From linear to hydrodynamic fluctuations arXiv:1806.10373

Felipe Isaule, Michael C. Birse, and Niels R. Walet School of Physics and Astronomy, The University of Manchester, United Kingdom

MANCHESTER 1824

The University of Manchester

1. INTRODUCTION

The strong coupling between longitudinal and Goldstone modes in Bose gases leads to known IR divergences in perturbation theory [1]. As a non-perturbative formalism the Functional renormalisation group (FRG) can overcome these divergences [2], however IR cancellations are still not respected due to the truncation of the action.

Popov developed an hydrodynamic effective theory to describe the low-momentum regime of Bose gases [3]. He introduced an Amplitude-Phase (AP) representation for the boson fields which ease the correct treatment of the phase fluctuations. Popov's ideas led to the concept of quasi-condensate [4], which is particularly useful in the study of low-dimensional systems. Following Popov's ideas, we implement scale-dependent fields in the FRG that interpolates between a Cartesian representation for high-momentum and an AP one for low-momentum. We study O(2) models in two and three dimensions in order to test our approach.

4. EVOLUTION IN THE BROKEN PHASE

By inserting the interpolating fields (**) into the ansatz for Γ (*) we obtain the parametrisation

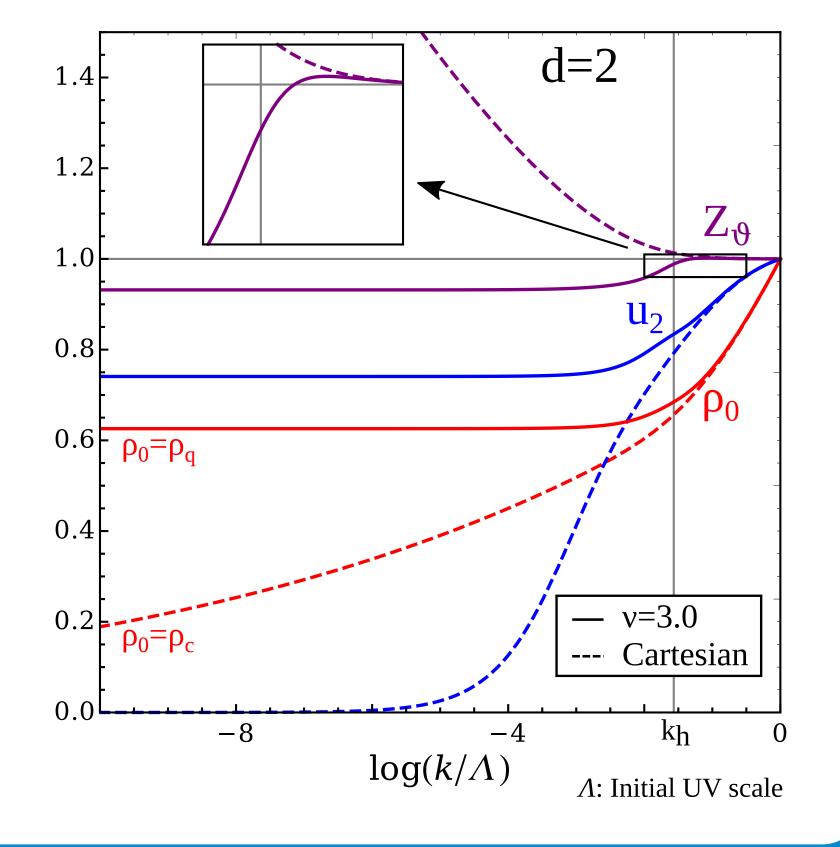
$$\Gamma = -\frac{1}{T} \int_{\mathbf{X}} \left[\frac{Z_{\vartheta}}{2m} A_k^2(\boldsymbol{\sigma}) (\nabla \vartheta)^2 + \frac{Z_{\boldsymbol{\sigma}}(\vartheta)}{2m} (\nabla \boldsymbol{\sigma})^2 + \frac{Y_m}{2m} C_k(\boldsymbol{\sigma}, \vartheta, \nabla \boldsymbol{\sigma}, \nabla \vartheta) + U(\boldsymbol{\rho}, \boldsymbol{\mu}) \right]$$

where $Z_{\vartheta} = Z_m$ and $Z_{\sigma} = Z_{\vartheta} + \rho_0 Y_m$ at $\rho = \rho_0$. See specific details on Ref. [8].

The transition should be made around the "healing scale" k_h defined by

$$w_{k_h} = \frac{Z_\sigma k_h^2 / 2m}{2u_2 \rho_0} = 1.$$

The Cartesian representation should be used for



2. EFFECTIVE ACTION

The flow of the effective action Γ is dictated by [5]

$$\partial_k \Gamma + \dot{\Phi} \cdot \frac{\delta \Gamma}{\delta \Phi} = \operatorname{tr} \left[\left(\frac{1}{2} \partial_k \mathbf{R} + \dot{\Phi}^{(1)} \mathbf{R} \right) (\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1} \right]$$

where $\dot{\Phi} = \partial_k \Phi$ and $\dot{\Phi}^{(1)} = \delta \dot{\Phi} / \delta \Phi$. We consider the O(2) Ansatz

$$\Gamma = \frac{-1}{T} \int_{\mathbf{X}} \left[\frac{Z_m}{2m} \nabla \phi^{\dagger} \nabla \phi + \frac{Y_m}{8m} (\nabla \rho)^2 + U(\rho, \mu) \right], \quad (*$$

where $\rho = \phi^{\dagger} \phi$. We truncate the potential as [6]

$$U(\rho,\mu) = u_0 + u_1(\rho - \rho_0) + \frac{u_2}{2}(\rho - \rho_0)^2 - n_0(\mu - \mu_0)$$
$$- n_1(\mu - \mu_0)(\rho - \rho_0) - \frac{n_2}{2}(\mu - \mu_0)(\rho - \rho_0)^2,$$

 $k \gg k_h$, and the AP representation for $k \ll k_h$ where Goldstone fluctuations dominate. We choose

$$b_k = \phi_0 \left[1 + w_k^{\mathbf{v}} \right].$$

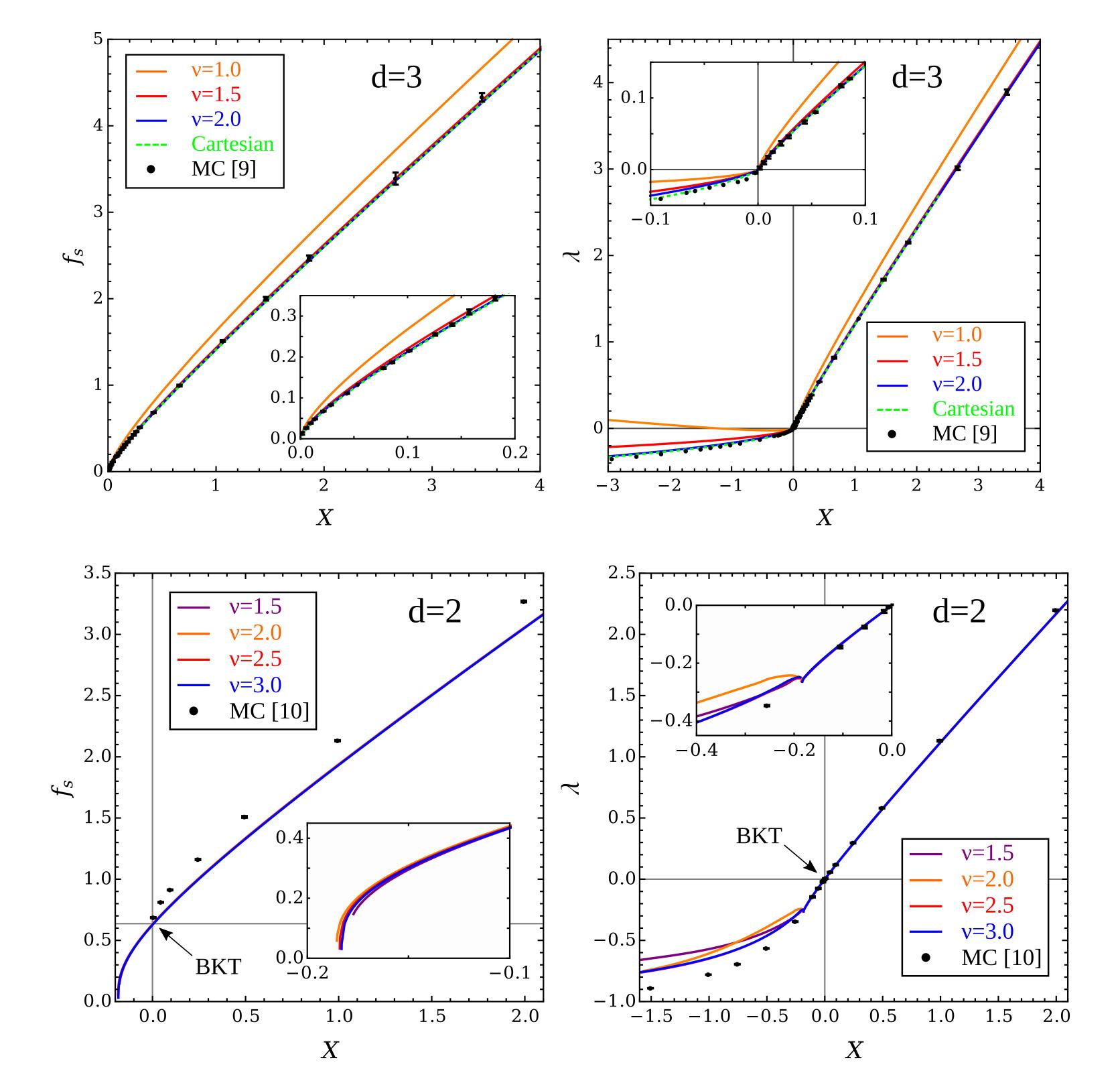
where *v* controls how fast the transition is made.

5. RESULTS AND CONCLUSIONS

We present results for two and three dimensions. We study the dimensionless functions

$$f_s = \rho_s / (m^d T^2 g^{d-2})^{\frac{1}{4-d}}, \qquad \lambda = (n_0 - n_c) / (m^d T^2 g^2)^{\frac{1}{4-d}}, \qquad n_c$$
: critical boson density

which are universal functions of the dimensionless control parameter $X = (\mu_0 - \mu_c)/(m^d T^2 g^2)^{\frac{1}{4-d}}$.



where μ_0 is the physical chemical potential. At k = 0 we obtain the physical boson density n_0 and superfluid density $\rho_s = Z_m \rho_0$.

3. INTERPOLATING FIELDS

We use the *k*-dependent fields $\Phi = (\sigma, \vartheta)$ defined by [7]

$$\phi = (\sigma + b_k)e^{i\vartheta/b_k} - (b_k - \sqrt{\rho_0}), \quad b_k \in [\sqrt{\rho_0}, \infty) \quad (**)$$

The fields change representation as b_k varies with k. In the limits ϕ take the forms

$$\phi = \begin{cases} (\sqrt{\rho_0} + \sigma) + i\vartheta & : b_k \to \infty \quad \text{(Cartesian)}, \\ (\sqrt{\rho_0} + \sigma)e^{i\vartheta/\sqrt{\rho_0}} & : b_k = \phi_0 \quad \text{(AP)}. \end{cases}$$

 ρ_0 has different meanings in each limit. From the long-distance behaviour of the correlation function $G_n(\mathbf{x}) = \langle \phi^{\dagger}(\mathbf{x})\phi^{\dagger}(0) \rangle$

$$\lim_{|\mathbf{x}|\to\infty} G_n(\mathbf{x}) = \begin{cases} \rho_c & : (\mathbf{Cart.}) \\ \rho_q e^{\frac{1}{2\rho_q} \langle (\vartheta(\mathbf{x}) - \vartheta(0))^2 \rangle} \\ : (\mathbf{AP}) & \rho_0 = \rho_q, \end{cases}$$

with ρ_c the condensate density and ρ_q the quasi-condensate density. In condensed systems, such as in three dimensions, both ρ_c and ρ_q are finite and ρ_c is the order parameter. In superfluid systems without a broken symmetry, such as in two dimensions at finite temperature, ρ_q is finite while $\rho_c = 0$.

- The results converge for $v \ge 2.5$. In d = 3 we obtain a good agreement with the simulations.
- We obtain a stable superfluid phase in d = 2 and a reasonable good agreement with the simulations. This is achieved by working in terms of a quasi-condensate at low scales.
- The deviations in d = 2 are expected since vortex effects were not included.

REFERENCES

- [1] Nepomnyashchii, A. A. et al., Sov. Phys. JETP 21, 1 (1975).
- [2] Dupuis, N., Phys. Rev. E 83, 031120 (2011).
- [3] Popov, V. N. *Functional Integrals and Collective Excitations*. (Cambridge University Press, Cambridge, England, 1987).
- [4] Kagan, Y. *et al.*, Sov. Phys. JETP **66**, 314 (1987).
- [5] Pawlowski, J. M., Annals of Physics **322**, 2831-2915 (2007).
- [6] Floerchinger, S. et al., Phys. Rev. A 77, 053603 (2008).
- [7] Lamprecht, F., Master's thesis (2007).
 - Pawlowski, Jan M., Private communication.
- [8] Isaule, F., *et al.*, arXiv:1806.10373.
- [9] Prokof'ev, N. *et al.*, Phys. Rev. A **69**, 053625 (2004).
 [10] Prokof'ev, N. *et al.*, Phys. Rev. A **66**, 043608 (2002).

ACKNOWLEDGMENTS

FI is funded by CONICYT Becas Chile contract 72170497. MCB and MRW are supported by STFC (grants ST/L005794/1 and ST/P004423/1).