
25_publication_ready_figures

May 28, 2024

1 Add On: Making publication ready figures
In this short text I will try to put some guidelines of how to generate plots with an appropriate
size, such that you can use the examples right away in your Jupyter notebook.

You would like to assemble your Figures in a manuscript from plots that you generate as PDF files,
i.e.they contain vector graphics. This has the advantage that you can scale them to the appropriate
size afterwards such to squeeze them in on-column or two-column Figures. While this is tempting,
it is carrying the danger that you scale each plot differently and then all plots have different axis
label sizes and tick sizes, which finally creates a mess.

To prevent that, one could readily start creating the plots in the appropriate size of on-column or
two column use with all the same axis and tick label sizes. Here are some hacks, that allow you to
create and save production ready plots directly from your Jupyter notebooks.

1.1 Creating a plot with a specific bounding box size
If you create a plot in matplotlib you can specify a size with the parameter figsize, e.g.

plt.figure(figsize=(3,2))

for a figure of a width of 3 inches or 7.62 cm and a height of 2 inches (5.08 cm). If you do not
use this parameter or if you even do not use the plt.figure() command, matplotlib will use the
default size, which is often 8 inches times 6 inches. The default size is way to big as the figure
would be then just a whole A4 page wide. A proper size of a plot for a single column in a two
column paper would be the above 3 inches times 2 inches as a the whole paper width is 21 cm
minus a marging of about 3 cm on each side gives a column width of about (21-6)/2=7.5 cm.

The Plot shown in Figure @fig-1 is created with the following commands

plt.figure(figsize=(3,2), dpi=150)
x=np.linspace(0,np.pi*4,200)
plt.plot(x,np.sin(x),color='k')
plt.xlabel(r"angle θ in [rad]")
plt.ylabel(r"$\sin(\theta)$")
plt.savefig("figure_example.pdf",

bbox_inches = 'tight')
plt.show()

The resulting PDF file contains a plot that has a bounding box, that is exactly 3 inches times 2
inches. So if you insert the plot in any drawing program like Adobe Illustrator, Affinity Designer
or even into text processing software like Word or Pages, the bounding box of this plot, will exactly

1

be of this size and you can arrange additional graphs to form a whole figure easily without rescaling
thing. If you use the plot in LATEXmanuscript, which is two-column it can be used without scaling,
i.e. by \includegraphics{Figure 1.pdf}to show up in the appropriate size over one column.

There are a few more things to realize.

• While the bounding box of this figure is of this size, the axis box is smaller and often there
is a certain empty space on the left/bottom side between the axis labels and the edge of the
bounding box. That very much depends on you specific plot. We will address how to create
a figure with a fixed axis frame size in the second section.

• The font size on the axis is now 10 or 11 pts, which matches the font size of most docu-
ments you creating using this figure. I used the following plt.rcParams: ‘axes.labelsize’: 11,
‘xtick.labelsize’ : 10, ‘ytick.labelsize’ : 10 for the shown plot.

• You will also realize that working with this figure size is not good in a Jupyter notebook.
This has to do with how the Jupyter translates the output into the PNG file that is displayed
inline. A way to enlarge the plot in the Jupyter notebook but keep its PDF size is to increase
the dpi parameter in the plt.figure(figsize=(3,2), dpi=150) command. It is typically
set to dpi=75, which is now way to small. A setting dpi=150 seems a reasonable compromise
between on-screen and print size. If you want to be completely independent

• The plt.savefigcommand uses and additional bbox_inches = 'tight'parameter, which
ensures that the bounding box is really enclosing all plot components accurately.

Loading this figure into any software will result in a Figure with a size corresponding to the adjusted
width.

2

1.2 Creating a plot with a specific axis frame size
The axis frame is the box of the frame providing the axes. When creating a figure with the
plt.figure() command the axis frame is calculated by matplotlib to be inside the bounding box
specified by the figsize, such that all axis annotations fit inside as well. The axis frame is therefore
smaller than the specified bounding box and often depends on the axis labels and additional things.
If you want to create a plot with a fixed size of the axis frame, it is useful to add a function to your
code that sets this size of the axis frame. This function could be

def set_size(w,h, ax=None):
""" w, h: width, height in inches """
if not ax: ax=plt.gca()
l = ax.figure.subplotpars.left
r = ax.figure.subplotpars.right
t = ax.figure.subplotpars.top
b = ax.figure.subplotpars.bottom
figw = float(w)/(r-l)
figh = float(h)/(t-b)
ax.figure.set_size_inches(figw, figh)

where you have to specify the desired width and height (in inches) of the current axis ax. The
function does not return anything but sets directly the size.

3

If you load this Figure into a graphics software or text processing software, the Figure box, should
have a dimension of 7.62 cm times 5.08 cm, without any rescaling:

1.3 Choosing fonts
Matplotlib can access a number of different fonts. Finding the appropriate one to match formula
style of your document or publication can be difficult. A list of fonts available to matplotlib can
be obtained with the following code snippet, which I found here.

<IPython.core.display.HTML object>

In case you are writing your document in LaTeX, the cmXXXX fonts might be of interest to you
as the match the font used in the LaTeX documents. Here is an example:

4

https://jonathansoma.com/lede/data-studio/matplotlib/list-all-fonts-available-in-matplotlib-plus-samples/

5

	Add On: Making publication ready figures
	Creating a plot with a specific bounding box size
	Creating a plot with a specific axis frame size
	Choosing fonts

