1 CNN
May 28, 2024

1 Convolutional Neural Networks

As the last topic of the neural network part of our course, we would like to have a look at convo-
lutional neural networks (CNN). CNNs are very similar to ordinary Neural Networks — they are
made up of neurons that have learnable weights and biases. Each neuron receives some inputs, per-
forms a dot product and optionally follows it with a non-linearity. CNNs are frequently employed
for visual recognition. I.e. we use them in the Molecular Nanophotonics Group for the real-time
detection of single particles.

CNNs are biologically-inspired models inspired by research of D. H. Hubel and T. N. Wiesel. They
proposed an explanation for the way in which mammals visually perceive the world around them
using a layered architecture of neurons in the brain, and this in turn inspired engineers to attempt
to develop similar pattern recognition mechanisms in computer vision. In their hypothesis, within
the visual cortex, complex functional responses generated by “complex cells” are constructed from
more simplistic responses from “simple cells’. For instances, simple cells would respond to oriented
edges etc, while complex cells will also respond to oriented edges but with a degree of spatial
invariances. You may find the following youtube video interesting with that respect.

1.1 Layout of a CNN

et

——

K

— CAR
— TRUCK
— VAN

|:.] |:.] — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING y FLATIEN (¥ SOFTMAX
FEATURE LEARNING CLASSIFICATION

“A simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of
activations to another through a differentiable function.” What it actually means is that, each
layer is associated with converting the information from the values, available in the previous layers,
into some more complex information and pass on to the next layers for further generalization.

1. Convolution Block: Consists of the Convolution Layer and the Pooling Layer. This layer
forms the essential component of Feature-Extraction

https://de.wikipedia.org/wiki/David_H._Hubel
https://de.wikipedia.org/wiki/Torsten_N._Wiesel
https://www.youtube.com/watch?v=Cw5PKV9Rj3o

2. Fully Connected Block Consists of a fully connected simple neural network architecture.
This layer performs the task of Classification based on the input from the convolutional block.

1.2 Convolutional Layer

The convolutional layer is related to the extraction of specific features from an image for example.
For this pupose it applies a filter with a specific mathematical procedure to the image. This filter
is known from image processing to have a filter kernel.

The image can be represented as a simple matrix with data entries. In general there might be three
layers for the colors red green and blue but we will assume just a single layer here. In the same
way, the kernel for the convolution is a simple image, just smaller. Often kernel sizes of 3x3 matrix
entries are used. The image below shows two examples.

image kernel
0 20 0 0 0 0 1 0 0
0 20 0 10 | 10 | 10 0 1 0
0 20 0 0 0 0 0 0 1
0 20 0 0 5 0
0 20 0 0 0 12
0 20 0 0 0 6

If the image is now convoluted with the kernel, a subimage of the same size as the kernel is selected
from the image and multiplied elementwise with the kernel. The resulting matrix entries are then
summed up to yield a single number, which corresponds to a single pixel in the corresponding
convoluted image. The example above results in a 4x4 matrix, as there are just 4 different possible
positions of the kernel along the 6x6 image.

subimage

0 20 0
0 20 0
0 20 0
20 0 0
20 0 10
20 0 0
0 0 0
0 10 | 10
0 0 0

kernel

20

convoluted image

20 |20 | 10 | 10
20 | 207| 5 | 10
20 0/l20 | 0 |17
20(20| 0 | 6

10

The above example shows, that the maximum value for the convolution result would be given if
the original pixel numbers would be in a diagonal. The specific kernel, we have chosen is enhancing
diagonal features in the image. Correspondingly other features would be enhanced by other kernels.
Many CNNs apply in one step multiple kernels to the image. The results of these operation are
called feature maps. The code below demonstrates the convolution with the scipy module.

Image array

Convolution kernel

Convolution

Plotting

kernel

convoluted image

<matplotlib.image.AxesImage at 0x7£9224975e50>

0 : :

100

0 200 400

<matplotlib.image.AxesImage at 0x7£92247c9490>

0 7200 400

1.2.1 Padding

If we try to visualize the operation of convolution, in our head, as the filter matrix moves over
the whole image, we find that the no of times, the values of the cells lying within the matrix is
considered for the operation is more than the no. of times, the values of the cells in the corners
or at the borders, are accounted for. This implies that the values at the corners or around the
borders are not being given equal weightage. To overcome this, we add another row and column, of
only 0, at all the sides of the image matrix. This idea is known as padding. In actual sense, these
values being ‘0’ wouldn’t supply any extra information, but will help into accounting the previously
less-accounted for values to be given more weightage. As a result of the padding, the output matrix
is now of the same size as the input matrix.

1.2.2 Striding

In ‘strided’ convolution, instead of shifting the filter one-row or one-column at a time, we shift it,
maybe, 2 or 3 rows or columns, each time. This is generally done to reduce the no of calculation
and also reduce the size of the output matrix. For large image, this doesn’t results in loss of data,
but reduces computation cost on a large scale.

