
3_solving_ODEs

May 28, 2024

1 Solving ODEs
File as PDF

All the stuff we have defined in the previous sections is useful for solving ordinary differential
equations. This will bring us closer to solving out physics problems now.

1.1 Harmonic Oscillator
Physics Interlude: The harmonic oscillator

We are going to tackle as a first very simple problem, the harmonic oscillator and we will demon-
strate that with the matrix (Crank-Nicholson method or implicit scheme), the Euler type integration
method and using some ‘unknown’ integrator in the module SciPy.

The equation of motion for a classical harmonic oscillator is given

d2𝑥
d𝑡2 + 𝜔2𝑥 = 0 (1)

This is a second order differential equation which requires for its solution two initial conditions.
The first initial condition is the initial elongation 𝑥(𝑡 = 0) = 𝑥0 and the second the initial velocity

̇𝑥(𝑡 = 0) = 𝑣0.

1.2 Implicit Solution - Crank Nicholson
Lets start with the matrix appraoch we have just learned about. Using the matrix version, we can
transform the above equation into a system of coupled equations, which we can solve with some
standard methods available from e.g. the SciPy module.

1.2.1 Define Matrices

Our matrix will consist of two parts. The first containing the second derivative and the second just
the elongation. Suppose we want to calculate the position 𝑥(𝑡) at 6 instances in time 𝑡𝑖 then the
matrix version of the second derivative reads as

(𝑥1 = 𝑥(𝑡1), …).

1

https://github.com/fcichos/CBPM24/blob/cb4cdd123685863a57ead46c8cc25bc9de8f41a0/source/notebooks/L5/3_solving_ODEs.pdf

𝑇 = 𝑑2𝑥
𝑑𝑡2 = 1

𝛿𝑡2

⎡
⎢⎢⎢⎢⎢
⎣

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥
⎦

The second term in the equation of motion is a multiplication of the elongation 𝑥(𝑡𝑖) by 𝜔2 and
can be written as

𝑉 = 𝜔2𝑥 =

⎡
⎢⎢⎢⎢⎢
⎣

𝜔2 0 0 0 0 0
0 𝜔2 0 0 0 0
0 0 𝜔2 0 0 0
0 0 0 𝜔2 0 0
0 0 0 0 𝜔2 0
0 0 0 0 0 𝜔2

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥
⎦

The left hand side of the would threfore contain a sum of the two matrices 𝑀 = 𝑇 + 𝑉 multiplied
by the vector 𝑥. We have therfore almost all things together to solve this differential equation with
the help of an implicit scheme. What we have ignored so far are the initial conditions.

1.2.2 Use Initial Conditions

The matrix given for the second detivative actually implies already some initial (bounary) con-
ditions. You probably noticed that the matrix contains incomplete coefficients for the second
derivative in the first and last line. The first line contains (−2, 1), but the second derivative should
contain (1, −2, 1). This (−2, 1) thus always includes the boundary condition that 𝑥0 = 0. To in-
clude our own initial/boundary conditions, we have to construct the matrix for the second derivative
slightly differently and modify the differential equation to

d2𝑥
d𝑡2 + 𝜔2𝑥 = 𝑏 (2)

where the vector b takes care of the initial conditions.

If we have 𝑁 positions in time at which we calculate the elongation 𝑥, we have a 𝑁 × 𝑁 matrix
of for the second derivatives. The lower 𝑁 − 2 lines will contain the the coefficients for the second
derivative (1, −2, 1). The first two lines supply the initial/boundary conditions.

The initial condition for the elongation 𝑥(𝑡 = 0) = 𝑥0 is obtained when the first element of the
first line is a 1. The matrix multiplication 𝑀 𝑥 = 𝑏 for yields thus in the first line 𝑥1 = 𝑏1 and
we set 𝑏1 = 𝑥0. The second line shall give the initial velocity. So the matrix entries of the second
line contain a first derivative (−1, 1). The matrix multiplication thus yields 𝑥2 − 𝑥1 = 𝑏2. We can
therefore need to set 𝑏2 = 𝑣0𝛿𝑡. All of the other entries of 𝑏 shall be set to zero according to the
differential equation of the harmonic oscillator.

Our final problem 𝑀 𝑥 = 𝑏 will thus have the following shape

2

⎡
⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
−1 1 0 0 0 0
1 −2 + 𝜔2 ∗ 𝛿𝑡2 1 0 0 0
0 1 −2 + 𝜔2 ∗ 𝛿𝑡2 1 0 0
0 0 1 −2 + 𝜔2 ∗ 𝛿𝑡2 1 0
0 0 0 1 −2 + 𝜔2 ∗ 𝛿𝑡2 1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑥0
𝑣0𝛿𝑡

0
0
0
0

⎤
⎥⎥⎥⎥⎥
⎦

(3)

1.2.3 Solution

This is the final system of coupled equations which we can supply to any matrix solver. We will
use a solver from the scipy.linalg module. Lets have a look at the details below.

1.3 Explicit Solution - Numerical Integration
Before we really dive into the explicit scheme, we take some time to develop a “standard model”
for solving ODE’s. That way, we can set any problem up once and then use the method of our
choice to solve it, with a minimum amount of reprogramming on our part. Let’s have a look at the
free fall problem:

̈𝑥 = −𝑔 (4)

The above equartion can be broken into two first-order equations:

̇𝑥 = 𝑣 (5)
̇𝑣 = −𝑔 (6)

The individual Euler-method solutions to those first-order equations are

3

𝑥𝑖+1 = 𝑥𝑖 + ̇𝑥Δ𝑡 (7)
𝑣𝑖+1 = 𝑣𝑖 + ̇𝑣Δ𝑡 (8)

There is a symmetry in these two equations that just makes you want to write them as a single
vector equation:

𝑦𝑖+1 = 𝑦𝑖 + ̇𝑦Δ𝑡 (9)

where

𝑦 = [𝑥
𝑣] (10)

Therefore the two first order equation could be written with the same vector notation:

̇𝑦 = [̇𝑥
−𝑔] (11)

This defines the differential equation we’re solving.

This vector notation allows us to break the process into two parts:

• defining the problem and
• solving the problem.

We define the problem with a function that returns the derivatives of each element in 𝑦. The
solution has to be done by defining a function that is integrating the equation of motion according
to one of the many possible integration methods. To keep it simple, we will introduce the Euler,
the Euler Cromer and the Midpoint method. All of them are numerical integration methods
and help us to solve first order differential equations.

There are much more accurate methods beyond the ones listed below, for example the Runge
Kutta Methods. We leave that to you to study these methods and to possibly implement them.

1.3.1 Euler Method

The Euler method follows naturally from a Taylor expansion of the function 𝑥(𝑡) around the
current position 𝑡.

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + ̇𝑥(𝑡)Δ𝑡 + ̈𝑥(𝑡)Δ𝑡2

2 + … (12)

Dropping term of higher order than linear in Δ𝑡 yields

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + ̇𝑥(𝑡)Δ𝑡 (13)

4

The error in each step for Euler’s method is therefore on the order of Δ𝑡2, since that’s the first term
omitted in the Taylor expansion. However, the number of steps is 𝑁 = 𝜏/Δ𝑡 so the total error by
the end of the process is on the order of Δ𝑡. Decreasing the size of Δ𝑡 improves your result linearly.

Notice that Euler’s method only works on first-order differential equations. This is not a limitation,
though, because higher-order differential equations can be expanded into systems of first-order
differential equations.

1.3.2 Euler Cromer Method

The Euler Cromer method just changes a slight detail by using not the velocity at the current
time 𝑡 for the calculation of the update of the position at time 𝑡 but the newly calculated velocity

̇𝑥(𝑡 + Δ𝑡)

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + ̇𝑥(𝑡 + Δ𝑡)Δ𝑡 (14)

Due to the use of the future velocity, the Euler Cromer method typically underestimates the
position while the Euler method overestimates the position. The error of the Euler Cromer
method is also on the order of Δ𝑡2 and the error increases with 𝑁 .

1.3.3 Midpoint Method

Both estimates can now be used to obtain the midpoint method.

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + ̇𝑥(𝑡 + Δ𝑡) + ̇𝑥(𝑡)
2 Δ𝑡 (15)

The error of this method scales now with Δ𝑡3. The quality of these three methods is displayed in
by the code and the graph below.

5

1.3.4 Putting it all together

We are now in the position to put all the details together and carry out our explicit scheme. In
case you have forgotten already what the details were, here is the list of what we have to do again:

• defining the problem and
• solving the problem.

The definition of the problem This function defines the ODE

d2𝑥
d𝑡2 + 𝜔2𝑥 = 0 (16)

We have to convert that into our vector 𝑦, where the first element is the position and the second
the velocity. This vector is and argument to a function we define

def SHO(state , time):

g0 = state[1] # velocity
g1 = −k/m*state[0] # acceleration
return(numpy.array([g0, g1]))

This function returns another vector, which is, when multiplying with the timestep 𝑑𝑡 the position
and velocity again. So this vector contains the velocity and acceleration. These are the derivatives
of out state vector 𝑦.

6

Solving the problem A routine that impliments Euler’s method of finding the new ’state’ of 𝑦,
given the current state, time, and desired time step . ’derivs’ must be a function that returns the
derivatives of 𝑦 and thus defines the differential equation.

def euler(y, t, dt, derivs):

y_next = y + derivs(y,t) ∗ dt
return(y_next)

The code below includes two different physics problems. The first is the free fall with an initial
position 𝑥0 = 0 and an initial velocity 𝑣0 = 10. The problem defining function is thereby free_fall.
The second problem is a simple harmonic oscillator (SHO) with a spring constant 𝑘, a mass 𝑚.
Both problems can be easily calculated by supplying the right derivs function to the solver. To
play around with two different solvers, we have integrated the normal Euler method and the Runge
Kutta method (which we have not really addressed).

Play around with the time period, the number of steps and the initial conditions to observe the
changes in the output, or possible errors of the solvers!

1.4 Solving the Harmonic Oscillator in SciPy
As our Euler integration scheme is not vrey accurate, we may use predefined modules with their
methods to do the integration. The module SciPy inludes the method scipy.integrate.odeint()
which is an integrator as our Euler method. To use this function just include

from scipy.integrate import odeint

and you may call the function just by answer=odeint(derivs,y,time).

Here the derivs function is the same as we have supplied to our solvers, so just SHO, y contains a
1-dimensional vector with the initial conditions and time the timesteps at which you would like to
calculate the solution.

7

The odeint function is much more sophisticated as our solver, as it contains error correction and
other things. As you know now the background behind solving differential equations a bit, you may
be allowed to use this function ;-). The results of the function are stored in the variable answer.
Check out the variable and find out what is stored where! Play around with the code below!

1.4.1 Setup

1.4.2 Definition

1.4.3 Solution

1.4.4 Plotting

1.5 Damped Driven Pendulum in SciPy
Write a derivs function for a damped driven pendulum:

̈𝜃 = − 𝑔
𝐿 sin(𝜃) − 𝑏 ̇𝜃 + 𝛽 cos(𝜔𝑡) (17)

Use this derivs function with the SciPy solver and plot the result for different parameters. Vary the
damping parameter 𝑏. Observe the contributions of the homogeneous and the particular solution.
Plot the amplitude of the stationary solution as a function of frequency!

8

1.5.1 Setup

1.5.2 Definition

1.5.3 Solution

1.5.4 Plotting

9

	Solving ODEs
	Harmonic Oscillator
	Implicit Solution - Crank Nicholson
	Define Matrices
	Use Initial Conditions
	Solution

	Explicit Solution - Numerical Integration
	Euler Method
	Euler Cromer Method
	Midpoint Method
	Putting it all together

	Solving the Harmonic Oscillator in SciPy
	Setup
	Definition
	Solution
	Plotting

	Damped Driven Pendulum in SciPy
	Setup
	Definition
	Solution
	Plotting

