{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Conditional Denoising Diffusion Probabilistic Models (DDPMs) with fastai\n", "By Tanishq Abraham and Thomas Capelle\n", "\n", "In this notebook, we will implement [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239), a seminal paper in the diffusion model literature.\n", "\n", "A one-sentence summary: Train a denoising model conditioned on the amount of noise present in the image, and generate samples by iteratively denoising from pure noise to a final sample conditioned to the label of the image.\n", "\n", "The final model is capable to generate an image form a label!\n", "\n", "Let's get started with the implementation!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imports\n", "\n", "Here are all our imports. The unet file is taken from [lucidrains' DDPM implementation](https://github.com/lucidrains/denoising-diffusion-pytorch) just to focus on implementing the training process rather than architectural details." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "rCPJR6JRrqUp" }, "outputs": [], "source": [ "from fastai.vision.all import *\n", "from fastai.vision.gan import *\n", "from unet import Unet\n", "from copy import deepcopy\n", "from data import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dataloading\n", "\n", "Let's load our data. We'll work with the famous MNIST dataset." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "okr8kAqSvIUD" }, "outputs": [], "source": [ "bs = 512 # batch size\n", "size = 32 # image size\n", "epochs = 100" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "B8nsEdKXvKim" }, "outputs": [], "source": [ "path = untar_data(URLs.CIFAR)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use the highly flexible DataBlock API in fastai to create our DataLoaders.\n", "\n", "~~Note that we start with pure noise, generated with the obviously named `generate_noise` function.~~" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use a labelled dataset and train a conditional model on the label" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "DQF8UdVvvP4R" }, "outputs": [], "source": [ "dblock = DataBlock(blocks = (ImageBlock, CategoryBlock()),\n", " get_items = get_image_files,\n", " get_y = lambda p: p.parent.name,\n", " splitter = IndexSplitter(range(bs)),\n", " item_tfms=Resize(size), \n", " batch_tfms = Normalize.from_stats(0.5, 0.5))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "L6iHHHFRvRPx", "tags": [] }, "outputs": [], "source": [ "dls = dblock.dataloaders(path, bs=bs)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAALdCAYAAAA4WzUkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDOElEQVR4nOz9d7RlV30l/s69Tw43xwqqoFKVEsqACAIlBLIMxggsm2AkbPoZYz+/YbAbGD+wJKDBiPCM/Zy6R2NoAyYYNQiwZUBkqyQkhHIOlW/O9558zn5/qFVNiTkXt4SE6qL5GYM/9D13rZ3XXvdQa94oSZIEZmZmZmZGxU/3DpiZmZmZHck8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8Yf4VVqlUcMUVV+C73/3u070rZs9In//853HiiSeiUCggiiLceuutT/cumdlT6IorrkAURU/3bthTwBPmX2GVSgVXXnmlJ8xmT4OpqSn87u/+LrZt24Zrr70WO3fuxI4dO57u3TIzsycg/XTvgJnZr6L7778fzWYTb3jDG3D22WfLn6tUKigWi7/EPTMzs8Plb5iPUPfeey9e+9rXYmRkBLlcDps2bcIb3/hG1Ot1TE1N4a1vfStOOOEElMtlDA8P47zzzsMPfvCDg+137dqFoaEhAMCVV16JKIoQRREuu+yyp+mIzJ45LrvsMpx11lkAgN/+7d9GFEU455xzcNlll6FcLuOOO+7AS1/6UnR1deH8888HAMzOzuKtb30rNmzYgGw2i6OPPhr/z//z/6Berx/S9/z8PH7/938f/f39KJfL+PVf/3U8/PDDiKIIV1xxxS/7UM2esb7+9a/j1FNPRS6Xw9atW/GRj3zkZ36mVqvhXe96F7Zu3YpsNosNGzbgj/7ojzA/P3/Iz9Xrdbz97W/H6OgoisUiXvziF+PHP/4xtmzZ4vf2EcLfMB+BbrvtNpx11lkYHBzEe9/7Xmzfvh1jY2O45ppr0Gg0MDs7CwC4/PLLMTo6iuXlZfzv//2/cc455+C6667DOeecg3Xr1uHaa6/FhRdeiN///d/Hm9/8ZgA4OIk2s6fOe97zHjz3uc/FH/3RH+EDH/gAzj33XHR3d+Oqq65Co9HAb/zGb+AP/uAP8M53vhOtVgu1Wg3nnnsuHnroIVx55ZU4+eST8YMf/AAf/OAHceutt+LrX/86AKDT6eAVr3gFbr75ZlxxxRU4/fTTsXPnTlx44YVP8xGbPbNcd911eOUrX4nnP//5+NznPod2u42rrroKExMTB38mSRL85m/+Jq677jq8613vwote9CLcfvvtuPzyy7Fz507s3LkTuVwOAPCmN70Jn//85/Ff/+t/xXnnnYe7774br3rVq7C4uPh0HaI9XmJHnPPOOy/p7e1NJicnV/XzrVYraTabyfnnn5+86lWvOlifmppKACSXX375U7SnZqZ85zvfSQAkX/ziFw/WLr300gRA8olPfOKQn/2Hf/iHBEDyhS984ZD6hz70oQRA8o1vfCNJkiT5+te/ngBI/v7v//6Qn/vgBz/oZ93sl+jMM89M1q9fn1Sr1YO1xcXFpL+/P3lsanXttdcmAJKrrrrqkLaf//znEwDJf//v/z1JkiS56667EgDJO97xjkN+7l/+5V8SAMmll1761B6MrYr/ScYRplKp4Hvf+x4uueSS4LfB//AP/4DTTz8d+Xwe6XQamUwG1113He65555f4t6a2RPx6le/+pD//va3v41SqYTXvOY1h9Qf+79ir7vuOgDA9773PQDAJZdccsjPvfa1r32K9tTMHm9lZQU33XQTLr74YuTz+YP1rq4uvOIVrzj439/+9rcB4Gf+ScVv/dZvoVQq/dzn+jWveQ3Saf9DgCOFJ8xHmLm5ObTbbWzcuFH+zMc+9jH84R/+Ic4880x86Utfwg033ICbbroJF154IarV6i9xb83scBWLRXR3dx9Sm5mZwejo6M/EUQ0PDyOdTmNmZubgz6XTafT39x/ycyMjI0/tTpvZQXNzc+h0OhgdHf2Zz3669tjz+vgvv6Iowujo6CHPNfCzz3E6ncbAwMCTvfv2BPlXlyNMf38/UqkU9u3bJ3/m05/+NM455xz8/d///SH1paWlp3r3zOwXxDJaBwYGcOONNyJJkkM+n5ycRKvVwuDg4MGfa7VamJ2dPWTSPD4+/tTvuJkBAPr6+hBFEX3ufrr22PM6NTV1yKQ5SRKMj4/jOc95zsGfA4CJiQls2LDh4M+1Wq2Dk2l7+vkb5iNMoVDA2WefjS9+8YuYnp6mPxNF0cGFAo+5/fbbsXPnzkNqj/2Mv3U2O7Kdf/75WF5expe//OVD6v/rf/2vg58DOBhP9/nPf/6Qn/vc5z731O+kmQEASqUSnvvc5+Lqq69GrVY7WF9aWsJXv/rVg//92HP76U9/+pD2X/rSl7CysnLw8xe/+MUAfva5/td//Ve0Wq2n5Bjs8Pkb5iPQxz72MZx11lk488wz8c53vhPHHHMMJiYmcM011+Af//Ef8fKXvxzve9/7cPnll+Pss8/Gfffdh/e+973YunXrIQ9XV1cXNm/ejK985Ss4//zz0d/fj8HBQWzZsuXpOzgz+xlvfOMb8bd/+7e49NJLsWvXLpx00kn44Q9/iA984AO46KKL8JKXvAQAcOGFF+KFL3wh3v72t2NxcRFnnHEGdu7ceXBiHcf+DsTsl+F973sfLrzwQlxwwQV4+9vfjna7jQ996EMolUoHk6wuuOACvOxlL8M73vEOLC4u4oUvfOHBlIzTTjsNv/u7vwsAOPHEE/Ha174WH/3oR5FKpXDeeefhrrvuwkc/+lH09PT4uT5SPN2rDo27++67k9/6rd9KBgYGkmw2m2zatCm57LLLklqtltTr9eTP/uzPkg0bNiT5fD45/fTTky9/+cvJpZdemmzevPmQfr71rW8lp512WpLL5bza1uyXSKVklEol+vMzMzPJW97ylmTdunVJOp1ONm/enLzrXe9KarXaIT83OzubvOlNb0p6e3uTYrGYXHDBBckNN9yQAEg+/vGPP6XHZGb/1zXXXJOcfPLJB9/Rf/mXf5lcfvnlyU9PrarVavKOd7wj2bx5c5LJZJJ169Ylf/iHf5jMzc0d0letVkve9ra3JcPDw0k+n0+e97znJTt37kx6enqSP/3TP/0lH5kxUZIkydM7ZTczs1/EZz/7Wbz+9a/Hf/7nf+IFL3jB0707ZvYkuP766/HCF74Qn/nMZ/C6173u6d6dZzxPmM3M1pB/+Zd/wf79+3HSSSchjmPccMMN+PCHP4zTTjvtYDyVma0t3/zmN7Fz506cccYZKBQKuO222/CXf/mX6Onpwe23335IfJ09PfxvmM3M1pCuri587nOfw/vf/36srKxg3bp1uOyyy/D+97//6d41M3uCuru78Y1vfAN/9Vd/haWlJQwODuLXfu3X8MEPftCT5SOEv2E2MzMzMwvw0kszMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCxg1SkZ20d7aT00406LD6OkQ+sJ9PrDtqhHUaS3n07xeurww0Ea4kijVIbWU+kcrQPAuvWbaX3rMcfKNhNjY7Q+NztH6y1+igHofV5eqfB6pS77akS8r9C1VNcfCb/KkagDQEdspw1+7duBOzZpN3ib6pJsk0/z7e/du1u2OZK85bI30Ho78NdYa7UmrT/2160eb26e/4n3R4nrkejrFMf8nkPMr0Uqy+8FAKhUarS+vMT/nHyzqR+sjZv4c71l61bZZmRklNYzGX6M7cCF6XT4vqm+QtSf441iPd5mMvo8074CY3cux8fPdsLHoqM3DMq+XnDKibTerPHnHQAS8H079gXnyDZHkp/84Eu0PjDM71FAv7MaDf68Nxr6/KVT4n2pxn4A7Ya4tzuqzp9RAKiLMTtq8/snF7gXm9kCrTfy/bJNJsVTLdpt/o5tVlZkX1NLvM09eyZp/cQTz5B9bd84TOsPPnC7bJNKZ2l9xzo+ds0+cpfsa2nqEVqvLU/QervJx2cAiDp8vE+g77GWGCN/7c8/I9v8NH/DbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYWsOq4iO4eviK0VuMrOAHI1a1Jh6cehP5Gdyrmc/tQGkOrzT9TyQqBhbIoilXbpXIX33aiOytm+Qra/nK3bNN3TJnW9x3YT+sHxviqUwCo1vnq5mKB71ejpVMq6k2+glosMn9Uwu+LrlKR71dOr/KfnpundZUYEAd2TN0XEPfrox+t7b8sr5IKosCv0ktLfAX6zPSMaKGTHdIZkSYT2gFFXFp1LwBAVxd/fot5/rwtiRXrAJDP89X0AwNDsk1HrPRuiZibVuBZjCLeVyzGTlV/tC9+MuPU4acSqb7a7cBzJa5ZPstfWSODfbKv3u4SrdcCqR51kRKyVtTr/BldmOfJCgDQ37+B1vMxvxapWKdkVBvLtL68b59sk+vw/hpqviDeyQDQTvNnMZ/nzzuKPbKvYjef+wyUe2WbbI6PH3GO37/pwLN4rBi+ntfgCRKNwHOVEeklJxz3LNlmas99tD7xwI20Xp/bK/tqLvNUr0ikYaQS/X5VU6yOzFT7xfkbZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCVh0rV+7l0SrFtohpAVBd5tE21QqPZlKxSI9+KCKTAvFTuWyW1stdPPKlr1dHE/X39NJ6s8kjTB7ZpaNVFuZ4tEqjVpdtNm3eSOt9vTyKrqdLR9TtGxun9ZUq334oOK0lrnEoMmqgl0f4POfUU2i9mNfxQT+88SZa3zMxTevBtDIRXxRBx5K1VazeGhHFPJtncW5BtpkY55GFzSaPhcoX+XMIACo1KHRel5b5vvUO9PIGsb6D0ykeLZaOeb2nd0D2NTA0SuuBZCRE4oas1/mz2ArEnaXTh9dXPs9jJAEgJc5LLO4XQMfHKbHYxqN98XpG1Id69HsoErGGnUTfYym1oTWi1eLXvFrRz/Vymt8P3eJdUijr92Upu57Wh0aOk23SGTFOiHd/J/B9X726yLtqi7E88L5qN/h8pTbxkGzTULePGFeypV7ZV76bjznZAr8ueXUeAdQW+Nxjec+dus2+u2g9aYl5XHtF9pVS71IxrjQD7wE1Fi6u6OjPWuMXi4H1N8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGrTsmYWVim9a5SUbbpGRyh9e42X91Yq/BtAEA6w+f25TJPvACAnh6exlAq8TbZbEb2Va9WaV0lW7Q6Ollhz8N8dW13/6BsMzzCV8qWinxl83HHbpd9bdjIEzcmpmdovSpW2QPAco2vSK0s8lXKALB+kB/nUSrloKmTAbZvOorWx6ZneVeByIJEpGR0xP0KhBM01oJ2ix+zSsIAgOUV/pyqVJpmg6dnAEA6wxNQ6g19z1VEyk62wJ/f/iGdbJFO8zb1Gl+dHUp/6RJpAqlYjytI+OrwdIqfy3RK99Xu8HMWx3zsDKVaJOI56XT08xOJ7ajtp0T90TZ83wb7CrQ+0KvfA0mbn5cIegV+rb7G02/E/VOv6nfsIvg5z+T4PTfYt072lS+rZy4wXqqxOcWnKQ/eeI3s6sAdP6D1nEiQCI1RzQq/fyb37JdtCmV+n5a6eZpLQaRwAUBcLNF631FH03r/AE8oAYCVuTFaXxy/V7apLfJ3aUaMnVGir3GtzsfuhphjrATmEcs1/l5u5Xplm74tPIlrtfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwKpTMrp6+arXpK1Xly6Lv+mt0ij6BodkX0OD/bSeTutDaIukilqd7/Pisl5B3GrxVdNq0Xi+R6/a7mry/do/pZMJZub534AvZPk56+7tk30NDA3T+uAQ72tFJIQAQLNR4/WK/nvymTY//nSDn+NI/M14AOgTKS2FHE9faFX5/gJAHPGLmdJhAsikUvrDNWB8fJzWl5eWZJtMmh+zTmPQyRIdcW1VEkdIQ9w/jcAK+HyO3z8qQSIduN5qcXizqY8/k+FjYS7H02+SRPfVENtJiX0Op2So+uGnwnRUskggseaojTz95tQdPOEnDqQvVFb4WJQLJDx1Mmv7ud646URa3/vIHbJNrcaf+cW5KVpPiSQOAOgX91wmxxMfAKAhUrL23vVDWn/k1u/JvjJt/s6anuPv0V3T/BgBYLiPJ1tM13hfALB5SKRkDPFzVijp+7fT5kkRrZk7aX1i6nbZV7vN52Shd1yxyMf1TJ6PUfWaHqMSkaRUEXOyaPh42dexx5xG66Pb+L0PAD2DOkFkNfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBq46V6+vnsW5tEbcGAMuLC7Rea9R5g6ruqzPHI2dSsY7/UVFwKs0ojnW2iooPU32Vu3SsW7HEP1up6MiztsivK/Xw61Io8ygcAEiLWL9ckUfh9KlYKACJiIOpLfEoHACozM3TekGc/05Tx4KVReTdUA8//uWajshLRKxc6L5IBz5bC8YP8Fg59ewAQDolhg0VHxeIYqvW+LWtt/Q1b7VEfFqdX4v5qWnZV9zh3xmkMjz+KCUi9QBApOoBCDw/iWgkbqt0Wkd5dSDiF8UYmaiNAIjUfa32F0DSEnGRKV4/evM62depJ2+j9XKab79emZd9yVi7TCBuUIyFa8X69cfSerOux7/du3nk3OLKDK2n0zy6EwByWR4fV+zWz8KDO7/Gt3/gXlrfe/d9sq+eTfzeisR7NFPQz9Xg+l5aHx7Vz0K2LeIy5x4RddkVcgUef9gU77L5ef3ubTT4fsnnHUBWRMH1Dg/yviI9raw0+DnbfuZLaX3djhfLvrp7eQxup6nfXeOzfB45MCKbHMLfMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBaw6JQPgq0tbgQSFYlc3rXen+WY7YgUrAEQpnuyQyvA6AKRyvD+1nbZY2QoATZXs0eErwHv7emRfxaJY9RpY3Vks8tSHVI73lc7pVd7ZLF81XyjyVc9J4Bo3FvlK3aihjyUu8/7KOX4tK0s8bQUAusW5XD/EV/BOL63IvmYX+ap5lZgAAHHCr/9a0RGXNo5C6R/8mFst/vw0WzpZol7nz1UzcM91IrF9laaS1mPE0jy/t3oH+Qrs0GlpifGju6QTa9piyFPH3w5sP0qJZA+RUhKLVBgAiBN1/gNtxGfHbdtE66efypMwAKC/h1+zeoXfL3FBJzZ0Ovz4Mxn9fVE6WtvfJdXqPA1gcGizbLOwMEnr87NjtL60pNNnMmrMFM8uADRW+PbzhTytjw7x+QUAfPN7N9N6uY/HIWw7fovs68f37KH1no5Oo1icnqD1BfG+TOf4MQJAJAYdlf4yv6Lfvc02v68zgZlgPsfbDPbP0vpQP38nA8DusQqt77x3itZ/41X63TG8cQet53I8oQUApuf4+HH0McfINj9tbY8KZmZmZmZPMU+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCVh0rl8/zmDIVWQQAScJjhlSbtIibC25HpxwhLbJSGnUeP1WtilgqACnRV6nAz0tPj46VU+dlaIhHWQHA4OAArWfEeekq62iXSEX7iIyxKHCSsyIKLurS0S4R+HbqtRqtt6CztHIiVq6/r5/Whwd1rNxylX8Wio6LOjqKcC1QkUVRpJ/rTpufj3bCf/9OZ3Ws22J9iW9DxDUCQEZESabTPMoqF4hsKvf00frwyDpa7xNxcwCQxHyMqKvsOAAFEZkFMUa0A+clJeLzUiIiLtXkEVcAkI94NFWpS48rORFLOdjL96uc19/XROBjcS7PjyWQ/Igo4vuVSesoukpFn5u1IBHPdSqrj3nLMafR+t2384i6lYqO+0yJc5sJbD8W76WVGR451l3WcY3P3spjwr6zm0ehnVjicXMAsH/POK3vfPiAbJNv8ndZbYXXo1jfb0nMx+J6k48RC9VAdF/C74u+QiC+rZ8/v9UOf1+2ksC0MsvnS//2jZ182+t4JCUA/OZv8Wus4owBYOXAI3rfVsHfMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBaw6JaOvr5fWQ6vZWy2eICDrTZ1S0W7UaV2t8geADsS+iVXjcSANortcpvW+Pr7KviYSHwCgUqnQ+rp1fGU+oNMwukUaRimvVyM3GnzfmuL8R4Ffq9Rn6ay+tYpd/FzWxTHGWb0Evkusui4v8RW8w4ODsq/p2Rlan6/pZI1CIAFiTROJFwDQbIn0G5HS0NvDE0sAYHZ2ntbb/BEFAKRT/JnPF3gyi0rvAICsSP8ZGBqm9XJPr+yrLvZZjkMAkoSPhRlxjCnoVJa0GApzCU+8KKb4mAoA3Rm+z71deozsGeWpBY3lSVqvLPJxAAAKQ3xcRYoff6KSfwCkROJLs8nPCwC0xT2+VsQisSUkX+DJTluOPpXW77nnetnX4vI0rWdEkg0ApCKeGNNM+DuuEkgoGt7IU6W2rdxL69W9e2RfuZZIjMnr9B00eOpF0uYPab2hB7wk5m1q4hZVqRoAsFLn56wcuC6zFb5veRGY85O9fH4DAHHMx+KOGKNbgRdBLsPf/VnxHgKA9SM65Wg1/A2zmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVnAqpfSFgp8NXkukMaQEqs11crHBZFSAAC1FZ5UkMvp7RcKfBVro8FXvS6L1agA0NXNV4Cn0/wUVqv6b8NnMnwVZ1kkcQDA/ffx1b1DA3w1eT6nV4N22nx1/OIiP8fNpl5Nn30CK1XzZZ5mkC/xetLRK9ajxUVaL87M0Xp3SZ/jPvE36Oemx2UbtYJ5zUj4uVVJGADQbvFjzmX585bN8rEDADIZ3iaCTpnpdPj2G02+ArwBvdK6Txy/Ss9AYAV6LFbtR4lO/8mJ+ycb8f3KZPV1KWT4cfYW+BhVTgfG7say2C+9Ar4vz/etJca7XQ88IPuamuDPae9gL60PjfBUE0CP9/WaTlmIY50asBYszk3RekokEQFAKhbvpS6eODE4vEn2tevhu2i9Vn1YtmknfCxYKPJ3WQn6Xrz1BzfS+r//+A5af8HZp8i+Snn+/tvUpb9vnK/yZ7GTFUlQgSSfrl4+Fi2JcXjvjB5v4hzva8OmXtnmzjv20frcghiHEz12z6/wZzEW4+r0nJ4TTk5P0HpH3McA0CfmHqvlb5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC1h1rJyKowlFfrU7PFqlWuVxMFEgoaunh8eB5LI6GikvovAadR4T02rp+LQIfOeaTR6T0ul0ZF/ZLI8syud5rA4ALC4u0PrMFI8P2rH9aNlXIq7LHbffRusHDvBYGQA444wzaH3z5q2yTVYcZxzz27FW5+cYAKIMj+9TMYClOR6XBQA9Zd5GxQA+um86QmctUPevKAMAyoV+Wh8aHqX1hRUe8QcArSa/F+NID00qylDFzfX18f0FgA1Hbab1tnje9+47IPtCm98L6wZ7ZJN0lkebpSN+AY4a5RFfADDYw7//6C2LuL9Yj93zM3yMrlb087MsYp6SiD8/i8v62RnbP8n7EnGVJ55ysuxr48YNtJ5O6xdOkujxey04MLaf1uNADGYU8ftHlBFHOi4yFtFeU9P8fQUAbfD7dKXGn4UHH3xI9vXwMh9zdpy6hdbL3fq8tBdmaT0TiE/r6VLvODH3yOm406ka37f79vJI1f3zOm5vQETXPvywHqMfPsDfsUnEY2hH+/l7FADW9fO5z/gCfw9MHOBjCgD85JYf0PqxR2+TbYo962l9eNNxss1P8zfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBq07JWKnyFZHplO4irZI1xArkVGAFbz7LV91G0Cu90eYrLzMZvs+pVOj3B76dSER7FIvFwG7x/VLpGQBw6imn0Hq5xLfTbOiYg6XFJVpfXuD1JVEHALWWPJ3T6SUpkTqRqN/fYn6+AEAEIyArtp/L63Ocz/M2qg4AC4t8BfFaUW/xlIZOopNBevp5UkMsEgxmZ+dlX+02v4O6u3WyRF2k3CTiGR0YHtZ91fjx33X7HbQ+PT0u+zr9RJ5Mc+rxJ8k2Q2JFeVY8WVFdp1T05vh5iZp8NX0zkORTrfBnvtkORBlFfLxfqfA0gUpFpxKtiM/2jO3hfdX0GJHN8sSC3l6evAQAqQw/lrWiIZ7rKNLvy85hJoMszPIkEwCYGBuj9Ud27ZJt6uDjx0qdvxdmJvT2G+KdMSSmK4uTOgmqSyRb9Pbo90Ilw5+TuMCPcaKuUzJuvp2POTMiDUNsGgAQdfixPLRHJ360E37PJGI7K+qlDGDoaJ6eNf6T+2l9ZnpG9nXjd7/B9+sAT8IAgEqVz4tOf9ErZZuf5m+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCVp2SkcnxdIGsWBkPACmRIAG16rITmL+L1fT5tE49yES8v6U6TzboBBI3IpHgkc/zFdihxIvlZb7SvVIJ/A14kRrQ39tH682aTsnIpfk+n37Ks2n9xBNOln0NbVhH63FKH79KU1CJCUlwZbf4TCWupPRK8Gyer4wvimsMAEtLgSXJa0BLpb+IhBsA2DfOV22rRfa1Bk/YAYBecf+WyzrBYEyswI9FssHE5JTsa3L/Aq0nTf4sbtlUkH298iX8+dl6tF61DZHMM6WOsaOf66TJL0CrxRMDqoEkHUT8OAv9/bLJvBi/73t4N603qg3Z1/p1G2h9cIDfL0tLc7Kv2Vl+/UtdOuUgE0jTWQuqIk2l0eTpGQDQqPN7vl7jz29jaUL2tTTPPyvlAuNlTSQOiXs+z28FAECmj78v28s8daEY6XtxdHiQ1rsHdPpOA3wsqlb5Oe4WSTIAkM/yvsZm+XUZm9Dj7cQ8P8f5sp4KxgX+/luu8O00AykZhR6esHTU5lFaf2DvXtnXwhK/l5OKvsdnxvbT+p/IFofyN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBaw6Vi6XLdJ6JtbxUypWrlnjMUeZtI75SYFHhXR3dck2jUad1peXlmi9o3KxAORyfN96e3tpfX5+XvYVifMyPT0t23TnRMxThscfhcLOBgaHaH14PY+/agfOS63J43jabX6NH8X3rtMR21HRcQBSKX4LpzO8nkrr+zUtPkun9WMSSLxbG0T04vKyjiaqVRdpPY74+RO3KACgKe6fxUV9/5SKPHIuXeDXqdnSkVH5iEcc5vK8r9NPOVH2tW6IRybt37dPtpld4rF2Q328r75+XgeAVItHibXqYuwU0VsAMLOLxy/dedM9ss29Dz9C60sLPMrrgvPOkX0dc+zRtD49z4/xoV08ug4ASiX+jgi9b2o1HfO1FnSaIjq1qaMEqyImLmrysWDrkI7b3D66g9ZrNf0sTkxM0vq+A/z5qVX14Ftb5PdJpsSf640bjpJ99Y9upPXS8BbZRsWdVpd5xOHC1AHZ12h/N60vVfj78ovfulX2lVIRqYF3/Maj+LlJJXxciUQdALpj/lxVsrzNgUS/PB4Z5++hlXk+vwOAdOA4V8PfMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBaw6JaNZ56trk0ivOsyk+Kr5Up4nbqCjV/A2Knw1+fw8rwNAHPPfB/Ji++0mT9UAgFyWr6iuVcWqz0pF9tUlkj1CaQyJSJ1o1Pg+d/XqFfDpHE8GaIpojaUKX3ENAK06X/WczfBtAEBDJWu0+DGGEjcSsepVXXtVf6I6nVAayJGv0eD7Xw3cv+k0X2ldECuw2x39XKk0grxazQ2gq8yfnzgrbmCRSgMAOZHYUhT3b3/guWonYrwp8FXuADBc5MeiUjLygdu31eTjbSvmz9veMb7KHAB+cs8YrT+8h6/yB4C5BX4ti3l+/NuPP172lS3x67//Pp7E0Wjr9JuGWLRfq+r7Ml9c9avxiNRq8JSIcoGnLQFAd3aQ1jNRP/95/YiiNsdTVqoN/S5Bm3/WW+DXtg79jmnG/B0/PMSPsdCj02eKfcO0niSB+UqDp2RE2T7+81n9Htkzwc/l7Cy/xj2D/BgBoIcHZCEK5Gqls3zQaS3x5z0jkjAAoDO3l9azbd6mL6/3a67B3/1NNZEBUFLviFXyN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBaw6OycT8ziORj0QE5Pi3UexiImp6SiruohvW2nyaBVAx7elsjyOJhfp3x+aLZ5NNDs7R+vFoojOA3DUUUfx/RLnBQDaIr6sJepJID2lWudxSrUOP8ZaXcfE5FI62kfptHkcjIq26XR0dGFb9KXi41Ii6jD0WSiKLhR5txYsL60cdptsVgwbET8XzaaOX1LnPEl4LBMA1MT9mxfjTSguMhXzNjtO4JFn60Z5xBQAFIplWs8GYu0yRZ7NtTzPI99ml3QU3MAIj6yaq87Q+ndvuEX2tVLl+5wKROQ9a+sWWj/nxc+j9b6Bkuzrlp/cROt33Mtj5QYGR3Vft95J62eccoJss23bRvnZWrBc4e/FRlNk7AHIZPiz2FXg77Iom5V9xSKGtbXA70UAKBf5ODvQs4HWx8Z4RBkAZAf4fdrVz++TTE6/r9X4UV2alW0WVniUY5ThsX6Vqp77qPdvW8Twrhvk8x4AyIoxurqg43nnZvk1K8X8Xuov82sPAPsn5ml9bIafr2pVv1+Laf6OUHNVAGiJGNrV8jfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBq07JqDf4qtukrVfdNsTi+LZIQ4gDKRHptFiRm+g29TrfgaZYKRzndeJDpcLTQHI5viJ0ZGRE9qU+y2T09pfFKtaFmkg5mNGrkTN5fi4TkQYRBVadxulAHIegEhBU4kSjwVfQ/p/eaFWlL2QDK7vV+e/p6ZFtcoH+1oJmk5/zcoknPgBASlzzqljprdJPAKAtElBC6SPNJr8fsi2xnUSndGzavI7WL3jJi2l9/fBAYL/4sdQCKS+T4xO0vjzLn/fBwL1Ya/Dn9/Y776f1AxNTsq9Gm/d11Gae8AMAv/OG19J6u8VTBr79zf+Qfd17N0+2WKzwa1zqXS/7WlzmKQNJEvi+qHP449qRpN7g57zV0s9VusWnA9Ua76uc5aksAJDEfCwtd+lklFaLj6X1mhijeoZkX71DIokqr54fncqzuMjTMBKREgEAYlqAVIpvJ8kF0kuGeGeVPD8vE+Pzsq+lRT6Py4pnFACO28RTN3pL/B1bFGkrAHDvIzzZZH5JbD8Q91XMiXlkpK9lIHRjVfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwKpTMpr1JVqPAyvgGzW+mj0t0hhyOb2CtlTkfxs+Caz6rdV4soVaQZzL6pSKrjJPDRgc4Kvm+/v7ZV/FIv+79d3d/BgBoFDM0/rC3BytV+r82AEgB75qP47Edcnrvw0fSjNQWi2+IrjZ1GkGSlYsR26I+yKK9P2q0jt6+/Rq8G3HHBPYuyNfIcfvxXRaDw0qpQLivooivWq6Le6FdmD7XWX+nKRFmsvAkE6sufBlL+Ft+ntpfdfDu2Rfs7OLtJ4p8XMMAOMz07S+fmSU1lOZguyrUuH3/P4Dk7xBIP1meJDf8y9/xUtlm3mRJvClL36J1hfmeBIIAKDDn+u8GIebbb0yfniYn8vBwUHZpiZSkdYKNcyl0vo7so44h0nM76uFRX6/A8DoAH//pcS7H9DzhXaKvxeG+nbIvpDi90+zzd/9S0v8PQoAu/eO0XpojCxk+FhYyvALk2qG3td8nxsdnpDVp4cb9Bb485NEeu5V7uXjbZ+YF9QWdfpOLsffBZU6v8eKgTmZCh9qBuakdZEKtVr+htnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzgFXHyqHB4zge2btXNqnWarSeEVFgMXT81PrhjbReEjFDAFAT8XE9IvJt/Ua+DQAoili3bJafwkJJxz+lMvw4M1l9/INFHvNUKohYtTo/dgBIpfh2YpVFJOLmAB3FFopvi0W0kIrpCUec8cihitgvFV0EALksv2YDAzqnR7VZK3q6umi9Uq3INpFI5smleARQJ9FRPhH4dcqKexQAsmn+WVeRX4vnnf4c2Vc5x8eP22+5h9anx3kMHAB0l/gYUczyOgAcvWELreeK/LrUdXoaOh3+LIxs3EDrLzznPNlXdx+Pmaotzcs21335+7SeiMioGPrZWamLKDER97duHY/3BICjNvH4uGwudDL1+LUWLC3zyLFUWo9/SNQx8/OUSfS4uG3rFlqPY90mW+TbyYuYsGZLv5faLX7/1Bd5PO7yso5CE4cvY80AYHGJx8TFBT5GpmL9jiv38Hs7nePPTyan4xqThO90Jq+fxUaDtxmbnqH1lJj3AcCzd/C5174pPl9ZWOaxo4D+tjeO9buj0Qw886vgb5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJWnZKx9wBfEfnwrgOyTZziq1s74Ksum3W9gnd+jq9uPWb7dtmmUOQrvdetH6X1ozaul32lM/x3i1aT73Mmy1fDAkAqPrzVyACQEckA+d4eWm809LlUyRYqPSMKpGR0nsDvXO02XzXfavEVsaFjUSkZrSbvK2nrpc3pTJbWc4EVxOm0vs5rgVpNnohrBAApkXKiglHU/QYAmTTvq5jn1wIAIrHSe6i/m9YHe/T1W5qboPVynl/X7Miw3q8Ov0/TsT7+3i4+RrXFs1jq4887AFQay7T+4nPOofX+Pp0s8aOb/5PW77/9dtlmdponiEQp/pppN/QK+Lw4/qNH+TV+wak7ZF/lEr8x6zV+vgCgUOApJWuFeuaSjn6uOx2VeMTryzU+dgDAPA/pwGAfT2wBgHaL71uzxZ+rhkjBAoBWiz+/SdLLt53o/Roc4PdPQyS5AECnzT/Lpfm5jDv6WOo1kXiSEccYSNyIRJJRlNbjbfXAflpfEkkgSV0/10O9PNXrd85eR+t3HNDn+IE9/LxMTi3KNoHwrlXxN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGrTsmYWuKrFVcCf5q+3eSrGDtt/rfG283QCl6+vHHdBp1ssUF8NiBWmneXQ2kIfPvqz6ZHIkkAACKxgjl4/BneJpvhq8mLxaLuq8NTBlQ99LfZVUqG6ivkyWxTr/NVx0kgiSSd5o9DSiSUAECpxFMO1opaja90VkkmgH4WVTJMOnD+8iINI07peyEBH3SGhsq0Xi7qvop5fv+mI5HkIpJ/AODBR/bR+kiBrwAHgIEs304n4vuczuhV46U0X4EOMd7cctNNsq+HHriP1nfv2y3bqASaYzZtovXRgV7ZVynH76UNo3zs7kuLgRhAIcef0dCK+ShwndeCUom/y5JEH5dKqVDpTa3AeH3/7kdoPZU5TrYZ6B+h9e5cntYrKwuyr9rKPK1ns3y8yQRSIuq1OVpPd4nnDQDAx7ykwxMkokQnSzSbfFyrN/iz0CUSogBgaZGfs8n9Y7LNnl38s0yLP3MpMaYCwOQ8H7+2rePP+/FnPFv2NVblc5zP/usPZJtdD/MxerX8DbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAauOlRsY3kDr4+Pjss3SAo9j6Yg4EgSSfJIKj79arvDoOgAYHhmk9b5eHtNSyAWi4CIRraMTsySVWJTIWB+g2eBxLCnRmYpIAxDOU2L7FYhiSxIeLZSIKCtAR8G1WjwOpxOIOFNtGg0ePaZihQAgEtFCcUqfy8BhrgmRiC+LU/rA8nke85RKiSilJBBRl/D7Op3h2wCAU08/ntY3bOTPeyqj468yOfEstPh+5Us6rrGrv5vWlxt87AKANvh21NlvNpZlX1HMY67uvvNeWp+empV9LS3M03ouz+OfAOC4k7bT+tEbhmh9tEfHeJZEjGa7zs9lbUG/h3p6t9F6nNHPdTa/6lfjEUnFQoaTO/mzoN4WobjIxSX+7r/lzptlm/5uHpO2bmQLrZfL+lnMZfn4US7xbWRz+l6sLvN7PhLRkwCgbq1WQ0TtNnUsIsD3TcX61Ro8UhUAojq/Lrum98o2y4tL/IM2f/fOT+l3R0HEaPYN8vllMdaxrRs38LjOs885TbYZG5+Un62Gv2E2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwtY9VLgbZtESsbuB2WbyiJfhV1v85XhoZSMmkg9yIkV+wCwYf0orZdLfDV5KtZLiBPwz2SbRP8ukhZpAlHgBBx2skRgOXQc831T4RlREtovviJW1UP7pupNcYwAUKnyVfMqpSOX5dceANLi/DcC6SVrPiUj5geQjkLxL+r68b5CKRnqudq0Zb1ss+PYzbQed/h2anrzyEV8BXw6LZ7fWI83qTxP35lb0GkUy+L+XbduhNa7uvg2AKBe5+dyfnaa1qsrOmHouB3H0PpAf5dskxWnrCSCNepVsfoeQG+Bb6cs6o22vl8T8b1QaIxstnSyyVqwY8uxtN4S6S8AEIkXQCrFz18mrcfSZpNvp1bT53W5wu+HPXvv5/slxi4AGBrYSOs7TngOredKvbKvYhdPv1FJOgCgho92m6dhtNsV2VdbJGi06ryeqem+ol7+/IwO6ZSQyRn+bN2/iyf2zM7r5+r4HTz1Is7z/WrFeoraFi/frm49RkbqwqySv2E2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLGDVsXJ58Fi3oV4d4TE3zaNKEhH/1IkDuXIRjxCJA20KBR4BVchn+fabddlXs8MjZJoi7i6d0jEtiYozCiR5qci5VptHriVNHbmjYuVUPR24S1pPIFbucKPw6nV9Xdqir5SI7isU9XVpqvixmF9jAKg3dOTdWtYW9xWgY+JSKX6jdAKxcl0l/oxu2qRj5Yoip2xifJHW40D8VWuRX9tOg+9z0tb3YlU8cz19w7LN3DyPZlq/jh9/KtaDRGWFH3+pyM/xuhEeuwkAW7byGNHlhQnZpiBivmJx/fuG9fbLBT5GF7t5LFUm3yP7irP8HbVU4+ceABYXZmhdX8kjy+YtJ/APxBgP6IjHTIo/b1Hg+7ZYRNQF3vBoJyKmrcVb1Rs6llBFjrVFRGgmp+Mi0yJ6splMyjbq/be4zKMc81l+vwNAXcwxUmn+LBREbC4ATD7Ct7+0yCPqAKDR5O+CVovfLwO9sitkMvw4Kw0RQ1jV422qwM9Ls6XnHkng/l8Nf8NsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhaw6pSMolhFunnzZtkmzvDVpcvVCq1PzUzLvtIpPrfv7emVbZaX+IrQ4f5+3kCs8gaAjkhjWKlUaT2b1X2lROxENrCEWF2oRKxU1VsHOonYUIefY7V6GpDhJYBYpQzolJSGSCnpJHr7DXFdYnGOQykDEH1BrJL+Px8GPjvytcR1CgXWqM/a4rpGGb1qu7u3m+9Xkz+7AJAVq+l7yjwBpVrjzygAZLJ8pXnf0BCtz84syL4mxvmq/cUlnl4BAKNDPN1h66YttN6sz8m+KuL+3bDxKFpfmtN9Hdj9AK2nEn0uIVb6q/uiFEisifP8vij0DPC+yjolo17n20/X9bG0xVi4Vnzz21fTeiC8CG0xzqZF+k1wLBV9FfL6mkciwSCT4vdVJqeTJTYdtZ3W+4b4PCabL8q+GivztN5u6Oc6At9OtcrvuekZnT5TLnbRelepj9Zj6DGqWeHpL5PTOnFk9wRPk6nW+c20ZWuv7EslFi02+UulVNMJS7V5/o6YmtXHP7SOjx+rtbZHBTMzMzOzp5gnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWcCqUzLyZb5Sc2Ng1Wv/yAitL62Iv2ceWE1eFCtiu0p6devDD+2h9eFBvl/9fXqldSbHV3cuLau/wa5/F1GrxhtNvWq7k/C/m54WaRCI9PaTSEUg8HqnI9IjAGTFyuYkkB6hUjJyWZ5GUa3pv3OfSvP7Ip3lK7g7HZ24Ead4mzjw9+dTos1akUT8/omgVyerFfAq9WDzNr5iHQAG+vn2q8s6wWH6wH6+/W6+ArrR1vfv7CRfAV4S482pp5wg+6rW7qL122+9TbbZNPpc3tcKHwtufeBe2Vff6AZajzv8WZwLpBKNDvJV/hvW8fQQAGg3eXpJR42F4tkFgKp4THvEK6sptg0AiHhnnZZuEyOUjHPkO2rzsbSeBGIy2m3+jumI56cdeK6aIvGo0dBjeVuM8ystnnpw3Alnyr42bHkWrWdFclezwZO7AKDZ5GPE3MwB2WZxhZ/nfZOTtJ7OlWVfW7Y/j29DbD9q6nPcEJdselGP9yt1/vwuiId0oaGnlUO9fIyeWeb33tIenuoBAJ00T/bYtVsnjtT5ZlbN3zCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFrDqWLlSqUTrmayOBnp49y5an5jgsR+lQETc8gqPfZmc1BEiaZFstm4dj5Xr6eFRNABQq/M8lijFY2rSIr4GABCLyLNAFFujJeKAZEKcjk+r13nkj6qrKB4AyIvrH8f61kpneESfjqLTv9cVxX3ZEfFJofipSMTthWLl0hkd07QWpNP82GIRHQcA2TS/H47fsY3Wz3reKbqvrIhYrPMoJwBoNnibif08sqm7p1f2lRZpSv/57e/R+vT+cdnXGac8m9ZHii+TbWYXZmn9O9d9i9b3ikg9AOgdWkfrx2zlsX5b1m2SfR29icfH5bP6+em0+PhR7Oqm9SjNxwEAaLb5/VcXkVnprB47m00+dmcL+t2loj/XivNe8ju0riLiAB332RZRnKFYORlF19JtABH/Bz7Glkt9uisxLN9x8zdoff/YI7KrlhgKxw88KNsURNxuodxP62ecdrbsqzxwFK2v1Hn0ZDk3KPuKSrfT+votOsazkZ2i9XrCY+3u3a3jgVsFPkbVWvz5nZ/S4+3cIh8Lpqd5DCEANJu/2HPtb5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJWnZIh6cXJSKV5GsT+/fv4zojV9wDQafPVjalY70BvTxet33r7nXwbiU48GBrmq8YjmXihfxdpiIXCaXG+AJ260Yl4m3TgvKQifi5rlXlab6cbsq+OWHWaEUkYAICIH4taGZ8KJG6kYr79Toef5FRKn2OVhhFqIxaQrxktkWwQJ3o18UAvX+mdy/B7bmWGr6YGAJT5vdAOPIuVFX5tF2bF6uymvkhHHcVXoNcGh2l9bpwncQDA7jwfVwYH+PkCgPlZfv6XF+dpva+3V/Z11OioqPOV6SNDPC3oUfxaNlp6LCiXyrSeiDEqFRjvMyLiqCnSb2pqUAUQibEwDmw/gn7m14LdD99F67kcT28AgFyep1Rlc3lazwTSk9Jp3iYqBMZfkVKkdFp6jFKJH+u3nETrfet5kgwAJGK3ToNOvynm+fsvn+epTtk8f3YAIBFj8fCGHbyvtH5fbtzBE4se2qfHtaN7+fhRXLeB1q/99k9kX/ft4dvp7e2h9U6K30cA0Iz42NkzpMfbzi/4wvY3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAatOyYjECtZmsynbdHd10/rgAP9b5xNT07IvlaCh/s48ALTa/LPJ6Vlav+FHN8u+Tjv9NFrfsJ6vFG219e8iajGwSml4tD/eqC1WjbehV4PWa3x1adLiK81bbb0CPZ3iq4EDwRKoVvnfgE+JZI04Dqxmj/jxR+pcPoFVskkgseEXXXX7tIv4/qdTesV6X38vrTea/L7atXu37Gugn68OT2Wyss3yEr8f5+d5SkZD3G8AUCryZIDeHr5qe3l5WfZ14ABPA8nn9UrvbJbf2yedeDytDwzxtB4AKBT4saRUSoW49gBQb/Bxva9Ppyxkcvz5bag0g0D6jXqsGk3+LNYbVdlXNsvvpVZTj2vqueDZKUeeb33zM+IT/Y7JitSLTI7fV7msvhdKZf7u7+nRCQbd4rNCgY8RXaVe2VdGpIH09PfR+kBajzepFD8vak4EAGpa0myolJnAO0a8/+q1JVpfXKjIvsam5mn9R/fukW1ml/lxHnv8VlqPQglZIlWsLaJI8iV9j43k+TVLB65lMNZtFfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBq46Vy4jImbSI7AF0zNDxJ/DIpMYdd8m+aiLmKJB+hUhEmCQiDqYeiBmqN3g0UpTix69DYoBWm0cWRYFfX9RHScL76jR1lFZNRGPlUvx26LR0dGCzrj7Tt1ZOxMEkCT/Kep3HlQFAo8VjehJxBUIxcE8kIi4KXbQ1QKXvbdm6RbY59thjaL26wu+rqfEx2deSiFka7OGxVACQ7vCxKCvihGriHgGABbHPSZqfmJXQvSgizzr7p2SbOOLjyoYNPMCsWeVRUgBQr8zRerHQS+vDQzxiCwAKRRGFF+uRLZfnEVB5GQmqsyczIgpPRYXWa/oar1RErF1gjMpkArmYa8D8wgKth8bSel2/M5hOos6rjk7NBCK/shl+z8XiXsiJ6DgAKHfzWEgVOVbu6pV9lcr8sy6xDQDoKvHxq1Qq0XpORPeFPstk+fyqWtMRi0lhPa0PbThOttl/1320fse9j9D6pqN53BwApMVzlRI5tKFI12zEjz8TiCRttfU9uxpr+21vZmZmZvYU84TZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzMLWHVKRq7AV6RmsnwFNABkRILDsTuOpfVYJE4AwNzcPK13d5Vlm8oKX1HeEKuBB/r7ZV/9/YO0HotkiXYrtBpTRXvo319U4kdHrPpshLYvVh339IlVvx3d10qNf9YUSSAAELV4Gkmzzle6NwMrWxNxKiOxTDstVuwDekVuaKXuWk/JyIjzceyO7bLNMdv4KujJyQlaXxJJFAAQx/w+yZZ1SkYpzVeNl8R1WqzoZInp+UVan5mf5w0CSSr5PE+dOHBAp2SUCvz+6TT5SvcN6wZkX+s38s/aHfGQxDoVIVfixzI/z9MXACBf5AkA60d44kctkGyhhq8I/H4tF/V7oCXGm7QYux/dUCjn6Mg3v8Tvn9BRpdL8Hd8SF6MT6WchleL3dbWl96AqEnNilXZV0ffPgWmeGNNo8lSnONZxWyqJqihSYQAgKz7LieSwfKCvOOb3aanIx8FsTs+jVqr8me/r588uADzrxC20vrxSofV24C6ri3d8o8Gf0XZgvI3Fuyv4ThZjwWqt7be9mZmZmdlTzBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7OAVcfKpXM8wiOV0TFdPAwGKKb5Zo8/dofsq1rhESYIRH6trKzQejbLY1d6enSUVVcX/0xFE8VPIG4slVJnDIhFTE+rzWNyENh+nOHRNiryJ5fLy76ihEcOVZd1lJiK9Ytivs9RMPKH11UUUuAUIyPu5XYgIq/ZEud/jYja/JxPjo3LNqlOndZbbX5dB4dFXCGAbduOofV2U0cJLszxmLhhEQvZtczHAQCoiDijnLhPUuIYAaCQ5tFm2ax+fhDxmKVcjt/zXSUdP1Wv8GcuU+BjVLUxK/vqjnmsXLrQJdskIhY0gYp10xFP9RUei9YSj6IaHwEdC9nqhMZoPeasBYv8EYVI2wQAxDE/T80GP+mhvtJpMZYHvqNTY6mKnswH3kudFG+Ty/IotlB0aEvsVz3Rx9IWt/ZilY9dmSy/3wGgKcZCNV9oNfVztVLh2wnFwMr3f0q8LwPbT9SsUFzjVGAe026LGFgx3gBAu/OLxUX6G2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzs4AoCS0PNTMzMzN7hvM3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzEeAK664AlEUYXp6Ovhz55xzDs4555wnZVtm9ovZtWsXoijCJz/5ySe97y1btuCyyy570vs1s9W7/vrrccUVV2B+fv5p2f4nP/lJRFGEm2+++WnZvh0q/XTvgK3e3/3d3z3du2Bm/8e6deuwc+dObNu27eneFTN7Clx//fW48sorcdlll6G3t/fp3h17mnnCvIaccMIJP/dn2u02Wq0WcrncL2GPzJ65crkcnve85/3cn6tUKigWi7+EPTKzp0u1WkWhUHi6d8OeQv4nGUeQvXv34uKLL0Z3dzd6enrwhje8AVNTUwc/f/w/yXjs/xK+6qqr8P73vx9bt25FLpfDd77zHQDA17/+dZx66qnI5XLYunUrPvKRj/yyD8lszXnwwQfxpje9Cdu3b0exWMSGDRvwile8AnfcccchP8f+ScZj/+TplltuwWte8xr09fUd/Ab6sssuQ7lcxl133YXzzz8fpVIJQ0ND+OM//mNUKpXgPtVqNbz97W/Hqaeeip6eHvT39+P5z38+vvKVr/zMz0ZRhD/+4z/GP//zP+P4449HsVjEKaecgq997Ws/87MPPPAAXve612F4eBi5XA7HH388/vZv//YJnDWzXy1XXHEF/vzP/xwAsHXrVkRRhCiK8N3vfhdbtmzBy1/+clx99dU47bTTkM/nceWVVwb/mVYURbjiiisOqd1777147Wtfi5GREeRyOWzatAlvfOMbUa/X5X6NjY3hjDPOwPbt2/HAAw88mYdsP4e/YT6CvOpVr8Ill1yCt7zlLbjrrrvwnve8B3fffTduvPFGZDIZ2e6v//qvsWPHDnzkIx9Bd3c3tm/fjuuuuw6vfOUr8fznPx+f+9zn0G63cdVVV2FiYuKXeERma8+BAwcwMDCAv/zLv8TQ0BBmZ2fxqU99CmeeeSZ+8pOf4Nhjj/25fVx88cX4nd/5HbzlLW/BysrKwXqz2cRFF12EP/iDP8A73/lOXH/99Xj/+9+P3bt346tf/arsr16vY3Z2Fn/2Z3+GDRs2oNFo4Fvf+hYuvvhi/NM//RPe+MY3HvLzX//613HTTTfhve99L8rlMq666iq86lWvwn333Yejjz4aAHD33XfjBS94ATZt2oSPfvSjGB0dxX/8x3/gT/7kTzA9PY3LL7/8CZ5Bs7XvzW9+M2ZnZ/E3f/M3uPrqq7Fu3ToA//f/6b3llltwzz334N3vfje2bt2KUql0WP3fdtttOOusszA4OIj3vve92L59O8bGxnDNNdeg0WjQ/5f4zjvvxEUXXYSNGzdi586dGBwc/MUP1FYvsafd5ZdfngBI/vRP//SQ+mc+85kEQPLpT386SZIkOfvss5Ozzz774OePPPJIAiDZtm1b0mg0Dml75plnJuvXr0+q1erB2uLiYtLf35/4sputXqvVShqNRrJ9+/ZDntHHnr9/+qd/Olh77Fn+i7/4i5/p59JLL00AJB//+McPqf+3//bfEgDJD3/4w4O1zZs3J5deemlwn5rNZvL7v//7yWmnnXbIZwCSkZGRZHFx8WBtfHw8ieM4+eAHP3iw9rKXvSzZuHFjsrCwcEj7P/7jP07y+XwyOzsrt2/2TPDhD384AZA88sgjh9Q3b96cpFKp5L777jukzsaExwBILr/88oP/fd555yW9vb3J5OSk3P4//dM/JQCSm266KfnmN7+ZdHd3J695zWsOea/bL4//ScYR5PWvf/0h/33JJZcgnU4f/CcWym/8xm8c8g30ysoKbrrpJlx88cXI5/MH611dXXjFK17x5O602a+YVquFD3zgAzjhhBOQzWaRTqeRzWbxwAMP4J577llVH69+9avlZ49/zl/3utcBwM99zr/4xS/ihS98IcrlMtLpNDKZDP7n//yfdJ/OPfdcdHV1HfzvkZERDA8PY/fu3QAe/Sce1113HV71qlehWCyi1Wod/N9FF12EWq2GG264YVXHavZMdPLJJ2PHjh1PqG2lUsH3vvc9XHLJJRgaGvq5P/+pT30KF110Ed785jfjC1/4wiHvdfvl8YT5CDI6OnrIf6fTaQwMDGBmZibY7rH/q+gxc3Nz6HQ6P9Mf24aZHeptb3sb3vOe9+A3f/M38dWvfhU33ngjbrrpJpxyyimoVqur6uPxz+RjHnumf9pjz2ToOb/66qtxySWXYMOGDfj0pz+NnTt34qabbsLv/d7voVar/czPP34bwKOLFB/b/5mZGbRaLfzN3/wNMpnMIf+76KKLAODnxlyaPZOpZ3w15ubm0G63sXHjxlX9/Oc+9zkUCgW8+c1vdizs08j/hvkIMj4+jg0bNhz871arhZmZGfry+2mPf4D6+voQRRHGx8fpNsxM+/SnP403vvGN+MAHPnBIfXp6etXRUuqlxp7px57J0HP+6U9/Glu3bsXnP//5Q/oOLQ4K6evrQyqVwu/+7u/ij/7oj+jPbN269Qn1bfZMwJ7xx775ffxz+fhfhvv7+5FKpbBv375Vbeszn/kM3vOe9+Dss8/GN77xDZx66qlPbKftF+JvmI8gn/nMZw757y984QtotVqH/cdKSqUSnvvc5+Lqq68+5NunpaWl4MIiM3v0Rfj4BTdf//rXsX///iel/8c/55/97GcBIPicR1GEbDZ7yEt6fHycpmSsRrFYxLnnnouf/OQnOPnkk/HsZz/7Z/73835RN/tV99g4sNr/Z2lkZAT5fB633377IfXHP6eFQgFnn302vvjFL67q/8np7+/Ht771LRx//PE499xz/c+lnib+hvkIcvXVVyOdTuOCCy44mJJxyimn4JJLLjnsvt73vvfhwgsvxAUXXIC3v/3taLfb+NCHPoRSqYTZ2dmnYO/NfjW8/OUvxyc/+Ukcd9xxOPnkk/HjH/8YH/7wh1f9f5+GZLNZfPSjH8Xy8jKe85znHEzJ+LVf+zWcddZZwX26+uqr8da3vhWvec1rsHfvXrzvfe/DunXrnnC01Mc//nGcddZZeNGLXoQ//MM/xJYtW7C0tIQHH3wQX/3qV/Htb3/7iR6m2a+Ek046CcCjz8qll16KTCYTTMmJoghveMMb8IlPfALbtm3DKaecgh/96EcHfyn+aR/72Mdw1lln4cwzz8Q73/lOHHPMMZiYmMA111yDf/zHfzxkDQLw6Bqka6+9FhdffDEuuOACXHPNNTj33HOf3AO2IE+YjyBXX301rrjiCvz93/89oijCK17xCvzVX/0VstnsYfd1wQUX4Mtf/jLe/e5347d/+7cxOjqKt771rahWq7jyyiufgr03+9Xw8Y9/HJlMBh/84AexvLyM008/HVdffTXe/e53/8J9ZzIZfO1rX8Of/Mmf4P3vfz8KhQL+y3/5L/jwhz8cbPemN70Jk5OT+Id/+Ad84hOfwNFHH413vvOd2Ldv3xN+nk844QTccssteN/73od3v/vdmJycRG9vL7Zv337w3zGbPZOdc845eNe73oVPfepT+B//43+g0+n83MW5H/3oRwEAV111FZaXl3Heeefha1/7GrZs2XLIzz02mb788svxrne9C0tLSxgdHcV5550n3/mFQgFf+cpX8LrXvQ4XXXQRvvSlL/lZ/SWKkiRJnu6dMDP7VXfZZZfhX//1X7G8vPx074qZmR0m/xtmMzMzM7MAT5jNzMzMzAL8TzLMzMzMzAL8DbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhaw6j9c8v+95mZaT8U/+/fUD3aeyfB6im82lU7JvuKYz+3jVKBNSrQhfwMeAKIo8PuDPkzR12E2eIJtnkxy/WdgWWgiPkw6ulEn6RzW9kPrUjsd3peqJ2LbANDuNHhf7UCbJq//8a+dKtscSS7+Lx+n9Q0jJdnm5GcdQ+sjw7xNOa+f0XsenqL1H9x4j2wzJP5kczbHx5VOSz9XMwsrtJ4RfRUKfEwDgL7+blpPpfT2p+f4n9zNpPlYlM/qZ2F+oULrS4s1vl9iGwAwNNBF66NDvbJN3GnR+sw4/8uic4t8fwFgpcofrGqtzet1/uwCQCzOfzabo/VH8Xv2i3/3h4E2R45ymV+/Qrks2/T199P60PAGWu8fGtZ99fK+urp6ZJtiiY8fqTR/FuPAi6nZ4vfD2BS/F7tKedlXQf3hMHG/A0DSEJ91+DNXKOrxdrCvj9a7ckVaby0uyr6qlTlar5T0s1Dq4vs2MMjH4Z7BQdlXdzcfI4slfiyFfEH2peZ3oblHJOYSz9rB32k/s81V/ZSZmZmZ2TOUJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYWsOpFf5ALtfScO2nzBRodtYAv0Ytj5Hq0UBuxVisJLFTUnT2lPw7g56wrlB8+eQsF9eI6vejtcBfwhT6T11hvXi7iS8SCDLW/j7ZRCwj5ffzo9p/ehZq/qJEhvjionNOLYGbG+cKRhdlpvo0BvQikusIXd/V26cVJWbEIqLrEF/DV67IrVJf5wrNWg2+jlOcLcACgVeULjdJFsWgIQE4sWk7a/P5dml+WfTXr/D5NmrzeaupnYWGen5dalS8gBIBGRSw6nFui9WZDX5iOeK7imN+XqcB3P2pheqJW7AJIpfQzvxbs2LaF1sen+CJbABjft5vW9+/l9XRGLxTr6uKLu9TCQgDo7x/i9aF1tD4UWFyWz/PxI5/l9aPXbZV9DeT4wrOoqe+fRCxCjWq8jQoiAIBUnY8RuTZvk+/m5wsAppf52L1vXN8X0zN8XJ8Z20/rmcDCzpJY2Nndxd9Dvb29sq8+sRiyu0dvP1/QiwhXw98wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhaw6li5OObRJnEgoi1S8XGqjfj5RzvjbaJAHIv67HDrj1KZZ6LNE+grvP0nj4p1k9sP7FYs+uoE/p77YYfuRYf/e10Ui2MMRNTJvoInYG3HypVEelx3N3/eASDp8Piwsf0LtH5gl44sQpZf2+6yjmJLRTyaqdrhkWeNqo4vizu8r+4ijyaK21XZV7PKP0shI9vk0jyaK5flbXpGR2Vf4xOztD7V4FFSlRV9Xlo1HouFln52lxd5fFx1hZ+XmZkx2df8Au9rePgoWs/leYwZAGQTfi6zWX2Pd4n4q7XiQ+/9C1ofm5iQbfYd4DFhO2/6Ca1//4fXy76mp/i1nZzi2wCAVMKvR6nAo+AKxaLs67nPeTGtv+i5F/BtT+m4xtkDD9N6a44/VwDQrPOxqNPmz1U28O7P5/lYWOjn9/y2558p+xod5OPafQv6WGarPOKyNMDP/55H+PkCgKUmP/6eIr/GvYGIuO4yb1MWdQDo6eWxhqeccKxs89P8DbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWcCqUzJ0gkIoJYN/lqiUhLZetR1lCvKzw5V0VEqGXgEep8SpinnsQqsZOJaI95XK8BXzAJCoeIeOin04/PQGmZ4R/L1KnctAHEXCPzvM7IyfQx3/E9jK2g7CCOvw+7S/r1c26ermCQL7x+6j9Ttvu1f29fwXPYfWtx97nGxTr/D7p72O71cU6edKUQkKWZFeAQB9/X20nhFJIABQa7ZpPZXibVKB+7e3i+9bXxfvq1oRSRgAAL5fK8vzssXtN9xM62MHxmm92QqkdIiUnaX5GVqvBw5ldB1P1jjp5BNkm4E+ncCwFjzrxK20ftzx22SbSKQRpXP8XNz8kztkX50VnjqRBOYLKnColfCUhuHeYdnXKUcdT+srd99P6/MPPSj7Smb5PRcF5ivqPZMSx9jI6MSWRoqnZETgiTmloj7H1Ra/xgOBVBgR/oOtW/n2u/u7ZF8337OL1ieneUrH2Pik7CuT5sdSKumUjGKBH+fvXfZ62ean+RtmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7OAVadkPCFiRWynw1e9Vh7iq6wBoOcYvpoeRf731AEAIvUhFktV41j//lCZ4yu9Zx68kdZXZg7IvjI5nvhRGt4o2/RuPpnWCz18papKonhiQjERKlkj0Easxo5kesaTeSxPwJMb33FEGegboPXB4X7Zplabp/X/uPbfaP3B+x+QfWXzTVp/9rP5/Q4AcZmvKE+l+T1XKOhV07EYo9RQkM3qxI10mg+nc3Ozsk0kxsKenl5anxqbkn1VFqdpvbvIb+Cugl6ZXy7xcXVxXo+Rex/hKSlLi4u0HovzBQCJGCM6LX6/hJJQZqd4X+XCSbLNCTt4ysRaMb/Mow2aIiEKANIipWmlwRNTSj16jOAtgHabXz8A8jUzVObbedFxYk4AIN47QesT999D60l1RfaVUmkugWNJ2updxs9MJhN4FhL+Wbyen5cor69xps6vcb6ox8h0nqfv5EX9pJFAEgv4dibmlmi9VhcRHQAWlhdovVLR13KxwsfI1fI3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFPKWxcomIdUtleKxaR8QiAUA8t4/Wo/KzZJtmvULrs5O8r+YCj6IBgH03/zutz++/n9aTFo+LAoCRUR4HU9nHY1oAYHnf3bS+8QW/Q+vF3hHZl4qc+2Wlp6n7QtXDfR3eNkJEwtgTSdVbMw6M8Wcukw3ET6X4QVeXRPxfIEnqRztvo/XTT71Vtjn7nOfRelbEKaVivQORuH4ZEXmWivRzfWDPHlqfnNTj2vCGdbQ+Pz1J63seekj21SciAvNFHh9XLpdkX/PzPJpp586bZJt2h28nm+dRUjkRYwYAORG9mc3naT0JPKTDw4O0vmn9sGyTqCixNaLR4vdvJzBeyY8ifl2LPTrStRPxsaDdrMk2kdiDHYM84q+6wN/vAHDT3odpvbLC48uaIgYOABotHm3WSlR4HpCIY2mJWLkysrKvk8Cfk2NErFsqpy9yPebbT6uBEEA75te/2eJtijl9LOuGumh9ZoFfl3yBP+8AUOjm40on8O5vt/X4vRr+htnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLOAXTslQK1sBvQI9ivg8vbhhm+wrX+OrxtuJXgFfbfPPHrmHr/Ted8t1sq9sY4bWO22+6rTd0CtoO80GrTfqfGU6ANSXb6X1VNcQrW9+3sWyryhWl52vNA8lTjyRxIvDTbB4Mrcf3nYoDkNsf43HZOzbw5Nhxg5MyTb5HF813VGrxlN6ZfLS4iytf/Pab8g2Jx5/DK0fs/0oWq9UFmVf6vLl03wFdqOiV+bnM3zV+vZjtss2K3WexjA/O0friwv6WHJZvpp+dJSfl+5unXLwrW/tpPUf3XSXbNM/uJHW45QYV+p67E7UuNriaQaxSDUBgC1bN9N6qaRX4B/Yf0B+tha0oZ5R3SaO+P178okn0fptd/HkJgB4aBd/5msNnaDQE4vUFJGycv08nxMAwEyDJ1ugzeuZiKeyAEAiUiIi/YpHBHGfisSRpUS/e7am+HXpHeBpW6m0TvxIUnynsx2dXpK0+TVTKRmNph7vs2l+nHMz47R+060/kX0VS/y+6O7mSRwA0NPDz9lq+RtmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJ+4Vi5JyLV4bEn7a4R2WZlz4O8r+qSbJPP9dH6tpNfwLe/sFf2tbyHxykVMiJypsnjogCgXuPxcY06j5sDgK4+HoFUnbiX1pcnH5J9ldcfR+tJU+TkRKG4tScS3/bLoPY5FFHH78vgsTzdh/kLyuf4fRWpTEgAqSy/5zN5HgsVRTrmKJXi27n3Xh1Z9YPvXU/rw/0vp/V6fUH21TfAxwh1LwyInweAQpFHU+2bmJZtDhzg0VjFPL8um7fy6DYAGBrikUnFIo9ZuvkmfY4ffnCM1gcHeIwlAKRFXGW1wsfoSmC8a3f4WFTu5ue/p3dU9lXqGqT1ZkvHX01N8xjRteLuB/fQuox+BBCJcT6f4ff1Gac/V/Y1PcdjEZN5fV63pHtpPSdepduWdCzhqSn+/Hb38O8IU8my7Cvb4uess6jfi5GIiVPvkrSIXgSADev5cXaPlmj9wN79sq9Wmz9zUV3HZSLmY1Gjwcf7lRU992k1+HU5dhuPCo1ifV6mZ/jYOXZAR0LueoDPI1fL3zCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQU8LSkZiVip20llZZuZ/btpfWCIrwYGgOzmAVrv6R/mP1/iq8wBYLnGV6pmc3wFca6ofxepLvK+yt16+/neHv5BiyduTN3zA9lXYWADrafSRVrviBXrAJBAJSCEkjUObwXxE0rcSPj5DwZeiPsytP1ojcdknH76DlrPZXSyRTPh6QIPP7CO1vfu1mkMccSvU6NRk22u/fdrab2vh6dBnHnmSbKvVotfv0issq83dLLD9CxPwxib0Ku2m02+/WI/H7sKBTEOAFCRLTfddCut33IzT/4BgHSaX5dtx6yXbbJpPn6r52f/3nHZ18IiTy3YvuNEWq9U9XM4N89TOuZmdXrKynJVfrYWXP1v36T1OJR+I5Ia4jjDf14kuQBA/7qjaL0HOplk/SJ/5qtj/DrFKzyJ49EP52l5Ufx4va33qx3x90KzdvjfN3bE+7Ir4ucYAMo1MV8p8LlH/0b+8wAwMT7B96uiU0LaeT4vaDREekZdzxdqdT736enqpvVnnajH7slFfjU3bteJH7PTgXtmFfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwC+ekvEEQgLaYtV0pshXuQNApswTJJrTOiUjddQptB6LlarpUp/sC2KlcDbPV4bni3xlKQCUuvhxJh29UrejkhrE34BfvPeHsq+prhFaH372r9N6G3rVa5Twc5mIlIpHP1QJFoefktHpiDYi5OGJBG6EJGpDa8Tppx9D690lfc1TUYrW9z5yLK3/8IfflX21xfVDIJllbGKMb+f6G2g9ldH34vr1/FnYdsxWWq9WdXpCpcITa9av49sAgAg5Ws+leX12hidxAMCePftofWKCt+nt5SvTAeA5x/Hj37iZJ6EAQKPOr+XEJF+Zns3pVKCZ2Xlaz+RLtF5f5j8PAJmIr+afFOcFAKpVndKyFuzevYvWU5FOL0ql+HMSxfx5T2LdVybL34ulhN/XAPCTfbtofWKW3z8rCU9cAIBqotJsxFgQ6YSupngvdw4/CApRLKZcHX0sEyv8HTOyn899Ng/y9AwAaE/P0nptXqdHJIM8sUcN0a22fsk22/xYmi1+/MtVnXgxMcETP+YbgVSvX/D972+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMws4jFg5Ed+l8lOg48A6HR4tks3x+B8AqA6cQOuP3PcT2eakE3jMU6FUpvWuXh3/VG3yY2mLbJVCVsfKtZs8KqXR4PsLAKlandbTHRGf0+A/DwAHfvglWs90j9J6z47TZF9Jkx9/MG5NRtGpWLlAV+oeewIRdYm6x4Nt1vbvnPUGvxeLAzr+qSyiFI/ZsoHWUykeSwUASZNHNqnoRwBotXkE0e133EHre/bul3299KXn0frxJ5xI68Wijp/q7uExbfW2jousVfhn05M88mx8bFz21d/PYzE3bdpE6x0R8QQAm7eup/VaQx/LbXfcS+u33/EArU+N6zEqTvHz3JhfpnUVfQYABfFeqVWXZJtcRt//a0E55tcp9CymUvxdrpqkM3r6kE7zRvNtHs8KAI909dL6koova6roOAARv7cjEasXR/pYEjFfSQfuOYjtJGl+/K1Ez6PiQR6/eN8cHyP2fGm37KsvzyPn2qHt96q5j4iIa+qIvFaLX8yWOF8Zcb4AYKiPj3e7btVzwrl5/cyvxtp+25uZmZmZPcU8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJWnZKhUgeiQIJAHIv5uEhJaIsV8wBQGuErvZdv/q5sMz/BV8cXtvHEjcCicSwu1Wh9pYuvps5nePoAAOTSfBVpOat/f8lH/Dzns3z7nXJJ9jUzvUDre7/9SVrPDqzT+9UzxD9IxNJmAIlIQFC3UhJYwauTNdQ29EXuHGZ6x8/bt7Xg5h/fTevrLzxDtkmJFeUjQ4O0XszqZInlqkh/EavsAcjxo1ar0vrSMq8DwAMP8BXld9xxP62ffPLxsq9SF09jSMX6Hmk2eTJOWiQWbN60UfY1uo6n/KjnbWVlUfYVizfD5F69yvzuux/kfUV8ZX4jkHKg0lNUvaenS/bV6fDxtpjXSUaFgr5n14I/+8P/D/8gpd8xKZF6EYvhr17Rz1Umz/v6/Le/L9tMgV/DaGaO1tsV/Y7NZMQYUeHjTaejn9GWmpeIlAhAp2dlcvz85wPjXX83H1eO3XIUrT98yw9lX3tGeLJEf3ePbJPuBGKqCJWCBgTeyyKhKtRXQSRoXPCCZ8s2caLnmKvhb5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJWnZIRSgo43DaRSBbotHWyQqlXrMAPrO4cf/BOWh/cfCytH9j1iOxrWay0X67wlIpMpFeAl/J8RWymrP9uerrEjzNf4L/zhFagZ8t8dfj0nodpfezmf5d9bT7n9bQeSqNQ94VajBu69XRKxuHVg20Cq4SfwGNxRLnpFp5ssG3rBtnmBacfR+t94hkd6eMrswFgeV4kNUT6d/moIxIUIl5PqbQeAA8+wJ/5f/3Xr9D6I7v2yL6O2sTP2dZt+lwO9PNkgGxKrJoPpLKkM/w4l1eWab1Y4mMXADRb/Pm9626eKgIASYe/TspFfoydNk8/AIBYrIAH+PFHkT4vsUgYKhb08ceptf1gD/UN03onkNgSZ/g9F7X4ufj3//0/ZV/bnseTClJpPeVIIr59lbbVzuljiWLeVzvm91VHJMkAQCLuuSQwrqSyfDupLN+vdOB2K4vr0qzx5K6USAsCgFkekIVcTqd0JG2eMtMRSSAIJlGoNrwcBdK2uvP8HD//+afJNn093fKz1fA3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFPKWxcp0Oj2qREUCBKLIoLtD60DEnyzaP3PKftL44sZfWJ/bdJ/uqVldofXySn5d4gO8vAKTjPK03mvr3l2YuS+tJlvcVp3VkUirPY2K6usu0Pn0nP48AMHLKebSe610n23Q6PPIu6Yj4nkSfl19GrFwn0CaQOLcmLCzx2J4f7OSRjADQ212i9X0P8eeqr6CfhUKO36cNPRTILL+UiA9r1iuyq0yG79viMo9s+uEPb5J95XK30vpFv362bPPCF55O6709/FmMRSwWABwYn6T1hQUe3zY6yqPHAGBqbonW77jzftlm2zb+zDfrfLyJVJYUgHSKv5pqDd5XXURsAUCqxGM0mw3dplDk4+1asSSiBJNArJyKQuuI67f3oQdkX73bt9N6raojx1riOW3X+bGkoPvKRHxcyYvo2mad3++Pbofr7teRtlkRn9eo832OK3XZV7PKr8vNdz1E68VlkR0HYMMOHnHZldNTwXE5fvJBOpXS7+t0it9/2TQ/y0lW9xWL4aPZ0PfFSuA8r4a/YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC1h9SoaKA9CLbg8/wSAQOdBq8dWN/VuOl212/+SHvH77DbReXVmUfSHhKy/n53l6RibFV+MCQDrDj7OQ0yvgG+JE11p8pWrS0itFkzb/LFfiK8MrU9Oyr7lH7qb1kVNH9fbFdVZhFE8k2UImXgTuMbn9UJs1HpMRx/yaj0/qldbXffdHtH7bjd+n9Ykpnt4AAEcdxVdtRxme/gIAD9zH77l8jideJOLZBYCGWIG/cQO/f0dHR2RfzXqV1gtiBTgA9HZ103q+wFf5798/IftaXOTH0t3TR+sJdBLEXXffQeuVik4cmZ2epfVCnqeqlAp6vIvT/LucRpNfy6ZIzwCATIanZARCOnSS0xrREefviRxWS7xLqnWdMlKv8mehtMjflwCwaX6ef7DM38tRi6ctPfqZSNIRiQ9RR48RaXGfFFv6WShHYmolttPV2yX7GhrppfWf7DlA69mm3q9hkeyRDSRL7BMJYYlIyYjjQLKFqOcz6n7VN2xbpKolnUCq1i/4vvY3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFrD5WLhDtdbhtOiIOJEp0hEjS5rFBuSKPLAKAdcccR+v33PJjWq8t8+i60L6pXa7UdcxRU8WeZHTMUzvml2pxhUf7ZAJRWs0Gj7yrrfD4mEYgvmfi9u/Reu8xz5ZtUgUV/3V4EXFPpE2oL5ksFLovO/o6rwWJiGuMOjrWbXxsntYffGQ/rbcDsWqvfvVv0vpiIOLx4Yfup/WOiF6MIn3NqytztL6yzCPS8nkdl7hx3RCtrx/hUU4AkEnxfa7X+HVptvT91j/QT+vZvIgOHOfHCAB33fEArfd06/G2Ica8qM2Ppa+LR+cBQCrNI+eyWd6m3KPv15xK+Ao8uu322o6LnFnkz0+tqQ+6t5vfp2nx/DTFtQCAmX1jtH58D39GACDbvofWVxbmab2U0rGE7SqPWGw3RURaSr97Cyl+A5X0axHre3mUIyL+7m8lPIYPADaPDtD69OwSre9u6B1rzPD7IieOEQCiDJ8vdER0X6PJ53cA0FRxtw3+johj/e5tibFwYUXH6rV+we+I/Q2zmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVnAYaRkqJWPgQQBlVTQEfXAanZ0xAr4ll6R2X3UibQ+e+1XaX1qekr2lYjjzGbFSt1E/y7SEAuVaws88QIACuIw4zJfqdxo6/PSEec/k+a3Q72jUw4y4/fS+tz9P5JtBk85R+wX3+dE1MNtDu/eAwKpLsE2et/WgkxK3Iyha57miQQDg7203t/L0xsA4NzzX0zr11//A9kmFuNErcZXh8ciiQIA2i2+AvzW226n9T3798m+nnP6CbS+datO1liu8JXuuQJ/rnv7y7KvapUfy+ISTwbYs4cnGQDAww/vpvWRoRHZZsumo2i9ssTHtXUDOj0kneL3X1/C0wz6R3plX3Mz87Q+PskTUgBgYFCkHKwRN99+N60vLi/INifsOJbWj9m0hdZPeeF5sq/W7klaL8R6XDlqhG9nqcPfS8VET19SIpmnVuUpEdlAGkMh4n3lAmN/9ygf89JlPkbdfecdsq+JnbfS+sNz/LkuDOtntL3M0zgWAqkw1Twfc9pijtEKzMkaYrxtgr+HWipVA8CCOJaHJngKGgDMr/A2Z7/kHNnmp/kbZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzgFWnZECsiEwCq0s7MZ+PRzKNQK+uVDP7pl5EiUI3X+k8vGkzrU8e2CX7irIFsV/8+MUhAgBm5/lKzVLg+EtNvpo+iodoPZ3SO6DOc6koVuZ385WtAFBfqtP6xK3fk21Km55F69kuvrI4dF/oNIzDT9yQ2wishg4laKwF+Rx/sjpNvpobADotPmxs3bqF1s84fYfsq1Ll98/M9Ixsk4r4M1dTK6rb+nuBKOYpNxWRONGc0skKt91xP61v3MzHGwDoGeQJGlu2rqf1TFYP2bUav0+Xl3lKxX33PCz7mhjjiUHpwHi/ZRPfZ4gV8Ok4MEY1+BhZKPKUjEwUGCPEZhqNwD3e0WPeWrBVXIt2tEG2Keb4O25lmacx9PBLBABYmOLP79TKXtkmypZoPavG8uqy3oE87ysXiTlJXaQFAWi3+H1S7C/KNt1d/Dlpp/h9lcny5CEA+PEj4pzF/Fl4wQY93hT7+JxoYv8B2WZ2iSerbGzzYwm9r1XqRTbDj0UlVwFAtcpvwAf37JdtcuVu+dlq+BtmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJWHSsn47sQiNUSsSPBzLXDFIodSWd57MvJz7+Q1lf23Cf72rfA46+abR45Ewcik6oi/mk+rdsMZ0RkVoXH56S6dExNrlCm9VqFx/SUS7qvdpvHcs2N75Jt5nbfQ+vDJ76A1kNRcB1x/WWsXOB+UXE4oei4tR4/1azxOKVqQ+c1pkWcUbmLRxZ12jyuEAB2Xn87rXd3Dco25SK/51eqi7QeZfT9m8nwMSLO8H1OAvFlu/eO0fq137xRtllY5Of5/PNfSOubNq2TfdXFtRzbP03r99+3W/bVVe6h9b4eXgeAnm4+rjQqPP5pYUnHgrVF/FQxEs87T74CANRqfOwul/l9BADpdEp3uAbM7X+I1jNd+vrNtPkxJ/P85Ca33Cv7WqpWeJs8HzsAIO7nsaKxiDtNZnXEY6rKo/BS8zwuMVvn+wsAgwPDYr9kE0xM7qP1qtjnTl2Pt0N5fvzbe/h+oakj8opFvtMpEesGAFGKTxPbiYjeTPT2W+IdmxPf3aZi/RyqhM3+ni7Z5lknniI/Ww1/w2xmZmZmFuAJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFrDqlAyVIADoVeMQK8oTsdl2FOmuID4LTPk7Tb6Ks3fjDlrf8qzTZF+NG75N6wdqfNV2s63PS16sFK419OrSWpWvok0VRJucXvWaEWkcScyvS63CVxwDQEuslD0wOSvblB+5n9YHj3k2rXcSfV90EnGPqVSXJ5KSodJeHm2kP1sDKlVxbG19zhfneepBJsXvuTtu3yX7mhOrxk84VqdBdHfzlf7TCzx1IZ3XKRnZbIHWk4ivzu4kejV7S9yn+/foZ+GbCzfQ+tgYT7Z4wQtOl31tXD9C67se2U/rjbq+d4879nhaz+V0m2yGJ+aoNIqqGNMAIAHvqy5u19YyvycBYGWlRuv5nL4vAq+iNeG713+f1ru7e3WjIv+sJ+bXr3jCc2VXy8UBWo8jPZbG/JKjI8aVtr59EIk0lfICT/xYf/2/yr4ydf7+G5+c0DsQ82SWTev4uLZ182bZVfauB2i9MzFD67nNW2RfqYhPmOK2nkgVC/z6N2o8WaRR1dPKZp2fl3qap42F3tepLL8vCiWe1gMA9z/0sPxsNfwNs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwKpTMtoiKSASKQkAEIsVmYlIvJBJGADUVuLgnJ+v6I4y/G+zbzz1PNlTvO8OWs9PLdL6TQ+Ny76Gu/nfcy8V+2WbpjgDsVi1X2/o61JtiBXlHd5Xs6OvSyL+1vueaZ5YAAC5XY/Q+o4GX82epPVq9kSkkai1tTrtBWirlIxAG7X9taLRFMfc0vePuhuaDb7MvVbTy9kXl/hnt952r2yjUlO6urtofduxJ8i+JiZ4SsfC4hKtt5t8NTcADPTz9I6B/lHZplbjq8bvuvs+Wo9jvWr82aedTOtjB3jiRi7HxyFAr4wHdBrFgkggiOPDew8AQEPcfz15nmrSbPEV+wDQbPB7rKtLxDIAaIciGNaA8YV5Wl9u6vtnc5m/f/IDG2h9T0M/Cwt7b6f1FPgYDwAjA/y9PCHSIDoZdY8CcZb3debzL6T1wr5Nsq+x7/w7rXeN6Pf1lqN56kWuyMcIdA/rvo7hz899e75L652UnhOl5NxLW1ziY2HXAp/7ZJv6GldFEtjcIu+rEbjH5pf5HCNJ8zHiUXy+slr+htnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzgNXHynV4vEekU2oQiaySOBFxb6IOBGLC5CdAIhJEMh0ebdJM9OmYRjetn3EU7yvdd5zs6/s33Ma3H/j15ajNPEKnJI6x1tKxSPMVHsGUz4jORCwUAKxUeLRLpqijXfbv30/ryws8Pqg0uF721RGxhomIHksCEXEqVg8iug8IR86tBRUZMaiPq6eHx5FVqvy+aoroOgBAxO+5Bx/eLZtUlnh8Wd9gL60ftVHfP22xb/W6Ohb+vAPAS85/Ma2/4HnPk21m5vix7N5/gNa7unh0HgAsLfFrqRLSMpms7KvT4eNqOjAWqHPZFuN6O3Au1VZi8byXCjxGDABmOjyyqhOIhAwc5prw4jNfROvpnB6Xu3vKtD41xcfl8ft2yb7q4qYrlnQUXNLPn9Nmi98nrca87Cuq8Au4uOsWWo8nHpZ95Uo8frCva0C2qS7wucTyIn9Ge/p0LGKpn889MkUet7owyWMkAQBN/vysBOIy9+3dS+vTVT52ZSL9vlRRks0mbzM7Oyv7aogx6oSTz5BtSoH7bzXW+LBgZmZmZvbU8oTZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzMLOIyUDL6KMVZRGADafEGmjK+IoFctd8Tcvlldkm0yBb4iOBJpEFFWr6Dc9tLfpfXWvd+k9edkH5R9VZ91DK0/MMZXcwNAo8FXhPb1D9L6gbkV2dfiskhGKPBVt+WyXlmdNHlfzzphm2wziyG+X4vztF4aGJF9dcR92enw+yUJJLGgzVdjd+SNDHQ6+rO1oN2s03opr1MHOuI8LdVrtB4YItBJeF8rNXGPAqiJFd0vPvVEWj/heP68AcCWTRtpfXJqgtb37Nkl+3remafR+nOec7JssyRSZraMH0Xr+/by/QKAR+7jq9mLef5c1xv6WUiLwJxcIFmjKVInqlV+LdOxfv2kU/yzxUU+Rvb06rE7Aj+YViBJKJvhyQhrxZZNm2m9E3gWo2V+L07N8ZSMqopfAWT6TSLGDgBYnuOJCGqMjxN9jRKRnjU/P07r3Q29X4UcTw9ZmNNzj6y4tXvX99J6OcXHTgCYPsDv+fFlPnaLqQIAYEmkVMwv62NRaWMP7eJJRq26nns0RUqHekbr4p0CACOjw7QeSv9Jp/Rnq+FvmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzMLWHWsnIrWSkKZUYqIklJRMACQivlnc1N7dJsUj1Ma2sRjpvJlHU3U1TtA681eHus29oNPyr42F+6j9ZNfepZsU2vy488OrqP1gQEdGVVZ+j6tT05N0XojkB7UifgtNLJ+i2xz7LMupPV0nsf3NEWMGAC0O/w4ExFxFYqVS8Q93g7EyoU+WwtyKf47czrwWFeWeWzQYpVHABVyIpcIABJ+c3X38OcNADZu5s/cueefTes9Xb2yr0qVRzMN9BdpfbBPRyxu2MDjD1uB+K1UzE+0KGN2mkdvAUCrzp8TlZBWyOvhPxXz5yQ03DdEZFRDvTsC8VeJ+C6n0eLvjlhFZQLIZEWMaGAsSD2B19qRZPe+MVqPoMer0r5pWm+JuLlUR19AFbfZiHSb+YV5Wm8m/GJEov4ovp2VJR6fFhrGl5crtF7I6GMp9fHxI+nwc7n7zknZ122TPFbugTbfr1i8+wBgfZvHqnVyOqKvWuHjfXd3L61n4z7ZVy7H52QdcS89/LCO543EIJkLRKKWy13ys9XwN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGrTsloi5WXTygkQyyPTkGv7lSK5V752eTeB2i93MdX2eeKPKUBABp1vgo7Xeyh9e7nvlb2NT79d7R+NOZkm1Z5mO+XiLAYPOkc2Vc65sf54y//D1qfAF+lCwD9ZX4Llbt1ykH3AE/2aIv7otXSKQOJSMmIxKpb9fOAToL5VU7JUFEFatUyoMeCaoWnZCRtPcwUC3x19vDIetnmpJM20/roug203g6krDTEZ2mRHjI02C/7KouUHZUYAAC1Gk/pmJ7iaRjLi3zFOgBkc3wFfLPNt5EOjP6pND/+JNHHotJAMiqmo6Of62aT30uNBk/JaLd5HdDHkgqcgFwgQWQtmF7gaQzpWJ/zhYcepvUVcf3ibp2GUBdjtnr3A0Ar4WkmLdUkkHKivgpsifd4Y14/VxXwY+lPBZ6FCk+cSq/wfa5064Su+yJ+b5+xdSut9/bxOQkAoMqPf0a3wMACH1em5biqv4etiiQlNUZGgQlmHPP7pdnQ4329wcfC1fI3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAateCtxq8ZWacazn3E8gQENKOnz7uaJetV4q8b8bPiPSM9btOFX21Rarw5MGX/VZEn9nHQCOe9nv0/reH31Ztol230jrhTI//tzm02Vfw0efRuuDm46j9Qcfukv21V/qpvVOYAV8S6xibYsVsZ3AynyoNAeRhtEOpD90RJtOYAW+SoxYK9pqpXlgdXJTJIM0m/w8qcSJR/HP2q1AmkmHD1tRJFbzp/T1iw7zK4Oenl75WU6kVLQDz8LyMl+1PnaAr7JvNPSzkBYHk4C3yedFegWAKOLPSRQ4YYtzPE2nVOapPLmM7qshnrlEJiPoY+mIZIYo8O6q1vRK+7Ugk+f3YnFZp0FMTh+g9YUUf94ygSSRpCnOeei5FtcjK6YpncAEI5USiRuzC7S+sDShOwM/lkxDp0cNZYu0ns3yZ6EdSPtaaPF7cTnh9/z6wNyjfyNPEspOT8s2G6r8nmmJfW429Rg1Mb6f1gtFPlc7+rjjZV/DQ0O0nk7rsaBe5/O11fI3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFrDpWTkVrRR0e3wLoOJ9E1UUUDAAgxdu0WjomrHtoE62PP8Jj0mbHd8u+ekd4HEvS5pFRoSS0YvcAra97/mtkm4e/zzN0pu6/ntYz9/xQ9tVefyKtbzr9fL7tcR25U6ku0XptaVK2SRrLtN5J8ygedPTJVPeSjIhr6YivtriVGrqJvP5rhYrFq4q4RACoicitVJo/v9lcIPJLbL8ViP+bnuHRUE0xFmQyephT8VMqSqq7m8coProdfpwrgYiymZl5Wh8XsXKBhEM0cXgRh6lALJeKb6uJSMhHG/GyeuaiLI8+A4CcuGdUZFQc63tMRUkuL+tjWV7i99iaIWJYe5f2yibHncfjRm+9435av+Xu22VfzVyB1lXEIQCo2zcd82dUzS8AIJPwm7u/wt9Xz3rhCbKv0iifR9Qf/KZsM1Li99btP+bxbYsiOg4AVkR834MJj6Q8fWhQ9tWq8nG9Mjcv29RE9OXQ8XwekbTqsi/1vu4S42pvb6/sa3CQH2cjMEa1Au//1fA3zGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAatOyWg1RRpErFdmqxWRkajHItkAADoijSMObD+V5ofXM7SR1qf3PSz7KhS6aD1b4KuBA2uB0WrzT+Mc3wYAbDqLJ2js6vDr0tx7o+yrNvYAreefewmtDx1zhuxr6d7/oPX6wrhs01jYT+tx/xZab6v4CujV/Cr9oVnXK3gzy3y/yqVe2Wa+w6//WtER569Z16uJm2IFfqGY4w0iff3UZxmRuAEACws8ZWV2dpHWN2zs1ZuPVmi9I5IVQikZTTFGLi5VZJvde8ZofWGOr+bPZvOyr7Q4ZyoJJAk8Vyolpd7QMR1q1Xq1wo+/1dSjZLHEj7NW489vKtbf/cyL+6UjxmEA6LQOL3HkSFOr8+s03dLP1YtPOp7W793LE49m77xH9rWoElAC6TcqZiUWaS6dwLhSiPhxbqzz63raS8+SfXVGeErGN278hmyzMMHHlaUq3+f+k3RKx3Hr19P6geu+y+vRrbKvSoU/19MNnoQBAPX+HlqPREJUXSSRAEBfH++rVObjarEokrMCVEIWoOekq+VvmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAladkpFr8RXolUgnO2TEiliVhpGI1dyAXt3YCbUR288UxYrM7n7Z1/gj99H66DEn03oU6ZWakVj1i8Cq7XSerxYdPeUltN64WadUtBYnaD2ztIvWN27ZIvt6cC8/Z/WqXnXbmNlH69nSCK23ksO/L1RKRhvq5AMdZHh9Qq8Gb+PwV/EeSdotfs81O/peTIk0ho5Iz0gCkTGxGILiwHM9v8DHosnJWVo/atOQ7EutqFbJEuVySfZVbzRofWZmXrbZt5enZEQR/y4jloMHUGvwVetZdSoDq8mXl/gq/yiQXqKoBIuGOF8AUOri6TOlEq+vVHR6R10kfqRTgddf4DyvBfUmv7Z75vTD+Nl//CytH5jhKSO9qcNPCEpU5AWASKRktGUSlk486BJNkhRP77j+3/9T9pU0fkjre3YHUl7EYeYS/ox2DQ/Lvp51PJ9j3P1v/07rdz54r96vfv6+vrPGn3cA2LU8Q+s9y/y+GOwfkH2Nrhul9VSKv3vbLZ3WtLzEtx8H7rFflL9hNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCxg1bFy3ZX7aX0p+yzdKOFRISkRBabqANARn0WBaCQVUxd1eOxIaWCd7Ku+eBetTz3CI8f6N2+XfUXg+xwKQ2mLyLlYROTVcoOyr5XmFK33PPBdWt961A7Z1/IQj8NZXJ6Tbbomd/Pt92yk9aTQJ/tqJPwWTsR9oc4jACRZHoezkNaRVSv38cihtaJer/MP0vp36Vj8nq1i5VJxKBZQREwm+mlQcWRjYzwuEThR9tVu83Gl1eRxRgsLS7Kveoe3efCBXbLN+Dh/FnOpHK03mzqKrVY/vDGyu1yWfWUy/Lmqt3XM0+TkJK2nRaxcMxAZ1dXN4/vWreMRgdMzD8u+Ogk/Z4kYhwGEB+M1YEncp7WaHssmdvOIw1hEfmWhn+shEemaDpzXtHjHJwm/f6LARcqLqUQi4gJ/8P0fyb4yMT/+XKznK4k4UPX4Tq/oGNaCmK+kenpovbh5k+zroQM8bvae+XnZpiPGgpEsj+gbGuLxsACQSfNxTcXDRoF4x1iMK6ovAEgCUYSr4W+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCVp2S0VrcR+sDI3pF5niji9azGbXKXq+6jTt8V1OxPoRErNRVCy/jwGr+0ugWWp++9z/5z3cVZV+Z7lH+gUgMeHTf+LG0O/xcpgs88QEAcll+XX7y0DStH7u8KPva3scTLMbAVxYDwOLUAVov9O+n9UxvYNVrhq8UrqsV1IFV/olI0EgXeBIJAKS2PF9+thY023zVfDbNV0ADAMR5isQK5Eg8hwDQAe+rE1jNHMf82k5O8MSJWkVfc4hx5cGH+D364EN8lTkAtMTzOz+7Itu0a3zZfK6XrybP53l6BABMVnkyQpQSKQORPsftJk9PCaV0qDSDhkjDKOQKsq9qjd8XKlVE3EYAgKw4/nRaH3868C5YC6pVkboQiKkY3sbfS1O7Zmm9EumTHoGPK8Vyv2yTXXc0rceVBVpv7H9E9jUj6qWI3wu5SM8jSj15Wt9yLN9fAFi4n8+XmlV+LI/M8HcvABT27aX1asTv0V1NnYSyR4xRwxu3yDbDwzyZZnCQJ2QVCvq5VqkXHZHko5IwnkhfANAJzLFWw98wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhaw6li5ffO8viX3gO68cCqtt0XMUJLSUWQpFROW6Jgc+YmIpUoF4q/iDI9K6dt2Gq2Xa3tkX0mpl9brkY7y6rTFvonIpDjHo3AAoGfLs2g9/ezjaH1s/4Oyr717b6X10UxNthks8OucLPEor1RKxxcVSzzmqp3upfVmIH6q0+aRM+p+BYBsTsd8rQXpNI8m0k8V0BHnI5USMT+BKB8VDZRJBWK9RJulBR6rdsuPfyK76i7x56RW5TfK1DSP2AKAeoPfiz0lHuMIAOtHeTTT6PpBWl9e1BF1c7PLfL/E9Vpe0XGRvT08FnO0zPcLAMYm52g9bvHnPRTjOTnJz3NvD4/bSwLPdazusZx+/ZULOhZ0Lai3eLRYb+CYd+zYRutTu3hIm3p2ASBO+Psq29Ur2/Qcdwqtt+b4e6E2od+xnYa6Ifg+J2LsB4ATtvFn9GW/92rZ5st/+0Va3zPNn5GZin6u01NjtL64UqH1+3bzGDoA6B/h0YGjQyOyTbnMx69Mhj/XgbRKGemr7qVE3EchoTYqani1/A2zmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVlAlDyRZYhmZmZmZs8Q/obZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8IT5CHDFFVcgiiJMT08Hf+6cc87BOeec86Rsy8yePNdffz2uuOIKzM/PPy3b/+QnP4koinDzzTc/Lds3+1Xk59p+mifMa8jf/d3f4e/+7u+e7t0ws8e5/vrrceWVVz5tL1Yze/L5ubafln66d8BW74QTTvi5P9Nut9FqtZDL5X4Je2Rmh6taraJQKDzdu2FmTyI/17/6/A3zEWTv3r24+OKL0d3djZ6eHrzhDW/A1NTUwc8f/08ydu3ahSiKcNVVV+H9738/tm7dilwuh+985zsAgK9//es49dRTkcvlsHXrVnzkIx/5ZR+S2a+8K664An/+538OANi6dSuiKEIURfjud7+LLVu24OUvfzmuvvpqnHbaacjn87jyyisPPruf/OQnf6a/KIpwxRVXHFK799578drXvhYjIyPI5XLYtGkT3vjGN6Jer8v9GhsbwxlnnIHt27fjgQceeDIP2exXnp9rezx/w3wEedWrXoVLLrkEb3nLW3DXXXfhPe95D+6++27ceOONyGQyst1f//VfY8eOHfjIRz6C7u5ubN++Hddddx1e+cpX4vnPfz4+97nPod1u46qrrsLExMQv8YjMfvW9+c1vxuzsLP7mb/4GV199NdatWwfg//4/QrfccgvuuecevPvd78bWrVtRKpUOq//bbrsNZ511FgYHB/He974X27dvx9jYGK655ho0Gg36/ybdeeeduOiii7Bx40bs3LkTg4ODv/iBmj2D+Lm2x/OE+Qhy8cUX46qrrgIAvPSlL8XIyAhe//rX4wtf+AJe//rXy3b5fB7/8R//ccik+nd+53cwMjKCb37zm8jn8wCAl73sZdiyZctTegxmzzQbN27Epk2bAACnnXbazzxjk5OTuPvuu7Fjx46DtV27dq26/7e97W1Ip9P40Y9+hKGhoYN1NSZ861vfwqtf/Wq89KUvxT//8z8ffP7NbPX8XNvj+Z9kHEEe/6BccsklSKfTB/+JhfIbv/Ebh0yWV1ZWcNNNN+Hiiy8+5KHq6urCK17xiid3p80s6OSTTz7kpXo4KpUKvve97+GSSy455KWqfOpTn8JFF12EN7/5zfjCF77gl6rZU8TP9TOPJ8xHkNHR0UP+O51OY2BgADMzM8F2j/1fRY+Zm5tDp9P5mf7YNszsqfX45/NwzM3Nod1uY+PGjav6+c997nMoFAp485vf7PhIs6eQn+tnHk+YjyDj4+OH/Her1cLMzAwGBgaC7R7/APX19SGKop/pj23DzJ5a7AX32DdEj1/c8/hfjvv7+5FKpbBv375Vbeszn/kMjjvuOJx99tm49dZbn9gOm9nP5ef6mccT5iPIZz7zmUP++wtf+AJardZh/7GSUqmE5z73ubj66qtRq9UO1peWlvDVr371ydhVM/spjy3QqVarq/r5kZER5PN53H777YfUv/KVrxzy34VCAWeffTa++MUv/tw/bAQ8+iL+1re+heOPPx7nnnsubrjhhlUegZk9np9r+2le9HcEufrqq5FOp3HBBRccTMk45ZRTcMkllxx2X+973/tw4YUX4oILLsDb3/52tNttfOhDH0KpVMLs7OxTsPdmz1wnnXQSAODjH/84Lr30UmQyGRx77LHy56Mowhve8AZ84hOfwLZt23DKKafgRz/6ET772c/+zM9+7GMfw1lnnYUzzzwT73znO3HMMcdgYmIC11xzDf7xH/8RXV1dh/x8V1cXrr32Wlx88cW44IILcM011+Dcc899cg/Y7BnAz7X9NH/DfAS5+uqrce+99+Liiy/GX/zFX+AVr3gFvvGNbyCbzR52XxdccAG+/OUvY3FxEb/927+Nt73tbXj1q1+N3/u933sK9tzsme2cc87Bu971Lnz1q1/FWWedhec85zn48Y9/HGzz0Y9+FG94wxtw1VVX4ZWvfCV27tyJr33taz/zc4+9dM844wy8613vwoUXXoh3vOMdyOVycmwoFAr4yle+gpe97GW46KKL8G//9m9PynGaPZP4ubafFiVJkjzdO2FmZmZmdqTyN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYWsOq/9PfH7/l/03qzEYhxTjK03Om0aT2OdF/5mAd5p1KBQ4j5Z6ViH61nMgXZVTqdovUETVqvNpdlX5Oz+2l9fmlKtqk3+DmrVju03unocxlFEa3n/8+fAX28lDh2AMjm+TnOl/m1fxTft2azTuuNGq8DQKvGz0u92eI/3+LnCwAQ8+PsRPr3ynqDX////Je18SfIOzP8rz5WZ8dlm/z6o2g9Veyi9WrEzxEAFMR92hLXAgBSHX4Nk1g8C9B9ocPvk7gj9jmtx5vOUkXsF98GALSXl/j2cz1884Wy7CvO5vkHCX/ek05D9tVo12g9leFjBABE4Ntpiec9h8AYEQWe08OUiNcc39v/24o3Crc6Uly7f4XWm00+XgJA0uHH1haXoh34Ew6JeEY7ib6uHbX9RLx7xTZCEqhnkZ8vAGglfPxviP0CgI76TNRj8YwCQNzm+5wS5zIOzYnkuywwj5O7xvuKAu/LKObbicXYHZoTpsSORbE+l2ruc8lxfE74M/uzqp8yMzMzM3uG8oTZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzMLWHVKxvIKXwEedfSq6VJepS7wzWZSenVjTiUYtAOrflO8TTHP0zDSgRXg6leLplhNH7X16s5slh9/sahTOuKYr2hvtcSq347+XSglznM2J65LICUDYkVqHFgpm06L1a0RP5ZOO/B7XUfcwiJVJZ3V10WtLu4EVoPjCazUPpLMfe8btL7rxh/INkf/1m/RetQzQOuZQBjC5G6eGJPqLsk2hRS/tstj+/jP9w3JvupzPCWkvjhD613r+2Vfk/fdT+tRgydOAEB7fJrWK2LVeu/6TbKv/OZttF7ctJnvV6LHzkqFH3/3tqNlm6Tdzferd5TWO2IceJRYgS9+OrCYXgduiBX7jzZSaQqh9J8jR048dLFIfAB0SkZLjH/tQBITRJskkJLRFkkRHVVv6/tHjdlRwsf4ONHv3ra469KxvhcakUhmEZEjaZEcBgBLiwu0Xsry7RdFWhEAtMWDEoWShMTxq/slnFIh6jG/L0X50c9UX4Ekm1CCx2r4G2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAlYdKxeneYRJKcOjhACgnOvlfUU8wiSf0dEmWREVUq9XZZs4ww+vW8SuRIH8q0h81BLHEq3wuDkAqLd5hE2U1m1UHkutzmNiOq1ArJuIlVPxcbm8vk1SIootLWIAAaBUEHGDGX5elpeXZF/LFR7HU63xGL4oFIWkYmoC8UUqInCtmPrhv9N6/zKPWwOAmeu+RutVcS/2i+cQAGpjE7Se7u2RbaptHvlVW+LxS7VcUfbVrPLxI0r4/bMS8ToAJLUVWg+lpxUXeORcKsvHgtp9d8q+xuo8bq8zsp7We8uBGE3wZ256SEf0dT3rJbS+6fyX03orcGIi8TCq+LjAU62/Fgql2h1mrN2RJi3OSBI4UyK9TR5zIAVWbicJnEHVnxqyV8SzCwCVCo/B7e0dpPWopceITEO8f5bHZZtmlbdpVniM5EpTv/unF/l4N7SBRzyG3teIVHydfl9nMnxcSYkY3lYgIi8WOXEqCk6NA4+24RF9gVQ5xKEoyVXwN8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGrXuKvFj5mcjpZoqfIEzRSEd+sWEAJAIgSvgONll5dmhapF60OX3UaB9IQMlm+c4U8X13abulTWy/yNAik+H4BwEqFr6bPxnyfGwlfQQoAnSbf53SB13vLJdlXoZDn20j0seRy/NyUy2Va7yv3yr7Gp3iaQ7s9T+tRO7CCV/z+2IE+l0loqfgakKpM0npfTq8mXtz9IK2XI/GMBO6FrFjpnmrMyzYrDf4sFMR1Slb0s5iu8r7SYiyKO4FV2y2ekhFl9P2jPko1+TM3VtGr2W/ZP0frd9/Hk0gu2KwTjl7Yy+sre/bKNsnQ8bwe84NMtfWxiAXwMg5DJTwAQF28okIr8DMiNWCtPO0Z8V6AqgNIxL2dEkfdCSQOdES0RTvwXpKvfzHG1uVNAqTBx/kcD3xAtbMo+/rx9z9P65P3/KdsUxcpQw3xHl9s6HnUUaecQ+t79s/Qek8Pf48CQNzm4206kGTU28tTxU489TRaL5Z6ZV+tFr8uccyPPxLvFABIRGROHLjHQ5+thr9hNjMzMzML8ITZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzMLWHVKRrPO0yjyvfzviQNAbxdfhZ2O+IrIWkP/bfilCv/b7LVGQ7aJxFL3Sn2Z71dbr1SNxN9Tj9tiZX4SSO8Qq35TKX05IrEMPEr4StHQ9pM2/ywtVpCuG+qTfalVp9W6XnWczvB9LmRFekqk77F2H191W63zxIKFpbrsK1K/P4pUFQDodHR/a0Gc8P1frujjyrX4Z50OXwFe0ZcPM2n+/GTa+pwjz5NZYpG6kIhUnke74mNUq8W3n05Ewg2AZJ6fl0ScYwCopvizMCeekRsX+Mp4ALi1wsfCPQ1+jk9v6vE2leLnstDUq8wr1Slab8f8WYxT+lxCjoWHv8o9FskMcaCvSKWh6GCPI0omEvsfSh0QY3lbhGGIIIxHPxNjaToQhdUR7zKVUlQMJHRFHT7oZMX1u+v+W2RfX/nSp2h9KM3HOwCI03z7E7O8TTWQkrH+RP6Ou/3WH9D64iyf3wBA0uLbP/bYzbJNtTZP6/v3PkTr51x0seyru7uf1lWqSqzuYwAdcb+G2jglw8zMzMzsKeQJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwKpj5TIZHuVULnfJNrksj1aJEj5PzwXiwxaXF2i9WtXRSLGKbxMxNe1IR9SlRBRbs8bjp2oNHSWVqCi4ps7padT5Z9NzFVpfWg7EyonIrP6eMq0PdI/IvhaXpmk9FelYsEKO33ZFkTKVFtFbABCL+3JqgbeZnOH3EQAkPL0HCMQn1er6/lsL1L0QdfTQkIC36cS8XhHjAAC0tm2i9bpOT8M+EZ82vsyfhWKJ3yMAUFnk98Po4ACtL4/z6DQAOLHEoyfTHX2PtDJ8LMo2RfxUbVb2tSzilDppnqXVEc8OACxnecxVIc/HCADozE7w+tgDtL5/el72tWffGK2n8iVaL5Z7ZF+nnHI6rUfZomyDRN3/a+M7ppSIz+oExlI1zsUdfswdEXUKAG0RxTk5Oa63L/a5d3CI1qPAwNxq8LEg1eL3/M3f3in7OrCHx7QlA72yTSfmY958nW8/363v306aP3PL83ws2H3vfbKvrMgI7Cvp+zpKeKTvzT/g26821IsUOOe8l9L6ho1beINYX2MVgxiFYuUCn63G2nj6zczMzMyeJp4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAatOyYgi8aMi8QIAGk2ROtHhKxUTkV4BAHHMV3pDJE4AQKXKV8pGbb7PabGCFAA6aX78kVjF2WkHVmO2+PYbVb39xXmeepHK8hXEpf5u2Vdtga9inZnh9RtuuFP21SNCUjZv7ZdtBvr5qt9CkZ/jTuAax2n+WZkvpkc2p1fwViv8HLfb+r5MoJNV1oKUeBbTLZ74AAC1NE99SIv7utPRaQyLGX4DjU9PyjZ3T/Bki4WIJzskM4uyLxUasGuRp2Fs69XHkq6v0Hp3QyfGtMWYl7T48xs1dbJDS11LMd5l6nqMaolkhHZGvzLK4zzaZP//73/wBll9LkdT/FpGRX6/NCL9HprYzxM3uo7ZIduU1GdpnWZwJFGvyzjwjlMxGTJZQA+LaMfiXfL9b8o2U9M8cekNv/f/ovWGeL8DwMLkPlpvTvP6/vvulX31D22g9XJXYFyb4Wkg7WU+RtRi/VzVWyJVK823XyzrvlIzYvtNfTEzIiFsYZof4/emviL7mh87QOvn/9qv0/pJp58h+4rE8SeB+1IEp62av2E2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLGDVsXIrKzzCZXmFx5QAQD7O0Xo2JSKrApEficgKyeV1tEujzSO/litLtJ5u68gxpPmx5PO8nkmLvDUAjTrfzt13PCDbTE7zaKyu/nW0XmnyYwSATpXv24PjPH7pR9dfL/vqKfH8ouc+51TZ5rQzttB6ucyvcadTl321Ix65k494m16xvwAQifulCn1fdAKximtZB/qcpzr8fCSing08VkvictTyOtZu08YttL4wP0frK4m+5htHRml9fNd9tD5dq8m+cm2+nUzge4l8ncenLXZ4vRTpzKStKX6iKyJjLBWIkqotiiirwMVMVfjzM55bpvXujo446xLnbLaLR1Kmc/o9cNP3f0jr1ZER2ebZr/0tWj/6vJfLNkeSdCyiW5/QcCWiUwO5cqks39AJJx4r2+zdxa/hygSPIvvOdd+Tfe15QMTEiejH6gKPkQSAdp0/80tpffynP/t0Wn/g/vtpff+0nkehyedenRbfr1SBjx0AEOf4uFqHHiPHDszy3arz5zpJ9Lvj+oXv0Pr01AStVys8QhQAnveil9B6NsPnZP9n7wKf/Xy/mm97MzMzM7MniSfMZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZwOpTMip8ReTSMk9vAIBiukDrUU6s4E0CKxgj3qZQKskmCV+0jXazSeuh3x7iiJ+qvY/wFbxzs4FVr2LV/tTUuGxSXeb9zYztpvVWXV/aKBqk9XabbyNpihMJYLbKVwr/x79/V7a55w6+UnfzBr5KOpvm1wsA4lis5k/zbbTT+rw0I7FSONYr8HOpPvnZWqDWeXdS+pqrNJmmSNZIOrqvKTGuPDA7Ldtk6lVaH+EBCqjVW7Kvux7mq9bXD/H0jKl5vWp7JcPvuSQ7KdtA3Nu1pXlaP26zTt/ZLobzpohGiEWqCQBkYt4mK54rALhzjB/n91p8O5sCiR/d/d20PnTss2l9FDoZYPjos2l9Vgee4OHbH6L1o8/TbY4kafG+hLiuAGSAQJIS6UVRIP5G6B8alp/ls/ze+tHOH9D6p/77P8i+muJ9mYcYC9I6omulwT+LsjqN4XnPew6tn3LqSbTe/sltsq/GEn+usjEfO1QIGQA0Ij4WJ5EeI1stfv2bVX7DpGL9XK/MzdP6HTfeQOuTY3tlXwvzPAnsN175m7JNLl+Un62Gv2E2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwtYdUpGs8VXwM/M6r/BnlfpAiLYIo713zNP5/iuxlndpilWxKYyfEV1JqtXynYSviJ4YmqM75dIwgD03zpfv65Xtlle4P21+ngSyWwgpWN5iScQ9PXz5bWZaJ3sa99e/jfgo8Cq20qFr9Q9MMbrObFKGwAyaf5ZLFY9p1L6d8RMlt8XHX1bACm+UnetUIcWSqxpd/g5b4tr3oFeTb94YJb3ldLpN50OfxYiEZQwWNApJ2MpnsZwd9/xtP5QSSe2FAb4dp4/pc/l1tkHaL1T4+NqNq+H7FLMx4K4xa/ydFOv8v//t3cnT5Zd+V3Av/feN2e+zJdzZdY8l0pSS2q1LLknN8JmsgMHbQc2RBCEI4CF/xFWLFixgQUEGBM4PCwwuGmg3a1ut6VWS92SWqoqVVXWkFk555vney8Lbbz4fg/ZOBx2wvez/N06587nnnwR51txkUeOTAJBRp8M+XPxQ5FS0hvybwoAHFf4zXxzvkHr5wv6Hi//yq/T+rWOHqN/8s1vym2nQTE0ZimRurkiiSjROxmLV/7gUKdqqSSsYZE/82vXr8iunt37lNaTlD9z01FfH5YYb4oiFQcAOgO+n8UqP8eXX7op+xpn/P1ZWuSJOVmsv/3to2Naj3P9HYsnPMkoTkXamEqbAhBl4lka876efsrHRwD49//6X9H6pK+fsV/65a/zDcsXZJs/y78wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhZw4lg5lfg2HPHIEQAYDnm8yUyZRxYVRXQcAESJiJUTUVIAkKQiPq7M45RE2hsAoFLjfb3yhZdpPdJJaBgNh7Te6+preXzI47d2d3ZovdDT8VfFPt//+soSrW9snJd9NVs8piad8n0AQJTwh2kwEnFlgZtcLPI2BZFqV4gDeUuiTbGis7TyNBCTdIqFYuWgYuUS3iYRsVQAUNji8WnRUMeEVbIa30+XP3OlRPeVVK7S+rfa87S+VV+VfW3O8Vi3mV0e4wgA10f8vV7O+bl0xbUHgGqRZ3nlBf67yCMRfQUAkcjoiyMdEdit8OvcLPD7lU70/vcHfDA+OODRk/1ZfVwFdc0Cj3izyeMyTwv1zuX/N3FzInwyy/XvbZGIiCuXeYwjAGQx7292+Ryt3375NdnX/pOnfMOIPz+RmCsAQDTm17IQiMFVeZ0p+LNYCsx9GvUGrX/0YJPWB2kgOnWWX/+5Jb4PAOjP8/i66VR8+3N+jYHANVPvYqrHu94hn/v8l9//HdmmXOJRgF+58ZuyzZ/lX5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAJOnJJRKvLVjcVEL7sVC2URiZWSSaJXqsYqJaOg958UeH+FAl8pGSUiJgFAppZxxrw+muiUilHG95MGVjAXKvyYl9dXaL0+y1emA8DTT/dovdfiqSZzt3TKwMoqX83ePA4sQY/4+U/FBcgCF2YkFscnIg1Drd4GAOS8s9Bi6JJIIDgtVBpGngXun9gUiVXzyUQnGLxa5ckS10TiBAAkuUijyPk7l8V6pfUTUX/U5+eSimcXAA72+IXpPNXXslMSiT0pr08D92UKPt5NEn7+TZHEAQCRaFNMdZsZcZ2r4h2J6zOyr9GEn+fDhzz9YHCLj4MAcDEXqTwl/VzutE93SkYsvjFxrp/fRHxjU3GZhmP9Xm3t8vSXDz+8p/df4t+s7W2epHPnwweyr3FvQOsx+BgxDrxXsfgABKYeKIqNEzHeTkf6vVpc4WOB+ixOSjzhBwDG4r2O5nX6T2GZp3fVxTxqMgwkp4n7MhXPUjbVz+uKSPYYD/g8BgDu370jt53E6f7am5mZmZn9BfOE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzCzhxSkZR/MtSQUcIFIpi1XzC68WCPpxE/D/zocX88vTEqunhaCR7ikRXifhP48eB/wN9NOb7GQ/1StnpmP//7LnYzfKqXvW6XOPb0iFfkfq5Fz8n+9rff0zrd4f8/5kHgMmE72ciVsaHkgEyuVKZ32OxSPkzEd8Y+qsysFD6VMjEA5SrKAzoc05ykXIj7jcALPb4avq5WiCaRCRIJFPxXpX1HVwun+V9Neq0PqnpdzRPZml9J9dPSfeVW3zDszW+j6FeAV6DiDM42KLlYkEn+UQxH28KOa8DwK05fv83u/y4ri/q1fyfbPNj7rR4esX0SH877n34Ca3/qMWfPQB4etSW206Dux9+i9ZLFf7uAMD58zf4hpzfp//wh+/Kvt55m29rPePfCwBo8gAFtA/5feruPJR9VRP+zKVijC+LOQEAROJbUi3/9IlLh8dNWq9Heu5RzPiFKYn3dybWaWPjhJ9LZ6Tfn+5ApKcU+BhZXNTpNzOzfPyYdvn71m/xhBQAKM6t03pr3JdtSrH+Fp2Ef2E2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLODksXIiqaRc0nEsxRKfjxcKPI6lICJPACCKeF9pJqKUPmsl+uL7mUwDfY34toKIqRmL6DgAGI14NNUkECuXpXz/SczPcTLV8SlzMzz25crN52n96uXnZF/fKXyb1kfDUOCa+DtNXMtQxFma8v1kmYr108cVif1PA23yYE7daaDOLXSd+LYk5/d1muhrtCBiKaeRfhcT8GiiVMRYpok+l8WIvyexeEaTcVX21V1ZofVHr7wk29R/8QqtL4j0tt33fyj7OvreW7Q+P+KDd0mMaQAQi/dnAh1Fd2OBx+rVF/k1a0QV2VcPc7S+uf2E1iuBiK8//oP/ROsfijEVAJZ3T3es3Fvv/DatRwX9G9nFLf6czlV53Ny333sg+zo6PqT1Fy80ZJuP9nh8Wpzz+LLXNl6QfdUHPD6vK+LbkhJ/3gDgYJfH2j3bO5BtPv7kDq2PJh1aX070fOG5yxu0Pug1aX0+EOvWLvCxeDDSMbh5yqeJw6zE61M9rZwp8XeuOs/HgmJVR+SNNm7Seru1J9skRR2reBL+hdnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLODEKRkF8S9LZT3nLpVEGoZIyUgCKRlZKHRBSBKR0lEUJxPYySTlq8PTjK+yD6VkTCa8jU52AFQYQ57xDVmq+xpH/FzmFvlK4XPnL8q+/sYv/F2xf52M8OMP3qX1fr/F+8r1fVHbVOJFSC76Cu0/sOlUE0EYn21TG3L+XA1FEgYAlAp8FfQ44SuwAaAqAmAGRX7Pi4GTSWL+nsRiLIozvco6y/kxFxvLsk3lMd9/a4W/i486OqWit8VXhz8v0oriwDsajUX6TkWvWi+MurS+IRIAorwp+/rFlQVa/1Dsfq6kx7vPj7dovTbSSUI3NngywWlxMOBpIp0BT2kAgFbKk0Ge3fkftL79UL8LZfHKZxOeeAEAxV6P1i/MLtL681fXZF+D3Ue0HuU8paEz0c8PuvxkkopOedl8tE3rG+f5e12oBNIbEp4yk4mUipYO20Jvyt/rOJAQlkEkCYm5TzTRY8R4olKteJu0uCT7qm2co/VKXScZDaC/RSfhX5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzCzhxrFxcEJFNIjoOABKRLlIo8Hl6KFYOKv4p13N+1V8sYq7iqb4cKXic0zjlcSyTQExLrjLidGCX3CJS5ZCpDQCmIlauNTyi9cHoWPZ167lbtH7u3Lps87u/959p/Rvf+Aatdzp92VcU8/NUj1IoLi1NRUQd9LUsiujC0yIW55bk+l2IoCKYRF+Bv8szcf3yRO8/K/D9D9R4E0iMyhL+nuYFns00Ken3ujrl8WnZ1seyzQ/+2x/T+vDl12n9+gu3ZV+zr7/B+/r4T2i9Nw6MURl/gcaBWKZKwu//FANaj8v6HteG+7S+JDIFBwUdy/WC2LQeiJ+a04lhp0L3gF+/hSUe1wcAM+L+dVuHtB7xFEEAQCpiPe93dNxqXwzzacKj6D7s6veqUeHfsvEsj2IbDvgzCgCtQ37+/aaOJcwi/gCtr/CYtEZZf2PSmL8nSYHvozvQ11gdcRbpsWBhgb8nRREJ2uvq/Q8HY1pPwfefBcabyfEOrc8W9YD/cJtHb57U6f7am5mZmZn9BfOE2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzCzh5SoZIIyjGehWjDCTI+SrGQiDZIRaxB1NxXACQ8DAIFEVUggjv+KwvsfByIk5yLFYJAzqpISrqA4jE3zaxSNyIRKoIAKQ5X5F6b/Murbf7fMUxADx39Satn79wVbb51a//Cq2/9OprtP70wUPZ13Gbr2Du9pu0HloNPR7xa9Zt6ZSQXkdvOw3SIo8QiGIdE5AV+PL4NOd9VcFXpn+Gp1FUAn/Lp0X+/EYR338h0qvZIzHmFHPeJpoGUnlSvpq8MaPb3FjjQ/AzkcYRzS/LvlCfo+U84vtoiSQMABiL9JBCIMkoEfe5kPH3KpvOyr425+ZpvTTDB/WFo6bsa5rw/Xx/n48dAJCPeGTDP5Mt/mr5mcsv0XqxUpNtegP+zJ9f4WOB/sIBsXjk8wlPSQAAEbqATPS1ff+ePoBOk9d7/FxKRf0sVqf8+T1s6/SmpMLfuXGnQ+vTSI+RkzF/5ifDHq3HsZj4ACiJsbAc62SLK+d4ssrSEj/mfpefIwAcivc0EpFqw5FO7yi1+P0fB+Zxh8cHeuMJ+BdmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7OAk6dk5GJ1dKrn3LH4f8BT0dUoCqygzXi0RCT+D3IAqIjVpZFYDTyETpYYidMsir85ijojBGOxvjgT6SGfEWkY4l9nIgkDAMYT3tc0E9dlm6/GBYDWwRat7z59Ktv87S/9Mq2/8ve+SOuHR/uyr83Hn9L61s4jflzP9HE1j5u0Puy2ZZu9Hd3faXA/48kOG4tnZZs44yuqh1OeQFKt8PQGAOgc8lXL5ZpeNR4PeLJGFPFzmfLwDABAPq3T+uyIpwl0yzOyr2GRD6cjiOX/AKoNvv/67Su0flTXQ/bdXf4sxgf8GvcDY8R0yu9xaajbqASRUpH31a2fk321rv88rc/292g9efSHsq9hzMevbx3p700lWaT105KS8eYbX6L1Tk9/Y370Y56SNJ3w78LB1qbsq1Ll788k1dkaiyIZ5vnnrtP6tY112de9Ox/Q+p2nz2h9va6/1zMVkb5T1olLWZGfZ0GkZ02HfEwDgEgk9swUxfwm1ykZhUT0FevEj/4x//6Oe/y9VgkpAJCkfP8L8zyJIy/p52W1yt/rloouA/Ber6UP7gT8C7OZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmASeOlYOIDEqnOsJD5cclE16PMpE3B8j8tPMjfQprD3nsyM6WiF+6ovf/bIUfwCji9STX1yXKRERcriNUVBhQJrYEukKsDi3i9ziSDYDjnEczLRwcyjb9H/HIt+2Pm7S+9Ppzsq8b15+n9dGIR960DvVxJdERr8c6Sqte5/FJp8Vzv/GbtB7nPKINAB7+6fdp/Sd3PqH182cuyb4OhjyyqR2I8ltIeLTb4X6T1ks5fxYA4FFBvPNneHla0nF3UYHvZ9TX8WWdQx7ntN/i5z97rSL7ml1eo/WDmD+jUUVfl2pNRGlNdfxVWYw5g4SP0ZMJj7sDgLOPv0vr9R6PzJqGIkFFXGlvovMG01zHB54Gh20eBdbp6u/lYMrHuVg8850uHy8BoNU9pvV2n8eKAcD2mEd+1RdnRV3Hyh3ti3dOxEVu9/W5DLv8mRsm+rtQrPFvZvuYP/PdiX6vtpeWaX22yr/XdRFdBwB7zS6tX1jQ70Ik2hy3mrQ+nejrkogY4L0Wvy6FWEdyFhs81m+Y8ucFALJhYGJ0Av6F2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMws4OQpGWLRaVrUCQq5SsnI+G7rsV6Bvhjx1ZJXS3o182IuVuRu8tW4w5ref6/O93OU8POPY/23SEFsm4jEDQCIxLZcxYeIxIvP2vBtqq88cFyFSKyALwTO5ewCrW//9x/T+jf+6x/Ivl7+p1+n9cUGX1m8VdSpFumEPy95plfgV6unOyXj0lfeFFt0GkNlZYPWk1sPaH0cGGZ2BiJxY0unmZRiPhiNi/z9rc/qMSJZPU/rMynfx+xoT/ZV6/PnpBdIZvnmk21av9ThK/NfaKzIvp4s8NSA/TpvkxT0c50Vxer0QuCToTbFPI2jrntC0nqf1mvjBq2PE53qkojx67WyXoG/cUYnMJwGO01+zfdbOo1hZ8SfueoCH+N+5kuvyb7G4tN70OTJVQCwu8XTk3rie/Xs/mPZ16jPz/PiEh8L7u90ZF+Z2P/SvB4j1zf4O3f9XIPWDwNjxMMH/Dz32/yYz51Zkn39rZ//Gq3ffPFF2aZ1wFPFjps8CSWb6LlHJebP2CTl9dZAJwypULXxSI/31eWm3HYS/oXZzMzMzCzAE2YzMzMzswBPmM3MzMzMAjxhNjMzMzML8ITZzMzMzCzgxCkZmUi2iNJAGsOE/7/dq0vztP5KdVH21f8f79J6UtArVSclvoxyb7BL6wddvW47ivn/T14Wf3OMREIIACTi/0dPE71qfSqSGvKc7z+O9f4LCb+XhQLvq1TU97hU4tvaE75KGwDeefIRrd+6xlf3Hj99X/b17/7tv6H1N772NVq/fP152deTR3yVdj7VK8uXRWLEaaGenwypbLN66watF9bO0Po//xf/Uvb1wQcf0nqz1ZZtOp0jWu+N+TM3O6cTFBbFavqVFb7S+qx+RTFX5RvTSDf6/SFP7Lnxne/R+nt7ejX99sfv03p/a5PWL1T5ynQA2G/wsXDEh3QAQFl8I2oJvy/LqU4m6Isl8EdTfgBzhb7sqz7hKQ+/sKpTkZYW9fh1GkzE96dU5d8xADhsbdF695gnwxzv85QEABiO+TPf6ujr2mkd0HqlxJNsRlX9jZu7xseicsTf9+Kefkcr8/z5KcQ6CeryhTVa/41/9Gu0vvnoiezrP/4OT4nqtfm5tKpd2df2Mz73KRbKsk1/wMfbbpe/v522vsfTjMenVKt8/xcu8vsIADtH/Dz7fT0W3H7+z/e99i/MZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQWcPFZuyiNUUhFL9Rke+zLb4rEflV0dU5P2+bakr0/hk08/pvWtMY9JmWxclH0NCvxcGgmPnHn64JnsK5rl1ywq6ZiaLOexN5G4/oVI35eyiNsrlXjcnaoDQCy2ZZnOn/rJo7u0/njC+9oc6Odic4tf56djHjnzD//Bb8i+1s7w+KK3n/C4OQDIZxty26kQibhIBPLTRORcqSLiEnMeJQQAk5g/J8tneCwTAGTgcWjZPj+umVxHJkU9ERnY/4CWX3vjVdnXUp2/V+0Gf64AoLn69/mGY35cjzs6Vm641KD1cfkyrfeaeoy6IyKb3t7Wbaoxj6JbKPPx/hcv8RhJAMhEFNy7e01av76gYxCvRPy4SjHvCwBGR/fkttOgKL5X1UTHsMYiyu/q+Qu03qzqGNYffXCH1guZvk9nV3is7GyNx//1R3pcmWvM0Xo2EGNEJRDDKiLXnu3vyzYPnmzSeqvbo/VefyD7arWatB6LMXo40H093uTxdc1jflwAsLv/lNbrM/wd7Y/1fGFXHNrqIj+X524v6L4+ekDr27s8nhAAbr3wutx2Ev6F2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMws4MQpGeWUry4dpXql6oV4htYvf9Kh9b1PPpR9Ndb4asnh1o5sc7y9Revl587SerLG6wDQzvkq0nQ8pvVsylfyA0CtOEvr43wk26j8jEhsSRK96jcWCRpZyleqTif8HAEgT3nKwSTXiR+TCX9m7m4/pPUHz/iKawBY2+Arq7sjnibwdIvvAwBurK/S+vaBfsb2R/xZPi1UykooJSOL+D2vVqu0vnGGX1cA+HST349ySa/mr9T46uxJwt/Rtca67KuwwPfT2t2j9QePecILALy/+11an51ZkW2+8PnP8+Nq8GSAxUSkegA4Om7RejTmY9HFY/1cP3r3B7T+E5EKBACl4jytZ23+vq90+TgIAC+s8gSG6fw53kCMQwDQEqlEnz7S35s1kfhyWqiQpFGXJ5YAwNI8v3+zc/xejCb697YLV2/TeieQ4BCDP9urS2dovTvQKRWPHz+m9bMr/JmrFPVzffbcVVrf2W/LNnfu8v3/1m//Nq2vregx4to1nnJzSSRRzc7osfPiBd7Xn779I9nm8Jjfs3KZPy8b527p/Z+5TuuLs3wq+uIL/NoDwPY2//bWKg3ZplI68ZSX8i/MZmZmZmYBnjCbmZmZmQV4wmxmZmZmFuAJs5mZmZlZgCfMZmZmZmYBnjCbmZmZmQWcOGMjKvCYssWpji9b/vEjWj+Tb9B6do5H0QDAw4/e4fX2tmzzIBKxSRMeITOrk9CwsMhj7fpDHmW1dI5H4QDANOPxcaORjtwRSV7IZRScjrVTkWFxxC9AluoLEyX8wLJIPxeDCT//aZlHOa3fvCT7mmvwvvKMR5x1jo5lX5sq/mqWx+cAQLXy54up+Uun0rgCsYB5wrd1RWTVk8dPZV9xzK/f0uKSbLNzxCPfshqPUyrNN2RfEHFGM33+Xj/44L7sqp91aX1uXkf0/WzMn/lywuvDiY4Fu/eDD2h9+94mrf/8RR33l6b8t5Teso7oG8QNWo/K/BpvD45kX5875ufZm/LjSut83wCwN79G6/u5jrVbK+nx+zRICvwdHfSbss25DT7OTcDH8p27+v7tHvF34aitx99EvD/P37xB63MzPLYWALJ5/r2uJPxdnBffdwAoV/i4Mh7pSN3pmO9nZ+8Zrc/Nl2VflSq/l1HM70upoCMWNzb4u6BbALMLfCyuzPC4wa0nfN4HAAcPn9D69Yt8TvhuSUf3jUY87rYaiIScqfK4zpPyL8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgEnXuKfV/gqznqkVx2OBx1av3PwEa1X+jzxAAA6Z/lK1cmbX5ZtNv+Qr+Ld2/+U1p8f3pR9rYKv4hw3+creZ0+2ZF+zDZ7SkUd6Nb1KvUjHfH1rOtUpGblIoygU1eOg/66Kc77/0TSVbdptfs06HX7/J+PAauQJX0F84xK/Xw9+wpMEAOC7D+7Req2o70uUnfK/OdXh54F7LuoPH/DV0U+f8pXhAFAo8/GjPMNTTgAgivgRJCX+/EZ6ATrOneHPyb1Dvpq/VNadXbtyndbHgXdhBP6eZilvUxBJNgBQEK/v0gZf5Z6Iaw8Ah0W+rba0LNsUYz6u9TOe/tPNhrKvQpmvwC+K8WYCnTA0O+Qr7SM53gGHWSAy6RTotJu0HgW+MemUJ5MUi/yZv3KuIftqVHkCSaF6VrbpdXmqVaXG0xAW5mRXONPgz2k54d+YmTn+7ALAvU8e0vr6um5Tq/JjXl7lB728FjgZYbbGx8g80/d4YZEni5y7qO9La8yv2ewiP//h6IHsqybexb2n/Br/1sd/JPu6fOESra9vNGSb6syi3HYSp/xrb2ZmZmb2F8sTZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLODEKRkVsQS7G/hfyLdvnqH1/Apfgb1w0JJ9PajxVdBPy3w1KgBUv3CL1ov79/k+nvD0DgAoz/KUjlpxntYHHZ4EAQClWX4tM7FiHgBSkRQxFSkZwUXeGW9TEKuhh+PAKv+Mr6Ad9PWq9XzM/067tn6D1peXz8m+9rYf03pzc5fWD7Z5EgYATMf8mGsL/DkGgPV1nrJw6gXSGEZDnm7Q6/JV9m/+tb8u+/r+u+/QerPVlG1KiRq2+HMdJ7IrTMW5JAWeJKOSOADg6uVrtF4q8b4AoD7HV61PUj4WjAd6jLhyne9/ZWWF1ls/fFf21WvyMXp1Wb8L9RmejHC/w8f1/aYeV/bBn79qfYHWa4We7GtOrPKvVXXiydrN23LbabC9xxOiqjV+jwAgKvB3YdTn7/Wwq+9fIeLP/PwM/44CQH2GJ0VMM55YM1fX7xUm/JhrNT4YzBX0b4fDlF/LN372Zdlm6zFPyWo0+PlvrOuUiol4fqsV/o5G0Ndl5xk/l35XJ5SphK5Oj39jX//iBdnXap0na0xSPo87HugknZkaT9JZXW3INrP1P99vxP6F2czMzMwswBNmMzMzM7MAT5jNzMzMzAI8YTYzMzMzC/CE2czMzMwswBNmMzMzM7OAk8fKlXkEz4innQEA2jUeoZInvK+9so42yWo8juTqlcuyzfASj2qpbvIouAcPdKzcpw95HFljnkc2NZZ0fE+eZ7Q+meqLOUp5GxXsUwj9LZSKKECRRVcv6XPp7PNomWpBxwe98vLLtN6Y5RFtaaZjcn7yp9+n9UMRHbiywqOLAODW8y/Q+ude4vGEAPDWd74rt51mea7jIqdT9dTxNmc31mVf4+/x2KBcxAwBQDrh29JURC+Kfw8AnTaPPMsyfo6DoR6j7tzjY8TWUx4xBQDXRBTcc7f5Mze/sCT7moq4yNVVHgW3+PlXZV+PRURgpVCVbebqPOapMMPH+15Pj1GdOo/b29nv0PqNOT1GRBHfz3NfeE222bj9RbntNHjnPR63qZ4rAMgiHoWaxHwsP+oFvtfi/e3t6vi/xiKPfGvM8WlKITBGjUQqpgop63V1DKqKXJtvrMo24xF/5o73tml9OtTZl0eH/F08ONjk//5YR9o+erxH652eHiMLNT6uLq3x93pl/bzs68y8GCNi8e2I+bwHAOKiiNULRKJGSSCK8AT8C7OZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWcCJUzKKRb4iMs/1isRJwufjzaM2rb/a0YeTtPkqyuNlvYqydpavDt+b4avWb91+Ufb1bIevLq3O8pWalZFejbm9s0/ratUnAKAg+ov4av441vclzvg1G3f46tqlFZ5QAgClMV93PF/Rq34ffvw+rT998k1ab3dUKgMwGPFjLs3wc7x2S9/jV17l28ZTngQCAAsrOkHkNAutNK7VeFLC9RtXab3ylK8MB4Crly7S+rf/RKePtFo82aIs3p9Ouyn7Khb4GDUa8pXpgYX5aLf5sziaTGSbt976Hq33h/y9+uKXviT7Wl/nqUDnz1+g9doNntABAG998DGt5yKtBwDkE5Pwcb2d6/Hugz6/ZtGZc7Tegk4YmheJRZfe/JuyzcqtN+S202Ay4Od867J+fu5v/pjW41h8Fxb1GNFu89SJOJB6MBHfkl6Hv6ORfq0wEY9Ds8dTVn74zh3Z1+4Wb5NEOjFmUaTZfO+P/yet7zzTY2S706T1ep2/P+vndRLU4hq/L5fmdfrOted4elVjhc9JamX9O2we8xuTqSZifgMAccz3XyjoeWQMPS85Cf/CbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYWcOKUjDjiqwvjTC8bz8S2C+t81fbn5vTqzp0f8RW8T76vV7ee/zuv0vpcrUHrvcD/p352hf//6IdtnvhRqepkiXKJr+4cDPSK0DTl26pVfgtny/q+1Mp8da366+nBJx/KvroigaC5FVgNPeXbsgJfdTzK9crWtbMrtH7u8iKtV2b0M9Y8avLjAk9IAYCFBb1S+v9VccyflNUVfs2XlhZkX+sba7T+1Z/7smyzu6vuB3/m79y5K/t69913aX084mPBdKqX5reaR7ReKelh9vIlPq4MBj1a//ADPg4CwMryMq1vPXlC66VZPUb1RMxAFOkxcjTgKQejAW8TR3XZ1+//kN+zbvSY1s/++q/Kvn7pn/xjWk8u8MQNAMjEavrT8gvTjcs82eCrX3xdtrl9k3+Xv/Wd36P1cqK/MUvz87Qex/ob12of03q/w5+repHvAwDOn71M6x9/uknrH773R7KvUrFC6ztbPG0LAIbjJq3XZvm7sLSqr8vnX79O6+sbfLxdPRP4JokHOA18Y6MiP7ZMJNMkgWllPhXjikgrmqnM6OMS+8nzQEqHSAg7qdPy/puZmZmZ/aXwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLODEsXKpiAPJch0tk6e8zSCJaP3OiEe0AcDHD3m02UcH92SbzelDWl//yku0npR43BoAvP3t79B6fZVHu6DOzxEAVpaWaH061NEyTx89ovWFBo8PWl0OREb1+XU+2Dng/36Xx/0AwEzG42gaSzziCgBqq/yYs/Isre93eFwXAAwHh7QeV/jfgo+f6efle9/lz8uXvnxDttne0tfGPpPE+l3YWOOxgBtrX/up96PenuNmU7a5f/8+rbc7XVrv9XjEFQCMRiPeV7sj27TaLVrv9His3ESMwwCQivF22OP7b4k6AFQqPEprf3dXtplm/NrkE/6NSEo64rFx6RY/riKPzBps8Eg0AHh7i48f84EorcUFPhadmRPj/V8xb7zBx99nz97SjcSnvH30lNY7bR0xiJxHp87MlmUTNZe4cel5Wv+5N96UfVUqPHLu8Oh3xb/Xvx1GEX+vfvDDb8k2l6/yb/zXf+1naX1hQc89imJToSjeq1iPERORiplmuk0uBtaCmMflqgGAsdg2noi4t0T3VYzE/gPRcbFoc1L+hdnMzMzMLMATZjMzMzOzAE+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLODkKRli5WGa6VWMU5WSkfGlms2Snr8/q/AV6HdHe7LNS/F1Wh8V9mn9fucD2Vf5Nt/Pldt8NezWVlP2NdzjK4jna7wvAJir81XrW0/5CuYnj/qyr0nKV7PXU/44bPT0avJ6lz8X025Ttjk45s9Fq8r3X13TK1sLdX4uoz5PGViqzci++mt8ZXw/0qtuP330RG6z/7NcrIxXdUAu5pf1xUZD9rX86qty209L7X88FkvTAQwGA1rviXq3x+sA0Onw1Iu+eBf2DnTCy0fVT2j9f209lm0eP+aJH4BI0lnkCSkAsLh8jtaXzvCEnaOhvi5vf/Ix72t7W7ZZXeEpC2e++lXZ5q+Sxjz/Xnbad2WbJOLj78svXuR9tXSywuNHz2h9NNZJWJMJ7y/K+b0txPobl4l5ycYG//b+0i9/QfY1HvHjqs3q6dO1G6u0vr7OIy9UEgcATKd8/FBhEFHGzxEAkIpkiVSPtyqYJ1MpGQgk+SR8jpdmvF4WKVwAUIzEtyNwLv0RHwtPyr8wm5mZmZkFeMJsZmZmZhbgCbOZmZmZWYAnzGZmZmZmAZ4wm5mZmZkFeMJsZmZmZhZw4li5PFfRWjryS5lkPHakuViTbVa/8gqtv/nlm7rNJR5NlJaPaH2mrs8lWxnzDSs8Puf8zJzs626L7/+99x7INs29Lq1PxW25ePmS7Ks0K+KcJvwcJxUe3QYA7YhH+7TbTdlmq3VA650Gj8NZnyvLvmar/G++w094fFEUL8q+zl3l9yxOdEzO7Zd55NL/n3Scz0/bJgr0FUXiPRX1PNfRl6mKrxP1n360A4o6GQnl+TqtN+b1+CHJU+EbRgMxpgF44eYNWj9zjsdlAcB77/NYzrlZcY7L+hyXajzWbSbh8ZqpHiJQrfE2Z+s61u7MmXXd4SmQj/g9T1MeNwcAIxE3WhTj3+qqfrBXVs7T+lTsAwBGE/6eFsRuHmx+V/Y1EbFy03yX1j//hTXZl3rri0U9GpTFVCYRM65URLoCAHK+LYr49zIOxKAWyvy5KAZ+Ox2JVMzRkN/L8VSPK+MCP5dCiV+wPNXHVamJiL5YtykEvuUn4V+YzczMzMwCPGE2MzMzMwvwhNnMzMzMLMATZjMzMzOzAE+YzczMzMwColwtoTYzMzMzM//CbGZmZmYW4gmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW4AmzmZmZmVmAJ8xmZmZmZgGeMJuZmZmZBXjCbGZmZmYW8L8B495aOCeoH3sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xb, yb = dls.one_batch()\n", "dls.show_batch()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(TensorImage(1., device='cuda:0'),\n", " TensorImage(-1., device='cuda:0'),\n", " TensorImage(-0.0532, device='cuda:0'),\n", " TensorImage(0.4992, device='cuda:0'))" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xb.max(), xb.min(), xb.mean(), xb.std()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conditional DDPM Training as a Callback\n", "\n", "Same as DDPM callback but:\n", "- We invert the x,y structure of the original callback\n", "- Generates noise on the callback for the whole batch\n", "- The sampling \"before_batch_sampling\" is done with labels that are fixed to [0,1,2,3,4...9,0,1,2,3....]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "N-IV1WO0wyMT" }, "outputs": [], "source": [ "class ConditionalDDPMCallback(Callback):\n", " def __init__(self, n_steps, beta_min, beta_max, cfg_scale=0):\n", " store_attr()\n", " self.tensor_type=TensorImage\n", "\n", " def before_fit(self):\n", " self.beta = torch.linspace(self.beta_min, self.beta_max, self.n_steps).to(self.dls.device) # variance schedule, linearly increased with timestep\n", " self.alpha = 1. - self.beta \n", " self.alpha_bar = torch.cumprod(self.alpha, dim=0)\n", " self.sigma = torch.sqrt(self.beta)\n", " \n", " def sample_timesteps(self, x, dtype=torch.long):\n", " return torch.randint(self.n_steps, (x.shape[0],), device=x.device, dtype=dtype)\n", " \n", " def generate_noise(self, x):\n", " return self.tensor_type(torch.randn_like(x))\n", " \n", " def noise_image(self, x, eps, t):\n", " alpha_bar_t = self.alpha_bar[t][:, None, None, None]\n", " return torch.sqrt(alpha_bar_t)*x + torch.sqrt(1-alpha_bar_t)*eps # noisify the image\n", " \n", " def before_batch_training(self):\n", " x0 = self.xb[0] # original images and labels\n", " y0 = self.yb[0] if np.random.random() > 0.1 else None\n", " \n", " # y0 = None\n", " \n", " eps = self.generate_noise(x0) # noise same shape as x0\n", " t = self.sample_timesteps(x0) # select random timesteps\n", " xt = self.noise_image(x0, eps, t) # add noise to the image\n", " # print(x0.shape, y0.shape, t.shape, xt.shape, eps.shape)\n", " \n", " self.learn.xb = (xt, t, y0) # input to our model is noisy image, timestep and label\n", " self.learn.yb = (eps,) # ground truth is the noise \n", "\n", " def sampling_algo(self, xt, t, label=None):\n", " t_batch = torch.full((xt.shape[0],), t, device=xt.device, dtype=torch.long)\n", " z = self.generate_noise(xt) if t > 0 else torch.zeros_like(xt)\n", " alpha_t = self.alpha[t] # get noise level at current timestep\n", " alpha_bar_t = self.alpha_bar[t]\n", " sigma_t = self.sigma[t]\n", " alpha_bar_t_1 = self.alpha_bar[t-1] if t > 0 else torch.tensor(1, device=xt.device)\n", " beta_bar_t = 1 - alpha_bar_t\n", " beta_bar_t_1 = 1 - alpha_bar_t_1\n", " predicted_noise = self.model(xt, t_batch, label=label)\n", " if self.cfg_scale>0:\n", " uncond_predicted_noise = self.model(xt, t_batch, label=None)\n", " predicted_noise = torch.lerp(uncond_predicted_noise, predicted_noise, self.cfg_scale)\n", " x0hat = (xt - torch.sqrt(beta_bar_t) * predicted_noise)/torch.sqrt(alpha_bar_t)\n", " x0hat = torch.clamp(x0hat, -1, 1)\n", " xt = x0hat * torch.sqrt(alpha_bar_t_1)*(1-alpha_t)/beta_bar_t + xt * torch.sqrt(alpha_t)*beta_bar_t_1/beta_bar_t + sigma_t*z \n", "\n", " return xt\n", " \n", " # def sampling_algo_old(self, xt, t, label=None):\n", " # t_batch = torch.full((xt.shape[0],), t, device=xt.device, dtype=torch.long)\n", " # z = self.generate_noise(xt) if t > 0 else torch.zeros_like(xt)\n", " # alpha_t = self.alpha[t] # get noise level at current timestep\n", " # alpha_bar_t = self.alpha_bar[t]\n", " # sigma_t = self.sigma[t]\n", " # xt = 1/torch.sqrt(alpha_t) * (xt - (1-alpha_t)/torch.sqrt(1-alpha_bar_t) * self.model(xt, t_batch, label=label)) + sigma_t*z \n", " # 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise\n", " # # predict x_(t-1) in accordance to Algorithm 2 in paper\n", " # return xt\n", " \n", " def sample(self):\n", " xt = self.generate_noise(self.xb[0]) # a full batch at once!\n", " label = torch.arange(10, dtype=torch.long, device=xt.device).repeat(xt.shape[0]//10 + 1).flatten()[0:xt.shape[0]]\n", " for t in progress_bar(reversed(range(self.n_steps)), total=self.n_steps, leave=False):\n", " xt = self.sampling_algo(xt, t, label) \n", " return xt\n", " \n", " def before_batch_sampling(self):\n", " xt = self.sample()\n", " self.learn.pred = (xt,)\n", " raise CancelBatchException\n", " \n", " def after_validate(self):\n", " if (self.epoch+1) % 4 == 0:\n", " with torch.no_grad():\n", " xt = self.sample()\n", " wandb.log({\"preds\": [wandb.Image(torch.tensor(im)) for im in xt[0:36]]})\n", " \n", " def before_batch(self):\n", " if not hasattr(self, 'gather_preds'): self.before_batch_training()\n", " else: self.before_batch_sampling()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "class EMA(Callback):\n", " \"Exponential Moving average CB\"\n", " def __init__(self, beta=0.995, pct_start=0.3):\n", " store_attr()\n", " \n", " \n", " def before_fit(self):\n", " self.ema_model = deepcopy(self.model).eval().requires_grad_(False)\n", " self.step_start_ema = int(self.pct_start*self.n_epoch) #start EMA at 30% of epochs\n", " \n", " def update_model_average(self):\n", " for current_params, ma_params in zip(self.model.parameters(), self.ema_model.parameters()):\n", " old_weight, up_weight = ma_params.data, current_params.data\n", " ma_params.data = self.update_average(old_weight, up_weight)\n", "\n", " def update_average(self, old, new):\n", " return old * self.beta + (1 - self.beta) * new\n", "\n", " def step_ema(self):\n", " if self.epoch < self.step_start_ema:\n", " self.reset_parameters()\n", " self.step += 1\n", " return\n", " self.update_model_average()\n", " self.step += 1\n", "\n", " def reset_parameters(self):\n", " self.ema_model.load_state_dict(self.model.state_dict())\n", " \n", " def after_batch(self):\n", " if hasattr(self, 'pred'): return\n", " self.step_ema()\n", " \n", " def after_training(self):\n", " self.model = self.ema_model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have to add the conditioning to the Unet, to do so, we just subclass it and inject the encoded label on the `forward` pass." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "@delegates(Unet)\n", "class ConditionalUnet(Unet):\n", " def __init__(self, dim, num_classes=None, **kwargs):\n", " super().__init__(dim=dim, **kwargs)\n", " if num_classes is not None:\n", " self.label_emb = nn.Embedding(num_classes, dim * 4)\n", " \n", " def forward(self, x, time, label=None):\n", " x = self.init_conv(x)\n", " t = self.time_mlp(time)\n", " if label is not None:\n", " t += self.label_emb(label)\n", " \n", " return super().forward_blocks(x, t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's now initialize our model:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "model = ConditionalUnet(dim=32, channels=3, num_classes=10).cuda()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can create a fastai Learner with our DataLoaders, Callback (with the appropriate number of timesteps and noise schedule) and the simple MSE loss that we use to train DDPM." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "import wandb\n", "from fastai.callback.wandb import WandbCallback" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "cGfe6KqaH0iP" }, "outputs": [], "source": [ "ddpm_learner = Learner(dls, model, \n", " cbs=[ConditionalDDPMCallback(n_steps=1000, beta_min=0.0001, beta_max=0.02, cfg_scale=3),\n", " EMA()], \n", " loss_func=nn.L1Loss())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use fastai's amazing LR finder to select a good LR for training:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "id": "i1N52U5QLEOp", "outputId": "6b691a2c-81ad-481f-d2b9-aa051cdbd947", "tags": [] }, "outputs": [], "source": [ "# ddpm_learner.lr_find()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And now let's train with one-cycle LR schedule:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 538 }, "id": "gXKdZ3mRR_4G", "outputId": "8b128c9b-a2d8-490e-ce11-1ba064f66877" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mcapecape\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, { "data": { "text/html": [ "wandb version 0.13.4 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.2" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/tcapelle/wandb/fastdiffusion/nbs/tcapelle/wandb/run-20221007_132515-9xdzrfdb" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run classic-wind-75 to Weights & Biases (docs)
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wandb.init(project=\"ddpm_fastai\", group=\"cifar10\", tags=[\"fp\", \"ema\"])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 538 }, "id": "gXKdZ3mRR_4G", "outputId": "8b128c9b-a2d8-490e-ce11-1ba064f66877" }, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
epochtrain_lossvalid_losstime
00.7502590.70992300:42
10.6320550.57398000:40
20.4907890.43836400:40
30.3564430.30726703:25
40.2705130.24906200:40
50.2215940.21091000:40
60.1908860.18658300:40
70.1680480.16780403:25
80.1525390.15780900:40
90.1441190.15230600:40
100.1373310.14687800:40
110.1335650.13984603:25
120.1317830.13766000:40
130.1284580.14512200:40
140.1250620.13721300:40
150.1229970.13330403:25
160.1212210.12489000:40
170.1189110.13433600:40
180.1185630.13733900:40
190.1172040.12330103:25
200.1153350.12593300:40
210.1122300.11523300:40
220.1118550.12350000:40
230.1100910.13313903:25
240.1091990.12546500:40
250.1095920.10015900:40
260.1080450.12635700:40
270.1059450.11580803:25
280.1055020.10522800:40
290.1059250.11975200:40
300.1065590.11472500:40
310.1043100.11420503:25
320.1045330.11834500:40
330.1027210.12069400:40
340.1027720.11564900:40
350.1021870.11525203:25
360.1027280.11181000:40
370.1006270.09721000:40
380.1008990.10953700:40
390.1003590.12133503:25
400.1012190.10746900:40
410.0996950.11863000:41
420.0999880.11224100:40
430.0996610.10712403:25
440.1003410.10686100:40
450.0987590.11169200:40
460.0985340.10451900:40
470.0986450.10739003:25
480.0992720.12154700:40
490.0974410.10243900:40
500.0982450.11634400:40
510.0988010.11250403:25
520.0974790.10412800:40
530.0980480.10511800:40
540.0979660.10135300:40
550.0971550.09845903:25
560.0975880.09630200:40
570.0966540.09395900:40
580.0968420.11867200:40
590.0968560.10915903:25
600.0969990.10737400:40
610.0973140.10534500:40
620.0963450.10158500:40
630.0972370.10755203:26
640.0963870.11046300:40
650.0965220.10735100:40
660.0962890.10313900:40
670.0957610.10844103:26
680.0960190.11325600:40
690.0959450.10720700:40
700.0959010.10177400:40
710.0962310.10138903:25
720.0964590.09591200:41
730.0959420.11509300:41
740.0959680.09903700:40
750.0955580.09985703:25
760.0952260.10104300:40
770.0954140.10688100:40
780.0956080.10453800:40
790.0958300.10253503:26
800.0958430.10651000:40
810.0949070.10693300:40
820.0955090.10243700:40
830.0960720.10854403:25
840.0953800.10531600:41
850.0949500.10054200:40
860.0956220.10323500:40
870.0948060.10605403:25
880.0949790.09906800:40
890.0952870.09979700:40
900.0950470.09403400:40
910.0953690.10997603:26
920.0949810.09902200:40
930.0953710.11071100:40
940.0954370.10687700:40
950.0948200.09961203:25
960.0945490.09994700:41
970.0950640.10751300:40
980.0947720.10457200:40
990.0940530.10438803:25
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 0 with train_loss value: 0.7502593398094177.\n", "Better model found at epoch 1 with train_loss value: 0.6320550441741943.\n", "Better model found at epoch 2 with train_loss value: 0.4907890260219574.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 3 with train_loss value: 0.3564431965351105.\n", "Better model found at epoch 4 with train_loss value: 0.27051302790641785.\n", "Better model found at epoch 5 with train_loss value: 0.22159354388713837.\n", "Better model found at epoch 6 with train_loss value: 0.19088611006736755.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 7 with train_loss value: 0.16804789006710052.\n", "Better model found at epoch 8 with train_loss value: 0.1525385081768036.\n", "Better model found at epoch 9 with train_loss value: 0.14411911368370056.\n", "Better model found at epoch 10 with train_loss value: 0.13733148574829102.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 11 with train_loss value: 0.13356511294841766.\n", "Better model found at epoch 12 with train_loss value: 0.13178279995918274.\n", "Better model found at epoch 13 with train_loss value: 0.1284581422805786.\n", "Better model found at epoch 14 with train_loss value: 0.12506239116191864.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 15 with train_loss value: 0.12299712002277374.\n", "Better model found at epoch 16 with train_loss value: 0.12122058123350143.\n", "Better model found at epoch 17 with train_loss value: 0.11891119927167892.\n", "Better model found at epoch 18 with train_loss value: 0.1185627207159996.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 19 with train_loss value: 0.11720366775989532.\n", "Better model found at epoch 20 with train_loss value: 0.11533458530902863.\n", "Better model found at epoch 21 with train_loss value: 0.11222967505455017.\n", "Better model found at epoch 22 with train_loss value: 0.11185462772846222.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 23 with train_loss value: 0.11009092628955841.\n", "Better model found at epoch 24 with train_loss value: 0.10919912904500961.\n", "Better model found at epoch 26 with train_loss value: 0.10804483294487.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 27 with train_loss value: 0.10594470798969269.\n", "Better model found at epoch 28 with train_loss value: 0.10550212115049362.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 31 with train_loss value: 0.10430967062711716.\n", "Better model found at epoch 33 with train_loss value: 0.1027207300066948.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 35 with train_loss value: 0.10218702256679535.\n", "Better model found at epoch 37 with train_loss value: 0.10062697529792786.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 39 with train_loss value: 0.10035884380340576.\n", "Better model found at epoch 41 with train_loss value: 0.09969516843557358.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 43 with train_loss value: 0.09966123104095459.\n", "Better model found at epoch 45 with train_loss value: 0.09875939041376114.\n", "Better model found at epoch 46 with train_loss value: 0.09853431582450867.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 49 with train_loss value: 0.09744056314229965.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 55 with train_loss value: 0.09715472906827927.\n", "Better model found at epoch 57 with train_loss value: 0.09665428847074509.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 62 with train_loss value: 0.09634526073932648.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 66 with train_loss value: 0.0962885320186615.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 67 with train_loss value: 0.09576054662466049.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 75 with train_loss value: 0.09555771201848984.\n", "Better model found at epoch 76 with train_loss value: 0.09522632509469986.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 81 with train_loss value: 0.09490688145160675.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "IOPub message rate exceeded.\n", "The Jupyter server will temporarily stop sending output\n", "to the client in order to avoid crashing it.\n", "To change this limit, set the config variable\n", "`--ServerApp.iopub_msg_rate_limit`.\n", "\n", "Current values:\n", "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n", "ServerApp.rate_limit_window=3.0 (secs)\n", "\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 96 with train_loss value: 0.09454851597547531.\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Better model found at epoch 99 with train_loss value: 0.09405282139778137.\n" ] } ], "source": [ "ddpm_learner.fit_one_cycle(epochs, 3e-4, cbs =[SaveModelCallback(monitor=\"train_loss\", fname=\"cifar10\"), \n", " WandbCallback(log_preds=False, log_model=True)])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXaElEQVR4nO3de3iT9f3/8WeStun5RKEtUKDImapgUQTEs1V0eNhUFAVR2GSKimxuMvbblK+K25ziDjBPzLOiE50HJhZFRMEDR5XzuRxaSgtNz6fk/v1xp2lLDzSlbRJ4Pa4rl+bOneSTm0JefX9OFsMwDEREREQClNXXDRARERE5EQozIiIiEtAUZkRERCSgKcyIiIhIQFOYERERkYCmMCMiIiIBTWFGREREAprCjIiIiAS0IF83oCVcLhcHDx4kKioKi8Xi6+aIiIhICxiGQVFREV27dsVqbb/6SUCEmYMHD5KSkuLrZoiIiEgr7Nu3j+7du7fb6wdEmImKigLMixEdHe3j1oiIiEhLFBYWkpKS4vkeby8BEWZqupaio6MVZkRERAJMew8R0QBgERERCWgKMyIiIhLQFGZEREQkoAXEmBkREZG2ZhgG1dXVOJ1OXzclYNlsNoKCgny+bIrCjIiInHIqKyvJzs6mtLTU100JeOHh4SQnJxMSEuKzNijMiIjIKcXlcrF7925sNhtdu3YlJCTE55WFQGQYBpWVlRw+fJjdu3fTt2/fdl0YrzkKMyIickqprKzE5XKRkpJCeHi4r5sT0MLCwggODmbv3r1UVlYSGhrqk3ZoALCIiJySfFVFONn4w3X0fQtEREREToDCjIiIiAQ0hRkREZFTUK9evZg7d66vm9EmNABYREQkQFx44YUMGTKkTULId999R0RExIk3yg+c0mFm0dr9rM06yjVDunF2r3hfN0dEROSEGIaB0+kkKOj4X++dO3fugBZ1jFO6m2nZ1sO8+nUWG/YV+LopIiLiQ4ZhUFpZ7ZObYRgtauOkSZNYvnw5Tz/9NBaLBYvFwosvvojFYmHJkiUMGzYMu93OihUr2LlzJ9dccw2JiYlERkZy9tlns3Tp0nqvd2w3k8Vi4fnnn+e6664jPDycvn378v7777flZW43p3RlpkuUHYDDRRU+bomIiPhSWZWTQX9Y4pP33jT7csJDjv91/PTTT7Nt2zbS0tKYPXs2ABs3bgTgN7/5DU888QS9e/cmNjaW/fv3c+WVV/LII48QGhrKSy+9xNixY9m6dSs9evRo8j0efvhh/vznP/OXv/yFv//979xyyy3s3buX+Hj/7r04pSszidFmmDlUWO7jloiIiDQvJiaGkJAQwsPDSUpKIikpCZvNBsDs2bO57LLLOO200+jUqRNnnnkmd955J6effjp9+/blkUceoXfv3settEyaNImbb76ZPn368Nhjj1FSUsK3337bER/vhJzilRlzpcJcVWZERE5pYcE2Ns2+3GfvfaKGDRtW735JSQkPP/wwH374IQcPHqS6upqysjKysrKafZ0zzjjD8/8RERFERUWRm5t7wu1rb6d2mFFlRkREMMeLtKSrx18dOyvpgQceYMmSJTzxxBP06dOHsLAwrr/+eiorK5t9neDg4Hr3LRYLLperzdvb1gL3T64NeCozharMiIiI/wsJCcHpdB73vBUrVjBp0iSuu+46AIqLi9mzZ087t853NGYGKKowR5SLiIj4s169evHNN9+wZ88e8vLymqya9OnTh0WLFrF+/Xo2bNjA+PHjA6LC0lqndJiJtAd5+ipVnREREX/361//GpvNxqBBg+jcuXOTY2Ceeuop4uLiGDlyJGPHjuXyyy/nrLPO6uDWdhyL0dIJ7j5UWFhITEwMDoeD6OjoNn3tC/+yjD35pSz8xbkM792pTV9bRET8T3l5Obt37yY1NZXQ0FBfNyfgNXc92/P7u65TujIDteNmDmlGk4iISEA65cNMYow7zDg0o0lERCQQnfJhpqs7zGQrzIiIiASkUz7MJLnDTE5hmY9bIiIiIq1xyoeZZFVmREREAtopH2aSYsIAyFGYERERCUitCjPz5s3zTMFKT09nxYoVzZ7/2muvceaZZxIeHk5ycjK33347+fn5rWpwW6upzOQWVVDtPHkXFBIRETlZeR1mFi5cyPTp05k1axbr1q1j9OjRjBkzpsmFe7788ksmTpzI5MmT2bhxI2+//TbfffcdU6ZMOeHGt4WESDs2qwWnyyCvuPk9K0RERMT/eB1mnnzySSZPnsyUKVMYOHAgc+fOJSUlhfnz5zd6/tdff02vXr249957SU1N5bzzzuPOO+9k9erVJ9z4tmCzWkiMMrc1yHZoELCIiJy8evXqxdy5cz33LRYL7733XpPn79mzB4vFwvr169u9bSfCqzBTWVnJmjVryMjIqHc8IyODlStXNvqckSNHsn//fhYvXoxhGBw6dIj//Oc/XHXVVU2+T0VFBYWFhfVu7ckzo0njZkRE5BSSnZ3NmDFjfN2ME+ZVmMnLy8PpdJKYmFjveGJiIjk5OY0+Z+TIkbz22muMGzeOkJAQkpKSiI2N5e9//3uT7zNnzhxiYmI8t5SUFG+a6bVk9yBgzWgSEZFTSVJSEna73dfNOGGtGgBssVjq3TcMo8GxGps2beLee+/lD3/4A2vWrOHjjz9m9+7dTJ06tcnXnzlzJg6Hw3Pbt29fa5rZYrVrzSjMiIiIf3rmmWfo1q1bg92vr776am677TZ27tzJNddcQ2JiIpGRkZx99tksXbq02dc8tpvp22+/ZejQoYSGhjJs2DDWrVvXHh+lzQV5c3JCQgI2m61BFSY3N7dBtabGnDlzGDVqFA888AAAZ5xxBhEREYwePZpHHnmE5OTkBs+x2+0dmhS11oyIyCnOMKCq1DfvHRwOTRQE6rrhhhu49957WbZsGZdccgkAR48eZcmSJXzwwQcUFxdz5ZVX8sgjjxAaGspLL73E2LFj2bp1Kz169Dju65eUlPCTn/yEiy++mFdffZXdu3dz3333nfDH6whehZmQkBDS09PJzMzkuuuu8xzPzMzkmmuuafQ5paWlBAXVfxubzQaYFR1/UDtmRgOARUROSVWl8FhX37z37w5CSMRxT4uPj+eKK67g9ddf94SZt99+m/j4eC655BJsNhtnnnmm5/xHHnmEd999l/fff59p06Yd9/Vfe+01nE4nCxYsIDw8nMGDB7N//35++ctftv6zdRCvu5lmzJjB888/z4IFC9i8eTP3338/WVlZnm6jmTNnMnHiRM/5Y8eOZdGiRcyfP59du3bx1Vdfce+993LOOefQtauPfnCOocqMiIgEgltuuYV33nmHiooKwAwgN910EzabjZKSEn7zm98waNAgYmNjiYyMZMuWLU0unXKszZs3e9aEqzFixIh2+RxtzavKDMC4cePIz89n9uzZZGdnk5aWxuLFi+nZsydgjoyue+EmTZpEUVER//jHP/jVr35FbGwsF198MX/605/a7lOcoJoBwIcKy3G5DKzW45f7RETkJBIcblZIfPXeLTR27FhcLhcfffQRZ599NitWrODJJ58E4IEHHmDJkiU88cQT9OnTh7CwMK6//noqK1u2hpq/9Ja0htdhBuCuu+7irrvuavSxF198scGxe+65h3vuuac1b9UhOkfZsVqgymmQX1JJ56jAH9ktIiJesFha1NXja2FhYfz0pz/ltddeY8eOHfTr14/09HQAVqxYwaRJkzzDQIqLi9mzZ0+LX3vQoEG88sorlJWVERZm/pL/9ddft/lnaA+n/N5MAME2qyfAaK0ZERHxZ7fccgsfffQRCxYs4NZbb/Uc79OnD4sWLWL9+vVs2LCB8ePHN5j51Jzx48djtVqZPHkymzZtYvHixTzxxBPt8RHanMKMW1J0zbgZDQIWERH/dfHFFxMfH8/WrVsZP3685/hTTz1FXFwcI0eOZOzYsVx++eWcddZZLX7dyMhIPvjgAzZt2sTQoUOZNWuWXw0JaU6ruplORonRoYCDQ0UVvm6KiIhIk2w2GwcPNhzf06tXLz777LN6x+6+++5694/tdjp2nMy5557bYOuCQBhLo8qMW6K7MpOrhfNEREQCisKMW2K0xsyIiIgEIoUZt5rKjLqZREREAovCjJsnzKgyIyIiElAUZtxqtjQ4VKQwIyIiEkgUZtwSo8wwU1BaRXmV08etERGR9hYIs3QCgT9cR4UZt+iwIEKDzcuRW6hxMyIiJ6vg4GDA3AhZTlzNday5rr6gdWbcLBYLidGh7M0vJaewnB6dWr5XhoiIBA6bzUZsbCy5ubkAhIeHY7FoTz5vGYZBaWkpubm5xMbGYrPZfNYWhZk6EqPMMHNIa82IiJzUkpKSADyBRlovNjbWcz19RWGmjsSaQcAKMyIiJzWLxUJycjJdunShqqrK180JWMHBwT6tyNRQmKkj0b3ZpMKMiMipwWaz+cWXsZwYDQCuo2bn7LziSh+3RERERFpKYaaOmjBzWKsAi4iIBAyFmToUZkRERAKPwkwdnjBTrDAjIiISKBRm6ugcaYaZIyWVVDldPm6NiIiItITCTB1x4SHYrObCSfkaBCwiIhIQFGbqsFotJESGABo3IyIiEigUZo5RO25Ga82IiIgEAoWZY9SMm1FlRkREJDAozBxD07NFREQCi8LMMRRmREREAovCzDE83Uxaa0ZERCQgKMwco3OUuXO2KjMiIiKBQWHmGF2i1c0kIiISSBRmjqHZTCIiIoFFYeYYNQOASyqdlFRU+7g1IiIicjwKM8eIsAcRHmIDIE+DgEVERPyewkwjND1bREQkcCjM1LXrc3jpah4wXgQUZkRERAKBwkxd5Q7YvZyBru2A1poREREJBK0KM/PmzSM1NZXQ0FDS09NZsWJFk+dOmjQJi8XS4DZ48OBWN7rdhMUDEG0UAarMiIiIBAKvw8zChQuZPn06s2bNYt26dYwePZoxY8aQlZXV6PlPP/002dnZntu+ffuIj4/nhhtuOOHGt7lwM8xEOAsByC+p9GVrREREpAW8DjNPPvkkkydPZsqUKQwcOJC5c+eSkpLC/PnzGz0/JiaGpKQkz2316tUcPXqU22+//YQb3+bclZnQ6kIsuDhSrDAjIiLi77wKM5WVlaxZs4aMjIx6xzMyMli5cmWLXuOFF17g0ksvpWfPnk2eU1FRQWFhYb1bh3BXZqy4iKKM/BJ1M4mIiPg7r8JMXl4eTqeTxMTEescTExPJyck57vOzs7P53//+x5QpU5o9b86cOcTExHhuKSkp3jSz9YLsEBwBQKylWN1MIiIiAaBVA4AtFku9+4ZhNDjWmBdffJHY2FiuvfbaZs+bOXMmDofDc9u3b19rmtk6YXEAxFHEEYUZERERvxfkzckJCQnYbLYGVZjc3NwG1ZpjGYbBggULmDBhAiEhIc2ea7fbsdvt3jSt7YTHQeF+4izFbCitotrpIsimGewiIiL+yqtv6ZCQENLT08nMzKx3PDMzk5EjRzb73OXLl7Njxw4mT57sfSs7knsQcJylGIAjparOiIiI+DOvKjMAM2bMYMKECQwbNowRI0bw7LPPkpWVxdSpUwGzi+jAgQO8/PLL9Z73wgsvMHz4cNLS0tqm5e3FPQi4a0gZlMGRkkq6RIX6uFEiIiLSFK/DzLhx48jPz2f27NlkZ2eTlpbG4sWLPbOTsrOzG6w543A4eOedd3j66afbptXtyV2ZSQouNcOMpmeLiIj4Na/DDMBdd93FXXfd1ehjL774YoNjMTExlJaWtuatOp67MtMlqARQN5OIiIi/08jWY7krM/FWM8wc1YwmERERv6Ywcyx3ZSYWcwCw1poRERHxbwozx3JXZqIMc9VhVWZERET8m8LMsdyL5tVsNnmktMqXrREREZHjUJg5lrubKbTKAcAR7c8kIiLi1xRmjuWuzAQ7SwmmmiMlqsyIiIj4M4WZY4XGgsW8LLEUqTIjIiLi5xRmjmW1moEGc0uDoyVVGIbh2zaJiIhIkxRmGuMeNxNHMZVOFyWVTh83SERERJqiMNOYsGNWAdaWBiIiIn5LYaYxNZtN2ssAbWkgIiLizxRmGlOz2WSIGWa0cJ6IiIj/UphpjHt6dheb2c2kLQ1ERET8l8JMY8LNMNNJm02KiIj4PYWZxoTVbDZZBGjMjIiIiD9TmGmMewBwtOEOM5rNJCIi4rcUZhrjrsyEezabVJgRERHxVwozjXFXZsKqzc0mNWZGRETEfynMNMZdmQmudAAGRxRmRERE/JbCTGPclRmrUU0kZRxVN5OIiIjfUphpTHAYBIUBEGspxlFWhculzSZFRET8kcJMU9wL58VRjMuAwvIqHzdIREREGqMw0xR3V1NysHvhvFKFGREREX+kMNMUd2Wmq70cQONmRERE/JTCTFPclZmk4FIAChRmRERE/JLCTFPc07O7BNXsz6RuJhEREX+kMNMUd2XGs9mkKjMiIiJ+SWGmKe7KTJylGABHmSozIiIi/khhpinHbDapyoyIiIh/UphpirsyE+EyN5vU1GwRERH/pDDTFPfU7PBqM8xoNpOIiIh/UphpirubyV5VAGg2k4iIiL9SmGmKu5spqKqYIKpVmREREfFTCjNNCYsFLADEUqIxMyIiIn6qVWFm3rx5pKamEhoaSnp6OitWrGj2/IqKCmbNmkXPnj2x2+2cdtppLFiwoFUN7jBWG4TGABBrKaKsykl5ldPHjRIREZFjBXn7hIULFzJ9+nTmzZvHqFGjeOaZZxgzZgybNm2iR48ejT7nxhtv5NChQ7zwwgv06dOH3NxcqqurT7jx7S48HsoL6GQtYYcTCkqrSIqx+bpVIiIiUofXYebJJ59k8uTJTJkyBYC5c+eyZMkS5s+fz5w5cxqc//HHH7N8+XJ27dpFfLw5DqVXr14n1uqOEhYP7KK7vYxvSs21ZpJiQn3dKhEREanDq26myspK1qxZQ0ZGRr3jGRkZrFy5stHnvP/++wwbNow///nPdOvWjX79+vHrX/+asrKyJt+noqKCwsLCejefqNlsMsRsqxbOExER8T9eVWby8vJwOp0kJibWO56YmEhOTk6jz9m1axdffvkloaGhvPvuu+Tl5XHXXXdx5MiRJsfNzJkzh4cfftibprUP94ymxKCanbM1CFhERMTftGoAsMViqXffMIwGx2q4XC4sFguvvfYa55xzDldeeSVPPvkkL774YpPVmZkzZ+JwODy3ffv2taaZJ85dmels02aTIiIi/sqrykxCQgI2m61BFSY3N7dBtaZGcnIy3bp1IyYmxnNs4MCBGIbB/v376du3b4Pn2O127Ha7N01rH+5VgOPdm02qMiMiIuJ/vKrMhISEkJ6eTmZmZr3jmZmZjBw5stHnjBo1ioMHD1JcXOw5tm3bNqxWK927d29FkzuQO8zEWtybTZaoMiMiIuJvvO5mmjFjBs8//zwLFixg8+bN3H///WRlZTF16lTA7CKaOHGi5/zx48fTqVMnbr/9djZt2sQXX3zBAw88wB133EFYWFjbfZL24O5minTV7JytyoyIiIi/8Xpq9rhx48jPz2f27NlkZ2eTlpbG4sWL6dmzJwDZ2dlkZWV5zo+MjCQzM5N77rmHYcOG0alTJ2688UYeeeSRtvsU7aVm52ynNpsUERHxVxbDMAxfN+J4CgsLiYmJweFwEB0d3XFvnL0Bnjmf8tDODCh4mrN6xLLorlEd9/4iIiIBrKO+v7U3U3PclZmQygLA0ABgERERP6Qw0xz3mBmrq4oIyjU1W0RExA8pzDQnOBxs5hTxWIpxlFXhcvl9r5yIiMgpRWGmORaLpzoTaynGZUBhubqaRERE/InCzPG415pJDja3NND0bBEREf+iMHM87kHAXe3abFJERMQfKcwcT7i7MhNSs9mkwoyIiIg/UZg5HndlpovN3c1Uom4mERERf6IwczzuAcCdrNo5W0RExB8pzByPuzIT595sUgvniYiI+BeFmeNxV2aiDTPMOMoUZkRERPyJwszx1Gw26TI3m1SYERER8S8KM8fjrsyEV7t3zlaYERER8SsKM8fjrszYqwoAVWZERET8jcLM8bgrM8FVRdhw4tBsJhEREb+iMHM8obGe/63ZbFJERET8h8LM8diCIDQGMDeb1M7ZIiIi/kVhpiVq1pqhCJcBxZXVPm6QiIiI1FCYaQn3uJnOQeaWBg4tnCciIuI3FGZaombn7BBz52yNmxEREfEfCjMt4a7MJAW7N5vUjCYRERG/oTDTEmFxAHS2mZtNan8mERER/6Ew0xJh9XfO1irAIiIi/kNhpiXc3UyxlmIALZwnIiLiRxRmWsLdzRRtuPdnUjeTiIiI31CYaQl3ZSbSpc0mRURE/I3CTEu4x8yEVasyIyIi4m8UZlrCXZkJrSoADBxlGjMjIiLiLxRmWsJdmbG6qgingqOqzIiIiPgNhZmWCIkAWwhg7s+kbiYRERH/oTDTEhaLpzpj7pxdiWFo52wRERF/oDDTUu5xM3GWYqqcBqWVTh83SEREREBhpuXclZnOWgVYRETEr7QqzMybN4/U1FRCQ0NJT09nxYoVTZ77+eefY7FYGty2bNnS6kb7RLi5cF5yiLnZZIFWARYREfELXoeZhQsXMn36dGbNmsW6desYPXo0Y8aMISsrq9nnbd26lezsbM+tb9++rW60T7grM4nunbMdGgQsIiLiF7wOM08++SSTJ09mypQpDBw4kLlz55KSksL8+fObfV6XLl1ISkry3Gw2W6sb7RPuMTOenbPVzSQiIuIXvAozlZWVrFmzhoyMjHrHMzIyWLlyZbPPHTp0KMnJyVxyySUsW7bM+5b6mrsyE281N5s8qm4mERERvxDkzcl5eXk4nU4SExPrHU9MTCQnJ6fR5yQnJ/Pss8+Snp5ORUUFr7zyCpdccgmff/45559/fqPPqaiooKKiwnO/sLDQm2a2j5qdszHDjNaaERER8Q9ehZkaFoul3n3DMBocq9G/f3/69+/vuT9ixAj27dvHE0880WSYmTNnDg8//HBrmtZ+3JWZKKMIAIe6mURERPyCV91MCQkJ2Gy2BlWY3NzcBtWa5px77rls3769ycdnzpyJw+Hw3Pbt2+dNM9tHzc7ZzprNJtXNJCIi4g+8CjMhISGkp6eTmZlZ73hmZiYjR45s8eusW7eO5OTkJh+32+1ER0fXu/lcmDk1O7TaAaibSURExF943c00Y8YMJkyYwLBhwxgxYgTPPvssWVlZTJ06FTCrKgcOHODll18GYO7cufTq1YvBgwdTWVnJq6++yjvvvMM777zTtp+kvbm7mezVRdhwajaTiIiIn/A6zIwbN478/Hxmz55NdnY2aWlpLF68mJ49ewKQnZ1db82ZyspKfv3rX3PgwAHCwsIYPHgwH330EVdeeWXbfYqO4K7MAMRQgqM01ndtEREREQ+LEQA7JhYWFhITE4PD4fBtl9OcHlDh4JKKv1Ac1Ztvfnep79oiIiLi5zrq+1t7M3nDvaVBLMUcLa3SztkiIiJ+QGHGG2G1O2dXVrsor3L5uEEiIiKiMOMN9/TsTu5VgAvKND1bRETE1xRmvOGuzNTunK0ZTSIiIr6mMOMNd2WmS5DCjIiIiL9QmPFGWP2dsx3qZhIREfE5hRlvuCsz8RZtNikiIuIvFGa84V44L6Zm52ytAiwiIuJzCjPecFdmog1zs8mj2mxSRETE5xRmvOEeMxPu3jnboW4mERERn1OY8Ya7MhNW5QAMjZkRERHxAwoz3nBXZmxGFeFUaNE8ERERP6Aw442QCLCFABBHkSozIiIifkBhxhsWi6c6E2spwaHZTCIiIj6nMOOt8Jowo8qMiIiIP1CY8ZZ7rZk4iimrclJe5fRxg0RERE5tCjPecoeZePfO2epqEhER8S2FGW+5u5mSgrXZpIiIiD9QmPGWewBwomfnbE3PFhER8SWFGW+5KzOdrNqfSURExB8ozHgrrP7O2drSQERExLcUZrzlrszEUASgVYBFRER8TGHGW+GdAIhymZtNagCwiIiIbynMeMsdZiLcO2drzIyIiIhvKcx4yz1mxu4sJohqzWYSERHxMYUZb4XFAhYAYilRN5OIiIiPKcx4y2pzBxqI0/5MIiIiPqcw0xrucTPxFGk7AxERER9TmGkNd5gxd87WmBkRERFfUphpDc/CeUWUVDqprHb5uEEiIiKnLoWZ1nBXZuIs2jlbRETE1xRmWiM8DoCkoBIAHFoFWERExGcUZlrDXZnp4g4zRzWjSURExGcUZlrDHWY8O2crzIiIiPhMq8LMvHnzSE1NJTQ0lPT0dFasWNGi53311VcEBQUxZMiQ1ryt/3APAI6r2WxSM5pERER8xusws3DhQqZPn86sWbNYt24do0ePZsyYMWRlZTX7PIfDwcSJE7nkkkta3Vi/4a7MxBhmmNEAYBEREd/xOsw8+eSTTJ48mSlTpjBw4EDmzp1LSkoK8+fPb/Z5d955J+PHj2fEiBGtbqzfCDcrM5HaOVtERMTnvAozlZWVrFmzhoyMjHrHMzIyWLlyZZPP+/e//83OnTv54x//2LpW+ht3ZSbMWYQNJwWazSQiIuIzQd6cnJeXh9PpJDExsd7xxMREcnJyGn3O9u3befDBB1mxYgVBQS17u4qKCioqKjz3CwsLvWlm+wuNxdxs0iCWYlVmREREfKhVA4AtFku9+4ZhNDgG4HQ6GT9+PA8//DD9+vVr8evPmTOHmJgYzy0lJaU1zWw/tiAIjQHMzSaPagCwiIiIz3gVZhISErDZbA2qMLm5uQ2qNQBFRUWsXr2aadOmERQURFBQELNnz2bDhg0EBQXx2WefNfo+M2fOxOFweG779u3zppkdo2YVYIrJL1aYERER8RWvuplCQkJIT08nMzOT6667znM8MzOTa665psH50dHR/PDDD/WOzZs3j88++4z//Oc/pKamNvo+drsdu93uTdM6Xng8HNlJvKWIPSUKMyIiIr7iVZgBmDFjBhMmTGDYsGGMGDGCZ599lqysLKZOnQqYVZUDBw7w8ssvY7VaSUtLq/f8Ll26EBoa2uB4wPHsz1TEkZJKXC4Dq7VhV5uIiIi0L6/DzLhx48jPz2f27NlkZ2eTlpbG4sWL6dmzJwDZ2dnHXXPmpFCnm8npMnCUVREXEeLjRomIiJx6LIZhGL5uxPEUFhYSExODw+EgOjra180xLZkFq/7BS4zlj+U3k3n/+fRNjPJ1q0RERPxGR31/a2+m1nJXZhLdm03maRCwiIiITyjMtJZ7FeDONjPM5JdUNHe2iIiItBOFmdbyjJkx92fS9GwRERHfUJhpLXeYifaEGVVmREREfEFhprXC3JtNOh0AHFZlRkRExCcUZlrLXZmxV5ubTaoyIyIi4hsKM60VFgeABYMYSsjXKsAiIiI+oTDTWsdsNqnKjIiIiG8ozJyIOjOaNJtJRETENxRmToR7EHC8pYiiimrKq5w+bpCIiMipR2HmRLgrM52sNQvnqTojIiLS0RRmToR7FeDu9lJAa82IiIj4gsLMiXBXZpKCa8KMKjMiIiIdTWHmRByzP1OeKjMiIiIdTmHmRNQZAAwaMyMiIuILCjMnwt3NFOPenymvSJUZERGRjqYwcyLc3UxRzkJAlRkRERFfUJg5Ee7KTFh1AaAxMyIiIr6gMHMi3GEmpKoQKy7NZhIREfEBhZkTUW+zyWLyS1SZERER6WgKMyfCFgz2ms0mi8kvrsQwDB83SkRE5NSiMHOiws3qTBxFVLsMHGVVPm6QiIjIqUVh5kS5x810c29pkKdxMyIiIh1KYeZEucNMd3s5oP2ZREREOprCzIlyrwKcHKyds0VERHxBYeZEuSszXYJquplUmREREelICjMnyj0AOMFaDMChwnJftkZEROSUozBzotyVmZrNJrMLFGZEREQ6ksLMiXKHmWjDHWYcCjMiIiIdSWHmRLkHAIe792fKdpT5sDEiIiKnHoWZE1WzP1NlAWBWZrQKsIiISMdRmDlR7jBjrSjAiouKahdHS7UKsIiISEdRmDlRNZtNGi5SI6oBOFigriYREZGOojBzooJCwB4NQJ8oc8G8HA0CFhER6TCtCjPz5s0jNTWV0NBQ0tPTWbFiRZPnfvnll4waNYpOnToRFhbGgAEDeOqpp1rdYL/krs6khpshRoOARUREOk6Qt09YuHAh06dPZ968eYwaNYpnnnmGMWPGsGnTJnr06NHg/IiICKZNm8YZZ5xBREQEX375JXfeeScRERH84he/aJMP4XORiVCwl94hR4EEDqoyIyIi0mG8rsw8+eSTTJ48mSlTpjBw4EDmzp1LSkoK8+fPb/T8oUOHcvPNNzN48GB69erFrbfeyuWXX95sNSfgdO4PQG9jPwDZGjMjIiLSYbwKM5WVlaxZs4aMjIx6xzMyMli5cmWLXmPdunWsXLmSCy64wJu39m9dBgHQrWo3APuPKsyIiIh0FK+6mfLy8nA6nSQmJtY7npiYSE5OTrPP7d69O4cPH6a6upqHHnqIKVOmNHluRUUFFRW1GzYWFhZ608yO12UgAPHFOwHYk1/iy9aIiIicUlo1ANhisdS7bxhGg2PHWrFiBatXr+Zf//oXc+fO5Y033mjy3Dlz5hATE+O5paSktKaZHSdxMAAhhXuwU0lecSVF5VprRkREpCN4FWYSEhKw2WwNqjC5ubkNqjXHSk1N5fTTT+fnP/85999/Pw899FCT586cOROHw+G57du3z5tmdryIzhDeCQsGwyJyAdibX+rjRomIiJwavAozISEhpKenk5mZWe94ZmYmI0eObPHrGIZRrxvpWHa7nejo6Ho3v2axeMbNnBtxCIDdeepqEhER6QheT82eMWMGEyZMYNiwYYwYMYJnn32WrKwspk6dCphVlQMHDvDyyy8D8M9//pMePXowYMAAwFx35oknnuCee+5pw4/hB7oMhD0rSAs+AKSzV+NmREREOoTXYWbcuHHk5+cze/ZssrOzSUtLY/HixfTs2ROA7OxssrKyPOe7XC5mzpzJ7t27CQoK4rTTTuPxxx/nzjvvbLtP4Q/cg4B7u8zPvjtP3UwiIiIdwWIEwBbPhYWFxMTE4HA4/LfLKetrWHA5ZWFJDDz6JMN6xvGfX7a8601ERORk01Hf315XZqQJnc1utLCyHKIpYU9+iI8bJCIicmrQRpNtJSwWorsD0NeyX9OzRUREOojCTFtyj5tJD8sGND1bRESkIyjMtCV3mBlqN8OMpmeLiIi0P4WZtuRea6avxVzkT9OzRURE2p/CTFtyV2a6Ve4GDE3PFhER6QAKM22pc3+wWAmrdtAZhyozIiIiHUBhpi0Fh0F8bwD6Wfdp92wREZEOoDDT1txdTf01PVtERKRDKMy0Nfcg4DNCDgKani0iItLeFGbamrsyM9i2H9D0bBERkfamMNPW3JWZHq4sLLjYebjYxw0SERE5uSnMtLX43mALwe4qo5slj83Zhb5ukYiIyElNYaat2YIhoR8A/S37+PGAwoyIiEh7UphpD+6upv6W/RwoKONoSaWPGyQiInLyUphpDzV7NIWaezRtPKjqjIiISHtRmGkPiYMBOMO6G4AfDjh82RoREZGTmsJMe0gZDhYriVX7SCKfdVlHfd0iERGRk5bCTHsIi4XkIQCMsm5kbdZRDMPwaZNEREROVgoz7aX3hQCcF7SRvOJKDhSU+bY9IiIiJymFmfbS+wIARts2AgZbc4p82x4REZGTlMJMe0kZDjY7CcYRTrMcZJNmNImIiLQLhZn2EhwGPc4FYJT1R1bsyPNxg0RERE5OCjPtyd3VNMq6kQ37CqhyunzcIBERkZOPwkx7Sr0QgBG2TVRXV6mrSUREpB0ozLSnrkPAHkM0paRZdrN6r9abERERaWsKM+3JaoPU0YB7vRmFGRERkTanMNPe3OvNjLL+yEc/ZONyafE8ERGRtqQw095SzUHAw6zbsFPJpmyNmxEREWlLCjPtLaEvRCVjt1SRbt3Giu2aoi0iItKWFGbam8VSu7WB9Uc+2HDQt+0RERE5ySjMdITUmvVmfmRTdiH7jpT6uEEiIiInD4WZjuBePO906x6iKeaTTYd83CAREZGTh8JMR4juCgn9sOLiIut6lmzM8XWLREREThqtCjPz5s0jNTWV0NBQ0tPTWbFiRZPnLlq0iMsuu4zOnTsTHR3NiBEjWLJkSasbHLDSrgfglqBPWb3nCPnFFT5ukIiIyMnB6zCzcOFCpk+fzqxZs1i3bh2jR49mzJgxZGVlNXr+F198wWWXXcbixYtZs2YNF110EWPHjmXdunUn3PiActZEsNg4x7qVvmTx6eZcX7dIRETkpGAxDMOrVdyGDx/OWWedxfz58z3HBg4cyLXXXsucOXNa9BqDBw9m3Lhx/OEPf2jR+YWFhcTExOBwOIiOjvamuf7lrYmw6b+8Un0pXw+cxT9vOcvXLRIREWk3HfX97VVlprKykjVr1pCRkVHveEZGBitXrmzRa7hcLoqKioiPj/fmrU8OwyYDcJ3tS9Zsz6Jau2iLiIicMK/CTF5eHk6nk8TExHrHExMTyclp2aDWv/71r5SUlHDjjTc2eU5FRQWFhYX1bieF1PMxOvUl0lLOpVWfa+NJERGRNtCqAcAWi6XefcMwGhxrzBtvvMFDDz3EwoUL6dKlS5PnzZkzh5iYGM8tJSWlNc30PxYLlrOnAHCrbSn/Wb3Pxw0SEREJfF6FmYSEBGw2W4MqTG5uboNqzbEWLlzI5MmTeeutt7j00kubPXfmzJk4HA7Pbd++k+hL/8ybcAaFMcC6j5wfllFcUe3rFomIiAQ0r8JMSEgI6enpZGZm1juemZnJyJEjm3zeG2+8waRJk3j99de56qqrjvs+drud6OjoereTRlgs1tNvAOAGPmGpFtATERE5IV53M82YMYPnn3+eBQsWsHnzZu6//36ysrKYOnUqYFZVJk6c6Dn/jTfeYOLEifz1r3/l3HPPJScnh5ycHBwOR9t9igBjOdscCDzG+g0frlzv28aIiIgEOK/DzLhx45g7dy6zZ89myJAhfPHFFyxevJiePXsCkJ2dXW/NmWeeeYbq6mruvvtukpOTPbf77ruv7T5FoOk6hMqkswixOOl38L9syTlJBjiLiIj4gNfrzPjCSbPOTF3r34D3ppJrxPLPM/7Dwz8729ctEhERaVN+uc6MtKG0n1Ie0Z0ulgJiNjxPiQYCi4iItIrCjK8E2bFn/D8Aplje57Vl633bHhERkQClMONDltNv4KC9N9GWUpK+n+fr5oiIiAQkhRlfstoIveJhAC4veZ+De3f4uEEiIiKBR2HGx+KHjGVzSBp2SxWb3vidr5sjIiIScBRmfM1i4fsB9wNwUdkn5O/+3scNEhERCSwKM37gmrHX8YkzHZvFYNdbD/q6OSIiIgFFYcYPhAbb6HPzn3AaFs4u+4oflr7q6yaJiIgEDIUZP9F70Nl8l3AdAANW3Iux+QMft0hERCQwKMz4kR63/I3/OkcSbHFivDUJFGhERESOS2HGj3SNj2LDsMd5zzkSq1ENb0+CTf/1dbNERET8msKMn7nhnFR+VfVL3nOOBFc1vH07rHsV/H8LLREREZ9QmPEzA5Ki6Jccx4yqu/if5XwwnPDfu+H5S2DPV75unoiIiN9RmPEzFouFF24bhgsrd5f9gieqbsAZFA4H1sCLV8IbN8Phrb5upoiIiN9QmPFDXWPDWDrjfFxY+YfzOs4tfoK9qTeBxQZbF8O8EfD+vVCY7eumioiI+JzCjJ/q0yWKueOGAHCYWC7YfDWzey6A/leZXU9rX4K/DYVPZ0O5w7eNFRER8SGLYfj/yNLCwkJiYmJwOBxER0f7ujkd6nBRBWc/urTesR/viCZyxf/Bvm/MA2HxcPHvYdgdYLH4oJUiIiINddT3tyozfq5zlJ1tj4ypd+yOz4Kovu1/MO41SOgHZUfgoxnw2g1QdOj4L+pywhd/gecugZ3L2qnlIiIiHUNhJgCEBFnZPedKxg1LAeDbPUcY+shSsrteAr9cBZfPAZsddmTCvHObX2yvKAdevgY+ewQOrIZXfwpfPqWp3yIiErDUzRRg/rlsB39ZUjubqWtMKO9NG0WXst2w6OeQ84P5wJnj4YwboFs6hMaYx3Z8Cot+AaV5EBwBvc6D7UvMxwZeDdfOA3tUB38iERE5WXXU97fCTAB67otdPLp4c71jz08cxqX9YmHZY/DV00CdP9aE/hDfG7b9z7yfmAY3vAid+sCaf8Pi34Cryuyyuv7fkJTW+sZVlkLWKojtCQl9Wv86IiIS8BRm6lCYaSi3sJz731rPVzvy6x2PCLExd2Q5lxZ/iOXAaji6u/4Th02Gyx+F4LDaY/u+g7cmQtFB836PkXDWRBh0DYSEH78xjgNmhWfrx7B7OVSXgz0apq6AuF4n9kFFRCRgKczUoTDTtB/2O7jl+a8pLK+udzzKHkSVy0V4VQETUw4zLqWA5EEjoc+ljb9Qca45iHjLR2C4zGP2aDj9BnOmVHh8w+e4XJD5/2DVP+oft4WAsxJShsOkxWALaoNPChQfhq0fwYCxENGpbV5TRETajcJMHQozzTMMgw+/z+aeN9Y1e975/Trz4qSzsVotVDld9J31P4anxvPmL87FUjOlu/AgrH8N1r4CBXvNY3GpMH4hdO5f+2LOavjgXvNcgO7nQP8roN8VEBIB/xoNFYVw4Uy48MET/5BH98LLV8PRPRDdDW54CVLOPvHXFRGRdqMwU4fCjHe2Hyrisqe+8NzvlxjJtkPFACTHhPLpry7gw++z+c1/vgfg0oGJ/GP8UEKDbbUv4nKZXUYf3GeGGnsM3PBv6HMJVFfAO5PNWVMWG1w7H84cV78R378Ni6aAxQq3fww9hrf+A+XvhJeuhsL9tcesQZDxCAyfqrV1RET8lMJMHQoz3nO5DHYeLiYlPhx7kJWnMrfxt892NPucn53VnR8OFDBldG9udE8DpyQPFt5qDuq12CDj/2DHUtj5mdmddMOLMOCqxl9w0S/g+4UQ2wOmflk7q8owIG+72XUVkdD8B8ndbE4lLz5kDlAe9xp8/hhsfNd8fNA1cPU/ILSZn4t935pdZz3Obf69RESkTSnM1KEw0zaeWb6TOf/b4rkfZLVw10V9+Nun2xs9/7TOEfy/nwwiv6CIaw/8Bdv3b9Q+GBwON70Op13U9BuWO+Bf50FBFgy+Dk67GHYth91fQEmuuXLx7f+DLgMaf372Bnj5WnNRwMQ0mPAeRHY2w9C3z8KSWeYsrKQz4Befg9XW8DWKcmDu6eCsgp89D6dff9zrJCIibUNhpg6FmbZTUlHN699k8c7a/cy4rB8Zg5O4f+F63l134DjPNJhq+4DfBC3ECI3mmW6Pc+6FYzirR1zzT8v6Bv49xtxPqjFRyXDHxw1nPW1fCv+53Rx30/UsuPWdhoOQ96+GV34KFQ4Y/zb0y2j4+l8+BUsfMv/fYoNxr8KAK4/zWQNY6REIi/PfrreKInNcVt3xVyJy0lKYqUNhpmOs31dApN2GxWLh8qe+oNrV8EfjNMsBHEYkeZhdRoO7RnPPxX25Ii3Jc45hGLUDigFW/gM++z+zgtL7Auh9IcSfBq9cC4e3mEHmjiUQlWRWXVb905wlZbig5yi4+c2mu5E+nglfzzM34Lz59fqPGQb8Yxjk7zDX1MnfYXaNjX+r+YoSQEWx2ZWVej7E9Tz+xavLWQ0530PW12b3XN52syp13nSI7OLda3nju+fNNYPOuNEcx+RvgaaqHJ6/FA79CBPePf6fgYgEPIWZOhRmfGdt1lG+3X2EJRtzWJdV0Oy5fbtEsj23uN79v954JtmOcjYdLOTn5/cm0l5nmnZhNiy43Bxg3GWQ+QX36ezaGVJDJ8BVT0JQSNNvmrsF5g03qy73b4To5NrHsr42Xz84AmZsgvenmYOWg8Ph1kXQc0Tjr2kY8OZ42LrYHGg85BYY/avmQ43LZY4jWr0Adn0OVSUNzwkKg7Mnw6jpZndZW9r2CbwxrnZa/dV/N9cKOtaeL+G/08yQmPF/jU+5by81wRMgeYjZNehvgasxX8+Hr/4GV/315K7qibQDhZk6FGb8h2EY/HDAgdVi4bHFm1m5M//4T6ojOjSIcWensGJ7HvZgG/93fgSnLxmHpTjH3F/KWWHOgLr8sZbPVHrhctj3tbkezvkP1B7/792w7lUYcitc+09zFtab480BzPZouO196Dq04eute9V8LhY8KynXhJqzboPwOAiJMrd+qCo1z1+9oP4ChaExkHKuOeg4JgW++Ze5FxaYYWrAT8zuoOAw87490gwYyWd6/wWf86MZ2iqLzUHSedvM1/zFcujcr855P8C/rzS77gDCE+CKx81xRO0dKnZ8au4DBrV/zje+bA7gPtZnj8KP75gDy4dOqP8ZOlpVGTw5EMqOmoH5p89q3FXuFrPbOHGwr1siAUBhpg6FGf/lchn8Z+1+duQW4yit4nBxBWPPTObvn+5gV14j1YlG9LXs54OIRwmtduAwwplWdS933v5zzuub0LDLqjHr34D3ppqzpu7dAFar2U30RD+zQnL7x7VVmMpSeO162PuVewDyYugysPa1ju6F+aOgsggufQh6jIDPH4ddLdhd3B4DQ242Q09imtmOGoZhhqhlj8HBtU2/RvxpkPYz89bUwOi6ig7Bcxeb09Z7jYZb/mNWaHZ9Dkmnw5RPIchufq4XMqA4x1wTqLIYcjeZr9HnUrMC5m13WkuV5MP8EeaMtLN/blaDlv/JDF6/XFV/UcXNH8LCW+o/v/s5MPRWM0SERLRPG5uy4U14904zYBsuwAJj50L6pI5th7cOrIEdn5nXLD617V7XccDsunVVw50rWvYzKqc0hZk6FGYCk2EYzPt8J6t25vObK/rz0ffZZG4+xK7DDUNOf0sW19u+4HXnJew2krFYIDEqlJzCcgAu6NeZp8YNYW9+CRH2IMKCbSRE2gkLsWFUlsBfB2CpKKR6/DsE9bvUU10x4k/Dcs+a+pWHiiJzuveBNRCZBHf8z9y7yuWEl8aaQafHCJj0Ue0MqayvYcVfzRlWFcX1u5GSzoCzp7Tsy9YwzO6og2vNMSRVZWZ1p/iQeby6vPbcHiPNxQqbGi9UWQovXmW+Vqe+MCXTrPYU5cD8kVCaD+febXaRLbgc8reb3Xm3/8+s3Hz1NHzxZ3O15qAwOGeK2QV2vOny1ZXmlPt1r5rjn87/NdiCm/68b95irtyc0B/uXG6+39NnmtWOa+bBUHd4cRyAf40yj6f9zPx82z+pHTwe39sc75TQt/n2taUXMmDfN3Dh78wguHqBeTzjURg5re3fryTPHGOVfIb3wc0wzJ/dL56oDd9BoXDeDBh1HwSHnnj7Pphu7ucG7r8ji+uHdmk5l7PxGZg1CrLg4HpzvJ09ssOa1dYUZupQmDm5VFQ7OVJSSedIO1/tzOeh9zdysKCMimqX168VFx5MQVkVf7S9yKSgT/jIeQ4PWH7Fi/yBc6xbedoynmed1/DiHecwrGdcbZWn9Ai8+BPI3QgxPcxA8+Mic+BxSKS5Lk5zv9G6nGZ1w1kF4Z3appumosjc3+rHd8wqjqvKrEhc889G3t8F/5kEm/5rBpgpn0Kn02of3/qxWaGB2sHP0d3NwBPdtfa8vO3mF9TeL837wREw/E4YeU/D8TRVZebK0F89XX8Bw27p5rT3+N4N27nmRXPhRWsw/Pwz80sazDEomf/P7IK7Z43ZjffyNbBnhTmeZnKmOVaqKMesjnzzjLl3WGiMubbRaRd7dWlbJedHM1xZbOaYq8hEyPwDrPyb+fjg68wtO7oMMitxrdliw+WC7PWwPdMMbgfWAIYZQnpfaHa19RvT/BgrwzC78b74i9ndCmabO/evrb7F9YIxf2l8xl9L5e+Ef55jVmVqugqbGpvlb7I3mNXJ1NHm3xdfMgxzDa5dn5tdrY2N3SvIMgfLFx8y/06mXWd2uaYMD4xxZnX4dZiZN28ef/nLX8jOzmbw4MHMnTuX0aNHN3pudnY2v/rVr1izZg3bt2/n3nvvZe7cuV69n8LMya+y2kWV00WEe4Dwsi25bM8tospp8JclW4/7/AGWLD62P0iVYWN85Szets/GaVgYUfEPcqn9x2vkaZ2IDQ8m2GbFWnKYe/beQ29rDuWRPbCX5WBxVvJU2DQO97uJnbnFPHT1YMJDbHSKtPPFtsNsO1TEtIv6YLNacBlgs7bTPyx7vjKrLhhw0xsNB54u/zMse9QMCbe9Dz1HNnyN//3WHKsDEBoLkz9pfEq0YZhfpsseNb9YwRwT1GWg2UVlCza/vA6sMdcHAvOL/fQbYN0r5npCIZEw5s8wZLwZynZ9DjsyzZWgq8vgsv+DUffWvmdVGfxtKBRlm8+rKDJnvAVHmBuU1g1mYO7LtfAWs0piscGYP8E5P/f+unrjo1+ZM8QGXg3jXqm9Vl88AcseaXh+ZBJ0HWKGsa5DzVtUYuOvbRjmYPRPfl+7bUiN8AQozatzwGJ+CZ89xZy1V7dbLutrWPowZK0079tCzAA86j5z5/qN78KS35nXGcxgdNnDrZsa/87P4Ye3oG8GpF4An8wyf66mrfZ+QHtFsfmz6dgP3c82x5bF9z7+F3XuZrMrsuwIVJbUVjYju8CwO8yu1bqKD8PSP9ZOKrAGmW0fONYMit7MLjQMczwalhMbx/X9W7DI/bNrjzG7upPSah8vd8CCK8wgWrPPXY1OfWD0r+HMm1oWaiqK4eMHzbW9ug+Dvpeb3coduLed34aZhQsXMmHCBObNm8eoUaN45plneP7559m0aRM9evRocP6ePXt46qmnSE9P56mnnuKCCy5QmBGvOV0Gq/ccISzEhs1qoazSyUc/ZLN822F+N2YgecUVDP/sRlLLN+OwdSLGmU9u0gUsOfNvvLRqLzvqzLKqqyt5vGWfTXeL+eWR6TyLn1f9CnPwb8tcn96dyeel8unmQ/xr+S4GJUczvHc8u/JKuDItmcsGJRJss3C4uIKNBwvp0zmSxOhQQoKOU57/5Pew8u8Q0Rnu+rq2+6fuuJKr/wFnTWj8+VXlZrXj8Baze+Z4W0oYhjmDa9lj5vTpxsSkmF+UQyeY3RYF+8wxJXu/Mh/vPMCsArnqbHza51JzHaBjuyNWL4AP7ze/ECuKzO6kut1OjX2eD+6D798076ddb1bFinPMCk7JYbMra8jN5pd2c7PgjqeiGP46wBw7NeG9htPId38Bu1eYXziHfjT3DGtM5wFmwDtjnLn0AMDhbfC/39R2BYVEmlWYvhnQ9zJz7aXcTbBlMWz5sDZggrkvWfrtZnj96mlzt3oww+bZU8yKWt0ZfWBe2+V/MmdluarN8T9DJ5j7ph17blMObTTHkmHAnV9Al8Hw3IXmoPIzxpkDo1vCMMwv86V/rA1YNSI6m6Gm61m1oTA83uxu3PSeWeXb903zr9/7QhgxzazcrXkRPn3YDAdg7jFXd5A+FjPQjJ5hVhcbU+4wF/rcsdSsftVUJIfeag6et0e17HPXKD0C/zjbDKth8WYoi0yCyUvM6pmzCl6/0exyjkyCn39q/h1b96oZTGu6t9N+Bj95qnZV9cYc2ghv3WZ2L9djMQNkfG8z3NmCzF+KrEHmtjSNTYo4AX4bZoYPH85ZZ53F/PnzPccGDhzItddey5w5c5p97oUXXsiQIUMUZqR9rH0Z3r+n9v6Nr8CgqwHYdLCQGW+t59zenVi+7TC76wxO7mXJ5tWQORiGhZ9WPsxhYju02d3jwrh0YCL2YCtV1QYLvjL/wbVTyfshv6e/dT9FqVdQ8dOX2LThG0Z9fjO26hKqhv2c1QNn8sH3B/n56N706hTu6UbbebiYb3YdYf+RYtK7RTBqYPf6e281x+UyvzRK882uhOpK87fDsDjoP6bh+BiX01yccNljdca3nGZ+Mfe5zPyCaWzndGeV+Q97zRdM2s/gZy80/xunYcBXc81qBM380xUWb1aOzrzJ/MfZ29J8TfdYfG+Ytub440IqiuDQJjN4HFxn3g5vrW2jxWqGutie5pgTV7X5W/eo++C8+5sfH1OQZbZnzUvHVGwwq1RDb4ULfgsx3Zpv4+Ft5pf7lg/N+0FhMPwX5piv4DCzays43ByTdOy4qTfGm+OeBl9ndvOBWal77hLzMzYW+I51YK1ZLdz/rXk/rpdZaTqwxhz3VbcCUSO2B5Q5zIUxaz5vv8vNylJwuPsWZi45sOm/tT9/9pja5ySdDlc9ZW5Mm7cdNr9vVsUO1tmYt/eF5tiyHiPMxTh3LTOri/tX11/w02Z3t9Mw/yyve6bpJR4aUzPDsvNAuO0D85eN3I3mz9kdS8y/Q2v+bX6u2/9nhroaFcXwzXxYNsdsU2wP8+9Lyjn138MwzPdY/IBZFY3qCpfNhsObzSUcDv3QdPt+9kKbz9bzyzBTWVlJeHg4b7/9Ntddd53n+H333cf69etZvnx5s89vaZipqKigoqLCc7+wsJCUlBSFGWle3d+mwxNgxuYW/3ZeXFbO3lwHfbt1JthW24W0ObuQ6LBg9uSVYLNa6NUpgqwjpVQ5Xcz7fAdf7aidmh5ss3DxgC4s2XiIYT3jWL336Al/pMGWPbwX8v8ItjiZXTWB22xL6GnNZaVzEBOrHqSaRkJCM87pFU+3uDA27CtocrZZfEQIR0oqPf8fHmIjLjyEHw446p33i/PNPbzyiiuICw8hpXoPR3d8x8aggawujOWKtCS6RNmJsgdz5uxPAAgJsnJ6txiuHdqN8/okEL7tPRI/uave/l1llU6CbRZ255Wwcmc+44f3oKLaRVW1i6LyarrFhWHb9Zn5hRQWZ1Y8IhPN/9/5Ga71b2AtOVTb0KhkM0j0zTC/tJrbx6vGM+eb4yyO7R7zRlmB+QW7/vXasSw1+l1hLj9wbHdac6orYON78N1z5hfxwKvholmQ0Me7dmV9bY79aarKYbOb46ZGzzCv6f7V8PwlZiC7+9v6A7AX/wa+fcaselzzDzMAl+SZ/y3KNruRam41SwIER5iDxkfcbXZjgll1y15vti17vTnwtW4VJa6XOTZnyC21Fa5jFWSZY6vWvGT+G2CPNpdrGDa58TCdu8UMxt+/VRtYasYC1dWpr/nz0+dSsyJ2cB28OxUcWYDFXAyzb4Y5cL30iPnf0GizYhUcVvs6e750dx1jBpce57rX2sow2x7R2awuYoGb3zB/cWjM/tXwnzvM7kmLDc79pfnc6gozvBzeZgZPMNt83TP1w6njgBnWSo+Y4/JcTvMXC1e1GWTaeMq9X4aZgwcP0q1bN7766itGjqzto3/sscd46aWX2Lq1+bENLQ0zDz30EA8//HCD4wozclyLHzD3bRp5r7koXAcwDINth4pJiAyhU6S93mOV1S725pewOaeI4anxdImys3zbYQByCyvYnFPInrwSlm09XO95N6R3x1FWxSebDnG37T0eCH7L81iWqzNXVz5CAV6WuP3U+dYNbHWlcIj4eju8N6d/YhTxESGEhdgoLKuqFxxtOLkqYiu32ldwRunXhFL75eS02MiJGEh25GAORAxmk7Uf3xyNwgWM7ptA/6Rozg3dS5c3rsBpDeaRfouIjE+kT5dISiudlFRU89KqPVw6MJHrhnbjtM6RHC6q4H8/5vD1rnwMzJ+HYJuVG4elEGS1cHZqPGGFuwn+cSHl2ZvZlnw18UOvZsfhYvKKKkjrFkN0WDAWzP3SEiLt7MkvYXdeCT3iw+mVEEGwrX5lyOl0sf1wMQmRdhKO+Zmry+UysFig2mXUf42aLsUNb0B5oXvsSRlGeQEWxz7znNBYjNG/wrXtE2x7V7Ap6RpeT3qAKef1pleCu5JUXmgOCj62y6gxFiucfqO55EEz3VuGYVBYVk2kUYzt0AYzYKQMb/msqXKH2SXUc1TTY5bqOrrX7M5d+7IZZMI7meNqTrvIDL+xDYdPUF5oVpk2vN7wsRoxPSBjNgy61qzmzB9ldvkMu8PsIqqRv9OcbVji/jfgisfNgNLsZyyEj2bAD283/rjFaga5Uff7fLaZX4eZlStXMmJEbWnt0Ucf5ZVXXmHLli3NPFuVGekAVWWw7WPof2Xtb30BoqLaiQVLw7E0zmrKn72U0EPrMIIjqL59CSQO5mBBmTn2xmblQEEZ7284SFiwjcjQIM7qEUfvhAisVgulldWszypguXsAc7DNSl5xBWuzCuiXGElCpJ2i8moi7UH07hxBUnQof83cVq8JA5KiSI4JbRC6AMJDbJRWNrH3ViP6domkrMrJ/qNlrbpO3rBTyTnWLVxkXc8F1g2cZm34pZtnRLPG1Y/vXP1Z7erPrUFLud72Be86R3F/1d3t3sa2EBZso6zK/DO4eEAXVu3Mxx5spaC0ynNOTVBMiAwhKjSYbEcZ5VXHziA0uDFmM7+sfJlUI8tztMII4uKKv3KA2oG+XWNCKa1ycmXoJu4p/TvVlhCKbTG4wjuxuzSM4JgkbHEp7KiMJ7JzL17cWMXw/il8t+cI2w4V8/urBpLjKOfD77PJLSrHHmRjSEosm7ILcZRVERpsbdC+oT1i661EftmgRAYmRfHJpkNMveA08ksq+b8PN3FWj1jWZhUQE2Z2iTrKaq9DiM1Kz07hZB0ppaLaxdgzu3LgaClDE1ys3riN7yu6cHr3OLpE2dl/tIzY8GAGJccwuGs0e/NL2H+0jE+35GIPsvL4wD0M3vYPbK4qiq1RlFijKbJEklqynkTMqu220NNZW9yJm4I+x2GL5/7Oz2IJjcUAEqNDOb9vAsPD9hOy+D4OJV/Mj32msr+gnPziSrIdZSTFhFJUXs3Xu/I5MyWWH/Y7SI4JZewZyUTueJ8Bji+JCAuljBAMm52jVUEMufRmHJ2GEBpk4/sDBbz69V6+3nWESSN7cbi4grN6xDEoOZqencI9ky4Mw8AwwNrGkxr8Msx0VDfTsTRmRk55BVnw+Z/MMSCpjc8c7GhllU5Cg61YLBYMw2D/0TISIu2eY06XQdaRUrbmFDLitATPF0uNKqeL0gonV//zS/bmlwIw68qB9OgUTniIjeSYMJJiQvlkYw4xYcGc27sTLsPg4x9z+GJ7Hh9sOAjAT85IZvm2wxSVVzOqTyf+fP2ZbDzg4LMtuVS7DEKDrew6bHZZ9bLmMoRtDLHuYIh1B4MsewmxNB7Erq/4A6uNAfROiGjxApB19U+MYuuhoiYftwdZ6dUpotlzfMWKi5/ZvuBXQW+TZDnKc9VX8mj1rb5uVsAIpYI7bR8yNegDwiy1Y4HuqryXxa5zfdiyhmLDgykorSIs2MZLd5zDOaltu8WJX4YZMAcAp6enM2/ePM+xQYMGcc0112gAsIh0GKfLwDAMgmwnUEavKjfHxuz7unZj0LKjlHQeiuuOT4gKa3rMlaO0CpvNQliwjZpfZhtbrfpwUQX7j5ZyoKCMHvHhDO4agwVzTLLFYmHX4WLiI8xqiaOsioMFZfTsFE5UaDDlVU4Ky6pYt6+A4vJqwkNsdI6yE2Qzxx7tPFzMF9sOYxgQEx7M/iOlVLkMyiqdxEeEMKpPAvERIXy35wjF5dWkxIcTZLWw/2gp6/YVEBZso6LaRWxYMOekxnOoqIIQm4VDhRUkRYcSF1LNWUF7CD9tFGGhIThdBttzi3hl1V46RdrZmVtMeZWT7nFhfLP7CLHhwdislnpjycAce1VV7eLc0zqRuckczzQ8NZ684gp21llEMyk6lPsv60t6zzi2HSrm1a/3Eh0azMqdeQzrFc/grtG8vGovPeLDsVjg+/31x3EBpCZE0DnSzrd7jnBm9xiuGdKNsionr6zaS0xYMCNO64Q9yMpLq/ZgD7JxWucI1h6z79w5qfGkxIWz8aCDLTlFWCzQq1MEu/NKiA0PZmBSNKt25Td4XwuQU1hOes84dh0uwVWwn4fD3yLDtcK9BtYMSiubXk+rT5dIOkfacRoGESE21u0rYGBSNP2Tovhgw0HySyoZkBTFlpzaADy4azSGAUUVVVRUucgtqmjy9Y9n7rghXDv0OAPJveS3YaZmava//vUvRowYwbPPPstzzz3Hxo0b6dmzJzNnzuTAgQO8/PLLnuesX78egClTptC/f38eeOABQkJCGDRoUIveU2FGRDqEy2UOrIzs0vFbJ0jAcboMLLSga6YkH8JiG13xt7LaxdacIgZ3jW6TLh6ny+D7/QX07BRBtdNFWIiNqFCzKmoYBqWVTiLsQRwpqWTN3qNsO1SE1WLh8sGJdIsLwx7UwlmPLeS3YQbMRfP+/Oc/k52dTVpaGk899RTnn38+AJMmTWLPnj18/vnntW/SyG8rPXv2ZM+ePS16P4UZERGRwOPXYaajKcyIiIgEno76/tYOYSIiIhLQFGZEREQkoCnMiIiISEBTmBEREZGApjAjIiIiAU1hRkRERAKawoyIiIgENIUZERERCWgKMyIiIhLQFGZEREQkoCnMiIiISEBTmBEREZGAFuTrBrREzV6YhYWFPm6JiIiItFTN93Z772kdEGGmqKgIgJSUFB+3RERERLxVVFRETExMu72+xWjvuNQGXC4XBw8eJCoqCovF0mavW1hYSEpKCvv27WvXrclPNrpuraPr1jq6bt7TNWsdXbfWae66GYZBUVERXbt2xWptv5EtAVGZsVqtdO/evd1ePzo6Wj+4raDr1jq6bq2j6+Y9XbPW0XVrnaauW3tWZGpoALCIiIgENIUZERERCWindJix2+388Y9/xG63+7opAUXXrXV03VpH1817umato+vWOv5w3QJiALCIiIhIU07pyoyIiIgEPoUZERERCWgKMyIiIhLQFGZEREQkoJ3SYWbevHmkpqYSGhpKeno6K1as8HWTOsScOXM4++yziYqKokuXLlx77bVs3bq13jmGYfDQQw/RtWtXwsLCuPDCC9m4cWO9cyoqKrjnnntISEggIiKCq6++mv3799c75+jRo0yYMIGYmBhiYmKYMGECBQUF7f0RO8ScOXOwWCxMnz7dc0zXrXEHDhzg1ltvpVOnToSHhzNkyBDWrFnjeVzXraHq6mp+//vfk5qaSlhYGL1792b27Nm4XC7POaf6dfviiy8YO3YsXbt2xWKx8N5779V7vCOvT1ZWFmPHjiUiIoKEhATuvfdeKisr2+Njn7DmrltVVRW//e1vOf3004mIiKBr165MnDiRgwcP1nsNv7tuxinqzTffNIKDg43nnnvO2LRpk3HfffcZERERxt69e33dtHZ3+eWXG//+97+NH3/80Vi/fr1x1VVXGT169DCKi4s95zz++ONGVFSU8c477xg//PCDMW7cOCM5OdkoLCz0nDN16lSjW7duRmZmprF27VrjoosuMs4880yjurrac84VV1xhpKWlGStXrjRWrlxppKWlGT/5yU869PO2h2+//dbo1auXccYZZxj33Xef57iuW0NHjhwxevbsaUyaNMn45ptvjN27dxtLly41duzY4TlH162hRx55xOjUqZPx4YcfGrt37zbefvttIzIy0pg7d67nnFP9ui1evNiYNWuW8c477xiA8e6779Z7vKOuT3V1tZGWlmZcdNFFxtq1a43MzEyja9euxrRp09r9GrRGc9etoKDAuPTSS42FCxcaW7ZsMVatWmUMHz7cSE9Pr/ca/nbdTtkwc8455xhTp06td2zAgAHGgw8+6KMW+U5ubq4BGMuXLzcMwzBcLpeRlJRkPP74455zysvLjZiYGONf//qXYRjmD3xwcLDx5ptves45cOCAYbVajY8//tgwDMPYtGmTARhff/2155xVq1YZgLFly5aO+GjtoqioyOjbt6+RmZlpXHDBBZ4wo+vWuN/+9rfGeeed1+Tjum6Nu+qqq4w77rij3rGf/vSnxq233moYhq7bsY79Uu7I67N48WLDarUaBw4c8JzzxhtvGHa73XA4HO3yedtKYyHwWN9++60BeH7Z98frdkp2M1VWVrJmzRoyMjLqHc/IyGDlypU+apXvOBwOAOLj4wHYvXs3OTk59a6P3W7nggsu8FyfNWvWUFVVVe+crl27kpaW5jln1apVxMTEMHz4cM855557LjExMQF9ne+++26uuuoqLr300nrHdd0a9/777zNs2DBuuOEGunTpwtChQ3nuuec8j+u6Ne68887j008/Zdu2bQBs2LCBL7/8kiuvvBLQdTuejrw+q1atIi0tja5du3rOufzyy6moqKjXnRqoHA4HFouF2NhYwD+vW0BsNNnW8vLycDqdJCYm1juemJhITk6Oj1rlG4ZhMGPGDM477zzS0tIAPNegseuzd+9ezzkhISHExcU1OKfm+Tk5OXTp0qXBe3bp0iVgr/Obb77J2rVr+e677xo8puvWuF27djF//nxmzJjB7373O7799lvuvfde7HY7EydO1HVrwm9/+1scDgcDBgzAZrPhdDp59NFHufnmmwH9vB1PR16fnJycBu8TFxdHSEhIQF9DgPLych588EHGjx/v2UTSH6/bKRlmalgslnr3DcNocOxkN23aNL7//nu+/PLLBo+15voce05j5wfqdd63bx/33Xcfn3zyCaGhoU2ep+tWn8vlYtiwYTz22GMADB06lI0bNzJ//nwmTpzoOU/Xrb6FCxfy6quv8vrrrzN48GDWr1/P9OnT6dq1K7fddpvnPF235nXU9TkZr2FVVRU33XQTLpeLefPmHfd8X163U7KbKSEhAZvN1iD55ebmNkiJJ7N77rmH999/n2XLltG9e3fP8aSkJIBmr09SUhKVlZUcPXq02XMOHTrU4H0PHz4ckNd5zZo15Obmkp6eTlBQEEFBQSxfvpy//e1vBAUFeT6Trlt9ycnJDBo0qN6xgQMHkpWVBejnrSkPPPAADz74IDfddBOnn346EyZM4P7772fOnDmArtvxdOT1SUpKavA+R48epaqqKmCvYVVVFTfeeCO7d+8mMzPTU5UB/7xup2SYCQkJIT09nczMzHrHMzMzGTlypI9a1XEMw2DatGksWrSIzz77jNTU1HqPp6amkpSUVO/6VFZWsnz5cs/1SU9PJzg4uN452dnZ/Pjjj55zRowYgcPh4Ntvv/Wc88033+BwOALyOl9yySX88MMPrF+/3nMbNmwYt9xyC+vXr6d37966bo0YNWpUg6n/27Zto2fPnoB+3ppSWlqK1Vr/n2ibzeaZmq3r1ryOvD4jRozgxx9/JDs723POJ598gt1uJz09vV0/Z3uoCTLbt29n6dKldOrUqd7jfnndvBoufBKpmZr9wgsvGJs2bTKmT59uREREGHv27PF109rdL3/5SyMmJsb4/PPPjezsbM+ttLTUc87jjz9uxMTEGIsWLTJ++OEH4+abb250SmP37t2NpUuXGmvXrjUuvvjiRqfmnXHGGcaqVauMVatWGaeffnpATPlsqbqzmQxD160x3377rREUFGQ8+uijxvbt243XXnvNCA8PN1599VXPObpuDd12221Gt27dPFOzFy1aZCQkJBi/+c1vPOec6tetqKjIWLdunbFu3ToDMJ588klj3bp1nlk3HXV9aqYYX3LJJcbatWuNpUuXGt27d/fbqdnNXbeqqirj6quvNrp3726sX7++3ndERUWF5zX87bqdsmHGMAzjn//8p9GzZ08jJCTEOOusszxTk092QKO3f//7355zXC6X8cc//tFISkoy7Ha7cf755xs//PBDvdcpKyszpk2bZsTHxxthYWHGT37yEyMrK6veOfn5+cYtt9xiREVFGVFRUcYtt9xiHD16tAM+Zcc4NszoujXugw8+MNLS0gy73W4MGDDAePbZZ+s9ruvWUGFhoXHfffcZPXr0MEJDQ43evXsbs2bNqveFcqpft2XLljX6b9ltt91mGEbHXp+9e/caV111lREWFmbEx8cb06ZNM8rLy9vz47dac9dt9+7dTX5HLFu2zPMa/nbdLIZhGN7VckRERET8xyk5ZkZEREROHgozIiIiEtAUZkRERCSgKcyIiIhIQFOYERERkYCmMCMiIiIBTWFGREREAprCjIiIiAQ0hRkREREJaAozIiIiEtAUZkRERCSgKcyIiIhIQPv/6ED7jaXIi5wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ddpm_learner.recorder.plot_loss()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sample generation\n", "\n", "Since we implemented sampling in the Callback, we simply can call fastai's built-in `get_preds` function to get our predictions." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "preds = ddpm_learner.get_preds()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we are passing a labels vector that looks like `[0,1,2,3,4,5,6,7,8,9,0,1,2,3,4.....]`" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAIAAAD8GO2jAAAHWElEQVR4nDWW26vmdRnF11rP9/ceZp9m9px0zG2O1XgYtKQDRoQdLCIIg6DIm7rxrruuAgmC/oUogi68iCCkoEClrJuoDBLRITwk5TjmzKiNs7f78L6/7/OsLrZdP6yL53Ox1oeP/PrtnrMRLQaWOUwwBtmzuUZQvVFVZBYQQFeIyf1mgk6LLkCZBZWSFlCdCHVUtbZsbQ8zQJNQUa2li1EgokzSjO4SyRamhYayw3OrI0WAdDpDRAUBl+0JjFJ1c19ja2wVSKZQLhEJMAV1UiQMlZMWSiNopCxzNFonAFRUoEyjCKZNW6DLztksmzIsN3Q7KJeDQKMtgIaZtNRpAawSBKIQULFwyCgBJoACUS4m4KQNj2rWMhAGYScM2yDKNEsgzFLBFKoI0C6SoKsos0SzQAC22UnJtEVlMRdomRFsgNnILNOSTECgSadNAQAEAqAE2mWwUnaREGiUHBWpHhljK5ooHbHi8KxDHtVQKCMNoBVsRZAMSBRFkoBx+NskxSLpMgmj5OYhg3IrCmSPViJgFqthaPYiKNkg0YMsw7ZgQAAIgwFYJbBbhAFJJVNRCZpQAwSlpFLRABQ1aTUuxFnvHNVomllAmSArZIcJUqwKuNGNZAGCQFbAAqEQTYoGnWZzocOoMZfjG6/9e3Vt5cTNJ7JTY0uBlojDaJRMo6xIdLeAlS1bB5qVzLIQxWR0UFZAHBpg2ojguHj+j495+eJHP/WNU+fvL66oIJtWNbNUNGmZMCdTHVF1t4NGjtExymqt95EOkyqQIIaSFGjqS9dsNQL7l1648MTjFy88F+OBEFA4hCUNGEbGWNlDHRjzYLrcWZsGG6YRjKhxiBAsvNcCLqkVrYQ0vf5uv3j11dnr165d/us7rU0GbN52z2S21t+thr7oSE+gd6kCdl688AbHq/0/r3zxwa+N60drqVhWt0djgFMEolyKsZGoCdlr2roWQ1/uY75y9d/P/Pbn//zguU/c/smvHDtza4/5ArWMQVo71a//5fePv/TsU1sr9fQTz56eT+976KEdxM4yQ6qRIxOEKwGPCzY5WHarGWen7zj35jO7ir6/+44X7YVrr156+Q9nzt6xefKWM7fcuRPc/++rf/77s2/vvLn414t/2r54112f2tw4fnys7VY5ZF+6WrqZo8SsjEnLFsNSRihEP3Dfl5565qdvvnSlcifn8+Wyv9l3X3/jlZXpfNpQs/n15SVeOzh2+lavXtlaveWBbz38za9++er1xcb+cv/kysFOz10MClXY4NBC0dQCVRCQuPn28yfv+vprF392dJXLnd0DjosDexrbi/3ppC2u/ocYV47EtZ23j61ujld3fvfYLzc2Nu+/4/2bm0cO9q9hPnfNe/YCq8u5CAW//+QSBTJlr8X84OCdX/3ou8/95cm4vqe1YeGdZSWGgJPqboAjqqWGzVhdLubnTtz4wG3ruPdDbW195aZ7Z8dPLGJtbBuZx8vNk6HBNgTIdOdytr7+4MM/3Lj5/LO/eXR3cTn3Eh5Ri5VZTDfbkRMncq9FTYvr29ttN9/eWwxPv3xlzJ1TnlzZ+9vlOnbuC/edv/Mz60fXxoJAPvJ4p6nmhhqCgZisc5nLqxefv/Ty0089+uMrF1+cr9XRzc211elkbf0D7zt7dGNr647Pvnq5b095dDKFcrFdcX3ntTcua3Vj9c7zx8+cveHI5lIxmQ8tgJSdHBUuK5jbpWFyfOueY1t333jr3b/4yQ+2L16YHjn2zuqa3rq4ddOd937hO6duPHfj7vLdPpTHfXdgnlVn5wFjIWOXIbTuiSlHiqwAyBLGHJfwQSH3xYM4debjn/v8t6d1Esvh9IoOrmEvt/YmJy7t166HA3D0pGkmoU3JWjgPNPYJe2UGquzmAiopApEkKMPD2FNSWqyzZz9y83DiKPbV25XF/H2nb5+q7S/20BumjVAFZaQrXIBUTpccVWhJZcIGssxul8tIdLFcxc6+nOTG/OTd2968cOGVcx//4vl7Pr0zYpHRG7JXR7fHqlJy9NB7IAkOCVlctOT3nthFD4JoJAhVSDA5uI0Vxd4zx523tl/+x+sv3XbTh08fu42TCDSTpCGSsGmjCBSroGQBBmdiwzig4CBTCMBEJTRklkxGaNAwbNywcvfG1sd6wsWoMkCyRBpF03DZUUWBSIkFwqPVIBYKAFi0WSyJziYkVDYzy7AnbWTYtstiwAQ7LR+uuCyMAi0brgAAF0KGWLBJC0URKBFI0QgrkkPXUGwGEvShIpSQLKIElwx0GrDKBEx1ERSAVjnCAJBm8NCm/j/zKHZQtmGSpTAsUwUfqoXVaZMC0wWDRBlwuZagNLYSmUSH5AprJFoxRctVRbgbZKFoE+E6tCBAPIRPu8owCMIwkLQK1ccDu/k9B0UIEigm1GSjJBTtEg+jpFFlSoDEKgsw8lAHYRbUCBuJAroUUAPSQbRBTY1YwLYrEFkoGeoTBYBUpRlozUiiISqcUGBcukK2U6pauAwaVLiOzOJ/LXH2U6T4VP4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wandb.Image(torch.tensor(0.5*preds[0][0]+0.5)).image" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "p = preds[0]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([512, 3, 32, 32])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.shape" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "TensorImage([-0.0303, -0.0196, -0.0900])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p.mean(dim=(0,2,3))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACSgAAASpCAYAAADWEGWGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QlV30m/D9VdfLNoW9HqdUttVo5IVAEJWOCwBjQwABGIo2H4JmfbXht43ewBMYWwcyC8Qy23/ELeF6MwdiAAXkwSASDaQkJ5Rw6p9u3bw4nVdX+/SF3Dy09z+FK1kW34fms5eXF95xTu2rXDt+9q3Q7CiEEmJmZmZmZmZmZmZmZmZmZmZmZLYH42T4BMzMzMzMzMzMzMzMzMzMzMzP7+eUXlMzMzMzMzMzMzMzMzMzMzMzMbMn4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlMzMzMzMzMzMzMzMzMzMzMzMbMn4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlJbA9u3bEUURPvOZzzzjxz7uuOPwpje96Rk/rtkvos997nP4+Mc//myfxqK86U1vQnd396K++8RxYinHJLPl6LrrrkMURTh48GDH71166aW49NJLn5GyzGx5WVhYwHXXXYfvfve7z/apmP3c8hxodvRy/zVbfr7whS/g1FNPRbVaRRRFuPPOO5/tUzL7hbbYvSUzO7pdeumlOO20037q9/yMxeyZ98Mf/hDXXXcdpqamnpXyP/OZzyCKItx2223PSvm/yArP9gn8PFq9ejW2bNmC448//tk+FTPr4HOf+xzuvfde/OZv/uazfSrPqC9/+cvo7e19tk/DbNn75Cc/+WyfgpktkYWFBbz//e8HgH/zi4hmZmZmZktpbGwMb3zjG/HiF78Yn/zkJ1Eul3HiiSc+26dlZmZm/8rPfc2eeT/84Q/x/ve/H29605vQ39//bJ+O/Qz5BaUlUC6Xcf755//U7y0sLKBWq/0MzsjMfpGcffbZz/YpmB0VTjnllJ/6nSzLkKYpyuXyz+CMzMzMrBOvoc3M7OfRww8/jHa7jV/7tV/DJZdcIr/nedDs50u9Xke1Wn22T8PMFmGxz33NbGl4zvz54n/i7Sl49NFH8eY3vxmbNm1CrVbD2rVr8fKXvxz33HPPEd9jf+rv0J8Evf3223HVVVdhYGDg8Ju2h/7ppvvuuw9XXHEFurq6sGLFCvzGb/wGFhYWOp5To9HAu9/9bpx11lno6+vD4OAgLrjgAvzDP/zDk74bRRF+4zd+A//f//f/4eSTT0atVsOZZ56Jr3/960/67iOPPILXv/71GBkZQblcxsknn4z/8T/+x9OoNbNnxmL736E/ybd9+/Yj4t/97ncRRdHhf+rl0ksvxQ033IAdO3YgiqLD/3fIxMQE3vnOd2Lt2rUolUrYuHEj/u//+/9Gs9k84riH+tWnP/1pbN68GdVqFeeeey5uvvlmhBDw0Y9+FBs2bEB3dzcuv/xyPProo0+6tk996lM488wzUalUMDg4iFe+8pV44IEHaD0sZpxY7D8F6X5uP+927dqFV73qVejt7UVfXx9+7dd+DWNjY4c/f+I/8XZo/v7IRz6CD37wg9iwYQPK5TK+853vAABuuOEGnHXWWSiXy9iwYQP+5E/+5Gd9SWa/EB588EG87nWvw8qVK1Eul3Hsscfi6quvRrPZxNjYGN75znfilFNOQXd3N0ZGRnD55Zfj+9///uHfb9++HStWrAAAvP/97z88x/ufSTZ7+hYzB4YQ8MlPfhJnnXUWqtUqBgYGcNVVV2Hr1q1P+u6NN96IK664Ar29vajVarjoootw0003HfGdTmtoM1u8xfTfRqOB9773vdiwYQNKpRLWrl2Ld73rXU/6U/vNZhPvfve7sWrVKtRqNbzgBS/Aj3/840WvQc3syd70pjfh4osvBgC89rWvRRRFuPTSSw/vF99zzz345V/+ZfT09OCKK64AsPg9q6mpKbz1rW/F4OAguru7ceWVV2Lr1q2IogjXXXfdz/pSzY5Ko6OjeN3rXoe+vj6sXLkSb3nLWzA9PX3488XOoccddxxe9rKX4Utf+hLOPvtsVCqVw3/194tf/CLOO+889PX1oVarYePGjXjLW95yxO9nZmbwnve854hyfvM3fxPz8/NLXgdmR7OxsTH8+q//Oo455hiUy2WsWLECF110EW688cYjvnfrrbfi+c9//uE++KEPfQh5nh/+vNNz3zvuuKPjHrSZPdl1112H/+v/+r8AABs2bDi8f/vd735Xzpmd/qlFlt922mNW9u3bh+c85znYtGkTHnnkkWfyku0n+C8oPQV79+7F0NAQPvShD2HFihWYmJjAX/3VX+G8887DHXfcgc2bN//UY7zqVa/Cv//3/x5vf/vbj0ge2+02XvrSl+I//sf/iN/7vd/DD3/4Q3zwgx/Ejh078LWvfU0er9lsYmJiAu95z3uwdu1atFot3HjjjXjVq16FT3/607j66quP+P4NN9yAW2+9FR/4wAfQ3d2Nj3zkI3jlK1+Jhx56CBs3bgQA3H///bjwwgtx7LHH4mMf+xhWrVqFf/qnf8J//s//GQcPHsS11177NGvQ7Ol7JvrfT/rkJz+JX//1X8djjz2GL3/5y0d81mg0cNlll+Gxxx7D+9//fpxxxhn4/ve/j+uvvx533nknbrjhhiO+//Wvfx133HEHPvShDyGKIvzu7/4urrzySlxzzTXYunUr/vt//++Ynp7Gb//2b+PVr3417rzzzsMvQ11//fX4/d//fbzuda/D9ddfj/HxcVx33XW44IILcOutt2LTpk2Hy3m64wTjfm6/CF75ylfiNa95Dd7+9rfjvvvuw/ve9z7cf//9uOWWW1AsFuXv/tt/+2848cQT8Sd/8ifo7e3Fpk2bcNNNN+EVr3gFLrjgAnz+859HlmX4yEc+gtHR0Z/hFZn9/Lvrrrtw8cUXY3h4GB/4wAewadMm7Nu3D1/96lfRarUwMTEBALj22muxatUqzM3N4ctf/jIuvfRS3HTTTbj00kuxevVqfOMb38CLX/xivPWtb8Xb3vY2ADj80pKZPTWLnQP/43/8j/jMZz6D//yf/zM+/OEPY2JiAh/4wAdw4YUX4q677sLKlSsBAJ/97Gdx9dVX4xWveAX+6q/+CsViEX/xF3+BF73oRfinf/qnww9fD1FraDP76RbTf0MI+NVf/VXcdNNNeO9734vnP//5uPvuu3Httddiy5Yt2LJly+G/JvrmN78ZX/jCF/A7v/M7uPzyy3H//ffjla98JWZmZp6tSzQ76r3vfe/D8573PLzrXe/CH//xH+Oyyy5Db28vPvKRj6DVauFXfuVXDu8DpWm66D2rPM/x8pe/HLfddhuuu+46nHPOOdiyZQte/OIXP8tXbHZ0efWrX43Xvva1eOtb34p77rkH733vewE8/h+cPpU5FABuv/12PPDAA/gv/+W/YMOGDejq6sKWLVvw2te+Fq997Wtx3XXXoVKpYMeOHfj2t799+HcLCwu45JJLsHv3bvz+7/8+zjjjDNx33334gz/4A9xzzz248cYbj/gPb83s/3jjG9+I22+/HX/0R3+EE088EVNTU7j99tsxPj5++Dv79+/HG97wBrz73e/Gtddeiy9/+ct473vfizVr1jzpGSvzdPegzX6Rve1tb8PExAT+9E//FF/60pewevVqAP/nX71gc+ZT8dP2mNm/mHHvvffipS99KdatW4ctW7ZgeHj4336hxgV72tI0Da1WK2zatCn81m/91uH4tm3bAoDw6U9/+nDs2muvDQDCH/zBHzzpONdcc00AED7xiU8cEf+jP/qjACD84Ac/OBxbv359uOaaazqeU7vdDm9961vD2WeffcRnAMLKlSvDzMzM4dj+/ftDHMfh+uuvPxx70YteFNatWxemp6eP+P1v/MZvhEqlEiYmJmT5Zj8rqv99+tOfDgDCtm3bjvj+d77znQAgfOc73zkcu/LKK8P69eufdOw///M/DwDC3/7t3x4R//CHPxwAhG9+85uHYwDCqlWrwtzc3OHYV77ylQAgnHXWWSHP88Pxj3/84wFAuPvuu0MIIUxOToZqtRpe+tKXHlHOzp07Q7lcDq9//esPx/4t4wQbk9zP7efZoTn3J8eGEEL467/+6wAgfPaznw0hhHDJJZeESy655PDnh/rK8ccfH1qt1hG/Pe+888KaNWtCvV4/HJuZmQmDg4PB6ZTZM+fyyy8P/f394cCBA4v6/qHc94orrgivfOUrD8fHxsYCgHDttdcu0Zma/eJYzBy4ZcuWACB87GMfO+K3u3btCtVqNfzO7/xOCCGE+fn5MDg4GF7+8pcf8b0sy8KZZ54Znve85x2OdVpDm9niLKb/fuMb3wgAwkc+8pEjfvuFL3whAAj/z//z/4QQQrjvvvsCgPC7v/u7R3zvb/7mbwKAjntVZtbZoT2rL37xi4djh/aBPvWpTx3x3cXuWd1www0BQPizP/uzI753/fXXO082W4RDuegT58d3vvOdoVKphDzPFz2HhvD4fm2SJOGhhx464rt/8id/EgCEqakpeS7XX399iOM43HrrrUfE/+7v/i4ACP/4j//4dC/T7Oded3d3+M3f/E35+SWXXBIAhFtuueWI+CmnnBJe9KIXHf7fnZ77/rQ9aDPjPvrRj9LnuWrOZP3wkCfmt4vZYz70PPnWW28N3/rWt0Jvb2+46qqrjlg/29LwP/H2FKRpij/+4z/GKaecglKphEKhgFKphEceeUT+c0xP9OpXv1p+9oY3vOGI//36178eAA7/0zLKF7/4RVx00UXo7u5GoVBAsVjE//v//r/0nC677DL09PQc/t8rV67EyMgIduzYAeDxvxxz00034ZWvfCVqtRrSND38fy996UvRaDRw8803L+pazZ5Jz0T/W6xvf/vb6OrqwlVXXXVE/NCfrH/iPz9x2WWXHfH27sknnwwAeMlLXnLEf71yKH6ov23ZsgX1ev1Jfwr/mGOOweWXX/6kcoCnP078JPdz+0XxxP7ymte8BoVC4af2l1/5lV854r9umZ+fx6233opXvepVqFQqh+M9PT14+ctf/syetNkvsIWFBXzve9/Da17zmo5/7ejP//zPcc4556BSqRzOfW+66aZnPB8ws8XPgV//+tcRRRF+7dd+7YjcctWqVTjzzDMP/zPLP/zhDzExMYFrrrnmiO/leY4Xv/jFuPXWW5/0V5I6raHNTFts/z30FxqeuC79d//u36Grq+vwuvR73/segMdz6p901VVXoVDwH2g3WypPnAcXu2el+uzrXve6JTpTs59Pv/Irv3LE/z7jjDPQaDRw4MCBRc+hP/nbE0888YjYc5/7XACP99W//du/xZ49e550Dl//+tdx2mmn4ayzzjoih37Ri150+J/DMTPuec97Hj7zmc/ggx/8IG6++Wa02+0nfWfVqlV43vOed0TsjDPOOPwc56d5unvQZqaxOXOxFrvHfMhf/dVf4aUvfSne9ra34W//9m+PWD/b0vALSk/Bb//2b+N973sffvVXfxVf+9rXcMstt+DWW2/FmWeeiXq9vqhjHPoTZU9UKBQwNDR0RGzVqlUAcMSfGnyiL33pS3jNa16DtWvX4rOf/Sy2bNmCW2+9FW95y1vQaDSe9P0nlgEA5XL58PmPj48jTVP86Z/+KYrF4hH/99KXvhQAcPDgwUVdq9kz6Znof4s1Pj6OVatWPelP446MjKBQKDypTw4ODh7xv0ulUsf4ob556DhsXFizZs2Tynm648QTuZ/bL4pD/eOQQ33op/WXJ/bJyclJ5Hn+pOOxMszs6ZucnESWZVi3bp38zn/9r/8V73jHO3Deeefh7//+73HzzTfj1ltvxYtf/OJnPB8ws8XPgaOjowghYOXKlU/KL2+++ebDueWhf1bqqquuetL3PvzhDyOEcPifcjxEraHNrLPF9t/x8XEUCoUnbdxGUYRVq1Ydzp0P/f9D/1zjIWydambPjFqtht7e3iNii92zOtS3n7g39cQ+bGadPXGOO/RPwtTr9UXPoYewvPYFL3gBvvKVryBNU1x99dVYt24dTjvtNPzN3/zN4e+Mjo7i7rvvflL+3NPTgxCC93HNOvjCF76Aa665Bn/5l3+JCy64AIODg7j66quxf//+w9/5ac9Nf5qnuwdtZtq/ZS9oMXvMP+nzn/88qtUq3va2t/mfTP0Z8X/i9BR89rOfxdVXX40//uM/PiJ+8OBB9Pf3L+oYqmGnaYrx8fEjJsJDE2SnjZ7Pfvaz2LBhA77whS8ccexms7mo83migYEBJEmCN77xjXjXu95Fv7Nhw4andWyzf4vF9r9Db7Y+sQ88lYXa0NAQbrnlFoQQjuhXBw4cQJqmz9i/O3qob+/bt+9Jn+3du/dJ5TzdceKJ3M/tF8X+/fuxdu3aw/+b9SHmiXP1wMAAoig6YuH6k2WY2TNjcHAQSZJg9+7d8juf/exncemll+LP/uzPjojPzs4u9emZ/UJa7Bw4PDyMKIrw/e9///BDm590KHYov/3TP/1TnH/++bTMJz449eaQ2dOz2P47NDSENE0xNjZ2xAPWEAL2799/+C87HMqhR0dHaY5tZs88Ngcuds/qUN+emJg44iUlr2HNnjmLnUMPUXntK17xCrziFa9As9nEzTffjOuvvx6vf/3rcdxxx+GCCy7A8PAwqtUqPvWpT9HfP1N71WY/j4aHh/Hxj38cH//4x7Fz50589atfxe/93u/hwIED+MY3vvGMlPF096DNTGNzpnr+y/6oxE/bY/5Jf/3Xf433ve99uOSSS/DNb34TZ5111tM7aVs0/wWlpyCKoidttt5www30z24+HX/91399xP/+3Oc+BwC49NJLO55TqVQ6oqPu378f//AP//C0zqFWq+Gyyy7DHXfcgTPOOAPnnnvuk/7Pk6o9Gxbb/4477jgAwN13331E/Ktf/eqTjqnegr/iiiswNzeHr3zlK0fE/9f/+l+HP38mXHDBBahWq/jsZz97RHz37t349re/Tct5OuPEE7mf2y+KJ/aXv/3bv0Wapk+pvwBAV1cXnve85+FLX/rSEX+dcHZ2Fl/72teeiVM1MwDVahWXXHIJvvjFL8oXi1k+cPfdd2PLli1HxH7yv2o1s6dvsXPgy172MoQQsGfPHppbnn766QCAiy66CP39/bj//vvp984999zDf3XUzP5tFtt/D607n7gu/fu//3vMz88f/vwFL3gBgMf/K/Sf9Hd/93dI03RJrsHMnmyxe1aXXHIJgCf32c9//vNLf5JmvyAWO4cuVrlcxiWXXIIPf/jDAIA77rgDwOO59mOPPYahoSGaPx/aDzezzo499lj8xm/8Bl74whfi9ttvf8aO+0ztQZv9onmq+7crV65EpVJ50vPfJ74TsZg95p80ODiIG2+8ESeffDIuu+wy3HzzzYu8Anu6/BeUnoKXvexl+MxnPoOTTjoJZ5xxBn784x/jox/96KL/RFgnpVIJH/vYxzA3N4fnPve5+OEPf4gPfvCDeMlLXoKLL7644zl96Utfwjvf+U5cddVV2LVrF/7wD/8Qq1evxiOPPPK0zuUTn/gELr74Yjz/+c/HO97xDhx33HGYnZ3Fo48+iq997WuH/21ls5+lxfa/5z73udi8eTPe8573IE1TDAwM4Mtf/jJ+8IMfPOmYp59+Or70pS/hz/7sz/Cc5zwHcRzj3HPPxdVXX43/8T/+B6655hps374dp59+On7wgx/gj//4j/HSl74Uv/RLv/SMXFN/fz/e97734fd///dx9dVX43Wvex3Gx8fx/ve/H5VKBddee+0R33+64wTjfm6/CL70pS+hUCjghS98Ie677z68733vw5lnnonXvOY1T/lYf/iHf4gXv/jFeOELX4h3v/vdyLIMH/7wh9HV1fWkf4rGzJ6+//pf/ysuvvhinHfeefi93/s9nHDCCRgdHcVXv/pV/MVf/AVe9rKX4Q//8A9x7bXX4pJLLsFDDz2ED3zgA9iwYcMRD0d7enqwfv16/MM//AOuuOIKDA4OYnh42Bu3Zk/DYubAiy66CL/+67+ON7/5zbjtttvwghe8AF1dXdi3bx9+8IMf4PTTT8c73vEOdHd340//9E9xzTXXYGJiAldddRVGRkYwNjaGu+66C2NjY0/6C2lm9vQtpv++8IUvxIte9CL87u/+LmZmZnDRRRfh7rvvxrXXXouzzz4bb3zjGwEAp556Kl73utfhYx/7GJIkweWXX4777rsPH/vYx9DX14c49n8DafazsNg9qxe/+MW46KKL8O53vxszMzN4znOegy1bthx+kcl91uzfbrFzaCd/8Ad/gN27d+OKK67AunXrMDU1hU984hMoFouHXzT8zd/8Tfz93/89XvCCF+C3fuu3cMYZZyDPc+zcuRPf/OY38e53vxvnnXfeUl+u2VFnenoal112GV7/+tfjpJNOQk9PD2699VZ84xvfwKte9apnrJxncg/a7BfJof+Y7ROf+ASuueYaFItFbN68WX4/iiL82q/9Gj71qU/h+OOPx5lnnokf/ehHh/+Qw0/6aXvMPT09R3y/p6fn8Njwwhe+EF/96ldx2WWXPbMXbP9HsEWbnJwMb33rW8PIyEio1Wrh4osvDt///vfDJZdcEi655JLD39u2bVsAED796U8fjl177bUBQBgbG3vSca+55prQ1dUV7r777nDppZeGarUaBgcHwzve8Y4wNzd3xHfXr18frrnmmiNiH/rQh8Jxxx0XyuVyOPnkk8P//J//83B5PwlAeNe73vWk8tkxt23bFt7ylreEtWvXhmKxGFasWBEuvPDC8MEPfnBxlWX2DFts/wshhIcffjj88i//cujt7Q0rVqwI/+k//adwww03BADhO9/5zuHvTUxMhKuuuir09/eHKIqO6DPj4+Ph7W9/e1i9enUoFAph/fr14b3vfW9oNBpHlMX61aEx4KMf/egR8e985zsBQPjiF794RPwv//IvwxlnnBFKpVLo6+sLr3jFK8J99913xHf+LeMEG5MOxd3P7efRoTnwxz/+cXj5y18euru7Q09PT3jd614XRkdHD39Pzd9P7LuHfPWrXz3cV4899tjwoQ99iM63ZvZvc//994d/9+/+XRgaGjrc3970pjeFRqMRms1meM973hPWrl0bKpVKOOecc8JXvvKVcM0114T169cfcZwbb7wxnH322aFcLgcAT8p3zWzxFjsHfupTnwrnnXde6OrqCtVqNRx//PHh6quvDrfddtsR3/ve974XrrzyyjA4OBiKxWJYu3ZtuPLKK4/Ikzutoc1s8RbTf+v1evjd3/3dsH79+lAsFsPq1avDO97xjjA5OXnEsRqNRvjt3/7tMDIyEiqVSjj//PPDli1bQl9fX/it3/qtn/GVmf38YPtFh/aBmMXuWU1MTIQ3v/nNob+/P9RqtfDCF74w3HzzzQFA+MQnPrGk12R2tFO56Kc//ekAIGzbti2EsPg5dP369eHKK698Ujlf//rXw0te8pKwdu3aUCqVwsjISHjpS18avv/97x/xvbm5ufBf/st/CZs3bz68h3z66aeH3/qt3wr79+9/Rq/d7OdFo9EIb3/728MZZ5wRent7Q7VaDZs3bw7XXnttmJ+fDyE8vj986qmnPum3T9xn6vTc96ftQZuZ9t73vjesWbMmxHF8+BmumjNDCGF6ejq87W1vCytXrgxdXV3h5S9/edi+fXsAEK699tojvttpjzmE/zOn33rrrYd/02w2w6tf/epQqVTCDTfcsGTX/YsuCiGEn9XLUMa96U1vwt/93d9hbm7u2T4VMzMzMzMzMzOzRfnhD3+Iiy66CH/913+N17/+9c/26ZjZT/G5z30Ob3jDG/Av//IvuPDCC5/t0zEzMztqXXfddXj/+9+PsbExDA8PP9unY2Z21PA/8WZmZmZmZmZmZmYdfetb38KWLVvwnOc8B9VqFXfddRc+9KEPYdOmTc/oP5NhZs+Mv/mbv8GePXtw+umnI45j3HzzzfjoRz+KF7zgBX45yczMzMzMnhV+QcnMzMzMzMzMzMw66u3txTe/+U18/OMfx+zsLIaHh/GSl7wE119/PSqVyrN9emb2BD09Pfj85z+PD37wg5ifn8fq1avxpje9CR/84Aef7VMzMzMzM7NfUP4n3szMzMzMzMzMzMzMzMzMzMzMbMnEz/YJmJmZmZmZmZmZmZmZmZmZmZnZzy+/oGRmZmZmZmZmZmZmZmZmZmZmZkvGLyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZAqL/eIf/MMEjadZhcbbHQ6dFCMazwOPF0v8OO2Efz9KMxovhFyeUxv8WHHKryOK+bHyiB8n00UDiYin/P2xJBZlRHUaL4h6BQBEgR8r8LIjWYf8+5m6cFF/ABBn/HzFKQF5SsORqNiYf/3xQ+X8fhdaPH79GxfdhX6m7v3RTTQ+1L+Cxhe23iKPNXXXP9P4Tbd8h8ZbpQaNp8U2jfeX+H0q5lV5Tt3iOjau7qfxlUM1Gi+XeRmDvXxcA4BGjX9WjMo0Hoq8jbTyBRovlTsMFvNTvIwWP1bUbtF4LM61XO6n8bRrkzyl7VO8Q82M8TmjnM3ReFTn7aDV0h22HQZpPDlmPY1f+Nr3yGM92048gV9LJuaHNOX9DACimLe5VIzfecbnTIDPD1DzpZrLAMQlNQ/xgT0WRRdEIVmH+R0Rv75YzI0h4ecUMj6GJQX9rneSiHlI1GEAv45YTICxyjnkGQHIReU+xfwlF+cUgmo3QNbidZjnRRrf+eiUPNaz6cu/cwmNFxI+1yQFfn0A0FXl/bVc4XNNqczL6OrtovHuAR4vx7rdZoGPL4/tGKfxex9+jMbPPHUjja9cref3lsjhUzGuFQq8jxVyPs+lHQaqKBe5bEv044jfo3JXD403Ar8XD2/fLc/pqzd8jca3/PhBGp+a5PN+scIXU5tG+NwDAFdeeAyNDx87QONvuO4Geaxn23CN38O0IOamTPePNOV5SRBrqpYYQ4NYQsSBn2tQEyOAUsIP1tPVTePtrMm/X+btJMn1WjISc2C5l/fzlQP9ND60coTG9+/l+SQAjB7cT+PNiFd6JMYLMf3JdpCLNgAArQV+n7q7ed0O9PfTeKWbjxfNBl/vA8BCg/f/lmg7D/3oAXmsZ9Mt//hNGv/mjd+g8X17+BwEAOVhXo/1hugD3bzdJqKRpG3eFtrg9wLQ96mY8ftUFGNCqcTnuWovn4MAoFoVe3dzvF1lIveNVG6NDuu2Jv+skPAcqVjk9dTTxetjeo7nLiMVnXPEjVkan6tP0nhZrOvXdvHxq6wmAABRyj+bLfK6ffXH/1Ee69m2pp+3uSZvPmg0Om7I8bDY2yuUefuJxHEisU6JEz3H6hUx/ySXZYj9XbFeBIAgFmJ5Ks5KpC+x2J/PC/q6IfZlVd2K5a3eExZ13mEpiaAWuTn/IIlEDv80tnHTtrrfvIy5wPe9nm3Vi0+i8a4azxlrYr8WAFp1MQe2eWMoifVILoqIxR5PpcPaulbh41G5wOe/Zp3PNQUxjw8O98uyp6f4vmyjyS/w4kueT+NnnLeZxvvlwyPguzd9n8bHD47S+PzsNI33rF3Dz+nsE/n3+/rlOa3o5+vMPBNrhN6VvIwBvv+fiP0SAJibOUDjC6M7afxXzr9cHuvZtuL519F4KvL7Ik99AQAtsQAt9fF7csaZfG99qLufxmfmeW46saB3KPMi789dFT4mtURuGlq8jKKYBwCgItbK3d28bWU5L7sIsYbu8GdB5ts8B1XPfNWWd1Ll9ZeUeOFtsd8GAK0WXx8FsYccxHPrVMzJ7aeRFzfqfC695f2XyWM9m5rzfD2SxyJPqej5LFH7QuJZhkwN1XP2SOTjHXIklU+GwOfMSPS/NONlxxCLB0C+PxFEGYWM120m9u3SoNcnsdgPS0ri/rXFexWx2AdIxJjTYW0di6Q/Us+bRIIdib2zlujHABCLtUBWEM+bf8rfSPJfUDIzMzMzMzMzMzMzMzMzMzMzsyXjF5TMzMzMzMzMzMzMzMzMzMzMzGzJ+AUlMzMzMzMzMzMzMzMzMzMzMzNbMn5ByczMzMzMzMzMzMzMzMzMzMzMlkxhsV9cQEV8wt9xKiX63ac84p8VChmNhzyi8STnx4+Q8HIDPw4ARFHg8SQV58SvIYp4GYWEHx8AoiDqStydPPBjJaFK4yHm1wAAyMR1iK+resoCv3dJLI6U83vUqeyQ87JDKIkfiKJj0XAApKKN1OO2+MWiu9DPlOobtaEeGt9/24I81mPbHqbxVhcvZKbJ66q7q0bjzZTfqOn5WXlOteM20Xijq4vG07hM46VQpPGFSLQpAHnMP4sS1f94H1PtMDQbsmxEvN/EFV52Bn7dBdE+kpiXPVkfk6e0Y4yXURTjdjd4GwzJPhrvKbZk2dFAP423uzuMectUO/CbkuWinYh5FAByMfjJkU/M10EcR47RarwHEMTYqn6hriEDn2uiDmVHIk+JE/6bIM4qKohxIdbzu/xEnK7KByJ1j0QBkfoAQBDXrU5KzeOR6OMqPwKATJSdiNxiueoKfO5vqXrP9ZgURSKPEHmV/LrqMwtifu/j8wYATI5O0vg/ff9WGn9o624aP+XEdTRezNSaQs+NiegDRTEvIub1pzslUC2J9UmNn29U6+fx4gCNTx3kc+wjW/fIc7r/sVEa3z/Lc625wOujp8jn6obMb4GsInKODvPPclUXzSFX6z/VfgDEZV4vaarWsaJvivRGranAU9bHf9PkB0vCPI139/fy44hbG2W6PoJoc+1Z3t77evmxxscO0nilotdavd087987NUPjeZvXU3dvN403M94/Iuh1QlcPr4+h4T4aL1X5sVoNPm8kHdaemWhUWfvo6rOFoWNpfPSgmM8KHTpHItYpRb0fwLTqTRqvizm2nev1XMh5H2i0eRkLon+35/j3kypvzwBQrYj5LOfHaopzFUtMlDusobtqfC+gWuL3L0t53SYiz6wU+Hggk2UAJdGdCiInrs/yMXXvFJ/HF/bycQ0AKmrAHVkjf7NcZW3eIOot3q7UfjDQeT3JpOBjpVoLFdTejNjHBYBc5PHqMuKCXOjx48u1GRDHvJGqPV61HghiJ0Ct0QEgFnvYmVoryzp8at9Xe84AkEci18rEMwBxk2R96HQHQTxn6LQPsRwVxXODVpvnPHng/RgA4qJYE4vct1jUcwSTib3iuCImIQC5WM/VRT8u1vh9LZd5PeVF3T6nJvgaurkg5v0ZsectFi71Ob1mrM9O03hS4PN+ucDroywub26Wn2ujw/71vh27aHxhjre1ld08f+nqH6TxYjdfzwDAnn18f7nV5PX0K+dfLo/1bJsCr5cKT6uQFvT6vtzL9ylaYmw90BZ7foGf06hoD9NNvR8Wcj6OFFv8WCqPbjbqNN4Q+TIARNEEjccQObbY+1VZTamgn32qB3dJLOYasVdcUHsTIj9KM30vcnElmRgXikU+vlSqvHGKxxsAgGbKP2w19P1bjoo1Pj+l6ll+h/wziM+CeH4URzweyT1TtacvTwlBPJOBaLe5yAci0TfiTu9uiI6mzjcS+XUs6qPQKSdW90m+06HuHW8fLblR3WkfRz1nE9ctrk/1+6K4pwAQxFgYnubfQjq6dqvMzMzMzMzMzMzMzMzMzMzMzOyo4heUzMzMzMzMzMzMzMzMzMzMzMxsyfgFJTMzMzMzMzMzMzMzMzMzMzMzWzJ+QcnMzMzMzMzMzMzMzMzMzMzMzJaMX1AyMzMzMzMzMzMzMzMzMzMzM7MlU1j0FyP+1Tzh38+iTB4rRk7jIefvS0VQx4p42eK1qzjl3weAKOafRQjiYOIaMn6c0OFVsDxui5MSZYsLDDH/ftQWxwGAQsp/I3/ArztRDSEX59ThlHJReJTxHwVxMFXnUeDXAAAh8LZWqej2vBzFPbxNjdenafyexx6Ux9q+6xEanxjg9Rh1F0W8m8anZ1o0nnXrTlPoL9F4beUQjZfLvD4GaryMgwd4PQFAabiPxvO8TOMRmjSeJGL4jXj9AUCh2kPj7RbvxyHwskODt+ck59+vt+bkOdX61tB4usD75Wzg9zsd30njq3v59wFgMufXPTUzQ+NnyiM9+1I1Z4rxsNOcIoZpBDXji3lLD9Ri/us0c4iBPVLjtJh71XEKiZiDAMSRmt9FXFx3JnKUpMN1Q1xHEDdQnKpsB+oaOrUPeVvFb4Ko86TAf5CKeR8ASvFTzfOWp6zFx6W4zOuqKHJMAIgz3nYT8Hgx4XVYFF2gUuFzb1LmcxYAfP+eHTT+ve/vovE8XqDx8QO8njau02X3dvfSeJJUaLwQ8zmzmfJ4o8nnDQBYWOBz4IHJSRrfMzNG4zvG6zR++4/vpfEf3aFzsINTvOw5sXRIYz7QxwsNGp+q8TgAtMELmavz61vOql08b5xr6etXkph3tuwprkfEsgai63ecaSr88hCp+VrkHIUS7zcZdL9Ra72m6E8q/6108z5eKeq8uKvEK+vAFM8DWzkvu1+sUQ4s8D5eKuktlO4KP9+FJm9rqVh71uf5vcvavF4BoJnx37SPsv8kra+vRuODx6ym8UZdDIgA2mKtANGPofKUIo+Xq3w+q8WiUwIoFXjZaVNcR4PH22XeFopV3pcAIMv4+N1qi3oSA09LtNtGh/aZNHlO0BI/iXLeZybF4Fko8OueLOgxZKAo+nLKry9d4PGJ8XEaz9RkDaBbzddzPKdazhZEP1PbbiL1BQDEYl0aF8QaUK2RxH4txLkWRH4NAHkk5tLA22Iqcs1imY8LSaf/bliMSYm4brVWVsQlPH6sp7iGlhu5QibWf+KSAQChLdqH2s+Xa2u1RtdlZxk/33JBj/fLkdqziSPeMVupHtfVs508qDFBPMsQ9R6JHDNrzspzysX6pavaT+OFsuhjGR+LF2b1XnHe5PlnJeXnNBT4PLf7ti00vu3ef5FlZ918LzyEKo2XYt6ei21+rgtjvB201F4igP2jU/wDMY9n61fReH0rXyvvmuJ5OgA0xJi+dsNG+ZvlKlrB722rKOa5gt5DL/f103i1yvv/ZM5zqPkp3gebYiHbKOuJP4tEDirGXIj1ThPiuos6F4vEWAWRF4eM91m1Mmzmen4oig28gpjPVC4CsQ7Kxfjcaee1LT5Nc3GsFi+71BC5bKJzcqj9drWWW6YylfyKeNoh8VDzsnxurp4PiL2fRDyQaYv5Aej0PF/thYkfqHCHJFDl3fJZxlP8uzyFDjtuqkZ0/qLOif9A5bEdXmGQ+4/qmV1RJMXx0/j7RaqtqdvdcTMT/gtKZmZmZmZmZmZmZmZmZmZmZma2hPyCkpmZmZmZmZmZmZmZmZmZmZmZLRm/oGRmZmZmZmZmZmZmZmZmZmZmZkvGLyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZPyCkpmZmZmZmZmZmZmZmZmZmZmZLZnCYr8YZwmNhziIA6fyWCHwY0XiWLn6vjh+IeLHCZ1exxK/QeClZOL7ccyvO+pcOI3mufiNCEfI+Qe8+h4/VC7Khrg+cd05MlGCqD99SlCXoa4viGtQZYRMtRwgqGbQPrre5VuxokLjC3OjND61c488VqM+R+Pda3tpfHRhnsazA20aX9W3isbPvPwSeU7Dq46l8Y0b19H4ir4aP9DkQRp+aOI+XfbAJhpP+OWhqz1J4wPdRRpvTPNzAoCsWafxKOXxJOYnlfTx3hHHvI+V2z3ynFoLvB2EUjeN53GLxpu7bqLx+lhVlz3Cz7e7m7f/ZS2IOVPMf2KI/teP+BgXBz7lh4SXrYsQY2iHc1I/yXM11/AfqGvLsg5nm/DfROqEIz7ex+qyVf4AIFIXrg6mjiXqQ6YJ4vuPH4r/KA+8P8WijExMmEkkJnHo3CJr65xxOYoj3i/TjF+7um4ACBm/9izl43TeFvFU9A0xhjz28F55Tv/47TtpfOeBWRqvVnjZ//Kje2i8AH4cAFi1cS2N14oDNN4Uyd72MZ6LPLZ1TJa9a+8BHh/l8/jB+SaNT0zxvGn/2DiNzzZEAgGgLbqTylejIv8gbfEDZXlJlj05ze9TG/p8l6vGAr9XauTpMKwjLql5S6yVc95I1Sitiu50ToUCH6j7+3gO1Wzx+ijWeP5UKustg7npBo23M5FrFnibm53h/Wa6rseLSGxl5Blvo/19K2h8sLuPxg/s2kfjWYd9jv7hERpfaPD6KMZ8PbDQnqLxTuvYcszrti7WZstVo8Db58BImcZ3PLogj9XKeVuIY9GmY96PixVet5VaF433Dw7Kczr+uONpfOUIn//ylI/faYuvqZKibp9TU3wvYN/OR2n84H7+/dEpPpfOz03JshfqvB0mEa/bYomPayHwvtRs8XbQbui8tCU21hIxhkRiXEsLYt0yIPYgALQT3gbVHLOcpU1RXwVxLSJnBYAg9k0TsdarlPmxRDqEUpF/v6YWPAAi8HG6WuH9fyGdpvFGztviQlOP0VnOx71ErCXjhI9hmdgzjcT+DwBEciNZ7Lerb0di7SJy+KjDslCkWoBYgxXE99XdzlSbhT7fVs7zoOVqfmqKxqsDfM8vF3kKAMRizuyqqv04safR5PevIvLbalmvX7pFvyxX+HVk4sZmfIrF5ITurwt1/qNig+c1e3fvoPGRlTwvHT04I8su1nnHqXbxfdmqGIbnW3w8b86JfKdP7xUn4xM0PtXgdbi3wXP+GbGOO9jW96JS4m2z3jUkf7NcFXr4nntU4P2mq0fvh1e6eV4SJXzsa6W8PWRF3geDWpuJPedDv6LnJDY88pj3WZFWIVE5P4Ag5o5M7Kcm4HNyQczvnZ4kZqrsnI8jam9Z7zXy0rMOJ5WK567qGbjalGqJATS09T6SfnR9dO0VZ2KvLBZXGOW6fcYqNxV77vJZvsgZ2+J+y+cYADK13y/yzES1N5ludXrYJXJf9QxMPYcSa0m9Q6fz7kw9yxMJa6xGBfVsrNP6RPQ/uZ8onwXx7wdR3//6KxpNOjyL6uToeuvCzMzMzMzMzMzMzMzMzMzMzMyOKn5ByczMzMzMzMzMzMzMzMzMzMzMloxfUDIzMzMzMzMzMzMzMzMzMzMzsyXjF5TMzMzMzMzMzMzMzMzMzMzMzGzJ+AUlMzMzMzMzMzMzMzMzMzMzMzNbMoXFfjHELRpPkPDvI+pwsEDDGXhcfV+WkfPvR0GfUy5e1YrEOUXiB7n6fodXwfJcnRePh5Dzb0fiOJGo1w5lx6Ku8licU8TPSTcDfU5BlJ2K64tjdb95PO5wMzJRH1lT/mRZqu89SOMjA0M03l0tymN19a2i8dPPuoDGH9y7l8aT6Wkav/DcC2n8mBM2yHOaiPj5Tszye562KzR+9w8WaLyv6yRZ9v46r8PVI4M0Xm1OiSPN02iUjsqy2+2UxuOUx4sV3nArBTH0t3g9tet6qnjopntofNUJm2l8D8Z4GWN8DGmkfO4BgKQyR+P9A/o3y1US8+tviaE1jjtMKlHGwx2mZfp9NSU/1QMBCGI8jsQkEasyxPygjg8AhYSPF7Gcz0TRYt5SxwE6zMuJ+s1TyyFUK+hQHVBNJxJHU4eSo4LMaYA44WU05C+Wp0bGx1yIeNShv7YSnkcnhRqNt5u8fxcKbf79Fv/+Pfc+Js9p685xGm/G/K63mvy6b7p1K43f8QjPEwBgeKCLxivVXhqfnuPz+O7RKRqfmtKtLY35vWiLcSoNoj1nvM5bKR/Qc3EcQOf8QfX+No/HIs+bn+XtBgAmRF3J8XkZy0t8JCtHYh3b4Z5Eos+mIkdTa6HAmwlKlafWzwCgVBDrF5FDtcRtT1u87Kyt86q2WHc32vwCVX+anpii8UJbt9G2mBy7a3y8KInj7NrBx6Tp8VkaH1rBx2cACLloH3U+ViWiL5dErq72GgCgWKnSeEuMI8tVnvOxpyi65cwsX2MCOiVJRD/O0zr/fom3nsHBARo/8ZRz5Dk99znPFccapvFKscwPJMbiLNf9tdnm1zd9gPeBO7Z8j8ZvuvEbNJ62Ou078RuYijYdUh4vFMQ8J8btdlOPIXnGPytHov+JcbsdxHGKvJ0BQCoS6QhH3zq2VOY5Roj4vJWnOo8oizFxXY0fa6DM66tc4X12qJ+fa1+XnmPzOv/NyqEVND68bi2NPzLJ90G23K/3f+YWeH1kGW9AaS7i4I03DbqNQq1xxdijxts45/cigWgfHdaxYimJglhrVcr8YLVE5DsiVweABXHdbRxdm8XdVZ7DZOL+ZWItCQCxyknEOF0q8fksjfkYGtpij2xGn1Mq2kKrze9TfXaGHyjn308beqyIEn5eSYmPIVt38bm3Wed7xSt6eZ4AAN1r+GdZnZ9vNsGfGSw0eNnNbt5ACro6UKjzfC4b5znxrv0TNP6qV7+CF9Di+8EA8NDdd9P4tn95QP5muYprvN8UxFohKqgVD5DFfM9f7WnGsehr8vkj/36sEihArpUj8awvF3vnKg9UxwH0ul6ttxKRy0a5ek4ri0YkzjcWeZDaW85F2SKNhvg6ACBRNyMR+9RqUhYJQRD5cidJdnT9bRWVRxTE/Bc67J+reRmiToLYYErlexWikaj7CiASZcdi3lePPoL4oNNOY1B5qVjPyX04cXmdnqMEiH1ZWbdinBL9LxcP4OIOSbFaE+unTeJYqmxZMpCJ/SW1t93hsdlPLcvMzMzMzMzMzMzMzMzMzMzMzOzfxC8omZmZmZmZmZmZmZmZmZmZmZnZkvELSmZmZmZmZmZmZmZmZmZmZmZmtmT8gpKZmZmZmZmZmZmZmZmZmZmZmS0Zv6BkZmZmZmZmZmZmZmZmZmZmZmZLprDYL2ZZQuNJpA4R5LGiQsTjWc6PFPFjxTF/vyrww3d8HSsSP4pCxssQ3386b3zFUCfMReK6Ieop5PpeIOJ1nsXqWKKe1JWLc0Kuayok/JySjP8mTfg9Stq8bebqnABE4GXHtQ51uAx1d3XTeDEu0fjM2KQ81voTz6fxX37Jq2j8BRmvq57Ax5B2s07j5QF+rgDQm/K20JxJaXwgGqLx5554Dj/+cEWWPV2q0fjkDG+HpV5+HUmD1/mePbpvLMzy/jc4UqTx3hY/p3aZHz9PeZ/p71svz6lS3Uvj1W5+vwcGV9H4ttG1ND66fassOx6foPG9C20av0ge6dmXin4D8HuIRM8bsRhfA3j/gJiDQqzGe3WYDucU1PXxcy0UePtRqUUIfOwGgETMmYUCb+/tXM37vP7knAwgFvlOXOC/ycQFJmp+F+VGHeb9IO6gunuRKEWVkMTi3gGIAq/zYq7v33KUpvx8I9VnOtRJQfTXZpu3wygV7bPRpPF5MU7efucD8pxmGjyeJaLdiqFlzzj/YP/snCy7uH+BxivFaRoXp4SmaFNN6HuRB3F9IucPYvzKMzFui+NDtBsAiHI1bosiRB6bNVo03hBjFADs2DNP4+3A86DlLCrwPKlQ4QlR3tRjaLvN74lafwZ130Ub7enneVIs53Bg4eB+UbhI+GJeH3N13vlDh3YYFcS6Tcxb7ZSXUSvw75divqYBgKbIycen+HiR53ycFFsQSEo8hy+V9DgC0f+rJV7nkRjEhvv7abyrovvffItfX6s9K3+zHKV1Pvao+a/V4PMGABRrYq9KzL2Zyksj3hY2b9pM4887+znynCpVfg8XFvh1oyLWmOUqjSdF0e8B1IpdPH5cP41nfEmF+x/h67M9o6Oy7Fjk18WKWLeIsUWtHeKSuKeiXABIRfYr9+fKvB3EYk0RdVgb5YkYE8SeyXKWqD1F0c8K4NcOAGXw9ntswse3K0/vofG8hzfeUpXPKT01fU6j+3neWizy+WzzCL/uE9fzPam+Pr0tf/ejfHybnBP7ejP8umcWxLqiwzZnEO03F21UpbNqb1mtC7MO69hEjSNFXnhVxHsqYk0a6XbQEu25nvGxeLkqi7Y+OcNzhSwXC0MA1cCPNdjH66RY4/usO0d5H4saPP9sZzPynGbHeZ8pVcXzhCY/ViQWuOUOOWBJrdNFm548eIB/f46v37v19I7yQC+N94gxtVQT3y+KfXuRBxVyXR8rB1fSeHOO11Oc83M99ZQLaPyK522SZT96yy00/vA2XrfLWTHhuVsQe0xphzQiisRvxGKoqPZl5f6kOI7cDwZisT8TJWLuEP0pF3vCSYc2GsT8pJ43Qz0zFM/GO+WBibi+vCX2nSOx9ySeWyei7E57k6pNJaIMeX1F9TxW753n4plIXDy69op37uf7MmtW8z0elfcCQCzqJBPtLVfrF7U/KfJ31Y8ByN3ULOX5ZypyvTjm8UKH/clM7UmJ8UU+JxL7c5Goj3/9VJQhzlc1dZGXFkXN5h3Gzky0j6IoW71fEz3FZ0QAEHfoy0+H/4KSmZmZmZmZmZmZmZmZmZmZmZktGb+gZGZmZmZmZmZmZmZmZmZmZmZmS8YvKJmZmZmZmZmZmZmZmZmZmZmZ2ZLxC0pmZmZmZmZmZmZmZmZmZmZmZrZk/IKSmZmZmZmZmZmZmZmZmZmZmZktmcJiv5iod5miIOL6WOoneZzTeAH8B3neoRBasP5+gReNVFx3kvDvh5x/P8TioqGrStWT+iCI78cdbkYe+GclUbctdbsTXoGZOE4s7unjJyXqsJDReDHjN0PVeZJ1qA8Rj9Kj612++f1TNN61kn+/v1SUx1o1MELj5a4Sjc9Nt2g86avQeDY5QeNRpuu8tzzMj9VXo/EQumi8b0WZxg/ue1iWjYEmDR87xCs3P7BA4+2sn8YnJlfJokd3T9J4IeJ1Ww0pjYecn1NpkN/T+ybG5DnVVvL+d8owr6c9+w7S+NoWP87O1pws+9EHeNuZmePH+g/ySM++TIzTQcxbcn4A9KvHHeZAfhhRtjp+h3OKRdmVIm9z1Srvm8jFPFDixwGAgpiw2402jactUUaRX3ihqOs1LohkIebxWNzYLOezU6RmrQ73Wn0UxLGCurGi6NChcUaykfCxarlqt0TbEZdXrIp2ACAWbRopLyNu8bqKRJtq5w0aH9s/Ls+pwX+CXHTLFKLsiF+bCAMA4sAbViPnc0op4flLmou+JPJeAMgzXna7LdpnzMeEZltlk2Lw7JBiqv4U1I/EYiAEnpstNHR97D3If1Mo8fhyFouJK2S8vjos25CL5pCIuabY003j7Sne0U497SweP/0EeU5/88mP03je5v2md0U/jc8t8HubiTEPAEo8BUUp5m3roFijtKZ4Trd6WOfFhRqv84V5nueuHB6k8a7uHhpXvaO7m683AKCrxgfKuMbzlDwRpYh7t2pkhSx7corfp3pT3KRlqjXD+0Y759dXLnfa0uITTp7xY+Wp6Mc1XsbIMF+TFvW0j4XZaf6Byp8Cr49Y5J/FoO93JJN4Hh9Zv4nGn/9LL6PxXft2yrL3bH+UxitVPo9XK7wvJaqaMpG8iPz9cfy+qn3GJPBjxbFogx2WXqnY80qKel9mucrFXkQj5x0hi/neDAAkYkm3Zi0fd084g5cdVvFcrNzVy8tt6bVkG/toPMp52XUxZa4e5I1307BuKL1dPIcYneHtZP8Mn8e37efJy56987LsWI0lYu2Siv27IHL7OOLtQ02LABBE7p0UeN0WSmK/W6xpCmI9BQBpm39WLi76scqykLX4xWdNvu8WN3hOBQBnHb+ZxtcM873RBx/dTeOVA7zsstjjqXZYTJabPH/q6uK53kKB37+myBOKbb1ISMr8fLt6eF8a6ud5aZ/o9zWRiwBAd3cfjc/t3s+PBbFvn9ZpvBXx+qioB1EA+kW+HIl1aXOex6f38XgZq2XZxx1zCo0PHaPW6ctXKeH3PYt4PBZ7hwAAsaZTe5qJ2OeBOKeoLfLutl5LimEdSUHlQ/xc22KR3mmEzsX8FKn9ebGXFCVir7igc9BIna+YBFtN3g+C6INy2z7qsJeT8zEsEvcbYi9Fxjtt+6qcQNTtcnXbHT+m8StHrqTxvMM6Re3d5+JZXytVbYrXrWyDHXKhXDwIkGsncX2JaLfyGQcgN+li0dqDWIe0Yz5OZR0eagW1Dy9Ot1gWY4g4fio+idUYDN0+2mL8UmtotQfRaSpR+/byNx3X4/4LSmZmZmZmZmZmZmZmZmZmZmZmtoT8gpKZmZmZmZmZmZmZmZmZmZmZmS0Zv6BkZmZmZmZmZmZmZmZmZmZmZmZLxi8omZmZmZmZmZmZmZmZmZmZmZnZkvELSmZmZmZmZmZmZmZmZmZmZmZmtmQKi/1iHkfik0CjUa6+D+Si1GKBHys0E15GzN+vCvwwiPQpIU34h1EuDiYKCeKVL3EUAB3eEhPnG8QHvJaAEOcdyubHSsWFRPJK+PdjUXYc9M2IE/6bTJyrOlSsWneH1/Li7Kldx3L1zfsfpvGXlS+k8eOGu+SxZuf203jeqvMfFCs03GzzG7LrkUdpfEVvVZ5T9zC/H6F/FY2PN3tpvC9eT+N3PLpPlj1XbNL4Oc/tp/GBSpnHR9bR+Jndm2XZ23/0DRqPJn9M48MrV9B42thJ43ljlsYrbd6eAOCEhQM03vsjXoc19NB4hn4aLx0zJMvuwwCNT+yflL9ZrtpyzuRtPSroMVSO009t+EbI1fgtxskOk2wsCikkPF4s8Hi1xMeXFavWyLI3HruBxh+89yEa37lzB42rKaUY6VSqUOD9P0R8xp5rNsSReN3m4qbKlA2qRcmUQ+dUKv/TRSPkKT8n0daWq0hcR5CZ2FO/vlzkn+0Gn4PihLfDOCrSeLmq5/084/N7O+XXoc41EpfdqTYy0d5kfSRtcSR+L0KH0lNRuFoK5Jloz+L4QfVXMQ4CQFCXJzuaGiu4TJYMzDT5pwdnRP63jMU5v5Zc1G8x5nMNACRinZKrMsRCpVjmbXTNWp6bVivd8pwGV/I5sNWaoPFCoUXjA4M8956b1v2mq8rb74GpGRqfmpmi8VLK66mtBgUAU2OjNK5yiP6BPhqPRRFVkcPXumrynBrzczReropcQSxYW01+nO27eQ4PAJUCH++Hewflb5ajXNzzWOz9FLtK8ljt5oIohIdVflYXc+/05LSIT8lziopiT0PkylnGc8Mg1g69A8Oy7EKRt7dIZLnFAh8LTz39TBp/wYUvlmV/u/kVGm+mfDxS9yIXM1ezJWa0tp7pCmJ8DmrIE9O1aJqIE5UXAiETecpR+J+QNkT/aHf307jqywDQSMdp/IQrz6HxrtP5/kWjyif4qM3n0vZkhx3b1XwMndnPy5ic5w2ov8j3QfpXiHEKQC3lnx17LJ+f9kzxdpVUeB+vt/T8PjvF7ytStU8n9pATPkanbV5/an0LALHYt1eb/Wq/OxZ5wvyCSryB2QWe/4ZIz0HLUZjm19Hb4nPNqSeOyGM9dyX/bHo/zz/7Z3hus3o13/Mb6Ob5Vn+fztN7RL5crPDf1CPezoNIDlWOAgAVkR+uWsf3qdeuW8vjwzyvj8TaAQAO7huj8X/e+TUaj+t8bKmJdenCLN9jnZrh9xoADuyfovG5Wd7WUjFdj4/za4sL+plBReRC7QZvg8ua2IwIkdiTEnkVABREblUoipykrTZCeLjd5GXnLT22JpHY5wG/Poh5IBHzgDj8479RiZ3axxIJYiQKCR2SulRcXinwOSWO+Tqv2eRj+oKIF8od9jl4EQiyDYrvq2fmnfZ91XPXDjnjcnTPvffT+HPOuZjGT1ir9xVacs+P10kj4/NZSfTL+Vm+l5LGeu1UqfJxNw48L83F/atW+HEKHfpMs81z/qTIj5WVeXzf3l08vpuvQQCgLnLAqshxq1V+81atXk3jA8M8D6oU+fNsACiIcacE0ZFFP84SPhgVIn0vcvWg6Gl216Orl5uZmZmZmZmZmZmZmZmZmZmZ2VHFLyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZPyCkpmZmZmZmZmZmZmZmZmZmZmZLRm/oGRmZmZmZmZmZmZmZmZmZmZmZkumsNgv5lGg8ZiHESe5PFaxENF4s8nflypWUhpvt/lxCkmJxvNcn1OUiQuJ+G9CxMuOxPdj8X0AyMVHcSbeHxPhvM0/iGL9Hpq4rYjEB1ng8YI4qUwcJ09EwQAicbpRzj+IRSNU9Zqoi4Zu51nQ9285yqbnaLw4UqXx+r5d8liJ6H9JqUjjzTKPT+58jMbvuv1WGr/weWfKc+rp66XxeXTT+PaFARp/+LEDNL61MSjLLvb003gyN0zjJ/Tw+tgzzseKpJXIsqvHnEHjWWEHjYeuJi8jnqfxNNtL432lljyn4kiFxlcc7KPxrMLjaXc/P362WpY91+b3e+r4zfI3y1VU4ONbAjXX6DGpw0f8+6IMFY7FB3GsC07ER1ne5kVHfB7v7e+h8U0bjpNlr1+zhsarOS+jAt5nd+19mMa7C3xcBYAk4cfKxUTXCCLfAe+DQUx0ocMcC4g5U8SjwMeqXBXRIdeKxVxa5rdi2VJ5VSyuPWvz+woAaZbReCJy5Ux8P22p+8fnlEqNj58AkEQHaTwWN13l0Kno9x2aCGIxBaqcDqJNZaKQTmNn+lTbujiW6kuq72Vph/WJ+E0Q+bgqQ1afrFggExc+t9CQv1muihU+FrfFpeS5znsKOe+DLREvg/f/M8/YROODPXx82bbtPnlOK45bQeMTo3V+TgnvaIMDPEfbgw5ttM3LKIi9gCji9dHVx+f3qMLzTACY2refxo9dy3PH4SE+7s1Nz/JzqvD+0W7x3AUADk5M0Xh3d43G46IYR0TfjDuUHXp4XZWLOk9ZjtQ8MD49Q+OZnmKRNfmHLVWPYh5ot3i/nJgco/HpmSl5TgfGx2k8ifk4tXI1X2O2xbwfF8qy7O4eXrnFAt8WjETf767yvnTpxb8ky87Ejdpyyz/TeL3O9zMg1g7IxL0TbQDQe1uJaISJ2D1Ve4N6rgaCuA6x5bWsJWK8OqWPV1ja4nsUADB0zok0vmINr8vZCu9PQewXBdE3u9b1y3Oa3Mnz4h88wPeSVoo9t/WbjqHx3lV87gWA+gxfJAWIeVwkNqv6eD8onjAky37gQV63B6bVulQs6MSaplAUOataQADIM95vspR3nDzwc2q1eNtcaOp8py6eP8Rlnv8tV2eu4/nnMRv4uL6xV9dJc4y3keEiz3n6Nx1P4yW155XzHHPFYJc8p7LYp1atKi3yvtRqirZW0uN62prmvxnlfaYp9s+6BkZovL2g1ycHtu7hZc/wOlw7zNcOvVVeHyNiLfXgXp4HAcDBJi+7d5jn6Y19PB//1j9/n8bPveQ8WfbzTuR1WKrqtrNc5TEfx4ox75vFSOeBQeRiSV2Mx/y2Ixfr3ljta6gHfQCCevYp90FE/iRyrrhDLlYQfTAGL6Mlcs0sE+u5RF93HPG+JqoWqdibiRO+/iuIsS0q6s3XRKwHUvCTysQ+oHo0EBX1fBLEvl5b7KUsVxP7eM44tp/HV69epQ+m2tscHytvu/mfaHx01700Xha54cCxOi+NRa732F7+nHHfdj4vDvXxceqkk9fKsmem+HUvVHneffAgP6fbt/D6mJ3T+efQCn6fFsZHabw+x+/3yaedTuMnnc6f9560mccBYEUff3ZdFuNOocjjocXbQSTerwGARDwT6arw+9rXxff6DjkKl79mZmZmZmZmZmZmZmZmZmZmZna08AtKZmZmZmZmZmZmZmZmZmZmZma2ZPyCkpmZmZmZmZmZmZmZmZmZmZmZLRm/oGRmZmZmZmZmZmZmZmZmZmZmZkvGLyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZAqL/WLIeTxF4B/kbXmsrMU/27drO41393TR+PAxw/z4aUTjcVtfbiZe1YoC/yDmRQDi+1DfB5Dk/DchUnXL43GS8e+n4jgACgmPh5gfq5DxOkzV8UV9ZJE4VwC5qsOEN8Io45WbiJOKYl0fsaiPOCrK3yxH+VCNxnsGqzyOOXmsoaxB45M799D4jx/bQeNj+3i8K5RovJny/g0A7dYqGr9vtELjt+yv0/iDj43ReO/woCx7ZZGf78FxXk/Z/BSNFyLVa8RgC6C3zvtGT6ObxpOkReP9JV5/C3MLNN49yMdgABha2c8/GJ6nYX4ngCTn9Tcwx+MAEIsxMo3K8jfLVTHh41gUibiae//106ciBH4sXQZvo3GHd54TMWnG4voSMV2vGuHjwjHrVsqyCwm/jnWr+W96yrw/ZY0ZGp+a4eMIAORN3gdR4nNKELNpyPmcGURylukpFhDzeyT6UxDNKU35cZJYt4Nc5DuFDvPycpREMmmk4Vamx/Vc3Ky0zdtCpBLQAs+tY9H+y929+pxE/wu5uI4Crw+VluZxh/oQ8Ujkvrn6RcQTuk4tLajxVtzutsrHVQFyaNZnpX6i4iIlRqI6codxu9nibbBVOrr6KwAURaOOCzzeXJiVx0rA21YmxsSuLl73l55/Pj+nIq/fH93/gDyn7gGe9wyUemhctYb5Wb4eCKnOxcpVnhcPxP38B6LJ5U0+hk1OHpRlD/XxcWzDccfQeP8Arw913bEYb5MSv2YAGFnNc+yRlXxtsX+UX19D7JcUE53jTozzPGWhqfOU5WjtyFr+gVg6NedErgWg3eQ/arb4b8olXr/NOu8D+3bto/G7k7vkOd3/wL00vm71ehovVZ9D44UCzyX37Nktyx7o42u9lcM8v47E+kTlO0PrVsuyr3zlv6fxzaedQePfv+lbNL5nJx8L59W+lsihAaA5z1emambMVR4k1lJyrxRAnPJj5WLuXc42ijXVmirvN8cfc7I81sqNa2h8uNqk8alZ3t7rZd52nzPM22jrAB8/ASCpT9B4LYi9tcoIjRd7+Rpz37Qeo9f18rlj936+F1cUOfbmVXx/cE6sSQGgL+P3dcv9kzQ+qpJQkV/nYs0YoPtsrMYk0TVz0Z1S8QCg0xK63eK/KRWPrr3iF73qShrvEvuWrW0/lscKC7yCSzkfkKtdfL+2nfG9w0zspYS27q8t8cyiLR+vqAUrb1Shw35tLvZmGgtTNL57cpzGW2MHaHz/Af59ANi9j3+Wi/t67Kl87q3P7OfxnI/Bxbaujy6xDzEzw+/fvHiMeOs/30rjx/7Fn8my1/3/rubxk4+Xv1muxPYdgshl04K+J9US75tFtY/V4IW3Ut4e0oyfU7HE50sASNu8jFgstyLVN4NoQCLfAoCkysekJObnWxd7wnHEv1+K9XPodpvXVSLmlDiIfQux15glvAITcZzHj6X2o/ncq7aYMrFPpvJlAIC432kqEvxlqr+X7wWoVjhb75D3x2L9ufMxGr/1u/8ojrOThje/4EQanwt8DgKAu+5+mMZ3b+ONYe9efs+HV4g9k1P1/mSpn+/ZjI7xPPpr3+Dr8R2P8Xot9/P8HQD6xdPMJPC1db3N47vu5ue05X5er/0rvi3PaaDK1xX9A300noj8qCrGqSTW+e3KFXxf7fQNJ9D45Ze9UB4L8F9QMjMzMzMzMzMzMzMzMzMzMzOzJeQXlMzMzMzMzMzMzMzMzMzMzMzMbMn4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJVNY/FcDjUaBx5Ek8khRu0nj93zn73nJrYdo/NyL/z2Nj5x2KY3nUZc8pzgXcXF9UeDvduUF8f1cvwuWR+I3Ih6HiB9IxEtlXXZNXHgaeNNoFHgZUZvf7xRtGo9F/QFAoZDyY7V52SFR9SfuEUT9AYjUZ0XRQJap7oOzND6zcweNt+cb8lj5yRtofHaO11Vf1kvja09eT+PVNKPxDeeeIc/pW9/dQuN//pUHaXxg3YU03tW/jsZbo/tk2eOT+2l8oca/nxxT4R9k/Lq7qnqcagbeDsfneZ+ZbfPvrx1cwU+pq0rjvbFuH40K/00z6abxVov31+rCKI23s7osO0GJxmuhJX+zXGU5v1dJzMexWIxvANR0jSgS45uYayDGQ120HlvVSSUx/01PjfeD4aERGu/0tnWlwOezUOG/GtjIx6pW+3wav+/uW2XZhQpvo/MZ71Njo7tpPFP5QCLmuVzdUwBiOlM5h6LKVmnh4x/yce9oe1++UijSeCMTeViHMSlt8/E7iXgcJd6e2y1eRlVMQdWK+ACAuLWAuH2x6MfNwK8h65RSqWFEjmsiLvJxvTrRhYjhWR9FnZMcIjvkpWqNIL7PW6YuPFcDAoBUrYE6DfXLVNrm65GkyPtTKZE1iZZa24jvd5V4Xzv95M00Pje+QOPjOyfkOdWn+Vwz2MfLbjT4HHRwboYXINZ/ANAS415U5Oek+sdcna9dwpzOA0/exNcKfV08B921h+f3jQYfqwpFntynYi8DAMoijy/XeJvq6uL3qJXzMb3e1Dn5wfEpGp9v6PNdjtZuPJ7GTz/rXBof3c/XtwAwy7srCqJ9IuOzRHNujsbnp6do/MF7eXsGgB2PPUDjx69aTeO9Yr6+78G7aXzr9gOy7HNOO5vGS6eeTOMFsY9U6eF9rFrSY2dXXz+Nn3kuz6/Xivp48P7baPyH//JNGt+9XedgeZMnNplYc4cG/76aF9U6DgCy9Kmtv5az4mp+379/+8M0fvfD0/JY5xZPp/GFFbyN1lbw9nPgUT6fDW7sofHzTrhIntMpp/ExaWZiksbTwhSN18Wt7e7X+z+FhI/ffUN8XGhnvM11ZXww7KnwsQ0ACmU+Hs61+fmO3cHzlzzi421Z5BZtsU8GAGmbX18U83OtZ7yfNSb5XJp2SHIbYl0TWkdXn+2LeVu47+7v0/jQ7JQ8VndSpvFUrEtj0RZKom4b4PGmTg0BsYaORXtT+ya5WPimuVijAyiLdXpRPB9riTK2P8b3tfeN6bXAmBiPKmJaHhvbxr+f8bFzbp63m1oXH1MB4PR1QzS+dZ7X+date2i8v8Xn5Htvu12Wfde9Z9H48aefJH+zXM3N8HsSJ7z9JAW9vi8X+P59q8XvbyZykoJo62qd0mntlIjnkrkYv1Oxf9FV4t8fqeodoBX9/PnVwakxGm+1+HX0DAzTeB6JhQiAPBH71BE/36jIO3M95QOiGqtCh73iSG3UxWpPSjyvEPtIeaTn9yCqKkv0mLscVQb4uDct5sWpdF4eq1gQ6wgx7s7XeHs+/nj+XHdwBc/n7njgDnlOW3cd5GXP82NtHZ2i8VY/7zPbxdoaAFavE3s2YnukJMYp1MRzzKpex07U+dqlKvpGqcrzo0KB36O62JvoEuMEAIipFHmT9+NiSTw7TnnbbLf1GnquwfORc04+Uf6mk6PriZCZmZmZmZmZmZmZmZmZmZmZmR1V/IKSmZmZmZmZmZmZmZmZmZmZmZktGb+gZGZmZmZmZmZmZmZmZmZmZmZmS8YvKJmZmZmZmZmZmZmZmZmZmZmZ2ZLxC0pmZmZmZmZmZmZmZmZmZmZmZrZkCov9YhwnNJ5HOY2nrVQeK6l28zgvArO7H6Txe7/xv2n8BAzS+PqTzpbnFCVd/IM40HCII/79Fq+P0KGmA3gZUcYrpB3a/PuFIo3H4vgA0M4aNF5JeRnF3gEanxZFlAO/hqY+JeRtXrdJItpaLg4W+HGimB/n8c/EOYn2v1yV5idovPvgHI0XZnSdDM9N0Xi+dz+NHzewksZXL/Bzun3vbhrfP8DjAHDHbT+k8aEKv4Gbh3l7zsMOGt8+MybLXuhZQeNTB+s0PjfNzynNWzR+3PGnyrKPOWENja/oPo3H25M0fmDrNn5O5RKN91fEeAdgvsHHnVK1l8a7CrytlZpTNB66y7LssFCh8Qa/jOVNjD1BjZUFfU+C+pGYr9WR1BvMiZj/9BkBsZjgS0XefmoVft+LJf79AB7vdGaJmJcbbT4v9g/yvn/aWc+RJZeqvBYXxBy775YZGh+fGKfxOOHXHXW4GVku8pSMx+NE3G81x8pGCwSIuSbv1HqWn0jUu8q32rkelFR/SsVNTET9phmfU+ZT3p5nF+blORXKKn/i8Uyn/M+YIAakWNWTSOhEs31cW7RdsRYQYdXKoZYOah0AyGEbkfhAlR2JIpIOg0VZjLeIj77/viUHn4OyFu83qq0DkHerKPrN2vXH0HjfUD+Nz000aXxwZLU8p7GDPGfu7eVzaRDtZ6HN66PdYV1fSvn5oiTy31iMhyU+Ka89pl+WPVTmbbSZ8rn04ARfi9RKYm8i4u1mdoYfHwAaLV4fsw/z36h8YPTAQX5OqV6Tturi/qWZ/M1yND/L29ua406m8b7hDfJYC3O8flvtKRpvzC3QeLVco/H5Bf79yRl+fADo6+6j8Y3r+XWENu+vN3z5Bhq/5+GdsuwDu/katyzy8U0nHkfjtR4+EmYpb4MAEOW8HUZiVB0a5Ht6p539XBrft5+Pg3u3PybPqSTWvnnO22CzznOqWOSxkdrgBBAiXudiS29ZU2uCQsLX6uWuHnms++8/QOO3PDhK40Or+PrslBNX0fjfPczngcpLdG7zkpe/hcaz4p00vuX2G2k8FHnfHxnh4xQAZAcfofFWys+3NjBE48UKz/vjft1ne/p4DpGhSuN3PMT3niYWRC4i9ljF1AsAyFMx9oj1US6qNm2pxLhDjpuJZwNiDb1crV6znsa3Dqyj8bmpWXmswW6eP6VhisbzjN+QdoPnTom4H3FR36dU5LJi+xXFEm9wBbH4LHcYpEPOf1Ms8jLUOmymxecaBJFzA4gTPm+1GvzC5+b4fY0zkddM8Dx2tKH3FNafwtvaqSv4M4Od2/ie+okb+XOodafx/XEAGFrF101pxscvcYuWhUS09zzwvCpTz8gALDR5mytGPB9qinVNIsZDtS/Ubut5LhE5V1zm191c4N/vHuBj8fPO5O0QADb08/Zw1x2P0nia8L7ZXpii8QZ0/whiv6q+IOazKs8h1NozE8u/gn7EgigSPxJ5nkpzxRayfugKoBXU84pl3DmJvlV876d7kI9XAXyNCQClSDy0aKnnKMfSeNcAfxY829rDz0nsTwBAV42XPbHAr6Mp+ky5j881swW+DgCAuDHNf5Pz9UaryNvz1EFe9qB4jgkAtZJo1E3e/2bavN1Wa3zM6e/j695ShzVTqcjrvKeLv+MyuKqfn5PosGrPEAAmHuNjZH1B54ydHH07zGZmZmZmZmZmZmZmZmZmZmZmdtTwC0pmZmZmZmZmZmZmZmZmZmZmZrZk/IKSmZmZmZmZmZmZmZmZmZmZmZktGb+gZGZmZmZmZmZmZmZmZmZmZmZmS8YvKJmZmZmZmZmZmZmZmZmZmZmZ2ZIpLPaLeRRoPM749+O4LI81PZfS+M4DO2i8smeSxif330zjUwV+WaWiPCUMHn8m/02lh8bTuZzGC+DX1uRhAEAWSvyDeI6Go5iXDczS6EP37pNlR+0DNJ7ufYzGX/SrV9F4u7efxvMWfwcuaalrANLA21qbh1EE/yCLI1FCIsvOAz+vOGmLXyy6C/1MNVN+vq1kgcZ3TKjrA/bdxdvPxu6tNL5iHb8fpfp9NL56J+8cAyfr+/RL5z+Hxs8a2EDj55x6No3vfehhGt+6VwxsAPpPOJnGFxq8Hw/3r6Txxx54gMYPzvDxDgBKlRNo/KSNz6fx7pmdNH7P975D403RLYfPOUmeE/IaDZfEHNDTze93mGryeFn3sVaxwn9T4Oe0nBXEvAWIcUwNbwDihN9IMY0jjvg4Hcmi+fcLiT6pYswn4FqtSuPlGm8/pRKvp5kZPl8CAB/1gHLMx5giPyUkXbyPD5RWyLKTEq+rgW5+rBMPnEjjt0zcQuMtOZd2aCDqvoq5Vx4p8E/ENPr4Z2JozVQyuUzNN/mcmSe8navcAgBKom9UKzyeiY45X2/Q+PguPg9Mz/KcEQCCGCwiUXaIntr9U2MLoNubaJ6AyvXENQR5IC0RZyW6ABCLMtQYLA8EmbLGsZgzct7WVEZVrXXJolePrOIftHXbWa6yhI+5IeM5SaFDm85EGypWeZ9Nxe0tdPPJpq+/mx+/3ZLn1KjzObBaGKLxWKxLayVeTwcO1mXZUQ8/rwUxLTfbfF488cR1NF4tqFkceHhMrFF6+bFS8P4xl/PrCxm/ttG5KXlOSZ3nL4WCyrV4AymWefsolPWGRjvjx6pU9DpvOZpu8nqvVnm+tX7jWfJY+3Y8QuO5WCvnKe8cddFGtu7YTuNzU3qcvOjC59J4sSDm/RY/1+6ePhqfGhuVZd/wrf/Nywi8jNe/ju/9lMX6rK+HjzmPl8HrNhZjakPkNfVZfq5FsfZMMz2eB/GfayYiN4vB22aa876XRHodG1f5eBsnR99/Q7owNkXjfT18rd5d1bnYXGuGxss5HxMXxvfT+IN3833OSoHPsZ9d+Cd5Tn29IzR+/ia+zzO5tZ/GRxLeZ4/p0u2k0MXbQ/0hvpc02M/zurnmPI1Xhnpl2UWRO62a5+PhphP43vkt9/G+XIz58bNMr5tUTeVikamWYEF+X9+LIHKITIwLy1VfH98rO+3M02n8B/f9WB4rq/Jr7074eD/b4Ht+Wc7jA128fbYz/n0AKJX5uNNq83YYpfy+FhPeFrK8w7pXrB+CmCPUHkHe5rlvd0W3zzzw+zozye/RgQMTNF7q58dJEl6vmRizAaAQ+Fw6H4lxqsXP9cILNtL48EqxcQdgRY1fh9yW0Y8fnnVtkawkER9Dc5FvPX4sXgFpzstQ9dVuiDw64xWZiT0KAMjFXkjOpy2UE55DrO3h9aHaDwBs6ONll2u8D87/aJrGD8zxMamtl9A4OMOPVSzwfDYSc00UeNl5Kp6VdshNE7X3JHLTRMzKaosuxDrHDW0+fmZqb22ZqlUGaHxI5JIl0WcAoCD2yZv7+fPY+s4xGp87lc+lxSa/f7WqPqfyID9WJvYhCn38/nX38+9HnfZZhvmxmkU+5h3I+CASd4m9kYLeM8kLPMcNC3wOLKqXGDLeB8b28GuoBN5uAKBQ5dc3F/Hxq1eMqY0Kn99nxvWewgM/upPG1xX5/P7LV/yqPBbgv6BkZmZmZmZmZmZmZmZmZmZmZmZLyC8omZmZmZmZmZmZmZmZmZmZmZnZkvELSmZmZmZmZmZmZmZmZmZmZmZmtmT8gpKZmZmZmZmZmZmZmZmZmZmZmS0Zv6BkZmZmZmZmZmZmZmZmZmZmZmZLprDYL0YRj+cl/kGU5vJY5UJK43GzSONpq84PVO2i4QPbb6fxr3/uUXlOmzafR+MnXfgrND6wZgONp0mVxpvQ9dFK+HXHcQ+Nj6TTNL7lxv9N4w/feZMs+9gufl63fONOGl9ZLdP4BW94A43PIuHxVibPKYn5e3N5m7e1diSOJdpsyHXZQOBlNMXBlqkmWjT+47sfo/E7x3ibAoBVY7y+Kq0tNL6tzeO7m/tofPVpJ9P42HdulefUP7CWxk85YTON1+cXaHxgzQk0fuHxz5VlR6tX0vhs1qDxvMGH2bndW2k8G+X1BAC1Oh8Lo0YvjbeaJRo/afNzaHzngUdovM6bEwBgfnScxvuKK2h8sjFK4yN1fpxWpAsvj/Axcj5f9NS2bCQRH4vVaBUnT/394khM5FngZRciPn6rfKAg5jIA6Knxtthbq9H4/ALvswsLTRqvqpMCkMZiju2q0HizxcuIY343qmV9L1p5m8azeR4fHub9Jm3zuSkX81mI9DnFBX6/Y9U+UpHnifkSmYgDKJZ4OwiiDS5XURDtjXcZJB36a5bxe9hu83aY5ryQ6YkZGt85xuOT07MdzonHg7rn4vbFMa8neRx0GPNEGepYqThQrO4dgCjhxwoioQy5uA55eWpM1fWhxm113arOo5iXXavycRAA1qwepvGF+aPwv28Ra8885w2r1WHdlrZ544pLIvcQY24943nP8cev4sdP+bwBAPksHy8GCnz+mxVjUk8i2mjvoCy7WuPHGk0naLyY8HnglLXH0vjsnM6LH9h3gMaTMZ4XzzR5HUZi0Jtr8HqdT3kcAIL4TW8Xz1mHB/i5NsV4MS/WNAAgpgd0d/H9ieVqWsxPqr8OrhySxxpePUDjM9O8XTWbYu7lQwimp/gc217Q65c48D4wIxZcpT7ePk/YeDyNH3e83vPaumMPjT+6bQeNP/LYdho/ZhVfiycDei0AMYbVF/j6dmpqksbHR3m/b0yN0Xitwxw7LZKFLPBxLY749RVL/PuFmq6PojhWEh1961i0+T5IVcyLaS72dwHUyrxeMrEn0GzwztlI+T1pRvxcb9q7X55TOf8ijV/7n15F4y+5+EQab+d8bFvIdE4+vIbPjce2+HW32rzfIPB5oCXqCQDmRBldPfy+nnUGz19+fNf9/Dg1Pv+VRS4CAAt13mfrLX5f1RpTreWyDuNFJlYpcTi6+myhydvIhqE+Gn9sTb88VjTP9/aqYj1SF+tbtcGUxLwNqjwBAKo9PN+qVnkfaDf42JKKthNUQgAgiGcZmchfmnXeblNxTuWyXrfVirztzqY85xgb5fei1OD9Lxf7lQNl/owIAKpd/FhrT+P79rsm+HOJVRVe9lCP7q/9K3h7jgtH3zo2FftxmegfcYe9tXZLjIlqs0Xs7cWq6lW/kbs8QEHkXLUyb7uVlOfel567jsafu4E/OwaA4hTPRzau4vPZwsXrafy2u3ju3dih14wDp55E45HIAx/csYvG04y3g4FaN41nqV6jFMXeuZrm1DZnEO2m0eRjHgDkCW/nBbXJukzF83x+2nEfz4Xyml6nP+/s1TReb93N4+1/pPFmleer02Ve542W3nfaN8378lST71FEBf79sXneN44XzzEBAJN8vsn2iXGtxRtut1ielUKH/bY5fn2VhM819WyKxlttfn11kXNPir0GAEgS3pdbo/M0Xoj59aVi73Ns505Z9vzkHI036nqvqpOjb2Y2MzMzMzMzMzMzMzMzMzMzM7Ojhl9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlMzMzMzMzMzMzMzMzMzMzMzMbMn4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJVNY7BfjkNB4lAcaD4VcHqsSVWh85cmbaXzs9nl+TklK4/X5KX5OTX25D07uoPHdj3ybxtdsPJnGB1es599ff4osezaJaLw+wc/phz++k8bHZ8dovLntIVn2D2Z20vipp15M44N9QzQ+1Ob3e0a0g6yYyXNKW7xN5QX+m1Dg34/a/P27ONJl5xlv5yVR9nLVyts0Pj46zr/f1P21nTRpfMfOXTSeN3m9z0e8jNnKARqvTHxXnlMhqdF4Y9sDNL7hLD629NV4/ODACbLsdr1F46HGr7vSmqHxY9v8us89WZddjnv4BykfUxfiXho/4VLev4enedmPPPaoPKfSDB+/BnpW0nhxgrcnNPjYUkp5PQHAQvccjXcP8LKXs6jA6zGC6pt6TOJHAiDm6yjmv8hF2QWROiQRPz4AhFCk8YW5Bv9Bg/en1gL/frHCj/840TfF+aatBRrPRH3kMe9/ANBYqNN4iHkdRjmP13p435+anuXn1Ob5EQCUEz7PieaBIv86mi0+zySxfve9p1yl8Xqm56DlKBbXjgK/9rwgKhFAO+Vzyuwknzvm5vn398/xez42xfvMnJjLAKAU8/NNxX3Kg8jbxGAUZXKUQgRxLDFOySOpc+rwn2YE0Qz12XJxxH8RB5HHdugz6j8liUV/DeK6M/D2sVDnaywAmJ+ZovGhFXy+Xs6yJs898oRXcJbq+SyulPmx2vw3s9O8jg+MT9N4bw8fJ8tVHgeAoV4+D63v66LxsKafxksH+FqyWtb3fPWKQRp/bB8/1p4ZXh+NnMcnpvna5fET43Pjzmk+frZT3g/EsgmtTHwg+tnjB+P9vK+3j5chzqkuTqpQKcmiW2qMTjqc7zI0K5YKIeZ1MjO9Xx5L7QvNi/xsXvRXNXnMzfA5tibGCQAod3XTeEm050KJ9/1NGzfS+ObjeBwA5md436hPTND43ge303jx4st4AanO55pzvG6bc3w9t2vrVh5/lO9tjW/fRuNdRT4OAsBCwttUoyHW+znPj+ISz98LHf570ILIFcJTTTqWgVisLZDxsSeu6HrJRI6YFPjYV074GjCL+Vict/iYG4nvA8D3772Lxr94A5973/Lay/mBqvz76RRfewLA6ATvN4Uevs8ztZ/35SD2hSan9F5LkvE6D2JOSVI+Ho708+OkER/bOq0TaiXeN3PxvCIT/awl9iZVPgAAUZsfq5kfZevYlLf11Seso/GewdXyWDvFs4aNq/h+3GyD7120Uj7xJyU+lwaxLgSAhSaf33OVPkV8TAgir2932GcJYk8vEc8mGmIdFos9hVRt2ACoiz39llhbT4p2EKb4nFwQz0QGVg/Ic6oO8Ny3MMj3808+43gaz7c+TON7Rw/KstuJ2GMJvJMPLOO5NxIDU1Hc29Ah94gy/lki9ilaLd6uiqKttzKRP3VYW2eZeFYrpuVu0WfXDfbT+PycLnt8N2/vu6d421rVxce2Y1fw+b1UWiHLboj8vk/M73c+wJ935WLdlJf5uqLd1vuAQTwvTRKx/yHaZiTWpIloswCQin3R0GkDbxmandzOP5jn8WnxSAQA+vNVNL4wdQeNj2zkOd1M48c0vn+ej8VJs8O+k1jizojn6ZMxf3Zc6eb9vtqtn+eVI17G7H7+zLI8yvt3KeOdJjogOhOAYzaId1bqvA+MHRil8aSf5yjdPcM0Hid83wAAksD7+HyTr/ezPXz/sVbh4/nChN6HKxT5+isvLvpVoyMcXb3czMzMzMzMzMzMzMzMzMzMzMyOKn5ByczMzMzMzMzMzMzMzMzMzMzMloxfUDIzMzMzMzMzMzMzMzMzMzMzsyXjF5TMzMzMzMzMzMzMzMzMzMzMzGzJ+AUlMzMzMzMzMzMzMzMzMzMzMzNbMoXFfjEptmg8DuL7cSKPFUf8Ry+84CU0ftPt/5PGxx4epfE8m6XxrFqV59RqpbyMdJ7G9+x7jMa7yryMcoeaziv8N9Ot3TQeTTZofGDlBhoP3byeAODY7vU0/sI3/TqNv/6VV9L4gekmjffVebupr+iS59SY5fci47cCRdHW4pzHg2izABAV+Y3q1J6Xo6EBfl93beVtYSHRldLo4veq0eDtsCyqKojhZnZqhsajiQV5Tj0RL2TXXVtpfPSGb9N4uX+IxltRnyx7cBP/zcCZp9F4GOV9YLA6R+NT0G0tHHc/jZdOOZ/GF0R73tecpPEMvJPVocfOc84/ncYP7p6m8elZ3taKKb/ucs7HAwBAu0bD6VSkf7NMhcCvM+Q5j0dP/f3iTBwring7KRV4PUbg59qo8+MDQLvB2ztCm4ZHVvXTeCvn/enArm2y7J7qAI3nYn7q6qrQeLFcovF2Xbe3tCl+k/N+sH//FI0n4MdJCvzepanuN3nOzzeJeZtqiWPl4MeJM10fszN8XI+LRfmb5agxPk7jUd7Lv1/Q1zfV4u1w7/4xGj84wfOtUjcvu8kPj1Zb99dMfCaGKagMIs9EvMMQLboGkIkP1FAY80KCLAA6QRTHysT3xTIHUSTOKegKicVtylWtq2sQld5q8TEYAMbGea6QZuLGLmOtNq+Xgsgno0Tfk16xnswbdRqfn56i8bEDvI9jio+TJ246Rp7TSSv4OR3X30/j0VAPjff1D9J4V0H3m2LG56eZbl63eyf4On3XVt7e1m5cJcuePcjHw6k53q7jiA9iseiDxRKfY6OiXicMDw7TeHdfP43PzfL73Z7mefTJZ22WZadN3jfr81PyN8vR9BzvSz01fv9q5bI8Vn2S10ljlredOOfzdRb4YFyo8O/XengfA4BiifcZiP2GNPBrqIiyV/R2y7JH+vhY0ZrndR63eP6epzy5yFM9p0DkO/MzvO/fc/dtNH5gx3YaLzT4nkKa6nwHYj0VAr8X6n6XRBssFvS6viiG1fZROMeK5Rza4NcSNfScUhB1mUe8kESk2M0GLzvP+DhSKum1dTvhbegLN22h8bGUz3O/etWlND40eJwse/devu+s9ggmxZ7pgWm+dim0+VgIAFXwyu2L+Vq5a5738Y3DfI1y904+z2W53jxPxJ5iKeH3LxO5t1o/5JkeL5KS6M8dfrMcRWV+X9cccwKNb3rOefJYd377WzTe1yX2FcXicL7N206Y5nNQReRnANDORZtu8d9UxcOapMjPtTWv73ejzcep1jw/p0adz715ystuZx3WbTN83GmK3yRiYb8QeH3EC/xc11ZH5DlFGe/jvQlvH6vqu2g86ePXsFvUNwDMNXl/LYr9dr5juDxEKrcS41jUYW9BbSMHMZEXxbOiTORWlZi3n3akc5s0E+utisghct7WG/sP0viuCn9uAADpAh97tv6IP3sZOoHnmrNzPJ7P8H4DANUWf6Z27vnP4cc6/Tga/+e799J4EPsZUx1eBQiiUQWxFonEeiATbbbTbBmJnDEX+9TL1S13f4fG+0Q+UhrR+wqFu/i9asQP0/j8Bl5Gd7dony1et4PDei3ZFs+Jds3y9tzX4mNIpcXngXUDeu+novawZ3iuvKrG22Glh4/4u7fzegKAqnj20hrbQ+O5eM8kPXCAxtvi+dTCnEjsARRXrKXxvi7xDFfs/W467WQaTxv6udKBBT7uTNc77Ld3cHT1cjMzMzMzMzMzMzMzMzMzMzMzO6r4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlMzMzMzMzMzMzMzMzMzMzMzMbMkUFvvFuJDwD/Jc/KDDwTIePuak02h8xamvpfFdOz9F4/3dEY23ZuflKTWiNo03G4HGQ5nXx0yzTuPlkq7q5oG9NB6Bn1NXjZc9OTtO4wPdg7Ls9oFZGv/W33+Rxvv6+LEuPfk4Gh8crNF4oz4pzwnVKg2HnMfTLKXxHLwd5KlunCFr0ngSi/aPojzWs6me87Yzl0zxH1RFpwRQGOih8Zn9vIw45vXezHkZUYvfP7T4vQCAdoOPO1GDl70Qt2i8PMrbf7ogi8a+2/n5dn3jJho/iAFedpG3w2o3H3MAoNk7QuMrzriNxiunPJeXUeui8VZV1NOQPqeH7xNjZ+D3YmwXr9yJeoPGa6U+Wfa06PvxIC9jhTzSsy/LeD22xRSbBt1ny2U+3/A7AsQRv7+lMm+j5ZjH86IeD9M6L6Ovi7fFDeuPofFd+3fR+D0PPizLroSVNL5C9Kdywiu92RRjVUlfd1Tkc0ejze/3/n27abyd8dwiL/F6jeTdBkLg55SLeFBpnmg3MdR8CbSafIxJUt2el6P63ByNt8DrZL7ULY+1c3yKxneM8vhCk9/brsDzrXqbt9t6Km4sgCyI3Fd8XzQFRKIZxuL4AJCLuSMThchxTXwS1LoFQK6uQ8XFWBiJItQ1xLGuDz3U89/kEe9/USbuaUHXx+wMn0vzTP9muSoV+bwYwK+lKr4PAD0VXseFhM9nFbFWaE/zcQRDFRruHdbjSF9XmcYHV/K1U0MshUZE++luT8my6zlfX5+yfg2N10b4OdVqvM+WelfJsufvvY8fq8jn2IFBnpM3cz5OFsQg1j80JM+pu4df39iBCRo/4cQTaXzPjkdpfOVanReHjJ9vWuftY7n63i1baHxA7IFsXsfvKwD09vF2WJ97kMZD4G0hKfMxtJjwzlSpdahz0a7SFs/1Jg/yNdLMFN/7OemMU2XRG0/aQOMPP/AAja9Yy9t6scrHyLhckmW3xVpn4uABGs8afA5qNviYk4t1YT0V+TsAiHm8WObjcEXEY5UPdMh3SjlvB4WCzuGXq1RliGJOCZ3WKZlYZ4r5WmyZIg7iA3GuWYe8uNnin+2Y5n3z7/+Rj2G33fMYjR+/kY9TAFDI+bhQTPh19K/mc1A98H6zdkivY5M2v3/TCwdpvKfMk9bBmN+LngofR8ZmdPsoinkgVmtJlWOLeT9SST8Asc2JEOtxb1lq8fsx3eB5ac+xx8pDFY47jsZ3T++h8UaL95nQ5pXbbvJ2292l6zyu8jYdiX2IZs7PKW/w7+ftDvu1Yg87y3j7TMU6vTHPvz8rrgEAZpp8zkxb/Hy7K3w+617N986yVOz/D/LvA0Bzhp/vPTfeQuP5rntovCz2l8KmM2XZWc7XZcUW3zMBr45lIczzvhnEei6I3BQAUOR9Rz3zjcSGdJzwPhulIrfpsN9XEGvAqli3VRd4W2+J/bCZaf1saf+2+2l862N8vq5VebtaGfG+fPEmPb+P9PFjrRjm9++sY0+n8Qs2rafx/30H3zu/Y7seR1plvn5pt/lYHIm9tUS8FKDazePHUvtYHfL4ZWiqzdc1My1+fS3o9qkSj7XH8X7cm/Fn9mk6Q+PlNp8v47RfnlJ9jN/zufv5XDo3M03j8zt5f22O8voDgAWxfjg4zctoF1fTeCkT6/QOc+zdd/C18uw87xvz4t7l4hl4e4bn1klZ7BkCqDT5/D64aR2N93bz5/trhvh+256e7bLs8W6eE/zwh3we/2n8F5TMzMzMzMzMzMzMzMzMzMzMzGzJ+AUlMzMzMzMzMzMzMzMzMzMzMzNbMn5ByczMzMzMzMzMzMzMzMzMzMzMloxfUDIzMzMzMzMzMzMzMzMzMzMzsyXjF5TMzMzMzMzMzMzMzMzMzMzMzGzJFBb9xZDzDwIPR3lbHisWPwqNKo1f/u/fTePTE/to/O4t/0TjybR+H6vYU6TxPMzSeGuuKQ6U0HCzKb4PIIozGg8Ffr5zDR5PFuo0fmA6lWUPJt00vuO+e2j869f/EY03j+/lBZxzIg0XesT3AXStPYfGq0PDvOykh8bbhT4az+IhWXYU8S6RF3j7WK7mWzzezmo0fgC8DQLAmjJvIwvRFI1HGT9WpcD7fWkhovFYDDkAEIP/Jop4PCnweBO8v7ZF3wOAKdGdMjG+FIu8XzZFlcczsmhUR3fQ+MGxx2h87c7baDys4H0jtHil99cr8pzqZxxD4+ue9xwar/bz9lRYfRGN58m0LDvN5/hvSl3yN8tVzwC/J/NzCzQeqckXQBLz9l4o8jaaqzkZvD0kZT4e1sq6nfT183tyxvEbafy44zfQ+E0330njY3t4PwMAZGM0vL3J+1PeEvXBqxVdvXxcBYCozOeUJPABoN3i11Eolng84fE40XOWSs/U+BmL+S9koj0F3TbzjBeep2LSWqZm6vw6ZnPeX9vdZXmsg/O8n+2Z5fG52QaN15r8/rXFeNDM9H2KEt5uRRdAFIk+k/JraOe6bIhjJeongbfDSFw3VBwARJ3kYg2UiHk8i59av++QgsnzDbnId9TlxaICO5TdbPGEJwTeBpeznn4+ToeUV8BAD1+TAsCaET5fF0Vdzjd4PRZiPi6kga8Z947zOQsAutetpvH6Cj5HtFN+TtEkj08eHJVlt6u8bku9vOzzzub5YVcyQOMP752QZZ+0mfe1TOSzPf383o1P8vV+3uZjelLWY1hZtJ0VyRoaDzGv87Wb1tF4A7r/JQkfDwfWDcrfLEdbH9lG4ysG+Bpi83Hr5bFK1RU0Plvn9R7nvP9VYpH7dvH2Xynoeb8p9mzUGrog5uSREX5t/StHZNmVGt83OeO5F9J4X43n7/0jq2g8qGQZwO49O2l82yOP0ngl4uv0FWJPaGJ0D42Xq3rfaX5+isYjsRGRixwlTXleGDrkO0kq9p1UrrCMhZTfq1wkb2nQ+5O5+G9oy6IPhojfK7l9J9Y7zUyfU1HsS+VivTUzw8eR++7cTeP7d/C1KgD09vDzWi/G9WNPuJjGR9YeR+MHdvJ9XwBoz/D12fEjfFwo5XzeHyjwPZt1Yv9jukMXaIi8raDaR87nzEIs9u2jDoWL4a1YWvRjlWVhYCWv93Y+T+PHinwEAE597mk0/i9fu4vGizGfx6OIz5l5Jta9Rb3/Mt/m93Bs9AAvG3z8rlXEubb0XnErFe1NzGch5ceaWuB5aSrWfwAQxPqzLdp0ZQXPnV74lv9A4xtOOYXG+0U/BoAu8ewqW+CD6v5d22m8VuTXXVzL9xIBoDZ4PI2rnGo5K7f4PYyqYtzr8LcoskzkNxmv47LYEw6p2DsUa5FiWz/giRPebwbE5DvZ4HPsvgP8Ycpwqh+yTO3luem5Z/Lnks897WQaX93L62PDSj6OAEAqruNgk8+9YZCPI7XAc/tH7uHXvUecKwCMibLjXDy3Fvtkak+43aEd8KsDxNC2bMXTPOfZPc3XKQtiXgSAMvhaLyvx2trb4vlkfC9/VtNX5nNvdnBSntO+vTzX2znJ20hrno9TBwN/1rfzQf0MsNLD21Uk9nFL4NcX9ozT+NQMn3sBIC3zsa2e8n7caPC+VCryc6qIJWNR5LcA0Jjjedvux3bxsqu8M118MR/XXnL+c2XZN7X4+uG20e3yN534LyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZPyCkpmZmZmZmZmZmZmZmZmZmZmZLRm/oGRmZmZmZmZmZmZmZmZmZmZmZkvGLyiZmZmZmZmZmZmZmZmZmZmZmdmSKSz6myHwsHzHSb/7FCJ+rDRq0Xilt5fGf/XX/4jG+445jcbv/Nr/kuc039xP49lCxn8Q2jyeN2m4q5LIssuD/DbUhofFOfHvJ3mZn1LE6w8AZmb4seazcRpfaBZp/JZHRmm8nc3S+EgoyXMaXfgRje/PB2h88y9fQOOnnXIZjff298iy2zmPx4jEL/R1PJuaCzw+E/F+2SoMyWO1ki4aD91VGp9v8XuezPE67BflVjq8Phl4NwNEd23k/INEdMsoEQ0BQDHmfSZK+ZiQprzsLOL1MdsSYwuAhhiyu9KUxmda23jZPfz6hrt5O9jRrstzyuYepfHG3GM03nvaxTQ+3lpN41PNGVl2YRW/gZVyTf5muRrs66bx7hLvCO2M3/NOqmV+rGbG5968wOu3WObxqmjTAHDmpg38g4wf6+6HeLsSX0ffIB+PAKA+y3OOQpmPbZUS72flCo8Pjeg5NinyOaJY4PFEZGVNMS4sNHnfbDR1+2g2Vf7Cw6koO4r4zVDXAACJ+jDj92i52j0t7keJV+Ls7KQ81rZxPmEfnOfHysDrfW6OHycu8DoXaf3jZQTel/Oc/0jFg5iTO/3XEWr2jRJ+TqoMqcM4JVIkQF23uBdJLCpXXFwurxoyr4HIS4O6voyXEeRFAy2R12SiPpazyy46n8YXRL9ZMazz4uE+ft/nJw/S+Mwsz4sLrXka3/XoDhqvT++T51TctIbGJ3M+F+zct4fGk0leHysTvd6pDa2j8bl5kRdv43ndA1P8+lolvr4FgFoXvxfREF/rVasVGi+IFCJv8+83Mn7vAKBc5blFXOB9c6o5TeO1Lj529xZ1jhv4Mh21Lp0jLUcH9u+k8VOP4WuI0NBjaCsT7TDwvqHWc9WMV26lxNtIrabvU1Ms1FNVdhcvY9WxvN939fTJsstV/lm/2HeK1ZQp5uS00ZBlb93G16X33XM3jQ/28DrctIGvKQ52875397at8pzaLZW/8PaRingu8thMbS4ByCOxFjj6pli0xX5HHvj157FO3qIg9joT3geToshvRD22c95GK4nOh9ReUpTz3zQyfg3NFj9Oq63XbWtX874W5XxtsevRR2h8Q+9mGu+uiDU6gFrge+Szc7yvNcb4HvKalStovBDzNfTWib3ynKZy3m8KRTEBqr4s9vMjue8LpG1+/0qlp7oYeXb19vGxtSI2YEd69F7HOjEPzczO0XhR7LPOz/M6LNb4/W7UxP0GMDnO222pwue/QsyPVRPPLIqqrQFIyrzv1xt83g9q7hADWFvk9QAQic3tosgh1p16Oo2ffumLabx/uJ/Ge4o6T88bYiBOeT/rO4GPU8Wi2AQU8wIApGIcjiLVX/Uzu2dbpPYW5AaeTiRy0bZKov2ofQq1H1Ao8zVHWudjAgD0l/i6u9bmD342dvF+cGLO19xnr9fz3Mbjf5nG+wb4OZ22cYTG51t8fXv7vQ/Ksm/9wZ00PngMfzay5tRTabwyz8s+dS0fw+6f0Pfi4EGxb5mpjT3el2ORHxXEPiOgn5HlIgdbrs7ecDKNz23hdduU/Rt4bCu/tzsf4/E9E1M0PrSS79ccM8D798xu3pcAYCHlOV1ZPCeaFc+nQz/PJasDfE0KADsn+X7RgYO8Pjan/Dlb30reN0KZ1xMA3LdtjMarQTxnT/l6oySevw0ODNJ40q3nprkW30eameJjZCXl8+KubXxvcOP5fA8VAFYN8brtFc9Efhr/BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlMzMzMzMzMzMzMzMzMzMzMzMbMn4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWTGGxX8xDQuNRiHg84XEASJDzMmL+myzj8e5jVtL4i976Tho/+4XPl+e0+5FbaPym//XnND668yEar/bwa+sdHJRl93SXabzU1UvjJ2zeSOP9fcfS+LEnXy7L3rE/pfGZMq/z/hI/V8QZDTdneH0k07PynIr79tP4+u4+Gi/0n0bjY+jnZbcqsuxWzNt5KRTlb5ajLJvhH6QNGk66u+SxWl38s2SB34/GfJPGF9IWjQd+SujiTQoAUBGfJSHwD+RwxNtnQYxFABDAC2+Bl50X+TBb4NWEtKjfG43Eb6ZT3qan5vi5ZqFG44kYz6cW9FTRXCjx+J6t/FjfHqXx2uYTaLy8oirL3ngmHwvTIr8Xl/2yPNSzTtVwsczrNxFxACiU+HhVSHi9tESbjov8OJGo394yn7MAIOFNDjse4+1kdGyOxtuiojadoOfYIH5ULPB+UyzweaBc5cdRczgARBHvz6WSuK9iDmq22zReb/BxNWvpAXR2bp7GGy0+HrbbPB7EO+5RxL8PAFHK6yrnqciytW+Wn/BCzO/HwUwM3gAOzvPfLIjcNxLzk4znvC2o+/f4h/yzIOa5SEyyccLLznMxVwMQw5T8jTqnkOp5/KnKxfUVRBG56AKxONeOnupliK4fi7Eo6nD8PBMXkvE2u5ydccpmGp+b5X2zXNV5f7eYz7LBIRo/sJfPc9PTkzT+2P18jdnfrdcvm09YT+PjjQUabw/w+Xo+rdN4WtbrhHI3n3/v2nInjQ+s4HW+8yCf9xcSfk4A0L+O34xyPMzLHtlA4ytW9dN4fYavpxp8SgYAzM3yOs/FRDcyxOu2u1vkYAU9doeI981C4WmMPc+iqQPbabyv/woaz9ViEkDIeZ3IXCUS6zk1lwaxLmzrdttsin4p+l+5e4DGSwWel9Zqeu3U1ddD4wXRriI1x4qJrrGg8x21pzff5HmpWM5goJ+POUmBX3dtN99bAoCZaIrGc7Gn0Fjg7Slt8etOO+xnBLHm7+nS92/54u0hFUlJKdHrWIh8tpnxfl4WiUwk1oyZ6ONq/QcAlRo/3yCuO2T8WPV53tZP2sTzBwA461R+IQdHx2l8JR8u0JtO0Hh3Va+ht+/jY9Jsi8/Xx/bw7/f08f7RnuTto1bVk+xMi/ebRpvPsZEco3lfbrZ1p80zMT80jq6F7GAPz5HSIJ7TiDkLADAn9ijqfADPa7xvzIq6Xb9yNY2/4e3/QZ7SujX8NwNDPF4p9NN4LJ5pRR3W0K2UP+eYPsj3QOfGp2j8lu/dSOP//K1/kmUH8HaYNnndrluzisa7a900Xsz5PV1o6D6j9jjVPmMic1zxPLLDQraU8GPFHfLo5SqkaowRY1KH57HIeV2mYgwtx2I9Ip4dZOBja1nscwJAmDpI4+c/91QaP2fDyTReaD5A4w/v3SHLPuf5F9B4PeNj2546n8d/dBcv4+4HdsuyFyK+jq1P8XtxwfrjaXyoxL9fFXsT33zwB/KcKi0+hiVFvl7N1fN9MZ80xXoKAEKu9iCPrr2nF774lTTeLvC595+23CqPNTa+l8ZL4gFLKeJ7QtOjvN4jkb8kEBteANICHxPE4wQMD/JzWtnHc+tbf6zXbfvn+FixsIdf3+aL+FhRjPhaa9d2fnwAyLfzuhoQm4Mh5ePzSrHP2FPjM+acmNsBIBObxQOD/Hl9Vx/fA7zr1odpfGJcvFsAYP+eR2n8ihfxMfWnOfpmZjMzMzMzMzMzMzMzMzMzMzMzO2r4BSUzMzMzMzMzMzMzMzMzMzMzM1syfkHJzMzMzMzMzMzMzMzMzMzMzMyWjF9QMjMzMzMzMzMzMzMzMzMzMzOzJeMXlMzMzMzMzMzMzMzMzMzMzMzMbMkUFvvFRMSzONB4yCJ5rHbMjxZyfqw44cfKZnL+/WKJxoeOPVOe08CxZ9D46g08/vm/+ACNz+y8l8bLtQFZ9lR3D43HB3fS+LFrT6Hxc375P9H4yOrNsuzV8y0an0uLNJ6HNo3XQypKqNJolvN7BwAbq6K18eaBpmiDmOftJunwWl4h5ccqBd2el6PmQkbjaYN/f2hgWB5rvsXvbVzuovGoq4+fU7ZA4+0WP6lWxq8BAPpifj8q4j4lIl6MxH3tcLuTmJ9XRTTQhZR/vy2aeVu0QQBogN+LZuBlTDf5hcyI/jdd5/eimeoKycq87MY8v9+zYYrGi+PjNN41zNsTAGw7sJ+fU8bH1P/wLnmoZ11PuUbjbdFpu7r1QFbp4eNuq83bT1kcKoiZP4r5vFGrqEwBmJrj9zcP/Fj9K/g8Xu3u5WV363Qm40Ug5LxdxyIOMe7IyQlAnvM5MxZ9OQ/8ZtQqvD5qVT5XIyrLc1oVePtIc152AC87jnmd51lTlp21xSSkU4JlaT7j93xG9LE5XSWop/ziM3k/+PcjUYexmNDiDnlNLhKlLOLjfVB9QBSRiHUAALTF/KTONlbjlzglsdToSI0uqSokPHMNWl1fIspOxL2LVLuJOiTF6iPRZpezviE+Vvb2iLFSVTyAXOR1UeDtOo35/D56kM+L03WeP60/Xq/nulfwdWY2y6+vV+TqOwu8XY0d4OcKAANizF8xMkLj810VGk9KvF2tGeE5HQCcciIvY0LkFo18gsa7xD1KavycSqluH+Um/81AN79HfcNDNF6o8rm3XOFzOAA0Wvw+xXmHSWgZmqnz/rpQ4vGom69JAaAh1lVNMV8j5XVVEF+fX+DnlHVIbHpE39+3b5TGV65dR+PlYjeNd4n+DQCVisoPxfnK6Z2Pd8WSzj8HRVvvqvL+Vy3xsUKNtd21fhpfPbRCnlN9gt+L2bk6PyexPZGJ/cdmh5wjtHidp4GXvZwFsV9bKYg+K74PALHYn8navG8u8KUWCkV+nILIk3KxnwIAiVjzpC2138jP9bhVvM8eM6L7bLHA28PgEO8f69by8TBJeEW1M7WPC7T6V9J4/9w+Gl/RmKXxWfBxoRHx9tHXOyjPaf/4DP8g5/cvF4l/AbxscUsBAFFRlaHbznKUirGn2eK5U31qXh5rbmaKxucX+Jo/jXm7ras5ucy/v/GUs+Q5HXfsWhovlXn+FKdiz0tu/Yj9FwCIeZ9ZvWYDjRfEeqNd7qfxLbfeJ4tuT/Icd36G5xbVCh8ruqu8zpHweS7qMM8VI163sdgLKIhKV2UkYu8M0Gt+sZ2hH3ouA3lb5AW5yEE7zGdt0f8LYrelIPJGtR3QbvAPqhCbsgCOGeF980XH87nxkkt4XveDu7bReCjxuRcA+gd5e9/30F4a//Y/30Ljd9zxKI13D/MxAQAuP5s/29316FYav23Lj2g8LvOc47s38u/v3qrH9HXDfPycqPP7N7PA47HYO09FLvc4lf/ptrMcDa/kOUzcxfOwRoPnVABwzGq+1zHY3U/j+8enabwp9mvKCZ+rS2KtBQCTGf9NQzSrahd/hvPIQwf4cSASewDdfXzM6xHr/ZWD/Fn31CQ//tQcPycA6F29mpc9yPeqsja/F5t6xe5ylV/D/TtF3gug0s/HwvXHHkPje0T7iBr8nk6PHZRlN2fmaPy44/gY8tP4LyiZmZmZmZmZmZmZmZmZmZmZmdmS8QtKZmZmZmZmZmZmZmZmZmZmZma2ZPyCkpmZmZmZmZmZmZmZmZmZmZmZLRm/oGRmZmZmZmZmZmZmZmZmZmZmZkvGLyiZmZmZmZmZmZmZmZmZmZmZmdmSKSz2iyHJaDwO/BB5h1efYkTiN4HGs6wtvi8KyXk4qeuTivkpYWTN82j8il96M43/419+iB+oJQoAsLKLn9euR/n3F7Jjebw0TOO766JCACAUabgh7lEUSjReiEU7EMVGRV0fIW/yY+W8fcRZws8p4mWkmS6bHwnIg2o7+ljPpplmi8ab9TqNV3sq8lhRk/f9kKU8XuNtaqHN20gkxpCMNwMAQJzylpWnoo2olpjz+1cW7RkAgmiHQRRREONanonxDjwOyNNFKppnEANbPeL3dL7BK71Q0+0j5A0er/LfFDN+snHMx5a8rcft6dEFGt9xcL/8zXK1bvVaGl9oTPMfFHi9A0ChxEeyWonXcRZ4m0t5M0EQDTHnUzUAoB74wQpdNRrvqfXQeCxykSCODwDFhNdHEDlErMZ7MaegQ59VdRgnouyCmHtVyRkfeDIxjwJAJsbJXFxHrkoX97tY1ONnoSpyhYa+f8tRXdR7W7z3n0W6jaj+FEViUhFjaCrmOZUqx2rSAmTyFonfZLn4gbhsmVIBiGR/4j9S31ZzqT6+lok+kDzVPiPaQaf/WkTlsnFR5L6iciMRz0SO8q+f8qgcC5cvlQ/Vess03mrqCS0V802e8N9U+vg81xC5ykSbH6e6eo08p+rK1TT+6N67abws1n8Dq9fTeKHI52QAmDkwS+MH5g7Q+KiYg059wck8firPjwCg2OJllxf4fZ1t8rGqv6+LxhsL/FyH+nV9lI/hddue5fc1xLwvl7tFH++whs7KfTzeISdYjkLXCI0/Nsavo3+lrpODC3ytkInJsVAUc40oIhP7Cm2xfgaAvfvHaPye+++n8TUbT6Txk07n97tS5WMOAERiHZuLvEblvnHC87lSWa8Zj92wkcZP2nwWjTcnJ3h8ju9zdIt+PNQzIM9pr9iHaLbFOC/aTTvja6xEzNUAEIm6Lef8+pYztY+LSPSzDrmYSjFKCa/jIHKVQsTvrbojaVvXezsX/bkl9sNE+4m7eRkHJvbIsquBl7HhGN7PR9bwK9w1w8t+bJcue2UX7zsrynxPcaQwQ+M75vi5pj1DvOBSpz7A60M0A7REzhbE2K36ZacystBhE2QZKlfFM4AFXu+FMu97ALBiLc9Nsy7eDg8sTNF4S2xtzbf4OXX18zwPAKIS/yxOxPyn1tw5v4YOy3qZ0+VqI1fsww2sXEnj0x3uRe/AKhrvF/P7+s2baDwRY2cQe+RJh4V9JNbE8VNcS8ZiLul0mESssFsiDyomy3d9m6jcI+X9I23xMRoAkiDatVh/zon96Ezky4lIA7u6dH7YLaaCdoGvlXeOiuddoj+FdlWW/eM7t9H4lh/fR+PbHuHnFGq8bw6tGJRlT4zzObMFfn37D/D1Q7nA7+n03r00/vxzny/P6dHxeRrfd4AfKxHjglpDp60O86W4f00xDyxXuxZGaXzvXh5ftU50AAD9/TwPqxR5mz5x0/E0vnUbb887H+XtubtXn9NMk6+ti2J/KRL3tT3H56apOd1G+vv5PNdX5f2v0sX3yDJxL3oaej5Lhvj+xHyJzx29A900PrtzNz9+D//+sHhmBgCZmN/nJqdofM9Ovj/X38vX0KcO8vdPAKA1NcnPST+q7Mh/QcnMzMzMzMzMzMzMzMzMzMzMzJaMX1AyMzMzMzMzMzMzMzMzMzMzM7Ml4xeUzMzMzMzMzMzMzMzMzMzMzMxsyfgFJTMzMzMzMzMzMzMzMzMzMzMzWzJ+QcnMzMzMzMzMzMzMzMzMzMzMzJZMYbFfDLn4IM9oOIqjDkdLaDSLxG8i/h5VQKDxYjvlx4/1+1hxxo8VR/zCN248m8aPKQ7TeD/quuyU34bRZpXG1608icbLMT9Ovbkgy4YoG2Uej8Q7bXnC713MqxWZbFBAIj/jZcc5L0SVEQfe/gAgF0UXsk7tefkpx/waBwf6aDzPOtRJk/fx+hyv93reReORqPdctNv5MC/PKUObxhsZv4ENfgmoBn4N1RY/PgCURVuviuGlJK67KI6TJbpv8BEBmAf/TUU06CTl19dXUPeIj6kAcEDU4UzKK71dKNF4uVCh8ZGVI7LsKGrR+LquXvmb5WpwiF9/MsOvsVjk9QgAGXjdpzlvc4mY/xIxx4akSONtNYACSMUYWiiWaTwWeQJEuxJhAEAAb79xLua5SOQD4NcQiRzl8cJ5GSHnv2nLC+HnlIv+12lMzzJVBr9/QZQRxPdTPVwAOW/PuRiTlqspManMi/vUCDqHyMVvIPprJu4HRBlBtNugEjQAogsgqOsQXUBMyYg6jBXidGV7S8RYoWo8VfXd4TeR+E0mfyH6jCq6038uUuDjbaXC54CBbj6XpA0xV8/NyqIzUedi6FzWWg3RfnI+9hREHg0AUZHfE9UaBrprNB4X+I3vHhqk8ZFjjpXnlEa8jFK1m8aH+lbQeLPN28Pw0CpZ9u37b6fxuZkJGu9duY7GV6xZSeNRWa+h0xa/T12lHhovl/n3qwVRfxU+ofXXdCfoL/bT+DwaNN4W81+5zNtZo6HXR615/lk70ePeclSs8Pt0oDlN47tHD8hjzaa8Trr6+FhZn+HtLRV5VZunNSioiRRAK+JtYWJ8nMZrFb4CLJV4G4nV5AsgiL27ZpOfUy72WRKxbkPosN8m5rOegX4aL8/z/ldq89E2F9fQnNbzXFjg97ss1i1pkx+nVORjQpbo+ojEVmy1Iup2Gauo8arFKywkeh2r8j3RFOX+pEquVL2L5fPjZYu1ZIjUOo/PKa02v7aFSX3PS918kDmlm48LK8W40Cjzsn+0f6ssO4i9lhecuJ7G6/snaXxY5FRB7AsV2nreV4uLdkvtCYvjqDWNeiYBIC6J5xgyA1yeVJUkVbFmFGtSAOgXuVv3Sp5nHnxwPy+7xPtSscj7RlB7RQAy8HabZrxvJGJMCPL5UYd5TuwLqZQgisScLJ5ppQW+1w4Ax6zln9X7+fePO/5kGi+VeJ1HEON2p70w0drkCloO9Cqv0e0gER+V06OrvwJAmoo9tLbYQ+vwPANqPhMJTi4mx9DmcfXsbK7N5wcA2Fbn+e//LvLf7NjLx5eePv48Noh5EQDG9x+k8WSat+vV/atpvNzL+186rddtj0zwdU2tzPtgPs/bQaHA+033AK+Px7btkuf040ceovHJaZ5joyD288XzirRD/8vFyJB1WFMtR9se3UHjj+zYRuPlRCwuAOTz/Hn+njrPk3rFHs8l519O47cGfv+STI8hM41RGl8Qa6pii/eBYou359Bhf7JfjPmFOX6sOdHHir18j2y4W6+h836Rw4s6XHfuuTQ+XuX9e9sevp9RrKknwXq/qNzF85qRlWLPK+XXtn3rdll2s67a7dPrr/4LSmZmZmZmZmZmZmZmZmZmZmZmtmT8gpKZmZmZmZmZmZmZmZmZmZmZmS0Zv6BkZmZmZmZmZmZmZmZmZmZmZmZLxi8omZmZmZmZmZmZmZmZmZmZmZnZkvELSmZmZmZmZmZmZmZmZmZmZmZmtmQKi/1ilvG4esMpynJ5rFAIPB4i8QNRhjj+/5+d/4rVLc3vO7//Cm/cee+TQ51T4VTqqq6O1YEUU7NJacxRAmVJtkczMDSwjYFh+Mqw4YsBjAF8YxuwZQNzMZ4ZTJA4kixSI1IUyWZQN9nsUF2hq6sr18lxnx3f/K7gi9PyjX+/xToNb9d7hO/n8r/ftZ61nvWE//OsdU6R6b8ktb+mKtE3mBczGW+XazLeO/5pGT84eM+Wff3NV2X8mZf/moy/8NLPyfjhXJ+/zDJbdmZaQFXouqpSHU/MM6orXXbqnnVEzJOWLtu0wahdA9E3507zkwuT4WnujvJ1+0lqZboOM9MWSvO8IyKqWjesqlfIeL26JONJqsue6UuNce6vaTpqy/hePZXx3lTHNwrdDjddm4qIrNR/S1Ld3pZC30d3ruPzjv9udNV0m0ml/zAy7bld6zLuVPpZp7Wu74iIdFk/19FE95nr44GM7x7osfbuD+/asrum+y11H71vb6eDoYxnZgJc7nTtufZGBzKe5x0Zr8zcmKT6GU7nOu7mgYiIqHX/qEw3H80m+jRmKM4bnnltsoW6dDmHmf/M77PEz2e5GYsLk1vMCzOumsp1VZ4kTX3ATPyNx/x/s/lfw/jpnkXaUIeLaGDucVjoeNlQJ/qJ+2drppSozXjvTuT6XkREnZg/2mNc2TpeNYwVrqrSVLe4wlxUatpaU1NzZbvbTvxT0r+3ncYvx9aW+jL+9LNPyvjLn31ZxqeH2zL+jd/7PVv2wOROxYLmvk1yU/dJbfLihg7i2pZbO5Wl7uVpostuL+k82rX1iIjZaKTP1dHzfmu5J+P3tnX+0Cn1nBwRMc905W6dPSHjF1+8JONrx3Rbr2PHlp3n6zKemLE4zUweVOl76Lb0s56O/WpyZJ53bfYnqrn+fW6utZXreoqIKE26Pi91jrmoJkM9XpW712T8fnnPnmt2aNYRZu9nbvaw0lo/p3Gi+57bA4mIqGZmzN/U7Xapr8eEpY5uC/Op2RSKiHKurzfMGnBuGtV0on/fMe08IqI102X3xnrc2ejr+1syG1j79+7LeD419xwRa6Xu++NS5+/zuf6929uamTVTRESd6mPaZm5YZLlZp7RN0pW4PDN8npaauaYyezNujnXr26rhmoqZ7v9VYdqDudYw7Wpc6zk5ImJz67yMt9NDGZ/d0edZTo/pS9r2+9TXar1v86NUz++nV07LeJ3dkvGZ2ZuwLx8iogq9hi5Ss4dscqeqMO3AvmWIcHu/iXveC6oyU1Bu9gjqme8bJ0/rtrC6uinjo9FtGT+2tCzjx037byV6XoyIaJl9p9Q9PzdOudcMDWNFZfLPzGxcDs0e6A9e+ZGMnzv/mC37l//2z8v4lW9+T8ZXOisynoZ5l2Dqye0lRkTUZq3s9kZs77OvCps2NMy7qMzuoPlzfcJKsyavTW6aNKxjK/O3cjY2hZu4efdSzE2OVvm1SF3rdeafvH9Vxt9b1nPTPNNtOjbO2LLXT+i58fiJszJ+ZkvPc4PbezJ+5fr7tux8WY97U7NBeHxrVcZvX74s4997/W0ZP2ho62NTeNLbkPHajZ8tM79n/t1S7f5m3rUtqtfe0eN30dJ5W8xNPCKWar0Wapsufu2t78j4Fx//NRk/fWZLxj96/wN7TcPBrozPB3pMOJjodVhpxu/T59dt2c89pq/3T//kWzL+5tUnZPz2gb7W2cjvKaxt6ja9f1sf89ia3vPafOppGd8278wHJu+NiFhZ1fVRZvr+Oqk+15e/+AVdQOL3AN9970MZX9vUY+pf5NHKpAEAAAAAAAAAAAAAAAA8UvhACQAAAAAAAAAAAAAAAMCR4QMlAAAAAAAAAAAAAAAAAEeGD5QAAAAAAAAAAAAAAAAAHBk+UAIAAAAAAAAAAAAAAABwZPKP+8M6K2S8LDIZTyJpOJkOJyYeaWXi+vuq2vw8Wv6Sqrm+3nnak/Fyqy3jv/K/+d/J+PbBe7bst268K+NPnv2MjA82Tst4kutnkYWOR0SUtb7vxDyMOml4rvL35jyNx+h4kuo/VJWOp6UpoLFp6jbVNWUsql5LP/OZuY267thzdfq6TlJTwVmlO2Db9NdJx5w/999PHmZjGd8b6d8PZjqeuLEln9uyaz0URl6Z+ih1a89N++yUruFGtFu6TpZMXbUqXXZlxsJerce1tPJTxd2Jjh+0dGO7am5vah5Fu2HgHoz1c5pN7SELKzHtZLh3KOPtZMWea3V5TcarWreTpK8rfzbT8XKur2lW+H6TpXpMGgx1h5oMdNz12fbcjxcuH8nDtHc3B4UeJ5Pc9w83n01GupFWte4glRlfSpPwJJmf97NM96k803WYmbE7S/V9V5UZJCMiqc14aMpYVIW590mp+0BT7lSZOqlMnaS5Pldt2kji+n1DGwmT85Rm3jfTvu177p4fHKOVJnNM3b+1SEx9NORzdWquy9xfaU6Vm7vITJ130669prWtYzL+9/7+/1rG/72/+zdl/IPXX5Hx29fetmXfu39HxuulDXvMohpPdCKY9nT7yc2aKiKiLnWDcONYO9dzTb+n41Mzhg4Gu/aa+qvPyvjp9hkZH411GXs7JucofL/ptPR9XLj0mIyvHdPtfWd/R8a31vu27G5bn6uo9fOuzdjTMc9opa/LLqc+0SzNPJCaNXG7rcsu5/oeOn2fFye5vt7V9pI9ZhF1Qt/7wa1rMn7t8p4913xX95u0MHNspft+bSa6+USvSXOTM0ZE5B39t9qUnef6+eWJzkVq0wYjIkbjgYy3lnQ7nMxNezY5Y2/qx4rZjW19zJ5ZqM91n5mP9LXWB3pR2t/zOcexZFXGD0wCP57oMmaVHhP6Dfltmun7aD+K61gTNyloREMeWFWmb5o25/K9MtF9tmXm91bXr18qs44tCn0fMzO+HGa67y8Vy7bs4Vj389feMmvld2/oa2qt6wLGJ2zZs129ufavbn0k48+9oPcn7uzr+ph2hjJ+5VCPUxERpZv3C7dW1udJzDM122cPtG3i/0gpJnpcL0PXYWrqKiKi39XzU6un85Fjp3Qb+dt/49dl/PNf+YqMH1/btNfUaZuxwvTXxKwlzc/tujAiojK5Qm6OOdjdk/FXXnlDxr/y0s/asn/u+V+U8d9756aM97r6GaVmRHf7cLXrZBFRm3HYleHW4pV7b9XwZqlKdLt1ZS+ytND16PYOY6Zz04iIMM8kq/R4X5dmPC517jZz/az2yc3uQO855MVdGb+xp+9vnut7KG7csmVftu8+9cDe7+kxrL+k47sjPc9FRAymeh4fTvUY7dbcyVy3g4Opvreyr99zPyhE5yN2m8ztnRf63tw71wcHmX1Lf8RCevvKj2R8aPrlcsO+06g6kPHpVD/zdks/qH/+O/9UxsvU7LPM/HvJzEyCvSXzpMw+0ub5szq+uWXLfu6zL8n491//roxXff1u7M6VD2S8l+g+FhFx/pjuG3fv6md0MNDj0dqq3ktdXtHxwf6+vabeqq6r0aEebxOzRVDP9Dg12tZjc0REe67XxIX5vuYv8mi9EQIAAAAAAAAAAAAAAADwSOEDJQAAAAAAAAAAAAAAAABHhg+UAAAAAAAAAAAAAAAAABwZPlACAAAAAAAAAAAAAAAAcGT4QAkAAAAAAAAAAAAAAADAkeEDJQAAAAAAAAAAAAAAAABHJv/Yv5y3dLzS4TpL7KmS0nwXlZkDanOuqtTxVF9rWZqLjYjUlJFk+qLSlr6HVmtNxk8tfdqWvfbYF2W8MLdXV/pas0rfX21LjkgSfa4qNfVhTlaZP7jf15W/qjrT91Elpt2Y5lGm+veJbwaRmNqa1+5bPt/OP0ntlnmupt6zhpGgMv213WrLeLqkzzNOTcW39DUVrt9HRGb+Vgx0p9mfmTL6+vyjsel8EVGYQa/IdRnjmT7P2Jx/q6HDds0YlplrWouOjLc6+saX2z0ZL2dDe01705GM75aFjE/Mjc/MPfR7Zu6JiNMXtmT87MnT9phFtbs7lfHtgf59vdK159os9XN33byY6Eaapnr+62a67Mlsbq/pYLCjy57rvlyWenwpan2tk5kfL1qZbkNZoq+3KvW5uv2HG1cjIkaziYynofvHzPTxYq6vNc/0+Jw1fH+emL5Wm/ksMfNfbXKOplkxqXVd5abOF9XMJWhGYe77AVPv5td1osuuzRRbmqQnKR7+mipXiPl9bXIqk3r+5BhTgsl9XWpYJ3r8ql0uEr6tu8VOXutRNcv1tebmmjJ3ExHxmJnP/sqv/GUZd2ustaf1OuTU5/6SLfvq7/2GLiPV49oiqwszd4zNvNXwT3hqM17l5jnWqW4n07nuy+2unsNndUNumuocotXWbXe2f1/GJ+N7+vyFnrMiIspMt4e1MydkvNfXuWZvSed03cok0hGR5yZP6a3I+GSgk9DJ4EDGV9rrMt5r+xwsMxsabs7sdnW+Myv1M5005ORVqkfQTsP1LqK/+jf/qoy3urpu//Af/zf2XHfv3pDx4aFev5QT3c/c/GemgQgzV0dErCzrxXI712NIx7SdmOm+sX+g+3dExOFM94GlFd0vb167rMu4qceKc4kevyIi4oZeC3Tv67Z+84MrMp52dJ8ZTnU/nuzs20tKh7o+um5qqMwDn+kxMjPPNCKik5mceN6wWbWgWmbPtDT5U9mYgj7c+iIx+5ap6YOVKTy1m9ER3Y7+2zTTZaSmGxSmOexWbmco4p/8QLffpdBzwb2Rbov90ONC1vd9tlvrcw1N7vTdG5f1edb13tPGSd33pw1r65lZQ5dmBZGaHCwxfTNr2qc2z6+TN4x7CyjL9RgaZq3V8dtxcWOgn+HmibMy/vQLui/99V//azJ+fOu4jM8nPhdK3HqrNvftxgq3H232yBqZcWc8M+PdWMefe/KSLWJ9bV0XXej2OZm5MVKPR3Ozd5A0vUtw7wsr857NvZ9yz9QX7a/JjRUL+m4nIiLGhzKcpPoZtmqd40ZEhNlPnU93ZbwY63PV7n2seShVoceKiIjU9I9pti7jSeh1nnt30Mv8PvXcvM84MPPcoNLPYjrV/aY276cjfO7kXgYPJ7rsXkuv83od3ffnZn88IiK6+lxZR3d0N2XOzR/qhheyiXmB3JBKL6S7N+/I+MG+fn7pMTM3RcRsoHOe1LzzCfN+YDrS67bNFb1f01pette0dmJTxjtTfa2joW7nidnjmU38uu2V174r4+mSzjOrli77mMlLRwM/dqah18qrq/o7kJ29bRkfz/VYOHc5pnl/GxEx2NHjzvZtnfOPzXh+564e/6++9SNb9vLJx2R8aN7L/0UesW4OAAAAAAAAAAAAAAAA4FHCB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI8IESAAAAAAAAAAAAAAAAgCOTf+xfpokMV1E9fKmJPiapa/NzU3aqv69K6lLG84bPsUrzrVblrqnUZVT651HXbVt2Ptf3l5myaxOvalMfmS06al10JIX+Q52aGzTNwNVHaq41IiLm5m+JPllq6iNqfVEN1RERpm7/gqMWTl3IcGb6cZi+9OBc+m9T049buWm3nY6MV4m+pty0wYiItDR/6+v7Hh7o+P54KuPbDcParhlIjrX0cLpczGV8y3QO05ofnEsPO5Ga9jnP9LizPdTnuXu4L+PDGNlretf0y4O+/n2qH0Wk5g9LKz1b9oUTx2T8/NlNe8yimk5bMn7pyVMyXiamMUTE9vaOjPc7up2UpW7wpWlXvUw/kyXTByIiKjOE1qbFl2ZMGs91PY3KiS27NjlBZibAqtJtsT3X5ylL32t3d3WfSs34OS9MfmTm3nZb13mr4ZqSjr7vyUT381aq67yTd2W829e/j4ioCjM3tX2OtIjMbUTp5tiG51GZPpC4XNnkxGYqjdS089qM3T/5qz5X6HPZ0chcVFPR9rpMTleZ+0tM2S5l/MnZZDQzawSXE6emHbhrKiudJ0REXLz0tIyfOqMn2fuHMxlf3ViV8a989cu27O9965/J+OBw1x6zqIpSJz516Nx0nvlnkpe6PdjxO9PPas/kXGWlc9PhZMVe073D2zI+GOpxfbCzLeNpV7efydgMehExXTe5wpmTOt7T4/200GWPzdwUEdFumfVLW9f58GAg45Opvr+emZvcUB8RsbWqn1Pd0vU0LHVb6/T079vm3iIiCtMGh2Nfh4vopUvPyPiN+9dkfHnNr9OvvqfHq8lgLON5rXOYmVm3JZXOw5KGvY7JSLf19Z4epx87fkJf01jfw9X3r9uyT587K+Ob/XMy/nvf+Ccy/uM/+qaMn2vYXry0flrGu1PdB5anOrffm+n+6vpl+9CvEaqJzmC65mRZqnPfqdkfaMq1Jvt6rG+t+zx6Ubm8J630vVTh55Qs0ce4/C1zuabJWadT3f9q8/uIiKRl9qtaeo7ITT7ZNvsdU5PjRkTcuK/H73ZHt7nUtdHSrG/NWBgRcW9u1m2JmcdrXfbklr6/Wwd6rFpe0rlZRERU+r6zh9yudXvqTesEu/3yiP2zb7d+mU/0c+o3rNPf/OGHMn54oH+/tqXnoPMXnpLxpZ4eD7Lc99dSd/EoEvMHt4g2a8ys7cuuzL5TYhrosWNrMr5+XMc3j+k+FhFRdvTf6pUN/Xuz5zUc6rxpatarrZ6/JpcLJeYlVZLo37fMPmNR+T3RSPQ4Upi9lH7q950/aVmhx+kic5tSflyvhnr9Wc8O9e/NOiVx79tMvpxl/lmlpg+OzXvU6VzndeOxaaOZn2P7LbOu6uhjajfZmH3ZpOFdW2qqpL9k9ozcu7PMlG36WZ75PjszY1gUOmeNxJTt3tn5ncOIWj+/tGjcwFs4zzyr9+9crtBtGHpK8w7iznX9zsftU516TL9XmpjJOjHvACIizl3U7+GqiX7mO7t6H26ye0/G89yvJe/evSXjqWm3VaHHihOr6zL+wY5JXiLi1e+/KePziR5vp4dm/8X0mcrkNcOReYEbEXmtzzWd6vErb5k83dxDtqX3JiIiusf0HPvOB6+YI/6mPVfEI5dKAwAAAAAAAAAAAAAAAHiU8IESAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI5B/3h7X5limpKhmv0sSeK63Nd1G1Pldqfl5V5poyfZ6y6ZrKzPzBlG3uwVxSJHVty67DXG/o6224C/17ffr/T+lKZQpxjy4p9R/qRJ+/MPGICPentNJ/SMy1Vom+pqay89rX7iOl0u25No0hcZ0sIupU11e7q8uYzkpdRnRlvBX6PKYbR0REXujntLK+JOP3DicyPqmmMj6am/EgIuaZqau0pc/V09c6m+kbbBe+fa6a5zcodNm367mM36r1fY9NuYOGsfOa6ZcTM4h01vW0s9Jty/iZ06dt2UlP3/fuwYE9ZlEdHNyT8XO6O0VvuWPPtf7EMRmfTnT7uX7tpownuX4mw0PdUo4t6/4XEbG+sibjs3Eh46OR7rO5GY/6ma+P0vSbtNb9fDzQ/aOT6rbbbvvxczLSddVpm3HPzPAm1YpirK810cNtRERMTT4ynZpzdfTvW6Y+0vDPIjFzbGLm60U1L13uq39vhsmIiMjN+GpS4qgbskDFze+VyT0fFGIu2BTtnl5V6vO4XLKpaDMURmoOqG3C2vAwzA261NDdRmrmvzoz+VRbj7UREWt93c/uXbsm43M97cfK7LaMf+q8H7fbvZ6M14OBPWZRtXvmaek0ImqzPoqIqKcmxzatdF7o+Ww00fU4qQ9l/PpdP7Y+vvuEjA/2hjJ+7+pVGX/m2edlfDzw406dmfqY6jFmXI1kvJ3ph7G5qvOHiIh5bvq/yaXdVDOd67m6iJmM93PTcCKiCH1/ZaWPybu6jxfmWme1Gw0jcjOuJ21/vYtoUw89cW18V8aPr/h126lNnRDdM/lZOTGDqMkZ00rnsfOhjkdETFr6BhNzyEqq54idK3pcH+ybe4iIaVcX8tpb35bxG998S8b7d3TfaJd+e3FvT6/PemZudO25LExFtXQ9ZXM/dqamqjKz3p+ZdUhi+mU59nNJqdPumA98H19c+rlnZow21RgREbVpQ+6QytR9Xep2UphkvXSLrYhITSLYapn7M2skl9ubaoqIiNVV3a4nU31/bkwqKt1nZw2bxau9vowv93XumHZWZfzu/fsyPtaXFNOGCqnN5m9qJni3H+2XQQ371GaPdVo+Wn02NXup7VTfX575jYU//fPvyfjhvp5jN06ekvHErIVmpt2udVbsNc3Nwns+133DrdPdFmhd+Tm2Mp18Wug28v7778n4/bvvy/jypp9jX//oBzJ+c3hHxudtPSdfv6v3Bmfmvrt9PU5EROS5nn9bZr5OzFq8bfLYvOE9RtXVZWdtk2SGi3/yWrlez2WmkZZjv1ZPa7PPGia3Sswca/pmOjfvgxo2gCqzn5Oa8du9r4yWHqvyjt9rmZX6PubmvnMzVlWth9/PzM2e8JrZVy8rt9eg+2Zi1uh5w95r16w55ibXmhc6ma3Neqpoeudqnl/Z8Xn8Ivq7f+evyniR6z7WNu8SI/yexuzQPI+pGRNMOx8M9b5Tq/bXtNJflvGxmfdv374u44cH+zLuvj+JiLi/o8sYTXX8zg09nx1f25TxdsvPZ/v7uq5mM/1cp+bZzRN9npiYZ236fUTE4VjXYVnovn9sRecQWyf0ftv9g49s2ZUpe3Zwwx7T5NF6IwQAAAAAAAAAAAAAAADgkcIHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI5N/3B9W5Vz/oX74Qss6kfEs0d9LVUllytaF17X57qrxWnUZSaF/naSubFN0ou85IiKp9PVm7lym7CR19WSLjtp9o5bog9JC30dtnql5pJGU/qIqd8GuDit3Lh2valNPETELXUaamvYfLXuuT5SrKlNXde3uz7dP19bzRA8rpWmfSVufp1vaS4qu6QOdri6j3x/J+Kiayng2yWzZExO/Z5pVburp9kwPLrddxUbEdRMfJfqqble6IRyavjE140HpGlREHJh+2c67Mr6yqttHL9O/H9f62UVE7M709U7Svj1mURWmTY9M3WfVzJ6rNdP9eW3rmIxvzk7J+M79PR3fvm2uyXfaTndd/yHX7WFnoMs+GOv2kHZ8OpOmuj93zSFt8yxWVjoynmS+7LW1JRk/tqbb+3Bf1+Go0ANMq/Nw+UNERF2Y+2v1ZHypq++73dJld3P/7XtV67oqpibZWlCJm+dMH0hMThURUbtEySZvJgd0KWBqrqkhOUzMuFObHKJy+bg5f8NQEanL9Uwd2ruodIWYdPUnfzM5oCmlNvVUmofRSXTO2Gr7XPLm5asy/i/+0T+S8ZdeelnGT/+l52R8//aeLXs21NdVzfX4tcjavRUZn6d6Li1Dj4cREZHrOaVlxrft+/dkvLOlE+Bkrq81a+mxOCIiNe19fXlVxqfLuozlth6Plld9XlWY9j6d78l43tF12+rqdjVzg1tEVLV+FlWlc4XNk2ae29LnyU2Vl6XPTYczPcB1+jofKFPdDmpzb1nDfNLt63O1Sl+Hi+junfdkvDy4I+PdhrT/zLktGS/GhzI+3tH5SD/Xz6+e69/vmnYQETEb6HHn7s37Mv7W916X8cLk+2+99qYt+4e7eu07vKvHqZm5pmWzDKlSn89NZkP9h7YeO11+NDKL8axr8qPw6/qq1uNOYdbpM5MPpIUuo57o+o6IqOcu17KHLC7T3KvE9YOGZ2LuvzJ/cGldbdZ/tangJPXrl9SM01WiyyjNmFuXuq0nfnqPPDVzZqY7QmX2CNx82e/psS0iYm11TcZXV/UxO8NtGXdL5a55HVFOmuZ908/N3GjbTarLzhvW9VVm9kXtfvRiGps5KDH39/aP3rfnev9HP5Tx1bZut7PhgYz/4Ls/kPFzjx+X8cOxmU8iojTjy3yqx+O9A31N05HO9TL33iUiJlP9t+FA5xzf/LNXZDxt6znoYOeKLfu9Gzp3On5at8+DwS19otLs7/bMXF37ZzGfDWS8MPtRbqFezPUg2euZlwkREWMzzxR6fbvcP+nP9QmbHer817yqicy834yI6Lb0vFybY2Ymz63Nhk5p9lKrumG/z+zBlOaaWrl+hllbt5PU7DlHRJSZWW+19X20zVo5DX1/VcO7TzMNhbmkSEqT15h2MJ3pMa9seBadvi7DLT/ruc5FapOL+L3PiJlptknxaO0VXzip36+4PaTMNYSIqGZmTDzm1jxaZgaL3Bzh9nciIjomaTXbzjGevCjjw4GeY+cNa+i9kV77Pnf5Hf37a3qem5pxrbPi93g6JoevBnotubqu99vSXN/D/oEue3yo59GICLfFs7qxLOOnzl6Q8eFcjxU793dt2c88eUnGT6xu2mOa8D8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgy+cf9YZUmMp6UOh6FP1ea1rqMTMfTuSkjr8w16e+uktp/j1VX+lyVKbou9LVGog+oQp//wXXpcyWR6bIrcx+JuSZfdIR7rrWO12Gu1dxDVZlrMuGIiCRcpT/cqUpTH2lDfVTFXMYn5v4iWv5kn6DBZCbj00TffLvtz5XUpjObfmaaTkSih5uW+33X99eltVKX3dLHFKZNte7p+GA4sGXPJmMZn5jxpS70fU8LXa+7lb63iIjtXJ+rTvVYMXLNNjFjixlzypaOR0R0TNvpdXXfaOemnlwbbPuy60yfq8p9HS6qselPt3dHMt4t/SCaJvr+Z3Ndyd3uhoyfOdmT8b1buzJ+7eYde00r67qvHe+vy/h8YgbqUsfrmR8vKjNLlC3dB9dX+jKeJ10Zv3ZH10dExN6BHi9Orq7J+DOPPybjP3j9VRlPSt3Psk7HXlNV6nmu19PHLHV0GWWp21lS+P633F+R8YNDP+YuotJkz0ml/1C6eTQiWmb8rkxbT03elpr5vTL5S534PmNS2UhdfuZyQ5OAZq6A8HmmzWVNfbjTNBT90Gl0Zs6VmWfqRu2sYTl2eLAn469+73sy/uTp8zI+v6X73pt/9k1b9u79oYyPZk0Li8VUzCYyXrX0eDgtfZ/tLOm5ICp9zNkLyzK+evJpGd++e1+f3625I6KV6PtY2dDjelqckXE3LuRdX3Zl/laN9DWNTL48L/R58oa11lLf3F/LzE8mpewt6XzH7R3MZvreIiKS1FyvyeEnU71mW23rayrmvm1WXbNOyH1OsIj+1R//Sxk/PLgr48Phtj3XcF//rTKPaXNrVcaPL5+U8d1b+vyHB76NjCY6t7965bqMf+N3f1/GW3OdO7396lu27JPZuoxv5bq99cx4v+zW1qVuzxERqTnXfK7768Tsec3NWJuYfafc5QkRUZpca2a62czk0EXoe6gKv44duxxp2R+zqMZmXCrNGJqZNfwDZh/SLn3NPqTLA3Ndv5nNcSPCzI1VYe7DtN2WWZ/NzR7kg3PpcCvT5yrMRnzHzJfrq5u2aLdHvn1P5ykDs0/W7+i8aWrWR1OzxoyISMyzyEw/d/sAtVk3uWcUEVFWZq9s7Me9RZRnep57+/23Zfxf/+Hv2nPN5vreW5l+tm98/00Zv37jHRl/6YsvyfjJkyfsNXWXdd7dys2+idnrHI+nMj441O08ImJ7V+cE+/v7Mr431vN4YXLDf/ib/7Ut2+Wyn/7cl2T8YG9Pn6en14zlWI9TLbOPGRGRmXd8rh+79lTOdZ1XpZ8vey39vCdmM+CU3gJcCGWp1+SZ2b9vN0yxlclBo9bPNzNj6DzVfbx2e08Nc6zblqprs/drnuHc5GhJwwvq3LSTPDfvShPdRjMzXyamD0RE5G7zyez1J2Yhm5qyZzPdbkqz5o7we5Bzk1QVJidvmXbw07xBTepHax2bFfp669rknw391e0VL6X6oLIwfcb0v555h+rWOxF+Lm2bvrSypOeUWr+GisTcc4Tf+n3x2QsyvrOr89XJSM+9O7s7tuwPPrgq4zeu35PxqXmvvH2of+/27fOGjxgy8+6zznQd7u3r+3NrrM6Sfm8VEXHizCkZH7pveP4C/A9KAAAAAAAAAAAAAAAAAI4MHygBAAAAAAAAAAAAAAAAODJ8oAQAAAAAAAAAAAAAAADgyPCBEgAAAAAAAAAAAAAAAIAjwwdKAAAAAAAAAAAAAAAAAI4MHygBAAAAAAAAAAAAAAAAODL5x/1hXSQynqQm3nCuzHwWlZq4K6M031flaS3jdVT2mlzZVWLOVekDEnPjSejzNB3krreq9e/dPfg/RCSVLqN2h5jbKE28rt19+/pIzGNKc1O5roxSh30riChMXWWP2Ld8rZ6uq1kxl/Gi8kNBatpbZOYA0zcq88xLc/oybdlravf6Mr7aKmS81e7o3/faMj6eTWzZo8lIxovZTMarQt/3eKIb6HSizxMRUc31MbVpnx0zEmemnZcmnreb2r9uU91eV8bbbf1c3byQmfE/IqKT6Pookkerv0ZEdFr6ue/v6fi08P0jyXS7HhweyHg/m+rzhO43RarjG6tb9pqGBwMZf+vaXV2GmVSS0H2znfuRvdfRg1Ux0GXMTdud6qYee3v63iIibt++J+OtRD+ji+efk/Hlnq7z2XQs49O5n2NXlvX4udTVZUzM2FbPdZ0nhR6HIyJq02eXVtfsMYuoqEze5pph7SbMiJnJw1KXUJrcJjFzdWnzrZ8iLzVDq8313C3Y3DAiS0xdmdw+Mc/Cpm2mvh/QZWSZzpFqV4fmWdRmTTFzSXRE7O3rPv7ihWUZP9bRY8u7r38k4w3dNbaWl2T8cMcMhgtsXupxLG/pe+mVQ3uueqzzwMj0vJybvOfcmeMyfubMMRm/ff2+vaZpou9va0W33XSix/vhVDeIrTXfb+pU10de6GPK0GVUuclxu36NUrgctK2PmYx0DpGbAWNW6WvqLOk8ISKi0ClVpKW+JnPbMR/psXA60GNCRMSsrwvvbWzYYxbRO2+9L+OH4z0ZX+n5nLiY6nrPknUZr0xbmIx0W9veO5TxccO877bgykrPBa/98BUZn+3syHh14NvIakf3y0FbzynL7Z6MJ20913Qy/fuIiKmZf0tzuVlL12Fl5kyX70xmTXmpyZ0yHa/MM3LrfbN0j4iI+4NdGU9bum4XWTHVz6o2uVvpNoAi7GZgZp6v26917SRzY3Hu55pJqR9kkur7zlz7KfX40kr8nFLWeuyZm1x6yfRll9u3E3/f9/d0G60rPdeY247I9D0kZmGx1F2x1zSvTA6amNzCpNjFTP9hOvd7ccOZLrvd0WvrRTUb6bnjrR++oX8/1ntIEREvfOoFGb9z87KMf+WLn5Xx1pJut2dP6Jx4fcXX+camPlff7PEU7p1PocuoTq3asvcHeu00nutceTDUE+BwrjtTv+/Hzscee1zGJ25fyITXVvU8Xpe6jyWm/iIiEvP2xa2h3V5DWeq+NxuYpDsiErMmrnM/3i6qtqlHNx4WhU8+ssq86zBzROXSWfPcU7t/79tJauYzN6ekrv2Yespyn1e12m7fRtdhVut+0Gu5F9p+jq1MGZV7B27qqXbvicw4UpV+XT+pdfuoTPtouffNrjrcpBwRWebGqoZkegG5vf68dus//zxy065qM1iaYS/y0GvlxOWGuZ9jey09R6QtU4ZrDG7z3H6QEJGYdcVyX8/768d0fHCo29QTpn9HRDz5hH5XMxjpefyDd38s4z9+800Zv5Hpvb4rZv8qImJa6L/NzRyws7Mv40OTi7TMu7SIiD/4o+/I+PhQ7438H/8P/yd7rgj+ByUAAAAAAAAAAAAAAAAAR4gPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk+EAJAAAAAAAAAAAAAAAAwJHhAyUAAAAAAAAAAAAAAAAARyb/+D8tZbTOEnPmlj1TmuvvonJzqmnUuuxax6tMnycrK3tNUelrqs03XEVbx03REaX/Fqwq9X0k5mR5rn8fpXsWtujITGXV+nFHaq5pPnPPwtSreXYREWWqj6mqqT5XZc6VuLh/Flmt20i/a5/sQppX+gGmpolU6dyeqyh0Xy7NMXmiG9wk09fUTtsy3vdNJKa1vpG2eeZJqq+pCH1v3aRry14v9PVORjMZn811fDDS9TctG9paWcjw+FC36b7p+2m7p+Om2KLhktKOrvNe5g4yD9b0+zDPLiIi6ekyupl/fouqrZtVtLvrMl6lfo4dTnU7SYqRjE9qPbaWpn+srB3T59nft9d0d3tXxnfdMYkeL1a6uj2kPT9grGTLMr61uanP1e3LeK+lH9KJ9XVb9oml52U8qXXbnY302Hb+4kUZ3929J+OtzDSoiFhq6+c6Ne2jt2TGvJke2w4PBrbs3OQ7fTPPLKpZqcfvTqbbZ2XG7giXXUfktR4T5y4nNnGX+TZMsT59Mhdbm+TCzSlZY+H6ihN3tpbuS1Whn1HWkANWJvktK31NmRmH69D1URS6HcwSPQZHRNy9dkvGN7/2FRkfjHT/+/Du+zJ+eP+aLXujq8/VPvXozbFhhkQzJMV4oMe3iAiT5kZ3Q9dLK9GFV2VHxutMt7fVE2fsNXX6SzI+Gun2Xpo8emba+vaOnsMjIvrndIUsJTrXLMzCtOqb3LThn1PN5voBujkwNYPPpJro85vF+M7uob2mtunOSx19I223e2D2S1Y3dA4WYbczYjYb22MW0WPHdVu/ft+025kfQ9uJrq8k0+NxOdK50NzsI7XMvJ+YfhwRdgKemrzq/v6BjGcmg1jq+LVTbRaHbix0+zKpmZOnZg8iImIy1fdXmoVmKzX7GaHHzsrsL9WpfxaJmccTk4t0E/17PYJElLX7S8Typr6PmdlnXGSpWffPS/0M3X5tRERV6fytMpNvZZJW2wtM9ZY2I49IO/qC220dLwvdfgqTm9rEIiLS3OS5c9M3zaZCMdXj5M27fn4/OBjKeL+j76/dM/fh6sMMPHnHP4vE7XmbdVNtxqTKzO9FwxjW75uGq9OXhXX8+IaM/+qv/oyMtzs/Z8+1s6fXCldvX5bxvsnP8p7OY3tLuk25phYRUZmcx62VUz0UR6+v94QatiftXJrlug+MJzrnSDtm/2Xs57PO8nEZv39wX8ZXTf7SM2uKYqbns6RhYV+ate+k1PmAy6ncO8TUVXhE1GaN0O49WvtOERHTmR6L00zfS1HpdvWAya1a5lxzPXeYkThSM5/V7iVjRLRyk0ubPmsuNTKTs2amj0dE9EzO1W6bd0gjM/+ZveIqcTUVMTF7iu5dcDHTvy/MXqPPi+0l2fw3Me923R5dbl4eFw3ro8rs03Ua9rYXUeXG6bbuA9PE7zvVpW7saaqf7dQUXbh1janbjnlnGBGRmwbq0qfK9LHcvMtvGqFnZvxyrSqZPty74zTxg8UJk49sbuq9hk2zZ/P8c5+T8bv3tmX8jTd/ZK9pd2TyHfP9xHCo9xRmh7peZ+Z9fUREVeqyp/t+XdHk0Vv9AgAAAAAAAAAAAAAAAHhk8IESAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODIJHVd15/0RQAAAAAAAAAAAAAAAAD4txP/gxIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI5N/3B/+F9+dy3hR6N8nJh4REa2WPtdcHzRPExmvQsfTXH93VVb+ksq6lvF2Vcp4pm8hqlpfU5hrjYgoU11GUupryiN7qPPU5t4enMv8LdN16KowqfR5alMfeUN9hK1DbV7q+3YXm5lrjYioTZdISt3+/xe/3Gu8tk/K4cFAxrOufq7tdtueK3N1Yn5flrofl5V+IHlLl13VvsOm5hHW5g+ZaQy1af/zqqENVrrz55kuw/Xj0oxrmfn9g2N03aamz7iuX6W6HSS1jjc8iigTV+embk13TcxY2/QZbdYy92HaWqvV8Sf7hN26cUfG2z093ieZ77Odtm6jtR7Gok5M/zDdwI3rrl9GRCTmOVZmYk7cJGsaddo0x5q26KaC1Myxri0mmU943PSUmestTT9ITQXa/uTm9vDzeF3ov7ghqTb9zD7siCim5nn3lmX83LHF/I7+0+cfl/Gi1u02a/t0O6n1QzRpR5Smz7TMPF5nuj2nZg6KiEjMHBGuXZlzpYmZm8yY85PSTdH6PmpTRiRm7GwYK9xVZWY8ylpdGe919e+7S30ZX17xueRaV5dx/twFGT978ZiMf/bZszJ+6eSWLftwd0/Gx4Vus8/+/K/Zc33Snn7mtIyXpc4L6rlvo5VZI/Xb+lxZS7fFwcFQn98NrWVDbmr6VNvk/Xlbt7nBYKJP3zCu57avmbW1HQ9NLtK4LtR/m87NAGpOlWb6WjsdPa6ura7ZKxqOxzJ+MNBrs9qkEJWpj5bJuyMi6ko/p6yr7+O9d9+25/ok/d0V3ZfSUo+h7Y7J2yLCtatWYdYvuVn3mnmgykwbbNhvqMwYurGkx/v+0pKMdx47L+Nbn/uSLbt7Us8d3ZXjMp7k+pr+7HvfkfEffv8Pbdl3PnpLxieH+zJelPq5VsVMxtPQ9dppmPdr0z7cKsuNXt1cl9FqWhyZYXVulkCvHDSc6xP2v/2P/+cyfnz9CRnfO9ix5/red1+V8es3rsh428xn3ZUVGV8z/elw79BeU2Em5mKkx/uNEydkfH1Tj2GPbZ60Zc9rPS/fvLst46tdvaY6//gzMl7E1JY9ONR1Mhzek/Eb778r46N93TcnU1328rrPi13OvLp1Rpdh0oHRnq6/e7u+bR6aHGl1TY+ff/5n37bn+iT9Z//lP5Dxc4/rXDka2sh//1u/LeNX9nXbmZpx+rZpz1Nd5THd130vImLt1KaMb53T9zcf6Hz89JbORfJkZMs+LPW5xjN9zN2bd2V8pavHitWO7t8REcOxTiiPbek14NqqXgOu9XX81/8H/0MZP76l154REcVcP8DhSPez1HT9Xkf/YXJww5b9nW/8gYzfeO89Gf9P/h+/a8/1SfuDP/kTGc8ynaNVbn8kIsyWfyQmKUnMPo/bg3GZinv3EhGRmHNlqc4DC7MWSky8cZ/azO+Ve19j93Hdnnrji2gZTjOdbVbuvauJu/qwjSD8Xpl7r2z3LcxLpLRpHWvaSGL2Xr72pS/ac32SDg7MOiU3eyZ27zXC9aide3rt9Nb7P5bx/uaqjB8O9Hkme+ZFQ0S8/Z5ezz3xhF6XuvdTx4/pee6lT33Klr3c0zm8XaGZ9yvuG5A88fv27piqMomme65u7DR7XondpY4o3DFz992IGafMO4aq4XsSc6qIWq+il1ebv/VYzDc/AAAAAAAAAAAAAAAAAP6twAdKAAAAAAAAAAAAAAAAAI4MHygBAAAAAAAAAAAAAAAAODJ8oAQAAAAAAAAAAAAAAADgyOQf94eDaSLjdVXJeBb69xERybyW8TTJZNxdZJXp84S+pEatTF9vmurSa1N06v7gqyOS0PftPh9Lan2yrNbnaSg66tRUlivDnM1VeWruwbWbBwfpOqwqc03pw9VfWTS0TVN2YtrHouq3OzKe5e4+Sn8y06QjMc/Q1GE70Q+kLucy3lTllWmHWV3oA0zf8O3ct8/KtRF3f7muW1dCbdp5RETtxgpziBsi3RhSJfpaW7mfKlquj5f6DnP7KFoynjQN6Oa+k0yfa5GleVv/oTTtqvZ9duq6pvsk2bS51LTpJNENq67cYBFRmzbnyq7Nc08S8/vmiU6G3Xxmz1Xra6rmDXOKuY+y0s/P1WBRmrHNPFNz+n9zUaZslw88XJ7Q0AxsQleUE3NAv+Fkn5y06sq4yyHShnGsrEz7NPN1lplKzPTg2jLjYdUwyaamYdW56fumvSWZTQJt2a7pujHEzWeJycdrM4ZERCSpG4+01MyZlZnPWuYZLed+zjq2uS7jz37qBR1//kkZP6tPE+Pte7bsutB3vtzq2WMW1azUc2zL1H2r5QeywWgk493lZRl3a8nDkR730sqs51xSFxGZabtpW/fBtGvGsELPNWnDJFu78cL0welc5/2p6R9hcpEHZeixZFbqsjMzJnXbuj66fd3WD4duzoqYzGcyPp1MZbzd0ms21zbbDTn57s6BjGfFT7E58glaDl0ntRmNOw2JR9pybdfluLp+3Xw2N1W71DBOpuZcqz0zX5t5azYZyHjWXrJlr26ekPGltWMy3l/V8c9MxzJ+/e1v27JHbZOnLOv+dzjSfaZyawS3DdCwG9Z1e4CljnfNuTom/wsznkdElKaPJ2bdsshG9/U1X979SMY7uW4/ERHLHV3HJ1b0uJAu6fbQNufp9fTvx0M/Tq6b/nH79l0Zv3tvT8ZTM9fU51Zs2aabR2Yy5lbf5BzDfRmfTvW8ERHRM8331PK6jK9d+rSMDwf6WqdzHe+t+D47HA1NXI8X+/tmvjY5fJLqZxQRMTeDzNjky4vq1v1bMr50St/HqdMn7bnumBxtz+3pZ/o5FTqFjrl5b3CYmo4REbu7Ok+fr5v3TYXZlxnreNvk3BERtZnnst6qjFdd3Z5HpS776XNnbNlFqfv+nXu7Mn6mvSnjb333WzL+g+PnZPwrP/81e017t27L+LzU7WCW6/a0uanrvDC5dUTEvft6zPvWD/W8tNBSPf+FyScbmmjUbo/X5Nj2dZAtw242NlyTez9h1nNui8nu4/qyE7NJ7vZxK7P2dK+cmsp275bKSq8lU7d/7R642Wtvesfi1hzuHYDLWe071KZnYTYCZzPfzxfR6rLedzLbE1GaOSgiojb7I5NC18nl967I+LPPPSHjOzf1GL3e13NWRMR0976Mf/ubemzNzKuux07pazq2oueaiIgLZ3V9dHt63V2afbjE9ON5w4uUxPS/xH034hr7Q3430vj9hBsT3GcSZs/EjbVNH9gkZr4uMj1+hdnf+TcevdUvAAAAAAAAAAAAAAAAgEcGHygBAAAAAAAAAAAAAAAAODJ8oAQAAAAAAAAAAAAAAADgyPCBEgAAAAAAAAAAAAAAAIAjwwdKAAAAAAAAAAAAAAAAAI5M/nF/mGWJjFdJLeN1pX8fEZGklT6XPcaUUbgC9Pkj1eeJiEhKV7I/Rv9ef/NVN5QdpT4mCVNPtb7YKkz9Jf5ZRPFw92eLcM/IfgPny63N47PHmHbj7jo1bfnBMe5cmT1mEdWVvt6qnMt4mvhvFSvTfura1GNhzmX6QGnaeZ76Os9Kc02pLntW6D4zGh7K+N6hjkdEJFlXxvOso+NmvMvaLRnvtfT5IyKyTNdJmrtxxzyjWj+LzI3BWUN/dX3fnMq1tdoMwrXtyRFpbdqavQ97qk9cK9f16KazcPceDVOdiafmYTXMHOb3/ppsCzJt1I3Fbj5rGqNdN3B3mDzkmFeHSSAiojbjWGWeq82C7Lyl46UZdyIiKtPXctOm7Bzg4rbkiNL0zSz03LSoljp6vD+YDWW8qS+lrt+Y3ND9PDWNKuuYeaMhN5ybh+jm3jR3fUlfbOm7TET5cJ3D5uluvGv4pxluTnF5Y57qZVQ313XeNoUvtf2zePaJx2T85c+9KONnT2/K+P2rb8n4rRvXbNntRN9fp+vzlEVVJzrnSlttGW83rJA7Zh22tLoh40WhF6xZsifjqysrMl42jK6DwwN9TK3vrzL9LDd5Zu0mrQibj1SV6ehm7Zl39DOqTM4a4eflNNcPsN3R8cw879FQj+lVUw5mxr2imMq42UqJbm/ZFODLzrq6DsvyIdf7n7CWucW2iect3z7rRLfpxK2dzEZEVenfu2tKzTgREXF8Y02fy7TDnWKsr8msJU+e1mNIRMSJ0+syPmuZPrOi286FTz0l47/2N/+6Lfv3fkv3gffe+bGMd00dzszYUhQ6l8wa8vSW+VPPPNe+yevbJh8IM6ZGREzNVmya6HF7kc2mAxmfHu7J+M3hjj3Xe1duyXi7q/vmxQtPyvjBdCTjg9lMxjtrPXtNc9MeRmZuPLahz3Xn3lUZTyq3sR1x6cnj+g/VRIZfe+VVGa9n+ibWtnxO98LF0zJ+80DnHGubF2R8Ntf1sb93V8Y/ur5tr2lc634+G+vOvG/yo+VlfU1ZT6/xIiJWlvXY6rY/F9WJp87L+IVnzsn4d9/8vj3XfqLb4X7oMaGV6rwqX9F9oDT56mpX59wREUWl58yNDT0ej0d673cw1XPWqsklIyLc1D+b6kay3OrL+MXHdN+7+OTjtuzdHf0spoXJ+dt6LFw9sS7jb//4fRm/de2+vabxgR7rTz2u2+DKqi57754+//ZdfU0REXWl85fVFb1WXmT2HeDM5L9N+95mnZKa9VaauQHO5ddmX6hh/6c274TcM3Rrz9S9t2haxtoNWH2uyqwT3HuL1C30IsJVbfWQ+1uJGScTtxFe+DEsNS8gXBUmiR67TbjhBUfYvf68aQNvEbnXUebW7Xu7iCjMmudwf0/Gp6WeY4cjPZ8NBzre7/v9+Wde/qyM7+zsyviVd/R+42ho9tSWV23Zh4e6jMytz/p6rVyYl2b11PfXwuTqWdvst7t2676jcXsQjW9Y3DsZfa3uVWnirtWNweH3BzP3HuMv8Ij1cgAAAAAAAAAAAAAAAACPEj5QAgAAAAAAAAAAAAAAAHBk+EAJAAAAAAAAAAAAAAAAwJHhAyUAAAAAAAAAAAAAAAAAR4YPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk8o/7wyRqGa+qRMbTxH/7VNeZLiPTZbjvqOpa/z7TlxRRNnyPlVS6jDAnS9y1anXhLioiSfW5alO3YerWVEdE5a/V1ripKlfntSsj1fUarl4jorJ/K/WZXDW5duPqteG60qZDFlFL11WVtmS8buivjqtfW7Y5T2bO49tBxGg60deU6bHl9p1dGf/et78r4zd3btqyI1+S4W5vS8ZPnTkh48c29XnOnDxti+639P2trXRlvG0bro67Z5q7ASEiktr0y1qX4cbUpNbTUWPXc398BD+9TUozB5kBLv0pxlAz1dg/uLLds6108/zJMfYv5prcedx9+3nO5SP2CDNv2fpL2rbs2uUWpbmP2pRt7qE015Rkul9GRGTmQdXmIbnuVJtky+YiEVGbWm+elxfP2ePHZbza1fc3K8b2XLVpb1Wta77b1u3N5qumztPMD5Qt8xArN5PbvFSfJ0l8+3Q5XVWZY0w4cSdqmM9aLf03d67UDApZouezXq773jPPPm2v6eWvfFnGz53SbbAY7cn4wc4dGa9jZssez3SuNTfxRdbv6pxrPp/L+HA8teda3ViV8eU1Xcb+fZ2DuvawudaX8ft7+jwREYnJ97Jct8Viqu+vmhc67pL4iGi1TD83c0Gn19G/N13WpPYREVGaPQU3D7nuXxS6HwxGI3N+fQ8REbmZG7td/Vxrk/9l7t5CP6OIiKTWzzVvN1TiAkpNTtDOXX7r5xSX7GWmMZRmnpuXZr0Tum6rxD+naejnNCl1G+k/+aKMP/ErZn74wqdt2Z2OHr/y/oqMz0z9uS5w6dOfsWXX9VDGN//8mIx/58//RMYrk1NVpsrbDePXson3zd5Wz+xXttxeWMMA1jN5Xjv8umJR7e4eynhd6me+1NdtPSLizPnzMv7BtXd02YcDGX/qyedkfOfePRl/79p1e00HhzqHGm3rtnj6ot7PGd26r6/p0K+Dhjq1iGqi562dm7qM3UOduz3V0vlkRMSNQ134cKBzp8u3L8v46EDX09qa7oFvv/eBvaakrQefpRV9rszkWrPQ99Cd+2fR7uj6qGaP1jp2e18PlrNN3RbeunXLnuv2Hd3eDsa3ZTxZdetSPe711vQ+Zyf342Q50c98sLdnytZ9I891PZmhOyIiljLzii0zebfJ6Y4f1/v2s4lfC9y+uS/j16/oMe/sC3r9+fSTn5Xx1777toxfff+P7DV1VnVlbV3We+Sbq7ofzwp93xsbZoCMiI1VvT9/MPT7MouqLPV4lVTmXYrbJIyIzOwBlQ+5Z+r2J1OTkje9QU3de0a312kKScz6oXF/0uy/2necZoGbmbW42/+M8HXo985NQutegrvlUabbU0TYB+W+CbDvfdyeesPLGlflldlTX1SVqV6z5A/3aiAiojDHzM33DffMnLx949sy/uILz8r4dKpz64iIOyYHLAud25868ZiMbx5fl/HOkt9n+fCHb8j4c89vyHht3oukZj03b9j0Ks3fyqmOu/0X9/q9LMxCtvF9vb4POwWYTlabsaUy42NTIXmm85e/yCP4GhcAAAAAAAAAAAAAAADAo4IPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk+EAJAAAAAAAAAAAAAAAAwJHhAyUAAAAAAAAAAAAAAAAARyb/uD8sykTGq8p849Tw6VOaVvpcpozUnCupzXlq8/tK/z4iIkn1QUm4+9Zxp07MRUVEXdi/mGvSFZKaS6rNPUREJO66TCXW5udpoq+pNvcQ/lFEJPqPtanz2txeYv/QULS5Qf+4H64d/P9LluiuXZnnXVSzhnNlMl67uir080tNW5jVcxm/cfWGvab79wcyfvbC4zI+nk9l/IP7d2V8f1ufPyJiEvp62z193zfuHch4q6XrY7z/DVv2yY0NGf+Fn/2SjJ85vSrjS0vLMt7vdG3Zlmkfkbnxy40tri/5waIs3Vihx6O8vZj9NSLsUJK6cc8N+BGRuro085wb192zMsN9hMsHomEONPEkMfdtC/BzbFGXMt5pt2S8MvU3Go5kfH93x5Y9GusJvrvcl/H1lXUZz3ptXUClz5/U+t4iIlLzp8rlSC5sqtx25YgwjzXmTTnBAnr6uSdkfPSunh92dnQ8IsI9qdFEH1PWesxN846MuyHa5mcRfjyqXa6nC0lc4zH3EBGRmzEhNY1nbsa1ytxf2jBW1GZwa2X6etst/fTWV/Uc+6UvfVnGf/VXf9le05mzx2V8eKDzlHu3PpDxweGejBcmP4qImE11G0z0kLrQcvNsC9Om5w0L2bSvc6XBRM8Rw6nOsaeFrsj7B/syPmkYKLOuvqbKDNSub7Zauq0XZq6JiEjMui3NTdkmF0tSM042TCqJyTuyzFyTWXOkZtzp980IXfstlMODQxlvt80xpuzM5UdmvI1o2gvwz28R9XOd87g9pCauHotC14lNheYml8z0c71n2n9ExH7oHPClX/pFGf/0r/yKjG89p+eH5fUVW3ZW6jadmmQhMWPndKYrapz7trb5C1+R8aefvyTjpy6elvE//cbvy/jdj67KeGfg1/VdMwWumL7UMzmHS5aLuc//ZoUpvP3oTbLtvm4/G8t67+L21Y/8uTq6f/yVr39NxscDXcfvvnFZl31L7zFdv3/bXlOS6X6waq7Vzb0bHZ0fPrVxypZ95+p9Gf/o5ocynpu55tR5PV6snjljy37jA11X5zZPyvhwrNv0dK7HhS1TryePb9lrGpicyq0TTp46JuO79/X63b1jiIjomrVWq2GvfxH93u/pMXTS02PP7ct6zzQi4tb1KzKednQ9tt383jJ7GpVuUz09tERERG72ZUe7Oj/LO/r5tbpm3Zv6PKw0K/v+ko5nbhJK9vTvG3LAjrmuxMzXnUpf0wcf6rHlgyvv6oIb5v2lpU0ZL0w+Nx9PZPxgV6+NvvR5vbaOiMiX1mV8/d2b9phFVRVmH9ftdzTsx5Vm3eZalts6KRL93FOTwrh3qxERaeb+pk/20O8GG95P+/eGZn1mfu/m/bzhWbi1iHsnmrqxp3Qbs+adecM+R/KQewf+XA/3vj6iYa//EdsrLt37dHMjucmFIiJSs31wyuRJp8/qfPLWjTsyXvZ02eOp3+vIWzqXnY70uc4d1xP2hSfOyXhvZcmWvTfWOb/bV+ubus1NX5qYd4wREYXZC6jnet6a903ZLZ1Lun3qnyrDNOOXf59m4g3f0ZRucih/unUs/4MSAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI8IESAAAAAAAAAAAAAAAAgCOTf9wf1rX7lql+6ELrOpHxNNXnqsx5kkSfJ6n0eWrz+5+U3vA3Vba+qtpUR9JQTe5vdfJwde7qqfkR6T8mYZ6ROUtlbtw8UltPD8p2f2x6fh//15VpHxERvok8Wt/y1elcxlNzg3lk/lyhz1UV+lytto6Xs1LG798dyPjv/MG37DUtL+mh68IzT8h4PdHXdPfetozf2zuwZZfR1vE7+lydpC/js5ku4/bta7bs6cG+jI+GOzK+uqLr6fz5p2T83/mVn5fxLPPtI0I/19r0mbrQv49MxxM7DkZU5k9J6kbDxe3HWbRkvE7NPNdQL27gTd39m3HBFG3nlKRhoqvNiJyYfKCuzO9N4XXDuN7Kdfvd39P95gev/lDG33rzTRm/de+6LXu4p8fPzc2TMv70p56X8UtPX5Lxxy89JuN51tA+TPdwOZV5RPb3zUmH/lueNI0xi+ezL39Zxu/NJjJ+6+5Nf7LaZrk6bJ5tkpvn5/KzhhWAy9NL088y0/fdcN+UjrtjqlLXk2uHhRsTalNARPT7Jkcy420n1/GXPv2cjH/lq7rdrK6s2mu6e/uWjI8PdmV8957OIeYDnT8kdWHLnk11XZXuIS2w2URfc2HGpFExs+fa2d2T8WpPt58s1ePbzPSz6eFIxrudnr2mbrujr6nSz3fu5lI3fjcM66mZVFpdnde0zTphNjNrF1N/ERG5SVTyth7g3P21MjN+mnF4NveD2Lzjytb1lHf1ODKaHMr40vKyLbvb0+1gf0+fa2G1zDxn5pqmHYLaLBZSs1bIk66Mjw/0enUeQ13u2XV7TRd/5qsy/rm/9Vdk/NS5szKembbT6/mxouUm/7kZ70tdRivTbc3174iIuliR8bVVnRNvnTkv45/77Odl/Hd/+7+T8cvf/K69pt6dezK+NNdtrVPq+Mzl0A1zbJj19cxtoC2wK+9/ION7y/oeh/fu2nOdPK+f+zEz9r3xzoc6/u1XZHx1TfePZ8/rfhYRcXeg14wrS7of9PQwEsWyzi12J3ofKSLi7JMXdRmbuj4GZqwyaVBMtvUYFhGx1VnT8b6+71/7uV+W8W6ir/W3fv+fyfjJk5v2mtZrXbl7O7oO81LfeL+lc5TU5FMREYMdnUu3u3q/b1G9+71XZXx1RY/33S0/jj1p5rr7O3dkvArd/+a7ek4ez/UYPR37hez6ii6js6R/P5ro/NPtkS/3/D7LZKr7eLmvx/VTa7q9dQpTxsCvwe5d0e1zcFfngN/68+/IeFXq+exwqJ9FbvbtIiI6ff2cNjb12ncy0vW0d6D3WOpU781HRJw7d0bGjz122h6zqMqZ7oO12ecMs66JiEjN861yk2ObvarK7dmYFKZpe9LttdSm7NLkSZl5b+32nCMiEpOLubJr8y44+ynefaZuPe722wu7Ea/DdoXUsG9vX+K6d4nm/fTDnebB31yb8ocspNI9p4Z+6VQzs8861e8TnzE547mTetzrber4M1t+nHz9fb233YqpjD996ZiMP37pooyP/TZcXLuh90ZffE7nsoMDPcdeu6H3TN94521b9u3LV2X8zIbOOT771S/K+PHTer3Ryc0eUsN7Nrc34sYQO7Y8fNOM1OyxlD/Fd0IRi/y2FgAAAAAAAAAAAAAAAMAjjw+UAAAAAAAAAAAAAAAAABwZPlACAAAAAAAAAAAAAAAAcGT4QAkAAAAAAAAAAAAAAADAkeEDJQAAAAAAAAAAAAAAAABHJv+4P0wTHa8S8wcXj4gqah3XYV+2OSBN9XdXtTn/g7+5P1a6jNrdn/nmK9HniYiwpzKS0AfU5lqbzp+452Tqo05NnZv7rsxtJ0lpr6k2F5y4OjTXmmT651nV8F2eOVdu7jvMs/jE2cvV95413EYdbX1MyxRhzlOZ4ebV174l49u3btlr6p3dkvFjq2syfvnyRzL+/gc/kvFWX58/IuJgtC/j2UTXU787lPHZ7FDG83Rqy9492JPxP/qTP5bxYTGT8VNbx2T84tnTMv7Sp1+011Sbrpya2aUO0zHt97J+4M7cnLGo/bJB6cZcc/9J4uslrc0c6KrFjK2VqcfEnMhd64O/PVzc/cHddh1+Trl7b0/G/6v//D+X8T//3g9kfH+s+3I2t0XbjtDuXJXx9658KOPn3jgv47/67/yKjL/4wgv+mlq6D2au35j24dImm1c8+KuMtttuXFhMw4EepzdW1mV8dW3TnuvyNT0/tVq67fS7Pf37zOW+us6ztKHOK/233Mz7bqxomQmiqnwbSdJCx90BtW6frcy084aEZ315WcZ7nY6Mt/u6jE+b/nfihJ579w937DVt37ws45PBPRkf7N2V8aow45dbfEVEWehnUZUNC6oFNZyM9B9MrpI1zCnzqc6twqw/M7OQ7fZ0X3atvZPrPPPBEbof5InutLWZTN1dp7Wf6Fq57gcdN8YUupSWudY899sV7m9uHqrMDfZ6uo8PDicynrlFZkT0un0ZL2sztplnUaX6YmuX/EZE5ZLyzLfnRVSG7mNmmrN7IA/og9JMP/PE9OOZaYZl1pXxJ17+GXtFv/q3/5aMP/bUORnPWrpNJS0zNzWMFXlH319h9jqKiW633Y7ur2WirykiYjYa63hHl3FsRd/H8WO/KOOrx/X6/c96+hlFRNz+Q70P0bu5J+PVWF/r0HSxw4Z/D5qYMa+Vr9hjFtXI7I8s9zdkfG39lD1Xx6xjv/X735bx67d02RfP6rIvPfGkjKemTUdEJHd1/+hmuo1ubOg+26p1/L3XL9uyD+d6Hjp97LiMn1rV95209D28994VW/aJ43pv6Oymfn7JXO9vvfnWj2V8vHsg4+lx3wdmlc5HXI60YurDpXLDiR6nIiK6bV3GJEyOuaAOd/RzunVFt4WlA5evRizVenIc7uq18s5I11Xu9vRHuv0f3vN5Tf/xJRmfJ3r8Ls32a6vWf5jWu7bs9VTPQ5cevyDjbtvkzgd6L3xw/74t++5tPRaOhgMZ39/XdbvUXZXxdbNuOdzT7SkiYrCn17h33DtBl3OYtcb16/6dwfEzevy6v/9o9dcIn5smrt807oebdYTZE3DvAJPS7CGblDx1L3Yjwr0iSMz7q9SUneZus9iXXZt1qV1vmXoqTb02/a8gpVmYZu6dtimjLswzcu8xG/bimt5dK6V7v2r26Brfy5t4Wj5a69gbV67L+MTMKU3b55OpHqdv3rwj4zv39fx066qe32fVuzK+uqnXpBER07bOPy89fVHGn3/hrIwfzPS9vf2Wz0vdO9G7d/Te6P3JDRn/l7/9z2X88EDnpRERn3vpUzJ+7dZNGW+/o+v2Z7Z0/aVmTyg1+9oRES0zVhRuIDZzQ2nG1LpsaJymDPetzl+E/0EJAAAAAAAAAAAAAAAAwJHhAyUAAAAAAAAAAAAAAAAAR4YPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk+EAJAAAAAAAAAAAAAAAAwJHJP+4Py0rHq6SW8dr8PiIikocKR5WUMp5m5velvqbUXGtERG1KT9x91+4mdBlJ07dgqanD2l2vvqjUXJN7RhERiat0U7arj6j1M0pMvdr6C98O/F/M/Zl2UKf6Wh+UoJ9TWbkbN43wE5Yk+rqqyjynhuZZlvqPrcw8D9P5d+9ty/i7b38g40tZ217T888+K+Ol6Rvj6UjG5wcDGZ8MfCscjicyPhqNZbxTuzaiy54N57bscj7VZ9o/0L9vdWX8ww9uyPg//Ie/IeOttG+v6fwTp2S8V+r7znI97SRmkqky3zjr0O25qvUx6YL214iIyE2bc5Nvg9qMiYkZ8P0UYcbQhlH6Ybl5zt1DasqeTQpbxm//zu/I+D/+f/2mPtd0JuNLXd0PapeMRESS6b91zJxS3L0v43u7uo9H0pLhlaVVe03PPHdJxmuXuJn2kaT693XDhJKYub8s3fNbzD77R3/4xzJ+feeWjG9unrDn2h/r+Wk8OJTxotB1lSR67mi1zZib+Dk2GsZdJU/1723KaPL6iIhsZsYpk4C6MaE2bW1rfc2W/dylx2V8OhrKeKut7/vsWT0vHg71M93buW2vqa51bjEZ6RxiONLtqTR5UMt18IhIS12HhV0MLDCzTqkKff+5GbsjIjIzLrm5sapcGbpvtts6d2s3XFNZ6HmrLPR9u9w+Upfb+zEhNWuO1MwFrvnUhf5D0mq4bzOU1GZOSU0eVJjUO0n0M5rNdX0/KFyH85Y+V23apluku32OB+fSxzzkkP7JM9dbmrw/bA4RUZm5rmvy7jI122MndF51/IknZfzlv/bX7TWdv/QpGe/0dJ6ZmrVTluscMG/oM64PZF2zdrLtWf/ebQ9ERBS5fk65yQnmlf79dKb73+nzeu698JmX7DWNf/h9GV89WJLxkVtLzXRFlXPfX6dmjVfY7GlxHTN5rlt7Hk70nkZExM7OPRn/4OqOjK/1OzL+0mefl/HjGydlfPv+nr2mx4+dl/GiNnNEoXO3tY3jMv7Ms7q9RUSkZv7tdvSeVGrKHh3qHPT0im9vvVxPjvdu62f04Xt6X+/DK5dlPO2YcXh7317T+ceekPGDie5rd+/pHLue62dXjhv2ilf19XZznbctqsFAt53tG3q/9nDbD+zPPXVRxh9/4jMy/o2339MnOtDXdPLkaRl//0Bfa0TEjXfuyHhS6nxgY6sn451Ez8ml2ZaJiDj15DkZT/f0uX73d78t44f39D1s9HxCl+X6b/NDPSakJu8+d8zkQbVu51dNe4qImE51Gdt3d2V8PNDr245ZM83+5Bu27Gs3r8v4wcDvty+qxOyZlu79o0+Lw72Ky9w7Ube+dfu1bu+wKbUx+VBqFjB2v9stqRryKrPdEaXJ68y2V2Rm8VK5tUtE5O4drnnebm3t9zn0+dOGvbgw+9S1yUWS0I2tNudxeWFEhHtVW7gF/4K6evN9Gd8/1ONbbvYUIyLGY70P+e5Heny7c1PvR980+Vkky/qajuvzRES0zj0n4/NEzzVPnzfrvLYeiz+89q4tu2xtyvi33vpQx//sWzJ++wP9+69+6bO27K997Wsy/tv/9J/IeG7b7cPtt9UN35PMzNBWmjHVjfOl249q+HbDbUlV1U/3vvBR264CAAAAAAAAAAAAAAAA8AjhAyUAAAAAAAAAAAAAAAAAR4YPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk+EAJAAAAAAAAAAAAAAAAwJHJP+4PsySR8aqqZbzWP4+IiKTWx0RSybD9iqrSf8lSHTeX+hPmj2n2UD93qqYD9G2Hq8LKXFNiTpTYM0VUlf6beRT2eZvmEVXtbs5fU52YMsx92Hiuy65Nu3nwR9OeU/f8TPv4hCWmjWSmN1VVYc+VJ6a+zCOsTTuscl2H5x4/K+NPnb9or+n4mQ0Znx0cyPi7b78r46+98qqMVzPfX9srSzI+HIxlvN9ty3gx179P3fgYEWmmy55MpzK+urmm491VGb929bKM/9Y/+w17TV/68pd0GevLMv7E48/I+NbWui6goT6SWk9hrskuMnfJpRkPGz8vdseYecj9Om2YO/R5Gp6VHS/c5GHygUz//vad27bsf/Evf1fG59Vcxjudvr4kc6nz6cSWXScmzTJJUlXq+y5aHRl/7+23ZPzNH+l+FhHxxKVLMp6npYzXbh63c7L7fdjOmaYP19Y+aeNV/Tw+en1bxstrN+y5Tp4+IeP9tm6HhzPdbhPTyZK0JeNZ5vOXJNXttjbt0/XLuXmsWanbWkREmrvBQs+lbgTrdLsyfvzYui37+HGdW2xsXpTxPNd1uHf7loy3+3oOr13SHREH+zqv2dnZk/HhwaE+UTmT4aWObweFfd6P3iTbbel+MDdzTdmQF1flw62d3Jw8m+syOi19/tL8PsKvGd163K21XA7v1hU/+aO5Jl14lunxZTzRbbSeNty3GXuKQo8xibtvM05WZpwsG/KjxI5h5lrNeFia257M/PjpjonQ4+HCMs2tMDeY1g39darb58ysnepjuq4ee/ZTMv7Vv/F3ZPyFX/oZe029pRUZz9q6Hea5ySVNPSUN83vq1gJmvZVlJrd3450ZUyN8rpea681G+vdtk5Dr7ChiOdf5VETE8MDc3+09Gc5bWzK+avL0Vu7ny9lgJOPjhhxpURUT3UYPJ/oey8nAnmtzVe9T/MJXn5Lxaei5o9PX/ezWvfsy3uv17DXleriw6/QrN3Xef/H4pox/9Wees2XXZl/qzt2bMr62ae77pu4hLzzxaVv2wVy369/+lt5DS2Z6LH76+adl/MRp3Z9aa77f9Po6V//mH31Lxq98eFfGN4+fkXG7JxURMzP/Pmppcb/S65Hxvm4jj5/yOUT37h0ZP7Gu6/epVJ9rt9D7KZsjPR6cNG0tImJ3Z0f/Ya77Untg9kAO9Xy2saX3OSMienf1fPb2j67K+Pi6vu/u3JRRupkuIsxY2C/1HNgx70WePq7355eX1mX8ox9ft1eULun76PRMbmbyhJnZp7p2XddrRMTOwb6ML2/qcWeRubWC23+17+EiIndrm9Lkh2ZN7N4TuX2NumEDu3CviAvzbqnQk3KS6f0it16M8PuvqVvfVjpXdzl51ZDSVa4/m309t053cbc9XzTt29u/uPbxcO8YInn4HDd1G/ELqurqxtAyj3tpw69TTnbWZXyW6JN9+L5+95mZ/r116pSMH/vaL9trunpbjwnbO/od5we3Lst4f0nnIh9c1nlbRMTwQPfLqz/6QF+T3p6PtWPHZLxs+3ynMivNL7ys8+g60e1gOtZzdWnGu7ztP93JW2aP3KzrC/fNg4k39jzTld3Y+Rd5xFJpAAAAAAAAAAAAAAAAAI8SPlACAAAAAAAAAAAAAAAAcGT4QAkAAAAAAAAAAAAAAADAkeEDJQAAAAAAAAAAAAAAAABHhg+UAAAAAAAAAAAAAAAAABwZPlACAAAAAAAAAAAAAAAAcGTyj/vDKkoZTxL9+7o2f4iIOq3NuXS8rvR3VEnoMqpanydMOCIidWXXrmz9e1dPlbmHiIjU1Ie7jyQqHU90GbWppwdl63OV7v7Mc81qfZ7UNJDK1HcT94zSNNMHmPpr+iqvMvddmzqPaDWc7RNUmes18TQ3dRgRVWnaYaXjRa37QJ3MZfzzL78k46tLp+w1DUcHMv7G2x/K+Pe//ecyPju8L+PzWWHLPjjULWg+1/c36eg20krd4OmH5W5/WcZXV1f0AYUZEyp9rXeu3ZXxDz/Q9RoR8e3vfFvGN9bWZPxLP/NLMv4/+Tv/Yxnv9v2zaKW6brPMtGc3ViwCO2+ZeOXH9cS1LTMs2HncjdMu/vDDetSJvigbN83hlVe+Z8v48KMrMt7KOvoA034qM+Y19dkk0ecq9TAZ2cw8pFQfMDZj4UdXfJ+9cvW6jF84d0IfYJ5FmtmGY8t2jcS22QX163/7fyTjv/ALX5fx77/yLXuuejqT8R/+6C0ZT7K2jJdm7k0L/fzmDcNhbnMhkwOadr7U0ddaVL7w2XRiytBlt3u6H/c7PRm37TYiCtPWe31dxvBgKOM//N53ZPyFz31exls9fa0RETv3dmT8/vY9Ga9DD5Lumc5LnxVPZ1MZT7MFzX0bpGaMaZu8YF42rJ3MGFdWJv81U0e7peeO3Fxrbc4fEZHn+lyTQud7lcvVzbUWbtKKiCLVba7q6muy+bJpb63EzNUR0e/qvuPGi5nJ7zPTDeaFuW/z7CL8+n0+12XP52bvwNT5fO7WpBGVGe8ftX+T5palhdm6Shr2WXLzDPNKz72xclKGP/3v/lUZf/Hrel3TNK5nLX297VyPrUmuf29Tp4Y1gk3RzB5BUpn+bcaQmeszEVGYeShN9HNtd5ZkfGpTZT1WzM0cHhFxb6zHnanZV+vNRzK+XOtGu7ri28Ggq29kMNO5xSI7nOprTk03c/GIiLW2bg8nVnT8/ki3q2vXt2X87v2BjF+86Peebt29JePT+Z6Mr2/qNtfN9bWODvZt2W6+6R7bkPHzF8/IeNYxZVc6V4+ImOWrMv7Zzz8n4+5Ma2vrMt4191Z2/P7Ph9cuy3hmBsQXnn9exoel7n/dVd9n53fHMl5NdV6zqJ54QdfJ517U81/r8AN7rvFtvR55//5VGd9Y0u12ZAaF8VSP0Z2hbyOnk66MV4UuI9nV/e+YyTG31n0OOLr5vowf3tLjUafSY2dtcsnpWK+TIyLa7v2YmZb7/b6Mf+bSkzKetfWcnJT+WQwHhzJeVjrfee6zn5Pxc2f0uHZ4+7It+/wTT8n4/ljPAYusNvsX7n2b3a+NiNrmYm4N8XBl+DTTX1NixuPEvGd0r7tmZsM7MzlahK8Pux8dehypzT5uafZmIsK/n3N7yJnpzC4vdhv0rt1EhN3yNnHzOtvu71b23WqEq6ratINFdfHs4zK+t3dTxjt9n3e4fnZ8Xe/dLy1tyvjnXr4k41tnnpbxW109j0ZElMvXZPzLj+v7vnvtNRn/w9fflvHL13Zt2S9+6gsyXps2XVR6vj4c6Hxu6t7HRESnuy7jmyf0/DQa6vk9N2tM901M2TDHtszegeszbh/TDs92XvB5Sho/XU78aO1WAQAAAAAAAAAAAAAAAHik8IESAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI5B/3h3WayXhV1OaIpOFk+m+ViaeJK+PhlA2nSczlplHqc4U+WV2beMM9FJX+WxKVvqZaf1dWmGvKEn2eB+fSx8znhYnrc1WprsDEfAKX5/7buMx8N5emrg71tVamnhqbk/lbWn/srrIYEt1uq0z3Y9emInwfmJS6LXx4556Mv/XmmzJ+/sRFGb/ywQ/tNf3Bv/5XMv7eK6/K+AcfvSXjaabvu7/StWXPR7qR7E/HMp6FrvNTx0/K+FJ3y5add3sy/vgTT+tztZZkfDzZ0/ED/ezKyrePnXs39DFT3WfeefeyLtvU39Jy25YdMdfhtNVwzGIqzVhcVbqf5XnDHOvmp6Z5+SG4MdTNfw8O0mVnpm3VZv4bj3U7+fGbb9iiW7luQ24+qys95uUmD6pzHX/wRx2eV3reSipdT93Q99Bqd2T8/l3dlyMi3nnrbRm/cPaUjKe5feA67hKqiKhNnhcNY8wi+vwXPivjWabHvc994Tl7ru9/9/sy/to7H8q4m5Or2uXp5vc+NYwqM/3V5HqZyS3ylh6L09K3ETe0FeVMxnst3Qc21lZlfHNj3ZY9HU1k/O72tozv7hzIeDnQ8RN3bsr4rPAPY293X8Yrk4PVtY67Kp+Z9hERUZq/7R/s2WMWVZ6a+kp1n3Vz0L/5q4ya8Ts167Bex+Qqta73rGGuKWudD9Ux1QeYiTw1Cze3notoWBObNpeY8SXt6Hhh1jQREbNC35+73MTMZ/NKjy+pWa+Wpv9FRExn+prGhX5G1dw8O7M/UDTkWu6+s6YHuICWWvp6x6ZRuef34I+mjbR1PZ5/5ikZf/Zzeh7v9fsyXrf83kFi5kz3AM3UG5Xbd2poI5npf25OKWem/5lrTRI/TmUmP0xS088S3TcSM361TEVtbZ2219Ta0uvx99+7L+PrZu15thjI+Hys8/2IiOiYfbWGvbtF1erpfhDJUIaX+n59v3FMz41b6zpetHXudmNb50/ry/paU9MOIyI+/cIzuuzJjoyfO39exvdv632TTsfUX0RUJn/57Gc+J+MrXX0fH757S8bvHvo144nTus6/8OxFGXe597Uruj/dH+zJ+GCgn2lExK0r+j6ee0KvY8+cfELGf/DOFRm/cUdfU0REO9FrjvwR2ytur+r2tj/QfWY51+NbRETvKT2G3v6xXjtt3/pIxsdDPX7n5iVONdNjS0TEuln0rK2YnH9mfm/G4v7E56XzZCTjh/d0fcwn+v56G3rftyj8HDsa6jqph7o/ZR1dHxtrKzJ+a1/fW9X217S3Z9YhJm3b2NRj59/9D/49GS/GfvzqlLoO33v/fXvMorJpnVn3J+YdxIM/mj5lCknc8OZSFZcfumS28VT6ZJW578zshxUN67bC7P22TR7v9ufd3ZllfaPKHVS6hYJrIC6vacoz9Z24fVyXsyZun7/xfez/b95XfNKWejpXmBXLMp62fH+dzPQ64so9vd94+95tGX9mU+dndwbXZPx7r+o96oiIY6dO6GsKfd/ffO07Mv7mtcsyPhnpvCIi4s6Bfk+8uX5WxvcHeg46caDznfnBXVv27vahjLv1Q57qtU6VuW89TMFFwz5Ox60z3TtBzY2pbj/4wUFmT6/he48mj9ZuFQAAAAAAAAAAAAAAAIBHCh8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI8MHSgAAAAAAAAAAAAAAAACOTP5xf1hVDxdPktqeKzHxtDZ/SdwRuozaFJ2m5mIjIjXHtFL9Ddd8PjMHdGTYlxxRFTqe2fvWZ0tLfa1J431PZPzm9esyvnzypD5P6Pvum7h7dhFhG0ht2lRW6XhqyiiSzBed68Kb6nAhmbqqZ7qxlamvk2o+l/GDw5GM37+xL+N/+Pv/Wsb3r/yGjO/cumavqbPSlvHxRD+n9Y2zMn7m8edkvBzrfhER7MwV6wABAABJREFUMTjYlfG11b6MnzxxXMafePIpGT9/Ul9rRMRobyzj3W5Xxu/sHMj49GBVxovitIxXPTNIRUSM9d966+syfubCYzJ+9/YH+jzdc7bow4lug/1c18fWSX1/iyBJ9dhTm6Gndn94cDIT1+NCYgZdNwM5acMRtZnfa3Opaa3HJDdXl6YtRESstlsyfn88lPGsrVMjO0o25DuVqRP3/OpCj7euhM3jZ2R86/R5e003buix9fBwT8ZXN1Zk3N22TV0iwqV5je15Ac0GAxnPM91K1nu6DiMiyrFpu4Ue79tmfCsKXYfzUseTwo/rrZbuM2mmO2ye6z5Tmedalr5s19areSnj89lUX1Omr+nEls5jIyIGYz1nfvDehzI+m+n+2m/rerpqcuuo9L1F+PF5PtPH1LWOt01+a27hQRlTvdYZj80aaIG5tpuatps0rNyK0qxH2rr/1+b5rqzovLE065r5XI8JERHzUj8TMyRFmJzDNkU3+UZEatqWu6bSLHyT3JThEoWImJq5v6OHsEjNut7V00rXnKjyE11+bFnG5zN9f7ev39W/N31Tj3g/uSzTbLstv85bRL2uyUtNmzoo/Rham3bVO39Cxi995WUZP3FGr8/cGFI3/DvAzOXphtvbKs0fatcQIqI2SVoZug6HU70mbrd7Mp539Bo9IiJP3XPScTcWJom+P7dvt7ai86aIiPULF2T81R+8K+P7M90GW6Zee6bfR0TUpq62Gq53UW2cWNd/qPQ9nl3y9XJ2bU2fyuQ3g+EdGT/52JKMr7SOyfiZY3rPJiLixef0vs2dazqvu769I+Npop/tqPAj+3JHH9My+f3gUOcKdaXjz17UY2FERNbVc8edW2/LeFLqfZt5oZ/3O++9JeP9Vf8sPv3SRRn/Sy8/K+Pf/Y4uY3+yrQuo/Hy53NfjfavzsV+rLITDqzdk/NUf6/Z84rjPeaqObleD7UMZnwz0nJIm+r3BZKTXZrmZByIiZuZyZyalcyn/xOSfw4kfv6bmPVExNmvoTF/s5rreOyhafp96fl/HD8z6YW+wJ+OTuc7Tb93Vz+Jw4teFda77U9f0me99589k/KUvPCnjz13we17jqcmRUr3+WmSZGe9dqlmZvCoi7IZcmukyqpnZzzGbge7VWWL2ZCMiYm7OZfNlHZ/ZPaaG99NuP9qslcPkphOzb5KbveWIiKow6/Ewa2WT97t6cvtIZcPea2LOZfdxK1e26X9NbxnM/VWNb9QXT2L2hIYjs64p/buMkcl9v/+912T8R2+9LuOH770p43fnZt93Sb9niIi4N9R74R+Yef/tm3otcH+4ocvO/VjRvq/fZbZNO+xVOodOTT8+uKPXFBERezv3ZPzkmU0Zb3XNXp9J+etct/O22VuOiCgL3T5Ss/9RmT2CxH1X0dBdXb/MGt6PNeF/UAIAAAAAAAAAAAAAAABwZPhACQAAAAAAAAAAAAAAAMCR4QMlAAAAAAAAAAAAAAAAAEeGD5QAAAAAAAAAAAAAAAAAHBk+UAIAAAAAAAAAAAAAAABwZPKP+8MkMXH3iZP5fdPJkkrH66SS8cp8X5XUcxmfHU7sJe2P9mV8o1/L+LRtqm5pS4bria/qVqbv21VtMS/171Mdr0PXX0REMtZ18tGPfiTjn18ZyfiZE+dkfHuq66/M+vaa8tZMxqtC/z41FVW7Rlj5+vANt6lBL55KV3ukof+QmHhERGla4tqKfoZfeuFZ/fvefyjjt965KuNp4Z/TsTMrMj6embaTdWS8u9rTZdf+282i1OOLLiFidXlVX5M+TYwH923Zk339t/2DPRlfWdLPNa31fedVJuO704G/poOhjBelfhZLtR5z3n3juzL+zvtv2bI/uPOOjL/43Gdk/Ne+/uv2XJ+0qjR908yLlZuUIyKz/d/MvSZem3HBnaeh20TthhjTzSsziNWh57nVpSVbdmbaYprqwm3Vmnhd+rGqrh+uzt2EloTum53+moxPzFgYEbHaN9eU6njmcjYzN6RuUo6G6ffRmmKj12nLeDXVA3tqnl9ERNvU13q3JeMHc12G6zNV7XJo325nlW4/ea1nOvfMR2M9d8ymPh93/W8+Ges/lHpMKMa6ng4OD2zZw5GezyZDUx8dXR9Foa9p+76ew5f7ek6OiGhlum5nph0kqW4HbbPka2oHczcv5bptLjI7B9VmTZX4vLjV0nVZmgHOLPMizJg7GOg2Wpl+GRFRmeebtXWunppctk50fcwLk7RGRGXqMMl0O2mbTl6Wuq3nM1/28dWujHfMWjLr6Gd0+oTuy8dWdW6xtXnMXtP6uU0ZL6b699979W0Zf+31KzK+O/P9b+b2TBI/By2iltlnSWd6HpilZpMgImJTrxlPfeFzMn7y2WdkvLOi8y2btzUkxZnp+7XJqyq7ftdcPhcRkZq8tCh0GZOJ7n9ufljO/X3nZuNwZvLostbP1UxzYS4p0ob23+rpfG6emzY119e6F/r3YzMORkSkpbm/kRksFtjykh6LlzrrMn5eD5MPzlXrZzKc63p5+93bMn7hqdMy/txzp2R8xYz3EREXzuo93rvXL8t4OTd7J13dFi/f0PcQEfHYup5vvv3NV2T8zu4dGV9Z0vPc+nnfRlfPnpTx46f0/tZbP9B7yK9fvinjH1y5J+NPvqDbU0RE2/SpH13VZW+PdmT8YH9PxudTv09d93UbyVs+j19E9VyPPceP6b5RpPodQETEzSvbMt4101CemvG4Mvl4oa81z/y4PjPnGox1vG0mlblZI7lcKyLi3q5+rzQ3ewTL67pNrZoKzEwbjIiInu43vVw/v+1bet375o8+lPF9My8ubfj+Wk9NXjrUa53ZPR2/9ca/lvH01gVb9pWb+lnsmlzhf/Uf/S/tuT5xLsFx6Z7J9SIa9mzd/qtp7m7/pzT7takZdx6UYQrJ3Jpb/3xu9kdcjhLh34Vl5r2rexQzs1aemvNERLRyM46Z/LA26/3UvQB0exPuhUFEpC09x7oi3NhduHcPdlPGF9K0X7WIRmZP8Tvf/jMZf+OVV+25BjOd+/7wrfdl/P6uzj/PHNd57LmzT8j4cPW4vabLY91G0kyvucuTn5bxUys6fziR6rwtIiJLdF56ONTt7fZ9/c5ws6/72HBH56UREdc+ek/GV9f1/WU9XU9uWeres1UNY4hb8vv+auZkN4Q0fU9i/jRr2JZpwv+gBAAAAAAAAAAAAAAAAODI8IESAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI5B/3h1X2cCdO06ThZLUOm8+l0jDnKisZrmt9/iu33rOXtP36d2V8fvMDGe9cuijjF770NRnf2HjSll1lLRnPcn0fvZa577LU50n8Y56NZjLeP/xQxvd/67+V8dHxDRk/8eW/r6/puc/Ya5oc6PvOQjfCzHxnV9UNbdCoTVurXeNcUInpA0no5x1l154rzXS9l6mpk/lchp958QkZ/9Slp3S55lIjIpLQbb0M3TfGg6mMz6uhjOe5Pk9ERFlNZHwy0fHcjHfz0PHWUtuWvV7p57TU0s9ofU3/Pi30tSZJT8Y3Zx17TbOBvt7B7raMV5MDGb995VDG0y3dniIiPnjrdRl/99W3ZPzXvv7r9lyfNDdaFbVui1ntx6TKNd9Ut7k0MaXrn4cdWqufZsx9uD8ktW7rqxvHfBmJrpC2yWvyXN9HVZi5t+Fb78T8KTF1nrXMfN3R8aHpT6e6y/aaLl16TMa7S7oMN9QnptUmDfmfbzp+zF1EmemXs1I33NGBfk4REfVUj8fnz5yS8Tc/vCrjaarH6Vml57/p0E+yvUrPBSttPae0Mt1I2m19TZPZwJbdaelj0krPNbOZniN29/dkvL+2ZMt254rU9Q09iNSJjs8L3T6mUz/PRVeXXZre5DJ+d61lWdiizTIrcpOPL7TMzH9mvEpSvTaLiChMP88SHa9Tk7MWug/m5iGmuW+7k5kZk2b6+bp1Qm5y/pZp0xERea7/1m3pOmwVuj6OL+n4+VN+TvnSp07qazJpa9rW48jFY/qAjuk3y5tb9pp6W/pcG+t6nPzMY5+V8f/k+h0ZH92zRUeS6zovTDtYVKvrel8hzDov5jabjNHGqoxvPHVBxo9dOKNLdmvrWtdtauaNiIiy0m09bP6kz5Wlpj7M2vNB4WZdOtX3MTPxejLS52/I51ZWTG460/VRzXX+EpW5VjOmZmadHBFx7NRxGe+v6X58ONHz9YF5pivuGUVEPdbn6rt12QJ79oLOWX/w7ddkvNz2/ePEih6nd4e6vgZj3aaHBzq/vnp9V8b3Rnr/MyLigw8+kvFTpv0sbepxJ+/pZ3v6MT2XRUTc/eimjN+5o+eIeaH7x6bpf+Vc74dFRPTNfnRkeow+HOlx4ep7uv7um7VIb1vvI0VELG9d1OcyY9vaml73nj6t+/ida3u27Dv37sr4xiO2jn3/mm7rWyd1v+z3Gt4nmDGxbdaGlZszzTzXKvV5OmZf68G5zHxtxuPcbHZ0TU41npm5KSLGM92mV1b1uVbN1m/fXGvq8qCIKBJdt6dPr8j4vNRz46DU/fiv/NqvyfjP/Opft9eUtPSewiuv/JmM/+i9V2X89Fk9RppuHxERd+9c0/GGYxZVadp7YhbrJst8cIzZu7R1afa9wuzLuoyrrBv2O0o9N5ZmvCjMfadmj9yt3SMiKjNnFm5db9bE04nbwPZrsKnZB8zMnJJmuj+5PfLUrAfcHkRE2JcJhdnHqtz7ikSPeU3drzbP6VHbK/5Pf+M/k/Hf/sd/KOMH9/bsuVaW9P5rkep2dfGpizJ+5oTO02/s6z7z4X2fGxY9nT/1UpOnm33c423dRtJSt/OIiKzWfaa3ocvIr+p95937N2R8tHTClj00S9/SzPvjZCzjtXmv1Ovqe6gSP3amtX4Widn7LMyYkLrxzu1ZRERt1qvthjylyaP11QUAAAAAAAAAAAAAAACARwofKAEAAAAAAAAAAAAAAAA4MnygBAAAAAAAAAAAAAAAAODI8IESAAAAAAAAAAAAAAAAgCPDB0oAAAAAAAAAAAAAAAAAjgwfKAEAAAAAAAAAAAAAAAA4MvnH/WGSuD+YeN1wLvNZVFrrgxJTSJ1W5ve6gOV+y17T5Q//XMYPbt7V8Y/el/HhvT0Zf+LTP2PLfvyl52R8KevJeJUUMp7lff37VmbLPqhHMv7+1ddl/Oq1H8h4Z1uf57Hdszre3bTXtHFSHzOb6d+XpnGmpqEliW+c7i9ZrtvaopqP9DMf3NuV8dVjx+y5ZnPdrtKWrpPR4Z6M7+/osltbp2X8+O6OvaZqcF/Hj5+S8f6Sbm9ppu/tzv3LtuxurhviarIi46O8lPFiqp9RJ6a27Glbx/O5GYinug9sD3QZw2oo43Wq7y0iYvmYrtt33rks46PDd2S8P5zL+Lnli7bsi2dekPFB+9H79jZr6WdYlG6S9ffoxjEzxUb9kPO7O487zYNrMvO4+X1qbq809z3R3exBGYUupdfSKVBV67GtNDeepj6Vql3yZM7VNn08NflOt6sPePmLn7HX9KXP6b/1+10ZL0v3lPQ1NaR/EalpB40HLZ661u1wPNX52bVbt+y5Dg4PZLxtGkPHtLekreezyUx3jsPJob2mdkc/p35/ScZPnjiuy57qcX146Mvudkw7DD1njt24lulntHN/z5bdynQZeVevH6pK94FWy+Sf5h5mZUOOaeowNT0tb5u1TqbbzWxukuuIqGrdnquqYcBdUIm75Fy39Sz3c2yS6nopprqQeaF/v7+/J+NLy3r9l2V+lp2FWRu6GzdroUo3t2ilfi25ZPpsOjdtd6Zzzc88syzjf+fnLtqyn3rinIzvTCYynpS6f6xXbg9C30O55CettK+fxUbHtJsNfd+fuqjXw1duX7NlTyp9f2lDe15E62sbMj4081be82Po8omOjPc2t2Q8XTL7KWY8rE2enjRkQ5nbu6h1P8tMf83MuO7y2IiIeaH3bGYTPRckZp6bzXTf2NnWe2cREV0zx9q8e2b6TKnLnkzGMt42a6yIiJe//CUZv/zehzL+u//0X8m4zuQi6okZVCOiH3p8bvV0rrXI9m7d0X+YD2R4vO/nlI+2db3sTfTcsX5c70UMzD7IH3/rVRmfh8+Hnriox4WDg9syvrl0Usanpj1sXNDnj4g4mOg+dX+yJ+MnNy/I+ONP6jnl3h0/pxxOdd/ZM/nOhbO67L/xV/Re43d+/J6MX9/z64Tr7+t9wDsmgZmV+vd5pvvZ6sqaLXvf7Am7Ncqi+tRnX5LxC0/p57S3s23P9fadN2U8M5s5lVnzZCYPq8we0nTq57mljsmFzPo9SfRcOjdFTCs9N0VEZGYdVpmXGfNEF1KY9H2yt2/L7i3rfHx1Vd/fyQ0d75l171d/6ZdkfPPsE/aa3Az4hZ/X+7i/88e/LeMvXHxcxl/5/hu27P/Zv/8/lfHjn9JlL7L9oc7dktTsB2T+3Wdi9uPc+zO7EzjT7xTmM52Lhd1TjMhMP++v6bmxNmNuYYbiud3wjqhC15Xb+3VnGpn5vTJ9PCKirPS4kLtaN+v6wvy+Y5Z/tdnHjYhI3fWa8TNPTVsz7wvdPmpERNLwnB4l/81/+d/J+PVr92S83zMvASJiaVnvsx6M9FxQjfW7u0lb7zeMCp1bZ2YNFhGx2tXttj7U+epGpstutXWu12uYY6Ov728+1+uQE3FFxkvT1vaGPv+cjfWYl5i6ms/3ZHxibi9ZW5fxXl/vZUREzMz746wy711srqWVZUO+Y/bba7O/+hd5tHarAAAAAAAAAAAAAAAAADxS+EAJAAAAAAAAAAAAAAAAwJHhAyUAAAAAAAAAAAAAAAAAR4YPlAAAAAAAAAAAAAAAAAAcGT5QAgAAAAAAAAAAAAAAAHBk8o/9y8SEzSdOSd1wqkSfLE0qGXenSip9nrLU5+l0/fdY5bF1fU36VLF6qM915/oP9Xl2btmyb39b32G+0tdln35Cxj//lZ+X8fVTl2zZ5fopHd/uyHirdU7G1061ZfzN1/5Exvfygb2ml7/6yzJen3hBH9A/KcOdlv55UvvGmdWZLtu0/0U1HuuuPfzwHRlfffN1e65euSXj231TwcMDGc5v35Dxcuu4jLcPr9prunH9Ixn/Ybqiy/7UV2V8a2NJxu9tf2jLfvF53Qdabd12Jq2ejB8MdB/oV/r3EREf3NLX9doP/kzGb9+6I+OD+VDGr350XcY7x0/ba+p2dPt47Y03ZfyZEzMZf+KYfhbFNV2vERH9C5+V8XNPvmiPWVRlUci4G3rShjHJzbFWw3xtSjCnaSpX/81dal3pi8pyPbYtLXVtyXWm29BqT7e5wWws4/PZVJ8/KX3ZZvJIzANMUn2tbVPGV7+k+8DnX/y8vaYs0/lLWeiEJ3GJnms4DXOsT+geuhF+okrzff+00OPbcKrH3IiIvbFub4PJoYx3+rqt7+zr9jmd6rbT6q/aa2p1df4ZmZ73212dA7Y7Jt7y43qW6DJSM8eWc31//aVlGa9rk9hHxLQwfXmun3c71/eXpfoeateVGoZO0y0jz9yYasou9e/N1POTss0FN9Thoqpzs2Y0dd9qWCGnbgI2zWc80X+YmLmmtuvYhn6T6+eepbqNjqcjGU/Ms7XTQETUlR570kqPhxvLuv6+/MWnZfzZZ9ds2Wmiy94wk01a6wbfduu/UjeEqmXWQBExGemy75X6WezPdRmtdb0+Ghc6t4+I2B/NZXx1Wa/rF1XR09d72NXz36zh/lot3XhTc8x0pttI5vJ0N343DJOVGVs7XTd+65O57DNtWAfMzX1UoeNLKzpX7td6vXrz9jVb9myux7zC1Lmbampz561U96Us1/sDERHnnnhSxr/6db0f9cb3XpPxw2t3ZTxpWGTlJinIwo/1iyoNva9x4bTeQzg0OW5ExO6Bnp+yVPf/pNbjXlXpdrKypvPDwXTXXlNe6WvauafjxUiXPav3ZPz8Y3p/KSJiY/2YjPe6ug8e29Bz5tXreu64e+2mLfuZ53RddVZ1/GBvT8afvfS4jJ94/ikZf+t9vScVEfGdV/W+5UdXt2U8r/S4Wpr1UW327iIi+kt67XRQ+XXeIvoH/5f/WMY3Nk7I+Pe/8+f2XP+3d//PMl4MdmS8zvWYWMzMPOfmgYb9hsncvFcye0Jt8+Jg7JaFesh5cMxcz2fD8UQfkOhr2h+YMWfg21p/pPPutbZe15/u6fjKhtkjaOk6r4p9e02ZGZ83VvS5XnrxWf37fEPGnzzty37505+T8eNPPWOPWVT3D/R9tkybTsxeRITf20vM/qtLZ+tSP9uy1H1gPNFrtoiInll4dyqTk7d0Du/2kYap3/AozWZAYvYO3JJ4NNX9bzDy+U5p3oG3bR6vB6XC7KW2zZ5F2+wjRUT02vpZ5Jlexw5n+r6zuX5GbhyOiAizPkryR+z/Vhnq8XvZvLJoZ34+K8PsFQ/vy3g+1fP4JPTzOH5e55iTG/fsNfVaZl8t12PCUqbbyNm+Ps/0vr7niIjZeE/G+4WOF3d0jmvS9DjsnLFl79zXfXm0p9+Bz80eWV3rZ+H2yNPcv2/KzLlqMw6XZr/brVcTk6NERMTcPL/2T/cBxSPWywEAAAAAAAAAAAAAAAA8SvhACQAAAAAAAAAAAAAAAMCR4QMlAAAAAAAAAAAAAAAAAEeGD5QAAAAAAAAAAAAAAAAAHBk+UAIAAAAAAAAAAAAAAABwZPKP+8O01PG6Th660KR2f9DnSs13VKU5T1ZXMr62/pi9ps/84t+T8StvvybjH772bRmfjXSV/vijH9uyj6cHMn55956Mv/jyz8r48M62jF/61Jdt2Wc+fVHG/8P//X8k43/wz/+ZjN9//RUZn3Z1w3nlh9+11/TGm7quvviLf1/GX/qFr8v4PNPnz6uG7/JM40xdY1tQt/Y/kvEbf/o7Mr40130mImItOyHjxfZIxu8f6nja0/17eXVTxnfzlr2mm4OZjL+VTmT8zX/yTRl/47vfkPGt8rot++d+7RkZ/9Jzn5Hx1b6uv/fe35Pxx7/4S7bsf/Gvvi/j3/gt3S9XN3QdjhP9vPurWzLeG63Ya3rlw3dlvLWsn/czX3hZxk+1OjL+8mc+b8s+81k9tu0W+lyLrKrNGGOm2MrMc00HpbUe+2rTHhIzv9d2Em/gbs/M+3WirzVJ9YlOHTtti85TXUanrdvJvNL1MTLjS1maBCkiIjXzTa0nqNT8fnlTj5Mnj+vxpdvz6V2ambp1bdA0tdrUa+IabYTN8xLXQBZUUehnXlSFjG9v63wuIuL2nZsyPq90nQznOn44nsp4mndlvL+0bK+pzvRzmppr6nT7Mr7S0e3wxDHdniMipjPd4LKsLeOTqc4H5jP9LHp9fa0REbPa9XF9TfNCl5Hlun9nqa6Pcu7HkKRjxm2zNspaet5349pkMrdl11N9XZkbFBZYq63bT2rGntSsISIiZqaNunbixsR2qp+VGV4iN/NGREQ70X+rTNmJ6cupmQfyli87N/NW17STs6c2ZPzCxbMyXtW6n0VEJKXu/7nLUyr9+zrTz2IyN/PZ1M9zM/Ocrm7rst98/7aO/0jHy8TP7/22eX7tj73lsxBqs+wo7ui6ndR6nouIKNKejCedJRmfF7qM+dyM96bv2c2ziKhD/80M03Z/IjP5e1k35KVmzOv29NyYmrIr07/bbV3fERGzqT6mmA31AaYb5ya1zs3eQdbQZyqzrjh/Tq8rnrx4XsZ/dP2OjKeVfxap2YrtmD2Txabn2L2x3ufcHeicNSJiZ+9Qxovc1GVLt6vNJb3OK1Od95xb8mvJM1v6/q68/46MTyb7Mn7xmYsyfv2ybj8RERcvPi7jm5trMv7uB9dk/I0ffyjjJ3J9bxERJ1Z0vn6/1J3wB29clfEbH92X8cdf1PtCmyv63iIiionuH1lvVcbTwrxLqHQ7cGNhRERd6vF+qevnoEW0adrzkllbfP7pT9lz/czP6v24b/7Rb8t44cbEQj/X2Uz/vm3WWhER+2P9bHupmTPNesflktOxH9eHY70X7uattG3yz0rXx8jlpRFRmHx5dKCv91OX9Nhy5sQxGS/3d2T89kiP2RERSa6vadbSOXHMdJ0PSl1PX/m8fhcUEXFyTY8Jk2393qx7Wq9PFsFrr/1Qxlt9nXONB3pPIyLiYF/Pyy4F7bb1+LbU03l0lus22msYJ1sts0di8jq3V9wxey1NO42VWb+nZj+sZdZUZos1KpOr/6QQHc7NMVM9trU6+loLk/5OCtP/IqLomDo3y/GDfZ3D91d0/+t0/Byb5bo9l4/WMjbWuroxjMzcFIXfjxsO9Pi9uqbzpLNm/E57Zj1s1rHLS36OXV/SbWRzRY8J+6a/Dm7rPfKl0qwLI2L7rt4fObeh85q7u7rhTvr6Wk8+9aQt+/6h7jfvfqhzXzcWnjyl97yGZtwejcf2mra29LxlthnjYHdPxhOzjhsN/LOozD6ce610/qkX7bki+B+UAAAAAAAAAAAAAAAAABwhPlACAAAAAAAAAAAAAAAAcGT4QAkAAAAAAAAAAAAAAADAkeEDJQAAAAAAAAAAAAAAAABHhg+UAAAAAAAAAAAAAAAAAByZ/OP+MKlN3PwhqZOGk7ky9B9M0fbzqjoy/fO0by/p1FOfkfGtExdk/OLFF3QZM321B3eu27Ivf/RdGe9s62P6/SVdxr37Mv7Kn/yxLfvNN9Zk/DO/+Csy/ukvfF3GX8t13X7xmadk/NbNe/aa3vj+azI+nE5kPIlCxluJrqc68d/lpaluO5lrtAtqv5zL+J985x0Zv/D5l+25VsoNHU8rGR/3xzKe7X0g451712R8vnLMXlP3mB66vvSVr8n4pdUnZPxv/srPy/if/7f/d1v2nTfelfGdmW6Hx7qnZLyc67HilbeP27J/89u/J+PLHd2m2+YZRV///nOf+YKMf+N7+p4jIq69+yMZP3/hnIzv1maMvHVDxs+++Glb9sSMq3mna454xp7rE2cmutRMdEny8HOsK6Q2zcQyQ2jaMLa6edyVnZhCMpMnPPX4k7bs55/7nIy//7YeD8uOPk+WtmS8sfrMc0pMnhK1qcNKn2c41ONtVP5ZtDttGS/negyr3UMyfblyCWP4plk3tedFZMbWldVVGc+X3JgUMRqYObOln1OdlTJepvr5dTq6QaepXwIkuoiYz8wfTBsZHo5kvNvTuWdERJLp/GU61ffX7ehcryh8O3Rcfl2btu4WR1Wp66ky7TxNffsv9W2He3xzN4aYUXg61fUdEVGZvHup87GXjwvDtenKzCnl7OGfyWgyM4Xr8NKS65t6runY3CZiZp5Vmpu2a9pobeLzyreT2tRHnuk/9Hu6/UwOBjI+6/n1e9vkHbOZHldbpnvkZk6u3LzY0Gf39KOIf/K735fxty7r8XNnpOeAVubn91mhz1WVU3vMIioH+/oPk6EMpzPT9yKiNh1wxcxDda3bQmH2eBIzJ9cNzynJzHMK089KfU1zkxsmDYm9OSSqUh+TZvqAdkuPX24ejYioapO/mLqtKt3/8r4u22TWkTRk6u1Mj0e5aQdrbT0+r/b0825NfDvoma3YumkfdUHVZnp6//pHMn7vwKxfIiLPdd13zNyRuEloaUWGN1d13z+2tWWv6a3X35Txezf3ZPyLX3pextu53ueZjvT8FxFx8czjMl6lum0d7N3UvzcL3PMv6v3aiIgzT12S8Xf//AcyvjvT89ZWV9f5vb3bMn75xnv2miaHuzLeT/SeZd3R7enu7T0ZXyl9jtua67mmnOr1zqLKQj+ntNJj8WxkEpuIeOyc3mfNlpZlvBjr8bhOdLzd1s/j7JmT9ppabd031o7pMWF1S89bHfNuoCz8GL27vyPj45HOa2ZjPe/vH+h3O2VhFjQRMTbXdTjUOeBjl/Sze/xJPSYMtnXfm5u9pYiIwvypTHVfmu7vyXg7N7nc2qYtO0wZWd/X4aL61nf1O0OX7mWp3wcpS90/ul09Ryz39f5W2+RDYXIYd/6IiHZXr/Xa6/r5Jia3z03KZVK9B0xz6C/1ZLxT6ftum/2R3F1U+HWp2zyfm02I6UCP0bnZB6jnfs6aTfW4l0x02ZOBjqcPuU8WEZHlukEXj9j72Pn4QMaTiR7vK5P3RkTMZ/pvW5s6n8zM+qU2ZfdWde60dfoxe03ZWLe30UTnsm3T0A9K/Vyr1K8lEz2Nx9KaHqfWT56X8ZOP6ffNF7/ynC371k39XIc/0rnsVl+PCWsber2xd6Dzh7u7/vuJjsmRdrZ1DvHm62/IuNkGaHzXtXf3ioyv9PQY+Yv/7l9tOBv/gxIAAAAAAAAAAAAAAACAI8QHSgAAAAAAAAAAAAAAAACODB8oAQAAAAAAAAAAAAAAADgyfKAEAAAAAAAAAAAAAAAA4MjwgRIAAAAAAAAAAAAAAACAI5N/3B9m7lOmMtHhn+Ji3DGJKbuudTxN9QFZ6GuNiIhC/623ui7jZ5//nIy3TJXm3S/bol8c/oqMH25/oMsohzJ++d1XZfzK5Ru27N/+rW/K+Dsj/fu//Pf+loy/cOyzMr6x3pXxs18Y22t64ot/WcaX1o/LeG9lRcaLKpPxhlYQpWlUVV2ZI3QZn7T9w9s6vn5Sxv/716/Zc/3iJV0nJzPdSNr7BzLe25vK+NrhhzKeJkv2mjpP/qyMf7Ss28LK0xsyXle6nn54btmW3d7R53r996/L+GRNj2wnfuWrMr69vGrLHi9vyXhvovvZqZf0837+sbMyfjDQ49do/6a9po1eX8aHe7odDK7dkfH3vvtDGb+357+j/dmvf03Gn//U8/aYRVUUup9lqZnoTDgiIq31KOfm0kjMqGgHS/2HuuGiEnOMK9onBHrMPXFOt+mIiL/0dT3H/vht3eZmE31RRaXngbphVqnMMUUxl/F8ovvg3Zt3Zfxb/1rP4V/6/BfsNXW6Pf2HupDhMvQ9JJV5pk2N0za1R+t7+byrn5PLM/stU+cR0clbMj4e6TaSVLquOm09D/Q6eozu9PR8GRExHeocrdPW95GaflnMJzK+tbpmy763f6ivaaoHhWWTp5eFbs/zucvnInpmPmu3OzJeV7qMJEw81fVUJw1jpzkmTLzURUdi1kbT2cyWXU/1yXo9XR+L7HBvX8azrK3jLb9ETlu6Llu5rpdUF2H7rGlWUZUNq2uzTqnn+lpT0w06pq3PKz0eRUTkib6u08d1P7/02BkZnw31OmG/IQ/stXTZ44m+3k5L95tqrsedYmbKXvPj5ze+d0XGv/W6XicMkhMynrX0eDRPTQOJiNy0tar2/XwRjQ70czrY0fdRzX3f6M90Y69M3lGY3CY3/S9L9FiRJH6uSUySW031/dVmjq1Sfa1pQ05VFS4vNWWXpmxTT522X79Xc713MDd543Smcwinm+l8KjNjdkSEGRIiZgMdN2PFSqbvIXcTQER0c51TtRJ9H4vs9q5ep5gt1uh0G9qoaXOJ2XfrtfW+zXioC5+MdmR8Nvbz/u3bel9jNjTjgsntt7f3ZPzJC3pejIgwqULs7uu8ptXT7aqudBs9fVzvbUVEVKYPTiZ6nfDcy5dk/PPPPynjGxt6vHj/v/q+vaZf/JnnZPzmZV0f775zWcZPrOh852BsNsIjImnrdru8pvfoFtXxVV3vZisgpkO9ZxoRMT3ck/F2S5ext6f7X2Jym1/42s/L+H/w7/8de01PPqnbW97T/bK9pMfpdq3HnDRtGKNNzjEpdY5765beh/9P/8H/Vcb/5W9+wxbt9g2npc6Ju1unZXzz7OMy3lvS+9R5w17Y7lDPmfO5nmNPtMx+hlnnFPt6bzki4mC2q/+wpHP4lt+e+MS9+NyzMl6aZ1uVPgedjnVfS9tuDjR5sZnnslyfp+0WKRFRZfqY2qT3RaavqXL7PIXufxERLZOvu7XkyMz7lbnY0Vi/v42IqM0xLVNXxUxf03Ckc5TErNGPbeg1ZkTEWbN+f+zEKRl/5pnHZLy/rOeA8dzve03MPufUvCtZVG5psWxyiLTj106l6U8ds4dVT3Vd3blyWcaf+/QxGT/32Hl7Tbfee0fGk6lu68dX9bv8F7+o39td3blvy/7wh38m40vmXf7p43pO6ZzYlPG04/cUqlpf1707enx55rPPyPh4dE/GP7iiv9340z/V9xwRsbOj57k012PF4b7OcadmHyBt2Kc+mG7L+FrHv9Nu8mi9EQIAAAAAAAAAAAAAAADwSOEDJQAAAAAAAAAAAAAAAABHhg+UAAAAAAAAAAAAAAAAABwZPlACAAAAAAAAAAAAAAAAcGT4QAkAAAAAAAAAAAAAAADAkeEDJQAAAAAAAAAAAAAAAABHJv+4P6xLEze/T5rO5Q4yn0vVdaXLSHQp9vT6NBERkaX6qKrWF+XuoXDnmRa27Fa7J+Mnzz6rD8j0NbW3jsv4hUs7tuxZdVbGN599TsY3WqdkvLPcl/EyMQ0nzew1rZ1dMn/Rx1TmuSbmITU0A3tM2tSgF9CFJ07I+Ke+/rMy/p3f/G17rrUd/Qy/+OS6jBeVjq/v35fxVqF/v5R37DVVy6b9JAcyPLqp+8C9b/+hPs3ea7bsKx9el/GVpRUZf3X7joynN7dlfJ6dt2X344yMV+tDGT//9Asy/vSlizL+X/w//5GMX/nwXXtNJ5Y3Zfz0KT1WPP+kHlvqQz1G1j19/oiIS48/JePL/Q17zKJKMje+6RErrf2gZKYtX3bixkpdRmJm2aRh5neX685lhvtI6paMd5d0PCLiS3/pZRn/zd/UbfTq5WsyXlf6WueVmecibDJUzHV7n86mMu7mrbff+bGMX791y17S1rFVXUZpSjGPyDbBpvbnUoLcZW6LKWvr+Skr5jK+1Fu259rorcn4fKTnzH6uU/ey39Zld3TZXROPiEjnui1UlX7oy0s6byty/fvbN/Q8GhExHus+MJ7pxpPqKo9eV9dT5RphRHRyPY70+zrHnc/HMl7OTF8yyWSW+PErz/R95C09SLpunJr8drXr20GR6etKuzrfWWRuLTmdTvQBhZ/POolu7/PpTMYT3aQj6ej2E6Y9ZA1TzWyqC8lS3X7aLT2GtczOQNM6dqmtx55Ook+20tX9abmj21XiNiEioi5NnpLo+xsU+lz39/Wz2B7ocj9469Be0x+9peffYUv3tdrU08CML0XjSvbfDrNEt5Hxjn4gmdtviIi0MAllpdttZhLQrNLxxDyOLG1Ihgo9HpeVHkPSVI8JtVkjJGbubZK6zQ6TnpW1vtaOmXsjItzU6PLJzMzJpenHk1KPU72sa6+pMmugtNLJRT3Rc0Y60+fJSz+/Z7luU/mjtvEUEbdv6b2W7pLOcYswc29ERK3rpdf7f7PzX8GapHl+3/dP99rjT51yXb7a9/R099idndnZxZqZXawALAyHEg2CkgCQuFBIoQvdMHQrMkISKIohiUGJEaIEiBABgg7cxS5m/e5409PT3dPelj1Vx5vXpdFFrxi6+P1yu4dx0G8pvp/L/8k3n8wnH/N/nswq/RzLkW4P21M9Xhzs78j4+3f37CWdv6j3WZ+69IyMr63q8SXt6LFtd+znlO/96AVdxoaeU3YO9Ry0fF7PscNT67bsP/z6b8v40uVrMn64qO/7n/yp3nO7+/pNGb+64vvsQ6dOyfjaUO//pI3Oj+5umbW4acsREYdj3dauX9J7dPMqN/PT7ljvpZ65qOs8IqK76AZw885ioJ9tnuu6/Rv/478q41/8Jb2/ExFRT/U1uXku6egxpzTrYTdGRUTkZg7sZrq/rpwz73AefUqfp/tHtuwVU7c9s0ewdFXvO198+pMynub6PIcHfvyabum62h2bBbzZVyvNOvbWpu+v9UyfK1nQ9fSJSz9jz/Vxu3r1kowPzbvEzOwXRURUM5ODmvertVlDu+QtMXsUTcv+9dFElzGu9DjilqVNo/+QVPp9SURE3rj9HN1Gx6XOX45G+jxHh75/HB7pv83MXvF0qnPvqcmLi0zX+f6ebx9He/qaDg/1NW0d62e3tKjzv6MD/yySvs5Tiq7OnebVuYsXZPzo6FjGp5XfC98/0M+8mehzVV2dy1Yzffxo95aMr19Zsdd06TP6PdxK/1kZzzLdds5eeVIf/9LLtuzNd/Q8VJq08Xal+2XvQM8djx/5cWqyvSvjuemvffMRyg9/8D0Zf9u8h3r9R8/ba8rMvJz19X0MFnUf65n9qDzMXB0R00Sf697hT/duh/9BCQAAAAAAAAAAAAAAAMCJ4QMlAAAAAAAAAAAAAAAAACeGD5QAAAAAAAAAAAAAAAAAnBg+UAIAAAAAAAAAAAAAAABwYvhACQAAAAAAAAAAAAAAAMCJyT/sgVmi41VtfmCOb/tbkpqT1e5kjYxm5mh3qW1/0yVEpJn5izlR0vIp2KzS91cnXRnP66mMN7Eh49n6ii37F/7GdRkvhkP9g1zXbtWYa2r0vTWlr5Am1XWbZLpyS1NG0riHYYu211smriXMp0Esyfhnv/BLMn777sie6/svfV/Gh6M1Gb9s2s7xmX0