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1 Random numbers
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Random numbers are widely used in science and engineering computations. They can be used to
simulate noisy data, or to model physical phenomena like the distribution of velocities of molecules
in a gas, or to act like the roll of dice in a game. Monte Carlo simulation techniques, which will be
part of a later theory lecture rely heavily and random number. Processes like single photon emission
or Brownian motion are stochastic processes, with an intrisic randomness as well. But there are
even methods for numerically evaluating multi-dimensional integrals using random numbers.

The basic idea of a random number generator is that it should be able to produce a sequence
of numbers that are distributed according to some predetermined distribution function. NumPy
provides a number of such random number generators in its library numpy.random.

The random number functions can be imported by

from numpy.random import *

1.1 Uniformly distributed random numbers

The rand(num) function creates an array of num floats uniformly distributed on the interval from
0 to 1.

0.2478423231422524

If you supply the argument num to the rand(num) function you obtain an array of equally dis-
tributed numbers with num elements.

array([0.51248173, 0.88147001, 0.41514453, 0.07683703, 0.11279454])

You may also obtain a multi-dimensional array if you give two or more numbers to the the rand
function.


https://github.com/fcichos/CBPM24/blob/ab29d2f9a566d5402ae9deca1cecd51592c81117/source/notebooks/L2/3_randomnumbers.pdf

1.2 Normally distributed random numbers

The function randn(num) produces a normal or Gaussian distribution of num random numbers
with a mean of © = 0 and a standard deviation of ¢ = 1. They are distributed according to
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p(z)dx = e da (1)
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Similarly as all the other random number function, you may supply one or multiple arguments to
the rand() function. The result is again a multi-dimensional array of random numbers.
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If you want to create a normal distribution with different standard deviation and mean value, you
have to multiply by the new standard deviation and add the mean.



Note: Physics Interlude
Brownian Motion, Random Walk

The following lines create random numbers, which are distributed by a normal distribution. You
can use such normally distributed random numbers to generate a random walk. Such a random
walk is a simple representation of Brownian motion of colloids suspended in a liquid.

Suppose a colloidal particle in solution is kicked by its surrounding solvent molecules such that
it does a small step (Ax;, Ay,) in a random direction. The length of the step (Azx;, Ay,;) will be
normally distributed. If this motion is in 2 dimensions, then the position in x and y direction after
N steps is

N
z(N) = Z Az, (2)

N
y(N) =" Ay, (3)

The position is therefore just the sum of a sequence of normally distributed random numbers, which
is easy to realize in Python with the np.sum() function of numpy. One can even go a little bit
farther by evaluating the sum at each index 7 and not just only the result after IV steps. A function
providing this results is np.cumsum(), the cummulative sum.

Note that the above example uses the cumsum() function. The cumsum function of an array of
number [z, ;, Tq, .., T, ] delivers an array with a progressive sum of elements [z, o+, 2o+ 21 +
Tgy ey Ty + ... +x,,]. The line

x,y=[randn(1000) . cumsum() ,randn (1000) . cumsum ()]

is therefore all you need to generate a random walk in two dimensions.
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1.3 Exponentially distributed numbers

A number of processes in physics reveal an exponential statistics. For example the probability to
find a molecule under gravity at a certain height A is distributed by a Boltzmann law for a non-zero
temperature.

p(h)dh = pyexp(—m - g - h/kgT)dh (4)

On the other hand, the probability to emit a photon spontaneously after a certain time ¢ follwings
the excited state preparation (two level system) is also exponentially distributed.

p(t)dt = py exp(—t/7)dt ()

Thus after each excitation i.e. by a laser pulse, a molecule emits a single photon with the probability
p(t) and the whole exponential character in the statistics is only appearing after repeating the
experiment several times.

The exponential distribution of numpy can be supplied with two numbers.
exponential(b, n)

The parameter b is giving the decay parameter. The number n is optional and giving the number
of samples to be provided. The numbers are distributed according to

exp(—/b) (6)

1.6707767696904037

array([1.23963345, 0.25625115, 1.56007389, .., 0.34832722, 1.05943601,
1.21512793])

You may want to test the changes in the exponential distribution with the parameter b.




1.4 Central Limit theorem
Note: Statistics Interlude

The central limit theorem (CLT) is a fundamental concept in statistics that describes the behavior of
the sum or average of many independent random variables, even if the original variables themselves
are not normally distributed.

« Consider a population with a mean j and a finite variance o2.

e Take random samples of size n from this population and calculate the sample mean for each
sample.

e The central limit theorem states that as the sample size n increases, the distribution of the
sample means will approach a normal distribution, regardless of the original distribution of
the population.

e The mean of the sampling distribution of the sample means will be equal to the population
mean f.

o The standard deviation of the sampling distribution of the sample means will be o/y/n ,
where o is the population standard deviation.

The intuition behind the central limit theorem is that when many independent random variables are
combined, the cumulative effect of their different distributions tends to cancel out and the resulting
sum or average converges to a normal distribution due to the central tendency of the data.

This theorem is extremely useful in statistics as it allows us to draw conclusions about the pa-
rameters of the population based on sample data, even if the original population distribution is
unknown or non-normal. It justifies the use of many statistical methods that assume normality,
such as hypothesis testing, confidence intervals and regression analysis, as long as the sample size
is sufficiently large.

The central limit theorem is considered one of the most important and remarkable results in
probability theory and statistics and has numerous applications in various fields, including science,
engineering, finance and social sciences.

Below is a code, that demonstrates the central limit theorem using and exponential distribution
and different sample sizes.



Sample Size = 2 Sample Size =5 Sample Size = 10

4 I | lSample Si;e =2 4 I | Samplle Size =5 ar . Sample Silze =10
—— Normal Distribution —— Normal Distribution —— Normal Distribution
3t 41 3f 41 3t .
2+ 1 2f 1 2f .
1t 1 1F . .
0 L 0 L ‘
0 2 4 6 0 2 0 1 2
Sample Size = 20 Sample Size = 50 Sample Size = 100
4 T T 4 T T 4
! . Sample Size = 20 mm Sample Size = 50 ' ! !
—— Normal Distribution —— Normal Distribution
3 - 3 .
B Sample Size = 100
T 2r —— Normal Distribution |
- 1
0 0
0.5 1.0 1.5 2.0 0.5 1.0 1.5 0.8 1.0 1.2 1.4

1.5 Random distribution of integers

The function randint(low, high, num) produces a uniform random distribution of num integers
between low (inclusive) and high (exclusive).

array([ 1, 19, 10, 15, 14, 11, 3, 18, 12, 11])

6, 5, 4, 1, 2, 8, 9, 10, 7, 3]

There are a number of other methods available in the random module of numpy. Please refere to
the documentation.


https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.random.html

	Random numbers
	Uniformly distributed random numbers
	Normally distributed random numbers
	Exponentially distributed numbers
	Central Limit theorem
	Random distribution of integers


