
3_tunneling

June 11, 2024

1 Tunneling through a barrier
We will develop two different solutions of the same problem. Solution 1 is with the Crank Nicolson
scheme and solution 2 with the Split Step method, which might be a bit more tricky.

[2]: try:
import google.colab
!pip install ipycanvas==0.11
from google.colab import output
output.enable_custom_widget_manager()
IN_COLAB=True

except:
IN_COLAB = False

[3]: import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import *
from scipy.sparse import diags
from scipy.fftpack import fft,ifft
from scipy import sparse as sparse
from scipy.sparse import linalg as ln
from time import sleep,time

from ipycanvas import MultiCanvas, hold_canvas,Canvas

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

default values for plotting
plt.rcParams.update({'font.size': 16,

'axes.titlesize': 18,
'axes.labelsize': 16,
'axes.labelpad': 14,
'lines.linewidth': 1,
'lines.markersize': 10,
'xtick.labelsize' : 16,
'ytick.labelsize' : 16,

1

'xtick.top' : True,
'xtick.direction' : 'in',
'ytick.right' : True,
'ytick.direction' : 'in',})

1.1 Schrödinger equation for the momentum
This time we want to solve the Schrödinger equation for some special situation i.e. a wave packet
that travels towards a barrier. We have written the Schrödinger equation before, but shortly need
that again

𝑖ℏ𝜕Ψ(𝑥, 𝑡)
𝜕𝑡 = (−ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉 (𝑥, 𝑡)) Ψ(𝑥, 𝑡) (1)

While this is the Schrödinger equation in position space, we may also obtain a Schrödinger equation
for the momentum (k-) space. To do so, we take the fourier transform of the wavefunction

Ψ̃(𝑘, 𝑡) = 1√
2𝜋 ∫

∞

−∞
Ψ(𝑥, 𝑡)𝑒−𝑖𝑘𝑥𝑑𝑥 (2)

which yields the wavefunction in momentum space.

We can also do that backwards to express the relation between the position space and the momen-
tum space wavefunction.

Ψ(𝑥, 𝑡) = 1√
2𝜋 ∫

∞

−∞
Ψ̃(𝑘, 𝑡)𝑒𝑖𝑘𝑥𝑑𝑘 (3)

If we insert the latter equation into the Schrödinger equation we onbtain

𝑖ℏ𝜕Ψ̃
𝜕𝑡 = ℏ2𝑘2

2𝑚 Ψ̃ + 𝑉 (𝑖 𝜕
𝜕𝑘) Ψ̃ (4)

which is exactly this Schrödinger equation in momentum space.

1.2 Crank Nicolson Solution
We will pursue two different numerical solutions. The first solution, will be equivalent to the solution
of the diffusion equation we did in Lecture 7. Here we need to write our Hamilton operator as a
matrix with the second derivative and the potential. Lets assume you know how to create this
matrix also from the last lecture.

Then we just need to get the time dependence, which we obtain from finite differences as

Ψ(𝑥, 𝑡 + 𝑑𝑡) − Ψ(𝑥, 𝑡)
𝑑𝑡 ≈ − 𝑖

ℏ𝐻Ψ(𝑥, 𝑡)

in the forward direction and and similarly

2

Ψ(𝑥, 𝑡 + 𝑑𝑡) − Ψ(𝑥, 𝑡)
𝑑𝑡 ≈ − 𝑖

ℏ𝐻Ψ(𝑥, 𝑡 + 𝑑𝑡)

in the backward direcction.

Therefore

Ψ(𝑥, 𝑡 + 𝑑𝑡) − Ψ(𝑥, 𝑡)
𝑑𝑡 ≈ 1

2𝑖ℏ𝐻Ψ(𝑥, 𝑡) + 1
2𝑖ℏ𝐻Ψ(𝑥, 𝑡 + 𝑑𝑡)

or

(1 − 𝑑𝑡
2𝑖ℏ𝐻) Ψ(𝑥, 𝑡 + 𝑑𝑡) = (1 + 𝑑𝑡

2𝑖ℏ𝐻) Ψ(𝑥, 𝑡)

and finally

Ψ(𝑥, 𝑡 + 𝑑𝑡) = (1 − 𝑑𝑡
2𝑖ℏ𝐻)

−1
(1 + 𝑑𝑡

2𝑖ℏ𝐻) Ψ(𝑥, 𝑡)

Once we have calculated the Matrix of the hamiltonian and have provided an initial wavepacket,
we can immediately propagate the initial wavepacket to later times. This seems easy with what we
learned earlier.

