
2_plotting

May 28, 2024

1 Plotting data
File as PDF

The graphical representation of data plotting is one of the most important tools for evaluating and
understanding scientific data and theoretical predictions. However, plotting is not a part of core
Python but is provided through one of several possible library modules. The de factor standard
for plotting in Python is MatPlotLib. There are nevertheless several other very good modules like
PlotLy, Seaborn, Bokeh and other available.

Because MatPlotLib is an external library (in fact it’s a collection of libraries) it must be imported
into any routine that uses it. MatPlotLib makes extensive use of NumPy so the two should be
imported together. Therefore, for any program for which you would like to produce 2-d plots, you
should include the lines

import matplotlib.pyplot as plt

This already implies one way, the implicit interface of pyplot to create figures and plot. In general
there are two interfaces:

• an implicit “pyplot” interface that keeps track of the last Figure and Axes created, and adds
Artists to the object it thinks the user wants.

• an explicit “Axes” interface that uses methods on a Figure or Axes object to create other
Artists, and build a visualization step by step. This has also been called an “object-oriented”
interface.

We will use most of the the the pyplot interface as in the examples below. The section Additional
Plotting will refer to the explicit programming of figures.

The plotting libraries are extremely rich and we will not be able to cover all plot types
and details here. This is therefore more a collection of code examples, you may use
as inspiration.

We can set some of the parameters for the appearance of graphs globally. In case you still want to
modify a part of it, you can set individual parameters later during plotting. The command used
here is the

plt.rcParams.update()

function, which takes a dictionary with the specific parameters as key.

1

https://github.com/fcichos/CBPM24/blob/ab29d2f9a566d5402ae9deca1cecd51592c81117/source/notebooks/L2/2_plotting.pdf
https://matplotlib.org/stable/index.html
https://plotly.com
https://seaborn.pydata.org
https://docs.bokeh.org/en/latest/

1.1 Simple Plotting - Implicit Version
There are several levels of of access to plotting available in MatPlotLib. We will use most of the time
the commands that use some defaults. This is simple as the layout of the graphs is automatically
adjusted by MatPlotLib. At the end of this section, we will also shortly address more advanced
access

1.1.1 Line Plot

A line plot ist created with the

plt.plot(x,y)

command. You may, however, modify in the parameters the appearance of the plot to a scatter
plot. But by default, it creates a line plot.

Axis Labels We should be always keen to make the diagrams as readable as possible. So we will
add some axis labels.

plt.xlabel('x-label')
plt.ylabel('y-label')

2

Legends

plt.plot(..., label=r'$\sin(x)$')
plt.legend(loc='lower left')

1.1.2 Scatter plot

If you prefer to use symbols for plotting just use the

plt.scatter(x,y)

3

command of pylab. Note that the scatter command requires a x and y values and you can set the
marker symbol (see an overview of the marker symbols).

1.1.3 Histograms

A very useful plotting command is also the hist command. It generates a histogram of the data
provided. If only the data is given, bins are calculated automatically. If you supply an array
of intervalls with hist(data,bins=b), where b is and array, the hist command calculates the
histogram for the supplied bins. density=True normalizes the area below the histogram to 1. The
hist command not only returns the graph, but also the occurrences and bins.

Physics Interlude Probability density for finding an oscillating particle

We want to use this occasion to combine histograms with some physics problem. Lets have a look
at the simple harmonic oscillators in one dimension, which as you remember follows the following
equation of motion.

̈𝑥(𝑡) = −𝜔2𝑥(𝑡) (1)

The solution of that equation of motion for an initial elongation Δ𝑥 at 𝑡 = 0 is given by

𝑥(𝑡) = Δ𝑥 cos(𝜔𝑡) (2)

If you now need to calculate the probability to find the spring at a certain elongation you need to
calculate the time the oscillator spends at different positions. The time 𝑑𝑡 spend in the interval
[𝑥(𝑡),𝑥(𝑡) + 𝑑𝑥] depends on the speed, i.e.

𝑣(𝑡) = 𝑑𝑥
𝑑𝑡 = −𝜔Δ𝑥 sin(𝜔𝑡) (3)

4

https://matplotlib.org/api/markers_api.html

The probability to find the oscillator at a certain intervall then is the fraction of time residing in
this intervall normalized by the half the oscillation period 𝑇 /2.