ZX9jRbed4YdVe091DHb/TLMr4+3s7Mr70hadk/N0X9L1FROx3N2V845Su8/SUPs9Lm6/L+OpDF23ZTz7+kIxfO1fI+OlhJeP/1X/xj2X8G9/5Uxl/9PrT9pr+4s9/QcbfvfG2jO/s6Gdxb/eujD/2yBO27Kc/+3kZX1hcsb+ZV5UZYzIzCzWJfrYREZG4SVaH/dxoZ0BzHn+m1H0PbcZce7G5jueVn1O6/Z6Mn7l4RsbffetdGTdTdSSpL7uuzHNyt20SmGmpB706XZDxxs1/4a+3memxOHEJoFN99PmyKT/yTz5WRVe3qSw6Mn714iV7rq3HHpXxP/3OD8wvjmW0V+iym8Q0qtq3216h76+b6rYwHOh5f9To9r9/uGfLTlN9H1Wt29XBkT5XUSzL+JWzZ23Zp07rCbsy7XN8rOtwYsaj1PS91I61Ebl5ruZRxGSq20fS6DIWhjpvioiYTUzO37qimk+ZWVtkuWlvbc/EdJ3azY3mWY3GExl36528divciMo00m6/L+Odrll7mv7UzXzOcWld95tlXbWxffu2jJcreltilPj2Nk1n+jdjva4Zm72GO3v6+H/+oy0Z/+6rei0QETHuDmS8dO2jMn3WjBf9rh+7S10dkdQtOeMcGm3peu+NdJ+5PNRrsIiIMvR81jHjmE3PEt0+s9TEW3Kn2uW+ZrAoa/NgzdXmbt6PiNzlgC5uxkKX3rb968duTw8K42Ndh25cS81+VGGS6KTlqmYz3feTXI+daarznaTR7Wxs2kdERL9nnlNPn2uelaHrKzK9R1E2Y3uuxlRZtzE5l9kbLbp6L7Uz0GP0ZOxz0+uPPCLjv/arem+tY/r/JNH19P0XX7Vld/p63MtMWzwc6bGt6eg143fefNOWPVy+LOOv39Jz4Bt37uiyU92ml1euyPju9j17Td/85isyXk30XLq0vq7LXtRj23DzwJY9MkPJ4cjvpc6jpb5uO5nZX+qe0n0mImLjiq7frKvb4cKyXnesr+gyrl3Re6Ojia/zpvxo83Vi96PMWqDl3UBtNjXKiY5P9nXcrT2nU58Tl6keK4bD8zLeWdb5e2b24VMzOC/nes0dEdEb6ndUZzf0uJ2Z/GUWOg+qpvo8ERHTAz0mpMMH7/9pODzQe4H7lY7bd2Hh33m5vc7C7M2khelPpp/NZn7Dr+np/l9neh5PTN9MMtMeKt9Owqwzs45uiwMzl3b6+h6Gi36Nsmb2X2cz3d5rs55rzIv5xOx/jA71u7mIiJl5V3vjzraMv/rGDRl3uXrb3tPSsh4vltf8GDOPMtMWzBZP9Fs+GMh7Ol/uFmZfMdH9bHuin/mNd/R7yTOnV+w1La3qPnBvonP+1RV9rjfe+SMZf/u992zZs4ke8+6lul1VA733u7Ol2/PkyOcWE7Nns7Ot9y2+871vy/hrr78s48fHZt1rxuCIiIWB6RuF2Ts38+Kqyc0We/pZR0TsHOk+Ppn4PLrNgzczAwAAAAAAAAAAAAAAAHhg8IESAAAAAAAAAAAAAAAAgBPDB0oAAAAAAAAAAAAAAAAATgwfKAEAAAAAAAAAAAAAAAA4MXygBAAAAAAAAAAAAAAAAODE5B/6yESHs2hkvHE/iDC/iEhq871UY37R6DLqpJbx1J0n/PWmjT6Xu6Ym1fdQttRHkuhz1U0p41N3rrwnw1Wi4xERxdBcU5rpP+hLCnPbYW4tsrTlWST6ZJWrc9eiTPvwTyLsc62rth/Nn6F5IPWSbgv/+v/0b9pz/ZN/fErG37xxU8bLQSHjX9y4IOPjt/XxWWfZXtPb96YyvntLX9Pk0sMyfr+6KuMbD/+cLfutnVsyfiff1eda0s+id6zjsxuv2bKfefg5GV/rH8j4//sf/scy/r0fviPj/f6CjF997Ly9pmtPnJbxu3tvy/j23o6Mv/yWvqbHf9b32OHSiow3nQ8/tc2LqtRt2o1jqRknIyIyN/Da0c8d78owxydt877+TWJ+Y27bz5f2niMWunqMefSxJ2X8T/7oGzI+c/NDW25R6xyiavSkMh3rdjCuxjJ+rtBz9cq67ssREZHosu1catIg++xse/ItrWmpw3mUZ7re61z3mfW1DXuuhz/xlIz/4Cevynh3out9cqyfa1KZeG4ebETUpUl6Orrs6Vifa3JwJOOzo5ktuzNclPG0Ppbx9WWdyF67clnGz2/4ZzEejXTZiZ5T+j19rXnSkfHMDKl17euj3+/K+GCo87k817lTluoEvl/7vjce6ed3aMaQeVZ09DOpQ/fl4UDXe4SffzOzWBhPdN2XZi00nenxflaZtVlEpGbOHE31nFKWExkfNroPXDm9bsv+9MMPyfik1mUfHN2T8bt3N2W8WfI53bCvb/zY3PehmZPv7Orj37m7L+MHJmWLiEhznXMsDc061jy78czkDy19tjG5RTUzC/g5lad6fHvs/DkZf7RnNjQi4tZQ9/2JybeyyuSrphkWHd0vm9S328QkVpXbVzOP3Gbplc/Hc5MTu9zN7atlJoeoS98+y5muq8wMYHnm1kC2CK1p+TeZjb6mhSUz5nV0W6vNmHpU+fm9Gg9kvJ9t29/Mq05P38vRnp5TRi1j0kpPr2HKSrc5t/wsp/qZdMwcvrisc7qIiIWO/tu3/+QFGV87o3PN648/K+Pnz+n9lIiI7lTnYvd39Y0vLOk5+fZrL8n46997w5Z9eUW399NPnpHxT1/Te27DRV1/10/r/cHf+q3fsdf0zlt3ZXxlSbfB4aIei3tDXX+fePoxW/bLt01d7R3a38yjxmzq15WeF6uWPZ7rj1yX8U6h597DLV3GUz/zaRk/varn/dnIr2Mz85prYvKnXF9quNdT9qVIRCS1LtumbmY82jit+1hR9G3ZTa2va31D7+V2um6/XedgrsbTlvbR6enKLQr3Gx3vmIk/zVv2fU/rnLg09TTPZmY/p6nNfpzby4mIxtRlY959Ts0+RTM161LTHiozh0dENGYvvOjq9p53XC5rnm3in7nrmv2+nlPSwrQ58yzaXkBmZu/Q9g5Th9VM5zuuayYtiXSR6rqtGrO2Huk9Opf+ulfsEREds4bumHqaV3Wtn0dvwbybb3m3c2FZ54dH+zrvuHlHv2/b39qT8Z3NXRkfj/Q7xoiIzDSs2UiPO5npZPe29bWeuXTJlr1zT7+P7S2uyPjVKzpHmZq0rT7esmXnZhy+feuGjL/74o9kvKx0+1g/o591afbnIiL2D/V4tHpqVcbTRJ9roavb5tJwzZY9u6n7/tqa/02bB6uXAwAAAAAAAAAAAAAAAHig8IESAAAAAAAAAAAAAAAAgBPDB0oAAAAAAAAAAAAAAAAATgwfKAEAAAAAAAAAAAAAAAA4MXygBAAAAAAAAAAAAAAAAODE5B/2wNR8ylTV5geJP5f7UxLuZFqTNPoP5jRNmOMjImnM38x91+Ym6loX3vYlmPlJhLs/c63u7tLEl16V5kZM2Wmij09MhaTmaTctj9o+J3ep5jy2+jJfdjTm/h6wT/nyfk/G1zodGZ9U/lyf/tQnZPwfvPQjGX/xpXsyfuqTl2X8qWvXZfztt9+z13TrjXdk/PxDV/Xxd+/LeDddlPHHnnnKlt0s/csy/vxPviPjr7/6tozX1YGMH7+u6zUi4v7OoYz3h8cy/oMX3zFn0kN/t6PbTZR+qvjW88/L+O7Bvi65P5Hx47G+t+PRri27LvW5iu6Hntrmhhsr3cheV34+y9x4ZYpozLgXqS4jsSeyl+TLdgO1mWuaWt9cEn4QS8w8d2p5TcbTRo+T0YxluCpntuza5RbGtNJtupxNZfzyRT2unj93wRfSMt5Lrn24B26Pj5YJu+U3c6ib6jYyy3RbKBb69lynzTM8e+GijP/k7ksyXtWuL+lrmk71vBER0ZgHNTVtff9wSx8/OpLx4UDPvRERVaLH70FPz08PX9T1dGplWcaPdnds2QcHuk6SQpe9sKDvw82l5VT377YUc2lJ38cXvvg5GT9zTo9r47GZk127iYijY/388r4ZI+dYv6/7YG3aW97xY1I11eNxkelzlWbdUc1KU4Iuu679XJMkemCvDvW5FpZ0q7t0dknGf+3nPmPLHjT6Pma5Lvve+yMZP9zb1uef+ZyuWNSVm2a6PoqkK+OV6Zuri3rBujYd2GuqO4WMZ5XOIRJ9eMzMM43Ut81OVz/X8sNv+cyFjQtnddysIZZzPyYlVx+X8SrXFT9xa4talzE1dZu17jfoPzYmt2/MxonbM6la1ghl4za3TNm1boepaYdZS95bhpkD3RrBbDTWZu2QmUqvWzaeEpOzdod67j19RefX2z/SZee7bpyP6FR6TE/cM5pjk0OdP2XmWdVTXy/R6D61uKjH3Vu3buvTVHquvnr2lIxfuHzGXtKdd3We+8bRpoyvndP9ZtZ9X8YXV/0zn5o85c7BDRnf3tP1cWZNz0GXFzZs2ePtXRnfu/GmjF+8clrGnzx3TsZXl3Q9XTi7bq/p9m29Z7S4qss4dV4/15dfekFf03lfHw+bfcvNfV238yox81/eMevV1I+hq6v6mff7qzre02VfufiEOc+KjFelziUjIpqZeZdhxvvaDEeVfZfh5zk3nyWJniO6ha6PRx5/WsYXVnV+FBGRzfT+8s//yldk/Ny6nuci9NyU5noMrtqGc7dfZNLS2sz7bhrPpr5t5rkeV+v6wcqJIyIi/YjX3HJ4atqie5GamX6QZqY/uYIzs+D54GQyXDY6bxwd6zF3yeQJ3e6CLTpx73DNut7N1o2pj5nZx43w+bp7N96UurOVphO6fXuX+0ZEjBKdz7lcOjGDXneg19xu+z/CP4uodTuYV+dNnlmZ9+YLfd8+V07pfOill9+S8en0joyXpe4zRaqf07DT9h5Dt7clM18fmz3ho9u7Ml5N9XkiIpYXdL883NfvfB9af1bGO+dNGWYfICJiY10/1+8e6nwkN/P7yrLeQ7525REZf/1N/awjIvYPzFho3uXVEz0erfd133v2mUdt2a/e0G3t0OwN/nkevNUvAAAAAAAAAAAAAAAAgAcGHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE5M/mEPrMtGx5tExtu+fKpDnyvVp4owx7vzuOMTe3xEbeKJuaam1n9wt9C4AiIiEnNdpm7dRaXmadYtZSe1Kds9DHff9tm5Cmy5Jvv8zLlS057M+d2z++CP5v5cPc2pXtGX8ayj7y+f+vt7+vErMv61r/1VGf+//r3/QMb/wW/+loz/xc8+K+Ovv/YTe037++/J+OHvZzJ+MFyX8Yeee0bGJ+/2bNmTie5o6yvPyfidvu6Ah/fv6Pjx1JZd7W/LeHNPxy9de1LGj3b2ZbwcH8v49vamvabXb+zI+NY7b8l4nev6WFzUbfYTTz1qyx6Pj2S8qSv9g8Ule66P26yayXiR6PaW+QkzmsQM+m7sM4NlasZDNzWlLQN746YaV4Y7T2rurWWIdmV3OgMd7w9lvDCT6bTyfbYpdTwxWUdt0rIk0zfx9NN6DOv1CntN1Xgk442Z5xLTPhrXEFrbgZljswfre/k0M3Np6DmoSPT4FhGRnzst45euntHn+sH39HlSXbbrY+PSJ4dNrcejxuSru3v3ZHyQ6LE4S0zHiIgsmcj46pLul2eXFmT86FDPTZNDPc9FRHRM7tSY/toxnWNhSc81C/2OjBd9P54/8vjjMv7kc0/LeH+o85fxTI9T0/HYlr1amnmp+6GXj3Ojmpi8oKufYVWa41v+1i103fcSPR43iX4mmclhCnOtERG1yd8Gqf7NL31Rzx2ffeqsjC82ul9GRNTHhzJ+4eGLMv7C0ZaMpzM9hm21tNFRqeezpKv72v6RHhf27ut8cqGjx4ROz/fZkUsJGn1/9UyPq5mZTxKz7o2IqEa6rsqZr8N59N6Cbs/DlQ0Zv9Fye83GOX2u9VMyXpv8aWrq3a05Cj+ERGPyyVlpk0YdNudp2vIwM/+6Fl3PdBmpmf+Sypc9q3TZ5UxXVlXpuMvBUjNXV42fs+pa97Mjc01Pf/EzMr5c67Hone//2Jbd7O7pP6z5fYh5tbio67EZ62c+XmrJi037PT7W48LxROcqq0OdH155+IqMJy2d9uhYP6uq0ePFe5t6r6p5VdfHJ5/W82VExIVTKzJ+pdDrh8X8QMbXU32ta2sP27JXB+dl/PbBLRl/8ycvyPhZcw/HR/pZf/v5V+w1Nf1VGb+zuyvjCyPdDm5v6rXL7dt+nXD+2lUZ397WOcS8cvtIldm4OD7SfSwi4u4dndPt3r8r48OFZRmfzHQdvn9L96Uzayv2mjqZzgFLt+9kpq3MbJKluR7vIvx+yszMKWVt5n2TMy4v6X3tiIj1pSsy/sWf+3n9A7PenxzpveK0q+fYycTP+26PJzdrJtc2CzPvR+PHbfcerOj7fbJ5NZmaXNOs81L3cjAi0ty969NtLu/oMhrzEtDlk25PMSIiTDtx+1jHodeljVmjV40vvCr1wq2s9Fzgmpzbg69a9twK834uzLhQmzVHbRp7avYHMxOP8HuK/vmZsa3Ui7NO7p9FZsbWrPDXO49Ob+g8xdX72oJek0ZE7Ix0W9827wCvndN5232zR7h5W59nNvG50JXrT8j43r7+zcG+fp/YK/Rc3Wl53JOJy1P0ftTO3k0Z7/f1OuTiOb1vEBFxdKzzlOHCiowX5t3n0OylLq2uyfgFnXpGRMT+ts75z13Wa4S3ju/L+MqCro+HLug9+IiIZ57U13vbrW//HA/WGyEAAAAAAAAAAAAAAAAADxQ+UAIAAAAAAAAAAAAAAABwYvhACQAAAAAAAAAAAAAAAMCJ4QMlAAAAAAAAAAAAAAAAACeGD5QAAAAAAAAAAAAAAAAAnJj8wx7YmCOTWSPjdaPjH/xI/62pa3O8jidNoo83RTfu+IhIzKdatT2ZPldi7iFN/bdgda3P5cp2d1HXmTneP4skdX8z95eYa7VFVOb0/lk0qSm7Me3D3Z+7N3NJEbapRdNyvfOok+q2EKYO+0XHnyvX5/rcM0/K+Obf/Jdk/J/+J/+hjH/r/j0ZT9eW7DW99PaWjG+99dsy3ixuyPjvfOdPZfzo+MCWPcr1YJitr8n4YNCV8aToy3h3dcGWfbyln9/x3kT/IC9leGaac53qdvDya2/4azrYkfHeQNfT459+WsZ//Zf/soz//Jd/zZbdS3oyXrv2P8cS871wbQbXpOUWUzOn2DHRjHtmSonUzA9t837ifmPGVjMN+PO7STwi0kb/7dqVx2T80vVHZfyVF34o41njx8/aVG6am9ypnsp4r6/LePYzz5iC/UTn6jbN9B8a81wTM2E2pr4jIhJ3rraJeQ5lJidOXeV2Cnuu5f6ijJ97aF3GVxZ0HZaVHu+bRM9Bg5a8tDocy/hCRw8KeTPSZXR1u02XfX0UAz33r6yelfHF5aGM9+uBjB91jn3ZfT0v94fLMn7pwgUZP/vQORlfOWXyhKGvj/Uzp2U87epnUZv1Sber72068n3vcHQo47PDbRm/sqLvbx70B6YtFroes9yP69N0JuOJWVZnhX4mg6EuYzbV/aljrjUi4s3NmzLeXdD94Jd+4bMyfvmMvqZXvveHtuzL11ZkfGFdjz23dvdkvDrSbXHNd484nOj8N+vrZ/H2HV23+ybhGZvxc1LpNhARMZrpv/UTPb9XtR6LSzNfFi3r+qHbGkk+9JbPXNg+0mPP6wu6fZ4z80NExEPXHpLxxfUVGZ+Z+p2ZOTYx+VxTtiTqjW7UdWPKCDP3msc6m/px/XhkxheTE6RmTqnNnlc59e1zVpv1qssNXV5q9hJL8+w6hb+m3OxzLK/osfPSs3odu3Thso4/5tfQ2y8/L+OTw/v2N/OqNOuXw2OdT55aXrHnGh3rhr11uC/jbmosCt3P3nhP1++G2cuJiHjqsU/K+Ktv/EDGl1d12Wl5R8Zf+P7btuz8mc/LeGH2OwqzSeD2TWKin1FExHaq++yrr70v40tdncNP9nXuPZ7qfrZ598heU9PX80Na6DHs0fRxGV9e0vPG1qZuZxERWaWf68aZM/Y386gq9Rzhtl929/3e6Le//V0ZPz7Wz/DwUM9BN269KeObm3qveDDU+VlExIrZf53NzN6F6Utu36Jto6pxG2tmnKrNfHbU6Fxya+z7a9rTfXzm7m+s++XtGzf0ecxNZLlP1A9NO+gPV2V8be2UjC/09FhRZC37GebdR27GyKxlvfFx6+T6Pl0+ZDtziyQz+azdLHZhPb5krhNERGbyt9TcX9ccP53qNn1c+nVbafLZxOxpJqbNueEib3mXmJncuzHvBromr0kzXbduf9e99/ygcJczm7WFqw+zP5+37EEW5n2U26+ZV0PznIpCz0256d8REZNDPYamU92mn3pUv6e9cVfPpZvv6Xei779/217T6rrOn959R695UtOeN87p85y/qPdSIyLu3nxPxhczvV/7whuvyPhyV8+X1dTPsbfubOo/mHFq2ew1FKYv3T/YlfHhst+XXFnW+xwbD+l34Ltb78j42Ozbv3nX3HNEPP3kNRm/dOT329vwPygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxOQf9sC6SmS8aRoZTxt9fEREbeJpqr+XSsx3VLUro9bXlISOR0SY24jExBtzrjT9aPX0wXXp37gaTFwF+ou13J/cNdXmohL3KMwf3KV+cFH6BuvGtA9XuK1X3zYj+0jhOaavuKlLGU+SmT1Tmul67y11ZPwzn3taxo8Pv6YLyPS15i21/qN7RzJ+6wcv6bJv7Ooy0m0Zn06ntux+V7efInQdri1d0WXUuv66pj4iIg7Lsf5DR/eZna09GXftoDZjSzb0HfbpTz8n41/7mn7ev/SVX5XxRx97VMYHSd+WXaf6PkyTnWupa++pfigto5gf8t08505mxmI39SZm/osIO/E3ZkKr7HnMPNDyzFNT+KVrF2T8V37pF2X83ddflvHdo2NbdpLpSu9mOv2amLG429HjxWJ/ScaLlvqYNrp27dxonlFjE4K2Cd4mCy2/mT+ZaVN17vIUf66i1m3h1JkzuuxEj3vDVD/X7lCPoRv9rr2m7vKi/kOt2+dqpuujn05kfO3Ugi17ebAi46dOretzXXhIxgdDXcZo7NvncFn3p8HyKRk/d1aX3R0UMp4U+llnZpyIiMhy/Zuy1L9x65PRrh6n3nz1RVv25vtvyXje0e38yvXH7bk+bkmhO+Gs1P2p3x3acw2XdduqzDw3MTllOdXPZKGr63dSmRwwIupG5xDFUN9Haeaa/eNDGT+qdN4dETHt6P7xg9d0+9kc6TI2Ct3/hks+L55u7cv4/uhAxut+T8YXQ4+H93b1tZZTPbZFRHQTXUZqJoKio/tsVel2sGz63wc/0nVVVX5dM4/2D3RbP7V+VsaLh5+05yrOn5PxuqvnxiQ3a2iT2zRm8VQlvt1mJq/KzBowS03cHF81fouvKXXfb/RQaNchZaVzjqkZUz8oRLfdTq6fRWP6zMzkIm4JbbYYPyjDLDiSQo8Jg1jRZTy0IePHpc933nzjVRm/tX3H/mZeHR3rMXEyGcl4sqRzuoiI0UT3/9ysDpfdPGfGw299S+8XfeHzn7fX9DNPPaHLOH5Xxk9dvCbjt7duyvjL79yyZd9Y0ftVd9+9L+OjI338449dlfHJ7U1b9s17r8t4Xeq6/eIndT3dG+tn+vwPdA565eKavaaldf283TR3tLUj46NjPY5cuKDnjIiI1bVl/YeZLmNejc1+SoRev7zyYz1WRUR845vfkPGDsX4gV6+dl/EzZ3Queevm+zJetuTE5zcuyvjEbGLVZh/OrbmzzC/sM7MRmSZ6/KrMnLy1q/tlmfs1Y39Dt8/dsR6HV5YG+kQTvT65c0uPU1Vtd+6i29NlJGaPd9zVc8kw1bn1zL4c87nTxOyFD/y288cuM7mpbYltL7BME3Kjgn2Pan6QmdfMrm9ERHTMfkdT6nGkNvWRmb24LPO52PhIjyX2Xbfdm9F92WxB/NlvdFt0vbwx9+c2G907hsYm/RG1fXdtyjBlZ6mup7Z9Ube/3Jh9r3m1f1+PubWZUyL163S3p1GapOfIzL33N2/LeD7QbWTQ1WNuRERd6nG6Ch3v9Vb18WaPLDfvXCMiJqluC7du6fz6eKKPv3xe5xyru/odakTE7U29Ptvb1vl4t3DPW1/T/qGee0+37Z2b5zQxaemlc/odw7lzOvftmrwwIiIz72NPr/90k+kD+BoXAAAAAAAAAAAAAAAAwIOCD5QAAAAAAAAAAAAAAAAAnBg+UAIAAAAAAAAAAAAAAABwYvhACQAAAAAAAAAAAAAAAMCJ4QMlAAAAAAAAAAAAAAAAACcm/+97giRJTNz/Jqvdb2r9g6rRx0dLIUIT+jx/9seP9AdXctXov6SNL7tJ9N+aSh/v6rYJU3+t9MlqVyEmXLXV7Ycv9oM/fcT20dTmOztXT5m/1sSdq3C/+Wht8F+YZqrjWaYPN+02IiIxz7ZX6+Hj0saGjH/pZz8v47NaP9eDrfv2mlZX1mT8uNSdJht2ZbyclTJemzEnIqJMdB1mpf7N8cFExnt93dbG5ZEte3/rjox3cl2Hi4NCxrNiKOOrZ1Zl/LnnPmWv6X/4174m41/42edkfGVRP7vUjF91M7ZlZ2YKy8MMnqHrYx40oduimxajZRyrzeSRmG+Sk9SMuXYQ1WWbrvxn59J/TNzY07jvpz/6WDzN9N+aqR4nL148o0+U6r6cliNbdhN6vCjNfcwmuv+fvXpRxk+tr+hy25KwVNdtU5o51jy7xjwjlxd+8EeT7/hfzKfUXHGp+3GWt/x7gFSPYyvL6zJ+4cxpfZo1XfZSoc9/qtuzl9RP9Jw5memxpa4PZXyQ6eN7w74te3Gg4+v9mT5XcyzjS50lGe+ePWXLzof6N33zLNx9ZJl53m4sal2f6P5XjfS4Mx3r+M7mLRnfu/G6LXq8dVvG87b2PKeSSteju5OqdnlERN/Mv+bxRtHX88DYjKFrqwsyfvuOfh4REcuLui2uLehzvfqjF2R8f3Ffxnudji17b0/3/539bRlfXNE56EKiy6gb3fcjIpq+/s39kZ7fD/QwGVfO6L5fLuixcJzpeoqI2DrQz3vg1typvr+hGV9OLfnxs6x1zpx1fpo9go/P7kxf7/DSYzL+6Kc/bc/VH56V8byj1wRNYUaF1NShyQdsfhsRjcujzbBTJ7rhuvwsTfwYbZarkZo9gtSMki5NL7q+raVmHZblOk9JTNdPSlO35r6TxG95pvq27d5Ir6+TlLzRZVy8/pAt+5tD/Vx3J34PZF4tDvQewvGBfoil23OLiLyr24kb3+pKl7Fg5tJHn9LPZOfgrr2m+8dbMv7sz35BxvdGujO/9p7ey7l+8RO27OmRbidXrjwh47sHen763vN63p+1LNtGtR4wFjqLMv6Tm7syPn1DX9P9TV2vTz/n62PpjM7j33vzhox/9/svynhtxrbFmc85Dvd0XnPc6DxoXk2nuk2VI73XceumXkNERNx8f1fGl87oufdv/Vt/R8YvnNJjyI2bul9+45vftdc0m/5Qxo+O9P31l/S43hvqHLPr8oSI6HfN/qT5yXSk935u3tfr24tXr9iyP/tFnQuNZgcyPt7ck/HLpy/I+JUruu/96Mfft9c0PtJ9/NEnn9Q/qExF1frZ2XwgIqKj9zryljXevDLbtX4fty3tTz7ai0a7t2dy2aww70Rbtg8qs389M+Nxaa5pcmz2nvy2V5QTs8dr6rY07aepzbjatm3inqs5fDzSeVDh3vOZfcA2tdnPTM3+R6ej16W1W+uYd3AR/p1BpPP7Hkf5wYvvyHhS6ecxK/V4HxHRmHZ4544e19+6fVPH39fxiXknUhR+72f/SK9TGvM+tr+k91nefuNtGT93X79Tjojoh25vhwe6Djtdve9UzXTHvHVX5+kREZOpHo86Zk9hcqSvqTfQOcfyus6tN9ZW7DWdW9P1sTDUOVWEfhaLqzqeZ74duHeYU7fZ8Od48HaYAQAAAAAAAAAAAAAAADww+EAJAAAAAAAAAAAAAAAAwInhAyUAAAAAAAAAAAAAAAAAJ4YPlAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi8g97YFrreO3i0fhzNfpHTaWPT8ypmjDnMcenkdhrisScKzW/MYUkpkKaxJfdNPpvqbtxy3xv1lq2+Ym5ptoVYZ+RK9c0nIhITJ3Xrn1kuhRXry1N06qqlrYzh+rIZDz5iH0mIiJJzEM3z2nQ6cn41TPnZfzoeCTjB7OZvaa/+CtfkvEXvvdjGd89OJDxOjX9uLtgyz6aTGV8PNbxZndfxtdMvZZVacuuSt0JyqSQ8cHSsow//OhlGf/Cz3xBxr/yS1+x1/TEJx6X8bXFgYyb7mrnkrRpm6ZM28x1fcyzLP1o43fT1mnN2Oe6clO7SdOcxxXrh3U7SbjfJKZvNmYAN4d/cC4z7tWmDk+dXpPx06dOyfjmzZu27MlE99k09Dg5Gun+n0VfxuupPn/d+O/PZ6YhNKk+l8vNHFevET63SIqfYmL+GLnU0CcYvnO4/jdc6Mr4M4/p8XvRdKZyU7fPxWZir6nX7+hzJTo+nej4IHTjyfv63iIimoHOX7qZzgl6zVjHQ/elXsfPD9lA97NOx+RUps+EuW9zSdHWPspK3/fx/o4+00w/14Nt3Q7Ksc5RIiJSM8fW1YP371tWTJub1vqhrK3qMToiYtDTf+uaMsqpznObUuc362s6d0vLQ3tN3dDP/fJp3aazWuest96/I+PLa0u2bDenTEx77/b0H4pC97PDbZ3DR0QUua7zprsq4/VoV8bTgR6Hz50eynh+StdrRMT2PdP/x/q+y1KPYZ1Mj1WrK3783N0/lvELA53XzKsLDz8r44988nMyfvr8w/ZcTermM/3MZ2Ydlrm81IyHScv+i/2bmQry3OXjNiO3ZWeZGddN4Wmi+2VjthGT3M8PTW2u1yz1EpPL5o3uG27/MXULoIhIzP3Vbm1k5sXCtI9hx69j106fkfGJGdfm2YHZH+n29RiamPEtIiLNdDtZWND7M2mu2+7xTM+ZTz91TcY3b9+z13Rz810ZP3vuURn/8Sv6+Pdu6dztymXdFiIijg63ZXzzvh7v19f0/Lezq3ORMvXPotPX7ffW7l0Zv3dX55T10ZGMX750Wsbfee+2vaYXf/vrMv7Itesy3unq+1te1GUvLPj5vd/T9XF/R7f/eVWOzf7BSLepYeZz4tUNvT9y4fJDMv7lz3xGxptal728qHPijVO+zxwf6fF4MtNjxeKy3rdcXDR7wl0/v7t3TpnZn7xzR+fds0KPR88sXbRl/8Iv6rodmC7+/PM/kvHJkW7nlx/S+76fevYv2GtKOnp9snLKrHXMGnqyvSfjlZ2rI5LSLERa9gLmVWLeV5pwNC3vEjPzrsi9X3X7Ae69ndvbqlo2izOTF1fmProdnSf1zPDdLfwYNnHvMk28NHto5lVN6z51ZuaU2oxVuV0/mPda9pm2XJMd3j7a+6vM7Tm37C1X5sODcuLfDc6jd2/oHKZX6AZa5H6tUJsx0eXK772h88+79+7LeGka7uGh3p+IiBiZv7l5rj/Ua/GdHT3Pvf3W27bs1XU9d0xn5n2smZO3tzZl/O5Nna9GRKysmjVNo/tAp6OP3zil4+fOrMj4Qxs6HhGxvLioyy50GZXZW3b7u7OWPQX3zUXjPhz5czx4O8wAAAAAAAAAAAAAAAAAHhh8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODH5hz0wqSr9h8z8oGr59qkxZST6N7W7psb9RReQNG3fY+kbaWp9rqbR8TQSc7yOR0Q05jsxU02RmLJ9RfmybSGmqlzRts5N2UlL03NlpIm775b7U4f7m4gmdDtPXd1++C70L5SrqqbWD7ZKS3su16bD1FU0uk56vSUZ7xc9GV/pd+w1fepzPyvjg8X/p4wflQcyXo5Nv5/6NpIVug6zVJ/r4ECXnae6nrr9ri37oYtXZXx1fU3GP/uZT8n4L/7yL8r4Jz7xlIyfPb1qryk1A0/6UceETNdfWba0TTdW2MFwfr/Jrc0ckZp25Qd8rzHPJK1NP3AnMnN14gaen0Lq5kX30Fv4KVOPYd1Cjz3nLl+Q8Zd+8iNbdj3WZYyrmf5BVsjwwcGRjP/j/+qfyPi/9rf+TXtNWUePMbPJWMZd+6gT0/cT12b9b5Lqo83jH7fG5VWFfn51YubLiEgq3UAz09YvXX1IH799S8bzsb7Wbkud15l+TnVmxtDuUF+TGdcac3xERJi5f9h3+eRExqvxtozX9VlbdLery3ZN2ualjZ63ypm+1nJqxoOIqM25ZiPdX+9t3pTx27duyPj+1o4te2zGr6ar2/k8O7c2kPHU3Mqp9UV7rk6u87e8oxtKasb10ZEe1/OO7mfnHlqx15QkI/MH3X6293Vb7CY6Jx9PfU6+f0vfx95oKuONWb9vXNbP6O33Nm3Zw4Uz+lyndT+vzZpxluo+uDDUz+LCqq+PUz2zd3Bk8vvc5DuJbmfHh7q+IyIKM3b3hvq5zqtf+9q/IuOPPv6YjGdmTRURdk8qSfQzd7lsbZYjmZkg8rb9F5NHR2HWAm6N4PLx1K93mtD37fplmHWIW/fWtc930sLkjWYNmCV67ExzV7a5B7P/ERFRmf3BJDPtwNxflupnVJscLyLisee+JOOjmd47mGuZvv+FZZ3v9bq+z66t6H2Nu/fe02X0dBkH2zpPeuGHr8r4Ysu4XncXZPydW+/I+Jsvvy7jszBjccveUzXTf3vzHV32yy/p+1teWJFxv9cXMZ2Y3KLUvzlzVu/3bc/2ZLwye+2rixv2mq5c1fNA4ubrvl6/v/v2fRlf7PgctzLr2N17D1af3byh1woH93Ufe/8dfXxERGbGuJ/7zDMyfna5L+N37+s2cmpRt6nFgT5PRMToQPf9vYNjGW8as96Z7OoCypaxInT76S/qvj/o6LGlLO/I+Nuvv2zL/vGarpOmPJTx7z7/Yxn/3YNvy/jdm/sy/shj1+01Pfb4JRm/fO2cjl/W+ftoR/exrtmniog4bfawFzbW9bnsmT5+jXkfW7v9XZdnRkRt2ntmciv7btCsqVw+2bTsXycmhxoOdf8YmP7vcrS69GX3hmYsMXtx45FZ583MuqIlJ0/cOxNTH4l7r2yu1e3/R+v7af230oz1yVjfd+ne+7S0zbQxeyn+hexcmh2be+/rxWTb3R2b/aKx2VfcPdTj/dT0DffeZWJyz4iI8VTf3/3bOle4cXtLxkdTfQ937ty1ZVeh89Lc5G61aZ+VSccXF/z8vtgz764XddlLC3r8OrOhc9zTyysy3u/r80REFKm+JjcOu/eLbhugMXvRH5xM11XV8s1Fm/l9WwsAAAAAAAAAAAAAAADggccHSgAAAAAAAAAAAAAAAABODB8oAQAAAAAAAAAAAAAAADgxfKAEAAAAAAAAAAAAAAAA4MTwgRIAAAAAAAAAAAAAAACAE5N/2AOTzPyhavTxddlyMv1dVN3oc9VhyjDHJzoclTnPB2UYpgx7nibR19TyLVidut+YsmtzvA5HHeYPEWEu19eU+UOT6vtz50/cHyLCXa57Ru55u4v1x0fUpS6ljMr84kN3oX+hXN9wt55Uvn1WmemvpkoKVyVmDGlK84e6sNeUZvpvZ88vyfj7N96T8Wk1k/Fq6htJVujrNd04lhf7Mn7l2mUZv3T5gi376U88KeOPPva4jD/+5BMyvnFqVcY7HV2v1VTXU0REmur6KBszB5iqTRLdcHI7+bR8YevG7ZZh5+Nmhp7IGv2HzIy5ERGpa4ymnzemipNKn6fO3LxvZ1I7Qbn2U5sRPzHzX5hriogIU4duju139DUt93oyXo2mtuhRNda/OTb9w5R9//5NGf8P/8//gS7XtYGI+Lf+7t+R8X63K+OVaZxT87yblrzJ/a0xeeG8SjIzD5hBpmrJeVx/3b27r4+f7Mn4+lDX7dKynoM6iZ9jZ6bPHFS6rVcTnRCkme4zk5bxa3FlXcY7PT1HFOZUaVf/Icl0n/zgXKZ9mjLK8lgfX+n6qGdmPPgp5th6fCTjO7felfHR9l19nqk+T0REzHTbbBqXE8+v9cWhjHd6uq0vDHyfzU0eOJqMdHykn3tW6DE3Kj0/LA58PlSe2pDxrR3dZ+/u6Wf46NWrMn64u2XLXljSufdCeSDj62fOyPip02syfuM93XYjIhaGug7TRvepNZP/5l3dD8yUHKlb1ETEYKDH1kno55p2OjJehY4XLfN7Z0G383tHD1afvX71URlP3B5S2ZLgu+nGzMupWdvXJo+tzYK4bmkjZliPSPR4VJubSM3k1LTsebk9qcZcVJKZecDsAbat21wdul2e1OxB2P0M80zLlhSzqT/aPqPbh3N5U5r7XOuhK9dk/NTpv25/M696Qz0PDDp6TBrkOj+MiMhNMzne1fNZuqDHyrUVPS+Opjp3W1wc2Gs6nuj49370qv6D6QfDTOfk77+mc7cIv7+82NfzWbfQucjmtl4/nF3X5/mgDD0vb5d6jXK4pctYPaXn/d1D/Sx2jvy8v7yur2lhWfe1vfu7Mp6lus+ODvXxERHXL+j9u1tHvj3Po4WerquR2fO+fMb3ja9+6RMyfmFd/+b+7Vv6RGYb6WByX8a3d+7Za5od6D5waPLx6iPunU8mfs9r35U91jng/X19f++8rfevf/zij23Zu+/qv83M+n1/rOPlsc6hd7f0QPjyS9+215Tq4TlOnV7Wx5sflDOTo7S8M7h2cUXGv/bX/qqO/229pz4PSrO34FppbfLJCL8HWs5Mrmne12S5Sa7svm9LMmbm/XKm2+j4WN+DK2M69vs/HbPH6/LZ3N1Hodti07JH7p5rXZl3AC6Pdu9pzfGTmd97cvu19n2ze1+Ru/3SFm4J0fKaYR51FvU4ZpZUkSR+nV6YMdSNlY2Zx3tmL7Uy6zm3xoyIaNz3HmYtOZvpuaPj+qt5hxIRsbOtr3d1oHOOzOyRr6/pdcvK4oIte9jXY8Wwr/ejFnp6DdQ1Y07f7A1m7h1YRJQz/bzdLxqzts7Mi/zErt39a1f7TcCf48F6IwQAAAAAAAAAAAAAAADggcIHSgAAAAAAAAAAAAAAAABODB8oAQAAAAAAAAAAAAAAADgxfKAEAAAAAAAAAAAAAAAA4MTwgRIAAAAAAAAAAAAAAACAE8MHSgAAAAAAAAAAAAAAAABOTP5hD0wb/S1TnlbmB5k9V5Poc9XmVBGNuygZTpJEn6Ux54kI85NwP2kaU0au7y0pbdGRhD5X2tT6eFe1qT5Pok8TEbZmfX24Msw1NbV5Rrl/FrZw1z7MZ3buvpPaf5fXuB7RUodzyfS/JNH1/qEHgv8fWWbq0XSapDLP1T2Ojn9ORUc/kKvXz8j4nftvy3g57esCcl8jC/0FGT995pSMP/Op52T8sz/zJRm/dPGKLfvcmdMyPuh0Zbxj6tCOOR3dbtKWsdP11zwKfXhlnqufMrzZVMen5mS6muZCZuYUp6n9oNTYytTPMXXHu0eVur5vL8n+zQxJkXzE+qhKXx+JKTwxeU0SesK+/bYeR/Y2t2zZo1SPJa6vRaXLrtOZjB9NdR/4P/y7/1t7TXfv7cj4//Lv/l0ZX+7peuoWHRnPUt33IyJmlb6P1IxJ86qq9fVOxyMZv3//wJ7r/Rvvy/jv/IP/RMafXd6V8U998oqMd5f1nBVTP8+lhb6/weRYxu8c7emyM933OgM/GPdy3X4Gy6s6vrYs48Wyni9jsGbLjq4Z28xap54cyXiSfbRcOUv9+DU+2Jfxye5Nfa6JfhZ9s6bIK1/2INPPYt+MU/Ns0O/J+GSqx8PR3tieKzfnSgvdp/LCrKFNNzg81ONI2vGTbF3rsXU80+2nO9aN8XhHX1SS6/E+ImK4uiTjvaFuJ/1FXU9bd/RYuDxsGS+Gum5v79zXxxcDfaKx7rOHJj9aXjHrh4goG912DkpdHy6nSkwOPzi9YstOR7odvL+7aX8zj3JTJ83MrF/MmBvhtxVs2mjyz8L0b7evkJg8ISIiNWN+ZtbvqRmL3aSS2E2TiMrs5WRmfy51+3Zmbdi4vcGISO0mljn+I25UVWbzpy3DdFuWdWPuw7SbptIXW+T+nhcWhjLeyfV+xjy7c1OPudcf0mNlp+tz0JlZ2ywu6XyvbnQdl6bf7O3pnPzRxy7Ya4pyoq/J7NtsLOkc9E++8aKMTw99zrFx+ryM7450Djoz69u0b+bSgZ7DIyLGk0NdxlR3hOsXdR0urC3K+Bvv6Fy2s+Tn2FPnNmT87qZug8fHuj2dPa3XA49fu2LLLnq6HfSGbZsg8+f8Bd2mzp3Tz+mhi2ZNFRE37mzL+Mj04/FEt/XM5Gedju7Hq4t6PIiIqAvdfnpHus9MKz3eN5kep0rT/iMiisKsEQ52ZTxLdJ0PH7sq49cv6mcXEXHpuv5bZtbWRUffX2Xu73hfr0/2JrpfRPj3K5nJrzfv7Mr4O7d0fGdTr3sjIt56946M/9Zvfl3Gv/a3/2f2XB+3WWlyLrP+c+/hIvx+hMv3XP7blPpE7j1R0vaO2L1WdgmcvT+z391Sdm32Qtxuh1tyTM3YNp35vDjMese9CatdEmpyUFdN7p15248S81xT8/DqmXsX7MdPtyVW2wXBfOp19L5JYd6DZy0vnIcdPUe4tpCbfdzcrEdK0zzdNw8REalpoStrOp+sbUM09dHy/jF344t5vzI0z2JhoOfqTtfveS2YPcBhX+cc/Z4+vjBzcs+U7Y6PiEjdPpIZzxOT17gFcWXGljZ19dN8YcD/oAQAAAAAAAAAAAAAAADgBPGBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxOQf9sBedyLjZSQ6Xvtzlan+LirVp4qmbvTxOhx1mOOTlu+xGn3BjflNbi526q614yskqfS5EvP9WGLurzFxF46IKMx9VO5UrtIbfZ48cw/VX1Nlyih6+ly1udim0fGk9IVnif7boJ/Z38wlcx9NPZPxlu4aWVPI+MycK6pKhouiJ+NHSSnjw9wPT+fOnpfxn/v5n5PxJx9/RsZ73VMy3lnS1xoRsTBY0vHV0zK+cf6MjK+vrct43tLU8kz/sZyNZLxIOzJe13psKRr97KLvrykZm3E11c+vcvc30W02K8wYEhHl1Iy3xVTH227kY1aWuh8koZ9J6aslskTXfdbRfTkz43Tj5kXTTpJG30NERGPanPtMunbjdGJyjsqXHWYeb8xY9e7NuzL+/ddflfFpS25RTs14mOm6HeR6fEmaroyvXrws45Mw43NE/O5v/6aML3R12V/9C1+U8bV13Z/yvKWfjfVzqvXtxeryVX+uj9F0/76Mv/bKCzL+x9960Z7rzmuvyfjkjR/L+Otn9Pj2yJk1GX/41IqMz7q+3SazsY539NjSmPysKnQ/Xt7QbS3C57K1WW8knYE+UUfPf9Xs2JZdz/RaJ8l1XU0nup91O/pa0665pom/prvvvynjW7dvyPju1k0ZHx/qe6srP1bERN/32KQK82za6DYduR58sqJlXDdZ82Ss67Ix695urdvJ2MzvVcv6JenpvnlqxYzTpW5zh+bhXn9czzUREVmq21aT6+s9OtTj5413dbxsmVOO7ul+cDDW4+TQ9MFBR+f9aVfnTdtHh/aazFAV5US3m8zlQX19fM+0s4iIrNEnW0nbVnrzZ7Sr22enr5/HtGXx5JYRLmusKl1Xda1/kZo1d9aSG7q/2Z/kJk9PdX9NW553MzPtMDdrRrMOqRJ9ntR1gAi7R2D37sxtpGbfqTFdo3T7VxFRhR4rarOn15hNzsaM51Hq8TEiYmzWU0Oz/ppnHTOQZWafbuf+PX+yVM/LxZJuo/c3j2R8fLgj43Wpj08Odu0lPfHI4zKeD/TYky4OZbyfvyzja6fP2rJX1lZkfOem3v+ZTPRYtdhdkPH7m7dt2eP9AxlfWtT7WIXZa+gtLcp42tfPdO2UXyfsb23K+L2b78v46XW9Ploq9LObZH6OTcx61eVg82o81eNeZsaexWVdhxERS2Ztv2TGhKX1VRkvp3qs7Ke6L2Vry/aacvN+pRP6mTduf8lkCt0F3Z4jIvLQbXpk+qV7v3Js8tgi822tLvdkfFy7hZt+3tMjvWZyeVDpOkZEhN1v0PcxOtDXdHCs88Kbd/Zt0Xv39bqiaHsvOKeODvS6ozbP0O3vRkQUmdkT7plc2qQkXdMWG3OaqvQbCIlbW5t9itH0o72DmJj+FBExnZh3B2a/tm/2w6bHOrdIzTuZiIi8q/vO1PTZ2uTRLveuTNy9Y4+ISMyYZJYckaX6gdfm3UBi3lVE+Hzd5ZjzqjfU9zgwe0IdkwtFRHQafa6Ze/9h3vEnZj5rzN5Bmfn3K4nJ7YdLen5vzIIuM3N1t9BjVETEcEHv2RQds6dnGq57Zxa5L7tjcly311C5PQLT/aZmjKxb/m+hxNxfp9D3Z16/R1mbgb7l243EzAGmmf+5HqxeDgAAAAAAAAAAAAAAAOCBwgdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATkzRN03zcFwEAAAAAAAAAAAAAAADg/z/xPygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODH5hz3w//jPb8t4WWcynkZhz9Wk+ruouqr18VnjTiTDSaKPT038gzJ0VUzNN1zukuqklPE8S2zZM3ffiS6707j702WUvuhIKn2uMtU/yprKlK3bQWPqPDH3EBGRmmuyvzDtqarNtYavkKTRf0sr3T7+F19dtOf6OM2278l43R3IeLen4xER4dpV6HYbM/2kjkczGX//xvsy/l/8v/6RvaS/9x/9e7ro6aGMn95YkvHPfOHnZfzufX2tERHnr3xSxp964tMy/thj52V8dqzHitFUxyMiItd1Pt3T4/PrP/hvZXwxtmT8Z3/2oozvDx6yl7S1NZbxb3zrRRn/zp++KeObmwcynrV8RntKP9b4K3/lCzL+7/y9f+hP9jH7jb/+l2U8jwUZf/zKo/Zcx6urMv67v/91Gb9ycV3Gl1aGugDTRp+8/rC9prNXzsr43taujL/w/CsyvnNPt/XR8b4tu9/pyHjtZhUzwR+PjmR8OtV9ICKidg3YhEtzTZnJtbJCx5O+n+cGi3o+27unx4W61Pc3S/R5JpWeeyMiUnOuYqor5Ht/9LY918fpmauXZLzs6T4zm03tuRpTX7OZiVf6XLOpnrdqM6WUlZ9rsty0t9wsG2o9NyUuN2xM/hAtuZ7Jz2blRB9em/zT5IwREZnpry6/bsw6JM/0Gigx559OfftwQ8igq8e1JOnpH5j7noauv4iI8eFIn8qMqfc2b9pzfdyuXj4j40cz/Wwr13Eiopzp9lua/Lea6XOVphvUbv1n+mVERJLqv5XmPjp5V8Z7Hd12Oz2/rj8+0nNjZdZ6ptu45UaUZu0ZEZGbH2WVWRuaNffMrD1nLidvGUfc2ONGNzcmFabzd828H+HH3Fp35TgY65zq47Yx1M/10A+VlpmewrUq9/iywrQpc3zHrZMjomOaT9HT/fLsmdMy3u3rOXlnS+8DRERMJ7qNDAZrMr6wpNchk/GxjG9t3bFlT471WJFPzZxpqtA8ikhqnQe1/YvM1Ox5NW6vyuQibk3hd7zCtpDC7KO+1/wUHeBfkC//lXMyfvv9HRn/5FNP2HNdufqUjF88c0XGz6zrNnr3ph7f3ntft9GfvPaavSb3sC49ru97baBHmKrW7efSJb+GvrNzV8YXNvR9b27r41+58Y6Mb93Ux0dE/Otf+x/I+IXTOqfa29drye9+47sy/uM/0nXeKVfsNb1xV+etsx090S0s63qamWdR93w/293W+w3DDT1233jT7xF8nH73T3Tf6K/p5/rjP/1de64ffuufyfibe3quuX71EzL+G1/R+7KnntJr7renfnSdjU1uODLjvZnIj83a2q3RIyKa3OX8Op6YpLgx75XMEiEiIrLcrEvN+r1x70VMOOvrZ1q1vG9KTVLVmH3tyuT1M1N/jVl7RURUpe7LU/P4/lef1rnWPPi1/8uPZfz+gZmczHogIqIx2zl5qscx9351Wph3Z+Y1c27G3IiIMO9j3bVWU32urlmudk3fiIiYuD5oju+YDuLSxqzw40Xi3lmaBDir9B5ME2ascrlp6vuNe97u6dWmz+YuiZ/4PRa39i1nei797b+j88WP2+Turoxnff3eNdGP9YO/mTVB6dZCZj5LEtPWzL5s2bJ6qk27bcweWeN6kxmnspbxy+0XNYV7j2Luw33T0bJwyzt6QJq5Vz6Z6ftmIq8a3TfSpuX7Gre/5MZbtzFiyq5bvt0wU2zMar1HsLqi31P+f/E/KAEAAAAAAAAAAAAAAAA4MXygBAAAAAAAAAAAAAAAAODE8IESAAAAAAAAAAAAAAAAgBPDB0oAAAAAAAAAAAAAAAAATkz+YQ+cVJ2PdOKm9Y+JjmeZDJujI8n0XxJTuCs2IqKpdbxI9cmSxFxroqs0qUwBEVGEPpe/ER2uTdyc/QOprpQ8MXWb6rOlpnKTxnwD5yo8IhJTtmtTjamnTqrbbNXSON1lTZPK/2gOFYsrMl7n+vk1LZVimnrktX62TaGP7za6jMcfuS7jn/3i5+w1Pfz1R2T8zfdel/EiH8r41tt3ZHx66Nvn7uxFGX/9eFfG1wef0ce/9KqMHx76Hrv40CkZH2+9IePvfvMPZPzhq7pvvPXSRMZv7P7EXlM+ncn43vPvyvjG/raM9/fHMl4tLNqyV8d6rCjf3rW/mVcT89yrQt9jf2XDnuvADGRnzi3I+PmzZ2R8fzzSx184K+NPP/usvaZmeizjP/j9b8r44Y5uJ53cpC39gS+71PVRVnpcL+tSxuvQ5ykGPj+ambxjYoaYLNXjalLo+NTkFt2h//686elBOl3tyvjxju7jaaHH9Gakx5GIiMj0dY06U/+bOTRrdH8dHR7KeGpyrYiIJnHP6qPln6nL6E2OlLVck828zTyemn/v4PLS1N6zz8PqWvfX1Nx4negTtf3LjMzkn6nLfU17Tk2du8yiyE3iFBEd0/dXV1f08Vlfxt+7uynjk7plfdLryXjavrKYS2M9rNtn0tjVZ0Rj10huIWZyb1e6OX/m5r+IqEzHaUyfrc3xaa7bW7er20JExHSsx+9qpueO3PSnaamPn7WsUdz15q5PNbqMflcfn4TOTWelXxe68d72NNPU3DBZpb7P1uZ5J4X/zTyqTBph0jZftz8F0/2inOpSctMGV5f02jMiYqmnc9b98b6Mj/b2ZHxypCukadlnKSd6MJyELmNmHsbiQN/Dlz/3BVv21vY9GX/rpVd02ROXT+qH5ObSvCXnyF1/MglMXeuyq0rX68wlQuHbbRpmwppjh/f1NfcXdE7S7fn1/VLPzHWJXksejPRz/9Z3X5Dx737rezI+nfn1y6jSc8fChr6Ph4Z6rbw30rnYy6/+0JYdZu6vB3p+urn9voxPE31/F544Z4vu5Po397Z+IOMbZ9dlfHlJ70F88plHZbw/89e0/fX39DUlOzJu+1nX5Rx+vOh09bh3uPNgrWN7Q/08JhN973fee9ue67/5B/++jN+rdbv9en5Nxt//U90H/sbf/TsyfvVLT9hrun2k97CmofdsUpOnu32LxL2niYjKvGJLzbxVN3oeT0zZbq8oIiIz+4ZuvdHY9bu+v9lYX2udt6yZzByYmv2M0tRtVep4aa41IsKlELVZb8yzzYmeS6vCrLVa3shm5p2Qa1pNYtZI7p2o2SdICr9/kNh9L/O+sjD7Qub8ZcsOUGXKzkzcThFmz7kx64eIiMbsO+dmfyvrmHoy6yO351a5l3zR8i7f7Sma9/K52RdpUr/vVc7M/nzLGDOPur0lGW/MGN22ki1Ne0vMesRt7bl5rjH7MnafKiJq957fjSFm/ktMGVVL2ZkpOzXDehmmc5g5Nm/ZA6zMuxczjUc5Neu5jikjNev6sqX9mz1vt1ZuTN/PzfuNpuWdQWb65dReUzv+ByUAAAAAAAAAAAAAAAAAJ4YPlAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi+EAJAAAAAAAAAAAAAAAAwInhAyUAAAAAAAAAAAAAAAAAJyb/sAemWUfG66bS8dazNR8tniYynJjjE3OaJnXl+qKTRv+hrvV9J6m+89rec4T7Tqypzf2Z4xNT6+YWWjXmR65u6zDPqDLX6k4UEY37m4mntS7b3oM+PCIi6lRfbycp/I/mUD3VbaEyXT7PWiqlNL3Z9Etf7x/tuX7+i5+3l/Rv/6//bRn/gz/+fRm/+dabMl4ez2T8zJpvn7m5v/27b8j4t7+xJeNJNZDxS1eftmW/dndfxn/4+38s4+fTsYwXyXkZv7hyTsaf7evzREQsNX0Z/5WhLmN08xUd39Jl7HZ935v1lmQ8ySb2N/Oqzk2bK3Q/+/5br9pzvXN/W8Y/de2qjD/80AUZ397X51laPiPjvXzBXtMPvvUDGX/tJd1vmm5XxgcLZk5pSTrKUtdtE5k+vp7KeJ7ra5rEyBee6+eXm4ko1ZcUs9A5R3eoc7MsNyeKiLLRf5s0uhIncazLzkyl5/paI8LeYFW1Z43zZlzqucPNf2XLuRKXR5scMFy+ZdpU5pIe30QiGv2bqtR9w11qmpn8tvH/PsLVYePu28RdYl9Xvn02pq4SU1eZyRkLs2aamLVDp9DHR0Qs9vW4c/3qRRkf9hZl/I13b8h42bI+SUx+nZrxaJ5NzBBTmXGvbfFke6ZdYOhf5D2d39Qm77bro4jIzd8qsy6tzDxX1nqdUJY+r5pO9bnGEx0fdnT+21Sm75t4RETldhwy/ZvC5JSuL3d6Zv/juCXPtO3AXas+vjb3MDP1HRHRlLpv5mYsnld26Wmek50GIqKuTX8y69jU9XAz7HVzfU2fevIT9pqee0av9X744o9l/Ac/+qG+pLHOLmYtfWZ0ZPZT9vU6LM1Mrry8LOOf/1f+NVv21Ueuy/h//vf/7zL+x1//XRm3+VGiH1LW8VueHZOn1xNdt2ZaDLuf19I4Xb5TmGuaZ0fHhzLeXdJr9azwz6Rnxumy1OuRP/qTH8n473/9D/Q1mZTrwnm9vo2IqDu6Hyx29XzWT1dlfDbWbfRgrPeqIiJiQ++17B0f6DJSPT8tr+h29eglvQ8QEbFzsKn/MDuS4YP9HRl/+imdsy5++oqMf/+f6fNERGxt3ZLxkVlLun2AxMwN0fNtc7Dck/HDbd0259XaUK8t7u3p9lk2+viIiIVK18nQ7BPUld7P3Hr5t2T8P/53vi3jn/rSz9lr+sRX/pKM98/qeTnpDXXc5G2ZazsRkRVmfuqYHNe9V3LvPlreabm8MTX5y6wyOxR2ijX5VNs+nJmvi9ADcWLG58zMpe59ZERE35xrmug2O89G5rknJldJTW4a4V8Cm7Q4KlPHudu/c+9Ea71/FhGRmrVQnumrrRJ9301icjGTH0ZE5KaDZG4vyZynMfv57n1lRERq7s/9YubGHjNeNKZzuj2vCL8OatyepVlz1GazMWvbRjK5YVH59wxzydRvaRa4Scv7WLfmqWvdB5JU16Ebp91eUdMyz6WmF7hHW5j1e+Xys5ZlUGPGnWmm6yPP9ZrCfW/R9umG2z+btOyTKa6P5eZdiduPioioKnN/bvyy2xzm/X7L2NmYyaTX/HTfTzxYu1UAAAAAAAAAAAAAAAAAHih8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxOQf9sAmaXQ81d84pbU/V5JW+g9pYgrXZSehj09Sc62NOX9EJK5o8w2Xu1T3h6ZpqZDQ1xvm/tzR7vik5RfuT7m5b1uFtTlR5u675Vm4izLtwD4802ZN+M/K1tebph+6q8yFP/36H8l4trIm408+94w911Lf9AH3eaNp63kn04ebtrC0vGiv6Ze/+hUZ/8Szn5Tx++/fkPG9w30ZP9jZtGXPxlMZH8/0fQ+WV2T84UcelfHd/dKW/b3/038q46uDJf2D8VCGZ1N9rQdv35fx7P237DUdVrpvrG6clvH1nm44xYZuH/uVHztnqX4Wo+7M/mZeJR0d37i4KuNl48ekjVFPxn/mmU/J+Km1voxfKy7qsif6Gf7+b/9Te03//Pf0mLS8qttulps5yIwXZcu4XrbMN/oHui1WPX2eeuYLz3r6XEW3kPHJbKxPVOu8Kav1+aOl34yrYxmfjXXZSaPHpNlEl1HVul9GRDQTU1flg9Vnp66uCt0v05b8szY5j8tZK5NvuTzT5e8uh/7gj6YMk28lLh8wx9cuZ4yIxuasuhCX8yeVjrv6johIXWJjqsoen5l+n+t+3+mYCSAiTp1akfEnHrku49Nj3Zfy1PTjlvEryfT15mZ8nmelaQ9lo8fWtrVCXeq6TEM/99KM32HSPduuzBolIqI2bTQz61K7hjb9o9P1OUcdpg7d2tr1TTNvZS3jZ2oGHzfGJGYt2dRm/DTjqru3iJb1kfmDG9PtPG6uNcLfR56YXGFOuWGpMu2zdnsEEXavw7UF043teYaDrow/a9akERHPPfucPtfSgoxXlR7X90YjGd/a3rNlb9fbMp7MzNzR0WuEPNcVdXBg8tiI+OTTeh2y8yt6/fniC8/L+PbWjozPzFo8S3xe6va83ByQm/HIDQlJx8+XZvqJNG/bN5xPpcl7MjP2TMPn/WXodn3rfb0/8/KPX5PxiXnsVy7pfnbxkl5zR0T0lvTfskw/xK37uo2eXzfnKa/Ysu9O9H13zF7A+sqyPlGlk463f/KuLfuhJf38zpxdl/Hx0V0dH7wk40u53pusK99nL18/pX9TH8n4/bGuv2PTl7MF3/+6+UDG84MHa6+46ekBrmsGvsEl/ZwiIsq+7k/FoZ5rljoTGb+4qtccaeeejP/kv/5/2Gv65n/zj2X8kd/4N2X8L3ztX5XxYkG388j0PUREdHp6/7Vw+Wqj27rbv0pzM3FERGWSp8YsOHqFrnOX17t0tWcT34jSLFBcHj0za4TKjF+Z2QeIiGgqPX51s5accU51zTMxW/F+byYiisy83zHzuPtvLSrTFN3eTNryrFzZbh8rs23O9ZuWhVujy07MOswtqVK3GDf58gcnc2s9XbmNaQdujeL3FFr2f0ybys2+c2P2JxozYExbNllcdXSLB2vvya1La3fvbeOYezfv4u77icxtzLh3/36uaUxbd+NxZdqIK6FtH64yA0891euKkXmX0TN5UNuWwsxMXBMzj7ue79pHNtHX2vY+K230PB5unDftpjY5cdPy3tHtVZkh9c/1YPVyAAAAAAAAAAAAAAAAAA8UPlACAAAAAAAAAAAAAAAAcGL4QAkAAAAAAAAAAAAAAADAieEDJQAAAAAAAAAAAAAAAAAnhg+UAAAAAAAAAAAAAAAAAJyY/MMe2ERj/pLo4xN3fERjfpM0Ju7Ktpekz5Oa+Ac/Md9q1eaaTM01Ta3/kPmym9rciLmmxlWH+UPa9hmaPZe+j8Q9u8ycpzLxxNRTyzW5dpCELqRped5Oar7Za5LZRz7Xx+kf/af/row/9MhnZXzjyjl7rv7gjIwnzVT/wD3z0I2knum20IRvI3lRyPil8xdk/OpDF/WJTN9wbSoiIil1u6pNe2tSHc9Mm3rlJ6/Zsq89viHj/buLMl709HPtFbov3X7nlj7+xra9psGKjperpYyPUx0va10fTamfdUREkx3KeFGZAWmOHR7ty/iwqxtpp+en71/96q/L+GOXn5Dxu1u3ZXxvdF/Gv/+dF2T8Ry98z15T3dHjxbQayfhopNvDQtPR56/8eF9k+je9Tldfkyl7fKzbbpK35BYz/bfeUF9TWR/JeJHqNt3L9Vg1asb2mtw8l5mJ3KZzlS47rVvmd1N2nvVbfjN/ajM/NZVuI1nmE7Gm0hXscpjExCuXcLk81ibREbXJS11Lb1wObSSZL7sqTdkub/yIObGLR/h8OWlMbmjOM5uZdlDofr+6oOfwiIhrly/L+EOnT8n43Vt6Hm+mxzre+LnErU+yRI+d82xampzVtOrMtvaI2rUt8xOXByamwXU6Ou8ZH+tnGBFRmestcjPmuj7rxp2WMaw0Y0+nZ+YUU08unuc+p8vM3JjaMUk/u2k5+WjnaRny3Fg8M+ud1NxDkuu+WbSMYaX5WxV6TJpXri2YrhQtS0Y7cZmpMVK3D2Hiw0FPxhdX/Li+trog488+97SMr59el/G0O5Dx/WOdW0dEbG/qNV1uKrfT12Uc7O3I+GNPXLdlu3ynM9BzSn9xKOPFsc6VJ6XOfWcmX42I6BS6/3Uy3f/8HudH3K8Mvz3Yuk82pyZmczRJTb489BVz90jnMe/cviHjezPdFpfO64F6/ayu+PWzPrc5Dt2njsc63i10m9s81mvMumWOvXhO72+VXX0fx/d1P8jNwHpq0c+xaei9lt09/SwuXNRlTGb3ZHznQF/r1rGekyMiHnlG10da67H4B2/qPZai0c8iT/yaNDf7mRfOrtrfzKM74zsyvtbT89Z4ovtkRETR1X1gfKDrd2Vg8pS+HivqAz1nFVM/zyU7WzL+xj/7RzL+iz/3jIzn15+S8fW+f95HZh6qa52H3b7xloy/+8a3ZPz9e7rvRURkzYqMn7uo+8xzn/q8jF++oPeQs0T3sVnjc8zJVPfl0uy3j2e6j43N8eXMz++5GYcT9/5tjvX1FkKUjV4zFjZhjuiY+catFfLU7BWYaasxz6rlFbF/F2ySdbuf4/a9WtZObj3gJCaXrdy74MT3D7cf15j91NS9j3Xv5V07aLlnMzVGZRZIqdsAMUmue9Yf/E2XMXN1O69MJbpt8qb0OWBm8mhbtFlD1KbDpm7ft6WNuPaWmvcJjdunNtdamj7W8pNo3DsO026rmX5GZln4Z4XrsbDf13mje8fXLUzlmn3wyZHOxSMiBkNddjnTc0Nt+mXamBtvGSDd3nkzM3OGmcf+u/O1/xkAAAAAAAAAAAAAAAAAfnp8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODH5hz0wzXS8qXQ8SRJ/skZ/F5VEI+O1iSepLqNx310l+jwflK3Pldoy9Lkyc9+NOX9ERGKuqzY/qc1tuDr3dx2RpKauanN8o8/WmOMj039Imrb24W7QHG/u23191/Ys3I2Y5j+3vvHSH8n46uamjD/0qefsuVaX/7KMj8YjGb+3vS/jC4MlGS/ynoy/89br9po6Hf0Mz51dl/HVNV12r1vIeN/EI8I2htT04yamMj7a1/XU7fnW9tUv6ef0m6++LOPvvnZHxu/u6N7RqbsyftjT9RoRMRjOZHw63ZXxIkoZL828UCVucIloUn29dfngfXtbjfVzr/OBjF9/+BF7rrNrZ2V8/+i+jC+tLuprCt3H9492ZTxN/bNaWdT9fDI6lvHeQPfBstHtJ698v6lz1+b0b6pK30eamrl65ueU3oJOs3pmZp64yddM/EelvrcqM8lZROSJaWuNHquqRJ8rq10/8+Nnbeb3zOUic8rlme7+UtOmIiJqk8O43NfVVGbyqiQ3uWHVkh2aQlz+lLj7M00hbcmqcnPfpelmiVmIZOYmiq5f+qSmb6SZ6TOVLruT6zLWF/V4/tTlc/aann38uoxvrCzI+EvfuSnjzWiiC+j4vufWFbOpHivmmV3PmXGsbukfjckxmlz3g9qsLXqFaVduXHcLwPDruXKmy24y05cnOqerW9ZtU9Me0kLnaEVH33fT6ch45daFEVGZnLIqdd+sazNeZKYd1Kb+3FwdEak5V2HaYGnurzb3EJW+57ayq5bfzKPyI+51tO3xuK6cmbh7si5NWVnVY/HG+qq9puFA/6ZvpqeVVb0O6ywMZTzv6pw7IiLPTX490+3Nji2lnlOKTPfjiIhZM5bx7qCvz7Vg1g7v6fO41KJl6IzZWI95hcmjk0w/pNTkHGao/YDpl6lZE8+zUa7Xkp2OfrY7O3r9FxGR5Xr9OeruyniyrM918ZruZ9cfvybjna4fJ5ORbkT5qr6/2e6BjG8d6DIKkx9GRDx68VEZ3zzWfXDFdI+HTpmk3NR3RES3o/vHaLon43Wzo69p6TEZv7d1JOO3pm/bazre0X974iGdL59aPSXjW7v6vutS5y4REcfHuv9PZr4O59Hx5paMN91tGb/5kx/ac+WVbnBLZi+nY/Y6867uS9v39bV2zFwWEXF6XQ+81y7q9nz8g/9Mxvv3L8p4snzFll0vXtbxnj5Xtqn3hN//vf+bjD//kt73jYg4rpZlfLiic4U3rjwl41/43M/J+CeffVbG+4sr9pp6Zt++s7Chf7Ck5/2jmW43E5fMRURm9vq6Zh0yz1KTH3bM3kyR+zzCrYk7JomqzKkKszaszItMs5X6AftIzDrMJvfuXbBPxjKz99S49afb70vdnlRLezM5dmLuI3GVaJ6FW77XbXsKJm5blLk9tzfp3qV/8CNdSm721uaV34k3fzH7DR/8wuw7mZ80po24vQuznekbQsufSrMv21R67k3MHms21PlAhP++IZ/q/Hox17/YSXSb6tR6voyIOKr0fD0z++3d1TV9/ETX06Cv99SKlnVhkZl3oqbOy9I2HBlOkrY1qV7z14VbT7W8Zw/+ByUAAAAAAAAAAAAAAAAAJ4gPlAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi+EAJAAAAAAAAAAAAAAAAwInhAyUAAAAAAAAAAAAAAAAAJyb/sAc2jfmWKU1kOGl0/IPfNPo3if5Npg/3ZZvDE3cPLWWnUZsfZOY8ruzSll3rU0UW5sZrEzf10XLbkdT6/hpX544p2xfeUkDi/qbLqE3Rtt20SBJ9vR+5Pj5mOwe6vVXZbRnPp7v2XJv378j4N7/3moy/8sabMp4OhjLe6+r4em/RXtNzT12R8abSnak2naxqdHw8s0VHnpl2WOsfNZXuY7O8L+O9lQ1b9rXHFmT8q1/7H8n4D//kuzJ++9YbMn5n/20ZX0gP7TUNKl0f+ZF+rsezkYxneSXjdaqPj4ioJxMZ74RvO/NqsKqfbX95WcbXz5y156rN4Jdkur03ma77H/74hzJ+655uJ1Ho5xERUU2mMt7pFfpUnYGM53lXF9D1OUdT6r91TRlF0pPxSanv4Xis4xERa6unZTzp6nFhuqvHkf3ZgYxXU1N2x6d3Tarnh/F0LOOzyvRNM19Ox74dxFTfd148WJNsY3JDmyu45DAiqlrXb6PDkZhHm5q8252nLa9pXA5vfpSaPLYudT3VLfXhcjqzdIgw15q4NuVy6IioTCFlqfvMqWU9Hl08q8fnM6fWZfy5px6213T1nP7N8cG2jCemf7t6bVoaQm3WCFn6oZePcyM1ba4y7aFtHZuZsa+u9Ln6XTPPmbXTaGY6bdt6zvTBxjz4yjz3sjHPvDAFRESnp9tDZi6q19f5b5LrOej4qCUPNANcnuk6r9w4+RH3JtraR2X6TZj1Q5gtgsY8C9dmIyIys1bOC10f88pVb+32D9w+RES4luv6TD3TZQx0s42nH31Mxk+fOWevqdPTJ8sHek5JzH0nue57bryLiCgy/ZvGnCsxFZXlet3ixpyICJNGx+Ur12X8V//iX5Xx/3r0D2X8/t1NfU1mvRgRkUx0P0tKPba48d8N0HnLnldl+mvHrXXmmNsrHh3p+t05eM+ea3XdrH1Pm7Xhml5rXTp/XsbPr+v+dzzy+x3dmR5DO0lHH3961ZRhnm3q15L3j3RdHVXmmjp6zhyb/cEm9NwbEXEn0evPMGWvruhx5J7pN7f29H33zTOKiLi7qa/p9Vv3ZLzJ9bo+6+pr2tv17WB6oMeF/lCXMa+un9XXe/Md3dYO75q9n4hY6Jo5xaQdZvs1tg91ve9MdXs+tezrfNE8j1m1JeM3nv8dfaKdCzK8nZ2yZb/ffULG6wtPyfjF83rNeNrsnZ8Os0aIiJvjHRk/eE/f97de0s/7+f/2t2R8aaifddfkLhERZ67q+7v+1Bdk/Kkvflmf55qu18GCfxYu922yB2+OLbomFzMJc2ZyuoiI3ObMZg3o3sOZs3RN5l237Dm4dVXtUq7MrMVNDtr2erpxObO5XHd4Frq9taTkkbh1m3tGZi1p68+tp1rWkpZ5FpkpxN62WWdFRJSmstyeybxKzf5E7XpNy0v7xpzL5d2FeedTmX0q29Bb2ojbC6/Ndw9VpXO9xYHOlffHfp6rj/Xfjsxab3JPvwMvT+l17L3E5+PpROcWB5nOP4/u6HpaXNI57srj+prKqc9LO309n81muj66Jh9PzP6AG6MiIhLz7UZq3m+EGSP/u9+1/hUAAAAAAAAAAAAAAAAA/nvgAyUAAAAAAAAAAAAAAAAAJ4YPlAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi+EAJAAAAAAAAAAAAAAAAwInJP+yBWabjTa3jSevZmg9bbEREpJk+W92Y76vMtSal/x4rS3UZiblWc0mRJPoPbXfc1O6vOp6aMsLE67rladiyTRGmCpPQDcGV3Fpsoh9gk+gfuWdkizDnaf1R+mB9y3eur+PXzy7J+PLU39/v/ObvyPg//5Pvy/hh1pPxSa3bSFV2ZPzaQ2ftNT372adkPB2uynjd6KFuMnNtzRYdk9I1Ev2jqilkfGauqUz8sJzluq6eePZzMn7hkU/I+Os3X5HxN1/5oYxPXvhDe02jO7sy3p/peJbrdjDqVjJezUa27OSw1OfK79vfzKvKtKvj42MZ3z0a23M1yY6Mp0N9/I/+8Jsy/tJL35Px0Wwi48MF3T4jIrJc94/ZVPfB49GhjCeNbg9N1TK/J3pATKqujBfZgoz3Et1G188t2rIXF5dlfHu2JePDBT1GV9VUxvenRzJelzN7TdNU/60x36znua4n1w5sghQRSUc/72mp729emZQxGpMkZYVJTCOiKfXf6kSPlanLeX6qhEtz95eaXM/Oii4ndouHiEjMXOp+4fLS2rTnsjLtNiKmh7qPLw/0mHDl0iUZf+TiRX2e4UDG11f8GFKXuo8npR7nTy3pHKzT0+PzdOafRd3oJ+vi88y16cqsCdLMzym1XRvqvrww0M+9mpmx2FRvlvn80D2TxIzHibnWbl+3k8nU9xu7LE3dNZk2N9P9r+W2oylN7m0euKvbaqbzyTTX7WBq5uSIsINVken1QO6u1aybEteYW/6Wdj/0ls9cqN2EZtbjLd3VzoF1ZerXFL2+rPO5q5evyHinq/t9RERpJq7UzH9uzhzv78t45vbIImK4rPt+XriBx+TQpozEbRpGRKevf7Oa6PX7r/7FX5fxrmnPX//N35Txe++9b6+p3tRrxkGj78M0m+iYjl+Vfo4t9LATRcvzm1cbS3qOuFvfkvGFdX+Ppy7rdUdp+sHZZZ1D9cyew5JeasWwWbHXNJ3pNrdU6LLPbZyX8abR/eloT+d0ERGjyV0ZH7/zrozfvqfb+/rlh2V8Wm/bsuuJzlOyQs9nIzOOlIl+prMFMyZc9eNnnupn8erLuq0dbJk9iCNdRpb6spNE70Nsbz1Ye09v/Oi7Mv7WjTsyvrOr1yIREcniuowvm72f3fsHMr61r/d+qonux+dW/FpkZVVveh1Vel+tHOl2WNzR9TGd+T7z1nRPxtNS57hnH9L3l4e+h07XDGARUdzXZc8q/Sw6JucfjXSOe3xkcuVjM5lFxO39N2X8Ry++LePf/f7vy/ip84/J+KWnnrFlX7zyhIwPzl+Q8a8+puPzoF+YOdPlxW6DJMInum4t6dJDW4D+Qd6yfWDX1q4Es6ypTVtvewdYm/qwP7H7ZObwlndLqVnvZGb9bi8pc+9Kzbqw5aISt0YxP3H7/GHeQzfmWiMiClMfaefByovdus3u17a0z8T0gso8w5nZP7D9e6rHb/f+PSIizHxWhc6RDrf0nPnC7+p122vf/LYt+vJE18eTQ/Meurwh4/2BXnselTqniYhId8y+0IF+t3NtVee+1Tm9p9D561+V8e7FM/aawrxH6bmhsNLPtTBzSdv45cbtuvI5QZsHq5cDAAAAAAAAAAAAAAAAeKDwgRIAAAAAAAAAAAAAAACAE8MHSgAAAAAAAAAAAAAAAABODB8oAQAAAAAAAAAAAAAAADgxfKAEAAAAAAAAAAAAAAAA4MTkH/bANNHfMlVppn/Q1PZcSWN+k5gfNJUM54n+QdWY85hiIyIaU3Za6ftIMn1Niamn+/du2rIHzVifa7Aq43VfxxN9SdHUrkIiklTfeGLqtg533/p4V3ZqH3ZEmMttTN0m5gf2mhJfH41rCOHb8zz6yi9/XsZPlWdlfPP19+y5Vs+dkfF0sSPjOzsjGe/2dNtZWyxk/GByz17TH/7xH8j4I5euyPjV6zp+9oy+t74boyIiM30mUj2czlyTqkoZrhv/3WiS6TKm6UT/wIzwG+cuyvhgWY8t7xwf2Ws6Ov62jHcO9PPrTfZkvElNP+7odhYRUQx05fbSrv3NvFpdH8h4Y8bKe3d9/zga6d+8+c03Zfz2uy/qEx1PZfj0ylDGx5U+PiIiH/ZlfDI+1vGJHkfqqb63frFgyy76ug11e7rOu8WijCe5Hhd6A59KLSzoMu5v3pfxO+/r+Hh0IOO1GS5muRkTImJazWQ8MbdRViYfmOn6qFtyjszkhlX9YM2xpbnHJtH3UVYt/x6gcUmPjtcuh3HHmxypJU2P1M1z7loNl4e1qUwS7/PVj5Yb5pnOOSIiUtPHi1yXsTTQ405hHnevo/8wOtq311TNdK6QmLm029P1lOc6niW+PpIw869rH3MszfUA15g1ZtW2djLxptbPambGt/FUHx+1bofNT7EWqc26Js10fDbT9TGd6Hnjg3Pp651NdU4wmeh5v1Po9jY154mI6HZNGzXnmrl5yzyKqnaL65b2Yeo2M3smtWlQpZmrM3P+iIjclW3W7/PKjcXu3tt6RmP2bGyVmJOtr6/L+MaZ8zLe7etcOSKiTvT9TWa68KOxzol3bt+S8WzS0mcWd2R8cW1NxoeLuq0vrOg+1jY9ZCZH6g/1PFTkus5/5ks/L+OJGZ1/75/+U3tN21s6vy5cLmLGVJOKuFn0g9+YPGXFrHXmWXpKt6uNDX2Ppx/xbbRY1ufqDZZlfHFF19fQDK7Dru6beUefPyIiT/TasG8WT9OZvofza3o9fO7Uhi379vt6H+Ze6LVet6PjZ64tyfhh49eMHVOHo7Hus/vT2zJ+t9yW8V03Jiz5dVP3qn4WS4c9GT84OpTxXqPH1bVlvT8YEVGu6rZz47Y+17z6Z3/wmzJ+87beX1pYPGXP9et/+y/J+FNXTsv4/+7v/T0Zf+/7ej9qxcz7wwU/xxZm3j8c6b506DZUzH7KzpbPqYolvfezvK/fB9U/0GUc3dXrvIXuii27qXRbj6l5n9bTyW9p8vpds3/dtj3QNznVl5+7IOP1WD+juy/8sb6mV/7Alv326XMyvvyJn9E/+Gu/Zs/1cVvs6zF3avfQ/ENxo6t/Teb2ktyejSm3bV/I5lbmPbTJ95JSH1+bdw0REYmpkco2bLcXp59F0/J+x+25Je7diKnD1NSTPX/L+9ja3Ld93qbhZGZDrCr9qs2uu8sHKy9OC/Oc3L76R+8adl+9dmWYem/Meidt2Sx2+2eZaQsvv/i8jP/9//3/RsaXbugcOiLi4kU9rt8f6e8qipmeSyemXqu+zpUjIh6Z6Fyot6Xn3tEZXR93zbuBN1K9Jn3mN/6yvaaDob7v/qL5nsSNdzN9rZ1Oy7c9Zhyp0rbVr8f/oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATwwdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATk3/oIxP9LVPaNPrwSOypmlT/Jk10PDNl12GON2UnSW2vKa0z/QdTtruHMpvI+MHt12zZR3vvyfjyJ7+qy55UMp5l+h6yxD8LU4VRm2eRNLqMxtS5e6aViUdEpJn+W1269qHLrlNz374ZRGKed5Z++K4yD37tK/+SjN96+y0Zf//tTXuuRx6/IOPlwZ6MT6bHMt7vLsv4/o4+z+LK0F7T6zfelPGbN17RZRx+XsZX/8KXZbzJurbsPNFtIa3cWKHbYdWYcaqlrWWF/k1ed3TZUcr4Wr8v48O8kPGj60/Ya3rxx8/LeD3VdXh2qseQotLjWtPoeETEsK+vN6b2J3NrdLAv4zffelvGt+75Prs/PpLxuzffl/HLZ1ZlfGFD99njgwMT98+q29Ntd1rqh1XP3Pyu+0eWmzk8Ispaz8vjmR6rio5uV2mqy5jM/Bx799ZYxkcHMxkvD3QZC50lGb+ze1vGq47vBHWiy04T/fySXD8LNxbOzFwdEVFP9W/KsR6r5pbJI1zu1JjxLSKidtVl4qnLt3Izd8xM3Zo8NiIiNblQmDkoTXS7dadpWvKwqWmHYe7b9f3czKWDQc+XbcaEjil7OtFj7fRIl1EN9Nx7e9OP502ly1jsm3zVzOMLS3oM2dvT40FERGbGvJbHN7fqSj/DpjLrlJZG2ilMe691mxvP9BxUlrqtl5Xus24OivD9oKz1feSZbj+57bN+DMtNRx+b+6imen5aXdI5x3ji2+hsquu209E5aNbT+fLo0JRh9g5ykydERNSmzjMzRqemqU2nuu+nPV92x4zF+q7nV2Lq0LXCtGU+c3OpS1U6pm8sr6zJ+OLKioxnLc8pdf3V5AqdfCDjG+tnZPzdV1+0Zd+4c0/GLz6q13rZQK/H+5V+Rmnm17FJpuukyE1uUesx5Mzp0zL+xS9+ScaPbut7joj49mvvyngz1mudSWk6rNuHc/tREVGY2TRP9bg2z3Znelw/c0rnPf0Vf4/5kh6PF5d02+oPdR13Z7ovH05GMr5QrdhrWlzWfbDruvlU/6Fv9or3xvdt2Stmnf6pgd7H2t/flvHDY92mB70VW3aWmzX/kd636PR0nU8OzLq+q+tjNvHjyN6+/k3d1zPdE8/qvcxkYsawY5//NZW5rvzBmmWfefozMv70Z/T65ec++wv2XJfPXZbxwYrOw37nh3p++vb3dXxtUY8hg66OR0TMzHhUjnQ77Jl2m0312LJ9oNeLERHJ8V0Zf+P9HRn/oclf+ibl3zNzU0TEsXlP5LLo8Ugf73aR6tAX1fa/Hjz5yCkZ/ztf+0UZP9zT7wZuv673vC495PvrQanHqdeO9TuRedYx78ic1OSyEf79qtOYNXHt8iGT92Qt7wBr827EhCMzrS5JzTuZlrKjMb8x77pLUx9Jbeq1rb5N/2/MO053F3n20Y6Plncstbk/V4cuzW1MfSRu4RsRqcmL274vmEfu3mvTphqzTxURkZj9H/eurzZrp3Jm6tY9j8y3kaTUs0pV6Bzprbt6/H7vWN/3L127ZsvunNK/Gd3RuWG1q3ORo5neZxmbe4uI2C91fr29sijjxarO3zdfvSXj1fP6u5HO4y/Ya8rPPCLj2VDPf8NVvd+WN3rd0un4sXOhq+u203fv0/179gj+ByUAAAAAAAAAAAAAAAAAJ4gPlAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi+EAJAAAAAAAAAAAAAAAAwInhAyUAAAAAAAAAAAAAAAAAJyb/0EemjQxnoeNJy6dPTZ3peFPqeOjjk0THw1xT1uh4RERm7s/p5rrqjqsDGR+2fAt2XNYy3uze1mWf6sh4WQ9lvEq6tuwkTezf5PGJqScTrm29+vquZ/qakkTXU2WqNmlcnbc8a9NG6vKjtY+P29v7uh3u7u3I+HPPPWrPNTwzkPHrF/oynuzp9ll1l2W8qXRf6nd79pqSRreFd9+6IeOPPPycjE/MWJTV/nm7PlCHvqZI9f01ZpCsTDv/oGzTN6LQRaf6GWWNrts0rWR8cO0Re035Ff236WRfxouOrr+jA318sndkyx6c0vFO/tHGtXlQZHqcnhzrvnx0tG3PVZtB8dwZXWE7I133VT6V8e0tPY70Ut9n80q369rM7zMzFs9KfU3VyLeTyXhX/yHbkuFuviDjaceMVUM990ZENGZ+n5ic4Hg0lvGFnh5Xl1dXZXx37769ptFUt6nGzI15V/enSaXHi6Zl/Owmuq6mRyP7m3nU2LHYyFqSYp36RuqeR6rPlblcWTedmJWm4IhoTG5obtvmTomZ5+x5IsLcXmSmdntdPf+trejxbnHRj1OHx3osrKczGW9MLjIaH8v4vS19/NFIHx8RsW/mxvXTOqdKJ/pa7+/qcbts/BrBLZuSyq2/5ldZ6vEqzUweaNeY4bK9SEw/d/NAaStYt3U3RkdE1B/xXKkZL7LMjW1+DLN1ZdZhRa77YK+nc9YzZ3Qfj4i4d/eejCeprvOi0GVMCj33JjM9TpYz3c8iIqIyz6JjWo6dM/Wz6Jh1RYSfB3omx5xXw1y3HVfrVcs+Tm1yFbcFUnR12etrazI+NDlg0bLH4ubAItPPNu/qiTwb6PZ884bPS4+2de5bznQfSN3Y0uib8KvYiNSMLy55asxzLXLdzjfW9TN69pNP2Gv68X+myyhr3W4Ks306qkxO5TaqImJo7rtnyp5nV/TSKWKk121ri+v2XL1CtyLbZ3u6jKTYlfGZaaV7R/r4iIjJ/kTGz57ekPF0qNvovenbMj4u/TqoSHTlnj17XcZXlh+S8f5Ut6v37rxkyz40e0NXr+r1551NPY50N3TOur2n56bDPb1WjYgoR3omGJj92sVCH39k+mzRsmRbHup90Xtb+r7n1Ve++pdkfPXcaRlfypfsucZHum9s7+j4X/mr/6qMv/j978v4zks/kPHDPd3vIyLWVvScudHVz28w0P11agadvSOfc+zXeo49LnUua7bIIm1038uzllnWrt/19VZmHnd7EG5ueviMz3f+5//Gl2X8Z5+5IOO/9zu6/q4+dE3Gf/Frz9qyp8v6ut7Y9G1nXnU7uo0WZtxre3uVmFysNmu9pDbrW5PMuvciba8e7RaT3TRy+aRbx7bk5Ga96tbWuamP2pTh9osi/L5X/RFfZ6T2vk37sO9KW9qOqQ/3TUBjlqtZYTYnIyI3Y1L+ET5dmAeTqX7mLv9ME39/bi6oTHxq9i3LqR73OmaN2ZjzRETUqc55jg/1/d3efl/Gzz6k89u1dbeoiLizq3OLDbM2XDR7xZNSH3+U+Ps+KnRb3zO5xeX1RRlPLuscemeyKePvvveyvabNV16T8eORXld0+nqPYDwx696eX6898+hlGV86r3PGp7/4G/ZcEfwPSgAAAAAAAAAAAAAAAABOEB8oAQAAAAAAAAAAAAAAADgxfKAEAAAAAAAAAAAAAAAA4MTwgRIAAAAAAAAAAAAAAACAE8MHSgAAAAAAAAAAAAAAAABOTP5hDzysZzJeT45kfLq3b8+1trwm40mayXha9PSJ6kSfJ6llPEv08W2/cV9wNWkj44e3tmX8zr37tuyVwUDGi1uvyHg26OprWr2uC/C3HaFvI0JXR2SZfkZNok+UJLoGG1duRERuCm/M8zancc+0rTrchblzzau333hVxmd378r41bWL9lyn+rr//eov/aKMb5WnZfzHb+uyjw6mMt6xjTNioafb4WhHP6ey6sv44mBBxpO0tGVHqltQbcavxrSpJjV9I1rKrvW5so4eyt04VVc6XnT02LKc+vbx7K98VcbfTysZf23/jox3d3T8/PENW3ZSFDI+Wh7a38yrvKvbw7Cr73FvT8/JERGdvv5NXeu+1pj4aGrG0I5u6/uHB/aaJrOOjB/sH8r4dKqvKW10W08S3d4iIqpK96l6Zsb17kiHQ4+Fs7ylz5b6b0cjfb1VrY/fOjrW17S8LOMbpy7bSyr2dfs4GOk8ZVLqazVTss0HIiISM76Zrjy36lq3ncblmSZfjYjIM5NpmnpszDxQ2zxFl52lvtIbkwRmme5/1cysEWb6eesR5AP9XM9Dq8uLMn7pgm7r5y/qeetgz+fjm/d0fDbVY4LLiacuTzBjzqRlOXZ7W6+zbtzR99ExfaxT6DKO9FAbERGpub/c5DvzbGraaJLre0laVguN6bOJGSur0q1rXAGm77dcU2LGnsSey1xrpe/N1V9EhLu91IwXtekfUzNfluXYlh2NLvz4UOcWaabvo6x03I2FLh//oBBdh6W5Pzem511df52+zqcifBvsmv4/rxrzXG3e0fY8PmLfGA71GuL8pUsy3uvp3NBda4RttpGZscUMxTE069jHP/mMLTsz15uacb3I9fHdnskhTP+OsI8i6lq329r0v8RUoMsxB32dV0REbFzUz/X27tu6jFKPFbnJC9vmkq5pg1nRtlE2n9YTXcf793R9vfd9v3Y6d0W36+jr3ywMVvXxue7Lzf6ujCc9HY+ImCR6b3t7RydRS2YtnqT6POPaz3MztyGd78rw4Z5ejw+XTunTZHqfLCIim+q67Yx03Z5d0m337l1930ebetyZbfs881CnxTHd1nV461iXvTvSz2ij68eLgUl4Lp25Zn8zj5b6ek11sDOR8XtHt+25Oj1dX3Wu67e/rvcufvFf/usy/l/+e3ovcO+uWbRFxIUFnSet9nQutLygO9m7evslDkwbjPD3XU51+xyZNpWYubTTMsfafWeTc+Q9M7iYKWjBzNV/46uftNf067+s59hXv/NDGX/le9+R8SxfkfFP/MbTtuyio8u+fM3MMXMsy81zN+HMvIeL8O9dK5e4Vmaf1e1hGUXb4eZvlXvn6969uHfKLf83R2Nuz73LdDtulVmLuH75Zxemmfu2713d+U3RlclZI/y7z8acLDHvnCJx7479GObWQWnbomoO7Zt9iNrUVdrSl3Izp6TmGbp0cmL2cnKzRZC4fh8RdW3muYM9GV/p6zF3caDPMz3UuUhExPS+/uaiLvT9TStdIZ2JfkZV5vfIFxqd7ywUOs8sjjZlPF/Sefpps25JDnW9RkSs9a7K+Epf5/xJruvj7X2dU01a3rPFUL/7r8z75j8P/4MSAAAAAAAAAAAAAAAAgBPDB0oAAAAAAAAAAAAAAAAATgwfKAEAAAAAAAAAAAAAAAA4MXygBAAAAAAAAAAAAAAAAODE8IESAAAAAAAAAAAAAAAAgBOTf9gDe/2ujO+NRjL+8ss/tufqHB7J+LUnn5DxlXPnZTzvLsh4VtUyniT2kqJI9bdaqb7t6KS66urxoYw33bEtu7n7rozfv/GyjO++/76MP/blvyrjvVNXbNlVZ1FfU1nquPukzcQT/Sgiyfy3cU3T6N+kmf2NOZE+T6njERGNaSNNmBuZU2PdLWN81JHxt350w57ruF6V8c2lczJerOg2dX5Vl73T3JXx8f6BvaYs78l4t6fHhD/43X8u47/0qz8v4xvrQ1t21VQy3lS6XVVm4Eky3aZq3zwjTfQfa9PWw4xTqbmHItd97PTKsr2mpUc+KePrgw0ZH+3syPje68/L+MXNP7Rljw+OZXx3UNjfzKt79/Zl/OhwT8YPRvreIyJOb+i6nzZTGTfTe8wyPQ+UEz2fVaHPHxExa3R7n0wnuozpTMb7uR5HmszPD03qBnY9D+WF7jdJrs+T5X4+G1emDlNdV9lAn+vI9M2Doy0ZX+76Mawz1P2jMOPFdKKfRWPGkcmhPj4iwk3jWf9Dp6NzLQndRqam/UdEpGbQdy06NWXUJk9JE5PftiTFJo2OstTPvK71Dxpzoibx/bXf13978vEndfypT8h4t6/Hiv3dJVt2Vet+eXSkr2m4oHOOxIw5k6muv8o804iIstK/uXtfz6Uuka0a3e/TlraZmLb5oOXEEb5/JHqIjtQtCCIiM+03dQNcosfEOjXXZNakbepKl5GZeauZ6Web9nS/ScMnp+5yOx19rjzT11Q2+h4mE7OoiYhuYdp1pueUiZnP3Aw0Nbm9G1c/+JtpH6ZNNaYCXQts2c6ITleXXWV6HJlXMzM/VWZMqs36KCLCTFvRmO66uroi4xundG5dm1xyMva5UG0aXGI2VKpC96VO0ZfxLPM54PmLj8j4wsJAxpfMGtCmEG5NGhG1mW/cqSqTQ9dm7ZCYh7207Of9z335izL+7WO9ztp6R+/DVaVuUHnle6zbVzt+8JaxcfCO3ps5LHX89qu+f9xc1Wub05f1uTq7One7eHZFxj95Tudu6Wm/jt3e0evxaaP3q7Z3dHxs+vjo0CQjEdHNtmX8/p3bMt5r9LiwvKLX7+fO6PqIiEg3dV97752bMn7+4ikZn4Zu1OPQ9fTmnt87Hx3qceT8+esy/tar78n45rbee5lNdTwiYnBWD96Hib/eebS5p8e345nLFcxmUUR0Gj0/JR3Tx80a6VOf/VkZ/8kzfyLjr/zmf26vaWba28gk/cPQfaYy/bXX8l5i60iPI24P2WWTidlfylryT/eYavMoEjNvhSnj7KKup1/7on52ERGDFf0u4XCi28FwUY9HhXl2Bzv3bdnnL1yT8emOGev16425UGS6TXcKkxebvZkI/04hq03/T3Q8MYmgWyO5d64REVWl55o6MzllZsYdsyfc8orF7tvYRNes82b2RY4v3e0d2nef5lSV289xqYV5FxURUZqxqjaFJ6Zsu9/XsgfpmkjRe7AS44OtXRlvuub9Q9v9dXS9dwudE1dm7nCze20+ekhb3ie49dZsQZe9uqufef+9ezLehH/XFbVe0x0c6DGkb4b7yvSxWeqfRTkw36CY8fbGTb1fuznSef1Tj+k8tvbTXMTD+v374jV9rkFH56tnzupvWaoFff6IiPVL+ludTu8jfrvxZ/gflAAAAAAAAAAAAAAAAACcGD5QAgAAAAAAAAAAAAAAAHBi+EAJAAAAAAAAAAAAAAAAwInhAyUAAAAAAAAAAAAAAAAAJ4YPlAAAAAAAAAAAAAAAAACcmPzDHtiNQsaXh8syvtZbtOf6ySvfk/E33/uWjA9Orcl4f/W0jG8snZLxhU7XXtPSwoouo9D3/fD1CzKe1Hdk/NZP/tSWfXO0JeOzg2MZH/3kD2S8KIYy/vSv/hu27MXFRMZL0zSm5UgfX1cynpgWlua+6aVpI+NNqcuIRN9DXWX6PElpy6510dE8YN/yVY1uC0f1toy/u79pz/XCn/6h/sOZp2X4ic89LOOlfhzR7eu6XRz4NlIe676xvr4g49vbBzJ+8+5tGe8vXLJl56lpP2asqBJ941lj2nno9hwRUSe6rpJEn6sy7TmSjgznSS3jvdDxiIjh4kDGOxevyPj9s5dlfHf7bRn/zo/ftWWfrQ9l/LV392T8i/ZMH7/L1x+X8byj+/Ktu3quiYgospmMV42ul8P9+zKeTfX5m8KMxb6ZRB26MRYd3aanUx2fmfG7m/kxOil0H6xrfa5pNZHxfKD7eDHwffa41pU43dfzfh267LSjy56Z8ejwaGyvqRnp8bBY0efqmfxvfGDmfTMnR0SUlW4kg27f/mYe2aHV/CFr6RtO1egfpZmeG1NT7U2tz5OZ8/xZIfpclW4jE/Ncp2Pd/vPU99f19XUZ7y3oHP7O3Vv6RCaXXN/Q54+IeOiynvs37+gyKnPfrs47pp1v3vHj+fae7q+jme5/TaOf3cy0pzzV/Tsiwj2mtj4+rwrb5nQ8a7nH3Mw3mSnDVH1Epsto3Ahjpt6IiKbR5ypyk3ybBHE21nNQ0tN5Y4Svq9pUYWXy31mpx4uyMslIRMxMP1hfX5XxkZkb9/f3Zbw2iU3aMobV5pp6PZ0vN+ZZuLV1bcadiIjGPIteX6+P5pW7dzc3Re2fR+M6oAmfWtFzxPLyir4kU+fl1O835GbcSc2YMJ3pvH50fCTjLueOiBgOdTscLOr1Rm365bQ0c0rXzymFSVRmlX7ebjzKzDNtTBLm7i0i4vFnnpTxg029/vzW3Zv6+G19reOWdb1r5/3kwcqJIyK239PxO3tmrdDp2XMdFrrN3XxdP/c3v/WWjD/xsF73Ns/pveKrXz5vr2l1ya1jd2V8q6+f+81bOvfutLSTQabLnhzoceHsOb0XF/mKDB/s6DVpRMS5nu4761f0s7i/r5/d1dPnZPzscEnGR6lfx37nmzpnPtrV+4MbS/qdwTs/0u0jW9PXFBFxNNXttgxfh/Pohddel/GFpRUZzwufAybFjowPF3VdZWYfqbeg5/fzT+i12Xe/7pPiSaH7xkqq+59+wxFxbPK5Ts+vofOp2eNtzLxvXkDUlT6+zlvmlKlbG5o8xewtd8za8MKafvd3bcPPWUWi3+W9eUff9609Xbe/8uVnZfzh80/YssdHeu+gmvwUGzMfM/decmb2M/OuyZfD562p6VKu/SRu3nIv1ZKWPnuk89kw+5D9JTNOu3Vvy7o+Mbl3mPurTL9x71LaNsldHdos3qx3GlfnhTnejC8REVHq8bM0a98kzF67eefr9s8iIjJzvbmJz6vprl4rRKHrJFv23ypkjZ5/uyZ/Sqb6XPW+2Ve49aaMzw70u+OIiGqqc7TDt/R9j/9Iv1NOXtuV8cE5nTNGRPRSnWcmO3osTMy+U5hvVqYtezxHJllIJrrs2UDXU9XoZ3Hvns5j17L37TXdf+eGjN94Qr9fHKyuyHjfvEN87Z4bmyM+/Yt6T+H849ftb9o8WL0cAAAAAAAAAAAAAAAAwAOFD5QAAAAAAAAAAAAAAAAAnBg+UAIAAAAAAAAAAAAAAABwYvhACQAAAAAAAAAAAAAAAMCJ4QMlAAAAAAAAAAAAAAAAACeGD5QAAAAAAAAAAAAAAAAAnJj8wx6YZTrezfUfPvWFL9pzPXbtsozv3nlBxt96R8e/9Y3fkvE7i8syvtTp22vqr1+T8d5wRcbffPNFGc/23pLx44MDW3a3WJPxo0kp45vdkYxPvv9dGT/31Bds2U+eXjQXpZ9rkRQy3llckvFpo09/PB7ba+oXuuyjw2MZH+tqilFSy3iaJrbsqHTZeVT+N3NofUP3ge/+4I/08d2uPdfOSA8Th7d0XZ2+8ikZn5rncbi3KePDvmk8EZGX+m933ntXxgeLqzL+7p37Mr5x/pwtu2+GkXQ6lfG8p/vMzHwfmta6niIi0tQN2aauzLmqSsebWj/TSe6vaVrqDnhkPn8dntdjTrJwXsZ/uHfblr18d1vG3zrU7flv2TN9/JKembfOPSTj5578pD3X8dFNGd/a1H0t29H1WE/2ZDyp9mW8GkzsNUWpx9A00x2q09OnGeQDGS+6Pp3pTfV8MxnrPtuEmQf6HRmf1npOjojIurrv9PWUGeVMl1E2et6aHunzdzJfH/3lFX2uXD+/FdM2q1TX3+7E5ztZMpPx1YEeo+dVYdpI6cZiP51Fkulnm1R6EG0SfbKmMXOKyXnquu2i9N8q85NyqueBcqbjdeb/fcTxRPfX3f0jHTfj12Si++XBrh7XIiLWzqzLeGbWD6M9PRZmoef9/oo+//Yrb9prGplxauoehmlsickf2saKJvT4UrfkKfOqSPR9NmHWBCZnjYhImo+2vuj39Lh+bOamMNfUtHTZLDHzlolHrvug65pmSPizsvX1pqlpizPdpmOi4xfPmLVqRKyubMh43+QEuzt6HNnZ0X12uLQi44OBnhcjIjKT358yc+9PXnlNxm/dvCHjnZY1W1Ho+1gcLNjfzCMzdYRrzq3/4s603dzMvWfPnZXxpSWduGWFfh5p4cfWJNfPKct0vG50hcxqHe93TRIdEbnZu2tMnj41a0Y3dFal32dJU/2kSjPvz8wY6fKgxM2Lpr4jIoZnTsv4+qOP6DL+6Nv6mnZ0zjFqTKONCDcDHI38umJejSvdFpuZeVaNmQci4vBIt6H8ULfrrbu6D77+qm7TX//GKzL+lZt+onvuU3r98uxzQxnf2NBzU3eq17FZouemiIhJrVvKwIxVq3FRxv/k9/Ve8eyO3+f8/KN6T6y3qse37Zv6Pp5a1P0sFvX+7hMbu/aaVn5W1+0bP7or42++o/f7Bqm+70nLPvX2rh7Djsf6PubV3o7eE9ob63XNoPDvUcKkJP0js+4we7yDgdkTGujzzFqWIk1l8lIzZ5YjM/+Z9a1JHyIiIjHvDbLarPdNkjKt9ZhTznzhLlfPzdybmme3Zva8NjbMPYz13mNExGs/0OvuP/yDb8n4zdd2ZPyXfuHnZbxb+D2kKtE32OmbJHOOdTP9cN06vil8ZpyaBWVu1obunYJbmLo9pqbUbToiYlbpvyXm/pYXdD4wM3umLcv6qOzemlmPu60DU0hV+3zHvftJU71uq8weRGJWQpU7f0v7qEpd51mpc9PU9DPXButuywBqZGZPal794DvfkPFqR49vWeJziMVlvedwpqf3FRPzzqezaZ75PT1Gj++/ba9p//03ZHzU0WUUe/r9wKr55iE/bmkjjW6fQ/Mu362hRzPznrble4Fu6HEqq/S839/Xx+cdfa13TPs4MPUXETFe0Nf71s4dGV++qt+7plP9LujOnl8jnL30sP7N/q6MX7nylD1XBP+DEgAAAAAAAAAAAAAAAIATxAdKAAAAAAAAAAAAAAAAAE4MHygBAAAAAAAAAAAAAAAAODF8oAQAAAAAAAAAAAAAAADgxPCBEgAAAAAAAAAAAAAAAIATk3/YAzvRyHiT1zKeJJk9V+/KQzL+yBM6/szeUzL+ypvvyvjrL74g45+7uGyv6XD7TV3G+FDGu7Wuuk5TyvhDZ5+wZddZIuM75VTGk0LXeb6uz//27iu27KV7Axl/5OJZGW/KRRk/uHVfxvfKsYyvLPXsNd28N5PxbreQ8WJxQ8ZnO3synlf+u7w01c8iCx2fV7eO7sn4Xk/X4dULF+253vrWT2T83dubMn7tzYdlfPGMblPTme4zO7u6/UdEpFPd/5bXr8j45Ud0fOOsjm8d6vEuIuJModvC4eGujDfdBRlfXdZ9bzatbNlN6L91M92ms1THx5UeQ9JUt49Z3bXXNJ7p/tok+vlltZ4btjbvyvjzL/qyD3UTjK3yweqvERGNmTvS0HPQ0sDPZxtnr8n42UvXZfzoaCLjO3f03HHr3jsyPj3etddUV7pPXbysx+9hqie02YGujzs33rdlm24QM9PVUpO+ZIn+wazS9RcRMZmMZLzXN4UMOjK8tLoi44fHBzJ+b0vXU0TEaKDrtunpfnMw1c/uoYtnZLxT62uKiNi5d0vGk0KPPfMqqXWdZGYsThM/JjVmukkScy7zbwvMJUWW6bZWly1zjTuZLVsfP6t1GZlZU0REHB0fy/i0Nrmv6UrHx0cyfmt8w5Z948ZNGX/oks6RiszMmTN9UQeHejwYH+t4RETa0WNCM9VzRq3DkedmIEz9s6jNXFqbZzHPeh2dS5SV6wd+rdDp6meSmLVC46p+qo9PM53jVi2pTV3qBz+dmVzajC+5Wb8niW8nqZk0E9NOMnNNj104J+Nf/tLTtux8QefYm2aN0jm3IuPdjs6PLly4IuOnN/SeRUREMdFr37TSz+h3zPT39b0tGW+Gev0QEVGbxjY24+q8sq3NzDWuj0VEuCV8p6/78aVLl2R8uKT3QIqOfoBJy7wf5m95YeZYs++UmnVhavLViIi00ddbmaR4ZtZ5qZl82/KdqtTnqkzfqCt9fGlaSFWauamlgaRd3Z86p/R4NBvoMWfa25fxkV8iRGm2YofNgzfHusVWt6fvpQqTrEREf6b7ZjXVlZmE3lcscx3fn+hr/ae/r/eDIyLeNXsOC5NPyfjpq7o/Faleny32fH1Mj/X1bh7ofPaeyV/K8ZKMb+3ftmW/vbkr4zuv6nz5mWc/J+PTie6zvZ7OzTqV7mcRERcWdb8ZXDc5+Y5uN8cHup62D3y+c/verv7DA/bPvp99Sq9rytrk/Ykfk8ZjndOVja73emRyJLNOSTtmTsn9q6zx2FyvnsajMnugtZ6C4vhQ30NExNSsr10NftSmk7Ws29zbvalZjxfmVJNj/exys9c+7pqKjYg//kP9bu7bz2/L+CDX4//WSD+M7SP9zicior/al/GW5jy/Gn3/7r1rt6VhuTTNvfPNGpfXmT0m067Kyq9FEpP/Jn3dNwddfU1Tkwe69dEHfzNxs45NzPvbwuwPHGzq+TIiot+Y+WxNz4HHpi835qGWpVk3Tf3e09B0kDu7+p1vb1nv5+cmB2sa/54vse+1Hqz3O997/psyvv+aXttPj/UeeUREHOn6+nRPr1+Gb+kxMXX91eTjSy1jSFrrXNaNxpOOWWsNdPtMp7qeIiKymb6wQ9PeZh3dx8amSZVm7RkRkZumWxzp+yjMuL1R6DrfTvX+ddnTc1lERFqb94Lme4jxktlfWtBl9M76fad3br2t4y++JON/7Wt/054r4oFLpQEAAAAAAAAAAAAAAAA8SPhACQAAAAAAAAAAAAAAAMCJ4QMlAAAAAAAAAAAAAAAAACeGD5QAAAAAAAAAAAAAAAAAnBg+UAIAAAAAAAAAAAAAAABwYvIPe2Adlf5DU+t426dPqf7jwaiU8c7CozL+C7/8P5HxM/1/JuPd2Q17SVs3vifjs/09Ge91FmW8c/q0Pv94x5adHh3LeJXp4/vmWayvDWX89/7Lf2jL/r2//+/L+Kce3pDxe0f6PLdubcn4hUfP6x8sXrTXNJv2Zfyxz39Jxn/91/+KjB8Xuj1F1bNlJ4mu9AftS75huiLjP/vcV2R89+Y9e66bt/Xftu7rxvCN3/9tGT+1cUbG9w8OZHx0/P9h57+Cdsvy+77vv+OT3nxy6jx5BpMHgQCGBEgCDEUalIsqytaFbN84lFy2b2TpThe+kVR2uSTLVlm0VKJMUWCSCYAIIgEih8HE7unpfLpPTm9+4k6+aNpXv99GN+xX/RzV93P5f5+9195rr/Bfa+9zEntNm5vnZHww2pLxN2++KuOfj0rGu1z374iIi8OljJ+/oNv0xrnzMp6HbuejTX/fTafb7qLp9AFz/YyOaz30V91KxoulGYwiYnakj7n/5I6ML03V/sb3XzbX5MueJgMZP059Ha6r0ViPMnWln+Gt22/ac507vyPjg4nuH5PRWMbLK7synkyOZfz+nbm9ptDdJjYm+hmOCt0/FpXOOUZD0wci4v47ui0ez/VcWo50/9jM9LUuO3NzEbGodZ00lT4mGZQy3nb6Wofn9e+f3dXPLiLi4PBUxo9Sfd+jsc4tTlJzb63JFyOiSQoZ358e2mPWUWeaW5LosadLfBaRmnOluR77bNlh/tDqeNIzTjaVPqYLfUxqcqfE/N6FIyJmp7p9NpXO6X7ix39Cxo9PdN59791btuzvvqxzhdGRHoevnNe5SGO6QDbUc3jbUx/LSp+sNo+7M20wNcu1LvFjp2trfc9vXXWmf5QDPa53ZsyNiMgLPVZ2psJWjc6T0lyPC3mmz5+ZZxsRMV0uZDxJ9INPOl12a1Kuouehp6ZxFaZtXdzUuchXP/mSjD+/t23LLrf1/PSS6ZsbQz0HpaHvYWOsk9aNwo/pXa3n9+VSr3e+8LxeH33r1R0ZP270PUREzE07aGozADxtTPtsmp77M8fs7ek86dLVKzJejsxYYbqGH1kjMjPxp5luV659uv69mPt8PM1M2SZP6UwZXWvGELcmjYgk1fN42+l4Vet1euomp8b1Sz9+1WYv02xLxsHK/N7UX90zx1am3VambtfZaunaj75/N49GRJjmHrWpr7rWc+yw1eNhnug1Znri105vfkeX8Ruz+zL+/Jd02VdvXJfx53b0ei4i4spzes48nT2W8eN9ve596UW9v/uZj3/Slr25uSHjd9/S17sq9Dj52k29z9OYffCjU5+DjQZ63r9xSV/r8kW9P//4WO9n3DvQzzQi4sTsrZWDp6vPbmS6D0Sqx1z/NCKGpdur08+p7nQOU4SOP7On87k083v67+zrfGu71nPB1nl9rpMT/VwPl75GdA1GuCbi9gHcNGfXZhFhlhUxzvR9F5keU12ecPX6J2S8yp+z1/RHr/5zGX+oh8jYzHUOffuhXr/PzV5bRETp1k2lbzvrqjTXnJt3q2VukpiIKHPTHszvE7OX1NrcSrerU7P3GhHRrPRcsHlOrwGHhdmraj/8GNZVZs/NNR8z5o0yXcqj975jy7508XkZH3b6HVJn1p+t2X9tXM7vX7HEpNN96rs3vyfjn/zq1/U1mW6WuE2s8Ps15rXP2nr7vXdk/HCmx7fjt/z+5JYZvzcT/Q7ngpmFFqHHhMS8Axj27HUkZvMyNeswt0+dmz3kiXkvGRGxYdYCj81b+4WZ9zcaXU+TxI+do1zXVd7pBpqb/Zdxpe+vM8+i6ukA+SU9Rm4+Nu+6i2syfv6T+tuN3/39b9qy33jt92V8tbFnj+nzdGXSAAAAAAAAAAAAAAAAAJ4qfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgz+Qf+ZdfKsI5GJJ0/Vdtk+g+pjs8X+mSf+MIXZfzFj70o45vF1F7T7Ztvy/ituzdlfLx9UcafHMxk/PjugS370x87J+PPXDsv47/48/+VjP/jX/oNGe9OT23Ze+lCxn//nR/I+GGrv2kb7OhrrW4nMr57Ycde09f/6l+U8S/8yJ+V8aYrZTxJCh0f+Wbf1uabvaanQa+hZy++JOP7M90+H7/72J5rab5jLHNdjyf3Hsj46dETfX7Tv7ue7yePH9+V8XY40Od6V5dx+9Y3ZfxH//JfsmX/6vfu6GN+5K/L+E98/VkZv/PkSMZn+/oZRUTs39XHdAf6+VWnun/Xu5f075uhjI+bTXtNzeGhjO93+j6Gl5cyPjvZlvGjTT3WRkTMZ7o+jp/4sX5d3Xt8S8a7h5WMJ7nvH/tP9NjXmUOSQj/3rtPP6nim+/LJ3Nd7tdDZwuHRsYzX3T0ZH5f6WtvQbT0iop6YOix0vBzr8ww2ddmD4YYtO6v0/HSymsv4/ryR8eVSnyer9O8Lk7NFROzt6XPl5pDjY/1cl/VKxjd3dD1FRAzM3H9y/9Aes47aVOc2XaMrMe16cohCz6VJostIElOGmTOTRMe7Rred94/R+Xhdm77kyjDnb5ralr00dfj43n0Z/8QnPivju+cvyPj9d9+yZT98cCjjOxt6ftre2dMnMvURpt0MxyN7TdWTfRlvzPPLM/3sksy02b71mrneMOF1NhrrebE1/abtqZcmTD8w69jxQD/fstFjcWceSl37cd1MjRGtGV/M/ZWFrqesp0JGJh8pO91Gt0x7b2ozj690fUdEbKU6759s6b6ZpboOq6XOWZNa38OiOrHXtKz0faxWetxrG31/Vad/v1j5sTtac3+tr8OniWlS/cx0Myx0OywKk2+lpi+lum+Umd9vyDIzX7f6Bluz49bW+uZ6pvdIOj2Ap+b+UnetJhdpevLPdqXrqjH7LE1jJhsz1jYmf3BTckTEwtThw8d6rTMztzdPdP21ed8eki67qp+ufaeIiLbSz2q1Mjlr7RMJl0t3janjVq9Xc9NvmiM9HrYHvs+mhb7eN3O9Rnrnkd4P2zuv92W//Lzev46I+MztXRm//vGPyfjRRO8pvPn6mzL+Iz/8Z23Zz12+rv9wMpHh2w/0Ht1wQycpbz/U9fHmm3pvPiLihz77nIwvT/VzPbenx/rNLT1X5zoNev+YDf3H4bauj3V18/uvmr/oOikHvr82ofOwcqDjQ7fuHeqJ62Ku6/bicMde03Jft6ud83oyuLipn+ubC92/zXAQERHn9vSa8dnnrukDEj1+tY1+FoOR2aiKiKLQdX5yeijjj80e8rXn9P71x77wgoy/+eihvaZvvaH39Fqz1klMznH/gR5T33tbz9UREZ/c03sE5VDneevMvY4amncyg8TvtYzMnkCe6T6YmDxpNddt9GCq11SpyXEjIsYT3Xa3N3X/z1Kzj2vuoQ3zDjoiGrPGTTpThrmNrNH3XR3rPhARUe49p+O13ise6OEiMrcPkOk8KDfvgSMiZm+/LOOXHj+S8d1On+so9F6xW+tERIRZUyUm/1tXbbYl43mp66TsySGSU10nR63uM6nJfQ/N8+haHXd7SBERpRmQtk3Zw4Huf1mhz3PX7DlHRFSh28/KtJ1Y6PHunFlrXTR7hhERSWres23qeTmv9X0PzDq2mJt98JlfyGaP9Lhz4VQfc/ncJ2T8gXkvd/9d/W1IRMShybuX53Wu8Cfhf1ACAAAAAAAAAAAAAAAAcGb4QAkAAAAAAAAAAAAAAADAmeEDJQAAAAAAAAAAAAAAAABnhg+UAAAAAAAAAAAAAAAAAJwZPlACAAAAAAAAAAAAAAAAcGbyD/rDpu5kPNHhaPtOltQyvDTnStNE/yHLdHh7V8YX2Y69pAtfeFbHP23uu9bfdiW5/n11emLLvnH1vIyXA12LX50PZfxBos/z7vffsGXH7L4MT+cLGe+yUsb3rr8o43/mL/1FGf/y13/aXtLVjz0v4/OZrtvZrNIn6vS11r3f5eky2tQ0zjV1eHIs4/fv35Hx/Sc6HhGxWMxkPB3q+j1d6d9HVchw05lhyLT/iIi0M89jrvvZoNBlLG/vy/ibv+Wf9913H8r4r9/S8ctXL8v4g+mhjN98pM8TETHTQ2cM770i45cWezL+SqWf92ml+8a5bGKvaWNX/2250GPLV7+u7+/5Xf2M3sh3bNnL/JqMb06e2GPW1emB7jf5QD+TRaX7eETE8YkeE8uBnkuTzPQP05erVjfEJkwDjYjIdH9OJvqa6tlcxtvhpoxvXvHj+o2dbV1G6LIn26bOl/r8g3xgy95NdJ5yMtVjzK7pg4uFvtbOlF1Nfc4xm+uyi4Ee06PSN74qVjpe+9Rye7ilixiYyl1TboZoOt3Ou863z8ykuC7BTk27TVpddmsudjnXfSwiojPtNjG3kSb6mnKTp9dN48s2tXt4dCTjp3Pddl64eFHGk9bkjBHxs3/5Z2R82Zq2vjTxlS5jttC59faWHqMiIrLsnox35sEmpkG5tVRfdtuZtU7n2uwaKwa6La5q3W8y06YjIppW/y0zdd+aWh6WesxNOt0/arN+jojYmlyQ8arSx5giomvMuNPTZ6+e1+vuotH9oKp0bvHWe3dlfKQf3ftl5BsyPiz1XNOY9Zy51Egz/fsu9WsUt848rXQdzmtduCk6Tg4ObdnD0UjGkw+847MuTP/r3WD6cHY2dmR8PNbrmtrkQlmrK7c1OXdERO26cq3nlMSMR2787lz9RYTb0nBlNLbvmzLMXlhERNvqOnR5SpaZpMONz2asaMKPX/unej1187239bnMw2tM28xS3/nSVF9X7jZY19jJQq87mkY/q8IllBHRmE3hJvRYWZvnm4aeYxtTv3no/hcRkZg8/vTYrF+W5v5WuqH8znt+v/bV39d7J1/8/Mdk/Atf0fPiXnlVxl966Rlb9huvPpLxP/7N78n4J57X+7jDG3qv/e23dT1de17vd0dELNzaN9XrmpO5Xj9Mj/W9rU78eLGs9SCzkT9d/+774qau386MoYPC319Vmf1zM/RlZhLKWl3v1UL3+2Gh87yIiG6o90CPSt1fyx19rnqs29Szz+icOyLip//G35DxH/7xz8v4oNT3tznQ7Xww8vf9+EiPwwdzved9cKz7xvnzuozF6VTGf/cP3rTX9Ghfz5kutR9lYxlvGl0fd+7pfhwR8ZlCzwHzxdM3xw4Kk/c0pn7dIiIixuZveafbYhF63bZM9HxWmbl0tKn3cSMiipHeC0nHel0TtR4vSjMWr9z7o/Brum7p6lY/i9FYj6vnN67bsq9f13NmuqXHsMTkrEmqn1GZ6TFvN+/Jizvdzw+KAxlfHOgcZVzq5131PAuTtkWX+v27dTQ0ewEzk0s2pX7eERGb58w+69w8w4VZpyz1fOZ2hCeln/frpS67y827nZF5F2zWSPt9TcT012Koz1Wad8HNVLepU/P7iIh2T8+NM7euODJ7v2YfINnUHeBCT45ZHOr++vie7q/H3/gDGX99R78jXk39e5pPvfgpGX/tsOe9YI+nK5MGAAAAAAAAAAAAAAAA8FThAyUAAAAAAAAAAAAAAAAAZ4YPlAAAAAAAAAAAAAAAAACcGT5QAgAAAAAAAAAAAAAAAHBm+EAJAAAAAAAAAAAAAAAAwJnhAyUAAAAAAAAAAAAAAAAAZyb/oD/susbE9e+TJPEnS83fzMma1pTtTq9/Ho2JR0S0Ucl40ulrTbqlPtFKX1U+8FX9+Hgu40XSyvgnv/Q1GX/uc5+X8ZMnj23Zi6Uue7Zayfi8y2T8xWduyHhSjmR8WbunF/H2u/f1uczvx6HLyFJT5z1t011Vrm97bSWF/vZwa3dDxne2xx/6XNPpQsZL891ja555m+u+V890+4+IyFP9QMrQ8bTW/fXUdOO7r7xmyz5f1jLevPFHMn74xisy3u5ek/FbS33+iIi4cEGG8we6bs+dP5Tx5/OXZHyW7cj4wg30EdFV+nmvvv+ujD+Zf1vGJ6HHnDg4tmVfHOv2fPrgrj1mXbUr0xi7QoYHmY5HRKTZQMbLQk+Cq1aXXQ71s81rPbZmA39N80rPNd1qqsvOdP8fFbrstmeCH27q+si29e83d3R7r2d6rpke+T5bTfW5ykKPVUmj7zsrdf3Vma6PVXJqr6meljJ++lj3wTI37Wl0Xpc903NDRMTx6kTG06onZ1xDSaL7RmKyiJ4hNNrWtJFMt5G60e2tM20nNblkVeu5NyKia/Xf8lL38TbV1+TWAjY/i4jO5PwnJud446aea6597BO67HJoy37hpRdk/Gh6qK/pWPez0xPTzjPdbvb2duw1laUZb5emDZq2maYmN/OpVnSJbptJ+3T114iIrc1N/Ydct+mmp2Lc31zfdNPTzliPrUmnz99X65PNXRk/PjqS8bbW17pa6nlgd1PPfxERP/zZF2V8e6Tv73d+67dl/PW3b8p4u/BzyrXrz8n4efP43Dhpqjwq0weynqfRpXqOTYZ67BkMdJ3niZ4D3D1ERLS1mQdM/19bmZk0zXyZ9syxG2Pddq9e1muq0UA/v+Vcj+utybk716giojJ7YZORvlbf2sw+lZlrIiIyk0d3Zv3emPbm9s66nrJr0z4T87xzs65IzX5Uaq5pOjdrzIg4Odbjy6P7j2S8Op7JuNuDcHlTRERTmPGlpz2vK7dXHGaJ1CY99eLaopt7TU7SmTk5Hehn1Q562m6iz7UwE/zAjN/7M90W7+lmFRERLz/W+xp//J07Mv6X9vWc/Of/wo/K+IN3D23Z79y6J+Pnrz4r48n2FRn/5d/6Axl/9fduy/jO5kV7Ta8dvSrj/9pf09d0dKr3wmdmz60y+xwREZ15N7B/5MeYdXTl6iUZP5qb9waNn4WGZj6bVXp/qTNr5cLkKcdHeq01W/rccGY2eV+/p/dTyh/S7zJWtW6feeE77Ke+oNvh1kXdpl0+/vCB7t+R+vuuzIbDqtLj7d62bgfHT/T7mFvv3pTxX/j1P7TXdHCq729g5sbhQLenwwP9TI8O/J6Xm0vr6unqrxERI5PvtWaey83+T0TEpsnTbr7zpow/e2ki45e29F5gYsaEqu55IXtq5veFzuuGI91+8lTHSzN2R0TMVrpPrRLdTk4XZk/d1OsyN5vOEXFo5qHyUI8x9999XcYHmf79uQ29RqmG/gVnUupjppV+FkcPbsn4jYvP6POb/euICLfFtOrZt1xHF3b0vsz9u2/I+PGpf+e1PdHvaotaP/O6Nu/yzRhSmz6z6NmvHW+Y9yKNeedb676RlbodjnZ0G4yIGJh1fbGh3w3OWt3Hpof6PdRmz/pkfnlHxuttPUauHh3K+HBmyq7MNzGn/ppO6n0ZT8y4fXupf1+Vus1+8iWd10dEXP/MZ2V8eGTylz/BU7ZbBQAAAAAAAAAAAAAAAOBpwgdKAAAAAAAAAAAAAAAAAM4MHygBAAAAAAAAAAAAAAAAODN8oAQAAAAAAAAAAAAAAADgzPCBEgAAAAAAAAAAAAAAAIAzk3/QH6aJjredjneJ+UNEJI0rQx/TmFMlnb6oNtwB5iYiInHHhL7YJNXfdnWtuaae+qi7Wp8r9LmWS/37SPQ1lbuXbNm5qZNtc67UxvX5jxdLGZ/NzD1ERJrrZjkeDGQ8y/U1NbWrc/8sumhlvOqerm/5JhtbMp5lExn/xKcKe65X37ol43/8B9/VB+S6z5SJfq5dpU+Tmv4dEdFl+m+rRLerxg1UtT7PtFrZsstCn2s0ncv4e3/4bRm/9PXzMr411s8oIqJd6Pt79rru4+/+xj+X8VsPX5Hxe1NdbrJ10V7Tbr4p45vTJzI+KYcy/tUvvSjj+fdftmU/vP9Axlemfayz3W3dHty8WLs2HRGR6T7YJQtdhh72IlI9LgxyfZ7J1sheUn5ayvhqfirjI3OqotIXW1eZLbs2SUe+0v2pOtVjVd3p+pgdm44TEYePj3XZI11Gmuv+kTV6oKwa/SzGiZ4vIyJWpnvsTfTYc2NP9/+jlX4Wt49ntuzZgb6Pi5vb9ph1VNe6TTWtjqeZb5+NadOzRs8pXWM6rOvHZgzpWndARGZyvarWc2PX6TJykxx2Jh+IiDDVESdHJzL+re9+R8a/8CNfl/GrW77sZaGfU2rub1Ca+5voAWxzU8+Xly9dttfknl+R6vvIcnMPiY5nmc9vk1S357r2Ofy6evbF6zKemGc+MzldRERV6fufr0zuaPra3oZuJ6V5hsu5v6Yk9DH1QLeT46U+1zPP6PH+8597yZb9/Hk9v29lOv7m6zpn/cFrt2V8p9R9PyJiMh7LeGrm/dSsrZtU15/LJrvEj595YdaxZo5NHx/J+MSse0dDn2vZ6UEvx9fWyCxLV+Y+3D5ERMS5nQ0Zv7Stn8fp43syviz1RW1t6/ylML+PiMgS/bfGDK2NaW9lZnLJnjnW7WElprWnbs/LJR09uYUrw+/R6bi9h1zXa9v4BlLkuj/tbOl12cDMpW6vLzN5QkTEpNA5/2Kuc/t1NjL/7nVp9ulMuvw+kzK7vdHUPN/WdMGiMHuHbpM6IprU7DF1Zs09NPft4ls+rxrr1DEGqZ4jDjf1PP7dh3qOHb5615Z97eOfkvGvfv5rMv6dP7gp47/226/L+N23dbmj3F9TDM26fnBBxpuF3i8a5zpHmQz9GDYz416dHNhj1tEPbj2U8emp3pfJOj+nDM34nZh92aLU7XZ4Sc/VV65dkfHVwK9f9iu9N7M70vN+vn1Nxk+rH8h4MtBtJyLi8jWd4zaNbiMHh2Z9+40/kPGlS4QiYvui7vtjkzdum3cG0xN9TUeHeo/nzt1De02NWUPXbsG/0BNAXusBPe9Zkj66rce8fMPvt6+rwqzJU7Pvu2X2GiMiTh7qPPcf/yf/oYz/rX/lZ2T8vdiT8Qen+pq2S99vWvMetWt1PpSbfG9rVz/bLtP5VkTEYmXaqMkVYqR/f+e2fm/23vdes2XvHD2Scbc/8fjhmzK+tafXIu1Ex1dbuu9HROxc0M/1k1/9iowf5nruHY91nU/rnnVCp/+W9rzLX0ebN/Qa4vD3/lDGp1O9FxARMTe57KA0ayGzR9iGWSMNTJ/pWb+k5n3bwuRIq0yXPTFjwlGmc5GIiIdu+Wlyurdmum6fbfS+3fCi/34iu6j7TfGCfpd57nN67p2Yd0TH7+kx5OjI18d+mOd34ZyMH9zXZdy+rRPyI5OjRES8dahzyeKyzuf+JE/XVxcAAAAAAAAAAAAAAAAAnip8oAQAAAAAAAAAAAAAAADgzPCBEgAAAAAAAAAAAAAAAIAzwwdKAAAAAAAAAAAAAAAAAM4MHygBAAAAAAAAAAAAAAAAODP5B/1hknQ6bj5xSlr/7VOaJjLeRaPPZU9kwp09wmpdKUkmw42uDltPkZl4RDSJLrsNfUza6rgrobUlR3Tmr615FtHqa03MPSSmiW1PBv6izLnC1G3T6ntIOvP7nvaRdPp5d82Hb1MfpaYby/hwrO/v0kD/PiLiZ//S35Dxqh7J+J333pbxdr6U8dVqJeNdbS8pskLH65V+5qtEt5EuN0NgOrRlLxf6wtqBvqjXX/sdGR/f0APYS89/zpa9fziT8dPp6zL+7ts6/uC1Uxnf/vifkfGTg31/Tas7Mv7Fn9Dn+omf/UkZ391ayPhv/eqv27LvHbwj46NhaY9ZV3mux5i9jS19QOnb6Gym67IsdR8sNvW4cHhyION1qvtAd+LHyVGtr7dY6Ta9Vej7Lk1uUWW+7CdLfX8nBycyfnBX19P+0SMZHyVmvoyI2YG+vzrTY9L1K5fNmfScWbS6nqrQ9xARkZoEZmTm3vPjc7rsXI/dt+88sWVHXcnw8dGhP2YNVZW+d5e/uLQmIqJ1eVil21Vrcp6ucwm5yRnNeSIi8lL3mVjp55cVumx3TW3jy05MNrtodZv+nd/5DRn/oa98WcYv/NgP+7IzXeejgVkL1Pr+EjMHdWatMZ/pOTkiYmXqvDD5SzHQY0WafuAl3/9XnuhzrdL5hz7XR63c0c8wMYvJtPB5RJZPZHwx13Nv2+p2tTnUz2SypXPyJ499v5k+nsr47jmdq1+4vC3jzz93VcY//tJFW/aVLZ3/5iYnP3fhvIwXhW5vXdrzLFL9XNulHqOb1IxVZh5PzJ5Fu+oZwxL9XCsz5j4+OdbXZIb0rDDjc0RUSz1eDPOnKy/+M1/5goxXbu6o/D7L7qbOk3Ynup8d3burT2TyzGH+nIznO7qdR0RMxrr/ZWZcXzU673bD+sDMA++XYf7m8pfcLMjNfkpn9qkiIjqT+3YuSXJ7Xq5vmI3JPPN9ZmtDj+cff/ElGX949QcyPjf7HKORX69tjvR1HS18TrCustLkHlM9tjY9e6Nu97Izx7Rmf9LloG4Y6cw+YETEstbP98p5fYxZOsV808xBtV8obHxaj99Jpcew5kV9TS99UbfpZ258wpb9ze/dlvE/+qN/KuPvvKbXgG+9ZvYU6k0Z3zjv1sMR26k+V3PPPNjkggzvDk07ax7asjOzp1ia9r+ufv4f/DMZny30/WV1X3/Va4Ltoa6TutG58ic/+xkZ/+wXnpfxS8++aK/o1pt6P/rBE7c/oufr5VLP1c997OO27HNXn5Px6YneR7pkxp2/+DN/Qca3zu3assOsV0uznhtmOoloU51Df+/VN2T8n/za79tLmh3p/jSvzdyQ6zb4g9fflPFPfsmPX3muy9jafbr6a0REaV6AuL2FVetfpqxSXccH7+q99Z//j/8zGa/aDRnfGOv6vXZNj8URft/rZKnHl9FAt929jR0Z37qo55qIiMGGvo+F2XcuxnptvbHUe8vlGy/bsl/75jdlfPOZ6zKebOt2MDN7v6sTHb97Uz/riIgHp3qOjUO91zAtdd0++yM/K+PnP/F5W3Zp2m1hxqp1tf9Ivz87afSav+fVZ9Rmb3SZ6LYwNUnuwuSxdaf72NB8CxERMTML0IVZzx1N9bw/nuv1zqjWfSki4g2T6g1bXcbpUtfuo4e6nY+2fVv7zNVPyXh7cUfG35vpuTQ7r/P3wfWv6ILHeq0aEXF+sifjF25ckfFz+/dk/MVX/0jGf+tf/LYt+5e/+4qMP3nZvx/rw/+gBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDPDB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM5B/4l50Jtyaemj9ERHSJCeu4jvrCE3et5vwREak5pjU3npp78EX0fAtmynZ37q7Jnijt+w7NXLB7fO65mjKKLtOn7+xN++dqim7tAzdhd6L3/yjDWerbzjrK04GMp4l+TslA/z4i4ur1j8n43/pXL8n448f3ZPyN778s49//3h/L+KMn+/aa0lQPXdVQP9umrXTcdNi28X2m1U06skw3uKLW95EfHsj4pZ7uWo5GMv7N37kj47Olfq7Z3ljGN3eGMr7av22vabirj3nmU8/L+N7ulox/81/8roy/decdW3ZnOvmqNg9pjT26e1PGq2Jbxruktudq24WMZ/VKxsfjHRlPx6X+fanbz+6OvtaIiCenJ/pcmR5Hrp57Vsar+kjGb75715Y9HE9k/GgxlfGu1ePL3ljf99gNChEx2ND947jSz2i+0G26numxajGdyfjujr7niIjMJDyHD+cyfnTB1Mc5/ezy2vfZatnI+KVzvu2so6TVc01b6OfU9KQ8rcnD8szlxPp5uLwqM+ef134Mqc2cuTHZkPGm1c+1qnQ86cmp8tLdn67z2emhjH/rD35Lxr/+hR+yZVemTvRdRAzMWDg0Ocp0firjDx7ovCkiIk31+DIc6T6e5LrsLNHn6WmaEZ1OSBrT/tdZUeo2V1d6XhwMe5bIuT7X0Dwrt1aOgalfk5KfmGuNiChMv3nmuesyXlW6jxcmBx0OdD4QEbGzZfKUhS5jb0+PI6NxIeMbe+dt2SdzPZeOhrplN6bFFwP97LJS33fdM352iR4xprVuCE+W+h6WZuRx54+IaM3zW4RvO+voJ3/4KzKeJrqNNGbMff+Put7L0M8873QuFCZ/cXs8eeH7zMbWnj5mqDv/aqWvqWl0PCt8fWRmnEpM3O15ta3uS13PnldqqrAza2i3T5XY3UGTB5nxMSJiPNJt6vINneN++ke/qs+zqde353cu2LIPbr8r4/sPH9tj1lXd6jFxZfKFum8rMDdtyM2lZm+v60xuatuhH1td2al+7JHsmLJNv6nNnBURETsmr0uXMv7VL27K+Fe+ckXGF2/qOSgi4hf+/j+T8d/9Tb2vN9nclfHZVPfZcqDve3qq1/sREbf39d7aP/ylt/Q1mfHw/n19ntrsl0REjDf1eLG5vWOPWUdHx7p91ma8r1Z6/RIRUc/0fso90/fTVLe3m/f1fuP+iV63/dTP/pS9pulM77PeevnbMn50oOfr1VTfw+17vn2uTHeqT/WezfRYrwG3zT5LVvh9p9y8F2lbXXZe6pxjMNFrzM9/+ZMy/rUf/ry9prde/xUZ78z7o0Wu9866VrfBN+/4dwaP9nXb3DNro3XWmP1JNzctl36dcvBY18utt96W8cOVPtck1f3myVKf/5F5lxERcbLSx5yWur2PTI69l+u9mXMXdDwiYryn17G52efZKnT86Fi30YeP9FwdEXGyfyjj87d1fpiOTB8377X0SjzixOzNR0S0plF1hb6PB0/0nPnJH+h7+Ll//X9ly06vXJXxeqDHhXXV5rrdrko97rnnFBHxwMyxT8K8T1jp57cIs89pJq3UT/thtrxjZr+r0NzqzPdWv3dZzPRcMNnRY8VWp+M/WPj++pm9HRkvTfzmkc5Lz53Xv0829P5Ak/mxs230g3r09hsyXue6HdxfmP2rnnG7SXW/zEtfh334H5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnJn8g/4wS/VP27aR8a778BeTtOagxIRNPDPnb1pzQER0octOUn1MYn7vJH0VYspw19SZc7m7c79/v4zWnEt/u9a6b9r0aSIJ3T6i51mErVvzLDpTf66BNB++cVaNucE11dTm+Zk6SXueR1HqHnX+/J6M7+xsyfgz15/Rv9/dlfFvfPu37TUd7R/r+NFcxpvKtMNC33ee17bsvNH1MRzq+PbGWMZ38w0Zf+biDVv2ne/8gYxXJw9lfFKdynhXDGX85M53ZDzrlvaaxoNSxt/5xj+W8bvf/WUZf+tVXfbhk7u27DwpZLwYTOwx62o+NXNpeiDjeerbaLLS8eMT3W+a1YmMjye6nQwm+pnHOXtJ8cKV6zJ+8fo1GT/p9P0dvnMo4+2Jr4+rl/RYtX/HjAudmRddnQ90O4yIaJqBKUKPVacnlYxnnc7BZsuZLvfA3FtElIMdGU9LPW/sn+hrvXFjJONXdvSYHhFxZ6Gv95lrl+0x66hqdFtwOVKS+hwia/XckeY6Xpv26cbDJNU5T16aftzHrAXKwvSBVLfnys3JEZF2ug47V4eNnsfffeddGX/zjbdt2R//xIvuqmR0GXqwdXnpytz30bEemyMiNsabMj4Y6dzCLMuiTXT9tT05cZbqNlKtzCSzxopEt93c5G5Z6laTEWmp2/syM3XZ6d+nmW5Xw4keWy9c1HNZRER5rB98YsaL5ULndcmGzk1Hpc7tIyKyVB9zMHss45MNfS63frh4wc8pczMHHi91fSxrPXaPW503Ds14tFwt7DVVpv+fmP6/P9Nz7LzWv09Lv32TmvVq9qcZ7z9C5zYvyHhtxqs08+tYN/YtT3W910v9zKu5bmsRum6HA99nioHODd3mVpqZ8SvT80CR+/pwe3qZmccXZk9hafK5wuUDERFmTknN9lJjcq3E7AlliT6RzVEiYu72i3J9zIuf+5SMX7r6nIwndmcy4vkXn5Xx2cmhPWZtVWbvyTzbJPV5YGuee2S6Lk0Xd48wWr28jXzk/+3u1fO67Cs3dJte5nqOOK30ecrarxM2pzr+o5/W4+RPfeqiLuNEjzv/5d/7eVv2Gz/4gYybLYU4OD6U8brR405zqseRZc9WcWX61G986zUZH5hXHuMtXR8j904iIhKzyTIZf+DXKmvhJ776ORk/qXW7bSo9X0ZEFG4MTXUHnGzqnDHL9ZrxxrO6PV9/6RP2ml54SefLf+f//H/UByz1mPOlz31Bxj/2w1+xZT9zQW+IPWn0fm3e6AFpa6zn92HPnBKhc3uTQsQgMWNtrQedjUyP23/zZ/+svaJf+ye/LuMHj3U/qyrdnhZmiHzj7bds2a+b8evFz7n1/vo6nps9wlbHc/dsI+LBk9syXq30MbPpoT5RrttoMtPj+uLUTGbhWm5EY/LZ40SXMUv03vn9h35cb3M99w9yPUeMMz22HZ3o+eGo8mUvzLvayuS5ldmPdu+O7Yt5N25HROTmGDM3mq2U2P/Dfybj9z7nx89Pbf91Ge8SnzOuo3xH79+Nd7ZlvO5JehbmZXtj5q2VaTt+Fv//H5fJuuza9fu+zwUS16TdJqhZ14/Ne9rD2LFln27rd9pvv3co4y9//5aMn9vWe2Rv3/1dGX/0UL+vi4jYNPPyaKLHL7MNEMcmH797oOeLiIjVTI/phVmP/0n4H5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnJn8g/6wjUb/oWtlOEmSD30xSdbpuPu9+b6qbfURSarPHxGRmD+5I1w8cSfqKdtJzH10pkZsCX3PojN/MydLzB8Sd03mE7jU1dO/PNuHibtrajtzrX1l6+YcefF0fcu3qt1zcu3Tt5Gk1feemMpqK32uNB/K+Ce/+CUZX/b0mW/98R/J+KJ7rOOHtYwXmWv/vj4aM2oua13GbKXr6dkvflHGNy5csmXfuXNPxk8fz2V8enAi44vZExmvY2FK9lPF6cOVjN9/7WUZT/NMxgtTRF3pdhMR0QwmMn5utGePWVef/MwPy/jBkzsyPp3pth4RMV8sZXy8e1HGd7a2dBnHuv1sb27I+LmLV+w1NYV+jvcO9/U1Xdbn+sF7pj7mvj6qB6Zdm3ra3Tgn40kykPHO5EEREW1q8pRON/jE9MHhRJ/n8XEl45u57hsREc9d3pXxBw+O9LkGemw7fvKO/n1Z2LKfuaafa9Yz5q6jxuW+nR7fEpcMRURj5uVqqdtC0+iy81THi1JfU5f4a+pafa5VpdtbFrqM2iwdVub8ERFNpdubSwmKXPelezdvy/jP//2ft2X/7M/8rIx/4rMfk/HRRJfdmHxgf/9AF5zq+ouIGI91X05LPR41Jv9b1XquznLf91rznNqFebBrrCz0uJRmJsd1+WFE5GWp4+b3XavbQ9voZ7Vd6Dl2YtpbRMTdd9+W8YNTPY8XG5syPjBFzKZTW/bt2amMP36s2/u80e3n8jNXZXy8o9t6RMSjE13GkV2L6HNdLHWdu72GpVljRkTMzNj9+Fjn6vNK9810qNtZoX8eERGtaWuVmTfW1cbOBRlvzH5U77aTmYhWmcnpzBhaVzpXLsx4MJz4PCxJzXhk5oK61XNvUuoOm/as6zuzD+JygtyMkVlh5q2eLRO3BePmGvf7LDO5lskH8lo/o4iIMM9ic0s/vwvntmV8uDGW8a6nv6a5vsHx5gfeol0bbh+3NPtFXebXCsuZmTPdfrTLczvdx1PTTrYv+H6ze163oZF5hu1CX9PD9/T80PbkgV/c1W3xp1/4qozvHl2T8b/3T/T+2c//V6/asp9MdV25/L5O9bMLM4al5tmlhc85wuTYXWMGH5PPNQuTLxe+HWy0Ixk/fqLzoHX16U/pfOtkru9jtfD3l3amMehtlsiGek+obnTdVge6Ldz6gc57IyJS3dxid6RzvazRZVx7SfelF877Mfr2G9+W8STRfX8y1Pedmz2FxcLt10aUQ90HBmNd56ul6a+NnrgWK73ftrvh+8y/8ld/RMZ/87d/IOPv3dQN58KN6zJ+9+imLfvl174t4z/2RI+dV16wp/rITaf6mVTzQxkf5ObZRsTNt27K+NFMt61VpdvVvJ3JuJvNJibfiohoOjPvm3dRjUkQ52Z91vSsE7JK5ylZq9dtx6GfxcqUPXcvGSOiMe843RFu+Zm6d6Umt+/bem1NfbicvDFNbbE8lPHKvGOIiCgSXfZo6HOkdbQw/fXwUMcnO3puioiYH+oJbdXqelyGfiBJrttCafYCB2b9FxHRhc6vK/eYzP5uZeaguvV7jWmqy3ZtpzV55tzsnbe7/lmsSp2Pv3nnPRn/7qs39YlSPda+/Pobuty533dy9z0wr1Hd3mfX6fE5y/z4NRzote/8tGfx2+Pp+uoCAAAAAAAAAAAAAAAAwFOFD5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnJn8g/4w+ZB/Sfu+fWo79wdTgik90efJEv37xl9RRKePSUKXkZhrjc7cd+trsDNlmEuyNetq1V1qRISpKht3z9v93BXtayPC3YmtJ1NIZkrp/M3Zx5eatraumoW590z/vu/uskLHE1NXSab/kCb6ROPRBRn/3Bd+rOeatmT829/+Qxlfrt6UcTe25Lkfv1btUv/BHLK1p6/1s5/7pIz/0u9/w5b96rdvy/jp/kLGV5XrA2Y0dJ2pp4UkuX6ujSmiKDd0PB3J+HjTNNqIOHfpRRm/8fGP22PW1XM3npfxc7s7Mn58tG/Pdad7S8YP9u/pc031w1oudXvIshN9noWOR0S0pW6LR8e67Z6kKxnfO7+pf3/7gS37yam+ru2hToG2tvZkfHM4lvFb9+7bsgcT3X7btDQH6H4Qma6/y1eGMr6TTew1LY9PZXxc6LrdGu7I+GxeyXg79qnl8rEu+53bd+0x6yhP9T26EbRudF31HdSEO0ZPNpUpo57rvtTH5Vttqy+2W+jf1zbfr3tLl2WbXye1Hr/mJ7qM733nj2zJ77z1Axn/+l/4czL+537qJ2V8kOn+/eDhQ11w4ue5zvR9l6inJgfLWz1X151fHdWVbjvT1dQes67qhe4fbq3Vt4xNZrpeklSfLDNt2o0jRw8PZLw68PW+t3NOxmf1XMbLUped5foe9ntyjjzV97cw933U6Hn/3DP6HlZz/fuIiIdT/bfmUD/vrV09vyeDYxmvc90/WlOvERGVGSddT0vygYxfOG9ykQ0/fj55fCjj06mee9fVYKLzkc6sx7uezY7ErG0GE70eycy8lZh5a7Rh8q3Gz73V0vTLkc4Bi9Kstcw1NT310dZuvnY5hz5XnuprSlM/eFaVWVekeg7s3CaE249y02XPNRWmzncvX5Zxl+Hmme7H3cCvobu5ro/To5k9Zl21S7cvq2usSXwbLQvdHiqTKrm5tGl1fGD2LvKV77PHR/pvB+/puSMZ6PaQV7otJmbdGxExn+l5bnmix8n/y/9D7yX94j/R8Xce9qxRTDLk9vpTU+etGasyMzPWZh6NiMhy/be20Nc0KPX63b0zyNwmZ0SszJ8KU/a6qpa6vZXmNsqRX9vXM7OfOjR7P0dHMj471jnuYqnzl6T0a6d7j+/I+MHDxzI+mOjx60mn7/vVd79jy/7Gm9+T8U9//rMyvqr13vL+9FDG87Hf49nY0n+rE93/Fo91LnLx4q6Mn1b62b35g/fsNeUbOzJ+7cZzMv7623ot/rEv6r3z27d9Pv7H3/62jJdN/9uodbT/WO8hdLXOF0Y97zOmx7rO3B5CmL5Wm1zM7S1UjV+/uL2nMOf6cG+U+993Oa4G3Ttit87rK7ux+14mVzDnac0ehNUzz4V9n+fagb6Hudmb2Pnqj9qiV4XOneqm56X2GvrON74r4wcHeo+nrvy4XlVm/DZ1Yre2avN7U7XL1O8RpoVZj9vXjKZNuWm8Z280y0zZhZ6vE1N2bQqf7On9l4iInb3zMr57TsdPa/3sjo8OZXw67/1qRXLD9onZPsvcdzcDM9aa9hcRMTTv+FzO/yd5ujJpAAAAAAAAAAAAAAAAAE8VPlACAAAAAAAAAAAAAAAAcGb4QAkAAAAAAAAAAAAAAADAmeEDJQAAAAAAAAAAAAAAAABnhg+UAAAAAAAAAAAAAAAAAJyZ/IP+sGkS/YfW/N78PCIiNZ9FJZ3+Q2fOlXUf6pIicyfqOaoz33A15ixJmIvqTDwi/FXpYxJzQNd+yIqKiMRUVuK+XUvc/elw+uGrIxLznDpXtol3pmZ7iraNrXGNak01lbtgfX+J65QRUZvOnPpOIGWZi+thaGu8Y6/p05/5goyf1lMZf7B/JOOz0wMZH5Z+aHTtMzLXmfSNL5enMv7Nb37blu06f5ZvyngXK3NJZqzNx6bcwl7ScHOk4xvbMn7t4hUZHxVbMr61pc8TEbFz8aqMp9nEHrOuDh/el/HBULfF0UjXe0REOdR1Nt5cyHjb1DKejfRouWwqGb/76IG9pi1Txnyl+83DB7o+tvKBjN947gVb9nBL98Gy1dd0794jGb8704NeVvpZ5dT0wVWrj5lMdNutlrrs+UyPI0M34EbEnXt63CtHQxnv4lDGN7f1uDCZ6PNERGSXzsn44zv6ea+rutV9IMt1nRQ2M41IUvOsUl2PjUmgOpeomPPbfDUimtZM8KYfJ6HLKEwumWa+jbicLnXxTpedmty3y3zW/eCB7vv/zS/8gozPFksZ//pP/pSMb+/tyHg+0ONaREQy120tTT7cmqk17aOq9BgVEbEw91fXT1lSHBHNSrfpxOVVhR9Dm1r3g9Tk0mlu2miuy64rff6Nkc9NU5OrN22pD0h0GbPpiYwXPg2MotBllCZPqVudi2S5fkZN2bNGMf1/sdT3t5XrOjxdzGS8rPT5Vwt9DxERXa3HnsaMk12j73t7U1f6xsTnf8VQP4tqqXPsddWaukpT/fzSxC1KIzqza1OY/Do1Y2hummFqxoqj4317TeVKj7tbmc6RctMBm9bsX/Xsedl9MrMplJlxzQxf0fb8+8fCTHXuuYabr00u4h5eNvQD2KDR+Uge+pjO5GAuD2oqPYdHRGSprvPT02N7zPoy92/aaOpy3/ePktHS7EcMRnrcy8xaqDVN9PTB3F7RwjyrvDLj/VjnT2HmoHO7Pi+uHupj/qP/06/I+A/e0vthj091PHEbthExNM/JHtHoyl2ZkSc183vS9aybzJ73qNTtYGNbDzy12YNozZo7IqJK9Ni9bH3bWUdvv/KGjB8v9Ngz3vDjepbo+t02e4GLY713kXR6rGxXum5vv3PLXtOj6RN9TRcvy/jWWOdI6UI/77Q2/TsiXnv7tow/PNH33XU6nzyZ6by0KnqexUDnh6cnuu/vP9I5/+aGyRlL3feOD/R5IiImG3pv68ld/VyXib7WvWu6PV3/tF5zR0R891f/mYx//43vy/gLP2JP9ZE7cnt+JicpE79OOT56LONJ6NyqM3sqTWv2mEwTNdPl+0yu4M6VuP0w98rwQ791jajNX1wP7OyL2r6c3L1bMu8y7b6eOY+5ps68D4qICLfWMjl2s9Rj1d5zn5Dxcse/31mmZpxs/F7ZOtrZ2ZPxT37ikzJ+OtPjXoTfm6nc+sK+j9V12ITZ71v5DtuZvcC2Z89bcWtut3cWEZGb3D4zW17twKwFCt3OHx/o/eCIiF//zV+T8Tff1O/BXnn1ZRkvzTvwPw2TdkfXmb2DTue4rdl/NK83IiJiUescqe97oD78D0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDPDB0oAAAAAAAAAAAAAAAAAzkz+gX+Z6m+ZurTT8cSfqutaGU8yfa5Eh6Mzf8g6fa261H9ZhrnertVHpZ2579zE+yok3H3rY0zR4UroGl9ya86Vmrp150ozc37z+97aMGUnfQ9QHuAeqrnpiGhNnacftuyPWO0q+E/xPFLzx8oclWc6Xpt6z00jSQo/PO1sb8v4lz7/EzKepWMZ/+43fl/GF6tTW3Y5LGS8MNe7sXNexjf3rsv4+asv2rInt/ZlvNnakvGkKGW8rhYyXk707zfM+SMidrbPyfjulo5v716U8a0NXcZ4c2jLblxXrnsGvTV1dOeujA+39f2fmGcYEVE3+m+Xrl+T8dl8LuOn86mMj1zfNHN7RMTxVJexnC9lPDGD7pEZR565dtWWPdmdyHi+qGX8ze8/lvEm9O83NvSYEBFx4YK+rsf7T2TcVe18qp/pZLwh42Wmx7yIiO0dk1uYSbatT2R8dlTJ+GrmZ5QL53X/X+W+n6+jDTNebU5GMp71/HOAxgxkSaIPSjPdSFqT0OWZTtASk7dF+JynM5l0nurn15kEIi/1XBMRkZpjBgNdt42579VSjzl9s8NwU49HzUq39d/8F38o4101kPGv/8QXZXx7Z89e02xp1kzmGVULfQ+5GVvqxjfOttZjXtO7pllPpelPiVnAFHlPvZg1sevnTaXbT9PqeGn6bNqTrbeNOVeuz9U1Zn270nPN7MjP7yOT5zarlT7A1F9i6rxr/X3Xle7/tVkD1iZPqcyzmC70OFKvdDwiYjnT/aYY6HmjM7lFmupO2/SMYnmpn/d4pHOFdZWlOq/K3PzXc67OtLcwfSMvdNn50PTLRD+/yH27TQt9rtbtO5n2bIa1SHom+HLgxkJzLtP/bI7iNoUiIkv03J+4NLo1Y4Ib10w9dT3/JnNYmsVkY/qlKSN1e6UDv0bozJ9G8x17zLqqXN7ot92sotQ51MLkYkmtC8863d6mc72u6ezGQkRt+ubKdPPMtIdC31ocP9K5W0TEK3f1XFot9fVWC5PwmTY97Psny4meb9wecm36Wpbpxt6aOVSNJDsAAQAASURBVDzt/Dji1gm5GfeauW43namP3CXM7x8kw8lTtvf04PZDGW8z3Q5XJmeMiBgmulGnJt9KzTuftNF1ONnalPFLid7Xioi4mJp9IXMbA9PcVgd6T3jznN9nOTB7NpnJCRZz3WfKTK97OzOGREQMN3We2V42/e95fZ67j/Re2K0792X84aHfOy+mevyaneh4UeiH9Ma3vynjX/7xr9myz+3pfac333rXHrOuTg90fS3Nvu/hSj/DiIj7t+/JeGmSMbfsd/mQ/73JlyOiM/N4Zzal3DtlN3f0vUtMzDttu2vk3hnaHNTPZ7l7Z2ly6drtBZgiusTNZz17OW5BYDY6kg29xpzsXpDx2WLmy17qOs9TvZ+/rs5f1O/Cti7oPb/KzH8REctD/Q7w/r4ejw9O9Ty+mOsymqXpM7m/psbsT7Ymr3KLgdbFe3KqrtZjoVuvNqH3bOYLPW+9/OqxLfvhE/1+bHdbzzXOytWT09NdXXqWdroMt1Z2WwddT0rs6jzKP91eMf+DEgAAAAAAAAAAAAAAAIAzwwdKAAAAAAAAAAAAAAAAAM4MHygBAAAAAAAAAAAAAAAAODN8oAQAAAAAAAAAAAAAAADgzPCBEgAAAAAAAAAAAAAAAIAzk3/QH3Zdov/gwm1nz5WmmT6maXU8NedqXOE6npqfR0S0rf5jkuhr6tyNm2vqfHXY6/WXq0+mr9Sf//1T6XO5y3Wn6mpXf+Y8PfXRmmty8cTVnymj7akPe13p0/Ut32reyHgy0H0vz/raiOlP7vtG95xMi+4SfZ408cNTOdB/u3J5LOMXL/6UjD9z7ZKMf/+VV2zZR0cHMt7Vpgc22zL8q7/4RzJ+7+33bNnDrQ0ZP3fhkzK+MdiU8cGkkPHxRJ9/c7xlrynLhjJemGeUdSZu+lhVzW3ZbaXrPO0bYNbU9EC3q4PZUsabnhlimlQyXi71cx+aZzjZ0+0hMn3+k5N9e03zk2MZz0em7KHuy5kZdk4XU1v28d0nuuyhPlk30HU7ilLGp6entuz7R7rs3csTGT830H2tGOn6eGzqtcz1HBARccmMe50ZwtqVPtfR4UMZn5/oNhsRsTpcyfig0O1gXe1t6+c0Mc+pL4Ww+aGZG7Ncx90cm2V63s9yHY+ISE3CnHT6GDdfN20t4z1LhGha3d7cHFEWOj4o9LWual+4zSfHun2uFro9/+D7L8v4uW09hgwLPTZHRBRmqF/VuuxodJ0npl6TRo/nEb7d5naVsL5sF6xNvWT+HnOXt5p1rOtPLr/OXAdx696IaEy77hozHrf6Woebuq3nqW67ERHzk4WMZ7U+Zrypx083vjStb6NJp/tBNtZ9qjL5YWra9Gyh762pe/qNGUfckFubvtnlZl6s/Pyeu/wvHdhj1tFgqO89NeN9YvLYiIjE9L+iMOuR0sRzMz+YsWJY+j4zHOn8uizNc3LzXzqS8dbMvRERrckVCrfeN2W3Zj+v880zwuQvmbkmV3aX6WfUNqbw1F9U6xYWic+RlMzuZ/hxu071OFWatdE6c/dZl6Z+TfuJ6MkRTXzVmDZq5rksdD9LzbwREdGtzFxjHq9JLaKa6fis6cs53N627ged2b8emzbat09dm7p1O8+Z24Mx9+fm/drkshERuRmjOzM3VmZQys2+aGrG+gh/vdVTlhdff+6qjJ+7sifjXef341ZzvQczGJl+ZtpIZXLJyrSd8+U5e01ujZvm+lxFpufrakdf0zW9jRMREYOhPpfLOeZL3ZcWS5cb9pQ90XWemPpYLHU/e/O9mzI+mejx4Nw5veccEbEyZXSX9f1dvfhDMj7c0muH8xM/X376z/2YjF86p/fC1tnR3OT3Jt8bFj7vn831MQPTN1dmQqtcnuQmQPvC0r/7TDo3B5k5xb077snFMvui2OUvOt582Pdm71+YjHZu/85tKZiyW5dHu/f7EREmx65L8y5hpN937Zy7rE/f8+4xM2UvTJtdVwPzHm7k1pJ+yRjdzq6MX75xQ8bdnFmvdB1W5j1KUvi85nSh33/cvnVPxu8/0PH5sR7X+vLSJjFtwb2CqHQZbhmSDvzDODjU715cruz2Dty+nVP0fMzi9rzdNyudOVcTep3Ts6VgK7GOvs2AntP9qY4CAAAAAAAAAAAAAAAAgA+AD5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGcm/8C/bBsZTptOxpOeUyVt319F0eb37ixNor+7SlJfbte1uuzGfMOVmPvW4Uh6brkLfVBnzqWvtIc7UYQpOSIxf0lM4e7+3L0l5hm9f4z+m7tWe3u2gfTUhzlZa9r/ulqZW0zN/dWNb1VFq59HOdS/T6KQ8cwUkZX6QWWdbyN5kuljioGMb21dlPErl56X8U9++ku27FvvvaXjd96T8dPHSxn/x7/838j4YHvPlv3xa9dlfHtrW8Y3ts/LeJrr+kszHXfPNKJnPKp1n2mqWsZXS11PXa1/HxHRhf5b9yGmtnUx3BnL+GSwK+Pz9tie6/jJiYznQzOPt3pcGA90H6zN4DoZ+j5blJsy3tambZkxt871M08GW7bsSVnK+OOjxzJ+fk9fa5Hq/nHz3qkte3ai2/U40ffdnNc9alJMZPyomenzrHy/WWT6mlZL05tT3T7yia7z4cbClp2keoyuFvoZravtnR0ZT1y1Zz4JdPlTav6QFSbHdbmv6a9pXx5mcoXUnsvEC93OXW4YEdGZnN+VYc+Uu/urbNnNyqwFzLw1GesxYbWcyvi3v/1NfZ5tPYdHRKTmNopM/2HV6mttzTqnMONjRMSg0ePwvNTjzjqrFvq5N5WL+zwiNW2rNM8ky/W5WpN7DwYjfZ6eFWBZ6LZYtXMdb0w7McudstTnj4h4cO+OjA8v7OhzjfU8UJh7aI51f4qIWK30/SWpfq7TlZ7/mtZc01CPYUlmFkERkZh17Hyq+00+1Pnf8VRf66j0bXNk5ofSDSRranNP5xeZWb+UA/88Ctt2zf5SrmcVtxPg5qbC9PuIiGLgxl2zB+LmWLO3lfb8G0TXPt0a0M37PoXw83uWmb91uozGbDzlna7b1LXzxD+L1jynxmymuDLcGiHtWZJ2Kz1Olaadr7M2d3muqceeHDQ3+w6J6Qduv9Y9K9emy9TnQ9nIrFc7PZe69tOZ9VmX+r2Wyu2pzHT7GZhH0bZm7WlHt4g2Metx81xL09dSkx+1rek3btM5Ilqz/9M2+ly1XZzp+qhWfh1bmDa4Od6xx6yjvYt6v3Fo5sum9X1jNNR/y8yckptnOzX7d2Wn22DVs3+dm3V37vInMzUVQ/37wnWyiMjMMQOzTz0281+XmDrvmVMys2fTmLXhfKnb+gvX9P7jC9d/RMYHpd6ner8MXXZu1lJbu7rsYalz5dSMBxF+rTxK9F7fOpvO9N7vcqXXFm3u1+rT+3dlPJ3r9tCY9ad7rZuYcd2NCRE+J3DvcDPzPsi9Qmp7co4Pu0TqXB5oCk9NfhgR0bmXlua+W/MsGvPOLsn1ONL05Opuvs4Lfa7x1oaMT8b696kZpyJ82xn2fmGwfjI31bRm3qp65jPTfnLzbAdmH7czc1Nj9mW6nuc0HutxejbVeelypvdruu5Q/37R8w7Q/MldbWs/0tDh1Wplyz481ePqqcnHu9rtqWtuzZj35Byuj3etvqbW5AON2yLveU2TFXrPctD5OuzzdO1WAQAAAAAAAAAAAAAAAHiq8IESAAAAAAAAAAAAAAAAgDPDB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDOTf9Afdk0m42nXyniW9Jwr6WTcHpLq3/eUoMP6Unv/6L7gas3VdqbsxF1TRKTuzhMTN3Vuy+77DK1z16XLdufqEn1NiTlPa9pAhH16YZ9Go4/o2g93bxERbdfI+KC3EtdP1ep7TCtdJ1lP38iHephIOx1Pcl1Xrt+7YSjL/fDUhRmPkoG+pqyQ8clwU8aff27Dln39xnUZ/7GklPFlpc9z994dGT8+PLBlHz85lHE3Hs1qXXi1qGW8rnVc94p/+bfGjIWtaVTNSobbRD/Tzox3EX58SZ+u7hoREQ+eHMv4o6MnMt5N/FMZbuh6ee++bnPJUj/3T3/sOV2AaSd37t6017RY6mu6fv3jMn7u/K6M33+yry/p1BYd+aYeF5a6aqNdLWV8Op/J+OmRjkdENCZ3Oj3RdTgdmv5UuL6pf1+U+p4jIt69d1/G81yPYYUZirNSd7R04NtmtVrI+KMjXefrqhyOdbzTz3tZ94yi+pAoTA5o51iTzyUu3pPXZJ3LP3U4TfVNJKkbo32m15j8JTG5nruLzkwESe5zwHQ00tdU6Lk0Mc9oc6TbR17oelqZMTgiIjLdL13drsy83650vBj5fGcynsh4VT1d/TUiIlrdB7tK18vK5TARUZQ6p1x1+lxZpp9v6fLcXF9rVfl24vIh89hjsrkj44ORzotnixNbtuPmIbcccH25yMwgGRGDjR0ZbzpT5xtDGR8OdVuPVp+na/yYvjR566LSd1hlup429vQ1DXoWbYVpz7Hq2ZhZQ5u7+jm58Sqp/f0VLolx+ylmE6tt9fPLTMNNCz/HJqaMzuxDFIWeBzJTuLvWiIjErNvcujs1Y6FLE1yOEtG3J2XmfZMP5CZxSnIdzxM9ZkdEhMnPqkTHbb7jci1zDxERhcm780K3/3VWTfXY4/YIy84/kzb0uFskuo0ulrqMutTPpDZ7EenMX1M5NOuqVB+TmzypqXS7qlszdkdE1pn1lomHiWeuA5pnFBGRmHHStfe80O3d3HbUJjfrGUYiNfv2jTlX0pi9RrNm6zK/B9ma51on/vmto609PfZEYvqGyV8iIlKz3srM/qvbeDZDawzMuO7WNRF+Tz/M2qlpTH690mVnPXlpmev7btw7C1MfWarbWmL2TCMiSpMrJGacGpr9jI2JPo/bYx2U2/aa3Fyal6ZuzZzZmTXWfOHbwWqq2/OiZ15eV2l7JONPDh/K+OnJbXuu6ljvOw82dY6dN3r/LjG5WOHmpp7/HyM1fTN3OZd74ewGEhfvuSy7W2WTWRPvmVNSM5a4+kjN5OjGhcR02qZnnyM1b386c6350IwvIx3vTA4WEVEvdNts3WJrTY1Me1uZ/CXreYFl14zmGbYmP3Pv1VLz+8olbhHRNvpc5y+el/HC7IEOHjyS8dlUjzkREdOF/tvSvMNpK93eGreX0/NuvFroMnKzd5ea/KUzY0g+MnN4z55CYdaMbaKvtTRjy6A17/d78p3xtt437PseqM/T1csBAAAAAAAAAAAAAAAAPFX4QAkAAAAAAAAAAAAAAADAmeEDJQAAAAAAAAAAAAAAAABnhg+UAAAAAAAAAAAAAAAAAJwZPlACAAAAAAAAAAAAAAAAcGbyD/rDtjmR8aZOZLwcDe25skwf07WNjKe5/n3a6XhEq3+fdfaamkr/rXVFpJn5g443nS+7CFN2Y+470d+VdYk+T2LrKSJJ9TGpeUatuY1OP7pIUnMPPZ/G6afny4hMn6wx19pUtS07SXTpg80P3FXWwqqZyXiW6vvIs8Keq27dwzLt0LUF0867VD+P1cpeUqTmmiYjfX/tXJcxbU9lfDAsbdllOtbx8UjGx62+pu2NTRl/eP+WLfv1VrfP6f4jGc9X+vdVXen4XLeb5dL1ygjXmxIzTkWtG0g30L8f9LTNNtHjixsq1tmDJ8cyvn+wL+NJ6+agiJ1sIOObZhzbPafbYmmKSIb6/IOB7gMREWHmMzuyZjqHyBp9UYujqS361bv3ZHz/4EDGJ+lSl12b/lf7OaWZz2U8Cd2uFzPdDhZmSKrNQLkw+UBExGRb1+1yvtBlmHkjzXU8aXx95Oay8qUei9dV1ehRJs9MnZg8JSKiNfmWSzPbTv/BTdWZmXv7JLlpcJW7b31NXafbQk/zjNwliCZfjXA5rsmJUz+nlIm+v8pkpp35fbic38yL1crPWlWr5+W5mUunCz0mNGacSho95kREpJ3OFbZNbr/OFnootu2hs+0qYmXqODP9Y1DqcaEr9O9XJmdNCz+ONJV+VrMTfa0npkKaUpcxPdHzZUTEqtN1WC9c/9fxSaHnpnPnL9iyw8w3WanzlOHeRP/eZCOrVtdft/KD2KHJyYtEj6uXxnpdkYz0uJokOkeJiNjrtmW8rfwx62h+ovORNtF1UmZ+3datzPpiU+esba2fbVaYPR6z6ujb6wiTK7RmzHXzWdv59ZnTmgk4czsw5kZSN0a69V9ENG6vz86xus5Ts/4zy+RYmfExIqI183Vi9vQKkxM3jS6jNu0pIqI1c0bW057X1dK1B7MxNDb3HhHRmnk5y3W87XSe1Jq+H3p6iLQnOZ1P9TqzLd1+rW4ni5Wes7qBz00bk++1Zlxw/Sk1ubpNryOiM33NbQo3Zn+iNeNCk5u+37OWTM0azB3Rmvm6MzeejHz+N5noeWMxe7r+3XexYeYg0z5Lk59FRKSmHa7MmDhb6nxkutJ7ASem/Y9MvhoRkXamvZn2uWp1zrGa6ms98dtOsbm1J+MD065ak2fmZq4ZuDV6+P6ahz6mNv0sT/Ugmbj3TeYeIiI687fGjPNjM/+tzLql6FmTpoXZw1o8XTlxRESe6We1XOr3tFnPfPbJz/6QjI+ml2X87uO3ZHxh1qth8p6kL2e1uZh+vonZhxwO9Vjl3hu8f13mkswcUZr8cFnqtuveoUb4PpWavcN8bNp0p+Ol2VBset6Np+YxFe49fr4h4wNTdmXyqYiI4UDX4bj48Oudj1Ke6LV9OjBzTevXKeYVdYQZ+zr3Dr7SbWrl3p6ZnDsiYmj2IvKhbgvnNnV9XDq/JePzua+PY9N+TmZ6LJyZcapd6DIam01GVG4vPDd7NiZNKc07znJDn2dg6vX9snXfH+/oYzbNOJWbvbDc/D4iojB7I+7d35/k6cqkAQAAAAAAAAAAAAAAADxV+EAJAAAAAAAAAAAAAAAAwJnhAyUAAAAAAAAAAAAAAAAAZ4YPlAAAAAAAAAAAAAAAAACcGT5QAgAAAAAAAAAAAAAAAHBmkq7ruo/6IgAAAAAAAAAAAAAAAAD89xP/gxIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM5N/0B/+2/+3X5PxutWn6NrEnivJzHdRuT6mSVr9+1qHi06fv+vsJUURuowm9EGt+bar7RoZzxNfH+66UlNNbWfqIzHX2vnHXJuykyyTcXcfbauvqTU3l/rqiDTRN+6rUF9r4c6f+cIzUx/1Ssf/3f/Fj9hzfZTq5ULG88LViu8cXeueh6lH0y9d/zZdL0yx75ftLtf9wZThulKa+/poKv23zLRb13BrU3be9gxUrm5LXcZqVcl4V7rBRcdrNwZHRGr6uBtDuk5fa2nOX/W0zaTV422YMgYTfU3r4H/9v/mfyvg4Gcj4YDC059rauyDjuZmX6+lSxmezUxnvBvqZrBZmoIyIt289kPGD0yMZr5a67PnpTMZPZlNbdmMmutFA121T637T1LoDdj19NnHzjZvnzHzWmYSgbvU1pW7Qi4jpXD/vZaXPtZjq+WS51M971erzR0S0S13G1avXZfy9O7fsuT5K17a3ZHxun5N/HivTPt3ziFS3kdS0nfMbeqy4tDW213R0eiLji6V+tp25pjD5fhc+D3PLh9ZMmp2byF237JtjzVyXmnm8cc811WW4fL/rWSMkia7bqjLzu+n7iVm39P1LldS05ybVc+/sSI8V6+D6pWdlvM509tGZeSAiojXtpGnM2tA06pWZUzLTn/LSr+faMPmQaT+j8USXMdT1sVzquTciolro5+7WsUszjmyM9DW5Nh0RUa10Ha5mcxnPB3od5NYc9UrPc2nPGOby3DTRzy/PzZje6AEjN880IqIz88DpqX5G8+V6zrEvmjGxcuNYz8aCeRyRmAE5M2VnZo05Go5kfHdHxyMi0qG+j0enut1GpvvGcKxzkZ/7q3/Flv2Fr/+YjCelzhUOj0w+MD2U8aMn+7bsh4/13w6fPJbxgRk796f6mk5O9drBDY8REWmq++Vrr78u48eHbt2i1yFN48dOkypElev28fi050Y+YoVZ7wz1Uiuyno2ewkwebWryYlOPWabH+7TS9di5vaqIaM3Y6jaZBkuTJwzN/GDG+4gIl2o2pp1kS32uJtdtvencBlNEZjpPa+bA1pTtttaSVOccSdmztjYPvDLX6tZH80b/fuk2hCMiTJrrWs6y7wXER+g//L17Mr5f6z4zjk17rkdmXZVd1Q13ZfZsthtdi0Wlc8axyd8jIgqTE7j5vTX5WWlyjsStPSPseDQoTVvPdTw3a4rKvcAJv89S5h9uvdqasfPk5KGM1zO//ltl+vmVA51fl42uj9LkvnXmn0WzMG2z1bnWv/HTX7Ln+qgtj83+WqHbbmH24iMiTNpjNwXclrvb/nHDXk+vseN6a9/vmDW0eyfTN6ybcxVmHyu3ZehC6p47T90eganbwuQvrVnsdObG3Ro9wm5T2wVVZ661Wpjft/6dQbi1r7ngcrLhz/UROjx4T8bdO5w0M8lyRLSmflMzRzhJ7tqO2a/t2Z+sa5NHm/6amptwe8J9eWlhcrrEfPfg3qNEou8hcRsHEZGaPCUxr9ldzmGHBFd04cdzNz7PzXvrgXlGSaEvKu/ZLW7MPtlqqJ/FRuL3RiL4H5QAAAAAAAAAAAAAAAAAnCE+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGcm/6A/rJqhjHddZ85s4hHRRSLjSat/r3/t/9Imuuy053OsqtV/7Dp9UakpIzPffLXu5iIiTBm1qVtTdHTu/nrKzt03aq5sU3hnzpNmpuDWt4/WXG5nys5TfUBr7qGtfUOoE/O3QW2PWUd5pvurawlp+PtLclMnjalf8/PUdWQTT1xDiIjEnMwNR7ZNmfN3dU/7tGOCvvGk1nWbNY0uOyts2YkZsVvzLIpS15Mu2fex1FdHJK4+Qnd+N065Z5e4MSQi8k5XSNMz3K6rInF9Vt9jW/vpuzNj3KwxlZ/pSl7O5zJ+sH8k408Oju01Pdg/lPFFtZTx3Iw7s5XuT23nM4XB0PQpkxTkqf59kunfLys/frrZpmlM3zTzdWoetxleojNjQkREmpUyPs5Nntfo9lFX+vylG6gioh3pC97d27XHrKOViVemfTZ2tunJn0z7bM38VIz075+5cVnGL+7o5x0RETd1v6xNg0vMGNKaedGN9xERpmvYuaA1+aRba2Q9E5p7Fu6IzFyrHRFM/+6rD5d3p2Y8aswkmyRmzdRTuG2b9dM3ya5Mv6lq3ZuTvj7r6tLlxSZPStzC1D5bf02uDzbmvpcLfd95qee/1XJhyx4OBzK+c+6ijB/t78t4ayaVtqe91S7hM/WRl3rcqxrda/PcjCPm/BERiZmw3W0MhvqaksrMNK3Pd1xOkLjBak2ZLha5y/V6ckC7ceLWkmZOaUx8tdSVvmp9brgz2ZPxF648K+Pl9lUZ37pwTca/+DM/a8u++uJzMu5y2dW7N2V8c6Lb+XPP6nuIiKjNuu3oWK8r5odPZPx4ptcni+VUxruePD0zOf/h4UNdxvFjfSKT+q5MDh0RsTRNs6merv4aEVGY8c11g745tjLjeluYvQW3R2j6bFqa/NptkERE5/ZzzGB1auKJWYunPWNY5y5spY9xW521yU4zt/8ZPfmLud5OLzFjZZ5FYvZxc7fwjQh7ueYPrcmLh2Z/oLQ7ZRF16DxlY6TzoHXVDPTzGA5N35v5PZ600flhc6THYzcaL3LdeCaDDRlP7MuPCLfbabdHzGZxZfeK/LjuuqvbE3bv05bTmYwfPDmwZT+49Y6MT++/LePtSq/3T5Y6PjV7gO1S5/UREc1YV8jxgW4frZ7e4/6DV2X88NT31/ENvQ7ZqHV//Td++hfsuT5qaanbnFv/JfbNj9+HTE0HcXOseZ1h3wFmPW92O5MTpCaJcPsa7t2EfxkVMXL77aYOG9PJ3Z5K0rN+X5p8J3ETuXv3Ysaqztx31rs3aR6gu7/K7E2aMtqeveLGtDX3vNfVMPS81Zl5q2+vIzH9tU3N+0S3n+nycbM3arZGIiIiMzmgzQ3dtxtuie5eKkdEZ+d3u2Orw/abjp73KKYdNub5uT1DNx6lndlTN+9d/mUpMlqYPazE7COlZs+w6et7JlfPl6Y997x+iOB/UAIAAAAAAAAAAAAAAABwhvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvIP/MMkk/E6aWQ8Nb+PiIhOfxeVpN2H+n2XJDre6fN0bc8lhT4mMZ9wmSIiDVOI+X1EhK0qd72Zvm9bT2F+/37p+pjE3Yf+fdbpduA+gevMefquKWz70OHWPLzMtJuIiMaUnX7wrrIeqlrHU3Pvrk1FRNQ9HUdIXL9s9HkS00hcH3v/XLqM1h3j/uCqw9VTRLimHu1Shk/nKxlfzqcynpd+7GxmlYzvP9iX8fHuhozvXr4k41mqy06T0l5Tnrnnp+swceOzqXMzxURERGOqKs1dm13fb3Jni4WMjwcD83vfL9v9xzI+2NqU8b0NXZG33z6U8d/77rdkfL7U9xDh5+s8L2S8GOg2Z7p+pLnvN2mux2/Xy5vatVF3fj9eVGYsNkVEZ9poam48SfSJqqan47i+5qZ9c99Joeu1zPx8ubE9kvFPf+4T9ph1NF2YOda0qjbvmdBqk0e78arQD2pQ6LI/84nnZXyc6LkpIuLJ7VsyfmTam2sjXauvtW9+dzmBHb3dmsKmyj2Ft65v6PtoTV9K3e/NvJj2TE127WJuIzP10bgTtX6s6Nzf0g+XF64FM165cS/N/UNpTF6cmPZQmAecZXr+60w/W638HOva0IUrl2W8qXT/n2zqnKNpdDwiYnv3vIyfN7nmdHos4ytzTX3jRWlyiGwwlPHWjCR1o/Nrd/60Z52QFuaazO/zUp9rZeYG25cjIjFlp+X65r/KwDToxrWFnmWsqy23vkjMmrhza8lUnygf6zVYRMSXfvgnZfylL35ZxrevPivj46Fu5+cu7NmyE9f3Te62acbOxizCysLn45uTiYyfu7At4/PZORmv3LI+1feWmP4dEVGWOi8tJ7od/J3/+9+W8Xfffk/Gq57+ujS5fWPmgHXmMsqhfVb+Ht2aMalN3PTZxOTebgzt23OwT9Hkda3ZMHLp08JuYvkt0NK0k9ZMmplZunRmXRFh0+LIzL6eHaLNsNDZ3NStsyKSTp+sNTlrV+irKkw7K3O/71Wt9HX5vaf1lKZzGR+udB2uTB1GRIy+8QMZb+OPZfxkQ+9HDZ//jIwXlz4t4+eKsb2mOvR9JEuTW5ge7lKLrGfv3G2buj3TZXUq43fe/r6M/+EffMOW/dYr35Px05vflfFhq9cVtXn3sZjq/e6kfmSvKdnQ8296on//ZDmT8bHJu+uR73sPHuu1y8Nmyx6zrlK7WWA3BOy5MrdPaMpITH+y+ybuUt2EEhGJmRxdOtSYNZLrm51dhUUkZh5KzTzu8h33vivtWaTkrk7MBkXj3ls3em7KWnPf9iGF3Xxy+0KZ26UzXTPpaQc+JTANwU8DH6nGVclK36CbHyIiGpNndqaPd66/mpzHDS1Z7wcUZi5172rMaVKT4KZ2wR9Rmz7QmTVCHa5vmNyw51OWJNN/dO84w/XLTCcKiW0HPRsd5gG68ci1j87cW9vzMUti2mCS6v2oP8nTtVsFAAAAAAAAAAAAAAAA4KnCB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDPDB0oAAAAAAAAAAAAAAAAAzkz+QX/YZfpbps4dkNq/RGaO6pLGnEuXnZkiuqaV8abnc6wkEnMyHU8yXUZSm9P4oqNrMxlPw9RH6N+7++sSfa0REWljyjbPr611PHEtyZw/wl9TYsru3LMwlduaMtrOP4000zfSdk/Zt3ymUtLkwz+PMG09avM8WtN2TBdrO3P+nkty7S03j6luzZhg2tR8NrNl337vtox/61vflvFf/MV/KuOr6lDGl0tTURGxPJ7L+OM792T8pU88J+P/23/735LxL/7QV3TBjRnYIqItCxlPTBtM3DjlxhzTniIiikzXVWbmjHVWrVYyvmgqGc/T0p5rsdTnOjfckfEs1fX43dffkPF7Tx7KeFn4lKIzfbAohjKepHqsKouBjNe+ifaM+aaNJro+OnceN0ZGhE1rzLm6Vh+QmRyldn2zZ943jyJaU4l1pduTq7++Ofa5567L+I9//c/YY9ZRVZs6MW0neuqka/QxrZnQMpOPDAvdZy5fPCfjxerYXlNuUoW8MO3QtTc33pt7jojI3ORvxqnaXGvS6Dqve3KL1JTtL9esBdyNu4S1r33YP7n702NI8qfor67wxiV0ayzLdENpXa7i+vL7f9Rh+/MP9/tBofOqrtX5QERE0y5l/Llnrsr4/qMHMn481ePCoNRzdUTE5uaevqaVnlOWJsd26/c81/UREdGZtpibQSwvdQ7RmLLDrMW7ntw0zN/Kgc6R3HN1eXFixsK+cw18Fa6l9EOuDVPTvyN6xlC3hjD9tU11WyiGery/dkPnOxERX/jqD8v45RdekPGd8+d12QPTzs1+RkREmuq/bW5MZHyQXpPxutJr0szUa0REavpyY3Ll0tyf6wNuHGwrt6fmr+lLP/I1GX/le6/I+M139P5A17c+MfNP9hT+G1LX4lLTHlKztxwREWY87sy4UJu4a1e52f9pTN7Yy9y4O1Xr1p55Tx5Y67pyuWlt7i8zmzBtz5rRdR03TuaFuw+3PtJl923lpG4/2sxznavb0uxNjHx95JW+sAO3LlxT47EeW5fm3supH8gOT78n45cevyzj331yIOO/9Yred/qLX9NlP/cTX7XX1FZmjWT6gMs/7fsp+57Gr7cGpdmfN3t97VLn6aM4tGVf2dO5+qK+IuPT030Zf3KykPHh9ZGMz7pL9pqqXN/ftc9ty/jJzbsyPnKDQu3XJ/OVzvm70PF1lpZm/DbDW2LeGUaE3+gx3PZF4l7I2hVuDzNvuXeZLodoTNKf2HVeRJeav7n5z9yffV/Z8zbYvWZsTRJhz2TWw41ZS5qt9vdPZeblxGyiVfZx60nZ5UEREbVp0D1L37WUd/pdTWXmlKrzc4rdT3V7fibvTsy7YLul0XNN7l276wPRmvHLzb3uhUX49z516LkmNXVupqYINx5ERGs6Tm32X+w4Zd6llwPdbhL3ojv8PoebMt3jblP3MUvfmtSt0/9069inb/ULAAAAAAAAAAAAAAAA4KnBB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDOTf9AfJm0n41mWyHia6N9HRHSp/lvaZDoe+vediSfuu6uktdfUtPpvaarvL2pXhv590ja2bHdMmujHU7uqbcwfzDOKiOgSc12uqsy1tqZ9pGmt4+GvKTXPrzGHpJ0uI0lN8259s3df7LXJyh6zjtpOP4+20887bXueh2tvpi24WnRdqTPX2vW0W/dom8o0XHOq+Xwh47/+679vy/4H//DvyvgffPsVGb93/5aMjwaVjNd+mIq8K2W8Weg+cPN3Hsj4D/3aL8n45Qs3ZPz8uXP2mpqZ7htpqsfzfODah763oqcdhHnetRnP8/IDT3n/nauXuj2kmRmVXIeKiEGm77Nd6TJ+/5vflvGbd96Q8eVM99lltrTXlCW6PSRJIePHR1MZ39zS9zYY6vYTEdE25rrMvNWZ/MWNVa2beyOiM4/JDZ8ur2lNDuHinekDERFh+mZiJv4s1fFFo9uTO09ExKDQz297c2SPWUe6BiMq8/zSpud5mHaVrnQj6XI9Jrg2NR7ovjHIx/aSilKXMRkNZfzEtIXOjWuN//cRiRnzXD9LTP25Csn7phSb7+g/uMfamT7Qhe6vSU99dJnp+7VZO6S6zluzbnH5YoRf+zW56wHry61T7O97xvU80/NW1+nnPhjq8W1Q6vO0tWknNu+OMFNspIl+7kWhx4XlQref8eamLbupdA765NFjGW8rfR9FrseXzOQ0ERHzxdycayDjnanDVa1zWTdnDQp9/oiIzuRnqSm7Ms+7MwvfxDzT9w8y+xk9eyDrKHHJk5lj7R5IRGRm0Hf9NTc5kitiZ3tbxr/8la/Za7pw9bKMb2xMZHxo1k6ZmS/LXI8tERGdaT+NWYBOJjpXyFI9riU9k2xn9hvqxvSB0GW7p12vdL6/mPv1ST7QdTUc6vhPff2nZfyNb70m43/4x9+2ZWfmvtO0Z99wTW2ZNL42c29i8qGInj0g02dbPQXZebEym1tFT37oUgg3pyQmV69NP3PniYgozIXZLWFzsZXJ94qeHDQ1a0C3DZG5dwBD0w7s5qufszLzp0Gj++xSD6tR66E7lq3OKyIiSpNb1EemEa6p6VzvEZ4sdC50YWvPnuu7f/QH+lzf+mUZP72mc737d3Qd/v5KP6ivf+p5e00Xti/osht9f7VZ0GVmfymxvS+iNW16VOj2eWGsy9j83Kdk/GvPXvdllzpXPznal/FHTx7J+P3pTJ9/rDv+48rPsQszx4429QD9uft3Zfzkpo5/6xsv27KP3dy/qdvgWmv0e4vWTHR979t61xHq927Ab80ka6f3D78f1tRmbDUvhFKzS5eEH6Ptu0y3D+Led7k8oe+2XY5kcgK3x+vuLjWLl5VLnN4vXJdt8he391t3ek/BvtiNiA/7LnFd2RTGNJKezyd6lr6m76/M+wTTXVs7n/lxIstcbm/6jHln3zU63th9gIiuMO+iZvr9UTXXZQwHOp8bmL2liIi56Rsnx/qYcqjHqfFAL5o6M56X5tuQiIjU7Mt25lsM+/7dvQPrycebpa6P0q1j3Yv8/8+fe/8KAAAAAAAAAAAAAAAAAP8/4AMlAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZyT/oD4sik/E6OhlPez59SrpWxjN7UCKjTaPP06Xm/Im+h/evqZbxtjX3l+t4W5vfd/oe3i9chzt9qkhcnZvba83v3y/EFJ7oZ2HCkXamKelHEa27uYjoXNmJvtY20c8u0+GItPFlmz+laU8drqNEP488MQ+k51tF96h6HqHW6Mrtct1w+8aQptL3Ybp+HJxOZfz/+ff+iYz/3f/679uy3737jozPpgsZb7NCx1M3Jixt2SvTqAdDXYerWtf5P/zFX5Lxb33/XRn/9MdetNf0lR/+ioxfuHhFxh/dfizjx0crGf/MVz5ry/74C1dlvC11fWyW9lQfuXqp24+bH9oY2HOViW5zr7zymox/87vfkfHFQrefqtLl5qkuNyLCTb8nU903t3Yu6Pi58zK+Wp3asuvVXF9TYgYxM+/XZgyzNxcRYcpwOYQb92wuYnIz9/sIP//WrR5AG5OzpWZOzsuedmDOtVq5CXs92dy3MfXel0O4Q1yzSnQ7vHxuQ8YvntuV8aUZcyMiNgY6h1iZPr5amDa10tea5D4nNs0wMtPeMjNIdqbvNZlPLgrTb1ZmjZCYJNc9bZOu+uQlfNNJMtdf9bNz413uJpmIaEwbzHqWNOuqqXV9FYOhjLvxLSKi7XQbygrdPza2N2V8x8Qf33+gyzVrzIiIohjpY0w339vWc+nRiZkvzfkjImqTkyembeWFzl8Gg7GMVyuTH0VEagZK91yb1qxFTK9NzDq561kEmSKibnXy1Jjn2jVuLe7HsDzXf2tXfoxZR/Z5uH5p17cRnVnjZq7tZDqemTK2dnZk/Mqzz9trmmxuy3hp8icz3NsJMyn8+JXbdbfbf9HnSdzk1Lc/4PJG0257z6VOb+/bb3l2Zh6vZ3rcefE5/Vx/7q/9NRl/8+2btuwHT57IuBt31lljUv/cjGNmOfD+uewmqMkDS5OTt/q5161OxqqefKgzZacmt2pNu2rN8j3pmd9Xoa93ZDY23H7t6kifJ216XgmUei4tzd7T5siUsatzi4UpOmv9pk1p1iImNYvBnr6HbEPvQcTMz7Hz2/qCsw/8VmU9JJnOt9pS3/vBkd9n+dZdnbPGTLeFZ071uY7f+4aMvz3VfelXCr+nf+UZvQ+5sXtJxm+8+EkZv3Dluox3WU8+nurGMDQTeVbrOi8y3QfmZk0aEVGbeXx4Tu+rbe7tyfjVTd0+pgN9/kWu+1hExNTseadDsydUH8t4NtNjzqd+Zt+W/cqbL8v4vSfv2WPWVe0GOLed2fMuxe2puD3QD52M2YvqyW3M3tByMZPx0XjLlGx3YWzRbgnRmFzMvY/tTBn2tU9EdOaPdh1kfp+YvMntCfflYPb5mfqwI5K7pr6izTv+lcm19E7KR6/L9Jq/M+/nkp7NtdrUSTSmLZj+nZh5y70Db82ec0REa+6jNf3Yneqk1mut+08Obdk333xbxu/euSPjlXl59cw5Pf+dN2v0iIhFo/PGwiTeo9Bz6WPz7mo8msj4lcs6p4mI2NnV7wDCrHXc5nJrxq/VUo/BERGnU/3uOil0HvTlL/64PVcE/4MSAAAAAAAAAAAAAAAAgDPEB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDOTf9AfZlHLeNclH7rQ1HwW1batjCdhykg7c57GnKdHov+a6SKiNfHUFNJXTUli7iN03NVfYi4qcQdERBuZPsYd0OlzdeYeotVnShN/TZ0pPTGVm5jv7BLTuotE33NERLXS7XzV6Ta1tszz6FpdV234+8tSXZGuDySJ7sdNp+NFrp9r09Np9k+OZfy1V16X8f/i7/59Gf9Hv/CrMv748MCW3TULGS9HhYxnia7b2vS9NB3Zsu25Wt1u64X+/Vu33pPxe4+nMn7n0V17Tbce3JbxcnBdxt9+4zUZf3igy37xUx+zZf/Nn/tpGf/JH/tzMr45/sBT3n/n6kq3KzOERpg5OSLiybH+2xvvvC3jpyczGa9MJ1/Wul21PbNslun2XhT6mWxvT/Q1VfpaZ6dHtuzO1FXe6WsyQ1V0Nh8wB/RIzTzUmvGzNXOQy3fMVB0REWYYsTmVy/OSTF/roCfnmE3nMn7/rh5H1lWamrZjk0bfX1OXOJp5fDLQZb/wnB5zr9y4JOM3Tx/ZayoGej67uLcl492+fubNXLeR1cL3GZcfpiZPScyzaHNdf/rO/uUxbgyrdNmLxuXQpi+Ze2jNGiTC5/at6ZemBUZr6rUxY05E2Gmmayp/zJpKzRyU5bpeyry05+pMXY7Get7a3T4n48uVnvenU50PVaueem91y046PceWxUDGBxPdx6Mc+6IX+rraxrVdfZ7a/H659Pc9MHXe2X+DpRt1mZn6M+cxU+/75yrNKOPWyiYfaMzv+/Yzykw/7/pPsV/zUarcPovJU3qG0EhNjQ1N/rll+n420G3t4u6ujA9Gfj03KPXfcpM/NX0NTv6+J+dwOV2q221q9gES8yyqemXLzkz7TDJ9TW1l9hTMnmGYsTkx5UZE1Es9Di8XSxk/PNS503MvXJXxj7/0rC37+FivXXwNrq9cL8+idWNr7ttoZhYxTWP2is3c0eX696kZMExze/9cpgtWbh83G8p4VujfZ+f8/uQ8dOVe/sSOPmBHz++3bun9nGru59im1dc12dyW8fEl/VxnE92qazP/zYsNe03lUo/Rjcn7y1398C5e1/V0tfIrhT/4Td1ns+lFe8w6mpr5qev0vZ/4Dan4+v/yfy7jN/+JbiMPv/PrMp7O9Jh7cusHMv5LT96x1zRfnsj45QvXZPwv/43/mYz/1f/hvyrjnZkXIyIytxIzg0hn5vfKzItN5tcnxwt930dmuJ2n+lyzQj+LyrxgqZZ+PF+0eo5dmGOWZq28ONHrkOziFVv2XqHztp3mBXvMusrcOyyzvnV7ERERfqoz7+7cmsottVwBqW8njZnHZwvdfiabezJu93FN/hAR0ZlNXvse1eTY7l2b21OP8FXojnDLOb9McO9Qe7h3te49u0uQXE7uq8Mq3H7pmkpdWzD7bklPr3StoTbHrEx77sziYtnoPyzrntxwrvf03Xy2NHu/nVkj/Itf/11b9j/4x78o4+lS52cXzl+Q8UGh29SFK3psiYjYNPtO41LvBWzX+r4vfkJf09v778r4H7/ye/aaStM+MjOXbg3Py/jmrr63JPfrk+VCr082zbvxL3/xx+25IvgflAAAAAAAAAAAAAAAAACcIT5QAgAAAAAAAAAAAAAAAHBm+EAJAAAAAAAAAAAAAAAAwJnhAyUAAAAAAAAAAAAAAAAAZ4YPlAAAAAAAAAAAAAAAAACcmfwD/7Jz3zJ1Otr2nUqfK00SU4I+WauLjiTN9PnNeSIiukaXHYkuJO3MtTb690lf2WHOZS7J3bfnD0jN/XWJfkadu+/OlaHjvffg7rvSdTgc1zKeJYWMp6HjERHZypwr/dCV/tHqdB+oG12HXWoqPSIaU+958eGeee7a4UqHv/fqy/aa/tE/+Kcy/ou/9Asy/urb78r4bHoi40le2rKjbmS4WX64vhSpaZ89n43Wp1NdhmufM9P/Sn1/i/qJjJcHE3tNj745l/Fm+YaM3711V8a39i7J+DsP/pkte/+Ofq6D81dl/OeufsGe66O2XCxkPBvodmKn5IjYf3wg44cnhzJem0E3y3TZm5sjGa+Wum9EROzt7Mn45QtjU7Zuo/cePZDxpvNlDwvXn3sSFSHPdMpU98yxbaOvqzWTYOvmUjOOJKbsJHx9uBzJJYRNZuYNd99+OonFXI8X9+899AetocTkTpVph2lPU0syk2ea3++d35Xx61f0uFctlzLemHw1ImJzY0vGN86fk/FBOZDx02Nd9uzk2JbtusAg1S20HOgGlw7MWsOWHFGZdUhjekdjckY3kXemIfgc2vcz16RM04zUdMy+fNyuT9qeTr6m0oF+honJf9PCt5T5fCbj3dS0B/O0alP5TaLHkXLoc9O60mXP5zpvvHjxvIy3j/RYfHp8assemVyhbfV9JK2uj43RUBfQs6lQm781Cz3XlIV+3oPSzIDmkeaFHvMiIhrzvAszhmVuDWbmk9bUX0TEqq5kPDHrv3VllrE+s+kZx1LTnwZmvN/JzT6SaSPlWLfbrqfdur/UZo1Zz/UaIdz6r2/fItV5d1ebOdPs/ZiU2NZ3RM9+m9v0MhOaeXSRubm3pzpOzfrrdGrGPJNDJ2bOuHbjsi37+2/qtXJ1YjZH1lgTpl7cGN2Tg9oMIzc5mjtVrp9Jk+hrbc34GRFRm3G6S0xHMB1k95Kex1/46eu27Nsn+zI+eVH//sKn9Zp7Z6Ur6viJz+lmh3p8G9abMr7a1TnHnUOTN610W2+zvg0xHc4HZs/ygo6f29D3sH94ZIuuhrqN5HO9p7iuimPdDtOh7hvjDf/a6F/76/+6jL9ebMj4//5X/1sZ39vUc5N7rmXoNhURsbGtc7SH770j43/7//qfyPiN5z8h41/5iR+1ZW+avbu2022nNplNPtHnWTV6Hy4iomh0v5m0uj4WJn+fjfVYMcr174uBn/cj0W2ty/QxpuiYdmadU+l9z4iILNVrgWhNkrnG3N5vYhKcP81K3W2ntonug/adqJkvW5NnRkTs7z+W8dMjPUdcOGd3LmU06dsBsi9e3R6oq90PV0/vn+tDXpJbz5l82a3F+/Zy3D5ya+7PLXcS027szUXPXrjJX9bVqjN7h66yetb2YXLW2swpldlfWq10vT860uPkybHfr71187aML1u9pnpw71DGE3Otdw70+SMi8lznCvPlfRlvCj2GjK/qvbDDmV8LtIWehx490Xnj9UbnKR//Ib023L5+Rcarmb7W9/9o+rh7x9fqvH611HlsWehcOSJisqHfExf+9XEv/gclAAAAAAAAAAAAAAAAAGeGD5QAAAAAAAAAAAAAAAAAnBk+UAIAAAAAAAAAAAAAAABwZvhACQAAAAAAAAAAAAAAAMCZ4QMlAAAAAAAAAAAAAAAAAGcm/6A/TJNWx7NExzsdj4iIRP+t6zr9c/MdVZbq37eNjnfhryk15wp3TGvuITdlm3uOiDC3ba82DVOGqXN3/oiIxl2XOabpdDtIzNUm5kS2uiOizTMZL3Nd9k4sZHzZ6fh0NbVlH91+rMu4fskes46q1vQN1xha/61iXup4as71+MGBjB8/eSLjv/vbfyTj/+XP/7/sNX3vB2/K+HShn21n2m20+ua6trZlh6vbytTtUA+zXaP7TJb2jJ31h+vjy1bfd7Vc6bKLRsZPTu7ZSyqHWzL+5KZuB9VS38Pg/ETGx9nAlv366+/K+K0/fkcf8Ge/YM/1UVssdZvLzFyz7Cp7rsPjUxmval1GkhYyPhmNZPzC1oaMX710w17TcGL6QWXGi9lSn8e1h8RPKoOBLrs140Jjcwg9Tja17k/vn0v3qaYxz8/M45mZF8OMF2nP9+duOMwLc39mfkiaoYxnhbnWiJg3el5+5dVX7THryI25LrfpmWIjM89jUOpn+8ylCzL+6ZdelPHpYz331gv9LCIidre2ZXxrZ0fGr16/JuOFGVterl+zZVcrPU5Ncn2uoRmnBm7MCT92npo5c3lo1iGLuYy3ZjzqKjOHJ305h+5PiWtsZgxp7NrBj52tqY++HH5dDUwuVi/0GJ32zCm5GY+LXNf94cEjGd+9oPtympoBo/D5YWH6h82LE30PF3bOy/h8dteWXa/0WNJUem5sG92u5kt9nr4thTBttG10nzLDbWxv6HFkOdf3MKv8+On2OYpct0GzxeJOE3nWM793Zix5yv5JWmdy38qMVz7riCjNXlWRm3E90c98Y6yf32Si+15u9i0iIhqTC9W1Pub4cF/Gk0zXh9uviYhIzfjl2lub6HpKXWLTM3a6vDs6d00uL/2Q+3a25/tDykLnuJMdM1aUek/hyo0rtujRpi7jyIw76yzLdD9oMj0mpeaZv3+Mfr6124c0fbxybdGFN/Q9RESkJnV06Vs90/Ets6f4zF/6rC17fv8t/YfSjAsv6TX0uW3ddmNf50EREekT0/9P9Q0eNYcyXoxNfm32z7pa59cR4RdVnR6jVytdxu2pyZfv6H2OiIjBaCzjh/cf2GPW0Q297RYPDu/L+NG7fv/80cahjN+9dUvGJ6Xey9m+sCnjbav75cljn5empv/VtW4jj2/rvcN////wb8n43/xb/2Nb9l/6mT8v45cv6Px6udKDi8vnqp49wLrS/ez0UO/l1lt6Dhpu7ch4Ptfjdt9eWHtq9pFGuhG2A31/g9aNCT4fX9R6T3S+1GPketPjVRtu/O5ZPJn51+1fZCYXc1sITaevKTN5d0TE0b4eY2anJ7qMlX6GiVlruXfEEf4dmXtHXJn93cTkpn1LsLbTf3VZq9u3aU2d970Lduwx7lrdtwKmadp3cxHRmedUucRtTTWteQfg+kbh66Q153ryRL+7rlrdB04Xemx99fWbMn5y6sfWuwfHMj41edWDR/pau1r3+/uzI1v285/7tIyf3NFtZDTS9XFg6mNW+5w4SXR+eGmo7/uKWTzMb+n3mBuDyzLu3rlGRFRmXV8vddz1pZnZz9vb2LVlDyd6Ht82a+g/yVO2XQUAAAAAAAAAAAAAAADgacIHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADOTP5Bf5hmiYwnoeORdP5crY63oY/pzAFJ9+Guqev8NbWtPsZdU5KYa0pM2eae3z9Il5El+vux1txfZupp1VN01+pjXFWluf5D22Xm/KbcRv8+ImLa6CveKvXJPnNBn+fxk9sy/vq+b/bPXr8m4zc+dd0es44WqWlTjWlTSU8rafXffvsPX5HxX/2Vb8n4y6+8LuMP3tPP6c6je/aSmnQk40mu21VzouujHOu2kFSNLTvb0se0ptMsl5WMV50uo0wKW3aYy6qqWsazRp8ryfQ9NLHU5z+e2ktK66GMnzuvO+aNZz8t49cubMn4nTsntuz3Xr8r47/zS78j4//m/+7n7Lk+coV+VotKP5PjE18vT44OZXxV6wbUmfmvNP3p2StXZPzSuR17TXef6P68f6TvYzSayPjWzp6M1/XMlp2letxz898q0f1pafpZ0zNeuDLc9+GJmfebVpfRtvqa6qW/prZxuZCOF8NSxm1emPr5vUv12POkpz2vo9Y8jy41ddKTf5pqt7lsYcoY5HquKUyavjXW82hExHJ3V8Z3L+px/fzlSzJ+/cJlGf/cSy/4sk+PZbyrjmQ8WekbrFPdN1aruS37tNbH3H+s58C3C/3wHh3qMua1/v3Cd9doEvNH16TMeG6aQZjlTET4dYVZfq21lcnFskSPSW5ejIjIzTiWmjWgXSubR5ubHM3lme+Xocfdk5lui7OlbtMXz23L+OPHPic/OTqVcTdOJrm+v/ncrEX8lBJJmOdqOkhq5j/3TKtwexA9Y7o5V5ix25Xt9i2ynn9elqQ6l0ztgLGeisFAxptKP+++jZai0PU7znVFDkYmP8vN8xuZtVbp13N1o+eaxOR006me/wpTxrQnp6ob3S83t3Xfn0w29IlMlVeV31OoXf5pxuFsYNqzyetdH2tXpt1ERGJuZLKhc6TU9MtBqevvS1/+si377Vt3ZPzX//nv2WPWVTZw+a+ON64B9RyTmr3Auta/ryqzjzs0k69eckdERNuacd2slYcXdT/4oZ98Vsarx77wcaFz7Esv6H3Lk2Zfxg8O9DUNU58XNxd031mVZpx8qPeF0m29Tk9nuo+3C732jIjIKt0O2k4f43KnbqrvrTZ7nxERw0zvV23mZpxcUy+/8t/K+Osvf0fGb73uc8DBQs9bT+6/J+OZmTNPp7re50vdNxYzP4Z0pjvlZh5PM30P77zxfRn/j/79f9eW/Sv/9X8u48OxbjvHC903OjPPLUx9R0QcmVxhcaj3TEdbus/kQ92Pd/d2ZHx4Te8NRkQU+XMyfuGrX5PxL3xen2tuXl0uevbOE7PuzkybWmeutdt3nz3ncn+zKZor3bTRpDFrp8Iv6E6nev/n6MF9Gc8+8xkZr821uj3T9y9Mh12uHmZ9m5p3ou4d8fvHmCLMuyL3LtjdXuIWjX1bk2ZN1ZpjOvMH12bdeSIiwr4Df7rWsVXoB1LVOu8oU5/z3Lp9S8a/8e3vyvjKVPCi0m3nm998VcaPzR5SRMTm7o6Mj3f13u/J6ULG50u9h5SYd4wREeMtPUc82tdlPAmzt5zqPpYP/X2/e6Ln2Dw5L+MXLuh3V2mue8fhTf1ufLRhPnqIiG6yI+MXL+qcY1Cad397ut1c3dHPNCJisNDnGg7H9pg+/A9KAAAAAAAAAAAAAAAAAM4MHygBAAAAAAAAAAAAAAAAODN8oAQAAAAAAAAAAAAAAADgzPCBEgAAAAAAAAAAAAAAAIAzwwdKAAAAAAAAAAAAAAAAAM5M/kF/mHWdjDeJ+capS/zJ3GdRuojIWn2ZrTsgWhltMn9JWarPlepTRRLm/szvzS28fy7zxy4x12SutTU3mHbmosJebqS5qdtWP7zU1Mcq07+vej6Ny4tSxq+fX8r4s8+OZPxysinju6OhLfvCF7+or+nijj1mHU2X+nnUpi1sLHXdRkT86q/8soz/O//efyzjVVyR8cnWroxfvvZZGd++ccNe0/HjAxlfLCoZL9JGxkejsYwfTB/aspfVTMafPNn/UGV3+lKjPfH9dW9yWcYPl0cy3qR6TBgMdN+YV3MZ3xzq30dE/JW//D+S8Ree+4yML2f6xvdPdP1NNu/bsu++NZXxtx8e2mPWVT5w84BuP1W7suc6nur2UFWm/08mMr63p+P1SA/g94/8s5otnsh4mpo5YqXvLy10my7MeSIiMnNMYyaiNHSdt42eF5Oup2yTI7ljqkb3j7bR17SsdD215ln3lZ2Vug1ubmzrMkwOVpt7iIjY2dbzwMZYz/vryj3xttX1nvakxJnJDxOT61ULPU5Pjw9lfPvCBRnPz+lnERExXy1kvDBJ8Wap+9hkR+db42LHll3rYT2qI9MvFzreZLr+5iu/GOgyfX+funpOxj/+jI4/PNHP6Adv3ZHx9+4f22uaLvX9LWqzFjD9ssvMfbe1LdsuH8x4tM5GQz2fJWa92tR+DJ2YOXM6PTXn0s+kLAYyvrGhc66T0xN7TYmZAxMz+MyXuo3u7Orx/uL5PVv2zOQcnZmHEjMvNq1uV2nPHFuaNWOR6LIzs/Jtaz1vDcwzWpp8ICKiM3XeNrrs2pRdm/rw+x8RYcrI8qfr36StzOCzMnXihreIiM6sw5KxrpMuK3QZI73f0DQml0z95o/LS+cneo15cKT7/sHBoYy3Zr8mImI00ffxxa99TcY3JzsynphnNJ/5cer+Pb2+bsyW5O55XfZkrNfvZWmekeljERGpmQMTk7clZn8uyfU9PP/ix23Zf/Wv/A9kvEv8XtW6qnOz32Hy4r6t4sTlN2ZaXi3MmGjKyCp9rblZ30ZE1Fs6L95+5lkZv/xpPWfObmzIeDPRc3JExHipx6T6SI8Xy0OTD7Q7Mt5t6f4UEbE11GU0Zq3c5LqeYqrXHHWlf591Ps8scv1gNwp9remJ7psDs5Uybf0cmw/0fkZWmPteU7/2D/9TGd83c01l1jUREe0TnQO2tRtb9Xg8nep5cbYwex098/5oqOeC7YnZ0yz1Osztp3S1n99ff1vvh9XtuzKemcEw7XQZTU8+V7v9MzMFTqf6D3MzZ94Ps17N3rPXlOQvy/iFd3U+8Be/9u/IeDvRD/zR1O+Jnpi+PCqevjk2bc3awuRiSc9aoTF/a807XzNlRmvWWp3bC1z5d06bW2bte1/3m2pl3vuU+tnOe/Yn80LXbWLaj4sXpmv2TClRmz0V+5rd/L4zCY97b52YZxcR0ZpjWjMvN6bduDbYuOQsevbbBz2VuIbMNqRd/x0c6Hk0IuK3f+3XZPwXf+sPZfzKM1dlfHaq+8A7t/T+5PGR768Xz+lcNh18S8arxaGMb3U6v71y1a+dym2993O4uyPjq1aPLW2i9+3q6NkbnetcL8103T54osuY3dL5arvQdT5evWavKRvpvapLNy7J+OWrWzL+pc++KOOHjx/ZsjdnuuxmpO/7T/J07VYBAAAAAAAAAAAAAAAAeKrwgRIAAAAAAAAAAAAAAACAM8MHSgAAAAAAAAAAAAAAAADODB8oAQAAAAAAAAAAAAAAADgzfKAEAAAAAAAAAAAAAAAA4MzkH/SHWZHpE9TmG6fEf/tUuzKidX/Q4U7/Pk0S83t/TabkKFL9l6bV5+ryRl9TY24iIjpzvXmnf992uoxI9TW15lojIppOF9KZ+Mo873qlrykZ6vMM3EONiM1Gn+uGue2dk4GMT6OQ8ctXNm3Z58/p67198kQfsHvRnuuj1Iz1fVS3Hsn4rW//nj3Xt//wH8n4xYufkfErz3xaxy9dlvG6ncp4mq7sNV3cOi/j04OZjOemHz883pfxN97+gS375OhAxmdzXUaW6oY7W5Uyvru7a8t+6dlLMv7u22/J+Ht335PxqtqW8c3NGzK+savLjYg4/8yP6z+k+hk9uvN9HX+in93k/DVb9sYzL8p4ftEfs66qpZ4Z80K3k8nEj2NbE12XDx/qcWxl5q3j06WMbx/p33/hxRfsNb11ay7ji+VCxjfGQxlvEt3PqsRMEBHRmPkpS3UKVBZ6TunMvLVIKlt2XevrrU3+sjLz32Kux8OVaTej0che02g0lvGtHT32jDb0XHp6osfu3OSLERG7u1sy/uwNPfb894V53L2STueGy07Xb9voeT/P9e+bxl9UWZqcP9XtbXNklhOmjHHocS0iYm6WJrOlboddafpSpceWrmesSDvdl1edHr8u7uhz7e7o/rcz0jljYvKgiIj3Hum+30718166x2qehWlm75dh6irrO2hNtWZNlYVZM2Z9S2S9FhoM9XPPUzOnmAVxken5r8h8XlwUun+EGRcWU32uMtV988b1Z23ZDx4+kPGq1XW7Mo20NGNV1zOAZmaJW5j45kTPf24NXTc6vj3ya+vFSo890Zp53DwjN5OmYRpzRCRmTyEx6/p1VZnL7czU0aV+TFqZNeDS7FUtzQaMW8/NazOnZH6eW610Wzg+0WvMRwd6vfpH3/iejL/79k1b9ide0rn6pz//ZX2AqdrFXK81DvbNnklEvHfrHRlfrfTce7Sv89JLly7I+ObOnoxnuX8WnckVajNAF6numVmi44PM58RXzuuc4Gtf+Jw9Zm11uk13Jl/Iev+drO6zw0bPy6tEP6t2qMf7y1f1XH1c6v4XEXH90y/J+PYndRtdbev7O1zovpybNWlExDjX7Xr6WPfBhRnvk+xExtvUzw+dmQM3G50XL03u1Jg8aDPXew3Jtp/3i3v6mqq7eiyuE112vW/G+gc6B4uIKGdmT/Ghrtt1VT0+lPEvffzjMn7z9j17rnYw0X/odD3u39b9bP9IjyE/9ed/SMZv33ndXtNr39F7uRcmeg90t9T7EyeP9PqsNvltRESYdzXjoW63WWVyCPd+xS8FourMGNnpMa+u9X2UmXmXYMpNMr+2bit9wdWpbgdHx/r3mxsbMj5Ieub3zMwNJudfZ61ZO1VmTdB7hyZnbs2+pVt3JJnZq1rp+SGxmxQRL1zT+VDzYEfGH7x3U8avf1aPYVnu+2xnNgkGmZ47lpW+v7bS7S0z9RQRYbpgmC0p++zCzPttra+p6dkP60zi7/ZSuta8M7epha+PJNEHNSYXWVtmDO3MdwH7d/VeSkREYdYX05men06WOq/a2tLP/Muf0jnmodlrjIg4OtXvGXfMGNLWus9MruvnapZzERHx6lyvM98w70XGJkfpSr1GKDZ0/UVENMf6PurQxxwem+8qSt0H6lZfU1b7ib+d6rVAfO9dGb76rs53Xr+p2+DnTn07+KFdPS+nZk/vY3/+r9tzRfA/KAEAAAAAAAAAAAAAAAA4Q3ygBAAAAAAAAAAAAAAAAODM8IESAAAAAAAAAAAAAAAAgDPDB0oAAAAAAAAAAAAAAAAAzgwfKAEAAAAAAAAAAAAAAAA4M/kH/eFoqH+arPTvmy6z5+q6WsfrTsbTrjW/1+dPE/3dVZvo80RE5Jm+3iT0MWmS6GuKUp+n8GU3Jt51uowsdLxtddz8/H2pqdsoZHysby8ac57G3PfWQJ8/ImLc6GO282MZz69vyvju3jMyfu3CdVv2G48fy/j+40f6gGcu2nN9lNpH+j7yWy/L+Hf/i39gzzUbbcn4M1/9lIyXJ0MZv/XWuzKejisZb10Hj4hH792T8eMnuo3U1VTGD090/OT41Jb94MkDGW8WuqO99NwVGd+69oKMHz/U1xQRcXCky0iaXRmfZLovFaPLMp5ubst4Obhkr+mt109kfGs4kPHTRsfbzQu67OF5W/Zk66GMp7ORPWZdDYf6mptOzxDjge6XERHXrug+mIeu++VK97WDx/rZXj83l/GL53Q7jIh47XXdFqul/n15bkPGpwvdx9u6Z6JLdW5RNbpuE5NDJGbeLws/n0WnkyR3rrrWuUi5qZ93s6XPs7kxsZd0bk/PW6tWP6MsN3OyyZsmI93+IiIu7uj+vDHRY8+66jrdpkzTidA/j4gI0wyjNm0kTXW8MM8jS3T7LLOePmNy+MzcyOZYl1FVuu2M07Etugw9HrWV7kuHB3rOXC10PDPnj/DPb5jpPCUxc+wg0fWU7+l6+viNPXtNs5nOd07n+ppczp+YJV9i2lNERG7WFUnW06DXVNvph+vWWmXul8hpqv+WmvrKB7rsNDHPxIwvw9znNmWu25Zb317cOSfjJwd63n90fGDLTjtddhG6jaam/QzMXJrYlXJEYsrIzRri+p6ea+ZmID5ZmvFi5df1tTlXWuhn0Ta6HXQmd8nMvkhERJHpOuxbU62lga6rtNMbEXnu/81dY8bjWaPnlN2B7scbO3q/4dJ1vaYa9ux11Es9P7l2e2Fb54C33rsj4z944x1b9t45Pd/MT93aV/exxXwm46fHegyJiJgv9fphfqqPqZe6jNnpoYxfunpVxovesVM/79FIr5kS83vXj6Py86XLdy6f12vitWbmM5drFj3/TDbr9BpmOddt9Oq2zin/+v/k35Txa5/U1/of/Kf/gb2m61/TF1xc1ePI/lTPNaNNPY5MTY4SEVGvdL8ZZPq+t7NDGZ+H7mfTuc93Bkt9XRcu6f7RLfR48fFd3QeL83q9f+/bZoMgIvYf35LxZF/PvUd3zXgbuv7KEz/HLo91e57prde1tTXUezbPXtBj6Oc+8yV7rsmGHq/ygc4zV8e6vf1nf/vvyPgnPvM1Gf/8lz9rr+nOa/+ejFdTPaeMCj3HntR6zGlW5iVYRAwT3QcujXVeY5bQcW5b943MvG+KiHhyoq/3ca3704FZAy1MHluaJWNt1hoREYvC7MPVZs/bxLtG99eiZzujde/sUrOGXmOt2x8x7856XwK2Zl/DnKs1a8zUvF/tFvpalz3vWHYmek7JTdOaHej9ka56Tp+nZzNuuTB/G5o94dasS028Z9kWuVn7VuZ5V6bppm6fw6y568qvrdvE7JHbPSOzL2LWX3VPhXSNuQ/zXn5dFeY9+PFc1+1bN3VeExExNi/hr1wy++qFzrf+nJkz20bPD9959VV7Tbl55l+4bN4BHujxuxqZ3HCyb8su57rPnK70NTW7en6fbOjONEt9/pns6PjK7AEuBvrZVWZ8bubmPd6xn/dXJu+O44UMH3S6nt429ZofPLFlTx7od/yXdnxO0If/QQkAAAAAAAAAAAAAAADAmeEDJQAAAAAAAAAAAAAAAABnhg+UAAAAAAAAAAAAAAAAAJwZPlACAAAAAAAAAAAAAAAAcGb4QAkAAAAAAAAAAAAAAADAmck/6A+ztJXxwUSfoln5b5/yJJHxapHJ+P+bnf8Ktm3L7/u+/0wr7rz3yefmfDt3A91Ag43EhiiREEBCcpEWKclSlU2VSmWXrRezrFc/ufwol+3yg1SyQUogCDC0XSRAkAgNdEKne/vmfPI5O++VZ/LDJd9+v4V7u2q713F9P4//veYcc445wn+MOc9JSl1GE7WMt6kuO9e3EBERWdvqsjN9rYmpj6bQ54nS10eW6GNq83QWjf5DW+n6i6S0ZXe7PRnvFwMZH+7q+ujW+lkszuYy3un5h7Hb0fUxaSoZf+mevr+incr4/Xd/ZMu+dfuWjN/ZP5TxX/1LX7Hn+klaa05l/OVb92T89fwRe67p+iUZ744vyPhiqutqvtDPabOv23PSmvYcEWmr28+TV5/Q58p0Gbnr363vr2++d1PG14e6z9x67zUZf/cH35Xx+cz316kZV6+vPy/jm5cel/Fka1vGn3z8aRnffuRRe031mY7n0dG/n+hncetIt5vyeGLLzu7rwt95/xV7zKpaVHqsrMzY6ua5iIhOV9f9o4/pfj6e6LHy/Ru3Zfzo7ETGm2Rsr2lze1PG758eyHhr5ve805XxRal/HxFR13q86A31/NfUZh43Q1JZ+j7r0qzSPNdB3pfx4Zrus6kZ26paz5cREQszl4bJzcKMt72ufhbDgb6HiIit4bqM93PdZldWa+qqMbmkaVIREY05VVnqeq9b097SQobni4WMzyrfbgvzbNcHOt7JzHg/ncl4P9PniYjorG/JeFXq+yhLXcbsROdBnWzJw8hNfzU5QTUdyXiT6bpdtLrfb+/oZxcRsbs7lPE7J8cyPtNTSSSJ7vdp6nMtNya01ZI6XFWNfoZZodtinvt6yVLd3lOz0HR1PBjqZ+vmoE7h20m/p69pa02PuRe3tmT8gxvvyvj7b71py+4NdP4bC90Y3ebDWqafUWrygYiIItfHbK3tyvggN3sQZs6szDh5Nl6Sm6amf5h5w029aaLvrVjSZzup2SPIlvTzFVS5uTR0ZTVmHyciojLj98KUka+vyfglk0N/5nOflvH1vq/zwuRVmdmXuWe6wL37Ooc+MXl9RMS9fZ3Dv/3WBzJ+eU/nn5MzvW47OfZrgXKu7/t0pI+5P7kv46Mjvf7bvaT3LJ558jl7TRcu6DGyrfWzWJj+l4cen9tmSX81nf/Slr6mVdY2upHWqcn3Fmbgi4i81cdcMvPyL3z2mox/5cu6z7670O3tS7/2pL2mB82RjB+e6Hmu/6i+pv66qQ+zLoyIWJzpcX3Y0XPv+kC33bNC9+XkUOfRERFPXNXP6TGTt372WX1/j3f1vuHrN/QY9p3X/H5tdaCfX2rqKU71eNjt6jmgXbJvvzB5TS/z+dkq+sIvfFXGv/gzX5bxFz71WXuuvNiR8cVUt+lyouvqypOflPF3fvR1Gf/2H+t4REQ102WP5+aaOno9t5jrvtGaOTwiTJYSsdbofvnklt43eXJ3S19T4tfQ793Wa+VkqufMutRjamruoi3MfGZy8YiIrNDnSmt9rZOxXr/vZFdlvFmyrq8z/ZySVD+LVVaavc42zHvJJf8XRVvrtU1icuna7MEkHV3GdKKf4fGtG/aaLqzpdt3r6/Fi0dHr3tasoScTfQ8REfOJ2Rs1+6xtbd43mw2/pPF7brXZYG7NGrCu9ZhUm7VOazYa6yVjWJqatmaqqTbrdLf/UZs9mYiI1uxXJW4jfkW5V5m7l/Xez/70rj1XMjuW8bF573rrfd3PegvdLwcX9Bx051jnvRERnW19H8Vl835gyzSeoe7fvXhgy96d6dy3PzLvfNd1PU1zvd6fmb2UiIhyanLARNfHrDB7ho2+v8Z8BLJYX/JNR63rsByacXtwUcbfvaPbx0bp3+0cTXQ+/twzz9hjluF/UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC5yT/qDxfjQxnv9tdkfDAc+HNV+ruo00Ui40mq43mZmd/rctNOY68py/RBWV3JeFHo3+d9U7a5h4iIeauva57UMn5477aMv/P2OzJ+sdOxZT969YKMr1+9JuOTD+7L+P7JXMYHG/r8V7eettdU1Pr+3n/1fRm/N9e/H2zoh9Htb9iyZ4nuEmmnZ49ZRflgS8aPLz8n4/uP+74xDl1fg81HZPxTn7si49sbeqzo6G4caYztNZ0d7Mv41nBPxpNe15xJ33e3u27L/sRNXfbi9FjGv3Z4IuOdY31/3fyiLXsr35LxSaLju9eeMvHLuuxCP+vxTd2/IyJOju/I+H47k/G0nch4dnws48czXX8RERupHiOzzF/vqsrNHJSYqcPFIyKqUrfrxnTzoqvniEsXdTvZ29Hz+9q67zeN+R66ahYyvqhLfR5z42WpzxMR0RmY/p8VMpxnet4v21afZkkq1Zpj3Ln6XT3X9AY63jS6PsYz3c8iIsYT3Td7hW4H3Z6rJ33fg8HQlr2+qdtIt+vG6NXUJPr5uc/+az/FWokpw/WByhQyr6YyXpa6j0VEdDv62fZdH290n0kq3S9zOydHJI1OCgZmvZGYSm9Geh4oWl0fERG1GYcPTvW8P53pOs87+jx908e213Qfi4hYH7hcQf8+dSm/e9xu0RQRbeg2WJn4KisK3eaSTLe3jpkXIyI6HX2u1qzn8lw/rMKsz5LQfbxn8uiIiL7ps4U5V1vq/tE3bXd3w6+DBkO93mqGul27+8sandNF5QfQjukItRnf9g9HMp4OzNpQD21xZXfXXlNr1u9myRFnqZ6v60rfQ5H6PpuYeaC3ZC9gFY3GOk/JzKKxWNJGMpMvn5kx4aTSdZWZPY0r13WuXGR+nKym+tneu3NTxr/1zT+X8ZPRqYwnJr+NiOj0dA7f7+t+fHyoy/jRyy/J+HTh59iq0h3q9u0DGb93U+/xnBzpaxp/93UZ//KXfb7ziz//Jf2HRLfBItVjTtdUeWLWMxERrenjXTNnrLJZo6+558b71PfZ9W1dmV994adlfPdU95vJ+3rvsLpyLOObZt0bEfGN7+tzrb+o545qpueaJNf3Nuj5hf3mRT0mrQ/0uXY29Tpss9ZzTdesJSMiLj+l+/PmXN/ftTW9FxcdXca3/vCejM/e9+2je2r2FMyQ2xvpsmd3dR7klngREe3ErI/qh6vP/if/8X8p43smt6mWtJGzM73Wy1xF9vQ88MXPPSPjl9b1WPytf/4/2WtqpmZNnOtz1bW+1tSMXx0Tj4gYmvteMznunnmvdNHscx4nfs9rs9DXNR/qfOfwRD+LyuxTxUJfU9r4vDQNfUwz1nu85UzP7/2OHu96S/7LhSLXf0w/+mvQlbGY6vGqNLmH2c6MiIik1W2oMfupeW5e2LS6fkuT2xze1/NoREQ8pt+BXL2oc++TuX6GzUL3/cy8a46IyBIz35h3wbVZ5o2nes+mtyTfcX2tqc3+1sI8WLOHVZp9w2zJWtK9M3BTo727VrebujUVGL5u22JJg15BtRm/e6nOz779zZftuX70ml4D3j46kvHyTM9zr731roxv7er9pcWSdeyTl/V9/NzeJRlvap1Lphce1WV39bvmiIh4W69Xe5npf91jGT9pdG49NO+nIiJOEp1HJ4V53vt6gF6UZl/t2IxTmf+GYV6Y5zTUfeZwzXy7MdT7/PeWrEmnt/W4PXv8qj1mGf4HJQAAAAAAAAAAAAAAAADnhg+UAAAAAAAAAAAAAAAAAJwbPlACAAAAAAAAAAAAAAAAcG74QAkAAAAAAAAAAAAAAADAueEDJQAAAAAAAAAAAAAAAADnJv+oP7xz45aMlycHMr44fWDP9eKnf07GhzvXZfxsmsh4kWUy3patjDfzhb2mpjOX8U6rj7k0HOj4xTUZT1L/Ldi8rmT8ZLwv42//4P8j4zf/8F/J+EvjU1v244M9GR9cfkLG37rxgYxXdU/Gn/j8V2T86n/+X9lr2hzqa5plhYwnmS67TTZ1AYX+fUREJ+nI+BVzTauq09V9o7e9I+Nrz+rnHRFx60C3z4Mj025v3JPxJ/Z0X1pvSxnf3V6319T2tmT8sGpkfDHT/Xua6rHitT/7hi376GQq45tbevx69Bf+UxkvzvTYOTob2rKLsX6uozN9393EjDuNLuPo7kjGy6OxvaZqquv27ETPAYO2lvE09Dg/OZnZsmOg206efOSpbWVkmb7/stL9LM91W4iIyDv6XIuFbu91peNra30Zf+6ZZ2W8zf08dzjTbWiR67Ybhb6mTqrvezHz7aQ76Mp4luhz5R3dfppW/76uzT1ERLj23ui2a7pBlLOJ/oOpj/nU/D4iotXPqcl0fNDVc+mly5dkfGvNj91lpctoZ6Y+VpSZOqJxTcE814iIxIzTmenHba3bVNPqi0rMeNiWvs8kPZ1vFbk+19Ghns8Kk/t2ezpXjog4Hel5qDLjVJ7oc21eeEwXMDu2ZU9mJzLemLI7oeupbfWYE62uv44ZiyIicpv76nPVqZ4zGjM8512d90ZEpLkpu6PLWGXrW3ocqyqTRxR+PnOPq5Pruux2dHtIzTPsmGfeL3xuU7R68JmN9dx7ZnLvPNU53fXLG75sk790M51D5GbeKmd6nTA60WNCRERrtjKyjskVKnOtPZ0XF61+FnlfxyMiWlMfbqy/sKnrdnNDx4vUt4Oq1PND1l0yCa0gu2Oz0Pe38ENoFO5vjT7X3YnuS1Whc5uj40MZ39nwewcLM+6cnOq9nyTR/bLf1e0wS/y6ba2rx6NLO9sy/tY7b8v4t779LRm/c++uLbs1ydB8rueUowdHMj6a6rV4bsbab37jm/aastDt4JOfeUHGL1/YlfHU7CEl5llHRDSNvu+56cerzK1X+2u6A87m/h4PRnoNc3Oi9zSnje4HH7x8LOOHd3SbvlHrfc6IiPXHHpXxatesGRszb431PmRu9jMjIrYGuoy+iYeZrtfNM2q3fBudpjovvjPS1zsIXU+//3t6b+3b/+SOLrjxuWlr9sNMGhT1TM+99Uy3wdwu5iLqqf5bY/bzV9WlTb0nXJb6/tLa58R9s9ZLzJqx7Zk6NHsXTzyi13Of+swX7DX9i3+i35cUZq1cz00fMPs4vSVrhJ4po2fqIy30vHg41/P4KPP9NTPbyFmtx0i3R97O9DVlYTZAWt/+u+aQyUI/79TU+fpAv3+bm7wwIqJuzZ6oKWOVjSo9/y2mejy8+Z6fz65f1XlMf6jH9Swxe1JmP3Nu5urDB/4d8buvvyLj1596UsY3u/rdS2veB2WV3xvNS90PykbnmqMHum9OR3o/7Pplvzc6OtD7cd0tvc+apfoZVaZJu727MH0jIqKudactXT83k2+T6/OYpfi/uSz9x+bhWsbG/uGZjE97ur/ev+f7xvG+7k/zk2P9+1O9im4TPQ8cnZg1o3lnEBFRHup3vu/09bm2HtV7Qt1H9XvoQWL2UiNiu6Pr9sLUrKFL3f9q8w3IdKT7fUREmHF12t+S8U6tE/Jupe+hOdP9dV74axqeHsv4eKjLyGY6T98Y6ufdO9HPOiIi39NJxzM/+7w9Zhn+ByUAAAAAAAAAAAAAAAAA54YPlAAAAAAAAAAAAAAAAACcGz5QAgAAAAAAAAAAAAAAAHBu+EAJAAAAAAAAAAAAAAAAwLnhAyUAAAAAAAAAAAAAAAAA5yb/qD/cefxRGX/tT/dl/Nu/8zv+ZLffkuEXf+Fvy/juI0/L+NlxJeNZksh4b8PfbpovZPz6Rk/Gr+wNZHzNlJGGvqaIiGml/3ayf6B/f3hbxrfXOzLeTYa27NHxRMa/+fLXZPypp39BxpO8L+NPXN+R8dtHb9tryvpXZLy4+LyMr0/0PWS5ro9oG1t2mhf6XKmOr6pOryvjSdHK+O2b9+257v+wlPGLT+h+eTTR7fn49fdkfG0ylvFf/nd+1l7Tld2LMj45Gemyp7p/v/OaHov+1df+1JY9TfWYMBjdk/HHvvjLMr69rutvOp/asud39HPK80zGM9Mv264eO7e3t/V5trbsNdXdyzKeTGYyXjRzGb91U48JD1p9rRERTedExwtd9irLcv29cF7pcayq/DiWpGYO7Jp2kuk2PT7TY2u70P2sHft5rmj0M8k75vkW+lxNrX/e6ZrxPiIWc11XmRkPq4kuJMv1uDoc6nhExMT0gzDPqDXzU6/Q9zdf6PrrZr4+0kznKWvDDRm/ePGqjK+vbcl4seRZlJWu8zp8e15F+i4iWvuHJedK9R8XeuqN+Vz//uT0VMbXe/p5tEv+jUK/1TlPWZv+Wulxfbijc8DR1M9zi4U+V1nr+57NzmS8a9pn6ptnVI2+rmFP5/x90/WbVtftvNRjy5l51hERZWPGikI/oyZ0GXlH/35za92Wvaj0nFFnfl5eVc89pXOuxsxNXTNfRkSkiR5DC7PuaBvddotMl9FNdfvZGuq5OiKinOpc+vRYl7G2pdt0nur47OzYlp02evzOEzP3mvubmvVDuHEnIgZ93X43tvV8dvdA59GNycGaRseLjh8/9y7qca+tdX08+aRumxf3dH7dKXRuHxFRpabdZj4/W0UuI3BTqeliERGxMHnj+FQPvFWj919u3T2WcbeXsr3p85rB5pqMP/HcU/r3e5dk/LVbRzJev/yKLfvq3paM725tyvj7t96R8Uml58vX3nrDlr2/r9dtaej5qcj1WNskup0P9PAV9+7pciMi/vnv/5mM//BVvS792S9+Uca/8KlnZXzY9WNFGvo+XF64ytq5HmPKWs+xZrs2IiKOznQ++8//6Hsyvmh1PY739XmeftystS763DR2H5fhttY5a5bqMmZmH2Re+33qReg5sMn02JOYuWYw0PFJ+DnlpNKd6rnLX5HxV97Uz+L4z/T9nY71Hl2c+Xk/N3/qmfvOzWOtZyaXW7Lvm6S68Gr2cOXFuck/m7m+j3rJJJu3Zs8m0ZNvbdYptdkDaUydX3laj7kREa3pTi4PS8yA1DU51bDn1wjr5phioPvZpNK5yKmZY9vUJDXh88NpRz8/s5yJ1GRbrmQ35nz4R7MmNn3/7ns3ZLxc6N9nSxb2va65wcY/v1U1N++87HuOD3TuFhGRVXov97lP6PWI27ecHun3kunCrLUWes8mIuKt1/X8vm72WXuffETGZ6e6PhZm/RcRUbS6bptMzwXzybGMT850GcfFri+7r/tsbvYnwuyz1guzXzTXOUdt8uiIiMptuJvctDYboK2ZA5LcJ4Cp2cPOTb68qlp3vZluz7XJGSMimpkeQ9vQ52rd+8TCjIcd/TzcfldExP0D3T7/8E293roy1n2pOtbjVGL6ZERE1tf7LF3znrZ+T8+xnQt6rOibMTUiYtOMq4sNva6PGzp/GY9M+9jUz6KemvNHxPZA97PNA9Mvt/Q3PMX6nozv9H3Zn/rip2X88U99yh6zDP+DEgAAAAAAAAAAAAAAAIBzwwdKAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3PCBEgAAAAAAAAAAAAAAAIBzk3/UH65deUzGv/g3n5Lxi9vr9lyvf+23Zbz73e/I+LP5lowPB/ryL10fyPj2sLbX1FvvyPjVnQsyniYLGR8tEhnP2tKWPRy0Mj5ZZDJ+Mm1k/Or1J2T87Zv3bNlnJwcy/vhzvyLjT/3iX5PxnU1d57vDsYy/96d/Yq8pffpzOj7Uz6LNddnu67ss99/lpeaoauHbziq6d3cq49/73msy/u5rN+y5di98UsaHhW6fZa37Umfjiox/7rNXZbzur9lrOnKPI9XHzBrTX3Xzj+vbT9uyn9jY1EXPezL+wYP3ZLxI9Xk+v71jy86f1ceEqY+qo8ejyakec5Jcj1PZXLeniIik0OPwoqPjZ4uJjPcKXX+bWzoeEdEd6LHt5iuv22NW1aLU43rb6mcYme5/ERG1PlX0ikLGE9NOZq0u497pHRmvxjftNWVm2L24e1HGm8qMxaY+sp5vJ6WZl12dZ6lp07OZjKeJnx8y85w6HX29TePaQaXLNnPWsD+019S0uv9fuKifxcVL7hnp81fVkvmyo+uj6Dxc38t3Mt2m5o2uW1Pl//avMpqFrqvxaC7jN+/qCW1nU88bXdMGIyKyXI8VTaOf7bzS7fZkZPqMazwR0ZR6vhnP9dxx5/6JjD/S0/lAxw2QEZGY++t3dV0tSj1nlqYMM5pHteTfi5Sl/lvT6HGqO9B9v5ub+sj9eq2sde7U1v75raqf/pxeW6yv6ba+taXXFhERuekf5ULXy3yq+2xhzpPWul2t910Liqhmer01OtXx/YnuN6WJZz3fRotct8XcjJNR6nZ1NtLxnQuXbNkbwy39h46u2wuP6rVIYfrNycmpPr05f0TEYKjXQanJqS5s6Tl2fU332W2TN0VEVKZNLR6uKTbcKO2m0twlmRGRmoMWppCDUz0H/eDll2X8537q8zLeX7KO7a3r9pYN9H10t3S7/dKXdNnXL/u15OdefFHGi74u+9Of0/sAb76j11p/8Ad/bMtemO2wxOyTTSsdN1N1LEr9sGszV0dEjBc6T3n35gcyfnB0LOOXL+hc65ELW7bsPNNjRZ36sX5Vpa3Je8yzShK/Dd1pdFsszQgwjTN9Tcc6v7n5ns6XL6/7vHj/nt4r2zR7oO1uV8ZzM7plXd0OIyI6Q32uyHR9LHTKEe8d6DJOJz4vvvKUHnvevXNbxrvf1nnQlx97UsZf+R09XjRubo+IwrS1aqL7TZLptua2Uiqzb/DhMfpvvY7uyyvLpPG5Xan4MbQ1+6xJpSs4c3tb5rlGrn+/trlhr2lzR/f9eqzHinpuyjaXmphcKyIi7+p+Ocv1YHin1Hl6mD2hzpI9QLPNEocj/cDN8sT2ja5p/5PFko0Os9+Wm0Mqs9/Wqc38bvbIIiJys9+wbtYtq2xh1uRJqtvV049dt+d68P6rMt6UxzJ+7Ul9rv3335PxanRfxnc2zFwWEQc3ddnf/8ZLMv74oVkzPqLfWx+O9Po2ImJ3pseFfbPf8dLbb8p42uhxcmP7mi27GOzpP3T1GFaV+pqODo9lfDDQ4+Swt22vqcz0wNCaXL0y42TT6nGydRNQRLRm07Q17XxV9Qu9ztvs6pzxuceftef6w9//uoyvremcdX13S8bdK+3SzDW9rp/nJvNdGb856ev4Ld1f77/8toxf3vN7P099Sl/XINf3caWjx51koce1Yerfjb9k9tW2x/qYy/f0WHij0f3yxtmjMl51fJ5+weRC40zvZ6Rmz2RxX7/j+/K/87O27Oee1ONtFrod/EUesu0qAAAAAAAAAAAAAAAAAA8TPlACAAAAAAAAAAAAAAAAcG74QAkAAAAAAAAAAAAAAADAueEDJQAAAAAAAAAAAAAAAADnhg+UAAAAAAAAAAAAAAAAAJyb/KP+MGvWZfzs5ETGd7/8C/ZcX/3kczL+9m//loy/8s1/IONv3r4n4zvNvoxf3ivsNT31WX1Nb12+KOP9Vp+rSgcyPszmtuz9+4cy/qP39H3cufGmjO/19Pkf2XjElr2TbMj4r/3d/1rGd3/qF2X869/+uoy//+0/kvHPPvm0vaYi03Vb542M9zpr5ky6zltbckTkmQynXd92VlE/0f2ynr8r47svujqMqM90ndyrKhlvBnu6jK2+jA97uuzDB2N7TQ/aRMZ7rf7mcjbXbeHg6ANdwOSmLfvZF3Q7HD94T8bvHurfR6H75fWrn7Zlb67tyHhZLmR8dO9MxmfpTMaP7h/L+OG+bk8REYuR/tvpXD+/O2f6WheZ6ZmNvtaIiL/0oqnD9DV7zKrKUj2AV1kp42nivy/OcvM3M74VXd2fBm1XxsuOflZ3z3yfTfKhviTTl5PQY27T6nGnrE0/i4ii25HxblfXR57qazo91W1xtOS+B0OdO7mZqHb3V9YynqX6HhJfHRGh/5h1dEo4no5kPDdlV42fZdtMt6ki9DNaVa1pt415rvrXH0pNPbpkZbzQbeTe/rGMnz2mn3dZT+01VY2eM7Oubs/tQred0anOb9c3da4cETHs6L5/eqD72clU30fvgc6hB41uzxERPdM31tb09R6fncp4NdfjtgnH8ameFyMiHhzpMqZz18l1X8p6uu8tKj22RERU5m/Zsga9orbWdL30e7q95eHrZaOv6zIZ6jy3XNPze5bqfpOl+tlur+tyIyKySjeuttYP6717d2T86IGOr6W7tuzeQN93v6v7TWba1dGRzlk7AzePRmxfumKO0WuL7lBfU9noOp8tdN9sl/Sbup7oMqb6XFmj54BOVz/vnolHRERf31/9kP2TtMzMmm2h+0xi8raICLe8yM14X1Y6/tZbt2X8z7/zkoxfvvqovaZrj+txZ3db7ztdvqr7386Obv/v33jPlt2WukI6fV23ea7Hzhc/qderFy9csmUfHet1t+tNqfmDm/3KSufpSbKkzyQ6p0o7uk3dvHVDxl/63g9k/LGv/rIt2s2/I7PHssrWBiaPn5v9oiV5RGn+1jG5dxF6DJ2d6b3i0uSZ5ameyyIimrs6B72b6JzyQui+vHlZD8bz2qwFImJm5vFeouPVxFzrDZ2T3z/Va/SIiJO7Zl5+5W0Z/5XdvyzjV7Z1GZdM+nta+b3zfM08P7P+rBc63pq9g6T0/a+tzF5x4nOCVVQvdM5YNTpeL8l5mkb/rW1Nveeu85vfm7LNtlZERPRNk16YbcVZqst2Q/G09uu2sWkj1VS36TQxbcqMa9EsWb+f6gt+cKrrcGbuz1RHzGv9h2XbTo15t1O0+qinHnlCxi/sXJDx07Hfp56b3D6rH659p4iIidtbMM9k77JfO02Oddt6cKzfgeT39DMcHen5L5vpdW9u9pYjIuLogQyfvqbnmls39bW+faTnv6nJZSMirl7Vc39++TEZf9LMQUmq5/fLrkNFRGP2sY5merD689del/HjYz2+PP+IWYtsHdtrmje6rjrmvURm9gFqt923ZE2amfysNvPMqhqY98eZ2aT/1Jd+yp5r+Du/I+OzqW7rnYGpQ/NOtC31A8nNHllERJ6YfGugvy+4sKf7/smxzkuzasuWfTG7KuM/evVlGf9b/8mvy/j6nj7PG6/ovDci4u61x2V8+MqxjO8VZs/wVNdfeVmPnRvPPWmvaTbVc2B5rMeQ1swlaaVzs63NLVv244+Y61qYsf4v+KziIduuAgAAAAAAAAAAAAAAAPAw4QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOcm/6g/nJalPkHZkfFmtLDnmqXrMr7+iWdl/Ie/+9/K+PEdXUaxl8j4g3v+mm6fHMp49+oFGX/qoo6f3G1kfHN+25Z94fKGjO9kAxn/1HOXZLwoChm/2O3asl9/ayzjG5u6Drc29O//2l/+ZRm/eeGqjD/1yOP2mo5nxzJ+//BExutFLeNlpZ9Fkvv6aHN9TFlN7TGraKtXyXhaj2S8u3bZnmsyHsr45kA/21lH9+/pVPe/d17TfaO5uOWvKe/LeDLS9z2fTmT8tbfflfEvPKfPExHx/oOvy/gb3/uejL8835LxK/VTMj45fNOWPQzdL6PV17uY677RrXQfGI91Oz87mtlr6nf1NJImes7oZ62Mn7Q6Ppz472g/c0m3wSeGj9tjVlWV6LFnXuq6TxJfL/3+moxP5vpcvaQn48O+noMi1WV3dvVcFhGRNrqdzMf6mupSjxfVQs9Bpydntuyip+uj6On7HuipNC5e3JTxyakeXyIislS36zzT9VE0uvBZ6PpoKz0mNOHHsOFAj+nVTN/HYaX7ctvoeysKP8d2+rrO56Wvw1W0CN1fQ1dJtG7sjoho3TPU/czlNvtjPd5Pa32eNPNjSDXXc0Fyom+wWuhrOril5/fLl3Rfioi49sieLiPNZLw30DnHbKbHljz3fWNzqHOLeaX7X5bp9tw2us9M5zp+//jAXtN4NtdlpKZNNfq51rV+RrrV/Ntz6eedJKahr7ALl7ZkfD7X9TvcMPNfRKyZv9WNrs3CVrJu063J6ZIl67nBULfFNPS1PtbR88C6ifdSM+ZFxObujv5DouezttHn6l8w80Cu6ykiIu3oPrs21PN+ZvKXxZleHw275lkXvg8s5vpv/UzXx9pgS8anlW4HM5PLRUQUHZ1buPxvVdVmMk3NXNq0vn22ZuxLzRiamKH10OR6X/vav5bx0bGv889+4RkZ/5W//isyfn37oow/ck2vg1z7j4g4OjyWcdd2pqWuv+ef+4SMf+LFT9qy333npi7DPKPWpClmyWRzsKzQ+5UREWenen8pN2sBl0HceP+WjB8cnNqyC5OP7x/qfclVtjD5TbfVdZ/mPvtIzdiXmPG7axqESQOj2tfxsyO9xoyI2HvCjD25bj+n9/R9b/avyHiy0LlsRMRpRzfsbqbrMDF7o4u+LmMz9f1jelff3y1Tt12T8GSHel3x+FW9//+DO37vvB7p+mganSskCzMn1/qZzs3aOiIir3QZdf5w7RU3pi815nVJXfucJzHrzMSkbrXZ86sXZu000flZkvj1XMx0Ga0uwueGmR5bpmYtHhHRNeealea+zdoh7el22Jp2GxHRLHSl27dgrS7b1axrBdWSfY5qpiv90oZe01y7qPcBBmYtMFuyJ5qY+Scx65NVlmZ6vVMv9GA8nprGHhHrF3XuuP++fjfy1nv3ZXwr1fWYhq733vSOvaYrZu8kN+8la3NNg9uvyHj36pO27LrUa73JgR7XN9fMfuZU7ym8f8fv8zR7Oif4xvt6DnzlgwcyXpl3pd8/0XXeuAQpInoDvaf/yO7jMn7py5+R8ae+pOOdbbNvEBG9VNdHvSRPWUX9nttH0uPVJ1940Z7r6vXHZPydt/V7w6lZ81dTPbJn5juCCxt+v3b/5FjGTw7ek/G61uudeqTz7kL/PCIi+nM9ft2+p/vGP/+939InMuuWu/ePbNlFpfvZ8W0dd+vYeVePLXcSvWZ84vKuvabZRM8NoxNdH6kZaztmr290cteWnfX0uiKLH2+O5X9QAgAAAAAAAAAAAAAAAHBu+EAJAAAAAAAAAAAAAAAAwLnhAyUAAAAAAAAAAAAAAAAA54YPlAAAAAAAAAAAAAAAAACcGz5QAgAAAAAAAAAAAAAAAHBu8o/6w0VZyngvahlPk9ae6/hoJuM7Vy7KeDcfyvgnXtyT8Sz0+f/V91+11/Tu6V19TQcbMn6w96iM1/OBjK9VC1v2pc5jMn712gUZ70x1fRzeeSDjB/fftmWfnRzJ+Nd/8/+kr+lPPyPjT7z4KRl/9JHHZXz/rn5GERHd7csyvrOjn8Wtu/dk/P4DHZ/NRrbss5F+Tk2i23/86s/Yc/0kzeqxjJf7cxm/cfsDe6617pMy3s1039/r6/Mkkcj4tM1kfHbsv5+cDhsZ76/pIe3+K7oPVC//nozvXf6yLftwPJHx41aX3dvSY8LC3N7p5LYte2LadDU7kfHR2VTGk65+SGnW0/GqsNcUXd0vt3p6nMo6uo+1D85kvJxWtuhnr/2UjJ92PmGPWVWLmX5Wba3buulOERExnep+Pl/oeDnX41sn0Y20P9Rtusl8O0kaPV6cHRzIeFXrcXo802NbmBwlIqJJ9d9GZ7qMs0P9LAa9roynlb63iIi60c+v21+T8SrR48jp0amMJ6keP/t93f8iIhrzLO7eviHjRaHHhbY1jTDR1xQR0TF1mJv4qmp9iislie+wielnmelPlan3yVTPTbOZvtj1vq/z0ZmeU45PdX/t5/qZ140ecw4O79iy074e8zuh62PY1fVXTXWeOTrW9xARUR/rsqtSz1tJoe97bsaE44kevyYT/ewiIjo9PSbk5rk2mW4fTavHoqYyc0z4f8WSNQ/fv2/pbq7LeDPW7ao7MMlsRBR9/Tc3z6VmHkjMeF9Wuh2Olww8bpwedvV9t3NdxnBzR8bT2s+xba7LyIcuD9T3nZgy2sy3t7YyfzPPYmJyiNFUz/v33tZ5d73k33gVua7bzQ095m5evC7jPZPodSuTB0XEdKbH3LsHfsxdRY2ZM83wFmnrn0cTuv+1Lj8rdPuszLh+1Oh2+90fvmSvaf/emzL+yS/o9cvent4j6xSmnlKflyaNnm8O9nVOPJ3ruh2s6fXfV37+K7bsH/7oBzL+1lu3ZPzjLoHsM839+mSa6mPWzf11zLkWC51zHI91PhUR0TP5cl3757eqmszkJI2Zt2q/VijMmJ+HPldS6j67VehnVQ/0edKJ36+9WG/pa7qm57mXT/ScfGaqo638/F6f6DG/LnTb6hYdGV9f0+v3ZOjLHt3VZW9t3pfx4bbez/nMs3o/8Xd/V9f59Ad+v7a3qdfQYfLZ2qybSjPAJI1/RdKa/c+Hrs/OzLom1X2vSP0YWoXOedzSt2NG8HnoudTN7qN9P7a6PVAz3Edtxi+TUoUb1iIiTmtdH9OF2dM09bTe03NQr69z7oiItGv6wFj348Tcd27ub1KaOdZeUURhbnvY1+OU239c65o99Y5/rzQvdeHdjj7XKnNLwMLsBVauvUXEZKrruEl1mzs+O9Zl9HTjPTH7RfUf/4m9pk+bte8Dsxzf6ei59+oTX5LxdGfJun5D1+H0TI/rs0Sf6/5I38Po9rEtu7euz/X6W+/K+I9+pN9pn4303PszT+n31mtL9l6zVPep8li/M3/3D3XZzeimjL/4pV+yZTdP6HfBU7PntqqGHT2+lQs9966bdhARcfGi3pt5/x39e/feNTPr4W5u5v2BzmMjIvJTPSCdjPXcOzM5R9voeTxpTZ4XEU2u6/boSK9vX39dvwu+3Ndtqp35OeXIvGefVfqYsVlDrw11PDnT+07lyaG9ps9/9i/J+MnN92U8bfV7pa4ZEnY3t23Zpyc6Vy9TfbJ1/4rqw2tb/mcAAAAAAAAAAAAAAAAA+PHxgRIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADODR8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzkH/WHw0z/tNfvyHgnCnuu9e2ujE9OWhn/qRe+KuNPPVrJ+Dd/+IcyPtjt22sat9v6mM6ejFfjRsano7syvt8d2LKno1MZ/+bvvSnjZ2cTGV8cP5DxbqPPHxEx3NH3ff97P5Txzo1DfZ7v/kDGNwa6Hdw71e0mIqJz9TkZX9/QdXjrxj0Zb+uZjO+ub9iymyyR8STTbXNVffclfe8//cJPy/i/fvVP7LluPHhFxp984RMyPpgfy3jXjAmdwZaM3//gA3tNi45+TtVkLOP3fqTvr1jTY8LrzW1b9qC8L+P5sCfjTbop43dH+h4m9cKW3T/WzzXGul9Op1N9TY1uz2Wjx9SOGf8jIjr3dR3u7m3JeD5Yl/GNXJdd50e27LO5HvMufeZJe8yqqhb6/heljkfqn0kbug0l9pNk3RYXZa1/PtHnb8yY++FF6TkzzfVFjcaljJeVPs+FvR1bdFWZMs70faStro8793Rb7C2ZHvqbet7KzX0Pt/XvT0Yn+jypnksvXbpir2lR63GyaVx96Gsta902m9a02YiYmXaQlfp5r6r2Y6YErbnviIi6MX3DHLNY6Od0ejbSvzf9eFH6a8oT3a6qhe4btZlT1jfWZHw+1+05IuLwru5n62v6XFnoNUU11/PfbLSkrQ30fWSLuT7XQv9+3Og+M5/p83Q6/t+LbPT0/d1P9Xi7MGNkmppGa8a7iIjatMHWtNlVVtX6PnNTv2nXr1PMqSIx43qW6Pk6zXQZmanfqvJtd2Ha3Om+XiONz45lfHt9KOOzkW67ERFnI91nN9Z0XtzNdbw1ewpJktmy81b/LTXzU17oZzFMdP94/U++JeOvvu7XKLsX9HrnL//il2V8sKP3GsZTvd5v5v5ZdFo9P+QP2TrWTbKN6wOp33dy7ac2uUpjUt/SzHMnZu69u2Q9t7dzVcaPj/R67ujoWMYHAz0Y3bzh2+d3vqvb9I1b+pjLV5+Q8UuXLsj4k09et2X/4i/+vIy3rd67u7d/IOOLuX5Iba3jnczPWW2ln1Nt5v3+QI+RCzPHHi982Rum7Nn04cqJIyIKk/o3qb7/JF3y72RNXbaN7su5Wff2BnpOudfR7aQw54+IaC/qMabpmHXYE3q/o+2ae5uZgScimkyPMceHd/Tvj/R97K7p+a8o/Zqx84Ger1/c1uPCW6/ekvE/+83vyPgbb+g9t5nJaSIi0jPdP1rXbtypXP5b+by4MblF9H3bWUXzsW5Tkes2kuc+Jy5C9/E6zDht5uu80PV+YWdL/z7xzykzz2Nu1sRtpduO225Ll7xGu3T1koz/tV/7dRn/3M/8nIzvXjK5odkTiog4O9bvfU7HOj6a6HYwK/Xv/+Bf/oGMf/BN/e4oIiIxY1tunsXpiR7Ps1Sv1wqzloqIyPQh0T6E/09D7TafTHzZPfbW9TvALfNMqpHeUxkf6fVfcqZzt/JE57gREYdd/Y7uzQe6L3c29e/fenBTxqupzt0iItaqLRlvzHp1dl/PW2uJ3sfNRn6PfPHyq/oPra6rRx7R99HPL5vf63h+ZOaAiDh7cEPG93I99rTmHdXo99+V8Vfu+Rz3yb/zlIyPN/SaY1W1JvHIzJp0b0fnjBERexv6fWJu9ovsu77U5Tw6rzk50O/aIiLmc/0+IcLsUZiiO10zSC9Zt13Y1u8ftzZ0neeFvqa8vyXjpdlDjohoSj3f1Bs6j55WekytzT7u3Ozzz8/8++mxWQtcvqxziON9Pb8/fe1ZGf+5z+r9q4iIdVOHTcd//7LMwzczAwAAAAAAAAAAAAAAAHho8IESAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzg0fKAEAAAAAAAAAAAAAAAA4N3ygBAAAAAAAAAAAAAAAAODc5B/1h522lvE0SWS8PH3Hnuv73/x9GW9e/6GM3331bRlfdB6X8cc/82sy/qVrjb2mjYsXZLyT6vv7/p/9Axmf3b0r4+Oje7bsb998V8abVj+exVw/i07RkfErL3zRlv3Cp74i4xeeuirjxfCKjA8GazK+npQyfnQ4sdf01gf3Zfy9G2/KeCfT9dQkAxk/G01t2W2qv9nb2960x6yi+2cnMn7lsaGMf/lnn7Xn+q3/10syfvel92S8urQh43tbug7Xi+syvtkZ22uKRLe3/ZnuZzdP39NlX9fXmvd90fsf3JTx2XxXxudD3S/zQj+L+fzIlt22Om6/NE31AVWj+2XayfTvzfj/4UELfYyJTyt9f2MzPO9c8w/jxvG+jF8bfMYes6rKqpLxoqPbT+UaQ0REo/+2KPW4O9fNIUI/wljb0C2uV/hvnutGt6HcjN9rm9sy3rb6ojJzzxER/aIn402l63Yw1OPCxoZ+RqcPdDuMiDg51eNY09HzUNbXdTgc6HvodPS4ev++nkc/LEQ/i0euPyHjbaXr9vatW/r3tc+1otU5VZIsac8PFX1/LhwRkZi+3NQ6npi+1Jrfz+a634/mhb2mzOSZ5UIPFi4Pa1vdntNUt+eIiKqcyfhsqu+jaM0Alup22JprjYiYjXR/7Vf6msaVnjPHmY7nuY6vmX4RETEy0+9ipseQptX5UWvygSTx9ZGaNVDe6rFwlXV6XRk3txjDNb2GiPA5V9PqNtfp6rkmM3NTm+jzVKb/RURkib6qstLnGmZ67uiv6/uuc99G980c2MxOZXxrqO/b5TuJ2WuIiKhM/0gLPb51eroPdrpzGX/06rqMf/3r79trmi/0fRyffVbGN7d3ZLzRlxq3jn3ZaaXHsK31JQubFeT6WN24trAkh8jc31x+7dY8Zo1kGuGi9munS488LuM7F67JeN7V/TLLdDvvDvQaMyLi8jW9l7NY6DmlV+g6r0v9+9nY3/czTzyqz1V9ScZvPdD7ar3+lozv39G57/hkZK8pDsxYMdR1eOnKnoxvb+u9xNmSBDCd6nFn/+jAHrOqMpP3tGZuWjan5GHWESavm/V0GY1pu83C5Mtdv/d0NNK5Uu9Qxy89qtvJ2alub017aMuem73L8lTfx9EdfR9VR9fTeqvnoIiI7g91G736mM4hXnlTvwP4+j/7vow/mOhrysx4GxHRlLodNCadddNGsjBrUtPOIiIqk48klc/PVtHJHb2GP5rovC0t/POozFzX7elcbzzXezmzmY5vmbz0wb3b9prSXM/vi0aX0V/X15o3un0WqZ/n/vpv/Psy/r/73//XMj7Y0nvIs4nu95Opf5dRm5y/NHszJ1P9zmDR6jX3wsxZ/+z7P7LX5PYTy5npxyNdds+smYZDv16bmb5fmra2ykZzvRfRlmYfyewtR0RkZm5M+rrfrO+YOcIMuomZ35Mt/d4nIuL9D3S+1xnq9Usy1mvPS4+bvdHS73fcb3Tbevyi7pu7Zt+mPdNtejv3Ofmwq5/rX33xkzJ+cKjz3KSn16sfvK1//+4dn3NktR7vb431eDEw+e/OQu+pH3zwhi27eUPnEPWLvp+vosbtlZm5I3f7mRHRq3W9d1N9zCLcnKzbbWFW3W2px/uIiNbMpbnZb+y6PcXE7Zn690qPPaPfXT9yXffXn//8p2T85Ei/l+xv+Ps+O9M50snJmYwvJjofn5t9+L1Luh+f7ft17Gyu28cv/dIvy3g1/ayMX9l9TMcff9qWnZn9iSL1OeMy/A9KAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3PCBEgAAAAAAAAAAAAAAAIBzwwdKAAAAAAAAAAAAAAAAAM5N/lF/uDXU3zK99MM/lfGv/U//R3uujbsHMt6f6zJG+RUZ/2fvDGX8U1tXZfziM9fsNWW9joxvr2Uyfv3BV2X81T9/R8aPT+a27DTVZWfDQsYfu/KYjH/yZ35Jxn/mF/+qLXtr86KMj6paxovuuoznPf0sFm0j49cu6/NHRFx7sZLxL0x/Th+wWMjwvNR1Pp/PbNmLmS770oUNe8wquv3e+zJ+Ze9zMn612LXnqu+/JuPvHd7U8VbX+9q6Hm4661synmc9e03zJpHxOtd95ng2lvHGjIB33tb9PiJi9OBIxsu5bodr6aMyXg104elAnyciImv1dSUd3T7TUo+pW6bss7OJjE+Oju01TeZTGb95X4/zqanz45keEw6PN23Zv/e9V2T883/9l+0xq6qp9VjZ5ro9dDp9e65Bocfj0ZnuN8enIxlfzHTZRd6V8bajzx8RkUQr4xcv7sh4fXwo42Wlz5Ml/nvrqtR1G4ke7+cL3XavXNF9eW93YMsejU5k/N6DOzJehB73OuvbMj6b6H7Tln6O3d7UdZ6GzkWmCz0uuDE6zfUziohoGvP86ofre3nX0t2dp4mvkzw1802i221u5oHStPPxtJTx4VDHIyLKs1N9TE/PsYO+mc9a3Q7T3C8/ko6pj4U+VzXVOUfRMWU3Oh+IiDg91n2/6uq8cd7ouXeR6BbS6+g6v9T3Y2c50m1nzUym+6YdFI2Op6kZHyOibHTdJkuOWVVrAz0vJoluJ7ZfRkS05nmZfp5les7MTD9ozEhSLJtjTZvb3NX5fVvptphmuj7WurrvR0S0x/syfjY7lvHtjr6mJNdzcrNkfk9T/bfKjNKtybU6pm4vXtXt5oVP6b2GiAi3zDw5OZPxJPQ1ra3pdjNY9/lfbqb+ZqTzvFVlmnOkdir1Y5LZiog01YVkie77WVe3tXqmx8m08OvYrKfXNm1H97O5y+kavQbr9XTbiYh49tnnZfzC7p6MT6a63S5qfd+3P9D5bUTEZHIs45sbazJ+5fpnZTzL9e9fqn8k49+/f9de08Wrl2X8iz/9UzL++HXd90cTPaYenxzbshemrU3O9NphlaVmLg0zlbY+LY621n1z0dF9MM113Seh+4cbQ2frfr/2ZGTmp7mOX890v1kf6N/3xn5+L7q6Et+8p+vj8DWdw5+G7jcn99+zZX9+oNt7fUev0y9M9bXWZk+qMP9eurPkNUVb6MZTZjreugmlp+Nme+DDc1Vmv2ZZzriCvv3Hvyfjb958T8ab8JUyPjuW8bLW/XI000nS7Vs6l+wXen+iMnv9ERHzM11GZh5T0+r7q0sd39zwez+f+vyzMl50ddtZjPTe8myh768ybTAiIswejEl3Yn2gf7+odL/s9/Q47/KBiIh+R/flyUQ/o6MjPbYsSp3Huj34iIjZXK/50+zh2neKiGjcto1Z37dmfRQRYbbdI8v0vkZjku92XTes3U091xTP+9zm6lV9vTf/XOd1Zeg8dzHWefSsf92W3d3Va72OmSOK0OvYS339rrSu/BrscZMTtG/pvPX9H74h42dmiG5zPX4Opv6aTkLXYbqu7y+Z6PbRH+p4Mntgy771hn7e870L5oin7Ll+ktwa081b5Vzvt0dErG3oftnbMOtMU8aiMu92zJTSLf1e8czMjVWl44OBzrvtnnru57nLz+l3Mp/75Isy/pVf0e8GD470/NDt6XYeEZG4PSmzv1SbvfDWjKn9rs4tOrnPMS9eMt+/XNV9ZrOnyxh2dHsqzP5/RERrcnj3Xv4v8vDNzAAAAAAAAAAAAAAAAAAeGnygBAAAAAAAAAAAAAAAAODc8IESAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzg0fKAEAAAAAAAAAAAAAAAA4N/lH/eHp+FjGv/5Hfyjj998+tee6/vwzMj6c9mT84os/JeM7z39Jxy/syXg2sJcUw6aQ8V6u4099/pdk/N07d2T8rR983ZY9mevvxB57/gUZ/6u/9jdk/MK1J2S8m/Vt2eOylPG6bmV8UU/1iWYLGc5SfW9V2thrytNExruZ+Z5uTd/fWrYu40WW2bKToiPjva6+plXVS3WdzEczGX/nzR/ac+0/eF3Gy1q3ncnkUMZPzua6gET3sbTrh6e21cckhY7nhW47syMd3zf9PiKiOp3oc81OZLxX/0jGL+19Ssbznm9r47nuZ/VY1+3m7pqMHx88kPHTw/v6/AvdbiIiClPnfVPnnbaW8ayj73t+tm/LfuNHr8r4135bz0s/8wtftef6SSu6XRlvopLxcm76U0R0h1synq3reGP68lmj54FBX48vrTlPRMTZsR4XzvpDGZ9O9bn6fd3eht0NW/a81GP+/sn7Mn56X/eDJtVtd2PDl101uu90C53vFF09b53pRxFlq8eE3lD3/YiInd0LMt6YeX801mW0iR6jk8RcbEREo9vzInTdrio3QyzC3bv/9wBJ6HyoCN1u867JYUzRBw8OZHxrwyfFnb7+29qWfuadoW7n7UzHfQYYUc3NHLHQR7WVaVPzYxk/rPx8trun+5/LU4pWV/p6q593X3elSLq+RuZ9PTc+srupD1joax2f6Xo9m4xt2a2Zl8PM46tsuK7b9GKm7z9Zkvanqe4HZvkSjWknWegDMneizOfFWa7HhaYy/cbkuW2j226SLPk3TaY+Dg90/nbx6lVzTfoekiU5eWvmm6w1farVuUW10DnVyORgbbOkz5pzPbh3U5dxqsfo3SvbMr5h2nJERK0vNy5vmfFiRaVmPmtM32gT/zwS088S00Za01/TWp/HjYYjk8dGRLz/7nsyfnhP559u2s9znUu6/ZeIiNMzvV49m+h4kug7rEqz9+PmjYgYDPT1zue6zk/O9Hx9dKL7zI1bt2W82/N7YT/92c/J+Kdf+KSMu75///57Ml6aMSQiojfQOcfpiX4Wq6xqzHxm+l+R+HpxWXY608ckC9PmzHiRtrpDzff9em6/1Xugg4kejx/MPpDx6y9+QsY/eU2vhyMidjO9brt3oPtH51TPveP7Ot8ZH/k55evjt2X8qNB1uGvm96cfuybjb9/Ve+d17cf0sjXzgBm7i8KM0qWZGzo+53Bz0DRbsvZdQb/1m/+djB+OdBvp9fQeeUREbvpykulneFqaZ2tyybOx/v2+yTE/ZNaS5teZaW8uF9lY831m17yLOjs1c6xpz3Oz1lrSNSIz688w83hmnt2wp/vA2kDPpdMly8Ku2eMcmvXJwavflvFsrOf9k/17tuw3b7wm48VQz70/+6h+T7kKpmd6DpqVus82Zu6NiCgb3df6A/2sqlK3k8n4TMYPeno+q3f9HHt4qPPDeuO6jJ8d6L3lZDrSBQz17yMi1kOPb/de1u990o0dfZ6+fgfePTuyZb908K6Mz26+J+Nv39Z1Xm+aNWNHD2IXc/2sIyIuXdT3d+dU1229oftyYt4H5ebde0REd03/7Wzivy9YRWZbPSLRY2iT+3X6ItX9qb9+ScbXTZ5S3bsl425c3x36tVO9r595bfb604XZwyrMe6gzv0Y4vK3n/l/+ua/I+GPX9Lj+9FN6Hu8M/HuUzLwHy81wm5tvD5LMrVv071OTJ0REdHNdt1lHn6tjcuXE7bGYd4IREZX5W23Gnb8I/4MSAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzg0fKAEAAAAAAAAAAAAAAAA4N3ygBAAAAAAAAAAAAAAAAODc8IESAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzk3+UX9YJa2Mf/ILX5Lxz/30V+y5rm3vyniWNDI+31yT8TQGMl6k+rurJPG328kzGc9D3/fWhT0Z/3f/w78j43d+7pds2cOdLRnfGW7IeH+4LeNJpa91sVjYsq2kK8NZYr5pS3Q4M/W37Nu4xp2scefS8aQp9a9bHY+ISBvdBqMy17Sinvr0CzL+4MFtGf8ffvO/t+c6OT2Q8azbk/G8W+gTmaot+vo8bebrvJrrNl2XMxkvZ7WM561uO7NcX1OEb9N16LKzOJHx5Ew/i9Fs35Z9/9Y7Mp5XUxk/1kXEdDE2Jeh767p+HxH9ga6rR69fkfFqrq/1bKGf0ac++Wlb9jOPPi3jg+11e8zKMnWcp7o/ZVnHnurese6zbjiuzVg5WNdldHquPfg59uxMx9+7cVPGewM97/fXN2X8eK7bT0TE+ppuo5s7+lx1puvj6Gwk4wcT3ccjIvbMPH7pwiUZXzPz++H+fRnfWt+S8UevP2GvaTydyPhoZB6SG4pT/YfGzaPhp/Gm9sesJNMFXA9IC5e/RGSm6bapPiZPdL23Ucn43cN7Mr6+5fvrc889KeObF/SYUCS6jCTXzzXNTJ4QEcf7pq4y3Y/TNX2uweZVGXdzTUREtm5y365eI/TPdL/smDE1jkw+nunzR0Qkua6PstHPe23/gYy/u9DX1O35+fKg1Nc7nut8Z5UNh7r9ZImux5kZJyMi8lz3ndYMcGaojKYxualZk1bm9xERWaqPaVJ9TFPpvtma8bsu/dqpLfUx9z7Q8/uFPT3/bVzQzyLt+fEiLfR998xapFroea6sdF7c29Jz+Kj07eP+fT0eFpluHw/ufSDjWxf1Pkdn4PO/ydlcxrOeP2YVufacm7G4af06pTb7I5npx5lJehKTRKfmWidz/SwiIt55910ZPznQ4/cj1/Xe2f17uo8tWyOcnBzKeGn6eN+MnZOxzolHJz4nbk2u18l0/P3XdD2dTfQcdPXSRRm//shn7TU987ReS85NrtDUut3sXtLr3pnZm4iImB7rZ3F2dmSPWVULM/8VZtrqdnzeY4bKSEuTt7r1begyarOvly8ZR/oznR+2pS789N2+jL//J7p/LB7TfT8iIh++IePTM125AxM/PdRtsTv1z2I31evSg7keY258566MX93R+WQ/1+eZ2sVnRNvq8cKl3u1C319iFnOVT7WirfW5OrHkoBX0/juvy3gxvCDjjdl7jYgozFovN49wbU3nNoML12T8xhu6TU1OfV5atWYeN328W+j+WjVmz3Th9y3Gp3qv8/BU9/000W0nMYuHxIxrERGVeQ/mNnPaSucpScfMc5f1HDs265aIiOMTXYebpknt39fz3727Ot/5/a//M1v24eh9Gb/02GPmiN+w5/pJaxLT3s07k9PDY3uuutHtpK70nkBa6fXZYqb7welEP/ODhT5PREQ+0jllf6bPdXlHz717Jue/e+LHsHSi120XTW4xe+9Ul3FF58tT0/cjIpqZzgMvPfqUjD9yzYwXZm/t1PS/WX/JONIZyvjJzLzHOdFr4nuDHRkvd3VeERGRmXX37pWH6/1Oa/KLptV9YFkGcTzSf10z8/WeGadPzXPKSj0PXHn0ur2m2ry7Gp/qfZZZrdtOL9HttujqNhgRkWQ6H3/kyWdlfH1dr6GLgc5F8sLvOyW5mWNdONH9LDX7+Ymp12zJu/HU5Tu1OcaU0ZjcujXn/5Cuq8TsDf5FXyDxPygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3PCBEgAAAAAAAAAAAAAAAIBzwwdKAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODf5R/1hv7su488890kZH+Q9e65JvZDxtpmbc3VkvGlcCa2MZq2OR0QkdS3jVWbO1ej4cLgh488+q+svIiLtFPoP+pIimev6KxP9+3zJZ2h1m+kyclO5jb6oJEzhpsrT2l9U05pzmUPcY61SfZ601vccEdFU+r7L3LedVXRh76KMf/s7/0LG799/c8nZdMVXpe6Xg8FQn6XQ9Z4Xum7TwreRuWkiUZvnNys/1u/zxLeRtKv/llX6Ps4mt2W8vX1irqmyZSfzBzLeDX1N69u7+vfDSzK+e/myjF+5fNVe05NPPC/jT3/yBRm/uLsp48NNPUZeunDdlt3NdBtJe7ptrrJud03G00w39sbce0TE2elIxicmPujqVGBtTZcxGu2b+NRe06LSc0dv0JfxttXz3Hyh49XCTJgRcRa6/89Lfa4078r4WlfXR7mY2bIvbOqcYG9L983RQvf/eqrzo+FF3Wf7XX0PERGT0ZmMV3NdRprrNphUZo5NfdusWnN/D9nn8onpl4mZm4oldZK0+m9ummtN0lMt9PO7c1fPQYcP7tprikb3mfW9z8n4Y489IeO98kDG5yZ/iIi4eFWPCd1iW8ZH1UDGq77uA02p6ykiojzTY2S+0HNvOh/L+Fbo+X3S1/fd+u4a/UQ/709mery91NMt59mreo653eh8ICLiW7cO9TEPTE61wlxWNxnrZz4e6WcbEXHhks5XXN9szLjXmH6WmOX5dOLbrl8S67mxMflvU5rfV77s1Cz2Dh/o/r9//46Ml6kuY/2i7vsREf2eHi9KU+dl6Pk67egWsrF3Qcbzvt/nmI5PZfz0SB9z756uj63LOk8oTbuJiDCpVszPTHvWy8WfuCzXzyPNzJ7Jkj2eMjFt2kyymekzYfZ+8kKfaOE3qmL/7EjG33r3PRn/9Bc+JeOjsX6uD/Y/sGX3erodFpked+7evCfjTaP70tisNSIixlOddzelbtNPXtuT8aORLrs70Dn3hYtLGrpZ8+e5ro9eV8/juYlPRr4+Dg/1emrL7KWsstR0m9r0p7Jalvi7/RndTupWjwsLk5QXbk4e+XEkL/Xf5pU+V9rTbfHOWM+Lt981+0IR0bumy+gMdB22U33fO6FzF7evHRGRmjEmMXst3b7uNyfH+tnpESEiN+N2RERi9ooTcx9mmRV16HptG78PaJZ/0eZ+/24lFXrtdGb2ITp+OotspP+4t63XHXvbuh3u7m7J+K3GzGe1z4WKVD/DNtGNoal12zGviKI2v4+IODrWa8aq0vupZuqNMHvLjUv0IiI1+/apeZ9Wt7oO05k+z/pAP9MdkytHRBxN9FqyYxpVMdSL4slIj50x0uePiNgy6+668mu8VdXp6TY9PtajaKev10cREYOefo7DTb1PPz7W65qNQs+9yUzX7yDV65qIiN2ndP/oZHrfMj/W+yBtrse2/sCvJbNa38faVPePjVzXx+snej13UvoBNOvo53SW6rZ7ZubkzkCPF/dqvbZ++019rRERR6Xu/+NU18d4pp9F/6Z+ds9+6Yot+9KRXnNcOl7RBauRmkVmaeKtWfdGROxd1P3ynt7ijZ1L+v1AbcpozVxz9bre342IuH7tcRm/e9Ps8Zi9i8ee0Nf6yZ/6ii37E1/4tIxvury0p8eETqHXw+2Sd8GZ+bgiMfu1qdmBbFP9e/ddRWZymgifvzTm2w2XB6WNjteJH7+SRueMuX2TsdxD9koIAAAAAAAAAAAAAAAAwMOED5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOcm/8i/XFT6BIk+xaKc2VNlJt66vzStDKdtIuNJ6N/njb6HZReVtfobrtaUkehw1I0vOuqFDDfmZIn5rCx117rkM7TM1G2b6gtOmo/7TZt+Rm34Ckn0IdGaG0lNGfZZlLboSBPdRtqlD3D1dFrTZ4qBjD/+6BP2XLdv3Jbx4VpfxrudjowXg66MV81cxvPUNISIyBv9PObjWsazjulLuR6/XB+LiChS/cfNdX29s8mJjKezkYyXlR+W93YvyviLz+vn9+u//rdk/IlnPynjly5flfHhcNNeU3c4lPHe+pqMJ5mup06uB+HcN4NIWt0OOh97nPrJO5vqecCNxZ3C32Mv1X3tbHEk49NGl90vdOU3qe5ndg6PiE5Pjz3dvj5mPprI+HRyKuNVaQb8iJjoU8X4bKrP1ZhxZL2Q8X7XP4tyrnOh6WQs47PKzJluCmr0eFsv9LV+eE36ZNOZrqjGpIqNuaimWpJrufn9IftevlOY+jX3ly7pG4lLVlx+luh6r2vdblMzX04rnwz9+bd+IOP39w9kvPvVz8r4o5f0fW9tbdmyd7a2ZXxjR89zJye6vb13+K4+z5nuexERVaOvtzy+K+NblR47k7Ge9/tT3cdK154iopOZNUKun+u1Td2XLnV1GcnY99creriN01N/vatqsdDj/WKun0nmu2y0rZkDTVc2y1W7UGlas+bOl9W7fu5NuPnaXKzJvSszjkREbG/vyPjO9p6Mr5n+3+/3ZLzT8/NDm+r7KM085OaaxOSgaVfH9y5dsdf0ZvldGc9N/tsWuozJQq+PytrvsVSlHtfr4qNv+awC1z4r81yr1s9nTeX2U0zHNBsRrn+n5jyJOyAi5npYj9fe/kDGjyb6gItXLsn4eLpknqv0mDBf6DqclnqM3N7Ua8M29eNUkp7JeGrGtl5fl5Hc0nsT3UKvPYcDvVaNiChM33d5Xpbq32/09O87pt9HRFQDvTZav3jBHrOq2laPMR031yzh+qaZeiPMWrlOdJtuG13vhV5SRUREk5hOa9Zbi7keqxaNzkWaJfNcPjdtMdPHZAu9R9eY+XJuriki4nCk56G+eRZdkypktbm/XMeXbb2aZXqEmUtbNz+4MX1Z2eZvRf1w5cVHtW6f85lZ2y/Zl90q9L7TJ67ocewTz16X8e6u/v13vqNzqqW782Yez0x7q0x91CZ/6K4tWbd19N+que5L1cI06ETHm3LJnZu9mSTRg1tu5rPS7DVMx3oOX7Zf2yv02Dkwt33hKZ1fJwM9x6xv6DwoIiIvdN9fTJa8EFpRk7HJ0eY6nma+jaYdvd46ONT7PLdu3TQn0v1mVun2U9V+cV319fM9MQvyB2Y/s3Os+3ineGDLrhf6XC+d6UZqulMcmTZdVv5ZVGaym76n89xjs0fu5rk60+PO/pIRNNvdkPGFWUu2JofPBlv690NfH5ubeh8wZksGmRVkhlb7zn59Xc+jERFf/StfkfGNgS5kcFGvhd59R6+pjj7QY3TpFqsR8fijl2X8Cz/9ORmfTHSe+fkvfFrGP/fzP2/L3tvalfGOa4dmgkrcnlC7ZB3rEkfzXYz7ViEz45p7v7IkBYs2d+8AzBrBvM8OE+8uWce1HVOGPWK5h+uNEAAAAAAAAAAAAAAAAICHCh8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzwgRIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADOTf5Rf7iYTWU8cd84Jf7USdvKeN3qcyW1/n1rzhOJ+X2a+Gsy99G0jTnClaHjee2/BWszE6/N9ZpTteaaovFlN+aYpDLPwtRtuLo1z6h15wn7+CLaWv8+c2W7+/Zlt6ZyU/NcV9VjTz4u47/W/Y9k/PErL9pzvfT9b8v4+zfflvGz02MZLxeVjC/mcxmflxN7TaOxHo9mk9IcocvO3JjjxpaISEOPCWtd/ftOpjt4r9/R5++v27J/5df+hoz/0s//FRl/9NpjMp4P+zLe1vre6kr3vYiINtH9r9vR8crUn+utebLkO9rU/K3nnp+fA37S8lzXS2WeSdr4e9nb0m2onIxlPDFjYmompyLV7adOdT+LiJiXpg0VOlfIMt0/qlLfdx2+jWamDQ0Gph+Y/p+0enxJl6RS06muk0sXdNlH+8cyXpczfZ4rl2T8meeet9d051/fkPFFqa81z3X92fGicXlTRFnr51SbcWRV5SbHrX0CY8/VmL5s8yRTvYmpw8TMQWGea0TEotRl33z3jox/7ff0nPwrX3xOxj/5xJote9jVbT2585aM77/yIxk/GT2Q8e3NDVt2PxnIeGd2IuNlcSbj40aPtfv3DmR8vmSeyzs9Ga/aQsZrM3bmJg/KJ3dt2ZcH+jmdbOsyVlqjx56io+sxc/0mIppW12VrhrHEzHO1WVtMR7r9ZLmv94/7L47ctbp1bNrT9RQRMewMZfzR5x6X8WvXrsp4Z2Dyxq4fPyu3zjSHtI1+rrO5md/NWPjEY4/Ya/pBTz+nzZ1dGXfp3MlYjzt54efLJtETRGnm61U1LfXzyDOTj9j9miVrezNnpoluI64VNm5s8V0mGpPLfu97r8j4qz98VcY/88KTMv7IpSu27MNj3a5ak1ysb+p5sd/T8c3K58TtVbPWsY9Pz39rmxdlvCj0s3PPOiJiUbu1i243uYubNWlamQ2CiLhy7bqMT47v2WNWVc/tpboDlvRZt/40XdPuZ7qhMmkW+veZb7tNYvZtTNtq3F7EyNzEdMkYPdLhcmSu14xJbj9zYPLGiIh2aPKdUu/fJalu77VZc5Rmjk3MvkiEz51cYuPaU2P2Dtolewqt6edNx++BrKKTiX5+darH3LLxeVhmEq5eqtvnsGv6TK3n/cY087br8/TUvP/Icn3MYm5yJ3Pbl68+bssemrlxOtEduTD11IYep8wrkYjwe3G9VNdt7XLGSt/45obu31cf37PX9NY9vc7sbut6cuv0swe3ZfzpJ/SaIiLi9FSv00+OHr45dm5m07xjcgzzbCMiDo71HsmZqa821+2hk+n1X+LWkqXvs6NyR8YXe3pPsxjoddjirt6runOg209ExNx09Nbs8Y7m+j6qVHfOkdljjYgYrOk94UFP123d0b+vSv3sFoluH4OBn/frgT6m29Vlb2zqZ9cze+3b15+2Za8PtmW8cO99VlRt5syk0XOvrqkP/dznPy/jj1+6rMvo6Pb5iUf1mvFw/76MP/HoM/aaLl7QY/6v/savy3hhxorBhhlDun4R3TH7Ti4fz8zeQWnWIdmS92y12UfKTW7h3iu1Zny2y9Ul61j3TjvMuJ2YfefWJBet2XOOiKjN/nJl1uP+TfeHHq5eDgAAAAAAAAAAAAAAAOChwgdKAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3PCBEgAAAAAAAAAAAAAAAIBzk3/kX7atDDeh41nT2FM1jT4mTXW8bRJdhi3BfHdlzhMR0ZpDksRca6IPaM29tb7oSMx1pYk5SBdhy45YUrhRm0JSdyrTPlzFmmqNiIgmM8/bHJO4MszFpkseRmaea5b41raKTFeKR69ckvHLO79sz/VzP/N5GZ8uJjI+m81lfL6oZbyszFjR6t9HRMwnuoxpqePVfKaLWJQy3pQLW3bTVDKe6nDkPT3M9tY7Mr61d9mW/eRTn5DxDXOu2lyTG7dbM1YkS/pMYvqr6+J5Vui4mY3aJXOJG9vcuP3jjIX/vzKf6jbamPlhPj+152pMm+t3dNzNHYUZ97LGjJP2iiL6mf5ra9polgz1HwrdHrqFT2eGHX1/4+OpjJeVHntc60kr364ee/IxGV8fbuprmulrTXJdUSfj+zJ+7/Ade02NaTvNQo97s1LXee3yndx/++7SsIUbrFZUZu6xXej7aFw+F75dudzXjdN1pp9TW+r2bHPMiJibMX9u5uUbd0Yy/mc/uCnj1aJry97b2pLx/kK39ZMP3pXxcqzb59HRiS170dfjyGajc4VJqvvM/lyXfX+h282dO0f2mjYu6bFiOjP9LNN120/1s5vHwJbdTfXfmumZPWZVtaZNp3lf/37JQmVu5gh3zPhM949ZqdtVJ9f1vrmpc72IiF6m20NTm5nZdP/EzKVuXRERUXR6Mn7p2jUZd88iaXTbzZf8e6rE7R20um8WHZ2DHp7p39czHX/qsUfsNT311BMyPtzakfHKjMUnYzNWLXkYfXN/VbIsl149tbnFxqwZl2b3rvmYHMYt+Wuz/mtqM/cu2+swq6TTI52X3nnvjox/8YXnZbzT9+P6wb4ej/KebjupSa+zjh47856OR0TkZrG3mOmxsDLPKCvMurcx+Y4ZHyMiMjOeL8z4PMh1Pa119Ti4MdDxiIjeY3qseOPl79pjVlWd6P7RtvqZ527zNSLa0sxnuRvv9TPJTOevzaZivWQ91/b1ucrK7JmaQSwx11rocERENCaPb10uYuo2M3swxZJ8x62uzWON2UzvZ3TM3BRd8yzMXkNERNPqMTdzm0mh+3Jm1llNLHmPUetjFrOP/lplFcxKXe+dvunHZh8nIiIx689HLq/J+FMXdmX89Vs3ZPzoQK+RFuYeIiJ2+zqfbMwE3+nrOeXEbE9cunzdlt3t6bKrhW47VaLzzMrsjSSJ3yNvG7O3Zbpfx2RPR7cPZLzp62f6q7/xN+w1/WNz33fe0XsEd+7r9f5zD/ZlfPeRLVt2x+QpSflw9deIiMVC97PZwrzncO9YIqJN9fi6NtyQcZdzzSrdRrOJbtOJudaIiHG2LeOl3b/W40K7rcf7+cKPF9m6vo/xiX7fNR7bFz8yXJrcNCJiWpg5xb3n2NX7Qp1MP7siMevCns933BzYN/1/w1xTf93ssZjxOSLicKzbTmddv+dbVQuTn6W1yVeXrNO31nS9D554SsZr8/7s6kX9LtjtXxdLnlNi1lWp2XdKTA7h3rOXre7HEf79v0nHIzV9qcjd+ynfN4rCvAMwi/7W9KXaXaz5HsF9K/Nh2TrujnG5RZ6aPG/Je/nE7IFE4a53yWIn+B+UAAAAAAAAAAAAAAAAAJwjPlACAAAAAAAAAAAAAAAAcG74QAkAAAAAAAAAAAAAAADAueEDJQAAAAAAAAAAAAAAAADnhg+UAAAAAAAAAAAAAAAAAJwbPlACAAAAAAAAAAAAAAAAcG7yj/rDpkn0CerWnFn/PiKiyPTfmrbWB7jPqBL9hzYx15Q29poSU0iSmjJaU4aRxpLft6Zscx+tuW/HP4mISM1zLTNTtr6mxJTiLrVdUh9JZv5m2k1m6s/c2tKv8ppEt5FqyTErqdDhrql31ycjIob9XRlv0j0ZT825WlOEawlLLinMcBSpOVljHmBmDmhqX3jdmHHENPbGjBWZaaCNG78iIi1M3ZpxODO1m5iyE9OXmo7vNbaPuyo0cTtsu4caEWH6ayRLR72VtNbvybhro7Nmbs/VljMZT1M9MBRd/RDXzTWNJ1MZ73fMwBMRaaHTDTcrZ52OjJ+cnMj4vPL1MTvV9dGWZk5J9PzX6etrWu/1bdmXL1+T8dKUPW9PZXw8K3X8vVdk/OYH79tr2u2ty3huZsdJo3OzJNHPe1H6GTMxWWfq5v1VVZn8zDTo1OXKEZHkJs90c4Q5T6qbSDRmHnDnj4hoMpdXdWXcDAlx876+qIubup1HRNx+cCbju6aNTE50/z46Guvf31/YsofFRMY7pel/Jh+Y1no82j/Qvx/N9FgbEfHWnUMZPzB1nvT0+DUwa6B0S+d4ERGJGbffGek6X2WzqX7ubavrKzN9IML3wcQkRH3zTPJCn2k4HMr42lD3v4iIQV/PQ7OZbijTsW7rpjqi9kvoGHT1XLAx2DJH6JMVme4HrZmTIyIKM37OypGM12acHKQD/Ydc13lve81e04tf/KKMT8zQ0+S6PuZu8bLkYVQmN2wan5+tIrdBZXaKIsK3EbtUML9P7RrC7RXpX9fL5n1zrulYP7833/hAxm99el/Gt3Z3bNlrm3rMH6zrtj5b6L7UMWNOt2f6UkTUlX4YuZlrRia5aE0OVpkkbNj1eXphusbZ2ZEuI/T8Vy50f+0M/Hbrrdv6+b36ns/hV1We6PF73uq5pq71PBcR0YQeqF0unTS6P9WJfiZJptdz0fN9NmvMNZmRZGTW4nlX11Oa+7VTU+n7qyp9jJvnotC/b7u+z85TPSbNTW6R5rq9L8xaJDMDaF37PLNtdBk9M0G4MTox40Vq1rcREXVrJvL1JUnSCir6ulLmrvEsyTtKs57Munq/4fj4WMbv3L4v45NTfU1N7ef9ymQRda37wGiq157z0M876/k2MjftsJvp650vzB6WaZ916/e8pmdmvjaXu9XX8/6Dmzdl/LjUv+8/8qS9pt1HH5HxW/t6ju0PdbvZHeh5vB7r80REJLked7Z3/Np3Vbn3j42Ztlw+FOFfizapbryLhe6DbssvNV2zdO97IyI1+6lprftgXep5fGLms3G2JOcw8/uo1fNQY/pNYt+D+T230vzNzZm5mWOLNV1/ZWnmObM3ERGxPdB12DV9czjUZW9u6zpvzD1E+DZycqLH6FXVMffhssx6yfvx3Gygt4Wexztm4ZubF3R1R3fkzHXkiGjMuUx6ZtdtZWLGhNzPsW4Yce9X3Za32x9Y9sFAZb4MaM1aIDUJaOLGBPNSNF2yb9+aSSAz1+S+xUjMeZa9n65dZZUm/hdsR/E/KAEAAAAAAAAAAAAAAAA4N3ygBAAAAAAAAAAAAAAAAODc8IESAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzg0fKAEAAAAAAAAAAAAAAAA4N/lH/mVdyXDWM79v/KmaJNPnavXvSxNPW11IlugD6iXX1CY6njT6XGmmT1bX+kT1kgrJdXVENOaYxMQb/b1ZmroCIlpzf02q76Op9e/bVMdz+w2cr4+0KfQfzH27Z2efae6/yzOPNdbW+/aYVdQUtY6X+gZT16YiIgrdftLctRFThmlrlenfkS15TqZ9uj6T5bo+Fo0+T97xZedmfGnMGJmaAaxJdBmm9UdEROLGBNem61JfU6LvuzTPKEv9VOHGvMQ8vyTRzyLM2NKEayARZtiJqufGo64910/adl/3s15fX3Pb79hznZycyHh/Z1vGm9Blb3T1uLdp2mGju0BERMxa/UwW9UzG28q0n019rXWl23pERJ5vyXgz0213sdA3Upb6Whcz06Yj4uYHt2Q8yXSfaip9TWnoZ1GVZmxLxvaaRrWu2/lc319amH7T1fFk4eeTdjGV8Sad22NWUePmDpPQ1WYOioho3J9yMxtU7gBdthnWI8w9RET0Uv1sG9OP27l+fvPjUxl/5aWRLXuz0O3n8y8+IuMHE5NbzPX9dQs/nzWziYzXtT4mMc/C9YDBxkDGsy09NkdEjPf1cy17epzaH+ux8PBMX+vR0YEte3Nd99dBvbDHrKrWjOtuEZamPg/sdvT8W5nO1k317zOTxJxNdb+5cXBkrynr6D671tEL9dlU99nSrK1Tl3dHxOjQ5L8m30syPbaNUn2etvKZ8dzkEPfu7sv4Zn9TxrfMPNc0un2MTf1FRGxfvizj6ehMxhOzAVI3ui+XS/59WTrXdb6xtrr5r1KFbm+tmeeSJWuFNnSduDV/mLLdPkRq1oV+9yWiNddb1fpab7x/T8b//Bvfl/Enn3/clr1x+ZKMd7t6nitMe0vNTJe0fjHQmHWp249ya4Ss0ONaZvKa2UTP7RER9w4OZfzWzbsyPproflye6Lymt7tny75757aM1yd6Dlhl/YFep8xHuk23iV/HRmvWgKbPlpluc3Wtx+mk1TlMMnUb2xFppvOhOjN5v2uLZg3da5blpmbtlOj7Lsy+TdPqZzSt/Lptken7qNwAmuh+MDD7iXMzZ82WLAtz97wrXUY/Nbm6md/tPmNEmEOia9bjq2q4pXOCat+0tc6Stb3pG+8d6vXF3JwqzYcyvru2octtfZ27beS61G0nMfnn9va6jG+t62uNiMhM7luaeagyjT0x7XxU+j2eowc6983cu4GBHocPjvWzO56Y/Q+zrxURcf+23gtLzZ7QfKTH52ph1gJL1msLs6/W+xivQVfF5Ezv77ZmDsrMei4iYlrpus87+lyt2e8ozV6qe+8zHul8KyKiWugyOu61j9mTqhP9bIc7ev0XETGf6D446OqcYHGi+2Ce6jovBn7fJG91GbVZD1TuPa1JvVuzr7a0BzT6ejOTc2TmfbMboscLnUdH+G8FdvOH633sojJ5iss/l7z7TM342rr3bSbPbM2L16xrxhDzzjAiIjHvPmuz3+b2fsKMU03r935yk0+2ps7b1uTppux2ST7ut9XNmtiNCeZxm2HNPrt/U7qM1vYbDbP36TrskncGCzM3dAc/3r4T/4MSAAAAAAAAAAAAAAAAgHPDB0oAAAAAAAAAAAAAAAAAzg0fKAEAAAAAAAAAAAAAAAA4N3ygBAAAAAAAAAAAAAAAAODc8IESAAAAAAAAAAAAAAAAgHOTtG3b/qQvAgAAAAAAAAAAAAAAAMD/f+J/UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvKP+sP/x2/9D/oPdUeHa3+uNs30MU2r41miz2PKaKPR8VafPyIibfW3Wk3oY5JUl9G0+loT/fMPr8ucy3095u6ibU0hib6miIi20X9rTOUmrnRzHvfzZfXRmOfdmDJSU1O1ed7pkmbfmnNVjb7g/8P/6n9mz/WT9Hf/o5+X8YPbYxlvy7k911PPPCvja/1NGZ93dBmzha7DUarr/OkXnrPX9Bu/9jdkvJvr8Wh0cCLj5Vzf99kD/fuIiPffelfGx/OJPpcZp04nxzJ+8P6BLXuuby821oYy3u+vyXjSLPTv066Mv/KDl+01TaYzGb97976Mj0tdIQfTqYw3qW+bYfr4yVTf39mDB/5cP2H/3n/Zk/F8U/ezbqnn0YiIhXm+Van7WtopdNzOZ7ovz2p/TZmZ53pmXHBTSubG+9IWHYtC31/VmHnOxJvUxBtfeO0mOzPH5lN9rtrcd2Iqam6uNSIirfQcODHX1DM5RN7R407b+G/fm2qgr2lWyfgf/c4Ne66fpKeu6f56ZXNHxj9zXccjIp575nEZ7w/7+oBM97M81/WeF/p5FybXiojITJ4epozCXFNq5vclaWmkuf5jZg8ycRdeUrZZhti5pg3dZ1ozRlaVGe/MuiUiYj7T4/nd/WMZ/8b33pLxP/nuGzJ+OvVro8TNAbl+3sfjJQPxT9gLP/OUjCeJHpPqxucebUfnSqdjfUzm1iOJrsezmc6Hzhan9poev6zHmOuPPC3j9+8emvhNGW9NW4iI6Oc6T2nmun+kA/37omPGtsS3q54ZJjsD03bnuq/t7D0q49OFnpumlX8WUen7/twnXpDxyexMxh8c7ct4kvvxYmHGi+Fc1+3X/vEf2XP9JP36//YrMt7MdV8atfq+IyKqVB/TMZNEYiaCrsklXW4Ypb+mja4eQ9pEl93r6/6d9HQuki1ZOyVmrZzaPSG9ru8W6zre82NFUuk14zf+/Icyvrl+WcavXLom4zf39dpze8MsoCOiKXUfbwv9LAoztpjUJcqZ769n4yMZ74YeI//R//nP7Ll+0r769/QYWpt9t8MTPe5FRCwqnTtOp7pd94a6jHlXP5TTuR6/R0tymK7pzle3t2X8zff0HNuanPxv/hd6bysi4s3XX5HxG2/rPaPZWPfZ02Nd5zbnj4i00WNMt6ePGfV0fxoOzR5Eo8eEym30R8TCrIkbs8c0GOg6b2qdQEwnvm2GyTkGpg7H/62uj5+06WIk493E7B0u+2ftbr3ltkDcucxeUVvreL2kjYTJr7PazHNmfZaaG09N+1+mNmtDt6/WmoptzFr8w5PpcGrWIYl94+TWq/r37jVURISp8mhKfZBZYkaE7kvpkv2M3OzpuTVNkuvcbBX882/o/KbOzPgWy/Zl3R90OHGbJ2YLoTDjYZIu2YQxbTQzeXFqBpjU9Rtfsu837nrNusLth9X2DW7YjSl3f3lHP29337mpv2TJC1n3tjRv3f2Z9/WN6bNLmoF73zzv6Pzvkxf8HutP0sk9nUc0fV27WeLfUbshLjHtMDWtPTEd3+6w2oEiojJluHfzjdsL+zG+YbDtx6zfG9NuWzPg1csmNDOnpGbNaM9k8hrX/tvMjyGN6ePtwjw/2/fdPoAv273ja813QhtDvab4t/gflAAAAAAAAAAAAAAAAACcGz5QAgAAAAAAAAAAAAAAAHBu+EAJAAAAAAAAAAAAAAAAwLnhAyUAAAAAAAAAAAAAAAAA5yb/qD9sqr6Ml3Uj48mSc7Vtq+PmoKTRZUSiz2PCS6+qdQeZcF27M7lrXVIjpozG/KE1RbgKbNw1LbmuxNSVeXRh69aE29yeyFVHJKm7Vi0199baCoxobOH+elfR1SsvyPgXvvS8jB8fje251js9GU86Mxkvo5Tx/qAr473htoxvXb5sr6nX25Lxzc1dGd/YvCLj652hjDezypb94mcnMn56dCrjk4UeLN55sC/jd66+b8u+fzyS8ZPRXRm/d/e+jNfTYxnf6q7J+MbuBXtNnZG+pkll6mNfx7umnk4X/lmMJmcyXmcPV3+NiOh3dVs8Kzsy3ua+XpqykPG6r8fErDZzR6bPn5pPmzuJnRgjan2ystBx9/V0+THzh4iIpFnoMlJ9rjrT99E0Ot4um2PN39w0tMh1fbi8qXYVVfnvzxe6SUWa6LIrU7eled6ZmasjIppKP4vOwDS2FTVb6AdYm+f9xNOP2nNduLAp422in2Hi8jYXN88jz/xzSt0xrvOb32fm5+2SnLgwndlURzTm97ZFLcnnWpNR5i4nNrfRmPszQ05UNvmMSAu9VBsUepw/OdFz8nxh7iHXOV5ERF3pfK5nxopVNi/1fXbWdHx64sf1RA9jkeY6z120Zk6p9HPvD/WYkHZ0jhYRkfR1DjGZ6t/vXN7TZZj2dnJ4Ysse9tZlPDPz2f6+bqPlXLfRzQ19bxERSaavN2n1gLG2oSfAoqefXWPqI618HxiY+exwqu97sdANam7GkcYlZxExM22qWpiGsKJmi7n+Q6bvY1H6+6taPVZ2uwMZ7xd6TKhm+pq6A33+qEyyFb6flebRXr6i12GnZ/q+q1qv0SMizk6PZLxr9vQOjg70iXK9N7je1/UaEbGztSHjv/Qzvybjzz31GRk/G+m15O6dOzJ+//5te01lo4+pzYQ9m+l5cWH2PwrzrCMiko5ey3W6D9869oNjvT9SdXS9NK3vH8dmv6M/1O0nTD407eh2sghd703j107TRLf3iVkzPvq4nheH2/oe8g0z5kVE57Ke++f3b8h4ZdaM6UyPbfXE5zu1yZnbRI89aU+X0XT1fLYw875b73/IJN9mT2FW6LbW6Zl3CT0zpkdEWui2Mxkv2wtYPf1ctynXBRq/7RSZGStbt+gx+05htpHce5o89blQsuRvSuP6jFn3uvw9IqKpdWW1ZnfLrbkbE6/1kBoREUlq9p3cxpMJu0fnqnXZsjB3bcpMAYnZb0vsW6Ilhad6/nX7EMveYf6kzT/u2nvJvqxbI2VmAHB7pm5vpjVlLx/VzXtlt9liNpkas6fi+llEROvKMP2mac2eqTm/b7tL/uYu14xVlRmk3a3lZo0eEdGYB1vbF/Y6nGZmn9/tJ0ZEY+q8XbK3vYqyrs4jOiZPac1eUYTf47XP0L0vsZOs23P27bZrJgP3zsK93UnNeVw/jljyrYJrh+YPbh7ITP+OWDKXmjp0e+eNWTu09hsQ3z7cu6gkMX3J1Z+p82RJ22xrs5/Rms3S8PvOEfwPSgAAAAAAAAAAAAAAAADOER8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzwgRIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADOTf5Rf9hmrY7X5vehfx8R0TaN/kNiwq3+Qxv6PI0pO/GX5K+20d9wuftrTSGpueUIe9vRmotKltTtxzl/RERq/mifkXkW9uepexZL2oe9cV1Ibb6zS8ydt0tqJDFtKnc3uKKy7nUZ7+49L+M7G1N7Lves+t1KxrfWujLe6+o6vHDpio5fvmqvqZcNZTwrSxlP0kyfKNP3kK37oXFzbdNclGlXR3MZvmi72MCWnR0cyXjncF3Giw0dv/3mGzJ+bzzR1zQ+s9d07/7rMj6f6MmhnJ7I+Gw+0vGZmWQiYlrqdrtkeFlZk6oj402j22Jd+Hpp3afHZn5amHGvU5t+k5sClkyytekeWWXG6UzHk0b32TpZUh9unjP33ba6jMZURxO+7KYxc6CZG92cvDBzUGsq1jSbf1O2Hifd00sSc+OhzxONiUdEmukxpkz1vLGq6krXSZ7pil9f79tzdTv6XK3JbdrE5Dyuj7nc2jW2iMgyXUaa6rj5uW3Q7lo/PMT0GfP7zOSGtjMtue+eXW+Y3mHWCG5EyNy9LRs7zViRmftoU90Gq6yQ8Tz3fa80i7yy1mPkKjs60zlGz8xByySmn8/rhYxnPV33ncHHG0eG/S17TVWtx9bjyVjG1wY6l9155pKMFw/8v2nKyp6M99d0rp6sb8j46f6BjNcmV4+I6PR0nru5pnPpKtXnWhQ6vr2jr3V+4tdNvaF+fsfHxzI+nulzVYVumwuX1EREVek+O1k8XH12Y1M/v2OT9ydLNlq6Zo4Y9HRdZS4/q3W8V5g5OdV5fUREa2aJXqbHhMP7D2S8qU2/NHN1RES30f21MMnCla2LMn79Cb2n8NjTT9myP/fkCzL++JWnZbw0edCs1mvrNPRY+8PXvm+v6U+//fsyfnf0jowvFnotPjZ9r2xmtuxkqNtIbvZSVtnmus79DxO9h1Amvn8sTH9OWj2fLUw7aXI9L87NcFi5hDki8jV9f4NNPS489tQT+jwf6H2Qk/e+a8se39dzysnkVMbTRrcflx9Gq/tTREQSurIqsy7NS90Ha7OILs18lpj8OiKidd3DvZgw836qLzXa1s8ntVuNrD9km09uu91UoVuLRIR9EZCZxV451f3y4PC+jC/M3s+FqxfsJSWm7E6uc8a8MPttc7NuWzJWuPW7W1svOZEue8m7jNbcd2L2i1rTv5tW99em1A0kNftdH55LlzGaHMt4Yda3XfOMip5ea0RENGH2V83zW+X/vaE1awLXULIlr6/y3PVZ/Xu3b+n3DnU8XdJ23f6Pf1lqxnWzv7vsFWpi9tbcjWQ2R9GnWbL1FJnZZ7X7163ZazA3mLp7W8K9/3PvUd146+aGqvJ7xW4o+fi7NT9Zda7bp8t8zZAbEX5Jl5hcxe0R1m5cdwXXfhBJzXo13HsD92BdQ19SdmXap2/qH28/ummWvNup9HW5PfJw+aTpG6m7qGX92HYaM7aYa3J5XlL5F0vuvt37ir/IKs/BAAAAAAAAAAAAAAAAAB5yfKAEAAAAAAAAAAAAAAAA4NzwgRIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADODR8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzkH/WHbd3oPyStCftvn/QREU2ry0hbU4Y5U2J+H4m9pGhN2a05JnX3Z+KNqadl15U05v5SfUBbm/M3S75DM3VlnratW/csWhd3BUREayokTZY8QHUeU8iy0ySm7KXPbwUdzsYyvn54V8eLnj3Xxb0tGU/XOvpcG3pY2b2wKeNZpX9/efOKvabJ6UzGW9M3avMt5v3JQsYXkxNbdtJOZfz0RJ/rdJrJ+Giu21TZ8c8iH67L+NXdDRl/JJ6S8c+/8NMy7sbg2298117TH/xLXVeT8QMZzzPdboqmlPH1Qv8+IiLrdGW8SR6+b2/rXNd9ket6SUy/iYhIEjfAmnim+01l6rHTmHHSzb0RkZg+2BZmnHbnynV/cuN9RETbmDLqjzfHJuY8saS9tabOa30b0TG3nYY+oDLnT2o/0bWJbjupaTeNSYRcCcvmy7aj66rIdDtfVfOFHu/rSt9HXVX2XFmm6yQxKXpr+qtptpGY55EtSYaSVF+TCUfq+oyJLx2hU9Om3VHmPlzOmCybH0zdhhnz6kQn3ln98dYC6bI+427b/H5tQ+cJSXEo47PKLR6WrI3Shysnjoio6r6MN3kh49mSdrLW03la2uh8penqesw39XmqhR5Huls654mIKI91Xnxa6Zw1jZGMN4u5jG9f0+0qIiIpd2S8NQvTJ3f17/fXdavev6fXNBERWd/klOv6eU9ODmS83x/I+Nlcl31y/7a9pkcfua7/kOkx/WSq55Mw40hq8sWIiDbTc800/By0inZ39POrzvTzXjasT80znJn6TWZ6fFsrdR0Wie6XaWISvYjY2dVr3IuXrsr4U4++oMvI1vQ1pXpci4hIcl2HWxtbMn79sr6mzY1Hddkdv25zI5irKdfSN+xuovbTX/hl+7cLV6/J+I9e/SMZf/ml/7eMHy301Y4nS/Jb8/w6D+G/Id3d1XPEwqxHTu/7cT1f1y2ibvRY2biWYhZbae7GQ9+uUpMqXTX7ZJf39TxXZ3quPjjzc+zbb7wk43lH31/XbCWNj0xbNGNhxJIa0bcRlVnP9Qe6HWRm3dT64TNScxuNGWDqzLSb2uR/tc+LTdofrd++W1G6D9jtlyVrxtbs4d28+YGM/87v/hMZ/9GrP5Tx6UznpU89+4y9psFgS8YvXtDj/a/91X9fxrc29Bi9LKNybbfNTOWaNuXeS9TlkhzQ5N2Ve69kCnfvofLM7MM1vs9E6PZx+7bOo+vFkYxvbuox9dK1J23Jna7Z83oI51iXEaXu3dmS+ezjvrtzeyquHt14kbp9liXcFonb33L3kCx5J9qaPdDc5hbmmsw+Z77kRXSeu801s8dk69CsGe2zsJcUYfa83X60rVlzqUvfBZvNxtyuFFZTYd6v5oW+D/vuI/z7BLf325h5wH3D4N6htsuuyfSB0dGxjJ+MdB62tbct46nrFxGRuL1wd0z18cbOxLxvioiI0iSgrqrs+GVyYvMszJT8b871cfuGGyvMvm++pB2YvpxWP95e8cM4MwMAAAAAAAAAAAAAAAB4SPCBEgAAAAAAAAAAAAAAAIBzwwdKAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3OQf9Ydt08h4Uut42db2XEmS6Hiqv5dqw5yrNecx3121bWuvKdLMnEtLzLmaRsdTE4+ISFJTt6b0Vv883PdmSeafRWvqMDPnahJ9H0lt7jt03BT74bncH9zzcwcsedyOq9psyfWuosPj2zL+aLIr44888pw91/HBvowXnS39+7keVr7xjXdl/IOXP5Dxv/df/C/tNf3O3/8tGT8tOjJedLdk/N70VMYfuzy0ZV/d1I3h6M13ZPzK5Rdk/E53Q8bLDV/2vJ7J+OTWVMbzKGW8U+p7uHLpsoy/+HM/a68p39mU8X/w3/19GV/M5jJedNdkvPIDXgxrfR91ocfzVZaXhYxXmb4XP6pHuLtPOuYv5mSpm+fMnBVmbv/wXLottrW5Pzfcm9wiNXNTRESrq9bOHXWlr6l18+KSySY1lZuZvtmYi0rM/aVmMm0z//25m0ozd66e/n0zMfnAsvndTKZZT4/dD5ujs5GML1yDjogk0e0tzU1OZx5tatqn6xuZz7YiUvM3U7Z75oWJL+szdo3gDjFlZMsaotOaPu7KbnQZjVkz2Vsw5/nwIP23PNO5Vqff1efJ9UDYNHosiojIzNooW7KmWVXNlr6XzmAg41vrOreJiGjqsYz3zSpiaubxJqtkfN5ZyHjW17+PiLi4viXjD/Z13jhMTRkmTUhMs4qI6HV1Gy0X+np7Q93PdmJbxg+OJ7bsumPab67z4rqn5+TS5DXTU32eu7Mze02bpT5X0dWTaV3oa1osdL48GPjtm9pM8K15RquqzXXb6a/rBlp0fQ4xmOv6bSt9zOxMt6lhqeOPbOqx4md+/lftNe3uPiLj27tPy/hjjz8l44XpmMue9rTSfT83OUfvo28XRsTy9Yk7k02R3HLD7G0lrS5h0Pp14dNXnpfx6xt7Mt4zed4P3vmGjM97vv4mtR5fpqf6Ga2yMtFzzXSh7zHzy/tIa93/60Q/93pm1m1uneeyMTMWR0R0Ev0cy1f0OH3/7DUZ7z+h7218sm7Ljo4uuzb7QmWp76PT13lgfeJHjHpsxuI1vV/lnveidvOZHneqmW8gbdf8bWL2hTb08+509HnyqV9DzyfmGHvEaipNftFUuq7q8PnnKy//QMZ/93f+kYz/ybe+KeOzhR5bj45OZPw7P/iuvabN9Ysy/mBfl/H6q3qf+n/zv/6vZHz3kt7HjYgla0P7ZklG3eu0dNl+m9kkqE1O5dbc3Vy36Pt37sr4rRvv22u6f1vv9Q82+jJ+eHBLxu/sH8j4L/+V/8CW/egjOnfqub3BFebeJ/rRaskk644y++5uX8PtEzRu8q381WbmXbDb/zFF2321pPBlp2b3PLXvtE2fNWuwZe8S3X5VZvZtTDhSc01uS+/HeTeemhtxrwZc9VVL6qNu9HMaz1xevGSD4icoM2Nx6h7Ikr1A1wfaxrwXMe25Mf0+M+dfmFw8IqKZ6Peo3/nGt2T8a//qz2T81//Wf6jLrvzez6Cv88/FVNfHY9evyviVazsyPpnqfb6IiNyMkYNCv8tszALXvVdq3Vi07PWmG87te1Tz/YkZO21Hjoja5Ixt69vOMvwPSgAAAAAAAAAAAAAAAADODR8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzwgRIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADOTf5Rf9hGJeNN28p4osP/5lyJPlejD/q4X1G1YQqvm2UH6bCLm3vIzMUuKTlSU0ZjjrJVayo9Mde67FytPcQcseyBC9mSa4rEtA/7e122+326pOio9bnc815VLzyzI+Nf/cUvyvj17ev2XLduvCfj+ca6jLc9PVZ8+0evyvjrr70h43fv3bXXdO/9d2T8cLAp43fuv6l/Px3JeP6lR2zZ771xS8a/+49/T8b/8//4P5Xx5vnPy/i9cWnLXusP9B+GeuC5f2tfxu988IGMD3Q1xec+/by9ps0rWzJ+9bmrMv7uez+Q8aKoZbyc2aKjLk1/nY39QSuqKcwYmul4vmwgy/Xf8lrHazNvtWY8bMzvs2VzrJnJ08zch5l8F43+fbosU6j0dSWJToHcbJaa+8tqPeZFRLSpuS73+Fz6Yu4vSXTZZeKfReZSPzOX2seam98vaZudwjyLam6PWUVzUynjxULGTyd+IGty/Wyz1tSVyZUT0+/T1rSdwj+nNDHHmIQ1cycyyWTh+n1EtOaYxLQr19yS1F3VkrJNf3Vl2BzaPLtWT3NRmWcXEZFU+prWuoWMXxjq++50dOGjuR8rXDv4GMvHlTHcGcp4b6Mv4wu3OIuIamHWq1lXxttGj2/Drq7HfqOfYVHYnhYb2z0Zb0odX+t1ZHxWTWW8Xfg5dn1Ht8XTY52LVaWuj9L0g2nf58X1XJ9rO1mT8c1tvU7Ihrrso4m+h2LX94FpeybjHdPNU9M3O31X52YgiYg009eV6Ee0sk6aiYwXpt2mixN7rmFX98vxQLeR7UaPFc+kuuwvf+VXZfyLP/8r9pryYlfGi9Br6wf3Hpgz6TYy6Op7iIjo9nVjsHPmx90jW7In9HH3U5LGzE+2a+i+kbhcPCJyk8JvDS7K+E9/7t+T8dMT3e9/9Oq/tGUP+rrOb966bY9ZVSdTff9JpvtN1/TLiIjR4amMN6Y9NCYnycyCtT/Q7aQq9LVGROx09HjRTPVeSzE1uf1tc60z18cjtnq6rqanuj6qqV6LNDOTk1e+Xzanuk56M30fqZl7K7O/Ncv0HN52/TjSLXReUzb6ueYj8x6jq3+fLRkv0iMdL/20vJrMLXYHum5f/eGP7Kn+b/+X/7uM7+/fl/HtTb1PfWb2qW7fP5TxeqzHiYiI6Vi3n/FCt8N/+Lu/JeN3j/Se6d/+23/Hlv3888/I+NaanvezTM8DjVkPV0teuzTmj72OfuCVybXefl/v2//D/+c/lPGXfqj3dyMiqrHeb9+7cEHGd/Z0+3jzxk0Zf+L5L9uyn33C7WG7vbvVXd8m5u2WG6+Wvp4zf3Mjn9tLSt07UfM+b9l7XTfs5mYvInX37V7ILmEuN5JWz3+VyTXD7L/WLmGOiPlc7xFmpclfhnqMTk37SMylzuc6T4jw19uY+64rfa5qoX8/NjlKRMS9wwN9zEKPVZ94/BftuX6STub6evdy8z7PvWAJ3z7dnqn9HsIMCuZVif0eISKiNG3h4rVL5ghd9m//038k47fu3LBlF40ep+/f0bnCi88/J+P/zX/z92R8sOnXAmPTPtcGG/qAj/ldhfu+xq1//JkiWvddhcn5U7v3uWxeNO9jc79nuQz/gxIAAAAAAAAAAAAAAACAc8MHSgAAAAAAAAAAAAAAAADODR8oAQAAAAAAAAAAAAAAADg3fKAEAAAAAAAAAAAAAAAA4NzwgRIAAAAAAAAAAAAAAACAc5N/5B82iYy3bSPjaWT2XI37LKptZThJddnR6N/X+pKWM+cKU3RqrrU15zGn+bBoV4app9YeoG/c3dqHZehCWnN/Yeo2SZYUIg/wv28SfU2JawbmmjJX60vr4+Mfs4p+8YtflfGhed7vvP6aPde9+0cyPk1uyfi7Dz6Q8fF7uowvf0I/wDdf+QN7Td/5xr+Q8XTrsowvqqGMDy9syvjLb/3Qlv3+uzdkfHR0KuNv353L+Be++pSMTw9ObNmdtCfj/fUNGa+yWsaPZ8cyfnDjpoy//t479po+3X9Bxj/1iadl/Na71038XRnf7HZt2dOFrttZXdpjVtXcPKt6oePDYceeKyn1gFWZQbQ143He6vGidpNK6lOKotVl1+Y76cLkFi5eLfneujX3ndS6bnOTRFSJ/n1j6ikiojDzUFXpMpLMxEO36dbOWf6aEjORt4nO29JKnyc3bbbq+LLTjj4mM3W7qkpzuTPT905GM3uu1OR0manGxiQ9icvHzYkyk2tFRCTmmNQkQ+5Umen3S5lzJSZ/cemka8/Lrsidy7XOzPS/xJRdJ/oZmW7/4d9Mf1pf13nN049clPErG3qOPRnpeTQiojJ9f3ktrqbupp4zk4FZOy0m9lxJYeaOns5XOiYnKXo6p9vY2JHxxWhkr+l4/0DGq5m+j7NK38N0ruNba/paIyKSWreH6cR05q5uc+OFbnBJx+8pHN47lPEXnnpUxketfhbTVl9Tf12XW6z73HQ+G8t42+ocKcvN3GvGl27X51p1vZDxxoxJq2pq2oKbg5bNNdNT3cePkr6MP3NZ97/n1p6U8U9/+mdkPO1es9fUNXPNd7/1hzJ+4wO95n76qedk/PJVvdaKiMgzvfbtZLqNuH07Ny+6/auIiMbun5m8ptGltCaHNuFIWt/+Xdtxe2SXrj4v41/44q/J+Etv/MiW/f5rL8v4aOzH+lXV29P9Ji903d8r/T3muX4mJ2aLpN/TD76bmr3iSs9n2dy3k95C51ztoT5mfHIm47O+blcH4yXb8qUuY6t7SZed6oqaT02+M/VFd8wxk319f2Ged3dHt49pq6+1zfVcFhERuXveZi41g1VqlmalyRMiIorS7FvMf5wXED857nWCq6zv/+h1e64//rPvyvhgXbfpi9cuyHiR6YSrjULG5wvfRiajB/oPub6mg0rnyv/j339Dxv/0679ny/4P/ubfkfH/xd/8z2R8Y2NbxovemoxXJueOiKhLnX+Oax1/59XvyPjvfe2fyPg3zLM+G/k1k0lx496tezI+2NyS8Qcnes546bsv2bJ//stf1n+Y6nFnsKXX0KugdptPmZ7n0iX7PLnb8HB7puZcbp2SmH2CZaNk8zHfNzdmk6LNXNl+r7Eye8J1qctYmGfh7s/dQ0REbY6qF3oeSl19NPr3tUmM68rPc7XbADJ168ymem19cGbyh/B7+v11vWZbVe+9q9+JFk9ekXH3ni8iomf2QdLcvMs352krs49rX4Evabd93UZef+tVGX/lbR1/465+zzha+Hei02OdtG51t2T8nQ/0HuiTn9Jr6L/7n/1NW3baG8i4GULs3m/ixlpXrnsxEH6sdyOe+3aj+TG+ZcnMeu3HzYj5H5QAAAAAAAAAAAAAAAAAnBs+UAIAAAAAAAAAAAAAAABwbvhACQAAAAAAAAAAAAAAAMC54QMlAAAAAAAAAAAAAAAAAOeGD5QAAAAAAAAAAAAAAAAAnJv8o/4wiUafIM1kvFn27VPTynDb6jLq0L9PzHnMzyMx8YiINE1kvGldGTqehj5PnfrCXU0ljT6XvUETXlJ0tI2u82h12UWqr7YxhaeJ/n2dmHIjIjV/aszzTs2zcI8ucdUaEU2tC28/ck9ZDR+8/JaM/+E/1fE3bty057o3Gsv47oXHZPzu/FjGn9rT53l8fU3Gf/C9f22v6fU335DxX/uf/2UZf+uNl2X8tT//joxvPrFjy77y+OMy3h9ckvGyrWR8vn9Dxj936Rlb9r3DuzJ+cjKX8WT0QMZ7a10Z39vT99Ar9O8jIqqx7mhXnvyUjP/yr+pzvfXdb8r4/fffsWWnU123tw7v2WNWVVmVMp7lur7qxZKBPdODnJufktrMW4Upo9LjervQ+UBERGkm4MTM+5WZ/9JGD8apGbsjItpU162d33MzSZgiiqS2Zbt5K9JC/77SfTlPdDsozUV1Et03IiKaxDwnU+eZ+Xlt/pB2fP5XmLY2LDr2mFXUmFyoLPXzmEwn9lxtps/l8u7E9WOTx6ZuPDDxCJ8nJaYfp+aAxMZt0f6aXOrr/uDyzGVlN/pZpOZZtKaM1vw+cze+PFGX4aSrx8ILF3Zl/IlrOv7e/VNb9MhcbxN+rF9VmemzczP35pV/JkWqx2N3RF7rsotC12+b6GuqSz0/RER0M/23RaLbSVLpZzib6/PcvH/blp20Uxk/O5nJ+JHJX7b2ejI+mRzZsnu7un/0N/S8vH98KONto+vDdtmOH0iKrp7f85H+/aCjyz6tdb3mtqVFtJme+9vK5wSrqDcbyHgTBzJ+dnJiz7VW6HXVl17U69j6z1+R8YPLV2X88PaZjLc9327vHu/L+FuvfU/G19b1+D3s6dypbfQYEhHR1B+vjaQmJ04KM7YsmWRTt6eX6z5Qmzy9NLmyy+uz1ueYeWFyWZPKZmbv88XnvyDjf/03/q4t+5/+9n8v49/5039tj1lVZ9VCxttaP5PpQu8LRUREriu/r4fW6Hb0eJ/V+rkXZm023vdj61vv6T2YOw/0HLST6T64t6/3vaZmzoqI6BW6bmNXX++ZyQ+LSpeRzv38MJjqSq/09BTFwqw5Ep0PpH39+5k5T0TEPHT/73Z0bpaYVx6N25tYsu+bmn09k0qurNFMz09JZ0vGF6W/wTzT9Xjhmm7rR9NjGU9bnQP2+usy3kn9g7p/V/dX995gb0vv/XYvbsp44l5YRMTX/+Xvy/jPfvJzMr6zd1nGs54uezo140H453rvxusy/tZ3/pWMv/y9H8r42aHux8mSlyVpoZ9radrUg7HO8/ZP9Hr19ZdfsmUf39D77WsbZjJZYccjs14385nbs4mIKFI9N+Zm7nWboG2r55TWXFNt329G1Ga/Yz7W473bU8mW7EM6br8qy027bnUe6LbW3J7ehweZ96Umd0rN3lM30/Nf1jP79suuyW2Ff8y2NtjS7ay/43OOpNB90605VtUf/uHvyXg1+5KMX7lwxZ7r2jU9R6RmDkzNvmJl5mo3VHRyPXZHRNy5o+fYf/y1fybjP/zen8l409PzWa/n3z9Ou7r9jJtjGd/o6Xr6s+/+gYz//C992padJbp9/uADPWcOh0MZv3RJr+s3N3TetLbm30+3Zm3dmo7cmncGbv3u1uIREY15t/Pj/ldI/A9KAAAAAAAAAAAAAAAAAM4NHygBAAAAAAAAAAAAAAAAODd8oAQAAAAAAAAAAAAAAADg3PCBEgAAAAAAAAAAAAAAAIBzwwdKAAAAAAAAAAAAAAAAAM5N/pF/2ehwkiQyniXtklPV+g/mkLx1fzAFVPr3+kr/zTWZIjJzVOsu1tx3aupvmcZcVGvqI0n1tTapfxZJq79Ry0xltY15doar12TJ02hMHWb29x/vO7tl7SAzddg2P8YD/An6zd/+BzJ+8/ZdGS8GHXuu7sa6jPc2BjLeLhYyvrm9K+PvfHBbxu/cfGCvaWN7W8a77VzGH9vdlPHX3jqS8d64Z8v+qRdekPFPPPaijO+YPvY7/9fflPGf++t/w5adDtdk/Hj/QMbPpvr+ZmdjGd9de1TG97p+qtgcbMh4kek+86lHPi3jjw52ZPyDze/aste6uq2dzuwhKyutShl343fV9O25OmZIrM2AnJrBNa3tiWS4Sfz80C70MWnlcgg9JtWzQsfTJXOTG94a3X5y09zbWv9h3q1s0Wlj5pSpaaSJfhi1+Z48Ne2jbd2MGZG3ZhY0E39Zm2dkcrl67ufkptJ/K1PfnleRSwkq0wybWre1iIh+ruu3KnW7Kk0e1mt03bbmOTWmbUZEZKnJDTPTDs1awEnN+SMiWpf7ut+bv2QuAV2SMrZmsWO6ZURtymhN3zBlJ2ZMjYhwKW5rBqrhtp6Tn7h+Wcb/+Afv2rIbtwZacr2rqp7r/NCtg1K76oioGn2uvO7qAxJdX4uJ7uPz8kTG2/DjSNE3E51Z16SVbj/bHZ3bN61PrB7cvyXjp4e67KKn1wNubOvmfo7d27kg4ydTfYybxxuTCFW1vu+89O3D9f+20sekZr4eJjrfCXMPERHlTF+vr8HVtLGmx9bB1paMzzf1WjUi4vKlp2V8b6jLeHU+lfFv/tkfyXjRvybjv7C9Z6+pnOk17vPPPy/j1689pcvu6XXhsvm9LvX4VZuxIkv12FK4RGjJ/B4uV3D7cLnJRUwem5iGvmwfrq51/2syfTJXtqm+eO5Zve6NiPjW9hMyfm3wlj1mVd17x+ypDHT9FmY9FxGRmPVIp6/bQ+1yksSM960ue7LQfSMiojVtd3BFl3Fwotf1o5FuV3nt17HXr+u87mR+KuOd0UjGs9LkO4d+DVad6LotzeVm5tk1Jn9pTZLbzUw+FRGRmD0T94rB7S27vfPc753Xla4PE15Z80q3kXasb+Tmgxv2XBevX5Txv/bv/hUZdy39t3/3n8r42Ym+1iuXlsyxc93e/r/t/FmsbVt+3/f9Z7u6vXa/T3v7Wy2rYSuSYmdKlhSBsmMkj4ETIAj8GhgIgrzkPQHyahh5jB0EMiSYQmIphkXLESVVkVRVkcXqb93+nr7b7Wpnm4crv/1+i7cI7NQ6wffz+N9zzTHnmKP5jzHnOedX5zJ+Mdd598RsIr12R+9bRkRMUp2HfeeP/0if6zWdozya65q690Jfa0TEbqGf3/zFxzJ++fGPZHw113vF64Wu16ry8/7eRP8tL/TcMK90/16udb1+8P77tuzvfvvbMv7Lv6Fzrd143Z7r5+3hk6cy3pi2vmlnJk31vOXG78Tttbj9okL3mzzz75yKwszXbl/ItB+30bPpfV7ikkSznhuZa03Ne9pNL93TwqyVp3peLjN9332v76E1+xwuz/r0j2Zv0tRh1ei8ZrHQOdVioceXiIilac+N/b7gVXuun6f/13/zhzL+o++9I+PphpX67/zmr8v43/5bf1fGb965KeNZqnPfzvTvhXlnGBHx/b/8Sxl/56c/lfGhSTOXqR7vj+7455qYuXH2WK9DUvNe8rs//aaM/2f/lc+J/97v/wcy/hd/pufS7/7Jn8r4yQ2d4940+xyvvKLzhIiIo0P9bvx3/tbvy/jhsd4THmamffS+bbqt8Nzuo27+doP/QQkAAAAAAAAAAAAAAADAteEDJQAAAAAAAAAAAAAAAADXhg+UAAAAAAAAAAAAAAAAAFwbPlACAAAAAAAAAAAAAAAAcG34QAkAAAAAAAAAAAAAAADAteEDJQAAAAAAAAAAAAAAAADXJv+sB7ZVI+NNVDKeFP7bpzxxf8t+pnDSd/oPaSLDXfT2mpJWX1MTpoxEl9F3+vjUHB8RkfS67N6U3bpzmfMkjb/vPtF/83Xl4uaaMn0P7p4jIvJU/61rTZ3bK9J/SX112Oea5sWGH22fj549lPFZrGR8Lx3ac6XZUsavrh7JeDXTz+/BPT3c5AvdRk5npb2m8WhHxj/64B0Z35voa/qFtz8n43/vP/wPbNl/4x/8HRk/f6HbyNn9tYx/+PBcxk//8R/bsu/8wldlvM1qGa/biYz3ejiPutXj+eNT3Z4iIupHP5Hxi3ufyHie6ed69/WbMn7r6MCWnZZ6ctibvFz9NSKiN2NMk+h7zDfNZ2Y8dnHHjrlJK+Nto+OfnkvHy8o8q1bHp42ZF12iEH4ez0t9f4uZHqu6ob6JpPf37Z5Sm5rxzfTN1NR5l5s5vPFzbGrqyo0Lmbm/zt2DHvI+LcM87rTS88y2Sge6jZS5bmv7k4E/WafH3Wal4y7HtTmjywF9l4k80w/Kpd02T7f5/oac2NxH1+n76M2YUJtkL9mQj/vr0udqTd/ozYDncuu6dRUb0WdmTdPoDpuaOj/Z35XxxMwxERFdb3Ji8yy2Wdfp+hp2Op/MNtzjota5tGtbvVlt961po6bbVBvabmYeY5rqttV0+h5GZl7s+rEtu87MeLirz3XnlWMZX3UzGR+MdS4bETEZ6r89fa7vrxjpsS0z/WBZ6XG4XpkJMyJKkzs1lennSx0fjvTazPXxiIi1a2zNhol5C6WmPTe5/kMx1v04IuKq0W3h0Xfv6x8s92T4dK3rMBno+X1vxz+nKtXtdufoVRnf3dFrpNbsp1wtF7bs508fy3jX6fvb2dP14frlcOLHCrcGdHNvH3oubTq97k3MmJqWfsuzMHthtZkCGjOPuzl5VPlx+9WTV2T83+gmu9WSuRlDzT7PZEPu0S/Nc3Tzcq/jmXkmnZlLd0e6XUVEFHfNenyp54j9Qo8L3dztX5/bsptKzwW39/V8tm+qtl/q/nev8vd9dmXONdBjzzrTdZ40Zm9i7fZeN27Y6qhZH7Vuv9us2bp6w36G68/Zy5UXtyaP/dYPvi/j/8U/+r/Zc92+rdcXv/RrX5TxN97U+683bx/J+H/6v/s/y/j5C9M4I+L2jTsyXox1nzm/eC7j3Vr377F55xMRMZjPZfzBD34g4ycmgW/MJDR7+MyWvTcyc+mTj2T84Qcf6DJaPebM1rpvlPnIXpObfkuTz1VmDT2Y6nb2wScml4uI/+c//UMZv/36f6zjb/6SPdfP22ql+2xv9hDcuiZiw/hq1hepaaPuHVmamoe+4b/HMFsOEaaddGZTqnL7XmYeiIhITR12jXnXbfaq+rWeS4sN6/d8oOtwVulxxL7jTHSd12Z/vm79vN+Z8a0xfbMy913VOr7akHP0Ydbp+Wf+dGErPPrgpzJ++UCvwdzaIiLih3/+pzL+nX/7ZzL+9//D/5mM75h128fmvd37H39kr+njh/dk3D3bcqjzz36g14yzbmrLvjL99azQ+ee5ecnRX57K+Ok////Ysl880/PQow/0u/H3zLyfmve3QzN2Hu9/216T2+P5zl/+uYz/vb/3D2T89//Wb8v4i+dntujajLe7+3rvYCf3+zUR/A9KAAAAAAAAAAAAAAAAAK4RHygBAAAAAAAAAAAAAAAAuDZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK5N/lkPzMyhTaxlPO39ucblQMZ7871UZc7TtLrsvu/08Y2OR0RElshw17W6DHOqxHzy1evTfPqbXldWn+qTJZ251nAXpY/fdK7IdNjdtysjt8f7b+O6Vv+tN88iS8zFmntLzbOOiDCPIpJ2Q9vZQpenVzKejnZk/OpqYc+1nJl7Hw5luDicyviTR7qMg3wi433hr+nWrn7mJ5MDGb/ztbdk/H/+m78i47/+G3/Tlv3J1Zku+0DXxx/9P/6hjC8X+v7KJ+/bsk9ee1XG+/lMxndGhYz/xV/q4xfzBzK+/wun9poe/Pi7Ml4PdFtbp7of3/voxzJ+4TplREzGei5ZNnrW+E/+t/9He66ft2Gu2/TCjG9958fQtta/yUzdd24OysxcWjfmPGYsjoho9bi7qvU1TWtddrHS48W41G06IqJrShlfJLr9FLkeP7PW1GuhzxMR0Ybu512q67BJ9bWmnS67rXU72PT1uS45Inr9q8a0taQ3uciGPps2+jdLmyxsp66qZXy6o9vCaOD7xmqh21tV67oaDPS4npocsDfPdWNian6TpPqaetMWXNKYpL4+WvObrjPjVJh4Z+rDxCMiwl3Xz3Z74Wq2c+uTDTlm5/pZou+7NWuHxZVuZ0Wux5yIiHBzhk+jt1Zm2k+s9Yg4GGwY1zM9D3WJefKtLjsf6LrvzJi7N9DlRkQs6gsZd+3d5RxJo+tjvtRr7oiIUar3CHbasY6b48cDvX446/S9RURcnuq5f+nyIDO2HY/3ZDxt9PGrpR/DctNvkko/i9TkR2HG9K5a2bKHZgNmtSk/20LLRLe38UC3qWTst7QefPhCxuvHeh7fTfV67sbd12R8/+4ruuAN+y8HB3q9moZeO7UmN6xqvd5576fft2X/8M//VMab9bmMT2/clPGDW3dl/NaRPj4iYndf97NypOPFeCTjI5NrVa2uj2bp89LhQP+tM/3Sr43MnuGGrnfj5IY+V+52P7dXX+n6Gpr+1DQbclCzVuhMvpeZjcuuNs891WPoaMMeYT40+WyjyxiUus/mI10f/YY8MB/p6xrv6zHsld0jGX/60VzGP6p8e3PvAHqzTk/NuJeY/YxuaXL10q9ki1Kvg5pW14d9mWCqvDF5dEREZ/ZARnZxvZ0u2icy/oMH35HxW7+q87OIiP/Nf/K/kPE7n9M56zvvfk/Gb39Jj4ef/9W3Zfy9v/zAXlOT6AdycqTn3otzXR+7hW5ro8T313ShG9yoXMr4sNLrs/b8Usbzhc5pIiKWl/q+22fPZHx9pa+1PNJzcrPS+1rTiV9LTnb0mDcs9Ziwmut+nK51v7z/+Kkt+yfv6331nT2dS26zutF5cZnrNppsaqNmrityXce52R/x2zlmrt40tprLTc1+h9v/CbPe35CS+30etze6Nvmemy83FL6qdXtvOh3PC/OO05y/tfuDG17Ym3e1qVljjse6jw86HdcrnU/V7h3Hxge4faZm3Nuf6DZSbcgBF0s9d3z7O9+W8Rs39Lp0PdM54E8+fFcfv2Gv+PHTxzLurtVtHmYmPt33Y0V9w8xPd3XOcfHCvFc27fn5qS/7Rz/Sc8qoM+uKwowJZn3bmjHnhXnfGxGxOD+X8X/y3/xTGX/nHf28Hz3Q74KfnenzR0QsFvp5/9qvfl3G/6O/+wf2XBH8D0oAAAAAAAAAAAAAAAAArhEfKAEAAAAAAAAAAAAAAAC4NnygBAAAAAAAAAAAAAAAAODa8IESAAAAAAAAAAAAAAAAgGvDB0oAAAAAAAAAAAAAAAAArk3+WQ+8uljK+GCayfjOwa49V9Hp3/Sd/l6qTSoZr9eFjDfRynjV6vNERKRdo/+QJeYX5h6i14ebcEREn+gyks78wF1Sp//Q9/47tL7ThfTmetNUN5nU3UOqy86SDdeUmvto3f3pi+0LHXfVFxFhirZlb6vXdkcyXq9135jG2J6rWTyT8eO5rpM3xgcy3j29kPHx7R0Z33vty/aa9vorHT/+XRl/9ZVXZfy1/o6Mn/6T79iyp197RcaHF09l/BdWMxkfnBzJ+Fv7e7bsL57qMtL5Yxnfe/CBjP/Kdz/UBezpZ/H4sR/AFnf0GPLx4bGM/4sPH8j483PdPp7Ontuyf/tXviLjfbKyv9lWnRljcjOOFUM/hiaN/ltv5sYu3GRjyijMWFzbS7Jzab+ayPi4Hsp4eanvYX+s+9Onhej85aTUhz8/0/Hqtr6mtlrYoi9TnSvEQLfRItX315omnSR6Tu51ehQREXmr853WJCq5vqRo+p895wgz9y/bDUnSFkpqfb2NSTO7zt/feqU7Tp7p9hamfrtGl2HSsI3/RKFr9ENPTQaVZGbMMW2kNfF/9yP3B32uVl9rZq7JtfOIiKTVY2GSu/sw12TG2sZca7Oh/bsct3PrEPPAXX47zjfMJb1u0P1L1l8jIjIzx2amI+QTnUdHROSdHpCrSrefyvTNcqpz72am670Ms1aNiINdnTtW9QsZ3zFbAM8udNnrC59X5SNdV2ml7/vqgR7z9m/qa7qTT23Zj0xd1WYOnM31M+o6nScMTT3lG9aFeaXvr6708xvkOveOpT4+y33/axOd2BxNPvOWz1YYF3qsHJpu+fzUt8/lei3j+7u6rg4Hev3yq1/7ZRn//Os3ZXxdmeQpInZynfuWI5NnJrpNzWZ6jf6T7/2ZLfvsyUcyng1MXnOm22E/1Pd3dfaxLXtY6L58fOd1GT+8pdfvo+FdXYDpY3XnFyipyUvzUveZyuQJYebSZu7Lvnd2KuP353qfY5s1L/SY2Jj1ziQ3i7CIKDNT92YKbM3ayW9omjZtcvsIv1+bD3Uu1nb6mnKzR5Gb9VxExLKby/jllZ7/krVZa81MjutTi+hN3Q7d8zN1Xtf6PL3J1WPDuilMH8zcvr3JwdyatNywjnVrjiZ9ufLix3M9TjfDcxn/pV/VY3FExI07ug/88Cd/LuMfvq/nrf3jWzL+pV+8IeP33/+BvabFWvezUafzrZHJr3dHup2nS59z7O8NZHwy1O328aNHMn6x1nlpXl3aspOFzndumXXsY7dO39Frig/O9J7X5Vzvd0dElKlOyKetHvNqk0OnZv8xMfGIiMS8u9ob+/32bTUwC/my0P0vcwv/iChNnRW52bc0EjPmZmb/M9mw+eSmgjTT7ceNxS6+6d7cXkDXm7km1+0qMXVu9+Iiou71daUm3vUmfzGPOzH7RcmGR+3uIzH7gKaaojfvGDq71xeRmZfgrX1fsZ0GZv8gNe0zGj12R0Tkpj8Nhnp+Kke6z+zt6Tn2qtFzclf7RvL40X0ZX5q5sRiY9jzTxx9M/Pvp6as6J5g3es/raF/X0+WVWbe057bs55dPZHxk+t+y1XNjZZZ5hVkK1Eu/luw68wJipceKH/3oezL+jZv6fdoP3jXvjiPi/LnOR94zZfxHf/cP7Lki+B+UAAAAAAAAAAAAAAAAAFwjPlACAAAAAAAAAAAAAAAAcG34QAkAAAAAAAAAAAAAAADAteEDJQAAAAAAAAAAAAAAAADXhg+UAAAAAAAAAAAAAAAAAFyb/LMe+Ojsmf7DaSXDe7OZPdfJ8S39h66R4YvllYy3pb78PslkPK0Le01p1sp4o8ORJJ2Ot4kpYMO3YE0vw32qywh3TZ0p21xrRETV6ZNlva7DrNfnKsy3bmmvr6nN/DVFresjMVWY5LoMUxuRJvr8ERG56xKF/802+p23vy7j7YszGd8d+XNlV7qNvDU+lvEbg4mMT0wfG04uZLxb+2uaXOnnlNc/kfHB0+/L+I1a3/jovLRlTy//hox3va7b3y0PZfz3Rpcy/spwbMuu5g9lPMl0HU7GtYx/+e5tGX+xXsr43lDHIyKe9LqMv3j8lzI+Gun6ePpA38N5peeYiIjDV09k/OaNXfubbVUM9ZhbZLqtJ6Wfz1oz7iadHse6RB/fZeb4XpfdhB8nE9Ofk3Ql43Wqn+2wNH1zrdtVRMSo0LnFkckhru49lfHZ2ULGky/rsTAiIt09NX8wOUfo/hS1mZPNvNi2PufosoGOm+fXmxzCze+9aU8RESY9i3K4ISfYQkmq77Fu9XO9Wuo2GBHRdiZ/MtXYm7wtWtf/dN12Ll+NiM5cU5uY8cicp2ndffvxK8t12V1fcm1EAABnHklEQVRv7s+EOzPeJb3vG725k8bk6YnJJ3vTN8LFN+Sl7j5q0w56UyHtWo8tXa3H4IiIwqxDarc+2WJ1ousrNeuR5UqvPSMiqkpPaI1JV1y7mt3Tec/JULfR5MLnQzHXffPNVOe5Sarn0vWzuT7eL+vjaGrW3YW+j6lpi28Mb8r48/2hLft0pufrcWomm0SPSalZZPYm5SjMnBwRkZg+VZY6v8/cvxczY9Vqw3yyMvPAeM+PudtotKuf+ZXbK1qf23Ol5jd9afpluyPjx6/p9W3XP5Hx5al/TpXpl8OJfua5ac9u/B64zaKIuHWsc9ajW7r/nZl13trU6/Pnz23Z9z/6gYz/1u/o+rj/QJ/r/cMHMv7Vz70h47sj/UwjItpO31/i9rbMXlG90uc5n5l1QETMFnqeyXf37G+2VW3G9cTkPd3I56Bpr9tv0un52mxPRpqadaxZI+VmTPi0EB22ayeTW6Spbj87U78ZV13ocx1WelzfS/W+zdwsMTekxVGaubE0ec3a5d7m/P1aP2u3lxERkZqz9W4dZKbr1uTRnVnrRER0ra7zPN+Qn22hB4/uyfhrN49k/O233rbn6i708xjletz96lf1PmSR6wd1eLgv42/c0fGIiO/8y38r4+98z9z3a2/J+L5pz1ml930jIg73pzI+Heh29f5778n4wmwENKnpyBGRN7q/ZpX+zbTV7XYWLu/W9+DWRRERpxd6AfH83OQpph0sE31N5rVVRETs7Om8e1ltWNRsqWGu2+KwMHPNhnHMvg/rdV6XmHnLja292Q8zj/Z/LMT8Qd+f2wPtG7Pv5btNdOY9lctfWrO/lbl8Z+OrRP2bzD4/s89v9l/dfmJnZ+WwSZXbH3Rbv6ndzPxrvFt1m8hbyuUwK5Ovrhv/PLJC793Xpq0/fHJfxo8P9fuVZy/0ftT+5MBeU1fp59E0+lrXpe6ApXmXX+z6slOTL7cP9X3sHel3g4u1zuf6xq/fL549kvFsouenlRlrWzNGppXpe40fwFqzATkzv6nMNd179JGMf/TRh7bsL7z1VRnfNXsNfxX+ByUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA1yb/rAdOj8cy/uCTD/UPnlX2XF0ylfGTnQNd9qCX8fNIZPyq08fvjgf2mupVJ+NJV+sfpO7+9Ddffdfasvte30d0Ol5V5lzm+HrDZ2hNtdbxbiXj40I3mUFZynhqjo/WX1Rm6rAsCn18pttmZLqe8g2tPml128lT84y21E4ykvF+50LGp3ljz3Uw2Zfx26mu39mHn8h48mwp482Hus5Ho6f2mvJK97/JQreFabeQ8b7Q7XbR+0Zy//6fyPjV5aWM7w+Huoz6SsZ/GvrZRUTsjE3/y2f6B2e63X54qeNPBpk+z9C3//fX+vm9/+JUxne//KaM3z7Rz2i38fWxu6ufX2bi22xY6ra77nX9btKX5jlW+lyJmUv7RPfxttXzZbvhWluTblSVvtai0/1jOjiR8b03X7Vl3737FV3GVI97t371XMbv/cv/XsZ3du/YskuT1yzaH8l4u9ZjW5vpfpAl+tkl6YZnYcb7rNPxttBlNK1uH0mY9hcRXa7bTudyrS2VmBQmdV2v8nNsb/pfmP7U1rquapP75gOdO3WmH0dEdKm+waGJR6bjnbmm2PS8e12J7lxtY+47M+Oae0gREa7b9KauTG5YZHq8M93V5u+f/k2HTboadad/0De6zjsz5kT4uu1N399mg4G+5iyby3jT+mdSdLq9T1Pd13ZN/0hbXfZXdvV8tjuY2GsaJHqMyZf6uWem/Qw6ncs+rHSOFhExudRryfqGro/9wyMZ3zMLtJlZq376Gx1vC517L2udL6973Q+ShR4vSn9J0a31RRUjk5s2um12vT5+tfRr6HWqn3fR+D2QbXSmtyHig+cfy/hsZn4QEa+ud2X8eE/3s8Vc98ufvvOBjPd7en1746bZn4iIQaLXSFHo5zSe6HsozVxz48a+Lfveo3MZv2p13r1Y6sZ+Vem2drHwc8r7j/Tafv4n35Dx+w8eyfhOqfv3//p/9R/L+C98Xq8DIiKyMLlsp+s2TUwO0egxeP5Uj6kREbMX92W8a5/Z32yrdG3ywNTkJD4Fjc7tjdocTf+hM3uKncm7K5dYRUTh1kImsctHLkkzBVR+vDjRzT0OS93X9nb08c8m+vhBuSGnM/c3zvX9pa3uHwvTz1w76DcsEzq331C4fQ7TZ2vzTFO/ZkvNfUx3Xq459pUTvXdRmOedZX5vrU10rpdOdb1nZkwYjvTxI3Oeo7/9W/aa7h7ekPH//OP/Ql9Ta/KttZ4XD8zcGxHRmrx7bvZ+Z3M9R6wzXa9R+HVsbcaw85XOU+amK11e6WvKzd5gUZprjYiF2bfvej0+55m+v6VJLfLel700z6I070q2mVlK2n1cu4EQEb0ZQxuTx6TmvU9i1sNu3qg3vGPJczNfm98kZj8nLfR53J5pRERq2lzqxkMT792+18btfLO/ZX7jbiMxzzR1e3ebrsiU/TOfy+2XbvqJ26Awe1LbynWN2cr0pcznEI3p40Wvx/Wzp3rt9NYret4vsz0Z//DD5/aarl7osXVt8i33XUWT6vse3HrNln06NXWY6LHi+VqXPTJbW4WbGCOimumJqMn1Hl1e6LrNU114Y/Yguk2DiHnv05itkTLT9zBMdf2Nh3oPIiLi8JXbOv6qfze3Cf+DEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK4NHygBAAAAAAAAAAAAAAAAuDZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK5N/lkP/PKXXpHx24eNjM/Pa3uuOill/Or0sYwn3aWMlye3Zfxwor+7GsbSXlMx0VWRV/o+3Jddq6aT8STT9xwRkaS67DrR8b7SZVR1JeNZObJl930r4123kvFxmcj4/u6hjN842JfxycjXR6eLiGqmn8Xz8ysZny/1894dTWzZfaLb82A8tr/ZRk+uXsj44a09GU9v6ecXEZE1uv8Nq0zGn997KON5PNcFrHRvKsK323mln8d5q59ftx7I+DAtZHwx0vcWEXH/oa7bQX8m402rr3U+PJDxfrmwZQ9Xuo8P+gsZLxZ6DPnWWtfTEzMevFb79v9Bpa/powt9rpun+v7yQj/vOye7tuxipO9v3elr2mZdZmaVXj+rSHwbTXs9iCa5rq/UzClJasoo9LON0sQjIql7Hd/R8WWzlvEH589k/O3dm7bsy8Mvy/jkpq6PwepdffyTuzJ+8ciPn6/obh7VSI89dTaU8WFjnkWj668182hERNbq+24z0w4S/VzdLN6W+poiIsK0gzTx4/026s0tdqYL5Bv6a57ovp8m+iGm5vjFSuc87Vr3pWHp/43CaKTbYd/qPKxv9LX2la6QJPUNtDN5tGtVWZhzdfr+kmRD+zSlJGZujN4to0w7N9fq4hERmRuHM1OGaZx9bfKjzteHa89h5phtdnBD5799p+slNblNRMT+VK8jTno94O+bOfbVyVTGv3RwJOOrme7LERFJqdtJluu+XO7o3KrsdRm3Rn68KErdD573ug6Hja7zixc6j14t9Zo0ImJ/ou/7LNP3URe6vZe9HtuSXJe9TvW6IiIiNXNmYarwotFlZLW+piL3zyLLdd9cVTP7m220N9Ttc7TW93d04p/Hq2Yvon+g29vxVOd6R1Ozf/Vc1+3hoR9b+1Y/w9rNmSMzx5pMrEt9Gxns6P63WOt1+sOnpzI+X5l9mYUfpy4avV6dJrdk/I1f/JqMv/jwYxn/5p/+iYzn6Y69pi//wuf0H8wE2Cd6XOtafd9nL/S+QUTE++/+WJ9r+XL114iIvtdtzqVPEXodFBGRJmavs9Una83OrBkOo9enjwj7Bysze6OtyeuyXs9Z6ROz3o+Ik8TsYY/1Hmi3o/dtRkPdZ/emfvw8O3U5uX5+2UA/o9ys/9wo2Zu1TkREF6ZvmseXmfVUErrOc99oo011IWnh13nbaLqn9y4Wl3MZL3u/dz8y9965ujJ7Xna9Y8aDTTV+90TPKa/euCHjn/z5BzJ+ONB9Y3ys8/eIiNa8k3l2pffUL+Y6B2xyPadMJn5fts50Pv5ooct4ph93XJ7qsWWQmh5b+DFkcaXns9a8ExybNYVZSkXd+lwrzcx4u2EfYlulmb7mptHtrTDrwoiIzu1f2HrRld+5DTG3T7BhD2ZZmT0Y88p6ONDtJy/03LTxiZsxpjczVGvqL3Uz2qZ9L1eHht2CMX2zNfOZew/86d9MEaY/JXYvznTaDf9NSmc2sfPU50jb6Ny8u3b9OMl9/tmt9L3f3tVzwcx8V/HwY712mp3rHPPZE71OjoiYLMw7vX3deGaZ2Yc0e+Sr2u/9rJ/rtWR9psuul2Z+mul57mSp4xERT1bmbyuXE5v9WvOuqzN5abv29dGb5Lc3+0sj8x7q7Tf0Nz/f+u57tuwf//iHMr5uTXLxV+B/UAIAAAAAAAAAAAAAAABwbfhACQAAAAAAAAAAAAAAAMC14QMlAAAAAAAAAAAAAAAAANeGD5QAAAAAAAAAAAAAAAAAXBs+UAIAAAAAAAAAAAAAAABwbfLPeuDt23dl/M7eQMbn52t7rsH0TRnPkpWMf/Ldb8p41zyX8Zujt2T8c19+zV7Twd0DGU8jkfGs0PcdUcpokrrjI9JMP4b5utPxy6WMP35yX8aXy8qW7a5rb28i42nayPh0ZyzjJ/t7Ml4O/LdxddXL+Hym29Q77/1Yxu/du5TxZnlly46RfhZVNfO/2UL3Q9dhPdH39zRG9lyfa2sZrx49lvGLxULGX+szGT/q9bUuGt33IiJq065WtT7Xs4VuOxfJmT6/buYREbFcPJPxaarLHu+6vtTqArKhLfsgncv4fKUveG0e69PQ53lRFDJ+atpARMS3L3U/K070nLHqdd/PDw91AaWpp4j45J7uy/mebmvbbN3qeulz3Q+GvZ++m07ff5eZ5zjUc43rgan7Q677QEREPTZ/K3XbTc25jo5039891ONOREQy3pXx3sy99y50m1vsvi3j1fp9W3Y/0uPFyDzXi7Uue20qPUvcw/DPojFPNm11u+kTXU9uVEhb3Z4iIrpeP+86Xq4+2yX6eptW13uW+vsrS503Zqmu99x0/XMzFjetzgHzfZ23RUSkZl5uzFxgW1vnxm9fH71p0qlp63lq6s8c3/rUIsz0FIlr0ub4tnc/0DVlzx8RvbmPtDN5nklg1o1+Fq2r8IjoW5MMmTFhm01L/bDaSt//dKxzt4iIyaVuv7umvb+1o+etW62ux9tmfrjyqXokiVlnjnS8ONqX8enVjj5P5xvpyc07Mj5+oue/06U+VzHQN5iWPgedzfReQJLpZ9Fnuk1XuV5bh+kCuU6XPz2X+VFd67XkutZlH491IV3v8+KZWYO1jc8JttGdQ523pdObMl5tSCHqCz0HLszcePt4KuNNfS7jba3792CyocPmug+0nV6vVmZsyUd6XMt2/T5La7Y0Fo1eG1ah2+fl/FTGr2Z+38ntI6Umo7x1qMfh9SM9dv7wBz+R8S+88SV7TV/9yhdkvDTTXNXoZzdb6Bzs0f2PbdmzmV7HDku/b7itOrN/tzT58tCsdyIiksK0316PiYXJY/pOt7feJHtJ6uc5l4slZo5oK92mV0sdz8992cdma+jYlD0f63HklVf0ibqnOo+OiPjL+3p/vmn18+s6s17NTE5ubrvfkKx3Zh3bmxzbLM0iN2uRYkOKOze5UGLa+dYy45jbnuzsei6iz3V/KhK3SDJlhJ47ksw8QPOuJCKiNzng0Y6e3z+odNml2UPKEt9nzmfnMn5l9qmr3LSd3PQxs+ccEVGbietppc/12IwhfaP7fZSmz5h+H+H3CBozPleNfhadec/Wdr7DVmbtO3gJ59gwz901h2TDXmBd6zkiNe8COrf5a7q4WzImZn8pIuyY1KdmDjJtOuy874v2rdTkCubo3JwnzTbte5l9HjMRda5yzS10Zu5NU79OcNtYm9qU+YE+v59OIjVlNHZvbTutzdZFZ15ZZNmGtZMZ4vq5rpPz+bmM/8tnfy7jD851W5g2/h34zbG+kUe5HlsXmd5f6nM9rj+9OLdlj/f1/tJJvJDxs/JIxi9TPd6lE78HOBzofadhrsfUda3Xeeb1bSSmi7k0KCKiNX3GrYFWnbnvob6HrtfvzCMiHn2i9wJ2p3+9/wuJ/0EJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXJP+uBjx5fyfj9934s4x+8/4k917p8X8Z/+5ffkvHPv/6GjF89Xcr44tlMxr+z1NcaEfH8z9Yyvnv3hoy//eorMn443pPxvvHfgp1f6bqdzfR9zC8rGb9cXOr41dyWPVuvZHxvbyLjzbKR8VfvHsv4G6/f1effmdprWi/1fXddLeODSSLjr72hr6m91PcQEXG67mT8J98zbefv2lP9XA0GZzJ+dv+JjJ/UP7TnOs0KGf/2X7wn44d7r+tr2i1lvOyHMj4cnNhrykzz2dvVbeGD53qoWzSP9XnKDX2m1/318aKX8fmpbm8HEz0mnOz6seIw1X0j2dFtfZbpfvzo9KGMP070PZzqbhEREeVt3ccPbul2sJzpcXt/R7eDZJzZsvtC11Wlh4qtlra6kstct58s9/XS1fpvXabrK0/MuZJWhptOx9OBbj8REUWpf9P1uj1kQz0nl73u/Oe97hsREZF8LMP5Yz0u7JpTfU4PYfEnie5nERHrya6Mn66OZLxz95HqdtBmesxzbeDTc+m21oY+V9Lr55r0+pkmvR/Duk6XnSR+Xt5Kva6rMHlKYsbWiIjU/FuB0sy9ba/LWK11X4pcn3880GNuRIR55NGacSrC3LdpU0Vu6i8islS3XVeFaWLabejzlBueRd3qNt12un32jakPcw+9q1hTTxERnanzqtbXtFjqNcJFpY9fbZgvk0yPkb1tB9vrYDqS8fVSP5NBN7Dn2p2OZXx8pev4aK2fyX6p63dnqM/fLPW8GBHR9fp6h1M9P7kWd1juyPgq1evFiIj9if5Ne6zrtp7pcy0a3W9GJh4R4dKOstd1O+j0+sjNi2Wqz7NuFvaadvb12Notda1nmb6JtZkXTQoWERH5wNSVb85b6e07X5LxZz/W67bVM79uqxr9PNq1jl/OdWVlp/qZvz04kPGdiUkaI6Ib6jGhNXn3qtb3N2tPdbw7t2Wf1fpvl6aMZeg+kw51Py5bk4tExF6m66TodN0ml89k/M27hzI+anW+s1P6Z7G61Ot6k67GaKr3+mYLPT4/OtV7LxFhE5vdsb6/bZaZsSdZ63rph36tkJYmr+t0vE/N8WZs7Wrd//LWb413lW4QJu2PzkyZEzPXjG/4sscHeo49+iV9rqO39TiyfKbXFf0Ln9P92Z/quqo6PX4OSjPvm3lrbf7QF/6aGnOubqHnzIG+7Xjzi/rdw6zz88nixX0ZL0cv1zq2MGNlkur5r8j9GFr0poJDP6hqpcf7YqjHkLbTbapZ+bx0r9D9KQndrhaVbudmWLdrrU/PZfaEM1320qyJu14Xvlj4JPC00n+7MuPOytS5qfKY5vpZJ66DR0RuVhxdop/RstF1m5k1aVb4NfTV6YWMP3iq85r9V+2pfu4yt09n8sZNa/XODKKlWZeG2W90/91FY85fN36cLMzzTUxj7Bqda3adyTncnk1EpKkZDwd63OvMNbVmDzS1+z8R/i+6DjNzre5EmemzXb9hzkp0GX3v9rfcPr+Jt77PuvroX7L/WyXJ9TuAtjdzh3sfExGZufdJpstIJvp9yTsvzHcHmc7nRpmf5/Lnuv1c1jqHqG/odx+paeenZh6NiBil+huNGyP9m7LSfeDFEz0mnJp6iogYj/U4VVR6PZ4O9RjSJ7rs9VLnNUnh8qyIrNHX1Jg8zw3n47FuN2+9pb99iYg4u9CLoNtH+nn/VV6uXg4AAAAAAAAAAAAAAADgpcIHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4NrwgRIAAAAAAAAAAAAAAACAa5N/1gMffvi+jH/zG9+U8U9ePLLnen71PRn/R//VQxk/ufEVGX/zldsyfv/ySsaXa3tJ0a/0H7ODQsbv7E9k/LWTkYzvHdy0ZU8mYxkfpvr7sTQSGW+7XsbL3UNb9u7eUMYXq1rGV7Uu+8NHZzK+7HQTGw1e2Guq5hcy/vz8qYy/OH8m4zdGuzI+yfQ9R0TM1/q+f/Kjn9rfbKOvf163t+5M98vh6j17rmKo2+f7X9Jt4cVU1/u7+UDGn1SlLre6Za/p1pvmD+b5fWPeyPjXfuULMn441W0wIuL02w9kfP+ZLnsWJzJ+8mu/I+ODc983dsqPZPzZuR6/fvJxK+M/XeprnU/3ZDw7PvDXVOjnuqpWMj4Y6efdpbo9lYm+h4iIembipR4Lt1m30ON9n+n6CjPeR0T0qX6+aejf5Lmu4ybMefJOxrMN9V4Uuoy013OsaQ7R7OjjWzPeR0RMV7oO52s9d9SV7uP3n+njh1PfRu/NdNltrftHnuvxtg7d2DvzjLpExyMikkZXbm8+WU97/VzbRJ+nC59sDVpdV+1ajyNbK81kOC90vU/Gph9HxHKt20LX6LpaNrqMutP9cm+i+8Z45Ou8rvUzNE0hmqaS8dKMX2nixwrX9xPTQFvTplwZiWm3ERF9bcbCWucQXaeP7wqd+yaJbjdN4v+9SGOuabVcyvj5TMcXren3mS87SXSb6nsd32Y7B/syPpjqOcVMlxERMax0XY5a3W/GZi10+0hf0yjTfbNJzbVGxJXJlcpUP6s89PE39vT6dnV5bst2V9WXut/Enukfy7mM552fU0aFnjPXs3MZb0t9tbvmvuvQ99CsTQIaEYf7N2T8ItHjZJfpMtJeP6N85Nexda3HmKF7Flvq9Goh42dnui2cL3XdRkRUC91fG7PXcdbp/Ybqie6Xn/vVN2Q8N/lqRMR6eSnjZskdaaHH6Z2h3ne6XOm9sIiI50u939aYHGLZ6X657kzuYtYIEX7cyUzuVJr4rePXZfzO0asy3tTn9prOz5/L+NjkFlmpx4qi0O0s3/GTyWRq+vJI7x1ssyzV9TUwKUZSbVgrmL3R3OyNLtwcYdp0nptn0vlxMjXr7qrV13R5oePDXT0ujG/7cT03e7ndvj5XUejx882v67npwT29jxsRsUrNXNfp+6tN969bXbety9XNfndExN6Orqud2/syvpvqMrqVnjcGe37fKx/dl/Fkw9p3G5WZzsMKk/eboTsiIjKTMNeVfua96TNJo+Ndpa+pufR7HVmi7+9wRz/baqnv4dla7wnv9lNb9tqs38/Mns0qM/ttva6/4xO/57VzcCzjX/jiazL+59/7oYzfu9BjyPGOvu/a7LVHRPR2LtXPyOUiaa7LGGa+cVZmP6OqNjToLdWbvSe3hdD0ej8gIuLBPf3u55WbOrea3tK5VWbWmI0Zc5cz32e7Xv9taNZtjsszw41tEZG4OaLWc0SemWfhrsn05YiI1D1Xs2fUmVykacx61YzPa7OfGBGR5bpvui0jV7Od2ThszJgQEWG21jZNQVtpuqPztsrsFS0Xft12OTNrxltHMp7t6Rx616xfBmbM3Xnu30uezU3uNtRlDHOzrjnQa+u29v3+0bv6ncz6/k902WP93chwrus1Me/SIiLMMj1S851Elpv+Xer7zmpd9nrpx6/OzZkmPgy9P5+s9DM9cJsTEZGYfO7WkV5v/FX4H5QAAAAAAAAAAAAAAAAAXBs+UAIAAAAAAAAAAAAAAABwbfhACQAAAAAAAAAAAAAAAMC14QMlAAAAAAAAAAAAAAAAANeGD5QAAAAAAAAAAAAAAAAAXJv8sx749qE+tPi1r8r4k9lb9lw/ePdcxv/VeSXjZ+czGf/w8fdlPD0cyfjx9Nhe02gylPGiM99wdb0ue3Qg43s3X7NlH0709S5W5zI+vzyV8cdPzmT83vd+asuOqGW0KPR97x3q+5uOdmT86MkDGU9DP+uIiEcPHsv4vfv6XGWqn0XeJTpeLW3Zt+/ckfGjG/r+tlWddTK+Ws9l/MlzXYcRESdvDGS8efNNGf+L51MZf/XxxzI+OF3J+GL5gb2mG4/1c7q7o/vSF976dRn/7d/8soxffv+PbNkXy+cyvm72ZfzV3/09GX+31vc92j2yZf/oie4b7/3oRzL+zqNGxlc7uh/fPL4t412u21NExKrTZSR9JuPlpJDx4UCXkaX+O9rE9P1IW/ubbZXFlYx3jW7T9YbPi4te/7FNdL20po6TtpTxPFvLeJ/qMTciom0mMl71+lxleSjji17Xx/xSt8OIiKuPdf9YLHWb++jiPRk/W+u+n93R9xAR0TV6Xh4OFjK+XulzJa15Rm7+6zc8i17fd57oeJfpstPGzeO+//WVLiMd6vFiW2W+eqUu030pIqJIzdjX6Pl6ca5zmK7Vdbio9HNqTDuIiEhyfb1FpstITNspEn18ZuIREWli2luuf9M3Oo9Net0O+w1lR6bXOnmu+5mZxiMNfXzbmWsyx0dEVOb5VZUeKy6v9Ngym+vzFBvmWNctF3643Vqnph5bM16NS98/ZubB376j15KffKIr7Fam8+tx6HmumOr8OiKiW13I+KrW40VZ6jbXmK2BrNRzeEREa9aM62ysy7i8lPFRYeagzm9XlOa5Hua6bgfH+j52b+mcI0t0PZ0+8/N+nerxMx3q+zs5uiHjjemz9WRDXmxyocTMM9vqwYP7Mt7Ueg2xONfjXkTExVz3126p+8a7c9123q71c/rg4/dl/I2nH9prOn/8RMaLic4zb3z+KzJ+fFv3jcdPnvqyL3RuUQ71+FWtdJu6WOp6TVNdfxERg0Jfb9Lptr5odBmzuV4zfe6Vz+vjr87tNVULvc+4t6vHhGWly+7Nv/tMet1mIyJGe3qsj/rlW8emE33NhUl/u9rnPe1K/82Nul2pk3JXhtveTc16JyKib80YatYDvUmg5mYvLtvzc8prn9f7Xsdv6zl2cKzb9LHZj57c1mNYRMSyuSfj+2ZvqHFTjdmbcPs8w5FfN/3iV/T7h6PdfRn/xr/6Uxl/MjuX8Vc+59cJ016Pk1crsyDYUtOBHnvWZoMpMe8+IiLM8izyUo99IzNWtmbcqyq9znM5UkTE5UznxP/+7/6qjE/LExn/r//hP5Nxt1aNiEhHZg2obyNef+uujH/lc6/L+B/8wf/Eln3jrj5XZvZs/uF//Ycy/o//2z+T8YtzPX7tTvftNaWmb9RmTM1znSe0Zs95Z8ePFW+8qt//HRzqsXObtYmebGqzt5Cmfk55//t/LONPP9iX8ZMv/baMf+lN3UZzt3fY+fdwRW7eEZT6