{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Learner for tabular data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hide_input": true }, "outputs": [], "source": [ "from fastai.gen_doc.nbdoc import *\n", "from fastai.tabular import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "

tabular_learner[source][test]

\n", "\n", "> tabular_learner(**`data`**:[`DataBunch`](/basic_data.html#DataBunch), **`layers`**:`Collection`\\[`int`\\], **`emb_szs`**:`Dict`\\[`str`, `int`\\]=***`None`***, **`metrics`**=***`None`***, **`ps`**:`Collection`\\[`float`\\]=***`None`***, **`emb_drop`**:`float`=***`0.0`***, **`y_range`**:`OptRange`=***`None`***, **`use_bn`**:`bool`=***`True`***, **\\*\\*`learn_kwargs`**)\n", "\n", "
×

No tests found for tabular_learner. To contribute a test please refer to this guide and this discussion.

\n", "\n", "Get a [`Learner`](/basic_train.html#Learner) using `data`, with `metrics`, including a [`TabularModel`](/tabular.models.html#TabularModel) created using the remaining params. " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_doc(tabular_learner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can customize the automatic embeddings sizes picked by the library by passing a dictionary `emb_szs` to match categorical variable names with an embedding size. `emb_drop`, `ps`. `y_range` and `use_bn` are passed to [`TabularModel`](/tabular.models.html#TabularModel), the `kwargs` are passed to [`Learner`](/basic_train.html#Learner). See [`tabular`](/tabular.html#tabular) for an example of use." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Undocumented Methods - Methods moved below this line will intentionally be hidden" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## New Methods - Please document or move to the undocumented section" ] } ], "metadata": { "jekyll": { "keywords": "fastai", "summary": "Model for training tabular/structured data", "title": "tabular.models" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 2 }