𝑑𝑡
𝑇 /2 = 1

𝑇 /2
𝑑𝑥
𝑣(𝑡) = 1

𝑇 /2
−𝑑𝑥

𝜔Δ𝑥 sin(𝜔𝑡) (4)

As the frequency of the oscillator is 𝜔 = 2𝜋/𝑇 we can replace 𝑇 by 𝑇 = 2𝜋/𝜔 which yields

𝑝(𝑥)𝑑𝑥 = 1
𝜋Δ𝑥

𝑑𝑥

√1 − (𝑥(𝑡)
Δ𝑥)

2
(5)

This is the probability density of finding an oscillating spring at a certain elongation 𝑥(𝑡). If you
look at the example more closely, it tells you, that you find and elongation more likely when the
speed of the mass is low. This is even a more general issue in non-equilibrium physics. If cells or
cars are moving with variable speed, they are more likely to be found at places where they are slow.

This can be also addressed with the histogram function. If we use the solution of the equation of
motion and evaluate the position at equidistant times, the the historgram over the corresponding
positions will tell us the probability of finding a certain position value if normalized properly.

Solution:

1.1.4 Combined plots

You can combine multiple data with the same axes by stacking multiple plots.

5

1.2 Saving figures
To save a figure to a file we can use the savefig method in the Figure class. Matplotlib can generate
high-quality output in a number formats, including PNG, JPG, EPS, SVG, PGF and PDF. For
scientific papers, I recommend using PDF whenever possible. (LaTeX documents compiled with
pdflatex can include PDFs using the includegraphics command). In some cases, PGF can also
be good alternative.

'/home/lectures/CBPM24/source/notebooks/L2'

6

1.3 Plots with error bars
When plotting experimental data it is customary to include error bars that indicate graphically
the degree of uncertainty that exists in the measurement of each data point. The MatPlotLib
function errorbar plots data with error bars attached. It can be used in a way that either replaces
or augments the plot function. Both vertical and horizontal error bars can be displayed. The figure
below illustrates the use of error bars.

1.3.1 Setting plotting limits and excluding data

If you want to zoom in to s specific region of a plot you can set the limits of the individual axes.

Masked arrays Sometimes you encounter situations, when you wish to mask some of the data
of your plot, because they are not showing real data as the vertical lines in the plot above. For this

7

purpose, you can mask the data arrays in various ways to not show up. The example below uses
the

np.ma.masked_where()

function of NumPy, which takes a condition as the first argument and what should be returned if
that condition is fulfilled.

If you look at the resulting array, you will find, that the entries have not been removed but replaced
by --, so the values are not existent and thefore not plotted.

1.4 Logarithmic plots
Data sets can span many orders of magnitude from fractional quantities much smaller than unity
to values much larger than unity. In such cases it is often useful to plot the data on logarithmic
axes.

1.4.1 Semi-log plots

For data sets that vary exponentially in the independent variable, it is often useful to use one or
more logarithmic axes. Radioactive decay of unstable nuclei, for example, exhibits an exponential
decrease in the number of particles emitted from the nuclei as a function of time.

MatPlotLib provides two functions for making semi-logarithmic plots, semilogx and semilogy, for
creating plots with logarithmic x and y axes, with linear y and x axes, respectively. We illustrate
their use in the program below, which made the above plots.

8

1.4.2 Log-log plots

MatPlotLib can also make log-log or double-logarithmic plots using the function loglog. It is useful
when both the 𝑥 and 𝑦 data span many orders of magnitude. Data that are described by a power
law 𝑦 = 𝐴𝑥𝑏, where 𝐴 and 𝑏 are constants, appear as straight lines when plotted on a log-log plot.
Again, the loglog function works just like the plot function but with logarithmic axes.

1.5 Arranging multiple plots
Often you want to create two or more graphs and place them next to one another, generally because
they are related to each other in some way.

9

1.6 Contour and Density Plots
A contour plots are useful tools to study two dimensional data, meaning 𝑍(𝑋, 𝑌). A contour plots
isolines of the function 𝑍.

1.6.1 Simple contour plot

Note: Physics Interlude

Interference of spherical waves

We want to use contour plots to explore the interference of two spherical waves. A spherical wave
can be given by a complex spatial amplitude

𝑈(𝑟) = 𝑈0
𝑒−𝑖 𝑘𝑟

𝑟 (6)

where 𝑈0 is the amplitude, 𝑘 the magnitude of the k-vector, i.e. 𝑘 = 2𝜋/𝜆 and 𝑟 = √𝑥2 + 𝑦2 the
distance, here in 2 dimensions. Note that the total wavefunction also contains a temporal part such
that

𝑈(𝑟, 𝑡) = 𝑈0
𝑒−𝑖 𝑘𝑟

𝑟 𝑒𝑖𝜔𝑡 (7)

10

We will however ignore the temporal factor, as we are interested in the spatial interference pattern
with a time-averaged intensity.

To show interference, we just use two of those monochromatic waves located at ⃗𝑟1 and ⃗𝑟2.

To obtain the total amplitude we have to sum up the wavefunctions of the two sources.

𝑈(⃗𝑟) = 𝑈01
𝑒−𝑖 𝑘| ⃗𝑟− ⃗𝑟1|

| ⃗𝑟 − ⃗𝑟1| + 𝑈02
𝑒−𝑖 𝑘| ⃗𝑟− ⃗𝑟2|

| ⃗𝑟 − ⃗𝑟2| (8)

The intensity of the wave at a position is then related to the magnitude square of the wavefunction

𝐼(𝑟) ∝ |𝑈(𝑟)|2 (9)

To keep it simple we will skip the 1/𝑟 amplitude decay.

11

1.6.2 Color contour plot

12

1.6.3 Image plot

1.7 Additional Plotting - Explicit Version
While we have so far largely relied on the default setting and the automatic arrangement of plots,
there is also a way to precisely design your plot. Python provides the tools of object oriented
programming and thus modules provide classes which can be instanced into objects. This explicit
interfaces allows you to control all details without the automatisms of pyplot.

The figure below, which is taken from the matplotlib documentation website shows the sets of
commands and the objects in the figure, the commands refer to. It is a nice reference, when
creating a figure.

13

1.7.1 Plots with Multiple Spines

Sometimes it is very useful to plot different quantities in the same plot with the same x-axis but
with different y-axes. Here is some example, where each line plot has its own y-axis.

14

1.7.2 Insets

Insets are plots within plots using their own axes. We therefore need to create two axes systems,
if we want to have a main plot and and inset.

15

1.7.3 Spine axis

1.7.4 Polar plot

1.7.5 Text annotation

Annotating text in matplotlib figures can be done using the text function. It supports LaTeX
formatting just like axis label texts and titles:

16

1.7.6 3D Plotting

Matplotlib was initially designed with only two-dimensional plotting in mind. Around the time
of the 1.0 release, some three-dimensional plotting utilities were built on top of Matplotlib’s two-
dimensional display, and the result is a convenient (if somewhat limited) set of tools for three-
dimensional data visualization. Three-dimensional plots are enabled by importing the mplot3d
toolkit, included with the main Matplotlib installation:

Once this submodule is imported, a three-dimensional axes can be created by passing the keyword
projection=‘3d’ to any of the normal axes creation routines:

Projection Scence

17

With this three-dimensional axes enabled, we can now plot a variety of three-dimensional plot types.
Three-dimensional plotting is one of the functionalities that benefits immensely from viewing figures
interactively rather than statically in the notebook; recall that to use interactive figures, you can
use %matplotlib notebook rather than %matplotlib inline when running this code.

Line Plotting in 3D from sets of (x, y, z) triples. In analogy with the more common two-
dimensional plots discussed earlier, these can be created using the ax.plot3D and ax.scatter3D
functions. The call signature for these is nearly identical to that of their two-dimensional coun-
terparts, so you can refer to Simple Line Plots and Simple Scatter Plots for more information
on controlling the output. Here we’ll plot a trigonometric spiral, along with some points drawn
randomly near the line:

18

Notice that by default, the scatter points have their transparency adjusted to give a sense of depth
on the page. While the three-dimensional effect is sometimes difficult to see within a static image, an
interactive view can lead to some nice intuition about the layout of the points. Use the scatter3D
or the plot3D method to plot a random walk in 3-dimensions in your exercise.

Surface Plotting A surface plot is like a wireframe plot, but each face of the wireframe is a
filled polygon. Adding a colormap to the filled polygons can aid perception of the topology of the
surface being visualized:

(60, 50)

19

	Plotting data
	Simple Plotting - Implicit Version
	Line Plot
	Scatter plot
	Histograms
	Combined plots

	Saving figures
	Plots with error bars
	Setting plotting limits and excluding data

	Logarithmic plots
	Semi-log plots
	Log-log plots

	Arranging multiple plots
	Contour and Density Plots
	Simple contour plot
	Color contour plot
	Image plot

	Additional Plotting - Explicit Version
	Plots with Multiple Spines
	Insets
	Spine axis
	Polar plot
	Text annotation
	3D Plotting

