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Topics not covered in this summary: phase portraits, similarity transformations.
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1 Definitions

Order (of derivative) An nth derivative has order n.

Order (of ODE) The order of the highest derivative present in an ODE.

Degree (of ODE) The highest power to which a term is raised in an ODE (ex-
cluding fractional powers).

Linear (ODE) An ODE which has no terms raised to more than the 1st power,
and with no y, x or other derivative terms multiplied by each other.

System of diff. equations A set of simultaneous equations of derivatives, where
derivatives of y, x etc. are given w.r.t. a parameter t

Order (of system) The order of the highest derivative present in the system.

Degree (of system) The highest power to which a term is raised in an ODE
(excluding fractional powers).

Linear (system) A system which has no terms raised to more than the 1st power,
and with no y or other derivative terms multiplied by each other.

Homogeneous (system) A system with no explicit functions of t (i.e. f(t)) present.

2 1st order linear ODEs

Every 1st order linear ODE can be expressed as:

dy

dx
+ p(x)y = q(x) (1)

These can ALL be solved by the integrating factor method:

1. Multiply both sides by exp(
∫
p(x) dx)

2. Use the reverse product rule to express the LHS as a single derivative (of a
function of y).

3. Integrate both sides and rearrange.
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3 1st order non-linear ODEs

3.1 Exact equations

Let us say we have an ODE of the form:

P (x, y) +Q(x, y)
dy

dx
= 0 (2)

(note the coefficients are multi-variable functions). This can be rewritten as:

P (x, y)dx+Q(x, y)dy = 0 (3)

We can try the exact equations method. We say an equation is exact iff:

∂P

∂y
≡ ∂Q

∂x
(4)

This simple condition implies some important results. It can be shown that an
exact equation implies the LHS of equation 3 is an exact (total) differential). This
means it can be written as df , where f is some function of x and y. But the
equation of this total differential is:

df =
∂f

∂x
dx+

∂f

∂y
dy (5)

Comparing to equation 3 we can note 3 things:

P (x, y) =
∂f

∂x

Q(x, y) =
∂f

∂y

df = 0

(6)

We integrate P (x, y) w.r.t x and Q(x, y) w.r.t y and ’merge’ the two expressions
together (i.e. for any matching terms, write them down only once) to give us
an expression for f(x, y). Ignore constants of integration. df = 0 tells us that
f(x, y) = c by integration. Therefore the general solution is given by:

f(x, y) = c (7)

for some arbitrary constant c.

3.2 Separable ODEs

Separable equations can be written in the form:

dy

dx
= f(x)g(y) (8)

These can be rearranged and integrated on both sides, with respect to the different
variables.
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3.3 Homogenous ODEs

Homogenous equations can be written in the form:

dy

dx
= f(

y

x
) (9)

To solve, set v = y
x
, so that y = xv. Note that v is still a single-variable function

of x, since y is a function of x. Now we can differentiate both sides to get:

dy

dx
= v + x

dv

dx
(10)

We now have simultaneous equations for dy
dx

. Equate and solve for dv
dx

, and then

solve this 1st order linear ODE in dv
dx

to find v (and then y).

3.4 Bernoulli type ODEs

A Bernoulli type ODE is of the form:

dy

dx
+ p(x)y = q(x)yn (11)

To solve:

1. Multiply both sides by (1− n)y−n

2. Let z = y1−n and substitute into equation, including rewriting one of the
terms as dz

dx

3. The resulting equation is 1st order linear in z, so solve for z (and then y).

4 2nd order ODEs

4.1 Special case - y missing

If we can write the 2nd derivative in the form:

d2y

dx2
= f(x,

dy

dx
) (12)

(i.e. no y terms present), then we can make a substitution. Let P = dy
dx

. This

means d2y
dx2

= dP
dx

, the refore we have:

dP

dx
= f(x, P ) (13)

This is 1st order w.r.t P and can be solved by appropriate 1st order methods.
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4.2 Special case - x missing

If we can write the 2nd derivative as:

d2y

dx2
= f(y,

dy

dx
) (14)

(i.e. no x terms present), then we can make the same substitution. Let P = dy
dx

.

This means d2y
dx2

= dP
dx

, therefore we have:

dP

dx
= f(y, P ) (15)

However, this is not yet a 1st order equation since the derivative is w.r.t. x, but
we only have y terms on the RHS.

DIFFERENT TO LAST TIME: we must rewrite dP
dx

as a derivative with respect
to y. Luckily, we can see that:

dP

dx
=
dP

dy

dy

dx
= P

dP

dy
(16)

Therefore:

P
dP

dy
= f(y, P ) (17)

This is 1st order w.r.t P and can be solved by appropriate 1st order methods.

4.3 General case - finding the CF

The general solution (GS) of a 2nd order ODE can be expressed as the sum of
two other functions, called the ’complementary function’ (CF) and a ’particular
integral’ (PI).

yGS = yCF + yPI (18)

A 2nd order ODE will usually be presented to us in the form:

a
d2y

dx2
+ b

dy

dx
+ c = f(x) (19)

It can be shown that the CF can be calculated from the LHS of the above equation.
We write down the auxiliary equation, which is simply the equation:

aλ2 + bλ+ c = 0 (20)

using a, b, c from above. Solving this gives us two values, λ1 and λ2.
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Case 1: λ1 6= λ2, both real

We can express the CF as:

yCF = A1e
λ1x + A2e

λ2x (21)

where A1 and A2 are arbitrary constants.

