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Weakly-interacting Bose gases

Weakly-interacting Bose gases

Dilute gas of bosons interacting through weak repulsive short-range
interactions

Long standing theoretical interest for describing Bose-Einstein
condensation (BEC) and superfluidity (Bogoliubov 1947)

Interest greatly increased since the experimental realisation of BEC
in cold atom gases

M.H. Anderson et al. Science 269, 198 (1995), K. B. Davis et al. PRL 75, 3969 (1995)

Behaviour of the system depends sensitively on the
dimensionality
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Weakly-interacting Bose gases

Bare action of the system:

S =

∫
x

[
φ†
(
−∂τ +

∇2

2m
+ µ

)
φ− g

2
(φ†φ)2

]
g : weak repulsive contact interaction

Interaction related to the two-body T-matrix:

T 2B =

{
4πa3D

m : d = 3
4π/m

log(2/|µ|a2
2D )−2γE

: d = 2

a: s-wave scattering length

Weak interaction:

d = 3: n0a
3
3D � 1

d = 2: 1/ log(1/n0a
2
2D)� 1 n0: atom density
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Weakly-interacting Bose gases

Mean-field theory gives a qualitative description of Bose gases at
low temperatures

Fluctuations need to be considered

Weakly-interacting Bose gases are now well described:
MC simulations, Beliaev technique, RG approaches
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Functional renormalisation group

Functional Renormalisation Group (FRG)

Properties of the system extracted from partition function
Z =

∫
DΦeS[Φ]

Within the FRG the effective action Γ is obtained by solving a RG
equation

A regulator function Rk is added to the theory which suppresses all
fluctuations for momenta q < k : k-dependent action Γk

ΓΛ

Γ0
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Functional renormalisation group

Flow equation

Flow equation (Wetterich equation)

∂kΓ =
1

2
tr
[
∂kR(Γ

(2)
k − R)−1

]
C. Wetterich, Phys. Lett. B 301, 90 (1993)

∂kΓ=
1
2

This equation is exact. FRG is a non-perturbative framework

In general the flow equation cannot be solved and approximations
need to be made: ansatz for Γ

Encouraging results for cold quantum gases
I. Boettcher et al, Nucl. Phys. B 228, 63 (2015)

Some application to nuclear matter,
M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2016)

and few-nucleon systems
M. Birse et al., PRC 87, 054001 (2013)
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Functional renormalisation group

Ansatz for weakly-interacting Bose gases

We use the following ansatz based on a gradient expansion:

Γ =

∫
x

[
φ†
(
−Zφ∂τ +

Zm

2m
∇2

)
φ+

Ym

8m
ρ∇2ρ− U(ρ, µ)

]
U is the effective potential dependent on ρ = φ†φ . It is expanded as

U = u0 + u1(ρ− ρ0) + u2

2 (ρ− ρ0)2 ρ0 = 〈ρ〉

Zφ, Zm, Ym, ui and ρ0 depend on k

ρs = Zmρ0 is the superfluid density

U(ρ0) is the density of the grand
canonical potential ΩG

dΩG = −PdV − SdT − Ndµ

In the IR: φ(x) = (
√
ρ0 + σ(x))e iθ(x)

Popov, Functional Integrals and Collective Excitations (1987)

ΓΛ

Γ0

Γ0

v μ=T=0

μ>0,T>0

u2     = T2B

k=0
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Functional renormalisation group

Results for weakly-interacting Bose gases at finite temperatures

d = 3

N. Prokof’ev et al.,
PRA 69, 053625 (2004)

fs = ρs
m3T 2u2,Λ

, X = µ−µc

m3T 2u2
2,Λ

fs = ρs
mT , X = µ−µc

mTu2,Λ
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Functional renormalisation group

Results for weakly-interacting Bose gases at finite temperatures

d = 3

N. Prokof’ev et al.,
PRA 69, 053625 (2004)

fs = ρs
m3T 2u2,Λ

, X = µ−µc

m3T 2u2
2,Λ

d = 2

BKT

N. Prokof’ev et al., 
PRA 66, 043608 (2002)

fs = ρs
mT , X = µ−µc

mT u2,Λ
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Fermi gases and the BCS-BEC crossover

Fermi gases and the BCS-BEC crossover

Dilute two-component Fermi gases interacting through attractive
short-range interactions

S =

∫
x

[
ψ†s

(
−∂τ +

∇2

2m
+ µ

)
ψs−udφ

†φ−g
(
φ†ψ1ψ2 + φψ†2ψ

†
1

)]
ψs : fermionic atom fields

φ: bosonic dimer fields ∼ 〈ψ1ψ2〉

They can be studied with cold-atom experiments
C. A. Regal et al., PRL 92, 040403, (2004). C. Chin, Science 305, 1128 (2004)
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Fermi gases and the BCS-BEC crossover

BCS-BEC crossover

BCS BEC

(kFa)-1
0 1-1

Crossover

μ>0 μ<0

Condensation of Cooper pairs

Large pair size

Weak coupling

Condensation of  bound bosons

Small pair size

Strong coupling

Unitary limit
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Fermi gases and the BCS-BEC crossover

BCS-BEC crossover

BCS BEC

(kFa)-1
0 1-1

Crossover

μ>0 μ<0

Condensation of Cooper pairs

Large pair size

Weak coupling

Condensation of  bound bosons

Small pair size

Strong coupling

Unitary limit

BCS-BEC crossover regime is strongly-interacting

Nuclear physics applications:
low-density neutron matter, neutron-rich nuclei.
Zinner et al., J. Phys. G: Nucl. Part. Phys. 40, 053101 (2013)

BCS-BEC crossover also present in one and two dimensions:
High-temperature superconductors, nuclear pastas, etc
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Fermi gases and the BCS-BEC crossover

Ansatz for Fermi gases

We use the following ansatz based on a gradient expansion:

Γ =

∫
x

[
ψ†s

(
−Zψ∂τ +

ZM

2m
∇2 + Σψs

)
ψs + φ†

(
−Zφ∂τ +

Zm

4m
∇2

)
φ

− g
(
φ†ψ1ψ2 + φψ†2ψ

†
1

)
− U(ρ, µ)

]
where ρ = φ†φ and U = u0 + u1(ρ− ρ0) + u2

2 (ρ− ρ0)2. ρ0 = 〈ρ〉

∆ = gρ
1/2
0 is the pairing gap

d = 3: εb = −1
ma2

3D
Θ(a3D)

T 2B = 4πa3D

m Θ(−a3D)

d = 2: εb = −4
me2γE a2

2D

In the IR: φ(x) = (φ0 + σ(x))e iθ(x)

L. Salasnich et al., PRA 88, 053612 (2013)

ΓΛ

Γ0

Γ0

v T=0

μ=μv+μMB

T>0

= -T2B(-a)

μv =    (a)2
εb

g2

u1 k=0
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Fermi gases and the BCS-BEC crossover

Results in the BCS-BEC crossover at zero temperature

8eπ/2kFa/e2
(16/3πkFa)1/2

BCS BEC

J. Carlson et al., PRL 91, 050401 (2003)

J. Carlson et al., PRL 95, 060401, (2005)

G. E. Astrakharchik et al., 
PRL 93, 200404 (2004)

G. E. Astrakharchik et al., 
PRL 93, 200404 (2004)

d=3

εF=

EF= 3
10

kF
2

2m

kF
2

2m

EF= 3
10

kF
2

2m
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Fermi gases and the BCS-BEC crossover

Results in the BCS-BEC crossover at zero temperature

8eπ/2kFa/e2
(16/3πkFa)1/2

BCS BEC

J. Carlson et al., PRL 91, 050401 (2003)

J. Carlson et al., PRL 95, 060401, (2005)

G. E. Astrakharchik et al., 
PRL 93, 200404 (2004)

G. E. Astrakharchik et al., 
PRL 93, 200404 (2004)

d=3

εF=

EF= 3
10

kF
2

2m

kF
2

2m

EF= 3
10

kF
2

2m

(2|εB|/εF)1/2

G. Bertaina et al., 
PRL 106, 110403, (2011)

G. Bertaina et al., 
PRL 106, 110403, (2011)

BCS BEC
d=2

εF= kF
2

2m

EF= 1
2

kF
2

2m

EF= 1
2

kF
2

2m
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Conclusions

Conclusions

The FRG is a powerful yet simple non-perturbative formalism to
study quantum gases

It allows us to give a consistent description of few- and many-body
systems in different dimensions

Quantitative accuracy in Fermi gases can be achieved by including
missing physics

Future work: gases with a mixture of different particles
low-density nuclear matter

More details: F. Isaule, M. Birse and N. Walet, PRB 98, 144502 (2018)

F. Isaule, M. Birse and N. Walet, arXiv:1902.07135 (2019)



Correlation function: Gn(x) = 〈φ†(x)φ(0)〉

Three dimensions

T < Tc : Gn(x)→ ρc > 0

Two dimensions

T = 0: Gn(x)→ ρc > 0

0 < T ≤ Tc : Gn(x) ∝ |X |−η

Long-range-order (LRO)

U(1) symmetry is broken, with
ρc as order parameter

Condensation only possible at
T = 0 (Mermin-Wagner
theorem)

Quasi-long-range-order
(QLRO) for 0 < T ≤ Tc

(ρc = 0, ρs > 0)
ρs : superfluid density

Phase transition driven by the
unbinding of vortex pairs
(BKT)



Initial conditions

Bose gas:

ρ0,Λ =
µ0

u2,Λ
Θ(µ0), u1,Λ = −µ0Θ(−µ0), Zm,Λ = Zφ,Λ = 1, Ym,Λ = 0.

Fermi gas:

ρ0,Λ = Zm,Λ = Zφ,Λ = u2,Λ = 0, ZM,Λ = Zψ,Λ = 1, Σψ,Λ = µ



Results Bose gas finite temperature

d = 3

λ = n−nc
m3T 2u2

2,Λ
, X = µ−µc

m3T 2u2
2,Λ

d = 2

BKT

λ = n−nc
mTu2,Λ

, X = µ−µc

mT u2,Λ



Field representations

Perturbation theory plagued by IR divergences due to ungapped
propagator of Goldstone mode

φ(x) =
√
ρ0 + σ(x) + iπ(x) : G|| =

1

q2 + q2
c

, G⊥ =
1

q2

Divergences cancel, but cancellations are lost if expansions are
truncated

These can be avoided by using a convenient field representation

φ(x) = (
√
ρ0 + δρ(x))e iθ(x)

Similar divergences arise when using a linear sigma model to
describe broken chiral symmetry

These can be solved by using a non-linear sigma model as in
chiral-perturbation theory



Field representations

Long-distance behaviour of correlation function:

lim
|x|→∞

Gn(x) =

{
ρ0 : (Cart.) ρc = ρ0,

ρ0e
〈(ϑ(x)−ϑ(0))2〉 : (AP) ρq = ρ0,

With AP representation long-distance behaviour driven by phase
correlations

ρq is the quasi-condensate density
Al Khawaja et al, PRA 66, 013615 (2002)

In systems with QLRO ρc = 0 but ρq > 0



Results Bose gas zero temperature

d = 3

FRG
MF
MF+LHY

FRG
MF
MF+LHY

FRG
MF
MF+LHY

d = 2

FRG
MF
QMC

FRG
MF
QMC

FRG
MF
QMC



Results Bose gas zero temperature

d = 1

MF
MF+LL
TG
FRG

MF
MF+LL
TG
FRG

MF
MF+LL
TG
FRG

Free FG

Free FG

Free FG

γ = −2/ma1D



Flows Bose gas 0 < T < Tc

d = 3

ρ0

n0

ρs

Zm

Zϕ
kh kT

ρq

ρc

d = 2

kh kT

ρ0

n0

ρs

Zm

Zϕ

ρq

ρc

Dashed: Cartesian representation, Solid: Interpolating representation



Flows Fermi gas T = 0

d = 3

Δ
ρ0

n0

ρs

Zϕ

Zm

d = 2

Zϕ

Zm

n0

ρs

ρ0

Δ

Dashed: Cartesian representation, Solid: Interpolating representation
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