxJ+kqj+qqi8C+O3WhndizP1/tRz71zHm1W/E6PdvfM62/oSEtu62XVyI6Pswgp/+1nvxmt+DEST3XrvmT1SI6NcD+M9U9ePLtg8H8JdV9d8r2xQjuOufvwHNfC4hoocYWQIfq6rf/Ua3Z5f/f4tZsX9GVc9h+fdpMTT2c1X1M97gdnwBgB9R1T9r39+BMed//FMPfIPleefc9wd5nyRveX8UIvpUDIjyvaKZvhZiUN/nAPhTdbuq/gsA74svyn8O4Nt35WSXN0JMQf4PMVCUD8VALZ/H3fs+JeY+fcNdqKp6tRT6T5L3wzn3qbK7eK5AiOibMFLoPldVpWz/6zTIks7//f43rLHZtv8Yw1/5wxiQ8vu0GGL2eRjw5y67vBFCAP4gBsT+jzEyX/7AG9qiXa5G3t/m3OeR3cWzyy677LLLLrtcnewIyi677LLLLrvscnVyFTEon/s7PksBYKIGkYHovPjyY7zzxRcBAI9Pgy9LQfD6TI0Yk/FuEQBxz4ilsHcR3J0WAMBLL53w0ovj83wYuz18gXHqIzj+8e2KN7dxrvktR4BHt7R1tOXIBEzj96V39NM6LsUWXE8NyqNdpEB4aQydEiKAR7u0SySmi2SSOtknIoCsD0gEj18+jbZY+x696REOx8nasuL2ZolrPTiw3eP4XZmx9nGu06LoS7c2jvbN6Gg8fmduEB3HL6Lolv5Ofl9M2UYRLKdxjmXt1j5Bd+cUM1z3Pa2WRk+CFx7YPTw8AIex87oKlhuxex/7Hh4wmpjufGLoYWy/uRt9ocuKwzS2tQczjs2u0Vfc2D0yt3t9P4GgMj4vGt0GpvHl0BSPbUyw3wwx5jaP46eGbgkVi3TgdowDcaoA5ugvJuuGKgWsZKIgGBAFltX6056XiMZzJmYfSvi2v/EN5zwJu7zB8tm/9dPKk6X438ez8wMSETi2acwPKlSGhm1Tjc9UxsqFD/eZM7anAgC8YBPfcZqxqs1765g7BIBfYV1X2LQXcy3Jky+RF8m/d6e8sJfTa/Z3orSKRRnqZ6a8D7X3UbncgJY2qPWhary7qnkChfdftitnL6CL+pQQz6O+qqpAt71tKkYjBcdcyHFjogoViePGtXR0qp1A2J+5X4s31xMeO3cGKCZR2bTeWpH9lasIyHO8VH35w4bJxT8T3XtatQ+oHEcK6GYsWr9ewDSo/M+lv31MKcUjw5f8ya98RfPXjqDssssuu+yyyy5XJ1eBoDw4DM6f4zQjtGAGTmTowY1Z9suCu2Vo/YwZzTRa7QvUVVYe1q4ugmbq4NQYD4xWyAxrsBJYDSmhoZsCwN2tQKahkj5wy1sV6934fV07yFRWdvOAKbRjkIIizDV+DtHGkJ5IhDpaUrVst+475zXcmimW+SRp/UsXiKED7OdiRhdHJzS3h6XRgmChF41ZCAicx87PROBQxblo5amT+zNgUhxmRHsB4LQQVkMnqCPP1QjdzCtHN0gpNOcOQUMiCf7Xj+8iMAwJkwLkyIltlKZpuTAAs8oWI7E/rdnI5Zh2lltxRBqfO2k8hwbCjT3obs9zolE9DAAaUzx3t0BEtRgzaWGgbPfjmTnMt1VWqOy2xLVKEo8m6mG/lO3ju8bLXcbCZh/dHnouWn6op3+GXUqOOgy4OdoQ7fdNUu/BxyeK5f7sa/n81FUhbn13bz6hsb+P5aya1n1MpaC4FlFONTl/KWoIZfRgue7FpopGN0qgNpdvj+vzKEiEN4Zy5SnPdgt0kaM8fnl0Q3yiOdbuRDP89zJiniyXhszZI9y0D/Y8/VobDKSsY5qf477KjfFmBN+/YD6P8uUVylUoKMdHpqC0A8QWgA86Eh698CYAwLvf+RIA4J3v+RGstrKoCE46IPYuPTtf3I2hoQgAiumQwwMATqfiflDFYtvX0xIuED4aNMs8/DEAwB1T80XMziiKxNmG4uFtAAZU6vCgYjAvjXsASHyQ2OI75eKvrKCzhX58SKXGlY5OFC/ram4XgWIVfzk0Jo4AGHUoJgCwqsI1KybF7C6pCpW2AqHa7bK5vlQVml4RzA2b49c1Ie2+KpodPzFhbXkPo/9yPK9NAF3svOMC7ZCLO4HiZe4gsD1nf57SFbM/j8b5nhRo17c2adFHErOhQMjhVs6XFgQ26F6sM0gS0h6Hb15525aQdCiHXdEN2vX7alMLZVr7Gs9xl+uTBOzPlBM3KvzdLo4G4mLIlPldN5vuT/bPhY+fDxUF1C4m6Og2b8a4RYtVklSzjf5XSwPP1qJc9PKi/g6pKnoo5258hI0wvts7TVUB976ol6Vy994J1UVOW0PAQwV83mzFTUbl+puuSm3pnietuiyIUgOprjifKlWrYqOpBF1SYJDuW5I0dCmUB+8IOz5uuFyM7n3cKlMXZKsUvwIpjyBnwvwWbqE6MvoTm/FM2c2yXXbZZZdddtnl6uQqEJSDIRUHmgELBiUBmmENqyEsXd8cWuzLL5/C3QPSCCJ17XxVwbra8b2He0EMYTmdOno3bbUpugVdThMwT+MkDzwQkzksAUJC/o6qaE80hShBOW9LI0IzXVAJEDILpsKKFxASkIINllgXu5eJMU0W6UscPitFjcsyFGHpYaUrijYacG5yaHekK2RqwGT3uIj3p8K6A8zDxQEAalY+oYE1LQy3YPqSEC/P4/eTdvBiAb0TYToLIkNXdHcXtbRMHgSqA1h3YOKGydEpQfQXm2WmohC787UE0gVESxI9xwqwen+m7h5IetcMBFZ1QAktLGWF2g6LUgTquvsOtLWyHJRbVwkEpbm7qxEmC5LlRXF75jbc5Xpkg+b5xooSXLQ6833TM+h8bNN0AVJeI/Yq40Hp2ZawJxGsigj0dgSFiTfuxnBJX3ST5Pw02n2OoCQKwMVF4x8aKBAlVc1Jq17Bryt58S2aZH20QZ6K+0K3rh9rTJ6fEB2uhAtSUOrNMbmHn19Ew01fGKyyNgFlWyqCEoG+kETY0uuS93vv0Xrf30euLo2T7V2d/bZBp7Y3dt6f0abqmoo+ujw5xTA667tXIlehoPjC1jizVUDTgPcBTLawPXj4IPz9dyfFjWXpEBGaLQYOt66yJKxJwGo95Fkta1eoZa1MlO4F5haxK/4w1s4ZKyKCHgPSYUuJLB6lGo+SK3pCdziD8QyWtHO23nPxVEGzz3eubC0r+jr8PjxRvBS9I46bytitc40viCq5QyhWUBysDw9MEHeFuaIBRXMvF4Aebg/bNgEHVy67hJvJs336AuAwfu+qOPkbzMP1AgCmU+AkHT5zHSaGwl0pfk0JJayLYna3iiDjcKqC4X4XpXzxI1NAIAZ5QwUzDtZf/vJxjE9RgrjChR5uLM+aWnrHyZ6TdKA1V3p9AsoZSEE5sXVAVnfxRFNB8zjvQ+7o672ZapcrEUY+31g4ysLkC+7YzVe27doTb+QTHvPTXDzbbYpLeLrHsq1K6JalCHNVy7qGu7JNbbh7NxfVTZxCKmT3HTyqCmj2xxRTYXkv1Q0KhdikJC1VkMgE0bNF9cxHU/uKynfRuoDn8TEtcypOlxd0jeP8NNVFpOX8ImmMbeNhbBsh1Nb6aGveVihkerbTvfZpGQf+jLaxO3F4ycy5lNJDSmWfqoxlW/Ws3cPFFL0Qv6TKuVXWq3J3WRF8tuwunl122WWXXXbZ5erkKhAUN+iXvga0ruhY+kBITg5PMoEOw8JthwNwezuOUwl8jT0oUxFBnfOhQWgcJ+bWaa2HVdEmZKDlidCdgqN6cszib5Cw5E/qGR1VNGFHt/hV0dldCpn7r0wJG/jR5G6HcWI2dKH1Fsd0g2Z1BdQsdl0F3XlMrEETFy2239eIRfNaEwGT9QErBQ9ABL72hH6JM/jNDXsmxsHdEwqcjI/EuQzaA4bHJDcFuve3KCYPlAurQwIpw0qRveMNZ2j0rXSBevCuEu5WR0bGtgNzgVApIGWPQG/EkAh2VayWE9QtaG9ixkx5/UDSAEwWwDwZgrLeKsQGTe8awdJqx/PEYf1xwae5AYdmGWWTZ5Y19DsbdEfC7Ok9u1ydcHOrsUH93VRF+i8ckeWE0IkKnF9dEnrvf6qRqXpu515yweBsS16Lom35bqts0YXqTPGjNoa9I0MoqIUjwYq476bp2o5DCemSYg03eFfZBoZioIx+NJdfOGz98wyXdH84wtpiAkQiBny5l+ojiDOTzxOJvoogEjCkJ4IS6ASVLEjRDJz302u6cEamUt6FKGG791mPbPwm290ogaEnelSypXQvK2rjwsIWkUL5XvaIz34/vhZSQW3oJ6Bl7AjKLrvssssuu+xydXIVCMpiluba17CmQRocHm6tn9YFrlMd5glHi2mQuxUnYxl1zVLQIzWzzQ0P3Qq3uNq1c1il1ICTWd5ceADEUocVUwZ2gcMCcB6Wwf5XdNMS1zGOkWBmVSrcAKwIJ20N/HLtmilUyOmFEShMxKmd9x5IAkFSqy4KvZ99ahlv0iMFOK/Vila/CEea7RSRX4kIdEkkKqyWVQPJIFC0sYchQoFYTYRI19WuUIOnImSHNPzg64qIMXH+hEbVYpPBFouBVKwxZgy9YGAyM20qwYAeV3LgBrHA2FUVXU7WtWkuHPxW2zZV29ls4TEmM4NuKe6B3TykRHscclICYLFVPLeMYwjft0YQY5cxRne5UuHyDmcwRpqcZ+jI5W952PhNL8aSXEJNRsTEk/e995PHrTnfQU9+qG3MZSIaaU3XNOQqPu4T4WBk12SqbUEXCiKgha22hIxtkAYHlgOwkExpJkIgrdo0glTj/KoxT4A4gnsvxRcrkPGFfggVBEE14vmk5/Y4Z0G8BvXSFqGQgtYIoXSkblKwxzkLElHaU4PV9N5owObh6ObX0nmbM49YmAwx0QuBuHS2LcdBRb3G4RrJAUzlmb1CuQoF5eZkysW64GCZO9QYTrahFpjYH98mYZV2PLCVS1bGS3fjOKcK55lwczO2velNhINT1dsgls0wQYzUlQiTPbuDDdKpweO6sPQcUbNFjcpKAeMTc4HhMlo9OFOKe2JQE29f8zGv+ctBkSHSKt+IuzegEejGUwbnJqypoSDMrM7WH+RuUIpA4VZ0JaWG9WTbnd/l4SlcW8ttZtF07zcWmJcCcyuTTAQXK5oHPTfFnQ097RpBYpO5iEgTflTpMbgPtkpPrFhcQcFwOQHD9TNFAN241h1WuJbHyAcZvDNnsCi59iYZ9OzKEreEaxsoMm4STm549MKj0S8qEWgcr6+M5+QXVs7PCPeav/QSUc3LQgX63eXaJAMi01DR7UrvO6KuHDWrIzMlynGFYvy+spL7EXizCNHZJ8KGeT0y0SK4U7QYB3kCDy6X4jKRongx0mgIxT9tKhRba9Nq0fv3LSXYk1054G1v+TzQL3RtvQwTxXxd+yldFGXmL3wimWGX/FLBi4Q0lFeRyDJULgu5en9JUVbSGEMYISgzgyKTIrQoRsUiKTdJ5xoK8cVMqByHZXze+z20tzzlRpk+V1BqY86VYtrsWZs06ZNdTs+S3cWzyy677LLLLrtcnVwFgvLiy4Mptp9OeIjhymjTAWpw+zsfD7/MzYsv4eRY4TQsWmBA6+ccIITUghUUwZzuuliRBe+IEcGqPHGBuSzYi9eABLpqojRRSaplYS1ihPZaIcGafugmQE8YLDRQSQZcIk0I0hEYkdCImTGYZ2EUycXysAuHq+I4TWGFdeOCYaVI8SXSsN51SjPL0wABBG/MaRF0jyAuAWAeDEUt2V0jEIs0EZhV0Y3jAyIRkBrFuJTh7LFdVjiZ9FQUeQlmXoIaPj0z4eA7BV0vR6AeEQXUvCLZft1lJ6QgC/Ny5Eq6ot86R4litrZSS+gleAAqLKooYwJ2PIF8zFLpPKRllLZwL8zAmdq+y/VJvNuQrVunIKH2IY4hIINUC27ypKecrggPvD4/31NcPKCCHuTmbHUyWRAS1Wh07xBLI46XOj5ygfOpTlrnN1QMc6l8JRVd8j/F8qYNgmKI67lno1wr3qx6yrM+rHemBVEY5US2Lh4t1xdouqlY835KuvFUGpCXzV4O1xeSGgFAiX11VAWJWHFhsy3I1cazf/Zs673WccbK5929+bT1CxUIsLix6MKR22Hm/fHq0d+rUFDe9e6XAQCn0w3ehAcAgGk+oq+moLw86O3XdY2slsM0YYJDasDB4x/UKxwT+IHVcAGwLE5UZH59rOir82oQmi1sx7ZADea/sfYpSQ44IXiaj3OqcFNQ84ydcmMFQk3fIKUiUB54PmHNTABBZNn4iyInCaUCE6JMaGsc9PTuyDwhs0p4ygXVBw5JqaysQPNMqFnCDRT1FjQrTWtHzK4WBoSmE2gdX059xPgAAJlfaZo5HNJrVzRXkgqkrNUlFjC0hAKxuFsIHBVCocmTwhPBkmCw2vmPyHHCknCrT8KndY1929RwtFnP36m1Z9xJmzl+UCGsnhHkcVMqpToqFQUlZ9yEkTUm8kYU1V59X1HCasqQiEBC49rl2iSMIi3vVl1wNReTGm9wXi3WNuefslBH5kus/VsitypnNg1q8AJBQwmuU9pFBYnuHW4uUYrjY8opx0QcAu4LoUx5ZUVlynNt3d55lvN2V6VjnCp/l7M+qYpXPW/sV5UholK3zOdwbDopDiv8KLXiAT9v0JimggPeOKTi59jSKTNTva1NInVmcLIg2+un9/FZht+ZfjuOz8vazZw/QSnHn5UbOdtXisInenksPI/sLp5ddtlll1122eXq5CoQlL540T+BGgR+mCdMD4eeeLTAw7u726JtMk7LQFhu5BRIwtwSoldzE5yWjnVxl8Vqh/cIpFLh4VYAgDVh+pNbAivhobOCMoPNPdGD6n61TB5HdpMPZGyjjXZOXhwPHTRtTRBGRjxLKqFp7RwnNPNXyVo02klCvw23DKdLCyhVfcOakkRFiKISMIMjoDU040EWMz7OCFeFF2FkQnCnLB2RtTRZIPOj44TJzn86AR4ATZSBp+r09CVwliWvlcFeLQJjSbgE+yHo9Ccf2tJB4ohUy0wiO75Tmm63ZohiAAAgAElEQVSHhnARBQ8MCs9FcV11AWRJ14/3caA1jQOG9XEw3IPm5uoSFP+YsjqzB852JF22oGE+L5G9y/XIJXpwbMCSIXT2uZ7i7G89g5YZJBCazbEJQ17CLgjI7JA0wgO1A6rLoJ43x5wfw8z5biLdOZWi/SJyEkBxIjha9uZy8WSMp40F7Z990dLSoecMvHyvf2vnlydV5mi/fiMqc6S1SXNOIi3IMhX3XHbCBt0KtKUgLFrIRTJYmu+hGrXySW1PAdLKTRYorAw0undUdcMlWjyCoXPXQoQ+Ni1IKdHQSsUT4MH+5brbvn9lchUKygd45gM9wEMeSsmj40McPI3Y9nvpbrZUY0A649bo1E9CkUJ2NIz/QC3owTu6J7tg8oVz4nhDRaeSJSE4uK4yO3lWi0fcGqFZuxziv3uJ8g3hHKiR1ibFE0mJdy0smM2ddFj9Xteob6PKSd0eMF3W1yFVzJ65Aw6lYDHXQBNJgi+K/zJCvHAjMzP4kO6iqLMQM5vEQt3mXJwjHqaV9EElsCQB3OgWihICrWnWQSpxIa6gkAqaVyNWQNUp+Md+04SomXO3dPTTUDpPkvEoxhOHfkKkP08kME61gHAnaVGImq1PRxsQHeeK34p8zKv00CRdUZ14CtcTZ8hP1OfpXcKdtEihD18VUfvHBxrnhMYgTEY0uMv1SaSTa1mkQPezK0ourSrlIlFg+HiFygJRXR5cfC25PbNwqoISfGgoVOSUbo3KcLA5PpqSi1xmBlIoOxuq+xL7d1lN2t6fX6xmL0Wsght4RV3iOHddpKksqLlIUtV2Nm62klV3tl5uYiq4uD/ieRSlpigdAN1TKtzpEftuH47F8ZTzR+zg/XOV5WJLZR+3vT2A8hYAnA/BqihIvYnyu/2q5RzlJDXxMCvClL4vbh8uN7O7eHbZZZdddtlll/cbuQoE5QNfeBMAoM/AbBrYsR1HUCIA9QrEOGB1aH9BWuSFethdE0RZwmhqDUcn07JrdkmYjlrDYqr4zUlwNNPVABRMEwE3TiYnwNEyeuxcp5PgMDsCwvFLK76aXujSg4uOOfg2ogChCjQinRCWddTWE46MJAUiQ2UihgTHh6EbQpjN5aFEWWE4Aqm2BZ3cpGKmILRz95sqwTNcCBns6QWlWQGaLPAVSfRmIBduTh13dv5e7vHIU1hkkxcgPCiOHiC6Ml4ytOWhu9GKSq+ko9QBAO4oQbCGkIBx41wsrUcGwGxIyzQl8V4XQE42JioHhbtoVi1YstyDtztx4TZBOGn8ml0krNqZM+hPBVFcMRCtRgG7N1YAO4JyreKEjUCiiBsjOajli4VcUlTqGIvnn0CEWa2OONrhFUGhatmmCyUyQZgDpycgkL8ssKqBqojkGK/0GJllVlAczQDhrOCeGUEb4758jjdIa38lXhIo5nCwxjGRiVlOWZ02lUAuCdruozlUEI70iGTQOijb7q4YoeJ6L9hR7Zut+NyQcEtiOpXMs2W7abvP5qDSzvKnXuqilKHzRKl9kEH8eb+RhUjbcXDpJAUA3qwt5y6455UdQdlll1122WWXXa5OrgJBecujNwMA7qYONrTkYTuCnT21j2DYpQNi/MwLlti3avUeILpAowjc1CbgaFasqXJ3t5kH/mDWSOc9yYr3LENve+GBxZp0gZzGtSZuODx2JtchNAFiXUmUgafrnaMuAFnwJWesKZhaWMnB1CgUWvtgQzXUwa7VQBlQSWk1NFJM3O16di30CP7tmiiN3QpICJNr70JQsZibxpgNLblxxljpmOx5tJbxO96fizaQBX4IIW/SkS2acLB2362Cx3cDeuFHhIPzoPg5GxlqAMwQdEMXVmMUPjyYcPQ4nQlQayP39Ps7w+XxyMbwCWjv6IbCeLAsN4pg1WUBVqtoGEGBW6d83FejbK9b0J2QaIxqPkentxeN8x5ahNmhr6XgGOU555JQ2WXrTd7leqRSwm9DF7bWrlazdBPnkOZljZzYWq7jc79wrU1p+xIDEmm3yhF7ByDS39kDrwsZ6UA0bE4oFjSXzy4KREIA4viOejf3UKSy7wgA9fvJAM1AmMt9i1IwyGr0y9bi35jsXv6i/O7WP5WgY5L77RqBq843k7/HPjUyddMhNeYisR3aPNXts62cK1lGdnvabUyQrxfelNqy+1DJE9GLC6hPLVqplw7iDcRzUTagWbnHZ6E4T5KrUFAeHQY5G2gJrPI4HdCOA9YmWzSWlbCcxsJ2u7yM0zKqGRMDE3s0aAZChYto0XwZraPWnjCd3GXthgdtxsEiKU+2kt8uJ5AtMg+nI5q5c5pdsk3AofVoy50tpFIecvCKKEHW/Ex2DnFisJa8HpBC6laI3qa6IDoESunumTmPiYwkkQjW9E5oreEQodhDSQGAhhnN3FiPLXi3L4jso6YU9XG6KSWdVnS1AOWWVS3d7SQgqMPM8wSyCOPbuxXKdpz363EGZgs8PayYbV+nl2ZwTLKTKCYx11MvQWOeQTOxe+RwEo5sLn+nZ9YM8GpaeHQ8QjV/HwuMn76hkStsdgwJxEaSlH31wizapZJnycUpxontRCWUzl2uT6ruGK4BLQtDYuhJxHW2AKQ7pbgIK/+8L7hRTTvVEkZxVys2SyMwXDmzl/jQVEw8iH9QfKQrw1UOPufxObsdPbs3a/Zmz7PY340m0EBg9hIeHJ2Qbp8OSHV9bt0eyuMc3kYti/d914BGHxIy6cBleLZcGdFImsi+KJlBmuRoY+3drtqKnM/J9q9CKOfi7Pu6jm8U3c2XbYfWTE8ivaR3bBTozbYYq2VMhdua8ggfe3z27FG++LnqI6rbdhfPLrvssssuu+zy/iJXgaB0Q0XaQUO1JKIMwCrRWl6B8+b2hNvTQFAUjONk1X7N6uwqqWxODVZLMFJG5wOFVbr05OKYG2MKXHFsPK3A6lWQIVjMog+a+blUpywWjHNyzATMmaeHkwV96qrg5j4JC7KllnToi6RlFXwliCJ1w0g3NxRaVPOMgnkMrGbRryisj36vM+OhB+EqIp1XBYEkHHikgOthzSAyEczu3rD9GhOWCC7mQEEXdqsoWXzRgMlgjbvbBYunFFvPTVB06y8+Eh75Z+ujRQA1hty1Z8ryMJKiw8Y505MHKAfC4unby4qAc7sommM/EXWYz0CFopgXU6a2B9jSWkDpDGB1t6H97dQDxZKe6eITEuZ1kQRu0EWj4vcu1yeXjPyNwVig7pq+ek4OCxRjmyhSlpW228cfKp+rFV/OFYdkyqfmKUqgZkHzqunLT7BfKyJ05sbiMxP+PF0XtPWQ9IJk5GnLQbWPzt0Our2HpHXIi3gRlAEI2ByrGtcNNxpzlNoYudjeFH/fs6q6JDg6dj9r1kCkSn/n8lUaPj4xl/TlTveezTnycN4FtQLGQGYuQih+M2cbK1oyGprXT96sDOw+89X4sykdUK9w6R14pXIVCsqPv+edAIAHb3mEyejpT7pCrFZOX4d2cbOc8PLdIKC/OS0Q9uIvPBQS1Be1JWFZgeday79RhRZUFpmElZpngnCLqsFKwGJakle+nZnR7ai1Z9wIxXjPmjetQGenFUFr7+2eip9P1/oGmhuBFeLEYZKK0Umzku8U9PgSHA3aW1Cyu/tl7oz5kfmYVHF7O9ry+LZjsms42V2Tnm4Tso4q99jAQfw0NS7akMXhrD0UAUIqUb1l3wf3Su/o5bZdiYpMAxXcaS707uaaphYlCVavr6OFVIkZ07yFLUUUJ+fLWTsONkDmyZ+HJqNVo0L335Oob/VsMxopZXDo+f4LHpWXVV3/xURUJkePD9jEwW+IlXa5LvGsMi3vdl2YXEbmTa5WSdaFhNHLRJ6LYGbshMsBhdvkfPa/MFQCmqfKbuLt2roWYsHSskOc54JCUc51vhKd6VXbWJFNwy609t59bN+nMnVs3o9xP+m28FPVcgH3llTG1p8Q7p5UCKOMhSaRY9c8b9yrUiyshMwOilpC5TNVRQGFC+YJz/B8nZf69Km2t97KuWKy/b+65yo5m7c7qorUcfKs6YguP9JXKruLZ5dddtlll112uTq5CgTlR9/zbgDAW48t2EJHsJa5WE4ji+dd73kX3vni2Pfl27vg2FCVhMsNaeCiwanqJmAV2MYbWTUu+0iQoEEff+d5xuGQ13K6/NON05UecTw4p4CExtnDjUDx+cGBIqOHKDNTvAhvQ7qpRAVdnPXVLGsGVlrj+AyOm6Dmejp5xxBhmkfD26phc0Xg7LKCbjIj6c4LKoIwHxxBiTQeqHOTgMJq9IKLIhKoyzQhaO210FWmRs7walZz4Q7xR9QWDQRFFMGW6xkMqwqUolxxICjUGpqXEfC+WBiTPdt26KmSuzGl6qz7WDthsS9eKbv1HkUMu5aAtlayjiJrC1DLFjugBSoSrLUgNOeamVq6CBWR6ePsxKpa+GEYtJsS1ytULOAtkG/b/XuFyLMqeTVwK+KQlDoUFqtzP21ryVb3SGV3tb+kEHd5SnGZ11uwv62cTMv8uDHCS9B35Up5HrlIGWJnuOiJuADTbDlZiqumlPXI7CDfUs9fsngutGcT4HyhGRWCofJjPuctmuO/bKv75ucAdjTHRELIBSXSLD4QxVSVN4VGKWG1+LC5Rc0xd+/eiS6OP2RTCovwuWwRvrxD3O/MVyD7tLfLLrvssssuu1ydXAWCspr1+PLNXeS6L7REDMjJUllPNx3L7VAdH98sJb2Pw3rnQCd4U6TtFPEs5g+UwgyoioyP4gg2vb0bQbgPpiMeWOqxquD2dmz3trTew0JpUyQJR7zBKmll955af18lrP9m+mYTjYDYCZTQihWMUWikKQt0xHsAaCroXsjOr09Ac+bUmRDRJ4YSqJYUSdJN6l2mB47zLyoQT1MmAgd/gKEuCmi3tiwRolIsFYoS5I0Zyp6eHJeMwLWmmT54R8Ax2mT33dPKkiVimY3rwFEL+4sVC+4AAI8ao/dShwgjuFetXVrYh2eD8vq6BBrTl+zCaZqylpMjOxA0Q7yEG1g91dCRI40A57kxmlEVyypYsNq9eZoyIq17qqyhu1yhVKzkHDfZxgBoMUdrLOiZsTrQAU91LUgpV3N2c3X/X0sb/PeSMICKoATEkifUwsOEfN8vXLZEd9RrPX2c0tkXv5/BPH0hMqLUeDlPWa5X1g0zb15FSt/7HFtAjRIgWjhboMXo97n27BkFknAvmuWsdfVB53662c+usWlY7i/lQG9XbCt5xsTI9PXggdEM0tVkDN4CUzbvcmlVHUbiT/oM6isIX4TOXOgkihO+crkKBeXO+EzmuykGzFL6wrNtVkh00t3tEp+Zs0qt826QaBZm64JTuCLqII0nEC9K4zao7ZELpmpSlBMxpmb+npbh+4tVViYBZncP2GJ2OGwpnVfTChrl4haFvQhQMtI3rte1piqFAgPpqJTNPvjc+UGqOLiC0moGix2uGtpM4+QGWEXAxn/iboxVKPpzYsbswcae7z8B3aLkuxJsnQ0uj94Ri/s8Mfjgjch7XJEukcnOe0cafaR20pkVYq6rk57AMvqeVdHaA7sfU4ZAOC3eLi7EUnZOonC1TKDUWiPKvyHIu2l8BwCmCezkfJ6pNFGQtk3E8WxEXOmQcOFAclwPqnvre8/yIeTb3ukycdIuVyFuSAnVgnc5w4f7RJKGXjAFV4bSmoo18m+O1OKgcENK67pXsmmggf+nslNCKbUoHhulJT9H8LcPuVLEjmjrMjhXR/T881P0lboeczk6lvbqHikRmssFYrt82y4pUU/5UrKiMvOmVhh+cvvvnTK2bdWPojnF71Ud2tz3mQKx4SPR5O7a8OmEAlIOLHURi68Fm/t+2i0q7s05ilyvGLVsQ7bRS5woNHi1hivu0kWeLbuLZ5dddtlll112uTq5CgTlZaOyx92CHm4IRAqumDp4d7dGUcDee9FBNYJQV4/pBGGxL3fLmqXrPRW3FXpnKVqvpmniga8qGsXcuDF4Mkr44jLxjOcOwsms8DncPkmdflp7BOxONAWM68jOIhpoywoKVMSPbyDMkWJLJd1Lk+nVthA04RKm5OCAI0upJR9noFt/n9YMintg5xzWv90PZyG7KI7XKWj1STWe3Wqox3ISqEUaHxiR/twmCljSA1Mftx7BpA+J0Z2ZNxAzRDoxuAUPChPH8/Wikd5rcb9SzY3hegt0qxAcZKDbFLw0zAq2CzduhT7c7KSmkcrNhOh77++1kOR04WDTBYoFGzmU+blLuiZ3uT55y2Gk6p9UsRQkI4r2FXgieCu0RXkNlJRyCgSlohYKPeOab6oBmfZ0/ICkBy9LpO2vDLbaEBNTBOE7Iiqcwb2iVEBER2oLJ0ZhELjvuKjvzWWpqaoKusf/sz1HunWGwe9IqnNdZdDw2DvR6KBsKhT7kpPlBhGKvwXUKC2Itt6/26275h56tNkz2wfV0gc1AJk2n/M8icrFtRxx54quI1CLDaNrva/S31uUZnsDNVC4Zj7XHIPMmM+xGnemzx4LzyNXoaC866WhoJyWG9xOzuGhUNn65ZelRywJ1XoJiliklgJfLh67sqwB4zvlc6UFrgpOr6RtHiPQBatxn+ialO2+WD2YZzw4jklq6YKTuXtqsni6fTmyRoQ5s3BkiXZXkp/ILrLDWTM+g5WiMrFI8ioF/bMoeo9RlNTVkWGjkZnDE4UShI6svly4i7xGhopi8XgXO/2yCsSeweEosd2VmhWAWmXk5aZjnj0WYwKxx9cg9nVNYZKMHE86bgp/8sQcz0PBGeujroRpxOagi/O3hcKqxffNRBE749fsmpTgaBouL4aCxGN5jMtGJfTBlfhsSgN0+PTsmITiFWXCdL8gc2RKLbKGorrL9cmHvGWQGd6p4uRKqUpWxFZ/jhruCe0NJVosYwsKV35yUnAYBJUHpZfYK4l9p/Atu8u2IV2xTBQuqbvqKiG/fhpg7uqR4oadUJSCErfhigDhqV6de789K7SqLnzhKlvzvtzAo5KWokjlKniLiq+gEuZd5DXTGsvhW7fL7aWYML334d6XOGUuDem2GT9cVoTOv4WCxLRVss6URz07SWzX8y9ljcLWvbPJ5irnDc4VbJVDlxgTtHV7vRLZXTy77LLLLrvsssvVyVUgKI9fGlkWegJkHvbz1DgZ+MQ5LTLYFSXjgoiLRlt1x9Dvs9ia/WmKDGjrHO6elQRs7KmeIaMzozuCIsjAqjB7BOuyRLvc/VCh3Q2tNNK9kBT7acX7HQgKTOvbKk1zIyxmIYgqZtvrUIrbeeZNB/DQECHPdGJVsFUwnmYKCGYZKSTjvO4yKRS7CsaSkbjWPsW6DuToBhyBxrJR6f15IqoKdyXMkXkz9l2RWU+kEjBN0jpTBJsKNLNpCDh5QLWdfzyWcd6pkd9WtHtYZh7YmpWNycfcKmEVs1JYbKPt7rpJF46BfmicGTsOTTEz1LdB4JHEvNKAilDLGFD0gcg6LMRdrlI+8M0PAYygen83u5Sq5jZY77ri5JUtiqsFIsP9h4GWjeN7zGmNpzivxDHVyk2Eg5ljDAWZc6WKVYl5tWV6R4TkKmnwQMXcoxpzGSlt4Ihzl4MSwrU1HFfpLPH9gsIfkr5rEO6ngsjGIo/32BFsLdTuRIE+1crIBUDeWuNxWco/se99NhtFtpusz3Jva60DrX0bAktnc3jBTLZVlonOE342CIpuvtsxrWBWgxjLdq57OpJByADqy8hOwU2Ke63um+HMkrtiGzrtfbhdc1+NXIWCMk++CCaULdwyQ6SEendPtyWOtFUudRScqEtE0t/G7PM/PHlEG0W9mVaGjAI4xcIx/h55ztGnZfDbMbfLCjKvDohx8EXQlaFGaJ4pwqPyLwCsfQnCncPD4SLiRvFW+WkAhL9amsZkRkThdhnd4y+C9UHxJzMUi0PKHtvTJWA40SmUiqMSHlsl55PH47zpALJYkNtbxZ2TwcVkRKHQ1Ve8UidH/AUofKWjSx2+9gyssq9KuKn8XibmeCe7JJU0KBf1xbNiFiS9fGOwKWnen7QmUZs2ijieUMYEkTXVpGXl5KY4eSyPV2xWChI/nQ4QtewiU1p44hifrbShN8Lkzy5cVLloSaHO3uX65NaU4Yk0nhNTZiL63HQEcLAXYnowZayYpEJ9soy0VZaioByLQu/u0KxVtq4d3ZRkRrp6nS6hUdbpki6b9Qyw968YUx7/5T6kUdrG5yQKt7RecIXc91Kk2yXa7WFxYBw2rg7fJ+fipJwv5/Lq4XqWGuwGLQTCEp/jXiQNlUuOqFBgiuuqhFRcdkdRuTcqGy9EpNTD83PGzeWeebGNglL8Mhtyvye06/z4J7Vhkw1Wm31GdW97REPDvofeM6BGmnxe6NXqKLuLZ5dddtlll112uTq5CsOMp4TmPPOmq2ByPhALvuynFav9TgxMRsahSFfG4hC/SMD9XbNC8WzHLFB4uDs3DvcCT4CYO2e1INu5QG9aGGycAn05CWR1VAKQYxb2A0blZL9HLgGeva9hBS1k3CoVjuVCsuOWNxHmEtzkCAop4IaPa9QLIYJCSTu6tdHva+mCbujVcSY8sFSkiYFmJ9agXOZCvQ6YQyusIQLhOBX4L6Eb+x0R6FcRFuYCzUZbKaxL0USM3K3DDTjOTj8vCbeqRt85mkNzsQpEklsiiv4J1lOiJhzBhGY9cGYX9eUOx3nQxh2PM9YI2B6Hz0wgh+o0s7XcitPOcV+NNaxaaln4rUQdFsi5Ymm7XJv84LsfAwCOZMUlAQAaQazuEplAOPiTXile1IZSDJA8S4yDG2XihkMgkoYaTy04fVQkM3Iki3KmacyBqq4CHP3dsOm/U0yFQJNArqU5J0+awK1YyoNGyQO9L6AEG9eAo7oZPK6a8whAuA9qnG9ztLadb3K4JT/XynwY4Em6gzhc2A4PELKQJwGBCLgbjSnvh0gD2emiUXLF33eOGR7YBJYWpGKDOJ3f9vk2fcL2sx8JiZ7r2fbxVwsakihPIil05vpxZDuvVbt7E1RLBcr335/S6ueVHUHZZZdddtlll12uTq4CQVHzDd7d9vCf8sThR4QVsXvpTmCV7fGocVDz9uLXjHgCSaugI3U/Ydfke5i+U+NBXY6hXHva6uQ080wZ6LiNVBrnIkSwau8dt4vfgyMDiuYWSAnAYsqUZQ9+W5Uzhx8ZQJXZpxnI2aUHLwwpR1CbF/3TNanwiTNt0Qlwlw6c7sYxL58UeGCIQOFtWdz3LSOwDxjBdf57BK4SYXIEhYHbm7SNYPcRFgxTMrpSciF4APQMimsxMU4e0Bp/KVK8D70larYOzhkgqernA7Ce7PfegdOWW4dVcbTCiCt3nPpo98ZitbZ2ZMAsST7HFoHEFFYvehaw9EBhEY2gY6G8x9Y4zI0I7pUeweEsVNCnXa5N3vXyYMJm1ixexxn07YjETBzjCndrPn9OhKNHkGwyZRNLTGx+znme8YLxCj06zGjGbi2QoGXwwP6+SqCTrQFsQXIP1Es8JMt074JVt6iIqhSuDM4UXs0irMsqsW/hVk9A0NHPEsO3pXqoWEKNyaD7v2847/09pQi+aZqlFD0ub4UkDUOJWQzEFAjkSVgjArQGD5dGRX+OTAZvj73nNaUZ26SHaKsjtJrByFo4uILHpCRNMCj4o4LfpSBHisIbcx5ohPPt2XcV/bqE3OTtUCY9lHMp9CyYeRuFc15E85XIVSgogvFyabsNivMOwo2TUy0+yBDVcYVpsK1hPKQg4CqR8VEDBRmFfrvc2X5ZcbdNGaikZeEJHhRVrD74FMFPEek6MyWNPBCDz1/qLorFJgsQRTQ4z1OcIxYgkc2AjEq5JydJ01iEBelKaVP2gS+NYtcbTc2qlwfrNxHCXQ3K9GBVpThv1KEBIKWtHD4Y605NMqf52HBze4p+Bjx4LvxBMdAbOOjhuykHjTG0JPt8aNvBzZzkRtOBsdzmSxtZNktOku6imYghpqC4QslM8exPXTJzJq4l0YcqhFuH0mmJRcP7iLhtYG3nm/G6RSIUk/8IfDUli/IF94yPZelB7T+BsIfJXq9M/kyLAkpABIJ7PHgHcOeKSM9xycyISuM9A+idM6VjxcmzCO2FejhP+JBHg3/lyC/g4aGUeLD39M5shDus8OkHoHAtBikgT+E6gmYtMCeHI0ZmPBYFZVUNRd8NnS4SxpZCggMmspB6cblSKjOqFFO3n39TE6cE/J+8wrpis6BXbhNX/iJjSKRkF2Wl8HDblIWeSr5M1ArSVJakZqiQjsQG6ztv98aT4kpUSRyoiR9btYzK53IK20pn7aqK06YOE+U1tXRM5WSLOmwe5A86U/5cnJusXLf8qlqVKJ+L8ZpwN+0unl122WWXXXbZ5erkKswycjfFNIWbAATc3rr1bijAAeAHbnkXSmYAym7FGqsnpVuFBPE5KOuZE0FpLQNIT2FqlOiiFoyrXUpAUJAPIIJYubDDTk793hV9cfdJCcil5F9xKvMZhBmOIiUzrgeKqio81FMEsExWtJnQZrMQHHFSDffERJRuJmfVPRDI/D2NAbS07uUcvWIJq4SIIoXbaeDR0xqixpiPXqk3rRK3VhQJOXek0j5FsKuEJcqNghnXCx9OxAFx3J56BCPyzLAM7rxuqXLKCpy8JIJD3kTFiqpFvOz+tCDWIuHyUiSc7wHS4ORoqPwsYfVowu+nDsiaAY8GakGsv3UVRNnHNhX+lF2uTVaz6FdNF8wRLfh9POBy7TreSWAUHfX38cK4EyLkK6jQ4NoxThURnCZnun6Yc05rJVbUz8k4ObWA9kAonCNEugTyzAQ8sPM6MsAtK5FDW2ljpvaquUlVS6G9TahmuiQkri8jyB3GjSTuTu7x1xFNFQ1Ud/ag1K7hBu2q2+J23gd+j8TBgKtIlHmTHqt5UKZSax4T/pNyX5zITcRH92wHlbZcLGeoFFxYtQ10AakY332uqghJuWDAXpgAACAASURBVFpxDY2/HNcj0li7Bv/K9tytJICc5Rbn6QtCGOOgoEuOwldk6NWyyAJXoqD4y/fgwYRHD3xxVg8XiMWmNY34C6wU40BL3joNOpERGS9eSwfgiNXwYxgcfgrK+jeadOhkCw9NDPV9ieCro6sXTC1iD4g1IDVfrACNhWdRYLY0nJmzDo3DuTcd6M7bwRSTxOycLZq8HSIc9W945gguabdekCjJoogyAt8zcyZwqfFRlCDR8Nc+NIXwbtGoMURA0mzHC5ETiHTF8Tjcdp09u6mDKKMynENGlIKKvgVFt6B5oMw0BTwdGUNCsW1VRfeaR0Bmxji8vuVvDjeXlzzgiaJmEgtw8kXDlMAGDtdZaxREW4pSn8QVEGFMlgmluuJOvV0t+k09MqULxJUlagXndQU8IXZpAM17Js/1ij0zKlk4JeYqyh+IFNcicmESCndeuGmTtgOLSswvPppFOZTsRXosuEp54smrbauEQi/CME9qKNZ3fY2FnqBYTFuevBzF1NA8oxKTKSkAmkYyTMaMlZpcRBnj4co65ZzBqnG/HekGCgLEosB0LZmBHhe3Cnr3ml9rKDai27kIABZq4X5QircwjSqlVCQUoShEdd6hWSEeQiGoPF/omXPBLt6i7bZKpFaVkgtukaru6NmnbWhMOee9Y8dc64Z2TcGpRHJ04b6W6poqN5sU/YRzHUTptSFq282yXXbZZZdddtnl6uQqEBS3pofGbVY0CWZzH5w8unolrK7Rdk1OiSkDv4I1tDDNDqY7QxdMu1+JsAQbKgX0qhva/OQzcUhNiMLy1ZNbToSjZ9scGL1UJAVGgJYH1krXCApFpVa3S97eKcSwX2Iy1sPKsqpRGFEIUdhrBN86fFcjoeyjIohSuFh83TTqU0FbGAnvuhW1qODkiTm61dZHDyIC4rQr2pxWFAAsJ0CWdJv4s6WGZPy1Z3N3UqhBFTNpqtHOR8LFoiwlDyZwICPImL+wyAgawb2BajQOF5KKpGXjaA4oUA+epyjANrcJB3OVLTXYLKBwibHo21QJbr62ni5I6ODqGZd1NOmIVXKczNvu3uWaxBFTogjyZ3Dw+4Qbo5SIpQ0tPqIURwT7i2JFZtC529fnr1ag+2Hwe/pibo9AyUZojtrqlCiNuLtxxV0Yw8kU68h1l14qGEvxhGiY8Dy7GzPzVgiE5vP5nO50R1Ma9UQfuWG2fQ/+DlWLvbBE90CbJKvba2a9VQRFHUFBIhWKdLU5cs75aNAFWNxtF1lVmhXFpeyMdGkV2pnqLSrVoe3wui+K2wYFjS1uG72AWniZhC3VzH0E5l72UYAaVFxiPo60+mXKfVHutvlIm+PrJyU5Q05eHYyyIyi77LLLLrvsssvVyVUgKO6LXVVwa1nA85z8GF4bgnpqxAoBeaCTEDRSoTT+FiU3C1+R+ymLL9bOBwCNJKxY1/qWEyAWzyIwZkWktjg0e7NgSIu/1a0ihCO6KwIFmrkFguL+auUMWBNFps26P5soYlQ6CRijw/od0KO44jikMQcqAc3y7DW1LtCUHrc7fIfBi+DbkitBu0b8jQcaE2eqdl9OUBnBQJPxkaw1BU4pHeyCzOn1YELNmKEDFLM9/yWCkiU4D2gFWB3tyADkqGcmCJ6dWsLeUyEbT5HiTcJpocyJjrFzPDBHXNHMhNnuvTf3gwOnCAZMDhrnuoESCLP1Z8M0Ha0P52BI5smRnYYsnSSQJbzmu1yZJOMrxfggUCAk1VoPm7PEX6wqweWTsSCSPn4BZHKm6fFHNQNmb5YVL92mpe/BoK3E2OW7nRaxj6jKEwWlQHOCt0gBp6yusWZr7xHY2larJcbJiquaCIe3aZ4mTLPtC80gey7ogaGbU5siLg2t8K+II6K04TOhEsQf1n10YUEskXGsGvEfiYSsqoGu91oINGL0JCZZ0VIU0mkHJPlhumgiP+Vv0DhoBvqOO/K+80CdhC0UwNltxVH+yUXr3xJX4txh26KN9RjbRuV83ry6F5XrFv4WFzmPzdmc4/nlKhSUFhBSx13PLBwPsgkvhiZ/hTIwtcy4Ict4iGAzTBF82TWh84O96I8W4LEtBo9F4jiBjKBFFBKfRpZVMYjWWrgkHArtQYrEjcv9FDysuBFioBZXSShjs24Cwzyoicq5HLZjFYhVXtY7oNvj9ADPw8OkywYoJkRf6GXJIN1DGbCrAMviCtv4/c0PW5QLuL29C1r9aRqTTe8MCkr3hIdhQbKsPdpN4MziWe0AjEUfGHBxQt0IDdaVpY7BDQIA0hFVlIUYGgt8wpYU56JClDb6jZFuGaK831DiGPmCSxaDm0TD3eMuuxVZQFDRsDweN3k42P01giAn3CDyYw3iOqcOZ2hRlBvW5VW+4bu87hIeSFC6gpElGnpxPbhBsJm8VdM9GouVbNwEAdW7EaAdj91l+vgu+IweThxVzd/0aHCjzC3f8y5aKidbhmBx74oiinO2MKQoqq0TZfbk2nMhzuDvbd9EAGYhpIxSIqphcK66ZjKEWRcHnuM97lgjg849813XSJ2ZpglHm9uP85wEldHR6S5v3DKD08ndOBMlFgLevGwVBSHJwoOF30VQ5utwnWlmJHXJQo/efpFQStYuOPVCbFWyncY9arSrF0M7lZaSIyO6OW5syuMbaykSUBQfLWOyGN+huKiUY3wbNhKeJP+7iem/73p6XtldPLvssssuu+yyy9XJVSAonn2qAnT7sqyRTZbaWQfE3DI6wclGseha4MEBm6+SNO0CBXl+qVmqy6GDTIs9rkC37WtXLObO8YLojROhmZhAwWBrx4hG2qsWtCZ8Vyrh0iAl2OmxtvEPKIX+mJIXRsUBiEiPVUprCKtknj4xYJr4ZO17+DA15mXJQLzo0N5xJ25VTHhgXAZ9WbEshjDY+Y/MSbffCGyBvOalAK+ZwtaEsC7ughkd00ChDhMoUiQrb4IbO8eJsAz2cNydEl1avH79pMCcsOWd7dzBULjbxFGRBEC7ZEpyt+dJJ8JqlpeupeikuwyZQOKuGkI7TNb1GqibW2FHlrCcuLUsu7Audv0MwG5zC5fYKsuG5wYAWhccwro7YOXdlrhW2bJz2vgRDRdMDygkd1aigopsYhPjU6ITZBwVJXBRgZNzN92c8NhcgA+IMAeD9TjTcc5iqasoXjaup5fs72lZw22ilKZvlLNoBHE6A87U/VWSe4SdZ0U0UCAmDl4rH76ikmMdWdz1bunx7jl/jMzpmlp6x0sWpX9jc4pIj3dobg3H2cpUTFNJe7abEUSAPDNHQK5zvhwnjsKFt6vioVMPeAmUqY2SFBiIf5b94EzBjkKjydiK4sqLuboE2S5dcGPzg4hA+xaNWXvHIs5+LYmM+OkFEYUrUtxNwSUjxbtSYAwtbqSC1CVXFeVYu+BXEiromNaA2/K7D2969UwoV6GgRDXbRcGTPwxKtND8n31GZmxwMuSISsRq+OOoD0uQ7gGf6KUBasRkM5JcTZWDHyui3XuNTNfwM/vyL4x4A5WKO66ViSLcVFTo+nPyCprnrtFW1VLbo9ShcT1jEQ03FE1TwGGuaLzlwYPgb3nP7R30NFwhAUkfNBQgTILuMROKKDPqitfdCaHQddHIfAm9r2UmVWOE+2I9ZcXpeK2IMUWMh2RUv2lAMwOwcaAqMT6I8kX0l4ubYHaFUThr/LCTTRU4UtbMnOh+Thl1mTBcOEE574R9nHEtKBAoOOHtySFUUEyIPCGU4ruojdLBVqdgphaZZXJ3FzV4YkzJiua++oPuWOcVS4zLkj2yrOnKzaSahNVH3Bvys68BHkOlGesGpZgTysqXC97asx4VE2ZPZHv5BgBwnFu4PFZRPLaxfXPyTJUehsjUMvbPF7YuiDIVw/3ixkHem8fwdZFwEREh5sUgMRMpCxdHu0+rBlmm12BTRpTEuFt71OpCGHCVa0NDyVpWgRcoz7gVibg0IYqsyKO17zBlzNBpVRy9srt15mGeYp5pTOHGJ+LQfMJN3yjiJmt9Lp8fp7lFfaajKh5044zqGn0XLj8ULphNeEC6DWMcdA030lL5YbzOW5eITxStsTHZV6FIqEbfh5JQPTX3vDb341mojN97ZDHPKfu0t8suu+yyyy67XJ1cBYISNPHEUNOiF5Vg0gyYjlITk2JVMGUVx4SlisWuAwUBgCUyf1CCWDMafG4Z7Z1MeRl8REJhATjMJ40DmVFKt4sfvnaJgnEMzWwYSShPnXNgFdzY7TIUYpaLW+MzK9ite2Uc3jS079MqwGSR/OQaMwdCQmvm44sjR8Q4JnST7SbBwQNxxd0+wOKF9hYK1EMiTjn7SIggs7XhlBal9+fUNPhK2pylkz3AsClFgN4JPSyTcG1JT5SJCAf2DII5nqNbKFNrULj7DsCdNzgLQUbBRWrJ8mt7DRYUu5eSfaSkMS4jbE3L+GMNpmI2JOR0swT6NSsFs6+smkHF1hcinOM7Aid3uWbpKuFG7ZVXyFGEVmvbpmtTtED2hWjCLVBBJgdEUdEy50E0S30gqc9fvBmuz5u1BTq5iuJuMdeOM2VrBv5zQ8K53qYSqA6k66flDBkZhEpZyBOEoOt3t/Ww1i0DsHFAR0yJmPucuAzoJvpWw3XuiGlW1x3ZjYkAO6Ljk55KZlMtmgUNb706dHXvrsA0WYD7Yq6gQ8fBuZHKs+HClhvgKifiWTOKHKVn4pg/p5kj20oli856BhU3wtFQVyYUJN/7HaV6chld1vHrKoHOnta7EridIRCLucyWgrZs2HgjgDpdU1UqJ1b+ur1vfZVYyI6g7LLLLrvssssuVyfXgaC4j+yUvjUtZaw50sMo/YhdsZhPkksMSAQhThzQSy8lvqNY4EqYnGl2prTiG0XRuvDtcWbPSc/gISbnAkHx8Wagk/tH19uO2fPtCaFmimogLwc7/uF0xOmll+y+JIrbeWDug4nx6DBQk3lFBL+BGhYLML4xXyzu7jCZGb6cFOLl0z0FVyniJwiKxdkJSTE566wbIpTHKwA1UhVd/fqCtTsyRIH89OAG6IHgQAlzBJwl6uCIwd0iWK120R0k/MDBcFmeTZOGg5kQMvWIJ3GoYp45AlvHbY/tt4bsyGlFN5ZLPqSl6bE/0J71fFRBdr/KApmyPdYFpVxHFkcMk5PTt+z9AgDEM5oFHYv3i7YYv2uXKOS4y/WJB1Hf9Y6T0xxoIr9e/7RxsrRqiSGxiMXtOZFxDtAs8papoQl0UAliESKsdtxNBKhLzLFdNCxmn6cac6AAJ5UMmrQrMmWc1aQacw6rZh5AQbkd5dHCBZNzYs6L0Iw/mxvHnOKAoQrFXDUzgyyY1OuWKbLbOlF0CCHfs+B5Yo5aPA33kQhBxvwoSVyjOcolipXynY2+ASVaGyhS0jxBS7BoQK05B88Tx/EDPbF2RTwLR9IFE0dA/sP5YfR3MoNzrEPNkhf0mPPTsh5izEh5NomgLPG5Sw9kJGORenk4FL93RaA0Hgck6yniAUUzzuWVynUoKB4UJRQBka0lDXzk4CMDV3tPamMqcJJHiE2tRWAWkWBdvGidBx8hzt97djYhB2V9+fz8vSWc6pdsxJEt0wUR7OUR7I0UzlWu1MLdhBPAc0Kjo10dx1iYelJgW1bMA2k4zPnYVs8kAQXFvrsRbk4KujOOkK6AkaYd1AraEYX7giCxEFdENwYnxONOcUDCmonuaUSOa6d4phFcN5cMrMr/PEphjmuYwimrhHvkhcMUgdFRNZgSUu4KLP4cZ4aa+0uWcd+HmTHPxgcxTZiNVK1b++5KtCKjkEwVsNIngANTFCHs4Cxe5vwvJZpduqK7O2gpFaN9TGGNTCZqDQcPKjZVeCKOwO8ua0LWu1ydrBGEqOHSAGU2n88Dh5ZG0dIJbkfMhfMmOD4kF31mTa9L6LqZKSKk6f4s5cEjuBKURpEkMVgcQwA5GWKXjUIOmPvFz8maxeOQxTfDDVvc8FoCV52TilBd9mtk0xAKWWVG0cb00giRycTxt/B/qRR3QM4pQUpH2Xlc5pzMwCpBo6qRlRR8TSKxBgjl9EWUCgo3TwjI9aRKjRn1+WVZahBscZG4MVkKxoIQpQPuzJ2v5dnWrKnZ1og2pztJRdPtwjQqXwN48GC4oFWPhbMli94Wr2Nmm1FJUkEG566mRK63d6GkrSK4e5Uayu7i2WWXXXbZZZddrk6uBEExOG0G+moIyMShPaWmX2BzQpj5rWXAWOjczHkcUHLRzUoHsLLBWQpg8XS4tJ0DJOAGdpSnUiVa780Toxuhyc1tR7fIVIsTxcNjixSzgVUMkWxeBG2dpEPYkZCWVMumgT5eO6S4rhxym5iCQZYM6iARdMsXFvT/j7236ZIkx5EEBSDVLDKq5u1x/v9fnJ6qcDMlgT2QEEA9cnc6s3ves4PiEO5hbvpFVSUBgUDA0uAoSHYIXlFu69m8zL0xfON4WUZLx0NSPp4KkxM4M/LS2iANK7pojLJKKaErQnYwYOyphXjlGTn1QBxcCZGiZ5T10I63RenkJsGdBtv32WZKb0fztffRk6S92NTr80g1uhFq76JsM2AQop0ZaDiVauEOD6Rsf08fjU0U3SfmO9AvEDGKnbrNdR8AqHb04yNe1dv+xEKnwt0zjSBCHZv82RgND5eUFvASOW8TyfQGphIxDFvkzHgH8z0Td6ZjQlX5RKZCRITzwywwghTUhc+157VIeZSZmLJAJjLF3bowzHZPRdU4vkI4f5lZIhGQVCGIXoEt02CjzntyRYrXOVYwN9GLINF6uZ6adqkSH0lUzsid6WdPsuj0lBjYV7R+28x6baW0uCAcVWQ3JfalgMmp+hoKuzAv7V3yGt/R4sSuY0xl3B5l0h1tp7DX9e+5rimOTd5/RAq8tYvCd6S5U0Is2wkcveHoIeWQc3Cgc/Mf/yAaPT0Rlr9qHzHrMWOiqfHhnt0js49O0Q1B5uOOQzHPqM7YD1GpGT9HpoP4oqrg3AuXuLDKRuCpRRCVLBhM4egoQkXxkKlBNkeg/fAC828meHuwCsc84Vg1JN4ZKRUTWIu0T2d3VD7E78n0hAzh0yOaoGJUyMihhJ/P6ZBIhks+/OxH5Alndq/QaMB4Vl5qv7y4+wToIKlkQmKMcHoUsh/oowuOMh1Eb6KYgFxbPvCSjlOy5Btl8aWlyN0xwT4eLwrvAfO1hdLOE5FXiU7X7ei8N6vPSDhk4WAVR1WcvBN3pbNK11PzdzP/1mF2waLZyVrRdq2QnY5za9T47qJasfDeWjrmt32cBRfOSx+chxYHZTsKR2uUAFcTrlirOOKaEmgqFAaz8i+5cGtLxA9unet8/iwaFILiUJdeLFb0N2KuUcvqo0hBWcvUpZQFMXZ6Dmc6Uup5lfSx0lEQBmbr+nfwwJ5bwNxBz/s0aifFctiL49TEy4IomV5lOqvmT4pRzyRTTNI025nQKSpOjzs5FemoAC0CUxd2a2+iDLYuNKOojFEUzg7oXHHJl6JzYulgRMsMt0zJTTdW5gRfR1+DVWTWBnl+5kuPBQAej903rbXk9MwM1rheqdLxeT46ntvBOXqjNhgF7Frh80HQ+kX7/j9td4rntttuu+222277OPsIBEVCRtkEPTrammXDuFAOhDPKXmzx9auqEB2oxJwxMhom4SxY412LUqOXFE7qCETU2psEvxRvWxUxAGC7gZt0YY1+OxS2vf4gts4ShVcEpaoiZKyRkJ6444cmEgAA/jLMgEBXe7K13+YICdyGbJgXkHLHAdeUaQcAn++M0pb7vsbIMw01LSJ7wPtijv/b3vgxA2LsHPfwvhuyGoXkvGl82Nrm0QPA8JNRIVM1np2ATYARiFK9398iGmAR/CLSkeLRC9NUIwmNvMeNB67wtZSf2eXUiLb8ECHZOQoszDIaar3j3PchopaHIBui9bw3AieunS0AAA2Z8O6gtO9tH2cBXysyCm8imfaIuaFJkh/FM2KHsjt4vM+tdEa2tQGARATcS7f2byoTRtQzEZb4uyKfcc1XKKN0l/ISxEuiYGpAQBSoYj6VYF+hgiRV5vzG7s+SDUjdPd/NTSr3M5MtrWtpGZBvaTZfzN/rcYlmV8VVyxHjXOzld2Qn3lgLZgI8l7E3S6TqVzT07IoHSa6ZZkqes2eX+pLyr6TgTBsLiz0MYBFJzJkumjK9haR/0eIKmoAYzpFzpeysQ9+FBet53eNlxgxAbbkQaExvmeLpRVk3MtW9C3rL5rXZWfuv2Uc4KNE7xizzXl0V3uOBKgPF2rpchNCy6iNK1drM8lATSWg1KeQskY0cHncc8FzwMOpfVTDJF1g/xkx56IaeaapYuCbYYbSJssW4zzx2vnzZyfc9TvT9EATy/zUG5iP3FZUtbZ4sVcZOXWmXrP6QI8vZtiNjcPY+cssxROuQqA7aMO9pjq8ZXYcbXzop/Y68vFQS3UIf21k632jRcRrAmaUz2eMi7s08S3dX5WxDh1Sc0PA5Ms00PeFlSvH7Fk7CSgUGRyQqjsRy8jQp3Jd44eDJxzFJOe1p+OczSpLX33+9JqFfPYRQ9RHpsGGsAnJP2Fyas6Is+imdo5TZq+NkCvO2T7MQGBQp0DwKfyEcf1gql1kGKl0yvZmOgJbqkHy34vkcZkwTXLh2kg5GzEnpXmyH+5pN2iXPvJoUISvlG9kUXS4pTS5eZT2sVR+/W5krK49GldV6yT/zbIOCMk/zXGcexRtYx+PgPMAWKF75cEpeRcghrMAx3ThW6O0flzFG3ltz5/wT2xyumKxOEvJ0opJJkS015LckRjhJMVzOlPy6tZHOKedDByJT77EfRzpGY6awnSMrhm1EFZFl+r/wVdjR2b1wIh2vCND5fWS0pjmfC5Al83/R7hTPbbfddtttt932cfYRCMrxx/I232+j53gcYKXIK4g97wnZHlx/KBGUwq9KprWlh7gi+oQCge3wMSyRhFDhjIjYGXJmlOQq0J3v0SDHIWvGxYXROys+NJv6tZ7VReNtGLtrcIgAdVE8Nvnoa07CoWNGg68Jrw2uNjx3yhv6XCkYp8CGsAPxjzbRg2hHNqyyeglumDOqmhR9d+h8th97DAfejEpSmyQEmCC18j8jo+RGtQI7OrXLnv3A48fuJrz38FLB15akf40qtrQ314ymFikv0jrl2kLe2TV1Y1pnRKWBoEzLZ0M1O57uUx1TYBaMfC+igp4pJwoJOt5BzD4XURIAfjy3gN5XojHTBGMfpHeURmQ7LVRIzzYd5+vvseBv+79vAXuLZyA5DXiH5tLOztWWF2OCc1ZTJXGUbTC8wPSSTUOjBYShpHDig/0Z9aP2n66oTqbBY2sr/NHVifcbgqLZjVbKhubgBVeUOY8lPFZNyRIFMMs2ACIF3W78e5VLMiIcQXzNqjlBjba16JQURIHp35yf+O5b/n0dqwxYbE4+cEkxCzgnuOwKQhd2l1afRMEfkfJoqSGCUUELv0Jde6ziPhuMF9ljzrNcJ1crjkRTYg9ZfSTcsYrAAj33aNB7yRXwGHXeDnPJbMYEsrEuCxpSC2u1HfyzJ+T/bDeCctttt9122223fZx9BILStmf8QwXy2Iqvnh5tlCvhSHQDLb3FcQpYhscAOkvBRBojEDrpnhHqo2ctupeooKbNglQJFTzJuP2dsObIaAebQzNbNg5rAuiOltXAZn7hKR694eexEQVJzoNGCVsr3iom2o/t9Y8jy9mYdMwW46cAlsIu+1I8yUvSMYOb4hOyvf1AH7o5dUhWWWN41wFrJOVXXHmf6AFrYwSkAJ57CP+hB7rshodBRG4D0DN2mxLYJIgZ3tvrH+74I+SfW8O/N3oUOijWgHNzfqR1iO3SOo1y3mxGqE2g0SmSed8sd5/DMbcUtIhmIzTCfgKcgbBYNvHa9040Sw6nAWN/t5/OAYk27Yv7sofWFl/pts80Es0t9THG9BXxYpdsYs09jJYLF2NF8zsKDoTEUKQRssQ/iZzIaNuREWpOm9mczovGh9TtCnch3tcS3KdSbfK8dFbiaV7QlWEgvx+r7DNIxe5GdLI3JeePpHVzjt30gsLUboQcl1Jy4JUwu9+9RRBav2sjghvnbyJ8X90KoTa+JqQxfivVLnyUjZSdKe201pvgohUuCZuCVhxMwAVKixzBRUa4FFCs/Ts5Lm7fuEB7qALdb4ZEfXP5JEdqrVFZNj5mmfAR28Uc74k+wXOus9z+0rj371FQPsNBeRdWaT6QSSTqexHtz4NVGnNOhIjHNAEoblZTPLnwJOCVg81nVIXcHhS2d+qzZPrB4dTdiM/OaSlE05LpnLAtYCE4MhxtV9O4OlMg0U/mcMHc39UO2PaMjqhSmsr3swvI9J8KPshBqIXlgzMUWWkU+jGryca6RldqiKwXaI/TEbohjscW0ZtDKMFvnCxSO8BGEn3pmFkhvzXnCzzMcH5Fj4192mPiiE6rh5L8FvfT1lu3hzv1D5o3wrBHEIIFTAsq0hmOai40IcQ5ZjoCZe5P+NxWW4S1fTlfy4mn7XFpZ0r6RXfq55Fdlt2Qzsw0pnuqrARJfVU/5baPs77fqxNG+foVIO25KDMl6cSr8hm9pj+WDU9RwTkmDlb87O9JeZ/EKHYp5rgupVei5BRcF8T9hewLJL/B8YZMcUutYEH24qGjUP5jJZDRsk/qdpiXFBAQ0pz0Q8yLjkkK1+WesopxuWP5juSlxfwl7A1TqyeDGHtxR0qlpV8mgjhS2jrXq1dgnhpZzctzsNeI7sLA9KwtLEolUuqrVG2mUvgRDiPSeTTI7wRozcoe1WwR4jDek3BOp2eAryUNn25Kzmm16gkl5RVimytdlWmfv+mf3Cme22677bbbbrvt8+wjEJRfu3xV4IwabCYJ5xHlll3ZqXOYQYKIJArZcr1V2U+Ke1+aMK5tAML505Se44LJrvCeIkmTMpH5iShtNs9mWNJY1hoeZDcnQnOaYZ5f67hFarE9MzKX6n9qQwAAIABJREFU7R73kc22IqoRTV+0ieLQkBs2Ng6MqAMzVXHlSASFI2RCEtnUyVSauBJ4fBEiNYb3rsrIJCLG0jsKGJ6KhdGFdwAqG0s4FO+NCH3NAf91XvblNvDc+aSf/WBJ8hn6CO6U67emvKBf7y+WrJOs6BM+okGgw+1KRm2tYWyl2fMc8G9R3NGF6EU/ClFusRjXOYSypiSs/myOQdh+X5dktL30WTYidc7fyw6LgqRoQ+8l0rrto6zv9/1tnk0/JVWxpbSj0FDvbEBwt7uCUXZEoMMnSYs2jM8dS/GRSOrKpOwouZQkMy0j3xRov4ezjoz+C1m0hq9J2C2fVUQI8efEqC+aKOVcMtouekuei5HUFDSvMeP3RAmkNLSrRN7EjAL5adAiP48yCe5zccl2AiK/dSAWyTWg6sc0WWnkdYycB8KsklyJqKfiklXyLq7r1/qyrWwBgDlHyjsUqCSRtDy3P2ts6PCLrH4RFOdYVPJvoekjhox313PDK2k40zosT4ZQNuKv2kc4KF/haGguzpjgA0lBtSnZp2YqF+KO7NMSN8gV7Ong7hTAYspBHY+4+sKEnsWZiRe8TaC1mAAA2x2IgxrTjqwl7+5cZEbk+yBoQanvwG6jAJzA1jnD2H9vmnLZhy2HBih5zipbrcKqk5WK2M4Gk7hFoEkzfRDX9TWNAlHDB479OKg0jhdhScmFenlRO49Ex0xYZQMpFQY7x+QuOcGYw772w/tWcnaCN3JOy1zssN9ype7ONNrjODgJnvON7Ouz928O8zxuMO7DOVh9fvZ+p6V0dnSibtmN1iGpjWMzHVk+Z9mfByI4ejoja/+gbszj0dmS4FXrLArsz07V2uAf8abe9mcWzvjiYW0TydUtPtLsfNtEM5+/PIy1i1KxQQ6AOyhnqKG909AtuFmeAoXSlvggSlq6pA68VHVQa0gybTMNOWlUGffiDFU+CYpDvU5GkAmTktaJX9yX5D9WgJb9iL4reKwDKN8Hyz5X3GemEby01xAkGSMW8l7INVauNxfR1EjSkjZmrJmXfUn3CDLoYJGRS7Yu8HQ+z80ZaMLBQznVXUxacjd7XEK+fk5jBadysJRBaBMUPa69exfM7fSeYqXKtaSxCmfowl8q6fs42etd4oPPgBVlnwUq+NsclDvFc9ttt9122223fZx9RFw2Q09EPT1WE8qKR7WEn4ZJ5vCRsvbulMgnBNo8EQPzgggkESquvrfCaF4M0f2dIFhZoiWtQTzSHvszEZ6XIaN0kpdEKXst3eCv8J6dsvjR3Gp0QH/sMfgDwNf+ndKHSA9ermp9UW1CZVRLz7VpprTO3UX3/ZoIRq2oZNc9VXrCjeTd7MrqHTjPIKFGNAbqPagBR7DUS6M828oMUgizS70V/H2Nm+A9IvJxSOdAr2MhFRMVAt06A/hRo84dAYleNQtY2bCvbyZ8PrUw0wsyNSwHvNK9SFaO7Weet8HxY+/rEameYbBd2aWqfD7Psy0NAyRREKbQqBjSrGa47fPsTcQ1NZCaOjq1S9bfG7LLbRfNSjhUxedAQpRo8MQkGT3mMRVciOjOyNvxDH0Laju1QiTPd3uUvAvRQEE28IuWHQBFVfShlKfvM1G+bNUqJc1QAucEFDjHz1KQYFYa/FGqP+ms9T2OxJAUBKUU6QDQRFYC9C0aRwOTadmI0RUCjTy8eEES8ryJMgHf0mvxn0CLSwqmtA15W96j+EyrPD3K4JT0S0xpwyQrREslU0XJY5mghokpdzZQ6Aul8WBFxOp1/4n8SeqBLWb1/r0o+hY139yofP4X7UZQbrvttttuu+22j7OPQFBaRTXoeTlzqeFtnnMyl/pQwblD1zGz5fQRPlfxJlcZ9iZ1sh5OVh0vFgIiO+porTQhLPnLUGcUKSqFUZNeVBCnW5athtRGy5ykfxXOwhMMPYIcPFDKq7tShbCqAdqMslnjdTWVRFMY0TlGRCVA8b437+Q8MXdb7sfjASeCkoqX0TDqPYDBVj0N9g4yauiNSKoYWukJsU9mNfPKxy0lDTzJVvFHzzLmcwLHvpHRPA8y4Zu3dJ6D0YK2A0doubyDvSvM25qCjRiDkDvgpSkfkqgT5dlm7HcEX5Hx2q3jtUPnn48oHXZymXpX9CjbjsCp69JKweIKRLPBczhewTWSdT+eKugbkrLhBcW57dOMCCAE7Zp5B5AISpcyt5ScvLkXIuPeVqT0L8nQNpAUc+N77paKqtMcRyAoJLXnY91ESyO6/V4AJPZ7KQktQG1qquAbMTYQkLiWQlI5ILz2QHimCN7BUVHhQBicGjDdc86IHbQyXrPoKV0YqcGHK+W20WtHVNA2B8Q8zyesFYbpyxJ95xjjG9E4wRBeb23ZyLm2UDkCCXkP5/zS/RsfhmTk3BeVsiXlGwJN6ouZz2PGOCmRjuQGSoGBpNxnkYpTJCIVv/OvBQ3ixcVvzBY4P5D/hinrIxyUXtbNK1FqD1YsFmOQDHv0li+Sebmx60dDQ481yoykoZCKFoCOhKsy/eGr6H+d197m2RsJouZC0lIAdR0KiRwQsDrYAexc664kw84pdFBEy3O4z/t8gNei/xIc0WzP8saPdxzICdMKlA36QrJ+FIfvNEcnqXhfnwK2BdmGAKct9m4bCeNGPX8pqoLaIFxKUmjLSVfL9cTT3dTRQh6/Egg9K7eaREqtCO45yMdlBZPoqirC0gZ4bSi69YYjKqskBNVycncA5wXiXITi2KY9U8OGsOjIrtgwx7Gd5j8eT/j4FwDg3+drbyHou0rj2Vt2ow1nTxx/ELuddDpOS1l0GaGBkzA1MLOp2m0fZ/HmF/V6nEiy+m5+jn+KsHEkUPREvKRVOI2l4KMoUmSRzkHSEL0Q+x2W1ShcbJzHbeJ8t5lqgUJLWvqyEGO9jzz6N6ENPpdFHp/zgFTScP6w8hH3KygE4X2uudvULQLSEZHsin6eA+/QmtIk9EdDTpeURFNRpn7M0wOJtK+qFALpPicvfR5RF+3isFE+Px0qRaa/OFda6nWZoHSoBpuJRuNW1aLuIspmfRGMHk14Laty5nreK/WVjltOzJnGikdrtYxJR7U6IDwFqftC/k5HNIoQ7OIEfi9O+s/aneK57bbbbrvttts+zj4CQSH/04SepWsq8AVc1QxMPbwwmFZ5itJbi4hfRVN1VhJye1RCUEQQogm9mqcOiQp/hkc+hvHv0QxQBQxHRBy+ofuAe+c06pl4E1i41KfQaw+ExTPjAYWzMWHgRYdLqlW6U820qRRy2d7+2ZgiGufAV5RChzJv6ylzPA3vKPd+Cp77uKFgK+aJphRly+ce0KHlwHAiFFS3deEYNdVCrnXCJY0EUpA0OuErzwMwBNEm+NGjJFrwtQd0zIG2H+lzhzC91vbDuA+meqQx/dYKrE6yqr8xd6pl9fKKtKMRNVMSWItmSkm51ejxDDBGjKTA3hr+CNIuozCB72sRETxvBOVjrcSJRDWkhIzxzDhqRG5gauCCoCT6kRFuRr6MjFFVXFO3Q92ZavBCpKS2bGZNiqZS6jSZo6AxgQx4RsxWtEeQZa3cUylp1r0tyjdUnEhEL0kRQdXjKO9TfFRqsSvqEk1Dp08qrsJRyMo81YziC5DgFTHwmPcVvqVex04LncNxbgK8mDAF1HWhZWu3MV4VacimjWzSaIkSOZwNTt2cZehR9KGeZGkIqK3EZqxlLj2RaG1cn0o+B9fS3xjTvM/uWYK+CMj4ZhWBSXSrXi+fDc93YO3y781fH+Gg6GrFAgEw3iFKExDeclaAtQgThuvCHhgyFed+6t+79bE+jAuiS8JY5KiIcP/rlcpFjNLABSml0Iw4vmfipqckszVn+qPT8xL25VAoCqoIC42MgA/PFFqS/0HZA8ztiVjzxfcAoFPx4II2cSLSGnu8DsFjC5fZ23Fu7kqI/UwIZeCbOb5+7eqk1tCf20GJPiNw9o4ZBuLaj0hX5doPmyhS+HssuvFNPR6FZS+gI5nq85JQp6fezOtcua0+Fc8f/wQAPH8+oVv47t+/XpywlJP0mrzW9WZ/lEjvrbaw4QjEB9kTZarz4REoX+DXPFMELzFW5vUdxQNmLje5JKviY9mzK6QfewyCN5Di4O5+p3g+2LKbirNjOARoe36hpD3yfRA41+HFQYmFMnWP2MtE6yID/p1OgWqK+nlxJgq0XwrZOD/UhS+8Fkm/KfuXLXW1fa0F3i8LE7grucDyrNZj+gaXdLyWLWNWnWWMot3I0HwHMplumSqB8xybCAsSK42nxE/JxaiOWX1dr6/uSgHFr1J4JVLdqXA65JLGCgpDbH+Kl9RSVvQYHG0n2KK/2PPIQPtrGnmPL5LoBI8IjnUyYCV/UvSSsuPlVF+D/Z/KeZU/0zkuKZuq3XOp/gnPrayJgnLgv2h3iue222677bbbbvs4+wgE5YxKEwOrTqY469LJBIcTFsdQwmFV5nhuGO6FVxTpoGs2W4uGUSZAgiklStbqCW94z4zepFl6z+FCml0jHzK0d8WGj2SVqzibXo1HevU+4ruO+bVIl6ce0B+7seB7oSNzpnKlDMcgKalEAHH8bnj0gCgnRpQVFQZX+PqqIGQ0BawAYGPDaYy4TJ1QXjTPM49BXdAxo7uZEU4wvN0chbUMPTYrPxCWksZqthEXAGOEJL6lNLg5ZJ9D90ZNFD/j3o2SNgRVLKXk+tiAC0Kl16mJulDiv5DbMFMzJSI7s0SOIFYae2Z022oYR4BNGM7GuFYpfXekkuhtH2ek63sSW71W7ES1jCTWUputmZcqGOeuLjoUpShk7x+pKq1KJEBkXpr9ruMXpEA8JfBjnyUChgr7hMZHTVEQFEkF3BLeaom34yIrEFGv75r0kd++m6+YZ8PVISSdZ8VRSYmJ4NhocYey2o7oQMGcpBysNi7kG2b+27korrL6JJZqITtzvLP1yfo/N9tXnGkwKaRiRyI/nHMKQtXg/C5TxZ6K1nBDSGwFEPI0X+1AsOanx554tTfe4EjdW1mbACn3scAf/HNBiMv6qSEgBceURFN+62L4n7TPcFB2Es8dbL/tkqmWKHU1S0Ezm0DbC1vrwoV2V9jhbYa+1+PjUKYJ6osSEuhig9lOLdA6xZGmsyJHIKxGyYXJ4CNeBGNfnajoaCLMM87SYHu+BnkMrYWI2cTcnIuvl/JlpCPwEvhXTIKGuWeTJcC0zlsjBYRZpP+dJXfBK2kqOEeUMQvaI7ggRUSKgmeCP5Kez9LcgATVywvY8tl1Cg8VGHsaX9CmglmcFWCl4WIMgYHX5piEIJYC+LX75ziUaZMxHRK9g3i/kw+js1FATrbzOCy7ha4+T+Fo7mvxhEinZGqou1JqPBaot6dQ3HBWFLOXVBWTEuTEcO7xX8fb42nGWcZljdltn2nHvtGHK1kVCikCbctmqapb0u5/sjjXz4pcu5Y1AriW8xbGFFbaY6e5WZKMXDBNOK9xkRSBRPuOWeH69VNKiuk78P/7p+UcvaZ2wqnIRdZduKjzost118qZQ+W3dJK78d0VZOuANRqRzs7gI8cTXAgo0OnZSmOlsYqXhXUPovpJRLJ7tCRfLr68HMBM98T1xmLbBPmcSDp80CIDyXYAUjo6O44IiiNABPAq5WDZYT14LSkkuebB9D4pSsm5J4UEvfx78U/4bEhZI7LfkG+agXv24nGv/aP/mt0pnttuu+2222677ePsIxCU7BCbWKN6Er8oGY8kiIoKvcgl476+w8ZNp17YyxEOMOaw9L7nTAy1N00539DimMAZWh1AcesiwrVCclPoTot0zdIc2+H/24xVPsMcfbPA/ggdFhf8a6d73gN47uN6iJWZECWyw0jmhDvjqCC2+lCMDSUMf1DKPjr+PppycN9vQ9vpkQ4tUd9Gr2BokQ5yZdSQsGlNSfw5RBoEKofgfEfq6UxdGFkoUvfGCGWKsxrm52P9/TwHCbtfGEmuM6eWSjT78wZGS+scA/lZP+cYsFAqUGHnZNknJdJ4EcNPBBDcLFGvuIenO+YojQmjkihQMml8vkU9idcGtKjo4TOfehYuKVp42+dZqpNLQUJq2iM/5TxhmfojVFG+6pbpbEFBJ/lTeDTzeSE8ZtYj0ZzY77RsLBjn3QA8noEOON/9QAxcalu4kuKRTFNpibYr2TS73wbiUEi8ck1hgO/e+p9ZXstTsnEgU6PDLroxFI3zkd1K9p6tpBlqaoj3o3wXyLk/1oKVilFeN7N6yN+5bRXeE5BWQBIvEkqtIp/u8tt9Nhi1T9wmskIr5mXJ1FQOAef1aUai8SzibK3Cudtq6ml4rml5775XaP2OigQSPAtCeIHa/qLdCMptt91222233fZx9hEISmOhuBdvT5g3pbwvUHQqwARlbeAWZLBmwqvzJpjhxAb3wZRIxDlBQqNK/sciij6APzZZVd+SJc3bd+0iBUkQyp2P8LLNyU3wOeG2LthEGeU8Ih/YBe+NFMwScetGP9qh0DP3HxwQsyyhjgZ/mJlXveQUSYwV9F0DN8dkNHM0oeLu3IP0hqGFEq0LpUkmg8TkSPgAx/CPfd6Pp0KiNYEJ2wAYlF5/oCJmZyrndocecc+3posZS6Z96EWdPh7o+Pkuca2IETmJe3gOSzL2Q3B68AnymXMSgeUyhtSkCM6PZkTp0zg4TogImRCGQ/cDcli2LIjIT/Rgbtj9TFLNbR9nBDHLZ4XmcCkXD+VnQ0aHB5zkSErCK/gOSOE05EHyWayaKO4gR456RyqlgWlyVAIVHgN4tM7vhnZAKXQvWFBepZaIPT4Vr7wUz/ehvE9FKuNSjvu9tNdKQzu3CfervssssEerxPzC9SmUi4KwFKQhjl+QI+Cb/DyuaIFLSjVUBKWqCni5Ro5NzOWSSrULRdrXiyztDpvmeIcy+Mw5Z9Q1L9Y0kYuqcRw/pBfMkti/khXXa5Oyr02CymvE9d4t7gwvjGseyrjxWfkvwCAf4aAkpFdY7qpFDX2nLszhsRiIE8Yang5G1nw7npsl6wrM2C5E0gYQT9bzh+DYhNb/NQY0vZm1L3f4Fjlr2ime9tjCHmZGomRvyt4wfCHEeJEqTv0W6FHInMu6CFMwLoDvsg/Cqgcg0ftlloXeEioMorGIA3syamIkBY9IMR1KeFmbsF4fLeHnKsAzot/QmOwHRBlnGOWoXa7yywDgZmih5WI5uTYtBD/2ZLICgeZkwo7RgqwIkgGJaygwbJyAjCSZGZxSzEEUXMSwkq7a20dqa9iblWXiSJgXSEJYpKZ6Q2ubnGeTzuM7HGnt+LGdcXfN7syifInjHnYoq5POeamRuO3DLAmCclmwc1GO5z6/O+NLAFZ6dhmJtaWqrsoulU24mCjSKahaFbXfD99DZAqmarJ8sV2EIJqD14oyXsO+jv0H9pOKVba11C0Sz7glNlEpcuwmZdHOxbmeK1tSTING75IolLBMF7XW6JiZTJxVg2OPUc02ffNP0MrYTZTu0LX6pCzuDPm8pN34Rf9TpzXTu0I9k9U9uqSbytgCi0gfbTDeM3Wc4mC9VABK6ZAd0+C6X3tOcrBC6xLUX04v57rvlWP6zalJoUBOt5ys9eLQZcrrr9qd4rnttttuu+222z7OPgJBYVfXk3QftK5oSvYkAECbpVa9gqW/8E10RepUeDvQXzstcyghqFBk9WEkYsIU/trpC3lA2tVvm++JGSmaw3A8NhwaZcjI7pe9A10j2og0iRMpUTRGSQ9tmBvzeY8oQ87OxwAwdomtn5lmkCC7osHfUU4mJBDHz4aEHw5p8F3P65HCslKapxPnJniOr4H+PHgfgAUfjgAnWkKNhFgn2HDRmqSqbIyBpTbAmIpnz80Zye3LPo7GMuYJx9eIcnDj9zRygZLKuy6NCNqI786859OMzcOODWm3RycaMyTLOd03rGpndk+VRtKcmQB/rPH858+dkvuaVELGHBlqvhK2D8RJDoNplDRnDMyybqSc9rFUGHDbZ5qVe+M1sqa+zv5eQUK0kEXnwvbXHxgZgylRt2wGSDX3CsFLTav8vq+amKlpFaagHNQreoizESeJpp5tR9abv9OkSBRbC8QfQOj0LHdNQnA+yTWqXqmSuJ4YwyRaTlEcEiWsa5vzBOd1kQkcSRxFRSWwUSYiAnIZm7X9dwkKXKwhS2W17NdxTWnFh5f78Q2JQKUEoJCsZ2qxTD4bjjlibcs7mUibo+0UspbL4pyoKV9/IdF6nlc5rXK9idAxq1HYwS5yAZfynuVn30CVv2Uf4aDwgZ0J/zVJ0aMWLerHg3oj2h1bHRxzOnwvYtH/pj8dGjnLCWpl2HYE3GdOIDMxP9VO4bAgxLQBzN1B2NSY02ssok9RLnPAZnBYAsrMlxqifDjV8+GJ6pHhKQikKuz0G/uSqeTsiAj0jJSEpHDYPlSTSf0UFcdzOx3GzsuSsKdowoddLqJD8d1I4YhotnefSUYJZ+ehmk9lmQ0zHeSIjO/wiXNDkNEa4DgUffNwZBp0O48hyw9xQo3m4Izo6vAgFlHKOjVq3sPQd8rsxx/ra4+uHPvXsFJZExVeQieta6bPTISM9f/9tbtXv43PzAP5HJzbszNkxc8hgO1ntkL04WCPZpAQnupS7sNtH2dcFfzyO90CLt7Z6wml0m1NP9d3tyvQw0k3sKN2VgvmXImycIkgeQZa5458fnKhzPcmNJIuWlR0NKxUUoJ8qQnnSx3BmpfFfVhyUChA1jJ1VKafnYrYgUA4FeroO7J7HgeDkggWpQR+tXppmqCsyfsanOmNdbztAPATR3hkYoZuqecBrPc9gknRwmtD9jGirH+psKppk1qiE9PiAWF/ObOS7qHGlhQuWu4qxkiAC4eFszX5S8ZrveS2LPdFn0VqukouDkucvpZLSV+niHByODOJJHG8v2F3iue222677bbbbvs4+wgEhbD788C5WZ8vf+PYHu2TehOKkJ+fbnhHmcxM+C2a1x09iWfDhVG2EJfSomxa4TljeiEUWVtvlE52A7vvhsLtHMa0yjqdCDfCM/aUpYaSUdTVSKitiovUM5HG6z2jud0wHM88v1+vBe28RsM/NmlX93m9zhek706MGSAU9pwkGbZ83B+NZM1guTXPlJs0wYywoRDajh7pk/R7ZyGexRiqVrls+Y1JJ8NXOg+AT6M8PIl2qowKbGR019RxkIycLntElL0LdDOBz4CLrWVa0LL2nx2rpyPKvXrvjGrdsLsmAu/QZDknERJtQr2J0zKC6RsFkpFpqEfLCoRzR26vCbTdRfNnayTM3vZ5Fi03DFmd4bDfIXSt0L/wuUVJ68ab00UgmmzTSI8qW2qk0rZbKnkuImPF8SOdlBbvXtUQaVRGTVSXqRRzVgMu3Y7YLtGSM+ZEAThVuV/k9IGNWARAXQrTrKAePeY/dTw22nu0bENIJVwxSLxvmujDtJmpIeT8VgVfWeVSqkIJbmkiGBfSM3M12U5gyebHPN9yn9HgFkWxd88DTQ1vfuaJjiqIxmROL2GTC5pQUJOzKMkSVYvtpVxYSVPBc9q9lB8xD6b4XodWU2O12SU8O2/HerU6I/PPl/TmX7EbQbnttttuu+222z7OPgJB6SXipic+jBqhbTduO56T6oaYAmE5rRRC1y6pmqXk2D0V8KJxUlOWb5k5dT9ELfvLRAlbVxwbmrFSEhjEIBFnnfPFUSRbbF7qB5kTnC01YGKf7rBdqvrrXwP+a0f//3Pt/+vfhr775/QG/GPzFH6qoB8R0a/t/+NfE//8GfyO0kMovHu1ixcdfvbRs48ISPsoUZgI1RGDEKzNiaC0JhjREJE9ijyVaCdKblrgO5GsoTfyZTjn6rUz4EQa2HCxCf+zypA3KjIz3/p8BtoDdldUZOl6hGvaJ9Ei6YotOYD52pc6sxmXPBx9X6Mb2JDQgoQ7JvCIqFVTI2ZvI+547wF/vR2+z/E4NPlQZ16LIPQPgPm+EZRPNRbKS9F+AJCQ4P7Rkhxp5c/qqe/UC4+MvFIH1ZSNyKYQDZ5AlSEiGkMlUBQkQ7NkXcsBCqha+tM4f3r+mefVFdjUPPLLaq+d2j8oQESzPK4WaoxbEl5TWbqiNbMgO8lRCaR1nXf8XfBdN8gKndULfyJMkLyOKYBpFBLEXO2Ehtxt14Hj0l8LRAyM9bzeKuqwbRbU+ELyT8Qmm06mxk23RHyEzQSRg2gze3ZFxqDragyI9exYef60IiOIuXSfoxaE5IL71U/+hIcT/KNZVCPK53/VPsJBiQ6Ii4QTv3vhFgW0B4pmAYLHEdC9EkJ6U0Ldi5aF4A+ma/bNQMr2uhsX2uNIDQ+SbCHQvfg3IJtwba/IH4BEiUsTvsEhbw/3ktIwQNdrbROYUZUUb7qts4vr8p2hmb9C7hg4X/nwBYns+OGQlhMKEM0Uw4FoTE+E6BtEMPdbNZCNueZ09CPIoAmRxhs4kRMO0yeiTKuIZFUTYdwJdii2E5k6eoLCCfH3cxoFrd5mnCSiOzTM0Lxew/ruGAb21Nv7789sEmZWpMgjZQdjp2tFZ3XPGQ7nMDq9Msu9F8OISp8ZOgMNQnU+5UT9gwsU8Npv7dcAHkHGls7ZvO+mbT98hq+D5o73TZL9WGsxi5pxkTWp3W8jkCnkR0+id4PgKCJe68u4+Dcx64WjotBvBM+amsy0K7AJtdQ0yfPh9zxTTFZLQSiAWBrtSWYMVKW0KcltuLhqWePie1ayCF7PW5BqmbFROnxjTpSahDwodZqSJAvJxXcyJZYaIhkq1RRCNg2FZHq/prCiwELEOK9pq+vInmdmpt8gIDE/9LzMwPnJNLWPHMg0PAspyAhYWlPx15oijyuo9zGqfWqOpD5IMX7I1L7HucU1xrMaDQQl03BimdZZ+aKyk32szDz9/bnrTvHcdtttt912220fZx+BoESoICJUWXV0eqmtlMWe70yrtFqvH2VymzQlzZkOev3bCTdRe6A5o+jePBu6HZpLpCNsAAAgAElEQVTlurtMdE5PaFWNGvaB7PzsDef2uM9peH2t2GaOIEwCkcnR4m2KtoQVoz24AbL1Svqj0csdUUZdrvWcTqXFtzmOQHn2df/jeTDCGNIIZ4QkvlQi00RqfJxG1dZK3kvZ6kmiWqdyq+DX1gB5HsCxjxVIx8sdryjddeE9fR6Kf//rvFyjPjNq8HeqOka6CKIFTk0i3JwGf5eIDAsu9gLBa72PWPLR8Wz8aI5nKL3+iLHq2NkmOIR6OyaWJcF7l6dnqq8rSIDWDHuohOwGHPv56i7oRxDsNkGwneXllAuh8LbPMqmpXn6WKeDUDCoQeckzOBym8X4nAT7SJnCQKE40vwStlkLEEMt39nehkfUM+zedJp9ZMq8HED1OI0vSyz69HleU16xEWq/6GMrUFYeglLIW1MPrOMbFgKjG24tWEPefyr0ykzzrZTuW7cIY0q/mhzGvJWJllDsA5Jus/mnG+UncmYpr3Ym2kJjrBjuTLDo2LDJbjvvJFE/JN2muT17GIBUbSvoswKYCaXkVxInUvCaiL0jk5YqmFJQ80H/PL9SS6sbPCkKHTDdWrERqKu9vIsAf4qBEThGUWZYKNSJhOuZibTLVYd64oE1iUNmL4tEnxs7tv86tWdGNfWiOJnRQVFp2RI6ji6xOtABep+PXdkBiof9/Ws+UCPLhyT44RerXhE+fq6LFS6PBgvdMY+maMIDsryNwOihjrF4yAIC349gzWjDfuxzXSWhcXyRF8j7UBY+9ODZLLgRllFUydzzzesIZOrTj1xkpNcBapKHCUTDqfvQu+LH5F4/DMJ55/9dGk52Pnz8OeOiJnMtTiKoZYE+ikV1rmbqJu2eWlRVHEzx3yiyc0NeQ5J10w4zqnkg1PpSLhlSOgeVkEmnJdSrbSWzp6MbECREc4XRLVn80zw7Vz3COHw8KzJ1Vn+W2jzNWemTGYktO0CsAsBZL5wLgF8IaIXtWG+LCK2GhR1msvK7uEZj1nF9I5tD8u8sA0we7RYP0DHS8XE8sRtpA/scoxUnDy1xCCXRPjh2WzgewuhEDK/CIy5peujuL/Ja2EBGmcwR29VzWRhTrdFwdxAi82PvI86zMs6NzfOaelVBFtYpJFUP2HRNzKPWpMisTDt2U1MryE+h7vn7HSy6py7XmgX0uLkUiP1JUKOJtpUNwLHMi6ZwCKHm5uLKLnyqo9/m6zlU/wosLErtqqHpMqeVif9q3ux4z//2rdqd4brvttttuu+22j7OPQFBYRYEkc2Gmdx3euxnw3BrpMhJuH4aEucKfNcGc67uPtlRCgSQ0QgyyUQ85GpxMoWS8R0jvAKF7sfgHrMj45cBTVmjeu1IHxAudPdnoTrLVwGSqo1NCMpv5zWHwnbYJYqu9JVMLZnBNddUg4I3oalyc1jlORm9Ntsy7FvhOURoxCpV5vSdZNuv5Ad2RSxBztSt+bN2OYWdqwWx0YgylsmptBzBORw9MebNCpyV69jwekBLPAMD5K/1zVUmI9YHfTTIia03YyCyQoWZKcu6YwL92moqpQgVCSkY1o1MbwhRioD2tOSTUJhuop9MQFWBLORdYyFgQ2Mwm3pskHVfWJYl+5kby922fZ4mgZFRZq3moV4IiWQ9c5H/iO1XTh2TSkhZh5SA8EQNDoiZSo9gK3ce+yheiqq85oRmbWZERKWxpmcpxTKpH+5yJnDSeIDvSqwif8WgrcuiRxFUzku0XuXZfeyEMk9haSMW1RUBM5+bOVhsiyq7lVnIl9Z7UsV2nLdyXw6k3EwhK61q6kgurBKYnmVRZKlWeCeS9NRJ2r2mqC+zAVFqkg1DoCcWKorAVJCSPG+itX5+DOKrlfiso4wVZKk/w/tdw1YfN31PH67pFOWH8HfsIB4WDKgnpeFkMvGCoxporZc+IJcu7vttDrliBk6mUDsVKD7QoIVbJhdGVzo77wCFZxgvsMjtqPf/eqXJanmNrwnJbstKbQo9ITSWz/D3eaI+1+h18EXJxtmEsu66ld3FdE/kgNtGcJKJjb3kiv+abMG+UvfoUQpECx7EX2rcdrO4RltYJ4u5MT7np4Wtcp5b+ESjiQyxFEGKg0w3/jh5Cw6E7FRflcA4jRitiTIVkTtOZI1bL3kTyQDLeL/0rwskSvC2fJWC9kFEd5A72Iwqn+EdXtC2L31qmyQxeOFJ7WHvHOPv++0QUHbHiaBpsw7xDgBkcKHN87TLiaE3w4yH4+VybHcg01G2fZ3+2GLmXDj2ZR8BFMi1jIgzqtK8fzZxtO5aw4fdtvCxs+ftaYL6taKUWdrVTKQe+fHFVCck3x3ulEfazKijOihXp81zYuD1SriCdj3QwoEXOoPAbjpAwMIXtEimRXOC/9tzwNSdbgWgJLFuTS7pn775U2+TiyjStA74rMc+ZZcJRoXVow7F/nzLozMAzwA7HyiXnoa6NAVTcFxGh9L9W77HWP/P0U1Z/zYPXfU2zi4PxXeLfS7WNSjps4sWBLc9WLK8qNYXz7ZQQ7kl1Zr5/6+Kif9v6P293iue222677bbbbvs4+wgE5fUqTZgKBE+ob380p5LsCnFKzbsJCbHPll5dVMYMS9LTEbC7akFQBNNShOfMog9uPyni4ehEVqMaRrIJoab+SkD80pUN56YZZg/0YbK53diVInIoWqQUXPDaLu3Y6Ee3gXbspn/vFPByNDZVxI68tTt0R/xHf+KfG6HYUhv41zkpof/syahXTGiEC5HqKHLb043pLYnGXdMxR3RLTvg50IX2UHrvcypem+g63xPHjlaipYEIKJc9z2xkdu6OzmOC6AQMKQ/dNQWSgvj6dj5Ax6EY8+rpHyp4BA6tjY39ojnb4wEc89j7bBj7mZoGkm9jXyYO7xH1Ggihx4PUO0GsOSeiebeKEy2MKK9rY1rQzIjm3fZ5ZgXp9aK7kfhEIholk5xpac/Il0TNQqhtVnSH4phIiN5q1qakF2iSUXTtSFs2SSShtKG4dIYLdEPzANOdeWSmeoqAXJOCoORo8buHKOfSmp6I4gLDRNtzdAP4jhDBruPtYCVSa5lSIinUpaAHSeqcoWXkzuqlMR1jz0+yU68P9XXtWBo0QcZXLx3h2Y5A2b6lHYnQRsdnQbZ3aSVVYqj3ce9fSouQfJIKoXeWFI/8du/dPZ8zyfEowMvl5xWx+J6oqRTZ3Jd6ns+3fNX+zf8mfnIjKLfddtttt9122wfaRyAov14LPtBD0WcoyQoej+XFPsOzheArysrGYEkeXLD7NDGXq4oSWhe+QBAatTHHOibIQYGC6qlvS+869usFjSEpCpMaHacPZuNCjvhoyuReFwCPHRV04Hgu//Xrf23eiBl+hkLu0TF2MvONkH43eOirHMDPPwLmydLg9HIztFIIzm9OblMhUW/lwYOPMqmoqrvu2+YkwW+WcCd8Y3Nj7nmaY1cEE03qR7aPb6KUg3RJ/zpzoooo3rNT+XmQhwcEWloatBFkvgxRSdoqZd1dO76+lob9azdZPHpD/x8/AQDP/oDvez5tfW+4p8ZDS6TDp5Bcy5JAMXKJ1Bu5NcGRaRA8Njznr4lzQyj2SPJu5Lx7d+a5XyduDsoH25UKUjlOO2ImgT+taTZuc6Q8Ap+pfGwxPaeyiqBwdpPUHrlSL5zbVL6AlIh9nV8S6jUDbhLdvfAkFvG1FJ5eUJYrdRKVJhOfFbK9onG7qg0S89B0x88gRcB5cYFctlrXDSlIQf6eys/J16toTZJz/HKubG4XXDtMNm+UnrpEDaU9Rly4ChXLVYpWy0Z3D1G2HSn4Gi7N/nI5Sk5iIaPmvItEW6rIzL7uIckZWlSk8qBUwZp9nAtz5FsptubWl3P4zk2JnyT5f/vOX7GPcFBem5h49NJzYgD/CiLSTlk8H6vzKwC8/3c+ZGYO2wvWjFSIIkmjDUyxhE+hpfGAm5NU2Tqge1gofby+tf4tz0A8cJAl5AMA47TsGXPgt/10L72HHg2+f//a+htjTJzn2rD9aHjES7Wl7l+iJKg+O3CEkNDbMCILFX2JAOh2FMwF79BgYB+drEQxOKXuu2Rtf2jCjCnUSlhYdZk4sIlfj5ggHFtuBl+/ti7Il+EfP9e4Ph8NR0hJKzCDfBv9cVSy5YEJfBNxdbcI0MMxo4rIJnxX3og5z/fYOZH2s7He/3EcsKhACNElFRLtzjFIGubk/wZ0p+R6KYtSEUwLMaf9bKinDrekPPhEYdSFbL5P5qGGNUK+Gno4MDp5v17ALYPyuXbVQamwtvL3+DvJpKIkStYFs2pa8Gkri1w+BlfYvKY9mFFiWii9HSkrTD0WnQZFCszFwijOSjoXYWCnKI7R5WcOCGWpeOBC9Cypp8qjzKqX9JamO6sXvy/ScRGXnjbl2uJc2YfmT/4upcpHm5CwS0cHwgFzzcVbZaZTyJ0Jf3cVpucob+Vgzq4WVZnbb/2GBIUgDcu2Hlx6NO9dGftIi3fP9CGKTyJlfipDeOkllz16MsDK25WBpXHrum066I3//+t2p3huu+2222677baPs49AUCIa7jC6TGMCvzYpUhgBe0bpPx4s/fVzsjw0yI3eBA9JjRESYkl2RSIC00qXW4VboC0RAc0sW1Mp0UZCihaKrKbwKH8Ob9iMBNPuyt9tdkbUlBKF8RqmzVRvDWSoK+XYHx3AmVFBNJoj0XgKzjM8aoduJMIsOv02RL+6peGw9+U19ROpEqd3DwjTV4xmVNF2fqLjpCceZDObhnEmuhGoxjCjJ36OhZD01op6q0LPHDsAePYTcz+6Pi3v40h4ODQRjgY8H8fer+H5CEXebCMd42WS5YW6vzfP1H1onvC2aXZ0rnrd0YnaICTBjkBapid514Rqlm6GguPu8XIiYnW8b/s8m2wWWVIDQN7SIhPPtA+kIByFjxolpR6pzh3xxzvNMmYkUmKJmlzSTGFe0y7yWzSrl/RIRf6N2+c1KcmiUnRfakPEPFTOGTG3TGTK1twJDboX1CDmSghaKNiikIKvlxanVVCaMjaXstzfUxJa0hiJwAg03u0ixluzJ0RQvF2uOXZWqfjz2xemWUGoNZ8TuaqPx3mlvHzSZPm8uFyvgUj//h6ED6VPYeHGarK6n9sxeN7RuuTojaruXCZh2RyyTEeCyxTI8/o+LH/HPsJBiQsxc77sYwrGrkBhZcXprCp5/PGTeVl9n7Cv9/7uHuxCjVeTlI9PTXwev6nAj4SzYl1ofJIdqefh5emIBUrYm6E/HlnhwslGMULWvFwvAL4IsrVXVCcI0803nZ14Ao7WUi+kO3HD/gT6H9eHe/wCZoiXNSO/gpCjZhfVC74nwjQQYVXPh1CQMC9fJJd06Kaixwuy03M+jb2ThhkPdbRGzo9Szh8wDdKFpmAfc9PG3iWiLdvdG2D7Gn1G2tDQorLHT/i+u+0Ix0+zG614tikvsyAXncJHaSqQuA8zdGcMVlJXTsG9neqZls8kcqIc0xAlBNlCwJmPVAGEDuxtn2bvSBsa+JKIOGQ/w7LL8rzIrVdRyqV6H/PLfpZcGOCsrEh5T4HlaHAxyGArpcCKebIH6rKRjkqmXdbcsJ18vtuVx+CXDsZRlcbTL46CQUvuKYIflO62WYUDR+n3U851RuuJTMHEUDStKSYtqZBrWi0H7v87zVDn5AbB93hA4iR5LnHduSWT3nJ1lhj77r2MOSh/X8drovB+Yp+e6XaFUhunnlg9d//2y/KJc23jXCmOjH/Ks8X1qHR+L1VbHHuAaT9BeZYKr0VyWr467n/B7rDstttuu+222277OPsIBOV4BLoBEgPdndoP4bWdwwh86D8cz+iI2xp863ZQZ8CyMntOg0SUQ4QrdVZ6z7hiNWeKKCY85kkvsqsiKNyThCbLGvlD8/MdjR+FjOQN2SBQHC1Qh2g417Mpn83K6t7nqg19oy3vt1FKXlrK6TMoMSORt/8ALCTiyVB3BgAOJzteJCWos3a/pLaQ8HNIQrcS8R0OVgyFuuxhDZ2tCSZm5FW0wXeaKzRG3AAZhYgXaY+AKh0psa9IRrzE2aUjv1ItMYaT6TONrrECjjfcSUAOXRubznQTLOFnVaUiL6hpkBVgC77e17t/nnJSn6FPIfKyUkPxYAes33bqB4CPPMfbPs4CZXSUYFSkpI3XpCbwUmWjzC068p01vrya76MjJ7aIWmdqechREJjTEO0+qgJ3pLabFvn52N6zTcZKB9Xwe6u/Ej4VajdZyQfxvSgddStaw7nYrKSpnH8wL52NmcYQVkfO9aICQGkxIQUpyPnc3IjCWME+ap1OxZGAFeFXmfgyY69/L++fEBlaY1Hxleu1O1Du+f7Mch3yBEoXElEQsvw0cYREacoZ8ryNz0+sfjlrbwQlb3M540BYAKnPZMzhe16flgrhAlkob2yfQ8t9/XfYjaDcdtttt912220fZx+BoDwewWcAPWYVxyP0I4I4OxzvHXXO+W/YJj82yfLkvvvZjwkqzU4f5BaENkVDUe2U/B3mGBvGISe0ZQ7NeyUIleghpQGo6OpbhVBGiVZKxG5uhZi6uQ1NWc7qsCTfxrFaI2GyD8NsEWE4xmtzPF7On4GqHCoYu+5ZNkm2uRKRMrXiyRu5GkEYFl+EUwAQley74/seIPkZR8+x032s4YVQmyKrcGnZRMvz74EeiEuW5FFttWf5oDg1UeBIMmn08IBgnrnfaCIWvXysMtqQZOfgj7g7eSW+NogD88HMSNS4XzlPxmk91HinZzQySxt0UYyda9fNhuym0Now7L8pIrntv9+C/+GFK6IQog6BsGiNsd2JoE2A5e0jgDSXEj3WmL7wN8q+JJBMyecq3rfpYCn94oBgfzdQj6RSqDtL8YMP8aN3PDebfsCBrRg9YUSbk2PSskR3n9v6ETF76WVmoPqrl/mBnDQkgmvSklhaegVNL9cY6MD0JLzmmSAovbUEtpJZs0RcCiqR8EaiAk6EREWvfA/uK4+a8wPyukrjw7jTHc45jlNDYaNa0YyiQm7519wTQeH9TI6LShKz7SJOQtjvwkch92/GGBu/qkV7B1LRr9ylXP/7t+wjHJTo5KsCYp2qScQkA3w4F5vX+wtnXx7Az8eBx48tfsaGeQ0WaZPSeOtrBgFMEI/n6cK+fiZO5D7u8jgTkhueL3Z05JWqmjQE/Z/7151+ebtzEuuaZK/mjlcK+e8x6HndtuhH6yCUh+OD0w9HaEUbHBYdcWe81JLN8yydMynspaiXdwAtGG8+8f71tcdmOSDP3tGOqP5JyFfYbgAkAouSikVJ+tOBM2BmIGtoGjCjWsGy6y/1AArxEMgXLVbspQywJx4RaItmkenURNpGALS+Zev3Pt+n50vXNFNXm0TbdFLWeiJTbnNOXjvdpdaYqjsvFQoew5rNBu1ajZA9DAveWya+75pKt32ieTbFWyD4+pRzfi4wE04nfCI1PqpQVy5S12Mss1xErUrZlzWmLP4J0+fKFPPYoensHJoSR5wvVNnE8mWGyEaaekqcx2Pr2TZOAIhdF8zF/c4AbTBoSQHMSN+6Cs4IJGYOSIgaumdlz/SMERWla3QRWmllcU9nop5YfOjFWSluh+Q6pcURRdnssk/soOpbhVNrzvnJiwOipcKKBGrIhVScTRBz3OmYeRG9DMcO9fmpxFcrOijhLF0TKhc9mth/mafq1t9F26T8p6xif9nuFM9tt91222233fZx9hEISkBQXQQzWtdLtJcG3tsbnEjNjDGNHt9Xmyx3e7D8tQV/FCJg2WtU3Qp8Ea+wUJNE+SUbTZW6/PQ8QU88SoulC/UtMBOWDC/7F7xEDXndzZ3eddVBqF4jo4ICp7HcdjohUqgQrdBHicLC424C2cIacywZ97c0ljk/RJkmc1wqjtd5qzPaUS8pr/DUHTneEJZoh9KtyEojxYmpJepBQlf5bqSb3LxAv0EAU8iGvKYZUbNHV57wYCrQoHu7Rxe059ouZOZfBRt+qJL4FejYzx8PvF9rvE4YrxFDcERmqSUU+gpy7duSWLh/WIn4rMRxDi+Q74bSy3dd8t7e9nn2LaYFEITEnNeA9U55KZWPWcdKDT8B4CKHWhU/GUFLiXDNCCuEHHt8Z+0rX1gritBstKd5fGmaKsxbCEOkYe7n+v22VMJ2L2mLPTcgNX0WVnNFa1pBeLxlmbKvQfk2oKmzstIXgQKtzyaAc+Toh8QHmpR08B4D1VIWm+X+LOWGl3SPEOFohKNQyv6dxQFqf3L/vZJs5YKoAJuOQMQ+59pWvlnTXZfnav+M6zLJVGIc+9vJEP53JAl7WqrWXhWHM2X3f5py4n4ICshdF0rNz0T+3gT2EQ5KDLt7cghMhC/dYw/k6Y53YY0HHO9ICJOsb598kF0FPUqCohJEMq+rnoujm2e+P/IQLqwqacMzxbP76KAL86ZigG8YnxUwYnQUDEBVtAh+wiRuWVnXBt2MeZH6yC+bJpjRdbMrLByM/SIdKDnDlhU1Y0TFk3LyLGv7qi7i2xrbaPJKFHzBA6Z2pCCRi+C5r/0Z+i9dyf8458T5jtSQ4GzhoIQ2QBGxmuDTP8lbcfgIp8BwBK+oplh2fu08z5So10bhp3gPG4DjiO0FbtlZe58UnjstpJ7Q8bTMv0cFxZgT71dUAeVkI+ldFsGq2uPTkmOE+nzvc1Tgcbcz/ljjmuBg9Qg0tTRi8Z4iGBRpzO66FVyX/Kik/TLf96fLhufzjKKrwTSneaEZOJ9BKYGOl7kwgpYQ9Vpcj+z2zq7Aht/Pu+SmHMkn6TxmBk0uubAZ6hy899lQ0iPCa2A63jOFs+af9fkhtc9RDmieoyL0ZqKfmtccaql2aRppuvK+ukHIUcvOxhfN+xJchKZUDFbX2gYhz9GRa1KKxmVFkuYuOOBaBDaXnxnXg9x/qTKbxaklz29f47qMiLpyQeDzVIglzn/218ox9gjkcH77/1+xO8Vz22233Xbbbbd9nH0EghJe16zetyQESaKTKpv+HeJkdS+IPyLqncYwUFIeqiWdsz4SgNH0IrkWzzOqVQLUMNCl1VnQjGDTdiGHtXVnhBER0EMFo0RGg96t4x9x3qGtMiVJuiL42v+h3Po0Qq/WgRFy/5oKj0wLVZhuoGKJe/dWOpeCYyQieAQkuyOFf7EV8rr+iDAUARk6K1hchB18g7Qa5wwAeAGvQMXOAi9rVCIoJZe1ZdfgGPeJJE6LCO+NmcE39HNspdkDYDuAMYH3TtJE2kcKKuI1ytq/vIYFDxkqwtTUdGOnZirJGqiGCzdGjxy3UgognhL9IijfzYqkaBR5tIbHcccSn2qRyvGZZNVF8r/C7S6Zuiwg5IbTN9LIHdgFXSgQSP7gyy1EPKVC6wXVuHS0rZKnWFG1sQVDpnJ7j/fSWUl5NKTMe61QqQqoJY8df3eSdHMOHlJTxVfSeIxRVa2N+TiRIaCxo7wwxdObZOq5lumUOdhjPYiqOxTUoZBVa+TPNIYBrqm4KtfbvNI+Vg4WU4Lm9y4qwPvzUxUx2Vl0Oh8T1rMAhMhunIoLu55P89R/qR0C4/ysNPjza+pof6FcxZV4/f1a8a2u7Bvf9vuvfxtCuWe922677bbbbrvt4+wjEBRc+BXh4a3cKJAeOwqXRFvmbbUgKCynO51IxQSoWbHpBMtz3dtPc3qh7oXQFd69F5qTFk2K8M7fwjzz8QQjp+DLPEQgmwfRe6cX7MPwfu9oYEMscvilzj+Ql0kyqlPl9BTJcrTpLOmLcemSrbjHcGDzVR7PyCl6tiYSYYjSJTsGMYJpbwjREEVnDjVUKy1zx3DIUULFvc1PDS4HML82R2RY0YfI6LCxJwQw+kYt4sK+GqLLoeiRGg+XECxCPmePoMMU/l7HHW2re0rjM2Nz8VgAoG21XjPDa2uU9JbNvADncUMp1jxJjk2VuV8l+bf0V7GCbknp/RHRimcefOkX/N0s7m3/ty0I4YacUHvhgsTsoQAaVaqz3Na9ckSC95HP8yzcFvapkdRTchFooIzrS/ss4u/O37UgKIy2PUmlZtlwdZy7D04Dm5UePSP22vAwuwwZ+1iJ5FxY+nmyP6rlKW4i5d4uRaaTPC5FtyW+p8lbUU95CJFC8v+z0F0kW+gU7kmCDs53FvlRNiW1PMfaJ4nRvpeT9IS6sl6hrF1FTdeR88sWVMcUIZpcqC20tXbtNa+uadFTTJKT6Fa5KZrITpCa3TnvVjS5lnVnBuIb9beUc1/++1+0z3BQykVdIUErf92kzpYzeSUEUfBsw+1jOF80G/n3n/uuHC0f4qXYnDhsvECTs0aZbA6H9fJEYTkH0RFymOL5c1eYPLLjbmqnNBx7FTvHpDZIPJiqgOxrbE1xcJKK1rjZXXf19F2LvrllqiHIsgWOdc0UTuR4HFlpogAX8ibpMrx2ykG65nlp44NM8TUgu2JiEuJMgrniwdXb8Opb3t7AlJjaGq9nbzi2A/J+j6UpgpxLujp6VOk0hwSZj89GQpxyOFqkm4ZgroIc/NrnejwaamVYotNbk8UM79eaLk4VtO3gquQxCI8Xh68Lks23rTZaW9eznawmPPeoSHJLQttU4WJ22+dZOLXikw6Izkxzsu1CUUkTT9nwJXcUhOtILWiZDHO2z6Z/oKehaiRdVgEKpnXKdq5AtEaOY2llq8JgFp3hI7hBth2B5H7LeTF9YYDsxbFppr6lLJIsKKiLXP3uXpW0aVb2oSx6zKk4A4Kr44Vizm0qATmF1uKq/fccU9mZu5cWIrh2Of62iUgNPv5slzkJrPYHGeDwLkTllypbeSxnJpzenHcv/F6my8OxS8+vJnAul1oBgtIsMHGBvU8rmigwPHjcngFWOLojD+ZlH3/V7hTPbbfddtttt932cfYRCIqkk3sts6tEn/g7PV+hPPTrtEwDFaiSEr02oUE23S73dOWBVRwt1AvhJE6RfASP/oB4/hBGTL5zDq4nvvaXX6fgsfG5FpH1OagB0uSJH+Pnxx8AACAASURBVPLYvws98bnLiXtXlve11vEkiWundezMcZmT0UaDJHKyr2uolXp5IFhkJ3E+Q98ISYfiiNI715TJ3uc1p180A2JfLJ/WAQm4xwxjxJE32es4qaLqpxP67cdWc0XKfGMCW8AWEwLb0tp72NAOhYwsF4+yyPbIBm0zVHXdqUzZWhJ5x9felygizDGfsK0VI6F4UnRS5lkaOSqofbOHCE1BVG/MfK6tEBQJyrXUyWitkXQXHLjTDHH3ujSSkW/7PIvUwlQlBH7CIeMaNZpnqwOD55yFovXDV9sZ3rdeoOWY5kptscLxjpPwfOerlH2YlBLcpN9KSTfNbBGyocExhDmNlQr+k7xMoN1uZd4WogUZYKfeiErqoFSkIQn4ea41VTMrekDEKdMyWhVPed3A/2/eQVKSoeZRLiXkPK5zjOCZfq1aVZeUh+c+1vkLDyJI1MNLuXk0n20iLAap+7hwfzleeeLa47rlcl1X5OT7GAC1VLpKHqxP8pkDhAivXEjYwp881n8B/P0IB6UCXvkGJvRFcys43lXMK7A+piG6o83oupnCOlEZ9B6Kx5ELRLygUmjVr+3gnGNSvOiAZAfhfVr9oWj7Bf76AsZ7L3JkkhvmXvx7EWjqKvjxiKqk4HeAx+qtQffjGbdbHdze3Ipwk/B48UDYcFTh6bYXwRiXcwz22ziR4kRdGh/6zrfrpMjPsOwRJPsR+ufjD2oK/HoPvKICK17Kc+DXrqbxIWxD0A/AfHl0r+1wNm350jegRc675f2a+yacNvAj0lQ/QFh9vLeD9Sp9Obrz77J79ZijYMLCsRtsq53pF4fTifKZDgqryZDaFu8p8HAe93krMrcMAD+is7E4RlQHsZrMcWg8G/ni3/Z5Fu8VSl+p4UbHlYuKFEekfO5VlK2klVP8rEDwiO+t5Rn7Xx7D8nknj8vB9K9I6puMeK9mgv/eNKfYvZ9fNtDO0GPK9G5rqSOSPktpB+EoKa19fp49fiQvG1b8A1ZFHXpxTKifwjHIgMCLoJl5pv9j84uGCATflxZxv6Ssfk/bxD/7b4zFShd5rQerHlK801kxFAeYJc3lSEcsFub13ofzWsXkcr26CIvuw4b2k+ThF6+kOqvf+CIi6RRDagovHD/LVKFXTRXnHBd8FVVc/Ni/S0q5Uzy33XbbbbfddtvH2UcgKJdIgiziQukJ9APZ4XURbwIGM4B16WsT64pjX96Szd9e4FYwXekI4mDwHQ57kZ+PaPtQxSOIcHCMEOYgEgJWF7UiG029EVVe1xRlFO3N0Pcxfvbn2qQJ96vaUu8DeXzjefuSud5DFCRXdge2RFBEhRoyPyJf9Z4wTS84NGQcZyor7lKm51NXWgyAy8Qgoz0UJk/u31Ugm+TKRpDuGDtke5tC93g9mlI75NxR3g9pJL9ZT+VKL969hzDw6Ri7OklPZQomVF7fpxPx6g+D7vM6djmXTeN1C5KoNwmVAK2v3JI05zmapXYFz6sV9VDNCJdRgOVzWJHXpeqYUdL6guKxU1PPjktTsds+y9hdHJnCgRl1mFJ7opDKBSXFg5KLQPl7ommXTsj761ai2Uh5iqd+BWr1RZElT1n79XdVSQKog4RbdrMdqY3SRJjelZYRNRO63piCEcPqEgpg7MKCbilV/xZfiDRWOofVJDG99hwYFSlqr/szv3Z5ZuNAy3Gk1fQqClJVtIiqNgmVnSsorbnTyTmjIA2VNFx+4ytteQ9K71cqizvyHFpBazifA78hQ4IkCtfjsuOBS6I9jj8lEtcUoF9++Z5eS8hr1bBkhoCtAQpZ+1JB9TcRlA9zUBTm0XE3ISjwRTWWdCoEP/bE8PjRmPdkCZwC/ZGLejg2kaccnhwVSHYbNvOidLYnnqasFEGz7GER3Y5ny54UahQ1asFGN0EL2Xu0FGpTpNPwYy2Cz9bxHotAYaV1es456Xi5OMauRpljljTAzhePkR13RdmPyEPs7n/8xNf7ta/7RGDS5grf+Ym+j3WoQWY+fNEXJ67l9R5oM6oKlI5JTILHBNuwDwU5OW6TL8hjl8iYTWh4ceKQXfFj5ASlkNIBxdw7GKN0okaOcVTZ4JUloY3CZxNjlxE3yW4YuZAIPBy3mW3Wu0g6SQHXavJdgEwBZTdSpVP9KHL+A8ZSwMZnQ3Hs5/c42qWH022fZfF4teJ0KsDnslYb8veyiIpkMJRzYV1j/bd8/uVxcLCPjSBhes5pKHw+zYNUDgzPpYg7ZmFPqZhUZJXPlFyUY+FCvvO1746V9yreh9UZPsfAyjkAgJhlOTAyhZ3l26W9R+kBhFLiT36HX9M65FcwK1NHW35zUJpopkSQToPUf0vwQbfJ8z4416Yy3loX/eoK5MSflTP4duOXc0l5/OKuSfGs+JlWdy6rknjd5VgrTA7nEL+blyrGS/lyetp/XlX11+wOy2677bbbbrvtto+zz0BQCN07NPA/BeTH1YudbyPq4RCcAZ2KEN7LKqCEReVPCD/ujrFD3G4CLd4gg40Cs4X3C2mEJWfoicyW2Jw6fFezHPv8+5fgpKw0ElZsguNYt+CPPxaC8vPxwH/8x06FuIHseE3PNpoQdu+s/hj+lemxqHAZxqij9QPHlkwOhvfr3SA71eEuFEKbBrh/I/oW4TCosl6ejfzMYBtOETWiRyGN0mxpwADAQ4DX3v84k0wYUcvbJub5/7L3bkuSIzmW4AFUSXP3iMysmtmR/v+fmxmZ6emuqowIdyOpwD4obnT37K7IFVmxXSEewi3swouSVAUODg7Se3dP/jCiHoOxGEz1tCzYrOJHWxLdHK3pXbBrpmveN9Ni7ljtxMZe5OtTJS3IYABKQ8N30Ke/CpE9St0ZF3QrkuFKmpEgJYXP+1NS62h2b2DhxMUvezg7Qn+o6HqUnEHqZ6SkvBbUghsFzs6pnlWavM2kxMkoo/wpoOVpgNxuTHlS2jmoxr6kpCRQEIOoGqliZJ6uGoo90kl5jwd5sooKpt5jHr68TyPksX7MlCQqop/AB4qUbldoanicvxRjUJvfVRFEYKKnN08RqeLVm886MqV+PAZY2etFKdpmpPJZXEWURtWxRkE1tU1ARYvlk8NGEqtRyNRx3POE4uPobl/nrIJShSaPZppLCzyr5RidAJ33U4X1CHnP/McQyZ9L7ky7EJTLLrvssssuu+zh7CEQFHbp9YJkoCgekuuKiIZS40GCzQmiYDA5d8XL6bLcTZDJ4YxaJb1v4lKoX35X9O+HETEHt2ii5e6scjZxEh44LGRyL/nGFPwOHRoN9BZacTM443abf1++rHh7C6FjiMlNbz9Mk+A+wFZ325igJh+/sIZ7/MNyxLtqKBLe+orm5cvG/9hZ0Z1bg47huWUZ0KNGb4CMFi3TGQSy425Wqs0kGFG3qIH4RDPDg3ALgYZCzJKMCryf4E6JlDFaIEOueyMDgaAsa0doxFCR2bb3mgi0u2YKhR5OlP4ORDt0KqVxksFQhjOcvCMuSoseITScdRsCVLMx2lWCbDiEECI21NC4REQw3pOjY5JR+mWPZ06o1iah70Mt218ESXbkb1QKUkDJbWpFTyJJthnZVsyuosVVSDYImAWRSIXa5A5UBLBuK1RIcd4OAGyvMttmYEberaAS8wQ40NNW0IFWNhXTgBaVUqocjsq58BPXEt3nxpLzoPnwIrknQQiuIFTtcxIITep2VJl3Si2L0FAS/SMYKHVlWikpjtYohY3q94yM/FwopR4qoTcboyYy3Mrkk1Si2nogSCE5Jin5BChlM94yLOVkAk1G/iS/VK8XztmG+eW6sU8QwH/SHsJB6bsdRgfaLW8oF/uKzpEscY1JJa5sB+FmC49fzKGUmhKi8KHz9EZjTsY9tXzAFUEsjXr+IdiP3d4jvDzPbS3tCQBwIwpNFRXC630+jrsTTRcJwTNtEtUw+2AMndU7BBdva1iMMDu2t5SvD2EgYPgEQSMIac/rmqxqO9axplpYW3LxHKYRwscRxFnSFGKTocFSdyLd2JN4BhD6Ol+vRuRsKwVBdJSurp7SGER48xteQpgbxK1IXFsKpwNjM60FobhJn9ckLbsUPkGjZxJGmXI1Z2wqDkizAwptkz3HiFupzKkTdpmMBq/2XYU/dEHAZi0TZk6S7GRroai6GpoPeGcO5y97UUm0DhAlHKOsbpc9lvmzSRpaPcwM9jYRvla0JJsK5f1Rm8h6G42kPvpn7qwUON6XFqWyMqBoWbiHUhyIrF8pnYDLIpe7Or9ZNlmU5pNUGfOn4nQwnvL0vVM6ILWSbS5y6ZwB5+Dg0+XtzCT+VIvls1+qprCni3Kq0inFVLNUcyv1enBJPZQxDHn51K7RUmnUysnWpT8CGWh+EKKbObasOU94taBQaZOCgcXOewvnoiEqQAVQznXEJf1yWk+Rv5MDHGdazrWeO3323fqxfvj8n7UrxXPZZZdddtlllz2cPQSCEu4gIVIhRGpRKiDNS1IlOvliEFbvUNwaVk8PuNT9oIKdpSfmHiaD8Cbp0ob321K2113qcQD3aKW7YzXUYzXt9aWt0QhvMEBPE8F4HZaquXc8m87J0TTIaZ0VKrPM9/vddVKesoxv37Fts+RYSzTunSqPMcLj3rkXgqbpiayjlIqNCPQ8FbPvRzZJJIa3TuZBQdbrhcyV0ieanrihHn2lUJg8JCMBzyDtT8BuJFcVQTPCLHMeD9nfhQjNoK4p7e/3hB1foyTpAokSUeLmGpFbi8iIqJAY7VyqsiuYAqLPSCKRktkozWBeRkK6kmlFl7VX1tShcMIupUonUerS3BpHdOVNIQ8Z2VTsQlAe2kZps9EiBZgonadthBXSMpoO4r0mmhLQfCEh+nfm25k2Cr0RpVKj+1EeXt81qUxgpaJ9n51Zxsn+ceuchP1Crgz9n0al63DBGUqpbHan14JU5j7yeaVzqqIqPvsfze9mVucjgkL6B+foc4tSpHVP6aaKWJUSXP4EXarHJWX/FHPwfGcgtU8mPd7SNgVA8XRgKx2duSJO70CyuSsqY+dSFEU/hhAI8VSd8e36RiSOZeGckwKXlkwLKTZIaSDpZ+tk7IqwENFJq+Vn7DEcFKt6YUJUuIhqsKP99PdDsd19USA0IzXQjVOwzDapnBLlJNlrIm5SUXTnTDSF2oJJ5QEbLufO2bG0gfFir2+2SPeVQjqd28Biygjk/SuUoO5MceZlCYoxZlOYbz/msbztB27L5JUclGxxh46XtQGWEru/DWjI8adYTm0L7vnmTUZswxfRg5D9ZFgj5y3KId/dnWPSOW8+Son9Fr18KGYWKfl1F7j7fh+z2gnA0no4LjIk2O2+IAsIElL2Er168h7X4Bo1puBvAGVR9+vJjF4m0nAgPP2H4swQTrn8+YXEL0/wNHJNKKB5cUCQprlQhU5LS7G6zhzVQW/WJuHQAy/eDZsa3i4KysNa+pHpxA/VqKhIPZHUYYJm/FT70yy2sIhoBCKgEsNFakKTSyJFwlwRqxxFOU7ew7WSIyhjyPRDXQTxiQPDzPEMzfTnefFF4WFBcsGMqha8c0o+c1DKuVSn470YTJWft919/J3PtcUJBOXnNS0U+it6SrDl/vNQT60nTsVQgHUit2Ma2beHSo4nO5SULs7l/Uwn0XkuoY9/s30ORT4ous3XlFtxvBgajnPwJiQDtMlX0dyuHV/wh6rYC707Rt9v6USNd5//s3aleC677LLLLrvssoezh0BQvFKltfRbN9EgcEYa467wrEmjJJztu2a1iHvsnBUbBASmFox6IOu8RSN1pEWu3MmXKytoTVaSw/zdItxb71gMEpDGOMQqa7x6Y2go4EJK5K0aKqVs6Y9bE+jzUxxLqOZ7N+Ubo1nlzhgjoMDOgJewDPM7x+i429gqK/riGh7Byjqx3T31dEwMc77vwhwNIBvjdW2p8WHjwtqxW0h2xxZoDhuSoccRYcUkwScM7EiCQ9a7JAh6IgU6GrSN0JZYF8ZtSdTE4cxu4SMTp44OBLvBQB49LgOBQlWFR7caLVHL0OsYiMgi0mFEUTWFlsGdHDnGSR4mrHZ/cku9mAT4GFtc29S8uOzxzB8FJY1GeCJUITb4Cyq/CR0TJGxRlPJP6sERSQYaT0WbKZ8TEsm24Havtt5BZKjsIZkudoRFsmXGrCfw+9KfYWSKSEtT0iJqUk4xGomKUETpgaAkmIM6zczzOm9MpSCdmmrfVH4TSAYlzDTl+jVen8YN9tk5AwQtKWxWoJUKqjku+ewToWjJ5Hb9y0PzuCeC4sdAsf2oeimsYymVSjUdJeW9vA7lTzkXn4s8vTYgqYoNOjVEzIoxu/YFCVFoaOsEMEX5e+Zyf+epnYp34rBO+ik/ZxeCctlll1122WWXPZw9BIJyfzWP/5Y5fEHqALi2BXfCzSuSSaNvyXgdWTLsqMlC2XJ6TTVQ53Q0VbCVjOpA6G4QSUYOrplBqQEiMiMSAHh6mUjH09MtypwJwLZ7Wavt802g+yS7bseIPg61Zi+agfV7eLTa13Cfu+t+sEap9LEucdyNZzk0MJGX+eVecqcD5GWPUZarWM2L3hlBemNO/sz9dW5rY+Avi8Z22eEle+uuiqNEWX6OP4zkS8geRiI6+3hgjmU3eIiDw5KEi8YNbXHUwxR2D8F+92314KB0atF4sBknqHVGs9JNoUkABhDaOtQpSLiTj5Joxzzu1BzonElzOkb0YMn28oSb3RtfezckCLgb0UekENKIsEW4fARHyrlOSg3DeTaU9/Jlj2fRC6VE+QOmdYOMAplKBTBScbVe2e1UylnD6eR1zJ1Rkl+S9QGAS18UxHElbyPVWStvIJGC8jvvfcOJQlKTLOsHF6LufKeJQmne729EeBGP5G1c5Ewadc6DAqfoPo7buYVlbHOAqLLZA/mO8alnpp99lpyyocnB01FgHp/3a5+cojtTS8STC1LIroVjUq9s9vrJm0IYgQxT4cilAm0iMz03dUJQ4jr5WBXCsJZTV1IUiWN7LxF7IU3V7NhBDjBVrlFFv+olLPv9sxS6h3BQXG4doHA6WJNR7BUfR0NO2ipxEQ4u4kMutTFaCHD1RklODLEdjY68JCjwncao+MPTqEXKAMx4XmdFzq9fp4OytCWcmafGuJn2+sBcnP++bXEv7PsW+hbzd9Ygzy7wxgq25nUswM0a6D0vrpMCDFvwmFtoBzBtuL/NBXHYk9puhO7w4UEgW1JDn4EZt5d5Lm+7wHW4aWTnYTfpjMPKUvpRxplSlt8zGU0VbBPLdniXaA5MeegokvOCbs7E6hO2JCF3aIN0d6xsMqGB3YTzdhHsQSZkkDfoc8gaBf5mDSHA5jC0MiRYhcB5JpuwqG+fuuDl2bavAkQqzb6rKSY3RnZ69fQc0Ugpc1AIXkFH6YLc7Vgblja9qMlXuxyUR7UhOXeEs1II6jGPcy58f9QqgaPVwnnle+/MTMJii89DEqVg7NkgcOQxkOYqVVmlyONySwcmf6OSC/H01/240hGIRU5L6sg+PyS77zbmk1fhc0oSPIHNHq7jGJkezQcqz7GQPolR9Pot7QM9k0ljmI4YgZT+5w+tUaRerVJ9JNAPjQVBCEJsa7nfGvtISZW04mT5JYlbh2pFUNE8KeeSl4kiAHdna2gWIUjxYJQ0AsZwUGpCRSQuSFb+1FH4kCX7YJ+Se3/SrhTPZZdddtlll132cPYQCMrzF/OTDkSEy7MAHABC1fS+j/AgOwHdvVACloAKLSUBBApwU8bN3FSP0jcIdnW4rEBbQzF2Tz8kguJhMPWG28sLAODrzRCBQ7G79740dEcaIje1YRiJdrwNqBNXqcHJoOKk0AMYhtasz8Cz7ev59mzHt2NsP+a2cAR01mlF667HMbc/dE8FR1Aieq6sSi3KcjtxngOOQAICysCCsZbSNZdqNqbeNgSHOopEMc4eXW6qgUgJWsjqj6ETKgLQDCXqbQXZNR87B0q0+DVYgafmx0pB9N0FGMaiJk/1DMZiIcTCCBJrlDY3QTOS7XZH1H46gXpA47tNSmkmNXR2Qpqd4zbw+rrbthqaqexGa4SWwylbRpfcNGTtPV2lqpE23FWjHPyyxzO/x5lQVD8Bv+wRl6ueEJBaxvle+JQLcfZUSurReoHYCUeSyeljZKuFnE2MLBiooW8hX2YW8uMzJgkwo4Nw+HPiz5Nk8QIUkcZ0FEAlj0WLOMks0fb9lbROnEPO7Q5fMDI9QiWVQUiCb6SuynGxBBMAu6X5oUg5AimoQH1R0Y2yrw84GFXUNFseeKPIo8jbU0lzNaQCbMw5SF0uLcq5wnltfFyIcCLEzmNNlGkOWxnbdwxipkSbT/mgEzSUv6j3WS3n/jAu/w/A34dwUF7vMxXCSuFIUGt5b9jFXoiCQyAHsPtFXIClOwRpDsghAQ+yEFarfHG+wxTFMQdloXBKRBlii5v/VeLouHvQiJvHq1a2TbAbXN+44fAeQja6v66Mf7ftv1HD4c6IZrpl6FzY+iAMK51Zflvx8sVe2+X+/npgO6a42112QOfnjZZg5R9ekaQS8CE1gpr0vgu2zbGY211JQ5e+aerKuKPCeqROCpUbsiQXo2MqE8ivo7cg2AXs14MYw/Z7HKNAzXZ8DclXoRFVAw5pP3PLiiRS3E1g7vU+AtndbHW494GbtwY4OoY5I85QXyDw5iHripg5ovWN4ATBbrYvHRLOBMdkpCeezLO9v3pXYs60zrYLdvtuWzj69VhbKnRoVBIcp5XkskezmOgrp4xP9Ij5V+tiVq+pltme4q0QWispgao15D9ijNRA0iJYllvPhYOrZLunpsqhME6LUBxrOdxWzjGOJ1IKGoEQShrd5xGS7PXDIzk5tYIl+wZJHhtzSR35cVHyBZGUiirh4SfBdUDKS0/PMN5dAh/Dz9TdNKtk6nad5ygjO7S3xqmxFafCxRFFCD3W+8D32orDKahOYx5fnKqW7F2kk6qroLFlmkmv+Tp0oBSonqpv11M8pSISkEiNK5V7ysdba5XaH6eB/jO7UjyXXXbZZZdddtnD2UMgKC4P3ToFWrLryDr/QAEYtXhkK3CX82xpdwn1EWkCGcBhaEg0bkNGO62l68nKYKvE6Pa3gcM7PvYD3//+DwDA/7RqnSEZ+T5xw2ZER36abz43xp0dQek4XK9kDNAEj7BYWqdxC890HyOk7g/DB1+PA7t7/a0lgiEHPA9wGMl2PyTGrjeOMRhF3301pIF1RFqjLxxEW+cGk2jIsA9klQzb3140ILQRxNIbrp3CMkBjIj+tM8hQpvv9wCbWiNHaCbSFoCZCf1sJ43AtFYvCOmO5WdO+tWO3tAptW1QfOepxg0TEt5MWkplFOxIZptnwsXu6xyK/oVGNxUwRKU75ZtuX48W3hPtFCL2fUbuJexp5mEbcvwSg2Th5WnAtsrZKCuZL6v5RzSfRqQpaERB7GYRwLZFzabtAA36tW5AYE7ofkq8THSnbKoRbVT4ROOe2Cpm1wgM1Si5KsyfUAYaglM9TTZRLJ9yCxjhxXwrB00nvUlJLpJFWoYpaROvjREg6NLPNfnyEULwmoJA9E0GpeEDlmUfRZ0T5GmOkyFSHFhQg0Afik9S9o7F+rlIIuSRF+0YzlZNySRoIiiIRJdfVYgaWuOaOiORYkWZbEtvJ/DgqaCRT0QU9GwWhi7Qh5Xt0+tTnr1Yg80z71TuqpiDzLTqN/c/YQzgoZBLo3BClm+OQSSoAMLxcuDWsLkTTMvevlJUUnmBtpK4hNknukQud2+yN0B3uh8ZC3KjhdnPIfy4wJMDbZqWi+8C3338HAHy7+9204DdbqKkLdnL+hC2MULA9dWtfIYsvYntU2XjyeihDLHf193/7jvu3zXYxj2UXikV2WThSWq9jxKIeDsqmUV203LIVfMDFI50OGUcIvDUi0OKOnnM5NBwjhUaXZTUnjhag29gzS0j7+426gjFWd0TTsToODhhYvXqpMW7PlrpqK3Zzzg7yv4QfdqPwEKiN8w0L3hwC9XK8Ij7EnPeMz1CbUFT09JaMeu8zcQwkr4ATbyVqaFZh5Y5d44HWvXNoTq5upBrbf3rqWYWmEoJ9u3vl6xIwspJmWfdlD2vTpbRnDEhJeK+A0UxjTL6KO8spmtWjiy1Fp13i5D5F+kM1uBqNOBxzUM4PlU/wmYBWPe7ME8Q/p34vnupg4lx8SjVMwPkq2RaIs6w+BDI1+9CQlqq6ssqJp22ISvf57ASez6BGoAGcdMM+8EJq4U6pjyrL6DuRsndlJ3URPpVnU/LaJK59OijtJNHvqbGsygIyNTUpNTZfe/BMlO059NwtPQ7gw1nnRgnZtXpphEM9qM6KHHesdsn+d7304umZs8vy6eLCcOHB+I0mhW81PcY/l6y5UjyXXXbZZZdddtnD2UMgKC4sppokwiFAd38txH4I4oxnViwlQmAjLw7NSDOg9ertuWfLACzaPQ4JL7I3xmrpiSdrRjgOQbP0QocGg3ozj75TD6//VRXkFSpO3oRmF+Um6N1r8xe0cu7AlMUfh2uIDPzj24QKnl9cCz1Z4XRrEIuctjEgbAjE8BRSgZyREVt0blbAdZh31WCQtzLOXvGzFJWpBsJhaRW13BatLaJ8gmAc9rk3I2yz6/M8wIwu+dbjOoe33KKxMhoJVkO6QjNGKVobyHEknNtSotpNVSNdxUTRPsEj0Z0o0LcxKETdot0BzzOyHxWZbg3in987o+DX3KjAzxapiGD3FM6t48XG874fuL95es7GfSj4MJG7g/Hcz+d12eNYlRMhJ1nrOBHUAeAAxT2jpJbGm+nd1Hzy32T65JBMM45AG2t6pkUV2JROdxFDO6yi2aMVC/gEcZjR7vn8prR7eR1IaplboqN4zi+1lCMbmeazfY74kdG3d44vyBJRTNfnDJUj44TKL/5QgEJU0mOa23iv/Yby2/Ob5eXI/J1SSQeVTn/Z0bmkguBIUi1o1wAAIABJREFUa566SCIvs07BfldQpLi9ChjzmYQ/tFRTnc7LrxfOCEyMjc/rmWKqKci6qUR+zkmg0MVyZFxGmQsTjflZuxCUyy677LLLLrvs4ewhEJRoWlW8ssZZxtmKtxoeqSqcN8iqgURkGV6WuipxhDkeYTfiIETiIDgjt3EHWTmu8VMhcmB1/sTyhLs19lveXL5eMMYW+3LkxpsKbiLgkFOXcr5ceCH2ztCMVoTwav9ZzXc+xoHD+DBDOriv9r6Cm+mrGIGitRZR/AzvLBfpqMeg+C6B4yCOIdBAW5yX0sEurT0AZwvRZozbcYca0jGYgz/kOWa0QuU6CpKlNVqw82aKMt9dBUscg/9Gg7Ssqqm+2BKtcOI1E2U00xjq6JajRcRxnw1JBMPpZEvPqPU4MmBZmoZEvr8nI695XzpuT8ajsXtu2xiy7zaEisOux0ENZKXI5NyekWXyt05/ENZd9hBWuAseoda+k5m5R4IXXHVM6BTpAzMCdw4SSEE22XXx+Y1DV4Ma53PGkqWoHg0zR4RLqsljCaCjlI9OpuTp86pkW2hYJ22SmGUKaqKU84cT0ZVzLLj+DqmS6mG4DA2ktfEs2Z3H4OOSitG1nFZzE8Et9Pf9uN/t6g8fLy2v4vcipUFk4gjR0JOnrhQALMwFNUMcd+i/IOf+Rmdeh3+1WpChg5dSjrKUagfXCSjcmnf8ozzc+V+iE4ISsjBaP89MhN8TilIiHs0dy43wjkb7M/YQDoorniin4Bqhlfpw+16nYFpvYwqkAVPLwnvVuKNyvFLqelB21TQeJm43BBmW0CFW2vL1+TmIoT/2VwDAuiz4y69f5jGC8Ld/TJKsp332MTBM0n20FEDwdMKABmlJpdKvUkTHHzQixeIPFTN+M3Lsss7PX3FMWXoAdwhuLkdMKF1Gp629YXGmMGf6wYmczDQdIsweGquTPYmij8yrL6g68GIpFuIGNSds+Cy5M9i6OHNvaORy+imrHy7KoeGgqCZ/yh0FIo702ACisiv6FalEhRcRx8Q1k4A2+drxLaS4RaaP8d2uwz3EtRRfTIPkLhqOkW+xt3y0xj01HtoN6KsTm83RYI7ruRLwjIT25/cIt5gtBJYFmxO1T76FnDuMhK0MyPuZ6rKHsbIGBnGVlJCCY/63ONDgQiBNmL9VpyWceEK06LD9aNNcZFH6rUgVN3uXQvG/KYoy/1CB7kv6IWTR0VLOX9Ph4poPKutPduqtwmH+WZ4jUwYCgiyQaNEJeOCwebF1xuoj3dNx88rBma7OQwmirp8KlxRPqSQaXA789Jvzcc//+FytEU1R6ZOUDl8u5I1yzQqi8bu8zEkHLbZh+yrEai2u7lnrJi+uqndxL0FfcRijnxFp8UDzvHNe1lKVZOfHGuKD0/Gx85KUzU+BOM4eRJSO5s/aleK57LLLLrvssssezh4CQYmGUkwhZ74S47jP17ulVG4NUHPhNtWA6fXQIIY1g8rHQgGXL12xLF7ma43+vnzB+jLTI8vW0MeUj//l5Ut2Bf7H9OnXdcHXp4mg3LcN425lvLbPg9TFSEFEqfw5PBWj2NyzHCgQavFSxcujs7SXQFhCx8S82HUJ/Y2+NCyGahz7TEHMjRkS0opGB7dowuWlyfu2424IiKhmaop7dPttPhYMDNOaufVskLXt3bapUCuPbjqwmtKrH/+kAc7tSz/mNcOMClJXIdMyPgai83jmPoxIKpKlisRY7LwaNMqIJdiGIxR9VyIMI+C9OhTZJO6pJsDYiqojADAK0VdBq18vQDXRIWDCuo7siBJ+2H3rqMyx7aE7A9WA6AUAr45uebSSkReVbVz2eJbtCRAdYPk0tWb0mI3XMrQd5RnwaFUzIzuzs/77QDooNS9E43mo3XWrxaaIoiw2S6Ipm89JIpp+TKXH4QnOn68r3gCAzl2aNTQ+AvIMAESguDtyDI25f0RqPZuGilDABqun0cp4kGYaVCqwE/nXQhwtkkKJtLxHUgoy4/91lKqgIicQQutLR0BKqu2kRePvaaTTK3hVtXOkYDofVYJL4qYgdJGqYSRB+XTtEPdPIO8JykEU0fzV1yjWUtbNqW1S1Wx9C8yJoBCrddH+eXsIByXkkFVCF4Qp0wffTQqfmuDJJeuliG4RQlrYexy08QO7LUZ7X7BaWmNd5yk/rYxnw/5vS0fDV3u9Rg8fpV/m9lubomcAvn27422b+301/oWQgqyPDHMLyH9YKmYTSfhyUPBOqJccozsPnPAhhMJZ8pvsqa14tjzA+tSxmFbLtiu+v9oDbtwFahSib2vvuJkz44vomyQ/4pARaZ0xaehzfwGnEpxcf5CE9P6T67Pojs1yFjuNOIXuQgalvbdSPoC1Xt7l77lx3AdEim7O5WZPjOwK8RWbJCe/IrH/YtvcGPhRcELf7otpmOwE7OZwvm0DzfVVnqzCS7nkiDn4Mq1nG/Xm2gFC0Q7gAPAWs6s7Y0d06yZK/RdRykkzmmZTpOdUEJVdlz2eOe9IVT6trtD6Ij2FzPHj48I0JNOJormIFWHzXIS5cCl8gyicLkIsqEIlxVDk81OKo4iM+VyKknIoi9Hnd2SVUE8htUjxKDK1pJLVSEoROGmkrelcnRT7zTSai59xcfgIKPwJW4Qb8nNGlruI90WrFY9U9vd+3G0DJS0TZ655EXxshmpJUbuDkgNShfFAmcIpBUHFzikZO9LieWl4lT7PMOd9ItVJwznl5fsKR7f28ImxzHR2TaNJcWyijQGdW4R8cuj/lF0pnssuu+yyyy677OHsMRAUr/ggDTh+FLeruzqnMsaW3qITahsjXLg95O05lBhFGMrFe8aMCBwdWPsNwz445AhYcrFubwrG648p0/5ju4MtjdRDgv1Ad2heKZVR3dscElDmooTVTpKZM/qSPC/31ocm3rq4ymsHvn6Z+/3tl1+wLk8AgPs28Ldvc7vff0xyL4lExL90xmrn64SlgxHdSImSrDxYA2nohQZ/eBR1zBQbADybKi51ijFmYixBWk6ZdxWrdDp6VhWIYgTZyl1yhgFd6Kxo3VJtDj0zh1y/yB4ICvcF5PeKhS0LONCHt2NkpGmaLExJXgMDm23L9XgIElgnjWx0JguHWEpAt5NmNj/XAXWisEeinZIox4zFxm4fmcKRux1KI/QgLSuknWOpyx7HUkk0o01qSKQ0lGTzN0Ml0yOKREgCgUudnaGa5G8HPaQ2aKv5oI/B/XsdE9Z33ygM7JpGSHQ3icCE1DHRkr6oHMhALbjlvZ8HG1s+NKv8ZmWN5yUyvdJ83gOXNFSmxnyubX7wsO28T6fIWdnUMaNK4vVvNFBmTezv0OxqvkpqYdXK0sgmCcWQKo0g8fscPySroqZuTY5BpK797ymFlGhIpon0dKECuS7o2YlgX9CW92CfFpauoKjdltIgKSTbqCQqO/D9Ny6VTgBU/hwWciEol1122WWXXXbZw9lDIChPpWzMiZYDWe/+/GzRLmpeLMuziD62EOe+YlVHYBiruZTdVGKxPmFZJ+/k69Ozi9Xivr2CLYzdjeS6CUGtoV1jwbMpzK480Yu31y2hGZXMRdrxLVzr9RE9b8YhoS3y5I3lFuD+9gYAOARoTxalmzv68vKM//rX3wAAf/3tl+Cg7IdgsXNrxiV5G2+pY9Krp24oge7YDIo4ClGvi2S5Y0tPf3Gej0iQTO+udsqM53USkJdSIik1r+y5cc1cqehUsZ3ftR8dGZUsRMk3KTnmIEgr4WZaMEtvkEDC7FwPwb5bw8VjxOfkzQ65gY3T05tiM4beGI6aIBLaPAD13kZM0TdltW2JEJxt1DUboXn8qeC4Bsva0brp6ewKo8Fgs/2OqgGhSc697AHNUdBSCKpFgMJ1lUAjOGUggo6Ik+M5DSt6JaISJJOY86SWr55T/O+jb6oq0JRaKv7N2fdnvjNQOSbJmejx7JU9EfAxDE9YZUbO9naQNwt3a4RI+AldCm5LTlknkMj7gEnRQxLN+YvAMZ7R3HMkj2Zu5wwTVVXcAS2l4/bsl9cTObBvaHJApHApWxlbJ+4HAq2zKWyMR1GD8Z5KIcmgAsdVFCOUvaXwFFHkOPwsuFyvQGdFzwPt3/XjZxTyb6JIlY5zLmcPmKisxXn3+NiL0rnk/SfsIRwUlzJXlBsOCMIjL3m7RNeskdelkszi5l/zIjUBrAAl5JKVFMPJWF1wMzLnwk8wnwBvtrD9/rpFhcmtt+gsbGRz3PgZdy+hOfaAD53XSK0HmXRsEovY230LB8UbF/KtZXpip3BAHLL7y9df8C9/+b8AAL8838BG9JXyML99mxVJx3bEhHgciMaAx+bNDDUaE4ogmgEuKiGtnWVEhB5qSzlhOWFt6RwdOJsoDquG2fbEGlc1R7MpqLkjSlFbHw8HS8rxLz1mLLEBHZATu39zXPRIgp1PYjSkTGgSN4oLiXdQwM99svrsYJy0TKGVIKqR1umdcbOb7cXyUT9E8lhIE+K0Yx3K0RCxEWezSx5oNrY+7EM00kzH0NBUuezxLCtwEm4XygCrJlCCLq9Zv8aaomyFpzkbzWGmf2rjP8AXZ7tH3y3k7zmwmVSZpPjUxbRFlNPT0EK+lbLIZWKgni9wqn55d7aTlBkHHIPF5cBCX7N02qWRXosHezIFWE5joIVIPJsU+himLkxW4RRhdtXSu+7z5+p9mouQaS6l4gwph1PqjWiHanRrV20RXNTuv/TuXPz9mhbxvxHvFnZtuDRU7w0FeYNJd2RkCm8CwKYjBpzB6Nv8jq9dz1/SOdy2ktbz+W9kmqpy9pWo3LglHWTvHIM/3CX/rF0pnssuu+yyyy677OHsIRCUUoZdyvQyAo00gRKaqxhSklHHngBdXxPSczdVDorS2pBLh4SuxtA9SEdEHU9ffp3bMs/zdfwdrc9USFeJWmY1mE7wFidBS8cTGcLisumtg80LfT3uBdek8Lq3vYhieCmrMhZ7/cvLMwDgL7/+gl++TE2W57VHyop6D7Tk79//AQD48a87jvtu299T38Xgh2NkWaSohkYIhCCmABsoFGVENUp6be3zFlrXjuakz33D25uTTQ0N4p5tw4dCDLEiTWHIKIVUxf3u1+4Iwm1trZ7ktzyuA4kD+1cbtUhTtdazqVk0PhSQp3MEePo6C5TJkCVtirvdPPcxQlFThuBwgRSTtD+g2D3yagmNxt05NHQytj2jvzEyUnSr5N1BOqOfyx7SyCF4lojcuzLY562QQxgRkh9SSulRSZOw7yKjUsmI2qUVRCnIqChy6zXrEmC7opS3o+iUJLqZph9k3yt50/cBTFK9lu/4PinQmHJfR2og90fIY+GWaQD/O1QyZUby4bgIFKmUXTNR0sp41DRFLbt+l+WaUhWBmugHXIVAGc4TlXRSNpr1X2k5B9/eyd6hJv5/LoiSX+ehSUYlpZiPK7JQU30+tp49FC2kZdXTOYb6qyPMB4X2yTgI/I6YP0bK3+9lW70hGuB6pnJISwT4nSL8z9hDOCietZGR127pSDjTBK/2QbjZoBFRWVwlO/yWfjHCviBTwH+pg7KiWzXNsQPabJIZAPPkUrhc+u1pwZcx+SbL3qMXzv0+uSpj50hTEDV0k05fPM/YO1RNMn4h7AatdSxQrzp6sxuyKbzwpfHsngwAL08zPXJ7WbB8tW7Lz094Xudxtb7Cf/j9Pqt43t4Gjn3K8m+H4gh9eBurhbNyZ5PI5igx3ozH4k7a08HB3t+kCMhZ7umpdbClcGS/AeP73EdolAjuw1MWA09fDZ4eGhNl5jopbmoVKYJReaP7g6olVzqGBowa90av1Q5Vfjnz2P4AH0j2fTZkLRAqBGQP3b6l6BGswuu+J19mYYL5binzrHmuYzvSmeIRD7PEJaJI67VGgFZB9cseyt6lA+Zbgmxq4eSr5JKp5PJOnC0aPLUI5qiAI26RnnUHtzUC2bw4aR++OObyqrkaFUeiVG+krnoi9Hm056oj+1VDpiFBWdmSX82FqzVNxyT2WR0oSmeFMs3l6V8+cm1Q0qzuiX1l8ipZH7Oq6r2yOkEje9uIsJct2KlEyvV9SmvuPwU0G1HkXagQDDytQ6cNZxB4+uuXphwnU53X8r3g0QBF9yXPTKqD6XNhcXD8ek6+S0nBvBujfdPZhRh2bbyi1q7BNij7yFGez0AGvTH/Do2O80M/Onz/rF0pnssuu+yyyy677OHsIRAUJ2ruu56UNEOJLrpbFiJU48AtSUdE10F+og5yWVAAauS0MdKX+/37JJP++98Uz6Z58vL0Eh0w2XVSWscvzzOtsi0HvtFEKL5vb3Z4mUICazBaQwukM9TQmnVvODxNdaR6oqcvmhBuRnx96R1PplC7uiKrDribfHu64YsdV29rEKN2Iz11bvj6MtMP/+dv3/APJ896SkOB3VM5Y48gnboCdyN8eTpIBEtE8Qxt/rmlru6Kpwk84faU3vXmJFxNpdhNgaXEXCnLnKqRPh6dEOmxgHvLj4goUiWHJInLo6HtfkQEQdQCiuxxnwFquKq2FmPnKR7uCDd+adk5kMARuXjzRhkU+9dBGQzb/lujqA+QqNEAiDk0T0Jhd2j8vjEHjHvZ41lC6JlgUSiG33lFmjUbYpYgm2pSISPkExnV0x5eT0JatDbO6ZrQfwp9n0QfVCSqOkbegJnqQKbRa2riKOhCojXl3LR+btsiPVXr+ee+M1XkhE0UbR6i5QUTaNjzUlIdoUidu8XSsjkjoJCR8w4wU7pBbe05XnXUMy2kmTaJEaCYX4nymqtqwB1eDTiH26HQgeHnUDId9Wmu1UVVvde/WCt2HL0K5KUeuCDSNr7MHZLH2pDKvoKcnxypGyoxn7eemk/DCh2GEEyAG53LXCd6qq4FJoLyLmv9p+xCUC677LLLLrvssoezh0BQPEJmllRlpJY53EBHdkgUDHNphNcxvPmcuY7PrDhkfnfpI7zu+316tr/TG96MQPr6tmM1mdJ/+evAsU9OgXvMYI7680MUm7nC3lduHxQcArAkEbN53rhF5NR7B2DIiw7w4h7r/Pzll4Zff52E2F+XF7ws8/X6vNjmGeoJ1AMZQrBgMX2W//KXSfL9+nzDX7/O3z+t/wci/woA+PFm3JmhMd7tacHSXV1xD4/4h/FtZErNzl0RcLiWyzZ//0P2cP+fbhoIhbj3DY5ycr4RsGUU5Z58kGihyRGBQIxULD2joojIuEQLJd/qZDPRA0V6opDE/D2aaBwmksEeeRl3Rmb4Oo+7lbLGQ2BitMkVoCQuSqXalVx/cGNYgoPQidDt/vKoe5cjSvlao1CjvOzxzO/FypA49ScJjhXFc1GJr8ScfU3o/a+AWch65l+oIkvxUfibSFKuVNJDifhrrxyU3/lZ0Gf7KudbSZn6DiUiotTwkORMBPer/FvaxBgQ4NvwE8+9VlKwP+MCie3eZsMhABP1jZJf5zcKna6Dcynq/uPZpEQCkiNTxyO5Nzhtd77VEkiDaOqQ1E1GzxrO7yqQJcXwbVU5ApSy6kIgqRdKEl2a550NHdE4xlRRr6m9V7WXOOGcFJ/NwpXWzhyUUStd7GCD0FvO8WftMRwUO4rGSSLkjhjYqMfndFpYk6BJxNEgz1MS913BnpLQnAC2u3fvJbwayfX17cBN5nf//v0H7raAB2DIHBLqgtkFGAAWY41K69ibeQ0F5g0TgA0be1oI98Uni4HFmtI9m07Kr1+e8d/Mwfjryy94WWcKh56sS7Ok47TvB14tzdRxQJ3gZOJrzIS//PYvAID//q+v2H3xtc/HUNz33cZrx+KpivUJ3Z7gp9UnXMnr1FJgjndbnOUegmgAhRT9cfR4z++2TggyqQ6dQjXIyXkA2I0ddwyNzsQuey3xz3RuQ7OFy8PkUv1LC1n9WT1lD13tpmxfYEjooJhvCx0HyFYg4oTaRQniEvi+g6onIRrpRHeABGUxEyfYAUQ9KyvsnpaRqTgdeiIxXvZYFhUuSkX2vJIQ/T0Kx5lavVcRC7wv/gdysRDNbsWRWiBE0DTJlXkMyMdhvlUcFMHHtYKoOiX64fOpReZOSW5fimuk4XqkY977J1U+JQ1bSZqqJSVQflSl9P0Y41yZ4xm5H4KbVTR2Zoh3PjfdIVXF4YvA0fEU6a/qbNl5FScu0s9AEJQHABnpcaUEiKfGqhPFHxyUTiVmKUGLlgaSkTZqiHtK6j1xSj7lq3AeQ8iyDCfKmHPsIgZ0iq/ZXCwI4mvxgDKFrktxgHMbfmKMSnqm88X+CbvCsssuu+yyyy677OHsIRAUJ3XtkmmbzpRNtpAQesBpyqV6T+Fis1HHLYCYrCcNxcJOIJ2hvZRmR9wJbDD9/VB8e7UUSIQiGjDblOabr500unLHl2fPafRoAueoS6MVLzfT/aAFq5Fgv//o6IagrHYpvvINv/RZOvzby1c8uy6Hfe84DhzbJOn+69/f8EWm7P3SG/bXSYJ1dOK2PuP2ZOXCfUT5ctSyHxL6K69vG+6urqodN0vH3Cz1tc2wwYZjhGvrKaobZWOwQwmHXbMjvHNANicq75GoW1pVQvQIJEmyAg1yLbn+zECS8joCQWmcMG+UCWuPUm30ht0JtV79PCTI1pPshdiuH0ugepyvMbL8zwl5YIl0pIjisOMNwhtTiSQpUoGzJ6Sdow1M06nvM89hXJHEA1uoloKTQKoS81OStBHBKDFSA4QIPVIkjpBolMJO+XmH7v0GmiogQI2gPUo+p0K01BlXtVsK4muxotiq5feU0qsZu2v+Os87qapSyloLT/ikZ1LTY0mkzfc+zWT4/+ndsTsEwxTl3N3RS0l12X0IFqcVWEUElbyMHhKtSTx1sbWGW2hl5fOa2FMeWU25AQh19ExwJSm5klxVEUUTPuctoESIS2nwiHtO0bTeVPayNvXz+1C0kKW1XAif3/LemCk1O18v+x5lXHSJYxFCpOlPksYm80GN/jRh9iEclOhPoQmhn3UfEiIN8TXRIB8wl4oZTxNISrpvW3JMyHvHqEBZ4ru7cSXuBPz44RoZ7swcAEUjmsB0V+sBc7s94csvc2Vp2vFk6RjyfaLjqzsii+Bpm7/7y+uXuLD+8DwtN/SXmeJpTy9gk7r3BXeo5o3DN9xf5/n84/UHvplAW7PeMP/lVwFoOju9NSyLldnQZuenpeNz3pB9O7JjszlZhwKbd5IWhS6mx2AOSl+WnEAIYP/cHohjF4jxf459hHjacuvwqTRE9Dih8iGZIvHBImhU/HBRXWrloag591AP6vnghm5O44Alh2qkwWzYMZHcXEjiWJgCAs3pJyW0KX8WUHzjs9y2krPnNfRwYiza7FUCADokeg9d9njm17Sh3LdKkXLNflQUk31HqfoApRNtJpWwlBma00J/4lOVRS4chAjwMnV0SknEapbpE0JZt2JBLo45UsitVuSkOFvadiDUSfx5Y2R6ozxalSZz2sbJQam/s+9FCoYyOUWlW7DPhcTZHVrGgcPWF7bn7uTkFa2YjJ0kqoCmZksO0Tv/AwQNDSNFdn6PFI8omq15zIzDKgtpKNhSU2pzlmrEhRDoaTxiXJxzxOe+PgCAkckgUU3HBRK6LdF1uzF2F7sChxO2RIXhkcFtSdkoE6gu13Dn1+8J+dNViFdgdtlll1122WWXPZw9BILi6AFTap8QEjqPxnA0AkLX0dAKxNmCwOnbTC90jBapHzm8Ud4ATANEBmH3uvXBGG+ecjKkgfbQRKmwoldciA6QlXSsbcHTi71+nojFl/aEbgzTnYH/9qt5podiMxLXfXPNFsZqqIWSQlxp1kmn21Egwx3Dchbb2w9sRlL19Mh9u1vVEMDUQ5a+ecMoUiwWpi9NE4lQxbASksO+e6hG1dKUlLHozMZ7aVTIqBIKtRHhNAK7zoFwREOjLWgGSTnZdGhCxk8rRW3+3a7dQkkLHyIpGf9JtQORgm3sVTOKisiNCSMk9iWuqY5EazKyo2Tft5SddgCQiYJIzFIiq6KW6XDtlKVO+HmEXoztnxLOPUSRai6XPZrVZpMS5SpjEsCRnbFnpiVfd6tO0zbJlACiAsbvvvkFRSIVJTT/RA+kNqw9VY2UezFj5DiUE4QQKHZhcp7SK/W7714plSi/KINXddtPY+lPkIg/slIUF9WRQCrYVj5md42jCSPlMfohRpuL1P0gzvkp0ncDn4bzn51L1YJpRLGNo3xHy/Xk/CHe68pIOaGKoJxItvZzoaBrF5JuTOsApdJ2vlmQKWLcuqNuHOtEoLqLRpWs1nuSsxt3JLyORFBI5JzX+wl7CAfFJeWXlpU5OD1oJ9APgC18JV/2HrpXzTo+pSWqf6Il9tAQnWGmcIKGjOBN7CHTzFgNw2qds48LO0TfQLuleLrGItNstXp6vuG2eE0q42YOyNOyYDcH5Nu3ySu5b1uc1/3YcBjkpl5ho0d0Yd71Dk+sMBHWPh2iYTfLoYTNHJ9j30DWI4goHQLvg3Pr2QujUwvncLe0zqAshWZuyQuxG723Uhq8H6VMLydc5wHxssSEjGOJct38fZYnQluZJNwTKBx2zXzsAGLsIgddeB/j0HDoYg7WMqGpwh9Gb7OjoHB6Rh41qDE4G2fEd/1zZs0FyieYUi2hRbWJlCB3v772m5Yn04TAx597wC/7f8Gal4hXcSpGK6XygKVnff4RivSnAhjB8cjnJatWuCz0mS4Y4s9x3s9a7ufgTmlJSZz4Dye3I4zK4unvxPbrd6l+J9/zt5bCfQkJdGTAqShVSafjqds/b/r8ogZbFM7GkIwOvJ/M7PXji2jhCo14eCPHTNRi/oiy3SHBWTzzYt67aGerXMpaeZPjifI5Be8xp6TkxY3yvu+rlUGqFVb1moZTQlmFo4PivvT7pXP2fgMhKmM9SMYY6F4pKhRSE0QNS4jVza8KU5RiC3fwVcVz2WWXXXbZZZf9/8UeAkGpsFUluQY5sWV6xb1gbhTRuYqIdEOIAAAgAElEQVQGzO7WCOEN7kOxW44nCEFMWEx7hJkTbVEFm/bHk2mjyK6Qw2vgGWSfp/bAwLc3k5EXxrMYMdVE1uQrYTXJ+XVd8UwuINdwN8EQl1jf5cDu7/3YotPkiMZgElCkLAvaOuGHzpwpEnNdNxlolkL69v0H3rbN9uWaMYDXmFAbgVp05sStDUlgEFYTglua4nXza2IE0JUx3mz/rQX65BemqUbVgDDwau9/XfYgKzuCs4BABn8PneklAEE6pN6CjKiKbF6WqGMgQ700lRySqEY0CNQkoVGMBk6s9MrC91i2d406/yDZjqz8IpWopop7UzPCgCb6RERxvFu5j890twtBeVxzWDwRBiZC87SwvbcNhXpaZ2RsSDLiJnFCtRSIWKE1V5Lv2SYGSjVMEb6oDS+jCR0+6dVLhLzLipZL0fw5VREF+vgx1zMfFXtGCnpZuJmZXtGaPi3Pxn9mJRh3WXxligqTmc45LwiNWxD/DwaGQaSBZGQB3udPmiKI6qqUlTPlFxUjKPhoXIclqqZSZ2WIngmk73aummnrUci7fo0aEnia1VaRNvhwZLXx6Ux3e1YhymFRpU/iHOLeI5CzYRtAtbq23Gux45KG+rNQyIWgXHbZZZdddtllD2cPgaB4mfHg1LwQzVyp5/oJFGRCEEAWeQsh6sfdo27cwv2ifcAACNy8WVxnHLuXegkMiMBxcMgje4lc4yyBVc6I+xgZVYg6AsJBdBsvXmYoSNVQgZa6ducieLS1PLUox91fD2w/JupxNwLsLkm1+vLbr+gWFUAkctKHISSvr4qtz9/929+/4duPqTrr8vXHUUsRE+FQTj6JoxrEk9w6f9fAw5GT9NEpUJcRKqu1eV+06kbWxStpRo02bmvL8R4qGKZd4wTWhRvYicRDS9ezknet0VBI1VM0y/K8LAFFdZEmegSUhmiauVpRNINWWqd4eiJTr4Cw81U0Ii7P5RI1+CBQy7EREojnyqPkOkl/QynVSi97OOMatMZ11EDInMzfiE5Ib/BRCsdEKO/LyieoqrKAoc0tS1EdGVQt+jp2Yx5cmv3JSFKkc8KQDQBBJ5aJbfNMFK/2nsWi9Ruf8bpLNM2KE4Ly2VdPx/HZ+wUp8PNmqnL+zlFJ3gmgiRrUeT3GfqBM0XYqOVeDqKCnUo4oj8xPfUi0KESPVEHyKveiPM6KwhXS+OsISjbHSK6lCerEwSZvyZHcRFuoIGVCmto2BWGWijx9oASd+UvR1LEl+b+AxUiBb8WfpKA8hoNS69srA91vGJ+0oRKEHRVEZQy0dFZc7GKsHBU7tKQDkwQnjff2Q6fwG4z8404QuyaFBjFWiUp1hUP4EiJiC/V0uDxtc99x/27ib9vAfpvH9bzcIOY5eerpdlticZUfe6R27tY36C4HNkvVUG9YnXWtis326+fy9rrj+/Y7AOD377/j9W06KIct+PuuGD5GaDF2GyO6+fqD3ISi9p1ZU97d0mB6p3C8FOnExaXjnATX0rmUwSlB7X96pvq6ZPsDd6YOBZbiFQT8LGVyjWeWQnOFG2FxRT9/vptECmkIoE7S9tYG9z2mhUaE3TqT/nhtuFna78Vvw+xCYn1XbGGyBUrbTG/NYdHwogZxOIS+wDUo1Imxop/O9Zc9htWKihHlMnpa/AAAklA4tFRalDa2p6WO8nmKedH3xZkSISlrFJU5zheeUY6R6yLof/Wdo5GL2HzBeWR/oGfBReY9UqrF2dHzDuxYUsitnuPJ9OPr01sRQA2wVWW2ppDQ+MiAI3qkYaB78qNnejaE6zRdgSiuIFQduBT5ZDqn3TDXCD/GQ6K5PXo4CloqB/PEa3sE375ITd9Vx8fGsLYIKPdczG+U1YaUzdhBBPTon5PB5Mlh1Pyum5TbwIPIzsG2wCjVB04ZaDgThH/GrhTPZZdddtlll132cPYQCIrDXb2SH0eBLe17vTWo17VLxquikjC9JBKSbXJHtLXMklQOt34cGfn0ppleGJLbt321JWvvHaK9HyM82q9E2PtEKN6skd/v375DDb0AM/qXSaL99ZcXNG84aL7xoYL7q3VZvm/4sVlDQ2tQuB0Ddyd6/ts3/Pg2ybl9XbGsc7ueLvr++or//T+muuwx7pF+4MDh9jK6BJWWr99FSuPI1gBtkQjDNNIYlWh8hoznGCKk35kJT4ufNxL5CfIvhb4KDwqkbAT6QFk6p0lcVZIiBc2xfXZZeyKww+3dQxAppY4caIfV+eL17Q3r0/z81hni6q+gjBoM/fihhCdPG1KWSqe6aEEAhxRyL0epfaR9RCJzNcsLLwzlYa2GeQ46qAbB/Sh6ThnxUyIgRB+SBPQ+4vwAtydKOW/fDJ3pP0Bj7D+nbWkeNqA4lcDCf1tIoR8TGnlepXGFybec5/DTfhURnp+QnwKo1vTpabu+L/bigUQSiLIpoyPT8xl0tFije7iGfgfNRQcAFwEXrfCYOEJdhvP0WPoYnMdF2+ljEHOmR5BpO2hN7eRvsr1LDpJLF6jWDsSlHLwiIaEUWxWBq0aMb1NiTUNJ653N95u3fVOcysgBQIgKxJef/6w9hIPiC89GiifrSMm7RsMUsYVNOCfqQ0YutFT4E5522Sm4GGNLid+jOCJeI18Tvq0hHsbNeBTbkdUVLx24+RpW8sKe/nh72/DDb4jv03m4D8Hfygxw+/pk3/0SC2L0NTgUu3Vc/nF/xet9OjZ3SxfJoTEx7XQPDQ5+HeA3O197ar6/vUZ1ESmBl/MNOeHJZL5HjlUpIWd/EpvGd3fR4IuEIBsjmO0yimCejXHxEdEoUzjcENeZ3UESzh4+iuiB4dD0gcx/glOiv06ZPmEOURxWirTygm7Oo6cNd9VwPnvjSB05v+nLE0O9t1IDOueT7+fujjSpYHcJa2g4JoHwi+Lw6gEoFmv4s1BLvkA4WEeIs41yPpc9oJV71Z8tGUXs0OcxTe0kboy+ZHXiyUNA/f95ofYXFfqX8nWidHx8XaycjKNsuOqxnRdVPwRPPVBZkd85N+GQ5bFEqqSkrs52dqDyfM/nTu+/8+H4ikOvuU6AFM1TpexOCcM9BT3S/fOiFOJRUi0cwQVJbnNYoCRFm4Q5A5DM6aFekPhPOEONMsUEhHjkjmyV0co2I9AZiHXMg2fVDGRQdJY8YB6l5xcrn9occEjY22FTBl0qiIsaTodm6olEo6IWknOgxHllkCtEZ27LT9iV4rnssssuu+yyyx7OHgJBcRfuOAiRZUAhlJUOn+HxCpINTpyedniYR6qGqgSk59C/anqQxKl1MZTC0w0OrlA2bDqyWVaVC/YKlUMH3narOvk+0Q+6D7BreOjA830qvupxRIRxhGaGYrcmh/c9VWN9DEg1dU5UQi6bxoaxWzrI9v9ju0dKYWkNzS53yMETga1HgEjqdqgmucyjgqUlOHgXYNsdcTJEitL7H0PQu/ndRcc5dFgZIQneKLex+KkeFJ1cSRRLqD16NNMijXVsGiTXdiMsru67ze++HccJdg/mujfjqueohE6JWgBAW8h7UkIU0dStKUVQ6af4pFmFNsM/R/Xs96IYBpEMUrBF0J1SwyaOdeTvKsx72eNZpB6gGXVKPqcScHxWOzBTVCeOUZCCAlTUuPwTkdXT6/gu5f1YU0jxXX33w3L8/h+fH/x9LjTa96iGvvsrmp9z2dln9++H996lAd4jLO+RHVXE8yRIJWyu+ivRqBFFYldLZYsda9l1Iw7p9lFGx9NFKpJVVeU6+hGPXXE45N7v+HWZiDk7ZUEG9GZrABPUihb6qNfRj49j7JloysaXsRlzgzYGOUiRHtasBmyi8LuDTno0yDHyc6X46qnLdKbuE6XZRu43eP3I9jMCFC2pn7MLQbnssssuu+yyyx7OHgNBsRztNggeeHdOBb4oE2UO3utC/VTe543o3MM8Dgky69Pa0L1fhoXDrWUvjEESpKN9aFGb9XxxHiopMkpySZJBaKujMRwRvZcQkxAWP5Zbi4aI37/fsZv7+mZe9KxVnC9VAW2e7EwExRsbvr0dYOMx8CCI8VRerSR5G4KbcXrawqUhofEkGqM5OZMEcmx+QlGqTOYSt4UjItsOSVfZc46NcHgEoRLkMUeuFgLICB6NGY1cj4SxeqNHg8+ICd35F8L44YqH3v6bsq5NSXO/W3Jf3LhxuPqT3Mbxev6eCjEs8+cOjg0lHNHn6cwFcLTEd9mAGE9ugKoT+Dz6VOzGS5AxAi2UQvaTaFopmRMny6Ff9pBW6SMcaAlCKyPKjBWJ4FGNcj9GilXvdQaz54hfC5RR78uKcARyh3yTOJGL+pva9+yECGHyCQIN1CSOnvGPihz+R3wDOj1D79oQfrbFP/h0mhRwlT7hu/izV8t59RN+GJ2QH8oigHIwjp5WyQRueaA+jxwYGMZhe2HFYXiwowg3YjyFCnAiwEyJyqKcVwD1BQ2JtyiLFzqo1K77nEWBDpEg+53pJ7yRd2Ttd8wagBJFEs3mh0M0ibYFnackvOA4/hwH5SEcFNd7GDRw91tiZSwuFe2CREjoDpRdbgGFy1u4LH7TsjA0huuZ2RpuXT8d4CcncEOYU1rftt5Yo84fUBwOK9oXlrXlyjioTAzzxYqB1fJFrIy7LZiv4y3E4t6MGNtbLuq93CZ+rJOtbh2Q9x3DoMQGArtkvMPIyiFMtjTg26j9NIGVGc1wOCLBzuagDMXqDQfL96Wkx9zhWqKBIMHvQaGWaRdju663jvVmsvzUI530pq+4qbUciItYNEAUWH3x9gmZ8j/cWnRvll2gu1/zTN/5osGqMcPHw1fk7w/NCi5x+B0EicaBhSS7AEfI7c+/vVQvNeIgUedkyOGg7McOMaeUFo7KLxejg8rJidITNn/ZQ1ldNCJoSsn4rHjLRVQU4aGQcq19gX+Z6sqA82sp2jhlPZ1/o2tvbjHIjXUR+qNb6h0cX9OgoHNapwaJvs3/LB0ZU3g5xvek4PzCP7EhmJPmz3bVLvvk61LKcKpj5l9olI5LOJclfVeJsczpvEU1DiTeI2Ls5kU58fV26/j1Nue8t23H5oUdrYfHlddIy9yf16yFI5AOBsqaVlOF3YsA/NwBSFOwfAx6fI4VRAx4qtbJ1gBUi3SSNlDSmVoCPxl/zkG5wrLLLrvssssuu+zh7CEQFI/iO8vJK6uN/QBgH4LNEAeanQMBGPnRgHbuibZkfbmGip+XFo/7iTMVrqGIBrnWHdN2O6BGujwOxeHQfQmdXAKdmAPOaq5EC4CsxG3swLa55sk+G4UB2HcL0xtCEwPcAOm2Lz/WhP5XZrwNL/0VdE8zGRKxNI6ys2M74nw0g/QToc5LbJUY3VJHWB290FAJFOIgtnIJVVZPmekAdkOyeKImt9sTvv46myd24lDZ/YIntEjnzL/3A9gsf0Y6S8KBjFBINdIqvfeIcoYO0N2vjaNJAvX7SBEnGaXWI1VxRQsqkj2xplwMJsLi8vUrWuoLWNpQBUHuVRUMw2mXbvd3a1FmOgMyv6od3SMuT+m1gaOWgOOyR7VTaqC5NpPC8fZQua6vdwopzr4WFWa70DwyrTej9HIPwzQrYr9V7yMj30p6rFqxEZ1/gl7U+4zK/Kh5kmeNDkdu6mj8hyXxikCFT0f1SZ4LwOkQ36U3QDNV7+eSJcPn1Iy/CNVaSbUWRx/mNOrvaSAU8Z5IzJuNKPY1P/ZrY6mWogGyaUez9eD5NueB//ryBX/95QsA4N9//45vd1MGJ4r5J6EdSWVeRUHNNI7FkRkRCRS7glgJ5HHcG9Bs4fFH9v4qVuL2gOb6yMDi7V3884Imq2p8/rP2EA7K07OLZ7VgXUMkWdklzeFQ0eSQ2Ff3fN95CiKKzRZ9GgDbHeWORF80nKH9rcG7nQw5Qr+gW9fhvvZgaqumPPz9yInHc8tPN47j9VzsAYGYIyKH4s2Oi+XAzbfr29yBzdMILUXhui3JnTOb9NTXcCDu+/ZBSqEx4qHckd13KxznDlJr6urus9omKgDsPc1eEksTHAYPhnQKEL/paKFtg2Vu/2lt+O15OiitM7YxH0rWFjfh/ZhVSLRpzDYKCqa+HysPBCdnwq1+DAKOjqZ2bTpBoucI43A+U+nFs0YyPyt2/Bo+s+Kb7WvfNX73pIqltEcApgOT8HX29YlUrAzExWGOXP6AYpF5r5GnszqCj4VDrl48j2x/kKaI617m5kgNlIWlpjrCeUD2e+GWToGnokGp7QRJPosAJUWdwUPyTnKVqV13Tg6wvv9bvqe1ujIP2N9qBKg77B/+Pe9A6zHQJwviu9exuJb40fmJk5ZW93XOPVFx4rBxzNceJAzKuYw1zzlGXjRWX+F3RxoD4t19U29ES4pmsX3+8uUFf/ntNwBT0+kfr6/z9ZDoS8aFiHi4ppNmisbXLgaH4JoIlbZkpdqn9OLx/nJEiv29g/L+GpQ0kVtcAs0WIaRZPenHsoNCGBTI1iY/a1eK57LLLrvssssuezh7CATFvatlAUzRHfuhcLzKUzyE9OYaIUi0IpLesfvPKljdsyQNuWmv4uironvljzbgPj9/PY6AYfsMasGyorvHuh64u3drxzc9W1dxBZ4NEbobynAfCnKNkbFHsz4GofeZAlFL5RwiJ9b2srh0enq+nqZSItwMNmQI7tG80H7eM5pS5vSegzWu0VARAvT2bL9jKKWEdIybRwWNQsU3ZfO11MsnOZcMBuidsLZEykJtskSKDm++sGDx7zZApxgudh83Sjnv4xhR+SKSWixRgTAoUzFMQUp2a8S4la6wQdL2NNrQrCajQrQDAm0ZnpEjjeqjmdbJ+xOYEZIrKjIjiXqyQwyt8xuc22yUOI87I6bLHs/icaWCzJfJqhTuxDzVapWDAu9uOwglUjFTIef5TVFQE8kfMpXUcmgNlRu3pgt9+zW4LSrSCR5IfJdno4k41ppG901SyX9EEuez/b87nw8Qip6j9yD1BoJTGuEVIZMCgKRWESfirtzAFvHXTuWjXqd3vyekMqqWNNYYKKVA/uw2sKeNjy0UoTd7xpUJt3W+/vp8w7rM1/fxhpsXLTgSDILnsIVmIQmQyPpCLVCLgxAIMvlFFUKMsZ7AsA/o1x/a6Tf57ewCn52ifd4XTW2xRhxNbX/WHsJBEX/SFo2y2/04YlZ2B6Yx4Wl1ueHko3DjdFACluLIE4pqVEesUYbaoi/L8kQhfb6NhuFpgKmlY9u3n2kLGXQXcusqAamNXXAsDsn5AqVYPO1CGh1rByj3ZTds2wWBJVJOBn7DyTHTNfNQBsi4In1pGFbB4pL1sh1487Ls24JmpUzkPSdUI/U0VBO6bKWXhe1rHMARHZ3LRHvSnc6V3Mttl5Je2cd0MIQUzSp3egMOq2DRbX731oBnyzf1vsAfoTt7d2CJNNfb24buHkJDcEdCAntT6PCu1hJcouEO1JrprDk27vzNv29MoOGCahLcFxGNKjJH3VfYvQBgjBH3nI8xRkLGvXPOgpq9nFIqWpKpzxpQ9mUPaL4WaDI8lLTcVxUjt8+5uBylj0x1Hs5UjncrJjjmnFnRYw4K6BTEAcbJ0LqVs4tA796J3Xoatb37sFStRKWG5BbaUn5w8thsfEqKyJ+H2WLEvhrChvW4c3WNKuZcuz+mJsJDyfRGjDhTdjmGry0aOR6q0YAvsq3FgI7Cb9TiXbaySIfkfEMIVB42D3x7fcMPS+uICLh7t/OGm0fFTlkgKvSE7LvDwUHJ+esozmX0tCt8nKES6WgtXCC32v+p3g9avuHzExNKwEsZnMazkH3HmBXa/pyrccVll1122WWXXXbZw9lDICjuDW7fGrhP8mTvCd9V98wd40M5owbJiDngeKQIGUMwPIp1VvZB8FqQthLWdXqst9Gxm7fvkQC1ZFLrANTC9FNQKxnN3O8WRTuEMxAE1FvvAc+9DQ1IrtkXDmogF/NSgXoayb3z1iDe9GoIusXvh+CD9zwk0Sk9FH3x9ENGIu5Ri6bQEKGS6qbd71uQTYkZ3UmsEdil+NHCwGiTCPzcf53nTSs202EhKJ5hcCcRhgmNePqFGUFK7tzw/GzIiovOFfZ/Xxjb3at/Bnad94+ja9ilhKKMdst0zxyrFL6TkZGsR40b0ezMWcZ1HjiiS3JsveCn92Nk1ZG914hCop8oSWSkKJUeJSKNqJqiEumy/28YFc35CqREZSIlRHKC3ouUeGRFCiIQ1WdItIYLAoNC1M5OwnSqJCoZkjiw8jLuQY45p6Q2yzwho8j5j4SAvF0EUWq5RNNRSlk5KojTKffwyUvVHJBMO3+SnvJxeVdgAUn0oXc9AVHAnJ8dVdFSIerb59ZiwFQ1xR0lKwq9CnLhRE1ANzx7WtfG6Pdv3/G/HM1mivXv69rx5N3S7a8Ig8WRb4G+o8sTUSAzQzLNHmtB+e5AIl5a1f3ejV/81/+W1Jq/biciMMGn2yPWV4FYMcjoHdsJk/nn7UJQLrvssssuu+yyh7OHQFDaajXUCmxOaiKKUjB1suHQkB0HsmR4ZuwNSTC3sDfGU08ehEvch9T4IeHttUaRd1zXBS5FEUqe+wi+gZ6axDlSkY2qiAFyQm5sILU4eO1ow4itbyP5IEZ+6o3RjdyyD+AwdIEs8l6flyAk7XLg7poqY4T37JFP70tJ6BLYGvzdnr08tgWBc4wRMoKUlJrwsgc0bpZFGSyej83vOTK09gaZ3F88P02k5LauEENVjiF4HTMH++MuODCbKr5Za4C7cpDFwD3QpdvN0AeRaDdOIByGzOz7ESXgjm504lCFpYJghNTMkCBQb0PR7bx7Ke3ze4qZTuy5oAL6W0ji7I4sE/Y2C60INFCjULvFSAQl7nnNtgzC8rG08bKHsZMWSLlMH65Y5UFUBAUZ0UcQS/MTYD6LkvGsfc5BDG1U5qoj78dobNGSPE6ElISvtc3lZfzLeWM7B+4EGiviORxFcsFRX2YNJDJLqqv2SZ5OzDfluIr8y4mnk8fKYOfmIXmGooRW+HDz96nwzYxESGyT3PLaaNJRIoRvSHSeWUMy/pDkdfg1OjhPhjnXMT+v1/uB//237wCAdWU029ZL44LscP7EBpFknhuQkvIKwmHz5i4SxNSqbyXlvGrzw4/3Zw5IpfFUJMUV1RshUgjHqKrurv0jicirhHbYz9pDOChsC7J0wXJ4GoGwsIuU2YI8RqRqGtSSBPMBP97VdM9Kkvm6tRYwvXoDHVYIuciZTgE0zEU2Oh+7cNguUHHRLQ7Srv9eR0J+vRF6PEAFcrRbRjtnbyFX9QLAln7Z33YsVtnztKwQI8F6VcttWRJ6FcJ2n9ohohKS7b6gPy1LkD5lZJqrY3bXpNYgtkgeDSBb3PdjxKLtD93Tyw23ZqJr2uJhd3gRpFgsJXZbF3STcn5+mUzj9ZlBdj3f3nb8vs0H9Pv9LUmsJmimrYeD0htw2Di/WpfnsR1RfXTftv+bvXeP1i3L6sJ+c669v3POraruBoLIo5seBJIwEDCSgCPB0EZMBI0gAyEiYDsE0/EFBkISAgQMRPIgwgARBg55iy04xCA6BkEDCiIaA4HwiGB4NHTzaKAfVfec8+295swfa76+W7fq1q3u6vqaWr8xqs655/v2a+2955rrN+f8zegxtPeexnHPkJ8ufi09Kq9c44aFMpmZNJLuPHzXKLUHAET/HIJGsl52MM7EV9WG1cXsfHKQNOgCjQ8IFPRvszDWBsRLT6WiY+K8USI0NXDin5aQBpVYS5k0fBIcGuYAvC2TPcMh0a5RVWJKbfZlzc7rvgMhHA6F8ndno8Z1DCfaKO4/P43wWkifx3lRFj2gVsDlMWNvipj9pHZ0LmPol6VKJxMlALBmh6qiMAStc4FrFYFzEdnp9EbVn3aO4VBpVkItUYHVsh+RpgjN/aquqv6K3/tjB/Ynht1ebwmXFnZeF4IL3fi7L1pOlQDSYRdd6HKXYz4+oqXbsTt5GcsZrTcyXlMiN37iqL+euhwWxnctqsZQvzmCmGfInURG2jcuns9DYoZ4JiYmJiYmJs4OZ8GguJCEdsHB2IvDwlF+tZfVesrzZrqQgoKOdFqdu4Q6606KLTpNmrd6yC6PW+8pYb4suOPZTka27LeCzbKA2pryylmWliqtgKLbSh+rldh2hAb6fivhTC6a5W7usV/TFsm5VxcXEavw0mGVjr17aEmDJWISdE9O89LehdBcgpiyKZ6XsHHLFT+zAq59gkzK9ZXP5WHFncNgUFg5FC1Xp2NZo57/cLjE4WKwNJdXVj69atLETFY+DLyYD+DFS+rsvKTh6pCdjTdjSK7vjgTY2+sN6o0PVbP2vhWVXBvv2u1TVIDNf89E59CYaXSyghzjimiT0GWP8SISGPGDW1tlrU1hlem4JIJTab6i69JHKG2cWDBxhGTz2BmYhmDaWmNE3HHibFFXnfyk4l37TknkpMqc+M8aAYrwR4YvajgxM8UrI6BQ11zyMIZIJPaDajHpk8M24/PxjSBCeoY3Trbj7PyurogtyRuxVpIoE1uTtCgtEmsuexmLOi7OgrtOlCLt04FTwbuXdiD3ZTVKKfZJ9KUk6vq+vJR2XQhr6Nowmmlc3WidkxwaOyZQappo2qFQh92zdHfZCBkiSX7DmdjGLa/Bc5J7D00XLkqxwdQJx9wC9Ig0CLWY/1AS9J0N1vs8vqRaGLPCxVAJKYUtRTSXbe1B7SOfGufhoHgMT0rNfWvx8LvE+snJLqdCRQfLLfBB34+K6xvrECzlhlmX3OXyImx+34Fj9M/RiD/unoXcb7Be3RnHUsF2zPgfACzrks92FajxcBRn9dH1tYTmxQJEl2UxfY6L9YBLcwQuLw4Rkrq2UM7N7RF7TLKAsjslyLhqaaJR5bbVHphuk7uqRn6GQOOJa0DItC/mLF0yR88cIUA9RcQdFE1Bsm3bsNvvx3188dHDBRbvKK2KdR3XeMWXWGxWP9LIRdluOLRidtZPLfgAACAASURBVOmRm3JzO7yO2+MxXvqFgcM6dtCpY3MRuxKKyb4bCArVc5mWYmQXyiz3W3vlVqThu95SxI955DEBwGYOdrtA5gqBcOwZZhr7IrCFroRTu4eR20Xlz5qiR6a9jYnzBuF08r2fUc6u1KczwJO+W+l21SdNgQ1Ft4hPQ4CcG9rO8/nR+4RrhghZbnNvO5hxOunM1N4unssVkaue1Zel0W+GV/T0YqM/DjTyK9KU5ixIyPBT+E0sIR9/4BYtK44154HyHQx/DvSkfkVSnKUhVeU2wRwVptB0atRiZ10Ju61kXYRRkUKSKhmu8ZSB6tLsoGgbslA+NS6C1kZy37iGNR2A7KbM2RKBNHLgIr2AGKXcBh4Ua0hxnDqu8Rgg/1G7XqtXF5VeO2Nxm+MEjPvBl+P3rXdss5vxxMTExMTExG8WkOpcmU1MTExMTEycFyaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaDMjExMTExMXF2mA7KxMTExMTExNlhOigTExMTExMTZ4fpoExMTExMTEycHaaD8haCiP4+Ef2xt3AfryCiX3hrndNbE0T0dUT0hc/3eTwV3hrjPzFxbvjNblfeWngur/E53vf3ENGnPBf7vs+xvoqIPvdtcay3Npbn+wTe3qGqH/HW3icR/SyAT1HV735r7/s3G56L8Z+YeL4x7cr9QUQK4H1U9aef73N5e4Gqvur5Podni8mgPEvQwFmOHxGdveP5lp7j23r83x7GdOLtH9OunN+x355BRO1teKy3+j06yxfhuQYR/ddE9K+I6M1E9ONE9Ifs742IvoSIXk9EP0NEf4aI1AfeaLkvIqLvB3AXwHvdS9UR0acS0U+Uff8O+7sS0XuX7903dEJE3wjgZQC+g4geJ6LPuh/VSEQ/S0Qfbr9/PhF9GxF9ExG9CcAriYjLdf4aEf1NInrHsv2PENEnlH9/KBH9EyJ6AxG9hohe+RRj9weI6Ifte/+EiD7gQeNqn72SiL6fiP4SEf06gM8nopfZfl52z3e+nIjeSEQ/SUS/p+zjacf/nmO8gYj+PyL69+zvryGiX6m0ORH9fiL6ISJ6k33++eWzl9s9+xNE9PMA/iERfScR/dl7xuNHiOij7zdWEy8sTLtyalfKO/Qniei1RPQ6IvqM8t0PJqIfsHf1dUT0FUR0KJ8rEf1pIvopAD9FRP/IPvq/7Ro+/p5z/y+J6G/d87cvJ6IvfcB9e0ci+lo7x98gom9/iu+9r92XNxDRjxHRHyyf3Xu/XklE31f+/XvNnr2RiL4CANnfL4jo14no/ct3fwsRXRPRO9u/30BEH2q/v4KIfoGIPtuep58loj9atv06IvorRPT3iOgJAL+7PhNl+88ye/g6IvpoIvpIIvqXdi6f/Rbco79MRF9yz7h9BxF9+tPdg6eEqr7g/gPwhwG8G4aD9vEAngDwrgBeBeDHAbwHgHcA8N0AFMBi230PgJ8H8H4Y4bHV/vYpZb+/CODftQfwvQG8p32mAN67nMPXAfhC+/0VAH6hfPazAD68/Pvk83u/A+DzAWwAPtqu6QrApwP4p3YtFwC+GsC3PMV4vAzAmwH8EbumdwLw2+9znr8DwK8A+BAADcAfs/O4eLpxtc9eCWAH8Gdt7K7ucx7+nT9v5/HxAN4I4B2f4fj79n/czu8L7ft/2cbgP7LrfLSM6/vb+X4AgF8G8NH22cvtnn0DgEdsTD8OwA+W8/1AAL8G4PB8P9Pzv+f/v6d6/vHCtSv+Dn2LvUPvD+BXy/4/CMDvtGt+OYCfAPDpZXsF8L8DeEeYvbjP9cY12Fg/AeAl9u8Fw1590APu23cCeLXdmxXAh91n3yuAnwbw2QAOAP5DDFvyb5Z7+Clln68E8H32+78G4E0APtb28+cx7JTf368E8D+WbT8NwHc8xbm+wrb9X238P8yu2c/j6zBs5r9v9+zyPs/EDuDz7Fw+1e7JXwfwGMYzeAPgvZ7NPQLwwQBeC4DLtd8F8C7P5p16QTIoqvqtqvpaVRVVfTWAn8IY2I8D8GWq+guq+hsAvvg+m3+dqv6Yqu6qut3z2acA+J9U9Z/rwE+r6s89t1cT+AFV/Xa7pmsA/xmA/9au5RbD2Hws3Z+G+6MAvltVv0VVN1X9NVX94ft871MBfLWq/qCqdlX9egC3GA/w042r47Wq+uU2dtdPcR2/AuBL7TxeDeD/BfD7y+dPN/4A8DOq+rWq2jGMzksB/AVVvVXV7wJwxDDwUNXvUdUftfP9EQxD+mH37O/zVfUJO9+/A+B9iOh97LNPAvBqVT0+xbVMvIAw7cpT4gvsHfpRAF+LsRCCqv4LVf2nds0/i+Hs3Pv+/UVV/fWnsRcBVX0dgH+E4dABwO8D8HpV/RdPtQ0RvSuAjwDwKlX9DbM733ufr/5OAI8C+GJVParqPwTwd/1aHoCPBPDjqvptdm+/FMAvlc+/HsAnUIb2PgnANz5gn59rNu17MRysjyuf/R1V/X67Zzf32XYD8EV2Ln8Dw4n4MlV9s6r+GIAfw1iwPfQ9UtV/huEgOfP9nwL4HlX95Qdcz33xgnRQiOiTKcMUbwDw2zBu0rsBeE356mvus/n9/uZ4KYB/9dY704fCvef1ngD+drnGnwDQAbzLfbZ9puf9ngA+w/dp+30pxrg93bg+1TneD7+o5nobfs73/wz3UV+EawC45+W4xjA0IKIPIaL/g4h+lYjeiLHSred7cjwzyH8TwCeaMfkjeLAhmXiBYNqVZ7SPeJ+J6N8gor9LRL9kIaT/AU/z/j1DfD2AT7TfPxEPfj9fCuDXzXF8OrwbgNeoqpS//RyAd38G53Ry/82+1X//IAYL8mFE9G9hLKD+t6fZ32+o6hP3nMfD2MhfswUcYDYST7abbiOfzT162HvwlHjBOShE9J4AvgbAnwHwTqr6EgD/DwZ1+joM6tLx0vvsQu/zN8drAPzrT/HZXQB3yr9/69Ps595jPFG3pZH49M4P2OY1AD5CVV9S/rtU1V98yPO+93tfdM8+76jqtzxgXJ/qHO+Hdyeius3LMCjDh9nHM8VfxzAEL1XVFwP4Kpye7/2O9/UYjNPvAXBXVX/grXg+E2+nmHblvnbFUa+3vs9/BcBPYlTlvAgjfPKg9+9B+HYAH0BEvw3AHwDwzQ/4/msAvCMRveQB33stgJfSaQLzyzBCb8A9Y4nT+/A6lDEw+3bvM+CT+icB+LanYD4c70BEj9xzHs+VjXw29+ibAHwUEX0ggPfFuCfPCi84BwUjFqoYcTcQ0R/HWOkAY3X8aUT07vbA/lcPue+/CuAzieiDaOC9zXABwA9j0HiNiH4fnkyTVfwygPcq//6XAC5pJHWuAD4HI/74dPgqAF/kxyeidyaij/IPLbnqlfbPbwbw4UT0cUS0ENE7EdFvv88+vwbAq4x5ICJ6xM7pMTz9uN4XlEl0Ly9//i0A/hwRrUT0hzEe8L/3gGt9tngMY/V0Q0QfDOATHrSBOSQC4Esw2ZOJxLQreJJdcXwuEd0hovfDyA97tf39MYzcjMeNOfjPH3Ds+13DCWxi/zaMxcc/U9Wff7qdWVjo7wP4SiJ6B7M7/8F9vuosx2fZd14B4D/BCJEA4z58jF3newP4E2Xb7wTwfkT0MRYK+3N4siP5jQD+EIaT8g31A7ORr7jn+19ARAci+l0Yjti3Pt11vgV46Hukqr8A4J9jXNPfeibhuafCC85BUdUfx5hcfgDjYX9/AN9vH38NgO8C8CMAfghjYtwxKMxnsu9vBfBFGC/HmzE8R89w/zSMB/oNGCvwp/Mq/yKAzzEa9TNV9Y0A/hSGofpFjBflQQJCX4bBDnwXEb0ZI7HtQwCARhb2O9nfYC/xRwL4DAC/jvGyfeB9ru//xMhD+QoAv4GRNPZK++zpxvWp8FIMerKuvn4QwPsAeD3GWH6sqv7aA/bzbPGnAPwFG5/Pw5hIngm+AeP6vuk5Oq+JtzNMu/Jku1LwvRi24h8A+F8sFwwAPhNjUfBmjDF6NR6Mzwfw9XYNH/cU3/l6jPF/pguIT8LIy/hJjBy4J1WcWJ7ZH8TIV3k9RmLrJ6vqT9pX/hJGftsv2/G/uWz7eoy8mC/GSKp/H9xjG21S/78wnNx/7H8novcA8DiAHy1f/yUM+/taO86rynm8tfFs7hHw8PfgvqDTcP9EBRF9BICvUtX3fOCX345Ao2TtT6vqM0nwei7P43MA/KqqfrX9+5UYme0f+nye14NARJ8M4E+e+3lOnCdeKHbFmNGfAbCq6v42PI+XYTgbv1VV3/S2Ou5bCiL6axiFBJ9T/vaJAN5PVf8b+/crAHyTqr7H/fdyHjAW6psAvPyevJ2HwhS/KSCiKwC/G2O18y4A/jsAf/t5PannAKr6fQC+74FffO7P42wl9J8KRHQHY9X5lc/3uUy8fWDalbcdLEfkvwDwN97OnJOXA/gYAP92/buqvt2xtBYu/DQAf/UtcU6AF2CI5wEgAF+AQZ/9EEaG+uc9r2c0cTYgov8YI8fglzHo9omJZ4JpV94GsMTRNwH4vRhOYP3s8af473c9Lyd7em7/PUZC9f+sqj/zfJ/PWwIiel+McOO7YpRTv2X7myGeiYmJiYmJiXPDZFAmJiYmJiYmzg5nkYPyqk/8KAWATRXrOnymuzcbfvn1bwQAPL6PMFYXBWT8ziIgI3+UAJh0BluZ+rHv8Kwsag3cxt+bbdQgUCvfFjDUtiMIyKJmKmOfnRlsf7xcgBddjlYEj9jPXTpUmm3fwG1st9ixDsw4XKzjbxcLLtfx3cvDAQuP44pd174rbm6HkOT1zQ126XZdY5+NGc38yt4Vm+We7Sq4Pdo47WMbIkFv41gLt9iOjTVrDLSF7FqBvVtRQWPsMr7T7btMwFrK3499HOu62/F3YLNz3UniPvh5d+25/42gOj7fIePgdgw7cagdXxRYeVzDuozHdTse48tKwL7vdt07xLajNsa7LQu8TJ+E4CX8rrSyskLt3t6qIgjFntev9mUBjwJj29dq+zjYGLZGOPqxQGA7FvsygFMwQBVxjSNM69v5NwgUzyTH+f7jf/B992oQTDzP+Hc+/MMUGLbHVTJay2dMzI6IAGIPmIjEO99F8rm1HaytxfNF0HifDos917yMlwPA4YrgLeHGY+u2wt5dlniqujSQ2YEr66hyaCtg76OoYKdbAMDm75UQDmZHGjF2NfsGgpmysLW9az7XpCB2u+x2RsOmiAIMt8ea42X770IQew+JAVpscO2FOgihme3oJFjMPhyPHX7F64pA38Z3VyVcreO7j+/je9cCELu9Bpr6u9vi+G6Lt7370EMIcaz6cnvmRZe4TTjaPg+NcbwZY3x99wZd/Rgc47QuPt7kkvJQFYgVfnU7gAiw2L25OjQsZovIxuhqWXFhnzNp7osobKjb3YUJ3mRnAbDb/LX5vSNGY59HCWJabwLN80buK+0mwV4B/LWv/taHsl+TQZmYmJiYmJg4O5wFg6LOirCCyT1HDbbDvTNhwNsHjTZF5kUCwYZ0W+IqUWxHS0MzVqPZ91iRq2XicCMbAWReu4SgaXqbxBSrAhc8HSsS+64CZRE89qOKzdiDfQfIGQMQxLxb6c6gdOybteLoO1ZnIOznrShIxnpFdoWSnytyyeYrdxAOdjI+xnbi5bpbbK/2O/cdza+NfY8KitVfeuJkx9pFsPnKiYe3Xj9nUFmlMdylJtZgr/wMuZxiK+yCrz6JUegWLeOMshIdeyNRrM5EEMEWTGUFIvldorhucYZGyhiUMR7829jZrY0tASAea5CFc7VBNhZdOsSOq5orDJUnPTIAtLApkpc7cXYgZ/vQ4yGurxts5ayKYnQkvqRdgnXgC1+tdmx1YW7bHXdfqSqar+IbYTG6hRrHsxJszd7jsAKAbcPdmRbt8W53lXgPfeWvkoyE8BIMRyOG6umDqTqeXGCIvDgT4X8rBA+Ishlc3Uv8jSjeQ5DG9ThDfFQEy6SUrK4CwfhcGcWjSrgxBkS64NaOGDaeii2FBvvpICDGiFBsP+X8FN9V8lsOorwPzqReLg0Htam3N9yq21DCZoy02BywtGTKCAIjibA0t6UUz5eI4uZmt+Ma03HBaBe+jcZ9QPBo5VqU0+KQxjXEPMppH0EE9XlSMSZU+w4w7mFkt/KTx+iZ4iwcFGfuGo0WtADGA2ROBRs1Rwp0v2zKgR1T2Cl1r0TxO6uAxSYL3yevOU9XpV5lMOcxgBEKkZjk8sV1A0Ka4ZPWCOQ0W8v9+m/cBddO7YKwshspo+72juM+Hs7ee0xyfvyjKGSz7249HgxuhO6Tvn13WRnNHuRtF+x7TsTAeGj8UlduMWHe6O5Dj8VfZNUwALdbh9mIMFa7jP8AgCV8kXxwR/DLhpjKObR0FupohQOh6B46ituixViUUAhzGOL4uQt4yel/D3rZf0pea/GMYntohPwajWdh/CPv/7G8qFd2v5gJKI4JMEJQ3WcuZpA7p4piodPRlWIQJ9d5vojJQnISdeNdQahhTEb3SVs5bNAhJotcQXXNd6O7I0N7TKJ3bwiLfeHi0CLU4YsD0hYLhsYcdjUmI91B4WgQ4mHzl1gUWS3aIWZLe5l43NmRXE8AjLLfHIU6Mr7XdPcR10WgeN+IKBafPV/OCGUwU7yzzIyrNsbgEQv1Kghqk/9d2XFj3/UQ+wUJ3DXrSCftwhbMzAyxML4gx0O0TMQ1xONOg0a0OP7WSeM+quZ9AuVCW9yZaohjNdKwGf7Mbb1hs9D+vnX0PuYOnzdWXrD6LF9uBQFxf2O6o+GYjGtEmU/G500VndwJJPQ957ETJ9zHoizsnq35mmZvYmJiYmJi4uxwFgzKhdFwTSVDAswgWwk0jISiXn3vQrdz9cpjBSxQ80JVABUPDY196kKxcm7IxK5BEkjdFRoXwk+BYyzlx/4PfECzbyxM4DU2jG3YV+GSyUfSk9Vw2nKXjqOvuEXAntgarqRmQm3vIKeJleH80+qrh4sV7cKSwa5vcRQLHTklLRJsDDf/H9AJaB7GsqPuG/D4cXz37nGHnWKcX703pBSsgy8rmCnCbOCSILrnKstDIePcjIbugh7eudHbC4GD9kzakpYlkpk9ua6L4NYFxZPUiDFQldQbJ0a3ce6UY+RLoJ0JB3tWl7UkHXsGWM9kMYUGM9Rlj5+xygPFUzsIlFxF+XmdsDhzLXG28ITG3hW9+8o6n2V/Jpgp3yvmeO6W7nYH8BeLpcdylKCRhOqhlloYINDYfhOJJPiVx7u/NArmhpiDGPH3jShpAC7MtJo92VShbhOF4ruiGuxAMCGaq15WDbt4v2e9EocCKgyqbV+SgxdKW+NL/oUIlz5HLBzvG4viUEINwLA3Pi6KZHtbM3ZC8ww68t1bnNkCQYxNEdYMf6GwZmUMpDC1fm88ubh3xXYzbPHNbc9wEDcsNj8tRnswMYS8iKBn8m3EEpNlGixSzp9jm8pg1RAPKk1sxy9MHfIafe7Ssv2OZN93yuICOdllssEZPHo4nIWD0jwPYs/M9l0oZuXoHylJkdKJyaZ7xxqi+eAwITK0w5URicEelJ1PaIReYqSne7Uwk53jbc8HJxwrYaxOnZVz9cdCFbiyJ2oBo5fQzvhcS3wzt/OXiwrd24hicKhMvp61/cjFAVeWqq9dsG2nGeAdwK0d/0YkYrDa8hx8XG93xbU7KDdbPIhuBFsxgj6mdehIgwUEKGnaXvNZ6rsUsfw0gn5+B1ogXhEkPbPRWwORO1lWybT1COuANLLMPZSoouEMdVJ0e07Cp5EeztTOGRM/tBZUdPPwoegIuwFQkqgOytIfDoNLxPFUSHHMw5BrOqIA5TswcXZw54GXFs/149e3QbM/cjmSALhx5nKgVIyVfDkP5XZCWPsOjRDKbs/UxoTd7Mjl0kD2xGoJ0XgYYG3V/uSxYsFQPHcmga8uxCt0elbC1dA6UwnV+v4pJyOlrJqk+nmuU+K572Ac/T33d18pHJzGuaD0Y63EUY2zLIzdqkr23rHZu7Ntx7GvrmHruiq6jfPjVgW5CoW93xXgCH/49Sn8PWamsDNUnRFf9EBy7hAC+/vfJX5sJaxdosZo5uwe7LpUFMq+f8bu+Yfu9ahiNXt/cWiwtWnMqReHhnXx+SjDaCB+Ui6lap2zUOZBH3eKkD77BsCp0+M+SYkUgvMYD4tp9iYmJiYmJibODmfBoOzmTV7vOzbLUr/ZNRLNOvvqIrmMpogsdhSqMZiUPlbUANBWxrKcesSQ3H+tYJEFsaJ3bouIsBRWxOkzdy2PukdCkShBtzGsl64FUhieXYErHiuqRg17MEbj806IqhamXEE4nSaqkUmtyxIrayU1nY/0nte2nLASkRTcfP8cyxUVjRr7VkItfl77phBjUHTbk6myJ4h5iVCNoLZptRVU+aMoSlVTLyui4tHHvSUgxsBXfgv2PRNP3e1fmU33JBPtuig4KmcGVTwOUpLB7FhNJOnaWCEtYHItmmR7ti6lAsG3EXSPJ7HCE/U9UXlZGhiul3OaEJcMn1120clQIEJaE+eHrVZc2PNRq7gcXSTY18Fi5nPtrMbieiZNsDdPoFew0TSXScaBmiVSqmLxcGPnYCCiqmXN0BKgWLzCw+wjqMX70HiDv3xbCT0k2ZMVLo1GmAXIEK9yeYbL3+PwJbG2lSR9UoqKmv0kAdXfCwq766vxhTiOz+ODsT0UN2Zftq1ozfh+ieAWLLVeOIo1FAxW51i9wlCDoTl9U+MPJc89PyPWUojgNodiPoI2NI+5qUaBhhHTkF0yTKMtrufWqxSgHpkHmHFYPTnWmJjWsJR7nwxKYbzLpXjVVSlsjeKJOh81AH3LHcQ9Lc+064jpPcd4GEwGZWJiYmJiYuLscBYMiscLjwLc3YZH+8T1EcfjWJlEbBLFo9JMyCHNqmstK5iIsTEFK1FLnzLvRJI1aS1cR3JdEEKUtTbiYCiIPU64nSQ5hrPoqx2qNeeIZIxdNTx5reWpEZft2CMLzVX7MpWMuJ1qbdiBPf/i8eMNqDsjtYcn7AuncV25GqKyEsixscMXPZKFKZPXnLEgivuxU/rqkV8iEom1R9FgjmqNrUSyV44hEefY2eqiIe/9rqm02HvP1Ysn1gqDYuw04qrxOVrE3MESyXWe/8SRrTJ0LjwfVkUjeS0YJ8ryQhLKhEn491pQYYpU5r1WyoTIqGnWvBYhyLNdgkw85+hRvp96NRct9ZL8vdm7ZK4ZEOXxSpT5X86qaSqrHlbGcjjNa+tA5Fb1nvldwhoMBNlqe+llZd0a6LjHPgCgHYDGzuz0yDMIuQL7OwAoK8jYhQ6EvpIW1iBzUDT0YCJPRykmnYZkRUUzT8ZLh1XLih+FmCjJwbuVDrNQsDV7F9zaPTlWaj3eUwp7viYRkSwWN6xwJsLHvWO1/d+KpJKsloTZcrKpUp62zPWYhAm6+tzC0FIo4QybRxLouEfC7NIYe7Dr/sxpsGONGIvfZ2fJiE5KvcMulyTYHFe5L2MRbDklE9cU0JLDlOeQc67bc6XM63xYnIWDEhnTywq5sUTM2yNuPKnT6PYFKV4lRJFQ1phDVt7JyL0kycqWlRhsHCqV7Ohtl6g1X1cNSeXITBbJ5FoGDnZjvPpo3ylkpZdGkZzWLGNp4ZStbpBIUt27RIjlsLjeCWHrHkbQqPLJWpOU+G+kYDsGLy1iXreW+HV9vWGxsVNkqMENCEEze58ZB3uQN5Go05dIqNXQT1hpTQrRtKSl7yF1X0XMvMoIVQJbEcZiKfoFPgmLFuPIGhoO8bTqltRwa5HRvu09Daa9avvOkWC8a9KlBzv/y4XDSSTuId3tY6U67i8A9J0R3QCo6Pe4QW0ZXltEcVdHgp5LZKMTuovVkeKCTLacOBwTdx5BFMm3IhxjN3F+cEOtZXHSygJJitNxErIICXEKJ9aTH7vmRN1aCwcjKmC6gro7vhLvUy/HiIlFFez2D8Dx4BMxYhu3jyopnubv/mDy3b7mRdZKtSrY5tsxdTQy+Xk3AztlcUIjaLSJCPOCbl/mYic6ajJm2pFewkEhoS/ZrsQdoKGXlCHovAizE8hFbGMKB8XD4Y0VF3Y/jmVBW+RqkCOeuycgChlC34WGXRt/lHDe9i4RnvMLOGgmBxMIB1+QuoPDijsXPh9RFpb4GanA3Q4tITOl04rZcV7pEKqm7pQnFHO52FF4kqGfDAflsIbTnGvuh8YM8UxMTExMTEycHc6CQfFEJ2kayUFogLhrWerMqXiTFCELwhphGfO4N4HsvmpImks9UZM0knhAqZ/BGHXqALD5d6Gx/8uFcXUx/LrH7Oe2U1CNvfB8i7Ebl4cVi1NyumGzZFOpYRlnfqTj1tQAN5FgErjnysmPsLdexR5Bzql5WEJLSINPy8UAmNy/e8E5uEehpBp7WZU4fddiUZAslJawTYm/eZLt+KfTzMAaSaodvTtz4qulVJ3lRsFmJLsgJ3WLtcwtSzedYukWAjQK1Nmvg+1soaSkVct12TlJhq5U4NI3IwnWfvXSZCIK1cZVCBfiFLnRyUSRkLuL4mgPY2so12MMnyiahwhVTzWAJs4KXhpKzBl7RAl7lFVtRBApQwodmbCfLCPFErSDcPR31rcpdoZGjvFoWAAAIABJREFUDGb83pOFiTDDwpH0PeIq9j546FEoE7IVJVnUtmcJW1ntLtfQdUg2pBaHajKG/txXmQQqJf6saQsznI6TxNdm5+iJxEtrwUJuUNxa6OruJthNjTuSN1fOkL2m4nR3kQ+kLQMhQm6mHAUlhhobRCSpNl4iRwEq8xTZH5DhdIWEdslQbk276YzTwRRwLy4a1iXtU4ZljAVbKZj8w8I4BlviJdUZZtdxEnYoyZh6ie07g7NLKmW77WmkwewsjGiKW9VwYzQFEQ4X0tI25uFwFg6Kh08ax7tzkoeQzkN5+VVSKwMadFRkTEMtn8PitbYzrz9npcgBuFpy9t5ZgqnzCaIpx3cPreHSHI8rz7/Y95RcJgk69sKo1MOCiMUe96J/gOzZ4A/RiFNnjXv0QSg1+mkVshOvohdjkZSi9+2pwk7prGVvGiHNnjGUE2L2jinaKEiDE0JzivBaSHNf2d8idT8OTBHSuC063m50lTJvg0CRWe6DVZ+TRgRxh0w09htUOgHKaS3cTns7AiwU76cIhZhS8pOImLwiGGEoJPNNzJEWpni+huPkh/Xtiw6GCjZ7g7dF4U87ixtRTRE+ZJ+QifND7TMTdpiRUYT4SaWCLnU3qGgQuR1ZUGzCrtgtn8T76PBSunDvafdIAL3XQSHFlnNv5F1c2CTGnM7UwowLn7eiPIVx67ZWCLWIsZVcB8Aq9GKBRLEgTNOdjr2opq1DitF5hcsYVx/Q4rDZPm+lYycXuMyF5YEIzKdT28glyzzE1CgaaCrhGI3cl3E2xxGlxU6E1cb+YkGIR0q4eamPtZdcEuVU7OIyrqFrRRqL6mUhHGxOuXNnVHqulwvYzmU7bjGeYVs4nc9dObrEa1QcaToNpf0Lyti2EkhxG7xn1K/cOj1xvDgc0XxWpMwRsSWdBL8eCjPEMzExMTExMXF2OAsGJXxqRXD0JKlzoquHR5KCGgqgnmxapJxtJXLRWmRg12PEKl0l+FbmrNwBM7y3nDfgaiAcbOVzp61YvHrHa+V7x2qe78WBcDh4KMOO1TuOFi+6OWrxWDPJzMMj2oeWwbjerHGP5ntLWcG0wjiRwsWzKQYpNQWUi46I7YwkJeOFNCkj1qR8iux/qAEKxWqlZ1bXGEfAav+NPvbkv8zjs1WAedp7S3rbpaZZo2mVKqW+i4WCLi84Kc6WKqvaNY4RKxhShIi2KsT20fe61HWauTD0RS/HMRKz4wuxnYfWpCuurQptA0M9HuT3sCUTotBsfiaKBmdO/KySgVFkc8SJ84ProBzWlpU7JWznidu956pdmSP5W0VSmjwk2jXaNeySlTVaVt5RvXakaIJKTOBDshmAKUYbPbGrYvF3nq1VxwrQhYUU1lY6oI9tBKkhMtpvJF3v1RvxrGpK1qtShmUiOTNZJiEUpjZX7BexCq/Va5yhfl/lo+MIt58tGpseGmPxth2RJMvZLqRpJvKGVkeLkMQG4BgXP+7tJWXV3WFpYVeHKbMwViRFZ5uCk6aRpau6RmJ9R7P54uJiiTYlVnuABT1Us0Uknhm/FkF2Uz8UlqkE208VzZ1FR4ZlvE5yhN+c8a7NG+1cKHWklsJi14aJwexoJlvXcM/D4iwcFHc0ug46ExjGPsTJSjlexCkpjfboCeGTjIVqlLJHChQtPs8Jwj++RUczZ2Pt2a58XTIk4dLDl+sSxsTnsHVdwAer2LloWelqD9btsWNz2pWy6/AmO251szGIi80dQ9G9eqd0BQ4jRuWl3YENp3yqEmF37WNCyLz7i7wy5e+UFOcbe1bxxAOHkiZRJmeNEBDHl4W1xDXtvFWhdm9vJXcslGXCUQlec1z6CEWNMbJ7u1A4ka1RxkKhKL6ZnbdGh8/e09DHsB44th+RPnNg2I0gQvNZheI+EWmUHXjYiBVAlHBmlVgYjRL6soYd47gkUeXlRhCcYUkt+5g4P+y35qCQgm2ip8Ypfe6iYbc9JuGlLSGg1RTwByDFrTRC2stSJBUyjhvP8CKKxWzVslAka0UV467QKBXJ8O2Nh0OZcBnrMworErl4ykU8rbRg0MztixAPgM1zLkR9NRJhMOayoCiSClQVAnwMqIapelYvRiVU7hegOIeFOUINvhhbiCKHTZpi9zYC3t8r8vdG+Cek6D3nAhnO2inHA5plvi69oMsaNmtTjUm2Cp9xhMZa/H0hLuW6dlVacyJTvNEF0YYZ8QV8XcHn/dg9eEbAYn+/4BalyLmYy/s5qsxszgwRP0QuZmtAUWAoTmneGy4269n24pkhnomJiYmJiYmzw1kwKLuFP26FcG018EdFuE+iruVRJaEzSYyRHFMNY0SmtmhUk8QClTnYgyYUXvkiuTIOIZqloXnH5ZWzUsj8xjtXC3ixlRO19Hhv7fp6Cny1BbixFdfNfsQWpUrmhWv6jJVaDXlpcH5Hsyqki2SnU08gbRSNAzsy/OH1/r1xJHIPSRZbWR17jKcG3coRglFkMqrrv2x7h6sv01BgGt+NVaQExd13jXu7rJRVRf63JWWthSjq+N1N3/eybhKgRMwK02C0JWtUQGxC0Zlz88TsBhyiCieTEE8IC7tFLLlAaVzo0jVXkZex0szqn6BNJWX2WHIVd2CNpODN6ga0UWnx8BZkmU0852hX1jCTU1RwA2Etq0lgMIv+/A0NImcaKNjBFJ8sOjsthbCiKqYDYrQIHzRDPEgBitA7YgUvzmSWZ8nPbxNc2Lt7EC1iYT2OFaDUWdkldhGFDCDk+4qsIoz3lZD6GZyFCqPScnzHhTlZM9S7Fa7k0ucAcMrAU0oqUhUUs1O54GR5OjEe99Dz4na/jRAJRrWKy9p7Z3kF4dZs0rUgwm8sgsvFQ/oWnuFsGqnSg7mmcvzsal1CLYWmjiID1aGXBWDbNcQuw44QYbWLPHCySH7PNtEMx5OUiLVEe5cl2m+kWF7j7LYe4qZcxAdbhqBRGHF/IKr2Se2Q/bCYDMrExMTExMTE2eEsGJRr89Svd8Zdy1M4QiNRSF0emjIzhzk9cUJpA22UQGOFuPerEqWmLk/flhay5is0NN13FXh6jyfpHpBNkkgVeyQtjZ8rM5o1nWKkZoBGjkyNB3dcu87J3iMBlEsClSevqZZVlq8PmIuzmgyLQmM8vEyvtRa5N10kVuxR48/JJOx9QzftgK1n0p7rsAgXTZOigJsS15l3wmUV13NJkEnJq5wo70qJe45xz9I8EIKxQqzcJPNRmDLs2nMF4Js3JhwOrl/AkYkXLQIaZztzaJH2t2PumU6zLKV5I2cZuwbrxVguPK4LsJcEeiuH8Q+7EkUvKpm+Ugu9iE5YTPBhKe0XJs4PLMNQ6S7RxPLImSfllGZbD7i0R+XAyQw2MK7t5UrVUI5VeO+Zvx55WqU0WFRilS29tPWg8t1DrtLJSmcjH0aQLzcTNtN08oTvLkBbRtkrq5woQrvcvjOqzJm7ACJI2Og8pftVzJf0wrBTVKoixE8ekRKGhSgSPFeu7UQoFKHjJ2tKvgvFfkMJFx2h03RyZmMHt5SSDHuX0JpZRCNfbfHmssgEUUY2QRXOUfBvLC2ZHZCiO2PteZmiJ5o3ONnzeE5CM6roPKVV1jJHJDMDyvwaL1OuCczOPI2/2z4p2yNoFEeMfZ2wQDi9n0SVm3k4nIWD8oTd7OtdIyNZGHF2VHRBMvaQdPsQ0/LJwn6uCjUL0Uix2t9dUv6wrDGh9y5BrR+RoSPvRty0GIhd4gWxCA5YdixWsXHBFMlvMYGJ4GiGazvuOJYks2a6F56wpE1Qcnujq2b27cjEMSUpeiEIqm9d/YFjvNH6GfWtBy3pk3NbMttc9g2yezJVOhO1mMUTZ3svjlN5eP16G1FM2pHETormstag6F9DKLXz7th1zgqFWsnv/HhPKly2NILoyGoIF5Ni4EUux980+l5EhcWSRp+AFI2zodCO8FTboVRLEEefI7VsVgEDBw+JaVZTOdWuxXC0Iknek7L1MWbVSMq7bBnymjg/dJ/wgaw+I8HmbQ3SW3YdvuEMw7sR79iRLSmAcf/9WahNXpoZIm5UknApk0l5j8oXf5+WHeGACCtat2PZYu4WHW/cxkUc6RAOiDtbuygWHu8QU05YO+V7mLm7WiYpTqn5Eu4Kv02QvciQHel9chyvEse4+GInggt1kuwIBbe1Ee6UaqhxDRI931RKmwB37FRxjOsiNB9bKTYt/Ag5uW5/z/27vbRZGeOQYSz7Q1TDMLLbcO2zdjRbvEnOeYfG6UGEtgqdOHYetol+cgRcmP06QMLuMqeNrKHoWMhTLsAQtjgdUnQpFaRZzfWka3U8yxD1tHoTExMTExMTZ4ezYFDeJJ6QtIPIwyYUOiOHaN7Xw8vcFVE6p1I86SjXQ3im1Cildl2ro2U5MLqgmfd7AAfFeGFe4OWhgVdnOhSP2HabJaDe7B1HHSuMRRc0u4ZrGRzL432LQvCltSh9k5JM2kODv4dHPmhev3YPYSXD06lj96Z7bQFfeO3/2NXj1xuesJVR27bg555gL0MktGBVkMX3EIg3aty9RLeuJhYcogTbxkI0SvN2FRztuNvuNGJKVLNyrBVkkWTKoh6fEEvNEgrx1daBBbut/rTniooWTnrbzxUadcCqPVZRHp5blLGa7D2vS7Rd8KHYumSzPwCsdrJVpttDa0TYNr93knL5FlakvSMkPdGiS2k/7njEDui7v+09mLptBQ4Xcy1xrhCXCmgU3WQbAWJa4f4O7CIR0iVNNg4ErP6MRP190dLQDBenTrwCPZPlm7HFhwOFWEUPhg+RwK4qqTfkq9pNIXcttH7M8malVKF2LQ5mZCIna2FGfLXN0O4FBQTypHN/hxSxAypqy7skk3nhbUVGBqmdN2FzCfw4ZocbNekEdpvUGq68EMDG/okO3HXlXKRkweK2WAXd7aomA+xj0UqS7o5852un4B5yGYUFZyohkmR14vdWynE11Y/ctogkI7U0DnqpJiL7/Tx2hWfRLkZvrEuGu5iqulIWkYTmFacuDdcu8nkTsiGjShDaS5F6uJ+VUilqtg+Js3BQXOhINo3+OSqA2AO1h+ZupgvHy40xsVUBGsAmdPVOv8kv+T5vj9dxY6VLeVuBFmGgfOA9H4DLg+oU2RVz1NMzMpy77Ro/yXtlcOa2MLLGPB6cRmC7LQIOAa+THgolJaP2yAgfx524Ltju2u+nKfcxcmG4GCGqdKMo1VI2Foeaic1BC946Hay9dDbN+xSRCSZwdFOmlOZWLaJHlsfTBEuzF40IlG01AQCPH1PXgXr20uGlgz1vafWSIMVx9yz4dDY8LttEcNidAtUIf2UjCUHJmT/pYur7kIjDA+SJJ12GDgRy3JZFSjiJg46VK4QQoMd2ZdesyiqZ/BPnBw+7YGnQxUOMp4uO8VNKtc6C1fquLG3BpYdlPCRBmTMhyC7uNQfFnem9hL5FFGIhx93DlRtw9Ao7yk667gA3VXTT79lvBd0WWM2UKg+HJb7bkeana3FQSvVG7FdaOlk+4UIjXD1yBxGft3vCxrwQujtbpOHweUiVaMlQNI64Mfu1quLReNHGz6MC1z55Y4NnmsS5EIBY+DH2aNth403ZoqSD4rgto90R/hBoOCXMKT/vY8SU93lca5nLIpqd9iBSVKAZZkL+jO7QImAv34mqrdT1GqF3O1fR0z5sYxDj5g7xNRvb8Jk17NOuGqE4Jgpz6eZTy3YqWmbNh8Nclk1MTExMTEycHc6CQQnPuGjmDlrTPrfvkZRVvCatBAhCYNkTOUGlgR+nvHL32v49VPlIU3+EGLiw/d4x2v3qsIC9MaD2kwQoYNTY3/oiqTTAujU6f9skFGxZksukkpAbTCE1pDQpZ9jDZexFI1RD4MgTo06xstic8ts6tt27LGczwdUl2IljtSNE0aFTe55PdIzmVLAVzQQ9D79sKhE2AfSkgmDsIO8XgWMleTwqtmNS4OO0OtaDH5eDzfCVYe+ppNgaw6kjUUlp6ZJU6o3WRka8XW9ZcUaoUIFDEFa5KsnlipZVRXYWjWRF7ehWAaG3kjl8Tn+uuVphzQqEwx2GPV6Z2IikU1U1EhYnzg9X1nl2F8VuhqDKPjg7tixU3ovSpLJrtISIlXWVCic6CQkAI3ytiz33m6DbM77fKDZXMfWXWxGVe0wIpdlm79jFQlicPT1KdjC3k12XDHA0qvmOqZWRlTsSicIdHCxiNZnRtqGwEqp57deul6QayqcrFIufl70KN5xS+AuyI/Nx33HXGQ5joHthLTS0p4CTQIYXJIyUXfvdvleZCM5qP0WGRXwsFHn/iYpeSBxJkeIihRAv4aIFHvLrcb696Mr4ia1VlbalWm4LdWzKyrA63qQxdvl5tU95kJqLHNo5J6OTHaxF8hqiclU0n4+HxGRQJiYmJiYmJs4OZ8GgILRAKHMjOWPwi5dU7emxU+kFoKpRl+6txoU5PNtdJDVTosyKIhGTkcqDy0p49HLU/D96OVZGl2vGOredQgcl9AAg2MINLo30elk9RPyyrkAyphd6IpQtrVkR+gJUVHMjQUtKqVjRTfB+RtsmpbFW9sBYucRCI3cnmxCua+a5+ErhZs+SwZHkZToA9nMnTc0TzeQyX/nVNhGdshFVZ0pGKfKPOqw6GrRkebLfuztcE1sZu6uw7oh+P87KyS2F5kojhE5AJLCq5MpHFXtJRh5/k5MxirUDZSmds2AEjSRJgRYGxa6l5YqgUao+KjIJ0seFmAfbZmNX88AnzgvNGM9t39GL7Opiy1nv48VLKjerCHqUkm7RvybeDDpNwAzm2FlhTQ0jGcls9ncqatq2CQAOyYbSBM5zCFrmYnDL6/GGeysOkTN2AY6+P6OvWF4PMNju4LVJTmydn0vY4JJnoxRpE/E+3iCbmZZ6gkjaXCgTUHdwrNhv9g1vMJbYZRqOkg1MFzA2ionGrjHPe4VGE8Io2QYF89NS+GC85/ec90gMiQQMNKNHKeQlMrlXhSJ/saTu4dpYE9WqAJ6K0ynv0IJBWdfMGfT7uSBtNBV2S1WLBISzTYgy5EY5zr3kSVLY0rRfg+dP2+8/gkFRRUkZfSichYPiE/kY9Jjpk05anPrPm0Xl4bTpNX4HBrUVE0+RVvcE2LauEC9G7xpNkB65WvDiq8vxuzkqy9KyoZIqju4EuU4AJCjURSkTbr3Ko1C0ShSTTfFbMksf2ZV4uB2eNWXXwpmQpIXiFGRClycaY1O0vdTLJws7xoAJzYwQE8Be0UP58EZupkoYiCGQ5AYnnUh/+EUzqc9DW12QTiQQDuO6UgjLkXUs2/cWia0dSQ+u9pQ3aeGgYCGoVTMIcdGQsXHpmVDdGodWTCamp/rAINXtpYy/UbzsAJekOSqaK/bdrljsu9uBwsEOdlM0nVpWYHVKOo2XGwApFCtQE5Qnzg1R2dAoqHU9uX/+t0wKBUrIQdW7KaSDIhoOBoAQ8PKFQW+EWxcrBEWl49UFh8MfzoNmone/3bPDuR1rO2ok1Ko2HOwaLq3849A44uzrAly5g8INt/Bwkq8+NOyLFFq/rN9SDIy0JMtT6P74u1cl61eiIswJOy+Kl+vNQNjKXQRvsrhtahFlqENoicn3/m9VTenMhUOEckY8yj7Wk3s69lm2lwz5R5KslrmptrGQnAdCzkRGoiswbOaSpqicoT1/oJinqu5MhAc5B7/8mmEspNPRiGL+jSKj8jtzOiWNioMSw5LzN0iQzMPDYYZ4JiYmJiYmJs4OZ8GgHE1SmSmbP5FqrL69cRN1KWuSpdBKS/69ZcKQU3rSezipUdNdy5RbJrK9+OoSjxmDsro2hUgsR6Rn40Fnfm5UQS0TT7Np1fhZ2RyRZB0Gg1LqsuynrwRYkcm/rqjI6Z8PRYN73PdyaWsj8GWLzZ2YjCQ1ENZSFsneGuAuhfx7ePKLRnkij4OPMXDKglLiWknLeft1aSjZKhAqrG1jsOl/82WhOj3r+LZHuKZ7eeGh5YpvV+ym5AnhuB49jD/tS0d3HRTOVZoTKQtl6XBVy42QC3Gq+BbtE6JB2Y/x8LCOxDnuRNBCx49zFXRn3VijDFVAUaKddG62Pr/PLZ44I+y+qmwUrTQUCCogtHf2LBNdOZvLMefzFrLmIhHXE0kNIClFAG6HdiKsZnWWhUH+XLqyqZRS+JVCFbuGhMliT2sjWGeIUCAl9FDqHuUIfsEpYe7PKmsqJLP0CF9EqESTWRmvcG6fCft2fACP2e8HRoTRXfGVWjQAwZ2FoqnsURjHkMhPm9UiAxRYIqHfGCCg8NapFeOfMwgen1NUJexy3hHfSLaakeEvqrOQ2yFKSymUzMxjF8OAdenJ3gNFpiBtg9tzlXy+IkRPOV80oSwp5vw9oofF1oEyFJehwobFxljAOHgYiSka527esgNSQkfLs7ZhZ+GgRFfXZlUZ8DDCwHXQYUUHhUpYRIB40CMlueqVLPHART3+3oObXxvhjoUMHrk44NIdk5DCT2p+0FZ2LO8GuQEmaTCMjVOr4TUl3aWqwalRnYQityEds9HPwCdXD2Mk9Saa3S2ZNCpBrKgA/UDYS1fPo1OvezoP1oR51Pl7SOrIQPWYMOKTLuPGSOE7Z+5USgdkP08UP1BRYh0aDo504HjMYQJMK8HZwfKCuTgbC0cYbZceQljMGcJxgSjpWtogpANycg9Cal+j71MYdOYI1UmXkMrXli0NPLynrDiswatHV2kPH+rFyJOxA2Blp6Q5nL9kQvO6tXeUwoOJc4N3HO/A7vl0SHp68+o3Ln1elEKbZNPMDYhKkZVjxuxbL3y8O8O5kEHP8MMRAtls0g2TJREaEmqZb+fn3RRsOk+XS8PSsopmbL/HNrdCEAsbN7RYUK6+gGoKcY/8GFlpkdulyKpMKDI8ojx6oiEXcECP0NYGxubHqLOwv2NEJe+CsMAdvhLA9a7lXELXsVjMdgF1No1cOhSbhhQBBfIa9vvYL/MgYh/AmCNCb4kyz6YTSif6SLDMuQdZ+cdh0zQcoL1qZJXQ/4lv4JpM0HJCbsfqnFU2KZfiX2gAQL7AetLuT/L1mCg0th4WM8QzMTExMTExcXY4CwbF9Ura0nAwauvikJ4+hY5Fh1jyk2g2ftPTQm0AI3E16ry5Rcq615Rrl2BrLtohtAwOjUMm2ApJBsXm1L5SMCfuxV5QUmuNEd0tM5KiQdeqap4LEYi89t4pO0ltFFAwKCGNQohQyeje5GOoWFaPKY0fhxXBP5MAYlzk0StckCsEJg0q8XDnkPSvVyztSdMyZzKga5vcQrKCCiVrOwmtk6oEl5JvKDnF9gurROY5LhGyzr4eazcEtZCatg45GMvTGM21913F81aCioQi5Kz91ghlepeIYPeGieVaowOxSOjoAATyZMHYXiH2fG097503EARTPFO65zNx8cgSDIqvpHdkMrXI/UN5E2cCo8UEGSYYNL795rahoXTApmyOp4SLiA74apuDjVHNar3VW3UQIpy0aCsrzT1tzW7VRYqIMx4ao7msvq/WSTIZtXEkSvawr9nN8rYzdqOLLxS4sn14zro2ioTfISSb4QXAEuiLTcgMTMIhWAFnewh3bV/Nvw9E6F5VrZneUH+tHeGzf6ixryphkFmQSq9eVAGCRYWtTEFOts9A0Rj7CBEjGQTXbNkzOoeOHux9BI00G/wxqEiiZEXQHsfX1LABge+ZL0QkviuS6sI1zSCKSTifySp6r/ejTe5jb0hzvBoalDb7Zo9tW4xRyyRpUnBrT9rfM8FZOCheTrmL4NZfdu3RQ8BFiJQUniLOmiZbCWkFouoFQV31rlFx4/G6w9JwaTGRq8MFLq/uAAAuri5ionVxLJWsphFVHL2U1SfULmi7Hz3F8F38rWdbDaws2Iwaq6VrSf8RLs1ZWhpnR1TxsrkeBmAnjVJDVYLY7Qx6cCEcb27G50sLqfnVyh632x1vuh79gnjNfBRCx3KvRHV5+FUlZJ393h00cy5633FzTBGpcTuyXHhZGhYzko0oQmK7V+70DM8tjbBaH5qDOWA3xzfizU+Y47UyDhY0VxndogGAlvHy7G2HP+bDgDktmZVYXsy1csPlI6Nya4/OpGmMhAnd5fpVQ9zKcxAEiP5R0ve46Rutdl8Y1LOXj8fn+61GKC46M1OWRa4LnlQpMHE+0Eq3+99KwMAXF5RsP6SW5YOzss9tCiTCkSIUtmyPkIPi0t83Fdza9nd3jcnL1ysXLSc2SEoPeN8qJsowJjTaejxmvb1ubglvtgP0rePAT4zt1obD5cjXE7NZIpo5N5RCkhlSzVwMBkeoY+SgeI6H52dISCIszNHHyG3PtfSshIKALTTVKEd/89YmIrESWjhtJJ04IANDBNK7S9s7elInmlL2IIRD51OPKsX17iKRp+fn1KFYvHyaJb7bNRciIlnX5U9Jo+FIAel0dK4VXumoriXEHuH4UnlTi4dquk2O56m74l+oFUEu4V+f9pD1J86cRH72DsoM8UxMTExMTEycHc6CQTkc0isML7NrrED3wqBEknHm4IwuliVDGxgrDdeWaJIVKkWvGOpywES48D8TBU3rnvp2UlEkkUkfYZ/GkVGvt0XEJ8S3NLKfRFMQjZAVHr5NRybVEVEKIMUhU5hsCDRZJ+guePNNsjwAcHPcc/+iUZmT3ZJLCpXmgDZGNO7yjPqdSyhGKcTg3C8+lATAC+ZYCdz6WEKyOZVStgtgLdn7GeYIfQSiWA0cfLW1vgj75pLiPT6HUohLsa3oGqUWC0MiXORNhbtKhtdKYmqEHSkz9od4gIehUp8lEul6SmCT5oor+hauFNo7esjVG5cmXhFO8uPZedGkUM4W4mGXrMkDIVlTX2gSp5aH5qOEXRi3HtbwRHWUShDiCA1lc1GJUDGTRkbsvmk2MbWquIslk/G32x07nKXO7aN6kvzsc+Ut3KJTMLHm+0AUybnB9iDjG1V+Pqp5WrGLHZlP1BfTAAAgAElEQVTYugC0DWtxa6N4cXHAo5djirok4NobGnq1IRHUjUehBBiZOEr+Qoqk0JqOxOBxvuNYx6LksSDfzRCFQzlvSiZLiUbHdOS4kSIMeit6XXEqqpm8qxl20cJEBLemiMrDBa1oubitJKzRl4RjQq8MisY2dMqKZMng+KHZyqO2c6lbuV3ftUe7ERvxk89BCI2t1hoOV8/O1ZgMysTExMTExMTZ4SwYFM+NqOmLWnQzXGoXGAlO45fTmm6l0xUmi554X17q6fkKfHnAsnrOBsUqW7pgt+N6AtaxqOLtmp54KANeruhWw7vtGeOlUtYWiq/CIenMKJW3oQ3AWRpMuTqPmCoIt7Hy0lihbDtw7JkzA4wkN9da6L0XCsRWF5TjAqJs9V1yZqLUlTJhjDR3FaXJSzYDXInRPX/I6Kijln0Jwe9zJ8lk0EJM+e+LBqkA8oTfZYkkW1AP5d3OGdcn8nvL0YiNgFS5hJ9/rry0tCkItomQMfsSI1bS0AkIxWPNfIQag/VVTyMNXRkpDCCBYkDZmKmuo9kaYqQmzhW1pN6VPkdJ+2l+A0nl6jLh8I4W1ta3p3xfiChaNKTKNEXTv5W0SMLnitzL2MEM7zXJzHHceAc0G1Pu6Nko1NkFlaInImFXlTLR19nmmujZVbN5Z0nGr/I+niOydcVj6/jOateysmBxhW5OlluSXsXR3vPRHNZZD+S7ZT+XlkUXrVEqopbiBTFDs6HklYQ0PKU0QmEUClkSc9NQUTXmpWXeRsxwokWJO7VkhjTGKXPDpbSYKBltH8+mWpRms6FhVYnl00uxc8wPIiqh1RaW1JRip/Z4mnuUli8l0TdaLiwNF6sVvCwHXFlu38PiLBwUKS9ydD1khY+W5RiOF1xykowHXSVFwFxThShmhs6ES+PZX3JnJHVdXV1GcqN2xV1PiL09hoPiE/5eEssEmeRVpQmad6NVKg6K/Y0oHiJQ0p6jioZO9tUaFy2YfKj8mMfeQ2p/3wRqmgfSAbWsOJ+810a4tdiT9EIfhsWsL4/tBMDxmHRnfjU7QoM0Qg5uuI4ikUVf22K607IoBzW8UErhi6Y0tr/gPfPZcLNL3OjdSmB6O2a1A41kPGAYqc0MuFcfLQSINyIpjk9m5xcCs4hMRbWOJN3ZJfUmQJpZ6i7u1gnsHgg4HNiQHN80+0cRxU0XSCZPemK1VNocJ7LnE+cG96BzMhgRap/c7OMSyqN8FNBaC42OJWZUTgcCWcXjMxRRFR2UEKjUQ/b38jDCtis2M3YH5gxbeNhFKTqJd90jOZu6O8jZyoOATNgVicWQ245Gqbd07BIhlhaXlSHb0X7D7cCOxz1UprnPN3V3kigFLKPZO4F1vNu7Ukj475BYYERvGZTwGDdoVMN4EYIg+72nffLXToor0oWjAAKqGQZ3XRkCDhYS20oUffFjturWpB2pjk8KknCxE7lQRYTpS2f3exwnwMLlNWwk+XkkCBenRMviO/eWc1SpYcyWK42wWMFJO1g17OUl7lxcARgOCrdybQ+BGeKZmJiYmJiYODucBYPi+htM6S0OT318vpSSME2X9oSJiNWmN2YaQgFjv0Vf5bHL4dXdOVzgCdO8eLzf4s3dk017JkO5Z1m67yrRPSEpYNvT9z4cEFlxfk5d0/NlKqEM4hNp/vGTQ6WQYN1+gVBLvd03XB+9RFY9RxYqZXUWyXPZMVXgoZUc2JF85xfZg+LcpTA6rjxI2RF6HMfr9H2bQl9TEtGh9IhcRXGp7QdRJAAuMcipWaAquN2dfjZmaZUoT1x4AdnzwYxglzQ4bYmyx7pCyFBMXutQSkwadvwpw1FS2BQdfQjGPkJlOFd3KAl8W89VCUsm3/qquOsGr0X1lZ1CQ7OHSjfuifND3JsibaCQZAZLknal892o3DDifVjDHrQI25BqMitegsvZUqNLlpruKxWdpNTHcA0kXTQlyl03hFvIx4tmCMfVWJfG8V60omx6VAHEyvntfVuYQrm56kc5RdiYom6/tVMmYvGk3Wh7rjg6HdMYh5J4CoxrXn0KU8HRrvtWJY7nCeoNyfaqlmTmwlQkSZkMSoRvodGJeiQV5/VQMCB5qVT25sc4TTa18ZZMrO9aQuYW+mrcI2y4cLJeVEvEnVzTVPN2uQJBYer85MYljhrlitIEsfZDrOEyZ4iJNYo9lmXBlZWb37nzKADgkUcfxZ07Y65trWHbn50U9lk4KCc8Tgk5RB5CxGJKjIwGSTU2yUnO7+YmOeHdIcIjnC82MJLevWPudtzHzQVwW0IZK6XzIMVpcIPk53e87dG/gtZ8DH0SlL1Qc6yhu6GNsJjYS+SCQEOH5UaBW//ddEXuXu+4dml3Uqwuga+pFxNzMzLbm4r4dgifKUr+ROZXUMs4cQwrJeu4lxfJu5iOapsS4ikiPeP4ehLSiPNqJRfczmWl0kdJNbog9zDYS2i2tMagJc97P3pYJTUVPCwIkUKNOs3MJxUMkVtTxIv8fjfWoNhFNa8tno00FmhUBOgkrs/Hc20clOzdo6TYSlR8FEqa0iGbOD/4gkWp2HxtUSlSxRBrrpzbhLZI/M07ey/EI28MACRbgPhCZsi1+/uuoUHUmOLd9OpH0hROlK5Q0wvxyaZxg9o0tqPHd92RWdcG7S70JHHc4y7YTTjz6NfSCBdWQbcWpzqGRbKiB61FWJiVI/fENxOldKyQHesj/CKZeyhdwknatMd8sEYo13IJMd6nxSqZtLzv2c2khKBLzlm0HQPCKclZKCEo3am5uCpuDxQp5KaZqySCCLm7M6RIu9xBMWFHyKxU5ohKmXvykLVaMB1ogLsvkNJx85wfbhq6NL5TBkCc+YuubXK4uMBjj74IAPCSF78EAPDYoy/C5dXIO6FGsUh8WEyrNzExMTExMXF2OAsGpa5Ak0dIz7N7FyboSe6Qf7lRywQkX+V3wZV5eC9eGy4jsctDQR3bHvGR0B/YZA8v1hvOgTi8SUbRLinetyfWamkMGPljRbSFgPDu29qiqshr6W/3DU/c2KpEJMIDt8ag3GwpSU9LZrRL10jsdBFCIcLlwUMKHKusTPiVCJPxuODxeyuS3SUTODqSUspVh4fLGfpqRMF3egWW6L10qodiKpcYu4qMe9ZcjbgPvoMgdm927oh+oJTqwl087NNS9hkoWb+5WvNkQyA1bCLUQ6e6NREiEkqWJSp+KH5ncFRxaYR4JNgaLgwJiEtIKanQUCDlDH1OnB+cgj+KYjNbdWDGevAV/wBTPj8bUgV6ZcWlfct/Qgi3kivc6LQboc2O7t0Gd8KFMy/MwRTcdGdbNJiXXXiEbAC0xbspr/Es7qJD2r5AUeyBJgPSRaM7t9u8vhCaV9BxhjGjr2vv0aJkWRou1nw7twiVlJBpsJeFKfCKxg4cm4WYNNkcqKLRPcx06YSn2tGLmjdgbI0fViTC3dGQdhju8StlYn/n3EfYHlTG/MnvrSJtGUCp+aTJ1sZjAC2sbjYhjMg853GVcpxRf5YhoPJdsirWrEqVE7Yv5sHStdivdVkarowhefGLHsM7vsNgTl7y4ncAADx651Es3om2cSpkPyQmgzIxMTExMTFxdjgLBkU94FbKXhWIVe7mSVOMyPhhpmhMtBBHLkasDg7AI7aquFo5vN89SugQ7b17a9lPpecKtpf8DK/zb0jvOfrrHBp69yTWDvePm6+mG4PJk7lauM+8MA62gnDV2yduBXdvj2NfWw8aJvr7lLIxKEEk47KeEOZx2dFAi2KMktkxpkWyqh3UIsJJpc9R5KsQh94DkUYyn6eb7S0TfhdkUp03xxPN3g1jDC1+rpIqk84utGRQhvKDryQtrqya5YGd4FK0TQlkK1hbIKG1jM8/uXDOYqkh5cjB8jij4c0FgSxZHJ+XVVDo3WiWfqLG0n3cBWJJCjunGqUQZ2M2r6UmBi/+sLdg6CbOD3wzHrY7RRoBe8bwd88baWlwmyKSSTcCLqLhk20uHZsnoLNCdTwXZIqxB81VOq9rNACEDPYYyM9XorCPzKlK6wqnxBS9twiCzeyD27wORTe7yJrvPIBIbHUWCa2V5NvU1o0em30PVuLQKBqzNs4+Mj4dNCC0T1bO6/G8vK0rjp6sr1muuzBw0fwYY3tV4NLnFmrx7vprNXqCOoNTkoqjRDf72DA0WIcTQSP4sTTkCBhPJj8JySyBEHIUXOrUI+9E0840LSXFYdcz0iCFQanC01S2Rx42xitLQEpOM/j/Z+/temQ5ciVBI90js6qOdLt7B4sF9v//tgVmB/dOt6RzqjIinNwHdxqZ0n0YaTFAziD4oDqqyo/4cne60WjGObhzbRX4Qqbf7m/4+8+TEPuPf/wb/u3fvq3frzVEUqNLVcm7/LPxEglKjM3mCUWaTsgUSHKmtiSZjZHJzLYpvq1SyW0Rv26ai79uubjS0XJkaUHNEeigulLWOW7beQDHIpw95MRtHeNbn51B5oIfS6Z57El00tscld+2hnedrx3wLAe5p3suc4505YQdOJe8c2h9oCmJdLM0EIMmHyQJ/RdJLYQT4z8hruqTeE8AuWqNA/DkQj04eJrm5BZtK4pi+gcjoSyk56sbqQNMGNWMJSmlxgMKvJgGWTHS1R3jiL8Li4HHcFhI8AfBD5pkZRdK3NOleThdiaGNJbMgEsJOlhh3d86eDUqSYYho3RvQgkA4Ti5A9yVMY9gIv5/D6Ezr0yZ0/vvMBIkkylYmtCteLh4h7V46u+xMQ80gQQoEt7inJ2gwii7wtaDui4R4WG7MrAzSSLx3DLqeb11wrGdpuOHzmMlMlK2lSW5qBCQs7jY3Qs3OJ8O7/Yhy0OrMuQPHkS7w8dw7pHSzrJJK71yMuldifY6LzxBna4qxCLUfLUs4dXFn5587Hmup/jqj3G2wFt2EqTW1aZJYQwhOoEni11b0PGKNybK1Q7mpkBjvSl08KJLsPlsPfjc2S/m3FeIrq02apWQvDtfl8cHJuTI/WyU7cpjoQpjMtNyrFfpBfmZHlkwUjmPs6zWlbB1UhKacQ6ll1Rrayvje3zbc77PE0/sdcWSRHJs/AMzPl13/yCT+H4yrxHPFFVdcccUVV7xcvASCcovE1oyZ/ClZ9nCyFNO0zz1brrY2DbGAbI0zdxzRtuotW0kR5CgrEFcau92a4Ea8cmXhhyXk76k4qOvA7RAcCwK1XSG06p6/u2tnK6zjIDKkPmirHRCtqOK+yEt2jkkiRWa5AqfOyVStjbavNFIkzGfCMpVJpR2v6x0sTCyYT6Kdt2cbcbggIncQk/QU7+M/SDE9JXcwrdw7ljoq2dkEGmUV+jnmzkw0jc7i5xhGZKe11E0YYxCyDeQGnqZrsGxVPgJzPi3VfDdwV9rZC77xwHbLduBNW+qv9IBdnSqan34Q6v5pqSuqKH7b567i8JHt5pr27WfsRE5Lcq1YomZXvFzYbd6nHy135E2QOijcPVbCY24qN6R55mO95zAjkuBI/ZxA2HZxiEQbsQG6jPR8EPkISGAv29eGNKqj8dso+iwGlqtjN/x4OMvCAkdwH0WViHYqtwI/Fiq8mbBsHHOxa8tWaXOMGA8tj/cMhEVAy4yuylbm36j0bXgnyi58v0tqD32FfosA93WOtwTP2ZzgpWxjpfxGUipK2z//M4+Z88d67ZAKGOTaEmiQFxmG2XjAD6OOV6rL5pfpEwWiloIScbL8qPU61IPJMpoDCDpD0WnxlOlFW/NbWsI0fCzJ+tu2cf4bJlgAG59JbcbrdeyD8+6fjZdIUALpFJSebEueAjbeWSYat654i8WiOFkGVHqMQT5CQyM7Opjeh52E0UwbF98mA+8t2Mex2u0YS19D94ZOeeVIHpRckNNA3oitm/VDDsjxNb8XB/YQJFJQz4NkdmQhUSWl0/tKrKR5ckkcZJtDLJn+IRQ3lANNS9fT01JXBnVoJpml9wb5FShQpOa/IwZyxtUiQhVdPLWWKgD/bmWyiO8yAfvtHembkYPSmNSU8Tk5Lrw28b3PE3IO4HXeDvrviFg5h3XdNUtumzjfV12v0+HT0yfJhfVidgLAUoZ8GBejrYMlL+8lER7JBVB7iaF6xX8SH2t+Ojyf0d7LOAtug0vqY7TE61tzCjJGh95AjkEp3LvUYOpZ+oQS2h9SOANRiulKobfNk3cRi8bp9lQSCKG3+Pl45IZj66Vk0XJx9bCbcMFXCEmKQvU5S9s0rTxUW3JUHBy79AWS5HI018KZWdetC84ocZcOut0BXYlcZy1GYHENHelxxvNOD6FZtol1aF3iVkRCJRKLuUlULvCR7GSpZdTjzUNh1PREscTvUPhBRdCxofjPxed7isaJ5DMX+xnz/N6yTK7jCdG18oK1ELatY1sbq22VqFtvkJWd+twZrvd5dlstzxdtWXqXBmw9N8N/Jq5t2RVXXHHFFVdc8XLxGtsykjoblRgVoK5GGP35EEr9vndl778gNTpGEHpE0cLlESmB/jkmgWy3g7udZskgdzT4whW3Lb/ffUKR40zQLrJR15EZLZzktGCCfx4Ok9gNj8wsNfVTHqWqZAsi3c+T8s2BvG2tlDwgqUiINDRkv78k0iFl95+98vWzEpIWOBpto0t2XtwvKR0SybfVz03UgI7U5ulKXCDQIghcNG68qBsaicCpjugkobklCXY+NXzR+t6UvVbJLi/xyOiNBD4bKMqWI/5KdE1alqwqZ5W7EnNsZ553IGhf6346BD+OpVh8pn7Lz1C0nl0W8xorFYXHyM6KK14w1q25nflge096I8foKDvjVkqmxUojoH0t40I0x38067wdjaWFVhAUUeBt7VbfdO52h2o6Vg5LHafoRhyOqORaQSRjQLabZzdgF7QeCErOhXEsXiBRc8tGhvVcv98ay5WuOZEYypwR1/V3qGvMm4kSSBmHzwXsP1haIFW2TKSgmuvdImkxIs454xGf2gwaY1TKsulOFfKneTcO3Ay8ka1cK9GnzwCCJFvu/7pGUSruIlR6ZRkfSbidmk75b2DeCgIdKErZkLI2lDdFF2xBjoXHqtgfPDH48h4QPSGrxOjhLm0a/pHQfsPb7Q1/JS4E5YorrrjiiiuueLl4CQTlvrLrIcpa66aObe1y3xcZdRzKtq+3m7C9c5hQYTF2oG+tE2053LGv1rvPQCdGquZtfiL0Rk+9YSwDrJ9X1ve2vXN3/0O/kscwosV2UCNDxJAlvdhVgJoGY/hsR8Qi8oYfQpC9RprEDc923eCq1PYvlzSaOkbpl19p51YKnC7ZjkbTQM9dRaGo4Dwdz/uLVZsu/09ZjtL6G9n/cP9DHbuSTbwcl4pwV0limCM1CcxJFq3KrVSP9aLo6tUHaR2nObYgsWpqntCbRIRE4HPkvYt7YONMY8KWxDFtmjBKKSqH9k01JzslCIYgMnUTI6nuOBwhG9vCm6k3WtmP00hcvOL14sdUGECz5GG5gbvwJ+8+js0kT56W4005Np8JjbELDtDljoI4ehLQRY08gOB6CIDPM8dWHGToCj1cSGKFJ+kzyLBvPTkZ04M1UVd6wpArMvBxL+IjwT1Zgia3TcnvmjpA0ZaaZn35M0kTCudcFd/ZBImKFG6NeVVqqQjKQmsKhyQlF4rOSZFc5VGpFx0UeQaZAjkp30nV7JHzU3JoUp9qwHBarEmDx5W6NUVdFkI0g15Bnu3RFWV6UiWIR8qzfdmQXnX6NDFX5HrdG6oFA/2WTQLbekCattKYseY6Ec5p97cb3t5u+CvxEglKLORNW0KYXfC+fv+xSi1DFbYG8NZBJ94556fuBQB0tNRM8XM6xgK86GrCu3jiTK0BVzzWa+8rAfkYd2xraphjP8Q04v2D5Qt3zw6WQuqko+4YCZm5EFo9QxhoOBTRSTIlhYFkUneV7NaBoa1j0JHljegOuSk4eE7kAOIcqNnhIgUefBwlGSkPP+ewrJpQzr0SsMwdZ3b6z7/n3D01acrn1mRlfr7D1nnZ8FLCWa9rmVjlkJo/85Ux0BxhhGbl1ZHIaku9iHH67Igox2StwKkDdJiFpYFfJITeFOdKJM0KXBvwOLLEVJOwr/rMRIlTlWWoU6rdwxWvFmGYuUuOJz2dm5ZYmHyyLwGs53bN+2M4tYu4CKo8C2mlOTeAqRl18MF3aOnoiV9Hp9t5DpwhBJj9OuwG3Dy7WeBlbPBZzFFlZtQagsZ8iFKzNbyHPtRwHCS+52Yx3EyHpfjh1qWsqpk85JySXTS0iygWIvAsWdWycXymiGYpA7UgFJ9V5h9IukdLEOwNaVb4PMukXH4cq6cBYCHR1olKOZkOaAhBuUFkdfytl6qX0nmZYzn/SZLxa5r0dCX5HOaC76UcHtYGjsENpQ/QZFVWUnJrDR/3eW//7eMnfPuY4mzb/c6NW1vr1XbfcLvN177d32mK+2fjKvFcccUVV1xxxRUvF6+BoBC6SxLQvSneVzYW9t3ehG2zs11z9dtLQnrRGXwOy356O2lQ1ZhlZ2lhaMPgjn9PyG0pLR7ng5n+3769U/79x6/z7/+xOx7n/N0Bw0aJ+5VFa7Y3A8UwTpIoF9fASyb/tineVsYasK3BqY44pisVgEkKDhVU8lfNaCMgkrv0zK9Tf8NqG3KvOiT5jsj6BUVJsfTrs+0aqYLKA5REyuZnxn3E7/DIdS2oQ6DFrzB3Tmkx5k9oDyHOcix7kVf8vT5LFylISJZdwkittU6y8yQCx/k68LtdmFu2eIsj20uj1ANB9HKflhbkW3fKSkvZNWslfAfGf8XLxc9v855+PRJRmMZqMwJwmGqkq9ShoMbRo9Q8457/QTi49q0COFVpNqgAtkInjbkkkPljHyR9iwpLLInEZiv/HOjr94WInkLcKWFukGIguuYRKR8MJ2LNMupj4DwSiXjfAkFp2b5M5LmMN08kNUsaicQqhOijIBFe6l8V1NYtW4oTtClozFMJJxBPeyq5xfxWjQGjxHRaGrq6p6ZKiEdN9H59UympCeSpXBMfkAhHKSsHmiP5/XWG0PJ/ddp/PsOYj4O0nPIKDQ19PczRbvz+/oa393cAwM8//4SfPj7ma7eO+9v8/ft2XweQbd0qDXb8tfnrJRKUSBoaDD0EuDwHUi811dD9eOxG3oaq8b6NEUJXI/UvXOiBEtoS5uUGQov3gQFLcyJU6H/oJ35eN+n/+vt/QWszafh/xn8DAPzH4wGNEpMq7iGFv/rHT83uELin62/L5y2aSqY4UrCjk0l9C56OOz6X/P3XY3ARlJaQbFwXO52L7xQimn/n9GH5cB/ufJIVWSPlgj8/ZJ2CJ5+F/fbpBiqWpRByazy/t5UJYHgdNOC/4nqKOoI0H4JoGJIQKcoAlUyimDi50aZg2GACcAvxtL4VLBu8np06KOnTJG5k7A+kxkKw7E8IWkjou1Po6ivuUdE0MHHs61g+eufvA4o/PLuymkoKx13xchFl2O2cySYA9E0I89McWJybly4OW/PAzYWr2xYlj01xrEnh63TEnOD3+CyFH/ms1U6LMaLMaPzZJUo8muVsljTSx2bqIcXmYL6socwZ8BSNVCV3jx5Wnh2TKAl9LNjHPrDvK0nbGt6XdLq0ImQWp2il68SKuGMRh+RvJBOz+efnclAtQVc6Fz/SygSFPO7amVjnwqAPiDiTtPjY4QaJFpaSWPnSzzIXCu9Nu5EtDoLH/bQRisspoL+TlqyjrmVl77kuhZdFpiYJ/rtS2byfElYxfcPHfXIwf/o2Szkf397x8fNMSm4fb2iLV7Ld3vDx7WcAwPvibbolQPA4Hixn/9m4SjxXXHHFFVdcccXLxUsgKJXsRbOhA5TdDRiwtyRCfcG4Q2gtYfQ9nHrd0nHS01WzuuOxFOIJZw4TdFvmbmvrfGxONvpPt3f8/DGzxc+vqQ7777/9RhY7+o0ISmT0h0iShNyoFqgAyVjGLYpQpvk4DeGkp28JVcYu+7GXTiRNuJVupsNx38r5lm4XYLL4LV4ruUORs+6osuRA3YTi4En/LS3UMS8EK6po5j1Sf96t8J1EL4VkaXcJMniS9cyfNgXPcPjvykWioENgKfHQJdqdMK5rQt2BqOtIPYsptJg7slDPoYpiIeEaUuExnlOHsjTWgSwFqiYcH06ySA0JgZK4eMXrxcjHK0ses6YJ4He73bjPyC4aq5vctV0+hrEhwK2gAwXZFBqznThiF38o9keWkwHgpie2/rE+P8chx+5WEE1zPotUQMWzyFGWWtP9OyYwg8EWk7cjTQqju8NtZMmjNdzeVlec1ikhy52Fkw7TvF7zSJxzWmuSGkJIBCIvW5Z1LC4EEhXRvFzz97QjSbJ/oLoKYYPG7LV4/i4raPVU+15/DlsS11ybynQ1q8K/K9e4p1aVGk5/fqYUpZwt9Y1xInhCm58j18f435ifmoKWL/eFNr/d34iQbNuGtioE2/2O+9v8/W2VeMZ50gTWJUngfzZeIkGhYFpZfPcB9AWXf26fAICubzjXZP957hzsgo6UOV6eFDaQZXtBKO2Sb4DOG3NgFK+JwgNYE0DzO45JN8E///Ubvr1NyOvbt2k3/e3jHeP7PMZbv7Hu8d9//XUeiwBv7yGff+I4wkVUoT5hMpcYqMLyyHkMmKzXtoCOO/LBMta3YcpSRyQSqgJfLa7qKZtPiWPJVjIvAxBaShmsfz5PvvG4Ue7Mq1CSkFOxRdJkzjxhDEsXgZbnO7JtoLThlTIRHadPSoOLKo/bPAWYolNJxXGjKNvGexvHf55ZImqly4J8mpGTs7SctMWVCwwRfAVk3c+mA20JGd09zltTxM+NB7GbYT8yEQRmiSAky82Ukt5XvF484t6djiMk66UwGVJP/cmCwUqCG49+tPuOwzjMGxQa9hVnbKQMI548Mewcr4Jz8eHCvbc3xdmyJBF+UynyWNuLtFQ813vcYFEaN4eF15gJvcSy9DnI2dKh3KiwnbcJ3j9Wd+S90wXZoZFAWScAACAASURBVJlUFIkBJvfiKdjIvV5uVBSgj9tM7HNe+310qev4H//l7qQScFMmDcF80/Jq0eTMREeji2DUwnUpE8X1rLL42W2aHmPcLJYkTyCl9FQ32sl3qXMw/rN/x+dq6Woq3VMsC45BLmY4v9swumlr6U5Sn4nnfO1cr8xPRGtrbxulMf5sXNuyK6644oorrrji5eIlEJRxRNeMkLwIOH4sp0v9Whmkde5GHkdCkacZZJEIDy+s60ASCvSeuWTVK7EU/9F0SY7M9RgH/rXKLrfW8NOPCZd+Pn7MTxpOZMd8QDykzY/1+YLmocUB3O4LGusNPXYjpfoS2ibn1qCr1nFfcJpqw21dgy876X45WiKUsWlpLvB17ZoY7st1tfcg4YJE4n13yu7LljsqCrmJpuvwbNmZX7JQJpVCmEWa8qXkSyI8bk7067Qkx2XzfylvSGolBA7yOAd3lKrp8CnmiXbQB9QprW14ZtrPw084tlnKXYNoUUKoUtCUifoligMA0hVtMb7dAInunyC2NcWpq7NsGPbFwr7LnR0IfE4tLRO89Jhd8XrBeaQ7S4Nnqdvw+XnqgMm/a0/EcawOl2FeSkP5LEQ3zICl26xuiNFhNmgTERoeuzSSFLsOiMSOeL7MjsZNdN8aCdkhkGjmvys95FyaZcg4V+W8K+6llDH/3pvivoixb1sipeYKD4L5kcKJQbRUNZ7X7qz54qZlnPK4/pMuQhSNGZGciyiylu8Z8BTWXO8VbJxznqw61Dh5B4KiYnx/1Z/qnFOfuawEwYuxabyiiTzNhYmgBGqSa9vTZ5UviN+JgMfatf9BZ9IlEafTcn76OqYS4bZv+Djv61iN99QhOM5A2qOM5Zz8t7b95RL1haBcccUVV1xxxRUvF6+BoFhk+sB9GVy5Az8WV8OXk17zwYxqP4xk0mElO43dKqTsdv9Yh6x7UoMhcrWbKqX3qa4owB7E1DGwnxMZsfVzGNJuHA5ZO5cWtBOk/fXoio/b6i/vSZYiz+J3ZKwgpLXVa6umuEmYgaV2gA/hDqNFDdiVderTjTVB9uiL5C7dE8WBpKxzGC6qKI/FNa4ZYHu+f8T9gDH1JbFVs9/fzJKLoSn5DcudQGGx5c6olqhZ1s9avZvwHJP85ug9UCSl4i/t1AsBUETBnmYaK9qT/ku81uDJneL3Ox7b2gmfDl/chHh/b4PkugbgFrLVqmidxe75+YeTwPx7m/QrXivu98X1ALCGAw6A2iDkVJz5zAiMhOutjg1yQWTuzjGf1UA3TzqwCfrS6nnrPZ8xObG3heDGg9mQqAocv/MBXVwOElI4zkdRFa278KQuJIEzBvzWWuqRWDYqkFjbG3Wtbk2JHFWZjABIRJLnIJoy74EuKHK+F6/6rpZzPsd2HmP9F3l1ljwaKSaqxFD8TEXgJkRLDEnkreqxg2iM8Xi9HGFp0eDEZsXwtaImtE5B4fHWOYmRJP/KUeH9KmjLWfQdogmhasG4C9ekWO++zgOfywbmzU/0db2aGbmjcS2aaF5jzwrHn42XSFAa9b0dB0lXRqGXWMzOkbDnMOMAEncSwt5akK6yE6P6yGSveoUtJ0AIADfZcGuhaTL/vrUOW4P9728f+GmJ0gwKwf1K8q0Wh05fjGaBw8MXQ4CtxYSWbsTCSUMhcV6D6y1G1quwrYntvXe0AvW5JSA5L6zQjfN4GJ0oV+VsThrrpVsD+sZ6TGqmxDgflkzsliSwqPTsQ3CU+xTwcEi7d03pfxXw3qLlQ5gEwnzQrQzrOJaYmOffkeU1y0mAnTWastWT5rYWhfX+AaODNpowk+TwHl5GiWZXU2GkOW+SwCU6wE4cq5tiRC0S6am03TvtC1RBh9h4QMeRujJd0+vkitcLur42oEUDDYR6IuwM8yREKhzR2CfmXAxi3G1dWTo0M5LdI51vItz0dM2xoZKaSW3Lxf1zjXkzJdk0xlXXLFP5GNz4hUXETEpylayCavSXWRuZ273hHm7HOEsHSXxWT/uOliUeOIoFBy9hJihFqj7+3EVJjJ2XOpL8Uh7LfK9oixgTskgI3Qv13/WJIAwAbobBY00dJjvz3p1nbBaViY+MTD6jNfHQDSfJ+padQiqrXJfNBQ05R8+veU68ysnPC+b5z/nqTAzqRv38OmEhQLZl8igrW3Et87GFMKjR0+7H1yc0iu5D6RUWiRusnrdj22LG/XNxlXiuuOKKK6644oqXi9dAUEJNUIFjEXIMjm2VQj4WcbaLcLc8vPS1uyUcvj5TRJ+0Rdiqzp25sZUMSAIVpLSorp3It/sN96Vm+3/8/BO+/TRJsr+slqrPc+cufSvttrZ209NMMCFBFOOuMaLsUXb+xUgqdk5jkStl6ySVblCqoDqKa+ayAEATwkgqwKAuR24rgrt0vwnJa6JSdvKL7HWeRT9BmbVHy6FUNpYlwS40IqSj3pyn9kDm+DRszF9O0LG8GMBt23jvjnM8td7FLitadHtXtmhrcUzlwyGKLCelgm20X8t0KZu/eyJ6eWqpUAjDoItYdoNBV2npa33+43AsEWBszaiX881zpxDIlAFkD8tWybtXvFp8LWRSGjjeGgR9Kw8x1rgK1KPlxvfrcyeMzrLP1igL4K5EBFj+aIKxdqtfvlO5VOFUNu5r/ulo0AXtHG6Lup/ITu0APU/DWPPTbSF805g2iKlOFEeLk3iYAVacr6lyrpIoUUtPJW3NeaCXFls6pbsQmRExoiVxWZuiyNtn+XXOI6VsizmvnnR0To+QLHzVeSiRB0r4w6jfMkyfJCzYrk1SsWGMhZ6aUxE9VIJv4hzPc96u5Nv1/EQLL2q5pkj0x/FLLc0LJSRoZwAncdV9EBWZ5xNzdKIeJPy7FHPYdYKnwR7z6dm/f+JzPUhyAuc518KwdDmPwedkuzXc7yGB/OfiNRKU9VMVhL66gG6I39ZAwZiaEcCCn6JWCsG+blgLqFQ9E5T56U/fKZInr8UPYcig103wL9CA+xIUur01nAse/PVrJlP7OCjHrzYIBbK93FKAC+Is25xIuDWE5DYV+q5o0SwgS37kUBoHcNSqTnTRSC6+sThv74L2FnyS9brSKdK1EYbTe9bK98di/H9m2WZCe8/n2PXMpENnRxaATMxGStbPenT+Peq1Z+GdRMI3y1Br0MZk1zXdXdWQ9A3huQXMvalCNZ+ZmJz3dY1Py4y0nQINt2uWzgojfqCUvnJmiHt4no4vn8/E21vD9jFP+NsS/tt2Y8LXYLidwTFoyd8paG1M5NolZf6veLmI8WzuLNWKp4hi66FHAqycA30Dxj6fi8e+43NB5/f39Z52J9yOBNOBbc0HHZA1tt2Qz+JktwAAjlW7dKkLvZfyRizSmqWjpsnfinHXyvOnSH6GpU5IPJ3HPqiVITfhubMUo0iRsWZ8Xx/C8R/zDKx2sGi6tAe3Rq1UNwTP5Y/netGTe6+N5J5w7c/Uai7pa94iP6RswOD8XHVwMxfvOTB4LgP+xGUE1toW1XQIgll5F+G8y82gJ4ftVvkurF2B8+OwYnOyNqlaNqGqz/c25lOW2ZDJkKMkaes7z3HgWF1m99FwLj7K989f4Z+RXIZeDtCXJcy739Ml/k/GVeK54oorrrjiiiteLl4CQbEFi29QbLcJBbXWnkwCgakdcVI/17CtLbmocmt7krSVu3dAisrg/I2W/vINaXq1u5EpH6jHfhz4WijO9/OB3/41f/9f/+u/A5jlhCA/zl7ypaAXuwYTaChAaivulUUvJHZbrWSNYyIPAFh6aKMRCn3shs/YhXega8CaPEnuVu59ozFXwMjHeeJYEEzTjts2M94DB6E+DaLdMSCBLljuVkK7QHxgC7XKwiYPEu2EaGM3FdqHC2pc/w5+oXruyLS4TlOSvtg4N1XE1sqKLH0QV8ewqKjB4YSPqRBZkWE47326OUvK/tsJrfcjylwL/h5Qvv8URV94fHQqvPcs/6mkI7SL8BgDdtUOImlugkHJ4CteLaLM4A60Lf+HHTcr7v1O0rjZwGOf6tN+AxqmVHinjoSy2w7m2LgLXuOx5ZzWkJ1wDYnyRefO4f60M49yMSXtTXBbz/B962i3+drHOdHA1hQajFyVRIlgRArYrYNRyiqpFBtNBAJASfjNbsFJUXX+fn5mIttNEoVpVWY+Lm4FGL0gEWxrUShCUyUVWQm6IJFthyXxncatWY5qml2Z6pI2FfFZ4oTKFI4e14DNINkE4CKc1zZVrgen57WIRbqXEnXMlQN5nx2Dqq9xek0Ft7W2ta7ZVdly4qvlqoojBfH1scwdj/GFfV3DXYF7GFz2La9HdGuhJ6J0HhBcCMoVV1xxxRVXXPG/SbwGgnJEPtjw8TH9bfq2wfalM7LSusMM50pX1Rz3qG9qxwiuRqkpFgAle8GLLkdsYUVS6fU+NEms67seu0H7ykw/HziPaRL4H//+CwDg2z8+SOidxzFfGzwIGYmmnNLRNLNzag2EhgmyBmuH4Fi+Gro+X24bfBGwjtNx6EKftNS3o3YtkiRZKDRu9xP5aaEiTXC7z/c9/vkDNC+KS2hIhUjk+zy8F+BESLSVuue6Cc0d2/riTYQ7ha9y7sYkuzC/hpDUG7/SNlAJL+TUiPB6hgIlhlPRtXkiI7f1TeZCgt+AU+k1djvaJFUbbXDXISLwhfBF+2A3xf+JiQC6C1aJNtv03Gl4htbZev7egXUZuYvbNBV0x1E8l654uWCtHqC6qwowQjJhIQa7P3AGqd2cSKh4Gk+Gd804QNVZOQv/ikY0Clu/HG5wpBmfLt2o20KYTQ4cGtpHChur3XWhpz5OyEJNPm4db6spYfh8gLUphFLHCVvIYirwJAC8vwH31T/9dttwW5onUuactCYykmyB5MbEbryVeXu54vE657Ek4b+20RIppXSB4R68Ejjbvfl2S87i9DJNFGf+TomUbQ1U2xUoYeJAv85i7tlsIiMA8Bb33pMzCc+5cj5HwRFBCV7wJNGSY5O+Qc9KBPlsVUPERG21sJHB1yovp8PXHLoKHBiPL5znQovHwNv7/Pvb/Q3vSx39faHwt63zyx7ngSMmwz8ZL5Gg/HSbXTHftg2/LqWj7fiOHknB1zxMN6HkO8rCMmmW6+ElHJ+waFfBseCqc58/t03wsS6qApAx4cz7cMKRX/d5sX89B3788h0AMP7l2BfA1v8x/363JG2aOPY18B8jEpWN5arNAV0iIF9m1H2JCWgcgh/rGjyGY9PQD1jEN09NhLdy91ynKROQN/XwB3ydwwMPErNuugztXHFf7pS6Af/68d/n77d7LtAxgWyCx5gP2TEehO/CxfLr6yBBq203BGdbFvnvPA/sYVyojbPQOcBr14vzcZgBtiaESKN8p35irOthJ9jBcFdA7mFktjqodoOF3ogblKZnWD8zKUFz3qe3pbXSVJPgDCPh9ixGjdv6zDcB4sStNZyRWK3kQ0fpLmpAXxPybz++OJHGvLSbYudkkhLpV7xehFO5O9B6dk9EeSHKtAMHaDingr6elQ/L7pzU/8lk1QdwhNnpmqe8daCvcbxtuK1R78eBx+q0+Oc+N1JmtWYqJHjmAmVMpg4f6GsO3ZYmh7Qk6w9zjFXLEBOWtu89FtyWgmqSZE8txP2IKazIHWVuaoJMWnprTJOwGgRRRcuyrwjLCObZoRLz64nsSjkxuHakrQlSWE8kdWWKAGg0HDSVJJaKQqMRwfI5iOPuJpTj1xbrVVqjKNKp+tQkDVczwZh9vFybuIpdBBLlpJuie3kxojQW/86Mb6z+yHXB1qlk2Vmldv+sa3nsoDZO0zSfBajHFdIq6gJd65GL4xx/bf66SjxXXHHFFVdcccXLxUsgKH//+yqvNMFjtWHiELjNw7u1LJ/kRlKZlWvBwwKONwAaWb87jY9C7VRao4V9g2OsXcVXU6ItOwmghrdQIK3KpOs97S6UC3YXbOdzq9ikhCbC81jf+2WDx0OymBm+whgsNxDo1Po4uVPQJrhp7PQbvvWJZoQU/jEOPB7Oa3cE6bItFMENWxA5R8fbMRVyf8NAs2i1nt8/Tuf1eJRsONq6e1OyrSp62EPLwzVbpSXJb++i3Bk91s8Ds/QT12PzaJlbBEMoFSDNHIjrLUbhlXOVdcZjQG9zRymwohWdkHW0ATZRmjOGNsEYThhaXbkDUReWr871zH0K0PZsTbeoibFl2RAc7+NMo0adFwU1RFOTAAKqkl7xenELBAVZlrFh1N0IhVEcAjnWOO+Cti0UsmgEhVT+CbBdFwpYtOgXJVnaYJT2UbQGrPHtVDBOs0AzQ1uI4baOe+s3alE5lHOlyHpYTVOrA07EQDRJ6ZLiUZyjv46ThNjQ5WjQJFSKE1DZVHGTheYWxdYnZDzKMjHvS0vEySsBPhGKk2MUWGAuDhlPxFQAEzUqJX9qyYR8hOR6Mr8vSj9ZjqY+lRbTP51GruvixbvZcLAKL+u3TuTmmfMbqAf4XSRF97QL6KKpbRMKvLUM58CTBQDlGZB/pyi28SjiGu9FFqMPFCn8E/t61r5/Tbh461/4dp+Vkfu2Ydv+2vz1EgnKT6sM4T4wHqk/EdC+sXaX9TYRZxmiN1bkKPdukrXhcZ6ptREOnxBslEj3LKWq0CE4xJPgIFwl2rlweIji3NITp5lQIn+wqyYfDHMjO9pHLpjJwzBqcXQXJkEx8T0O40BJrvqsScZgC68LFeDz67d5LHbic81+2lLUKRbnMYwlqQOpecLjHjnozhynqYNSEhQr50OnT2kcNGalm6VAnDdCuM7ugN0xMW6A3g9y76mrMBK2FAd7gjprzA5fCY7B0+uE3iVGjYnmOdEmUlo6DTzl5+c1X2Jx63dfZnSibncHKSoa/Cgv9fesj29dc3KN66rpcKsCDP9rA/yK//kRi4WZYX/MEszjNE7m8QqBkg81ziwz3hUoVjjzs+r/IHUF+/uc9DdzJshj7HjEYiLAtubTj1UOH6NhDx4UDj5Xt9Bn6ZrkA4B8lhAadE/ug6igh2gkUPxE1sLVsvtoP87sQqSLbmNZqBeltVa4GPTxQn7v/IoYh/P/jzM1lMydY3+Ypd/Yeq+Yc946ReAxNxf3YCYNMvhZuTHIctQsJ2UwFynJRWhpeRF/vEXZB1b4NOmArZ7JAj2bij+OSHZLkYKClOifGjfrWePeRp+ELOOCKJzXmUmeCe/XnP/LZIf5vGjpxIx508bA1742r+FqLMC/vc1k5W8fH/j52xv+SlwlniuuuOKKK6644uXiJRAUP5bGyGPgt88F5wN4W8qnxxls4gFbu/wuDo+2lVaUFktGHVlq7+lQjCjbwHFQjjil8LsPjAVx2vo7RMkrs9ao8EkXSi/EMxfqjLCsY5bQrztG9KoPh1sgJOBrIyVXEbLJA9WZOjCDH89e827onrv3edgDi38MPTvGInGJxQ7GiYCcOHAuZKVbz8w1kGMFbqE3Ak1p/tW1YA5Y3KdhJEUl4pBIiRvYEuSa3UGxA3mDsM/fkKhD8MDbcLoCz46huPbG8leYn6lM1Gsei7CUR9dQH9y+uhufjzivJinnvXt2XnQIlS1HkN9c4NQRB1G1OL7JUSvdENzNDBzreOg1B+S5uOTO6YqXi0BExxg4jnA4t1luAbJzEMbdtkghbeYjiAqUpdQ4KGcchEsxpwT5MGeZFK2hh6ZJjM0N2MIETpLgGT9FvbjgIptGAsGrZFYxHqxIonzRXbSp4xHHPabr/DyIKKMajigre+MJby0VxYle1msBsEwVnXrHMfK4xVnmGkgl2BjnCrCLUFVoW0GtXivKuuJEjoPY7yrYQjerpe6MeqI1jyOIxoBoNHM4j/czTGAlu3CaZvfPVkrIRE0gz2Wf4LXGdbHUbHFDoskFgUk0ON843QA8f49JhaDsfSEtx3LXimiUDkujWhOMde77IyTvBy0TBgbkr3kFvkaCEt0OXwfwuUo8TRy+Jv5z1W2HnRyUvWWrKsSxcaAEf8R4Ye+3jp+ii2Ytovv+YLJTW02/PD0ugi3eNAVuGox8kG39XPdkfr+WhyzMHstDaiM5HIdLMrSLLwI7OrS0GkaiYoM+DzayTND7wH09lB8LQn27dfzf3/4xz2sHvv9YJZw1aWziuGk8REC/xUKbYnUhAtTgs5yCCc2GxH7I6u+H4WDN3dhaG6GqhWbhOdm4p5hbqeXeCrTKpuyohR6OvujiW2+cbIY1WPhtjCjVKN7CQViUs56tK386kNz5THS75gRysgvDsJeug+gSC3dqR3qPaE8hwHhQ3cqk39KOXAQsXbL8Z9k0aW5l4rji1eIsa/Ctz5n4rYGtuRRMM2Mpb1PlM2aWnAPqvGmpnljxnPmx7DWKbYOK4M7+UWeS9BXzFIyS89o3zk+Vl0KPoN4QhLpY+MQzGTpt8LnsvVHArYdQpZ2ZmLfGrg4LCXRxHFEqdqCfwb8o3L5Sso2oBQcuyCWxKh26gPsfpAvEPd2fW7YBk3Mxkt/oIvQOqsKJPEeR7BaN70Z26WAYzFIi4/fikBBhN9+tpwDcqZ5dOKUbNe6Te5ZlYqJpcNiyNDhN2HkTuz6dO7R4UzpZe3JmmKhkBQiqcwMb/waW71m8Ygx0OhjrH9y4G2QuUADGOJMu8SfjKvFcccUVV1xxxRUvFy+BoIzbyvYG0L5Wdn8Yvr4WUhDq9qUbBhDsR5SDnKJXkYUfZnzlmwg7gSgzP04Sx84CazZNxnka+Qn2yNrPg2iNlxIPpZFVsuwRxFwf7AzCSAa4SpY96DRcjhGQFOGJzbgmpGiS7Hp3IcN/WyWNj+2Ov92n8N2tGfZjarl8LglrES/9/g331QUk+MJXiNXF30V43upgpn4EHDySkS+an0tBJHEKyYlkeUNGdjUF5tIB3Ei6E5LLiHM0Q/hHbptwx3fs2XmVHN1GR2XVIni1PstV+f5peBAdAusFRZRuYe3rc8GtRcDc0+gxDlK5cw6Zeh8GiZ2NKSW7t61niRB53WP3hmLqeMXrhRXE4L5Ezu5bY3n2c5/j7dOMWj6bCh/CykeMZgdv+QxDgEDIQ9Py8LnjBqZoWAIojn0hrL8tmPPDB4UkNwh6lB9YdjYiIa1JooxRSTYj2nyeTsTRRiK77omwJFGz4bYgIYuBYYMCc0ApUZsTYdAyRiWHAImjym5BJyIpkmV6NykaZHkRJc6xdzZYsCx9OJHSWYMJnaW58+8itNSYxaQsB8W814prMXUiR6LnnIcg6UqtLYXaxFCVUOK/pBd4EmaJympBX8uax7OX0q/oicq65L1rIZDXjC7Ksx6diBEwSdPRdXr4iccSUhVVNlAEanhrHdtac+/aU0/rT8aFoFxxxRVXXHHFFS8XL4Gg7Kua2jrwtvrxTzPsbFGbrxOR7FVH1ut3FJJZi9S0Mas/jjHJkPNDAMz+9nSAzhZaHSXnXlnfaY6v9f6jKd409APCzNAoB+yjtLvF7uA8eS6wJKk1zfboaFUVTVKmS2plkBQV1wGT+xC7gq7CjHVbbcatbTT8OgEMWaqu2NdnCdEYMaUuwptYtqZF/VOTbDXMaUo1Ss5OqX0oESF/2snkbofE1qJDQkXD0s5rXuq1kdzflDYHt1tngf5LjW3CtNVS4XNyFDKhSD4P6qH+2YhaBEfFPB+IJmCtXyTUGMHdzBTsjG1c8oqMZDIjyjVZeXG+TrSlboHYRC5ybSVeONSjtb1BFh/gGA5b7bjBJZGuZEHbWfbKphzzbCe3YtVhwBG72TXn+BhoMaeZI+R3JidifgaRR2lIOf7kPJC86wV9GE6LhSBmj5Hk3tlemqjtY7WXfsXcYoPy9lvTJOQGkVyT55VI8eSmxP5erIwF6o3keIi/q2Zrcld5Ql5S6XW9VqYlCjDtCNI8Ngi/SLK8NKIiesQalGh3XMn4+JiPQ36iyUYdFcGAWdgQJJ+Q6q6a5ocKhVBvJogted7miepH3/lE7+K40wIkGgNEWt5vDDZS5HmgEI01kWdIcgID8VfhOjplaXJ9piTCugZb71QL11srRPE/Fy+RoHytzp1NFLeQ7W3GRYIPmTZi9IbsjDmqp0AI7PQO8WAWD4yA6kL2vDVs7L448FgS+D/Ok1L3Z5RfxoRGgblA/bT8Bv7xPrWqf9MD/rlIUcM4I8XCdI6iHSJICFTSbZgwnhRSKNLVEhSVS1Gm3gSyzqErUUn27p9meCxdBu239BtazqnNBecygXmMHaeu0o+mNDF9gVqWLD7HIGM9kjHRXpKOLE8EhFqkZgDR1DRoQhZ7JymvkIYLibbH1HA0xPDSrfHiaenNd7K1cqIf5nym6Gw6BIG3mhk9fM5ox1FP0SZVJkszuXN+bpxzJGzakyvNdaBl+a/19BAatZzzlKAEVC5XfvLKsfSFrA8cfW0ozKbOEVB2WMrSgvjgggXkInHwsRUm/KaZ6G+hqSMKW8/tCSCaZUQdt8W0fFsbFhvGh1DLk8SFtUiguxsXzFCKM/EUA9PGcb6b4XPNqyHuBgPaKoX0TWBxDiFDL84Ep6lk4iK5CYtyphtqrTaJqWXTE80L3rK8j6fyxfxVhyL9BIBi4Tuvi6aoJGSWadZBzvfXEpKjODp7kuHjuzTL7cOcpThWccXDvgvasiOxQVgKeRrvhS3M3I0dMrnJFdR7GsJ7jZ46goHSf8RvoXN9y42QG1imYiLjzgdVRbCtuex2u+G2jutYz4Hb4Dc1GdCn/sT/8bjmvSuuuOKKK6644uXiJRCUx76yq96m7DMAH5KoQbQbD8c4on0KzObOIXOXAMBlIQb2oJvwx23DFu68gVQgkYatbXjvQdYy7lzDXK81pcHez+8dP/+0UJi1U3jfG2S9/wsHztAsCfTAHB7kTXO0RVIbx4nH2qUchHaFZZ2BNK97p4Kfo63f3bZOYpYA3OnDySpmCej0E96WMeFKd9WMma+2DRby7ijZfsCL5mTNfWyC+zqGr2VMto+Rqo6iCBnV2BH4NOqiwgAAIABJREFUOaj/Mmxk9t06Je5jx3grROLPw/ElO68HMHeUiz+N29HY/icmbA0/QxbfeArzmQk0g+el3Mn6WciApS2SvZK98XqiKVs3t9xi8J4fhyXxMR49BVvExwDNx2wI72mga+McOJc5o6pw533F64Uv2OMUw9BAdY2liGhD33qn27EhJfBtWCm1rmfC6s5VOQfGzrtpIaCjbLLdWd4MOYSzlEcwPJVeWYIUtGXvrXfQGT6KUNI1dTu6ptT8bhiLiHusObyrci50NxJtDyqzIjVbXPCh0Wac5nRGbShPWEX4HwoPuIBwig2n7IQ8yeIn6hKNCgNZVqENhZRrLMIxrSEHLaVkO57bm9PEcB3/MJbG4V40T7KsHTGVm+rv5ek17ln6mi3H4LWLkwkUSaV4JvDrbVqArGvgLD3pej2om9NvyufLLK0ajj0I0knCVWjq7WzZur6Hw/YY2EgY34g8/9l4iQQlKjlHEc0aZlleqA/GeouIpNOvZo0rercBp7No33omOSFuVP1kRChq9HPfMOjYuKAxMahngvF9laR+XY65Hy39WMwTgqQ/hUnptx/QcLn1gZMDdz0skrVUFeC+HqiPVZraNqVQXO9t+sNgiqPZ7yYePQfLD8cYKXdddBtiMnMV1srNk9chKwlTA8WYeisTXlvJw+cjZa1FgJJMzF/yV0+23wNGZniw3R8ODspTssbfYsIVw1q7sZ8Dbz04QfkckP1/WtaOS5mJtVxHdmDBqB8Qk0qXxmdHiv+7AEzYci7yUpfNSUgLBMzOLjOW7xQ9ywEU5jv5O1etbUVXvFicwVcajiPGoBmfoVgk23Bo4XYFTO9nim1xQUXR0UF2gnzN/Rdad0rRm9SSqpWukShTJFdDm1B/JY5lVoCi9ARqgLQiNBcy8MNybNpInl6UjnpTtNW5o71xwxAiaW+b42P9vUHwWCUiES2Lal4jzhma7rnZWpgljY4sB3gpEUeGc7hQi0XMk/ex3m+lawVIn6O+lSQy9KlGdm6ZppbVHknmeSITjHKM9BJLfocZrcQAwR/4OW540sqyrG/N17lDV49X18a8pXLoeNyuab9R/NBSvl5YGhvu5M4csWkzy0RDtXRV6exEBHC/LwdjCO73RSXorVgK/Lm4tmVXXHHFFVdcccXLxUsgKIE0fJ0HzlWeOE8nBEo5ZSTpqQEkud63JJ9RF0Sc0KoiS0AWJB44yV6tCW7LWOtv3z5wrOPZz4kOHONBWPQchq8l/rGHl+A3Z0eHO0hGjfyvCSAaCAxgRcidHSLrH7eW2bshb1CFiYPUJBBmx7sNHmO2DQgea8t1FhVLuvNC4IFYqWBEcjwEPTQWtuwSiqx/ZtGhb7C+v4/JIl/XgATmYJNp7rK2osz7KK6aGpUpcXhPklugRHFe2otTrAtdqTcREoWDaDfcKMtvntBr7eAisaxc+3CEbtL50ElycyHmfKb2gLnNqUHTWnYuUFDWhWUdlyROuyhtFwKpm0qjoWaJhLqveLk4WnRpOTWbgAaPcnW8zgyyVF59DI6RqhQb81irhMWiRB27WSuGdS65s7bDyZiNnfcspxZi/u815edf4sMStSBBtKXVxjESwFDF29usDfWerr8tOo58sNwsYSTqgmOs5xqJtFYZ00A/S1UHTYVzoO1RDs3GgK5FHVbB8bSaGGdXFcKh3fM7giCq8mQMGCR+Ooq7sXI+XQxiThEq4z6iYWDk/dSiGhsfNacg5/+wRNTS/rUibVHutuLuTLFyzXmmtZZEYkvE38u8H8iRyPSEXwcxr9UJ2Hp29mE5r4U9jChJ/tKUJr6iire3iZZst/U8bB33bTaRDBs00fyzcSEoV1xxxRVXXHHFy8VLICjD06p5D6TDkigZGfm0rc8dcOyGmxpbxM4juCAOC0+d4SRWgZoFMu2+AWyt49uqnf3bxzd8LrerX6bwKs7jTLKnFs6ChL6GMaVVUR5LIAYDCgsyqzrrcTbSCIqEy5sy+zb31NgIbZVxIqCOiaBExnuSC8Fd2FAqq56eCIpU/gU1WyT74e2A9YA1ApESSFhxW0NjPXiRlou2ibuRxMX2xLIrUcm8WHzgHc9Iw3R8WDXi0rJnoT+z5d+HJU/miaex7k1TYb+ceVVajNdq6he0WTefxxWv80JQ1OKv43k9Q3HTPXetN+FzMBbyIwZsPQiMSu+ix2k0poz3vH/c0ZeexONrx9f+17wsrvifH6cEt0E4troovV+4cx6Gcw87+uQriWoqua7nr6lma64bWjN+7vxQ8HknHwyTaC40Ll0/XEmAd5Pwwyw763yPuJLk3+PB7p68OBWSZLfesfxcsS+y/DiT3etu1BkJbRVFI3pphRTq5XgIFgqe+Hgan3ULk9g0CFxksnhbElLZG1EMBONFSD6Nwml+B0niapiDOhTSQlLBiPQfIzWb4oKLVh+tRKTyNhVI1AvCYUoO3BPZlbZmkg9T3OImIYQNaV5ntfk7Ky3R4lzwFUmuJfvNBcPyvOPTYq7vrWFblYa2beiLBLu9veH9Y7rS3u8TNdm2Tl+pH18nzvHX2oxfI0GRwPY9B4oIOUtGaWMkcfZMaP5uudDHszBJtrEgNmpohEBP10aHzwYlafI4k2x6Ljj23I3dGwLJgbK6S8R7YdRbivwEcUwU99W5czNFPHHnmeWHgEi3W4obmXlOJkxQDChiPimHXpK3Ec6l2fEz/ORCXVnhqTkgvPa+OTwgWSYN8xuB+cC2JZ19Xwvqlw2aEJrnQKLLtKRp1hQBmv/zDqFuwr6u4cOcnVTvAG6Jf69zMWo92Py0eT1HmeSqKye7aJRJrxcaPlnwLaXqaSeAQYn/3hLy9WL7Gho5OI3PQd/S6TXuMVQo0a8KbC3gVsexPuO2Wn7u7zcmKKcZ/CiOlFe8VMSzppoaIE2BLYSq1jN1eOn+2LSQs0E9I9F0HaZc+uEsDcZE55YLnyOJmCJC8mz8fbhz3jwdaYpXxuPGlSDnHOpQ2cl5U1tnZ+HWc0FdUyUMzs4dSG6WaNSnLS05s6oz34d8X/yMsa3FrThIuC7ZKTWn5CSDhiZKbF5ELDc1SL0irhdiuSB7TlZHEOHBPdcSWsv1JDZccQldB9eTudHOsi6AJz0RN6G7/CnAbd3f97VB7L3hWETd3ZxdhpHliWuKunlu8kh8VeENFxG0JUyjRc8mWne8CEL21qhLFe/vqmhcp264v78DAL59+4aP95mgkFgN5/r52Hd8//EDfyWuEs8VV1xxxRVXXPFy8RIIShiobU2oMmgQZrnnksIfliWPCu4Nl0LcKhl3aS+nBTjN4JTY1jlOlob2U592tgCwbcB2jyxTYY8gt60WOU9ZfYcn+S0yblXcJHRBOmQhRmfL82FZqCeEakWFENxJZJuwWMoQC5xtq9GOK264hTGYZ0tx7MLMHEfsdkzQuNO3bI0kbCqETd+2hve3MByb5/U4DjzOZ2lvAGwNrDucw4yfu0FJJgzVyXFqImUGeOyCQjfka5B0p+oF/RKSCePmNjXcYnso2RqX7XrGJ0lRWpL57CSht4lQH8ZdqPcQ6Jy2bBGf93P9nqhLfq4qIOsS/tRu3CWxs1RK67o4+kYs6ooXC0qvt1QI7aIk8QeSBgHsLca7UhfI/SztxYkCVJQvNs4xuKpvXA13LwBE7JxBnF8siZhs53WhyZuawlAUaAH4OMEqapdEeXbDsfr9f3x9AZj6P7YGcmuKty1K43lUXliwpGlmhSavayECz1JIlKOjpIYk9CLbZuFe0Np4QUrVN0+bgVD7NnfaDBiE2gFFyJbM19ZS7l9Vi6z9QnKRc7+pFwQlzjtLQLVUbBA8sjYEANjU4VSFzVIbr6ZoSlhYWfO4huWa2LRTlOlxnpBjodRvS5NKN14P6YYeQmBhHzKM6Fm7veH99rbe/47bIscGwnPsJ46lNv75eeC3z79Gkn2JBIUQmWZpwJElgSySSdZqtdELR4sCV+ixwdsT56HCYMAcnCfLJoPQ/11v+FjM9J/C0+LWsa2beAylhooGrVtzcEj5jlygMvHakFoYED5HrNdN9DOSKGD8Tr4eEPrgwFNvYxuNbOt8elMkaFNFXytidEINM3yR7S3oC2r8HCdZ+2nw6ehrktusoUU3wYi6rGBbD/TYB1hyrL4aK55E9pAM/xCW+qZg0qEOaktQu+YcLPtBwe4iWPGBXv9oWpIkSd46xZ4chDANnp9F+efG5NY9S4y1Ph41YDThtTWkp1LA/jWGZYmyb50dEzGZDctSowC4329/+IwrXiO21cEgNvgsDTj5dOxCE0GPh2VITr7iQEmS50tTBr6LZl2GbWSlVOv+pH0SrrzxLN6astYqDZRWj9KUITVTDjM0jo34zCwxi598rQ/Hj8csPdqyzDjOfO3mHWONvTMoVGq5uaidSkjOAy9L+be5U2fJfX5XQyYHraV9hg3HudqpQnCxtS11aSBPXTLx+WfouxTfHe5TRFiu7gJqyXRVciRjznFvyW2pvDfNuYPJimd5bLfs74y5wywX6SaNcxl/NuGjcY4zk+XSVRocPgUwVlenq6MtAlG7rxJOc/JVer/hzg6tpWey77j1tavqdyY+ECMP67fPSdz853//J358zfv0/euBf/56lXiuuOKKK6644or/TeIlEBQsJTxTI+lKPEsO76HD7BMJAID7Pc3pxpB0iiSBNaFMGP7gFisJumDyzVbWrwNvi508FuLgrkQPhhizbzLFN/DDxDN7TTy/kXx5E+D70lEZBbIr6CRJsptmR1CUbyYsnKhF59ZICb0GMjQz9uyy6avcc5cgmzpkBBt9JBHONxpMpVxIftbj3GGf69+PZbq3CW6LXT+GwVftKHZzo5RHugqx08NypxZqlW2y/vj9IR9P5ApK7RP4NJkEgFvXVJKNzi9x0PSsdBc9yS8UaDd1CBaq55N8O9+f92u6kK7P2KIsmeqgx5kY/BYy4gIq4NrIEuKnn3Sipp7PMBLhtHXupq94vXg717jztKw4kDo5JHei7giFGkO37cYyd6h3nmOnGSCgSRSPx8BXxwxmF1iMMxeUMRDloOw+a63ooERpYAh1nMQA1a/1XWu3LJJaQjY4V7olmbzTpRtEMm4bHS84ns+Ci3R5Oh3OCST8Ft2P2VUSByx8T5SmRPPajuGUtQ8kRaA5Hxe39DAiHe6U9jdPgjtKmS7I8jfVLHklHp7vz9OFSrpHx+QhxRleHJSS9YqKkSYwnpRoY81pq2wtWixVxqD5LPVdkGRYkcby3bYJEZK3t0l23XpH85hLb3intskkwPrjt2Lu2Ghv8P1f3/H9l98AAL/86xcAwH/71y/4Wppj+37ix//KJR4sfoapY0jAd06fmZibXYC+FsGP20aY68eewl1x4xUta5pFBAjlV0wKNN84bMfn43P+ftVXjvPEYy3ku51sMYv3d0lwsml6VUi2j3Dx32TW8oC5+CWzIBZfx30Nuo/tBlms6K/1/Z+jSMNLdp2IpOdCtgQqk4IqvR6TqIjibT0Bmyhh4g/NtsRI7OYAjskCFLwLn4ZNOhOUdgO+1oT223IFfoyRlu3TWHwdgxOiDOhY6s2pbY1F8GjZCuEcmQioCjpnjlwKbHGFZg07EpCVJBrYUqgqObBjQveEns3AWVC9sPN5jZIf5F46Asn4z/eLFwh7GAXzKKUvSKE3ZEfbFa8XIdRlAAffFBicf/dSoozF++NtY6ljChvGMxZtnlk+hTulxFktQnrPnAATjE0VfXXY1RZcduUp2EofZWcUmwyIYY/zWSpnDUpfs65akgrneLutTeYwsCPpdk/H2zivIVkbNXWWtNyeKtOM6kSefJOYm/IcXf2pdEWncZapBq+Xe/Ibj0J8iTnhhuSdxc/eMkFpAiYChpTJyI/6nWcwM5TkksRwr8uSStp+kdUwDL4KPy7pDn3jhqaV9Sb5TvSe8yyBS2vkQNx6ZwLydruvc2xMgO5vb3h/n38/15f+9mn42mfyupvj67clAvo4KGfxY3Xr/LrWUABQc7au/9m4pr0rrrjiiiuuuOLl4iUQlCAcDWypP2E7NDo54u9izDCH9cy4Z4sKAExjNQCKTogcODMTC9gTufOF5G7kx3ni+P59HVdC90eULMxyFx2EN3PCqiop/BU7YJUkUikEH6GFsWmKky1oV2H4tnZLP93vaH3CcPvK0j+74MfnQlWgRJeOc08zrGLZTP7oaXgEuW1pym+94z12BV2pQ3KOk7u/NMJLpGIMJ1E3SGh+gLusb7c7bqssZzIz7vPrE49geB9LQh7AfRNsNN5a18JHdkB1Rd9CPnme935+0m3U3Yko6SjwcEh7q3DbabAktvLhUe7CbioUymJ46iMgLwEMhWQYcCxyF9WapFAXP0wIebeepaWPkcRpXzWgqkngyaG84gXjc3UZNhHcShmAhOk1Dx1Fp0cAkj5tOvQh/zKfX13dfuYGWe1BQeR0GLwFGVbYSXbXtFM49oUenE5SplmKWcZD5e4pRQ+n1YeXdkHbAj0QEjnPo7h/92gzajQbVLQyLwYBtVRZhxcjvERO4rpJMd/0IkSS8vNFSM0sxTSLyFig2D/csAVpHY1fFvOBo2hkZZE+ea1lDLrkvGhItIbovUpBQhO5jr+fZ5a+fTj2BLqIykZJ3+C0bzFxXtu7b+v4FbeeqEkIfsa5eHFW1k3R36ITc8PHEie9rzlPJe0C+pZk6vGYqMgvv/6K//df/wQAfN9PHD8mSjL2AY9uUU10i4i3pFXLn40LQbniiiuuuOKKK14uXgJBCWKYuHJn3FSxxS64h2naYHvoYxwTzcDcyTLTtWhT9kRICgEq28Z+T2Rau3hh2zd3tTYMIMLhqdIXHYOuhXtZSFERhWAqEOpydE05dF+Z8RhG4OdwYFuowce6BrcOfLuvXYt27jAeXw98X3Losauw0/DjnAjGw4yZfuy2xun4JQhULuhhkmiWpNzoiwcQja4NRmOsR5CHTyMSoqqUR/4W9XC/4fs++UWfhyGl6FvuNli4TQvz1pIgGJ//yf7zCY6QpOYgj0bXJ3TPDk0v+gjcqUrhimjWwaNGbTJSP0GSSzR/rPq6JNIWaIxIKtTmrvg5aG2OovdATlHycBxSC9xXvFhsgVyaQiwsLYRcjOS6pfHbceTYMhjlE4I70DcBFknWzbjjD6TVLE37TBr5ESJSCJZrl95QFKGdn5ESIZLKq66UVu+FAxi2DJ/HSV5HU8FtTYInhUcauS07QO4BEQEHn/Gb4GnezXkz5qlEVTqEYzcUq5sK2jrW3Q7spRGCLcWBvm+OtojIk6yca8OMYtIqihYyvpb3kB6sLskRgf9R6t4KctIKcrLuy9cx8KhNBAW5icM5yG8z6uWYOxs0dl1cTS0GfqpEjuNzhjkRvGaKdq6/t1QhH5LPC4nIu8MX+XZfGjePH1/49ZeJmvy2P9AXD1HMyW0JnZQuDT0WyP8f89dLJCi/fQWhZuB9QVA/v7/jpzbZxWd0WZw7Dps3ZofhiEVIC+FrhXlZLLRg87EKloWpqZTfKx/uwtAiiU0ku3ei48JGSUqeIL0Cx7Jkkq81c5avKOYFx9diRw8z9AXDbatkMjy7lz5ap0/M37aNIyH4SMdjx398zVv8mzn1RHQ98Psw/MoOGWC1w+NhoyR3cV7AWbw/AkIN9r7A+PndsuQWWjXvMHqLnH4yiTpnG806t/xZCagak0QIJUFTN2YTMspkFLnsIsBEfrA7yyoJx1bnUfxhIElh4c+nyPlvJqUl8whdBhcw7SCRD5UIWL7HlQlbQOFQlC40yftxxcvF2yKHn6fA1iq2D+Rzve7pgbRl2JDCY5AiFshum56LjTnGWgwsxuuR3SOuitHyO2JBoix+aVkcqBn7+oCWHYBNFPcgWnJuyg46f6SMe1fF1mM8neujHK04kcc4j0mpjgEb4OAxSUIqkynJsTUEaPdF4IwSOUAX+GN4cSp3duHFGNpcsyFBLTdxaTeEvuTl221HW52cB+dHJxFYy8bwtMHNDPdXWkpHnutAbBD3MfAZNirnIOFVRHnCcXzDPJsx3Eh4ffgkqIoK+tImkbrRZjfYSWJ2G461tOCxGz4f839u64Letp5u7HDENnFfGjcDDbLWobY5N9o+DDvzmnnc2ziLWJ4+2aT9mbhKPFdcccUVV1xxxcvFSyAonytLVTmxLU0BG4IhM8u83SeSonrDMs3E8BNjQXZdEtIjzDcSYhdRwiWhByhSNS2UhNiGxhaw2Ik8THPXoQLQmXjBWkUfY5aOcvc/DyUdK8Wznc3HINoRLpFmlXhq7DVn5vx4YCxZRlWBrBLQt/sdP3/MtrA4l/uu+NtP89odDuwLpv1a6o//+vrCPeA7OSkba0goMUpnA0INA5N0J/0WjqsdvManJ8GOaJEq2jrHNwihX7OKeqwdmwvJ0FMyZe2SAqpsCWk3BWTEcaX2RNKjjbtSFeduInLzpp5t7EibgtRRSYzWUfR05o3k9QJATImnw41qvKcgKChR4G35/R+QUP0VrxkeRqKCoomQZYQeJGzPNmPX1NrhewGOgTEAkWjRdRzH3DGPkFM4nc+1i/O7RFIOIMofMM8BIYk0MHoinu0m6LeFOqxz2bqiLT8K61liOcVZHvj8XDvn7rjFvKdCDaH9jLnYOXbnL+aPKlUvfO7B9miXbJaIeUiR8ypcqUQNoJB+87qytdfTrDTKxr2WuSAYR85PcZhpl1KjXMt4f8v1ZpxWDP7WnGU3vIe1wO1E+ICO4Un6jddKmsfCAVnz20MXmX5v2GKuRCKt4R58+oASbj4hx6xW6Cls174vtOj92ztbi2/9xjWHKFjr2BZaqIUGcELwtdYO8VAWLo0WJs/z3Z+Il0hQwBo+8Fj6/b+MB75jsof//l/+AWAubITCHezO6JJ95xU61/LAkPldWyMIp5cVwryUY4w/o+RgSKZ1PJyblhuQFQcuTOae/jnuUEk34ziE+/quriWxgsDWhDTWiv0lA48FufnXga/1HT+/v3OS4oR5Hvj4+Hn+XTpszN//K5KhpvgIeNoG9nUSfzvO7KAKF1RzHLwuWceOuuohKbF97lkPLirfHDxdEgLdLX0pqF7vWbJTCEYIy63nZNiJjVLRQmluRdoXxL0b5pSR7yqw33VLNBWIZI03YPfqDstKX2mn0fL4pEaJZDfOU9t/LB6lbJOHsLxSnhMnIEtfKDDxFa8X+/Lm2kTQi4w7tTTWIFBvdK0eAqiEXskzZwCYiUjoGrkZ5dDDL6a1xu5HbILOsoogHiyNuWNk2WTur6L8Eb+TLI+MfEKjvNJE8LE66bbeyJ/45dyxr41G8A2mLsfiznjqAiU3LJMOacrnXpGuwJz/NDv7VJCeW/yswv8wYbfL1IhZ84Dk2Dt+v2FAuiyLFO7hANUZg5fSm3LTZjY4wN0s+SbUVio+cZaWF9n5k6IvLkIvMs/ljTzBJg09xOgky+TxnY/zpGbVTRqCQDTIofFVbwR0d+wWZZtkvt321R15HNjXg/b+8Y5tuanLSi51DPRYex7fqT02xsZ5TaPUqGnlMM7xl0vUV4nniiuuuOKKK654uXgJBEXKbtxDh6I3+Cqh/PY1dUlGayRluufORLyYxFluXWn4JJlxEh2BZ4eKlezZvKAwkQ2OzEg9s9y18UZrPTPi0slREZTaavJ1LmOtIxGUkCu+b0ryrkjDsTLavq7L/f6OvohM/vnA5/dZovk6B75WdntSgGEnpNzbDW1JV28rC//oThLrfbvDF7LyOAcOSravncJpRFXcBn4sCPGXde++f33hc18w9H7yQrdVgtLenzQBziAOlu0jdUWGcecFUdg6nzQuHERzgCyxqGVpKkyzvNwHVeG1JXFMgLh5Uwl0PVM0aXQeV9UjqZYEAZVCslsBAI+FkZvbaf5IS4PUbaiP3pNS7QWgvGyMxRB0B1oLomVDKoeue2tpIjc7+EIvRFlaDLu4SawPFNBYCg5l6dZTUweFlKkuLHfrbZWKT+f2vXVNGXdC8IWgfho0pNdHjBHHFshQ0Yza3YhQfLyvcylaGtMhODpIAvl27oqtysCjktHL8WWNhmVl8FgSaYAL1WoBT2Vm5HyQwrxZ0kqiu/Aanw4sqSgq+KpoKZ8ceb88S/081GGQ0JIpSCrHM35HnI9yNWpHofAnz2oIIeloaHBxSNiSmJEcy24vQek8LPA+Et0Oku/n45GoyA68vwVaM3/3eHxhX3bLzT7gi6hrcpRy0KI/oEFZ404i8Z+NC0G54oorrrjiiiteLl4DQQl0YoA+Ebe+YbtPj4D9MVECw//H3rvsyI4kWYJHRJWkud9HPDKrC1W9GKAwq/n/3+lNd6KmIrMi477czYxUFZmFykM9shd1Y9CALShApt9wMzcjlaSq6JEj5yCOuHJyGuRNYphbXI30mHOXPpnuafAVNEwGRXJn7J8lRLHjZiDaXtlBlaoT61GzvXjaDYchHoB99yxXogbqGXnrNUz9qJSEa8wDYaUNz5dnG6MntD7Qpftth3Ui4jVqqYr+daAqt0VRrXf+8DpkO2K380N9xgerOb6rS9q3+7ZDFMW5UlAcds1+sp8vrwVfDS25HhqKrE9G3F2XNWrHt+OOq2miDB+l8Rk3Y0C/3vZotW6igYrFhnGBe0qiqUZ2TtBsHZ8kX9OmXdM4KxQux7v977113HeZSkk2IeROlJBwikyty9FyOPFGZiXZ3OrmPTXaTA3FkdS+EM3d9O9otWc8UJSSJplBKDw6yM0evRVfkmt/SBvEdLhu0ES0xZiTWiDLCnenc2QPhd7MOeaJB+0UJoPV2ZMtd+ylUCh8OrJziKDZc95HM+n4ru7PcwtdjqpAN/jy1lqqQzvawiV9YEoiijoDGj5vluTuTdSZnD8l5QZENb2p/BkvFDwcJUpOGGlwzdjFS3py3AQUqIDpn4KR/MXhz+UHhvjO5ohW6zEvDr0jQ4wuDyIEAAAgAElEQVTIdUGSTzMJQsd6wBNqq7MsbZ+A0mjwyCYC0TwfLc5rUXRxw1eBHC3eCwBUCFSTw+dLYmWOuc7RDxHgMCXr6+0KMZTcj//eD1ztu24syf/p/A86ZEURN7ugh67V98ZDJCh+QxOyV70fR/SoL3Yb1ToRw5CiWzLRnoKMIzPDWydSk73cexCOxsJlpYhJ1CJKREgFL32T+MRXTcSydODMg0pCJRRhgrhtCzabeNzjrnBB3dzEacHFfv/y+hUA8O3lin9Z/wQAeNo2PJluPsmOWpt9rt14nbAe49+HCg5PyKzEdO13HP4gacEzDSIcbUtcBxdr6pyLby2EH8pIHv9sd29794zrT+PzdyUsl/H6h/eWTK1bEOq+3G54vQ148H6942b/9nLVXz99wae7u1+WMFd0qPLgHq7B19Zx8wR3Shq8C6coozWXj8/OhzCaJo6/YaQejX+XIDskVAUuzq2SiVGP1ymT26mcNfkWTpCyTto5Mr1gP6akVjC5Xp/xcFFNR2IhhU4S5qHPM1mZk3fhSGojNdIkP8b1T2FFUc3ExO713jQ0kFYomm16Xpqi22TCxgpdKoXWhvSRHAFT6Uk5DfiWBOOPKGl0XP0Zagra/RwIYmagTkpXXkA+X3OJRN9LvUVpsgDIclNhSidvID6TnBArGt1DPOkhuQBnp6nUO2kfOXF2dATlRiL0VeK7NLoEu2Q5Ka1IsjHgOHqUfZkL2IXx2MdVUyuLSpJ/7bucygsMAjOCoJwPeYjs0dupwROv5h2TyOOS3qGWMPpmslKJzKhJjsuckPmA966ReB17w+5Caz7vasfdmyJ6rq8FFI7yntyWWeyT/ngXz1niOeOMM84444wzHi4eAkFZLb96vjyDTfukcsNSze4ZRsaBgtrIzstwWxu/V5lKKEZqKhK7YJDD5BNxsWsSXzfGZhk+iYReiHXu4UKEZln7qwgOq+1c7Ge7M8Sz/4oJTvHSlQQa1CXbrz5wxcdls+N16G7qS1/W0Abom+1gbjfgaqUQZbxzTRZUfLOyiUeVgt3O+6YH9t3LSON1WQjFD+w40FYjvG0ldUgs5f52fcEnM4q6FMLlx5/HdywDIXm/POPnDzYGq4bMd7dx1VrwhKHJ8sOH96HQ+OnLF/zH57+P8zWVws+/fcaffxrv/X/+7f9G+zyQlRe2+6ABr59Haevvt6/47Tp+//q1QcnJxj4KjJ39GAC4ZYCNcQFBmpOls+wXMuQicQ24MtR6AnsTqMsyirdHMhavPRGBfdfox6KEZrvPognBt9gHAkSO1U+t7cxpTHnGw4U/u7VwkDN7a6mhEcRrCsM6YkqEQjXKBz6n8fS5ECQyMymvxpyzZFl649xlH3YsxBpEThDFve0sSeIsldQl23GdMIkjy6xQgdg9TgC2OhdJxnMjtn3nhYKEH9omfbIg6fn7Ugpq9Pzay5qyAEKEbuWHIMlyllcGkuAoueL3IPYbgjrRhBLZP1TRrHTfoYEEBMrVJbSbji4JrSh+V78a8hHqw71wvhzHPX0uUreGpjoXTcflpn1UGcXvnyC+Jom/T2T6KNNN4ktDBsKRmTRBDfsFSQSFRLA74uQ0hC5oRqBuPcdQK1DdB8WOdT/m0juFKe33xkMkKGwT9VIINbQBBGI3pIvuAG+5JqE5MZV4HBKqzCG8A8zeKjZoZegSAEOevFqHC9cCyxnCmbSI4GockKUpVl/kbEE9+h7JzjHlCMGmpxoLNhdCtwfxxhxnVO0mWUAhdFQguFjHzuX54/j8y8eAU1tpOIpBrKtE/a/bg3bvDKva4CaKm0OBXi8EUOzzqW6AlW3GEL0tX9xV8JqtNTH2LvP9008fsL6/2NhWFHczNmj5Jh231zGG+3FHt26FfW+Q2/j31/EydmX882UkKP/y8T1upsHwYzE+zZ1wNUjxw1Hxrz4x3DWsELwejIPwaknB59sNX82Zs5m9gtYSJTemWUDOuSBr3l0lBgesGh5B/hRRKWCzZ+jQqHPHDNU1uosIGpPMZV2j1BZGs9SxOjsfGuJUZzxepK9L+ps0knhOo9uvVcyWGpSrXwgM+nzAE0dgbLT8vvRFgyMB5m3i7pVc5A6H+zlL2IDmvR2HTZFYFV2w+fxjC/69pzUFEYE9KSmE1T7Xz3E/slShx1Qmt9M+tMdxSdPQNirMWC2T9zlpIw79pzv3WFAR5dfsImJQdvnECLyptMaz+0ZTaPK8mXWH/DrNYosxN+joovLzohgvc5xuLf9eORIAmtYgpyd0ye/imqJsPncQ5zxRCqL07gkjiU75EcVAx+acs/tRepIhDulTp6OtG5ReQJAsVwqmBKw7P4mDT9VVcYSdw4hrkygnXQoH7+l74yzxnHHGGWecccYZDxePgaBMO4XFOlhEJcoADnGpJhFKp+4NRRIOA46nhD3fyJB49l2QGTMRDusgue2vWMxSWVcjjSpFB8q75xX/9NOPAIAfLgPV+Ovnv+LlNv7+2+sRZK7udChmUI2vwmLULDkOvDikZhlmrQWHM7GlQw1JeGedO5UYL7eBAuztQLdOD14IxVj3h5Vy9p608Gs7sLv7pI3BqhVsuxXmGr37h0i4SrvmQZOOZjufu3IotrqBV+OGZjLKi1zwxGYq5Q6eXz7j33/5BQDw25evuFv2ftwOvHwd5ZpPR7XPFzy7DHPvuLsppP388NOfsNo5/CTP2J7HGKkUXHdDSAxJqcL49mVAM59eXvH360B5Xowo3DSlqI9DoxuhFd/tHLnLwuRiqrmvcAxUBZDjW7zXx3lxWWvllNAvDLZBPq53w5MwdYtJ6ANBp93jGQ8XAZR1JGmz8BtC4vilYndyNij1dURDwjy6bVhjF8yTurR/vnJBXXzenJrDFoIrZzgCM3eJDeVTP5z8nSuv7g0hGe8lk3vr6IYeXJiwuRYLL7EjT7diSkfeQwBx1107V570XRQBiXfh6CRyqw+i7G7cdSoTRZVe34iB+9w/yPA+t5vpn2p8boGGqWey5ScHY9UwqCUv/yJRmVo4lXMTBAfb/DvbmZCWN80cACAkOLwGJOlov9QSxqVz12kYnAqHo7K6HUrXyfsxicazM3R2YtI0n0s0GoQsDieC0kVNpCoRdy3ZJanc49r3rjhukwI2xjUMAnJhqPyxVONEUM4444wzzjjjjIeLx0BQjHjYRCL7J832qKgnInVMgOyRV+ik6jlCkC1kBJp2wfbXRJDwdskscl0p9smBhPQaddeff/iIf/u//hUA8NP7gaB8/KXi189j5/wfv37G568DSfBdh4pGtioQVE9oRWC2FiBDMpoifDGWUvD0PDLtm+2x7/c7rob2HE3A3ncOAntWbWfeqMG3bHpIXOzNsuxLKbgYR6QyAENuWsmatWZfdhRke1fcrUfebd6bKtRaHanu6DZe/uevr5/xt//8TwDAL3//mi3L1EPq5WLcnPa8QI2I9/XLZ3y7GffECNQfywW9D1SkMIU5YieC+3I5S+1pe8bzT+NY/vzzBzSrc+/2/a/3V3z7Nlq477cDaqPkRpQH9rgeXRR3b2++HrhfUxEYGCXg1X19Bs3RrocTCFNLoWkLg62yUBCyo92cStTnD1Ssf7CGe8b/+XhjCulk01qixTV0k4Rwdw619jCqkS4xWTlVhHWe9zg8ToJMz5ymo3cjbgIAA0bZiveKYtpl57wYZm9TwwDpPbgcqWTbsR/OUSGsGttoXIPDMX5VCKjF0RINIrA3HijPjEGK+Us6cLfvFXakF2m4qsm/SJ4EBSeHmCZAnALWmri903gmHiL2bIrIdB0pgJXZWDGQ/lICFSUQjNKDZnNGWcske9Gw+n80H8/095qNbitRtF0HQb4JxM1QQUFQDnyiIxR0dfZxC9GXNIdkEHqgTAiEzweGaZqfekOhXJOAQZouwfl5W80IDyH7rA1J/O7acZ0U3r8nHiJB2WiQMxsEDQYJAil2E6WchDiheaMTUj45ydXJFh+i028fpDkUGsJda10hJtnerCRyu+8go3v3dsFhGh1f5AsA4M8//CmIqV+uN7wYoTZhT8FUZMLVtUXqGm5VJfrIddLySofNbpL31/vVvZ/QOsLJl9CjHz4k/AuCdbmhYruM733/zrqE6hLdIUstICsXLUIxue0hxJSQXVcJobW7OSM/b0+BBb7uN7zcLEmyz/zbb5/x5Zrjsq7j1nvaLrhU78wa98Gn6xV3SxJ/vb2g2tiKLdKvf/0FzdjIjSsOS2Cux4FPX0ai6JYI9MNHfPjBdGWenrFt78c5mgjgIL+N66kiKHYs3SDJ40jrAiHB7kJG1xdcX8Z37Xa/EBM+fnhnYzSY7OOajeP79nrDZ/ubzy8v+Gb6L50Q5bf75ALtk8muGqJfZzxe+LVjprDfGBO1rwATOdIJpKKQloKNvsEKR13KTVWXiVsb018uPG1PAqcuFATO1X7OYoaAvtFkGp+vUV55hkSZweffpXJ0uBwCvPjGsfXQavGFpC6Uf1+SwCkxZ1GaEE52D6Lj+QNmS4sslSgYhzNxo+EpCaRQRBmUCJOcv5fMcoNWiKLU6mUuUcq/L+nknMRa5C62ZGeL5mXCxcxYBVkaV1CYI4b2iaZIY+E0G6SpLOylnAOUZFXtWTZ0u5Np7QOmEkwkmRRjL6Ih8EbM4bydul6z1suB+s60c4wycFxTELAQoIvdBxWRmfgcTWDUaBeVCVj4vji3ZWecccYZZ5xxxsPFQyAoP30YBFChFkZ67RCQExUdlkLCeJggUCaayLGZkUfL8dSeVbzlD4Ti8B4JtPsOlrFZdv3+ySWj94CztnVBt17wX18HufN44tAguUtDd0KYG84pT6kgpaU6pUKk75BFFd0y25fe0L4MlOadkbK2ukCsRnRIx13Gjr71NkzBkH3tWkrs/te64cPHQSb96ePAgDcqgfxQyZvhiXqYh/nu8FUFd5fIbg3fTHvk25fX/Czbhf392w2/XU2+3pCf1/tL/E0phIsJlVy296H7Ug1mvhzAr4Y6/Hpt+PPzQCU2U9jV1x56Jg2MwxCQl3bFTW72WeNYv3bG7Zvpp3z+gmJn+fw07rkfPn7E+/djXNanFcUQrRjDnkaNdVtGrx8AlR6olk6y16UkG9pRTYfHj/sdVzO+/PLtFd+s7fov//4X/PJt/P6znbcipbnv9wNfrq6se8ajhT8jtfxeUdPmIrfRgIZOU5celhMdiDJlyKxylliGZoXNKb61ZsobpEq0OhOnfhNPKqy+9WbK73CjPRLBPczekK2/PudswOIfKlNDAhFuXqIOawxFC/O7JOz6vLwQElEoBAodJ4JDOt62OxsfAqlsm6WY1A/ChMZQ4UTUSxJBnXRcmUGa5X3AEMsJvQrU3hGNcZBxLoHc0NRmHIh+NiIMG5bfIxVTMwd4Upr93yiuUhofCjRIw291cXK832hI2OvpVqLjXsBA+/xW8nL9/dawO/J99Cize7PKve2hGcXKqIYY1ZVhRZBY50Qpz2a6Nt8bD5Gg/Os//wQAuCyM3z4PPsCvX15xtwf/SHGIgOF46mtg5A0RMFzPzhhaKMo9AbZJiXpagcYA1rrgz+9HGeDHH8Yi9tpecLXyxI8ffsS6jQXz6/VXAMD/+I+/RMnj5fYa3BOacMBosWeArExQCgVc6Rfi/baEPLwy49uLdaW08SB/LE8pIdynsg4k2eKu9YVks2/MKQD3NBKUtVNwYHQhLH6MkjLbUdsWxOK9C/DZyhP/8WksrKJLzK2fvl3xNxM1uRmvBSQg43+slxqLvkqHNtdK8ZmnRJ379Wj4ag/Qz/ag6HaBWgeDNAXs9a0qYF1gpsyNKym+fR3Hetz2KEpvVuL5/PINT08j8alLiVp/sYezFqCay/OyPWGxJKmWDYvVaJfiRX/GVyvh1FojWVns57uP7/BPP1oJqAnuRkj453dP+OXruO99XGvhkKv+/OUb/tevn3HGg4Z3foGhm5VCWMGHJwiW4JYF1brertgD9i5QVNfVqN6FkT1jY9bzh9O/VMGrvb5olKALUbzn6s60yP3RwoTq2iX2vAoBaMZ3UmC3BdPLpE9EqDXnT78vNwC/WSeaS+1rFxxeNkENXSufGwppTHY65VgKTc5hVlJiXlTCpPeh8TdhByEcf1gIUNeLsc+qnGUf5kwE5nJ6i7JPfpdMx+flJpZJjwRZyr96RyUQHZHgtL+ItWsqz2VaM8Y2uStTSS66WDU6DjNJm84b6XwcXExFtplRllq4UVzH4BTVCr3YH1bEXCnOxWyTDlmZ7ARkyP8DQPFOrKaxhpSVsa5/TGjyLPGcccYZZ5xxxhkPFw+BoPz5T0M2/efnFZsZTd3uhIaBHhzN5VknCEwz+02QC28gMjeHksJooaAXL0ZmycwgI2DV2rCZ/sm2jl3219sX/PZp7GBlZ3z6PP79H7/+OwBg5yWyeukaxFXuRmTSLOsIK7qbMC012ODv7ed///ED/vWf/mQnQ/jlbwOl+dvnMRZ/v99CH4PvkjujWuEy7W4G1loPWFM59Q8CDhYNNhcjjbuuOqsPWolIESqFnYBvJvP+y8vY8d+OF1zs+1+OV3y9jk6mw9CNpRSghB4yqpWm3l2AanK3hyEN2/OKjUcq/9f7C14tw//JFGdppeh20EPAhqyslwWXdZRrvh2uTntFES8nrai243MS8LU1/P0//27Huoer9ZNpN1/KGsz4shRUI/euteKyGNHX7peyLNmZUzk6oXwX+bxWvNvCkxmH6QxsP/+Inw3d+tHIv8/rEvDyL+8ueD1Jso8bUdIooD27QlwpxwA41DVN+wBJQzqki3a4FkNCj2SREjo5zWFO7ug3+16hKE80AMXmMnckP/pkNlkpyZGOoDAHovmkgldHDeyeK5K7/zso5NarEp4vpltlHXYiLc6Blxodms5v1Z5zVidFOspLbvRDzj3LY0CWaJwASnPlgHRaA5IIHFovmEstqfLs51KIQd5F2CR0nmYj0KnPIco6StnlskcjlaK6ThRzNGD4eamm7k3nRCXKm9aaeSyyPEdeYnYrEXAwdgvzm3tqjNGkoNSTTN07orzm8xQBoe8CKHarGhxWXW6i4NXQtYWjLEmEULr24lohBFm6/P+w6niIBOXXl98AAFv9AZd3Iyn40/vnaFu9maRz33d0a7FV1sDZCBJdMLMld7NSyv062XpPssPxb2WIlxR2wt/u43i+/DYSkR0dMB+ZL9c7PtuF29tYmGpZcQvL7A4Y1OfI2VYqNjvWV5rhO8FuHT83g8Ce3v2Mf/mnn+1VxjfrGPrbi7W0XlvAaAoK10zuDWSiSC6rX3kD1Fp09YZvL+P3T+afs60byCaTBZLeHrJg30eCIU4BrxxQ9bNc4sbxNr9P1y9v2qddutuTtaMTdBnjUgqjmyjbS2tB8d9r1tw3Kwd92CqObl06IarUwAZ1cqGQ+SbiqG+pmpT9/Ya7Md4LL7C8CC8GSV6lQ4xLgn5ES+jVSjx37iDrXyoLobh1ORDZ8MXKTc/rgm4tf8u2grvL7R/xu8vTuI+YGd0F3rCnRLUlWy96j06jSh3riXU+bCyrLXLMUCvFas/F024/1CXbNDdlFOTC4NdfvCqMhPEP4qg1FO/o6DTKmzAPltDJouC1hTDYxEERmorjLs0gDKh3hQgWLyGH6FaeS+Vcp29EeA6JfftOIbTwjkluoDVnQlryOgQadgCQ9IaZpSL825QoNnNhV0LqlDBz5x3/LsgSjD+kdXpd/jflpNl5mVSnbs/kjcy8E08qRBHt5O7irJLWAMqIDU508UiKqzFa3iedItn1UgwpJh4P/iG5VM0EBZipDHlvhFfPAdwPF+TT6DTyNbMQoqzTW8ereb55m7MyTx5AiOSydw0AgOw+Kj35QyRTee4745z2zjjjjDPOOOOMh4uHQFD+5/8aEPv+pYfL7LX3Yc0JoAZikNCbYjbjS7Z4kowCyBj99J4dR895vlumEoxKx+6CZy4iVDkJt0Ckr06OrMw4XJMAPeXQyRGBFJKrDNxvBv+VMlAOAK4w9unXr/gL/jLOqxbs3wbpUgxnu97uKJaOrsuCYqRQQnaNtO7ZbA8S2tEFN9ude1fJsggWHzcBDhfWaRykJ9dBaSIp+EM0CL5IKeqjd+wBIgnuYQgGG+PMontHtBo8rRQlPAmBBoANQdm4ROeN2yB0SJwXM8d7CxfAwPCymNHkUbA7Y7ZruLaKYc7rlN3vytjd2dMhYD7g+6VFCTVqXxS7sG5s9qMr7nbvtL7jbvosn61bh+qCny+jdLUVwPtyykIQl87eDSEkwmrvvb1e8dXsDc54vFgMQaOK1IYoFAjtEt18GnOLqGSJmihr01GayDLrvR+oYeTriILGc65l6lARQvMSjxNFkbobAGV3zuKoMwcacxyE4gJuPj8mMxcgitI5mILce4nuJMbd7uHj6HAFr3Csr4q7n7dI7NiVBjEcSE2osfOOelM8b0kETVLorCHClAjK4uU31ugeGk+0IbzsjuMU5ZNFepAJYl1Ibi8WSkReFNENGoaJky1IFwrhOr/ITfLaVijIBd5EBoqCiQs9IQ9K+d9+LgSF+Jwzw27q87KGeGUXTGuTxrURWyh7F3QrjR+tBdm5hq4OB4lbFNG9qNJjrYt1UDi1vWT874/EiaCcccYZZ5xxxhkPFw+BoPzll08AgK/f7nh6HrvGsqR9thqPQtDRo/6Y/eMrJX026puSRCmaXsdc4w2F2my/Uu1oOqElsEzdeQyT5ooHiWC3jLaLpgQw5ed7nbBq7lCKInQAHdX4999e8JsRT7Vy8EJ2V+XrPWqHQOonMBFgZlXNWp7Re0ikd9YwPPT6KARRmBUkgbgdgv1wHRMzLlR9k81SFHx9R5jITdMeyEtk75qaA3trsdOsS8VhGXyQi5mSxEYlznGtA206uKNbC/q+9+DcrAvH7nAxve9tkyANd5VQw/U6+wV5zzRQkL0u9v1PRUKyGcRJHlZKYzhvyRZBta0CSQ8U6ouz51rDk93LKMCLbfPeE6Pb9RXTQek+qABwHHg6pe4fNnyXL4eEsWmpsw6EIWxiJFIYt2BGBOK+St5ID3Ryh0n9BHIITv1sZk5DuU5psRHtrdnK2jX/rpiW0LYypPiOvCfBMqTKFbOiaqqZKtgQS38WRNWYGMCC6Zm3Xf7fW8f6vNl3UahEM5AaMs4pQ1pXNPQwyPNxG1L39mWkKRO/ARJGijZvg6LVuQJogaTbXK+c5F9ka7Cwj6GGbkx9y5eNaxLyDyRxvkUnMqqj/5JokCKJscI5X+oEpfk60uh39wzG9dLp3pEZcQLQugS/UpnyHArFd7iJ4l3F+Jbju5aLzaGGmixrqgC3psEzZEIYHoZ6Oim6877f3IHfFw+RoFwN7D7uHdU8Vi5cQzDtCKEaBIloZQ5HytnNM1jhSKLTSFD8wvmP7KFXlVgMCJlgxL0/eSQMpvREWgIgh4Y40sGBnMV3CiQIZ6QakDCkB7TqKOBCNfwp+p7aI++tFNSfSnzWWgouzuomjYQtRHyODjWiJeaHwm8iaE5imuPROwKi9C4c0ZTdJ+QDFFApNLqDIFmCCTIXTzCzJkxMtYIc2nUOLFEQx4gZzG8nVKmE3cpCL/dbXOen7YKnZbNxNOJqWcBWNrwpogzljiSs2alUoLjYh1UXrlIOZ1MgvSZqyg8EhFtYkZrkHK6vP1jnD5UFF/t3LUNCHBgPs3cCONu9Q0OXodQFl+e3SfEZjxOePGgXVLumvCJsLFz4jFSjRANkZ0zPR3Nyk6XwibmUil79ebPnhoGimaD4dkqEcOw2V3npqSQxtguw20agtty0+cJHlbJ86iUizVwZ0EwQuoTIV7P7tkm6NG9K2HyOtIflYMp5c+wS7T8Qq26UcAqD/YHrE1nTF3rNTSAjn8eCTBrC9gOUb6Asv/nvtCPqLtInja3oAqIgwwpNx8pAt2aMHpryDaw5L0ZySHmCJPMEafOyaJS5/W9UJc63KVCDWK3x/ZKXY5pj7fRQYkMMAtQnWUUQlClK97necCUsQYC2zXWlqdwnEPUuRY5OtbuV9DsYGl1C/Ed12s4SzxlnnHHGGWec8XjxEAjKYtoQoggi59E67u7i+OyKnAUXN7CaCFJCE8Ey4YtJKGVy0AxzqMkNeXJaLMxvdsHjozLrJ0bCuA4DdooW20IUCoyZBkvswlkJq+2smSTUIjdDBz5cnlEs87wdLXZUTh6my4bD0A2C+CYNityR+88uPcagAljsgKpn6TSgPGD07kemDYE7IgfkrBOipAgp/GPSCYjxJITzp7ewLaWA3TmZCJfqGiIXXCz9rgGDaYwxcypAumx1KRp6JYQeu7OBikl8hh+4j2dVQvO/mzcahtBUBgq5foEhGVym3W0qehamgDXDgRYKsQE9ikbp6SfrMaeaO0Il4OLlu/seOhcOjxPzm1ZHPks8Dxz+XGXZed4xegloICjjd4Rs4+2YporQLeJQIn6uK/bFn7ckQXKLPwq9j6ZpMun3cKkl0FHSRFDb5LZuwB6YEiEJrQ9JVVB5g8RKkMLZ5ot90vKgUvHO7v33tht/B8X98PKvROlaVLHY3612jmuV0IdhoSxjReks0Yl5fhKlWAZ87JXSxZkJUb/3eUQI8QzKjBLNpZhAjRMX6ZoGn3uYHU6aLBTYffY5Y4b8JX7fRHB4ycspAZwyCitpzv0xb2cpsSBrT9lKPpWWoEFf2CVL+hIK3hRzEhVEu3oQs6d6FhcNzZNKnPO8XzukjMIQ+/bR/754iASldu/OyHp+EwkIyh/EhZI1XqcZ4ECWEvw2ncsEb2K2B59uvvRpKOF06azwWUKYRmP6249kChfJQgT5HQwnKsH7KGBcnNG+rFi9U8lEv2qtkaS9agvOw3svWdQaHUVdZSqxAJu1Czw9jfHcOc+h6rjBgemiE2XSAQU7ox49x3HSV4gHVLO27JDzIQRrNIAQRe3X/2yH/OMAACAASURBVJ4rR3njqZYofzwvK57MQXiJ/ESCpc5M8fsSFuMdm+vdPG1Q6+5Zli1g75tJxl+PIyYQkfTY8AeKK8dksRAHZLz6PVAoBJj2LpEACWjoUyCGBVWBd3be98KR514866gFV1+guuASwk2IeHYtmlJiFhrq4GeJ51FjvXhdv8SzKaThjUW+CCMh/N8nKL7I+KRPlC40bUoKnEchU/eZkiS0XxAcuWLzAReGum4QND7DCRytt+hEAdOU3OfbXPStdYkSzhA8c26dv1djTtqJYRIxuNQ8v+uenZg+b3eVKLW2u21S9xJlfK75PMQDx2nlMagctiAikxlfXNs0bQ8RMS9X+xogaKkU9w+OzyBEa9DUwIcmiqN5CcbOiwk0a9x4wmbTF0Oj3NNq+qWppi6Ml4i6AOy7SJkk9t3hfSohQfI7olxPGvNbE+BQP4iOhTyhsj9XTqE1IDgmzkcUVah7G7GC7WgEDBKnPYzXq2bnTusdVxeg+s44t2VnnHHGGWecccbDxUMgKK4LQpzQl5aJSNlzixowHiYJ39k6cGbG+u8kCaAehOx754m1TRPbioIMm/LONLfQeC86TbuSKedzaK2rREmkTH3rvC5YDD3wXQ+1jmodKhftmcAbEas1RbWOIgGFVkGllNG+hOufkb+AN+S8GANNhEWFIpPuvcfOIdQumaIc1SFhxgVJaeQe/8pOJ+9EUOmxYytcQgES0CjLOUFUwejxuzQtcxKuCLDaGPC6AKaDwqWG22YS01LlcDYf86tUiYOkC6KA0O8xXj06e7qmbkNlTkY8fKyG2eQYlrxP/D5CKaECPDqoXGI0kZ1iO00hxh6OpcDtdxLYZzxOXE09doUGxM0TGRSuStyy+62yYsLjc9pCvn43BObWWs4/lM9AOBtXgDdHgAm8+5xgHy8IMj4AaE3kBhg73O6lYJ1UWGMOyPdOsyqUEOXTN3ojLpHPGjv2I9CDQZQd51KwOXopjN5dj8POe9JeWi46NSrEaQfyzUgjWf3dvwFHeh01QZSzY/6j7JYpREGOjWWFU6FXp24btDT+c8yrMKV6rHCcT5/QEX/0yzi48bk6GUTOXz+RlR2h06nsEl2jQlGaisMD0G9e0tNEeahnQ4nPM6DQOela4ry8YUI162hCkvciEawKhWKCPTcGxNaGwoztD0rdnwjKGWecccYZZ5zxcPEQCMrV+vRKSYM1oqwvRg1XGEfUaoHFiUQTUcgrcjSRtUYLbXI1gNH65JoZYdQFoGtPPksQkeZdRRKRKDLnfDNNaE7IjWjWmwGFLqZvoAck5FfHj60UVCOQrguh9VT5Awai4N4vIMY+kd8Wa/vyXdwdPFpfAWhPhMOPi5SilVB6ksSaSGToURNnCqRDSILE5XXIRXoSapFI09ElfjoasxaO7JvoAHubW9SFKY6lgEHuNRF6JGuSeEXCL4hbtou7hs5lrXB/tqpJiHY9HdSprq+C3b7D2yel91AU1qkflEvuZtMPSXA11dqiBLaCsGspgIAlVB0Jd7d/B4Nc9jhIyamj0htwzT7PMx4top045xdK7mMSsrkkSQDAws4RIeyOlty9VXVPLglRwgZONRlb6/yVq0eThgwCgisigaTO5nY+Jd1V49FaFTBKTXK/iILztRDHM7R3gftUOXI4/Fpc+ZnCJsZ34U0VBOenJVeNtIduxmGI096AI0jDk3dMoN0cXMQCgth5i58opjkYOq0N01yj8x4915ZZ8mB8AcdqOTgoPV73ORJvEJjkwxz2TDuJVlWx2Ly4CoaiLqzt1/3l3DSScv5TUMxPaVaoOZ9LtleHapUCt905eMlxUfwD1QjgbD5oExHY58+lFNTink2EvTv3RmO+xN04fBdOZeCCWMe+Nx4iQfHVuXeJG3rlMhxwgaATCwjNBqUWxmIXcciue4JiF1MICME1yZvab3J+K1cchFgqQez0PKAU/K6xx1c0Ix/1PY6LgSCGxUQwibv16Vj2LkH8THIcEnojDejVb7yV8uZlBqo7JneZZLQNFqUSZaZdFIfLWdsD8Z4RSdpd+kT2IugbDBJvOp0IKQLipL+9SUgfVyas1pn1ziejouGYWphDhvveD3SThH/VVxv3gneXYaq3Pl0iYXTTwK41ycGiIUx1U0W1dion4T7xU5aLNFnwL6ajopoJCpSHeSGAuxlVghSL6ZxsC+Cgo2hBa36DWNKi2f1EPR1Tw0W1SWjUNAGauRlXySTNNSqEUluHmfF0VngeNryiCmTXiGhC/35t15Xivm9HLrhEU6cF5bMv4vNXdge9McebJjCH6e0TAaQuRyfGdhnP4fuFo8RzteemaIF6WWjJUsdrrlxY7dmtRWMziKkT0p9H4YrFyLlL4dB38gXq6B0adPoh4TXOm+M58s7EUhENBUuROC8vzRfmPJaObHqQqaPHSxKTVP4o51hSGc8uJ6Gf82HzTjwqkzYTNDqliPDGRmB8p8bmVSXF03yN6KqpDwVkCYdy8+slJiGOEvGsRxNTlmDaTGIywLXPAaFZwgeWEN8jIaitHb42caG4v1Q1nKTZxS/XmiVsIfTdN89HzHuZVFcU9uRT/oFi8V+Ns8RzxhlnnHHGGWc8XDwEglKjl5Un0tUSqozu9QadWrU4obXEQjAVUjCVESZJlPg5Z7E90JaRlb+NBpngxSSOxk6FFIdbVmPsC8ar9lM4+XAqsYvaVUNpsdqugwqFkR1UIpsPQ6rpdVWNft/jkGjlciixgBM5QqoA+k8uCNO/4eie7ZA+YA4/EjILpuncQlMBmi3NhUMe+eItxAUgtwNAqjIWIM7hbjLgCuC964V0wtWy86shLbVo9LAtRFh850IJyfq9U7SCXHaaA4zD3cphR29vlHW7HUNzVUiqoSuzbgXVYHmRGrAakZeDsgWz+6Ai0blxAyOOpdhxvWiL8pxvhEthPK1WwiwF7/TcSzxqyN3KekzRHi+Q2EV7ubOsNaTAj57IXZWUAo/yMqeSLIgnGQT7FbKtViS31nPJMxoONEssV6SaraOyFwB3J5pT9qrK9FxkabxES2mpS5A6m03Sx/2Ow9AWeVpwsXnNj79wDU2oUWawZ17TUHUJhIRCD2kB0Ge0BaOc5APWu6TUvAh6lGVhn9+jzN8wqTRHmV+z1F8pkRPKuTzKJ6KhHSJTq3WobzcBhZFeWov4dVHpIZ6kk60HlNIcMXp/J6tGzmaOXE+mfwPQ361eosCyTNUDR2gbQdXpFKlZ5UsxSYMkpGSHV6MqIL3BnWCrSOhelTUbDpobxQqh9T9Gkn2IBKXUoflfwCnMQ5QSvsZBWQrHArHM9UdFwJJRR2QNnIugb5IV/0csskRRVhlckbeD2TUX6gIxBn5yV1bmpEdAkv0eOgWUNVFw+iWwcTuAvMClTBBqQnYuckZ1yQqTtJCiv7cUTfIHFUpRBqNKObbTw+c1RyDhP0gytMs0buntoSi/43osTFF7LlkBCui3Y5qkiELfYKtLLORHjDGiHNSk4WZ3+tXq85etxiRKBKyWBBUsMFQxvn9HR7fErQKpr1K9Hp1O1g0CYftcV95TRXMdlAaYgTXqQimS5+WqRjFJcamorgUz6eJU+3xmiet4vaUWS4gfVQqofC0VZxPP44Z7UMm0wAh6ds55WefeQygQmBc/xPwQG4rCwWMgUFJQpsUo+RUUG6hUMJoSIGjooNwk+WNLrD+EzTSKWNOLZzOunEyJtRKB7b7sRw/4/3kz6F8FR7iHH1leNa0i5tQzEs0uRFWNh9Y3gExZ8jq0BEfFE6e+Z9lnZUWdSikSG6vklQQNQJFcjPA+qsHJ4LkLxzemSAqc9ExQVCU2SMkjauEVNiuVyFT2idJWkdzAUDR8pdw/S2zswBzrhBMKBblOgrL002P6IlymDhr33UEyIPLzSYMzONY439zasTZA1LtJ9+iYJK1Qu9lcuLP3I+ZCohKigd8b57bsjDPOOOOMM854uHgIBCWgSkVAY6KpxOjZ7kJL6EQsC0dfPJMGETEJj4Qs+ACRDb7hM/nvUo5YWVO/wJmxmDNmjY8Nafem0U2DLuAgQ80wYH6vs+wrcyAFzo4eCJFBgT13LmHctK5wT94uHTf72DtRyunb75bJpGmpjCVM+fwdNBHLBBL97rnziJ/ESeADhdKha5MUmncYgvb7fn7iNyWgQIwWzQPWEp8ZCAY3qDPAXXdGJAlnhYM5WLkmOuTlKlHM1RHNC23n95a85ToDS4hIVEcycb/nsSxLC3uC+HjRKO+tnJYGAUlP30WMQK8uE1QdWgrEQfhu4NgRnfF44SVAohK7WVWO59+hdNkFstoOtVIgGNDUCfFnYK2pRKxvSji2Q53k7d8YnwIgt7xwcqNqVAz2yc3Yd71aCM+mdtyOLEm6qalImsCJKIp1AVRNxLuuSehd3diwI+7rUL2FwLsBiUs4/Q4zPkOaXO796PC5kCpPnZCw75pQdvUvHA7nXorw9aAQB5LJhCB1hqO9CLoZTexaIEZgX+y8a8k5XFQSNZMkQ0cH3uRErdrzPoiSn+LmBqWVQ8oenF2s3qGqlPorZaFs1nBtqGkdS/lbTGaEQO1els7ynoDS2NKygKYdR3M340lCP7pVJefifkCC5c24OWjmr2uP+2jdlqAwfG88RILiUJBISgwzRekrVgAlyQs018swiSJNwmPBHJ4dRB3NQpZXiDgXKtKA96LeB8TFkK7Y/aa2Rfjz7YgEhVWw+EMVXJSsHQMESLaAcTClvUaUiRVJQrtezlpUcRevY0t87zG1CvoiWaFpIU6Ezb05ckATLhWdvDk4Bn9OrN6w1SPxyO9yEaCm6ZLsLH7WqR2PS7QE3nsP1aNw9AXAnqwwx8POWQROkSoqQxYegBZOK3iHfokgXhPvimYGFNYQNKwwAmpnVJukogbNC7onRmiRHO6HwsH08BBihAP301Iimd7DGVoCfu9+ouMyRAu4RwFiAeI+1abPeLjwGn9B+iftImiRuvoCJFnSJYrk/lDg3v058tdLSAT0aZHzRLVPnSpALrSFCLV4kmPPu2rMVVU5fbBcCr9mQn9oT56U80eEsFurahNBKSYkudTBpwBwGD+sMONith1LXcJr59UynLvmHF5KlnrnTkdfBLpIPG+lT0JnkShkh1wTjZLDvQt6eztHM7JUUZhibMMShxTanA8juWkOfkl2+YhqyMCLavI+fM6rNc5ROkN272CyrhfN0nhVTf+veQ2Ptb+g1EysIjHx5JIQLceVOaQ5fC49OkJoUsEx55TK2HxzvPh7Gd05KtJj7GlKfFKCo6QkSC3Bmak0iW74dy0ELn9s/jpLPGecccYZZ5xxxsPFQyAoDgsdovCcaS1TRu0wXteUDe4SrO4ykYMclhKdYM+syryREA4Ii5LJPKd+kfNpIi9dEHoiDvNdb3fcAq2RQEVCGIgSjRECiusPgLCak+/Fsux1qVGCWSrh2XYjz846JwpUoqigTuhQlLkC/qMgXVXmZMc76Uko/qaLwg0nRTTOIYZAs/tHJxUqz9gLa+wwduRuwMV6auHo1iKmINdxpyCx+n3QlEAGGY6upd+RDUkhDoF2Djdh0hRjCqRMC0pJnZ2AMMPAreVuB0jI2XdIvWGxHeeyrGFZsB8K19Ry4hmp4OmNG6h/hhPLepqroUSZqUNCGSIJcTmehRBdHmc8XhzTsxDkckVYdcxzmqOvaImGHJDQ54kpTzRKzKoSCFt0E05djIos4VRMbuph5iYQmwgqAR/X8fuPNrc0Enw+rAtHWkySizrpvQDkKMABuY1/85qGrj4vMzTRzzULqNlBmChAEUTJoXDO4f68HyWRABGJcs7kIpHjpRTjzKSJNKnrQAl8Rq/EIc3u6CezoDhCwxRmfu4iziXL5W8ESUAQ78jxEg4QujVCGkhDDcNEiWYPmmT1uc9oRS44dNgxSJbG/bh29Cj7FSY8rdv4t13jLgq5GYp1HPimgxRwaINitePd7Bs5mhqKSjaeuKkgUgxPeQ30a60F9Xm81btwe5ecH6EhNPq9cSIoZ5xxxhlnnHHGw8VDICieEWuh2DUQU2SJTt6UrtgPq2USgYysRYWDXDjDHmml/Y9BlHXIWihqw6KEI9Q+PevTCZnJ37vUb+8H9sj0NWqCgThM3emdADLdBKii1lG7vdjv1mXBYqjKu8saSMMPVihcL09o1ysAgA+aNFcyu/X6JLhAbLyIaUIwHHLgqX2V0gBwapWeCcGeUSvn+UQtdZkUIDXJv9vvdBDGNwkWG/unUgOR8us1dAN87BJ1KCVNEg/jkhTp6OTnOGvbZD2bg1goQfR1wq2oviEeOrHrOMZ12fcDz09D1XapaxRhj6ZRU1bs9lUCXMZuZNU0jjsmbZXF2i0LcWrcqIY5oZuuXXjWYsha+hkPGM4Dg4DVyZd96HQguVOlEopzDDtC/bWxxk7f5zHpfWjtwHauzk0Jf8lJnbpT7uh7j+fJOS5MySeojJBJ8Eekg6KV/ug9yKpOEL3Uglqc/6HYjatxHDvWZezC2XRUeid8cWXoQ8GuZ2T39cpJliedtEF6IitvtTwc4Z1AC0eKmYPUzoTkORCHKefdyaoTyiRIfpfPOR2pOlsk0Ut/6mh0DsA+LJViKa9jP2xOkbetxRIq5jauXLCYsu8kO2OIf85VY5AVanw52RaQEZCZHelIdJ4HbDv+rQErg5/Gvz+sJTiNX66v2K0dvO2GTHdFc0mGwtG44Qhzbx13V48VANVfl0wkJjpODNeEFn5vPESCsm3jJl91FgdCdIJEeQQahMPaGcXFvqi8IbQCGPohIVKWEbB5SRbzUmgS2yHcDZLfd+9lp+iAIR6iPgDAtvDsKtidRKupf0JTV41LWRMQAkxNs3NG7uMuPJpgaXneT4sLezjzvuBqV/vT/Y5vtwHZaaMo7VTTNNgWMsrn6CpBnEM0wEdJgZgCllTF5H4cGcobj6JwXw5i2DS2nbC86Upy8SS7duhwUrcuU1JqIiOFO4pPDSTxwSuP16ULribw9K3vABtpr2zxfdGEw2J6CeNcVk9qLYG67oRj964oTTJyEFwpYOzjOEIn4H6XuBcd/gYk4PXLukS5yN+mQiEMtS7Vn2/QnkmtH/fKuShBKRnzZzxcpJx6j+e8UCYCft9f74Tqmk4duNsDtR8a11dt4Wl7h2xGyFZJoUnkM+zPHqvGXLP3lCh3sv7GHcTpR+zJsJelmyLKjaObz97qvipMWFfvtGT03UqTezYP+PH1LiFySNJDgLDYzb7ltAyBovmmR9QrCSEEp5qkzKYaG6iY64mj62mcmZWxCkGMuKyW5IGzO4iQXmCSj1gSUI0AAOQcPh/LGDb/fB3u70BYbqhobE4bNO4PzwsLEcqSX0yTa3noskxGOW4zIkWDzIwpyaRJvc9L0Oz1eqIY+2Wt0YRyaweu+92Oe6whRRWbdz8WXzmmMWAGL3msvqlXBu7WhubrhnbFkbJa+Ef50/9anCWeM84444wzzjjj4eIxEJTqhnc9Ms9D1UizAId7L2VKNUvVjx4y+w/L6uL/RqIdhFjOn17yqJxwO5C7lehyJoqWPS4aZZNu2WYVpxk5JOgwncOHE/rAhErWyipJMvOQyfxuvx94tQ3Ct5dhpFeU8OU6Mt/fXm54cQSlU+CRjgw9P224RLlnSS0VJ6P2+fJzGEGFRjEQbYSqkhL5ymlm5foMnMq8C6fGg+MwXdMojTG0CgBg77doGQ6DQmL0QM+SwLxbSr6ooNkx3voe7+1c8M6+OJQ3RWI8O+W9dLGL3FvHq5uqiWAzxOrd02V8/1onN2UN8iykBXmMnAhMJYmL2T0du1MiiveWQnBwbO8UJoJJ1uaUSAd+57p6xiNFa7mbDW0TLqFvwTbNqnA4meuCsLlYNZVeo4xKhJshuYdKGJAWdwkXinIlTw7sSorVnrqLw3FlCWPK11vH3YwyvVxUiEO7SaUEmucMVeqKajv+y8I4TFdD6wUaZYJbHHe1G5uXyfnYhDL6WmPe5XneZkodJZcr6Dk/CjR1TMLpl0IbpbVEF4R66tHYxxcuabqHJNNnSYLgpOLJsD6RLbxt6w4yK1E0DHhpShXxO0Kq0oYmS8m5mhjwaQ99lEMA5FiAojxWoKG27eNSyjCFHb/jmCOt2oQFHDoqbalpMUIVi1HzXeNrtiuBSDQizICVk3Tn2oQq4bqPz6KpjhY04omu8b3xEAlK+Mn0A2xP4qUWrPZQobqwT8Vm8N+myX7WN+UHZ1Q3hBFDya4RT1Aqp2z+8HwYbxUIqs0cz8V9ZFYsVjYRbfi6jwf80805CBrQPDS7OnpMOoD6wkQFfulIERijxLqUT8d93/Fru78Zo/uH5sgrVq1YF6NPLwWfv41J4uVl/M0hir+bNPGHdcXVeC7v7Wbabq9RO2ZlsB2EQKBid7XDrRTrLBgcE2V24Ew+IayZNMSTWLB6dxJxLPTX/Q5vH1qNga5cQj+hlgIu4ztu97tdly0WdBaaGPs9OgCCj6MUHRKv3LGYA/GznYw0wb3f7Lw7hAbfxPv5L5QThAhjtVlGVgJgXhR24h/riieryZeSduVxbxaE9HfTA4vzWbSBvbNr2WwMa/iUmPY/znjU8OQSsauhkhyi4Cj0HlwimpxjF9WUdLdPPEDo9+SyRZHS2/IKkrxAEtB9rRXVum8i2Z3sfaUrmt1XJRJgSt6chlpRWGd8Oe6oLZ8Btg3Ft9bDVmO1bOfj04onk73v6HixMoInRUcrkxu7K5OMBd/nQN+YHiShN8KKKEd75yCxBHfmfnR0S5Y6em5IJ+HDZAFobC48SFMYD0jOhC/eM4eisPmBYXTTuA6Tc92E0rF+cO8o3gsMblCzDRqn08e4jWxsKdu1ooRTOcX/fAtZiHIjLT24NSEkhwIU06iRBAAW4pirPBu6qgwdHACl93RJ9lJiofBuA1GUAkUl+Dc6JSh+XgsjtF6+N85t2RlnnHHGGWec8XDxENuyu2VluxYsTogsJXaYHLLlHJuGXRWd0303YDQXbURCdqSZSS+hslhT6pcns0BJ3Q3f7UL3kN3vvaP5zmb30sQOSLrcitou2PUR0EOGuemBpaRx1u+I6YBmaUgEkUL+9TpKPJ+0B2RcescHY5s+VUb3moGhD9QLdvvez73j2z66f4qViJaVA9VYO1DsHJf3BUwju75YOWqrKxa4pDxhqU7EMySlt9QOEYLJKqCFgkPHRLuK315Fg1TsxC4iAUJSOccA1llTtgverdY9QGvsjJjSVVVdhp4LvoWzVjqm3uzavEICw6zKAaG6Ki61NhjAAEA1upOeaaArAHAxdOzDUiAX69ggim6K3bZ5TTrk8N22opv7mUhq9gTJbeocU9DUUXbGo0UYclLOP8RJbnQkjVlDawNKELv+N5HE9H23DcUydbsE0jBx17NjLcsPTBwEy5Y1xkBIClFq7RjJv/e3qtvuYuu7eJIenShFslTx9MSBYHgTwbYtWF1fRRCqtn0dT39FweoKtkzpOgyBWLuKmwn+vGxYP3wAAFyl48W6F18NAe434G7f37oEW3mgUVluHr8riVSQhM2ENwYwKOYRVQ0H4uPwsdToilprktm5cJDZZ8SUpzkpupZKXrAY2z7Xk3RaEDKiVDJ3QnozQClYfYLsGsanXhLuK4fJYtWOxctRheKa+Bzdeot1atZ6yX6JklRXzRe0I7ReQnuMNBswCv4wFHIiKGecccYZZ5xxxsPFQyAoF0MyiqaK6lY40BQ+LAunEm2eTSUtpVsP7Q8nky20ZHasGu2fC2ebZ6nOr1BId24KYXH9Ca/0TbySvbXQP/HdA9E2eWW0yDJrZLyEZu1uh5TJ+2XiznjopLqngIZeh7eyHWiSan3frN77/JSEMu+8ey4VP70fnIr70XAYX8QJZNTDQgFfm4YB3/qfgoMGyuJmYM+XDc9PAxl697zgQx0IxjOPz6dLg+/jpHF4dzjRr/cjzuGmqXpLjLDiDtMsSk7QTIaGYTCv15fgBC21hIJja0fsHovrxqxr1JHfUcE7++DDxnWrhGq6M1UU3V6/urqxpp4EzXo4lP453rZZRfE0tSf6Lsnrsq314BAQAdqdRCnRyhdt9pKooCgC2Tnj8WIJE5W8b3V6jh1hqSsDzuVQhiRzPgjmJbaMFNw7yORpZX/SkaRMAQcngbQHkcXfWydV7qWWmB/8ljoOyTmHp++w+avJhDRI8vi2hcLry+dtYkSbcZPkgrjswMoLVm8BVonJqAtBDE1xeQkpCrLnUFoPIrG4p01L4j0UYcJKREjt3RF37TgM1mXRGFrXfNmp48nO4d2lwKYXHOTogqSH2WTuqarRSCBBYE1FYZobO/w7mYJXQkqBRBAIqIlkjdPS+PcuR3BINnI0O5nGTTXQYB9vWkuoUFeRJLxq8h5dbnwVCW2wY6VogEhZbgltn7E25cvVMT7nAE43LZU4xO+Oh0hQ3tkNv5fEgpjySfFEpaKko25rE+kJQdbyqaLQW7kfvxaeNBSm1FfR7NNeuYZOSLeL3HvH3UXZoDhc+tdJW4KABLv0gEAdhiPluDlbA8SFmyZyW+gczM5xeW/GjaegEEq67UeQ0NZjDzj1Yt97qYr3HwaJttx33PbAMAEA27LE5CoLxTnIveLT/g0AsNvnc9+hlpHd9ld8iX57S/JWxtNlLPQf6xbH8OyT6LIN52EARykBdX9ot3zwXSRNET30x5GJlx/fu4WDgdWJIcXHvsS5hSaMAHeb0G5EIXAkk/5LdbEpAdQ+q4ZIWnbwi0oIS7XWcfWk0S7eXQj/XE1qmkqUBX2SZfQ4RwLFJCeaBGOfgLrKJGWOlEI/4+HCF/pZLBEYcxSAKK80FexebUQu+pWmrjMXp6RJEwNJco17BlkWJNVYaIkyyfVyIXja7JV0x00rDs3yR6Xokgm7Ck5iqoKi9C29Z+eKPSRHUxxRYpK03/B5pnJsDtBThPG5Lg1GKwAAIABJREFUbnh2IUbTFSor4/VqBM6jxeY0VruSczimMlipDPe/iC7DnnNt7z0F4vx3IBy2qWlKKfzpGwrWKRkrccFal9gguWimgKDeuUVlMqXNzUkIzClSLE51csPW+OlE4dfWQpp/iwSo4LBj3dFR+a0RZCXEvdORxP1DJ5Nem9dJJIi8o+vJmkD8Bte816E0Ge+mT7trgBaiTIByqvvuOEs8Z5xxxhlnnHHGw8VDICjeTdwxwZ6TRPC6ZHnGWz65aCIVlHbiHkI67aYpdsFhXzUbPommnT1rQJiL5W97HwqNwIDr47uc3SlXTP2FICOYRl89esihA3fIkUy63/mJASrBl5vVC+9xqRjVYMAn1JBcxoGUXzb88jgO9NfRQns7dnwyiLM52UsVz7Zr2IijlPHjf/uIMvho6NeBCHzkC56fRzlHlo7X9gIA+Poy3rh/uUFerIT0QaCWwe/Rr0e4uLkUEy5mZrW+e0oUx3cNksTVrqkN4LAo1yUQL+6JlBFnucd3HfdjRzPMu1Nq6yziJb1x3wHAzhRj8OxtvVxCc+XeeuwmKhTPfvEcuSoLihOYUcJw8WLlMFLEE1dKiXOQJlHmCq60DuWH8e+U1T/j8eJuKCOBUFcnwJco23nLp8pEgCeFGgLHyLnIm0alEGY7hpi2XGlJs62VdLSNAkBZ1yBUh1x6SSKmztYOrr3DiHI31Sxxbz4PEuJ5FCY01xXae6g8O4IzyuWpK+SlH9/5V0yvd8FmO/4PT1uQzV1uXStwvY3mAAFCgVvfmNfFlj4viNIgnyJRV+kayPTEp41ntBIFBHOoQtpbguhSGWtYbiSqcD32+GqmNFd0JEIh6EeWvHyMnWxPoHjodXa19dMSDT0leT3AT+P+url54+2OxVGTqXng4mgQsvR+kIYly711dFNKV2tO6JMWTHmD7Nj3d4Sar05rqk7nllV6Reqk4A/rOD1GgjIJmsUdcWj0enhlgheK2l4twJqayTHwGnBWT9iSa8BsHirp1siaIFVDm2Tc7c2ieZMdEjd6CXhzjdodg8C2ILqOheoEgfESDsOE7DH3ENIQH5JpYqj2QKyUCVtdKsR4DIckLOjCZNd24O99JBA3OXDY8YTWwt7wal5AVChqiv/579/w7XVMDN00X94tG96/fw8AuFzW8ML5+mo6B8J4bw9P0YKLTQyrMe7ve8enw6HKI2rm754u+GCiaIufVy3YPIGpJQTmNnv4vt062C50VQ2fH2WKNPBmD939OEJyXCldY5/EJbg5Jr4dwOrwczjBEu72Xa8qUO/cqQXvqndQeafTAg3xK417MeTtsUUiKoSo+zOXcEwOWL/3SHxUES7MZzxeSHP/HY3rv5Bm2fZplFk3VbybdCz8vmqtg+z5XjyB5hKcClCWHkOSnrLsMtzcnceHqBdHiZk0eFBvvKd8HisUCUqtHBu0sLvQLAfJZMGgmlyMGcOfDNbTCsP+e20d3VsxRaO0xRXoNjG6lcd+Qzzn6/S5LfSasrOGqcfa0FuK5/niypjm68JoxROm8fkbRa4FUg3tmtiD1BJJhWjy9Y4uQeZwqX3mpB8QJMUu7Rqzlkg0RZHJH2WJN3RrBJFNEdXoevIFrytFW9VSS/B4vBmnyZzzaCTIx5GcnCjh1EyqCQR2rx3vxGoCObK8l27bCnG/MR/vSmkdoPwP6+9/Nc4SzxlnnHHGGWec8XDxEAhKyHyrRjZ3dAlotBkU9W7rkS3ORCOoBonVs/6tKIpLI89Su9EXn7vhUutwgoTDc/axhkQIdty6w/wt4KzA5viCarsCwgH1bhmHMlGGZCCAyheodbYwNFQV3zC92c8FkaVeLLO9NAm1wIM50JCmOn3GGIPXveM3mOYJaRCroljUG8TGVgrF7m/vFzQdqMbNINAXueJXQ0surxuKGYZdr4ZyQXDb3czvgvebmYPZzmx7uuDyPMZ4OTr+9vkLAOB//r9/w4/vbYdpZaF1ZVw205JBlnAuz+N9l/UJ6uWipUzwdAkiHF3MlK113KxEI/0IfZMko3HsZu7acajDzPa69Lj2N1H4IFcuUYJMNFaHgjEAcOoquPpi5RLX85AWVglLWbA4JOs6LqJxLqrZIXDG48VTHc9KE/UmHXTKsgbb/UOlglxpWBVs6qoghKx4tzlr0wU1buYkdTsJV5gmQiICKtD9wJtGA4z/DGCQ0rE70FuWONaVk9Ho8++9T+TJmlpCKLkzrqGUnfd9l8mR3r7+pbco+yg4dvS3/Qa15/TldYzLvREK+7Pbsy4zEYLdWmBjik7Oq2p0eDoNYC0cpeTOJVD74siVSsyfKonW+LnW6fP3rrjbGlCIA6U5Du/mOcKcsVTKsXE9JU7dGZUEn6QkuTfUcqGhmI4lNW56GAxydB42oVDg9rEqrDiyPojFScENeLWp6uYl9K6odtzMWRJLd8e8N4gRcxmrokxlTP8ZDSDKoeT+vXEiKGecccYZZ5xxxsPFQyAoPbez2B1BkR4qfhSkKgWtvltmqBONFLjZe8pksOa94gzO3UTwFTTQFC6EhcfOptY1tCoONh+ce0MLr4wWFuHe3sp6Ty0P2iAYn9VcqVF7pJOFdrTYeXOaL3nbKyZPG8l22cP+5uUQ6N3OVQXFM+2qoM34KJbl3qVju5vPTGXc3BvEeTpdYqdQC0Vr7cvtM9z+cKsDtaByiZ3XBQVkqXgzvZS+t/DC+HYtOCyjfncpcb2cdEfS8LPxTv7tv/0Z7zdHXgypOPa4nl9ervhiPJZys3o0f8U7U6t8f1mxmRZMXZcwInMVzoWAZTPjv05DLRGAmELuhQuKMWJ2lWybdK2btqPabmlVit0O2fuBVIot1PG0ZDsn/45svaLGLqwhCY+FS+yy/Nq0lm2kUB2aEWc8ZIijCEu25g7Uy+aJNiGuQU6QaLWvkFBvdT7UtRPYt+bQ2JG7WDRzjc9v9xa7997TJ8b9T4jTT0o1Ca1B0taeSAE4JBvuroTcFavNic+DOGefmzybMMJjSnK3nTIA3O15voni/ZMhqVyDdPn6cuCwuWq/DwRFqaJZv8GhGrw1V0btnI0SpXDoKK3MKKvNi/Z6rRwyDEqcxOXd+SEtCLc6IVI0P4P+cIpmc0JPDaMEwTXZ7kSBipApiI/1xX2U5vEs6RkXf556IgrgcFQ/ODKJiAl6tLE7aLIxo1OOhWui8EIgG0i2tedCSMIuTVyiCcmNYyWC96sX0fB0i9b1gmghJ0lj3e+Nh0hQPn8eN+ZKBc2xyKXgRxMGYzO82490xbxsHA/VgmSeF18gao2OoNYbmmGv1YiWhUvc3NolRMyICy4uMGOCQuVCWG4G7d/f9gQBAOmRokki0a8fbqMbJcZ5ENZ1Yp4HPjh+FCWoGx7WJKTJrAHgoki9x8N6VI7P2mwy+FA5ZO+PPZ0qndBbiiTrmisOv6HWLeC5Qt5pwOgGQ19ZghDWww50TZZZBdQm1K9mUPjby0uURKgUbF7SeP2Kz0b4cqJg7xJdU687IM16+u2hvjyveC6jo+jr9YpfbGL78P4Dnt2Mzdj/KxUs1n3UQXg2rZbVOq26KJhdRGoFnrwsOE6lvVzCZFEgVjADrkfH2t8y1++S9/JTWfDBSMNiSfVVFYuN5yIdi80mB9+jzFntGrxfKsTe+/noeJmZh2c8VrhuSKWoHUrXFN3TyDrfQO/+DFXW0FRSu+bX6xEL4lIkGgKc6CmgcKy9A2FGuhRKcq5PUzrJqCgmR25fuDp8KRAu8WZy4Uc5cLfsQPYSSXZZ7Jz9gwGQlCTscglJeBca3CAhiLbVisNaOL8dB172qTkAwLpxyLgX6tBiyYSXYjgl/GVySy8LhftyaHUUDrJ6JYb4JlSdUsBBJh1lK/supxkcqaMySiWexB3RvbNaB9dWlhDYVEqNmhBb1B7jQoQsYitll0xshOhNh+d0JeMDPLFq0lLYTnwjlJsiMMfmuNWCxebCizVaXESxWzLVZzJ16LvkpknVj2eMLRuFIbpki8bYS9PJduH74izxnHHGGWecccYZDxcPgaBUh/yUYIkv3m0F/3QZCMqnlwH5iQhuVjZ5KQx12XriaDXdXK6YShjhVWYUTn0KAKhS3vBSY4N6HLEDcHO7973gam2pd+EoP6ySkOCE+KXaXthsIzA7AQMme1+Z8P+1921LkuS4cg6QEZlVPTN7Vi+SyUz//2cymXTO2Z3Z7qrMCBLQQxAO1kovPTKZ0mT0h+maqrzEhUGCDodjMGOTW2kKNA1gCLnFDkYMHyM67hBs0bJdlLsJ+nq4MPVk+VEsBbNGguVqXU76rmRJXpyKJ60523iHz0m6dgBnFzIr4VLYm/PDSnH0sRt6PBtqtF/33PWEh8OzpZPiPrYwf38q/stguf6qFf95vP8veqOnzt/vwwV4fyMtCjHcx+/bYNqOswFDKKyfin34v4yhh70o3r9947X/HKV5h3b0kfr5GD4Y348Hfv3L9cazdfwxdjbb2NXcbMM+7r2VDY8STdX+gI5xHX4WV3ry+vtxOD7+sVI8rwoK3eWis4ErNZBNLOO56SwX70CWXoqk0DoYS2t8nityfmNqwTonHXWnClYVX0tUAXjHRM0n6xFzTkNNn53WUIaHSLQNkVvJOallC4feWWHLtLeik+153zf8Funb8fB/nJ2lwUdr+DHG/QcOYMwJdaj1rStOskyVDekwkj1FO53hxUF/FhRjioRpNmQhxK7Z7C9s/6/WAWl9GuLdxtSZ8XpXVZaAa8n2LIVMWqGIv5nhpEh/2E7As3GgSvaJNON1somuYdGGOVoIWmOuLMK5uLuxdDycgxsE7x6ssOMZAmUp+MZ8ZJxjT/EtnDYckOkf0iLI8adOloa5hZKLYutZ5v6zeIkAJfqqWMsb1KsiGiK89UHHe+pSGpyVDU2EtGCJFQpAGU9YKZoPZVoL5E0GSPkd4pBxWeq43FUqtqFZcHnS6CwWqCq56J8TCxcpKJ1zd5ugfWYeMfzAKJQ2Z9DQHbzjY72EqvDhMKRFdRVNH5Qwc4KmkZFgKogfD4FlhqmUrBTYwmcuXzo6fI7PdUtznzNoV2d6zpszvxm5Um9Tvniqdnm2jtbI2Y5/s7v0YZ0BSvji/OInPqPiaFfqjr6dH2xlsI/r/Vcx/Dj/fp2XCP5T/5fr7yNF9D+Ojv/+8Q8AwN++f+Acubb7SMu8b3d6lEg74COddN9u+O0vly/Mt2+XTueXj8cV8GD03QnqVa7PPO2Jx0g1dnX8GJPNTSoXBXYb3bOHS7kp9rcc1wuvBT67HZBYQERSjxLma25Jm7tkdYaktinG/VuVrFJUZV+c0HbBTwZDG5yaimN2d7T8/NC61S11b+FBYmfDOdKYj8fJvmW396HL23euFE0McnAZymsQxocAN5neDR9jxUxDtE49lXdwHpk7jYukB1GsB6rCaCh8RQSCbezQXEuss1c6YaQcdupO0gPksxkqW5PE4u5MtYhnTixS7M2Ni6yL8xre3t7pdxURYest0/Se1SwRcF46DeVxx8/WnHpL6mE0fUjEwcrTvFbCzZy1rEyNgKFu2TJjF0y+M4KbRMr++t0/escxzDZdbGrZHDrJ1C2Jp8+J+BSAxJBT8MEQleWDsrCwsLCwsPD/D16CQdGxqzyb4BkRWgP+Pnaj7+8Xxf6mHXgEddUuXwlcxEA2XLx+OHuniOxehVUnUaFjk7paBbmrqIJOumpEozUFs7YJ+rAvCDsUM0ujfRdSY7FT6D1ltUWFYi9zw/HPzL0ja80nNuZJ7wFJASsyoj41dxt0MJ2OUdRTGT7+tSk+3URZxVMlLbnp8mtsxAp1Q4kGU5HicbCJ2NVUc6ICMcTsQUNX4c9AdthkuwFTsg9XG4JIE12/OqRT8W9dKFL9frRknEbE/vh84t/p9An8Tf8Y1+Cy6v/9+5NW5Xsv+G1U/GAwPH/743cc0VXYTgp591vHb4NZ+fYWDQIr6qBT38XxHrTXqK76ANCDnvYTdbBPHx/GCqjo5NrbgTrEwR+94ewPLLwobHru4uGafCLozjl3tsVUESbCajzuQEvhjr4hm6GG4FY8afxNC9oR3c57Vp5ERYXqF3EjO4mPVxVzVux8NnDLH2z1rWa6Ct1xRCdwVaZzeFqerTTUjQ/tbcyvimQtvDupZ+0y5QfiGnqKLskLY2JgFC3twpme2LZsI8EUENLm3X1qaMhpKudV6Tn3h3eJarYCufShowACJwXKMuYDdYUNRrRLpj/ASj1hikdEvzTdS4w5B1khdX1E3PNkNaLx4Uy5s7LHgM+pK/ptfNmO7BJ/MsVzZoGH2mXmg0xbKoSMfZlYOTOj8Jpr3/RaFIHe/hwX8hIBip9ZInwLk6FnQ7drEenbX64XitBQSEzS4lxS2xxlVA1GLYZOGpVAh7D0eCvC0t5NSzbqjvbZ6CgaudDUCTAN0Y0PVRGhgjvskL0Lao/yV8P9LWhDpYo9lN6lCs2HxAU+BsljXKOzG2+a+zTJ6BR4jAVb3Wl7/78Z+9fEOE5834S59NOyAsEtJ7YpsklL9njokcZil0vS19nGBSwThBknEJcyf+x13GI5uF1gIyc9LgUaKvpD+NpojS6lo40H94+Ry/+wTnrRAfzreJhH7Iu/f/9EH8Z57yU7Lm/j3n//8cAR5dVvO95GANOa47/+t3+9jiEM16Tg7dsVlewG/HoOdX+/3tN144T5i2yofaQN709IjZL40csFclmJ44qV3EMRtfBqiK7VRXMj001YSUFlgyhKyecppWpG0zVWjzXnrksdiKxrjGVVZfWZaMHu0TFbp96yI5gRUKPi6NmfZhxAhaGOxfX2VvKZjs3P0fLZhuMY57BBoZ4BAgAcmHrbumGPEtwxfs2VVSFz6alKbmqiAtCvEpfxvs7PTelOSW2hCsIHrUimubJMOHeCgjSTk0h9gdW8V2+i8V1RrSMo07EI+4MVS61G2ApcXa0zCAw9StxbtILY0jbrtI93OMpILZeRurpLBl5tqgyLqhgxn8qjPVu2RLrpVK4BWxF8G+Ps1owbzs/PUaX440R9G3ILTLrM2OR2S8e/fb5geXkzNp7WA0nLhZ/FSvEsLCwsLCwsvBxegkHRaLIkmjvr3vGM0O2Py9NC7bIIBy6GJDokXimD66UhAhJkBUuRChnUe9SZGySFq10oXju6kU4NU6+zNTIYsMurBAAkRFsTO6HTbiXsBlpzNr0SVaZF4GDXTHZxRkabqinc0hYRfWrgugDbeO2vqtTEfZC+FO4QzPO8gr60IrRhv4RM1/uP1mmeV7jLSg8GEaGxVA8flZKmTTqlplKVDpzjAA+kcGvTklH5uEZa0vBqU6HYL8bG5spOnKd2fIzP6m4o29dIvbfGtIpDcSuXoFWH8Ppm2VjsbAf+VsZuYjQr/N6dRlt/LYr7KLuSs8OH9X/sCHUT/NtxlQF9Pg/yy2+jcuhNN/w2LtKPfYOWIf7eHNsQdO+D0bpvN5TY1XpWUSy8IMI0q0pW6x1KsXsYp1XNZ693zwo3OFoPBvV6z83TDl0wtUuItg6qZF3NwU7ftciXCpBxNEyLNDOK+2MHjaIUk95EOaH1loLveHZNsnHp6Y4fTOGO53yi9juEiZnoIn6Kk6E2FVbRiAjnl/T9SBE/3DjvFXq+FLzdopGoMtWLQ/CM7wsxfzdejipghWcIRZsb0zYG/2I8B1zMeIj4u03pOXdOkhL+WT6Zj2KSElCS4GkcOqWTrHuyNNH11P3KOY3v6mOuijnL4SxuQElPFDZJNLD9i+8WCgn8eBpaaCCCqbsLBcgmSgYtGXfjmGxmkGiC6JMIdmLUg30Xyc/4WSwGZWFhYWFhYeHl8BIMikQ5nmWb69NTc3B8DhGjChU7HQqN8BsA6vj9iOTfagqzBMqIs428pxbjjv3wFG41pO4ifndYx5NbWKFQSSJynlwIL5fjEXWPXzY4/QL6Bkau3TNijn9by1r3OeosI3rfS+VnObIR1V4Kc97P+e8jsj1OIRNALSpy93+aIxS73rLmnyJbkdRJaLI84XwqYszbXp+d+cn4l2V2DoqqTDqkRqQdzFF60MjUIjyi9+/SWbtfBFOZ50GvAx853Kc4/Lw+rRuAbTAkox70Qw+4Div9ptifIZyO3HSjMPF4PPB3unCCNE8Z7sSt3PH2HEycK87YYQynyVJKVD/C3wradv3PP/72hP3xY5zjcMvddry/X9oV146jhYftwqvhjAmsg3OKe6OuIxxGCxw2Hu6jG47w2LBsRKdj0nu7KZu8NZWLnQHSMRtATBT9NDpoX0KYr0JJcaUrrEraBdAFGkqdRCky6e2mMlKytoJtHOMhwEfs1AdTchPBFm6orvhBycL1jHW1FMB79qO7vn/MKbFvltRXZBOKnHOKKufi21bwbbCe+33Hx5jrnsO36Dw3ulMXAPc4t/FZP84HHiwTNorVqSsp6VyuCvie1zjKwel3Y05d0qUTTIHw9VlG5etWhSz0pTH5WhDg3dGDQelO7cuoCkfz1OttW9r9h26lw2i5oJNOx7vDT/vy2qv7y8RWhw1HMDQqZGbcBTZUx/0AbmN8hj0DivMaXk1U8afwEgFKj14F1ljLriJUUD8ilSOC27ixuxfoML3ybqQSIwApm6CWCFoMB01jxmJkQLcw08leESKZ1qBdsFDYjlsB2lhkWvz9LFSIm2e1TDy0RQAfN7DfwAVTBdhqCNbGwvY0HCNQ6OYc9FyxN8UtmFB39m7oqlSkh2hrF2HKQNHwDLHVtODH9e7N0hBNHWPsshKKdDCuSSiqZN5D1GeToHbyZ4mnspZUqesk7GrWs9ohJh5RPsynGx4tBzoA3MvGSazUSvuU57Mxr7ZFUGAVn+cw+uuNzUzqGFubzdVMmerTEVzcq6Ju9/gz7arVgVvQ9c8rePhsD/Thl6PW8NtI7fw1fFJub3gf9+P9tkO3y4vlP/7F8fsfl1fLv/37v1/ncjwyBbkrx9rC6+H3P6603n0v2MYiWYuy4qsNRbYLKFg8WuPzetsKvg3zoX08A/84Hpx/ik4mhuN5PXpHjz4yreFtjHefDCzDi6NIelZUAYW6kYI6O7IHWnX6ILGvVRVWcnRMKW5xVG5EwhPKsyJJncaJ4tcz2PssYBWmQgzOYCOs46s6jeu6Z5VNzA5u02avCHQE/L+837FF/7YxWfcGdrw3zw7B7BuknZu1x9npK0PfEFzVnNfxXUcc58gAZTK3jA2auDM4jBSWypQSkSxqqOacb2Oz2CTTOXV6X9dY77Jica+KOuY3G5GM987QrndAxkRu5kztsH5k2oRWm9oIRHCqWYlR4kQBaHVEXBIfdeZUDNevlUg/g5XiWVhYWFhYWHg5vASDEmFja51iwFKy/nrXiCAro/oqQA2+y4UMyecQ0T5U8KHXz7s/sEc9+4jxfpwPfDzGzvqUjNr3ihuieVwIqbIk7uzO3axF+djdUYaoqXWnSC1KDveqjHwvh8koH+2wZ6QB8ryj0dXFp0Waanx+O9mt2F2YDmrNKFSjO6IIMHYVpgrZRnorSBlH2tdbMhxz+TG7P2Oynz8NjS67435o2jO3q63U9fY476p5LubZsRnp0RAn6Zugb5FGU+whjB7C2OfHiYPuiA11vNaKsMw4TBBvu7DJ4ceH4+Pj+oy30V7hvinOMU5OGHe14YRba0GpkZdx2Ghc2XHiM1i5MU6P03COnWJFxVuUR4+b9Id/4HvYgJ+fuJXv1zHe77TjL1ukdRrLLYsDv8z2vgsvhXBJFREKIUsp8MHW9uMaE02UjIGL4D7SBG93xf0eu+zBYv6hmdqET5YHuRumgFSSiXA3NhCN7aeL5u59sgj4Ed4pDtxDDNqM39Xpvq1ZemzOHX8RocN1CEFNjKLNWgRhf8EO6kZHe3j3i0HF5eQdAuBggKpm6kk8WdWYv6xnQzszgYd7tWV6a6+RXlW2Jjmsp/P3mBve9UYW/Mdp/A4WLJQCDUt7FfoWeeOp8ztnm3iXyUMmHGORbVZEhJIAkeyMzDQdDGUI8zcV2GC/9nCZNuB9HON9U4RHRWRUrGVJ9HGCaS6RLNceGWpIVXa9ltOym3acl2b6UN1RY3yqU0xM36vueRCeMo6fxUsEKLxZU4dh0ey6y7yuGRcDL7kgquvUEXLcgKp8wB7WJpv2QeP1jkcU5jRklc3xxGMsWGXQXUVBhfd5dJrZBHVnSM0GzCeH6cjnZbCFPg1kSZo1VmdR4XnTywyZkoAIjqAvLQeRmTAdZNGJU5xdkq135qmiQkal0KL6KgUYk8HpDCxCw+LupOwOd55vTM5lMmJxyYlDpk7zcTrWJ7qzKCx461CTW6bZ4OnHEF/QkLTjZSU9vqtky4MMkBzb26CqXUiRy1gctALC9gj+tcoL19hIRX526JSpzfk8qURfngKBjkRxv4rQ0CEcJnsRapRu5UfS7VTRdwaMVQvuG5eChRfDr9+uoLJkDA6zhhLjMlawku0zBEK9FBz4/pmVGsCoGkmP9EmBEVU8gjLofEFhN+TuTv8lY9pap42EsrLvdo951WlSdJxGj45Iodct5yyIwcfAtanXV2wcHZ3RSPGrh8712lEB0x44jjEpwVPHpYXGm5FWufY0UX3p3FxGCsm1c87bapphfj4Ott2Iz9xkNsaznO/Hcd3qhjImnVJP1EjPh6Si5Iru7gghoCLTb5xFrla/1/9ozqUMGjzvJnr+wS1lBZFTl654vyuvJwPRSCeZYCSgoRCcoX2JwEr0Ciwwqo+4pvgUfMXakwadhvRcoVGbIAOnnhWoT3FWLFZ+Jpj+6+J5Xj+JleJZWFhYWFhYeDm8BoMyUhobNmhITAVTJD9cEic32O4Ci11+SfHQPk7p7W3H22h2dbaOIxTvsbswRRny6WaOIypc2gmMqg6PVIumSOxKR43PCKHS4VRCm+Xufq5aIcyZ+rnibPKw4++SLJCnt0jhLqxAadff0o5sICQTAAAZJUlEQVTYy+TcF1G20S8ElsJVitFUp10B6H7YktbJIpwrfJ5+F7uoqLv3ySHSk3XgtsGSOTLhB3fJBmpMMbVJaIckp9p4f9nTZVUuC8q8dnE+FDo7bfWrphC3TuyHcDeUO8L40vN54gxGCk6qct9yxxfH3XrjzqV7x5PpohgHyuNuDfQ0uOmRnjkxtqRP40BQyqrieVVUveYZEWNX4N4bxL82rNuKURSvqgh193ECz88Qxg9x9j3ZQFF8SS/ELzM1ANKttRsqjyHmgc5mqTdVbCXTMdd32sWKArAuOC127ONZ8TLtjDVTRy4U9cbfg9MBLhdWiWNBVMcVuLIlb/q7lJLOuOMUNzhZpqelWP6328Um/vpWIWNtEHS0YR5ycY+x9+ZDyDmpW6eAOZItXvbJoTbnjGBQIE5LebM8LlGlB5cMuvgqNhgMzTWrjJ+DOTd62Hzp0+LIAouYxzZh5Vbvxrk9Er5aKjTmjuZ4RvPWkZWuRfPe1am6cmKD2SG5Z4aht0wrxnpRYV9YpFwlshor5kIX55jUiT3/WSwGZWFhYWFhYeHl8BIMSoSNWgr2UaYpEJZKRftt4X8uXUKUdxVRaldCSvVt2/FrvbJzVhyfwyH0hwxhrKWOorcDD8vvCleTFJAaWrg+noaIB33shnpPbYFpkiEZqyJpgMuV5fq9+8SyjEjeAZv0MmxDKNFrw6AjXq065WVN8ufI+4qxlFo8tRLBLnQHfWfm2n+xS7txfV+IqhR97JZM8rhaOFSeTiHcXM8fN0yBKV+dbpOnGL1r5r4ZsSsQFZYRRx/3IoLOnKYkSyPpXkjJjwqZCm8pDJNJqBcsVHVhw8ToV/I4WwrxxFGHv0rddm6vnC7BwH0PzxVD9j8ZTCCEgjrAeZ+PlkLbTvbL6RXTu8Nl3q8svBQobPLc/kPRyIqOX7XcodZq2QfrJiiD1XgeIcbviK15KYWvLbSqFcQMI4r0MVGghjibniwgM71BsY858jP8EsSxjWaqWtNxOp7dKpI6i2l+uj74n0Wdyrnj0lTY178XTcYJnjo7c5xjXozLVbRyey/PJ/SMv19z+KnJemyloFuwNQIdwtIQy4+JFfEFhijFHnOaGt6GBuWbAP82dGl93Jdfb4XC1Oapz7gcukPzk2xyTFoKoV4lhsN1zPmc00B30vooKWYn639YZ8lxNAssmzKTcFjjNeQ48Wk9mtYTcc81yyY2OS6XeZJPwZJPgl8rCh9z5a2kHUb4t8RxApc7cv2TrcReIkCJm32K0674JsIFNerbBT7VbgvpTi2TwjseRFHcPBT1SRT9GMY9z95wRNBhPc2DSqWQjSIfbxSetd6ZCtGRIhL3L0KjHBAYf59O1oEe4jVMaatpYWL6xHLRP4aXR7E029mLMki7JqygfMP/oPBhT/IN6VdihvMMQ6NsIva+ZefOJEplCiByoo0JyDom6+0kEuP0FMiGjCWbdcGz+ih1VCmyrchBGrRng+f1yiFx+bqM1zIoUcU5paGCup07L9s00YddNTvUijDAMExpLKSgLKqmzAxlXHsD6KWA0Yi4QsKGZXgqRDpI+LlMXUlOViY5mSy8HnQo0UUywC2aZYhsEudOL47HAdQx4PetYh/VF2GCZh1cuIoKUzwxuXTPeRNuOSf5lNwYi2/3jKFOMzzHWIvKx1KAbRhZ3Lea6ddYeJsjHBubOX8/27y3sbF0zWAmjg0ARaeqBXeN+Rw0jzzOzoqemP/u5cYNZ4WjRtHCWO1OqdwcnA3QUWHnRbDp10pMAF8KMCIV63PV35hYv+07oiVrCIp/uRUGO4c5vg+hr/c0Fz3GvTtdYy+FKoIn07bX795EuMZ0y+7PfXrImdoXZGWMCAscovmtCBigYBPe+y02/Ugx69Hz3hV1pq8ouMWky84s/GRvn/P51Z0+AptsUphC4Nyg/5+kaVaKZ2FhYWFhYeHl8BIMCn07ekcZ3g83vUoxAcAidLXcHWyi6ZJadQr3kkcLV1lvdjVvA/DHj2s7+/uPg7uKUgQldht2wi13wcBlB5/W7UL6rFgIpfqkbsoUypcUT6RMDHgEpSZpVa8ZrmZ0b9lqO5okdjeUcdtUcrdzSqYM2ETRJWuVJ6YhDtA8m4jhi+1+pr/yHIy1/Ziujk+vIKMlE1sz76biq6awWC13Aym8BRkrN5l2C/FvnszFN4VwK4cBd5eWvjSuTttmm3YtUTYOSDJCQahpoUisIF0jvQsZFKb/zKFTC/LYEB3D5+doHfug0uueaSRI7lICpQBluJJuLhTRLrweZpF3n+jTt7Hd1Rqp0atsHQDaaTjDMbo1PENkGo0xp2ZtPqUD0/kZdM+GGBvCdYCNR5k9sTzG0/IZ0RLib4GeY07xLVnZ6QOCRfSiCCMUhf0vJbRu0/swsTDjxPd6w62ElFbS3dWcAmHaDZRkXd/vd9z39KoCLubhMVyc2/PAMy5uVZT6tZDhBNgITyVLvJUCUEHdNv59vw12afz9XoXH9ex5PwyCPuZjH5KEsx9pa3E5mVzHOObyT7FpzktWpE7rWLo/CFu+lKrYJZll4JpzYg7fa8UvI8V8jrL1R2tkycU818ySKUIPbxQVFgEInL9ntt5AikUEVMYeHWzhwS4FBRwUvV/i6z+DlwhQGtXmxgGlVWncE+msjvQD2GrB+7gZ2z5Xo0Q9vqR983Hi988rMPnxOVI85zlVvWzpZdEaBzoXviKkS2vBVDnDx3JaPLPW3LjIp9ZEps+FFIQYw5GBQqR9pGSXZt5sdMQouibDvHYRLDgXb6FPiblksBDpLOlMeWw1Fe1t8l0QywnINc+Hc9c4/q04OyujKCfqCLDmXKq7J+8t+k85sGseOOIQkVRkVN6UkpOsQPKhgEwUZfK5Pk3uRop8BBfd0Y5MF0U+Ob6gFsVWK3/H3HMzHKG/CV8aNwbYWjIFGXbczY1dXcVlmv+zs2im3xS+T5VKK8XzshhZY0jJsQhxdPaxitymMgW0SWNX8+aNrSWiB5SUkoG1OTw+LKoFuyCEWiqXtgSIOTLG2PhaeG4KNNPGUoWfH2P4UrV9Td9CjGnlsmWbiQ1Zmcc2G91QY4yr0Oo+FmwVw8ZFTnDG/Oc5xsMD6aN9cl6/lx0SqxU3AY4SAU4zKFuilDQRC+NOT1O4DdkupMaKXBQ1AkoVvj/mmSI5n2s3epNYk3y+x4sfMJozuhdW8UTvmybGtIxqblIrpjUnApRpflNJrQfnP5nSPSqcgyPFVbrgODRuwhSdTlb043KqZ5WYq3OuioPZS+GafMJoFHh54OQ9AYCtKsQjcJM/3apjpXgWFhYWFhYWXg4vwaAwUIehRJMmUejYuVZ2Egbpx73u+Ha/qnTe7+XavQDwEbU9W8fH82JNHm54xg5lbAX2zdCHFfXZWtaqu6ZnSkSDWnArWV102PW+x/hXvaQ1sk00bOx2xCkEVcvOjiLUnpFOMzOKj8qW5xUVMOLZ0M5aY2ro8viYFKm4dvsp1PWJ0Qn6sSMiXxFNJbZMbAvTJ46gcarkjkyY7pqYnyxVmSqSWvoIuPB9W90yNaQhxjIcTMFM4tvYiHpWLIlmJ9hZ5MWdqAp6j/SdcjfLiiZYhumWu4qgpCFCoZ0WhY2xeJ6Nqv1GutdJ4W+3whRl3KRrPI1xgNxZl1IunhSpfnfMluXGz114PYSQUopSkF9KshLRXK89HQ82syzYoyoNnQ7GQfe7OdqYh5pklc82ddkt3C0Lnz2z7P4tkhPNRmZnSh3ZVU3T5USWzQlZwk6GWPg8wWUScGqytsGOtj4JNZUMcaaFNIXzkjv2WgUe7qnj/T/Onh5IWiAjTR/WTvu+Yb9d57DVijqYUBVhd90gHk8Yxag6/4EVevm8eWZz8lpYZyr32ZJhPs1wRhuU8W/rjuGEj94dDZFaGvNnnXLRMvnRuGSF5SQDKNO0TnfiIDccTO9VSUffRr8mpdeMnckidTdeg5jL5wINmdxu2ckazjRZ8xyzQOW6HOLfopoeM55Vmz+LlwhQuGB7Utxm2S14DwMfc8SdVSnY6zU4324bF5kIClrrWZ519lQvR2mUFBxjUXh0Y6lVlSkomFIP0YUUlh2TY+ChA6OK+XrgxkoaD9dcIKpxouPEI0Bh8JDyCrjZVAUzztvli15hyqpMRmhxYZ3mQMdUjRLXGCg8lisvO/LQO2h9HQevmiXcxTLFEzlc9wy2BJyPUjrvSnpakBmeUuXK7yIDlKchOzKbUDoeD5KqYJs6XNMcaCr/i1JJmdowuxQ++PH9WlN/1M6cN+JYj/Pkdbvfai4Um+BJGnnQ4x2QKPE2gUfeNYKhKUXkHdQaVQF7aEQ6S8p1bNfPwhLwhdfD7W3cc9UMpi2rMjrTL1kBaCKZBnVhSXILK3t3ftYVzudCDgS1PzZrJVO55+HwMf9sY3789V4ZDHUY+7E8Q4PnO3UMNqeTuJFR2hV4b1xsugq1XMfJlfUKTAB4Kaix8YtxLYXpcqhwPt6qsmdWWBRUU+zjvP+D3Nix+Yh2Eip4H6ZtexV8H5Owu7MKsXMDVmj3v6myZ1IEc+fZGRxiMo80XpeOc1QcnSd4jZ9uOEZt7ZN/F/RzXIPmOEZ10f2etvuB04xtLo6e2XeucyWvEZBLR6xzz+Y4Y452IOwc+9C6bVtlx/sr5MgxFfqh2OCVYkxBzp0WmI6qham+io4zWnmYsXo2VKK5hQQAywrQn8RK8SwsLCwsLCy8HF6CQQmKyj27ZvZuOEZoWPdQV6cA9Ow2NVbboTUiuIsG1Jo7DDeHD5Mf7g7M2LG2AKQqmzcqxyN+6+Z4jnQQnL9GGRG9i0NDQDWL1GSKViPVornjN8uGcJEVUdWpQ6eRTonmdeJpca2T4ZlN3iFMG1kaFZnL1FwxouSsAirFsI3h0Kqntwcb8aXXjJwpyI02BeagH4D3pDCZ7amFTIiM6xDnaDZH+JeWi6yayVQpEMciNJsSF1LprXced1zv4opyS/GbRfPE8HKAJ9U5VYnFruXogufYKRQB9rfwR9jQa4zbFNaGn0WfeGQ2Z9yR5n8uTCG2M1OAIVyEft3tlPLndiAL//cRBl4ngPMM0eZEd8etm6rbtokVuXIKQ3xIXw6n0LGq4h7VF+MtzYE23vNENq7EBtxHRcXbOK695s68t2Q72qg6KSJk+ZoZ0zXcuEu2v7gVySqcWlgB10cXb3FnCkmydoHnZ+70n9pryTRVVRzjGILZ+fCOfxldvPf3Hfsw9/gY33VYw0are0BGVVLvnnMgzebSrn9XwDXY9ZgzPf1bBCmsR/6brPHFEABAl8LP4hrSk4D22iDDZPM8xzzkSU+cU9ZA4SiT/9N1vQq6R5uAZBQiu/Dszuvl5kwB7WSrDTUY3CmFBMzi2jiX7OIshsl4LubaqeqpKHRc5LP1ZMU8r2cMSfcUZv8sFoOysLCwsLCw8HJ4CQaFu3hRinxUrugPAHewe81c5tkPfB7XG3/1HW+3dwDA+9sbAMDuHVWvPvfH0fH4vKLYYGXOZvTawCQI6uIsG6Q6qIDNtlRTwBS6lW0H23fDLW3e52ZvIXwVpT7CANpCh5W1yFSG3JIVUVIwTgGFQVKo5OnhQaGnG046/KV7K/PBinTQhUFG3C9dGEkHc2NQMgVz8/fYBXZ1ilgFmCJxUjgsAYdkdN7OJ3q/dknRfA/N0M8oDwTZsciju0tuzbQgBpA5WNoZAi2RgkJGy9Em1gK4djtpQ5xW9Gz9XgtZvaqK5zMYvJPXbgt7WC84+3SfwrNgfP5dwZ2kTv4GpunSGzs3a8lClcmzYOH1wMaUrcOi85pfDAOQrO9lHx5qfaVITR3Uve1RzuuKGAClCnbafsbc49CYh2Rm2ybH1HF8zToZheezcw5sQxvRIJwUVBW3KE6IklMIvZVcsyVGbbljD1GqaIGPnw93llLH8+6Q9BiCspHivaYehC7S4ni/jdYRMHwO5mXjGiHwcb0/VabjtdR6eWq7osFegeM57sMR5dWWOj+RfB6pAVSly/nFgo9iC6noozPfg21UnvxZkMLV72FPMa0hbvgiICXDQeF+2lZ4kS86POBi7+iOfdlif3n7pdEbHwVDvEBhaa2B0CRl6fA8B4dfU20bfJyrbIVNJwVCHU3c5xM2aS+V9g4/i5cIUOJib5odYq/fjQsfg2grWXffTjyuMQCH431U9OyDEjSjjRF+//GB7fvn9VnjTQ93+lhcaZsxoMUnl5zrHxFB2VOwqFHcP1FnsZBjqpxhGkRT3HY9+5E6SnqNtsEyiWQl1fORciibfqmR9ymtkgLj6VxKPOxJ6el0ehmj5YDqbeotFAZ2yLyL9s4ApEzpF6aQpkqmyd6FP5sANoKhbg29R738oA8N/K7uWfXkIyX3NEnDM8Xk8QDeR04spbBaS0vnPQlqtxumnihTV9aY5auw2saa4HGENXfDto9jYKOJitOzz9IxqgqiesBFOA6gU9UScqzT+rsZSWUt6Z+x8HoYruc4++QQVBxtBBUh1j/NONmfbvTa0JotPsIivSC7GXsR9EiVMnVxLTLAtQngnNEFY2ijhU9KwVTeZtDoqDyeJxoG4hr3tN0fc9Mx9S0TFabJm6VRW3h5YC8MpR9mkFE+qTxXoGwxF+aGtFh2p9+GmLRW4TF0O3COz4hHoUhhCqZDsUcwgimNHl4yYjg97gdwRnDXMn17k0twK64UOLfomzalf9WVmxNRhcbObKSqexecoxrPPKv13u5x3Jc1PwBIU9SYszwrFWfPKWE3deWaE8Nh09xEng60ELSyytHgfD+YSi7AtOG8UEthICpuvIbR+VmKUF4AEUj0zROjSV2PSAXO++mYNqc/iZXiWVhYWFhYWHg5vASDUii8KVA29hNGeOmvkVTmZY08XikF+6AltxFeP80gowNsrcCoRsN+RISptCs1S4c9Qdb5f6lVZ2F8MhyxKTmaZcYBOoV9EWUjLYT1ShsAANpUdjqpiOJzaxHaZO+D+9Wq2UG4G3dncJvq4cdnFvD9dXIZjLTQ0WTybMnzOltnVG0lqFLQsObyXxmpnbETME0qEZDspDrZyJNqdKewTLeaHgvciAiF0e+TwCp2et6FrpITuw1Rz2Z/0YCwGp6f189zQ00yRF1Y2qsmTEl5qmyn8SAgRTqxYsHWtN5Rxnn17nge4ZkSrI7iPiws9x0otBovZIx8Gg+kW8WZLlh4PUTZrkHoiaKapa4zrZ7pl4ltUaHY/DnK4jeb3F+70b06WMSrzJSmPZOvjw5GbnJxhqOEY7R6Fg+MJ6KLMc1QtnTwjgmhe2dBwptrejZNvSX4CJecU8Q8m/1Fg9Ob4D5aONxqNs1Dk2wTEaX8t8K0dbPOOTJYG5QytZtoeE5NUDlXhfDejULO3UEx6m08V1qS5Rk14tdnTd3zyN4b8Bxqe/OGIxpAjuf8bFmAoUjG23WU5XaBjb+bCEvPN03n8BDQmzeyQB1gOXoIX3VqKPs0Z8f5YILVejZjhfJ+qGSJeDii7yrQERKUPdNYIVloNrHJInhEx+dmmeXw6R5NLUyCYflZvESAwgBE0i74NGM5SqjGO1JpLShc9R3C3O8x6PzvHx/4/o9Lg9KOJ8qg5O6DvnzvGqUW6O5cDLpmt+BIY3SRXIiRtvXpZNN54676+pgAAqkq75kmvL6XybsIxpxPe6nKYIbVOpY53N7tS+vzlGWM61ImHwAIlSMxMC9dSRylsirAJCdPViTZbCOv+Rkxp4gw0IRmTpKmUZjSLuLsIrqVHVtMqOPvfSvYhzHeNwP9ar4PoybXnPrhzgdMu1M+32h+lPl3qWnqto+EtJVMU4lIWuFPFv3RfgEQepPsdWPaLV57HA11BB2bKjoNksZD2zvaZEZlI4Du6pNOZlxPVQ6gMtlwL7weaOYlOT+pZ1ffWHdrSVkbLLVmitRyPWefiuh67pb+KmN8X2th6sdYXbF5mrLRZCw77vY2RfQxl5pyYayzZiHin56VJk/rDHCqFAYLXNu7oYSnlAmr0raRIn+7KW5bvF9YXeTqKDWDgTi+8HLZJefTXPccx0jReGt4lry4MUeHXuZhwmfszbOqiceiWR1p5pz8Iy1eSsE2Gs6YOWR87+O09N7q03fWuRJq3NsjzOrmth1Z9XTJC+JCju/flMdqplynYp28KooyjcafY41wT42Lgt5LTTLYoKmlnVPlaWFQGXvMZsZgzLujPyMgbExDRSpay46ikbp3tD/pNLlSPAsLCwsLCwsvB/nnLqoLCwsLCwsLC/+vsRiUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OawAZWFhYWFhYeHlsAKUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OawAZWFhYWFhYeHlsAKUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OawAZWFhYWFhYeHlsAKUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OawAZWFhYWFhYeHlsAKUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OawAZWFhYWFhYeHlsAKUhYWFhYWFhZfDClAWFhYWFhYWXg4rQFlYWFhYWFh4OfxPaPzR/h6M+hoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data.show_batch(rows=2, figsize=(9,7))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data block API also allows you to get your data together in problems for which there is no direct [`ImageDataBunch`](/vision.data.html#ImageDataBunch) factory method. For a segmentation task, for instance, we can use it to quickly get a [`DataBunch`](/basic_data.html#DataBunch). Let's take the example of the [camvid dataset](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/). The images are in an 'images' folder and their corresponding mask is in a 'labels' folder." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "camvid = untar_data(URLs.CAMVID_TINY)\n", "path_lbl = camvid/'labels'\n", "path_img = camvid/'images'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a file that gives us the names of the classes (what each code inside the masks corresponds to: a pedestrian, a tree, a road...)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Animal', 'Archway', 'Bicyclist', 'Bridge', 'Building', 'Car', 'CartLuggagePram', 'Child', 'Column_Pole',\n", " 'Fence', 'LaneMkgsDriv', 'LaneMkgsNonDriv', 'Misc_Text', 'MotorcycleScooter', 'OtherMoving', 'ParkingBlock',\n", " 'Pedestrian', 'Road', 'RoadShoulder', 'Sidewalk', 'SignSymbol', 'Sky', 'SUVPickupTruck', 'TrafficCone',\n", " 'TrafficLight', 'Train', 'Tree', 'Truck_Bus', 'Tunnel', 'VegetationMisc', 'Void', 'Wall'], dtype=' in path_img and its subfolders\n", " .split_by_rand_pct()\n", " #How to split in train/valid? -> randomly with the default 20% in valid\n", " .label_from_func(get_y_fn, classes=codes)\n", " #How to label? -> use the label function on the file name of the data\n", " .transform(get_transforms(), tfm_y=True, size=128)\n", " #Data augmentation? -> use tfms with a size of 128, also transform the label images\n", " .databunch())\n", " #Finally -> use the defaults for conversion to databunch" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFgCAYAAAD93q3tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvVusbGt23/X7LvNSVeuy97n16ctp98Vx0rYcHBMBUSRAEQHxxANy2kFREA8JPNgJBGOChOEhBoMtSxFgoSixHRJfugkgeAEUIUSEAKEEuUPi2E63m+5zus99773WqlU15/yuPIxvzpqr9lprr32uW1BDe+1Vq2reas7v+8YY//EfY6icMwc5yEEOcpCDfNSiP+4LOMhBDnKQg/z/Uw4K6CAHOchBDvKxyEEBHeQgBznIQT4WOSiggxzkIAc5yMciBwV0kIMc5CAH+VjkoIAOcpCDHOQgH4scFNBBDnKQgxzkY5GDAjrIQQ5ykIN8LHJQQAc5yEEOcpCPRezHfQEAv/Qnvpifu3fKy594ntPTI777+jsAbLqBrDTaaIzWgMZaizFm2ndzueXR2TlnZ4/wwaOUwljDCy9/mle+9/cB8Ik//O9xfHqEsbv9VPmZS7rh+vZrRezvd10tif1tbtruLvu9n+3V7Pd4/gz8/eeWnFz88m67DJlMjBADxAQxJGIodyUncsoMW8fypIWsSDGScyJGOXJCsTpeUNfghoTrE5sHZwzbM5Qer0QT+g0pR1y/QWXLMGxZnJxi2xUArl/juw1DtyGlSAgeN3RApqlrAO4/9zynz7+E84k//iO/+LS37SBPKf/dT/4zGUBNd/r6W77tNlycPSKliK0aALStIWeG7pLKGpbLBYvlAmNqtKnkaMqgtEKpnU2cc7pyHvkbtJLtMqCUIoRA8A4AW1mMqVBKkZJsP/Qd28sLuu1FOVBCKYVSipwySqlpgsRUZomuOH7uE7zyhS/x4j/552mWzXQp46I5riaOm9eOfVE3vL5um/yE7a/b/2kngma3Fo7fITNbqzJ4l9hc9Hztjb+IreTba62Rx6NJMZFjAJXJGYIbAPBDjx86Mp5/7V/9r6+9tGdCAeUMdWU5Pl3xiU+/xHaQwRTfPceFVBa5CGSsNWitp4mwXLZkMl3fE7eZnBMpZjbrNQ/efB2A1d/9eRYvv4j50o/NZ5Cce/ZacXdl8jSfP+1271fmynX+OiOD7DX7VU4ubthXgdbyTDBqUvZaW1LKBJ8IPqKtQRlN8mma6MoYlJIJbYzCWo02Cm0MlG1iCMQQScmjTQNJlcUizBYYg7ELUB5TG6qFwdQbvOvxKQBwcdmRzZYYD078RyPjcqiQ8l0yUxTIoBFtQGUrqroipgqUuXIEec6RGAMpRrROZaBxFYsZ9UExipTajWYxlMaZqgg+EILfjR1tRLGUwwbvcUOPdwOmXHOenSiXo6nxpNOpFP12w5uvfpvlxSXtopbj7t2Vm5TA/rqy//ouyuNplNXTyvhVDVeVz/zznCH4xNB7hk2H77aEQb6ZMQatDaZqCc7h/YC1FTkrTCVGYt22DN2SrrthseEZUUDW1hhrqeuK45MVxydHAGw2jtw5fPDEGEkpUFWVWEplX20MbVNz7/QEpRTbbgs544eB84fvAvDo3XssVwuqmDBGT0roNmXzNBXyblJctx1zPnCe9lxPs914bePPq/arj2+cd8uJUhltyuTPu/UhZ5moxmiCj1il5F4CTFZjJiexgoxVdNtEDJ7gtihdlQvSaC0LkzKWlEANG/rNOa47B8C7LWRIMUPQDDEQYyCjmBwpFMMQ6LbujnfkIO9Hin4BmCmEnaiyohlb0bRH9IObvIlJdSlNToEUxbM2JpPNTJGNW+dRyZX38+68cw8spTQpM1vb6X3ZXoxRP/S4viMFhy7LrFKQi9ejiyeEYrLox+tIKU6W/nwO7Xz5qx7Elftxw+/9z5/03tN8/jT7aXbK57r1JyVwQ2boIv3lwDe6X4acic7L59qjtSIFR0KhTU2zOsFUNVUtc72pNWePLhn8zXP0mVBATXuEMQ3eR/p+i3fFA5oURoXWhhAiMFpdsq8xGlXXnJwckXLCeUfKiZQD3fYSgEfvvs3yaEW9GViuGow1j7m3+3LTZ3dVFk8zwJ6kwJ5GFLtJAVcnzl0VYE5Azmi10y0p5gmuiD6itCggWYzytKN3kRQVpjLEmMVCdT22laGmFGhrMViUqYhZoTaW2J/jkzz3lMTb1doCkewHckoYa2kKrPP8i8+zOnmehw/XH8RtO8gTZFIEokmuYDST9wBoFEZrtNblOQq8SxYFlEAUR4qklDB7gy9nUCqPOuTxgVrOr4AYAzF6lAIzGjVKvKacEsF7+qHHu47KKvKIJufMvAZzznlSbqp46imLAjo6PaF561fgU392ug/7xt1tCuhJ7133/nWez/s1UufXvK980v7xi+EZYybFzGv2v8JWS6rG4XtZU2N0xBAI9KAtqtJkIqZS2FqUuGkNyuQZ/P64HPCLgxzkIAc5yMciz4QHZCqDz5mz9RbzxjucX24AGLzHGIu1FmtA64gxmkxGj7pTgTaauq5ZLhb0y57NZkMIYYpNnD98wGJ1xPLsgqq+jy4w3JO8oOvkg8Zi5/vfhC8/jdc1935gZ928dh309th58mT95D3TLoRM8BFSCThmQ/QS/A3FYzVVTa4yIRcrM2ZSSMQQqLU8r+gCOXlsVWMqSxwGcnLiyidfLkhhrcGW+FNjV+QM7aKZYL9hc44btnh/aCfyUYgqGNs+/CbMhNl2WqG1Ris14beZ4l1oDQFSykJgSXGK3ZDzLkKTx3jM3qyaQR8xiIeTYqRp28dhQSXXUdcNKSwJroNc1oycyGoWD8p5ggjGKI8GcvRkoly7etzbeVoP6LbPPkh47bptRk9j7v2k2c9jHlAqaIVRWAzRFJgy70hJMSTxclXCZIMfGokZF9ik22Z8P0ze6XXyTCig17/0JzFabknygbCQL5lbze9747+hrix6gnyQOMOIHRcM11aGRdtwtFrR9z3DMAASsF6fP6JqWo6/9h/T/uF/H2stVWWeyq39KOT9KLe58tmH2+60c9kpjcojZVKGUFhwwUvAeJqMOZKiIQwe73o5jNYohKEUY8ZYRbM8Ynuh0UaGWtIZsgEFMQyE4YIUtkCURQuwdc2901MUCWM1znlSzKxWC4ZCUOm6Le7y4gqz8SAfply3zF4TDyqKZh6wV2RSSqQYCSGitSLGSEwBmwWmk4VNk3OWuAz6sQDKGPkVPaQwxpJzFshe4t4YVaGVLvEoS7NYoLWm2ypCGacpOnJKKF3oDDPrb/w+Ciampht6NLJQX6eAZpf42Osn3dH3KndVcHPIDa4qnxF+G7fbXzO+W32VQMIMMMb3bLMEIHqLqSGEiHMDOTpct4GUqApTNUQxPs0tONszoYDefuMNWUiUDMyRmlnXDc4HjJHAtS5YYs6JnGeDEYVWmqquODpaMgwSM+j6DoAUIpv1Oe+88TqLszPatqGyi/fvtnzI8iQPaB/XnQ+i96Jc857mSrF4PUAM4n0qLVZuil7iPC7usPVYtrNyrJQS2pYhP05srVGqJiWP2zykv3xEcANaFbYcUFUGVJyeuS5WNRqcF4qn1hV1ZciFFXeQj0DUjowy905yCdjIW6J8lN4RCZIwSkrsRRit3nu01juqtin7SxDo6nnHEGM5R0ZYliB06+B9YcnKdenKoLICpbG2whbjpysH2m4GSAlTUjw0mjRSs+d0iJTpLs9YP3rA8zFO4/Oa2/Kk2zZ9jQ/a07nt/bnyMbP3ExDLz3ydGONiMYlH+Er4Ub6Zfo1h60gxYeoWbUS5uH5DDA6lE1VtCW6L69bkOJBCXY43972ul2dCAT14V/J+BHqpWKyEBae14Zvf88dYtg1ffPUrE3tKVHdxobWCifpraJqG46MVIQRcgYZCjAzbDe+88Sr3fuPnOP3C51n+0L8JWj31iNiPid5luw9C9ozB6fX8Z7ym/eu6Fn7LV19eYb2NxIOUyEFgsRwSCbuDR2ImKCcB4xJsDn5AD4aUxICIMZKJVE09UxQJWxnwjpB6VA5UlRZ4pshoIYN4YH7whWrfTbPk5OSUEELJDzvIhy2ieMoSeg0LTkRMIK1U+ZF3U4rkAodPhkhhUc4XfFFcZpeXI2e+cvwMqALXaa3RdQ2oifAgBmxAq5GOLQqtaRfEWBCRi3NUziid0Fm8JYW6oiGUUmiV6S/Pefj6a7x4sWZ1cowx5rG5dp0XdNPdue2zuyqou3g/I0PPcBWWTwgutK985pJHdnxBQkxlUVoXVCSW43jiRjxJyRFMpBzJKTAU2rUxFls1OwbsNfJMKKB58pmwT4rllBLb7ZYYPJvLDcvlEmvlknc3L+9c84L7LpcLYkwMhTK43W6JMeC6jofvvMXRyTGL3tG0lcSD3ut1v8dtn9Y72fd0RplTQK9lsxT5bPjypIR27J8dE2hOt4YRhoNhO+ziO6aSmIwCrTQhOJIXBZSKV5JiLJ6RJWclzzGJxRwKdKZUxGSF0Z4+Fe/WiAKKcRYPyALbxBDJSjwrFyJHq4Vcj1ZgNKcnx095Nw/y3mWkQY/ZM9PbTMqBERbfGRUKi9ZiqMRgrn6u9o6vdzBYHimYVybPGCuSlAFQVE1FimKceudJIaKMjI+Rpam1pqrF22qaRpIl8y7uee23VYroPQ/efINHf/unaT7zCtX3/9lp8zl8dbe7d7uyuguMd906sm+cXuf5jNcaZq/3ZVxbRkeUDDFIvC44R/QO128BiN6Rc0IZSxg8oIghEtIu9JFsJSiIvhmleCYUEDPcdce/lJuwvtywyZnfuPfP88MXf5OjI4tWVy2n+T4KRVVVLJdLjosCCiHS9ZHgPWfvvs3q6Ijnf/sXqH7wz0xB7aelOWauDqj5Z3fZ/2llHFTjz1xGxXObNfZK+DIA3zZfnQZXihO2gbGygOSUCC4RfKC/vJyMA2vr6V4FIDiHcz2VqSYlZWstA7VUpMhZQRJnP8cxydRRWSW0WBK2UOIpsA1IgNl7LzlfSpNTxPuAsZZFuyjbBBKZ5VHzHu7mQd6rXBd0zyVuKPpGTXHZcewoCs3ZKGxVoXIqU149tnhOfykKjJd2Y1pR4N4Si6RUQ2CWMN0avBuIMaAxEnssFz1uY6wlRV9imlqseHXVEB7hw0xGZXjzW69ijOWzX9pBhE+7Zoy/n7Tfk5TTdcccf8+htxFuGyE3uKp8rnhyMyM0Jlkbvq1+nRQTYXD4YUuKXghIZWdjNLaqaBcrus0FQ/82wQ+MSGXOmRDCDrm6Rp4NBTTx8MstmQwfyWj2IZBCYBh6FotGMm2nsaJm+mcMkmuakpwKYhXFGAkxMPQ9Zw8f8Pabr6M+t+H4VOC+MTdoLndxdT9IqO2mY42DaR5MhKtez03ezyjfsV8lAxfH/woxZo4e/qIQCxClU9catCKGjHeS+ey2FyyP78m16RJITongHSk6tMrE6Ml5hD+8THytSg6PIiUH+AmO0alnuTgRzyZljLUMgyOFOD1TCVCDtRatNT5GQgi8+Nw97t8/BeByfYn3nvXFIQ/oo5O8g2BnInNuNndLTs1IKkmj55Qp5W9KQii7RU98qp1Zp8Z5fdXUZBcQyuQ5LaAMMK0UVV3LfPeeavS21E5JGWMJpSrDSKwZz3PdHFIKNufnPHrrbT7RD9hGYhzqjvDv/ry+y9rxpM+u85b2k2KvWxuuRWIm6F3eMRrIEnutG8WwFSU0rwORYyDlRGVa6taizREkz/YyT2WRfJDiAeYWlOmZUUBXvaAy9ErCWc4Qc2RwA9476rqehmUu2+dp5wLFGU1bBsrx8REhBi43W2IIXJ6f8c7r32Vxfk67aAGwhU11Vzz3/crTWDl672e8xshVGmXe24/992a4bvAZN4jicL3D1SPL0KASEDNG2cm70UagkxQT0Q9iDRXsdzxL8D0x9BhtwbagILgtOg3UjQy1ujaQE8MwoI2wnpz3hBipSzZ7DEHORyYGj3cOpQ22svgSk3I+gFL0/aESwkchk4JR+6V4rlFI48+0zzy+oUij1plXNshjnOnq8a4kOotbNNUHVCqXenKgRoq1oljcchCxwKWG5OjhiCJSEyliqoQA09qzgxNlxgXvuHjwkIfvvMP9F18EoF2015awudP93Nv2SfGf27yduQIaj7WPiuwfe1/R5rwzGIwpAGvKDIMjZ0WzOqJbr3FbMfi824KWcjwpGsgRVKZuV1S11HQUY3WYWLLXySGCe5CDHOQgB/lY5JnwgEavZ/JiZh7QCLFpFNvNtuQLQdsKH91ay1SccOZTaq1QpXLr8fGKnBPOOZz3DH3Hu2+9welv/Cwnn/s8AM0f+HN7taY+wO92x8+u+3tebwp2Xs/4+kksnPG9z4YvC5z58JcksKgK3RnQqkarjHMRpeKOhQA7dpF3YiXGTAqe6AeiL3kVhRLvfYYsAWClHIoIsaey0FSyjdWawTn6fsBWhvXlBu89MeXJY22ahvF5+kHg07ZpSDGw2UoQtBt6Fu2CnJ+JIfz/eZms6DzzbMbPcr7y3sRiG5M9x89HenbaxXV2Jr2MuawKzMf8PGo6jtaKnBTeeS7Xj6ibmuOTe9T1cnYuSU7XqsJ7gY6dk2KZIBDcyJCTILkpK8h+hKQUKy1eWLdZc/a3/0Paf+qnASb05C5LxpO2uQtMt+/97HsP+ZofuL401/7J7K5EJmRFyJnYR8IQJM+yFeJGChKDVUro9TkF+u2GnDIxRqp2NV1ZGAZhv1bPOAtux0QRVTO56LNbpbRmGDwxXjCyWgCq6qhsqWaRtIIjF5e7spblcsHx0RHn6zXODWwuznnw9tscn0qMY+ECdW0fT6y7o9y0113fvwnX3R84I+QGN7NZbpJXzVf4TPdlvq2+Iu62GV1uRfSJXCpSq3KmTJ4mbYyOsB2KUuhIQbLQUaCtTESdlGSPp0COEa0SGs9ysWLRCllg6Ae8C8QYcc4RfEQpRWU0p6UILWgotcL6PFBpS1MZ+u2WsVikdwHILBeLp7wLB3lvspuTOSv2LbUpPwgKTJck0A8Cz2AL5GYkwlOU1NXY0excuUSC9iaFQijeOWe67Ybt5QXeO+7fF1isqlvQkogmWfwVwXt8YWrK5UlitFJ6ylcbgb4pEVUpsspFh8p1xBh4+PbbHP+9nwfg/j/9Hzy2XtxkBN4V2t9XMte9fx37tdy1xwzSfUW1v2bsoMbdezGBc5nN2qGyomkrqYCv1Y6FnCqi66FW1IsjtGnRZjMRRwByjHh3ey24Z0MBZdjlGecdA2WGNVtbszy6j9Ka84uLKREVoG0XaG2YpkDO5FkegrWGtm05OTmhHwb67ZaQPQ/feZPVkdB47//Wf4b5gR+nqu2d2S1P8m7u8vl1g2xfborzPJWUkZpHC1bPktOUot9GjLakGPDO4V1HTh7XlcKwfpAyK6oiBT9dSc6UZFOoTUscAq4/R5Op2pqkTKmGO3pUGecDzgdCkOREYwyLtuW0kEa0NlgFXdeDMqLoyBhraFpRdt22Z9ttGG4Z3Af54CQXhGKK7eTHR+JkQyqJ442VB2LJFdHGorTk75D3x/ts+cyQVaEhzEgP00I+xmwybDcbycQvlO3jk/ssVycobabiudZWpCzxRGAWg9pdcM65JKPKci0McSVripLYlFKK7vKSs3ckb/GFrqdpm2vJCE9CN6777Kbf8+3mBum1ZXRm2+wrqidd144QIs/4+KQlxYTzHnd+QRw6RhWmjQWlqZuWo3unZFpJCPYdqmxTNzXdZna/r5FnQgHt38Krf8kt0sayOnmOerHijVc7LtZSlVX6zljqxsiAGSdK3ikypTTWGlarJSf9Md45Lrcbus0lD995C4B33nwR/YUeY1fi5nPzoJl/dtNguem9/X1uCsLNPZ7539cd5zryAXufZQRZ+271VUhSaXxkI8nkzYXdFvD9Bt9vib4jhJLMOwwYq7HVUhIAjeT6hDBInS3ANhUxelIcqBetABg54wY/5XbllHGDI4RATPJsqspydLyaJv+ibdAK+sHRtA3Bi8Jr25a2KCA/OIbe7TLgD/KhytWxtsu9282xspVCvA9tGNO6+s0Waw1102BsNVU0oZBirsgEYJQzqQnJKxeSSyX2iqpuyeqSvut59ODdaf+mWWAqmV1KgdKSmjF+B+cGYtjlpoz9g+R65aIthawwXkshRAXvOH/wEID1134W88N/nqZtrqU33/Wejq9vg93mr6+D2a479nx9ma8DT1pHFGCtoqks3kV8CDTLJdZWE8Ot7waqWtG0S5q2xvuMtZrQB/quEBX8UFiyz7gCGmM4MobVdCfGmNBYH+ryH//X+aHt/0pWhodvvgrAgwePUEpzenqP5XIJeteMan5HtRZq9tFqxdAP9MOAd56zhw8A+O63vsXyB9a0bUvT3H5bbnKT9z9/0n77A2p+yVzz3k3K5UnWVc7wbf0VPtV/mVf1r+NdJLhAGCdhktJGw/aSFD2+3+D6NcF1xfsoVRGyZKqnrKiqBdlo8JlctslhIMcBa6CyRpRclnI+3su5fAjSWqEUrKybSjpkLtqJiaiNJnov2yILTl3VNE1DKlP9crOmHwJH9SEP6KOUndOwp3jmkjPGWOrybHKh0XddjzF9aVwmjSavKKCcmdJM56V+rhybKcZTtwvqumWYGlZC33V4PwiL0sgsG2NQppTkaZqWzoq3zxjj0QqjxngyeL+dEtvzrKJCToluLQvs2995neb3bsQLeg/38UnryL48KdViX+YG7NyQnV/DXEa7QGnIGr4nfBmXE9+sfoXKLHDO0m1Fpa3qRurpqcT64UOUsZAdOXr60nk2xPBYea99eSYU0MTDnxK8Rg00Ws2JlGUhOjo95qVPf3Yqq/H2a1vWl1ussdR1LfWa9qiikwWjFItFw+npMYP3oGoWS4HgFtUK9bt/mXD6EzRWyVO4Bt65zeO56f3bvJLx93UKaNz3JmV13TGvO3/KktEcYyKRcIOnv+wJw0iPjMSQcN05OUkMJ/mBOMZ5xq1SBtVhTIUxVYFR8vSckutQ2VNXlTQQjIm6qthutoQxEVUrmqoCMjFlqqpisWipqmq6+BA83XZL13XEDHVdUzc1F+sLzs5lcPe94/hkNbXoPshHJbcvlaO1a4yRZwqk2ACKEKTz7dD35Bhomno31+fHKGcR9G2HNxSAfoKRbVVj60baf5dck7ppMNqQYmKsJyiJpmryvCpbY2wlQfUUSVlhtKVuj0HLeDp/0F2Ja82tePHI4dHbb3N6dsbxvXs3VlS5Cf66zuO57s5eZ5DeRa5bY+4qI8I6lkv6/uZf5lv8Omqr8WFneOSUCEPH5uwRGamS7/2AL4hIyhIvvO4Zj/JMKKC58lEjuIsMNgUlATIKHFRl7r/0wlQY0JiKd1//Jo/O1qDg9OSUqq6l4+EVKROj9KQ/PTnGVEcslpLYeLxcoXyEr//npB/4MajslMB29Uqv/t5/ffVsu9dq7+99pXMT3vukY992DaOkmHE+8c3wa9IWIQmcMAaJfb+BLIFY73rIQhLIcV7DSyoSpNRBLd6SxN0SRpXAZElI1UZjtJHyOc4RQpQ4ANA2LYtFKxWMVaZpGuq6QaFwg1zPxnm6riNECRQMzjEMgzAYyzZKKdq2fsI3P8gHJTum23WjNY//JpmX1JFK9qUCuhcjKBd4Y14aajzs7R69IpUWpVprgeKqelJAYsgoictk8VhCDKXzackDsqZcj5rxlpTEGItB2q0byHGnDOUmyPpUvL9uu+HiN36W51/6eVZHSznefPvpmm//fd13fpLiuOuofyrFs/daazBGnv2nwx/D58jX218FStmtUiHf9R0hDFNe4JhPFIKXdum3nPOZUEAjTrtzWHYY3DjoU4p0mzUXwyOqZsniSGiXn/zc58lELt55nbOzNcZYjpSiqvYs4ywKTWtFXVvunZ5QL+9xVDL9T9sWpRV+syG884jl+VepVwv4wp9+/Hqv+w5XT/XYIHwSXnvT++PPfP/blNL42VhG65v514hllqUQcIlSBytNZTWETp2pqlaUzJhkCqN7itYapcVitbYmBE+MQi5Q1dhnpdDflbRLDiHgirU4Dsqj5ZK6rsgxoStDu1hKMlvesRalIKUh54APAe9FIepZfTFjtHh2hxjQRyZ5tgDPSUBXNypeSsrMWpCWRTvJOFJW6v+pvTmfUqkPV4zRKUF9F3kaReAxUSTZ2FIdm6lli3g7hb0WAi7GqXBt2y4LFVvvzH2kEsNiJUmUtqpx/YYR89NKjithrtLbynvO333A2f/1M9R/6Keom5vh4Cd5PPP14jaY7Lrtb9t2jpzcdT/FDvxJgBsC3/B/HTd4TGHFkhIpBlIKxOAlYX3E+2ce69iK4yY5JKIe5CAHOchBPhZ5NjwgdpjvY8wYtSuZMXRbLsIDFkeBo5K/8/Irn8JWNd8xlm//9teAR+SceO6555nr9iuevtbUdYU1GU0ppGm0QH1DJqzPsdsttrYYbvc8xmPf5mY+jRs8l+viP7dte91JU8zEKESB4CSu44YBa6pdzC1ncg5Sty3H6YhamyvYdyaXauURwfSl/IbSBXorJZByTvSDp+t6lFY0TTUdx1orZdrrmrrkB8XoiSFNHVCNMQViFViuH5x0wtU771gbS4yRvt/ldxzkw5MRghtz9nbI9NxHR36Xck/zUakQjyarjFYaa2zxhqYTXB3oSgD4OQNuXoNblfI61lpyMtNxdoUvrxZFzckzFCKMNoZY6hqOjfNyQQnGPBdbN7juEtCklMkqCZQ4xZflMrebSx68+TYnXX/FA7oL7Pak+M7TxJmfJLfBfTfFoBQSO/6d4a+yvdiQQ6A9lly94BzdxTn95hyytEXJSliCqbReSaUH1LNPQoDScVBddblLEFAWSIkFRR/YXq6n72SMYbFqefHTn2F7eUF/8S4X6y1VVbNY7Kol7EdyjDWk5Bg6gYh6XUsRTaWpX/8F8vKUnJYfSIThLgpkvt0o+ySFu7jc02flw8/lP8430q/SbQe2Z+cEv5XaWKvTKUFMm0riNcOWnAJKGSgLxVQhN0phQYnFDVQPGYOlAAAgAElEQVR1y+AQaK+42MYaUghs/CAZ5kZjtMSDRmVX1SUb3VpWqxWVgW0XiClh7ViZXBhSdSP0VqlenPAzPDkGzxBi6Xx7kA9bhLGmZpqnwCzXDsIxUL0L6iiQmOq4t7ohOD3CdQXim59SjZ/nYuxojbGW4KWB4XjulNKVYxtjiSZOKQUyXhXOexQJO/YlyglVNF5d12zK8aq6JWdFjB7D7oIUAsOtz845P7ugLfDyXG5b+N/Ldh+E3HSuUbH6kAgx8Xr1X3I59Fw+esTm/JFUKCn3ObiB7cVD3HZNDK4YJoowdALxMyqgx9u4z+WZUEBGgVZ5HFszqztPJTOAqdxDSMM0vCprWZ3e497zzxG/8H289o3ExbvfJfi3ePnllwFYHa1KTCEXe01NyXRjD5p+cBwtaioz0kPn3oDIbYrkOuVxk6VxV4/orjGk665hSsI1ChXHCaNIIRLygKmqqZHcGFcJriPnJAUelVCux3TVjCNnYa0ZW2OrlqoqeUS5WDwxCR4cAkqJcWC0RilZKECUiXdOvBxriaFHKfDeTzkGMQRSzjgnOQTWVvShK8eV7zJ4zzAME7vuIB+uxBhRlM60iokOr1CFhDISEUoeXlEQIPpEKSUxmDx6U/rqJBnDQWr0p3a5RpPMYYy5kps5YLJ+TB3VAEox0mo6mSpdW4WpGYhGk9GooWPoSn6hNSU8lKibJSjNdnMh1zUrFZZS5PLynId/52dYfv4L3P+hPzfFQUe5LTZz2zbvR247/nWvc2ZiuA1DZOgdZ/mC7XqN6zZoJa3Ph07Usu83DJu1VETJqSTyItT20RtVRhKKn3UFNF1eTowqAooiKh/mMnBTlFpjofT6uTg/I+VM07YcnSz57Be+yKOjIx68+RrnFzKYUkqcnJwwRhFzSSpjjD8CvQusFpUEt2NA5TgFUa9zo98PO+VpBtvcC3oaBXjFsklJFoqqRg+WYXtJTgFjx9a5SZRRVqVS9kDVLEDtWiZnFDlFtDXSF15JW2StK4ZenkVMnhwjU0298eZqNVbQwQ09w+A4PjkVhZMC281G2jiUgeqDVD7w3ksnxgzD4HDOT7UAg/O4GA807I9KciYrcHHA5YGxbpoxFUt7hGZHRBnj0GP7A2stKSlZnFIpfTPNvT1QaswFmryMHeFBXsurOTIy5pVdPcwONxiPF0olhEAuhpbGu1iux2CrRN+VhmsjiweFrQx1s6IftpCEoCOnEUU2dFveePVbDM7xffY/4ej7f5y6enL77veidObhgLtAdDfBa1eOmaH3kcGJQTr0nq+7v0a/XjNs13i3lTUiJmIQ7yYMPSlIq+6UEjHL7wQTmQijduPiBnkmFFDIGRVzaZo0L9GeBQ6SPyb3G5hgHzcMdJtLFJnlckn70ku0iwXOOS4fvVm2vZBck7qZMN/RuxrF+UzvEnVlqKuKrA37bXpHUo+aIxE3yF0G19PGhva3v5JgrK7Hl7+Zfh3XO2JwQBSGkJJOj8yYTDmlaUJPirfUzALQJsrf2kgOhXfkHLHVkm5bFggteQM55GIxa0KWZnRaSwWDGCIhJEKMqBiI3tEPkpy4a7nu6Z2nqhucc2y2WylYGiK+sN60VqxWS45Xh1pwH4V471AahtyTdCSPhkBOqGRpVI2l9NQqMdtxoVZaY7TEB3UMeCeVLcbPgdk8m1UymdIn9dVNymumxnazD0a/KRfDatphVgA1l1wgU1FX8UpSrBshXSWtQsbz1E2NtYY4uGntUToXeDhy8eghl5eXGGP51Avv8ImXXgCgrq4usXeJJ9/22f6+T6tsrvssI7Hib4a/DkA3dFJINHpikC6oOUtaRipKPMcg90eJYTKqelBQ5rFSBqu15GTdIM+EAhqNDXHdd+9nKPx9tfuCk0c0aiIpy+K0YVHXNEc1i+XzrI7/EX73H8jXe/jmd3nzzbd54YXnWSyXEzQgMgLMit7FSQEphLYcQ5ySzMbA6kj5vE2eijBwB5l7XfPf31ZfIcTMF9SPYvSuf9K3tLTgjlEqEYShJ7ienCNaW4LvJwgOBEoQzFbw8RQjutITzTklmcwhRFK3kYGYgvSI13Kfvd9iG1PgjYxWmUTcm1TFo3EOWzX4PmC0xRqDL5UZIuLRbjcb+r6j7wbJJQphSiasm4pl20xxo4N8uHJ+fk7VaoJ26NqgS+5XypGgnFS2QE/wWSjVD4BCi5a67kkpgb3VNJHLGebQFtNn4k3Nml+rScWQcyLGQEwBa6rZ8crPFZJNwkyJ7nI99XP/HHRbyV0xGh3+91IdATAtSlvIMi+qusJoIy2tR8UZFcbsDLrLyzWv/e7XyfHfpfreLwLw/B/4SaoRzuN69OS2v6/A6rP3rlM21yEkdzn2SFv/bPhRAH6z/0t0l4/wfiD4QWBKNxSls6PWp1IgYComrQRuV6MCMnXJx7q5Z9czoYDy+N+eWzGWv5jf5pwl0Wm+ZUqpBMml0ZmUaD/m5c+8AkD0gYdvfYfLyy1aGxaLlnnJHxD2TO+kf/mitejsod8SLi/5h595HoDf/3//gijDz/0p5o2z3q8nc1fZH3TjLfts/DJJC0QBkBKS+0OZrCkRXE9wW3LK4tUEvQvU5iRJY8XKVUoTYqRSiphGBRRLPbeEoZKukjGTU5wGnPee1UKqHseU0EkKwmpjqEurhbqpcUGCk7ay2OMl4XxNjJFhkIHqvMf7UMqqjEVLJYdEkk9h0dZk0lQT8CAfrvTDliGCajOVrqeFI+VISApDxqaEqqxYxCniSw5YZQ1a6V1swNhprM5nwwib6Svvqp2nXlbvcdzGEBm6LcEN2FG5TJ78WNx4PMeuI6qUlfJolRlngTEas/qjVEf3AWjy1+jXD0i+J8WAsTtm5q4ZpuCIkhBrMNpw/vBdUYrFcIufecD9eyc0tRUPX++U4OwbXpHbPJxbobTH7ujjcp3iysCbzd/gshSPTSkzdB3Bd+QcUSQykkA8tdhIaYr95JL4KwQNPRUBsJXE3eMtV/RMKKDJslGg5vhWCV5eYcEAzBVQgeUEh8y4yy3bzZbnX3yOT3z6kwA0bYt3nouLdwnB89JLL1LV9ZVEOBAIycfM2XpgtchUXJIvH9KXrs/bswcobai6DbZppy6hH6XMLSiB04TEEWOeUMoUE8mKpdLUispqSElgNyWusTZKenUwGo1ilU4DCgXKTHXelLYoHcjRT/1UfJ8lXjYSFeKOtQiQSYQEpiSmgmRHp5RksOZM8EEICCHQF/ij7we2246U8jQmRsrtoiiynCJn5xuplnCQD11c16EbYYnmFAkjzq8z6IDJ4qGqRUsyYoBM0AajsaQmMkLO6cpYHrcSQ2jAGIOtalDXx1Jk4TcCgXUJX5hXvpT3kT4/I3Qnim03VTO9+UPE7Tk5RGIGk+VzO/UbO8JWNYPriCHgBzdj9e3mfCznOVodobWh6zvOH75Lv5FgfVX9FPqVz3D0pR+jWS6pqkpSFfa+zpO8mv2/nxZh2Vc446PRMg15efgRftP/VflOOU/Vw3Meq6GUOT2joOeyaCtd1gutUZjJQ9RlLY/6hmfIIRH1IAc5yEEO8jHJM+EBKTPzRK6o71zgNvF4psQyZjGg4iEJq0aC324YUEpxck/6y6yOj3jli1/ku99S9OtHnJ2dc3p6KjXIZqXhhVYJ662X3IDcoX/n5/i9X5dtzreOrCqOtv8R7Q/+JM1yibLX38LRuvtQ/aMMr4Qv87X7LYt3f1EawmWk1cEgnkuXA91mTfB9SRBTKC2ey4R3l5IkUtstk5VBKSvQR7FA66YFNP3lGc515BRwbgBtMEYIBk3bFLhEYbSh70siqtJTNWxdaLPWaPzQc7les7nc4LwnlOsZBqkfp7WWn4kyGycmUyzMpao62FAfhbihw+pKkoWV2REEVCYoCFmD18QMsTIEvYPKyALRSJM3QGtyFE97bsoLyzUIDV+DyhFtG4nFABOVEnawmbFYWzOGdXWhRusCD81l/leKUmk9ZelPpa2mLhAzgNYZW9X0OROD43J9TgzhsWOOyaxNW1PXFVVdcXGxZtFKSZ/u7IyHGtLFX+DkD/47mJMTrLlasmff83mvXs5dtsuIxxNLfE0rCDHzjfgrEwSuDdjKEgZVWG4llqfVlJmitEFrQTac7zFjqoXR03Mak3vVLd/kmVBA+qSBkMlDhJjmCNwEyY247kTNnsNyszhRTlLtOcb11Cjt5PSYl1/5NN4HvvtNz5tvfgdbChJWpfrt2HRKzqUkvmGzBC7HOMjQ0/ktPkWe+62/iP39/1ZpCX693GWQvBcFNbrPKeeSe5OIPpJUqfibx46h0G/WuM0F0Q+7VshRmoWNx1GlmZ+ylYSRlUUbSwhuyhFKSRSCresy+Cx1C+QIUeAPrRWuEAWqquJifSH32FYTvGaMpmlbmtrSbTes12u6vsf5OJvcCmvM1MgqpkQIEQWTIkNrqqqecP2DfLiSE+SYIEvK+FQLLmVijuTsCWLfEAE3i0kak7BI9GSMl5Bkvo3PPKUkeX5JiAUpZiHVaDsZQVdTfsYWC6bk+OwYd7JWTBlJBabPsz13xquuLDpRWi6kyShLwWOqmrFtt1TAVqQk5JpyIGmREGTNWq2OWCyWKDT37j0HwP3jltM2YlkT+wvyosE0zXSN03XMCBJ3AZXfqwICUTopg4+igL+Zfo1h8LhCQffdhhQcY4FiWWOFYJAK5K1KPEx4YVoqSziH0gFbj4xXqaZ/W73GZ0IBLb74SdKlx79zQXx0OYumScKaUqqUgJF8FQU7zyXBDpHMYmlpGdibteCwKUTaxYLT+/fR3/t7WB6v2KwfktI594qXZEtOzJjEsO0GNJba1FPn0BwirhsIwNBtWHiHadvHKm/vs12u84bea+TiihWXMiFkVg/+Cj4EFPA5+ydQWvPb+ZcA8JsO322JxeKT/QIpBEKJy9iqKd7PWMpECyPOR0wpqZ+DJ0eHNrIoVPWCqmoYNmekUMqvx4DzkdVqhTVQVzUhBkIMdL0EOJVS3L//HClE1heXdF0/Nasbv50pwa3xfekrJIoolwnQ2oqcLfaGfIuDfLBycrLALjRU4HKk5EyQUyaHSPLgU4IYccHQqV0ekCJhrPTjUbokqJqdBQ0lnmkshCCzOe1YVmYefxj1SRkbqnjJ41iZ4rqT0mFSPnn297hOaKMwlbDUYowEXzL9rcNYy1iCSClFVTVYK7mCAPrknwXAP/zvyVmMq6PjI2xlWa2kZM3Jcc3xSkPyVK/9JdTZC/S/588URGe8u0oMu2viybcpmvdivF6Nu2W8j3zC/Yt8w/0XJFdIQNsLwtCRUtgZ/UjFFDU2liSTcyRlMUzFU4owIyWBwrthZzReI8+EAjr5R7+P8KBn+9uvsXm0YzWNA26C3LJQo1OKhSvDjoEyDvYRplOKUL54lzuUUrSLBc+9+CJ12/Lq1x2b7Tl1LVr/6MhgjCWXYOX5xYbgK5ZNtUsqUwalLYt2QfPFP42OjuA6Scy8Ru4STNyX2xTTaB39vfuS++J8on37LxOGUOCpwO/YX8ZYO6EVzWJJ9Ft88DKgkLpw+zXezDSJxRKUvKE8u9DM0K+xBtqjBmUNqBpTLxjzhnTKEALdtkMjrdBz6QPeNm25z8e0bU0cAuSxorEmZ7dbRMo3NUqhMGhrUMpLsmp5zk3T0vcBc0uA8yAfnNx7fkm9rEgK1t2WflvaW4cEDuIQcVmTtcdZxUCeoBjvOpzraRcL6uK1Kg05J0KQsROjwla7/KGYIiEaTErMHAVReDNlMpbk2SWHXp1DeVI+O48MpdCbvwX6HyMHNxEPgvOEWr6XYzMhBgqDRlG3C1j9EaqigKwRxt/FZS0GUoxopVi0DVBSCqJ0EVYJVPIMl2eEv/szpOinnmZKG05++KdomvZKishd14zr5CZjNyEGnfORoR/4h/6v4Vwgek8MfblnpbJBiIxlsXIG9AydSsKAzSmI4V/CICnlyYscq40/8x1R65N7mCrgH67hG4ZcSsdMNOwpbboMvJSZOjLO3PpR8egRby4LWgqlA6jxtMuWlz/zMorEG9/6f3jr7dfLVWix3EviWAiRBw+3+GHgsy+LOy1EM0PKGu8GtpsLYoocVe2VvvCPs3sel/fiAYkihsW7f0WuePD4wRGcm9hvMYIOYcoMt20DF6Uvih9rNpUGXTNMXSnJb8g+lDLrkhsxNt+KcSD6AZLCdZekmKjqJaZqJzZdKjXgMuBTBE2pBae5dyp9l+6dnpJTZHW8ZHW0omoqYgw47yZLSR6tQDTNsiIkwEIMGl1ysKwRt//gAX00cnJ/Qd02ArWQiduy4LuAcaDSyHpMOJ8JsyTQFAzBO4ZuiylsxqqqsdbuyvUoVWi9wpTcbrbkxRKUpSkxoGm0Zil2Ol/YUoHJc7pahmfn+ewwCEXG2Arb/W9E9QeF6ZkzISXM8D/IuY5Pyh6KEMXoXRytWCxfYATdKyOeXP+gkU7C3nN5uSmsTRmXW6V44501L9xfUsfA0J0xxFyo2iWOpi2L3/p5zJf+DSn7o2c186ZvcTe5iQE37v9t/RV6H1hvLum3a4Z+IPgwrQ/jPZx+kN8xC8t4up4peTdNnY+10mjLFB9MY+GAWzTnM6GAtKlQqwr73BFqYaArbt6cxpkzn/nGr6Je+lSxeOR9CVoqcumyCeIlaWNm31segXMDqWRPH987xX/qU2y3Ah9ttgNKaVarJcYKf/1y07NebzhalnI0SZOVwUeF+/p/igfC8oTmn/hpbFUG954bfd29vws5YT7gdg9dytT0JVg4dL3kKfhAQiCFlKTpVxxrr5maod+QcyAEJwmm+qryyTHgs3QoTWWylTDvBGOEEIvFk1BoMoZ2dQ+ldOknJNnUKWesKsFZrdDG0C4WHJcqus4NOJcYesfgBi7Wa0LwDM7vIEGl8D5IoVlrsFmh4thLRq5Zqm6DOSigj0TEIpaFprEVTYnLxAA6JlTWJJVJKCICjY3jNuVMcgPeO4w2QiwxUlXDlv4y7aKd4jfe7Sq22yZgS+PEKe+kKB+td4mvu3qRe5RhRYk1wW5Wiedtq4Y+GvzF/1iQ9xrfFMh5s55oxlKAt6Qf2Gqy8IeYqGyNNRZfcn+2W1GyTRZIv7IVmz6iznqWjWHRaGqdGAaHL80VaRZszt8l/+bPkb70E7TL1S6QP38GvH8vKMRE3zs26w395Tlu6CZyxViJJCepeBBTYKwgkVPeFR1lF49LKe9itXmvfl+WXLDbrvmZUEDrt14lK8Vw8ZDsInqshDsmlCk1JZilsghOWc5px5yRJli7xW/O189ZaosNw8DQd7z48ou8+KlP4YNs8+rv/ANCWGO0YnV0JBWcUfS947tvPASk2+ri6IS6XdA0GqsVVbsoPPir8n6x2334LiMTudsObMdg4XaDSg6jFV3vUMZgTI2t22kwDdtLYvBCQohjKZ7RQ9zBFsHHAiN4UTK6nHXKfAaljDSewmGXFYvjU/rLC8ZOqKlkjaeYC0NJus9qFBdraaXd1rUEdZFmdV3fQxIm0gTRG4n3mMqijMaiCbE0Gyt3xtoaW/kpeHuQD1e8GySOmBM5gS0Py0pHDhKJmBWhBDfmzyVlgeNkwZKkcbzA514XyMtJ7tfYqVQpTUxRSgCVY4niMlhtpsZ1So+Qu5xrXsj4tiVbaYUyirz+n3eMMGMmYo53A8MwUFkDSovxlgIqJ3zxXLxP2ORJ6BIiUFS1FSNwDLwriAk2fSw5axXLxlBbzbCRbZqVnfKG1DBQtwuBpa+5+usM09ug/mm/suMn+x/h7w+/VLy0Cj9s6fttQX5GJR5E2cyqio91OMccH1XufUypJImbaT2Z50uNaNRN8kwooM3XXyUbRTzrCs61czxTCQKmnHntC/8Sx2d/U2IBs0q7JCmLnor1I5NEzZ6QFpwSgeXc4Dh7eE7TNDz3gmQ+1/b7efjW65ytzybYr21acmRqAx1iwlhLXTe0jcZooStK8b2r/tZ1rz8I+Ta/NtHgRrgh50y3ucRUFXUDVbtgHEyu35JSJAYPZVHXxhQrclQuihik8Gf0UoHaWEsmTWSPuhG4rVtnUgp413P+6C1hzPhCQghejqvBaEVlLYvSI+WyVCwIbT0pQOc8MUqJlBTT1IslxYi1lqauJGlxZPwCi4UcT5eeTpU9eEAfhfjg0SNDLO3K0aQUGdlgQWXE3r1KjZfptCtWqsZEZ3bxghRLIusEZQv13nk/dTeu64q6ach1g9F2Uj5G6ykxNs/+n3s8arwQpNV0ziP0p4thm1F5Fhst8FLO8nnwDu96VPBT1WgXE8qI5xBjwg09Cxa0TTtV/hCqsyATvc+wdShlqZSelN2j8w1HxyuOlivat/46nP74dO/2obfrDN2b1pj5+2N8VSqM9CiSxMRSInpHig4zPqNC9pKKFLL2TszCKYMVSJSW5xFjd6kyY5xWkoX3av7tySGJ4iAHOchBDvKxyDPhAW3/zqtgtXgzPsHMChp7iUw+ZJEJPhqx3yqhSpAsFahptKbGek9TCDJDv+0hw9GxJIy9+MmX8X7g7OFDtps1VdWwWC6pbMPQSS2eVDK3qrqmbZRYEOaqi/lhAUIpZ0IsAb+0g8VyzoQQcUNPlWPpuxPG1CWCc2L45WLx5DxZOGOZnZglqDiaZMqYUi9LMGwAY2tJ/GyPCK4nhsDl2UOi66jUjuc/Z/EYo6hryS06e3QOwLbraJsGUHRDicllTdu0NMVq3GyFgaS1wZqKSMBajTGathUPqKpqqjrdWmn3IB+cxCB5ZvKaCYYKSjrVRjKeTMyp5PLt4oxjT685Q1UB5FlTusJwSykUt0FPsZexzM7QW6q6pm5amqYR4hGSczbOPGOKdzXC9+zm5xwoH4va7vqNZVLoiGVJrCtJuh2ndgiBswfvsOz/W9oX/wVAWHC2UsTTP0rKD7D930KZGh8ToUBq9sRMnr1SistNR/CKxkBKJYxgLdpWaJUJn/qTmJRgz7Hfh9vUNe+Nsu//xZwZSvuavutxfQfR4fstzvWoXPIIx3vDDkYTNGlcc3as2N2apyAzFQo2RpfnIWt0ijum43XyTCigk+Zkh+U2O04/E0OGnQs48vtn9ODpJo3ByiBNkaZnaHTZR3BLUwKowQnbBuDo5Ijl8THH9+8xPHoboy2L5ZJ22cqkAoYQWa8vMXWD2/YYo1kc3+c0xqmdtCrEvXli2U3MlLvIiGTHlPl6/BWCl3gXQM5xggZsYQHGENheXMzOUOJlJVNZWzMNqBFGGRv1kSX7OxXIQeC33SKitKZuVxhtGYaB6Bx+6FG2wHR1RQyqFC0sBQqtprY1L7744ng1gObho0eEELAlKN3U7ZQTopF9bV2JAsyJqmkmhSYXNDYMu+ONPMj7kjQliCuCB1dgqGjMNEYFiN7N0zQzEq8wVEtuhS75XnJUhVKl948q1dtmLCy5hjCx6ba2oqoq6rphsVhMrDOlxkK40kBvjM/mORdsrgi1JFSakp9kZmuOJJnv2LbddkOKEVe9K9ez/p/IWerQuWHglc9/EbSl7weGjcQ8Lzdb6sqyWC7QCgbneffBmqHv+OQLUuR4eW+Fj/Dg4QOq8zOOTcXSVsSUJ4q4npQoV36z+1ZXZHwvAS4ktr0Ql36n/yWi63Ddhr67xHWbyfgcyQR51G47BHO6B2P6pS6EkTEWJAarKmQFPz0LpWZx5GvkmVBA9+89L+2bjUVpPWnrwQ2FxTLS/vJEmdwVGpQ7kmJg2F4CWbjpY5MKpJCB3OTRO1IT9jtSfzfrDW6Q5LOx/YLWhmbRoi/FMnfDls12S71ccbZ9BEZxFBT5Ys1JYXlpbdAK6lnLhr3neCeZBlCGkDKDT/Sdx3vJPQLwQ4d3ndAnS9wreif3Z8TEk0chOPUYWhvZbBNNvSTmZaBuW/q+n/IfRmMgo6jqBtA07RK1XXN0fMr6wau4Qa6nqixGKwYnPVOGfuDi4pKj1YrlSvKAbFWzXm+FjVeSBitrqZoa15dqCVqDVjR1Ix5dDlPjOVPK7ne9h5xZLA79gD4KCSGhtVjtzimcL/NuKkUl3Ej5NzMUmRmPKUofKIrncSV1oSil0kF3jBXtKNSUHKBEiooYJQ7ZbTb0fUvbyjio61qa36WMtRltMlmXxNMRAylLw9jfSuIW+tqA+VidoW0bVBI2H2X+DZsLfIwl/UFSF57/xIuYZsXDt6QX2eXDd+icI6WtMP2URqEZOs96K+NdNQMhwxvnb9Gevs5zPvPiSwpb1eiJzaqfSLjZV0Qj8c/5SF+aRrpeWiz40mZhyt2ZPa8rym1KwirG8LimlvVD6NcSURplJGCMRu2VZoF78kwooBA9wY11ltT0BUIIpJxwJUP3M7/7q3D/ebHex50L60YCapESGZMFdgyqKaEVZiQnSBemjVTNlTt6ud4wdFvImbqqp4c9r3jtQ4A+41zg/NIx5MCDIXD+v/zbfN8f+VkAjh98FWU0fP5P3UqbnH92nTUzGiAxZUka6xxuGAhDh+vFvXf9lhBc6WaaUVNHWabqDFKCR7KVvR+ksHqKBe4ouRNlVCXUxHZR2kpJjdmg11qhjZUM9ejx/QXWKIZxoSFP2e0pJ5yXdgnGWlZHY7JuIgTpH2OMISaPNUYU99RB06CMpmkaWRTqirqp0MZweiL5RP6dC4zxh1pwH5HEAFFlgd+cEpIPQKEqwwjLlLkIOwU0KqZspnGXSvuUSVRRYRN7TE29wGablOMB0xqQ6LtuaiSntSzcbbugrhu0tdKryNgJpRgZogqp1qBNVbwzNTtHmYE5l/JePau25v5qwYn9PwF4jcx2cLI458xmfUF7fMpxs+JT3/NZAPoXX+DBm2/xzndf5QQgJ5qm4eT0OYoTyfrykjom1tvAO//HX+DRvfukz32e4x/8CdRS5o1ua7Sx7NTxk2XiASrFd6q/Id9ZS6+vnOKMObhryDd99+Fp+OUAACAASURBVHzViBghzemZJabqNP8ve28ebNl23/V91rD3PsPt291v1HtP82hNli0bGQmMbTBJBQgQh4AdCkPhhFAmpIpQlfyR8AepIqlKhUpVqArgYihIEfJH4kDMUEBcWJItxbIGW7NkPetJek9v6uEO55w9rCl//NZae99+3U9KsJ77j7uqum/3vefus8+eftN3iLF4AklLtPKbELmA0u6827ovApBtWiG4RZ9LufkDRO/FU6ZpsNagVWbqlw+Zy3qjbIXpKpDSQZfXaPw0kkj599rclVJoJRm12GUpFDpDPHU+gQuOQQik3DVQWpMCTNPEyckJZ+cyJzJDz7prBab6MhnLvfq3d/7/q+ofsncj/dTjhx43HBhyeT+NfYm/clOX7MSNc4UYo2gy5eAsPJ5Zcl0OVQleIrVvbSOZXYoYnVtelW0+Z7Njf4pVsXCCK6LNZzkVYzTDMOG9p++FK3R6co6yDU1j8U5gtUpr4Q/lNkpsLbZtMI1l8hNGJ4GY57IfsuVEilVA8XJ9Z5d3kJIieIX3c+ehdCjqXzmQyLzgYttIJJ4iZOi21nOAiTBzfDL8vySQ9V7JiLci819nHTGI/QMQlMyrplHuAWUMTdPSth1tRtPZphH5mMWDN6SI0s3cOo/l4Vt8hBI+eA5Dj9aLBpeaq7e+7+l3e9qjsVITjLE89vrX8+Cjj/LMb3yZ89svcvXoiGsPPsB+J8jQYRhoujVKW0ySee7T33yah91fQT8gzqr6nX8Bvf727V9q6z5JBVe8mYZ+TwhObBgkBZ/bpYtWWdHFRKlqFHghacjVqTxPC/8n4fxsWa6VRn2Lyu2+CEDf9dzPMU1T5hnM308pinNnNqFbHR3RZKWC+rJYDqL0qCWzVvONAXkAL1DsVCqlKB455UIpAza5jxZqrsz9V125DMKHkEAXmcae0zMZsjfn5xiOWKV01+yt/PtbzYXK53ut/3E+H/8u3jmmUSRNSuVCKp+9PJCzPIbSc9aRuVNFtVeuk5e+e1EwCMFLAPLS4rBHRblXdJ0SCqUspulQTqqvgrrUWjMOI+Pk0BqsldaI1qYGoMLyVkrUs4deeNPBe8iKCpMP6EaM7bwPKJtVLXQdWRNCJIbAMFyCEF6JJVJ+SoADSb30gl58lce2ukv+pQQCHRNJRUn41CypRU0upa2VCrFxvpTxpb2zmCnpRWICkoypFIlRoYLHTxPj4YDJgJqm68SXpyZL0iZq25ZxLKRqadVbY2SEjBC1d8OIK5DmECUpggpJTjHixgE3yGvatsEeX8V0Le1mgz6zhOBZW1v3x+3Os/eOqPnHaWR/Bsl5pnzffPo9jt/jG9qm+bYrIJJ0UIqvlhxnQwyRaehJweVqaAk0yPO83JZctuWWz7PZLDTlc13annquMBXZrO4+D0DWaqxZUwho9QCniJsOMtNR0v5JSh6StVhWClLuGcOij7soVpfAgFQkInKrzksGLQe4eMBTse9Spsth6ro1isiw37PfnRO1Qrei87v/7F+V7RwdoQkcxUizaCG8XN5yobWQV8z7EEKs+kpB0tCaqSglGWNMqbLEYxTXwnTBqC1XcUr63tUwqliNhyjtzugAL0CEXDUVjo9TmY8VJ0KI+PFAZ7IUfZ7PRIR0NznP0Vb4EN1qTfCxSvoYawlZi65arafMcp/luQm5vxxiZGVaUNKa61YyS+oPE82qoapiXq7v6IphUdDfK4OqS0LQ8gqsgSRplFpk2rWMmcFFpcpJNYlTdaszd42MAC16ajmQLdt2pY2EIqpILEKjfmLIwBzynmpraFqL91n9PZPbg3fYpsEYQ8wJkYvZtkDNM6OkkthIBCF9lxns7nTP/vwM2zbEsBD3jbEiTFVMjIc9zk84P6EbS/KR4Ga5ntf867/M+Dv+G7pFALrbKbjQwq+PSIXJ3QXb2AqcILfUYopCKC1EUpBEccn/uUfzTxuZeUuwE3RqOfwvHL+HB08+NXPA7rLuiwAUg6ftVjRdW/uxAKTI1CtiloAIMeFCwMVQqxKjLRdQLZDLRFU94JVWUu2o8oDWGSLoBIMMKGUgZii3Au8m+sNOFHrz7ti2lYvVmEyAjagQUUqzzy047xxd0/DgONFs1vesdC6Gh8WxKF8z7HrKczDpv4Ys3Bnv+N15CyYPU0N+4BeYckGMFWHBsNDTK60PUdcOWJsqwdBnCGzwDtM0mREesFrlTGcGhHjn8CFk6+wVbSP+KPvzc1J+r5VSTJMkFKLQnR9XC7ttibE+gyEi168fc2V7RNMYDnsJiKtNw9FRx5jnYZfrO7tkHkC9F+p1fSEq3fmvOzdy5zbnbyYfQc/3MVSDhTmjtiINFfNcpgKT5o1JK650Loyp/lMppRrskgq5hTgPy0NW0C+kV610bl3nGVAQVF1RapDtLEo+5B4J3jPuzjlkGPavXf1Rwuh562/8YzbbrQiYRk8IHpO7Oe16Tdt1hJQY+l6AD1asVnb5+XTjhRs8eH7O0WZzgepw52FVd/wgxsToPMOQgRPDATcNMk6oYJG52wNU2ot3fgYuleNc3iBKtZZAgndjaZRhvd7MLTgRhnvZUcTlBPdyXa7Ldbku12/Jui8qoNPTE1brNZ1b03arKlA4D9fLzEP6x8H5CuGMSiqDttF4n508y6C8yvFml0QlA0ulNSppVIrUmmORVaEEiefcQVoHRY0365vZRoaByTsBJRhLfxA+0eQcm/WGfd+zXa8uDEvvtu6shEoXqoAEvA9SWbgJN43E6SA8J5BWW0byCRpFBoLNsr2gco2hVK2AKF/zKr8rYAQZPApCbUa9RO9QGmLmBzXtWjKxBZLJOU+MnvWqFcKoSgzDyOR8TYL2rmccJ7pVR9c29MNACpoUIutVFqZsO7x3RCzOT6SUaFcthMA+H2drE8NwwLxMf/ly/eat2vbObael3pe0drNzsdIZpcOFizsVw0f5JbkeC+CgrCjddIUU5ypxofUj96IWfp9hbg9V0qm0topvWGnhllZeNS9cVF7lc3jnGYeR7fYKAM1RK/edn/De5T8CkgpxnkOZLKqaIvw/73w/v/ebXyamxGEvHZET9yIAw2HHer2uJO9p7DFNJlVntF6ZlcYYaFZruvWalNt9pyen7D77PxIe+ivz3Gk+mvdc8vHmIx9DwI1jBnqkPDdXuDSfiZSSjDoydUWOVpJWWzle+bljjHCnrBa6v7V/CJ291dbbp+Dmy9+f90UA2p2f4tzENI2s10e0XWG72zrbgIK8KYgN+V2VA9A0agajiLHJ852FD0VKpKiIpCzIaYCIRldzKedjBReUwYSfJs7HKWurQbtaZwl5wziN7Pc7tDasN1tMZugrbZjGifFLf4302//SPTqn394qN48xWqDKKuH8RLkqqklfvgljEP8OrXJrkouzFUUppVMGMMiKi0AjQ13DqjP041Ch0SEHbpMVqVX2DzJqPs4pJdpG4NIxSvswxIsDzAceeJBbt0459OesVg3jMNKshC1eEW7J11mWVonD4cDQb5iGoXqoaE12Sb0s4l+JJcCBef5YHnvyfMsBKc9YZ5Jnfo0qyNKcBJHnfyrVCV55tqnSJs5QYGBx/18chEvsK//PCMoYUcET3dwaLslVATCQtyNzmtLCkxabzvPepl3RdKusRegZxz7DvSdcsYUPPqPLMnhmchx2O1brWOHkZfb51df+Ua6d/zwkTQyBXd9LGxxoVxsZ3htNCILo0wVxlm9SN46cn5/jQ6Cxts5P77UUkgcYpTCa+VgG0X5TKlFzBaXRTrQuy3FOSpL2lKStX85rsVoIIWB0AWno+r3Ts/+V9eYnZB+OZPaUXmZP74sAdDjsmaaRcehwk2OTse/r9VoOVA485UIUOPb84BFfcs9w+xTvHavVmqZtZ7kNLSddUHWe1lgZwIVUTesSkoWL4+qiKvJhrjjKIF/LfehdQOlIGwIqX3DRB8a+5+z8nBBjtq69uBat9JeuRVvZefnMr0s/wZfN38zDvlhvwuDKg1p+I+Y5ESnRbvI8JSp8jLMVcumJE4TXlFeZ57SNpbWWcRhx04RS+WaLEW2OSAma1rLdrNA5aE35GFrb1P6xc056yOSLNBPqNtstu93A/nBOSuKS2batkFGLGGkU8IW1ARVDJrSe4kZXt2OsJkZ94TNcru/cKlye5XegPtfmh0ySmavRFp2Tg5hmiwRypZTyv8s9LVCDxRyCGbm1gLOWiEe9i+6YyCutUVECXkGt6qzaXIAK1WY+BJG2QojaSi+CptazvTeatl2z6jYM40if1ejHccj24aICLyLJotZRHk9W2apeImjUAvwJ+CxybLTBW4PRirZpcJkgqhYHOATPfr8XlFwqZo3f4pzFhAui3l3AGjEGUvAos5i1RUEZF9WFauKXz51ZqKEULlWypTaVWRAxMYVAJKJtoUaITFLMAftu674IQNYaGmvpGsOrHjrm2vVrgBA/+3660MJRKmfpywxMC7/AOc80TbS2IajZbsBYU+V4hIQZSFGLflUhsNkGUphJnUqGn8nMmZhcQIEUs0ZUCRaKykNQXtRmz87O8F602e6G3b+zhF6WvwA+JJ5M/4DeHxj35xxObjDsbhOcu3DhFNJuIY2ZLIte4KRkNFks5XSS/Y0LV9SSLQnHSTIf5x3FERKyvXISJXGlEkpF2rZBDJPlAmubwMFJVpiQdohSmqBg3WQiqkrYRnPl6AhrW65evcr2aEtiVrqehpHgC6xe0TUtycsDpyhXjMNISpFhvPfFfbm+g2vZXltUKCklCk2muNXOhMUwZ+LM1dNym+WuVqpUO2pxr6fKSbnzDlKL7y4re6Py7+eAAhnMgM6VukC+pVpaoFYv3LIK72OVm+nWoh+53h4L5NqNBC/0hTFbz9uMdtMrg/Iht/S9gHeQ+6ntSnch0R8O0uK3olhitKlIwPJZ+sOBcRxZd11VLrlzSZdjPgZGK7q24U3mJwH4pPofUNoirk0pKz1cjOLKGK5e+xOM48TJ7b8vz5hlixXRyvMhCigsiXI2WgjlcbG9s4ffz5Xnf/EueyrrvghATdOKrlPTcP3aEY+9SiwSzs/33AiRcXJUgilF9pv8PykzYxQsf9eIt7r3Dp+DS9MYVqsuVwB5jpTx7+WB1mT5jxgiJslcp101GKXps9TMOIqSQIqi2mAyYVXkNeYrNoQgD9HgIYmqwp0Xy53/n4PQxRuSlBj25/T7MxEWXfyORuEXfXDJUDQ+zrBnsbIAdaeDZOmNkXWdCLXSdE7Io0ufo6axRO/pd3uCGxlXhs21P01UDbsHnwag+/rPMwwD/TBgrZTmIXosTXUy3e/3tK3hkYcfl8wxBLqu49Ev3ubrb5Ib0qxaVl3LNDmM0Rxd2aJImGgIYb4hY4i43XD3i+py/eaue5Tty/bKXJfIvEWkmyQoeecYg5+FdCnBYhnJ8nYyt0dnOkW1bIizjNbS+Xjxqxe/poTw1mYEHOQWodaZz6RIKWRhUxZtvyxTp7S0qrT4AqWUapUkdvKWtTqi7Vq2V67yye/9Id7/hY8x5QRQr+bPELwjNsLRs21La+T4DOPIMBwkoUtJhF9jpO26+bkSE33fc9jvuLLd1G7BBbWC3PoMSagbSmsardl0liknd8IR1KSMQC1ItqJiAoCxoIwoSnRrghsIMQhgOJP7121LAibvxY5BFablnNh6H2iMQat7W6bcFwGobVc0bUsiMU4TIXNz2s7StCYPxVRtA8wkKGpkNkYuSKypvV+zaNONg0C5UwyAlhadUoshdqrsZzkZGt20rFYbxttSZUxuJI2D9FQRzxyl5zkS5JswRuEQhBkS+rKDwroH3NH3lv2ZDjvcOAjse0G6E+kQVedk2mTymFf1pk1Ky00YoQiT6gzcL21MYzVpihUwETJE02aVgrKCmzAaVIycne6Y3E3a1Ra/lfdaK4XzQRIGnYm/UVqoRfQ1+MCVoy2vf+qcFAJd17JaNfSbNW9/ztXPHnyg70diChzvemlxxMQ0lf574CtPrBbZ1uX6jq+U5Zi0XlTei5/nGQ55RjhXExqlQ02UvtXSqhBM5YE6j3Kz4GWZQyzfWi3ba/N9HFIUYI+aGf1Lw+sqWJqrjQq6iUFmI1l+ShubybGxKogIZzHlhFhzfO06bdPw6v3r+cbXnpT3sgYVLVHD19/4E2zXa97w1D9EKeiKjqE2DDnJVUpnEIU8wCvkWin2+wOnJydcO77Kqu1AKeEd5faaDwF+46/z0bf/AMpYrh7/Lt57KuChLieArYarx8e87ZsHvv6mK5ycnND3PSGqqmJt2z8mz64Iq1XHIYzihgu0tqv7I2CRVI5iPm5zuzXGgG4tbbe657m+LwKQaRqatiOlyOl5j3lO1Ga7rsVNpcVysQddgz5AnhNJxp71ntTMxE4p4nzABZnvuNzG0trMbagirpe3rZSQJlfbI2yWzBinQVBpvshsiH6ZUbpK1cv7ZUbzgth1t4rnbivUFlzIagQ9Y7+Xvq1SGaU3v14bLS3A7Agbo/R7p9x3tbZBa1s5Ezq7bJvGst5mm+yhxzRSQTVtB25CK39HRii3mlaKddehzY9x6AewbUUpJhJddjw1RuZu5SQUmZ3tZs3bnnOoRm5q2zQ5KFIFDYV0LGrEPiqx6w6ecXLVxlgreNUX9xxnXtDl+s6uUqnEJPOLeCFRqn0JSqmxJJAqpXMW/DJp2OJHSmvaxtJ1rVwDfm67Sjsv5Qe/mlvfanEfL3oJVbQhURGbaZpqgFRKZeBDwntXhXXFMTSgjZXqSOkcqAyqCvRSb2xBgIl69rn/YwxIV+Chr5/x3NtbUZtWqYIMkqI+H2zT0LYrjFFi3ZDv8wL8gQzOiJFfYOSNZuLf8k4US6aBsRdprnEMrMYD7/3E/42PkfX2wxzQeO/xGZX37punNK1l/firSK9/kPVzLSe3T9gfDjWga/NP8S5C/P00mVeYEJBCFuZicmI+ebRdc5hcHm9IpVuAQg/efozbDzzHl+Mb7nna748AZEyWpUicnA+8+MJNAK5d3dJ2K5SyFPkPpdIddr9Zi6wMN5WqwcdWRWot0jBhRmsMw5CzjWyL23WYKt0eIS4e9rVVNWsx+RAYx1ECkGmw2SZAerByYTXP/F04/s++/QOxiFIxgXMTt158HjeNqLT43KVS1hofF6Q8pbLkDrW6CSldwInNwdVUtKEfeoqTobWWaZykctFLHSdpczbWst1ucM6yO+xZb+fEIMVI21oibWVxFxb5d9+SvbjqNdGU9oVUZ+M0MUwTM3Q8a35ZjfaR890O7zz7wwFVYeEe7x3p5R5ql+s3byV5yL6kgrmjNaeYK5aSfCg9S+aEJSCB5e/N7buy2cwbwOYOg+paQpQEsMwtClBsJqZLBRTzbKMmovmakv3RFTVKYnZdzkACEPSabVqUluBjslq/tbYqoyhjQKusJADv/dUP8vF3f4B+fyBlRFl7vOX6ux5nPD3jiY//DN0QCG0rv5efPbYVxRAFNJ1D9wcU+kJFJmAKzW635/Rrt/m59YBWYJl495OiwhJCYv3ww6yahsOhJ0y93Df7PWcnIhWm3UjbXWF7ZcMDjzwqiEEvKvunmeLgkyK1HXZzhD8TTzBvPf3Q0/iiJiHK5jaTaUfnGUfHc9vvptVfAmBtNmzdhtOz3T0vq0sM6+W6XJfrcl2u35J1X1RAKg/GFAJIKBj68/1I6xLrzSajsISPMk6+JlHGKIw2lZ8i6CtIC46k1guRUkTIsoxnylDUO0dUisk5DEGGjikjaWzhBrTADOeMKWVB04WQX+EXFHLct2h534nembXjEtM0cHb7JnhHowsyiNr+kNYjMxcoQiTStA1Nrm76SUQOZ1hryth+U4+HNZopBDmGmfwaY6r977KHKcnMZrtec7P/R0zT767IO3mFElHZKO3O0Tm6zZp33kg012eItfOBEDP6ETjse0IIdQjqnHgYBe/wznHz1qkAKZRmlSvNpmkIk+NbHuDL9ZuyvuXsRs0tr1K5sGjPqdzGko3dZfvkNl+e+cRUrutY5yCNNahQfj+3AXPXT9UKqLQsZFZTZlbWiusuSCXhM1rVx1CrC2t0NVPbnU8Z2CNoOdNYaWfnZxVIi950LaZtaEwDMQkIJ1cSACaAOj+gz3ueec2P84Yv/wO5vhvRhgPpVljbEFPI1ZUA1WOGeIO0PdtuxVs/+t/zzHv/a3aHA1YrtivDq26cALBarXA+st50rGLAOcd+d86t2yd1Bnt1tZJ9TfDo51+kffEWzQsnPH81sM+vScbRXVFsupZDEtsL04hPmvNlHu4ZxgmltHSDJsdzm+/GO4/zhU+kOD4+ngnAd1n3RwAqf5QSLkmeWfX9AR/mFo9SCU1CRb+wEtBgIgpDSooQywPRLJBphbFcxAcVWiUJQmXIl4lq3nuSijTZyDvFWJUZUisPYVSsSByg9kchAwO0ykCEerfUz3m3NQcfsPlVOiV8P+CGHpMiqZnbf2UA7Jygd7TKLbvgaRrLlaNjrl8T2OU3n/tb7M5PMyFNWiDaSI+9yX3z9bVj4umOhMY7h9HgNfjgK+vbZwO5o6O1cG/UH2SzFZXxinaKiUM/kJSiay3BB177G+f446NKAhynkXEQ5XOjFet1x9npuRz30rpsW46OtkSlGPtBABVaevF18JyJtEuQxOV6Bda3QNOoNINiFjdubp9Lo+2lnCJK7/rCzxdbAEriNf8RmL7ObeV5x4SqoQrmRhJQBatWHndHR0ekmLhx8yb9MBJR2KZhtVrXAOScY5pGGfJndRTbWlRS2JyUaW1IWsSKtRYU3e1HXsRM/4rjbiaCn73w46xQNE3LZr0mRHFsrn5cNYm9gzwbY32GTePIOI6SkL3wPCenJ7SNZTw+4uysz/tjmSZpn3sfOLl9wvMv3ORsd+BoKzSIdrMhJnjxhRucnD/FP3/8uzjbrnjvxz/MiTg/oM2Etpbn7ZdZO880OV648j3s0iBeZ/lUDcPIc96TTCStqOg9nZ8rzomCRNPeO8zcFwGoUJqEiaxpGkGH2DwXKmKEWkFnFbal+oy7GHFOrKhTSoKTX2/ouq6SvqwtJ3WGGoqMhsKYtu5H8J5JL+y7SzAoGY+xgAadUT664OKXF3+eETlHf9hzJQSUfelhvvM+Vnf8Y90Y3tH9SZ7R/0UmwurK56l94TzzCT5IoEhRbgoU+yzj3q1WnJzckhlsZqM3SmHU7Nq6XXUM08TNkx0h+ApRT8zmUj54GmtwzjOYCR//MSn+/guS7VpJpnzlaItz0wUvEpdNBY3WDIcD/dCzWbdYLdyeFH19Tdu2TKMT7lLODpUxhAhDL69pjCYmuJTieYXWnUiau6JqVL1+i5r88scV0VaSh+VdkKiW2Dp3MyADevKDOjg/B7YcdIoaVHkncbVaiBPnxMtmCgYIs79dNax2bfa9kqRntVoTY1Y0GXqZMaaIjhLFjLGoOHNzRL1lynMheUaNQ09/2LPOZPpV1/HOp//P6mGk2oZ+DFmOR+5R77xwaMzFJFOhavLbth2/8c6/yGq9xWBobCvPpaSZJplbhUzgFhpKIEa4cnyFhx5+iOsPiP23SYnbN27y1aef4fkbN3n4k5/myXd+gF96xwdywiz3X/PQg4TTc26t3sWoHdNhZPIBVc3mFNM0Aw5U4V2mggsUQ1Hn3EvEU5fr/ghAKR84K9lFl9tHrKjtI+HUCLHM6hWrml0ZdNsRErism0ZGg5UHmncZmJDVAEx24CQDFiC3tnSGKKcMy6w7OP+jIMGKskC5WWoLLkOcQ4zs93uc97Rtm783Q1erJbYSzlHB9VfYhIJGK9Ztg1OR7WaN0VpInrUFJ8HPWEtwsbYyvQ/EIBe3abTAR4HG2Jngt4C3xji3OSSLEW6AMYaYPXpKR8V7TwgNqIL8MRWJFGOkaSybdcuNw6Fyk0RnKwcOaxn7gXE8cLQRro8PkXXbVOh411rGKebtNzSNeByNznPI1sKf/4HfDVGquT/8//fCu1z/39fLdOJKDEIV1GT5wcIqhZJqvnQ1Rst9oLQAahI5uZqVSbRW2QahqDMX5F1B5c3VVrFmsNbQdotEMwRU29F1LZMPTEHU8wWVqevHnMY+32sBFFilaDo7q7+Xrke+nwoS1WjF0UbaOE1W8PYh4FyoaLsYE8VIK4SItg0+hAzHzkR4pas692az5YfOf5Zff+Ivcn52lpP0hPOK0c2ADK0VJifctmnYWsNmu646i0M/cXs38szztwSoECLj6Nlsqf5EKJHZ2u17pmkSRe3J54ptPnOC9E11fwVmD0UqzIcSgO6dJN4XAQikbCeJxE6b+/zaGMncQ4BJMO+oLAha5heNQKVDkr6kAob9gX6/J5TMICS8EgglBY6shVBWXBcl8ORMvmobZQmNBREOVL5wyo0gFUDJHkgJZYUzsD/0HPpB9ONUIn3tb8h2QiT6yPiqnxTo82qNNdsLSWYKgfYbf5trR0eMvuH69asQA4f9oWaHHgVKs24s4TyiSRhj8M6jYvab19IGDChWTSt6d0oR0YwuV5HuwOQDq9UaN4nfjzaWrlsTwiGfodl3RbLKP4wxUVBzObC6YcQaw+Q8kwu8+emRZrMmpcSQnUuLLpc1Fqs15+d7Ds6zXW3p8nk/2mwwbcPu/KzOoWJSQOBXv+9HAFgZiw9uYf97uV65tYxCav5WjkDlYbQg8ACz6Vztry1+nTQjNEtyU0wS54ofDNI+hhwAFiZqy1UIq/XfejZKcz4wTKMg46zB5N8vMx+QbocxJptk5meNgrbRVR9ROUVs21ppOSUw6s/8wI/y7z4vSDCVk7DyOfu+5/TM4byrsjbKaOkU5IpBKY3J+nlXjkQc9fHHn+DqtWs8d+UKh91Bno0Z6ffJJ/4MAK959cO8xf4c3k00jc1k7hHvHbtzgWr3gyMmxZXNFqMUH3n7+4gnp8Qg9zL5OEzjhHei3lDMQEqqbQAAIABJREFUBcVFVo50MfIrR/6CvfoiSMUU6ZqOe637IgBppTHa1n5+NSbTxRFR5YtSEVNiSlRXQuU9g9/JhaM11hqJ/Nstm+wv472XascYYhLRwMmNF0iMszW0sFF8cJKdT1MtKQtvRSmVwRCiTBCbudoCGZA3TYPziRc+8d+xW6/YrCytlfcLztE1K8xT/7Psz5t+mrZtxYUxz0H8MNAaxe8MD+Jiz3E4Zjg/4+RW4GwnVcDnHu9wMXJ87RrTOGAQeRw/RZaigVqpDLzwaHIFpI38QUAAZ/uDzHKUuEQ+eP1BjBZINsDIlEEAHY1t2Pc/izI/RoyRs3xxTycnpBTw2SI5Zei4NbYa5O2nHqtFYFUZzeboCvHQo7ThwYeyEnHbMiaVK0bhFBEVH/vuH0RVMVLhgLSrObO9XN+5JWPxtEAavPyrl6TTYoZYtNlAVX+oxa/gYyROfh78ZzJzzbjIrT1yUKEUXC/dH+kGpAxoSEyTx2cWvwSgiRhcBSqIAeTMIdLaVHBT4fVJ4muyRIK8uSmyPlmct341mdRpdA3I4zQxTpCSyaCDEqCN7NMw1MonAsk7SBkWPg18/KE/wfPf+Br9OBHzZ0wRpnxP7HYHxtWAGwdCiAz9yHPPvUjb2RpYg0v0vUenRGMM6/WKqyHK7LlArJMoxFS1CahiwSXQeOdyvqHqOS6dleXZiDFVF+u7rfsiAKnc+tJKMqQidSEnXvTdXJZCB+n7V5vXlIjOZ16JwpMgalBNLXGNDpI9GQEWGGNo21jfA8jl78ThcGDVNrm9JtlatQFOgFbZ2G52W4RFlgZCVtMW573I9/iRYRfR2QlSxcRjjz8mF28IqK/9TUbTCN+niAZOo7gmbjdcuf6QIPDcxNF2UwP19Or3Y5/5JQ6HA8SIsTKXiuuWZIRkqgbJ6sZppOk8666ly0GkVHo6E2p17pW3bcvxlWPG0VV7iLZtRY4nRg7DQNP+GG23wShVTeKe7d6V45ohdonThww//OTHsY3BZnVu30d8cKy6Bq0Nje3YoNketXS5TeJ8ZJwCWgNRzpvSAjIpLVNrZF8uZ0C/BevOedDi+yUopAXfpzyclooDL6mAyJpxIWKMqsaQzSLrjhSidViowM8BDqjJorXSPZmcJ4RUXZUBlCrZuwz5ldZV/bl+FJ0rHVUUvFW95wvHLqUCRpKuTLKW9332I3z2B36U3a4g4RQoQ0Kq/WlykKBtLJ99w0/nzy3bJkW+6yt/jZhVuhURP0krvT/smKaRfjjgQ0RVdKqqc5izsx23+hNUkvtVK8WhHxkWqOF+t+fk5gkYi111mGbFAw9sUTFVBZpoItYq4TdaVed1KcWqRBKD6L/FGIhIcl8DUj5fxsq4Y7W6z5UQFLk01wtZdyQjmaaJfnfOFMRAQSlF1xnswu8mRCUXnpK+o5RLqpbORjcYrUhGkULANIamU5W0BjD0A8MwMPQHrNpgMylTa8OUT0wInuQSJugstKlqlrCUzBCrAjgcDmw24mNzGPYMRajQNjz2xBNoa0iIM+v5+amU1hmF06RIs2qx24710ZGQ71JEG1VblMYaQgzsd+dYIpAFClcdppUhaOhFokeYy2LVsF6Js6tz8rnqLCfrQjVtS0yw2+/ps5Oizk6sp8HLzGbj0Hri6e4ZxrM8awsRk+VJUkrS2ogRa3QdppppInqVg5l4jqzXHdvNGp/353w/MnrEgsLIg8t5jfcRlZUuTSOw3qKwcLm+w+tbxPmKbJMMrPrylJ9Kay4LghYF90UQu5g3z+g5a+08Ow2zDUnKX6XSZlaxRlU1kFKwFUBE9QxKZZorS7TZclu9qD0n0FYg0ZKEKSYfYJxIQw6sqEpQlZlwQikRNy0OpFobtG7QzRofjchUpUTbtRVINU4DJPi+Z/8Otuto24bgO6Kfapdmf+jxUayzffDYxWC/zJ93uz3P7J9ns1mz2W5orWVykWkI1Rl5OIx4syKZhvDaD/CuW5Gvvv5hVIgMWeXbNpH1yrDpDOuuETBSjAzDyIs3hND6yLNvZhpHnr7+ebRSNOp7ZGZsPlv367Wn7+bYHjE+/uw9r5tLDOvlulyX63Jdrt+SdV9UQHUCmbOU0habxol/9dXrTPuG3/bg0wTVEJMmRst6laHZNmc+Ubx+ovcCl9SGPlccm80W06xJynB6fpYtBaBtZjKmIooUjVEZtp2yqKZIjste5owrZGBCzrwEOi7to8+9/s+SEATKlaMr/KH4L1hvV6TgOD0VPaYUJf0THxHxhz8/O+PmrROKetC1zYZrWtpiSVmGfs/t0xOmXgADAG/60M/x86/9SY6mv43OfdYUE53W5MPCoP8gxvx9+Y8SO4qutez7nt1OfOutMYSY2B36bDymefaF57lx4ybPbb9bjrOW1omOogDe+M/QjIZHx4erNl5xjBUYdyLoIBVprgplOxrbWtqmIYSIS45rV8WQ6+REMrD9IaBsw6qzAreOAeekL22bGRFlraFtijrV5fqtXqmWQFycAcVEaXJUMircs6pacl7ThReKsrXLMk8hG6bJT/LzwMjcwfusnUiakaOLmZQAIgrKVqFMmOcY+Z2VMrWzQpIZlfKqViUCGS/wcZM98VK2Xsioz6YlYVCkzL8Td52uPeKtX/6fADg/vc0X3vTTBO8rshZjMHpuXUVgdBMxjwSMuSgTBjLrvnH7nFU/0ZycMxz2RN0R0bXaCjGRbAdv/ADBWGLSvPZrt9BaV2muzz/wA2j7aZpWs141tOk9OO9Jwx41iU6n1gdM02HTe+S52UgVmNL31P25/eiK4/7lNQDvkwC0LJOXkMqEn4RD8uFvvor3Pfo8IWq08tUq1rQWba2gRhJENwJilVBIZdM0Qi7/+9EzDiG3hmb2fdNI4Fmv1zS2EXCAcyQ8X3yL6LnZpsNYAQs88Ym/jM0w4MY2bNcyQP+ep/824zjy5Dv+c77n6b8Fr38dCYttN2yP5b323/97ufGGV/PgZz7E6D2H3ci+n+i6FVePZTvbtiGRODs/Z/DP8Be+8n3ceOEa3k3V5O7P6/+D3fU96nyPbxrM8RaDpukH+nMJOmenpzgvLopGG3xIfJk3cx56epXtKrRFG0XfjRUWHR2Eo1dX0qu4N0gf2Nqi2DsHnHzCBJoZBOn2vk/+InHdVDKgHGfNqlmxXrVELK1pWbUth0PPbp8l7O0aYzWNFQZ7f3CZGT/DQL0PmVx8OQN6JVYFIdxr1ds21f+WFlyhUsCs2Xa3DZRZA7mFG2Oiz8ki5KF7klZvFfstfL1F1CqJoq6qCunCz2v3L6lMUUhYH6oaflnF7kFrQ0RclpVuIFMTYp4/KV2g37LhYhUC5Cdsyi37RAwjn37sJ9HG0jeScE3XJ1IIfOrxP03brXjnU39ddN5sW49nmBzqcKBJiSGKCoSurc1ygDT94PBR/ITG3mNbjTYN8TXfn1+iSKoliqc50TnAZT1Oea687YWP0JrEk696Pza1qMy7HPqxtkMjMuulEnH1S64R7z3D4CuQ6W7rvghAFXqcT2hx/ZV5kM795ATZ0OpDTz+GUXIR/I4nnqXdbGiaFpMfUimGme8CuGnC+8Avvfhavu/qjhAVwQs8m6LknAxNY9luj7DG4FxAuWz4VlvSBmM7lA4ydHMCs9TAZp1nLpkA1tiOxrbsdgNaNxhtsW2RMtecnu6xZ+IEOxxGUtKsN2uuXRcvJLzj9u0Tbp2d48OzPPWNRzg7OyOmyH959M8AOGRTKFGAULgAzbol+sghD0GHyXHj6nvpbc8hcxPMyY6+HxnzQNFqTds1hChDRld67TEb2ZEfDEqOmTF5xqO1OB4uoNAxJmxrs5ipYnITN2/fpm3kvberRjItBVevXsNHBSlwvjvU7Pjq1WPOz88hyftZYzFGMtnS6++HAecczXA5A3pFlgKVvkUQqi+dqyD5KvNJYFFhXFwldontdw4cF2ZI4ilZjO1iBiAoUpb/kVdKsFH1t2KIVRG7oGuTUqgoIIeLs6SLJO9iCaG1zr+rsLqpCL6iXlBs7hMq28bAWIwSlaFbifRNip5pONDvzohAKMCJ/PVwODBOE/v9nq7rZHZUiO3eMfR95Q/qBbS7dBcMloQhRAE+mG5D85YfpOnWFKHfyYnBZwpiZ6+1IPLa9Zau2CakSAoTb3n+Y1zZb/jiQ+8jTJ6T80GUaYAXHmh44IUxJwQho4dVDcYA0Tl25yNuv7/ntXJfBKCYMvlRK1JkIf/iGaeRwTmCj/zCM4/wO1/1HB946Cl+5cYTAPzSNx/jR954WyRwomRJxZ+iEFrHyePGkenQo6+KuZrS2ec8X7lNa1mtGozusLbBh4TtxCiq3DNuGrLiQMK7CTdNaJXwxvC5jGgZJ4FvG6341Gv+DFftZ3jo4Uc4vrKBICdivPUC56c3+cbx6yryrOta/GbNE89+GoD/9vD7eerGM3zjmed5/zuOed/b4Z9++DYhRv6q/TEAVnR8wH6Bk4ffLwoDOYANQ8+pl2HhqB3RRXxI9IPLQ1oBIBQzvimX8koJKa60TATlI5+9WG2Xf+sMeVcoXChM7CwvbzvZTor8yjv+E9772b9ByHdba6lM7fV2Q3+YcH6gbZtazdimIQSPc9ImscZibCnxsw14tmiYLh1RX5FV2lmQq6ECo77QLks1USGDAYDa/rrQ4rojjtVt12hyN++g0nPSKAJJzbiHC4i7/LWAFQo+4oIyQ1FKoASnKKrWuZo3VQXbSLsPASEN/aGSs7VSJJuvSaUrAAOl+eg73w/Ab//cR9G2FVG4FPF+IpDESLKg8lA52ZKq7jOv+Y9519d/hhSpEOYYE7tpYAw+q6GErNS9LNoSv3L6JppujVKaH3zfY9imzVJZhd9k6NYG3W4EC5LJrs1qVXXngpvwzpCCZgwtb3rx1/BuZP3Jq4yDKFtHP3H71Wu0EcfnN/2q6NF99Xuv1+McQqAfesb9rI1357o/AlAIRB0IGU3W94Ig6Yee3S7gxszZiQnnBtDgcnstKSX8GZKU4/lGSYsyuG1WrFbHXBkfoekOECLKFHa27IO1kl1Zq3P7QOCRSrcVitwfzvFBlA2M0QIbDp4vvfnP0WYEScg3UIoJN04kJRpnwU+4XgLQ7uycttEoJZyjAk9VSrN/UALr9zx4zJseW3Ny8giEAaUiv+e3TRz6keNjgVhvNhscL4rXEYHN0ZEQO/sDfVYeCDESQ5CAQMg8hZhlNHLrLAcEpXIrVMktrvQMexZkE9kdcpY4CXH2mw+hmHiJGsMn3vlnic5LZpgP4jBOOB9orWG7OWLoTzBWc+VoS5/lg0pm6bxHK0XbdECG6ucgVeZMS4fNy/WdXPMs5Nt89aICKv+e3URhDjrLlRaB5CU/y3Dr0t0oMXAOI/lhrOZqR57tqgbAsm8ixSUU1BRmLbZlBSRE1QaVSZchBKL3Mw3IWoxWs/RPEq6TzqoIAOM00TiHseLm+vk3/jRh2N8BRVd1n1OKeC88G50DDMh92XufYeUhKwzIHGjmMyau/rbfx/T5D2ZL74SKDp1UnjuDSgGiIwwBTEvTrmisInlJ8uW9hPMYibgQST6SQuD6277KrS/I88krxUPPRx56bpRz1nQyl2063vCpW+WEoZTlmfvdkC7EiI4BFUSR9l88KW2o09PEye1blcmsQuCDzzyc7V9lfmGsIQY/DxNzXR1iZMyW3J8e38HRlQc5vmax9puENIl7qJodUbXyObMRCLX0cRMoW0/wNA1MQw9hTdtYdGNlzqQ0UyGiKkOR8REWtcMogSJ7LUCF0YmVb9sqdLmZtDxUz/Mc5PZwhncBghPMvVEVVhr0ZwDwek0MImOkM4XcZ+/5Ko8TYpXiqS3JpZwPcmNPbu5ry72cakDKL8ptBDm2Sgk/wxhTZXZSkoAeQ8JNHh0EGPKZ9/x5vv8LPwNIADoMe44feZDVqiVEz3rV4EdfxnpMw4DzE1YbtDWYpsnW23Ow8Vno1eds9HJ9Z1fNQ+4cKC+DUlr8XzHLUy0f/pnrx10CTF25bKnXbAlk+a9lQKPOHeadSGm275bMv/z+8prPYp+5moesvl0CkJHq3mf+odGGqFOVqSrHRIimi0OR5pZcfiNRU4midK0Kt6hUi/WDlZcXM0vptNT7D8V3/cbfIITAp5/4qQrzlrlYEULWVZsxhMBw6HHTgNZZEigfTx8iLiZst4WjY1btdaxtMaW7kANujJmw78UzKIWBzeu+ILvz1V/mPP7xyh9EaYiJ7/rsXoJRPt5aKd76idfd81TfFwGoFt1JEC6lAhr6HmpDTQJGiomgYja2Ah8DQz/Srpz4l8dEIqIsfPiZxwCw5jb+MBIT/Mt+jbLH/PDrbgLzCTZKylPbdBAVMYK1nujnbEoB7kjRDp5V19F1KybnZKCX24ZKQ6JoXiWeP387Tzxxm6a1+LCV15gJ1a1ZHXVYI+wdbaRl0fdS4p7cvE10TlwUk8xV2q5DM1clId8cpfpLKQqAIMYLAQYlfIUiXuqzcGtV804pS9osHhK5ilveAKQ8xMw3mQuhCpcCwtnJlsIxCoAEBLXzS2/5UwB8sO85ump4+IFrvO7KW3nxoRuE2ONtotcSTAYX8Hbkr9z+3+lsizYNH37be/DPfKO2fiRgJhguK6BXYs13QLrwIH+5img5A0pJM89VsjHdPX53foeUB9uyij1Digtb7LoPc5CqWocAmSwKs0nj3H4TJKU2ul7/aXEP6OwvXouVubtIflEmSefAk7/9fb/2YT72rg8AWcA4k29t2/Dub/wdPv7wT5D8nDgp5spORIcjX3zzf8r3Pfv3ZtSgVlgUxohm2zQOhOBmYi8ZjTdacKIm8eGPfZP3vmNLSpGxqMwkcS313tO0O6IbaC2sV9sqa9Xv90zjgJ9GaRl6VwO+yc+MNrc6P3f7FykYkHdd/50X7CpKPvJyTYr7IgCByjLuiehdRU1M45RPuFo8LGfoJUiW9aFnH+PfubLDbAwYS/Se4AO+bGc6MKgTGTYCzfaYOyXhY34fUJUQq5SQxIbxUPfH9gmnPR975E/y/c/LBSJeNnkYnqRMKAE1hIkQHG7oiblS2Kwa1tstmysbrAYVo0gIrVb033gKgLNbJ7hxQHctv/z8/8YPv+U/4kvn/wzjHO9c/3sAHKZPoRtD0zRZTkRuTgnW+SIwKUOoi6RIDloLIltRsZaqp+Rl6iV983ymFlmezOsKGTRkGH0IHqUS1hgiiSlMs8ijCkwT3Lh9xu2zTzP0Iykkood+LIRWR9e2TMGxUVsBWeTAOvWFFCyJhg+XM6BXYs1OpfeOOPPPUg1VcEcFRElw1IXX3GVjcyVVN5vpo8qiUig1Uq6q5v0UlWgj7bTctitixPIilW1T9DwzzglcqSaUBo0gXKdpImVJnBrYmL2trI55v/LPFnI03WpNt97Q5LZ92za862t/k199/E/VyunCcV7Mz37xhSfoOklatRGRVq009jUNjEOe0RYluzL3EpqINk39fD742iaX/Q6gFCEIid2FwPHx1frzw15ahFqB1QrbNgzDIC37bMfwkRuvRetfrMg/gOHz/4hEonvbHyifprbk77UuiaiX63Jdrst1uX5L1v1RAVW0SsI7z/se+CoA/+rk6qI0LaV8qugUIFsPBNFC0wZlG1wIouo8yAxoPOwlU1YKY1tM25JSYBl/E0k0mXJlVNR4D/tzxo3MZWRon4hRVG29D7StlZnIsgKCXAWlPFiEME24DFTQWKZpT4wtPmVVWyL70xNshisrbRGHUc/Z+Y7z3YHHH3sMEzxd+yQAbXg/R0dbdPc5lHsnA7+GB1JrQc1Q6pKBltIbipFXyfaMzIlSKQJzSV8GuJQBsFqg4rLWk56l7ifnstq1ABps04AyWcJetvkn4oqfVYroFfvdnuASJMM0OiY/1PdKIfGXHvgj/IFHHkabjhu3PoRzU5ZaorYewrc5FL9c/4arputq8TcZNl3+M7ddyHI8MN+35TUVeXZxS8s3q8+EtHhleYUxBmxDqaL0BS6aiIYqpVHei/lb2f9FybHMzH1Gn5kYZqh2mTPp5cyq7EGppASwJN2HMkvOo4L8StFQbEgpMo09X3rzn2N3fgLnZ8uJ1IXZWgEkLU0vC8dm2X2YUXrzkSv8KWN1FU92fqrIYtmOyuCFiB8HYgxM/b7OumNMrLdHNNZIW985xj7bq2RAgfMBrYprcp475RZp0c50X/oni3P6X3G3dV8EoJgSOkWImg998zF258KpifF80eOM9aJQKtTrdu5/ijmVMgqfEh98+lG8vw3AlAKTFjHDJgW0dwTnsO2CaRzlxPkQBeQZI+M08rGH/kNcNo6qPekkMOBffO7VrNYb4tUgMLr8GsoQMgcy7z1DCIx5tkWzYtqPbDcrlG4oniO78xNWeZ9itDJMJRGTRinDet0x9UmCJNC1DUfbFZvV+9Fa0Y/vr8iZchF47xnipzgcBs7O5SJ75Lk30yhFnz/Xc696UohlF731RJCxqGr7+XbRGUG06jqapmG9XuVPnrLYYsJosBgeP1c0k6ktjM32KldWiX0/EMYRMJBEYdzkoBlSIIbE+5Ti1skZMST24y73/e8c3N6lj3G5ftNXfX5f7FzfZaU8CJ1fVTthSsl89h5coDu2Mkez2n6Xv4QgmrUAG9FrdFmv0bmEMpbGaoKxpHGY5zN5l8rcSCDjWhRUYkCbUFFwwv9L1fcrZIfV5ThAZTfWmKiuxHeS6X/h6UeytqIgNo8e8ZXgetfPnVLm5li8aebPvjgRxjaZ/FlMO6UN7S/YxsgnjUk+S8ggI9u2JboSc3AJXu7Z5bg3+LG2JwVFK8ZybeYyFnfaFFL2RUp8/sGrvO2FE8Yv/pO8z6kmHPda90UAKoPFpIRwVbIZCTbyQcrsAbIC7h2TLQWQBRAn7xmHfj4hKRFkho5PAecdITgsqwuBzPmActL7Hfqes9NTwjVHYcYuL5oYI+07fghsI7Lp82QSmaVkx9TgOTs9oVGKkq5rNLthz3q9xtqOmARefnZym+MrxwCE1EFGmDTtSpjT/YHD/sD1bYZht5qutWzXXRbuNLTWYupQFUbn0GOL278VG/esbeD8icRDz+3qQPHR597CyWNH1cgKIJjPiK144QYYObaPvvBWTl/7dV59+x30Dz2L9w5rFiTDXCV1jUF5Rde2xBArEfXBq9f5qWHim7cPHLxFaQtqRdM0TF4AGH/f7EgpMI4+Q1I9Xvk7MkL5+25w3cv1nVoKVOJOJ4ULKweNeZa4mCPWSf6yBrrXDCj/bHF+y2/EGHJhIomQ0hodzYXXCZHTsEPhpgFSKlzMRWDT2SdIEJ1xAcMWSoHsp2KmHsj8NIOAksh1obSQOHOAnFEL4po6dxHg5kf+L7ybaN/1Q5V3kyBzenTd/vkn/jmr9RXKTiciJDHiO/3YP2X17h+h2HazuCdmFF2sn+ejn3ie73/3NdlOIfUTqxW4KHEvAoVWRO9R2sxu1FqO1Uc/+QIAtmkvzMMKG/iLD1+7cE7FXuLupxjuowAUU8iIiYsIrpSkIzRDLeXqufDcyf+OUcq/yXsm7/A5cMRFMS+sZz9LeZRNxEBSHoxg2PphYHd+Rjxe1LcX9jkxjgPeTSLFnuZtFWmQQoQ7OztHK8VXPvg0ICq7MQa+3DyFta0M84ME3q6oJcSQoc7QvL4j+MCzLz5NSPDqzaMAVTfKVJM4Ga5arTKhL9twj+9gmk5JGTYtjGVR+gW5SJq2wVpDcTjUpkGHdxGzhwqN3IjXr0dem56ge7hhd+WNJPNZjlqR+bBpYt9+Aq1ECdsHOBx6jNasc5suuQm/39EqMNstY0xo0/LQ9Qe4+aJkcn9yDHzzmmSU3ocM97aSiKjS6shIvcsA9MqstOhEzY02WQugwMWf1OzuwqaqQdvLnLqcaubKKSc4WqoOaxvxzEnSXRCQTdEIzCi54CmAIJWBRRWdlWkEwr/T9QEeMxm17LPSBqWL3cGsnDCHVkHLiiyUn4E/lOcV6B9+NeFDz/GuB36w/iyGwJO2YSqfP4ruHEqhjcquzZYYPaogCRXobAOjdCGCd6Qoeoplf25+5B+x2hxhGrF9+MjHn0ebhiZ3Voq/UYqBqAWMlOL8XJXjrDNa0fDLv3oz5wsCbLJZ87I4SgvQICcZ5RpYnNcYEy8DgrtPAlAmjQoXZvb9KYSzl7w+JdQiDYtpCT0WdMsPveZF/uVXBNnh/UWkVOmlTtOCD5M81kTwkuGNw8ivPvFTXBQolN8uJ0r2VTK68h5aifievIecYKUtX/7g16vlrdIaa6SHHWLxSrHYPPcBeNcDvwsU/C/Xfw4d4e2fO+fXX2sgwZXufQC89ddOefEHNxwGkQxxQZQLGtvWbC+mxKEfRX4jz88ePYm4piUqmUndemTDSmtAyLGgsOk9YgiYZhFRpRTbo4bNZsXpY2ts9wVM/F7W1+UYNtaS4u8DRJ5o9dRtbq13ghLMffOzXc/hvMcqhbaGyQW2m5bttuX8tEgVgVK9JAwhYG1DsqKOULJPkx1sv512zuX6N1/zvOYux/tegeSONnn9drk4FTVRuoiGSxe+XJw/lQ6D+OWEEAh+YbUQI8F7RhJamblTsqykcuI2Bx/5UysK5L6RaYkmBqESzA/ZkgSZ7EPWorU4qBoUN4f/gBSfzNsJvPPqB3LypDP30GDbZm6TB0eKYiNjrKVpWnzToLK1ibxjmYuJH5EymtVqJYosWfhUqk4Jj00miTdNi7WWT39pqMcnxcgPfO9DpBT45U/dQGnDW1444dcfkSpJZV03gC5LjC0VLsp7XTzVL8Uzzsfr3pnGfRGAYkq5UVz0nwqxaoYY3vkh5otaZb5KJC7609Y2KFOgvwXymd8vJMbBkYY95YC2jWZ93NIaxTCMjGNPWF1s+yzendIKREG/jqgMeCgOrgWAsD7a8o2P3eToyvULn0VrgVTWT5HZwRuKAAAgAElEQVTN1wpicbVqSSmy6izWNDyQrnB85Yg/fvMPEL+SgQSrFW/41Kl49US5SRqraBs7G0ednHHtZMdz331MSqKrRm4lFNfGrmvpuk7AEvmmKES+WU4l8NCNCXXtOs5Frj17YP9GjTG6Os9uViux2rYic5Ruenb7kQlQOQA553Ep0aGwbYdqoNGKsNtVwoC1LUqPECKrdYc1KxxFdiRfG1BdKi/XK7TK8OTCt0SWZ84HF4OE2nrK5nFVuqAQxu+Q97nwsJ23V4JIDFnjEZuBRBJsUpydTKUFJUkpyefYVcRNZ8JmKvsB1WZ+2YKLMWCSrW3leY41x0NjRdewa1coJfI4p+7HSXG4MLuJSfSwl88SYxusLQoiOTnM0PCzj/9zNlm3cbacn4EJVmv8Z/81+n2/j5jCDCZSYBvNatWwXm94w9Mv1HnQFx+5no+P/PXJz+8hBrrVBm0M643jHScSpL708FXKGGEOOheDSbrwb/mZzLnubKu+fIfivghAcgGVsnz2ZW87i3NTJlsuCvs7KiPpCxcWf8aeGy5wXUr9LOgXk3uWMZvSZXh7irgpMfZD5iLNqC/g7tVQgm4PLqNtUrH1za8dP/rzXDl+gK61CxdXGcRaayvIouiuNRnM8JT7FN45PvDMo7SN4WurT/JT+38fVjC6cuFG3OBr3zfkG1RrVXXedvsB5xNv/OQJMSbOX3fEAOLUWpRtY6xe9IUdbowFUv6ajznC0dJK+AzGGJJTVTw2+MB2u2G9WZFi5Kw8GEqJjqQWtmvQLmC1ISQZ4PoYqtHeYRgwSmwbmq5Doen4frx384PGfkZuzssK6JVZJXbckeveyadbzhIqepWC3irfz/OUCzOgMse4eH+JwsmivZYSKUol4aMoBsSwVCcQywYljPC5M7K4BssDc55ZCvqmzKLlrTLpNUVBc6IqIGG1Fm7Oan0kAIMYGPs9Lx5+jBBGUkq87ZOvk/3RGt2U7edjESOv/vVTXFZPefI1HSpFqaiQ+e04Opnr6sV8NYFKcs1rlFQ/We0FoOs0D/3bf4TwhQ/x9pt7pqbB+/m5uDyVShvR0sugCWk3ymd/ywu3+fLDV/PcqRzP+RzV7aRSQM5V0Tyrz9v+FrfnfRGA5pUonugAv+vx5/jX33i4SsnIyiVmflAXocOQJTJsu2Z9ZDgcelAlO9YkpPdprKVpOzYbh9YLKR4N3k3cHv4oX3ndiv21Hao/8JKDzvIGy1Dg4CuEschPLBnKIBDF0m4o52yafN0mGSUzkCV9UspVCPy/7L3ZsyTZeR/2+87JrKq7377d0z0DUKBIYHrvAUHRJLhJMmlRCobJJwc3gHpxhN/04v/B4Sf/AfaDHA7LtqwIhSnTJEXKBEgBIgEMidl6nwEZpkhierv7UpV5zvn88J01s+rOgJzuvhHKL6L7VmWdzDzrty8ninB80uDfH/wuAMYPTv5eaJLsnewXHAzmpBNnJpCuZeNCpERnbaFbdwx85s0n8Zl//sNbXkURq5ojBIPOZg3qUY3ti2sYW4OJJnzfp18FAKysrmA8rqEqBWccbq8B6rFs3uOprz00rlFPRnAQYiKVKxVmWsHCu2+2s8hqtk0DsOjFZ7MmqhYrvoEqKOUHeO4Qgj6TZ8GidjmUElA4PYtwUvGLtyslOQLwxmCplNw2McVNYTMObyGfMNWFq13kGYgbJZsUIZOAHEJZhcl4Ah55YuIZRwDYN78M19ioBhM7LntbTjDea4Sg9iRFyPXa23t1PYK2BgSCg/dcM8JR50Gc5Md1+fEumB2mf/Y/4+gf/1eJKSYJLm2aGd5eWcVn9w9jmZukyUgzFdT91jnc3lwCc8iGzUlKRSDcpdEuzLH0SxKrEiuwyqRhRma/nw9DIOoAAwwwwAAvBc6IBEQ+x5jPZ+TVPqN6BK012lZyigFCUaHEkAd4YyERJIeScBaj0RjOMcbjJQDiUGCMASkFrUeoqwpH7pdjjXkAkbMCgE/f38Hx0SG+8xkf3+LZBgqBEIUxlmOAamgjNgyFtmmEq2Eu1EXKPyevoxM74cGFbM9gLy05kBJ//T/d+7o8RxFunvsJry4IzgziLhmcB4TP8c9RDlt/3aaaKp4rOv/oADFjsB9vUMUxJ5f41rTeGGuhZhOousV4nBxC2FmYxoFaoJ0Z7O4e4hwDxycnOJmJBHRuch7OAa0GaiI0TYMZO5DWsCYUu3K4tG3x6PwYpi2Ny6FoFlh09jEAcYDnDOyN4uHbombcOyESH+MAaLnoTpODBIpEnZHBTxJV2zbZ+eioBb0YFNThQZIK6iD2vzljfRXTNKDcDVt7x4OQv45JzmXT+FyV9gDOOQnAdFKXS6lcrQefqDMTG73qj53Du0/+AACw8pl/AucU4FzWdy/NJd2iCKCk8P6rF/wczLBcj2PhTTBgDaFpCNY2uH1uJakebZ60t6vopEyVIr9rXeHKE/GcvX9+ba636bw9UGrqaI7sWcKZIEARrzPjpy7+Ff7o8fcBAOrxCErrzuD95OV6R9LiVcYcfevFTbHynzWYJb258tX7UKgF/HNJ1HR/eXkDhwcKaGboTV+5TokMZRerusbBm7+D0a2fgSMF9mJ1aBRcyp1NAaugkM3WE1Zjo5oABFgwREOV5kI5xttPvg4g6GjlwN3c/KnOARCPHYYCKXGRRpFoNOjW5e/n3jlA8Lj5sy+I8TIQLCkh3gKHh8CoxVJlcewDbK11vkqjw+ykxeHRMVaMw/HxFOt/6dusWbSNgdaSqr71Xo/ctNDeaeTo+9bx2be2sf/pJZhaPJ0IjBGN4tgrXXn9fn8/DfA8IaldgAWEKOnO4h1lclwE48Epr+BISXjOGZS6XOkRKYmovN9YkzFmKvUL8HohFlftYE8mwSyJABk4pwtbknU+w4pH5rPobEBRJZXsSkl5mMbP0cFCzpMPDtUEy96LNeS4U5LJoKv2ctk4SNc4evv3sfKF/0IaOANjCG1DcLCJ2HXWIiZ4zTwAuyvpnMV3PnUeSmlc+YsPcf9CSYQ6lvDye77URKee0TNBgABE0qm1ToQjT2THZbvWp5Spqhr/4FOPMRlfws7JL8Eemai7Neb35Bbyi+89z6TkQkpnIW1k0xgjiftCPY++40HWGb+5lUobN1w/9xO/AGsazLRKOlhOh0RpBZD38AnnAiqmTbeG/DnOg71kqcNhs8H4Q4jxAgDw3vbX8frj3XjP+5fO4dbWT8fDIRQJIBfGJQFu8G6fgfA5dvjs2/sA/AH03jp7nx7h4OgEy5sigRz46qtmYsHGwDqLZtZgPK5w7u4OlmcWS+fEJV5/KFUUq0qB+RjrTuxRzjkcfr9IrN//4ATjzU2c21jHzBjY1sI64XrDuutKQ0ND2cEL7kVCYBZPo/vR0pMK9vQ46I9yn5/3fGaRhJNTFotdlXKePj03BpJ23+WdfpwDyFqp66MrECUthbEWlXXQWiGUbrDOYrf55WjvVRrRhkTeMSASn0wKSJ+UxzEtmmaKm+d+EgDwXQIsxOGBAuElkpo8nDtFxJDWxIT7YFpAEvTaZoq2nXkPVxUZ3EQQO6UgInkvuWl2krpLV8BkaQk3to/Qti0eXFiTJrmok5liidNanMKiRDgTBIjTPoXSKmZXBjN+4sJf4Pf2N3v3pHTshEpX2G9/Dda1vtaN8378AhKwGQIwFW6d//vi8tg1ekIily++t4/vfEYMhPPOSXJBpBgYF+oBKY/f65qwvrGEZyOd1BG5J4rjKPXIM30Nj+k0zkVULeRiOJenX9QJHPnEEHkcnSKYY1E6Cp0L7qeZFClECPGeILBlPQYgB3fpmcVn9mfY/oy4fx8fpz63TSM1iZoWq2vLWFo6wfLSGHXtJTvLsQBf/mQwsO7rWKnxOEpuRAr1SPJ6tSaocgRBBEeJAV4ARDa35JaDG3YkCEGdo5B0XkglDeKV0xYucVydeyDG7mjUT8g/ojtGIV35nO79V7AwphGLkDBhwQvOsoPREszqHGOn+aWIp3LPtJS3rSR43H8ZmBnvPPmqryEGXHsmzB1f+RU4Y2I/N3/sF3Dwp/82SlryiGwc8aDK391v/hYAYO2Hfw6EEKzKAHFv6GHeQpny/ADlGc8Z7KsaN171XUntHy8cuBAX5ac+kbOMGQhrdIoS7mwQoKCn9Qv6E5f+CgCwM/slHDaHAP5taiuyY0a1CIf8ZaxYqYXTenUNM8fo47cefaXUxRLw7vbX8wd6JMgY3/oZHB8DaJq0qTIpKbxbuBVRBR299e9Q3/gH0sbri0fjChubE+xWFcB+EaIbtg+c888PcQkuy85QVRqjeiSp4K0Eh+aHLsyb+FI6/0yZR8eM+xdCUBnh8qMdTD/8TXzw6iaIFG5u/VSc8zAhpBQ06ThP4fgmpiioCx2oHmE00vjcNzcwHm1jNJZtpLUCMWCs2GsuOYabLElPQ3CxL8lNSBHUHLwYQ2ZRsiBymDUGxohKwlkrUmnI8ODdzoMtcIAXDBm3nCT4nPMtCVXg3uXqHKlkDoQzmc6tgiKXAiUzySfZShKiDvxaT0dEBKUqKSettWfd0hkKsDP7pRSGACTGKaKRJPHkSUOzSUAsoshSv+vK6o/izs7XcP3ZISpfbvu13/6X+Mt//Ctw3CBkKWC2vqxJd57mfU/zTiRlKChLGVQ+g/ofg/t0aOeSJGatw+3NZYxGI1x9uo/xRLQUbSN29ei2ntGc02WeEs4EAfJsvKh9KKXMeO/Z13B8LMbr4NYc3RnTzbi983VMpmtwzqC1DYg5bV4AuhpBqRnYcya3d74myBKlaiAgw0rX0BMdpYeUfLDywaMM9qmDdFXFoNLwSucY7QzY29VgV3mGLDsFkZB5kZ98kTk/D35Yomay2mfU7nA/SJtd5kYlm1E2Q+yABxfPCbFUhCtPdmGe/RYevrKOq2tStz5UNvXJbZIjQ75xOQxB3EodAyezFrPGQJ94e5NW0Ep65RyLyzcn4hP6mqQ+r9qwVjIS21RBk4hwclJHSdaYBk3bgqLjpqg1nR4K0r0IEHUX9/EfaC6nXbQgIGSHjxH1FCSFtN/7L/WR//E5Cpgj9QaOPT7HY8FcTpM/YZ9WPts84EybqceTvejQfhlai6ZCzkPSHET7c/5s/zlpLAIRlHFaa/HWo98Hs8OoHqGqdEawCTvf/H+w+oWfE7xChNHI1yaKmSLyAYdaXSmfm0yXEOvNL/4C9t/8bYDDGc5wHCS7Qwz27dJLJFwbJBjHDk3T4M65Vdx8sgcAuHNuBUQ25GftLlz/oQvgTBCg3E+9UM1wmqEoImfXpI14dFlr0gZXVOB7pWUT5RsjPjfPlOcYB3/yOwixPKs/8vOYTk/iHXkWW4JPvREj8TORPxA+VSGss1zLEDEDwQveWhsLZil/r7UG1lSeEATiOEdsJoA5qNRkMzO5bA944k6M1gK3z60JMXKEB4ffAgC8/mgb9PrPw9gWyimQ0r7UsAIjf1cmfTnAOPGAs6EmfWv92e+oCZFUZ2EqQnXLGG/hXJYKX9DJrFmSOQcwnTaScyuoP3wqnrbw7hngeQFl6JY/is2Nts4gnaTMINyxm3ykEwnnJzYLaKXwni6CTnYhRPUYpbxvAJTyaiTnwE4y6x+6L/ns73Keq4pSwTqvYisJj/9UYN+An5KNhSHn+92nfwClFRRp1KMaSmtfVh64f2EDMJKKh8hh/83fwPmLS5hOLabHVL6Lk50qBMqGFsG7lr1GhOLpVeV6UYYDA7NOKe2W/JIxy56xNW2Dd9d9uW0TPJO7+Dh/T1rDRXAmCJDrcMhJ5JZNACJUlY52knwzhClwzkQOR+5FoRoImz3W0+AkGgcIgarh8+43fxOjm/8wSR8quCQD9XiMgz/5HZ+INNMLK68/NSYToTsqh5xZ80QxpCNKUcRAM5t65O0XmYNOPElD5dpK1DJYIdQDEtE6aErYH2hGaxnGz/vdCxvQe9/Ataf7eP9T5+HY4erqj4odiUKmCE9s4/pQJHhh+Yjy6Uy7T96dH16OmKwj9AEQqSm6rntJUaLGpdQGIMMr+IkBnjMERNNjd+e25KwUNgExILJ7Jk/FUj1JJ7f9ypW+fSHhDnGfruLZDDVxjGmiUV9rjSP3T6ErHQkO4JF5piqOnGS2x4sjHTGvH6P/0TkH0zZgJ8yTrjSuPN2DsS4SoMB4BWFSoPJ5JW16bj4n4pEhuMC/S2mNnW/831KTSFdzJLTwnIyZCM9CkkaDajGSIQoMpMtsy65woOoS4vxVp+2YIRB1gAEGGGCAlwJnQgLq6ksjRHsBQQyQidMInI/E+yjPOkhA6DyxXmuNEH8j1DvwUIFah0+JbJ/78V/E0cF+ZNHZWeG5fKGmyqdNN8ZgPPGF5NjCtC2m0xmUPsy4vEIky4eN5GqddZyS2iLMTfCkia2CTi6wKdnYc0+UoDZhJkAlRwVkFRAtMd47two9a3D16R7uf+pNAIwrK5J5u21nMEbFEhDhX9dWlHO1UXITFjiOUAJIXVIrRsk1SZgA8IPf3oFShA8+vy6aa5WyAwdpdoAXA+zF9ZA3LcJc+w+Xf/3Wj1qHKEErJA4fqW38Ux4ULkReKu5JWiU5J4qUj/nzGg1n48Y6ML+G4L2m4Pe0r6JaqNkWse6Z9iVikWyoYvMR1fDbT74i1ZorUdlXOtmWH7wSvHuD6u23sPGjPw9rCNOjymsfUnG5JH6V0mSA/W/9VqoGW9iK540lSHjzG1E2lwCBWINZnCMAiLqO8r54ibcQhILGZTGcEQIUoBTxw2KmyZRNI1H6qU3IxwZQ2qSdya3rGgyLgO5Ff+rbZv/HuJ8ofqsyiy8juiSSUtBVjYnSWN+UzXR8dCDqN2fRtilHXM8RpThHoU9JXqXYqUA2s00RNzv3Fpc6V6MKEN5QG/TuLiVwjHE/zsIS4c7WOipjcO3pPhz9LgDg/YubsMbiytqPierCB/rqSoNDzj0SdYWaowpNwxVCEuoOiV1P7q38c7T2cRreNvgDb+15R4ykovzOD21k2XcHeCGQMO6Cn6WB7F3ubPrAMCSmhLIzmntR9V7aOSuZMRTBmYGiCtyr0vz7grqNwFlxtcBE6czO02V+8z7kzFz6IanHc8ZRwVqLd558FQDgrInhAkoRrjzZR2OdZ8D8LRH5p4SlzWwGXVWJ4c6IHuI7uVBxMZQvke2zeIepo3Q/ok1Lp2uMorR6HlMlNnWZJ2cABMZdWR9HKKq5ZNbIZyhHdPPhTBCgtPDeXuBKbygpOJWlmglEwt8bCUlHOsg/K5IS1pLtQNpT9m4iSt4wnvhIkFcFHaQtMJikJG7kBImgtYrVV0PxKtnc2mecDhs8dic7hyWvl2bCH1KVDLVp8+XfO1pd4kyiKpFCToxIq/Rc52LxPDm04g7etAZ/9tp5AMCVD3fkHU//HdhZ3D6/hqvrXwRmQO3rHIVCWqxySS9xbYAwdZ7exDUO81+4l0NBg6KunllSngR74eX3juDY4YPPb2CAFweyj1Co+XsQ9+QcAlQQscWoSpqV2ozIgAXbj5d0SGufNcC36niHaaVw6L4UHQy0TpVQg9STnp33IBtDxvEWGohsEkQzArz79A9SehwSLc2Vp3uoqgqtY9w7v+73cS7NJ4LGjtG0LZSTcyCvkGTGJSNbUm2tFeq6xo1dyTpijMW982sl3ghMLYUVCswAOpC0MsQ+q4LS6WUOYLIIhDPM0+Une9Gx6+ErGxIhcgoROhMEyDkHcVILUkcqA6urEEQKz0VIXRidcTPC2FNEbuBy48JzH6GKn7V5DY2cAPmd4BzY571SSmPkH1aDMfNyFCNEUzswWxwfSlCZaaWGkK4q6HokQWHkACh0uoTgTpkHxBWsFwPBwy1XEM7TMXIgcCxEKD4n7js5mMKxcKHCIgWo4BAAeGmIcefcGpSvK9S0BlopfOe1LTAYVz/cBp79Hh5c2IjE99r6j0Pryqsm02bNOUsVvQ7DGskBULn6IzpbABwqOLLsC1apYBizw+X3DntzMcDzhkQuFmpBOz8QgvqYE8rK9kXOTOXX8r1PIVjaF4JT2msiKGWet9bAWSMR+dERQUOjyqSkXHWcDO1zx9i5np+/IORJzLToGN569BVYa6J3LJHC1af7UJUqmDsR4tKZzpE0I9TlUmUsD1Eh8UQm1mscqqpCVY+h1Ew8WesRPn/U4vbGSiSIUicJPjt+ojyFIEdxpP56WImO9OerEgvOkfX8zmvnce3ZAQCgrscwppWURwvgjBAgGX0wH4S0Mj/+yl/gj59+Blpr3Dz3k1LsbFTj7UdfjZ4tX3j1ZzAZT2JtHXjk+e7215D7x8dMAESpdlDwzAFiCQVpLxyHUH0FcPKicQFp+mSYLuQyyzj5vW/9FqrRGPV4KR40CmYqD+zbyvr1FQ+hUXCjJgocFiEUuY3uzhziIEri1XuYn4twcMoAtVykT5JIUCHe3VqXLThrobSSNCY+d931J5L256F+E85ZGGNxffMn4RyjqipMxuP4LmMT4deeAw3xC7mqteRAXbwWmBMhUspzZQO8GEihADmuWsjfUvm5l9OREgKcS8lK4TkiW/IJiwPhcVkVZbCwsUorHLovQ0ES80rqq4TMC81DgdE7I86MO4Fp7A9RiI8xBswOKnP5vvpsH3UtRSDvbq1KmQUutRSePcyeRtGlOgk5FOhPdq+c+SD96arGlaf7PlaK4hxf3z6QsicA7m6tgtn5mK5A+iLiLXoRedigXutMT1Qd5iEulEpRXN8+wP0L6zDtAvyGM0KAMru1GMdD1Utm3Nz6KXzz8Hd8ok5fD94XhgKAcV3HWBFFUuYZzPh7l/7zxFUEbl/oE97d/jra1sCarAY8OBoInWNYlpQxWis4v+msA6xXDZFUvJM3EOHw2/8vAF/LBj5Ts/EF4ogAlwLoUgxELiHMW6QUUCvdt8VBdtaB4Ou6M8fDQZkNJj41IvesH1mjoHtO3A77fHmZmsBfs87gzrlVkFaoMlftUC/lxpN9PKy/idmsgWOHN7b+fowor6P9jGJsFsvCz+E2SzQ3L25ELd7bA3yikPZFAUHqjtelXdpLqWGSgMJa50xfjgADpx8467S/tK5jkk5nTUwJk86WV7exFlUbafQdZfKu+nHFrpbSTTwXnSHLc8jjBrFVvv3kq1DkbUw+sW7l8ZSUDg+1i6h4Tni6UoS9N38bKqgIc0IZiE/UEnitRzY2ZsEJSol63bG80zmH+694VbW1CLIXMc8tGBccTvIlzeP4SlAI9mWG2OLf2xCHrFu7J7i+fVjmyezAmSBA1looLzLveQ8VAKhsBa0l8OrdZ/8eihR+5NP/CABHVY7E7YhXCSNkf1aiVuottCz+j7z2szg+muKtx38A5XWsupJEoJcf78A6xt2tdYzqGgRG40R8bcGxZnZBgICIYK0xcGT8zg2ZDlQ/91z3kHXUD15EQjr4iUCkqo2SpkYTxcDM+JYekQmp0btSj9/UFAL4EqIR1aAndo59xp9MbWAdGmtx+5wkKFTG+fkX+9f17UMwO9yr/igr9e1wc+unMRmPxTGE4XNXqSytDqXVopxXLW1/buGhGOATh6BpARI29NcDDaIcm2WbObrAZBqHGBwaVOkAgniVM2Rdjy52VtI2+WcRfK7HSKQI2lbIHQv6ODZ7HoA8LjN5QwRv0RDvkvWtSM0lmaPfevT7Xl0mv117Kip50RaI6i2qnDPpouwNFaq7Iq6RM0wQVHHeeOTi2bK4vTHBrf0pqroGO8adzSXRYngJKHH7GRGK7+DYpqutmdfXoKGJiUl9wGEgVrc3l1FVNW7uHfdWIMCZIECOAXIMqLyKKLy3myqQpiKFL1z62VS2gNMmdUxojORAUpnRP6SZCURLyleLuBz0ws5ZXH68F9V4zBZsG8BJEJmAEJVwmDa/+IvY/+a/Keqgb/34L+LZf/i//LsdCEFPmpA5EDgsT5zghfCMcsSPMduvX+ygu4Xcz0A/Mj1rE5mYoPsNbTp0KOrZPVck3FYiWKR8CWV2meeZf3+oIsniTnp3aw3Kuphfrq5rXNs+8F1j3B99E3bP4traF8U1tR5BsSoOAML8xBx+hRUsDqGXqn+A5woiwSyY864EG4lNkCZyqUiIg/KH1Bb3AcGZJrwVkH3mgpTk7TuH9ks+e4cnCi4xe9GxZZGKOzw6a5LoT5Y1unhGqSpm57zqzVMIRbi+nfK8AcIwPriwEe4uBa5i+ry0l0mHSbLL5jd3RMoQfnDUstag8o5SKjhCdY3iXJ6noMlJfewgFa9iS4/pj4Dg88n5n5xzMKbBe+uTOaMVGAJRBxhggAEGeClwJiSgQ/dlof42cRaAMPLsU8qE2kDCjCQPK9NayfUWWIRMpRtUcFVdYWk8QlXVUr9mfxfffvQV8VQLYjQnG0OoJ2TbBrZtwKHqZpKBEWUDEQG8uzWw841/E3W48jsDjmUcPU4sZ79ExxGZnEz7FqUQhojlmWdMEVuBwKjM46/SG6M8z+Fa5nXm789CkiIoLxZx8JgLGruO7tAyw1ng3vlNaC2pD0NAIGng5u4xnHO4o74F07aw1uLm1k9jVEvBuWDnAwgqqN06uvjgNTfIPy8GgrTtv6DQwfVbL7haSkU55Daj8sniQZqeSt6FWkP73G25mo78vknSQ0ejMKdPwtl31GJ+b3G01Waqw5h4mGPMT5C2tFKxsCIg5UfuXVgXDU944xxJRqSHzD5EZX/S+Zwzs9HFWs7Kw4ubuLU/817EdbTbAkndmIbkOusZZqUnH4UR9WcwrptXQYYKyRCbsfMmjHlwJgiQynSq5P/Kd1nkG5tSuKnyeddy6dBasYPEFO2ZLSXWW2uBKQCeTjGdTnF0JIaxCgytpdEX9ht88HcuYTaTLAaulfLT1nZcuueKoMk2EVy9Y1R1IBL55o63Ue/gRTU6R7UzOBuUPDIcG0pbhWUDOCRvoPi2zsGbh7SD5Fzofq3wn94AACAASURBVHNRH4IACJBkr/5Jef/F7JW2LIPhjBiI72ytAwCuPtmF1grfee08bn53G44d7m2t4t7eH+Hy6hdlDmkGXWlUVY3KVckWRBTVqC4f+wDPHcIe62iKE2PQYUJAyIhNUivlWd39ac9e0Hlh3IzhHp+BQ1fi4VaUwPZN8r4huzbv+5zG5XPIq4IRHYaUUtH2aK3Be9t/iLqu4ZyDVhrXt/ehqioa3o21KX9ab6zZJGaqq0Q482KUQogLlos6H8LjORTflOKe1tpIgHjObSX3CQT7V6ezyL2Gs4vpU+h3GAc8c3sKQ3wmCFCg9snjIyy2IJ3ac8Z5Wpu0NQUBKk/9c84qfHbO4viklYqazQwAYzSqMR6PcGNHyj2Ml5fA7AmaX8D9P/ldrP1n/yWcLzYHayJBCZlosx3q3+k58+iZ4q9n0k0+1qAjlk95MCaiJJIuUMGshENCUTqgbIeVm7IHc3BG0Z67vFbIWOC5NYQ1y5uwRyw+zii7bH3ixTtba+Kt2Fo4Znxw6TxqMK49O8D90bcBAG3b4sraF2GNQeNLXVRVDaUVmIORVtLCDOl4XhR4FoRRek55CTjF6vQJCnnOitMxSXs3nvXuWnJkOlKCUNEsHNgveUakUyYB6J8x6nY2b0hZW3Tapr5H/pE8U2VDElEngdfMuPZsD3WlUY1qKKKY6Pf+hY3o+dZ9ei7/yLtKKaRDGnt9S50Pc+7wucd7GI1GoNU1EBGuPt3H7c1lGBPwUXhzJ/6Jkfk8BKKR1BvBSSpPukrFAxb1keZNa4SzQ4CASEDSdxGtdRbqkdwis3syMVvE4MwACaBtDabTE7TNDHd3v47JZIzV1VWMxxOMjoS4SH4y2Vh5mYW6ruCsiJDWODAIzjo45YAqiigoVrLDFYp070ovIUp9joid5ixmR83EQIzohiK8/uE23r94znOczqtKOCPRGcUKAvUpODtt0JIpytirUgjMNmGIS0MQy7kkROF+513db59bgzIGiggPLm5Fl+pbzw5A+3+ABxc30DYtrqx+EU07gzIqplMJkeynuXgO8DwgISXET3MQbLaXgxdcKQHBS7SynrGMQZB0O8Z4ANhvf1WcDAJh8vE2hYt19v6PhyAzYpiNLHjYhYvhWDhr8M7jr8Z769EIzA5//ukLuL59ACLCvQsbaFuROEKNq3mSWTmJ5Rnt9rcQUnIGlvI7CR+8uoXr24eI60T+rHjq0vMczSTNnDmQyqoO+XpzONfdngYCG3kPzq6XzlddODMEKLpLZoSjyM/EKREnIVHrICUB5O04gCINBmKZ7KPDQ7y3/YdQSmE8nmA8HuON/SlGIwvnvWfe3ViGMS2IkIJaIZ/bUEBNdiDWz9UYLQHOAvtxroMnSuD4cgTu+94RSlKwWE58OL3LLzjnGy7bMK9/uAsiwuuPd/Dw4qZ/j4ucWvEuUEFcyp6UnGdXIp8P+SbLnlh4CyXX23SwsyA6JljrYOFjuDwFevDKOSilcO3JLv7y1/4pxv/7/4K759dweeXHpCoqADjxoBokoBcFGfbktB9luVX6NWdIMrsMhfyN3iYKFYhNiOKv4/MiwTG/WkjqlDGWqU5P7pXW7/O837r52zg/B9l2yoQFEEsV3neefDXuOaU1mqbF9e19jEc1dFXFMiLOpQedSnyKt5VyXHmCM9yC7Hx3JVLI/OXu7iFxMJDqcIWUZEE6zUacxh3mynv+FtIWUKjro4YkJ1iZtLQIzgQBigblyPTnC5EWQ+JFhPOJMSOxQCaL0zMD1jlYYzGdSk4k56xkUahrVFWFq08PcO8zl6CUgvFST9M02cZO7pC6qMAo1Hx5GRgtEWZTWZAcCRY6ZE9c4gHKhJIorVU1QIQrj3bKBzDjwYV179xAxf4MKrv3L50DSKQgijKPuIbmXE3e/wKiRTIfX5rvMla7Q2jCVc46Rn0uTcafJiEUnuPOmByLvUimgKGUw52tdajf/Q08uHgON57sAdu/j4dbqwBETXdt/cfx8PhbGOD5QxeP51oKFHs+Nc6Tf8o+UUl1zSm9VnhOQNThPK3r/wP79teiq3Z5PgsLUgmZzXWObCZ70vlf4wHt7PCCWSOwY5hQ9DJTr199uot6VENXGiDg/vl12NZ06haV7+c5z896V/a1PzjkHkIZP4qA/FUWnR0dI6pQhM/CGB+SEes15ZVc50AUjbrMa4Y/KB9Pl3QuhjNBgGKQZodViD78frEiB+SlHQCh7prMAREUabRNi2Z2jGY2BQA8PPoWRqMxqlpSopMitMZIKWiTCrfpKk8xLvl6tv/4N3B85O1En/9ZkbCUBpEEuwXPsFxPGDiBQt+diajhSChSuPrswEstPuGqv+nhxU1frdFvdmK//inbtXM25sbrIoG4tTOOafGGSNxNYFLD07rZCMLfnjDVeW8OFFhIeCMuXJb5IBHwXHS3lnwcGIGsxe1zq9Ba4cYzKQnMjnF//KfRhjfA84XE4PhsBrG6aBd5UtwhwTPU2iQthWKDKitYlwMzY6/91cg5qUxKKu2jDpIfsOTKQy/SA/2+ouw6B60Rec9SzmlW8RTJjGLw9uOvwjkrjK9K/a5qLcQHwINXNmBmDYy1McA9O4AoNVi5xNPrdZzHjmhZPjN7UmzDgVl3UF7KvPZsH3c94+Z83FJ6fQgSLt9cnvpEbNIchgnrMrHfG5wNAuSJCncnPRMnQmBZgW2ROPxgoGzbBrPpCYxp8PBIuON6NIbWCloRrj3dA4PQNkbS8biUMZehoTSn6qaBdISsC/56M1sGYwnOWEm90SE+qepqbgPJSYC/bg1ur48QiVOe7daYcs/FfuSbT97x/qVzeP3RNt6/uAmQypwSZF4YIjWFwLoew3KalTCyWiEoLx3WrtdL765s7MUxISo43YQd0mYOHFlkNKyDNYR31pYByFpc/u4O3vPedQM8Z6CEjAq7C+m4bAXzw5lzDQX1tGQUcNbAEUHrrveal5wkjUnECwFiqZRSrC/uzXoQa1BJIbGsTUaziro6lHmzkpwTYyzeCcRHVwAoVla9uXOIejyKDhStEY+3xEz3elRO6LxLH4HIk2YiEfXy96BFSHYyRcrbhSQ7gWlbxNxugSiWFCitpX9Grujo9TUSVvaSVcYozB9phCEQdYABBhhggJcCZ0MC8iR3EaUkUOYi2Alyi/YagjUGs+kJ3n36FRARquC+Dca17QOM6hpQCvfOr8M2bar/A8BY0dtqp6ErLwV5rjwyTiHIzDHIWW+rUIVKIvjKO68iiFJQMIxECCJtEPXDtcCBoZD4ci7v9Ufb8RG588LlRztRggyqPNIKjoEHF9ZP9X7rS9J90brw7CtdZuLYU1vKbyw/Ru1bYqMidxv7n0tIwtfZrI1zFrc3VxOXO8BzhtIBANm+Q0haGzW0ZexHMHoTKZDPSs3M2G1+OT4nl6oklrR0TIJ/dLA5JYek0tFANPbJnpT/kGuzglop931TSrQk0pxgrbhcB9VbwFPXn0iet8nyRCotM+PBK5uwTeuFs66mws9TNPYXsmL2OVd5ZHZS/z3Npzj4zNc+cBa07+1klHLMXds+xLtrI5i29SVNOJ3HTGaJmouAt7Kzmvex1NV977F5Z4IAzdktvSZJdRoQX7ZxlYazFrPpCdpmiuubP4mHh99MG1pLZtn3L23h9UfbonYjgq50dEt01md/ZokDqmofmzCnV7PpCZ58/V9LpUAKHibltCtShXdKOCyh7/nhufJ4t/R0A6Ibasgzx871CAgDeP+VTUjpCK/m8uJ0tKcogqpqXH60gwevbHi1iN+8SbtWiuBew1G+j+fORemZQ15VF3qH3h0UnhQRgjeBEhVrHNrkB7fUVQ+E50VCKMIYmKLozutcrwQVIOdSVSFmK9h4M9doynKtAYh7Nyc2cnP22MDQZTggHanYJqeNAPzZ6nBBhKJR9KQNw7IG3370+2jbFkqRJzRy33jsGVuPHxiSkUWmhHpnJ7CaHwm5ShpzPnokn8YwR7Hn5ziYEaSIY8IHIYZJXscA2zj29Pou85mvUgcLFMPipJbPHsBdN70MzgYByoGKLZmGnqsoZYblsyKYtsFsdoJmeoz7h99EXUnK9uA9c+3pPqA1jBW7j9TGoGg7AmSDBvuNcxa2ZcCXxI1Gcn9GHn3tX6OqauhaoaqEs7vsa+Lk5agDF/HBq+fx+qMdfPDahfhbqIEEZmglnmsPL26kw+XFpmRHCgclcZ+pyFzOubDfF2nenDF4/+Imrj09wL2tVThnPMfalcgCV9glPsB8rg29c9V3e12gCc791bP3prYJe3DsUDrZ8akf41wP8LcHUlLmxDlJO5Wn549xO/G7Qp5olBRh33yp5LapvG9e4lCRljNqkahSap+39Z/IE7KswkM82/IuINl+kvaCIS7UAPD246/AWQutNeqq9rZixvVnh6iXJ7E7jhnG+MKUEeHOoyXds9Y5GXGYXaSe30bxbMe56TG5wL2tNVzflQzUsVaZ75B4CNfRHpemOJtBF+bkow5XYjXJr1MRgxhx52Jm8YwQoOCEwNlCdJeMY8vQHpDyB00zhWlnuH/wDYxGYyifnv3GrhjePnj1PEDAZ//qCd7eWAG1JtbsiBUHdRJnmX18kVJZDifZuEff/l3UE0kzrpUSN23/N/Wa8cGlrcjhawDfubgJCpUBGdCAd0llvH9+VYztvpJjd8yRnJCUOkiHlMSKF4gVAKmVmwWbhf1sLR6+soHrT/dxb2tFgm5LNz0/Rirwf3I5nbcdSxWGMGiJSAQOtpDIsn6FucjuzjsSr6TSzNy7fZCEXgyEEtfiRp+4aKV8KQRGrE0TYk9yKNVk3rstK1/QczjIpeRsv3dzpKGzL+ZwREnqDrfk2wzp2ewcTCuxg9a2kCwsFZiBy493oCuNpaWl8vXMuHt+LcsQ3+nOnK51dywjm5+Co8pZsjDuMidf17uVmcUR6+QEDy9tZgQo/Y628efSv6OoRyHg2KFwDIt97QyOy+uJafh4cDYIUODwS1Yg/QgkjplkUoKHTTMT4gMAo9EISkuSwqvP9vHBp14BIJvHWYkrCQWZHDPgHLSvsCmlv1OupWDXef3DbRwfi6vvd4lwc/tQ4uiUQqUr/PmnLwIQVRjgS0iAQbaNWyMdgc5SulRlUHt36ljaoAhk82nO/eYrqzRSUl9FqSILRIvzC7AxeHBhTSoVbq2j9Yetv+cDpzVnoQogFJuQum04CHlzgMqPnF2LXB5nWjguHr1ArhrgOYFpp9meolT+INgoVfK4OrBfAts+mk02JIoenTGeKJ6S8N3/T+lbfE44owUh6UPkz7vMlL8W1IFEBOcs3nnyFTTNLLatqgpa1zCmxZ996jxu7Bx6KUye46xD0xof11bwVPM68jGBkRjO9K75TQPST290YDhjcXtzCQgpxAoyQjk9R3mSSsks3FvS+D4OSExC+NylwIvHcCYIkPMpZGRT9Ktehkkglip/zjYxy4G1BkoRPjj5E1TVGICUxK20LgLY4Guz+wsI9pfAqdWjGpUWTs45C2OFc2idjelemB0evLIeZTAwwIcHhXgQUsT4b1HNJzmrknu3riqMlse4tn2Eqq5BTGhnDd5ekYhwbltpycg0ZbmUhUiMuiW9OdtkIaVIjGg2jPdf2cDN7SPc3hCXZtM2Edkz55sf2eGV34LePnGVGQfVWbdIcKUDsUl0I40v6orpJWfHfp1yNUe4s8tpD/B8QLa4MIBl+huKiDLaEjyxQX7+MqYmzwCyWJadw4RGwtPnaE5lSLrMVF7wCuyDMw3ato3j0lqDiNA0M1x+vIvxZIR6PILwrSnR6IPzG/3+E3pnof9DdkYDkYydPB1pl2+b96KciJefTntsYVuTC4KPC4Y0I7PUfU+X2eQF85DgjBAg7/WFhDCBQFT9ZmUhVMYYGNPGlCz3D/4Yo9EYdTWGcw7Xnu2jqjQ+eO08rni7TAwHUFL0zHk7z/sXNxOCVakOeyw3AIa1GrNlQXJrzsE0DSpdxckP3m1XvWfM+5e2EFdLhKwYREqhtERWivqD187j1kEDawzeXV+C9cGz0i2FUM8ucIfUWdSeyNurTlceWGYH2xo8uLCON3yRuOnJFHfOLUc1F0eqV4rf6fxkXNEcQ2jqWYebRXZvvDWMJwt67dp5PDlSpOB86TJi9EotD/D8IMXHlMl2wy7peX4VNpqM60a2MzI8m2Srkg8P9hz5tY+YqXzMAgSb9lj83/ePHcO0Ld5+8hUAhKoWBlApDXYOlx/vYjQaiR3IOmilop2oNSbahXvvTTi81+NesYo5RyiMqXC6oezeBWou8sS1LNOSiIWcb+rPZed5eYsk4eSd7TAOxVnuNVkIZ4IABXdB0QurGF2dq3utZbSNhWkbWGeS5FLX3kPFQWnCd17bgtIKVx7t4O55CVI0JkgxDDj2wY2ciai+H3muKZ9lV5g+6cXuN35TynQrXwY7pA8B+Tr1wOXHu3hwcRPwBlalCWCGNTZGTCOW25VnOGtFBnB5zSDflhmhBgfB52/KxRL/C5AOAuXVReGiET9saGcsjGpx31dpvPyEcW37CHfPLUebGADRaxfcQC7FZJ9Cd1CQl6JlySZlz+pK6+EDF8cHgQqHCHP5bZ60PMDzgJgENhCbTLo5cF+WbO8kv6t5mKe7LTqqneC9lXPavTxvOWOyYGsFitCzOebtguRjLd5+8tUYmDnxtl1AmFbDjU/fJWl2NAnxaX1m94evnOsMMBG4VHrB+s/edZoo7n/uumV3kHfXOSAet+7Q4vnrS1dxvrm7AH2mIH3hTOuSiH9vRntuuV3itFAUjDDoLwYYYIABBngpcEYkoPRBKUTbjQDDOodZM0PTNHDWQimF94//BACgde2ZHouRqn1eOeDBK+swTZ4SnbN4l64EgehuHURO5Zl/pVRRqRNe9RNrn3dE7CT4EpTWuPrsQLJrK4XKV8irWKFiAhkDHB2gtRZ1XWOysoLpsbhPBq4s6Ie7skd4W3CXzGMqpA89PV0mUTBc2yLUKXz4ygauPCHc3D0R42XkRDvODHMWLlc/EFDEpkVONJOe0nxlnFWPY+0qYuLDOurHQfx5URBS4JDXUuTOA8pLRLlNJ9hI5UtX18ZRBdazJWXvC/9KFXK6Xz51vNzmSdQU0uOknSfu0y2urv0Ybm9/DaPxJGazBgBjDLRWGI1qCZNghgNw78I6jAn1gEoZvRxCVxpgpHi2RW3CR0L3xFF3/orm+dgp0/t1fVTDdORquvyd+dyVGCf3ho/D8WdyoaYtmikWn9MzQYDE7zyJpaGqZzD4GdMK8XHil//w+M0kKnvV2mhUQykf1MniC29j0FV38f1nojR5kaCIy7BzEmqURxGLx3O2fcKeYId751f9YyQuKKgI2THunV+PBw5IQaaKCNV4hBs7QnQ+f9TinRVxDGhnMxnPkz0wGMYY3N1ciQXzZBQSCEcB6xc7ITvYPf2uEFsbvOAAvH9pE5cf7+LGzjHunFvur1HYgdR5TfS8y5EAR+JE4Xv3ebEvSWHR7WXRct4eHujPC4Mj9+tYq/43HNgvxZo8gEeVkQDlrAXmqH3Cxxwpd5p0HWqYMxfnOQgbnZ96lwKJKoMpbdv60gpSVE7rSgI2vYOBIuDG9iFIEaxj1JVG0xj8wF8/xYMLm523UBzL/C0ZiF+uouv2tKOO6zTKGcyC4PaIV/kl2Kjnd6tLdPrdLrrWZf66ttqwfl2npIUU6owQoDAPsgEsgrcYey6laWZwzkBr7XWyUgQq3Ku1xpUne1BK4eGlLVhjYZomLlI/mDW4LQPdIF3O/hMilALV5Jypwq8eEIno5t4s9tk5h4cXxQf/3vlVoG2giKLxMhgIq6rC55/uAssr+PaSwg8dtXhj32cQ9iV03XgE0xpoxZL5mYC753xJAusSd9KZ0LRngiMDeW8Mh1jjPnB7vhQFMzCeTHB9+wh3t1bCVKU+U3kuetxe/KGDiDqQe9uk89EnlL0TkTWh7uEY4LmC0lqCu6GR1/Gh8r+EHLPo+4CYooSUO/BQ2SZnuSPTE/eFZ3bIn+n4vJy8eAnHaz28vytAqRibNS3e9nV9tNZScZnhs3fLu+pRFZ+vtUJrLO6dX4exCwogFsg8lzvmuU7k7Ur8nqayy3hlYQnIxtsl6BFSKp+e00OxXtm9lDWI09497d2RdPuZ/Ff7UUp9OBM2oLSPZHOGmiFSQnsKZ1soIjw8/BYeHr0JALGNpMlINUk++9fPYIyNi1mu5Sksc7bQYcmCJOScT9PjU20oUj5NvEgxWqn0LggBev3xLq4+O8TVZwfQWuP1x7viQs4WDFGtfe7RjrzLScnqO5sTWGtgrQEpDWscZidTzI6P0cxmsNbi4YUN3Ng9xo3dY9zaPwF8VDr7Icie4fQ5zXBy6vCdlbLWDLBDO5vh7uYylCIsLS/hxs4RGCETA5dzGQy9ER+UQYRxOiPX19mExXkJM93nCct7SocDLtZrgOcNSiscui/H4mapIFxeGC5kXhe1uY+PjmvZ5S9C8GlwbJiH4kIhRyYAITg8ZgPpIn1/An2WkUTvBBGHs9W2rS9XoFBVI+/iL+eoqjSqSuP69iHyoNd75zckNi/u/9PYe0bnAJZ7d+Esp9xs/UYcfy8ddzI2sHM2xfGo/7bU/ZJwpfXyxNOvT4kbs8+dNUj4B5k0uFAsBHBGJCBQQmDsGK0R64Qxja8Jo/Dw8E1Ude1/b1DX0nWtNS4/3oMEkzlRUbkgGfQ3xylzkfVH/gsLneuXNZwnPrIAihRUVYFx7Pvv8MGr5xBy1F1+vAOlNO5traL2Lp5VPcLnPnwGGo+htKT5uPx4Fytrq7Be3eCMARHh4cVNTI+PYIwBAVCzWcznNJpMcGP3CLc3VxACeSPXUgw0E5WD6MDZ5iEGs0MznaJtGozGY4wnE9SjEdqmTXOQ7XyK3jnJ4y5tZ/Z65nmHNF0LzwznvEuCimsL1Hg05/oAnzwIkUlr1/N+ZwA+J2FAbn2Cs/j57LmZ0vk3SN1dSYGzPddHouBQcA1espfwjbcefwUAkjalqr3qzeL1R7uoKoXxZAxAUtZopaB91VNrrSTv7PH0+SCpd6mgFcE2E0WdrM/ZZk920+Jmj5aCjJkzfUkamus5h+ws5uIYL2L7KP2eGX+CgFqMN/a7lL56g18AZ4MABcnHVx0MEfrOWVGxqQrKZ511zqCqtOR3A7za7RyuPNnDvfNrouYqqDsQZ6I/g2UfutBZIBXEXR9UKhyUxrWdY1jtk/9ZG/cOs8MHr27h1sEUzjJoKuOaLNdoV1bh2EFVGs4yVFUBWuPOhj8ApsXnjw0+f2Tw1vIK7OEBrLOwpsXtjSUAYjNaWlr28THc4Wo6Y4/DJE+f5iB053B7fYKb+1OMxmPc2jvBe+vyLlkTT9hyaUQofXp2uEhzfi8/+luC3Ji16f7NCFyX8RzIzwuExA305j2uDaPnPh1drAOL3BVcQpvIVYe3EFTRCJFNz/OuzYOYXJQd3nnyhzCmjQXytNYSO1iPfUygw599ags3dg7jXtPe0cIYi7tb60XmfM670xmO0MasU4vsLJ1+R7+BfLzlgMp5KJB/ebl4dJz3xGzmDGkgajL3sbw0Qv44zmqUcX+0RZ+koGa343OIaQZnhAAJ4rbGoGlnYG//ABHu7X0DdT2WAToHUkBVVfjg1S1poghXHu95p4NUZKlAev6/NJHZNPYKqne+BhEe3nmARXogLTE5P/hXz6CWl6G9dGNbA60qMJGMyUtkS8srMWMBKQWNERSchPiQECApwir9NsbAGgM9HuONwwZH+zO8s1J51aRIJbc3lvDDM0Y9qtFOT7KF7qOHNMycGJSngQiAtbi9Nsatwxnq8VjUfADeXR/DtCYGxgb1W8qujcCwIjkglB5MJeTr09/aROghl3n09RSmeoBPEorFKGedPGO2CM9E+WUuXg3ctYp7R94XbslkHE8s5hrge28UzCuB603BGGotmb2NMWiNwbVn+5iMJZ4wOC6R1nDMuLO1CmtsZoZKOzUSQaLoWVZoGxAEj3zs2RnNibQf+6IRzT1FfMqv2VnM+1X0gbl0xCoElxCXReUt2dyTfwby9v0HLeYScEYIkHMOpm09l2Jwd/c/AJDgN63FGGithVKEUTXClSd7+OCSBIERCM7rnDOd2VzRUlLJhCvdKP8OOwGxjyjSKdEoM6wXS19/tIOgbphNpzE3ltIatw5nuH9hE9OTYxjTYnZygqqqUU+W4njvek+z69tHqKrK1w9iX3URwGgMnDgACnU9EueAnT3c2VyOvZTM3sDNPYM3R5IHKqhJ8r1JQKySGst+52JzZyOztXhvdYw3jlqMxiKR3dqf4t3VMaw1HRVLmrNkQ07/Ax1TZIewzCNQKdA29b/bdn7yxgGeG8zl3hCvcf/Q5Tf3vsVqnb2S3uXHsGcB+ISoXWl7/tuYHVrTxlLakttNmMRQWsHaFlor1JXU9DqZzjAJpRYAtMZKmYXM26v/1nzHC15h6mGXOffPkSRCg6ip4fmtGeir2bKPBS5bsGAd1WXJpKKPQ8P3gsjkoa8cmdLuW07Tkp8JJ4QBBhhggAH+04MzIQEZ06I1DZw1Iq0GF08lFNYaA6UVRnWN69uHuP/KJq4+3o3339laLdKhd7mxxA90RHdKn0u1HEQtRiQJSv0vIUGpxCY4hOqMzjEeXBDX6Jt7J6jqEW4dzHByPMXbSwrvrY8xWarwI8YnMZzNMD0UUf/u1ireOGigADSzGa4+k/xs4lTBmJ2cwDmLOxtLmI4ANm3SRbODNRajyTK0FvsQFOUjKSUMr/7taN78VJRpPp21eGelxhdOxG5V1zVu7k9xe32Ctm3EG2mepBmef5reuCtsFquQGsTnz/O5nqNSHOA5Q+DKc1aZQkqdPse/UEjJVDuuiPEJiXDzPcyFBJK7cGfHN3unqH2ttTHORymFuq4x40u+0QAAIABJREFUHk/ivSGucDSq8MFrW/jcd7ejYxMg6bvubK6CvUNDkOa7euKu3QppFNlgu5+6kzNfmgl97U9JKXV1H5tmkvvSUu9F1HdcQFrqWHkVWcXiYnSdJD085zmnKCnOBAFqmimcFa+vu7t/HAM/JfcZg5RCXVW49uwA9y9t4uqTPbzvVXDGWDhjc5SL6Pt5ysAp+78AP4GKCNe3j/Cd187DmpQNOxCc+xc2UNU1FCn84HefwfroaGeFMOmqglLaL5qDsy3YZ0K4d34V7cG+V8/K+GT8QKjl8/byGKZxsZ4HHx1F+1DUnLGUAv78UYtr24d4e20E38ViaBzGFY2oBOIsi/YCGZmtwdtLsha3jmao65Go4tbGMNZkLwkqkjS5efB7TlzmEb/Ux7AqUbtetOkpEj5ijQf4BCFiQpT7ZR4j4f9LatewrmFDCCdUbjvKNE9cPjjuo6zsSP5+QoEcnXM94lPVo6gINqYFs8WN3SOMRw2YGcYxRiMVCeK98+vg1u/xnO5krtkRh0QC1Ys8LDu5gDGUrudEZQFTFY8/xfPF8f7w3PCqDFd0H9elfeE5XZ3bRxy4oFovQ3yzjmbPXwRnggBZawAw7u7+EZSqEFGW34ijeoTr24e+Xo9MeEiJbq2NS5vri+UB+Z/u5Mnzi+jt7IxVukJdj6FUhZZnRX9JEa49O4CuKljnfEGq1J8gJQnxSCUUQvCs0gr1aAxdaeh6BNPu4/bGEq7vmJgM9PLjbby1pOJzYwJITsscnsUM3L+wAZ6ehFnoHYGon863CPdbhE+kFOCcSKUA3lsZ4eZhg3o0whsHU0xPpri3tbpwcwX3zXC4ejQuUiiKCCcvfhelWI/wiChm0c/egoECvSDI7QqUI52SCUlrnnH+Pc45BYLniH3+apZSL3EHyUWPO/keJB9jWu/tNpJAU5CvhCwBqde3D7C0NIn248lkDCJEJ4TQNnjCJsms00fmLCNKvJhRhTnExDNoefMMiRXzMG9359Nb9ihQmznzW/Q5aSY6Pgb998y7GQlT5AQz2yF501PhTBAggGOBt5BVGhAkVlUVbu4eg5TCg1c2cO3ZPu6/sgnbmtgmDrzgrruuonOWNKM6waBOfvPUozF07cCgGEGddRf3z68BRHCc1TMC8ODiJn6kZTjrJMu1x5rWWrSNbO5b+1o4rcaCTvYxm00xO2Hc31rFDe91Nl5ewtJKjenRkY/qTuMLThEha0FjHVrvjRZzYy3cCdxx+QwTUZ6IdL+8y0XvuAZVVWM0ZuhK+7IYaReLk4PfmL04g3ngN2/h9sbxDLP8KG1yDqzLZQ/wXCHlGZxHJhYRHyp+jW3jhUyayEXmLirj8owGhiVns0KWEWNaz9CKs4FSFZgJbdvC2tZfJ0wmYwCEh5c2Y7XTtmljpuvIBGUjjHMQXZoTJVm4z9PUIFEEisQ0nycCEjErfulALvEgEYAkOKZzNN8dIowlk8oyESgcszDmU4mZ7/M8gjlHK9uDM0GA7u/9MXRVQ1fiHhkkBa0V3tg/wfuvbYFAuPpkDw8vnoNt2igBgf0E9DzgSmln3jJQ5L5DK7mqvMeMUjN87tEO3luvw0/SkiWVO+dSSZBulNiMrBG3cmapsuqsxdvL4mEzGisQVbj6bN+7b0swZtvMYGZySOrxCD90YtC2Cu2swd3NZR+9raNn2mRlBXy8h3dXRnDHh0WMacmldfmWErGHOeje0wVrDG6vjXFjfwqtNa5vH+HOuZUYGBt19YHCxSmdsxO7eIy7Peh41bCwBwFEEh7Iz4uDXJ2Q+zVytrwB4XXO1AJMlMs8pUelvx45qfLdiGhVbDDOObz79KsAkuRSVVV0tWaWQFLtY/Vu7h5jtLKM9zbkTFVVJbkWt9bQBMbWZQ7HwVV5ETUgIYrU39CIMXNB25Ih+rJtJgKF53aYaJozu71HZWuB+ISux2/2mjy2qZejj4q2xRGNa+HxH3Gcik6jU5nQM0GARuMJtK6i2iq4ZtajGrpKNXsIgGkNrHWFcS5sye6CLfoMUOb/3tncfqcprX3aj2w6wz7xYneuFg/JR984mIFHS5jNTtA2DZh9hVOf7gZALKb3zrLCysYq3jhscevgBNOjIxz7t014BVU9wniyhPFkgh8NSN0BOPEI/2gPx0dHmKHK5iAbi58RyihSedBTe0mM4G1DCKbFtPvCHJi2xd3NZdzcP8F4MsatveMYGGtt5iaLQAgXEImCi/OHJFskRTnBCYbujA3zYxpI0AuCHpef74sMUQWV1QLmoHeVFyEpjs/LnxXRqb8kpbS/6m2Scs6qqkZV1WBmtK2JtqAbO+Lgs7y2gtmswec+nEJryWQybVp8/398IrW8/JvCewQlzBsPz/uDKD6EAQecwYgIq/e4XOKieKF8FXXmKSCkIJBFJm0xyu+q3qKqvKsj/yjmLmc6OGkneE4A32nZSs4EAQrlb4MYHVLW3No9wb3zG7jyaFd+D6l2ugOETGy63jHjcZp4+Tlt+nkOIkHCAUQ1SL4Yl2OTvS8cPYZSFW7tSyXTamMTrTG4vbGEZsxIByltMGuNfGeF7///PsTRaIy751bxd3d2cc8nAa1HwM29fShd4f3XzuPqkz1UlSxX4wnZ9PgEd84tyfNCAtfeYAp6hP6uLq+VxCeMFj62wY+YXeTs7p1fg/WF/UI6IMQ7g2G53MyRKEYkFtYl/xM4i4yp6CCiXuDBAM8RAiGYN9+ZNJQwdmqZc9ed2+OZzbk5BAk3/le0DwTJsYOxBsaa+JyQp87a5MADAHVdYexjfJhFwhEvV43bmyuYLY18IHt2PijsYelDfkrCn4Rxst8LCSNrnzNd3JmKBXE9eWcyDJZ3sHxv5/7AZHN5S+dJkbPuDCD3kOtSP39fMQ6O0l7+7tPgTBAgIhXLKtzYOYzukPdfPY/Lj7ahtHin3D23FtU7uaTZFVQXQzbBUdhJhCTuGWa0reSh01WF69tHAID3NsYZQpeDEFRiY1+22znG7bUx2pMjsLcNcXhPfiJJKrO+tz4BCHBH+7i7tQSwSDfN7ARvTaQ+Eu3u4q2JBilx//bmUdhqBNjwbf5Iy40VB9hrm/sE9Kg3kIymBFzfOQZrjdn0BM04zXciXfKggDsof2UU0+f1OW3cPmnst6YhjO2FQUg0KtBHhb5VlHqpWOhElNL9gfh0Eb78VURQOpQ0kZ+tcxHRs3N45+kfxnyRQWsiwaaCTwIBur69j9XVZSwti6R+fDyFMJfan/WsYnIkgPn4Esru7sdIeLoalWKk/s5IjAJTlz89b78Yi+UzL4JSF/flJNGfqW4bL2GlFFehpR9nd60KDvZ0hi+XTiMRO6X9cIIHGGCAAQZ4KXAmJCBxW3aoKoW6rqI9BWAorXD/lQ2Y1kZvsJJjSOq0/Jcut5KrlRbR5Py5pm1h2xaqqlB5lWBd1fjBv34KAvDBq+egtEY9noj6jURNd3J0iJkaJ8N8fHfqUNS/OoZxbdHTpFEKAXWtSDlt+jGqtAqGR1QFwW177qh6jGs2H4V2MmiSSw9/IoVbhw3q8Ri31yeYnujiFaIRywTyTNwvUwRR0ffULT++U3TGqedZ3MgAzx2SCic4h2SL19MBoZ+OhqhwPZ4n/YBlz2gleKDSBGsZxmsFwiFy1sFa46Ufn7uNQnb8OmWuZkZVKSwtTVDXNaZTUV2L44FGVSlMp5InzrmuTgxea9FR+87dcZnDzCLhMJ+eeaqsiCWorxGDn8+QYT6oIiJe4djdbp8Q1Ji5bXaOBiTvXvzS62dvgvqaO6CnTTxNZjoTBCjU5hCPt/MxGEx5DGOt6yQazQjPnP2Ql0/IgRZc9z/GPwTJ/vzOao3ReIIrPvP21af7cFpDaY0buycgpaGqFi0R3lkVZGyUBmybickdFVbRgT4pLQ8tOiuYbar4dNm4fVF2oUK4u1MRFAk58cn7LrcQbh7MMFlZxvTkBNMp917hJfsYsxRQTOdcpGFRxhYUYn72vFx7UQz9dNF+gE8YvOo7OLHkzqPiTZqQUcKT2cbouFKHvV4ounwFYiIJ6J5ZqcPlbOLcQskVY9uY403rCtrneWtN68MfxDvvxu4RRksTMABjgnetOBg1jcHtzTWYkIB0AbZclPw0EiSGJ8whBOJj7MwOX5h5OCESod67Oc1zh/jMfQFli1S87XQ1WldV2CM0RbtyMHMdDk6ZjjNBgJRSuLl3BFYpEhkArj49wJ3z65JlIJvLQppAZ3o/zuIjLWyOQ0stLsNag5PjI7y7Iptb6bEvkS1leh9eWBUk68uGByjM+JELKTmDFFMQesMFUg33JqltPvtEyE38gQ0rBor+hpuzk3LDYe6e7T/e2JtivLKCd9eXcKxtgTryV4aAUYAiQctfmW3p+Dfanzv8QbeXeSzk4IDw4qH0oAxQ2gpSAHGSHmK1U/j9wYnRy69r7W2e8dG+2KSPgjCtxTtP/tDbZw2YyRfI0+k8ZY4HN3YOsbK+AqU1Tk6auF2UUmDHuHNuVeIJM0+80nuvS3i4uNqbgnTq50Aurn8UEegclkWt50k+CyWXciwxZMO/ris9pXY5njoFqH9++1/m3PZxEfYAAwwwwAADfJIwOCEMMMAAAwzwUmAgQAMMMMAAA7wUGAjQAAMMMMAALwUGAjTAAAMMMMBLgYEADTDAAAMM8FJgIEADDDDAAAO8FBgI0AADDDDAAC8FBgI0wAADDDDAS4GBAA0wwAADDPBSYCBAAwwwwAADvBQYCNAAAwwwwAAvBQYCNMAAAwwwwEuBgQANMMAAAwzwUmAgQAMMMMAAA7wUGAjQAAMMMMAALwUGAjTAAAMMMMBLgYEADTDAAAMM8FJgIEADDDDAAAO8FBgI0AADDDDAAC8FBgI0wAADDDDAS4GBAA0wwAADDPBSYCBAAwwwwAADvBQYCNAAAwwwwAAvBQYCNMAAAwwwwEuBgQANMMAAAwzwUmAgQAMMMMAAA7wUGAjQAAMMMMAALwUGAjTAAAMMMMBLgYEADTDAAAMM8FJgIEADDDDAAAO8FBgI0AADDDDAAC8FqpfdAQD45//jzzERgRmwzsGxXFdEqCqN0ahGXdfQWsFah0prVLUGAFjrYIxF07RoLcM6gqomIKXh/IPYWTAzSCkwAOsYk6VV6GoEZ6YAAAKgdAXrLMAORAr1aBn1ZA1U19JGaTADbFtY08A2MzAYSmt8bvJfAwDqyQT/sfpXqEYVPjv6dZAiMBPYMdiPCwTomqA0gf27QfIvcASKSu6AATj/N7+2CE777aPafJx783b0Pd73vbyPWOah9i+x/roJ9zFw+fIlmnvzAJ8Y7Pyrf8aHex8CAKazGVjJ+Xvt+/4uRpf/W2g98uvBaT2zDUJEGBbpP12oXp9/Rs8EAQIzCASlFJgZzjkAgGUHDQUiwFgDxxpaa5Dy2FpuBhFQaQUihmWCYwNmhvKHxDonRAha7nOANQ3AFs7MYjfI+OeSgq4IzBa2nQJO0B4pBaUUTDOFbWdgZ+GcQ+scPsA/BwDUtAplCAQHhxZ6JO90rYW1niACAFdgrcEAdEXwXY3DCgSHsssqux6uLULeH3XYeUGbRde7bea943tFMIuec9pD8/ngv8lLB/gbgdYETRqNaVFXFUAy8XvPHmFteoilpXUQaRgru5MoLcydrWW8sTMd1mqAHpwJArS+uiofiGCcRdsKwp82DYwxOLIWdVVBVxrOaTDqeAAYEKLFDkQEDQazJxh+x1u2YLYgViDS0FqBrYExMzjb+F6wcGlUQ+karBSctQBakDPyPFUBVQW2BuyEPChVQSmCUiIlKVKo6gqAwp+7fwFMge9rfgmmdYBS/jkKBEDXIj0FTJqdWRkXomBUEKAAFn9zyHEBL7j+vOBjER6U/crnAp3PAzx/IGJU9QgWGlozRAYF9vd3Mbr3P2B87iLoB/4ZmtZEzUWlhat6Y3cgPgPMhzNBgMaTCQIBaFsDItncIGDWNDCtAYHA7GCMgXMM9vosrTQcM1pjhRAQQUOIEiio4FowA0QKuh6hqscwzQmctVFKYhYFF7OXlhyBnYIjBrzkAlJQpoJz1hMgIUpChOQ5RAoEBXYM0ziwc/jA/K8wrYOupI0eVSCrUOsKr9e/jr+q/0+QJvwd9yu9uQmEyE9HATlB+puqv+Y99zT4KAnp4/Tjb4KLFhGgv824B/gegBmj8TLq5WW0sz000z0AwHg8wvaTD6FUhXN/+T9h/On/Bq0x8XwGGOjPAPNgcEIYYIABBhjgpcCZkIB0rUEgaK1grENVSbfG4zGqkylOaBqlHGMs2tagbkcAgMlkDGaGtV5q0QpaaRAROFhL2MJZBimDYMpniBQVddUszgLK3wt2cK4BsQEHZwaxpkKR0G12DkozSFXwl8BwaJuZqMyUQj2pUY8UnANc4AoJ0JUCM/D+7F+gRoVqpPosfga5FLSIm3wR0sBHST/Pg9OlOZ8D5zRIQC8G2FkQEVbWNzA9UQiWSHe0B3IO+7tPQUph5VMi/Qz2uQE+DpwJAtS2BuPJCPWoQt1WqDxWGY1rWGfRmtZ7p4mKzVoHZrHdBALiLIMVAGIxtXBS08E5EDPgDJxtYBWBnRECFWgUCEQKVT2CUgTAwRoLZlMYVEGA8U4TIA1S0sY04k1XEaEaj709ieBYCGtVV1Ftx2AoRbAOsIahKoayACv2DhZYSIDynzRKp4S83TwbzyK7zycFf1vV3GnPy1WRH+d9A3yywI4BEjtsPRqhrcYARAU+GY9xMj3B3s5TqJND6GoZKjszwzoNsAjOBAEyxkIbA6UUQIKwAWA0HqGazqC0EtuMUqg0YKyFNd5RgadQSol9BwTnGG3bem86QVlEBK0JzC1s4+BMI1ILFEh5Ww4TQACzgTUO1plIMOIRio53wusrXUMRwSkFbn0TTRhNxuIkQQRrHAAFVYthVvoDWAeogFK9m/ZfVP8Sn+Ff8a8qj+2iQ6z8P4fSTfujHAuet/2k65r9SSChQdp5eRCYJq8HgPJnVFcj1JMJZrt7mB6f4OCd/x4Xfuy/i3t9gAFOg7NBgKyF/f/Ze7NY67asvu83m7XW3vuc8zW3q5aiAGOKusWlqHIQjg0xiURe8hTJhESRieNIKFJE/BALJY4SYSNLQOiJ5Ic4eUAyRpYVJZGVRJFt4gTKNlR7qwqoKiBUf+/XnG43a63ZjDyMOdfa59zzNbduUx9wRunWOd/Za69+zjHHf/zHf2wTQz/ivKdtFV4TqZOORj055xLh2IlgkLPStq3RNbI6I6MwQImArHV4lJiQciKnrDAdXHAyBkNKiZwTKUZlpQl7UN7eltYU4kIGErYw77I1hJ1FROnc1nV6nOQwrrLgDCZTSBPUg3B64z/GnO50m8fAswR1PvssuXpGl7e7yh5Vv3P58I/rAN6oFe91FPT1M4Mu5GoNnDXqYJrukJjB2g1WhPiOH5kWT9fP5toeZU+EA1oul9PEH0LEFEZZm7WWx3vPOAYKUIa1AlJf70zOQsoCiZLXsQUCK6s0Z7Gl0JWYQARnlLodg9YBGWPB2OK0Ch3bACZPjkzzRoVhl/XYkhM5manIVESQHAGLsQ2+FYwV4iBI1uuyzoFxhb49f/fKGfaSXf44MUdBFoXl9p3QVQWsl/fzuBPF42x3HaX8yTRrDM7aWvcwja1usWLZHbDbrTEp03VLXSBe27U9hj0RDqjrWvphIKZETBmXNJpIKWsiv2lwNkCuwJGUiEcT/TEmYorEmMHoYGnblqbRy2u8V5WFlDAGbIkZJGfyfpGpsTjfYJ3SqiWP5DQiU8GNKeQGTbKaQtlOgCmRVM5pgvisbzV/ZLI6pYKLu6bBL5Z477DOlhyT4ej+/wS2QnCPtjrZ14LVGgXNKWLdJnExV3RVcPUoh/S1Rj+PIky80Xmpa3v9zBoLWZBc3yhwvqFbLvFNQ4g9MQWyZKzY6X2/tmt7kD0RDsg3DumVybY/C4kkrBGc1SS+c26CrGLSWqFhDEUJwRVygpDRfcU4DwBr9lhmonU/OWdK4Tbeak6naZdKRHCWMGREAqQCKZSoSjQMAoScEkYE5/RWahWSVRgiJ0K/JqeRHBrqdJubToti2waaIiskCttdiIYeY/zWzauPNGgU5PY+t+VzpVZ8bfZ6M+9ej6nJABJfSznutT22GQNVqSTFidEpZB2n1nDn3svE//e/ovuBn+fmzds0vnnFbt7soudre7LtiXBA52drhmHU3IxzE4acUyZFdRTGGIwFZ8B5jylJ/2EYJ8YZIuQCkSmkp9NtjAnvPU3TlH1nYgrElMlZj2WdVyfXOIzNZEnEOBBjZOZYa6GqEUEZ2TMpWkoklTFYLLbpMMaS4kCsUVG53ZIN1lUFBoUIjRFdXTIdCiPzIvJhE/2+E6oo3qQpB1WAqGSr5m1eja973DzRq/3+Vft6bKeWMmkYH73dtb1mqyUIAuQUmZ5WFiQGnDVszre8fO+E+I//Os//O7/ErVu3AGXK6T4KfC2aB712Rtd2DdZe27Vd27Vd29fFnogIqO97YkgIBu/ctBrKSYgxEmPS5H/WHE/n28JAq6vlQou2VqOGkqOZciQpkQtdevpGLorXRVXbWavfS5FUcO4UCxV7CkNkPlbJB02wWk0UZRDj6HyLdY6URlIcSAF8uwLAikZEqURuyTtMVjgj2rIfsTSdfQUD/Cq7cK3l930SbM0LmUvbXCVq+lojnQft49VAeI97rBwTYdc/5tbX9trMUqcLFfotjE6j0b+z+i6PQ+SrL73Mcy+/zKJbAHBwcLAX2SthyGELrfva/jTbE+GAnHVEFGobxhFf2h8474jJYkzGOoeYojKdEynP2YyCiGGdn2Eyw8Re07qejE2JLJXJpqoH1tVWCyUvFCMiiZyjqmBLmuuJSrEqtiZYzXQMsz/l50gYzrUlRAqTs6vsPlMcYU6BFCA6g3VeadrmQhJM2X6PGKeXE/n7rLcMJSs1kxQqHHcZ8roMy11lrwZKe5ztXy30Z/ZOMP7OL7K+ew/+/N97jLO6ttdi1nlsVcE29R1W9qjkhDWwWq5YrZaMIfGVD/04N27+LACrg4NpP596+oAQIt/ypfsslh2tr+Pv2hn9abQnwgEJaP4lK78sFRbcMAyEEDQiEVtICEo0rhFQYRQgRSJHjBIDnLFIiVwSmZwyowSV7MFqAZ33+EZrjlIKpQfQkpyjRi0pAJZJnMB6TKFP17yTSC6z5P7UnYnjDmMdxriSv3JKv6bmjtTZ5RxBBN+1eNviXGHKOYNkjeaw5kIk9Gom9bz3017a5iqlgQc5oH3Wmlzx94edy2tlt104z6jkkzhEzk9OOb537zXu/doex6zzWOcn0V5jC+nGWKS0Ozk6POBgsWC9vse9e/e5X57N0dENjori/Xcc79hsttx/8b8jffuPYo70713bfV2u69q+vvbkOCDvpwLSWCaZYRi0rsYot6tdLujaBpGRMWjyOedMVcoeY5io1eLdJKFTdd8klu0LbKBOh7KfQiKQPDkMreVhqnmw1hf1a1uKVKumXKamVKuadgoj1jX4ttPCU+f3yAyZnEbCMCCSCTtHszygTYeMSeuS4uj4I/urfLP/D2lah/VmWiVelax/2PqxRjv15340VL8rV/x3+RhX2VUO5nGLRR/k1B70XSvCOCj7ZHe25fTefe7fefkRZ3htr4sVZY+cVaKqaecVkaQMOeMQGmfw1jAMPXc//HcA6BY/jrzlrdMC7PTslHt3Xkbefsyi0wXgtQP602lPhAPKIjhT2WuRtkBwXduyG3piyKoFh0ruKCSmA6Bpmom+bZ0jipByxiQzY8xmVkwwZboTSaQ4lKLRgmvnjGBo2lYhBmsxuJlibSzWerxvtN4nhdK6Ic0OLJcVouIUgMG4Bueb2dmlSI6RFIN2SrUZ6wLRjYTSZ8VlyI0gpio6vHIarxP349bewMXcT/35qMio/nyMOtlXHOtR9jjAiwEkCykkNmfnAJx/9Kc5vvMy5yfHr+KMru1rtbt3vspTzxq8MxgjCncDxjpSCtr0MSVaazhcdGxCmiIg85v/LbsP/BhNWYydHZ9y+vJLHH7658hP/cTX87Ku7etsT4QDGocRyaK6ajnTlv7L3nt8akgpIDGVok7N6dR6Gec9KSlRoG1aRIRxFHKaQadK+ZQsuBIZ1bzRxC/IiRQhZ0POEQOkEEp/n3qsBk0BWXVAUpUQCpQGk7OwpWpcJGsDOmNmqnYKek1ZsEb7CSEGScIf5r8PwLLpODjqeNn9I4w3vOuKXkFwMRra/30/utmPcNjbptolxbtXOKH6t6skfq5yWObSz8vHu3zul3+/fAyAHCL9+Zaze/cBuP/SS5wc32O7Pn/AN6/t9bTd5pxja1l0LR6wXiMXY12hZmdSjCyahluHh7Ab6aNGq3/0+S/w+3/4n+KdxzmPRVh5z/j0bcZRkYyY0tTA7tr+9NgT4YB2ux05qz6bql3rRG2dpW2bIjCaCrEgM4bIGHTCD2PQHvWiUFuKmlO5sKyXmrwuuRtbeGFmJhHknDHOY51Th5K09YNzHluL7koBapZUoLZMSlGVtfN+KahoF28TMSmQk1MyQwrlWLWhncV1Le3qUBUYfEtZWBZHp626zSVuwr7tw1g84PfLjesu7+qyYzGX/rtqvw+yB0Vll+2xIqmSWzNAGkb6T/48p3/0/wHw0le+RL9dl4XGtb3R5q3h9P4dhrbh9lNPTREQBbnIWYvAW+85fPYG33DrNp/+3c8AEMZIToHz7RprHZ13LA4PyDnT77YALPoev0dWuLbHtye9nuphY/2JcEDjMGr0U6ITG0rOxVmWqyU5C8MQwGRSrkWm1SmoZE8sWnLW2gv/AYUwkJU8gKoiGOsRZJrAcha6Rcfi4Cb95pgYBlLOON9ina72ECGGQIoB6xzOOVLkgvCpRlRmzgXlgImWvBcBSXGGtYOrtRqlGWSKpHJSZQcIX+l8AAAgAElEQVRbaOlfcP9gernemeZo6KpI5aqXcN8fX1bOvmyPW6B61WcP+s6DikwflvsRyZjyfCQmSMLB6giAZ595G+dnp4zD9iFneG2vlz3z7FNsN1tiiIzjyG63BqBtO1KKxJQw1uFc4uDwgKff9jbun2jX1HEcCSHQNE0h1piCdiSG3/1FAPJb3w7f+Te+btf3x9lqwb0BZejy9XNEculfRlcoD9z+uhD12q7t2q7t2r4u9kREQDElQhhJWSG46r2tNXSLFoxgHar/FoWYZoVqVQgxpJgYdj0HqyXdcqGsuqm2QOOCnDKCYJ021RqGYYL7chZSDIRho+QAMTin0c9EOUVAcilzNYUZZAtIdDEToqrYCUmWZMLUZRUoTLpCbjBCHLfYHDG2QcaZ6WZ9o1Gbcxd0Hb/o/kE5SjnaXB+LAd6Vf+jKvEy1/bwQl37f/w5X/L1uf9XP/d9fE/U6CxIjcTcQd73CsmPA5czRgdJ2G+fxztHv2tdypGt7TDMIbeMxQIiR+3e+AsDq4BAjSaHdAsVZa+m6jne9610AHN8/Zr3esFqu6MeAKb22Qt+TRmV9zmUV1/Y4No0vEc2Bo9ORq7Jkb+J5XDiaCKHk/nb9lu2nf4Hz9Tnv/bO/cuX3nwgHJALjGDFWRQ0nRlmKxDhOBZyb9UbD/RAmCK5iz95bDA3OOzCGEPc6mZYaIedd6ayaVc9KzASvqQacJUXdtzEO5xc4Pzsga4sTKQwGLTD1GJOpPYOk1iXlTJ4a3pXHVH2msVp4al0ZiFusjzjf4ZqubFOET7NRNW5bckHsOYck5CSTEzbG8A35h7Qz7J49qHbnKgIDV2z3qL9flYfi0t8ets0r9p8zEgLh/Jzd8fkE2bRGWHz7fwbAUgT52E+yWz+JqPefPMuiuVPnHDElhq2SPySNtG2jebpxIIZA3+/Y7TY899a3AnB08w84OTmm847DgwP6zQZX39F3/4ju553f8Fi5w2tTq87+E7cWPH9vA+i88mbfRBEVD9juNgyf+WW22y27XtVJdrue3XbHdrflvQ/4/hPhgJyzOGu1b4+1U5O4cYzElOnalqZtabwrrX4Nw1DqZVICo03nTKPEgpSVkVMnPWsMbafSOEa06DTGiPVL2k4Tn93qiBgGwthjbMYZS9N1pYC05qR8YcuNkyJCLTDNUgQXc1T/ZNzUqXUuVN3PE+m/c1LVBSdMLcFBmXbOOrKUtt0OHEYdUbmwFDJv2f1lrNWOr75xUHsl7b2E+6oH1b4WivRVjucqyvZV331VY0IyEiM5DvjP//fTnyOC+9zPAyWPFQftDXVtb7iF7EESxhqWi47FcgnA0A8YgRwzcQgIsNnuuPPVr051P6vlkls3bhLHgbaxuOUCV0oj6jjebNYY3+C9Y9Et/lj0FJoYmkWZRfO5pfD8DT52CJF+1/POeyf0S120LhYd3rwx/kenMJnqL3d9z/jZX+b86X+f3XbLZrth/P3PsVlv2e60qeYwBM35PeSEnggHJAVDctbRNg2phOMpqh5b9krRXiwWCIYhRFLSxz+OQRP41pQ6oqwkhSQzxdoaYkg6yYtR2rP1uPaAZqGQTrtcYr1GJXG0SI7qaFwz3UFl/gjGKLyWpahX78ns1Dog62xRQpiVtOsrKzkiRotea9tXdatanwRgTVZ5oJQIUaE/37giSUQ5Vm0UprTvLza/9kC69sOm6cd1Tq/mxX5ctzCx+/Z2LjmTwojEAWQo90XIIsSdhvdjFlLoMdfQzZtiwTiM6TB5wJKnCKZbtMQidaU0VV04npyeUSVEGud49rln2W02bM7OWC06rFWU4uSjPwnA+r3/OYvDuxze+1W+4S/+xB+fwlQRztdb1psNjffcuHGDrm0uzLqvp0Oow6Xvd5ycntLvdtwytwHo2uZ1g98qpBrCyDAODMPAMI7sinNZr9dsP/cZzj7yN1hvtlpKQ2l7U65Y9Tvn3m1X2RPhgEKI5KR1PG3XsFzoy5dF6PtBGWfeaV4F8M7QtnrqMbWEEKbJ3Bqr8Fkzs0NyVp05ly3Oec2puAbbtBhfpeIFY40eJ1vCmAnjgPXdROIw1mEKhyxGpWojlFYpZT9WJ8ta+4MxRXmhwH7lfGwWvJ8BKimwYC4dWoftRiOMysPGILnF+j04q0BvyvgzVabrkW/8o/I0j8N8ez0KUrWLumgObW/lJjmRw4j//N8lMkwOGmvYbjW8H0JGsn3dBty1PcLGiOna4mQStQOVLfBzzgLWaMGwwLDp2a2VKffUU8/wtre/g5QSH/4XH2K5WNA4Rz/sODs/0/381t9hdXiEe+65uiYDngw21zT+K6J/6bP/p/0YXz25i4uGb3zLO/ne4f00ZV55vZvyVaWYk5Nj7t2/RwiBxUrny6Mia/TIfZQTTymXNLbWX4aiQBNCIIZATJHtbst6veb8Uz/Lyckp67WyTsdxRLIiNYJBsGiJSt5jvel87NyDo9knwgFBUSqQPBV4VjPWklLS3E3Dnp5a+dwY9H96Yyt05bwlhEpplgKLGbx3KovjG8QYQimEC8Ou1PMEchyJYSSGgM0gUiMgdUCSa+SiuR4VES03uWjFqcPU7RSvndUSrAAmzwWiolCcWomSNoYYNC9kXYNxHoPDZTPdH+csX2j+gUKXDt41/BDZqiO9/N4/LD9T7dXUE7zWYVWdT45apGVqggul6TrryKUNtHeWMQnjUKJBICW9zuukwZtjLiQwEfEOsZZUxoTJgZyZ1EkqIpBjYixK5evmjGfe+haWq0OeffZptusNodTghaARbescOmEViozI6z55P47tj4EqXJzLGG5K9+IL48QafsB8D8PtERHo+hYBQmmU2DT+dU3LhBC4d/+E3/+n/yWnpyd47xhvawS0/IGfVfjyEfdNstZSrtdrJWWVvPtmo7mks7NTzj75M5ycnDIMY2n0We5DqiiOLto1B193rChP5X5pakDTKw+yJ8IBea8q1jknxnGcNc+MIabMUJUSDi0enVxjKG27Y1LmnHWTTLyxVfOtQABtU/IxZr+3HNY1JWQEyYZh2BKGDZKj3ticyUSMLQWkcdSZMxcxVNHGdWT2ZH8s1lmca1TxQJKy73Ke3+6ipuBblRFSqDHMjg2wtgUxONfQLhc0XVsgxkCqXUAbX4S5Ne8jlXf/NdpVbLjXw650fgZtXVFWziZDZQlKuV/WgFbiGmJK9GOmXrqIisReZ4DeHGsFxrM1slwiiwbrddXtfANhQ0y6grbOT46jTtW7zYbz02MkRW4crrh37xiD0BRUA3Rx1zYtXddNk/yb6X4uzKHoZBtzJqVcBJEzXdvQNR6/V18I0LS+dDXWv41xboZpU9YJ+HW6mJyFYTey2/bsdj3eO6xTQkhKSe/nngOq0PUsFaZOf73e8OUP/TinZyeM40CIcVqwawojq9JLgdFqVCp5jm6k3jnR4xhEF/kl4vHeTcjQg+yJcECL5QJrhGEYOVtv6MqqyDmFn1LSaGEYRoZxnBhwAMuFvrAhhHIDZe/z2ZFVkxImGlsVfit5wLDLqQiEpgKd6aqMqTi0dt/MRQFYGXipMFKgEBVESGkkpzSrBxszYeJAcbY9klJh07mJ+QZgvcf7Ft94zSchxKirkTzRLoUISLa4xvH59tewTgtcL+eCHjWg37SJfBrhmRwzKRS2ojMT+SQNIykEGmOw3tGPid2g/03Ub1val19HQG+KuYMVq+WS0PeM5xtiUW2X1ZJs7PR+WWtJl1bgOUbOj+9DGOisJRZIPFf4FRiGnpQj3rtJmPjNNkUq9P2MWZTtV5RWckp87EbD9/QRU9vFlHtgC9RezVpDQbPUKbcN01z0Gs8xl0L8lHKd+6d9Vimj6jhMKfbth57T0xMATj/x0xwfn3B+vma77UsBf3keU3F/KSyp1yU1VS2T25kOXJAMg+CsEqFqB1xdlMtDn+WTTzW5tmu7tmu7tj+R9kREQDlloqQisZMZR42AvIfGK6iUs9D3/RQlrFZKA20avYSdYU+iR6EoubCuF3JWinYWg7VS8kHqg1Nk0omTlHGuxfmuRDC6Mo9jT+21qmHpTDiYQ01R2EjM1OtHi1D3zqVCaX2aPvde65CqxlbTdjSLDtdoU7vd0BPCiBEVYAVIY0ZiInsPaLRk8h4Zgcesu3nM7R703cexaf+i9y6No66mf++XMGScY+r1I2FExpExj4QY2ewiY9ACR5E3LVa7tn0zBrtoWC4WuN2OYVA2VNr1KEqgXYW990Sxk24igG9bht1AK8LCOxZdy/lmS4hxSlAPQSGgXMYV8so85httAqSqDVnGdhg1IZ9SYhgG+nGW+Kp9wS6btxaxOmeEmErhvKI43uk4/5ovrdYYZi3+NcZMjMG2bUkpsd1tOTs7ZfM7P8d6vWa32zHslNzUD2NhtIVpDqsMIDNFaTOLDeo8V09gn4lRoHKrnazdVCbDdA/hAvDzynv1td6H19NyVpx16mBaICbvCwyXMzEGdn3PqltwdLjkxtFB2cYxjIEhhMIG0/1piLoHxVmrkvEhknLCJCGd3p17BuVEDGOhVHuc7/Btp3TsIiKawojI7OSkYJ/WWMSV/EXOiHNglYRgquy2flr+35CTkPKo9U/WkRgKhlpyUihuO2yHko/S/Rjj5qrxlEkmgOlIwRB6A53HGjerYT/k4V9mGl2e2l+Pqf7y4dM4EnY75LO/xObWDzLcfYnGGbpmJleQM0YyY8wMIdEPZbBZMyVBr9z5tb1hJiKItbQ3buIWHe5M37DdybGWTcSoCiONJ0Rb2I1qmhMtKici3Dw8YIyJza6fxjolR6q9vXR8vakPWGrLlosw1Iu3OkJ0OuGnxG+vPH9+1HxK6/2Vk6spZREA1ipM3/cDxhhWywWvRfNbW5rrHFSP0Y9K9vjCb/zXgGG327Feb9huN/TDwDiMxJI8rZDn7Divusfz3Fa3qYzb6W9lXnPeTWUgExQ5baP/l+KDSyWeCAfkmwYhFyVr5iI0gZwSvmlpmo7V6gDvDI13e0k1xR2tNWXS1hV2TQgCunorLRlCjGQxSFR8tya+kayK1NYj1hRl6gaRWUs6FQWGnOIFqqgYmbYxprDukgqjTvTivfGkrRoK26/iq0nIxk15EESdWSp0b8kqTJqtQKzOLioF3EEcC62SBd4Y7CxW/DWZXPp5+e+XLunKz6uZve3GYaA/PyOc3KP/wk+xPd+w6hxu6WchxVJDNY5R6db7NRWXPOp0v67tjTWjyIAgZJswq1Jk2jyF3fScn52SY2TsR8R1FyJVbUc/T2JHBwf0SRhiZrNV5lVb2FJ2ig7eeCLCxXdZiDnx8VsL/bcIz9/d4BtHFl3lW6vF5Z+8rdssFi3fdTrM17n3s5KSvHMIGklZ99oi+GEcOTk95uzFnyKVPHXO0Peam/7Sl79Kiontbsdu15eoa45r4JXjp9ZtGGaHI7mIjZk5D6Rz2BzVGqMsXO/txESeJrpyCGX35qnlxlX2RDggDBc8stuDs2JK2Aa6rmO5mCOSvlRQ+5RYLLupCDWEgMXgnZ8UDOqKJOVMClqzI8ZqRU9dUYvQtgf4dqE00pyIKSJ7ytvGechJee9S6c77nXcoDiUXOqpgmWmbZq8/kRUzd9rOQja5tH0wdTf6PetVG00yKY7lJSmEB6OJvyQJ7Ii4FskByQviam5pYa9Ypl3+y4P+/aDh8moclGFONqZhYPzdX2R7fk6/2TD2Iwvf6TMryd0kMIypwDIyFfnqidWIVcP/Whh3bW+srW7fVjX3LKS+nxo5WucwbUtGE9mSMom0V1agZkp0Y42la7Slw6YfOCkNBQ8OVgrHGVU3UWjuzWHDiRR9yaxq96Dv7iduLXjh7jkfPvBTUl+JUXpGirQkYow03utnxSYoylliyjjnCivs0Wl3DRyEMYZJKWK327E+P+fu3bscH2tPLHVAwlgYwev1FkSL7lNKE/1Zyrb1O3WQ7rNe9xX9KxynjHgzfY7kaTcT5LbXpbnO4fVnPwxs1ls2680Dr/XJcEAi00tmDDhf8jIpMYaMsYHlYsnBwYph2BG2I5vtPPEMw8hu15NiQrKQjTJBbJn2bGHpSM23NF6jG+uIVQwxJXy7oFkcYL0nDDviqB1JK3d76iNEZXdYpaGK7D1f/UwKVisGcq1VsrOzm/Y3MVl05VBVDmIY8W3H8nDFsFkzxpEwDtrIrkRty67FGI+koLTJqJOyc5bU5fl8rnBAD3McDxvwVwXuD3JSBnUUOYzI534JgGa7pWsso3MYLClTllp22s+2Hzk77wkZMI6mFvnu/X+l7J+dXTekezMs9lv8YjnDoBWqsqjSSIyl47CWRtSi62oGnZSTCNvtGrc64vDggGeefgqAVevpunbKCQkU+PqNh+EmKvh+/iJXbcf6eV35G56/r8WYzsA2Rbbrc27cvMWqyBOVDfVH2e9Hbv8eHzj5tika6Nr2Fc4oxsgYlOkbQmC323J+ru/3+lM/w/37Jwz9QMpSNPkKVTpW+nScmLkXIDbz4DFdI58LDgjASC3rmfJ5zgqN10WidbqAfsUKoeSGyo0tC+eLi5F9eyIckHMOV3I3yIxtOuc0X5IzIYyM44Apf58565mcIYREFk18WZjIAcBER9wvRm06j/ENqSxaUsz4tsW1LW23KCt3/V4M6uzCMBZXr4JsVQDUurkiX6PQStEuRVqVXl0TnDkX59UpUaHSxs28JklJpYAktyXvFJSGHcbJAUnbqNPKiZSEhB4vhZZccVf3yoTn464qH3fov+L92/s9x0jqdwynZdUmGffu/4Tud36JoQ2IGUpXTcN20NXn3ftnvHT3lKOjQ5bL1V44NhfsrtcbztcbmuXjVX9f22uz8ctfQp55huZQ+zGZ2pAOS4ojIUSSGOw025kLK+I6iaWUGPteI6HWc6NU74+7reo9Ni21wNFaqwXLr7MPunLxZRQaf6FAah89akhF7DP3Q1FYgT/70ilpoRDcbthxenrM+Ls/z+Iv/sQFBzSdslEhXUEY+p4wKjR24+atqQYxplia8+04PTvl7MWf5t69+6zX62meq77BOQ8YxhAJ41jyptWBzmiMKVHMBUbShWuW6ZlUhZla45NSJMagFO2UlSAFyOG/hUu6s4Pwm7RdNx2zLrxzlj3M54+JEoIpNTc1iVVhrVoPMIZISpHddkvbempLbVAHNI5hmsNVEkQfyQQ9WUOKerOtsUgKhD6SspQcDxjbYnPGTYoF6gits+RUoqScca7BGEcK44R5Wuv2mCM1JzE/WAtlRTGdpLZa8A0EENK0apkWLjkx9BvGcaswYEqzcy5hUoqJsVynGGXi1VXcBC1mUfhjRgivHM+XI5rHGfNXRT4XiA0ijOPIZr1mfXxS/p4xpz9PPwpJLNa3hJg5Od9yUmQ+ztdbckgoE0qXAjlFQghsS+Q7hIzrDnjqLW99jDO9ttdq6VOfZbjxJexbnqF95mm6m7cAyNYhm55KOogpM8RISEkLzAExbnq/k6iUTF6vaQ+WLFtdUa/PIm3bwbt/ZCIRKSv14W/iPoQEV+Q4ePi7PEc4tXJfV6Tvu78jpsSnnl5hjeGF014/c47feUYJUMfHIy+dB779fD3XNUnWSXl/QVqcwXa7KR1gM9a6Sdjz3r17nH/yZzg/P2cohIGcCqS5N8oEzV0rEaEWw8uFCzT7UZWoozEyLwbU8czQYYyBGOK0QNf7oKQRZxRm++0X/gIYwwc/ZxgGdYitSfgmY52Oz3ofqxZmNWtVC/BB9kQ4IDWZJpv60tUXwnqP5Mx2uyVEfWF90VoyJVaR8gKMY9BiNuemG6oomsGi+RDvPSKZmAJSboFxZaUiKoSZUkTKizKBP6KV38aqGCmFnrhP+U4p6uOoq/VK7WZeGeScsUhBnorztbrCSgW6MHHASoNxjhwDOccpqqoXFsJIzq60855hTMlpkhjyrshhOPugxdAFexxo7YKTecB2E2hhNLE8v4T6vJy3OCc43xBSZBx67h+Xiu6o7dldSUiL5AJJ9JwVJ9WtbnD76ed42zd+0yOu6NpeDxvHQHu+w+W7sN4x3tZnFRYdu6FnDEFhVGMIMTMmgaJ1GMTS5qgLS2MgZ/phR2uFrrQfuX3rNp/8wF/n+9DX+9PPHvKdJ/1jnds88alVZOIVhJXLv+jLxUeOGgyG95+PUzHnp59eEWPAotIy1jDRjeteYyiU5mGgH3rOzs/IObNaLmmLqj0FZjfGMPzeL3P37kvsdlu+0jSTXM84jIxjUNQjlcL1GkFeKqJPBWKj5qBlT/tkD3WTUlxalVZm0laeqO7WGhrf0q46nJtzWJqvagBhHAYa3/Jdn2vAGXKuOdgS1e6hNhNMuUd4MNZi/IPdzHUh6rVd27Vd27V9XeyJiIBiyuQUGEPUFUhxqCFEYsy4xk+UvlT49HWFkV1ZFaQEofT5KSJh+6wOX+oQnLNasFWkYKQSFaySEwQYh54Ug0JetaYICuukhKqF924NpcndHCXVlVVNpNZCrgvhdAqk0tbBFJ6YUoqL7E8N4UVKk7w4Rz8F5otBI4jWOMQknElgLXEIfEb+RwAWbsXSd3yb/Su82j4lV217GZ676t8XPiurqWXBzQ2ZjIHgiBH8MBKGkb4PjH0Rpuw6lssl1jl9TsPA6dk5YjzPvl27bK4Ob7A4OGTsH2+VfG2vzU4baMNAexJo1xvMqUZAw7Jj45UijG8UBvYQdjsqD8FFYVFg8dpA0gEObSEA0N045F2f+XvY7/gv0FxCmkgNUy7pAQyynDOh5AZfvL3ghZMBXyndV0ByubBUTcnPvvfOWqOGpp2YY84pbJ9CnNAOa8A7y3vvqoL3SzlhgRgT/3hzl/f80x8jjCNv+e6/ydve9k4ADg4PyVnYxi3n63POztdstxvN1Va1/rRHGLqUu9mHGDXKq5HdXKuTSnSjEj1Vx7KQoABntQM0wMFqoXpwccQYw+1bT9G2nZa6lGfRNA1N40kpcnZyTLfUPLRgWB6s9P5s3RT95Jw1GsNM8jvlRitz8CER0BPhgCozMGchkjScBw1draUp4XTGEIYBZ+0kPS6itE2JBjs6MoXVwZxz0UZvDme0WrttvQr3JU9I9SUY2W3OcY2qT1Ow0pznUN4W8oMkzRG5psE6OwuJsuf0mAfOflW4fiDkOJJTKJwGq07FOCoXTLIlBUHMqHVHFVu9wMixBW7bYcKI8yPSLRQQLBBlipEwOoYc8V55+/ZxsLh6qnu/XwW1PcgZ1bM0pkJ/VcG7QKFJt8gFj8ZYViXB3XUL2q7FkBj6nnEM2GbB6sZNnnn72/VZlL4Uw+7aAb0ZNhy1bDYDbhy5MVpWhformx2DhyCRcYw0Czg6usEw9gxl3daPI4MVdrueGAZyUoKB1UEPgLOUppFaK/PtL5/z0WcO+I77u4mU1DwAktr1Oz58oO/7B18+R5pG8zE58+mnD3jhEpSnk38qeWJbSEHKrHQF/v/Ok4H1ZsO/bHXcffzmksViQdM0/JmvKHX8vR/9eZ76yle5e77hLf/73+RYRMf2h/4W26JQvfi2H8U6z5e6L9McH7Pb7QjhEkW9ToAFztf6DIX1KzGgjpMU4wVHo/DeTNpy1tM2c2+yEEa6tuXg8AYAN2/eQgT6fosx8M53vQvBEMaBXcmvrs9Ppjx4DDq3xZRKQKBz84FEEDcz6JKWhLBXrDrn1p7wHJBzHmMKFhpm7nvXdTRNS0p5YprllMkp0fdzAVjO+iIaYFGUr/dphfVn4z3ee6w1pESJVIoAZkrEeI5PkaZbTnTGWf1VH3TNDxmgaVusdWQTycwvipGCGbu5G+qejJ8yavauX7KQJWkDuppLkqwMwLLCYI9aWceg1rNqYayxRgtTEVVXSKWmJgSCtXyWX6FzDa3xfBM/xMPEQB6U+3nU9qY8C/mj/wGMIb3jrzIMA9vtlv58U65daRlBGoZxIITAGCNiHAeHyiJq2w7rDGHcMg4Dm93As+94ltvPvYVbzz4LwPZ8zfb8nGHvPbi2N87e8ZZn6VOkHwc2p1vOznRSb5Yrjp59CiOR0/MNWcBZw82jA2KZXlJM9Ntz1ltNdme0+SQGhhLBGmt56q1v45O3l/i25f1ngefvbckXKMWzVVQh58xHjxpCeQ9SBO88UTSCiqmblPHnxWEhQmTBeTdFEPv8rRAi4zgyiNYD/rmdsFgIKa25V5ro3b1zh/PzM2IYSREar4LCp2dnHJ+UPkdf+DG8dzyXhOOhKD8Yc3FBClPee0J6CvFoYqZlre2RnPG+oW26Ek1mJW8Ai8US5zxt0yiDWITdbs1yueTgUBfsvu30nveZYRj44uc/T7dYEWNkGPRZaO5aIz6Zur1aDGaqk8LJND9OTtKALeevzyKT0v7M90p7IhzQMPRkyez6AWtmbaPV6gDfuFLhX15CUyTJS/2O1vgYckn0tW07OZVJMFwSORncckHbNoRCMYx7sukpJUIYCitkoOlaEHQFIDVKSkCmyo6TNWmo9TnlJRZdCRhri85ciVoelBAFKHRtC5McjaRKW5jlQWwtfJ0YLeUqBUxh8xHMXhM7piSkiOWb+Q9YmAbTPPx5XI5iHmSXP6sr0hgi6Z1/DRlG7S1ycsr6+FS3iQGwuHZFGANDv6MfRrp2weHRjen4kgoE6qy2Gm48MYzcf+klQGGLh9UXXNvra8Y7Ft7SeEdnPffHUgx9dMDq6afpnCHkl9j1PcYIN45WLA70efa7gTv9hnXf46yiEK68x1X3Mecdv/Huv8JqGMAqHO28L/JatdfWPElPOozFsVTdsRdvL/jgJhNj4qM3Gj740hmhsGk/UVQOnr+/LbpzmY/fbBi857vOg0rKlGO8+NSCbzw74/l7Gz5y5OhjXworN9z50pcAWJ+fMQ4D3ik5oZ6fs45QGG4hRkbr+NgHv5/3//Y/2zvfPM09eU+RembTyvQ3YFoQW2tZLhccHi3eC6wAACAASURBVBxpQb0kbtzSaOvW7dvEFNltN4y9akcuFgqfnZfGf4I2DayRTEyJzjqyhFmuR7TOZ4q6UsL5jgZDLjVHNeqqXaFdSXvkPYdTA9aHgS1PhAOqIWhKmaZtWRY+/eHhCuscu12/x9xwKlg6VMFSZW9oEzOr0JPYC/N9SlrBzV5rhJwSIYSJKuodKtCXAhHBGH3gcRynmbb2ALKFfp2TNuOKMUz1KSKiHVfRKEhKBLRv++wRKbpyc85qjnJqV9XL7SSm33Oenq4+bHVQWvw1V3Rb5yfs/ao80D6P5WF22SFd6YCSNrtK48jYb3n5t36Cs9OTaaVrU6Z1DctG22zE0n2xbbpJuYKcycg04JpG5UzGYZzgC+uqZP+rjdeu7Wux7XqrBdzOsuw62k5zCs1qgV8uWSxb7N272AGcMTgLzz2tDshax6q1vPTFL5CiRuvGWVJZsIC+g9r4TAoNuKiZ2FfCbvW/LKK5XZunkosXTgeisWQRvvNkwDbNXFNUKd0ifOqZFSGMfOsX7vIbtuelk57FomOx0BzHThZI1l5jKSX+ucn8mQ/9FKcnx5yX4mdrhMbbwqrVdz8lFR9NU22fHu/9H/517dy8x9arb67OIcpcrR2OKwN0qiTxnqZtOThYlYV5Q4yJfjdwenIPgPX5KSlFXL1v9X4xC4OmXOotc8Yah/ct7VIRn9jE6bycd6Q4ls6nmRAGjHF0y5LLHU15DrPTzJLn+YyChjxifD4RDujo8IgYR8Z+pG08bVG4brzHekfKC8ZhIISxaDLZKU9kTFKKs7GzErY1k64UUMgCpVOqc2RmyvdE5y50YYySqlNUrDqWFVo1bS6lAyAWogIy3+jLA8TozqcXoVoVO5zMXHIuMkHBE8n7crs53X+hrQvlhTVlMJTooDikd8UfnPc9kdcvHP6CvappvZx3Tokw9gy7LfF3f47zWz/I+dkZ291uypHZJLg6D6Q9rbu9+yHMebz6XFLMGBOwRfTVWMcrVMav7Q2z87MtrvM0nadxllgidSuZcRyIpQjaty2+aWjalm5ZEtbOcvOpm6pe0feEXU8adgjzZFxX1MZavuss0i4XF1QRQCfOWIpDRYT3FUWCbz9eT4hIaDsWi47feVohpxeOe6y1vHh7OS0SY0qEUdhs1ty7e4en77zM/3qgc8FByUMeDEu+OTQIwrf85k+y3fXcXa8Zx57Gz5GOsaqwH6MiKjEpzXlSgrYOZTdXfTUdefu9v8Q6lewq59e2DW2rupTV+XrfKGFD1BnkLFjXqFTZhOJEYox03RLtZaaLb9Wwqy3CLSKDnoM12mnZOcRMoAnWOJzXediWZxJDRAhUlYNuf7AamcdscUr1eVVduQfZE+GAnn85kpLwyadvqPctfPQQIw6NcnKRIA9BQ0WZcjd1skrTDdBVkePs2e8B9OV+7vSj+EYHhxjwjaft2olNF22ibVus95rriYExDprv2RscUpyXLROjIJjaiRDIZmrZOUU6+8+qfgYgplQvy0Xnc2FbNPIqQe2FhN5+RJNzwiSL+ITZiwC16Z7nC82v0URDOzR8a/5hbeNdVkluvwCWmUzw2PFFXV2FwLDbsV2f0Q892y//LOOwg5zwFT6ZXvSMSGlHUa4jXz5YORFT8Gdj5+vXIDRfO6A3yVZPHTGue4azgT4LsS/v+RhJ6zVJSrsUIIvHWTe9O4LmS28/8wwxjJzfP+b8bj8xREFzIIKOB+fdBV21atYYvLV8x/GOYRz5V0eeF443fOTQ8Z47ej4hBLq2RfJFeaxh2E0yOMMwchx67rz8Eu5Df5thDNz9ph8mp0TXKcHg+/7oV3j51m1EhNOTU/rdViMpY+YW06a0W4jaIE6JDyAyL++UhKNzxbJztG1L0zRYYyYnFUJgHHp8Y+m65TS3dYvltJ+qJj4OyqBTwf3SBXqq39FjtV2nNYUlz2WMTOo4WTSHbqvEmEFZtilO8KMrnUwbZ0lOyT7GWnJZLALY0iZHmXp7uXLDdCyEC874KnsiHNCia8jZceOGFmfVAq1hGHApsVge0HUdInB8fEqMYYqSRIQQ4+yUBKRIeiwWCuVlMTSLfw/jVgiOnP8hzjm6rqHxdWVg8G1TJNnTDGmx5xwkIzLDYgrf6bqgrkJE5vS+ZNHJ1jBBbroNpdDMFhZO7Yq6J+lTorEsykDRU9Sd1SNoVDSvMCr0lkWm5YxvOi1KS5GEJSVLcvpSTuoIhgux1YMw21cw3KjEg9ovKbBdrzm+d1c1rYZBV045U7M1aQyQEk0ZxG23AOtommbaf8W+6/Os8nt6G8vV5qSCEDKvoq/tjTN7q8H6TNpa4jYy5IJAYMghsO17xhCVqhx1TO22GqHYoltmneVweUTsd6zRyD5P77aha1u+ezD41dXTUhZhLIr0kjMxRtabc3am4WNHmtj8wDoSU+JbvnwPaywff9st3ne84ysn9+h7ZXn1Tz3N2d0z3vlPfpx7J6c03Yr3v/h3EcmT4xuWC+7euUtOiXEYAP1MBVP1TVXx40SMle7sca3FO0/b1q6pWtohOU3F5CGMZbLX/cQYyZLx3rM6OCCMIylnHRvFDKoGEmOi8Q1Nq3lRaw2uzGEakSWsrUSGWOYyg3Uy7WcfsSELw64v5IKaVS4F+aUNTs5SClP3hY3r/DEjQErElknPUihKDg9ZI14Xol7btV3btV3b18WeiAiobT3jOPLuPzxXPLJ4zE8964ghch7OODg8pG09i0VH3+cpx2Gs1Q6bKWk9kMikIVcLoJ49eSchJza7gSYYUhy01cIeE0XQWgCVw0gqnW7mOgHQiKZ2TLQl+QhScFY7bbOfz8kCVswFJtwsFQJVeFFFVKVoK2nX0xjDRMfE1H4qdm+Foccr5Wl6PSlq8WpVkBZVJo5h5Jv5j+hyx8UYZt5XtYexVurnZu/3+izCZ3+Z/s4d1mdnhWUYtLncRAABSQkxtnRStJi2BeOUKFEqF2McVXg1V3ZgIWxI1qJAIMvM2Lm2N96CNcTWELMjROjLjV80mqeIUbX7lDklxJy58/IdQOGjpmtZLldIiEQMbrXCxUDcaO7GFV0y081MtGp1LIUY2fW95neN5f1ngX++cmzPz1l0ypz99FNHfHCb+JetQrzL9TkfXjWcfeV0qnOxxvKNv/63+OqZaq/ZZgEY2rabIhffNKzPzwjjgDGwWq2mFf9EO06JZbfEHfjyb00TZMkTC67ODcaYuc8OGmVUq0W32l+n0b5oFMRjjzqeRVEeZcgldLO5iaWzQnPwfUjsyQaSgbj9JxqbVAmdQpOeWq5JZux3F1INpEhKsB22bDdrYgyMY9TckNP7I6VFjAY4Ex932uf+z4dNKE+EA7IT26sk0Wszp8aTciaMkRCGSVlVSQj6kJzZF8KTAmWZC7z/mBL9MLLb7rSHjvs3GYd/CCL4AuWlLEX0tNb/5GmSrK+AKSy1msLPJQdxufhUcz8VtqNUJNsp3pw5/8WBFJx0gpfKNrnADJrrAa3c23McRusDTK4iinoPnbU0fm7t7doG6xx/aH+VzrR8q/ywXtNE5zZ1d/WUX5VVOvRms2Wz2WhrjJyURaTFGlPBoSk5Ot+0iOigtF4hir5XyGbYbrQo0O1lRmW6YUw3z8zttq7tjbXNWghDJOwCwyYylEkSq/1utOGaqphY7zDG0pe6ko+98CM0jafrOp7/6C/opCawWqywC91mzML5ekNoFULezwBNpRI588mnlrz/VGvxckr8a4Pw6yKTanQIgY/dXDIcbwghMAw9TdNwfP/+VDsYY2Rx7x7DoOr65ITJgUWz4OCgdFpuHDmODFYnUmtVADnGNDmXnLIm9QvMNIuHyuQ3lCygXUNz1qaStbFdVXYI0WHLMfYVxA1Mi82UUmkNrmopZhwx1pZuAGVM2IyVkTieQTbk7JQNa/xM+ZaMkYSxDdY4wJJE6xpdUTh3Xgt5U8qkqKSKFDNiBRE3nZ/ARTiv/Hsubckg9qFj9IlwQDWZ7py70P3yPV9Rz9v3I7/3dp2MJzG+YjURpvisPti2bfHek+zFhxlSKNRKdMDsPfAQE+MwTsSBfUc2NXaqxy0roVogOv2JmuqZnYTkXPoBSXngZT+mkAvSzKUHM0UT2vQrT/UFF9h11IiMKTJCpERDJUkYSx3C2Jd7aiaCR3IqsT5naR/sdCbnywO2EWEolO/tdku/qy3Es7IIQyCM44VGX863OvhyWTWJEMZhioDC0CvhwLVztCWlvcWkilS5fNco8pthKTpyaslJyDnW9QSC0YlKVNTKFNTAWDuN5VjQiV0/8H8895d5z7/6aXzT0B0c8pl/478B4OTkFHvvmN96xzv5SylfmJnq+Gu8p2s9n3zaMww94whxAe6sn8ZxTJFxHBhGFQmtiMS7fv1vT07qk9/zAxydnIIUpm2M2Jw5aFsWRTIq5KSOwzklx5ShovuvSi1CkxM5WW0Fk0rueL9RZVk4SWaab1SNOmvlJlrGITkj1jGMQ5ETs1OBrN7/SCiIiDG2fL+0X6lzxtH3Y9JWVQwESOzllnU/RkRzM5L3mEZlYT2zNqbxliVTW87I/txbJoS6LqymDNxCSkpFHfxJV0JISet7usWCLEzaa0EiTeNx3vHC/cQwCC8+YyaVV6gvu7LSTFGrbZsGV1ZhoFGVMajseEpYW1Yme4lAspBjKgl8A46pCO5iJbZMkUulDjttZgRQClDdvIKZXMvFep4qozEX1DE5JSgEBqNFpc7pC1ed76zwwEQdr9/NaS5sA43smhhoUqYTrZT+g/bvE279yAQ3vHCye2T0c9XfDdpie1uSzev1mn7oS8JV2Ta1XcZY1C2MtYWZY8rqTl/SOI6E0tte8hyZli3IOWHTXjTqKNHnNQnhzbAwBuIYCWMgxzg9H2PttHDIhdFYCy0/8Z0/CoAMoxKFUmS36/nQt/41ukXHM888pwWpqGaa946h3xGahk/cbAh9z/Of+hj59rsBsF1L6A6JOTMM2rQtpYR3jvfdV3jNuZFPPn1QageVtfa+D/8Cn+3HGSIqSfXKaLPWsDo4wrXtHoxUxq2p8HaJctLe3FOo1M45rEC2ZoalKgSf1THvRzx1HNf5KdVWK2JVuVoyhioRVAo+y4JOSumFkgFqr6HiyLIQsyHTghFG0b95mHTeUoQw1j4/DU3XaW1lHCZFBecbxnFARPjtF74XM0a6riOGsHfOGTFmLo5HJhRqX3mbbFgUOv5V9kQ4oFhWDrk8uDw9PPW+rVd5CWMNzgUEJnWALBkrpUFceTCXaZyVUTYGzUlY/jfa1l2oOXLWYp2j73XVpBBWVSKo4auu1rOow/TiMc5ixWJKO2kpxVi+9LjPIkVGY7/Kuf4n0wqNGtKyd13GYo2U8N9M9+ci5GfLS7DHcBGZYDHJW1zTUdUblMpseN/xjrYpK7lH9Fy5ymrsMQ4D243K7Gw2G8ahn3qZ1MhuX4ioytrXfUwmGTNBxsVZS7kfIvpy5Dx3jK39Yh7Sa+TaXj+LQYsSU7+DMbH0GinYrE7HGksUZbX9xrf8VZxzjPe1QLJt2ilPNPQDIgaDVQdSVsdN42m8Y7M546VhzRe3Hf3ZmvbFT9M1nwFg9dQtjj/w3eA973n5DBHhxVtLQgh85GAulTCDChbfunmTnDOb9ZoYIx//c98PwEIyFnNBYaFZLBFjiKE60zyt+CskX2ssvZnbFthCN9/XnoR9B5SnYtqqZ6kfzfDxXLw5RyBV8WSqZbROGXVeHVwqeWHrPKuVwoZx9xsgkUXjOD09IQ4B5xratp22CePIFj1c2zZ0iwWNz/TbzGGBH9tuwXazYX1ii2pCpO9V8sf1v66n2FRkhhIt6Rj33tN4LW3pOiAbjo6OHvhePRkOKEayCDHPWGr9u7OaiHPe46yl61pd/ZQwuOZKxpA0HyRC4wPdYjlJ+hg01+CcB5No7L+LMf/LVNQKFcLzpaAsTi/MPouw9tjIJWSVsvaw1mJLcVrOWrHvnaNrW6Loam0YRnzBWK2zk2OTLJMCQMpzAWmuPd1FnWNVMhC4iBObvaJSqS8yU+FnTIkcA7LXInlW536lPcoV7UNyRrRfSL+tHWOHIvuzL8dhJngV9FpERLs5Zi1EDSFgMPii2Gut0xIFM8dlWgsl03WlqDkHZ16987y2V28p6HPK7ntZNHDQ6arWhxssvYFV4kPv/BaiEVrrwVqGQSPjGBXu0XyC5iW9b/XdLOPYLlogsTk+5x9ttrznn30MzrZ84nTDYaEjf/Ff/z6evnOX1c0jPnGz03zMbkcI+2LAmjb0TotE+13P2dlpIR3tLWzJIHM1f0bHChNykKacjoioNqPA2PekosbhlsuCkuyJcorOSbbmgPbxKaP9e1wpop4pzaYsrrUcIaagY2YfOgO6rmXRtaSQ5oWX91O+V5X6Hca1ZHpVT2gaurab1GXaptXeP9ZoCUoeQRIikbOiqGCtOpeDgyO65Yp+GIghaHpjwsDdhPDU6wYVEl6WiKdtFkXN4gnviNrvtsSUGMdYFr3zBNs0HqhSFwmwpa3CvAoRIzSioW3KMsFbtUCrvmTK4Z/D6vIhoISHxht2vdOK4hQVH7YWJ/OkPqkPAGTFU7OdiygVmtNziSliSlfVCSrjgp+YfhFRAdI87WhWU6g5lf0XHCpEOOeAqA6KuUEekklhIIZhuofDMPLxp1sWC53wv+tsmOHgRzyrffabtoqIU36n1vzMXttMTbzqDdJWGVrNXaV4Qggs2gVtaU7mGk/OkZS0NqFGi/X6YFYz5toBvSkWUmIIEZcSNhpsyTXG+2fYtmFhLYdDJjvDwjRk50ltyQ3udkTJpLJCXnRLmtaTsky1OSnqRDiOIwZhGAOjQOo6duUZn/U75O5dms05XbcoSEi+sGjVhpMNzcoz9D0nxyeYszNSTHzgI/83oHBUpuRHyvXFmLQRm6tJdthNitPzWGy7DtOasp9uzvXot/QcTNWB1N9DDCSTcThF94uM1ATlAYRITplxiEiKZBeJQ5jITGMYVX2/aXSMC1C062IhRZBVJft82NG0DQfNASLCer3m5FQ7EretNp/LKRGOTwBNOdT7qPfQFh0+N8GAzgm1cLzaftSnU5LlYHXA0Y2bgIqjWmMvRIaX7YlwQDFqYm8cR2LK1MSyd35yNiFHYoh84x8EPvWsmWQ6nHM4b+la2JXwvk72NZdUqcw5JxrnaLwjRqMrsOnFtZNSNsYo1l3yRPX2TQ+p5C5SjNimwVt/wdlZm/C2YMRF18l5Pz28OplWlktl0Uw5HaBqQhmjUh/zOcyJSVt6ElUJecmvDGsEwzgMGL+jXQ24VgkAz9/f8bm3FVXSSpowFyOgy6/Nfp7IwEQ02I/aZNpSigSSoyl4+/61q6x8lTDJ+MOOtqzSrDGEMWsb9XrMkhSd8nqlg2xd+V7bG2uxKM67lLHZYeoYbTqsgA/CX/js72Gdpbt5gF2tCOWF+b9uPss2j/REdikhORJ2ymz9n7/4FUDLGmxR5/i3bx2SsmoqNguvNH5gTFGhpdNE03TlHdBxW9/B5XLJ4eEhfWG4Df2u0I7NNNbHQRP9hqKQL43KBI3DlFPMUzLdTAs/ycLq4ICmKXpoxjIEbaE95YSNdoSVqUxACnwuxDgWseEyR9V8fhR8SDQOvBFa32n0HxOpqDekfktoG6RtyZInppoqZs/58Lr4s9ZO0WVOcY7sGBFbJIPiuDd+zKTob4xhHAxjTDz/L/5PoDB0I/h2Lzcr+/xZXVV7r7De/8/eu8Zakl3nYd/ae1fVOffRfbunp4fD4Zvz6nloZkS9TFIPG6YUyBKcwIphBwKNJNQPx3AcyT+SHwHyJwYSJwESKwiSQIgMK7YSwU4gRZItmwIjSuabw+E8u6fnIUqiZqbn0X0f55yq2o+VH2vtveuc2z1wHM7wIrib4HT3vXWqdtWpvdda3/rWtwAxQITa9+hm45RCdDpOx+k4HafjuzJORASUla45JW1/ID9nm9B1rTDYQhRp83FEjE05JniJQrpOm1Ax18KviQvPLPUqhggNRO+NOcFrPcPoQoG7MssukyAqpbL692Dtw9M0cK4p9E2JWCIMR6hSHBIA1yR49WaSdkHNnlUMEa5psD3fqhIexmAcB/hxkM9NoKbSIG+qeLtBj6z3zVK30K/QrBZo53NYLdR98E3B6OGsxvR0LMq52chwXUoM80e/BHpFvNjSGVbZRZwSYorS/qIU19WumMZYkDIPjJVi1PJ8de4lD8TyzAvWnxhsgFMpnndpkAF2/zzojQOAHNy2RKt7H/kQ4tES4/4hxtUKbCz6G0ewixWM5vR++Nqb8OzhDcNbQjfbQhoDFkcL/E4jie+3+iOwEch9OWvAMaIlB9M0IuEMAMxY9j2W/XICF9VunwCwt7cn8Hy/xNAPODo4xEVOQmKasM5Yz8kWGp0EMNu1PcMYp3lHiTKYAR8TRHxLIqBx9JKMT1B1biP5J8o5YVGHF1YbYxyDEGiMQaPrtw0RrU+Y2waz+Taas3vSBdoHjKq83YQImreSK1MM3ydGSiSF7oDOUeMYZhBnmBpAo/PhCB8SLAO7jQWRVZRvqgdJGBPjRmSw5skbp1DaFMnQY7M4s1G6dkVxbo7KTMeJMEDBexBYxfSwlh8JMWAYhUEzjipEiqoSG7XyGJB2uetGpxSNSBI0RsT46wB3mHVWZNA1TF31A4whDHqNrKxtJsnCwvHPfyeC9wFEA2ZZnt5aOBKWD6eEkFlCmG6sMrekuHJMCa7t0HZdwaANEVwjittR9ZwqxpxvS2ifQZtCZcFCsQ4Z7lP69tBjcXADl7Y+gwt0F1pnan1TJjVMiTi3+K6m71Kuyl4zCsxyIiWEpChGPld318JeUuIHw9pYyBR5JM3bQZv3kZ4/10b0Q69khdMg/t0YbdPCswEig1oD1vc9dA4IHch7uMbBnd1F2D8ADyNY60G6poWNBi5FzBjoWDa9zrT4z/ffAAD8nG3QpwDrLP7P5RKPDiO2rEFjq9imUQc152vkffBSxa+L4uCARHSUpFvug1/7b8ExwbQOpBu1AQrJSAgE4uDO5lsTYgDQttn5DUKuQVbd1zKRIF1DnapJh9xOwta1FSIBPihjToRQY4QowmcmrxfnNwLwKWBcHsqajBHITisYHUe0HKRvWIyioE2EtqwBWS8ghfi1UJ4YIJfnA/Qg+EjYhYcBSzlSotqugiyWiaqCvVHlbJ50O837C/JaT0WhPn/Oj0KTP/E5IFIrakxVWAVkk/c+ICRpPiY8+ISP/tGqvATP39XJJud9tgqIMeCNM49iPvGcjDFwTQNn/hJmbYutmWCbLm/CYDE8mWtPQmkWBlfd5HjCIJhGIPm1zS0U0kSGnCY/zz9ISQxDUUEAMOt+pvTN8SmhaRs0boUev4JMSc6bOqDK2yrdU+jiyssvzD3Iy2KI0DiHWeMwbywaZQlNHvfk+7j52IyKcq1PkSoqlFWlXyupIkc8+TslzY0ZY9E2pP1LbD1GvzNmWWiRAZOywftXm+vp+M6OxWoBbwa4mGCaFtCoYwwBJkVEIlDXwp7dQRo9eNL1l9oWxntQPyCNA8ZxBcsAkYUrFOKhNIgMRPjCnR/ElmvRNQ1mmnNBCuCY5P9ZoR4AQyr2AeDw8ACL5RLOOgzDgH7VSzGp97BGWaikbVgY2Dt3Hu3Wlq6TUEsuYlQiTMJ81mFrPivrZaVt4IdxQAwjusYBzohwsPdIjiS0AjQ/lFR9Wq4rtYYoOZfgDA6GEUPymPkRBGCxWiH5AJvrC2OAiUATxOhwCBDV7VpfhGBAlkFOFRlSQuwj2DOMCpZGCzAsKBmYwDCttEOHqZEKJwYHqeepLDdeIzdt1iMmZqVm1/mQOsRvl6c9EQaom3Xa1jZCS1kAiKp39B7sSXNrjK8+8iPK5ppStbORkIQfJ2Bv9Gi6sVyD9H9CdRQiAqMWPCY1BlUdQTdJa1UJVjfUGAsNm4yBtUJ1rKQ6eblCiEgsmlJRXCxkWRkyWsXPAcwCC+akfq7fSSkipl9H8MMxpk2tDZhId+i/rZHCuPxzZkYiUVSYdQ3mXYN56zRSysZrfZSI4ybfVTFsLCrkq9WiGM1iuCmTDZTYYIzKGAkpwlhXjA6RLYV6dQJ1XlF15BgRJtX7tSpn8nYUz9PxnRv7+/twsx5bMcF2HaBQceg9SBXOTdMgBdEAdG2DZktguugsbGKgH2CGAc4apEUvigq5in+5UmdFirJXfhS9M07QhjqiAKKstKQaa9ZJa+9Ri5hDiHAtwTYzuEYauUldmbRCAFDWGxHBto1SriPaxk08fIH8h2HA1qxD1zXqNFFp6xCDx2q1QOMMjG2QYkDfL8DRYEupyI1pcLA6AtEcs67D9kwZntrqGgA8IgIxYA2Mk037YLHE2PfIrqS1BqY1YGulAR5ZDDGBDMC5RYkzACVlNslGmgyBrdRpAUAEw7OkJzxLAW3p06eVGikSxlHTEJT3VF5jvdV9oCIhohpjy/OREpP6TG82ToQBslZYaRpXIN+e1NzU1gei07beYyIxg6PQi3MOKEVgy9e8Q+mbox5I45xskrF65oZURaFtkRIQoxc6Z9OgnRSZhhgw9r0ICEaCtdK0KutMeSOdEg1IXn7nkHwQmKzcsWz+rLQzYYtJGJubUomEhvRld84KJKiQQTaa1mZ4SsJsZ43w/rsWwyj33pOBAaGxBnd/awnzXirXyyPpMwreg1/+n4AP/lyp15nO2ig10yht03uPftVjHNTQFzIdFUNs9KUs56AMvTkQTDFYmECMtbIpQ44Gzii2XlQU/9+/Z6fjX38cHR5iGwOICWbWAbn2JITiPOfq/LDqQU0jxwHgpgPHhGQNyDk0XQfvI5JP8JnpOHGYmIHfvr4PZwxmbYe/qOehDPcmkf5ZfPY30M1maNsWs0/8OADAmwAGwQ8i/5RignFNKYcAMiJhpPKfg7vcGgAAIABJREFUjDLlAuaz82t1N1L+ALSzGWBFl7JrW7hG3mfnpJg954NBjG7WwREjN8WJ0SOmAOcMGkdIkSWO4ISQVHw3RiRjYOYztNs7WlxuBcbLzL2YcOgDlrk4v3FgkMCLWjxrAFgr3WjlxCxOb1OmI8XCLHOgvH+k0khBvlMwlsiF5FnhYD2KyXkm6YEUaxkKJywOjwAAbddhvrVV6qZuNk6EASq1L+otZ1ohxwQyDtY5dN0Mox+LV5wjoMQ50ZUK1CPQZ31ofzp/Calj3GE/gHH4NfQDgagV+rfWsDiFgLJHnfNK1lbPiQHY4CUq44kcB1B69oj0higpWDIgrZTOYXe+zwzR5YI0MiiLC4AqYxvpMUJSF9G0HbZ3d8u1YgxIGgE6Y9AYi/msw5mzZ/DeF6QH/DAAYSTYxqHbmsNZpawqhbt8B8Fj7Ffwhwegw33BtY1FFkglAhzLQgQIg/dY9T36YYAPtWss6b1OtfScszBTlYOSB2JkCnixQYAmo8QTtiq1lMVqJ3nSNY/sdLyzIyUGDv4FjPsUOEWEI1G/oJTQnT0LMJDGgHh4hLQaEMnApAypEtjKd06GYLsGfmG034xsnj954Tb8xmvXRBeNGTEScoX97x7ItX5se4YEkafKyX3nEqi1mM+y3EuvrbGTSG/lOVDNX6Qkbn9GTZKSElQyWI43JD2qtJto3w9YLFc4PEgFgvPewzmnsFp1uqw1yBVGuZ5we2sutO2xR2SoiOgUpAcWqx5jZAAGngjRtUDeZ5Bg2kZSDInR5/0vpZKPMVbyQZaNOuqiZ5dYoFI5PkpOCIzDLPWT86+6AJ218Mj7FVcy1gbgvV6jCICFFLa/L3vP9s4OXNNi7EfcapwIAzRo3/EMkSVNXgYOIlFuRfLmaw/+CHi1VHiq5h3kuRjdxHOOptYBrZZL2fRjgA8BPkmjpRBDUdVuMl4JFAacVBZzKSrLulHN2CBFjSSMhbG2bJ7OSlqmRGkkMF3XtlpYCfRphPcjgg8gMFzbAGSQrEHaEdiCGOjcz8APv1ZqiYRIUdVviQhN26I1hNYSGmuxvTXD7u429vZ0AYSIMAYwjHiCSBj7XopsJ0V33o/oF0dY3XgL7uDvSlfZdpYdXThHSM0WAhyG93waq8v/PQ4ODuC9yPDLlyGFdFl6yOpzCcGXgGUNMlNYFczamruqNVS9rWkBb/UssyzSqfl594aRUBnsI2JQA8QMOn9Ovg/vpQXHMADzWa0rYVGBJmtg4GCcRBNfed9HcN3LZn4BEX/RGvT9siiOEIC2aTDPhIcQpPjSWEA38BjF4cwwuTHSxkPLUorzkoU1geywMhbLJT7/8h4+efsbmM1mCv3L+3n57r+JGCPuu/rfwVoj+8Y44mhYVhUWAtrGwVoDSxbJB/gQYV2Dxx/7MQAiIvrQl/45jLXwQYp5k7LVCoqjsQcxAB/BiKJWQKY4ukSM2dYc1ljEkDAOvTD3UAvum9Zh3hk4S4poAGQsYtVMxmLpxeBm4pZrKxkpf1+5sJ7kWSVOkjMyKEYoO5msqQtKgIXkcxtVoHEqwXTiIThW+MiYBkyxMixYsEtTqI0o+Z+ciAdQvGOQgYFoNhmqlcaLoyMkjrjqngS3l4oaQJwk0B1ZLRwl8AzgTmA71zi0rAw3amBbg730ZQCkwqlRZTRy5CTY6zh6RAZs2xXZC9aQO2PYWWpIFLz/kiRWt+RaxAz4uiEbI/ezWBwVGKprW2xvb+HSt1foCOgaQrdkdMsB7dkduRQZrJY9lkdLDP0C5qm/i6FpsHIN0gd+Tq5lDZpv/zIwDjCGMZt1IENYDT1Wy0wdD0i0D4bFaK4h7u9j1ffa90fmOYwi2ZE3ANK+LTH3DpEvS3HjTPSQzcGPfWHKRRWMlV+TEhKSQqMZ2qjP5nS884PAoMxy9AEpZPq8AayUNCBGcIhIwwiyBqwEGYHpWFreEyGRnC/6CTuyFamtxjqwqTkFZ2zpwZWYYZ2FI4OQuOiwTd9BP44CaTGXnKjozDUwpZeURA4heAwKp5PJEUyGga06mLI+G0toncFqyZKXBCBRekQ/BjSNKfuAiBPrnGMCgzCOXtQdvJe1xBX+ZwAgQmOEQcsMuNbCMgrrM1LCztYcs26OEBIODgxWy0Pt7Cwbfjvr4ChIGxM1psYYOCUrAEDf9wgh59o0+tEuAtlKNU2LxGMtdGUC2wSTTHU2s7lS0pFhedaix6kqNdl7fRsDdJrBPR2n43ScjtPxXRknIgJy1sHZnPCmtQiIVO/INa6G0ilVjxoQOiJpGo2hie3K8rLOwbLRHhsauieRgSkedUiFIgzUP32o/T+aRthbs3HURD7A8Eiciqp2UrpwvxrQxATbNFqcZjByvS/5U2G0LAHEjE69BqOeZlSpDenHIUlEWzIoUieVlCnEJPc1hoBWvZC27RBCAmGJOA5YjQMSCJ4McOYtPabFfFgCnNA4g27eIiVGOFphoUrXq34FrzJJ9s3/GrANfBDV7dx47OjoEGCWFhKuxUsP/cdwzmHol4WldP8Lv4iika2kkRgDwjgWNo5rrESJKSFEL3CMMdiadXA294Zp3s6xOh3f4WEZMLnuK4ZSHMquK5AONQ7kLNA0IFWTB6DRfhQdNSL4YZBIKaWSzxyHUMSGcz7CqihmhqrGYZAoyjZoZglhZxfMBjAWq8/9NgDg/u2PqfSWzPWp7/8P8X2X/2eBvTLBByJvFScCpZpUxLMf+Rv6L7m+CIeqDBcRmqZVuTCBrcFAN7PIpBmnQp9F0kcjGB9E5y7FIIrwRMjCVbJmpImkhUR6pmvhEmPwEzRIc6chJQQWKnrTtpjNhabuGql1ap0yRPN3gxrZNc7Bh6hsVIsE2eOITJH0yntkplcL3JmRpkzk0ISsrlNLtpKN9FqlS/RJh+C2d7cx9ktJqFsjHH3kCmVG3/foxwGLxRFG7wvtT0ZNTudEY64zyXilhJcEY4CYcgfVmkQDMGmEx+WcIAJFbTcMaFtawsJdgnUCCwrzzKHrBIMWFYWE3f7LsD7itd3H8MH+OUnqF8KPMsGMFGAmZiwX/zvs2GB5/segJ8Jt+xfV2MqLPAatYi7PR4Q/F6sBwUltj/MBNkTYmdRXkG2LAGj0AWOKGEJA7yPm498DANjtOXh7jsZZWDWkPghmPuRC3aWoMcy3Ouzs7GDReyz6BW7ceKsISuaQO6crBVaTroz3X/3F8nyD9xhJcntRVSdiiqUIV7rcyv9SjBhGD+sMzFaHmT5n51x1Nk7HOz62rEObjU4QUWAAQNsgkUBNtm0lX9o2wATS4SS5EG4b6Z56tEDyHrBU8r1+XGHWdbCzl9G0LZqmgWsahJSwXIoTlF5/L+bzGVw7Q2IDnL8Ny1UPa2x5L3Z3doVWrTmibj6DsWZNlZqh7C2SnEX9VcLQy7WGwWM26zCbtYWZ51yDrS1b8sbSHE5g5KyoQoaElTvtiTNJHQjcLozexUqYs/3otZkfCWutJEwnpRKJpSdTZIxBWIBkHcjacrjUG0mZQzuboSNXWmpPFUdAoljgVB1C7ETOnQNSEptgDIMMa8GvEh1yz5QJJYETgywKy7BudCg5oluNE2GAnLMY1Bs2zoJCNQY+eIwhd1TstXnTZNOhSUtvVNpwUQSAehQELSQTZQLS5HeNRipLrdTAaE1CoQeTSFPUBlUMa4RVpixshBDE2xs8rI1YrHocDks4a0uNj4gV5s2TpA1FHGFTBGvjNjCjX/2aRFnMGAaPVT+gH33JN7mmwasX/ir+wZ++AmtQehj9fPfrCPqMbjt/Hs5J5EfGYNbNEIcBvj9EONIW2KPHMAbsbG9ha2sOKoo6wu4BxOE1VujwXddhOYjRyMYZkEZW4l/K/8I4Ir/Y2SM0ZERaiIHoUq2UpipdH7RBF4HRWAtPIxpnsLOzBVAu8EsIPr7ty306vnOjOf+TMMsRpk9ASKBt8brtjvTR4aT1OtYCTZaw0bVlAKQk+Y9hRFwsgWHE/OzLOG/lvWi9JNXHwcqGGR+GT8+KBJc6Qc5aWGWdkWmws7uLxIA1hO0tmc8fxieR25aAGM3jCU/HhxFjxKXdHwKg+R8KCCHgwXMJN7xBv5rjzfvuQhy1nMJ7OGc0gpH1bo2BaWwpQC8km+hFmNiIen5AwLk//jAApVin31PHGGgaK2US/bDhRBstfQByp2RGZeMyRP2DySGyOMyubeFDJYQ4a7TGT9Ac18xkb+pHLLVWb/RSjygGvtUoUOoRazPMoA0xtRU5xMiwIkdAjWpII0e2rhi3Uu9IJGSseMJp2MZQaV5mjEVieQlG77EaBvgQ8Y2H/gZifEI2Rq7dBKV1s/DZY0yafJSq5OSr+m3XNbCmhXNyHOU2BjrWDY3+nbKBqi9KSmI0GAwTcxTKGLT4ahwCQowYth+FbSzcGPCiuU+Sc42GpI7BbQJvsdK8G3nBrcGO1u+0XYfV+/8s5n/yeYzeI0QhFBjrykuZEiOYp7HqzyAEr43rGP8p/Tn8HfN7AID9/UMhFUSGZYP5bI6ZazCPoksFAD4SViPDOIZxAvPFBCRYgJRdZFtR+bDS6wX6XW1vbVf+9NAjJVmozjq0TauFuxKi5+962seIWV5qIkJ5Tcnghft/HpYIhhgfePK/QONE+XjU77QfAvwYEeKpAXo3RjebwfVBvvqUYFULzu7sFA+f1eMFspRSVkknIASEVQL5IFX8/QqHi4ilapSNnEoblJQYCSNiXMH7UAgnrWoFfvjrb8LYFs1tP4qvDP8clrjUvnzklTfx3IU9ZUnKz0SyyeL51dcBaIlGjGKUzvwQCMCfXroAGkfUbp6MECO+cddn8Mgf/Y8IMRTWZans19bafhxLq4aGZC3/6YXLAIDz3/4wXr7wadxz/X8trQ28F3mtqt9IgLEKfSnBKhECa/GtjhATmIIy1JQmzlyKVQ2JA27VGCTtAjB6j2Hw5RxkDGazOdq2xapf4u9c/MuIYVyT15E23toRWhnFiSudLjHjF17+ZW3RLvDkZusFIgLHt3cST4QBmnctDkkiAe9DeVjjGGTjzrIeSv2T4tRcL5ObwZFa8ZxbqHRlyaOIV2a0I2gJIPMflPNImNREkrS45kx7NmAoKysBsFUbKhdjjmPQDdXAcQI7FUc1BomqzAdrr3WQQYhCdUxcC1pBBm0n14tMWshqYAioe64ByGD0EavViNzn3RDhP/njTwKQ/E7btji7exbn9vbwCx8j2KaF8wHjSp9zSBhgcaj5NoLMR9iGysJRPbcb0YORYO9wGMcB3Rd+szSFkz4ogDMOV+/7ebiUhNEELjTZDHFW+FvrCCb4smECSIp4rZEOjdYIDNDru7FYBIxjWoNWTsc7N5699Ag+9uUvFQFNo3kHdG1tEpgS2HtpgDiNgDQCZp8kt0mEEDwWqx4LLRHxJq8LhdCToA2gSdNIyo3fZL0aC/zgXZ9SNEPmcPTK/yG1a6keJ9EQ6vtFkv9wAF4cn5Data9JX6v7dn5AjjGisGCNwR93Pw3mVOZxEEQg1HuR7nnh0bN4+Bu/KA37lAGaO6tG1Ysbh0GbZwaMo6AntU2BOLSHqxWYBdx0GcLMcllWOyITSQ2TMcJMrEAPjFEHzwqGE2JQeJvXmYTWYnt7G9vb28CBGBcpp0A55kef+HxpnPf73/sjlbU3SZlJqoNVgk6+q6jSQ3IIlfbjtxonwgCRahFFDhgHX6IJ74NCQHJznCAWN1N4p+dQKrZY23XNMCLBgL0PpYo/qaoCTT6fixunhVnGAMS5dW89Z8Z0QxCDU3HhvClmf55gHRTjzZ1PkxbZiiEVKRCWGtSJAWIG+nPfh3EcsViKAvDUA3POoYHBDz/6HqwWSyROmM87zOcz7KgUiITuHvfPX8C8ex0v/WEHGIcEA5B8/Uyq4TRJg7ESOhrNCRkQYjJYLkf4YYWdnTmYo8KZKMdI4Z6ojVtrACsv54uX/rbeexAiQnEU5IKCI9cvLWjLYYLB1Uu/gMYZPPbtX0KuA2KEqadwOt7h4UdRqaeuQ3vH7TA7QvOHNZITMgZx9EiLBeIwbNCMq0YgNQ5wAiP5JOoIMsQZs7oOk3lGP1sT+SF6XHp2ATfbQte1aLtO85tSawZoMzUjRKaYoThGec8ARYnIlEj87lfewvMXz8I2hOdXjwPIBZ6SY80EISLCg3ufKBG/Vfqyc43kZZmRtCNwjtpE+V6MASWjORGB9UoxPcSr9JMEf1BDpqAJGs1rw0pkQpB9pHbx0WZ8jZR7hCD9tHwIME0HMyr8n1aIfsT162/h8HAfX77vM4ivvQYRWlGCT9Oia+ca4SkRitedPSLCf/OhvyZkhcj4z17/x6KOMoyFWk8kBjjv5zcbJ8IA+ejBFBHSiOUwYvBZoiLga5f+umxq0NCZM4e9stViFNmaXGBWWCYTaw1AvA71PEqTt5zkyzmhjbkR1Q02sz7kJxJhjaOIpeZcyNTw5Q6kRotIaWLHElAwVZoIoBaGTQjSooDEiwg+lvvIC9vp9HOSMHP7G5UQkvsihCgLatWvcLRcIrIBk4WxcgzltrmUyRl5wQFb6ula2yBGwrDy8KsBHSUASbox5oZYRLhy79+SBVJweKiHpHkrcrDGCnGj7TDrOiTI3H3urBpGDKsjrBT+7NoGW/NOk77yDJrGgYnXnvfpeOeGH0cgAWargz13BtDGZBwTKCXQrJMC8WFAGr3KO03guJSAmEDzGdBEkfIxVSOelRnEhjZcismmp9qMVv8vOSHJO+S1tfXQv4X7nvoneO7CGVWa58LOmiohENTBIcLVO84BkBxnLupMsbJt831cOvNxhBhrnYsRnbP7n15gdP8+8o3EGPHRrwox5+B9ajiyo8WsdUix5uolQV3JBGCAJSrKIlakx2VllajdT5k56xGLzqUlcBiQwGXdG9fWFt5KvlqtViAwhtVS6yUJZLQVjJvDuhYcpbA45CaYPF1vXGTSrLP4Lz/ws5jNZmhcW9b67vYuvAsYZiP+7Vu8VyfCAP1H3aewPLfEsOUF81XqYQyMH4X2aU9mYuunI0tFoBAQaOrNQzdpTgp1oajuAtW4lMJWkvBVU+dTNrfIn+s1Jc6SVsWZtlivlxcVKysuKGSw3u10SoCoIogZptNOo9aW80yYj5Pzc2UFco4E68tsjMFsPkeTrCgNsNBoIwcETbiSdXBtU0gHo5cLOVdVCJyTCuvUGphgRfPQGjz1sb+NYSXaT+Po0SzzkzHIbI78NPXpwBoRVGyaRmVLgBC5GPHge/SrIy2aC9jZ3QHRGfhxgNFcUtc1sI3B28DLp+M7OFIUB8h0LWhrVqISjAFgwO6dAbwHFgtg9OsJ9JSQQkBc9VJ17wOSbrq55TQZIGsDyl7NBaHI7Mj7n1jAzkW5OkbpMyVtAExZf8ZYPH/HeVglw0Rtq73e7kNp0swK/SptZlq6YXWNKmTMMeLy4Vc2SkBySiDhgbMfR9k5JnCftLY2WNJfw679RwAJBZqBAl1Dc1TrrzIXOE4eh7Q1IdaYJ0Ug618W+rSFjwQ/MIahF+fWthj7XglBdW9KIYBTFAWSlPDJx/8AxnV67x1WKQBa1M8J4JyLmk4yASApkmU/IsSghbvyffXDUpUUbv1enRaino7TcTpOx+n4rowTEQFd37+BoPphMUj4CQBM4gKUcNgwinhnTd6oR1IZbEYTYlOpi9H7At9Jq4RUcir5mALGbUB3VM5NlaINiURyku1mOSk5JvP/I3KPkFxcq1nSNaci/z3PVXKR2auitaNiTDCr+4C0QGMt2KD0PPn9l/5+eT5/+f2PwXQzzLbOwDUCZQUfCrefSeQ4iAx8YIToAWZYEikUQJOiYDStBWIDEAt0Nn1Q0C6xxsLkB6W/yoQQYwjP3/e38Ni3f0n0wZRVEWPEMx+WIsDVcoFxKUWtbdNowhVgponqLk7Huzi+96UrMNaBuhawhLivWnAhwjStLNm2AVuHZK0kvzMLzgekfgQvVxh8AKeEIXnESS8Aq03PcrQviFyCNYQHvvERAEDTOYAMUkwYeSw53az3BmQ0Abj/2g1cuXgW1uZci6nMWRIYnQULk64hxsCs+eMZTZFz3/P6Ia5e3KssNUi0k5JAkM8dfhkPnv24pAAmuVOnEZBzDVb8aSQkREpIFLHb/KqchxQFyAJsIDCJIHF+0Q2RaExyBLH2RMqai9psLsaI1Rjgx4Tl0iOliK3tBsvDA22eByVhWbAKtZqYVNG5Rm1kDEKUqDDpfGQqkwWdnxJLPCcF+Jr70WMWi9yF4Nbv1YkwQKOPsGSU/cSl8VMywptPlsCRMMKCoyY08wsC/btuSNaJerVzDt7nRGCVFBcoOpVNfbr7T/KUcu5sWKhYIuTHm+nZSW1f6SY4HXrCmCJsqpAbKROvbtBTwb6MUydtEyzzblzWa8KEPcMY+Qk4cx+6rW103UxaDCdgpbz/XO1s2xm6rR10szlS0NA7b+YwYGtAMBjHgNEvgRTQOqDJDCRJwokBohacGONyiaPFAZoD1fNKCVFFCTmD19mZKNRxIEbS5KYF4I4z2ViaYYEZRmEZMsL4y7d+yn57twdL0aOzSCEgqSK0YdTWDFpUHFJC6nuhLgNI3oOHETQGDIeHSGCMjYEnVMjLSF4n14UZAJ15DHc/cQO2zRR+o31tcn+aIHleZasBdR0yGPdeu4HnLpwRaJcqDExEAqdrkWWSftpIWveSj+GJUXv+4p7+PLNuUepcsnhqgegmXZpxWYzI+XOfFJKFtWh0fp7/XX1ujMgJEVl9oD71uf1HMgdlyjIJdEh5z0updHpNMaJf9Yiq8EIkTDrHKP2A2BrAGHz54f8AyXtQZPz4zg74x/4CjIqIDp//F5onq80kKwM777tU8DNJVdyEWawK4cy3tkAnwgB9Ou7ijQsdzr+2VBXcrNJMeKObYfQRPj9oAziDY7hijioMSV1N4xr0JDmO2g8oN2zKxalT65ypAfJ30uuv1wutM7fyMMqokWulEqUxVyKCJB+16M40pWkcTSjhuac6kItrVX3bNugaMUApcam6DiEihoivvvK/YXu+jbPnzuFwucDhYoGFyuXP5tswpkXTbsE2nSwYIsC6DL/rPUrRHVFC1xG4D6BhRM8qRjrv0MxnhcABSKQ0jj0o5FyWRCnG8rHcTylyYxWPjBEuSbV1afRXmENBvVMGE+O+q7+I3TNnQTs7xfHIvUpOC1HfncFRK/oJiMMIVon9CEiCe9XDBw+/WsIPPfggYlCFjDgMonZvCJ4Tjvr3g7ZmgHsNa5EGJF/0wBMf1H8fAc6VzbOom9A0vJ6QXeps8fzFPRAR7n/1LTxxZkc2DJOvhUJASAAMmw1WppwwkyzzOi6/0bV+/xsHuHrHOS22FCNkeJKThbz3nBjPHnyp0pP18w+d+wQAqd+xTEgG5Z3Owqg5TyTK36qMrXudJQPTtGhzfSEzxmGEDxLdtK0FQY8zdf4iFqwGjBkWIguUiqBrD04EQNZkSsX6lBhRxBPqCufExZmepHvlhXmbJXoiDNBWt4WuadDYgICqdGCtxV37wB/vOARIVb01khD3Pm9Ecp/WqpaSsWibRkPfmlBklkSngcEd1+6F917qBfThvHrxqjJxMoxnYKzK/EwYd/VlpNJ3yNAEAgBJfx5nwURIKZ/L1Pm4PMfa1VO6ulp09Fi5FgBE8xScM5iZR4UlFyL6XthigxaYGfsk2lmHMzs7WI0jUuLS/6MF8Ef0PXiI/wRDv0I/rDCfb8O6tkSI1lq4huDHAePQw48eNo4w0SNo3Q1ZwHRNXRxgvBzvRww3UAudCVDnQd7tipflxcdg3Hv17yFub5ceSTEE9P0Si4XUV/R9XyuuY8TX7/z3sLO7i+979e/DOmHlkUKNbxvfn47v3EiMBGG5haMFWOveOEaJbhYL9DFgeeMGxqFHWhmMSlSwXQs338L+4i48/sDzaLrX4LoOWU0EAGCE8GOsgXOi+5id/E19xs0djVA9fCKR97EWRVH95m+IOn2l55sYn1y7BJMAMuvkhIykqDP13G27MEnqg+5//QCXL5xVlIXKfTGMRloGySjxIW80k7QBUQUA2VRUZ4VPl3tmhbw5MXbNP0TQ6CR3OGkbi8YZOC9OniEh6Vhni8cu0Uwtgs33ZkDY/51/AkC05gCDrT/3U3Ld/UMA0nPM6Zw/tbuFzx4ukOHCSOV2NlIKfKsvAMAJMUBnt7extYxYtDP4VY9R2VnOJsyMxYVrPYZxxKsXJQ8h+79+eVDvSa25/JC0sLNGNMbkqEYUB1LKnDY5j3MWzAaZSWatGI2b7W8ZvcsthIHqGbzntXvROKEZs7EAWbxxcVaiIgBorMO8lT7z1mYDJEYoN4lLev4RDo2zmJtWZ0sYreK5USKvqBx9Kb5VCEMp1n/mA59WurjIGB0eycvUdihFr03TgNmhXx1huVxi2XtsWc3j5EZ7MWhfH/WElfodIsOGDC0KU06f0prXOP2+Lt/9N/G9r/wvco4Y8cT7P4PD/QMMK/WYtc8JQZhUcWR88Mn/CovtLcy3nc5ZCgVPzc+7NFJC6FfofUR4ax82s0ZDBAwhWYMFJfRphNnucNS/D48/9AIA4OOvbIG2ZiDMELsGtrGIJDUzZmJUiAgPffPDSFrikNmib/ct53VVhS+l8JmMwb3XbmgOYyN3wRCoX/MbhrQWR7B1PQ8XbbUcLRUPP58ms1OBkreiUiQqIyaJgNgY6RybBV1TwjP7X9TPxsLKy3VGcqm6HxByzx651jL9LLbNPyxpBZkPwTiDzgA2SIG7DyJknGFDMCMFVLbhZFSaujKESQz7T5w7Awbw+8sBqpxUnG5jLHKppsyvlrLkqPLt1uiJMECZCshafJWtdeQEP8rvjBHV6FzU1kygs9z3w2obW4E+q4SFa2zxkG5/5R70rgeY8fp7rhbMeEYtikcCeaEbPLJGLpiSGgha0JqioN02AAAgAElEQVSStP4tdUA9FD2Sa27WOkB7hOjL3TonKttqgErkkzJt3GBGj8LZSjWd0rdjivjYnX8FZ3fP4Orhb2IYBjAEegPEKAxjj2fTBxBCwO2rr8KSQdOuSpQxGoOVMXjyn13GOAz40CfuwpOf/xNYAB/6+EWZ9OoI7ugQV//vPy61R6vVl9D3Pbof/On8TdTXbxMizc9wsqiCSoWslissl4taS4W8OVTc+Zvv/zm0XYcfeEMSt8ZKlHs63p2RvEfyqpIcoxQvA0jBA87AW4uVYfiuwWx3G2a2C1a5nscfcWhbwt1fkc/c/ZW7QER47rE/wkPP3QMA5Z2IpT5n6vxNMZ3877oupaShqp4AjPuv7UsPLUzo1nndlA0+O7NQqGijaj8xkpIjiouZ7RlQorQYE567cBZIEnU4J00oAcAHr0oscglSuA+TMgzDtmzWzx19RfdBxoMK0eXr5n2eNI/T86fBphrBwxXDrBjWEXbtr8J7acA5NQJEVCOgaQQ6eco5d+2slWJyJUz9G+dm1SENAX/27A5cW5sF5lzQ1Nn87MHR2xKGTsQKHoYBMUnVLCWGKZsPY/QeWZSy66RNQExc4SxjYJ3VroQEEdoT+G1vS8QHd1qPqA20LowDFssB/TBi1f3g2gtX4SVJoOWCqs2A36gnZK0YjBij5JYAgIyyWkQPLbPxBNKVM/mUMFoR5eycg6OM6U6gPBIdNMpYtFxS4azqqSRVXuiHHtcPDrBU+Opnr/+b8nxu3JAoiwgpRXj/Pjx19FU88ON3T8Jwuc9x8MIY4iRJUWasQk0kGx+wXC41+Zq0yNYWmZ2Ko7N6mNWA5ISuIcKll/8HoG3h/Ygn7voMVosjEZxcI3voXylDIwkxBDzxvs8AALa2d/HYt3/5X+n9Oh3/3wcDgDOQ7Z1B2mM9NQZm1iJ0Dl+8b0QyBo88+wFRtM/fuaksrahRj2scHn76o2uJbKDW5NwcWj2+k2WIfNQ6lxCUvCKidUpWgBRG541RIQzW5JGmW9Y2yrIvJIbUtGXprAkUqMaL8vyZVMKKAJKNunGSj44xIkTJbWax1GIQ2RTIDRCdupQinrnxBdzzmrRMeUGLZR/c+2RtUZ81GfN5tCYpRuB6/HdUhkfqltLkmG36FS3ar/cwfbL5mVp1jkvNYoxIvj6WHPnkfVMMa0V6jDH4ifNn8VltqX6zcSIM0HI1IsuQN9bCaBW/cQ5t16L/4B66tsGu+ahsfInLSz2V0EkpoU/fQIHVSuGnQ4wjDBk0TYu20wjFogoLZoS11KNO8j2TyEd+l9eHejDGgLVFAlkjygKuQdPNlADB5XPQ2cWYsFwNkquyJJAdTPEEfYyi+MwR73/idVhj8MKj50RMkPL9iVHeSduK9yYp2iNT710ZdjoDbWPAePp3Xtj4FvKCN3jh898GkQWI8dIXrpXnIR1ihSlDnGCtvMFtJ3mZ4EeE4JXBpk81Q4OlBXADgmhGeT9iuTjCOIzIPX/ynDNDomwKLL2HcmLbuVb7mJyCcO/G+Oalh/Hxl1/AGCMCJwSVTaJZg9XqfUgrQsS3qqMzxhINxxhx79fuQkoRDz35IVhFJERwo0Y3hU69hjqs26JqLLjA15wSnnj99/T3CU3T4MU7z0vn49GDel9hrXKeEvqgIB90vH00A6KKb6aAvc64GC2enEmcM87EHJOKZI+FlQiPN6wd8jufz2tgkkVKCS/eebHeOBLGK7+Jy7efUfq5wcPnPlnORSQkrBzxCJKjAqfqtD7/6A78+NfB/TBBFOv9AyjFpDk/bZSswTwpbeGKWBbHs8xTRu5m/RN7Z3CrcVqIejpOx+k4HafjuzJORASUmGA0fyCsCdUNcxZd26LZ2cLWrJOuoDmxlXntLPpuiaW7ouk/hhgZgZ+q548J29/aBxmLcTZDjIwURex0So3MPTtq4lNzEWbqIahvUaigG55MSYbW32QvaZoe8Zr3stosq2uVFaf3JVTlhIEDhjHAGMJ7v3QNWX5HnpsWrMYE5ojH+GeKMOpgBTr75pu/rwzALK1u4Jp2Mq+NQZOoiVOR1ZhCD8wMSgYwKheSdaaCKIP70YPIQ+CNNInAKhwTvMc4DBhWKy2I5Y0JHY9smBO8dl/tbYfVYlWvfTre0XHpW4xFdz++cel5rPoBQYtMH332I9JOpBQaC5Ixpe6mJLk+cJKOpioVtf7+TepIuPznJny3Gr3kNbtcLkWrDtIVNEf/RSKLMqV6E+LN54EmaFDr+ZJCjQWi0jwK09qrKWkgmoQEmojPQqMhIrmkZRcCC1JhhtHkHDl+kp8nRRxSFkLW3PcL770dRvNcx9eIRj5G9ylDMGyULCXf1z1PHsCPI0I/gDjhpUfOIU2IAzIf0n1QcusgAmlblZJbn0SQpS4zo3q8NqWTnwMScrSFkLAZKcMvyG2vIc9TqiERtTsgIPpjw+gLq8MHgaissbDIBXI1jg9RiA0+eFx4fcBbF5XWS3JuGdM37Phsae1vdTFA/yUwYVRVWBaMt1AvZcTIGBG00Z7HQ5dXhZad58zMuPIxj9UQJu1uN56ckTbA+aV58s0/QIix0LC3t+drOllZNyuLIh67M11fErZXUkE2+Cmzeqjivje+/FsAgK1HPyXMvaGv+nwZHtD5f+CFAxzM/wpe/vA2hn4lzcnkgEq3LU+yDtY3OUuQBe8xDCOMOSGv8P/fhzGIRIiGwM7CqJJ66YKaCUSQPF8iKsWh93zlvWDt/mu06RqQ4fP8nVPNg0z3+MlGLWtJ/hQmaxKl+MWidCB98PUjzGcdXrzzNlGmTzUxTusnXT+1Lv9c1FnJBtVxPI725vNofinPfWIbGKK8EkIqRrBxTiA9XYAhhnpdvSwR1IDkn+UCeCMwm66Hp/e/hHtefQMAcOXCmVJz+NC5TwrsZ63k47Qy3FqLxjmEtkUKAfdeWSHGiCvfc2aN3LT5/RSFiok1WZsxAykb7I0Dblqkr+NkrF5KCGkEjNL7bI4ipGnUfD7D3rldtDNp9hRDwqj1KcMwYuhHMGlh5qIvG+zU4ZEXX+povPcIRTJcK/1tjajWiqqAmvRfk/zRKCEbG2WHvHauwYU3BmkZocd9+OoSUyNFVDFfQwbWLrFyFkYXKVC33w984Q6sjIehUKKTKSkh1w8J+y839qMSuThLatAJ97+xD2MtLt9+9phIYHlGkEgjJSoGBpAIikHCWDRqwKKIFVa7XangmUabexRRkkk/9dbn0bUt5u/98yrxzxN8vm40+buYDokqxQO7/8VfBHXbwITteDreuZEjfoZEvDnydNbCGkBdLYmIjUHTWDzy7N0AgEBBnSB1BLW+BpPsN0/SMZkwUAREJzlY2RMtrHVYLhY4Wizw9Vd+F7u7uwCgFGjCR195E988s6VMz3yefDc8uSZJjnajYHLjTZz8tB40yV6h5oGOO7GUkRL9VeKExjRFQscEgxCCRhhyv9O87fRqRARYKseAGVffc7v8jhmWhEQUXvinIACBCN2ln544BwambeGaphCJvPdwTe7XNTFAoNKjKSpjldPmmpzOtfxQ7jMmMNV8/c3GiTBAMYk2mSTkqycsVOQI5yy2Zi12zs4AlgT+OGrbgjFgHIVquFwN6AeP0QfpsYNMjRaPKQTWltlBIYG6wVYjw8UI5ahl0wCJbSJ85HFhqKRUi9NyS4TDD2yDOXte2sOjGCD9OWo1tg8Mopu0riWg9gqdQAYAXnhsD4YIw+/9tkB3lHsdcWW9ZANBhMe35+KNLIc6D72ILPZYFlwtBJSf3POKelkX99YNkz6LPMRT0lokY6VOAPWlzhJD4ziKE5A3Gposbjoetlc1C7nWrHPY3m5qQerpeEeHtAIwaj+oROTGWhgDvPRDr6IZHZK2CUiJCj24hjQ1tJlCNvKDdT3FGqzQ2pbvXIu2a6XV9DBgHEc0bYuH9yWSfun9F7XxGyP24xQZK84KZzZbjrs4m47qTWXukSBNeVVMYTLUyeeaomzIpm1C1MhN7zvGiEtvHKBTCvMLd96GfiAEH6QDqrIbCPU8k5r5Ar7JYXWxyFyNrr1GnLXJfpa/RwOJjOAcCITYRjx4eYXPlzYTBk3b4p6nD/HiI2fXiCKbo0Ju07Urf89lHvZtMLgTsXp99BjGAR1JS1uj9R0hSJ+d4APC6IHBlYKvXJFLTnrmeB9ARUdOe/7oxu29B/c9Rh8RfCz5FwAlcpkKmk432E15DkBVyLmGxWQIlrOEjngZt70SQCaK4bFNKWgrZ9F8UobO1gNwlBcnlY2e8PLHbsP7fvVXyou4eHOvLAmi6cKZzL98Wr3PCNVVW1tKqDOQM4qea138IcrLHGNaf+E2zgJkEVUjeLwT9YRRIVNO4gRYlZKnYqCrHbv161o1vw7jX0UMW8LWOx3vwpAma3d/+b24/LE/gdFCPOekV9elJz4I7z28j4hGmZoVa8NUKyy3y06TDR+oOVj5SM5ZVkepaaS7b+KEG9dv4Ouv/i4AYD6fo02SAzKG1MmJtUATEPiW69oiIsDUzbxCTfkz67kNIDuXk0dS1m2ZdL1gZr6qTZqOlBKeOjMvdWytH/E9+0v4EDEOI567sLsBR08ixDzJEr2tzz1HRS/ceaEYVHPwFdzz2pv6WWHFXbn9LB44+4niGDfOYXdHokgywpaddTO0badObUSAQTITpIhq3Dcd2WnlgoKccAO09dIBTD9g+eEz4I4w0yKuHKb3w4ijxUplM9QPyd1FWarxpfd5KNz3kAI4iqffDyPcqsfoA0KIk6gABYoT7TWFBQB85PHrt8B8c/QCkG3Wooh6iEY3E49vzbtb8/R0MXKNuABguPx/obtfCjzzT6PWQOURpWB5zXMra2DzOyfSF7bu9GuCnhuZQ1YDlJ/z8xfPqVGcPIubvViUm++pYTEWBqnM68wP/AUAjKHvC0adjfxxT2v95SaqDcMIGeZ7O3N1Or5Tw2gSfT5nPPjND+HFH/xTACKAKRRdWZPWcPGK87sDZIOiTldxjqbvH5DzNFX+BiVvBEDIDpy0cHkJZsZs1mE+72BUnurea9fhfcBTe7vT8ErmlC2SbpyUdI3m9O+G47k+pu/+9D3NpR63eHA5mjl2QNV2G4YRT+1twTmHu199C10nMlmi6lCvtPFxTBBMAJK+yLkhLnuK5G2uXLxNP8cAEogZ/uo/BZjR3vdTAICukxILY1U01bW49OyqCLamGGun1xg1d7QLBDV+G7Olss/cGiY/EQbIWdFGW2heIScnsljoMI5YrnqQGiD5ZWaLJfgguOcwjBi9xyo9LkSDpRRArfoeyx3Gudck5/Dm7TOACBdeH/CRx6/r6exEGJSAInw48fHL3yc/3zBA2SPJ/gvVX5VRX+5J1JKL5ibh6+q53wCRwdU7zssxnwUuX9irL53mqopqQD3lZJC+qNrKwhIeeOtQqrdv2y3XR46Q9I97r+0DAK7ecb7MuXiLejWuHy63k0349P45byhA6eLIkE6V1lktHlx/SashrUZIDGKGCWxpTnc63vlhVDy3aSUPe+9X7wIAjGYAQCWqARmNng02d+UCZ+lXWogHqIamOoKCStCEzACWTp7L5RLPHXwRbdvie/ZX2PYJz16QWhNjjDiaapAmYcp6fnXyMkvOl2txJiab6eQPKtCavt0MFTitkc+xeIDXH0PdMyZr3Qf0KaLrZnjxvbfhoddu4Klz2whemsLJefJ9cDkH52ee95ECg8m6k07i4uDlcJA1JDNGmuUhJfjnfwtXbj+Dh85X5QWr6hK5ZQoDYMe1YaYapIeujBhHyamnFPHiI3vH8tgnPgLa2Z4jzjosW3n5MjxmrZHcDSf04yhJOohhytX3IYkB4pSklTdXtev3f/l1AFCsOOuLEW57NeClx87BuQSrumolRzPN00z+zH+vxuhm8BU2wnIuXh1Qe+KIhHuseQ1j4J//rbUo4Op7boO05cWG9PemNas/orVDbuaSTby7AnBPf109mLyQ1qDI6flLNFSjr/UDcm8XhQFKNbzm33TTiuF4YnPd25zCIpOLUPWST8e7M2KSrpxp8i6wCnmuuyab0fHke+K8CvNv6ueMyb2+dMOL68ccHh7h8WufEwjXWHSzFt/a20XjHC6pYsDT53Yx+qjM14wwHF+zBMJabibnSibzzgWdecb5/atKb0ab/2b4fuP8qBv+dOT7K48EktdeLI4w+gbPXtjB97y1xFNntwq9nIkL7F+pZrRm8TKawuVXBplgkVUgcnv0xIwrF8/rXYi0mfnWZ+WYlOBjxFO3nwEYePj8j0grdGNLesSCkZyDjQ2cKj3EGDCbz9f18TaYc5vjtBD1dJyO03E6Tsd3ZZyICMipdX3vWxLBkBGr/63vuw194zBXSY2gmKk1Bk0WLE2MoKrKgptWX6T4CSQS7xKaSph//9PCmiGX6Ye07iFNooiaGK3Akvj1GXbgNd9HPPisQ1UL8vJR45XfLEdniAsX9nD3a9fLz4tE/OS8MqUq1Hnrcevfp5Tw7PndNWZMwQ7qVXDl4p5EkmkdGpvCblMPEciYc4bKSNk0QkTIBbavff4f48z3/aREPyUaisXL3BybeYIqMstr8z0d7+zo+6GQYqYwlIzjNTZr8OwaLlUj2GkbE5Ay17QRIUi6iXJiLFUl/fHXPgeGwq+O8Mj+Ei/ceb7Cf4CQIEJlH9SouUZlJb80nZKE+2tRCZVbqPCzHJrnvBn5r+8b+mTW3+HJU5rEMQqrGcSQsFz2eGKnBQd/k09Ozk9QXbtp9Ck/qzuO3qgeY/R4U77L+v/nNSICZJ05VoFogpSb6LkBjVbJwDSmyHsxJzz8vIcPAn9efXi3Mo5vMU6EATJW6IBGyQf5qTvnQMYI8woBJsrDtMbUdtIgxMT44FdfR4xC277yvdpbRzv8EVntEKimaQqlHc9q6GduvbEVdVk1PptFnWqCkJk068n7DGspjotab3P59r0pcFrPplBCMT03WeybL/7kYtqLyJZrJ46KDqpBNRbGEO65dh3P3763cem6QeSrZagwX5PKB+oHM5xijEHbtmhUQ25rawfDU58DwNh67FPa+yeuQ4lUMX/ZRPI1azvkEAKsDW9bY3A6vnND1iAg33/dvadEm00oug4ujmH+N6DZjWwU8k91g3TGghPDe1+ERvPbJV2PHdxqgCGBBnMOKC5HXQ+TtQEg5zfzXycLuMxXFEDq9DkfM4HQbsV5kWvKs5luHcVW88bRk7VVZsEQlmjyiD7AOlvWQp1+nXO9rzVwWtbqhOhRFA0A3P/6DVy+cFb0NBUizyKm0z3KWAdDhHtfewtXmq+U8pX7z/wZ+T0ZuKbRolopM5Fcrylr8oHneoXmTrwBUvHRdSgZdz95KF1CtQbBlO6k9UuW/BpjSEla0aaED37xTsQYMSL3QbcocdGEIFD/Xs/1dg51tvIMiR6KoZngnMyMZ/e/ACKDe65dx9U7MvukpnL4jgtCQdUXbs0UThZzMSr6sm56metznfhuGx6ZNRaucfoyaEtfqm0RjDMlCUyFSZM/n42U5shYa544ldU1jTTzajPqcfpxBJHF9S/+ZjmPM0YNo7ShSMYBxhQHJEshSZQmysAx+GN5hWLgT8c7PniygU83z5s6ahtrNEcBm3U0x4U/WbxqfddGP0ptjB5nnRilprF4+PoRnj63g4eu3UAIEd/Y3dJzZjaYDFMMEa0vm2OoRokXylzkHjZr3jbvlUQsO9/pxu/zeafIhZyZ11JDE5OSLTFSTCgCKOo0yx6SJteiEt1sbgdi9HPUJz92VoqETcyizgxOhJRMQTuk8FRahD97257Q7K8v5F72hfr+3G1VdeGBc59A4xpYY0HGwiqqZJnhXDqGokzHiTBAPlQLOaVCE+mjTgwyWVIDotNUNvyaWIucSpM4kY2o58xV/sjFoXqBmxa/AQr3rFOjmVNJtsUQ8cyNfwljCPe9vl+VnIlgLp4HA3j+jvOFqSIRfp0zr1+qzqc+iI2XeqNY8/iMy1wnsRKIpF3FpTcP8PTZbTF4LJu8VQXve1/fByfG5Qtn1ph4eQHmey9kAJ7AimqU5VoR1jLa1ugCYIATOFX6pqEGUyiTjJUW3lSjNGOylD8jRSqGj7X7JAA8u/8v0bTd20aqp+M7N8ra4/UovERAPDEo66hQiQKoRE615mfKMDUwIhsDQggBq9UKz+5/sRS9JmZsbc1gLeHy7WfwwGvX8dzFcxjGgJQ79+aIASh9fzZihjp/msxfI/mM8GZHLCt15Hs1WIfUJPFvSlS1Bn2VZwdMiRCZGDH1JwuKMUGYGSgRP7Mo3M+0JY2ozkux6mbqgPWEtZUJI2m7mCsX9/DAm/uIMeGZ82eQQCBLMJbBXOW2UqQq2QXgyu3nQcS4V8keVlMaMQYgcWG3GmYpctVnSGSrnuRNxskwQL7QXWpYCX1HJmw0EeeT6KNYa2RYaQp1qadRY9K1zb34MxNDINetVcMVH13fbDOn3eSOqRp2oq69gpNXeE1+U6ZTLQ7y7U4XwvrP1uKjyZ8oCz9DHNO7yQbxgesLvHDnDM+e30X0Xh6FsSBb+7VcubC3pvN0U9x6EtKv09KqATKG0XbS68WPksdqyOD6l36jCqBOdOQAkQySl79uYCmGcptZ1NJaB7Kp9BrxN2Epno53bkwNxfF3Q3+2aXSKAzjFvqpjZ0xtG+KcRdM0iDFhtVphsVzi8uGXZG3pedvG4YE39/H8HeeQWNRNfIjwISLjCDT5zy3fDFMOmt5Aub/JHSCvhnK+qSTBFIYpUBitn3pt2U7+QetPkUrIMv1APSLvPdZatK2F91aaTyaerM3jcy+OnBq2YQz45tkdQWQSr12yOuzS1NMQT3QjpTzmudslT2SJ8OD1Q7nt/c/h2fM7uGf7+xFjXwxO4xysRka3GifCAAWl5eYAdY0KqX+uUaAnI5eJFJrw2kZ8i8F1EdVNVxZQpigKgSAbtXrsMzf+APde24cxBg/o6a68R4QPAaUeBu35MY2o5SLlXqqhqcV3k0Pyk1AslzZeYKzNfR2a0siiPE0tFpzSITMlM0sMxY2Ct5su4JulUnOOS3v9NBHdjGBti/3rAeNA0rm0aWFduz7vnBQwBESN22JWS8jtmAkpShGrdY14UxNs/xR+exfH2otZN8dpddj0jUmb7+Salz5dGPnnBiEkLJYL+NHjmetfgHUORNCoCJh1LYBF+USMCd5HpFgVCtbe4/XXfTL/jQNudp96j7kvWPnoZM7T/xZNw811urbmNqCPY9enGklxtnV1jYcQ4YPHw/tLNK7B1+atGqF8CZqcVa6VI8FipBKK+ny+ujjSdaryPGUi4hxKbmuKjoTEeOa2M7AkpTIPvX4dfP1zKsIsAcXTF86AGXjo3A8ff846ToQBylhlMSZl555GDbxBp9/cHiceiP4Em3/Lhqr8v/625Hf0AT938EUYa3HftRt4XrsRcmJY1+KFOy9MPAMGh8nmfhNnqr6UN/HSivHZyEfpfxnHDe/0tc0QXzkiww46n8vnd8Halld+TdJqmOPkHPWZ8vTxbTzv6doq98iVgOFHIFkLOGmmBYI06DNV5ZsnopRrtVdcNxHB+hNSCoKD6+elZqpOarNu43S8O0O35rWf5RYLORqfGhxW+HS6QRNprk+PCyFgGEfZUFlUmwnyLnStbFMPvLmPJ2/bxUPXhC36xJltUUe/VRRMOo9j7zIqYnHMt6uRHk2i8iKMerOHIQdM7nl976m2jtf3hk2vL/8wB1RAheT04NViha/PZ9jamuNj+0t8c2cbq15alIQQcHwKGsFl40QA0rozeen1G/jD991eNoJV70VlBVlQWVvlmLreUq63lH/g8u3ncO+1t2AsFRjUWof7d3+oKJXfbJwIAwTkL0o2o5upd9fqaDn6+L7DxxbFes5Fvtik9OiUcm8L+YwxhGf3v4B7r92QOdxxHmDg8u17pbeHFFZOi7lSyedM/Lu19VCZd+vHIBuevCBv4hxV+KF6NlQfAspvJseUaxQ4K64tkoJp/+vu2+oBFgn6yc2mZAE2AFtwGiD7S2Xy1FuXAjkyIi1vSOaYi4t3trcxDCvs798AYFR92cBMBF3lFkV49XS8C2MaBRzb0UUiimjjeJp+gouDmNmRxpiS4xjGEcvlEleOvlw6iHKKeGR/Vb7zZy6cxcNvHeDyxT2MY4QfQ/Xyb3ZhmszhuHeHzU8eO2xzUW5iVRsfWnsu0+dF6mBvTm/tUD72OSJMHMLqWI6DdDMdhxHtbWfK+fq+V/WEWw+CLFGB/OR8z5w/g2aMaBqJNB85XOCZc7vwvnZSVU+5sgBzixmWfmwxJDxz/qzSs2VCjTF4YXhC29LcfJxyWE/H6Tgdp+N0fFfGyYiANnDTYw5GhTCRa0KmB2XPYspaE+NcI5ecIyrH6MdzGUmWxKGsAQfBSqW5nJ4nZbLDJJjemDvlsH8aCR2jSU78rI3QvEQytH5YhQqxMSbHFzx6QnvMEcsmxIB1mOQmcPT6yPdMVCVBkD1aeY0Wj38WRMC5H/wpIUFwDscJRbQRCRMFeenqqmKHjKwoLtGOsxaJqdQZGDupi4BK/ZwGQO/KyOSbGrVP30cu71lBwsGTJmtUUiCGjGgAWosQA5ZLKQj32o5lNp9LDhCMR44GPH/HXgkD7nvtOshZjD5iDPE4ZFBnuD5uip0dh8wF8ufykRyZkN5vTltunjhHJnWJTeAOzuedTORmkODaWXO8dJzWDdXD7PsBX99q8P2vvoUX77ogvzIGhweHG7D08QWyidIx5zy8/CSGVGDAtec6uS/Dk35hkxx5jFyauhAdlyjaHCfDAB0HYuuvOBd3FYR5kr9B3cALvJaK8VnTMePM1pJNMb34z2CdKZ06mRPo9j0t0kpI2iztuD5UndsmQ0/uYONeyj83FsYm5JY//XaL5WaDJstgGtKX9ya/OHWuxy8yja31HLxxWAFRuvMAACAASURBVL6nbMiBycsnn/1/2vuyLkluK70PiIjMqupaupqLNH4eURySokhpFsv+Cbb1B/wbfTwezxmfefUDJYoUSVFsbk3Ns0m1uqu6cosN1w/ABS6WrG5p2F31gO+cqsyMQGALXNwFFxf3fvFLzPOEYXDnDelw9HK6Rmb/3DqQDXMeFjinCTAGC91ghDXXXLz/z2jbJjBNhT19WPH8EEzHaUBdP88I8xZ7YmrxuHXRVRinEevV2gt3Wmt8tfoNlFboGuuO3TR2w/nrbs2ncYFGh3EWG8vhTXsM+cvfknQray6FSf+AE7CiMeZELukM5docBGDAykdx9OtMaNxnAY/q6Laey/EOhNikZPfYvb9ocNJbejtYLvE3I/DRUWePoEn6JYMje4J1RBqcOfTTs2OoKY3hRvDR9GHnBgPAH7dAsMsSkE5bSaMKuB0MCID0GvOXSGgyUqgQkkpwmzb+uOj06Njpwb9Aa40//NVLUErhte8u7AmoBHzhdlAbQ5hH6y1mKNg+SxpHGBMqMB9v181m7ZhJhNaBR3eZKQgm8JRx5G+zpEVCDlRxff0DvIYTLkQFl8YOcaUgNEkE5kLGYB4HjOMAcl5sj3/1j+5MoCQfwGk1LVoAalIgY23F69UVlkQ4gsZWaZBubCifJKhjYIUVzx+xn2YkcDl4GiT2HmPmYpmJPZWYMDhnA3kSZ+s83mAM2mWLrm0wTjMUwhlQBOCTkyOnISGfIOGEGoIPAiqPs4uXWSxhkbgntRSbv0tMVmtn5uvLYtp1TIwZc1JqzAAlZ7xmCwGPbVm/WOBS4A2jm7WN+k/G4Jsf3sOdecZ2u8UwDGENJ8ufs1H+BFpJz4qrx+85kTeMrIlXbzV0Mi88zUnoVjAgHjpejRcv2GsyXnJ2R0EbaV4LDIMZQhTWvWltOAonffF+ImMIg9uDJCO3stQeELg+MyB2Cy9FZI50nVTt8U1lyTFlPir+5tqtmGkUOi8R8CD3D6UsL64HRWlI/PNu7ckz/ERQv42faB6+9z8xTxPmecLZP/xXfoFOMor7kDUg2/7GneDoYCaQIcyAP5cokjbzalW8AFjPpziGW0S7fjxZCuD4f60LBUVE2O126Hc9xmlC17b4evMBAHf0CoCDwyXefHSJaZpx/94pfv54jfuv3gUA7IYJpp/8eI8mt4JW7684CS1M5pT74SRkLPmDNQ2zUGtYzfFMIYXcKyc1GEvHf86AVWEi4ukC5GV17oN+Z0MVmdkK4O+sR9w/PwZgY/jF80NhDnEJgqOXm2lJJFBA24Y51RiDiQ+nFMxKiTpzmJ/rmnwrGJCZpYYjVdfgrcZebOSkrHmO13cAwhdPfo2mafD6wyfWk8btyF0uF5bhwHqFfXbvxEdKMOw1kk24gZmpcEFIfvb/XpPZdSq4bKdKfmc5pZpY7JrOz3ppRSV18kxd/i5fCn3A/6W8FdcBZPcoRZqQEAIskxLvJ5NWFWDsHp+2UyCtQZMdjjMRJvu2YKCgS1TuZ5DKgV4EjHtXrDfw64xlJ+UZiVLKn/jZNDaETj8MWF2tYIiwWCzwh/4jL1lrrbBYdvjp5Rq/u+eOAXh4CdNqLyQOgzu92P/zBctB7CMgREge2j9qRBon3AVTHDmBT2hABAS3XQKb2r3CQCEgKAck4jqLGSKi02jeJ74maItkLkEbscfcz/jg8AB/9+gKRMDHx0fYbjf5kScq/ZFqNJLB2za8/vASnduT9fWrd7HdDZgmI9bGHF27X3YZuLlWC7oVDGh2rsLZfheyIR5msZHSGIPPL9/z+0pef2g3hX7zw5fw1sXGdp7WMET48p49cM1vLB0mZ2ILe4CKfSOIKIzAtJPl87kWlKvY8jmbN6W34wzsBO51jpCtqKivL7S3ERTbVCbIcDPd1JoyOVkLsQpUfgZKDEO+w5ErnImEDMw8ol0qLJYaZgYGu50B/Y4jXRAakQ8JO17dA/RiwRumQXHf++sI5uhGa3RNCMEyThPWmw1W6xW00vi33W/RzhyA2NLxW4+v0LUNfv/KGcw0o20btK3Grh/ReyuFVwO4Vo48c+EtI0f/76ktlU/ELCslaXFLiTkgLSbZ/YM0lWdSWUplTYkQmhQzOXEasowoTiBstz0+PDrE0Z1DvPPwCT49veMjis8jRxmJG5JaUaIy3fu+f/fEu2p3AN692uD+vVOM44SJI5DLXCjJp4BbwYD80QWpRC1syvcv3vMDvFt0fnDz3pGw4O02iBrC6LQbv19HmPJKyHZre6ITGoE8Z14yHk8bbFayE22YiSNR0f5390lIVVmduAz/MmPOEULLuxxKC4/E6z17Wi6YsSeDJGm8oCjflcmYF6Dw+Nf/GxwZ18asYi8qWHuzIcxmwp0D4OSswbhTfr/VPE0wZKC0sTZl5MzGEt71g7vi+4N2AWQNTGQC93SCcKx9ozQMwR+mttqsMQwjtNb4ev0huq51AiThYGmnoK5rYAxhuxtwuOzwxsMLzIbwu7NjmEloPu6LJavUZpL+ECDan6hAGn5xXYiAVrEPZiilC4JnUkJQbJT4wfObZG8yfiOy+3FbQiGKlKwhCARjZmw2G2spJMLRUTgkbkdO4GcBOTZtREUEPm9zNkQ+bJoxhM9fOkWjFSwbmTFNczRPxKJzGbeCAU3TFJhQpJUE7t802p3K1+LHf7zwO+KpabxJ7vN7pxETIxcGPHSKYDD8X8myKLmWpCGFLB57+vOZzuuJiSnM9yXVhaWbUAc/5yrl7ezSMaMgy0SDjAkrq1PS7/srLGW1UDdLmBpaBI610Q7ibJjJEc327PlOQRkNp93DmBn2HCUrhDx673+5xerYoaJptA/TUvF8YdwJvuSkFO535YQfpZQ3eRMRdn2Pnduh3/c9lNZYLpdYjJ3XJLq2xU8v7QL6Z6+cYddP0AS8fbHC/VfPsdkNMMPsaUAlk5uc5FVKs5BDNtdJPKk7Bhq5USMe7omM6T+1SijFTeopWyxqY2m1uG1ahP6RwmRJu0oVQvfLWukM1us1Pjw4wN9/d+Hjsa3XA357p8M8TUF7dDxRKDw++7Tt7LU4G4NpUjg46KC1slEqzo7TmgS+uwd1I2pFRUVFxY3gVmhAVlKyLPjLJ7/y4bybpsXrDy+hlMZbjpN+9co5vnj5zAc79G7YfmMalSWMSL0VUkoqnvj7chUjSCEqkZNS1wWlNJ6qAREl0kVuNw2qghGX03rZZfrIbFlor1Xvk/xxnWSyz1yXmjFCrQBrWlPu7HpOkrmYiz7UWmPYLbC6PECrOxizcaWshfOHEP1EjCalgDceXVl3+ornjqDlKDQ6bOC2ZOv2cym7b2fX99hud37doWtbLBcLfL35wK93LLsWb1+u8cWrZwCAfjdCa4W3L1f48gfn6HeDNfdIQolM0TFtUvSroKHHNiWA111IWg9SHUjmwVYEaUmIH7E/I2orpKNg8fCeHEhVuPhedF2YzYQ1IDwi6ufexa8WHU5O7gAA3pgm/N1uxEdHC4yT9TZFQqIR+Sf1iFwniLDZDVBK4ffnJz4v2h9QMsOtYEAPNr/Ba3+8hFYKbwpPs29++BIe/OAl/OjbRzBuoEyz8RGrgWAnpWSsyM8YwrON3QYBlMOjI59zkzRK6+xasHjxSMsn9Oh9U3o3TkDOFGVHSlweD+TMylBQp6PbGTNFzGAp7Q9BWAru2F9W98k/IyMlc2Kv6gOQh3hrKChqgFnbHdRTWFfgxW1BTgmdBo+riucPpd36a6vRNrFnIh8gOE0G0zhis9mgH0Z8vXofALBYLtEOrT++5O3LFZbbFqQU1lu7ifLH311i0TVo2gbbfsQwzsHpQHjrlAzp/gawj+jjNELKo/R6+nyBL6jkd8a3lKWXqLSEABUg9uEVqp2a3qO8YW1XxEKmIHYTmC/BzhvjMPi9QuM4YrFY4M7xHWzWawzj6AIHB1pSvoLiM+XwQJgPSEQ/j9qhsnkkxa1gQP5oV8UHmfEdZY/bfenU+pQDIBfYbu96RSpxuyTcqSFMTupBk74AVRiw8peQz5NOt9dYHhIpPTNIX0nOPb0MYcPXOg8wZQMJikO3bNuUk0gl5w35xKQQNKNoXUjWRkp6exiYH+Kl0RVzjiiDwLDIaYvWNX6eBkyjO1RMMDqAGXBaUXuAHmvLFc8Xfs8blNtUHCY/YxTGacJ212O93sKQwWLR4eDwMMun6xocLDoQCP0wYhztUe2LtkHbaAzThF0/WccV4QggauHLZceiiI5LDGEPpHDG3mSSufEwlqVna6nJWE+1oCI/zLSJciVTASzNpMgr3T/ZDUTAdmPX4z46WuDk5A7+djfj49NTPHnyBP1uBxk1gfuBZMbXcRFP3KHeXK64XMStYEA//uMlvnr1PLhLs1bD4XAAwUmfQealOBQGOyzkzKecn9r/pSCB5TMt+bJCWlkUCc8VueEzHTQswfBmLl4vjPKEYLi+zLhNRYlR/iTREjHbp/uA4NO4dAl3kpocOS3J8ijRT2zuIODy/X9C859+ib7fYOwHjCObGyk69wcoeMGRPR+l4sVgnmcoYyfgRmsvvSsFTNOI7W6Hbb/DNM9YLJZYdB3a3u3rmly080ZjuWyhG4VPz47RDxOW/qyfFvfvnWK1HTAP8r2KsD9KUIhQK/y4tclFDLqQNNNawOTi/EeT/TacVxbO5hqX7zBWxXhP0jMd7xcNk8ciLsDMLW2PpEPhLo9gWuT8xnHC1eoKvzk8xLuPVvjs/ARrrbHZbBN6D3OJzTYXNrkurlgvEEfKkgrRsUu4FQzoi5dOYZwLXxxmp5Q67X4BxSskYh8P4DUr79LsB16pjOAQGYa3EvcgXsR+saBg0Av3KE5B2T3527FdrYQUGmX9VJZcaEFcUDSC5MUwmvKWhg2mmZTm8nNDv1ghHrjD0GOeBozDBGN4cgkeVsWquury0esVzx+BKqzmMbE31Dyj73v0Q49xntG1HR5sPrCbT8XYbdsGy2WHty9W+N3dYwzDhLZt8LMraxqaDGE3TOF05DB1FsalGBNMqBG5SToVXql+PiiMWVynPIk7icypov/OFK6SnCLi4XsFTUqmyuYYIXaSdYkOe7CSJOSEbsr5BpHBNIzYGMJq3WM6Xrq1vXA0hufH3GRPz1IQlJ2gfJ1LruN02xnQ6BwIMl2CqDAAE+leajrud1gULQ8aHpgGyAt1ozmW/RONIJrR3f1EYknHVDYGExa1D0ppkDKOqaooU2uPdvkoqdDnMzbzGD8ppHXyL4A1lKB5lpGniZmzLYUKN/gZImNPeRxGzNMMu+00aKqs3Z3/4r+haVqsPvw/0RoQwKc7Vjxv2CjWGlopGGMwOlP4brfDru+hlMJyscQfdr8FyJ5WKjX1tx+v0LUNdsZguxzxxsNLHCxbKLexcdePGEY+ODFmA3HMgFSAcpM/b8sg3sAtLQQoDc4YLI0m84nU3jlJTF8KUGwGDE/6r16OiyeguCY57ZambPaDUKI9JBMnzVNwm92Fk5JygtswDPhwqdGuV9DavtssWgIve3DegikBbkP5nrL9JbpeSLwVDGhf1NbyJkPim1E6VvcsE4r3ngTmFnO568dkQVKRbCnpeUoIwl5L6lzKHjmzCoWwNtcEDU6UkUZqKA7bdN+SG8UZ8+G2eq0mlQgo2Nt9+55l8i9FmwgXmqYFtQuYuRdV5LIaaAVc/Oqf0DQN2q4THjZ7+qziuaBrGrvZm+I9PsM4ous6e5Dc0Ho6BBG0YwrLRYdu22M2M3a9PURuuWjtmo8zt/3+/CTspleANIkpSfPyunBYCvOiiM6spONk7p0mofyz4kI0cMkzn3jDqKUdr/j41C6bEumzCV42y33GrRE0qLg6zHQczYp5JMTnS9We0BZmbwq2n8ZxcAcANt6jlA/cZIF1r0OebCiyH372nG87Ayrz+ySF2hcrINwPNl3BcNwnUfxy5Jol1yCfJ+lZqha/iGvfkirc4y+qeN/biwsMyI/YSAxKskm80rwWJUydEdPMvohMY+7jkqUJS0wwvwQCFDSatgURQc/xeg4f3S0Dkcq8rKAhvBgrniuss8GMfhiw63f+mOWu6/Bv/cdYdAvwdgAFF9vNHaV9eGBjMX527xTjNOFo2WK5s9GuPz617sHTMPthzB6WruRkMqeILL3oJC7IES+jU+eai2hgRgrkJ/ww9+RimyvEMZG0VlymYCslZ4kSyXhmSCE9clIv1d0GW3bHVRCc+T4wF9bI2MljdkFFdeTR66KZyy7LGGwupGYC+FM8VesmioqKioqKG8Et0YD2mjHtPeFxkybymo9gs3E4H3mV11HycoH4HA8pVZUEpWcxPvlnEnVLlkklzScpL1bL47Tk1Gvh+FlS5cKTbGlzMmEoRIYAEQnzHEqi0J8Fm7N9D1p3aFqgmSYEuYowY3ZaDitAYW0PcO9dP5OCWvE9YDYzhmG02s80+yCiy+USnelsfDFjvMZ6sOxwuFwAAN58/ATv3z3GPM1Ydi3euVrj81fuYrMbMe6s6z1F9CtHXyxVx6al2KwExKOWrWjEazSZSdml44EmcvNmLkJkapZzhLVQuHx4LSidMyJvzj0WC1l82ubSQrJhT9v4Oi9l2J0o4TmpeSlP+/FzfLpAUnv/y8+pBSconoM40+CUx9rWftwaBhQZoaRdV5jVSnOwZChWY3UDSCUJs18pEiYHRDv6uYBI3feFIn8xhULzdSkuUyxCCqqIGI9/kcKQ4Aac3aQqvIYSRAQtXMsi9pJuIPX3C2YHiu+EAe3IM6XCZNIgbqf/c+316RWaBuDjvM9/8Uu0bYf1R//qCUtr9myseBGwprcewzDaaNcuCPCXT34NY4x4Hwpto/D2xcqvAX109xjjdsBPHl/h8KADXJTrYZjCBkYgHifMMQgFQgyTm72qkJuCRaaURJ6X5SnxCTGPKqYlEnW0kT4iMkGyDsXrO8KUxzfjtZnrR67feB63ONRDJhZ1D5545XzDAXpR1iAY74GoVQPtYm/O0+xjdPqD5/g/hTlbiLN+DguKwH4WdCsYEDMdFV0Q3SyYScpX5LSZrBkiejyBXExMbiQTb0GjyOlhD7jOBfJwFc95WYljCRt0JlEQwnoOv/B4ixu7earomViyi6ucEDqQdG5StpR+APDRvU/zUSAAs5kwGxuMlrUb3SiAxGZbR+RaK2+ntkd5J0yz4rlhs91immZopfDN7rfQA78fZdcYtHX8abTCz642+MN/uIdhcJ5y2wFNo3GwaNFqhX6wm00nKXXLwSImulj5SXQdIXjGi/2CYYDdh3OtJBJgKB7nPInbzdJhHx6JegR9KKfiVGuS8BYbqblk/tRxSUWw3JiUrqIvgVmgcJ1MvtvPkAHNBE02mv1Ms58vErEYfPqt+5FX5iltuB0MiL1Z9k7oOXNi2Am2+EiUxl4KvZ8WVZL2w509FXvmuS9S3IvPpoJR8Zhu4vYGwmUpzbO6ZE6WGmVcGCEeN2HvRGnJNfeKE3XKrkviyfvOv2siTNOEeR5BhqCcWafRjSV2cbQ6dwePBD7+qOpALwbTNKFpGnyz+RBN28ZSv9Neu7bBctFiOdg4brvBmddAOD5coNuy48ExpnGOKIuPC+H3u5e0EtH/aZ6YUlb033nCV4gZk8yfh7vwAvNJon0vNnHssUvx19S4kOpsSs4yov2ltiVhiVJaj2h2T99Q/C+rMj9rjEEjTpYW1WPy9TOFd2mS+ShX32ve0a1gQBI5Y0gG5F8s8KZbQ9PsxASbzWnczbnO5GUVfjEktfrwPyrL78UJtchlC4hB4jQKHrhFaa9U70K6bJTkv9mTSZJJNLjFl9Igj23T6ZG8Yd8SGYNH7/2jZahKoXVhdbTWOP/FLyPGqbVCxJOVjSVX+c+LgT02Y2HP31IQmigAKGgFvP34Cstli2Gesdr2fpwfHXR458kau3nGth8xHsx+THiSU4HWJbJpXdBoRNFindgzFX6ASVvFacGKRxa/UI5h8hkSsaCciFbe7G/HYzG2o2xRWh9XGWKOyL8jxShoRVzBUA7JaohUKWMs8cPA8nM5kjCbGU3TQrljIvhQSD5RWgFR9JqCqH0tjd4OBuSl2RiU/bJdF+kkqTvlnuxTrk9KvmyXzTMoOgTkEUHgx2SkjubMbY9EQvvLjlpRGNnx3C5LlKIcJbfzeiTkV+LQe6StnHijctIyXb+oID76PQhhUnMM11VDRluuDOdm8PX6A7Rt68+fSiX+dy43WC4aTPOMj46PQLPBOxcrAMDhQYdZK3x6fmLjvE35gjflQzvXcJM9KUrHdQj5iMz4N8JUy9J7EO5k+ULEdxmQIW8eJlFRthRGcmtK6ir5vg8iiKivSWIVEoYPSz9RWxIWEl3L+0l5hirc1P084bbfOiZnzAyNJpqkfP8JnujnjVQu2M+NbwcDiva3qNARgOsMP9kXWrLvpWZMotATuWaZp5OPJKeRXgvJ9YrMJ5cUAnsFgkpluTOfPrpfnaWk2vHmL8VZ7eP24km2dad5+uvXDKgSouGvLPFwM+wmOB0xoFSrunz/n9F1HbrFIuRD9nTOug/oxWDRWacDIgPdtD5sS9tq/ORijYODDvdfOsWuHzENk9WGDtxpxUphuxvRL2bMczp4YlojxSGyMkOVJel0Lk3lsqLZyn1mQ8VpI444VGKPk6GEwuNhT6HIBZJWKNKSkpOKPX+LLRlBY3PJeKFIrE1F6y15BcpMN9HuiFx7Eo0lFfYJypsqjSG3RhuoTSsFw5OB1yIlYw8f19HorWBAkbSRSNwF8+O/rxz/kuIBwQmi17KPXyn/ivKblLpWlxfh+MRPKdWTfJFg3mOPLmZTwHU2byp8Y+imDetKFMtFpefs+ovJ7jEPE856uY1cfOMz7X3oeP88az+B+YS1YYVGNyAzB5rUKnp9QCyNVjxneBOXgplnfyLqctHiYNFiNsZ6tk0GXatx5E7KBIB+nPDJ6THmyYj5lMIk6yG2n7IWTDH9CMUFHEQ0m/OEScGarsmR0D4Bcp/mUEorkiZTSOzsIzlZmJi9EKgUIELfeJ7mCSSuFzGXUCW65UcdhQgvh2ASY80naHhZkBT/RfmyOIkxs3UEcppg02hgNjCg4Fnn6DE4jz3FiQJ1I2pFRUVFxQ3hdmhAAqmJR+3l95CJyrdjp34A8aJ6bGKyIkFqDgSVAmzwo9IFUX6wR4hQnwGhzqWSe6hfpGbBSYFukU/uEZLtk00IbRe5qwZ/82jlFxMNa1NJd8nHv3z5BPM0wZgxy88nLiog8X6k2JU+VJudCrTW/nuWkzA72I2oiPuZkJkaK54PZGgYBav5AMBbj6+gtMJq02O3XKJtNe4cLHDQ9/jk7BgAsNoOGLaj0+rDi5bmmqLTpzfhpNd44Fmaja0m+aqHcpp4FsrK02kYpxlVROuqLjdJfkJjCjEoE+2JSeBpC73SEiQ0mOjZxHSRrRMlXwismcki8iBc0gmk1BdasamOj0zRaJoGihSmKIzW07UeidvBgPxEFndL+rr2LtanYybKJRSQqfKFMuQb9mawAhQIpMrrOH5kRpN8YqtSHMfMve7EmYLL/dG3j/DVK2fWJMYkkL1hudO7zCm+fPnUE0hpgLz27eOoYDLGxmMrmPwiJguKCCI01ZNrYqawRTRN41T6kKtX98lgnidM0wTt9v8A8IeUcauggHoaw4uBZUAGSgGLRYd3n7jj07XCth/xyekJOg0cLhq8+egCO0PY9FZ4GYZgSg3UlQomMaHZdInA5e5IoSYwNQp3paAihND8G6cJU76sFhm3CdUd9ihmBZtGB1NZMBCrvUw2PFuK1BLXN1jiImk87iVu/7Uz/h76DbKxs9jJOptEqCdvWuR6z/PszOYKXdeCyB4sacTWiWuq4HErGFBcv4ht5EdrMNd/prxK1/OBnl/OpZ74gnghWUHOJ57imxEr8nZYHtL5Mt2Pvr0AAHz16rlbCwmDuMQ8pXSaVAggO2CA2f9O8fn5negZGgZQ0ggqtUcKBSkFF8Aaj82P7HEKjnvywJ2nGd/93/+Bs3/4L1BN45hVOb995VR8v+A9Ictli3cu177fPz27g20/Qs0GP71YY7loMANY7Qb0iwMAfGRG8qIUCqOe7wVHBIDiCZakrCYpkDWFIMqyhUKun/hsxLhVFAWm8s9DIazRSoEqSkQRk7OanNyEbQoZc9sktxMdk1c33BFruJxhQR717uW2DyQLpLjXAg+NeiD0T9DAJDOdZxshoe1aLBYLvP7wEp/fO8HQD5jcUR3X1NDjdjAgnjwLs0zkUuk6hJK3kwrg2PM7Rcrks5tJTuxRIoabl3wi9kBIBkm57KfdISLLfNhl2Vc4EFmKcpkEuOjFkddA0viI7aZ8imKi4HDutp6i9glXDDJfaJ5tTjArapVKrcaFd2nQti1GXWJA9oHqBfdiQER46/ETHC476EZ77WbX203Eh8sWh4ONbL7tR/zu5DgccIYw0XkjT4loeQxILQCJyKXEY94ETdkc4M1OjnlITYHgJtS0XJmBiutJxQnHjWEXqkZrDWMAojkelyrwsHgc56Jk5NQT9Q2J9itfdhrb0tMtiR+p5iQaTNFDaRNVEBSUAsg6JvkcPJ1q3L17F/+ZFNZjjydOO/7s7CgwzT24FQyITygsH0AnILQP+e6exmhESWJgPOWpkghy3TOZrbhQeqYcyOk5bshXL5+5wW1Cjs/eUFmxeJwLF+ii6CTrK64EUk8l17ijSkdnyxQ0EwwIxoScVetcscVeCyKF7cf/irFt0XZd/ipYOr3GK7Di+8Ny0eJg2UJrhX4Y8fHJEQD7Pg8WDd65XEG3Gp+cnWC1HTENsziKWQgYkRYS3p1VgtOJMZUDsxkcLI1G1KfExCnLF3lmo+YpUqznjSB4j05ulPLV8FpDKryFNS6ZYdDjyhaYeC4kEGA4L8ddM89Ywba5qOJcJsqh2N2d52ACrBlesWan4UjUzktkmZGdywAAB9pJREFUPSJ32y0+ODrCyekJXidCo62H5NFhg74fnPWljFvBgCj5Xog9GPDvEHizXcFCm4heNjFBkFP3y/JDkMIovECfnRRlgPj4XBbNshomhBCWIuPMc+zVIpPOlRpl3M3yOd6cJ23VQoqMRnTMjHI38UQT5Doo5dd3mkY7r1Qn+SqFtmvRdZ3dJ1Tc+yAcEyqeO36+2qBpG+z6ER+f3MHQWzPL0WGHw2WLttX49PwEm82IaTL2nYn1OuIvQKALMTAsneVrI9kSn1hQB7v9RkM3qEjMLKSGZG+pnJkpxCd8+rQAm9VDIE8+utq2UWlAuwaS+C/razd9JkqNCqUoKEBr0BxMdoUADVZYJ6eNcMXzGkcMmVIpXZHokyAcSGFTcb24GSZ+Z3Lz6jhOmK9WUEqDDHDnjnU++dvNCh8cLNBvw2GTKW4FA5Kdk0oDvjP2zTR7uXsMlla8BdSXyWoJiVNOOetr1CsCgLBPJvAWF5gRHKUajkhUNCbtM3HsNmlzLYotoTOii+lajS2jIMrJZlN0J7Fdk2DOiZTq65+XmeYpv8Qyml2obRrtmY8MCa+Ussc/N61fL/I14O7xa3CVA70ItK3GxydH2O4sg1ku7dTx04srLFYaAxHW2xEj7/WRjgGJUEYl+iMeh3F8txL7CNzMco0omCcFIcyWQz4XWY1IrKP4KJZQkqMZ4o2Y2t/hjJhmAy9xOwTFWpT450jYaRg8P7CwOhcW8KM6MqtKdilxe9nsTwR7VgnTfHKsuRAsleK+kwKz7HOXt3FznXRWUIERTfOMi8eP8f7JCc7PLQN6d9HhP149wQfHh8U2AbeFATnsdy4oScB/YRkFKStk+GzcjIdSrEDZwfnjP15ANw20VrHUIJlqYe2kVCfhZxYN4jiGnMxA2qzDdQLhwavn+OtvH+HBq+dJAoFMCk00jKgdBLk05WtDUa2Sh23drdbTuOjWdsIxJjCg1pnkQARjxKSkyMZ/C5XdLyBUfK/47PwE29UO42SdEe64KAeLbYN5Ntj2E/rlLOawWBuWmxUzoQ3hAsWsgjO7tm5xOeGTp+oQ0Fb5e1JmizfExhqEr09ByAvrWLxdANdPIYkgmtzypUUULtQSKmppTiPiOiVVCBEN9pUohGzPw6VwFwRXFhT900T+rDOlbNie7WbrS/jg9AQ/6Zf4+Xa3p0PqRtSKioqKihvCrdGA9mk/f7ais0cCiU4LRKwQh0elSP3sJb/23YWPY6abBt/84B4UyHkBuTIiP/tUomOTgd33I6965VmYnuRzaS3zfrRltV2Ltmnx+sMnePDDe86CFurhY80pQBqr0w1wsseMMbDRrnMzHaSkRuFObGa0n/NsQM7Nl8vMhEnF/cDPouIFwjgtFWTNcW8+ugQAKK1w/+UzrDcjzGQiKVmaqvg3pZckCopObBoL+kFsxku0G59XlCDTKthTruhJSUkd3djktUeuDXuIsYYHaXr7i5CMb9FhgXSSSU6498nD4OIsE+3NazeUmdakOZGvBFM4W2/id8x9Mk8TNmvrBWeI0PcGi8Vyb2tvBQN66g7hZzSN2cyuzyc3dVH0kWcWGwTk6+XBp1V8ZgaRnVCNmd1A1sUiwoQaynjwyl15E0A4zfG1bx/jwQ/OA8G4jx/9v0fgOG/BizAQpFIKbzxag7oOhghv/GkVE3A25u0GPNuGeBlY2pPNPIPI4Gs267k8FZHfvJd2Lh8s52O7MX1pHTMgSXBKueyk+SJMAhXPH289usKHdw6w3U0Yxhmfnp0AAN69WuOtPz3BZjfi41Nr+5fn5dgviOmy9D2aL8OAVGJtwrB5N1iGwGs+mVnbDxVplo7HCsGu+3oHA2Gus3W2cRiDiS41wYWAnVwmkaxcDN8NaQR/Cvc0D3putpfV+EfC3NMJL51L0+qwNU4F85vsx5ClFMdL82/Sl2Ji5X1A69UK7x8e4u/7IesLxq1gQOnLKCPtCiUvu3z+fO3lqXUS+fs1GV+Mmyh1GFBEM8w0OjdFfi7dWWyfjX7CvXIeA15rCN4zX798CjWLAJ0u/dcvnwoJkIklruNr3z0W0pESBArnEKT8HxFBGYJRiIy0tu9ZFSLoRoNI4fU/PQkpCHjw6t3QLymTUwDAjgd2X0Hb2TD/7O32198+hgLwzV/d895UaVBFLwRUTeiFgIjws9UWHx0foe8nbJ0X3GfnJ3jz0SUOFg2WiwbDOAeXZBYSYkXEKt9IBHNBb34PT7LvLuSp4ENg73v/BB9ZGz6XeKJhN35bPxPTjiKEPS/8XMlRgRsoIyXkfWfbzjSabnwNneDZjH8m5KOcMAaC38agokWhZFei3AIh5zEV6hrWyFIvXf6MNapUsyKQDxVmhcRGHJOh0O96/OZgif+e9YpL8bQTBSsqKioqKp4HqhNCRUVFRcWNoDKgioqKioobQWVAFRUVFRU3gsqAKioqKipuBJUBVVRUVFTcCCoDqqioqKi4EVQGVFFRUVFxI6gMqKKioqLiRlAZUEVFRUXFjaAyoIqKioqKG0FlQBUVFRUVN4LKgCoqKioqbgSVAVVUVFRU3AgqA6qoqKiouBFUBlRRUVFRcSOoDKiioqKi4kZQGVBFRUVFxY2gMqCKioqKihtBZUAVFRUVFTeCyoAqKioqKm4ElQFVVFRUVNwIKgOqqKioqLgRVAZUUVFRUXEj+P+WrA9olsmsgwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data.show_batch(rows=2, figsize=(7,5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another example for object detection. We use our tiny sample of the [COCO dataset](http://cocodataset.org/#home) here. There is a helper function in the library that reads the annotation file and returns the list of images names with the list of labelled bboxes associated to it. We convert it to a dictionary that maps image names with their bboxes and then write the function that will give us the target for each image filename." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coco = untar_data(URLs.COCO_TINY)\n", "images, lbl_bbox = get_annotations(coco/'train.json')\n", "img2bbox = dict(zip(images, lbl_bbox))\n", "get_y_func = lambda o:img2bbox[o.name]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following code is very similar to what we saw before. The only new addition is the use of a special function to collate the samples in batches. This comes from the fact that our images may have multiple bounding boxes, so we need to pad them to the largest number of bounding boxes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = (ObjectItemList.from_folder(coco)\n", " #Where are the images? -> in coco and its subfolders\n", " .split_by_rand_pct() \n", " #How to split in train/valid? -> randomly with the default 20% in valid\n", " .label_from_func(get_y_func)\n", " #How to find the labels? -> use get_y_func on the file name of the data\n", " .transform(get_transforms(), tfm_y=True)\n", " #Data augmentation? -> Standard transforms; also transform the label images\n", " .databunch(bs=16, collate_fn=bb_pad_collate)) \n", " #Finally we convert to a DataBunch, use a batch size of 16,\n", " # and we use bb_pad_collate to collate the data into a mini-batch" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAGYCAYAAAATPaZQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvVmwZtd13/fb0znnO99w53u7Gz2gMYMgAE6gZEmWqCGiUqSiIVaksuOS8mC7ylXJSx7yEKdScUXlZ5crTlKKEicV23EsybLlSJRE0aRIihRB0iQIYkajgUZPt+/0zWfae+dh73NuA4RSeZLbwrequm59X5/vDPvsvdda//VfawnvPStZyUpWspKV3Ksi/13fwEpWspKVrGQl/1+yUlQrWclKVrKSe1pWimolK1nJSlZyT8tKUa1kJStZyUruaVkpqpWsZCUrWck9LStFtZKVrGQlK7mnZaWoVrKSlaxkJfe0rBTVSlaykpWs5J6WlaJayUpWspKV3NOi/13fAMCNk2OvlAKgl2VoLRkfHSPFadWMYd7n6OgIACklQgis9VRVBUBTOyweIQRJ1L/ee6x3OOfCZwAl8QLw4Zjlcom1lruvnyiDayxt1Q4hBHO5yXxxG4D1gUO5Gdo5ErUGQF3kZNkGXgoATO5ZNvtUzYTMJABoP0A26yRyxFH9rXi9IRvruyidA1AWDUVR0TQNaWoAmIyPkMIiCc8hEeSmT54NMCIFwDnB/uImSoXfSKNRUiOURIjwbCKOW1WW4R6NwjY12IYsXkt6h20ajFHcaMJxiTG4xiNcGA+jNM2yxlnLoBfuW2sd34mNb8yBkhRVSV3H66UJtRqhVRh75wvKcoGzJYkKU1FLg3AKXHyHjcRITZqmJCZ8p0SD0h6hJaX13bt2dYOQ4XOSaKy1ONeQ9cIYoRTjkxOKKtzPYDREKcWiKFFGd3NrmAwF7yP55b/7d7xXYY7Oi4pFIzBpjhPxPdUNRnpEfLeKBmk9zoElzBthMoTuoXSGPAzvIB14kt4CYebhGA3OGuoqwzU9AKTUaFOT9goATFpgdIMSEq3CMZqMCUtcHeZ/rhNy08NVp2sbKalwmH4W7lkJMAKpBbpdkwI0AgmYeG4Ic6dd6865OG9c912apt8zZkKId/wFyLMN7hzuxwM8Zb3AZIa8H36fZRm2qvE23LNyCkqopjVf/8o3APhX//x3+KVf+CV6aY//69d/DYBP/NgP88M/+nGeeuYxAPoDzebWiJOjI6QN8/aFb73CH3zmi3zxS98M585G/Mrf+tv8N7/699g8dxaADz/zDLsfaMiSsGdpP2I5rZiNJ+Cm8Skm1PWEXhLGcT4F4deQcoOqbsIYiQonlxTVMYnYBKCua5q6wNtwTFNVGJmQp31mi/BdYnoIk6CzMNd6ox5eNzSyQGZxj/YNv/erf/971t/Ko1rJSlaykpXc03JPeFSpUPSj1XJnf58v/fEXePGFF7h1/W0AtJJkJmG5XALQOlrWWhoXrLy6bjpLKIv61+GDhRR8KaxzWH/6GaAoCrz3SBl+k6cZRulgTd3lUS37u5TzYwB2tlK0rEmkItN9APZvTdk7cz/T+SycOHFU9gRPRWKC1WkrhWr6DPpbXLgUrnd8NGG+tGRpOI/SObPFkmW5BBEskeGoB6LG1sF79NYihSY1OUYE68Q5GA5NZ/2lSQ+dGISQ3fMKIZBS0pThPForqnJJXRYoHyyacrmgKBZopagGgzjOnqIoMDJ4Zv1eTl1bivkCSTB+2uuqOI5KCbz31HUdPFiCBze1PbRsPaqKullgm6Ibf4XCO4nwYWp6p0iUodfrkSYqjpHHJOF8hVXdXMB54i0iBPG9gonj3+vnTKdTkOHcTzz5QT72zMfpZz1OphMAsiyHhPeV1IuGJHrUqUpJjEElPeq6Dv8vKlIFeS96vT7Mwaax1E3whBoa8DWaivjqSI3AuxOqYhw+5ym9bINelqBEmO/OS7TJMEm4vjIKJRokChnRAkHCfL5kOVkAsF+MSTEkUiE5RQtcovCTsEdYLUGHedgiM9K5MEecRQxGQPTE7/Ke7vau2r/W2u64dx9zt2e1Lm8RpzHWN6Ack8kRJgvPduHiedYGfVScpAoQRkKqMSZ8JyUI4RECPvThJwD4q3/tr/Cx73sK0w/XnC+PSBJFmhnyiMR88qd+nH6+SVGF+/nW86+SpgbnTt9tkmiEdaQyjKsmZTyfMj08Zm0Ybnx7ZwMtUubz4AUXdo5tBCYx+LjXlm6GkEtSMYc6Ih/VEl+WTE7Cu17M5/TTAXOVMpuEeTRa32G2qBlurgNgzFmSvgFhoAnnFlrxXnJPKCpRlui40b30rW/zv/7Df8hbV69SL8PEXF8bMj4+xKh28woKSQgRHflTcc7RayeaCFCOjA/fOEdlS5r4WyBAPu5UURklAgzo/CmMZR3TtU160WX9yuffxFVgNN133kn2zp7j7Zs3wk9kgJ2STJHFZ6uXFtfAcLjGmUGYPEVdM52UCB0hPK9YliUYSdmERVe7JUq7uxYOaA2jwYi1UXC907TH8ZU3SJJwPybtoZTCIbrfSSnDd02YOHmWIPC4pkb68F1TFkgBo9GIbOc8APP5nDt37lAUEZ4xhqqqKMuyg0x3d3dZzua4OOGUUnjnEM53Y+2tY+qHxNeIEBZPQ2MLnIuwggvKqZ+HyVyVlqZxKCVQOrwjIWuUApMoxtMINTQNxphuwdu6wbnwu1YGozUa71A6jNFHn/k+hsMRTz71FNK3Cva9F8pfZMlED6MC1GOExnZwVtiYtfAMU4UrAzykfE2qIMkT2pfphMIJAdKj0jC+Mm0omlPFleVQFFPKwpENwga7LB1O0r1/4RxKSTwKohEmyfA6BxPmcTWfYRuQWdIpKls6hFfY9n17icaAkEQEE4mL8LlnQVhvHo/D4aMx5/EIKcLeEsdhY3cjGMXN6Vxrldfd0pzMyPsBUqzLBU1VcXBwRBYV/MXz95HnOdUyGIpCiDA/tUJHWBvh8FiE8PylH/gIAB975kmS1HP7zvVwbjuj308pyhlJhPXH4xO+//s/xngS1uitw3EwFstFF0IwiUR5QyJaRZXgK4crKnYvnAHgmaceYLQmyJJwz7NxhW/6OJcxXQTlVTczTK9ByIqmCOdaLpckWjKfBkN9MplgVA/bKOo6XP9LX/o6t44Pu/Ha2tpCZAajDFUVFb977yLp94SiyoSmmgal9MK3nuONF19mfdBn62LYKPe2tji+k7O+NgQCZm6bGu99t7Fobbo4yTBOujpaAG38ASkRGtIsI4tY9mQyCRMyWl0KEbwE4bD16cTc/f6PcOnC/QD8T//j/8LBwSFCCAbDMDEfeeQBBqM+9tkDAKz3VKVD6oR+rxfPUyCFY2094T/95KcB+IEf/BHWNra5cjUouH/9u7/Pl776pzjpaAj3iBmhUzoPq24alFKsr2+yt3MOgNFwjbcokCI8q1IKJwBkt+C01mgtaaowmdeGQ/ppQt4zbKwFC3NnY51Lly7w6MOP0N8M4//ss8/yp89+rVP4Dz/6KF7As9/8Bs8//zwAv/zLf5233rjK8WGII/q6oSpKpPOdBzc+PuH5NyfYuClBg6dBuRJHtKikQhrN2Z2Aox+PZ0wmM6qmxDZRUYsSIR2ygH5/L3xnJWvDEYO4AZZlCc6hlOo8g0VRIZzn1q0Qa/zibMnHP/59PP7YEyQRk0/U+8ydInixMnqmwbjzKILRBpDnA85u97n/vkcBcOUc4UrSNEXqsAnVTlB7gUMibBhLqUoaOSJfC+dpvOPr33yNG9fexNnwu9FoF6UFIl4rzFuLdKJ73w5Pf7TDaLADwIk6YnEyAZFSLcO7nUyW1N6xtrUBgGgUwiuMSkijMk2UQAuJ9NBE7eXxOHGqqBCnyEO7buYn1f8vRXVmuNnFY6ui5vD4kLq2bEYPIssyBHRel/DRg9ISIdpnbfDeIqRnOApzMe3BojxB6vCsWxsj0lQhhWMY95YbVw/Y2T7H+kZYN2trA7KeAVsiZFhbWkM/G5AlYY1ksk+mUpSDQRYUzvm9HbY2FEcx1pYNUlIzom4MPRWNWZ+R9B1SK0QTPOPp2LOxsU5dhOufnAxwVrOYW7QJ3734fJ9XygXVMly/XhTYPCNLc+rOKeA95Z5QVHmec+vtawB899vfwpYFe5fuI4/WsVtMGBjB8fVwjLc1TV3i6qY7hzGGJMnQWlNW4ftFsaSoym5iqCyhN+ixu7fHSG8DsJmGSSm7iepQQiClbg1Kqsoxyhc8dDl4L7gZzlYgBdNFULDjIuNgPmP3fAwu+4T5zLFcNHjC5NVJRX8o2drzJEmwPB5/bBuxc477LoRzX7n6Ha6+NUCmhtIGhXI0uYPUHidbb8UipUdSUpYBjpz4gjPbm91iqqqGuq6pbX060E5ia4+LEGIpGkShEZVhqCMJYbPP2a0h5y6fg62LADx9tM/Lz32dt24EKPZaYtnc3uL+C9vsbX8fAE9+4DJUE5QNVlezhEpalIMyemvTckaKxdpIgHEVnhrvqxZlRRmPVgmbmxF2dDVFOcdLiTTxFckES4VzluU0KEZrLaPckETPoKFGCkiNxtdh3NYHPYRMKCKEfHx4h9s3boITnWW+nBcka4b3k9SVxRHeiXUeK0HVIKNhpNKMQarIZFgQjS/xtkRbh24NPK9IpEanhjQNRo9QC2pfMtiMRI2qoFqOGR/uM+gFC57hBt4LVLvYcEFJSIWMGKzwCYPhBjISbN5+4ybf+daL1LMCbYMyKcsSZVJ0hBC9Cgaq1rIj72gEyjuEh8W7IKa7lc57ESXeC/q7+/+FELxSz9iIivKJDz5KuaxQ4nSLreuapmk6L18KgXQCtEBGwof3FgiQtVARojcW7Tw9HRElSqazgqKsUBEJOHt2l/H4mOefDyStuinp5SmkBhfXn5Dhvts9QvUUvV4PpSWqfX5vcVXNIMKVxdwhm4ae6kEelFLtwGQlUoFOwzp1iwU9Lahs3Ou8Jc1S6mWDFmHcBr0EZyuED+uxqioW8yXpsI+U0Xu+CwG5W1ZkipWsZCUrWck9LfeER7VcLLr4x/6tm+At0jma+N1kekQmQUfLQApHz4BTp3rWGEmvF8gE/ih4K87ZEKuISlpiUUaSupo80pjH4xNITOd6e+8QSqC07mJUvqyQ4hglw3mznmBje4DOUhofPIhptY9QC86fD3DZxvAM1TJh/+YJx+Pg9VgKBpuOtR3L5YeDJSLyCYgMJ4KVv3c2YW8vZbJccnArwIGJAiVBRRw7G44YDTbo9XKcDd8VRcV0POvGcb5cBCLDXZaitw5ra5LoqY7x0DRo6bgxCJ7I1ddGXH/zKq+/9ArbGwFWvHT5fv7GL/915lXwHt+6dYO3b19nL9nkvvvuC/eUAJTIaJkb5UFaEqk7K0m5GlFXqDj2WZqgk5TaVcyXYWxL21AVsw5CKcslRbXESx+IDoBODUUNVV2gqjZuV2GkJYnnLnyJRGBU0ln9k/ERSZqTRstU+DD3cA4pggVZVnd5oO8TUYnCtHElfLSAHT7GC7SERCtspPUnSjLorzPM+7i4hSyqBqF69Pojjg5DLCsfaITUUMW0isaRCEWWGkbDYJ3busSjkNGjV8IjpUJJjYykAyk0tRMdmWdyMuXF574Lt4/AROq4NOT5gEUR1hECEC4QolwLKzXgPHiHiBb8n+U9vdvDuvv/3318+7muj7n8oScB+NSnPsXtw1t4SlIT439KMxjk1BF6p/YoIUCJUxKQ9AjpMYlmMg3rv24WKG1RnSdSIBWsbwxRNjxHP+1x++aU6zeuxTtyONegM915cM7VeJ2zqMP1s7REpQJjFEJHCr8MCNNoEMIsr333OW6+PWMw2AsoEzAvT9BpxWBkkHWIOR0c7pNlCdcjAa6XZTz9oY8yGBhiBlFHdtNpOE9la8rphGxjgIvrNk3eG3q/JxRVZZuOCaLShMbVHE0OGMaNeXxywMxC2gZlNaSJxEjVxaiyVNLvSbI8pYkBRWs00pk2ZQqvguvfFEuKyM7rJQZl1GnA3zVIGZiGOgKmXjoSvWA8CRNnWR4xW0CerqHD+2TpF9x3Lme0Ge7n0vltErHFWv8OV68FV3tWzsiHNb1Bie4Hdsy8uELmD1HDgL8/9Og2D1/ZY/9g3MF6TVOFeFxk2PWkIfcKN6m5fTPExG7fuIUvDWURNtqqqpBSkqZpx3oDibMS164K7xHOgkywTfju6HDKy9UVJuM5H3kiBHOXyyU7xwecu3gBgKeffpJHmkc4HB932LIxhrSXksVgsjCWonEYL/Bx8iml6Pf79GJe02hjyHA9o7Il+0fhOe4cn7AsG2xkIVbOYiWYJCWLm1uSKagkbuFJInnDO1DSIUR4fl+XeAQ0BleHzWutn4cNLyoqXGAu1pWlF2NbSr+/YD+Ak+WEHmHclNFIrVHC4eM7ECKwKVtGZ0/2yXRCMXdce/stAF5+7RoHxzO8Svj4088AcOHyNtlgSBoha5QhN32U05SLoPQ2d7YQiUKl0Qg1HqQDYSMMBp6GYjFnfTuske31NTaGQ47HC5JoYNjSYucLevo01uaFQiiP9nH+paC9QOIx1amCulsRtUrqbiZgK+9WTu9mCO73Rl2MJTUpR/uH5KP0HQQdb12ncJ2ySCRI3xnKbXxMKsXhfogTLZYTkp7s4EGpHFmWYVTKyX5gq5ZTj5QZeR7mcZ5nLBZzpApsPwDnG3prPSJHC6cswgi8hsjJQKcJaSp4+63wXn/v9z7Hl7/4HdYG95HlAdKdzA8xvYbdvTVEzIc7OTkizwzXrr0JwMOPPMilyx+gl69Tx/dY2oZG+M4oaoRnvpyRL2fINI5JiwC/S+4JRbW2vclz3/q3AJzMpgw31jlzbo9hpCOvDzWDVNGLWl/YBltXHB8ecuZMmLyOmFBnbZf0muiU0WhEFZPQxtMxUsqwqbZMvKahaSztHGz38BAwDb+TUuLdkqYOyq0/MCy8h8yzvhc01bKasbHdx/TCSC+KQ3p5n831lMaGYOKtg32EnvHIww/RmBDQP15cQcxzdnUwOx568hH+Q9Hw+7/3BfZvhtdTLsBITZ6FjdqQcHR7wttXb3J8GDw66aHUGu/bhZpRW0e9sAjVWsYKKSUuYv1GC1KVUDYVxXHYOKTwFAWcTK9xdDs879rGOhceuMjjT4VF8QH9QXbvP8/53V1own0vZzM+8SM/yuuvvQbA7HDCC9/+Lrev3WTUDxP8aLpgUWRcevABAB559EEwnsGox3dfegGA7776ec6eP8fGdiBJPPvcS/TX1vnwxz7MS6+/HMa/32d7Y8CrV15FRaJEsQAlPSrGGo0GLQSuKsgj3o6ULI4XXQA+0RolJGsb64zHMSlVabLe+4v5JzLJtAzPn+kc7T1aC0xcFIuywCNJYgqFqxuuXL3J//MvP8MLL74BwI3bE7zImC4r/nDjywA89ZEH+S//67/ZebBeLBEuZTEt2N7ciVdXIS7SEmxcg1QEskwXN7Zk3qPjMbmW1PMpxjt8GXbdUZojpe6IM1IpUAKsR/jWo/OkUmOUwEcDR0oZGb+nCb/OOeRdMaiqqjDGdAqnVWJCCO6msGN95z1Vy4qdrV1QFXV0KUbDPh5L1Dc4bxH+VDm14qPi7OVhj1pfX2dZTU//34d0kWzU70hAg2TIci4YxJQSIe7Q6/XIsoxFjKOPRiNqVaHyNinak/QTnHLko7CPealwSLa2zsaxz9nbe5DR4D6WRRizzY0RMrHUTcNAb4Xr9/s0donUIdbuGNDrbzNfljQxwlQ7T4OnIr5rX7O2s0Et7akyle+tqVYxqpWsZCUrWck9LfeERzWrCuYtrdNbRKJI+znDQXAR89Sx3jOc3QnauimXeFvz4neXXHwwMNMEisFgwPXrN7h15QSAsq6wSzomymJZonGUtcXFLNTwR+EjMwUh8VICDhGhNiccgywlz8JwmcRx+eELTJqS3fOBPbi+uct8fKPT/LOjQ5qjmuW4wdbBotkeJehejiumLFvcll22N4eYXlvSZc72Rs7li2eYHobnkE5ztD/m6HaAAu8cLTg5mjG/s4Bw6pC3NDRYd2rhWQsWgYjMqFoKFB5rIl3YKayWKBJkpNQJKbBSY9HcOQke1a3jE159+y2+9eKLADz8ne/w1Eef5vEnHmPnTPB8envn6HnPhRiPuK1us7l7hHUKX4d7WjiBSDKqGDSsY7pw5QQqDc9vsoRZUfPm9VsArG3t8KlP/0f84Cd+iH/wP/x9AJb1nMPxBI9kOApWvlYLXFMxPgkswERLemnKcl7gXUuPbpDC04Y2pZTcuXOH2zdv0Ruuxee/J5bEn6s00lFHS1ZJhxMWgerYsk4KvFC0tMtXX3udf/Rr/zsvv3iVZRFp3qLP5vY2a6OUo4MwT7/19Vf5337tn/Hzv/STAJy/fB+Z7rO+tsvxUfDOt/YGAQ5o34kKlG0pHS2OJnBoLCp+Vq5BuRqDPfWgbYNwHt+0MUaH9DIm7relnwRCWqTXp1a9UCHXqoVURIgRybvgwLXBsEt9gYC2tAzA9m/TCMCfJiATHskL0d1j+/suuV2pkBrgZeettbR4IQQPPvAwEBiNzz//An/phz8OwHyhWS6X3Lp5h4cvPR7GvzR88fP/hq8/G0ooiWSAcy4k6kfoP89zMHUHqSI9IomwX4wReSlwUlGU4bnqRuJchnV9mrZcmYZeosh6glQGlmNZZzRugiWsv8ZnOJFhhQv5dUDlHI131G0pOGGpafDIrmRaVx3gXXJPrEorJFUcvGVdsSiWTGYTIneCenpElSfoiKP/wl/5OR59+BH+3q/+KleuXgUCHfvS/Zd5/c2rbPYitVnAsiwoY/DQAkoKTJKRZGFjrJahboNo/fGY6CCEwouIkQvH5HDK6ANhU5zPStLtJU9/9AlEEo7JB561TFIfh0VaTKYYb/HzEumCotwa5fQ3NliXKdqFeyonRyxln1xej5ffIJOaJx99HFGEyXv1lWscLg85vBHiOCf7M1wp6PmEYXTjkyRnKeuu5kZYPwLvHS4qKiuhRiBi4iyNwFmPUYqWrSuEpLIKWwn6vbb+XQJasohK6Opb16mcZ//OITu7wfV/8umnOXfxfnbPhDhWno4oCugNtji6EwKu6WgNOUl5/c2AY4+XU2pfkuVJF5OSOkGZjOFaiFm+dWMfk/UwJuXmzYDZJ7liOp2D1+zfCuM9GCjyPMd0uaqepqqoiyVppNUWiwopA9wHoWrB2zeuc+XKFZ7+aKDZ1++db/gXWhoRIBkA5z0CG9ZKWwJGCoRSLCJkOpuXvPDi69SVZm0t0Mxr18PSR7iUVIU1cXx0xBc+/1V++ud/Kl5JM50u6feHHWQlg1aCuyqKCBEUV1fr03u0B9kqF1ehhEMqgYkvPNMa4TxJhPSFkrQYm7irRqYWEiVBDvrd9d8Bu71H1QkPWCm77ysPLlY+cW3OpnDId22yQeGcFhNQIuSnteEFY1VMjdEdUUEKjRAKISRbW7sAfP3Z53j+xW/z2JNBKZlEMhisIX3GyXEwJkWd8sorV9jfD4ri4oM7KKVxNuRPQjBejRGoeJ9KClysh3j3PUupu0RuqTKELPFkNG3hAK/wwiB1QlEGJbisFMtCUZYqzgeDI0HIhhZWbXxwRFxbVxGP9Q3CaYSPCd/2Hq5MIY3urN6iKpnMpuzv73Psw2a+OJoyyuCbXwkb3Ec+/BT3X7xE2utx48WXwjHzBp32qD3Urg3MClxpGcUkuDODPg0enSqOJuN4TKx20KWvC6RQIAS+5RwIgaokRzfDJBjl4Js52+s5t0/uAOBKw/T2jGo/eEGLmwcMNnc400tojbwtozmzvcuFS/fx2JNhoWb5Ooh1aDrzlezsRS7s9SnuhJf3R7/9b7j59j7H+2FSNktItSZL+mgRzqOFJpWn1TRC2rJDWEHTzUOP8wIZY3jWNXjngrUcLTrhJM47XO3YPhM2ISljSaS4UcxnJTev30R4KBchRjAfz3no4UPOng1MwZ29+/joMx9n//IxL74QYkv3vfQaP3jpab767FfDbxYnTGYTDk5KRIv/I8iyjEFULonSXDhzDuUkxSy4j8XSkecJWzubNNHrnYzHSKHp58EAmZ4cg7OYRAe2F4DzqMiqCs8lOTw8ZP/wABPjoVVxmpv3fhGBpvVeGu+hCQZuS0KSCLQMRBiA8+fP86EPfYSvfuXbFGX8nfNYacn7PTa3AxJyY/+Y2WzWbZS1tdSR+TWMxBghPIgu3TaUD2qt+1ZhQIwhd2YYSoBMElLdEjwMztFt+FbQKapWpPAYgmKaRIKHED7GyFrPqHlHDApOCy7ffUxbds1GA7v2NUqajvAUdK1HRsUIwYOS6rQEHMIj0SFnrC0rJiRCSKRIIJJA+vk6P/+zv8TZjYAeHc73mc8KEp3zO7/9GQDevrLPd5+/wtFh2NdGm1Pq2pJlOb1eGOs0TVGqRkXvRUkgxmlbZS5cIG3V0SiZjmccHBwxTfpM5/F9GEU6UaS5IvFhvU0mxzTNhElco03tTokhLSnN2xAvjOiV8A7Zjlib6Gvv4coUNHRJaK6xCBceUMcB1Qp6iUCth4f47d/6F3z5i19CKcPebthMj07G3Dk8Zmtrh//qv/hbALz51lt89nN/xMFxrLpuCBWgFXTZvEi8cLRTWohQcVxKifdtyR7Pxa1zHFwLFv1//NOfZqIbLj56iQ8PQj2upx57mn/8P/86i0VQAmNd8sDGJk8/chlj4lswgu0ze5x97FGQkUZqh+AyaFommoBhCodTnnv2OwC88cpV5rOKaHSgDUipqF3Nsq1oXDv0ZtpVWBciEIcbCU18VOfB4hCRQu68xTmPkA7fQqFS4Ale5LPf/jYA5/Z2efihB7h0MSihQZ6CsyRaICJEMDsY853Jv+XK2lUAPvDEkzzwyGNs7Z1hdxIC9Y89/TTS5sxmAfYZz8bx2p5yEenpywXSO44OggGQJxkPXLzAYjqh5bk2vuKTn/o5fvZnP81X/+CzAPzWb/xzJpMZvViFpCgKhv2cLEnZvxM8Ua0zavdOSnLjXXjfkW/RzC33yrL48xKJ6eAxYRVeeLAg/Wm1FiXoqP/e+uTqAAAgAElEQVT3nT3DL/7Cz/HcN19ERNQhSQ1egLUNNhKDar/kzOaQJhqc0li2d9Z4/a0bWBeOkdLgsB1xwnsfjNa7o+deQKo6V8QLhRUSaLq53YiAIrhIRQ/Wug/eYAu5CU+FCGkJ5p1B+9bAaynUcBdUZ5vvoa9LKRFKnpZechIpTr1AFTs5KH03rNee8/T8XXih9ca8RKBAaY5jms0HnniKvDfg9WuB+r2+PmR3a4ebN27x+mthH7lz45jRcJPhIEBxdeVJTI5ShqIIY50mPQQNLV/BSI0SFiNA2raEUfhsIgGrqZfMJmNq06esY7m4RlFai59XJDYoqtnsBKEqijLWOnUVUjqEtIhYdEDiUcKj48tNpEFLifIK6aIH92d4VCsyxUpWspKVrOSelnvDdPQeEaE/LUIR11F/SC8WTxwIy/Zan531QKEcHx3x6ktX2NnZYlnGCs9Vw7Ko2N46w4Uf+X4Atl9c42vf+DLXbwdqZ2EltW0Ybg7I+8E6qGwDQgVMG5BahVwSKTmFyD03X98nWQ/3s7Ex4vjkGlujnOF6oNkmPqU4qBjYmGswrljcuI3bGWJ64dxv3bjJt7/wp+zunae/F1xkqTKEGKJjSSfrB/QHL3Nrf8pn/mVw66WV5GnWVQ8HAV5jLcSwHbbRGJbBGiZYdlaD8gITMUwXsfW2XI7A4oVHoLsYndISoyRCJFwYXYwDYLl1+zauCjDf7uY6Z3Y3OX/uIufOBjJF42yo8xZhnnJZcHBwQH99i4sPXAbgP7l0iV//B/+Io1iY8mS8j0kVJhFdpfpeathaW+ugkLqY85UvfIFbt27hYjJzP9eMjCZxjqps4jsSaG0wMQHUe0FTW7w5jRFIKbG1RcdjhLDkec7G5mYHKt1dWf/9IkZk1G2M0Mo4LxzCtFXHLRpPFZNp19IeTz/1OOvrWVetW6eKBkHRTBk3AX569IlL/OSnPs7O2bAmTOIwmadq5qikjQPZGJe6O/FWIrzkdHtSeKUClACgDVZKGmupY9wUJUNcNnpd1jtqzztiRFLKkNyN7yDCzmuKNruWOsTH7opdLRaLrlBt+xstNFroUDWeSKpQ70wMlqKFzVuoLcSsWi8KQQToZfhACEEolZKYlOkk5lHWgn/8f/7fvHUr5DY988yH+cQnPsFiXvOf/crfBOBPvvA1Jiclt2JKicmHDPpD6qoJHQMArROE18hYJdigEFKRCNONtMZjpMd0FecbfLMEU3WJw8IAoqbxFU3riTYzpK+R0VNWqiZRjkZY6ggFKd+g8JgYZjFIEp8gvEFEj+qejlEpREs6QfnwACYOIIBQCT2TMD4KL25jbYNe2uPo6ISjCCtpY9hY3ybLevyj//bvACEJ9crrryDjyUdrAw5OxtRNRVnGSuBZihenyYzaKIxRaHk6YN571pMh52KF4T956csUw4ZzO1tcj3GrgytjhnKNvozwVG+TkS/RizntNDh+4xp/+lVQesz5R8K5Gwsmga3toBSmS810DjUp1Ty84EG+hsV3bJnaehoL0gtMhCe1E8hiHCc9GAWh1aJo1wBWKDyya5cidcDdhWw611oiUSpBa8Uswop1ucRWJf2oKBep4fBWQz2ZcOONkEeT9Xrs7O2SbwRm5uH4Dd68eYu17T3Wd0NQeGt3j099+qcgJuW+8uqL3Lz1JnVddhWuy6Jie3NEU8eCqFrz5c9/nsbV7K6HDc+6in/9L36LP/zdf0ViYv6HF6yNNjoIM01TnLNMJtMuZ66sXWhIOYxZ2vOK4WjE9vY2dUv6VO8/kEH7DN0qKufxeKQF2kRd58HXZCYkk0rRUC4m9HuKW7dDPmAtZuzsPUie9YjkWD716R/nZ37xx+hvtsWEK2o7J8kkbc61UIDiroRXhZQiwF8+rn8MtZf4uCaFMQipqENTmHCLUoOQyAj9OutD3KXVFhD+Oot3HlW08BsxHyoc4u/Ka2ohOyXzdyTtSilRUiGRVHFjprEUieueAxGgv5bA0f5Ocsr6w4f15u9WblKiY93Sf/p//CYAw9E6585e4tylQFTSRvDZz36eW9f3efSBQLCYjBfcuTPpCvn2k5TlsqRpHIN+mO9pmoGfI6LhmqCREjKpu2azCYJUSZbTEGuvFmOaYkYjZtQ+5lpiwDR4WdFLwpqsjMVTIGOFHa1qjG5IlKNqY1KuQTrX1RVUTqK9DMqpHSNOx+JuuScUla1tV2DW1g3eWrx1HWVc+kA/N7GydbFYdIm7ly9eAuBkEoK2s/GM71y/AsCZ+86xXM67QpVVVbAsFig8g2FYdI1zcFcw02iF0aGESyvee6glL3z7uwD87u9/i5/5Gx/DCFjOg7VyduMhfuDjP8Tn/9lvAGESjFJJLhXDSA9dSzJSWyA8TG/HZ/ewsQG5DAHPk/mCV198kyRfYyNu+pOiBBqqGMdblhWlbbBOdJnctvGsp67zTJAqLACl8G1hTBmw/bbskvWhM7D3obUAhB5R+GDzmTYpulxSVkuqMoufC0rXMCmWFLGPk4jjtxknnDUJW9vbbG1vdIV777z8Mh968EkeezxoaWeXLOYHLBane0ldlJSLObFaD5vrI/ZvH5Ckuusw20s0k+mETPc5ikVp9/Z28N5zO26cozwnNYKDO3foxyTIpqmpnaWfnJbP6fV6DIdD4tC+gwH2fhGFRsWNSvpAuMHZruVCW8i1iknBZ/bOopzkpz75E/zB5/4UgJdfv03dFLjG8sCDIU7ywacfZXtnyP74KgD5WopOBaO1nOksGJ1rm70Qu5FtPDh4FTKUkAUC6buxHhs3Ma8UwiSxrFB4BpOkKJVi44Kw0qO8wykRkn8Jm6CIxIntmLwM7yw42/6926N6d0Lu3Z+XkankaCgoO4M7bLixFZE8ZREK8U5FJXysjNHS2oVCKY0xKR/58EcB+JMvf42dM+ssmuAtKSU4Pj7k7N55/vgLXwJgkK5TLmE3xuzXtnepqhBbW1sL72O5XDIgWgYEAlaowqM6JqyRilQp+pFNPBz02FgfkPZ6LOu20ZhEpgZpUkSsBmWUpbENbSBd0KCkQyuPaQs1+DCnungYIKwHJdoQ6Skl8l1yTygqVEbRNuDyglRrcukZxFlYSkexnN/VaynneDxlUXqEjs0FezlGCbZGOcvYHvlbL1xhY2O3q3+3mAlytYaxOT0frIzGW4zWuDaPSoaSI6Wrumz5fNjHugnfnVwNh3xScu0By3P738S9dROAZ5//DG8ejrnVD9c6UUf4M9tcNo6dJmyUHz33JO6njkkeeohEx3bQWnP79h2+8c1AXHjhpdssC0ibMXIZIJTh+gYn4wmxgzXD0ToDITg4PqKJZIa8lzI+SvFxUWitSTPDYJAziFnng0GfJEk6Su3+/j537hxQW08vVr1ITKjuUS8alA5K6ImHLjGfT7l9MzyrlI7e/RcwvR5VXHSPPfYY1966TjUJi+lDH/kYShuufPcl1jcDrPmRD36Ql9/+Nk9+PFiBpSl582gffzzlxrVQnmp84tnqA7EC/sGVa4z6KU0942QcrLx0qFEJ7B+PiS3L2NzYYektWayCYaVnWpb01zdCyw8ALalmNVkWFmExn9MzBukdPnqZg/S0Rfn7RQ79TdJR9JYaSWJzjBOoCKvlaoivMvrbYc4ejo85d3aHn/zpH+SlK6HNy2yu6GUFN2/d5M6rwXj4498e8sGL/zkP3P+B8LvZhKE4y2LyKhfvj+1okhkNIpS7AqQ1GGnQSuBdrPVj5wyWI7bihju0nqHSXBufsNUP6RGikdhF2R3jmgbralzT4GMwX2iBNKE1kLKnldCttZGQH6js1lps4zsimjGGyloaf0rAkJGu3pIwpLT0GslGEtb67GiMwYDwVHHzXSLI0oR5rPVnhEY2lrPbu/i2MkdZIIuCv/0rP8PJXwseVFvqTMR1q/GRGeWwcdNPsj6lBUcwihuZ8bWvf5vaXWV6EtbE3tYPM+mH8lgA0+Y2uVFUgwlTFcaxSteZ+22KmBtU+F0GOwnep8giXj8dcftgHAzfCP1O5zlpCmUV2xylGRPXoLKceRHW33GTs2CDqYlhjmRE3TO4dIlPI2SYvHefj/ef+biSlaxkJSv590ruCY9KJ3QdLrXWiDRlOByyGUkITZ6QpaaLraRZhpotWCwW1NFa1giUsFTFko2NYFVZEf7JJEBYiTaUZYlX+q4cC4HFd0F0hcQKiUmyU+8kS6knFR96OrjiW1uPMFVjxuM5j18Mdeue2H2Kr33nJdZVuMcX33iOqrY0js6CunHrJtf3DxlubqDqABkakzIeT/GxR9Qgg8yAMtC2TJdNzSjLOo+qzb7fyPs0SYwjWcuZ+y9Qxf9bLucsl0smJ8dUseqHdzXDtREXL4Z42OXLlzk6OuLFl1/h9u2YD5Y50ixHC7hw+fzpS3KOXqyeoZSiWFak2mBi3tLrr73Bo48/1tGFr1x9gw888UEuP/QgxyfBM3v7xnXuv3SZIlYo//CHPsre7n189rOf4zhWM9BbwftXSdti3Idaa5liZyckASeDjIUtUUlBsSzice+cU6eJm6eYtzEmWMLxs5SSJEkwxnRB8LquybL3V2FapUQXW5ESJA7vHHVz2ijPGEUdK7wYBW/fuMb5i/fxd//7/w6Af/JPfoff/I3fpTdIWBuG92S958b+HXT06F0a1p33voPjIBIa7qra0BWKvQsiS+6C9RprkUphkqzLv0MpjNBMo4sduoCHJoS+zZlydB2nbdxL4LR2H3xv5XSAUZrgkXTFa9r74zSzCyEomiXToiVJKax3DAcD+v3T+bRYLFgbxh5OtaNYLDk8PGQW0zOSXkY27CE1ZHov3l+D9AGChUiBdxac6wrDz5c1JulhsnBuX0tQI4bDMzgf0JLbt+Ykw6RbLFpIlDak8R9AYhSJViQxkbouZ9zZvwbiFPUS+oTJZE4vy8liU8R+FvbxsmqroAsyIwM9v+UI9HOSLMG0/cGkRIuAZtm2b159D8eoisKxXAb8ez6f4hYzymqJjdnr1lrqu7ovhJbjYWBbTFmlhjxJyQc9dMRXrRI0ko4JlvZ6WKXwicLH3ytlkEq1OgFpPCLRSC06OGDRNGQqY2Mr5BGtPZrz4u0XODmec+QDZHLx3GV2dqccjGNp/spTNA1Jrw9VgCyv3b7FC682DPTL7KVx000yqqppu2yzu56hdahrUjctw0ST9frU0c2fzGZ4JP1+v4MjptM5t+/c6mCtQS9hmKdUtuoywW29ZD5z7O6GqugXL95PmuU88tjjvPZaiOsdn0yYzRah83GMUVRVRZIkXRJuVZWUyyXp9ibDSEw4PDhmMBhgI5nh8PiEoq64fOEiwoTnPz4+JjkZsRvLLqnEMBxuoHWCjey9l557nr2dHaYx9ylJFTjLaLTG1pkAGTQS3nj7Ks6KLvj67srWrXjvu6oszouu6CiEnLHQcDPp4gaNde95nr/IkhjZNS4UXoQEUOuobcRVxQDT05RRUW3vreOaDK0NNhaFXdQTzpzf5gf/8o/zHzwTYpCj9XX2Lt6HieuRJCE2EDldv/Ee7mbUqRgfauM9HoXu9VDR4HRS0QhBjWMZiyK7GoQVnTLBxysJ17X58M6Hzh/CoeUpxOt4p3LqmnjGezpZzt6hzO6uuN5+55xD5gk+ttAZbW1QvWFjceu4wXtPL8uoYijCqCSEM5zHRONI9iQvvPYS//S3/5DBWmS0WoutK2xbOaCpsVUZGzGGBz46OsFkQ5oYf5osa96+ecBsYRiMAoSYZHtgp52NrqRCe4US+jQpGQ++5PbNwDA8ObnJydFbqKSPdW0ytcIVFZUcMD+5EUetRJoS3Dze85i6GGP6a5jYgDPPNKlS6BbmdRItFB7TNVN09r3b7NwTiqrflwxiSZM8z2majCzLyHqRPNEEPLhxp/ilUBKhRNezJs9zhoOcjY11XGyrbJWg9L7zjBKjabSgBqq2HEpZ43VIPgMQXiJtQ5b1ELGMSFksefmVt9lcC9fqr5/h8PacydGEM/2gcEYfOMelB1K+/Eevxd9AqTxOGmy0+gonQmKpkF1MxDUNOBil4frreU6W5TgPi9jCXUlDlvepYsXngQlrr9/P8dE6mhvFmbOntO7W0tSJoh8tuM2dbYZrI66+FRIHnWu478JFHnnowa6v1NW3rnHl9aukacqd/dhbJs/Y3t6mycMCu379OkVRBIZdZB1eunSJ/YMjds+EqssXLl5iNl8yXSw5F8+tdMJ0UrC7F8djWVM3locfeYRP/OhfDu9IgaobxrfjApChU+/a+rDzBCeLOa+/dZW6qLteVxIfkkbbxFXoPKqWCVjVVayk/73K7bQO23srvL/IorRAtCQCgqXtnYVYCkloi0oF29FQmCyO6WUp1lXsnwSD4gd+5Af4uV/8q1y6+BB7WVhbRVOzqEuqaPAI71jUJaW1XUeDUK5Hvqeh0SkvBZP5kn4erHcnoPahDYmI60aKFFudkitAxVJMHlQ0TISLsWiHjRTtQKQQ7yBTtMquikagUip6fO+cL0qIrqKNQDFeTimj6u1vrKGyhKqpWS5bQ7Ghvz5kEb0noyQ6lTQLi4s3PqsW/N7nPsOzz32zY1laV9NUVYe62LqkqWrqqqCp29JjBnTCvGiZuhaZj3DjmrYX0byUbKl+55kJ70NdNQstXGObmqYuePzxkFLyS7/4aQ4Pj0l7g668mPOS+aJAmRRXhD26rKYItaSqw3x4+JGLbK4loQpJrAKvsGArfOt1NBZpBYKkSwWybpXwu5KVrGQlK/n3UO4Jj2oyXTJfxKTcYkm9nFMUC5ZptMyKAmdt12tFJ6e9YepomU3mMxpbIIRncC5AdCVAXaJaqEcZFkWByBZk8xA32b9zBy88Jo+UZS1QqeLchXNs7QQLUgpIkk36vZAPRNNjObbMDkuaCGssasXBccFiHqxQLfvUdsbBeE5uI8zY6/HQY0O2n3qS6XPB81JK4ZQnj8+TpilpnuOdYFG0+RcahyOJllCSJzTWI6g7WmueJ4yVPLUMqUFKMp3RS4MlaIRD2Iqf+LEfDuMhDFkvZzjaREZ4bvfMWc7fd5GD4yO+8oXPhWdbLOglKRt7gfqqtebo6IjxeIyOTMy9s+dYlmWXCrC9t8t4vmA8mbC5E8bt3MULeNvr2Hv5MGdjY8Dx8RFn7gvn/sEfeoaXv/0dVGzcapIAASklujpqIFHeIIRBiQBHBSjGdUGDrgHeuxJ4tU7QadvIUVM7S13XKN3Sku+JJfHnKoFRFkQKhVQamZxat05ZCltSu2DhH44n7PW2WVtbY7MO8/3yI7vsnrnAnf1jxhHGFUritKYX6/qRaNI8J+/3KWL+QZYk35Pw670PsHPbKBBB5TyuLTKrNbXw4BqWESqqnKeczVHqNPVAKoI31ZYQEw6HBeE6qKujprtTCA/vT+vxAcbrmJz7TpFeIFuPSgjIFC72Mpu7irSfk2QeHbsXe+uo5kt0W4W9qmgqi3Vw4XJAHX7iUz/O+HgGCFIZ9h/hHd7bd8Wo3DtgbK0NXhri66BygsHGNgjNw48H1uWZs/fh9Q2EbXPmmtAPy9/l0UoP0rK1E7zXT//sJ0m1QWhFEYsroBSNtTSNI1eh4MF4ckBZn7AsYrk6ZfGuZj5b4mybf2dDB+eWvSgkGo3w4rR7xb1cPT3PM0ajoIQ2Nteo1ZL1rU12NmL+S57ineuCqUmSoZOE/nDU4c+2KSjrmqopWUbyQONDAuMyBjit85RljRWnyYOHxydUTY1IwoSrmgqnPM4YemsRanCCokq48kZsdjgpmIqKW6/c5PqfhFpbf/ibX+HW4QS9F14KumIjVVgMdVujLEnJen2kTshiboFSAh+rtYdnM4QeYh7dJjwLQVlW2Lh6+n1D0ziKZdXVFst6GSo97SZqkoSkl5H2MkRMghRKY33D1ddCkdi1rV2SfMjB0THDtUBPPXvuPnb29phMZkzvhOf9xje+wdHBEZcv3Q/A7vYOr7z6UmicNoiVOCYTzl64SNoLz183jo3NbRoEd2KtxfvvfwAjt2lsuygcSpkA8caJmvQMjz3xMCd3AvQn6gXVogLvuH49VJifLgvKZYVrfFfhW4lAcG7jcT7GHbwXHVEmyTKSyqHjZoYQWGvf0bZBq/cf9Oed6/JocGGjMolCizBO1jsOjo5IY6hJZhmLxmJnMyLxnys33+bqrTv0en2SSJbRSUJjLSbGnytnmRVLhpvrXW27tpttO2+1PO223cYfpZRkeS/W9wPdSzl/+RKj4SajPCZvW4mtaxLdVh2Jik5F+A9iCMCF7r9/FsQUY08q1gSEUIf0HUrKhbklEadJwUphzqyxsx1SY24d71PaCtnAIBqzqdI0dR26ahNJHPL/Ze/N4y2pynP/71q1qmpPZz6nT3fTDTQ0kyIok6LBgahRcYiiJsYEiIqzgnq9TqiIhmuC1/hTgYhmUEwcEScSFBUFUQSDyNw0Tc99uk+feU81rvX7Y62qvU8D0eTexM6l389Hm7PPPlW1a69a7/S8z+MRhhWOftzRAKw7+ki0toXstOnmxoyxQo4UUiwgzXJHlWUZiTYYt6VngPArZDklo0eedwhkiDY97j3pSWQQlO8xniSXhp2u7B9WFZWqT5Ik5I6ZxvcDalVFN05J3BypIUL5huFqMfaT0IligkqVirLtESElXuD1xox8z8H8BcKVYr1HKL3vF44qjiNi15Ttdtt0lpaYn5+n7tA6OolQgnIz70QRGhgYGiR0Tdk07mJ0wujEWBnRKaUIgpDY9XqSLCdJc0Q3JtHz5flzIwhdjyo3CXE3IYmzcjGnWUY3kUxttvXXB+7fxiHHryXqeOzeZl/bvLjAxMrV7LzXfsGTq6ocvX4FB68/mtWuj7Nx+zRLC20Wtu1g3DG8e0oQ+kHfggclczuhLntINK0MfgH4kILcIWa8MhNTNMbHyrmONM/IdIxONPWaXShDYyPUG4M4wmsGR8ZBhSw02yVR7I4dmjjVzM3NMTxsH7parcH07ilmZiz10RFHrGfdoYfTidpMrrI9qU6SEgRByZSNk1mwkZ5r8LZbDKgRRp16b7O1QKfdoTEwQK1hm9szu1PqgzUOdTpjebdN1IlZnGsytcve23ackcYJJsmtdDk2ypRG08+wXTbITaGZ5JHmmq5jJel2u2RZvk8j/dFHoUQmke45MsbOEQlfIV123I1jdu7Zw30uwNG6y/z8HJ7ymVxtMwGBT5ykDA+PoltOdVpK0jzHc32kXEg6ccTQ8Ci+6yN7vl3DxbrxhFcyOvRTH6Vpxs4pG7zMLS1w+Pr1jJw4St3N/3lCMdgYLMmt7R86h1U0rpzukgba7ZiHMw9Rnt/r65vJPseltS57OsV1+0qx4EWlQ9u5ZxepTtHdlHrNHifwlCWrdcGQlhnSU2QmL+fIUIIo7pJrw/DYcHk+o7NSqdgY+zNpb0asXm+gW60S4egJRZI3UcIrQVhGGfK8b8v3JCJQGCVJnTNvpykmyghcXzsMfFKTk/kS6TADWghyCRmGoOIY3oNhOl1KAuLcAJ6HkAHd2B67m2akOkc7EKRRYDyLISgHvh+BGWa/cFRhxScIC+0jSLKMdrtNM3QXnyX40iPJisZhRCdK8DyPsBAcFBq0oFqrsbBkb1YQhFQqNWKnUijx8IRBZ4Y4d3x3nofyFYODblPWA7STDsPDYwwO2oXSbreZW1okdnD5+zdsY+fcXqY2dznInX6sNsrKg9az/W43lOo1GB1awbr1xxC4BT94xwZMcztplBK5rE/6HqGSeH7xUAqQGuGJskSw1O6gVE+zRucpCAgrPUclhaC5NNeH+qsilYeWAuWyFZ1EJLFP4KLQdqeJDDJGR4ZRoc2EtPHoJgmVSoX7nVDjivEJFubm2b7VIoGGh4cZGxulMThArWYX9IrVQ+zas4fGiM3MhoZHmZ6bpzE4xOiYfW2p2WJs7SDG6YMNjE2QZ0vMzO5kZMTea9at5Rc3XO+E88Cv+FSCkCTq0V7lSU6tUgEEiXGAE8tHU8oFlGgsQUlRk6UpnXZktayATiciyzJH2/MobtdqhdCFzItw4puylIPpxgnR7FI55tCo1ZlYNUSSJCw5mq+wogiqDRbbHSrufvtKIX2/pDXKdc7Q6AiDI8PlELbwJEqpcsOXeJaJpk+40GZdsGurDVQ2b9mE7wXUG1Vmp2yg2G1HTE5M9OQyis8me2Aq4QmrkygEQvUg40KbZfB0m4z1nJROs2XUPsYxrAvTc1RKKeZMlyFXGZpf2MvoYJU8ytAOBGVymwGpcqkZZGABVakb+JVBgAwFQRDQ6c72XVNefiopDUJAToZ2QJGEnJgmvssovSBEdyKrK+WepTAIiBYr5bOFFOSeIRWGlnPwc1GHViJ72l95RrfdcfyfDpSUJOR5TrvdwUQ2o/KUYWZumnkne5TmKcLzyLXH7r0WPDIfpzSzlMh9ViuGmbl5FHs6z394l/QofjoP2AE7YAfsgP13sP0io8rztIyEao06uyJbc11ydDwKTdyNGHGReZJppPJpdzplszzptFg5OUaz3SF1pb+oExN3k97PUQvl+SBFWdZSvo8KA1ruXEElQKeCwdoweVKUlXxkOMAdd1iao5k5mFno4nuwxwZ0LCRzPLDlBp70lMcDMFBJ6DYzNm/dyYiDTE+sOYilO+5hYHKg5J/zPA9NXpLJCqGtlk5fCcMPJVmWlSVMgYdSPlL14LHa5Hgmx7jSn85ShLRzYkUJ0d5jQ+Yi42p9iMbQsM2wyr6NT31wECkU6ZItx45NjBNWatxx5+2A7VmdcNKJHH300ShXwhmdGMdIReqgp3Ecs3r1ajZu2ULVzVoFlZDW3jka47avpaMI4xnCWrUERYyvWMHEihXsevBBd5wuO7fsQOKzdo0FyeydW2D7zj0sLCRMrrWlH51n1OtVWi2nh2MMlUqFZrtbQvWl5xNUKwNLDJ8AACAASURBVMwt2Ky3UqvSardZWlpicMiuh0ynlOHdo8SkCdCOtTr0JcozaN0blg4rDTwJdWmfPylBKo9KXZYRsOeJEmYe9sG6pVK9co5bh1pD4KiqlFJlFgM2uPalZ0EO7hlIkohN23aztGTL042GJYmN0i6hY8CtVAfIRILR/WVc2/DXLs2WStjszffK+a99efzyJCVJEiSinPWK3CiJ1zfW4AlLWps7zbwsFchQEMVNd88EszN7UCZjtGbBRM2lJVavnCiHWz0jyHMrAlkARbI8A2FI0xzldOzSOKZardJuttznb9BqLlKthiSuHxilEUFVoF0mlOQpMhBonZalxiyLqdQGieKO+x5yds+1SaXk9g1WgPaO++7DF2AKsdHMzYKluny2dZqR5zYLjVuO/zON6UZtYnfs2GEG4tyQFYzoXo3V6w8nGLLVG9UIIRAYRUlhlxUkv/vYfuGooJdCh2FIrSqoNwZpuCE4ZQy1SoP5ObtQvbBCUKmQ5YbUlQNTrWm2O0RRhyTtkVAaLewALVAJPfLcLCO8DIIKYbVK6AZ38W3pQwgPz/Fm+Z6HUSFI+6WI3M4TGtETpsyERKB4yxvfAcD2Tf/KxtuuY9v23Ux1bAltbs+sBYIYb9nDa1u8Rc0KBMJO1PdJNiMNpvgbYdkzhJAliaMQFoHUk722/+2JXsoujC1z9ITcZImOK0TyjOg9vKtW2f5DvT7Q48sD9s5OM7N3jgcrW5iYtA/h5KqDGB8fp+MeHCE8K9hmBN2uYzTwQ6I8ouF4FqVvnW3FVMncjIhBMjaxgoXduwHbhxwbGyPqxKRuZmRifIRarcbs/CLSL+Z/DHma9RrgeW5Z8T2P1DXu81yjHREoUCrCFmwIxX181FmmEC5Q0hKMkORCl+UW46QoVDFr6CmH1FN9HUGLHkQIslLCXaAQ5f0WxmCkZXTo8cI8vAkhegAwKdB5gl8s/6rthQaeWnaEfsZz6WQ5Sg5PAGnK9xjZe13JXo+s4O/rd1R5npfDx8W1yUK9to+4NvI0FYee9TCIJMKXgtGG3VsajRpZkpYEzAYoMB8FUMLJJpJjekSteLbpU8j1aMAoSy7tQAjK89EYOxsFlljaGLTwyr611oZOulhyn3pCgi9ojI2gqjbgzJKUuNMlS8oaOl6qIdGYooSZGTw3AF0bsMFLmsXU0og0LcRNMzJtmXnyYo7Or9i92ykOSxWgPUFudDmE/Ejj9vuFo8rzvGymKRVQq9UYHR1n2Dkq31jHsfbQIwD7IPlBwMz8HIOuCS9FzkCjSpJESM/BIaVkYX6J1MEqO52I3VPTJFleLsw4TlFBxfLCABhDUGmgvBDp6r0BGuGHZc1eOgYTZE85ORMBvlE85YkW+n1Tey+/nFmk24lpNW2UsWfvDLWwgo4SRKUP1oosqVCMMWhR0L8UkFnAwYatCYyRaCPtNCSOYUP2YPtSKTxpo9kChGKhuAZVsFKbHjy37Ad4wvYJpGRozGYZwlesD3wGhy0K8p4N9/Hggw+QbNlWfv6RiWnWrD2EgpS6MTxClGUM1geZcyCMJM7wB0Ywjk1AKA+MQSqPqF1IAWjWrjmU3VssmnJocAQ9ltHymjSdpEtYqzE5OcHIyCALTo6gG0fkaVwyVes0Q2cGqXxyR3Cba+tATd9DoZRyFEqUa+bRZjoXaFmQQpu+AMmaXRE+hmIo3gZ62jki+57cOQeDKQhfpUH3BUFoYXWfPFne730DhP44of+7eOKJjy+vS3lejw6rD/yihCTPe0AqobxSQ6k4h5CFxPxytvR+R1VIzRfPUrHRi75srTxe3/UvRE18Fzh6QqKAiifLHjVZSprE5fEAtNQYTEk4a+Xp7X0QBepAS8j9HntIFti7r32k6QW45Dl5ycJRHM5g3KRulmuEr0unaDAIIWkMDjA47JSB05yF+SUqjhWI3O5NOtNoFyjqzGBR/IY07jnzJE3JXf8pd6jbXOuSPUcL+7/CcSV5ZgeMdW7VmP8Ne/Q9lQfsgB2wA3bA/lvZfpFReZ5XItryPLdSH0G1RN50um2kSVl0aL5umjK+YgWeCmgMFrT+XaI4Is0y8tTWlCuVGt04InMpa2Y0qTF044ioaT3/xOQKhB+UM0qZ1gyMDBHWGyW3WJIkEKhSvVbKXsFBU0BNFUYHxB0bPXQXIgIRUq8OsLhoM4o4Ta0ei1CIsDe3YtC9+R9th/uKiARsJuB5Xnk/NIHNqLTCd+JyHgGeCvBUUZ7x8Xz7WnHddo6qRymU57YWLlVuh2VxQ4wF9N2VTINKFc9XVBzNVWo0nW6XhcU5ZudtWXPTps1MrFhJxfWjKkGIkB5jI6Ns3W7RWlGnS9dv0m67wW188A05OR0nBeDplFXjKxkfsxD2hakZOmGLvGqRoADCZNSqiiAcQjrU0/ySsfyEXm9J53mOH1RKjjQtJSoMSikEIexMRzGkDI9SePpD4lVLM9TTiLIluwLmLI3ACInSPT4+T2ikMAihS5SlQFq9paL0V5SlEXguq/ewhLRlRt83/FtM5QopSNqLZYZjfJ9cJ+SiN4IgpURIj8QRQOcO8q695VlPUeatBcsJA6Tp3QPj5upE3iNP7c80+xGlhQkhaASy7BEbHSM05Lmk6LrozI5VhGFvvUkjMeQlwlcal+sZQDsEn9HITFIpxAUzSSg8pJZuJMPyn2b05EqME27UWpO6UZhUpyRSINxzrbUmzmwfLwhdj7JSwVJ6ugzTA5lbXkzhyqVCashzhBblwL/Ic0ySg7ufQtvyu9BpSc9ldGrJjt0cV5olZFlu9/zfkDPtF47K93uDqmmaEycZpq+3MTM9Q54ZKo4Udeu2neydW8QPVDk3EQaSSuAxNjrKrIOjJzrHBH5JlKp9QWVogEgbksT2u+64917LVOCKpEGtyonjJxIODBEOOm2jTofMmyvrEhInempAi6JkYuvlVdckHqg0WLtqLcYIZuaso2q3uxAb1qwcxcvsA2WEsfBRt+iNKB4Iq7QKkOcCcmPluLFwa6MVwngYWcw2KKQMSpFEIQOkFyL7HJUnA4xU5HlRQjBkqUb5Bs/vEW4Wfa2iJ6aCADJJxTXOD153GMYY7t/0QClUODU1xczMHOMOlKGCLn5QYWJ0ggXHnu6pgGZrAX/WHndQDBPUQ8tg4IaAo05GPiRZe/B6AHZv28Xs1B4r6e2caTdaZEjUWbt2JYkbxVfKo9PplNLYxewNUK4RVQmphCFJ3tvc/EqI7/s9otpHpaPqnz/Dsjl4fazjwrGri94aka7fqQtuRZ0BCULkeLIovXsI0VfmM9g+quvx2FP3IOPW3KC2FKVku5SSigfKDckrBcZkaJ2Vf6eEQHmGSt2tdVwZ0uiyDiacg5RCIh2YQmltAzPV2wpTcpDgOQbxKGrbPnHhoPr6uaUJQegptDtXnhvQhtwYskLRFg8/DJbdazvmJUtmBg9HdCt64AUlBFmWoopSZJqhpERneSl4mXZidJ4vayEU/woXqMvMMnCoomfk+RgpLejBgRiULxHKJy16VK7g6MJpe35yMmM5Sk0BjxeaTFLysebGkGHItCnLsVrndr3kvc8Kto9ezKw+0vO3XziqNE1LpVrbj7XT2iXrd2bRbdu32YG/LTtmWJGkJHlC101L16s+1YpPrlcz5zamZrNFrVaj7aj/m0tdPM+nlcQsONXZPU0NzYiCs7de7/L4QCErIbhoIe12ycjLLwqcsxKUYIZMCwItStn58eExRgeH6Ta7LCxYAcQsTvAySUUqTFxEJ8Y+UH3CjUI44IPrLYksx0hRsLwghEJIhUcIupit8sFITIFYEwrhBSg/RDqlXiElWnrIwpktG2h0vS1jJ8WN1qVDw/PQWVo+OPV6nUMPP4xOHDHvMqq5uTm2b99ObcA69yCsMDQ4wuDICCMu611sNem0F4kzx7DsGwbVMF4lKAEv7VQzN99k5aQFcqxetYaZ7TuI20v4LgruNmOUl3PoutUsLtpgZnLFCubn55lxiD7P88jTlNSBKsAGFyr0S7HJgsVbKdVzVDwKTeT0NCy0E73RvcwbS7PjKxsoCuwgrZCUzDA6j8FEIHICz2bMpW9zqYcRFqNrcoEp+iTSNv0LcJEQ9uzC9KHxpEHmaY9wNsvJswRtcnyXQQskWiflcbUQSOyskykdhbDBnucRqF5PTmhB5sBCcRzTjSI0pgfwqlXBmDKDkphl0iT2ugVZp1s+s8oxbuSZsUg+QAuD5/l0o6S8P6CX5RKidKpghEUQCikxaYonbBCcxhF+WLXzXaXzyq3MfUHp5DJAo7UNhgFfQdTVJO6zeoHG9wMC4ZczqkZYFd4CSAICowwoKLQdc8+gcg+T5yxm9hpzY8iFKIf78STCaKTssdFneW5nykqSYlB45FqQuT6a6ZvX7rf9w1EleY/6x/fxPAXCI3XRcpxmVMNKqZk0MlTnhJNOodVeQrraQ6e1wOYHt7Br+zY6dbvpTU/PcdIJJ9Bp2+xlZn6OtWsPwa9XqbkH7LDhYZIsZaljN0+koT4yAqFP7DavVhzbiWpdsA730HGFaQE5gu3bLc2PpyXbN28naxs6zinmWcZIbYS0GxE6Z2qk80ruc3geZTRZPLxaCIzxehBDCcoLUTIE0Wu4auOhC2QQymZVqoLvnIDxPMsq40qayg9RykepHjOGEAJyTaY1UV4MTgd4viqjJeUrRkbHOWTdoSXLw4b7NjI7O8vsrM0em602flilPjBYcjR2Oh0QObunHaY/9IjyhKBe7T0YUtFpx+i6/ZtVq9Yws3oNSXeJ2A0XLjU1SdKlGipWrrAlwpGxUR7YtImpvXaN+JVqD8HlysppmuKFlJRKWmukUK4pb09vHoWuypCWn1ub3FLs6Lx3J0QOmPI+KixvpkAgi0zAs/RTdp90JSqHPKMvujcyx5jed2Ayg/BA6oI9RFtHJQSyoBnDwyRZCRywJa0U0OVzo3P7f7nLopUvqQYhgfLxC4ejfLe/eKwaHS6vKde6RMLNzs+hky6Zzktaqeb8DEb0DxG7cmI/67sUhBllwI2wtFC5kWXWD7IcMC8PZSTCOdTizhXbQa6cZp0MyE1U4r0SuvhKkGcJnquoBFVb6izpwYzBZHbPKhy+kh7zG2fZu9MiajtJSn1oABkEZEVQoBJSQ6lr1w8YKfkQMzsGY4whF3bf1Ai08UoKJ4MHQmLQJVBEZ6mVLCn2vkxgcolJJboAfKQPj/vbLxzVf8Qu/+frfqv3bfyX25a/cM/u3/g3n/r0P/3mA0dAZKCsQCd0gSN//3ju/+Gvf6trO2AHbH+wb3zswt/1JRywR4k9/e3v/w/93X7hqHzfL6l/wjDEGEO73WbW9T927drFYH2QNQdbAbDR8ZXc9otbf6t+wvT0NJ/5zGfQWhMEAe94xzvKczySfe9732Nmxkb9T3/600utJoDPf/7zbNmyBYAzzjiDk046adnfCiGY2zuDn6bcdeedbBuX7G7aaG1QwqGPrRN3I8KC1sXpZZXpv7C1dNt4LiJKaccoXCnGk74VO/N8cGAKo63OVv/sS9k8LrIlKTFClqSQngpRLsIsdL3AZhq5EWSF4Fmt5spzBV2MpFapIr2Dy2NhJHtnZ9jt5p/m5hdIMk1QqTI40Iteu902reai+258OklMdbDB5OSkO3aAyXLmF200OTQ0xOTkJLPT2+m0F4orpN1aotVaKAe3V61aRa1WK6G/vrsmrXWZLUZRSp6bvrkS3RcxPvoyqcL2x77cddddx/XXXw/AkUceyTnnnPO7vaAD9n9sQji+RF0Ax4zVw9IG6XrUMt+Puf6irIV2g2LX/vhGAO7/zg+Wv2k+6v33pu2/9bFvvvlmXvKSl/DYxz6Wr371q2zbZvnq/q3Bzje+8Y1ccMEFdLtd/uEf/oH3ve995e/uuusuLrnkEgDe8573PMRRAajJFfzgl99mqSGYikf4yg0/RynFB973HrKdN1CvL+ItOAcTCIxSZIHrNQUeqbSjE0VRXCoPUl0ig4JAo/wUTY4pgBKeD3qYirAOvyoCVO4hkhzhHI4KFJ6vqBW9LwxkGtnuknUdmaUKCYIKlSBAu7KiiQyyoqi4XhdSEiEQtRHG19oS3eNqg9xz192lUvPw2Aj/esvPWX/wavK2ZU8fGR5mfOWqkgV7+46tdJYWGR8fZY9zXrVqQGVooEQvhUMNwvEBdL2KcYOCfmME6VeIkwojY64nVvFJdVoODkspaVSqaCNJnFx9YAQ1IVHK3qO9uSZenEe3W1QcZ2GUZkBP/fWA/W7se9/7Hh/72McAeNvb3vY7vpoD9n/L0ljhxijJMtsHNw7UBSybMeu3/cJRGQFeH+rmt4nwHk6d9ZFswwbL+hwWG+2/cQ4hBAMDA6xatYo8z7ngggu44IILyt+/4Q1vKP/7iiuu4KMf/ehDjrd7925+8APraJXnccghhwAwMDhEtjUjSRLqRd/IwWXLhr9wJJxSUIywS9sGLmU/pOdhhM26hCqUfBVeRaGcXAmhRHuaxCQ9EIaUCF+Ag8Z7QYD0AtvMLLqYykcrTerpXmNYKYIgKOVCpPIcXDkrIccjw2OsXnMQ07un7LmAqN1h48aNZf3/2c/6fQYGBjDOCTVbi+zcuZOpqSmGhiysfaBRJUsiDnb6VMr3GR4aZWJ8kqhtKWSmpwI63YiZvbM0hm0mNj0zR7PdKZGRWW6IkxSpKmW7OteGJMlIXBk8z+1wZwESAag4NuhHo+1PrBzHHHNM6aj27t27X13bAfv3Wf/emMQxqRvA16lGa/ccFsPE+v+xHhXAWWedxcTEBC94wQs488wz2bBhg5NIN0xOTnLOOedwyy23lKUfgB//+MesW7eOt771rXS7XVasWIExhnvuuYcoinjyk5/Mbbfdxvnnn4+UkieecBynnnw8P7n5FrZt3cPf/93fccUVVwB2vqM+WCNqxzztaU8rm5ZXfu3v8MZXMjP7IAOmw/r1Fmrttxc54uiQBxdyFhctWnHNYMB0lrAtCxhSGc84YuC/+C4esAPWsz9/7Z/QXoqphlWLVjMJTz3tRMZGRmh3Wvz6jvvYNbXA8MgYUgoOWTfBGS98FipUSOXxmU9/kW7Lgoee/dzf4/HHH8013/4h99yzGWEMxxxzMC98/u8BMDe3yPe//zO2blsEoTA6ZXJVnVe/5kw+ctHfl9fUGKjxwQvfxN7pCCE0T3nKYznjjKc5qiNrvu8TBtVlQYcw/ewvy/9VDlGX57mlYisAD0ayeesO9uyd4djHHgfA+IoJPM8v2RMynVq0oBAkToUhTVOqfrCsrFycq9/J9m/ahZ7UQ/gGHTt7M14sX/MQJbhDCYknZSlACBAohecJ4mJmUGuk5xHFHTqOqxDguzd2+PVtvwJgatcO6kEFKSDJnJpDJcBrVHn8k08F4MGpnUzPLxDnPfReLWgQqJA8TemY5S6kgMfr3M5HXf/XH+L/hu0fjkp55RxTv/2mKOqss87iiU98Iq997WtZt24df/Znf1Z+4a1Wi8MPP5zp6ekyo8qyjIGBAR50hKc7duzg4osv5rLLLuPMM8/kjW98Iy984QuXnWPbtm28//3v59rv30Ce51x88cV86lOfAuDEE0/kc5/7HL/85S8599xz2bhxI5///Oe56KKLkFJy6nFHkEQdbrj+J3hKccG7343Z/H02rziN//3NKzHG8IY3vIGPfPgijn3ccbz1rW/Fm70GHJFnARk3mbHKwwWEXMoCQIxysx4y9KHigcuotJcRmQyTa1QxhIdEKEVk7MKtqgAT5HSjjNhFNIqcVBlUnhI4ETQ/VAQVH+nQgoXWlMyV/e6wdEiHH354ibrqdlqsWLGCmfk5HthwPwCHHnwIqx9zLMPDtmc1OjrKrl07mJ+fJXbilkuLPjO+R82p8I4MDTIyMsaagw8mdbDa6d17aS0tEKUZkUsEp6Z2sdCMCKq2FGjwiHMIfFlSTykhyYUohzwRwkod5HlJ81L1e1n3o8nuvvtuXvnKV/KhC/4Xa9euLV+///77ufIfPs0xRxzOpZ/5Ie957wUcf/zjy99PTU1x0UUX8rI/fjpHHrOOihzmY5/8NHme8+73vJ6Tjz+Su+/cxqWX/h0Ab37Ta3j5iyW/+MWd3PjzXbzjf7yHiYmJ8ng/+MF1/PzGW1E9LQzWrjmEc889lxUrLK/kj370Q/7xym/zylee0UczpsnypJz1wkgQeln/0TglW4v0c/M+Tqm2IAXwpF/OVRX9V4uceyh9kpQSv+A/FBap28/9ByzjkbTX0BscLpxY/2v9FviV8m9kHzIQ4zSqjCXeBauUHEVxyW0opSSOY7JUkzno+eLiPGPDFWq+Gw+J9iJknTVr17L+SPudHn7MMQyvXIV0ZfZrrv8xu3ZOk0QpCPtsLOkmgYgQwqOreoFBca32vuqHLePFnW4536hTQ55bOqZi1nG/zqg8XxLlDy9k9tTHP55b77uLbpxRH7CiamtHxrh3yx48z+MjH/kIn/3sZ2k0GqRpyje/eTXNZotnPOMZrJgYY/XEaHmsM888k6mpKW688UZOO+001qxZw+mnn84XvvAFWq0W3W6XK6+8krvuugvf9znrrLM48sgjueyyy/jEJz7Be9/73mXlw2rVRnAFyODwww/nIx/5CDt27HD8hR5plrHagTHqjTp+GFKp1Vi50pa2rrzyShqNBnEclwtXW/xub/Fq7HS/e3ZTnZOhXR/HwVN9ASQlPjbLrTKrxnIHAoS5T2CCUuETL0f5ApkbtCsc51IiVI4IPHynEeZVlHWEBW+aGwYW0iu5zTSG8RUrS3j6rh0xAwODVMKwjHJvuOEGHmtEmWEefPAaut029913D7OzFrwSKMnI0GDZS1wxPsr48DBjo5PsaUzb94Q1pIpIMsneBVsO3PDgDuZbEV7g2DM0xHkXckNqisHlkDQ3JG5TEp4kDEOE8soHPtM5j7binzGGj3/841x55ZUIIZiZmeHLX/4ytVqNY489FtB86Svf5TNX/C1DQ0PMz8/zxS9eyTOf+SyOOeYYLrvsb3j1q/+M//Xh1yw7rkdOVew7J2Qw3Q7fvfZeLv+bzwA2GPzGN77BihUTDA4OMTe9G9O3Yb3vfe/jppt+yu7dUxx33PGcfvrvc9VVX0PrjOX7Wh/hcvnZevOIhrw3hlAIjKYpSZqXmzlKPsRp5HmOEHlZite6x4hh+oags7THz7ls4HYfR9U/XN5/rP739JsFIXjoUs08Red5z3EBwrSJ47jU55OSkki6NxMlGR9IeOIJVpT0qU9cz/pDD2PVyrUEjqSzGafMtroo16eNF5doz8wjZQ1fFUP5KUmaEngBSbVveNk5XfsZxMM6qrQTl04pzw06t/e3l4k+5E+A/cRRaWHIH4E3d7bb4exzXsNRRx1Fmqbcd9993Pjj7wP2i1BKlXM6r3jFKzjkkIO59557edPrX8+xjz2SNEnLhdJsNjnnnHMYHh6m3W7znOc8h5NPPplDDz2UZzzjGXzwgx+kUqmwatUq1q9fz8c+9jGuuOIK6vU6v/zlL3nHO96xbBFt3rKZ0576FC799OWAjWLOO+88TjnlFK757neR7emCUaQ0b5+I/YGN93PR6/+IajxHEg4ijvJBa3Su0Zmbupe+XdRu4tF4oKWxktruNe0J/DjCZD1VVGEyC5hwm7AJFcZXJZGsCSpIz6fmSfAL6iVBTUlqtRBq9lr9MIDAo3j8NQIhhZ2rccMdvicQ0mN4dBywYpOtxQUGgpDVq9cAMLVzF0s331QSxx57zGM4+OA1tJqLNN3gcNTpkFRCZvZYp7S00GR8eBQ/rJQzYkkG3cQwt9hhOrJza/ds3ML0fLtcC0mmaXZS2jEkBamoTNBal44qzlKkrwirgQWsAFmWEDzKwBS33347L37xixFC0Ol0eP3rXsXzn/sU9u7axMXf/Cee9bSTWFgyDA1ZUuK3vPl1XPyes/nkZX/Jhz56KfV6nWc/6wy2b9y87LgVTzBc9ZbJiwsBP/rBz3nTm98M2H7uX1/8dl5/zjOZnd/F333xC7zsRU/i13fsKv/mq1/5ClF0P7+45R4+8Ykv4Ps+a9ceSpYmhC7zllLY4VI3larxeoGfLqL+XvYida8n8nCOIs/z3oB7wcpeEPcK1ZtP6iPXlUIuywiK8xf7T3GuomdbvKc4Z3kcl4WJ/vume9I/WTlEnZd/nyaWaLter5fHaXcihDBUHFuO1pqTTzmEqOUkTjTo2LAwP8vcon3ejKoRiIDbb70FgE33bmB2ai9DQ5PIwB2nlUMukYEiM+1ln6Wcj9PiYbOjLE5I+xxV4azzvJcZP5ztF44qy7JlfSSABx54gHPPPZfLLrtsGb0JwLOfdTobH9zBnj17OPVUW0tttVqcdtppnHfeeQC84x3v4Hvf+RpTe2bKL/PWW2/lox/9KGvWrOHb3/42AAOOm25gYIDzzz+fV73qVT3IdZ8ddNBBfPzjH+ed73xn+droyAifveKzTE/bL7nT6bB27Vpe+cpXMjoywodvuhpEfdlxcqPpfy7+5pMf59VHeRjPZlg5Aq2l5b8qHoIMywlYUB/5Ghko6CsrGJMTdJKe5o99FTCIyG7MSQL5UuSQbTBXbzA0Mk59cKikgtIGom5GTUtouIdHSawsaUEh5WE8x05NAcwISbsRg6OW9l9rzbY4odtcYmLclmxMrtnebHLXXXcAsDg3y8T4GJPj4+gjbZa1ccP97Nq+gxUT9jgLCwtk6RoCv0rVUWjVB4dZanfpxCn3bdoEwKatu5mfb7EUFSUdTavdRmtKzbI8N0ilKBxunKQYwAt6KrT9PY5Hi911110861nPAuBXv/oVpz/tJAIJWdTmiccdRj2QHH3MYwD7vdZlRJWcZ5xyFA88sJHjj388J59yCnfe2Js/NMYg84zO/N6SaxEs393dd2/kzFcdA8B1132f17zsyTSUpjFR5+2vxI5ADAAAIABJREFUeaaNzHUvGv/Zz2/knW9/Lnt276XdbjM8PMzIyAitVosgGHLnE8ucjhAGNzbfO3feK73JPgfT/y/YCD+O45Jbsj7QQEqFt09Zz5gezVnh3PbdaJeRArieVJIs11zatxxox0Wko1tyDk8bsiJPzLXjcJN9TjChUR8sFbfjuFuyyxcZ5cDAEJgOPrbMnmWGLMnQWVwOXHc6TWabKQ/cb/WpFmZmMUlGHqUkjgUo6Wh8EyKMJnNUcIUKRLG1af3wTifrpsvKrsVnLzJo8wiOar9lT7/00ku5/PLLUUqxceNGXvbyl/H7zzyd9773vczO2eg7CIJSTC0MQ6688gts27YVgLe//e0sNjvL0tGFhQXOPvts3vWudz0kLa1UKrz+9a8nCAIuueQSzjvvPF760peWv1dK8aEPfWjZInva057OiSeeWP68uLhI1aXevy1KKVuc+a3fe8AO2H+G1ev1clMeHx9n78x8+bvUBZGLi7axL6Ukdo/OwlKrDPSazSa1akjRD1JKkRSlMKfjVli1GpRZxeTkJLv3LpS/60bJQzMc3eNv3B9nvg7Yf77tFxmVpKeeCdYTh2GPqPass87i5ttvhgx+9OPrWTthI+vJyUm+/vWv8yd/8if4vs/ZZ5/DOef8OX/wB3/A9773PeLMsLDYWba4X/3qVzM4OPiQqGZ8fLz87+985zucffbZrF69unyt1WrxF3/xF1x44YXla8VD2h85FKUngDRN8KpD5c8GiNO8nyLM0jJKD+1S31yDzg0ml+UQXBZnmNxYGmOsuJrl+BLl8Fyepah2r0aO1mhjhQIzt3m0TJMM0+PDC0LGJldz0MEHl4qrUZaTDUZUU4UYtZGXChWh8aEsW7qBZCGXsR779XrZTNZpxtjYBDtb7TJbqdUbDPmU9/7BzZtYmJnh8MMOZXLCZl2dpUXidqucfWovNYmiiMCvMDRim+4jY5NMzywwOz/H1p0WDr/Q6tBOMxZn7SYrpS3PRIkuNYlU4FMfGMQrKJXMfAmiEKKgEHr0bYSnn346n/70p7ngggs46qij6EQ+3/zOj1hcXGRwbC3z8xuYmus9L8ef/HTe9xeXoysTvPJNhwPwta99hfNedCTX/rw347iYDPCm9/09773wkvK1LE144tGr+MY3ruKss87mmc98Fm96w1cR3/0pSa6Y6dZ46Wlj5P2ZrYE46pBly51YlsZkxftEVmYjYL/PHjWWG08wusy6JMujel08R9hsqtlsljyWjcEBoKcrpclLtF4BXjDG4LtMqPjZXkcvUC72iaJnVASo+2ZihbhjkVRKzywTmCxZqfr6X0J41Gq1kn8wju34v9Z52ROqVqsgVHnPFuaapFFGrgOEsdnb7Owsd2/cXlLBRVGE7ynyNCPNHQgjtuMyrSQlC/uxBb1AwhhBmj9cRtXT48qN45Xs69vt16W/UHh4eW8BdjqdkqkA4I7bb4e+dVtRvRT8SU96UgmOeMtb3sIb3/hGsizjXe96F0cecRitpYWe6q3ncdJJJ1Gr1bjlllvK41100UX89Kc/JU1TfN/n2muvLRdpYXmel/XfwvqjzMLKGy3sgszl8pJmlvdScbAbY9xO6bjZgiQDrSWekaiSdcIiZAopDk9opDLITGMKeWgpMJEhLxSP84xU56TaELkh2Hac0E0zWg6uqmUHT9eYGFqFP2gZr02ckyuNzAStjv18QaBsk1b1+Pg0YIwumenj2IInvEJvjXmGR8ZYnF9gdq8FSiwttVANxcFrLLhESY/F2Rl2bN/KpOttHTS5gpWjo9xxu6Wh0klGlqT4KiyJa5Eec0ttHtyyg6ZzaMZTlifQwQB9P0cFPkYkpVz66PgE4+Pj5fcVZylIQZYbVDlb9fADh/8v2/DwMGmasnHjRo444gj+8q/+qgQB7Nq1i49+4M2MhR2+9tWv8LKX/xFve9vbgbeXf//gg5to77ybPVs8Wrvt3FylUuFTl/4NAJs393pXRmuG/ZQvXP1Fnvfc5zE+McHln/nbsudzyy9+wa3fuYSsL5Asikpi30yrD/UmnJioKZ/Fwpl4GAcmsnI6dmNMXTkyyzIbHPaRYkdRRLvdLqs1WZaVDg1Aen0lwEL1wBh03gey2AeGDj3QwL5ZYZZlpTMBu095nkegXK+0lCCRy34WSGQBFJEGGVYpmOKzzDKyCCEoegiBX4E0ARwLUAWyJKbTjlls2c+6Y+detuyYYuMm+53NNlNSAnwChGu4eyKwZb84K8m0i4C1YM/ROWWrot90YoEgALnJXOlP/0b1gv3CUflIfNHb7Ov1Ojt27Ch/furTTuPa719HYAVhSaLeZnLWWWfxgQ98gC9+4Qu85KVncuSRRxHHMTfccAMCwWOOfTxXXXUVRx99NNdddx1HHnkkH/3oR3n2s5/NypUr2bVrF6tXr2blypW89rWv5VWvehUrV67k5ptv5i//8i/54Ac/iOd5bNu2jV//+tds3bqVr3/962RZxve//31e9KIXceONNzI8PMzWrVvZsGEDT3rSk7jzzrsIw5CZdotf3XYbyvfZOz3NIVLSWlrkzjt+jTHQXFhk49K2spwipI8UFTzhETg4qI+kEgS9TEzlVIUlBU0cE7NE0EplSUq51E2I4hQvCFl0rBOLS13LpB7YTLAxMIBRNbbtnmM4sQtkxeQqwsYw80sROIeWVLvoLEGG1pkhJVJ6ZEaUkWhYqbnJbXvNY5MH0RS7aQwMoYpMTCo6rSa/vOVWAI479jGsPWgNe3buYMlJoaxZOUlQq3Hi8XaGpT7QYO+eaUbHTUmzNT0zR63e4JDDDiPfYx+wqakpwjAkCNxQ8MwSyIyxsRGmXSlrME3tfErTztDESUaeGZIksdEoy4fCH032gQ98gLGxMc466894wQtewKpVq5mbm+Xqq7/JE457LKtHK/zkx1/luu9dy/Oe/0LWr1/P7Ows3/rW1ZjZ+zn7D45HGs0b//BkXv2nL+cVZ5/LQQcdxD//8zX84z99iXe83Tq2bmsBpVdwzlMnee8bzmTo0JN4/vNfyMTEBLv37ObKK7/IS08a59ebHuRzn/ssUkj2TO20Ok6B4m//9nNMTEzwk5/8mGc97cVo12+VvsLz6BGeus9ljMGIh3Y4/FJRXNFptl0GYkEAtVqNNE3LwLTRaOB5PYZ9C9yQDhLfg1VLbR7S89o3W+j/2R5LOoVpVz0pJGmUKp2n53mOBb7nvJUK3Gv22a7V6ra64ppvlUqF7kLE8PAwU3ssrdn4+AogIHSUZrOz29m2YxejY6uYnrUo28rACJu23cSeecsmk4oKic7xMFR9u29E3Q4yhcGBATqJc/ipplars9T3bA0NjTzkvuskLftQQmcYrdHo8nM8ku0XjmpfE0Lg+76FW4YhX7jyH/nwhz/M/PwcT3rSqXzxC59n68yt5fv/8A//kA+94c/5+J0/o7ryCF772tfy3Oc+l8s++b8ZqNd52ctehtaaX/3qV2zYsIHPfOYznHDCCXS7Xa655ho++9nPcu6553LppZdy66238sd//HLWrBzhec97Hk94whNI05Tbb/sZp516KtoY/uWbPyLJYmTQ4ayzXsr0dIujjz6a0047jfPPP5/HrD2Gb/zD5UyEEtla5HWn2T5WLQOeup5T/K189XXPBeAEHT3cLThg/wc2NWOdVyfWdKZ7mfHOXdPs3DW97L1f+9pVfPKTn/wvvb790Yo+1B+c/ng23v1zfnjNFtKoyZrJUU447kR279jKk084ypbNZn/Fbff/CJFHvPKkCZR3YilPMT7c4H+85Eg233c1N9+0yEtPPZ4zP/ISltobaC7Mc+rLjyOLI8JA8efPPIzJ1RVuu/lv2S19xobqvOtFB5EZzVtePsHM/F0AXPQ6OyD8ouf/HjOzi/iB4MknvZBGo/Y7u18H7L/W9gtHJXOIW91lr51//vm84hWv4POf/zwTExPLNpNvfePrAH14/ByBIJCCo446iuc973mA7YX87Kc/ZdvWrTz9Gc8o+0tf+tKXSqLZkREbXdRqNXzf58lPfjKBH/LP/3I9j3vCqaxfv54kSUiSiMhdYijrSCHxhCFwswX9aMDTn3wa1371cjqLHUJPMNhwOjKLHdrdmINGAsZqtozW6WoW05xijCNODJlOkUbju7gw8BTVRONORc1ownpK6Ac0ajbLaAwOsBAJFjvW8UW+TzNJaS8uUXWSGfW1Eyy12kzP2WjJ0y3CWKM6XaqOTWCkEzHZmWRoZJhghytZpBlKBQw6SQFRU+AJPOmXqCchHa1TCVX0CKs1ao0GoUPrSeXRmmmWs1e33fJLaoHPQZMr2Onmr37w3e9QCUJOOeUUACq1KusOX49cMcGC661Vq1VGxkbZPbuX4SHXW+vU2bJ9G0Xw/Ns23YUQDA2NlJlhs9mmXn90s4OsOWiS0DfM792NAUZGx/FETmvBrpvJ0SE8s5bW/AxRa8mWtNIEkWck3QhPCdavGmHtaA2RRkTtDiEQDtUYbTRIgoABtybSOOXIg4YZdNG37ax4IBWNql1vcbuDcKXAocEalUoFpWzfpPjCpdZknqQsj/VBw/uRecW/zU7LvU2UhNVgM4Moimg2m2XmXSDTykxIi/Lv+rOl/rmm/r/pL/31z1X1z1H172XlkPBDQFZ9JUBjsNhe19aQdqylKPMZbZGvWZb1zVFBHAckTk07Sn2WupKF7XuJna5dLhWxFqw62NK+mUqVpVaXZrMN0n4HvoTuYoude6cZbNgWTbO1hDZJmQUanRJ1etD1wtJu3OvZmQyti1LoIwxQOdsvHFUUJfZG99nKlSu5+uqrWdi+jbFDDuXQdevIXB39nl/9AoCvfOUrXHPNNdx2220cXKmzZc8Ovvutb7HpgY32uJ029dBw8UUf4PK/Wc26detoNptcfvnlXP2NbwCwebNlqRgbG+P8889n8+bNTO3awvhYlWv/5btsuO9esjynEnokHZueBkGAFhIjO6X0db8NDw4xONggbXl4nkE5mpF2arW14lRS8dxgXq1CoOp02nbxdE1KhiTPDI5LFi9OqClN6EABqYQwSlFVn6HQOqrx4REWREDkemt5rukKwfaFBeruIfSl4sGpXex2PaMsz8H3CcKwBDwEQcDI2CgTExM84Xi7WLvtNsrzS8BFtVIDIRFClkAFIRSGvqavUgS1BkMjYwwO2WCg2hhgLB2m4Tap0JO0Fxd44J57mHc6UqODA6xZOUGl0H/UOQ8+sJFullBzjBaHHXYoN9z0MzZuvJ/qkGWi0DohjdrU6/++Gahjjz2Wd7/7PYBh/fojeMtb3vzv+vt+U0r9yate9ar/D+Duu+9+4Kabbjr1P3yw35H5YdWCEnxFy6ngpmgyBENu9CAjx5MeYb1RMpH4nsLkmm67iefWrdEwNzNXblgDAwN0OhHdbrcEPSRJQqsTkeUO+acUKggxIqfbsWWlOFqiOtoplWGVkFaGyvMwjqMyF5YpJceVAp1wobBiV/Z6Cih0Hxy8AEUUm7nOU5IksdplfSMzpk9XS2vzsI7K65uj6ndS/ecypidK2F8K3JfR3/M8CoIoIWzPw+iHOq7ClymlMHmvnVUcM00zKpWquyYIa2MsLFgAUpYFKNVgvtkqGV2mlxbJheDk37NLd826w1DVkPn5RTJX5jNxyp4du9izcxdT26zDX1jcy1IzRQrHYZoJWnEPzVlYFiflfTQmxzhARc/2YzCFER5B9eHTeN1p8Z2rriLxyr4lKwfsZX/uc58DbFT05hedwR1bNrFtahszuzaVfz8wMMipJ5/ERZd8olwwl112GbiH8I/OfDG//NfbeP/7318e6+OXfASlJGPjNsrrdDps2/RLNkXWCdjZDI3ve+WAYb9t37HVNkODgKQTQdyrLVcrdTxfkgj7ebs6YzExzLgeUSuRRNrOOGjXuPKNYUDnNFxKJbUiznMr7ubogRrVGhMr18Jemw3s2LWb2dmUeZOzZ846Ji0krSxlzjWSZxcSEiLqlSYVl+EZY6gszjEwt5fZnfcAcMjhhzO7d44jFu2Gc9DhCSOr1hIMjiCl7eloq/ta9gYEBvyQ+kCDkTHLDjI2PsHuPduY79jsKfQkE8MDrD7hBCZH7L1+zJFHMDhQJ5y0KEAGB7n9Bz9gz949HHH0UfazDg/xq7vv5LjHP46o24t6FZapYMvUzvJ+PxL0v1gLz3zmM/nrv/5rAM47723MzS4x6hjZ/72mlHrsFVdcMQ7wzne+c+g3vX+/NOGRCwtOSZxj6KYpcd6b/8m6baqeh8gT2h37HHlGI7RhZmGJqgMbVKtV4iQhyVzWjaTV7LLUXER5dr35lRAjBO2uPbYhIxMx2lCqzioVoJtti3wFlFR4nrJIYdeTEcYizoqekRQKD4nnmbJhZbQgcwi/qnMWSZK4bMYBbOKYJEnwPI/BQbsO9l1D+zq7fV8HljmpfSmTilm9/qyrn0KoQAEK1TcM3HccYwSYHlIVnHoCPTBQmuYYI0iSjGq9bzwgg+k9dj/YvXuaOE7RwO5pK6n0qw33kZm8ZLMZXjHEwesOQUpJ6NCyoSfJOhFpt8P2zXZPuP32O9jy4DY23Gf33q1bdqCzh/YGRd5DJltRTSusKIV5yHv7bb9wVEGjQfQIsEStFBk4Fgb7WvIw7xNBhU6myX3Jaac9DYAbb7yRLHvo5DnA2kPWATA2OvGQ3x100FpUqEoOsm636xatdVTtbhtDwlBFIB/6XXDVVVexZ2o3PppWC0KXdQUKBoaHQbTZNW+/4L0LS+xaWGTBbQIdPBIjiJIM44gyh6oVhkPFWOjYzHXACJCaXvwhfcXKg9fYkwD3btrIzr17SHTOnJPQEF7IY445lpVr7OZ+z70b2Lp7kVYExtEq2eCti5SC2aa9Rt/zqVQaZC5cizJYa3xWqBphwzqqPDNI1YvwMBqEwA+rNAZtJjQyNsrxxz6OMcdwcO9dd1LzPU447lgWpm3D96YbrsfkWYn6PPWpv8fR6w9jZHGRkRG7ccTzmjVrVzI4PMDaldYxB2HVNqCNx3Ne/h+ThahVawwPDyKE8MwjdHeF3bV8IDPG6H1+l37rW9/SQRDoBx988OGWafE+DzD7/v3+YM2oQ6fVopMkFkkJRKkm91QJQAikpFYJMHFMGtl1I40mTxNSIxGx3XQrVav4GgZ2E1WBDc6q9cGy1JZrqKoaiduoUwNJJ2Kp3SnLep6XE88vlBu8VRdQthJQwME9jRCqhHQjNUIDoo/+z7iRDa3JXICZpilpmpclq9QBbqTs6bbZ/aM3lFqs8X/LUf1bpedihqyfsaL4bFprixbO83JvMY6usChPF2VGY4Sll3AmPJ+02ynP4XmeBYUIW/qXQpHlMVlqz99cmsMPKkihuf/+ewHYsXMrJ550Ek95hu0LDq4Yw/MFcdIhT+zNbccxXqYJfcWaQyxRwfjkCEIr7rrLHufGH9/MffduYqGHiStuEkL37pF091b8dyj9HbAD9p9lURRx2WWX8cADDzAxMYHv+8zMzHDhhRcum4kDuPqb36DZWuTCCy/MXve61zW//OUvv2txcfFygOOOO+5TJ5988h+/+93vHh0aGhLdbpc//dM/nbr++us/u2vXrr8wxqRa691f/vKXJSC3bt26HeD444+/4tRTT30ZwLXXXrvphBNOGP/gBz94yPXXX5/Co45W8IAdsP+Q7ReOqpvnxPrhIxBLO4/lzCsABw8TiC4mMUtJQu55rF65CgDfDxkdHWV4aPQh7x8ZsfX2PH/oeVUQUq/VS2XaSlijWq2W0OU0kiRGI6W3bFC5sJtu/Ckib7FiOMSYVkmZpAIfIRVzc3PscsKJO6bn2LmUELtvIgklzSShk/Rap4utiGYMqcte6rpG7Hlo5SFcBuWpgCSJqbleUygkNSEJazXmdlukW5rGDIUhoWu4ToUV9rKIB0wO2ahr1apVrF690vaoDrH3qNIYoDY8ghqw97FWqyMRmKxXFN83ATHacpV5KiipYDw/xBOSuivzHnn4eupK0pyfY8cWO7cRtZsszs9x7913ArB3dpoXnXMOh6yeZNFB2Ddv2kSeRtx19+187cqflN/R4PDIsjp+mqa84Q1v4OKLLy5JgAv7n//zfz7ke7vkkr/iBS94QfHjwBlnnPEpIcT9xpgfnnbaaWdfeuml+6IsVu/YseMDz3nOc9YBZwsh1n7pS18C4J3vfOcagMP/f/bePN6ys6zz/a557bXnfc7ZZ6xTVafGzKQygaQhRCCiSBAEUXJp8SLQQINcQVGvtKhXBpv0h08Qc5tGm/amJblNECGiMgchZA6pMTWeeT57Hta87h/vu/c5lVOBbvFKKXk+n/qj9ll77TW87/u8z/P8nt9vz57n3nnnnQWAe+6555rXvva1vWvTuAhN0010yyYVZbAz4nbPzc3TbFQYHxYZhh3DwwwNFEhcrw880UnEbl418Gqi3mjYNr4foso6ph/EJMQ4TrYfCQWej6oZ9OTQDNPEjDWStkcoU4bVZpO0Y/bnqqlbaJrgv9Rkb51q6ILbUr7/pFdD2kIhFNFL2W02nSuKgq7r/RS6aYqUpWEY/ahIkNLSr60obIGfb5HaOI+sdkuN6vvB0xVF2dZH1auZhVvOlWwFZYQxqgKKovbBE1GUoGUswqZEvHZcsvkM7XZ7C6xeJQraWJb4v+OoxEmE26izuCjm346JUV720y9GlTyf7U4dL/BJp1MMFEQmRA0toq6HYxpUW+Ial+cXWFlY48RxkfrruE2GRwY48rTxFUVRn6RAiUUPlZIILQiAZ8oAXhSOqhMGYF34UmaWloTQnQ6yTkrnAo7q5LkZqu0WStrhySfF4/G6Lmkny9LS8rbjz56dBqDb3c7afvbsNJlMBtcXfwuCoI8AAtGjEHa7z1j/CAKffDqFrvtibMslSdM04jim2mhSccUEr7gBngpmSTiBxDJxK1W6oYcpOQ6rfkgSgR2J9EBXgdBQwTLQpPSGnrKg1cKWef2p8ghxo8vGepWq7K1quy6thWVaEuGXjRSuKJcYLJfZt18wDOzfv5cDBw4wMTFBKSudj5OGVAZkPSrSUyjpPKpl99MhPSn7zTmYCB5AXe8jGtvdDiNDZVyJTHTsFJPDQyzPnWPnuCCu3bVjnKOHH+fb330AgO89+gg3vuiFpIrFvprx6Ngwey89yNDYCDdfJzgCoyhibb2KG4R89hsz/Xdz5MgRRkZG8DyP3/7t3+bEiRPs2bOnL8b3a7/2a/33dvDgQd71rndx6623xjfffLP6ile8Qrv++ut/Dfjqk08+mX3jG9+YzM3NfXtjYyOcnJx87t13321PTEwoP/uzP/uLiqK89Qf1YP38z/88n/70p6OTJ09qhw8fvijpywoDJfJJniD00E3xTiuNJmtLK5yTIKUX3ngjhWwOoghDFupTmkYrEoCZlFxgPa+LF0SYssDeaAtAhGbYtGSDqWlZeB2PNckokisN4qSzpHMCZCV+v43uef1UnOd5+F6IpoYYcjunKqAlRj8vF8cxcdCrYUlHoWym5Hpq2bquS6zFJimAZVn99BuI+a+qSZ+UVkk2603xltRb8jTghJAQ2RTm7DUOb0359chve45T13Vs2z7PoSmKIphmtrI3KEqfAKB3jSabjOXdbpehcplmo913gqqm0XE36HYEejOJOjQbHebn53Blc/81V7+EYt7Bk6NTVVXsWMe2LUxDfOh3OjQbFToxHDkjznX//d9i5tw8oSvuP58tU5Lgm62mJMmWVGwCUSyd1SY76YXsonBUVsoheoZFf002nqHRj6gu0PDMqemzhH5EatDijCQq7XYDlpeX+Zu/+Zttx3/ta18D6Hefb7Xf/T//A7qpMVQWD9p1XZRgg0pN7kQMkxgJ/dS2P1rbtlHVNu12m3YbDJngUUytTzhZb4sidMNLiC0Nq4deM0z8RgvUgKAXLSUhkQJhj55I11ENE9Uw0fr5f4OiZdOVTYETg4N0K02aK1UGHeEUh5w8qUTFskX0NLZ7gHw+z8DAAPmCbALWLPyNKpUooZESDqVULpMbs0A6Uy1TACsDqtmfdJqKZKuQ94oKJKBr/YnSarWIKy779wmnqAQetm2zc8ckzQ1RzC0OD3Fj6YUcP35UfCdwIY7YqKxRlCzsy8uL+EvLLCzM8dZ3/+dtz79n1113HZdddhkg2Eduv/32bcdsRXZ9+EMf4SMf/jhv+Xe3nbn55pv3AezevfsAwAMPPPDL+Xz+t5/3vOf9xNjYWKKqquZ54vpvvvlm5UMf+tD+Z7wQabfffnv43ve+9xrgGLDjBx3/ozDHcaQek9rvU1pdWsLQVP7+S18A4JpDh+Sir6DrPdVpnURRUTSjz6DdcT1cP+hnIqJQfCeJFeoNgRbLFTTWNqpMS1mXkTBmx64smUwOwxJjebVSQU02oecCTPB0QMP51EUJqkCUJZufxVuyH4q2qRflBwGeJ8Z6GGyCIHoORoAbOM9RiTqZSrJFp+pCjioIgr7chucJiYuewwlDofbtum7fUVmWha7rIqqzNwl3t0ZUSZIQJ8l5WlfCQW2iDnssOwL63mPLUXBSOr3w1TI14sQlDFyGR8Rad+01V9NpNwlkZsbOZdA1gyjwqG6INSvqdNCUhFwmzZlp0c968uRTTE/PEctEQcbeoJjbZBfqmaqq/UVCrBDng7CeyS4KR5VOGrj+BbwPMKH5BD5sdKCNSOmF6hTw7fOO+4Mb26SUNJ6ncKQpJphtl0hl0qytr3Ns+vzzvvig7ARPSnz6G/Xz/nZodx4/iAkjMXizGgxqMZMSmJjVVulEoo6ZHtBY2jj/3KPeKRo1g4pWpDucYc0VqZDdVhstXqfcaHGZPNdBB9woorEmqo7VjkrWi4kArSV+P2NByoS8IwbYqNakaIQMlwdJ5cVgWKxFlAY1mr2idNrGLJfQl/OES1Ie3nfRwyo5CcpI3CZuo0s9eBIuAAAgAElEQVS1kQYJXggKBdDGyA3tRVOFQ/EoUY0t6XzAUFRsRdA8IdGKiq6g6eDJdb+beDiKhklMXBfRaClQ8LUmxaI4qNuOaXpVBgtF7IyAwiOh65nxKQDMOOFrDz3JZYcOMSgnbiZf5tjJU+yZOiju4xkK1z0mfRBO8kI6P1utWMiSz4X4vt/qfabruqEoytRHPvKR//Le975X752r3W4n6XRaAXpExD+Q0uLxxx9fSJLkSfnfc9/34B+RlQfFQhpHoMtNjzmcYWqswP6dQm/q85+9l6WzZ7nq8ivIp8VANjWdyYkd1Jsd0rHY9Khpk/WNCp4pnvO5lQUGh0rMnjrOgHyX9Zk6Kydn2Tcs+hoH4kFybZV62MDJiHHiGAGuVyAVibERRw6drkKiKWiy10povwXocuOWskx83ycJI1JSBDD0Q7xOV6ARJcowjiIajWo/z67bFo3uGqXhHL4iWV9SFt2OT07yeNbqVSwjwbQUajWxwRopD7Fc3WRPiYOYJI4ZKAz0gQKL8wvojoknAQ9oJrGt0zWU84h7u50K9VqCEYlMkGmK9HlXEge7vo9p2sRsOurC4C4if4OuL9Yyy1FYXZ8jnTZQErGOrC/P0XHX2H1AAMmOHl9m7azLtx9vMHVAkBIsruewCxphJOZsKhdC3MVxDOo14XATM00xP87xY2epfEek6Hd4Br/0ujeRzohyybcfeIRvfuu728aXZsY05CbFNGwUXSGOFBTF2HbsVrsoHNWPwj719dln/Nt3nlp9xr+dZw2g8ePHDfcvxbbWAkqlEu9///v7nx09enTb8X1C3acxY5qm+fp3vvOdOsCf/dmfxW9+85vfG0XRz7z2ta+9ed++fayururAc7ad8GnmeV7nh7idZ+1Z+7G1i8JRJUGIrVy4ttyug6kIeFRH6qjYeoj7NPDv86+/CltLE0VZdjWF1Ieu62SyWVodnTsfPN/5bN1dX6hP4oexaw9dxrGnVmnWXNQkQe83ckA+nWXHrnEGZDrQ9XUaHYVaV7yKWluh1Y1xXZ8olA2X3gZZR2GgIDbtpUKWTNbBti0sS+xETDtFs9MhJYvbiWKxtloh5VhMjItINGq1Sfxun5nasUyyaZNMPkehKNJ6qWKBfKGA4zjYhmxKNgzQ9H7qJEbm6xNtE/GhwAVwJRCHxLK2piQx6XS6zzAR+gGNSpWzT52iKJt5D+zdh1Yc6Aswzi4tsHj6LDfdcsuWNJ1KKpU6j+wULtwz9au/+qtceeWV/NZv/RYve9nL+OpXvwqcH231bKvS6NM+d3tjYteuXdx0002/sH///kMveclL+Lmf+zlOnz7NJz/5yX9c89VFZmHQg2br2FIK3bM9gq6PbYv3+JrX/AL/8PVv8ulP/wUve8mLARgbHqFZbxH6AVFHzNPV2grtdpvIEM8um04RuB6akuDL+q+DyfDQENmsiHranSbBRkRoR5iy/mUaGm4cEYWevEaPJNZko2ivRylBVek3oHe9jkiN6Rr1logykjAhlXLQLRNFRnlo4CgFGvKYTqdDvdNifnmVWBfzrTy2k+GRcRYWRH/eyPAgnU4DP+qSzorIcL1eRTeHNjn7kpg4jPHCAF3C7J1MGtu0CCWvpEjhRZhWtw8z1w2DbrdLu9UlKxvsa/UmpmkSSOx9ksg5mKjYMq26trohjpEQ8kw6RxAEhL5LSabs4zjG63goiXg/jWqNU6dOsbC4xM59IkW+urGOu9FkzyUiwtUMnSQxUDUDw5Q1sygFqHS7XRTZM5fP58kXslx66ZXymU3ScSNmZs+HU2ydo1uZ5Z8uIPl0uygclRXFWOGFU3+v+5ksA/kUDx9r83dP9ELfpW3HOWaIpboohk25Lf4eeB5ZO0fG+OEcz/+qTY4WOHd2majbQtFVFFlUi32wdYOx4RHkWKXZDtEbIWqzR5KpYJkBHSPEdyVQIWWTz2gMlMSXhkpp8lmbVMrClKkPyzbxI7Dk4DZNh9GREfyWS1Uio5qrK3TWPXKS9mGolCWbTZMu5MgPC2fmFEukB4YoDJbRNNGEm6RTeIZO0Ec6qZvNJFsd1VZTYlQUCHziXoNjFGJZVh+YkstkiaKIucUl2rJmVywMMDo0zNiEKOE8fvQoJ8+eJZcvEISb+fdSqcRjj39v27O/+uAVAKxV68SKwpve9Gb+x/+4h8nJSW644YbNy5PXX6/XWV1dpVwun6fGCkK/rFarGVEUHf7gBz8YfOADHzBuvvlm9eabb77+O9/5DnfccYeY6GIBawPbWDg7nY5+8uRJ9u3bt+1aL0brpcniGKweo4lh0wjr5HJiUR4ZGMLrBDTrbe7/1ncAsDWDfXv20mg0eMFukcZ1XZeUZfebOUfKwzRbDaxEJW73KIMCSgMFLAn4qW2sEKg+qVQa2xSDa3AgT2W+TbfZa/iNUdQQ3Uhw5YbPTCzBIC6bZL3Ax7ZtDMskUXt1VEHa3PZcGtKZrqytsLa+wrlZUdf2w4Bqs8W5czMMDU0D8MgTx9mxazcLs8JR7d8/Rb22wb4Dk+zZLRb04eEy1dWAdijWqE6rjZoIwJAqQQhOKoOiKP05GgQeiqaSzuQJok0UYiZXpNvtkpXy8PV6vQ+wAEBNhFMKgr6s0NzcHJZl9cdvLpen0+nQaW3SGHmeh6YYrK0J4MrqSoXllTU8z0ORQKWNWp3EDkCiIGPdJIkDYjQ0uXHVdJsgjKhW632AS6tZ4+tf/zrT02LtvfTKQxw8ePCCY0y9UPOptIvbUSkmRePCKf6XPu95ZFIq09PfJYt46Dot6k87zu+soag2lhlTzAgdqWaziaGkpMzD2nnHfz+xwh9WyHB96RRuYxU1DjBxCHrw9AgMNAzA64rB4nshsZ8Q9w4KE/Qoxk66mLrYQQ4UHZyUQjYnoqeMo5GydeyUvqkCaupkc4U+U7SuGoyPj6P5Eadlw29QSbByKQYl92C5lCOTdTCzWUpFWf8ZGSZVGMTMFcGWGl2WDrZJLLv5E10lVlQBZuw3+PbuXjrXRMiSxGFAHMncduzT7SrEUlNjeChNoThAaaBFVy4cM3PzjF5yKemsCFDOzcwgQM0KHVnwDsKYYmkQy9lOl1RpVrnuec/lzT/5k4yNjbG6uspv/uZvMj+/gGlu5sHb7Ta33norN910E5/73Oe47777eMGNz4cYHnrooYV3vOMdhw4cOKC86U1vGn3rW9/6hWPHjqmvfOUrw3w+r+ZyOe/uu+/+1o033vjSZrNJV7DMr/m+P/72t7+dgYEBTpw4Ydx0000zt912244vfOELfPGLX6xVKpVv/ODR86M1W7LgdzodQgn11lBRMKhJ4FGzNsPePQeZ/Lc7ufPjfwLAww89jGVm8V2P9qAozKdti6yTRrPEeTL5DFnbxG126cgaSKvZJFR0PEmzFARd0qZNxjHpva4BO4023ySWZJueFmMa4Foqqi4GXhh7qIaOJ6Muw7ZYq1ZwXb/Pgh5FCXOzC6ysrPDoUaFge/bcaZrtBrWmmI9Dw2XyxQJzC4usNsV42xkqPHz4eF8j7YFHH6bVrHDj86/jQck1ee2hK7n2iheBKyU1rAgVBc0waEhnoSsq7Vaz38y+siqAYjt2TtKVNfrFxUWy+RzFYpGlBVGjMgyDrOn0N3iaoWOptmAFUcT9Dg6NkrJs1jdE5igMYwYGhjBNm8DvwdohdGOmTwvNsLm5RVw3QDUtOjLC3Wg12D0xid+PDFWCWBHMH3KMKOj4fki91mR9XfxeOpsnihWm50RJZWxyiql9e7eNL6GUvKnH1eM+3FxzL2IKpR+FnftPlwMQRDH733PsvL899fEbBGeVDGtVVccrunhSPM6Jc/i+SsMPsSVbQj6fxwwt/vrur/0z3sWzttWKxSL3/vXnOXTo0Hmfv+hFL+Kqq28gl9sUtXzb297G1Vdf3f//m970Jt7ylrcAsLq6+sjHPvaxV8jOftUwDPXlL385gPobv/Eb/h//8R9PAvnbbrvtxKte9Sr9zJkz8Sc/+ckgSZIn3/e+98U7duxQH330Ua688spJwzCYnZ1N3vOe9/y7JEk+88/wGJ61Z+1fnV0cjqrZwXoGNhnV9SCJKWdTpBC1jYjWtuNMXcE0wLY11toijdWKU0ShjaZur3/VXelgigUEWnjTUpkdQu9F1kRUVcVyntxkBu+0aQYBuhJTkNFJxg6YOTHN/DmRQkgCKKTTRIqG3KyQtiClmyRem1hGS5amk3X0fibN0mJCK0HJa+hSj8pxQNNjTFumEEyFlKVhWSaGzFFrpo1TKvd3fYEXEAUhYeCSSMoUU0mwbANbQuqV0MNtBURJgitrVE4Qk8QqoENPKNI2sSyNQG5xY81AcNOwGUlJ1GnvPgQPWUwSeSDTGhoR3W4AMhCq1moEQUihVMKTfIi1Vgtsh3nZ+3by7Dle9JKX4gUCfgui9mhZFrslwzOINN073vGOvpP6oz/6I+79q78i7WS46srLyZYKBN4mQ//Bgwe57bbb0DSNP//zP0fTNPbs2dMTw/Tf+MY38sADD/zN6dOn6/l8/pI/+ZM/ec7rX/963vOe9xi33377q6Mo+sqWIbMtX3HNNdfwuc99LvrSl77UCIKgCHSffszFaL6XoOsaqmrSaYt30mo0qFcbVNcFvDVl2LitgL27dvPCm14KwNkzc3znu4+yd/cUp0+fBGDHzgkyZhrTkQ23vkcpl6WLhhHI+e4GuM027YaIFkS9NEMmbdKNxCNTNZVi2sHtiSkGAYQRhAFBjxRaB01X8SVxajpf4PBTT/HY49/DccQGpd5s8+STh2m1WvhSPHCjtoGTtkhLKjW7UCQxTJRUmkCOt1Q+T+3MHJFM4UdtF5KYI8dP9uvIR44dxXulQ16qfudyOeIwYmVljZPHRfQ2UCrhdbq88pWvBGB2bpFarUFxcBRFkpSceOosqqqyc2o3D39HiLtefvnlxIrF9LSoveezWYrFIqdPn+qrjF97rRj3c7Mi9ba6usrll19OKmWxsiKQiZZlUV9aZ0Ees7S4RrXWwPU9Gq7IaOQ8F91JEfbosxSVIFJQdG1zlMcJUSSIr3vtMZdeeikjoxOcOSfSo5VqFdvbvqYrinJe6i9JElRFOY+38EJ2cTgqzaTbal7wTzkrQ7O2RDlfIEQ84OgCbH9uIBqeA1zMvEj92WpAyrH7eeutVhiSJAPq9uK5YXno1ibLsaZpKFmjzzXY8TxIXIhCdLVXf+kwP32ajrwNQwHHslh3Q/oE65aIzoIgwrLFo08ME8s0sWVx1zUSkjBCUxMsXTIqR210AzTZFG3aBrZlYlk2toRzG3ZWFIolKKXW3mBlaZHF+QVc+Wx1IowkhED2dXQ8YhS0IESTRWFSBQIzy0CmgNZXblPBsjFlX1egGUSo6JyvRBAT00/9kaAhONV6zXyGApFhoEqHX6vVURKRbhocEukQJ5sDVePbD4pJWmt0uPyKq4hRMEyxuORyBeIYdu2a6v/23/7t3/LGN74REIi+u/7yL2kHESfnFjhy5hyqpvW54wDuvPNO7rrrLq655jqWl5cZGxtj//79LItJ/YXV1dU3vPOd77zlwIEDSaFQYGhoKAGUcrmsTE1N3XDq1KmtjmqbzczMxK973eve6XneJxSBvd3OXnwRWhhAHMUEQdJvij9+/ATtRpP1VeGoRofKpE2H0FcYHBKbwiuvuo7P3/s5zjDPiCcW3UIpT76URpPLjN/tQsrEMQ0sKa9TtDLMnpul0xFjojwyQL7gYKR0uh0xzyM/IWenibwem7pH0HHxbINQrp4hCqaqYUjWk5bnMT2/xMOPH+6T29bqTVZW6uSLDmkJ3skNjGDZGk5GjK1qo87i8hmiKMFJiTnx2OOHUVWDHpFgvjiI22myul7lyssFUXK70+C+L/0Nh54jovQbbriBtJ2m3Vqh1hQb68suu4pCLo+qi9/qeglzCyt4fszOnWLTZTt5VlZWcFZrdKVA7ODQGMXSEKdOC/CQaWVRNIullSpIZQZVNel0OjSlXNJ3HniIeqPJoUOHWN8QG/xCoUCt2kbXHPkcQzquD7qBKVUH0vmcWF17siexghdr6Inaz8qFfoSaGDjpLDt3T4r3OFDAclJ9cEW1WqVybnHb+Hq6o+rBs3rsIcozCCheHI4q4xA9g0cdGZ3k9InjHD0+029U8VW2pTLX2jqWZaIEGqYvIiRB/uhsPxiIfbE7cS5Q51CC06gYaIl4WbquEWIIWQwANPK5EmoqxpIyG6qi0263e2TORAkEQYjnh8j5hetDNwixwhBN6cnMq8RhhBbIHqUkJopDlNAllDWZJO6SyjukbVncti10VUgYmIZwVE52AFSDwBc7I98PURKIQ5+WrC2o7TqWtfnwEj8CXScOI1p1cYyrLeMpKVKZAtm0jFwtHTIOqtxlKYh8dQxoWxxVkiT9mpWKAkRoSYQm12hTTeiGMUim53Q6TaEgIrn05C5AOKGZo8d46LHHAcjkCwyUhwnjGEMWWrPZLLVGg9HR0f5v12o1ipKBfWZmhhe8+IUsrKzzxJNHKA+LjcvimVP945dkb5lhGv1mS8MwIFG59dZb/+5zn/vchKIorK6uJufOnYu2Itbtnm7C97FHHnkk9n3/7+VzCX7Q8ReLWaaDF/hsVOo8/NBjADz66KMMFAaYk025s6l59uycwtAdRgZEJPK8n3gBM9NLnDl5qo/W8zwPXTcJpf6RjsLy3AKlYpG0IYlSMyaaoWJJUJCTtXH9LmqU9MdWEPlYapFesdd3Q3zTQ7ds2QgMkWagWiqh1MY58uRRDh87Q8dLqMkaUacbkR4okS0WsW3hqBQN/KBLsSDY+mNFQVlZZ9fOSbJZMZ6OHjnBgb2XoCli/OtJwsrCAuOjQxTzoo4b+D4PPPBgn8V8fHwHg8US3a7XJ8odH9vB2NgYG2vC4WczOaJYoVZrMrVHOI/y0BhBCHYqS74krmlkfCfpdLoPZigPj6MqCd2OTyYjnGk6XSDwE55z1bUAPPTIE8wvrvK852cpDYkLsFMpLLuBYYrhWG22MCyTocEC6Zxs+C9kiXWVSOkRUCd0vRDLSBHIhSzu+qQNk2w2y4ok2HUDn7BWIYzFMaMT48wvHd42vhS0TSLhLYg/9V8CKa1bqxFoFwYw7Nh7Oc5jT1DvnCOUEY17gXs6t6aTKzgoukMpFgMhDEOUOCAIttMkdWXzWmNtOzPF4ulZTEs4PhCpptW1DH5dTAKta1DIDdPyY2q+BEX4IUdP1On1rQUt6CYxIRpSk4xAAS8RDBM9mXkviojcmFBKeiRBTOT5BN0mkS8iIcOIyNgmVo+PTE2hxRpJqKHJFAZGDlSDVkNMytAPGBwcor22yjkpEudVqwyMDBJHPaErA00RaboemMENVgm0NLnBIbSsOJedSUnX1EP9KVLqhPPAFEmSsCWoBwQ1Si8yM5SEWrXah8sOD5UZ2bMXr9rAGpKyHprJ/Z+9l8Vlka4Y2zEBiiIYrpHp0pSNSkyxsIkI37NnDydOnOC5z30u119/PX913+f5gz/6A7761a9z7z2fZXzXLpanz25eXY/BQFE3kUYJzM7N8ZrXvGZUURQqlUoyNTX1X9rt9hd/93d/9/O///u/v22sPJNJhux/cfLNhpkmjBRq1RYnT4kd/MLiKuPjO3nu854PQLPehETjzLkZHEsscAcPXEEml6PjBgyWhfOKEjF3WhLMk3JM5qbn0CIFtSAmc+hHNLsurmxh6PgetVaFQb0IupS+CCMsPYUuJ5cSqRDpkBjiH6AkJppqs7gmAAp//5VvcWp6DidX7LNHKHqEaTls1H10KQKZJBH1xjp5yegf+9CsujTTTSpybVAjhcpqhYLMOmzUalTXarzkRTcxK9Nxx48+SS6/CU/vdFzaZleKJcp5o6q4rtcf204mi6FbzM8tMzQsUmadroeuWeiaxdq6WFvW1ipUKlWWpDr1gb0HiKKISqWGool1pNHsUGs02bVHEKQMlUc4evQo3SCE3jEdD8POUmsJcoGZ+QXM4hCFUokgFps1L/aJlbhPe5b4AZ4f4wdJPz0fdAKsbBorZbO8Ju7lwGWX4rouy8siZW+niiyvbe9HTRT60VNPSwy2AtiegfP1gp8+a8/avzC7+eab+fjHPw7A4OAg//6t7+Av7/wUtZl5/o+3vIXVxe1piAtZIZ9nZWVFAcjlcsov//Iv3/aud73r7q0Kzs/as/as/fPaRRFR+bpOnLowhYYf6dz6ml/hjnseoClD6Bbbc39/ff8MYQT3/c+tR1z228/cLHro97dLKG+3k9s++bVD9Hs2/ERDMR2CMECxxH5guR4TqRoYJq26bEJMFLxuRCTDxSiIaVSa+N0mGUeca2x4DLSYdkPCc5M2GSuBSEWJ5V4jUiHwsAzJtTU4SMZxSNpNTkiZ78bKIivrG4yVRNoliCMcw8G0nb72kKFqxH7AysISWlqk1pK0hRPkSeyeSGIMWyIs8QAhDhJ8STvlmCqh56JHMYnso3K7bfKZbL8BMgxDwmYTa3RUFMeBpZNP8d/+4v9Bl2S7By+5FN2yeOyxx/jJl9wMwOnTp5mdne6ry4KoI951113s2bOH973vfVxxxRV86EMfEm/q5Em+8cUv9lODW20raWgQBmQyOe66666/u+22236qXC4rH//4x1Ptdpt77rmnXwPb8l0FIAgC9emfRVH0w/U4/Iis2wlIZ3IcOXKUUL6TW265hb179vR7djKWw8bqBv/wjX/ASomIfnpulqsPXcv3njjMkxL6PT42TLk8SLUqdt0KAa1ai6fapzh0SEQnrY7H8PgEtYaYD8XhEbqxRxAlrMrIozSQQ1NMTF2kvjqtdfy4iYuKk4gUnppSOHtukcOnRHp3dbXF6Oge1ptNBoZEHWW90mBmdo5SaZCNJXHubM5hIDdEbV38vmlqDJVKZOwcy5Ieadfkboq5Em5Tgjti2LNrD0ceP0KnLeo/umKi6yYz0wL67V3v4Xke2Wy+30+k6zpraxubjeuJyg033EAUJZw4IZ6Zoqik02lc1+3D6s+cPUvg+2QyIoOwsLTM2soKA6UhKrL+9JWvfI3h4SEmdwl6pK7voxgGdjqL22tPCQICVBLJ43f19TdQ9QLma1X0uni3yTmNxIyxs+K9ZrI2jpOm0+72a8vZfI44gfHJcW543vUAVCoVNiotJnftAuCb37qf48dPbxtfiqKdx1lomjpxHBIEm31kF7KLwlEp6Qwd5cJFtMeOnOa6q67mFa96DQ/+5/8XgEgxIDk/nfe9OdB77/8CTWP/1OwTFzp/pJm4kj3YjTT82CDSEomSgxCPuuuSTiIMWQQN/Bi3E+F1ewSYCUGQoKkWKckbZugOXb+DLxdUU/Ewsh7tapslRYTa6kqH8UtHiCTqSVEiEl3HMCzyBdHXUsnkCSKXNcm9ZxsqITp5O4cpf0u3HAHU0LS+eq7ZzaN1O5ASzkPRVUkjef4zFeCT3nuMhIInMXWZZlmZXyQuF3AlUqjbbqHnstDt9s/1mXvuRtE1hqTC79DIcD+l4Mtah6okuN02C/Pn02AlScK5c+e4/fbbWVlZwTAMgiDAcRxqtRrf+ta3ePe7hahiQRbTB4aG+OhHP0oqlSLwA176hz/JY4899uprr732Ay984Qt/0TRN64EHHvhSEATqZz7zmd0Ai4uLnwNWPvzhD//9pz71qVy73faBo4Dxhje84X7HcfS1tbUa8DQWyIvfFhaWGRwcIAoVTLkxWV/f4NJLL6VaFakotQBDI0PsmtrJU6efAqCUL1HIFRidHGPl3IMADJSHiBSVomQZcSwdXRE1ClcyKISJStf18OTm5dzCMqaVwg1DNAk6WFzcIJ/toEmmCMtOE0tmlJ5cfWelxkqrwYPfFXW1lfU6Q0aWbjum05UipRtNUBxULY0ja7tqpJGxsmwsCdXbTNZkuFTGTqUopIUznRzdwQP/8F3qVeEURoaHaQUu3WYNSwKcbEvD63T7jNknT57k6iuv4rJLLqclEY3tRlMSWUuyaUWwgERR1CcFgIAoConjiMmdgoS5UMwR+gG6RC+PDg+Tz2YoDw72xV3tlEmz1WJ2UdRe919yKYVymUq7jSJZsR07Rctrs/9KwR7hjIyxUq9RbrWZ2Ct4PbtJRL1W4YlHBNnspZcdZHJykthQCUKxCVVVFVVR8NWIjEQdhlFCRMSM7KM6c+4cne6Fga6ba7GGosSCnPZfQh9VYli0/QvXmx948Aku2X8Vr37t6/nzbz4KwBOnFzbXQ2mhmsbMZaG6XdLjQnbkyBE+9rGPkclkqFQqfPSjH2VwcPAffQ/79++ndeAakgTOfO0L5GKFINEJk6gfrUSKR7VZp2TrKEFPYVTB96LNiRtAtxuhKQqe2JzTaAc0Wy26cteRDjWsgk/gevhSHsGPapxZPNprPsW2U5SLA4Suh2ZJ4tB0Hr8eEEg0lav4JEoHM+OTy0jou21h2xZp0yDuyZx0W/idNookIEWzUBVJUdt7DwmoBuiy4ByEHWzdgCCkVhE7ulq1ip3TIRIL0PLSAvvU6yGOOHFYKIN++WtfJVFgUDqqsbExms0Gs7PTdLqi1mYbOmocsbq4KTnfs927d/M7v/M7F3xHL3/5y5H9UAD83u/9Hpl8nj/8vz6MRk/7RyFJki7wG/Lf97OfvsBnN/2A71zUVqu2yOfzZPM5BgfEO5idO4cXuIxNiAi7sr6B63YoDRWYnxH1jtJQidHyMLZjc7oq3vd4x2O90qA8IBb8XLZA6IUYVgpXwtM1M43vJ6gS0Xlmfo6J8SFCv0tOghk6bkS72+lvptzAp1JtkI0jVE+MSSVlE0YJftB7jyprq1U6XoyZEtGC241QEp31tQaprhi4agIDxUEiuQgXC1l2TI5Tr9dpGWK8zc/OknHStOvC4cVByMToBCtAVWpvDQ2OY2acfq338OHD7J7ciePYaNIJL8zOoQjW4OYAACAASURBVGsaLamc3Zei3yLP4Um29SAIQLJ1dKWmVG/jGvoemiq+X2+I+V+pxUQkdEIxt6+65lr8OKLaamBteW5t6gQy65MqZbnmsv1EmoKVFc9oo16j43sceUrMx8ceeIhzJ05x8OBBxqSmWxiEBIFHKmNTHhNjJEIh1/FZWpoW59moommbRLs9E8LfvQRELJzWFnj6M/GoXxSO6v8v+34ME1dccQVHjhzhsssu49577+3vTP5XrReZvehFL+LOO+8E4Cf2jIN7Ybj9s/ZPbz8sk8iz9qw9axe3XRSOKgo5T+Fyq82cmWN5bo0DN17Cu/79OwD49Y/cTmV2/rzjFDPHRmd7f9Wv//pbUBSF//gf7zzv85e++Ln9XLGqqpw4cYIDBw6gKAr3/Pc/IO1Y6Pqmem13qcX8iVmhU7PR4Rtf/QZfWFjvn29ubo4vf/nvCcOIwPMEVDyKBeKn13CcwEa1ztTYAL6EdUaxgYKGInc5kZLQCROioEuiiV2WYqg0Wi3cHmeemWbQD9ABQ/aI6YrG/MoyqtqD0Cp0LBdVVSmVBTzb9zyaaw6tdZF7990W9baHVm2gSo0qI53D1lWypo4veyL0JCQJPRIZYel2hKZJNc5epJ6If2pvtxQrYJisraz3mzkdw0JXVVISZt+qVqHRwPdDvvS394n7j6K+eB0Itom1tVXq1SrNmtg9ZjMOg6Uii/Nz/Nnt7wFg34ED+Gg8cVzUDj/13+7i9PwSeirL1P5LAHjxS17GS196CylJ1/VLr/0FNE2jNFigJdOhP1AY51+5RVGCZTtMTExSkynb6ZkznDl7qh91OI5D2rKwLYPDhwXf4lpliYkdI1x59eUc+5Z4l9V2hzPT82I+ABkrRYxBOlNkYU1EIusrS7SCCEfu6CvtAGWtSbdRYWJEZjgSC9VWMTNi3HT8Dufmp7HqGxiyj1DPZlDsVF9frlKp0PIidCtNQRXfi7o+djZPkkDKFJGYpoCa6IyURbRYHMgSBAHdbpeOjI6OHTtFsTBARkK4zZSNHwaESoIh06NWOsPU1C5mz00DSPJdleXFJRIZLS0vLWAbZp+UeRMNuEkhFCeJEFxMYlBEdqQZBBi6DlLmZKnbQtM0DMOgWhXZZd2wyJYKfRXsZuihWgaxrmLK9FzX7WIOFLFk9BI1G+QHcwSRT8sV0WPkt0npJpdNCfqjRx9/nDPHj6GzSa5tGAamZZC2nP4Gv9nqMODF2GmB9NNNA0XZHlHB5sZSUVQRSSmg9pkCLozvuygclZaoWM+gR+K3XKZPnqa4cxe/9BqRtvnz+z7L/U9zVJaTot3Zjgb+7v0Pc+lVh3j/+9/P7/zO71Cv19E0jYWnpvsCXnEc8/73v5+JiQne+9738l//69fJJOsMDWTouD5LTZvd+y6jUBzDNE3qcY3Ojr2wxVGdPn2aO+/8vwFQgwBFs7D3TnLTnj20Wk2+9tWv8Ipf+RXM8XE+/3d3c6sjmxmVhChOCCLxgrwophtGxLGCzWaPCLqOIiG8buBSq65jp5dIS7lu1Uiza2wYS5KK6naWOFHx/BgrI7xJbnBM9DHI9FxjY4V2s0pcqZLINIOmWxTyJUwlwrB6MvcqShwS9WDtQYCixYC2WaZSIPJjNMmeYRk2RF0ef+RxqjI9OZzOEpJgyj4KJ5fDbzf51ncf4tgRIbth2yYpJ9PfRDhOCs/rYllGvyZ1yb59jA4N0W5Uaa6KiXHy+HHGdu7m0v0Cnrt71y7WGm18RevXVpZXFllZWeHGnxAw60wmQ9fziGIhZQ8Qhds3Oz9O5rkBum5SLpcpDIg63tDIEKdPn2RqSjSlDgwWqKxvYBs2oxOiUXtkbIhMzmHX7nEyReFg3DBhaaOKKTc8pWwBTVFwMjEbtZ5waIyPRih1zYrlCcLIw4t1FpZFCjGTThF3F5nICKLigZEil6UPMDg2hpUX12jncqhOjvsfFo3ijmOj2Rq64chaKdBuoThZCsUSjinT316L5eVVxifFghtEMcePH8MwNJqSrWFscoK54/NM7BP3P7FzkieffIIkDrj6OVcBYo4szs1TqYg1YeeOSdKOzckTx2RPIdSrVeIw6vft9WXqVQVFbjg1Tet30TekHl0YhuQyGWLJHNBud0nCCNO0CCUwQbdTlFqDfT7O9vI8g2Nj7Nq7hw2ppjy/tIBmpTlwQBAkx8sKlcYGrVaDlOwHtdWETqtBQaow/MQ1h6hU66xXKzx1XPSnjk6MMjo+ghd0KEvBVcuyMGyXtNxwmKZJs3mh7gwVpSdASSK0uhSF78NTK+7v+//5n8cyGmTkQvl001yfhZOnyY+Wee41YhG66uAO7v/S+cfFURNV3Xwwhw8f5h3veAe33357n2GiZ/fddx/VpfX+5nliYoI77riDclk2/cUxv/gLv8DMySeptrt86JN3ceO/+Tfbru2OO+7goYce4vrrrz8/9Tc1geaGvO5/u423vvWtLC4scPrMGV7wghcA8Pqv34eiSjqoMKbrhTTbYsB1QpVQVbGcNLlB0W+ErWCpaRJJwOn7HguLM1SbbTI5AXM07SwDu0ZQJLBNVU26gUo3SIiQYnK5EppmbDYpqyrrYUjXbbOxIXdmuk4ulyOXcXCyYvKqYYgSR0SymS+JQ5Q4RMguS1M21X1B7JY6lRpf+8pXGZDoseLIOJEb05QHDpaHmDl7hi98/q/6AzX0fApjhX4jdg8QMTRY4vhRIRkwXCxQHiyRTzs8Oi82LEvr61SqNaakzMDU5A7mV9ZYrDT6kcHi4iITE+P9a6zWa9i2zfpGhaIkwe24XZzMD+zn/VdrQRCSJAnFYpGJCVHMV/WI73732xw+Ipqwh4ZvAi2i6zZptsSznZlNKA+VyBXTDMpahhrHpJw0sVxmao0OSRjQ9ELme4Sr+RJrzQZr5wRaLpvN0mnUSPw2QVvs8ovZDGdXTnHlVcIpFMtl9lyymz2XXEJaNowb6SxuDHv27ALAi87SbPt0PBenB0rKZSEJCLptNmri3HEcolgJiSLGuh+G1Bp18qU8ikTHlYaHUE2TclnWaDSFwvAQw0MlBmXdbm11hSceO8roqJiAV15xBZfsP8Dq8gq2ZHQZKw/RbrcZGxXOPQxDwjgijqM+o4OmaSCVexdlT5KiKGTTOVISCdtqdfB9H001iGUEsry+TkSCLpnaLc2mVB4ilc9y7Hsi6j199gxOqUR2SIz1lcoSOSclFciF88ykLPJOimpFZBiyTobs6Di5TJa6LGf4vkuzVUMxQDfFXHGyGYx6p49UNG2LoPJ06nDk/UgWCiKUHixrS5R1IbsoHJUagJVc+ALjbpe1uRnWF0ZpSxXcl77wOu74T+fze9bra+eRqf3pn/4pn/jEJwA4ceIEH/zgBykUChw8eFDIQac22dqvv/56PvOZz/Dwww/zgQ98gEwmw7t//df5t6/9GVRF4e577uETn7iDxemzJIrCK1/zS7z73e/m7W9/O+95z3u4/vrrz7/oJBYpBfnwx8bHMS2Lj3z4w1i2TavVggFJj5Qk+IHbZ0/2E4tEV7EzWbKDUmYjbGLqKXQpV+K6Lr7XpV5dpduRTbB2msRK+l3wWcUEPY1hpnCk1o+p6yiRT2NNTADHNDFVhdraEl3ZFFxd32A5ncbQNQbTUqPK1DAKWZSgR+kUCjaNrVx/Cuiq2pe91nWVtZV1HnzwYZ6/V+zg1vV1Mmmnn56p1eusVGtMT08zuVdsQgYGigRB0EflQUzgdRkYGOCh7/wDAAd272RseABT06iuiR1s0HWprW+wJFFHo8NlctkMC2sb6BJ1GQQBQRD0VVgBSgMDpNPpfq3RSW0S1/44mmEYxHGMbdvs2CEimJGxImHUpccCVSzmRUE/pXLgEvHeBktD7Ds4xamnTjMgmUDcep2h0RF0mTJe36jSbDTwoogNudt21VVaYUxTNpNms12UKKSQtskUxHvKZjLcct0uJiZlRDU4xNjOHeQGykRSngLDImn7XH1I6CrV2k2mZ1dYmplHGRXzcGJsmLbrEYUBzbaIltJpi2KpRF0ykyvdiHQ+h+Wk+k5gZmGW6657Lp22uOZz09OMjw6TH8hzUnJ7VqsVJifL/NQttwDw6le/misuvYzGriqO1UPvqgSeTxhuStxHcUCcJCiyKXlr5nl0TDg0BQ1N0zC1HptNTOBHgv5MprGdXJ5Kq8npOeHwzy4ssFGtUPc6zEvQUa3VRB8osCSjvum5c+zbOUkx7dCWWYdupJCy0iiRuJLaygpGKsPISJlBTaCHV2pr1Jo1Yi2ioeTkc0wLpKSct6VSiXYH3Or2MdZzSqqiQtJLe8rP1AvXmy8KR/VPbdVq9Tz9n1fdeivHT54kSUS/wtve9jZGJGQbYHZ2llqtxrve9S7uvfde3vCGNzA1NYUXRJRyKT5791/w4lt+hhe85Kcpl8vkcuLlqKrK08Rgn9Fe8fKfYenBhzhgw2tv3P9jXwt51p61Z+1Z+5+1i8JRxS5b+gieZp5Hq1LFa9bpNkR66obrrtx22O7xQVba63RqsLa2xt69ohjYbDY5fnqzObfXfLfc3GxxOXz4MM9//vPJZrN9zRfTNKl4LdrNiAe/+z2mpgQBaq1WO68H64IiYEmMusUT1et1zhw/Rg7BZesQkyQ9tU6px9KTFEkAVNC1fuohjsCwLEynx5GXwnMjgkhFl70mumlh6Cq6pKIyVAUMg1A30CXBpKrraJFKeVikMGwtRk981CRkdUnservdLpX1VWxTxxgSO9jItsi4JTRZI9PjRDhoQecn7xnQIem9Rx1arRYLC+tEuzefXX5XirbMmT/02Pc4PbPO7gO7+gX3gwcP8uiTT27REIpwXZeRwSLTkgJpY2MDJRbQ1h4wY2zHBE6+hB/2dv0DqKqK53kUymJTksvleOSRR7jsErHrdl2XSqWCoij9OtbYSHn7+/wxMtO0hcqvlpCXFFWanuaSSw7w5a+IfPveqZ2Uh4dwO12OHRHp2Fq1yhWXXYJmqGQk1VDodskXS3RkHXG9WmV9aYVm1yWQAAejVGT31D52ydpieXSEoUKOkWKeEUlcm7EtKGym6t0gxEg5uHHU599Mp1NEmsavvvl/B2D3voM88b1j/Nmn/ztBDwRkqJiBSqJqDMk0v5M2GRoZ5cmjj4hzh02GhkvECqiy38+wTNbW14lklGGlbLqBz/TsLBuVFXlVCS86dB23yIjqqsuvII4CLN0QdRgEXZSmqejy3pMkIuqlz9XN9SJKRO2qx7+XJAqB6/VTZrbpEMcJYZRgSHHFtXqdfKlIThIJpBt1/DCkXqv2Gc6tlM3s4gKFknivG9UKSuQxNTZGoac67EWszC9QyItUaMZJYzoOSRQTSxCG46QIOh6r6yssSaHIQqGEYRj9pvBCoUCrnbB2Pq/CD7SLuuE3cUDRLyycOL8rRz1tk7Ii9jbFQrk72M4wMFt1aYlonqGhIe67TyCPstks+3dNcfKsWOROnxbd0mmy/e8GQYBpmtsipG414tbX39p3Ui97+cu4/6GvcGDiCh577LFnvB9fUfGKm/Ub1+0S6gmebdAJbc7WdjM6ImpU6+0NVFvFb4kJF/gwULTIahoDhsh/L64FeIZBU/ZaRZFKKu1gGGofLRm7LfYeq+EOi4FbGfOpGR3syONARiRFy6bHmrtIsEOk9JoDDl7mEIG2A7cipU5a8/idgJWVFewRMcoyRYNkRScnUxiakwW1AxkTv0cpr2rUa02GZHGVKODR7z7EyGSZaSlKl73kIGtagcVQpBlXQ53s2DBGptCXcEiZBkYUkpPF5fXZGSYGh1icXcSVqrAnnprh2utCuqHJ0IBgHWjFIYmuMicBF9qZOa7Kj7DsnmV5VqQ6vpea47k/P8n9Z0V6xCoMo7mgNLoU05LhO2xgmf8qVOX/URYqPn7SRI0jdIk61YB8yqKQEs9lIFPGdwOMWCOlCac0PFAmDhWy6QzOgFjQjpydxp/v9AEGURSw45pxfvLq5/S1wfYf2EsqZeCke8rUuuypiUgMMW46mkag2/1NoYqCmyQoidonqg7CJrahYafFMTffdIhURuHL38xTkym7iUuLHDl+CieTxVwQi/fU5C5OHDlFbVWsLUMjO1BcB9+LsW3pqLQ07nIL3++pEIQMpAxe9tMv4cEHhMLx7qld/NStr2KvzOTUww62aeEMFvtch2EQkDIMDLkY+65PHPkYmgJRLx0YYqoalm30a9KB5xJGnT5Jr4qNl0Q04oBEisk2CxpuOuQ7y2LOzq1X2LnrAJ1GyNKGOGZ1KeGKS/aitcSz3lc+RKvRxG8Ocm5ebB5LhSJeCO2umA8pRUHVfYLQJZLUlZoaU1Ri8roGkq9vYfEspXyJUDK+H9iVZv7sk9vGV5TWiSPhqOM4RA1VVDVBlZsANb5wP+1F4aia7YBEvXBE1Wl2KOWylAeHGRkQkcBTF6DmOHToEE88+gSdboNiscjJk5tR1Gc//3k++MEP8s53vpOpqSnGxsZYW9wuZ/90S+A8x7Vn1xSN2iE+8Ht/+H2/l7ZsUsHWB66QQiUVq4Rhl+rKGnvGhbPVYw/PD+nJFZmmTkSKtbpPNCt2a54bEvounZ4Kqu+jIXRcUrLWVsoX2AgqVGUdYd3zWE8MoobLYiIGWNnyCY0uc48Lj76eypIq7mLYGWdENu6td1ZotWvYaYd2W7JON1vEVh2rLSXkXZdEtVGimFjmlqMoJl/IEsfi91Ui5ufnsW2rzzKhqqIGUqmIAnwcx6TTaVR1kxg2CAKKxWIfACPJXVlcXESX9YhqtYrruqytrfUL/g8fP8xsbY0VqZnkV7oYoYGu60QyWltZWUHX9T4BKUh5bk1DlTvaVquDVfrxdVQ927qzVRQFVVP62YZut42KgCinJIWSpikkSUQQBH1Y9/raBgMDA9x0k6C+uvTSg5RKBYbKA321Zds20Q0VQ1J/KUpCIuVi+o5JhXoQ9f8vGmgTgeZLerUNFTS9P46KuTzXXnMN73znO/jSV74JwPzyKpM7xlFUnZmnxPxfW1tDURIKMnp0HIe5uRl002BCAiUa9RpJ5ONJCLcSe5iGim053HrrzwHwute9lmqzzoAsKXS8Dt1mg8gyRJcrYBsmtmUSSadkpWyUxEJT6c+bKPAIw5BWN6TRFg7eMk0cK9Uf/1EUEQYBqqL1mMfwPZcv3/8lliUIYmLHHmanZ5g5u8TokAAQjY+PE2U1MqMiUp2dnqG8bxxNNZhZEBt5dSD9/7H35tGSnWd57+/bY+2aq85QZ+rh9KTu1mxJtizZYBtjy8JSjAiYEMwyJthy4IIh97Ji7oLctUIYc+8yxiaBS3IJ2MEDDhkwtgwYW8iWbbVkSa3uVs+n+4x16tQ87Nrz/eP7arelljPAstNB/f7TqlLVrn323t/3Ts/7PHTxUdgu8kKQSTTC0MP15R4VJz5CgRNnDOl01i9dpngoR0b10W46cpQv//WTVz1XeqwhVBYZJzEikerBExZ88U2wCn9nSWkffvhhfuZnfoYwDLnpppv46Ec/ygc/+EHe9773YVkTjx6/4F+4MsA7ee+zf/ZnXLwoo5QPfejDfOmxr6Yswv8ti190rOt23a7bdbtu/+N2TWRUMdELhY2+wRI/QQtNzMikvi6j5S8/9pWrPvfZxx5N//sbo8GPfexjPPDAA+zevRvP82i326yurjJXsPg/3/9PKVWqXLp0iU9+8pNkMhn+6I/+iKeeehLXdUmQyLTX3PtKvvehtzMzM8PJE8/x6Gc+y1u/7yH8hFSy4tFHH+U975KkpY7voUUBH//DP+Srjz/OaDTEMXQsQ0P4EW4wJhgo0kdrgXA8oNOWyBzdNnAqswy9PisnZImq3/exDCgoUbh8JoMIIgJ3RGCqiNL1OD5coa2irh27hGcVyAihZp7AKAiyZY12S6L+LgxcLjW/RiW/wJEFSWaZjT0idwg7I7Lzch6m1+sQGDbOQEaUWc9F2AX0JEqRjWEkZaYS5ZR7zR3OnT9DGIZkVB8pVrdlAoV3HIdKpZJSyYDMcBYWFlLnLoTAtm0ajUYaUW9vb6c0M8ZkUDKO8X2frKq1dzbb+K0OaAJ3LAMLzdCJxZUAQtdMDCuDaZqTwPw6ywVaeg3SXqyQsOl8VqHXTBPLsDGElpbwbMvAtk3sjE5B9ajuvvseXvOa1/CqV90FwNx8Dd/3sSwDQ0G23VGfJImJFFo0ISZJJvdeDbwLgWGa6f2fkBqLb+CF04SB0A181SPVDY2pcoXvefN91LdlBt/tP87irt2cO3+RrCrrRbFPIZ/FVq93LS4w7HdwcjmqisR40G1iOw62WmtRoFObnmVpaTeWygR36juUSjYGMlvK6hCJCDPR0r91PPbp9z18/wpn3kRI0NQnc1QOcRLiRx6lKbm3iDhB10UqHDkYDkh0A8exGalFpcURB/fsZ3ZWXrNW32PQ7jM7Nc1eJcrY2N4hEAParlx/cSYhU8nQbnfoJzILPnH5HPl8nlihIktGibwh4b2hmnXVDQs7Y2JZBpeelppTieeR1XSEIjew0dgzv8gzT594wdNlJIJJ3J7EOiLREbGGpsi1tfilXdI14agy5Qx8E4o+I7Ho7wxYeX6NjVXZzLXy5Rd85r+HYDYMQ6nUKwQf/vCH+ei//TAAvfGAB9/xB+mE9Ve+8hUeeNtr0YXF8vJPpMcfmz2ifpMjey0OvuVOOs98gd97+nL626dOneJVmRbVbJkbFwr4oUZr7XkeP/MEkW2DCT3NIyDmwmiHezwJ9tACA388JlH8d0NXZ73RozMYstmRG2wPyEawW81IONgQBYjIRpF1szPsEGQBayJSOCSbtVmaq7G/Jq/XQtkkXzR4/eJ3AnCu7fIH/+nzfP5rG4zakingFQf2M10tY2sRnhp4HI9chOPiKZn7aOyj50KIo3QwN2OZaMQpzPbM86fY2liXWmBCPpnZnEO73U4HHmdnZ3Ech83NTRxH1s2DIGBubi4tH+VyOXzfp9/vp++12216vR6mabJxWTrz6elp9CjPSGW7bmvEWmOVKBLpOc7Oz+N6Y7ZVc9+PQizLIgzDVBtnch4vV5uspGhSWkPOtui6ns62JUmE749xgwB3rPTPwiF+4BJFPvmcLKO9+u57ufvVr0zLuN1OW5KyWkYKJpKjAWE65KoJA02fQJavsGxHUZxGOrGmIYhJ4itBRSJiRByjT2Z0QlmUXsheDbz6r9l5xbQBsHJ1iyW1jfNP8ZefffgF7zU2Po+hNDLtfJ5SNiOHWRUprD8eEfgBlYosD0ZxzHgsZ71GauDZMCCIIsbjkNGOUjQPfBzTwlJl9sDzSITA9X3WmrI86AqN7MwMpxVn5tMnzlCq1qiUberrcqxnemoW362nJNF79+wj6e3QX99gNi8DvCef/Dq33PoKshN+0AiEm5AkMZPujG7oaKEg1hI6m3LjLhYKDDttphQIY320zj133sV//sznXnCNLDQi5XbiJIJEQ0sMhEJlfbMS3zXhqBINYv2lnU3oxrS6XVbMVSrTcjN56B9+D/Bb/0O/ManvTuzmW6Wj8F+ieffA/d9FPldBU7XUXK7Al0/8BbOGvHnbx09xTHjw9AvZu+vxkGFX9kOyZpZY9/DjgLH6Da1g4Gkx60knjar6vT7+2GVqRkZP7bHL6tYWoxDUiASzgGPq2Fl5PkOvR9QfUbYzZNWH3P6QykHYd0CiGrPZacZ+RKVSZs8uGRnOlnSMrA77ZcP3lfkZDDvPYPRJNrZlbXt72CTxTSq6RlY5lCAIsPyASJHihoEH3hgjDNJ6s/xclMrVP/boX9HptqiU8mRUlqMZgtXL65jqnMvlKoPBgGazzcKC3ATDMMY07dSZeV7AxsYler0Bw6GskRcKJTY2toiiKKWjWTi0j0GrTltJQ1iWRSaXpzXs4uQVU7ZpIIQgUAwbnufhui6u66Lb8vmbMIa/XC1JEkg05RwmyFQNXRdX5s9ELHtJSYQCpsrZoCRAEDOnBn6PHj2K4+Tp969QBk1Pz6LrIp2lG40m2YU8jmEYoAsFbJLvxXGMlc2hKdSZhlBo2RhitW9oUsxz5Coi5aFHqE8E+r71syBCCLrbWww6MluZn19k6I5wR17qqLq9Pgid80psMYplsBSEUYro03STJEnwo3BCxE4ShCRhgDEh8k1ibNMiMTSEcnBB6LLaWaG7JYOwGw8e5ODhm/nSl77K02ckovFtb3uIXKdHTj3/U0OXnWabaG2DnJof1Bothitr7D5yVP74OCEejaR4pWK0kUlkSBSGTJckeGrYH+B1Ouw+JL8XHQg4f/5qHIA54VpD3scYHZFc6U2J5KUrGteEo+qNe0QvpkNXFo3BSmyyWoH73vAgALWqbA7+bco0U4fe+ILX33isW2657290TJH49BuyPKabHUwfHC9V0CbRQ8IQ2qOQSxsS1js1PUPOjBkGMjLN6gGHyiXsXJa2QgvNTE0TeD55FZkaUYLXN5nOFank5APW7+TI32hw6x23AzBtFdm8tI4XjQhDGXX1x1Ax86BKf2gWr7j1Bv6Pn30vqz01lLm+w/aJM4T1Jq5a9KHvy+FExfjujz0Sb4zt+0zYKXTbQjd0mhsyw3nsS48yHrsUZisYqjxSr9dptlspzYofBjSaO3T7PZYMCYVPBIRxlOocua7LmXNnGfseGRXR54sF6o1t4jhOAR9BEOD7IV3FTF3NlZiZTbi02SQy5HXTdIPp2iy1BdkkF7rG0B0BAkNpxHwzzsmXi8VxQowcP7gyQmGg63qqlO2PxxRyOYStk1dBQK/blLpC4ZjanIyqc3mHnZ16yugfhiGe50k2iJSJQGa8esqrKQhDIZ2QsiRJ2NlopCzkupDADeIEkVwpD2qaRkFB2l1vhP5tzo6bzTZBPMkUCwRhTLPZJFDOtNVuk8lmGfvqGRM6mmnh2JkUlBT4EUEUItBgAjjJ5khGGo7g0AAAIABJREFULrpCYTq6TuT5RGHEnJJQObq0yCAMuf2OVwAw8CLcIOaOW46wd0EGDnNTBRbsGtVpCW4auGMK1TJ5TaepINP33HYTQy9MSQEEJqZmkHOKzFalU5quzkiWjDihf1ky41zotHAHHU48I9lLqpUaU6XcVddIFzGxKulGWoIeRSQaTKKSb+Knrg1H9TexT/z6/8fRu+9goKg/3vMz/5hnnj4GUfxtiaCu23W7bv9r2bei/3h9r/n22DXhqMahhx+/NJKuWppmvjTHzYdfwb4lWa67vFKn13WZri1RUtWI/YeP8vzmZbyN/z49qm+FWQ2fe5dl9DJr58G2WRm0eXpTRh3n1yAJYCoL5QUZVcwtGjQ7feK+4jXL2uzas8jC0hINVX8Ow5BOy2dmSkY0tZlZvOEAQ9epqKHA0J+lOWVRWZT1b7sXktHGmFpAoOY/2qGHFWSxt+VxR+PjeKUF9hy9nX13STDFxuUGX/cSLjbHuGNZnvHDFzn/OCIOfJI4vDLYnMQknsuf/qf/CMDKhfPkHFtF0TKibrZ3MIwrQ4H1ep16vY6maSnbRyaTIUmStB/V6/XSIetvhJX3ej10XcdX0en6+iaJraWs67GQRJkxAk1lS8sHDzAzO4epONMQAtO0MGwrZcr3eXmT0oax3Hzj6ApYYTKUPsmMhqM+lmEQh1EKqx4MevT6XcneHctSr+e5XLhwnq4aQu12u4zH43QEAeSzbZh6Wpq/AknX0vcMwyCKjRREoemybKQRp4SvmqbKhSsSlOSFAfZEPw1SFeennv8sTjZD/dKVfcLzfAloMA0QOisrl+h1BwwGI0zTYP/+PYxdF0uRNCdJQhz4vP3t/4Rnn302LZEOfGi35ZqZmXMxDIPeyGN9vYHQBLMzZWq1GromM6WRNwY0NGHQ7cvvNdsN3JEnkclKH89xHLRshrmafP6X5xbZXL3M6dOnidX6u/HWG9GyWUZqOT7y+c+ztdPm9d/1Rhbm5QhHu9tl1sunLPCtXg83ijjs5NhQYx1DP2C9vsPlNVm20zUbSzfJZCzsiqJrqlrks3l0BK+79S0AnD97ls21Tc6dljD3jbU1Eq5c/4kJLbyiORXHxFoEcYjQJgjsl66sXROOynLMNGV+se1a2MPywj4OH76RZ56WQ6ljK8PBW27GDwUDxT/3oz/xkxT3zfP7//xX/qcht954uMZRJfZ2eGqe+T272UkCPvOUVMt8PD5DuVjgzptu4+gr5IZ46eIKm50B+5flrSgX84hoh93FaV59g5zWf/7MKS55faaUV967R9AdCsbBmMqc3PRzhQq58gHMRNbDh5sXMWKfajWLq0AY7d5QSVyrodzWgFDrEHk9LCEX8nRtmkNHb0TvwekLEkkZk4CuXcXCIaSuh3wRhmyurfKpT3wCgPFowMKuRcbjQVpOy2QyaMJJAQs7Ozv0+31KpVLqqBzHQdM0Njakc5elIjmpPwFFtNtthsMhpVIpPad6vU5p93x6Ppv1LYSroRk6pSnpvG++9RYwdLYa2+rYAVYmgxAi7Ynx8m5Ryd4U8t5O0HcTlORsTW6c1WqVUr6AP/YoqCZ8L5Mhl7EZ5TJEwYSJX6PVbtJQkh5RFGFZFklwRXXXMAziWFw1FqJpWjpGkslkMEQxLQ8amo4hNDSRpOVAU5clRD+6gvCMxBVH++CDD/Jrv/ZrfOZTT/L143/Fm97wCpIk4XOfO8OrXnUvURTxtSf+Al3Pcvttd3P06K1Uq1Vcd8Rjj32J06ef5qHvfS2FQo7t7TaPfO5pPvCBD6Szeb/7u7/Lf/yzZ2k2z3LDDXvZao344hef5YYbbuU7v/M7CcOI//Jnj5DLneAnHv77mKaBNdRJkoSMZeOo4V499NERVKtVot0SrddvtTjz7HPEiqT30PJuFpfmCHyX8ox8tnUtIfAGlPNy//mOe+/EDyNmKjW6rgRPiGCIb2ucq0tnXpyu0u4MqJWnmS7Lcnh/bZ1KdoqpgxORxBh3OGbYHbAzks59Z20Twog4CPnSRUl8YGo6xWyeu+6WrYe1S1v0+1fv6bE2TkmKYx2iJJBq7UKVQ6NreOAXSCPoF9tMbY6MneXiymU2mjIzuPHV91CarvH8pRU2XDm9fvjum/l7/+CH+cJTT9D89F8AYFs6iTDoKlinaeXIVSq4UUCsINuWGdJda6YLRQhBdOpjaG6H7ikJvXz22OOMT51i/YKMKHctlaju3Ye9dxfWoqz3rq2vM7y0yq6MdALz1SLYLsmgzUMPSub1W155A73WEBELGiM5tLzdr7O4G/YtSDCFHYKVaFTjDvTlOR3eP8vh77oT2irDGvWY3jtPvVlnGMmHsHbrDWScm0hW5QZfqJZpnDnB5tYZFm6QEZVIEk6cOMWhaXmt52p7KS4skFg6rZbcvDP5OfYeOEjz4g41T36v2e2xdLiIacuNIwgCCnaG8XBIJqucXhzyu//qX1Pfkr+fc7Jsb21yaN+e1DFtb22Qmyry/OmzgCQprU7NSEekitNT07Osra3hqwDk7LkLRLHU29luyKhv//79XLq8xm23TafHjjBpNHdSZ9bv99EDC8MyidR7W41ttncaDHZkc9+wLVzXJQgCtIn2V/zyhqd7gS+dhU4KnnBdF9syaSs27O3tbbJ2liiK0iHglZUVbrvtZkSipUwUhUKOTMYim50MBev4vo/j2FRULylWVFjf2LPSNE1JtCuZ+VFIuTBNtyOzDtu0yBgm7nCArfq2tmnQ6/XQlDPzQg87Z6fHXF5e5ud+Tgo2v/NHTzFXK3H27Bo/9mPv5i1vuZ8nnniCbHabM2fG/PzP/7zqefrkcjne/Ob7cF2Xd//4D/Pj/+jNfPKTz/HRj34i/XuiKOL1r3894/GYn/zpd3PrXd/BJz76p3zkI59KUaVCCO677z7W19f55V//BX7p/3oPtakKq5cv01hdYW5WEtAeXKqRhBGVyhQrhnwmS+Uc9977KnKq1xonAbolWD6wm1ChVYUWYFkGsWKqELFLrVKlP9ggq9STnZxBEhrMqL7WwHVxTIvt+gamYgbJ2xrHnniCrOo9HrnhMDfddIAgDOm35LpxTIvIC1hfX+emWx4AJCF17AUErmJhr+Q5t3LqquerPJWl1ZX7qDsck4gIwxLEiqjXj17aD/ydHfi9btftul23id1///0cOybRb/e9+XtYW2tw7MmLfPd3vwmA3//9f8urXnkjX/va13joe9/Kgw98J/ff/1p2795Nt9vFcRxuvuWV9Acj5ub3ous6p06d4rWvfS2/+Iu/yP79+3n44YexMxaPfvHL/Mov/yqWZfHII4/wnoffwQ/+g+9lbW2NxcVFDhy4na2tnf/a6V63F9k1kVEV9CL2N+H6i0nYaG7RH6yx/yaZVo5J+Osnj7Hu9XBUJlLq9sjXarzrp97Hr6qMCt1A0zMUM7K2my3NMApiwthLyxhb6+ev/tHuNt3zz9I6K5F51bBD/4Y8Rw+qGvGeo4hSFXPPbko3SzhmrdVg++TzZOoyw6E2C1mTYi/BXpLfK1V8Omf7NNYa2H35oC7uLlCxssQdGZkO2yM5X5TLgRLx6x8/Q2HYAzWAa0yXQYSEeoRZmCCbxhjVOS4+JQfsms89R0WD5eVlVhXN/9dPXKZgwOmuhMeePbOGKJ9g1733suvVMuvTFufAganFWdbb8rzL+QLCMLEUzDxG4PoehfnFFB78Xz71xzzy2c+wreYqajMVKpUKWcehXpeQcSEE9Xo9hZS7roxGkyRJyzz1ep3hcMjOjrw+zWaTcrlMoVBIF/fm5iZzc3OUSiXamzIT7IUuFDLki4rItFBi3PXwopixop7at/8gUzOzOJqMMP0gwA8DojBBU8OcuewVDsiXo0VRRBRFxHqcwsNJZPlsfl6hJdEZDV20JKFakutvYX6JjJWltdNOxwg8T4owTshcg8AnCAKSJEk/Y9s2cRy8YMBb13Usy0qzY8Mw+He//+9T4uCck2WmUibwfCJfjX4IqWXmKC2xceASfwNy8L777uO9730vd955J29729t473s+wuzsQQzDYDAYYBkdijmHN3/3bQxGed74xjeyML+AaVlpZnnHHXdSX/9Sqm925MgRfu/3fo9jx44xHA4JRMjD7/vf+PC//DC7d0sOyvF4zI1H7yIMQ7rdLktLS7z97W/no3/w6/zD738jg06TaDwkUvNonj8m8H3MOGSMXO8zlTIZzWDckRmtG0CpkAdh4g/kvpHEPr7vYagSfuQPGQ1iYi/EUqV/kpjOVo+CUvytGjmwBUN/hBHL9VcrOMQHbmBHKQXne32ob5IRGlm11o0gYWN9jc2vP82+V78KgF2LS2hxQkNhBGrzc7x11wF+8hd+5wXP14+/+52cuyT3o2eOn+L82dP0e20MNR5SKby0zM414agCYsxvIpx4eWudnJVDdwq0PFVmOHOcJ86dx16Y5Q0q9YztLMNEcODmV3DjnbcBcO78RUZuRFlNyvtBgut6GIZOf1veiEyc8OKq6MrxY3TPPoXRlRvsVNYkPFxmpiDT80Jlmno/JHZ8SnNKM2duCU8fsj6Spa9MskFvs8255ia1rKwt52ozLBWXmdpXY15TNeDRiLwwMRRx5uapc6xf2CbcHlCbUY4p1KifPItQD4GYLtI1wXV08nnZ22nsdMkWPcpzErrvTU8xvtQml89TQ573wkybpfk9tNbl5i6AwIhp11cZPvElALKX6lSq+yjNl5lqynOcmp5Fd/IkunpcNB1DzUI9/RXJEvLbH/oQp09eZO8eCU12LBsRC3wvxFVs6dOVMmeev3hlSDgzYYPPMaX6SN1ul52dnbSvEQQBhUKBXC7HhQuSyqrT6TA7O0upVEqBGduNHpaRp6T0cMpTVRruDmbGJlB8ZKvra+Q21llSnJGaaVIqVchkHYJQlhxe7nRXoWLl1qIEQ4EERBITxzq2LZ2ApunkswXiKCJUZfWcU0TXTArZPMcunwZga6NJ6AtcRSbs+W7qiIZKvdbQTeKYK2wFSUykJ8QxqbaZrutk82XWVuXzv7XeoF3ukrUy6ApMkbVs6XRUWak6U2U0vlJGMgyDj3/84/zmb/4m2WyWICrxjnf8CAAf+cgf8j3f/UqefvI0t99xPw899BBxHPPkk8eor9ZZXl7Gtm1sy8LQDI4cKPIbv/HrvPvd7+Hmm2/m5ptv5kd/9EcZDAb81D95H7ZxZS9761vf+gIgUhiGmKZJp9NjdmYaRxdsra0TqkH1IIxot9tsXFrFP3yDvLaGhlMqX+H688YMRgOCIKClCJ+LUxWiOEJ3rnAoRr5HOHIZq7LaeDCkZM1iJKqE6EWY6GiRSTxUyghBwoKWZc+CdGamaZJNTEyhY9mKmUJohCJDJTY4fU6Oo5hGnlI+D9pEQ8whl70CfppYMZ9j/75lda8THFtjOOhQUZp51anyVd+Ba8VRjYIr/Dovsu3uNtXyDMVigS8/I2Wm87v2UFyaYdctN2GoJvzp9XUct8T87gV+5H9/PwD/6sP/mlPHT4Ki8Bn3XYqOQbWY5+xp2QQsmVf/5trpp8mOmhQtuVByFrhTNrnChEJGkMeBXJZ0Kk/XcIoOgSYX5TAOCS2f8lwBp6gYJayEYOBjRwHxUG4CzY02USbDwpzsB+3dq3Gq8XUa7RFOVkVHwqTe6dLekY6adpfM3Ay5XXNks9IxVEo1mn2P2gH5cBeHHY6tnOSZk89RyMhMaKo4zfTMAku7JBt8u9Xg9LmTXDj1JMa2jHJmDrjYmTxmocTuQ3J4WNNNMCwihVZynCymbXH6yaf5nd+REdOxY09TKWWolmUz1x/1cX2PsJRPhQuHQ5dut59KsMjNSWN2dg5DLe5crsDly2tpz7JancZxcui6SUnJjo9GI3q9Ab4fplH+pVZdZgPJRLjRIIrBtCyyKkp75rnj6LVZFmfkdzRNo1Qqkcs5tDtX5rEs64qw4svNJsAVKeon39MSyas6cS7jkcdMeZbQj+j3pGPo90Y0tppEUUyvK5/b7XqfODIJAxmYeK6GYWgYmQzeWH6mGQzRNNLgRVegiCiI07UEITffdBu+J9fM6ZOnGPRdzEKGrApULNOQ5MZqHtMxC/jeC4OOfr/Pxz72R7zrXT/G+9//89x4o5R7efKrj/Hme76fP/30x/l/PvzPAPjVX/0V9s3G/MmfPcodd96Rys5kzTxR0EbEdcrlMj/7sz9Lr9fjQx/6EPl8nlK2wFePfZU4lqS6Dz/8MEIfUioWCAOPx7/8FCdPrfCpj/8KYRTT7vZ45tnn0oHXW266iZtvuRPbtjmv5o0sYSJCKKhz8HWZBY4jH0PNUQYIQiGwokmvXcd3B2hhjD5hffAjmC0SKwCS77notoUIBaFy6o6dYWFhKZXrGXsjvGFI33dT4FK1XGV+aZl7nDLn1Z7kOLNkrAz1rqyW/OWX/5zHH/vaVc/XX3z2zzEc6QQHoxGRH0gSb5W12vo1rPDrGA56pL/k/4vMhI32FhfbDTKzUjl0ZARMLc1SO7iX8aR5mmjksgW6bsT07TId3f+a05y8sEpdQT+nbQvd6xHU6yiRd/bmofkiFcp4tIOlh9iOujy2TtBp4XuT1yZTC0dgbi8pHtQfkB3FzCkphHw8IslkmM6X0wU2qm8w2hhgDmGjK+GfpXyBnMiCosdnYTdH3lzDu7TCmoK1d4cjsrOzTKumtDMzxfTyHrR8jvyUzLo4dBM1/QiEsjygL9SYO7jM6hNPsHFR/lYQC2KzwO0P3A9ANugS2S6XL5wFQw5z1vIwv5iDqRqlhszOzq+sUCqXySl4uLAyrFxe5d9//BN89rOPyN8TUK1O0diSmZBlCmarZTRhpEOhF1fOS649FZN4oVTynZqd4eJlWY4slUpsN3dSkMTs/Bz90ZDhcIihwBzC99hqbLO6sc7uKemovSBgPBgSq/JQFEtZed/30dTDPzU9S3mqiqNKmCiWiji+MmMz2TBfrpYkUeqs0uRSZTxHlI7X6eeexzQcMjpkTXmfRr0hAgvbhGZDOq/nnj2PZVlsb8kgwPfH6LpOLi/SkQVTOZiJhLplGdi2TSZjoKtysGEYWFaRG244AoCWGGysrZOE4Ctl7MDzIbpC4RVHzRRo8I32ta88zrve9WOpk3ruued403e8klp1N7sWdqUo1Ice+j5++0O/xYPf905mZq5olInE4itfv8QP/dAP8dM/La/V1NRUmu2MRiMOH9zFpz/9aR544AF+8wMf4Jd/5Zep17eYmqrxwd/6PZ566imWlmZB6GSLFfbdcBMThdv81CLDyKTVGrHryP70bwvGAX4k12gURUS6iW5aaLZ8Xi0ngyM0DAX9towMVqxT1G2EKfeNyrzOumFgKmjC0AoZCInuHAUyCAkjCT2flPDjMMGyspjZSgp46mLi+RGtwKCxIb/3hUc+yfEnnyRSNGu1qWkK9vRV1z8eJQyUmrgfBuR0m6xj4ag1Go+ucdTfdbtu1+26favtu177ak6ePMnRo7K3/G/+zf/LP//ZdwIJ3/fAm3j/+/8pH/zgb3H48GE++KEP88gjj/DEE09w11134atZrKlqhQcffJC3ve1tLzj2n//5n7O1tcKttx3lQx/+vxEC3vKW+/mlX/oX6WeCIOBP/uQ/YL1u8dv1J/+dsGvCUekx2N+kR9Xut4kExJkswpAR0sbWCnVTx9q/l4qCVZYXFjByec6vrhOrBuvya9/A9DPPMbogtan2VvKce/wxNOCAKvm940038rWPv5DhN3Jb9LWIYl7mXUYxT0F3MVU9fthsUKQGVh80mfpGSQjhkBmV1gatPq1uk7ANGw2ZDkfdmOzAYCk7S1HV++emZsA0QfFvkdGhVIZRkX5HRjVTy8sUp2cR9mTgbhprcRFcD68nIxh7tQ57BbRl7y2JXGaXF8kHI7ZM2dvZ2uoRhAnJSJ6zWCyx++geHGNEoCLTrBOCPoSsT071u1jfINJMxirEbmyu89ePfZU//fRnGI1klGdZJiK5oh9Vm5ojn80z6A0pq4wq5+QpFpN0ADSKIhYWFjBNM5VSmZ2dJZfLpb2nTCbD+vo6o9EobWqbpkmv12NjY4Oyiuhd12MYeSQqss1l8miaRhDFWGq2amHXEnv37COjSqG5XC7NHCZljcnw5svVYiEVZvVYEcECSRwRhQYDRbNz4cIK2UwRgohBTz5Lp04cZ3qqyu7dS7R25DNx7GvPUy4X02fCskx0I8Y0dKJQZUu6SRBGadXBFTF2JsF3EnJKzNKyQLMianOyohKFgmAc0dpu4I0VCbNhUsyXCBUAicSgWLhaV+wHfuQfMT8/T1n1Mi9evMgHPvDBF3zmkUc+x+23306j0eDRRx9leXmZTCbDcDjk8mXJ7/nHn/oP3Hbbbdx0003EccwjjzzCv/iFn+Lf/favA9D6/vv5wqOP894f/whWtoJAEMc+xYLGm954N9VqhROnzrC13UBgUlBE241BgGUa6LpFoIaSJ+CHoYJ+65aZjtlstWW/OeoNWJibY0JplhMGwjEQXsx4Q1Y5MqbNeHGOJvKerW9epprNsTy9SEH1ukUQ4Y58FuZlH2lro0Gj3qHXb1JvSBBJfbvF6to6l9c3yAZyLU1Xytx25B6yav05pkHghcCnXnBtZ0tzDNTg+Fj4aHqCkcS4avRgov79YrsmHFXskRLAvth2ug2cUoFcvsyTpySPVFKapTY7x8bONluqUWju7DDX2S1lrlUT7/DBI3z3938/uR3Zf3E2z9F79jGqLvzA62XJ6E2374IXOSrbiMg4NkUlV23m80zvqmDrsuHfO7FN/dwFnIEgUA+8UcmS+C66qhEbjkNerxJZgkTN7YR+QK/RZyMcUyzJ8w57HTB1DNX/yrpNhgSEhsb+10jmZzOXpe/6oIgrfTMiaGwy6I8I1ELVt7YY7dQo5NRcxaBLErlMT1cIyvL3u+2Q+aVF1hsSJFIQTUZbl8gkI2aUXElsR7j9TXoNn1pFktfWFpe4uLLKmmJmPn9pjUcfe5yNjS0MpcQ7UUiesNDbtkOv10NEAZ5y8JlMBsv1XsCePjc3x8bGRor663a7LC4u4imxw52dHVzXpVqtpk1p3/exbZt6vc5sTt7r8XjMMIiIlMOZ3lsjk8ti9Ly0v2AYBsVyieHYTc85DCbDxDJyCYKXO9ef7E8FIsQIJ6qrMYEI6CjWhfPnL5DLlIg8n51tuQk++/QzzM3OUCqWCX15LU8+d5FqtZze21K5QBgGjEdJ2kvyfRehJUrVFwxDw7R0CV6wr5T+3GAjvY+Dbp/RaIzQLPxQMfoHAbmMQDC5j1HKEjGxbyXdkRCCuLfB6ae/CkC+kOUVR3dx712HKJQU4aupITSDnOq1Ts3WyFdqIGz6A7kmWt0hnc4Wve6AWkluz9PT0+QKeRIVcDmlAlYI4yhh5Mm/6fLGOk6hnO4/vmFhewF+o8PF43J/K2Wy6ItlItWPGrXaZMchRnkeUxGSjhoDOltNVnZkMHn2+YusrW4zHEegZD6yxSr7p45wqHYLnmp96CKm32zSUqV/EUck/tVr6bljzzFUwJH+qE8QuogklKSuSDXjl7JrwlGZOsTBS6OtMjmHgTukfvkixapEr3k5h2avxerWGgVNSYiPPLa7fYaeT+0V9wBwudXl0C23ctfU3QCc+OPfZ2HG5vX7yrzuLlmjdrcvXfWbuxZrVGdrFBYlwMFtt2h7PRZq8rWnw8rWFsbYILtX3ijHFrR3NtBceaOqWQFGjG5bxArMkZvKkQxHiG7MQNEjaSIgsgTjsTxO2K8TZE32HD1E4dUSvXjmi1+kMxixtCghr9mMxsrZ8/jDgNlpeU2SQJJ0TmiGfLFDmDGJe3DunBwuXl91ueehZToZ6ThKB2cpLTiweQnWZfS2fvksZrnM7NEDhH35udqe3XzliSf53F9K2P/5S2tcuryJaRr0R/JhXFioYhgWWbW5NBoNfHfAvt27U+qd+laDURSmNEcLCwuyaXz+PHffLe/R+vo6pVKJtbW19DhCCBYWFlLIepIkGIZBo9GgNy0RfJ7nMYjHeN/AbGAYBpphkFVMHNlcjlwuR2dLZp2u59PtdqVGkkI0TchpX672AjCF2vTCOMTQ9DQzev7UGdyBjyVMYpWBNrabBJ7P6uo6Ow25yT194jg5M4ejeqv5fJZ2u0k2l0lZL2zbJOMYFBTgpVjKk8s5KvC5cl6DEPKOdFS60KhUyszum6HXks6osSnZ9CdB0NRUhUar8a28VFfZDXt3EypKqY3LF9hp7+CHAYnqm+VLZWbmF3BVMFSenkMIm3MXN1hdk5lRNl+hUKwwdAO6m5KO6HRyGtO2yCugUmGqQqZSxC7l0XLy2tYWF6nlFhmGMigVQYJtWTgFUumNvXOLNDGoZSSYyJwZsnN5nS8d/ywXjkukZmd1h2jgM2hJZ+b2fAwrh+NU6Kv+UWtwGi+I8YOIlmIUCvwxo04LXSks5EyTOLyajuzJr36dQK3RYTLCABZmpzi4X5JSz83VXvLaXhOOKsxCmHvpSPbZ9cGVF9sTWQ35b+cLn/8b/d4XVur8s8/Xv+n/H1QPU505QqclH7CTz44wX91jpDKR5XtvZubN07AzZKikn4VoMzdfwAvl6hq5fSzDodto8MplWQ/PYBLvCznxzAm0nkTnbbS7aIGDp264kcuxf9+NzC0dgkQ6xtmFAabbInGkE3CxyJRq5HM6U0V5Yy3NRFuugybTc2vlBI1nT+IFCXMLChk1r7OpPY+5Rzq8rYqHc8MRHPNugk3Z8NZPrFMcaminBVpBMnOQnefAjRUan5GO4mRjnU47YM6qMDWh7O9YuFmNViyd0sjR0DJZzvd2qO6oSDBMaOYDju6T1DBW0WR74xK1Qp7FsszoVi+u8ezmZdpqk4yn58mXS9TzRZ4/fVodx6dqAYMmXkNuXk1KnNbHFMZyoe599jgPLN/wwgVXAAAgAElEQVTIp5NzPD8jf790dAYrGPPqkixr5LtZZnfNEqDh55UUfdxjLy9fTSordoAYzBBXKOnxOCRj5NnYkJuXFi0SdOcIYx0nL4OO2XmHVn+TzX5CvykrGAfn515AfZXPWRxevpX5hVrK9Vetlsnnc+nrfCGLZVmYppnK05umieVsYWXVPFbUoVx1CANwB3KD+/R/7nPmZIuxavi3hkOMlNLx28M2kj90H+fOStaV8y2NQS+LHoMieKfThK3LEgwCIPQuQmgMvZhgLIOpdj1g6PTIZrNUNLlOBQl+16O7Lq//1qBB5Ady3k0d27AtTk1/hQVFu7Tn4H6W9u7BKS1gL8vK0NM7DU7+xl9w6ZKElB8/cZIL5y/S6fTwgglTvoAowVIAjCSOicNIURupWTd1TgJB15RBiYhsRFxAU2unMdYQXN3OcW2bSO2RZuhgMWD3fI7X3SvbDPns/4JgiuvMxNftul23v4393DvemfIRZp0CBjkuXlgnowZadV0n0QSVGekoW90OGIIf/OEf5JY3vkEexBDgu6CQcegCMhkwNJj0NH2fC52X3mSv29/erglH1Wm3GPUH/+0PfpvMSAI2t89z+oLM3M5cvMD21og77pBzRXPzd5Ev7MbvNWiqyN80dYrZLJ3mBAoOVjaPU80zTGRk2GgPyFt5ppZvoqL6TetbdZqDIdubMlsLPJ+ScFnMaJCXEUl5zxLauSGNVXnskeuhxQbl4iyG6rd0O02s4picCiOHrT5xEKMJg5kZmXVVsjpT5Tmw1ezZqRUuPHuOPbsPsbikhgtvnYbVJmzWWVuR96TaH5NJNA7vlXDZv/7888yU8njdEUVTNWEtnTD2U+63YTTCMhJytg26PCdNGMxOlxip4ealW/Zy4mtP4QcRWzsyE7y0vkVrPKa6Zy8AY12g6yZbW9v4CvpqhRGJpjPoRDQVr9wo6ePpIwzFwj/WR+i6ztzsDMNF2YSfKhQoZEwMV2WBSUIS+8RRiAgnKn0B36Rd+rKxMAwJAx9Fo0eSyMHtCYQ6jmM8z0NDIxmpecBmk1Z3h+Z2g/v/ntREqlar1GozKXDBsiyESJT+lDyW70umcNueMKXHIEYvDFJFwmDkk1MQ5kQI+r0hfhDjWLKMVShWGQw3cEzpcEzTYtjvoekxFfX7WTuPO4oZuwGmWn+JpuOFPmKgKgF+QOjFfPFLX+HrJyUJdrffIYiCNDPL57NMz1SZnp5OgQ6WZfDEsQtsKxaWTrOFSMDULZJQ6S8FMboQDPojdV0TgiBkOHZxVVnVjyT3oWboNIaK4T2CKAjx1WfCsa/mN7X0nDZ6W1hkyBZl6b84VaEwVcHIZugrWfl2t0O400lLuKPxmJAYgYllTIBKFrphpjMkSSyHrzX0lPXdEKCJyaC1ct5xBi3KIJRSObFGogW8WGYwJkrHHnR1DXzfZ9Dtqb/N5aXsmnBU81NVOjtXJpL/Z7GfT2zP/BRPXz7H6liWmubvnMXszZBxFMNwkCEf2owz0wQKWNQdjdjcGZCEari138XFI2flCFQ5wnd0MnOLVI9WqR+T/R5zLkfVKtGZVtT/cYw/bXGueYnMlyQSbmnvboqJwNKk4/ICD3c4wu2u0VB1462tbcqdXTiqsO82mgQ7Hca2xYwiAC2VpiAyYSyPM7Pl4Xf7jNsX6G3J4xTnlsCx8R1BbqQAHrHBQq7Ag/e+DoBnvnySZ566SAAESnrbSwIG3pDRWDq3ceJhOhaapRGpJrCXJBBoKcKo0+xx/uJllpf2cvqs7BU2u32y0zNkFWIr9DyiIKa9vY3nyt+qZCx0dCIfhkNFK5P0iE0XV9XFh9aQKAnZs3c3BQVFNgp5CqaBppgS4siFyCMJR2iqHGF8EwHPl4vFccw48EliD6Gr2TI0fN9PWTsC36fbbaMLE8tSJMCdNmEQIIDd++SzXChAPu8SIzefnW6Pfr9PEHgpeGJ6ehpNKfqCHPiVpLQv2geC3XiekvSwXNA8vHHIQk0GIU6myOZGk0JOHufQwQMQRYyGOzQ2ZRDU1kdEvoE/jmirZ8m2NaJEEI5UgBMmJJrGybMX2VZ9ZNM28f1x2mv1/bGUPtGusLcLIch4mVTI0/d9LMNEF0bqGELfh1i8AGEa+xFREhGpEnpCQiK562lrElCUJAnSb0+ezQQdgYWFrrbwLAUiYjoKhbnT68HqOsIy8BSieOwFVISR/r5jFxBCjgNPSoiBn+DHQdpHRmiSig4NS5ViDU2XRMJJRGzK9a7FFugmWiTvfZRoRMRXOaowjomVE9QSQZQkjPpD6ooKjeRFQ63KrglH5Y+H+Ir76+5738BXvvoUul3EUtRHEQmmJdDUjZspCOZzMfccmueGqqpjd9apagElE4ax7Mn0hj1yMzn2HpU9Cadosb25RtDtM2XIWureco1zx09iKgn1xQO7GHtdEmPI0j4ZLR18xT6WnLtStIqIAzrdJolhUZxX0aJn0Wv5JCrAGI8DhD5mplaiUFBM0X4EaPhBi9ptUsIDy4ZSiSVVihjEEaWpaZoba6yfkbD6qLVJ3gspKuBIKZcjj85Wo02rLhdTp93CPTbGVg+TpWkkoc8wElQn9Fn9CI6vwHFZo870BxzI5Rj1O6ycltlaZbnOrltuwZorYumqV2M4OLHOqw/JgcuHv+8H+Kljv4Zl6CS23Ly64y6jyEs3s6xhkLccbDODr94bhz6jrsv8IYlm/PLjT7KzM+C22xZ44gtfBCAQOgtz84zURjIajyXkOE4wVGZaypbR3CGVYhahqWbuaAxaiK04++Ikod3vUdi7SGVJbmYD28ZOAmIFhY7CEXE0RgsDzFhF2OZLT8a/XCxKQpJY4Ec+ViA3K13Jwk/k4weDHm7gYxs2jiM/EwYB5WKR2emZFLEZBAE7ze0U4OB5kkIpm82kA931bZk1TIATpqmTyWSwbRtTOUFN04jchLGvRjEcH92Kcd2A/sBTZ55hZ6fHhbNyPTh2Hn/cpV6/iK6cYhRAEtjEkU67JYfpNcNA6Bqx2lFd38OwTAzboKeqA0EcoGnaFfYMoVjeEWgq+xZCoCdmqns1WQdRFKUaZzEx+jfwgEtNLYGOhqHe19HREAgEjiX7r0kUSQfHJHCQ/23bTupQwjhi7Pugrn0c+wRhgoCUns6wbXK6wYSLXGg6CRpGIgjF5P5LFpIJK4mhy2zXECLNopIkhiQhERqmcjp6kkCSEKefSQjiq3EHURITqcDdVML07tCnuS0dlD+6Wr6e9Iyv23W7btftul23a9SuiYxq1O+RqHkoW9fIGAYkAaaiWUkiHzEOyGdk1HPX0f3cvJTjdUcXuH1BDXxedDF7dYozZTZcmULEFIhFTNKVaaUTZtgzt4B+ZBYclWZ4AbsBNX7BKBnRbtXZvTjDoYpEogRRQCEaUJi4dd0giFt4sUlekSma83nYZcJQRgatcx3am2t017YI1fxHpTpNkEC736M2lFFFf+TRD0LWlNZSbmqG2VeWWJiaIb9L1pb7jW08AvoqQqk6JokwGdZduiOJcouTiFwnQTdl9Jgp2WiWg6ELQl+GfaONNr1L6+xclHX0jKGxa/9+yvMz+JaC2QsDTEiMBNGSZQyCPmTLkJcX4DuOHOV77rmNv3rmOEFGhl6d8YAEDXMy66Hb5PUMhrCIVNYz1gMKVp76poQNb6w3mKrN0+yN6KvxBDPnMPZjuopNehz46CRMF8v0evK9rGXT22kzk6/gq0gwiQLy2RxzVZmF54wcW/02Nc+nrOY5ZnI5LCEQsYzMBQGGlmAQYfLy1qGaWJIkmKaJ7xmEk3tiCqIooaGeUd/3sTHQNTu93yYahUwWx7Q4+7yMiicjAhP0nmUVsDMmvmsSqRuXy5WUgrD8fS3RITIgsonVc4umYZg5RqpHqZkCM+ugGyb9gby3ibBJYoO+Iq6u19uMBtv0un2qkzmmxMD3Y9xRQGVeZtmN5g5hEBJOsv4kQowT9DBBGIpqKwoQuo5QZb4oSYj9kDiJiFMkXIKZ0UFlXcK2QBNSAVmJmZqKFd5VPSNNN7A0HT0GoVIYkYAhBIZhIGI1ExYHLywzxonMsCKBHsv3MnYGXbMQah7QjkJ8INYEYsKfp2sE3T6RqvNFCHRhYloZLHOijC1kD1JxMeqmScZ2MDQIfJUphzHEEUIIHDEhLk6IkwihyowJck96sYVxkM6D6oaB4VuIJCbyFaLzRfyME7smHFW1VKVbkBtuwUhwvA56ElNCbvCWFuAYEbful9DL773nBvbNZljMxWQVPXy2kCUJc6AZuJPN2/ew4oiCqdgK3DH62IMkgXm1CPIWxmwGR21wmjuguzGiIPIUVWPQbTfBPQ9qjoO5WUxLxxQRiav6HX6LcNDFa8lSxvDyJXbOnybyXFAPyt6DhzDyeUbemDUF2R71XfxhwGBdbgLO9BDmDsBMhWJWlgw3uueozlfJqXOMY2itNqj32niq/l11SiwzT9eTNeP29oB+PEYzdfySfMAKQULYGCBUGdgSMThddM0mP61mVFwf+gN8LOy2enhaHcxyQjCWDt8NYt750AM8df4k57ry90JLYGgWVqSa4jHghYRmTGypJnjGwdItHvviYwDML+5icc8yJ1cuMbtXlme9JKIzHqZKrYKQqVKJimliV2TfytQNiGIymQyuKj2YTpaF+RpLixI4UooMBu0R5QQGHXmOu6w8Qawj1AxPYoBmql7IRMIgeXk7rMGwT5LUAJH2EqJQEPsRQwU4KBWKTOWmKGaLaVltNG5j6Dpub4RjSDi0pmkYuoFtyo3aMi1EkhC5EZ7qJWa0nOyZpEGgThQJPF9PS22appHJ6ynAzgsS7FAgNJO+IsoVmk0ml0dH9Uw0g0p5iko5R17NMRqJgW0UiEKDni6/V291GUU+QtXwLKOA0DXcsSu9BpAkOkksmGyhQmiYuoNlmNjfwEfot7Yx1GtTWCS6RkhEEAfp9/RYJ5eRjtPWDGzdQI9iNAXm0eIEWzMwdQPXmAwvByRxjDGpM0YyWNB1ncxETDGSzk5XQ9oGOgkxgRcSqDNPgKqTI1QXMo4BzUA3rbQcF/khQRggJkKyiZSKjxKRljPjUEq1aDoYkwAviRHxFeeUEJO8lKNKotTpGIaBGZuYRoKt4PCGczWbiPx7rgFzvQBPSVMnoy6VJGS5JLh5r7yhixWbak5nqipvylFjh0rgYA5imnX5vV6rjykcGCUEagh13BtgmRrV2QkJKfj1DRi2sAIZea22GrQTmBJyHkPEGrGnsXO+yUChdQqmDaMRY1Nu+NpAYC7qJNUi5OSN6g367KyusH5KaljlkoBCkmV+aReBimAKdpWtnQ5bzSbLS5LBfCZbxBlqZDZUHf9MnWHwOBQc6kL+bcc3z3DHW76DaSX7MWj1aPYHxIOQmUQ6mOXMLFpXJ+opVupWm1Y4xill0ALlFP0IYxBQsFUUJgz8oU9vvU67rwanoxF5xhSXF7EDuen7Wx2Gl7bpKLRe24B9r7mH+9/0Gn7nT+Us2yhI0PUAS21KmUAjCWI8LyBStCqhqbPTqDMJmrLFIv0goDV22atmuxwR0R10UWxZGIlg/+45Wmsb7FlUekjuGHthjmKhiKvJZ2RBy1PZv5tyVQ33BglxxmVm7z6MrEKCxTqhH+Or7D0QCbFhIISOptiro5d5ZrV6aYU9B2topiBRmVCMIA6iFBRQLBapTdco2A6+YhLI6CZ6DP1ujySrpOh1HdM0UwTfJFszLRNbDVj7fohlGVjG5Dva/8/emwdLep1lnr9zvj33zLvWvbWpSvtiybJky9htM4BpwG23222GHhZ7gJ4xDrMYhjA4IIBgM0sAM2B3YP9hAoiYwEQD003IBmy8YdSWjSzZVmmrKtV+95s3128/35k/zsksy5Inumegu6ZVb4RCVbcyb37fl+ecd3ve53kemEoIYdj0rcyMKnPG0xjX8cjsd+mHbdrdDpNzZkh2MBqy2Ito1mpUFlaeZQXNWhcvjEjtNTmei1/682AyCALCWgQDwK6JMAzRqpof3lTaoOAQSGWDsApOBou4tteN61BQkeoCZcs1Wgtkxfz3OGWFpzW+kPh2tsoX4GsHtxRs2H6rBKSQeHYfVRZ4IaoK1zqPIKxBpdCWcd4TghJJoivc2UyigHQ6RtiowHU80AJEYf4PuEIjXHfeayuzjLjIDMDF+knPmQE/1FxmpdIYbzlDZVCBfH6PyiRTVxGdVWWAtqKa9eheQM6Ca8RRFV+FhFms+dy27PKywy2+4QbjXQ/VFHWZokrTKBWn95GHj+AtrvL4GcNgcH7zgPXjNxM2WgRXvgRAI6yhVM6Zc+Y1XqBodCMc7dC/bKe+z17gzpc9wKpnspWL56/gDBQuAYN9k5lNRc7GfkppIzNvAqEOqIuQdt3qH/XqhNJnzU6Bi8kAPR1TW10BO61Np8NitIeOFsh7pmRZKwJCB6QthUzOjdifXKJzZJXWknGwx7pHWesdQVYm6ti7cI7Bs/t42znRpqUeefYi/apLrM1nudpnqd2gc2hhvjH6gw3KYU5lkjcWwpxomqNjQVmaz4p1yliUVElOLzVOYP/8FZ596ilCW0KJjq5wsHmG//X7/0c+/YyhtfrUIweEbkVowQiB8KlKTV5WZHYSP5cO2fYut1lW6AzF1sYVvE6DoaXCabYbuMpBJWYD+qrk8EqH3TOnWD9uSrHJwQi/1wEFSWRKODLUtNfXUK5lU1AQNV3Wbr4TuWYcnIpL0jRHW1BMrCtyKVDCpbKYdPEiz6iuXLrAsH8z9e7VRr0WDpXSc64/rTVSgFIluQU45EWKX0YUSUoZmMPKcQMcV2ArVuRFTqGMvtqMbTwIPSoCoyUCICSqqijKan4wuq4Lsk7TMlyUIifLhsj61aHgWqNBu9em5ZpAZRyPkHJK4DXw7e8WnqQoUw4GB6QNm60JRRT6xBbRl6kS35FGj2sGoY+nOELi29GPyA/wHReJmDNzlEVFhSafQ9ELkjKj0BXCVhR8L8Dz3Tkoosozw/peGcAKQCUcsrIkKUocC6bwlJGy96wz06KiRIEGR8/GKnJ0llDa8ihSIFyJrxRy9hohCD0fOWNfEQ65qsjSeC6PIx2PwHPBik5mKiFTJQ6Cmh/Z78ycg0ppdHU1CDGsJrbCBFQ831E5EmwnwDCgVDlpquY0a5QvTPxwHUxx3a7bdbtu1+2atmsio0qUptk25Rnfc4j3S47fHrKIKX11kiHr3QBlU0kRuBTjfS5s9xkMbPQWtnl2c8LeaI+XXTYULodvPIpoBexnZtam8jRNISEpKTPzu25ev536yKOwIIjaoGL/0j4HlSK3M0JPnd4iO4CWCcw52fZYkcusLNRx1w1RLUVK2FyB1ix8bFJdvgDdEKSJjKrxiObxNSaXKvKGiQ43LvfxRRfHSqCvrq8RKZ9Q1RjtmFJjvRmw/+UrHDpms85xSLoLtVGNhcJKb1/aQ960TGShqEHUpfAke7sDdu08SJEXNEKBXDJR0FZmNCWbNR/X1rqdUsLuhGF+gY89ZAYe656kV4u4/XYDqR9GFXE1Zakp+cWf+98AeM+v/jYbF4coWx7UlWRjeMDxkychMBHkzmCbteU2pU39lSdorS6xn+eUFop8duMCS+0Ix4Zdt5w4ilPFrC21ufXW4wB85YtfYWVlGUd6JI7JsnxfkgmXLatHdfPNN/PSO++mvbTOKcvM3hYR7dUl9guTKesooHBcpBcyi9kq/cLN3BeLfeoTf8vxm45y3ytfhrDjADvb+xxeOkyvZ0rPg8t9lCrQjsTKwdGs1fFcSVEUZIkdGchyiiyY8096vpm/0UrPM6g8KXClwyidsfCbslOpijmEXQjBNNkgTmczOkMKMaWjK4ZWFj6PD9g/2KXVM3vtys4F8tTn+LHbScbm+5aVi0wdanUj/Alm1GN3dxffJtLClagiJfKdOUFq6JqekW/nyqQqKPOUqtTz0pcUgoEv0LO+ltAUvkOhxRz6rqsYUUgCWx4MIpegXjMlcgtUkEWOHzj4DR/fvk+ICqU0hQUqFEVBkec40kNZHTnpaDxXULP6VGlZoMoCgcaxVYJKaaQUc3WJSgjQAk8I5AyejkLlJXKma4VpEfiBi7DAiSwe47iSIAgYj83n18IaQruUM8Z9R/DVJb6Z1UIfbQEfVV4aKL7joS3Aotl8viowXCOOKqw36O+bRn2aKVwPPC+YS5hvj8aI4ZiFjh0cnSZMmLA/rRiNzMM4UDVGyuNgklOzU+7jwZCsgEloHkJSOJw5u890lBPZ2vKCTFkJYlq2mTedjLiyt4Hf81g4bjzT7S9ZIdf7KDuqH/Yy8mqDgwOHhcuWmXy0R5EO8SyibHGxh+wUEIxhPgk+opbkFPk+g8tmEzZ1SBi28KykiLfcpFFFaOlQWUbl4eYueqxxLprSixMXLAwD6sohyGdDgQ3GRUo+OySmmkavwx0330FzwQQBW/u7nLtwnspupkYUstBu0W7U5iWEZDwino5Rm2O0ZWbf2NxjoROxu2+cafOGJRbWmhAp7r3V9Jbe9fb/mf29kgf/velZPfLQ46wtrTKKp2xbMIPXqhH5PuPSXHNSKYQfEPY6HFgxNbcWolEcOWzIZo+uLhBUOYvtiL5l/egud2kudRBOQDMwn7+3dYVkXOLb0mvt8DFGQQ01SugfWHnywxIKQWY3U641KVDi4NhDeQaqeLHadDjirx/8CCuHVrnpVsOe3+2sEMcpuS3PJEnCeDxEhxGhLSPVahFFmTHsD3Hdhfnr6nXJzrZheGm32wyHQ2q1EM0MUegxmYxYXTXf9+7uNs1mk0qXczBFGIbkymUpMevvzMVHOXriEI995cvceNKwYOxs9ekPdtnaMfNRgoobbrmBl738bi6eM6TM2xe3yPMpURRRFWZNuLokkHp+pFZljtSGPUM6s74NUGaUdkZJleYgNzNQtoToOODW5h1OpRWqMsCE0oIpKkBITZXbEl7g4/ghjidxhHGclShIyoI0y3FsiVopZcqtdo6yqioTUAmo5j2dCqVLcgtSycucCo2QDq4FkzmOSxnHcxSglJ4hYRaSahaooVFoSttrktLFdSVS8JyyXlnmJNMYaeWKKtelEhJ/xkLjSVyhYfg162synCNsXV1DIEjzjIuXzWynyq/hgV8FJNbLZ8JF+YJR6bNpJ9EbCdRrgVHCBdIiZZrliBzadmU4IiOoMpqOZtcO2Im4JMk1pW3wl37AcCQY9iGwisIHWcylMqY5Gy4UKTKAtU6Lu+0h7B5bZTR6Zg6rbC4uUEmPqoxRF88C0L9ygXi6R7dpvrjFmgRZwbCP6htnFveHpDsH7F28xNZpszCOrhyhOBwRuCYSDLs+ySBn58oWYyvrnIzG6N2ERFp9Gj9kqdZBaclmakAhk0qxNx3N+wpVqYlHY3xcujffCUC3FnJ04xJX+gaeHkQ+jgQ1jZnuW+hxoigHBflkTH/POMayLHCiGjsD0+vrb+5Tb03odTWtb3gtAK9/zQP4CzdS9M0Cf+Tzj1O5sD8e4tjsUQrJfjIh7JiDTHoRg6IgrDS5fbavfeXLORS55JvnAfAqRTo4YG2pN38endV1aotdwkaXx3fNAtjqD9BRyMrx4+beltfZqwRJkuLaQ8DJQKcl2axnqApKKrQQczDFLCJ8sZovJU9/5Uke+4fHOH7cAH7avTo7e5u0WhZ1GbjkKiNJKmTtatZTVRXTJGF49jxgBoS73S67e2a9HT16lN3dbQ4dOoRSZr8vryyxvb07d1T9/oBWq4XvhnMQRhjUqImAxa4J5pQ+xr333knn/Dnuvc+oeW9cTrlyZcrOth0PmYxptCL+h295LVuXjwPw6Y9/hrNPn0d6Ck+ZdRNISc3z5oCnolKIqsBxQNqsL/RcQ8xq+zbCcXGlg+c4cySeg4D0Klt4JYyDKSuNngVBQiA0NAKz16USOGmFRM/7yFpptA2iJzM4vNCGvcqmPZXjmE90/TngpXAFWntzRKtXOSAEjuMgbD9QSkm73ZzjAYR0wZFUGopqRvhbUio1Z+EIQg/QFHmKtvcf1mtoFEWaktu+YZpLyoK5wnDgSOpR/XmOqtdsMh1axXM1IUTheJLcBi6Fej7jOlzvUV2363bdrtt1u8btmsio8uLqrJEfNZgol2e2Yga2Jnu01mU5WuRJS9yqVUGWKbQALzTva+kcv9QoB05bp9wLK8pUM9m0A3Yk+G6LVl6b84ZlGi7t95HCRHiNOpw4DGHdx1WWnkUqWg+8DmKLqMnBOXeR4flLTEaWa26wixcKRHtWtFegS9L9AcN9S9Q6zqjSCcMLYzyTnOAc8VFqkYXI9rqWVwndA86fu0JhNaoaooaclKS2FCprJa0jXfpVxbnCDgW7JcuLC9x4w42AoU05/cwZvvB3n6N92vRoOmtrpIEktZGi8h2yJKa/cZnYCp6F05QwrxAZSGmiJceHiztDFiJzr7fddStrhzv4kYa+Kcf5nWNQZBTKXE/UCdmdHDBOM1ZWzL1Ny4zuocO85tu+DYAL+2MefvIZTtxxF//yTW8A4O6Tx/iT9/82E6v4mY33qJUZN68fIU5M1ieDELfVRtcbXHzcrImDwYhOWMcPTNY9VhUHgxErhCzXTSbgpCUyL1AWYYgoUChTJ7cZlXxxV/5YaDbZGg54+KHP8dJ77wegWeuitZj3D3zfNzByR84zo7RICWs1eouLHL3BIGGTJKHVajEem3Wzvr5OmsWsrKwwk4zoLXTZ3d3lxInjALz0yknW1laRUl7NqMIQmS/iRyYS9xr3EDQFh9aP4oT2mtxVtP40ru096QkMJ2OcwOfm20xvVWhJmX2KK5e2aXkmO5M4UF0dnFVagq7QpZqrPY/TDAH4Fh4f+Ibj0JPOHPWXlSXN8io/oUH2OWgBzuxnUiKlpEqey7IubOZj/my4MbXWhJajc64RNgP46QqtNaUUNrsycyIL8LYAACAASURBVFUa0LaiIh37WVrP56aUUuSVmiHRTRasBaWGwqLtlFIUlZqjMnWlKfOU8XhEZNF+3YUerVYLrUqeHpkqxyhJyNICz6KOI+WxGIXPW1+9Zo18bPkQVU7o1FheW6RRM+dGVbywxM414ahcqQkthFP6HuO0YHOQIGczOY6Ls1NQJZax16tRZhMEFS2bHmtVUkxNdrxr70rlHnJakNmyp5Nqcj2kkj5VaKGf3SbZtI8dNSIHmiWc39hkemAO4RsvnsPbqaimxnFFymF8aZ/xxoTC/kzHAhouk5odpgtASZeNizkHW+ZLyIclIhN40xp1q7Lp7E/Yqc4Rtc3fl+5Yxjl+gsVnN3nmsgFBdFwfR8GMkKtQMMpL+ipnz5aoUz/k7qOHOPQSw8fH0jqLnQU+8fFP88yjhlxXPXEG0WgytIspaDeQEpLJmMoOczYNKTOegJoVZTt55y3sxpdpHzN/Xz25hN+RsBDB2D7cQycpzj3LQ581nH39SUpqdvec622x0+K2l92PDo3j6B1e4Mf/1f9EgcfugWmK/1//4a859eWnKe34wKKacsvhVVRR4VknFDZaBN0Fnr54hWk2vbqOEExsMFEcHDCMp7RcgS5s6SNJcLIAOeMgEzkIhUThaTn/HS9mW1teYpIXXDx7kU9/0gxmHz96koXO8pwZP0kSWlFEo1GbM4MXqmSh2eCmm25icXlsf1uIlJJDGBCG7ytct04QZvPyk+9PWF8PyDKz1xaXoNJ75Fk5J66dxgXL4SJ9ywdXLwRnzl8G3+VgaIBT9foxLl3ZYNP2un3hUyrF+YsXWLKD4rfdcTs720Mm04dRA1vqzcys3+x6XNc3xIOiQs3YIhyJ0POxKjSGW08pZXgoMXB05Ym5o3KFRFYgtZxz5HnS8ARmluHfdV28KMSPQhzfAkWkAaSUZYltN6OFptTlXLNO6VmfSKHyqxyFCIG0pUjhSFPWq6qrM1FlSfVVpTWNmZET1qkCYOfYZmoCoaoo8pypLhDaBq61Fo3eElAR2yBkVOaUGsveZ4QUm9nz91I6mcwddw2fZqdFd7k3d/jq60gXXBOOyndLVG77IZY6Jwgb84MyzVOevrDHDWtmwQfdOjKZMhnvM7HNRFWmjLMYRwCFiUT6wxwnFTQtos0NKoYHChnkLC8agIHTdFh1m8zYUnQ1odsNkA2X3alp8LdzeOKRU2R7JspvpQ5hP6OVSWq2/lzGFapeMbVDwbsrBX6zyXRc42DXbNyD80MYK5Ybi9RvNq9rrSwQ53Bl2/Sf6u0r1F51M0fW1znzZSMhfTAcmME+W38ui5yyv89USMPSgKEjefzUYyiLVDqyeoTB9ghHQ8NGXdOJIk9G8zq2SAVOLSRUzrwpKzxwa3VqYcTwgtn0q4dXadUaOAtmkY+qEfsXd1iv+1Batg63i9c+Sc8eCuMUMheO3LBCo2Zec9uNN0PU4qUP/DMAjt5xD62lDg9+6jEuXDbO9MKjT/DEV86wkBgnfeRQl7XeKvk0p5oNYDZ7VF6dR58+S1WZyFgXKfFoRLFnrrm+1qVyzMmgLXtBNRGIPMCxPUxEiaNzpMpwbf1fC8k1si3+m9jNJ05y7vIWEpeHH/ocAN/42m/mvnvuJp4FAapEugLHk3OGiTzPmSQxkzglu2wADbNh3xkooaoqgsCzDAe2l+I71Ot14tjs+2azSVnmFEUxj+rzPOdS0gDXUihFCYQFhdDkMwLq4S6Vkgjs7BclRQlZUXH2vGHmHw9jEA6veOWr+LuPfB4wGZTGM2AIwAsDPDuM7LgzqiPLdG6HizOlyMoCqc3Qq/k8zQEpru21Bo6L73r4UuDZYFq6LsJ1iexhU2iYqpK9YkJmHU4OKAkIQdK/2i8tK3U160EjHJeyqsgtUMORPkWlKLGktGhLd3u1u1MhiGSAsplqpa++Tlvn4QgHKeUchZhRoSuBIqC0c2RxJRllJVVVMgtJpqpCCp9AmNcU1WROTvzV5gnmAJxRnpNlCUkWM4lNoFoUw+e9B66RHekJRWZpj/J0jCfBdzTZjFZ/PGS6NyG0DzOM6iQJbOwXuHbAs6pgMjHsy7XSOLRpPGBaVUhbjqu1BG5tSqsdcOSkKRmMh0OqIqdu+fik1+HELSc4fHSF/bEph60eO0J0qEP/rIne8rM7DB47x9ZGH9cG9GUJwRIc2HXhbl2gJVdQDY/2ukGijfen7G9NCJ0pBxbqmQc5Ya3NyMpVfPrhz/KyccbmhU32LcChVYvQjkMYhPZeK5KDEa4TsBxaJc5S4Cy355yJm1euMN4dIys4bOXq8wyG02TOMEEsoaxItWZsub0mmEXWcd156eOLp76CWkhpa7MID/c6NBsR2dYltqzq6PjRCxy693Xc+7J7AHjo3AabccmhI4c5ujRD8K1x0Fnm0ccNK3zRPMSK36E/SvniFw0U/uKjT6CGKY2WHaSuL+AIH6ldUrvw47xisDfg4naf2qKVAyky0smQdGiQYcV4gAgCCh2APQSqSYnIIhxmpZcKXWXoImWmtSRkwIvZAs83zNyez2hgjqG//Zu/ZbHTxrOoV8/zyLKMvSJHWNYDhWI0GvHkk09Ss3vScRzCyJ8zWtTrdaoqJggCsmxWfq2oqiHttvne0nSbIPApy6uoP8dx6IoBXt1mWPs7BG1JohQTyzCTZRMGB2N6HbP39wfbXNnc4eyz53n29JPm3qRPMiq58fit5IW97kqixVV4tKoklBrhCiqLssvy3KhdODNl3sqUi6XJnGbX2AiyuVPyhYOPxNMO/tx5+bjSQdu1lmvFpNQkScxoYvb/UKUklvRIsGy/FUGFHfIFQOIqKDVkNoMJpUuB4CoWSAICHOc5TB9C6nlJtaqMyoDWYv4zoQBV4fnWmUrDqKGqitwGiv3JlESVVEWJ9q8ySVRCgk0KyJmfH19tgeugZgAQMqYxJHl7DuuPmi9c+rsOprhu1+26Xbfrdk3bNZFRBY6gsrM1VDlSw6i/y6hvonUXE+86WyZ6anUnJEXOVj/FsVmG6wdk1ImcOmsjky052mW3KNg+MNFKPZIsrTfoLtdpLFh4+t4e2YFCxubzg6ak22ixfvIW1MiUB+WhFfTikGNdA1fv3nM73HyCi5/+Ime/aIAKOxdBD+DABhTjjQ2W/DHra8c5fMgMpYqyYNx/mlJktF9ioqWVk7ezduwObrOAj8/++ac4d/4sOq64/Y47AEPh4qKpWe2ffJqwO90mALq2bpynBaLbptezDdhMMtweUuY5gX2NpyVOWlG3vS7punh+HRW2cCw8vx+PiJXGVSXrlgQ3TmOatTrKNRHSMJ3gOBlbG0PioYl1nrlygb/4uydYeLmR7/72N/wLnt7YZTiIWV429+p7Dpcub+AMTKZ82zc47O6N2Nntc86qKZMqllcPM6NndNAMD4b0FhYorfbQ3v6Ag3FBocWcQsdzHXzPIbd1/NF4QNwvOdQoWC8t9U4VoIsCZ06WWRrSzbIw7LQAlQReOKp7MdilC+cpi4K0KInqZv1//G/+hrvuvB3HluKEEIxGI/J4SrNuSm9hGIKUbO1ss1wzFFlKKXq9DttW9XZtrctweECv12Im6N1uN9nd2WGpYwinz5x7gt5CQJYx7600GiH7k2dRlgDgIL7CRA9o9Hr0JyaF6HRuZDKJSVJLAIDHVn+Xv3zwIzz9FUOpdttNt7K/NeCTH/s7XnL8AQCSrKRQitJmhmWaoNG4nkRpU2rrdjtEUTSXtK+HRivLERLXuZpRtYrxVSaoQlElJVWaIyx7P7kB67i2tFhr9vDXG2RCsGV7vRe2t7i8s8WgGtNn9rwlla5QNq8oOUf2NaCf9IWZh7BMS3N7fjHuuTajM8xfACW+N33u/2e2eM9rjMBiVc6BG6BfUAB32D9AumZdubj4YUCj1URVM3KDF76ua8JRjaYReJb2ITrCfvUETuoa0kQgQqFVRdEzC+XgYGCo6F0fcivUBzgi5GCU4ncfAUAICIGGvcuFxQZLCytI4XDmkjksd7Iae2KM5cRlud0h2Fbsn+rTbJoHOhoVTE89hly1ku7ra3BLnWb9OIfvsc2/Z5/lzOmKwC6YW+9xaC+GePUhuR1UjtkjXIPF9RWihkHCOSs+9JI5o8V933kDG5ev0Gx2WLrBbN7hqE+myjl6Kt4bwG7F5GDIcGB+VsbQVT6dujlkO2vLNL0Ou2LCzq6p/1aZRvkVjqUTWDu8TFmllHJKa8E8pGNRG78VkKqUVWV6chWWCHbHXLM7bbPjRGzHHbZj8/wvDCdsJxXbXzhtnvUNN3Nne4Xz2R5nTxtghHRclms3E7RNmfX02ae56J7ijn9+L7deNCCQp//8DIuqYkmY6+lGIe3VVb64uYFYMQ7v8v4ue5PL1FyfbMsCLEoXJ95HbZoTUKNptnsM4vPkx811b5UVG09PWF4280Hebp0lIlSkOeiYEmJf+pzkxWuOjPCFR0CBY9lbhBb8xYcfpGXZY/p9TZFWOLIOO5YE1ZH4DhSFx15hSuZaa/Rob866/fQzZt/qjcvPIaqtqoqHzptARSlFdfrcc6XogaE7nA9jC1tSU0/uoGzQIekT1ds4DbP+szIDVvnCWY12jMLz506XQA+JRFm0WhWFTMt83rd1HZhkO7S05J67zEq4/aZjPHXqizRCEyi2ozZNv40n60wOTIBZi1rIdJF+3+w1pIMb1JmW8VwKxGt4aFVQt3tURSENx0UXOQu2/3P4+I1MF5e5cvESf2ZRjtO9AbWoTq0ye2IUm+c2mUx44glTMm+329xyyy3/hd/2f7lVVcVjjz02L83ed9996Msj6k6djClKGYe7Wq+zdqTFmaee+/6y0SBNLaLQbZNqSJVmedW0R9Js5wU/95pwVGEtIIhmmZFnyR0LQ6sLOKFH6DjUmiZ6832PPM+Jk4SpldlI8oLFdpel1RXSzBywjUZAs1ZD2slsGYaMlSZLUkYWKLHZH5NkprEJUBwMGX3lFF86cx7PLkzX9egu7bF40WR0x9Zj2lGIzDVBdBiAk7cd4tD6gB2rWHr85I00uk2cIJxvHq9+hN7qiGa7xaJ1erKswLkaRhxMCs6c2+TocZ+l1eMAtG++E6ZDFvbMATBdPICjCeVwyu4Fs8G3Lm6x2mqSHhgQQlwIFmo18l6XamBZz9OEbALHLe1T5MJoklDohMgO7h1aXqK33mMYjzj9rIXeFgVZrBG2Z+g1QjKp2Y1Ltu3zV0GL8FAP0TLghr1csLW3w/ZwipIzypg6nSgksgfelx8/RbrUZPXoYX78ne8E4N89dYbtT30KtWp6DdqRCM+hkoLCkttOEsVwEDOZ5pS5idaL0QG+H5MoW1uvjUAJhJhwxTHXfcPiMtLV7O2Y5yilpCxLlFL4cyn0r12dLy776KOfmf85La+Gzucv78Pl/8xf8sL98H8008DXBvwVMJ1uwddE+zp+/vsr4Mre1/nlNtDcLeFjj5q19bFHH/p/f7H/X2x09Y+WuOU59oEPfIA77riDZrPJr/zKr/BHf/RH/+SX9KUvfYm/+qu/4rWvfS2f+YxZK/t7j83/fZbYXZjChaee//6lXodnzlo8ghY06l06nQ5tiyOQkxe4Ua4RR3Xdrtt1+29vX5vFXLdr02YltbIs+eZv/mY8z+OjH/3oC5ba/insk5/8JK961atMuZf/OuvmmnBUcZ6RFKZGmeuCXJfERY4VfSRUBX7gMWOOLGWF9gSdQ4ssrptZq2SSMBnFTPc3sXI4ZPgUbm1epM3GGfnBhDhJGce29LdrINlW4JKqr4g39knzfWzlkTCCyIPQs3Dt3jmWOm2ankvP1q17zRouFb5vSphXtj2i2EU7Fdq38Gjpkaku/YOCuDCRQzIc46tthEXdnX78LGefGRFXexw+Z1B/jTuWQQqcmrn/pttFhBH4Eb3bTKp9y+VNsrNPsmfLfD6S0AvIk5iR5brzJCystZlMZhlnjfZCj25NkEkTo47jhN0zZ3nqdJ/HbC9LIXCDkJaFnrdbqwStLknLmyW9uI0uTqdL5pjscTKZUDgdWovePFtNioIrw5hXv/zlANxxeIm8XePK1kUWLGdYNwpoHDtKmZprVI5AuS6FEMS2ZzGclEwGCZO4IFMmOiOdonVObqGvRRyjtWCYHbCjTZh9pNYiqJVc2DBwZc8RlGVOnib4zEpRXLfr9v87E0Jw5coVPvEJw7X5+te/nm63+5zXFEXBpz71Kc6fP0+j0eCbvumb7PD1c217e5tPfOITTCYTjh07xjd+4zfiW0HIL3zhC0yn0+e954knnuDAEkIfOnSIEydOvOB1OrpEa3MeOoS4tg1RzgeOX3gDXhOOqnIwAHvAjTz8eoCj8jnB6qQAnRXkuyYVxzHQymazRqdtSk2xKNiOp0gNjlWZ3xuleGk1HzhNsoKiMAOzhe35pSV4zlWNFFXBJIEYsNgBGhKCGGZ4j839goXmhEgKImEOSh9NlWc06lazyndodzp4gWs+AOguLRLW6uz1+3jNGVBEIApFOTZ/L6YJYbNHXnV46IuGR/DG1ANPkNn7SCdjAuGw3GrRtGS62l+kqi8z3DGvmcSCOi5Z0EN3zM8GBykXd4Y0GqbUGOcQhS6BCOlbMMlB/4CcgvMH8GTPgEc8zyOsN2ha4ty620OqiFw4pLPBTbeD1E0KO1c2dCVJQ6Acydhq5AziIQvNJn/zhX8wz3VrhVd+y2t4+W0vof+UqbWXgyE7G5foLhogRyYrEgGjsiSJLSlqXJKnFTqXpJbh3q1KKl3OiUOrNAc8ismUia3/JCtjhOhy5cJ5c1+O4XArigxlPa6qPL6Odtt/t/ZfKxK/bv90JqXkD/7gD3jb296G1prf+I3f4Dd/8zfnEHHXdfmhH/oh3vrWt/KWt7yF8XjMn/zJn/D7v//7PPXU1Rrdrbfeytvf/nbe/OY302w2OXPmDD/5kz/JBz7wgfk5+slPfvI5n+15Hu973/u46667uHz5Mm95y1vY2tp6wet0qpK6hflnyiGPY4aDPu2OObS73WuYPV2hSHMT9U+TMWme4HO1Dj3VoBIYmZdQq8Ekhc2DmFpkDqE4MbXntZ7DZmbp8acl1dg4J7DOSRqQxcxxt5ebxIWaK4WWSpG5FUXJXLgt1w7L4QJxbnpUWkk81aSUknxGa59NScYZwchcdVlCvZaAFORWHrq31CeMIja2t2laxqRaFCHLEmVpVTphxNqhHttDOL1j+k8PP34REbrzpvQ0HiNzRTuq02uYLCcKfUbbu0yn5nkIAtJ4h+2tAXku7WtaVI0FBkOTrST7uyRVRu9QD6dhHOy0dJCBx6QxZdgzzWTP84jDkKFFxpUTDdOCyqnAztbUvApXlLgNO/AXeAzjmNFkMkfiOfUmm4lm76K5r6Uy5a7dAftPPMUf/NovAzD4ymOcrIc4lgE/l5p+nrA7jcktpGoydcgTTZVBLM39BmWGk6bEVi5CuQOceoUeT4kt6mqws4fSLfq7VoBTK4Q06CTrb2fq4y8q++Y7X8OqFZfcH45o9RYZxhnbByYIu+HGWxkmCY9+yahXD0ZjdFaaaHGG8vICmp0OkR9QWYJlrTWVLufrVpcFVamodImYKcFqjVbmZwAoI2FuR4QB40iTrMSzMzo+ElEUaHJm5RIXifChsF2SNE+RrsZ1BMJeYyglkeNRZjl138z2ra+v09/fZ2tghpS7QY1O06fb87j9FqP6/dbveQPL3QhXZ/azNDXXZ7Q/ZnfDrKXJaEKjtk9sm0n1ep3OQo+qquYgqLIscaXk3FnD5h76AcuLCwSOO++bpnFCp9WiUYv426fM/U6SjJ/6D//xOd/ZLLj4iZ/4CQDe9a53Ua/XUUoRRRHvfe976fV6vPvd7wbgz/7sz3jjG98IwMHBAevr6/zYj/0YP/ADP8ArX/lKTp06xW233cbnPvc5Wq0WSimGwyH3338/999/P6973evm759ZURR4nsef/umf8qY3vYnhYMB7f+7n+F9eci/1+wRuWFLvBoQd43wKp82//8vPEtnAPVM5cZKTZymNyPSkV1Z7vJBdE45Kq4J4apzAYNCnLKG9GOEr45lagUvgQWoxmPWOzzTNEa7L0qJZcDs7e5w5l3Kurxja0h+FptLGMQHgSqRwUWiURRBJUWNcTkls01VpSyfiMB84LIXLsITYkmQlpaZMUtqVT9eCEKIgwHNcIgvcyLMpfujjOALfUvbUml0arTracelPTFkvnmQUSTVXbd4XCZe2z+MFhk4KIKckqzTlVxN7V1DlB8xmVwXAcodaZMtz7QW6R5dZvmOZTtc8o9X14xw6cpzTF0zp6/SFc/z9F/4TfVezYFk/CnIqUVBqRZ4ZqLtyHDJhhv7AlMccVxCFEYGFJ8swZJyniJG5kbDdptFuIKOAmWhRvdakWjhMZOmyakLglpq///jfcv5zDwPgjPtUR1dxI1O2iKmYxhM2B0NkYN5XpAFZWlHFFUVz9tVWKFXMBzlJMnxPIbMSZQ+YdDTBDSYoW2Yo8wIhwPNdPHmV5ubFZtPJiCIzkVOZF/iuw/FjR5AWRh1Ph+ztH9Cww5iTeEyR5sZH2OclQwfHFyhRomZOqNJoqrmjQmsQFY7Ws/lqlCoQWiPteypd4qARmjmFkkDQbdTmyriyrKgqgaM9QnuNQeQjPcnADs5SZdRqEb1ui9BGIaEU1PwAT0h0bpxp4HvkvmTJMpofPXKIG288TKsuCDxz/vR3Nji+epKapXTTeUw22mVv4yLxyJTBPByKeIhj77XXrFFzBRcuXGZvzzizMPTxXJeFumkX7O3s0i9yjqyt07WEA9vDEfFgQICDZ/fWdNi3j++5UdSv/uqv8ru/+7uUZcl0OuXZZ5/l+PHjfOu3fiuvec1reOc730lZlly6dGnuZH7t136NRqPBww8/zIc+9CGazSbvfOc7uffee3n00UdptVoURcEP/MAP8IpXvILxeMx73vMe3vCGN/COd7yD7//+7+ejH/0oDz/8MBsbG/zGb/wGb3rTm9jZ2eHfftd38dp2B991mYz3KcoE4UUoy0zi1H1UllHaYW+BpOaFdGsh0lI7DfbGvJBdE47qul2363bdrtt/nr35zW/mzjvvpKoqTp8+zQc/+EFOnTrFqVOn+J7v+R7e9a538ZrXvIZarcbW1tZzelU7Ozv89E//NPfccw+PPPIIDzzwAG984xt5+9vfzgc/+EEAHnnkEd7+9rfz6le/ep6x/fiP/zgLCwv85V/+JQ899BAf+chH0Frz8z//8+zv7/NvXv963nTyJJTPZ6P4x7BrwlE1ogjPRt2h67C8EHLrLSfp2si77gnQGXt9y/DdrHEwHtPu9LjzJUY4bXe3z2D0CTb2YTzjHBUgpUDYmRyEQ6UMOGAWm6SDKaoo7KCneQ1CGO2YGaOxH5BRIOxAltCaWKWUaYxfM4ug3mgQBQ2y2EQETiQJmj7dTmtOD7O+doi1tVXCWsTjT5isZuvKBnu7u5SWZiaNp0wmMWkFNasEmpYVwnM5eswMDr/k7rs5efIknXabhmUG77TbcOsr2d830VeaVJy44SYWekt8/hFTg/7yE8+Qh23e8rPvAODRp/p86f/4LT7+2U9S27fChYEkiEKazTrNGYMyFUqpmRwPIJBSUeUxiSXYVFXEZBpT2Oi1XqbU2m3TLLXPtswnDKTghgUzD3X7+iF2zp3n0U9+hsDWYgNgabFLZftEsS5I4oSDJKfm2j6m9HF0RVkUZvAFcIWHV3n4toQrpEvN9XEd7yqjs+tDpWk0TKSaFbnhokPPS08vwoSKPIkRNqL1RAUqp9uMiGPznK7s7hLIkrUls9byeMhONkEX1VXVAw9klVOUpeVLNMQ/wFyUU2AzKlnN/63SGiGrOYpFaqM2K6XEs79bCEFYi5jxA+lSISuXmhcQRVeRZ3GRkNqUuCwkrTBifWmFjlUK9rSmVatTD0M2Lph90u/3mR7sz8uDDT9gbWGRshzwzJOGeumldxxBZQmDgQELJEOjCOyKmMi3IqCThMgPaNl5PJ0qtnY3UXFJNzL733VdPM+js2BeU00r0klM3M9oN83PgtU6k/GY/vaQi5vmO9nef66Y4M0338wv/uIvopTi+77v+/A8j2azyfd+7/fO/5vZk08+yQMPPDD/+4c//GF+53d+B4CPf/zj5vtxHB588ME5Me9kMuF1r3sdAIcPH+a3f/u30VrzS7/0SwB893d/9xxcAdDr9bjl3nvp7+xzbMFUZhzPoWSCX5dzUobBaEIcx/MKh0vIQqvBcreNL8z+G+5u8kJ2TTiqKssppzMwwRRHKUIpmbGu5ZMRcTyYz7jISjEdDphOp6yumzkmKT2OHFmhXh+wb79gIQQIZ75x8kKZ5pR0wDUPWmUlSBdpKeyllFRFSVWWRv0McITLNOsTzL4cRxKPUyY5hLEp4dUaAl+UyMCix6qKTMVMkhLhWODEToZ0MpYXe7zq5d8AwLlz5zh79iyDA/N7siwlyxOyPJ9LWC80G3i1kBM3GQmPO19yL4dvuIEoilhYNINy/vo6RfMo7ZU1AMpc02w0OXN2g//4Vx8BIEXw/W/4dvasI28d67F48ijVYwFD63CYFDAeUIvrLFsyVyklnudRq5mSRRRFOI6gVCmpHQqdxiNqzSZhyxxuSmiGO1tMyxIvNAdFVG/g3NVlbIlMO50Of/V//j2XTz3JyowjLQhwXUlh67WTqmJaliRKU5fm+QdODfwS5WLEKTFS4K6WeMVVNdPQCXAcF2kBHq1WhzIIaFoBwEIZBmylFKUV7sS7evi+WKzKEtSsRzzoM50M8V3I7dxaO5DccuMtXLhiBqn2/Yp+FVOUGdghVLKSrPSI45ianXoXQiCkNqwFgCMFjgApFI4t6wWBY3jzbIjgSokjBL4r56V3KaEU6XzgV3qayA1p1ut4Fq47GI44GBi2DIAkn1CLA5zKwcWsKOFScQAAIABJREFUG1eDV3nUnTo13/Rpx0ITOHLeo44nI6g03XaHTsv0Vs48/RT/7P5bWbKzfXnN9KRFOqRvKTYGe5c5efur59nL008/zZkzZ1hfP8TKiun/ZUmC0IJsZPb1cvcQsTtl1I9RibnX9fUj+E6b3e0pFvhKGf8/H9Oj0YgzZ86weuJ2OguL5HnO+9//ft761rdyZiKpPXWGZ599lkuXLnH48BGOHb+FSuV8/vOf55ZbbuGhh/4TR46+io997GPce++9bG1tceTojawfPkrgKf7iL/7i60LQn3zySYQQvPktb+Gn3v1T8A9fpO6HvOmVr2RxcYFx1mdnz/Q6m701wqhB4FgMgRIEjqTbDDm0aO6x5o5e8HOuCUcl8pyu5c6oewFlXECSktkGTJkM8T1IM0uAmk5ohD4E0RzB1WgscNPJG9AnBNuPGFnj7b1dptMM32rUOJ5PUmagKlwbnVeeb/RerOxzpTUCbdQ7bR29SlOQFcrqU2XlTEgbDiZmUzps0a2H2DYKXlUiJQSlIo7NF+N7kqrsEoXuPKLsddtw4hhJZhyOEIIKRZxMmNjGWf/ggJW19fmmfPyJJ7m8s0uz26O3bN53ZDTGWUhp1sxzbNebVIMBBxfPEpZmM4VhxO65x1kPjD7P8lKdt7/tX/PHH/rfIbckoUVukCALC6SxeSZSSnIpSWcM055HVK/RbHXo2Dq6dn3GaU7fsp7XF5ZYXlpjkKSMbBCSZ9Bqt7jj6HEAPvC+f8fo4YdpCodkahz10fU1/DBge2Qy07JdZ5QWNJsLKBs4ZGVBqTV+EKCF+d1pnlMTV3V0PNdDInAdj0ZorlFIl/5ohGOh8F7gczAckCQJHYucib8OPPa/Z6sH7txRNSKH8WTCl77wOeo2Ozh2w3Gme1dY75k+SrbSon/lHCOm9CwqSEoFKE6cWCGLzTp99vKzLLYW6LbMmpxORkS+T7vZoG57u6HjsLy0wP6uQYnt7W6zvLBIvRaSWLqYIAgYFH1adm1LHCgEroQjh01gtrUb8PjpL6EtZNPBJU8U+bQAW5lJpiliqilGisnIZFTjwQGelMhwpoytuHzxMsePLfHt3/odADz8ub/m1Kknefk9JlBM4okhPUbh2wzu3pe+hJbb5NSXDeBka2uT5d4C7XqL3I7CCCDwQyoLOfb8OrLuMR2XHAzMvYbRmFazw5EjN6FPmezia/Wrvto+8pGP8P73v5+7776bf/vdb8bzPH72Z3+W7e1tfvAHf5D+E5+jd+ub+Yd/+Afq9TpvfOMb2Nzc5Md+7MdYXl7mQx/6EB/4wAfotH3OnTtHt9slCAL+1Zu+g5WVFX7yJ3+SM2fO8Md//MfP+VylFD/xEz/BS1/6Un7hF36BL3/5y/zWb/8W9957L9/zb76bz37pNLfeuk5Yh1FhAxXloB2fgZrY78gHVVILPXYunQcgt6wmX2vXhKO6btftul236/ZfZkIIHnroIW6/3VBEfcd3fAdnzpzhve99Lz/zMz/D8vIyp06dYn19ff6e17/+9VRVxY/+6I/ynve8h+/6ru/imWee4f3vf/+89Afwnd/5nWxubvLDP/zDfPCDH+TIkSPzf9Na86M/+qP89E//NEeOHOGxxx4jyzLuv/9+3vGOd5CkKd4/sq7bNeGoIj+gYaPcehAQOOBojbDoLFEWSDSBvFpCEAIDbbXQ4yyNqcoKIRzWFw1aTeQpl6cZhc2WNDmRG6IQlFZvRUoXoa9S3wtd4QhwtcC1NXGjzGleByAqja4Mg9eMDHIwhjJPWVswUZ8SkqIsGI1zMse8yJUu43FCf39EPDmPvRnqrZBeaK45qAcEgY/rulfnW6TgyuUNYitX0ej18GoNJqrkiTOGR+9Tn3+E7/7XP0jjsPl8EdSJz53m8U9+isKSgt55330s+y5Lc/RcxoIPr7v/pXzswQfNZ+Ul6AqR5vQtrF5KU4ZxbdbhBSHTScJ4lOEEJq1vL6/iNTtE7oxrzSEfZijHp9Y299bqdtGeIY8FGGxtkff7JKM9TtQNLNXzHJJSkcwGcHGotDC6ObbMVFUGGquUet6Erq7E/DVKaUSlKS1acxDHTCqf0kbYynFQ9rufwdLdF+FMUafdnKNVD/Z32dnZIowilo+aktVCK+RgNKRrhStPrvZQNx9md3eXKLLouSCg1+tx00030d81+60XKDrtJr2epdXa2WF3e5OwEtxxzPBYLnY7BJ7kgjJoPT/zWe4ELC0t0GyYw3F1dZVgWfD0k0az7NzpC7iORxSGVKXloywTmo5Posx3GzgRne4itaABpS0hVgGuGxI4EYHtbQqpzTqa99VcihL2D8acu2Ag6/fd/w1cuniBlZ7JzE8c7jHNUmquy5KlA1N5wRNf/DLDoekn+Z6g2Qpo1r25A9Ba47oOuUXB5XlJUAtYWF3i/EUjIXTq9BmWlpZZXFrhjttNb+nTn3/4Bb83KSVf+cpX+P3f/30WFxf5uZ/7OW688UY2Nzc5e/Ys9913H+vr6xRFwTvf+U5c1+Wtb30rDzzwAL/5m7/J2972Nu68805+67d+CyklDz/8MH/4h39IWZa8733v49ChQ7ziFa/g8ccff86sndZ67qQ++9nP8pnPfIZ3v/vdvO5b/jlPfP4MUjo0CHhm4yL3v+IOXvlqoxSdZpreyjqdi5bsIM1IkoTBfh/PsaTgX6fsfk04KqnlXOY5dD08JKK6Cll1tMZB49nFVWLgrVmlSWxZaZoUODLEcTwarjmsV9oNssmIvbFt+AMuCk84xDMyy6+GfANCVLgCHFEh7SHoVAK0P9fe0ZVpOAv0HJSRKKhiiDzze9tRQBDWoSooLDx9OFScPrPBlUt9Om1T6lhZO8TRE0dp2E0gXZe8zEjSdH7ojgcjjp04iW8htLl0SCrJ2Sef4sCWFe55+atxnDYai9euPA72c4pE8sC9rwbg2/7lG5ErdUq7FjZGU1qNDm/6F2/mob82vF3TwT4RkipJyWcgFKlBgmvLHH6lkEXGYKoobeTk7CcsHbuBRs+WULSDG4b4tR6BbRT79RZRLZzDc5daNc4c7OOiaNimeL3ZYJQmJBa5IUqBKiWirKjsVLYuczKVUpQ5M6ZzDQgchNX+MQVcgcKlsL3Ngywh9nyEdZTKdVEYpyZt/8N1XnyOqigr2lb2HCnIspRSlzgz/aM8JRv22U5NOXZpaYkH7r6VILibbtcOBFaasixptVqwbr6Tb7jnZjzXZXPTHMIXSPDzA4b9XTbPGlHQuNUg8j2wfctbbljjtltuIfS9OcHrZG+T2+69hdX2XQCcXFtkZ2OfInPxAgtC8CO+1IhIh+Y80FrjOS5lWZEqs/8i4ULlEI8zhHuV1FHpypQTAY1Llmu2tgZMpiYIu/HEq1m/bQE/MGvj3PlNejWPZq3O5QtmKH9vc5vz584TWCn4TreFdBSZmiD11cNXqZzMlv5KLQkCD1d6uJZOp0hiDvIpxANE9yUApN7XZ/P/8z//cz784Q/z67/+6+zv77OwsMDrX/96fvmXf5nf+73fA+DBBx/kR37kR7jrrrv43u/9Xh544AGi6P9m781iNcvS8sxnrbXHfz5TnCHmiIwcIqOyKrMqCyhMUQMY0y21TFfTSI2AG1t9xY1vLNsXFgiBsCwBF6C2yrQANdACLCy63aqGohOqChcuqCLJyqzMjHmOONN/zj/vaa3VF2vtfSKLpPum2wqT55NCEefEP+xh7fVN7/e+KZ1Oh729vab3/Cu/8iv8+q//Om+++Sb/4T/8B37oh36IH/mRH+Ff/st/+Z7v/LVf+zWSJOELX/gCV69e5Z//83/O93//D3D1zZL1zQ/7RTVj5/AuX/36W2x7ZejB0jq3Hu0x9ZRDBZqd+ZC33voWaezudaieYq6/PM8benhtPeuytU0kIpUkDkUjBW0wSGMwlWbmWQ8WmcGKgDCMyZX7XaQCNteWkdItuINRRl6VWKomO9CmAgTSh9QKixSuniwbNyQIbKeZD9FVhbWxlyY7QjRpDId+jigK27REByErjAcq5NpSHpbsFBPCx64nc/fxQ96+db2poxslaLVS1tZOsOZF4NZWTnD16m1WVl09PuwOuLW9Q5As8cqHvwOAlc0N4q0X2fEZ5uLdA649nNE9+SLnP/xRd4z9NttDSDxryqGOGMQBL370k1z6kIve/vpLX8VqUFQ0DTdwAmweTGKDgMpa8rzE+oZ7Oc64ZxSBr7W3lzZYi7q0lyPavrfQ6y+RSFUTxfOhc+d5+3CfZRWRle6etQan2ZnuM/VBgSo0RWGpFgYZeGSeNRhRoIOS2lFJGSCUQHnghAgjiBIwCSL18thhhE0TlHeUNgworWOElh6ZGMkPnqOaZiVzPyRvpKLd7xMGgs0tt1Cef+YZzp5ax5h6bQdMp2PSOOTZ025Gb3l5mSLLEUJw7V030P3Xr79OlmV86ENOrua//cHP8Ndv/BV/+bWvcaZW6w4DZvMJ86l/RvMJ1/QcjGXhSZDjOObwf/8WKwPnFBfzir3HY+J4QKflHNWl82e49Mw59r7uekSll40oy7JBD4btFjrXjMcT4sER6tAiKP3mUlrFPDcUec7U92j/t//jNX74hz7LuVMuw3y4t8u9gz22Tcnt6254t8xyTmysNVIgnU6HMFQoJQiiGuCjsEI1QKE0StFGcTgdYVLXW+tvbvDg0WNe+9rXGG+64GHbLv5f7+HJkycZDoesrKywsrLCvXv3Ggf08OFDPvnJT7prtzj6LHeMRzQstcDl1tZWQzjbarXIsuw9r6s5/iaTSYP++9Vf/Tyf/vQ/ZP/xHCEE3VZId/kEB/PH/Mmf/QUAq2ubTMcGY9x7BG0EkvGiIPGBqozeH97+VDiqCoH2G4RQEisFSIH0rNuSEBlAadyF1MZirEVb23BELQoLwmIJKHLPRSUDpFJNM1cD+6OMAkvom+5lkWERCJ/6a2FAOvVOQz1waAkRGF9CssZF8AZBKPwNFAJrTcOeMCsMdrogMAWxd4LdNCFJUoIoAQ/RnGuYHIyY+4hyUWWoMGD18ZClrluoZ7fO0Wkv8ca33A03UcrL3/0p1re20B5gkS6d5rYFv9bY359h+yd49vkPs3zWZWt7IWTLcOD34sMkRAvQg1Ve+h6nI/X6X36LbJKRyA6E/sMQoASyVjgVjiPPFgtXKgToD2B6SDVxpZjRaESuF+TZtJlEXzuzhZQW6af3ZT6HYkEYS1IvfVAIwdzA1H9utNDozFDMSoIGqaIgMsjIgqw3gZAwlI64ESCMHXO9TJE+yZSdNrLdQ7Q8x1YYUgLG2EZHSH1bhv1BsDvbe2TaD9Mqy9Kgw+qJZYRHWT7a2eZwuEPPAyCwmtHBkFYS0fUDt8OHD3jw4AGHh4fMPIVMVVW0k4Tp0HFkPlCa2eEeg3bCeV9WrIqCQ6WxuVfzLnOmkzFLvT4XLzvZiosXL3Jv768ovaSPCEIunT9Hp73CrXsuEt8/XHDz+lXwWWCkEja31kjjDtMDtyYrnYGpQBQUnq6mQmCkovS8lnkhKHRIoSPwe9Kj7Qm//wdfpP3f/wMALp19kTf+8ivcefcdAj/WsDwYEIYChLtmWa5ZZBUomixLhRGVKchKLylSBRRGMy4h6DrHnaYd8t0xb98bsr14AwBd/T8DfMqy5M033+Rzn/sc4Hj3PvvZz3L//n3OnDnDxz72MX73d3+XH/3RH2Vra6t532w2a44NYGlpiclkwpe//GU+9rGPAXD//n1effVVXn/9iCH9Z3/2Z/mn//Sf8sM//MP8xm/8Bp///Of5x//4H/NHf/R7fPZT/5D9hwmjsqTXhyTtkPtAffdghCnbqFpnC0mEq0a1fEbfbr0/hdIHC4d7bMd2bMf2X7ipJ7Rofv7nf56f+Zmf4XOf+xypnxf78z//c37yJ3+Sf/Nv/g0AH//4x2m1Wvz8z/88P/uzPwvA7du3+cQnPsGrr77KjRuufPmv//W/5l/9q3/FeDzm4544+vOf/zyf+9znmoQA4Gtf+xo/+ZM/ibWWH//xH0cIwW/+5m9x4cIFvvBHv8vgxOL/c0b1pyKjEnHY0AWZIKCSAqsksr4hWlDq0mlUAZmtKIQCGSB8Wh2UGiEjwlZCmdeceHMyrUG5SFCFIVFLUxUVpR9CrDO5UvielaDpPNVlbAfcKLA1z5HQWOvAFKbu0SCR0lJoP3CaayoRkiiB9hlVlVeIrMJqzcaKiyjDdotOr01budeMZ1MOxiNuPd7n1h0H9d7Zzui0Bjz7vKv/nrn0IjJeQkTLhF0Xgbx57TFf2rvJwDe3OzJgY7DEpBtw3cPjBYqVDfDSbiw6kAEj5py64uUCE2BakCvRkOkKhAOw1HxNlUZUGVQZ+GFa5pUTc/I9ImY52a0R93ZuYWcOzDFQM85f/H5y33u4+eY36SQJVTllbcuVkB7s7zDMZsytHzaWBrMAk5VYny2JUCACjVVHGVVIQKAk2ke0NowQYYQRCfjZNh3HkCTYuJ6HU1gkAtX0Eb69Z/lBMJX2qbxwXxxHJN0+Cy255Rv8aSTQxYzzH3cl5LJYkE0nzKczHt51oyCBFCwWC7pJzOO7bt7q+77v++j1evzxH/8xAH/51S/RbrfpdDqUPoPqtFvkWczAk5GGYUgchBRFxrvvOvDE66+/znd9zzOsLLusAxtgdEjSXmUyc89f1F5iY2OD+yM33N5Jepy7eAZhBFc9UcDhdJfICpIkYlEPDwuJQWJ8yVgjMTJCBiBDL8raanP1+jV+5/fcPOJnPvERLpy8wKDdY7j9yH9fTDk6IMv8AHogUaEkVCGVqWnVLGV1VC2oZgU2bCOCFQo/6zUeWWZVh6XNi8wCt24Xi7qy8V7TWvPv//2/56d+6qfcuVjLL//yL/OZz3yG3/7t3+bNN9/k3/7bf8tP/MRP8GM/9mPN+95++21+7ud+ju///u/ntdde44tf/CL/4l/8Cy5fvtwM9VZVxW/8xm/Qbrf5xV/8RXZ2jgQN4zjm5Zdf5p/8k3/CL/zCL/CP/tE/4pd+6Zf46Z/+aV55+RX+hx//r/mffuF/ZTaWFHZK6bPcspJYJNq7HYNBY8h29hChq7IY/RTD07WQ1DSUhdHkWlNY7UATgDEaowuMb7AX2lBgsWGA8oO7Mq5ABKggpPRDf0JJrNbM/TxShsCqAAJB7pGAqADQWP/9Wlg35yuP9lwpBWU+bfjJVAzCQGWOZJ4rHHCo5uiUuiCShk67jRS145yRzQy6ACFdgzHKSoJFhg7rGrmBsEV/bZm2l8xohT3OnX2WTs9t5la2idNVrt7a5q07joncRhHZR86Qdt31OLmxylJ/QCYXaC8zkrTbHBBSa8lVqmKqx5ThHNXz16OdeYbfHKWc05NCoKxu2AtsmSOKBbHNm76hznNULFF+uFdTUWQTWDxm20txvLl4zH4n5IHXT3nnr/+KWEnSIEYlbinuPjxkIqD0AUQQaFQpkFo4jjgAUWEo0cKgfK9REiClQZh6w4HSo/lqcuOpLtBWO/YF3A2zKnCoTt9M528fWfk7aw+nE0a+H1OZjOs3DRUT16cELp8+x9bGMq/96ZcBOLEyoB0HLPX7xJ7/bm93m93dXVpxwktXHFz68cP73LtTkvry4IsvvuiyAWtYW/UK10qhtabfd45qMBjQ6/UwxjQM3Pfu3aOYlwQD9zmjwznXr71Lki4z8zM6z1zeIAqCRk23rHJarYgoiIlSj7rLS6pCIwKF9T1JKyRWWCrfNzIyRKkUYyXaL4a9/THGRnzlz9yzdv3tt/gff/xH+J5XP0IknIOfHAyJwrWmj2e0ACkxRlDOfR9XawojGPmfx7OCSuZkNmR36DbqncMJB+MFk0XCxqo7xplf0zXybnNzky984QsAfOMb3+C3f/u3efbZZ3njjTd444033nNv/+AP/oB/9s/+GZ/+9KdJ05S33nqLr3/dKaA/ORv1W7/1W7zyyitcuXKFLMt47bXX2N09chqdToePftQFKtevX+d3fud3APijP/oj4jgmlClvvXEdUbj1EBGi5QIhddOjEypCmxStfQm5soQqotAHTH2P9PDg/R/Ap8JRZbpkUXoJiyInLx2LufZ7R2U0uipRHnVjrXMtWIuth3KtI5pVumI0ck6guzSgnaTM9x30dTYrMYFBIxun41IoBfYotbUCtGxK1M5RaXvEjKFcK0RYhxgDR2Kh8H4P57ByU1HYnCDyUVYq6MYQKUlYuQ096XRpDbqQuhtcWI2xlliFpNK9Zr2/QRC2QLqHYnvngD/5xju8+2iHYNk98Oeff565OUT7Qdm15ZjMQFlWnNlwdemlVsj1xTZx6od0qcj0Ia1UoL0sq2iVyK5FZhm2aXpaBBXWDwXrYgqFRUEzFB1JaCdQGI/CzC1JEhKkLaRxxzTevs6N/+U3CT2Yobxzh6Scc/b0JhOv7FlaQxDHFHkdpLhsVQnZPKjCOsb90pRI/zspJUIcrYfKgNAVpirJPWTZLnJMkmOTOm1yzOlKhQ1zsfkAZlRx0KPjGUWk0PQ7MULnFHMHtZ5nOe+8e43VvgtcTJETYOi10mZwd3RwSL6YkZ6IOemZ2JVSKKXY3/cEzPM5WZYxmUyaTTBNU9rtNqurLlsKgoDxeEye503T/tSpU9y89nV2Hnly17jLM+cv8uJLr3Lzrv+cpVXSNCX2A79FkVOUGa12wtKSH9koNfPDMYjyqHwmBcYa6oUjVIAIQkxV4n0O7U6fhZ2zuubmkXYfXedX/+df59GdW40e3Z2bN4jLuAEkFEWGsRWLLGPi1cSzssCqiLlH/S0qQSViFhUczGpmlBat7jJCRYR7Lovptjr86Cvfx7bv/U21gmzA/d0JSfSdvPE63Ls9Qmen+NDpjwCw1uqgJzNibehEEfrPYZQXBFun+OhlR2FGUREYQ2CFQzLvw9U/eUCFpVWc4Wz/DEmnwzQryfKKR7fd/YiKy3TI6cQdbr/lwCupbNNXy4Q+KBFSQyipVEDhg4dpqShKg63qDDFEyIh2uMzp8+6Y+qtHPbMn7alwVEuhYM+jvkRZEkqBJmU4rzfGhFbabQAHQTdkMR5hMuj50tdiOmS8NyNdMqSp13/qtzmYzJl5HSNp3OS5rnSDVimK6j3HInCbbmicsB6AkpZKJo3MAMI4yn5rUX6n1mVFnmtqdHMUuun4qopYyLqEFqFCAUGA8CCIRZZzsGuIPUInaLcRcYpJu+iOO7d3VMDNu9fYPOvOf/XUaeYXurTOtEj9BhNvdVjdeNHpoQCmFNy9/5BL5840wolB2KFj1sk8wbQScDbtc/fGnPFNv1FlW+i960Qrq0ivUaWERuoK7VmPVeWKoxbI/QMuozaLqoWu1SYjiVIhcRCR1Oefw8m9v2CRu/sx1oa4H1MsRzyqAxWtEDNLz0NyI2sgMmSUTL1mVEu3WLJt2kXhIgrAdgY8jkoKn6m2p1dZzyL6rRQ9cp9VyS6WR7S9ww1GM6LeBjOxyb5HHc1b0OKDZVU1Ybnn5oH+/ic/STbeIRvtstI9B8BsPGR1dZW+f82iKCnLkm99602GXuZi0E1JkoRBp4OyHlAwzWi1RANm+uqX/y/CCK5cucyF884x3blzG1su2FxzVGjFvGJ3tMdffeMNlpfd5tXr9XjupTMNC/t3feK7WVlZ41vvXGX9nFu3+/tX0bO3iXFrfT2QHH7rTU6+8Covrjkmlts3H4Hu0O8tc2f6bnP+ppo1Addqp89yssdwPmy4BVUZorSlLN066p34MHMLv/l/3qb0sjLWatpFSL0BKCUQKgQZoD0ytTAag62XrCvZyAgTCOjWv5QstEIYhU0c60wsE3cMHhmcaENWjFgKFwQtVz0q5yO67TZJ7Bl2kjZhGlCWFbteR6oKKop9TenRy2WZU1UVpa4ovXBtXhbu3x4pqSePMMZgJcjMz7EqBallyi4RLnhJkxbdXkgY1XR1LigRWhN7KEQnipiXc+aVWzOGitgE9LotxkMvEttZ5f3sGExxbMd2bMd2bE+1PRUZldG2UY80xiCkxVRFww0aRSFWa2xNnGokkRSugt5o1phGdyr1/HMqjFEqb0p2PAHRbzRy6jfZJ//PlfJ0/UvrFHvD8KgfIqylLEuqopZQdp/X6XhQiK5QStFut0l8WW86HXMwOqTIDImP/FUU02p3Kf1hlNmCTIOJYkLPfzjY2GQ8nVDed03qhYX102c5dXKt6a0ppQhPLqGse0/aiqlmBzzQc876fsD1xQQZd9E+6UkjuL4Nt3fucrtw5Ynec+c4mD5k0VK0M58tVpaiLJC6BmUcVU5r09aNB9SzbwZHJoqxmCdE8tBHr4kiQxRFGG2pGrEtx4Lx5CR8DVh5z++E+xP6vllVSowowWddQlcYoSizigKXQeUTQb7ICbxSc1WWJEFAEohG1DewGup+1QfEKipu3b4NwJ+IksnOAwI94+SaY5SYjQ5ptVpIz15x8Zln6fV6nDp1inzmYMVVPiVWLbKy4N/93u+7980nbG6uceGiY6HoLw3ACymWfgi31emQJinXrl0D4NHDXdpJh7W1NZLkKFq/c/sGzz//vDtgG/HwwQ7Xr91ie8drNYmIFy9f5vw5t46GBzn5ouL2nWt02i4zabVDyrJkZ+8eLc8g02rNKIrqCRXwgmmWkRdlw3qSZTlaVyhfUUmSlCAICPKcwvd/tdZEVeBIeAEhJSiBFQZB/dxYN/LiUVoOyKGotG06D9paDBKQjP0wf6hdX63ye0xhNZW2zIuchWer0VpTHE45HPnRHGuxGkxVUfleo/v2oAGL1X8LBNofo1cQI7R1aTRAShzswV8PU2mEEkgp6bWX/LWNSJIIIT3sv4oQovRAtCOiaKXqLqLbX+c6YznoceqUUxM/e/aI7ulJezoclYDhoZt1mM/dwBhGE/ibnoSCIsuQnhRWGUkkDUIIrD4q3UWRQw3VZT2tNUVlGpYdjddJ/i/cAAAgAElEQVRu40iETAjhKHQah2Wbv8xRK4NYSEKPrpBKYLSiLLJmgxWOvAHlvetibrE2R56QdLtd/5ma6XSKwTDz5acQqCRYX1bLrYUooZumJB1PAloW9JYGWA8cORxPSMZTcuP+DdDudlm5cJqzJx3gYm86IokU02zGqj8m2WtTAbt+5q8PvP3oIXd3thl6po4zL32Ig50HMNym9A+GrjS2rBqmjlC4c3XlvyPn4diy3b+VUChhsWhKr1FjqpKoqhrHE4VO9kBrTekHhx1dU4iRT2q84hqG/vobKxDW/RxW7mR0DtiqAQAogFJTmpyFd7DjomCiDbLnHWeWkwaCtpJEdTnEFBD/7UwAfxetHXVIQ3e9k6RFtLpKIgd0256Z/OCA7b192l4e5fbdewyHQ9ZWljl3ym0sG5snWRl0uX/3NqEneD3RaxO3Erb3XFnn/LmLbJ1cRwWWBw9d0LW+doIgCHjb0yNdfecGz156jiBMGHlGg3mWM5oXPLzvema7u19hZWWVlz/ycSrPKLKzd0h/sMJ//I8OKLC1mTCelOzvTRlPHOq0KgXj2Yy9vSFbG471QQQJUauNqQkAUGgUYdppAqrx4QgjbaPCkFlQlaHQtkEPVpWmFPIo4NUlWOeojA+mrQ+uqrpcKASVkVTakpd1wCscElUIitL1e6UKQUmqeo1ag7GC0mgKXRPcxmitsf5ng0EgPSnBUVlRP8FUL4XEABYvfe5eghKCWeUcnjJBEzjWjs0Ix3IvlGLmy/glhkVZeNVl0CZHCEmStkg8wMoahSanVWubLmYgKg6nM775tkNrXrt1nfezp8JRSRWy6xuuewdDFJZAWZRH3QS2wpisgUcHVmKkRhiBqdxNj5Si24pptVpMvfOYzhfM5gt879KVnKVDUeumMV9nYnXUbr0UwRGYQgiwZYmVtT5O4Bgs3NSvPweH5lb+NYWGauFYN5pcIQxodTvELc3YM1jIIMAGqjkeKQOSbpf+6jLdNZcJXb11j6jdazTJQhEiAkVWlOwNHaJORjHF7V36y66Rvf14D9WOqXTO/atuU7j4/CUe786Y+cR0WCmme2NkZukr50xPnDjP4dnL3Hl8SFF6HZzKs3d4KLixlZvo97pB+MsghG0k3RFeodWUaB9MVGVOWNkmMpNBRKAirBUN9VEQOCdVfxcIrHDM53X2a4UfxpaCwDPqS4xTig1qhhGJNlAUgsxP8Y6sZq5LFp6PEKOJgUDnhL5Gn8gjWqYPik2KGUnsUXdLSyyfXmeQKNqRu97dbpfZbMb2rust7B+MGU/mrK2eYOOU4+N7/uI5FCV7e3t4+jteeukKrVbCG9/8BuB04FCKwfKg+e67d+9y5swZtvzn7O+NuX33HoKQM2fO+s95mW7/O5h5FfB3rr5LHFZsbV5A+Szv/oM/4803vsnCD5OvrLbp9XoEIWw/9qCQWUm7axAq4tGu228e7e5TFAW55/6cLgoW2kWpzdo2hqrS6LLuR82x1mKM02mrX2NtgfUBn2PXMVhhHIEBDoUMMM98HxnpYUpH1RtLgMShUGuZH7T7X+13koqaIuyo2pAVGU/WOgICAhEhlUKYGphkKEXVnFcdpBtrmsBdIpECAtU6eo3E6fM17D3uZ22g8MPIla5YZBXGeqyBNKStkDCOaXfc/VYqJC92G1WIkpKWikjSlMpXRnb331/m47hHdWzHdmzHdmxPtT0VGRVBzHTmoozJeEYinLqtypznFTojEiW2nsY0BSEWbUWjURRGiiRuk7RbCC/4N5vMGrgo1MSlrp9T96gayLOoEX6SQFgC2QB4EEIgK92Q5EojUBbHpeRNWFCBaD5H+u+qqor53J3HIltQae1S6bhGy4UEYUxQz4NFMSpOmeUZk20PT10aMC0qDg4dXK+3EtPrD6hQCOVeE6iI4uEB2y3Hs9btpgzv7NJZ6iJ67jbnM5A2YTpyUcu1a3cJVUgadAiUh8cuNM+eu8K9t+9gth/XZwdBiPTlEaM1prJgIfD1djd7JmhqH0L7OrnF1PNXukDKoCnzBTIgimJHf+TfFtuAXBtMnT1hsVZihG3aiZU1SOvr6Qs/KFgZjD2ah9IioKwkhanIa7osKUFGRKGLFuMgduXMMkf5snIs/v+R0n7arX5Obt65y34sWemErHRdqa/SEEQpRelu0uF0Rre/zPZwyB+/9icAvPvOCYrpmIPhDmdPXQBgd/+AFdFn4Ad1B0sr3L33gLffeYfcl77zxZzh4ZS27ysvLa8yniwAQcv3aKMkBlI6HZfpPnMhwFjN3TuP2Nh0n/3Cs8+ztrbGuakrWU2mc/b2hmBntFsevRcIklLQ7iQ8eOCpzrISY2wza1cUJeE0pzKG0tMsWetK2HX2VLcKlFJH0hhSsSirph9rrUX7MnQj+GgcPVzeXHW3I7kZ0hoZLAlkhA0UwjeujTUYLKahHnJrXyhJwBHM3lrbiL1a6zpStSAk/j1a0pQihU/AhAgbPEB9TpFXXK+qyrNSHLVHrHWM81VV0U96/n0CISsqXaP+FhR5xXg0pT6EdrtLURSIhiRB0e12WV7pYH2Tbjp7itnTtYXU92PSNEXkE+cofKlPVBmR1NRk3qWt0EK4Mpun9ghViIpqTi33d1GOKLVF1gwTlSsbSSGaBSWkk9Oob1QoHQtDII/KWhJLhETW5UEMUlgCIZqhZJcdi/eQPgaRK1FlvqyQF0VDRSJ8HV9bS1HkWF/rDqUkjA2mrMhyV+o4s76ByCoq5QUglWI4PGRelMxnXoU3DDnIF7zlm+Kf/fvfxzu722QiYLDqYL7vjhd011PuPHLH8/bkgBNLa4ggoD7qojAsbZxk5cor7N59019wwJZH5VKkq4GLo3KGEsoDWzzZZ2X8XJNFWH8fqQiCiNKzJ0dRTBImWNRRWUGBrSymLlf4B95a29RiraZhktCl71EBOgyoJ5C1lZTGlVK0H5xWSYCKY9qe8TtIkrrq7hwrvGee7oNig/Yy1pe1drZ3WUQg1/q0/BxTK20Bkv6KAyVUUnHhwgWqoqBYuDXa6y+Rrixz5cplpN9Wuv0e48mMHd+jmi+mSGkJo4AlL1n+4O499vaHBKH7rmcuPUsQt9jd2eP2PRd0Pd7ZY2NtqwkuLSXD4R5f/epXefljjq3l2ecusphN2PXB1c7+Hrs7+8zmOY0WppWoMCBOIgLfNzFSIVRAzJF6d9fPdE1nzukdHh4ig7ihkbTGUFnXPqiPSWuNDhXWHpUL639bcRQUCyGwTzC3G6QvE7qfpQwwSiJV2EDmnYO0TVvBWou2BiNk0xNP0tQ5J1+KK8uSqqp839x9n1IKE9M43PpvydFeB65cv1g88RpjEdI2xLRhGPiSa0zplSlkooijkEDF/hrl5MWCcZEx9b3GMBhirUDVM4u2YjYdoVROnNQyK+///D0VjiorCs6cPgfAqTOneTjaQVcFiayzHOOGS2tGpcplO4E8GgK1UmGwTBcZhZ/jmC0yFjmYJ5y0lC4Soo7qlVs8jVMS7jVWHGUHpmZX9/VnjI86QoU1da8JkjAi8/NAcWQJIreo6rkFVICK8OS5nrrJGIfi8eidJAyQxkAomsjjzr27tLrLtNseXFHBzs5OPebhvi8IGMYRy2dcc3vabcGpLa6ORzy8e9tdDwvtyTqPfa1/utwjsxVCVMz9w2TCkEMhaF25QvhVh/oqD4bgkU/gnJOQRw+eu64ShEX7jV4bDVYjAwhEHRRYTHUEZImDEKVCplnGrEZPioCiKLH+4arq4W4pED5aLKrKa4RJrAfc2EAg4xCZeGZ0G1IJhQq6qI6L+pJWgmonpH3nqETUhiAgiBPwvQ5dZU/HQ/Gf0Q5nhyS+R9gKBa1OiyRtE3rC0l5/GRUGPNhxPaq8gse7B3TThAMPgjrc3SWJBKbISCPndD71qU/xwuXLPPv8JQDu37vDfD5FSMOyDxbm84y11XVOnHDB1MmNk8wXBY+399j237e1tcXNO7ebHlWoBFrndLop7dTLavQ6FNmUydj1bJf7PU5vbYKMKHxwWGlLFCUkcYv/eMc17xeFY3wPPQArCUPavR5hGGL8GhRxhJSyebZn8zlVnmOMbXpLpdEEKmgcjpUSW0+fUztYZyJs2AaQ3knVz4RSkkCFBIEitrWz8BmQn1G01lJUpWP991Wmcj4mDEMS70ziIKCqjuROwAHN8qA6mh31dG9KCVRNyq01pqoa7b1WGBKGEUoeObw4jum22qRpys03XDARIAhlhfRlqEBGtOIjLTuAJGlTFEUzAF7qgqycsh5tcdaTFPcHbd7PnopnsixLNk869oStrS0efvPrlGWJ8p5JWQVaN6UfwG1cKKhqdJjEastskTPzF3k01eTVEVuEwSXY9SYHNaOBeKIE6F5bNxlr+3bGAhkogiBoFlgQhURpQtsPN2Z5jjYllYGyqB2VS9ettcw8yi8MY+I0aYZiVdzCCMjmc8Z+4HZwYh0pBYF33LmtsKYiDCKmvsx5+/oNduMlPvoRx3p86907LK1vcP3RkKt/fRWA0889z/btR0w96mh1ZYPD7V1sbtC1uFzQZm845PTmKdo912A/nI4hlw0iEvgbEHKpHIpJ1E5ZVxgc4EXW1OQCiqJooPwChbWW+Sxj4sujRAlZpVF+k9TG0VohnkC3uBvnQsGa/TmRyLSNSL2jMhFWRoi4R9hzDrdqJ8h2Al4aogxDyjBCtFLwGW4+n/H+s/F/t60OgtqRoCorrt+6zbWrbjNfXl6m1eoQ+/JcUcG7N26xsbpMPnWOqpsEfPcnPkGvHbPq2VJ2H2/zpS99ifPnHShiOlswmU6ZTcbU7fErH3qZbL7g61//KwBuDG476PuZM0zGHnmmFMPpLi3PgrG8soS0FUJaMl/6PdjfoSpyzpxyqNd+b4kgTjgcTXj42JXHd/cOODgYMZlNWV93dEAPHnTRWhN4rtE0Ten12qgoZuGzzCCNqIymGHvUna5YVIUrk/mRlTCMgCf3KHH0uDyhR2WtPWJT56iUVj9LQeCkiqIgJPRVhapy+1Od0RhjyLIKrWnAS1mp6XZbTg8MV9Yuy5KiKI6AElKykIY8d99VxY45pNVqkfhqFNqRGdRis2maksYxVh+VQpVSLPW79Pt99M7Mn79ABaZB/RkLYdSm3W7T8kw46+sbZFnBcOgCkPF4RJJK1tYHtNru3LQ+Kow+acdgimM7tmM7tmN7qu2pyKi01sQ1R5QQyMDVaGceetyyhk6aIDz0WJucWW7IKSGoeesCpouCWV5xb9+l/yJwGVQd2UQRIB0JZtwM3fnSla2F1Hzz0pijoWBjCYVo+jFWQGAEQgZEvrZaGcN8tkAGLqIIk4ggSCh1hfC48iRIqGzJdDYl8MOMVjj4tfSfHQQBIggIrCb0HIGhkqRJ1ER42XROFEX017qIgdea2t0mTROu/enXADh58RLjg5x106G/5PDC1WFFIAP6fpivuLdPNJoy3R9hJu5axyrkQm+LZdknOHcOgNevvQOtFtI3Ss18TJhGrjFak3CWAl0dSXorKZBCuZpzDVzBYLRtCEiVUkynU8qyPJIF0IZ2kiJ89FhiMNa6Acv4qEfnIMMVkZc20KGiTBVFUK+jhCTpIFSXhQ87FyLg9OZJZlM/bN0Z0F1fxyQJ20MHYe6svX/p4e+yDTo9Oi1PQGxzDob7SJ2zseZ6UidPnqTd63Pz1h0A+ivLREnCdDam40utqyf6WGs5d/YC9++51z3e3eErX/lqEw1vbAx45tIFyjJn15f1VpZXuXbtWpMtnDx5krt37tNqtfjO7/5O/07Js8+fRnsKtVu3bhIqwTPnznLvvpOo+OYbf8Fzzz3XlJnyRYaxgqKCxPesB/0+xkg6nR7jme+/JZL9/QOmM7eOT595CSUNVi/o9dz7gjAmbqUMD/24hjIEM7ePyCfKYSafNtnSeDymKAqWlpbIfGVkOp2ytbnJfOKywKXlHmVZks0XTa8py+YU2ZTO8jL9lvTvc59TZ11lWTI4eZKqqjg8dAPPxgREkeLsaddf63a73L9/n729WbO3GGNY31hpNKmyLHNVIW1Y8/d6f3ePfJ435xFHEaurqwx399jbc/fs0YOHlFPN9miHsN4385JIBgRhDbMvaSUxkSqZj1zfsOpFXDxznpeeP+c+OwkxNqfSC1TgB7V9tvXt9lQ4KkzlSBFx6akREoKQbsuVbALTotRzRr7MUEmJDkJQCblxC3y6KBnPcqaLgsILkxnjgBpH5BNuAO5JrRRhtB9mO7I6ez/qf0GpLcLXjI21VFo38xHgQBPWWrKZn+vKFm72QVvC2F3mnoUoikjidjOEGqDQZUXhB+fyTBOmLcK4xZIfsBwNh/S7A3o1mWxSoRczDh4/oPL168hUxMaQ+bmq7eAOVdJCJ21k35UDwlYLpcomhdeLOWo0Qk7GyIX7XRhLWghSFfLsxWcAeP21EGZzTPje0p98QhTOINEieE95TtnKT4X40oMVhHHcDGTHcYwR0rHQ+wfeqoAgClGx20i0NVTGokLVfFddctW6RHqHL0NFkATYoGYFDrEEEKrms6JWSm4MdYtg/vgRNvwQy+t99v1c2+Eip/3BGqOik6ZY36/QpmRlsMRSr8Og58mDS83tW3e5es8NY0aiRRrFtNKYtOPZw8czXnvtT/njL/4hXd836nQ6vPTSZbr+giolGB2OaHecDDrAjRs32N7ebsiF0yThxIkT3Lv7oAEmvfLKK/R6htHYOYqV1Q7tNKLTTulue4RDlXHj2ttcvOj6YZIWk8kUoSKUVyaQVrK2skpelCweOzJbU01IY8OqFyl9+cqzrKytcuPWHd781luAG2befbzDvn+2puMDuu023d5SA0iI04SXn32Zu3ddz+bRI0uv12N//wCjXXn+w8+eZzabUVOGqmJGlef0o5D19SNS3rxYOMaWwvVyAgT5bIcXnnVCkmtra1RFiRCCx9u+ZWEsm5ubLC+7PfPh9mMWBw+JTMlzl9z7zp8/z3OvXG7aHreu3+DrX/8r9yzn7p6dWusymwrOnnXlWl2UxHHMwcMJH/+IYwb5w527DFLBmTMXeOf1m+5cgpjHj+83juryi5dQgWB7e5vEg8BuXf0WejFvypPdXkoQCsIITqy7639qffn9lujT4ajiSFKWvpnbSTEWDucL2pFbzIEwzBZzTOiVeqWiVIp5CSNPODsczRlPS7IFFO8lmWgcjxIChHwPM8W3w9Rr+xsUQU/8otIGYex7HBW4TKtuR9nCoq2H9vpmbhAUSBmhVIzOXFQVxC5bqDxQIS8zxxguAmJPrptPJkyHe8Rt5wSrokIbyO24WXRpmjIs9lj4OnqiCtRgiTi2pF6KwFaGxXxBvqiJLOfMJxMW81lDLxWlkIc5ZVxy9rQjClWdNno4pZ6cjsIArHbIvoZlyg1J1kmog/RWGFMi/YdLa4iJjpBSpgSvIluPAhiMYxvxmZo1BoUkwDYOJlISpQQQNMq0hIogjlBediImpifbtNMldNc9GENl6bcTOn7jvFqVJEnidMV8Jhh+wFgpABbzKWU9hGlmKAoe7xsSj4STKsAiafuhcFTALF+gq5z1Zfe782dP0U0CwgCS2nfkBSsrK8w8ei5NY1ZWVrhw/mwj8lcUGaPDw0Y2Pcsybty4wc7ODh97+RX3OUVGYQxF4aXpE4ml5GB/Qr/rApWPvvJh9vf3qXz14vTmBufPJMgoZeL7uDfv3meeVWSLBf2278nqGaPZI+Yzd9Cz0Yuc3BgwaAtaoQ9Ms0P0fML6kvuutaWEXn8JKSVXbzjnPc9HzIcxz59bd5+bT+h12lzcWOXePafZ1WopwtwQLHuEcytxlZuqJBQevVqUxMbQkpbNcw5gcO7cOa6++y61YI3NxyRScWJ9lezQ6WGdOnWaS5cuNUGgrMZMN3oIIbjkmcmvXDkPsmh6iM9++rs5dWLAYrHg4cOHAHRbKcFan+n00F/7kuXuOic3lljtu3u2tdYnTVMkOc896xza/Qd3uXz5AqdOu/OPYonWFXEkuH7dZb0HwxGBgv09Fzh2ex2ELFEKphPnqFt/S5R43KM6tmM7tmM7tqfanoqMyuiyFpNlc3OT/tIK80qQ1xFdHFMVlpmPqOZlxSTPOJxnTLx6bbaArPA0SeETMwF4gkj3D/d95ogypE7d/2ZGZd/zs1VHl6rOCIyxPDkwLBAoT9cjpEJZS6VNQ300mS3Q1sHjM49yU1YQxX6AGNCFpqoypmXFbOKivEjAwfYjCu0UV6UKaXe6SCkdvxgQ6AKxnDheMCBJB3R6Ia1+ivXp+GxxSDnax/hB6qDKaVcFcVCifCTWSjXtuCSUi0bWo5e2ObCWwN+kOFCEwjh15Bqybx0c19RD0sZLgTyBljTWIIOaJdBntVYjpRsTAKisQGCa+Tjh+4XaKsr6XlU5xqMOjVdvlsZlXfUXRrYiEQUdUWH9PWkv94lbIdJf+/7Zk1x57hKmBFtPJRr7gQvfstmUlu//rXc36aYh1lSUWT2jJlBBTMujQFfX1mm3WqShZG3gMqFepChmB5SLOTuPXI9qf3+fa9doCF/PnjnDK698hOeff775XVXmvPrqq40e1XQ05tq1qzz3zDOcP3/O/W46RcTGI+tAyZgyn/mhW9831iVFNm+4N6fjIStrm+zvb7M7HPnvKpAYzpzdZIjrU672JfmUph/cizXtoGB9KeZDl1xFYTyZMuj0OH/BlcK73S7tbo/FYkHqx3dFoPjely83Eu7b27sMh0PCMObOHXc97t69y2FC06Pd3Fxna2uLdicl94rHOzvb7O3vkOcLXnjJCVCe2jpJNj/k5jWXvU31gnaSMt7XlHOX+dx4Z4jOxvS87E+/FfEDn/l7pO1Wg+jc2FhBtRJu+1nLO5MJcZRwYusExcxdo+FwSBjE7G47fsTRaMR0coAwli/+oeNRXF9f5/Lly8znGTeuuUys0HMunnqG8xcduezNW9eYz6ckrZgocfetN+gipKTwvUYhJd3egDCCbt+V/uL4/V3SU+GoIgmxh55euXKFGx96iZ1799id1owGJYeTCZHXDBrnmtFCM8tBWz9bEEEUCqyGhZ8JcYN0FlU7LM9tVf8fQKD+5q5Uzzi9h61bqaNyoag/+72MFgjRELRLEaACRSz1ESjDCvKsQggNfspfZxWFOfoeacDairKs0NqVTAZLKyzyvCnPqCBCKzeDVfoHU8cxTMeYA1fjLQ7GjB/sME7aFL48Np/PyWYjAk/kGgmNFM7ZGumu4zzpUbb67CUp84Pb7qB0jkpiUg8zD2yBws2NmRpq7oUNa8ito46wXj3XX38bOF5ZUQ9Juol3+0RQIHFs63XPxFHZu/JIIXN/OKoZ0C4D9xDqIqTMJ1Q191lmqHRMlj7Ces2yvNsiE7DwcxzPbZ7ge1/5CFFlWPJra1LMn5Kn4j+fPXP+XHOPOknI6lKffjdt1nbhg63Bqh/41Zad7W0e3HnAXeECil4sSKQljSSZn3fqdZ3sfC2AePv2bV577YCv/fl/IvC9xOWVARtrJ7hx1bGnP378iNFoxObGCaYTt3murq6yxhKp733NRodMRkPaSUg+c8/EdHzAfDpjy5MyT8YH9JcH7O3eY7pw+0i7P2Bnd0gU9uhGvqy3GFJWhlS5z0lERjsqOXVxk1devAjAvXsPOBxPG1FAJSv6oWYpacHzbmNut9t0gpK3vv4VAE6fOkNYTbj29utHygCLQyjGJF4AdXbwiKHMiLdOsLbqAE9b62dZLFYZjUaceuZCc93KfM7JLVdWO3fmFKFQHA6HrF55AfBDwKZEF+48BqsDzp8/SZZlPHzkAtyd7fusnz7FrRvuWl+/fp319XWiKGI8cq2I3d1dlpeXaXsWkCSN2No8hTGGW34ec3tvh8P/NOb+/fucO+ec6daZk1gFj/acgwtbEcpEBFHI3/vU97q11V5iMp7z2I8LpGlMp5uCqAh9vXieT99nhT4lj6SkIvJEoS+//DJmkXH76nUmnjJoOp0ymk0Z+95KqyzplJlnRveAh8pS5iW6KDnMvIMz1ZGT4AlknzFYP+8TRdF7wBWut/I3HVX5xFDekxmZfDKjEgLjgRxhGLo/Kvgb2Zq1FuOHBx145GhOSwaKMAw9s/IRe8ZKv0flj996R3k4njZEmWEoCbf3MTuuSXzAbaalYl6KhjhXCEmCRi/cdU2VJlJugLfwjqoQIYWIMTLgUdudYzaf0YpCQj81LkqDFBDGYZMtBkGMEUHDAmCFy0qVrVB+CFhgMVVO7qlhtDVYodBG1H7bDzFLRHAkv62UIlIBkZe0jqOIMFQEUiFj1yOpUkmZBFjfNEtyQ7dSxGGE8chM3YmxaQweAPDfffJ7+ehzF5HzCWmrDkK+vTv5d9+SKKT0lEbj0QGjgx0Svw7BrT8tJF/7hpt1MlaQLWYEGFZ67rnNA4MsM0JhWOrVM0kxg0GPC+fchp8vMu7du8fB/pBn/SbcihN2dnYaJOag32dn+xHb29uM/fBuls258+gemxvOCQXSsphMmQjdDJP3WgnPXDzPYOD6kdoa4sjSaivaHky0tLpCUU6wYsaV5x0J7l+fWWExnjVSQNPDRzy4aVgsrbC67r7v1Zee4+HjR9y8edtdD6HoJwN6vQ4nlx14w1rLl/7w95vZr/kLL2CMZdCWDeHy/LDi0isvsL/vnlFtplQFzCcQBO59J06scebUEvZkj2/ecsCM7e1HgHE9XUBXBWfOnmNr4wRdrzB889p17t27y96BQwEWxYLZfMx4NmV3f88fo2ZlfZ0rl51zW1tZZrbIuHr1atNHHI4OsVLQankhVaV4+PgRw+GQcxfOA3D7zl3STpvv/cynEdK9rqxyOt2YnleB1roEDGnaRkkXqLz5zXeYTnK2t935DwY94naHtRNrDJbceSx8tefb7alwVFVRMCvcTdjc3OQf/OB/Rfb3FnmqbYgAACAASURBVE1ZrtCG0sKBj9RK4ajuy8qgfYlIZwW6qrCVZuaH1bR2/FziSCyiya6aEpF3VE86IWPf66SEEMyfqGFZ65nTn6BVcj+JBh7rBl0lYRA00eOT7xfVkazFk/o8UkpUFKKUQvvvnM/nJK1Wg6jTWlPqislk0pRQWq0WrXJC4Wk45oVilMEssxifsbWDgE4I1cQt5kSUBMogZEDujzuTEZmIqETQlPWSQBFSEQnPfVZmYCviOKZqFH5TqicdlbVgNNgSWWtEYd17GxCKRFsvdO/fZ+yRzAE4FFQcRcRxTFIPZcYxURQQqoClgYsyy0RQpaqhy+pV0K0CYhWRe3jyjqlQvQ6BDyY+vLWFqAyMRlS+HBG2PniO6vbtm6SemSMMBGkokdERrdV4PGZneMC8ZiYhADTdOD5i5q407TRmY3WZ9RW3WQkhwFr29l0EvbF5gjQOqaqK9XV338Iw5Patm1y86JzZ888/S5rG7Dx62AAsDod7tJY2GR26TeyZC2e5dO4i4/1tZmO36bXbkc8q3DF2u222H99jOhkS+EysXSa8+h1X6PZ65JkrNf03P/hZPvldY8ae5qfd7vL48WOub9/nzk0nPaIXE4q84vY73wQg7XSIqJikaYNg298/IBIlF8876LcSBVLChz78YUdMAGALVla67D6+BUCcxJxY6zIYtBq6tIcPx+zthWT5nHuHrmS2NBgghODhPaeCcPPWLTqtNs89c7GhJ/roxz/G6vpaA+82WPI8JwhkUw7Msow/+7M/awKQ8XSGMYZer8eJDXfcZ85pjBUNe8TK2gk6nQ4r6+ucOeOyx97yMgejsUMRR+5eT/Zm9JI+sUdzTmcjWq0OSdLh/n0HT9cqIO0ndH1UqqKIWakR4wkzH3Afjobvt0Q/aNX4Yzu2Yzu2Y/svzZ6KjGrQ73Loh3S11LR6A1qtfsMEXGiNlYqlulEfunkZbY4yKmUMSRASBSE1xVadUdWZgZSSQNTAhyNakVpbBo4yKnhvVpU/AaaQT5QGn/T0wkoiPyRRFAWmYQkPedKEsShfspBhCEJg/XkYY3zGYRqOQGstQRQ280+FrpqZotK/L4oitNgDDy4wQYeSFkVJQwIbak0Lgyo8Z5ooCKgwSlAGnsg3alGFLYwQ+GoESoAt5iQe8SGqjCrP3ByUrPnQWlRWNZSSxjiYuTUFoonEDWl8VOasDFifUemaTqYh6fS9P+VoXpSgIbNU/h4qIaFmaw4tRWSa+9GqDBTWqVL6YzzTiZgD+IxKaIvefoha6RHUxInBBy+j6rRTJiM3o5TpGSfaAz505TIvvOBKRJPpnGu37vJNL24oVQhWo6zGVq5kaIxhY2OLj7/yEZZ96a/T6WCMZWfHZVQXL14EbZjP583w6K0bN9FaNxDu8cGQEydWqZaXOe15K8+fP8/e2PKXf/GfALh+7RbhpfNYDasrDnrd7ycM9x8jPZH1Cy9cIogEg7U+h74SM57s8cLKJcIo4vYNB3DotmO2Ni4w9DNS1gjSJKDV6rB+wsHD2+0OnU4P4+l9qsogbMXDe7dZ+GH6+/cesLXep912z59jJVcsZmNeeN71cfqD7+HLX/4yL7/iRBu3tx8xnRwwm+9T+lZAp5tgWwmT8ZiXXvqB5jo+fvCQi+dc6S2fTUnimH5/ib1dl1F+4xvfYDKZNDRT3X6PtNNm88xWU+XZPxgyHGVNplrzKw6WV3n0yMHcjXWVoHMXXIbbHfSxBtrdjmOjB179rk+wu+vAIrfuuHu7vLzCweGYvaHrUZ06ddL1Mvd2WfGk2EkyYNBfI8uOKl7WarQpGh0rxu+vri2e7M8c27Ed27Ed27E9bXZc+ju2Yzu2Yzu2p9qOHdWxHduxHduxPdV27KiO7diO7diO7am2Y0d1bMd2bMd2bE+1HTuqYzu2Yzu2Y3uq7dhRHduxHduxHdtTbceO6tiO7diO7dieajt2VMd2bMd2bMf2VNuxozq2Yzu2Yzu2p9r+b/betMeS7Lzz+50ltrtmVlXW3lXVC9lUs0k2SW2WNYORLQvGjCEMYMMv/CX8eQz41bwx/MqakW0IECWPRxIlLpK4k+q1qrqra8us3O4Sy1n84pyIG5lZ1WwNxnZSFX+gu/LGvbGdOHGe7f88zyCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLnGIKgGDBgwYMC5xiCoBgwYMGDAucYgqAYMGDBgwLmG/v/7AgC0EF60f+uEylh8X4YKA4LnX61r/1XgdPiRXoZtnrCf7/0+/i1622T/+7CFkzJc4FRz9jhn9juxy5lz9o8t4vEdDjCb37en7V93+68IA6B0inMO39Qg2gEAvGYzICeu/oWX+Vmaij39Ze96RNxXnPqqO5OI2/rjIEB4jXfhV0IIhAeBQMUr0UpjbI08MT7h/753H+1f/XkipMRjw31JiVIC7z3Whm1+s9MJCCEQIlyocw7vveAlwr/5n/5n/+GHHwKgdcqXvvwWo9EI04QB++lPf0oxHnPxwg4As9mMyWRG2dQ82zsAYLlcorVmNBpTyDBPpdboNEEmcd6mCSLVqCRBpmGbzlLojX/7bx/ee6Z5jvf+zPbP+vy87e3fQiYAuPj+CBnmkVQCFCilUHGiLFfHVMsli6NDAKrlCldXCA9JvFwhBEeL3jmxeOHwElyckxaP857pbBuAJBtz/cYt0mSCF2kYI12wXFRondLY3XCNDkAi48tkm4qmXqOlIc3ae1uxXB3w8f2PAGgag1IJeTbl6pWb4dgyw/uj7hoFChA4C3XZALBeV1SlYW8/PFfTOJqmwQlJURQAzLe3uHDhAuPxmLQO42atxdgaY5r4uQHhEGrzTLVWWDz4zbMWQoEU8VrCtv/in//GmUkwWFQDBgwYMOBc41xYVFZAmkbJ7BxeBC06G+cA6DSlqld0ypYAFy2OVhJLr8An4CUqH3fHVj3TRHiClHcbDUuJcN5WiQ4addC8vNsIdq8botKFFAopEkDjrO/2c97iXB1+3+7Xs7y8D2ZGOHbYpqVAKtlZRkKAVKAUyHjD3gpGxYymCprZwcExW5MJN9+4RbleA3D37sckWiLcSWUkaJDtPdp4jniv3p2xtSSglEBKSeVsHKN4Xe3w+/CflnTPRMpoZMZ7tfFgUod7aX+zMoZo4KAF4MDWkCXxeSjLamkZj8NOZWnRCaRZgotXILVGSklZlqyacEKtNUopXDfWHiHAGNvd23iWIlA0Tdi2WtV4D0J4pBSbZ/SSQQhB0/Q06qqiKIrOErXWUpYlKj5I7z1N02CM6WnLGq01QgjKOrwD2jm8CHM8HEginUR631k2zrng+BB9LVt052lxcHDwuSyo0xbZi/bRSdptc617gGCJCy1QSnXve5HnJEqRJOH+j5VieWCpy5ImTjitBFoX3XvsnMN68NZ025QUKK158MnHYTicIElyLu0o6moVb6DEWmhEjciI+4W5LXy8IOuwqkEoj1Lt/SXgPU1jAFiv12Takcqi8xhpCYise6513bBeVSyXaxbHJQDL5Yq6Npi4MKRpTjGdM51OmczmAEwmE9I8J0kSlK3CJVmLMYayLOP9m7COIdFab8a+93h8uzh6+Gz31DkRVAho4srtHahCcunSJS7tbAEw3ZpQ1UvG4yL+3ocJJRWqNZllihQpQii8Cw9UCIGWYfIBSBleAiF9z/V3cqn28SXyvZfJe4+XFUqF1VSpBCkSvBcbt5L3eG9ZrRbdNXbHce2xxUYgxgU2CCWPjBNOS0eaaNI0JdXh3kbZiFRnXJhdBKDIcmbTKdVqzbe//W0A7OIZdbkxkE9fPwSL+/R25xx4iesEjgwvhRDMRBnvVwWBGmeZwKGER4noKgF2di6itSRJw8ucZBqtFSpVqOj6kVIiZ6NuzCQC2zjquiZLknbYODw85P5Hd8O505ydnR3m21v4uAilacpkNkUpxfzize7Y7YIKUFUVxhjquqauwyK8f3iMc3B0GFzDDx8+5snjZ5SlxboXu0f/qUMI0b0j1jYkSUKSJJTrIHCUUiilWK3CYnpwcBCEvZJkaXgn8zxHa41zrnuWUiuEDq4d2Mw34ywyrKfBFdQTLi8SVKmUJ73p3p/5DJt3/fT20/u0QlcIAUoi4jyWUuKlp3+YdVWRKEk+moR9RXhHjvafsV6GMSmrGu0lIi4sQogzQlIIgRKwc+lCGMfDBUWmGWcp9Tocx1ORqAwpHcerKu5XI1GbcXEurF/eU2Pi/QTFulXCtZAoERzo3oa5bXyDsSXrdTju0dERR4crlqsSY6LigESKhKvXrgEwGk+ZbW8xm22RpGE9alx4z1bLkllUBI0xnfICQVApBFKLk+uN37j+uvFHIPhsBfF8CKoEfKv4CvjiW2/w5S9/iWIUJvxkmlFWixOTJ7xcGhV9zVrnSJWGCVIGVaR9wVTa/iZIdyklUrVHcvHl2BzbRw2oP8BVY7rJrVUSJnRv0ZdSIoSgbqq4jz2hNQbITnDJzlfuUXhknOBKOLSAVGnSeJGJ0jSrmtdv3wGgyEZ8+P4HfO87f8GPvxMEVSolWmy0RI/He4ELf8WNEtv77IUMC4l4jgfYe+ZR6CilSLTsrE8lHFKEl1lHdW2uLKORYjYL1uxkPqEYZaR5gtZRcdCKPRbdRJVS4hpHU3myqOEaY0ikwzXRmtaa69dn3L5zi9lW0OhG0wmj0Qik4HDZe0ZVxWIRJlJZWkwjqYyiqcOxL14cg9esoz9+ez4jkR9y//6jzsp7WZHGRchaz2w2YzQacXwUBHqWZWRFQR0tpaqqaBqLztLuncijhg2CTLcKnUImGqmjJaZkFF6bbSpNTsSogDOCSgCmqrrvnxdzamFPPcgXWVQ2Lt7hGhVKtEuhw/lgibe/VUpglejuNZuMUIkmyTRHByFutVqtkCvwveC39B7rNx4c5y3GWPJ8FI4rBN4anK1xJgolLHiHF4rxeByvWeDMZq3RiUJLh5Q1grK9M9I0D+8FkCUpiUxQQtJEIWiM4+DosHuO5bqmNp6imFCMo7U03SIvxly6fC3ehMKLsI6U0cyy3uOlRqUSaYNHR2sd51D7Pmp0ItGp6iwqET1hvqcTCqHwghMxqufhfAiq/lzK4OvfeIvf/Z3fYLUOAT3nGw6PFE1vsjo8QmxICVI6lLIIIcjiYimEChpWZ1FJhJCdhgcgtYxCj7hP9EcJd0JQibKILyIkSRJcXb0RlzEAa0zR7dP/N/y9sb4SGV8oZxHe0/qsfFNjyjXrxT7LMkyoSZZx55VbXL0QJuH//a0/59/+b/+OT+4dUMYhufNKxt7uqnO9OR/ccNJHN1zcpsJNhnNJifCtxhs1aoLW651AiLCgC6VQTpNEgaOkQ+FR3qPjGOx/+oh6ArIKVrAwE0Q1glGGzIPioLOU8azutN5MJ8FlagVFdP3WNfjKUKgwjovVGs0+qbrAfBI02nzU0Jg9jo6OWdWdxsG6rlhHV2jT2OAGRgbfJUQSR8p8Eo4tb+ywPF7w9MkTFsuX16JaLped6885R5oGAVRVrdIVFsk2UF4UBVtbBTLR3QJjrUVrTZIknbBwApQTqGiuCymwPswb27rjnTtDpugLKADnfRfI7+OzBNZnfdeHlBKZ6M1iquJi2lM0rW2oq4ZaRJemkEgJ6WjMuFXeioJ1vd/du7F1eN+l7wSc9BaLoKmDcNEShDU0VUnUCUkShbEeISyrKFCU0EFYxTXCOINQ8T21Jt5jQ13X2EiAsU2DdQZTragW4Tkul2vWjelCGkIp8tGM+dZF5tuBKDOazFFphtJhramdpTGO2thO4faCsPYKRVVF0oUxNGZjUbVraJ+pJgQnyBRhfG0kU3z2+zeQKQYMGDBgwLnG+bCoLJ36NJuk3L55hdfvXGP3WZCydXWMLS2jraBRBw0v+jZbTSwGHKWU4KN6oiRKJkjd+sxThNQIpTpN0Et1xqJqtSnXs4BmzZQkUmrTVCKkp2lK6qYNHgYX4jyfEQ+8ub+OQh5I1gCKSBN1HuklIroiqmXF0dOSw6MDDp8+BeDHD+7jvv517GH4/Jd/9n/w7rsHXJ5Cq2cudldMko315KNF5TbGGt6D9XRajsPivOtchACyjVcpMOtI8Egd1nl0qwmJeAzp8PFYKaAsmHVwF61lgzArsCNSEZ6bViMSKpIY6yvScFHOOfIkaGLSlWixYJRH7bFeI9GY+hmL4GVhuQyEiOVyST671D23XBnIwnFS5YIa5iVNJLyoteP4eIGNAecsKRgXCUJsYhd6Y6C9NFBKda4/kGxtbTEej3nyONCjR6MROk0xMsyHLMvI8xyU3Gjn0SoSQqCjBa1aSyUOqtQqWOdZElzOYcdu/xPH4aQl1ETrosXzPBbP+3x6W2etdV4FgTBVZ+ULFawlLzdrSzHOMcbg3IaMJJVCpR4ZwwrZeES6Nl0cb7mssNYhRHAdxpFGOMfB8TEA1ngePfyEJ0+eoGM8usinlGWFVilNEd6b6XROkY9R8XqMMYEarzfuSClzbJ1sYnRCBpKKN1gTxq6pSopi1hHAVJIyncyZz7aZTKMnJMlxXlHZNjSRojOJKjaWrnEWaxustZ2XCcC6pue23cQ++xwB8CdcfyCj6++zbabzIagcJJHhMtKSXDoyVTPSYYBzHMe6Zu/Bp8CGySaEQsYHpXRg1CilaFSIbyRJRl5MGKXhIYxGc4rRhCwfo3T4TW0dIh6rvZhWSPkYKHTOYewWaSuoMoF1Jau1xa2Cq6mqakzjuXEj+naRG2HVMfqiOYwDE/aTXiJJ0DFpqcrWuMUhe85QL8PKfOPyNj/74ff4yff+EoB3f7bHCLh2EZZhzpNnUUj1WHfeg3U94eWCqGwFl3FgnKexvnMZImxcLCQ2ur+dBa98R1IJrjQXWUjh6GlIh6GqNnkUpq5wzpDGRSnVCeNEk2bhc5ElQSmwkOooPCuL8jWrRbixRHrmk4RxLrDNIg6nZpyP2JpdZBVdH1JqrIWkDmPdmBBraKzrXoyrly9R109ZLBbxCXmsa3CmxwJVL7eTwXtPkiS9mBOdW+zChUACaJrgZlJpwigupkVRxEVTYP0mT86zceEZ55BS4I1BtIqR2pAE+tdwmiiRFvmJz8/7+/QxPus37Xoe8+Y2ipqUJEmIrbVCoK7K6K1q2bIeb+2GjETIdbp1+zb7B3sA7O5KFouj+H3rQgzMuAvzoMwa42hMzcHuLlkaXG3j8Zr1uiLPcw5j/MtbR3op6WLQ3lqMs2ilULolKtkY2tgwMxUSL1UXM7RphtQJjY+EBwumsTgncW0kQkBtLZM8xowRWAPW2+65Omc6Y6EdoyDI3cbt6wwIidQboo4Q8rmsv6hyPPc5tjgXgkp58DHWIo3Bro853n1IIoJ28t67P+T+vQ+oY0AmTXMSnaFUgm4D/lmCU2C8pcrCIC8d5NUMY8IL9trrv8N4MiFJJzSmFSIaawIxA4K2qISkrFYdo6dpGryfkOfhgc/mOUeLp9y4doPdvbBfkiQoqRkVQShWlUGrFK01JlI4EQbvG1brY5I8Mthkim8Uvo5aTqWgqlkc7FOvw2L95N5DDp6uiMYKN6/B9StzxqMZTRX2W68qhG66+JtSCq1TVJIh42R2SJxXHMbMxMoY1quKo8WS42WQSnUdpo6UlmwWXp7FYkW9suh5GNdJUeBsRVkuu+dW5JAqgY9SUCJBJhwdl6zWTwDY3q64eWmLnXlIeLTWYpqGixe2MdFvv79esbO9xTjy1Xf399maFszHI5Is2I+1sSxWx+xcukMapelqtSJNNHkaNJ6Dg0PW6xqERpLGewssKx0VmbrWTKeTE0SKpnn5YlVFUXSxPe/DwjKdTrtFaDKZ0FjbxbHyPEdKTePsCXq6EIL1uiQfR7KACqw/odrYpkQkgdzUKpghjaC/mG0sqpPoxzpezBBrBUf/N8+lsXcpE8FSEB2by4c4S496nxYp/cRx6z0dW7h73zSrqkRF4T7b2kJowWKxoI5zW0kZLNGIJEnQ2pNfvtTzwAiyWYEQksbGtUV6hK1xLaPQx3QK4Tsrz7lA9mrv3xiHVjGNPr6TaZpinO+uwXpFkmRkWYZQkULuwvrqI7kkeGQcCI2Sm7G11uK96Qlq91ym8X8qvNzq44ABAwYMOPc4FxaVRnUazerQ8A8/+RHL/ffQKpgQtj4kE4L5LGjLqcrQOkUo2SXhpblCabA4VllwGVonSfOGLAvaovBHmErgXU3ThFufzi8hU03LIHf1Ei8kEy2QSdAKjtcrVvWSPA2aiESQJQ1FrtiaRcq6lkipOT58BoB3Gp0JTF2xWMR4lGjIckGiDM0y/K5qoF44XBWOs95f88lHH/LxBx9w8PRBOJbxzKbw+q1gGVy9ep0rl66RZzPKdbjG5aJEFhtfe3DfjMiLEbq9bp2AV6wjm7AylnVZc7ws2d/fB+DR46c8evSE/f1DqlU49sUrl6nWSz49CM/j8HjNa7evMp3P2H36CIDaenwDMa2DxjqcMIBHJvGaSsfPf/QexLF/47U7iMJiy4aiCFr41cvXuHv3Q7aj1XV4eMTyeMFRdsiFS+H+L2xtk6UFVVVhTdBWy+Nj1lXdWQbHyzVpnrN14TJZtHIPj+p4gSenvekZUfY/rSL4KwFjTM96mlGW5Yl8pvV6jXGuc/OFRF+P77FnnXMkSUJRFLi43YlocHRx5LOlkoQQIR7E5rMQokt2BxDu5Lk+C/08qs+KV3nRstNi0mnPhuvdVfiFPZkor2JcJaSaRJe18FRN3f0mK3JUokmzjEWMSa1WK9Z1Sd4lG2/o76Jjwjms9RhrO0vMlBmMx6ik9QJ5nHeYymFEa+U+fzz6lqVEoIQPLOPu/tokz1iyTEgkEtfmOvUT4M/knvbKl52ycl9k9Ybxf/GzPNf0dIkm0+ECx7lhlCokFWnMEcgnmgtbc4huGa1zpAiuhnYRTAuJTsB7RZq1fH/QiQPCwuzqQ5Z1jdZrjAm3vjx8Rp5PcHG1qtYlmdZszaeotpJDvU95aChUeFFLJVmXT5FOsi6jEPISZxVSRPdUJWgWOc45FouDeKMVaSZwrmakw7bVccnqwODWwWVw9HTJo7v3ePLJJ7TJ6kUKl28WvPWlNwC4eeMW89kOSTajqcL9r1c1tdzvHrRUCUmSkaYpsjXrY5JyHoWCccHVI5SmqcO9Pt3b4/79+zx+9JTvf+9+OPZ6iVWCra3wNghreLi3xyTPGEeBsjw6RKBwMXBbWTA4hPQkcfVPV7Dct7wv7gGwPbnItWs7CNZkKighRhuWR2sePHjYXeOd13a4efMWMpIwvBfUdc3u7h42vjTWNmityWMCqncCFQkCbbzLGBFJL9GFomS3AL6E8qmDEOJEPtT9+/e5du3aiXSMcZ53yb3BBSbRWYpWYYzb+ESSpDRtLpEU+L7QkVEoxZxDCKQFKTbJ5DIm9gqxSV5Fii7F4Jfhl9HU2/OaXtDf+w3fqS+k2vqTvjbhOjelacIxeoLK46md7cYx0QlZrHPYFgpoafhtcrnouSnb0Kj3RHeeYT4K4z1OIZEWGYWrUAqhNDoBHZ+RNWucOEtK8aIXA5TBbSgiAUo6x4mip58F1wr0MEYh4fhkztpnuWTDvXkQ/3FuwXMhqBySMia8pQ2MxinXr0wZZWFBFf6YUaqwQXlARw3M4dE6POw0AZFYwJKrNsFOkmio4uLp6yXGlHhtcT5OHp/ghO14/IkvkVZAtSKPjJ585hHWMx+FC9CiwstDZNOQ0caxLMKlzKdXATgqG2yzRgvFdhEFbCJBViwWB2gfiQFVhVtVlIdhpu493GPv00eYFUwjpe/mzTFfeO02t1+7A8DWfJs0G5Plc4QIY9TUAp9f3AxqjDWgNK3m42zwr7dJ0tKDksHySrIghK69cps7r73BYrHg0tVQqPQ73/kOdz/8kPE0svcQPHvylLpuKMaBdaeyEVpLmiacy5ia2ijAYSMzTJeeSVHw4H4QHML9mN/+zW/y6muvkGbhN4vFivFo3jH1HDYU6GwsB7tBuJemQSlNYz1NFZ6tlBKL7HJNnBNoQkkt2zKYRMsMjcwdmYY4QQr1Om56CZ3heZ53sYbVasVPfvITbt682ZFO1utgnbaMtqZpSNOcfDwiizHBNpgu5aYcWKges8lbbGNRbTUIiHErIWKpM07Ep2TPivKfU1C5XsDx9MLo++pIm9/jPcJtFm/h2682AtY6h3R0marCiWAtet9ZIsJ70EmovEDwVgjhUUKRjkJe55ZWTKcNe3uBcGFNjWsM1tpNwr9SJFKhlaAsw/gvjxzlaolxMa6HIilGbG3NGEcvU7t+dQaQEJHRbDfj79pk/RhXEuH99N52xZxPR4N8z/rqcp28R3lH54Y689tN7t3JuBUnyqzFy/xcOBeCSpDiCCtFbaG2DU42oKIG4QxKqy5PV8eyG87ZrsKEkAYhLZ6a1IcV3iFJkLQcIuUtiVdosanOPhoX4OquwoJMHPX6mNX+MXIUJsH2fMaFyYhRHpNJ7TNG+gjvFyQqCC+ldPkAIAAAIABJREFUTBAcJlB6MyERSYrWKZ4o4JIGoWoSGuwiWIuZqzkq1xw8DpbZpx884Mknj6GBy9eDYPiNb3yDm7cusnM9JOVJnYIsyIoJyPAbUQvIi41FJSVaJ2iddpqgiyWcWkqxcx5rQ01y20aXlWSydZHRbJt/9YdvAnDz9nX+/Z//GT/50Y8AWC3XzC/MEM6zu7sbx2gLnaTdsY1xeCfD9I4KxnplmOQZIjIwPvrwGbPxB9y4cZPpdApAogtu3rzNfBVdf8cHLJdrdHZEGYP5ZVWjM09tLEUyi+OvGE2KTtKUdYlXCp1mrOKz1WgcAiHCwlE2KlyzOPmCv2xog+MQqk7U1rBerzmOLqvHjx9zcHSENRv22my2RVrk5FGZbCu+JElCFR+4F6GOZUumQIXikLJnUXV/t597xXT6NTnF59QgnrdYPu83p593ywxt3WJSiM7Y0FLhncDFFBLnXTdn2jXJS4FPNDYmvDZNEyjkKhAtAPJiDPmGlFGWJevVAlPVNKZN3PVoHatlRPKYLQ2lX2JMeEedTMmcIS8UmQkXkCT+ROK0a12uUoSCm2FAUcp1hWgElo3772w1nvZXOB8LBcTvnMU7S59nfqZcW2REtv+FoZY9m6y33+d4515C/XHAgAEDBvwq4VxYVA0CLWMB1mnDaD5G5xono1tHO9KRIhYmR8uQsOucQOhY4DS1CB0qmCcuuLE8Ek2CjyrESOcYqUiydBM8bJbYZo2KeTxaWxqzx/rwCaIMkn6iL1JkFyAm964XD1DpkqrZw9jgDlmtaubTq0zHIY9qkk1IkxTvao4XgThR12uSzJCKChO1zsw73HLB7qchR+zTu/dZHsDlHc2dW68C8OYXvsjkQsoo0sVFkgRLSo+wrqWaOmSaQpfILPFa43WCb6m/SLyFJCYXtgUhrfGYaK1Y47uYRdtH57f/s2+wc2nG9jxYIt/767/h6NlhULCix6Cu6y7fBsA7hUfinet88pU3HIiKixeDZXh4tMe773/EpUsXeO2NGwAcL/ZYlguOFoHcMZlP8TLGP9I2twPGkwkzlZC5YHktlscsjmuaqK2uyiUi1Uy3k662GmoE0uFimrRdgRfqBIHCurMa+D911PWmrNV4POat117l9ddfZx2Loj569IiqaWgLKltrqeuaqqo29efaFIjW/UeIAfZJGSImf3opUL2yZtCLrbBJ9n1ecdpfhjZG1O53prh0/K+JSrxoa42dOsfGBRisPOfpaN7WuzajtYtxCicwmm6tkTpBElP8XetWdOA8060wZ/NyTaI0a3lMVa3j+FmsDfcxnwSPjncKJ1J8jON6kSHTnHGRU8Tk6saWgWTRXn8Xo+rVUYzJzMiNCxPhcMJ15d1Ca4SNhSV8yDfEW2RXOcAFq9K551pQ4T5ccJH2cqukFGcKpf9Kuf4sdItZaTxSKXSmN8lr1tFQk0VqSyoVghSLRcSJIhOPkyEZL4sFTa0TSJ+QxMU7VQlKJKRadQPsnEcqQRIDlUqWkKzxowpFeFHL5ZpJ/gZ1FVwh1eohswxKs0cV6xEuDpaMU4keBxfWulxj1guUTFA+CLM8syhtqOoFy8gErI4tR3u77EbywPF+xaSAL7z+Bl//2jsAXLp0CZkbdIyZyTwHldO4BNPmgyUpxXxGvyKGUgotNi+ucyCko4zEiUSrkOuVClSyWRRCNrlif+9uuO4850u/9jqz0R8CMJ8UfOtP/pSnny6JZfNYrVckvXiYQiBRIGVI/iMUPD06rplOwrMej+YcHe/xtz/4IQ8jwxFRcXD4jOs3Q+zrzuuvsne4x6ePH1HE6tXpuCArcrIs48mHYRzv3r3Lk73HlFGZMM6wvXOJN7885uJOqLC+WBukdN2C62ldob3J+BI6GdokXwjEia9+9atcu3aNTz4OytPNmzepmqYj3CyXS5yjE1btflLKsFDpnvDpkxBaRl/P9df97hTONjP9fPgs4XbSLbiJ6Uj8yd/EWEoXkhEgYyWccBIZWuR4j28LtQJNTyhInSA8eNt0ibI4H84l2qaRORMhQrGCRdivrsq46BuEj/UXvQ2hj+hCdTKc39iaqmqbUrZxWNFdc1uTrx+jEtKxKULdJtz2SBVRSIluTDx4h/R+EwfzFhkjfn3B9DxBZa09U9H+PwbnQlBlozFVGUvvGFg1FVLnjGIhSmEb0ixF2rYUi0YKFTSCdh3WsaKCB2li907vEFZ2AQjhZChD4nzwsQJpKkiVpi3DUK2OMNURuAWrVdDqnz09Zqt+jXUVLKPD449RyYh1uctqFbLH16sVpr7IB+//BIDHn64pV56trQtci7GlncsTnFlzfPiE/d1wv8ujhr0nT9h9EoXgGi5fGPHqrdt88YtfBGA6UzRi2TGflNYYpfBGoNpK1WlOVflQ/QK6qgBeyRMLhRcOnQUtTCJirE50cTxEcD07D1evBmGxu7vLemm4eClUWP5n/+w/x1YVf/0X3+bRg1jXyIHJDUkkarRWmfS+ewmEFxgLnz4KpaCuXtlmPt/i2f4BVR0EdV7Akz3YuhCEezEekayO0Fpz+drl8KjTjE8fPuQXv/gFD9+LcasSdq6MefWN1wEYTcaIVJLnoy5RtWkMdeOwcdpbG7Tj/hrUK6v/0iBJkhNU9CzLOD4+5vAwPFutNUmWdW0/qqpitSpZLBZMxiFGOJlMSJIE76FmMwdfRFt+0b99bfvzFpbtw7mTcZN+9YgTAf6uEE2oSrFZmNu1okejdg7vN++R8B4jA229VbCdBduvwuBDSwvn6HrEaSVJpKKM1czTRJFlGVJ4RFyPPC6W+HIkbVKyC0W4W40qFLtVgH8h+WdjUfXGsGUFtu+jFJygqPfQLwz83JF3HuHdc63VzWfObmNzwF/GEuzjXAiqav2gkzfbObhnu+x/YPBFeAkWz6ZUJV3+T+Mfsyh3yTIfagQB994/YGf7An/4r/47kqth0avdA2TRgIuVKsotLl1+FUuFi7X20qTArnKm2W0Ann2yx7e+9Sd8/asXOIptthM/Ze/nf8KrXwjHSfc/ZvnkJjcuvsXhfmDGffx3D3nr1z8iOwyL+7f/+B/4yjfg9//rLzO7Flx47//VXR4/vcvN12DvcbCWfv53P2f/qCCuCWQX4MpXV9z4LUOzE85/rG8hxK2uHphzJVCRkJAT3YFmSpLvU7fkHV2g1QgnUsoqTkTrSARI2rp6FZ4g4H3U1qxMaEQIs6p1mB6z8VVsbjsW2Hj7Cr/ze39A7TP++I/+bXyGnoeHK65H4ZaORxzs7pHnOXlsPfD44RO2iwIZrb7DJzWjacr25CLoKHCaJVluqV2wTLPiKg8f36c2Iw6etbUWMzCX+fKb13h9FrT+dVljveLgSbjGX/z4Ho+fLfm9/+p32Zq/AoCpj/HOUZZhsKUs0MpgNgU9gnvmJUN2cYetZXA97e/vs79YceXmLXR0ma6eHTCZ5EQdhMPliqqpcWlKHU2fSsO6WVOMRzjbstMEKhSGBEALjUShnITYjy3N25SDUySInvLgvSfxy+5756MrTukuZcERrLnTrlsPm3QE73GE3L603ix9wvfOLxwWj1Ubq845C8J1uownuL5cdJsBeOUp6g3j8LkWowmFmnLdulDXlE2oEZpPg1tdFynr9ZqyLDlcb44hte4MIY+JXSE27lHhNNLnSBc7FTiH8hrhG5KWUYiNDQ03rn8BneUTjm1xwhKrxYW6gN4hMJt0Hd/gfYV1ljTesreBCKdb49GB8oLEi25tx/nQ2qQVnj7UB8TKTa3VF0jel8/PMWDAgAEDfqVwLiyqra0dFsfBHXRwAN/93kf81Z9Dm7+tHcymEBu1YgUsa5hMYSfEJVmXkC+e8eFHP+VLl4Im6JzBGIOJNbPKKvztAKGCxl6uJVvFTcw6yP0f/uAhP/57+ObbO1yYXgHgo3cfInJLGQO1t956m4zLVAvN08cxCDqBI6k4MsGsVxfhypvX8dM5P/7B9wH499/+KZPthPGr1ztad1VVrBdLYr9FJjN47bU3uH79OuMY72rqaMZHvUJIBUIhEF3wFqGwznVxPSl1qPEnNUmrLUpHKkWX3JyoBCU0TrhWwQ3+alRwC7b5MEKTqk0jtyRJyJOUL37pTb7+698E4G+/+31Wx6H7K8DOxUuMx2NM3VD7YAnPZmNcY7tMf2NCC3RlFWnUMlOlEbnt6pHleU6e5yx397sK2rPZVtf36OKNG/H51xwtSg6Og+YthGA6TZjEHlZAqF9XN3gRBtv4PFQ4ERumrXsJyRTj8Zjt7fAitT2l1uv1CaKEEKL7jfMeoSQqydi6ELbN5nPquibJ0k1T0BiP2lT4lvG/nkuw6yzQxoxd567rW1nSNF0Xao8McRbhuvwf7x3GuRCT6UEI8QLf1YtxItn48+7T8xSexuY+/Jnt/car7b/Bheo3hWKdw4u+1eNBuRM1Ej+va1SI57u2N0aOP1G53hO6CQu/abgqXChIe8Kth/2lVk+fIHNyG3TkjRcc5VwIqoP91abNQg7Xrs7ROwsuRv93kU64cvkGs+3oD9/SWL+P0Asm49iZtHRoJty6dofSfxKOpVpyTng4TS2AUUgUjvlHt+58AbuYomI+yFd/7YAPf/YzlLnDKCaGvnLpNvYVxzMbiqveuPImO1t3ONitEYsgcC5lDi5d5+GjUFKoeHWb4vZbHGZjPo1lfkZvvM6V65dYT0XXYCxNU9br3Y50VBTw+uuvM5vNu98IoeJ/LXtPhWQ+rxG03TN1yKVvY1aJDoUmncSLaLIriRSCqgkLvoitOqAVUOC8Cm0JkoQmdsKV0iKFxvRKyYxnU9544zVWiyAYHn/6kLsfPODwMFzz1rhiNp1ydHDYdWcdj8esD1a4WL25bhxibRFao2Jx4TTNAimjTdxtDHmakWcJly+GhOYb169xeLzk8ePH2Fg9fTYdg9SUsZr9xx8vqBysq3LTmTnVGARp07pLkhjY7+cuvnxOhsVi0ZEixuMxWZaFPKC2ZJBSJ2I9k8mE0WSMcXQdZefzOd570jzrkl77rT/az6eJFO2xW5yOdbTbMLITVHiJUEFZaxPDG+twxnBaWgjv8S3BoF/Y9tS63pEQep/7LUH6i3cfbUWN0Mj1VH7QGZzNNTqdfxTyH1u/W5uTaGjspnr58wScPVXm6fR9bS5BbISVB/zJTuU8J9bUsiLlqesOAuuzYlSnmJTt8U4RXk7+7vmu93MhqJJ0CxdbaoxGhhs3vkAmV8xj1vvTR/s8ffKMIlLMti9d4uLlbYx/Flh6gLQC5VMmRYM7ij7ZNMUogSImxaqcJNsOiYsxJlM1c472Fddm1wF456t/wA+/+xc8/WRJEi2Bsb5IvrPN/XfD5+vLqySjCxyaY458sLomV19Bb20zvhnYa2/+9k0u37nB7rMniO1w/jeuzTC+5qf33iVNNi/vcrmmnZtbs4KdnSt476ljy4wslYHqLTbUc6TC+QRBJC94jdYJMrYvETJUSjbWdImaUoCTG4aXchXOhpL9bXsLoUPHU6F0kJoR3nvqWMKqbhoSrRlNJ9y8FeI/77zzDqZueO/9IMz39/eZTiYUacYixhadsahEY6JF1ziLb2pk5Uhiu/g0Cz2MvvhGIJIUWU4qFN40ZPEa5+OC8ahgnCf80b/5X8K4XbxIlk+6+mh5FkROa5EBLOoaG1ubhHsKrChBny328iX8fvLJJzz4+GMAbt26Fcpu9WIFLZurFWYisvvKsu6YqEop8jwnzTNsW0IGzgiq0wSLM/T0jhlI7xggXIZpzV4vQUqM9SzX4ZpcVYfOwfazY4xCCKQH9wKh0rem+r2VTiPOmq49SEvk2hz07LFbZXBDuCAQu+i12cEjESEFp6u8JEIie7x/Y/3nYk62hKqT2xStMtbt0xM4wnmwpuscjBfgTBBg/R5CNvaxa1uGOIdzlk0XcxuFXl8RcYH56dsYpo8U/kBWOT1efbx86uOAAQMGDPiVwrmwqIJLLlxK1RguXLrOrcsj3o70bFs6tra2+Nb/9X/GPRwoh3MrrA+07lGeoJxhUa9IYp5CohNKbFc93IqMNJ+yWjddot6qEYzmO3gRfrMsGwQJk8kMHZWK+nBNvdrh4taXARiPvsSnD/fY2z2gjgmnWX4doUe8fy/Q02/ceZsnBxlPdnOsDLTqyWwKjeHi1SnP3v0uAAf7Rzx7ZkhiTuqlS5cZjUZ4L0jbbpJeEHj4m3iURwdXYLSynFAgU4huLitksKgc9I0E5xxpzHMxq4bVMvTLafvRiCQBnYBQjKebvkJpmjLq4gorcIIsy5jPQxztK+98jeXxgscPgkV1sIatg0O2Z3NMHjTsar0mzaYdU0oYg7VQ1Ya0jsWFa4VSsL8bUgOWxyvu3L7N1nzKToyH7O8+5ejoiKqqePXOLQDKqsELwe3bgb15847muKq5ePFixxb1IvjWW9eH8ApBEjT2aJn6FwUa/gmjaRru3bsH0PWhEkKcyIlRKlCpARDiRGJtC2MMdu3oamZx0qJqrYDnWQKnf3PaYhgVGqIr3AmJ1Do0N40auDEhHi176QVdTGSTBYtwZ0NWfTff8z7L+Lm71l5H7M/CGXfYKYtqk8vperT6zT7t4iylJJGyo9ArB16GbuZnrMHn0P5PbJOb7uZhYDZWVTh7KI0kuz5XIdYv6MUMfYxRWdej/sfvbRtK2NxHR733oUBWv66g921e19mK7H2cC0EVpk58eC5QT48XJWV0feW6YOfyVb781a+Ez9M1lqc0dtW5/ry0NLbk6PiYSyK4o9COqinRKgxMIwwqTfBNg5dh0s8vT6kP4MP3fwbA8sn7LJuHyDQjj4kMmUwo611uXAuCs3p2wHs/+x7jqePqheAyPN7b4+mn9/nNb4YK59NRxdNH99GyoDGBYHD3w59yvKhJ1WWaJlzTYrGiKiGJXratrW1c42lqS5q3Ezp03G3JFM6rQCtHd4JKomNX3yi4fKztJzbUT2cMVVPx8HFwT9aLAxaHz1gtjmnaOmZS4VUQVJMLISY4Go24fPlyR6YAkFqRFwWz7dBC44ZzfPFLb/Lx/VBx/R9+9BH7+0fMxhOmcb/1chniZL4timtx3uKcp44U+iqtQciumoSpGspyxY///gd8ZxWo59Y2vPrqq7z55puMvxCeyaMnT9ndX7CIhVNrb6lNA77n81cKTYNqWp5vGhtmip7r5Zy8Ev8fYmdnp4uHQlBMjDEnYjQteQXC25r4UNC3FV5SytBMz1mmhe72+2Wuv7OuHh/+c66LdQEYk3T5cF4odFu/spcjpaU8EeFQpwTMCWHDyTiJ6n7D5lpbejrPF2ZnhC7izP2cFFTh73asnbNnEmV9LzepTywQUnbVPBBBUPWv/3PnJHnZxYhAdkSJrnGkA6QJ7j7a74J0b5OkhXN4GxsltnPCutD5l5bCbmNoy0JfMDrf5SqG70TMxxK9bWdxTt7KTWa0UIDw7B3s8eBBXFDLhspU1LHC+upgD5nuo/MalUQtRTlSneBdgd2PBR7LmuVqQSJCwN8lK2QqkJXDpuE3x/UuB4c17378CwAK94RGfcIHDx6Qx1l/59oXGfEQXYZ9/vb7P+PB4x/xW7/zJiPC4vmDH77HfGvE194KC+fdu3/Nk8eed975ZxyvwuKdiHtcGhesV5aPopZvjCNNO2WRUTaiaQxpkmBjXobUIc1cuP5kjFpdy4RyoVW86mXTt8ycOk6m9dER5dEeDz78IBzBlNhqxXp5zKrLUZMkeU6SjVnEShxZllFVFVtbQShprRmNRhTFmHGPVffqG6/ymwe/CUC1WHH3g8ccHx9y5WLIrRoXI4xgU3ZGaXAaJ2wXW2hqiRCO934RrnE2GXPh4hxvLE0sM1NVNYf7z3j06QOe3A+VqJfrmsPFmrsPA3t0WUM+K/iKNWSxerVraoROWqMTbzWi0zA3HVZfNmRZ1llI4/EYpRRluSGhpGkaS+GEd9Q6R5KlIb7XEwJKKbIiZ2f+guZIL8DzEntPL/hOgGl7SAmBEhIvNoJHCRk64PbrYZ16lJKz1pR6gTX1vO4XLXHC9/bpFWE/c77TFpWLC30b64NNV9xNC/fNQi37gkqpTlHtx1E/S0C1MaoTFpXYxLq7avDe0bbskF6Eihgx9uRtFFahhhTtRuF8TITuW2JnySGi/Q44IbCIgj1Ixq46yItiUedDUCkDLi5CjcGJmjwTXQl7JYM3av9RWJREumC2EwLldROE0MHxmlEyRqK6Pi/OVtTlAl8ELduzRmiLyg0yZqr5ZM3tL14li3UFCz+irq9y/PgRbhEm1OxKw2yyTxrdg+vdH3F5DK9ePWbvSbTEdh/zX/7ubzBNggvFrf6BC8WMOztrfvwPwR2Yucdsb13i3qOP2Y+JwVVZIyVEDkAoaSQ0RTbCx2iqi71gNqZ3y545NY5e4rqsQIH1HuMcVRkOfnBwwMGTR10AdFZkZJOMZjJm1VZqRjOezZhMt1n52J7eNEjhWa6C4PJOUFuD0Io0Jg8WoxFXr1/DvB2O88m9+9z74DGLxZKrl0JljnyUcVi67oVDCoTQCERs7w3WCIz0HB6G59o0ntl4ypUr17hxPbRQ8d6QZpqmLrv+U3k+JssnrOq4GAhFPp2jdcrDhyEBfHLhAtY4TKcptwuO5GUO1x4fH3cLZZ7naK2DizjWVkySYM3MY++xsqrQWlMb16v60ZCmKZNJ3vVWehH6i3dYPDffnaaXtzCAbquHexFSCrzv6JrW2ujiPs36O83kC9vkiXOeElbPEVKnt8nW8OtvY3OuEzy2nlDz3mNiaxoRBW3/Pvr1vDpnoA8O6VbQeeSGAfwca7G//Qz8Zq733XnSt6xfg0Qho/tWIEKFH+glQHu8t3FsW7deu23j+hOdNdV6fQLNHtdahv6EsDo7chu8vG/ngAEDBgz4lcD5sKjECqJZnxdQm0O2Zynvxbp542yCkIb33g/uubffeYWtrS2MrWiLdnnnqUtBnmRIGXtEZYrROMHJIPV1oTg8eIIsUqpY28/YaIbL1oSVGAkHZcVrNwMJorRwfO8h+4+DRffpPfgXvz9mWkz4ix+9C8D+Y7h14xUe7YXk3o8/gn/933yTe+99wPHTEKP6ta9c4eiwYfnsgN3dqPFIhWk2hIfVaoUznme7z7h2PZ6/FKGJXFQ2TF2DbkiyrPNjN86BEvgY+xJSYbGUVcVhTMJdr5ckiWY0DzX7Zqki8ZbRzojFIlidFy5fQ8gE42AdOyynaYpKku4ajbPY6Fa0bNyT0605N26GArBf//Wvs/f4CT/+4QfcfxDy2t7+tbd4/N7dLpistCKREmsr6p47ROmE9SponR99eJ8bV6/wlbe/xvvv/TzOF8XW1pTjwyNevRXIFDrL+c73f8jdj8IzunrnMsV4QlNbihgj80iE8mx4AP+4ZMl/qmip5RByqloyRauVV1UV+kx1z6glL5y0usI28PqXj2f/2Hmed89guVx2sdDWWkuS5ISd1M8h6tPbpRAns3B8IFSLnjsqJOaKLiew3XdDlAjfn3D/OR8b/rUUbncmIblPPulfY//vdp/WpdoWJDhJYQ9uQOdclyOW5znr9ZqkaFNPQjywdclCeEePDg+75yGswXuH1nqTY0UoBNBepVIKBNTVuktZ0VJTLY+wOrz749EUHc/XLgBNXWEbQ1EUNLbtoxV6W7WEEesahJVYq9CtBYWOlt9mnISQSKE2eZynmjHS7XkOIDOPi64vL6AqD3hSr9n/9DEAq0VFonNuvRqIC1W9pC5taEPhY/Vgr8EkWJeACHEj59cI6q4KsTUltq6RmcbFQddqzP5+hVIhmTTVKfc+afj0AWxNQkzm0ZFD1nP+9z8KNeIubMHN2/+Sv/nud/mjfxeuez6Gvb2rfOtbgfX2yiuvUJWv8Td/+R84WrXnN6wWjv0nWxzHxonLRYPUG4fFellSVQ0q2XSvVTL6x1vzPE4IbytsHDhbg8o3x7HO4WLTsyyJrehHGUJZEhvbnmSKXEqKPCeJDEPpBU3jkEnKpdlWfEAKoWTnnmu8xXqPUBoVXRB1XaO0oJi1idS3efPLX+Lhg084OggL3MOnTxjPptSxwkRZrkiUIE3zLsBclYai0BwdB8H59MkBj57sc/XKnPE0kDsSDZNxgWkch/vhWX/rz/6YvQXsXAznN5XjyeNdvvzNEVkWixuL0Jrb914UuioJn806epnwvOoB/X/5jLjIPxatgGyP3Qqp0wtW/6kEN9MpF6LzgSfQI0l0rLO4X+sGPEOKOOVFb4XUaQWmc309R7E5nRDcnrsv0J6XBHsa/e/bMWgZjaINZAuPE0F49FvrvAibgr8e4103RkL4WHnCQFwjEy2RuSKP7UOEMKxXFbZxmzVCOKwz1OWqaxTpbIPvsxdjbpb0jk31ERdy2LrrCgIq5DNuCB7Pw7kQVK5cdTNFChhPNFfm22yP4iK4bFAyRUcWnFYOaxscFhWp6FJovFNYlyJiK3qkRelNQWxjGoTzpDLHudh1U8xxeoe6XSjdiDx/G2v3ufdJsDxslZKqi9x+OzzMN177MveeXeJHH3zIN/95KOFzdedL/Om3j1g0odjs3/74gL//0Q/56L1DZvMgBJ8eNGRJQSIvMJ0H+vXe3mOEEFRVuObd3T1MVZMXOS7WjEpTgbemE65SWYQ3SDJkG6iUsadMOyex4ELVhVbLkn6ESiTNcbQ4RdBIjTEURWTmrYMQ0mnC4iAWb9UKlejY7wrSPEPnGTpNukK5+/v7aL9hSt24fYtv/Mavc//ePf7uO8EyfvDoEdduvd4998VigbU+LFYxHldVTSiVFRWQg8M1nz58Sp6nCBmD9MrTmBB/e/QgWFCzyRZOlF0Lk3yUMp5vMx5NKGaBQr9qGoTY9Evyip6Q+mwf+T91nKY1t4ts+/f/W7DW0jRNp6gkSdIlHPe7DqdZdoIeHYL5fkOr9v2k2Q3jeTw1AAAgAElEQVSk7wmWVnD5TczpeSL3eUKqX4Wh29b7O8SZTlXUcO7ENYauDe7EuU8LuDYJGLcZ/3aM2sLRzgssoosLvghtRY3+5/6/AM4a1uVxx7bLsiK0BypiIrfM8InE4LuiBJVxONeAc6GobLxGa03X0sfH1AGPxcd3mdipoC1KHfrdxVJYXXui57P+BvVxwIABAwaca5wLiwqVBt8VMcHMBnp2cSHk0si5ItEpdYwrZZnHmjXWl12PJqzG1YHVY2PelI0+bhX1irJpoHEUIus0+NWB4erOTXbXgdacjGb86//2f+TeN/8Fzx6FViC3r72JzZcUeXSFeUVjSm598/fZml4AYLmoefjgE/7qP/wpAH/yp/8r+0/XjNOO6Umew//w3/8WX/vqN/n7v/o2AJ/cP8CaNXV0/1dlw7gYMx3lXWfQxw8+wYtVVwJfFg3pBIqRQUeNKlc5tfcbsz7GtFItcfExJz7B0yDz6Mf2jtVqxeJoSV5Eq6N2GK9J0pJxvimZIxONKoLpnxE0I+sdlYllnkYFWmy04GwiuPP6a3zl6+9wP+ZWffrxEfOy5w/XmvV6TdV4pGx7iClWa8vWPLjwKuPZfXbM1sU1k1H07RPcmkLnPI1M0AvzHZK85sfvBtbl+tma29kI52AZ6//5ROFOVHyLXizp2WhyLx89/bQrrN32Iqr4iyysEOv5x5+7df+1sNailOrmSRdjcWev5/TfZ66/F2sK8aqT93n679PX1j9v9/v473NdgKfq2D3v++e5Ak/Hsfouw2CtWHxcz4wNWZTGmM+VP7XJHQvuvjYdy3uo64ZyWXJ8GOLYWmu0TrvGrvPZNmmaoVXSLWSmWWOaCq3T3n3Gseq7R1ur3G6YgQjRxaNCfmhrTW2SgJ+HcyGoMj2lasKC4xuo1yWrlSMXkcbpwVvFeNbW7Cup6xXGLiFpa90JvNVIIYnlv2hqh1USEYVZvazwVUMuddcTRQhFQoKM1HOlUy7feJPtnUvs7Yb4x80bb7Fv3yVNYzDRNEiRMVLb1DFGVKwP+MI3Xuf7v/gBAJfu3OGw/Dm7R5sq8K+/epHf+5d/wDu//jafvBvyhKwLNOkkCddTZCNSnXD4bJ9neyFGd//uCiEukIzCNY7mgsmFlPn2DvNZeITjcY4TDWm0z6VWSCmwXhBDUjRWYGIAF6BeLTnY3eP4eAkijH+SzpFpTpJ60lizTSqFylOkjlUv6oZKSrCmKxQ6nk4QOkHE39A0bO1c5Gtff4f3338fgCdP/4Znz3bZ2Wnp6gWrcs16XZFlMQlY5yzXZVfs1DjL3v6C2dNn1NvBPZkXgpFMyYoJ29Gt+p2//SnTCzO25iGO9eF7R8jJA7IipzpVmbtbFNqW28KHAr1Ed81LjM9y/X1WjGrjVvrHna+tIdgSNay1ZFlGkiQd6UAp9bkcstJvSEmhpp+I+YT/D3vvHWXZVd97fvY+8cbKoXNQt7qVAxIKIESwSBbBGJt5Y7B5YNlm7OF5sD2OrHmDjeOyDcYG+4HesgGDZBsbA0YGIaNIEhJCLakVOofqylW3bj5h7/lj73PurepqIbw8b7VR77V6ddWte/LZ+5e+v+/39O+eaYHvh7NnS6Zi/foTrG/k+39f2/C8Xp1q7f7WAjXWfidNU6JU5QZ97XnkxyYzTj1Dtep8pXnvu1GLtiWXVsoAMFaWDdn2UljCdUOKhTIDA8P2vng4QoOK8s4oY4N688gAWBRa97NuKFDkig86J3pIe8oQ4iwGU0StXi7VcyD0i5QLPkULAnAwJIxOYAX/UEAHQYS0zWuukAjfJZQhccPKfIgujuvi2NqGSCSOhlLgIW0utVgp0mjMUqoYc6LdmO/uf4zqsEuhZB7MUqfGoyefIErNwxsZqiD1IEV/nHLJHH+45LKUTPHMsacA2LB1I2FxhVPHT2JLbQShw9EjT3LeriB/MKmCMCgSSWMU4zjmyJEjHD70BIuLxlCUC9twPUEhMQu1dAWO6yIReMIY70CWUIGDxBpcIVFSG2/FNhEm2rzcmad6cn6eg888Q6vR5qGH9gGwXI9odFKCsMQLdtlG3cEqY5MTjG8x9bixTRsYHB+lMFDFsdFZFEWgZf47QCActu3azuVXXgEYufjDz0zTbJpJEYZFwqBIu91GWgonxzXCcY2WlTj3YXG5gTwxy+KKjcQ8TRBKiqUQ39YaXaDT7JDYCHN8BEqlCnGUUh41xmuxsUyiNYn1DA2zh8II6+UlXp5vYz3vf+3iuXaBXW/B7TGQP/d76Pk+3/zmg3zjG98AYGJigle+8pUUikU6tgndePlyXWO4NjKSfcfOWNOzTIROVf5Zv+Xr75Fada1r78uzSH/0gzaebawHVHku93rVaShFkiRG7v17eAarDCWmdpRdhhQGTewITaqsoxAnoN28F252pkaj0aZaGWbXeXsAGB4exfNcUzdbo56cH1f3/S/WODwZUlg4tjesF4mfKRI9KwwVBPYfSNFFpZIkSnIdI5cE6RjpCsCGihFCJjgioyOJkGmMIkFjFiaddnFEjNRm30mUQmK28aR5MHF3gSTxCIqmmTERXVK/Rjg0gLToweVuSqzgiSfNYj42UWX75qsplQq0OqYJdjhM8VwYHTFNqbV4ju2XXcLlF46QrJjzjlc8knaXhdnjtLuZhIZB2LQ75lhzcwscfPogJ6aOMTq8DYDdO3fi+SMUypkKaEREgzSN6DQM4KFOiWB0gLzDHGW8GtVLh2Qggrk5E6kdPHyIWq3G3j0X8+jjJupJ6zGOdNm4eSvf/tb9AIyOD7Jt926Evf9+McQthojAJ7C8gYVikW7coRSacwykS9RqU65UuPDiCwA4euwYp47fwcqKSSu4rk+5XKbdNkhHsLIRwqVrG3el69JqR8zMzrFsbjVx0qLTSREShgzIkmK5RKQFM3PmProlBykcZmbmGLcqslGakGqVa04JsohQc7of/fwZp6HgrOd/Jqjwf/QIw5DDhw8D8PTTT3PBBRcwPDzYAwHJNZGBMChYR/Q+k0LAGkqjntPRM1hrjZDENByfhvCj90acafHUGaiDXrSynjFfGy31/329fa49xzwF2RftZhD278VMQT+iTvc1GGMad4VOkbJXQdGOxvUEjswakGOibou6ENRWFgEs5F1ghI/NGp2qGG3Pqf/4/YZybURuwBZZpPnsqb/n36w8N86Nc+PcODf+U42zIqLSODiWvTrpdonaCVGkCGzjoBc4BIFHq2sKfrLrIFQHrTt0Mm6vWKE6ZhsnMcCAbqJxpSK1qZ5OM6HdbBC1G0TC9h+lmpGRrcwsGE+81akxvikkLCTse/q79pyKzMy1GLD1kELoszC7wkjBIwhN6i2li8DhxhffBMCvvvuXWFk6xq7tcN3l1wLwmlf/KNWq4vaPf5iQywDjTTiuj20tol7v0Ol0mByf4KUveRkAQwPn4/kj+DYySKgxu3yChaVaXvRUSYGx4eqqomyaKpTueUsZK/Vg1cDuHcehWq1y6aWX8tV7DLjj+NQCjVaC7/v8+JvfYI4/NsqGrVsZtRRGhaEqshgiQs+wrWMioaWlpTzN4jqSlaVlAtdjcpPpf7v4kgu57yv3c2raRIGlbpfhoQpSyry3qlAoIKXMmz197RKnGhUlJDY912qnLCxCpwuTWb/2YpPzzx9jc8k8j8ePThN7C/i+T2JTn2miUaIXUcm+lF/PM31+1qiezTP/fuDp32+NKooS9uzZw+7duwG44447uPPOO3FdN69ljo+PrtrGsami/lSfOENEJeilInWfuOH366H3165g/XuyNlrq76XK/v5s0dlpv68Dush+z4hs10Zbp5236BXphBA40sn5BA0pbmKiGZurk1LiCEmnYwBInudRqVTQSubq3e1WhJQuQVCg4GX31gA+Mpon0be/XL2Y1fW+/nTf95p/Z4Wh8pkhQ31oAg5NFUiDUdSCuVmF0EOgSBLz4haDkGJYxNWC2MLlkrSD1ArHFdQGTZ1mcb7M8GCVdtMYoeHBEfYMbOOZZpVTptyE4xe4cmScFd+EtbGuIqMBVpptxJzV3ug0qS0cIghMSnGpXWV8YpBWskLomYVxqdWl6Cpm574JwDMHjzE2APOzcMgebFrNMr7tMk6xGefEPeacBlKWTzUZ9kw9zOkkbJ68nN0v2Iw7agwjY1to62EWmpZNXhYpSYibTeIFQ9zbPPY4jckfo2JlN0JHIeIYrXtqwl6c4IZllEXYJUqSKMUjj3yDTWMWKLHd5bwdOzh/1zgjWw0TfBAEFEoViiWzne9JfMdDEiItVCSMfSZLk6ikZyirpVFarRZdZfa9+6LLueriy7hr7l4AZudrDBQKTAxXOXXK5PBWFuepVAs5Sa9qxySpA3GIjM3rGgADQQMZdXjKvkNjw7Dr/O0EWW796DQvu3IbxeEUpYzqctGDdhzjWX7AViuBKCHwinRNfzGC749Q9QdhpKlA22fke0XQPu2WIk2s9IpXAe3mDPfSBaTC8x0WFk0a+bw92/B9n1R1kdrWKbMUj12om80mhVIRx3EMsz0YqQ4puPHlNwLw5a/eyb/d91W+8ciDeS31x37sx3j5DS/LwTyu59NVKXGiwKaehZRoKUgsubGp6dvFPnNMtOHLE0ojha1J53x3mVHIeqYMs7f5MFsmbXpKCxxtxCP76y+ral22ZyrvpertLV+UlTZ1s7SPnUJr02flCJnvO04SXOkQty1wy/Hoph1K0sO1YqauK/FT8OwpCi0s2awmzTXtNW1ULpJaLBTpSofucs2wBQBhYJC7QWiuOVUJJemi05g0MXO0GWu0FVxtp2a7KDKSOpOTk/ZaDQN/N9WQZP1fEtf3UJm4pZYEQWAUjFXWxxWw3jgrDJXCoq+ATpzQajWYmUlZrplJ4DgpUkpCq/gbeiG+6+NgOqLBeMehL/F9j6l5s8pNnTjJyOAAZaurNFIdRqUxKk1zT6xYLOQs4QCdToflxgoTQxUGh4xhSuOQCwd9dJIncimUNL47R9Q8AsDyzDGWpo8zVDYv06UXwZYRGCwFbNpm5ULEMgf3PQZLmoUFE1UsN6Ad+YSeOdbYyDAbJscZHhzCsdFBc6WJdivEdqForCzixnXSSNOyxst1CiiVnJYj7gcHpKlpwsu6ybdu3Uq3uUK5GOQSKtdecxVjI0PmRSwao+f7IWGxjF80C7wfFHA9D+l5CIsyNN6d6BFnWiywdETePe/7PrvO383+pwwV1oHjsyzVlvE8D9fvybzEUc/DU4C7JsedNVdKYND6Er7vopIUafdTqRiWA9/3aUcZoiwmidJcIiGOXaOhlNrGQ0DTk7t4voz+OoLruhQKchU9T7fbJUkSypYpf2Coyjcf/Cb/82/+J3svNAX2L3/lK1x3/TX86JveQLdprL50XRzHQVpkWrlSAcGq2koYhChg/35Dj7W0tEShUKC+XKNYMce7/fbbGa4Mcd2Lrgcg6ibgOJSLHssrZu4qpUhStUqPau1YFZXQMzBnAi+s/n81w8Ta+tGZoPzrHb8/wlqLRO2PwtZGfc8GsHiuw9Bj9faxOprJMjEprlxtGk5DNFqV5/6INtvW/G7YKxzl5dfruka9OMkBGClJKlDq9Drc2nGuRnVunBvnxrlxbpzV46yIqHzXIckaR0MXv+jhhS5uy3pdhZBSocimDabW4eCgtSCNE1RiIhhHQqHgUwh9Ogsmlxps3MhAtYzvmhTCSLXCQLHM6OAA2or36SCg1WpQsbx23U6bxbkGnZJLrW71mFyBXxmmWzfedhCEaDdmfmWaqG0aTEW7TqRSOrE559f96MvYsTHEk4sM2MblyU0VHv/2Iq5XpjRkvtduaKK6JrBpjfGxYSbHRymHBTqR8TI6zTbTC8c4ccw0JT/68AN0a8dwO4v4trbz0uteRGWVXIE21FFakNpGKildlEpyPrU9e/ZSX1qg3Vwm8Ez0VC2HqDSiXq+zYWKnube+RxAWcAMT5rteCNZbRqyOqHKv0QrASSnx7bWJ0GfH+bvYvMOgGQ+fmGVppUO1onPi2DhOaTZbuK65P47nITAkqWlf46DZN/j2DU67CYvzswTFDJ4POkmJOm1WVgxdlVvwaHciMiWJbtcniuN8v8/XoVSS1wj7BRSzn5MkWcUp98gjj/DBD36QEyeOs/8xQ4/lV4p8/gv/zOTGDbz8mhfm34263VxszQ8DlFJEUURgm3zjJCZRinvuManwAwcOUC6XcRyHF7zgBQCcmp3hgQce4KJLLgZM1O0XCoCT1zKz+stzDTTWqydlP2NTgflc0joXPez/jtLJGaOc/kjt2XqwzoQMzBBxve89e9S23nHWBidCCIvYy5DSPcXhPB1pxRw7VhpI6RSVpLmQYn58+z1LR0oURXS7Hbpds53rukjpEHgOnt/f69XLnqVpQpL06ldAT8BxzTgrDFWcRnkJbaWR0GjVqQ46SAuHLhaLVAcqHLcs3CgBKcRxN0/9eVIQFjyC0GN+wfTpjI2NUPVCWlb1dXl2npWFeTZu2saA5X+TYRXtu/g2PeFKQTEMUEnK0rJpgt27axet4Q2sWAHGrgiJWstIGREpw3BeqGyj03G58z5Tf3n9q99OefQ4yn+QatXUyMLiAiv75znlz7Jrg6lJtep1Zk9GiMgYV6XHSLtd5k7WmK2bh374VMJDj85y5IiptRw/8hRjgxI/blAzHzExdIxdr/d6WkDKhNnCcXKOLt/XSOnTsamZUrmM54AaKmMzZrRbK6BStu/chcoMk+PjuiGOzKTIpSGU1KIv7+6wanJjuQdROdeii6QyNMDEpg0AVIYCFha7JCqlFJiaQaojohRybbdVk7qvHiAEjiNyZuyoDbPTMxSKtq+rC7XlRdrNJnXrcFQcS4hrdx7FiiSNber5+Qum8H0fx+lv9DW8mJnxStM0L4gD3HPPPZw4cYJtO3YyPWu0vlzP5dixY3zqU5/iRZddCkAQhib12m7n26ZpSqJSskqE53pMnTieP+fhwSHK1Qrbt2/nwgsvBGDjxo0cP36cJ580KeNd552P67okqpcqSpVCem4uwJldS3+Ta/7zs8DEhdJ53arHQJGu+p5QPSO1LgiCMxghTjdcpyse9/bTb6iUOt3AZdt/r9EPT3ccJzdUvXnk5I3DQts0atSrIZpSyRpjm6Utbd0uVTFx1KFtVbil6+BID9BIK7ZXLBbxhYvrZEYRhDBp9146dP3U+1lhqJRQvV46YbzoSrWaS7EXCx5hWGDTZoNWc6WHIxykI8h61l3P1Ck830XbeTEyPIzrQqttDIwfBLhaUAp8xgdM0a+FQ4RD21bT43aLarGIqxNCGy1ccN4uDiw2STdMAFDr+CwdX2L36DbcIUOy+tipJe747IN0nzSGa8dbbuSo+gzeZEpQNoCH1swzCD9GbGozggGG1JcFJw/Oo1vW63QFadRmZu4YB08YEMa3HplGhFvYOGYabhemp6gvz1JxYWzcPPS9F11O4Ho5w3Max6TaFFmzPLLruvh+z1B5XgBa4WifwMtY0DsIoRkeH2epbr0dxwXpQS7W5oC2SqF9Am79LOQm75yiM1SR+ZSwHLJ5u5EC2bh5E4vLh2jFCV5eR1IgyNVkk4ycM+93MvtxhMCVYMlCUAkknZiOZYF2gU6rjUTktU2ttZHMFnbhSSRapxah9O/L+f+gjGyh8jwPKVf3/CRJRBRFzM6aYvpjjz2G5/pMTU1RLJu6pRKKzZu2cv/99/P1r38dgKuvvppSpYwX9JrAPc8j1audgVqtxlVXXQXA3JzJGtx4443MzJga9YkTJ0iilPvuuw+A7dt2EniSlWaUF99bzRoOmkxQsH/Bz8az1Xh69Ezre/T9PVP6DMSp6xmuZ/t7NmeklKuim7xutE7dCsy9Xs9Arrt/evdCCIHq24+2iDwT/fQiGyEEXk6Am6JTZUkWesdSSYxSCk9kdGjgeQ5xbPtTWzGpVtRWvPyctu3YQRj6SJk190ukY3CZmTOQJNG69+6sMFTS8ZCuWWCGhkts27aD8/eehyNtqs13UEoxZHn1HMfDdw3FSk59oxOMppVixHLyJXGXer3GmIW3Oo5Do7nC/NwcYTWjA/EJhG94AIGi66LihKjZJFo20O/jTx9gW+xQPc+kp756YB+f/d0/5SXjm7nsda8AoLJpC6OqyLid8BOzNQ64ByhdMM9kwYQ9S8eWGWzD+RdIvKMmqigNFgmL0G1ZpuhOi/mZaQ4e3s+Th42Be/w7Ha5/6W4mNpuU2YljTzHXmmF8wzBXX2K816teeBWJFOg004NJSJVGakmSMe/b/8tlA9wolQo06lBfWcoNTqFUpt0WzMzNU6puy++bdPy8KK6li5AuiB701BgT0SedarwtA/DoeXBhpcDmHVsA2HreNg4dP0p9KaVWN56YIyReIHPgSJqmREmMh8zRSp7jkNjJ7FumfOHRn1WgFAKpIggCSsJKR2AigzT3kK0X2c9MIZ9/BmtubibPOiRJRJKwip5HCEEURWzYYN7ZrVu3cujwYeJuh6EtJh2vpXFShgZHUNborzVIYNyBwA9yxsVjx46BUlx7rWnh2LdvHw888AAnj5/II6h9+/ZRrQ7m+33dzW9gcsM4cRznPIFCrDyna80iKqlXRyIZuCJriJV9ThcYSLzOm2D79KpWY9b7LaSRcLf/wBjDfsOhlc6VgrPchLK7PFOKML+G72P0R1T9Bg96JAB5hCYt+ElmsHMnN1Sr0pPCvCN+WLAHMdGaa+HqaWoaipWKiK1GXtRpkVaKeYZFaGWo70R25aCso7l2nBWGau24/dN3AXf9h+/3i7f95n/4Ps+Nc+PcODfOjf9/x1lhqOI4zWsSUfzv8xrWjvVyt6/9396f/6y1IYVtdztIV1K0gIsgKHD48FGSlRqdOVOE/9wnbmPsO7OM/eTNZt+eZFtzmYubA+jHHwLg4KnHWT78DNvnjYdy+O7jLF3wHaKZKfZG5rOheXCnYHjPEHWbjkzQxApq1iE8deokJ45VmZ06QXPFhNEbxsEhJmqbOtZll57P+Msv4sJdGxmxRL0rnQUGvQ15/lcrnUdJ2vY2xWmC4/SUekHiBSFhsURo+ybKhTHSpGt4vIRlr5fSRFO5K5TTXWZajsRJipSiR0qZQ8p7UHPQ4ChGJ0yEu2XnViaeGqfTPYWt3SK1olRw83pUnKY4iUAKB9ftIynVqUmb2GsxwJHeKZZDk9IIPJ/EAmciZT3IVZkbm1bMyDDPkPr5QR7lcpmqZasvFAokSWpJYs1zM/db531NlfKABVpIlm3WoZsYFeDrX/wirrjCcDtWq7a9wz7LJOrm0VTG99hsNtm2bRsDtgn9hhtu4N577+XBBx/Mtx8aGkIIh40bN+bnEyUGqJPa6MDzPHBkXqMyy8fpNareWB3t9dP89KIpC+hBoEW6KnqSiJzYOtvuuYIp+sl+14O3Z7D19fa1drvvxda+9hpPb18x2ZAMlELWTqJ7oCi0zsFR2fdT29bhWhCcThPLLGD277gyJwXO0npx3EXFUY8kO0lQ2tbHsnknerXQ/nFWGCqEn8M+Vmqt73/z70HTv973M46+Yljl6JEpDj9zHICxwQFOPXOYiiMZss2s33jwu8RT21ncv8yDjz9KXUSkxQrfiCIuWDET7kDzJHVnhifmjzHX6XLsm2Uolti4vJULiybVtWW4S10+TSvYi1cwaKly1aU6UKNVMBM+CAKq1TLbd2xmYou5KXsvewV+eSeJsCVot0sSz+HoOiNj5hyHKhUSR+JbclctBQoHIV2SnA/RkN5mCK521EVKl0KxQhIbS7G4Usd1BJ7nIm3+2XT9O/nU1lramqJG2nuc9SLJPMtwerFXakUn6uBbozg6OszY5Bi15ToLlqMvig1Rb2ZMjUqARsk+XjeLUpLCqLqafZu55doG0HK5ShAEpiaXWEZ5y0wg6KGQMkRV76V5/hmqyy6/lLY1HBs3TeIHptaQof4yFFpmXKrVKm94wxv43L98IV/g2it1bnrzm3jRi25gcMjwZsZpYlCf3mpxv1arldefhoeHcyMFcOMNN/C5iy7iscceY+f27QB0Wi02bt7Ka17zGgA2b96M5wqCIGCp1kv5nQkNt95YDWDofaffSGU1KSV6qrhgAQfPYujONNYzSv0ov/7P8jpV37bfyxg9F2O13ncyYUYAoU06fz1zsZ4xjey6ESddU7uz8yeK09570zZr+ujoKKlKkLYfNY4jlHLAshJBdv9PH2eHocJF2zymFh7Qy1M+F1QLrFMc/R7buZmsBJI/+aOP8RM/8Q6kFHzgz/+Cv/iN/8bXvvQlAntOF23ewcarf4L2njLq8NP83V//LQA/+7a3c9OLfwyAK90GB7Y+TjTxBFdc8EKuufYa7vzKV5hdbPOAMLn98/1B9KU1mAzw9h8BoNNt44dllDYTrlarUR0cYPcFkwyMGWCGCDez3Aro2lXZDT0cWUSkEY5vFg/HdyiVK3k+GOmgkURJmktmVAYD4iihG2dEkppEpatYpV0vRDoCLXs1LWFKrDg2XBHSNTlqrYjT7FlJ4jhBZ2SyIs0Ltcp6XVGcUiz5NBrmxR0YLLNnz25OHjtJmhpDNVgN6DS7uWaOUpp2O6EYBjl6ry1hy5ZNLC8p2so2l0oYHR1ieNQskrVWnZGRMdqdCBtQ4jguhUKRqGGuPwwLBEELrcnrb2cAHf1Aj507dxrvACiXK7TbHcIwzOs/MzOzFIvlvJ4xMzPDVS+8mmanTWibwINiyDve8Q7mFmaJ7PuVGahuJraGqU9BD/o+OTFJ10ZaAMNDw7zjHe/gs5/9LIWC2feb3/xmrr3+xTmbRZqmdKPUPLc+NKJRvLXk1pqcKqh/ZTBOV+9vPS9FrfqukQzp1Ul1X61pVYSzBryQjbWLev92643+aKX/H0Cn22VwcIi0Yd7/KIrwPG9VJJTVE9fb7yp5eCHz+xf/7NsAACAASURBVOpa6rIwDBkZMSw4jq01da1xWa7VQWkKgZcfK45jUClJkpDY9iCtNd1umiNFhRAoNCoF164bzfoKWqcEgTl+qVSi3mqilGJiYmLVfVg7zhJD9exj43gRKR2qJZMKWF5qMDoxQZRE+L7k0ccPPev2/d7OLbfcwjvf+U5+/Zf/B7v3DvMzt/wUnudz/fWm6/1Tn/z4cz6vA4cP8Yl7P4sQgkMnTrD3JVehtOKaa6/l6quvZnm5xh3q7n/fRZ8b58a5cW6cG8DZYqiEl7syjpSk6WrkhxAFNC4XXnYtA0ODLC0u8sS+/ajUo23D8w984AMcPHiQRqPB3Nwcvu8zPT2dc0/t3LmTn/7pn+b48ePcfPPNjI+P85G//CD7H5vi6NGp3sE0fP6Ou/iTj/0tlbFxtm/bQdTU6Prn+ZkbfpKV2jK33347c3NzPHHgaX7lt36Dl7zkJfz2b/82M8+cYvLSbbzrXe9iYGCApeUlfvLW/xvlT3LksSe5++BDCG+ZzfEgTz/aJk01F20eZ2BQ4ngGGegHAcMjY4xuKBHaXq9GrCkNhIQ2radokCYR0okIQ+OthEFMq9HMm1dL5UHCUokjx6d47PEHzb31fHbt3UsY2tqTJ23NSpAkmfcY40kXT3p49vVI0QglSPOmKQU4VsUzQw2tDUVkn5pqD8KOTnFtfjAIPAYqJQYHB5kOTM+aShLaaU9sUgCO3TaTfSgEHgMDFQqFALdqe6KiiLBYwC+YKKCjEoS9NmnbDBqdJlGS9PXaKGyrVw+9yPNv3HrrRzl5zCBMr7nmGrZt2UqhUFhFqxQEXn7/BwYG2LBhA295y3/h/L2GTDZOU7Zs3czcwjwyo9XC1Dg8v8ffNj0zndelADTGg8+ot6SQ3PDiG7jm6hfm3nUQBLTjpM/hzKKT3jWc3o905sjFVFfzdEG+z3xfSptoalVNak0Dg42mdF+PlVB9EZbS+b9cYTj7ex8ycNW/Ndtl0PtOFLGyskKtvmJP2UE4puE+eyZJcnpfV1Zvy++LMJ/laT7XJQgCisUwj3oce7LHjx4BzLNHadtr19fCgDaaWKzWuusd38DsU1eR2pTGysoKzWYzz+g4jonSKpUKw8MGhZ3RdK0dZ4eh6hMky/pn+sf/8e738J73vGeVZPV3vvMdXvvK1+GHPm95y1t4+9vfzuDgYP73er3Or/3ar/H2t78dgMsuu4zrrruO3/md36FSqbCwsMCDDz7ILbfcwoc//OF8u9mFJeLrXsSX7v86y8vL/Mmf/Ak//XM/x7Fjx/jIB3+fd/78/8mll17K4OAgP/VTP8WBAwd43/vexwMPPMDvvv/9vPeDv8A7f/pdXHvtNXzlzrsoPfNNPnfnPn7pf/8tqrtfyIf+7EMMqVHe80d3cffd9/Bvn/kd0m5Kp2PBA1rgF4t4hZDYvjRBpYTrlEgsnFqpLjrxEbFD0+pRLU2fxB/aRtXm+5uNFZ544km+dNdXued+I0p3/p4L+amNmxGOBY7IAMeVaCGzzA9JokmFQosU2QfV1qJXN5LCMT9rmSv8pkoYqGm2iZAIoRHCyWtCQkikTvEt60Qp8BmsDjA5MsJM1dQsuu0ElzRXDs0SO1EU5dBVSUKn0yEs+AjLKO9ISSokScaU7bgk2qgaa7s3x/VxhYufZE2KpscjSfobDc+OKfG/coRhSNuCe7TWVKslpqehG5mGRKWUAS5kTlCpRL1eZ+PgQL4wOY7D4sIS3W4XaR2TKI5W1aeWa8ssLC0xUKkQBr257Dq9e57EMZ7nrSInjaII1/Xy1J8my5KsBhj0pwGzsV7v1Hr1n2yYht/UGBU71jNSWqen1ZaEWg04WJvCW6uY3M/zt16NqtEw6fDsXCsV47gGfoGVRnNV3TBLBa6qg63DTOE4Mm/4zRhHCoUCgX1OOjWN3tm5pqkpDSSJsy5YJHMwUAqdpKS9NuX8XuVN2bZxfC0/YBzHRBZN1T1DCvMsmZVZ9wD0Q7KiKOKWW27hN37jNwB46KGHuO2226hUKuzZs4c4Sti8bSN/+7d/i+M4PPHEE3z0ox+1i0/C5s2buffee3n961/P7bffnj/MmZkZhoeH+aEf+iF+67d+a9VL+1d/9VcUi0UjhzE4yAc/+EHe/OY3c/XVV3NypcFNN93EoUOHOHz4MBMTE1xxxRVcccUVvPe97+WSSy9l6aDimt+8hisuv5KF+UU+9MEvkaY+1113HUEQ8Lu/+7t5P8rg4CCLizX8lkdo88YDI6MUBwdxii7KotyCcoVOWkR1bXFbehQKFZRqcuyo6TXZv+8xdl2+l23btgPgeAGlUok3vv4NXP/il9q77DA8PExGd6kQtqFWo7TIP+tGCXGikEGPnkY4Ape+yEgYwEbvcUn7UtpftUYID1coUpkperqoqIvMam1oKoUCoyMjDFiEV0O3UQmo2FxrbP+Poig3pkon1Ot1iqUxokxML/Dw/QIlS2QqAo9StWT7vbI+FhdH9tijtXbR2gjA9aCQzz/6y4GByqrFpNtNaLfb+cLkeYa8t1g0y8WuXbvwPI9Tp06xz1IojW8Y57LLLuP83Xv62rJNt1TD1laeeuopJicn2bhpc163yoA9mUfveZ6l4+nm1GdBGJKK/hpQb8HsX/yF7KHapO5b9O1nQhsqJNZZcHPgRB/jRB4JralHZUZqLTqPvohiPUO11iidyZhl/7LrLZdK1GoriPy97Rmo7P71AzN6v68xsH3XDIbNI02NPEcGuErjiE6nkzsKQWBYerK1MztHYXvJ+hV+pXTz2SOlBMdSM9n53u6a/YpMld33aLVaOaoUIOqexX1UQqR5CO3IvK7LF7/4Rd797ncDcPz4cV51400E2kW4AbX2CmFY5PVveF1+oX/6p3/KI488whe+8IW8OHfffffxghe8AM/zaLfbvPGNb+Rtb3sb09PTfPrTn+bTn/40H/nIR/JzOXjwIJ/4xCd49NFHueuuuxBCsHv3bn7t136N4eFh3vjGN3Lw4EEuv/xyPve5z/GhD32Id77zndxyyy38y7/8C4MDw3mILKXkv7/vj/jKV76S739sbIyfeed/4Zn9X6ebVpnwG7SWZQ7LdIKQCIeuFriBaVSNREAqQxLbAE3cRdEhiXw6TbNdczHl05/6JK959Q8DcMmlV1CtDlEaGGJkwsB6292E6sAwnQxMgUCh0MLBzTzYRBLHXbpxQjMxk0E4Dp6XoIUxplpa7j2V5l62lKZ3PWuklBIbUflIa6gc4RO327iuVW5FMFAqsmlinGNDppibduZQsaYemWMrrI6Noo8KSoADA0NDeJtMFO2HBYrFIgOWs7HZaaFJccNizgeZdjskSpqUpTkjpHRwJIgsWtXPP0PVbrdzeL55ZsZ7z+DgaaJZXFwyTCaYhl/peswvzedMEmOTE0xMTDA0Mkxio9PAC2h1Wjz1zNOAWczWFs0d6dDutOnYKLdcLuN7/mlIwf5tehHRaq0nhOx5/RmYot9QWXoklO4tMtYAZSmsPCpRfdGC/V4Wda8yLmlvoVZ9hqofGdczHur7MlRZRNRoNLjvvvuYmZu198yj0WqzaeOW/H5GUXRaZLY2pNJaW7CDdUAcJ0fQZkbR932klJzqWoaJOEanijgWecowSRIkOqfDAnKD14/2FY63KghI05RWqm3rg1kzotiy8tt1I2uBWDvOCkN1pnHgwAFe/epXA8bguEoipEAKSdErooBLLjHyFPV6Ha01t956KxMTE3S7Xd773vfy1a9+lW98w6S+/v7v/55t27bx1re+FYCbb76ZP//zP8+l0QE++tGP8uEPf5jt27fT7XYJgoChoSFueuWr+OHXvoYbb7yRv/zLv2R8fHxVemJycpKTJ0/m9RgwD+Kf/ukz3HvvfbnB/cw//gM/tPsfCKNBoMnyjMPi85y+59w4N86Nc+PZxllhqLTukpWxRV8T3dDQELVajTAM2bljB1HSQToexWKRVAuU1MxMGxBCoVBgbm6OSy81lEK///u/zy//8i9z7NixPMJpt9t58RHgve99L7fffjtvetOb8s9arRZCCLZs3tynrSJ43c0/TLvd5ld/9VdRSvGxj32MQ4cOcdNNN/GKV7zitGY6MN7R/PJHOBUt5p89uf8pdrKLkWHz3fZCgzhu0rSKmq1Ol2Ynwk9CCo4tpnY1rl/Et5D6JBVE7Ra6W2C8ugOAS/aEbLxgKC9GzszMMIJDdXiUor3mOG3RaDQoDQza3xMSbSKqLL3veh7alagootuyno+SpFqhrIfmKQWOi1a91IsX+giR9iIqIZBotNB9NSqHgmfSbQCO1gxUquzcvoOTx6woW71D3EnztE+cxAhMROX1BTvtdhshIbQpw2KxSKFQpDxo+SC7Ia12kzhRRNbrLZQGiNMEpS2vYOzjuQGuI9DKAgCSNYn958EIw5Ah2/tULBZxXZfx8VHKVo8s6iZEUZwzavsWXuxIryfK6Xn4fsjSUo2wYMA6g6UqR44cYXHRvP9XX301YRDSarco2+8AFMNCPteiKMKVzqqaWBzHeMXCaRFV/5xL05Q+ejwjXKgz4UI7L1NLoqo0OskaTE/Xg0L1CJCzffcDJ7JISveRsmpt9rmq1mQIL3vHt82z2UkKbSO7NeeY/csUrRutFg8++CBPHzhs9wMIeMPrf+SMzzRL/Snddy3KpEf7+xGz60szwJM09cZ+7kEpTVNu9vy73a5RJ9C6R5dlI6p+jIHWManW+Xz3fR9FmpMUu455f7pOJw8WMiqvteOsMFSQ5FFqf+Ll5ptv5uMf/zi/8iu/wrXXXce7fuW/8cV//hzVgQEuuORiPvOpv+Pzn/88P/tzP4fneTlyBIwA2/j4OPV6nYcffpgrr7ySN7/5zXziE5/g4YcfZnp6mqeeespGQasXp8OHDzNqZbCzMTAwwA033AAYIMfRo0e5/e9u57Wvfe0Zr0przdiei5k49kT+WZqmXHjl29CHvgqAGzVozc+xMmsL11LiFYoElQrSNQtCN3LRysOTJhXougrpdHDclMKwMUIj/kaeXFlmfNz0Xm3cvIXK0DidKKFWtyS0QZGBkTEaHbNQm8kukcJBZcwMDvgEhkdRZyqfRr49Ssx2GnB8gSPdPEfuOA5SS6MqihGyFFqhtdtD/SEph4WczWBpbpZSaYTBSpVJ2zM2VZ6hWWuRBmYB6HQ6IJRpArZzIIo0S0sN6vU6KuOoA1pRkk84pRTtdhvHd/KXqhsZOYtOx6Q+dQo6sRPaTrDnY2y7XFvMF4jFxUXrHBbyfptCocDo6Ci1mqk1JakCZVJB09ZRPHr0KO12mzhNSFPjYB06foSlpSU2bzYkxIM2LdsvJdKNuoR+kDuTjrAGSgic7N1yXVL661G9cz+Tocr7qLRGZw5nX+pPKQvMWJUqy3aq6X8TjALvaiPUz6Defy7rNfP2p/76z1npXppvvZShZx3TTJYnS32HQZGm7XXLUmU5s0TfyI1VXx+V43l5D1mSJJYUt0ceo4Q57y1bDElBq93ElQ5CpywsGGTuyopRWAByglmlFImV/ui/F3Gqc4dDKYUrJBTMehuGYQ7cWJw3LEBZc/DacVYYKtlbS3BdiKyzMzExwR//8R/zw699LRdedBHvf//7ef/7DQ3So48+yt998lN87f57+eQnP8lb3/rWnHIFjDTA3/zN3/DjP/7j/MVf/AW33norIyMj3HHHHXz7299my5Yt/MEf/AEnT55cdS5KK2699VZe/OIXr/r8Ax/4AD//8z+fgycef/xxPvo/PpqTaZ5ppLrI1olNqz6rzce57koQeHiuQ9sKu7RaLWKl6UYxtdgsDF5xlDiVkMmFOyHFwhCu0iRti5JxGmzdWs1JIrXWLC8v0ok0wsLRhRDMzc0hMzZxx0G6khSTXwfQpAhH4nshvmWmiGKzwCdZwVkpHIxxcqwUS876nEHStSX4JEXSQ/JIBLWaQSoeOXKEgWqDyYltuJnMitW5ypwHkdOX0gNBoEgsejhj5haOJIpjmnbBFUKY/LkQOVp0//4niOOYrkVYBn6VZrOJTjRODn1+/tWoHMfJ09i+7xOGIcWiz+yKeU7T09PU6w3abeOoKC0YGBokiiKOHDkGmBaG5eVlRsZGc0/90UcfZXx8nAv2XGC2wyjCVitV6hZgUSlX+lSWMWTTrotKe4ueIwTac/uMgsgjqv56j1AZtZdpFF8V1YCNgIyhelYNMr3GUKWmh2GtoerXqMo+Xw+9t3rX31uPKvs/Q/1pIUwGoa+O1Gi1ieM4b4LP5szpbBZ9Rlhry0JhGcrt/Q0Crw/UYu5lpiEnHWGch7ib76fT6aCSGK01vh/m91+tvR9KQNoz1CZS02uMmSDtq1u1Gs11H8lZY6gydPBax2BmZoYbX/AiXvH6V/FDr7yJDZMbmDo1xZe/9GWCOMZD8La3vY2vfe1raK351re+xQtf+ELe85738Id/+IfMzs7iOA5vfetbefe7381VV13Fy172MpIk4e6772bfvn00Gg0WFhbM4hYn3Hn/nbzpNW9ienqa4eFharUar3nNazh8+DBf+9rXuP7663nb297Gv/7rv/J7v/d7/OIv/iKNRoMvf/nLdDodpqam2L59O9PT02ytF4ncSebmZimXKzQaDZ7pHKHYMkZ1ohrxePs+zjc1Ubz6DPGhIwwPXs+isuwZQYkV0SUpmpew66Qs1Zs4YYPihI0OhiOKTplOxz7oMKTbbiCdAMems8qiSHNhgbBg0oOTExtpdSNSpXKAg5YaoQXNdouJqlm8ap0usXTAN+fTSRQqTaBPrlxJiXRkPr9VHCHSBKEVjo3WXCDSAa5vPOuHvvs0s/PfZO8Fl3H0iNEae+bAUaIoydOFfnWAdqtFN4kQHbPzYuhRLRWYPlljbIeJfJ3QQ7o651BMRYdy1UOmEQV7UouHn+bpJw9y8ljv/SpVh5DaxRWWl24tpvd5MEqBT6NuPNrKUAkCaKeKpab5zA89ZE0xbFN+y/MLTIxPMLBhI7ttMf+lL30ppUKA6wnuuMfc4IHiHi7cuwc3swmpBBJo1alm9d1OB9dx8/dPCW3AGCLByUTSUChcgsA8o7irSDoglGTANU6Y0h1atUYu0tfbTpPorB0hEyRMEXZhLEmPsK0J29ZQdhT1pTrLnSZp2Zzjzsv20gg1HaspEzsa0gQnSXCsbpNIFVES5qmwxNHEUrPSqucyQw6aUuCjbeqrMbeA7sb4vk9qI5RYQSwkXcC3bSTtdpu4E+M5Wc+UiWgHBwfzSNR1XYQDqe1n7KoIz3FwHUhtW0esYlzl5Qzn3W5Ks9vBKQQoex1SSsIwJLaoTOkXcIRC6dhkJwB0BDqiUiwQpzaN5xnZn1waRmlSbRyDnhS9xPN62n9xHONLKJcKeZRXDv4TgimyIbuK+//xLr7+z19FaZXLMriy1+Hw4Q9/mNnZWV760pfyT//0T+zZsyeHtQP8+q//Otdccw0vetGLuP766ymVSjz0zbv4o/f9PL/+/o/zD//wDwB04y5v/+X/ylNfeZI777wTMICNK6+8klarxdTUFO985zuZaSwRxy3e8Zb/ym233cZnP/tZfuEXbuAzf/cdTp48yW233cbffvxWfvNnL+X8vTu59c9+gXqzgR9IoPK/+A6eG+fGuXFu/OcdZ4WhSlN6/WHrfsMYJmVz2xoFjq2L9F3B+Pg4+/fvZ+/evbzrXe/KG+Q6nQ633347P/NLr+bQYysszE/Taoa8/CUv4P77v46gy8OPGBb0jTs2MjQ2TnHbCe6+7262bNpCq9Xk1o/fxvBgicGBQVaaLSY2beLk4Sf54hc/D4DQLU498TRhUuObX7sbrTV7NhRw6ykrc8e5YqLAkalFWknC1BOL7NxoOvqXlpdZqkOmF+alULfNfFn+OUkSwwqe59pjdBIhkpjUej5xs0m33qYUmnx2QJeKU2T+1CLNuoEQL0dHSbWDP2rqQf9278MMTY5RizvUs/qTJ2ilEe044uR3vg3AC66+hgsuuZTAcgbGgGdhrCIryGK50LJUjDYMAFLrvh4l8yyytMtll13Gvfd/nXvuuYeFeZOyixRsnBinYetqpnBu2QT62J6jKKLdblPMvP40AE/gpma71Ikoui5BoPC08USvOO88xv0CM+OGhb7RkjTaPqeml4kzzkDW9+h+oIfSRLZHb3lphampaYYGR/K0TsYtZ1tt2LFzFwcPHuTP//IjjIybiPYLX/gCr379zRx65hC6YO7h8OZRggpkTH9pVKNYcG1k3kvjpZA3aqcINBJwe+wRAAp6LTaSgm/mTFaY70RdfN/vpZ6ESStpegzHggxcIPK1QbcTpKOI7QTc9+h3+fq9X0MWAi67wdCqXfcjr6VVEEQWh5W4hmDZUSlubGuySUIn8nOm+C6Kjo5YbtRoWtVboVKKfsDUkSOrbv/a/iewafPsMyUsY7n5m3RO50+JY9Oom9Wq0jRFYlnelVj1vUwGPE1ThNWw6weCpWmapwIFCikcpHR7oChpmvgVPbaYVAvLqJ7Nf9MHZlL5onds0auZJYl56jG9z9artcFZYqi06hXzxGlt4CBkCoK8jqHRaKlxHBfXW7+TOWObyPLYf/Znf8aJk/MIf5nBgUH+r1sMXDxNYXzHxey83EgTjGzbyqP7n2DH7vMYGzAIssaix8te81YuuNAYl3/4+09y8OA+ztu6maRlCow//PKLKIuIF180AUS4cYfB8zcxXB2jVDQ3vzo0STM2qbagaCb4wnzDtGLYLEerDSem59hZW4GKvd6kgxQBjpK93ztt3CjGsSSQ3XqLDe1BHEsK++TXH2BuehlHhlyw1yAhm8stTpya5ZHOwwCcd+GFzB49QWF8mCusAOMTR54B7fKvn/sSRx4239u8fQfnJTEtW7NwwxJhxUcj8j4KiSSRIHKEkyAjq8m61ZWGUrHCqSljOIeGhkgSxfHZFv1PMesJgb6J2/d305SqaLVauLOW59GTdJKY5bZFD3UaCC9luugSBOY1375jKxsKBQY3mhTWUktwfK6Ngya2y6k6g6v0gzzSRDA4aIBII4MjNOotvv3gdzl62KTwlueW2LFxK2XrBNWXT4KWbN26ncWaQfQJ6fMHv/eHXHLF5Vz7hhsBmBgLMWhea6r8CEhpR10iu3g6YRmNl5ukPp+VjMNbYhCfFghKnIBVAyLOhELTlCAoEnetXow1Ulob2i6wdSsLqKi3zfdCJVDSIbVnsLhSZ2phgcrIEE6mTOw4RtomKwcLcISDK108qxYtXZ9Cyc3PK9LQjFOUFL06rlKErpM3vArhoHQCaQ/0Z9vBVhkYpZRREMhrO9mTk337UraxNgMuORbEJMi68gUOqe7iqEwVQSMtyq+f1cMwTpifhYYERRLrHPUrpY+SGqU9uh2rjB6ndOMeo4VA2vpTmp+vSVP2vqMyhphI/ucwVLJvFXKQxGsY1zQRQjsIa6jSJCHpJkSxwImfuwd891e/TdoGXdfMzptF95KLX8Dwlr34gybKOFafZ2FuhYWZJZIl4wlNVMdIyylHlo4AsKCW2XrJTs7bOYmMzX52bhhl4fhh9n3LyHCHKJqRoORqUluYLA4N4nS7oGDQ3QpAop4ikSHCMROnE8ORE1Psnp5m2Obt8TykKOFZ7y3qNNHNJh4pocq8FcX0w09x8tQpAOqdmO17LmBkwxZOzJvFRBfK3PiWH+HIlOE2vOxlL+feO77IzPwcr9i8HYD54ydYWJjjkuokO1/5KgAuvvJKvEKBuVljYKquD44kVmmuB+S6LhqQKut6T5EqRWmVG7NYpTiqh/o6dWraIMwElEvmWqNY0Wg08L0exY6pK/QXmg2bRJqmNI9913zJdYi1JonMfZRC4RcDyl6FLO09e+gAyvEgsN40HonsEglIrHprKp5/Mh8LC0t0O1ZhupuQJJpPf+p27rrTIFMvvuBiFvdewuZx0wDcbbYYGBjgmhdex779jwPw+IEn2e2FFItlrt5pUH5Rp4lozREU7DLjSEDhaKiGxgmMCYiRZDjAlSbUl2PiboRvMwoF30f6inLROmoC2h2zboisMVg6pEmvhcIgTo1kRx5RpIBWKK1zGqFSsYLqpDTsAjm0YQPX3PhilHRo2egoRZD29Qib3Rl13tQ2iqNS0pT8OmJNrtnVa3DXuH2UYmgXpbqk9CHjdOa1SjL+TJ2xQGSRoTZ7k7KnsC2EswpcIjDzJUlSVNJDHSqt8gb8jG0ja1YGU8fLpD7AoHdBoIVH4Jvadqk8jE4N1ZWQ5rNWq4Xf7bHkS2nYTDqdTm58JMIarR4pgDmPFPrQwuuN5x/E6dw4N86Nc+Pc+E81zoqICuXkIGS1jkHVKkU5KTZatx8aAtuk3T19gzMdJoWBIZdqZZTIqu4uLTcZ37mbY4smhfeVr/4byys1dCsmqpsDVoYLLETLPLHfRCvBaInJ7RtZjurMzZs+kmemDnPq0FPQMgif0WoVCkXmhaRmebkqhRjcAK8cMn/UfDY/36LV0oTWW0q05uTULLOzswxvNJ5pu7ZEKBTKFgkS2z/kehLVNZ5Qe7nD7NQMyy1zzs5glcdnpti9dSPTlmF820XnofdsYKlr6jq3ffEfOXXkGA/dfR+6YbY7+tgTHHh0H6++6ZXseMsrAdhx3k6WanVwzHY4Lp0kRukePDzVChR5hKVSE1GhU1Lr0cVpwtz0bJ4KOHjwMIuLy3ge1K1GlO+blEU/zNZAX3tDSokjBY7jUI4b+eeJBj+rdbqCSqnIUGWAoGxqa3O1JWItc32qVCckpKQuxBk91fNQkGpidJK5WVO3SxPNBXsvxPcLdGxRaNu2HXQ6EYcPHwFgoFjGc306cZQ/22uvvZ5mp8vM1AzFrplbRbcMURu69um5LnRjfFkCbdKvUsD0tGLf40cBeOaZ4yzM1kg6MTJrHtUab3KZV7/KRPjnn296fJLUaKMBaCTdJKbH+dn2SgAAIABJREFUoyzyXtus31UrZX7W5HPSlS4qdRmcNOjFyy+/Cn9iyLjwNriOHdD9uWltoiypQGSNw9pGC9n3hIkqXMfP67hSCHyt8xYInRq9plRpdF7b0eDa9F7O8mQanF3bI2jqRQY2vqppN0lyPTqVKBPxKYVWGXGBiSSzqaXTlERrkrjb14+mUInOe+iEdHCkgyNcqJpz9L0CAo3rurieeUfm5+dZWFggtf1pQkq8DE7v9rJeOu3RrmGb7NM0zvlAM+HTteOsMFQaF5lxba0jtCBdkya2wrCUigXCYolESZrNmPnFped0nFfc9HJ2bt7M+Zu2MWF7m6qDIxw7PsXffMag/u6459944VVXs3fLVqZOGCN07KmnWWpL5hYMw/elV17M5oktfPeRb3LssKmJOGkXR48hHQOhbbZdhA5JdURiRSu6IsANC6TLCu+w6d9qr7SR2sMVWRNch4WFJaanpznfFnjjNMFruyTZPep2cBWgJDWrjPvU44f49oknOTZljOlLbrqJy198PRdeew0PfPrvADjy6EMcWF6iGJiFe6XdZPfu3Yz5RSq2ufi87Tu44fIruebyKzk4bJkJlEBLh4plfXACn043wvFcSraYavo8yCeFmTgx6J56aBQlxFHCwrxZFJ95+iBLK1AIIMqedZLiOD1Je/p6M1Yr/AJaMtxX3IiUSZ2a3wV+XeHKBGEbnEe9Co1Us9Ky++7GOFGKT6/msQ55/w/8aDUj6nWzcC8vN+i0YubnFlE21bxSa3J45hibLAin246o1eo0O20qto67d+8F/D/v+3+5+PLL2Fowi82P/sgbGdmxGeziRaKJCUicoPecfHj8eIt/uc80xT/y8FM062085RFbz7TbaDEX38mYJXM+f88W/CJ0m+Rp5W6S4kmRK/EaXj0D49aql7PTtgg2OGpqxGmUUGu3ETaD2JEaPwEUtGzqLXVcOgnEmRNmgUOJSnPovaMVnlvo5aiEcbq1EAi7zGqlSBKd9coaQorUMOzkn2lAJyZ1nhnB1PR+9b//mXxHlimTiFV9jNKxzBN9nH+u65AonYNUhNZIoZFa5Z9JBFIIoiyN5/gIzxhF3zPrhucWcIQ0fZS+AbPMLSxSqzdoN1v2WBLPcXCE4RQ0522fl+pLr9teN61OX/f7x1lhqFZnIE8/4UIBQh8GB8zCOTQ4QrkyRKuTMju3DM/RUO3YsYPztm5lYmCE2Fr1heUaX3voYfbtNxNFCIHvOfha4djvtFZqtLyYimuIU4fFBiaK27hkh8NoYPL2lWLA5OAgXcu6sDK/SKfVplarWRg9xDWfuBOwVFvGs96paHepeB6ufcEcH2pLcGrqBO2W2ZcMA9AJImuKdFyK5QK+EhyfMud9/zf2cfvjp3j5jcbbvPjVL0U6IU899iQbXFME3za5DSfyOHnQFMl3DQxTO7nA2MBQzsasRspc+YZXsVivE9nwdqneMI2zZVvbsSJR0iqEgkFiqj4C0FTFkKaoNM4NVTeOSRLFQw99B4CpqZoxvRrK1ulKbQ0rL8pa8lHJajXXTD5bGZuH60HoOnh2xRGiQJiUCVoFSM1rPldbop5G1O371tQKpaAQm4kN0Hj+laiQOAyUTG9bMSyyf/9THDx4lGyBO3r8JK6SzMyZrEPZDzly6BCbtmzh0isuB+CvP/bXjI2NMXXyJH/4N7cDEG47nxsHRilUTb1RhtAxByRLjnzrCHzj+P/H3nvGW3KVZ77/ylU7n5w6Z0kttUQroZZAMqDBkhkBAhlEMlwLbLAQwR4Mv4v4eQi2POABbIwZ2wxwja9tDAb5YkkgJBRQN8qhW+qgTqdPhxN2DpWr7oe1dp1uuo2x8Yx7UL9fpLP7nKraVavWm573eeZ4cF6s9Z2NDtQ9SNRFmF/Pw7BjQrkegwS0VGAHsuw4SchZOaJQbLCalKgWw7mLPSolEWvUk2jZ2A9JozAL3kJNIVEgMUCXIIhQBUVb1FXTANIUDTXLTpQE3CBCl2wukSYqPulPDCHHQUiWUMRq1rNJkpTf/OC7f6bn5cpKz1ve+saf6fd/HvvW332DNJYDxTJdNFQdRdVIUchJMVvDdFCVxUF9Q9MwNB1DU7IsKfB84ig8gZouTVPCMMj61qeSaoHTxFEZGMQSGaSjZhxXfSsUVXKWTi4vdrNc3sC2NFw3yOCpP4vFcUC708C1HHq+2Jgr9hhLVi7lPe99DwCqbdKen2P2uV1UHLHpDZcmKZx/AUafJ9BQsZOItUsmsWS0GPseiRuRSFoNU9HRTIfphWnq0nk1PY/RyXHCOCbauwuAKPBRPQ9FRm8mKp6f0K41CCVbRbFUwlAF0zeAblkUnQqJGzLbEPftyWePUirA0nHhOKdKg5QSm850jVwiFlNhxufIwX0M999ux0MjpHTWAFPnrwLAL2jsMVyc1YOUAnG+nu8haPwlmCUWtP+apmbQW9uU4pd9+e84IU0jiVjqfxZz9Mg8jz4i0IRJAnkdegHk5K0VLOmLKCDRMFZI4+P1hlLiWDBBJ2U5qKuboJi4gZyed1MSNyRK6lnU3Ys8emlEV+phtVRoaYboscvN44XYtA2DKBPObNRb3PfDB5g5eBBd8vE1Gg2mxiZpyXUcWwG5QoGXvvSlPC6RodVqlaONY1h2jpe84a0A2CvXUbPsrGnuBnCs5aEP2BmCrzEMuU2r2GCL56isXsvs9Cx+o4Mm01tDUdikpixZJoIwP4IoBFMBNYvWdQzDIAr61Ej9UQ4W2fKTVCAhEiVjQrB1G8VW8eWe46YxJQv8AFot6fQKFmEMsbqIRFWVlDQBow/wkZ/3iU00DVR0TPRsUaVhKpxTllEJJ5oqCkomQHr6pPQiY0vwPI8nnnwKRVHRdZ0tL96CqgjwVD9QDcOYNFUwJLjFNExUJSaOw6yabugaSaxlz0bTdPpaZ/3BZZTT2FGdsTN2xs7YGfvZzPd93v72tzMxMYHrulx//fW87GUv+zcf7w//8A+ZnRVtDUVR+PSnP33Cvz/9zNNccvklbNq0iW984xscmz3GksllP9d3+NfaaeGoUtJF1cdTUNgkUUKgBPQ6os7TbbVx/QTXTfGDnz0GLpUsBsp5SpU87a6IDkNiRiZGQTbch8qj7Aq7NHQFJRTZmuv2eO5bnyGUkNZYTRhdMkm9VUeV0XnY88hZJq6MOi1Fy+CYRQkUyWsaVI+iqwrjo6LUsnvnLuKWy+BoTp4rpKjBnt1HmJOEn6NLJqkMD9OWwJFiYYhO26NebbNu08UAXHlNjXD/wyydk9Dv2x+gNLmKocjAXpAzQr7L6vwQrrzF5nAFc8kIymQFb0D0qNyihp9T6WgJ+X79XTdAWewV6boOqRBPy0vp9zDwSKM4q5HHoYvX7aGhEMqoq16tcs89PyTpQ+oTQR5adDR8CQqJUzFv0o/CQ8kxphtKVh5ISNAUMUPyo56IoIvFHMXyIIND4wA4uQJuEOLoKmPjoh/R8TuESUgiB1I7qsL+ap0n7r2PZr/M9ALk+gs8j8GKYE8fGRnhiWe2M7FsGdWqGGtYs24t73vPLVRyUpQyjNn3/F5UDZZJKPprbngtzV6b0bExVr1EbJqeHxMEZA3+utelOFqiC2zbIdjyjzRc3MQm1cTvTC4pMz6UJ6fo5CWs21DgivIUOTlw7vsJ4wMqvrs4d6PrOq7rEsufNcEdRM91s76prutCE6nXY2CJKONXq1XUREGVDfBASYg18JQULScolGJVlLsz/klFQUvF7FLaL+ulonzcLwX6EZK8GWSVEd/1MdOUJFocsygUiszNHsmyjL79JFH2T9rnP/95br75Zubm5jJNqn+rnX/++TzxhCjH/+qv/uoJ//Ya+fOuXbtYvnw5K1as4PWvf/3Pdb7j7ePvezuKqmUzVbp2GmdUynFjfrrO4jCCtFLJQVOTrCkXhQlxqqIoOnbOAndRRuOnpc5DwwVKZYd8wcIpiA22F3TwNSNjhrBokSQhaezTrYuafNjzWXH4B5j9TVlJySdlVlgG0XHMwFOVCaJEOLew65JEMXnbyf4uURXBf6XAgpTjaJYsegVQ/X7jWCChQg+efvIZAFauW49T9EjCPnEsGE4OowBmTgxqbnzxZVwcRxkKymqkWGmN2HBI++qtAw6UCrT6L3fFJF80sGw9K6vZIZg9SLyISDl+Ru34+5qIeYdUIvsANYkJfBe1j/TRNFJNo9fuZOJ6R2YOM33wMO1W94TDhuHiUKCCqIf3y4VxHIuBcDXN0FNKqqFK1N8zFXEfR0ZHWXvW2ZzzYkEmfM65mzBMDbfTEQPjgNtrE0QuqSnu0UKny/RjT9Dcet9iyUE59QD5L7JZhsncwgIArWaTOI4ZHR3NyjjFYp5afYExKQUyV12g22uSpinLVy4HQLN1yoMliuUS1aeFUGIch+QrecEfCBh6Sme6x9zCArW9AuWXqCbFwiBjBXHs4tIKlVyBkYJDUdIBmioMqSMZC0IxJ6BXUchxTXhBeKvJZxsHokfq2FYm6eF5HnEU4JgGe3cJZeyJiSlsw6bbFe+tH0ekBkR+KhSskaAIOOEVSElRE8l8If/NDzwMTbzrhqURR9DtBlnw4zg2ZrpYLqtWq/iGQc52yOUW5wb79ke3/i7P7NzNwSNHeezRR1BTsDSxhyiKgud53Hnnnaiqyq233sr555/PNddckzHaPPfcczz55JOAELvcsGEDX/jCF9i5cyeKonDttddy4403csstt/D3f//3tFotHn30UT72sY9lx+j1enz/+9/PSnOGYXD33Xfz1FNPsX37dgzDYPXq1Vx00UVcddVVP22ZnWSKokjACSiadEX6acz1FxNkqJP0FPh0VRWyvzF9zZoQt5PQdX2C+NRsu6cyJfGJI484DDPyxiCOwLIJ+uihMBAM0qZJKCnn3fkav5J2GMiLxaQ5Nu2gjWE5zLWEM0ujmBEtwJFEkmoaYxgahpqQuILh2AtcUk3Fyef4vmy6OkrMQNGme5wEc7EAzQCefOJpAC676ioqIyOoWh+KG6PoGqqlUZBN8Asu2czKvfvpNUXWeazdYCHs4ZeLeCUBgkgqFmklQS0L52aXShgDZex8HkcuED0GLRBDmUfKxy2aNFms+6eKRFQJVmmANPTR0yhzpp7r4fV8vF6PozOHAHjy0ceYmTmS0awYilikUbQIoVEVUFWFKOpTwfykTilSmkBHVXXKFwrhzMSw2IPL4R0PA3Dv7F5s26SYsxkdEci04UqRWAnIm2LjjMoOSjkHOQdk9kzuhcfD6Dg2sWTU9rweipqybPkSxiYEym/V6tW4QY9qUzizAwf38vyePRyaPsDkEoHE63hdNNskIWWNIz5L1RRFS9At2X+xIHVMRles5JfPORuA/PAEeqFCTg58WwY4KuQ0MoAREfhmDgneJI6EwkIaJRjSmQSqShKFKLLXFvkege9JiflF9opYAnVWLxUO1rZtOj0308GzHIswgY7XIVcQfbPkFFBQAR5aZNRBSUiUNKNi0myBAAzDEFsCNVBhYbaWZZiqokv6pJQoDhaPnaZUKhU8u8TvffqzLF26lDiO2bNnD7/+9rdR1mK2b9/ORz7yEW666aYsq3ziiSd417vexZo1a/jIRz7Cl770Jd7//vejKAq/+7u/y8qVK5mdneUDH/gAk5OTfO5zn+PVr341hUKBz3/+89xwww1s3bqV0dFRoijimmuu4VWvehVzc3N885vfBKDb7fLYY4/xX/7Lf8GyLO677z4eeOABvv3tb/+rHRVAsVwS9EvyPhq6dcrfOy0c1b9kD+3+l53Rv5Qqn7EzdsbO2P8J9qd/+qfcfffdbN68GYCZmRmq1Spr166lNDBIb26GlStX8qEPfQgQWmCmabJ582a+/OUvc8stt6AoChdccAGf/exnAcGD+ta3vpXPf/7zrF27lnK5zNjYGPl8njVr1nDvvfdmumH79u2j2+2yceNGNmzYwEUXXZRVXF73utcBAmBTKBR4+ctfzr59+7jrrrt+5j343wIYOS0clXJcrc92TDrdE6OLfy87/9yNqImOnppZVN8LQrRcgid/7voBMQq6bhDIYY/G3DyRYeO3xO2ylQKHDuzFjRaIZEg1OTlJbT6hkpPIRC2HooDX8vB8Ea0HcQhqSlML6Mpht1p9HtDQdFkyMLvouRK22mOhKu7Ls9ufY2R8jKHxYXFPQpcwFRGjJ+mZrFyOdG2JVktEj13XwLVs0qEh9AGp6FsskjoFjFJ/HiqP4uRIDVPAgRHQWzPRUJMETe0jkeTQoMyo0iQiCUOSOBT1F/mZhoIvYe7zx47hux6gMj8jJDyeeuxRvDDFknBVXdPwo1BQL8lnpKqy3HfcY1eURSgrLCKsANrzgg4q1VTankezK1CIXhQSxR6OpTMyKMqDlqJgqxrjkgqoUh6lWu3BfEfgiQF6x0+Vv0AsjXEcEckaho6qpoyMDDAwJNbbxrPPIWc4eIFYx5NLx8nnTAwzzTLfQtEhXywQJiHNBfFM8nmHJPTxgv6gekjLd8nnU1aNXAjA+IoRUBSOS55Q4hgrBYO+OF9MkDgkcltIoxjT1DANFUNWGWLfw223OCjHPsaGhCBnqi4OnBu6iqbqBEFAS9KBPb53L5ECq9atBwTiVNFA1fVF3kfJo9ffhvsjfoJdaBGh7DgWHcl9p0YmiqqhmyaOFArstEN2795NvS7GaQxVw+22OXJ4OitPA2zdupX3vEegkG+77Tbu+Kd/Io1DvDDG8zwGHJ2bb74ZgNtvv50f/vCHPPLII3z2s59l8+bNfOhDH+LrX/sKg/K9B6hVq7zlja/jwkuvOOHRb7lgPRsvvjJzUr/1W7/F5Zdfzuc+9zlUVaVQKGBZ1gmkta+8+hV4XZc/+uPPc+mll3LVVVdx2yc/zntuvJ5d+w/QdT00YLBoc2yhQWFomN7CMX7p0vP51Fe+c8L5Oz2PFJ1Qvs+adur9/rRwVKoYlQEgioKf+rs/jzUbNXJ6kSBJMt2hwdIwUSxIJEE0gN1egJLomcJtq95la2WEpbkVAFz84isYP7dDrdMmPyA2/ampKZ7dsYOuTOvLTg4tjXDbLZD8cbmcTZxGNDstzAVRMuz6IUEKsdJv3Nr4XkqqOuiaKBk+8MCDTEyNcmFZEOdaBuiKhqG5dCXLeLMJtdUQhOJ6EgbRnRK5wgCmI8pZqlEgVW1SOQ+hqRa6ohLFMV35AHwNMXCrKKQSvCD6RBH9nSJNYlFC9b2MvV1JEprtDl0p9uZ3O3TbXWoLVfbtET2LhVkXHVBlH6jPHKCwqF6qqCpxnGRNaVUVFHGKomRrJI7F01NVlZmHRa9Bs+XQsIS5lytixqZxDPbtE/dxuAxjJbGpAfSO1qClMORGGXt3yr9fYPR/ioWRy9CwWDeGluL5PVyvx4Qs4eUKDkQxz+8U93rLRRezbtUK8gWTbdseAqBSzGHkDKJUQ5HNJUVXCboxti0eSilnkzRr+GpIOxDrZFjxSTD7JBCEiY8aByi6iio9gqKCljhk8lS6JsYZImhJgJPX7dCsN7j/h4KfsFIqMjk2zsjwYNZf8X2fKApQVZXaETFwv2vf8wQpPPyoUAp46NGH+ZVXX8/6c84RSsbSFJITHdQpLFWSrISoKAqoorfax+f0ufmmp8UcY6+2wLHpg8wem6Eo2wq+77Nx48bsmN/59j+wVG+g6iqJptJOfZzxDRmw5N577+Vv//ZvmZmZ4SMf+QibN29mcnKSt/zaO07IcBRV5XVveDMHDhxc/ExR+Nyff51Dh0Rp3nVd7rvvPm699Vb27NnDhz/8YXRd5/bbb88yqq1btzIxVGHVRReyfft2Lr30UoaGhhgeHWN4cBBnYgV/cNttJEnCm970Jn5451dwcjle9+pXMSPPc7y5fkBMnJELp8ppTErLcY4qK/n+LyjllQpl9MREUwuoen9QLU+o2ThSBda0TFxlgXJliOVTKwBo7znEDt2AwTUAbFi5mXyxSLfdwJCT+XXDYGY2IpGb4MqpKYZLRZRWja5EKyaOQaGUZ0RT0J4QL7iz43l67RAvkpGhrtPqBRiOgZMXDmbP822eeuIRJsZFZrB67UrylRJmRaUq5cGbrR6zpRhdlUSeuoNlOhi6iSOzNVMxMBQLRYIkUkUnUnRiTSGWaBtXU0g0hURJsf3+4klJ0jjrH6ZxRBL4hL0egS/lOXouR2amQUavBadAp1Hj6ccfZ++u58T5gchYjM7CWHBtqApofUnr/tR8NoWfZi94HxkknJtQgC3L8v/QBDhlSAR4ETWvE6QR7Q6kMkk6a3WBZYNLGLRF76V5LODQ83VKgI74Q+8F6KgKhTyDtuhbzjXqeJ4AwOhSKLPbbUMYZ6i/YrnAUKmErsOu3WLgPCEm0VK8IMArSgYDVcHrNtHkMy3kbHqex5JlCxTHBbx52frzxOCsvBZFdUhNizDxMyb0JPLxglwmKW9oKkpsEAYpoSQhTuIIlZSlUyJbfuiBB/nO3r9ncnKS1atXZt+12WwSRgGaVJKtjAyRKAr33r8NgPyTT3LBRRdzwUXnUqvLOSpFRU3VRYWH7GjJ4r6lgOt1M2l2XVfx05QwDPE8cR9tW2P9+vX807f+AYBnd+zguaeexDFVJqdGsqMeX0Xyel1iq4OfiPdFkd81u4Ik4agkoj7eNE3LMrf+z1dcfgXPPLM9c3KKorBjxw4KEtilKArtdpskSSgUCtxzzz1s27aNZ599lk984hOAKPkdOjbH8mWTGQq3b7Zl4MqZKE3T+PrXvy5EaWs1XC/ACE6uVhiWg6ZoGRIyOQXqG04TR3W8tEe+oPGi81YxOToqG6EiAtZIOSxLSM1mE88PKA2UmZgSKevkkiUsW7Gc8fFJckXhGPScjVHMoUgEi9txSaOIgm1hF+VL6AZ4uNhSwkDTbaJYZaQyxvp1IrLp7D3KyOgQS1eIodja0QXSZodOtChrHsYR4yNjHDsooqVOvY0RhhD5BB2xmbdrPTp1g2K5CJZEEGo63TCgK+HZilUmdtskIZgSiWbpsP3JZynlZdQft1i5egX5com8JRdLIQbDxJTNyLxRwDJyOJqDo4nPdM1CVUwiWeaKNB1VM4kNlagPC9VEViFYlqWjiiAMI0JZ+gndDr1Og06zidcR7PFep0u71cCSoIxqt8fuZ3ew57ln6bUkM3UZmpGN7y8OaeuKiqofJyme9qUM+pHpT1k4qcKQUCdh4/mDLDtrNeTFd+0pIbVOnWarTipLT2oEbc0jCARKtKp6HKHFUcBAOPyEUzdzf5FtfHQYZAl5/+GDVAbKeHFIlIiN+plnnsJQVM5eK8pjTz39GI5ucO+9d/P002LgV9FUJpdOomgqM3XhBAbKRUzVyBj12z2fZqOJ3ziAmTwIwMsuexV2oZyBKTRNSEQooU0kNbJiP2S+eSRDog2UyySGQRz6GQhESYWk+lUveSkAjYV59uzeyXPP7RCOFqgMlGk0GszNzWFJCff152zErBRZsUyAK6585dVceuml4rxxn7fOQEn7MhqCmR36LOrCBCgoxJajD2ESEsWiIpBB6DEZGiozMiKcUqlUEsq8ioDMA1iWlSH1AN745rfy9T/5OCXHpJ4U0DSFeMdjdLtd8vk8V199NX/8x3/Mxz/+8QxafvjwYbZv387hmcXsaeXKlbzjxuu4+robs/uYJAn/8D8+wcR5L+e1r30ttm1z3XXXcccdd/Anf/InVCoVKpUKrWbjBOe5as1aGs0qS4/7LEkS3E4XSvnssz/9whf4wqf+bxRSbMtk5fgAP2k91yNWdPy4X9Y/NTz9hTc0csbO2Bk7Y6ex6brOI488AsDv/M7vcOePd/PFb97HI0/vZHTpWoasOANJXHvttUxPT/Pud7+bCy4QrYFPf/rTVBdm0ZOAvXv3AvDRj36UHz2+i8985jOLpLDA8vEye/bs4YAUc/zc5z7Hy1/+cr773e+ybds2zj77bD5668dOoDbKF342ZOzffvUvWDbgMFW2GbJ/PldzWmRUyXHCia1WzNGjR+k0GvTaoo7ttl3BZCxLxlLmhZ7f5OisiOif2r6DsfFhpqaWsuEc0UQcXTLJkjUrMx6vXuCyMLtA5M6RGCJdHly+FtfOMdj32TE0Gi0m7GImJlcqVTAPH2FAzpF4zTrliXGGK2Xqx8Rxpvc+z8oly3jpclHSmN69m+ruWUbLRVbK+lTL63Ls0BHqvQ6h5C2crTZYaAR4kVRFzQ2TqAaB38P1JBP7kMmBwwHaQ0L7J2cHpEmHyWVLsXIigrENDa3mYZkiMjbtEMuOMMwYzZCDslGIr6REiihzJaqCosSgLgqnaYnQj1LjmCSUEP7Qo9fr4MootNOu06rNU1+YzcQUSWIGS+WMKfn5vbt55qmnqc6HyMoChbyD5y2W/sT8hEaqJNlsSZyILKofrKn/3FhTKvpo42LeGXNZjnqxS1cV1xOa0DV9arqHJwlXEzfBW6iTyLG7sKnjawaeQwam4biX+IVihUIOv9/r8TyWL5liZGI8I2HttNvkTZtUdpJ27NhO7AVs27aNjgSvlCslNpy1jnKlwktGROaVRiFhp4NEpzOQz6OkYlA7XxTv1gAVbAycPtdlKtjO00jBD8TaVt2EXq9GpSTK9ZahY9sQ+4vl4DiOSeOE2QXxPp577rkEgceDDzzA3KwYnA9CnyiKaLUbvOGqVwAwX6uye9cuVm08B4DXvOY1TE0Mcmi2SbEozuf3fNKUbGYwa0+ki1lVSiI02fpwed8nUVQcxyGQGX2n0yFK9WxAd+PGjXTq8xyZ3s/Cwlz2PL74xS+yZcsWbrjhBt785jezbNkyhoaG2LlzJ0kSE4c9ZmZmuPnmm/n1X/91zjnnHNI0ZevWrXzlK1/hHe94B08+/ggrxhR++7d/m0984hOsX7+eTqfDm970Jj7wgQ+watUqZmZmiMOQjRvP4Utf+hKjo6PccMMNTE3FQ8A9AAAgAElEQVRNEYYhjz/+OM1mk9v+4A/4wAc/iKIo7Nq1S66JJtPT0+zbt0/0uNKUTruJXhrNvofXajBSdGhJcoVTtXPiOCXWjhMs/WcqKKeFowq1xSZVHMPCQkJPdUn9PnuwmMNUZaPcLkCuqFCqWAwPisU8NTXCsskxhgYrMCbqQaViHlPX0ULxNSfLo4znJog9A0OynA8OLaUXJIyrwgklrk+ac/naD/4ne2fEwO1l//kirLnL+f4x0QxM2zUmdu1lqtZmvClS9i1+SPjoVhqyXDCkGCztpeRC6Brie+xnjh+YC+wrR8wdlOXIgYDpOVhWkWWGeIYoDRmrDHJoVjiGsJ4yBHQFmIrH79pDfNAnOavG6qVi0Q+UctBKUKZESbG7osThwWHaegktFd+1HDgUAouiJRxVNwloJQGBqqAbYoXkY428l6B3EgaOiRP6rstCs8bRmqBZ8WrzdLoNgsjPpEcGhgaptqpZY3b37ueZ67lEDnT70/q+S2IHi1xfEeiaTYKNL8lkgyCGVMcwpHxBGKISkxLQkM6ko0JpScrkqiIrhuRzM4scSy0auvh5mAqTB1zMrRG7D4j7eNQHow1TAsfCygGbaVPngOZmu48dn7qZ+wttjs7Op8QG5LkxBWuYe/7xLl7+CiHzYgYlLn/JL7FhnSh9f+2rX+aRh7cxv9CikBdMIEEv5t7vPsGWS7cwpu4HICYWg6lSwuZIq45m6EIG3pQl68oCucHhTGFXqFskxPkUY0Aq0WKxKViXXW6v59HsiN5lIB9cy/OxdItQFevfKpucc/7FeKHK3d+7S/xO0yWKAi679KXM5sX5H35uN+vPPZtLXvYSAA7OHmJibjkjA8NMHxJOT1E0BipDJBJN0e266KqGrh3HlpIkRGaAKQPefL4IqYbXi8hpfY5Qk06zlfVhAuDiLVfwg06Hw9Uj2fcrlUps376dtHGE7/7jdzAsRygGkOLNH2KgNMmOpx5nxarVvP+W93LvfffzqU99ittvv50HH3wQTdP4rfe+n//+8d+l2foRr3nNq+n1XCYnxvmN33w3vV6PO++8k9u/9U1eurxEWVH4/d//fRYWFli7di3r16/n+uuv57zzzsP3PNrz+/nin/4JN7/3fZx77rm0Wi2GvS4Pbr0/K5MumRzG4AApaxeXlRMwNlnEm5XyJOWTh5rz5SH0VCGQ/cj+cPZP2mnhqI7HIhcKBTau20DJtJiVm16nUcXO67zo4k0AVIZyjE4OMDCYp5CX8GxTIWdqmIaOOrICANvRSZOQOJZNUS0l1SMUVUExxIvRS9oUhkY5KiOar//dX7H1iQcZHM9h2DKDqhfYV5tFl4tybWWEs1IVde456rsEoq3ZbmHbOp5kYCwVCtS6Hns7bVqD4hoX1uQprh9mammOoUPi1ndrbcL2Eew+rZGqkbgRMQn9cdt2EFKQUSRAqxvxyGPTzEwf4bx1qwFYuWIpa5YNoEViU47cJpprYZsqpkTZ2YBJgN/pU46DpaqYqYEq4elqGOP3uvQ6PQ75B+R3azJ37CjzMnvstTsYiko5V2BUKrU2ZhZozBxjYb+si1fbjCUGia4SSqJevxsRDyogfUESQKB4RGmUJTIqQmuqH71qxBipINnKyZ6ZbkJONdE9k4M/Fs4zKrrMWgY1CX0/GjkU93Zwd8xzVCZ9QRF0HxwRW1BySpQSlZzfpBeKB2Bx6sn4X2T7wfe+T0dKauiaQxyE2KbBHd/9JwDmqwv8Xyt+jZERQTu0efMF/OPt36LVarBiSgAVSk6JZqPLMzt2kBbEZ6lkD+n3N8I4wsnlKBbLDA2KAKvXDRgaNDIZp4QIDZ0kDUlkBB5EMYam4sueVRRFOJaJpetYlugppmma9XlA7CNzR4+w6fzzOHzoAADP7niGqakpjh49zOxesZYvuOACVq9ZR04CRTads4nRoWGOzTWYkLIifeSpnLzA0MR5NUXFkDpmipISWRqaBDPpqk4cC2o4vY9gNcA0TXqyZ20ZJs898yzT09OsXLKS52b2nPBczl42BvQIvAaabuJHIYW8jueHBPP7GduwlIuv2sy9993Phz/8YV784hfz13/917zlLW/h+uuv57rrrqPb7VIul3n9q19FOvcMQ0ODXHfddezc+Rx/80e/RxjZGW3d8PAwSZJwzTXX8M53vpNyucyVV17JwYMHKRaL2f146KGH8MKAsbFJrrvuOgD+n//5Z7i9APs4MFIYxoKsVu4tve7JiG7LzJMzDZAs7Ep6OjuqM3bGztgZO2M/l1155ZUoisID99/Ha17zWs7bdB5xnHDvvffQWDjKgKJw//0PYFkWzz77LLJKyfTBA9x5xx0EYUgURbz//e/n5ptv5q1vfSvr161j+uBBbnnf+/j4f/2v5PM59uzZzXITGrUq3/3ud4GUVqPG1ADs37ePO++4gzAM0f4dkdunhaNSbJtUDlqGYUir1SJSFRqSssXr9kgVla3b7gegWDEZHC0zPFJkbET0o5ZNjbBi+RIGB4cJZPoYdgPq7VlqLTHc5yUeXhCSphaOI5A3SybOZryQ44kdAkJ9190/Yt/+aW5659ux5WxDUNMZXV1knSF+PqsdYDzyJK09Bxj2BILNMlP8oM2AHO7LmSq1qEsbaK2Qg4tbSuTOG8Qa0hiSkXs7r7Jv1xECGfXHmk+sRLihi2GLaLHt+aRhShhLHj1Fo5fG+DMRterzADzy2CFWrO+x/GyBVFxx4UXkkwjD7AECppqmeVLFzIYkjVTBCjTinppRSHVabVoLNbrNFgda4p6ErofvdvFjKfMQuWihRuh6uKqIDo89P83RQ7PUZsW5EtXEzhUJ0XElWtCLfZJWmGVUatKfM46yGRUD0EhIw35GJcrCabyIBzIDiGsKda/N7MPiYFGuTi0HoQQd2egMz0bkeiCBWARdcBIYQPQMR6IKnSShGDoo8ujW6fFK/G+1cqmQ9Q/8UEHTVd7whjfw2BMCfVav11m9ejXNlngfL7/iMm588xv5q698lUZDNPzSKMW0bIaHRnh6uygjdrtdwjDMUGapIvqf5gMmTl48qDVrz2ZkbMnirFMo+PlIlWyOSVVsFIVF6Rc0VEUjilICf7H0JuiIZKWk16Hb63Dfvffw1BOPAZB3chw5MoNh6pRl//mcszdRLg/QqErqsSNzdDsRjz7+BINSXPGsDedQKJSy7K1ScjBNiAJI5ABgIQc1L1nsw8SQhAmxFxDKMraKSuRHlOVIy64dO3j22Z04jsN55206KaMqlUUG2/M9oWYt31vNNPCDiLHxcWwpxXK8bVk/xLf+4jb++8wRiEMcLWEqb+L7AQfvv50//t7foaAw4Gg4jsPyYsDdX/ssn/mb7wFQLBb58pe/jKZp/KeLVlGwdbassvjGFz8CgKmptGyFEap8+Q8+AMCwnhL4Bo73JF/91LuJopCzJktEkYIqZ0RJT65WRCGEKNnogXY6y3ykx+Hrfddn5+7dFBTIyaszTCGM1q9YdbyA+cY8+w7MU5KN+iUTCqtWLmdqYpwXXSJS1CDxqNXnOTR3AIC616Dp9UgwKeREbX10+Rqm52f4/74v6tiHZ+aIPAM1GKBYFAtl/vA86y4cxpwTZbX2jr0E9z1CsGsXA30ZlQr4Lmhyx/XULh0FoiWgXyBRMudWaA0EHA7qnGevACDK6ZgWtPoiqEZEmILv9bA0CZlXoJeGdORLWMBgKF8h1VQWeuKaZlo9DjRhqrodgLPaHZavn2NiYiXDZdHgtDQHNdXQ5QuXKBCoEe0koNUTdY1as0Gr2sTr9kh8MRRpKgpWBJEsa7pRSLtep970CVxxTQvVDvMtl45EP6SOTVPRqLs+PZnNK0aRAa+O1WecViBOBf/08ZJBJFFWCjKOKyWY/U8Tg6ij4rV8KpZY/H4MbjcmCuWmkKoEPbHAFckWEhKiJiqWJ51SnGDHMWY2Av3CtN++9WP/4u986S9+/6f+e7UrwQCH/3XnfsWVl//r/uDnsEYg54q69GO3DD3Xt0998vf+xePsO9jh6NGjHNx/IOu3LpmcZGrFGJrWn5lKQNHQVQP7OEZwT4UZOcLy463bME2TCy9/CYZ2csnrkisE1L5erxOGIare1+PL02q1KBQHqDUaJ/2dphmMDVfQIo/A7+J1OwRhRJwKlfTUFO9fFClYOYfRoUFacsykb31w1dSgTRzHBJ6PrfVHRhJcNyFNoSy5MdMkJE3A0W0cHXzPJY1VwMwY0XXzZLSg7yUkfkAiGU7+uSzstHBUHPeMFAUsDWxTIW/1+08Jqp6wckxs3OXhIhNLhxkdH2BIMjMPlYsMD1QoFvMZE3bFqVAatplaIxyXryd4SUKqOhRyokZua0PMHery7DNig0+jEFvXaTYWOH+TIDytlIt06ws8vVVMr695aj+XmA721BKOVcVs10IAZgXCPgrIgqQAxnKLYErI3rtqnqDVwvJNmjXRN/PakYjl+6CzSEhd+AFoEi4VaxpKYqDIrKdLjN9tU1B0BiVx5khugsjdz4x4Bzhw+ACDDx/g7LXLOXfVBkCIKZqxiiXpcrpENNKAeujRkZlh6EfoYYKaKIxo/dkm8KOITlcEFG6rS6PTodHz6UkNdy+n0o40WpJJNFZj/KhHJwnBEOcrFh0GGz6hnEPppC69NEWCOEH+Vz3uZ0PeGhVEkR9QDIsgUUiSkI4pM/EU/BRSo9/HMjDkeorE7UezFTRPRT3SB0y0CIOAGJdQuiqlT23xArLTSazveDtedFPMG/3H83kqisL377qTA/v2cfDgfmxTrO3Vq1dzfnfjYtZVGcSxCyiKRmCLrCeNYmq1Gnd/X2QuzVaVC847l8HBCo8+svWkcx04JAAWYRhiOrbo5QB2rohmWgyOjKIaJ2/hqaKhqjopCoqqY8qsy0HB9xLMvsKBlWI7Dpqun0CRdLzFQUySRMQnDML3ZUrSDImdxJKFQwKePDdGURUSNSaO+po9Jz8/BRNd01BUcd9M/dQh42nhqBTLIPX6ujKwbOkES0YHKFriiw0NOUxMDjK1TKTiZk7BzusYZpplMLqagBISeF2iWIRLebOEmbMoGSIzCnQDzY/xAxVV1ohaNZeZPdM05wSEtWDrFIZNkuQI9Y5wXgenD1DfdYxw21MA+NMNlhRKjBDSkPe16gsqPClhg2HAbA+e3uuzZ0FQzxyyoIUAA8y0JVuFn1A9AoGoqqFrkLrCYSXmYjNZM1QUWWaIw5huGhCnAapkgiBOGURDM6VSa5Jy6BAcmz7I3kcFwOGs0REmS4PZkuvqKQ0D2mpMIiOoipFn3C4yaBSIigIdqGgqmq6g6lKF2SigG3k0q4smgRJ2nGBEKZocrlTckAIa45qFI687lyRYdpF2IFnpox799qotqwK2KRalFGAlSgQVkq9AJCkmEt9DVUHVNQ5JgIlhQWJBTjxqxkbyjJsmRk7DmxS/1LZjRucDSk8LSLVa9YnqbTwXXF1KgcQ/u2L0GftfazfeeCObNm0iTVPiOOajH/3of/QlAVAq2Jy/6RzOWrcqkx4ZGx+hNj9HIn/WE3CNrqADk2wVrusyNzdHsSB+58qXbMF3ezz62DaardpJ5xmaEIrGlmXhOA6e5BHseh7VapUkhXa7ddLfJQkkqUaMIujhgkW2lyhJMwh4HCe0ez2anXbGx/iTFoZhVlKNsmH8JCu1WqZUOQhDIjUhlcA13/VR9ZhUVTJSBEM/OWuMoohYUVHpZ2unsczHGTtjZ+w/3k6HjOV4e+c738mHP/xhACYmJrj11lv/w67ldM06Xyh2Wjiq9DjOqFQqZeYLJmNDIutZvnSYpctHMfMy5dQiFD1GUZNsINQ0dSxDw9TUjARTs6Dd7TIrZ52qLY/qgo/XhZzk+kvcmK33/YhoQQAujJwKToN9022m64LgcvroEV79n99JQ1KAzC3UeMqvsT6nU5qUtCBug/p8itZnBi8txVcVpueO8txBEWVUU9ASyKsG033KHh/MBHR5C7xEQUt1FBRiCZ5QFZUo9cUkJKAZMY4ijtWSsOKG6+EwzNCUKGmOjRWYd6scnX6eQ3JuSGvN06sEWTklyFu4BZPANrElUKRsmVhxjrydZ9+QZB23DEzTxJQaXnm9hRfMEbbn0NyOvI8+TqAy0Ye5Rwl5hLaQJbV2VDdknyq/NKCQYgFW0WBgSDS3C5aFlibsOyhKqkEKPR0CHQL5rDUdBiswMlRkZLO4J8VCgVhTCAyxRsp5hwFNIzJS6sPiD9W8SmHaxTgm+nFpzyNpBYQ6i7XG02uv/t9un/nYrSQYOPkKDz70EPlcnjvv+h6//CuvZJ0chTjvRRvZ8ewzGKbJ9773PRzH4VvfvB1ds/GDgHJuAkixbZvBwSHWrFtLksRs2bKFSy+9lNHxcboS6+0FEaVikR07nyHwfcbGJxkbm6DneXzrb7+YXdc1176WG97wdmZmDrJkyTKGBoZJ0zQTUz125DCPP/44f/31rwFQnZ/lissvZWbmEK2GAIGMj4+SLziYuk6lKPq2h48eYX6+SkuSC5x1zrlc/cpfZnBkmEACet729tedcI9ytkahUCAOLfy+4KnbYrBUyByaloaEno/rBfQXV8ft0WzOc/llFwEwOFThRw88QBB22XDWKnYf3n/CeTRZViyUKwwNDS2KiUYBhVKZgXIJc372pGdYbzTpuj5RrBDGCt2ebDN4HpphZf2nIPTQGk2KpVKmo/WT1qd/StM00+UKpKZXmqaokkQ2CgJSNUGRe0SapiLwOSH4Obm82Ol0CFQlY3sMrFOX3k8LR0WSosthA11JOXDgKLUjR5HirZim6JPITJiBUZMVq5ewfPlShuXAZxop1Hsufs9l76wo0aWaSbXuMV8ViylwTdS0wIA5ylRZbOhuvcORR55imSMRNbkI1XbJFxWKy8QFXPyfLmHD2s3cuVMQcO4K60SWhZ2rMNESpSLtWIoZQXNePAzTsZm3LOY6Lv0ZtpHcEFZkkHYCunnhPYLUZzBXQJOLwG93pYhkktV7bcsgVJJM7DGKxWC0moIhN29DgfnIwD8sTpZPE2I7h1MeJ9ZEKfRIz2d2vskS6XB1w0EzS+QNG1vyAZqJDZFFGOiEpkBUKqlK6sYobbHg1XmP3JEu2rEOiWSriDstCoaFbQpEU2QF+FFInASEsuEckNJJyMp9KiIgGZyYzKb187pDFPrs3icclatAzwaGQMYWlAZg1coh1q1exf6K6N4PFssESUrVFU1hLeoSRAk9JaIma+ReaKD3PNrymotNlbQHZggZxV/8wvZU9z/8Y5atXsfVF57PeZdsYt/+fRytH+Hiiy6kMpjnB/fcy/MHn+cVr7ia0dFRbKvAffffR76Yo9cNcByb1994NRs2bGD37t185ct/R7Uxx/kvWovpuDz82Pc5PLPAa197I81mnW9/5/9lbGyIq666CscZYufOp/jL//HfuOGNv3FCFvO9u25nxfJxtmzZwnPPPczXf/wEN77xpowtplwus2zpVCaTbhka997zPWr1Ba684jIAPL+HZZlouoIu+S7PO/csKoMDPPxj0X8+cHAPR4+dw/IVk9QaJwIM+ub5bcKgReC52cCvbdukfrhI1KpohHFEGMZosrcUxTHddo1cQb60qcf4ZIXJicuolPPcfvcPTjjPQk2c3w8TEkXBcUQpvuA4GIZBo9Vmz94TnRuAZpgUS2Vs24E4plYXjrrdbKEYZobCjAKPYj7H8OgYkVRB+ElTlEXWGkWqQKSKtuioJMZdUVMUJc2kgVRLxzBNUk3DyFjoT3ZUUeyjJIv8iZp66hLk6eGoVJ1EIsr8CIp5sG3oz++lCIDBrAQWtXsB7e4+Ou1qRom/ZHyCwPXYv28fz9dEdDQ+tpSe66MrEo6tK7SP1tAcnUEp4f74k49S6tUoD4lFUCeiMmxzxdUvpbBKbNSliUG2/XAnjx4WvZ5uHgLXJ9etsaYiyCyLR1KqtLOmvGUPU41cZrsxiaSLiclR7wQU1BKOvhjl1L0WQ7ZAxFiqiR93MFEpSHnqttdCUWJ8XyrjGuDYYqPvP0CvByrjTCMGGc0jNaBLrqRztCXO5QyCU9DoJMK5prUWYz2fUauELuHy9rJlKKUcu6tzHDwqVV8XajgdnxFZa87NN8nNN1kSxfRxPEVGiUKfjiQJrStQVaGuRixIR90BHMTwJIBasWiZNrP1Bs2OZObwI5rVOSR4j/wotAyIh2DFBcKblIcVAr1Je/AQVkGsm1CtoRo6OZlRxb2Q1I0wdB1L9g2CWCVoJYxINoW0VSNoBhhAIRbaS274wizxpGnK5s2b+cpf/w2VyqKO0RUvuQJN05g7dJRtjzzIe9//ATZt2pT9+0te8hJuuukmvvSlL/Ebv/EbREnM2972a1x++Ra2bdvG1//q71DUiAsv3MwHP/hBoiji1a9+PXPzh/nmN/+Kr371K9i2fdzxrmBubpZlSyfYpi4GDXfddRdnny1UgX/pl36Ja67Zz5998Wu86trrAXDdLgMDA6xbIxQOnn32aZYsWcJZZ69jZFAET6oGYSSg3oNywDSOY/wo5rItIsu58mVXoJs2z+/dieueul+5Z9czJHFEmqZox8l6WBiZc41TQQsUJfEJvZ04STL5+gXfAyUkDH1m5052il2pMG7aFvVGK8tCDzSbaIqKY5unBEGkiUat1iKKApYsWcLYhCDujqKIpuvSqAnHFfoepVKRIFHwvFM7KsMQ1RRN0/Bl49iQ9GWe5xNL6R9VTdA0cCQKV0XHC3xc10eRZS/Xb590/DhxSeI4c5SaemoewdPDUZ2xM3bG/kPtgQce4LbbbqNSqRAEAb/5m7/J9N4DFEpFVENjy+ZLGBoZzZzUe997M4cPT/PKV/4KN910E+9617v4yy//JY889kR2zJ/W13nooQf41Kc+iW3bNJtNbrnlfaSpBsTMzR3j5Vdff8LvNxoN3va2d3DBBZt43/tuYeXKlVSPox06Y7/Ydno4qigi6ZOQAsWiwUARTFVE2cuXFigNWqxcK7RmRscHGBwdFPxX8g8ty2Ldug2ct/ECWrZEx6Ua1YUOUU8q1XZUkkYMCz0ObxfDrLneYa5/6YXEEtZ89+OP0Tzs8eA9j3HsB6JkaI6UCPaP02oKr78QQK0Lk2HIQTmb8SLdYX1Q5AeIl8fr1qjmFfwytGQ/Sgl8wiSgh4FfFZlPpViEICIOBXqnaJokbkhMRN4RkW2jHRCRYMvyqG2bBD2fTkxG+FMA9lFlUNawhkjwmKfeSunJsm+6SsFcOYEmSWndJw8RHa2jzHexpEbN826V7/oL+EM2+7vi3r5o5XqmSgZHd4oyW6XTZGmUUsJiEhENu9QQRDhycFMxqeoqoZriyTq2r0A5BiSa07cNvDSi6Ub05LnsQKi8yvEs9AiUAbAmILdKXLc1DLHfoGYdwzbFZ6pqEKBmAmwRAcQJUWqSyuaWYxcpORqa7Bn4nkoqp7qUQCrcvkAnqu644w4++clPAvDnf/7nnL10JcsHxVjHsdlj1GpVbniDkJE4cGA/pp5y/fWv4tvfvpObbroJgGuvuZZHHn2UPnw5SRLCyKVWPzEzabXqzM0fZvVq0fO67bbbuPba1+I4DkkC9XqNuWOHM/0zgC984c947Wveyre/8/XsM8PU6HTEe2OZJrlKheq8KLvYtk2hkCdNE2pNgbBN4xBVVbBsg+pRsZZ1XUc1dFQ5/6QZJopmEIYRnn/qLKPZapDGEUoaZwAURUmxlcXh21QV/ZmE9ES0HHEGYU90BRMdwzHR1ZNLzq2W+G5RFNFpNzPdqDSKhPaT26VerZ70dx23R6crypLVWotaXew/nuez5uxz0GU/2nN7aEqM6we43qlLbqZuoKuaqGrJHlkfaByEIXpf8VRdFI0EQdKbEpESk6R9VdSTv2MUu+ikpMgKk38aK/yCiqaJbz9ctNh47gbOWjlK0RE3b/nyAQaHLcJUpMKpFpOmCZpmYEtdJx2TbsenGXQJS2Ih5Aollk6MoMmv6dVdxtaVKXrweCSakP5MxIDTxZO9iVVjAzzfc9n5WJVDspmaFmMmDzWwh8VxLr5kM0MlnWDr4xzuimt80cpJntj1DP0Efr86xyFLxx90iftqpoVBJocnGCiUqB6TjdJcnv3P7mK2Jl5mG42co9B2wfUkhD1NhMCgXEuxr2HqFYZQUOV1G5rOYTtktF8jbjcoktIBSsK/E60xCTbkSWIppHhYY3DOY41hM1AQL+qPg6PsNaB8vsnEKwULdnF0iurOGQ7VpXPtgetA7LmkiixZ9lSURMuGkptJTMcP8IkxbeFMNFsnUdsE/aFoJSJUNQKSbOg7H1sUMZgoCyBNMJISlhp0bAgk9F4p6OiOYLVIFDn/pQQEmo6nSc0uO8FKDHJ6jjAvXvAFN0SzLLoS5l7zPJpouKi4Sr9pfOp5kl90i6Io60UcPnyYs6dWcLAnuDZXr1rN9NFDDMp+UK1Wx7FNVMTmlCQJqqoyODgIxzkXVVUxDJUkSbL+CkAcR9jWou5Xq9VGUYWycBAEqKpCvV494VnEUSJ6t8dlaaqiEksQQKSCrqYUCsJZjI6OoiopPbdN0i9PYaJpQtjPLIt32zRNVMPIdJBSRUWRTisfn3otjI+PY2g6hqZkjBqqClpiLqoQGLqY/dLU4wh3U9I0zfTYer0Obq+DhpINxR5vttUn5U3wul0CqaYQBSHlYoFSoYBzCvCBrhnkCmUsy2JoeHSxjxYEHDoylylV5Jw85bxNGrmE/0zpLwg84liT/y/vdZKgKBpRHGZlTBIJbuszSyQxfuDj+hFen5HCOjkI9IMuqm6QpKG8J6e+jtPDUSkqsXTTaZoyMjjEqlUrMFXxYFTVo9GoYebEJhRHEUqskSQpcX94TYWSU2Z4oEwkh05NJ0fb7bHQFE6p22wQOnnGDRtnQNyQS196FtM7DxJ64lYsG1/C0X3z5H4ao0oAACAASURBVGKNlUMiotx9tMqKsMW6jZcAcNmvXsuyDeMcvuRHrK+K4ywvT9K+Z5QD82LiNre0wovPW80rli4hJ9E7SwZGWDE6hqUblMpiCrU6N8s//cN3+PbffAOA+cMdVNnTqUt5CtUAS1HQNMl67gaoQNkYIJBs3704oGl1qMvIaMKEy9eN0xvweH65+OzBXIcF9wCOI849ZMdMmLCxWMJNxfdIHVh62f/P3pvHWJbd932fc87d3l57V2/T07P2DGfIoURyOOIiyxJjkSIERxQlK5IQCQESBQ4QREFiBDASK4AMJE7+EALHZmxHCRwjCeIQsRGItCVqsy3ZkSySIkfkLD3TPb3W+vZ3t7Pkj3PurWp2jw0IhtXG9Pmnp968qnffXc5v+y4x8Q8+xc3LPhN7tf42bmfMLDhk33Jw9w686mBw6N9zMYVhDJ0sKFNEHXKdUeQrjkKvf1HA9ppiGrhXR6JglcQYp0mDX0LmFH0kO6HCm6eaWezdehsVDFdHZGpEZCriyAcdIyNqFdFqnMSKLEpIRUwcRHmtrZCdiGXqz9l+BOPIMHEGZGD41+/NiurMmTPMZjOGwyGf+cxn+Nt/43/mzNoWi+WCN7/+z3n2iSf56te+xhNPPsnTTz/Nq6++xjNPP4m1JyoG3/6W71I0lcD29jZ5kSOF4lOf+oH2s6bTCYeHhxhjUErx8ssv81u/8Rs8++wVxuNjvvHNP+THf+wnEafkdOIoIo7EPUm5ENDt+mfCGW8+2Ain9rsdet2MxWKOCA9UmsYIZ6iqikw1YrIS7SxNTIqTLp1+nzTrtm6937k++NJHiEPAOz2jkq5DY9sklMRJgXOGOlio1HWJMYa7wZXAWUlVGOoyR1f3c4yS0EHp9TpIROt4fDwds3CabhqRPoDwW5Y1CMVwtMlo/URSTgjBLNeUgY9V1wXLVQWmxrxLUJ7P50RRhFKKOqhHCBUjI0HsFC4o4zv83t20e10gaxtj0OE18QALnaoqiU6oXVj3MIMpTp0jHaCP0ApMEEUSoSKKwm+KcRrTyzoMB5tEgdFcLDXzWcFiXDI98O248XLON6++TnfTD04//NHvYrh7hn6W8sKarwT0nWMuPnaJuzd91fNHV49x9T5xqXB5IO/NI374U5/ix//jnwVAPjEi75R86Md+DHnkYe0sNS98z3O8ENCD79gcttdIhj1WQeakYyyjOKFYzKlDMH3ixef5j648zZXn/BD4b/2PX+Da6++QJl6dAuB4DLVxDIdBD6uWvrqSXm0aoEuXSE5o7vd4CBdfPMdqtOJ25MnMHQtrwz5bIWnZdRH9JUSi4PqhJxwen4XHP3GF13YNw8hvOLaq2X6sw5b053EvmnHhZfjA9iXY93/s6u/d5foRTA8CcXa1QEiv1pHshmOKFUN3gRv7vu1yuNKs6hpbQz9k4mtSc0ZErIeqay3tkO0+xrnHFWrNV1kdoSCf45YLhgN/r5SRZBVJirAp6FmNHDusNiz7/kSW2rKq9UnVF8NYETpV4WS/R0F/P/mTP8lf+2t/jb/wF/4CH//4x3HO8eUvf5lnnns/l158lmvf+Bb/zxe/yOc+9zkGgwH/+X/xF/nSl77ML/3S/wDAarXi13/915EI/uAP/oDPfOYzPPXUU/yf/8f/xc7ODi+//NH2s6bTGRvrW3zxi1/k85//PD/90z/F+voav/M7v8tzz12hKBfky3tty4syZz6fYk7ZsCMgbXQEI1/BtC7A6+ukWcxsNqUoG1V1i3MGGSX040bR3RFZiwrO2MPROmubW2Sdwbvaom9tnMc6jdWmhW9bbSDK2oLSVpbaVJRlySp8fp577cM3r/pkVpcF+WpFXZSoB3zUPFjJZ7FkNFojCgT8SFhsXVHlK44ODu/7PeeE93lykBeaovLHmPW6nLv4GC4A19AVOp8xObrd6oh+5zLGeLK/UkSh6ozSmCRN0TrCWb9HOlsTYdrg6qwGqbCiBueTv0X1ANSfNlSuaqvHSD0Ynv7I4ffRerQeLc6ePctf+kt/iS984QuUZcknPvEJfvEXf5Gf+7mfC7MRwUdefJGf//mfZzqd8tGPvsIv/MIvcO7cOa5fv87P/MzPkMVe5ugLX/hC6xj7oz/6ozzxxBP88i//MnACsNjdPcvf+pu/zN/9u38XrTWf/exn+ct/+Rf56Z/+6TbYPFqPVrMejopKSoRthBIt165dQ9kJvcy3jC5dHLGx3WMYTBKRUFU1BwdHFGFGdLg34/b1PQ7vHtCd+7+10BV3ijkf/tSfBuDCk9+NyCR35hPWI5+djM7scvnSFTau+spoJd7khaXg2j/6BvsTn9F8+hM/yA///E+w9RHvAsrqiJvjQ2ZKUwaLZRMrRt01hh1fdcR3jygPNcvjJXlQeI4GHeLeOvFan3roIaM37u6z3s34/s/8WQA++N0vI+qSWzfe4Utf+hIAv/nb/4hvvzZm3gx3BQy6FidmLALkM6bHoIKtwD++cOUc0WMjVpRMD/zkbE3B427EhZWfUfUXCQMN02VBoH8xelZw7oNXeI3rPJX4811WS6Kq5LjwFdbODnzPd3+ADz7xPvbf9NVRdr5DRkqW+HlQlg1xIuVoOufWbT/g3jvYp/faJWzghyznE3IBPQFrAaH8+LDDs/0NRhv+7+xnwWV4ITl8y3//g7qgmkzR0yVv3vWvrRLYy2DaJIYLiMYwrGEVbht1TlG6DmLPb5b5CooUj/9oRiYP5j2+J1ZRFPzmV/5f/ve//b9y+clniKKI2WTKYjLnez74XVzcPUu/0+E//fP/IVoq0qzDbDqhlyX88Kf/Lf6nd94hljE3b97kxRdf5GMf/xhxFPNbv/Xb9Pt9/spf+e9wDjY3dnj88cs8/vhl3nj9Oj/9kz9Df9BFRYr5bEG3M+KJxwST4yU/8eM/hQOeefJphv0uly9d5mf/3Z9FCMFosM5q5TshDYx6PvX3aK/Xod8bYoxpeXPT2Rhr/Syu4BRk3EEU+6qjMjF5pTBMKIsHm2j+6lf+McK6eyqquq4xVrXgCiv8vLM2FXVdnnpPjQm/o5RCIsEkrffW6WVqX1Uup1PQFetDD7PvZzGql1GXFWV1P4ReSolFUGuYLJescv/522mH8WTOViDXb2xuUS17rGYT6vrBPlDdbpckjUiSGB20RmUUEyU+KXEmuIUbSSQsDbbCGUUcOaJIETm/R9bL+4/VWUFtLWlQmFcPAJXAwxKoThV2eQGvvXaNvZsn+m+3HoeNrYj3veTFVbNuxnJV8tq33+bbr/obdTqGjoJ+BwZBwdn24PEXnuOVj/wZAM5dfImj1RQZbUDohRbTKZk29HY8j+b9H8pYP3+RcZ1z/dCX7P/Zn/9RzEfPcvXIE37PZ302+l3uzmew65F5sjdkvLTIpT/oM/I8MkshjlkNgx5WR1DGnr+QJl63MBsmSCUodQMU6dPJerz4yjmef8kPhZ5+4Wm+8eqr3LrlwQz/7B9/nfG+Zns4pxtO3WDD8n1PPMn7nvMurB//5PvZvNznjBpTvO6j1/DNt1l+9TbZPNzwN0t2ezuMFxNmAbDUu3SB2+Nj8qjgKPUP+DDrYHXBZiBXP3/lAu977AmYTzFLH+C/7+Xnia1q+/oOxWyVkx7UlHUYArsV+Tcjcu3fUwNRDAmQhudkLTFc6EUo7R+ua9dvcfXtJa9lcCME0yIHclA5vK+596MYN0ppHSgr6M8c61rS6QeH2etzjsm5pPz36NmCuAjQyZC4RO9RHlWzur2M5648y0vPf5DZZAnnYf/OXTY3N5lOp0gEf+qVjxIliihJ2rZSGsUoFWONASSLxYp/+A+/gnOCSCry1TFHh1OstbzyysfoBN6gGCX80Kc/dwpsIcFJ4jjmz33et9q9Ivkxzgk++fFPBq055ze5EASEA2dsCxwoiookiUiSxDsKA3mxZDYr0LpCB1shZwW1sa2liFBHRElKbaAoH7x5L+eaLE6QMj5pVTmNqU+UGKQUCOGIE4ft+L9jrQbrmAekYhLFSGexVX0PCKVZ02ChUuVzlvMMHYSjszSm1+shhHwgWjDPc/I8Z7Faohd5q0yRdvp0RJ/jsf/82XTManzI4d27VOWDg3KcKJIkJooirG6O0QVOWN3O1px1OGxbcOAsdeXQtUWHQGX0/cfqnCcP6wZK+C49vocjUFlLFEhhidScObPGExcHbAdn3EsXR2Rdy86O39zTTsaGhbXRDi+9GAh2heDw7oy923ucCQP9O8slZ9bPM+z7AevBsWZSS9aG26zCvKszSDi6dYNz6z7L2M66dIZDfurf+Sz7c38zf/jlJ/mSPCA2ftak5iviZUU8yFg2Ntv7e1zonWc1CQ6/eQo6Bmmpe4EJnnZIkpROX1EF5J2MPWN+kPhKbOtiDz3b43D/Drr2QfgHPv39/PDnPstBkEv5r//LX+A3fvVbPP/ieV644oPZd73/A7z/8nezfs4Hofh8xLXFVTbOXGLzGS/p8ezvvcrvX/s1jv+ZV33oTGH9wmO8ebzPzVBJ1Edjfufvf4XDC7Dl0cM8cXYHMZ+zE2CmvfURy+mE8mDGBx9/zL9WalJnUWGGkFc1djahO9ljsPTHXdeaq/OKVRluSgUqAUoILiPM6gXj8gadgArbv7nkAFgOwIaqSzoYkJIlMTu5TzAWOkFPUupuAHOUhrXKsI6jbLy+OjlpVbI12g6fv8bYjKFaIQPMPnkvWtGfWmVZIuIUrXULo66qirW1NQ6P/KxTSMva2hClVOttZrXxVQaWJD1B+FVl1QL1Op0eVVWRr0qOjny3QjhBHGekSaN+IDDGonVJHYBBUkpEtOQoQLEnkxlJknDmzC7bG14KKYoSqqpqIdx5nmNMTX/Q5cKFC+HzO9y89Q6Hh4dtoASoat3Csw0CQUQn69DpvIs3ksqIki6xEu08XUlN3Om0rU1rNdrWGKuxYYM2xmGtJokDpQKBqWtM7ZAPqKheD0o4Ozs77O5sUwfgSF0VLUqvAa6cXp1OhyzrEkUJeV5SBBK+dYL5fEkeiMORMMROMxquE79LK8EYg9MGI0QLT7fGIKzxBGDdC69ZhHSYBlLonJ+TGYtpz8kDPsDJIHrrf9TvAup4KAKVSLvUpQ8C3QRefuUs778ypD/wVYbKKnrrI2TqD3cxyTkz2uXxTsTFyJcCW1Yytd9AxwNU8Lp4Yzlnc3WTJ256SSXLPsfdDtYNKcPJW+iK7s42RzTDVUUx6jLafIpe5LOlVw9e59m9bxCHz0L0qHQGk4xBaOt9oNtHuX1ML7DOBwLnYiQD4qDePop6yGWKmULcuwbAaj5BRhFzGwaO4xkCQzbqU09DJaYVygq6gePzkz/6Z/nsn/leHnvyIhcu+0Ch4ojlasQ4wI6ilWArehZ1CMPSB6rdC8/zyn/yI/zGc16q5Rtf+yZ/9WuvsRitEUSPWf69kifo8BwZV4feUtxcWDBa3+d9r/j3/Jnnasp6QXTmLCLySIlZL+FweoM08RtQdzBnvtojtZYLVUgw7ubcsP+Us2EzOTx8jNnhNvQkbyivML8Qc+bb63SdDxxfZcoRvjM3DMfYzaDLiKPjkoNgLKSxdIXkfOkf+GmtWaZ9qrRPafx9FMdzpmrO19Z9ZXrxuwbc+tocpt7kDmDFOu/lJao0aLpJisInSlk/Ym98h+OpD1Q7uzvkdoW1giTz13I2L7hzPMGStElxVZaAwIZkbjqbo1TCcLRBNyhDRFGCiuNWZksKCcqilCIK7gFpmhBxgTRtdCwNURTRyzqterlUkKQW3QAH0tDv1QoV5MG218+hXEY3Xuft1/yekGUZnUShgtdQUVUIUyPFEvcu6b1SC7StsUTIxn8tkQg3aQNOJBQJfpRRS39vVZXBOKhC1WEBZILM4gdu4uee9COL6fiYb7215MaeB05cunCG8+c2mY4PmS/uT6wmhweYfMnamV1SIXhf4Ku9c/MWlZuzvj4K38NRlQXC1GjzLmhXtU6NQOcVdUgw4zgmTRNiJwGfPGS9jLysma9CwItitIDSihb1mET3f0nlFlgEi1UwoO1k970HHoEpHq1H69F6tB6th3w9FBWVO9UfTVLodAeopEsVVLf1siKnIAvad2UpKDJFV8S8+pq3Yr/9+39Afm3MmR5cCq2eiYZIFxwFUcZZ5JgPB6TKIWKfiW1vbXhliCAsqKsaRYQSqoXNa+119pbGl8wCTZL6PvpqOQ7HtKTT77XZQxSnCJX6YWkgvK2MBNtF15LlzItJlnVBlMSkoazPlCCS3sAxDiToIp+ytBlxIAU+/fRTlHpFnMVtC2C1WuAYYYNwJMqipENI0fJc0izGScXn/pxXg/74xz/BP/mt3+XLv/KrfPPrvqLRGCISSiqKkOXs373NeAo/+JmQPbqSLFX0ej1KnYTz5uimCYH/SF0scbam1+lSBwJlnk9JrWaU+pbqMDXkQlN3IBe+FRtdgMufeorX/8DbmR91Pf9qfdRBhcy8GFt0LTijdsD4a+vQGOG8IgC+pSpiQGhM0BGLpCCRMAgUAmrpbRIt4B7Jp4MHFxSmxDlHN3DZFsu0JXsCzCZTzl04S57n2LCFSCmZz+c4HFV5MjSPVNK2EMuyxhjDbDpl787d8FpJr9djOPQVVr/fJ81iIiXaK+GsIe2kJKGjYozxag3FApaN15JX627+ThxFvmUoBCo8N1JGrK0NSZKILDjq3rh5ncPDQ1RAGqZpSm20Jx6rB6MPfQusQhjXCrUKIVph7dNLSoUKBqSRShAYRMvrs+jahmrq/nnYM0/7mfzhwR5HB3dZLf3GtndwhMDiTIWS9x/jYLhGbRWdbpc469Pt+qp398xZjIpbAdjx0QGT8SHKaZx+sK6hMQaBA3tCG2qI2M45nD35byEEojnXSuHwe0/DNXPV/XO4O3fusL6xRa/nK+B3Q3w+FIGKJEOF8lgmNbVNKUxGPwsq31GftNuHgELbXN/ErOD20YyDW36jOj5a0FVwewFBZICyD52u4mbu24p3766YHKfE8zEi9NbPj7fZ7A5Ya5SJsw515VitCsq6Ecp1xCIhD0HBmJy19T7dDtiAzKmLnDR1FK2QZJck7eLEyYBXixlGR+Hm9HOiSElcDS4MYLrrawjrmE2PqYOFRxYpJscTZLgpsk5EknYpTEUdNhAVS3R94sNpaoOOLEKpdv6nYgVKcjTxAIi1M+t8+kc+zYWnLvErf//LAPzmb/4208mCwWBAFkjQ1lRcuACf/OSHAFgfCepaEyl3goyqLJkSGPzPeTFFUpMmMS5wNKaTnB6w0fPfSx0VLM2cwS5sbYUD34VbF4/obXiQSjfe552vwmqSM3C+hShW3hTOUVKH7azE4IRp2yxGgIwinJMnvXXtSOKYrvJ/u5hWRBaUAQIf711a5O+Zlec5zgnKsmzdaxuZnCbhGY/H7J47Q13XqLhR9JeYqiaJEmTYmKSIcM6hiwa44JBIIkAGBJmtSkgT4rDHd+KITpp6kmlDnrWGol62m5iKJdaC1lXLq4qiiE6SQpOoSYmUXgUjD31tKSUykvSGPbqZF5OujGZVVK3gqnG+7ehE66pz37LWIpzBd/Ca2ZpEyrglJEt5r0KHP0aBlBHNXlxXBlxNXZv2PadXmvpEYX1jhyRJmIaEO19MOR7PKfI5B4fj+69hqZnNFiTpmN5gnSrsY5ubm9SOEzUNDHW5oFzOKN9FmULXpU/irGnPtbUn6unN3lbqGmPuDUQNAbiZ250WH27W0dEBaSdrW7iVfvCM+OEIVE5gAnpkutBMFoZCZ2T4C1VVK+ZjSRmkUIze49ZbN+lWlmTmqxxjI1QHxvs1DXBrsA7r2yPMus8okk6PQa9HNBjgQp/4zt5d6s4S2/fD1WHq7aNlZRBh/kStiXsbdJR/4ObFhGIxZzhISYKRlNYFpjTYwB4XyiEUIEq0PbkJ/YUzJLVnp6dxj6IsWwv0bGCpa0M126cKgSruDsgX8xYK26lS4izFSEcULATiKEWZ5GRTtprKVjgVYUL2GAVWYdTzN8w0n5DEKR/6xHdx4Wk/cL5w5SJf/OIX+fq3DnBiGn6v4lN/+mle+oDP8Fb5t7zicbnAVAHlpwXC5Qjr5xqRrXDU5MsV40N/3eYTx4svKNae8J81uHmdX7sB6fPQe8r3zZdxxbd777ATrEjOpxdYJGPe+V2NXvprdHG0S8cV2NWYO7axEDG4uKYOm0BhIVZLYqmQDTDLKoSOsSv/pvFshig9Ol0F9Fb+KFCRJJmvWKpG1mZFN4vbzXS5XDIej+n1Ry3h9ujwiPX1dYaDdWTjxGwteV62yYy1jl5vwO7mJv2wab1w5QqdTqfNqDudDkoJP2A/5W1UCtVuZlEUYToJWTdpM/okSUjTuK38JGAxWFEHJKIHE0jnFSVMQNk9fvkJOt0eb159A/BBOElTIpVQ1PeSjpvlsOC8/Y0QoaJDoLVu4em+mguyTLbRAwSlZPuzlA4pI5TiHhWOZv33f/WP52j833zhr/+xfu9Bq65rhAvVnz5JCoz1UPsqBC9RGbQ1J7M2aanrmqKuaOKXeACZN01TjKlbUrZ5l+zg4QhUj9aj9Wg9Wo/WH3s9bO7M/6rXwxGotIbWx6lHf7TLaP0xoshnR+/cuMr1O7fIQ4Hz9ls3uHt9zEtPn2c7XJ+D6znn+3BuI+LSh3yLaLi7y9YzV8guemRcZ7CG7g5ApehQnaRnzlIfTxgfec7CpD6ik3TI0h5JUOZOkg5pMkAGPkSxWjI93qff03QHIYXXC4r5FKV8pihMhKgs2nnZFgARaYTUKKWRhSfBxrKLLmrsyn+ROi5xVkI+h1CyT48XRCqhGyohFSdESUwSR8hmKGQhTbonBERdYUxNZQ2iyXqE7+WPNny1Evdj8rzkKD9muOsrms/++GcYnR3y67/+6/zzfxbaePodPvTB58mXHgq7WExQIsLVOZHz56gjJZVeYLTPQlPhKGrD3q0Dbt06udRPvLTFB/6Ur8yeYoO1b3yVry/hHeWrt3kG0faQW4VHE1249ASXXzjD4o0jisDmHS+OWYi7LPQEnflMXMsaulCGOzrXYCKP3oqCcLFYga1jpvv+vppOS6yS3tfLNQ/6g7XG3ivr4OCA7e0zRFFEvvRZ7mw2I0sUQjbdA83B3j7ra1ttW3Bvb49LFx8jijMeO+tRrmmaEkUJcexbiJ2sSxynbG+f4fFLnu/X7Xb9HKO5j7EY7bsOJzYhFpEqtA2VWaX9nMpUJ3DwQlNVEt2I1GqNcC5UMacQbdZzgCLhn9vBYMDm9g6Tmb//VnlBEfhKlXnwvWBqjZJR0BA8CRBau1MBwyuri3vU+H0FZgIfyQVfJ6WitjJr1r/IIuVf56rr0hunupOKqtYlkZZordvqUFvj4fcNPs9Zz0/TGheqxYYSdHp1exnGGKogSv1wz6iwiNDCkkKymNfcvjVHB/DCt6/u89Y7tylCuT6f5eQVXL2+zzgADs6sS55+8QovPfc0Tz/mNy/R62H7I6owFKbbgUhRO9vCSIfDAXGSUQWF7+neMcd7R9T6kLXA0djZ2aWfbZFkPuDs71/jeDWhLh2iGyQN9AxIW+MvUSm0LrDO4GRjvV4gZIGjIrN+E4iqJaqqKFb+ITxeHiPiLqaW6MC/UGmPtJO0G25tBbWTdKOMOPGvWWvBJe0wE+uwzoXBZ+CIOIOzluMbHr4/HPU90dI6VrW/iVQm+OQPfA+vfO+H+cf/wKtnv33jKzx/5VlmE+81VNWaQS/BuAK0n/8lKsHpAqubzUSwmhru3oSm/X3h4oDOswn50PfaN9YtH+lscvStI173nRdqC+uDHcowV7jx+iFHr1rqeYQMQ+ginZJ3J+TAKvf3SC28pFjjKICAXHq7bbfwD8E6Q5wVLIJdiwaEESgktW569O9tIOxb16+1M6o2CNQeXNBYMShEOzxv4OCr+YKLFy/S7QwY9nyLp98fkqYpncw/f6PRuoejyxgbnuXFYhna4ScbtZDOqzY0BptSktc1zpyoSTjnQNgTEVRjg0p7A9wowVqSJG6Dh3MOXXkXXhkCw34Qx40z/3vrW5vcvHmD1WrVgkC+c9V1iZEGJc0p4VqNkCn2VIBxziE4UavwIAp5AkqwAuEcCnGiOv6QLa01knsDlaoVdVT7pDgct7Xe/qO1+nDNdxY0CKsouj/4Omcp8iUm8BcbAM93rocjUNkaF1jgk6Li9/6/r/HNrzlsyKAmyznzPKchRme9LnGUcP16ReqFwPnID/wpXn7pOc5sDFlpn8Ib6XkCOvAo4k4fgSSWMb2ef21yPGY767Kx5YNSN+5gtOPg4Lh12Jwu5gwGrkXYFas5upwgnMAGlQVhFwx6W5jAlJfkYBTWaYQKdvVyiRZTajMjCkhAnU+hAj33n3W8NHT6W3RH2xjZCGWOMFHW8i/K2iKsQ8YnmWgUpeSlaOdhRiSgFEI6EKG3jMFhWOsFZfLFlOVqxfrGqL1Blss5ZZ4jhOBH/u2PAXDrbkY3PcAKnymjJ9iqQroCFwKuMYrYaeogPJmPDbN9KHPY8fQXPvTi83Tet+BO5avJrkl4/PxZPriEw7GvoA5ll/X5gOvf9n/3tV+9y+zrsFFtMdzwScDOM0O2X5KInUPyd77Xf549wnYniF5Q+BCa2PRxxz2Wb/tz9No/epsuPQz+PV065NQoBAX+GknxYB7He2UlScJiseDu3buosAlVVYUQHkDTvOfCuXNYY1iWPlHodbskyYDhcJ0s84GqQZs1VYV1CiFjpEpabhXhHY0LrJAuqDoIGj8KYx1VXZ8EpTDnFdBu+j54GZIAkqryiqou2u8APnjlufdpmk39LPXw8NA7Nuz4e1sp6Tdgq1vB6/uW1eD8zA15EmBlnJwi/IYgetqWRLoW8ee/x/2Ag4ethWeM8WjaU8AJpRSVjqj1qe9uwRjbdnhEBMYJkKqtqGUUA/cSlBtUZnMdjFGWKAAAIABJREFU381V+eEIVNRksf+CuoLZ0ZRbsxmNKryKIO7GyIBpO7q9pJd6y/oXXngOgJc+/EGybsSsWNAbNaoPXSRJO4RNZEJdG8+WDki0bpoxWy7Ita8oemnGhacus7a7y+GxP6nHiznD6RhtffVwdHibopqAiakCo91WOb2NDYpG2cBV4BKgRtC8liPMHFtNyBdB/6o2SJGiA3Ain5V0sjXWBkPqKJAW04zKKExABcS9lEilOCdZ5cGeXllWp+16ZIxUMSqizUwR2tsOBH2wrc0z1FXJ0f6hf/iA0bBPP+1RFisOD78JQL8nuXb1No8/sRm+64RlfptOqknjADCZzunGPVQg3ObHsJyCFHD2og+CL3zoPG+s/xH5xF/YvuzSF2ts2yWXZJCVWQiqV6fc+Yon5dpvwtlyh6EcMp56AMrBasX61gbrVzaIVT/cQgtMJyIOXmRxnKHqPrmMyPdClScKoriHDmibXtSl0BM8KD+s9CF5JP6E1nPPPcfxwTH7+/teERwQwSuoSZbTJOHixYscHU4ogjzP2toauIR+t0cdNuMo6/mqK+jI1U6AhlJrKhu6DMIHpdYeQ/pN0ZiaKiR9WmuMO/Hdc85h6pqyLNtWtzE1p3z7WC6X5Mu5V8IIm99kMmG5nKO1bn9Pa00cx6yveyTocNQnSRLiOG435u9cQvhqDkRrc+Ffvycu3QPf9j8bhLBEQUigscZoqsu/+PN/1UsTGRdMFv29XVUFDoMJdJ28mKOkI44VulrxN//Of3tPoPuxH/73KIuCw8NDD4QJSWgcxwz7jt2g8NPNEspigSlzZlOfKI4P9qiKBTa0PZ3VGCeD0kbo8FhBZATGivYcCeFtPaK4sbw4UZtoQDgP0k7sdjOiKGlBFOW7mFU+nPXmo/VoPVqP1qP1aIX1UKSPCRpX+cicAqvpnEQKRCBXWCcwK4MOIfrcZp/J0YLHnxnwyY99GIBeJ6Go5+hi0RJzR+sRxDF1kPWIZE0nST00tdEREwIQqOCHUljNcjHHoujveNBBZ3ON/HjBtXe8MdxkvM/FSyOyVCBcFT4/YjbeR5e+mssSiZQOZ+sWYBC5GqUEWZSgbVPiSuaTKZMjf8zjo5LLj7+furTIYBmtSZBJRpb61pdxEVVekaqMXsdXXQpFaVN0MyOyFqRARQoRYOnWKJwpWykoXVsUKZvDTapAeF4eL5jmJcbW9Nd9lVmvHOtr55ge+Z+d2ELInKq8gwhE3X5aM96/SzXzx3znWs611+G7v3vER1/5IAB742/hVE0S+2OWekg+hTNixA+95LO83/79N/ilX3qLTkAG7yx3UPWABEE/87frW2/Dzd865qV+l/ProWV8eMyyuI0MRordLGItPkuhIvYnAbiSOvRqhggzuyzpsN0b8vZ0jGgg7KbxLnpvrp2dHc6dOYfVrq060lgwHU/YP/Dcv9HakLevvkWvP+Jwz59bJxJ2z2xjak088Ne3qDwxdxW8pZxbkKYpaXrSXm1gzyf3rcY6X/E0Trh1XUNtKAIfqygKyqogXyxZLHwLr6oqcOaev2uMwZkT52Iv/eM5WoN1f4yj0YDhcOgFY/GV2Go5Jcsy4qj/wHNkdA1OI2XUVkdKqfsqMCklTrgWcOA/QyIbq24hQ0XpWlpJY2DoOWCBKBxFQbPW3/+dTg9rNcbVCHV/ezKOM+I4o9cfUaxyxsHXajabsX/nNquF32sunNulkyYYK7C2IeomQNSqsispsLXBWocNvlJ5oSl17mHq5nRFGVGGKryYrTDWop2jmAcpruz++VOSZJ7f1pRf79JtfSgCleSktJMA2iEi2SKKojhCSoiDcKUpVwxT+PAHnuPSuZ3wmxXL5ZRuNwITBny1xdU1zjQAgxzZTUijE4KZsZpaRO2NUhtNjifONvpfTgpGmeTyk54kuD6vMPoWs9mCfj/wKJyiyhekIbg4WwAS6UxriqZkBCrBuAwdApyuNWVhCGAlummPXmdIlAwwwdFXJn0KK8kD4AIBicxQLmY5CTOiQlP0VCvK2ekNcc6xWq0oQjkdRZJuZ0DVKMBai3QW4VJUYNWnWYSWJc5atAqqDzbB6B7GNC0LbzGi1AEqECzzxcwLA98OrcAJXDgP5y+ex0RB9SM5Znptwfm1ZwDYiHaYrqYklabf8efxfL/kmQ246qXY2BEZhi6Oku2eH3ZN1Yy7V+Grv7aCT3qFD53mRJn03VbARI5FtWByXDKZhnOkQVHR4IqyyOBih1Tt7Be4f+D7Xlqz2QxhBbFK2laalAopJQcHnih+fHhAFEkunL9EkTfBpOCQfSyK2Z5vI1lrWa1W7TyoLGtA3MPJaYxSGzKpcya0uWrq+gTBV08XbXsrSRK63awNOgC9OCFJT0Rh09i/p9/vt8/EoNc7Faiye47x8Nh/tyqfY5zxpoLFg+clzmgcKqB5q3DcMVbcK+wqUOF42p4lzlmqhp/pJEKoe0RZOdXCa9qhDsBKGmQ0QnklDutwDyAKR0mGDK65kYxbwEe/02c6s6xyf5yvv/k23SxmYzggCeTiLCtZLZdk3eAKgcVaTV2XbR5QW4OoLbXRuBCYGqmBphVqnAe3aGtbA8qt7bPAnXuOtZd1yHonAaxJRu77Tg989V/zOn0QjpOtolFUyOKENBLEwZVzllv6Cq48fp5MNjOiFUUxI1ZZC8cuRY7RdQtwUHmEXApUpomGvjpxVqOEQ5/ypxFKYoVo4h2RilGZYtD18gndYcXxcQ7uiDrY8BqniWVKo6IinPbZuaBl6kciApkhncAEJGClDatlzSr4ag16G/SzdUQ8oAiD/b3jGcnGDt0gIbValswXC6bznG4oBbZH65T5kiL0sV2x9BB2qUjCw2wF6Lw6keu3FmcNykEcUpk4iUlVB2Ed85AtGtPB6gwbhqe1q8CtoWWPWAbot+1gy5KAiUA4ePrpJ9m9sMXKevX0WXVIfMfRbweulnpaIlxOpPxxP3Ep4s99PuLv3A0b1/4sCJ3GzI99gHWqi0hqqm+P+L2Br3J3H4fOFq3slewI9KJkfLQi2GjRs9ABmseil1icsl4V4b0dn9p17do1hBWsDdcZBhJ8N+sjpWQYNvy9vbu8+drrTI9nHE98EJqMlwiRAYqZbkjnFl2b1utISomSMc6dVGtZlrUoP/DJVJxEKCUQ4WJG0vHi+59rk9kkSej1emTZSaBKopg4jhkMe+138URVfQKrrmuf6RvD1atewqkoClarVVtBSKXodrvEiULJB98UxtZ+9iQM1p7IOlnBKYRfAIScmq74yupEcd0DK+p7kIGNyK0QAtNWaBaBRXAi13Ty74NkmyIwFmcdkfDivQDdOCXrOo4PGzWfA+qiJlYJ/a5/1ovKsFoZVIPQc95OvtKGKnS9mu8KYE/J31lOWdE75z25Th2Xc/cfa6fTxZ5Sy+j3B/e9Bx7NqB6tR+vRerQerYd8PRQV1XfmLRawyJYoRigeq+DmKY03VUyEZhw8cra2B6RpTF6WmAArL1cGVwpE7asFrWom5hghIrpBsmXnwg5JPyMOlgJGKjpRTGlsK/0hpcRAa0Cmog6bG5eJ1Cbzqe/bL6ZHnD0zokk1nK0wVF6YMZxmax0Yr3+WBCfclbOUxYT5xGd0a1mKrBUuokUD9ZI+s/mK8cL3mpWM2OyOKCm484YnIL05nvL8x17GLv3vVHEC3S5Zp9cK8NbGUtZ1m704Y9DG4iy4kD3GQiBFhBWWOGoE+CJMlEBANDrdx9o1pN7GNi3MheH29SW5v0Ts7sRs7w6QmSYP121SGEYTsNLPtYruBKk0KjYczm80H8XHPvks5b4nYP+9/+WA49mKEY+xdAH6r3tc7G8zO3ZMbgT9s01QXQgFJZmTsFCUUxChgzOMYENCt5HYUpoaTUzbVMG493buduPGDRKVgBWt15QZdNr/B15I1DkYDG60ZnjGRXQ7a8RRxpnQjnfOSwQ1fKReb9AaJDat9uFw6Nv6geiZJBFxIoki2c6WhHSI2bL9nYbDZW1BufD3RB5mUa9+3beWnK6pKq/h18gqaVPhjIeNj9aDmWJVonXVHuNwbYQkpi5X94jrnl5OG2wYDjQtOyEETglEq/3XiEHLU5DzMLowjZCrDpWXap9JgWkFkm37voCEbKD4Tod2oeUeqGNYkYgwTmNNhbEWESoZiSJOe2xu+XPd6fQp8gVVXbIfXMDn0ynT2aKd97nQwrNOt5/fEJWdgHudO0TrVCylJJISGSlEuI7z2f3z38FgxLJY/ksJzg9FoDKcBCsJGCmQQlCHG1PWBqdr6lXQ9RIemt7vRMgwGE9jhRgOKcuCWbA81k7jKomsG0WJOcd7E8bHUxrFy2defJb13U2ioX+AVL9DNhwiAR165ELElHXsFSOAfjykm2YMB2fA+Iu+f3vCamHoBZNES4nD4YRDhx6iqSRoCVLQTYMfj6qxJmY59sds1gyrSQ5lSpX6m7dOHLWFqNE1E5JifMje1Wu8/bU/BODg1h3On+0zGAX33o1N4tJSV0uqpj2gUlQSt/48VgqfEEja1qfD98GcFMRiNxwj2FijacQ9O7hqDVGfwwUe2fRwwdtX9+iHOfljl9eJO3MW1QIbWrZawPgN2Ep84EouloiupZKaAz+TZ7WE8+vX+N7vfwmAO9dKvvKlGZP6HdLEm1vKuENZzYmLksE5/3u7axIVK5ZhKC+LHnYZIZdz0hC8NmLFjlAkIZqlaOZ1TaQhsCMw7sHM+PfKkpEiUsFmvGnjWIs4tZGsj0ZYp70y+sAnXGujbdbXzqDijLWRP5nGeKXwZh6cZV0PV9caHdrPEQXCOWRQ7zbGoVemnVU1a/+t622gAuuBCqdaiDjTvgbeXFNK6CaSYTfoYcZdkjhGKdnaqpelotIJcdpwvxIiLFWxZFU9WCDVmBoXlC2asyKEwFGfauFF/rwJgbgn+ZEYe9IaddYHtKaF2Jx35wSCU/eic20rFDzHTMh74fDN+hv/2y8+8Lj/pNfV8f3KFFprRv0RVSNu+y7w9IciUJ3GyjgpcDICoXDhgppKo51reVVrA7h0sc/21jpJGuYmdQ1SknW7iK3wgJUCJwVJFSqKWlPNluxfu8EqiMe+/cbrbF7YprsZHHYfO8+zL75Id20NGT4viiylSegFAmOv26EupmAlsfRzk/lUIMyYy0/4KsShEaoGeeIyrUsFMkZFSSs1omSHRGbUqzBryy2zwwmyJzFhmLJQOYUUpD3/+fV8zNt/9AbzG3fYDLyFi09c4u43f59xQNZ019YYbm7TWd9GhtmCiTvUUpEN15ovBlGMQLUDT21d2/uOjY8CQhTIeI5S/iZKVEztRggjiV2YY0Q1w95Vzp/3f+f8Yz3mZsyispjgaFoY0HtQPus3gEisuLs44tgc03AHYwHVtGRjzQ+7Pv8TH8BEf8T//StHFM5XzyYo1zz9/DrlbuhtxwMq6zCBlKoXCnMUkZU9koACHcqEkZTEYegtTE1c+ocgMg0S7b1N+F1bWyNTaSttBD7g1HXNhXOBXY+jqgvKQrdSIEopVqsVgorF/u3296RUbbUSRUkLpDixjHBIecKRQliMKTFW3yOhNOp0TmY70iFERCwVQeAdpRRpfPJZUkqkFCgh75mbGFMHFZfwl4VGCI0LgbNaGeooxiAeaA8PQahVSbwy7emZlG4DlwdaqKBbdlpGSRCHOZRxYIVDCtdayvtK0WGd9xpulhHO223glUE8pEmcnLf2c//NGra+dfUaw+GQXsAMNBX3d66HLlBJFNIprHUtEks477UZHOZ54cVtvuflD9DvdykrH6VXqxVJt0NVlaRBmVkbDcKRRk1GpYiFxOaaOuiY3dwrubt3jA3n5/JzB+zunKXfHSCC66thhXVbaB2yKNfF6prV0nEQdOPu3J6TXu62bG0RlUTKgBKY8HdKDVI5VJRRLMNmaSVZ1EEE6KfQkE8WSB0T3JJQ3Yw3vvVtdLhxNwZ9ElNx5bHznAlOprP9fd669ia3pr6En+YV6foG5556hu3Hva6a6o/IRUS0CLJHvSHpYIhKs5PhqHMoqYiiiGTuA5qL5pDmhNOIUwJneriyi3S+glsbKl58fspw/Wb7O0LNgIjQnWFV+Od2GmSPlqt97poxC13TDcCR9VgydJbF4TUAti+s8X2ffZq3ixW/+U991l0YeOpJuPT8hBsBTFJOclyaQKjwZgcFZk8j5pIkkJCVcCSpIwtB0dYQ1f4hiGlaL++Cj32PrKqqIBJ065o68glFo+jQWMHXdUVRrnBWooJ6g64nOBK6nQGbib8HnXPIOCYKFXVkNUY7r1YfSliHJYoUUdS0+STOCU+ObSWUoC7zFhThnENYccpDzEOjIaYKSL2WSMxJb6pplznn2Fz3Cv46SAM1Fj5FVXhghYxaesh3Ll2XKCdwIm7bWj65M6fkmtQpZfXGx83/vzhu0LOmVadoUEBCyFaGyAVlHi8XdVI9OSQOB07wAHzCv1Hr8PCYo6Mxa2u+UFjf2nzg+x6KQPVoPVqP1qP1aP3x18MmvfSvej0cgUqeZEcWgQ0VVJMvOSEQOEY+6PLRj36UVz76fspqxnLps3OZRvTimMPpmI72GUw5L3FzhwoXMapj74znPAcBYGdbUEnHcWifzsdTbFUjtW35RnVeEK9FTMb+51imdKIOdVVw8x3Pv9i7e8wLL5w78WxRFiEtQglcMwRuvq+SrMIcLXaKJIqJQvookeiqQhUVou8zqm9/8ypvXXuLnfOeR7S2ewZhHSOV0g8krelqyVBaVkGaZjXe5/bdu9zZu8vOXQ8P333qabo7uyzn/stmGzkDZ0l7Pa9ThW+9RsQkStCtu+G1EgeIIAAsEd79VCRIF4RyyzHnzl5GCz9sOp68g1rzw/FyHmRubIxSNQdTfx6z0pGsZ8R5xmrsz5FaaSJRkiX+bL36zd9n+5mP8UM/8knenPwD/91quPIhmM0cabiFi9UKIRKk8T8vjpcUe47ORNGgYizaO642Izvnh8GSk6xXPSSPxJ/UOjw6JlExkVPtnL6TSPI8bz2jJhMPUkiT7gkfUWuUUKytrbEeBRqBcygZt9WSb/sVngISYOVVVWCiCB01lYgn/HpybFNlCBz6HkJtFEXEKjqR7CFBIOhmDaXCw6qdPU34jUgSD2mvAv8rThOSNGnf44RDaINKuySdBwukaq29QaNU7dzIB4qTtpsQFiE87Nzd00KU1HXw0AtCukrG7fztdHtUtRugxHKiTN6Azfz5Evz7P/MXydIuzphW9gpjkc7/24j5OmOYKYGUTftEU5cF2BORXlyN1VX7nrr2YBStdcuVMs6TqY12pKbR1rw3WDrnASfGmNY9oraeH9ecaxVHGKNZrVZMJp5D0vz7nevheCpt1HZjuyoldmDMop0WZMLvNc8+7m+cxy4MqPQRZT1nY8s/PMtFzmoy49LWLnMXNsIsRQ8riqXfmEuzot6cINcnzA/8Td+VsLEWoYKHyPzamNhkaNmFNf95qt/DXDsgcf7vdNI9hL7NV//wKxweXgXgIy9skakxMvIAhNKuUcseRjpmeGSa7S/o9CyV2CPte/LwYlHzTrnCbl0G4ED22BrsElnB/te8HXt59XVe2dyge+xviuru71Nrw52ky14Y6ha1prhdUBz5QNVbRXQQVHemFJNvABDlmideSqmiEMjzGfbwLvHakM66ByqkwyG4GFdLZPd32kvkaiDMcQQxyJIym5EHjT6b1Sz1AFt5FQrlnqIzLUDPGBx7JNaZ8R6Tm89jA3rxqVFGtLzOwdI2QiEsFxD1wYaA00Fz9NY/4bEN+K/+A/+e3/xd+MNvQNa5wDuZ//yOPIO5FWH3g3rJ8S71nSl6Om/vo1xp3u7oE35cD8YRzI7BBbHMLg9Ger1X1mhtmzQW1HaFE1F4bYsin7SalYNMkUVDhHVY65+1pOvodAT99ABzCoTgNftO/r6QIhh4+tb3cNS9Z2YlZUSi0nuAEr4d2SFOG65VRJIkRMFuHvwmqR2Mlw3g4hQQoXmpBn95Haugzs/SK8M3G2Sn1wUZcXjtHXr90QPPkTaOpBuxypct6q/f71PXrj0eb5zogJMZmcATp1shg4Z0eaqF2QRjKWXrKOFC4t6i9wIK0IqTmVReTrHOkQQ3BZEIFnkOiWg/rywNsanaz7C1RkmBilVonYKujXfwbQ4oSohFhIzMSaKgKxwghcXFJ8HJnhLX9XxYi4iCrQE+lXBOnVKPdwgHvU6Xbvbg2VR7GP/C//snsIzxqsj3qFVIbxd+5Yr3Mer3+yyXS6pySa/jN9her0dVaZbLJf2dIH1iLCbRkIaKJhnQlx26dDi77iuhuzf3mM9Kgng7ySDyVciVZ9je9rI+S1MxvNjhxjWvyv61b79BMX+LydENhv1gD7C5Qb8/oNf1Zd+8FOgqRiDpxb7vKlQHWy5ZLMcMg/ip0IbtnSH94H4Z1xHH09ssDseM73rwgOrAqj5ieugf3NlygXWSTn+DJPgxGQcm1bDtL/hQdJEqptA1Vcjopm7J1YPrpAEZWCsFJiWJDVXHn+1uBpFMESpCEWZUzaxQyVM/S4RKUVEQABYaRIU2YaOvC6o6x5SGZVDUWC4stShwQT5qPK+Q0voZVkO6l+DckKNjjwysJbiepySo2F/XnTOWtVuavf0ZMojyWq0ppyVlELxN55GnMaiIfuwfjE7H0hvFmKB4XauYYlFQ0fKEUeK9PaMqS69AkMgTtQRrLdacdm9VxFFyj8+TMQYnBEVV474D4v+dJFi/iQfwjojQAkxDZkW0FAHdqKdLR1mZduYjpUEEdYXToAxr7QkK8F+yak4CSm0ss5kPVNE0AySrvCDrvgv5VAa171OqE34Tly244YTwK06+Pz543dum+07Srg9uQOtM3Hw/d/q/nWiDFXjvr6IoWj8upRRx7F2ZW9WdsiLLopPAGby5rD01x+N+OajmmrXXW8TtOZCtC7O5RwXezwLlPchNaxvwx6lZY4su/ReDQN7bpJFH69F6tB6tR+uhXw9FRSWV9LMjwIbeZoykyXOlgDilnUfN5lOSRGPqqn0NIE47dDo9nGlQMwqFa30uon5KJ+rTz4acP+tdfy9envD6t94iv+bJjDqJePOtN3jxk9/DIHBE7r7zNp2BI9sKcb3TY1Of49KTXXpZmH9FEdNFwWjHVzixioiVr2rqps2gC4xbYOoImwROktJsbY9IN3zVVU5ybr99k+nqJhUenRdHiqIuWQVEUy0F/fUtRrtDeiNfUQoZc2bnfac4KxlRknpR0EB4tM4h05RJQDxWQmCUQmYJMrBgbVyjpYfamgZmZCXulByKz4ISpNStwK0TFkuF0AEKbwpvEWALjA26asQc5ftkWXCOrTJUBUczKALXSUkQ0RnKKkDx5QySBXousR3/3XbPn+fy/8/emwdZdtV3np+z3Hvfmlvtq6pUJSG0IAkhtCBABmGxDKDG0MaMPeOR/Yexw/Y0tmE8OHqgTUd3dDg8461NjD1NO2xgCAwYG7EIq0ECBNYulaTSVipVqfbc8613OefMH+fc+15mpcDd9rSrW3UUFcp8+d7d3r3nd36/33fpOBZWTpKf8sRgawuyBYsJJW6XChQKHSXEdb8SvPK6S9m8ZQLVCAaMSB596nlO33+QxUBULtz6WmMvlzEc9jFKIOKxbMlZ0iyjCM9VlnntNxhlS2X5zjlHNOYBNcosqDKp8YxqOBx6t96xFXxZPitX+saYVRDvigAb+lDle4wZg7n/iCGj0TE6J+j2A2dTDDDOcwd37onX/axzriIRVz6lhUHo8XV/mS3YsYzSIYNOXziKcJHGvUEC7J2AWmZU3hv9X6zKsMBXVNJ0OAZPF+R5ThRFxAGyH8c6+D+pansid6syKhhd/3Ks/c6k8+VE5xw2L/UN9arsTErnBYbt2BciLAiLCO0K/97V+36pcU4EKiFcVfrxPigCLWXl5VIU0IxBhS64cBArTYEiDXyoLMupFxbpJNKMLkSR2yqFjoioxQn1jTPUW76sNbNlBxt3XMCG558H4OjJM8wuLnD8+IuVevpEo46p5zS2hCDUnyTvdNG2TlL3+0qiGqom6PZC6UE2qOsJrFH0lwPM1EiSpM20atC3oawXKRIZEwWG/0CmON2n1iqIg6J7t7dESgqhEjG9cQs79+1jy859JC0fqHInWSnyikdS6AghJJAgRCiFWkiNY/MF2wBIjSWzztNFAvZcxNqX+JzE5eFBFeF2KktBwjt6Ohd7ZiVg8hRBAxEgzcoZhFKeJT9V9hGanJg4Tid4z5zp9tm6pUZNDOnOlt//dtJ0B3koYVi9QjaYZW7pNF3ne1v16U0gGgzSIf05v/+6HqDTiDj3pc+arIO0GOEYBj7eoWPHWLYTNGf89YjaE+Q1javHlWZjqQbwch3WWU/GjUeKAqZwdHo96uHeSnuGhcUV+v1hBZku5zbjziahrlf6G/+bD1SlEkKgHo3Nb9ZSlebL4cb+/ZeM5tjcIgSlYxzS+dvcWYiT9fsmWZaBKYiipDo3Y/NgUVVKVSgfdJxcdY2cEKPrU5VIxwPD6P4r3bKBVWU18LqBZuzsszRFCUE78JGUilheXmaQpavKkfkYsMO770oYCzDea2t1tHcBJ1IFqjFuGqGX7PlwsgJOeMfmtQHPq3mU35oUq0uD1TGtM86JQGVdUTlxOixCSJRWlaJ4DkQRTIbeynDYJ88y4sjRCpYCtYDmSdOUdmnPLjRoUznjFkgKrYniGir0ZIbLQ/a+6pXM7Pa8il2nZrnvwKMcfOoAaWD8vv7HbuZMsUJUK202uuS9GEcNEfubOap7lea5eR84hXNkmaXIC4ad0LcxQ7TRSAVy0gfKJKph0pz5BY/M68zPU2CpT9SxpYR+rQkp2CAzM7lzAxO7thJtmiELorCD3JHVp3Fl4xR/A0ZKUwvHqBCowtItpViAXHj2bOk3w+ZgAAAgAElEQVTMKYVCSY2TAmFHt4dgZFdQ2BxrBQ6NcOUDL5HEyCD5KmWBFgqlG2gVvqPaDJe+doLnXvTS6EtZxkbZRNWm6KQ+y+ouaE6dGjIc+Ie03o6g0eTYEpxYCYTH5vOcWUp45ukezZIoXAdhJMqURGqFdZCN2ZwfOHQMdxyycFmbM4KVoeP00tjNKF/egaoc3go+OPyagk6vTxJQcMZJBrmhs1osnBL3VsgSwefCpFw22F3oxphqLtRaY+2IzO/GtjU+1sSpf/CohQwtxyDcaL9Kay8Gq/SYhNvqURQF0kq87P5YP8m5kVOD1jgpK+QfhMDqGMtg1glUY/09Zwyf/PQf/iOc7X87482vvn7d18+JQOVsQIdQ3jAWpQTlcyCAiUmIQ2rtHT8HZGlBp+trPUVumJycJo5rNOKwqog0WiaYMMEbBIXSZJEmlkFbTCUMpcAEr6NdF+9FTTa57+EHOfDoQwDs2LGN2p79NEvU0YSkJjWJ6CPyYFff6WLMMhtmvJpDf2DJzQDrDDoO0GvnkGLAYDDEzniUn41q5GmXfh7OQ7ZozzSJxZBs6ImTtaKB6C4zDIz2eGIG6hOkqkEaMG2ZlqTRNKbUDBMC5RRCKoZl2cQKHAZrS7i8qNjuZQPcGYkN6KQSPCGEQDoZghoIp4LEjahg3cZFCOEq7T9nazjhtd5kuG6JrLPvVdMkm/13vdA7zsDA4wePc8+3/CGuzK1AdpR2UFHevLXF9DZHX8TkoYG+sJxz/EzOYAU2B+xDhMAUjJrpOsM4yMeyRVVLGJiUbrixTO4YjPrho5vtZTwk1jvVSoELE2yWG7r9IbV+8IMqDAaNI68CiFRhle8cqGB1U6LTxktLbnUoyvMSPPCj2uV/zy/m71n7S0NmkWOQyNFzICNPrhUeZLHeKM+rKIpVZUqLHQMcWBQevr4qS5BUEkojtu5qiaXqpyo7OffUJnq9Hr/7u79Lnnu4+S//8i+zYcP6ZN3/nPHmV9+47uvnRKA6P86P8+P8OD/+2xnPPfcc11xzDW9/+9u5//77eeSRR3jzm9/8/9v+zplANb7q8Iud0WomUbBx4wa2bPGE140zTYyJGA46zAY104WFRVaWOkRRghr606q12kStuodhA7mAQloKR1WrbbdbrPQG5GFF1ZSw96K9LPWWOXLCywE9ceARLp+5hCKUtWyWkfYT8iJj0Au+UsNAiIwD7NwWfkVkcoTzpT9nhjhhcK7HcuFLf0YnaN2gMeNXUpOtzTR0StFboFgMZbU8pSBGSN8z0rqNlJMgJoiUh8NHukbqaoiQUCjlCZHSKYpQ4HfWIq0kDhmmdHjV9AAt9SdnvQK0FbhA8HVSeuknUyplA1YgnKiKOVprJBYTyoWFExgrAU0kAnEyiohkzp6LLgVgojvF3PIsWX6KYRYMGAewOIB213PWur0OE4vQ2ABRM5R0OxnFsmVDHaKAfdAoTOawoSmf2YICRyEMWP/9LyynRC1ohWu9ded2ekPLSvcEtkzfz1f+qvJUCVTIipxhmpOWfkQIZChtlQr/iBgjw2cqrR83ajqVv681+lNeD281WXSdRpf5x80qhqaUN4qQWlcOw6mxICRWRriXyPIquHeeV2AKpbzsWwmUsJYARXfIsq3hRvJQfpTOiOPnNv7z6pvxXFOf+PrXvw74Z/+WW275B2/POYd9CU2ocydQjZmUWQIiJfwexzA1MVkR13q9Hibv0mrX2bfHl9C2b9mGs4KVlS5zpz3Btp0aGk5gawFgEGmkFljnm+wA3cVFNk5MsXWLDxyLZ+awzrF3/z627vDk3aPHXuTY08dp7vck3c0zG3Fakw/mSAOCTipDc3ojs8u+4S9iSaPVwOYFna4v4dm8QzPR6Cb0rO/buCKiGTVoBeJyzfaw/VmWl+ZYXBmVFXuDAVFAq1mjEUWESxVOhaBj60xQqx4iJTwpEicoslGFP4kihp1gDS4lSigPugjXw5f5grWJCnbUKEBSSjoIa5HKYa2hJLn7MqEEU2q4aYyVFFIiwuckEemwSxIHK3o1ycaNTd7wxm1cuMfD7o4+2+Nbdz5CNyhVDLuw3IH2Ikxv8YuClUVHfw6ataiaYKT1op2iVPiQYK0hNTlFmGBR0Gw1md7ov+sNM1tws4uee7qm3/JyHg5fXs9MaZRnKawhKoE6AkSUYsSgUt3390zkkTbmJTpKJUpifMItVVvGX1uv1CX16tfLn8c/J8T6n13vHAMJVSqN0qpS78aAlhKlY2S0PurPq8ILcKZS2IiiCFzB2fCOMVCBWItyC38TbqwMOPq7OGtb8L4fv42TC6fZuNVzPGdPzbJlegtxlDAYDMiKglNzJ9m62wOmjh85zp4de5icmGJ6eprZ5S7PH3k6XATJrm0XkqYDjp54jlJQcM+ui4iC8/D80mm66Qpbtm3BGMPJF0+xZWYLxo50DYUQXL7vCiZmJpiYbHP6xGl2bdyJksHhWJR97KISBi6vY4kU/NbD363Oer1xbgQqMYJECq9b7E8q/LlWgy1bttDrlBhiS70e4XKHqPnPbZjeCEIxM7OZRuEnwhNzZzhx7Dg6CB7WZjYgtUbENWoNv8pPYsHQWuaXS2Z6i9wWXgIk1Na3bNrM4mKPIwe9m2z94t1s2dhibpDTrHkE2cRUk06/gwhQ6IWlBfqzx6nXNLVaYMmrOgMstUQRN/1kWW/EuLRPGnorsVYszXU5vXgGlH94pmYm2d7YQhZsRvLBgP78HBNiCqUD9H0oaAk7ph4NaacP+IcOfPAf9jq066GHYC2WUqqmtPkw3nraGEQQWXdoFBFlVJLSIaVF4ILUTUA0WVeBMuJ6zWdlNqNwAfWIYzKaZhhMq5xrkOU96o0J9u33D96WGcGl+y/lO3d9D4CTx46ztJSSFnDqkL8j+hYmADtUlVpCbg0OW93n1mVIBVoJ8mDrkRfemnuq7dGcdmAYLg+p44Vuz49R33IcMr7UWSG3ll6gR3R7QbRVRxC+f2v9wsUztl8i6jvwk+FZL549v5+VPZize4lrZIvAIcaAHOsGs+r10pm3YGAKtPbPjZJQZDlxHL+k5YS1lsJkvrMV9mGMwdiiQhhbY1BS+8W1qm5K7Djh10l/XmNE4ZeaqJ1z7Nixg/fe/lO8+7Z3V8+5MYaf/h9/muHpDifmT/Pen34fv/ALv8DEhJ/zBoMBn/3MZ/nj3/8kW2e2cWppjvsf9s/Wr//6b3DmaJ+TZ47xH//iT7jqqqv4qy/9Fb//O3/Cpo2bObVwhN/82Ie55ZZbqiQhyzLe+fZ3Ifqj4xwMBnzwQ7/ABz/4QYQQLC4u8oH3f4B4wCrVkXojIU1TiqIkaZ9dvlgLlS/HuRGozo/z4/w4P86Plxyf+9zn+PKXv8w111wDwF133cUzzzzDddddR5qlDNMht73/n/HhD38YgG9+85usrKzwnve8h9t/7naazSZ/+Dv//iW3X/IvoyDbdPjFZ/irr3ye7du3Y63lr//6bzh58gQ33XQTxhWIsdBxww03cNFFF3HnnXdyyy23MD09zSf+9Sf4pZ/9JTZMzPyjnP85E6iyMekTQYDHBm5FrZYgpcaYUf3X5ZbCOWQpOCsMcRyhpay0xqYmpmhMTrMSasLLnS5mmLK1NsFEWFVTGFyaQ2muOBxS5Cl5XlSriFqthukNsAEv/+zjpzkzmbBx0wRxEMHsF33QCbNLHuucS4VuTiNqCWkoTxUuol2vUZucRE55yHgsHS4SuCAztNKdZaF3gkx0qdeDKaQ0ZPmC5y0B7XpEXQwRvVmk9u8Rok5iRFVXd1IjjCMtDEVY9dXqTVqtNt1Fb9fghEBqgYgEKhTbpRaoWCAVzAVSpyPxKKYSPeh85uuwqJKsqGywH/DDIr0po5OrBDSzTONU4DFFDlyEJceV+5901ARcf/1FABw9FDF7Yo5+P2V+0V+jhWXo9jW93K5S5rM4bMjeTJFjhMDKETEyiWCw0mcp4NGnpqZIRERkR/Dnl7tUSwkhF1Ku4juVnlTgy1y9lW7IOsaF/ELpza3trazawWqO1DqVurMSJVgj7PpDxng/7IeOcuoby8AYT8Jeuh/kkYy+zFxmAONSThCQyfienQq9Xg/512syKp9VjaSHXIUqFGZ0be+55x7e//73A/Dxj3+cu++4i4lmm0/90Z8itaSz0uEXf/EXAbjjjjv4N//y31Cv1zl+/Di/8iu/wnvf+15+73d/nyxdzc1qt9vUamN2Js7L0V1w0Ra2b/cI5g9+8IM89fAhBIL/69/9IdPTU0y1R4K9RVHw9lvfgcwUT/38U/zqr/4ql19xOZ1hl+1bd1Tk6LmFBer1Oq2Q7cWJRilvKcTDflt79+/7od/WP/koMz6vZO0JayrAuiMZMRykgJ/ghLXVTVKkwShPFETSgwjK6bJZT6glETLc5MVwSDc3nDx+grlTfrLesXUbNalpRj6VrkUxAjBZzjCwrvM8pxZnmOBw+8ijDzM/P8u111/L5Vdd7j9XbyEUXLhzFwCLgwG9YYoVEh37B77dTphqtZmamOZ41/OmlnpdludOsXDiMADduaMwnGcyyai3gv5eQ7M0N48Mnk31uIkuFsmWckzhlRnyTPDiqTOcOOUFYOfml7BCgkoqwmuBQMUJg2AuGNdjGhMNmhNNJiY9HHxyeoLJyTaNRgO3cVf1/UhZGrb578iFcqF1JWSdwJYs4bkKhMIpTSVIhqFwMbrUNYwU1imwfZCB6d+EmpLEwZDRDSdIyEj7gsDTZWlSMr9YMDfXZUEEwrdxZDmkFZnST7p6bL6KJPSWMmYzD8CRRmIKizTCK5gwsqR/OQ/Lah6Vtb4MWJbC2hMT9E93mZreQCco8SOkvzGsXV2hWzPfr/1drhMP1osx6u+Lcvl7xrOSLCuDsEClgu5k0Jt0q9QyVn3WGLAWJ+SqPo1TYwHLgnNF0Mjzr3kRXa+W7j/jkHKkCVieQOWbNbb/dnukO3j/D+7jFfv8Qm7rFt9Hf+z5J5ma8rX6u+++m62bthJFEY8+6jmLSit279nFk08eGl0q5xBasWFmZhQ8BWR5xisvvaR63333PsRFu1+Bc45NGzczGPRZ6S5Xx3z48GE2TWzm2qtfy+nTfl5LkoTFpUUWFxe5/HIPnnrb236B+fl57/eFD4hRFJFlGX/+V58B4D3vec+61/zcCFRKVCoiNjTEvclYKc9imZtbYO92nwW5xNs7C2dL5SWyYYEkwygwK15WKXFtokgzETg5rY2bGDrBYqfH8pJ/zwvPHaap60wHuaTpiTa1WCOlRqmRevFEW9JqePfepaVtLC7OMr+4gA6isNPbtjHX75IHs8NGa4L6dJ1a0iKRgeGegxlYeiuWWuGVMIYrc5w69BgHH3vAn0d/nn07p2hvnCYO2VJhUrK8gw7yPlmvhnEZ6SBiOSADT59c4OEHnivdOpjekHDBhRex44I9NKcCvyGKKISoLLaXux3OLJxhfvE4ix7vweZ8A62JC2lPtugGbpV0ErlWaNThl8NjIpTCUZnDgQChwsRU8rE0Io6ru85Ih7MxVuQ4ER5KkQIZFv/9KJXTSCSxi4lDGKlFikZU0IgccVjlD7KU/mBYSTGlxhPFc6DkTWMFyjj6gak6LxawSIrCjWWCL+/h8MFDSlkpUzhTUBgqFZhpPYPJDbUkorpiDoTUvk+5doNhiDW/l6+d1Z5a57j+czPdNUncWX8bieDiLTnCHrQUYB2myBgGoNTakec51hVEajR9WmuRWq3iPEkhEFaMjBALh5MOE6C5SkagLEpHo96a0DjpA1U85nY7LrabJB44UbiRqGy/PzrWRqNBmqZeZX4MEDJM01XHp7XihRMnOHn6KJs3bx4dt5SrpOnak02ee/55tmzahHOO1772NbQn26hwfwwGA66++iouvHAPTx0/WH3uxhtvIHExX/va1wD49re/zbtveyc333xz2L9mZWWZZnOUnRmz/uLgnAhUUsrKCpqgkZUVplrdZlnBwtwic3M+CzJ5AhMJSeyQZepuJM7mSGmw/QC6iDWqqGGCe6dxIKIG041JJmte5eLY4RdJu0NOLvmV4XJtnna7SavdoFGqXtTrDBeOkwSk0CsuvYq4sYHl3pCFpWB9sKWJEZI0nIeMaiRJm1g3US4JxwhZmjHsDJg78iQANs9ZPnyE08/6TGiyDdONFuSOF096/cGJusLleQUFXlqcJ8FghjXmj/tr8uJzp5nYDNde72vY111/E9ObtlCgyMJx51aSGlM5Kus4RkWS3BYMhv7G7A975HnKUrdDY6N/ULTSaBlXpT9rbSnbVfl6uaLwcav8Fp1CIPwkUN1lFmqSvEQBWUnmYlAGGRrOtjAYN0QGdflmu4HLBOmKg1AKsTZHtC0Og8z9AmOQRnQiR28Q/LgyGBaQWchKtRfnEFoyDHPrykqXHK/lfD5QjYYH5okKCVpmCaW+n7Me8KTFeB5gUa6gWKdBTvWef9BRjf00ymJeapTadKUmoN+/h4pIKVGhyhAJWQVnCIpCwlGkQ7ory+tuO8/zYL1hRj5WzqHE6Ji0iqusVMryAQjvtWVQ8mxzHzzGtQe9Csx4O6RUQVdK8esf+Q1+/X/9NYa9AY3JFsudZYp+waOPPsqVV17Jz//8z/PVv/kaYkXyGx//DQDm5+dZnl1mZnoDvV6PZrPJrbfeynfu+Tivv/mGVWTdrdu28Xc/uL/6/UO//i/45B/937xw+Hk2b5/h//3yXyDzmKtu+D+r4929ezeXXnoJB48/WX2u1WzxoV/6FyyveCT07/zO7/D5z3+eb3zDw9rf9773cfPNN1ffD0Cjsb6r8su9JH9+nB/nx/lxzo/bb7+dT3ziE4AHL3zv7+7l3gd/wHe+9x1effXVTE9M8/GPfZyiKNi5cyd/98APuPe+73LNNdfgnOOjH/0o+/dezM4de/jiF78EwJvf/Ga+/4N7+O3f/lcsL68OysOu5c/+7M8AuO22d/O1O7/CI088wN333M3u3Rf81z15zpGMyuamWm4JvJBj6W8Dvt7b6XQ4csRnGP2pGsXGNu1WnVpQ1K7FElekgCQOaX2/u8LQWuKp4FGkZtCR8PX0kK/t2rqTfqdHP8DTC5Mx6A0pioJBqMnXGnVk3mT5hK+tbtq4lV17rsEeP8ncoo/1033N5Mx2pgIptW9yssIgrCIJ6fewSDn63As8/fhTzD70FQB27NjB4osnMEGUdcPGJhNqktnjJ3j6aV+i2rUdtmyoV15J6RB0JMj6hqzrz62hEza8YhcbL/S1az2zicUCOoMUFbQPZVQjk46k5lPtHMHQFuQ52EBmrjdbTCURcaLpZv61SCo0GlGuBI1BWIewo5WOsCaUbEvPqqKsD+JkuQJ2mCitGuhGKJyMEVIjlT834QTSKPLUfx9JcwKRJ0QuJc991mtFhowzjM7QXZ/1pspRFzHdUFbpKks/hX4xEjTNhKTebKFDLTDr9clc7uWCwpNgz0G5mv+aozT8Gyf8Omf89xwyq3TQI448YKX0/iscOFsg+NFZqRjLjsosZ9XfxToZ0yoV7rN9rSo9vfD9KeU19qy1FcDGeRYuQipiUTrqlr5KoRLiCqSzmCKrqgzrnoMQiLH2AFik0JWEUhRF6Mqza5R1OSsqAJYQsgJXVGAKQ5gLLYNsBI+/9NJL+djHPsYTjz/O29/xDm644QYAHn74YU4cO0kcxcQ24ZY3vYV33/Yubn3rrWit+e53v8tX7/gae7bvZ9ulOxBxgy994Q6WlpZ405t+jBMnTvBbv/VbvPWtb+Wyyy7jO/d8h2F/wJVXvJq//OxX+Nu/vYt3veudXH3V1eRFzg9+8AM2zGxi/vQKd9xxB4uLixw4cIClk0tcecWreO655/j85z9PnucMhn2ef+GQ55gBv/Uvf4v77ruPz372swB87BP/B6/56mv4uZ/7ueo885co/YlzQUdKKOXKu1tLRUNFyDylFQRCZ5q+J7Fp0s8mm6ZjtmxsMzM9wWRAkDQbbZSKcVagcp9qDvMCG9dozHiOTnNmE1FtgqTWpBEEZrNhgbIjoIB1hu6gS2/QJQs3uIokGyevqIiz9VqbRrOFQZCH8ohqx+hWRDLhg0LUjkmSCFFAd8FPus8++gx3/c03+e7d3+G6miclX/aqi5hbmOPUvD/mK6/dx9YdMzz7/AGOn/Q9gWYTLrm4RSNM5nnf0lIzLJzusXSmH67JVq64/TYmpjwcNIrr9AaGrBDEwcxRxw0KJ5BlLU5JtJCebF2qSZsMk2dYWxDF/rrJgACr+ojWYmwRHq4S9VTgMBU3wrgChA29gJFdd2bmvI09YNHkhcFRoEOPShVDVDqge8ZH7mKxQ9HJybsDlhc9Wi/N+qR5n6XuImbBq5WkRcpg0KusULrDAd3M0RlAafraM5pM1RmE8+9ay1KW0jMZrlS9VuCGL0GP/+93eIaTEKhIgzXUazGbNvh7yZmCk8dnqdf9ZanX61jrg8HSSjC4NN5oUeAXIOVYW55b+3tpnrdWYX38NQBXrLYLGf83/rm1gcoYU6HOSm0+KSU1OXLSzdJ0RJQfMw1sNfwi6FR3ZWQ2KARvfs11KKWo1WrVJOycI0mSkc26ikbPTbgeZckvScbLW6XC+qjMWtp4oAv+9HOfWrXv//knfob5xXmWVzporZmZmWGiPcnzzz/P/n0X89RTT5HlGbsvvIDdu3czPbWBDTMbq88vdocMh0OWVxaZnT3FhumN7NxxAYeefw7nHKdPnyQfZlx88cXh+CwvHD7E3MIcl1xyCVs2beUnf/InOXbsGH/6p3/CXXf6/lOr2eLmm9/AO97xDvrDATt37iTPMrrdTgUE0VqzZcsWloMowl//9V/zpS99CeccR+dP4pzj7/7TPVz3pjec9fydExnV+NBaI4XEYqvGvLWQZb5XBTAcwmCQMqxn1JMA4Y4NYDCFIy6VwI2l0+tx+Ji31Hjh1CzdoWH37v1ceskVAGyZ2cREs8VUUGbXOkEIhxOWerg6tXqdk8eHbN3k2d79IfT6Bdt276RI/arr+9//O549+gxvebeXEtm6azORcjzx6CN85667AXjqwSeYPzZL2s2I/b1DnEWYTkEWFLx7cwMOd1/k6WeHFWR6aQE2bxgwCBA2O3CkdHnh+dME3Vp2brmYM52MXPngOr1hGt2ukQ8tKwEKpy3EtUaVvdjCMLQeSK6C4K0SChXVUNbhbKky4WG0duxhwkjffxKlPbjCYrDB8RPrpWKso4J6Oecw0qBiv38tY4rMkKUGE7KcBIXWMc1gw5JlEktKJlTVaNWZwfQ7iP6QWiVhI9BJhAxXTUoQIvOBMw/+U31HPkwpQhoQNxrUtKS7Mhylhv/067Z/0uGtGnyD3pkR5HqsZUU6GNKaaDMYpJUikjR+OSKkB82U40cFKtYEqvU8q3z2Ile9p+z/lBlM+f6yn1b+vSiK6h5VqqD0Y6qrUbZS0lH8vjzJwh/D+tcoiiKUUsRxXPGPrLUka2xB/PGOicyWavRZSYguJZTWitL6C52tQzg2xrBxZjP7L7yY7Tt3sHGjn0gOPXfYB2VTgJRcvP+VXHnllZw5c4beYAS0KArH5OQkk5OT7Ni+i5WlZbrdLvsu3A/Azp07mDt9hief9L2mbdu2cNmlV9DpdDh+/DiLc8t86lOf4vWvfz2/+Zv/Oz/5E+8G4I/+6I/44t98sXJK/tmf/Vl2X7CLbrdZAUHm5+c5c+YUW7d6pOIHPvABLr74Yj73uc9ydN736D/ykY/w7fu/f9Z5nxuBKlGVceJQgajVaLTbZIHBPJsVRIWhN+9/7wxrpPkkedHGpP7mSLuKVl1RiyXFhM8ECldw4uQx7nvIQzKfPeOb548+e4Sv3+tBCJu2bWXHzm3s2++NFHdum2Fmska7MU0SADMGWEqP8IO//QbgA+YrLrqEZ0/EPHi/V1g/8MgB+r0hz//Ao/fqcYJzjpWlRRaX/L7SwRCBpa4ER7cFCafiSRYV9JthX4tL2AJOzkGZBSc1eOQpw94LfDDNUksk2zw/7HLoBR8op6+Y5D20keGe1K6PrEkQMQQwhbB1ItFguetvnGZ7knotIcsyen2/HecMtSgmShRR3gznOyQTEEVhkokFhU1xzhDpMphZXGEgcN+UMYgCaq6UYAIlBLMSGIxMMiMniV2N0hFIoEFEZCrw2hop3axPHueYSb//tBeRF01UawN0g/5frsisYKhDeco5cutwLiWWIXg70Cn0A+2gv7LCsICGg7SkRyTnxiPxTzXqEowTRFKNTd6C1kRrVfYyzBxOaALVEOdyhDGeRhWMQsfwn9Xn1mZCQIBol7+FQCOpgpBSElVMVbzGMlCMQ+g99HuUmbRaLd8+cK7azpkzZzh9+jRCS+LAY3TOUYvBZAGKX1iiQFXprKxfhrKuSRLVUbpW6W8qCbkZBeH1MkM5FnhhVMUZr3w65yBwqXrp2ZFykAmmGk2277iAPRfsrtB5kZYsLy2wdaNHRme9Re773rd4/etfz8MPPzi6bjoiDcFESonLutQbDbKer96YPGfLhklagXbzyCOP0Vlc4pWvfCU7tu4A4PlnDjPoDLn66qvZsddXNH769tvpfjLjm3f7RfnyYMD/8PZ3cMON11HeJFPTMxw58gLzC35VrqOEvXv38Wu/9hHu/ql/BsCBA0+se83PgynOj/Pj/Dg/zo9zepwby0fLSB3ZGqzMsGPcKi94SZXCFmmX5aVZjh5zTLeCPfmmSXZu38LGmWmWzngS7KHDL3Lw0ElmQwYtgXpSxxhHP6BcOp1lTh97gWcP+Eyopg2RzIlFjgyaZSbPmV2AEi2aZfA17kIAZSsVfMJ+9NmnAIi8KDRFMWLfaxE08XDIbtAaY4Z8tkN/ya9oVvIJv0rMcmqBR9VfccwCtSjA840h0n2Geb/i186vnGax9zxRERxuRZtYTyNrE8Rh1dctllmch9cWCuAAACAASURBVIlQs87yDv3MH1MzgEDiRGPyFQaDARJP+HUy966+svS6siCt54eEDCYvMpAOoUsipUUogbOWotSDc2ARVYbnSu03MdLkVE7glECWAJA0ReoYdIwI2ZqMCqSOkHENFzI6QQFOIMsLYiRS+tV6qboRJ5BYSzBTJkOihMVmI66V+SHw6pfDKHKLMRacIY8C10gIitxyzTVXA5CmKcvLy8zNzbGy7HtU41etdAKGUsVhVEJcm1HV6/U1vaZRSa/s/yilqMuNa4AKusqqyveMf6a0Sh+3Xm82m8RxzPLyMlL6501K3yMqcn+Mg8GAPM99v+sl6sBJ4k1a1yq+q0hXc9Z4+bI8NzlWAi+H4ux+XDlhNPU6GVWvx+6dO9ixYwf79++vymozM76f+OCDHlb+tre9jaMvHuHff/KPufUtPw7AqVOnsEJU12g4HLJ//36OHTtRkbmbzSa9Xq/6/YYbbuDIkSM88cQTXHjhhQC88pWv5NixY3z7299m70mPALz8cg/2+MIXvgDAZz73GR5+8CHe/1P/nHe+850A7Nq+gziOWQmw/zNnziBYTWb+gz/4g3Wv+TkRqERhKtt5XIFwOUYzkscP/ASdlMiwnNRkDAYwG8z0js7O8uSRWRoNWAm6OktdGDIKJipK6GdecDYpXW+FRWepV0fAi5kKbYhV5bKOKWCzgKkRJ475RR+INgfnvomJCfKi4NQp3yi0+GqmMSNnAxkRiJOQDH0PRosWsldgekEAdNDHWEOHvDruWg16y7AyEcpjQqBkgRUxMvY31AvHTtAf7KYWUG9WWpaHXUTcpjHpORJJa5KknpDnfnKROiZWgiLL6Wb+5tFdP8HjHAOC6rstQAps6fgrwFiLVGBCgzg3OVKAroQpLGgDxmLLGqaxGDOm/SClv1Ku1CMJDzgCV5rv6RRUHacyTCgHWpHjdB2pHbZWws48ukqUJGUjkFajC4sLfTOpYnJblO7Z5E6jRY4YVyB4mQcq47w0GdaQFaP7rbCGg0/7RVg58eem8OALwOYFWiuSJGEYFpR+kaDQUQAYSB9g4jiuynglMq78vfw5ipJVQacmpleV/rTWVbAq3yOlpB5IsqWh33hAmZycRAjBYDBABffuOI6pJaLqNZWSUH77fv8Hjz2z6holyciCvhRldk6gxSpiWQBGrA52gjUIReP7gSWAoxQDds5Rn2yzdrzxjW/g6quvZufO7URRxIkTJwAfYDdu3Mill/qS3Wc+8xle85rXcOuPv5WnnvLf265du9i4eQvPP+/FBi68cD8vvHCUDRs2MBj4SXPQ90Th6Wk/Z8zOzjI5OUmtVuPo0aMAbN26lYsu3sexY8c4fNgr6hw7dow3vOEm3ve+94VtX8j/8yd/yp/9xZ8zO+uBUa+7/gauvvrqilx88uRJrwoyFqR3795z1jnDORKoYmPHLKgt2lpkUVTN+0KA1JI0ABeU8DVhqUf3RcfAYg9sb+TYIIFmPSIOthKDwZC+M9REQrvlodfDzjLtOGJz29/gM3XJTF0yVRckJTLIGlRtxDoXQhDFNaLa6IbNTUFuCq7a71c2FkNmMgqbI1SZZUBmM4bDITMh82g2BN1em+VF/6AURtMbpHT7Dhs+Nzs/YJj7+jmAQ9FJBwwGgtOhJ3XiuQW+/jff57IrXgXARZdsJGq2GQ4ES0HHUC0PyMjJwuqxNTFJs9n0KMCiVDgHJ73VR0/NVueLUAhTLhwkJigXVL0G4Z1hRZgAJA7hCpw0VaCwogAxSaXU7hzOGQTFSKOQAmmFRw0ChdPkaHIXUwS5ppwCI3OMcshG2H9mwSlEUJj3tvQCHUlE6ZFlIVICHZrrsYhRzuFUwdgN+DIffvHgnKi0Nb2En+B0QGJq5YONz5b8pxyQFwZjhpUEklJ+Ui+VvqMoItIJcRxXfaCiKNB6BEoYf0/5mtaampysglIZ6MYDXPl7GdwGg0HVyyoRfY1GgyzLOH36NMMgAlAGs/J4mk2f9UXRKJiuDVTlfpNkFEyllJyanVsFAJHSewdXGZX08gStVqvaThRF1OOkOtfy3KSU6HrEZ778Z6v2fdWVV7Br5/bq/Y0QmPvDASrS1eJiamYDSMWF+y9i7z4PlHjmmWfoDVJe9/o3AvDggw9ywd59zM/P02gF/b1aQafTYaXnF7P1VpMsy1BxxOZtvh+1sLRI4QyvuvpKHnnMi/StrKzw9a/fyf79fl9ve9utvO6GG/njP/5jvvNd37e6685vctttt/HWt74VgB07toNzLCwsVOd36NAhbuKNrB3ne1Tnx/lxfpwf58c5Pc6JjGr8ICS+VOd1/EoxVYt1oJPSE6UgN/69jYAIjZqggq1SOymhzRmdNGM59WlHpGLarRaJkhSZr1E3lGCyHjMTPJqmYkuLgnpuqKlSZsXSiCydoCFoBUzWp0i0qFYwqU2p65HVWVyLUIlA6ggdBzh0PUFHEoshsT5lrjcLlGiQ535lltuEPG+S2Q2IIN5aYFnppdRaHvVnTMTySsFgAC8e93yskyfmefyRRYYDL0J54sQS/bTg+Ol55pb9+a/0MrrDjM1btoXjaTA1OcMFu3ZwycWvAGDfhXuYmJhAWMdi4XtiWscIlVRw9QKFkBFCRZhA5lU68pypcoktLF4AziErU0xF5FRFCi7pnsYrePqXjAJnMSU1QcQ4lYDORzeKtt6rKwJqgZQqg5NvHhBWysOLtSCYOoLJvR6hrMqMfvWM4rx8ehiFtd641NqqJFrCvhtNnwkURUF/OMSOlUlLaSKEoBlq1vVak2azWalzK6VD2TpChn5nvVH32Ukoxcexz1LiuLY6o4om1s2oxkt/JXeq/L38fAkHL0t2e/fu5ciR4LrtvLboeOlRSnV232hsrKyseJLwGDzeOceFF128qo8Wx7HPKKNRtiilpBm88MqMqhbFq7LOMqNKs7MJx5s2zJANByzOz3khgrKtIDTpMOeJg94U8fd+7/dot9s88cQT7N7j+0iXXXkVBx59nMcf99Dzq656NY899pgXHVj0LYtOp8eGDZuqLKfVajEY9Oj1erRCFSqKFMvLyzz44P382JvfBMDBgwc5fPhwVQr88z//NDdefx0f/vCH+fEf9z2yz376z/nGN77BvffeC8Db3/42fuzmm1fpDDYaI92/8XFOBKrxuUEj0UFvq5z0LMbf2KEBIkVBJKBWh1bbfzpKFNblZBkM+7rcGApNFLS2WkmdehRjBgMGXX+jTk+1qNXiylLa5CmD4QCpiyowqkiwsrRCLUTFWq2GkIY861ZEUa0chpxBN9TiXEwiY5wrKAL03lhNHGuEglLSyhbLCDVABuM2bRVRrcZMo4FM/OfiRt1DVWUIlDKiMOCoc3nugRHLS3WijqzIvCv9lGOnzhAn84QYTJZ788DDzxwHILeeCV9P4MI9/j2vvvoyXnXZpWzbto1swt80Im6gdI0i2Iw4IkTU8gCHMOEYq3BCUSk0ihwnBEKK6j1gkcaNWSoEUU0nKuUB6yzSCmx5a8oIHTVwiav4JtYItIGEiDQN6t1W4TSVwgRCeL86ISvVgSJgP8qj0XjAzpi59Mt+lGAShyPNVxsglouy9YYjGCcCyyHoLw87EDQ0/3sa1113He12m6mpqQoIEMcxgywfQc9DENVao+UI8DHO9cKNFEDKHlXW61XOt3nWPWvfjZo3dFxZWWGl26nKmlEUMRgMKmuO9uQUr3jFK0BHfOtb3wLgda97HVdcfhWPP/44AA/c/zA33XQj3/ve96rzuOrKq3ny4BNs2uQpPqdOnaBerzM1NcXcXHBObzeZmprg4MGDfOlLXo7pIx/5CE8++SRf+YpX3Jmbm+POO+/k9OnT3HTTTQD89m//az772U/z5S9/GYD/8KlP8dADD/G+f/7e6vxKjtXacU4EqvF5wmIpgrxJOYMoFRElEUshCMQJTE/V2LBxgtaUn0zjWGFdQVFkPPe4f59C0mg2qAXJIFsYet0OJh0SRwEtFisy4egFF1jjCnIXvJUC+ibKoZCOibASz4X3vEqLvGqmFtYHpO27fY+qVouIagLrMkwp4SKsd5s1YJLAiRo4j1CSZYM6Q8cZMlGoIqilDxZwMicLoqA6VkQ1hZCaibAS27xVUpyJfOMO2CE1l75qO7nZQS80iLu9lMGwoBdUofPcMDe3yLGj0AnE4ZNHnyCRT9BZ3EJ7r7/BGvUJ4qSFc/XwHbWIahadSGzIqCwOJxWutKvXEU4IjJS4MYdfwjmB52z51y0iTHIIH6xKFr9AoVWMi+1IRqdwmNy/J9WB/1X4Plql1I6XYxLWEVwWSFAUwhKF7SgrUaUp8HlV2rMa/+fH+uPqq6+uMqpxUdrW5MSojz3mK1UF+CxbZR8ixEg8qlq8SYEQvvKgVmGK/Xjh8PMIqcjSlFqjVRUCwLtcT814EESj0WB2foGtW7fxEwHg8PWvf53LL7qc667z8ktPP/00X/jCl3jXu95Vaf3dd999XH755Zw67Qm427dv59SpU6Rpys6dPgh2u12Wlpa49tprefpZD8z4t//233Httddw++23A3Dvvffy4P0P8Mgjj1Rgjlvf8hbe//4PVPJPn/70p7n3u9/j2LFj1TkcPnyY13PzWed9TgSqnNE8IQFdSu6ESS+OFVE9YnOQAmo0E9rtOrV6hCj1x/oZCK83t3e7L22dPn2a7vI8ZugnZmMMnW6PSEpaM35b+6+8jLp21ENmpGxGZFNiclwwSuxnQ6Y27WIxeO+cSlOk9FpeJih6C+1IYsmpkFDVjSExCqVVRYqNlfLwdGdYCcCEwmQkOiYK6KlCeHh2LgRFpXvl5VkIwdSmBpMX9AcrFeEySTR1V6MUhkAoLJqsKBABDr5xpk27NUmWeXCJUhGYHQyHQwYheA0HPfqdLr3eabqzvkTgGpMUtSmgGTY9jcgyZFLgpH/Nihqo2Nt4AEILn7o4Q+FGiCbN2KpcCsAhpKPU0JKlYrcpfa48xFgLjRVlRu1tWKSMsSE/ciIgB0ucu/OqAHJMniaWmlzYCmyjHCgnUePy6S97MMX58aOGDUi1EohRjkF+dsa5KluXAulGCMNqYTAG4a/+j1tXSbzT6TAxMeGrOkJU9h7dbpft01P0Bn4h2On12btvP8dOHGdywpOAr7/uRu69+/sVzHzf/v202m2+ffd32LPXCx5ce931PPTQA+zc5cm9g8GAyekpiqJgueOJwnEc056c4OAzT7J5007Al1cfeugRDh3ypb/Xve4G9u29kDvuuIO5OR+I/vIv/5K3ve1tXHKJ97r60Ic+xA3XXc8nP/nJ6vw+9R/+I//TB/+Xs877nAhU58f5cX78040fZpdxfpwf58I4JwJVKio5OJTy4AHhIAkrj1q7SavZoGx11OOIehITR7LivRROeM04mxH1fBq7IVF05nJWhkFCp50gAaUdFwfXyRtveROtZo1WI0ihYMnTHkXaR4RtR1qS2UG1yi+KAlsYXJF7kylAOeOzAVNKkQzo95boLS/QCWAOZRxJpAHLoHkynDB06KKLkRRMLdIYa4hCWSFyMYPlrAJclObuQmqUCaRIIgxp5X3j8IcmrB7x0bKC/kqPiSDkm2eGLM0gK6gFzkhrcgPxhi1orTFNX+pbXlpmYfEMRe5/rze305Dej8eGLCtKJjEmpiilaAQUwvheY1hWOmEZFulIuDPSKG/igwtFjNwWODuq2QtT4IzFFAU2wOo9IVWgpCbS/ph8dSWnypeE8QlbpJAhyzIZSPKqvKekL/1JO9Kxe3kWv9YgSF7Czr00UizFX51zNJv++5+ZmaHRaCCEYOvECBhQrzUrEdYoSoh0gtZxdZ9GOvZu3tJ/RkoV+jsepg6+txMn+izo9ziZtgQ/jGc464rblqU5Rhyxs65GAEmUwIhGo7EKCl8CGJwzFMVIcHnkOzXalxNUnm3gE31TVQvGj2f1MQPk+eCsY/OE2RWEVDRaEwyHfr7xmoaC3bt9ZpQkCUtLS7RarQoYsWvXLt71rk3cc889ACwuLnLFFZdx/fXX88CD9wFej++1r30tBw96A8RGs067Pcnhw4cpDSDr9TppmrJ9206yzJ//BRdcwKlTp3jxRe9w8elPf5Yfe+Mb+Jmf+Rm++c1vAvDUE0/yxS9+scqobr31Vt761rfSbDb58L/63wA4cODAWecM50igQo0miEKBkspzNcobvF5DxxFalY1KCVZQDAxFkMLPhn2GwwFFUaAW/BdcOF+smmqW/B+/l227t3PNDdcCYGqavlYUVcNfUcQNrI79JApopZicma5EOmPrmbzSuqpUpZ0jwhBXtKKMYW+Z3vICad+XDE0xxORD8jznjPEoG4lDKouW5XYs3SxFZxkqTLDCWBSKeuyDSbvWJFIOZ0eBMssyag1JER4KYy3WOYRQFSkzijRRJFkK2oPWuiro6ooPpVE4BA5rvSZXq6WIk4jeSllWOMrcYIko2UxS99wKNZjEyQbooL2nNFaAEaYy07MYtItGvJI06I1JwVpulQtlT+HAmhyb2xEopRBYp3DOYGwUzrfAEnltQ8AKg1UghKHkGKcuw6CQqlQKkChRoN3Iit6+HGF/Yp3G3Dh5NYwRcVqjguBrlvt7Ii9SavUpJicniUNPJori8G+cRxWhlEbJEgmXhEBV8pF8kFJKEemRMoUumeSs1gxcq7q+NnCtF4icc15Tcux9o/7cqPc0rke49vPrDYurFjzj7ytZomtBO05QWZxU2wx9K/8crH/sDgHBELJc0M3MzNDr9dh1wR4A9uzexSDNSAdDpqb9wnRxaR6Ra970Jo/UO3DgAPfeey/79+/njW/03KVnnnmGBx54gEsv9Qv502dO8cgjj3HTTTdx4oQv4R0/fjwg9SR5QE8vLy/TbDa57LLLADhy5Ahf/erXOXToULXtmckpDh48yHPPPeePZ3GR191wIzfeeFN1fh/96EfXvbbnRqAa/z6cwCKRWiFL1ru1DLOiIqVGAnrCIQpbBap02CfLcmwBk6FUbMALy4a7Z6mbUU/ggr0XsDGQ15yOGEjoB3keJwROaIjjEZlPK4ZFNLoJg922lqBDthIJiPGZFYCWBSauY5tNVOwDZ2SLYOudsW/ay+g7l+PcAGM8KKBIl8gGS+SDDnkWYPWRxZgcG1BYheuhVI50A8KiD629o+3okip05Nn1MpCLM1GQI1gKXk/epdSTqW2AwhPHyNhilSINdimRbiIjh4z9dvJOTndlBSdWiCL/Hh1PI3QTHexToqQBOqIQrkKSFdYSu8mqjVS6yLqxCaVEUaoq4Dts4TMqk5VOsw6TOYwROBn4CUqAsriAnDCRwBoJxlQLlFyBjR3YEuIpsKSAQFIiEV+GgWpsAi3ndREUxMeH0qPJ3VqDcNZbtwOxVtW/mh7BsWu1WgU9j6IkwMgjVJlRRQlS6lWBSkqvOqHVeKAafS//kEBVZTDlIlCyJlCpsB2FlKNtr/qsoMoox/fv5GrRJcHqoGaFD1arjkkA1q3ahws7ses1TMN8U1gvMlBC77MswwwGLMx5Unav1/OKIkWODn1kJQTtyXbV13rlK19Bq9Xg4MGDbNzkQWD79+9Ha12pp+/atYs3vP6N/Kdv3cV1110HwMTEFE888QSbN2+usszLL7uCI0eO8MIR36Pat28fUxOTPPbYY1VGd+stb2Hnzp3cHYRrn3vuOTrLK6sIv/v2XXT2OfOyZ42cH+fH+XF+nB/n+jg3MqqQygJgHA5DkSuGhH5PmoG1/v+ETAaJZOSZgxlbf4QsQymI6hFF2PT0hogrrn0NN73pTWza5vH6s8vLGERVMrNSIGWEVJqsLA8YQerkyM3WeTFJJSRRWOEYIclxXsgPENbico01DVToozTrCfUkRgnHcu5JbkpaIp2ho0E49B7CdXGmD0V4zWYU6QpFmQkVHWyxSF4s4pzPxISyLA7nqxVOrVZD1evIJPE9HWA4zEjTlFwGfpQQSKHQUuHC51wUYZQnHJZw+O5AUOQ5JvcrZdmcIpGKfk+yPPBlTZdalE5HZZ8iQyYx6KiSwjI4imIEqC1r+FaMvHqQfnUZKT16jzGYQlIEMm+RS/JC4qym0/P3xDCDXuroB3XZgREYKyis524B5FJglCQNq+mOyehlhhTLaM328lu7KXlWOypkWatfLEvvaZpjLdTrEZs3ex7f5s2baDRqmCKj3vQQ6UgnJFFCUvqP6ZKoqyu+n5JRRbIFkMJnMkrIsVL/Ov5UY1lV+dra/6+XUZXZU1lyE+E/qozaee6f8DDx8rVVl8a5Vf/G97vqfV7Yb3U5UDAS4F5zTGt/duLse9EJz1ckeIaVorTLy8tMTk7y4IPe0uPJxw9w8cUXkyjJ/OxpwGsddoddkvqo97dn/x50TfPoo14oYGF5iWuuuYZG25O7Dx06xOm5Wd757tu48847AQ9Zv+LKqzhw4ACbN/jv/6GHHqLZbPLqq68BPOI6jmOuv/56nn7ak5Dvuusudu3axbvf7T2snnjyAPd+93t89atfrc6vzPbWjnMjUFk5khjHeqFGZ8iDRl1mvddRyMQxAgohKzViAC101QQ1Ygz0oOKqnqGSGlZoTpw5w6HjXszRRREFYrR7qZHa3wyVcSMulC/CzV1qmaGqY9BOIIXDZEHUEt+TKvK0suuu1xLiWKOEY27FfyFaGrQu0NoH5UgXRDJH4tClj5NtImyDSGwJnynIsyU6K6fp9T0Jr8gH5JGtAlWSJNTrdRIdVc3bwWDAcCgBHzjXe+BLa2whRFWGS9McmzlkuK5xFCGQDHo5vUGpOt1FqBVk5Lct4wShE6SOxlR5BTpdqWr2zjlsAKaLUMAXa/oD3r473BMhyNlAiMRYir7/XFrkDLMhg3D988JQFKGUF8qx3V4fk1uy3H+mMyxYGAzIGQlTvCzBFCWXbO1YczGKcG2VgFYrYdOmTWzb5qkgU1NTla5eCXCJoiiU+8pA5Ut8SqqXDjDV3GxHPDsHI5o2q97/o157qSHE+PYEjDGSnAUnx1Xf9aqgVLpYjwewH8ZBW3tcpVJ/2bOyvut09jbVOtPz/9fe2fRIUYRx/F9V3dMzww7scsAESXxhY0I0HDghId65eeRGSDzxAfwQfgA+AkdCwg2NrgfdGA4aw2rUVYlrYoCVbGCXnZeuKg/12juDbxdL9v9LNss0szXd1dP11PMuFYSqIISrxxhyh5t+jbqn8OA3l8zfTsd4tvsEJ06cwJ5Pktx/+gTVYBRzP8fjZ2iaBqurq7GY78bGBtbX16OvaTAYYHNzE3fufISLF98BAHz15dfYfbqFl0++gl9/cXlU586dw+bmZqxMsbS0hOFwiNFohDNnzgAAvvvmW2xtbcUqGJcuXcLp117HrVu34uXduHEDl9+7PHfZRQgqpQUOPiqyNTHKyBoDawEhQkSZW+CsMfFGwWqX1yA0pt7xujfR6JtJrCjx5MHvuP/hx+h/vo6p34nMdAuDfLeWWkdrr4oZYyBU9h6b7b5tsi1LIDo3q0q5KBmbWrFLKZ222LZo+i6XwWIKY8bQvnq71fsu0VhLSOse8H51FEL3oOCDSyoJmDFmeg8tQpkVjV4vVRIQPpKyyqbVGPez6Jkyi57xIF+k7ztqQhUIJxz9hhEAMJm6dS3cDu3SmJw7KPqkgKbtKM+u0Z5In2VlGjOehqvElLVQSHpP45MitTWYGh1beFjprylNP5aHAGau9QoAjC3QAphBQocRD2Gotsw0KpvPcXb/hQCOHnX+xyNHjmBlZQXLy8ux9I8xLaQEmqaGQmgmWEPJXvI/+RYeLgeu63PKcSlx+Q2f/8IG/9BBTeTfhNrngQtRCGVKdsibSmtE2milc7YLhZUQIm7MYmRpFHjZv8O55AEZoiucAcBY4YoR+FGDtWLQ9LH3dDdaImol8eMP30NYE7sAP3r0CCvHjmNnJwRJjaCUwuPH2zh50lmYRqMR1tbWoo9q9fQbeOvNs7h37x4+XfsMgKtwsbGxgem0xdmzrgj29vY2dnZ2cOqUy6saDAa4/9PPaNs23usLFy7g7t0v8PDhQwDAzZs38fb587hy5Spuf3IbwPM1KlFCNvpA1PEkUuyVjEmgAKAz12IwFxnzvB1wLn8N+kP3MI3H+3N/EMYMu5uwZooF7znoKM1jpUx0x4fXgFQuMi0MLqV0FcA1ALPs3zkDxATwldo7bVF9oq40A99iI3xxLVyN+DHqXmhXoDDerbOO6jaGfIvszGRm2oqajasNEY+n3Fcbf9dSxRI5Io4LVFn0lIFF68fRXku1QnYmszGpMkWuxcS5lFh4U0V29RJZ11S/U9H+JwgqVAiFwON4la8FGWYg/JeGTIuCAKyeHipp9dLxJZsv+KGH08HK5GHB6/V6GA6HaJomauuz2cyFow8GWFJu0Qv17kKCa94+Pteo3LG68zpPplXK15b8G+Hpf2X6C9cpOxqayYSH+zYqpaCqVPVcqdTXKg8GjJYAITDxkYxu/AXaYtCgTFo5Quj6XDsQC2ghcPnqu39qXnyRsNbi+gfXce39a3MXWoRGRQgh5M8pQan4ryhCUFUdB7aFgYTJ9JWo5obX1tu1hEXafkvA90iyNpTxqWDbKcb7Pl5dSFRNDYkW04nvm2TdJIg0StSqUmaVMxElTSNpAeGY9ucY+iopKTDTs45P2hjt7WVA8BNB1v5adtPg4bcIjQJ3u2pez59gC8z81M1EC0BBh92bErBWua6PEYOuHpiNmd8Db9Oz5lUALn9mYvIZ0BCuNSSm4Zg1BxShYMsTQBbyrTGe0zxtfh42sze5DweshbXdM3e7U4kmlFCChs7VpTBfmVU5VpfKBpJ1BSlqmGAPXODAftFZOX6ss/t3/ZnqTo8opVSsbD2ZTLA/3oOxbTT9DYYu9LzXVJAmaSKLgiByTSdoV8nMKKLZMTc95ibZg5pKzj8NpnDk5fMBoPt3eckkAN4NDuHwoAAAAMRJREFUMf/ZWuuFn5cfy5N842DIXyZT4GFMlRiNji08XoTpjxBCCHkeh09kE0II+V9BQUUIIaRoKKgIIYQUDQUVIYSQoqGgIoQQUjQUVIQQQoqGgooQQkjRUFARQggpGgoqQgghRUNBRQghpGgoqAghhBQNBRUhhJCioaAihBBSNBRUhBBCioaCihBCSNFQUBFCCCkaCipCCCFFQ0FFCCGkaCioCCGEFA0FFSGEkKKhoCKEEFI0FFSEEEKKhoKKEEJI0fwB75cK/uhcnjkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data.show_batch(rows=2, ds_type=DatasetType.Valid, figsize=(6,6))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But vision isn't the only application where the data block API works. It can also be used for text and tabular data. With our sample of the IMDB dataset (labelled texts in a csv file), here is how to get the data together for a language model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fastai.text import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "imdb = untar_data(URLs.IMDB_SAMPLE)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_lm = (TextList\n", " .from_csv(imdb, 'texts.csv', cols='text')\n", " #Where are the text? Column 'text' of texts.csv\n", " .split_by_rand_pct()\n", " #How to split it? Randomly with the default 20% in valid\n", " .label_for_lm()\n", " #Label it for a language model\n", " .databunch())\n", " #Finally we convert to a DataBunch" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idxtext
0! ! ! xxmaj finally this was directed by the guy who did xxmaj big xxmaj xxunk ? xxmaj must be a replay of xxmaj jonestown - hollywood style . xxmaj xxunk ! xxbos xxmaj this is a extremely well - made film . xxmaj the acting , script and camera - work are all first - rate . xxmaj the music is good , too , though it is
1, co - billed with xxup the xxup xxunk xxup vampire . a xxmaj spanish - xxmaj italian co - production where a series of women in a village are being murdered around the same time a local count named xxmaj yanos xxmaj xxunk is seen on xxunk , riding off with his ' man - eating ' dog behind him . \\n \\n xxmaj the xxunk already suspect
2sad relic that is well worth seeing . xxbos i caught this on the dish last night . i liked the movie . i xxunk to xxmaj russia 3 different times ( xxunk our 2 kids ) . i ca n't put my finger on exactly why i liked this movie other than seeing \" bad \" turn \" good \" and \" good \" turn \" semi - bad
3pushed him along . xxmaj the story ( if it can be called that ) is so full of holes it 's almost funny , xxmaj it never really explains why the hell he survived in the first place , or needs human flesh in order to survive . xxmaj the script is poorly written and the dialogue xxunk on just plane stupid . xxmaj the climax to movie (
4the xxunk of the xxmaj xxunk xxmaj race and had the xxunk of some of those racist xxunk . xxmaj fortunately , nothing happened like the incident in the movie where the young xxmaj caucasian man went off and started shooting at a xxunk gathering . \\n \\n i can only hope and pray that nothing like that ever will happen . \\n \\n xxmaj so is \"
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data_lm.show_batch()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a classification problem, we just have to change the way labeling is done. Here we use the csv column `label`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_clas = (TextList.from_csv(imdb, 'texts.csv', cols='text')\n", " .split_from_df(col='is_valid')\n", " .label_from_df(cols='label')\n", " .databunch())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
texttarget
xxbos xxmaj raising xxmaj victor xxmaj vargas : a xxmaj review \\n \\n xxmaj you know , xxmaj raising xxmaj victor xxmaj vargas is like sticking your hands into a big , xxunk bowl of xxunk . xxmaj it 's warm and gooey , but you 're not sure if it feels right . xxmaj try as i might , no matter how warm and gooey xxmaj raising xxmajnegative
xxbos xxup the xxup shop xxup around xxup the xxup corner is one of the xxunk and most feel - good romantic comedies ever made . xxmaj there 's just no getting around that , and it 's hard to actually put one 's feeling for this film into words . xxmaj it 's not one of those films that tries too hard , nor does it come up withpositive
xxbos xxmaj now that xxmaj che(2008 ) has finished its relatively short xxmaj australian cinema run ( extremely limited xxunk screen in xxmaj xxunk , after xxunk ) , i can xxunk join both xxunk of \" xxmaj at xxmaj the xxmaj movies \" in taking xxmaj steven xxmaj soderbergh to task . \\n \\n xxmaj it 's usually satisfying to watch a film director change his style /negative
xxbos xxmaj this film sat on my xxmaj xxunk for weeks before i watched it . i xxunk a self - indulgent xxunk flick about relationships gone bad . i was wrong ; this was an xxunk xxunk into the screwed - up xxunk of xxmaj new xxmaj xxunk . \\n \\n xxmaj the format is the same as xxmaj max xxmaj xxunk ' \" xxmaj la xxmaj xxunkpositive
xxbos xxmaj many neglect that this is n't just a classic due to the fact that it 's the first xxup 3d game , or even the first xxunk - up . xxmaj it 's also one of the first xxunk games , one of the xxunk definitely the first ) truly claustrophobic games , and just a pretty well - xxunk gaming experience in general . xxmaj with graphicspositive
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data_clas.show_batch()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lastly, for tabular data, we just have to pass the name of our categorical and continuous variables as an extra argument. We also add some [`PreProcessor`](/data_block.html#PreProcessor)s that are going to be applied to our data once the splitting and labelling is done." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fastai.tabular import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "adult = untar_data(URLs.ADULT_SAMPLE)\n", "df = pd.read_csv(adult/'adult.csv')\n", "dep_var = 'salary'\n", "cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']\n", "cont_names = ['education-num', 'hours-per-week', 'age', 'capital-loss', 'fnlwgt', 'capital-gain']\n", "procs = [FillMissing, Categorify, Normalize]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = (TabularList.from_df(df, path=adult, cat_names=cat_names, cont_names=cont_names, procs=procs)\n", " .split_by_idx(valid_idx=range(800,1000))\n", " .label_from_df(cols=dep_var)\n", " .databunch())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
workclasseducationmarital-statusoccupationrelationshipracesexnative-countryeducation-num_naeducation-numhours-per-weekagecapital-lossfnlwgtcapital-gaintarget
PrivateAssoc-acdmMarried-civ-spouseTech-supportHusbandWhiteMaleUnited-StatesFalse0.7511-2.4656-0.33624.8553-0.9396-0.1459<50k
PrivateHS-gradDivorcedOther-serviceNot-in-familyWhiteFemaleUnited-StatesFalse-0.4224-0.03560.7632-0.2164-0.0449-0.1459<50k
PrivateSome-collegeMarried-civ-spouseExec-managerialHusbandWhiteMaleUnited-StatesFalse-0.0312-0.03560.9098-0.21640.6116-0.1459>=50k
Private9thDivorcedTransport-movingNot-in-familyWhiteMaleUnited-StatesFalse-1.9869-0.0356-0.5561-0.2164-0.5796-0.1459<50k
PrivateMastersMarried-civ-spouseProf-specialtyHusbandWhiteMaleUnited-StatesFalse1.53340.7743-0.5561-0.2164-0.0140-0.1459<50k
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data.show_batch()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Provide inputs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The basic class to get your inputs into is the following one. It's also the same class that will contain all of your labels (hence the name [`ItemList`](/data_block.html#ItemList))." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class ItemList[source][test]

\n", "\n", "> ItemList(**`items`**:`Iterator`\\[`T_co`\\], **`path`**:`PathOrStr`=***`'.'`***, **`label_cls`**:`Callable`=***`None`***, **`inner_df`**:`Any`=***`None`***, **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **`x`**:`ItemList`=***`None`***, **`ignore_empty`**:`bool`=***`False`***)\n", "\n", "
×

Tests found for ItemList:

Some other tests where ItemList is used:

  • pytest -sv tests/test_data_block.py::test_category [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_multi_category [source]
  • pytest -sv tests/test_data_block.py::test_regression [source]
  • pytest -sv tests/test_data_block.py::test_split_subsets [source]
  • pytest -sv tests/test_data_block.py::test_splitdata_datasets [source]

To run tests please refer to this guide.

\n", "\n", "A collection of items with `__len__` and `__getitem__` with `ndarray` indexing semantics. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList, title_level=3)" ] }, { "cell_type": "markdown", "metadata": { "hide_input": true }, "source": [ "This class regroups the inputs for our model in `items` and saves a `path` attribute which is where it will look for any files (image files, csv file with labels...). `label_cls` will be called to create the labels from the result of the label function, `inner_df` is an underlying dataframe, and `processor` is to be applied to the inputs after the splitting and labeling." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It has multiple subclasses depending on the type of data you're handling. Here is a quick list:\n", " - [`CategoryList`](/data_block.html#CategoryList) for labels in classification\n", " - [`MultiCategoryList`](/data_block.html#MultiCategoryList) for labels in a multi classification problem\n", " - [`FloatList`](/data_block.html#FloatList) for float labels in a regression problem\n", " - [`ImageList`](/vision.data.html#ImageList) for data that are images\n", " - [`SegmentationItemList`](/vision.data.html#SegmentationItemList) like [`ImageList`](/vision.data.html#ImageList) but will default labels to [`SegmentationLabelList`](/vision.data.html#SegmentationLabelList)\n", " - [`SegmentationLabelList`](/vision.data.html#SegmentationLabelList) for segmentation masks\n", " - [`ObjectItemList`](/vision.data.html#ObjectItemList) like [`ImageList`](/vision.data.html#ImageList) but will default labels to `ObjectLabelList`\n", " - `ObjectLabelList` for object detection\n", " - [`PointsItemList`](/vision.data.html#PointsItemList) for points (of the type [`ImagePoints`](/vision.image.html#ImagePoints))\n", " - [`ImageImageList`](/vision.data.html#ImageImageList) for image to image tasks\n", " - [`TextList`](/text.data.html#TextList) for text data\n", " - [`TextList`](/text.data.html#TextList) for text data stored in files\n", " - [`TabularList`](/tabular.data.html#TabularList) for tabular data\n", " - [`CollabList`](/collab.html#CollabList) for collaborative filtering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once you have selected the class that is suitable, you can instantiate it with one of the following factory methods" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

