3 functions
May 28, 2024

1 Functions

File as PDF

Python allows to define functions. Functions collect code that you would use repeatedly in your
program.

1.1 Function definition

Every function definition begins with the word def followed by the name you want to give to the
function, sinc in this case, then a list of arguments enclosed in parentheses, and finally terminated
with a colon.

def function_name (parameters):
nnn

This is the docstring documenting the function.
This is printed if you type help(function_name)

nnn
indented statements

print("Hello, " + name + ". Good morning!")

The following example calculates sinc(x) = sin(x)/x and sets it equal to y. The return statement
of the last line tells Python to return the value of y to the user.

The code for sinc(x) works just fine when the argument is a single number or a variable that
represents a single number. However, if the argument is a NumPy array, we run into an error.

array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5])

/tmp/ipykernel_1425885/3738885869.py:6: RuntimeWarning: invalid value
encountered in true_divide
y = np.sin(x)/x

array ([nan, 0.95885108, 0.84147098, 0.66499666, 0.45464871,
0.23938886, 0.04704 , —0.10022378, -0.18920062, -0.21722892])

We may intercept the error by checking if the supplied array contains a 0. This can be done by
looping through all elements of the array and using our flow control if, else statements.

https://github.com/fcichos/CBPM24/blob/9ae6b49daa37762aff3057ce5fab3c5190b25ada/source/notebooks/L3/3_functions.pdf

10 .

0.8 i

0.6 | i

0.4 r .

N a AN

NV

Loops are in general slowly executed and there is a faster way of checking the elements of an array
by the np.where function of the NumPy library. There where function has the form

np.where(condition, output if True, output if False)

The where function applies the condition to the array element by element, and returns the second
argument for those array elements for which the condition is True, and returns the third argument
for those array elements that are False.

This code executes much faster, 25 to 100 times, depending on the size of the array, than the code
using a for loop. Moreover, the new code is much simpler to write and read.

1.2 Variables in functions

Parameters and variables defined inside a function are not visible from outside the function. Hence,
they are called to have a local scope. Variables inside a function live for the time as long as the
function executes. They are destroyed once we return from the function. Hence, a function does
not remember the value of a variable from its previous calls.

Note Local and global variables

e local variables are visible to the inside of a function and live for the time the function is
executed

« global variable are visible outside and inside of a function but can not be changed inside a
function except they are declared as global

Here is an example to illustrate the scope of a variable inside a function.

This is a local variable: 10
This is a global : 20
This is a changed global : 45

1.3 Functions with more than one input or output

Python functions can have any number of input arguments and can return any number of variables.
For example, suppose you want a function that outputs n (x, y) coordinates around a circle of radius
r centered at the point (x0 , y0). The inputs to the function would be r, x0, y0, and n. The outputs
would be the n (x, y) coordinates. The following code implements this function.

This function has four inputs and two outputs. In this case, the four inputs are simple numeric
variables and the two outputs are NumPy arrays. In general, the inputs and outputs can be any
combination of data types: arrays, lists, strings, etc. Of course, the body of the function must be
written to be consistent with the prescribed data types. Functions can also return nothing to the
calling program but just perform some task.

1.3.1 Positional and keyword arguments

It is often useful to have function arguments that have some default setting. This happens when
you want an input to a function to have some standard value or setting most of the time, but you
would like to reserve the possibility of giving it some value other than the default value.

The default values of the arguments x0, y0, and n are specified in the argument of the function
definition in the def line. Arguments whose default values are specified in this manner are called
keyword arguments, and they can be omitted from the function call if the user is content using
those values.

1.3.2 Functions with variable number of arguments

While it may seem odd, it is sometimes useful to leave the number of arguments unspecified. A
simple example is a function that computes the product of an arbitrary number of numbers:

args = (2, 3, 4, 5, 6)

720

The print(”args...) statement in the function definition is not necessary, of course, but is put in to
show that the argument args is a tuple inside the function. Here it used because one does not know
ahead of time how many numbers are to be multiplied together.

The *args argument is also quite useful in another context: when passing the name of a function
as an argument in another function. In many cases, the function name that is passed may have a
number of parameters that must also be passed but aren’t known ahead of time. If this all sounds
a bit confusing—functions calling other functions—a concrete example will help you understand.

250

The order of the parameters is important. The function test uses x, the first argument of f1, as its
principal argument, and then uses a and p, in the same order that they are defined in the function
f1, to fill in the additional arguments—the parameters—of the function f1.

1.4 Unnamed functions (lambda function)

In Python but also in other higher lever programming languages we can also create unnamed
functions, using the lambda keyword:

4, 4

Lambda functions are used when you need a function for a short period of time. This is commonly
used when you want to pass a function as an argument to higher-order functions, that is, functions
that take other functions as their arguments.

In the above example, we have a function that takes one argument, and the argument is to be
multiplied with a number that is unknown. Let us demonstrate how to use the above function:

90
9000

[, 2, @3, 3, &, 2, (1, N, (2, 2)]

1.5 Functions as arguments of functions

Functions can be passed around as arguments, as we have seen above. This is a very useful thing,
which we may use in out physical modeling for numerical differentiation below.

Numerical Differentiation. What we want to calculate, is the derivative of a function f(z)
where the function values are given at certain positions x,. Since we do not want to calculate the
symbolic derivative, we have to get along with an numerical approximation. This can be obtained
by looking at the definition of the derivative, i.e. the first derivative

f@) = tim 1EF 5;2 —f@ (1)

dx—>0

If the function values are given at the positions x; with éz; = x,,; — x;, the an approximate value
of the first derivative can be found from

Fla) ~ f(55+52—f(35) _ (@) — flz;)

Tip1 — L5

This already delivers a good approximation of the first derivative of a function as we see in the
next examples.

So lets turn that into a function.

where our function shall be given by:

24.000001985768904

100} -
80| -
60} -
40} -

Y,y

20 :

of = :

—20 -
—— original
—40 derivative |

4 -2 0 2 4

We may similarly also define a second derivative

(fUz‘+1 —z;)

100

80

60

40
20

y, yf ’y.’!

—20 —— original i
1st derivative
—40 —— 2nd derivative |

-4 —2 0 2 4

#+# First-Class Objects, Inner Functions and Decorators

So far we have had a short look at so-called functions as First-Class objects, which means, that
they can be passed around as arguments like any other variable. The example below defines two
greeter functions that are used in a third function to greet.

'Hello Dude'

"Yo Dude, what's up!"
The greeter function hello or howdy are passed to the greet as function arguments and then called
with the same argument.

Functions can, however, be also defined inside of other function like in the example below.

Here the functions first_child and second_child are local functions inside the parentfunction
and only known inside this function. They are therefore called inner functions. Look at the
corresponding output of the parent function

Printing from the parent() function
Printing from the second_child() function
Printing from the first_child() function

and try to call the first_child function

NameError Traceback (most recent call last)
Cell In[116], line 1
----> 1 first_child()

NameError: name 'first_child' is not defined

This function is not known outside the parent function.
Now in addition to that we can also return functions from a function like in the following example:
This means that we can assign the function first_child to a variable first

such that this variable is now of type function.

function
'Hi, I am Emma'

We have now all elements collected to introduce some new magic, which you probably have to
digest with the help of some external sources. The new magic is called decorators.

If you execute the function do_something you will probably recognize the magic.

I can do something before the function.
Then I execute the original function!
And T can do something after the function.

To explain the details shortly, we first define a function my_decorator which is intended to use
a function as an argument. In this function we define an inner function wrapper, which calls
the function func inbetween two print statements. After this definition is done, the function
my_decorator returns this wrapper function.

The next function definition is a normal one. do_something is just printing some text. The final
line assigns to the variable do__something the return value of the my_decorator function, that is
called with the do_somethingfunction as an argument. Thus the wrapper function will be the
return argument that is passed to the do_something variable.

The original function call is now wrapped inside other function calls but has still the same name.
So what?

Well this type of decorators is useful, when you want to modify the behavior of existing functions
without changing their name and completely redefining their functionality. We just have a look at
some more syntax magic, which actually makes more sense, as the statement @my__decorator
now decorates the original function do_something.

We can therefore save the last line of the previous definition. This is the common way decorators
are used.

Then I execute the original function!

	Functions
	Function definition
	Variables in functions
	Functions with more than one input or output
	Positional and keyword arguments
	Functions with variable number of arguments

	Unnamed functions (lambda function)
	Functions as arguments of functions

