
fck Developer Book
v0.1.0

nxe

Contents
1 Introduction .. 2
2 Language Design ... 4
3 Lexing .. 11

Appendices
A Tokens ... 22
B Language file specification .. 24

Preface
This book has been written to accompany the fck compiler and CLI. It will go
through design choices of the language and implementations for the compiler.
This book is not intended to teach you how to write a programming language and
assumes some basic knowledge in the subject.

Before you start, some notes. Firstly, the above contents are not exhaustive, they
include only main headings. Each section will have a sub-contents that lists all the
second level headings inside it, with each of the second level headings listing all
sections inside it. Secondly, the terminology used in this book regarding languages
is quite specific. The term language will refer to the fck programming language (or
a more general programming language; whereas spoken language will refer to a
non-programming language that is spoken and written, such as Spanish.

This book is for version 0.1.0 of fck and was completed in October 2023.

fck Developer Book

1 Introduction
1.1 Justification .. 2
1.1.1 Citrine ... 2
1.2 How it works .. 3
1.2.1 Language files .. 3

This section will give a brief introduction into fck. Namely:
1. Justify the need/desire to have a multi-lingual language (Section 1.1)
2. Explain how the multilingual aspect functions from a user perspective

(Section 1.2)

1.1 Justification
Programming languages are almost entirely written for English speaking
programmers. There are very few languages that can be written, without the need
for external files, in any other spoken language than English. For completeness, we
will discuss one such language in Section 1.1.1.

The world is increasingly becoming more and more reliant on technology, and
having programming be reliant on knowing English seems a bit wrong. As an
interesting note related to this, approximately two billion people speak English, or
around 25% of the world population.

This is why I made fck. To allow more people to write code, and to allow more
collaboration through code.

1.1.1 Citrine
Citrine is the only real example I could find of a multilingual language. Personally, I
find some aspects of Citrine to hinder it:
1. Use of icons

The designers of Citrine cite Smalltalk-70 as one of their design inspirations,
and have taken the usage of icons into their language. This, I believe, is one of
the weakest points of the language. The usage of icons can be quite helpful in
some situations. One notable example is APL which is famous, or infamous, for
being completely incomprehensible to anyone who doesn’t know what any of it
means. For example, (((≢×+.*∘2)-2*⍨+⌿)÷≢×1⌈¯1+≢)Nv is valid APL to determine
sample variance. To many, this is incomprehensible; but to those who know APL,
this makes sense. Citrine does something similar, in that it uses a few icons for
repeated things, such as self or to indicate that a value is owned by a class and
is private. To me, this is different to APL. APL leans heavily on the use of icons as
a feature of the language and has created something quite interesting; Citrine’s
use of icons seems more like a gimmick than a useful feature, and just places
undue effort on the user to set up.

2. Minimal language configurability
Citrine only has built-in languages. This means you cannot add in an
unsupported language without building the language from source which can

2

https://citrine-lang.org/

fck Developer Book

often be quite time-consuming. Citrine also, so far as I can tell, will only allow
you to write code in one language and as such requires downloading a
language specific binary instead of a general purpose one.

3. Interpreted not compiled
Citrine is an interpreted language. This does reduce the overhead for building
the language from scratch, but also requires any computer to have the
interpreter for the correct language if you want to run code on it.

4. General ecosystem
The Citrine ecosystem is greatly lacking in any form of documentation of help.
There is little documentation and very little to no description of the language
beyond what it looks like. No getting started guide to help with the setup, and
simple things like passing a -h or --help flag to the interpreter not giving any
help messages. Whilst arguably trivial, I personally see these are large issues for
a language with it’s first non pre-release version having been released in
February 2018.

1.2 How it works
fck works as a general purpose compiler and JIT interpreter through LLVM. It uses
a mixture of built-in languages and optional custom languages from language files.
There is one binary that handles all the compilation, linting, testing, and
documentation. There is a requirement for a ~/.fck file to specify the default
language to be used.

1.2.1 Language files
The language files are simple text files that define a language. These are fairly
simple files, and all follow the same format (the specification is defined in
Appendix B). All available built-in languages are included by reading their
language files at compile time.

The languages all go through a validation process to ensure that:
1. They make sense
2. Comply with some restrictions that make parsing them easier

The first point is mainly just ensuring that there are no repeated keywords or
symbols, ensuring that everything is unique. The second point imposes some small
restrictions on language files that we can then assume is true when making the
lexer. The restrictions are detailed in the specification B.

Finally, one term comes from this: “uppercase hexidecimal digit variants”. Part of
the language file includes specifying the digits of the language from zero to nine,
as well as hexidecimal digits for 10 to 15 (a to f in English). You may also wan to
specify uppercase variants for these digits (A to F in English). These uppercase
digits are referred to as uppercase hexidecimal digit variants.

3

fck Developer Book

2 Language Design
2.1 Primitives .. 4
2.2 Pointers and cloning ... 5
2.3 Mutability ... 5
2.4 Data Types ... 5
2.5 Visibility .. 6
2.6 Extensions .. 8
2.7 Iteration .. 9

2.1 Primitives
2.1.1 Integers ... 4
2.1.2 Floats ... 4
2.1.3 Strings ... 4
2.1.4 Lists .. 5
2.1.5 Booleans ... 5

There are 10 primitives in fck. Each will be explained below.

2.1.1 Integers
There are four integer primitives:
int Signed integer. Is as many bits as a memory reference; so on a 32-bit

platform this will be 32 bits long, and 64 bits long on a 64-bit platform
uint Unsigned version of int
dint Dynamically sized signed integer
udint Unsigned version of dint

2.1.2 Floats
There are two types of float:
float Floating point number with the same number of bits as an int type.

Specifically, it’s either “binary32” or “binary64” from IEEE 754-2019.
bfloat Floating point value stored in base 10. See below for more information

bfloat uses two int values. The first int value represents the value if you
removed the decimal point (“mantissa”); with the second int representing the
base 10 exponent of the value (“exponent”). See Table 1 for examples.

Value Mantissa Exponent
25.038 25038 +1

0.00196 196 -3

-120.4 -124 +2

Table 1: Constituent parts of bfloat example values

2.1.3 Strings
There is only one type of string in fck (str); it’s dynamically sized. There is also a
char type for singular characters which is formally a “Unicode Scalar Value”.

4

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/glossary/#unicode_scalar_value

fck Developer Book

Internally, a str type is just a [char] type.

2.1.4 Lists
Lists are dynamically sized arrays of the same type of value and use the notation
List<T> or [T] .

Lists can also have a static size using the notation StaticList<T, N> or [T; N]
where N is the length of the list.

2.1.5 Booleans
The bool type represents a single boolean value. This, internally, takes up 1 byte.

2.2 Pointers and cloning
Types in fck are implicitly make cloneable, that is you can make a clone¹ of any
value whenever you want. However, cloning can be expensive sometimes. Cloning
can be done implicitly (Listing 1), or explicitly (Listing 2).

¹Clone is used, not copy, to indicate that the cloned value is a copy of the original, but separate
from it after being cloned.

set value = 1;
some_function(value)
value++

Listing 1: Implicit cloning

set value = 1;
some_function(value.clone())
value++

Listing 2: Explicit cloning

Pointers are passed by prefixing the variable with a * in the style of C-like code
(Listing 3).

set value = 1;
some_function(*value)
value++

Listing 3: Implicit cloning

2.3 Mutability
All values are mutable. Only constants are immutable.

2.4 Data Types
This section contains the design for data types:
• Structs
• Enums
• Constant

5

fck Developer Book

• Type aliases

2.4.1 Structs

struct StructName {
 properties {
 prop_type a
 prob_type b
 }

 fn add(*self) -> prop_type { a + b }
}

Structs are defined using the struct keyword, optionally prefixed with either pub
or pri to change the visibility.

2.4.2 Enums

enum EnumName {
 variants {
 Variant1 {
 int field1
 float field2
 }
 Variant2(int, [int])
 }
}

Enums are defined using the enum keyword, optionally prefixed with either pub or
pri to change the visibility. Enum variants are either tuple- or struct-type variants:
Tuple-type Enum::TupleVariant(field1, field2)
Struct-type Enum::StructVariant { field1: value1, field2: value2 }

2.5 Visibility
There are three levels of visibility in fck (in order):
1. Private using pri
2. Restricted using nothing
3. Public using pub

To explain these, we’ll go through them one by one in the context of a module, and
for a data type (struct or enum).

2.5.1 Module level visibility
Consider the following module

pub const int CONST1 = 1
const float CONST2 = 1
pri const bool CONST3 = false

6

fck Developer Book

Within the module, all of the constants are visible. Within the project, only CONST1
and CONST2 are visible. Outside of the project, where it’s used as a dependency,
only CONST1 is visible².

²This assumes that CONST1 is exported from the package.

One notable case might be the following module example:

pri mod inner {
 pri const int CONST = 1
}

use inner::*

This does not expose CONST to the module. You cannot increase the visibility of
anything, only decrease it; pub can become pri but not the other way around.

2.5.2 Data types
When defining functions for either a struct or enum the visibility markers mean
different things. A pri function is only accessible within the struct or enum (not
public). A pub function is visible everywhere, including outside the project. No
visibility marker on a function means it’s visible only within the project.

Consider the following module:

pub struct MyStruct {
 properties {
 int a
 int b
 }

 pub fn new(int a, int b) -> Self {
 return Self { a: a, b: b }
 }

 fn inc_a(*self) {
 self.a++
 }

 pri fn inc_b(*self) {
 self.b++
 }
}

Within the module, project, and externally, we can see MyStruct and
MyStruct::new . Externally, we can’t see MyStruct::inc_a , but we can see this within
the project. MyStruct::inc_b cannot be seen anywhere. Private functions for structs
and enums can only be used internally. If we added a function to MyStruct that
looked like this:

7

fck Developer Book

fn local_inc_b(*self) {
 self.inc_b()
}

this would be okay, and we would be able to use MyStruct::local_inc_b from
anywhere within the project, but not externally.

2.6 Extensions
Extensions are groups of functions that can be applied to any data type. We use
the notation (in this book and in code) A: B to indicate that data type A is
extended by extension B ; for example, int: Add<Self> .

extend DataType with Extension {
 /* ... */
}

Some useful extensions are:
•

/// Convert one value into another using the `as` keyword
extension Into<T> {
 /// Convert the value after cloning it
 fn into(self) -> T
}

You can pair this with extend *DataType with Into<T> { /* ... */ } to prevent
implicit cloning before converting one value into another

•
/// Format `self` into a string. Used when printing the value or when
putting it in an f-string
extension Format {
 /// Format `self` using the provided formatter to return a string
 /// @param(formatter) Requested format to provide
 fn fmt(*self, Formatter formatter) -> str
}

2.6.1 Extension function visibility
Extensions are treated as public APIs for the type that’s extended by the extension.
As such, you can’t have a pri function in an extension. You can’t have a pub fn
either for the same reason. To use functions from an extension, you need to import
the extension first. Note that you don’t need to import extensions that get used
implicitly (you don’t need to import Into if you use the as keyword for example).

2.6.2 What can go in an extension
Extensions can have:
1. function call signatures
2. complete functions that can be overwritten
3. constant signatures

8

fck Developer Book

extension ExampleExtension {
 // Constant signature. Must be filled when extending a type with this
extension
 const int EXTENSION_CONST

 // Function signature
 fn func1(*self) -> int

 // Function with a body. This can be overwritten when extending using
this extension, but must keep the same function signature
 fn func2(*self) -> str {
 return <Self as ExampleExtension>::func1(self) as str
 }

2.7 Iteration
Iteration is handled in two main ways in fck. The first method is using the repeat
keyword, and the second is using the for and in keywords.

2.7.1 Repeat
Repeat statements are a simple way to repeat a block of code any number of
times:

set reps = 10
repeat reps {
 print("Hello world")
}

repeat is followed by a variable or literal that tells it how many times it should
repeat. You do not have access to a counter of how many times the statement has
run without adding one yourself. For this, you can use for with a range.

2.7.2 For
For statements iterate over a given value:

set primes = [2, 3, 5, 7, 11]
for prime in primes {
 print(prime)
}

One (possibly) important thing to note here is that iterating over a list in this way
can be quite expensive, since prime will be clone of each value in primes ,
requiring each value to be cloned each iteration. In essence, the following it
happening:

set primes = [1, 2, 5, 7, 11]
for i in 0 to primes.len() {
 set prime = primes[i].clone()

9

fck Developer Book

 print(prime)
}

If you need to make your code run as efficiently as possible, you can iterate over
references instead using the List::iter function:

extend List<T> {
 pub fn iter(*self) -> Iterator<T> { * ... *\ }
}

where Iterator<T>: Iterable<*T> .

10

fck Developer Book

3 Lexing
3.1 Introduction ... 11
3.2 NFA generation .. 11
3.3 Storing an NFA .. 14
3.4 NFA table serialization ... 18
3.5 Saving pre-compressed tables ... 18
3.6 The actual lexer ... 19

3.1 Introduction
This chapter explains how lexing is handled by the fck compiler. This is a more
involved process than for most, and requires a significant amount when compared
to much simpler lexers, such as regex-based lexers.

The lexer is very similar to an NFA or nondeterministic finite automata. As such, a
good postion of this chapter will be much easier to understand with some
knowledge of formal language theory.

This chapter will cover the following key points:
• Generating an NFA from a given language file (Section 3.2)
• Storing and compressing an NFA (Section 3.3)
• The actual process the lexer goes through when lexing an input

This section has one associated appendix: Appendix A.

3.1.1 What is lexing
For those unaware, lexing is the process of taking the raw code (as a byte stream in
our case) and turning this into a token stream. A good analogy here is to consider
reading a sentence. A sentence, in it’s simplest form, is a stream of characters. But
we read it as a stream of words. The process of turing characters into words is
analogous to turning bytes into tokens when lexing. Tokens are simply more
manageble blocks we can split code into that the compiler can deal with much
better.

As a very simple example, consider the expression set a = 5 . This is split into four
tokens:
1. set : A set keyword token
2. a : An identifier token
3. = : An equals token
4. 5 : An integer token

This is the goal of lexing, or tokenization, and is the subject of this chapter.

3.2 NFA generation
3.2.1 Initialization .. 12
3.2.2 Keywords .. 12
3.2.3 Digits ... 13

11

fck Developer Book

This section will discuss the generation of the NFA from a given language file.

3.2.1 Initialization
The NFA is initialized with some standard transitions. These are for operators and
comparisons only since these are the only things that are constant between
languages.

The next thing we add, which is still considered initialization, is brackets. This does
not include curly brackets ({ and }) since these are handled differently because
they indicate block start and ends. Brackets are not constant because they depend
on the direction the language is writen in. If the code is left to right (LTR), then the
bytes for square brackets will be 91 and 93 for open and closed brackets
respectively. In a right to left (RTL) language, these bytes will be reversed with 93
for open and 91 for closed.

We also initialise an identifier state which we will refer to as 𝑞𝑖. This is initialized
here because it will be required when adding in keywords for unmatched
keywords to go to, so we need to have a state here to go to.

3.2.2 Keywords

Whilst we refer to the lexer using an NFA, this is not quite accurate. The lexer
uses what we will refer to as a restricted NFA. This is the same as an NFA with the
only difference being that we have a different definition of the transition function
𝛿 : 𝑄 → 𝑄 ∪ {∅} with the definition for 𝛿∗ following from this. The reason for this
will be explained later.

To encode the keywords in the NFA, we go through each keyword 𝑘 ∈ 𝐾 (𝐾 being
the set of all keywords) we need to accept and do the following:
1. Find the longest prefix 𝑝 of 𝑘 s.t. 𝛿∗(𝑞0, 𝑝) ≠ ∅. 𝑝 ≠ 𝑘 since this would require that
∃𝑘1, 𝑘2 ∈ 𝐾 where 𝑘1 = 𝑘2 which is not true

2. For each byte 𝑘𝑛 in 𝑘 where 𝑛 > |𝑝|, make a new state 𝑞′ with a transition from
𝛿∗(𝑞0, 𝑘1..𝑛−1) to 𝑞′ requiring 𝑘𝑛 (i.e. 𝛿∗(𝑞0, 𝑘1..𝑛 = 𝑞′)

Once complete, the NFA will accept all keywords in 𝐾.

However, it will not accept identifiers with prefixes that match prefixes of keywords.
Formally, the NFA will not accept any 𝑎 = 𝑏𝑐 ∈ Σ+ where ∃𝑘 ∈ 𝐾 s.t. 𝑘 = 𝑏𝑑 for some
𝑑 ∈ Σ+ and |𝑏| > 0. To fix this, we again go through each keyword 𝑘 ∈ 𝐾 and for
each 𝑛 ∈ [1, |𝑘|], add the transition from 𝛿∗(𝑞0, 𝑘1..𝑛) to 𝑞𝑖 for all allowable byte
extensions of 𝑘1..𝑛. This means we allow extensions of 𝑘1..𝑛 that would be an
identifier, and not indicate a different token. For example, we would not allow a
transition from 𝛿∗(𝑞0, 𝑘1..𝑛) to 𝑞𝑖 for the byte 43, since this is a + and would be either
a plus, plus equals, or increment token. This is not done in two separate steps and
was only written this way to make this simpler to understand.

12

https://github.com/fck-language/fck/blob/master/lang/const_builder.py

fck Developer Book

3.2.3 Digits
Digits are more complicated that keywords. Digits are specified in language files,
and a single digit can be multiple bytes long. This means that we could potentially
require several states to recognise a single digit.

Figure 1 gives the general structure of states for accepting a valid digit. You may
notice something interesting here; namely that this accepts any string of digits
followed by a single . as a float without the requirement for a trailing 0. This is
intentional. Consider set a = 1. and set a: float = 1. Both do the same thing, but
differently. The first uses the trailing . to indicate a float, whereas the second
explicitly states the type of a. Both are valid, but I find the first simpler to write and
so included it.

0

1..9

0..9

0..9 .

.

0..9

b 0..1
0..1

x 0..f
0..f

o 0..7
0..7

𝑞0 𝑑0 𝑏0

ℎ0

𝑜0

𝑏

ℎ

𝑜

𝑑

𝑓

Figure 1: Simplified NFA for parsing digits

An important note about Figure 1. The labels on the transitions are not absolute,
but representative of matching the equivalent of that for some general language.
The transitions relating to hexidecimal numbers also accept uppercase letters if
they are provided in the language file

The code for this is split into two parts; one where all digits are a single byte long,
and one for all other digits. The single digits are relatively simple to add in because
we’re just following the diagram in it’s simplest form. When the digits are multiple
bytes long, we need to add several additional states. Specifically, if the digits are all
𝑛 + 1 bytes long, we need an additional 82𝑛 or 94𝑛 states, plus any additional bytes
for the prefixes for binary, hexidecimal, or octal numbers, depending if the
language has uppercase hexidecimal digit variants.

Also, when adding multi-byte digits into our NFA, we need to consider partial
matching. Consider the digit 𝑑 = 𝑎𝑏 ∈ 𝐷 where 𝑎, 𝑏 ≠ 𝜀 and 𝑎 ∉ 𝐷. If we match 𝑎
with no 𝑏, then we have matched an identifier. However, consider another
𝑑′ = 𝑐𝑑 ∈ 𝐷 where 𝑐, 𝑑 ≠ 𝜀 and 𝑐 ∉ 𝐷. If we matched 𝑑𝑐, this would be two separate
tokens (matching 𝑑 and 𝑐) since identifiers cannot start with a digit. Thus, for multi-

13

https://github.com/fck-language/fck/blob/master/lang/lang-inner/src/tables/digits.rs

fck Developer Book

byte digits, we must include a default transition to 𝑞𝑖 when matching a digit from 𝑞0
to either 𝑑 (state) or 𝑑0.

One important note here is that if we match a digit, we only know that we have a
digit, and not it’s value. Encoding this in an NFA would be practically impossible
since we have an upper bound on the number of states in code. Instead, we
decode the matched digit by comparing the matched byte stream with the digits
bit-by-bit until the whole matched section has been matched with a digit stream.
This is then converted to a number (integer of float) depending on the base of the
number. This means that for all the digits 𝑑 ∈ 𝐷, it must hold that ∄𝑑1, 𝑑2 ∈ 𝐷 s.t.
𝑑1 = 𝑑2𝛼 for some 𝛼 ∈ Σ+. If this were true then when decoding the matched bytes
we may match the start of the unmatched section as 𝑑2 when it was actually 𝑑1. This
would leave 𝛼 prefixing the remainder of the unmatched section which could
either mean that we cannot match the unmatched section, or that we match an
incorrect digit if 𝛼 is the prefix of some other 𝑑3 ∈ 𝐷. Either outcome is incorrect.

3.3 Storing an NFA
3.3.1 Table compression .. 15
3.3.1.1 Single stream duplicate compression ... 15
3.3.1.2 Multi-row group compression .. 16
3.3.1.3 Single stream unique compression ... 16
3.3.1.4 The best one ... 17

The primary way to store an NFA 𝑀 is to store its adjacency matrix. This is an 𝑚× 𝑛
matrix of 0s and 1s (formally {0, 1}𝑚×𝑛) where 𝑚 = |Σ| and 𝑛 = |𝑄|, that encodes an
NFAs states, initial state, transition function, and Σ³. We also store 𝐹 as a set of
values from 1 to 𝑛 inclusive for which the state is accepting.

³Encoding Σ here really means that we assume that Σ has some mapping 𝑚 : Σ → [1, |Σ|] that
we have also encoded or is already known

This is generally good enough. However, it will only allow us to check if some input
𝑎 is in ℒ(𝑀). We need a bit more than this. We need to know for a given 𝑎 ∈ ℒ(𝑀)
what kind of token matches 𝑎. For this reason, we store three matrices all of the
same shape. These are as follows:
1. A transition (Δ) table
2. Token type (TT) table
3. Token descriptor (TD)4 table

4This name may seem strange, and it is a bit. The original meaning has been forgotten, but the
term td is used so much throughout the codebase that changing it would be more effort than it’s
worth

Notation:
We’re going to go back to indexing starting at 0 now. We’re also going to define
𝐾(𝑟, 𝑐) as the element in row 𝑟 and column 𝑐 for a table 𝐾.

14

fck Developer Book

The transition table encodes 𝛿. If Δ(5, 3) was a 9, we would go to row 9. The TT tells
us if we’ve matched a token, and what type of token it is. Using (5, 3) again, if
TT(5, 3) was non-zero, that would mean we’ve matched a token. In this case, we
use TT(5, 3) and TD(5, 3) to determine what kind of token has been matched (see
Appendix A.2 for the specific TT,TD value pairs).

3.3.1 Table compression
All of the tables are really sparse, or not dense. We formally define density as the
proportion of the table that does not have the most common value. More simply
for us, the proportion of non-zero elements since zero will be the most common
value. Currently, the densities for the English Δ, TT, and TD are 0.67708%,
0.49154%, and 0.47526% respectively5 which would result in large quantities of

5The tables each have 208, 151, and 146 non-zero elements out of a total of 30720 elements
respectively

data being wasted entirely with only a small amount of useful data. So, we need to
compress the tables.

There are a few ways to do this. We’ll consider three:
1. Single stream duplicate compression
2. Multi-row group compression
3. Single stream unique compression

To fully explain these, we’ll use Table 1 as our sample table to compress. This table
has not row numbers or column headings. These aren’t necessary for here so they
haven’t been included.

0 2 3 4 1 0 0
1 0 0 2 0 0 2
0 0 0 4 0 4 0
0 2 3 0 2 0 0
1 0 0 0 3 0 0

Table 1: Sample table for demonstrating compression methods

We will use 𝐾 to refer to the example table. We will also use examples when
exapling the compression methods. Each example will be accessing 𝐾(𝑟, 𝑐) and we
will use 𝑟 and 𝑐 to denote general rows and columns.

3.3.1.1 Single stream duplicate compression
This compression method compresses the table into a single row where each row
is offset to that when merged only zeros are replaced and duplicates can be
merged. To explain, we’ll offset the rows:

0 | 0 2 3 4 1 0 0
4 | 1 0 0 2 0 0 2
0 | 0 0 0 4 0 4 0
6 | 0 2 3 0 2 0 0
4 | 1 0 0 0 3 0 0

Table 2: Offset rows for single stream duplicate compression

15

fck Developer Book

You’ll notice that in each column, there is either only zeros, or some number of
zeros (possible none) and one non-zero value at least once. This means that we can
merge these offset rows into a single stream. To do this, we need to save the row
offsets as well as a bitmap of the original table. When we try to access an element
in this stream, for example 𝐾(3, 4) using 𝐾 to denote our sample table, we first
check if the value in the bitmap is 1, indicating that a non-zero element is there in
the original table. If it was 0, we would return a 0. Once we’ve checked that there’s
a value there, we get the row offset 𝑂(𝑟), which is 6 in our example. We then access
the element at 𝑂(𝑟) + 𝑐, 10 in our example, to get the element we want.

3.3.1.2 Multi-row group compression
This method doesn’t offset rows, but instead groups them into groups of rows that
can be merged using the same merging rules as single stream duplicate
compression. When applied to our sample table, we get the following groups (with
the row index prefixing the row):

0 | 0 2 3 4 1 0 0
2 | 0 0 0 4 0 4 0

1 | 1 0 0 2 0 0 2
3 | 0 2 3 0 2 0 0

4 | 1 0 0 0 3 0 0
Table 3: Row groups for multi-row group compression

We then merge each group of rows into a single row, saving what new row each
original row went into along with a bitmap of the original of table. When getting an
element, we first check the bitmap. If we’re expecting a value, we then go to the
new row for the row we wanted, and then the column we wanted.

I find this method to perform worse than single stream duplicate compression.

3.3.1.3 Single stream unique compression
This method is very similar to single stream duplicate compression, but it does not
allow rows to be merged if it would involve merging duplicate non-zero elements.
The offset rows for this method would be as follows:

 0 | 0 2 3 4 1 0 0
 5 | 1 0 0 2 0 0 2
 4 | 0 0 0 4 0 4 0
11 | 0 2 3 0 2 0 0
 6 | 1 0 0 0 3 0 0

Table 4: Offset rows for single stream unique compression

Notice that each column has either only zeros, or some number of zeros and one
non-repeated non-zero value. This method means that we don’t have to save a
bitmap and can instead use an origin map. The origin map tells us which row each

16

fck Developer Book

value in the compressed stream came from. If we added the origin map onto the
offset rows we would have the following:

 0 | 0 2 3 4 1 0 0
 5 | 1 0 0 2 0 0 2
 4 | 0 0 0 4 0 4 0
11 | 0 2 3 0 2 0 0
 6 | 1 0 0 0 3 0 0
 0 0 0 0 0 1 4 2 1 2 4 1 3 3 0 3 0 0

Table 5: Offset rows for single stream unique compression with an offset map

You’ll also notice that columns of entirely zeros have an origin of zero. This could
be any row in reality since we’d give zero regardless, but having it as zero makes
the code slightly quicker.

To access an element such as 𝐾(1, 3), get the offset of the row 𝑂(𝑟) which is 5 in
our example. We then set 𝑐′ ≔ 𝑂(𝑟) + 𝑐. If 𝑆[𝑐′] = 𝑟 where 𝑆[𝑖] is the 𝑖-th element in
the origin stream, then we return 𝐶[𝑐′] where 𝐶 is the compressed stream.

The code for this is as follows (from inside a trait impl):

fn element(&self, row: u16, col: u8) -> D {
 let index = self.offsets[row as usize] + col as usize;
 if self.origin[index] == row { self.stream[index] } else { *D::ZERO }
}

D is a generic here. The trait impl is for a generic D which is the return type of the
function element.

3.3.1.4 The best one
Out of the three, single stream unique compression was by far the best method. It
frequently compressed the tables smaller than the others, and had the fastest
element access by far. I did not consider a unique variant of multi-row group
compression since this method was almost always the worst performing. As such
all tables are compressed using single stream unique compression, which we’ll
now call UStream compression.

When applied to the English tables with original sizes of 122880 bytes for Δ and
61440 bytes for TT and TD, they were compressed down into 2604 bytes for Δ
and 2049 for TT and TD which is 4.24% and 3.33% of the original sizes.

One addition method used to compress the tables is that the types in the tables
are quite specific. Token TT and TD values have been designed so that they fit
into the range for a u8, so we can store the values in TT and TD in a single byte.
We also assume that we will never have more than 216 states, so we can store the
values in Δ as u16s which are smaller that usizes which is what we would have
previously used.

17

https://github.com/fck-language/fck/blob/master/lang/lang-inner/src/compress/unique_stream.rs#L176-#L188

fck Developer Book

3.4 NFA table serialization

3.5 Saving pre-compressed tables
Compressing tables is a fairly intensive task when compared to using the tables. As
such, we want to limit the number of times we do this. When using custom
languages, we have the following file structure under $FCK/languages6:

6languages is a language specific term. This will depend on the language set in $FCK/.fck

- languages
 - language_files.fckl
 - comp
 - language_files.bin

This directory (languages) includes all the custom language files with the .fckl
extension. Let’s assume that one of these language files is eg.fckl as an example.
The firs time we use !!eg in code, the lexer looks for eg.fckl in the languages
directory. If it’s not there, then we can’t load the language so we get an error. If it is
there, the lexer then looks for eg.bin in the comp directory7. If it finds this file, it will

7comp is not language specific since it’s only intended for the lexer and anyone wanting to make
some strange custom languages

read it and deserialize it into the three tables (assuming it doesn’t find any errors). If
it does not exist, it will compress the language it just read and write the tables to
comp/eg.bin. It can then parse the input using the tables.

3.5.1 Serialization specification
This section describes the serialization of several types:

• u8

• usize

• UStream

• u16

• [T; 256]
• u32

• Vec<T>

Serialization is handled by the following trait

pub trait SerializeBin {
 fn serialize(&self, out: &mut Vec<u8>);
}

where out is the buffer being written to with each element being a single byte. This
will be referred to as “the buffer” from now on, with “written to the buffer” meaning
elements being appended to this vector.

Firstly, the types u8, u16, and u32 are all written to the buffer in their respective sizes
(2 bytes for u16 for example). It is up to the deserialization to know what type it’s
deserializing and take the appropriate number of bytes to do this.

usize is serialized by casting it as a u32 then serializing that. This is done because
any serialized usize is never expected to exceed u32::MAX in this case, but still
needs to be kept as a usize in code.

18

fck Developer Book

[T; 256] and Vec<T> are serialized by serializing each element with no break. This is
only implemented where T: SerializeBin. As with the primitive types, it’s up to the
deserialization to know what type is being deserialized and act accordingly.

Finally, to serialize UStream, we do the following for the stream, origin, then offsets
in that order where all the types are vectors:

1. Serialize the length of the vector
2. Serialize the vector by serializing each row for which we know the length

3.5.1.1 Deserialization
Deserialization is fairly simple since we defined the serialization process above.
Deserialization is used to read a compressed table (UStream) from a binary file. This
is done with a deserialization trait

pub(crate) trait Deserialize<'a> {
 fn deserialize<T>(s: &mut T) -> Result<Self, String> where
 Self: Sized,
 T: Iterator<Item = &'a str>;
}

This is only a pub(crate) because it has a public function to deserialize UStreams
since that’s all that needs to be public.

3.6 The actual lexer
3.6.1 Language scoping .. 19
3.6.2 NFA branch parsing .. 20
3.6.3 Why we need a second part .. 21

Something important to note here, is that although the majority of this chapter has
been devoted to describing the NFA we can use to recognise fck, you may have
noticed some omissions; namely:
• Comments
• Spaces, tabs, and newline
• Not mentioned but curly braces

These are not handled by the NFA, and in fact, the language is not recognised by
an NFA entirely and has a second part.

3.6.1 Language scoping
fck is language scoped meaning blocks have languages. For example, consider the
following

!!en
/* some English code */
!!de
/* some German code */

19

fck Developer Book

!!en
/* back to English code */

Here we’re imagining that the German code (ln 3-4) was added into a block of
English code with the second !!en being added in at the end of the German code.
However, this may not always be easy. If the first block of English code (ln 2) is
quite long, it may be quite tedious to find the current language, and missing out
changing back to the previous language would cause the code to be parsed
incorrectly8. Because of this, the current language is scoped. Instead of the above
code, a more sensible addition would be the following

8The code would be parsed correctly, but we would consider it incorrect because we missed
out changing the language back

!!en
/* some English code */
{
!!de
/* some German code */
}
/* back to English code */

Notice how we don’t need a second !!en since the German is contained within a
block, and thus won’t change the language of the block above it.

3.6.2 NFA branch parsing
When parsing some input, we parse ℒ∗ where ℒ is the set of all valid single tokens.
We parse input using a maximal-munch tokenization method meaning we always
try to find the longest token. This subsection will use formal language theory
notation heavily.

Consider some input 𝑖 = 𝑖1𝑖2𝑖3…𝑖𝑛 and some set of tokens 𝑇 , along with some
matcher 𝑚 : Σ+ → 𝑇 ∪ {∅}. The NFA simply moves through 𝑖 character by character
until it finds some 𝑘 ∈ (1, 𝑛] s.t. 𝑚(𝑖1..𝑘) ∈ 𝑇 . At this point, we have that ∃𝑘′ > 𝑘 s.t.
𝑚(𝑖1..𝑘′) ∈ 𝑇 or the inverse, that ∄𝑘′ > 𝑘 s.t. 𝑚(𝑖1..𝑘′) ∈ 𝑇 . However, we don’t know
which of these is true, and we want to avoid having to go backwards in 𝑖. to deal
with this, we create a branch. This branch assumes that ∄𝑘′ > 𝑘 and thus 𝑖1..𝑘 is the
longest match for any 𝑘. It then restarts the parsing process from 𝑖𝑘+1. We also
continue checking if ∃𝑘′ > 𝑘. If we do find some ∃𝑘′ > 𝑘, then we delete the branch
and make a new one.

To demonstrate, consider lexing set. We start with one main branch. This then gets
given an s. s is a valid identifier, but it could also be longer, so we make a branch.
We then give e to the main branch. This means the main branch has se which is also
a valid identifier and so we need a new branch. Since se is longer than s, we
remove the previous branch and replace it with se. We then finally give the main
branch t which means it now has set which is a keyword so it makes a new branch

20

fck Developer Book

as before. We’ve now reached the end of the input so we traverse through the
branches until we find one with no unmatched input and use the tokens it has
matched.

example here please thanks

3.6.3 Why we need a second part
Because fck is language scoped, if we wanted to parse the language entirely using
an NFA, we would need the NFA to:
1. Recognise when the language has changed
2. Add in the appropriate language to itself
3. Revert back to the previous language when a scope ends

NFAs cannot do this. As such, some tokens are parsed manually; those tokens
being those mentioned at the start of this section.

Spaces Spaces are parsed manually because it means we can ignore them.
Spaces are only used to separate keywords and identifiers from each other,
and newlines indicate the end of an expression, so we can just skip over them,
performing the appropriate method each time.

Comments Because spaces are parsed manually, we can’t parse anything with a
space in it with the NFA. Comments are allowed to contain spaces and thus
must be parsed manually.

Curly braces These need to be parsed manually because open(closed) curly
braces indicate the start(end) of scopes.

Language changes These have to be parsed manually to allow us to change
language when needed.

The reasoning for not parsing spaces may seem a bit strange. So, let’s explain it a
bit further. Consider the following code

set a = 5
!!de
setz b = 9

We’re assuming that we start in English. We normally state this a the first line for
good practice, but we’re not here. This is an exception.

As a reminder, we parse an input using the NFA until it either fails or ends with no
branches. If the NFA could parse spaces, then we would parse the entire example
input, with the language change to German (ln 2) not being parsed as a language
change, but as two TokType::Not tokens and an identifier after it. By not parsing
spaces, we ensure that we always capture language changes since they must be at
the start of a line, so we’d never have started parsing something else before we get
to them.

21

fck Developer Book

A Tokens
A.1 Token enums .. 22
A.2 Token (TT, TD) pairs ... 23

This appendix contains the token enums used by the compiler as well as the TT,TD
pairings used to construct tokens.

A.1 Token enums
These are not exact copies; they have all comments and derive macros removed.
The specific layout too has been altered to take up less space.

pub enum TokType {
 Int(u64), Float(f64), Bool(bool), String(Vec<u8>),
 Op(Op), Cmp(Cmp), Increment, Decrement, Set(Option<Op>),
 LParen, RParen,
 LParenCurly, RParenCurly,
 LParenSquare, RParenSquare,
 Label(Vec<u8>),
 Not, Colon, QuestionMark, Dot,
 Identifier(String, Vec<u8>),
 Keyword(u8),
 Comment(String, Vec<u8>),
}

pub enum Op {
 Plus, Minus,
 Mod, Mult,
 Div, Pow,
}

pub enum Cmp {
 Eq, NE,
 LT, LTE,
 GT, GTE,
}

22

fck Developer Book

A.2 Token (TT, TD) pairs
TD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 255

TT

1 Bool(true) Bool(false) Int base 10 Int base 2 Int base 16 Int base 8 Float String Char

2 Op(Op::Plus) Op(Op::Minus) Op(Op::Mod) Op(Op::Mult) Op(Op::Div) Op(Op::Pow) Increment Decrement Not Colon QuestionMark Dot Arrow(Single) Arrow(Double)

3 Cmp(Cmp::Eq) Cmp(Cmp::NE) Cmp(Cmp::LT) Cmp(Cmp::GT) Cmp(Cmp::LTE) Cmp(Cmp::GTE)

4 LParen RParen LParenCurly RParenCurly LParenSquare RParenSquare

5 Set(Some(Op)) Set(None)

6 Control Keyword

7 Data Keyword

8 Primitive Keyword

9 Identifier

255 Comment

Table 1: TT and TD value pairs for token types

The Set token type contains an Option<Op> (TD in 0..6). This is used to represent operations such as += (Set(Some(Op::Plus))) as well as assignment
= (Set(None). This is also why operators such as Increment are not Op(Op::Increment) tokens, since this would indicate the possibility of a set
increment operator ++= which does not exist.

The two arrow token types (Arrow(Single) and Arrow(Double) at (TT, TD) (2, 12) and (2, 13) respectively) are actually Arrow(Arrow::Single) and
Arrow(Arrow::Double) but have been shortened for compactness.

All the keyword token types take their specific TD value from indexes in the language file specification, which can be found in Appendix B.29. Note
that the Control Keyword token type is restricted to 0..=17.

9The indexes are one more than the keyword TD value. For example, else would have a (TT, TD) of (6, 5).

Finally, the Identifier and Comment token types are indicated as accepting all TD values. This is technically true, since they never check the TD
value, but will never see a TD value other than 0.

The enums for the tokens can be found in

23

fck Developer Book

B Language file specification
This appendix contains the specification for the fckl language format. It is
seperated into a numbered list, with the nth element being for the nth line of the
language file.

fckl language files do not have the ability to include comments. Blank lines will also
cause errors when not specified.

B.1 Terminology
fckl language files use spaces to determine term separation (UTF-8 0x26). This byte
may be repeated multiple times between terms.

The term ‘character’ refers to a Unicode scalar value.

B.2 Specification
1. This line is split into three parts:

1. An opening curly bracket. This is used to determine if the language is LTR or
RTL

2. The full name of the language
3. The code for the language. This should match the name of the file with no file

extension
2. This is split into three main parts:

1. Three characters representing the number prefixes for (in order) binary,
hexidecimal, and octal

2. 16 characters for digits from zero to nine followed by the hexidecimal digits
for values from 10 to 15

3. An optional additional six digits for the uppercase variants of the hexidecimal
digits for values from 10 to 15

3. Keywords for:

1. set 2. and 3. or 4. not

5. if 6. else 7. match 8. repeat

9. for 10. in 11. to 12. as

13. while 14. fn 15. return 16. continue

17. break 18. where

4. Keywords for:

1. struct 2. properties 3. enum 4. variants

5. self 6. Self 7. extension 8. extend

5. Keywords for:

1. int 2. uint 3. dint

4. udint 5. float 6. bfloat

24

https://www.unicode.org/glossary/#unicode_scalar_value

fck Developer Book

7. str 8. char 9. list

10. bool

Note: See Section 2.1 for descriptions of the primitive types.
6. Constants for true and false
7. Delimiters for a string and character (string start, string end, character start,

character end)

B.3 English language file
The below code is the English fckl language file. This is included to aid with
understanding the specification.

The line numbers are not part of the file and are purely to aid with comparing the
file with the specification

{ English en
b x o 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F
set and or not if else match repeat for in to as while fn return continue
break where
struct properties enum variants self Self extension extend
int uint dint udint float bfloat str char list bool
true false
package name src tests benches type lib app version authors github gitlab
email license description readme homepage repo features dependencies usage
git branch path dev build main
Compiling Building Built Linking Emitted Error errors Warning warnings
e0001 placeholder
e0002 placeholder
e0003 placeholder
e0004 placeholder
e0005 placeholder
e0006 placeholder
e0007 placeholder
e0101 placeholder
e0102 placeholder
e0201 placeholder
e0202 placeholder
e0203 placeholder
e0204 placeholder
e0205 placeholder
e0206 placeholder
e0207 placeholder
e0208 placeholder
e0209 placeholder
e0301 placeholder
e0401 placeholder
e0402 placeholder
fck command line interface
new

25

fck Developer Book

Generate a new project
shell
Run the shell
build
Build the specified project or file
run
Run the specified project after (optionally) building
test
Test the given project using all or some tests
info
Get info about the current fck version
lint
Lint a project depending on the style file
raw
Run a raw piece of fck code
doc
Generate the documentation for a project
translate
Translate a file or project into a target language
help h
Show help information
path p
Path to file or directory
git g
Initialise the new project as a git repository
dump-llvm d
Dump the LLVM IR to a file
no-build n
Don't build before running the command
test t
Path like string to a specific file module or test function to run. Can be
given more than once
raw r
Raw string to run
target l
Language to translate the code into
output o
Path to output the translated file to
comment c
Include the comments in translation using LibreTranslate

26

	Introduction
	Justification
	Citrine

	How it works
	Language files

	Language Design
	Primitives
	Integers
	Floats
	Strings
	Lists
	Booleans

	Pointers and cloning
	Mutability
	Data Types
	Structs
	Enums

	Visibility
	Module level visibility
	Data types

	Extensions
	Extension function visibility
	What can go in an extension

	Iteration
	Repeat
	For

	Lexing
	Introduction
	What is lexing

	NFA generation
	Initialization
	Keywords
	Digits

	Storing an NFA
	Table compression
	Single stream duplicate compression
	Multi-row group compression
	Single stream unique compression
	The best one

	NFA table serialization
	Saving pre-compressed tables
	Serialization specification
	Deserialization

	The actual lexer
	Language scoping
	NFA branch parsing
	Why we need a second part

	Tokens
	Token enums
	Token (TT, TD) pairs

	Language file specification
	Terminology
	Specification
	English language file

