{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%reload_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fastai.gen_doc.gen_notebooks import *\n", "from pathlib import Path" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### To update this notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run `tools/sgen_notebooks.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or run below: \n", "You need to make sure to refresh right after" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import glob\n", "for f in Path().glob('*.ipynb'):\n", " generate_missing_metadata(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Metadata generated below" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "update_nb_metadata('callbacks.csv_logger.ipynb',\n", " summary='Callbacks that saves the tracked metrics during training',\n", " title='callbacks.csv_logger')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "update_nb_metadata('callbacks.tracker.ipynb',\n", " summary='Callbacks that take decisions depending on the evolution of metrics during training',\n", " title='callbacks.tracker')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('torch_core.ipynb',\n", " summary='Basic functions using pytorch',\n", " title='torch_core')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('gen_doc.convert2html.ipynb',\n", " summary='Converting the documentation notebooks to HTML pages',\n", " title='gen_doc.convert2html')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('metrics.ipynb',\n", " summary='Useful metrics for training',\n", " title='metrics')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.fp16.ipynb',\n", " summary='Training in mixed precision implementation',\n", " title='callbacks.fp16')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.general_sched.ipynb',\n", " summary='Implementation of a flexible training API',\n", " title='callbacks.general_sched')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text.ipynb',\n", " keywords='fastai',\n", " summary='Application to NLP, including ULMFiT fine-tuning',\n", " title='text')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callback.ipynb',\n", " summary='Implementation of the callback system',\n", " title='callback')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tabular.models.ipynb',\n", " keywords='fastai',\n", " summary='Model for training tabular/structured data',\n", " title='tabular.models')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.mixup.ipynb',\n", " summary='Implementation of mixup',\n", " title='callbacks.mixup')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('applications.ipynb',\n", " summary='Types of problems you can apply the fastai library to',\n", " title='applications')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.data.ipynb',\n", " summary='Basic dataset for computer vision and helper function to get a DataBunch',\n", " title='vision.data')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('overview.ipynb',\n", " summary='Overview of the core modules',\n", " title='overview')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('training.ipynb',\n", " keywords='fastai',\n", " summary='Overview of fastai training modules, including Learner, metrics, and callbacks',\n", " title='training')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text.transform.ipynb',\n", " summary='NLP data processing; tokenizes text and creates vocab indexes',\n", " title='text.transform')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "# do not overwrite this notebook, or changes may get lost!\n", "# update_nb_metadata('jekyll_metadata.ipynb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('collab.ipynb',\n", " summary='Application to collaborative filtering',\n", " title='collab')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text.learner.ipynb',\n", " summary='Easy access of language models and ULMFiT',\n", " title='text.learner')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('gen_doc.nbdoc.ipynb',\n", " summary='Helper function to build the documentation',\n", " title='gen_doc.nbdoc')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.learner.ipynb',\n", " summary='`Learner` support for computer vision',\n", " title='vision.learner')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('core.ipynb',\n", " summary='Basic helper functions for the fastai library',\n", " title='core')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('fastai_typing.ipynb',\n", " keywords='fastai',\n", " summary='Type annotations names',\n", " title='fastai_typing')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('gen_doc.gen_notebooks.ipynb',\n", " summary='Generation of documentation notebook skeletons from python module',\n", " title='gen_doc.gen_notebooks')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('basic_train.ipynb',\n", " summary='Learner class and training loop',\n", " title='basic_train')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('gen_doc.ipynb',\n", " keywords='fastai',\n", " summary='Documentation modules overview',\n", " title='gen_doc')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.rnn.ipynb',\n", " summary='Implementation of a callback for RNN training',\n", " title='callbacks.rnn')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.one_cycle.ipynb',\n", " summary='Implementation of the 1cycle policy',\n", " title='callbacks.one_cycle')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.ipynb',\n", " summary='Application to Computer Vision',\n", " title='vision')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.transform.ipynb',\n", " summary='List of transforms for data augmentation in CV',\n", " title='vision.transform')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.lr_finder.ipynb',\n", " summary='Implementation of the LR Range test from Leslie Smith',\n", " title='callbacks.lr_finder')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text.data.ipynb',\n", " summary='Basic dataset for NLP tasks and helper functions to create a DataBunch',\n", " title='text.data')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text.models.ipynb',\n", " summary='Implementation of the AWD-LSTM and the RNN models',\n", " title='text.models')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tabular.data.ipynb',\n", " summary='Base class to deal with tabular data and get a DataBunch',\n", " title='tabular.data')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.ipynb',\n", " keywords='fastai',\n", " summary='Callbacks implemented in the fastai library',\n", " title='callbacks')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('train.ipynb',\n", " summary='Extensions to Learner that easily implement Callback',\n", " title='train')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.hooks.ipynb',\n", " summary='Implement callbacks using hooks',\n", " title='callbacks.hooks')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.image.ipynb',\n", " summary='Image class, variants and internal data augmentation pipeline',\n", " title='vision.image')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.models.unet.ipynb',\n", " summary='Dynamic Unet that can use any pretrained model as a backbone.',\n", " title='vision.models.unet')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('vision.models.ipynb',\n", " keywords='fastai',\n", " summary='Overview of the models used for CV in fastai',\n", " title='vision.models')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tabular.transform.ipynb',\n", " summary='Transforms to clean and preprocess tabular data',\n", " title='tabular.transform')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('index.ipynb',\n", " keywords='fastai',\n", " toc='false', \n", " title='Welcome to fastai')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('layers.ipynb',\n", " summary='Provides essential functions to building and modifying `Model` architectures.',\n", " title='layers')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tabular.ipynb',\n", " keywords='fastai',\n", " summary='Application to tabular/structured data',\n", " title='tabular')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('basic_data.ipynb',\n", " summary='Basic classes to contain the data for model training.',\n", " title='basic_data')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('datasets.ipynb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tmp.ipynb',\n", " keywords='fastai')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.tracking.ipynb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('data_block.ipynb',\n", " keywords='fastai',\n", " summary='The data block API',\n", " title='data_block')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('callbacks.tracker.ipynb',\n", " keywords='fastai',\n", " summary='Callbacks that take decisions depending on the evolution of metrics during training',\n", " title='callbacks.tracking')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('widgets.ipynb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('text_tmp.ipynb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "update_nb_metadata('tabular_tmp.ipynb')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }