{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Simple model for tabular data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [], "source": [ "from fastai.gen_doc.nbdoc import *\n", "from fastai.tabular.models import TabularModel" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
class TabularModel[source]TabularModel(`emb_szs`:`ListSizes`, `n_cont`:`int`, `out_sz`:`int`, `layers`:`Collection`\\[`int`\\], `ps`:`Collection`\\[`float`\\]=`None`, `emb_drop`:`float`=`0.0`, `y_range`:`OptRange`=`None`, `use_bn`:`bool`=`True`) :: [`Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)"
],
"text/plain": [
"forward[source]forward(`x_cat`:`Tensor`, `x_cont`:`Tensor`) → `Tensor`\n",
"\n",
"Defines the computation performed at every call. Should be overridden by all subclasses.\n",
"\n",
".. note::\n",
" Although the recipe for forward pass needs to be defined within\n",
" this function, one should call the :class:`Module` instance afterwards\n",
" instead of this since the former takes care of running the\n",
" registered hooks while the latter silently ignores them. "
],
"text/plain": [
"