

Engineering and Physical Sciences Research Council

Quantum phases of bosonic chiral molecules in helicity lattices

Felipe Isaule

School of Physics and Astronomy University of Glasgow

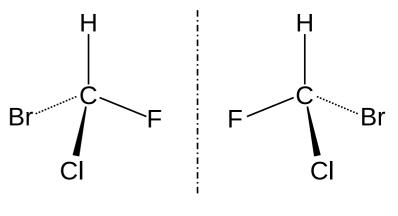
<u>Collaborators:</u> R. Bennett and J. B. Götte University of Glasgow

The Cold and Controlled Molecules & Ions Conference 2022

Durham University 5th September 2022

S felipeisaule.github.io

☐ felipe.isaulerodriguez@glasgow.ac.uk


Outline

We present an exploratory study of the phase diagram of cold **chiral molecules** immersed in recently proposed **helicity lattices**.

- 1. Chiral molecules and helicity
- 2. Cold chiral molecules in optical helicity lattices
- 3. Conclusions and outlook

Chiral molecules

- Chiral molecules cannot be superposed with their mirror image by rotations and translations.
- Their left- and right-handed forms are referred to as **enantiomers**.

Bromochlorofluoromethane

 Chiral discrimination, the ability to separate enantiomers, has received significant interdisciplinary interest.

D. Patterson and M. Schnell, Phys. Chem. Chem. Phys. 16, 11114 (2014).

• In this direction, the use of **light**, which is by itself chiral, has received special attention to harness chiral molecules.

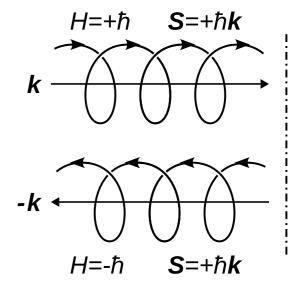
Optical helicity

• The **optical helicity** is defined as (in natural units)

$$\mathcal{H} = \frac{1}{2} \int d^3 x \left(\boldsymbol{A} \cdot \boldsymbol{B} - \boldsymbol{C} \cdot \boldsymbol{E} \right) \,. \qquad \qquad \begin{array}{l} \boldsymbol{B} = \nabla \times \boldsymbol{A} \\ \boldsymbol{E} = -\nabla \times \boldsymbol{C} \end{array}$$

Classically, it measures the "twist" of the fields around the axis of propagation.

S. M. Barnett, R. P. Cameron, and A. M. Yao, PRA 86, 013845 (2012).


The integrand h is referred to as the helicity density

$$h = \frac{1}{2} \left(\boldsymbol{A} \cdot \boldsymbol{B} - \boldsymbol{C} \cdot \boldsymbol{E} \right) \,.$$

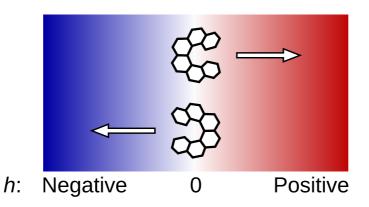
Optical helicity and spin

- The helicity is closely connected to the spin of light.
- The familiar definition of H as the projection of the spin in the direction of propagation can be seen from the quantised forms

$$\hat{\mathcal{H}} = \hbar \sum_{\boldsymbol{k}} \left(\hat{n}_{\boldsymbol{k}}^{L} - \hat{n}_{\boldsymbol{k}}^{R} \right) ,$$
$$\hat{\mathcal{S}} = \hbar \sum_{\boldsymbol{k}} \frac{\boldsymbol{k}}{|\boldsymbol{k}|} \left(\hat{n}_{\boldsymbol{k}}^{L} - \hat{n}_{\boldsymbol{k}}^{R} \right) .$$

S. M. Barnett, R. P. Cameron, and A. M. Yao, PRA 86, 013845 (2012).

Discriminatory force

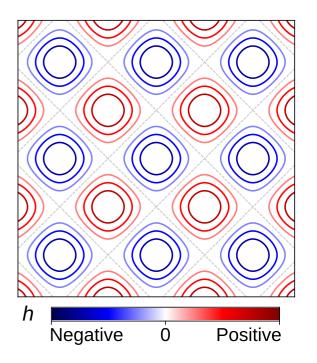

• The gradient of the helicity density exerts a **discriminatory force** on chiral molecules. To leading order, this force reads

$$F = b_{\chi} \nabla h$$
.

R. P. Cameron, S. M. Barnett, and A. M. Yao, NJP 16, 013020 (2014).

The constant b depends on molecular properties and has the opposite sign to that of the opposite enantiomer

$$b_L = -b_R \,.$$


 Engineered light with varying helicity is a proposed mechanism for separating chiral molecules.

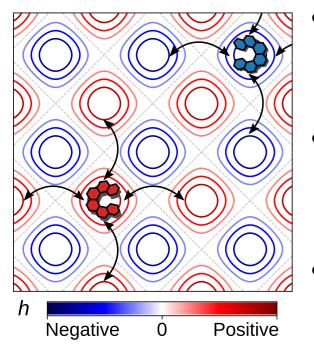
Helicity lattices

• **Superpositions** of coherent light waves can be used to create patterns with an oscillatory helicity density.

K. C. van Kruining, R. P. Cameron, and J. B. Götte, Optica 5, 1091 (2018).

- However, they have a homogeneous mean square of the electric field.
- We call them helicity lattices.

- **Cold chiral molecules** immersed in helicity lattices should show phases induced by their chirality.
- Trapping of chiral molecules at ultracold temperatures has not yet been achieved, but there is rapid progress realising cold polyatomic molecules.
 - L. Anderegg *et al.*, Nat. Phys. **14**, 890 (2018).
 - J. Kłos and S. Kotochigova, PRR 2, 013384 (2020).
 - B. L. Augenbraun, J. M. Doyle, T. Zelevinsky, and I. Kozyryev, PRX 10, 031022 (2020).


Outline

1. Chiral molecules and helicity

2. Cold chiral molecules in optical helicity lattices

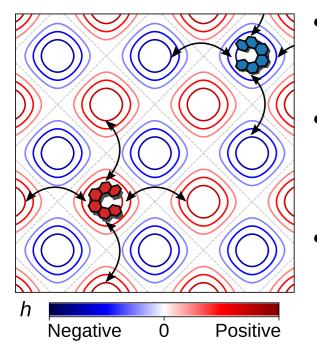
3. Conclusions and outlook

Cold chiral molecules in helicity lattices

The chirality of a molecule determines if it is **attracted or repelled** from a given site.

A. Canaguier-Durand et al., NJP 15, 123037 (2013).

- The molecules are immersed in a **periodic potential** with wells at the sites with **favourable helicity**.
- Potential depth:


$$V_0 \approx \frac{|G'|I}{\epsilon_0 c^2}$$

G': electric dipole–magneticDipole optical activity tensorI : Laser's intensity

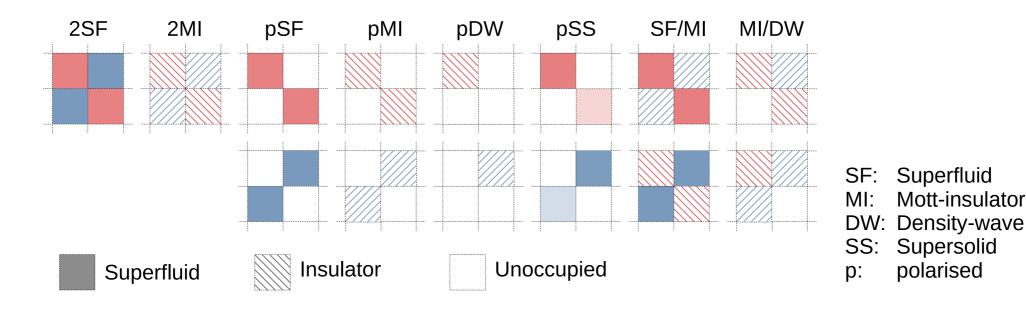
R. P. Cameron et al., Philos. Trans. R. Soc., A 375, 20150433 (2017).

- By using $I \approx 10^9$ W/cm², a lattice with a spacing $\lambda \approx \mu$ m in the μ K regime forms a **tight lattice** which can be modelled with a **Hubbardlike model**.
- We study molecules immersed in a square 2D helicity lattice.

Model

- We model the molecules as **point bosonic particles** (ground rovibrational state).
- The molecules interact through **dipole-dipole interactions**.

D. P. Craig and T. Thirunamachandran, Theor. Chim. Acta 102, 112 (1999).


 We consider dipoles polarised orthogonal to the lattice plane (repulsive interactions).

$$\begin{split} \hat{H} &= -\frac{t}{2} \sum_{\langle\langle i,j \rangle\rangle_{\chi}} \left(\hat{b}_{\chi,i}^{*} \hat{b}_{\chi,j} + \hat{b}_{\chi,i}^{*} \hat{b}_{\chi,j} \right) \\ &+ \frac{U}{2} \sum_{i} \hat{n}_{\chi,i} (\hat{n}_{\chi,i} - 1) + \frac{V_{LR}}{2} \sum_{\langle i,j \rangle_{LR}} \hat{n}_{\chi,i} \hat{n}_{\chi',j} + \frac{V}{2^{5/2}} \sum_{\langle\langle i,j \rangle\rangle_{\chi}} \hat{n}_{\chi,i} \hat{n}_{\chi,j} \end{split}$$

• We study the phase diagram with a Gutzwiller ansatz. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, PRL **81**, 3108 (1998).

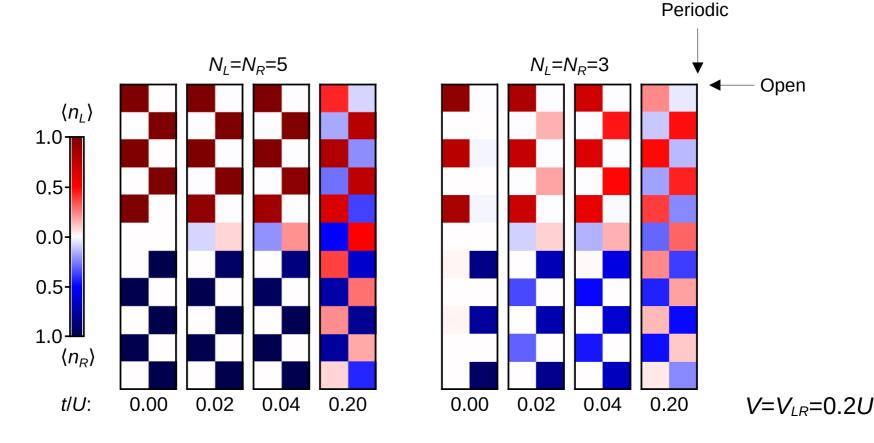
Quantum phases

- We identify the phases by examining the order parameter ϕ_i and occupancy n_i per site.
- Dipole-dipole interactions induce checker-board phases with staggered occupation.

Phase diagram

 $V = V_{LR} = 0.2U$ $V = V_{LR} = 0.4U$ $V = V_{LR} = 0.8U$ 3 (b) spSF (a) (C) SF/MI₂ MI_2/MI_1 pMI_2 pDW_(3,0) SF/MI₁ pSS 2 2SF $|pDW_{(2,1)}\rangle$ pSF μ/U $2MI_1$ pSF pDW_(2,0) spSF pMI_1 1 MI₁/DW_(1,0) pSS SF/MI₁ pSS pMI_1 pDW_(1,0) pDW_(1,0) pDW_(1,0) pSF pSF 0 +0.06 0.05 0.00 0.02 0.04 0.03 0.00 0.10 0.00 t/U t/U t/U SF:

MI: Mott-insulator DW: Density-wave


Superfluid

- SS: Supersolid
- p: polarised

Phase separation

- In an experiment with a fixed density of molecules, the polarised phases produce a **phase separation** of enantiomers.
- We perform **exact diagonalisation** calculations for small lattices to illustrate this separation.

D. Raventós, T. Graß, M. Lewenstein, and B. Juliá-Díaz, JoPB 50, 113001 (2017).

Conclusions

- Repulsive dipole-dipole interactions induce a rich phase diagram.
- In particular, a strong dipole-dipole repulsion induces a left/right polarisation, which opens a potential new avenue for chiral discrimination.
- <u>Future work:</u>
 - Consideration of realistic molecular interactions and internal structure (molecular rotation).
 - Employ **beyond mean-field** approaches and consideration of other geometries.

Engineering and Physical Sciences Research Council

More details: F. Isaule, R. Bennett, and J. B. Götte PRA **106**, 013321 (2022). K. C. van Kruining, R. P. Cameron, and J. B. Götte, Optica **5**, 1091 (2018).