
2_reinforcement_learning

May 28, 2024

1 Machine Learning and Neural Networks
We are close to the end of the course and covered different applications of Python to physical
problems. The course is not intended to teach the physics, but exercise the application of Python.
One field, which is increasingly important also in physics is the field of machine learning. Machine
learning is the summarizing term for a number of computational procedures to extract useful
information from data. We would like to spend the rest of the course to introduce you into a tiny
part of machine learning. We will do that in a way that you calculate as much as possible in pure
Python without any additional packages.

1.1 Overview
Machine learning has its origins long time ago and many of the currently very popular approaches
have been developed in the past century. Two things have been stimmulating the current hype of
machine learning techniques. One is the computational power that is available already at the level
of your smartphone. The second one is the availability of data. Machine learning is divided into
different areas, which are denotes as

• supervised learning: telling the system what is right or wrong
• semi-supervised learning: having only sparse information on what is right or wrong
• unsupervised learning: let the system figure out what is right or wrong

The graphics below gives a small summary. In our course, we cannot cover all methods. We will
focus on Reinforcement Learning and Neural Networks just to show you, how things could
look in Python.

1



Image taken from F. Cichos et al. Nature Machine Intelligence (2020).

1.2 Reinforcement Learning
Reinforcement learning is learning what to do—how to map situations to actions—so as to maximize
a numerical reward signal. The learner or agent is not told which actions to take, as in most forms
of machine learning, but instead must discover which actions yield the most reward by trying them.
In the most interesting and challenging cases, actions may affect not only the immediate reward
but also the next situation and, through that, all subsequent rewards. These two characteristics—
trial-and-error search and delayed reward—are the two most important distinguishing features of
reinforcement learning.

It has been around since the 1950s but gained momentum only in 2013 with the demonstrations
of DeepMind on how to learn play Atari games like pong. The graphic below shows some of its
applications in the field of robotics and gaming.

2



1.2.1 Markov Decision Process

The key element of reinforcement learning is the so-called Markov Decision Process. The Markov
decision process (MDP) denotes a formalism of planning actions in the face of uncertainty. A MDP
consist formally of

• 𝑆: a set of accessible states in the world
• 𝐷: an initial distribution to be in a state
• 𝑃𝑠𝑎: transition probability between states
• 𝐴: A set of possible actions to take in each state
• 𝛾: the discount factor, which is a number between 0 and 1
• 𝑅: A reward function

We begin in an initial state 𝑠𝑖,𝑗 drawn from the distribution 𝐷. At each time step 𝑡, we then
have to pick an action, for example 𝑎1(𝑡) , as a result of which our state transitions to some state
𝑠𝑖,𝑗+1. The states do not nessecarily correspond to spatial positions, however, as we talk about the
gridworld later we may use this example to understand the procedures.

3



By repeatedly picking actions, we traverse some sequence of states

𝑠0,0 → 𝑠0,1 → 𝑠1,1 + …

Our total reward is then the sum of discounted rewards along this sequence of states

𝑅(𝑠0,0) + 𝛾𝑅(𝑠0,1) + 𝛾2𝑅(𝑠1,1) + …

Here, the discount factor 𝛾, which is typically strictly less than one, causes rewards obtained
immediately to be more valuable than those obtained in the future.

In reinforcement learning, our goal is to find a way of choosing actions 𝑎0,𝑎1, … over time, so as to
maximize the expected value of the rewards. The sequence of actions that realizes the maximum
reward is called the optimal policy 𝜋∗. A sequence of actions in general is called a policy 𝜋.

Methods or RL There are different methods available to find the optimal policy. If we know
the transition probabilities 𝑃𝑠𝑎 the methods are called model-based algorithms. The so-called value
interation procedure would be one of those methods, which we, however, do not consider.

If we don’t know the transition probabilities, then its model-free RL. We will have a look at one of
those mode-free algorithms, which is Q‐learning.

In Q-learning, the value of an action in a state is measured by its Q-value. The expectation value
𝐸 of the rewards with and initial state and action for a given policy is the Q-function or Q-value.

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅(𝑠0, 𝑎0) + 𝛾𝑅(𝑠1, 𝑎1) + 𝛾2𝑅(𝑠2, 𝑎2) + … |𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑎𝑡 = 𝜋(𝑠𝑡)]

This sounds complicated but is in principle easy. There is a Q-value for all actions of each state.
Thus if we have 4 actions an 25 states, we have to store in total 100 Q-values.

For the optimal sequence of actions - for the best way to go - this Q value becomes a maximum.

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎)

4



The policy which gives the sequence of actions to be carried out to get the maximum reward is
then calculated by

𝜋∗(𝑠) = argmaxa𝑄∗(𝑠, 𝑎)

The Q-learning algorithm is now an iterative procedure of updating the Q-value of each state and
action which converges to the optimal policy 𝜋∗. It is given by

𝑄𝑡+Δ𝑡(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝑅(𝑠) + 𝛾 max
𝑎′

𝑄𝑡(𝑠′, 𝑎′) − 𝑄𝑡(𝑠, 𝑎)]

This states, that the current Q-value of the current state 𝑠 and the taken action 𝑎 for the next step
is calculated from its current value 𝑄𝑡(𝑠, 𝑎) plus an update value. This update value is calculated by
multiplying the so-called learing rate 𝛼 with the reward 𝑅 obtained when taking the action plus a
discounted value (discounted by 𝛾) when taking the best action in the next state 𝛾 max𝑎′ 𝑄𝑡(𝑠′, 𝑎′).
This is the procedure we would like to explore in a small Python program, which is not too difficult.

1.3 Navigating a Grid World
For our Python course we will have a look at the standard problem of reinforcement learning, which
is the navigation in a grid world. Each of the grid cells below represents a state 𝑠 in which an object
could reside. In each of these states, the object can take several actions. If it may step to left,
right, up or down, there are 4 actions, which we may call 𝑎1, 𝑎2, 𝑎3 and 𝑎4.

This image below shows our gridworld, with 25 states, where the shaded state is the goal state
where we want the agent to go to independent of its intial state.

5



In each of these state, we have 4 possible action as depicted below

1.3.1 Initialize Reinforcement Learning

At first we would like to initialize our problem. We have as depicted above 25 states, where one
state is the goal state. We would like to use 4 actions to move between the states so our Q-value

6



matrix has 100 entries. We would like to give a penalty of 𝑅 = −1 for all states except for the goal
state where we give a reward of 𝑅 = 10.

Our agent shall learn with a learning rate of 𝛼 = 0.5 and we will discount future rewards with
𝛾 = 0.5.

There is one tiny detail, which is useful to understand. If we run into a certain strategy and this is
not the optimal strategy, it is difficult for the algorithm to choose a different action. Therefore the
so called 𝜖-greedy factor is introduced. It tells you at which fraction of events in a state a random
action is to be chosen over the action with the larges Q-value. We will set this 𝜖-greedy value to
0.2, meaning that 20% of the actions are chosen randomly.

1.3.2 List of actions

The actions, which we can take in each state are defined by 2-d vectors here which increase either
the row or the column index in our gridworld.

1.3.3 Initial state

We chose the initial state from which we start randomly. We also initialize a list, where we register
the sum of all Q-values. This is helpful to monitor the convergence of our algorithm.

1.3.4 Reinforcement Learning Loop

The cell below is all you need for the learning how to navigate the grid world.

1.3.5 Convergence of the Q-learning

The convergence of our learning is best judged from the sum of all Q-values in the matrix. This
should converge to a negative value as most of the time our agent is getting the penalty 𝑅 = −1
and only sparsely 𝑅 = 10 at the goal.

7



1.3.6 Policy

The policy is obtained by taking the best actions with the larges Q-value from our Q-matrix.

𝜋∗(𝑠) = argmaxa𝑄∗(𝑠, 𝑎)

8



1.3.7 Plot the policy

1.4 Where to go from here
If you want to know more about Reinforcement Learning, have a look at the book of Sutton and
Barto.

9

http://incompleteideas.net/book/bookdraft2017nov5.pdf

	Machine Learning and Neural Networks
	Overview
	Reinforcement Learning
	Markov Decision Process

	Navigating a Grid World
	Initialize Reinforcement Learning
	List of actions
	Initial state
	Reinforcement Learning Loop
	Convergence of the Q-learning
	Policy
	Plot the policy

	Where to go from here