1.3 RELU Activation

The resulting feature maps are finally passed through and activation function as we identified
before. ReLU or Rectified Linear Unit is applied on all the cells of all the output-matrix. The
function is defined as:

fz) = {0 forx <0

z forx >0

The shape of the ReLU function is shown below. It supresses essentially all output values which
are negative.

10

RelLU(x)

—10 -5 0 5 10

The basic intuition to derive from here is that, after convolution, if a particular convolution function
results in ‘0’ or a negative value, it implies that the feature is not present there and we denote it by
‘0’, and for all the other cases we keep the value. Together with all the operations and the functions
applied on the input image, we form the first part of the Convolutional Block.

1.4 Pooling Layer

The Pooling layer consist of performing the process of extracting a particular value from a set of
values, usually the max value or the average value of all the values. This reduces the size of the
output matrix. For example, for MAX-POOLING, we take in the max value among all the values

of say a 2 X 2 part of the matrix. Thus, we are actually taking in the values denoting the presence
of a feature in that section of the image. In this way we are getting rid of unwanted information
regarding the presence of a feature in a particular portion of the image and considering only what
is required to know. It is common to periodically insert a Pooling layer in-between successive
convolutional blocks in a CNN architecture. Its function is to progressively reduce the spatial size
of the representation to reduce the number of parameters and computation in the network.

Max Pooling Average Pooling

29 | 15 | 28 | 184 31 | 15 | 28 | 184

0O | 100 (70 | 38 0 |100| 70 | 38

12 | 12 | 2 12 | 12 | 7 2

12 | 12 | 45 6 12 | 12 | 45 6

2X2 2X2
pool size pool size

\ \J
100 | 184 36 | 80

12 | 45 12 | 15

1.5 Output Size

All of the given operations are tentatively changing the input matrix size into an output matrix
size.

: 20 — k
Ty, +2p }—i—l

n =
out |: s

where

e n;,: number of input features
e N, Dumber of output
o k: convolution kernel size

e p: padding size
e s: convolution stride size

For our above example n;,, =6, k=3, p =0 and s = 1 from which n_, = 4 follows.

1.6 Flattening

After multiple convolution layers and downsampling operations, the 3D representation of the image
is converted into a feature vector that is passed into a multi-layer perceptron to output probabilities.
The following image describes the flattening operation

flattened feature map

pooled feature map

1.7 Dropout

The Dropout layer randomly sets input units to 0 with a frequency of rate at each step during
training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate)

such that the sum over all inputs is unchanged.

1.8 Fully Connected Layer

This layer forms the last block of the CNN architecture, related to the task of classification. This is
essentially a fully connected Simple Neural Network as we constructed it in the lecture before. It is
consisting of two or three hidden layers and an output layer generally implemented using ‘Softmax
Regression’, that performs the work of classification among a large no of categories. The structure
of the output layer therefore depends on what the output should be.

2 Example CNN with Keras

We will use the knowledge gained above to create a convolutional neural network for the character
recognition we started already in the last lecture with conventional neural networks. We refer to
the same MNIST example as before. As the convolutional networks are more complex, we will use
tensorflow and keras as the frontend to program that. Using this, the implementation is straight
forward.

2.1 Prepare the data
First we have to load the data and devide that into training and testing data.

X_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples

2.2 Build the network
Our network shall consist of a

o input layer with 28 x 28 pixels

« convolutional layer with 32 kernels of 3 x 3 pixels and a ReLU activation
e pooling layer taking the maximum of 2 x 2 pixels

o convolutional layer with 64 kernels of 3 x 3 pixels and a ReLU activation
¢ pooling layer taking the maximum of 2 x 2 pixels

o flattening layer

o dropout layer which choses randomly 50% of the input

e dense output layer with the number of classes, which is 10

This network is easily setup in kears by the following commands

Model: "sequential_2"

Layer (type) Output Shape Param #
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_4 (MaxPooling (None, 13, 13, 32) 0

2D)

10

conv2d_5 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_5 (MaxPooling (None, 5, 5, 64) 0

2D)

flatten_2 (Flatten) (None, 1600) 0
dropout_2 (Dropout) (None, 1600) 0
dense_2 (Dense) (None, 10) 16010

Total params: 34,826
Trainable params: 34,826
Non-trainable params: O

11

input 3 input:
[(None, 28, 28, 1)] | [(None, 28, 28, 1)]
InputLayer | output:
conv2d 4 | input:
(None, 28, 28, 1) | (None, 26, 26, 32)
Conv2ZD | output:

'

max_pooling2d 4 | input:
=4 — — (None, 26, 26, 32) | (None, 13, 13, 32)
MaxPooling2D | output:
conv2d 5 | input:
(None, 13, 13, 32) | (None, 11, 11, 64)
ConvZD | output:

