
1_differentiation

May 28, 2024

1 Numerical Differentiation
File as PDF

We did already have a look at the numerical differentiation in Lecture 3. We therefore don’t have
to extend that to much here. Yet we want to formalize the numerical differentiation a bit.

1.1 First order derivative
Our previous way of finding the derivative was based on its definition

𝑓 ′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥 + 𝑥0) − 𝑓(𝑥)
Δ𝑥 (1)

such that, if we don’t take the limit we can approximate the derivative by

𝑓 ′
𝑖 ≈ 𝑓𝑖+1 − 𝑓𝑖

Δ𝑥 (2)

Here we look to the right of the current posiiton 𝑖 and devide by the interval Δ𝑥.

It is not difficult to see that the resulting local error 𝛿 at each step is given by

� = 𝑓𝑖+1 − 𝑓𝑖 = 1
2Δ𝑥2𝑓 ′′

Some better expression may be found by the Taylor expansion:

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓 ′(𝑥) + (𝑥 − 𝑥0)2

2! 𝑓 ′′(𝑥) + (𝑥 − 𝑥0)3

3! 𝑓 (3)(𝑥) + … (3)

which gives in discrete notation

𝑓𝑖+1 = 𝑓𝑖 + Δ𝑥𝑓 ′
𝑖 + Δ𝑥2

2! 𝑓 ′′
𝑖 + Δ𝑥3

3! 𝑓 (3)
𝑖 + … (4)

The same can be done to obtain the function value at 𝑖 − 1

𝑓𝑖−1 = 𝑓𝑖 − Δ𝑥𝑓 ′
𝑖 + Δ𝑥2

2! 𝑓 ′′
𝑖 − Δ𝑥3

3! 𝑓 (3)
𝑖 + … (5)

1

https://github.com/fcichos/CBPM24/blob/cb4cdd123685863a57ead46c8cc25bc9de8f41a0/source/notebooks/L5/1_differentiation.pdf

which when neglecting the last term on the right side yields

𝑓 ′
𝑖 ≈ 𝑓𝑖+1 − 𝑓𝑖−1

2Δ𝑥 (6)

This is similar to the formula we obtained from the definition of the derivative. Here, however,
we use the function value to the left and the right of the position 𝑖 and twice the interval, which
actually improves accuracy.

One may continue that type of derivation now to obtain higher order approximation of the first
derivative with better accuracy. For that purpose you may calculate now 𝑓𝑖±2 and combining that
with 𝑓𝑖+1 − 𝑓𝑖−1 will lead to

𝑓 ′
𝑖 = 1

12Δ𝑥(𝑓𝑖−2 − 8𝑓𝑖−1 + 8𝑓𝑖+1 − 𝑓𝑖+2) (7)

This can be used to give better values for the first derivative.

[<matplotlib.lines.Line2D at 0x7fa9147624c0>]

1.1.1 Matrix version of the first derivative

If we supply to the above function an array of positions 𝑥𝑖 at which we would like to calculate the
derivative, then we obtain and array of derivative values. We can write this procedure also in a
different way, which will be helpful for solving differential equation later.

If we consider the above finite difference formulas for a set of positions 𝑥𝑖, we can represent the
first derivative at these positions by matrix operation as well:

2

𝑓 ′ = 1
Δ𝑥

⎡
⎢⎢⎢⎢⎢
⎣

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

(𝑓2 − 𝑓1)/Δ𝑥
(𝑓3 − 𝑓2)/Δ𝑥
(𝑓4 − 𝑓3)/Δ𝑥
(𝑓5 − 𝑓4)/Δ𝑥
(𝑓6 − 𝑓5)/Δ𝑥
(0 − 𝑓6)/Δ𝑥

⎤
⎥⎥⎥⎥⎥
⎦

Note that we took here the derivative only to the right side! Each row of the matrix multiplied
by the vector containing the positions is then containing the derivative of the function 𝑓 at the
position 𝑥𝑖 and the resulting vector represents the deravitave in a certain position region.

We will demonstrate how to generate such a mtrix with the SciPy module below.

1.2 Second order derivative
Higher order derivatives are also available from the same process. By adding 𝑓𝑖+2 and 𝑓𝑖−1 we
arrive at

𝑓 ′′
𝑖 ≈ 𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1

Δ𝑥2 (8)

gives the basic equation for calculating the second order derivative and the next order may be
obtained from

𝑓 ′′
𝑖 ≈ 1

12Δ𝑥2 (−𝑓𝑖−2 + 16𝑓𝑖−1 − 30𝑓𝑖 + 16𝑓𝑖+1 − 𝑓𝑖+2) (9)

which is again better than our previous formula

𝑓 ′′
𝑖 ≈ 𝑓𝑖+2 − 2𝑓𝑖+1 + 𝑓𝑖

Δ𝑥2 (10)

1.3 SciPy Module
Of course, we are not the first to define some functions for calculating the derivative of functions
numerically. This is already implemented in different modules. One module is the above mentioned
SciPy module.

The SciPy module provides the method derivative, which we can call with

derivative(f,x,dx=1.0,n=1):

This will calculate the n𝑡ℎ derivative of the function 𝑓 at the position 𝑥 with a intervall 𝑑𝑥 = 1.0
(default value).

/tmp/ipykernel_1374589/3594364828.py:1: DeprecationWarning:
scipy.misc.derivative is deprecated in SciPy v1.10.0; and will be completely
removed in SciPy v1.12.0. You may consider using findiff:
https://github.com/maroba/findiff or numdifftools:
https://github.com/pbrod/numdifftools

derivative(np.sin,np.pi,dx=0.000001,n=2,order=15)

3

-1.7089939196257686e-09

1.3.1 Matrix version

The SciPy module also allows us to construct the matrices as mentioned above. We will need the
diags method from the SciPy module for that purpose.

Lets assume, we want to calculate the derivative of the sin function at certain positions.

The diags function uses a set of numbers, that shoud be distributed along the diagonal of the
matrix. If you supply a list like in the example below, the numbers are distributed using the offsets
as defined in the second list. The shape keyword defines the shape of the matrix. Try the example
in the over next cell with the .todense() suffix. This converts the otherwise unreadable sparse
output to a readable matrix form.

matrix([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., -1., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., -1., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., -1., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., -1., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., -1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., -1., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., -1., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., -1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., -1.]])

To comply with out previous definition of N=100 data point and the intervall 𝑑𝑥, we define

The derivative is then only a simple elementwise matrix multiplication.

Check yourself, that the following line of code will calculate the second derivative.

4

m=diags([-2., 1., 1.], [0,-1, 1], shape=(100, 100))

5

	Numerical Differentiation
	First order derivative
	Matrix version of the first derivative

	Second order derivative
	SciPy Module
	Matrix version

