{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Random Forest from scratch!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "from fastai.imports import *\n", "from fastai.structured import *\n", "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", "from IPython.display import display\n", "from sklearn import metrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load in our data from last lesson" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PATH = \"data/bulldozers/\"\n", "\n", "df_raw = pd.read_feather('tmp/bulldozers-raw')\n", "df_trn, y_trn, nas = proc_df(df_raw, 'SalePrice')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def split_vals(a,n): return a[:n], a[n:]\n", "n_valid = 12000\n", "n_trn = len(df_trn)-n_valid\n", "X_train, X_valid = split_vals(df_trn, n_trn)\n", "y_train, y_valid = split_vals(y_trn, n_trn)\n", "raw_train, raw_valid = split_vals(df_raw, n_trn)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x_sub = X_train[['YearMade', 'MachineHoursCurrentMeter']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Basic data structures" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class TreeEnsemble():\n", " def __init__(self, x, y, n_trees, sample_sz, min_leaf=5):\n", " np.random.seed(42)\n", " self.x,self.y,self.sample_sz,self.min_leaf = x,y,sample_sz,min_leaf\n", " self.trees = [self.create_tree() for i in range(n_trees)]\n", "\n", " def create_tree(self):\n", " rnd_idxs = np.random.permutation(len(self.y))[:self.sample_sz]\n", " return DecisionTree(self.x.iloc[rnd_idxs], self.y[rnd_idxs], min_leaf=self.min_leaf)\n", " \n", " def predict(self, x):\n", " return np.mean([t.predict(x) for t in self.trees], axis=0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class DecisionTree():\n", " def __init__(self, x, y, idxs=None, min_leaf=5):\n", " self.x,self.y,self.idxs,self.min_leaf = x,y,idxs,min_leaf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m = TreeEnsemble(X_train, y_train, n_trees=10, sample_sz=1000, min_leaf=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<__main__.DecisionTree at 0x7f645ec22358>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m.trees[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class DecisionTree():\n", " def __init__(self, x, y, idxs=None, min_leaf=5):\n", " if idxs is None: idxs=np.arange(len(y))\n", " self.x,self.y,self.idxs,self.min_leaf = x,y,idxs,min_leaf\n", " self.n,self.c = len(idxs), x.shape[1]\n", " self.val = np.mean(y[idxs])\n", " self.score = float('inf')\n", " self.find_varsplit()\n", " \n", " # This just does one decision; we'll make it recursive later\n", " def find_varsplit(self):\n", " for i in range(self.c): self.find_better_split(i)\n", " \n", " # We'll write this later!\n", " def find_better_split(self, var_idx): pass\n", " \n", " @property\n", " def split_name(self): return self.x.columns[self.var_idx]\n", " \n", " @property\n", " def split_col(self): return self.x.values[self.idxs,self.var_idx]\n", "\n", " @property\n", " def is_leaf(self): return self.score == float('inf')\n", " \n", " def __repr__(self):\n", " s = f'n: {self.n}; val:{self.val}'\n", " if not self.is_leaf:\n", " s += f'; score:{self.score}; split:{self.split}; var:{self.split_name}'\n", " return s" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m = TreeEnsemble(X_train, y_train, n_trees=10, sample_sz=1000, min_leaf=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 1000; val:10.079014121552744" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m.trees[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,\n", " 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\n", " 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,\n", " 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,\n", " 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,\n", " 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,\n", " 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,\n", " 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n", " 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,\n", " 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,\n", " 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,\n", " 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,\n", " 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,\n", " 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279,\n", " 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,\n", " 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,\n", " 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339,\n", " 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,\n", " 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,\n", " 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399,\n", " 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419,\n", " 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,\n", " 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,\n", " 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,\n", " 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499,\n", " 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,\n", " 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539,\n", " 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,\n", " 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579,\n", " 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599,\n", " 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619,\n", " 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639,\n", " 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659,\n", " 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679,\n", " 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699,\n", " 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719,\n", " 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739,\n", " 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759,\n", " 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779,\n", " 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799,\n", " 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,\n", " 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839,\n", " 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859,\n", " 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879,\n", " 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899,\n", " 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919,\n", " 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939,\n", " 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959,\n", " 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979,\n", " 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999])" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m.trees[0].idxs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Single branch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find best split given variable" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['YearMade', 'MachineHoursCurrentMeter'], dtype='object')" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ens = TreeEnsemble(x_sub, y_train, 1, 1000)\n", "tree = ens.trees[0]\n", "x_samp,y_samp = tree.x, tree.y\n", "x_samp.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 1000; val:10.079014121552744" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "Tree\n", "\n", "\n", "0\n", "\n", "YearMade ≤ 1974.5\n", "mse = 0.47\n", "samples = 1000\n", "value = 10.08\n", "\n", "\n", "1\n", "\n", "mse = 0.26\n", "samples = 159\n", "value = 9.66\n", "\n", "\n", "0->1\n", "\n", "\n", "True\n", "\n", "\n", "2\n", "\n", "mse = 0.47\n", "samples = 841\n", "value = 10.16\n", "\n", "\n", "0->2\n", "\n", "\n", "False\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m = RandomForestRegressor(n_estimators=1, max_depth=1, bootstrap=False)\n", "m.fit(x_samp, y_samp)\n", "draw_tree(m.estimators_[0], x_samp, precision=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def find_better_split(self, var_idx):\n", " x,y = self.x.values[self.idxs,var_idx], self.y[self.idxs]\n", "\n", " for i in range(1,self.n-1):\n", " lhs = x<=x[i]\n", " rhs = x>x[i]\n", " if rhs.sum()==0: continue\n", " lhs_std = y[lhs].std()\n", " rhs_std = y[rhs].std()\n", " curr_score = lhs_std*lhs.sum() + rhs_std*rhs.sum()\n", " if curr_score\n", "\n", "\n", "\n", "\n", "\n", "Tree\n", "\n", "\n", "0\n", "\n", "YearMade ≤ 1974.5\n", "mse = 0.47\n", "samples = 1000\n", "value = 10.08\n", "\n", "\n", "1\n", "\n", "MachineHoursCurrentMeter ≤ 2956.5\n", "mse = 0.26\n", "samples = 159\n", "value = 9.66\n", "\n", "\n", "0->1\n", "\n", "\n", "True\n", "\n", "\n", "4\n", "\n", "YearMade ≤ 2005.5\n", "mse = 0.47\n", "samples = 841\n", "value = 10.16\n", "\n", "\n", "0->4\n", "\n", "\n", "False\n", "\n", "\n", "2\n", "\n", "mse = 0.23\n", "samples = 150\n", "value = 9.62\n", "\n", "\n", "1->2\n", "\n", "\n", "\n", "\n", "3\n", "\n", "mse = 0.23\n", "samples = 9\n", "value = 10.35\n", "\n", "\n", "1->3\n", "\n", "\n", "\n", "\n", "5\n", "\n", "mse = 0.46\n", "samples = 813\n", "value = 10.14\n", "\n", "\n", "4->5\n", "\n", "\n", "\n", "\n", "6\n", "\n", "mse = 0.38\n", "samples = 28\n", "value = 10.67\n", "\n", "\n", "4->6\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m = RandomForestRegressor(n_estimators=1, max_depth=2, bootstrap=False)\n", "m.fit(x_samp, y_samp)\n", "draw_tree(m.estimators_[0], x_samp, precision=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def find_varsplit(self):\n", " for i in range(self.c): self.find_better_split(i)\n", " if self.is_leaf: return\n", " x = self.split_col\n", " lhs = np.nonzero(x<=self.split)[0]\n", " rhs = np.nonzero(x>self.split)[0]\n", " self.lhs = DecisionTree(self.x, self.y, self.idxs[lhs])\n", " self.rhs = DecisionTree(self.x, self.y, self.idxs[rhs])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "DecisionTree.find_varsplit = find_varsplit" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 1000; val:10.079014121552744; score:658.5510186055565; split:1974.0; var:YearMade" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree = TreeEnsemble(x_sub, y_train, 1, 1000).trees[0]; tree" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 159; val:9.660892662981706; score:76.82696888346362; split:2800.0; var:MachineHoursCurrentMeter" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.lhs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 841; val:10.158064432982941; score:571.4803525045031; split:2005.0; var:YearMade" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.rhs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 150; val:9.619280538108496; score:71.15906938383463; split:1000.0; var:YearMade" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.lhs.lhs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "n: 9; val:10.354428077535193" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tree.lhs.rhs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Predictions" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cols = ['MachineID', 'YearMade', 'MachineHoursCurrentMeter', 'ProductSize', 'Enclosure',\n", " 'Coupler_System', 'saleYear']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 288 ms, sys: 12 ms, total: 300 ms\n", "Wall time: 297 ms\n" ] } ], "source": [ "%time tree = TreeEnsemble(X_train[cols], y_train, 1, 1000).trees[0]\n", "x_samp,y_samp = tree.x, tree.y" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "Tree\n", "\n", "\n", "0\n", "\n", "Coupler_System ≤ 0.5\n", "mse = 0.47\n", "samples = 1000\n", "value = 10.08\n", "\n", "\n", "1\n", "\n", "YearMade ≤ 1980.5\n", "mse = 0.41\n", "samples = 898\n", "value = 10.18\n", "\n", "\n", "0->1\n", "\n", "\n", "True\n", "\n", "\n", "8\n", "\n", "YearMade ≤ 1998.5\n", "mse = 0.12\n", "samples = 102\n", "value = 9.17\n", "\n", "\n", "0->8\n", "\n", "\n", "False\n", "\n", "\n", "2\n", "\n", "YearMade ≤ 1974.5\n", "mse = 0.28\n", "samples = 226\n", "value = 9.83\n", "\n", "\n", "1->2\n", "\n", "\n", "\n", "\n", "5\n", "\n", "ProductSize ≤ 1.5\n", "mse = 0.39\n", "samples = 672\n", "value = 10.3\n", "\n", "\n", "1->5\n", "\n", "\n", "\n", "\n", "3\n", "\n", "mse = 0.25\n", "samples = 143\n", "value = 9.72\n", "\n", "\n", "2->3\n", "\n", "\n", "\n", "\n", "4\n", "\n", "mse = 0.29\n", "samples = 83\n", "value = 10.03\n", "\n", "\n", "2->4\n", "\n", "\n", "\n", "\n", "6\n", "\n", "mse = 0.29\n", "samples = 341\n", "value = 10.11\n", "\n", "\n", "5->6\n", "\n", "\n", "\n", "\n", "7\n", "\n", "mse = 0.43\n", "samples = 331\n", "value = 10.49\n", "\n", "\n", "5->7\n", "\n", "\n", "\n", "\n", "9\n", "\n", "saleYear ≤ 1995.5\n", "mse = 0.1\n", "samples = 49\n", "value = 9.02\n", "\n", "\n", "8->9\n", "\n", "\n", "\n", "\n", "12\n", "\n", "saleYear ≤ 2007.5\n", "mse = 0.1\n", "samples = 53\n", "value = 9.31\n", "\n", "\n", "8->12\n", "\n", "\n", "\n", "\n", "10\n", "\n", "mse = 0.03\n", "samples = 5\n", "value = 9.46\n", "\n", "\n", "9->10\n", "\n", "\n", "\n", "\n", "11\n", "\n", "mse = 0.08\n", "samples = 44\n", "value = 8.97\n", "\n", "\n", "9->11\n", "\n", "\n", "\n", "\n", "13\n", "\n", "mse = 0.08\n", "samples = 22\n", "value = 9.48\n", "\n", "\n", "12->13\n", "\n", "\n", "\n", "\n", "14\n", "\n", "mse = 0.08\n", "samples = 31\n", "value = 9.19\n", "\n", "\n", "12->14\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m = RandomForestRegressor(n_estimators=1, max_depth=3, bootstrap=False)\n", "m.fit(x_samp, y_samp)\n", "draw_tree(m.estimators_[0], x_samp, precision=2, ratio=0.9, size=7)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def predict(self, x): return np.array([self.predict_row(xi) for xi in x])\n", "DecisionTree.predict = predict" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if something:\n", " x= do1()\n", "else:\n", " x= do2()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = do1() if something else do2()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = something ? do1() : do2()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def predict_row(self, xi):\n", " if self.is_leaf: return self.val\n", " t = self.lhs if xi[self.var_idx]<=self.split else self.rhs\n", " return t.predict_row(xi)\n", "\n", "DecisionTree.predict_row = predict_row" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 156 ms, sys: 4 ms, total: 160 ms\n", "Wall time: 162 ms\n" ] } ], "source": [ "%time preds = tree.predict(X_valid[cols].values)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvUlsZVma3/c7w53fwCkiMiIjszK7qrqqJ2tKt2AI8ABD\nsiALFixYgGQvDFhAr7SXAC9seGd46TZgNYyGIMCQ4I0AAZItCfBCkKFWd5UglWrKyqwcI4IRZJB8\n053P4MV5ZJCMxwgyGKzMyny/DYMv7jvvDo/fOecb/p/w3rNmzZo1a74+yC/6BNasWbNmzS+WteFf\ns2bNmq8Za8O/Zs2aNV8z1oZ/zZo1a75mrA3/mjVr1nzNWBv+NWvWrPmasTb8a9asWfM1Y23416xZ\ns+ZrxksNvxDi94UQe0KIH5567X8RQvxUCPEDIcQ/EEJsXPDePy+EeF8I8aEQ4m+9zhNfs2bNmjWv\nhnhZ5a4Q4j8EFsDf9d7/5vK1Pwf8v957I4T4nwG893/z3PsU8DPgzwIPgD8C/pr3/scvO6mdnR3/\nzjvvXP1q1qxZs+Zryve///2n3vtblzlWv+wA7/0/F0K8c+61f3rq1z8A/qsVb/1t4EPv/UcAQoi/\nD/wl4KWG/5133uF73/veyw5bs2bNmjVLhBCfXvbY1+Hj/++A/3vF628Cn5/6/cHytTVr1qxZ8wVy\nLcMvhPjvAQP8n6v+e8VrF/qVhBC/I4T4nhDie/v7+9c5rTVr1qxZ8wJe2fALIf5b4C8C/41fHSh4\nALx16vf7wKOLxvPe/573/j3v/Xu3bl3KTbVmzZo1a16BVzL8Qog/D/xN4L/w3lcXHPZHwLeFEO8K\nIWLgrwL/8NVOc82aNWvWvC4uk87594B/CXxHCPFACPHXgd8FhsA/E0L8GyHE/7489p4Q4h8DeO8N\n8DeAfwL8BPi/vPc/uqHrWLNmzZo1l+Sl6ZxfBO+9955fZ/WsWbNmzeURQnzfe//eZY59aTrnmjVf\ndXrrqDuDcaAlZLEmUr9cRe03eQ1fhfvzZeaLuL/rp7fma01vHfOmxyOItaSznkeTir1Zw6zu6K37\nok/xpZy/Bo9g3vSv5dxvcuw1X9z9XRv+NV9r6s6gpERJsVx5WaSQWOd+aYzc6WsAUFKgpKTuzJd6\n7DXh/joPVdtzVHZUbY/z3Pj9Xbt61nytMQ6E8FS1YVJ1SCEoUo1xLI1dMHJRFn/Rp3ohz66hP3EX\npLHmVcN3p10Pi6ZjmMWoU2U5Sgo6c3OxwWndsTupqHtHFknubuSMv8T3/zo0vWPR9hgTFhoCj9aW\nQRIxym7uc9eGf83XGu8ds9oS67CqFUIwq3sGiQJu3si9DsI1GGKtiLXAOs+06himV//zPnY9KCmJ\ntUBKybTqGOfxid/ZOo++IV/BtO74/scHHC1ajAct4NFRzZ96d/srafyrrqdsDWmk0TI8u7I1hA1W\nemOfu3b1rFmzLCiXyz+80wXmN2nkXi/nC+VXFc6/nPOunSLRgKBseiDcD+scWXwza8afPJzw0f6C\nzjqUlHTW8dH+gp88nNzI533ROOdxHhZNz6zqWDTB1ePczS42fim+0mvW3BRCSMZ5jMCjhMB5R5FE\nCCFv3Mi9LsI1RAigNw4B4Xdx9T/vZy6uQKTC2NZDZxwCzzCNzmSd9NYxqzsOy+7aAfEP9mZI4al6\nx2HVUPUOKTwf7M1eecyboOoMD49KPtpf8PCopHpFn7xDIDwIIfAi/BQ+vH6TfLm/0WvW3DBagkcw\nzGKGWTBiZWtwbrWR+zLy7Bqik9es8whx9VWjluG9p42/FILNPGK0wtVy3jVknWfe9K983xZVz7wz\nWANOgPSgNAwvmHyrznBUtrTGk2jBZpGQv2Cifh2pk1Vn+Nef7PPJXk1lDLnWvHM740++c+uFn72K\nSEJrLV1vT1xbcaQYy5s1zV/ub/SaNTdMFmusc0sXTzByeay4u5EzyuKXGoXLrHZf54r4MtdwnZ3K\nVcd63Vk/UmoeHtUsjMEDC2N4eFQjVxjCqjPsTmqcFxSJxnnB7qS+cPX9ulInf/z5AX/w0RHTugUE\n07rlDz464sefH1z9goWgasNEFCmJcVC1BsTNrvjXhn/N15pISYZphMBf6Mq4iMsYkl9EnvZ1ruG6\nY513DUH43bzi5WWxYLDMSGqNw3sYxJosft4QHpXtMqAdzi3Wklgrjsp25diva5L6/mdTqqbjwaTi\ngyczHkwqqqbj+59Nr3i14Zw2ioTNIiaPFJtFzEaRrNM516y5aSIlXyldc5UhOZ/+eZljXgeveg3X\nHWuVa+g6AfEijfjVN0bMWktrLYlSjBJFkUbPHdsaT7HMvjom1pKyXW00jYNYPz9JXTVr6/ODBdOm\nZ5TGDFJF11v2Fy3dK8x2UkgSfTwJieUOyyNvdsG/Nvxr1rwqlzEkr8vYfFnJYs1h2dJbH5KhBERK\nsFUkrzTe7WGCdZ4s1jiWLgkRXj9PogWdcScrfggB6ESvtppaLrNn6rDjipRklEXksVp5/EX0xmGt\nxxLy8D1grad/BcNfJIrOeKz3GOuQUpBo+dx35nWzNvxr1rwil1ntvu4V8UV84Xo63ocCJL+0/q/I\n/e2CR0cV09ripUc4wThT3N8unjt2s0j47KBk0YASAus9QsDbK46FMC+9/2TCojInxVKDXPPH39q+\n0jm+sZHz9OEhn+41eKkQzpInmm/fGV35ejeLhM8PSqwHLcNEpgTcGa++htfF2vCvWfOKZLFm3vSA\nPLVNdwxPuSUuc8x16a17btVd95atIrlx4193ofioSM5ObK/qyoqkYJzHxNpiESg8WayIVvg+QjxC\nM6t7OudRghfGI3aPSqaVIVUKLSXGOaaVYfeovFJx2GYRYWxwRWEBLLEVbBZXf6aRkgzSiFnd0dlw\nDYP05UkF12Vt+Nd8JflFrICPA6F1Z+hMWMWfNzyXOeayXHRNs7qj7oLLQymxNLyOmezYHtxc9Se8\nflfWpDG8sZFTd/bEjZPFikljuH/u2LozDNKYcf7MDbRq0jm+bz99PCeSEinD/BhpSaQlDyc13723\neelz7F2IL3Stw0jQztEqT/8KAe0QA1r6960/+fdNy4SsDf+arxyvO7f8RVwmEPo6Aq8vuqZF+0xy\nAoLhjbVk0Vq2B9f62Jfyul1ZXR9Ey/JEM8zCdfbW4lZY1ctMOqfvm/fQGIfFM4hDhlXbm4sbgV/A\npwdzms7ROYd3Eoej6RyfHsyvfL3zxnBYtsRKkceK3jj25w1bRbKybuJ1sTb8a75y/KIyaX6RvOia\nxAWm66LXXyfXcWWt3MFoxWTR00mPIKzMrfNsDJ4f7zKTzrH6ZduG+3SwaCmSiKazpJGm6y33Nq+2\nK/r0oGRW1XQOHAYJGGP49ODqrp5506FE2HlA2IWESb0D8iuPd1nWhn/NV44vMpPmplxML7qmItH8\n4MEhP/psyry3DCPFb7w95t+7v3Xtz30Zr+rKumgHk2vFw76mqg3LcDF5pnk7ed4IZrE+6ZtgPSgB\noyzm9uiZIa/7UIndG0eRRZQHNQflgkQphmnERhZx54oymPOq5qMVChKjor7SOBDSOTk1gVnnkVIg\nb7iAa23413zluI774aqG+/Tx3juM86SRfs4dA1xrQnjRNT06rPgXP91D62DM5k3Pv/jpHneH6Wvx\n8b/snryKK+uiHcys7ZHeIyVYD1KA9MHds+q8ns5qjmqDdUtRt96yWTwLjtZdT9la0igEdDfziEkN\nqYJRrums47OjijRWL5V7OOaT3f5Kr7+IIlFMq56DRUfTh/PczGOG+esL/q9iXbm75ivHq0oYXLXK\n9vzxdWepO4dbCuEfV4bO6u7a1bsvuqZ/9fER4yLhziglixV3RinjIuFffXx06fFf1z25LBdV/E7K\nDikkt0YZb20X3BplSCGZ1c8b1d2jknlnGWURd8YZoyxi3ll2j8qTY8JkGf7dtJZRGvGN7Zy7WwWD\nJGaUxnjPS+UeTnORTuir6IcmkeLJrEFLyZ1xhpaSJ7OGJLpabcFVeen0JoT4feAvAnve+99cvvZX\ngP8R+DXgt733KzujCyE+AeaEpCdz2UbAa9Zch1d1PzzzBz9raBJpdWFs4PyqNRhHQdNZoix8lpKC\nSWXZyONrxRxedE37i5Z7GxnylCFNY82jyctdDy9bzZ/2kR/vOCJ99txfxb2lJTS9DcVQp8a1Hmpr\n+OHHExaNYZBqvnlnQGOfN1V7i55YSTpjaTqLlBAryd6i55t3lp+jFJOy5QdPDvnp7pxBqtgZJHTW\nMU5iejxP5nVYaWcRR2V7ZaG1y7LqPrW9ZbuIeTJreDypyBPNnVFK2z+/w3mdXOYK/w7wu8DfPfXa\nD4G/DPztS7z/P/HeP736qa1Z84vlpBvSqXx4rS7uhnTe767ls2DkMdb5IPm8YnV71ZjDRS6VYaKZ\n1R0bp6plZ3XHMLncDue8nz2NFMY6jAt6OEII0kidBB7rzmK1ZJS9egaVVpL9eX2itdMZR1V1NG3H\nDz6fslHEvLWds2h6fvDpEf/+u8/HK4w1tE6QRAqtwTqoOouSz+5r1Xb84ccHSCkYJJons5LHs5o7\no4yyCZPanVHOvAoCevdsxpubr794qreOvVnNrO5PxSMiDuYtDyclu0c1rfUkSmCcRSvJm5fPML0y\nL3X1eO//OXB47rWfeO/fv7GzWrPmGryqe6Ja+oOFEGgtEUJQtpaqW+27Pfa7H5PGms7Yk8LVY3dM\nkegzxx3/3+uq3v3tdzeZVB2TpTjZpGyZVB2//e6LLccqP7vzsD9vnjWfNzbIVJ9yXwGYpc/9VYXP\njHWM8xgtg8yCljDOY/bmPUrBpOz55GnJpAy/H5TPP4NhGtH17qRpiXOerj+bUfTJ0xLhJamOiCOF\nkhq84JO9kqZzCCXJEkkUabrOsX+BwNt1OVg0PJ23CCHJY40Qkqfzlp/sTvnxwzlCSDYHCUJIfvxw\nzoPDq6eGXoWbDu564J+KIAz+t733v3fDn7fml5jXlRFz1XTO4889LHsWTQc+uG20FGSxwrrV/tbz\nqYxSiCCtay17s+ZEHz5S8rXq2ZznN9/axljPv/l8ysOjilES8Z9+9w6/+RIpglWZQr2xgDi5d2ms\nOVw0fLTXkEaaSIaexBvLoqmLso3K1gLdhc/y2Mffn39f19P2gifT6iRge2ecr5x8bw0z5k3P3rSi\nc55YCnZGCbeGz7Zn+4uG2+OM2hiMd+yMUkzn+eH0iHcjzVaeYJcdr5RWcEOdrw7KDq0knbU0vUFK\ngVaSj5+WDGKN9VA2Pd4HrZ4n85uZgI65acP/Z7z3j4QQt4F/JoT46XIH8RxCiN8Bfgfg7bffvuHT\nWvNl43UWXV0lnfP05wrhKTsHzlOkQSSs7HsKu9rwn/e7e+/QSjBI05PUvOa0r/aaejYXTYyRkvzx\nd3b4zr2NK/vZz2cKhYYmz97nvWda91StxSNovKe1IaB60RhNb2k6QxolCOGZNYani5ZxFp30OLio\nT/CsMjyezhnnKZFW9MbyeDpf2T9YyZD1k8aa2HukEEgBpy9bS8m0aoljhfCSzvRUjaGIJYMkGGLR\nOWSRMM40UXQz+S5tb3E+fGe0WrrMjKXrDVEeszdrqI0l04rtQYy5WVXmmzX83vtHy597Qoh/APw2\nsNLwL3cDvwfw3nvvfTWkC9dcmtdZdHVsjJwPk0fV9vQORolimD4fvDz+XGM9iZIkqUItV/tVa+he\nsAo87Xef1R1aieeu4ahsGaTxtfRsXjYxvkpK5ariK0EQOpvXYbX+ZFpRd5ZxHrNZxHTGUbeGedPz\nxni1OmfbG8Z5gvOeRRMkCdJIU3cWIZ6lt/bW0/b9SaGWlAJrHFKppWtJ4LxHKoVd4aabNz14xZ1x\nfBInqFt7cm4Ab44S/uDjI4okou46Hk0qnPd86/YQi6ftLXdHOcMsTOBvjm9G4iLSkkVtzrasNI4k\njnh4uKDIYraThNYYHh4u+LX7GzdyHsfcmOEXQhSA9N7Pl//+c8D/dFOft+aXm9Or9N46ms4GH7n3\nV3b5HBujWW3ojQ2GHU9n4bBsz4iXnf7cSEmGmaa3ns5YEi0ZZhHxJT/bOBDCU9XPMmDSWNEaT+49\nVf0sWyhdNhu5LC/LOLpqC8Lj600jdeZ9Rap5PKlpOosDPn1akmcRSSQxNuxotofJ2Z0MnNnNGAvO\new5nDcaG+5vGGs8z/79x0BnLwaKht55ICbYHKUmq+EZU8LisWcxq0kTyjXFBkT2/66p7R2U6/vCj\nGbOmZ5RG/ObbI+r+2XXvjHNujWo+3V/w4KiiN4Yk0cwaQ90bytbydFrznbuG37o35M74etWys7pb\n+X3dzhOazjCtupPXslhybxjz/jI+o6TBOosSktFLAvPX5aXfaCHE3wP+JfAdIcQDIcRfF0L8l0KI\nB8B/APwjIcQ/WR57Twjxj5dvvQP8CyHEvwX+EPhH3vv/52YuY80vO8er9N46Fo05WQEqwZXzxiMl\n0VJgrEUsRa9GeUSRBKN+OvB4OkCbx4o81mSxYpBqhmlEHuvnmn1chPeOadWfCIB5YFr1OGeZVt2Z\nYPO06vD+8tfU9MHNc3qMujM0vbtyC8JjeutoessgDdWugzRmf9ZQtj0s9X6kVpje4n2oih0kESAQ\n8rhAKqhzHneR2igSYi3YPaqYNYbWWhat5XDR4L076c41q1smZccgjbkzzhikMZOyI9cKIz3fuTPm\nT39rh+/cGWOkX1mI9nha8YcfHhBrwTu3CmIt+MMPD3g8rU6OWTSGIlZ89+6Ib+wMGKYJsYTee+bL\n+3NvI+fNccZe2TOtu+c+5ypclEiQRJJBEjFMNGmkGCaaQRKhteT+Vk4WawRhkXN/K8d/0Y1YvPd/\n7YL/+gcrjn0E/IXlvz8C/ti1zm7N14Zjt0NIxwvfeuscgzRCiqurFQohGaQxQkDTGcrGoCSoZV/T\n05/76Khkf9ExazpmteGNQcr9nQLvw6p0s7j89n9et0yrntY4Ei0Z5xFprGg6y2HZnQQs80it9Ftf\nRKhcPetGsk7QW8tRaZFC0BpL3ZnlhClempO+yr02bXrKxlB2DVVnMb2jdJ5FM6W9ZRHLWoVv7ISU\nR+PAOstR2dJZT6zChDurDVmikGKpFtpbBok7yWaqutBXtuksbWeDqpAQ3B5oZC1ZtB2LToJ3jNOY\nb90qnotxfLZXopUABGUX7o9WggcHzwz/tOmJdViB92aGkA4vFA+Pau6NU3rb82TW8J27IxKp+PTp\ngp1rVDu/yEWZxRHjPDlxq3XG0dnQNezX722itcAYz6xu6fqb9XavJRvWfCk4djs8nlY4L4jVs4wY\n4Mo57947JlXDYlmuX8Qa46A2htEpg1t1hp89nvF4VtMZj3GOw3kTMkCGCXc38ksX9JSNYXdSMW/t\nsbubquvZyGKiSOOcJ5ISszSEzRV0fLVSdKeKnY53KVopplVHZ91JRg74EBi1L97QrwqCz6qODx7N\nQQqkFNSt4fG0ZJQlJJFECsn2KDqpgu6M5cO9GfOqxwKKENz9xs6AItFM655ISTaymLJ3bCwF3JwT\nLJqeR5OGuu/Jooh7GylZlvLrG5pP9kuq3pBHMe/cKijS+LkYx3SZZvqT3SO6zhHHkre3C9pTM7sS\ngsfTkvd3p/zo0QTvPJtFSu8Eu1T0xjNvPO8/nrE9TNi01xfxW5VIIIQkT2BSdifdvzaKmFEWsV+2\nfH64wPvQY73IIkbZF+zqWbPmF8Gx22GUJWwVCYM0DpWd1l055723QTPH2pDp4T1M655umTVxmp/s\nTvn8sEIKxSCN6Q08mdZ8fljiCcbpsm6mB0clZesYZwm3hinjLKFsHT9/uiDRiq1BwiiP2RokJFot\nFRgvRxYFXXpBCAoKIIsVWSRprWVe90gZVB6llMzrPjQKeQHn6xAAHk1qnlYNWgvyRFH3lknT0/SW\ncR4yX5yF/VmoCt6f1eweNkgRMpykkDyeNRyWLUpKilQjBBjnUOJZ4/aqbfn53pxECe5t5iRK8PO9\nOY2xRJHij72zxX/0a2/wx97ZIooUTdc/tzuxveODJwuKJObOVkGRxHy8V55pgfh00fJHHx8ihGSc\nJeA9e/OapuuZNwZrLVaE1fcHj6cclddz9czrcK/Of1+9d1StZZBG7AxTBmlE1VoyDdZY/DLg473H\nGkse36xWz3rFv+ZLwbHboUgER2VHbxwOz6Lp2RokV8p5P/Y7j/OExliq1iCWre22h8mZoOqHjydB\nIRF4umiY1i3Gej55uuDbd8aUbchKeeOCoN9p98PutCbR0Yl0gpSCKFI8mlQsup7O2mXxjkDJsAq8\nLFmsMU1Pnugz8sdZrImlwDjPrO7P7Abil3TsXpXVM617dgYpUoQsp0VnGGXBZbY1iLEOut7yeFrz\nrTtjnswbkkjw6VFJ2RmKWFOkig92Z2wVKSJ4azDWcn+rONnBzRvLIFEY55gtje0gUSwaQxZJmtYw\nrz2RFGSxxPPM6B+TxBpjQqpoLCWdc+At6pTOzad7cwaxxHhHYy1eQuIlZdeS6IxKeFJrmdQdvfE0\n5npSCZ8flRSx4t1bwxX/e37X6um9IFERWaGRCBwe5wS9/+IlG9asuXGO3Q7OBh12BCgE7SsU1ByP\nlUaSJFInk0ZvHFIIQj1hYNF4IuWIpaSqQ2AWD00fArRNZ3kya1ca/vMplpFWGGMo8TjnEUJibejH\nmscaYyxHVcc408RaX9gUfBUv0urRKuTCz0pD58K1jAqNVi8OSq8ac7uIEUJQ9ZbeWIz1FHF0cq5h\nwhI0y1X1ZNHxZN4ySDSjcUbbWR4dVUivcN6hvMR5F3wYpwxf7zwbg5R2ma0kRTDke9MKrSQqlSfp\noUGh2D9XL9A7y84wp+w6WmuJFGzlBf6U8Z7VoUtXZx2jOEIui7UOasObm2EHpWRQ7hwONOYVGqaf\nRhFkI2Z1f8ZFKIRknMc0p+71OI9xDraKmMY6WLaXT5XkElpx12Jt+Nd8KTh2OzTL4K7ygt46EvUs\nBfCywd3jsdJYs1iuaAEQPNckZGuY8Ol+iataPj8sEQqkl9wepieB0oskG84LmA0Szc8O5sQaiixm\nVjdY57i/lbM7qZZVrxGdcUTKXyloDBdr9TjvaFtHlmgKCc5B2zpccXUjdn8z48e7c8ZZTDHUHCw6\n9hc1370TEuN7E2QRtpaNUTofitSs98i6xwkoW8v2QKGVoLOOWAkGaUx7yu9dJJqDeYsQS/suoO0M\nRaKRQpLG6kwRXBoJrAuG8fj1vg++8lGS0DtHJCUIz2kPVxJJjqqWPEso8ggnQlptEYci3brt6HrH\nbizZKjLuDK/nYtkcpPTGcVg2vDF+VkGsJXT2edmOSIVJcFb1VMaQa002jNEv2a1dl7WPf82XgmPZ\n4aozIZvEeiSQLAt/6isEQo/HkkIwSCOcc9SdJYvkc5XAb46Dge8ah1KS+azjcNEQKcHetGFvWhNf\nsHKu+zDucfrmINK01vF42rI7qdmftNRdKArbKRJ6C58fljye1Izz6LWpQDrnkYpl45LwUypONGwu\nYpWm0c4w5f5GGlJTy46NIubtrZxb43RZW+EYZJJ7m2EHVMTBEPfW42UoyvJ4lJAUSczOIKVIYjpj\nT/R9AO4Mk1AR3Fm0lFSdZVr3vLmZhZRU5zEm6PAUiWaUJQzTCEHwxws8t4Yxe/OaSdsgpGDSNjye\n1oxO5fz/6p0B88ZxOK9QwLwKuvfjLOXJ0YK2M2SZZlH3fLQ3Q8jryyFLKTDurOHWSvLwcMHPdmf8\n7PGMn+3OeHi4IIkUH+7NEcLxxjhFCMeHe3Pim1VlXq/413w5OHY77M1qehuCmWkcjHRn3Bmjcdmx\n6s4s88+jC4vAtJb8+r0hB2VP3fUsIk2hPfPO8nTeoJXkne3V/n1zLsVy2vZkicB6RRErHB4pPdPW\nsjMU3B6nbLsEYy1lYxhn7kqFaRdJNvQeNooE5xzWLaUMZHj9RaxK5xxmCd+6DQdVR9U5Ii1JlaDp\nHVpJYiW4darBS6IUdwYJi87SGMcoUcQiRQlYtM+qcvGhTuIYpSR3NlJ+9NmEaWMYp5rfeHuDIomI\nlWBamZPGJLeShGyFlEJnYbuI2Ft0zMqKJJbcHsR0p74qt8YZv/XmiJ8+mbE3qYiV5K2Nggezmp1R\njli6kLYHQWbj0dHVu2idZlp3CA+bxdmdw+Gi4dGkoWoNXoDwUPWWWd1xZyOhbh3704ZUS+5sJGd2\nRzfB2vCv+dIQKclWkdIeV9ueBCo90Uv81avGuoxryC19zeM8xVmPlyUOS6igCSqdVbd6txEpRWvs\nie/58aymNY5xphlnKZKGp3XL40nJt28/C/YVSXRSgPU6JBtyLZm3drnCD//n8QxfUni2Kp1TCOic\n4Ju3xygpaHrL3qxmmCdsZvGJwNwxW0XM/qJja5BQpJqyMTw6soxSjbUeLzx1YwEfmokvUxkP5w0P\nDyvubxd8N4tY1D0PDytSLWmMpes9SoTPr/qe77wxxpy7/kXbU1vH/c2CYRYxr3vmbXcmC0t4iCPN\nn3pnm0ebBdOywXrQs5aNPEECWRLxxijDEuQmroNZajZtFGe73H+8X9L3jo08OcnXL5fprO/eLoiU\nY7Q8NollkAa/QdaGf82XijSSSCnojT0JgmWxJlY34/OMtaS3nl54JlW3DOh6Wgy9cxRCcXRBNef5\nc207w2Te8lHVY/0UBRSxwmYhzU8iiKMwoSRacJU44ou0jPIk4oO9BZ8/LU+Evt7aKbjz1otlmVcJ\nrDnnwYdJRgCLpkdLyUYasVGESeq0ztAoj/nGdsbutOPhYckgjbm/kZGlEgTMyp401mEH5J9NVo9n\nLUWkEVIwLTu0lhSR5sPdBd++O8I6hxdBAsI6ycPDkjvjnFndnBSKddajheSzgwVlZylixd2N7ERC\nGsAARao4WHTsTUt66xgkMV4KOhue27QLPQiKRDLOr6fVoxXcGubPSfAdlg1KKSZ1S+9CtlKiFVXT\nMa8TqtacTIq51ZdqVn8d1j7+NV8qslgjBeRJxGYRkycRUvDStomvyjiPWbQGhUCroOUzb1vSKOSw\nP5hUlO0gpSvcAAAgAElEQVTqVeD5c+2M4+dPSxA+yBZLz+dHFVXTkkSKIgvyu61xQfP/Cn99F7Uq\nNA4mi4b3H8+oOkMkBVVneP/xjMmieeGYq9o5dsaSJVHwz/gQeIyXDVjOfy5AHmmklPzKrQF/+pu3\n+JVbA1DgvKRqDUms8N5T9X3I1jnW6vEei8AYh1Lhp0VwULVESjDKE7aKmFGeECnBx08XoU+AF+Sx\nxntB07V8cliSJ4pffWNEnig+P6g5nT1knKUxljdGGW/vjBimCV54bucxk6rHWMutYYoTlgdHNd+8\nfT2tnjvjPOzmzsWkhBDszWqchTRSOAt7sxqtNY9nNVLCzihFSng8q0nXPv41Xyeu2jbxuhr+WaS4\nv5nxeFazN28pm55Bpuk6y4wOBxe2wTt/rkelYZwrms6zaEq0lOSJoncS4xwYxziLibUKLfcGl69N\nuKhVYawEP3o8C8YYaIxDyNBL4EePZ3z3BW2cIiVx3vPxkymLNuTVJ0owLjLi5awkZaia7k65T04X\n1CklEHh++PkRk7ZnI4nYKKITwyIJDm3vJZ11J1WteSQpq44egek8Wgk0wb0jhDyRVj6udzhadKg7\noUANONmZDRNJ3zs+OyhJlWBnGNG0z85VS0WhNdOq5WjR4KwLKqDAOIv4fH/Go6OKO8OYP/mN2+TJ\n9Vbae7OKPI6Q4qzlHucRjyctT8sGX4b6aiUkqYZbo5yf78354MmCYaL55u0hnbvZrJ614V/zpeOy\n/vnXoeEvEAgheHtryL2NCY0xVK3B2DBekSjMJWWZhQBjOdHjsS40Xs8ixXfvjk8UR9VSDuEqE9RF\nrQrvbmTsThp6Y3EurCy9dTgJu5MXr/indcdnT0uyKGKzCFk7jyYVSkrGRbqcXBR13xHLYCqOC8eO\nXRFHZcv7j0uGacTdrZx51fPB4xnffmNEnmqsD9erBHjnTyaNnWHKZwcVwzRmOIqYVz3zpuPNzZzO\n2OVni5A+aiwbgyQY7FOSFVpJtI7YKWKyOKLuejrjQjL9kiSS9N4xzGLujQX7iwqHh7mnaQ13dwbs\nDFIiJdidVXx+sLj0M1l5TyvDpOp599ZZH/8wiShSTd1ahPR4J8gSRdX2PJk3bA8S7m1mtL3jybxh\nuEKN9HWyNvxrfml5HRr+Hs8gibDeU/eOvndYA5U1SBn83d0LnPGndxxN19OanlhFOAdaieVuwLCo\nexatQQhIInVGL+gyHLcqDPGE0Kowy2PMUqPnybRCnkpFdM6+VGJ4d1KRRpp0mW2TxuG8DqsepeSJ\nL30jj5HiWYvE0xPrg8MK7ywfPK6Yt4ZhopESHh7UbBYJi7YnkYoslcG9s5w0hlnM3WHK//fRPtPK\nMM41f+ZXbrGzkWCtYG9a0xlLrBWbRcy72zmJlljvMctVex5rBk3H/qyh7iuySHJ7nJHrZ/c2URLT\nO3745IjH04badMRC88nBgghIIsGismwNY3It+fjJ9Qz/7qRkM0uYNWdrPzxwfyvDOk58+UrCZ08X\nGON5bAydccRaMtCaWXuzlbtrH/+aX1pe5Pe+LFoptFr2QfXBVZInmlujlDyKmBtzxnVwmt66oPvf\nhF1CpDRNJ5DSszFICLJACo1kUgcft1hKMje9u5LUtHHBNzzMQkOUYRaHpugOci05qi2dtUuDbTmq\nLflLggh1706M/jGDLOKobMniiFvDlCwOBWebxdLnvuygdczuUcXHT0uEFNzbyhBS8OCo5tGkRAtB\nHmkWXcfDw4py2cg9UpKDWc0PHh1xa5TzJ97Z4tYo5wePjpi3ljgSjIuYu5s54yImjgRvbOQ470m0\nYpzHJFqRZxH7lSFLJN9+Y0SWSB4e1YzyZ+d3WHX86NGUOFJsDxJmlWV3ssB4mNZwWHuUDruKx7Oe\n6QXxnMuSRRFPy46jRXvudR3kq/OYNzdzNvKYNNI46zhsGqSA7SJFCjhsGpp2ddHg62K94l/zS8uq\nrJRjV8Jlff9ZJPE+6NzMWssgllgJVRtK7neyjO4C3ZRZHWScnQuFU0kk2C4SHkzm9LamSBS/sjlk\nlGuqrudgEQqNxmloyn7VauTmWEbhVCOWWAmyNOaNUcLupGJv1pJqwd2NnCx98dhZFCQpThv/Rd2z\nWSTUnWFWL7NM4tCspendc/fycNFjjGW/NXz+NIxlTM9TZ3m81PZXSjLKIpJI0fSWSEk+3CtpjGd/\nUdL1lngpU/3+gxn/+Z+4T92ZE2nrEIT23N3IOCpbytaQaBFy/FPFjx5NKPsjikjwG3c26Myz78PP\ndxfsDFOkkvzs8YxUQSQT9qYtsYRFAx88ari3qSgiaPvrqXPOOkOmFbP6rOEe5xFl3fH+/oJ53THM\nYr61neOEZ5DEzOqeg8WcLNKMsphFs9bqWbNmJatExqxzpJG6tO9fK0nZtmSxZjvXdC5GOBgVMSFs\n6cmj1X8mR1VPb0KRk1r67J/ManaGGe/sDDkqWx7NGvI8QskgMw1hUprWHUUSMcpWDv0cL/LxS+Vo\njWVURGyisFhaY5HqxTuKuxs5P38yBzjpGTBtDPc3MgZpdJLHf1R15LFmnMvn7qUQ8HDeEgvIkphp\n3bE/7bi7mRArRTxQCA922QDnOKvn0WHJYdkRCRhkMV3Xc1h2tF1weXjEspmNOHG1vbmpz1Q7P5k1\n/GRvDs6zmWZ0fc1P9uZsbhQnx9TWkkRhHOs8PRHSh1X9zEEK5GmIjTxtHO9eJdVqBcZYDlvL/eTs\ng/Xe87P9klEScW8jY1b2/Gy/RCCZVg2DLOKNjdA8flp13BpeXx76RawN/5ovHZddrQc/qWB3UlL3\njiyS3N3IMdZd2vdvrKNI9LJfrgZncUimVUeWSBKhuDVcnX3TGUNvPdOmpzeWw6olS+Bg0TJvgqsl\n05550/DJ04q6M0sBtYiNLF42V7kcxobV7/68eVbROkww1uF6qOqeRWfpHMQSBrHCvcRbMM5ivnln\nyO6kYlp3ZJHk7c2UPI1P7l1vLH3v2K3qk9X6aNmfNspiWuMY6JC1VDb9cifiMf5YukGACD7lxvqT\nrJ5J3VFWDaXxtH1FEgkKLei15rOnC/YWzckzvT1IeXvn+XjFB48OmZahW5tva4QHgeGDR4cnxwwT\nzYOjirq3HEyrIL4Xhfz+FGiApoHN3HNnqK/kfltFbxxIQaTOJgQ8mTXcGSQc1R1H+y1ZHCqef/Lg\niI1UUxnHo8OKJFZspJpE3axpXhv+NV8qrpKpU3WGp/OWIonZLMIq+Ok85OCP87MGflVzDDittyO4\nPY75cD+sxmOlaHrYSjNuDVavvrwXPJ5WZHHoslV2hrJ2FLFkZ5xhjWHeWPamHfO6D/18jefBYQmb\njre3i5XjrmLeGI6qnizWjPNQM3BU9QghmDQ909bisaQ6orM90xYmzcv9xOMsZnxqMtybNWeqkWd1\nz2HVkSeaLNZ0xrE/b0/8/XEiiWPFdpKdVO5WjSVZPivnQCzz6mP1zBXnvePTo5pEQp5lzMuapw7u\nb2f8aHfKOA21EbOy40e7UzYGz5uq/XlNb0AqyBJJ3bjQK2D+THbhza2UP/rkkM1cszGK+Xy/oy4h\ni6HtIBVwZwz3tgvq2pFH10vnHKQRxlnSc3r6B4uQGrxZpNweh2wl4xxSSISCzUSRb2mqxtAZy9YF\n37nXxdrwr3klrps/f9GYe7OaeR0aYSMERawYZfHK1fpR2a5sOThvuhNXxTEXNXNpuj70yRXwdN7h\nEORaEUWKcZaQ6NDEZRXeB0VMLUKpfts5Ui3IkphYKbTWTBdTeilw3rM3qZFaMoyipYjX5cvy502H\n957OWpo+XCs+vL4/q4mVo+4Ec9MTCUEWu5NmKefv8YueWxqF3P5Z3dFZz/68JosiBsvm37GWOOeX\nTWRytpeT0KdPF3xyEGoBbm+kDNIgh112x+fqSZQ6yepZtI7IOyY1HFQlSsAohum8ZSePKY3j0VFF\nrBU7eczDo+dTU1vjQ5aMCz2Jw76OMzo3Askff2uDHz44Yv+oQ3sYDOBwESYiHNQtWOPZHoUmKddB\nK8GdYU56TlvIOUfZWbwQoZZASYT3pJHk3lbO01nLvOzJI8WbO9mV2nK+0nne6OhrvpK8jvz5i8ac\nN4ZZ0yGXRTzB+DRsFwmjc4a/bO3KloMSnpPwPS/HfEzTO+rekkSKeduTaYWINcMkZquIaY3lyWx1\nPnysNaPUUzYG4zxpojioFW3Z4LzHG0fZeYZ5CKRuFAXWuGVnMXsl/SHvoV66Wo59/CEtUNMaz/7C\n4IxFLiuOF51iszg7sax6bkEUz+F8kJFIIkXZmtAfVksOFm1Qw1zOoWEn8KyJzPYw4d8+OGJnkPHu\nraCXsz+veXtriPcOCSzqDiUlW4P4JKun7XvmPUQKiljTdYZ5D14aSuOwNhRpWQslDtmZ5yatRAVX\njQKyJBjwDjhtM2e1oex63r09ouwtB/OOSEGqPWXX0trwXi+g7eFbt65XuRtJSWkMd6KzPv5xpvn4\noAwN15e6Qou25+5minGejSLhViToe49xnu0rNB56FV76VyqE+H0hxJ4Q4oenXvsrQogfCSGcEOK9\nF7z3zwsh3hdCfCiE+Fuv66TXfLGsyp8/Dtpdd8y6M3TL4OfupObxpKIzjtmKNoUXtRy0+OckfC+a\nlKx3REpwuGh4MqkwzoKDsu3pbFiRXaRyGesQePRCIARkSuNsi/Oetnd00tMJg5eao6rjs/0Z+2WL\nIBQfnV8VvgghQjqnlsGPrGX4XYgQa6jamqo3lI2l6sPvnTn7PM4/t9aETlp78xZjHLPa8NnTBd45\nns5rfr43Dxr5cVip98t7GWlFsRSA01Kwk6csmpZP9+YsmpZbRUIeqVAb0VnySHF3nLIzSE/aac6q\nLrTErGBvYphWx5MbHM5aZm3LtOyZtS2HsxbpxXMS0mmiEUALTNrwUwLFqWymsjPMK0PdWYxzeBuy\nqw7qlt6A66E1oUYhT0BdUQzwPE/mDXXrnttdxpHm/kZB2Vh+/mRO2VjubxSkccQ4i0OAvg8B+XEW\no6/w3XgVLrPi/zvA7wJ/99RrPwT+MvC3L3qTEEIB/xvwZ4EHwB8JIf6h9/7Hr3y2a74UrFJ1vMiH\nftUx294yKTtipYPPuDUclh2xen4FFFoLnq3mBEEsBdO649OnixMpgm8sKzTP4x0cLkLe+p2NnM+e\nLqhFx2aeYq1l0jq+dWf19l9Lwby16KUxanqDdYrbo4StIqMxhsXc0PY9sQpxh7qzlJ3hbpReSX9o\nlMYclC2R0qdW/JZRGtMZj3MKpQSRCgqY1j7/PM4/t6fzJqyeRVAhFc4zqXqeLhre3h4xziWzSLE7\nrdAq5e5GcOt0xp40kZlXPVGs2coznATpwOKZ1C1KjNgaJgjvaWyoYj6e3BtrqdqluykX1JWnamGk\nYd51+NqjtMYag1ACJYtl05v+ZMXvHaEIS0KcQNcCy+rlZw84BJpZFk3VdukSEuFYHYVUy3Ee01nB\nowt2d5clUiGuMa3PTrqS0DHsGzsFeaKoWkvd9+Acm8OEe5v5SaVy3fX4V+g8dxVeOq147/85cHju\ntZ94799/yVt/G/jQe/+R974D/j7wl175TNd8aVjVpPuqDdEvGtM4T6Y1USRpjSONdHAFrMi2SOOI\nW6MEKcJqVgq4NUqoO8u/+3yCsbA9SDAW/t3nE56uEC1z4pm8shYSB+DCTqC3IXB4e2O14W+MZzON\n0Dr0e9VKcnccevoeB0h3RjHbRcYoCw1ltIStIrmyW2yQam4NU6TwVJ1BCs+tYcog1eBhVCTESuOA\nWGlGRfJcCOH8c5vWJkhOLB9cmDyhat2JVs8oj7kzzKh7Q9mGz727kZ2kVc6aHmccRR4xTDVFHlF3\nHbV1+KVmkFSSWEnKZXc148BaS6IAAXXjQQTXTS+CcJ5SMshzK7kU0utDf4VTK36kZJTCMA0r2GEK\nGzlo+ey+CiG4Nc4okoiucwwjzcYwpe8hjkC7kILprMc7z5NJdelnsooijSkSxaQ6W8DlgJ0iJdGS\nurMkWrJTpEgp2B4kNJ1hb9rQdIbtQYLWv7ySDW8Cn5/6/QHwp2/w89a8IlVnOCpbWuNJdMg3f1F3\nqIvy518kJfuyoOLxmFopGulouxDcFSKU6CulOCy7M+8dJIp5A7dH2cl5dMZxWHUUcdBGAU5+fvp0\n8dyqXwlBHEm8h6084s1hzoNZxaTsGaUR39oYkF0wo3XGUKQRG8v/3ykynHVU1hEpRSQ8LlYhj9wv\nNditpTfwzmUezLl7bpznzjh/rtl6kUjUzNHhEF7ihUM5KBL53Binn5sS/kSm+Bjvg2Da6V1UkUYM\nsigob55DK820KbHNs8+e1j2bWcpmFmOco7Oetre084a744xYCZI4RqoW24HQ4C3IGI7t3TiNcUIg\nvcfhKdvQla01oWBOSsEg0UyjDnyYvK21RBEMTmV0bQ9iyranGESMswgnBVXd4D1hxxFD1TkWvSMS\nfnl/Xp29o4Y3xulzWT15rDEOBudiNJtFzLw2xJEiT8IznteGu5vXCzK/jJt0JK2Sl7tw/yKE+B0h\nxPeEEN/b39+/wdNac5qqM+xOapwXoeWdF+xOaqoX+OuPVSkv40OH1S3+5k1/Jmf6eMwiVUjvT1aJ\nUgqMteSxeu69oywmi0MWSm+WgmhxMOLFuayIItUsVuifSBFS8EaZxmuw0vHWZs537464t5kz6y3N\nBY1YEq1pe8Os7pnWHVrB47LFGkcaSSpjOSo7lIPdaYPDkWuF8ZbdWc30Ap3/q97zcZFx2LTMypaq\n75mVLYdNy7jIXjjGVhHjl9r7s6rjqAzxiTujDAEYE9wikZYnPv3zaOnorGVed8zqjnnd4REIFfL3\nZ7Wh6x2KEAeaVh1aSYpUYg0IBUqHn9ZALIJsdU/wk/e4pYy1ZNEajA3xEWM9gywBGxYSxzLX0ilu\nn1I9vbuRMcxi6towa3sWs4o4ikjjEMwtyxBbaJuOo3mH0tdbCzvl+fQwZCmdZpRFbObxmR3bZh6z\nPUjonAuuHR+E7DrnyC4oGnxd3OToD4C3Tv1+H3h00cHe+98Dfg/gvffeu1kH1y8pryuF8vQ4e7OK\nWOuTrf3xz6OyfW09YS8rphYpya1BQtkY+j4UAFWdRauQ1nn+vaMsZmspL3D6nmzkEWVjKFKNscFw\nzOueWIsTgaxjhmnM/KgKPV/nHb1xeBXcEd4Fka/ygmbrRaLYnzf0vcPBsn+sYL9sebzoKLQgixRl\n3zHOFLFUGOfII02iFLuT6kwO/cu4SLW06w2pVOhE4IUilqFBSbeim9TpMdJI0vSOprN0hB7Ht4bJ\nsoeuQ4nwUzh4Y7y65qDpPfO65XBh6L0nEoI8Fni3lJC2jt15TWdCj9z7mxnGOrIkRsqa2oS4gPOQ\naUgSSKVi1nZMbE+sBKMkFJQlWlJ1hnkTnuFmokljcMtJxSKIFIzjZ/donEWM0ohESTb3IuZ1izWG\npZ2lBmwJkW7YzCIicb0CLuGC3tH5BlqbRcKkmocqZBGSAiJlGaQxgzTm6aKh6g1pJHlrnJ9pJnMT\n3KTh/yPg20KId4GHwF8F/usb/LyvNK8rhfL8OJ31CCy9lifjxFpe2HzkVc7lKsFguww2tiKsNo1z\nFEl0Rnjt9HtXGcNv7AyCjz9UD9G2js46fuX26LnzVBKc90ixLDNaVpqOM0UkBca7F2Tbh367UapD\nm0BjmVc9O+OU24OMsu14MmnxhGsyzpElikEaEWt9pQbyL2LetGwNE7TSCCHx3mGsYd60L3yfsY6d\nYcqs7p91f4oVi7YPNQPOo8SL+yE8ntU8mfUkOhjcpuuYNI5Z4zDL78lGmlBkilgrHkwqpBC43qMU\nJD6s+K0BpQAPVdeTaMVmHlF1PVXXc3scUmuDlo2kN47OezaLDOfAConyijzVuFObEyFCo/vWeQZZ\nxEae01sDvqMHcmCYwyCOqXrwZpWj4vKM05goCiqi5/EepAjaUOE5Qe890sPt0TMXXm8s/RfdelEI\n8feA/xjYEUI8AP4HQrD3fwVuAf9ICPFvvPf/mRDiHvB/eO//gvfeCCH+BvBPCKm2v++9/9FNXchX\nndchQbxqnFQrjPU0p8bpjCPRF/8BXPVcXiSmdp550yGkCK31TEin9B4WbSgYetF7j9kZpPzWWxv8\n+OGERRv6v37zjTHbg/RM20AIwmd5otkaaG6Pc/JE0zuP9TDII4QTRPIiH79lq0hYND2tcRyWDeNc\n03Q9jw49aQypFLTe8sZGQRKHcdreUXc996Kr+XEv2vFJHZEljqN5S+MglbA5TJD6xVWode/orT8p\ndrPOM6laEq24M37mJjp/z07zeNKwU0TEUdDeL+KMrjfMqlABPEgiBpkOqahKUjaG/UXDvPn/2XuT\nH0uzNM3rd4ZvurNNPsWYkRlZXVVdXdVFLmhBS0hsAKlhxaJXLGi1+A9gx7bEf0AvEGxAggXQi5ZQ\nq1st1IICqqSCGrIyM4aMCA93t/lO33gmFue7166Zm7lbhEeoCdIfKWRh5mb3fnd6zznP+7zP0zJI\nQQ9TQuizDExH08HhNKOuPbWx5EpRjBKcj1nFvpeVKgkCz2QYg9+liKeGtrN0O9ScD57ZKKqpvIO9\nkWKQFjydlxxp6AzgYTzMUDJQ2jfj+B/sFZjWIW7U7cuyZTrIONp543bW8+xyTao1nYsnXIEghHAn\ntfZd4bWFP4Tw9+/4p//xlt99Bvx7O9//E+CffOure4stvisJ5c3bmQ1TjhcNtQmMC7Zyvcezu93D\nbrsW3ztc3kZD3bcZXHWWry5qfn2yxNhAXigSoZEibIMtdo3YlvXG3tihlaJI5PZ+p0XKh4cjhJBR\n897TVjefMx9iM7vpLLNcU3cds2FGIiWjNKE2lgfT2wu0cYFF1fUa8Ti5+/lxGdUyaQz6ng4z3t8r\nWHcGSJBS0LSWLI2+QvfFq05Zh4Xm519doLWg6HfdT89K/u5PX20JYV0cfNtdwJ2HdWdxl9X2FDAb\npteUMrtIlaRCcFHVhKAQwjFMUqQQlI3BBUGoA1rGwJu09/UZ5ikvVi2rVUeaQtdBkUOeAUGR54KJ\njpbQBEmRxhOpStT2PXQwKmjmFeu2QwuJDZ5MCQ4nVxy/FJKzVcWqNoBgvjKcig7noW3jYpEVkaYb\n5wnjwZtZJbStxYXAe+Prz31rXy7mqZb4AM55SuPYzHIPE4V+w3mC1+Ht5O4PBN9k1/y627lp77s3\nSFi3Zmt3uyvXu8+1GOdZVNGga5PPukup3CdOcdNkXpUtK2MhSJqVYVh4OhsIJyuKTFMkksNxHATy\nvWyS3sFRSYHtPd9XTXw8nQtY55BCcjCKGb67we2ZFpStpepM9GwfpFyUFocnTwQf7A95eIeFZmdj\nJm+mFImUnK5rvlhaNDBSYFtYVy0PZxkf7g94vmiwxnM4yfngYPCN+P1XnbIyrcgzjXcB6wISSZ7F\nMO9XYSNj3VXwdNayrCyP9wZbb57nlzUPpxnw8vVOi4RPz5axkCgJznPW1IyOxgQEwdPPLlQ8mRVk\niWacanQio4lcgMaADHGYKs0l40xS20idZUpRaEGRaopUYexmxy94d3/Eug+F90FSiJgY9mRn02Kt\n5dlFhQmxCb1uDD4EtIDaAgISGWcBmtYyfsO+1mVleO+w4OCGsV/WD/ulN3b8UsSpYS0ELgS0EASx\nWZS/P7wt/D8QfBsJ5W24zd63s573D0b3bubevJbYDwjbicnbqJ/XxSleli2pVqyMJ3hJogVSRJMw\n5wKjXPFkNqCznq8vKx5OCkI/EHTFjcYQlZNlDYh4e03083HBM68NxoVrp5ksUfz82QIp4n2erAzG\nGj5+PGGUZTTWMbrjOS47SyYVUkqCgNN++CdTUGSaTljqFl5crPnxoyk/fTL71q/bq058xsNPD8fM\nOxO5cg2zNOF1LYQ8iaqpmOoVF2QpoMjUtQVG9puF27A/TFFIslSSpwlNB03dMk5jAf7qsiaRCiEC\ni8pwMJI8PhyTSYHxRDosS2najs5ClqSYEBikkr0kpTVxkntvmPXB9nr7ej8aJ5yMchpjCUgEsR/0\neGehPl23WBFVRRLQiUarQGkCvuhAwHCQMh4kWBsYZm+24388zVk3lpsU/94w4/k8eiddfe4ceaqp\n2kg3Jjr2LhrjvrP+z114W/h/IPimIeR34SrCz/ej/2Ib4fdtr8X7WHCbzlF6i5KCPFUvvflfhdYG\nUi1YtwbrHcuVQwgo644n+6PtJGOqJUpKLsoW6AeEZFTP+BAL1bKxHI5yqtYyzhOMjwlLxjqmvW3z\nBmVjmBYpnQucrQxaCbxQnK0atIyZrnVnb92dGxfYH6e4jQzPxS7EwsFqEXf++xnU1mOdY1HFAaTR\nt+BvX3XiUwJaEe0rahMoEkGRyZckhTdRpJq6bHFxfgoXYmbw4SijbM02CGU6SLlrkFQnkmEBf/LZ\nmhoogJ88lCRpilSSSap4sW4xNvoM/e0P95kWKdYKjiaK05WjKju0gKOJwgXPw1HOybJh2TYUUvJw\nkjPK9Evv/8kwI1eKT04W1F2gSAV/8/E+amdXfVEaCqVjk15IDocJi9bRmJK9YUrnIlWnlODHB1Oy\n7M2au4um43CQsmiuiyMGqWaYKX75YsmysUxyzU8fTWitpUgVdedY1oZUS4pU4cPbwv8WPe4bQv4q\nbCL88uR68XlVruzrriVqwR2pjlOgzsfd3Ti/f4GTIkS3TQSr2pD1OmYvJKvGcrBjU5tIwcmy5cEk\ni+HiITpojjN9rTh6H8gSRQa4JFoZ5Im69lgXjWM2jBLGRdVyNMkIQVAbx7RI8cDxsuXRLfm1g1TR\nGE/R8854WPb/NtLQWDhu4b0k6syng2y7W/2miqwi1VyUbVR7RGcKEiXYH2ZkmeYXvyiZ5JLDccay\navnFs5KP/tb0fk9+6NuKIaBkYNVYRnnCuNhcq2Vyx2v5F08v+dPPKhRwNIC6gr869hTJCX/vD96h\ntLQ8LU4AACAASURBVI66cSyNYZQkzMsuLrTW0RrP4TQlVdFKum1jPGVn42syk4CPlNo1G4Yen5+V\n/PzFnFRJBiONdZafv5jzcJbzd37yAIi9p9Y5RlnKMFEsW0MgkOqkt5DQDPOEw2FBbQ1a3DMZ5w4c\njgoa4zi/MSW+qDueXdYcjgre3Y+hN88uayDEwclEMS5iT6PuHHny1pb5LW7gTfT831Wv4GXc3BJ+\ns6ZznigWVVRxIGBeNTgnIHiMswx2FqrWeVItyFNN0/VEbWAb5n0wTGlMlGFuLAqM84wz9dJj1TLg\n++ejbG30j5cxRhEpMcaxrG+XRT6c5Hx9UWFdwIeA2Lld52LYRyAqVr4LRRZwrUhvZiTXdcejaYrz\ngrrzZEnCoyywfs2A2KZv4GXY5hcXacJFGRO3lBT4nprKktvdIv/vLy+oiKEmVQOO+N+vnrZ8frrk\ns9MSJWXksrXjr57O0UpQaEUIgbazWClw3kIIpImic55V2+GIcsBxpvHevdTc/ssvL6gai1QSKS3e\ne0II/OLZfHt9h+OMuvNY7/ECFmUHIdpznK9bdAL745yy6yjbwN96780+CFJGVc5NS5Pbgu0BXiyr\neJJpDasGtIA0iUKF7xNvC/8PDG+q5/+uegW7ECLSAc3OMXw6SL8R1ZNqzdEEmuBwziOkZJYniODJ\nksjRQzyZOHcVYuK1wriY9brRnEPCRdkSCL2/jIiKnyx56bHuD3OeXpRIIamM32bLTgoNQTBI5EuN\nug028tBlbXABigSmLSwDVD19sqch1QofAlVtt4vuN6XC6s5G36Ls+oJddxYTBB8djjldGzpr43M5\nSjDh1bRFY3yk1nZOEW0fAiL6CdNUCd7ZG6DuUPUsylhEGoiGND1WwCfHJY11DDPBMNVMiwwhJb96\nsWQ81KRaM28s3rdICbNco4WMjfhxTiIlxnus8cxLE11a63arNjpeNnQERP8cJCKgU8nJ4mqhfjId\ncLZo+ORkyaenC6quJU80XbAMMqgb+OJ0jVaSHx+Nqd4w43xVd6RaMiuul9ba+JfowjxVWBfpVpUm\niN54TojwVtXzFtfxpnr+REnyRL3kzfMmISpaQkAw3rl/5wNiR8z8ulNKCJ7zVUtVttgQUAiCD0wG\nKYNMYh3XVEdFGrXn42Ln/gjb29wfZhSJjR4pvfd9qgRaxedqtb0ORZFqytYgJRwvKugXitNljVSC\nR3fIORMleTApGOdxwGyUaZaVZUJUaoi++CcKFpV5IyrM9gWh2pHM5qkmBBglkl9flKRKk6gU8Jys\naz7cH7/yNqs+hAbBVkpYNg4lJe/t+PJsntvbUId4snnpeonuqaNxRtt5Fo1DyJZ3ZwNWjcV7QWMt\nMoDWAu8CjbUEkaGVZFEaOueiq2mRsGii6iue2AR1F3sal1XDMM9QWlEZh6k68oOd95X3PJs3W3WZ\nlppEKMaZYtk0JKlnlCtGiebFsmV/9GbunJuZhL0bfvpFIlnXBqTA+RgNig99WlyG92HrQSTlNwvp\n+TZ4W/h/YHhTPb9xUTUwylOm/Y5/k6X6bYv/604R9zmlrBrDr46XLCrHojS0xhKE5LEreCxzPjzM\ntiZhm9u7z6klUXKr79/cz+51zKuWQarorGPZWEI/SXlRGgotGeb6tb5FmwV3Nkz59ZklUTAaaMrS\n0loY5AlvSoWFEP3yoxpL9ItHxzjXvHs44i+fL5CFjxYUTUPZet49fNlUbRet8ZwsKi7KbhsaPykS\nkhsmbY2xaCleMsmDWEBue3YE8aRzsmwY5zGasnOe54uah7OcZdvRGrABpA/RQsFA3bYs6ra35VYY\nE1jUcfp5UXaYELaT1lLDug0o5ciF6mXKlmF2Vda+OFuTppJZkjLME4LzdEFwtiyjhXMAYxzGgekM\nl+WbbfmljAZo+Q2vncNxzp9/NY9N3k1EZWd53Du/xuCguChI+VbH/xY38KYc/Xc1AbyL1ymO7nOf\nX16sMS7QBsu6NVStBQn23DFMNM2O78zuqaVsHT7EgqelgL7AX5Rt9N2Js5DUJvroaHVdqlh3jq/O\n11gfeHZecrZq6CwUWcdkoHEknKzubvhdO8kkCXsDuKzgrNfz7w9hmGUMMs28bOlcIFWC2TDbpljd\nHzepm/j9OJX8ax8e8BdfXfDFesWo/36cvvr2z1c1X11WUeqoZFRldZZxpnojt0DoKbbN83Zz0c7o\naZ4bSIHxQPFi6VnXlqJ3LB2liqNhxmVlMBYqE3l8BwwSKGuLQLBsOmwVd/dFomhcDLNXUqKljIE5\nQjJMoWpNXNAFHI6i980Gx2XH0TBj0Vhkr7wCT1XHAq0kZAmsu45ESdwbWiWEEJgOU5obYolUSX7y\ncMzpqmZZG/JE8JO9Mc57ms5SGb89CQxCYFp8v6X5beH/geFNOfrvI0QFXq04us99nizb/oMHxglS\npRBC0lrL5brl2WWz3XFqJWmMI0uimyhE9UbnAraJXPCqMZFD77lrYaIy5NH0+lv+ZNXw9LzmYJRx\nUbacVy0yxABxFSSny4ZRWt76uG6eZILxeAmjQWwQE6LrpDWO81XLqom+Mz4IVlXHOwdDbhuKug2x\njxKL82aAaTpIot+LDyRK8K//+AFSSbzztM5hXhPmcbxsUEIwLjK0jrbRq7rlvOy2MZfLukMrceei\nvbrjtltgWmT89JHgxbJh0RimWeBHD/bYH+UsqpLOQCJAZ3HYrTOwJvLhZW2QStK6uBPurEP28t1A\nDMFRPlAamOUSoTKCa2l9NErbPm8+8Gxeo4REyKgY8iEgexmscTE4Jd7L1UL3bbE/ygFB2V5vrFsf\n6Z+bFNDXFyXrzkEIaClx3rPuArNvIK/+Nnhb+H9geFM9//en6nmz+4xOkIFlZ8hUQCiF9YHUS4QK\n/YBX5MdPlw3DPNkWwF1zq0GWcLxck6hIRxjvuFi1lMahCIwyfW0g68WiBkHc8RoXOVop6IxDJBJv\nFavmdqrn5knGSId1MM4VeZbTdR3r1tCEjq/nFRJBkSVY6zldGbK04WCU3+u1u+qjXF37po+Syhjm\nnieaNJV0nae2tk8ouxvGB4QQ/Pq0pLGWXGsOx8m1BeN1i/arypOWgjRRfHAwRClJpiVaRKqqT7gk\nS3oP/gTaDoyNnP/RNN/2STofWDUerSVZordJVTYEcgV7k2F/CtDUTUvtrl6v2Sjnr48X7I8KtIpD\nfY21DAvwFqYDwWxS8GCUcVl2d/oy3RdXsxPXn7O7PgONdaRK4IJAAErF+YvyFgvx7xJvC/8PEG+i\n53+VHvz7QpHGadqN+kWJ6E/+YGfC8t1Zwafna9rOYb3AGENAUmSCTGvk1k1TEBDR8teHa+lRnY0f\nrKrz7A0ExjlOli2pkoxSSdkanl1WPNkbMMqTbXDL3iClcTGTVQpB00W7hzxTzPKENLmdb71ZFAuV\nMEwFpwuHUCUiwP5IQJCcLWs+P6sw3jPNUn7ycEhl/L0ptiLVPLssOV1d0UVH44wne0Omw4xJY/n0\nZEVjHblWfPgg/vxV0FLwxUVFpkW0Q3CWLy4Mv/fOZPs7nbUcLzpcYEtRZVrda6NwOMkozz3CebwK\nGB9ojCFPRr13kuWiIyakA0MgzcE7z2VtsUGgRaBINaMs2it3LvaklJBkWcL+GJrOYr1Ay8DeaIBS\nV2VtlCl+dDji16drns9rhIxxlWVrCCowXwUuVhXracdHD8bs36Hgui865xknilF2/QS+/dzt0I/x\nvRtQIkqYN1SPAlp7d1/pu8D3KxZ9i//vIoTYXvyefb9hQ4lEvX0qJSBYNfZaEMvjvQGzPhClNR2I\nQK4lhVSs6g7hPV+crXl2WRG8o3N+u9OHqxOE84FBGuWTl+u2D3OJUYrTQcJsmDGv2m2YycNxxqqx\nOOMYZ5pF1TCvuygdXHecrVumd9BoN6MMBbBuwlWma4BFGVhXDX/21SUhBPaGKUIF/uLrBaeLmvvO\nzVWd5cWywQcY9FPKL5YNVWcRBKommsn9+MGIB9OcqrF3KnG21y/inAQb2WeI3+t+WKrqLPPKRBdP\n67isDL96sWBetttm+V02cwnQdS7SKXi8E2RCopXCeQjecZNAKwEsrNqORW1ZNSZ+bTtmA80gj1kL\nD8c5s0HCKE3wrosZwz4mWlVNzWBnVfLeU9aW1gUsnrLyJFIwznLqLkZvjotoCf3s8n6vx6tI1XGe\nwqvcNUXc2dM/x1rEKfRVZaJSqTJclC3yG/d/vhne7vh/w/AqPfibTgXfhcuyZZglLxlU7Ya9FKnm\nnb0hjycD5rXD+7hzDUQPnvEw2ZqGnVeGXFtGecq6iRYRWSKZFCnOex5Ool9K2Toq03K+bnE+8GSW\nczDMSLVmfxgf66O9ASeLBusl3kPTBryPZmGN9XRVh5C3V4Obu7h53dC0IHUsJJ2NKU/LitizQLIs\nY9iGkIIvL2r+7j0/38/nFeMs3Q7+ADSd4/m8orMe60P00LdxARLi9mns3Wb02lgeTAacrRrKLlIO\nj2dDvLh63bwPXFYttYkFc5ho5nXHk71Y8scpVLfMiY0FPF91tJ3BIwk4hFQUiWLVdJxd3L4onZsY\nhTgZpGQ6msitmq7PM85ZNjF6MZOCSab43EkmuWSQZVRty7J1qJ35heNFw18+nyOlJJGKtWv44tyw\nNhAs5AkMsoRJnlE1hheX69e+Fhlwl/anbA17g/Ql+u6uz5310SvLeb+1ZVYyNp2/T7wt/L9h+KaW\nyt8F7rKk3Q17sT4GVR9OCz60nqqzJFJRtl2UA+qrBC4pYjzfTMa4yMZYrNvEEaZAgvMNrXOxOZsl\npKnCB8lfP1vw44dX+vZhovjp4wnz0tJax8E4Bl1rrZlmEiklx/PXaLuFQPQBIknMPmejxisS6FyM\nfuysIxGS0lhmRYoPfrtzfh3uGgBa1B3rzm1nETbldJAmsWm4g5dktUHS2pb3DgYkUuEINK3bNswX\nteHFoiFVivE4wdiY0dvuUFRpCqqLqpxdJBnMBppjE3f9SsTch1VjKTLF+R07a0vMLjbO9Q3dPssY\n+pmJq1mQQZ7w4eGQVetorSNJNB+MMsLOU/rZeY0LklQKEqUYZDGxzawdD2cKlCTRiiJP2BumLJvX\nc+t3kTAC+tCgQHPDZO2uXkljI+WTCYHqHTp9iJuP7xNvC/9vGG7aMhM8jQ0UibzVUvkufBPbiLss\naXfDXjY2tJJA8J6TdUPdWCQwLVKOFzV//tUFg1QxGyRkaaRtNrg5wJUnEsXGRkGQKonqI+86e/Xh\nVkqxP8pJtUUowcE4JwSB8SHaHeeS8g5nyrqzfWi3oXOBzkSaZ2HBrWMh2O8dLyFQNoZVY0kSyThV\nPJwO7+/Vc8cAUJFEpQ/EvolzfbSfcZwuW5Z1t31tbjajp7nkbB296CeFxBmPwzPQUc3zYlGzqAx5\npllUmySyAOwkooVo17BL22RcpU3N8gRD5KwrA3uD6ED5KuSJ4KKyVK1lkGmeTDV5nxB3LapTSB7P\nRuRVh7UOrRV7g/Tajn9R1cyGCZ111I0hSwSj4Yjz1YLZKKNuHc46lBAoFcjU60viXduAAMzLjlEe\nTzW7RNhdzV0pAqmWnPanrmGqOBrn2O+Zgn3L8f+GQasYeB13IJJV61hULZ3zzMuOqo15pPUtQ0vG\neZZ1x8my4dm8ik3GO8LTd7E3zOis21IPm+J7XdomOJ5XfP5ixb/85AWfv1gwrzqO5yX/8pPnLFrP\nOEsJQfDpSYmx14uxkuIaP+s8KK34ydGEyTDBuOiQeTjO8DuKi0wLni8qXlxWeB94erbkxXxNax2n\nZcfX5zXDOwyz1o3ldNXgg2CQaqQPnNur3W8AzuM4Ar94vuJi3aCUxFrH08uKd2b3byQejnPOy5a6\ntbGIt5bzsuVwnDPMJGfrlkVlaJ3nxbLmdN0wGehrr83Gj2eDSZHyYJRRdY7zdUtjPfuDFCElyyYG\nm//6vOT/+OUJf/F8zifHK45XTbRB7mWPRc5LXH1LtFvujOWkrFmVHRKBtYbSWBIpmXA7FPBnX53z\n5fmKRdXx5fmKP/vqnOKWBvujWc6zyzUhBEZFSgiBZ5drHs2uJq1TGem4EAQH4wyPZlHWTIZwPI+v\n+cO9Id47vr5o+cmDV087w6s5/mXV8sVFGedQdlCkGuf9tZ6U68UEn56sWNQG0ZsNfnqyuvOz9F3h\nbeH/DcPGllnLqIzx/ZvvsmypWsuyNixr85If+IYmCJvpQiGpOxdDuWUMu75tsYBoSft4ViDFxjsn\nvBT2sqw7zsqWzy+WOBv6sBSBB+om8OX5CqUFQQiM93H3u4Ob8lDjHKlWKCk5Gme8uz/gYFzg+tPN\nBk3nOFu3OOIxvfGBtl/88J62s3f68S+bDiXk9iRzfgc9fGJi2I2HaL0rFYfDnFV9f8neZgAo0fE2\nEg0/eTgmVRKtNQ+HGUoJlrUlE5KH44ysH7ravDY3m9Gp1qRK8fGDEX/zyR4/eTACAt7HLAQbPPOq\nZW065pVhXrc8u6ivUUiL20ccWKwgCMmgjyJbVC1ZmpAlEqHEnTJQB1RdtC8IvY1B1QWOly/vsx9M\nc4ZZigie1jpE8Ayz9Fpi2ruHQ7SP1uEIiZYe7QMH4wHvHUxItaCsDEoIfvvxhHcP75+KdhvSVKOF\n4PLG+3Mjw46DcRtaMmHVGqwNaKFQSqCFwto4Uf594i3V8xuGm7bMy6ajtg5rA1LGqcmqi8U5HuIj\ndmmC6BsDi6rjZFkzSDWjTJMmijvCqhik+pVBL5dVR64VF6UhT2MGaWsMxsFsmHC2rDldNuSJ5oP9\nEZdlw1fn6x15aMqDydX1aqXYH6R8+mKFl5BJiQUGyfXIw5N1y6NJAQhyKTga5pyuG57P1+wVKe/O\nhtylVpdCInaO8MudX8uJXPDGoXOcZzFqjxg/mOcJL5b1q16qa7A+hsaMsoRUx4UxSxTWRxpIZ4qJ\n7gebhEAqQZZe9UU6Gxjn14f/MhWDTYaJJksUzkfVzbCIC8blqkNpwZ4qaG2g0JLKGuarls2GtG5v\nt20wQCpjr2OWpuRakWWKXGtSKXDEnXO8mvgMb77fG2jq1mNdINeaIpN8dVG99JwkUvGzHx3w7KKi\ntp5CS57sx37FBh8cFFTtPuerlnVnECHj/f0RPgQ+OBxzuqjJU82DccY7ferY61BIbg25yYBMq3ie\nvCdVU7Ux8B5CnFvQMM41Vft2gOstvkPc5Bpb61jWFh0Cdc/xIzyDG+P+u82pEDwnyziJ6n3ksBsT\nQ833hy8rGiBKA28aw+0uBF2/mnSd4byKgzxSRBOw1hiOJopBplm3luNVRdU49vrhp8ZYLqoOJdkO\nRMUYSMVkmPJi0bC0HUWieW86fOl+JXBRdjxfN3x90XDexkK0WncY1/H+/u3ZtcNM8eXpmr9+sWTe\n2GvFb7M/3dht/fp8zsm8pfOBRMK7+wN+793De79uUU/fkCW69xbyPL+seDjNybSmKjt+ebZkUVqK\nVPLxozFZv7hvTkM3h/+yLOHjByl1T70NtCYIj3XwyfGCz87WtG20xdZKko1S9scpKxMnkCGPdti3\nXK8kDiMJAufrjjxVzELC44cFearJC+j6dW9T4jYk1GVtaI2PT5yFxkdt+833kA0xpzZPFUEJciX7\nIaironswyvnddwXH84bjZYtznrR38Gxby+FkQJ5K9oYZPgSG+etL4iCNrp63KXvOy5aDcXLNNgLi\nifk2GxEl4bLs+ORkybJxTHLFTx5MOLrDGPC7wmupHiHEfyWEOBFC/MXOz/aFEP9UCPGr/uveHX/r\nhBB/1v/3j7/LC3+Lb4ebXGPVOUQI5JmCfvcshaS+0YDbpQmMC1yWBhFE/0ERMQOX23sDmzxdH6IK\nxwfB83l9zfwsVYJ1bZAqNkcDoJL4dWHBO8eiNrR907JIxDYOcDbI0EJyuu6u9RpaGxUkHx0N+fjR\nNLpsKslyx6deC/j5syWr2vD0bMVxX/T3BpBo+PwC/vzZxa3PZd0a/vjXFwgEPzoaXTNf2LD3mxL0\nyckKKeBwUiCBX54sOJm/vIu9C41xyBt+R1LGaePTZc0vT1ccjHJ+7709xsOUXx2vuFzWWy55s5NN\nVJS97g9THk9y0kRzNM55/2DE0ThHCMHxosJYmOYp666hsZ6Dccok19SdZZgk2x3/XYRECXTO4b3g\naJwzKxJ0oiib6LD6sNjObTHsK35HNLA4Oa+QQjApEqQQnJxXOOdfeg8tKsMvni8QSvBokiOU4LPT\nFXJn+vbBJMda+OBgzG89HvN4VjDJE37vnTFBSAKeYaYRwOmqY3aPdLQn+5H6m6oYPrP5i3cmMEo1\nZ4uOgxteO8s6Jn1JGalBKSNVWjeGP/7sDA+8dzjAA3/82Vmcr/gecR+O/78G/p0bP/vPgH8WQvgY\n+Gf997ehDiH8Qf/fv//tL/Mtvivc5BolgXGRMhlkTAYJwzxBS/mSHdjugmGcY5AppIpveiUFs2HU\n0N8m2Njk6W648FRLUh1N1jaYFH3foTftqoFFF4uwJGrhP3mx4qyfxN0fFiBiVGOiJXmqqFq75bOF\nkBgbuFi3vFg2XK5bvIC2c8yvma4HfHC0xnLSG8944LyC0sYC/uXp7QX6k5M1R4OoLf/l8yW7e7Sb\nBXGUKBZtx69Pl6yNZZRonq7ubwHsg4jDX4C1sT29N0zxQfD1ZcW4SHh+WfHnX1+yXLcM04TPz8ot\nl3zbKWxSpNEyuu44WzUs6o7OeR5MB6SJZH+cIlF4HF/Pa04WFZ0N/OhoSNJ7E9xV+AMxxlFKWHeW\nZWOQIaCUiOqcnYZ5ucOKpP3jKpuO40VD2XTsDVOU1i+9hxCBQZZQN5avLirqxnI0yXE7QeWTPOGd\nvYLWWp4vGqo2NpeXrWc20BjrOb6o8CHwNx6NsfcYnPqtx/u8M40+P/MqPtb9BB7uj0kSyYeHA/SN\noPuytX3P6WrhTrXi6WXDwTin7Byfn64pO8fBOOd4/a+Y4w8h/K9CiA9v/Pg/AP6t/v//G+BfAP/p\nd3hdb/E9YlcW92BSsG6jHbG10UA+TySjTL/0N1uawAVyrSjS9Bqd0Fh36yj/fXT8g1TxcJbT2Mj1\npkCqoHGx8NsAv/3OFOc8X56XNMYyEyndjkpCCbHls0PwnJd1lBQOdDxaW4f3XDPQamzgnYMR68qw\nO4e0KUuOGKF4G57Pa1wQTEcpD7REKkhcpAAKYkEYJHBhwHhJscmvdRbjoW5fnZC1i0wLfOCaV89G\nEnteWhaVZZClzIYxyLu1nsayNVu7C1pJxpne0g/PfAwMtwH2RxlP9ocs6hbnYsbttEgp0uSa9fGd\n16wE6SClMw6PQCnBdJAihGTZdUwltP6K48967vxoVlB0jhCil9AoVWglr8mBIaacFVmUcG7sR7SU\nNOZqJXEeZoOUQZZElVXvx7NqDVma8GiacDhOeXd/iHEeY+5S6V9hf5Dz04czjiaWZWMplCDLFB/s\nDfnocBh7VDd2QOGlrVTEojGMck2h40bKO1BacPmvuvDfgYchhOcAIYTnQogHd/xeLoT4EyIN+Ech\nhP/prhsUQvxD4B8CvP/++9/ysv7/jTeJXLwLsz5IO/iw/fALKZgN7i4Yw1SzdnF3qPv7XzcGKUKv\nBuquXdt9dPxSCpwLBM+28bcJF+yIhfR83SCQCBl4elnT+YASARkEiRZ8eDDc8tkX646nZw2LpsN5\nQZ5JRqnmYJASJrt788B82fLZ2fpaC3e3JI/u8DpzHr44W/J8VbNuPQt3Re1oHacvN06RnTX4AMvO\noIj9i4Px/VPP9oYZz+eRFE+13EpiH88KnLOcLyrWxtI4yBWMEs2seDVtUXeW5+dr/vTLBYumY5qn\n7E9SikoyKjK6zvJgnNG0jrnpqDpHoS1dZ7cLysZS+TZIqfBEqaUCfGDbf+nq2DdKACQoH793QG0N\ni7rDOEGiAkqmPNkb9tGYV4El1sWoRSkknqg065xjstPcNc4RECgB3gVyKSlyzarVWON4XpY8u5Ss\nGsN+kfL44PWqnr1BAkKwV8SmtQ0eIULvkCteem9D9Aza5FJvrEY666M5oXGkqcZ7j04kXWdJvuf2\n6/fd3H0/hPBMCPER8M+FEH8eQvj0tl8MIfwj4B8B/OxnP/v+DWR+YNiduhQiTtqerqKHSTyyf7sF\nYFKkWB9eMo+6uVPcvf/9UYaxsVm1bk0cMxfwweGIYR94vjsE9qqitYH1gbOyZVTAadc3znYqigD+\n6usFUgTGRYIxAi09s1HOvO6YDpI+3crjQ+Dzs4oiFbxYO2pjWVXAtMAGz4/81Ye76hz//JcvCK8Y\nlbxL6OGC50+/uKRIYTIoto1ciDTR5hYnwGINbYBMQ2shE/CHH97fImMjiY0ZBFdJZINUI4Pglyfz\n6DGfgu9gUMDHD+9Sy0f86tmcf/rzE7Ikplwta8Ovz5a8tz/m99/fo3Pw+emK42XH0SSnMZbjpWOa\nqW384YMhPL9F0rmNeQ9grGdtHcNEkihBkWoGA3jaM13aXzWIZ8DXFy2daciSgqquqdvAH7ynebEo\naTu/tZ72Pk5wX5YtWSJpTQxS/62Hu1p8QdmamB2QKryAqrUE53m6iL2EPIsT0Iuq453914etD3ON\n83CyKGk9NF3LME1Zziy/eD5nXCT8/vv71/4mfs6iOaLvT9ZFKvn44Zj//dMTijQ2hNdlQ90Z/s2P\nH772Ot4E37bwHwshHve7/cfAyW2/FEJ41n/9TAjxL4C/Ddxa+N/i1dgGY4fAui/ARRpH+YW4f+bu\nTSRKsj/MXnuS2JVzehdDsfeGGUIEQojyyQ3tc9Oz/VVFa4NF1XEwzNEqvik1kQLY1BQh4dE0cqHP\nLisOhwkfPTiIFsiJouvTtB5OCz49WTJMFS7AKE2YFTkWhzMx5Hu5o0P/+bMFwQfSV4RbH9+huvzi\nbM3hKKFFsmrcrZZoGlgCjxLY3EWiIfHc6DW8HndJYn91PqexkGZxEtkJR2Pjz1+FP/liTiIFIqB/\nKgAAIABJREFUs2Fsos6GCVVnuFw3JBqeX65Zto4Hk4JJrslSRdtZLirDybLmw8Mx1R06/oZor7yu\nLZ1zJFqyP87Y72M+hbg6LWyKviK+3pNMEvIxHhjlY0RwfPpiwR9+sI9SMooQlERqyYNRFh1VnWeS\na8Z50kcXbhCtuF2Ik9hKCEZZwtfziofjAUKCDLA3zBEhZhT87mteh+eXDUoGPnwwpmkd55WkM5Zl\n1aKEou3iJmnXYuOuz9neKOXjowlP52XvxyT5+GjCZPDtM7Dvg29b+P8x8B8Bf9R//Z9v/kKv9KlC\nCK0Q4hD4N4D/4tte6G86NnLKqjbXxu69DduG5pskaL3ub3flnE3nyBPFMLviMpUUNJ0jKa7bJG/w\nOh2/DzH/VmvNJLdoATpRuKXbsqNZEht8q7plmGWMi4TOOY6KhESpPpBEUhvPqEhYNjEyUApPIRSN\ncjyaFez0/nh2UTEqEupX+J/f9S/LxjAd5OSZJtOSP/tquS1iTyYK5xw2wGkFRSFIfCAIiQgxYLv+\njrTaX1+05BpE73wqtAAb+OqsumbZcBPzqmN/HKehERCCYFQkrCrDTx/N+PSkZNk4XAicrDe5tZBr\n1c8DxOZuSlyktYoNXUOkykapYponW4uJo/FV9oDzgpEMpFmcT2iNo2th6aHI06jqQtATNTxbNuwP\n860NN8DxquZk0bE/0mgvkVKQJuKas2WiFD44Mql4b3/AZ2cr6sayqg17RcYw1TzeK0ilxLhAdYc9\nxy7WTUeepKSJYNU4RlkGWYrSgncPBzSd4+vLinf3rsuAb/ucJVJQ5JrfebJHkkiM8RgfDfG+T7y2\n8Ash/jtiI/dQCPEU+M+JBf+/F0L8x8CXwH/Y/+7PgP8khPAPgN8G/kshxEaY8UchhL/6Xh7FbwA2\nckrrQYqwtTVWIkoq38Ta4z69g139/8YHf3daNnB9KvSbhruMc01nAkWeMWssJ0twtcMAB0lMsjpZ\nNeRKUSSa1sXQFC2jZcSyiXF2AFpFqd+00DQmZgwvTcf+MGOQaNJkxyPIey7rhlx/80VzMkiYVx0v\nFh2N8df07CfLaDC2aSe0PtB1IJQnOEjTEInt7wDBOyoTM3RDiPr3NIFBGraWDbedCGfDhMbEhrz1\nHi0lxrhtmpuSgao1nK5bBIIijUEoSrTbRT0XMN+87Ds1syAWutZ6Mr3JPL56f4wGKU3bclnBsnZo\nooS2qaL3kRPgnUCqgApcO+1uOP4QAk1nwScoIQk+sGw9RztSyDyJC4LpLUNsZ1l28bOzbDp02sct\nqihlHqSvl3OqJEEIw/OLiuNVS64F40JjvWLdRFrJ3DPRTitJrmWUNxvfDxgW297Z94X7qHr+/h3/\n9G/f8rt/AvyD/v//N+D33ujq3mKLTeSic46ViTYLkji9uagM4/zbhTPfJwh99/43U5+LqmPedKT9\n3wkE4343c1sc5OsWl8ezAX/9fEGuA8frWCLSFLoOzgz8eBSHnqzzfHHeIvA8m1cUaeR7tZbsDyN3\nv1ckPD0vWbeWL88qrPCMdYIo4HhZ84cfXvGvB8OcLy8qQn63muMu95bffjDhv/2/viCVUOTXB25y\nDZWFk57HXqxjmpRKwXVQd/Cjw2/24b5rCE4pz1kTpaeJgCbAuoODkaNqDYlWt54If/bBHv/Dn36F\nFDBIU6quw7jAv/u7j/pFXjKv2i1t0XlPvWoYJENEX1zfOYD52cvX+mAYE75cCHy9qPEh8HiSb695\nf5Tz2ddtdNnsh7mWFcySaHSWp5I8zWm6hlXn+Z3HU14saxIR5xe895wu49/LyP4gRRwutDsbkCLV\n2MYwyBJO1y1eKB5NEsZ5wucnK5z11MYyTDS1sfzOu9OXH8wNDLTk64uKvWHCI62ZryvOy4539sY4\nH/16jqb382HqbDwdBARFpnAu8HU/mPd94q1Xzw8EGzklIioVpIhNplg8v/12/7Yg9Nt8dzYB5+um\n43RV8/nJCoWITeAgWTYGgr/mQ7Ip7Ls+P3eZug1SzaNJjjfQ9T/WKqo+PCCDiN4tNjBMFMM8I1H0\nMr3YVs16L2TvQfRWyV4EutZTdQYbPINUxVD2Hk/2Mt6ZDV5pg3vnP0nJ40nWB7Bcl9+5Xoaa0MsV\n+wlX0ee7EiB8g4/fq4bgVB96bgDX30/CVVpZ3dmXbIIBDsY5Hz2coIiqFoXk48dT3j8cIwg0nUEI\nwd4wQQqwJiB1lGTSD0kV2e0FKs/j636+6lBICqUwxm+vOVeaNAWd9DRREhf64RCO9gpEgLKLxmVH\newUHozhZ63qplwvgg2eQaehjCwlxRmD347A7t/JiUTNMFbNByjuzAR89mJAmgq/OK4Lw/PTxhHf2\nbp/SvvbYUsnRJAUEIsQFcpglyBBtq7UWHI3uV/gXVYcV8f2qEQghsL0dyveJt5YNPzAIERU3xsbQ\n7TyJ2vBvQvXs7hwbYxhl8ci/ifSbDTP0jexR4yJlMspTytZyNM5Zt47ORa+e/UGGEGIbcLKLaBHg\nWdbN9j4mRXptF1p3lizRrL3jx4dJlO4B2TBaHFzWgacXFcNE8HAyYG+g+enjafSlkQICVL0G+3Td\nYFzg6byi7hxaiii7s9EXZd5Y3u2vbVjkvH9gSZUktmFfxh39S46XHe8ejNkbDTHe8cVJQ+sjv12G\nWNAeFfCshlkOlYnhLKmGYQLL8v5a7duG4DY/t0ZwMICyibr4EdE107tNHnGMobyJk3XHbz0Y82SS\n05j4XhrnCRe14SePpgSheH9/QGkDbedIlGSQSoII20b+ZdXysIB1fTV5m2oo2yifHBcaawPGOCoV\nC9xl2RJ84G+8M+FyHR1Fs4Fkb5Tw9HzJk2nBUytojCVPcp5MczySDw9GrBtLZx3DQcrhZIBpLcNB\ngndR7aMAd+PDsOHWx3kSYyP7DcmTWcEk01TG84cfHNxbHq205PffPeDLy4rLVcv+UDNIMwKBaZHw\ncJqTJ/crrYvGkcs4dd7ZaCx4NEpZ3CMX4E3wtvD/QLClZERsWGVa4XwgTzVSCIS4pylUv3NMtWKY\nKRZVx69P5jzZHzAp0mseMOyYEOyeDKrOIaRglGu0EhRJlHDeFRC9bqKFcKLU1mfmdNVwMMy2stFV\nY7koO4TxZFoxGeYIIVlXFScrQ57C3/n4iFVt+OTFnEfTfWQfX+d8iBGLfVPvdN3y/3x1wWXVkKdx\nkvO8sujUsqgtu2vaJJOxyTm5e4d2F4nWmpbWOKZZglQp+Cv9//tTzbq0nPeKoMrEtKeDScq66qgM\nHIr7c/yvGoLLU42tDPsTjZSK1nRUXSBJ9bbvotXLj2JVddTWkycJ4yIGmK/aGGoDkTZCCFIJ+3tD\nnPesmpbUBQ76Bd66QNnE3fo0U9Sto+kg91Bbh3MBpSTDYUJwMcLROkGWaowNvHOgtwMb3gbSRPB8\n3jAbKAZZQdV2PJ83/PiBjtm7O/Th8bzi15VBIygGKXXrqIzl4R2v5dEo5cWyBXQ0zOv5oY+OBq8d\ndNvFOE/57GTNg0nB0bigc5aqs/z4cMzHjybbbIj7oLWWp/OKYZIwHOW0bfy+uId1xJvgbeH/gaDu\nolWwB+ZlQ6JijF3ZWgapusanvwqXZYsUgtY66i7mmkolWDeGSZFe84DZxXWTtoDz0RzL9rbMdWcx\nznFRdi9x+MsmZtiuG7Pd8adasWw6nvRhFaumo2oN43HGr56uMa5BaGib2HQ7ONR8crxCS0GWJVws\nW9iROrfWbwvji3nMzV3UjmeXS0QISAWts3x0OODB9IrjD8RhtS8u7trXw8EdNWGSF3x1ecG87AgC\ndo0dvlxcp8qCg8pD3XVIAYUGqe//8cu0YFl1VMZtd4aDRDHIFAeTOCdRthaLRYbYT5gNIw1VpKq3\nub4OIQXLteFpW2O8I5GKSabJpmn0M5LxNFXWlotyiRSSSaZ4b3/IwShSPMNE8kWIK97ljkz2oYLT\nVcu87EhU3CR8cDDEeZDS86P9Ef/L8y9ZVpYgBcIHJgPNKEvJtaBsHfO6JpGQa4Hwgqq1uLAh9iAo\nyTuzgnlteDYvGWQpj2dppH92sOkvFWmCpOaibLe3MUgERZq8Uv10E49nGX/97JJVHV/3tjPkqeLB\ntLi1v/Uq+D4k3gaPa+IcgpbRGvv7xNvC/wNBbSJ/rqVklCWcrxvO1p5xpth/OL23hr9sHT5E/lcr\nie0lkJdlR5rEAjEdZPgbG5ZdVc8oT7goO5rOkSaxH7CqDYfj7FqKV57EheF81XKybEgSzSBRLDpH\nwPCOuhqWqTrLlxcl+3nKuo1FVGzM2gIIL/jViwVKRFO2rvPMqy5SPUKgNeRJLEarpuOri5KLVU3d\neYILZJlGS8HpypCKqw/VqrGcLOuXJi13Ye+gWw/GmstPDMeXK7yQd8o+Icoe274gCwAFD0ev55M3\nyBLFXz1boEXstbyYrzkvGz44HFFIRZJK2rVHpmBbmEwkH0xHDDJ9zaRtF1rCZ2crWhffV9Z7TiUM\nBgdRChsCx4uGF8saISRSBTI94N3plSwz3PG0WQvP5hVtF6dYjfMMEo2Wkid7AwoNl2tLWYNKA64D\n5y3v7ml8gLJpCULRBYce5mglsN4TAigh8CGgvGPRWRIJ++McZx0XpeG92dXzuiteGGSaIkm4KKvt\ne/lgMGCQ6Veqn25CET8jTy9KrAsEAgjBs8uK5/OSx7PBvT+Pg1SAV5yWFc7FFLD9oog//x7xtvD/\nQBCjCeMbvjWOSZEx9PFN1xjXa6xf/2bzweO9uOKKleRi1ZJnisNRjvNRMje+YU+7q+oZZQkhRHMv\n7wM2OI4m+Y4MUGAcnK4aZoMM4+JUsLMe05t0Geeod04Vl30YxotVTZLA1AOijzEE1sbwYDqkM5an\nFyv2hjlVa8lTRSIFSqhtg/b4sqZrHcFHfxevPY211J3i0TRO+m7w/LJGKsH4jiYlwO3enPDleUPT\nNBxMCtIk4cvl7T0CiA3Xjd49AM5AZe8/wLVuDNMiiSH1TTRVG+aaRCoMgdR7Hs0SVJIQRhYZPDbY\nV5q0na1akgRyneAFyKBYdx0vLivkjw55sYqpXqMsYZAlqD4+8uudHIFnO+G5G88dgK9reDQu8MFv\nTyllZ0mVYJxr/s8vzhnlgr1xGi0XgseYjqfnDR/lmr1BgZCxoV9ZQ1l3HI7zbWSolnCy1PjSkqXR\nA1+o+HW54wG1S1FeLBoa53k4HWCdQytF4zzzdcvRtGB36PBVeDGvEQJ++9EUG6IKqXXRnXaYpfF5\nVfKVcysbeA8+OA7GBYLoFuqMe5u5+xYRiVK01lE1dms7K4g7wW8ywDXO094XXJDoaP9gvGeWXEkx\nfR/Wcv3+r0zapBRkWvKjozF5ojhbtSgpyHc00DEaMTYXhRJkiSSRimRjtiVA7BpXhUCeaM4XNYdj\nRSo1HoE/awjA2TJK36x32CCx3pIlis45BmmGlHJLHZXWMBqkBAFKxR1v2xp0onkwya+ZeEFgmKWM\n7qHfvokvzxccTIcUmY4ZuDvN4ZTrfj8FMB1BqhNaE3Xq6+r+7pyrxrA3zOOg3MmSh9MhnsDzRYV3\ngelkwChNOJwWdJ2jNIYkSV7JXV+WHbMi65uicViqW0SeXEnB04uS6Sgl1QoRola9bg2fn17RYl2I\njzXXkKRgOlj2J7XHs4Kqc+z3BbzpOhzRsuF43XIwjieSzWxI1aYcX65IpSbNJEWSUBuDbaLx0W6A\nEETb51GuORjnKBm9k1rjWDdXz/wuRXledmR9g/x8bRkXis4KzsuOo2nx0tDhXaiNxRnPV2XNZdmS\nSJjkKU1jrzXd71P4/1/23u3HsjRN7/p9h3Xaxzhm5Lmquqq66J4ZZmxGHnwBBiEbXyD5DokrX4D8\nLwASkiVAiL8BgbG5wAJxg++QsWRZGiF7xu72TM/0TPfUMY+RcdqndfxOXHxrR+yIjMyMzOoyUzgf\nKVW9o3esWHvttd7v/d73eZ8HIcgyzXaRUfQ9krO6jU5H3yHeB/7vCdaDKKvWUjUtJ6vogjTKFJmW\nN2YRjPP4oC3qjqqzpIniszsTjAtx8VCSO9vFS6weuGBHTIqY7T+bVdQm2jceTIpLWWXkmsfXg775\ne7ToKJuOvUnOwShjtDF7MCpStLQYB9Y6Zv2AVksMIgb4v//oKYWGe9sDaltQtQ5PYI4BAmlfOpoU\nGSEInp6tqLoaSRSjK5RAAUV2cZ5b4xxVdczegmFzDqEYZ/Bi1XDVhuBqdShL4MkK1vYdH4whSW/u\nuSukpLUO76MNoRKC3ledJFGMMsmj0yVPZjXDTPLD2xOmb6gzZ4miqTvmq+7cwcoRzh2srIvmJlVt\naF1AiCjQtyk8OUygMbC0EGxMRhRxMfAhsj5PV20cyvKeX7sfd6bDLC4iUYwtkChBqgVFQXROe7Fg\n1TlGqeLjWxMmRfqSWblAkevQ95eidlCh1drdHrgyeBgCiZQ9GUCc/3xNK77p0KHxgqNVi0okSim8\n9xxXLVv99b6qPPs6jHLNp/tjvjwqeb5oGCaKT/fHFDdQP/02eM/j/56gSHW8n0PgZNGRSc2kSEik\n4vPny94R6WbHSbXkYDrgw70RdyYFozzlw/0RH+yNuLs9iJS319wZVWc5XrYMs5S7WwO2hzkvFg2r\nfox/zWoQApa1wTnP09OKQis+2p8wzVJOVt2ljOhglLJqDHvjlLMSmiYGjo4Lp6M8kZQd/OxRxaJd\nMStbTlZ11JHv/Pm4/d4w4+ujFaM80uy0glndkWUpj87qS8qjn+4XHM4ruvD29LmDYcovDhe0jb2i\nDwNX87UTE39WEAPj10uwr2oeXIOtXHO6ammtR0jBWdWxbC2TYcokkfzpsxVd4xnkCcZYfvbN6SUJ\n5+swGSR8dbRiUbeIIFjULS9mNYM8LtRbg4QXs4rG+zhcFBzP5yt2N3RkPr6TsyIuzmspagfcm8Ks\nbjme13TOYbxnmCZ0xlF1lh/f3uLRYcOTo5ZZ3fHkqOXRYcOdqear4yXTQcInB1Omg4SvjpcUqaYx\nllnZclbGhXqQQGMdiZRsD1MSKZnVHTsbqqSbPhKjXLOsTOTIiziEuKyiLPJVw5rXwfuAUnFRkQRM\niHLOJ5Xh+bxmUXWv7RltYpprns8btFJMigStFM/nDdMbOIF9G7zP+L8nWJdafvl8TmNdHLU3klRK\npBLMyvYlbZDXHWdtv1ekisa4mKH0tLpECXaGr85Gz8oWIQStsVRtlB/OE8WTs5LtYU6mo4zEvDKk\nWpFoxXSQUbeWPJMMEsXe5HJNfVzEoZpBJgnE5m5xJS421uNtNGl5+qLlrO0Yp5qqsVTCstXLHA9S\nTaY1x4slSxunf7MUhHBsjdJL2c6oyBAI/uxwfqPvYRO3JjnGWqraI/UVFs817w/Ec19jXt98l1H0\nvrCV8SiiEflkoMmU4LRusSZy+MOqIrhAmsLpNQblmxPUrY1SxsZ5rDeEEBikCamKk7EH04w/fS7w\nxpElirq2CC95sHfRlL83HSNpovvaxt+5szciEJi1lrqz5Eqyt5fTucDRoqZIJEFB6aGtYw9komL5\nL00UrQu0dQchCgLadWLTD+YhBOMiwxN5+00XRfK2BwnT4cW9tXm/j1LNoa/JtSLXiqa1HK4agvAo\nwY2bskUmyFTKsu5orOesaphkKeOBpukcp6uW33iwdaPvNU0kLxY1XgQyldA6gwyCNNl58y9/C7wP\n/N8jJCqadQ8yTfBxGx2bQ4Hla0TGrjvOuh8QH/oNL9CwVsF/Nco2mmRIKUl0pIYuW4tWgluT2CCe\nlS3DTBNC6KmWklnleXSyYm+U84P9EX6DEmJ9NPpAp3xyy0ZqYpBUGw7meaJAOyhhUcM4Tfop3N7D\ntN9xzOqO/WnC6UoySATjxDPIMtrGkylxaTjmjx/PaKzjB/tT/unXN7dCBDhtDA92J8zqDucE17nP\nFsSAuFnzl8BYxYGrm0IIycHWgKazdG7CvW1P2Rmq1vHktGZrqBBSUWRJ5I4i+OXJ6tIxrspznJWG\nO9s5oAhEjaOiD/qTImFUpPzFD3d5elbRWM/OIOOjvSGJuggb38xX7KfRMEfI6BiYKygbyzCNhvfj\n7QE74wwpJIvWEhbwh09n7IwEW16wdiCRMvD01PDXfjOyiqyL09uTXHNWdeSJZpht3DMueuRa589p\nwtvDrO+3XGDzfv+hnHC0bDirWsrO8cHuiJ1xTqbVjZuyUiryRKJ0CnVHlgzAO4yDLBFsDwe0NxB7\nAzicdTzcHVF1UWpiKlMGqeRw9n5y9z02YKxjXnacrAyVMQyShN1Rci1P+5XH2Mj66s5grOesMjQm\nqm7uj7PXNovXzKCk384aGx1I1oaNa6mAEGImr8WKL19UfelVsGosP3004y88mBLnTCNrKVESYQKi\nb9StB4nWqDtHEND0rk1JEhvFbReprovWY5znbNUyLw1CKoL1mCBZNQ1Iz9N5zWBjOOYXhyvqzvD5\n0eUgeROcLBvGhSLXAzrn4PlF07PgwmgdYtCfSEDGunxrIL1ZGRiIZYXOxaMNU0UNbA2H5InC4Sly\nzSjPo6qjSGlMd8lbOF6/9QR1GxeBKpqgT4uUUZHgfWDVRibQpIgBaO2CpWT8PqvO4TZE0M4WNXkG\nAxVlsKPhiWNeNlFHaKSwIXC66tBKooWgEoajeUmuEpIiib0AAaYzPOs6WhdI0wRpA1qLONmbqEv1\nfehnG2p/qQ/qfOBV5fHGxPtjkCUsG8Mkj4Yqnb0QprtJU3asFa03JEJRaIUPEuclD7Zz7vRU0pvW\n+M/qFglUXUfZOYapYpTmscH7HeJ9jf97Bus9P38+o3GG7WFK4ww/fz7D3pD/dVU3Z1Z2/PzZnNY6\nxkWC9YGvTkrOyldnHOM8xYVwLslcdx4EjDeeuEwLuj5wHy9bVl08XpFqpJSUbcfh8uLmTpQCAkp7\nHr+wtB0MsssLj1TQ1LHhu5XBk9OKR6c1VWvJVMzul43Be8HTeUVjDEFIOutYNNEQ5NlpdUne4nBW\n8kdPFrQ37JFsItOKJyctjTUMrtRksyxq0m+WP6q+GVub+Bn2t26uua6VjLouPrpxJSrWs0MIbA9z\nytphnEMpQW0M81XH/uhyOW3ZWB6dlDyfNxyvWpTWHC+jQb11cWdG8NzbikN1q8by8+dzahMZVLWJ\nr1cbXpSpVszryKbJdEJrHPOac3/Zo7LBWE+WKoz1HJVNzwDTzJuOuovNj7ozzJuOrRSO5i1l08ae\nTtNyNG+5vzW4pP4K0bznxaLBuljesw6enlWvnJmtO8OqdUgRE5MskZSdpe4Hz1ItaW/A6lGJ5PZ0\ngJRx0QghsDcuzjWgrnPgehW8Dfzk0Smnqw6B4HTV8ZNHp9Gs5TvE+4z/e4ZZadgd5pytOg4XLUOt\n2B3lzMqbBa6romxnlSHb2LoXqcL7wPEqDgddh3EeSzhHy4bTMrJ6JnnSTxV3kcIpBBCbarMqap8/\nWzSEEBimitv9xOUaeRJZK8vK4jyctXB2xZP2uE+oBVHUq24tufeERNJ6z7jf5ttgCd7xaAG+bw3v\n9El+nqpLWi4ndUvZOE7Lt2/ubhUp4yI+/C+u1NNnVxK2EbAC5v1H3lXwYOfNNn9rWOeZDlKMjdd0\nMkjQbdSz+dGtLWblc746WuF87LncnqT8+t3LdeajRcVXxytWbYex4L1lVbc0XUvTObSS3N3K+OGd\n6Nz1ZNaiRNTtf7ZoUTIwSjSPTi8+697WiOfHc55ZCGWDILpo7U2GdC6QSEHnHK4JpFqwlackWvGD\nvSkv5i84XnQI1RFclLS4vZdxf5rz5WnJ83nLQEs+2hmyO8lwPiq8r+mfi7pjb5TReU+5iv2kcZ70\nMw8v71aNjxajZWtpjaVpY/D3/YJy04CtEGgRxerSVFPVkXsm1fXucq+DcYHGOeZNx9qaJksUxr0P\n/O+xgboz1CawM8q41/N+K+Nj5nQDbPKaATwh6tfXlhBiaSJR4qXJ3U3oXmd9b1yQ6piJPjmruJdq\nkg1rxb1xhiBQmWjTOMkjo8j6wPNZxf7k4uEIwNGioXIeraEIoFM43UiZd/JoK2j7z3HWtGyFjGkR\nXcBSEctMi1XL0bI38CZm16cOtnsP2c35gbKxLLp32/oebOU8n6fMW0chLh9hs8wDMfNPgEHPdUdB\n8hZ/1fazFXkSbQ9DA8UoslEOtgvqP/VMMsjyAtPWGBfYGV3eUTw5q3iyqNlKEybDaKKz6Dw7A8WD\nvSHee/JEn3PlZ1UdM1ofF2vvPMZ6Xiyqc/rkVqpogQFQDKCu4vVOVLxXrQsgYqlmlEWRtEme8HB3\nyB881mhhEVoTrCVNNVvDDC8F93cGJEmKMR1eCoL1l0gJcRREIKRkoAXjPOmZOa/WjJIEgojBf1yk\nnCxbpBX4LLxVwE6UYFk7bIjsHikVde0IWx4pwkvucq/Dom7RAqxWJCgMoEX8+XeJ94H/e4RYmw84\nZzgzgpNloMg1qQrcNHRpCY1x55mjdzEDShPZl0ACTRfYGr1chlj3Bs4qg/eeRRO59sY6bk9yIPSy\nElAMUgTRa3RnkvBsVpFKSRDQtZ5la7m3oUe/agzbw4y2NWD7ss6V5memIS80i5XFOTCt43FTMcxT\n7g5SyjZ+pq9O59T9s7/5+JwuQSIpNoa1llV3PifwtkgTzWiQYnxHZy6vlFfXTdf/m3dxURhYmJub\n/9WL7831U86Qp5pUCb45WXFne8CsNljnGQ0H7BSaL15c1h86XrYMtaY0jnljOCtb9gYpLvjIdEmi\nTv2zeU2qJLPSsKwsUknaLhq2iOBorT/vAR2tWvYHMDMx6OsEhgqezSqGaRpNcirD8bJhkCrujQcM\nM4V1gR8eTDhrYiBPtWA71xyVDYWWWDTWe/I0ReM5Le1LDlZSVpStobMBYx2JVqRavCRmd/F+wbLq\nOF41tDbSjZ20FJl6q4DtvGdQCLyPu4VipJAysDfMbiTrvIl568j6iWNjA4VWpCr+/LvDRxZ9AAAg\nAElEQVTE+xr/9wTr2nz0RfVotR53h2Xj2L5GDvk6XNSKo4vWMNOsGssg0UwGCYlWBDzbVzjgm70B\nHwImlvXZGqRRIVQKEqXYHqaMizTq9PRth1Giubc9wAuoW4cXcQhrtDF01trAINPkqaQh6tlPR5dv\nz53xCEXACmLjeBgpoONc8WzWcFK3OO85XVwE8s1PUfmozz/ceLh9b4r+Lg6nqQx0Bu7sDPmND7fZ\nrKhflzemwERDTpx4PVndnNazWeNfM5kWdWyYHs47RFAcjAt+7d4Wtyc5DtkrUV4gSMGiNSRCsDVM\nMYb4WktuTXOKNGHZWp6e1b14XcK8cXFCNlU451k0gWlxMcRVdw6jJbtDxQ/uDNkdKhpiMpAlEong\n9qTgwc6IurH4ENgeZngCo0HKx7fG/NbDbT6+NWY06BVOfaBIFAfTnKL3Uw7XVO61khwuGlrjyLNo\n33i4aF7pXtUax6PTEucEwzxBIamMZ3+ccm97eOMs3SMZ6JTtQcb+pGB7kDHQKf4dwmmewGlpkQT2\nphmSwGlpuaHG2zvjfcb/PcG6Nj8uEn6wO+Jw2XG4aBglCZ/sjRndcODjolYcrejGhebX7085qzoW\ntaFIJJ8cTF6aBN7sDRgbHcCUlDT9tG9n/CXN980pyFRLbk9zJkVCax2ZjvLM6caUWKYFnfUooZik\nns7DqrzcsF6WJVrLGEALmBY5iYI0ERQhGnuP84TaXOjGbObUBri9NSDVFxlhmsC4Bd+zhd4GFsnD\nvYJHpw2Hs/qSSNt1nI5h0g86JZAqaOqb03qu1viliJ4G1nkQDiU8eRL//yzRWNP2tM4L7BQpdeNA\nRfkLEywiOBQpT2c1iVI0XcsgjSqtA53y0d6ARetYdXEA69ZYk6vk/LsVBAbSo9OcujOkaULe032t\nCwQReLGKvQKt4mIySDWjVPdloDhRO0g0A60YFZr9Sc6qdrxYtAy0Yn+SM7xGUsM6z8Ekp7OOunNk\niWBc5C+xwdY4XDRsFxlORn+CPNcMveJw0fDZnRt/FSRasD1MKY2jNRatFLmWdM6+lconwDDLub1l\naZ1jURl0IrmdJwxfox31q8D7wP89wbo2P0o033iHkjApEoKD2sXhlJseZ1PzRMuoHD4ZZOe7huv0\nxK0HIQJVbc+poINUIUX0Yq07RyLU+e9vStNuFynfHM/obNTxr1tL1Sp+c+ui+bg9zPjmpGQ4SDgq\nDdrCsJC4pT+XOz5ZBAKx5LC7NaJsDHuTrJ8yzZnksh/YgeU1yfSQKAeQbFBf7+2OOauWXONT8kYI\n7zhZGQZaMs4KRhrO+lieyei2pYj1/QFxElko6FqQGkavGZK7is3vLU8Vs7KjMY5l47k7GfIvn5yy\nbCwq0XhrUanmL9/bvnSM+7sDXiw7Ducl3gvKxtA6uJMInA2sqoZ5Y/g3bqcsa8NoIBk3KaNBIFGa\nlLh47k30+YTrx7cm/ItvTmnKhiRNaJqGIGA6yig7yzBJyFVC1Rq2RxrR90I+uTPhp49OGShNniua\nxlE5y48OtqKCLJ5RprHOUbbw477hvAkpJMNMnsuJr2v8r/Ipr42ndJbV0mCJfaFcKwZOvVXA3hll\nfP58yThLSAcpx8uG09rwoBiyqA21cez0zKs34cFOyqpOmNWBJJEI4ZnmCQ923t4D+m3wPvB/T7DW\nHOmcY1k7FlWHJRpR52kUK7vpcTZr/CEEGuspkniTvkpPPATPySoaXVsfKCvD45khU5KDScH2IDlv\n7GrJJUVIqSKzY153+F6DcDpIkRsBOFGSIpGM0wxrKhYdiNZf0ryx9DV7D7P5Cr87ZF4ZFnVLkXbs\n3duOPO2cyKW8gkzELHG4QTu9O8352TfL10oqvwo+SFpjyHWCVIJRDmf9OEDjL7L+yG+ClQVnY1kp\nbWF/XJw3Sd+ETc0ZiDsH3++qbm3l5C/ijqd1IPFMk7hD2AxoiZQIYgPX9nRegaOxgUdnJbmWFCks\n2zgF+8HehEVj+ObFisY2DDPF3Z0BP9iQAX+4M+IPn5wwW4BtDDrA1iQqczobWDmLczGRyHXSq8zC\nDw/G1J3jjx7NeDKrGWeaX3uwhQueL56XzJoW6w1awv6wYJi9XPsYZorORl9f6/y5eGD6CmaO955n\nZzWJkgRib2sWAh8fTN5Klnm7SLg1zThZtjyedQQfOBjn7I+jWGDdORayO/cseB12hjlarRhmKaIv\nYWol2Bn+Ocj4hRB/B/iPgBchhF/vf7YD/G/Ah8BXwH8cQji75nf/JvBf9S//2xDC3/v2p/2vH4pU\nc1q2fHW05HjZYLzrTTbiMMqLef3GY0Csix4t63Mbv85GOqZW+tqgvYZxgbI1FEnfUKw7RIDdaUam\nFadlx8cH40s0unUz+MujFZ31TAd5HPryAh/iVn6NRd0RkOQqYCwMBKgCTjeGaTfLNo9n8JmxLDtH\nKqHtPDqJ3rGv0ojvApxWHT/a2B21LqASSLpoUv5WEIGA5E+ez2hdoNz4CnIR/x7ErL+hZ0z1n8N4\nmCb6xqqq6+/fuMCyb+IGwTmbZVxkbA9zUq1pujiE5aJi0nlAO6la6i4OMdkATeeojWfsHDuDFOui\n+uski8F5kgjq1jMZpuzKOIh1tmrxxpwvWJX1dDawNxXoJMeahsYG0iSa6YogmBSKItV0zp8zqrIk\n1uQ/PRijE4U1jtbEBSdLJA93R1GD30UCwrIzlwYPtYRRnvBsVp9r9BvrsQIOptc3WEUIdC4wTKM6\nrPexx0FYL6g3U7lNVJR82BnlmN6UPs2iG52S0WSobC2717OhL0FLyXSUsS8uaKpd8NeKJP4qcdOj\n/13gr1/52X8B/KMQwqfAP+pfX0K/OPxt4HeAvwT8bSHE9tX3vcfN8XzZYoJDIsi0QiEw3vJkfrNG\n4bpWrCXngX53nDNIFTvDlEmRXpvxdNb14/BwVlm2Byk7k4yyNZGfPczORdrgcjN4URuGWUKiYrli\nVGiGWcqsugj8q9aRasmzRU2egkpiqWQThbywQayAQiVxjD/JKbKEo0WDkpKTl9KPiAVxMnNzovVw\nUTHQkL/Dzvq4NDyblRRpbKxuwocY5Cc6Zv4ZsambEktOQsGjRX2tCfprEQKtdTTGEkI00Sk7y94g\nRQuJ99Ff+PZ0QNkalBTnst1PZzXL1oKIzKaWWCZcNFFWUyuNVJIgogTGovPc2ylQUuIJ3JoUfHww\n4cuzlsN5XJGfnVTsDDOkSnAuIFXC7iDldNXy4d6Ih7sF28Ms+vkW6XmT9mjVsjfKmI4yilQxHWXs\njTKenNbsjjPGeUqmFeM8ZXeccbIylwYPA4LGuH6nGui8BwLj/NXlGqk1P7ozRinJvDakieSzW5Pz\nIKukuKQ8+ip0vZb/pEgZZynjLCGRArfBvQ9vkD05hxB8cjCOjWUZB9E+ORj/+ZBlDiH8EyHEh1d+\n/DeAf6//338P+MfAf37lPf8h8A9DCKcAQoh/SFxA/v47ne2/xqg7S55oRICh1hRFgu/r7t5C3dys\nUXi1xr9G94Y7PhANVPJEUVQdRRplcp2LnGi4PKa+2QxWSmGswXpoTMsgSxDAcKOBLIjb9bNFyyiX\n5GkKCE6aeuM9kMso7AXwwa0RSgiKVFE2lsN5nAqdbZx3HIm5gJSSk7Lj9jQOT83LlkTBdDzg6Pnb\nafW8mJcoAaMsQ6oY4CUx2H92bxqvSd1w/KJlJGE00rF3IgTWWp6fldeaoF+H9fc/zKLnsU+ivHbT\nWbwLSKnYG6dIGQOjMQ7bm8+vdeaP512ccC40PgRGicIYRVnFBTvIgJaRWrhmZmVS8dmtKUkabR69\nD5wtO57MG+7vjDipG8Z5wt40wbtIw62bjnllkECWxhKNcbGcmPTev4uqY5Bpys7hXcy4B6mitZZE\nSiaD5Fxjv24Mnbs8eLgmGSileLB7seg6H16ZtY8zSdMJPr2d03RxULCxllxflDlvIsvsfNyxJEpy\na5KybKI8uHGxfNpZzzi/nlJ6FYkSiKD50f2L0s6qsuib/fo749vU+A9CCM8AQgjPhBC3rnnPPeDR\nxuvH/c9eghDibwF/C+Dhw4ff4rT+/4l1c3cyzDh+NuPprIYAgcDeMOHg7s3UAK/WiiFy6GdVy6yX\nk90eZi9R20aZYtm4vi4MT09L5rUhSwSBwCRPLmngbA6K7RSK330043BVY11gkEr2JwP+/R/unb8/\n1ZLDeUNWJMxLQ9k2L+1HV1fWpj98dAoBEg2TLGN/WsQskAuphKth1Vh/SUBrOs745dOK54u3C/oA\nQihSrXi+jOUG63pPZAufH80RgfPeycpDtbAoAa4fNtubXG+Cfh0umuuGqrM0xvWaSDDIFF+dljGr\nznNOyhrvBX/xYbwn1gGtSAXfnDQ8X3iEkByuolPZpEgoOwe9KFqA6E8g4JeHcxrjEVoyTBX7w4z7\nOyOsjddwZ5jyZy9K3KxGJSnOdCilebCdUWSaVe+3HJlUknUybkPg6UmJ83F3ERAoGdgZZnTWsNgQ\nKcu14NZ08JJWTxQVvHydXmem8mBnxJ8+X2BN9IletQYBPNgdvpVXbqIEiYqlq2zNTkIQRBRMLFJ5\nY/P2e9sDfv50Tr1wFImiNo4QPD/an97o998V3zWP/7r9yrXfSgjhfwgh/HYI4bf39/e/49P6/mEd\nsEd5fEilDiSpRGqiYcUNb7RNfXKIQf/pWUWqNcNM44Pg2aymuuIsMilSijTq3jTW8mzekGjJ7rDg\ndNXx1UlJtrGLWJ8vQNk5DntK39YoResoRbvcMOdOVPRE/WA6ou3AO95Y53TOxzH5zvP4rI5+vlXH\nq7gyghg8N+NHkWi67qKE9DZQAhpj2Bmk7I1SRhvVHhHijMBiGVeraFoJWsfzWAZiMzW52SMYgmde\ndb3GTLSZXDWWQKx17wxSUhm/HyUke6OU8SC9pDM/yqKWznr9VEJgvWBrnLM/ztkax4Z7KgSIaAL+\nfNlSGsMojb/7i8MlremY9J4Gd6cDjLVAwPflFmMtH+yMGaSxVHNnK5qzCxGnto2LMshHywYXPFmm\ncMFztGzYG2q0jn2ktQe01pqDnr21ibh7unydXpe1H0wLPrk1psgkWkn2xykf7A7YGmSvtai8ivic\nBAapZm+Uc7A1iKb3o4xJrm/M6IE4B3N/e4AW0WVNC7i/PbjkGfFd4Ntk/IdCiDt9tn8HeHHNex5z\nUQ4CuE8sCb3HW2LteWutYW9S4KNJKlootAoEd7NSz1U9/lnVkieKZWM4WTWkWjFI1EsqhevfOytb\nmg7ubOUIIVg0BkFglKeRXtkzGTY9er8+qjiYJBgHQgoymaCV4MujiyxbCMneOOf+/ohni5LOeaRK\nebK8eE/BRZNU0Lt2CQmZYmQDhKifIq/qJfTIgIPJgOJSmUswGsRMd7m8/pq9alHYn6R8c5rEAFek\nqP68hsC0SHDOYByUKxjoeE5axd5FBiSpvpHxx+a5QlxUlBIMlGYr10wyzcH2gK00YTxMaTpLZSxS\ncCmgpf2OIE0EWknKzpBJw0hH3+JUahIlGI9StgYps9LwOx/t8c3pisY6toqMSRE4XHT89Z3YQM0z\nzcO9ERfi2HnchRRRMlurON2qpGA6SJBCUHdRHuTD3REr41g1UWfnw90RpbF8tDukc1GQUEtJqi4S\nlk2tnmSjRHNB53x11p4oyf4kGrdHh7jrd7dvwqRI4wJmPc4LlID9Sf5WAX8TW8P8fEezLhV91/g2\ngf8fAH8T+O/7//6f17zn/wL+u42G7l8D/stv8Tf/3OAqw+BthjbeBevAW7YOC5wsa6SS3J3kPNwZ\n8jabt3XjtbWBZ4ua4ImGLlLSdh0rJdh2KZs08PXv/O+/+yX/4A+eUvU78V//MOff+eE99gcpSsLd\n7eG58XveLyCHyxpENMxQTkbWgtKs2otmsJZR8jdNNPvTAf/iixmtvbyYrcs36zq67pu9QggGw4zD\nZR2ZR0OiItoVaGBnmJCnF4FBBJgONN8cv3rhfNVjeDAZ8OO7nt/78pjlszl1CwcpPO/g81ODBj7Z\ng9kKtnP4ZtXvZICHY/o+xs0ghCTVnsN5HTNl62mC5/Fp4KyxHIxT5pWjWVQMs4SPd0cUxWXP3Uwr\n7uxk/NmzOYvO0xnDwdYAHzwnZcMwS5hmCYM0YVkbni0a9scFiZa8mNcoLRnmCYnknL2Va8WP7k/5\nkyczlo1nlAt+dG+LXCtEz7NvOofz0SwlT1Vk4SjFuBB44g4s13E4sbGx5PF0tmLVGEZ5wsf7I6SM\nap/PZiW1if2CtXHKWdleCuSveg6N8zw9q3h8Vp6///72kA/2Rm/17CZKsjPMfiXPvxASKSyfv5hT\ndZ5BKvlgd3Q+7/Bd4UZHF0L8feD/AT4TQjwWQvynxID/V4UQvwT+av8aIcRvCyH+R4C+qfvfAL/X\n//uv143e7zOMi6Jji8ZStZEVEal23+1KPa87zkpD3XSMi5REwXHV8WRRU6Q3u1GqzvJsVuODYJhp\nlrXl65MV8za6erUusKpMpLltYFF3/N1//Ev+199/ynEX+fQV8M++avgnv3jEL5+XfHNSnssQGOdp\njGOUp0yLlON5TdVYLIHaOh6dLUk3ai6BKKn77HTBv/hqhlIwnVz+TOtKigcaC4lKMD5wZ2vIsFDk\nSvGHj2acvEJafwX8ybMFaqMwXHWWx8eW11GuX8Xy1FLw+YsV0yzhw90RIcSgnwD3J5KtDL46jn/3\n2Sqe/04WmT2HS/DBcLK6mRhXZy1Hi5Yi1YwzzUndUTeevXHKVp7wi2crEiV4uDNmlCYcli3jK5o1\nxnleLBs+2J/yOz/Y4+H2hEdncRr641sTRmnC41nFqulYNLE5+8XzBUfLlskw5c40RxP9ANb3epEq\nHh1XPNyZ8Jc+3uXhzoRHxxWplizrlm9OShZ1lF4OwLwyhOAZZ4rHsxiA80TT2sDjWUmQ8MfPlmRa\nc393RKY1f/xsycmiumT3OcxSns9qzsqOUZ5ya5IzytM4o/KK5/DJWckvni0QIVo1iiD5xbMFT87K\na9//OiQq1vFfx4S7CarO8PVRSZEk3NseUCQJXx+VN7ZSfVfc6GxDCP9JCOFOCCEJIdwPIfxPIYST\nEMJ/EEL4tP/vaf/e3w8h/Gcbv/t3Qgif9P/+5+/qg/yrxKLuqLsoW5Bo2W9f/UvGF79qfH64YFwo\nKuOw3lFkCZ0xfHW8ZGtwM3GPs7I95/ADaALBw7LsUEpgfaBxnnBF379sLf/H7z+i5cI3dr1d/MlX\nHcMilovW8sSbrJ6tQYpHYL3HO4+1Fu9guqEvtBZp+7MXc4yPVokD9erPZIGjeYnxUYe+bi2fPZiQ\naXXd7NY5ns5blhsMqM6bWHd/DXvuVXn580VD1XQoLcjSaESyRqRGXuwW1owf+v/GcpXm8IZN5cY4\npOzVR1tLphRZEqUy8jShyCSrJpqkCAEDrV7qkUghKLRG9INsDs/OQMdrZhxpItkb5SwqQwjwwe6Q\n46ph1XQoIWKSU3d8tDek7ntAk1wzTCSBaIYT8BRaoKXAI6IxDFEFNQbkeJG0FAy07k3jPUrE123n\nSKU4D6SJkqRS8HReX7pvUy1xIT6Lm0yfNXX1OnxxtGKYJRQ946bIFcMs4Yt3MOH5VWFWtmgtz8tW\niZZoLWNz/TvEe5G2d8Cac755w6VasnqFop5xcVF4sWh4clZyuGhY1N1b7xCOli1npWPeOP7l4zN+\n7/NDTsqWcapxN/wq16qEy9owLztqG021l8ZwtGww1jHNE+QVtklAcNyvazXRUWr9eFkgUwITAqu+\nYWs959cnS2WkNwrB80VDCIJfu79FvrFLaW3Aes/JyjLJYL6EJ2eXb/51qWdMLPXU1vLV8Yrf/+qE\nF4uGz5+XuFcWZiK8d5xt+AAIEnZGcPiK+beUKKV8HZ7PGu7tDKmM48lZjenfb4CvzzrOKphksTJ/\nbwxFEamASQp3t+OqUHU3uwd8iGUMQaAxjp1hwrRIaF3ABs+nt6YI4alai1KCe9vFS+Y8aaL4cG/M\nsur46qRiWRke7kypjefJ6YrTVYOScTCrMZF++8HuiKq1/PMvT3h8VvLx/ohhkZ7z3dNU89nBFk9m\nJT/95pQns5IPdiakqaI1sflcG0Njo67NdJAihMR4uLNdIGVMEqSMrzvruL1dUPf3Y21M/9pf0naC\nuHhcla1/HRe/tR6lBFXrWNaWqo3GNe2/gpr6q2A8KBH4+dMZ//TzI37+dIYSUQTxu8R7yYZ3gOg5\nu1Xr8T5EZUotX9K3gYuyUNU5ytYghaRIAkom2BuOiK+P82Re8dOvj5lXDUoppIDTeUOaSOY3VHqU\nIroWxWZc/CxfnVSxTpkous7SWcdn48vRbpSpV5Y8ABZNlO/V5xndRdMtU4q6NXy4OyZPI0+8ag2p\nupiwbI3h66MKY2HVRj33XMF1m6glUdZ4oDStJArA5Sk+eP75Fyev/fyzsqVqLg5qXMsXs4uJ2qvo\ngINXPCV11zKrDHujgjxR/PHXC9b94Z0CugaO25jjhhAZHInSeO8wzmC8Q772ql4g09EjYVyk7I9y\nGuPwPpBKwcoFllXHrWnBD26NMTYwqy07V71nteDLFyX7k5w7WvGnT2b8weNTbm/naBWnTb84avhw\nf8gwS0l0i/WBvcmAD29pbo1zys7x9Kzh7jQW3urG8IdPz7i7NeSTWwlVZ/jZsxm/IaZ9/TpSNTvr\nkCLeE6kSWOs4LTvyVDPMElwInJYdQkjOqo4i0RRJ7NKfVR2jTPe00IvPZH3gquPo61g9k0xxtGgY\nFSmJFvE6rVr2J98tg+Z1aDvLL54vmeYpWzsZbeP4k2dLfnh7/J3+3fcZ/zsg1bFp6XxAa4nz4byE\nchXrslBnHJmODaDaxNLE67al1x3n+KxlXjfYAEpGq7nKe1ZVy/HyZjVBLSXLpjs/d+vgZNFiTaA1\njqoLrOqX8+Y38ZKrzrI7SM4pnZu00SyRsewQ4m5DIJBKUmxoqnTWI6RgOoiZvXW8JL2webNWgJOC\nyUCR6YTKWGZlR7hK7L4CIaPs7/lxKvvSsa9iOrw+8o/SlNZ4Qu/odel0owLAOQOpsWBdh3Oe1kZZ\n7I93JpcosK/D9jCj6xVVd0YJJ6uGVWPYGWU4a5nXhslGuc9fEwAHKpZHIi0yUBtDayyZlKSJQiAo\nO8Oy3xHN6w5rPUKGOGgkBI3xrDZW47Oyv5ekQiuBlgpnLcvakGvJoollo6S/1+dVlJJ2IVA2URNb\nKwE+loOmmWJWGhrj0Tr+vVlp+GB3eP75gV7JNd6Xa5rnJnX1OtzbGUZvX+uxLvQqs/Hn/1/BWIeQ\nIPoVTCiBkL2P9XeI9xn/OyBRUS5h1Xa4JvK5B2lySfVxjXVZqDUiCqL1Aml1ZxkVySX/19dh1TqW\nxkCAxQqWqkVLmAxAoCiN4bTs3sgw8CEaRjyd1VSnlsezku1RAqK3NJSCJOGlGuObdiXDRLI9ipru\n6/evaaNaSW5vDZhVHZ3xJFpyf3tAvqmLj+DOVs54MGC6rJhbqK6UOTcXI0G87kWecrioIr1PCv7d\nHx689jyneU62UcbqAuylnJexNpEC97dBvyKQfLQ/pPWBedXSGk+SQt5FyulpFReTe6PoqJRn8GIG\nnW0oEvjRgyE/frjFIL1Zb2aQau5sFZyVLZ0LfLQX/3bnIpX2szxhUVlW5ZI81RxM0vPv4vz6CcnD\nnYI/+HrGvLM8nzd8vD+mbB2/fL4g15I7kygc532gNR6lFYtlw8mi42lasjcesi04Z50Y4NM7E754\nseLpmWWQaT6+PY1T2jZacra9u1WeJkwHUUpaS8XBVk7dOpou7gYOtmJ/4Qe3Cr48qXhyWjLME37t\n7pjpIGVvnHNWtpStJdOCB7uRQbbpyvW6HfSkyPjkYMRPH82Y1YatIuG3HmwxKW6ukrrGr4rV54Xk\n470RT+YNs7KhyBI+3hthbhgX3hXvA/87wPnoEStlem6xlyrBdSX7dfkn4Fk2jkTF5k1rHfPK3Hi0\nu+kMx4ua2sL2JE6N1q1j2cF4EOv0ab/7eJ3KYN05Fq1ld5xzZ1vy1VFFaTvGRcJkkOF9wDvP/IpW\n/Jv6EWmacryocBvyuWvHpJ1hStPLNrvgUEKh+sb4xXsFyzo6gY0KmABCab6ZXZzHZjkmEGvWq9qw\nO8px3pNIyePZ65ulR6uKurnwuvUWyg52Uji9Evx/fLegrFvUK3RXHuyNyNOE07KjbC2/eH5CmHv2\ncrg1GWGDp2qbaGwzHHJrokll5JAXWsTy2Bt2KJsYpJpBqinS5FLJ44vDOU/nDdtaMikyvPc0Nlxi\nLwGsqpYvjkvu7w75NNf8bmf55nTFne0hP7g1wYfA8bJCoyiy6GZVNYYgBPuTnCwV1I3hbCXorAVS\nJHC8avnB3pgkERgTeLqo2CkyQggoIRhlmmSYkipBnqjobZsIEp0xycN5uVTK2EDWSvPju1vnvHZj\nPZ0L55//Km4icgeRQXOyMvzw9pQ8VTRdlNWeDA07NzQyggtqs5JRCfRNz9zrkCeSZWW5vzM8l6go\na8N48N2G5veB/x0Q9VUESnI+nALiWt2VYaY5K6PJyaq1JEqhpei35Td/6DsfsCFKC68aQDi8A2vB\nFh13twvO+ow/0eqVeiWd91gbCN7Rdo7WW6zxdNJTtQYhBAGP85dv4DeVpLwD+lruVWQqOj8pKUik\nxARH2wY+UhcBeKtIOZw34BwmCiaCvrL4XDluKiTHxpHWHVLrqNJpXr9FVkowbzYkG4aSx5XHXQn6\n6xywtYGPXlEK+OHtCcerI+5MokjcTx4d82K2AGDRdFhnWDWBURrdr7wXOCUY5xInYFWat7gDLvCS\nRLOU58HzHCHuojZRGc+qNjw5q/E+cFg2lMuWPNWcrlq893QmcGs7p2wMiZS0xqKEJNfRmlOIgFaS\npr/O93cHfHNSougoCk1dW5z13N8uGOVxYAuiXWGe6vMa/M4w56vjVfy+ej3iLAsCTqUAACAASURB\nVFHsDlPK1tCW7tw4PtOKYfb2WflVXMegMS4yaO6/hWXiJmMN1iSGmyl7XsXBOOdoMSPpJEWu6Lo4\nGf/J+AbSnt8C7wP/O0Ewr1psCGgZKZC6z4quokg1z+dNTyGMGZTWktuTjOkgvXGpJ1OKYabJcsXx\naRziWrNIrIdbvfH5WqTKa8XkGv8/JWLJadk6ICCF4qRacVJVlJ3tJ2IVD688CG9SkTTeMy1yug2a\nxXo7PKstwXvOKkvwAq1ge5RdCkypVmwNEowLVE3kvss3MNqelxWpVBwuo+TEaG/Eb32wzf/yz56+\n8nekuOxdsD+ZMDqavTTv1QKLsuZH97f5rY92rz3W7ijns1sj/uRwxelsRZEk3N3RfH1kqenQRHnp\npk8QamdY1A6tBdMiI80ESr69WMTmVLSSAus8PgQen9QYtyRPEz65NXjp3po3hp8/P+OboxLjo+m7\nTkCoil+kc1IpuL0zYJjH3UhjLMLD0rYsW0uiA/enY7ZHCb5vwOwNMz7cG/GTb44pn3uGmeQvPNzj\n7s6AIpEcLzt8iEG/bC2JEuwMMwKxwX9SdueL1u4w8vGPVx0KSaKjQUzZWSD/1uUV42F3lNHYKE2t\npGS3N4x5G2zqUK3xOo2g12EyyPjNB9t8fVJyVnYMU8VvPthm+C5ysW+B94H/HWBcbH4qEadSlBDR\n5u+ajL/uLKmWbPVbSSlSlAClo3uVuOFWP9VRykoGx6joa9wyMkc6H/jFiwV3tob99vj63QfE6Vkh\nRD/cE4NwVE5Moh2ed7TGv2TsMq9fH4VzLWn7ABSv0cV2uOkcUsZpx2GRIELcGcw3moTzuqPpPMZ0\neGA3i+Jrz18zWyOCoCg0n94eI5Dc3coJ7vVytseritvjiwX6ZFlSAxMBbbgwZx8D//and8gTxXRw\nfba5qDuGRc5f/iSO2//x4xm/NJ6tMdzWCR7PycIxq2G6qrm/M0UOo5ywCZ6ujdOjb4vrZDeO5h23\nRvm5m9XXRzWZksSiWcRPvjziz45KthLFcFDw5MWKkxoGacdndyY4F1jWHSdLw4/uJAzzDKkEW1nB\ntEhIE0nTeozl/LwXdceyNvyb93fJEklrPMvaULXmkrRBoHcZ6Rf7o0WcPL+9IVXggufZrObWdBDN\na3xAZrFYumgN429ZXikSiXWB0YYRT9O5G+slrXGd0OFNlT2vO9ZkkPFbGxOE1zng/arxPvC/A+KX\n3t/HUWX3nKp2FWVr49BIqikbe74dX9aRonYTNUCIUsq7gwG/uzqlNbGx6QOMCtieFPzs0ZK/8sM7\n5+fwKtXHVEpWrWG2aumC55vjFYnUpElkWiilGKeKxZUaf9m9voRyWjbkiTy3gLzk0dtzWzofsKs2\n+vmKgNvoG9RdNP0ujSfT9BIPb7omCau6ox1En4DZyr5Rd0UjL4m0rVrDAFAatLkI/Aq4vz1k1cW+\nw3VYtZGb/vSso+4sLxY1VetJNCRa03QdRQa+gmXlOU1bhBRYG0fz015i4F2w7p8AdMYjVJwVWbSA\nBy88Z9Xl4tjnL+bIBo5rx4vVilUcqOVsBasmqn0aF1i0HcM8wTvHaJBStZHznss4qNVYe37ei8aQ\npYpRlpCmkkR6XAgsGnNJSnqN9Y70aNUxTDUuQOh1d3Ih+XLe8nBXIaU4XxC8D1Rd963LK3e2Bnx+\nGAm36xp/YywfH7wddfLqjuttlD2/y2O9Dd7TOd8J/Y0celuJ8z31y9nb2pAhUZJhrhGAtZ4gxFtl\nK0JIEhnoeiPxREMqwbSgvKezBmN978qlXpnFNJ2JFDwBuda01lK10U1rmGsKLXEEanM58F+d5L2K\nItdczGVeHuCK9eEAHmygV3EUZMnGzS0U4zxBSsWwiBnJm65MquJnQIAPHiMcB9PXW9Y93J9caior\nJdkaxm/OEWv7BeBkvOY/ujONQnDXYFW3fH1SRgesQUKqFEHEBp1xsZE/ThVpElU5VZ+pqlQwzRP2\npvlbC4Rdh844Uh2ZWbEQD6lO6K70O8ra0UXmJGkSP68DGteX5VoT1T1D1FpCRKbV1iClc442BPYm\nOfuTDWGzIPhobxgbs41ByviaIC7dA+fXux+wcs5Ttq7X7RGEAGXrSDX9TEx8TgTxddL7D1x3rJti\nWqR8fDBGysC87pAyvOQadxOsd1yCKKj2Nsqe3+Wx3gbvM/53gJbR6DnP1fkq3Rh37VZvlClOy96r\nNniaLlom7o7e7mazznFaNmTAHFgncwJ4Omv5K58N2BpeluG9DseVibRTEYNxphTLYGOG1jqECmAk\nyejyjkG/wRni1ihHCM7rpZvb4Vxrjhctn58sqFvPtNB8emvCx7cu+gjTPF6naaE5XbiY7b/h3n++\naEiEZJRJtNZsi/SN/fJECYqNbGprmPH5aU3LhU2vBPYL2O2H2K6j6QIsuzhEZZzHVJ5hoQkeagta\nRwXKxnhaA9Mi1pcTLRlohdKC/Fs83Jv17sYFjHUM8zVhIBq0yKuSFxI6EzWQtJTklaXuP+8wUTgE\njXP4EOcvCi05reJA3zhLmKSaQe88tcbuKOXxvKbuokaO8QEvPHfGGXVnOF15fPBoFZORREep5XGu\n+cXhilVjsb2j1SjXPNgu4n2ZXFiDdtaxN+x1eKw7r/Gvj/U2GKSau1uDS32Cd8Hmjuvb4ld5rJvi\nfcb/DsjThFGvyb1urI0yfUn1cY0i1XjvaZ2nbGzvmgVZErd4N5VtEAgeL2q8vhzbAnBWwb2d4kYZ\nQ9c5XIg+pkpIikRhPDFQaEHXBlpjGF/R/pleY3a9iVXrGCTyfPOzOcB1tqz5+fM5wgXubQ8gBH72\ndMHx4qLGvzXMMNb1zbeYhco3PNNnqwpHHMFfVB3GB57MXu897J3nB9sXbKIH0yEz4tDYuujiiV7C\nTWv5+njFNHtFcAjxoXXeE4C9IiNNwNiY0XbO07ZxZzLIE5q+ZNLYaFwzekfN9U1by1RL9sYpq9ZS\nNi0EQdsZrA8cjC6Xke7vjMkKaI3H+kDcd8G4AC8F1sbd2dYwibsyJXhyWhEC7IxTamd5dFYx2Phi\n7k5zvj4qKWtLkSjK2vLVixWjTMcBRWOxLg5N1cafD3BpIThZNRhnSbXCOMvJqmGcxXkFKaIZuhSB\nO1sFkyJlXnV9Y1ViPefHetfrtvYj/q7FFf884n3G/w4oEomSSa/HHbPaRMtrsw/rPMNMc3S8ojKe\nUaqYFFnc4sqb1ygDgeWqYXkNASGXMbO8CRdZCCiUJult9AZZwt1xSmMDzgcmg5StQr+kQa/ekFmt\n6pbt4cUQ22YD8qdP5uyONIlKccEzHRV4b/mjxzP+xr8V3dYEcGuSs2wctydQmn5y9zW6d5lWrOqG\ncTGiEIJF1fLju693Lvpwb8j2+CIgHpUtD4ZwVkeXLEH0xj2cRWPyD3aHvIrzkShBqiQm9Fk/kvu7\nBYO0xQVJZyzDLfH/svdmP5IlaXbfz8zufn2NPffKrK27epulZwU4oKgBJJGCBAoCpH+AlAQ9cP4C\nPRKgHiVBIgaYF70L4MuII1CkSIgcjmbpnume7mLXXrnH6vvdzUwP5hHhEeGxZGZUZ3EmD1CozIzw\n6+7Xr9v97HznOwdpYbUd4wnJLG8IJLS9lPAFq9VDnJYTriQh723CQVajjaadhKylPp1T18Pb622U\n0DwdNmRNQyuAVgBpHJLlNUngcbvXotMK6MQ+Rhvev9FDa0NWN0SeRz9R7C54Hc1qwwdbHT7dnfL5\n3oxO6PH2WotKu5xmYy3DLKesLd3E585KSqMN+1nFrW5CqS1l3ZCmMaES7GcV31qi1x/nFd0koG4M\ndWPwpCCeD4O97Hl7FRnmdSKrmjPW0tdBAV6ENwv/SyAOPJqiJgm9Ew2ZZdvGSeFskIeZa15Oioba\nOjfCduy/gARM0GCOqv3FeEGlYHhFZ9DNTsTn+xnhnNMPQoWZSW73I95eb1HVhsbaM5m8y8PUjqE8\nyWfbY75147hRdriFtcYS+SFSuID0RhsQHtMFGd2kaJiUGk9Jbq72kNISKMn//dFxcnrHh3KhAesp\njyQMWG+HGO2Cxy9bSkPPo7MglZuWNUHocyN0Jl75PKEqCAT311uUujmTRnaIXhywM54Q+x79NMBK\ni5IBb2+GbPXabI9L8qJmd1YyLRserLW5veZzMC34YpDx/s3O0uNehtNywlbkU2lLNw1Ya0XzgSdN\n+5Qk8Bfvr/JsUvC9+x6racyPHu3wfFjzwd0e373XJysapmXN7dD5+Ie+Rxo5W4rDyroxhmnmqmRf\nSXbGBUYIvnGzRzB3Cz2YluxM8rmdgnGTsbHLW8irBjm3fvB9RRxKfC+knpv0nScbftms6IvOG7y8\nDPO6cGiTHniKNHTDbc+GOTd68Ve6+L9Z+F8CvpIYa/l8e8S01LRCdW6Yw+44Y3dcYLRhWNYcZBV5\nqXnez/nNQNGNr9q9t9iFXt0ioVHUnLAhuAgb3Zi6MXy6N+XhQUNVatZbIbWxfPJ8QhIoNjouL/X0\n818EbRyNszddNEBzPLQBDiZTjHDeQIEn8KVlq3M8pDIpqqMBsucHQ0aF8+tZxPjUBFde1UzzEmsN\nUlrW0ojyknmDKJC0osWQdzgY1xSN8/85RFVY/vizXR6sts79jKJAsdkOeTTIeDKosdoS+4adScPD\n/dJRZqmP1Q2dVsJoVvN8VBD6intryXyW4uo4PJ+TosYYlxsr5r2auqr5aGdK0Rh6sc93bndpRyc/\nw2/c6FBpwx9/ssunzydI6fGtrZRsVvMvf/qcNFS8s9E5yk7uJT6DaY3FkpUNFou1llbsH1XJeaUp\nSueh08zcDaJuNKOpwaybowpbGzvPlDUEnibyJeNZzVQ3lI0m9BSREnRSf6le/zoklNcpw7wuHHp+\nOdrL3UyTwDuTgHfdeMPxvwRGecXDPReecGclJfZ9Hu7NTujSDzHMnA/5uGr4Yi8jLzSeJzmYVnyy\nPaG64lZVa0t5DucwA9Loah9l6CtmteHBeofffHeDG/2YnWnJRjvgG7e69FshBzMXlnESF9fSvlLz\nKEZ3Dhb51AdrbXbGNVlR044Cyrrh+bDi7vrxwp+VDU+GGZ1IsjuBpubSsXVtDJ7vpJzGKgKleDS4\nmOMva33iFuZ7goPGqVuShX9PUzfz8GeP9pnVy0+81pas0dzsp3zv3iq3+wHPhhV5obnRi1lrRQzG\nJbOiwVpLvx1wsx+z3gpojLiyQR+cPJ/xXG47ymuEcIvHnzwc0olDvnWrRzsM+NHj8Zl8iMT3uNmL\n+a9+/QG/8x9/k996d4sKQ78d8t7NDt044Mv9Gdk8hOfeWotJ5fyVktBzU9eNYb0Vks9vsEnksZ9V\nlFVDGCjKqmFSNfi+PJIUV43z/gk9VzB5SrGSBuzMKqy1rLadvcPOrKITeUt5eG/eS7mqIdsynM6b\nfpljXDdGec0gqzB23g+0MMgqRvnXIIjlDU7i2TBzaUJ5zeP9GaPcKdWfLfGJKXRDVms+35myPyt4\nPJzx9GDGuNAkgWJvcjU75axuaC64FvZPl8PnoKw1K62AcVHxyc6E4azknbUWVWPZGeVY68Kez265\nL674y8owymu8+SRqXjUY66YzG625txIxLGp++uSASVbz/kaHcKHUmpYNvpDsDivaESBhsKyhsYA4\n8JBoF/HnC4QUvLWaXPiYwFNMiwWOOm/Y8p0P0OGn5wF5AZ0k4FY/4cne8ptJVje0o4DQE9SNYVrB\nzU5MEEj2JwVVo1ntRChlyWvNMHOUT6R8/CNj7KthkZ/W2tJPg/l7qXg6yrnbS4kDSaMNrcRjvRWd\nCRhRSrA5n/DOq4aDacGtfkw7DKgaQysO2OpGPB06Mm2tFfHWSkJRNzwbTCmbmve22vRbEc18wC/x\nFbdXYhoLz4c5jYW7qymrLZ9ACZQSKCEIlQssSkOP2Hdh5+9vtQh9yXBaEvru79pydN0MZm4XaKzr\nlb2q7PF1SScvQl41YDkRMIO93CLlVfGG6nkJDGY1VeO2tVGoqBvLtNDL+UYDT0c5s6JGKfehFo3G\nVy5VyVwx9U0KyUV56s9GV0tyGuXO8natFXHDk2yPCrKqoR973N/oUDeWotGcHvxtlgynLUIpeD7K\n+MX7Lqi3qA1lo93kbqmpreCbN3t0o9A5jBYVg4UF2BjLpGqYac1KJ2VNWISU/ODx+elIvTRkJY1Z\naYcYDa1IEQUXU15704r9ScmtuSWFFZCkHl1Psj9xU8PGQuDBeiuiMfrMTMMhpJBEnkXOF2QX9CFZ\na8VsdGM3cZpVFKXGl4qbvZR2HJBXFaOs4ps3rz44tMhPO6trRTg3PNMG1ruhWxwPaamQozS0Q3hK\nEQWCNPJRUrgqXkMSSFbaEVWtqbShcsZL1NqQRgHfuu3jz6v3WhtqrWnNVV6t0GN/WnFnJSUJlVMt\n1Q0b7ZiVVkhe6SO78qoxxIF0N2whWW3FbHQWJnfn9uaHN7nDCd1jC5JXlz2+DunkRYh9j6mpj7IG\nqsYghCX2v9oBrjcL/0ug1prHwxlPDgqmZUMr9Li1EnFnidGTNi4Kb1yWFNX87wgSv2Sca7oXF6hH\nSEPFRWFNy2imZcirhllZs1M6TfQsrxlmJU+HmqejkjRQbHVC1tdbZx53Ef7i4QHfudXFP7Tr1Zp6\nrtg4mFY0jeXJfs5Dm9OLfLqJT7EQgSilwENQlRUHs9JZMF/Sc5NKMitrAs8ppGKtqC9p9k2L6kQj\nvJ9GfDGZMJjAULunTIDWvNnrAZvtJaZHuM+kbCzGGOrGIhHUtaYSlt1RhVKWptZOn74SkZUNz4c5\nvie5sxITXiKRXcQiP324UB7+ezvyGExKAl8BjWtY1prOKY4/9l0/YJxXVHM5rxGavDY8O8jwPUkc\nSHdzxn3mQgimRcWsKpy9QOQT+wHRfEAwCT22OhF7s4rtUUUcuL93Ep+VNGQsnXOpRdCO1FE+rWtk\nWvRcEi2lIPTk/OYmTihvLrIgeV24LiVON3Fih+1xfhS2vtmJ6V4xSvVl8YbqeQnMipoffH5AUTes\nd0KKuuEHnx8wK87SLbWxtHyPduxShjxf0IolReO88K/aWAp9xUWXfnaJK+UhdGN4PMipG0MS+Wij\n+XB7xDSr8JRgOKv52faE0xYyO+OLufM0UHy+n/F0cFihC2ZlQ2Ms0hfszyqsMKy1QjwPdqYF9kR/\nw/J4NKPXjigaMDWEFw/hIrQg8AVp4Lznu7HH7qRk65yiXwBf7mUngkTu99tMa7eA3k4FEkf53Fnp\noLAcFDXfvb1cItpPw/mwkUcvDVhNFUVjCYSk33IUwrhylJ62ko1OxHfvrnB3NaWaG4VdVUO+yE9H\ngToabIoCj7v9hJ1pSVUbPCWYZDW705IHp27enpLMyoY48FlvRzxYT9ielISe4MZKgi8Fe9Oae6vu\nRjctGmZzvn0lDUnDgKzSZKU+4sVj30NjudGN+eBWjxvdGI0l9p2B2mor4u5qi3urKaut6IhW6ach\nxlpCT9FNAkJPuayIuWfNIg/vXvuLm9l9VThU4hjrqCtjBc+G+bnqr4sQ+or9WUUnDnl7s00nDtmf\nVVcO6HlZvNLCL4T4B0KIvxRC/EQI8TtLfv43hRAjIcSfz//7H17l+b4ueDIo2OzEWCN5Nsixxt2l\nnwzO8vUC4fzTlU8/CYmlomgMwsKNdnTlkfOy1me09Ys4mFy8MB+i0IZuoJhWNY/2pjwbFawmIYGv\n8D1Jv+3TTyIejU6+l0f7Fx+/0obIh8+2DyknN9TmKUFVNQQ+jGcVP3s25MkoJxQnVTtZqV2kYGVI\nI7AKskvYq9Bzjb/GaBJf0Yk9vrHVoXOOSrKvYL0TMsiOv6BCWd5e99DA/swSAlsJzKqawJf89jc2\n2DhnW3YYjnI4bOR5Pt++3UUK+HR3wt60ZLPlY4Wgrmp+9nzEjx/uM5qVrCWhm/K94mKxyE9bC+1I\n0Y48rHW9iF9/sIKVhi/2JjRofvFu70xqWqMN3STAk64n0Ukifu3eCrW2PNyfYS388p0eQeAzziue\nDGdM8oa80jwZZuxPS2fpLezRAu4pwUY7xlfOS9+f/927ZEbh9Lk7HNTqpwHxPJ7zKhYkrwOHaXuL\nvPxhKt+Loqz1PJTIWalHgeJ2P7nUXvxV8dJUjxDi28DfA34VN2bzB0KI37fWfnzqV/9fa+1/+gqv\n8WuHvG6QUtJvSyI/pKgNVW2WcsG9VsAoy/Ck41axip6wrKQRypOIy8ZT55hdIv077b1+7u9ZS14b\nOmFA1FH8+PGQwJd0Y5/1VghWOInj9ORFXFyyQIWeZJRZ2qHb9fhKYawmlAolJeNME/uKzW5E2TRs\nz2ruLfQNGm1ojCEMfG73AxqjsULyo6fnc/yb/RglJN+/t0ZtNZtpxEo7omzcFG6JG8Y6vIU1BtIw\nOBFiMshqkBEf3FGEnmRWafJSc6Mb8p/9khsuu0grvhgO8hePDrBC8N6NPq3Ycd8P96ZYazFSstYK\nkMp524/KhrJuXshr5jx+ekcb+q2IXzvBlztN/KI192ktfDyS9DoRv9SOWe2EVI27hie5q/Ib7RQm\nSklW0oBau/6PWfjcPKWIA0Fr3jc45OqvMlF7eDOLDy0YlPMIuuqMzOtC2VjS8GQZFnhuN/Uyx+ok\nAadrlZc51ovgVc7mN4E/stZmAEKIfwX8XeB/vI4X9nXEIa83LQ2zvEAIiTYQ+pLIV8RLItxW0pCs\n2/BsIJiWzrFQKUgDHyUEyRW3dMYaxhf8PLmkqXkIKQSeL9id5kwPXCMu8iRWzC0xhTP9Or3VjC75\n4u2MC6IQqsZVi2quv64bzbCo6MSQN5KdaUk7UKymimlxfHPxlPOPMUYzmOZYK+ASy+qH+zOkcKlO\na62QQEluiIS6OR7yWty3FBYUhs3ucS9GG4PRJc8GlkJrlLXEPowKydNBRif2Lzy3i5rzcVbhS8HB\ntOCz3cpRIr6YT5tqHk1rjDX0Qo93b3eZlsv9nV4UtdbklSaryhNa8NM1xWkdu5QStGVc1UyrmtD3\n8HA6fbfouqlzEEzLhvZ8cV+kp477BsdDXZ3Yv7RCr7XhYFZSa3sUTJzXmpU0PGE5fVmc4utA6Ikz\nwe9VY17KYvs6j/UieJWz+ZfAbwkhVoUQCfC3gTtLfu83hBB/IYT4p0KIb513MCHE3xdC/KkQ4k93\nd3df4WV9NVjk9e6vxexPK6ZVw2onAgm705xbq2ebgJ3IRyAIAp+yNsSBYqub0ktDtsc50RW/+b68\n+Pc65/nJnIInYXdSEvse99da3OxFDGYVgbC05u6hWd1wb/1ko7qbXHxjGVcVg1nNajty1eK8UktC\nn1bg0xifXuTx7maHTuxTaekWnjnSULEzKmgFPjXOtjkML+58j2cVq2mA70kXf1jVbrjpnPuFBZ6N\nC24uOHimns9+XuNhWWslTkedQ9vzaLTl6SA7t8d8xvtFWLYnBUjB3bU2kS8pNZTauaq2I8lm23Hg\n24OcWjfXUsk22rIzKai1dTfb+d+bU77Wp3XsAsvufFBovRPhCcHurDyS2UaBQilBFChagUfgSXzl\neP1DHPcNPNbakbMfL5tLK/5xXpFXBjmP4JRCkFfOWtrdPFxk52Ez+OuExeB74Kjf8jIW29d5rBfB\nS59Ra+2HwD8C/hnwB8BfwBlbkx8A96y13wP+Z+CfXHC837XWft9a+/319fWXfVlfGRZ5vSTwebDZ\nYjCr+Lef7LA9znlnvU265EtcNQarLUVV40nL7rTg46cjngxnrMQexRX3+vUltsjZFY/TGLjVSTC4\nhu1KO+X9rS6zsuHR/oy8qnl3q8OD1ZNSw8uo6Gxm6UYhse8cSyPfw5MCgcXzJSuporHwZJBRNIZ+\neuzd794fbPViktBjJfIoGzgYX0zy91sBs8Yyymp2pjM+ejKhFXmMzhmNqIHv3OmyOKFvMPRDxX6u\n+fjpjHHm/GvyRlPphlbkn9D9L+K094tuBC3fA2sYZW4KOZTW9Tjmss9RXmKNs1kQQl3LopbXDZ3Q\nJ/TVPFlKoBA8H+eM8+qoQj+tY9fWcqsfY7HsjAsao1lNQ2a1YZJXWOs+v1FWsTcryauaVuifUJwc\nelHlVc3upCCvatLQu9RDZ1pqAu+kb07gSaYvOM38oqi1u7kczKoT5+ZFkAQea+2QWVnxdJgxKyvW\n2i+n6jmv1/G19uqx1v4e8HsAQoh/CDw+9fPxwp//TyHE/yqEWLPW7r3K874OHMq2JkXN9mTG3rTi\nna0Ose8ReIJBrpkskVQeTAtyrVHKVf03Ax+LJZIeu1lN64oNodNTmKdRXLEZJBEIJdjqxIS+ZHdc\n4Cu4oSTfvd13swm+JDy1Vb9Mx7/S9hjP7RngUIbnKrcHawnPhjlr7ZB+GjGYFYzzhs07x1WNMU6X\n34kjsrZmsxvj+5Lf/8n+uc85LQ2NrXhnre1sFYTg4UHG4hn1OK5GBLCaxvMYTIfaWHZzQzsSdBOf\nrKoYV3DPE6RhgDHm3P7Kae+XKIDGWtLI+Qd9KS1f7s4IfYlULusgCRWdwKlY+tcUqC2FJPTdjcVa\nybio8T2Bp44nXw/pksU+wfORR2NgteW7/NnG7WBGs5Kml7CS+OxNCjwpeGvVeewXdcOt6HgnVtRO\nmdSKguNwdG0oarE0+vMQ5yVMfZXJU9cVkl5rt2s6Trxzu9tDqutFcV6I/FeJV3o2IcSGtXZHCHEX\n+C+A3zj18y1g21prhRC/itthnP9N/hpDCVcVCSHYHWtCX2KMoWka+klE4EmG2dmyeFo29JOQqrH4\nQhIFEm0NBkvieYzyqzVxDqaX6PSvGN4bhwprXPWb1xrfc5GIvdjn7loLbezSZuZpTfhpRKFHKJ2C\nB056oPTTiF+40+PpqGB/UpCEHg/WWvTTY8qlk/jUtaHRThkSBAppL+Y5rdaUhSH0FXYuISwrTYyz\nsYCTW9A2bsI4WKCthkVJ2wMrQyZVgSckgW8YFy4cvm5AyuVV4WnOPA0CKh85QQAAIABJREFUNjoJ\nRV0xLTSp7/HOWpuHgwmdQIJQeEoS+h53+/G1becX5wkmRYMS4Puem5y9wIFSCtfsPQw9UVLgK0kw\nV/5MteVmN6YwbsHsJyE3W8kJGYHT17+47j4NPSaFs2Q+XDyrRp/xF7pOXJc759fV5fNF8Kpn+f8Q\nQqzi1pH/3lo7EEL8twDW2n8M/JfAfyeEaHC+Yv+1tVeNF/96QUnJuKhIA584FIwyzePJjDj0GZcV\nm92ElSX+6r6v5u6GgqzW7E8qrIRAOLfNZR7+yyAv4fhv9mMOZtWlIdRrrYjPiyk+kijyOZjnCeyO\nC/71R9u0Q493N9sIcfJ13V9rLT3eIYqyIenFaCsZZhW+ck3XJ4MZpTbklSHyXESfEhAE3onzdbMb\n8cOHB1S1ZpxrHu+MkeHFC2OmNWvtmFlZ40nJg/UQi+XWquSj/bOLdbcD29OCBxvH4emh8giCGA9N\n5McUZYnBTaoe0iHdc4KvT8fmrbR9ng1zpCcJlaBuBFEk+eBml24akgTzyrrSxJHHrd4Vp/cuQT8N\neTbMCX2Plp3TGUXDahowySuiwFtaF7SjgMH+lNGsosEtBsKT3OklgBuuCgNJiPO/b0ceoa9OKJE8\npdifFOxPy6Mm5WorZHWea3xeQPpiHq82jlKKA3VGgnqdaAxooxnMSiptCZQbvFKXfLeWHefr5vL5\nonglgtFa+zestR9Ya79nrf3n83/7x/NFH2vt/2Kt/db8579urf3D63jRrwPaugxWT7mgjd1pSRx6\neEpirODJwRSxRLu8ngbMihqjDZPM2dKWdTOvTs/Kws7DZV3+fhpfKVyiFXmspiFWuC9kXjUMJhW9\nJOTOakroefzk6YhxdpKCWutcPE0VBj7KWkLPgLXkleb5vBneChWTwilHjLVYw7yJd/x4T0mmpQEJ\n41mBkSAuYa8CLBI3+Rn50k0NCwjPkch6cw8Ys2BA14t90thiPcePe75HEloSz2XzrrfDc6vQ05x5\n4nt0koC2F7igGytohQHv3+g6qgQXfdlv+Xz3Vo/1S87pVXGaJ54UNRvtkG4SYBGMsmqJ6R5Ya5nm\nNQjnnYOQTPKaYV5h51X8KK8Z5Q2eFEuPVTcNz8c5xropXmPh+TinbpoLg0985XaandgnDT06sZv0\n/SobuVWjeTLIsFaQBB7WCp4MMqrTNrCX4HCnt4jX7fL5ovj6iGO/5nAViUcr8unECk8JDjI3YhqH\nHu1Insk4BWjH84EZbZgUJZWuCbyAKmjI6/rK8XuXXVTZ3M3vatvOeUI8lsG0REgXmq0HFikFUgi2\nJwVvrV/dS+b9rS6TogIhUFIymOUgJKrRbI9KtLB4UpHXmm7k40nBeIE7fzLIuLeS8pMoII48wEeI\ni292a+2UXivgdj/G8xSjwilCRpnGg6OEKeZ/rgz0Y5/nk5K35vqB++ttHu5ntDxLN06YzTLKRnJ7\npTVXwBji4GqUTNkY+knA7X6CBaZFzd7UdZq3eim3+ylh4BY5KV4+9m8ZDnniyFdMCn1CHnieGdww\nr9AWhllF1TQEnodSgtncYVVYe/TY4yOcPNYgr4l974TuPisbBnlNJ76YEvl5++aUtXs98kjO6q7V\n8hwvpvPwugLSrxP/Ht2jXi/S0KNqNNpYhrMKowVCNwS+QFmN0fLM0BPArGgcPeT5JKEi8QNiXzhO\n1rqx+KugvoTvfrRg0nZRCPW0aNibVaAdJz4tXFVWVM761lrAwjA7qWS5zOdeCsM3b/VoJxEWOMgq\nxkWFtU4Kq4TAGDf8IwUoJKPsuG8xLTWdxGdWa7pxRKAUvrp4YRRSEEiJEAKjDVjYaIc0QDt0S5TC\nLfoJUDTQScIT7+XWSszt1RiLYJZXVBrWuhFb/QgQLjjnnN3TmYrWCqJQsjMt2BnnNMZNI1eNdd42\nUtBo/ZW6Qgoh6Sb+icnXbuIjlgTG740dRQOQzOmswaSknD+usdCNfbqxT2Ps0mM12rLaCk+Eo6+2\nQhptLwxbfx3QVrCSBgjh1EhCwEoaoC/5bp3G19Hl80XxpuK/IhY5yZ1RTugL7qz1iQNX6eyMcnaX\n6AjHRUU79rFScKuX0kl91zw10It8no+vpuoxl6hqtgfHE64XbTv3pgWJ75HO6YskVGSVRQtxFFAy\nntXYU/LRQ5/98/Dt26vOcz1wVZA1lnre+MxKx++vpBFCWG70EgaTkmlxXPG3QsWscNRTpGBzveXO\n05ejc5+zE/kYAd++06eszNHQmNGO1tnsSHRjsEIwmVmY57TeWDmWm1SN5f2tLt+6tcLBtHST1Nbi\nS8lKy02znheKcbrJF3iwP2zoRQHd1Hd2B2VDvxUQ+oqWdDf8otYXKl5eBc7VVxy7dOKuB7FkGM71\nhCTd1nHVXdaawayeP95iFyr+duyfOVbsSxptaS1Uu0WlnfXy1yz4JPQExnKiMn/ZYamvm8vni+LN\nwn9F+Mp9wR+PcxoDP3y4z6KbwPsrgv/oe/fOPE5Jxc5gxufbQ748yNmflEjlvFZ+/Z0tvnunt/T5\nTjfFVloXX2SHiVmXbTuNxVE7WQUIEl+wParZHmWUlcZg6cYB3zllTCaXVIyLeDLICAPJf3B3A20s\naeQzzioG04LQE+wPS0ZFSS+KebqfIQTc6B9z3PfWWvybj3eoG83D/Yz8yQDvEmvaJ6OcKBD80z9/\nhJCK2ysJ99cT7m8l/PiLjN0jO1O3UK0F8HSY853bxwPyrdhjVjQMi5phURN5ik7kH90YLxrFP93k\n6yYhn+9n1LlzmxzOSoy1tCPJo/2M9VZAErnq+WVlhMsapYu4jIZYPIa18Hg04998sjsPUvG4u55w\nt5/OzeA8F3CuLYEv57sDy3r7+HO70Uv4dHsCuIGvonLT4G9vtr92lEg/DXm4P2OaO+mrMQYhBXdX\nz7rq/lXHvz97k9eMxdStZ+PZ0aJ/WLj97MDy44cHZx5X1jU/fDxgmFVsT0oa7RrFttb88Se77AzP\nmp8ta4qJS7aj0Tyv87JtZxQoqsqFlyBAeR6l1ni+xApQQmC1PTMpXDYXU1KjvORmNyINAwTWUQRJ\nAFLQiQNakY8vFbXRIKGXOK37CczTmfLSBdvIS3Y5o+mMwaShMhAoRW0MP3k8ph36S1ntMASNZbwg\noU19RaUNoadoz4fPam2ObBouqghPN/kCT7GRRiicVNYIiHxJbRxVKKRknFUI4VRiL5vAdVET/yIa\n4vQx8qLix4+GNLamnQZY2/DRswnCmCMzOGe/bDEGAiVIQ5+i1kfP240D3t5sI6VllFdIaXl7s013\nzuF/nSgR93o8R7kZA1LQjs5XwP1VxpuK/4p4NszYGWV8uD3lTx4d8+mLy/affXrWTWdnUhAqj8ej\njLyc/34DY+BWu+LD52epjGU64csWidjzWEkv33r2Y5+nwwKTNygl2B7keErwzmrKSjcF45pg41PT\nqqNzplcP8f6NHrHyAEsS+szKhtBT1NqSxAq9B7W2hArQlto0dJLjhf/LvSlb3ZTNVsRkrY2UYIzg\ns9H5DkW1sazFEl8I9rKcsqp5a6PNo/0xoQ9V7SiKQ5KqriFSks92J/zS/TUAIk9S1Q3TSlM0hllZ\nEnuKuonZn5YoAXfOqQhPV7RF1ZBGHknkXEnzsmGU1exP3TTrrGwwWBCObngRYfOLaMfPoyFOH+Pp\nuCLxIfJ9Qk/hqRBZVjwZlUeyyv2pIfLVEeWj5s3/xeftxgHdc2iPw5vN4QCkNx8iex3Iq4ZWFNBd\nuO4Og15eJ21zlZ3cdeOv363uJfHRsxF/+Nk++gLrhGVL1O64xArLLHfDDgLnGKmBqYGH+5Mzj1nW\nFMuqiyVntb4aTymEpBsqhBJUxqCxbLUTrFAYY7DC0m8FZ6IXP312PtcO0I089mYuK1TgbHu1sRgs\nptE0xmKNQQONsGgryMvjm8m01KSRR24sa90I5Xl4l5DBeQ3j0hD4ipvdBKkUCBhmFj9yTV2Nq25S\nYDKD3WnBZKG3MKm024EZt2B6wsPgVE4Cx12f9yU8XdFKIeYhIx6+FGSlptSGOBAUjcFaS+RJmrnN\nxDKJ5Xm4jkbp6WNkVcNWrw3W0miLsIJbvRbTeZFRaxenKaU82mVMCyfJvcrzXqdv/XXg69Zshqvv\n5K4bbyr+K+LjZ1MCKQle8E5clIayNhyyC73ABYknCmQDgyUTucuaYvklNq2T/Gp+/JPChT4cesxP\nS01R1KSRYqs3D+DIGvxTV8aHTy/yBoWiMrRD5xHfiQOeDjMCT9EJFOPCcrMfE/oKKSy3VlqMphWP\nD3J+9YF7/GFzV1gNWG714ks9yQMJs1nOWsdNRocthdWWuna2zGngFnQElLX7c2P0ifO6PSxoRz6b\n3Zhp2XCzF1HULiXtzmrr0opwsbrOq5rAU2hrMUaSRoo08tDGkgQeviePeO5L48VO4ToapaePESpJ\n3mjurXWIA3egvXFJPKf58qo5ik2E413GrKjpxJfz9Mt86w///edtUQDXcw6vG69rCvjNwn9F1MIy\nKmq+2D1boV+ETkvxo6f71Ljqc3C4zjfQt8xlgycRB94Zy1p9yUJxc/3iydpDSCH52e6QH35+wKho\nsEbTiXzW24nzQm8snif49trJpvMlFD+f7U74xXs92nNZoBSSaVXxaDjjyWBGpWvKyiCVYn9Ssd4N\n6XrHi8e9tRZ/+PEOTWP58MmAWa4Jgou/kQdT8BT863/3jK1em7trKaUxbPQ9vtxpOB1n3BdQlrDV\nO97qS+kcKfeeDshriyctq52Eu313Y7xsInMxgm9SONfTQ9+aotZM54Nrk7Lh6cEMbWGzG7LaDpdK\nLM/DdTRKTx/jg9sd/q+fPGNnnBH7PqWuCZTP3/nuDeCweS3Zm5QI4W5ygZJHLqCHGOUVz4YZeW2I\nfcmNXkI3Di71rf95UxzLvle+culir4JXeR/NvBgZzqqjwbZeGuC94DTxi+IN1XNFCA1PhhP0BUNF\ny+Ywq8pirWDZpaUNdNsX3Hutdcu9tZhLCOG1S+wNDvFwb8y/+MlTamPY6sYICR8+G7GfFRSNQUro\nJ8GRquUQnrz4+aPQoxX6R1ms2hieDnPQllBJng8LJmXjIiSt4OFedmZAy1pLg8sCtpL5kNn50EAa\nQyMEjwdT8kqz1YmOgsBPw/chDJzS6hCNsWwPplgpiQJFAzzZnzAqGyZ5RVGf75l/msrwlccor8kr\nF57tKZfANskbtgcZrchnrRUireTj7QlZeXHf5MRrv4ZG6eljrKYht7oRyhNkVYOQgs1OwEbX7fys\nNWSlnlNXkrp2HkZpeMzTj/KKT7cnGCPoxgHGCD7dnjDKqyOv+UUcNstfF8Uxf2NH36tXxau+j6pp\neDZwk89x4Cafnw1yqssqrVfEm4r/ilASPKHoxk4xsuyS6Sw5m8NZTSfyaCVQZRDgeH4BRD6E6uwi\nlVcNke+RhgvOj97F1g6zKxKVP3o0phWGrLUjPCVoRyGrqaZuLL9yfw1tLEXdnHH7bF0S/vy9232q\nhZNSNprIU6SRTxR6pKFP6EvagaKfehzM9ImgkMPmri993t7s0U0jrDV8Mdw59zlXUthoJ/zm25tU\njcY2LsO1sZpuCjID4YFtnIw1CqCbRCeS0sqqxvN8wnl/oKw02rjFejirLpT7naYyunOde1Y1JIFH\n1VimpfNP6qaHubLMh73c5Oxtri4lvA7t+OIxslpzq9/m1mobaS1GCDCwPV6cR7H4yqV2HRqpLd5s\nng0zIt8jmqugDv//bJhxd7XFs7lqLfDkkdf8jV78WiiOZd+rV23uvur7KGqNlJx4vJRXd9t9WbxZ\n+K+IOPT4xo0uP3w4WLro9zzods9+0EY4aWQ5n9NadJh/by0hDc4+ZpkJVPuSi8iXV/P8mZQNK62I\nL3amFHVDoy23VluM85K6cUNQLhzi5I1k9ZKJo7JpKLXh4UFGUbtEqNsriVMDWcvt1TZP9sd8+HzM\nW3WL793uohYCtKelphv75HVNJw0YzZxv/UW40W/j+46XbqylqCv+VncTXwb0W5bRrKap5zsD6Zq9\nN7vJCVMubd2k7vODnEleURtNKw4Yzgr2ZhX92COfL+Rn3/NJKsNTEqzhR0/GrKQ5GGjFkt2JpRVL\n8rpBCfc73W7sKIefMxZpib1JAdY6k7Y5TdFPQ4ZZzTivGOUN1lpGWYG24sjUbJGiymtzRtETBYpR\nXpEEHt3E58u9KdNS0woV99ZaJIHHwaz6uRudHdMqxyZtvTR8JVrlVQ3bjHXntKga6sae+/27bryh\neq4IJQQPBzPe2+qcqNE83KI/bMDo5dOtX+5PwZ60CBbAh08z9qdnw0aWmUD5l4RXY65WIfhS8NGz\nA+LY4+ZKShx7fL4zIA08emlAOw6w9qwpXHzJjmOUNSjrJjmNdTGTRaXZ7MT0WgF5VXN3rc0vv7XK\nuxttHo3yE6858qVrLPo+k1lNO/FJL0n92htNaSrNaiekG3rc6afklQHTcDCp6bZgpQX9aP4FVTDI\nCtKFrAEpBFlRcnslYaub0E0iTKPphIGzDq40+5PlyS6nqYxxXvHR9oRuqLizkpIEHnuTGl9Jysay\n2nJh4lHokxXNpYHk143TtERRW57PcnppyK2VhNVWzEFWMs7c73jKUUAWSS8JaEUBs7I5oUaKfUlx\nSnF2OLmbVU7OutFJ+MaNLhudhFFWk1XNazE6c7RKhpmbtBkreDbIXolWedX3EXoCa11hd9H377rx\nZuG/IqJAuXF4e/KkSVzjUwDLjDY9JYnCkPGpG7gCfGB/croFeTYizykRLn596Tm89mnc7kdkNQwn\nOaO8oigrZiWst13Vdl7022VUT+gL1ue7gsCT3Oql7E4KikoTSUWjG/K6oRf7rl9hwF+oojfbEUXT\ncHctRmOY5hVVfXHVVNbO72iclezPSm53IzwlieOQ0AeroahhVrjPSeH8ZBYboivtkKaBSV4xLEqq\nukZb6Ld9As/lAA/O8VM6HZv3eJAh4Egd1U190sCnqBqKSlPVmsq4kVkhBP0rKGOuE6dpiV7sMg+y\n+fur5++lm7hBNmGtMzUTYmFxP7kg3egljhqc//xwcvdGL1mq6gk8xWBWLr3Gv+pQdUeryFO0inwl\nWuVV38fril58Q/VcEVGg6AUB/8+HT1nU9VTz/97pQRyfVdYIC61AnaGHGmCzC0Ys8fBXEmMtn2+P\njrbI8hyHxUOE8+3zZaqCNAm414/4/z7bIWsMiSf5zp0+s1LzJ5/v0Yk83tvqnKE2LusxWCyt2EPM\nb4ur7YjGGqS0VEZzp9/mi70JP/jigG6i+P5b60Te8XN0kpCbnZAfftlQNIZHuxMuy6FPYsE4r/h8\nd8JGO+XZuGK1U7OaRgRbgh98PqSoHMXTDiGIAvqtgEWGpR0qtvoJP3065MlBjq8EN3sJk8I13aJQ\nkZ6jLjq0Qx7MSmZlQ6M1gS/5w0/3mM3tH+6uRNTGsNGOmJU1USDZaMfcWkmITmtmv2I0BoSwZHnj\nqlLf5/5awqfbGfuzinbk8dZKQi+JmOQ1o8LZMYOlbFzEYjc5OXjWjQPurqV8uTdld1oc0TndOGB7\nVDCraraHBY2xtCOPm31HtflKEvnqSBEVeo7y+CpVPY5WCSgqTdM4W41+GrwSrXLYMH/ZcPjT11Do\nia9/9OJfJ3zybMK//Pg5K2nA3qw6iveLgbW2YGdkaSVnVRqjvOLLveUS0C9GcL9/lkZYtIfopxFF\npfl45+IBqrysCeY68Yt8YJ7sz/jiIOOD26u044D9ac5Hz2d8767PBzd7FJXm6SAnDrwT3O1lmvpG\nw/ao4O6qk0EeqUb6KY/2pvzw8ZAHa22CUFKVho92xvxicCwZ3Z/m/GwnI/YkrSDgu3f7SKH4fHR+\nSudwYtnsK37x3hqBJ7AGfvpsTKPdwNjd9RRtwFpNrS0bnZBZpdlecDLNS83OMOPd9Q63OglfHkwZ\nZhUbnQRtLaNpydrm+fbUi7F5j/Yn/MkX+ygk3SQkq2r+7WcHPFht8c0bvXl16ELtpRBfaczgMlhr\nGOfOstn3JK1Q8mS/5p3NFuvdmLzUPBvldBKneok8F8BirKUT+UtN2mrtBtfe2eyekJlmVcPBtODJ\nIKcdBSShZFo2fPR0xIPN1jyeUbtJ2vnjilofxUN+FTgyaYtf3aRtEa/adH8d0YtvqJ4r4t9tD4iU\nII5C/IXrJMfJELWF9pJGbVG7RXipnBMIgrNl7TKlROhdfGEcbjXV3GP8PIuHvUmBFE55sjMqOJiW\n+MoeBYpHgSLyPZ4NT/YeykuqImMFjw9mjPKa/WlJVtZH29VZbagqQ6k1ZWMptaaqDLOF6eBH+zMS\nX7E7KwkVtOII37/48rQWiqbEYMkqgxHWBYYYZzPQNBpjDCDxpCAJAjyhyBcopGmtWW1HeJ6kMpZ2\n6NFPfbQ2pIFyeQpX5OL3ZhXKSjqxj5K4BCtfYpU8CvtQUjArm6+c1jgfx+898n26qY8VbuZACmfp\nkfiH152HsY7GsGI5jbFM1eLyGEoaY/CUnPveuwWyMW6xPe9xL+Jf9KJ4XbTK1xF/pSr+xWGaw63j\ndd1J8xoebPXZGRecFmM8nsI3VgTt+OwFFPg+t1fhT788W/W/sypoRWflfHltSAOPaVk7/3opMFy8\n8PoLtMFFqoK8NiSRz96ooNKCoirpdyKeTyt++nRI5CnWO+GZXvE5oVZHSHxB0cAgq+fJVfFR5ZbX\nhn474NPnY2alJg0Vb291yBcW/qw2dBKP4cyFYT8bZniXDDj1O4BVTGY1RkBZCW6tpCA91nzFD8YH\n5LWrbm70nX9QFLiJ2qP3Bay2YwaTEmMsrTBASonGoKRkq3P1aL66Mdxba7M/zckqjbCSb97sO9M5\nC9sjN+TkKcH7W52fu2eN8+oPKOa0hJJwfy3hs72cvXFBK1KsdUNac6M912RUVE1z5Ft0mo45po/q\nI2VQFHiUjUVKxa2+xzh3PQBfSTZ6EQZnkzAtSh7uz5hVmjRQ3F1NaZ0Tc3kdeF20ytcRf2Xe8eEw\nTeAp0rlT5bNhfm0fbDdRDGc5N/stPnl6shpu4dw5o/SsrUHL9/nZk8GZrZUCnh9YOvFZP35fCfan\nJck82lEby9PBxZYMg+nxzy9SFUhhOZjkrHcT4sDj0YHl2cGU2/2UduRT1oZPn0+5u3ZSvnkZ1SOF\n5P5qm7urCUnoUzWacV6x2oqYZiWPBzNu9FKiUFGUmseDGcHCgJbvSZ4OCqLAY5KVtCOf+pJdxmAC\n7USz3nWSvFprtsc506zgad6wloZk2qB1zXBW001qtscFdxampXuJz8P9jG7q/Oen82r83kqL9U5E\nUWva0dUq/lbosTMq2Ogm+J5gVjTziEmXDtZPIlqRoGk0e5MSX8mf66Jz7NXvFtedccYX+yXrSUCv\nHVJW86yJFUk7Dqi1YVpYAi+kJwVJ6J2hYxx91MybuI6yGWUVUji5JAg2uu58H9I5sS8ZZwU/eTIi\nDQP6aUBWaH78aMC3bnWvZDb4sngdtMrXEX9lqJ6LFATXgd/+5g1Gmeb5YMyCDT8xEMzXkcHwrJyz\n3/bxPe9Ma9bDDRV5S1KmenFApfXRwlc3Zk5ZnI+D3L3Py1QFm50E3wvIy4ZZ3lCVDUoqZ6EMYMEc\neTEeo7pkElF5gsgXlI0hK2uEEEej+Va5waBjRYj7u12gULZaAVldkwSCaWWYZo4quAimAd/3GWfz\ngTMrsNbQSAtSIZVFCYEUEqmgNA3tyCNaODdb3RilJEoIWrGPkBYhJRvt0JnMzWmjq+DtjRa1Nczy\nCm2grjWToqETK9pzGwdjDO0kuNZr86o4rUApawPCEs6zHKQUxJ5HVrnfKaqGw88sCtQFdMzpq0UQ\n+Yr1dsSscrLew0hGgQvieT4pCT2PcE5nhnM68/nk53tO/rrilRZ+IcQ/EEL8pRDiJ0KI31nycyGE\n+J+EEJ8IIX4khPilV3m+i1A29lTOqFv8y2saCPmFu6v8ne/dPjF0JHCuAkrAtzZiltXEvhT8h9/c\npBXBSngs4/SB33x/hdaSPNck9Hlvs4OSMM5rlHSZthd9WMbIK43yr7YjfuFuz1XU2tCKI375rVW6\ncyWHlPDeVts5XS5ACsF5bkBdCb3Qo9+KiAPPxRgW9dGAUjv0ebDRYlzWPNybMS5rHmy0aC9IUOMw\n4IOtDt045u2NFkJJgvk7Pq8++5V3+9xZSUkDRaEtaezxndt9POPx1kpMGIcu/DwJ2eqlBCLgva3O\nic+wm0T8+oPVeePScKvX4hfu9PA8Zyh3o58QXNJfOcRmN+Vvvr9JkvjsTTKUJ/mb762x0YnwpUTg\nAmp8Ja/12rwqTls2WCzvbHYIlNPiSwF3N1KS0ENgHS0lXTLb4fV02s3yvKjHwHMKnrfX21gMk6Kh\nHXu8f6PrfHxqw1rHRTbqxhUaa53w0ojPN7gevPSeRwjxbeDvAb+KUzT+gRDi9621Hy/82n8CvDv/\n79eA/23+/2tH6An2JwWDzPmrRL6inwR0L9GfXxV53dBgTwxrCBz37UkYTXJ67bPPlYY+o6ym3/KY\n5g2h5ySeUehhjGGtdXbh9yQYT7HVTY7cBEOvIACWjxLBeiu40hZ5vRuxO81Zb4estATDWUFZazpz\nD31rLbNc0W+fPFY/CVxTe8la1UshjU8aS2l7SANUKCUZTir6iY+cv8a8NNzqH58vYw1CSDqph68E\nN/otepHijz89YHDOWpBEitBXvLPVpmwsnoJASjqxYmeaMRyX5GVNg3Py3Oi5AaLFAJjQE5SVZL0V\nIoVASUHqK+LYox35SCGuPIzjSdcv+BvvBEd8txCCJ4OZ88IRlqIxRJ5ESvlKapKLjMEu+tmiAmW1\nFWKMYHNh4ryo9JHDKkClXeU/nR/L99Scwjl+z9Wpppc2jubxlWSzG9OJ/ROvBZwba1mbo7hPcPnU\nrWXDMG9w7XiViv+bwB9ZazNrbQP8K+Dvnvqd/xz4363DHwE9IcTwP73MAAAeG0lEQVSNV3jOc6Gk\n4JOdCWVlaMc+ZWX4ZGdyxn/7ZfFnn+3xT/7sS/KiZsMpFjG45tZoBk9y+I0HW2cet9UN+fHjAStJ\nyDiD6QwqDbps+GR3wvfvr555jKdcEHljLL4naYxld1pc+GHd7l3N82U1UhyMS4pG43sKLTRf7GUo\n3/nJZKXmx09HRKdWu5udwBmnLcF6L6aoG0qtabTBWEvoSYx1nPJG4jOrDU1tSEIPCUzLhpXkeMEx\njeFn22NiKbHArCx5NMiYq0PPniPgZ9tjWoFH3Vhizy0ks6qhn/h8vjelqGoyA9kMhiVE0vLnj/Zh\ngUJSUvDxzoSiMvQSn8G04rPdCclcyjjKKmfFcAUcf25ut5nXhqeDjG7kM6tqytplNs8qZxvQegFn\nzUVcZAz2IqZhFw1fLXs/y87Hsmv18Hcuei331lpkVcNsPjw2KxqyquHe2tVcZt/g1fAqC/9fAr8l\nhFgVQiTA3wbunPqdW8Cjhb8/nv/bGQgh/r4Q4k+FEH+6u7v7wi9mmFXc6ifEoSIvNXGouNVPGGYX\nh4RfFf/8w2e0I0m/kx6FqYCrwGMffvVevJQLrg18726PMPDZWpXEkeP2w1jwt97bQi5RjDTa0E0C\nV001Bk/C81HJWXOHYzwenp0AXoZB3vDNWz1u9FpOyx2EfOd2F6Odz3oaeby70WJ/dvK8DQtNusR+\nNAGKUiMQBNI1KzuRT6AESeg7bTeCX35rhW4aMCtqeonPrzxYZTFNci+r2OoktJKAfurTCjySQLIz\nXX6RNsAHWx18pei1AoRyFeyNfkKuDR/c6OFJd4NIEmfboKXH26ttvtg/PpOL182sbOglPr1WyJf7\nM/KqIQ09mis6LR5/boK6MTTa0E/DI4+gKFCU2mCM5WY/uWQk73xcJIV8EZnkebGJSeAxzisn/Z2H\nz9eNo326SXDifCy7Vg9/56LXstaK+M6dHp6C/WmJp+A7d3qstZZ53L7BdeOlqR5r7YdCiH8E/DNg\nCvwFJ+1o4GzXB85JoLDW/i7wuwDf//73X5j8zGuzVI87yq9n4R8WDVud1F3EEm70fLS1TGcN/81v\nvwvA5ztnF9+s0ry31eUnT0fcX7+FEpIkUmSl5vv3V3hycPYxjYHIVyduJEV9sb55mF9N/5zVmsBX\ndK2gEysms4p+O0QJy/s3jgPWXbD24vFrPE/wrc0Ii8uMtdY5GxaNS9oKfUUvDeYOlZruYdNQCFZa\nEZu9mKaxdBKfqjEnZgNqbekmPkoJNjoR2oAxlpov+GAr4fEgIw4Uh85te1PLZqdFXrtFxBhLGnlk\nRUPZwLfvrFI1bqIZ6XorRaVpJyH702PCbPG68ZWYyxAFWVHTinxq7bjuSzzqgOWfm+9JdicN3cQn\nPQw8bwytyH/pidHLjMFexDTsdGziYZWupEQISaicUidd4PkXX/ey97z4Oxe9lrVW9Gahf014JV2T\ntfb3gN8DEEL8Q1xFv4jHnNwF3AaevspznofYl+yOc6aFJq+beSCGujaOfy0N+cvPR+wfXfNu4EkA\n/+Knz1lrB9zvn53wTALFk4MMbeCTZyMGeU1d1/RaIbEvuL9ka+tJGM5KdifFUbiFuqQ+3GhdTQKn\nBHy8O2V/WlI1hlFRMMxy3lrrMslrhBQYbc9wrb3YJ1Dw6XZ+os+QAN++ldCO/BNVXy/x5sqQGl8J\ntkcZ0f/f3rnGyHXdh/137mvuvF/7XnL5Woq0JEq0TMuULLtu7ViunESxkgKGG8R2HRQGErgt8sVo\ngX7ohwLpAwXSFjBcN4gLFG4A9RHVsOs6TmS5RZiEVsyKlhiKpCiSu+S+d5535r5OP9zZ5XJnlvuY\n2V3u7vkBgzt759x7zn/uzv+e+z//h6FjmlGJR19KDufva9NcwqTWCHD9gKob1es1BSQNmJiq05BR\nBk+TKGguDpSaDWw9WlhcUkyBlOTjBpOLNWarTrSAnbRJGoK+ZIxaw3vA4yluRsFGrh8yWXKQIQRB\nlEt/ptIgYepoYmN2Z6OVTtfzw+X0zGagYbWU51Jk69J2qwnJ1qsk1U2VqZWz9Mj9k1Y94QAzrrWd\nazvHotg+uvXqGWhtx4BXgO+savIa8Bst757zQElKebebPtciFTO4Nl2l3vRJx03qTZ9r01VSsd74\n7Jp6uELp3ycGVGoOP7s1z6Fi+7SwEDe4OVtDQ/L+fJWa4yA0DS/0uHBtjozdrlTcIOTdqQquL8nE\nzVawjeBh6uelp0c2JIcXwo3pMlKTDObixG2DG7N16r6Hrgvqjs9stcFo/kHj+vhACj1sX1yuA8m4\nTiFpMZCJU0haZOIWcctYtv0OZePommDR8ZHIVqZMQd+KafRoPsGi42LpOtmYQeiHLDoez50ssCCj\nfgX3i9uPZqHq+JwcTBIzdUw98moKZcjxgTTXp+skYzox06JSrjG16JJPxah7PqdWpGDIJSwmFuo4\nzQBLjwLHJit1iikb1w+ZqjgEG0yfvNrebejacpnBIAxxWzeEqATj1iN3H5YYrNukYSvr0tqtc90/\nT/u5tnMsiu2j2yvwX4UQRaLp729JKReEEF8FkFJ+A/geke3/GpGO+HKX/a1JtekzPpCi0vCoNDzi\nMY2BbIrqOrVqN8rlW7WOBVgaQCoZ58SQxZ259iArVwrOHsnx6l+W6cvE8D2J0AUpy+LUUIabs+3H\nzFYaFFMxEJENNR7TOVpMPTSzy7MnBjYkx2ylyWNDWarNgLLjkYvZPHM4RqXmsVBzSVo6Tw3k2oJc\n4jGTWigxeNCeFwcm56sMZOIPRnS2bL+eH1ALQ471pXCCEGTkIZRpFbRZImEZPHUox52FOiXHI2YK\nDhVS3J7J8LHjDS7eqC8r/aKAYibJJx4bYrBgowm5HIlZTMXIJiyeHy/y7t0ys/UGphYjG7fQEDx3\nvMhI4f5CeBBKxgfSLNZdbs+7ZBM66UScRhhSMASWYVFfx8zWSWbXj57UEvkEQRhi6TpeEGDokVdM\nN2UG10sM1k3SsJUzeFPXSNkmtUaUsbSTq/B2jkWxfXRr6vlYh33fWPFeAr/VTR8bxfFC+jPx5dTA\nS/TKxl/z4HghBlIyueBiWZEP/2ITPvl45M3Tycbv+iFDuSTZZIzTo1FSslBKGo2QE0Npbs22H9Op\nuEUQSEIiRQtgWeC2RGsCGzUXB0FAMR1jKG9EcQINDxlK6g2Pj568f/NYbX9u+lER8ydHU2giclOU\nUuL7krlqre3HvNL264eQT7ZcDf2QXNJq68MPoS8Tf+ApAOB/Xb7Li2eOcmqkiqmJ5VWjhYrLscE0\nfhgymr+vyOdrLq4f8sEjRZ46VIhSJ2gCQknN9RjIJR6YcTZ9STFtU0zbkZkrjAKZXD8gbpmEYdhW\nInItHmbv7nU06sMSg3WTNGx1XV5NRBG7D1PY2zUWxfaxb5654qbGvcUaczWPWtMjGTMpJk0KHfzk\nt0LKguvz9xc8V95PfvT2XYbSFmP5TNtx2YTJz9+f4/pMiUvvz0Wz0nSc4WycicX6Ay6NK2VpuMFy\nkjaIcqUb3Dd1rOw/CRu2m44WkkyVGmgiQIYaMpA4XsDwCtNOJztszBAkYzAxXUUa4AXRegEBDOba\njVArZ44ri1UsmRE2aivuT8VoNn0SpoHrh+hEC8e5uIEuBPG22sCQMHWqjk8qbpCwdOpeQLXpkoub\nbQpsqZiKZUQeSU0voOmH0c0NiWnoG/a3X8/evRfoNs2wYm+wb66mbWhcnihTb/jkkjHqDZ/LE+U2\nf/StMlpc+8dfrTX46a2Fjjb+ptPkjWuzpMzIBl2uu0zMVZmvO7w/XeXsofYF4U7+1VLA8BqeJX1J\nNmw3PXe0gGVqyDCKKjY1DUMXPH0oehpZyw6bT8Z4YrjAjAdlJ6pfW27CvA/njgy29bPSvmtbxnJW\nRNvSN2UrfuFkkbLrkzA0YqaGF0SF558+XMAPw2Wf85XnOd6fpNJwqTo+CEHYUuxnjxTaFNjKjI25\nuIkbhGjA4UKSmGkgpdxw9sb9YtM2dY1M3Fper1FKf/+xb67oXM1lvD9F0tapNjySts54f7s/+laZ\nmFvbwp5Kxvng4XxHG/9Pb5XpT9skYzYD2Tgx2yQkYL7q8uITQ6Q6OMd38q8+PZyluUaetLrHhn+c\nhwopfuHxIQazMaSQjORtfvGpEUYLyYemfEhYBoVMnCf6BTFgrhrVsX1m1IrcLFexMj2AlJC2DdK2\njlzHVryUTmCpzenRAr/01HCUUiEIiGka547lOTaY4sRgus0kZuoaxweznDuaByGZqzokEwbPj/cz\nlG2PBlvK2KiJKLX2cCbGQNYmlFFCu80k+VtLBqU4FY8ae2sq8hCqzYCBXPuUeLU/+lapuHA0ZyKB\nqUUPy4zMzSXv4Tb+O6U66ZhBJmEynE/ghxI/CKk1fT5wqLDmGsRq/2qAZggDicgn3TANfM8nAJqb\nvLcdKqQ4VNh8hGTVDTj/2GE+clKiCUHYKiE4v0aQ3Gbtu2u1Hx/KMT6U63DE2ufZzDG9zNiobNqK\nvcC+UfypmM50yaHu+sv5UBKW0TM//oQONxfvV9hqrCi29dpPb3KoL8nJYruiiaFxa77GxGyNqhui\n61Gkbz4ZZ6bsbGp8GRvuVZciCCJPExMY2qEo95xl8PatWe6WHOqBJKELhrNxHh8p7MwAFApFT9g3\nz6DFpMW16Sq1RtByQQu4Nl2l2CNviodNHmuOx8UbixTT7X3l0ybvTJZwfQ+EoOY0mVhsYhv6puMM\njg0lWbrfpFuHea39O4FlaVyerNPwJAOZJA1PcnmyjrVGTVqFQvFosm9m/A0/5MxIltm6S6nWJGGb\njBUSNLoopLySqYeUvM2kkxy2BVfutjeqNQJOD6aYqDRp1n0SlkkhBr6UjA9sLs6g7oT06bAQQMWP\nTD55Pdq/E1ydKnNi0KLahHK9SSphMZSP9isUir3DvlH8jhcymE8wuCritFd+/HUfjuVMhBDcXnCJ\n6YCEagjnT/QBcP1ee3lFL5SMDxdIxKvETZMotAEcL6A/E9/U+Oq+5PSRbBRGLwSBjPKYz+9QQY9K\nM+DYQA5d05Zt/EEYMrFOdTCFQvFosW+e0Zd831fScKMyb70gE4P5RQ+JRCNKrVwN72ehmy7V6Uu1\n2+sHMzaEIZbWGl+rwlVf0t70+AZSFo7jogvwQ4kuwHHcDefp6ZaRdIxy1Y2Ky4cSKSXlqstI+uAV\nq1Yo9jL7ZsY/nEvw39+8zcXrU5QbkowtOHdikM89szpT9Nb4wnPH+Devv0dpwXtgfwb408u3SNo2\nv/Pi6bbjzh/P8wd/dpOG51Ou+yxW60ihc/5EPxMLVZ490b/hMfzSU6P829evMFt1iNs2TqOBMARf\nOH+0O+E2yMvPHOKff+8tLt1cRLMgdCGf0/nHL53Zkf4VCkVv2Dcz/nduz/HGlSncMJpluyG8cWWK\nd27P9eT8s6XOta/KROkLCkmbXIco3FQ8xvFiksAPmak08UMYzCaIGybzVbdjnvS1GB/K8MRwlMO8\n6jQwdHhiOMf4UHvE8HZgaAJD6AgDhAbCAEPoGD0qdqNQKHaGfTPj//5b9+hPxxjIRr78Q8SZLjl8\n/617nH+s+6Jff/hXUVLRrAll736yNgl84aOPMVdp8vqVWZ4c63vguGvTZUbySWpuwJFihpitE/oh\nMUPQn45z9V65Y2BRJy5PlHn6UB/PHBvEDwMMTSfwgmj/kb71T9Al3700yanhLB87fX+806U63700\nyQunN5YdVKFQ7D77ZsY/U3WXlf4SA9k4M9XeLO66QMYAKVs5ynnwyyumY8x1CGRaqEWmIccPSSYM\nNARSg0rTJ5UwKDc2PuNfcFx8JGEYYBs6YRjgI1no0QL2esxWPQZW3aQGsglmq94aRygUikeRfaP4\n+1MW06UHvUumSw79PVz4LPuRiUMnqre70olyrtKk2MHUYxmCph+SsHScZrQa7PlRMepq3Sdjb/yh\ny9Z1wlBi6Bp+EGLoGmEosfWdKVDdlzKZLj1YAHKtRW2FQvHosm9MPX/7zBC/96fXeG96EcOM4XtN\nDNPia39zvCfn/9jRBD+5Wafk8kBe/hRw4d0pYpbJb75wrO24I8UUf/HeHHOVBlfulqjUHAzTZCQf\n1eh95