+a7n5r5NPrBhmzrMlpFdO7kMre3Mnl7lN04mO3ptP0j1wFqFLiMxyUiX6nrNc39N9VL388R0tcaUXdd60Os27FP3Jldoej8HbaNVo9v66VzX7dDMyRERba5/c9WbuTHTz1yvMCNips8zWetcMiLi1q5+HperF/oH3a4MD8Y6v03N/k5ExINv6Xc7e7leW7f75v1KZeppQ75Tm/djY5Mb1uY2cvc9Sav3qcrMX1Ni/taP9BgyNd+snL/Q9TTO/P7j0oxH6fpnfFnyP/7ur/UrAAAAAAAAAAAAAAAAAPgM+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXJP/ORRSLDWVrL+PmTS3uqG9MDGf/bX/+yjLeLTsZ3Xrsp4+P9XRmfna/sNX3yVP+taxsZn5b6mp48ey7jZzNfH+WskvHlaqbjS32uPteP82Khzx8Rcf5cX6+773RQyHiStCaeyXixoeU1tS67S3UZk6G+pkEzlvFenz4iIi6WP5HxL33urv/RFvr43kLG91tdJ5sGgr1M/+bW5EjGh9/XZa+udPzk2YU+/1I/14iIk8sXMv5Lr7wi45Nv/nMZv7H8lowXF7odREQ07+jr/clQt5Fvf+t/kPFvfPCejCdDPa5FRBxlvf7DCz0OpxM91u4dn8h4afpS1/kxZFnrsXA0LGW8SPTxWa/vLQ19/Kd/1ONLmWzo5FuqK8z3wrm+/6I1bSEi6lafKwk9j3eujk0ZrTm83/DJc9rqNhqlfoZVo8f75UK30XtPPrZlP356LuOn83dlvF7p+x7mcxmfmrk6IiI397duzPMzc2+XrWU8M+fJyw0Pw/ymCx0vTH+qC3180+lnFxFRlbodFOZ5b6u21tc763X7/PDjM3uuX75xR8aLgT4+0904EtMBl5dLffwrfo5NTFYwGuiLSt1F9XqwSMx4HxGmFfr2maSmbDPe9anvG72ZUwapro/c5LhNp/uMG9eaTe2/1X/rzPi8WOqyz8xaozZzeEREVZlx2z++rXV5cS7jWeh7zCa630RE7Lt5qz6U8aUZQx/M9Xpu0Op4Uuh5ICIiet1Gz870+jZb62tqh/o86d7EFl0e6fXATnUl448vdN3ujnUZw/OntuxHa32u/VL3m+nRsS7jQJe9O9RroCOdXkdERN/qvtb3uoyV6curhY4vXT4VEXWl85FhaSaULfXxew9k/MPHz2R85XKqiIih3hcqpzsyPilvyXja3JDxZKDP8/DBfXtJp/f0/R0c63nr8A3dzh/e13npRw9PbdlPTvX4kpd6nb5e6vZWtfpah6XfVSgG+m+t2ZxZzHV7PuvOZby+rdvB3qFfW5cj/fzKyUjGXZ4wHunjx+Y8ERGzhX6uV7nv49tqMtbPtjb1tbz0+7KXS10vjdkHGe3oPYfK5U8mDXSpbERErouIfq1/dLCvf9Bc6n725OOHtuy93/qbMn58pPO3fqjraf5cz0H33/2hLdulp21v9hTMPk/oZhC9OX5n6vtNluj7++SjRzL+5FLnIrvHem44X+m9voiILNeNZyd9ueZY9z7BjfeFWQdFhN+p68z7o0zXoanaGJgXB0c3dT4XEfHaK/o3tydTGT/Zf1XG/7s//Gcyfr5h7+frf/MrMv6//Ad/X8Z/6Td+VcZvjExbG/l8PB2bdzWdfq7/6f/hfy/jX//t78r4/+n/8p/L+NNHPueozaLR5W29GaDXSz1njEuf//36L31Jxvf3dW6/zdZrs+/W6HqZZn6O3bvU+1L3fvgXMr56odt79Ynew3o202PucMe33WKg/3Z1rs/VrHSecGDG9cOpXqNHROzu6XXswd6+jB+b4938/uhDveccEdEmQxkfj3XZ6YEew/YO9Brl4OaejDedbx/PF/o+mkxf67ox+30m/+u6De8xOn2udsPe4TY6vqWf0/y+7ktp6vd4Xn9Tr2HOTnU//vDxj2Q8eeOXZTzf0flL+65J3CJi0Ov+18112xnd1cfnqX7eF9W5LftypfOXgyPTxzvdB5ZrneulvUn4I2JtvnvoU52zXpp9+IOhrvPDm/synm940TYsddmt2Y+a7pjvZVrdv5OBHzsP9s16Y6n3J/4q/A9KAAAAAAAAAAAAAAAAAK4NHygBAAAAAAAAAAAAAAAAuDZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK5N/lkP/OBqLePJcCrjX/71z9lzDbJDGT+/eiTjP/3pBzI+3L+lzz8Yyvidg9Je0/GNcxl/+om+pvMn93X86oWMXzx5bsvOsl7GB4NCxpM0k/Hdo30Zv70/sWVP04GMpyaelzoeYa5pT1/TIPffxlWrlYwvm1rG+16XPSr1fe+OdbuJiEha8/wudTvYVstL3dbLfd338p237Ln+/NunMv5u91TGnz8/k/E3p/qa3sx1fz0ZVvaaXq91W9h9qseKstZlP/mm7nvpRLepiIjD/SMZz1d6jHz8ZCHjdb8j4/1sbss2jzUGmf5DUej+2k302HJV6WsdFPr4iIjRrv7bsNB1mJtz5WZoSdPEll1kehxpS3+926puTb20+vg+0W03IiJLdf9ozPFpp89lio7UnKhK/TX1mRm/r3Q7GYx1/7i8GMv4ww99O7n67rmM52t9vQ9SPeYd/spIxpOFn2OPb+m+eTG7kPFxque/ttfjYRJ6/Ow7Xx9JoZ9s1nW67Eyfa60Pj94XHVmn+2wVun1sq7zQ97GudN3+8Xef2HPdHu/L+K988aaMZ4keKxbnut0WO6aNtD4PSxJ9H23j+rh+6Emiy0hyP8em5lypGZGSTC9lzLAWtftDRKS9btRpYhq1uw/TNzrTLxs7Okdkpuws0WUvlzoXubjQuUVtcuuIiDBV9fLNsBEn4z0Zzya6jS5XOpeNiDg80GP+6PRAxrtEj/f5Urfp5uqxjM/C58Xtnr6/ZKTbzzPTThLTeFvfZWM9MP2j1vdXTvS8mI50yzqr/LMY7OtcodszrXRf71v0pc4tBmasDzOPRkRUvb6/pNA5RL80a5FcP+9+qXP1iIidqb6/cblhYt5CV2dXMr6cL/UPzHonImJYmfy61PX+6v4rMj54qI/fK3dlvKr9Nlsy1L/5wte/KOM7u/r+7j3Q+1GDwu95zZe6DpsrMx6Zpj4Y6twiTP4QEbGqdY4bia6rxVy3g36px+AudD0dHN211zTd1+N2MdTX1GR6MByafGf3wLfNVan78mI+s7/ZVnlu1gpm/dL3vn905t/Q5qWZiAb6+G5lclOz92qG6IiIaMya0SlTPTclaz0e/eCjc3uuP/ynP5HxL/9Qn+vVL78p42enei3y02/5fU49M0Z0ZrHX9Dqf7Uyu3pvzzM78fti9j/S415l1zf6x3rtrzDDp1twREZ3Ja5pG51Rbq9JjcdOa9Ujmx/XM9OXOrG0SMzemZgyJVpdduOMjYrW8lPH3nz+T8Ucf6r7RrfTaer4hKf6d3/s7Mv57v/M3ZTwZmzliqfvAcmXyoIiIXq/p8pGu8/FId4K///d/T8Z/+u5HMv6f/V//S3tJtd0YMnsE5t1OUeh5vyz8XPLlv/FVGd852be/2VaZyT2yQueTqdnXj4hYt/q5v/dAt/edt/WY+PST92X8owcf62tK/NiamPeMK5MHNks9hu3u6FnrJHOzWcSk0PnsQaHb7nHoZGE803X+wpwnIqIv7sj4MzOXxiv6fd7g1qsyPir3ZXzoNnki4viNL8j4i6W5D7N+z1Mdbza8x+g73c67/mfLwX7eml6P012r48Ohb59vvq5zugvzLUZ2T/eZg33dbp8/0cffm+n5MiJib6Ln5Z1d3UZa8+nJ+UL3+/mzT2zZeZi100rvYWW9+a7iVN/3hk8VIh3qOXYVOgdMTT++8Ype7w939Dy3Z8a1iIjCvMNJzbq0LPX4v1zpe+sSv45tTL58dfnXe7fD/6AEAAAAAAAAAAAAAAAA4NrwgRIAAAAAAAAAAAAAAACAa8MHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4Nrkn/XAJ/fPZHx/J5Px8U5rz/Xw0YcyfjV7IuN5Vsv4+dOPZDxpFjK+GOlrjYjY3d2X8a++NpHx7LUvyfiyXcl4XXe27KpqdNzcR5fo+xhOShnvU1922/QyniaJPpcpu8wHOl7qa9pwSdG3+o9Np9vUcl3JeBaFjA/MNUVEDEcnpgzfdrbR+NZIxpNM18nVUvexiIgna/23xXwm4+lcP6cs1W3tRqvb2udHY3tNd9YXMp7M9LmWhb6HJNPXlAz0eSIidnPdFopKX9NcDwmRNKZvtFe27Ko2dTvU/W+gw5F3uo8Nxvqb1UHm6yMb6DZVlvpcpsrtmNCF+UFEdIXu+332cvXXiIg00c921up4bsa3iIgy0XWfdDremjIiMWNx71IH/Tw+pZ9jm+ky0n4u42dnj2T8or9lSx6+pss4f7qU8fpcx1c/fCzji8mhLbtOdA4x2NP10bh6MudPM50/RJjOHxFJp/tznup+MzPfsieNed4bPn2vct12smbtf7SF2kpfb5/o+3twrueHiIj/8p9/T8afzN+S8f/p7/+ajN/I9by/7nR7Tk3eFhGRtiYnMFNBasac3o3fvR/X01QXkqa6bnM33pt8NW02JKCNvu/UjIVdp8uozRzb9Lq/pr3vNLnp/KnpfueXeuw8n+k1xbrb9Cz0deXZZ14+bo2jI53fd6V+JsORv8ehGfP3xzdk/PL0uYy3Zlz4+FLHT02bjojYOdBj0rTcl/GH5prWa520ntzS54mIaGc6b2063UgLs65fma5Z7ftn0R/oObY60HV1eGtXxtMw40WYMSHzfbapdKcd5fo34x09dtcmj47M51rrGMr47sHU/mYrlXremg71/NDYLClikOtnuFfpdnXDjPc3j3TeXaR6DJke+txwZ6rLHh7r51SOddmzlR7vL5eXtuzF0sxPZi3Q1K4P6PN3pe+vrVnzr0wdVjPzLHZ1Pz4/O5XxO3dft9eUF3o93pg9sqTQ91AX+vhFsmFtZHL4JHe5/fZKC91G+7nJexJ/j8OJbkPpyOStJiGajk1bTHWbzjdsUJ65tNjks/1K51xh5r/cb0/GN//0RzJePdNr32ef6PGzHOq5ppn5PYXc5P1dr3OF3iwCOzMvdrmuv7VZZ0VEnF3qnGNs2sfEvK84Nfv2vcnVIyI603Z29nTdbqu8MGvDXveB5cpsaEZEb+aC3vSNxKydukqXvV7p/r0yc1NExOpSz4Gp2dNfmTFktKdzzKT189zOnp6fRoXuGztTfU3NWOdznb/t6EyHdW36+YWeM4dmrPg7/96vyPi/+Bf/0l7Tv/nGT2W8Mk3KbGvHqtZjwitvv2rLfv3Lb8j4utXjs0nTt0Jv9t2aXscvX5zbc43292V8Otbt/dFj/QwPzFqomOv+V5rcNyIiM/sReyPTpoe6f4wyPZneSf2+17EZwzKTg+6kep0+Wej62Bv491pXhc7j571uow8f6Pfyz5/qvjwo9Hh0c+z3FIY7ei0yOzRrl0LXbZLowaox80xERG/eV7j309tqfqbbSGHG6NZ8ExARcXRyLOOD8ZGMz37yDRnvfvS+jJfmXd/Fhn2nFwM9R6RDPYbcvvOmjOfmHfHzq/u27DLVfWN3qNtnMtI5rtsKr8w+XERE597NmfzzcN/sO5m99rUZO1cb3m+2Zis3G+mx0I3CXa/vLR34ibHM9ThctX+9dewWT8EAAAAAAAAAAAAAAAAAXnZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK4NHygBAAAAAAAAAAAAAAAAuDb5Zz1wtbyQ8VnTyXh1dW7PNT28IeP7+6/J+M50LONpWsh4MdTllkVvr2kQ5lzm+LZtZbxpan1848uua/2bVbOW8eVsKePrttLx9cqW3bS67KrW52pq/by7WOjjVzqeJ/7buLTXZQyLTMbHQ32uPk1kPHMPNSKSdibj+xPdBrdVPtDXu1jr53ph2nNExLzUbbeaX8l4menn9PxyLuPPqkbGjxe+zxyZeGa+uew6fX+d7krRn+p6iohY7dyX8cdzXfYT057XuW6ISeqfxV6pzzUalzJ+cLwr44NyIONpoe/B9b2IiGyg+1lp+l+SmmfUm/tOfNmmaiPMmLrNuky396TX8az0bTR63R7C/KRPdEXWYa4p0SdKWz/XrFLdz7ORmd+rcxm/kehxZ2fwBVv2i6M3ZPy40HPsKydflPH+0Xsyvl779ta+fyrjoy/p/jFL9aA0KPQz6k3/aBJd3xERSatTv8q0g7bR11rXOt5nvuwo9W8Gw5drji0Huo9VbvjOTJ+MiMVIj8fffHwp42/c13Pp3/qVr8p4n+k2tbshJ85MX3a5b1HqdmjHe90MIiKi782cMtD1VBS6PRelXgx0JueIiGhrfd+9GYddzh+1LqNNdT11mxLT3Nx3o/Prq4V+3suVeaa+GURi5oCw8e3V7uh2sjPV9bvf79hz9e2xjD8812Wset1OdvdGMr4cTmT8px//1F7TF1M9xjw8f6LP9fSpjA+mus/OTv0zH670vHznTb3ez3NTT6mup+XKb1d0U7PW29dzSjbQfbNJdT7Q97rPFr3vs7kZYppE399waAbEXtdrMfH5385Ij3ur2DDobiHTZaIPXbnjDf/krjfjcWea9Hym97z6gV5TJWPdjycnh/aa1rUedyYnd2T88vS5jH//x9+V8cdPH9uy3aCfmW3BJDPrObMGW23Yd+rNGrfr9bxVtLo9L2e6Ph4/0Wv0u6+8aa9p/0A/13Wtrykza8wm0cfniR87x0PdRtabJuYtlZg2XZu9QJO6RUTEgelTV2boa82e8Ft3dH9KzDjy0+9+aK+p11uEMTDz2ajQbX1xoftHvtgwRqf6xh+/0HPE/FLPW1mu2+iXv/Ybtuh++CMZ/+TDhzK+NvfRm7yxNuuKLvH1MVvq+64yvT7qzDo2H+rxpS7MBmFEpEM98N26odvstnr0+F0Zb3K3r+7vr6l1HxiY9UtZmvzMzCnDXX3+svODyK07Ok8fmXnuj/7pv5Hx1KwdspVPOp4+eybjldk/68wbp9qs82YL3f4jIirzzqnu9LyVm32Z5VqXPZ7osfNv/5beg4iIWF2ey/g77+j5enam53eXu+xOdDuLiNibTGU8L16unDgiYrU26xSzd2EOj4iI+Uw/x1uHum9WC70ntTbV6LaYWrMHGRGRZbpPJble35Zmb21gXhC0tc+r+tYs3Nxy6/hEhrsj3Zf3dvx6IHr9oAZTXcb4WI9tB3ffkvHiUtf5Jz/8rr2kH//4HRm/9Vv6LVzWm/nB7ANG7d93peY9sd+T2k6rpWtTutOcHPt9pz3z7m5noH9zc1cf/+zxR/r8R/syXrjENyKKPf3txmBk9kdanVd9/a2bMv7gkZ9jF1e672e53j9r3PtE09aKic933GvR3OyFN5Vut5dXekwdDnXZ61zPyRERxUTnsnnosTAzeV6Yd+Z54d9jJObdf7/h3ccm/A9KAAAAAAAAAAAAAAAAAK4NHygBAAAAAAAAAAAAAAAAuDZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK5N/lkPLEYzGR9PMxkf5cmGsz2X0abT5zp92uvj24WMt+1KF6tPExERaarLTtpOxru+/dnKaDfVh/5RH7rs1hXdmzJSX3bT1jJeNY2Md725VhMPc621ubeIiNT9aK1/k+lHF8W41GXPzQ8iou10m0rTtf3NNqoa/e1hax5TWvg6Ge7uyni30m2kX+v4Va2Hm3dDH5+Eb7eV/bRStx3bRvpCxle5Hyz+tWkK75tryhLdbie57ntp759FXo51vND3MUgHMr6zM5LxYaFvosw29Ndc/6ZIdNzdXWUed+3Gg4joe11GmvnfbKvW9IM8M9P0xjnFlaF1lW7vXabrtzLPdtM1rRMzx55eyXh6pa/2eL0v48W+T2c+PNW/ufvm6zJ+9fCFLqPSnX82m9uyu0z3tRMz5haprtu6PZPx3Iwv2abvz81zas1v1iYfSDIdrze0g36un+vJRI9t2yoxeVXmxr3Uj6FN6HY1v9Jt5Gyp85R8oMvu0qGMr1e6TUVExFLn/IOR7me5mWuyQudhnWnnET6fdHl6Zua/zEz8+cjPsZ2ZA5tat/UwY2Sb6nrKaj3vl+mGBYoZ2tK5Pteq0n2sc2uEDXq3Pul9e95WkxN9L4u17n997dtoWel1Ztvo9p7f0PPA/VM91ywWur2dTyp7Tc+ypYy/Z671R08/lvFbtR6LZyZfjoi4vbMn4/nJjox/9P4jGS/2TX860mNYRMSLVtfJzsCMPb3uUL1b1+e6rddr32dXjc4J0kz3wWapn1G30m3T5fwREenS7B3MNoz3W6he6+eatvr5JXZ1EbGemfWqGRKfnD+T8TzVfexGott5d3lhr+ngtv7NoNHP/I//6J/L+P/wzf9WxtedmbMiIswe3V45kfGzK52nN5XJAU3OGBGxMmud0cA8o1bX+elK97HG5GC9KTci4vxM70tmpotnA132fHWuj691zhYRMR7pZ1F1un1ss6wzY2unK7LdsLU2X+o/loVuo6tcj9+LlY4/eaLHQ9P1IyLCbYVcNHqsKksdT2qTs4ZfB+2OdI5dtfpcc7Ph11b6vm/eumHL/sWvfVFfU6nn2I8/0pX47EKPhy697lwHjIjhrs4JBibehX4W61y32eWGvafpoY7v3ji2v9lG5xePZXyR6ntPE90GIyL6tZ5/G/NKZmVS2cTsaQwn+rmOpz43dPYmUxl/9OJDGS/MUHz/iR8s3nn3ezL+7zdfl/GlGQzbRs+9q97vOy1N3ti2uqNljR5Ts6EeW/KJjn/963qciIjoTDt46/ihjP+jf/YNcybdzl67/bYtO3o9rqa9aTs/+1L5/2eqpe44bg95udb7BBERl+4+B/q9z3ii47XZi2jNvu9iw/7kxULvPSVmPO7NAJOZ9cPQvB+LiBhcXsr4LfdupD2X8Xas1/v58we27CjN3tpMj7kjs459eP6ejN8o9Bp9evOuv6RdPdG5PeG0cPtCZl/U7J9FRHTulfY2d05hvtI5T2reX2XpkT3X4bFJPOx7Q7PuMIPx7o6u27MdnedFRKxM/3v8TMen7UcyXqb6Wm+OzT1HxIPErMOW5h2HydNz024zM35FRAyHes4cmzzFLIFif1/f3/HhiYxPd/XYEhFRDMy+kPlwJDO5r92e7/1cEiZnLMPnjJvwPygBAAAAAAAAAAAAAAAAuDZ8oAQAAAAAAAAAAAAAAADg2vCBEgAAAAAAAAAAAAAAAIBrwwdKAAAAAAAAAAAAAAAAAK4NHygBAAAAAAAAAAAAAAAAuDb5Zz2w685lfLFMdLxe+XNVOt5W+jd1W8t433UynvT6/H2vj4+IyLJSxxNdRb0rJMlkOA1dTxH+PiLVv0l6He/N40wy/x1a3zU63uv7S8w1mcOjb/W99YkuNyKiNSfre90OknUr46u5LmO1oW22po00ycz+ZjvpZ56kun0W+a49U5npOjk5Ppbx88GZjFdP9Xl+OtfP+8o874iIs119fyPT3rq1vu+V6Uv3w5f9F7Uu45np4o0uOsalvociKWzZSar/tjPel/GjgwMZ3z2YyHhZuLHCj52J+VvamH6c6LrNUtP3ej9+ZaY998Vnntq2x9rMNaUer9oY2FNlqR77qlrXZdmYxpvr82Rm3ljaK4rI5nqcrsyPzhf6Wm+kuk0XZ36OfbXbkfFF9qqM376tj39x/kLG18kTW3Z2NZTx4vKmjJe3nsn4oH8s440ZYGZX9pKiSXW+0w90W8tNu6lNH29n/lm0/VjGl70ZKLdUmul7zDMzJjV+DG2XOr84Nz/54JFuI1dm3u9XCxlfPdBtKiJiXzfbGI91/3NppqmOyEwuGRHRtfpvhanzrtVjS29yl005cZeb52euqTP5e2fWCGlh1gi+OsIM5zZXXq71ImvVmHryRduVi2/N2ysp9Zz54MW5jO8meh6IiMjWFzLeDvXzzUM/xPpSxy8H+vzNrZG9ptOxfpL1Dd2Zr3bMOq9fy/jYV0eUr+r5bD4y/eNI57KXiW6ji4GfH3Z392V8fKjnmqbSdd60Zvw064TGrD0jIqIydWv6/5VZltYzfZ5y7NfQl6dm3d37tcVWMuP0sNS58mI+t6fqErN3Uev6vf/0voxftXrtNE2mMt4sdF+KiLh6rMv+J3/yf5fx//e/+Vcy3ha67MnQt8/FzMwFpp7GuY6vzNohz/wabDLW43AdOk+ZXepFQh36eR/u7cv4wa4eDyIiUpND5CaH6Mwc++Dj92X8kw8+smUvzvW5arextsUGha6vwUD35fnFhn1ZM8SVE/2bF1enMt4v9WIo2dMFlLf0+igiYvZcPys3tLrbG5h5Lgq/ir7s3F6A7v/zyrRdM//9q3/9b23ZX//lX5bxm0d6DT0Y3ZDx3dOHMv7ohV7T9APfPnKzj1Wb/WWX/647PUZnE98Ouka3g1nl56BtdP+Bfh5nZi7NEj+GFmYuWCz0nt9qret9udZlz83xqcl7IyLGI50v3zo4kfHpSD/X/V09n+1NdRuMiLj/4JGMP3nu6lz37+VSx1cL3zdSM4939v2RmWNTsxee6Dn8J+9/ZK/pxz/+RMaX53pu+NLnf0nGP36k10blUD/TiIii132/XZ7r430z/7kbDHTdd53uB5Pbd+25Ll79nIw/qXRf603Olfe6jSZmTJhMfAV3yaGMu23qcHuHpq23S/9+JzP7P4OxPldt0tx1qtv06tLn5OtUP7+LRzqvGc70GqXv9EVdmjx6OtX5Q0TE1373N/Vvav2Muiudwxdm7yU173Aiwm5MmWX61hqZ7wvKQieNow17He1a7xWfnukct8x0Wx+ad33Dod7kqcx7z4iIT+7pfeTd49dkvDDvj05PdTs/3PXvuh6ZdxB1pe97Z6zzgWag5/Hhrt8zme7qfnPzRL8bH451GcVA788NTTwz++ARfh/Z7VMnppO5+tvwKUtEo9tUk/vxdpOXrJsDAAAAAAAAAAAAAAAAeJnwgRIAAAAAAAAAAAAAAACAa8MHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4NrwgRIAAAAAAAAAAAAAAACAa5N/1gN3Bo2Mp50+PstLe64k0/F0qC+n7msZ7zpdeF+1Ot4l9pq6RP+mawoZb6PXJ8p+9m++8lSXEZ0po9fPomkqfZpWH//puXTdhrm/xFxS1+j6axvzjMI0nIjowzy/XheemnNVla6P2pw/IiIvdRsZ5wP7m22Umk7WtDqua+pT2UT35XS2kvFhOZLxbleff1bp83ywdm0z4nSp+9k4zH0nuo8tUt2mzuu1LXtmyohCt5081/E0ccOvOX9E7I11JR4e7Mv4eDLWJ+p1/SWmbxSZv6Yk0e0jG+pz1Y0uO+90H8vyDWOFGRPMsLPV5pW+l8zcy3Dkb7Jq9d86UzHLVD+Tbq2PT1Mz15i2HhHRN2Z+X+t4fnVLxvcnOj470/GIiGJ6qK/pxZGMrzvddpvmWMaHp7boWCwe6rK/oJ/3jUPdD5JuIuNnc32ts0vfPspU5wRd6OfXuYnf5C7phvEiXZm/mbxmW/W9yW1akwu5fC4i3J03i5mM33txKeMz8/z0jBxRJL6NjMd6XB9M9DOf7OjjE9MWWjMHRYStkCzXdVi7/trq41vzjCIiqsbk12ZdUZs0xdZsZvJ9t5gKnxNfXs1lvDL5eLg2u2G+THrdppK/xlrn5+3Z03MZr2vTfsoNz2Rocsr6TMbT0A2l2jFtelfPTWmux4SIiOKGnp+Smb6/7L6eF/emui+vD/UcFBHxMDGriE7n982uHheeP9f1tzP2ZQ/39mS8z/Uzqjvdx1vTl9uVPj4xeVNERFLoebxy+xNmOyafDk0Bfgwb7OnrKvrPvOWzFaqlfiBJpu+jHJixNSLWJr/uTYJdrPTxZaPb7XK5kPG08Hth67XuG+/+6C9kfLqvZ/Kk1s97tXpsy05bPa5XrZ5T/JSi6y/Z0NbcqLpem7zU5J+LK13ns8sLfR7XwSOiN/fnunjX6fGuNbnIYqWf9ae/0dfVmjljm+Uj/QzdDtrFuT+XyxFrk3scm3nrxpt632T/c3ps7Vvfdh8/023u/ge6zS2f6XayNm06L/24vjZ72JfLKxlfXepzpSvdA8sNieC3/uLHMn5jR8+92Ykeqw7e0DnK8Vt3ZbxOfL4zS5Yy/vTsiYwvLvSzyAuzz2/2OSIi+kY/i6fPzu1vtlFp9u8+d+dExoe52VOMiLzV/TJNdO+vaz0m1mZsrUzOM691+4+IGAx12a8d6/2iywc6//xe/7GMpyYXiYh4Ptf3ce/RcxmfTvW6frHUY+rM5EcREWuzrx7mGTWdGQvN/JcOd2T80XPd9yIivvfeJzI+udJj4d/4la/JeLtr1kyZHzu73OQWq2f6B76Z/9y5fdas0+NYmfh92dfe/KKMVys97j559EMZv32i12dtodtJO9LxiIgu3HisG2NZ6D5oUtPoTL4V4ffbK7dHXuh+szvW93d7tG/LbmqTU6709Y4Geo5dm2R24fKElZ5HIyL6Hd0R8om+7zTV6yPzqs3vVYX/H1SSl2zr6WBf55/ufUyY99AREZ88uqf/YPY6D6e67Ifvvy/j7jlNJ37/5cq028nQfEeQm3cWZs7aGZiXxxGxf6jzz9XsXP/A5BA3bxzI+K2TG7bswuwBTkZTGc9z3Tcyk0PkpY5vav59ZvZrzWDYmneFvZlj3Po2IqI3HTPdtNe/wUvWzQEAAAAAAAAAAAAAAAC8TPhACQAAAAAAAAAAAAAAAMC14QMlAAAAAAAAAAAAAAAAANeGD5QAAAAAAAAAAAAAAAAAXBs+UAIAAAAAAAAAAAAAAABwbfLPemCRLGS873v3C3uurtXxNhLzC/0dlSu6jk4f37jzR1Rtrc/VVjLeNI0uI/RFJb0vOwldIX2rz9W2+v7SxB2vrzUiIs10vE91GV1iynbPTh8eYZ91RJ+b+mjMc3UNwV1r4r/L61pddp25dr6durV+sGmu++VwPLHnWqf63rNa95msNu0t0/F0pIeh1YYx5KFpC4u1uaZUx5tMl50MTMeIiD7VvxmU+vhxNpDx4WAk46ORjkdEHOwf6TIm+vmVue5nuRmn0l7Xedb7qaIwf0pzXSHlQJddm2vqOz0GR0Sknf5N5weerZW4Z1LptljVZiKNiLI09WLmiM70Jzfu9Z2ZL6sN42Snx912qcterZ/K+Pfv7+jzl/6ZP7nzeRnPxvo+Hj7Q57mqzPjZT23ZZ5efyPiP3/tAxtOd13TZR2MZ75dLGc+mvn2ksdbnyvS5mrV+dpUZ6gs/vducY7BhvN9G7hY7k4+43PDTc5kc1xTy4vJSxj95quOfN+381o1de00j05929nX/y1P9/CqTf1aVvqZPz2Xqw/xmsdBltKlu503m5/dFpfvNfK7nodVSX1Nv8s/x0OQcG+aspRmf59VKX1Ovj29cqmxLjkhyXVdJ8nL114iINNHtZDzS95JnPvfoK11r60y3n+lE50PNSj+UfHSozz/x9f5oqtvWYqrHhb2v6HmrMONRvaE+rpK5jM+Het66nOm2W5e6/rrxni27CV23vekHK9PHO5NPRq/rI3fHR0SSm35u9iF2Rnqd0JqxqjZzeERE6cZWN/luqcasJduV7gOD0q+d0k63t8aMfrmZfMvCrD0bXedXjS43IqIY6b6xMGvGaHU/npgxIU/0+SMiKtN+5lf6/lqz3s+zoYzvHRzYsnP9k4iFrvM21+NOafKEx09+IOMff7Rvr2mycyLjeaavKav1c53Pz2Q8Lf2+02Rfj8NXs1P7m22VmSbn8l/bFiLiMmYyXuzp9rB/W4+5L6Z6bmrD7WubNWZErHJ9TemJyd+GekxqV/pam+WG/dq5Hr8HicnR9nUbXV/q+a9tzCZWRKQrXedn+ZUuY/lExj94R487tyY3ZbwsfXa6GuvnNxjr+siXepysTa6+Yes8qrluz/ca3da21e/+xm/KeG46ZrlhtWBel9h3PuVADxZtb9ZUZj+ztu+h/F5gPTPvB57r/npU6PyzOr/ny35Fn+vGHT03Hu7pOp8luh9fnPoc8NmlboeXL/T8dHGl+9LQrI3GhZ7Pihv2kmLvtm4ImXnn8+Vf02PCN+6/L+Nt98KWvT/VOdWzy8cy/rpefm2FxuyJZ27fZMPewvRIv1O49fYXZXy11PW1V5zLeG3y5Xbo55qu0P3A7RhlZu8pS/V40af+fVdnxrfErAGbzuwDmDFvda77X0TExLzH2buhc9PC5BZjswE7bU2jbv2YPhzty3hu1rdppuupM+9dE/MuISKiMXVomvnWatd6X/3+w2cyfu/RR/ZcH7/3oYzvT/WzvZrpsiPR/e/8mb6msvD9tSh0/2trPT8tz/T49fSFHr8/eP9dW/aw1GUf7Ou97QOz1ppO3fF+jzwz74ILsybOzP5LY96Nh3snaq/If2uShFkjmPPkZux09xwR0ZmyW/ei6K/wknVzAAAAAAAAAAAAAAAAAC8TPlACAAAAAAAAAAAAAAAAcG34QAkAAAAAAAAAAAAAAADAteEDJQAAAAAAAAAAAAAAAADXhg+UAAAAAAAAAAAAAAAAAFyb/LMe+OzBRzJe9ebEiT91u9bxrtMna1r9HVWT6OO7Rh/ftZ29pq4154pExtPUfNtl6qNI9Xk2/SjpzPUmrQx3nSkjNRf16a9kNCszXXSmy6hN/dnbTjbUhzlXJI0Md605V6brKWn1eSIiuq6W8dS02W2V9qYOTVsYpQN/rrFuC3kxkvF2d0/GZ7vHMr5aLPTxV3N7TYul/s24Xcl4rR9rJKaBtq5/R0SW6/rIBjpeZLqeBoUeIwdD/yyGo1KXocORhW7rWarLLjN931nu+2uf6PvuzLjWdbqMvDB1vuEz2rbW41eaVv5HW6pr9LOqM12PfVvYc7UrM0eY/l+H7jd9bp6hmd7Tle6XERFL3UyimegHfNLoNpfs687cV35+X53r+1tNb8p4mZ3qsk0ukreHtuzBkb6PxZUbex7LeFdd6fhQt/UsM4NeRMxXpu00Ot4N/Jyp1KZfRkSknX4Wj/vhz1TGz1vT6j7W9vree5NLRkQkqe4cvcmTFmbOfPDihYy/Vuo5OTHzSURE085k/NzMy21i8vRK19Oy9e1zf6LnzMNcl7G40P11mej2XGf+vleVLuPiVPeBK5OLFIlOGueFvu9B6dvHYF/nTvVan+viQj+jrje5ixmbIyKS3ibx/kdbah5LGW9M3r/eMCaZbh6NWVZXpu0WU53vLXvdbzYmREPdFqtGX9PR6wcynushOrLkyBc9GJu/6L7WZybPNX2zK3wjrYdmLjWJ/yrTDy9JTD4Z5lkkfhxJc13nncuDzPq2NevYqtJtOSKiqnUhVe/H3G2UmPGq63U7Tzs9z0VEFL2eCxrTz5JUt4W60p1j986+jt+8ba/puZm3ni90vM/1tQ7N2qkb+7HCpC92/ZmZ9arZQgq3BRERkZg+nvRmXWrG1N29HRlvep0rz9bP7TWlub7v4WRXxg8mUxlffaj75bL3OXS10s8pbTdMzFtqVemxeFWZ/jf1eUQz1HVWmGmomui10Gpu1tZPzHlmfv9gVpl9SDeumzV0fqI7TjN3835Ed6jHvdqM972p27zW/SlZ+U7bnOnrWi/1nJKF7k9l6HZwcXEh40Mzt0dEuO6xrPXzy82+dt+b/rdhG6ktdTvYsHW4lcalHovXS/08soHPebKhblfrtW5Xrdnzak0eVi31eeamDUZE1GYfZL3Ua8yZmc/uvv2ajPc/+MiWvXtLx2++pveLDvYvZbx6rp/F7OG5Lbs0e7a7JzpPLw/1s3gx12WcXz2T8YvG7wHe+Jyer7/wtbsy/rWvvyXjk3/8r2W8eK7zpoiIXbOH9c7jRzL++hv2VD93ZWbGbzP49BsGpYHZA7qzo9tJ0+l9oeb5uzKemZwuLXRbiIjoC5ODuhesLp+0exR+nuvC5Vz6XKNclz0w11Qt/HutkVlDm1fd0ZvkOzX7XsNS13lq5uSIsHVbmwVEl5hJMzX7pY3Pd6Ix7z5esq2nvaleQ/S3db90+xYREaNS70kl5r1aad5XvnZHv/tozTvUpPfJ0NiMIdXiXMY7k0PvjHQ73D/et2XvHeg9LFfne0d68TA0Y87A7ONERKTmN7l5v5qZPcDUjDmu37dmbyLC96fEvEvoOne8+8bFd77MLILyDePtJi9ZKg0AAAAAAAAAAAAAAADgZcIHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4NrwgRIAAAAAAAAAAAAAAACAa5N/1gOXy1rG100r42nmv31Kql7GqzqR8ToaHW91GYk+faSR2WsK9zdzrl5faqRRyHi7oegs7WS8M3WbmBtMMleIfxZp6BtJfsYbd+dpzGlC3/K/K0Pfd9frk3XuZJWO171uTxERqbvexDzwLZWMdFtIOl23feh4RESemmc+HOsfDHS8HOjKrY9WMn6wruw1tZV+hutaj1NpYp555jqy77Bdp++j73V7S1M9zCZmjCw2NLXCXFZZDmR8ONBlF5k5PtPH96YNRITtNI3plonrZK7+ej9NVWbsTPrS/mZ76fvMOhPf8Eiq3PRzN7aac/WFrt/Wjd8b5rlFp/84HOlrOnlFn6f6k6WMXw5mtuw602NMcz6X8R0zzxWjoYyvsw3jZ3so491IX+8P3tHP+41fP5DxrNDnqSpdTxERvcm1+tyMbW4MM7lIl/s51o2f42zX/mYbmeEqOtc50g05sckvUvMbV8Z3/uR7Mv7Kb/+SjL/+C3ftNS0WV/oPK92PKzPXrGrdx4qh7ksREcPbui2MVwsZz80aYXVp8oTe943U5BD1Mz2GDBKdp2S5md87ffz8akN/LXdk/MnTcxlfrXUfK3M971eNvucIv24qN7TnbbVerGW82NNtsZq7BUGEmc7sGqk3OVc31Me3pk0nGxZPXTOV8YEZv8/TRzJ++0hfa73w9XE+u5DxbKjrvDZTRDEcybg+y6f6XvfNpRl72kz3waa+1NdkcrA+MWugiFjPdJ8qCrN+b00StjYVlfhka9bqsaTtXq68ODXrsMzkseVE779ERHQLs7801/lTaZ5tn+kykonOz4rj2/aa2rmez/pOt+dI3Z6QyRPW5jwRUZqFZjrWdd6bRYKZzjbuKWSmrQ8SXbeDkX4WE7PX0JX6/E8vzuw19fmejptE7/5K9+Pnp+cyXrtNw4ioK12JRedzpG2VJHqM6Xpd963dt4zoTA7Vp7q+KjNJpJ2ez9Yz3d7qF/aSIindnrfZe0r1+N03Op7rKTwiIlqTprVm/emmiKwz12TWhRER69bM/WZ+yio9j+dmTE9KHV9t2OeYX5oHbvp/NjBlm3rtNuxT52Y8fPnSYj1HVKHnxWHhx6RBqcfjxrTD1oyhkek2VZmxuDf7XRERk319TaOpyavMuU6WJzJe/ls9b0REHBzrPjA07XNtbmNg6rzc8YPFex88kfFVrcfO1uxHz1a6czSm39++/bq9prfu6nXsa6Ve719cPpPxnX1dr/eWOt+PiPjesw90Gat79jfby+y5m32hym7YRsxb3eguLvVaqEr2ZXx48xdlvKtNDrohH3LvRtowbbHTx7v9M/eOOCKiN9eVpTpXGJv3YIOBWWtN/XiRmHecTlaYdyPu/btJCNw+bkREb96xZKZu7TsGk+9seB0b4d752hfL2+n1V9+Q8S8OdV46Gvp1+qA0eZV9l2n2o8xcWq313sHa9ePwc0FrnvnclNGbcW104Oe5LNV1lbhvFUyemTQ/W7+PiMjN33qTOLr3bO7zAjccmPQ9IiJaM57n5v2iG2vd8Wao/XfXpS84rX1+tslLl0oDAAAAAAAAAAAAAAAAeHnwgRIAAAAAAAAAAAAAAACAa8MHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4Nrkn/XAYTqU8T6tZbxu/LdPVdPKeJf0Mp4WAxnPa318EomM952OR0Rk5lutrtPxItNxV4I5/NPrSvV9tLUpu9Tx1JShz/6ppjF1WHUynuX6+KbVx/e9jkeX+YsyrdKdysXDPO8kfNlt3+hTtbrNbqs+0X0mKczxrvFERGb6QJrqumr1kBDZwPT7Xl9UvqHlJqVuJJNuoq/JjC2ZaWtp78cK1xK6RNdH1pu6zXTDTe0oEpGaP2WFbtN5ouNpZ/pr6IeXbpgq+taUYca1JDH90vTXPjWNNiKGmX4aV6u1/c22qpcjGc8Hul2FPjwiIpqVbnNtrp9Vkup6TGrTTpJKl+vaekSMTGc7MP2mva+vKd3Tx+fnc1t2Uejrna30by7Wuh90lT6+rs2gFxFZmPubX8r49HP6Ga3m+jwDk5tlve+zVaavt0pW5hem3Yz18YcD32fHe3dl/PmTDTnBFkrM/JSaZK/fMK4nvT5X3+lnXi11O7z3yUMZ/85UDxZfeutz9pr2do9k/LLX/fK56QM7Y1324e1jW/b51MwpyVMdv/OGjO/OdT7QZ37wLOszGS9Guuzpnn6uw0Ep42lyJeM/uffcXtN/999/W8a//ZPHMt60uuwuMePahnG7zPU4kpcvV3+NiIhWj0uzK9OXc5/3F4X+W7/SuXeb6GdSTsw6z0z7daXnsoiIqxf6+fZ6iojO5HXPzLxfmL4fEZEU+jePzFiVz3WOlo/1M6pX/r4XnT7Xcq3n2Macajm/kPHerP+ywdReU5i8pnJTbKufhds72Bn6+X2x0u1guZzZ32yjyXhPxlNz64OhaegR8excj6/LS90Yjg8PZHxV6fH+2YWu2/3xjr2mM7MG3D/U81bVLfWJErdf43OO3I1HpsHVJifOC318tWH9Ph7o3wzNQHXr+BV9/I4+vp7pOfb58xf2mppGz2fFjTsyfv7sXMafXuo8od4xA3pElANdV+sr87y3WDs3G3Izs4YIt4EXkbrdFjOG1nM9d9zYO9THL3W9lxv6zbrX48Vyca7PZfKkxOQW9cIWHUWqz9XatYVZM7p9wA0b1WuT71SZyZ16PV5kpj6qzpxnQ/toKn1/iclrcrPOMtsf9l1CRESamxw7fbn2npZzfY9Fruu99Ev76Ex9pZmOdxNTv2YszjvdpprO54ZlqvPxMPtquVl7nja6Pu7cfd2WfftAr3EHa11G3el852Ckc5Fqcd+W/f1v/VDGE5eyjsYynFZ6THDLv6bVOXRERF7r53R6pdexyyv9vI/u6mfaH5pnHRHf+d6fyvj7P/iGjP/B79tT/dy5VVjVmPexZr8/ImJp8rq6MfuWJm9cmj2EpNTHh+nLERGd2fdy7w0TMy9GYt5dmXhERGb2qVP3LiXRx7fm3WrmFi8RUeTuusy7Irufr+O9Wb83G+ZYMy1H15j3OKaeOvtOza8TXJ2Hmce3VZrrSTMzeUq34XVzbXK6LHQ/y8273TzTdbtr1lTDsenHEZGad3RNrW9kYTZg5ld6v6baMH65P9kubtphb5pauuF7AdfPstD14fKjujVjrRmDiw15aZbpsnvz3jUzHdw1QfNa99O/mfEoH/h5eRP+ByUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcm/yzHnhxei7j6y6R8WIwtOdKMv1dVNPX+getPj4JXXaaZjLepxu+x2r1uTJTRhK9LqNtZbzb8C1Y35n7y3QZWaKvqetdvLNld6bsCP0smkafy5aR6Li+0n93rrWOp4mp81THk1SX0ta+9N78pmnNRW2p4Wik/2Dur9jwRIq0kPEu9LNtR7r/1bWuw6LW5+9L3ZcifP9rGt1us06fq29N+zRjSEREmurf5Llpn40ZQzJdRrrhWSRZY/6gy+560zcKXXanD4+u82OIG9pq0y/TTD/v1IzPSeLbQdfrKWw0+cxT29ZIWv1MFsuZjA/MnBURUTe6r/WmjXaJPr6xc42+Vt9rIsp0R8aLSo9Vy5luc+UL0//OV7bsg8kTGV+Pj/QPhrqMeVvp45ulLbsd6PveG72Q8YNKj2GjRNdukg5kfOk6c0Skpb7edq3jtclFhnUp46ODA1v24/vnMr5Y++vdRqlr7Y2Za3qfA7bZz5Y/rde6v16ensr4Jx/pa53NntprOjl+TZfx7ELGRzcPZXxl0vqHz01fiogHH+u+/PndiYy/enwi4699/hUZH+zdsWU31ULGp2s9Dg9zHU/WVzL++OEDGX/0QM+LERE/vvcdGX/wzPTjXI8JLt9vW9/3soHJz9x6bYv1vZ5rkkTfY1n4Z7IwdTYa6TbqhmN3niLcuD631zTUw3HUrX5WVafvr2l0O7nh8s+IuDD5/V6h9wJqs6aqZ7qMrPBttFub+5vruMuL10udN1bm4fXLM3tNuVkHhWmDpVmLtDN9D4uFHz+7Vo8Lg8XLNcfmna6rrtf3N7vwOWBv2vTxwa6MZ2b9UuyPZbw165TTRx/ba6oXlzI+zHTOuK51e6tN/r42uUhExM7uvoy7uSA3ezxZrvtMWvmxol3ov01292S8y8161TzTneG+jF/UPk9/fKHXCOVQj19PLnTutCh0nddrnTdFRCzMumJt9tu22dUTfS+LucmLN/0zWT2VRl7quTFrprqMfl+fp9HP5OCGX790uuj44J7OA9NS982s0f0mqX2/CbO/XJo9lcadyuxJ9bXfNxmYPaN2bPa8zXxWm2damlykq30fGA7Mfq2pw7Qzc7LJjzpT3xER6cAkW83LNcdGpetk3ek6rDd02MVaP6vV0rURsx9l+sZoqBtPbvbOIiLahb6m8a5er47MPDe70mvrvSM95kRETM1csJ7rMWH/zm0Zf3auc/6zpzp/iIh4fqVzhVs3bsl4mujnbdeGpr/+4E9/ZK9pvdD1kSY636lNDrF3R6/rv/yV133Ztc4N02rf/mZbrWo9x7atrq/GvKeNiAizr5ilps+a43tTRmsmIfcOJyKiM+9rTDgSt+dm3tVseh+bJiafzd17HH2e1j0jW3JEa96BpGYfPjXv4MxrPnutm2asvtdXnLg2ZQp3+6Vmmvn0b2b/s9+wX7WNOpMTnK/0uO7ehUVEZHNdj6VZh5nXjDEo9R8GhWnnlxveS7r3peabhN5clEkZI9nwqUpm3n26Vt26scWmmT7/TMzfEvPOvDf7TqnJOXpzb6n5hiZiw3cgZg+rcXtb9t42vFs1422f//X2ivkflAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcm/yzHriuaxlftZmMN0lvz1Wnlb4Y87lUGp2Mm6KjM99dpf6SIjVVkaSJLrvR5+nT0pzfF964c2X6Bvu2lfGu19eamHhERBP6XFlXyHhtnmvb6ZtIUn2e8JcUvbnezNVhpe+h73U8Mv9dXmLaznS8a3+zjebtXMbLXNdtV5vOFBG1aSNpqZ9t1ur+6tpONtJ13jb6PBERTa//Nkj1uarO9RkzBNa+vw6meiysl/r4otTX2pkqrxpf9qTU9+H6metL4fpYpuujrfWYHRGx6vS5+kTfYGEG+sb073TDwN2FHnfcfWyzea+fYWkmulmq22FERFWbOTD0c1x3pq+ZfpaUut6rZmCvaVzo5/j0aibjR/VYl12sZPxhvrBlp+NTGb+9r3/z0XMzb431/J7s3rRlx85QhodHuq7a9XsyXo5GMr4yc++yNwNSRPSdbju9GeuXmX52hamm2ZV/Fo3JJY/3/BizlXo3Xum+15l5McLnaPlAt5HUjKE7E/1A0kTX7Wr5wl7Twe6rMv62Gadme7q/XuruGhfnOkeJiOhN3VbFjoxnu4f6PGPd95qBzwHr4kD/IdH3d2bGqfOLtYz/+Jku+7sf+f76ZG7y7lzf36LSZUehx69swxybmjlgx6x1ttm9T+7J+GT3RMark6k9V1LqPtWaxc2q1XVc1vr4utFj8Xq+YVwf6lxhnek5YjLR58lznT8tr8xiNSKahckJWn1/ZWfK6PT9VfWG+d2MMbp3RCxbfa4Dkx+9aE3etPb1sarNGiUzzy/TY1u60sdfmrk6ImJkxoudhf/NNqrNIunimWsjpiFExGSgG/v+UPfxcqzbZ2HmoGr+VMbffef79pqOzPx09xU99ybPde70oj6X8Xx9Zcuem+6UZ7qN5I2ujyuX66V+LVDkeu4oCr3P0he6HTz85FwX0Jj+avpxRERicqT6/FLGH13ouu0yPfdmuz7nyHpdH3lvBugtdnWh66s3VV8Ofb2kZhxLzB5ynej+cbo6l/FXdszctGFt3Zr9xoMb+zI+Mns2L+a6/Qw2pFWNSZlrt0duhvskM3s2a3/fmflTaa53OTZz0FiP0Xmu82h3zxERXWXyYrOP23a6b5a5Hl/cXmZERF3pcS+Pl6vPfuvd5zK+f6DnpicX/oE0ud7Lqa50vffm+fWZblTjxNSt2VuKiMjMe4CF2QNZz3VOV5gtxds39L5MRERT6Pbz0YNHMt4/0ftU2UTPpbPzJ7bsN17XecpVfy7jxxO9Brp1W+9tFWP9LG688pa9puj0c61m+vm5va3JSOds2YHeB4iIyAe6jLfevmt/s61WS92fOrNW38T9JOnMnp/dW9fPqu/12Nq6PedPS5FR9w5w3es5pTHrnW5D2dXE5L+1vu9Rr8eR3OwDxob3Wl2h+/nA5L+12VNIE30PjVmT9ptfyMpwnpm9RvOurXFFbPhWoLXz+8ulG5jcJtE5RNlvyInNpntSmm8YTPssTM4TyYa2YLTmcjuzfjevoSNS882DGYsiInqT+4bpA2tzeGbOk2/4f3xq8y6jNTlH7z5yMXlmlpix1uTvERGpGTvbRl9rV5t3yqYdrCq/hk5z/ZwG5juavwr/gxIAAAAAAAAAAAAAAACAa8MHSgAAAAAAAAAAAAAAAACuDR8oAQAAAAAAAAAAAAAAALg2fKAEAAAAAAAAAAAAAAAA4NrwgRIAAAAAAAAAAAAAAACAa5P0fd//vC8CAAAAAAAAAAAAAAAAwP9/4n9QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt+EAJAAAAAAAAAAAAAAAAwLXhAyUAAAAAAAAAAAAAAAAA14YPlAAAAAAAAAAAAAAAAABcGz5QAgAAAAAAAAAAAAAAAHBt/r9i7X9TTW48KwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nrows=5\n", "ncols = int(math.ceil(25/10))\n", "axs = subplots(nrows, 10)[1].flat\n", "for i, (pred, ax) in enumerate(zip(preds[0], axs)): \n", " ((pred+1)/2).show(ax=ax, title=dls.vocab[i] if i<10 else None)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "def log_table(rows=10):\n", " table = wandb.Table(columns=list(dls.vocab))\n", " for i, row in enumerate(preds[0].split(len(dls.vocab))):\n", " if i(success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='37.925 MB of 37.925 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, m…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▁▁▁▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███
eps_0▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
lr_0▁▂▂▃▄▅▆▇███████▇▇▇▇▆▆▆▅▅▅▄▄▄▃▃▃▂▂▂▂▁▁▁▁▁
mom_0██▇▆▅▄▃▂▁▁▁▁▁▁▁▂▂▂▂▃▃▃▄▄▄▅▅▅▆▆▆▇▇▇▇█████
raw_loss█▄▃▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
sqr_mom_0▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
train_loss█▅▃▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
train_samples_per_sec████▁███████████████████████████████████
valid_loss█▆▃▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wd_0▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


epoch100.0
eps_01e-05
lr_00.0
mom_00.95
raw_loss0.09004
sqr_mom_00.99
train_loss0.09405
train_samples_per_sec1659.48473
valid_loss0.10457
wd_00.01

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Synced classic-wind-75: https://wandb.ai/capecape/ddpm_fastai/runs/9xdzrfdb
Synced 5 W&B file(s), 901 media file(s), 102 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20221007_132515-9xdzrfdb/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "log_table()\n", "wandb.finish()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another useful thing to check is the prediction of the completely denoised image at some timestep. Our sampling takes our prediction of noise in the image but takes only a fraction of it to remove from the noisy image during the iterative process. But we can also try to see the full denoising prediction by fully subtracting out the prediction. Of course, at higher noise levels this will be inaccurate, but at lower noise levels it should be quite accurate." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "eps = TensorImage(torch.randn(xb.shape, device=xb.device))\n", "x0 = xb # original images\n", "batch_size = x0.shape[0]\n", "with torch.no_grad():\n", " t = torch.randint(0, ddpm_learner.conditional_ddpm.n_steps, (batch_size,), device=x0.device, dtype=torch.long)\n", " alpha_bar_t = ddpm_learner.conditional_ddpm.alpha_bar[t].reshape(-1, 1, 1, 1)\n", " xt = torch.sqrt(alpha_bar_t)*x0 + torch.sqrt(1-alpha_bar_t)*eps # noisy images\n", " x0hat = (xt - torch.sqrt(1-alpha_bar_t)*ddpm_learner.model(xt,t))/torch.sqrt(alpha_bar_t) # predicted denoised images" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Timestep 73 is closer to 0 so less noisy but noise is still visible." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([], dtype=int64)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.where((t==73).cpu())[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can see the original clean image (x0), the noisy image (xt), and the model's attempt to remove the noise (x0hat)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAD1CAYAAACr+choAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSPUlEQVR4nO3dZ5gUZfY28Ls6d0/35EwGJYgKgqISBFRUBHURRMU1oCgmxLSg4oqga0BE3BXMiBF1DbhmXcSwMgpGzIkcBobJoXM/7wdfWEfO6RpZVsf937/r2g97as5T1dXVVc+089xYxhgDIiIiIiJSOX7rAyAiIiIiau04aSYiIiIissFJMxERERGRDU6aiYiIiIhscNJMRERERGSDk2YiIiIiIhucNBMRERER2eCkmYiIiIjIBifNREREREQ2OGnezd577z2ccMIJKCkpgcfjQXFxMcaMGYOysrIWj3HttdfCsqxd2v+bb74Jy7Lw5ptv7lJ/Sw0ZMgRDhgz5r+6D6Pdg4cKFsCwLPp8Pa9eu3Wn7kCFDsPfee//icfkZo9Zq+zW//X8ulwtt27bF+PHjsXHjxl/lGDp27Igzzjhjx//f1WffsmXLcO2116Kmpma3Hh8AnHHGGejYseMu9//8Nf6Wtr/na9as+VX329rug5w070Z/+9vfMGDAAGzYsAGzZs3CP//5T8yePRsbN27EwIEDcccdd7RonAkTJvyiSfZP9enTB2VlZejTp88u9RPRrolGo7j66qt323jz58/H/Pnzd9t4RLvbAw88gLKyMrz++us4++yzsWjRIgwaNAiNjY2/+rHs6rNv2bJlmDFjxn9l0vy/ZMSIESgrK0NJSclvfSi/KddvfQD/K959911cfPHFOProo/Hss8/C5fr3qT3ppJMwatQoTJ48Gfvttx8GDBggjtHU1IRAIIC2bduibdu2u3QcmZmZOOigg3apl4h23VFHHYXHHnsMl19+OXr16vUfj7fXXnvthqMi+u/Ze++9sf/++wMAhg4dimQyieuuuw6LFy/GKaecIvZsf87tbnz2/XcVFBSgoKDgtz6M3xy/ad5NbrzxRliWhTvvvLPZhBkAXC4X5s+fD8uycNNNNwH4959gfPTRRxgzZgxycnLQpUuXZtt+KhqN4rLLLkNxcTECgQAOOeQQfPjhhy36T1RnnHEGgsEgvv/+exx99NEIBoNo164dLrvsMkSj0Wb7mTFjBg488EDk5uYiMzMTffr0wf333w9jzG48W0T/e6ZMmYK8vDxMnTo17c9FIhFceeWV6NSpEzweD9q0aYMLLrhgp2+6pP8seeedd6JXr14IBoMIhULo3r07rrrqKgDAmjVr4HK5cOONN+60z7fffhuWZeHvf//7f/QaidLZPmnd/mdK2589n332GY444giEQiEcdthhAIBYLIbrr78e3bt3h9frRUFBAcaPH4+KiopmY8bjcUyZMmXHs2/gwIFYvnz5TvvW/jzj/fffxzHHHIO8vDz4fD506dIFF198MYAfn7V/+tOfAACdOnXa8ecmPx3jiSeewMEHH4yMjAwEg0EceeSR+Pjjj3fa/8KFC9GtWzd4vV706NEDDz30UIvPW0tfIwCUl5dj4sSJaNu2LTweDzp16oQZM2YgkUjs+Jk1a9bAsizMnj0bc+bMQadOnRAMBnHwwQfjvffe22nMf/zjHzj44IMRCAQQCoUwbNiwnf5rt/TnGR9//DFGjhyJwsJCeL1elJaWYsSIEdiwYcOOnzHGYP78+ejduzf8fj9ycnIwZswYrFq1qtn4xhjMmjULHTp0gM/nQ58+ffDyyy+3+Bz+WvhN826QTCaxdOlS7L///uo3xO3atUPfvn3xxhtvIJlM7qgff/zxOOmkk3Duueem/U9a48ePxxNPPIEpU6bg0EMPxZdffolRo0ahrq6uRccYj8dx7LHH4qyzzsJll12Gt99+G9dddx2ysrJwzTXX7Pi5NWvWYOLEiWjfvj2AH/9Ge9KkSdi4cWOznyOi5kKhEK6++mpMnjwZb7zxBg499NCdfsYYgz/84Q9YsmQJrrzySgwaNAgrV67E9OnTUVZWhrKyMni9XnH8xx9/HOeffz4mTZqE2bNnw+Fw4Pvvv8eXX34J4Me/fzz22GNx1113YcqUKXA6nTt677jjDpSWlmLUqFH/nRdPBOD7778HgGbfSMZiMRx77LGYOHEirrjiCiQSCaRSKRx33HF45513MGXKFPTv3x9r167F9OnTMWTIEHzwwQfw+/0AgLPPPhsPPfQQLr/8cgwbNgyff/45jj/+eNTX19sez6uvvopjjjkGPXr0wJw5c9C+fXusWbMGr732GoAf/xSyqqoKf/vb3/DMM8/s+NOD7f+V54YbbsDVV1+N8ePH4+qrr0YsFsMtt9yCQYMGYfny5Tt+buHChRg/fjyOO+443HrrraitrcW1116LaDQKh8P+u8mWvsby8nL069cPDocD11xzDbp06YKysjJcf/31WLNmDR544IFmPz9v3jx0794dc+fOBQD8+c9/xtFHH43Vq1cjKysLAPDYY4/hlFNOwRFHHIFFixYhGo1i1qxZGDJkCJYsWYKBAweKx9zY2Ihhw4ahU6dOmDdvHoqKilBeXo6lS5c2O+6JEydi4cKFuOiii3DzzTejqqoKM2fORP/+/fHpp5+iqKgIwI9f2M2YMQNnnXUWxowZg/Xr1+Pss89GMplEt27dbM/hr8bQf6y8vNwAMCeddFLanzvxxBMNALNlyxYzffp0A8Bcc801O/3c9m3bffHFFwaAmTp1arOfW7RokQFgTj/99B21pUuXGgBm6dKlO2qnn366AWCefPLJZv1HH3206datm3q8yWTSxONxM3PmTJOXl2dSqdSObYMHDzaDBw9O+3qJ/i944IEHDACzYsUKE41GTefOnc3++++/4/MyePBg07NnT2OMMa+88ooBYGbNmtVsjCeeeMIAMPfcc8+O2s8/YxdeeKHJzs5OeyzbP//PPvvsjtrGjRuNy+UyM2bM+A9fKdGPtl/z7733nonH46a+vt688MILpqCgwIRCIVNeXm6M+fezZ8GCBc36tz+7nn766Wb1FStWGABm/vz5xhhjvvrqKwPAXHLJJc1+7tFHH23Rs69Lly6mS5cuJhwOq6/llltuMQDM6tWrm9XXrVtnXC6XmTRpUrN6fX29KS4uNmPHjjXG/PicLC0tNX369Gn2jFyzZo1xu92mQ4cO6r5/6WucOHGiCQaDZu3atc1+dvbs2QaA+eKLL4wxxqxevdoAMPvss49JJBI7fm758uUGgFm0aFGzY99nn31MMpls9hoLCwtN//79d9S2v+fbz9MHH3xgAJjFixerr62srMwAMLfeemuz+vr1643f7zdTpkwxxhhTXV1tfD6fGTVqVLOfe/fddw2AVjXX4J9n/IrM//8Th5/+6cXo0aNt+9566y0AwNixY5vVx4wZs9Ofgmgsy8IxxxzTrLbvvvvutNr/jTfewOGHH46srCw4nU643W5cc801qKysxNatW1u0L6L/qzweD66//np88MEHePLJJ3fa/sYbbwDATiviTzjhBGRkZGDJkiXq2P369UNNTQ1OPvlkPPfcc9i2bdtOPzNkyBD06tUL8+bN21G76667YFkWzjnnnF18VUSygw46CG63G6FQCCNHjkRxcTFefvnlHd8ebvfz59wLL7yA7OxsHHPMMUgkEjv+17t3bxQXF+/484ilS5cCwE5/Hz127FjbZ9+3336LH374AWeddRZ8Pt8vfm2vvvoqEokETjvttGbH6PP5MHjw4B3H+M0332DTpk0YN25cs2d7hw4d0L9/f9v9/JLX+MILL2Do0KEoLS1tdkzDhw8H8O+5wnYjRoxo9l+c9t13XwD//vOZ7cd+6qmnNvtGPBgMYvTo0XjvvffQ1NQkHvcee+yBnJwcTJ06FXfdddeO/+L18+O1LAt//OMfmx1vcXExevXqteMclpWVIRKJ7HQO+vfvjw4dOsgn7jfCSfNukJ+fj0AggNWrV6f9uTVr1iAQCCA3N3dHrSUrUSsrKwFgpxuRy+VCXl5ei44xEAjsdOPwer2IRCI7/v/y5ctxxBFHAADuvfdevPvuu1ixYgWmTZsGAAiHwy3aF9H/ZSeddBL69OmDadOmIR6PN9tWWVkJl8u104Iay7JQXFy847MuOfXUU7FgwQKsXbsWo0ePRmFhIQ488EC8/vrrzX7uoosuwpIlS/DNN98gHo/j3nvvxZgxY1BcXLz7XiQRgIceeggrVqzAxx9/jE2bNmHlypU7LXQPBALIzMxsVtuyZQtqamrg8Xjgdrub/a+8vHzHL4TbPw8/v3Zb8uzb/rfRu7qofsuWLQCAAw44YKdjfOKJJ2yPUav93C95jVu2bMHzzz+/0/H07NkTAHb6Rfrn/dv/9Gv7s3z7vqV5SGlpKVKpFKqrq8XjzsrKwltvvYXevXvjqquuQs+ePVFaWorp06fvuO9t2bIFxhgUFRXtdMzvvffebjuHvyb+TfNu4HQ6MXToULzyyivYsGGD+CHdsGEDPvzwQwwfPrzZb34tyWPefuFv2bIFbdq02VFPJBJpH7K/1OOPPw63240XXnih2QR78eLFu20fRP/rLMvCzTffjGHDhuGee+5pti0vLw+JRAIVFRXNJs7GGJSXl+OAAw5IO/b48eMxfvx4NDY24u2338b06dMxcuRIfPvttzu+kRk3bhymTp2KefPm4aCDDkJ5eTkuuOCC3f9C6f+8Hj167EjP0EjPuPz8fOTl5eGVV14Re0KhEIB/P/vKy8t/8bNv++frp4vSfon8/HwAwFNPPZX2286fHuPPSbV0/XavMT8/H/vuuy/+8pe/iGOVlpba7k/a9+bNm3fatmnTJjgcDuTk5Kj9++yzDx5//HEYY7By5UosXLgQM2fOhN/vxxVXXIH8/HxYloV33nlHXKuxvWZ3Dv+TrOvdjd807yZXXnkljDE4//zzmy30A35cKHjeeefBGIMrr7zyF499yCGHAPhxFe9PPfXUU81WzP6ntofU/3RSHw6H8fDDD++2fRD9X3D44Ydj2LBhmDlzJhoaGnbUtycHPPLII81+/umnn0ZjY+OO7XYyMjIwfPhwTJs2DbFYDF988cWObT6fD+eccw4efPBBzJkzB71791ZjLol+CyNHjkRlZSWSyST233//nf63feHX9vSYRx99tFn/k08+afvs69q1K7p06YIFCxbslBL1Uz//9nW7I488Ei6XCz/88IN4jNt/WejWrRtKSkqwaNGiZilTa9euxbJly2zPxS95jSNHjsTnn3+OLl26iMfzSyfN3bp1Q5s2bfDYY481O/bGxkY8/fTTOxI17FiWhV69euG2225DdnY2Pvroox3Ha4zBxo0bxePdZ599APz4Zz4+n2+nc7Bs2TLxH4z6LfGb5t1kwIABmDt3Li6++GIMHDgQF154Idq3b49169Zh3rx5eP/99zF37twW/Y3Tz/Xs2RMnn3wybr31VjidThx66KH44osvcOuttyIrK6tFq3NbYsSIEZgzZw7GjRuHc845B5WVlZg9e7a6mp+IdDfffDP69u2LrVu37vjPp8OGDcORRx6JqVOnoq6uDgMGDNiRnrHffvvh1FNPVcc7++yz4ff7MWDAAJSUlKC8vBw33ngjsrKydvqG+vzzz8esWbPw4Ycf4r777vuvvk6iX+qkk07Co48+iqOPPhqTJ09Gv3794Ha7sWHDBixduhTHHXccRo0ahR49euCPf/wj5s6dC7fbjcMPPxyff/45Zs+evdOffEjmzZuHY445BgcddBAuueSSHc/kV199dccEbfvE7fbbb8fpp58Ot9uNbt26oWPHjpg5cyamTZuGVatW4aijjkJOTg62bNmC5cuXIyMjAzNmzIDD4cB1112HCRMmYNSoUTj77LNRU1ODa6+9tkV/WvBLXuPMmTPx+uuvo3///rjooovQrVs3RCIRrFmzBi+99BLuuuuuX/TnKA6HA7NmzcIpp5yCkSNHYuLEiYhGo7jllltQU1OzIyJX8sILL2D+/Pn4wx/+gM6dO8MYg2eeeQY1NTUYNmwYgB/nReeccw7Gjx+PDz74AIcccggyMjKwefNm/Otf/8I+++yD8847Dzk5Obj88stx/fXXY8KECTjhhBOwfv36Fp/DX9VvtQLxf1VZWZkZM2aMKSoqMi6XyxQWFprjjz/eLFu2rNnPbU/IqKio2GmMn6dnGGNMJBIxl156qSksLDQ+n88cdNBBpqyszGRlZTVbdaulZ2RkZLRoPwsWLDDdunUzXq/XdO7c2dx4443m/vvv32l1MdMziH700/SMnxs3bpwBsCM9wxhjwuGwmTp1qunQoYNxu92mpKTEnHfeeaa6urpZ788/Yw8++KAZOnSoKSoqMh6Px5SWlpqxY8ealStXisc1ZMgQk5uba5qamnbL6yTaLt01/1Pas8cYY+LxuJk9e7bp1auX8fl8JhgMmu7du5uJEyea7777bsfPRaNRc9lll+307OvQoYNteoYxPz6Thw8fbrKysozX6zVdunTZKaniyiuvNKWlpcbhcOw0xuLFi83QoUNNZmam8Xq9pkOHDmbMmDHmn//8Z7Mx7rvvPrPnnnsaj8djunbtahYsWGBOP/102/SMX/IajTGmoqLCXHTRRaZTp07G7Xab3Nxc07dvXzNt2jTT0NBgjPl3esYtt9yy074AmOnTpzerLV682Bx44IHG5/OZjIwMc9hhh5l333232c/8PD3j66+/NieffLLp0qWL8fv9Jisry/Tr188sXLhwp30uWLDAHHjggSYjI8P4/X7TpUsXc9ppp5kPPvhgx8+kUilz4403mnbt2hmPx2P23Xdf8/zzz7e6uYZlDP/Vit+rZcuWYcCAAXj00Ucxbty43/pwiKiV2Lp1Kzp06IBJkyZh1qxZv/XhEBH9T+Ck+Xfi9ddfR1lZGfr27Qu/349PP/0UN910E7KysrBy5cpditQhov8tGzZswKpVq3DLLbfgjTfewLfffttscREREe06/k3z70RmZiZee+01zJ07F/X19cjPz8fw4cNx4403csJMRACA++67DzNnzkTHjh3x6KOPcsJMRLQb8ZtmIiIiIiIbjJwjIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERko8XpGWecPkysp5Iptcfxk3+OuVnd6D2AvC4xBbfakbLkl9EUiSl70PefTCXlDWnWS7rd8rG55JcPALCU8dKtyjQp+bhTyn6caU6z01jyWJZ+BFHlvJnkL19Lasm7h2Xpv8dZSfl9Tnc5WQ55R440+4ElDxhVLg0AME752J57/CW9qTVoM1EsT1qyTm25I/mGWJ95gfx5A4C3zhot1pfc+rTa84+X5fqRM56Uj+ta5aICMOK0E8T6Wa+rLfjXWWVi/bnjXlB7sp+5Xqyf5P+T2rPyk9li/S97yCdg7sNz1bFQ9KpYfsb7udoyevJYsb6022S1Z0inc8S65f1QrPd076+O9fnLq8X6rIeOV3tuWvaRWK8+U37PAODc6w4W6x1fXqr2XGF9JtbNmRepPa2CcoO97gA9z798oPwvr+U16PeChlx5P75krdoT9vnFurVRvu9WeorUsbxGfvbmdW1Se1LlNWLdndCfCVlh+d72g0v/Z6uzioNivTxDPmfhSv08t6uTHz7fpfR7brZXfia5V+nTPqunfGyxH+rFerRgD3UsT3SzWA8F9USf7IR8DuqTHdSeTbH35XoipPa891hvsW4it6g92/GbZiIiIiIiG5w0ExERERHZ4KSZiIiIiMgGJ81ERERERDZavBAw5ZL/SD+pLJoCADiVhTkmnmZH8qKypNFX1SWS8txfWyBoHGF9/450ixRlSUdC3mDSLGpT1s6ZNEsBtW2plLwYIh5XjguAU1vwqCxqBICUQ7lcnGneT0VSWdTodOjnzKEsXky7DFFZEJNMs+DRKIsrkmnez5TxpDuKVuv2sr3l+mX91J6s3vICtW1364u9Hur+gFg/tu4AteeSB9aK9cvPKBTrl5a8q451fu4Isb5oVZr3rZO8aGrwyfLCNQDIOedTsb7v+/ICOQAoyJGP4dRvjhLrE44fro5139Nbxfroo59Re/DDl2L503E91JaXS06UN2zqL5af/1x//ad4O4r1CaXyYj8AqIZ8DTyxQF8YdWKHGnlD76FqD459St/Wil3657PFeuVm/b5XkNUo1r+u1Be75dTVifVyh76fZLX8HPGUyou9/E79M+oIVIn1bWv0hWOWp51Yr62UXwsAdM2TF/U5/fpcYv2aCrnH10tuiNSoY9VnyIva/Ou3qD3xgPweNPn155i3xivWCwrlz1s15PMPAEGHvLA0tjlD7Qm7u4j1pspVak+jT14o2qut/D4DwCHjd/15zW+aiYiIiIhscNJMRERERGSDk2YiIiIiIhucNBMRERER2eCkmYiIiIjIBifNREREREQ2Whw5Fwtr8WVKrByAuBLdVVoUUHtScTn2prq2Qe3RZv6OpBy5Eo/rsXLaq7GU6DIASBl5PKPE5wGAQznqNLuBUSLXHEpKXDzWpI6l/LP0aY85kZBj/6xd+N3LaSljpUn8c1jy9eTU0wjV1xOP6zF5BblyJM62mnq1pymeNviu1cpv31mszxih3xquf2SAvOGTkWqPNWhfeUOmHt82c+0/xfo/Zy0T67lZ09SxZmfJ9XGZj6g9fynbJtbbu/+u9uS/JMfuXXVLVO3BfDn+6Hrl0K7++3fqUEPGytFQd5Tr8ZOjXjpXrN9zzkFqz9c4RN7wryfE8gKvfp6HLesr1r/cqn+mnrhIvgZO3Lin2oMi+f00W55TW6wnjpA3KIl7rUXTVvkeZsWVqFEA275bI9a7x3LUnq9q5XuyJ1/vKcmRn/GxRjlWLN6kj+XxypFvNUX6QyFra7VY37M0U+2pr5fnH4XKcwwAsi05Cq0hJH9+vZn6w7+uZp1YL+qkR8Q2hbPFel6OHCsHAE0JOcKuLi5H7uVacqwcAKQichydlaXH1CHgF8sJlz5nLG6Qz1uqSb/WN62Sz2dL8JtmIiIiIiIbnDQTEREREdngpJmIiIiIyAYnzURERERENjhpJiIiIiKy0eL0jLaZPrGeTOorFCMRecV4txJ9NaxJyqtBNzlr1J6MoLyyc1uVvEo3GpNXaKaTk6Mfs5asEfTL5wwAGurkJIZ0GQxOp/w7jscvr4atqdZXzOfnyMfm9WerPduq5cQJy6FfRk2N8ntgWfJraWysU8eyTESsBwL6amB/QF5FXlGxVe3Zv2tHsb5xi766eUOVfGyt3SmfHylvWP6W2mOd8a5YL+hUo/YUlbUV6+Xv6Of0YyWk4vs7Oor1hd17qmOdeOGfxHoHK1/t6Vn1jli3HtITP1Y9K9dXt9Gv0UuTcgLB8+/IqRpv5uWpY732d3msfn31z+gFj58n7+eeJWrPwGsPE+sjfF3FekWefC4BoPF+OeVn7KGPqz3ZJz8j1s3ECrVn3OoCecNNckoLABy1QH6drd26sJwUklGvP5MCxSGxvqlcv7eVBJXndUBPbtrUKD/7ssLyvSA3WqOO1ZCUnyOulWoLQoXyZ9FRoz97AgE5fidcKX/eACCSLz/NkxH5s+h0y88qAAgp20xTudqT8spRVE0NckIGAKSUKKpAvfy83OTSU6jau+TXb/L1hJtoRE4p8RSkiRXLkxNUIjH9O+F4wdH6eDb4TTMRERERkQ1OmomIiIiIbHDSTERERERkg5NmIiIiIiIbnDQTEREREdngpJmIiIiIyEaLI+eO6N9JrMdieuRIIiHH0WXISUoAgGRU7umQK8fKAYDXL8exNIblCJ14Qv9dQYt8C/gDao/LpUTBpTm7jQ3ynpwuOfIFAFxOeUCXR379tWki51yWHAUXzMpUe+Id5bgiAz12p7FRfrNdLvm1RKP6+5xQIgwdSnwdAAQCcrxgRa7ekwk5eqjDXiVqT1UsXVhg62UdLb8PC9e/rDfdKcdJfRTZoLa8OPD8X3RcALDf5XI957I1Yj2rix7FVm+dLtaDA3uoPc/dLNfN7WPUnk2Ri8X6ZjNW7elyoRz5lhgtX1NnX3GmOtYBa+QIMDNSfv0AYDnke1vD3UepPcGJz4v1S3GEWHfhNHWse86cJNYvsE5We3DxXXK9UImVA/DYVXL9kgv1eLSXpygb9LegVchyy/cql1t/KBVUrhXrMY8e95XyyHFfe4f0Z8/Gr6rFemHuHvLP5+txjR3i8nOsvKhS7alLys/YYr/+7Kmqk/eDbP157fbLc5nEWvn54nfLsXYA4MqSP9frU/q5QUKO9isOyfMiAPi+Sv4sFCjTn7xq+b0EgOqCQrnHsU7tcSNX3mD0aGMrIj/jq+rkaxMA8oP6Njv8ppmIiIiIyAYnzURERERENjhpJiIiIiKywUkzEREREZENTpqJiIiIiGy0OD2jfbG8sjMe11fJqpRUDQBASl7Z6XDqq1TVoYy8+jyR0vcfV47N6AuIYZBStkTUngyf/HrcLnmVLAA4lINIGjnBJOjRkzAckJMw4NDPs1GyRZIp/RrI8sure7UkEGP0aJVkQr4GE3H9/dSOOcMrr+wFACfk1+P26sfmzfjl12drcPD668T66dATBc6AvJR6iU+/dmfMlusd6/VVzDXX9hHrcw/8SqzftfxxdazgnCVi3QrkqD17TDxWrB93s34z+AYPiPU/Dv5M7Vnc/X55w8jjxPLyz/RzlnnWG2L9L+Fn1J5Pj/lYrAdv0F9n3zseFOt3XSgnAyyLbVHHmvW2nHpyxXl6msEZufLr7KGcSgDQztrcDXrixtzH5eM2KNJ31Arkx+SEAteeSjoBgNot8v3VpSQqAEBGjZzc1BDQr9FEkfxdXZVf3k+oWkmuAFDfWZ4vuL7Rrx1nUH5eb0xUqD05RcVi3RfWX2d9nfz5ycyQz3N1Qn+Omm3yfrJy9fSMWF22WG/K2Kr2eErlY/Nsk9+D7PzO6ljJCnk/TY35ak+0ZqNYz8rVEz9i9fJndOtm+doEANdBLypb7GNx+E0zEREREZENTpqJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZ4KSZiIiIiMhGiyPnPC45vsMyuxA555ZjwADAspRtSnwcAKSUyDGXkpjkdehRSpZTjs2Kp8mcMw75dw/LoZ8bK6XE1CW0+DrAUjZZTvncpIxfHSuV0s5zmmw9hcutR7skk/J7k9DidSx9/ym3fJ49Snrej8PJ45k015PTJX8s4jE52g8A/L/TXz/PvK+rWN9/gh4ldDbkWKDwfRPUnm1nLRLrR5bob96ia78U6/OXy+9ptvlIHcvqNVWsX/CMfh3MG3S8WF96S0e159A/yTFLs666Wu35/KhvxfqxZk+x/ula/R7xXeQwsd6u9DS1Z8rmD+UNf1Vb8OSkE8X67a/OEOt3nfapOtbMsS+L9WH5B6k9SyueEOtnrj9S7dnnhzPEuml7odqDdtPkun7ZtArV+d3EerJcj/5zbpM/ixn+tWpPMlOJAS1PM7XIUO79q+XIuVSamDzUylFsnfz6c6TCknsK0zwTHE01yhb9GZtp5Di4+kz5dQbjenxckxLrmgo0qD1Jq16ue/X4tpxt8rG53XIsZI0jpo7lteQox2BEjxAMFMrH1lSlvzfbsuV7bp+ifdSejXX6/cjO7/RRT0RERET06+GkmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkY0Wp2ck4vLqzXhcTxTQkgssh776G8o2K92hujzKsck/HmnUj7m2rlqsV9fLq0oBoLZeXsHaFJZX6QJAwCendLRvU6j2lBTKK1gdRk6oSKbkOgAYLT0jjZSynw0b9RXZPp+8IjsrS151bSlJJECa6ylN4oaWkpGuJx6TVwSnS9wwv9PfPydMOEmsp/72sdoTmyRfB5/XX6v27LnxDbE+6tmD1Z6TrUvE+r1XLBHrd+fo1/tNMw4V65l7PKj2jHvzK7E+Y/BqteeBP8nX1fijctQenCmnZFxtPSXW3wqfrg51SLGyoUl/nV+svUqsL+igr7KfDnml/3UN8nt2VdFMdazamw8Q6zNflpM4ACBRPEesP/nFpWrP6df2FOvWm3eqPce2HynWn4P++WgNMjevFOtBv/wMAYCqgJyKk/Lr6RVWVL7v1RTon8WsBjltqXZPOYmifVVUHSuSIb+ezdCTq4K+TLGeHdfv79VGnpc0uvVnfKZfnkvUJeXXn+eW0y4AIBSU5ywOU6r2ZHvllIrKJv1zHU2Ui/UaZ0SsByN6ekeVV56XISvNs7JanhcV5+kpS+54B7FeF6lVe3w1ae7HNn6fT3oiIiIiol8RJ81ERERERDY4aSYiIiIissFJMxERERGRDU6aiYiIiIhstDg9w+GU59eOpD7vdjicct2VJtXBUsZz6P/Ge2WVvIL1/fc+EesVm6rUsZqicnJCRZXes61SXqXp8erHHArKq0FLCuVUCQDo2aOzXO8u17MyA+pYKaOsLrb0ZJNYTO7ZulX+t98BoE2bNmLd65VX3yeT+v7VawN6EkYqJY/n2IWUjnTpGQ6Hfgyt2ddvLRfr3efpr/VL3CPW511yt9rzbrWckPDRpFPUno2z5MSNjzco+6l+XB2rH+SEhG83ySkDALD+qafF+huD1RZguHze5twqnzMA+PtoeZX5xeddKNYPGTZZHeutwI1ifcgVagueeOUGsX7llXIdAO674QuxvtfIzWL9q0P0NIMOg+UkimfxV7XnsPPkczA2/rzag3Pl/bQ9/hO15R9nfqOP14rVheTEi7zGGrWnPiI/r6yEnhbjzs4W64Go/oz3uOTkgtwKeTriCOr3ooyQ/OyvbsxXe1IB+d6/oUJ/jnWB/Bmt8urPq5pGOQmirUd+nZ58PdEh8Yn8+akKyQkdAOCFnHgRkMM7AADukJze5UjKn+uGpJ72la8kblTG9XNWGpDPTQXkuSQAZAfl96Zpi55GsiJTT2Sxw2+aiYiIiIhscNJMRERERGSDk2YiIiIiIhucNBMRERER2eCkmYiIiIjIBifNREREREQ2Whw5Z1Jy7Eu66C6nElOXTOlxNJZLjg+prNYjQha/+C+x/tGKz8R6hhJ3BgCBUKZY31rRqPZU1TSJdb9fjyELR+Rz0NQkx7QAwObyCrG+rWKbWB8yqJ86VihTjhcy0ONgtJi4vffeW+1xu+XYHS2+Ld31pEXOWWoUXfrxdmcP0sTRtWbdX5Sj4Oa1n6/2rEzIkW+ru+n76dRrpFgftl9/tef1I+X9LNxPOa6/fquOdeLkDmI9+ecT1J5JN8vv6Q13LFR7zprbSawv6HGO2nNxr/3F+okD5fdmrL57PFgiH/Nw+WMIAHC9KN+nVv1zutpzKPYV6w+8cppY7zD7eHWsKgwX6xGXHgH2yntXinXryVvUnhfPGSbWFxwzS+2Zjme1Da1aaKt8f98W1qNTszPle3+mu1TtaUzJUWjxcJqpRWGNWHYl5RjW7/z6fCGzXI6cKy7S5wu+hPwcq/fqsYgVRo5Wq20oV3tCIfkcJJRY24Zt+rwkWSx/rr21+gfbWyDvp36dPi/xZ20R66ZRiXzLks8/AHwTl89nm1Rc7amBfMzJqP58rc4oEuvOtnJMHgB0/bqLus0Ov2kmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERkg5NmIiIiIiIbLU7PSCTllZApJVUDAFJJJYnBqa/erNxaL9b/8dIytefNZV+JdYdDTuII+OU6AETi8jHXNeqrcSNJ+RxYSb3Ha8mn3nLLq54BoLquQax//NGXYr0wR04CAYDefXqKdY9Xfz+1kIpAIKD2JJP6ymfx59Mkq8CSrxulnFYqpaeEWOp+9B1pSTGt3cPfHivWVyyWrykAuHq2nPbQcOUf1J7Xjn9XrE+fs1jtGbyHnAqz/9pjxPoFz12sjnWqGSvWV0JeFQ8AB+0hv9/31eqfkQUX5ckb4nupPd0WyekRWpLNtg83qGOl5tSK9Zc236b23GS+EeuXXTBQ7elWtUasv3m1fI8af7WebLIND8sb6grUHuuxdmJ9UJoQm6dHrpLrB/XWe7bI18AEtO60nPxO8muNb9XTmTaG5OditrVG7XF55bSYICrVnso6+bmY5ZOTEzpU6s+x7Ez5OVqdKFF71tfIqQo9i5XPLoDGenle4klkqD1a2lQgFJT34dDTM6rXrxHroZCe+OHwy+fGVaj3JB25Yj0cll+/leb1901uEusbY9lqT1Q5B7GEfG0AQKRKvucVlhSrPWXeXzYv+anf55OeiIiIiOhXxEkzEREREZENTpqJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZaHHknNvtE+uJpB4FAocc11PXqMd9vPjKO2L9gw/lWCQACPiyxXpTU1isb6usUsdyeeU4mOoGPaoHlhw/FNQy2gBk+OXzaVJp4mDi8n6iym4+//J7dSxfhhwTt1dPOUIIAJxK3UB/P40SSeh0KaOZNBGGyjaHI01M3i7k0RllP+ni8ywlQrC1e2vN82L9fdNd7TkHchTY7dajas913w0Q6/3T3D7uPl6Olut2jhwTN3E/OT4PAMqefFusbz2xq9pj3l0j1l9qo19T102aK9bH4WK1p8tzT4v10OIssX7K1lHqWAt73SXWrfPk+w0AGKNEY/or1J7nhslRUw965fu3GXekOlaHBcrnd8W+ao/JXiLWz3BOUnsmolGszy5bofa8efM6dVtr5m6QP1i+sBwpBgA5kSaxXussUntMtnzthPPaqz0lcflZ6qp2i/VUUH8mNuTLDz/TtFXffxv5M7/V0p/xOR75fJqQfgMrVx4JJVZcrLs3lqtjdSyRI/TKI/qzLzsqv58xtx4H6LPk2L2tWfK8yB3V51LuQLZYTxl5XgYAcad8DWSkeU5kbZNj6lyFepzoXu1q9AFt8JtmIiIiIiIbnDQTEREREdngpJmIiIiIyAYnzURERERENjhpJiIiIiKy0eIl/0b5UcupL2u0/PKqxhXvf6n2fPTFGrGeSnOoVkJeweuBvErVcupj1YTllfH1EX3FfCggJ0EEnHJCxY/HJnNAP59+n7JSWEluqG7Q0x7eW7FSrPv8frWnZ88uYj2Zks8zAKRMSqy7XMp7YOnHrKV3OBy//He/dKkaiYS2WlvvcaRJSmnN7nvqYrH+rqWvPv9h+sNi3TS+rvZcdJm8yntCUD+n07rJyR41M+WV3O3/LK8wB4DaP24U6+Gy+WrPhWUPiPXOf1FbcMlZfxDr57f7Qe0ZdaG8yv2UveWECKviTnWsH56REwDalF2h9qyrl9+DDh/frPaU958qb5gxSCy//MD5+v7nykktpt/Xas+Dd54p1oPn6ffcftdki/XHZmh3Y+C7jdeIdT2/pHXwVYfE+iq/npwQdcvJCb7serXHGPmzWJzapPbUfJct1tt0V55j0JNfssNyT42SBAIARTF5vhAPKCkyAJyZ8nM5WqFfO52jclrLBpf8fPF55PkSAASj8rEVhPXEjwpnrViPp/RnVdy7Sqy7YvKxpTL092ZLfZ1YD0RK1Z5SX7VY3xqTUzUAoM7IPY31a9SenuGB6jY7v88nPRERERHRr4iTZiIiIiIiG5w0ExERERHZ4KSZiIiIiMgGJ81ERERERDY4aSYiIiIistHiyLmUEitmLDlSDACqquTYl2XLPlF7kgk5WCwY1KOErKQcZ9XYIEe7xFx6TMy2bXK8joH+OtuVFor14kw5jgcALEuJikkTuebxyG9XMqmEsSlRdABQUyPHwXz55VdqT+fObcW6U0+DUaPdkkn5fO5KfFw6WnxcKqW/n06nFm6nSxdh15rNK5Cj5b7q8Kjac1Tne8S6LyDHGAJA27vk87P+4y/UnvsX9hTrrj/LF1zoof3VsYZ9XSzWyzN7qD0fXjJDrC+8VL7fAMClSkrbQ9anas9Hky4R699Me1Osr4ufoY5VNus4sX51msvzoHGfiXUz4xm1xxoon4Or7vyzWB8+Xo6VA4A2Ifn9tNJEPGLEs2LZ4A9qyyz57UTXR/R73rVD5WOYDv0aaA3W5cr397Zu+R4OAFu2KFGbjhy1JxySo9ACublqj6O4Rqw3pbrKP795nToW2svzknbubLUlqTwTsrP0ZwJi8nM54m9QW+r8chybR4lv82dmqmPFK+X7dJNHj3wL5sj7ccf0eUkqIZ8Dv1OeM1Ul9WjBnEQnsd6Yt0XtKd8QFuvZ2fpcJuiReyq27an2vBCR73nXqh3/xm+aiYiIiIhscNJMRERERGSDk2YiIiIiIhucNBMRERER2eCkmYiIiIjIRovTMyynvHrUGH2F83ffbBDrFVsa1Z6AT17Z6XHq+4lEasV6Y1he2botrqcjNETk1cB9enZWe44ZdqBY/+rzj9Wemho5PSOVUlYwA/B45HOQSMjvjdOlr5LNy5ETP6qqKtWeDRvk9zO/UF9draVKaCkZ6ZIrtG3pkiuSSfncRKPy+2x3DBorTbpKa+abJqdknLmqRO1Z9v1msT4UIbVn5DsfifX7RssJGQAw4z75erv7ttPE+sRhD6pjWXdPEetzL9HTBD5cdaRY/8ycre/n/nvFeukBd6s97VadKNYPO7BarH9yjH69j8VJYt1brl+fY+9+UqxfM0i/f33YXT6G00+S389EqXz+AeD6p26Xe8zf1J7eJaPEunWL/t68bMmv8/UbytWeMVe27pQMVe0+Yvk7s15tKSnJEutN2+TkBgBwO+RUhY1r9PtrSUmBWE9skZN0XEV6PFPF+jyxXlyk38PdRk4WaazVp0P+hJxSEUjzvaMnLH9+jUNOAvM2yfMYAGjKUJ6xKTmhDADCFXJ6RlOhPseI1cuv0+WV308LHdSxotFvxLoj0VHtycuUj60+oc8xEJPTVRI+fS5zaHc9ackOv2kmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERkg5NmIiIiIiIbnDQTEREREdloceRcU6Mc32almXZv3ihHfpiYHpnk9ssDul16TEpBezl2puOepWJ9+Rd67E5jkxytMqi/HlGy7957iPWaKjkKBQDiSXk/ibgeDdUUlqP6mhrlsQrz5WgfAMjMzBTrdTXy+wwAsXhcrKeLaDPml0U2pYuCc7vl6CGPR449AvRoO5dLv/S1Y04Xbfc7DabCBPdIsX7IhGy155oH5LjCD/P1aKorhpXJG1bdpvYke8hxcLnXyT//7A3y9QkAfz1illgPvXax2nPL+1eI9Yz3XlF7upfME+uZK65We253DhLr8R6XivUR8/Vrd9jrr4v1/ovPUHseWXuIWO96snKiAfQ9T66fdG0bsX7K+UoDgH/UXyPW791zktoz7onB8oZD5Mg/ABh+gByHN/gIv9oz+PgV8oZuux5Z9WsIur6W65Z+7YTD9WLd7dCfvZFEjVhPejLUnuqtMXlDdrF8XE16RG1pe7meiq1Ve1zubLGe4ZQj2gAgki2ft4QSHQsAMWe+WDfVYbFe69CfIqESuccK6xOwiEt+Lsej+jM+7JGPwReW6y6XPsdx+XLFep1/m9qTlSu/B556OToWADKy5efENuhRhe6Afn3Y4TfNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERko8XpGYC8EjOV0tMOojF5lWy6RAW3U06PCOgLnNF/oLwqunOndmJ9r8/19IzX3/pIrHdok6P25ObIK4WPOvpItWflyh/E+ldfyHUAqF71jVhPKAtL06ZaKHUtoQIAHEp6RLokimRSfj+1IIpUSk8P0bYlEvrqbs2u9ITD8gpmAAiku0BbMWN9ItZPe2CC2vMnjBDrw2/S93PCSPmKO+yKS9SesqEXivW/KKk0ZukSdSxr6HCxPtycq/ac/tFEsf5k4h9qT5fRchrJ9+YWteeEz7LE+iPzThDrH90tnxcAuHvi02L94g/+pPa86ZZX03/T/ni157Qn5e9bHs7tIdafbnpVHeutgHwzmFysPyce7CPf20KQzxkAvDn4erHeJ3mG2nNutwOULa07LyfWJJ9Tv0e/V9dA7vFG9e/W3L5suSes38fhllM6vKkisd4mR07rAYDaJvna9TTIxwUA7sKQWLdcaZ49jfK9P9Orn5t4VEl1ypLnCyYup40BQDwiH7MjqSdh+Bvla7TRoSd+dArJ85xayO9ZlkNOKAOADcrc0N+kX4PVypzRFdPfG1c3+fW4PtLnMk2Fv/z5vx2/aSYiIiIissFJMxERERGRDU6aiYiIiIhscNJMRERERGSDk2YiIiIiIhstTs+wlPQMh1Ofd2cE5NWLeXkBtSc/T/63xwvylZWoAEpL5NXnmfIiVfTuqq/4XL92g1hvqtP/vfR4rFisG0s/vd//ICcArFql/1vutdXyCtZQ0CcfV1xPNqmqlLe5HPLqVQBIJOUVp/F4uh452sPrkd9nS4vVgJ4Gki6NJansf1d6IhF91bEzzeegVeu3USwnHp6htlSfKifMrDjraLUnar0m1uu67qX2LKz6m1h/8IPDxfqI/S5Wx/oE8sr0XoMz1Z52+8jpGT2669f7mzc8JNbnHXq12rN1tZzs8dya78X6DSfsoY6V9YSckjH1ygFqT0XR/WL9ZsxVe/Y7ub1Yf2iRfI+ajE3qWMFVC8X68yP0e8FIr/z5tfSPKBZ3let9ksvUnmv04Vq1vd3yPWx5nvysBIBSt/xZqHbrqUGJBnk/8aC+n+xwUKzXKGkPMa9+7bSLyp/FujbyMxkANtdUi/VgUE6oAABvpjz/cHj0a9TRoKQ3NMmvM5qSn4kAYDnlCzuaJm0q6pfPc1F2mgQV5dZmOeQ5xqZYXB3L5VSSMDz6MXui8n0l5ahQe1aXK3OZlH6f7pjbS91m53f6pCciIiIi+vVw0kxEREREZIOTZiIiIiIiG5w0ExERERHZ4KSZiIiIiMgGJ81ERERERDZaHDkHyNEiLocSqwKgxx75Yr2pdova43TIES5dOrdVe3KCclSOZeSYmC2V+v63VMhxNC6vkl8HYFuFHGe1abM8FgCs/PB9sd6ubaHaM3hAP7FeVSnH4bksPUJnwzo5aqxdBz0qKDNbjsRJpPRoOy3aLRaXY2csh/573K5EzmnbdiVyLhiUI3x+HE+P0WnNzj+xs1ivD56l9uQU3q5skCMJAeAKNIn1mrAc8QgAL75wgFg/ue93Yn0R3lLHWmFyxfqc199Ue+5NyIFjfS+Xo+gAoOJz+dq54BA9tuuCvtPF+sFfnivWh9z2D3Wsf07pItZPDa9Qe0ad1UOsHzZDvkcAwNQ2F8obPlos76PwOnUsx73fivXe+kcUx3R/XKxfjJPVnrX/HCTWl970ttqz5EP5eXR93zQH1wp84moU690a9IiwZXlVYj13o/6MT3nke78vrGf/pZQ0uKykfK5dFX51rE3ZBWLdqpCjDwGgKCSPZxn9dSbq5ed/Q12D2pPZRn5eNNbI8wWfU3++RJrk82lF9OdlQUC+54TX6XOZks7yOahokvcT8urXU7Jcfh44QvrrrHTIx9wmqMcUZ+bI87zVWfoz+avNX6vb7PCbZiIiIiIiG5w0ExERERHZ4KSZiIiIiMgGJ81ERERERDY4aSYiIiIistHi9IxYVFv97VN72pTIK9Y9/fZSexIJecVj2uSCpLySORqVV282KXUAcLjl1aN5efJrAYBYVF5BHIvqK4j77CefgwP6dld7OrSV00hSRl6xv/qHCnWsreWbxXrnLh3VnmBIXsGaTOrnU3s/I2F5dbPHIyd0AIBlyb/jmdTuTc+wLHkVt1YHgFSaY2jNFr7eS6x/esJ7ak9149/F+rtPLtN7rCPE+t0N+r2g77qPxfoHyBbrj10mvxYAGFtylVg/OHCj2rPH+fIy/3OH/EvtueOMm+UNDz6k9rw3+AF5P0eNF+uzTpWTdwDAfLJe3vDwIrUHPYaI5Qva5Kktd74vp6uct+gSsf7IZ/L9BgDMafJY1oej1Z5rbhkh1mfeMVXtOfu5GrE+Y6C+kv7Ed5UNfdWWVqE+KT+vvjO1ak/eFvkZ60nzvDQeedvGiJzoBABF9TliPdcvj2WU5xsAeOTgBLgSetqCPyU3hfXbOzIS8uux2ioHACDcWC7X3cq0KxlTx/IWyOfGq4d3wBWRz1udW5+XRLYqY2XIJ6e+Uj9pfre8LRnWz5m3UE7jcDTp5yYWkeemiViaxI1GPaXMDr9pJiIiIiKywUkzEREREZENTpqJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZaHHknIEcqZVK6XEwTqdTrGdlZ6k9DkvuSRcR5nDI0SbxuBxfUldTqY4V9MsRejnZmWqPyyHHquVkZ6g97doeINZLi9LtR349llN+/U6XHhXUtl2BXG9bpPb4/fLrMUn9dy/tPbCU39fSXU/RiBzt53Lpl3EyqY+n0a7bREI/n1A+H61d+JwTxPqwQS+qPcu7vCDWv1rTXu05a9kosR7o31bt6XaesqHDh2J59LBT1bGeeXCJWO97mx6FhmElYvmIoi5qywGPdBTrT16m7+bgt84U619Cjlna/6Vz1bE+mzxbrN/0+N1qz6NXfSfW/3Xn42rPSzefJNZrrb3F+n1v16ljYd4zcv3Ud9SWIZ+tEOsz/ry/2nPfq3J93Kdj1Z6h98qfa+3SbC32jMqfq4pO+rOvpla+V2Zl6M/rkEO+j4cj+v0ww5Kj7eLKM8GZod/fU2E5VtUbl+/hAFCuJK6ZkByFBwAJlzwv8Nbr+4kqzx5vk/wcbQjVqGM565vksfQEQRifHO3m8OvxvTHleb2tQc6iywzKMbgAUFsdEuv1MT0nr7DBL9aTCfn1A0CkWp7/mIw0McGOXz4v2I7fNBMRERER2eCkmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkY0Wp2cEAgGxbln6vFtLIUifhKH0pPQen5J4EY8raQcpeVU6AHjd8krMWERf8Znbvo1Y37r1B7WnpChbrAf88opXAHBCPrYk5Nfp8ervTec95NXV2dnycQFAbbV8Dmpr9HNTUiqnceTmyitbm5r0scJh+X1zKSubf9wmX+KJNKkabqXHoawUB9KnfrRqxx8rlu+dc4/a8s8n5CiIcRPK1Z7JncrE+kV4Q+15O2OEWP9j09li/fj79GvngnbtxPo7p92i9pwKOT3j73sOV3s+niWvPn/9i4PVHqPcpla+8IlYf2jdiepYe8YvF+sDh9+l9lir5Ot9HW5Sez7r82ex/tHZV4n1NnJ4CQDgoRdGi/Xgi8vVnqF3y/fJYJWc0gIADc8/LNbPtvRzU/fWYfKGytadllOXK6eVNEb0R75TuYWlcvR7W1OTfH8PZm5UeyJN8nhOyFEQrpCeUJGok6+DcpcSkQHAFZfTQCykefY65VSHzHo9vsJKbhPrTR75OWKVy893AIgZ+fXEEnJyFwA0FsrPS0dMTyxKxuTrozDuFetbg/oxR71yUkteslDtCadq5A1G30+qsFis+2q+Unt8CX0OaIffNBMRERER2eCkmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbLQ4cs7tcssbLD0KRIvocjr1uboxcoSKw5kmjiUmx7FoMXV79+ymjlUf/kas19XI8TEA4LDkyBMH9FiTZKJRrMej+ltiLPn1uP1yHI7Xq0expZLy+XQ59Z7vvv1arH/ztVwHgD777yPWu3fvLNY9HuU6AxCPy9eGtQvXYLrYw2g0Ktbdbv3YtGi71m5sv6BYX3jvGLWnW+Z6sR5aon9GDjFnivUv/vWt2tPz4L+I9WMXyGMFtkxTxxrV9g6xXvu5/F4DQOiaQWL98af1WLNe8weL9RuKXlB7al3ytZhZtkysR2YNUMdqf7xcb6i6Xu054dHPxXq7G85Se+bKH1/cOlH+LJYt3lcd6/DQvWLdg35qT7hePmf9HpGjLAEgOFm+1gd3naD2ZH7TVay37sA5wB9WIvly9HtlpErJPqyX4+sAIBJV7q91ekxdUHmOObPlsRqq9Vi1TOU5Vpslx8oBQLYyL6iNbVV7Chxy5G59QD+fSXeBWA9uVeIAXfq8qB5ynGawQI9vy6qpEesRr37MnvgWsR7Olc9nkUOP3NtaKz8T45nfqz0hp/z53dSkxw7GP/tUrOe33VPtWR3T7/t2+E0zEREREZENTpqJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZaPGS/2RSWQ2bJrkgFpPTI7SEDABQwg6QTCorewGkUvJ4Lqe84jI3O6SOZVLyMRcU6qtUMwLySuWc7Ay1x60tBk3pq461BJFUQl4N7HLKxwUAyaS8erSuVk4iAYCmxrhY7959L7UnP09eQZxSVjCnjP4+e5T0inTpGdo2j0c/N1qyRirNdZtK6O9ba/bESXJ969H3qT2FA+XVzy99W6P2uDsdLm9Y3V7tueD8K8T67fnXivWDHjpUHatuQplYty7TkzA+fvpJsb7fWwPVHpwvr3Jfev6taktPnCfWC2bJP3/Twe+oY81qJ491OuSEDAB4ruI7sf72DSPUnjmfvSHWb5NDSnDb2nnqWC9CTim5t+eJao//kblifcgD3dWepr/J10C3Zw9SewbUPShvyFRbWoUCyPfKLLecAgEAlRlyopPl9qo9cbd8vSeMvh+HR77HRyz5nux36ffqxpQ8lnub/FoAICNDTmhwWHpKyLa4/Ia7jX4h1PgqxXoiIKddIU9/jgXr5W2R+iZ9/0qqV3t3jdoTDrYR6wmXPC/wNuWrY0Xc1fJYFUVqT9QhP2MDefr3uz5l/rXN0ucyHWv147bDb5qJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZ4KSZiIiIiMhGi9MzEkoSRrr0jKSSKOByp5mrK8kFltHTCYySOJFUkhhSyopbAAj55GPLT5OEYUFOlbDSpC1Em+RVr6mAT+1JWvKxJaNhsR4K6SuYKyq2ivXvvvtC7QlmyPvfo0up2pMRlF+PpaSUpBLKdQYARl4Rbiz5mgGApHJ5upz6pe92yq8zXXpGUkkDae1mZMmpBsnJe6g9706pEOvvn3el2rPf1+eI9cb9Jqo98z55QKxPN9eI9dSHenLC4WetEuvvZH+g9hwIOb7igqeGqz13DJVX4E/fJieBAMDo8Etive6hE8R64jQ5bQIAzEIlNeDOh9Wev0zeX6zfP2CS2gPn3vL+l8mfg6cGXKUOtXU/uZ6f+7jaY32ujBfRk3zqP7lBrPcf8bza0/0m5XOtB3u0ChuDcqpFY43+HHW65W2mSk/PcFjKMz6gxUMBtTXyfTw/J0vev1P+eQCwzBaxnvLrz9GaWvkz4lT2DwBwyD21aRI3wluCYr04kCP/fJX8ngFAtlNOwqip1+cyyKgVy65IidoSya2Rj61anq+4nPocIx6WPzv5Xj0NpVaZsyXK9ed1ZXFnsV7v0J/JeZ3169MOv2kmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERkg5NmIiIiIiIbnDQTEREREdloceRcXW2NWPd49Dgap1OO9UgosXIAoCWBJZN6VE4yIceUJCHvJ81Q6NROjnYJBfRTlYjJkW+puL6jhli9WM/w63EslhKhkoScqxbICKljFeRlivVNsc1qT2FBrliPxyrVntoque5wyNdGuuvJghz5ljR67KFRrrVouvg45bpxuPTfMdMkL7Zq07+5QKw/USRHDAHAzCPka3TkCDl6EQB6Jl8X6+0/2Uft8Z8yW6zPwPdi/aVTC9SxavrKn8XJRy9Xe/rgr2K9dO8/qz03nHmzWJ+x9wy1Z2bOWrFuzvWL9SPMUHWsB/CRWF942Flqz95ysh/2ffdqtacSh4j1XDk9D6/eK8e9AcDobU+L9dV/0j9UUz7rKNYPnnyb2hNaLEf1mba3qz2Hn/SuvOHEAWpPa9Bzc1SslwfkGDQAWJGQo91KivUYUKdDiRwz8jMRAPxF8rOvpkp+xmY55GcVAGRkFor1bY36HMNh5LhVf1iPlU1G5edVICg/EwEgkpIffslcOb4uvKFcHcs07SnXQ/qzNxqTn3HrC/Vzk9Ekx9EFMuRjTqWZQeZWy+cs7NWfLV5/RKxH00TbebLkqL726/PVHl/+D+o2O/ymmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbLQ4PSMSkVc1hsNyHdDTM7xeeZUuALjc8jze7dJ7LCgpHQl5NX80qq/yD4XkVZpOp76SO5mUV6mm69ECRIySEAEAUeU9cCmJE/V1tepYLiUJIj8/R+9xyj1aHQASSrJJNCqv7rYsfSxtP4lEmjgURVOTvoLX4/eJ9VQiTeqL4/f5+6d1uFw35g9qT/0rY8X6yDYHqz2n33OhWPfjC7XnHKwX6zfgJrEe/0r/vE398imx/lfcp/bMj0wU69+7Jqg9F7xwvVhvLJ+u9syxDhXrx0+SV7KfBjmhAwC+u3O+WH9rn7PVHqtEXpm/pewfas8ruR+L9fNHyKka/r/L+wCAlx/8TKy/1bhB7fHtK4/3DkapPUdNlpNiMLOf2rOkg5aS0brTM37oKd/HE5n6I7+4Un72mTRJGNkN8vOqwuj78Snbgtny5zea3KaO5fLKaVeuNGlG7rh8blJ6SAd8EfkZm3DIqRIAEHTL+4mvknusRj3ZxJFfIY/lzlN7tOdYIlan9tTVKElgXvkZa9zy8x0Agh75Ge8p0edfTWvl52jYKb9+APBula/BaEB/Q9cE5HtrS/w+n/RERERERL8iTpqJiIiIiGxw0kxEREREZIOTZiIiIiIiG5w0ExERERHZ4KSZiIiIiMhGiyPnPG458q2xSY+cSyblmJJUSo8I8xk5JsXpSBf5JkeBJZSIMC0iDgCMQ45DCUfk+BQACBg5qgdpYm+Mkc+B1+tRe2IxOSbN45Yj9+Jx/XValnxu3GnOM1LyeA63fhl5PPLr0eIIjUlzzMqveG6PPBYAxONyJI7box9zLCa/1y7ltQBAMs013ZodkLlKrH918Jlqz/uj5G3nPtRb39Fh8vtw2cLJasvtR44W675B8oVw08IsdazPBsmRayPX6tFDLwbai/Uvo4PUnvOnyZ+r1/ZRW/DNIPkzd8k9cnzd0Vfvp4511IGDxfrI279LcwBytNybo2Jqy4XPHiPWa8aNF+sHL3paHStzqV+sD4Ie8XiCkaPtzKwtag82thXL4fZXqy1vXqrEnZ2g76Y1qN6YL9ZLMvTn9SarRqwXefV7clODHJ/mz9V7qmvl66ooVSjWHR49bjaCBnn/Kf1eHciX7x91Efk6BICq+Fax7tuqR86FlTlTsE1Xse4p159J4Uz52FLQo1NddfIzqV7LuwUQU+ZsIZ/y7E/K8zUAcOTJ86KIW4+cKwjKz4lqn34NuD2VYt21UX7PAMC1hxxV2BL8ppmIiIiIyAYnzURERERENjhpJiIiIiKywUkzEREREZENTpqJiIiIiGy0OD3D65NXSUZj8mpHAEgm5W2WpacdwMgrybWEDCBNSoZyaBb0/Tsc8irRxsZ6tScakVcDm5R+zE6nllKhrzp2ueXfcYzyQkMBfTWwW1nZ26AeFxCLya9TS8IAAK/XK9aNsoK3qSmsjgVLPjcup34ZG+V68nr1cxNWrmmvT++x0oSOtGYbtsrXdSWWqj37pC4V6/fMPEztOSf0sFif014/cUbeDWBdJpZ7nt5dHWtzj4PE+gcH6qkS3Y+aJtZ7tJHrABAY9qVYN5NuVnss6zqxvvId+b3ZcJN+vU+euFCsf/K+nGoBAKM+k+tHXq7f26tvv005gJFiuaz9vupYF7y8UKw3DVf2AeCiqVPEurWuTO259XE5GeCyty9Se0xSfm9au1L/WrFe36h/3jKVJKyGyjRpV275nlxfrqcq5BXLz4SYks4Uqc9WxwqFMsR6RUpPTkjVy/sJ1+vnJuSR9+NO5qo9gewasZ4Iy4kfHp8+X6hVkrOKTabaU98k3z96tw2qPWur5eevO1dOwkhtq1PHCmXIr8dp9CSMyqS8zV+7Se2pb5L3s0kJNQOALuvkpJaW4DfNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERkg5NmIiIiIiIbLY6cczjk+bXbrQ+hbbPSzNWjUS3mSO/Rjk2NtrP0aBeXEqHj9ekxKeEm+Zj9fj12JxRS8lCUWDUA8Hjk85mIRuV6TI/Q8SljBf1yHBAA1Kfk1+l06deAFjmnBu6l9HijeFyOvIsl5ToAJJPy+bQc+vsZUN43Y+nXYCBNvF9r9t56+TPS/tYJas+g0feJ9bFt9ffhzjo5jq4b9M+iNUe+SkZAjnn6cvg6daw5h/1BrM968Ca1Z+R71WL9tTuPVXsW3/8Xsf6k0c/niSZbrK+ZdrxY9x6lx9f5X3tFrPca+6za88nT8vWejVPUHjzRWS5fvFisRwb1Uoeav/o0sW6W6LGHR9ZPFevHlY9VexZNPEPecMhXas+XL/YV63upHa3Dhjz5fhRMZak9LpdHrAcclWrPVsgRZbluOSINADZtLhHrmalGsZ6dqceQViXlZ19BZqnakxWS7+OZStwaADRVyvcpd1CO6QOAmqD8OjP8cnxdvFKPb8uNyu9nKiDfowDAVyi/zs0b9Pt0VrFybDU1Yt3K1c9ZXYPyvLb0Z29DQL4Gg9FstacgX55jlIT1c+Ms0K9PO/ymmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbLQ4PSOZkFMNLEsfQgm1QDwWV3uiEXk1qksbDIDTK6+49LrlejKlj5WI1Yt1T5qEiPqYvOq3KaUnYfj98njxuJ4m4HTKSQdqqkRUPi4AgJIE4XIriSMA4nH5fWto0lfQKuEV8Pnk9BCHU0kVAZBULhvLoaeEOJ3yNmPpPUkjvzfG6NdNMqmP15ot/1NPsd5hfm+1p2T2AWJ9UvkKtSd5sHx+LKOft8QRcj3nNTmJIeOxWepYQ+ovFevPTztY7Tn2s0fF+pmN+mfUPKS8nrf1nsx5Ss+TclrNin89r46FP8gfkqmj5YQKAJg19DKxfgOq1J6hZfL5POcY+ec/m/iwOlZl4hF5w3VPqj3rNsgpEKmz9PvX6l5niHVzxYtqz9N5V4r1vTBC7WkN8lKbxbojliYF6ns5iaLDHnoykMOqEOv+TDl1BAB8CTnlxu1pK9a3VcnPZAAoCsjzkhplHwBgIoViPRSSXwsAOOuUbbld1R5vvfxcbgzKaSRFWdvUsSyffI/wRdurPVtcG8V6VkQ+zwCQTK4U62vi8jnb73v9eqoNKikdOXpCVygmp1rUB/T3pmOgn1h/PB5Ue85cpZ9rO/ymmYiIiIjIBifNREREREQ2OGkmIiIiIrLBSTMRERERkQ1OmomIiIiIbHDSTERERERko8WRcwklOyyhpIoAgNcnD+9Js9ekQx4wlZTjlwAgEZXjnFxK5JzLqf+ukErK29xOPVrF65L3E03oxxyPy9sM9Jg6nzckb7B8YjmW0KPg4iklii2ZJk5LScaKpYkQbGhU3k9kyA0OPY4m5ZDfg3SRcz6fHJeUTMpRRQCQUC7qZJpr0ErzOWjNxlwvn7vKG+QYMgCo6Cjnit0zTX8f+lwvX1dB62K154833inW+0GObBoYfEsd69uQ3HM69MimbpE1Yn3OCP0z+sHt8uucmXOy2pNzjXzc7ZXb81H6ywRGrxHL3afV6j19y8Tyhpn6+3nsZ/I958W9R4r1MSv0sQ7vN12sj7hNjrkCgEknzxfr518s34sB4MOxyjX9oB5PtuiS0WJdrrYef17wilg/+rRT1Z6uHeTz/UVEjgEDgGDXbLFe6V2v9ngL5ft43nfVYj3p1j9vxckisV4X0a+3bE8bsd7QUXm+AvBAfsZ9Vas/L3sXy/WKHDkucdumTHWsyGr5/mU66ZMp/5pSeaz276o9TufhYr33J3uK9co99f2nHC+J9bDJV3tiia3yWIXKfAHAd5vkaN2MHD2m7q1b5QjOM9SOf+M3zURERERENjhpJiIiIiKywUkzEREREZENTpqJiIiIiGxw0kxEREREZMMyxujLP4mIiIiIiN80ExERERHZ4aSZiIiIiMgGJ81ERERERDY4aSYiIiIissFJMxERERGRDU6aiYiIiIhscNJMRERERGSDk2YiIiIiIhucNBMRERER2fh/SyDjmZZqjQEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "idx = 383\n", "ctxs = get_grid(3,1,3)\n", "ax1 = dls.after_batch.decode((x0,))[0][idx].show(ctx=ctxs[0], title='Original')\n", "ax2 = dls.after_batch.decode((xt,))[0][idx].show(ctx=ctxs[1], title='Noisy')\n", "ax3 = dls.after_batch.decode((x0hat,))[0][idx].show(ctx=ctxs[2], title='Predicted denoised')" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 4 }