
1_input_output

May 28, 2024

1 Input and output
File as PDF

1.1 Keyboard input
Python has a function called input for getting input from the user and assigning it a variable name.

Tell me a number: 12

str

The value contains the keyboard input as expected, but it is a string. We want to use a number
and not a string, so we need to convert it from a string to a number.

12

1.2 Screen output
Screen output is possible by using the print command. The argument of the print function can
be of different type.

1.2.1 str.format() Formatting

You can format your output by modifying the string given to the print function by str.format(),
The str contains text that is written to be the screen, as well as certain format specifiers contained
in curly braces {}. The format function contains the list of variables that are to be printed.

How
How are you my friend?
1. How are you my friend?
2. How are you my friend?
3. How How are you my friend? - How are you my friend?
4. How are you my friend?

34 942885
6. 34 942885
7. 34 942885

1

https://github.com/fcichos/CBPM24/blob/bd0d05ceee810aabe15d5e0fff849f04e5f2c804/source/notebooks/L3/1_input_output.pdf

8. -3.000
9. -3.000
10. -3.000
11. -3.000 11. -3.000

12. 3.142e-14
13. 3.142e-14
14. 0.000

15. 12345678901234567890
16. are you my friend?-- 34, 3.142e-14

1.2.2 %-Formatting

A very similar formatting can be achieved with the %operator.

Hello, Frank.

1.2.3 f-Strings

Formatted string literals are the string literals that start with an f at the beginning and use
curly braces {} to enclose the expressions that will be replaced with other values.

I'm here for the 3. time and this Python Lecture is awesome!

You just have to sent me 100.000 Euros.

1.3 File input/output
File input and output is one of the most important features. We will have a look at reading and
writing of text files with numpy and pandas. Python itself also allows you to open files and the file
object provides the methods read, write and close.

1.3.1 File I/O with NumPy

Most of the time we want import numbers from text files. So direct connection to NumPy seems
useful and we will study that first.

Reading data from a text file Often you would like to analyze data that you have stored in a
text file. Consider, for example, the data file below for an experiment measuring the free fall of a
mass.

Data for falling mass experiment
Date: 16-Aug-2013
Data taken by Frank and Ralf
data point time (sec) height (mm) uncertainty (mm)
0 0.0 180 3.5
1 0.5 182 4.5
2 1.0 178 4.0
3 1.5 165 5.5
4 2.0 160 2.5

2

https://www.programiz.com/python-programming/methods/built-in/open
https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/file-operation

5 2.5 148 3.0
6 3.0 136 2.5

Suppose that the name of the text file is MyData.txt. Then we can read the data into four
different arrays with the following NumPy statement:

If you don’t want to read in all the columns of data, you can specify which columns to read in using
the usecols key word. For example, the call

'/home'

reads in only columns 1 and 2; columns 0 and 3 are skipped.

Writing data to a text file There are plenty of ways to write data to a data file in Python.
We will stick to one very simple one that’s suitable for writing data files in text format. It uses the
NumPy savetxt routine, which is the counterpart of the loadtxt routine introduced in the previous
section. The general form of the routine is

savetxt(filename, array, fmt="%0.18e", delimiter=" ", newline="\n", header="", footer="", comments="# ")

We illustrate savetext below with a script that first creates four arrays by reading in the data file
MyData.txt, as discussed in the previous section, and then writes that same data set to another
file MyDataOut.txt.

array([1., 2., 3., 4., 5., 6.])

[(1.0, 0.5, 182.0, 4.5),
(2.0, 1.0, 178.0, 4.0),
(3.0, 1.5, 165.0, 5.5),
(4.0, 2.0, 160.0, 2.5),
(5.0, 2.5, 148.0, 3.0),
(6.0, 3.0, 136.0, 2.5)]

This is a header
; time (sec); height (m); error (m)

1.00000; 0.50000; 182.00000; 4.50000
2.00000; 1.00000; 178.00000; 4.00000
3.00000; 1.50000; 165.00000; 5.50000
4.00000; 2.00000; 160.00000; 2.50000
5.00000; 2.50000; 148.00000; 3.00000
6.00000; 3.00000; 136.00000; 2.50000

1.3.2 File I/O with Pandas

Pandas is a software library written for the Python programming language. It is used for data
manipulation and analysis. It provides special data structures and operations for the manipulation
of numerical tables and time series and builds on top of numpy.

• Easy handling of missing data
• Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

3

https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.savetxt.html
https://pandas.pydata.org/docs/user_guide/index.html

The data formats provided by the pandas module are used by several other modules, such as the
trackpy which is a moduly for feature tracking and analysis in image series.

Short intro to Pandas Pandas provides two data structures

• Series
• Data Frames

A Series is a one-dimensional labeled array capable of holding any data type (integers, strings,
floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the
index.

array([0.16753316, 0.60115104, 0.29874055, -0.41653506, -0.13600342,
-0.20579562, 1.0869474])

0.1675331648744497

array([1.67528219, 0.36104717, -1.07891124, 0.5284189 , 0.95976588,
0.15718688, 1.42820191])

There is a whole lot of functionality built into pandas data types. You may of course also obtain
the same functionality using numpy commands, but you may find the pandas abbrevations very
useful.

min -0.416535
max 1.086947
sum 1.396038
mean 0.199434
dtype: float64

A DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure
with labeled axes (rows and columns). The example below shows how such a DataFrame can be
generated from the scratch. In addition to the data supplied to the DataFrame method, an index
column is generated when creating a DataFrame. As in the case of Series there is a whole lot of
functionality integrated into the DataFrame data type which you may explore on the website.

column 1 column 2 columns 3 column 4 column 5
11 7 4 5 2 8
12 4 6 5 8 7
13 0 7 8 7 0
14 5 4 1 8 8
15 2 0 9 9 9

Due to the labelling of the columns, each column may be accessed by its column label. Labeling
by names improves readability considerably.

0 0
1 5
2 2

4

https://soft-matter.github.io/trackpy/v0.3.2/
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

3 7
4 7
5 5
6 6
7 6
8 6
9 0
10 9
11 6
12 3
13 6
14 7
15 7
Name: x, dtype: int64

If you don’t like this format, you can always return to a simple numpy array with the as_matrix()
method.

array([[5, 9, 9, 5, 5],
[5, 0, 4, 7, 5],
[0, 9, 3, 8, 1],
[1, 4, 2, 7, 5],
[7, 5, 4, 6, 5]])

Reading CSV data with Pandas DataFrames may also be populated by text files such as
comma separated value files (short .csv). These files contain data in text format but also a column
label, which can be read by the pandas method read_csv(). You can find an example below, which
reads the data from the dust sensor on my balcony from April, 11th. You see the different columns,
where P1 and P2 correspond to the PM10 and PM2.5 dust values in 𝜇𝑔/𝑚3.

sensor_id sensor_type location lat lon timestamp P1 \
0 12253 SDS011 6189 52.527 13.39 2018-04-11T00:01:58 25.87
1 12253 SDS011 6189 52.527 13.39 2018-04-11T00:04:24 25.63
2 12253 SDS011 6189 52.527 13.39 2018-04-11T00:06:55 26.30
3 12253 SDS011 6189 52.527 13.39 2018-04-11T00:09:23 24.60
4 12253 SDS011 6189 52.527 13.39 2018-04-11T00:11:51 25.17

durP1 ratioP1 P2 durP2 ratioP2
0 NaN NaN 19.37 NaN NaN
1 NaN NaN 20.53 NaN NaN
2 NaN NaN 22.00 NaN NaN
3 NaN NaN 20.30 NaN NaN
4 NaN NaN 20.23 NaN NaN

<Axes: >

5

0 1.335570
1 1.248417
2 1.195455
3 1.211823
4 1.244192

…
560 1.172962
561 1.116491
562 1.186219
563 1.170243
564 1.280233
Length: 565, dtype: float64

<Axes: >

6

7

	Input and output
	Keyboard input
	Screen output
	str.format() Formatting
	%-Formatting
	f-Strings

	File input/output
	File I/O with NumPy
	File I/O with Pandas

