{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ArbitraryDiscretiser + MeanEncoder\n", "\n", "This is very useful for linear models, because by using discretisation + a monotonic encoding, we create monotonic variables with the target, from those that before were not originally. And this tends to help improve the performance of the linear model. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ArbitraryDiscretiser\n", "\n", "The ArbitraryDiscretiser() divides continuous numerical variables into contiguous intervals arbitrarily defined by the user.\n", "\n", "The user needs to enter a dictionary with variable names as keys, and a list of the limits of the intervals as values. For example {'var1': [0, 10, 100, 1000],'var2': [5, 10, 15, 20]}.\n", "\n", "Note: Check out the ArbitraryDiscretiser notebook to learn more about this transformer." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MeanEncoder\n", "\n", "The MeanEncoder() replaces the labels of the variables by the mean value of the target for that label.
For example, in the variable colour, if the mean value of the binary target is 0.5 for the label blue, then blue is replaced by 0.5\n", "\n", "Note: Read MeanEncoder notebook to know more about this transformer" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import Pipeline\n", "\n", "from feature_engine.discretisation import ArbitraryDiscretiser\n", "from feature_engine.encoding import MeanEncoder\n", "\n", "plt.rcParams[\"figure.figsize\"] = [15,5]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Load titanic dataset from OpenML\n", "\n", "def load_titanic():\n", " data = pd.read_csv('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')\n", " data = data.replace('?', np.nan)\n", " data['cabin'] = data['cabin'].astype(str).str[0]\n", " data['pclass'] = data['pclass'].astype('O')\n", " data['age'] = data['age'].astype('float').fillna(data.age.median())\n", " data['fare'] = data['fare'].astype('float').fillna(data.fare.median())\n", " data['embarked'].fillna('C', inplace=True)\n", " data.drop(labels=['boat', 'body', 'home.dest', 'name', 'ticket'], axis=1, inplace=True)\n", " return data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pclasssurvivedsexagesibspparchfarecabinembarked
011female29.000000211.3375BS
111male0.916712151.5500CS
210female2.000012151.5500CS
310male30.000012151.5500CS
410female25.000012151.5500CS
\n", "
" ], "text/plain": [ " pclass survived sex age sibsp parch fare cabin embarked\n", "0 1 1 female 29.0000 0 0 211.3375 B S\n", "1 1 1 male 0.9167 1 2 151.5500 C S\n", "2 1 0 female 2.0000 1 2 151.5500 C S\n", "3 1 0 male 30.0000 1 2 151.5500 C S\n", "4 1 0 female 25.0000 1 2 151.5500 C S" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = load_titanic()\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X_train : (916, 8)\n", "X_test : (393, 8)\n" ] } ], "source": [ "# let's separate into training and testing set\n", "X = data.drop(['survived'], axis=1)\n", "y = data.survived\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, test_size=0.3, random_state=0)\n", "\n", "print(\"X_train :\", X_train.shape)\n", "print(\"X_test :\", X_test.shape)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAE/CAYAAADVKysfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7Bc913e8fcTORjjBGLj+I4qaSKXakLsuLHpHZFOWriJ01iJGWQ6445SQ+Riqv5witPRDMgwQ6CtZtw/TGECBkSSRjMxMWrAtSZOIR4ltymdEMdOHGzZca3EwlakWpAfODelpjKf/nGPYFGurPtzz3d3368Zze5+7zm7z/n6Smcfn7NnU1VIkiRJktr0kr4DSJIkSZLOztImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNs7RJkiSpCUleneRzSb6R5Cf7ziO14ry+A0iSJEmdnwJmq+rqvoNILfFImyRJklrxKuDwUldK4oEIjTVLm7QMSfYk+WJ3+sZjSX6kG1+X5I4kf5rkqSTvTFKndyZJvivJ+5KcSPLlJP8hybp+t0aSpP4l+TjwRuBXkswlubU7VfK5JM8k+fmBZTd3+9ebkzwNfLwb//Ekjyf5WpLfT/KqfrZGWl2WNml5vgj8Q+C7gF8APphkPfDPgbcCVwHfB1x/xnr7gVPA3wGuBt4C/MSQMkuS1KyqehPwP4B3VtXLgM8D7wBeAVwH/KskZ+5XfxB4DXBt97OfAf4x8MruuT40pPjSmkpV9Z1BGnlJHgbeDdwK/HZV/UY3/mbgfuClwHcDTwOvqKo/737+dmBXVb2xl+CSJDUkySzwwap67wI/+yWgqurfJtkMPAV8T1V9qfv5fwM+XFXv6x6/BJgDXlNVfzycLZDWhkfapGVI8o4kDyf5epKvA68FLgH+FvDMwKKD91/FfHk7MbDebwCXDiu3JEmjIsn3J/lEkj9J8mfAv2R+XzvozP3sLw/sY78KBNgwnMTS2vFDm9ISdefH/yZwDfCpqnqhO9IW4ASwcWDxTQP3nwGeBy6pqlPDyitJ0oj6LeBXgLdW1f/tjrSdWdoGTxl7BthbVXcNK6A0LB5pk5buQuZ3En8CkOSfMX+kDeAAcGuSDUleAfz06ZWq6gTwMeCOJN+Z5CVJvifJDw43viRJI+HlwFe7wrYV+KfnWP7XgduSXAF/dfGvG9Y6pDQMljZpiarqMeAO4FPAs8CVwP/sfvybzBezPwI+B3yU+QuPvND9/B3AtwGPAV8DPgysH1Z2SZJGyL8G/l2SbwA/x/z/GD2rqroH+I/A3UmeAx5l/uJg0sjzQiTSGkryVuDXq8pLDkuSJGlZPNImraIkFyR5W5Lzkmxg/oqS9/SdS5IkSaPLI23SKkryHcB/B74X+HPgPuDWqnqu12CSJEkaWZY2SZIkSWqYp0dKkiRJUsMsbZIkSZLUsCa+XPuSSy6pzZs3L3v9b37zm1x44YWrF2gIzDwco5Z51PKCmYellcwPPfTQn1bVK/vOocVb6T4W2vn969Okz8Gkbz84B5O+/bD2c/Bi+9gmStvmzZt58MEHl73+7OwsMzMzqxdoCMw8HKOWedTygpmHpZXMSf647wxampXuY6Gd378+TfocTPr2g3Mw6dsPaz8HL7aP9fRISZIkSWqYpU2SJEmSGmZpkyRJkqSGWdokSZIkqWGWNkmSJElqmKVNkiRJkhpmaZMkSZKkhlnaJEmSJKlhljZJkiRJapilTZIkSZIaZmmTJEmSpIad13cAabE277lv0csevf26NUwiSZPlkS//GTct8t9g//2VpNXnkTZJkiRJapilTZIkSZIaZmmTJEmSpIZZ2iRJ6lGSo0keSfJwkge7sYuT3J/kye72ooHlb0tyJMkTSa7tL7kkaVgsbZIk9e+NVXVVVU13j/cAh6pqC3Coe0ySy4EdwBXANuDOJOv6CCxJGh5LmyRJ7dkO7O/u7weuHxi/u6qer6qngCPA1h7ySZKGyEv+S5LUrwI+lqSA36iqfcBUVZ0AqKoTSS7tlt0A/OHAuse6sb8hyS5gF8DU1BSzs7MrCjh1Aey+8tSill3pa7Vqbm5ubLdtMSZ9+8E5mPTth37nwNImSVK/3lBVx7tidn+SL7zIsllgrL5lYL747QOYnp6umZmZFQV8z133cscji3vLcPTGlb1Wq2ZnZ1npPI6ySd9+cA4mffuh3znw9EhJknpUVce725PAPcyf7vhskvUA3e3JbvFjwKaB1TcCx4eXVpLUB0ubJEk9SXJhkpefvg+8BXgUOAjs7BbbCdzb3T8I7EhyfpLLgC3AA8NNLUkaNk+PlCSpP1PAPUlgfp/8W1X1e0k+AxxIcjPwNHADQFUdTnIAeAw4BdxSVS/0E12SNCyWNkmSelJVXwJet8D4V4BrzrLOXmDvGkeTJDXE0yMlSZIkqWGWNkmSJElqmKVNkiRJkhpmaZMkSZKkhlnaJEmSJKlhljZJkiRJapilTZIkSZIaZmmTJEmSpIZZ2iRJkiSpYZY2SZIkSWqYpU2SJEmSGnbO0pZkU5JPJHk8yeEkt3bjFye5P8mT3e1FA+vcluRIkieSXLuWGyBJkiRJ42wxR9pOAbur6jXA64FbklwO7AEOVdUW4FD3mO5nO4ArgG3AnUnWrUV4SZIkSRp35yxtVXWiqj7b3f8G8DiwAdgO7O8W2w9c393fDtxdVc9X1VPAEWDrageXJEmSpEmwpM+0JdkMXA18GpiqqhMwX+yAS7vFNgDPDKx2rBuTJEmSJC3ReYtdMMnLgN8B3lVVzyU566ILjNUCz7cL2AUwNTXF7OzsYqN8i7m5uRWt3wczL93uK08tetnTOfvOvFSjlhfMPCyjmFmSJK2ORZW2JC9lvrDdVVW/2w0/m2R9VZ1Ish442Y0fAzYNrL4ROH7mc1bVPmAfwPT0dM3MzCxvC5h/g76S9ftg5qW7ac99i1726I0zQP+Zl2rU8oKZh2UUM0uSpNWxmKtHBngf8HhV/eLAjw4CO7v7O4F7B8Z3JDk/yWXAFuCB1YssSZIkSZNjMUfa3gD8GPBIkoe7sZ8BbgcOJLkZeBq4AaCqDic5ADzG/JUnb6mqF1Y9uSRJkiRNgHOWtqr6Axb+nBrANWdZZy+wdwW5JEmSJEks8eqRkiRJkqThsrRJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNs7RJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmS1LMk65J8LslHuscXJ7k/yZPd7UUDy96W5EiSJ5Jc219qSdKwWNokSerfrcDjA4/3AIeqagtwqHtMksuBHcAVwDbgziTrhpxVkjRkljZJknqUZCNwHfDegeHtwP7u/n7g+oHxu6vq+ap6CjgCbB1WVklSPyxtkiT165eAnwL+cmBsqqpOAHS3l3bjG4BnBpY71o1JksbYeX0HkCRpUiX5IeBkVT2UZGYxqywwVgs87y5gF8DU1BSzs7MricnUBbD7ylOLWnalr9Wqubm5sd22xZj07QfnYNK3H/qdA0ubJEn9eQPww0neBnw78J1JPgg8m2R9VZ1Ish442S1/DNg0sP5G4PiZT1pV+4B9ANPT0zUzM7OikO+5617ueGRxbxmO3riy12rV7OwsK53HUTbp2w/OwaRvP/Q7B54eKUlST6rqtqraWFWbmb/AyMer6keBg8DObrGdwL3d/YPAjiTnJ7kM2AI8MOTYkqQh80ibJEntuR04kORm4GngBoCqOpzkAPAYcAq4pape6C+mJGkYLG2SJDWgqmaB2e7+V4BrzrLcXmDv0IJJknrn6ZGSJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNs7RJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNO2dpS/L+JCeTPDow9vNJvpzk4e7P2wZ+dluSI0meSHLtWgWXJEmSpEmwmCNtHwC2LTD+n6rqqu7PRwGSXA7sAK7o1rkzybrVCitJkiRJk+acpa2qPgl8dZHPtx24u6qer6qngCPA1hXkkyRJkqSJdt4K1n1nkncADwK7q+prwAbgDweWOdaNfYsku4BdAFNTU8zOzi47yNzc3IrW74OZl273lacWvezpnH1nXqpRywtmHpZRzCxJklbHckvbrwH/Hqju9g7gx4EssGwt9ARVtQ/YBzA9PV0zMzPLjDL/Bn0l6/fBzEt30577Fr3s0RtngP4zL9Wo5QUzD8soZpYkSatjWVePrKpnq+qFqvpL4Df561MgjwGbBhbdCBxfWURJkiRJmlzLKm1J1g88/BHg9JUlDwI7kpyf5DJgC/DAyiJKkiRJ0uQ65+mRST4EzACXJDkGvBuYSXIV86c+HgX+BUBVHU5yAHgMOAXcUlUvrE10SZIkSRp/5yxtVfX2BYbf9yLL7wX2riSUJEmSJGnesk6PlCRJkiQNh6VNkiRJkhpmaZMkSZKkhlnaJEmSJKlhljZJkiRJapilTZIkSZIaZmmTJEmSpIZZ2iRJkiSpYZY2SZIkSWqYpU2SJEmSGmZpkyRJkqSGWdokSZIkqWGWNkmSJElqmKVNkqSeJPn2JA8k+XySw0l+oRu/OMn9SZ7sbi8aWOe2JEeSPJHk2v7SS5KGxdImSVJ/ngfeVFWvA64CtiV5PbAHOFRVW4BD3WOSXA7sAK4AtgF3JlnXS3JJ0tBY2iRJ6knNm+sevrT7U8B2YH83vh+4vru/Hbi7qp6vqqeAI8DWIUaWJPXA0iZJUo+SrEvyMHASuL+qPg1MVdUJgO720m7xDcAzA6sf68YkSWPsvL4DSJI0yarqBeCqJK8A7kny2hdZPAs9xbcslOwCdgFMTU0xOzu7ooxTF8DuK08tatmVvlar5ubmxnbbFmPStx+cg0nffuh3DixtkiQ1oKq+nmSW+c+qPZtkfVWdSLKe+aNwMH9kbdPAahuB4ws81z5gH8D09HTNzMysKNt77rqXOx5Z3FuGozeu7LVaNTs7y0rncZRN+vaDczDp2w/9zoGnR0qS1JMkr+yOsJHkAuDNwBeAg8DObrGdwL3d/YPAjiTnJ7kM2AI8MNzUkqRh80ibJEn9WQ/s764A+RLgQFV9JMmngANJbgaeBm4AqKrDSQ4AjwGngFu60yslSWPM0iZJUk+q6o+AqxcY/wpwzVnW2QvsXeNokqSGeHqkJEmSJDXM0iZJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNs7RJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSwyxtkiRJktQwS5skSZIkNczSJkmSJEkNs7RJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDTtnaUvy/iQnkzw6MHZxkvuTPNndXjTws9uSHEnyRJJr1yq4JEmSJE2CxRxp+wCw7YyxPcChqtoCHOoek+RyYAdwRbfOnUnWrVpaSZIkSZow5yxtVfVJ4KtnDG8H9nf39wPXD4zfXVXPV9VTwBFg6ypllSRJkqSJs9zPtE1V1QmA7vbSbnwD8MzAcse6MUmSJEnSMpy3ys+XBcZqwQWTXcAugKmpKWZnZ5f9onNzcytavw9mXrrdV55a9LKnc/adealGLS+YeVhGMbMkSVodyy1tzyZZX1UnkqwHTnbjx4BNA8ttBI4v9ARVtQ/YBzA9PV0zMzPLjDL/Bn0l6/fBzEt30577Fr3s0RtngP4zL9Wo5QUzD8soZpYkSatjuadHHgR2dvd3AvcOjO9Icn6Sy4AtwAMriyhJkiRJk+ucR9qSfAiYAS5Jcgx4N3A7cCDJzcDTwA0AVXU4yQHgMeAUcEtVvbBG2SVJkiRp7J2ztFXV28/yo2vOsvxeYO9KQkmSJEmS5i339EhJkiRJ0hBY2iRJkiSpYZY2SZIkSWqYpU2SJEmSGmZpkyRJkqSGWdokSZIkqWGWNkmSepJkU5JPJHk8yeEkt3bjFye5P8mT3e1FA+vcluRIkieSXNtfeknSsFjaJEnqzylgd1W9Bng9cEuSy4E9wKGq2gIc6h7T/WwHcAWwDbgzybpekkuShsbSJklST6rqRFV9trv/DeBxYAOwHdjfLbYfuL67vx24u6qer6qngCPA1uGmliQNm6VNkqQGJNkMXA18GpiqqhMwX+yAS7vFNgDPDKx2rBuTJI2x8/oOIEnSpEvyMuB3gHdV1XNJzrroAmO1wPPtAnYBTE1NMTs7u6J8UxfA7itPLWrZlb5Wq+bm5sZ22xZj0rcfnINJ337odw4sbZIk9SjJS5kvbHdV1e92w88mWV9VJ5KsB05248eATQOrbwSOn/mcVbUP2AcwPT1dMzMzK8r4nrvu5Y5HFveW4eiNK3utVs3OzrLSeRxlk7794BxM+vZDv3Pg6ZGSJPUk84fU3gc8XlW/OPCjg8DO7v5O4N6B8R1Jzk9yGbAFeGBYeSVJ/fBImyRJ/XkD8GPAI0ke7sZ+BrgdOJDkZuBp4AaAqjqc5ADwGPNXnrylql4YfmxJ0jBZ2iRJ6klV/QELf04N4JqzrLMX2LtmoSRJzfH0SEmSJElqmKVNkiRJkhrm6ZGSJGnVbN5z36KXPXr7dWuYRJLGh0faJEmSJKlhljZJkiRJapilTZIkSZIaZmmTJEmSpIZZ2iRJkiSpYZY2SZIkSWqYl/zXomzecx+7rzzFTYu4lPNSLuG8lEtDS5IkSZPII22SJEmS1DBLmyRJkiQ1zNImSZIkSQ2ztEmSJElSw7wQicbS6QucLObiKUu5cIokSZI0bB5pkyRJkqSGWdokSZIkqWGWNkmSJElqmKVNkiRJkhpmaZMkSZKkhlnaJEmSJKlhljZJkiRJapilTZIkSZIaZmmTJEmSpIZZ2iRJkiSpYZY2SZIkSWqYpU2SJEmSGmZpkyRJkqSGWdokSZIkqWGWNkmSJElqmKVNkiRJkhpmaZMkSZKkhlnaJEmSJKlhljZJkiRJath5K1k5yVHgG8ALwKmqmk5yMfDbwGbgKPBPquprK4spSZIkSZNpNY60vbGqrqqq6e7xHuBQVW0BDnWPJUmSJEnLsKIjbWexHZjp7u8HZoGfXoPXUaM277mv7wiSJEnS2FjpkbYCPpbkoSS7urGpqjoB0N1eusLXkCRJkqSJtdIjbW+oquNJLgXuT/KFxa7YlbxdAFNTU8zOzi47xNzc3IrW78OoZd595SmmLpi/HSWLydzSf4dR+70AMw/LKGaWJEmrY0WlraqOd7cnk9wDbAWeTbK+qk4kWQ+cPMu6+4B9ANPT0zUzM7PsHLOzs6xk/T60kHlppzGex+4rT3HHI2txRu3aWUzmozfODCfMIrTwe7FUZh6OUcwsSZJWx7JPj0xyYZKXn74PvAV4FDgI7OwW2wncu9KQkiRJkjSpVnLYZAq4J8np5/mtqvq9JJ8BDiS5GXgauGHlMSVJkiRpMi27tFXVl4DXLTD+FeCalYSSJGkSJHk/8EPAyap6bTd21u87TXIbcDPz34/6k1X1+z3EliQN2Wp8T5skSVqeDwDbzhhb8PtOk1wO7ACu6Na5M8m64UWVJPVltK4qIfVsKRdvOXr7dWuYRNI4qKpPJtl8xvDZvu90O3B3VT0PPJXkCPMXAPvUMLJKkvrjkTZJktpytu873QA8M7DcsW5MkjTmPNImSdJoyAJjteCCq/hdqLC477xcjlH67sFJ/67ESd9+cA4mffuh3zmwtEmS1Jazfd/pMWDTwHIbgeMLPcFqfhcqwHvuundNvqezpe/JPJdJ/67ESd9+cA4mffuh3znw9EhJktpytu87PQjsSHJ+ksuALcADPeSTJA2ZR9okSepJkg8xf9GRS5IcA94N3M4C33daVYeTHAAeA04Bt1TVC70ElyQNlaVNkqSeVNXbz/KjBb/vtKr2AnvXLpEkqUWeHilJkiRJDbO0SZIkSVLDLG2SJEmS1DBLmyRJkiQ1zAuRSA3YvOc+YP7La2/q7p/N0duvG0YkSZIkNcIjbZIkSZLUMEubJEmSJDXM0iZJkiRJDfMzbZp4m8/xGTJJkiSpTx5pkyRJkqSGWdokSZIkqWGWNkmSJElqmJ9pGzN+PkuSJEkaLx5pkyRJkqSGWdokSZIkqWGeHimtEU9VlSRJ0mrwSJskSZIkNcwjbZKApR0ZPHr7dWuYRJIkSYM80iZJkiRJDbO0SZIkSVLDPD1SkiSNFU/3ljRuxqa0+Q+0JEnjyyvySppkY1PaJEnSaLGISdLiWNqkMeYbIkmSpNFnaZO0ZINlcPeVp7jpRcqhpyNLkiStjFePlCRJkqSGeaRNGjGe8ihJkjRZLG2S1pRXdpUkSVoZT4+UJEmSpIZZ2iRJkiSpYRN5eqSna0mSJEkaFRNZ2tbKUsrgB7ZduIZJJEmSJI0LS5skncGj8ZIkqSWWNkkTYSlfCC5JktQSL0QiSZIkSQ2ztEmSJElSwzw9siePfPnPFn16lp+Z0aRYymfJJEmSJoWlbQT4RlaSJEmaXJa2c7AwSZI0vha7n9995Slm1jaKJJ2VpU2SJEmL5teiSMNnaZOkFfDNizQ5Wjj7xn9H5vlvrybNml09Msm2JE8kOZJkz1q9jiRJk8Z9rCRNljU50pZkHfCrwD8CjgGfSXKwqh5bi9eTpHFz5v9FfrEvBPf/Ik8W97GSNHnW6vTIrcCRqvoSQJK7ge2AOxRJklbGfaxGhqcxSqtjrUrbBuCZgcfHgO9fo9eSpJGwVp+H8U3RxHEfO8HG+e97C58ZlM40+Hv5Yme9wNr+nUtVrf6TJjcA11bVT3SPfwzYWlX/ZmCZXcCu7uGrgSdW8JKXAH+6gvX7YObhGLXMo5YXzDwsrWR+VVW9su8Qk6yHfSy08/vXp0mfg0nffnAOJn37Ye3n4Kz72LU60nYM2DTweCNwfHCBqtoH7FuNF0vyYFVNr8ZzDYuZh2PUMo9aXjDzsIxiZq2Zoe5jwd8/cA4mffvBOZj07Yd+52Ctrh75GWBLksuSfBuwAzi4Rq8lSdIkcR8rSRNmTY60VdWpJO8Efh9YB7y/qg6vxWtJkjRJ3MdK0uRZsy/XrqqPAh9dq+c/w6qdAjJEZh6OUcs8annBzMMyipm1Roa8jwV//8A5mPTtB+dg0rcfepyDNbkQiSRJkiRpdazVZ9okSZIkSatg5Etbkm1JnkhyJMmevvMsJMn7k5xM8ujA2MVJ7k/yZHd7UZ8ZByXZlOQTSR5PcjjJrd14y5m/PckDST7fZf6FbrzZzABJ1iX5XJKPdI+bzguQ5GiSR5I8nOTBbqzZ3ElekeTDSb7Q/U7//cbzvrqb29N/nkvyrpYza3yNwj52NSx1P53ktm5OnkhybT+pV89y9vtjOAdLfh8xbnMAS3tfMqbbv6T3OMOcg5EubUnWAb8KvBW4HHh7ksv7TbWgDwDbzhjbAxyqqi3Aoe5xK04Bu6vqNcDrgVu6eW058/PAm6rqdcBVwLYkr6ftzAC3Ao8PPG4972lvrKqrBi5723LuXwZ+r6q+F3gd8/PdbN6qeqKb26uAvwf8H+AeGs6s8TRC+9jV8AEWuZ/u5mAHcEW3zp3dXI2yJe33x3QOlvQ+YkznABb5vmSMtx8W+R5n2HMw0qUN2AocqaovVdVfAHcD23vO9C2q6pPAV88Y3g7s7+7vB64faqgXUVUnquqz3f1vMP+XdwNtZ66qmusevrT7UzScOclG4DrgvQPDzeY9hyZzJ/lO4AeA9wFU1V9U1ddpNO8CrgG+WFV/zOhk1vgYiX3saljifno7cHdVPV9VTwFHmJ+rkbWM/f44zsFS30eM3Rws8X3J2G3/i2hiDka9tG0Anhl4fKwbGwVTVXUC5v+xBC7tOc+CkmwGrgY+TeOZu0P6DwMngfurqvXMvwT8FPCXA2Mt5z2tgI8leSjJrm6s1dx/G/gT4D93p3u8N8mFtJv3TDuAD3X3RyWzxsco72NXw9n+zo31vCxyvz+Wc7DE9xHjOAdLeV8yjtsPS3uPM9Q5GPXSlgXGvBzmKknyMuB3gHdV1XN95zmXqnqhO6VsI7A1yWv7znQ2SX4IOFlVD/WdZRneUFXfx/wpU7ck+YG+A72I84DvA36tqq4GvsmInFaY+S9N/mHgv/SdRRPLfezCxnZelrDfH8s5WOL7iLGag2W8Lxmr7R+wlPc4Q52DUS9tx4BNA483Asd7yrJUzyZZD9Ddnuw5z9+Q5KXM/8N9V1X9bjfcdObTutPfZpk/v7jVzG8AfjjJUeZPOXpTkg/Sbt6/UlXHu9uTzH/Waivt5j4GHOv+bynAh5kvca3mHfRW4LNV9Wz3eBQya7yM8j52NZzt79xYzssS9/tjOQenLfJ9xLjNwVLfl4zb9gNLfo8z1DkY9dL2GWBLksu6/yu9AzjYc6bFOgjs7O7vBO7tMcvfkCTMfwbo8ar6xYEftZz5lUle0d2/AHgz8AUazVxVt1XVxqrazPzv7cer6kdpNO9pSS5M8vLT94G3AI/SaO6q+t/AM0le3Q1dAzxGo3nP8Hb++tRIGI3MGi+jvI9dDWf7O3cQ2JHk/CSXAVuAB3rIt2qWsd8fxzlY6vuIsZqDZbwvGavth2W9xxnuHFTVSP8B3gb8L+CLwM/2necsGT8EnAD+H/Ot/Gbgu5m/As2T3e3FfeccyPsPmD+8+0fAw92ftzWe+e8Cn+syPwr8XDfebOaB7DPAR0YhL/OfEft89+fw6b9zLedm/ipgD3a/G/8VuKjlvF3m7wC+AnzXwFjTmf0znn9GYR+7Stu5pP008LPdnDwBvLXv/Kuw/Uve7/y3fO4AAABoSURBVI/hHCz5fcS4zcHAdi3qfcm4bf9y3uMMcw7SvaAkSZIkqUGjfnqkJEmSJI01S5skSZIkNczSJkmSJEkNs7RJkiRJUsMsbZIkSZLUMEubJEmSJDXM0iZJkiRJDbO0SZIkSVLD/j+UgSC64ypSUwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# we will transform two continuous variables\n", "X_train[[\"age\", 'fare']].hist(bins=30)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pipeline(memory=None,\n", " steps=[('ArbitraryDiscretiser',\n", " ArbitraryDiscretiser(binning_dict={'age': [0, 18, 30, 50, 100],\n", " 'fare': [-1, 20, 40, 60, 80,\n", " 600]},\n", " return_boundaries=False,\n", " return_object=True)),\n", " ('MeanEncoder', MeanEncoder(variables=['age', 'fare']))],\n", " verbose=False)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# set up the discretiser\n", "arb_disc = ArbitraryDiscretiser(\n", " binning_dict={'age': [0, 18, 30, 50, 100],\n", " 'fare': [-1, 20, 40, 60, 80, 600]},\n", " # returns values as categorical\n", " return_object=True)\n", "\n", "# set up the mean encoder\n", "mean_enc = MeanEncoder(variables=['age', 'fare'])\n", "\n", "# set up the pipeline\n", "transformer = Pipeline(steps=[('ArbitraryDiscretiser', arb_disc),\n", " ('MeanEncoder', mean_enc),\n", " ])\n", "# train the pipeline\n", "transformer.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'age': [0, 18, 30, 50, 100], 'fare': [-1, 20, 40, 60, 80, 600]}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transformer.named_steps['ArbitraryDiscretiser'].binner_dict_" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'age': {0: 0.45081967213114754,\n", " 1: 0.34309623430962344,\n", " 2: 0.4262948207171315,\n", " 3: 0.4153846153846154},\n", " 'fare': {0: 0.288135593220339,\n", " 1: 0.43283582089552236,\n", " 2: 0.5636363636363636,\n", " 3: 0.45652173913043476,\n", " 4: 0.7349397590361446}}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transformer.named_steps['MeanEncoder'].encoder_dict_" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pclasssexagesibspparchfarecabinembarked
11393male0.426295000.288136nS
5332female0.343096010.432836nS
4592male0.426295100.432836nS
11503male0.343096000.288136nS
3932male0.343096000.432836nS
\n", "
" ], "text/plain": [ " pclass sex age sibsp parch fare cabin embarked\n", "1139 3 male 0.426295 0 0 0.288136 n S\n", "533 2 female 0.343096 0 1 0.432836 n S\n", "459 2 male 0.426295 1 0 0.432836 n S\n", "1150 3 male 0.343096 0 0 0.288136 n S\n", "393 2 male 0.343096 0 0 0.432836 n S" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_t = transformer.transform(X_train)\n", "test_t = transformer.transform(X_test)\n", "\n", "test_t.head()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAFNCAYAAAB2YKokAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd5hU5fnG8e/D0tvSO0uTJtIXFFusETUGFcUesUTRqLFGTVNjfrHGFk0IJoiKEVFRiQ0rYCyRtvQiILBLLwtLW9jy/P6YgxnXLcOyszM7c3+ua65rzpwzM8+eOTP3vue87znm7oiIiCSqarEuQEREJJoUdCIiktAUdCIiktAUdCIiktAUdCIiktAUdCIiktAUdFJuZjbVzK4u53PTzGyXmaVUdF1h73GvmY0vZf5CMzuhnK/tZnZYuYuLc2Z2jpllBp9R/1jXczAS/bORg6egS3JmtsrM9gY/aBvMbJyZ1Y/S+5xyYNrd17h7fXcvqOj3ipS793L3qZX9vlXkh/hR4IbgM5oT62IqyqH8c5YI75+sFHQCcJa71wf6Af2Bu2Ncj8ReB2BheZ5oZtUruJa4kch/WyJT0Ml33H0DMIVQ4AFgZkeZ2Rdmtt3M5pa0q8/MupjZJ2a21cy2mNlLZtYomPcikAb8O2g5/srMOgYtm+rBMm3MbLKZbTOz5Wb287DXvtfMJprZC2a2M9jlmB42/04zWxvMW2pmJ4eVVrOU533Xygze4zUzeyVYdraZ9S1jlZ1hZiuDv/cRM/vu+2RmV5rZYjPLNrMpZtYheHx6sMjcYF1cYGbTzGx4MP/YYL2cEUyfYmYZZb1uMK+HmX0YrMOlZjYibN44M3vGzN4J/r7/mlmXYj7HWma2C0gJalwRPH6Xma0InrvIzM4Je85IM/vczB43s23AvcHrPGpma8xso5mNNrM6xa3E0radsM/pdjObZ2Y7gs+odtj8O8xsvZmtM7MrS/qwzOz/gOOAp4N1/3Tw+JMW2k2bY2azzOy4sOcc2C7Gm1kOMNLMOpnZ9GBdfBSs1/Fhzyn2O1PS+0slcHfdkvgGrAJOCe63A+YDTwbTbYGtwBmE/ik6NZhuHsyfClwd3D8smF8LaA5MB54o7n2C6Y6AA9WD6WnAX4HahIJ2M3ByMO9eIDeoIwV4APgqmNcdyATahL1ul7KeV8zffi+QB5wH1ABuB74FapSw3hz4FGhCKMSXha2Ls4HlQE+gOvBb4Isizz0sbPoPwF+C+78GVgAPhc17sqzXBeoF6+GKYN4AYAvQK5g/DtgGDA7mvwRMKGW7KFrj+UCbYDu4ANgNtA7mjQTygRuD164DPAFMDtZPA+DfwAMlvFck287Xwfs3ARYDo4J5Q4GNwBHBOvhX0dqLvNfUA59T2GOXAk2D2m8DNgC1i2wXZwd/ex3gS0K7dmsCxwI5wPiD/c7oVom/c7EuQLcYbwChH5FdwM7gB+JjoFEw707gxSLLTwEuD+6X+KUNfhjmFHmfYoMOaA8UAA3C5j8AjAvu3wt8FDbvcGBvcP8wYBNwCkVCqbTnFa0pWDY8BKsB64HjSvj7HBgaNn098HFw/z3gqiKvtQfoEPbc8BA5GZgX3H8fuJr/Bfk04NyyXpdQ+HxWpMa/A/cE98cB/wibdwawpJTtosSwCOZnAMOC+yOBNWHzjFAQdgl7bAjwbYTbZHHbzqVh0w8Do4P7Y4EHw+Z1K612IggaIBvoG7ZdTA+bl0Yo1OuGPTae/wVdub8zukXvpl2XAnC2uzcATgB6AM2CxzsA5we7YLab2XZC/8G2LvoCZtbCzCYEuxBzCH35mxVdrgRtgG3uvjPssdWE/js+YEPY/T1AbTOr7u7LgZsJ/SBtCmpoU9bzSqgj88Addy8EsoLaSpIZdn912LIdgCfD1tk2Qj/+bSnel0A3M2tJqDX7AtDezJoRaoEd2N1Z2ut2AI4s8lldArQKe5+i6yLiTkdm9jMzywh77SP4/ucbvi6aA3WBWWHLvx88XtxrR7LtlFR7G374ORwUM7st2B28I6g1tZS/7cC2uqeE+RF/Z6TyKOjkO+4+jdB//o8GD2US+u+0Uditnrs/WMzTHyD0n3Qfd29IaHeQhb98KW+9DmhiZg3CHksD1kZY97/c/VhCPzIOPBTJ84rR/sAdCx1vaxfUVubyhOo9sGwmcG2R9VbH3b8oof49wCzgl8ACd98PfAHcCqxw9y0RvG4mMK3IvPruft1Br4UiguOAzwI3AE3dvRGwgJI/3y3AXkK7TQ/UkuqhDk/FKWvbKc16fvg5lOZ722FwPO5OYATQOPjbdlDy37ae0LZaN+yx8Pcv6zujy8XEgIJOinoCONXM+hH6z/osMzvNzFLMrLaZnWBm7Yp5XgNCu0C3m1lb4I4i8zcCnYt7Q3fPJPTD/kDwHn2AqwgdRyqVmXU3s5PMrBah43F7Ce0GLY+BZnZu0OK7GdgHfFXK8neYWWMza08opF4JHh8N3G1mvYIaU83s/LDnFbcuphEKkmnB9NQi02W97tuEWoWXmVmN4DbIzHpG/NeXrB6hH+jNwfteQahFV6ygNfws8LiZtQie09bMTivhKWVtO6WZSKiDyOFB+NxTxvJF130DQrsiNwPVzez3QMOSnuzuq4GZhDrc1DSzIcBZYYuU9Z0p8Xsg0aOgk+9x982Edp39LgigYYQ6SGwm9N/qHRS/3dxHqAPEDuAdYFKR+Q8Avw1259xezPMvInTcbh3wBqFjSx9GUHIt4EFCrYgNQIug3vJ4i9CxrmzgMkLHxvLKWH4WoeNV7wD/BHD3Nwi1KicEu+IWAKeHPe9e4PlgXRzoGTmN0I/u9BKmS33dYLfvj4ELCa3DDcGytQ52JRTl7ouAPxPaxboR6A18XsbT7iTUcearoNaPCHUcKk5Z205ptb1H6J+zT4L3+6SMpzwJnGehXqtPETp+9h6hzkSrCf2zlFnK8yG0S3gIoU4mfyT0D86+oJ6yvjNF318qgbmrJS1iZvcS6sBwaaxrkarFzF4h1LGnrNakxIhadCIiByHYJdzFzKqZ2VBCLbg3Y12XlEyj/EVEDk4rQrtXmxLqmXudJ9Bp0hKRdl2KiEhC065LERFJaAo6ERFJaFXuGF2zZs28Y8eOsS5DRETiyKxZs7a4e7Fn36lyQdexY0dmzpwZ6zJERCSOmFmJp3/TrksREUloCjoREUloCjoREUloCjoREUloCjoREUloCjoREUloCjoREUloCjoREUloCjoREUloCjoREYmJeVnb+WDhhqi/T5U7BZiIiFRt+QWFPPPpCv7yyTd0bl6Pk3u2JKWaRe39FHQiIlJpVm7exa0T55KRuZ1h/drwh58eEdWQAwWdiIhUAndn/H/X8H/vLKJW9RSevrg/P+nTplLeW0EnIiJRtTEnl1+9No9pyzZzfLfmPDy8D61Sa1fa+yvoREQkat6Zt57fvDmf3LwC7h/Wi0uP6oBZdHdVFqWgExGRCrdjbx73vLWANzPW0bd9Ix4b0ZcuzevHpBYFnYiIVKjPl2/h9lfnsmnnPm45pRu/OLEL1VNiN5pNQSciIhUiN6+Ah95fwnOfr6Jz83pMuu5o+rZvFOuyFHQiInLo5mft4JaJGSzftIuRR3fkzqE9qFMzJdZlAQo6ERE5BPkFhfxt6gqe/PgbmtWvxYtXDea4rs1jXdb3KOhERKRcvt2ym1snZjBnzXZ+2rcN9w87gtS6NWJd1g8o6ERE5KC4Oy/9dw3/985iaqQYT13Un5/2rZzB3+WhoBMRkYhtysnlV6/PY+rSzRzXtRmPnNe3Ugd/l4eCTkREIvLu/PX85o357M0r4A/DenFZDAZ/l4eCTkRESpWTm8e9by1k0py19G2XymMX9IvZ4O/yUNCJiEiJvggGf2/cuY+bT+nKL048jBoxHPxdHgo6ERH5gdy8Ah6ZspR//udbOjerx+vXHU2/OBj8XR4KOhER+Z4Fa3dwyysZfLNpF5cP6cBdp/eMm8Hf5aGgExERIDT4++/TV/L4h8toWr8mL1w5mOO7xdfg7/JQ0ImICKuCwd+z12znJ31a88ezj6BR3ZqxLqtCKOhERJKYu/Ovr0ODv6tXM568sB/D+rWNdVkVKqpBZ2ZDgSeBFOAf7v5gkfl3AJeE1dITaO7u26JZl4iIwKadudz52jw+XbqZYw9rxiPn96F1ap1Yl1XhohZ0ZpYCPAOcCmQBM8xssrsvOrCMuz8CPBIsfxZwi0JORCT63pu/nl+/MZ89+wu496zD+dmQjlSrFv+Dv8sjmi26wcByd18JYGYTgGHAohKWvwh4OYr1iIgkvZzcPO6dvJBJs9fSu20qj1/Qj8NaVJ3B3+URzaBrC2SGTWcBRxa3oJnVBYYCN0SxHhGRpPbliq3c/upcNuTkctPJXbnxpKo3+Ls8ohl0xbWBvYRlzwI+L2m3pZldA1wDkJaWVjHViYgkidy8Ah6dspR/fv4tHZvW47VRQ+if1jjWZVWaaAZdFtA+bLodsK6EZS+klN2W7j4GGAOQnp5eUliKiEgRC9bu4NaJGSzbuIvLjurA3Wf0oG7N5OpwH82/dgbQ1cw6AWsJhdnFRRcys1TgR8ClUaxFRCSpFBQ6o6et4ImPltG4bk3GXTGIE7q3iHVZMRG1oHP3fDO7AZhCaHjBWHdfaGajgvmjg0XPAT5w993RqkVEJJms3rqbWyfOZdbqbM7sHRr83bheYgz+Lg9zr1p7AtPT033mzJmxLkNEJO64OxNmZHL/24tIqWbcP+wIhvVrUyWuGXeozGyWu6cXNy+5dtSKiCSozTv3cdfr8/h4ySaO7tKUR8/vS5tGiTf4uzwUdCIiVdz7Czbw6zfms3tfPr//yeGMPDpxB3+Xh4JORKSK2pmbx33/XsRrs7I4om1DHh/Rj64tG8S6rLijoBMRqYK+WrmV2ybOZf2Ovdx40mHceFJXalZP/MHf5aGgExGpQnLzCnjsw2U8+9lKOjSpy6ujjmZgh+QZ/F0eCjoRkSpi0bocbnklg6Ubd3LJkWn85syeSTf4uzy0hkRE4lxBoTNm+koe+3ApjerW5LmRgzixR3IO/i4PBZ2ISBxbs3UPt72awYxV2Zx+RCv+75zeNEniwd/loaATEYlD7s7EmZn84d+LqGbGYyP6ck7/tkkx+LuiKehEROLM5p37uHvSPD5avIkhnZvy6Ii+tNXg73JT0ImIxJEPFm7g7knz2bkvn9+e2ZMrj+mkwd+HSEEnIhIHdubmcf/bi5g4M4tebRry8gX96KbB3xVCQSciEmNff7uNWydmsG77Xn5xYhd+eXI3Df6uQAo6EZEY2ZdfwGMfLGPMZytJa1KXV0cNYWCHJrEuK+Eo6EREYmDx+tDg7yUbdnLR4DR+e2ZP6tXST3I0aK2KiFSigkLn2c9W8tgHy2hYpwZjR6ZzUo+WsS4roSnoREQqSea2Pdw2cS5fr9rG0F6t+NO5GvxdGRR0IiJR5u68OjOL+/69kGpm/Pn8vpw7QIO/K4uCTkQkirbs2sfdk+bz4aKNHNW5CY+e35d2jevGuqykoqATEYmSDxdt5O5J88jJ1eDvWFLQiYhUsF378rn/34t4ZWYmPVs35KWr+9G9lQZ/x4qCTkSkAs1YFRr8vTZ7L9ef0IWbT9Hg71hT0ImIVIB9+QU8/uE3/H36Cto3rsvEa4eQ3lGDv+OBgk5E5BAt2ZDDzRMODP5uz2/OPJz6GvwdN/RJiIiUU0Gh88//rOTRKctoWKc6/7w8nZN7avB3vFHQiYiUQ+a2Pdz26ly+/nYbp/VqyZ/O6U3T+rViXZYUQ0EnInIQ3J3XZmVx378XAfDo+X0ZrsHfcU1BJyISoa279vHrN+YzZeFGBndqwp/P70v7Jhr8He8UdCIiEfh48UbufH0eOXvz+fUZPbjq2M6kaPB3laCgExEpxa59+fzx7UVMmBEa/D3+6r70aNUw1mXJQVDQiYiUYOaqbdw6cS6Z2XsY9aMu3HJqV2pVT4l1WXKQFHQiIkXszy/kiY+WMXraCto2rsPEa4cwSIO/qywFnYhImKUbdnLLKxksWp/DBent+d1ZGvxd1enTExEBCgudsZ9/y8NTltKgVnWe/Vk6px6uwd+JQEEnIkkvK3sPt786l69WbuPUw1vywLm9aabB3wlDQSciScvdmTR7LfdOXkihOw+f14fzB7bT4O8Eo6ATkaS0bfd+fj1pPu8v3MDgjk348wgN/k5UCjoRSTqfLNnIr16bT87ePO46vQc/P06DvxOZgk5Eksbuffn88Z3FvPz1Gnq0asCLVw2mZ2sN/k50CjoRSQqzVocGf6/Ztodrj+/MrT/upsHfSUJBJyIJbX9+IU9+vIy/TV1Bm0Z1mPDzoziyc9NYlyWVKKpBZ2ZDgSeBFOAf7v5gMcucADwB1AC2uPuPolmTiCSPZRtDg78Xrsvh/IHt+P1Zh9Ogdo1YlyWVLGpBZ2YpwDPAqUAWMMPMJrv7orBlGgF/BYa6+xozaxGtekQkeRQd/D3msoH8uFerWJclMRLNFt1gYLm7rwQwswnAMGBR2DIXA5PcfQ2Au2+KYj0ikgTWbt/L7RPn8uXKrZzSswUPnNuH5g00+DuZRTPo2gKZYdNZwJFFlukG1DCzqUAD4El3fyGKNYlIgnJ33pizlnveCg3+fmh4b0akt9fgb4lq0BW3dXkx7z8QOBmoA3xpZl+5+7LvvZDZNcA1AGlpaVEoVUSqsuzd+/nNm/N5d/4G0js05rER/UhrqsHfEhLNoMsC2odNtwPWFbPMFnffDew2s+lAX+B7QefuY4AxAOnp6UXDUkSS2KdLN/Gr1+axfc9+7hzag2uO1+Bv+b5oBt0MoKuZdQLWAhcSOiYX7i3gaTOrDtQktGvz8SjWJCIJYs/+fP7vncW89N81dG/ZgHFXDKJXm9RYlyVxKGpB5+75ZnYDMIXQ8IKx7r7QzEYF80e7+2Izex+YBxQSGoKwIFo1iUhimL0mm1tfyWD1tj1cc3xnbj21G7VraPC3FM/cq9aewPT0dJ85c2asyxCRGMgrKOSpj7/hmU+X0zq1Dn8e0ZejNPhbADOb5e7pxc3TmVFEpEr4ZuNObpmYwYK1OZw3sB33aPC3REhBJyJxrbDQGffFKh58fwn1a1Vn9KUDGXqEBn9L5BR0IhK31m3fyx2vzeXz5Vs5uUcLHhjemxYNase6LKliFHQiEnfcnbcy1vG7txZQUOg8eG5vLhikwd9SPgo6EYkr2bv389s3F/DO/PUM7NCYx0b0pUPTerEuS6owBZ2IxI2pweDv7D37+dXQ7lx7fBcN/pZDpqATkZjbsz+fP727mPFfraFby/o8p8HfUoEUdCISU3PWZHPrxLms2rqbq4/txO2nddfgb6lQZQadmR3j7p+X9ZiIyMHIKyjkLx9/wzNTV9CqYW3+dfVRDOmiwd9S8SJp0f0FGBDBYyIiEVm+aSe3vDKX+Wt3cO6Attz701401OBviZISg87MhgBHA83N7NawWQ0JnbtSROSgFBY6z3+5igffW0Ldmin87ZIBnN67dazLkgRXWouuJlA/WKZB2OM5wHnRLEpEEs/6HXu549V5/Gf5Fk7s3pyHzuujwd9SKUoMOnefBkwzs3HuvtrM6gXXjRMROShvZazld28uIL/Q+dM5vblosAZ/S+WJ5BhdGzN7j1DrLs3M+gLXuvv10S1NRKq67XtCg7/fnreeAWmNeGxEPzo20+BvqVyRBN0TwGnAZAB3n2tmx0e1KhGpctyddTtymb06m9lrspm9ZjuL1u3AHe44rTvXHt+Z6inVYl2mJKGIxtG5e2aR3QwF0SlHRKqK3LwCFq7bwezV24Ngy2Zjzj4AateoRp92jbjq2M4M69eGnq0bxrhaSWaRBF2mmR0NuJnVBG4CFke3LBGJN+t37P1eqC1cm8P+gkIA2jWuw5GdmjIgrREDOzShR+sG1FDrTeJEJEE3CngSaAtkAR8Av4hmUSISW/vyC1i4LofZq7OZsyYUbut35AJQq3o1+rRL5YpjOtI/rTEDOjRS70mJa2UGnbtvAS6phFpEJEY25nz/2Nr8tTvYnx9qrbVtVIeBHRozIK0xAzs0pmfrhtSsrtaaVB2RnALsqWIe3gHMdPe3Kr4kEYmm/fmFLF6fw6wg2Oas2c7a7XsBqJlSjd7tUrl8SAcGpDVmQIfGtGyo1ppUbZHsuqwN9ABeDaaHAwuBq8zsRHe/OVrFicih27Qzl9mrtzMnOLY2L2sH+4LWWuvU2gxIa8wVx3RkQIfG9GrTkFrVdeIjSSyRBN1hwEnung9gZn8jdJzuVGB+FGsTkYOUV1DIkvU7mbV6G7ODY2tZ2aHWWo0U44i2qVx61IHWWiNap9aJccUi0RdJ0LUF6hHaXUlwv427F5jZvqhVJiJl2rJrX3BsbXvQWttObl6otdayYS0GpDXm8iEdGdChEb3apOryN5KUIgm6h4EMM5sKGHA88Cczqwd8FMXaRCRMfkEhSzbsDHUYCcJtzbY9AFSvZvRq05CLBqd9d2ytTWptnWZLhDKCzsyqERozdzQwmFDQ/drd1wWL3BHd8kSS17bd+8N6QoaOre3ZHzpXQ/MGtRiQ1ohLjkxjQIfG9G6r1ppISUoNOncvNLM/u/sQQD0sRaKkoNBZ+r3WWjartv6vtdazdUNGpLenf1ojBqQ1pl3jOmqtiUQokl2XH5jZcGCSu3u0CxJJBtm79zMnM/u7M43MzdzO7qC11qx+TfqnNeaCQWkMSGtEn3aNqFNTrTWR8ook6G4l1AEl38xyCe2+dHfXyetEIlBQ6HyzaSezV29n1ups5qzJZuWW0BWvUqoZPVo14NwB7b4blN2+iVprIhUpkjOjNChrGRH5nx178pidmc2coMNIRuZ2du3LB6BJvZoMSGvE8IHtGJDWmL7tU6lbM6Jzq4tIOUX0DTOzxkBXQoPHAXD36dEqSqSqKCx0lm/e9d1xtVmrs1mxOdRaq2bQvVVDhvVr811rrUPTumqtiVSySE4BdjXwS6AdkAEcBXwJnBTd0kTiz469eWRkbv8u2DIyt7MzN9Raa1S3BgPSGnNO/7YMSGtMn/aNqF9LrTWRWIvkW/hLYBDwlbufaGY9gPuiW5ZI7BUWOiu37Pquw8is1dks37wLdzCD7i0b8JM+bRiQ1ogBHRrTuVk9tdZE4lAkQZfr7rlmhpnVcvclZtY96pWJVLLd+/KD7v3bg5MdZ5MTtNZS69Sgf1ojzurb5rtjaw1q14hxxSISiUiCLsvMGgFvAh+aWTawrozniFQpO/bmcdrj09mQk4sZdG1RnzN6t/7unJCdm9WnWjW11kSqokh6XZ4T3L3XzD4FUoH3olqVSCUbM30FG3Jy+ctF/flR9+Y0VGtNJGGUefVEM3vxwH13n+buk4GxUa1KpBJtysll7H9W8dO+bTirbxuFnEiCieQywb3CJ8wsBRgYnXJEKt9Tn3xDXkEht57aLdaliEgUlBh0Zna3me0E+phZTnDbCWxC572UBLFqy24mfJ3JhYPb07FZvViXIyJRUGLQufsDwVlRHnH3hsGtgbs3dfe7K7FGkah57MNl1Eipxk0ndY11KSISJWXuulSoSaJasHYHk+eu48pjO9KiYe2ynyAiVVIkx+hEEtIjU5bSqG4Nrv1Rl1iXIiJRVNoxuk6H+uJmNtTMlprZcjO7q5j5J5jZDjPLCG6/P9T3FInElyu2Mm3ZZq4/oYt6WYokuNLG0b0GDDSzj9395IN94aB35jPAqUAWMMPMJrv7oiKLfubuPznY1xcpL3fnofeX0Dq1Nj8b0jHW5YhIlJUWdNXM7B6gm5ndWnSmuz9WxmsPBpa7+0oAM5sADAOKBp1Ipfpg0UYyMrfz0PDe1K6hC5qKJLrSjtFdCOQSCsMGxdzK0hbIDJvOCh4raoiZzTWz98ysVzHzMbNrzGymmc3cvHlzBG8tUryCQueRKUvp3Lwewwe0i3U5IlIJSmzRuftS4CEzm+fu5TnlV3EnBvQi07OBDu6+y8zOIHQ+zR/083b3McAYgPT09KKvIRKx12dnsXzTLv52yQCqp6gvlkgyiOSb/oWZPXagRWVmfzaz1AielwW0D5tuR5GTQbt7jrvvCu6/C9Qws2aRFi9yMHLzCnjiw2X0bZfK0CNaxbocEakkkQTdWGAnMCK45QDPRfC8GUBXM+tkZjUJ7QqdHL6AmbWy4AJeZjY4qGdr5OWLRG78V6tZtyOXO4f20HXjRJJIJJfp6eLuw8Om7zOzjLKe5O75ZnYDMAVIAca6+0IzGxXMHw2cB1xnZvnAXuBCd9euSalwObl5PPPpco7r2oyjD9NOA5FkEknQ7TWzY939PwBmdgyhUCpTsDvy3SKPjQ67/zTwdOTlipTPP6avJHtPHr86rUesSxGRShZJ0I0CXgg7LpcNXB69kkQq1uad+/jHf77lzD6t6d0uksPLIpJIIrnw6lygr5k1DKZzol6VSAV6+pNv2JdfyO0/7h7rUkQkBiJp0QEKOKma1mzdw7++XsMFg9rTSZfhEUlKGkgkCe3xj5aRUs345cm6DI9IslLQScJavD6HNzPWcsUxnWipy/CIJK2Idl2a2dFAx/Dl3f2FKNUkUiEembKUBrWqM+p4XYZHJJmVGXRm9iLQBcgACoKHHVDQSdz6+tttfLJkE3ed3oPUuroMj0gyi6RFlw4croHcUlUcuAxPy4a1uFyX4RFJepEco1sA6MSAUmV8vHgTs1Zn88uTu1Gnpi7DI5LsImnRNQMWmdnXwL4DD7r7T6NWlUg5fXcZnmb1GJGuy/CISGRBd2+0ixCpKG/OWcvSjTt55mJdhkdEQiI5M8q0yihE5FDtyy/gsQ+X0bttKqfrMjwiEijzX14zO8rMZpjZLjPbb2YFZqazpEjc+dd/17B2+17uHNqDatV0GR4RCYlk387TwEXAN0Ad4Gp0xQGJM7v25fP0J8s55rCmHNtVl+ERkf+JaMC4uy83sxR3LwCeM7MvolyXyEH5x2cr2bp7vy7DIyI/EEnQ7QmuEJ5hZg8D6wGdHVfixtZd+3h2+krO6N2Kvu0bxbocEYkzkey6vCxY7gZgN9AeGF7qM0Qq0dOfLic3v5DbdBkeESlGJDmj4fMAABJjSURBVL0uV5tZHaC1u99XCTWJRCxz2x5e+moNI9Lb0aV5/ViXIyJxKJJel2cROs/l+8F0PzObHO3CRMqSV1DIH99ZhBncpMvwiEgJItl1eS8wGNgO4O4ZhK5kIBIzObl5XDluBlMWbuS2H3ejdWqdWJckInEqks4o+e6+w0zjkiQ+ZGXv4cpxM1i5eTcPD+/DiEHtY12SiMSxSIJugZldDKSYWVfgJkDDCyQmMjK3c/XzM9mXX8DzVw7mmMM0Zk5EShfJrssbgV6ETuj8MpAD3BzNokSK89789Vw45kvq1KzGG9cfrZATkYhE0utyD/Cb4CZS6dydMdNX8sB7SxiQ1ogxP0unWf1asS5LRKqIEoOurJ6VukyPVIa8gkJ+/9YCXv46k5/0ac2j5/eldg1dY05EIldai24IkElod+V/AfVGkUqVk5vHL16azWffbOEXJ3bhtlO762TNInLQSgu6VsCphE7ofDHwDvCyuy+sjMIkuWVuC/Ws/HbLbh4+rw8j0tWzUkTKp8TOKO5e4O7vu/vlwFHAcmCqmd1YadVJUpqzJptz/vo5G3NyeeGqwQo5ETkkpXZGMbNawJmEWnUdgaeASdEvS5LVu/PXc8srGbRsWJsJ1wzisBY6rZeIHJrSOqM8DxwBvAfc5+4LKq0qSTruzuhpK3no/SUM7NCYMZcNpKl6VopIBSitRXcZoasVdANuCjszigHu7g2jXJskibyCQn77xgJemZnJWX3b8Mh5fdSzUkQqTIlB5+6RDCYXOSQ79uZx3fhZfLFiKzeddBg3n9JNPStFpEJFdIVxkWjI3LaHK8bNYPXW3fz5/L4MH9gu1iWJSAJS0ElMzFqdzTUvzCS/0HnxqiM5qnPTWJckIglKQSeV7u1567h14lxap9Zm7MhBumCqiESVgk4qjbvz16kreGTKUgZ1bMzfL0unSb2asS5LRBKcgk4qxf78Qn7zxnxenZXFsH5tePi8PtSqrp6VIhJ9CjqJuh178hg1fhZfrtzKL0/uys2ndEUX8hWRyqKgk6has3UPV4z7mjXb9vDYiL6cO0A9K0WkcinoJGpmrd7Gz1+YRaE74686kiPVs1JEYiCqg8LNbKiZLTWz5WZ2VynLDTKzAjM7L5r1SOWZPHcdFz37XxrWrs4b1x+jkBORmIlai87MUoBnCF3qJwuYYWaT3X1RMcs9BEyJVi1SedydZz5dzqMfLGNwxyb8/bKBNFbPShGJoWjuuhwMLHf3lQBmNgEYBiwqstyNwOvAoCjWIpVgf34hd0+az+uzszinf1seHN5bPStFJOaiGXRtCV2h/IAs4MjwBcysLXAOcBIKuipt+579XPviLP777TZuPqUrvzxZPStFJD5EM+iK+5XzItNPAHe6e0FpP4pmdg1wDUBaWlqFFSgVY9WW3Vw5bgZZ2Xt54oJ+nN2/baxLEhH5TjSDLgsIvzR0O2BdkWXSgQlByDUDzjCzfHd/M3whdx8DjAFIT08vGpYSQzNWbeOaF2YCMP7qIxncqUmMKxIR+b5oBt0MoKuZdQLWAhcCF4cv4O6dDtw3s3HA20VDTuLXWxlruePVebRrXIexIwfRsVm9WJckIvIDUQs6d883sxsI9aZMAca6+0IzGxXMHx2t95bocnee+ng5j3+0jCM7hXpWNqqrnpUiEp+iOmDc3d8F3i3yWLEB5+4jo1mLVIx9+QXc/fp8Js1Zy7kD2vLguX2oWV3X6BWR+KUzo0jEsnfv59rxs/j6223cdmo3bjjpMPWsFJG4p6CTiHwb9Kxcu30vT17Yj2H91LNSRKoGBZ2U6etvt3HNizOpZsa/rj6S9I7qWSkiVYeCTkr1xpws7nxtPu2a1OG5kYPo0FQ9K0WkalHQSbHcnSc++oYnP/6Gozo34e+XppNat0asyxIROWgKOvmBffkF3PX6fN6Ys5bzBrbjT+f0Vs9KEamyFHTyPdm7Q+es/HrVNu44rTvXn9BFPStFpEpT0Ml3Vm7exZXjZrBuRy5/uag/Z/VtE+uSREQOmYJOAPhq5VZGjZ9FNTNe/vmRDOygnpUikhgUdMLrs7K4a9I80prU5bmRg0lrWjfWJYmIVBgFXRJzdx7/cBlPfbKco7s05W+XDiS1jnpWikhiUdAlqdy8An712jwmz13HiPR2/PFs9awUkcSkoEtCW3ft49oXZzFzdTa/Gtqd636knpUikrgUdElmxeZdXPHcDDbm5PLMxQM4s0/rWJckIhJVCrok8uWKUM/KGinGy9ccxYC0xrEuSUQk6hR0SeK1WVncPWkeHZrW47mRg2jfRD0rRSQ5KOgSXGGh89iHy3j60+Ucc1hT/nqJelaKSHJR0CWw3LwCbn91Lm/PW8+Fg9pz/9lHUCNFPStFJLko6BLU1l37+PkLM5m9Zjt3nd6Da4/vrJ6VIpKUFHQJaPmm0DkrN+bk8rdLBnB6b/WsFJHkpaBLMF8s38Ko8bOoWb0aE645iv7qWSkiSU5Bl0Amzszk15Pm06lZPcaqZ6WICKCgSwiFhc6jHyzlr1NXcFzXZjxzyQAa1lbPShERUNBVebl5Bdw2cS7vzF/PRYPT+MOwXupZKSISRkFXhW0JelZmZG7nN2f05OrjOqlnpYhIEQq6KuqbjTu5YtwMtuzax98uGcjQI1rFuiQRkbikoKuC/vPNFq57aRa1a6TwyjVD6Nu+UaxLEhGJWwq6KmbC12v47ZsL6NK8PmOvGETbRnViXZKISFxT0FURhYXOw1OWMnraCo7v1pxnLu5PA/WsFBEpk4KuCsjNK+DWiRm8O38DlxyZxn0/7UV19awUEYmIgi7Obd65j6tfmMm8rO389syeXHWselaKiBwMBV0cW7ZxJ1c8N4Ntu/cz+tKBnNZLPStFRA6Wgi5OffbNZq4fP5vaNVOYeO0QerdLjXVJIiJVkoIuDr0c9Kzs2qI+/xypnpUiIodCQRdHCgudh95fwt+nr+RH3ZrztHpWiogcMgVdnNi7v4BbXsng/YUbuOyoDtxz1uHqWSkiUgEUdHFg085cfv78TOat3cHvfnI4Vx7TUT0rRUQqiIIuxpZu2MmV40I9K8dcls6ph7eMdUkiIglFQRdD05Zt5hcvzaZerRReHTWEI9qqZ6WISEVT0MXI+K9Wc8/khXRr2YCxI9NpnaqelSIi0aCgq2QFhc6D7y3m2c++5aQeLXjqov7Ur6WPQUQkWqLarc/MhprZUjNbbmZ3FTN/mJnNM7MMM5tpZsdGs55Y27M/n+vGz+LZz75l5NEdGXPZQIWciEiURe1X1sxSgGeAU4EsYIaZTXb3RWGLfQxMdnc3sz7ARKBHtGqKpU05uVz1/EwWrtvBPWcdzhXHdIp1SSIiSSGazYnBwHJ3XwlgZhOAYcB3Qefuu8KWrwd4FOuJmcXrc7hq3Ay2783j2Z+lc3JP9awUEaks0dx12RbIDJvOCh77HjM7x8yWAO8AV0axnpiYunQT54/+kgJ3Jl47RCEnIlLJohl0xY14/kGLzd3fcPcewNnA/cW+kNk1wTG8mZs3b67gMqPnxa9Wc+W4GaQ1qctbvzhWwwdERGIgmkGXBbQPm24HrCtpYXefDnQxs2bFzBvj7ununt68efOKr7SCFRQ697+9iN+9uYATu7fg1VFDaJVaO9ZliYgkpWgeo5sBdDWzTsBa4ELg4vAFzOwwYEXQGWUAUBPYGsWaom7P/nxuejmDjxZvZOTRHfndTw4npZpO5yUiEitRCzp3zzezG4ApQAow1t0XmtmoYP5oYDjwMzPLA/YCF7h7le2QsjEnl6uen8GidTnc99NeXH50x1iXJCKS9Kyq5Up6errPnDkz1mX8wKJ1OVz1/Axy9ubxl4v7c1IPdToREaksZjbL3dOLm6fRyhXg0yWbuOFfs2lQuwavjjqaw9s0jHVJIiISUNAdoue/WMV9/17I4W0a8s/LB9GyoTqdiIjEEwVdOR3oWTnui1Wc0rMlT13Uj7o1tTpFROKNfpnLYfe+fG56eQ4fL9nEVcd24tdn9FTPShGROKWgO0gbdoR6Vi5en8P9Zx/BZUd1iHVJIiJSCgXdQVi4bgdXjZvJztw8/jlyECd2bxHrkkREpAwKugh9vHgjN748h0Z1avDadUfTs7V6VoqIVAUKugg89/m33P/2Inq1SeWfl6fTQj0rRUSqDAVdKcJ7Vv748JY8caF6VoqIVDX61S7BrqBn5SdLNvHz4zpx1+nqWSkiUhUp6Iqxfsderhw3k2Ubd/LHs4/gUvWsFBGpshR0RSxYu4Ornp/B7n0FjB05iB91i//LAomISMkUdGE+WhTqWdmkXk1eu24wPVqpZ6WISFWnoAPcnbGfr+KP7yyid9tU/nF5Oi0aqGeliEgiSPqgyy8o5L5/L+LFr1YztFcrHr+gH3VqpsS6LBERqSBJHXQ7c/O48eU5TF26mWuP78ydQ3tQTT0rRUQSStIG3brte7ly3Ay+2bSLB87tzUWD02JdkoiIREFSBt38rFDPyr37Cxh3xSCO66qelSIiiSrpgq6g0PnlK3OokVKN8dcfSbeWDWJdkoiIRFHSBV1KNWP0pQNpXLcmzRvUinU5IiISZUkXdIBacSIiSaRarAsQERGJJgWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNAWdiIgkNHP3WNdwUMxsM7C6kt6uGbClkt4rEWn9lZ/W3aHR+iu/qrruOrh7sZeiqXJBV5nMbKa7p8e6jqpK66/8tO4OjdZf+SXiutOuSxERSWgKOhERSWgKutKNiXUBVZzWX/lp3R0arb/yS7h1p2N0IiKS0NSiExGRhKagA8xsqJktNbPlZnZXMfOHmdk8M8sws5lmdmws6oxHZa27sOUGmVmBmZ1XmfXFuwi2vRPMbEew7WWY2e9jUWc8imTbC9ZfhpktNLNplV1jPItg27sjbLtbEHx/m8Si1kPm7kl9A1KAFUBnoCYwFzi8yDL1+d9u3j7AkljXHQ+3SNZd2HKfAO8C58W67ni5RbjtnQC8Heta4+0W4bprBCwC0oLpFrGuO15ukX53w5Y/C/gk1nWX96YWHQwGlrv7SnffD0wAhoUv4O67PPi0gXqADmyGlLnuAjcCrwObKrO4KiDS9Sc/FMm6uxiY5O5rANxd29//HOy2dxHwcqVUFgUKOmgLZIZNZwWPfY+ZnWNmS4B3gCsrqbZ4V+a6M7O2wDnA6Eqsq6qIaNsDhpjZXDN7z8x6VU5pcS+SddcNaGxmU81slpn9rNKqi3+RbnuYWV1gKKF/Vquk6rEuIA5YMY/9oMXm7m8Ab5jZ8cD9wCnRLqwKiGTdPQHc6e4FZsUtntQiWX+zCZ3aaJeZnQG8CXSNemXxL5J1Vx0YCJwM1AG+NLOv3H1ZtIurAiL63QucBXzu7tuiWE9UKehC/8m0D5tuB6wraWF3n25mXcysmbtXxfPBVaRI1l06MCEIuWbAGWaW7+5vVk6Jca3M9efuOWH33zWzv2rbAyLb9rKALe6+G9htZtOBvoCC7uB+9y6kCu+2BO26BJgBdDWzTmZWk9CHOjl8ATM7zIJfajMbQOjg7dZKrzT+lLnu3L2Tu3d0947Aa8D1CrnvRLLttQrb9gYT+s5q24tg3QFvAceZWfVg99uRwOJKrjNeRbL+MLNU4EeE1mWVlfQtOnfPN7MbgCmEeiKNdfeFZjYqmD8aGA78zMzygL3ABWGdU5JWhOtOShDh+jsPuM7M8gltexdq24ts3bn7YjN7H5gHFAL/cPcFsas6fhzEd/cc4IOgVVxl6cwoIiKS0LTrUkREEpqCTkREEpqCTkREEpqCTkREEpqCTkREEpqCTiROmdlNZrbYzF6KdS0iVZmGF4jEqeDcqqe7+7cRLFvd3fMroSyRKifpB4yLxCMzG03oEiqTzWw8oTPL1yE0aPwKd19qZiOBM4HaQD0zOwv4C9Cb0Hf7Xnev0me0EKkIatGJxCkzW0XoXKH7gT3B2SxOAa5z9+FB0P0R6OPu28zsT8Aidx9vZo2Ar4H+Vf2sFiKHSi06kfiXCjxvZl0JnWG+Rti8D8POKv9j4KdmdnswXRtIQ+d3lCSnoBOJf/cDn7r7OWbWEZgaNi+8tWbAcHdfWnmlicQ/9boUiX+pwNrg/shSlpsC3Bh2tYP+Ua5LpEpQ0InEv4eBB8zsc0Jnmi/J/YR2a84zswXBtEjSU2cUERFJaGrRiYhIQlPQiYhIQlPQiYhIQlPQiYhIQlPQiYhIQlPQiYhIQlPQiYhIQlPQiYhIQvt/bXNc1jJy0X0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# let's explore the monotonic relationship\n", "plt.figure(figsize=(7, 5))\n", "pd.concat([test_t, y_test], axis=1).groupby(\"fare\")[\"survived\"].mean().plot()\n", "plt.title(\"Relationship between fare and target\")\n", "plt.xlabel(\"fare\")\n", "plt.ylabel(\"Mean of target\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can observe an almost linear relationship between the variable \"fare\" after the transformation and the target." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "fengine", "language": "python", "name": "fengine" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }