{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#|hide\n", "from fastkaggle.core import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# fastkaggle\n", "\n", "> Kaggling for fast kagglers!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Install" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Either:\n", "\n", " pip install fastkaggle\n", "\n", "or:\n", "\n", " mamba install -c fastai fastkaggle\n", "\n", "(or replace `mamba` with `conda` if you don't mind it taking much longer to run...)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to use" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This little library is where I'll be putting snippets of stuff which are useful on Kaggle. Functionality includes the following:\n", "\n", "It defines `iskaggle` which is `True` if you're running on Kaggle:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Not Kaggle'" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'Kaggle' if iskaggle else 'Not Kaggle'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It provides a `setup_comp` function which gets a path to the data for a competition, downloading it if needed, and also installs any modules that might be missing or out of data if running on Kaggle:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Path('titanic')" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "setup_comp('titanic')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There's also `push_notebook` to push a notebook to Kaggle Notebooks, and `import_kaggle` to use the Kaggle API (even when you're on Kaggle!) See the `fastkaggle.core` docs for details." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 4 }