
2_brownian_motion

May 28, 2024

1 Brownian Motion
File as PDF

We will use our newly gained knowledge about classes for the simulation of Brownian motion.
This actually perfectly fits to the object oriented programming topic, as each Brownian particle
(or colloid) can be seen as an object instanciated from the same class, but perhaps with different
properties. Some particles might be larger and some smaller for example. We know already some
part of that, as we have covered it in earlier lectures.

1.1 Physics
The Brownian motion of a colloidal particle (called solute) results from the collisions with the
surrounding solvent molecules. Due to these collisions, the particle has in equilibrium a mean
kinetic energy defined by the temperature. With this kinetic energy it would travel a mean distance
𝑙 before it takes another random direction and go another step length 𝑙. This mean distance the
particle travels is very short in liquids. It is on the other of picometers. It has been shown by
Lindenberg and Lévy that a sequence of many such infinitesimal small random steps leads to a
total effect, which can be approximated by a normal distribution. This important theorem is called
the central limit theorem (see the lecture on random numbers).

For our Brownian motion the sequence of tiny steps leads after a time 𝑡 to the following probability
distribution to find the particle at a position 𝑥 if it initially started at 𝑥 = 0:

𝑝(𝑥, Δ𝑡) = 1√
4𝜋𝐷Δ𝑡

𝑒− 𝑥2
4𝐷Δ𝑡 (1)

where 𝐷 is the diffusion coefficient. Thus each step of our Brownian motion simulation for a
timestep of Δ𝑡 is taken from a Gaussian distribution with a varaince of 𝜎2 = 2𝐷Δ𝑡.
For our simulation that means that we can draw numbers from a normal distribution with
np.random.normal with the standard deviation 𝜎 =

√
2𝐷Δ𝑡 as a parameter. This has to be

done for the x-coordinate and the y-coordinate.

The code for our Brownian motion therefore is

sigma=np.sqrt(2*D*dt)
dx,dy=[(np.random.normal(0.0, sigma),np.random.normal(0.0, sigma)]
x=x+dx
y=y+dy

1

https://github.com/fcichos/CBPM24/blob/7bbed8e18b859cef508e5b763a58b21aef6f7fe4/source/notebooks/L4/2_brownian_motion.pdf


which gives a whole 2d trajectory. With the help of this, we would like to write a colloidal particle
class. So lets make a plan how this could work out.

1.2 Class Planning
Physics project Colloidal particle class

We will define a class for a colloidal particle, which we may use later for our projects as well. This
makes sense, as we can have different colloidal particles of different radius for example, which do
start to carry out Brownian motion from different positions. A colloidal particle is and object,
which has properties very much in the same way as classes intend that. The whole definition
requires some planning, especially on what the class should keep track of and what the object.

The particle class shall keep track of

* the total number of colloidal particles
* the value of k_B T/(6 pi eta) = 2.2e-19

The class shall provide the class specific methods

* how_many() which returns the total number of colloids
* __str__ which returns a string with radius and position of the particle

Physics interlude: Colloidal particle class

Each object shall then contain the following properties

* the particle radius, R
* a list of all x position, x
* a list of all y position, y
* the index of the colloid, index
* the diffusion coefficient given by k_B T/(6 pi eta R), D

The object shall provide the following methods

* sim_trajectory() simulate a whole trajectory at once
* update(dt) do one step of Brownian motion with a time step dt as argument, return the current position
* get_trajectory() return the trajectory as a pandas DataFrame with the columns x and y
* get_D() return the diffusion coefficient

Note:

Note that the function sim_trajectory is actually calling the function update of the same object
to generate the whole trajectory at once.

1.3 Simulating
With the help of this Colloid class, we would like to carry out simulations of Brownian motion of
multiple particles. The simulations shall

• take n=200 particles
• have N=200 trajectory points each
• start all at 0,0
• particle objects should be stored in a list p_list

2



I'm a particle with radius R=1.000e-06 at x=-2.123e-07,y=-3.300e-06.

1.4 Plotting the trajectories
The next step is to plot all the trajectories.

1.5 Characterizing the Brownian motion
Now that we have a number of trajectories, we can analyze the motion of our Brownian particles.

1.5.1 Calculate the particle speed

One way is to calculate its speed by measuring how far it traveled within a certain time 𝑛 𝑑𝑡, where
𝑑𝑡 is the timestep of out simulation. We can do that as

𝑣(𝑛𝑑𝑡) = < √(𝑥𝑖+𝑛 − 𝑥𝑖)2 + (𝑦𝑖+𝑛 − 𝑦𝑖)2 >
𝑛 𝑑𝑡 (2)

The angular brackets on the top take care of the fact that we can measure the distance traveled
within a certain time 𝑛 𝑑𝑡 several times along a trajectory.

These values can be used to calculate a mean speed. Note that there is not an equal amount of data
pairs for all separations available. For 𝑛 = 1 there are 5 distances available. For 𝑛 = 5, however,

3



only 1. This changes the statistical accuracy of the mean.

The result of this analysis shows, that each particle has an apparent speed which seems to increase
with decreasing time of observation or which decreases with increasing time. This would mean that
there is some friction at work, which slows down the particle in time, but this is apparently not
true. Also an infinite speed at zero time appears to be unphysical. The correct answer is just that
the speed is no good measure to characterize the motion of a Brownian particle.

1.5.2 Calculate the particle mean squared displacement

A better way to characterize the motion of a Brownian particle is the mean squared displacement,
as we have already mentioned it in previous lectures. We may compare our simulation now to the
theoretical prediction, which is

⟨Δ𝑟2(𝑡)⟩ = 2𝑑𝐷𝑡 (3)

where 𝑑 is the dimension of the random walk, which is 𝑑 = 2 in our case.

4



The results show that the mean squared displacement of the individual particles follows on average
the theoretical predictions of a linear growth in time. That means, we are able to read the diffusion
coefficient from the slope of the MSD of the individual particles if recorded in a simulation or an
experiment.

Yet, each individual MSD is deviating strongly from the theoretical prediction especially at large
times. This is due to the fact mentioned earlier that our simulation (or experimental) data only
has a limited number of data points, while the theoretical prediction is made for the limit of infinite
data points.

Warning: Analysis of MSD data

Single particle tracking, either in the experiment or in numerical simulations can therefore only
deliver an estimate of the diffusion coefficient and care should be taken when using the whole MSD
to obtain the diffusion coefficient. One typically uses only a short fraction of the whole MSD data
at short times.

5


	Brownian Motion
	Physics
	Class Planning
	Simulating
	Plotting the trajectories
	Characterizing the Brownian motion
	Calculate the particle speed
	Calculate the particle mean squared displacement