from_folder[source][test]

\n", "\n", "> from_folder(**`path`**:`PathOrStr`, **`extensions`**:`StrList`=***`None`***, **`recurse`**:`bool`=***`True`***, **`include`**:`OptStrList`=***`None`***, **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

Tests found for from_folder:

Some other tests where from_folder is used:

  • pytest -sv tests/test_data_block.py::test_wrong_order [source]

To run tests please refer to this guide.

\n", "\n", "Create an [`ItemList`](/data_block.html#ItemList) in `path` from the filenames that have a suffix in `extensions`. `recurse` determines if we search subfolders. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.from_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/valid'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/labels.csv'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/test'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/cleaned.csv'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/history.csv'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/models'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_tiny/train')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_TINY)\n", "path.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (1428 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_tiny" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_folder(path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

from_df[source][test]

\n", "\n", "> from_df(**`df`**:`DataFrame`, **`path`**:`PathOrStr`=***`'.'`***, **`cols`**:`IntsOrStrs`=***`0`***, **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

Tests found for from_df:

Some other tests where from_df is used:

  • pytest -sv tests/test_data_block.py::test_category [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_multi_category [source]
  • pytest -sv tests/test_data_block.py::test_regression [source]

To run tests please refer to this guide.

\n", "\n", "Create an [`ItemList`](/data_block.html#ItemList) in `path` from the inputs in the `cols` of `df`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.from_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/valid'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/labels.csv'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/export.pkl'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/models'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/train'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/trained_model.pkl')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "path.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namelabel
0train/3/7463.png0
1train/3/21102.png0
2train/3/31559.png0
3train/3/46882.png0
4train/3/26209.png0
\n", "
" ], "text/plain": [ " name label\n", "0 train/3/7463.png 0\n", "1 train/3/21102.png 0\n", "2 train/3/31559.png 0\n", "3 train/3/46882.png 0\n", "4 train/3/26209.png 0" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(path/'labels.csv')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (14434 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_df(df, path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

from_csv[source][test]

\n", "\n", "> from_csv(**`path`**:`PathOrStr`, **`csv_name`**:`str`, **`cols`**:`IntsOrStrs`=***`0`***, **`delimiter`**:`str`=***`None`***, **`header`**:`str`=***`'infer'`***, **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

No tests found for from_csv. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create an [`ItemList`](/data_block.html#ItemList) in `path` from the inputs in the `cols` of `path/csv_name` " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.from_csv)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/valid'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/labels.csv'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/export.pkl'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/models'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/train'),\n", " PosixPath('/Users/georgezhang/.fastai/data/mnist_sample/trained_model.pkl')]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "path.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (14434 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_csv(path, 'labels.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Optional step: filter your data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The factory method may have grabbed too many items. For instance, if you were searching sub folders with the `from_folder` method, you may have gotten files you don't want. To remove those, you can use one of the following methods." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

filter_by_func[source][test]

\n", "\n", "> filter_by_func(**`func`**:`Callable`) → `ItemList`\n", "\n", "
×

No tests found for filter_by_func. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Only keep elements for which `func` returns `True`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.filter_by_func)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namelabel
0train/3/7463.png0
1train/3/21102.png0
2train/3/31559.png0
3train/3/46882.png0
4train/3/26209.png0
\n", "
" ], "text/plain": [ " name label\n", "0 train/3/7463.png 0\n", "1 train/3/21102.png 0\n", "2 train/3/31559.png 0\n", "3 train/3/46882.png 0\n", "4 train/3/26209.png 0" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "df = pd.read_csv(path/'labels.csv')\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Suppose that you only want to keep images with a suffix \".png\". Well, this method will do magic for you." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'.png'" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Path(df.name[0]).suffix" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (14434 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_df(df, path).filter_by_func(lambda fname: Path(fname).suffix == '.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

filter_by_folder[source][test]

\n", "\n", "> filter_by_folder(**`include`**=***`None`***, **`exclude`**=***`None`***)\n", "\n", "
×

No tests found for filter_by_folder. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Only keep filenames in `include` folder or reject the ones in `exclude`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.filter_by_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

filter_by_rand[source][test]

\n", "\n", "> filter_by_rand(**`p`**:`float`, **`seed`**:`int`=***`None`***)\n", "\n", "
×

No tests found for filter_by_rand. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Keep random sample of `items` with probability `p` and an optional `seed`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.filter_by_rand)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (7255 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "ImageList.from_folder(path).filter_by_rand(0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Contrast the number of items with the list created without the filter." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (14434 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_folder(path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

to_text[source][test]

\n", "\n", "> to_text(**`fn`**:`str`)\n", "\n", "
×

No tests found for to_text. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Save `self.items` to `fn` in `self.path`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.to_text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namelabel
0train/3/7463.png0
1train/3/21102.png0
2train/3/31559.png0
3train/3/46882.png0
4train/3/26209.png0
\n", "
" ], "text/plain": [ " name label\n", "0 train/3/7463.png 0\n", "1 train/3/21102.png 0\n", "2 train/3/31559.png 0\n", "3 train/3/46882.png 0\n", "4 train/3/26209.png 0" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "pd.read_csv(path/'labels.csv').head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file_name = \"item_list.txt\"\n", "ImageList.from_folder(path).to_text(file_name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valid/7/9294.png\r\n", "valid/7/1186.png\r\n", "valid/7/6825.png\r\n", "valid/7/4767.png\r\n", "valid/7/6170.png\r\n", "valid/7/6164.png\r\n", "valid/7/9257.png\r\n", "valid/7/4773.png\r\n", "valid/7/8175.png\r\n", "valid/7/6158.png\r\n", "cat: stdout: Broken pipe\r\n" ] } ], "source": [ "! cat {path/file_name} | head" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

use_partial_data[source][test]

\n", "\n", "> use_partial_data(**`sample_pct`**:`float`=***`0.01`***, **`seed`**:`int`=***`None`***) → `ItemList`\n", "\n", "
×

No tests found for use_partial_data. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Use only a sample of `sample_pct`of the full dataset and an optional `seed`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.use_partial_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (7217 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "ImageList.from_folder(path).use_partial_data(0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Contrast the number of items with the list created without the filter." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ImageList (14434 items)\n", "Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28),Image (3, 28, 28)\n", "Path: /Users/georgezhang/.fastai/data/mnist_sample" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ImageList.from_folder(path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Writing your own [`ItemList`](/data_block.html#ItemList)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First check if you can't easily customize one of the existing subclass by:\n", "- subclassing an existing one and replacing the `get` method (or the `open` method if you're dealing with images)\n", "- applying a custom `processor` (see step 4)\n", "- changing the default `label_cls` for the label creation\n", "- adding a default [`PreProcessor`](/data_block.html#PreProcessor) with the `_processor` class variable\n", "\n", "If this isn't the case and you really need to write your own class, there is a [full tutorial](/tutorial.itemlist) that explains how to proceed." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

analyze_pred[source][test]

\n", "\n", "> analyze_pred(**`pred`**:`Tensor`)\n", "\n", "
×

No tests found for analyze_pred. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Called on `pred` before `reconstruct` for additional preprocessing. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.analyze_pred)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

get[source][test]

\n", "\n", "> get(**`i`**) → `Any`\n", "\n", "
×

No tests found for get. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Subclass if you want to customize how to create item `i` from `self.items`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.get)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

new[source][test]

\n", "\n", "> new(**`items`**:`Iterator`\\[`T_co`\\], **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

No tests found for new. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a new [`ItemList`](/data_block.html#ItemList) from `items`, keeping the same attributes. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.new)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You'll never need to subclass this normally, just don't forget to add to `self.copy_new` the names of the arguments that needs to be copied each time `new` is called in `__init__`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

reconstruct[source][test]

\n", "\n", "> reconstruct(**`t`**:`Tensor`, **`x`**:`Tensor`=***`None`***)\n", "\n", "
×

No tests found for reconstruct. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Reconstruct one of the underlying item for its data `t`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.reconstruct)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Split the data between the training and the validation set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This step is normally straightforward, you just have to pick oe of the following functions depending on what you need." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_none[source][test]

\n", "\n", "> split_none()\n", "\n", "
×

No tests found for split_none. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Don't split the data and create an empty validation set. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_none)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_rand_pct[source][test]

\n", "\n", "> split_by_rand_pct(**`valid_pct`**:`float`=***`0.2`***, **`seed`**:`int`=***`None`***) → `ItemLists`\n", "\n", "
×

Tests found for split_by_rand_pct:

  • pytest -sv tests/test_data_block.py::test_splitdata_datasets [source]

Some other tests where split_by_rand_pct is used:

  • pytest -sv tests/test_data_block.py::test_regression [source]

To run tests please refer to this guide.

\n", "\n", "Split the items randomly by putting `valid_pct` in the validation set, optional `seed` can be passed. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_rand_pct)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

split_subsets[source][test]

\n", "\n", "> split_subsets(**`train_size`**:`float`, **`valid_size`**:`float`, **`seed`**=***`None`***) → `ItemLists`\n", "\n", "
×

Tests found for split_subsets:

  • pytest -sv tests/test_data_block.py::test_split_subsets [source]

To run tests please refer to this guide.

\n", "\n", "Split the items into train set with size `train_size * n` and valid set with size `valid_size * n`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_subsets)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function is handy if you want to work with subsets of specific sizes, e.g., you want to use 20% of the data for the validation dataset, but you only want to train on a small subset of the rest of the data: `split_subsets(train_size=0.08, valid_size=0.2)`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_files[source][test]

\n", "\n", "> split_by_files(**`valid_names`**:`ItemList`) → `ItemLists`\n", "\n", "
×

No tests found for split_by_files. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data by using the names in `valid_names` for validation. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_files)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_fname_file[source][test]

\n", "\n", "> split_by_fname_file(**`fname`**:`PathOrStr`, **`path`**:`PathOrStr`=***`None`***) → `ItemLists`\n", "\n", "
×

No tests found for split_by_fname_file. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data by using the names in `fname` for the validation set. `path` will override `self.path`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_fname_file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_folder[source][test]

\n", "\n", "> split_by_folder(**`train`**:`str`=***`'train'`***, **`valid`**:`str`=***`'valid'`***) → `ItemLists`\n", "\n", "
×

Tests found for split_by_folder:

Some other tests where split_by_folder is used:

  • pytest -sv tests/test_data_block.py::test_wrong_order [source]

To run tests please refer to this guide.

\n", "\n", "Split the data depending on the folder (`train` or `valid`) in which the filenames are. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Note: This method looks at the folder immediately after `self.path` for `valid` and `train`.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_note(\"This method looks at the folder immediately after `self.path` for `valid` and `train`.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_idx[source][test]

\n", "\n", "> split_by_idx(**`valid_idx`**:`Collection`\\[`int`\\]) → `ItemLists`\n", "\n", "
×

Tests found for split_by_idx:

Some other tests where split_by_idx is used:

  • pytest -sv tests/test_data_block.py::test_category [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_multi_category [source]

To run tests please refer to this guide.

\n", "\n", "Split the data according to the indexes in `valid_idx`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_idx)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_idxs[source][test]

\n", "\n", "> split_by_idxs(**`train_idx`**, **`valid_idx`**)\n", "\n", "
×

No tests found for split_by_idxs. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data between `train_idx` and `valid_idx`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_idxs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_list[source][test]

\n", "\n", "> split_by_list(**`train`**, **`valid`**)\n", "\n", "
×

No tests found for split_by_list. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data between `train` and `valid`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_list)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_by_valid_func[source][test]

\n", "\n", "> split_by_valid_func(**`func`**:`Callable`) → `ItemLists`\n", "\n", "
×

No tests found for split_by_valid_func. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data by result of `func` (which returns `True` for validation set). " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_by_valid_func)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

split_from_df[source][test]

\n", "\n", "> split_from_df(**`col`**:`IntsOrStrs`=***`2`***)\n", "\n", "
×

No tests found for split_from_df. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Split the data from the `col` in the dataframe in `self.inner_df`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.split_from_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Warning: This method assumes the data has been created from a csv file or a dataframe.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_warn(\"This method assumes the data has been created from a csv file or a dataframe.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Label the inputs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To label your inputs, use one of the following functions. Note that even if it's not in the documented arguments, you can always pass a `label_cls` that will be used to create those labels (the default is the one from your input [`ItemList`](/data_block.html#ItemList), and if there is none, it will go to [`CategoryList`](/data_block.html#CategoryList), [`MultiCategoryList`](/data_block.html#MultiCategoryList) or [`FloatList`](/data_block.html#FloatList) depending on the type of the labels). This is implemented in the following function:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

get_label_cls[source][test]

\n", "\n", "> get_label_cls(**`labels`**, **`label_cls`**:`Callable`=***`None`***, **`label_delim`**:`str`=***`None`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for get_label_cls. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Return `label_cls` or guess one from the first element of `labels`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.get_label_cls)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first example in these docs created labels as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "path = untar_data(URLs.MNIST_TINY)\n", "ll = ImageList.from_folder(path).split_by_folder().label_from_folder().train" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you want to save the data necessary to recreate your [`LabelList`](/data_block.html#LabelList) (not including saving the actual image/text/etc files), you can use `to_df` or `to_csv`:\n", "\n", "```python\n", "ll.train.to_csv('tmp.csv')\n", "```\n", "\n", "Or just grab a `pd.DataFrame` directly:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
xy
0train/7/8845.png7
1train/7/8297.png7
2train/7/7945.png7
3train/7/8186.png7
4train/7/9843.png7
\n", "
" ], "text/plain": [ " x y\n", "0 train/7/8845.png 7\n", "1 train/7/8297.png 7\n", "2 train/7/7945.png 7\n", "3 train/7/8186.png 7\n", "4 train/7/9843.png 7" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ll.to_df().head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_empty[source][test]

\n", "\n", "> label_empty(**\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for label_empty. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Label every item with an [`EmptyLabel`](/core.html#EmptyLabel). " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_empty)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_from_df[source][test]

\n", "\n", "> label_from_df(**`cols`**:`IntsOrStrs`=***`1`***, **`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**)\n", "\n", "
×

Tests found for label_from_df:

Some other tests where label_from_df is used:

  • pytest -sv tests/test_data_block.py::test_category [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_multi_category [source]
  • pytest -sv tests/test_data_block.py::test_regression [source]

To run tests please refer to this guide.

\n", "\n", "Label `self.items` from the values in `cols` in `self.inner_df`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_from_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Warning: This method only works with data objects created with either `from_csv` or `from_df` methods.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_warn(\"This method only works with data objects created with either `from_csv` or `from_df` methods.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_const[source][test]

\n", "\n", "> label_const(**`const`**:`Any`=***`0`***, **`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

Tests found for label_const:

Some other tests where label_const is used:

  • pytest -sv tests/test_data_block.py::test_split_subsets [source]
  • pytest -sv tests/test_data_block.py::test_splitdata_datasets [source]

To run tests please refer to this guide.

\n", "\n", "Label every item with `const`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_const)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_from_folder[source][test]

\n", "\n", "> label_from_folder(**`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

Tests found for label_from_folder:

  • pytest -sv tests/test_text_data.py::test_filter_classes [source]
  • pytest -sv tests/test_text_data.py::test_from_folder [source]

Some other tests where label_from_folder is used:

  • pytest -sv tests/test_data_block.py::test_wrong_order [source]

To run tests please refer to this guide.

\n", "\n", "Give a label to each filename depending on its folder. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_from_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Note: This method looks at the last subfolder in the path to determine the classes.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_note(\"This method looks at the last subfolder in the path to determine the classes.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_from_func[source][test]

\n", "\n", "> label_from_func(**`func`**:`Callable`, **`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

No tests found for label_from_func. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Apply `func` to every input to get its label. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_from_func)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_from_re[source][test]

\n", "\n", "> label_from_re(**`pat`**:`str`, **`full_path`**:`bool`=***`False`***, **`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

No tests found for label_from_re. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Apply the re in `pat` to determine the label of every filename. If `full_path`, search in the full name. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.label_from_re)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class CategoryList[source][test]

\n", "\n", "> CategoryList(**`items`**:`Iterator`\\[`T_co`\\], **`classes`**:`Collection`\\[`T_co`\\]=***`None`***, **`label_delim`**:`str`=***`None`***, **\\*\\*`kwargs`**) :: [`CategoryListBase`](/data_block.html#CategoryListBase)\n", "\n", "
×

No tests found for CategoryList. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Basic [`ItemList`](/data_block.html#ItemList) for single classification labels. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryList, title_level=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[`ItemList`](/data_block.html#ItemList) suitable for storing labels in `items` belonging to `classes`. If `None` are passed, `classes` will be determined by the unique different labels. `processor` will default to [`CategoryProcessor`](/data_block.html#CategoryProcessor)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class MultiCategoryList[source][test]

\n", "\n", "> MultiCategoryList(**`items`**:`Iterator`\\[`T_co`\\], **`classes`**:`Collection`\\[`T_co`\\]=***`None`***, **`label_delim`**:`str`=***`None`***, **`one_hot`**:`bool`=***`False`***, **\\*\\*`kwargs`**) :: [`CategoryListBase`](/data_block.html#CategoryListBase)\n", "\n", "
×

No tests found for MultiCategoryList. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Basic [`ItemList`](/data_block.html#ItemList) for multi-classification labels. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryList, title_level=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It will store list of labels in `items` belonging to `classes`. If `None` are passed, `classes` will be determined by the unique different labels. `sep` is used to split the content of `items` in a list of tags.\n", "\n", "If `one_hot=True`, the items contain the labels one-hot encoded. In this case, it is mandatory to pass a list of `classes` (as we can't use the different labels)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class FloatList[source][test]

\n", "\n", "> FloatList(**`items`**:`Iterator`\\[`T_co`\\], **`log`**:`bool`=***`False`***, **`classes`**:`Collection`\\[`T_co`\\]=***`None`***, **\\*\\*`kwargs`**) :: [`ItemList`](/data_block.html#ItemList)\n", "\n", "
×

No tests found for FloatList. To contribute a test please refer to this guide and this discussion.

\n", "\n", "[`ItemList`](/data_block.html#ItemList) suitable for storing the floats in items for regression. Will add a `log` if this flag is `True`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(FloatList, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class EmptyLabelList[source][test]

\n", "\n", "> EmptyLabelList(**`items`**:`Iterator`\\[`T_co`\\], **`path`**:`PathOrStr`=***`'.'`***, **`label_cls`**:`Callable`=***`None`***, **`inner_df`**:`Any`=***`None`***, **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **`x`**:`ItemList`=***`None`***, **`ignore_empty`**:`bool`=***`False`***) :: [`ItemList`](/data_block.html#ItemList)\n", "\n", "
×

No tests found for EmptyLabelList. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Basic [`ItemList`](/data_block.html#ItemList) for dummy labels. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(EmptyLabelList, title_level=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Invisible step: preprocessing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This isn't seen here in the API, but if you passed a `processor` (or a list of them) in your initial [`ItemList`](/data_block.html#ItemList) during step 1, it will be applied here. If you didn't pass any processor, a list of them might still be created depending on what is in the `_processor` variable of your class of items (this can be a list of [`PreProcessor`](/data_block.html#PreProcessor) classes).\n", "\n", "A processor is a transformation that is applied to all the inputs once at initialization, with a state computed on the training set that is then applied without modification on the validation set (and maybe the test set). For instance, it can be processing texts to tokenize then numericalize them. In that case we want the validation set to be numericalized with exactly the same vocabulary as the training set.\n", "\n", "Another example is in tabular data, where we fill missing values with (for instance) the median computed on the training set. That statistic is stored in the inner state of the [`PreProcessor`](/data_block.html#PreProcessor) and applied on the validation set.\n", "\n", "This is the generic class for all processors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class PreProcessor[source][test]

\n", "\n", "> PreProcessor(**`ds`**:`Collection`\\[`T_co`\\]=***`None`***)\n", "\n", "
×

No tests found for PreProcessor. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Basic class for a processor that will be applied to items at the end of the data block API. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(PreProcessor, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

process_one[source][test]

\n", "\n", "> process_one(**`item`**:`Any`)\n", "\n", "
×

Tests found for process_one:

Some other tests where process_one is used:

  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]

To run tests please refer to this guide.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(PreProcessor.process_one)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Process one `item`. This method needs to be written in any subclass." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

process[source][test]

\n", "\n", "> process(**`ds`**:`Collection`\\[`T_co`\\])\n", "\n", "
×

No tests found for process. To contribute a test please refer to this guide and this discussion.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(PreProcessor.process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Process a dataset. This default to apply `process_one` on every `item` of `ds`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class CategoryProcessor[source][test]

\n", "\n", "> CategoryProcessor(**`ds`**:[`ItemList`](/data_block.html#ItemList)) :: [`PreProcessor`](/data_block.html#PreProcessor)\n", "\n", "
×

No tests found for CategoryProcessor. To contribute a test please refer to this guide and this discussion.

\n", "\n", "[`PreProcessor`](/data_block.html#PreProcessor) that create `classes` from `ds.items` and handle the mapping. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryProcessor, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

generate_classes[source][test]

\n", "\n", "> generate_classes(**`items`**)\n", "\n", "
×

No tests found for generate_classes. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Generate classes from `items` by taking the sorted unique values. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryProcessor.generate_classes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class MultiCategoryProcessor[source][test]

\n", "\n", "> MultiCategoryProcessor(**`ds`**:[`ItemList`](/data_block.html#ItemList), **`one_hot`**:`bool`=***`False`***) :: [`CategoryProcessor`](/data_block.html#CategoryProcessor)\n", "\n", "
×

No tests found for MultiCategoryProcessor. To contribute a test please refer to this guide and this discussion.

\n", "\n", "[`PreProcessor`](/data_block.html#PreProcessor) that create `classes` from `ds.items` and handle the mapping. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryProcessor, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

generate_classes[source][test]

\n", "\n", "> generate_classes(**`items`**)\n", "\n", "
×

No tests found for generate_classes. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Generate classes from `items` by taking the sorted unique values. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryProcessor.generate_classes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Optional steps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add transforms" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Transforms differ from processors in the sense they are applied on the fly when we grab one item. They also may change each time we ask for the same item in the case of random transforms." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

transform[source][test]

\n", "\n", "> transform(**`tfms`**:`Optional`\\[`Tuple`\\[`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\], `Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\]\\]\\]=***`(None, None)`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for transform. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Set `tfms` to be applied to the xs of the train and validation set. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.transform)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is primary for the vision application. The `kwargs` arguments are the ones expected by the type of transforms you pass. `tfm_y` is among them and if set to `True`, the transforms will be applied to input and target.\n", "\n", "For examples see: [vision.transforms](vision.transform.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add a test set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To add a test set, you can use one of the two following methods." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

add_test[source][test]

\n", "\n", "> add_test(**`items`**:`Iterator`\\[`T_co`\\], **`label`**:`Any`=***`None`***)\n", "\n", "
×

No tests found for add_test. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Add test set containing `items` with an arbitrary `label`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.add_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Note: Here `items` can be an `ItemList` or a collection.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_note(\"Here `items` can be an `ItemList` or a collection.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

add_test_folder[source][test]

\n", "\n", "> add_test_folder(**`test_folder`**:`str`=***`'test'`***, **`label`**:`Any`=***`None`***)\n", "\n", "
×

No tests found for add_test_folder. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Add test set containing items from `test_folder` and an arbitrary `label`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.add_test_folder)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
Warning: In fastai the test set is unlabeled! No labels will be collected even if they are available.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jekyll_warn(\"In fastai the test set is unlabeled! No labels will be collected even if they are available.\")" ] }, { "cell_type": "markdown", "metadata": { "hide_input": true }, "source": [ "Instead, either the passed `label` argument or an empty label will be used for all entries of this dataset (this is required by the internal pipeline of fastai). \n", "\n", "In the `fastai` framework `test` datasets have no labels - this is the unknown data to be predicted. If you want to validate your model on a `test` dataset with labels, you probably need to use it as a validation set, as in:\n", "\n", "```\n", "data_test = (ImageList.from_folder(path)\n", " .split_by_folder(train='train', valid='test')\n", " .label_from_folder()\n", " ...)\n", "```\n", "\n", "Another approach, where you do use a normal validation set, and then when the training is over, you just want to validate the test set w/ labels as a validation set, you can do this:\n", "\n", "```\n", "tfms = []\n", "path = Path('data').resolve()\n", "data = (ImageList.from_folder(path)\n", " .split_by_pct()\n", " .label_from_folder()\n", " .transform(tfms)\n", " .databunch()\n", " .normalize() ) \n", "learn = cnn_learner(data, models.resnet50, metrics=accuracy)\n", "learn.fit_one_cycle(5,1e-2)\n", "\n", "# now replace the validation dataset entry with the test dataset as a new validation dataset: \n", "# everything is exactly the same, except replacing `split_by_pct` w/ `split_by_folder` \n", "# (or perhaps you were already using the latter, so simply switch to valid='test')\n", "data_test = (ImageList.from_folder(path)\n", " .split_by_folder(train='train', valid='test')\n", " .label_from_folder()\n", " .transform(tfms)\n", " .databunch()\n", " .normalize()\n", " ) \n", "learn.validate(data_test.valid_dl)\n", "```\n", "Of course, your data block can be totally different, this is just an example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4: convert to a [`DataBunch`](/basic_data.html#DataBunch)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This last step is usually pretty straightforward. You just have to include all the arguments we pass to [`DataBunch.create`](/basic_data.html#DataBunch.create) (`bs`, `num_workers`, `collate_fn`). The class called to create a [`DataBunch`](/basic_data.html#DataBunch) is set in the `_bunch` attribute of the inputs of the training set if you need to modify it. Normally, the various subclasses we showed before handle that for you." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

databunch[source][test]

\n", "\n", "> databunch(**`path`**:`PathOrStr`=***`None`***, **`bs`**:`int`=***`64`***, **`val_bs`**:`int`=***`None`***, **`num_workers`**:`int`=***`4`***, **`dl_tfms`**:`Optional`\\[`Collection`\\[`Callable`\\]\\]=***`None`***, **`device`**:[`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch-device)=***`None`***, **`collate_fn`**:`Callable`=***`'data_collate'`***, **`no_check`**:`bool`=***`False`***, **\\*\\*`kwargs`**) → `DataBunch`\n", "\n", "
×

Tests found for databunch:

  • pytest -sv tests/test_vision_data.py::test_vision_datasets [source]

Some other tests where databunch is used:

  • pytest -sv tests/test_data_block.py::test_regression [source]

To run tests please refer to this guide.

\n", "\n", "Create an [`DataBunch`](/basic_data.html#DataBunch) from self, `path` will override `self.path`, `kwargs` are passed to [`DataBunch.create`](/basic_data.html#DataBunch.create). " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.databunch)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inner classes" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class LabelList[source][test]

\n", "\n", "> LabelList(**`x`**:[`ItemList`](/data_block.html#ItemList), **`y`**:[`ItemList`](/data_block.html#ItemList), **`tfms`**:`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\]=***`None`***, **`tfm_y`**:`bool`=***`False`***, **\\*\\*`kwargs`**) :: [`Dataset`](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset)\n", "\n", "
×

No tests found for LabelList. To contribute a test please refer to this guide and this discussion.

\n", "\n", "A list of inputs `x` and labels `y` with optional `tfms`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList, title_level=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Optionally apply `tfms` to `y` if `tfm_y` is `True`. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

export[source][test]

\n", "\n", "> export(**`fn`**:`PathOrStr`, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for export. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Export the minimal state and save it in `fn` to load an empty version for inference. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.export)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

transform_y[source][test]

\n", "\n", "> transform_y(**`tfms`**:`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\]=***`None`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for transform_y. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Set `tfms` to be applied to the targets only. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.transform_y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

get_state[source][test]

\n", "\n", "> get_state(**\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for get_state. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Return the minimal state for export. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.get_state)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

load_empty[source][test]

\n", "\n", "> load_empty(**`path`**:`PathOrStr`, **`fn`**:`PathOrStr`)\n", "\n", "
×

No tests found for load_empty. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Load the state in `fn` to create an empty [`LabelList`](/data_block.html#LabelList) for inference. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.load_empty)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

load_state[source][test]

\n", "\n", "> load_state(**`path`**:`PathOrStr`, **`state`**:`dict`) → `LabelList`\n", "\n", "
×

No tests found for load_state. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a [`LabelList`](/data_block.html#LabelList) from `state`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.load_state)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

process[source][test]

\n", "\n", "> process(**`xp`**:[`PreProcessor`](/data_block.html#PreProcessor)=***`None`***, **`yp`**:[`PreProcessor`](/data_block.html#PreProcessor)=***`None`***, **`name`**:`str`=***`None`***)\n", "\n", "
×

No tests found for process. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Launch the processing on `self.x` and `self.y` with `xp` and `yp`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.process)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

set_item[source][test]

\n", "\n", "> set_item(**`item`**)\n", "\n", "
×

No tests found for set_item. To contribute a test please refer to this guide and this discussion.

\n", "\n", "For inference, will briefly replace the dataset with one that only contains `item`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.set_item)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

to_df[source][test]

\n", "\n", "> to_df()\n", "\n", "
×

No tests found for to_df. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create `pd.DataFrame` containing `items` from `self.x` and `self.y`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.to_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

to_csv[source][test]

\n", "\n", "> to_csv(**`dest`**:`str`)\n", "\n", "
×

No tests found for to_csv. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Save `self.to_df()` to a CSV file in `self.path`/`dest`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.to_csv)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

transform[source][test]

\n", "\n", "> transform(**`tfms`**:`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\], **`tfm_y`**:`bool`=***`None`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for transform. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Set the `tfms` and `tfm_y` value to be applied to the inputs and targets. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.transform)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class ItemLists[source][test]

\n", "\n", "> ItemLists(**`path`**:`PathOrStr`, **`train`**:[`ItemList`](/data_block.html#ItemList), **`valid`**:[`ItemList`](/data_block.html#ItemList))\n", "\n", "
×

No tests found for ItemLists. To contribute a test please refer to this guide and this discussion.

\n", "\n", "An [`ItemList`](/data_block.html#ItemList) for each of `train` and `valid` (optional `test`). " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemLists, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

label_from_lists[source][test]

\n", "\n", "> label_from_lists(**`train_labels`**:`Iterator`\\[`T_co`\\], **`valid_labels`**:`Iterator`\\[`T_co`\\], **`label_cls`**:`Callable`=***`None`***, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

No tests found for label_from_lists. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Use the labels in `train_labels` and `valid_labels` to label the data. `label_cls` will overwrite the default. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemLists.label_from_lists)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

transform[source][test]

\n", "\n", "> transform(**`tfms`**:`Optional`\\[`Tuple`\\[`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\], `Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\]\\]\\]=***`(None, None)`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for transform. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Set `tfms` to be applied to the xs of the train and validation set. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemLists.transform)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

transform_y[source][test]

\n", "\n", "> transform_y(**`tfms`**:`Optional`\\[`Tuple`\\[`Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\], `Union`\\[`Callable`, `Collection`\\[`Callable`\\]\\]\\]\\]=***`(None, None)`***, **\\*\\*`kwargs`**)\n", "\n", "
×

No tests found for transform_y. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Set `tfms` to be applied to the ys of the train and validation set. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemLists.transform_y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

class LabelLists[source][test]

\n", "\n", "> LabelLists(**`path`**:`PathOrStr`, **`train`**:[`ItemList`](/data_block.html#ItemList), **`valid`**:[`ItemList`](/data_block.html#ItemList)) :: [`ItemLists`](/data_block.html#ItemLists)\n", "\n", "
×

No tests found for LabelLists. To contribute a test please refer to this guide and this discussion.

\n", "\n", "A [`LabelList`](/data_block.html#LabelList) for each of `train` and `valid` (optional `test`). " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists, title_level=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

get_processors[source][test]

\n", "\n", "> get_processors()\n", "\n", "
×

No tests found for get_processors. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Read the default class processors if none have been set. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.get_processors)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

load_empty[source][test]

\n", "\n", "> load_empty(**`path`**:`PathOrStr`, **`fn`**:`PathOrStr`=***`'export.pkl'`***)\n", "\n", "
×

No tests found for load_empty. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a [`LabelLists`](/data_block.html#LabelLists) with empty sets from the serialized file in `path/fn`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.load_empty)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

load_state[source][test]

\n", "\n", "> load_state(**`path`**:`PathOrStr`, **`state`**:`dict`)\n", "\n", "
×

No tests found for load_state. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a [`LabelLists`](/data_block.html#LabelLists) with empty sets from the serialized `state`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.load_state)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

process[source][test]

\n", "\n", "> process()\n", "\n", "
×

No tests found for process. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Process the inner datasets. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelLists.process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Helper functions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

get_files[source][test]

\n", "\n", "> get_files(**`path`**:`PathOrStr`, **`extensions`**:`StrList`=***`None`***, **`recurse`**:`bool`=***`False`***, **`include`**:`OptStrList`=***`None`***) → `FilePathList`\n", "\n", "
×

No tests found for get_files. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Return list of files in `path` that have a suffix in `extensions`; optionally `recurse`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(get_files)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Undocumented Methods - Methods moved below this line will intentionally be hidden" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

new[source][test]

\n", "\n", "> new(**`items`**:`Iterator`\\[`T_co`\\], **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

No tests found for new. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a new [`ItemList`](/data_block.html#ItemList) from `items`, keeping the same attributes. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryList.new)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

new[source][test]

\n", "\n", "> new(**`x`**, **`y`**, **\\*\\*`kwargs`**) → `LabelList`\n", "\n", "
×

No tests found for new. To contribute a test please refer to this guide and this discussion.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.new)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

get[source][test]

\n", "\n", "> get(**`i`**)\n", "\n", "
×

No tests found for get. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Subclass if you want to customize how to create item `i` from `self.items`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryList.get)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

predict[source][test]

\n", "\n", "> predict(**`res`**)\n", "\n", "
×

No tests found for predict. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Delegates predict call on `res` to `self.y`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.predict)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

new[source][test]

\n", "\n", "> new(**`items`**:`Iterator`\\[`T_co`\\], **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

No tests found for new. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a new [`ItemList`](/data_block.html#ItemList) from `items`, keeping the same attributes. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.new)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

process_one[source][test]

\n", "\n", "> process_one(**`item`**:[`ItemBase`](/core.html#ItemBase), **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***)\n", "\n", "
×

Tests found for process_one:

Some other tests where process_one is used:

  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]

To run tests please refer to this guide.

\n", "\n", "Apply `processor` or `self.processor` to `item`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.process_one)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

process[source][test]

\n", "\n", "> process(**`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***)\n", "\n", "
×

No tests found for process. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Apply `processor` or `self.processor` to `self`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.process)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

process_one[source][test]

\n", "\n", "> process_one(**`item`**)\n", "\n", "
×

Tests found for process_one:

Some other tests where process_one is used:

  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]

To run tests please refer to this guide.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryProcessor.process_one)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

get[source][test]

\n", "\n", "> get(**`i`**)\n", "\n", "
×

No tests found for get. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Subclass if you want to customize how to create item `i` from `self.items`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(FloatList.get)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

process_one[source][test]

\n", "\n", "> process_one(**`item`**)\n", "\n", "
×

Tests found for process_one:

  • pytest -sv tests/test_data_block.py::test_category_processor_existing_class [source]
  • pytest -sv tests/test_data_block.py::test_category_processor_non_existing_class [source]

To run tests please refer to this guide.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryProcessor.process_one)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

create_classes[source][test]

\n", "\n", "> create_classes(**`classes`**)\n", "\n", "
×

No tests found for create_classes. To contribute a test please refer to this guide and this discussion.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryProcessor.create_classes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

process[source][test]

\n", "\n", "> process(**`ds`**)\n", "\n", "
×

No tests found for process. To contribute a test please refer to this guide and this discussion.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryProcessor.process)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

get[source][test]

\n", "\n", "> get(**`i`**)\n", "\n", "
×

No tests found for get. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Subclass if you want to customize how to create item `i` from `self.items`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryList.get)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

new[source][test]

\n", "\n", "> new(**`items`**:`Iterator`\\[`T_co`\\], **`processor`**:`Union`\\[[`PreProcessor`](/data_block.html#PreProcessor), `Collection`\\[[`PreProcessor`](/data_block.html#PreProcessor)\\]\\]=***`None`***, **\\*\\*`kwargs`**) → `ItemList`\n", "\n", "
×

No tests found for new. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Create a new [`ItemList`](/data_block.html#ItemList) from `items`, keeping the same attributes. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(FloatList.new)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

reconstruct[source][test]

\n", "\n", "> reconstruct(**`t`**)\n", "\n", "
×

No tests found for reconstruct. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Reconstruct one of the underlying item for its data `t`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(FloatList.reconstruct)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

analyze_pred[source][test]

\n", "\n", "> analyze_pred(**`pred`**, **`thresh`**:`float`=***`0.5`***)\n", "\n", "
×

No tests found for analyze_pred. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Called on `pred` before `reconstruct` for additional preprocessing. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryList.analyze_pred)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

reconstruct[source][test]

\n", "\n", "> reconstruct(**`t`**)\n", "\n", "
×

No tests found for reconstruct. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Reconstruct one of the underlying item for its data `t`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(MultiCategoryList.reconstruct)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

reconstruct[source][test]

\n", "\n", "> reconstruct(**`t`**)\n", "\n", "
×

No tests found for reconstruct. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Reconstruct one of the underlying item for its data `t`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryList.reconstruct)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

analyze_pred[source][test]

\n", "\n", "> analyze_pred(**`pred`**, **`thresh`**:`float`=***`0.5`***)\n", "\n", "
×

No tests found for analyze_pred. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Called on `pred` before `reconstruct` for additional preprocessing. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(CategoryList.analyze_pred)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

reconstruct[source][test]

\n", "\n", "> reconstruct(**`t`**:`Tensor`, **`x`**:`Tensor`=***`None`***)\n", "\n", "
×

No tests found for reconstruct. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Reconstruct one of the underlying item for its data `t`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(EmptyLabelList.reconstruct)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

get[source][test]

\n", "\n", "> get(**`i`**)\n", "\n", "
×

No tests found for get. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Subclass if you want to customize how to create item `i` from `self.items`. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(EmptyLabelList.get)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "

databunch[source][test]

\n", "\n", "> databunch(**\\*\\*`kwargs`**)\n", "\n", "
×

Tests found for databunch:

Some other tests where databunch is used:

  • pytest -sv tests/test_data_block.py::test_regression [source]

To run tests please refer to this guide.

\n", "\n", "To throw a clear error message when the data wasn't split. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(LabelList.databunch)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## New Methods - Please document or move to the undocumented section" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

add[source][test]

\n", "\n", "> add(**`items`**:`ItemList`)\n", "\n", "
×

No tests found for add. To contribute a test please refer to this guide and this discussion.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(ItemList.add)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "jekyll": { "keywords": "fastai", "summary": "The data block API", "title": "data_block" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }