{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Create a Learner for inference" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [], "source": [ "from fastai import *\n", "from fastai.gen_doc.nbdoc import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial, we'll see how the same API allows you to create an empty [`DataBunch`](/basic_data.html#DataBunch) for a [`Learner`](/basic_train.html#Learner) at inference time (once you have trained your model) and how to call the `predict` method to get the predictions on a single item." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "