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We will continue our course with some physics problems that we will tackle. One of the more
comprehensive solutions will look at two coupled pendulums. This belongs to the class of coupled
oscillators, which are extremely important. They will later lead to propagating waves. They are
important for phonons, i.e. coupled oscillations of atoms in solids, but there are also many other
axamples. The coupled oscillation can be realised in different ways. We will not do this with spring
oscillators, but with pendulums.
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1.1 Description of the problem
1.1.1 Sketch

The picture below shows the situation that we want to deal with in our first project. There are two
pendulums with lengths 𝐿1 and 𝐿2. Both are coupled with a spring of spring constant 𝑘, which is
relaxed when both pendulums are at rest. You can include a generalised version where the spring
is placed at a distance 𝑐 from the pendulums’ pivots.

When developing the equation of motion, write it as a sum of torques. Use one equation of motion
for each pendulum. The result is two coupled differential equations for the angular coordinates.
They are solved with the function scipy odeint without friction.

1.1.2 Equations of motion

The equations of motion of the two coupled pendula have the following form:
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𝐼1 ̈𝜃1 = −𝑚1𝑔𝐿1 sin(𝜃1) − 𝑘𝑙2[sin(𝜃1) − sin(𝜃2)] (1)
𝐼2 ̈𝜃2 = −𝑚2𝑔𝐿2 sin(𝜃2) + 𝑘𝑙2[sin(𝜃1) − sin(𝜃2)] (2)

Here, 𝜃1, 𝜃2 measure the angle of the two pendula with the length 𝐿1, 𝐿2. 𝑘 is the spring constant
of the spring coupling both pendula. If you use a variable coupling position of the spring name the
length of the coupling from the turning point 𝑙.

1.2 Solving the problem
1.2.1 Setting up the function

In our previous lecture, we used the odeint function of scipy to solve the driven damped harmonic
oscillator. Remeber that we used the array

state[0] -> position
state[1] -> velocity

to exchange position and velocity with the solver via the function that defines the physical problem

def SHO(state, time):
g0 = state[1] ->velocity
g1 = -k/m * state [0] ->acceleration
return np.array([g0, g1])

for a coupled system of different equations, we can now extend the state array. In the case of the
coupled system of equations it has the following structure

def CHO(state, time):
g0 = how the velocity of object 1 depends on the velocities of all objects
g1 = how the acceleration of object 1 depends on the acceleration of all objects
g2 = how the velocity of object 2 depends on the velocities of all objects
g3 = how the acceleration of object 2 depends on the acceleration of all objects
return np.array([g0, g1, g2, g3])

So the state vector just gets longer and the coupling is in the definition of the velocities and
accelerations. The results are then the positions and velocities of the objects. Use this type of
scheme to define the problem and write a function, which returns the state of the objects as before.

1.2.2 Define initial parameters

We want to define some parameters of the pendula

• length of the pendulum 1, 𝐿1=3 m
• length of the pendulum 2, 𝐿2=3 m
• gravitational acceleration, 𝑔 = 9.81 m/s2

• mass at the end of the pendula, 𝑚 = 1 kg
• distance where the coupling spring is mounted, 𝑙 = 2 m
• spring constant of the coupling spring, 𝑘 = 5 N/m

As compared to our previous problem of a damped driven pendulum, where we had two initial
conditions for the second order differential equation, we have now two second order differential
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equation. We therefore need 4 initial parameters, which are the initial elongations of both pendula
and their corresponding initial angular velocities We will notice, that the solution,i.e. the motion
of the pendula, will strongly depend on the initial conditions.

1.2.3 Solve the equation of motion

We have to define a timeperiod over which we would like to obtain the solution. We use here a
period of 400s where we calculate the solution at 10000 points along the 400s.

We are now ready to calculate the solution. Finally, we extract also the angles of the individual
pendula, their angular velocities and the position of the point masses at the end of the pendulum.
This can be then readily used to create some animation.

1.2.4 Plotting

First, get some impression of how the angles change over time.

1.2.5 Animation

The plot of the angles over time is not always giving a good insight. With our knowledge about
animations, we may easily animate the motion of the two pendula as well.

For the physics, it has neven been interesting to define at which distance the pendula are mounted
at a ceiling for example. For drawing them we have to do that together with some additional
parameters, which define for example the position of where to draw in the canvas and the conversion
of meters to pixels.

The function below will do the drawing for us. We define a function such that we can create a
background animation with a thread. Note that we have inserted sleep(t[1]-t[0]) at the end.
The drawing of the 4 objects will be pretty fast so that we can wait a certain amount of time until
we display the next frame. That means at the end, that our simulation will run in real time.

Looks pretty slow, but remember the pendula are 3 meters long.

Canvas(height=200, width=300)
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1.3 Normal Modes
We won’t go into all the physical details here, but you may remember from your mechanics lectures
that two coupled oscillators have different modes of motion, which we call normal modes. 𝑁 one-
dimensional coupled oscillators have 𝑁 normal modes of oscillation. The number of normal modes is
equal to the number of degrees of freedom in the system. For a system of 𝑁 coupled oscillators, each
oscillator contributes one degree of freedom, so there are 𝑁 degrees of freedom in total. Each normal
mode corresponds to a distinct collective motion pattern where all the oscillators move with the
same frequency but different amplitudes and phases. The normal mode frequencies are determined
by solving an eigenvalue equation involving the coupling strengths between the oscillators. We can
force the system into one of its normal modes by setting its initial conditions correctly.

For two coupled oscillators, we have therefore two normal modes:

• Symmetric Normal Mode: In this mode, both oscillators move in the same direction with
equal amplitudes and frequencies. The motion is symmetric about the center of the system.
The two oscillators are in phase with each other.

• Antisymmetric Normal Mode: In this mode, the two oscillators move in opposite directions
with equal amplitudes and frequencies. When one oscillator moves to the right, the other
moves to the left, and vice versa. The motion is antisymmetric about the center of the system.
The two oscillators are 180° out of phase.

1.3.1 Symmetric Normal Mode

The first one, will create an in-phase motion of the two pendula by setting their initial elongation
equal, i.e. 𝜃1(𝑡 = 0) = 𝜃2(𝑡 = 0). Both pendula then oscillate with their natural frequency and the
coupling spring is never elongated.

1.3.2 Antisymmetric Normal Mode

The second normal mode is a motion in which the two pendula are out-of-phase by a phase angle
of 𝜋 , i.e. 𝜃1(𝑡 = 0) = −𝜃2(𝑡 = 0). Both pendula then oscillate with a frequency higher than their
natural frequency. This is due to the fact that there is a higher restoring force due to the action of
the spring.
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1.3.3 Beat case

The last case is not a normal mode, but represents a more general case. We start with two different
initial angles, i.e. 𝜃1(𝑡 = 0) = 𝜋/12 and 𝜃2(𝑡 = 0) = 0. This is the so-called beat case, in which the
pendulums exchange energy. The oscillation, which is initially only in the first pendulum, is then
transferred to the second. This energy transfer takes place continuously from one pendulum to the
other, as the energy has nowhere to go. From this point it is easy to see how a wave is created.
In a set of many coupled pendulums, one pendulum starts swinging and transfers its energy to the
next and then to the next and then to the next and in this way the energy propagates along all the
oscillators.

1.3.4 Computation of energy (here for the beat case)

After we have had a look at the motion of the individual pendula, we may also check, the energies
in the system. We have to calculate the potential and kinetic energies of the pendula and we should
not forget the potential energy stored in the spring.

Potential energy of the pendula The potential energy plot below nicely shows the exchange
of energy between the two pendula in the beat case.
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Potential energy of the spring

Kinetic energies
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Total energy As the total energy in the system shall nbe conserved, the sum of all energy
contributions should yield a flat line.

Total energy exchange of the pendula While the graph above shows the total energy of both
pendulums, we can now take a look at the total energy in each pendulum. The graphs clearly show
that the energy is exchanged between the two pendulums. The ripple in the curve is due to the
fact that we are excluding the potential energy stored in the spring.
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