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Weakly-interacting Bose gases

Dilute Bose gases: r0 � d r0:range of the interaction

d :inter-particle distance

“Almost” an ideal Bose gas

Long theoretical interest for studying Bose-Einstein condensation
(BEC) and superfluidity (Bogoliubov 1947)

Behaviour of the system depends sensitively on the dimensionality

Interest greatly increased with the experimental realisation of BEC in
cold atom gases
Anderson et al. Science 269, 198 (1995), Davis et al. Phys. Rev. Lett 75, 3969 (1995)

Systems with different shapes (dimensions) and temperatures have
been produced

Interaction between atoms can be tuned using Feshbash resonances
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Weakly-interacting Bose gases

Bare action of the system:

S[Φ] =

∫
x

[
φ†
(
−∂τ +

∇2

2m
+ µ

)
φ− g

2
(φ†φ)2

]
g : repulsive contact interaction, τ = it

Interaction related to the two-body T-matrix:

T 2B =

{
4πa3D
m : d = 3

4π/m
log(2/|µ|a2

2D)−2γE
: d = 2

ad : s-wave scattering length

Weakly-interacting regime:

d = 3: n0a
3
3D � 1

d = 2: 1/ log(1/n0a
2
2D)� 1

d = 1: (−n0a1D)−1 � 1 n0: atom density

Felipe Isaule Application of the FRG to Bose gases 1 November 2018 4 / 24



Weakly-interacting Bose gases

Correlation function: Gn(x) = 〈φ†(x)φ(0)〉

Three dimensions: Long-distance limit |x| → ∞

Gn(x)→ ρc > 0 : T < Tc

Gn(x) ∝

{
|X |−(1+η∗) : T = Tc , η

∗ > 0

e−|X |/ξ : T > Tc

ρc : Condensate density

System shows long-range-order (LRO)
U(1) symmetry is broken, with ρc as order parameter
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Weakly-interacting Bose gases

Two dimensions: Long-distance limit |x| → ∞

Gn(x)→ ρc > 0 : T = 0

Gn(x) ∝

{
|X |−η : T ≤ Tc , η > 0

e−|X |/ξ : T > Tc

Condensation only possible at T = 0 (Mermin-Wagner theorem)
System shows quasi-long-range-order (QLRO)
ρc = 0 for 0 < T ≤ Tc , but superfluid density ρs > 0
Phase transition driven by the unbinding of vortex pairs:
Berenzinskii-Kosterlitz-Thouless (BKT) transition
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Weakly-interacting Bose gases

Mean-field theory gives a reasonable qualitative description of the
three-dimensional gas at low temperatures

Perturbation theory plagued by IR divergences due to ungapped
propagator of Goldstone mode

G|| =
1

q2 + q2
c

, G⊥ =
1

q2

Divergences cancel, but cancellations are lost if expansions are
truncated

Need of non-perturbative approaches
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Field representations

IR divergences are present if we use the straightforward Cartesian
representation

φ(x) =
√
ρ0 + σ(x) + iπ(x)

ρ0: minimum of the action

Divergences can be avoided by using a convenient field representation

Similar issues arise when using a linear sigma model to describe
broken chiral symmetry.

These can be solved by using a non-linear sigma model as in
chiral-perturbation theory
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Field representations

Bose gases in the IR are described by the hydrodynamics effective
theory introduced by Popov

Popov, Functional Integrals and Collective Excitations (1987)

Popov introduced an Amplitude-phase (AP) representation

φ(x) = (
√
ρ0 + δρ(x))e iθ(x)

ρ0: minimum of the action

IR divergences not present in correlator

Cartesian representation should be used in the UV

φ(x) = φ<(x) + φ>(x)

Hydrodynamic theory widely used in modern calculations (QMC,
Beliaev technique, etc)
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Field representations

Long-distance behaviour of correlation function:

lim
|x|→∞

Gn(x) =

{
ρ0 : (Cart.) ρc = ρ0,

ρ0e
〈(ϑ(x)−ϑ(0))2〉 : (AP) ρq = ρ0,

With AP representation long-distance behaviour driven by phase
correlations

ρq is the quasi-condensate density

In systems with QLRO ρc = 0 but ρq > 0
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Functional Renormalisation Group (FRG)

Properties of the system extracted from partition function Z =
∫
DΦeS[Φ]

Within the FRG the effective action Γ is obtained by solving a RG equation

The FRG has been applied with reasonable success to high-energy physics,
condensed matter and statistical physics

Some application on nuclear matter
Drews et al Phys. Rev. C 91, 035802 (2015), Pósfay et al Phys. Rev. C 97, 025803 (2018)

A regulator function Rk is added to the theory which suppresses all
fluctuations for momenta q < k : k-dependent action Γk

Γk=0

ΓΛ=S 
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Functional Renormalisation Group (FRG)

Flow equation (Wetterich equation):

∂kΓ + Φ̇ · δΓ

δΦ
=

1

2
tr
[
∂kR(Γ

(2)
k − R)−1

]
+ tr

[
Φ̇(1)R(Γ

(2)
k − R)−1

]
Φ = (φ, φ†), Φ̇ = ∂kΦ, Γ(2) = δ2

Φ,ΦΓ, Φ̇(1) = δΦΦ̇

This equation is exact. FRG is a non-perturbative framework
(FRG also known as Exact RG and Non-perturbative RG)

In general it cannot be solved and approximations need to be made

A truncated ansatz for Γ is proposed
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Functional Renormalisation Group (FRG)

Bose gases have been widely studied within the FRG using the Cartesian
representation

The extreme IR regime cannot be accessed due to truncation of the action

FRG has been successful describing three-dimensional Bose gases

Not as successful in two dimensions. Superfluid phase is not recovered

The truncation of the action result in incorrect β-functions
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Effective action

We use the following ansatz:

Γ[Φ] =

∫
x

[
φ†
(
−Zφ∂τ +

Zm

2m
∇2

)
φ+

Ym

8m
ρ∇2ρ− U(ρ, µ)

]
U is the effective potential dependent on ρ = φ†φ and µ. It is expanded as

U = u0−n0(µ−µ0)+(u1−n1(µ−µ0))(ρ−ρ0)+
1

2
(u2−n2(µ−µ0))(ρ−ρ0)2

Zφ, Zm, Ym, ui and ni depend on k.

ρ0 = 〈ρ〉 is the k-dependent minimum of U, and µ0 is the
k-independent physical chemical potential

Initial conditions of the flow completely defined by scattering length
a, µ0 and T
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Effective action

Γ[Φ] =

∫
x

[
φ†
(
−Zφ∂τ +

Zm

2m
∇2

)
φ+

Ym

8m
ρ∇2ρ− U(ρ, µ)

]
U = u0−n0(µ−µ0)+(u1−n1(µ−µ0))(ρ−ρ0)+

1

2
(u2−n2(µ−µ0))(ρ−ρ0)2

Broken phase: ρ0 > 0, u1 = 0
Symmetric phase: ρ0 = 0, u1 > 0

The flow starts in the broken phase

If ρ0 > 0 at k = 0 the system is in its superfluid phase, otherwise is
its normal phase

ρs = Zmρ0 is the k-dependent superfluid density.
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Thermodynamics

U(ρ0, µ0) corresponds to the density of the grand canonical potential ΩG

dΩG = −PdV − SdT − Ndµ

Thus

n0 = −∂U
∂µ

∣∣∣∣
ρ0,µ0

, s = −∂U
∂T

∣∣∣∣
ρ0,µ0

,

are the k-dependent boson density and entropy density, respectively.
We can easily extract the thermodynamics properties of the system.

E/N = −P/n0 + µ0 + s T/n0
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Interpolating representation

Following Popov’s ideas we use k-dependent fields (Lamprecht 2007):

φ = (σ + bk)e iϑ/bk − (bk −
√
ρ0), bk ∈ [

√
ρ0,∞)

The field representation changes smoothly with k

In the limits φ take the forms:

φ =

{
(
√
ρ0 + σ) + iϑ : bk →∞ (Cartesian),

(
√
ρ0 + σ)e iϑ/

√
ρ0 : bk =

√
ρ0 (AP).

UV regime: fluctuations are Gaussian
IR regime: system dominated by Goldstone (phase) fluctuations

bk =
√
ρ0

[
1 +

(
Zσk

2/2m

2u2ρ0

)ν]
Zσ = Zm + Ymρ0
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Results: Flows 0 < T < Tc

d = 3
n0

ρs

u2

Zm

Zϕ

kTkh

d = 2

n0

ρs

u2

Zϕ

Zm

kT kh

Dashed: Cartesian representation, Solid: Interpolating representation
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Results phase transition region (d = 3)

fs = ρs
m3T 2u2,Λ

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

λ = n0−nc
m3T 2u2

2,Λ

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

MC: Prokof’ev et al., Phys. Rev. A 69, 053625 (2004)

X =
µ0 − µc

m3T 2u2
2,Λ
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Results phase transition region (d = 2)

fs = ρs/(m2T 2)
1
2

ν=1.5
ν=2.0
ν=2.5
ν=3.0
MC

d=2

BKT

λ = (n0 − nc)/(m2T 2u2
2,Λ)

1
2

ν=1.5
ν=2.0
ν=2.5
ν=3.0
MC

d=2

BKT

MC: Prokof’ev et al., Phys. Rev. A 66, 043608 (2002)

X = (µ0 − µc)/(m2T 2u2
2,Λ)

1
2
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Conclusions

The FRG is a powerful yet simple non-perturbative formalism to study
dilute Bose gases

However, truncations of the effective action in systems with a broken
symmetry can result in incorrect flows in the IR

The interpolating representation allow us to correctly treat the
Gaussian fluctuations in the UV, and the Goldstone (phase)
fluctuations in the IR, recovering Popov’s hydrodynamic effective
action

We obtain a stable superfluid phase in low dimensions

Vortex effects need to be explicitly included by considering the
periodicity of the phase fields in order to describe the BKT transition

More details on Isaule et al., Phys. Rev. B. 98, 144502 (2018)
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Future work: Fermi gases and the BCS-BEC crossover

BCS BEC

(kFa)-1
0 1-1

Crossover

μ>0 μ<0

Condensation of Cooper pairs

Large pair size

Weak coupling

Condensation of  bound bosons

Small pair size

Strong coupling

Unitary limit

It can be studied through cold atom experiments

Of interest in nuclear physics:
low-density neutron matter, neutron-rich nuclei, etc
Zinner et al., J. Phys. G: Nucl. Part. Phys. 40, 053101 (2013)

BCS-BEC crossover also present in one and two dimensions:
High-temperature superconductors, nuclear pastas, etc
Turlapov et al., J. Phys.: Condens. Matter 29, 383004 (2017)
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Future work: Fermi gases and the BCS-BEC crossover

BCS BEC

(kFa)-1
0 1-1

Crossover

μ>0 μ<0

Condensation of Cooper pairs

Large pair size

Weak coupling

Condensation of  bound bosons

Small pair size

Strong coupling

Unitary limit

The FRG can be used to study the BCS-BEC crossover

Our approach used with the Bose gas will be extended to the study of
the Fermi gas

Systems with spin-imbalance and more than one species of fermions
can be studied
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Weakly-interacting Bose gases

One dimension: Long-distance limit |x| → ∞

Gn(x) ∝

{
|X |−η : T = 0,

e−|X |/ξ : T > 0,

System shows quasi-long-range-order (QLRO) at T = 0



Initial conditions

At a UV scale Λ, ΓΛ = S and thus:

ρ0,Λ = n0,Λ =
µ0

u2,Λ
Θ(µ0), u1,Λ = −µ0Θ(−µ0),

Zm,Λ = Zφ,Λ = 1, Ym,Λ = 0, n1,Λ = 1, n2,Λ = 0, sΛ = 0.

Interaction term u2 needs to be renormalised. In vacuum (T = 0, µ0 ≤ 0):

u2(k = 0) =

{
4πa3D
m , : d = 3,

4π/m
log(2/|µ|ma2

2D)−2γE
: d = 2,

The only inputs are ad , µ0 and T .



Results zero temperature

d = 3

MF+LHY
MF

MF+LHY
MF

MF+LHY
MF

d = 2

Astrakharchik (QMC)
MF

Astrakharchik (QMC)
MF

MF

LHY: Lee et al., Phys. Rev. 106, 1135 (1957) QMC: Astrakharchik et al., Phys. Rev. A 79, 051602 (2009)



Results zero temperature

MF+Lieb
MF

TG+Astrakharchik

MF+Lieb
MF

TG+Astrakharchik

MF+Lieb
MF

TG+Astrakharchik

d = 1 γ = − 2
n0a1D

Lieb et al.,Phys. Rev. 130, 1605 (1963)
Astrakharchik et al.,Phys. Rev. Lett. 95, 190407 (2005)



Flow equations Bose gas

2u2
√
ρ0ρ̇0 = Γ̇(1)

σ

∣∣∣
ρ0,µ0

,

−4ρ0u̇2 + 2u2ρ̇0 = Γ̇(2)
σσ

∣∣∣
ρ0,µ0

,

ṅ0 − n1ρ̇0 = ∂µΓ̇
∣∣∣
ρ0,µ0

,

2
√
ρ0ṅ1 − 2n2

√
ρ0ρ̇0 = ∂µ

(
Γ̇(1)
σ

) ∣∣∣
ρ0,µ0

,

4ρ0ṅ2 + 2ṅ1 − 2n2ρ̇0 = ∂µ

(
Γ̇(2)
σσ

) ∣∣∣
ρ0,µ0

,

2Żφ =∂p0

(
∂kΓ

(2)
σϑ

) ∣∣∣∣
φ0,µ0,p=0

,

− Żϑ
m

= ∂p2

(
Γ̇

(2)
ϑϑ

) ∣∣∣
ρ0,µ0,p=0

,

−ρ0Ẏm

m
− Żϑ

m
= ∂p2

(
Γ̇(2)
σσ

) ∣∣∣
ρ0,µ0,p=0

,



Γ̇(1)



Γ̇(2)



The BCS-BEC crossover within the FRG

We consider a fermionic system with one species of fermions:

Γ[Φ] =

∫
x

[ ∑
σ=1,2

ψ†σ

(
−Zψ∂τ +

ZM

2m
∇2 + Σψ

)
ψσ + φ†

(
−Zφ∂τ +

Zm

4m
∇2

)
φ

+
Ym

16m
ρ∇2ρ− g

(
φ†ψ1ψ2 + φψ†2ψ

†
1

)
− U(ρ, µ)

]
.

ψσ are fermion fields and φ bosons fields that represent pairs of
fermions

The k-dependent pairing gap is given by ∆ = g
√
ρ0

The only inputs are the s-wave scattering length a, µ0 and T



Preliminary results

d=3

BECBCS

d=2

BECBCS



Preliminary results

d=3

BEC

BCS

Astrakharchik 2004 (QMC)

d=2

BEC

BCS

Bertaina 2011 (QMC)

Astrakharchik et al., Phys. Rev. Lett. 93, 200404 (2004) Bertaina et al., Phys. Rev. Lett. 106, 110403 (2011)
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