{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Computer Vision models zoo" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [], "source": [ "from fastai.gen_doc.nbdoc import *\n", "from fastai.vision.models.darknet import Darknet\n", "from fastai.vision.models.wrn import wrn_22, WideResNet" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On top of the models offered by [torchivision](https://pytorch.org/docs/stable/torchvision/models.html), the fastai library has implementations for the following models:\n", "\n", "- Darknet architecture, which is the base of [Yolo v3](https://pjreddie.com/media/files/papers/YOLOv3.pdf)\n", "- Unet architecture based on a pretrained model. The original unet is described [here](https://arxiv.org/abs/1505.04597), the model implementation is detailed in [`models.unet`](/vision.models.unet.html#vision.models.unet)\n", "- Wide resnets architectures, as introduced in [this article](https://arxiv.org/abs/1605.07146)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": true }, "outputs": [ { "data": { "text/markdown": [ "
class
Darknet
[source]Darknet
(`num_blocks`:`Collection`\\[`int`\\], `num_classes`:`int`, `nf`=`32`) :: [`Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)"
],
"text/plain": [
"class
WideResNet
[source]WideResNet
(`num_groups`:`int`, `N`:`int`, `num_classes`:`int`, `k`:`int`=`1`, `drop_p`:`float`=`0.0`, `start_nf`:`int`=`16`) :: [`Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)"
],
"text/plain": [
"wrn_22
[source]wrn_22
()"
],
"text/plain": [
"