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1 Plane Waves

In the previous parts we have dealt with mechanics essentially. Even if we have described Brownian
motion, this has been done by a particular type of Newtons equation of motion, it is much like
mechanics. Now we would like to have a look at some examples from electromagnetic waves. We
will not solve the wave equation but look at some solution using the complex notion of the electric
field. This shall train our use of complex numbers. The special solutions are the plane wave and
the spherical wave.

1.0.1 Equations

A plane wave is a solution of the homogeneous wave equation and is given in its complex form by
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where the two exponentials contain an spatial and a temporal phase. E; denotes the amplitude of
the plane wave. The plane is defined by the shape of the wavefront which is given by k-7 = const,
which is just the definition of a plane perpendicular to k.

A wave is a physical quantity which oscillates in space and time. Its energy current density is
related to the square magnitude of the amplitude. We will include in the following the spatial and
the temporal phase. For plotting just the spatial variation of the electric field, you may just use
the spatial part of the equation

E = Eyeih” (2)

But since we also want to see the wave propagate, we will directly include also the temporal
dependence on our function. In all of the examples below we set the amplitude of the wave E, = 1.

The propagation of the wave is defined by wavevector k. In vacuum, the wavevector is just real
valued

k)O = kOy (3)

The wavevector is providing the direction in which the wavefronts propagate. It is also proportional
to the momentum of the wave, which will be important if we consider the refraction process a bit
later. The magnitude of the wavevector is related to the wavelength .
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At the same time, its magnitude is also given by the frequency of the light devided by the wave
vector. The latter is called a dispersion relation.

In a medium, the wavevector is by a factor of n longer, where n is the refractive index. Since the
refractive index may be a complex number, e.g. n = 1 + ik, the wavevector can be imaginary as
well. It is then given by

K, + ik,
(5)

The complex number of the refractive index means, that there is some damping of the electromag-
netic wave due to absorption, for example.

The wavelength is then related to

R(k) = n7- (6)
0
and the imaginary part gives the damping
2
3(k) = k=2 (7)
Ao

1.0.2 Electric field

Lets have a look at waves and wave propagation. We want to create a wave, which has a wavelength
of 532 nm in vacuum.

It shall propagate along the z-direction and we wull have a look at the x-z plane.

We can plot the electric field in the x-z plane by defining a grid of points (x,z). This is done by
the meshgrid function of numpy. The meshgrid returns a 2-dimensional array for each coordinate.
Have a look at the values in the meshgrid.

In the last lines, we defined an array of X,0,Z, where X and Z are already 2-dimensional array. This
finally gives an array 3D vectors, which we can use to calculate the electric field at any point in
space. If we want to plot the electric field, we have to calculate the real part of the complex values,
as the electric field is a physical quantity, which is always real. There is not much to see for a plane
wave in the intensity plot, as the intensity of a plane wave is constant in space. Yet, if you want to
plot it, you have to calculate the magnitude square of the electric field, e.g.
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1.0.3 Plane wave propagation

The above graph shows a static snapshot of the plane wave at a time ¢ = 0. We know, however,
that a plane wave is propagating in space and time. Since we know how to animate things, we may
do that using the ipycanvas module.

Canvas(height=300, width=300)

To do the animation I use a little trick to get the same color map as in the matplotlib plotting. The
function below uses the matplotlib color map seismic and the corresponding mapping of values
with a given minimum vmin and maximum vmax value. The mapping is done in the animation

function with c=m.to_rgba(tmp).

This is our animation function, where I provide time and the wavevector as arguments, such that
we may change both parameters easily. With the call below, you may animate the wave now with
different refractive indices.



1.0.4 Imaginary wave vector

If we now create a material, which has an imaginary part of the refractive index, we see that the
amplitude decays and the wave fades.
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The above plots show the electric field amplitude in the x-z plane. We may also have a look the
field amplitude and intensity as a function of the z-position by chosing a single x-value. In the plot
below, you may notice two things. The first is, that the wave decays exponentially with distance
z. Intensity and field decay with different decay length. The field decays with exp(—« * kyz) while
the intensity of cause decays twice as fast exp(—2k * kyz) due to the fact the the intensity is the
square of the electric field.
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1.0.5 Animation
Of course, we should not miss the animation.

Canvas (height=300, width=300)

1.0.6 Interference of two plane waves

It is not very difficult to calculate from the definitions we did above now the interference of two
plane waves, which have different directions of the wavevector. The total field in space is then just
the sum of the two fields

The interesting thing is now to look at the intensity which

I |E|2 = |E1|2 + |E2‘2 + ETEQ + E§E1 (10)

Sum Intensity

X [um]

)

x [um]
X [pum]

N
IS
o
[+
5

z[um]



intensity
N

distance [um]

1.1 Plane wave at a boundary

We want to go a bit further now and have a look at the wave at a boundary between vaccum
and glass for example. At this boundary, the electromagnetic wave is reflected and refracted such
that two new wavevectors arise. These are easily calculated by the law of reflection and the law
of refraction. Besides that, also the amplitude of the waves change. To calculate the field we need
the so-called Fresnel equations.

1.1.1 Fresnel equations

When electromagnetic waves hit a boundary, they will be reflected and refracted. The amplitude
of the reflected and refracted wave is determined by the refractive index of the two materials, the
angles and the polarizations. For the latter we differentiate between a polarization in the incident
plane (the p-polarization) and perpendicular to the incident plane (s-polarization).
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For each of the polarization we in general obtain a coeffcient for the reflection and one for the
refraction. To make our calculation a bit simpler, we will assume only s-polarization. Then the
two Fresnel coefficients are calculated as

(%) i 2n, cos « (1)

E,. Ny COS & + Ny COS 3
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where « and [ are the incident and refraction angles, respectively. Note that the Fresnel coefficients
are for the amplitudes and can be negative to account for a phase jump by w. To obtain the
coefficients for the intensities, one has to square the Fresnel coefficients.



To bring everything correctly together, we therefore have to define a number of things. We will need
a function calculating the outgoing angle from Snells law. And we need at least two functions cal-
culating the reflection and transmission coeflicient for one polarization. We use the s-polarization,
where the electric field is always parallel to the interface.

With the definition of the Fresnel coeflicients, we may now plot the reflection and the transmission
coefficients. Note that the sum of reflection and transmission coefficients for the intensities have to
add up to one if there is no absorption.
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1.1.2 Incident wave

We want to study the electric fields and the intensities at various angles. The most interesting
one, is a case where we have total internal reflection. This happens, if light is propagating from
the higher refractive index to a lower refractive index. If we start in glass (n; = 1.5) and transmit
to vacuum n, = 1, then at all angles above 6, = sin™ ' (n,/n;) = 41.810314895778596 are total
internally reflected.

We may now specify or calculate the corresponding wavevectors for an incident angle of 45°. In
general all waves (reflect, refracted) have to match with their phase at the boundary. If the
boundary is along the x-direction, we therefore have

(13)
This fixes one component of all wavevectors in the plane. What is then missing, is the z-component
of the wavevectors. The incident wavevector is providing &, ;,,.

[12082111.11503364 0. 12956477.9108035 ] [1/m]

1.1.3 Reflected wave
For the reflected wave the z-component of the wavevector is just flipped in sign, e.g. k,, = —k

z,an:®

[ 12082111.11503364 0. -12956477.9108035 ] [1/m]



1.1.4 Refracted wave

The magnitude of the z-component of the transmitted wave can be obtained from the conservation
of momentum. The momentum of the wave is proportional to the magnitude of the wavevector on
both sides.

k2 = k2 (14)
which is, due to k = nk, the same as

n%(k(z)ac,zn + k(%z,in) - n%(k(z)ac,t + k(2)z,t) (15)

from which we get

— (n} —n3)kg, (16)

If we go from a medium with high refrective index to a lower one, the second term in the root
may surpass the first one and the whole solution will become imaginary. The wave in the lower
refractive index medium n, is then evanescent.

[12082111.11503364 +0.j 0. +0. j
0. +2547455.4966681j] [1/m]

The total field thus containes three components. In medium 1, the field consists of the incident and
the reflected wave. In medium 2, we just have the transmitted wave, with a possible evanescent
solution.

The plots below show the electric field on the left side and the intensity on the right side. Interest-
ingly, the intensity is that of a standing wave in medium 1, while it is just decaying in medium 2.
Note that the electric field is oscillating along the interface in medium 2 but not at all in z-direction.
This means that there is no energy transport along the z-direction anymore.
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We will also have a look ath the propagation of the wave yb defining our animation.
Canvas(sync_image_data=True, width=500)

As it is apparent from our simulation, the wave is longitudinal in medium 2 at this angle. Try to
modify the incident angles yourself to see if the wave becomes propagating in medium 2.

In the last plot, we will have a look at the intensity in medium 1 and medium 2. What is nicely
visible, is that the intensity decays in medium 2 with increasing distance. As compared to the
absorbing case, there is not oscillation of the field in the z-direction, hence no energy transfer.
Convince yourself that this is indeed an exponential decay by using the appropriate semilog plot.
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