Case 2: λ1 = λ2, both real

Same as above, but we stick an x in front of one of the clashing parts of the
solution.

yCF = A1e
λ1x + A2xe

λ2x (22)

Case 3: λ1, λ2 are complex

If the auxiliary equation has complex roots, λ1 and λ2 will be complex conjugates.
The CF can be expressed as:

yCF = A1e
(a+bi)x + A2e

(a−bi)x

= ea(A1e
i(bx) + A2e

−i(bx))

= ea(C1cos(bx) + C2sin(bx))

(23)

where C1 = A1 +A2 and C2 = (A1−A2)i. Note that even though A1 and A2 may
have been complex, C1 and C2 are necessarily real.

4.4 General case - finding the PI

The particular integral is any function yPI that satisfies the ENTIRE differential
equation. The particular integral can be calculated depending on the form of the
RHS of equation 19. We will refer to the RHS as simply f(x) and the particular
integral (as before) as yPI . We can follow some basic rules:

Case 1: f(x) is a polynomial

Try setting yPI as a general polynomial of the same degree. e.g. if f(x) is a
quadratic, try setting yPI = ax2 + bx+ c and substituting into the ODE. We will
solve for a, b, c, and this will give us yPI .

Case 2: f(x) is a multiple of ebx, ebx NOT in CF

Choose yPI = Aebx for some real number A.
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Case 3: f(x) is a multiple of ebx, ebx IS in CF

We now have a clash between the PI and the CF. We can try yPI = Axebx, i.e.
sticking an x in the PI to avoid the clash. If this doesn’t work, we can choose
yPI = A(x)ebx for some real FUNCTION A. Remember to use the CHAIN RULE
to differentiate A this time.

At the end remove any clashing terms, i.e. terms of the form Beλx where eλx

is already present in the CF. Other terms with more x’s included are allowed, e.g.
xeλx would not count as a clashing term.

Case 4: f(x) = A(x)ebx where A(x) is a polynomial

Choose yPI = C(x)ebx for some polynomial C(x).

Case 5: f(x) is trigonometric (e.g. sin, cos, sinh etc.)

Look for a pattern in f(x). A good tip for an f(x) with only sines/cosines is to use
yPI = A cos(x)+B sin(x) and solve for A and B. A similar story for sinh and cosh.
CAUTION: sinh, cosh and tanh are actually exponential functions in disguise, so
make sure they do not clash with any eλx terms in the CF.

Other cases

If f(x) has a term of the form ex cos(x) or ex sin(x) then we can rewrite it as the
real/imaginary part of a complex function (in this case e(1+i)x would be appropri-
ate, since it expands to ex(cos(x) + i sin(x)).

If f(x) is more complicated, we may have to be imaginative with the choice of
yPI . e.g. for f(x) = Aeax + Bebx we could choose yPI = Ceax + Debx for some
constants C,D. Again be careful of terms that clash with the CF.

5 Solving systems of differential equations

A homogeneous 1st order system of equations can be written as:

dx

dt
= F (x, y)

dy

dt
= G(x, y)

(24)
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Let us choose an example coupled system:

dx

dt
= ax+ by

dy

dt
= cx+ dy

(25)

We can rewrite this in matrix form:

d

dt

(
x
y

)
=

(
a b
c d

)(
x
y

)
(26)

The system is now of the form

d

dt
v = Mv (27)

If we set v = V eλt, where V is a constant vector independent of x, y or t, then we
get

λV = MV

(M − λIn)V = 0v

det(M − λIn) = 0

(28)

Predictably, we find two eigenvalues λ1, λ2 and (any) two eigenvectors v1, v2. The
solution to the system is given by:(

x
y

)
= A1v1e

λ1t + A2v2e
λ2t (29)

The dimension of the eigenvectors will always match the number of variables being
dealt with, for example a possible scenario is:(

x
y

)
= A1

(
3
−5

)
e−3t + A2

(
7
−2

)
e2t (30)

The values of the individual derivatives can be found by reading off the rows of
the matrices.

x = 3A1e
−3t + 7A2e

2t

y = −5A1e
−3t +−2A2e

2t
(31)

Complex eigenvalues

If the eigenvalues turn out to be complex conjugates, the solution can be written
as: (

x
y

)
= A1v1e

(a+bi)t + A2v2e
(a−bi)t (32)
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(Note that A1 and A2 may be complex). We can do some rearranging like before
to tidy up the solution: (

x
y

)
= A1v1e

(a+bi)t + A2v2e
(a−bi)t

= ea(A1v1e
i(bt) + A2v2e

−i(bt))

= ea(C1 cos(bt) + C2 sin(bt))

(33)

where C1 = A1v1 + A2v2 and C2 = (A1v1 − A2v2)i. Note that C1 and C2 are
vectors.
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