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Weakly-interacting Bose gases

Long standing theoretical interest in describing Bose-Einstein
condensation (BEC) and superfluidity (Bogoliubov 1947)

Interest greatly increased since the experimental realisation of BEC in
cold atom gases
Anderson et al. Science 269, 198 (1995), Davis et al. Phys. Rev. Lett 75, 3969 (1995)

Behaviour of the system depends sensitively on the dimensionality
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Weakly-interacting Bose gases

Bare action of the system:

S[Φ] =

∫
x

[
φ†
(
−∂τ +

∇2

2m
+ µ

)
φ− g

2
(φ†φ)2

]
g : repulsive contact interaction

Interaction related to the two-body T-matrix:

T 2B =

{
4πa3D
m : d = 3

4π/m
log(2/|µ|a2

2D)−2γE
: d = 2

a: s-wave scattering length
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Weakly-interacting Bose gases

Correlation function: Gn(x) = 〈φ†(x)φ(0)〉 Long-distance limit: |x| → ∞

Three dimensions

T < Tc : Gn(x)→ ρc > 0

Two dimensions

T = 0: Gn(x)→ ρc > 0

0 < T ≤ Tc : Gn(x) ∝ |X |−η

Long-range-order (LRO)

U(1) symmetry is broken, with ρc
as order parameter
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Weakly-interacting Bose gases

Correlation function: Gn(x) = 〈φ†(x)φ(0)〉 Long-distance limit: |x| → ∞

Three dimensions

T < Tc : Gn(x)→ ρc > 0

Two dimensions

T = 0: Gn(x)→ ρc > 0

0 < T ≤ Tc : Gn(x) ∝ |X |−η

Long-range-order (LRO)

U(1) symmetry is broken, with ρc
as order parameter

Condensation only possible at
T = 0 (Mermin-Wagner theorem)

Quasi-long-range-order (QLRO) for
0 < T ≤ Tc (ρc = 0, ρs > 0)

ρs : superfluid density

Phase transition driven by the
unbinding of vortex pairs (BKT)
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Weakly-interacting Bose gases

Mean-field theory gives a reasonable qualitative description of Bose
gases at low temperatures

Perturbation theory plagued by IR divergences due to ungapped
propagator of Goldstone mode

G|| =
1

q2 + q2
c

, G⊥ =
1

q2

Divergences cancel, but cancellations are lost if expansions are
truncated
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Field representations

IR divergences are present if we use the Cartesian representation

φ(x) =
√
ρ0 + σ(x) + iπ(x)

ρ0: minimum of the action

These can be avoided by using a convenient field representation

Similar divergences arise when using a linear sigma model to describe
broken chiral symmetry

These can be solved by using a non-linear sigma model as in
chiral-perturbation theory
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Field representations

Bose gases in the IR are described by the hydrodynamic effective
theory introduced by Popov

Popov, Functional Integrals and Collective Excitations (1987)

Popov introduced an Amplitude-Phase (AP) representation:

φ(x) = (
√
ρ0 + δρ(x))e iθ(x)

Cartesian representation should be used in the UV, whereas AP
representation in the IR

Hydrodynamic theory widely used in modern calculations (QMC,
Beliaev technique, etc)
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Field representations

Long-distance behaviour of correlation function:

lim
|x|→∞

Gn(x) =

{
ρ0 : (Cart.) ρc = ρ0,

ρ0e
〈(ϑ(x)−ϑ(0))2〉 : (AP) ρq = ρ0,

With AP representation long-distance behaviour driven by phase
correlations

ρq is the quasi-condensate density
Al Khawaja et al, PRA 66, 013615 (2002)

In systems with QLRO ρc = 0 but ρq > 0
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Functional Renormalisation Group (FRG)

Bose gases have been widely studied within the FRG
Floerchinger et al. PRA (2009), Dupuis PRA (2009), Sinner et al. PRA (2010), Rançon et al. PRA (2012)

Flow equation

∂kΓ = 1
2 tr
[
∂kR(Γ

(2)
k − R)−1

]
Wetterich, Phys. Lett. B (1993)

As a non-perturbative method the divergences of perturbation theory
are not present

FRG has been successful describing three-dimensional Bose gases

Less successful in two dimensions. Regulator needs to be fine-tuned
to recover finite stiffness

Jakubczyk et al, PRE (2014); PRB (2017)
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Functional Renormalisation Group (FRG)

Can the AP representation be implemented within the FRG?

It has been shown that for a O(2)-model in two dimensions it leads to
stable solutions at the lowest order of the derivative expansion

Defenu et al PRB 96, 174505 (2017)

AP representation not applicable in the UV
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Interpolating representation

Following Popov’s ideas we use k-dependent fields (Lamprecht 2007):

φ = (σ + bk)e iϑ/bk − (bk −
√
ρ0), bk ∈ [

√
ρ0,∞)

Lamprecht, Diploma thesis, Ruprecht-Karls-Universität Heidelberg (2007)

In the limits φ take the forms:

φ =

{
(
√
ρ0 + σ) + iϑ : bk →∞ (Cartesian),

(
√
ρ0 + σ)e iϑ/

√
ρ0 : bk =

√
ρ0 (AP).

Flow equation for k-dependent fields

∂kΓ + Φ̇ · δΓ
δΦ = 1

2 tr
[
∂kR(Γ

(2)
k − R)−1

]
+ tr

[
Φ̇(1)R(Γ

(2)
k − R)−1

]
Pawlowski, Annals of Physics 322, 2831 (2007)

Φ = (φ, φ†), Φ̇ = ∂kΦ, Γ(2) = δ2
Φ,ΦΓ, Φ̇(1) = δΦΦ̇
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Interpolating representation

Ansatz: Γ[Φ] =

∫
x

[
φ†
(
−Zφ∂τ +

Zm

2m
∇2

)
φ+

Ym

8m
ρ∇2ρ− U(ρ, µ)

]

Regimes can be characterised by: wk =
Zσk

2/2m

2u2ρ0
Zσ = Zm + Ymρ0

UV regime (wk � 1): fluctuations are Gaussian

IR regime (wk � 1): Goldstone (phase) fluctuations dominate

φ = (σ + bk)e iϑ/bk − (bk −
√
ρ0) : bk =

√
ρ0 [1 + (αwk)ν ]

Transition should be made around the healing scale kh (wkh = 1)
Capogrosso-Sansone et al, New J. Phys. 12, 043010 (2010)

Felipe Isaule FRG for Bose gases 5 April 2019 14 / 20



Results: Flows 0 < T < Tc (ν = 3)

d = 3

ρ0

n0

ρs

Zm

Zϕ
kh kT

ρq

ρc

Dashed: Cartesian representation, Solid: Interpolating representation
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Results: Flows 0 < T < Tc (ν = 3)

d = 3

ρ0

n0

ρs

Zm

Zϕ
kh kT

ρq

ρc

d = 2

kh kT

ρ0

n0

ρs

Zm

Zϕ

ρq

ρc

Dashed: Cartesian representation, Solid: Interpolating representation
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Results phase transition region

fs = ρs/(m3T 2u2,Λ)

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

MC: Prokof’ev et al., Phys. Rev. A 69, 053625 (2004)

X = µ0−µc

m3T 2u2
2,Λ

Felipe Isaule FRG for Bose gases 5 April 2019 17 / 20



Results phase transition region

fs = ρs/(m3T 2u2,Λ)

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

MC: Prokof’ev et al., Phys. Rev. A 69, 053625 (2004)

X = µ0−µc

m3T 2u2
2,Λ

fs = ρs/(m2T 2)
1
2

ν=1.5
ν=2.0
ν=2.5
ν=3.0
MC

d=2

BKT

MC: Prokof’ev et al., Phys. Rev. A 66, 043608 (2002)

X = (µ0 − µc)/(m2T 2u2
2,Λ)

1
2
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Conclusions

The interpolating representation allow us to treat the Gaussian fluctuations
in the UV with a Cartesian representation, and the Goldstone (phase)
fluctuations in the IR with an AP representation

We obtain a stable superfluid phase in low dimensions

Vortex effects need to be explicitly included in two dimensions

Interpolating representation can be implemented in the study of Fermi gases

AP representation can be generalised to include periodic effects for strongly
interacting one dimensional gases

Cazalilla et al., Reviews of Modern Physics 83, 1405 (2011)

More details in: F. Isaule, M. Birse and N. Walet, Phys. Rev. B. 98, 144502 (2018)

F. Isaule, M. Birse and N. Walet, arXiv:1902.07135 (2019)
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Critical temperature (d = 2)

no vortices

BKT

FRG (interpolating)

No vortex effects Including vortex effects

Tc =
2πn0

m

1

log(log(1/n0a2
2D))

−→ Tc =
2πn0

m

1

log(ξ/4π) + log(log(1/n0a2
2D))

Fisher et al., PRB 37, 4936 (1988) Prokof’ev et al. PRL 87, 270402 (2001)



Results zero temperature (d = 1)

MF
MF+LL
TG
FRG

MF
MF+LL
TG
FRG

MF
MF+LL
TG
FRG

Free FG

Free FG

Free FG

γ = − 2
n0a1D

For more on thermodynamics of 1D Bose Gase see De Rosi et al., PRA 96, 013613 (2017)



Results phase transition region (d = 3)

fs = ρs
m3T 2u2,Λ

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

λ = n0−nc
m3T 2u2

2,Λ

ν=1.0
ν=1.5
ν=2.0
Cartesian
MC

d=3

MC: Prokof’ev et al., Phys. Rev. A 69, 053625 (2004)

X =
µ0 − µc

m3T 2u2
2,Λ



Results phase transition region (d = 2)

fs = ρs/(m2T 2)
1
2

ν=1.5
ν=2.0
ν=2.5
ν=3.0
MC

d=2

BKT

λ = (n0 − nc)/(m2T 2u2
2,Λ)

1
2

ν=1.5
ν=2.0
ν=2.5
ν=3.0
MC

d=2

BKT

MC: Prokof’ev et al., Phys. Rev. A 66, 043608 (2002)

X = (µ0 − µc)/(m2T 2u2
2,Λ)

1
2



Results zero temperature

d = 3

MF
MF+LHY

MF
MF+LHY

MF
MF+LHY

d = 2

MF
QMC

MF
QMC

MF
QMC

LHY: Lee et al., Phys. Rev. 106, 1135 (1957) QMC: Astrakharchik et al., Phys. Rev. A 79, 051602 (2009)



Initial conditions

At a UV scale Λ, ΓΛ = S and thus:

ρ0,Λ = n0,Λ =
µ0

u2,Λ
Θ(µ0), u1,Λ = −µ0Θ(−µ0),

Zm,Λ = Zφ,Λ = 1, Ym,Λ = 0, n1,Λ = 1, n2,Λ = 0, sΛ = 0.

Interaction term u2 needs to be renormalised. In vacuum (T = 0, µ0 ≤ 0):

u2(k = 0) =

{
4πa3D
m , : d = 3,

4π/m
log(2/|µ|ma2

2D)−2γE
: d = 2,

The only inputs are ad , µ0 and T .



Flow equations Bose gas

2u2
√
ρ0ρ̇0 = Γ̇(1)

σ

∣∣∣
ρ0,µ0

,

−4ρ0u̇2 + 2u2ρ̇0 = Γ̇(2)
σσ

∣∣∣
ρ0,µ0

,

ṅ0 − n1ρ̇0 = ∂µΓ̇
∣∣∣
ρ0,µ0

,

2
√
ρ0ṅ1 − 2n2

√
ρ0ρ̇0 = ∂µ

(
Γ̇(1)
σ

) ∣∣∣
ρ0,µ0

,

4ρ0ṅ2 + 2ṅ1 − 2n2ρ̇0 = ∂µ

(
Γ̇(2)
σσ

) ∣∣∣
ρ0,µ0

,

2Żφ =∂p0

(
∂kΓ

(2)
σϑ

) ∣∣∣∣
φ0,µ0,p=0

,

− Żϑ
m

= ∂p2

(
Γ̇

(2)
ϑϑ

) ∣∣∣
ρ0,µ0,p=0

,

−ρ0Ẏm

m
− Żϑ

m
= ∂p2

(
Γ̇(2)
σσ

) ∣∣∣
ρ0,µ0,p=0

,



Γ̇(1)



Γ̇(2)


