
1_deep_learning

May 28, 2024

1 Neural Networks
Neural networks are one of the most commonly used machine learning objects nowadays. Mostly
these systems are known as deep neural networks, which just says something about how many
layers in which neurons are arranged exist. We will in this lecture have a look at the basic unit,
the neuron, and how to connect and train a network. We will do all ourselves, that means, we will
not use one of the many existing python modules, that simplifies the task. This notebook has been
largely developed by Martin Fränzl.

In this lecture we are going to build a neural network from scratch using Python and NumPy (The
high-level libaries like Keras and TensorFlow will be covered in Part 2). We will build a network
to recognize hand-written digits, using the famous MNIST data set.

We will start with the simplest possible “network”: A single node that recognizes just the digit 0.
This is actually just an implementation of logistic regression, but it will help us understand some
of the key components before things get more complicated. Then we’ll extend that into a network
with one hidden layer, still recognizing just 0. Finally, we will extend the network to recognize all
the digits 0 through 9. That will give us a 92% accurate digit-recognizer.

1.1 The MNIST Data Set
The MNIST data set contains 70,000 images of hand-written digits, each 28 x 28 pixels, in greyscale
with pixel-values from 0 to 255. We could download and preprocess the data ourselves, but the
makers of the module sklearn already did that for us:

1.1.1 Load the data

The images are now contained in the array X, while the labels (so which number it is) are contained
in y. Let’s have a look at a random image and label.

1

label: 3

1.1.2 Normalize the data

To use data in neural networks as training data, it is always useful to normalize the data to the
interval [0, 1].

1.1.3 Preparing training and testing data

The default MNIST labels say ‘1’ for an image of a one, ‘2’ for an image of a two, etc., but we are
just building a zero classifier for now. So we want our labels to say 1 when we have a zero, and 0
otherwise. So we overwrite the labels accordingly:

We now split the data in a train and test set. The MNIST images are pre-arranged so that the
first 60,000 can be used for training, and the last 10,000 for testing. We’ll also transform the data
into the shape we want, with each example in a column (instead of a row):

Finally, we shuffle the training set:

Let’s again have a look at random image and label just to check

2

[0.]

Try to find a zero to check whether the corresponding label is a 1.

1.2 A Single Neuron
The basic unit of a neural network is a neuron. A neuron takes inputs, does some math with them,
and produces one output. The neuron below does that with two inputs.

3

1.2.1 Forward Propogation

The neuron does now three things.

1. Take input values and multipy by weights

𝑥1 → 𝑥1𝑤1 (1)
𝑥2 → 𝑥2𝑤2 (2)

2. All the weighted inputs are the added to a bias value 𝑏

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏 (3)

3. The output is generated by applying a function 𝜎()
𝑦 = 𝜎(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏) (4)

This function is called activation function. The activation function is used to turn an unbounded
input value into a bounded output value with a predictable range. A commonly used activation
function is the sigmoid function.

For a single input dataset 𝑥 a more compact writing of the math above is

̂𝑦 = 𝜎(𝑤T𝑥 + 𝑏) .

Here 𝜎 is the sigmoid function:
𝜎(𝑧) = 1

1 + e−𝑧 .

The sigmoid function is something we can already define and plot.

4

If we now have this kind of two input neuron with the weights 𝑤 and the bias value 𝑏

𝑤 = [0, 1] (5)
𝑏 = 4 (6)

we may supply and input

𝑥 = [2, 3] (7)

which gives writing it a s a dot product

𝑦 = 𝑓(𝑤 ⋅ 𝑥 + 𝑏) = 𝑓(7) = 0.999 (8)

This procedure of propagating the input values to obtain and output value is called feedforward
or forward propagation. Our first goal is now to create a network with a single neuron with 784
inputs (28 x 28), and a single sigmoid unit generating the output.

The above examples can be written and executed more efficiently in a vectorized form. Generating
the output We’ll vectorize by stacking examples side-by-side, so that our input matrix 𝑋 has an
example in each column. The vectorized form of the forward pass is then

̂𝑦 = 𝜎(𝑤T𝑋 + 𝑏) .

Note that ̂𝑦 is now a vector, not a scalar as it was in the previous equation.

5

In our code we will compute this in two stages: Z = np.matmul(W.T, X) + b and then A =
sigmoid(Z) (A for Activation). Breaking things up into stages like this is just for clarity - It will
make our forward pass computations mirror the steps in our backward propagation computation.

1.2.2 Loss Function

Since we have now data and we also know how to propagate (at least in principle) the input through
the single neuron here, we also need to define a measure for how far the output deviates from the
input. This measure is called loss. The many different ways of defining a suitable loss. The mean
squared error, as it appeared already during our fitting lecture, could be a suitable loss function

𝑀𝑆𝐸(𝑦, ̂𝑦) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦 − ̂𝑦)2 (9)

for a number of 𝑛 datasets. Here ̂𝑦 is the data that is predicted by the network and 𝑦 is the value
which represents the so called ground truth, i.e. the data provided by the training set.

We will not use the mean squared error bu the cross-entropy for our loss function. The formula
for a single training example (one input image) is:

𝐿(𝑦, ̂𝑦) = −𝑦 log(̂𝑦) − (1 − 𝑦) log(1 − ̂𝑦) .

This error definition comes from the Shannon entropy definition, which you may look up in the
web if you are interested. Averaging over a training set of 𝑚 examples we then have:

𝐿(𝑌 , ̂𝑌) = − 1
𝑚

𝑚
∑
𝑖=0

𝑦(𝑖) log(̂𝑦(𝑖)) − (1 − 𝑦(𝑖)) log(1 − ̂𝑦(𝑖)) .

In Python code, this looks like

1.3 Trainging the Network
The goal of all neural network training procedures is to minimize the loss and we have to find a
way to minimize that loss. This is not so much different from our fitting of function values before.

1.3.1 Backward Propagation

The output of the network is determined by the input values and how we have distributed the
weights 𝑤 and the biases 𝑏. We can write the loss function therefore as a function of the weights
and losses

𝐿(𝑤1, 𝑤2, 𝑤3, … , 𝑏1, 𝑏2, 𝑏3, …)

To train the network, we would now try to find out, by how much the output values change if we
do change a specific weight 𝑤𝑗. This can be expressed by the partial derivative

𝜕𝐿
𝜕𝑤𝑗

6

We may then take a tiny step and correct the current value of 𝑤𝑗 such that the network yields
a new output. This way back from the current output of the network and its current loss to a
correction of the weights to yield a smaller loss is called back propagation.

Calculating derivatives

Focusing on a single input image will make it easier to derive the formulas we need. Holding all
values except 𝑤𝑗 fixed, we can think of 𝐿 as being computed in three steps: 𝑤𝑗 → 𝑧 → ̂𝑦 → 𝐿. The
formulas for these steps are:

𝑧 = 𝑤T𝑥 + 𝑏 ,
̂𝑦 = 𝜎(𝑧) ,

𝐿(𝑦, ̂𝑦) = −𝑦 log(̂𝑦) − (1 − 𝑦) log(1 − ̂𝑦) .

The change of the loss function with the weights can then be split up by the chain rule into

𝜕𝐿
𝜕𝑤𝑗

= 𝜕𝐿
𝜕 ̂𝑦

𝜕 ̂𝑦
𝜕𝑧

𝜕𝑧
𝜕𝑤𝑗

There we have a product of three individual partial derivatives, which are a bit tedius to write
down, but not to complicated. The read like

𝜕𝐿/𝜕 ̂𝑦:

𝜕𝐿
𝜕 ̂𝑦 = 𝜕

𝜕 ̂𝑦 (−𝑦 log(̂𝑦) − (1 − 𝑦) log(1 − ̂𝑦))

= −𝑦 𝜕
𝜕 ̂𝑦 log(̂𝑦) − (1 − 𝑦) 𝜕

𝜕 ̂𝑦 log(1 − ̂𝑦)

= −𝑦
̂𝑦 + (1 − 𝑦)

1 − ̂𝑦
= ̂𝑦 − 𝑦

̂𝑦(1 − ̂𝑦)

𝜕 ̂𝑦/𝜕𝑧:

𝜕
𝜕𝑧 𝜎(𝑧) = 𝜕

𝜕𝑧 (1
1 + e−𝑧)

= 1
(1 + e−𝑧)2

𝜕
𝜕𝑧 (1 + e−𝑧)

= e−𝑧

(1 + e−𝑧)2

= 1
1 + e−𝑧

e−𝑧

1 + e−𝑧

= 1
1 + e−𝑧 (1 − 1

1 + e−𝑧)

= 𝜎(𝑧)(1 − 𝜎(𝑧))
= ̂𝑦(1 − ̂𝑦)

7

𝜕𝑧/𝜕𝑤𝑗:

𝜕
𝜕𝑤𝑗

(𝑤T𝑥 + 𝑏) = 𝜕
𝜕𝑤𝑗

(𝑤0𝑥0 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏)

= 𝑥𝑗

Substituting back into the chain rule yields:

𝜕𝐿
𝜕𝑤𝑗

= 𝜕𝐿
𝜕 ̂𝑦

𝜕 ̂𝑦
𝜕𝑧

𝜕𝑧
𝜕𝑤𝑗

= ̂𝑦 − 𝑦
̂𝑦(1 − ̂𝑦) ̂𝑦(1 − ̂𝑦)𝑥𝑗

= (̂𝑦 − 𝑦)𝑥𝑗 .

which does not look that unfriendly anymore.

In vectorized form with 𝑚 training examples this gives us

𝜕𝐿
𝜕𝑤 = 1

𝑚𝑋(̂𝑦 − 𝑦)T .

A very similar derivation of 𝜕𝐿/𝜕𝑏 yields, for a single example:

𝜕𝐿
𝜕𝑏 = (̂𝑦 − 𝑦) .

In vectorized form we get

𝜕𝐿
𝜕𝑏 = 1

𝑚
𝑚

∑
𝑖=1

(̂𝑦(𝑖) − 𝑦(𝑖)) .

In our code we label these gradients according to their denominators, as dW and db. So for back-
propagation we compute dW = (1/m) * np.matmul(X, (A-Y).T) and db = (1/m)*np.sum(A-Y,
axis=1, keepdims=True).

1.3.2 Stochastic Gradient Descent

We have all the tools we need to train a neural network now! We’ll use an optimization algorithm
called stochastic gradient descent (SGD) that tells us how to change our weights and biases to
minimize loss. It is a simple umpdate of the weights and biases, which would read for the weights
like

𝑤 ← 𝑤 − 𝜂 𝜕𝐿
𝜕𝑤

where 𝜂 is a constant called the learning rate that controls how fast we train. All we’re doing is
subtracting 𝜂𝜕𝐿/𝜕𝑤 from 𝑤

• If 𝜕𝐿/𝜕𝑤 is positive, 𝑤 will decrease, which makes L decrease.

8

• If 𝜕𝐿/𝜕𝑤 is negative, 𝑤 will increase, which makes L decrease.

The equations look equivalent for the bias 𝑏. Our back propagation procedure will do that for as
many steps we want, i.e. until we feel that the output is close enough to the ground truth. Each
back propagation step is called and epoch.

1.3.3 Build an Train

Now we have all things together to create a single neuron network doing the analysis of the MNIST
numbers. This type of data processing is called logistic regression based on the sigmoid function,
which is a logistic function. So let’s create all in python code and train the network for 100 epochs.

Epoch 0 loss: 0.7471125121616977
Epoch 10 loss: 0.0730826958292902
Epoch 20 loss: 0.06131832354627721
Epoch 30 loss: 0.055230119812005714
Epoch 40 loss: 0.0513243202361425
Epoch 50 loss: 0.04854004196371184
Epoch 60 loss: 0.04642485272904433
Epoch 70 loss: 0.04474722082574824
Epoch 80 loss: 0.043374333931969114
Epoch 90 loss: 0.042223715518407964
Final loss: 0.041332921148394014

We do not really now how to judge the quality of our trained network. At least we saw that the loss
is decreasing, which is good. We may judge the quality of our trained network by calculating the
so-called confusion matrix. The confusion matrix is creating a matrix giving reports the actual
values in the rows and the predicted values in the columns.

9

The entries in the matrix are called true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN). Fortunately we can use a method of the sklearn module to
calculate the confusion matrix. We just have to supply the predictions and the actual labels to it.
To do so, we use the testing data set X_test which we have splitted earlier.

[[8973 42]
[47 938]]

precision recall f1-score support

False 0.99 1.00 1.00 9015
True 0.96 0.95 0.95 985

accuracy 0.99 10000
macro avg 0.98 0.97 0.97 10000

weighted avg 0.99 0.99 0.99 10000

1.3.4 Testing our model

We can check a single image of our testing data with the following line. If the output number is
bigger than 0.5, our number is likely a 0.

False

<matplotlib.image.AxesImage at 0x7f06e46c6df0>

10

1.4 Network with Hidden Layers
In our example above, we just had an input layer and a single output neuron. More complex neural
networks are containing many layers between the input layer and the output layer. These inbetween
layers are called hidden layers. Here is a simple example of a neural network with a single hidden
layer.

So we have now and input layer with 784 inputs that are connected to 64 units in the hidden layer
and 1 neuron in the output layer. We will not go through the derivations of all the formulas for
the forward and backward passes this time. The code is a simple extension of what we did before
and I hope easy to read.

Epoch 0 loss: 2.395166635058746
Epoch 10 loss: 0.2207416875926896
Epoch 20 loss: 0.16601548222727533
Epoch 30 loss: 0.13990677867922954
Epoch 40 loss: 0.12390102523919129
Epoch 50 loss: 0.11269161497108851
Epoch 60 loss: 0.10421329497723456
Epoch 70 loss: 0.09747959072905935
Epoch 80 loss: 0.09194898313097832
Epoch 90 loss: 0.0872943606401609
Final loss: 0.08367740628296327

To judge the newtork quality we do use again the confusion matrix.

[[8905 178]
[115 802]]

precision recall f1-score support

False 0.99 0.98 0.98 9083
True 0.82 0.87 0.85 917

11

accuracy 0.97 10000
macro avg 0.90 0.93 0.91 10000

weighted avg 0.97 0.97 0.97 10000

1.5 Multiclass Network
So far we did only classify if the number we feed to the network is just a 0 or not. We would like to
recognize the different number now and therefore need a multiclass network. Each number is then
a class and per class, we have multiple realizations of handwritten numbers. We therefore have to
create an output layer, which is not only containing a single neuron, but 10 neurons. Each of these
neuron can output a value between 0 and 1. Whenever the output is 1, the index of the neuron
represents the number predicted.

The output array

[0,1,0,0,0,0,0,0,0,0]

would therefore correspond to the value 1.

For this purpose, we need to reload the right labels.

/home/lectures/.local/lib/python3.8/site-
packages/sklearn/datasets/_openml.py:1002: FutureWarning: The default value of
`parser` will change from `'liac-arff'` to `'auto'` in 1.4. You can set
`parser='auto'` to silence this warning. Therefore, an `ImportError` will be
raised from 1.4 if the dataset is dense and pandas is not installed. Note that
the pandas parser may return different data types. See the Notes Section in
fetch_openml's API doc for details.

warn(

Then we’ll one-hot encode MNIST’s labels, to get a 10 x 70,000 array.

We also seperate into trainging and testing data

12

array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.])

1.5.1 Changes to the model

OK, so let’s consider what changes we need to make to the model itself.

Forward Pass Only the last layer of our network is changing. To add the softmax, we have
to replace our lone, final node with a 10 unit layer. Its final activations are the exponentials of
its z-values, normalized across all ten such exponentials. So instead of just computing 𝜎(𝑧), we
compute the activation for each unit 𝑖 using the softmax function:

𝜎(𝑧)𝑖 = e𝑧𝑖

∑9
𝑗=0 e𝑧𝑖

.

So, in our vectorized code, the last line of forward propagation will be A2 = np.exp(Z2) /
np.sum(np.exp(Z2), axis=0).

Loss Function Our loss function now has to generalize to more than two classes. The general
formula for 𝑛 classes is:

𝐿(𝑦, ̂𝑦) = −
𝑛

∑
𝑖=0

𝑦𝑖 log(̂𝑦𝑖) .

13

Averaging over 𝑚 training examples this becomes:

𝐿(𝑦, ̂𝑦) = − 1
𝑚

𝑚
∑
𝑗=0

𝑛
∑
𝑖=0

𝑦(𝑖)
𝑖 log(̂𝑦(𝑖)

𝑖) .

So let’s define:

Back Propagation Luckily it turns out that back propagation isn’t really affected by the switch
to a softmax. A softmax generalizes the sigmoid activiation we’ve been using, and in such a way
that the code we wrote earlier still works. We could verify this by deriving:

𝜕𝐿
𝜕𝑧𝑖

= ̂𝑦𝑖 − 𝑦𝑖 .

But we won’t walk through the steps here. Let’s just go ahead and build our final network.

1.5.2 Build and Train

As we have now more weights and classes, the training takes longer and we actually need also more
episodes to achieve a good accuracy.

Epoch 0 loss: 9.359409945262723
Epoch 10 loss: 2.48091541075077
Epoch 20 loss: 1.674432764227768
Epoch 30 loss: 1.3330104308788546
Epoch 40 loss: 1.144784230249712
Epoch 50 loss: 1.0230964725181804
Epoch 60 loss: 0.9368747323694274
Epoch 70 loss: 0.871957389404843
Epoch 80 loss: 0.8208795576102075
Epoch 90 loss: 0.7793325725168159
Epoch 100 loss: 0.7446649543545801
Epoch 110 loss: 0.7151537041535515
Epoch 120 loss: 0.6896258244540622
Epoch 130 loss: 0.6672519100025258
Epoch 140 loss: 0.6474268213495037
Epoch 150 loss: 0.6296970416913454
Epoch 160 loss: 0.6137147676333654
Epoch 170 loss: 0.5992079750548169
Epoch 180 loss: 0.5859603076597459
Epoch 190 loss: 0.5737971945414018
Final loss: 0.5636592880338956

Let’s see how we did:

Model performance

[[896 0 26 8 8 22 30 4 14 10]
[0 1076 15 6 2 7 3 6 14 2]

14

[14 13 815 30 10 13 23 33 24 13]
[10 12 47 820 4 60 5 18 40 17]
[0 1 17 0 790 22 30 17 14 106]
[27 4 7 56 5 669 23 6 58 16]
[13 5 30 7 23 28 822 0 21 1]
[6 2 18 25 12 10 3 866 18 37]
[12 22 47 42 19 44 16 15 739 28]
[2 0 10 16 109 17 3 63 32 779]]

precision recall f1-score support

0 0.91 0.88 0.90 1018
1 0.95 0.95 0.95 1131
2 0.79 0.82 0.81 988
3 0.81 0.79 0.80 1033
4 0.80 0.79 0.80 997
5 0.75 0.77 0.76 871
6 0.86 0.87 0.86 950
7 0.84 0.87 0.86 997
8 0.76 0.75 0.75 984
9 0.77 0.76 0.76 1031

accuracy 0.83 10000
macro avg 0.82 0.83 0.82 10000

weighted avg 0.83 0.83 0.83 10000

We are at 84% accuray across all digits, which could be of course better. We may now plot image
and the corresponding prediction.

1.6 Test the model

6

15

16

	Neural Networks
	The MNIST Data Set
	Load the data
	Normalize the data
	Preparing training and testing data

	A Single Neuron
	Forward Propogation
	Loss Function

	Trainging the Network
	Backward Propagation
	Stochastic Gradient Descent
	Build an Train
	Testing our model

	Network with Hidden Layers
	Multiclass Network
	Changes to the model
	Build and Train

	Test the model

