2 flowcontrol
May 28, 2024

1 Flow Control

File as PDF

1.1 Conditionals: if, elif, and else statements

The if, elif, and else statements are used to define conditionals in Python. The if keyword is
followed by a condition, i.e. a logical comparison, which can either be true or false. We illustrate
their use with a few examples.

Note: code blocks in if and loop statements

Python uses colons (:) to indicate that that a code block belonging to the if statement follows.
The code block starting on the next line is idented with whitespace (often four spaces) to structure
conditional statements. If the condition is True, the indented code block after the colon (:) is
executed. The code block may contain several lines of code with identical identation:

number = 42

if number == 42:
print('This is the answer to life,')
print('the universe')
print('and everything.')

Wrong identation will yield an IndentationError or a SyntaxError.
1.1.1 If example
Please input a number: 124351

'outside this block'

1.1.2 If else example
Please input an integer: 4

4 is an even number.


https://github.com/fcichos/CBPM24/blob/bd0d05ceee810aabe15d5e0fff849f04e5f2c804/source/notebooks/L3/2_flowcontrol.pdf

1.1.3 If, elif, else example

Suppose we want to know if the solutions to the quadratic equation

az? +br+c=0 (1)

are real, imaginary, or complex for a given set of coefficients a, b, and c. Of course, the answer to
that question depends on the value of the discriminant d = b? —4ac. The solutions are real if d > 0,
imaginary if b = 0 and d < 0,and complex if b # 0 and d < 0. The program below implements the
above logic in a Python program. Each part of these statements has a code block to be executed.
The code block to be executed is discriminated from the others by an indentation. Usually this
is done with a tab, which indents 4 characters. You can either insert 4 spaces or press tab. Play
around with the tab to get a feeling how the Jupyter notebook responds to that.

What is the coefficients a? 4
What is the coefficients b? 5
What is the coefficients c? 6

Solutions are complex

Finished!

1.1.4 Combining conditions

Multiple conditions may be combined with the logical operators and, or.
Both parts are true

At least one test is true

Let’s return to our example about making decisions on a rainy day . Imagine that we
consider not only the rain, but also whether or not it is windy. If it is windy or raining, we’ll just
stay at home. If it’s not windy or raining, we can go out and enjoy the weather! Let’s try to solve
this problem using Python:

Just stay at home

1.2 Loops

In computer programming a loop is statement or block of statements that is executed repeatedly.
Python has two kinds of loops, a for loop and a while loop.

1.2.1 For loops
The general form of a for loop in Python is

for <itervar> in <sequence>:
<body>

where <intervar> is a variable <sequence> is a sequence such as list or string or array, and <body>
is a series of Python commands to be executed repeatedly for each element in the <sequence>.
The <body> is indented from the rest of the text, which difines the extent of the loop. Let’s look
at a few examples.



Max

Arf, arf!
Molly

Arf, arf!
Buster
Arf, arf!
Maggie
Arf, arf!
Lucy

Arf, arf!
A1l donme.

When iterating through lists like in the example before, it is sometimes useful to have the index of
the list element also available. Therefore the enumerate function is very useful.

0 . Max
Arf, arf!
1 . Molly
Arf, arf!
2 . Buster
Arf, arf!
3 . Maggie
Arf, arf!
4 . Lucy
Arf, arf!
All done.

2500

2500

1.2.2 While loops
The general form of a while loop in Python is

while <condition>:
<body>

where < condition > is a statement that can be either True or Fulse and < body > is a series of
Python commands that is executed repeatedly until < condition > becomes false. This means that
somewhere in < body >, the truth value of < condition > must be changed so that it becomes
false after a finite number of iterations. This is one of the great dangers of a while loop, that
accidentially the condition might never become false and your loop runs forever.

Consider the following example. Suppose you want to calculate all the Fibonacci numbers smaller
than 1000. The Fibonacci numbers are determined by starting with the integers 0 and 1. The next
number in the sequence is the sum of the previous two. So, starting with 0 and 1, the next Fibonacci
number is 0 + 1 = 1, giving the sequence 0, 1, 1. Continuing this process, we obtain 0, 1, 1, 2, 3,
5, 8, ... where each element in the list is the sum of the previous two. Using a for loop to calculate
the Fibonacci numbers is impractical because we do not know ahead of time how many Fibonacci
numbers there are smaller than 1000. By contrast a while loop is perfect for calculating all the



Fibonacci numbers because it keeps calculating Fibonacci numbers until it reaches the desired goal,
in this case 1000. Here is the code using a while loop.

89

144
233
377
610
987

1.2.3 Loops and array operations

Loops are often used to sequentially modify the elements of an array. For example, suppose we
want to square each element of the array a = np.linspace(0, 32, 1e7). This is a hefty array with
10 million elements. Nevertheless, the following loop does the trick.

[0.00000000e+00 3.20000032e-06 6.40000064e-06 .. 3.19999936e+01
3.19999968e+01 3.20000000e+01]
[0.00000000e+00 1.02400020e-11 4.09600082e-11 .. 1.02399959e+03
1.02399980e+03 1.02400000e+03]

Running this on my computer returns the result in about 6 seconds—not bad for having performed
10 million multiplications. Of course we could have performed the same calculation using the array
multiplication we learned in Lecture 1 (Strings, Lists, Arrays, and Dictionaries). Here is the code.

[0.00000000e+00 3.20000032e-06 6.40000064e-06 .. 3.19999936e+01
3.19999968e+01 3.20000000e+01]
[0.00000000e+00 1.02400020e-11 4.09600082e-11 .. 1.02399959e+03
1.02399980e+03 1.02400000e+03]

Running this on my computer returns the results in 190 millisecond. This illustrates an important
point: for loops are slow. Array operations run much faster and are therefore to be preferred
in any case where you have a choice. Sometimes finding an array operation that is equivalent to a
loop can be difficult, especially for a novice. Nevertheless, doing so pays rich rewards in execution
time. Moreover, the array notation is usually simpler and clearer, providing further reasons to
prefer array operations over loops.



1.2.4 List comprehensions

List comprehensions are a special feature of core Python for processing and constructing lists. We
introduce them here because they use a looping process. They are used quite commonly in Python
coding and they often provide elegant compact solutions to some common computing tasks.

Suppose we want to construct a vector from the diagonal elements of this matrix. We could do so
with a for loop with an accumulator as follows

[1, 5, 9]

List comprehensions provide a simpler, cleaner, and faster way of doing the same thing

[1, 5, 9]

They can be used for fast computations as well. Here y serves as a dummy to access the elements
in diagLC.

[1, 25, 81]

Obtaining a column is not as simple, but a list comprehension makes it quite straightforward:
[2, 5, 8]
[2, 5, 8]

Suppose you have a list of numbers and you want to extract all the elements of the list that are
divisible by three. A slightly fancier list comprehension accomplishes the task quite simply and
demonstrates a new feature:

[-3 s 27 ) -9]



	Flow Control
	Conditionals: if, elif, and else statements
	If example
	If else example
	If, elif, else example
	Combining conditions

	Loops
	For loops
	While loops
	Loops and array operations
	List comprehensions