1.2.1 Setup Domain

As usual we need to define a spatial domain and a timstep for the solution.

[4]: N=500
x, dx = np.linspace(-100, 100, N, retstep=True)

dt=0.5

1.2.2 Initial Conditions

Next we define the initial gaussian wavepacket with a certain momentum given by the wavenumber
𝑘0.

[16]: def gauss_x(x, sigma, x0, k0):
return (np.exp(-0.5 * ((x - x0)/ sigma) ** 2 + 1j * x * k0)/(sigma * np.

↪sqrt(np.pi)))

[17]: k0=1.3
x0=-50
sigma0=5
psi= gauss_x(x, sigma0, x0, k0)
prob=np.abs(psi)**2
#dx=x[1]-x[0]
psi=psi/np.sqrt(np.sum(prob)*dx)

3

1.2.3 Matrix Setup

At first we define the potential energy landscape.

[18]: barrier_width=5
barrier_height=1.
potential = np.array([barrier_height if 0.0 < x < barrier_width else 0.0 for x␣

↪in x])

Then the Hamitonion made of the second derivative and the potential energy landscape.

[19]: h_diag = np.ones(N) / dx**2 + potential
h_non_diag = np.ones(N - 1) * (-0.5 / dx**2)
hamiltonian = sparse.diags([h_diag, h_non_diag, h_non_diag], [0, 1, -1])

1.2.4 Propagation Matrix

With the help of the hamiltonian we now define the matrices we have to multiply to the current
wavefunction to obtain the wavefunction at the next timestep.

[20]: implicit = (sparse.eye(N) - dt / 2.0j * hamiltonian).tocsc()
explicit = (sparse.eye(N) + dt / 2.0j * hamiltonian).tocsc()
evolution_matrix = ln.inv(implicit).dot(explicit).tocsr()

1.2.5 Animation setup

With that, we are ready to show the simulation result in an animation

[21]: prob = abs(psi)**2
fig, ax = plt.subplots(1,1,figsize=(6,3))
plt.xlim(-100,100)
plt.ylim(0,2)
plt.xlabel('x-position')
plt.ylabel(r'$|\Psi(x,t)|^2$')
plt.tight_layout()
plt.plot(x,potential,'k')
#ax.plot(x,20*prob,'g')
plt.draw()

background = fig.canvas.copy_from_bbox(ax.bbox)
points=ax.plot(x,20*prob,'g')[0]

plt.close()

4

1.2.6 Animation

[22]: canvas = Canvas(width=800, height=300,sync_image_data=False)
display(canvas)

Canvas(height=300, width=800)

For the animation, we just loop over 1000 steps, where we just calculate the product of the evolution
matrix and the wavefunction. In each step, we also take care of normalizing the wavefunction again.

[24]: for i in range(200):
psi = evolution_matrix.dot(psi)
prob = np.abs(psi)**2

norm = np.sum(prob)*dx
prob /= norm
psi /= norm**0.5
fig.canvas.restore_region(background)
ax.draw_artist(points)
points.set_data(x,10*prob)

fig.canvas.blit(ax.bbox)
X = np.array(fig.canvas.renderer.buffer_rgba())

with hold_canvas(canvas):
canvas.clear()
canvas.put_image_data(X)
sleep(0.02)

[25]: #

[26]: #![Figure](cranck_nicolson_animation.mov)

1.3 Split Step Method
If we look at bit closer at the two Schrödinger equations in real and momentum space above, we
recognize that there is some symmetry in the two Schrödinger equations, which we can use to
calculate the time-dependence of the wave function. This type of method is called the split step
method.

We may substitute in the right side of the position Schrödinger equation

𝐷̂ = −ℏ2

2𝑚
𝜕2

𝜕𝑥2 (5)

and

̂𝑁 = 𝑉 (𝑥, 𝑡) (6)

5

such that

𝑖ℏ𝜕Ψ(𝑥, 𝑡)
𝜕𝑡 = [𝐷̂ + ̂𝑁] Ψ

with the solution

Ψ(𝑥, 𝑡) = 𝑒−𝑖(𝐷̂+𝑁̂)𝑡/ℏ Ψ(𝑥, 0)

If we only make a small timestep 𝑑𝑡, we can write the latter equation also as

Ψ(𝑥, 𝑡 + 𝑑𝑡) = 𝑒−𝑖𝐷̂𝑑𝑡/ℏ𝑒−𝑖𝑁̂𝑑𝑡/ℏΨ(𝑥, 𝑡)

We may now turn to momentum space by taking the Fourier transform 𝐹

Ψ̃(𝑘, 𝑡 + 𝑑𝑡) = 𝐹 [𝑒−𝑖𝐷̂𝑑𝑡/ℏ𝑒−𝑖𝑁̂𝑑𝑡/ℏ Ψ(𝑘, 𝑡)]

What we know now from the momentum Schrödinger equation is that the operator 𝐷̂ will just turn
into a multiplication with ℏ𝑘2/2𝑚 in momentum space and therefore

Ψ̃(𝑘, 𝑡 + 𝑑𝑡) = 𝑒𝑖 ℏ𝑘2
2𝑚 𝑑𝑡𝐹 [𝑒−𝑖𝑁̂𝑑𝑡/ℏ Ψ(𝑘, 𝑡)]

Thus if we just do the inverse Fourier transform of that, we obtain

Ψ(𝑥, 𝑡 + 𝑑𝑡) = 𝐹 −1 [𝑒𝑖 ℏ𝑘2
2𝑚 𝑑𝑡𝐹 [𝑒−𝑖𝑁̂𝑑𝑡/ℏ Ψ(𝑥, 𝑡)]]

This is the receipe for the solution of the time dependent Schrödinger equation. We will do this
simulation with the help of the FFT we considered already earlier.

1.3.1 Setup Domain

We first need to setup our domain together with the time resolution.

[27]: #some constants
hbar=1
m=1

[28]: ## spatial domain
N = 2 ** 11
dx = 0.1
x = dx * (np.arange(N) - 0.5 * N)

[29]: ## timestep of our simulation
dt = 0.005

6

1.3.2 Potential energy landscape

We want to study the tunneling of a wavepacket through a barrier, so we need to define a potential
energy landscape, which contains two extremely high barriers at the left and the right side and in
the middle a smaller barrier through which we can tunnel.

[]: ## potential barrier height
V0 = 1

potential barrier width
a=5

potential barrier
V_x = np.array([V0 if 0.0 < x < a else 0.0 for x in x])
V_x[np.abs(x) > 98] = 1e6

[]: plt.figure(figsize=(10,4))
plt.plot(x,V_x,'k')
plt.ylim(0,2)
plt.xlabel('x-position')
plt.ylabel('$V(x)$')
plt.tight_layout()
plt.show()

1.3.3 Initial wavepacket

Our initial wavepacket will be a Gaussian wavepacket, which is centered at 𝑥0 = −50.

[]: k0=1.3
x0=-50
sigma0=5
psi= gauss_x(x, sigma0, x0, k0)
prob=np.abs(psi)**2
dx=x[1]-x[0]
psi=psi/np.sqrt(np.sum(prob)*dx)

[]: plt.figure(figsize=(10,4))
plt.plot(x,np.abs(psi)**2)
plt.xlabel('x-position')
plt.ylabel('$|\Psi(x)|^2$')
plt.tight_layout()
plt.show()

1.3.4 Fourier Transform Setup

When doing the Fourier transform we switch between the spatial and the momentum domain.
We will use for that purpose the Fast Fourier Transform Function as we did already earlier. As
compared to what has been written in the equations above, that means we switch to a discrete

7

space and miss some of the frequencies which would be contained in the analytical calculations
above. To correct for the discrete sampling, we need to introduce a correction factor, which I leave
to you for exploration.

The wavefunction we have to use is

Ψmod = Ψ(𝑥𝑛, 𝑡) 𝑑𝑥√
2𝜋𝑒−𝑖𝑘0𝑥𝑛

where 𝑥𝑛 = 𝑎 + 𝑛Δ𝑥 and 𝑘0 = −𝜋/𝑑𝑥, which is the Nyquist limit. Note that this 𝑘0 is not related
to the 𝑘0 of the wavepacket above. Similarly we would need to create a correcting phase factor for
the wavefunction in discrete Fourier space

Ψ̃mod = Ψ̃(𝑘𝑚, 𝑡)𝑒−𝑖𝑚𝑥0Δ𝑘

with 𝑘𝑚 = 𝑘0 + 𝑚Δ𝑘. Here we define the space for the Fourier transform.

[]: N=len(x)
dx=x[1]-x[0]
k0=-np.pi/dx
dk = 2*np.pi / (N * dx)
k = k0 + dk * np.arange(N)

So the modified Gaussian wavepacket for the Fourier transform is

[]: psi_modx=psi*np.exp(-1j * k[0] * x)* dx / np.sqrt(2 * np.pi)

1.3.5 Phase Factor per Timestep

According to our calculations we first have evolve the wavepacket with a phase factor containing
̂𝑁 which contains the potential and later with 𝐷̂.

Ψ(𝑥, 𝑡 + 𝑑𝑡) = 𝐹 −1 [𝑒𝑖 ℏ𝑘2
2𝑚 𝑑𝑡𝐹 [𝑒−𝑖𝑉 (𝑥)𝑑𝑡/ℏΨ(𝑥, 𝑡)]]

Both are just phases factors, which stay the same for each timestep. We may thus calculate them
one, and reuse them.

[]: phase_x=np.exp(-1j*V_x*dt/hbar)
phase_k=np.exp(-1j*hbar*k**2/2/m*dt)

1.3.6 Animation setup

[]: fig, ax = plt.subplots(1,1,figsize=(8,3))
plt.xlim(-100,100)
plt.ylim(0,2)
plt.xlabel('x-position')
plt.ylabel(r'$|\Psi(x,t)|^2$')
plt.tight_layout()

8

plt.plot(x,V_x,'k')
plt.draw()

background = fig.canvas.copy_from_bbox(ax.bbox)
points=ax.plot(x,np.abs(psi_modx)**2,'g')[0]

plt.close()

[]: ## setup the canvas
canvas = Canvas(width=800, height=300,sync_image_data=False)
display(canvas)

1.3.7 Animation

The animation runs in the same way as before.

[]: for i in range(1000):
fig.canvas.restore_region(background)
ax.draw_artist(points)
for j in range(100):

tmp=ifft(phase_k*fft(psi_modx*phase_x))
psi_modx=tmp
psi=tmp*np.exp(1j * k[0] * x)* np.sqrt(2 * np.pi) / dx
prob = np.abs(psi)**2
norm=np.sum(prob)*dx
prob/=norm

points.set_data(x,10*prob)
#points.set_data(x,1e5*np.abs(psi_modx)**2)

fig.canvas.blit(ax.bbox)
X = np.array(fig.canvas.renderer.buffer_rgba())

with hold_canvas(canvas):
canvas.clear()
canvas.put_image_data(X)
sleep(0.01)

[]: #

1.4 Where to go from here?
We have developed two schemes of how to solve the Schrödinger equation for the tunneling case.
You may want to explore the wavefunction of the particle in momentum space, i.e. its Fourier
transform to the k-space. This gives an idea on how the momentum changes upon reflection and
transmission.

9

You can also have a look at the transmitted and reflected wave amplitudes as a function of the
height an the width of the barrier.

Finally, you may want to change the potential energy landscape.

10

	Tunneling through a barrier
	Schrödinger equation for the momentum
	Crank Nicolson Solution
	Setup Domain
	Initial Conditions
	Matrix Setup
	Propagation Matrix
	Animation setup
	Animation

	Split Step Method
	Setup Domain
	Potential energy landscape
	Initial wavepacket
	Fourier Transform Setup
	Phase Factor per Timestep
	Animation setup
	Animation

	Where to go from here?

