{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "hide_input": false }, "outputs": [], "source": [ "import fastai\n", "from fastai import * # Quick access to most common functionality\n", "from fastai.vision import * # Quick access to computer vision functionality" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Vision example" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Images can be in labeled folders, or a single folder with a CSV." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PosixPath('/data1/jhoward/git/fastai/fastai/../data/mnist_sample')" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "path = untar_data(URLs.MNIST_SAMPLE)\n", "path" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Image folder version" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a `DataBunch`, optionally with transforms:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAAcABwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+vtL9mv/gkx8Efjh8ILH41ePP8Agr1+zb4EsLnSLe4vtB1nxBenW9Nu5XIFpNZSW0TMUUfPJC0iBs4ym2Rvi2v0n/4JW/t+/wDBDL9ir4b+HvG/7S3/AATz8afEj4xWc9z/AGprN/cWeo6RFiQGCS2tLqdIlbZjJeJnRwxD4K4AJv2jf+CBfwH+FX/BMzWP+ClPwc/4KeaX400TTLiG00/Tdb+Euo+GrfxBdl41lg025vp/MvcbnMckduY5fJkG5PLk2fmlX7Ff8FuviBqP/BW39h3/AIem/softB+Nrr4S/D/xXZaF40+A3iqC0s4fAt3JDDbwX9tHbPsnjke4jj3sJJQbltrCNXSP8daAPq//AIJ1/wDBGj9sj/gqH4N8V+Ov2XT4Pex8GXsNtrw8ReJVsZITLG8iPtKN8hVH+Y4GVPoa+r/hx/wQs/4Jl/s0JB4r/wCCqP8AwWc+GWnNaIZNW+Hnwd1WPV9UAaB5EXzVWWZGA8tuLN1flFblWP5Q0UAfpp/wUw/4KyfsOWn7GDf8Es/+CQfwMufDPwk1e8gvviN4t8U6Zt1XxPd288FxbsrmVpCokgQvJMqsdioiRop3/mXRRQB//9k=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAmZJREFUSInllr1rImEQxh/PJFgpYSMo4hIbCaYXQqo0iRLQasUihSBY2mvlv2Bjk0ZIo6QJpggpYkJEkIA2oliooNEgilgofrC8zDWJ3J6a3Vw8i7uBaYZn57fz8e67KgCEDdqPTcL+D+CWUuHJyQkeHx9hsVhwcXExj3Mch2AwKNHe3d3h/Px8ZS6S82KxSKIo0nQ6pdlsRowxWQ+FQktzKarQ7/fD6/Vif38fbrcbb29vuL6+BgAkk0mUSiUYjUZUKhUAAGMM+Xz+zyv88J2dHeI4jnQ6nSQuCAL1+31ijNF0OiWXy/VZHuXAX12v15Pf76f7+3sajUbzVqbTablnvwYyGAwUDoep1WpJZpbNZkkQBNJqtd8Hms1mEgSBHh4eqNFoLCxIo9FYaPO3gMfHxzQYDFZu5GQyoUwmQ06nUzaXGkBk5Tq92+vrK3iex+7uLl5eXlCtViWu1Wphs9ng8XigUqnw/Pz8aT7F8+N5fmncarVSNBolxhgNh8OVOsUtVeJ6vZ7a7TYxxqhcLv99IACKxWLzma7SrO3jvb29DY7jFGm/Xdnh4SGlUqn51jabzfW31GAwkMVioVAoRLVabQ7r9XoUCATWA9RoNGQymejo6IiazebCeWy1WmSz2eTyyEP29vYoEonQ7e3t0oMviiJ1u13y+XyyLy25ns7OzuBwOCQDPjg4wOnp6cLgGWMYj8dIJBLI5XKIx+MLmmUmAdrt9oXb+8NEUQQRoV6vIx6Po9Pp4OrqShFkJfDp6QmMMajVagBAoVDAzc0NAODy8hLdbvfLgN9NhfdBbsr+/d/EjQN/AqmGrig38GGyAAAAAElFTkSuQmCC\n", "text/plain": [ "Image (3, 28, 28)" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = ImageDataBunch.from_folder(path, ds_tfms=(rand_pad(2, 28), []), bs=64)\n", "data.normalize(imagenet_stats)\n", "img,label = data.train_ds[0]\n", "img" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create and fit a `Learner`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HBox(children=(IntProgress(value=0, max=1), HTML(value='0.00% [0/1 00:00<00:00]'))), HTML(value…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Total time: 00:04\n", "epoch train loss valid loss accuracy\n", "0 0.053222 0.013478 0.996565 (00:04)\n", "\n" ] } ], "source": [ "learn = ConvLearner(data, models.resnet18, metrics=accuracy)\n", "learn.fit_one_cycle(1, 0.01)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, max=16), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, max=16), HTML(value='0.00% [0/16 00:00<00:00]')))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "tensor(0.9966)" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy(*learn.get_preds())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### CSV version" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Same as above, using CSV instead of folder name for labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAAcABwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8Zv2ZP2OrP9ozw9qPizX/ANrf4MfC/T9Pu2t1f4m+MJrW4unWISMYbSytrq6ZACqiQxBGZtqMxRwnUftQf8E0PiP+zf8As66N+1t4c+P3ws+Kvw31fxYfC7+K/hd4iurqLTtZ+zNdLY3MN7aWs8crW6NKMRsu0csCVB+cK/T39pnxz/wTV/4KC/D/AMA/syfsw/8ABQK2/Z/+H3gi2ji8E/Cv4pfCO60+zuNXmSGG51TWNc0u6vY7q+mKsWvJoIYoYgEUJmRnAPzCor1P9rD9jH9oX9izxxaeC/jz4KWzi1ezF/4W8R6XeR32j+JNPYAx32nX0BaG8t3VkYPGxK7wHCtlR5ZQAV71+zRrf7C3jX4XT/s//tT6Vr3gfW7zxT/aOk/HDw3a/wBqnTbc26Rf2ffaSTG1xaB1Mvm28qTI0jHy5wFQeC0UAfo74X+G3wV+CX7Dnxf+Bf7Q/wDwUm+C3xR+FjeGrrXfg94Z8Ea/qN1r1l42Hy6fc2dnc2cMlhFKGeK+STEbRSFsO8cci/nFRRQB/9k=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAShJREFUSIntlsFtwzAMRX86h+U5zEHMQZw5nEE4COGsQWWP35OCBE1sJbZzaEuAF+FDjyRIUQcAxAft65Owf+D+wJQSzAzuDpI/3MyQUloFPOCmS90dl8sFOWcAwPl8BgA0TYOu69D3PXLOaNt2FZS1HhEkWa1/4nVCVSVJmtn+wHEcSZIRsRa2DCyZRQRTSvsDN8ysDlgapZi708yoqu9mvCxKKVFVOQwDzewugHEctwc+C8LdryUXkX2Bt+BS9spst2mGYRhq57T+UhGZLV0ZIVXdBhgRi2Ur0JnA6oHlxTGz2ZEws6ez+9I+PB6PaNsWOWdEBNwdqvpQO7fG3moSEbmOxe2DsNSxd/vwHRMRiAi6rrueTdOE0+n0UL8a+Kr9sU/UrwR+A2R+RsRJ08RxAAAAAElFTkSuQmCC\n", "text/plain": [ "Image (3, 28, 28)" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = ImageDataBunch.from_csv(path, ds_tfms=(rand_pad(2, 28), []), bs=64)\n", "data.normalize(imagenet_stats)\n", "img,label = data.train_ds[0]\n", "img" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HBox(children=(IntProgress(value=0, max=1), HTML(value='0.00% [0/1 00:00<00:00]'))), HTML(value…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Total time: 00:06\n", "epoch train loss valid loss accuracy\n", "0 0.047875 0.014735 0.995466 (00:06)\n", "\n" ] } ], "source": [ "learn = ConvLearner(data, models.resnet18, metrics=accuracy)\n", "learn.fit_one_cycle(1, 0.01)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }