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Introduction
Neutron stars are extremely dense and compact objects with mean
mass density about 2− 3 ρ0, where ρ0= 2.8× 1014 g cm−3 is the
nuclear saturation density. The inner layers of neutron star are
governed by the equation of state (EoS) of dense matter, which is
poorly known.

Here we report results for structure and cooling properties based
on microscopic descriptions of nuclear matter. EoS based on solu-
tions of BHF equations for interacting nucleons. Hidrostatic equi-
librium investigated solving Tolman-Oppenheimer-Volkoff equa-
tions. Both direct and modified Urca processes are investigated.
Superfluid states not included in the cooling process

The BHF approximation
In infinite nuclear matter, we solved the many-body problem us-
ing the BHF approximation. The effective interaction between
pairs is described by the matrix g, which satisfies [1]:

g(ω) = v + v
Q

ω + iη − ĥ1− ĥ2
g(ω) (1)

where v the bare interaction between nucleons, ĥi the single-
particle energy of nucleon i and Q the Pauli blocking operator.
The solution enables the evaluation of the mass operator

M(k; E) = ∑
|p|≤k f

〈1
2
(k− p)|gK(E + ep)|

1
2
(k− p)〉 (2)

where K = k + p is the total momentum, and

ep =
p2

2m
+ U(p) (3)

the sp energy. In the BHF approximation the sp potential is

U(k) = ReM(k; ek) (4)

These equations are solved self-consistent.

In the low-density regime large g-matrix elements appear in the
1S0 and 3SD1 channels due to NN bound states. In this work these
bound states are explicitly accounted for, leading to coexisting so-
lutions in symmetric matter [2].

Self-consistent solutions for U(k) at zero temperature were ob-
tained using the Argonne v18 potential. We solved for symmetric
and neutronic matter.

The energy per nucleon (B/A) is obtained from the sp potential:

B/A =

∫ kF
0

k2

2mk2dk + 1
2
∫ kF

0 U(k)k2dk∫ kF
0 k2k f

(5)
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Superfluidity
Neutronic matter becomes superfluid in the 1S0 and 3PF2 chan-
nels. Energy gaps are obtained by solving the BCS gap equation
[3]:

∆(k) = −∑
k′
〈k|U|k′〉 ∆(k′)

2E(k′)
(6)

E(k) =
√

ε(k)2 + |∆(k)|2 ε(k) = e(k)− µ (7)

where e(k) is the sp energy and µ the chemical potential.
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EoS for β-stable neutron star matter
Energy density for medium containing protons, neutrons, electrons and muons:

ε = (nnmn + npmp)c2 + B/A(np, nn)n + nµmµc2 +
h̄2

2mµ

(3π2nµ)5/3

5π2 + h̄c
(3π2ne)4/3

4π2 (8)

ni for particle density of species i. β-stable matter :

µe = µµ µn = µp + µe np = ne + nµ n = np + nn (9)

where µ = ∂ε/∂ni is the chemical potential for specie i. From Eq. (8) we infer EoS [1],

Pi = n2
i

∂

∂ni

(
ε

ni

)
(10)
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Neutron star structure
To obtain the neutron star mass and radius as a function of the central pressure (or density), the
EoS for β-stable matter is used in the Tolman-Oppenheimer-Volkoff (TOV) equations [1]

dp
dr

= −Gε(p)m(r)
c2r2

(
1 +

p
ε(p)

)(
1 +

4πr3p
m(r)c2

)(
1− 2Gm(r)

c2r

)−1 dm
dr

= 4π2ε(p) (11)

We solved these equations for a set of central densities from 0.5ρ0 to 7ρ0
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Neutrino emissivity
Neutron stars are born with temperatures above 1010 K. For 104− 105 years after birth, neutrino
emission is the dominating cooling mechanism. We have been able to calculate the emissivity Q for
the modified and the direct Urca processes [4]:

• Direct Urca: n→ p + e−+ νe p + e− → n + νe

QD =
457π

10080
G2

Fcos2θC(1 + 3g2
A)

m∗nm∗pm∗e
h̄10c3

(kBT)6Θ(kF,p + kF,e− kF,n) (12)

• Modified Urca: b + n→ b + p + e−+ νe b + p + e− → b + n + νe b = p, n

Neutron branch : QMn =
11513
30240

G2
Fcos2θCg2

A(m
∗
n)

3m∗p
2π

(
f π

mπ

)4 kF,p(kBT)8

h̄9c8
αnβn (13)

Proton branch : QMp = QMn
(

m∗p
m∗n

)
(kF,e + 3kF,p− kF,n)

2

8kF,ekF,p
Θ(3kF,p + kF,e− kF,n) (14)

where the effective masses for baryons
(b) and leptons (l) are

m∗b = mb

[
1 +

m
k

∂U(k)
∂k

]
m∗l =

µl
c2

and the Fermi momentum of specie i

kF,i = (3π2ρi)
1/3

Analog equations for muons.
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Conclusions and future work
• Obtained mass-ratio relation and emissivities consistent with current findings.
• Evaluate cooling curves that can be compared with data.
• Ongoing work to include 3-body forces.
• Finite-temperature within BHF (work in progress).
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