'

max pooling2d 5 | input:
=4 mg_ — P (None, 11, 11, 64) | (None, 5, 5, 64)
MaxPooling2D output:
flatten 2 | input:
(None, 5, 5, 64) | (None, 1600)
Flatten | output:
dropout 2 | input:
— (None, 1600) | (None, 1600)
Dropout | output:
dense 2 | input:
— (None, 1600) | (None, 10)
Dense | output:

12

2.3 Train the network

Next we want to train the network. To do so, we first need to compile the model with a specific
loss function, which is the categorical_crossentropy method, which we mentioned already last
lecture. The compiled model can then be trained for a specific amount of epochs. It is important
to have a part of the training data splitted apart to use that as the validation data. This validation
data will also be used to calculated the loss but the loss is not minimized on that data but rather on
the training data. What could happen during training is now that the training loss decreases but
the validation loss increases. This in general means that the network is overfitted to the training
data. It just reflects the training data but is not able to infer any other information accurately
from it.

Epoch 1/15

2023-07-11 14:36:16.805623: W
tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 169344000
exceeds 10} of free system memory.

422/422 [] - 7s 16ms/step - loss: 0.3624 -
accuracy: 0.8897 - val_loss: 0.0824 - val_accuracy: 0.9793

Epoch 2/15

422/422 [1] - 7s 16ms/step - loss: 0.1122 -
accuracy: 0.9652 - val_loss: 0.0614 - val_accuracy: 0.9832

Epoch 3/15

422/422 [] - 7s 17ms/step - loss: 0.0856 -
accuracy: 0.9741 - val_loss: 0.0444 - val_accuracy: 0.9893

Epoch 4/15

422/422 [] - 7s 17ms/step - loss: 0.0699 -
accuracy: 0.9786 - val_loss: 0.0457 - val_accuracy: 0.9873

Epoch 5/15

422/422 [] - 7s 17ms/step - loss: 0.0620 -
accuracy: 0.9808 - val_loss: 0.0425 - val_accuracy: 0.9882

Epoch 6/15

422/422 [==============================] - 7s 17ms/step - loss: 0.0559 -
accuracy: 0.9829 - val_loss: 0.0373 - val_accuracy: 0.9913

Epoch 7/15

422/422 [] - 7s 17ms/step - loss: 0.0514 -
accuracy: 0.9834 - val_loss: 0.0364 - val_accuracy: 0.9908

Epoch 8/15

422/422 [] - 7s 17ms/step - loss: 0.0468 -
accuracy: 0.9847 - val_loss: 0.0294 - val_accuracy: 0.9918

Epoch 9/15

422/422 [] - 7s 17ms/step - loss: 0.0454 -

accuracy: 0.9856 - val_loss: 0.0311 - val_accuracy: 0.9903
Epoch 10/15
422/422 [] - 7s 17ms/step - loss: 0.0415 -

13

accuracy: 0.9872
Epoch 11/15
422/422 [] - 7s 17ms/step - loss: 0.0412
accuracy: 0.9867 - val_loss: 0.0303 - val_accuracy: 0.9918

Epoch 12/15

422/422 [] - 7s 17ms/step - loss: 0.0353
accuracy: 0.9889 - val_loss: 0.0301 - val_accuracy: 0.9912

Epoch 13/15

422/422 [] - 7s 17ms/step - loss: 0.0372
accuracy: 0.9877 - val_loss: 0.0307 - val_accuracy: 0.9918

Epoch 14/15

422/422 [==============================] - 7s 17ms/step - loss: 0.0329
accuracy: 0.9897 val_loss: 0.0318 - val_accuracy: 0.9910

Epoch 15/15

422/422 [] - 7s 17ms/step - loss: 0.0326
accuracy: 0.9896 - val_loss: 0.0316 - val_accuracy: 0.9920

val_loss: 0.0325 - val_accuracy: 0.9907

<keras.callbacks.History at 0x7£9224764040>

2.4 FEvaluate the trained network

The following is just to tell you how accurate the model is. According to that, we achieve about
99% accuracy.

Test loss: 0.02492290735244751
Test accuracy: 0.9919000267982483
2.5 Evaluate the accuracy of your visual neural network ;-)

We can now randomly select a number from the tesing (not the training) data and display the
prediction and compare that vs. your own built in neural network.

My prediction is: 4

14

2.6 Where to go from here?

If you are interested in applying CNNs to classify and locate data, have a look at our framework
for single particle tracking in real time.

15

https://github.com/Molecular-Nanophotonics/YOLOv21-Framework
https://github.com/Molecular-Nanophotonics/YOLOv21-Framework

	Convolutional Neural Networks
	Layout of a CNN
	Convolutional Layer
	Padding
	Striding

	RELU Activation
	Pooling Layer
	Output Size
	Flattening
	Dropout
	Fully Connected Layer

	Example CNN with Keras
	Prepare the data
	Build the network
	Train the network
	Evaluate the trained network
	Evaluate the accuracy of your visual neural network ;-)
	Where to go from here?

