{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "%reload_ext autoreload\n%autoreload 2" }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "from fastai.gen_doc.gen_notebooks import *\nfrom pathlib import Path" }, { "cell_type": "markdown", "metadata": {}, "source": "### To update this notebook" }, { "cell_type": "markdown", "metadata": {}, "source": "Run `tools/sgen_notebooks.py" }, { "cell_type": "markdown", "metadata": {}, "source": "Or run below: \nYou need to make sure to refresh right after" }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "import glob\nfor f in Path().glob('*.ipynb'):\n generate_missing_metadata(f)" }, { "cell_type": "markdown", "metadata": {}, "source": "# Metadata generated below" }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "update_nb_metadata('callbacks.tracking.ipynb',\n summary='Callbacks that take decisions depending on the evolution of metrics during training',\n title='callbacks.tracking')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('torch_core.ipynb',\n summary='Basic functions using pytorch',\n title='torch_core')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('gen_doc.convert2html.ipynb',\n summary='Converting the documentation notebooks to HTML pages',\n title='gen_doc.convert2html')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('metrics.ipynb',\n summary='Useful metrics for training',\n title='metrics')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.fp16.ipynb',\n summary='Training in mixed precision implementation',\n title='callbacks.fp16')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.general_sched.ipynb',\n summary='Implementation of a flexible training API',\n title='callbacks.general_sched')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('text.ipynb',\n keywords='fastai',\n summary='Application to NLP, including ULMFiT fine-tuning',\n title='text')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callback.ipynb',\n summary='Implementation of the callback system',\n title='callback')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('tabular.models.ipynb',\n keywords='fastai',\n summary='Model for training tabular/structured data',\n title='tabular.models')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.mixup.ipynb',\n summary='Implementation of mixup',\n title='callbacks.mixup')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('applications.ipynb',\n summary='Types of problems you can apply the fastai library to',\n title='applications')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.data.ipynb',\n summary='Basic dataset for computer vision and helper function to get a DataBunch',\n title='vision.data')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('overview.ipynb',\n summary='Overview of the core modules',\n title='overview')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('training.ipynb',\n keywords='fastai',\n summary='Overview of fastai training modules, including Learner, metrics, and callbacks',\n title='training')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('text.transform.ipynb',\n summary='NLP data processing; tokenizes text and creates vocab indexes',\n title='text.transform')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "# do not overwrite this notebook, or changes may get lost!\n# update_nb_metadata('jekyll_metadata.ipynb')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('collab.ipynb',\n summary='Application to collaborative filtering',\n title='collab')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('text.learner.ipynb',\n summary='Easy access of language models and ULMFiT',\n title='text.learner')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('gen_doc.nbdoc.ipynb',\n summary='Helper function to build the documentation',\n title='gen_doc.nbdoc')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.learner.ipynb',\n summary='`Learner` support for computer vision',\n title='vision.learner')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('core.ipynb',\n summary='Basic helper functions for the fastai library',\n title='core')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('fastai_typing.ipynb',\n keywords='fastai',\n summary='Type annotations names',\n title='fastai_typing')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('gen_doc.gen_notebooks.ipynb',\n summary='Generation of documentation notebook skeletons from python module',\n title='gen_doc.gen_notebooks')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('basic_train.ipynb',\n summary='Learner class and training loop',\n title='basic_train')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('gen_doc.ipynb',\n keywords='fastai',\n summary='Documentation modules overview',\n title='gen_doc')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.rnn.ipynb',\n summary='Implementation of a callback for RNN training',\n title='callbacks.rnn')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.one_cycle.ipynb',\n summary='Implementation of the 1cycle policy',\n title='callbacks.one_cycle')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.ipynb',\n summary='Application to Computer Vision',\n title='vision')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.transform.ipynb',\n summary='List of transforms for data augmentation in CV',\n title='vision.transform')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.lr_finder.ipynb',\n summary='Implementation of the LR Range test from Leslie Smith',\n title='callbacks.lr_finder')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('text.data.ipynb',\n summary='Basic dataset for NLP tasks and helper functions to create a DataBunch',\n title='text.data')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('text.models.ipynb',\n summary='Implementation of the AWD-LSTM and the RNN models',\n title='text.models')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('tabular.data.ipynb',\n summary='Base class to deal with tabular data and get a DataBunch',\n title='tabular.data')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.ipynb',\n keywords='fastai',\n summary='Callbacks implemented in the fastai library',\n title='callbacks')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('train.ipynb',\n summary='Extensions to Learner that easily implement Callback',\n title='train')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.hooks.ipynb',\n summary='Implement callbacks using hooks',\n title='callbacks.hooks')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.image.ipynb',\n summary='Image class, variants and internal data augmentation pipeline',\n title='vision.image')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.models.unet.ipynb',\n summary='Dynamic Unet that can use any pretrained model as a backbone.',\n title='vision.models.unet')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('vision.models.ipynb',\n keywords='fastai',\n summary='Overview of the models used for CV in fastai',\n title='vision.models')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('tabular.transform.ipynb',\n summary='Transforms to clean and preprocess tabular data',\n title='tabular.transform')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('index.ipynb',\n keywords='fastai',\n toc='false', \n title='Welcome to fastai')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('layers.ipynb',\n summary='Provides essential functions to building and modifying `Model` architectures.',\n title='layers')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('tabular.ipynb',\n keywords='fastai',\n summary='Application to tabular/structured data',\n title='tabular')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('basic_data.ipynb',\n summary='Basic classes to contain the data for model training.',\n title='basic_data')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('datasets.ipynb')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('tmp.ipynb',\n keywords='fastai')" }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": "update_nb_metadata('callbacks.tracking.ipynb')" }, { "cell_type": "code", "execution_count": 0, "metadata": { "hide_input": false, "trusted": true }, "source": "update_nb_metadata('data_block.ipynb',\n keywords='fastai',\n summary='The data block API',\n title='data_block')", "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }