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We stop for the moment the physics related stuff and have a look at a different important topic,
which is curve fitting. We demonstrate the least-square fitting of a quadratic function with three
parameters to experimental data. You may of course also have more complex function or even a
simple linear function. For some fitting functions you may write down explicit estimators of the
parameters and you do not have to stress the fitting procedure. So before you fit, think about how
to obtain a good estimate of your model parameters. For those of you, who are interested a bit
more in that topic, have a look at maximum likelihood estimation for example.

1.1 Idea
The result of an experiment are data points from which you would like to understand the physics
behind, meaning you would like to see if a mathematical model fits your data.

So the data comes as a series of points, usually pairs of points such as

x-data y-data
𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
…. …
𝑥𝑁 𝑦𝑁

Here, each of the point {𝑥1, 𝑦1} could be the result of a series of independent measurements, i.e. 𝑦1,𝑖
as well. The independent measurements yield mean values

𝑦1 = 1
𝑁

𝑁
∑

𝑖
𝑦1,𝑖 (1)

If these measurements have been carried out with an uncertainty 𝜎 for the individual measurements,
then the sum of all measurements ∑𝑖 𝑦1,𝑖 has a variance of 𝑁𝜎2 and a standard deviation of

√
𝑁𝜎.

The mean value is therefore connected to an error (standard deviation) of

𝜎𝑆𝐸𝑂𝑀 = 𝜎√
𝑁

(2)
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This is the standard error of the mean (SEOM) and it has importance across all measurements in
physics. For later, note that the variance is defined by

𝜎2
1 = 1

𝑁
𝑁

∑
𝑖=1

(𝑦1,𝑖 − 𝑦1)2 (3)

1.2 Least squares
If we would now like to describe our data with a model function, which delivers a function value
𝑓(𝑥𝑖, 𝑎) for a set of parameters 𝑎 at the position 𝑥𝑖, the Gaussian uncertainty dictates a probability

𝑝𝑦𝑖
= 1√

2𝜋𝜎𝑖
exp(−(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎))2/2𝜎2

𝑖 ) (4)

of finding a data value 𝑦𝑖. Note that I generalized here the uncertainty, which is now valid for the
each point individually.

If you now want to know how close a set of 𝑁 data points is to a set of function values, you have
to multiply the individual probabilities:

𝑝(𝑦1, … , 𝑦𝑁) =
𝑁

∏
𝑖

1√
2𝜋𝜎𝑖

exp(−(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎))2/2𝜎2
𝑖 ) (5)

If this joint probability is maximum, you will have the closest match of the function values to the
data.

Applying the logarithm to both side of the equation results in

ln(𝑝(𝑦1, … , 𝑦𝑁)) = −1
2

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)
𝜎𝑖

)
2

−
𝑁

∑
𝑖=1

ln (𝜎𝑖
√

2𝜋) (6)

The first term on the right side (except the factor 1/2) is the least squared deviation

𝜒2 =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)
𝜎𝑖

)
2

(7)

The second term is just a constant value given by the uncertainties of our experimental data.

1.3 Data
Lets have a look at the meaning of this equation. Lets assume we measure the trajectory of a ball
that has been thrown under and angle 𝛼 with an initial velocity 𝑣0. We have collected data point
by measuring the height of the ball above ground at equally spaced distances from the throwing
person. Lets load some data

We can plot the data and expect, of course,a parabola. Therefore we model our experimental data
with a parabola like
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𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (8)

where the parameter 𝑎 must be negative since the parabola is inverted.

I have created an interactive plotting with an interact widget, as this allows you to play around
with the parameters. The value of 𝜒2 is also included in the legend, that you get an impression of
how good your fit of the data is.

interactive(children=(FloatSlider(value=-1.7, description='a', max=1.7, min=-5.
↪1), FloatSlider(value=1.3, desc…

We have that troubeling point at the right edge with a large uncertainty. However, since the value
of 𝜒2 divides the deviation by the uncertainty 𝜎𝑖 the weight for this point overall in the 𝜒2 is smaller
than for the other points.

𝜒2 =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)
𝜎𝑖

)
2

(9)

You may simply check the effect by changing the uncertainty of the last data points in the error
array.

1.4 Least square fitting
The best fit of the model to the experimental data is then obtained by minimizing the least squares,
i.e.

𝑑𝜒2

𝑑𝑎 =
𝑁

∑
𝑖=1

1
𝜎2

𝑖

𝑑𝑓(𝑥𝑖, 𝑎)
𝑑𝑎 [𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)] = 0 (10)

This kind of least squares minimization is done by a fitting software with different types of algo-
rithms.

OK so let’s do some fitting. We will use the SciPy module for fitting. There we have a curve_fit
method in the optimize sub-module. At first we should provide a model function we would like to
fit to the data. This could just be our parabola function.

At second, we should not leave the fitting procedure of SciPy without a clue on where to look for
the optimal parameters. Therefore we can provide initial parameters for the search.

The fit is then obtained by calling

and we obtain all the fit results in the variable fit. This is actually composed of various results.
If we split that up, we will find

ans containing the fit parameters fit_a,fit_b,fit_c as well as the so-called covariance matrix
cov. Lets have a look at the fit and the 𝜒2 value first.

(-2.518360505820918, 1.6971754996789874, 1.0067886882158636)
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1.4.1 𝜒-squared value

The value of 𝜒2 gives you a measure for the quality of the fit. We may judge the quality by
calculating an expression of the expectation value of 𝜒2

⟨𝜒2⟩ =
𝑁

∑
𝑖=1

⟨(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎))2⟩
𝜎2

𝑖
=

𝑁
∑
𝑖=1

𝜎2
𝑖

𝜎2
𝑖

= 𝑁 (11)

So the mean of the least squared deviation increases with the number of datapoints and thus

• 𝜒2 >> 𝑁 means that the fit is bad
• 𝜒2 < 𝑁 means that the uncertainties are wrong

The first may occur if you don’t have a good fit to your data, for example, a wrong model. The
second typically occurs if you don’t have estimates of the uncertainties and you assume all un-
certainties to be constant. So it is really important to have a good estimate of the uncertainties
and to include it in do you fit. If you include the uncertainties in your fit it is called a weighted
fit in case you don’t include the uncertainties (meaning you keep them constant) it is called an
unweighted fit.

For our fit above we obtain a 𝜒2 which is on the order of 𝑁 = 10, which tells you that I have
cheated well when creating the data.
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1.4.2 Residuals

A similar view on the quality of the fit may be ontained from the residuals. These are defined as
the deviation of the data from the model for the best fit.

𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎) (12)

The residuals may also be given as the percentage of the deviation of the data from the fit by

𝑟𝑖 = 100 (𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)
𝑦𝑖

) (13)

If there are only statsitical fluctuations of the residuals around zero, then the fit and likely also the
model is good.

1.5 Covariance matrix
Let us now have a look at the individual measurements which have yielded the errorbars in the
above plot. If I take each of those measurements and calculate a fit for each of the datasets I get a
whole set of fit functions and parameters. The uncertainties in the parameters of the fit function
are the result of the measurement uncertainty.
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We may therefore want to characterize how much the individual parameters vary with each other.
In other word, this means that we want to know whether the fit parameters are independent or
not, which is a good quality measure of our model. For this pupose we use a generalization of the
variance definition

𝜎2 = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖− < 𝑦 >)2 (14)

which is the mean squared deviation of the individual values from its mean. This equation is a
special case of a the so-called covariance

cov(x, y) = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖− < 𝑥 >)(𝑦𝑖− < 𝑦 >) (15)

which measures by how much a variation from of 𝑥𝑖 from the mean is also connected to a variation
of 𝑦𝑖 from the mean. The variance itself, is therefore just cov(𝑥, 𝑥).
The curve_fit function delivers a covariance matrix as mentioned above. This covariance matrix
is, however, not a measure of how the data varies among each other but rather a measure of
how much the individual fit parameters varying with each other. If we fit our data with a model
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containing three parameters (𝑎, 𝑏, 𝑐), then the covariance matrix of the parameters 𝑝𝑖 and 𝑝𝑗 with
𝑖 = 𝑎, 𝑏, 𝑐 and 𝑗 = 𝑎, 𝑏, 𝑐 is a 3 × 3 matrix.

cov(𝑝𝑖, 𝑝𝑗) = ⎡⎢
⎣

𝜎2
𝑎𝑎 𝜎2

𝑎𝑏 𝜎2
𝑎𝑐

𝜎2
𝑏𝑎 𝜎2

𝑏𝑏 𝜎2
𝑏𝑐

𝜎2
𝑐𝑎 𝜎2

𝑐𝑏 𝜎2
𝑐𝑐

⎤⎥
⎦

(16)

The diagonal elements thereby provide the squared errors of the fit parameters (their variances).
The off diagonal elements describe by how much the individual parameters are related with each
other.

[[ 0.07675961 -0.06444204 0.0077515 ]
[-0.06444204 0.05918523 -0.00848237]
[ 0.0077515 -0.00848237 0.00192722]]

The matrix above is our covariance matrix of the parameters. You see from the off diagonal elements
that a number of parameters is highly related to each other. An even better view may be obtained
by the so called correlation matrix 𝑅, where the matrix elements

𝑅𝑝𝑖,𝑝𝑗
= cov(𝑝𝑖, 𝑝𝑗)

√𝜎2
𝑖 𝜎2

𝑗
(17)

The entries of the covariance matrix are here normalized by the variances of the parameters itself,
i.e. by the diagonal elements.

[[ 1. -0.95608434 0.63731453]
[-0.95608434 1. -0.79422754]
[ 0.63731453 -0.79422754 1. ]]

The correlation matrix thus indeed reveals that the parameters are highly related to each other.
curve_fit calculates the corresponding covariance entries using the specified uncertainties. We
may access the meaning of them a bit better if we look at our synthetic data.

If we generate 100 different measurements and fit the accordingly, we can access a possible corre-
lation of the parameters as sugested by the correlation matrix.

If we now plot the parameter 𝑎 over the parameter 𝑏, we indeed obtain a very strong correlation,
which has a negative slope as suggested by the correlation matrix.

Text(0, 0.5, 'parameter b')
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This correlation of parameters means, that the parameter b is not independent from a but rather
strongly linearly dependent on it. We might want to find a better model containing more indepen-
dent parameters. We may write down a different model

𝑦 = 𝑎(𝑥 − 𝑏)2 + 𝑐 (18)

which also contains three parameters, but the parameter b directly refers to trhe maximum of out
parabola, while the parameter a denotes its curvature.

We see from the covariance matrix that the new model has a smaller correlation of the parameters
on each other.

[[ 0.07675961 -0.00252389 -0.00524745]
[-0.00252389 0.0002834 0.0001206 ]
[-0.00524745 0.0001206 0.00074961]]

This is also expressed by our correlation matrix.

[[ 1. -0.54113427 -0.69177302]
[-0.54113427 1. 0.26166299]
[-0.69177302 0.26166299 1. ]]
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