cNjGx7DqeEUr/7FTa7NVPBCgalJxvvT/NqzR3sh4rr84tMj/OsfXOWt27NYpo3rNUjbCX7n\nxcd2pH+FQtEb9s2MfyifZKyQRAodx/WRQmeskGQo35uo1l/98DGOthJprkzXdrjfQAoYysTJdagf\nahsajWaAL0OcQCJp5bJHMlGqs1jtvGjciflygxszDoSQjFkQwo0Zh/nyxs/RDbmERTZlYgho+j6G\ngGzK7LiorVAoHl32zYz/zfcXeGo0z7Mn+gjDqGB2oxHw5vsLHO3v3uul1gz41JlDxEyD6/eq+MJH\nQzCYtvnUk6OUax6X7yy2JT+bLDcopmO8eWuWYsIiVUgS0wX5VIyhdJz/8+4cp0c3luvmjauzDGYs\n+nI5DE3DD0NmF+u8cXWWlz/c/rTRa16/MssTwznOH+8nJJo1VByv46K2QqF4dNk3M/7ZWjPKGSOj\n2qfIKLfMbI+iWgMJh/NJYpaBFwYkYxaFpN0K54JM0mTRaV/knKs08aXEC6CYtrF0QYig2vDJp2Nr\nZrbsRKnhM9afQQO8Vt74sf4MpU0sEHfDTLVJ0jZAtIqLCEnSNpjpUQZUhUKxM+wbxZ80Dap1D63l\nU65pgmrdI2n25qEmFTMwdZ1D+TgjhSSZmIlpaMRbhV7KNY9cvH2R0/VDXM/HNjVKNZdQSnzfxwsC\nFirNjhW41qIvZbJQa5COW+QSFum4xUKtsWOLq5mYwWLNRWuVItSEYLHmkulRQXuFQrEzdPWLFUL8\nI+A3iczebwFfllI2Vnz+JeBfAhOtXf9OSvmtbvpciydHM/znCze5+XYZ39cxjICj+Qx/t0dRraeG\n03zrx9f4+Z0Zyi6UqmABQ30mb9+d57GBPF/5xIm24/IJg+szFVJJg2t3He4tVDF0i2JGZ6pU5/Mf\nObJmn14Q4rg+fhiV9fvMmWG+8ePr3Fusk4hZ1JsuUmj8do8WsNfjufECf/B/b3Dx/Qa0yq73JWy+\n9NHjO9K/QqHoDVue8QshRoGvAeeklE8SeTl+vkPTP5RSnm29tkXpAyw6LpMLDnhgWxp4MLngsNgj\nH/e3J0r87NYcfggxXeAAJYDAJwjh+lyFO7PtSdpMwyAbN4mhETMhQBIETXRN48yRPMNrFETxgpBK\nw0MisAwNiWA4l+DJ0QKaJliou2ia4OxYgfHhjRcp6QZdF0hABoCMtrK1X6FQ7B26fUY3gLgQwgMS\nwGT3Q9oab1yZYaQQpz9TRBMQSpgp13njygx/owdRpd+9dIf+lM1ALsHPbs0ykgLPg1pT8umzA2tG\nCbtBAGjkUzYv5FP4YUCt4XOkmOIDQ3nuLtbbKm0BOK6PrmnLhbt1TXBjts7ZQ1k+fWZouV217m8q\n+rcbLlxf4GgxzYeO9y9/x3OlBheuL/CR8aH1T6BQKB4Jtjzjl1JOAP8KuAXcBUpSyv/doemvCiH+\nnxDiVSFEbzKmdWC+7jGYS9BsBlQdn2YzYDCXYL7em6jShbrPSDGanTc8sAyLZNyi5kHDDSmmOkcJ\nB1KQTRpMLtS4NlVhutQkY5sEgcS2dByvcy59P2RZ6S/huD4SuDVX5+q9Mrfm6mgam4r+7YZFx2Mg\nF8fxQsqNAMcLGcjFOy5qKxSKR5duTD154GXgGDACJIUQv76q2f8EjkopnwL+GPj2Q87394UQF4UQ\nF2dmZjY9nkLC5N6iQ8zSScUNYpbOvUWHQo9KLxaTJrOlOpahkzCh6bnUGi62EZk7Jhcr5JLtfYUy\n4N5Ck0LKZqyQJJMwma46CCEfmpbZ0CAIHyzwHoaS9+YqhKEkZZuEoeTqdAmTtQvB95Js3GC65GAb\nGhlbxzY0pksO2bha3FUo9hLdePV8CnhPSjkjpfSA/wY8v7KBlHJOSrnk6/cfgA+tdTIp5TellOek\nlOf6+zeeqniJF071U6l7zFWjtA1zVYdK3eOFU5s/Vyd+7dwYi/WA6cUaw9k0pRpUG3BqNMN8rU65\nHvK3Tg+0HSckZJIaxZRNzfMRUpC2TBqepOH5DOc6m2jilkEQhsvKPwglibgJUiNoVRUL/JDAh2QH\nb6Lt4PzxPBXHo1SPLmmp3qTieJw/nt+R/hUKRW/oZqp2CzgvhEgADvBJ4OLKBkKIYSnl3dafvwy8\n00V/D+XpsT50AX/y9hQ3p6sUkyZfOD/Gk4d7E1j02bNRaoVXL95irt7k+ICObZvYukFM0/n150c5\ne6T9JmNbJqPZFE0/IGXrlB0X0EnYghOD6Y72fQBT10jbJo7r4/qR33x/KkbfCZMbszXmKg2SMYMP\nHc1j9shldT0eGynyihD85Ooct+fq5GyTVz40yviwKrauUOwltqwxpJR/LoR4FXgT8IG/Ar4phPhn\nwEUp5WvA14QQv9z6fB74UvdD7oyhwdNH+nnm2P1ZdxBKRA/NIJ89O8Znz45Rdlwk4gEb/Fp99aUs\nas0AL5TkEhZ6XxpTEyRj+ppKfwlT1zBXtEnbBmEoePb4/aeEhhugaTtj6jE0ODVa5PEVN9Nef8cK\nhWL7EUs1YB8lzp07Jy9evLh+wxUsuT8uecIEYVQPNm2bmHpv49Q209dstcFbtxdJWAZJ26DW8Km7\nPmcO5+jrkNvnYZQcl+tTFWzTwLZ0Gm5Aw/Mf+uTQS3byO1YoFJtDCPFTKeW5jbTdN7/WJdOIQOL6\nIQK5bQppM331pWzOHI6qZs1Vmxg6W1L6ANm4xYnBNJomKTkumiZ3TOnDzn7HCoVi+9hX7hirTSOP\nSl99KXtLir4T2bi1Y4q+Ezv5HSsUiu1BTdUUCoXigKEUv0KhUBwwlOJXKBSKA4ZS/AqFQnHAUIpf\noVAoDhhK8SsUCsUB45EM4BJCzADv7/Y4uqAPmN3tQewwSub9z0GTF/aWzEeklBtKTvZIKv69jhDi\n4kYj6PYLSub9z0GTF/avzMrUo1AoFAcMpfgVCoXigKEU//bwzd0ewC6gZN7/HDR5YZ/KrGz8CoVC\nccBQM36FQqE4YCjF3wVCiH8ghLgshPi5EOIfdvhcCCF+TwhxrVVw/pndGGcv2YDMnxBClIQQP2u9\n/ulujLMbhBC/L4SYFkJcXrGvIIT4oRDi3da2Y71JIcQXW23eFUJ8cedGvXW6lDdYca1f27lRd8ca\nMv+d1v91KIRY05NHCPEZIcRft37XX9+ZEfcYKaV6beEFPAlcBhJE6a3/GDi5qs1LwPcBAZwH/ny3\nx70DMn8C+O5uj7VLOT8OPANcXrHvXwBfb73/OvC7HY4rADda23zrfX635dkueVufVXd7/D2U+QPA\nKeB14Nwax+nAdeA4YAGXgMd3W57NvtSMf+t8ALggpaxLKX3gx8DnVrV5GfhPMuICkBNCDO/0QHvI\nRmTe80gp3yAqFbqSl4Fvt95/G/iVDoe+CPxQSjkvpVwAfgh8ZtsG2iO6kHfP0klmKeU7Usq/XufQ\nZ4FrUsobUkoX+C9E39WeQin+rXMZ+LgQotgqOP8ScHhVm1Hg9oq/77T27VU2IjPAc0KIS0KI7wsh\nntjZIW4bg1LKuwCt7UCHNvvpem9EXgBbCHFRCHFBCLGvbg5rsC+u8b6qwLWTSCnfEUL8LtGsrkr0\nyOevaibaDmTvVibfoMxvEoWOV4UQLwH/Azi5syPdNfbV9d4gY1LKSSHEceBPhBBvSSmv7/agtpF9\ncY3VjL8LpJT/UUr5jJTy40SPje+uanKHB2fEh4DJnRrfdrCezFLKspSy2nr/PcAUQvTtwlB7zdSS\nma61ne7QZj9d743Ii5RysrW9QWQb/+BODXCX2BfXWCn+LhBCDLS2Y8ArwHdWNXkN+I2Wd895oLT0\n+LxXWU9mIcSQEEK03j9L9D82t9Pj3AZeA5a8dL4I/FGHNj8APi2EyLe8YD7d2rcXWVfelpyx1vs+\n4KPA2zs2wt3hL4GTQohjQggL+DzRd7W32O3V5b38An5C9I9+Cfhka99Xga+23gvg3xN5AbzFGp4C\ne+m1AZl/G/h56/MLwPO7PeYtyPgd4C7gEc3wvgIUgR8RPeH8CCi02p4DvrXi2L8HXGu9vrzbsmyn\nvMDzrf/rS63tV3Zbli5l/lzrfROYAn7QajsCfG/FsS8BV1u/63+y27Js5aUidxUKheKAoUw9CoVC\nccBQil+hUCgOGErxKxQKxQFDKX6FQqE4YCjFr1AoFAcMpfgVCoXigKEUv0KhUBwwlOJXKBSKA8b/\nB4gpiakLpeoyAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(preds, y_valid, alpha=0.05)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.50371522136882341" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "metrics.r2_score(preds, y_valid)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 8 ms, sys: 0 ns, total: 8 ms\n", "Wall time: 8.48 ms\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmMZFl63/c759w1tlwqs6qr92EPd5oU7QYNQoAgwbBE\nE4IFCBYg2g8GbIBPepcAP8jwm+FH2YBNCIRgwKZgGCBgQLRJAX6gV3iG0nAZcoac6a2qqyort9ju\ndlY/3MisqKyIXCoje9jd9wc0siMqlhv3RnznnP/5vv8nQgh0dHR0dHx9kD/qA+jo6Ojo+GLpAn9H\nR0fH14wu8Hd0dHR8zegCf0dHR8fXjC7wd3R0dHzN6AJ/R0dHx9eMLvB3dHR0fM3oAn9HR0fH14wr\nA78Q4jeFEM+FEH+ydN9/JYT4nhDij4QQvy2E2F7z3F8RQnxfCPEDIcQ/2uSBd3R0dHS8HuKqyl0h\nxF8D5sB/H0L4ucV9fxP430MIVgjxXwKEEP7hhecp4M+Bfxd4DHwL+LUQwp9edVB7e3vh/fffv/mn\n6ejo6Pia8gd/8AdHIYT96zw2uuoBIYTfF0K8f+G+31u6+f8C/8GKp/4S8IMQwkcAQoh/Dvwd4MrA\n//777/Ptb3/7qod1dHR0dCwQQnx63cduQuP/T4D/dcX9bwGPlm4/XtzX0dHR0fEj5FaBXwjxnwEW\n+B9W/fOK+9bqSkKIXxdCfFsI8e3Dw8PbHFZHR0dHxyW8duAXQvzHwN8G/qOweqPgMfDO0u23gSfr\nXi+E8BshhA9DCB/u719Lpuro6OjoeA1eK/ALIX4F+IfAvx9CKNc87FvAjwshviGESIC/D/wvr3eY\nHR0dHR2b4jrpnL8F/D/ATwohHgsh/lPgvwaGwL8UQnxHCPHfLh77phDidwBCCBb4B8DvAn8G/E8h\nhO/e0efo6Ojo6LgmV6Zz/ij48MMPQ5fV09HR0XF9hBB/EEL48DqPvTKds6Oj4/UpteW0aGhsII0E\nO/2UXtL97Dp+tN+NzrKho+MCxnmmleak0EwrjXH+tV6n1Jan4wofBP00wgfB03FFqe2Gj7jjy8aP\n+rvRBf6OjiWM88xqQ0CQRJKAYFab1wr+p0VDEimSqP2ZJZEkiRSnRbPpw+74knFaNAghaIxjUmga\n4xBCfGHfjW7N2dGxRKUtSkqUbMtQfAiUjWVWW3Z6MXkSEavrzZcaGxAicDyu0C6QKMFWL+Uv4bZa\nxxdM0ThOioaDSUVtPVkkebCVs9tPv5D37wJ/R8cS1kMStUHfOM+8NigpwYfz2f8wi68V/J13PD2p\nkEohJWgTmBZzHu7md/0xOv6Sc1LU/OtPT/G0la4BeDKu+MX3doDRnb9/J/V0dCwRSXC+nZLXi9k/\ngJJi8Z+kuqYO65ynMI4QApEShBAojMO95p5Bx1eHpycFz+c181JTa8e81Dyf1zw9Kb6Q9+9m/B0d\nS+RJxKw2gMR6UIuBYJC1PxUlBdpeT6vRXvBgK+NkrpnWmjRSPNjK0H6Vm0nHXWe5GOeptMX6doC/\niWy3aZ5NGvJI4RxU2iGFII8Uzyadxt/R8YUTK8kwi6m0JQSPD5JB9iJAOB+IrhkrQnAYF9gfZSgp\ncD5QG4eS7g4/wZeTUlv+1SeHfPK8orSWXhTx/v2cf/P9/Y0E/7NNeyUlSdRei2XZ7oseFGrnmZSa\nxnsq7fCuXRXeH6SU2t55WmcX+Du+ctz2RxwrSZwn57N/KdoZuvMB5z1ZrJhW+srX7yUR86rBKXke\n+K319L6gDbwvE3/66JhvfTJmlCr6SUxtDN/6ZEymJB9+8ODWr39x015JgXHwfFoRK0VlLP00JovV\nK4PCXZApyZNpTRqBt4LSGrQO7PdSno4rHm7ndxr8O42/4yvFJtMxz2b/goC2HkEgixW1cdd6/VGe\nsjfKCMFTLlYQe6OMUd4F/ot85/EUax2PTkq++2TMo5MSax3feTzdyOu3st0Lia2dHDiMA+c9UsjF\nbX/jvZzXQUrB/X6K9QJCYJQl7I0SpJLILyCts5vxd3ylWDWzg/ZHHOfJjV/vbPZ/xrTS1379PJao\nQcooi3E+oKQgjiSJ6jT+izw9LRnXhmEaM8wjGu14Nq2p9WZksbNN+7Prdva6aSQWmVyyleK0I87l\njfZyXodeFvHevR7qVKAihUDQTxRxJHEh0NxxHVcX+Du+UiynY56xyR/xTV4/TyJsbeil0bnU47wn\n/4pYNmxSF7fOY6zHpVBpTwCM9dgNZUAtb9orKdDOIwVkSUytLfPaMKsNlXbcG6SM8pheojby3qt4\nazvnh9axM0gxLpDGklhJ7vUTauPY6cV39t7QBf6OrxgXZ3Zwsw3ZTb5+rCQ+BD4+mDBvHINU8d7e\n4EeWSbJJrtosvcnrVNoyzGM+G5cczyqEUuAdgzzmje2tjRzv8qa9tu31SuN2oKqAvzicMCsMAcnJ\nvGbQi/gr79zbyHuv4ifeGPHnz+akkUSIgNEBH3neHGY4H9i5432gL/83sKNjiTyJcN6f5+JvepZ9\nk9efVJrPjgryOOad3T55HPPZUcGk0hs5lh8lqyS1m+riy/sxbaDzaN/O/L2A4D2DbHOz7lhJRnnC\nbj/h/ijHec+41Pz50wlPT2tCEGznCbFSTErL09O7y6nPk4hfeHeLUR4jRSCO4H4/RsaC9/f6XVZP\nR8d1OZs9GheotCZWiiyWG83OWDVzXPf6T8clSkmsd0xKh5KglOTpuGTrNfYbXpe7SFXchKS2PHho\nFyBIUqlASSIEIQjMXde6hcDBtGKQRCglCbR6vxSCP38+4/5W/07SO+eNY7efcW/QoG07kUhSBUF8\nIQ6dXeDv+EqwLD300wjn1flMfNPSysUN33XMakskBVJK4oUc4r1nVn9xZj2bkmQusglJbXnwOC0b\nYgFz57HWk8SCXCaczOrXPsbLqLQliyP6qSCOIgQQKYUPHuslk1Ij5ItN302nd9ba8r1nE55Pa9Ko\nXdVMCoMxBR88qHh7p7+R91lHF/g7vhJsOptnE0gB2gb62YtjqnUgurs9w1e4q/NycbP0TPIaZus3\nJS+uPELwON9aYRxPa+bW0stiFIJICWpjOZzdTVrj8qCzlUU8HdckccAHj0BQaMPeIGVc6PNsrE1+\nl4z3PD2teT6tOJzVNMYTR4Jv7PX59LjoAn/HV4O7roy862ye12FvkPFnT6c8OinOjbgGWcxPP7xb\nE67lcz2vNcM8QfHi3GzivNxE8jo7posrD+sD1rczb0/g+bjgdBYgAuVhe6i4P7qbTc5IwqOjGd97\nNuWHh3MOpiWjOGE0SM5XivvDtE2v9IFKO1wkGW3IX0/S+u9/65OnHI4djQccfHRvzE4/4a9+8/5m\n3mgNXeDvuHPuSm5Y5kx68CFQL4KeIJC/ZkreZQPVdQcxJaEyhnHZnNsyq1bCvjMunmspW9liq5e8\nlu3EZVxX8oLVK48sjrDOIQicFDXPTgMVkFgwQHXi+LF9c/sDXcHJvOb/+IsjtrKYvX7KadnwvKjZ\n28rIEkUSR0jxwqDP+YB1m7PakBL+6NEB33/ucEACaKA4cvzedz/n1375g65yt+PLzSYyQK4iTyJq\nY5mUmkArH1gP1ocbV+1eVv17k8rgZ5Oa4OC9e0N+9q1t3rs3JLj2/rvi4rnupxEgKOo2gP6oagku\nVs5Ce1uINtPm+WmJA7YS2BlKRgnYAJ8+n93J8Xzv6ZQHg4xhP2GuLfuDHt98MEIgeP/+FqM8Ybao\nomozuAKx2pxGJ4C/eGpwi/8/+88B33tc3WlGEVxjxi+E+E3gbwPPQwg/t7jv7wH/OfDTwC+FEFZ2\nRhdCfALMaD+PvW4j4I6vFl+EDBMrSSQFkZL4xabjVi9GCnFjbbbSFh+gacz5rD6O1PlAdV3N/LRs\nSGLFJ8dzCu3oJ4qHWzmn5eW69W1ksYvnOlaSrV7MtDJo69dKMnctxUUSauPaIq2lKmZBYFppjmqH\nB040oNtBNAcmzd0Y2o0rw24/Y9oYGuNRApCS57OaH38wRBD44fMZ41IzzCK+sTdgK99cUdW8sZwN\n/wFY/kbUHp7PDRuwKFrLda7sPwN+5cJ9fwL8XeD3r/H8vxFC+Ctd0P/6suxxf8Ymi6rOsB6UeHWA\nsTdMCaxN23N3VluqRfetaaWpjV87c131HrPa8fHhnFhJ9gYJzgW++/kpz6fr+/je1mto1bmWQrDT\ni9ntJ4zyZGXQ35S/0drjUq3kZH0gjiTWB45m9bnvka1eDn4AFVCXGzuEl8hjxaOjOSHAII2YNo6n\npyWZkpSN4dufHDOZa2rjeHpa8a8/Pd1oP9xpbVj3au15uNs81it/eiGE3wdOLtz3ZyGE79/ZUXV8\npbjroipog1er7beBJQDz2lIbd+MBptSGoml7oEaRRAhB0ThKbW42iAWPCx6CX/RUDQghFymdqwPr\nbWWx1znXX4QUZ51nq5cQSc5XHulikFFSMFuz+Jvf0d7829s5pXU0jSVWgsYYtDHsj3I+OSmojWeQ\npWSxIotjau34/rPNGMYBPD2tLv33vUG2sfdaxV0LfQH4PSFEAP67EMJv3PH7dfwlJFaSLFavNNnY\npJRQaUt/kWVyJiU4Hygaw9Z270av5TwY65iWmtp6nHPEkcKHtuKzNo7rpDEOsph7w5QfHswxzpNE\nkrd2emz14vPAelEeWieLlY0DrraCvmm2zWXveRMp7iqp6GyltLxVGxDtaqNaP/u9q3nvzjDnr/34\nHn/2dMrnE81eP2P3wTaRDJycNLyz20dF7edPEkEaJTzeYHesZ5PLA/9bOzf7zt6Uuw78fzWE8EQI\ncR/4l0KI7y1WEK8ghPh14NcB3n333Ts+rI4vEuM8tXEMsoStpYYksZIbC/7WQxYrlBTMK824dG0p\n/GtsyFnnKEyr71vnEaE19Tr7HFmssM5fGVjTSFHWjmEWIYTEGMvxTHOvl+BDWNl0fVVhVG0clbGk\ncXqtrKiL2TbG+Uv7B9y2GOs6WVsheKaVJYnU+WMmZYMUknS0/hrdlUllGgniYY+/sTPgk6MZ08oy\nrzQecF5wPG8Y9hL6xoMAZzxyg66qz04v17Du2s/pTl89hPBk8fc58NvAL13y2N8IIXwYQvhwf3//\nLg+r4wvmopTgQ6BsLE/GFdNqvd59E16SYIRku5cwylPSSF6pV58FxpNCM600lXFEQpEqxaiXMOwn\nxFISQruxa50/93xZpZm/OKaA9Z5hljDMI4Z5QhABJWBSGkJ49ZhWSTVFbein8WtJMdfR728rxV1X\nKjIuMKsMk0IzqwzOe1ofTlheLy2H102W3i1fZyUFRdNueBvnORiXaAv7o5TdvuLxyZxx0dAYy7Qw\nPJ/XvDHY3Obu9Arf5ekd+znd2YxfCNEHZAhhtvj/vwn8F3f1fh1/+Thb/h/NNZESiAA2BCptGaQx\nSojzQHTbnP6zStJJZdDG4UKbx783zNbKKmfHeHG2qm0gSxTT0pCIdr9gmLez5BtJIELy029s8b1n\nM06mNcM85if2hyDOyrleZZUsFi3uW+a6x3FZhtLZ+XgdeWgZ60GIQFm9eI8siV5a0VgP2jqO5zXG\nBWIlSJQkBMsfPzomgXMZaPlT3duQ4nHxOisZM68tT07n/ODZhGnlEViOy5pp7cgTxcGkaPcjFLy5\n3eP+DSXDdcdRafvy6LaCeeO4N7j1263lOumcvwX8dWBPCPEY+Me0m73/BNgH/oUQ4jshhL8lhHgT\n+KchhF8FHgC/Ldosiwj4H0MI/9vdfIyOv2ws/9Ai2c5wlRRIAlJI5o1luPCp34SFwFnAfHxaECtF\noiRxJNvNXSVXyiqwerY6zCKsD2z1YlwIbcAXgliJm2UjCQFC8M03higxpDKesjbEsWSrl6w8plWy\n2LhoziWmM657HLXxNNa9NLBV2uIj9VIV6k2KsS4SgudkrheDbRu4i8ay019uYNMwLjSDLCGJJNp6\nPjmYcFhafurBaH0g2lA258XrrK1rv4N5yu4w47icY63jXpJirGtn/72M9x8MUQTiSFHf0jHuZT+p\nyyXIomqAu7NtuDLwhxB+bc0//faKxz4BfnXx/x8Bv3Cro+v40nLxh1Y2hnGhOSk1W3lMlijcMCdS\n4pXZ4etinWe3nyGFOH/fM6lktCYHe9XG5r1hxucnBVu99Dzv3AXPKE+v9KNZZrcX84dHYz4/rrDC\nEwvF7iDmgwcDpBC0OQ8vs2og6mcxRWPOVxzX8cU5w7i2RGj59ZwXi/uXH3d1Hn+p7UsrkUEWI4Cj\nWc3xvD3HvTRCW0+hHYPMv/RchKDWjkY7AnBcG0SAJFGvpHKe0WyocPfiquRwVrbtFo3l85OSorZE\nSnJaakpjQVh0iBimEQiBkoFZfTv5ZfnaDuLLB9nphjqPraOzbOi4E5YDatlYDiYls8YxqSzjWrOd\nxWzlMYGUyaJI5rZUxhN84KTSxErSzyKkEDQ2rNWrV21sppFif5gybyxHs4Z5behnEbESPNzuXVsC\n8S7w2dGMR5MCY0DIwNtNj596OFwbuFcNRFms8D4sev/eTIqJlDq3/T0bNM7uP+M6m7OltjwdVySR\nop8qysbyh49OUMDzmSZWAhMskpwkVuT9hGZJivJeMK8NT8Y1lTHkccyksjwc5FSLgWAlG9qFDMFz\nPNcEHwgIjubNeeHW4UxzMquQUhJFrcR3ONP8eT3mh8cF/VjwUw+3+MX3b9eYZfnaJlckHQR/R3ms\nCzrLho47YXmz9fPTkqLxDNOEvUHKKE2otOPZ+Cyz4fbZEmd5/AjRSgwCxqWmsY7t3voq1FUbm7Wx\ni7+eeWPJ4phhmpBGEUez5tqFPH/4eMxJbbjf7/P27oC9fs5Rpfnu59O1gXtdnUAWy2ttKL/y+WJJ\nnrQWbcZ6BJAnijx+8fzrbM6eFs0iI6d93rjSHE4aprVnkMWA5POTmqPyhR2FWArnZdPww+czUiV4\nc6dHqgSH05LDWUV+yYy/3FBaj3GesrF4zpw2PU9OKlxoC9yEBBM8kQyUNvDZYYmxsNdPcB6+9cNj\nPj28XTrnWfXyrDIczC/P6invuOluN+PvuBOWbXsntUVFgsI4cJ4oEvigOC40AtjqxbeWepbz+MUi\nq0dbjw9tBs46Vm1sGus4nGuOpzXOw9QYToqat3Z63B/lPJ9W7PbTKw3cvv9sRqIi4lgipSBSMVGk\nOJg1lw5EN7U7vozr9P19IYO8qIHIEvXSNWlseEmXPhiXJJHitGyQEsaFIVaCR0clgyTBB8/buy80\n6lndtp603jMtWsnk/ihnXGrGl3jub8qiTdv2HM4ay6zWi+9Lm5abxRKEIJGBREYcTwrSpE35bL8T\ngjyO+NMnJ5emxV5FpCSPTmYU2nE0v9y2ozFd4O/4ErIcUAkOa0BKQeUcKghiJcnThGEe43xYqXff\nhOU8/nopiCt59Y/z4sbmx0cFzgWMD4BASoEMgsNZvRhcDDv97BVZBHhJMjGmXYGERBGCQEpQBOwl\nP+rbZti8zuu1OfaOJJLnNsST0jBcanvYBkF/PuMvakuhHWms2grcYJhriwN88K9kLhkf2B5kNIss\nIynggcpJlURckh+/KcHDuEBjPb0kYpjFHExrGmuZN+1gN4hjXBDY0G6u7/YioiQiVkCk6CWBk7ld\npMW+nsPstDKU2qFgcX7WU96xnXgX+DvuzKDrLKC+ud3nO5+eYBEEEWhqh1SCX3xv59Yz2jPOJJLl\nIO4WuvhNKXUbvEtjsK5NTVSiLeIqa4NUq03agJdSJ/dGGd9/OuFwVhNHEQRPrODn7rCJ9yqul7Fz\n8Ty9fHunn/J03FabJpHEBZhryyCPmMw1SQR1GTA4GuvIkoijQnNvkLX7LWnE8axBiPaVhWg3/Ley\nhIeXpEluqnJXSWhMe2yCtpZkVjj2t1J6seLTk5J5rRmkKaMsoXaaXpQQQrsJP64M9/LkVg1tToqa\nUZYQR5IHg8uf02n8HXfKF2HQFSuwCOrGYrQ/980Xi8C8CV/+TfoBJUrxfFIxr9sl+cFpxfG8RgQw\njlcyhM5M2mrTDqBn5/KtnYzKOCrjFhuzDuMC7+2u92FZdz1KbV8qMtvk9RGiTS9tj9EjCO1t8eKa\n9JKIh9s5UgSKxjLqxWzlCTIILJ5501a2DnsJBMGkNEyKhpOiwTjPg2HKZDHjjaSk1I5xqUG2K4m7\nJlaKQMD7AAGySLUSnBCksSJ4jwiSLJK8da/PrA7Mi4ZSOw4nFZPS8vPv7Lz0mjc1ALS+XT0CPBhe\n3tFl2LvbNm3djP9rzosCnxf67qbbzJ2Ulnt5xCwSaOMZ5BHDWGECl+rvN2GTEkmq4GTepvU575lp\njajh/lbO/ih5pUHGWU59pV9OnTRO8JMPR8wqg5IKpVJGacS4shjnVx7bqo1W4+BwWrPdv55lw0Wu\nWtFFsvXNGS5di1XyWy+Jzj+7tpadXsKsNpxWgiySBB/QxlEaj6TNHKq0Yyo1SkkebGd897Mxk9qy\nlUXcG2QME4l1X0SXtMAgbb8fjW11/Q/2+xjvOZlZ7g0yHowkLngeDDN+7F6fo6LmpKjJYslP3h+w\nO3x5wL6pw+xWpjgtDEFwpdSTyC7wd9whlfFo688D/l20mStqTWU9mZT0ejHeOSrrKW6ZF32R2xQh\nLVNqTxRJEqMIEnaylDRV5FE7M4YXKaDLUtXZuTz7t8Y6dnsZgzwmlgopoRdHaLs+cK9K5zTWn7tY\nws1khuVUTSEC06pNVdzuRefZQa+zoTzMEowLbPdS+knMwaziybhq895pK7mySJJEiqKxnMxqPj8p\neften5/KY+aV4YfPpijZ5939L0J4EDTWk8YRw1xyUjTMKkMUCWrrEQHiWLGdJPzgYEIvTfiJYZ/3\n9/sYG7DWMa70yut+Xbb7KQeTGiEk9opENnfHg2EX+L/m2JUFPpttM+cRPJ/UHExrKuPIY8WDUcZ2\nf5NOLC+47Z7FaaVRglYacAEvAmlQTBvLbr/tAbtqZZHHbeA01mOsJ1Zt1su0MLggUBKyRPLOTh8f\nWBm4V9UVaOdJb+CeuVxopa2ln8aEEJjWhkQp0lhRGY8QLwafm7qnDrOIEAKHs5qjeUUQga00Jook\nSkrySBIW+wQBwbNpQz+OEFIwKTRRJOmnMeNC33kGC4ujSCNJqS2z2qO146RoyCJJbR3jxmBLzVtb\nPea1JxCYas3jcSv/bOcxzovXqqU4QwDv7g1aH54r4rr2P2I//o6vNq17ZXhJG990m7mqMXx0NAcZ\nuL/VAxn46GhOtamyzCU2sWdRNJbH45LKOJRqt4fHVUNY2DfEanVOfZ5ESAG9NGK7n7CdS56cVHgR\nGPViHIHn05osklTaUa2wAFi1V8HCMmCZdTLDWaGVD4J+GlEbz2dHBSeFJo0ixKJ61jh/nqu/bBNx\nf5QxyJK2W9Yl5yxSksZ69oY5794b0FNnFa4CYx2lMfjQplEOUoUNAYfAWo9S7V+hBHPriJVi3bdt\nc6707Qosj1uJqXGBqrFMKsvJXHM6b4vQpGoL7U4KTSYFb+/k5EpyMK0gXM+cbx3Wt1bdb+702Rte\n3kR+Xt9Nr+Ezuhn/15xskWPe+pOE8xlyskEL2oOpYbsfMa8803JOGim2+xEH09f7cl82o1+lkd80\n+6KqWwdJJSRx3BY/ORdozOWroIv7DI0T/Pw7W/zwsOZgUpLGEW9v50xri3UeuSKFNVYSHwIfH0yY\nN23u+1s7PaRYLS9d5GKhlRACBBxMKu5vte6iklZiPls1vM45s87TGMsfPzrho8MCETzv7A2RUiBC\nwDiBdoE8aQfJXiwpSo1BYHUgUgIp4H4vbeWxNed0c/PeQD+N8b5djU2rpl3Zeo8UkkgJTucNjWk3\n4JMYPj+ecTDX5BLevJe3qUG3IJJtQJ9WmtPicplzXNztKqib8X/NeTFLjdnpJ/TSGCnYaHes2lgq\n7REC+nmCEFBpT/0aS/yrZvQ3aY247vUr61FCUhrH8azheF4hpeA6GXbLq4FYCfppytu7Ge/sDnkw\nzMmzlNp55o1BrKhYnlSaz44K8jjmnd0+eRzz5LRqs6CWsm7WyQyNDQjBuf3xvG5tphsbkEJgnafQ\nFsmLVcPrnLOn45LvPp6SqIiHOz3SJOaTwznGOnpZRD+N6MWC3YVktDfM2n2eSPFwJyeLFI11jPoR\nu4P1s99N7QJFShErSS+N2e4nFI1jph1xJBlmijRRBNl2XEuUYDJ3ZFnM2zs98jTiYGwwt6ymDcCn\nx3PGpblyU1jKTuPvuEM2XTC0iuA9jTVEMkJrh5SBxlrCa+iYV81Ob9tU5Kzyt9SauXF4186OZSh5\nb/9mtry9VPGD8ZzPT0tq7fB4Uil57/6INFLnGvgyT8clWRyRJa34cfb32bjk3Wv49EoROJzW0E70\nKZq2wfkglTS2bX4zSCNMWNqU1nYxEzXn2UajPKaXrJf7Pj6cY5zjycTw+KQkAEF4Pj6Y88YoJ08U\n/fSFHDLMEx4OM/6vjw6ZlJatXsRPPNxif5ARyc2tLteRx7Ld56g02gVKayF4irotPDsYlxxOarwU\nnM5KamMYV/D4pCKLBQ92epzMbzcMnRYNRnuOiprnk8srd3vJ5rz/V9HN+DvWatabYpileK+IFGwP\nUiIF3iuG2eU65yqump3eNp/fetDOMdGWXhyzP8rbTUht0YsVysXGLeu08OxMGxaBfhYTKUntAsM0\nprHtpvpFKuPPg/0ZkRIcFfpa+xaRFMxqjXWBaHEda2PZyhPe3O7RjxU+QKLE+QAfgCenJda1ZnbW\nBZ6clpfuPx7Paw6mDdZ5+lnEvNFMSs1cO0JoJQ0f/Pm5+vj5nP/v02N2Bxm/+P4u+6Mef/F0wnRh\nJ3HXREpSNJY8idkfZgyiiNq02UdFZXh0UqKB7TxlWho+nwIGHu4OiIBHRyXPLrGWuA5PTitOSk0/\nTRimlwf27bxL5+z4krPVU7y91eP7h2OKo5J+qvjJ/W22XqNI5bIZ/VmQOZrVjGtLItuK0/uj/NqD\n2ZmR1oNeTmEs01KjJDzo9xb6r2+LkhYploJAZdy5pLHMrLa8tdXjjz4/ZlI6kkiwP0w5LWvSqN1U\nv0geS2pdjVbCAAAgAElEQVTtXgr+k9LQT9S1NHgXBPdHOcfzmmmlEQTeGOXMtCMtNYlqj6GXqPPj\nndeGQRZTasN8bkhUa7k8rw1bazT+SgeMc0xnhmenFZWzSO+wPnA0b+hnrSvoWSrpo+MSbR0fH84Q\nQZAkijQSPD4umb9zt92moN2T6KcR00ozqQJCSYapJI0UBzNNGqtFmrFhrtsheWLAn86JBWQSDia3\nM2k7KRqch0ljeDq+3KStuVtX5m7G33H3xErybFbxzu6AX/7mfd7ZHfBsVr3WymLdjD5SbW72SaFx\nQbCVJaRxjHXhRlk9eRIhvCBOJdv9lP1hzqiX0u8ppGwDR6UdUkqSSCJlm6GzqlXeSdnwZFIxyjPe\n2hmw00tprEPXfmEd8OqM/+F2j9pY6oUfe60dRWN4a+flphzrNHjrHD7A/VGPb+wPeWOrR2EcsYD9\nYUaexBSNPV8NwJkc1DaQb6+JxFhHcUn0yWLJ00mFdZ5eFhGcY64Du0lML2tTH4/mzbks93RcMi4N\ngtZ/H++ZFJrPxgX5HcsacKGqWkkGqcILyWnZcFRUzKsG6wWJUnjX9vr1wE4vRwkoXZuWfBukkBzO\nG2alRvvLI/tnV/TkvS3djL/jzqmtZ5AKDiYVHx8V9GLJ/iCmfo1S/bNmJE/HBZXx5LHk4XYP69ps\njRDAek9RWxrTegK9EQJ5rK6V1RMrycN7Od97XNOEgPSCJAbnIvYGCUVjEUK0Fr8+IBeFb0VjX2mV\nNysdh7OSz45LauNJlWCnH7OTZQzSeKXGv5UnfPBgyNNxyaTS5LHkm28MSSLFbMkZMo7UyswrJQVF\n3aBdex60ac/LxDk+ej4ji9teA3ZpINTWclouirxo1yHOe3Z66wOyEIJv7A0otOPgtCSKIh70JT6C\nSAgsgdL481XKpGooGk2pA7X19FNFKiGN1Rei8VfaMG/cuZEfQlCUFu0MtXZUdYOJHUJBCG3jLwcc\nFRWJhFxCfMtpcqwCiICxYSH1redPH5/e7s2uoAv8HXfOTBsK0/7Yt/op1loK45npm6dzlrptjtJP\nE3b6bQu/o1lDFisCgtLYhUWwpJdFlI3jcKrpp/G17SHeHKb8iYVJXROcxGDZSjN6iWirmj3EkSRa\nVDoXtSVZERWOy4aPDwtiAfdGGUXZcDBteHu7bQcZrVnxbOXJSxLLchOUs7aFZal5uP1qabVAMKkt\nxjiEkhxPKioX+GCvz4OtHG09p6VBCPHifAhJ2TjyRJAlklp7Ku3Y6a/fg9nKIoxz3B/lpJHkZK4x\nwdJPWrfVIAV59EKW8yHw+bgiItDLe8yKmgPv2R/lDPMYxeoui5taCxgPaskmYVYbZrqhl8Rs91JO\nphXGW3o9kArwMAR+bH/EZFZSWMf94e1aIWZJTBbVRDLijVEPmK197JPx7WSlq+gC/9eEu3LgvA7j\nuaHNYVE0TRv0JI7x/OaB/7RoFl21HJW2SClQot3QHKQxs8pinGOuLdY4hBTs9uJF27zrZeVMKkMa\nC4bklI0mOEnjHB8fVgs75oh4KU3IhbByNvhsXLLTi2isYFYZYqkYpoFn05I8WT1jX4V1nq1ecl4R\nHElB3ktemrWfMW1M+6OOIlzwVBaMNjwal21nrEQRSfnS+ZAicG+QMClbI7i2yClZWWdwxsPdHgT4\nfFrxbFIhpWdv0GdvkDDIYpxzDPNWloPWlE2GwKSC06okkjBIYN5YZitksjM2tcWZKIFAnst+z8Yl\no0U1bvCe0SClqhqenxakMWxZsAF+eDBlmMI37vW5v3XzZIRlsljy1laP41JjrshoKzdsZ3KRLvB/\nDbhOa727JFGC09JjrUbFEc5YoijirZ2bL/GLxqGdX2jSrTARRwoJC8lFczw3yABBtr1SJxVrNylX\ncTCtydIYGXliJRBC4LxjXBrKxuECEFq//lgK+lm0Wqf2gcoEjDEgFLVukDJm1GullDxfHUgu9rYV\nCEa95KVm68BKV8uqsRi/ODUISm3QNpBYh5KCSWVIIsmuenE+lJAUdY0L7Tl0oe1TfJkPzYNRxvee\nznhzq8/eMOez4znjouGD+32MtWSJYm+Yn6eLFo1hpiFNIEkitLbMNZw0rXy1Tvi4XR7NC5JIcVJU\n5HHEKJcIIZlWmlEaEUftRnd/a8AgjZiUmh+Ygh7w7v6AptHMmsAwTW7ViCWPI57aili+8HxaR7TB\nAspVXHnUQojfFEI8F0L8ydJ9f08I8V0hhBdCfHjJc39FCPF9IcQPhBD/aFMH3XEzrtNa7y7xAUzQ\nVMYyLmsqYzFBX6sg6iKNa1vXSdk2DZFSMqsMjsBuP20LrxrDk2nF82nJvHatNHKFprqMCe3sbFoZ\nGhNwHlIVEYKnl8UcFw2+lYnx5xW1i+cupXoK1bYc1LZt46h9oHb1pTUFpbZ8dlwwrSzWeqaV5dmk\nfKWEf11tgvXtCqE2lpN50wYpJQgIvKdtfIJ4yRzSB8+scXjviYTE+8XtsH5WKoTgZ94Y4gkczWsi\nIXh/b4i1HkQb5LL4hb2FXhSNTUp4PrZMSnAOdN3w6dF6yWNTxEpACHx8NOWPH58yKTXjomFWtXs1\nxjkOJjOeTUpO5iXegPZwOC2ZG43VNeOivpUVSCShatrev+P55UPa66Q634TrDFf/DPiVC/f9CfB3\ngd9f9yQhhAL+G+DfA34G+DUhxM+83mF23IbbVrPeFq09zim2eilvbvXZ6qU4p9D65geQSAEIXvay\nESRSMKk0Hx/O+fPnM7S27A1y8lhxNDM38gXazmLGhUE7RxQJHI5Z3TDMErz3NMbTT2LuDTL6SYy2\nAeP8K1XFgyTGO0hTxf4wY9RLSWTE/iAji6OVA+/zaYVZ5OBH0WIfQEgOJtW1ahOUCMy0xbvWVrkX\ntyZkqRKMejFZ0pqrjbIXM07tPDuDhFEvIU8Vo17CziBBXxLUiqbdQ9gbZLwxajer8zQiSyL6SUTj\nXvb6qZ2jbNrgNxoIItn20y2K1jHzrpnXlqOyIXjRbvAKwbyyHBYlpXFM520LyZ1hQqUDDhgmsD/s\nMUoyHIqDWX2rydOksngPgzwiuyKTqXfLxkRXcWXgDyH8PnBy4b4/CyF8/4qn/hLwgxDCRyEEDfxz\n4O+89pF2vDbrGnhHK2apm27yAeCE434/Ri6MvaSS3O/HOHHzZOUsidkfpUjRrmSkgP1RSqUdf/xo\nzNxY3tnuoWLFXxyM0d5zf5hQ3GCQub+dIdWia5N17V4Bgu1Bwqy2vLmdE6nW/iBSbXP3ZoXnTZ6l\n/NSbW4ggmdaaSEh+8s1t0jRdO/BOa/si84Q2wAyzGHtNy4ZISfqJBAEhtAPQ/UFCtHCmDMEvjNhe\nBFshFLu9lEGqyGPFIG1vt3O31VTacDBpK4Q9oGLBuGiojEEtjOyW00Gdc6QKEFDVbeGUBIxsm7/f\nNc8mJXXjsCFQG0dtPFIGZJDESrDdT8iSGB8kQbS/GS/a1WoUKSIlmV6YPNx08jQuG/qpYphGiCua\nTA/ju3GuPeMuh9q3gEdLtx8D//Ydvl/HGi7zW9+U/r+8eaytpTat6ZsPHuckToASrUQQSVCRpJfc\nfDk7SBWzum3UffZZtPVtRWQSs51FFE0rWSRxxLOTitFbMfkNOmbkkeT97T5V4ziY1GSJ4p3dPpFs\ng8Qbo5z+0ozszMb6opf+MJGcSMn9rZQ0js4bmwwTuVaqOftMFwvUnHM8GZcvpbCu2reIlGSYxmjn\nF5lDAoJnp5/xYJQzqzTec75CiZV8qUGIEOACeOPY6a+fddrFZz6eeT4/KYlk673fS9rsKWM9jX0x\nG06TBKkanAYRQXDtNkQWwaxaP2veVPgbl5qTUuMsSBU4KmvwAaFaD6MkSwmNptaG4EGEVopyHvAe\nqx2iJ66VUruO1hnVMq4Nz2eXWzY82NpQM4w13OXO3qozsnaYE0L8uhDi20KIbx8eHt7hYX39OPPj\nWTVj3IT+vyxxWO85mDScFhrtPN4L8kRwMq+ptEMtKmzHpeb+8OY/61GekCetg6WxHh9aB8gQoJ9F\nDPKEyjhY5O5r52kaw9YlOekXqbVnahzv7Q/45R/f4717fRpniaTjxx+0DpTLsou2jn4avbKy2htl\njGetG+PJ3HA0rZjODfcG6Vqp5l4/Yd5oTouGadn+PZgUjCuL94KtPMF7wQ8PZkxWZMNki81Z5wNK\nCfqJIokVAs+k0gyymPtbGZFS5xr1dj+lMIbxvGFStn8LY9i+JJ3T+YCQihDawcN6j0fg/JkUFUii\nF5+vn0mcBaFARe1fT5sbXzR27Qy0t6EIVWrHrLDMtOW0MFjrmTSWadH24Z3MC4wLxJGkl0rmAaqm\ntRSf1xW1dwzzdDG4S6yHSanXpuSuQgn49KRAO4e44mlv7t5t4L/LGf9j4J2l228DT9Y9OITwG8Bv\nAHz44YdfRC+2LxW3Tcdc153KehAiUFYvWi9mieKKlehLLA8e46Itf69NKwekkcIHgfeBw6LE+jY4\nPdjO0L6VmG7yWWIl2e2nr5yL7V5MUVt6cZulYW17vmIJcdS6RV6XQhtSJbE+0PiFB7sU5EnMg63e\nuWXDWWOOPFHnOfHLK6vGOtJUYuqAcZbgHEkvZta0cs6qzzzKE7JZQ60dmoCk1dMfbOWvGLc9HZev\nzPqlbDdv+0mElO1GrfWB7X7C/WHGtDI8OS3Pjdgq3VpEp1JwUBvqxpKlEe9m2cp00TM8UNYNJ3PD\ncWHAt81LaiMWVhHQT5PzVUWeJkhZUVmQvpVQYhZyj/Uo2mrZi2xqZmp8YFzWRFFEpNp9m+m8wuYe\nbQXz0qMiTT+ShNDW6DbAadWQCOj3FPfyiGjRaOeylNp1uACDPG7bU17R6Gh4x/5Fd/nq3wJ+XAjx\nDeBz4O8D/+Edvt9XlrtMxwzBM60cSSTPWy9OSsMwu77uuixxGOcX0pKm1J4kiii1YVY7hllCnsYY\n03ZBOp3b8+yIm3yWVYPYe3sD/vjRmKIxbGcRR0WDCJ63743YGSSEcP0leQBc8MSyDVjWOGzwBNYP\nPOculEtOp0eTZtGUJW3lEx9w3jEtDbVx501dXjqXzrO3CNBnQXPcmDYrZYksUStn/ErAziDF+7BI\ndlVIKSibhsOZPG+1qK3ncNaw208YFzUnhWO/n5HuSBrtOSkc+bjk3mB1KxSjLR8dlaSxZH+U8Hxa\n82RcMsoj8iQijyX9LDm/tt4ElII0tDN+t4jyUZSgZCCiDbQXSTeU3OKdJ4sjnAjtZMdLUBGRiogi\nKBtF4xyWgDXtgNNX8OZ2n8ZonAsY6xjmL68cb9Io3oXAKIsxSvFmP+OyAq5VVd2b5MrAL4T4LeCv\nA3tCiMfAP6bd7P0nwD7wL4QQ3wkh/C0hxJvAPw0h/GoIwQoh/gHwu7R1GL8ZQvjuXX2QrzKbaC5y\nORe/ZDf70i0bp8WqrSzVxhEtOjI9G5cMEoETcDSv6acx/UjwZDzb2GfZG2T8G+9s87t/VKKd5917\nfd7aztjuZxS1pbqB938sJTt5RpABawNZL279e+TVA9PyoORoq0UPJzWNa3Pyh1lCY150v7r4mSvj\nMS4wyOJzvT8Sbf79YCkTp9aOfEXVmFKKQSqY16btMRu1rQMfnVjA0s/a/gtJJPE+MKs1B/PWiM76\ngCktQrZtIg/mmp9d8zkP55qHoxyhwNnAO7t9TouYWrdWD9liMGx7OFtmdUMvgaifEEK7lzCfa4w3\nvLGdk6rWD+fsm6doVwSb2vaNlGKnnxBFbe/jjw8nvLGdgoiZ15qtXkKaSJRUTBLD0HvSCPJUMswz\ntLEcli8PTTdtti4CDOKIeKB4az4A1kvaV/T8uTVXBv4Qwq+t+affXvHYJ8CvLt3+HeB3XvvoOoDV\nDbgv67l6E4Roi0nqJT/+rV5yI6lnefN4u5/w9LTCeuilrYGZNvDZiWa2mKBKNNt9+MVs97U+yzrZ\naytP+OD+gM9OChrreTZtmFSWYRYzXFMstYr7WxmfmpI8jsmHiqpxVMZyfyvDOM/zac1JUS8yhQJb\nWcx7ewN6FzT7RAQ+PS7wwZPECfPaMKkM+4N47Wde1QP5wTDj0+P5uWtnrR21sXzwYPjK89NIMC7M\neVPxsrEcTCsyJcjiRSMW5xeZQ+31D85R6oDAt1Nd3844e8klqyQBcSLRpn2Oth7jLA7Js0nFIIsZ\npPG5bNjPEp7NGmYzTZKA1hApiGSE9XBvBCcLe5ocqNrD4N7WZkSJvWE74M4b3TZPdxBHCfeHKWUT\n8eS0ZFpYVGSptcfadlVyNG0QePqZIlHxrZqt3x9mfHRU4JvAzuDySc5V/35busrdLwG3bS5y2f5A\nJNtm2MOlmafz4TwD5TpcNE6TBPpp29JRIDit5hwvgn5E21XpWQGfnkyZVfpG2RHrZK+2WbjmtNTM\nKkNjA5OytXGAsNLXZh0PRjl4eHRacDyvGWSK93b7PBjlHM8bHp0UlLqVx0KAw2mNEPDB/dFL0o22\nASnBOdG2bRQBGcBZv/b6xartTLUcYAZ5zDffGGGdPzdu++DBkK08eeXaAvTTGBcC1nm08wyzBJ14\n4kjhvUfbdkN6mCekkSBPIp7PSxRtCqgQbR77vcF6i4tBGvHZcYUNntp65vOGUjt2Rxmz0lAau7DW\n8AwzRRRLvAEC1AZkaGe1aSyRQhBHERkWQ6v1Z7TGaP0bDNiXca+f8uikYpAmqB7sDVOmRcMgUVTa\nUjuLkI5+knIqGgoHfQEgsd4wKSzfvDe8VbP1e8OU40rz6Kjik6P5pY/dvSSjahN0gf9LwGXpmFdx\n1f7AbV77jFXGaUVjGGYRgyzhdN4OIikQq9Zr3AAH0zZgrTMcW8U62ev5tGJeWwjghaAXS7xopZai\ndvgrNtOWGWQxn9o5W3nGdh+Ch9o6BlnMJ0czKu1II0UctVksjQ8czzVvbr8s3fgQ2qrV4JFOYIMj\nUgrtWXuO1/VA3spfNZlbdW2LxreN3V2bWeNDKxuVjW03m6OIQXaW0x/Y6WccTWtUaF1Gk0ihrQPr\n6V/SvGa3n/D9Z3O28xglHHWscI1hK49RkcJax/G85v6ova6pFBgPWQJZmlA3mlpDHifksSJLE+4P\n20bsSRQjQsAFTyY3EwDzpC2iq7XDec97e0OeKbXIPNJkUUSWJ7y1PeBoUqFwSNVeD20lzgSkUtc2\n+ltF26DG8nArY3KFF8+od7eVu13g/xJwm/aIV+0PxEouZssvvGF2VjQVuYyLDb7bv21jD4CyaRWE\nhhcNJhRgGm6cHbFO9prWlkhKdPBEwGll8ARiqfixQY/CXH8FU2mLB2pjsEEQiUAUtee/1B5F2yi8\naBzeB4IHbdwrxTxSSQaZ5LRwVNYTC8jT1kJh3fXLkwhbG3pp/NJAvCr1s9IWH6BpXmRkKREoGksW\nteq4FAJtPcMsYkclnBYNs9qQRoKH2zm9JCKOJR88GHBaGRrjGPZidvKY+BIf4iSOUDLwP3/rIw5m\nDf1Y8G+9u08APh+XeOeRSvD2bh8hJNYK9keKw5mjLDSRgL0ticNRakOuFGkSmBSeCY5eDA+3emz1\nNyN5+CBABj4+mDPXBiUEwzxm2mgOZzVpDIlo21M6HA9GUGloTOtt9HAnx7rbWZxMasswVhyVmmfj\n6tLHhptora9BF/i/JKxLx7yKq/YHjPPUxjHIErYWgWZdxsk6Ghvopy9vwwkBs9pxf9Qj0Oq1y5z5\nnZ9lSVw3O2Kd7KWkIATPyUxjXGidF4OnXvjR1+b6lg0H04ZYSh7u9M+Db60tB9OGXqJ4XhlK60gi\n1VYQW4dQgXDB22Z7kPCnT6bksWR/FFNVhkkZ+Nm313cEu8kgXxlP2Vi08y989BeN3B9u99tMLSc5\nnFbsLBqaTytDCG2LwTOSKIIgGfXS889rrD8fyFfxrz4+5Hf+8DG9VPH27pBpWfB/f/ycxnv+nZ95\nC68kEng6rtjKI8qmbWBzbysmVQnaGapaUzaWNIp4Y5Tx/WczFHCvn2Fcw+fjkl94a+fa1+0ynozn\n/J9/dkBpLATJuKqZVpaff3uHd+8N+PxkRmU8O0oghWJWOQYZ3BvmCAG1Noje6gyn63I8r6kd7A1y\n3tm5fMb/0cGMn39791bvdxldB66vOBeLis6Kp+Z1a88wrTTaeg4mJZ8czTmYlOhFDvx1SSPxSuCe\nVYY8blca2Zrpxdn9N9mvWNeB616/rRYVwVMa1xYUBUEsJNPGIa+qmFmi1IYkemGbEBbFYs+mFf1E\n4WnTLq33WBcQSrA3eHVpngrJVi6pfeBw2jC3jjyG4MJGbDFqbZg3rZYeqVYrny72TKLFhmsk20bn\ns1rz5LRiXrfnZlJZHh0XlNqy04vxwXMwrvjkcM7BuMKHyxux/P5fHIIHJWOcBylijIY//fyISlsq\n7UhS0TY5MZ40SXAeqtpQNJZGty6igywhiSSN98TAvIFnk5ppEYhVm3+/Cf74sylPxyU+CJIkYl5Z\npkXNs2mJkoFaezSe55MaQqDU/z97b/JjWZ7leX1+w53fYM/M3M3dw2PKrMqszBq6ulRiAQiQWPQS\nsegFKxa0WvwH9I5tiTUbeoGADRIboMUGoUYNSPRIU91ZnZVDxeijzW+6429i8btmYW5h5mHuEalO\nMv1IIbN4/uy9++679/zO75zvAMbEhbgfejaNZedbtl+cD4QQzXu+aSfz+ck7Pf538S3iag/fh4jR\nhxCROwheLjuMc+RpQpmqEd/dsVdld+5nLqqMF+PW9cIopDOW93ar8RhA21cJOmp8/E1nCrdVxJCw\naizzKseGDmMCQkWETqnlnc3WAco04WTdRSnh3tIaxyTT3J/mTPKUSd5DCAwuYuX38oT39yaIa4tL\nEIF5kWJdR4ckEZ55lUX1y1u4C5eevi7EEl5Aa1zU63H+lQG99RG3fxHWe+oL2Whgkmu6wTEvFcvT\ngTxVl9LOPsDgAsfrlp0q46zu2LYeLwLdIPA43t+73XhkWQ+UZcaqNfTGYqwlTaEeIku2zBQSye40\nw/nAtFBkWnHeOkLfkygoFezkGdMi4XTbI1Wk+zsHUoL38MXZ64egd43PzzakQvJ02TAYz6pu2Kky\nzhvLwSzudpZNx8m2w4vALIPewtPTDUUieLgokBKendevtESvI7leFzuF5sQZNu1ACK+fOZ1s3+nx\nv4tvEVd7+Ke1IZGwP80vE05rLIMLSOnoRmOTAKy7gUd3NC4pU83DnYLzuqfu7WX/OBv7zInm0mHp\nIk8pQCm+Jjh2F4bybW2v/WnKwSyjTBS9C2gl0EJSppJpdndEeJUI/t+zLa11nNWGuouOXvmHmlVr\nuD+NrNY8iS5UWil647h+SK2Ju480S8iRBDzdYKIb1C04/nU7sGktLoTL9k3wgU1ruDcrXhnQCwJV\nnmCsox0cnbVMigQfAuvOclr3BKBMNKfbjipNqXuHlpHhu1elrDqHdXEwvmxjmyxRAkTKybq91cdA\nicDx2YYySyGAFLDqYF7CB3slAYGU0Y4+VRHD3loX9ZpkRPU0FqyzvFjWPDndctRAJiJpKzg428Ak\n+ebEf5drZrUdeHLekCqB0gnWw4tlz72J47zJ6Y1lkqfsTxXPzySrpiFVcG9e4p1l1QW2rcUHQZXF\nAunFsr2ck9wlFlXGaW1GHsPrUWzDG/BO3ibeJf7f8Ljaww9BIKWgM9EFK1GSAJzVPdvWEL2SGE00\n3mxbW6b6lRvgAnECkiJX9OtY4ZQSWh8hndNSv7Kr+LYM5SLVpFphXURppImI0gBKUL4BBf5kO9Ba\nz9F5y3FtmOSSRCXUQ9S4352kSCERgktS1WCjNMIF2xYiiiMA/eCQMuCtx8loluJDuJErsWwMR+uG\n43VPZ6JHbJlp7s1yHlwb0EspCCFQZglg0DJl0xvMEL2HM605XbecmI6mj/j0TCuUIrqVdYY8EXx2\n0nO06mhM9IQlCAbTkWrF9w/mN56jj/cmfHbc4uhROmPbeewAu/dyjI8VsbGB3lgeLkpWvcVYsC5e\nYw4QHl5uO3oTGIaI9PIB5Iiht0BtXt8Su+s144Vn3QwoBUo7egdNCzu5JXjwOMwQWJQJrTFgIWTR\nIF0oRdf09Da7BmCIwIa7Jv480Wgl2S0VVaoogdss1fM3YYa9RbxL/L/hcRXVo8ZqXklJN1abvbF0\nxpAWOYkQuBDY9APz4ttdGldbMkpoNC7eyON9nAKperW98xVKxbyigHi9Mr6pwoOokyMlIAWbtkcM\nkoezjFmZ3nlQbZzns6Ma5wJn40Cy7gJDFQfWH+9XHG97pqnivI1aOpNMsz/Lya4da6ZAuMC6HxiG\nKJq2X6YoLVk1A9Mbhh+Hy5qfH24otELrqNn/ZNXgg+NgVryip1Sm8fw+P685rQeKRFFqyf40ozOG\nwQWWvUELSa4Vgwt4HxicJ1VRk35R5Tw7O+PT4w3rweJc3InNUs3ritL9WcXje0s+e2qo6VHAe3N4\nb1qhhKCzlirV7E8zMq1YbXqcgdqBNnHYnwkwfbR77MfOhgO2Nu4M71J63JXVLhEYYLkFgcUSr8GQ\nKIKI7SWlA50N1K3BC8DHHZjEEZA49+oJSbWk7u9embsAjxclp9uO883w2uR7laX9q4h3if83PK6i\nevJUse3spY6484HBByZZSpVqkrFKa4ZI33+TuG27nRQpgx3iTUak4RvihVf3r7oQdcbTW/dK9dYO\nFq8VIxz81gpvsPHx3sTKSo1evEpKskTfWTe9HSxn244XmwZrY7toIHCy6VEycLzuGHwg25uwN6pX\nGuepO0tSyVeqeOOgdZ5Ka1IFxjmWrWN/cLGHf0McrjsIRDExLQBN8D2/PKy5N61wPso9FKlimmta\n46iyBCnj+606Q6KjTk4FtL0j0yK6a+nAqjUQBMu649HjBfMiMq2/PGmY5JosT+g7w5frhvI1Binr\nvscawccPc7yX1EMP3qMkfHRvQmcs01xzf1bQDpZV29K5mOx1BraHNsBy4whBoDMuxXourpUByJLX\nt4sXX5sAACAASURBVETuympftT12iDwCpcEMcVchrePD3YLGDKQqylsg4rlUAYy1yABC27gTuBKD\n9WT69cf3yrE6hw+B+7OS7eBurfaBN5pJvU28S/y/4XFdR2eSa+rejgqEgZ0iJZlItp2l6x2JljyY\n52+k1vNN2+2mCwxE0as0hb6DTYDlNvDsvL4ckpkb5AqcF+PjMW6r8A7XWxKlcd7FyjfTWOcJIn5u\ne0cCl/WxFdWbqBrpfTye1g30RtEOnjwRzMdq/eL9B+epe8vsShVvgydRILWiCNDZqOzonR+/lxvO\npQ8IIfj8uKazllxrlIJ66KMEdRYHtkeblqZX3J9H2KZxCXVnaDrDqnOUeRSFKzKFRJClgamWLMoM\n7wJmlFNWMpq/FLlCpwpCQKeKgjgnuC3WbU8qJWWe4oNAK0HdD5z3huA9VaYp0+SrecyYH3USpRpI\n4iC4NSClYJrDuh+LAzm2gzxMvgFCeVdWezM48hSKTJMlKVvVsGnBeKjyhPtViSeS1tJEovDMKnh/\nb0LTDZxsGtrR++ECwDBY90aM8Hg9RxJj3dsb1UgvIk/ftXrexbeIC1SPcTGRRTu9wL1pTplqdquU\n43WPC9EVyYVANzjuze7e478tGa/bgURJpIoX2toRRViIVV2WRmLNxZBMqzg0uypXAFFg6yJuq/Ca\nwbMoBVmiMDa6jUsR5xkQSNTdhrtaQiajN20zWBrjcd5TpQqtFLNck2eaMo+J9oLxbMdEoNVXhtyR\nT5Dz6fGG1gbKRPBwp2SSxdcyNyxGWgq+OGtGKQWFcZYvjjvuTxL+6acnbHvLJNP88MGUUxN4vBcT\nRKIkVZ5Q5gmHy2b8zJLOOLaN4XDbx2QvBPenOQ/mBRfZWGlJILBsDBJBnkgmWUqa3H7OFCl5PvBi\n2dBZixJxEJorzbRILmU4LnaCcZ7kORuIpTwxuacZnG1GA/LEs40KzxQ57E4Uu8XrE/9dmedFljEd\nAo21NMbiLEyzyGHojWNeaI7HFowSUGZwvIGVOSeXcH+WMktV9HHuHZNM3ajP9PpjTfBhXPyDuwQ8\nXI8oaf2rdSV7h+P/DY8LVE89qjWmSlBlCZ2JnqiTPIloDhNliI3xLEfDjruG9dGi8Pl5wxcnW56f\nN9S9YdlE2WWtBdetpQdi5ZeOMgHndU+RxBaGIC5Sgki1v6pCeZuNZJkqfAhoKchSRfBxqJ2qqEWT\nv4aFejXigFhz1va0naXtPf3gGKxgOvrKFqlCCkE1mtt0QzR+KccktG4jVt15z2dHaxIN+1WCVvDi\nvEaNKp/6hsVIi+iYxYWMdBBsu4Evlw2plry/Hyv8f/F0yXndvsKfSJRES6IT1nicvXf84njDYCzT\nVOND4Ol5w+AtWgrqzlIlCmNDxB35QN0N1L25hOPeFIl0vFg2KCGYFwVKCA7PG6T+CqKrlbw06PHe\nf6214QHvACGYV1lscXFlV8Com/SauJglWec43fasmv5G1uujWYoNlkwpJllGrsEGWEwztBKcNj07\nRcZHD2YkUnHSQ03s/W8beLIa6IZISPy9h3Puz0pWjaF5A75LkUQPhFmRMM+zUQvo65EBs+9Io+i2\neFfx/xaEdX6E/Y3EJ+tJdByA9cbx4d6EZojDwEWWUKZJFBW7YwzWcrjqyRJ1qfX+2cmWg0lkgvpb\n5BKaFl4uG+Zliglw/1KuQN8qV3BbhXcwy9l2Fo+i6Sx5oplkgmmZIMXde6aJkgjpOFm39MEhpAQX\naPsOmFOmkipT1H2E5TkX8AQWRRSDW7c29vkDtIPHywBeghZIJFp5LHFBu0mYzgt4vDvhdNPTGU8i\no1WlFoE8i4txnsXvZ924qKvDV4PGo01HOnr2lqmmbizzQtOPC8SiSPEicLrpebQz4Xjb8eFexefn\ndezRZ5GI5ULg4Sx9Bbc+yRMEFwu9B+dRWnCBO3UuErRerjvKNF5feaIJwXG0vPl8n40zmUme0NqW\nHigcdB344Jjd0Y9XCMFOmV5eE9eRPR/vz/jp83Occ0gkzsedRZUknG4M236g6w2d9Zy2BktMjkkS\n20GbFs7a7luheopU09Y9znsEntfpIBavU0b9DuJd4v8tiNZ4Butjn19faKQ7nJb0NpK55uWrKII3\nQSt0xiEll62eQHT0OhaSKh8wLg51L17x4np3RKTD0/OaB7P8TnIFryNwCdGTW0+VaDpjEUIyy/Ub\nqygeLjv2piWdNRgrsM4SnOds27KocjItMT62doSQTJJoxr2se1yIMwWlooTEg1kZ5Q/SBC0CZabR\nQty6GIkRgfO9g+kFspInZzV5JvEuQkCDj9LZLvhL/sSqGRi8Z7fMWFQZdW843nac1B2PdiqO1y1C\nCAyBeZZyXkeC2uACear48cGM47qjt5CVijLVrDtziVtvessnhxseLUomeYINsL+o6DrL4D1JItmd\npwglmWSRS3Cy6cgSzbxIWd2S5DxxFnK67aJMs4csh0REdNHz1es1beBuyJ40UfzwYMHhpsV4gRQ+\n+g4IQZkpyj7CdctE03VRGloRd5gyBWVhVb863H1TVM+VLxnjBTrlsu11NUoF/fDtmd2vi3eJ/7cg\n2sHQ9g4p4zAvHxOOdRHxcbrpOG9ihZkncQD4Jh61PggSKfj8eM2mswRgd5rivGfTGjofk/5tdi8i\nyMvfEyUh1ZcIofXoMiWE/Bpa6Hpcdcbak+kb21NeRG0ck0IwbASOgFAxGbfeIYBNN7BT5XHwOkIr\npRAsu5p5nl4moDxL6AZH7R10hkFBIiRk3Gq9eG+ScF4PCANpEvXuMx3VRpftQDNYylQzLyKT+GIh\ndD5QSo0MAR9gXmaI1jDLMprOYn0gI+Cc4HjTsigTqixhsC6KzSmoW0drHTbVFJlEiK+E91wIaCl5\nsWy4Ny3wAhZpgioztkO0bhy8G03XY3GxHTxCeJ6c1a8FCzzcKan7gXkR2bI+RK3/MpU8W78O+xLj\nLsie3jj2pwVBxp3YWkKZRC6GdZ5FWXB/JkilIElBDvE4wiWsGIwNbNoB50GNJLg3QfXEYsVzvGl5\nclojbtlUJykM35FUxW3xrsf/Gx7GxWo/CDGycqOei3GORMWWwM9frjjbGgSCs63h5y9Xr6AkvikG\nY/jLFyu2nYs46N7yy+drnpzUbHqHH2729DJ9ZHw+2i1QUl0e70VfOAq9WTadQwgubRpv07m5kJnW\nckTnDPatNHGqJOXZactp3XK27jhebnmx2uCN57PjNefNMGrIxwVr20VCViphsI51a1i1A5lU/NXR\nhnXdMRCo254n5y2PFsXljOV67E1y9qcpnXGcbDo64/jdh3POGzO6WCk2Xc/nJxse7+RXzlUc5J7U\nPb94ueSXL9ccbVqyTPJsVeNGXaHeDDS946O9CYmS7BQpz5cN/8e/OuTzsw3nreHl+ZafPl3SW8um\nM6yagfNtT+8c/dgm/Hi34qQx1IOjTBWti0zhg3nFtjNRK8k6jjYd59v+Vkx+DixGnsW6iYlfK0Hf\ne47XFue/ueV429znKrInVZKfHq052UY3tOW25emyRRDbgc572iGeo2kekV1KwqzMEQE2A0wLyWCj\nIftgA8u6f6NZ2Hkz8OVJjfeCTCu6Wz6a8JC/wYLyNvEu8f+GRztYyiyhynRsxfpYuQmi1vjJtmdR\nZLE3P/bTF0XGyfYmB9SbY9nGgSYi9qO7wfF83dNYR2ccZ7fk3hWx2tNXKqer2/ZusJdyz93gRhKa\nvFVA7uqikWr5jQvFbVFkirYf6Mf3kUR4Z54lrFtL13/1ehfEuLqPTl/GRRE0AfQ2Hn8Q0A2eIBVl\nGg1abvscUkomacIPDqb80eNdfnAwJZGBjxYTBJLjTY9A8vH+lHXvLs/VYC3H645UxjZNcJ7DVYdz\nnu/fn1LlKdY5lFA8WOToRFGkCuscz863eKKstfcBE8BYwy+fr9i0hqa3LGvDybZHjwXB492K7x1U\n0UKxszjr+XAx4b1Z1OZZ1gPD6PubpfpG9ArEdooUASlgGJOtkpIgwBruVFHfJtx3tZW26R3BWKRQ\nCCEQSmKNo/eeUiuqLM4ijA+8vztnokAo6IYeL2Cewe8/2kcrQTtYtBI8WpS8SXo+2XRoJclTxeF5\nx21NrLtIOnzbeNfq+Q0P66HKNNvOvjI0bQdHkWqWjWVaJhgfCD4gZGzbLJvbk+t1otaqszzcKVm3\nhpfLlt4GZnnKamxNvC7ONh1CCj4YBcGubtutj0mhNe5y2Hxh5XdTfBfexMZ5nHU8mFX8q+fndMGR\nC3i4qKgSTZ5qXPBsO8OmG3AhCqUVqWa3yggIgg8Eou/tvVnUw5EIMqWYTxIOV92t1os3maX3NjAt\nEt6fpHgf1R21VjxdtvzovUDTGo42HZ2JqCYlJeUkASU5r9sI3dWK1kQlzAfzDEJMtqeNpXOBR/MJ\n9RAF3sIoDndYtzgfZwAI2GwHJqlmWQ8oKbg3ySmUxnhwwTIvUrIsJuEy05zWHUWasFMkNybIi+Rz\nMC85mE1puhWtA+8dElhMYZ59sxTyXWZD296wNy84awzDYEmR6FLRG8timlEPHp8rPlhM6G1EPJ3V\nPVJGaZMHs5zfeTTj0eJV/ao3MVv3gcs22JfnNTkROXQ9ZpXE+3eJ/118i7iwVrxQajTWg4CdMva/\nlfAcrofo1jQmFSUFi/Lrl8ZtRC1r4pBzd5LTW89ZPbBsO5rW8otvMCivjePe5CtJhVcIOcHHpCni\n1jgAqybqyzw9Nzw7bzAusFNo3t+b4MZFwzg/Oi3F15FS8A2owMtoh4jz/uTknJfb2KKSgHE1u0VG\nkURET4SsRmPyTApsEZU496c53bgwmuA53g403UAQGi08G5OQqdulqJVSLErF4Pzl9yGE5Ocvzjjq\n4m4jzyS/s5jwwf6El8uGxjiO1j2ZVhy3sa8WjUc8z5Y9m94xzRJ2JhnOeV6ed9zbyZnmCSF4ZIDj\nbYsLAhBICU03cP/BHK2iw1qqBfvTAjsuSAg4PK95tm7ojSRXAbNT8sFicskszhLNLI8or5TI2L4a\nEsjzUaivSNib5bS9w3qBloJpob4GOrgtvsmvwhnP85MNL1YGGwAHVQHOGv7+X7wkVYL39yeEEMi1\n4vGiZFHlSBlRR/MiYZJqNiNH40JO5K6WoQDTXNN0jsZ6ln1/K4FLa4lS/5p7/EKI/1oIcSSE+Isr\nj+0KIf43IcQvx583uiUIIZwQ4s/H//7ed3ng7+JucbENlqPj0LSI8ssX4mi5VhwtO6z1ZKnCWs/R\nsrt0cLoaN1XUSkqqchzGjiQm7x3bZmBwMTG+LqaZZnBfDXGvbtuDEDjv8WGsOomyB4erjs8OtygR\nK71N5/j58xXNYCJhaRwwJ1piRxOVu7Z7OuP52fNzvjiDXMAsj+2Ily08Xa5ZD0Nc7Fxgd5pH9Uol\nkQLOmn48zymLKsVZz8tlXD2qXONc4PnZhm3nbnXVmmQKH6Lo3bxMKVPN8dmWnzxb4U2ErXrj+Sef\nnfDkeMvxpsf7eB69izDNw/VAmSomaYoMscVACOxVKTtlhlCxJZcoSZVFbP/5psPbiL1v2ojjn+QZ\nD3cqPtybcDArqApNmWnmVcrT04ZPTxpmecb3D6ZkiebT4w1PzmrKVCMQPJhmtEMUBLx3RevtooYf\ngAclzIqUx4sJGsXjvQk/frzg8V4JXrA/u5tC7DfFSdvy+bEh0XCwU4CEZ3XUUvprHyzYn+acb3sW\nueZ790rOmp5pofiDxzvsT1NWTU+q5bgjjT9XzYB+A/DA/jRn1ZlIXJOC25qpSnrSG+6/7zLuUvH/\nN8B/Cfx3Vx77O8DfDyH8mRDi74z//5/d8LdtCOGPv/VRvou3jm/aBkuleLTIOat71suBTEseLXLk\nDeSi29AT96sCYwNfHG755HSLFlGA7b29nPQbGLONcSjhWIo42Lx6vNYFqlTR2mgek6pYCZ5sO+ZF\ndrkYlJlmMJ5l3TMtQvTBNQHjI0t5UWZ3bvcY53h62pIBfYBtdymLz7Njixir4pNtx/NlTZZqHswz\nEq2xNib0C45BaxzTNKF1jmbTIYJlMpLnbpOiBhBEo5SLiv/Ldcc8T9l0luPtllxDmSl+cbrlP6yy\nCIn0mm3fsR0F7tohQSnJtNLkRrHt4/mUQjAvoxk7wP4kI0sEe9OC3gba3qKk4sPdDOk9z84anPfU\ngyVVEap6sun4y5crdicJ7RBYtg3WOnKd8FdHa+re4kOUbbg/zWhM1PC5iKtkviSJ38nH+yUn2wlH\nm5Z23aF04MP7Ez7e/24S/9mmZ1aBCXC6bTE2EqXOGvjsZItzFoHkz5+umU80jxcFq8by6dGWKlV8\nvD9llqdoGZm3b2oZCnHA/DsHU443LXVvKOBrfX4FfHRvB/Wvu8cfQvg/hRAfXXv4PwD+vfH3/xb4\nB9yc+N/Fr0G8bhvsvWNaZkzy9FL/XUiBvwFNcavtoQjg48BPa0FrLJ+d1FjjycrXJ34pYoK8Cmi+\nON7YWnIsyq/8Z4/XHYPjMulDXHy0jmbeWkqafogDXiVItB6lqe/a7hG04x5cEqvTjnijWCCRkpfr\nlse7Ffd3SobBc7yKvf77s+KVRfZCa2Yi4jkNY5tEjvpB8PX2WWcCrfEUWqKUQhCiWbyIsNFpEaUe\nvAvU/UA2krVyLSEEPjkad2Qqoo7KRJPmMr5moi5hiBdN9zJLeX9vRpXmtNYCkkWVIIlzIOM9mZbY\nJrBsB370YM5OlWGsx9pAmStSD72M7O2ttQgRJTJa4/j43pRusAwOJuO3fLEGZBLWQ/zey1zzuwcz\n9icF1sWdx6JKKG+zb3vDaIxlXubYcf7iXEdG1AOaZgnnjScgqAdDPgBK8eFeweP9kuBh0xtscJdW\noRfxJj1+66Mm/6LKmKcZj3d7np45DCNngKjjs1cUb/S6bxNve1YPQggvAEIIL4QQ9295Xi6E+GfE\ne+bPQgj/020vKIT428DfBvjggw/e8rB+c+MuZhNvE1orNqua8yZKOmRasigTJje4L93Gmm1t1PkZ\nRjNqJSSZlvTOf6Ou+JcnNZNEkc9vG+K92utUEhIZTTGQUYgMoox8ogKfHK3Z9JZUKfaqJPrICoG8\nDTR9w/vJAJtrjxpgKiJTs8gUz85qnp41cdFRgm1v+PHD+SuL7N4k4enZmk0f9d9FgFkGe+XiEo9/\nvX1mrON80/LTF1sG75jnKa3taZoBVILzAiUDynumk5RtNyCEZNsNQNTh8cB+meMJGOuoO8feNGNe\npgzW0xvHwTwCLLWERzsZvfHkTo26SpLWGh7vFjjnOe0sxjumSULTW3aqjEmq+OXpmrCWdM4jRUAB\nj+/N6IwjBM/gbBSOGyzNNla3GRHCKyKBnGEseWeZ5hkwuyIHHsbHv4vYmWR8elhjbWRHb4avdHL+\nx3/+BYmEj+9V/O6DXco8YXlWc9gZbIgyJ1JCleRsWvOV6KGWb9Tj1zKSHY1148LryBToELWJhg7S\nJO7mvqlF+m3jVz3c/SCE8FwI8T3gfxdC/CSE8MlNTwwh/F3g7wL86Z/+6a92svH/s/i2BiXXX+vq\nAuKd4xeHG+ohGqwb5zneKN7b/foW+7a20aYbOFn3nHcDgw301pEkKr6XfT2qZ9MOrHvYm34dDy2E\nZF6msWIc3+9gXtBZx5cnW7yP1WtvHIkWLCYZMkRxtsF4ni07QoA00ezquw0Jt625lWwkBXx6XJOl\nkqa3aKEZgkF4idoRX+vZ5yrh+ZljE6IoXQ+0Hfzxh/pSmO56++zzozX/1yenaAT3R5x+bzzPl4FM\nDxSlot04ZAI/en83Ip6Ggdp4rPW0xtKbgKBhd5KihESrQJ5KXq5aUiW4N83Ym8SFVivJ/UnOL19s\n6JwHG4lYKnim5SySu0L0pPVJYN0J9q1nUeYsTcD2jiSDugadwo8TjXFgR2TOLw830cazgtNNNB6R\ncYMIwHvjZZZrRTd4TrctPkik8OxNihtnTW8TH+5U/D+fRyJZlbwqjuYDnG3hbFuzOyl4f5Gzbi1a\nKfaAVWcZjGOap1gfLtU5m2Z4I3VOrSRPzrbUvWF3kvEXz6LMhQdWDeOCLZBCslPcnR/wNvG2if9Q\nCPFwrPYfAkc3PSmE8Hz8+akQ4h8Afx24MfG/i9vju4Apws0LyC8Ot7gQESlCCYILWO/44qzh9x/v\nfu01bmobHa17jjc9O1VKWkna3vHFyZZUCw5uMCG/GpMixRjHeri5tRSIw9KLcD5QpZpplrDqokXh\nrExZNz2JkCSJRDqB99Hp6qw2fP8g52YK2dfjk+MNy1vWqpWLuO6zJvDeYhLF40TUwdEySjZctSr8\n6ctzQoCJAq0hs1Hn/ZdHy0thugvW7cV3+5Nna1SA+SRFK8m0SHDOowVMymiUMykFeQKdsSzKlCZx\ndOuW2jh2qpwqjS2jk23HwbTg43sVWaKY5lEeOblSpVrnmRYpDxclm84iRER1nWxaVrXh4SyqdQ7W\ns6wHMq1YVCnbYWA/1wwpDM6hqjCig7qoUy8j63l3khHCq4iei6Sv4NLs5bQeUCrwcGeCVAHvBC5Y\nTuvvxnv2aNvz3hSa4esqCS5ApqM72F++OOMPHi84mEWMvpSCeZ5iEo8LvGJi/6Y9/nVrIgdAKvam\nBffnccdGgCqDWQHzvCBL5GuVUb+LeNvE//eA/xj4s/Hn/3z9CSPSpwkh9EKIfeDfAv6Ltz3Q3+a4\nq9nEN8VNC8jJNopMlZm+HGJarzlZ353A1RmDUNAPFuMk3nnyVFOkkj/8YO+1fztJFSLX3CSXf1tr\nyTjHB/tTkittpJ98ecZ2MJRoOutJpWQxSdn2lkSJO8syn2y6W8lGBlA6Zb3Z8vvvKbTS9NbifdQE\nWl2jYh6uG6YFbEyk/ksJ0wRO1uZS5+V+qqO5uo095qN1y87kK4u/gECJBJU6JmmKlxLpPVmqafuI\n/uitxziPUiIu6AFmeYokGupMipRMK3aquChdGNwkRYod+9cf7k1Gc5hAkWr+5dNA3TuawSJtNHIP\nCPrxmlu3lsW0YlYmeB9Yd9FEfPDRNlAoMJZLk/hEQEWUYU50PB9DD85FJvnLdYsSijIRKK3wHqwT\nrPrvJvFvB8PBzizSYoXiH3+xuvy3nSKls4Z+CJysPOvWkGnF472KKo/KpcttjxS8UoTAm/X4z+qO\naZ6SaMm0VCQ64f6OxflAqhNCiORBH+Is6VcZ35j4hRD/PXGQuy+EeAr858SE/z8IIf4T4Evgb47P\n/VPgPw0h/C3gR8B/JYS4sHL9sxDCT38ln+I3MK62ZNrB4IMmv1IF3IYDf11YD0JEAbWLKlMJwbI2\nHK06eh8HbjtVzvwbhrJXI080Veo53Vp668i0osol81G2+GJofGOIiHZIb3BaulWQTSjktR5oqhWn\n257F/RwtPYNxHK97JqWOUst37MUKpZB8VZW+8h7AXqlZNZpnZw2DF0xTyYOd6MsYwquJX3hYtl8N\nND3RdnBe3eDeJAQixMRijKNLLK2JMs3eDwQbh6dBgAiOIBxVLjlad2SJItUabw0/eXLOejuwM0nZ\nnWRYL8i04ON70/ETvFo0hOA53Q50o1KrRTAZ7QgzHWUzvAvRK7aSKBWPvcwlmYvw3VVrooZ9AkLG\n5xSpJvgoWZ0mkjJPqHrDqgffxyPZKaNuVGRaa9Zdz7OzGhsE00xyf56h5XfT8pimKYfrLcYG7DVy\nVGsGBgtdH69/Yz3ZuHAOvUMpyaRIuF6Ev+k9aL1AyMC2G6gbhwiOwXmaHvJ0IJMSyIiXxa+2230X\nVM9/dMs//fs3PPefAX9r/P3/Bv7wWx3db2lcb8n4oFk1A5QpeaJuNZv4xtdse5atJdeKKh8r/AA/\ne7Ek0QIpNd5bnp7X/I0/enTn155kmi9Oa/bLjKLQtK3l5bplr8x4sWpQcCtZ5awekAL+5KPdy+O8\nPsSeXauy5rli3UUj8oudQJJK/Mbz5GwzCtJFvfwH0+yNZJkfzbJbE38GyCRWo2d1h0ezbgzHm56/\n/uHe1+R5E/11M20LPBw1fR7uFJfSxVUWk9G/8fGC/+VfvGDbRUbpWWvpbCRZDc4ipcD7aFy+O4Ft\nZzhed3x+uuVw1bFue7aDRWpBO3hmleYXh4HeOM6agX7wpFowKxLyJLYLO+s53HTsFBmpFJzUA8sm\nKpRuO4MPEQYqFOwVKctm4MPFjH/02QlVEuWfV3VLZz1/9N6U88aw6gemWrPpB+6nBbMq49MjgwIm\nJdgO1g18/CBHybg4PT/bMC9yqiLuEr44rjmYfzdwzo92J/zkyRIF5FfIiZJoxlI3lgH44YOMP3h/\nwV8+W9EYze8+mNJ0DtsOPN4tXzEJetN7sEzEKFmd0DlPPXj6AXINRZLGXO9hkifvRNp+G+N6SyZP\nIoOxN1HdTxDeaLB7sZB4ohwDwKoeOGt6juuBbvQCvahenAhsX2O7dz0WZcrBrCSIQNMZggjsTlJW\nrcFYbjWcKCDK4qYq4qPvqLVzb1ZcujtZN7Y5gEWVoqQiyxRSSIL3hPB1+v5N52fdDpzVAyH4Wxcp\nD7jBkurYq/fOYZ2gGSzLuidT6pXXEre8ZRDwcKegTKMX8FV47P6k4AcPp/hxJ6YV0dEqG60aRYSJ\nBiEIIcoKRCE7y1nbcbQeKJVGK01tLMMQ6I3ny9OWunMMJrYyvIcXy5bjdceDScb+pMCHgA+BaaYp\nk0hAc9Zf6gq9OI1OWVWmebxfMcskZgQaBB/YnaY8GLWXhBeoUepAiECBJNWQJ6DFaLaSQJnExCkD\n3N8po2tYb5FCcrBTvJEWzutCJYK9aYLSMAyWi3QtgLONRQv4aFfyo0e7PF6U/PDBjE0zjIVJ4Mfv\nzfnBgzmC8Fb3IMSEXmhNCLBqWqQMJAmR6xICzhsG51hMU7I7tibfNt5JNvwaxm09/beF9l4sJImU\nJGXKth1Y94ZUCbrB8XCac97b0XlL82iS83J19x5/niUczDN+8qRj0xkKHfu0AsFPny+pX1O8/UxL\ndwAAIABJREFUPNgpKVLJsrPMCosP0I8kpAta/PUhdplq3t+rOK97ehuoMsF5rVDKs617Nt2AlopU\np5zWr/8c13dXn53crv/ugc4E0jSau5jgCD6QZ4rTuue06ZkUyVeY/AF2FAyOS2OPVEbnpxslKogI\nku/fm/LeTnTaSrTkH/7iiCo32JBirCFJUnZyWNZR9KvKFOIk8P58wunqlJN2IE01iRa8WDf84eMd\nzjdmJHAFRBAsm4EHOyWnjUEqxb1JyrNVR2c80yzuBh7Mc6ZFQje22R7tFJixEpV4/toH+5xuGzZD\nQAvYKTPyNGGS6Wh5KQRVnpIqQZZp/vD9GedbQ+88WSmZFQrv40UtleT3DuacNgPGOuZFxs6oIfVd\nxPGq46O9itPOMvSBNGkJ1lMbeLAoqDLJ9xZTHi4qtJI8WBSUueZPPtz7zuDTqda8v1+xrAe8E6Qq\nJZdRfVYrR5FJlJKkUv7KrRffJf5fw7ieDIzzrBoz2urJN4ZzXiwkSgoCEbu/P1F4H+hsz0k3sJtn\n5LNI+39ZtzyUd7/h+t7ws+dr9qcZ7+0WPD1r+PmLFY93Kg5m+SsV9NV+vyNilo3zeGPpjKe37hXU\nUTtYvFZfI1+VqX6ltfKTZ0t+9mIVCUpItn3Psu1I1Py15+r67qo27hVGZcJXiJRpAQOebWuYFxnK\ngw2BurOIJLBqDH430vEhInmsgzKPJt9db2m7+P1eHNP1AXZrorzEokrJxrYeKs4K7k9htjNjXbdx\nocwVudZkiSLPNL3xTMuMdRv7/lLAMHiONj3TVFOmMvbgZVTUNNYRQlTSbIxjf5pDiO2jdjB4ChZV\nTqIFX57GSv0iERsnSFPJTpWzOxXx71rLphtAwHwc+l58f1mqMTbw3p6+pEI760l0/Iw7ZcJZbZhn\nCfksR0uJcY7d6u6otdeFE4HDzcC0SNmvFPbE8rzt2a/g3/zefU6bFodnXujRSN3z0V75nb0/xO9d\nScWjRcmsTGifdQQBZaGjHpSxuBCN4d9E7vmtjuVX+urv4q3iejKoe4t1DinVpTLihXXiXeCcIXiW\nTdTSaUyUDS4SjSCQoJAhMjsb05MoFasRefdLY9ma6Fu67TmtB/TFe7YdnSle6ZlfXU4E8PnJlipR\nHCyK0XxcvII6cl7caEp+PV4uO5rBcLru2XYOLaHMFZlS/Ns/PLj1XF3fXc0yTSWjHju8CkOc5dB2\nlk3bse1GiQXhCT6QTjOkEKyanjMfGFxgmiS8xHDSAWPrLAcWRYYPcdGZFXFuc7F7Mc7Tm8CZHy57\n60HAoojn7njdkiqYFwl5oshTyem2p+5M1O8fOpwLnG4atFJUEw1IGmN5etZQ5Zo8VZRpgvPRAvKU\nwOcnNau2x1nPpNIUSiMkdNax7f0llr+1ji9Pt6yanherhkxKVKKpu4FlO7CTZ/z8xQpB4GBeMsk0\nsoSPdyf8ry++ZN1YghQIH5iVmn/3B494sawxIfD5Wc0kiabxxkVToD/+4EYZsDeOKlF0XcfhqsGG\niChSQJEl7E1SrPfRf6AdWLUDVRKlyz893pJpwaLK3shY/aa4el9bF0hzjW0ihDYEiJYUgf1p9p21\nuG6Ld4n/1zAuDNIvksG268mTBC2/gjVeWCd+kwyBcR7rA9Z50iQakn922qLouT/PuLdTsO5sJFoJ\nhRCWUmv253c3ez5vBrad48nphuPakI4uR+etYXdaornRYQ4JrOuetZS8v1uilWIYfYEvPifcbEp+\nfQi8bAc+PdxwUg8oIQkhkHWSIklZtwOTLLnxXF3fXe1NU05uaamdnoP7KHC0HlhttzgFwcJ0IjmY\nl3SD4ZMjx+4ki/LIibzcOVwsfj2x33y07pgXCVpJni8b+lHhVAl4elZHApSSSB/IlKYJKqqgyvgz\nUymPZhNO1pEL8PG9Cad1z6aFslDUvSNN4H6ZkSXgg2RwnnYbheR+977ChUCVKE43PZ8crth2BqU1\nO8ayU6Q8PanxEQrGpu15dt5yMIt9+MNlx9Nlw/4sJ/WBw1XLshvoxoHybpkRfOCT4w2PFyXOW062\nlq4FlQbcAMZbjPdUWcrDORwtW56cNdSDY5prFvMCvqMUmKA4aT1DC7qAzkV7x0RF7seiTAghxQcw\nxrPFc0+WUQfK+kvC3bdJ/omK9++LZU1rLINzbDqHl47gYJLHtmmi3r6te9d4l/h/DSNqyzgmecpc\nCnrr6K2jDBo1VsTOB+wdKuEL1EiqFdt2oB4c96uUIGCaZ2SJ5uFOSWMsIChSxSTVTPK7b3FfLls+\nOVqyNylAKrbdwOl6w7RKcTbcmPQhtlN2JnH4t2wHHi5K1CiCZUaP4JtMyW8ion15tOWsHmKbRSoE\nnra1nNcd/eDIbsHdXd9dfXF8k0J6jHPgZNvTtAM6gUxr0A7TeTb9wOHGUCSC/Wl+6cErudLb9zH5\nr0flt5NNy6YdMD6QJ/FWPN70bIeBKkuYj9+BIuBxZEkWy0IvEATyBD7Yq1j3A4frlkmW8sG9gAiB\neZVFcpSARCkKFaW5h8ETZKAzno/uZfz0ac1fPDtHK8lHB1Pwgk3Xc7ztcN7z3m4FBBoToiSziBhz\n4y2FVhRJNJmf5inGObJEsFvmGO/ZDIZ5nrFqDf/y2ZJJCvNCo3WCwFO3PX/5fEmqJS+XLanW/PDh\nDqkWLMqMZogIswfzu7Njb4vPztaUEqY7EqRCY+g66HvHo0XJkerwzjOr4nyjM566N5SZfitj9Zui\nGSwnm54qSymVxAyWRIHSGqE9LnicNbxYdXzv/l0lRt4u3iX+X8O4CdXTBmg6w7zKxko43ImUdNnf\nR0QK+iRCIJs+mk0sSsW2Efxgb86sTKg7S90b7s/unvhr40lUQmPicNZZT5JqhBTsT1//OvvTHGsd\nnYnEIduZVwxjbpIvvomI1ntDphSTQqOUHPvX0FiHDTfvGuDrXIHXDXcBNs1AmmmyVJGrFIfHWMey\nbtm0PQ9mc/QofdFZ2C8i+7NIE6yL/fvGRM2hwcFZ3VNmKds+LmTLeqDUmnw0LQ9EjX6lEz7Yn1Bk\nKW0/UHcWYwXv71d0Q86T05pFWbAaco5XLQfTIhq1n9Z8tKt5sCh5MMujQBsXGvuS8zYOW5NEYG1A\nykCmJGe1YVEJvnd/ipJw3hge7ZYUieThomBW5mitI35/XKRs8GRKsTvNCT6wrDse7ZQE4GjbsTed\nkKbRbF5JOFXq0ult2Q60g+F4O7BqDe8vSg6mecQbfwfRWMe0KigLTaYVp7pjqTrWveX5WUMI0RWt\nTDVBRCjwsjHcG7eJb22sfiXO6/7SUW4gUCQZqY4Ls9aKbdsDmkxrevPt3uub4l3i/zWM633nXEcz\n72Y0a75AGdyFlHS1leF8oDOWF8uWzgb2JpoHswqJ5LOjDT974Zhnij/8YJd7b6CDnkpw3vLPf3lG\nM0CWwP4kRQXB5yfX5c5ejdNNxyzTlLm6k5PSTecHYFbkdMZzuOwic1cL7k8zJmnCNFNRXuGWuCpD\nUXxDhytJNJmxDIPFKEiFIEkiIUonEi0Fk1FYbKfQ1K3lrA6s6wEtYF4y9tk1g/MsO4P3F4N3x3bw\nOO847yzrzpIpgQyQSPinn50yDJCm8CcfLshzxfmm4+W643AVET6d80xSxdFmwAeHMXFQDIJ6sCNL\nOJBpiXo0x3vIpcRL6F1UTkt0HADPs4S2dxjnaDvLrEpoTWDTRDZ0mSha47HGkyjFTpGhVdwVWO9x\n47nNtKLUms4MrLoe40Z2b7CUaRxiNp3lF0driiRht0oZnOdfvTjnDx7tvP4LuWNUWYZmYLnpGLzH\ne08qooTDP/qrY+aV5kcPd8hHcxXrAjZ81W/5GuHuLSIi0EYp8TThg/0pP3u+5KzpKVLFg2nJJJXs\nTtLRFOdXF+9w/L+Gcd08+sJucJppFlVKmSV3JiVdNTZpBsMvDtcYF7g3TfFe8OWy5slZw/cO5vw7\nv3fA9w7mvFh26HD3JuOqHvjHn5xRD5GS37Twy6OB86bhweL1C0hrHE/OW3ZGp6VESWZFym6VMivS\nG5E4N5lr71U5R6uONBXslBmJjDj1e5OUItN3JnB9sDN57b9rGXH6iZYIoqT0+bajyARacNmqAni8\nyHlWRyhnlsEQ4LCG7+9XEQ7qHEkQ2BBACoQUDMbyVy/XNO1AMziOtwNfnq/4xaGhyuDxvZIqg3/y\n+Tln254/f3LOsjbsTDJerLY8Oa7pes9ulTAvU378cM6Ts5bDdcPLZcdgIpP6/jTnZNOTaMEkS6gb\nSzcYusFzsmoRwDyPJuRaCSa54snpBiWiBPZOlXPedBSJpMgU28FSppJFUcDoI3B/klIPjkkq+fje\nhC8PB16cGFat4dlxz4tTx8f70yh4ZjwyRG6G9+CDJ1UJ9Q0aTm8TP7w/5eW6QavAvVmFt4EvN3Ch\nhfZi1fIPPz3iyWkNQrJqeoqx/TaMBkOL6u5zr5si03GnvekMEsHRpibRkkWRM89z2sEwySMaSn1H\nO53b4l3F/2sY1/vOUgiKNFaTFxX/XaGcF1X0uh348qxm0zo65WiNJVOKuok/PYHT0Qx6f5ay7O9+\nw/38eM1gIgMxIl2gC7DaQte5Gw0nIGq3GBvYmaSXFcj1oa1WEuv8K0zeItUcrVvWrbn0vCXEBXJd\n97HSdQNFopBSvhHR5tHe6z1e96uCL463HK0MDoMzkKSQJRolBPdmGeuxqnVBkhHZu91IJyiAVEcY\nJwF2Z3lMdiFaX9oQoYcQGJzHGsdyG/923cB2aPA2IlI+PTrjb/zBe3Q22jSWOmEbOp5vGvJMsqgy\nqlzT1z0n6x41i5VmniaUeTK2HQR784IXq4auN3gkPjgezCbMJinrboigAiVIZDQK74xjnmlmWUqV\nSopc0xlLqjUfHVQMxqOE5+HuBGctz1c9265nGK+DtItQ3pmG3VmGFAHnHdMqAxdNzp0VzEo1Il2+\nfXx8MGH+Wc7zkw63XLM0Eao7yxKqIqFZGs43hp8/O+eHD2ZkiaS3hp+9WDHJFB/uT741qmeSJ3xy\nuCFPNJNcs249TTdEzScz4ENUm1UyXk+/yniX+H8N46aWx26VfSsCiRDi0gLwgu0qEdTGUWWa/Srj\nAmWfaEn9Bszd43XDwSKJ1oshkBWe0P5/7L3Zj2Xpmt71+4Y17zHGHCuzxtPntJtudbfdsiUkJAT4\nAoGEBBJXvsCy+A8ACckSIORLrhFtsISw4A64MbKMWi1kGQOtPt2n3a6qU6dOVU6RkRE79rDm9Q1c\nfDsio7IyMiNPZbZ9uuuRUpG5cw8r9lrrG973GaAZQvngqqq5AQ7GMWmsWLX2JaEklmebhuklq4rw\n/4JNG5rRsQyOlSdVy6yIcdbjhCQWmukooe0tzdb7/joYhlevtMZ5zHycojYtRgpU7EmTiFhI+qBZ\n4uasAB9cS/MUcgGRFvTWIxx8eVoRK8E0T9Aq0HLrfsB5icZxf2/EOE0w1qPzGGvDQH/u2yVlKKed\nVp4k1owyifUh+0BphTWe27MCLwKz6gc3pzxZNhzOcgSeSRrTGUusJVpqbs9SymZE2QZfmoNxjHee\nURoxSnXYIY5S7szyMGBvjdd+6/09xHYy/mB/TGcckzTi/f2CeZGwKFs+e7pBCvj5acUogZyg3dAi\n9BM+O1pze15wbzfneN1iPeH3jgVKePK35FL5ZFExz2Ly2xqB4k++WqEiMCLoIPbnOZtNw5enNcaH\nftPOKGV3lNCboKN5UTvyphDArXnOuuk5KVve28s5XUsG61FaMYqfaxf+ZYhe/B7/AvC68Og3wXkz\n1DnPomw5XnbByTLWIWpPeKSS26g/Sdc7kvgNAiaEoO8HBg/DtkLUubCqc6+wre2A1jia3tIMlifL\nEGBetgODA+ccu0XCYJ778oDkybJCisBNH6wjUpKy6TktG9IovtgFdL2higxVZ9h9RQXn8i7jdPNq\npe+zTU3sBLNJQazUdjK21Nbj8VRbu4GQa9AhLMgo7GxwYIdQgvLALA95wZMsZr5t2kdxxCSSHEyy\nrS9PKM30wF6iOHc8bBsbLCRM4LsPNlgrKCXoutCw7aylrDqOlppNa9Cr4PzZG0OsQyhLEku+Oq2o\nB0tn7dbGTZBmETjPx4chLLdse9ZNKFNMsojTskVHMtCK7UASKW5OU/zWyqAdHJ8fl0gRekuna0Mc\nBfUqSKZ5xNAPPDkreXRWMVjPw7OaURQxziOazuFw/OqtV+/ArouvFw1FqjlIY6zzfHWywjuo+g5j\nLdaB1JpMBhsQpSTnqpO3xeoxWx+e0Va4N4kjxFjQmuD5M4oVSOi3u9t3ie9r/H8BcO4H0xnHTx4t\naK1hd5JQm4GjsmW56albg1aCujUsmp6DyfVvuPv7E442ULdhNbqpw6A+08HW4FU4K0MJCucoW8OD\n05qyteSxojeeh8uaZf2cEKqk4KweOKvD1jiLdbB5GAzHyy7QXhNNby1P1y0Sv/UHfTle9AcqX1NT\nfrruWQ4D54NC0xuWrUM6h/CeRfn8uGIJywGaBoSEvod6e1N/8XSDB7JY4rxnMKHcc3+Wkmytlo31\ndMYxLsJqsW4tWmrq1lIPcDCNaAZD24U0j6frhq63OClojWFVDyyajj/4eoE1ltNy4NGi5MmqwxOM\n4oyxfHG8DpnGkaK3ls+erliuG6x4rqWwzvN0XaO2K/yqtfzxwzOwnlEW4Rx88bTkpLz0XbYDR6sO\nYx1FAlUTMhKsdzT9wKIJfkbOhz7D4bigGizLdiBSkluzHP0dG6rniFW4/ushsJnGCTQ9eBe+56rp\nabuBe3sF1oW6fnPpWoi1vLCk/kVxuTeVRZqfnZRsmh7nPGdlx+fHGzKh8S9hsr1tfL/i/3OIF+vk\n3jusEzzdtOyPM+rW8mhRk2rFjUlGZw1/9GDBWTMwzyL+8vs7b+Q6eGdWsD9aclTC2bYenQI3ZprT\nenjlay2OcaaxQnBatSRaEceK1jiKNLBiTsuOu9slu3UhTtAYTz0EZ8lUSxobjL4+fVTTUKOBwxzO\n2uGVbIwXqaFPV1fz+AEG02N6g4s0Z01YuQtnaGRG0zlGaXSxQhzlClVZ1h7Yvm0EFGkwMDvZtOyN\nU37yaMmXxxu8F4xHwcr6ZN1eyp6NiWTPWQ0n645Iwp1dxb3dEe/t5jxc1BytG6zzJFIiJXz6ZMXR\nqmawjoNxxpcLgv1AG5LEYjXm5izj//zTI8ZZzGLTcdy3YYZxlq+XFb9+d8bPjte0xlG1PZMsMG4G\n40B6Iql4vO5orMVYz6obQHrqzpDGgYmGCyvoGzs5i7pm2YDqDakKlNb78wmxlrTGMck1sQ70z4Nx\nglTiOw+257g5KzgpG754UtLaICCLJDgHXy0qcIa9ouDDwymDCWI6d4lA8DZYPZd7d1Gk0AKONzWg\nEd6RJxonPQeT7K3Eqr4K3w/8f87wMnGTcR7jDF0fLuhZodnXQd3z4LTk0WnFX/uVA+7ujSi7np88\n3gTfnfm3c3dfhrK35KnmPW1oDHR9WN0uasOvv8brJNWKfDtIeC/Q20HTuUA5FCrUfIELXr9W8NVp\nQxFrRmlE3RqebUqeVkEglangnvm0hvFqQ9UODCP30pvpeUZBMIY7KV8d/NH3HsP5et9flMeKVGGw\n9IPhi+NNUOLK5xF/IxXUogIY5xnOeZ6sWh4tG352vEYjMcLz5eOSpu95/2C0fZ5jXuRYBIeziCKJ\nqbqezngOJwWTLOYHt2KSWLEqB/7o4YJNZ8kiRaIiNnXHOrKMUs84iSmHgUkSc2sempWLsiWPNWV0\nbuImMEDVOZatQUfBGuJk7ZHSUSQRsyImjxVFItn0BuN1iNBsDbGSPF5WjNOYWRasF5rBsj8qiHWN\ncBCnkAlwEu7vh2tMSk/VG6z1DM5RtQo0zN9SuXNvHHG07iliza0i49HpknXruTeJORynGDz7eUye\naCZ5mAhbG+rs56yeN4lZfBku9+5WVU8Sa8Y++BJ5D0qHnd/kHccuwvcD/y8Nrhu2/jJxk5KSqu0x\n1lP3PZKwndRa8nhR4mUYrJuhRQtJJAWfPd3wG/f2rnVszzYNk1Qjo4Jl1TFOPCfrjqaD+rWiF0E/\neOYjySjR1J2lag29dczzmDxSaPVNNpOxsFeEMPG+tySRYrWxnFfnh0vVmkVpOWsM+1d49XjvWDfm\nguFiX0NjFd6gBGjlGfB474gI7CNv4YtnJfM8RgpJ2wVGkwc6G8JHMgVN23FW9ZyWXRCvnevzvWc1\ndPQm2CzvT3LSKOJwmtLaUNJZ1DW5FuzPMqZZhBLw1UnFF8cbvBU83YSVv1bZdkIOFNGvTioOJgW5\n1jyr2osacqQ0y2oT7Lp9SO8SEiSetvc459i0FiVDTOPPTyqUlJStRSLYyYN9swGKRIMLdh2LTQkS\nDkYp1RC8pu7vZDQ+BNSM84hYCZrthtBbz+Ad+NAzEjIkufm3FEhysur5cD/j6Xrgybph8HB7BjqK\nuDEtqIaOxjj+8KsFv3F3RpEEnUzVGRItvrNdwznOe3e9HSi0xPmItrdEkSTX4sJe5V3j+xr/LwGu\n61MPz+v5l1/b9BaP5OMbgTMthGc+ipESlq1lnER4XHBGjIOD52n56hLNZWRa0Q0K4Rx7RYLzDg9M\nclCvYWWMM02PJdOK3VESAmd8sAAOojXLvb3RN3j9kVJkiWKWx9yYZ8zymLp9/p6XuxOLGs6q9jXe\nJ5f88PNXc7XPBugH8DLi7nzEBwcz5pMQW3i0bFm1hiKJmY1ilAQU7CTw3jxmnIPXYL27MJ57WrYM\nNjSjk0jiraDsPau252CaksURSgh6A7d2Mn7j7pxbOxneSwZn+fy4JNaKO/OCzgWLXyEEXjisDSle\n1kIcSRIlWLYDbRdKSAAf7ues2q01sA5WEF3viISiHAbyJGZ/nLJbJCzqnqNlg1aSWAlO64Ei1iDC\nNYD3eOERQpCnEYNxdNZxb3fE3jhjf57y/u6I33x/lw8PxuyNEgYbnDClkGgvkAL2p1k4Xq3w4u3U\n+M/agUgnfHg44a9+uM98nOFUwmAc41xTtgNVbxgGj7WCk03HLIv4YH/E7XnxVgb9y5DW87TqiWU4\nr5kSrFtLJHjnPj3w/cD/S4GrVvFN/+3V9IvipnbboEq0YJxp/pVbOzgbwtSll9yYJuRp8PJpBoOW\nEin8G10Y++OUg4nCOsfJpiWLFbmGJBbcGr96ezzLYj7aH6O3E8T7ByOmeUTTB7rh+3tFSI+qetZN\nv7UsjsIOQ4Y8ASkFl8b9b/y9I+TDXsWSECIwTAQhcu91vjA7icJ4kNbRGofxMMuiUC4ZOnaLGL3N\nOVA6YncESkNng632KAatI97fG3E4SVk0AwLQWxX24Cy4sEt5vGxYNgNtZ9gbRcyyhM46ZlnC/Z2M\nRdkFQzrhWTcd0yyhiGVQ5kpNkmgi4RmlikgpDJ4ikhxOs4tV5Y1Zxsd7I0axulD0fnJzQhErnHVE\n27q2ihS7ecyAo+4N4zTiRzenREqyaQ1SCPJEkypFa4LaN401Hx+Ot2IswSRO2RunREqSR5rdIuXW\nJEUKz+At++OMu7sjxrFmnEbsT5NrR2a+DgqPlp5Eh98TL9FYEJ6js5pURaSRpjEDaaqZZwlP1+3r\n3/gNcR7UMwjJNNd4KVjWAxbBJJcg5Dtn9MD3pZ5fCrxJ2PqL4q/eOqQIfi/94Fi3PVJJdgpNkSl2\nRymbdmBVdSilaLuOwfuLKMTr4JPbE/7vr454euJAgjOQpnAwKejM1aWemYDDWUa8pc6N0phxFtP2\nFus83nsG5xksTC/lEOyNUz4rV/QmsIi63pLycgfQiGA9fBVLQssQaD7e1lV/eHtGiJG+AkKTxJbd\nIqYxHm8dFbCbx3ivySPNwTTsOT7cm/IHX59Q1RClHteH7+XuPNB07u2PyL9QPNu0bGqNUI6qGWgG\nwazwWOMp65bWWgqt2Jtk3NaKzoSsVtEpjLW0JpSSBmM5mOR8eVLSDD2jKOLxpsV6y+3ZmKYN3jP3\nD4uLVeU4jbl/Y0oSRyAEkRBIBQOWNA60zDSSNJ1Ba8kH0zH390akSvJ4VVO2sDuKOKsGlBDszlNS\nrah7w+E4ZlYk5EnE73y0zx8+WJArTZoq2tZSW8MP7864PS8o22AnkUTBFK03jm4wTN7ALPBV+PjG\nhH/y5SnO9xRRhHCW2gp2k4hmsNTdQGMde0XGyaomSzWdNyyq/q0FsQzWbS0zHLNcc7LWnFYtcRSR\naEGuI8a5vtiNvUt8P/D/EuBF62C4Ouj5ZeIv7+Fk03FctjxatlRdh/WKtjV0W3Ow06bH2sAnvj8v\neG9+/UbWk7OOo4ULVEUXVtldC+u6Yd0VJMDL2PHzSfg9em+ZFzHeO45XHfVgsc6FQUdLDrcD6TmP\nv257jPM8XTc478NKM4b1S0Z+TcjoveqmDSrglnXTY30ot7wKTd8xT2OMgNoZ2sbgRKAU/caNHaQM\nu6w0Vmjl6WpwHtomNHqjLnjDl50hizU/ujnhJw9XLJsej0MIwe5IsJtnFyyneZ7S24HTsqXtHWks\nORgl2FSzqAbKfuB409L2A501SOVpTeDxKwWpUkyKKOQ3O4dGXFw7RRKcO83gOK17hPDsT1LuTSfc\nmMZIH0JbtBRM0phbs3AupBLUxtH2BuM81jqcVLS9QQmJtRYvJe1giZXgk8MxTW/5kwdLHi0bxonm\nV+/O+ORwDMDeOAilzuqOwXoiFRw698bfzSbhHO8fjDhe13z+rORk0+OA/ZFmPk5oO8u6C3TWVCnK\n3vK0bPhof/ILBR9dhXXTb3eyir1xyhcna/JUo6QkURKlQ4nzz6LGf62BXwjxd4F/Gzj23v+l7WM7\nwP8M3Ad+DvwH3vuzl7z2bwD/+faf/5X3/u9998P+i4Us1hcrBU+ow0ZasnOFd8hl8VcdST5/uiGS\nkrI1bPqOsjPgDIPRtMbhjeHO3phxFlZbQnleI2D9Bn7/04f0JlTKLVuBEfCzp5Z/9Vca2wF8AAAg\nAElEQVQyJgqevYQebwd4fFaxU8TcmucsypZHqxoceDwnmw6lBEWi2BmFAcd5z5fHG5yD3VEa6sME\niuLLIIH2FZTAwTqWVUc9OCAoKF8L7Xl8sua0dEgZAlo25YCQgg/2CwbnWDeOZ6saFUNuQURhMuwc\nfL2q8B4eLyvuznOWzcC4HvAeHlEjhODubs7teUHfOx4va/7545IiNWipqfqOrje8fzDm4aok15pR\nonlwsuHLZxWjTKCzjEQ5DmYF1jpONx2ZUkCYJH5ruwPqreOsHogSyUeTMcY4Vk0QZO2ME/bHOVoG\nkVHbDRfnYdUMtG2gbToBB5Ngx3287jgcQZ5FnK5aFPDBwZgkUnSD5ePDUNYzg6UbQmMewjUuRLCU\n8D70CcQ1/aiug2CLLbk9zdDziJ8vVtS95WCUUyWGzjiKJGRbSzwuxBAAzxcc1w0+ugpVF0gESgaD\nuyKJ2M1ShFQUkaR3lmme/EtV4/8fgL/+wmP/KfCPvPcfA/9o++9vYDs5/G3gd4C/AvxtIcTbidT5\niwghQhvyDRpeQTyjibXgaFFjDGQqpBxJ6VnVHZUJ4SFFpBhFGimCP/p18dXRgCFcTLEO9gIAJTDJ\nNO0VmqjGBvn/4Dzrpue0GoiEoPdBdFWkEbFQPFo2F43sqh3YNIa6D5YNRaqRUnJ6heC2Alb11Wrc\nZ+sGh2CWx+yOUuavsedUGh6dDHghGOchQLx0gLes254k0vzgxpRfuTml7BzTXCCiwJSJYkgzWCwb\nVs1AM1iWnSVPIg4mKXvTlEmmmOYR1oYSllQCayzOOyKpEFIQSYXxgQ56f5aTxYqjZU01eJII0jQl\n1rDYNJStJY2iwKkXsOkHHl06t4uqZ7eI2SkSjHMIIbkxCy6be0US/POVZLeI+MGt6VZY51hWPYmW\nxDrYHKeRRmuFVqE5O4o0WktaY1k3Pc/Kjr1RwnSUkMWK6Shhb5TwbGvLfJ4bMc6Cudw429bcX9LH\n+kVwUhuSSKCUAuGJIh3U0tahheTebsEsj2nNAELyg8MpWj4fHr9L5vU5LgsJtVZ8fDAj1iEcKU0i\nfnhrhhDvXrUL11zxe+9/Xwhx/4WH/13gX9v+/e8Bvwf8Jy88598C/qH3fgEghPiHhAnk7/9CR/sX\nFOc3RZF8s9RznRWIcVBsLYBb49AChIoQMgx2TxY1kYa7uznGeEaZDurd14SUX0ZFWOmnoUxMHEG7\nJQVlUURDMCdTEqyDPIOhhboLNscSOK166n5ACsEsC4yYwirOyoGTTc/TVc0ojak6i8WjhbpoPCax\n/EZE4uVcX4BNd/WKf9UGzvt5Ge119EFvgpVvtK3HIhXe9igp6UzwxvnhrXBOrLdoodgZRYGnLQWb\nusaJcE7OqpbBevJII5KgudgdZSzrEHx/ME2x1vN41bE/zTgY5+dxtTjr+Opkw1/76IADrfh6UfP+\nbsFTLei943Ca8+nTNUNTc3uaIpXgYJbTNIZNbS6uncF6dKS4ncQXKlnnQg6vl/IVWg5PpBVKQeyD\nKnZTD8SxZJwFh8kiCarq06pnXffkiabqLc6GsmUeK9ZbVXbZ2YschnNY5yk7+0q7jevieNUwyxMO\nJhLrPVoqTsuaahg4nBZ448hSze4oYa9IqHpLFj8fga8qrb4JRoli0249kgTM0ojR4ZRRGhhq62pA\n4t+5ahe+W43/0Hv/BMB7/0QIcfCS59wGHlz698PtY9+CEOJvAX8L4L333vsOh/XnD2/S3H0RWkIv\nYFG2KC04W/csmha8ZJrHdN4xjZKQ5SvA4bCWN0rg2svgqIH1Sxig/+CPHmAIhmznwbvtdsG5G0PZ\n9EgliJUkjyOeNS3FttxiPfQ2mMgZB3iPkiEB6njdUHUh+CXV8huD/YvfyjS/+jLXMoiwnjOmXn13\nn9UQK9g0LYsqfFasNUlECDi/9Ol352P+5PGSpjMIBW5L23zvIEcIGCURi6rj69OK2hjwnrIzNK0j\ni0NJxTjH4ByZV7S9RUiBdx7rPTLSOO+o223TfusVtGkHfh6VJELwrPM8OK0YFzH9wzOUErw3L1jW\nPVmsmWWaR6eWDoOSCimDUd04jajqlt//9Ih1a5ikmk9uTLgxDTbbaaR4sKiDulUI7DZbYC9KeLbu\nkCKkfI1ShSeE0j8+rbDb9DCPQEnPwbZnIK6YcK96/E0hpGBRDfRDUNGdlS2nVU8ea+ap5sGioXOO\n/UmyNTR03J4/V4tb595Izf4yTLIY40IPY2+c8JPHa6RzOBexLFuiSPGb93beuWoX3j2d82U1iZee\nSe/9f+u9/23v/W/v7++/48P65cLL/OevuwIJvioDAsE4jakHRywVRaRR3pMIQaTBGIcSAmMA77k5\nvf7Avzt6xYGI4Mh4GX7758ZM4RFhpSPgcJIQa0E/WKz1NK0hixX393J2i8AQGaURVTewant8SFlk\n1Q+vHB6Mu3qPvlOkNIO58NAfXlNaqAwYG1g0HkhURNMaVqUhFrA3el4qur8/IVWhkSq2X5FScGeS\nM8tjpqOYwTmWdY/wEq00xjgchp0i4nCccmuecTBJKXuL0oo0ViitGHrD7UnGYB1CCqZJzNNNmFHf\n2xshnee06ZAC0lgilcIC/RD6GNZzwZCKIolzIfC76YJZm9bw02ehNHgwSTEG/unPTjla1UDwvhl8\nSDkTgmAdrjXdEFa0o61q9+GiJpICJeDZpsV6R5IorHc827ScszWLRNMb+w1voN6ESf9tYBJrzqoe\n7zxahB2KdYa9POZgkvHBYcFuntAPlkmm+dHtGQeT0EMSW+O57zogRyr05SapZneUcmeeMi0SEi2Z\nZAl3phmz1+hI3ha+y7f6VAhxc7vavwkcv+Q5D3leDgK4QygJfY83wIsUzTdZgURK4oUgizXae25M\nUiIpcXjq1qBGCqUEe5OULFYY54kl3Ji9PEDlZQpiqSQ5ockqVBgUe0KtP9YReQSXLXtGhFXzKM8u\nWDlZFKil9/YsT9ahzBRHiixSCAHt4IDA408iySgKNDyPZxJpFM/tEV5EWV1tw7A7Cq6Y66an7h3l\nawb+3Rw2DaQSkjSlazuUht1cEseaW5dKI5NUc3tvQjcYOuO3pR/BpIhx3jPPIqyH3XFCqiVeQNNH\n7KqUSIdzpiT82q0Jf/C1RxNWUhqYFikf3x7z4d6Ys2YgTxRpHFPEinmaohScVD3OGfanBVqE73Mw\nlkSyDY2RWGf4zfd2+OmziqrpmWcp8yLip8827I8yRtvd0vnPz47W3JjmeBGYR1IKlAjW2N1gMd4j\nBVjrt2FBikiFSeX+7ohysJTtQKwV93dH+O2MHVbDwbLgfFeQxYrJW7JsKLKI/VGMkgKtBEmi2dc5\n+/OUe/sj9ruUZ2WHd56bs4x5kbx10RY8J16cVR13d8YXrrMhHc++88jFc3yX3+x/A/4G8He2P//X\nlzzn/wD+60sN3X8T+M++w2f+C8V1bRPe9met647Hy3pbjxbc3x1xe6e49mdba0MJwcNukVD2QRQU\nacmdefCNabaB7rM84oOD8UUkHsDv/t5n/E//5HOWNeQx/Bs/usO/9zv3UAImWUQsYw5nhi+XfGP0\n1cBiXX+ruVsCtyLwDtrecHOWkcZhRTUrEtadYV2HQT7CI7M0BLBbx6btOWsMR6uGJ2WLEI69UU62\nfd8XIYBNe/WKP1KSg0nKOA3lJO/DBHbVK2a5xvYGqQTrpsUOcHOq+fDmDtPtqnDd9BgXyhu7ecIf\nPypZtQbh4MZOyqbpwXtircm0Yul6PjsqccKRSMV8HiHFc3bRzijlt+4LFlUo48yKmE8OC7I05vZu\nwW5vebpuuDPP+NNHa47WVaD1JprWCDZtw7KyFKnm/b0RaaRAyK1jazAFy9OIZdVf2FwPRyvGWbDQ\nOKcSR1pwtG5ZVD2D9eyOIta1oRksmZbsThIG6zktQ1N5lCo+2B8jpUIpxTgTOMKEkOrQC1Dba/h8\nNfyu7q8s1ny4P+azoxWL0iLw3D8syHRE2xlONi0nZUdvLaOnQQl9b2/0zu5v6wVpJDle15SdQQLz\nUcKq5eIcvEtcl8759wkr9z0hxEMCU+fvAP+LEOI/Iihe/v3tc38b+I+993/Te78QQvyXwP+zfav/\n4rzR+8uGC/GF9Zx32JrBfueAlKs+69xorWo7/vDhGdKLbdAI/PTphlEWsTd6vXVy3RvKztIbT6El\nR3Xw4scHP/iqGUhjzeEoDbGOcfBuL5IwWv/u733Gf/MPPmcA0hgelvA//tOHGGP5d/7KPereUHUN\nD5bBhhkJbR/onB1QDi6wXl7A4xbyVYl18GRZM8sj6t5spfIJB+OMx4uSr84ahBRkSYgBfLJq+GcP\nTkPJSms663h8Wr500Idwqh4vK07K9lrfV6TklYM+wJcnYUV2M464t5vTO4tzklxJkILjdcMojYm1\nYLnp+OdHK4okIo0T+q5nWfY0Y8fDZUPTG9aN4aTs2J3GSARnVcdPn6z5zfd3ibSk7S0OT5EET5lY\nSXrrsM4xzwJbZ5xFzLOI48Hyw7szZlvv+R9/fcqirEmiET+8NSZSkmXdcFYnDMZgXRAOle3AouoR\nIvQplBBESvNk2TDfKpEH43i0apjkwX001ZKny5bdScJhHNg3Xz+oOKtabsxGpInCesHPjks+uTlh\nnCh+crIhVpo0CiWhh8uKv3T7eabu28ygeBFaeJ5tWu7tjUkTxdFZzYPTirt7muNNy+fHa/JYc3e3\nQHjJZ0/WaCW4vzd+J8djneV41RFpxSgVOAvLamBnxFvRDLwO13pn7/1/6L2/6b2PvPd3vPe/670/\n9d7/6977j7c/F9vn/r/e+7956bV/13v/0fbPf/+ufpF3jSC+cEghiLRECkHTB/n128Zli4YvjjdI\nJHkSygJJogDBF0/X13qvs6pjp0gYZxHjVLOqg+goUhrv4bQamCURSaSouiFs3aW82HL+d7/3OR0w\nKQKVcaxDGed///ETIiUxDrohWDycl9IvL/Cdu9rz5+EKvAhhLJvWcFZ1W7O0cFn2DnIdBDUI0Eqx\naXo2vQ1WFB7GSXyxarwKcST56uTlU8OLPkivq7EGtj8YJJ13JEpjGTipOz7eyVm35qJRvGw6JJZ2\nsOG6iTVKesrBIBF8eVIiRajRY0PmrvSCJNZIqWj6kJFwe5qRxhopBIML12CRaMbp8zzlUarpjWex\nGZiP41B+cZBlCZkODpPeexIdrC6qPojkRmnE03UDHhKtMNZTdgMf7GWsm456G8F5Vvf01nJvN5Sy\npllEmirqbcLZpg1ceL9ts3sXQmRW7cCm7tBSkGu9Pa7QT8q1Rl8lwHjLiJS80AwY60gTTZ7ERAi+\nOinJlGKShoVPlgaO/c+eXbWc+O4QhGu/2/bWpAxtbP0KO5a3ie+Vu9dE2YWmlZICs7WaHayj7Icr\nQ8HP8aYloudWwYYHZzXee/7kYcuq65mnCff2M1pzPYZBZwKtTghwPuTpfnrUsVisuT0rOBjHKC05\n3bRUvUUIOJxkWB9uyJM2DHbHL9jUn1kufHmklNybeT5f+m/4JggCffMqtMCmGcgTyY8fLhklmmka\nJqg8DoyXIgomYNPtStB7QW8sUkmONy0O99qVvERSXpEh3PSBGdR1w8X5GQkor+gWx8B8DIfTlGUd\nQlmmiSaLY/ZmxTc93J3gzt6YH3+1wNMjCJ74ZR0skMveMEkj7u/kPK16+s5Q5BEHUUrVDqybgTRS\nGOs4nKQhdGYbZB4rifVcqLTjSPODm2P+8RennNUW7wQ7o4S4FdsYyJYb04Q7sxF5GrhH568t4ohV\n1fCnTxoGYxinCTujmA8PRnx2VLI8Goik4C9/MGenCN91pDWH45Qvn5UsyyC0Mz5MJKdVv9WPKO7O\ncpatI03h5jzjaNVSb6Mwb0yzi8S2dw2pFB8fjnh41lI1gav/o9uT4IVU98zSCCFhVfe4NOxy6u7d\nHZyUilmq+fGDs614LJThpFTXZux9F3w/8F8TAh8MlmrDWd1hHWgtkXgW21X1ywbzl/njv24rF6yC\nw0RT94Y/enhK20OiNHU78GC55tfu7lxZC7w80fTGhAjCwbJqG5b1wE4e4YnIk4hnZcdgLQeTjFkR\n4bzg0aLm1k5o7r7Ko9NaeLps8c7x5To0cwVb6iZhZTxJYthcvSuq2oFPH1fsjBImByMeLRqiSPLx\nwYhYKc6qnmkRJjnrPBZPP3i0tmghGSw8Pq1fcZRwWnd48fKbuB0cnbEX56cbLKmE8opOcQnIDaib\ngvd2cpCSqulp+oEHi5LbO8+bu5ESPHhak0YCg0Z5w1nVczDN+PJ0wyTVWOtxHm5NM7SSnG1avlqU\nzIqEVTuwrDoWVcev3JxyMHluo2Gdx1h7UR6Z5xEbKfnosODpqsUZeHTmeFa2zPKI+3sFe5OUtrPc\nLDJ2i7BY2Tio2o5/dlSSa8VkmwHwh18t2RlF/Pp7O6Sx4nTTsaoMu6PQYxiM4XT7u4Cnai3rekmi\nFfvjFCmD8nbZDGg9ECnPojbksWI/ybDes6h6Dv6sVvwSNr3n3l6BkoIny4bjVcskU9zdzXm6bHHe\nokYh63hZduxP3k3ZCUJi3MNFw/4oI4okxnoenzXc3RNvRTPwOnzvznlNxFpxVnWsm4HBhTp/3QYJ\n9qtKPm/irPlNhBl/VQ6cbEwovUiP855V6zg56176mS+WLkZJxJfPSvrBUXeO3gxoFURSEs/QD5xU\nPcn2MTzUg8XZV0cQQqAoxpHEOi7CSZIX7uPOXj11KGDRDNRDsBIukgilwRjP41XLKAmMo0TLQHN0\nnlwrRolkXRm894F371+9OsoiSXxF/GKwRxYX52fV9BSvyZ+pgXYwGE+gniLYzWMeLxuEeE69nWcx\nTW8RQCQEgw1WGEWmSZRimmmQgqo34AKl9uvTimawzNPAdFJKMTjHk2X9SqpjGimcczgHq3pg8CFP\nN5KCTetwg8N7GJxHWsd8a/fhvduGv0vSNMITnmOsYdNZovM0sVQHLvxWaVv1FuFhlGgGSzh/aUzd\n9xck7nYwrLueUaxRSlK3hqYL3wcOqtZgX3Pu3hZmRYIx7oK2u6kHvHfsjlNujBMiLTHOUzY9gwnG\nhpcn8beN3gRNRqC2+kCL3brN2j+D6MXvB/5rIlKCRCuebRrK1tCYkN2ZRjLki15RSjAu+MtsmoFl\n1bNpBpz3r5R/B6vgGIFn3fWkUvCsbPmTR2d8erQmsY7NMLz0M1820cxHMYuq4dGyprcSJSVZFAKf\nR2nKfpEyHyX0NoSz3JnndO71K7HTdcs0j+gsjAkloeqF+1j6V7/PH329CJRTfDA3U5K67/jTJ0ua\nwXA4DsyPwTkcnnEWc3tnivOeB2cVj1c1Onn1ZfzJjQmrzl3YOl+GVlux2HZQPdl05GnMvdm33gaA\nW0XQJUgtqVtHNYRyze15HkK0I4XA0xvHKNHcO8g5Kz2Pz3qelZAK8BZuzBOKJOGTgwn705SjVcPD\n05K6t9yeFhgkD08rVs3AwSQPk7EL3vXOuW9RHWOt2SlijpYNHs+ybOl7y/4kI9GCT09Lvj6tuDWJ\nmU++GSrSdMFUrun6bQaspcgitAjfx89PSpb1wME4xvgQiuOBWzvBxwfvkcJzeydhb5JjrKXuh22J\nKjCG6tYyySOc9yybYAZ3OEvR8jl76dyy+LIF99tCHkccTBMenJX8fz8/4WjTsDtNSJSiSGPem2VU\nneXnJw1ndctHhyMmr7Hv+C5wCN7bzYm1Qopgenc4TYMVyDtu7ML3pZ5rwzpII0mRxmgZmjGREhc1\n7KsUhpfLNtHW6W9VD4zTq83AnlsFxwwm8LFTpZjnGV7Ak2oA3dD2315Nv6jybYcwYBoDt+c5zkJt\nDKum4+7OiERFpLHn1vw5b38wDvuakHQINMNl2VM1oQRy/g4tz+mQN3bHfLZcvfT1KVDEkoeLinkW\n4wUs2wElNHfnCXujjKebhp08DHICj8RzXDbBwmCaYb2je00ttu4siRIXATaXb6wsCpPksF0NOg+p\nlAwIFP5b2gBjIUvgcJxyc1KQxIpYheSuWAm0ej4gb9qeJ6ueg4nGCIUZejrvwTuW9UA8khSJYq+I\n2S9SlBT8X58ec1a37I5jdicpg/FsakORaCZZdGWfqDfBQnicRkzzBCUE5YMTVlXPrVlBGmne28lZ\ntj3mElfcOCjSiMF40jhCbJ07ny1bjBCkkWKcaQbjOd703Jgm7BQxTT/gvNhOIALjHFVnkWPBJE/A\nh13JKNMUsUYiSKzHxEG9vDdOkFIgRbhvfpGS6Jug7gaO1i135yPSQ8WDk4pN3TNJYlwXVMcfHUwY\npeH8nZYDk2IIOcXvANlWNHc4STmPDgrZEv7PRLn7/cB/TZyXBMbpVgFIcIRsekOiQyD21XhxUnhN\naeKSYAssXdfSSklvBUI4hmHA+Jjefft9XrRwHqylqi21McSR5KenGxAhkKLsOiKluDUtGIwj0pLB\nOJrBvDaQBAh13AuPm1ACeRHngqOXFbYSDaM8oV5VLKuW3liMCTdh72P+9PEyhI1n+uL7TbSk7Xqk\nFKQ6obcG4lcP/IuyZ1bEL3VZzGKNaYcLn5iDScLeLGXxpCN7ockrCQP/ezuaPAkJVWUfdnCJkuyN\nUxItLnj8jzYN3g44JIN1KKmIjKHuLZEIZayqt8RaXwh5dkcp1WKgM2HK8c7TW8ONNHulmKkdLL1x\nDM7z5GyD8pKTs5azOtg5J3HEphuYpnrrRBpgrOXuLOOPn6yp+0DtNcZRGsfdWY53gbvsncc7T7y1\n05gXCU+2Zm9prDirLNNckyeCYatqNt5jjGdnJyWODA9OS+o2hCgoGaij9/eCLcLLdqpvwxHzHMum\nJ1bqonS1M4qpehP0LJEi0xqlgi4l0pLBSpZVx51r5k6/KW7Ocj59smLThVJmt1UI/+Dm9J183ov4\nfuC/NgSruqMZDKump+0MXsB+kdCZq2ty52Wb9pI//jSPX1mWvuypr4QkTTLaITAlrOtJo4giCXXi\nF/GihfOqGXi0quitR9iQ9vNsVSKk4EEa8aPbuxRpxHHZoIQkUrA/ztgdvX6b2/SGeR6RJbC5wtPt\n2aZG8fKB31g4XTfMsoTaeR4tKhal4bRsyKKWcRpzdzfjyVJyZzcwQXSkuTku+PHjM9b1GiUEo+zV\nl/E5bRG+7XH0Yn7B/jjhRzfnSCH4x6tvuox74N5ezs2djFRGfHq8ZFV2aKU5nCXMiphusGRx8L7H\ngpCaZdmiJPQGRikIJfnoxojehFhMJUUoATpPnio+Opxwshk4XtYoFdwy56P0YkK5vOKv+0CD/exo\nw7od6I1hXQ1suo5HZcPRsy68RsPPkhW3dzN2xuG9slgjEBjvSZXg4VmzNUtT3Jqk/ODGiK8WFeWp\nYZRq3tspMM5dhJNM84iTTUszOLQS7BUxnz8tebioMd7jnePWLMc5T6Ylm85yVgdPKO8du0VMFm8p\nlt/Bj+o6GKwn1oKvTzbUvSWPFTdnKVXnaNqBnXFEqkMvImQiJKH38o6Qx5rDScazTUvdh8yC/fHb\nyfW9Dr4f+K+JwVocYGzwwtcyrELiJAhami1F7UVcLtucwzqPEK++oM/ZGmmsOJxoBh+HPF2V4Eyw\nKnjxRvkGhEB4sNZRdwYhJMu2xwvB/iTHAUWq6AbDo9OKHxYJ++NkO6Bcj2mxN0mpmoHuFUaesyyl\n23KDXlTEeg+zPOa0bng/HTHNY376dEORRRxOM4be8dNnGz4+FCyrjjwOpmRnXYeSkv1pAd7T9a8u\nS1W9odrahb6MMfFN4VDMezs5x+uGGzsatTEkcWCFjFONEI5NM9DkA1kUMTmIUCiMNXx1UvJgUbG7\njZs0OKztmRUJkdKAo+sb0kgSSYWKwvF0xjNKNB7YNZZqMIwTxaxIQ1lRiK2/kfhGGUTJkA0b62DT\nbAbHqgk7u8NkxB/+fMHGwUjBzjjCO8MXJw17X5/i/+oHbNqBuh9YNQYvJB8cTtAyNNIXdceDZcPd\n3XFgl3WGo3XLjWlGrEPAyqoe2BtnpJHCOs8fPzzlrBm4uzsiSwIT6LTu+Oq0JNGCRAruzvIQeBJt\n/XrWDdMsfqOwoV8E1lq+PqkZZTGTPKEbHE+XLe/t5YzSDOcEafx8IdX2luw1oTzfBU1vmBUJu+Pn\nVOTrOu6+DXzf3L0mwkUZTlgWaUZpxCSLyZMg9qi6l68Osvi5yOb8fa7Tta97w6OzilhHnFaOnx2t\neHC64eujNWXn2c3zIL1/AecWzrM8ZlbE5EmEFJpF3fHPH6/QeIRSpFqzm6UUacIXpxWpVqybHiWu\nLyD5+fGGddfzquyS9NJ/vvgbN0A5WIRTeK04rUMyknOeZdljvEN4sRUPeazzRFLSD5Y8kszziPko\nYpq/WtMwzmPO6v7a3/0oj5iPUvJYMcsFmpCihfWhgd0NfHFasm461k2wOFZKksaKLy4JHmZJivcR\neRS288JZPBGFVrRDuPF3RsHC4afHG7443nC0bni6bEFINt3ApjOUbZj0XmSGPVnWF4I3CUgtWNQ9\nTW+C+VsVdlq1hQdnA4u1R3Xws2eri/eoekvdG+Z5zDwPAqY8DkKrRdlStwPremBRdXgvkNv682Ac\nsQ7eP+fH9HDRkGlFloRzPstDlObJuqUZghYjiTRJFPpdRax5VgZm2i96n1wXgu2i45KFq9s+fnOW\n0w7mIp+67S3tYLh5hV/V24BxfGOSg7fj+X9dfD/wXxvi4qc4l29eqtX7K+iC56WEc6bHdZz+6t7w\nZNngvEDiKdsKryBWCqGgamsi6RHi2+/x4gXVDQOdC5OVFYJhawaVxAqt1dbzfCBSgZbpgaa3NNdQ\n1jgf6r9SBmHTyxBH4iKY5fxoxaU/0nkOZ3kIYOkdWaLw1mGcRyEY5zF1awg5Ip55kbA3LtgfJ6Eh\nO3h2XyPgujFK6Iy/tsuiFpIf3pwGGqYKYSt5pEEp8lhh+sBf1VLhLWw6yzAE5fmXN/EAACAASURB\nVHJ1qXF6Y5ryq7dmxLFmcBYlFR/tjTiY5nx4OCZWik07UPUmMDuEoGoMp3WHsY5IypDpOzjsCyOC\nkoJmcBcq51iH0p/wUG2tQ883YoZAnfUCBgH11rtISYEQItg0SIG1PqRgJYpIBnotMjRuvRDMi5CO\nBWFgjrX8xkDlXBhM6601dGcso1jTW89gBlpjSSNJGin89jjtlh3xi9wnbwKpFJ/cGCOloGyCQv2T\nG2OkUkyzmA8PxyGYqOmR0vPh4fhCNPgu8F0cd9/K5//ZfMwvP7QEKSR7o5jGOJQIDTtcuFBfxdK5\nClcpei9bFzxbN+AFpvds5EAsIVWSRdViXsK1f3HLXPaOUaQ56TtyrTipKqrGcrapKXdG5Epwe5bz\n8+OS1oT81HkWMXnNKhrg5qxgMEHte5VE6/Oj5QUzpt3+9IRJYCeFO7sj6j6wOYz1SCPwSqAVpKlm\nXXXBvG17E8ZaMCk0J+uaZrD0Dqx7dVpYEkvu7Ly6OXoZ56Wu2SilOi3DIGoMeFjXPmgXlONk2eCQ\nKOHpTESWClJZ8OC0xPowmBksH+1NkEqAEwhp+bU7c6ZZzKO24sFpRTc4jPdoAa2zZEpR9QNFGpHE\nGjEYnpYdd/aeJ5JY58miUIKx3uOcYVl1tH1Pax2NMRfLkkIF++o0gnUFeQKbpifSikmqOcHz+Kym\nswbvBXmi6IxjWkQoEXIRIgG99aTbwSrU393FQBVcUwUPFiU3p4HaOpjgenp3L2OWxXz2tORoFa5b\nrRSjVPPJ4ejS9/7uvHqySNIPPoTbOBf0H86TReFc57Hm1iz/xr34LvFdHHffBr5f8V8TaRwxSjRZ\nGqG3JypWkjTWZLG8clB5UVB1Timse/PSxwfr6Iy/WMkdbRoq4xlcYBGFVaXj4bpBvGSX8eKWuest\nUkIWKeaZZt1YrIVIK4Zh4GgV+NJVb7g1z+kHx89Py9fWzQGMd0Hf8Io+sLOel/GDHDAfBV/5urcc\nThPuzFOMtPRD2HqcbVrKbuCTG9PQECcEfth+4MEyNKwzBaflq/TFIYFrnl3/hpommq9OSmIE1WDZ\nNFuPHh+yZrXWWGMZPAjvsEKy2LRUtWFnFFF1lqYzzEYxzWCohw7voXOh6X5/G2RvrOfhWc3gglOn\nR3K66Vk3hnVnLmyya+uou/5bZZC9ccpZ1dEPDq1UKDd6ySRVWGOZxBDBVmAFXR/S0W7NC4wL9gRp\nFHz6122PdyHQZl0aeuspG0M3eLJEIRA8XTWct6YiLemNDdeRdazqnsNJxs4ooTOWs7qlGQaKRPLe\n7ggtBKdly2CD6HGwhtOyRb9BjOh3wd445bTqaDpDpCRNZzitOvbG6ZX36NvUEbyId73DeR2+X/Ff\nE4HvHQXaHXBadnTGkdjAdb7qhF1FUzurOkZp/K3HAz1UXKzkjlcVVQlehhtXKxAO8qh9aUzgiywV\n8MyzmN1xypcnG37lYMJJPWDMwChNmeWezWA4LTuOVjVFEnF7mnF2DfO5L59tuDVJ6XooCCWFF/u8\n+zsTzso1xj+3fxgDuQaJYDpKeT///9l7kx9Jsjy/7/Pes93Mt1hzq6y9q5vdbM0MRzMUwBlS24XQ\nRYIO0h8gQYIO5F+gowDpKBACQYBnnQQIArQAAggMqAEkzHDW7umlprprycrMyFg8fLP1LTo8dw+P\nCI/IyK7KrJ7p/gGJXCIyzNzc7dnvfX/fJWSniNHO8e3DASfzlk4b7g8zdouYUe4tg5UUlNrRaC92\neTZpOJ9ripfsTt7dyX3A/B1LA2/v5vzrnzwnFGACb0+hwpAHRcBsUXMwLOis8IKnTjNMA9IwIFAB\ng8y/r2ko+ehg4BdkKcnCmGEW8WTS8L1WU3WaIglpO8vCtggE0jpK25HXiienC59JECiitTDMwwGr\n9/ign3A8q/n0eEYWh3zrQR+rHVbAj56NyeYaE0DTQT+R7BaKgyKmWnpMnZcNeRLwrXsDysZnJydK\nLq0yIuLIJ39lSw8ls1yoIiXY68VLZ8+GQCkOBil7vZjPzxYsas8O+vb9Ab0k4ovTBQ8HGY1xNJ0m\nz1NiJTgtv36Tw20VKckHhz2OZ9XSA0nwwahHpORrp5LeVK9zh/Oy+vXCf8da8b1XoSBxEBAFjjAI\neH5eESq5ldVzE02t0Y7MeSO2FTSTRB77LJKQT45mJGGAE44K710/yKApvfulXo+mrtfmB+rBMONn\nxzPPU5aSYREzLBI/zCtiPjma8GLqzdb204R51fHXJ3Oi8OWdmHOOv3o+8yEfkWePCCWpKstkuWGI\nAolQkDoYeUcI3t/v0VlHHim++2BAawzDIkYhiJTiYJgRL6/novEc+5X4bbxoOJk3BELy0b0+caAo\nW82/+eJmv57OGWb13Rf+stUgoAgCBkXB0GkQCiUMIghZ2Iq6tYzSiL0iptaQhILWGkJxYf/QGsuo\nl5DFmmGRXNh5L2c4bWfZTSM+qxfkUUgUSpTy1iDv7Obs9hPKWjOuWg56xbVd5VnnKbuHg4z7owbh\nBKeLhkZrdvKE337rkD/64pQHw4hektKajnlt+J0P9imSaNnpagKluDeMYWNvVnUTQqXYK+I1FGGt\nnwHs5NG6Sy6SCOv8az4vW/I45N96a9e/fm3pp76rrTvr+fKxJAxiOu3Q1i4Ddl5/aeu1ByurilW1\nyyHF66SS/jLWrxf+O1aoJNY5/s3PTzhZtAzTkEe7GWmoqDvD8bTi7S3e3YH01sjHs4q6cySh5+sq\n4RW82xS9Ai8IezJesKi8etQCKy+yELDaK0PPFsGtjp+7Pc9HfjGpqZqOaavR2vFsUrFbxJzN52RR\ngBQwW7QoJUgjxfEtxmqr6jQ87CVEIUxm4Fnvl2/k5+OSufbd/nQFxR/NKFIIBjmLtmOYREiHj/xT\nMC1bnjeWQFgGWUQRq2XHD612zMqKaWOoTxd0TlCEt9+gz6f12k546+u4MmtpjWNeap7NSr4cd1TG\nv6pCwf1RQ+TACM3TSUWrvX/Q3iAmlRFuY7CeBIrn5xWfHM9JopJIec3BXp5QNh2lNqhIEArJl2cl\nxhqM1by1kzKtNT98ck4eBzwYJagtUz9tDFXr7RFmVUvTGRadYVF2TMoOEVi+fehTr74czxgkIb/z\n/j5v7/eWi7nwaVnL5KuVuKnVlixQZLHypnvaeqV6IImXC+Rml+wpy96352ha0rSWUlsSJXi8V/Bw\nlJGEkumiY240jTbEgSJRgn7+ZjDtQMK87phWniEWLXOea21ojSOUgt1esm7e3sSg9U0GO12tX2P8\nd6xJ1fL5yYLOeidFnODjZzNOZjWBFEyuxkwtqzWWvz6a0WmvCuy0D1JpzZoatFH+7/NaM280+72M\nOLhYSnPp37AOqDuPEb8MkyySECUEB4OU9w97nE4b2qUy11jN0XlDFERIIenl/nesV+W+rA77CU6B\n0bAiMV7tJNq2vcT4GQReuHVyDo/7PR4MM55O66VqNqFpLfPG8uFBweEwZ1JrTubtcm4BZdtQWjie\n1wgp6SWKSXX7POJs1jDIXmEGU3b8xZentJ2hXmXrSu+x8+V4+SDWgiyKeDgqSJOIs1lHEEo6Y9ZG\nYA7HT15MUcoxzCMqo/nitCSNQhrjDcGOxjVhKPnowYCP7g0RKqDrLHtFxHcfDdkvEs4Xfuh+tbR1\nHE9rtPEY9ou5d9CUyttb50nM+4d9fvedPf7zv/8e//g3HrNfRDhjqTt/zfaKhDwOKRufO9xqS9lq\n9vs+GzYOlYd8QoVzbt0xb7LHkuVcqWo1LybNcmGVhIHixaSibDU7ecSLRYtzjt1ejHOOF4v2tVki\nXC0HPB2XaMM6bOgvnpzjLOzkMdrCs3FJ2eqvnUq6rb6JucJm/brjv2M9Oy9x+HScz08W1NohpGNc\nNnz73oDd3vYP8MmsJos8be94VnvvkyTgbNHyrXuDrYreaV2jhDd/qzYQisXGZ0Jrr0aE65jkZidR\ntR17/YSTWcXzSc0wV4znNT/4oqFIQnaykKptOZpWVNrSCyW7RcLoDqyeF7OKNAx4vkGquQqolO3F\nQwFgrj3kE2fww6Mz/sHkgPvDeH0j1FrTGsMPn56jLexnIUIIzuYt94YpAkkqYbeXMCsNZdORvKRL\n2u3HpFs0D7B9BnM8bdjvp1TWkoV+oF4bT4nczWFRwbfvJYzrlnnVoaRj1IvpJSH9NMQ6S9lappXm\no/tDXpyXHJ1XZKFiZydjWrXeKdPAKPdZs402hArv2CkComVKVRJ5CmnTbTfk66UhCGgWhvd2Cz47\nm1G2HcNMMUxDH1aThVStYa+XEghP0Ww6zU6REKmA/X7Cl0HJybwGJPf7MfdHOZ3xrqAnc0saSu4P\ns3VHvMkeC5X08OSLKeGSxx9IQRwGYB3PzksCJfnoXsHpvOV83pDFAQ9GBcEb6nDndccwj7HWobV/\n8O0VCY0x7Ci/w55V/h59a5S99kHrNzVXWNWvF/471njR0WqLcXA0r4iERCpFVXUEasao2L3l/xnS\nKKCfeYpb3Rk645axedcVvVJIxPLG2nQ1jrkYnhrjWT6rWmGSV82uzhb+IXA4yAmlRBHxcOhpgs45\nvpxUHE9boseSRzs5s6rlaFbzd9/qv/SaGBzPpuUlz/6roeffedTnT382RS7vIaVgrxfi8IrUSHpn\n04MioB+HLDrjF2kHlTY8nTY8lJKdIiaLA3CCNAxwQnLY817mVW344cnNiZ79cBVTfr22zWAQbq0m\nHeTepVJKRWcaemlKZUrSJKBII6JIoTtLYzRRqBilEQ9HnhaYRoqdImaYhJyVHWopXig7bymdBJ4V\ntuLRe5xcM69adrKI/YE3aWuXvvtXSwqvMVBSkIQBgzSiWuoVHu8VTOuWp6cVu3mCxbFb+MYijxRR\nECzD0D288OFhnw8PL97zbrkruD/ML9ENVxkQV+mIcpn4NcpDouAiQNw6x6w2DNKI3SLloJ9t/DzH\nHTaWX0utAolWNala0jjw8xyWmb9FzKLRX1vA+231ui0qXla/XvjvWJ3xGaF/9MkLjqYNUkKRROxm\nIe+FBdN6O6WwM4ZpZai1h1iiMCAJAvJEYqxlG483jxWLxrBoOsqNH7vJmGntZa7xCpO82klY66ga\nzfPzks9P5jw/n3FeQdt5/5ZYQi+HsjV8fjpnJ4/53v2BN9t/Sf3Zp2f81uPL/sVX+9JPXkx9Hu5q\nt2JBn/lFsJ/Bx8czhrkiWVovt41m3lqk9HhyoATPJjV7Pe+onyUBeRZycjrnx88mtAaKl3yK8zTi\nJmO8bVYBO3nMou7Io5jjaUPdQENHIiBWJXtZSC+OmNUd87IlChSjLGEni4jCC2rvXhF7x0rpX9tZ\nqWlsxygOySKFlAJrLVmkaI1FG+szCETIvNHMjmbkcchO4Rk1V7168ljRaodxfrHXxhEKh1yaoAkE\nvTRgVnUYHHu59513AkLFpa72Kt7cGUtnHNOqXmPi/TRad6RX2WOB9J79dgMCUkt/+UBx6Vy18TOD\nOJCXFr/XiXnHgdcdXAjeFNOyAxyThTf98+f0Zp5EgfTGelXTMWsMUjjiMKCfvJkl+dcY/x1rUXf8\nyc/PmDaaQRYSSsn5ovVxjEoxWWxf+AMJT84XNJ0hT6N1yHQSiBt5vEUSMq877ya4gVBsvlkGiJZC\no01M8qpyt201T84r6tbRYXkygaqFOPEQxlnj8eo0Vnz7/pDvPRpRZOGdOo/9XswPnt6e/dvUl887\nAhoH5xZ2+gnOwsdHJZOqpu4slfH2yHksUQjmjcYIyzDzHX8vklRa8/lZST8JeHsvXzuEbqsIaKzZ\nqnmA7VYBH+xnLLThXj+i7vwzq59CquB4Dh8cDIgixV4v5YN7ffb7CVLC/WFKL7noFt8a+Qxeawyx\nksSRoBeFvH8w4GzR0IskeRzQGUca+hDyXhbSWBhlMe8d9sijgBdT7010FQ8uEu9vHweKx7uFV0IH\nkjQJqGqDw9MuhfDnlice+hmmIQf99NKifxVvPppUPDsv19bL1gmOZzXzDXZUqPxDbieP6KcR9wYp\n2thL1gfaeL3BKI/X5zrIIuJAYTdmBq8b8x7lMa02axZPqAQn85o4VASBpNWW80WzNvN73RUoH3d6\nXnldgUAyKVvqzr4RnP8rLfxCiH8ihPiBEOKHQoh/uuXr/0gIMRFC/Nny13/7VY73TdaX45rDfoo1\ncD5vwAn6acik1Dizsi+4XtrC/V6Cc3A0rXDO/13b6zfO6kYUwINRRqD8IHRVmx+HADwj4cpD46oU\n/LzWREJQ646nZwtS6XcOx5VXZApgXDqEEDwfL1BKEEp1uwHcsial50PfVsZdPu8W33vvh9B1hiJV\nPBgkTEpL2xnSQDHIYs4XHedlSyBgEMWEgUDgSJOQunYcFhFCCiaL9lZmyCCGVKmtmgfw70ESKuZ1\ny4tpzbxuORwV/MNvHdA5wU7hb5KyAhnD3znMiELJ9+71AMcXx3Pq1vDRfsE7uzkOx4+fnfOnn59x\nWrY82kk4nXeczBukdTzaKehnilEWE0cB7+736CWKqtMYZ9kvYn778Yg8kcyqjjgSPBplGGspm47x\noqVsOqxb+cykSOHjG3d6EQe9CJxlXNbUjaFIAh6NUuLAs9IGaXBNd3I6rzma1jw5W3gFrzaUnV36\n8aw6ZIkSkml9M9trlEXs92NOFzU/fjbhdFGz34/XHkCrc100Gikc94cXbpS/eFLd3era8SV8/9GQ\nXuLhnkD5e+4NIU9oY4lCRaQkbrnjHOV+6P26g9bhK0A9QojvAf8F8Dv4+/n/EkL87865j6986792\nzv1HX+Ecfymq6jRSSvYHCfNaYZ0FJyi7Dm2t52lvKSEFKpDci1OiSNK2ltqYW7tUbT0bp0hCbjKC\nEHiM9yor4ir2WjYd80bTzyNCKSBwhC3046VfTud3D60xpKFnAGlh2Ste7scfBIJZ/ZJsgRgm5ZrC\nTgrs9cEJgQwkRRLRaksSCO4PUl7MGmptlvJ5y6LRFIlkv5fQTyNiVWNx3Bv6TF4VCNrW8FfPT9cw\nU4o3gAOoG79wh1ssrOECyy6SiMEScjud19wf5fSSgIe7Az64J8nigHndYSycLTT9Iubffi+mWEIY\nVaspG83Ts9L/rDTidFrz5VnNg52E3xru0LR+FrDXSzgYpCwa7+j6zgYN+GfHc/I44GDjHE/nNeeL\njp3iwp2zajU2UBykflFddcyjLOZ45skBi7YjCwN/vQbpGhpcdb3gNQtPxzVZHJBGilZbjia19wZa\nXg+18bu4RWnr8Iy0t0YFyVL4Na81bmkxv4KH0iWUs/nweROY98qADuBsuVu/WpvX5nWWthBKSZZf\nXoJbbd+IUdtXAZS+A/y/zrkSQAjxB8B/DPwPX8eJvala+Zk32hEH/qm7TYiVhgFl06C1pao12lqU\nUgyTgP1BxE6+3bcgCxUzoXk2LZm3hiJS7BUJ2Q0sE7iMO98kS5qCf/hcqavYq3WOIBQ8OZ0zWTim\n2i/0VeMX4hjvmdNpx3he03SGR6P0JcEyvsZlR6JuvzGlvIyul0Dbej6+dA1H5yX7RUIvCeicY5CF\nVBPLyaImDgL2i4jRRpB9Hit6UcDn4xmn84bWQKwuzxY2nXsWwKzRJDdY7G7rNKNAcTqtmFWaaVkx\nthJrHUkUkEXQCR+w/tPnC8ZVTR6FvL9bUHeSd/Z7aGuYlIaqM0Sh4Ol5Rd0Z0jikFwc02sN72/Dk\nq1g0eDMzIRxl4x88SoKUEinMpdfRasvT8wVn846y8aZowyTinf0CvYQPrvLTx4tmnUIGrI9bG8tO\nHN7I499W87ojDRXjqqWaaNIoYJR62DJb5UQYdyFk6ww7y/f2ddsyX603fbxtx0dcPgdj/azmTZzD\nVznED4DfF0LsCiEy4B8Db235vn9HCPHnQoj/Uwjx3Zt+mBDivxRC/LEQ4o+Pj4+/wmndvTZdMPPY\n45jPzqv1pH+zHu6mHM8rYiUZFTEyFDSdYa8fIxD0b8AGk0ByNPW0x/f2C9Iw4Ghakdzy7m7izrfJ\nqG6y9L8MIQV8cVpyPK8ZZBcL5OpsayAJoBeH/MbbO7y9V2Acd6LZKeE4W9zOoRdyFSzn7/ee8BoE\nBzzc65HHAT8/m3PYj+mnIc75iMjvPhjyeCcjjhSHw2TtRDrKYwZJxGfHDVg46GfoW3bGFvj4+XTr\newrb7XGlgC/GFf04YFprdNeSRiFOt7yYtQQ4fnw0QyrB490eaaT49HzB52clbWdw+EWyWXbhcSjp\nZzGBEEwbzbz2TK+rKtLV69vEolttaY0hUN6yN1w6Yi6a7tLcYlZrjmc1i9rQWa8oz+KQ1llOFy2z\nejs/vdGOXhZhN+YcSgoiJQgDdSOPf1tNyo5po0lCxeHA+/RPG+3/vWqpWosU/tpIIahan7ELr9+W\n+Wq96eNtO36o/EN+xXDy3kfyjZzDL3wE59yPhBD/PfB/4yNX/5zrNO4/Ad52zs2FEP8Y+F+BD2/4\nef8C+BcAv/3bv/1GOE2bLphw0e2Ml6Efm5VHAR/s9/h/fvaC52elDyUfFEghccbduEWstWUnDfj5\nWcn8uU8yencnpb5lP7fZtd9W8ztggdpCIhWNcsybC0roahSd4e163z3IyePQsymyaN0h3lbjecs7\n+z3+7NnNdglmqXpdxS/OnMf3swgms5pppflgP+fFrCGoNMY45lXNOYKdImY/j2k7v4CumB7jsqUf\n+0Hrs3lJ8ZJnlFKST08X3Btc91ff1vlNqo5+GqCUoJ8EvJh2HM8XZDG8s5PSWYilQkhJ3XrLAym8\n6dlk0VHknk21aAxdZ/0Oq+3QxhEIgY3VJXx7s1ZY9HjRsGi8b9NBLyaQas2ICZQgDkIcbs2EeTJe\nYCycLloabQmlwFj/vQDjsuHeILnGT48DgXU+d7duNZ12WGu5P0yX8Yrbefzbquq8g+nm/bSK8pw3\nPnf68s7KU3l3i+s71ZUf0dfJpb/KGkpChTaWVjvccvc8q/UbUdGuXu+8WvDZpAMse0XCQZL88mfu\nOuf+JfAvAYQQ/x3w5MrXpxt//j+EEP+TEGLPOXfyVY77ddUK3pnVPvZOSkEaKpotuOKsahlXhgf9\njN08xVqLNhAGgsoYzuY1HF7nvp8vGo7LjoNewjv7AWWtOS47isUtsVXczcBpfAeDK4mgE44Hg9Qn\nSWkILCSJd5sUElSguNf3zIuVruAuWOfDJWvltnpvvyBUc8YzQMEg9V160xne2e/x3kHhX0fVcX8Q\n0mqDdbDfjynigGeTmsNh4ncDCJ6OF/x8PMdJyeP9iCT0Q9Dx+IJVJbgML+3kEePF9mu1zR53Xnek\nkR+Atlpx0JOkccSiaThvHP0UtIA8EERB6CMUrSCLFGd1SxBIskTRac2LecO7uwUPRzlVYyi7joN+\ncusCuolFAxxNaw8NLbn+qw4RWGs2lBCUrWZadSghcFLgBCjnoaEiDrfy01fZuVGg6KV+3rLajRjr\nbuTx33wt9aX8ZpZaAXHDcH3z31+nadm2MPe6M2sb5PV1lF9/0Put56MC3t5d3XOGWe2zMV734v9V\nWT0Hy98fA/8J8D9f+fo9sZwGCSF+Z3m8069yzK+zlHBLJodm0WrmtebFtEZtwVDOl5a7wnkaZR6H\nZHFA3TlGWXyj++Ok0mSBH5xpY0kjRRYETKqvPrmflrfbEQOksWI3ibDOYYzn7WcJmA6SpXmadJbd\nIqGI/U1wV6wziUL2i9tv1H4a02lIYtgvPIU0FIJR4b3eW+szDRz+YbNTJPSzkGmjaY31qU3LG0FJ\nwfGsoW0bQumPD5LsCsy2+e4FXDB3ttU2e9wkUkgklTb0U4kMA2ZVi5SSfuIXhiJQ3uq4M7B8CBRJ\nyLu7OWHgM3SlUHxw2KNIA+rWEAWKvTy5YQm8udJQkkbeN6fT1g/JIwW49WIll11qFPjglCCQhFJ4\n2+wwWAvortZNbBsBr8yyGaQhoyzy84hWI4RjlEUMUp8R3WpzCVpptbkkqnqddRtr6HUzim46n25p\nubIS7/lEM/vLzepZ1v8ihNjFIwf/jXNuLIT4rwCcc/8c+E+B/1oIofEzt//MuRt4j99AKenpaXkU\nrlkIi7Zjv3cdx4wCSVMans8rjHZICcM8QUmfdxrfsLAkkWLeao7OW5xcWiqnwXLR+mp1kw3BZu0V\nCb288rGLEo476DqPuxsNaQ7vDDKeTUt6Uch51dJPAg76L2f11LWmyG8/hw7L/Z2c8axcXifBpK4J\nGkUahPz02YwiCciTgHmr0dpinEMBrXX0QnmJSdIax/6w4NPTGeOTGWHgzeJuqoM+BFLw7u7NMXpX\nO82dTHO28DbJTkpc0xEGikBawiCkUIrOWbraEoaStvE8/Xf2Mh8D6XwiW6P1MqQn5nCQ0GrfMd8l\ndnOTcFAkIVJAFgeXuu9QeS58WXU4ByfzklnV+a7bWnayiEEWIwX0kuhGgdTqwaitWTOGtOXaovwy\nls0oj5nVC2KlSEOJtXbN1Q+VRC/N4IxdUnMj9UZUsuAhTyH8tVpDPVHAajUy1vhsg6VYbZTHPqzl\nNZ4PDtRGvvXKOO+XndWDc+73tvzbP9/48z8D/tlXOcbrLOPg0ShnVreUrSZSgkejHLPlsy2U4Muz\nOUmkmGiN7QzPJyVpLFnUHY+G1505wbNQvjxz66RGBzStI4/vlti1SU28WtkdfkYcSpTyObVxrHBz\nP4xdmTpLC3kUgXEEy1SiWa0Z5Tdv6VflJCwafc2mYbOa1rBoGmrjCAUEUUCnOwicFzVJx/miYTcL\nPR2w6tDOMcxjEiUotSEycg0xREowSAICA9L5G8jdMl8exILfeDzk4U5x8zddqV4SrDFobQxC+oVC\neTksO1nIo2HG52cVVdORhgEPd1IejjLEMhhdOK/sblpNoIRXvCrJKItufe9XhIMoUEu1q+Vk1rDX\ni6/58U+rlslSOayEYF5prHP0lzuYs0XLfi9hv5cQKnEN6pjVHUnofaSq0nuSDQAAIABJREFU9oJJ\nNKs12tilFcTFub5sJ+h3T8uBuPVMoF5y8XDZyeNvzI3SOe+d5Gd6YumG23o2mXE8n3gCRhb5rvvL\nccm9wcubn1+0vmlWz6+0ZYPvOoJLaj1j3dZIw7YzlJ1hvKg5m7VYa4jjmLLuCORlz53NSpSkNZq2\n1Vghkc4SRe6lxmKr7uy2UMG7fEBWltGDIiZRITEGh1+oGyAy/rVp5x0vh1lEpoKtA+6r9Wgn9yEc\n3LzwKwdVrbEahqMYhCKUAUIIRr2Yt/YKfnI0ZVJr3i483lxrSxGHdNqijSPue6hExsJn7VpojX/w\nWIs3CFp2/aPIU0iNhnZpZPet+8NXWmACJZk3tYeXEPSymDSMENJSNYY4VDzcybk3SGi0776llDTa\nkEQ+l1YAwyTk2Dh2spCDQXYJP7+pxouGpjM8n3gKaBIqRlnEvO54ONpmLe0XjUmtyRMfbu5wxEFA\n1el1NCZch25WgUArtewFpdMzeBbLLOa7RgNWrSYOA4ZCXhi4BRfGY99k8Iivy+wtbfzDb1J1Poc6\n8A85uYR6mtu2kl+x0iig6sylB6739FJvhNXzK23Z8Cq44/G0pu4EuoM4DIlkSCADjIU8ClncMOSs\nWkscSpzwGK0TijiUVO3N+7lN+fpt1bmX6wynVcfJvCVRHtby7iQXT/y2hS/OS6rWIIVneIzLlkn1\n8vmBFI7feDy6lrq1WWGoiKKQXiIxGqq6JVEBRRhyPKmZVS1v7xTgHG3nPUt6cUBrDEoKskQhsFSd\nQeDY76cI65CBX/SlhGj5KQ4ABNhlqO+wAG3EKy3662vvvHPmg1FBqx2L1ns3PN7rkSchSjgWnfGB\n7IEiVIKzebecmPvziKOAB/0Ei9iqVt1Wp/OGL88rrIVeGmItfHlecTq/fpWFkAwyz7WvO8NOEVGk\nAdp6JfYwi1jlnJgttNVVIBDu8teUFARKkYbBK0UDVp2lan1jEQYSB1StoXpDYSu31ea16rTFLP2C\n/FBfeoO71lB1eh02Y+5wf/2itdoB9RIfXamNoZcEa13D665f6Y6/n0Z3xh2fjUuKSBDt5EjhlaBn\nswbdOXppeKOU/axs6UURj3YufuZk3nJ2CyPn6rDpprJbPNqv1nnZUoSKMFRMS0siIQg9PDLIFeOp\nYTzThMp/ANcUvDsMmH7r3T3a5uKmjrgeun5vkPPZiylpEnJvmDEuOw4GCfPWEAiBlH7ofX+U0k9C\npOwhESAcD3ZyqtY/mPcKb2sxrVrG84b9PGb/ge+ArXM8/+kYjc+TxTmcg/NpSRC6V7K6rVq99AoK\nl+lTivf2C7QxZFGEko6mM7Ta++ms3qO6NRhn6axjt7jo6FttkcLd0K1fr/OyRSGIl0+zOPLvx/mW\nz4sPQBH00pD9XoS1AmEEB/2UfhpSt34xScKAed1irLomWIoDD01tgxyS8OYs6W3ld8ri0q7iph30\nm67NawUwqzoQHlZptcA6/zWBh9FuEth9nRUqb4G+e3cU8murX+mF/1VwxyKN+KO/+oJPzi/+bRDA\n33nY47xs2Lli2TCpWp6dlzyblPz8aM6XU9/FJaHiOw8HfP+t0Y2q4c1B1G11ONhuE7H5cydlw04R\n88V4jpSw0NAum8fxxBACA+Hpqru92Hd3wpGGd/Djn1SXdiXbHmV/9MlTJo31oeVNgzaCJydzEPB4\nN+enzyckSnLQ36VsDGWrmZQNceDxViGgNob+xLthCgRxEvD0xYzPThpk4LUJIZ5h8KPnCxI8jJUJ\n+I13d6g7yx1m1cByZrBcvB7v5hzNx97CwFpC1fJwL+XD+wWzqqUt3Zo6mgeKnTym0ZpJKdbqVG0M\nneWlyvBVhUpxPFnw51+UPtM5kDzeyXiwc/3BsUlFvTfI+PHTCdOyY6cXczatMQLe3y+Ylg3H85bT\neUMvCRnm8dJG2S4Hst3XAjmESnEyqzhZtGtK514esdd7fVj5Xesqbbc1Fik8M0wpyZdnC6z1ITud\n9pYqj29JbfubXr/SUA/cbJR2tf7i6emlRR9gouHL0xmfniwQG/YJk6rlk6MZ1gra1vJXX56zKBvy\nWKGt5o9/dsbR6eJG1bBzlknZvhTq2baAXFUjZ3FMZxyPhjmhurw4S5aLVgwni9YP/wQMs9izU15S\ngZB8eHj7zWGtIAkkTQunE2g7h/AzUqrODyMrY5iVHUgom45ABPTSiHmt+eKkJAt8gLl1go9fTKgr\n7T14Ao+sLMzFjMHiF/2VaGyQRnSv0HEG0s9+jHV+mGsckYIoVGSRAOO86ZvAH9SBdALtvLe8QPgd\nB1A3Hc+mNQL3UmX4qhqj+cmLKdat/o9P8WrM9f+zSUUNpORgkNDLQxptQAn28pC6M5xXmjwKGGYx\n89bPfDy0EJJFwdcGObTa8HRS+2sUBmAcTyc1rf7mO/6rtN2rrKY8DnAIPzPaGEr/ba1f6Y4fLjrz\nqrtQJw62bG//8tPt6tTP5xArxWIjIenZeUlZdXz8YsYffHzEedXSaTguW3qRIg8lf/ZkzH/w/Udb\nVcOeSfHybeaLScUgjS99iK+qkffykNMlBXWnCHm+3EUsYei11DpbMjJ2iuSlA8hV/f0P91G3mHYB\npEHAomtoWohCaDoYJSDx4e8I2C8yTquOg2FCHAbEUtCLFU2rydJwTVuNAsm01FhhqTqfKQB+kV89\ndg9TQPpMYgF8ejojuMGgbev5Lodus6rji9MSbR1OOBKl6GchSRDwdFLz3YdDjLswGisbTdkZDpMI\nJ7yZwqQxSCfojOV4VqONwTlBZwzvH/S3Liwn84YkDMjDkCCEqFOIzrt7bquLgWnLWzteKDavNUoK\nnzFbtmRxSJ4EaGPR2q7ZP5sL3zbI4VX98c+rllQphPKvPwgVrjV8eV6SrVThb5DJc7U2h8td4ncA\nxjrqVpNGIWkUUiwX/BWt9ZsdRr+++tv7SLtDbXbmg9RjpJ8czZhU10GL29g1UsJ0Q5D15emCHx3P\nMMaxqDvK1tsrC69VYtY5Ph8vrrkDRoGk0e7SIOq2mtX6mnd5o92lnxsGilEecbLo6KxjuGzk3fLX\nKPQ0xdOq5em4vNMAclXOQfMS0rEWftAoAKnAaTDWLw5OCOa1pnM+hCQKAh4MEvpFjHaOxsFe7hfS\nVc3rjvN5t6ajrn6tzwnvtSMEqAjOFtUr0eNWnSHA2aLBOEekvAAPJ2it5axs2e+nFJHCGI9hD/OI\nSEmiZXoYbrmjwXqPdW1xzgNDi9bc6DXftJaHwwyhLG1nEcr/vbmFDAAXnkM+zyHwQ0xj6Rz0sxBt\nLC+mNQ5IQg8n3rb7+EX88avWEIbS6x8AYxydc5RLu4Y3nSt7W23uAKrOEkixXvTBX8s3ZNT5jdSv\ndMf/7LwkkBLtHJOqRUlJICXPzsutXf9N1VlDvXEDPZ82hAiyJKDsNHEIcSCR0nF/p8eLsymLqr7m\nwrgaKF0dRN1UKzHNZl7nVXfH1ljaDj46LAiEYC+X9K3DGkeaxlR1A9Zy2EsIA3HnIeTquN1L7o63\n9/p8/GyCy73XzriGLJZgBXXd4YoEgaWII4pE0WiFs24ZTagxBjZNSOeN4XRm6ScwyP2Mo+0aPpv6\nazFII5D+QbMovZvqq5Y2lv1+ShIEjFJBlvpuWQmJMZamsZ71UySMlv+n1d4vfwUbAORzRdM6qtZ4\ni20pqFrjNQFye75qGio67Xi8e6ELmczbl4r1rmbghqnELOEnKQSTsiNYUjOttSSBIgrUjbTdXyQT\nVgr/AOql/ufNlwHuS5bkG8+VfVlt7gBWc51VvUmnzm+ifqUX/lmtmZQtT8YLqtaSRpJHo5xB9mof\nyp8+m/N7H1xk7kahpNHWC3GUYjwzHGNRwPn8nCyF9/d7LJqOeQ1KCB+ftxx4hkquB1G31abT8EpV\nOcpjvjhdMKu9YnXeaH7y/IyzRcf5omNceUfOENCLhn4Aowz+9LNTpJRkkeJ7j4Y8uoPg6WzRoF6y\nLfnBFyfUBuoVUibhdNqhgWEWUGnNeN6xX8Sczlv++sWcedmRJgrh/M344WGPSdmirSONBEnmg1HG\ndc1SALmuz8/8bq1Zvsbv9v2s4FWYEytv+EEW8KOnC55ONFJ64dkgjXlnv+CP/vqIn76Y0xjHXh7x\ndx8NeHu/R2eMZ0Q5LxDUxvvVOOcYLzrv6Fr4NKptGvaP7vf4Vz96wadnc8JlZGMWBfx73zm4/s1c\nwDF1Z5nWLcGyeUH4WUU/XXoJtYY0VnTakEQBydKLaNFoOmM5nTecLWq0FQwSRagU/Sv3wcuUu3tF\nws9P5tSd7/BP5g2RFNwb5utzrVu9pnd+k7DPZqVbLKNDJW60Wv8qtQmfrYzhhJBvHAb75q/6N1jj\necOfPxnjrGBUxDgr+PMnY8bbONO3/JzOGMbtBcbfzyJv+iYcUSwxbKRQCS8+KsIVdu28Xw3ukspx\ntQ29rTZpxqsOZRXdKHC0xnJ0PufHz+d0xjLqxevh7orPX2uPlVssj0Y5nYY/+MkxT87mL7t8S8rf\n7b1Do/2BnPBQT7jk2QcOBnHEKI0QWAKhqOqWo2lFa7yYJlSCSdUyrVta47nkj3dzhgnMrZ9PXD26\nxs9c5fJrUgk+OZ5vhe9uqlUeqrWORluMEWhtCGWANZYX5zU/OpohpYfkzhcNf/L5mLN57TUhy+Fu\nHimKLEAq7zEkheDeICGNFJOyW9/4m5XFPl9XOb9zU84PGrP4+u5vE44JA4lzHgrrjAXnCJT0xnuJ\nQijfxRdJyDCLlgZ0du1X9XxSoYQiDRXT2vBsUjK/kiP9si64SAJ283jt1RNK6GUeN++MZV57u4Q0\nVL9UsM+63Eph/3pcZTbfLyF84zmrvcDuTV+PX+mOf1K3RFJ59gYe646kYrKFkz8Exjf8nDzxnP5V\n3Ssinp6WjNKUYZyQio5BBgdFQhQoJosFVnlJ/FsbrejmQOkuKserXuIrW9siCde7ln/1w+fc62eE\nobePHoTeq0cIOBxJXowtaeDpqmmi1jGGP3hy/tKu//4wf6mL53uHPU6nDaPcIpxASMdeL8daRz8J\nePdgQKUNQSQ5rw0P+ylRHBAsTasiJWiN4509fy69JCSSEQktOz2Ig5BF03G03FHspl48hLVU2tti\np4F6JfguUJKn5wvmbUscKKLE2xwUUchZ5XeI33trRB6HtMaHpc9rzZ98ds6//3fuE8UeIkkixfkS\nSonUikPvlh4x2xeXF5OKgzxht0gxzsNLyjleTCre3btsC1K1GuugaTomVYsUkl7qZw29NFxy6L0B\nXxoFayuI1aK/Eiv6MJbAXzc85djhB81pdNkf6DblLkAvjdjtJV4c1hnGi3Y9QF21T0mkfqlgn6rV\nfqAeX4Z6vu5z24TPyqojWmJgdWuWsO6bux6/0gu/Q7JThPzk+Yz5Mrz6o3sFbstGaDQK6MaabX2w\nsZf3A70s4TffHvLjZzPqTtPP4Ys5vFjUZMD3H/eIZHiNrvmqUXPFchu/6V0+u2JGdbKo2esnPJ/U\nlF3nqZsd1A7k2BJG3mI4DQPKuuNk1tBLA85uYJFs1rxuGb5kO9wZy6xp6SWKYR7zfFJijfV21p1l\nUWnu78RMSs28bsmTCLOEHwZpwKBIWNQX5zLMY3Z7Kc7Bj05aDB0RF2EvbQtlYwkE7PRAIgmVeCX1\naNVqtDbMK4sKJOeLhiCQCAe7vYSjcUkaKc6rDocjkII4UJzOG7LYD3w7bYmU5P4o42hSkkQKbQyh\n8g8zb+1wcY1W2//n04q2s5S1QQtH4AS9PNyqpK47y7zp0NoyrTWhlLTGkscBPcJl9KYBWrT13vvj\nqkEbt2awGesH9FJYytZbOCdhsA4KuuoPdBsUIYQki70V+crsrJ8ojucNVWvoJyGHg+TSAPXrjFb8\nRUtb0NZcOu9hHnvI7Gs+zipecvPPqznZm7wev9ILfygcf/lswk6R8GjHZ6D++NmE33q8c+17td6+\n6Avg0+PpJXtiKRxKBfy9d/f43/78c376DHZj3w0Z2/KjJzOit901KOdVB0rDJLyWuXvVjCqWAR8/\nO+feMKOII55NGhIJvQgeDlM+P6sQFqZVQxYWWAefnyzY678c3yySiPIGO+pVvTXKkXjrCm0Mh/2M\nfqqoDTwYZGRJwMdHM97f6xHlEcezmkAG7PVjkjDgdFZyuKG+MtZhhONo1vLBbkSRxczLhp+c+l3a\ng0IiVYizmnFlKFLLpOo4HG4Xu22r01nNrDX0sxAzFxS7fjGP4xCzZE19eV7RT6JlipJjXrcMkoi2\nM5cehsY6dvKYIomuDQ+FcNd84svGcjSvuNfPGIQKvYzE3DZLKduORaPXC7WxsKj12pun7rwFQRx6\n+EVbQS/2u8GVgKvVllobAiFJIoWxjmnVEoUBu/l2D/+byjlL2ej1a53XHZ+PF4zymJ0sotWO03lL\noCRZFPzSDFBbrTma1MRLk7ZWW56Ny6VA8uvrvjcH8Ks/w4Vdxpu8Hr8El/0bLOE7Nbm0QpXW/50t\n3PTglgexN8a6qCRU6yi7s0VNCEt2BSghkQGcVjVCeIn++aLlvGypO/1Kakl7IxZ5cf5v76WUrWVc\nNr6jaKGx3h/fOEcYgFTe/bI1lmbpT/7WnZ0Jb5/uzuqGOA5Q0mCMd3ssl5492mpO5g115x0wB2lE\n2TqatkVrB9aireDRyFsqr+CGQFqE5ILus4GVG2NpTEfTGqIA8iTCCRi+wgI2rjWBlOwVkWds1X5e\ncjKpCBW8fzhgumiXnuowrRusdXz/rf7StO0yBOdDTbbH/F1lz2ShRDlBvfR+0tbiEFttv611a+vg\nJPRRgkKAWwa1LOqOPPadv88DkESBom712nO+6TSDpWXzCrbrjKPr9J20HNfr4vMwKTsUklYbGmMp\nuw7nHOdL+OdNRh3eVnVnkFcYTFJK6u7rFZ5txj0mUbCO2Fw9cN/k9fjmr/o3WOFSZv8HP3nOpNIM\n0oB/+NE9wuD6TRZnCW/bms+u6LgcPq92M/80CgKEs/zhT484mWoiBS9qeFG3COCjfUkkI0Awq1qM\nAyV4ZW9yu2XRFUISBZajiRelIQTfeTDg//vkBV+c1t7QCziawGxecziMCAM/4Pv5Scl7uzn/6NsH\njO4gs5/XHcM84jCFoxuEDuN5g7bWd6NVxWenFUUMO72Yo0lLP7P0woCfPJ2SJCHWGE6qjnGleW+v\n4DffHhBFAS+m9dryIA0SHu5o/uLLGnM2QwEj5W2aEVA3/so82IvZz3O++2BA/JIh9GaF0tMzq8YR\nCMnPjicsOksRST681+ewn/B4N+FPPj3n6XnJbp7wO++POBwW5LFkXreXvPS1sXTGUbUtoVIkobwE\nzUUbnjC9LOY9Ifn8bEF1ZsjjkHd2c/Itnw2lFNJoXky9kydCEAr/kBrV7Zq+Oas6zhYNWhsmtabq\nDAe9mMNBinGCe8OUKJSczRu08YEqgyy6k5Zjs7z+RFK3Zu33JITjeNqSx4bOOIxtUFKSx2rt0/9N\nl3WCUR5Rt2YdLD/Kozul0L1KbcZLOuftv2Hp6ydeboL3ddav9ML/YlLxhz99wX4v4cN7CeeLmj/8\n6YutaU3CtBxvEe9GwKenJXsbxlxHkwV/9NmYfhqRBfB57f1kdnKBc47Pji3v7dcex14afa2cQadV\ny25xN1hCbmH9tFpzPK1Jo5BBJvnhkwmfHM1458C7TD45rSi0T+E6HCacTmviQDI4jPjug5yDfsrH\nR3P/evZvH+4WSUjZGKa3qNu+//YenxxN+exsinAwzCWhlMzqlvujjCJS/OxkzqNBzsNRwsfP50gl\n+Pb9Ae/tFXx+VvO9NOZgN1nH5Z3XNT/5suZ+D/IkZVFXPJn57ILffbxDEkQ0umNWtjwcZWTxyxlS\nm9VPQr4YV5zXDc+nJf0iZE8FZJHk2XiBEvAbb+1w0M9JQoWUgrLRnM1q0jCnSCIGUlB3hpNZwyCL\nyOMAY9W6q1vd4Fczf4eJYjxveO+gz6gX0bQex99Jr38mV4ycNArI44CzWcPCWD7YzyiSiONpRdUa\nsjig04afnSwIpZ9raQt/fTTloBcjRcxhP11DaiuTtletq/qTJ2eCZ+c1+ZKttmha6tZwfxhRJBF1\nZ95IzODLapU7vKmbeV0mbd+8NbWvb/5x+w3WZ6dz4lCSLDubJAqIQ8lnp9fR/DyN2WaZFgH9SK63\n8QCfvJiThT5VSi0frZKl4Gr5bU543/PL4dOKxUsw80vH3gIIXt22npc17dILp2o11htf0mhoO01t\nwFqvKq20WVIDFZ9P6juehbtV1Ww1HE8W1BUEYYh1ljgOSYKQ03nD6aIjCBQLrXl+3hAIR6wCzku/\nO8rCgONlXu4KnpiWJZHyXv9w8bsAhPPhKdY64jDw6tpX3EIXSUQRB8xrQxGH5HFIHAh6SUQ/jZmU\nPrinl3oYZdUlRqH3sV9d+07bZZyeuXT+m86nm9t/8B1/Pw0JQ0m1pAiPsnAtVtssbS8owPO6IwqV\n5+0vz0FJ/54C6+FvEKw89yWhUtTa3ghDvWpdfS2N9Wlq1jpOZrVXIgtB5+wbiTe8a43yeA27AHfK\nTfibXn+rOv6b3C5vqlbDtx+MeDIuKeuaIFB8+8FoazD3IE15NKz4+RWjNiHg8X5BtKGmmjea3X7M\nrOyQIuR+0fFsDlXjF6fv3gtIgu1d/Yrps2J63FZui1+4XfK+J2VHqw3zWhOEklmtqbRFySUttYPz\nE01PQCVhUtecVy1Na3jnoE/5khB18IyPQRatHSq31c/OZhwvDEqCE45FDYFoCQPJ2bzFWrjXT2m0\n4cWkIgwE2jrGR55K+PYouWQr4PHXhEcHLZ8809TzigQ4zKBp4MuzBedNS6IU3384JIrkK2+ho0D5\nNC0cYqlOTsOA1sBOHjBv/CKbBAprHdlSEHXVWM9YPwjehAyuMjc2t/+tdt6Nczfj05M548ZQxIoP\nD/tr6t9meYjCP4ga7YVeg/SCLRQoRRGLpS2BYScPccJfXwHsFjGLVl86/iZ751W9eq6+FiUce73Y\n+wO1fjGdLjqeTiqE82LFIvnmu99V7vB40bBovPr9rrYlf1Prb80r2xZZ9+y8uvUNHKQhs7rlvYMe\nSvqwitNZxWCLVcKz+eTaog+gHfzseM5vv32h3M3jgLNpQy+PgY7zOQwk5JkgCQRPzzTv7ndra4UL\nqMeuXRJXTI/barZFb6CEY1r77X0vDQml5HzWstuPCIXkaX0xsBoImDhwJcwqw9t7Cb0s4uNn53x4\nb3DrsWHFUnK3ggIPhhlHZzNmlcVayyATKBHQtA15EhGHiueTmg/2+6RxyNF0RtPBfj+mHwX87HTB\nw0G2jl70bJiOp8eaB6OALIkp64ZPxpoAGPZi3trrUbYdPz+Zczh8dWtd5/yg8+FuxqdHJXESIoQg\nkILxomWviEgCuc7ABb/ISykuQSR+kbeXmBrbmBub2/+yaTma1uwUKQ93FFVreDIuiQJ5jcF18V6H\n7C/tEmaNpre0jBA4vxinEQe9BL18EAkcReL9+tNQboUfrrKNVlGNL3uIbv6sYRYzq/yQ2DrHx5MS\ngWSniNAG/vKLMd99OLj2ur6JyqLgb/VCf7X+1kA9V10pVwyG8eJmPvo/+GCH8bzh85MZp7OWz09m\njOcN/+CD63TO8WT7hL+CZRD2RUf24X7OojWUdYeSwVolmwQ+3NkZyJOQNJJY5znf3i3RW0TfNYhF\niOtvX7xkd6xCWvIkJAoVdWM4b7u1gljhA1nAq3ilgEpbnPUwVLBcwG5aNlMuYIHbPkTWOnppjHNg\njUXIEIHGAKNBwl4RkiWSSEmk8oIrlGOYhiglsFYQhQF1q9fH28tzjAWztCpe/R4DCocxBuEsgQo4\nm1W/IJwgOOylRJGgMYbOGTqjQVge7KRkkeJ00XC2aDgvW8pG00+8CGoFdYSBZ7SsyAJ3gVHGVee5\n/huf41Apxlt4/JvvdRJ6dazWjnjJEgkDr2Ew1nE4SKhaTbmkf9atoe4094fbQ+i3efW8KjQzymKS\n0O8cjmYNCm8g14sD4kgRBwHPZy/Xi/y6vv76Sgu/EOKfCCF+IIT4oRDin275uhBC/I9CiL8WQvyF\nEOK3vsrxbqurrpRw4XZ5U717OOT3v3OPWMGLaUWs4Pe/c493D4fXvtcJ+GgvZnPDvXQA5ve/dXiJ\nAXowLPi9b+0RKk8L+/ZBQj+BsvNGWb/30S5FlLCTx/STgCwO6G94oK+cFgG235YeMorD62/fGqZY\nyuYHmeJ339tnr4jRLewlfpuX4m2S91PIQtgvEhaVRgnB33u8S7ZUaI56sHNlnRoKGOas4/iGIQxu\n8BAz1jHIYt65l3Ovn6F1x04v4zff2ef9nT6PRn3+w+88oJd7Neu7OwXv7/axCIJA8ZvvDMkiRdVd\nxP8d9DP+3e/uo6TidLZAScXDPuz1IIlDOus59+8cFLTu1V0WV+6oeRzw0WGPnTQmlookDPjugyH7\nRUIS+fmBwC1l9t4naSdfhaJbIuUhg0iJO8cXauMTvASgtV1DMtpc/xxvvtet8bvFe8MYsfTH3Nk4\nnyQMeG8/p0gDFq1GSsf7h70b1cybn8FVvapjZS8J/v/2zjU4juy677/b7+l5Y/AGCL653PeLXlHr\ntVaxHa8lPzZaO2WX45LtOHEp5ZSTVL6o4ipX5YsT5/HFcSoqxU7Frkocp5w4URQpjmRLXsellbxe\nabVcLcUll8s3CGCAeXZPP28+dA+IxwAECBBcgv2rGvawcbvn3p6ZM7fPPed/mKjYlCyNWMZM1fIM\n501MLSlDOlwy8T4AZRkfRO743kYI8Rjwd4HnSOp7/B8hxP+WUr67otnHgOPp40PAv0u3u46pCert\nHkuOv6pI9WYFRdo9H1tXqOQshBJSNjVsXUldKKtNbiWn0mx7mCSDNUn0d2pW4ktdGZKnKdDselxd\ndIhkROD71MoWmpokiHSjiMlCbvl2ur8moaURDn2tmCCMsVRwBtyBtIYdAAAgAElEQVRs6CTCX4td\nf5X/NVF+VJMShMBs0+HifIeJSp6qDY1OomfTAfQAYh90DeY7HrGUzLUd8obCQ5OlZNyWRtcJkxk+\nyZ2CUKBma8vhp0N5uDzADSYAIWIKpoJp5ihqKgdGi5Qtg6WuR7vnY6gKnV7EcMEijGP8QFLJ64yW\nTCareTq9AI/V7pJh2+BKI2CiWsANInK6yrV6kyBOaiMHkcTQBGEYMlnObzspph+dkjMUxip5xis2\nYShR1URLx4+iNMX/1merL4+w1qjrabLSVsnpCmGUuGL69F0yg/q5NtMzcTklbpleEGPpyvJno2hp\nlHKrffYwWHd/bbRR/9zbuZY5I6n/O1a2OTJSIAgSuQbbVNFUhW4vpGBurjqacXfYyYz/YeA1KaUj\npQyBPwM+sabNy8DvyYTXgIoQYmIHr7khqiI4P9fG82OKOR3Pjzk/197UXfL+fIuvnJ3DS2u+elHM\nV87O8f58a13b549McN0Dh8TodkncPDMVgytLHY6N3nKKXJ5v8UffukbLDTg+VOF6Ey7e6IGMaTs9\n3kvDKy/XuwMrcGmqsqxGObTBlF+SSCas1TlfG1lR0DWWOj4dP6RWsmmmdsICWj40ATeEpttlqpbH\n8QJeu1hfLmB+fKTCUpSM1TaT7VKU7O9zoJYfWHYxDzi9EC9S6Ho9rjW6qFLlwlybhuNRyOmEccQ3\n3l/Aj0ImKzl8GXFjyUHVkkiVetujZutpklwyzulajm9dWaTtuAzlDdqOy3wL2gG4blJesOf6nLvZ\nZrRgbjtCpX8NTVWl0/Pp+TFCBRDLP1aDZsO9YPsa9muZqNj0gpBeGtGzmUtGAteXHMIIDFWh6YRc\nXXLwg4hYCrwwwo+SHwHHDwf2baP9mqrsONpnpdjgZDouJMtG3/FDDg7fg4KzGTsy/GeAjwghakII\nG/g4cGBNmyngyor/X033rUMI8UtCiNeFEK/Pz89vuzONNGY7Z6q4XiJBO1W1Bxap7vP2lXZyV5A3\niSIo502qtsHbV9rr2tqmxocOWuRJjJ8Axm0wTIPnDg5RXRF7/xfnF6nmTCpFk1iVnJgysEy4tOBg\n5QxeOD6G40XIWA5ckwijmLJtoClwbX1XgMQvf7mehFyu9L+uLTHnxzFT1RyjRQvHCxjLJQY5JHH3\nWCSKmUdHh5BRzHC5wKNTZc7OdgGYdz1m7OSYtpdsZ+xkf5+L892Bt44+UM7nsA2FWi7H8fEy11sd\nhksGoyWbMIKuF3F8ooDrS4qWwROTZY6MFLnZdHGCiKMjeaZqBfTU2KqKwtW6y6kDVSxTZ7bpYpk6\nk1UYz0OllMPxQ/K2ySMTZdxQbjtOvH8NVVVQtQ0MXUFJPwNjxdwqP36fKJYEUbRjv3g5Z3B0rIii\nJDUiNnPJdNLF1iCOubbkEMvkc9SXRVYVhSBM+rTU9Qb2baP9YRSv+hxtxU0Fyd1Dy/VZ7Pq0UkXU\nUs7g6GiJ544NYxqCesdDU+HxAxWGt5izkrG73LGrR0r5jhDiN4AvkXgO3uRWJb8+g6bbA53uUsrP\nAp8FOHXq1LazR9wgHhh3u5kcrxvHlHI6mirQVEEYJfrlrQGhjAuOzw88coAnD/hJAXA/JJIw23Q5\nPF5mpR2Ya/WYrtkoSlLD81CtwuFhqHd8fuLUDABnrjRQlPVrEl0vJJcWZbd0dTlGXid5s2ISox8D\nXrA6zLF/278yskLXVKI4EWELIpiq5Qkjia1rlG2N8/Nt4gieOjiEF8aMFJMv4uWFbnr9Qh47PJxW\ntUoS0GIJV+rd5dduOHBy3CYIY3phiCoSd9miC08drNJyfRrdkCOjeebaHg9PVFCEQEq4uugyXszR\n9gIOrChu3XR9DtYK69ZtVEVws+txZKLKsakqSirz/CdvXyeMBc8fGUUqAhFLVFVQHxCauxV0VaGa\nt8ib/ZjzvkJlUtwkSoqzrlKu1FR14J3AdoW3yjljS0qiXS8ilklEirST0NOG49FbkTfgh4m7xgsl\n5QF922i/n/5gbifZ6HaRQMMFKzP0HxB2FL8kpfwd4HcAhBC/TjKjX8lVVt8FTAPXd/KaG5HTFeZb\nLp1eIkyV0zUKlrqpj3+8aPHGpTnO3mjQ9SFvwMmJCs8cXF/0Ytg2+Ob7C1xc6NDsBmgaVHMmE0M2\nNxoOk5VbEgclW+Oblxa4VO9xdbGLDCGng51X+caFm9QKOcqWRhyvdgGsrMDV96+aJEVFgvSxkuoa\nMbC+jVzps227PteWutS7Hr0goFsPsA3oqSp+bNFqBagqzDUTZUnXi+h6AUOprPNwweDt9xeY7Sb9\nMElm1kcmboV7Fi24dtNBWOC5SW5DRya3k7OLDiGSMAq5WnfQlaTyWcU20TSFvNWfdaq0HB9FSQIi\nc7qyoZ+5YmosdnqJ+0cmrxcTEwYBVxYdemGMpSnkcypjha1qDq0myQnpsdT1abshui6o5ExGiiZF\nS1/W2VkZ++6mkUd7VckplnES9aQpy9cNKYiiW+6Z/jU0U0O8tm8b7b+TPt9J1a6Me8NOo3pG0+0M\n8Arw+2uafA74ZBrdcxpoSilv7OQ1N6Jgapyf6+B4SUal44Wcn+tQMDf+bRNIXrvQIAxgulYkDOC1\nC42B6eqjZZO/urREpxNgGBqOA5fqHkVT59JCd1WJv7yh8dqFOl3XYaRkshjBtR4UTIWWG/LNS0vM\nDFmINM4bVmcLrvTTj25gtzTg2EgyQ17pf11bK3XJDbhc7xBIyaOTFbwA5pvQcSN8z8O2oGzrnJ9r\nIEQSFnuz5XL6SFJUcNQ2uZQa/aFcsr3UTfb3eeHoOEsSWi7oRmL0AY4NCRY6Ht2ejyYSzfqHJiv0\n/IibrSTM0jKSSk2TFQtNS7JVFzsew0Vr3XpFf5wfOl5joeOx1PFQ1UQPSFVASh03CBgpmbhBwPnZ\nDifHtx/H388JieNkVq0paR3ZWC7XrdXVJPR2KG9QSusnbNTfuyW8VbQMIpnU87V0lV6QJMpZqcJk\nFMfpHd/GQnGbCchtl92IBMrYG3b6ifxvQogayWT0l6WUS0KITwFIKT8DfIHE93+eZF30F3b4ehvS\n8UKOjRZo9wLavYCcqTBaLtDZRALh6xcXODxs4sUqbcenVLQZUSK+fnGBX/zoiVVtz99s8/h0mYtz\nbXphSNFWsC2VhbbHzFCexRVx1u/eaHJsNI8XxFxtuoxaEPhwsxFwfNziyIiGHwtmavkNswX7M8jF\nDfQQBFAtWuv0+Ftp7eD+F/DGYo/DYyW8QNJWNR6bifnu1RZdD2ZGc3zP4RLlvMmVxTbnb7Z5ZLzM\ny09MMjOSRPW8PbvEiAadENpusi5Q0JL9faZqeZ47ZPCd930afuKWmsjDRKXITK2ApkPRNCjbGp1e\nSMHUudlwEteaqfPSo4kwXssNyOkKU9UixopKZGtn1icnKhDBN95f5GrdoZLTOX1oDEVN3Gk3mi5l\nS+fJA1XiAbkOt6OfE9Lu+ZRsPanE5SfyxeMVm04vGOiK2ai/d0uLpmglCWQt18ePJEVLRVN0FEVB\nEXJZ+78f1aOrysC+bbR/u+xGJFDG3rBTV8/3Ddj3mRXPJfDLO3mNreIGSYHskdLqKfJmPv56N+DY\nxPpkrfM316+oznd8HpkaIm8m2aZKGrh/te5QyOlpjdz0vE7II9M1wihGXm1QzOloAm62XL7/kcSN\ndG2xu2m2YN+/6pEElgpANyHwkkUSD8gZ6/X4VxZ4AIhFTDlnoOQFk+Q4OVFmvGyjqvDKswfpuIlS\n4PMnRljq+nzv8aR//TuRJSfgyFQJscLHLyVcrd+KfGr7IS89epiPnEhkihUh6fYiWo7PDz42Qb3T\ng7SIieuFqOlCrYwlbhilevWr5QD6rz/Iz6ypKiemqjx8YGjZx/7lM9cYq9hU11yPudZWNYdu4YUy\nyf6O5PL7U7ASV0be1DbVU9pLEa6V4ZJrq2QNMtwb9W23+pwztOVa0dup2pWx9+ybHOWcrjDb6FLv\nBnS9RIe8ltcZKmwstFTL67x16SZLTkwvAkuFqq0wXVsvVzBSMHjnap0r9S71TkQkkwSoiqXx7vUl\nHpquLrcdLuh8+/Icc22PhUayGJhIERtcW3RQBVRtY0taKDlg+WdoRZJjHgbOpNbOuqbKNrNNh5yZ\n1BkIY1BETMFIFtlk+q/Ti8gbtzJM++cuWSqX5lpIBYIIdBVEDNX8rfjrkYKJ20sMuh+FSAV8P9F5\nTxZDRSLOFcaYaVx5xwsJZbKmkUsLf/e53SwxpyeGJQgTN4eqCKoFi8CPVqUad5wkm3a7mJpYTsAK\nwjjNwE0E1+6WauOdsNd3GPdbfzI2Zt+8I5amcOZaC6cXUsmbOL2QM9dayyXkBnGkVuTcQkzbgYpt\n0Hbg3ELMkVpxXdtjY0W+fa1FuxsRRknM+KIDeV3hL87XifxbM/7pap7vXOnR7UqGqxotCdd7MFTV\naTo+F+bbHKnlthTzPbKBZM5wnoF+2LV+5ieny2iqgoaKZWhEQcxw3ubgsE3HCdFVQRBJup7PTC2/\nzsd76uAYN11odRMNolY30d4/dXBs+TVfOF6j5QVEUUwhp9PthbhRyBPTBXpBRMHSyRkqbhCiayoi\nLYAzXDCZqRXSKJmt+5hzhpbKZGhU8ga2qXFiNI8vYzpOMhvvOCEdP+DEeGnD82xEX63RNpKaut1e\nUgrS1tUPnGrjoLWGrD8Zt2PfvCv1rs+xkQJ5S6XTC8hbKsdGCpuG811tdHl4RCVvQ6Ptk7fh4RGV\nq43uurZzTY9TMxUCwI8gr8F4ASIUJio5vr0i4P69+TYPTZrkbUGzG1LVYcSA63MOOV3lxWOjREIh\nluB4IY1uovUSS9bFfHc38FS4ARvezq+Mv54cyvMjT0wyWbVQhWB6OM+PPTXB80dH0LQkAqhS0Hl0\nqkzBMtbFa+cMlaenDEwF5pshpgJPTxnkjFsz/pNTQ7zy9BSWrlJvexQMnZcemeDk9FBSa9c2GC2Z\njJdzyxIHRSspgmMb2rbjxdeOUSA5Mlbm+WPJmOZaPTQNnjtSY7y8kejFxvTVGvOmStHS0FQomhq2\nqe571caMB4N98wnueBGjlfUhMPVNioYvdAOePDy+bv8gH/+C4/PU4REWnYicqaGmPu+Ftke1YHKj\neWsVdr7rc2xiiEOxpN7xMBSBosBc2+OlJ5L8tYsLbUb9CFURywlBrh8RaQorlyl6EYzafVE1jTBI\nBM68TcLT1/psSzmDQyPrZ75Hx24/G17sBTx9aJynDiYum1hKhBAsrkmMOzk1xMmp9eslW+FOfMyD\njhkv23dk6AfRX3+Zqt6+bUbG/ca+MfwFU2WumUge9OO4bUPbNI5/OK/znWvzNLoRXhRhqiqVvMpk\neb2rZ9g2eOPSPN+90qYpkwtnqVDKwcW59iqDUzRV3rwwS92TdN3EaNsGjA5ZvDfXSma0q2KdWV4M\nC6PVwjwlC2Y7/Rj+5G5AJ7nb2AsqhsZ3Li9wo+niRBJbFUyUczwyeWdGPiMj496zb1w9tbzB+bkO\n3V7iU+72Is7PdahtovV9crzMuWs+7W5E2bZpdyPOXfM5OUCLvlY0eP29Bv0kTB9oRUm0zbeuLDFk\n33J9DFkm5xoSx4VyUdAGbvpQzSu4Xsz5uQ7lnAasLswNSQjeSg6P55cTt4rpz3SQ7t8LDEPhzHWH\nXiAZLeXpBZIz1x0MY998dDIyHjj2zbe3F8Y8PlnGtjSaXQ/b0nh8spzou2/AfLvH0zN5irbCUseh\naCs8PZNnvr3esX72RpNHJgtoanLRDKAA+AE8PFmg3r3lm7+41OFIFQo5aHckZS3x8c8u9bBNjWOj\nBcI4WaRc6afOGRrWGhVGx40ZVpO7hnaYbIfVZP9ecO5mi6NjBgXboOV4FGyDo2MG526uF7LLyMi4\nP9g3rh43iBmr2oxVV/t4N4vjn+/4PHV0lKfW7L8wO8DH3wl4eKrGohOSM3VknGgF1NsuJ8erLKxY\nRG57IScmhxBCYakboKtJMefZZpfDo4mPpt7ppZEp+qqY57XRLE4oOXmwjARUIYhkUjZvcZMCM7tJ\n24s4PFpBVZRlH38Ux1xb2qzSbkZGxgeZfTPjz+nKspRtn410zPuMFAzmmqsN2FzTZaSw3j00XNCZ\nazrkDIUw8EFAq+tR0HUcP2JkRYjfaNGk0faQ6UJoEEva3R7DaZueH1G0thbNMlowcF0fVSTFtVUB\nruszOqCPd4PJokmr4yNl4paSUtLq+EwWPzghjRkZGdtj38z4Jyo2f/TGFV6/cJNWT1KyBKeOjvGJ\nZ9YqRd/iY4+P88+/+A5fOzsLugJBzFA5x6c/9vC6tj/65CT/+o/PMr/kstiDAI+CAY9M5Liy1OXn\nP3xoue1Pnprh1/7o28xdvhUWagI//sQI/+/cDSbKNs8dHdlSNMuPPTHFv/nqWRY6LjnLwu31EJrg\nZ04f2vS43eLlZ6b59S+8xZvvN1CMpHBLtaLyTz7++J68fkZGxu6zb2b871yp8+rZm/gxjJUs/Bhe\nPXuTd67UNzwmjCWRjIkVAEGsQCRjwni9SFvFNhjKW6hactEikn80TeNILU8hd2sGPN/y6KQ3Ev0L\n7AFuEECsstjxt6zRfmy8xKMTFTQVOm4PTYVHJyocu4PEpDtBUwSaUBFaUnlLaKAJFe029YAzMjI+\nuOybGf8X35plpGgyWk6C4MfJMdd0+eJbs5w+Mbjo1+ffvM7h4QKPT9cIY4mmCDo9j8+/eZ0XTk6u\navvVsws8Ol1J6oRGIaqi0XF8NBUmq3nOz7U4NJKEgf7nr73LSBGGSgUaTlLSsNsJ+dalBp/8yEN0\nnJBzs60txZyfudbiyelhnjk8RhhHaIpKFETJ/oPDO7xqt+fzb17noYky33fyVl/nms7Aa5SRkXF/\nsG9m/PMdf9no9xkt55jvbLy4e7PtYRk6MUkRlBiwDJ2b7fULp3XHp1Y0cfwQUFAQVAomHT8VM+uu\nFGmLKRfzRFFSh1VBoVTU6QcLFWxtYLGXQSy5PiGSOI6wNJU4jgiRLG2yaL2bLHQCRtf8QI2WbRY6\na6sDZGRk3C/sG8O/nYXaPnlDpdHpLbstNEXQ6PSWxcpWUrMN6m0vqUUaRSAkLdejYCh4YbxKEbOg\nQb3ZRSigKQqxjFlsBfRrc29HPMxSVeJYoqlJOTxNVYhjiaXuTZHq/qL2SuaaDsOFTHExI+N+Zd+4\nej72+Di/+ZXzXJxroOkmYeCh6Qa/8teObXjMiydH+YNvXKYdNCgZFi2/RxDATz233jX00ZPDfPbP\n3+PaYpuGE+B4EYau8OR0labr89B4bbntDz4+w3/9xmX8hS52TuNKMyQGjhfg829cYqpa4OVnN150\nXslDEwX+8Bvvc36+TRALdEVybKTITz53aLuX6I5IFrXP8daVBQzdwg96FC2bf/zSidsfnJGR8YFk\n38z4x6t5ZobySKHi+iFSqMwM5Rmvbpzh+th0ldNHhtGkwny3hyYVTh8Z5rHp9QIthZxBLWcgFEkv\nilAkFHImtqnT86JVKqA/8tQELz40jKpCPTX60zk4PlXDk4L5bo/OFl01i60e7827EEPeNCCG9+Zd\nFu9AZ/5OqNgG5UJST8ALQzQB5YJOxc5K6WVk3K/smxn/G5eWeGKqynNHh4ljiaIIer2INy4tDRQo\ng6TYx+MHhvjw8TF0TRCEkk4vWC4Csvb8Jycr5EyDereHH0R0vZB2z6c2XeV6q8fJRH8NN5S89Pg0\nf/3xab7yzixSxORNnbKhc2yyRKPt8fX3Fjk2XrntuF49t8BYyWC4UkFTFMI4ZqHh8Oq5BV7+nsM7\numZb4atnF3h0osLpIyMk5cWh7QZ89ewCj83c/cXljIyM3WffzPgXul6iHyNBU5OtYSgsbJLhGiM4\nULNRhKDnRSgi+X/M+lDFJcenXDDoukGSRasrDJUswlASSkl9xYKwjCWGoWCqCpGMKdsmpqoQp1W7\nKkVznbrlRjR7ITMjJRQSCWUFmBkp0dzi4vBOme945C0NRFocRUjylsb8JqqnGRkZH2z2zYw/r2t0\nnIBKmlGqKIJW2yevb1LQQ1eIY8FY2Vret1G2b9U2aHZ8vDjCD0M0VaXleJi6ih+EaOLWj4WhKchY\noFiCSs4kimJMU19u02h7DG3RVTJc0Fnq9lZF1uzl4mrJ1Gh0fYZL6XUVgsWuR2mTIvYZGRkfbHb0\n7RVC/CPg75BU8HsL+AUpZW/F338e+JfAtXTXb0kpf3snr7kRj02V+E+vvc/732kRhiqaFnGoWuJv\nbZLhOlGx+dq7c1yqOwRRjK4qHKzZfDitO7uSZw5W+cyfvstfXpxlsZdII09V8zx9sMxiO2TqwK1Q\n0uGixZffus4blxaZa/WYb3YZG8pxcqLG2WsNBPATpw7g+CFLXQ8vlJiaoJoWJlnJjz45yW995Tyz\nDQfbNHA8HykUPvXiUVquv2nZxt3gw8eG+I9/8R6vX+qRfFxChm2Ln//eI7v+WhkZGXvDHVsKIcQU\n8CvAKSnlYyTCkT89oOkfSCmfSh93xegDNFyf60suBGAZCgRwfcmlsckiatv1udboIZHkDRWJ5Fqj\nR3vAMbNLXa6mYY1lHeIIri52me/6HBixKKyQXnh/tsHXLiwQEzMxlCef07m66HJlsY0i4ORkiULO\n4EbDJZaCvKkRS8GNhpvmCdzi2ESFp2aGUBTBkuOjKILHpoaYqNi3Ldu4G6iqQAIyAmSylen+jIyM\n+5Od3q9rQE4IEQA2cH3nXbozXj07z+RQjpFSDUVALGG+5fDq2Xle3CDD9MzVBqMFi1L+ltuk1Q04\nc7XB9NDqSidffGuWqYrNaNFivuNjKBInkCw2XcJYrIrq+fNzdYYKJiNli3rH55GZGm0nIG8q/ORz\nh+n5EedmWxweKWGkx/W3S11v1az/3GyL5w4N8/2P3KoUNrfk8t6Cw1RaGzgp5qLg+uG2K1ndjtcu\nLHGoVuTZIyPL17Xe7PHahSU+dGx99bKMjIwPPnc845dSXgP+FXAZuAE0pZT/d0DTnxBCfFsI8YdC\niK0Fr98Bi07AWMXG8yI6bojnRYxVbBadjTNMG26wyugDlPI6DXf9MfMdn1ohhx/FQMRC16fTC5lt\nuZRMDXWFm6XuBkwO2QigF0ToisJYKUfTSdRDLUOl1QuXjX0fQ1PwwtU6Qa1eiKLA5brDudkWl+sO\nkvW1eVVFsEnpgTum4QaMVnK4QUyrF+EGMaOV3MBrlJGRcX+wE1dPFXgZOAxMAnkhxM+uafa/gENS\nyieALwO/u8n5fkkI8boQ4vX5+flt92fI1pltuJiGSiGnYRoqsw2XoU1KL1ZyOq3uagPW6gZUcuuP\nqeR1rjfaRKHE9SQ5XcVQBWXb5GYzCe/sM5I3WGwnC79FS0dRBA3Ho5pPZvI9P6JkaevCRv0wxtRW\nu1B0JOfmmsSxpGDpxLHkYr1NvEZILorTqJtdppzTmGu6WJpCyVKxNIW5pptWEMvIyLgf2Ymp+EHg\nopRyXkoZAP8deH5lAyllXUrZj/v798CzG51MSvlZKeUpKeWpkZGRbXfmhYdGaDsB9VQWs95xaTsB\nLzy08bkem67Q8oJl49/qBrS8gMem18fXf//JUVpOzEK3i20IvCii5QY8dWCI4ZJJc8UM+IceHaXh\n+Mw3e5RyOvWGw6IT8MKJUXp+RC8IOTFewg+jZePvhzF+GFHNr9a5z+d0ohCitF0UxiAV7Jy+qmzj\noCIuu8HpI1XabkDTSd7GpuPRdgNOH8mqkGdk3K/sxPBfBk4LIWwhhAB+AHhnZQMhxErtgx9f+/fd\n5MmZYX7m9AyWqvD+XAdLVfiZ0zM8uUmS0fRQgRcfGkHX4EbDQdfgxYdG1vn3AZ45PMrPPj+DoRk0\nnYi8pvNjT03xxEyNvKEjlFuX8tSxcT6Z9uX6osNoKccrT00xUyuiKJKjY0XGyzYTlRyKkHS9EEVI\nJiq5dVE9ecvg2UNVhAr1dg+hwumjQ4wUzNsWcdkNTkzWeOXZKXShcKXuoAuFV56d4sRk7fYHZ2Rk\nfCARUq7Xnt/ywUL8U+CngBD4Jklo568Cr0spPyeE+GckBj8EFoG/J6U8e7vznjp1Sr7++uvb6kvL\n9ZGIdKEzIYolAklpFxY8++d/68oS3V5IKCVeGGGoCqWcTt5UefbQ7meynr3RII4F1grhuJ4foSiS\nkxO3z/zdKXf7umZkZOwOQoi/klKe2lLbnRj+u8WdGP4gimn3AlRFWVXDdrdmwv3ztxyfd260MFUV\ny0hCKf0w4vEDFYYL1u1PtE2ars+Fm20sXcMy1GVX0dGxIuU9MLx3+7pmZGTsDtsx/Pvmm6urypZq\n2O70/EMFkxNjRTQN3CDC0sVdM/oA5ZzB0bHERdR0/WVX0V4Yfbj71zUjI2Pv2VehGVupYbsb5y/l\nDI6O7U3pQ0iM/14Z+kHc7euakZGxt2TTtoyMjIwHjMzwZ2RkZDxgZIY/IyMj4wEjM/wZGRkZDxiZ\n4c/IyMh4wMgMf0ZGRsYDxgcygUsIMQ9cutf9uAOGgYV73Yk9JBvv/udBG/P9PN6DUsotCZ19IA3/\n/YoQ4vWtZs7tB7Lx7n8etDE/KOPNXD0ZGRkZDxiZ4c/IyMh4wMgM/+7y2XvdgT0mG+/+50Eb8wMx\n3szHn5GRkfGAkc34MzIyMh4wMsO/TYQQ/0AIcUYI8bYQ4h8O+LsQQvymEOJ8WmT+mXvRz91kC2P+\nqBCiKYT4Vvr4tXvRzztFCPEfhBBzQogzK/YNCSG+JIR4N90OrDUphPi5tM27Qoif27te74wdjjla\n8V5/bu96fedsMN6/mX6mYyHEhpE8QogfFkJ8N/1Of3pvenyXkVJmjy0+gMeAM4BNImn9ZeD4mjYf\nB74ICOA08PV73e89GPNHgc/f677uYIwfAZ4BzqzY9y+AT6fPPw38xoDjhoD30m01fV691+O5m2NO\n/9a51/3fpfE+DDwEfBU4tcFxKnABOAIYwJvAI/d6PDt9ZCBtOTwAAAKpSURBVDP+7fEw8JqU0pFS\nhsCfAZ9Y0+Zl4PdkwmtAZU3t4fuNrYz5vkZK+SpJadCVvAz8bvr8d4G/MeDQl4AvSSkXpZRLwJeA\nH75rHd1FdjDm+5JB45VSviOl/O5tDn0OOC+lfE9K6QP/heQ63ddkhn97nAE+IoSoCSFsktn9gTVt\npoArK/5/Nd13v7KVMQN8WAjxphDii0KIR/e2i3eFMSnlDYB0OzqgzX57r7cyZgBLCPG6EOI1IcS+\n+XHYgP32HgP7rALX3UZK+Y4Q4jdIZnYdktu+cE0zse5AuG9Dp7Y45jdI0sU7QoiPA/8DOL63Pb0n\n7Kv3ehvMSCmvCyGOAH8qhHhLSnnhXnfqLrEv3+Nsxr9NpJS/I6V8Rkr5EZJbx3fXNLnK6hnxNHB9\nr/p3N7jdmKWULSllJ33+BUAXQgzfg67uJjf7Lrp0OzegzX57r7cyZqSU19PteyT+8af3qoP3gP32\nHgOZ4d82QojRdDsDvAL8/pomnwM+mUb3nAaa/dvn+5XbjVkIMS6EEOnz50g+V/W97ucu8zmgH6Xz\nc8D/HNDmj4EfEkJU0wiYH0r33a/cdszpWM30+TDwvcB39qyHe89fAseFEIeFEAbw0yTX6f7mXq8u\n328P4M9JPuhvAj+Q7vsU8Kn0uQD+LUkkwFtsEC1wPz22MOa/D7yd/v014Pl73edtju/3gRtAQDLD\n+0WgBvwJyd3NnwBDadtTwG+vOPZvA+fTxy/c67Hc7TEDz6ef6zfT7S/e67HsYLyfSJ97wE3gj9O2\nk8AXVhz7ceBc+p3+1Xs9lt14ZJm7GRkZGQ8YmasnIyMj4wEjM/wZGRkZDxiZ4c/IyMh4wMgMf0ZG\nRsYDRmb4MzIyMh4wMsOfkZGR8YCRGf6MjIyMB4zM8GdkZGQ8YPx/nDD2nusGzXgAAAAASUVORK5C\nYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m = RandomForestRegressor(n_estimators=1, min_samples_leaf=5, bootstrap=False)\n", "%time m.fit(x_samp, y_samp)\n", "preds = m.predict(X_valid[cols].values)\n", "plt.scatter(preds, y_valid, alpha=0.05)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.47541053100694797" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "metrics.r2_score(preds, y_valid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Putting it together" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class TreeEnsemble():\n", " def __init__(self, x, y, n_trees, sample_sz, min_leaf=5):\n", " np.random.seed(42)\n", " self.x,self.y,self.sample_sz,self.min_leaf = x,y,sample_sz,min_leaf\n", " self.trees = [self.create_tree() for i in range(n_trees)]\n", "\n", " def create_tree(self):\n", " idxs = np.random.permutation(len(self.y))[:self.sample_sz]\n", " return DecisionTree(self.x.iloc[idxs], self.y[idxs], \n", " idxs=np.array(range(self.sample_sz)), min_leaf=self.min_leaf)\n", " \n", " def predict(self, x):\n", " return np.mean([t.predict(x) for t in self.trees], axis=0)\n", "\n", "def std_agg(cnt, s1, s2): return math.sqrt((s2/cnt) - (s1/cnt)**2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class DecisionTree():\n", " def __init__(self, x, y, idxs, min_leaf=5):\n", " self.x,self.y,self.idxs,self.min_leaf = x,y,idxs,min_leaf\n", " self.n,self.c = len(idxs), x.shape[1]\n", " self.val = np.mean(y[idxs])\n", " self.score = float('inf')\n", " self.find_varsplit()\n", " \n", " def find_varsplit(self):\n", " for i in range(self.c): self.find_better_split(i)\n", " if self.score == float('inf'): return\n", " x = self.split_col\n", " lhs = np.nonzero(x<=self.split)[0]\n", " rhs = np.nonzero(x>self.split)[0]\n", " self.lhs = DecisionTree(self.x, self.y, self.idxs[lhs])\n", " self.rhs = DecisionTree(self.x, self.y, self.idxs[rhs])\n", "\n", " def find_better_split(self, var_idx):\n", " x,y = self.x.values[self.idxs,var_idx], self.y[self.idxs]\n", " sort_idx = np.argsort(x)\n", " sort_y,sort_x = y[sort_idx], x[sort_idx]\n", " rhs_cnt,rhs_sum,rhs_sum2 = self.n, sort_y.sum(), (sort_y**2).sum()\n", " lhs_cnt,lhs_sum,lhs_sum2 = 0,0.,0.\n", "\n", " for i in range(0,self.n-self.min_leaf-1):\n", " xi,yi = sort_x[i],sort_y[i]\n", " lhs_cnt += 1; rhs_cnt -= 1\n", " lhs_sum += yi; rhs_sum -= yi\n", " lhs_sum2 += yi**2; rhs_sum2 -= yi**2\n", " if i" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(y_valid, preds, alpha=0.1, s=6);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.71011741571071241" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "metrics.r2_score(y_valid, preds)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext Cython" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def fib1(n):\n", " a, b = 0, 1\n", " while b < n:\n", " a, b = b, a + b" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%cython\n", "def fib2(n):\n", " a, b = 0, 1\n", " while b < n:\n", " a, b = b, a + b" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%cython\n", "def fib3(int n):\n", " cdef int b = 1\n", " cdef int a = 0\n", " cdef int t = 0\n", " while b < n:\n", " t = a\n", " a = b\n", " b = t + b" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "698 ns ± 10.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" ] } ], "source": [ "%timeit fib1(50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "291 ns ± 13.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" ] } ], "source": [ "%timeit fib2(50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "49 ns ± 1.1 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)\n" ] } ], "source": [ "%timeit fib3(50)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }