
3_animations

May 28, 2024

1 Animations
File as PDF

Animations are sometimes a nice feature, if you want to have a look at how your calculations evolve
over time. Especially in the case of our particle based simulations it seems useful to diplay the
position of the particles over time.

There are multiple ways to animate plots and images in python. Not all of them are always
transferable between computers. Matplotlib for example provides a animate function, which can
also use the ffmpeg video compressor. But that requires installation of all of them on the specific
system you are working on.

We want to use the ipycanvas module, because it delivers easy drawing of shapes like circles or
rectangle in a canvas directly in our Jupyter Notebooks. Have a look at the (documentation). The
module provides even tools to interact with a mouse.

1.1 Import Modules
Before we start, lets have a look at the modules we import this time. Except the NumPy modules
we never used them before. We import time, threading, and ipycanvas.

import numpy as np
from time import sleep,time
from threading import Thread

from ipycanvas import MultiCanvas, hold_canvas,Canvas

The time module is python standard module, which contains timing-related functions like the
sleep and time function for example.

• The function suspends execution of the current thread for a given number of seconds.
• The time() function returns the number of seconds passed since epoch. For Unix system,

January 1, 1970, 00:00:00 at UTC is epoch (the point where time begins).

The threading module is a module which allows you to specify how the processes in your notebook
are executed.

The ipycanvas module is the one which helps us to draw the objects of our simulation.

The following lines test if the notebook is running in google colab and install/enable ipycanvas
there.

1

https://github.com/fcichos/CBPM24/blob/7bbed8e18b859cef508e5b763a58b21aef6f7fe4/source/notebooks/L4/3_animations.pdf
https://readthedocs.org/projects/ipycanvas/downloads/pdf/latest/

1.2 Particle class
We start by using out colloidal particle class, which we developed in the last section.

1.3 Create a set of particles
We want to animate the Brownian motion of many particles. The best is therefore to create a list
which contains all the individual Colloid objects. We start by creating 200 colloids at the position
(0,0) to see how the spread from the origin. They are stored in the list p.

1.4 Canvas and drawing function
Next, we need a canvas, in which we draw our particles and we need the drawing function.

The canvas is created by the Canvas() constructor if ipycanvas. The display command displays
the canvas below the the cell.

Canvas(height=300, width=300)

We realize the drawing in a for loop, which is first updating all particle positions and then drawing
all the particles.

The loop contains one interesting statement, which is the with hold_canvas(canvas):. Its useful
to know that this statement halts the execution of all subsequent drawing comments in the following
code block to create a “batch” of drawing commands send at one to the ipycanvas module. This
will allow fast drawing of the whole scene. All the rest of the commands are shortly explained in
the loop comments.

2

Talk about the with statement next time

1.5 Threading for animation
It is useful to start a simulation as a background process, which is running while you keep calculating
in your Jupyter notebook. This can be achieved by setting up a thread.

A computer program is a collection of instructions. A process is the execution of those instructions.
A thread is a subset of the process. A process can have one or more threads. The Thread function
of the threading module can start a process in background, such that your Jupyter notbook is not
blocked for the specific time the process is executed. We will talk about how to use this module
later in this section.

To setup such a background process you first need to setup a function that should be executed as a
thread. This is the updating and drawing of the colloidal particles. The Thread() function of the
threading module is setting up everything for you and assigning that to the variable simulation.
The target=draw statement thereby points the thread to take the right function. Once you start
the thread with simulation.start() the function draw is executed in background until its finished.

def draw():
do your drawing code here

simulation = Thread(target=draw)

simulation.start()

That’s all you need. So lets wrap all our drawing before into a draw function.

We create a new canvas here, even though we could use the one on the top. It’s just nice to not
have to scroll up.

Canvas(height=300, width=300)

3

One of the intruiging things of this type of threading is that all of the parameters of the Colloids
may still be changed on the fly while the process is running. So lets just reset the particle positions
to the origin and see what is happening in the canvas.

Now that we have a nice way of simulating particle motion you can extend that a bit. Here are
three additions you may want to make:

1) Introduce boundary conditions: This is a different way of keeping the particles inside
the simulation box. They are just reflected by a boundary.

2) Introduce a drift velocity: Particles may not only move diffusively but also with a constant
drift velocity in a certain direction. We want to introduce that feature to tackle a COVID-19
spreading.

3) Introduce collisions: To study the spreading of an infection, we have to introduce collisions
between particles.

1.5.1 Threading and Stopping

Threading is nice, but gets easily confusing if running a thread multiple times without closing and
stopping. You will end up with many threads that rush around somewhere in memory, which is of
course not nice. Here is a small code snippet, you may want to consider, when you running your
tasks in threads. It helps you to end a thread properly.

The self._stop_event.set() method is used to set the internal flag of a threading.Event object
to true.

4

In the context of the StoppableThread class, self._stop_event is a threading.Event object that
is used to signal the thread to stop executing.

When self._stop_event.set() is called, it sets the internal flag of the Event object to true. The
thread checks this flag in its run method with self._stop_event.is_set(). If the flag is true,
the thread stops executing.

Here’s a simplified explanation of how it works:

1. Initially, the self._stop_event flag is false.
2. When the stop method is called, it sets the self._stop_event flag to true using

self._stop_event.set().
3. In the run method, the thread continually checks whether self._stop_event.is_set() is

true. If it is, the thread stops executing. If it’s not, the thread continues to execute.

This is a common pattern for stopping a thread in Python because Python does not provide a
built-in way to stop threads directly.

Doing something
Doing something
Doing something
Doing something
Doing something

1.6 Animations with Matplotlib
While we have done all animations before with the help of the ipywidgets module, it is also
possible to use the matplotlib module as well. There are several options,e.g., precalculating and
displaying the animation. Yet, we want to use is the direct drawing. The code below demonstrates
this option for 400 particles.

5

6

	Animations
	Import Modules
	Particle class
	Create a set of particles
	Canvas and drawing function
	Threading for animation
	Threading and Stopping

	Animations with Matplotlib

